1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * mmap_lock 1259 * perf_event::mmap_mutex 1260 * perf_buffer::aux_mutex 1261 * perf_addr_filters_head::lock 1262 * 1263 * cpu_hotplug_lock 1264 * pmus_lock 1265 * cpuctx->mutex / perf_event_context::mutex 1266 */ 1267 static struct perf_event_context * 1268 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1269 { 1270 struct perf_event_context *ctx; 1271 1272 again: 1273 rcu_read_lock(); 1274 ctx = READ_ONCE(event->ctx); 1275 if (!refcount_inc_not_zero(&ctx->refcount)) { 1276 rcu_read_unlock(); 1277 goto again; 1278 } 1279 rcu_read_unlock(); 1280 1281 mutex_lock_nested(&ctx->mutex, nesting); 1282 if (event->ctx != ctx) { 1283 mutex_unlock(&ctx->mutex); 1284 put_ctx(ctx); 1285 goto again; 1286 } 1287 1288 return ctx; 1289 } 1290 1291 static inline struct perf_event_context * 1292 perf_event_ctx_lock(struct perf_event *event) 1293 { 1294 return perf_event_ctx_lock_nested(event, 0); 1295 } 1296 1297 static void perf_event_ctx_unlock(struct perf_event *event, 1298 struct perf_event_context *ctx) 1299 { 1300 mutex_unlock(&ctx->mutex); 1301 put_ctx(ctx); 1302 } 1303 1304 /* 1305 * This must be done under the ctx->lock, such as to serialize against 1306 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1307 * calling scheduler related locks and ctx->lock nests inside those. 1308 */ 1309 static __must_check struct perf_event_context * 1310 unclone_ctx(struct perf_event_context *ctx) 1311 { 1312 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1313 1314 lockdep_assert_held(&ctx->lock); 1315 1316 if (parent_ctx) 1317 ctx->parent_ctx = NULL; 1318 ctx->generation++; 1319 1320 return parent_ctx; 1321 } 1322 1323 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1324 enum pid_type type) 1325 { 1326 u32 nr; 1327 /* 1328 * only top level events have the pid namespace they were created in 1329 */ 1330 if (event->parent) 1331 event = event->parent; 1332 1333 nr = __task_pid_nr_ns(p, type, event->ns); 1334 /* avoid -1 if it is idle thread or runs in another ns */ 1335 if (!nr && !pid_alive(p)) 1336 nr = -1; 1337 return nr; 1338 } 1339 1340 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1343 } 1344 1345 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1346 { 1347 return perf_event_pid_type(event, p, PIDTYPE_PID); 1348 } 1349 1350 /* 1351 * If we inherit events we want to return the parent event id 1352 * to userspace. 1353 */ 1354 static u64 primary_event_id(struct perf_event *event) 1355 { 1356 u64 id = event->id; 1357 1358 if (event->parent) 1359 id = event->parent->id; 1360 1361 return id; 1362 } 1363 1364 /* 1365 * Get the perf_event_context for a task and lock it. 1366 * 1367 * This has to cope with the fact that until it is locked, 1368 * the context could get moved to another task. 1369 */ 1370 static struct perf_event_context * 1371 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1372 { 1373 struct perf_event_context *ctx; 1374 1375 retry: 1376 /* 1377 * One of the few rules of preemptible RCU is that one cannot do 1378 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1379 * part of the read side critical section was irqs-enabled -- see 1380 * rcu_read_unlock_special(). 1381 * 1382 * Since ctx->lock nests under rq->lock we must ensure the entire read 1383 * side critical section has interrupts disabled. 1384 */ 1385 local_irq_save(*flags); 1386 rcu_read_lock(); 1387 ctx = rcu_dereference(task->perf_event_ctxp); 1388 if (ctx) { 1389 /* 1390 * If this context is a clone of another, it might 1391 * get swapped for another underneath us by 1392 * perf_event_task_sched_out, though the 1393 * rcu_read_lock() protects us from any context 1394 * getting freed. Lock the context and check if it 1395 * got swapped before we could get the lock, and retry 1396 * if so. If we locked the right context, then it 1397 * can't get swapped on us any more. 1398 */ 1399 raw_spin_lock(&ctx->lock); 1400 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1401 raw_spin_unlock(&ctx->lock); 1402 rcu_read_unlock(); 1403 local_irq_restore(*flags); 1404 goto retry; 1405 } 1406 1407 if (ctx->task == TASK_TOMBSTONE || 1408 !refcount_inc_not_zero(&ctx->refcount)) { 1409 raw_spin_unlock(&ctx->lock); 1410 ctx = NULL; 1411 } else { 1412 WARN_ON_ONCE(ctx->task != task); 1413 } 1414 } 1415 rcu_read_unlock(); 1416 if (!ctx) 1417 local_irq_restore(*flags); 1418 return ctx; 1419 } 1420 1421 /* 1422 * Get the context for a task and increment its pin_count so it 1423 * can't get swapped to another task. This also increments its 1424 * reference count so that the context can't get freed. 1425 */ 1426 static struct perf_event_context * 1427 perf_pin_task_context(struct task_struct *task) 1428 { 1429 struct perf_event_context *ctx; 1430 unsigned long flags; 1431 1432 ctx = perf_lock_task_context(task, &flags); 1433 if (ctx) { 1434 ++ctx->pin_count; 1435 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1436 } 1437 return ctx; 1438 } 1439 1440 static void perf_unpin_context(struct perf_event_context *ctx) 1441 { 1442 unsigned long flags; 1443 1444 raw_spin_lock_irqsave(&ctx->lock, flags); 1445 --ctx->pin_count; 1446 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1447 } 1448 1449 /* 1450 * Update the record of the current time in a context. 1451 */ 1452 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1453 { 1454 u64 now = perf_clock(); 1455 1456 lockdep_assert_held(&ctx->lock); 1457 1458 if (adv) 1459 ctx->time += now - ctx->timestamp; 1460 ctx->timestamp = now; 1461 1462 /* 1463 * The above: time' = time + (now - timestamp), can be re-arranged 1464 * into: time` = now + (time - timestamp), which gives a single value 1465 * offset to compute future time without locks on. 1466 * 1467 * See perf_event_time_now(), which can be used from NMI context where 1468 * it's (obviously) not possible to acquire ctx->lock in order to read 1469 * both the above values in a consistent manner. 1470 */ 1471 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1472 } 1473 1474 static void update_context_time(struct perf_event_context *ctx) 1475 { 1476 __update_context_time(ctx, true); 1477 } 1478 1479 static u64 perf_event_time(struct perf_event *event) 1480 { 1481 struct perf_event_context *ctx = event->ctx; 1482 1483 if (unlikely(!ctx)) 1484 return 0; 1485 1486 if (is_cgroup_event(event)) 1487 return perf_cgroup_event_time(event); 1488 1489 return ctx->time; 1490 } 1491 1492 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1493 { 1494 struct perf_event_context *ctx = event->ctx; 1495 1496 if (unlikely(!ctx)) 1497 return 0; 1498 1499 if (is_cgroup_event(event)) 1500 return perf_cgroup_event_time_now(event, now); 1501 1502 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1503 return ctx->time; 1504 1505 now += READ_ONCE(ctx->timeoffset); 1506 return now; 1507 } 1508 1509 static enum event_type_t get_event_type(struct perf_event *event) 1510 { 1511 struct perf_event_context *ctx = event->ctx; 1512 enum event_type_t event_type; 1513 1514 lockdep_assert_held(&ctx->lock); 1515 1516 /* 1517 * It's 'group type', really, because if our group leader is 1518 * pinned, so are we. 1519 */ 1520 if (event->group_leader != event) 1521 event = event->group_leader; 1522 1523 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1524 if (!ctx->task) 1525 event_type |= EVENT_CPU; 1526 1527 return event_type; 1528 } 1529 1530 /* 1531 * Helper function to initialize event group nodes. 1532 */ 1533 static void init_event_group(struct perf_event *event) 1534 { 1535 RB_CLEAR_NODE(&event->group_node); 1536 event->group_index = 0; 1537 } 1538 1539 /* 1540 * Extract pinned or flexible groups from the context 1541 * based on event attrs bits. 1542 */ 1543 static struct perf_event_groups * 1544 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1545 { 1546 if (event->attr.pinned) 1547 return &ctx->pinned_groups; 1548 else 1549 return &ctx->flexible_groups; 1550 } 1551 1552 /* 1553 * Helper function to initializes perf_event_group trees. 1554 */ 1555 static void perf_event_groups_init(struct perf_event_groups *groups) 1556 { 1557 groups->tree = RB_ROOT; 1558 groups->index = 0; 1559 } 1560 1561 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1562 { 1563 struct cgroup *cgroup = NULL; 1564 1565 #ifdef CONFIG_CGROUP_PERF 1566 if (event->cgrp) 1567 cgroup = event->cgrp->css.cgroup; 1568 #endif 1569 1570 return cgroup; 1571 } 1572 1573 /* 1574 * Compare function for event groups; 1575 * 1576 * Implements complex key that first sorts by CPU and then by virtual index 1577 * which provides ordering when rotating groups for the same CPU. 1578 */ 1579 static __always_inline int 1580 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1581 const struct cgroup *left_cgroup, const u64 left_group_index, 1582 const struct perf_event *right) 1583 { 1584 if (left_cpu < right->cpu) 1585 return -1; 1586 if (left_cpu > right->cpu) 1587 return 1; 1588 1589 if (left_pmu) { 1590 if (left_pmu < right->pmu_ctx->pmu) 1591 return -1; 1592 if (left_pmu > right->pmu_ctx->pmu) 1593 return 1; 1594 } 1595 1596 #ifdef CONFIG_CGROUP_PERF 1597 { 1598 const struct cgroup *right_cgroup = event_cgroup(right); 1599 1600 if (left_cgroup != right_cgroup) { 1601 if (!left_cgroup) { 1602 /* 1603 * Left has no cgroup but right does, no 1604 * cgroups come first. 1605 */ 1606 return -1; 1607 } 1608 if (!right_cgroup) { 1609 /* 1610 * Right has no cgroup but left does, no 1611 * cgroups come first. 1612 */ 1613 return 1; 1614 } 1615 /* Two dissimilar cgroups, order by id. */ 1616 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1617 return -1; 1618 1619 return 1; 1620 } 1621 } 1622 #endif 1623 1624 if (left_group_index < right->group_index) 1625 return -1; 1626 if (left_group_index > right->group_index) 1627 return 1; 1628 1629 return 0; 1630 } 1631 1632 #define __node_2_pe(node) \ 1633 rb_entry((node), struct perf_event, group_node) 1634 1635 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1636 { 1637 struct perf_event *e = __node_2_pe(a); 1638 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1639 e->group_index, __node_2_pe(b)) < 0; 1640 } 1641 1642 struct __group_key { 1643 int cpu; 1644 struct pmu *pmu; 1645 struct cgroup *cgroup; 1646 }; 1647 1648 static inline int __group_cmp(const void *key, const struct rb_node *node) 1649 { 1650 const struct __group_key *a = key; 1651 const struct perf_event *b = __node_2_pe(node); 1652 1653 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1654 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1655 } 1656 1657 static inline int 1658 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1659 { 1660 const struct __group_key *a = key; 1661 const struct perf_event *b = __node_2_pe(node); 1662 1663 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1664 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1665 b->group_index, b); 1666 } 1667 1668 /* 1669 * Insert @event into @groups' tree; using 1670 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1671 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1672 */ 1673 static void 1674 perf_event_groups_insert(struct perf_event_groups *groups, 1675 struct perf_event *event) 1676 { 1677 event->group_index = ++groups->index; 1678 1679 rb_add(&event->group_node, &groups->tree, __group_less); 1680 } 1681 1682 /* 1683 * Helper function to insert event into the pinned or flexible groups. 1684 */ 1685 static void 1686 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1687 { 1688 struct perf_event_groups *groups; 1689 1690 groups = get_event_groups(event, ctx); 1691 perf_event_groups_insert(groups, event); 1692 } 1693 1694 /* 1695 * Delete a group from a tree. 1696 */ 1697 static void 1698 perf_event_groups_delete(struct perf_event_groups *groups, 1699 struct perf_event *event) 1700 { 1701 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1702 RB_EMPTY_ROOT(&groups->tree)); 1703 1704 rb_erase(&event->group_node, &groups->tree); 1705 init_event_group(event); 1706 } 1707 1708 /* 1709 * Helper function to delete event from its groups. 1710 */ 1711 static void 1712 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1713 { 1714 struct perf_event_groups *groups; 1715 1716 groups = get_event_groups(event, ctx); 1717 perf_event_groups_delete(groups, event); 1718 } 1719 1720 /* 1721 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1722 */ 1723 static struct perf_event * 1724 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1725 struct pmu *pmu, struct cgroup *cgrp) 1726 { 1727 struct __group_key key = { 1728 .cpu = cpu, 1729 .pmu = pmu, 1730 .cgroup = cgrp, 1731 }; 1732 struct rb_node *node; 1733 1734 node = rb_find_first(&key, &groups->tree, __group_cmp); 1735 if (node) 1736 return __node_2_pe(node); 1737 1738 return NULL; 1739 } 1740 1741 static struct perf_event * 1742 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1743 { 1744 struct __group_key key = { 1745 .cpu = event->cpu, 1746 .pmu = pmu, 1747 .cgroup = event_cgroup(event), 1748 }; 1749 struct rb_node *next; 1750 1751 next = rb_next_match(&key, &event->group_node, __group_cmp); 1752 if (next) 1753 return __node_2_pe(next); 1754 1755 return NULL; 1756 } 1757 1758 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1759 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1760 event; event = perf_event_groups_next(event, pmu)) 1761 1762 /* 1763 * Iterate through the whole groups tree. 1764 */ 1765 #define perf_event_groups_for_each(event, groups) \ 1766 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1767 typeof(*event), group_node); event; \ 1768 event = rb_entry_safe(rb_next(&event->group_node), \ 1769 typeof(*event), group_node)) 1770 1771 /* 1772 * Add an event from the lists for its context. 1773 * Must be called with ctx->mutex and ctx->lock held. 1774 */ 1775 static void 1776 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1777 { 1778 lockdep_assert_held(&ctx->lock); 1779 1780 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1781 event->attach_state |= PERF_ATTACH_CONTEXT; 1782 1783 event->tstamp = perf_event_time(event); 1784 1785 /* 1786 * If we're a stand alone event or group leader, we go to the context 1787 * list, group events are kept attached to the group so that 1788 * perf_group_detach can, at all times, locate all siblings. 1789 */ 1790 if (event->group_leader == event) { 1791 event->group_caps = event->event_caps; 1792 add_event_to_groups(event, ctx); 1793 } 1794 1795 list_add_rcu(&event->event_entry, &ctx->event_list); 1796 ctx->nr_events++; 1797 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1798 ctx->nr_user++; 1799 if (event->attr.inherit_stat) 1800 ctx->nr_stat++; 1801 1802 if (event->state > PERF_EVENT_STATE_OFF) 1803 perf_cgroup_event_enable(event, ctx); 1804 1805 ctx->generation++; 1806 event->pmu_ctx->nr_events++; 1807 } 1808 1809 /* 1810 * Initialize event state based on the perf_event_attr::disabled. 1811 */ 1812 static inline void perf_event__state_init(struct perf_event *event) 1813 { 1814 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1815 PERF_EVENT_STATE_INACTIVE; 1816 } 1817 1818 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1819 { 1820 int entry = sizeof(u64); /* value */ 1821 int size = 0; 1822 int nr = 1; 1823 1824 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1825 size += sizeof(u64); 1826 1827 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1828 size += sizeof(u64); 1829 1830 if (read_format & PERF_FORMAT_ID) 1831 entry += sizeof(u64); 1832 1833 if (read_format & PERF_FORMAT_LOST) 1834 entry += sizeof(u64); 1835 1836 if (read_format & PERF_FORMAT_GROUP) { 1837 nr += nr_siblings; 1838 size += sizeof(u64); 1839 } 1840 1841 /* 1842 * Since perf_event_validate_size() limits this to 16k and inhibits 1843 * adding more siblings, this will never overflow. 1844 */ 1845 return size + nr * entry; 1846 } 1847 1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1849 { 1850 struct perf_sample_data *data; 1851 u16 size = 0; 1852 1853 if (sample_type & PERF_SAMPLE_IP) 1854 size += sizeof(data->ip); 1855 1856 if (sample_type & PERF_SAMPLE_ADDR) 1857 size += sizeof(data->addr); 1858 1859 if (sample_type & PERF_SAMPLE_PERIOD) 1860 size += sizeof(data->period); 1861 1862 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1863 size += sizeof(data->weight.full); 1864 1865 if (sample_type & PERF_SAMPLE_READ) 1866 size += event->read_size; 1867 1868 if (sample_type & PERF_SAMPLE_DATA_SRC) 1869 size += sizeof(data->data_src.val); 1870 1871 if (sample_type & PERF_SAMPLE_TRANSACTION) 1872 size += sizeof(data->txn); 1873 1874 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1875 size += sizeof(data->phys_addr); 1876 1877 if (sample_type & PERF_SAMPLE_CGROUP) 1878 size += sizeof(data->cgroup); 1879 1880 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1881 size += sizeof(data->data_page_size); 1882 1883 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1884 size += sizeof(data->code_page_size); 1885 1886 event->header_size = size; 1887 } 1888 1889 /* 1890 * Called at perf_event creation and when events are attached/detached from a 1891 * group. 1892 */ 1893 static void perf_event__header_size(struct perf_event *event) 1894 { 1895 event->read_size = 1896 __perf_event_read_size(event->attr.read_format, 1897 event->group_leader->nr_siblings); 1898 __perf_event_header_size(event, event->attr.sample_type); 1899 } 1900 1901 static void perf_event__id_header_size(struct perf_event *event) 1902 { 1903 struct perf_sample_data *data; 1904 u64 sample_type = event->attr.sample_type; 1905 u16 size = 0; 1906 1907 if (sample_type & PERF_SAMPLE_TID) 1908 size += sizeof(data->tid_entry); 1909 1910 if (sample_type & PERF_SAMPLE_TIME) 1911 size += sizeof(data->time); 1912 1913 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1914 size += sizeof(data->id); 1915 1916 if (sample_type & PERF_SAMPLE_ID) 1917 size += sizeof(data->id); 1918 1919 if (sample_type & PERF_SAMPLE_STREAM_ID) 1920 size += sizeof(data->stream_id); 1921 1922 if (sample_type & PERF_SAMPLE_CPU) 1923 size += sizeof(data->cpu_entry); 1924 1925 event->id_header_size = size; 1926 } 1927 1928 /* 1929 * Check that adding an event to the group does not result in anybody 1930 * overflowing the 64k event limit imposed by the output buffer. 1931 * 1932 * Specifically, check that the read_size for the event does not exceed 16k, 1933 * read_size being the one term that grows with groups size. Since read_size 1934 * depends on per-event read_format, also (re)check the existing events. 1935 * 1936 * This leaves 48k for the constant size fields and things like callchains, 1937 * branch stacks and register sets. 1938 */ 1939 static bool perf_event_validate_size(struct perf_event *event) 1940 { 1941 struct perf_event *sibling, *group_leader = event->group_leader; 1942 1943 if (__perf_event_read_size(event->attr.read_format, 1944 group_leader->nr_siblings + 1) > 16*1024) 1945 return false; 1946 1947 if (__perf_event_read_size(group_leader->attr.read_format, 1948 group_leader->nr_siblings + 1) > 16*1024) 1949 return false; 1950 1951 /* 1952 * When creating a new group leader, group_leader->ctx is initialized 1953 * after the size has been validated, but we cannot safely use 1954 * for_each_sibling_event() until group_leader->ctx is set. A new group 1955 * leader cannot have any siblings yet, so we can safely skip checking 1956 * the non-existent siblings. 1957 */ 1958 if (event == group_leader) 1959 return true; 1960 1961 for_each_sibling_event(sibling, group_leader) { 1962 if (__perf_event_read_size(sibling->attr.read_format, 1963 group_leader->nr_siblings + 1) > 16*1024) 1964 return false; 1965 } 1966 1967 return true; 1968 } 1969 1970 static void perf_group_attach(struct perf_event *event) 1971 { 1972 struct perf_event *group_leader = event->group_leader, *pos; 1973 1974 lockdep_assert_held(&event->ctx->lock); 1975 1976 /* 1977 * We can have double attach due to group movement (move_group) in 1978 * perf_event_open(). 1979 */ 1980 if (event->attach_state & PERF_ATTACH_GROUP) 1981 return; 1982 1983 event->attach_state |= PERF_ATTACH_GROUP; 1984 1985 if (group_leader == event) 1986 return; 1987 1988 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1989 1990 group_leader->group_caps &= event->event_caps; 1991 1992 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1993 group_leader->nr_siblings++; 1994 group_leader->group_generation++; 1995 1996 perf_event__header_size(group_leader); 1997 1998 for_each_sibling_event(pos, group_leader) 1999 perf_event__header_size(pos); 2000 } 2001 2002 /* 2003 * Remove an event from the lists for its context. 2004 * Must be called with ctx->mutex and ctx->lock held. 2005 */ 2006 static void 2007 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2008 { 2009 WARN_ON_ONCE(event->ctx != ctx); 2010 lockdep_assert_held(&ctx->lock); 2011 2012 /* 2013 * We can have double detach due to exit/hot-unplug + close. 2014 */ 2015 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2016 return; 2017 2018 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2019 2020 ctx->nr_events--; 2021 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2022 ctx->nr_user--; 2023 if (event->attr.inherit_stat) 2024 ctx->nr_stat--; 2025 2026 list_del_rcu(&event->event_entry); 2027 2028 if (event->group_leader == event) 2029 del_event_from_groups(event, ctx); 2030 2031 /* 2032 * If event was in error state, then keep it 2033 * that way, otherwise bogus counts will be 2034 * returned on read(). The only way to get out 2035 * of error state is by explicit re-enabling 2036 * of the event 2037 */ 2038 if (event->state > PERF_EVENT_STATE_OFF) { 2039 perf_cgroup_event_disable(event, ctx); 2040 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2041 } 2042 2043 ctx->generation++; 2044 event->pmu_ctx->nr_events--; 2045 } 2046 2047 static int 2048 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2049 { 2050 if (!has_aux(aux_event)) 2051 return 0; 2052 2053 if (!event->pmu->aux_output_match) 2054 return 0; 2055 2056 return event->pmu->aux_output_match(aux_event); 2057 } 2058 2059 static void put_event(struct perf_event *event); 2060 static void event_sched_out(struct perf_event *event, 2061 struct perf_event_context *ctx); 2062 2063 static void perf_put_aux_event(struct perf_event *event) 2064 { 2065 struct perf_event_context *ctx = event->ctx; 2066 struct perf_event *iter; 2067 2068 /* 2069 * If event uses aux_event tear down the link 2070 */ 2071 if (event->aux_event) { 2072 iter = event->aux_event; 2073 event->aux_event = NULL; 2074 put_event(iter); 2075 return; 2076 } 2077 2078 /* 2079 * If the event is an aux_event, tear down all links to 2080 * it from other events. 2081 */ 2082 for_each_sibling_event(iter, event->group_leader) { 2083 if (iter->aux_event != event) 2084 continue; 2085 2086 iter->aux_event = NULL; 2087 put_event(event); 2088 2089 /* 2090 * If it's ACTIVE, schedule it out and put it into ERROR 2091 * state so that we don't try to schedule it again. Note 2092 * that perf_event_enable() will clear the ERROR status. 2093 */ 2094 event_sched_out(iter, ctx); 2095 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2096 } 2097 } 2098 2099 static bool perf_need_aux_event(struct perf_event *event) 2100 { 2101 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2102 } 2103 2104 static int perf_get_aux_event(struct perf_event *event, 2105 struct perf_event *group_leader) 2106 { 2107 /* 2108 * Our group leader must be an aux event if we want to be 2109 * an aux_output. This way, the aux event will precede its 2110 * aux_output events in the group, and therefore will always 2111 * schedule first. 2112 */ 2113 if (!group_leader) 2114 return 0; 2115 2116 /* 2117 * aux_output and aux_sample_size are mutually exclusive. 2118 */ 2119 if (event->attr.aux_output && event->attr.aux_sample_size) 2120 return 0; 2121 2122 if (event->attr.aux_output && 2123 !perf_aux_output_match(event, group_leader)) 2124 return 0; 2125 2126 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2127 return 0; 2128 2129 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2130 return 0; 2131 2132 /* 2133 * Link aux_outputs to their aux event; this is undone in 2134 * perf_group_detach() by perf_put_aux_event(). When the 2135 * group in torn down, the aux_output events loose their 2136 * link to the aux_event and can't schedule any more. 2137 */ 2138 event->aux_event = group_leader; 2139 2140 return 1; 2141 } 2142 2143 static inline struct list_head *get_event_list(struct perf_event *event) 2144 { 2145 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2146 &event->pmu_ctx->flexible_active; 2147 } 2148 2149 /* 2150 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2151 * cannot exist on their own, schedule them out and move them into the ERROR 2152 * state. Also see _perf_event_enable(), it will not be able to recover 2153 * this ERROR state. 2154 */ 2155 static inline void perf_remove_sibling_event(struct perf_event *event) 2156 { 2157 event_sched_out(event, event->ctx); 2158 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2159 } 2160 2161 static void perf_group_detach(struct perf_event *event) 2162 { 2163 struct perf_event *leader = event->group_leader; 2164 struct perf_event *sibling, *tmp; 2165 struct perf_event_context *ctx = event->ctx; 2166 2167 lockdep_assert_held(&ctx->lock); 2168 2169 /* 2170 * We can have double detach due to exit/hot-unplug + close. 2171 */ 2172 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2173 return; 2174 2175 event->attach_state &= ~PERF_ATTACH_GROUP; 2176 2177 perf_put_aux_event(event); 2178 2179 /* 2180 * If this is a sibling, remove it from its group. 2181 */ 2182 if (leader != event) { 2183 list_del_init(&event->sibling_list); 2184 event->group_leader->nr_siblings--; 2185 event->group_leader->group_generation++; 2186 goto out; 2187 } 2188 2189 /* 2190 * If this was a group event with sibling events then 2191 * upgrade the siblings to singleton events by adding them 2192 * to whatever list we are on. 2193 */ 2194 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2195 2196 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2197 perf_remove_sibling_event(sibling); 2198 2199 sibling->group_leader = sibling; 2200 list_del_init(&sibling->sibling_list); 2201 2202 /* Inherit group flags from the previous leader */ 2203 sibling->group_caps = event->group_caps; 2204 2205 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2206 add_event_to_groups(sibling, event->ctx); 2207 2208 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2209 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2210 } 2211 2212 WARN_ON_ONCE(sibling->ctx != event->ctx); 2213 } 2214 2215 out: 2216 for_each_sibling_event(tmp, leader) 2217 perf_event__header_size(tmp); 2218 2219 perf_event__header_size(leader); 2220 } 2221 2222 static void sync_child_event(struct perf_event *child_event); 2223 2224 static void perf_child_detach(struct perf_event *event) 2225 { 2226 struct perf_event *parent_event = event->parent; 2227 2228 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2229 return; 2230 2231 event->attach_state &= ~PERF_ATTACH_CHILD; 2232 2233 if (WARN_ON_ONCE(!parent_event)) 2234 return; 2235 2236 lockdep_assert_held(&parent_event->child_mutex); 2237 2238 sync_child_event(event); 2239 list_del_init(&event->child_list); 2240 } 2241 2242 static bool is_orphaned_event(struct perf_event *event) 2243 { 2244 return event->state == PERF_EVENT_STATE_DEAD; 2245 } 2246 2247 static inline int 2248 event_filter_match(struct perf_event *event) 2249 { 2250 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2251 perf_cgroup_match(event); 2252 } 2253 2254 static void 2255 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2256 { 2257 struct perf_event_pmu_context *epc = event->pmu_ctx; 2258 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2259 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2260 2261 // XXX cpc serialization, probably per-cpu IRQ disabled 2262 2263 WARN_ON_ONCE(event->ctx != ctx); 2264 lockdep_assert_held(&ctx->lock); 2265 2266 if (event->state != PERF_EVENT_STATE_ACTIVE) 2267 return; 2268 2269 /* 2270 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2271 * we can schedule events _OUT_ individually through things like 2272 * __perf_remove_from_context(). 2273 */ 2274 list_del_init(&event->active_list); 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 event->pmu->del(event, 0); 2279 event->oncpu = -1; 2280 2281 if (event->pending_disable) { 2282 event->pending_disable = 0; 2283 perf_cgroup_event_disable(event, ctx); 2284 state = PERF_EVENT_STATE_OFF; 2285 } 2286 2287 if (event->pending_sigtrap) { 2288 event->pending_sigtrap = 0; 2289 if (state != PERF_EVENT_STATE_OFF && 2290 !event->pending_work && 2291 !task_work_add(current, &event->pending_task, TWA_RESUME)) { 2292 event->pending_work = 1; 2293 } else { 2294 local_dec(&event->ctx->nr_pending); 2295 } 2296 } 2297 2298 perf_event_set_state(event, state); 2299 2300 if (!is_software_event(event)) 2301 cpc->active_oncpu--; 2302 if (event->attr.freq && event->attr.sample_freq) 2303 ctx->nr_freq--; 2304 if (event->attr.exclusive || !cpc->active_oncpu) 2305 cpc->exclusive = 0; 2306 2307 perf_pmu_enable(event->pmu); 2308 } 2309 2310 static void 2311 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2312 { 2313 struct perf_event *event; 2314 2315 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2316 return; 2317 2318 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2319 2320 event_sched_out(group_event, ctx); 2321 2322 /* 2323 * Schedule out siblings (if any): 2324 */ 2325 for_each_sibling_event(event, group_event) 2326 event_sched_out(event, ctx); 2327 } 2328 2329 #define DETACH_GROUP 0x01UL 2330 #define DETACH_CHILD 0x02UL 2331 #define DETACH_DEAD 0x04UL 2332 2333 /* 2334 * Cross CPU call to remove a performance event 2335 * 2336 * We disable the event on the hardware level first. After that we 2337 * remove it from the context list. 2338 */ 2339 static void 2340 __perf_remove_from_context(struct perf_event *event, 2341 struct perf_cpu_context *cpuctx, 2342 struct perf_event_context *ctx, 2343 void *info) 2344 { 2345 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2346 unsigned long flags = (unsigned long)info; 2347 2348 if (ctx->is_active & EVENT_TIME) { 2349 update_context_time(ctx); 2350 update_cgrp_time_from_cpuctx(cpuctx, false); 2351 } 2352 2353 /* 2354 * Ensure event_sched_out() switches to OFF, at the very least 2355 * this avoids raising perf_pending_task() at this time. 2356 */ 2357 if (flags & DETACH_DEAD) 2358 event->pending_disable = 1; 2359 event_sched_out(event, ctx); 2360 if (flags & DETACH_GROUP) 2361 perf_group_detach(event); 2362 if (flags & DETACH_CHILD) 2363 perf_child_detach(event); 2364 list_del_event(event, ctx); 2365 if (flags & DETACH_DEAD) 2366 event->state = PERF_EVENT_STATE_DEAD; 2367 2368 if (!pmu_ctx->nr_events) { 2369 pmu_ctx->rotate_necessary = 0; 2370 2371 if (ctx->task && ctx->is_active) { 2372 struct perf_cpu_pmu_context *cpc; 2373 2374 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2375 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2376 cpc->task_epc = NULL; 2377 } 2378 } 2379 2380 if (!ctx->nr_events && ctx->is_active) { 2381 if (ctx == &cpuctx->ctx) 2382 update_cgrp_time_from_cpuctx(cpuctx, true); 2383 2384 ctx->is_active = 0; 2385 if (ctx->task) { 2386 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2387 cpuctx->task_ctx = NULL; 2388 } 2389 } 2390 } 2391 2392 /* 2393 * Remove the event from a task's (or a CPU's) list of events. 2394 * 2395 * If event->ctx is a cloned context, callers must make sure that 2396 * every task struct that event->ctx->task could possibly point to 2397 * remains valid. This is OK when called from perf_release since 2398 * that only calls us on the top-level context, which can't be a clone. 2399 * When called from perf_event_exit_task, it's OK because the 2400 * context has been detached from its task. 2401 */ 2402 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2403 { 2404 struct perf_event_context *ctx = event->ctx; 2405 2406 lockdep_assert_held(&ctx->mutex); 2407 2408 /* 2409 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2410 * to work in the face of TASK_TOMBSTONE, unlike every other 2411 * event_function_call() user. 2412 */ 2413 raw_spin_lock_irq(&ctx->lock); 2414 if (!ctx->is_active) { 2415 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2416 ctx, (void *)flags); 2417 raw_spin_unlock_irq(&ctx->lock); 2418 return; 2419 } 2420 raw_spin_unlock_irq(&ctx->lock); 2421 2422 event_function_call(event, __perf_remove_from_context, (void *)flags); 2423 } 2424 2425 /* 2426 * Cross CPU call to disable a performance event 2427 */ 2428 static void __perf_event_disable(struct perf_event *event, 2429 struct perf_cpu_context *cpuctx, 2430 struct perf_event_context *ctx, 2431 void *info) 2432 { 2433 if (event->state < PERF_EVENT_STATE_INACTIVE) 2434 return; 2435 2436 if (ctx->is_active & EVENT_TIME) { 2437 update_context_time(ctx); 2438 update_cgrp_time_from_event(event); 2439 } 2440 2441 perf_pmu_disable(event->pmu_ctx->pmu); 2442 2443 if (event == event->group_leader) 2444 group_sched_out(event, ctx); 2445 else 2446 event_sched_out(event, ctx); 2447 2448 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2449 perf_cgroup_event_disable(event, ctx); 2450 2451 perf_pmu_enable(event->pmu_ctx->pmu); 2452 } 2453 2454 /* 2455 * Disable an event. 2456 * 2457 * If event->ctx is a cloned context, callers must make sure that 2458 * every task struct that event->ctx->task could possibly point to 2459 * remains valid. This condition is satisfied when called through 2460 * perf_event_for_each_child or perf_event_for_each because they 2461 * hold the top-level event's child_mutex, so any descendant that 2462 * goes to exit will block in perf_event_exit_event(). 2463 * 2464 * When called from perf_pending_irq it's OK because event->ctx 2465 * is the current context on this CPU and preemption is disabled, 2466 * hence we can't get into perf_event_task_sched_out for this context. 2467 */ 2468 static void _perf_event_disable(struct perf_event *event) 2469 { 2470 struct perf_event_context *ctx = event->ctx; 2471 2472 raw_spin_lock_irq(&ctx->lock); 2473 if (event->state <= PERF_EVENT_STATE_OFF) { 2474 raw_spin_unlock_irq(&ctx->lock); 2475 return; 2476 } 2477 raw_spin_unlock_irq(&ctx->lock); 2478 2479 event_function_call(event, __perf_event_disable, NULL); 2480 } 2481 2482 void perf_event_disable_local(struct perf_event *event) 2483 { 2484 event_function_local(event, __perf_event_disable, NULL); 2485 } 2486 2487 /* 2488 * Strictly speaking kernel users cannot create groups and therefore this 2489 * interface does not need the perf_event_ctx_lock() magic. 2490 */ 2491 void perf_event_disable(struct perf_event *event) 2492 { 2493 struct perf_event_context *ctx; 2494 2495 ctx = perf_event_ctx_lock(event); 2496 _perf_event_disable(event); 2497 perf_event_ctx_unlock(event, ctx); 2498 } 2499 EXPORT_SYMBOL_GPL(perf_event_disable); 2500 2501 void perf_event_disable_inatomic(struct perf_event *event) 2502 { 2503 event->pending_disable = 1; 2504 irq_work_queue(&event->pending_irq); 2505 } 2506 2507 #define MAX_INTERRUPTS (~0ULL) 2508 2509 static void perf_log_throttle(struct perf_event *event, int enable); 2510 static void perf_log_itrace_start(struct perf_event *event); 2511 2512 static int 2513 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2514 { 2515 struct perf_event_pmu_context *epc = event->pmu_ctx; 2516 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2517 int ret = 0; 2518 2519 WARN_ON_ONCE(event->ctx != ctx); 2520 2521 lockdep_assert_held(&ctx->lock); 2522 2523 if (event->state <= PERF_EVENT_STATE_OFF) 2524 return 0; 2525 2526 WRITE_ONCE(event->oncpu, smp_processor_id()); 2527 /* 2528 * Order event::oncpu write to happen before the ACTIVE state is 2529 * visible. This allows perf_event_{stop,read}() to observe the correct 2530 * ->oncpu if it sees ACTIVE. 2531 */ 2532 smp_wmb(); 2533 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2534 2535 /* 2536 * Unthrottle events, since we scheduled we might have missed several 2537 * ticks already, also for a heavily scheduling task there is little 2538 * guarantee it'll get a tick in a timely manner. 2539 */ 2540 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2541 perf_log_throttle(event, 1); 2542 event->hw.interrupts = 0; 2543 } 2544 2545 perf_pmu_disable(event->pmu); 2546 2547 perf_log_itrace_start(event); 2548 2549 if (event->pmu->add(event, PERF_EF_START)) { 2550 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2551 event->oncpu = -1; 2552 ret = -EAGAIN; 2553 goto out; 2554 } 2555 2556 if (!is_software_event(event)) 2557 cpc->active_oncpu++; 2558 if (event->attr.freq && event->attr.sample_freq) 2559 ctx->nr_freq++; 2560 2561 if (event->attr.exclusive) 2562 cpc->exclusive = 1; 2563 2564 out: 2565 perf_pmu_enable(event->pmu); 2566 2567 return ret; 2568 } 2569 2570 static int 2571 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2572 { 2573 struct perf_event *event, *partial_group = NULL; 2574 struct pmu *pmu = group_event->pmu_ctx->pmu; 2575 2576 if (group_event->state == PERF_EVENT_STATE_OFF) 2577 return 0; 2578 2579 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2580 2581 if (event_sched_in(group_event, ctx)) 2582 goto error; 2583 2584 /* 2585 * Schedule in siblings as one group (if any): 2586 */ 2587 for_each_sibling_event(event, group_event) { 2588 if (event_sched_in(event, ctx)) { 2589 partial_group = event; 2590 goto group_error; 2591 } 2592 } 2593 2594 if (!pmu->commit_txn(pmu)) 2595 return 0; 2596 2597 group_error: 2598 /* 2599 * Groups can be scheduled in as one unit only, so undo any 2600 * partial group before returning: 2601 * The events up to the failed event are scheduled out normally. 2602 */ 2603 for_each_sibling_event(event, group_event) { 2604 if (event == partial_group) 2605 break; 2606 2607 event_sched_out(event, ctx); 2608 } 2609 event_sched_out(group_event, ctx); 2610 2611 error: 2612 pmu->cancel_txn(pmu); 2613 return -EAGAIN; 2614 } 2615 2616 /* 2617 * Work out whether we can put this event group on the CPU now. 2618 */ 2619 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2620 { 2621 struct perf_event_pmu_context *epc = event->pmu_ctx; 2622 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2623 2624 /* 2625 * Groups consisting entirely of software events can always go on. 2626 */ 2627 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2628 return 1; 2629 /* 2630 * If an exclusive group is already on, no other hardware 2631 * events can go on. 2632 */ 2633 if (cpc->exclusive) 2634 return 0; 2635 /* 2636 * If this group is exclusive and there are already 2637 * events on the CPU, it can't go on. 2638 */ 2639 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2640 return 0; 2641 /* 2642 * Otherwise, try to add it if all previous groups were able 2643 * to go on. 2644 */ 2645 return can_add_hw; 2646 } 2647 2648 static void add_event_to_ctx(struct perf_event *event, 2649 struct perf_event_context *ctx) 2650 { 2651 list_add_event(event, ctx); 2652 perf_group_attach(event); 2653 } 2654 2655 static void task_ctx_sched_out(struct perf_event_context *ctx, 2656 enum event_type_t event_type) 2657 { 2658 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2659 2660 if (!cpuctx->task_ctx) 2661 return; 2662 2663 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2664 return; 2665 2666 ctx_sched_out(ctx, event_type); 2667 } 2668 2669 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2670 struct perf_event_context *ctx) 2671 { 2672 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2673 if (ctx) 2674 ctx_sched_in(ctx, EVENT_PINNED); 2675 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2676 if (ctx) 2677 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2678 } 2679 2680 /* 2681 * We want to maintain the following priority of scheduling: 2682 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2683 * - task pinned (EVENT_PINNED) 2684 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2685 * - task flexible (EVENT_FLEXIBLE). 2686 * 2687 * In order to avoid unscheduling and scheduling back in everything every 2688 * time an event is added, only do it for the groups of equal priority and 2689 * below. 2690 * 2691 * This can be called after a batch operation on task events, in which case 2692 * event_type is a bit mask of the types of events involved. For CPU events, 2693 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2694 */ 2695 /* 2696 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2697 * event to the context or enabling existing event in the context. We can 2698 * probably optimize it by rescheduling only affected pmu_ctx. 2699 */ 2700 static void ctx_resched(struct perf_cpu_context *cpuctx, 2701 struct perf_event_context *task_ctx, 2702 enum event_type_t event_type) 2703 { 2704 bool cpu_event = !!(event_type & EVENT_CPU); 2705 2706 /* 2707 * If pinned groups are involved, flexible groups also need to be 2708 * scheduled out. 2709 */ 2710 if (event_type & EVENT_PINNED) 2711 event_type |= EVENT_FLEXIBLE; 2712 2713 event_type &= EVENT_ALL; 2714 2715 perf_ctx_disable(&cpuctx->ctx, false); 2716 if (task_ctx) { 2717 perf_ctx_disable(task_ctx, false); 2718 task_ctx_sched_out(task_ctx, event_type); 2719 } 2720 2721 /* 2722 * Decide which cpu ctx groups to schedule out based on the types 2723 * of events that caused rescheduling: 2724 * - EVENT_CPU: schedule out corresponding groups; 2725 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2726 * - otherwise, do nothing more. 2727 */ 2728 if (cpu_event) 2729 ctx_sched_out(&cpuctx->ctx, event_type); 2730 else if (event_type & EVENT_PINNED) 2731 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2732 2733 perf_event_sched_in(cpuctx, task_ctx); 2734 2735 perf_ctx_enable(&cpuctx->ctx, false); 2736 if (task_ctx) 2737 perf_ctx_enable(task_ctx, false); 2738 } 2739 2740 void perf_pmu_resched(struct pmu *pmu) 2741 { 2742 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2743 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2744 2745 perf_ctx_lock(cpuctx, task_ctx); 2746 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2747 perf_ctx_unlock(cpuctx, task_ctx); 2748 } 2749 2750 /* 2751 * Cross CPU call to install and enable a performance event 2752 * 2753 * Very similar to remote_function() + event_function() but cannot assume that 2754 * things like ctx->is_active and cpuctx->task_ctx are set. 2755 */ 2756 static int __perf_install_in_context(void *info) 2757 { 2758 struct perf_event *event = info; 2759 struct perf_event_context *ctx = event->ctx; 2760 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2761 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2762 bool reprogram = true; 2763 int ret = 0; 2764 2765 raw_spin_lock(&cpuctx->ctx.lock); 2766 if (ctx->task) { 2767 raw_spin_lock(&ctx->lock); 2768 task_ctx = ctx; 2769 2770 reprogram = (ctx->task == current); 2771 2772 /* 2773 * If the task is running, it must be running on this CPU, 2774 * otherwise we cannot reprogram things. 2775 * 2776 * If its not running, we don't care, ctx->lock will 2777 * serialize against it becoming runnable. 2778 */ 2779 if (task_curr(ctx->task) && !reprogram) { 2780 ret = -ESRCH; 2781 goto unlock; 2782 } 2783 2784 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2785 } else if (task_ctx) { 2786 raw_spin_lock(&task_ctx->lock); 2787 } 2788 2789 #ifdef CONFIG_CGROUP_PERF 2790 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2791 /* 2792 * If the current cgroup doesn't match the event's 2793 * cgroup, we should not try to schedule it. 2794 */ 2795 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2796 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2797 event->cgrp->css.cgroup); 2798 } 2799 #endif 2800 2801 if (reprogram) { 2802 ctx_sched_out(ctx, EVENT_TIME); 2803 add_event_to_ctx(event, ctx); 2804 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2805 } else { 2806 add_event_to_ctx(event, ctx); 2807 } 2808 2809 unlock: 2810 perf_ctx_unlock(cpuctx, task_ctx); 2811 2812 return ret; 2813 } 2814 2815 static bool exclusive_event_installable(struct perf_event *event, 2816 struct perf_event_context *ctx); 2817 2818 /* 2819 * Attach a performance event to a context. 2820 * 2821 * Very similar to event_function_call, see comment there. 2822 */ 2823 static void 2824 perf_install_in_context(struct perf_event_context *ctx, 2825 struct perf_event *event, 2826 int cpu) 2827 { 2828 struct task_struct *task = READ_ONCE(ctx->task); 2829 2830 lockdep_assert_held(&ctx->mutex); 2831 2832 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2833 2834 if (event->cpu != -1) 2835 WARN_ON_ONCE(event->cpu != cpu); 2836 2837 /* 2838 * Ensures that if we can observe event->ctx, both the event and ctx 2839 * will be 'complete'. See perf_iterate_sb_cpu(). 2840 */ 2841 smp_store_release(&event->ctx, ctx); 2842 2843 /* 2844 * perf_event_attr::disabled events will not run and can be initialized 2845 * without IPI. Except when this is the first event for the context, in 2846 * that case we need the magic of the IPI to set ctx->is_active. 2847 * 2848 * The IOC_ENABLE that is sure to follow the creation of a disabled 2849 * event will issue the IPI and reprogram the hardware. 2850 */ 2851 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2852 ctx->nr_events && !is_cgroup_event(event)) { 2853 raw_spin_lock_irq(&ctx->lock); 2854 if (ctx->task == TASK_TOMBSTONE) { 2855 raw_spin_unlock_irq(&ctx->lock); 2856 return; 2857 } 2858 add_event_to_ctx(event, ctx); 2859 raw_spin_unlock_irq(&ctx->lock); 2860 return; 2861 } 2862 2863 if (!task) { 2864 cpu_function_call(cpu, __perf_install_in_context, event); 2865 return; 2866 } 2867 2868 /* 2869 * Should not happen, we validate the ctx is still alive before calling. 2870 */ 2871 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2872 return; 2873 2874 /* 2875 * Installing events is tricky because we cannot rely on ctx->is_active 2876 * to be set in case this is the nr_events 0 -> 1 transition. 2877 * 2878 * Instead we use task_curr(), which tells us if the task is running. 2879 * However, since we use task_curr() outside of rq::lock, we can race 2880 * against the actual state. This means the result can be wrong. 2881 * 2882 * If we get a false positive, we retry, this is harmless. 2883 * 2884 * If we get a false negative, things are complicated. If we are after 2885 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2886 * value must be correct. If we're before, it doesn't matter since 2887 * perf_event_context_sched_in() will program the counter. 2888 * 2889 * However, this hinges on the remote context switch having observed 2890 * our task->perf_event_ctxp[] store, such that it will in fact take 2891 * ctx::lock in perf_event_context_sched_in(). 2892 * 2893 * We do this by task_function_call(), if the IPI fails to hit the task 2894 * we know any future context switch of task must see the 2895 * perf_event_ctpx[] store. 2896 */ 2897 2898 /* 2899 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2900 * task_cpu() load, such that if the IPI then does not find the task 2901 * running, a future context switch of that task must observe the 2902 * store. 2903 */ 2904 smp_mb(); 2905 again: 2906 if (!task_function_call(task, __perf_install_in_context, event)) 2907 return; 2908 2909 raw_spin_lock_irq(&ctx->lock); 2910 task = ctx->task; 2911 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2912 /* 2913 * Cannot happen because we already checked above (which also 2914 * cannot happen), and we hold ctx->mutex, which serializes us 2915 * against perf_event_exit_task_context(). 2916 */ 2917 raw_spin_unlock_irq(&ctx->lock); 2918 return; 2919 } 2920 /* 2921 * If the task is not running, ctx->lock will avoid it becoming so, 2922 * thus we can safely install the event. 2923 */ 2924 if (task_curr(task)) { 2925 raw_spin_unlock_irq(&ctx->lock); 2926 goto again; 2927 } 2928 add_event_to_ctx(event, ctx); 2929 raw_spin_unlock_irq(&ctx->lock); 2930 } 2931 2932 /* 2933 * Cross CPU call to enable a performance event 2934 */ 2935 static void __perf_event_enable(struct perf_event *event, 2936 struct perf_cpu_context *cpuctx, 2937 struct perf_event_context *ctx, 2938 void *info) 2939 { 2940 struct perf_event *leader = event->group_leader; 2941 struct perf_event_context *task_ctx; 2942 2943 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2944 event->state <= PERF_EVENT_STATE_ERROR) 2945 return; 2946 2947 if (ctx->is_active) 2948 ctx_sched_out(ctx, EVENT_TIME); 2949 2950 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2951 perf_cgroup_event_enable(event, ctx); 2952 2953 if (!ctx->is_active) 2954 return; 2955 2956 if (!event_filter_match(event)) { 2957 ctx_sched_in(ctx, EVENT_TIME); 2958 return; 2959 } 2960 2961 /* 2962 * If the event is in a group and isn't the group leader, 2963 * then don't put it on unless the group is on. 2964 */ 2965 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2966 ctx_sched_in(ctx, EVENT_TIME); 2967 return; 2968 } 2969 2970 task_ctx = cpuctx->task_ctx; 2971 if (ctx->task) 2972 WARN_ON_ONCE(task_ctx != ctx); 2973 2974 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2975 } 2976 2977 /* 2978 * Enable an event. 2979 * 2980 * If event->ctx is a cloned context, callers must make sure that 2981 * every task struct that event->ctx->task could possibly point to 2982 * remains valid. This condition is satisfied when called through 2983 * perf_event_for_each_child or perf_event_for_each as described 2984 * for perf_event_disable. 2985 */ 2986 static void _perf_event_enable(struct perf_event *event) 2987 { 2988 struct perf_event_context *ctx = event->ctx; 2989 2990 raw_spin_lock_irq(&ctx->lock); 2991 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2992 event->state < PERF_EVENT_STATE_ERROR) { 2993 out: 2994 raw_spin_unlock_irq(&ctx->lock); 2995 return; 2996 } 2997 2998 /* 2999 * If the event is in error state, clear that first. 3000 * 3001 * That way, if we see the event in error state below, we know that it 3002 * has gone back into error state, as distinct from the task having 3003 * been scheduled away before the cross-call arrived. 3004 */ 3005 if (event->state == PERF_EVENT_STATE_ERROR) { 3006 /* 3007 * Detached SIBLING events cannot leave ERROR state. 3008 */ 3009 if (event->event_caps & PERF_EV_CAP_SIBLING && 3010 event->group_leader == event) 3011 goto out; 3012 3013 event->state = PERF_EVENT_STATE_OFF; 3014 } 3015 raw_spin_unlock_irq(&ctx->lock); 3016 3017 event_function_call(event, __perf_event_enable, NULL); 3018 } 3019 3020 /* 3021 * See perf_event_disable(); 3022 */ 3023 void perf_event_enable(struct perf_event *event) 3024 { 3025 struct perf_event_context *ctx; 3026 3027 ctx = perf_event_ctx_lock(event); 3028 _perf_event_enable(event); 3029 perf_event_ctx_unlock(event, ctx); 3030 } 3031 EXPORT_SYMBOL_GPL(perf_event_enable); 3032 3033 struct stop_event_data { 3034 struct perf_event *event; 3035 unsigned int restart; 3036 }; 3037 3038 static int __perf_event_stop(void *info) 3039 { 3040 struct stop_event_data *sd = info; 3041 struct perf_event *event = sd->event; 3042 3043 /* if it's already INACTIVE, do nothing */ 3044 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3045 return 0; 3046 3047 /* matches smp_wmb() in event_sched_in() */ 3048 smp_rmb(); 3049 3050 /* 3051 * There is a window with interrupts enabled before we get here, 3052 * so we need to check again lest we try to stop another CPU's event. 3053 */ 3054 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3055 return -EAGAIN; 3056 3057 event->pmu->stop(event, PERF_EF_UPDATE); 3058 3059 /* 3060 * May race with the actual stop (through perf_pmu_output_stop()), 3061 * but it is only used for events with AUX ring buffer, and such 3062 * events will refuse to restart because of rb::aux_mmap_count==0, 3063 * see comments in perf_aux_output_begin(). 3064 * 3065 * Since this is happening on an event-local CPU, no trace is lost 3066 * while restarting. 3067 */ 3068 if (sd->restart) 3069 event->pmu->start(event, 0); 3070 3071 return 0; 3072 } 3073 3074 static int perf_event_stop(struct perf_event *event, int restart) 3075 { 3076 struct stop_event_data sd = { 3077 .event = event, 3078 .restart = restart, 3079 }; 3080 int ret = 0; 3081 3082 do { 3083 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3084 return 0; 3085 3086 /* matches smp_wmb() in event_sched_in() */ 3087 smp_rmb(); 3088 3089 /* 3090 * We only want to restart ACTIVE events, so if the event goes 3091 * inactive here (event->oncpu==-1), there's nothing more to do; 3092 * fall through with ret==-ENXIO. 3093 */ 3094 ret = cpu_function_call(READ_ONCE(event->oncpu), 3095 __perf_event_stop, &sd); 3096 } while (ret == -EAGAIN); 3097 3098 return ret; 3099 } 3100 3101 /* 3102 * In order to contain the amount of racy and tricky in the address filter 3103 * configuration management, it is a two part process: 3104 * 3105 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3106 * we update the addresses of corresponding vmas in 3107 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3108 * (p2) when an event is scheduled in (pmu::add), it calls 3109 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3110 * if the generation has changed since the previous call. 3111 * 3112 * If (p1) happens while the event is active, we restart it to force (p2). 3113 * 3114 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3115 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3116 * ioctl; 3117 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3118 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3119 * for reading; 3120 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3121 * of exec. 3122 */ 3123 void perf_event_addr_filters_sync(struct perf_event *event) 3124 { 3125 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3126 3127 if (!has_addr_filter(event)) 3128 return; 3129 3130 raw_spin_lock(&ifh->lock); 3131 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3132 event->pmu->addr_filters_sync(event); 3133 event->hw.addr_filters_gen = event->addr_filters_gen; 3134 } 3135 raw_spin_unlock(&ifh->lock); 3136 } 3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3138 3139 static int _perf_event_refresh(struct perf_event *event, int refresh) 3140 { 3141 /* 3142 * not supported on inherited events 3143 */ 3144 if (event->attr.inherit || !is_sampling_event(event)) 3145 return -EINVAL; 3146 3147 atomic_add(refresh, &event->event_limit); 3148 _perf_event_enable(event); 3149 3150 return 0; 3151 } 3152 3153 /* 3154 * See perf_event_disable() 3155 */ 3156 int perf_event_refresh(struct perf_event *event, int refresh) 3157 { 3158 struct perf_event_context *ctx; 3159 int ret; 3160 3161 ctx = perf_event_ctx_lock(event); 3162 ret = _perf_event_refresh(event, refresh); 3163 perf_event_ctx_unlock(event, ctx); 3164 3165 return ret; 3166 } 3167 EXPORT_SYMBOL_GPL(perf_event_refresh); 3168 3169 static int perf_event_modify_breakpoint(struct perf_event *bp, 3170 struct perf_event_attr *attr) 3171 { 3172 int err; 3173 3174 _perf_event_disable(bp); 3175 3176 err = modify_user_hw_breakpoint_check(bp, attr, true); 3177 3178 if (!bp->attr.disabled) 3179 _perf_event_enable(bp); 3180 3181 return err; 3182 } 3183 3184 /* 3185 * Copy event-type-independent attributes that may be modified. 3186 */ 3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3188 const struct perf_event_attr *from) 3189 { 3190 to->sig_data = from->sig_data; 3191 } 3192 3193 static int perf_event_modify_attr(struct perf_event *event, 3194 struct perf_event_attr *attr) 3195 { 3196 int (*func)(struct perf_event *, struct perf_event_attr *); 3197 struct perf_event *child; 3198 int err; 3199 3200 if (event->attr.type != attr->type) 3201 return -EINVAL; 3202 3203 switch (event->attr.type) { 3204 case PERF_TYPE_BREAKPOINT: 3205 func = perf_event_modify_breakpoint; 3206 break; 3207 default: 3208 /* Place holder for future additions. */ 3209 return -EOPNOTSUPP; 3210 } 3211 3212 WARN_ON_ONCE(event->ctx->parent_ctx); 3213 3214 mutex_lock(&event->child_mutex); 3215 /* 3216 * Event-type-independent attributes must be copied before event-type 3217 * modification, which will validate that final attributes match the 3218 * source attributes after all relevant attributes have been copied. 3219 */ 3220 perf_event_modify_copy_attr(&event->attr, attr); 3221 err = func(event, attr); 3222 if (err) 3223 goto out; 3224 list_for_each_entry(child, &event->child_list, child_list) { 3225 perf_event_modify_copy_attr(&child->attr, attr); 3226 err = func(child, attr); 3227 if (err) 3228 goto out; 3229 } 3230 out: 3231 mutex_unlock(&event->child_mutex); 3232 return err; 3233 } 3234 3235 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3236 enum event_type_t event_type) 3237 { 3238 struct perf_event_context *ctx = pmu_ctx->ctx; 3239 struct perf_event *event, *tmp; 3240 struct pmu *pmu = pmu_ctx->pmu; 3241 3242 if (ctx->task && !ctx->is_active) { 3243 struct perf_cpu_pmu_context *cpc; 3244 3245 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3246 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3247 cpc->task_epc = NULL; 3248 } 3249 3250 if (!event_type) 3251 return; 3252 3253 perf_pmu_disable(pmu); 3254 if (event_type & EVENT_PINNED) { 3255 list_for_each_entry_safe(event, tmp, 3256 &pmu_ctx->pinned_active, 3257 active_list) 3258 group_sched_out(event, ctx); 3259 } 3260 3261 if (event_type & EVENT_FLEXIBLE) { 3262 list_for_each_entry_safe(event, tmp, 3263 &pmu_ctx->flexible_active, 3264 active_list) 3265 group_sched_out(event, ctx); 3266 /* 3267 * Since we cleared EVENT_FLEXIBLE, also clear 3268 * rotate_necessary, is will be reset by 3269 * ctx_flexible_sched_in() when needed. 3270 */ 3271 pmu_ctx->rotate_necessary = 0; 3272 } 3273 perf_pmu_enable(pmu); 3274 } 3275 3276 static void 3277 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3278 { 3279 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3280 struct perf_event_pmu_context *pmu_ctx; 3281 int is_active = ctx->is_active; 3282 bool cgroup = event_type & EVENT_CGROUP; 3283 3284 event_type &= ~EVENT_CGROUP; 3285 3286 lockdep_assert_held(&ctx->lock); 3287 3288 if (likely(!ctx->nr_events)) { 3289 /* 3290 * See __perf_remove_from_context(). 3291 */ 3292 WARN_ON_ONCE(ctx->is_active); 3293 if (ctx->task) 3294 WARN_ON_ONCE(cpuctx->task_ctx); 3295 return; 3296 } 3297 3298 /* 3299 * Always update time if it was set; not only when it changes. 3300 * Otherwise we can 'forget' to update time for any but the last 3301 * context we sched out. For example: 3302 * 3303 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3304 * ctx_sched_out(.event_type = EVENT_PINNED) 3305 * 3306 * would only update time for the pinned events. 3307 */ 3308 if (is_active & EVENT_TIME) { 3309 /* update (and stop) ctx time */ 3310 update_context_time(ctx); 3311 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3312 /* 3313 * CPU-release for the below ->is_active store, 3314 * see __load_acquire() in perf_event_time_now() 3315 */ 3316 barrier(); 3317 } 3318 3319 ctx->is_active &= ~event_type; 3320 if (!(ctx->is_active & EVENT_ALL)) 3321 ctx->is_active = 0; 3322 3323 if (ctx->task) { 3324 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3325 if (!ctx->is_active) 3326 cpuctx->task_ctx = NULL; 3327 } 3328 3329 is_active ^= ctx->is_active; /* changed bits */ 3330 3331 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3332 if (cgroup && !pmu_ctx->nr_cgroups) 3333 continue; 3334 __pmu_ctx_sched_out(pmu_ctx, is_active); 3335 } 3336 } 3337 3338 /* 3339 * Test whether two contexts are equivalent, i.e. whether they have both been 3340 * cloned from the same version of the same context. 3341 * 3342 * Equivalence is measured using a generation number in the context that is 3343 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3344 * and list_del_event(). 3345 */ 3346 static int context_equiv(struct perf_event_context *ctx1, 3347 struct perf_event_context *ctx2) 3348 { 3349 lockdep_assert_held(&ctx1->lock); 3350 lockdep_assert_held(&ctx2->lock); 3351 3352 /* Pinning disables the swap optimization */ 3353 if (ctx1->pin_count || ctx2->pin_count) 3354 return 0; 3355 3356 /* If ctx1 is the parent of ctx2 */ 3357 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3358 return 1; 3359 3360 /* If ctx2 is the parent of ctx1 */ 3361 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3362 return 1; 3363 3364 /* 3365 * If ctx1 and ctx2 have the same parent; we flatten the parent 3366 * hierarchy, see perf_event_init_context(). 3367 */ 3368 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3369 ctx1->parent_gen == ctx2->parent_gen) 3370 return 1; 3371 3372 /* Unmatched */ 3373 return 0; 3374 } 3375 3376 static void __perf_event_sync_stat(struct perf_event *event, 3377 struct perf_event *next_event) 3378 { 3379 u64 value; 3380 3381 if (!event->attr.inherit_stat) 3382 return; 3383 3384 /* 3385 * Update the event value, we cannot use perf_event_read() 3386 * because we're in the middle of a context switch and have IRQs 3387 * disabled, which upsets smp_call_function_single(), however 3388 * we know the event must be on the current CPU, therefore we 3389 * don't need to use it. 3390 */ 3391 if (event->state == PERF_EVENT_STATE_ACTIVE) 3392 event->pmu->read(event); 3393 3394 perf_event_update_time(event); 3395 3396 /* 3397 * In order to keep per-task stats reliable we need to flip the event 3398 * values when we flip the contexts. 3399 */ 3400 value = local64_read(&next_event->count); 3401 value = local64_xchg(&event->count, value); 3402 local64_set(&next_event->count, value); 3403 3404 swap(event->total_time_enabled, next_event->total_time_enabled); 3405 swap(event->total_time_running, next_event->total_time_running); 3406 3407 /* 3408 * Since we swizzled the values, update the user visible data too. 3409 */ 3410 perf_event_update_userpage(event); 3411 perf_event_update_userpage(next_event); 3412 } 3413 3414 static void perf_event_sync_stat(struct perf_event_context *ctx, 3415 struct perf_event_context *next_ctx) 3416 { 3417 struct perf_event *event, *next_event; 3418 3419 if (!ctx->nr_stat) 3420 return; 3421 3422 update_context_time(ctx); 3423 3424 event = list_first_entry(&ctx->event_list, 3425 struct perf_event, event_entry); 3426 3427 next_event = list_first_entry(&next_ctx->event_list, 3428 struct perf_event, event_entry); 3429 3430 while (&event->event_entry != &ctx->event_list && 3431 &next_event->event_entry != &next_ctx->event_list) { 3432 3433 __perf_event_sync_stat(event, next_event); 3434 3435 event = list_next_entry(event, event_entry); 3436 next_event = list_next_entry(next_event, event_entry); 3437 } 3438 } 3439 3440 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3441 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3442 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3443 !list_entry_is_head(pos1, head1, member) && \ 3444 !list_entry_is_head(pos2, head2, member); \ 3445 pos1 = list_next_entry(pos1, member), \ 3446 pos2 = list_next_entry(pos2, member)) 3447 3448 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3449 struct perf_event_context *next_ctx) 3450 { 3451 struct perf_event_pmu_context *prev_epc, *next_epc; 3452 3453 if (!prev_ctx->nr_task_data) 3454 return; 3455 3456 double_list_for_each_entry(prev_epc, next_epc, 3457 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3458 pmu_ctx_entry) { 3459 3460 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3461 continue; 3462 3463 /* 3464 * PMU specific parts of task perf context can require 3465 * additional synchronization. As an example of such 3466 * synchronization see implementation details of Intel 3467 * LBR call stack data profiling; 3468 */ 3469 if (prev_epc->pmu->swap_task_ctx) 3470 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3471 else 3472 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3473 } 3474 } 3475 3476 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3477 { 3478 struct perf_event_pmu_context *pmu_ctx; 3479 struct perf_cpu_pmu_context *cpc; 3480 3481 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3482 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3483 3484 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3485 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3486 } 3487 } 3488 3489 static void 3490 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3491 { 3492 struct perf_event_context *ctx = task->perf_event_ctxp; 3493 struct perf_event_context *next_ctx; 3494 struct perf_event_context *parent, *next_parent; 3495 int do_switch = 1; 3496 3497 if (likely(!ctx)) 3498 return; 3499 3500 rcu_read_lock(); 3501 next_ctx = rcu_dereference(next->perf_event_ctxp); 3502 if (!next_ctx) 3503 goto unlock; 3504 3505 parent = rcu_dereference(ctx->parent_ctx); 3506 next_parent = rcu_dereference(next_ctx->parent_ctx); 3507 3508 /* If neither context have a parent context; they cannot be clones. */ 3509 if (!parent && !next_parent) 3510 goto unlock; 3511 3512 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3513 /* 3514 * Looks like the two contexts are clones, so we might be 3515 * able to optimize the context switch. We lock both 3516 * contexts and check that they are clones under the 3517 * lock (including re-checking that neither has been 3518 * uncloned in the meantime). It doesn't matter which 3519 * order we take the locks because no other cpu could 3520 * be trying to lock both of these tasks. 3521 */ 3522 raw_spin_lock(&ctx->lock); 3523 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3524 if (context_equiv(ctx, next_ctx)) { 3525 3526 perf_ctx_disable(ctx, false); 3527 3528 /* PMIs are disabled; ctx->nr_pending is stable. */ 3529 if (local_read(&ctx->nr_pending) || 3530 local_read(&next_ctx->nr_pending)) { 3531 /* 3532 * Must not swap out ctx when there's pending 3533 * events that rely on the ctx->task relation. 3534 */ 3535 raw_spin_unlock(&next_ctx->lock); 3536 rcu_read_unlock(); 3537 goto inside_switch; 3538 } 3539 3540 WRITE_ONCE(ctx->task, next); 3541 WRITE_ONCE(next_ctx->task, task); 3542 3543 perf_ctx_sched_task_cb(ctx, false); 3544 perf_event_swap_task_ctx_data(ctx, next_ctx); 3545 3546 perf_ctx_enable(ctx, false); 3547 3548 /* 3549 * RCU_INIT_POINTER here is safe because we've not 3550 * modified the ctx and the above modification of 3551 * ctx->task and ctx->task_ctx_data are immaterial 3552 * since those values are always verified under 3553 * ctx->lock which we're now holding. 3554 */ 3555 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3556 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3557 3558 do_switch = 0; 3559 3560 perf_event_sync_stat(ctx, next_ctx); 3561 } 3562 raw_spin_unlock(&next_ctx->lock); 3563 raw_spin_unlock(&ctx->lock); 3564 } 3565 unlock: 3566 rcu_read_unlock(); 3567 3568 if (do_switch) { 3569 raw_spin_lock(&ctx->lock); 3570 perf_ctx_disable(ctx, false); 3571 3572 inside_switch: 3573 perf_ctx_sched_task_cb(ctx, false); 3574 task_ctx_sched_out(ctx, EVENT_ALL); 3575 3576 perf_ctx_enable(ctx, false); 3577 raw_spin_unlock(&ctx->lock); 3578 } 3579 } 3580 3581 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3582 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3583 3584 void perf_sched_cb_dec(struct pmu *pmu) 3585 { 3586 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3587 3588 this_cpu_dec(perf_sched_cb_usages); 3589 barrier(); 3590 3591 if (!--cpc->sched_cb_usage) 3592 list_del(&cpc->sched_cb_entry); 3593 } 3594 3595 3596 void perf_sched_cb_inc(struct pmu *pmu) 3597 { 3598 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3599 3600 if (!cpc->sched_cb_usage++) 3601 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3602 3603 barrier(); 3604 this_cpu_inc(perf_sched_cb_usages); 3605 } 3606 3607 /* 3608 * This function provides the context switch callback to the lower code 3609 * layer. It is invoked ONLY when the context switch callback is enabled. 3610 * 3611 * This callback is relevant even to per-cpu events; for example multi event 3612 * PEBS requires this to provide PID/TID information. This requires we flush 3613 * all queued PEBS records before we context switch to a new task. 3614 */ 3615 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3616 { 3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3618 struct pmu *pmu; 3619 3620 pmu = cpc->epc.pmu; 3621 3622 /* software PMUs will not have sched_task */ 3623 if (WARN_ON_ONCE(!pmu->sched_task)) 3624 return; 3625 3626 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3627 perf_pmu_disable(pmu); 3628 3629 pmu->sched_task(cpc->task_epc, sched_in); 3630 3631 perf_pmu_enable(pmu); 3632 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3633 } 3634 3635 static void perf_pmu_sched_task(struct task_struct *prev, 3636 struct task_struct *next, 3637 bool sched_in) 3638 { 3639 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3640 struct perf_cpu_pmu_context *cpc; 3641 3642 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3643 if (prev == next || cpuctx->task_ctx) 3644 return; 3645 3646 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3647 __perf_pmu_sched_task(cpc, sched_in); 3648 } 3649 3650 static void perf_event_switch(struct task_struct *task, 3651 struct task_struct *next_prev, bool sched_in); 3652 3653 /* 3654 * Called from scheduler to remove the events of the current task, 3655 * with interrupts disabled. 3656 * 3657 * We stop each event and update the event value in event->count. 3658 * 3659 * This does not protect us against NMI, but disable() 3660 * sets the disabled bit in the control field of event _before_ 3661 * accessing the event control register. If a NMI hits, then it will 3662 * not restart the event. 3663 */ 3664 void __perf_event_task_sched_out(struct task_struct *task, 3665 struct task_struct *next) 3666 { 3667 if (__this_cpu_read(perf_sched_cb_usages)) 3668 perf_pmu_sched_task(task, next, false); 3669 3670 if (atomic_read(&nr_switch_events)) 3671 perf_event_switch(task, next, false); 3672 3673 perf_event_context_sched_out(task, next); 3674 3675 /* 3676 * if cgroup events exist on this CPU, then we need 3677 * to check if we have to switch out PMU state. 3678 * cgroup event are system-wide mode only 3679 */ 3680 perf_cgroup_switch(next); 3681 } 3682 3683 static bool perf_less_group_idx(const void *l, const void *r) 3684 { 3685 const struct perf_event *le = *(const struct perf_event **)l; 3686 const struct perf_event *re = *(const struct perf_event **)r; 3687 3688 return le->group_index < re->group_index; 3689 } 3690 3691 static void swap_ptr(void *l, void *r) 3692 { 3693 void **lp = l, **rp = r; 3694 3695 swap(*lp, *rp); 3696 } 3697 3698 static const struct min_heap_callbacks perf_min_heap = { 3699 .elem_size = sizeof(struct perf_event *), 3700 .less = perf_less_group_idx, 3701 .swp = swap_ptr, 3702 }; 3703 3704 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3705 { 3706 struct perf_event **itrs = heap->data; 3707 3708 if (event) { 3709 itrs[heap->nr] = event; 3710 heap->nr++; 3711 } 3712 } 3713 3714 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3715 { 3716 struct perf_cpu_pmu_context *cpc; 3717 3718 if (!pmu_ctx->ctx->task) 3719 return; 3720 3721 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3722 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3723 cpc->task_epc = pmu_ctx; 3724 } 3725 3726 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3727 struct perf_event_groups *groups, int cpu, 3728 struct pmu *pmu, 3729 int (*func)(struct perf_event *, void *), 3730 void *data) 3731 { 3732 #ifdef CONFIG_CGROUP_PERF 3733 struct cgroup_subsys_state *css = NULL; 3734 #endif 3735 struct perf_cpu_context *cpuctx = NULL; 3736 /* Space for per CPU and/or any CPU event iterators. */ 3737 struct perf_event *itrs[2]; 3738 struct min_heap event_heap; 3739 struct perf_event **evt; 3740 int ret; 3741 3742 if (pmu->filter && pmu->filter(pmu, cpu)) 3743 return 0; 3744 3745 if (!ctx->task) { 3746 cpuctx = this_cpu_ptr(&perf_cpu_context); 3747 event_heap = (struct min_heap){ 3748 .data = cpuctx->heap, 3749 .nr = 0, 3750 .size = cpuctx->heap_size, 3751 }; 3752 3753 lockdep_assert_held(&cpuctx->ctx.lock); 3754 3755 #ifdef CONFIG_CGROUP_PERF 3756 if (cpuctx->cgrp) 3757 css = &cpuctx->cgrp->css; 3758 #endif 3759 } else { 3760 event_heap = (struct min_heap){ 3761 .data = itrs, 3762 .nr = 0, 3763 .size = ARRAY_SIZE(itrs), 3764 }; 3765 /* Events not within a CPU context may be on any CPU. */ 3766 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3767 } 3768 evt = event_heap.data; 3769 3770 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3771 3772 #ifdef CONFIG_CGROUP_PERF 3773 for (; css; css = css->parent) 3774 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3775 #endif 3776 3777 if (event_heap.nr) { 3778 __link_epc((*evt)->pmu_ctx); 3779 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3780 } 3781 3782 min_heapify_all(&event_heap, &perf_min_heap); 3783 3784 while (event_heap.nr) { 3785 ret = func(*evt, data); 3786 if (ret) 3787 return ret; 3788 3789 *evt = perf_event_groups_next(*evt, pmu); 3790 if (*evt) 3791 min_heapify(&event_heap, 0, &perf_min_heap); 3792 else 3793 min_heap_pop(&event_heap, &perf_min_heap); 3794 } 3795 3796 return 0; 3797 } 3798 3799 /* 3800 * Because the userpage is strictly per-event (there is no concept of context, 3801 * so there cannot be a context indirection), every userpage must be updated 3802 * when context time starts :-( 3803 * 3804 * IOW, we must not miss EVENT_TIME edges. 3805 */ 3806 static inline bool event_update_userpage(struct perf_event *event) 3807 { 3808 if (likely(!atomic_read(&event->mmap_count))) 3809 return false; 3810 3811 perf_event_update_time(event); 3812 perf_event_update_userpage(event); 3813 3814 return true; 3815 } 3816 3817 static inline void group_update_userpage(struct perf_event *group_event) 3818 { 3819 struct perf_event *event; 3820 3821 if (!event_update_userpage(group_event)) 3822 return; 3823 3824 for_each_sibling_event(event, group_event) 3825 event_update_userpage(event); 3826 } 3827 3828 static int merge_sched_in(struct perf_event *event, void *data) 3829 { 3830 struct perf_event_context *ctx = event->ctx; 3831 int *can_add_hw = data; 3832 3833 if (event->state <= PERF_EVENT_STATE_OFF) 3834 return 0; 3835 3836 if (!event_filter_match(event)) 3837 return 0; 3838 3839 if (group_can_go_on(event, *can_add_hw)) { 3840 if (!group_sched_in(event, ctx)) 3841 list_add_tail(&event->active_list, get_event_list(event)); 3842 } 3843 3844 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3845 *can_add_hw = 0; 3846 if (event->attr.pinned) { 3847 perf_cgroup_event_disable(event, ctx); 3848 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3849 } else { 3850 struct perf_cpu_pmu_context *cpc; 3851 3852 event->pmu_ctx->rotate_necessary = 1; 3853 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3854 perf_mux_hrtimer_restart(cpc); 3855 group_update_userpage(event); 3856 } 3857 } 3858 3859 return 0; 3860 } 3861 3862 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3863 struct perf_event_groups *groups, 3864 struct pmu *pmu) 3865 { 3866 int can_add_hw = 1; 3867 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3868 merge_sched_in, &can_add_hw); 3869 } 3870 3871 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3872 struct perf_event_groups *groups, 3873 bool cgroup) 3874 { 3875 struct perf_event_pmu_context *pmu_ctx; 3876 3877 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3878 if (cgroup && !pmu_ctx->nr_cgroups) 3879 continue; 3880 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3881 } 3882 } 3883 3884 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3885 struct pmu *pmu) 3886 { 3887 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3888 } 3889 3890 static void 3891 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3892 { 3893 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3894 int is_active = ctx->is_active; 3895 bool cgroup = event_type & EVENT_CGROUP; 3896 3897 event_type &= ~EVENT_CGROUP; 3898 3899 lockdep_assert_held(&ctx->lock); 3900 3901 if (likely(!ctx->nr_events)) 3902 return; 3903 3904 if (!(is_active & EVENT_TIME)) { 3905 /* start ctx time */ 3906 __update_context_time(ctx, false); 3907 perf_cgroup_set_timestamp(cpuctx); 3908 /* 3909 * CPU-release for the below ->is_active store, 3910 * see __load_acquire() in perf_event_time_now() 3911 */ 3912 barrier(); 3913 } 3914 3915 ctx->is_active |= (event_type | EVENT_TIME); 3916 if (ctx->task) { 3917 if (!is_active) 3918 cpuctx->task_ctx = ctx; 3919 else 3920 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3921 } 3922 3923 is_active ^= ctx->is_active; /* changed bits */ 3924 3925 /* 3926 * First go through the list and put on any pinned groups 3927 * in order to give them the best chance of going on. 3928 */ 3929 if (is_active & EVENT_PINNED) 3930 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3931 3932 /* Then walk through the lower prio flexible groups */ 3933 if (is_active & EVENT_FLEXIBLE) 3934 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3935 } 3936 3937 static void perf_event_context_sched_in(struct task_struct *task) 3938 { 3939 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3940 struct perf_event_context *ctx; 3941 3942 rcu_read_lock(); 3943 ctx = rcu_dereference(task->perf_event_ctxp); 3944 if (!ctx) 3945 goto rcu_unlock; 3946 3947 if (cpuctx->task_ctx == ctx) { 3948 perf_ctx_lock(cpuctx, ctx); 3949 perf_ctx_disable(ctx, false); 3950 3951 perf_ctx_sched_task_cb(ctx, true); 3952 3953 perf_ctx_enable(ctx, false); 3954 perf_ctx_unlock(cpuctx, ctx); 3955 goto rcu_unlock; 3956 } 3957 3958 perf_ctx_lock(cpuctx, ctx); 3959 /* 3960 * We must check ctx->nr_events while holding ctx->lock, such 3961 * that we serialize against perf_install_in_context(). 3962 */ 3963 if (!ctx->nr_events) 3964 goto unlock; 3965 3966 perf_ctx_disable(ctx, false); 3967 /* 3968 * We want to keep the following priority order: 3969 * cpu pinned (that don't need to move), task pinned, 3970 * cpu flexible, task flexible. 3971 * 3972 * However, if task's ctx is not carrying any pinned 3973 * events, no need to flip the cpuctx's events around. 3974 */ 3975 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3976 perf_ctx_disable(&cpuctx->ctx, false); 3977 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3978 } 3979 3980 perf_event_sched_in(cpuctx, ctx); 3981 3982 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3983 3984 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3985 perf_ctx_enable(&cpuctx->ctx, false); 3986 3987 perf_ctx_enable(ctx, false); 3988 3989 unlock: 3990 perf_ctx_unlock(cpuctx, ctx); 3991 rcu_unlock: 3992 rcu_read_unlock(); 3993 } 3994 3995 /* 3996 * Called from scheduler to add the events of the current task 3997 * with interrupts disabled. 3998 * 3999 * We restore the event value and then enable it. 4000 * 4001 * This does not protect us against NMI, but enable() 4002 * sets the enabled bit in the control field of event _before_ 4003 * accessing the event control register. If a NMI hits, then it will 4004 * keep the event running. 4005 */ 4006 void __perf_event_task_sched_in(struct task_struct *prev, 4007 struct task_struct *task) 4008 { 4009 perf_event_context_sched_in(task); 4010 4011 if (atomic_read(&nr_switch_events)) 4012 perf_event_switch(task, prev, true); 4013 4014 if (__this_cpu_read(perf_sched_cb_usages)) 4015 perf_pmu_sched_task(prev, task, true); 4016 } 4017 4018 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4019 { 4020 u64 frequency = event->attr.sample_freq; 4021 u64 sec = NSEC_PER_SEC; 4022 u64 divisor, dividend; 4023 4024 int count_fls, nsec_fls, frequency_fls, sec_fls; 4025 4026 count_fls = fls64(count); 4027 nsec_fls = fls64(nsec); 4028 frequency_fls = fls64(frequency); 4029 sec_fls = 30; 4030 4031 /* 4032 * We got @count in @nsec, with a target of sample_freq HZ 4033 * the target period becomes: 4034 * 4035 * @count * 10^9 4036 * period = ------------------- 4037 * @nsec * sample_freq 4038 * 4039 */ 4040 4041 /* 4042 * Reduce accuracy by one bit such that @a and @b converge 4043 * to a similar magnitude. 4044 */ 4045 #define REDUCE_FLS(a, b) \ 4046 do { \ 4047 if (a##_fls > b##_fls) { \ 4048 a >>= 1; \ 4049 a##_fls--; \ 4050 } else { \ 4051 b >>= 1; \ 4052 b##_fls--; \ 4053 } \ 4054 } while (0) 4055 4056 /* 4057 * Reduce accuracy until either term fits in a u64, then proceed with 4058 * the other, so that finally we can do a u64/u64 division. 4059 */ 4060 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4061 REDUCE_FLS(nsec, frequency); 4062 REDUCE_FLS(sec, count); 4063 } 4064 4065 if (count_fls + sec_fls > 64) { 4066 divisor = nsec * frequency; 4067 4068 while (count_fls + sec_fls > 64) { 4069 REDUCE_FLS(count, sec); 4070 divisor >>= 1; 4071 } 4072 4073 dividend = count * sec; 4074 } else { 4075 dividend = count * sec; 4076 4077 while (nsec_fls + frequency_fls > 64) { 4078 REDUCE_FLS(nsec, frequency); 4079 dividend >>= 1; 4080 } 4081 4082 divisor = nsec * frequency; 4083 } 4084 4085 if (!divisor) 4086 return dividend; 4087 4088 return div64_u64(dividend, divisor); 4089 } 4090 4091 static DEFINE_PER_CPU(int, perf_throttled_count); 4092 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4093 4094 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4095 { 4096 struct hw_perf_event *hwc = &event->hw; 4097 s64 period, sample_period; 4098 s64 delta; 4099 4100 period = perf_calculate_period(event, nsec, count); 4101 4102 delta = (s64)(period - hwc->sample_period); 4103 delta = (delta + 7) / 8; /* low pass filter */ 4104 4105 sample_period = hwc->sample_period + delta; 4106 4107 if (!sample_period) 4108 sample_period = 1; 4109 4110 hwc->sample_period = sample_period; 4111 4112 if (local64_read(&hwc->period_left) > 8*sample_period) { 4113 if (disable) 4114 event->pmu->stop(event, PERF_EF_UPDATE); 4115 4116 local64_set(&hwc->period_left, 0); 4117 4118 if (disable) 4119 event->pmu->start(event, PERF_EF_RELOAD); 4120 } 4121 } 4122 4123 /* 4124 * combine freq adjustment with unthrottling to avoid two passes over the 4125 * events. At the same time, make sure, having freq events does not change 4126 * the rate of unthrottling as that would introduce bias. 4127 */ 4128 static void 4129 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4130 { 4131 struct perf_event *event; 4132 struct hw_perf_event *hwc; 4133 u64 now, period = TICK_NSEC; 4134 s64 delta; 4135 4136 /* 4137 * only need to iterate over all events iff: 4138 * - context have events in frequency mode (needs freq adjust) 4139 * - there are events to unthrottle on this cpu 4140 */ 4141 if (!(ctx->nr_freq || unthrottle)) 4142 return; 4143 4144 raw_spin_lock(&ctx->lock); 4145 4146 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4147 if (event->state != PERF_EVENT_STATE_ACTIVE) 4148 continue; 4149 4150 // XXX use visit thingy to avoid the -1,cpu match 4151 if (!event_filter_match(event)) 4152 continue; 4153 4154 perf_pmu_disable(event->pmu); 4155 4156 hwc = &event->hw; 4157 4158 if (hwc->interrupts == MAX_INTERRUPTS) { 4159 hwc->interrupts = 0; 4160 perf_log_throttle(event, 1); 4161 event->pmu->start(event, 0); 4162 } 4163 4164 if (!event->attr.freq || !event->attr.sample_freq) 4165 goto next; 4166 4167 /* 4168 * stop the event and update event->count 4169 */ 4170 event->pmu->stop(event, PERF_EF_UPDATE); 4171 4172 now = local64_read(&event->count); 4173 delta = now - hwc->freq_count_stamp; 4174 hwc->freq_count_stamp = now; 4175 4176 /* 4177 * restart the event 4178 * reload only if value has changed 4179 * we have stopped the event so tell that 4180 * to perf_adjust_period() to avoid stopping it 4181 * twice. 4182 */ 4183 if (delta > 0) 4184 perf_adjust_period(event, period, delta, false); 4185 4186 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4187 next: 4188 perf_pmu_enable(event->pmu); 4189 } 4190 4191 raw_spin_unlock(&ctx->lock); 4192 } 4193 4194 /* 4195 * Move @event to the tail of the @ctx's elegible events. 4196 */ 4197 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4198 { 4199 /* 4200 * Rotate the first entry last of non-pinned groups. Rotation might be 4201 * disabled by the inheritance code. 4202 */ 4203 if (ctx->rotate_disable) 4204 return; 4205 4206 perf_event_groups_delete(&ctx->flexible_groups, event); 4207 perf_event_groups_insert(&ctx->flexible_groups, event); 4208 } 4209 4210 /* pick an event from the flexible_groups to rotate */ 4211 static inline struct perf_event * 4212 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4213 { 4214 struct perf_event *event; 4215 struct rb_node *node; 4216 struct rb_root *tree; 4217 struct __group_key key = { 4218 .pmu = pmu_ctx->pmu, 4219 }; 4220 4221 /* pick the first active flexible event */ 4222 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4223 struct perf_event, active_list); 4224 if (event) 4225 goto out; 4226 4227 /* if no active flexible event, pick the first event */ 4228 tree = &pmu_ctx->ctx->flexible_groups.tree; 4229 4230 if (!pmu_ctx->ctx->task) { 4231 key.cpu = smp_processor_id(); 4232 4233 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4234 if (node) 4235 event = __node_2_pe(node); 4236 goto out; 4237 } 4238 4239 key.cpu = -1; 4240 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4241 if (node) { 4242 event = __node_2_pe(node); 4243 goto out; 4244 } 4245 4246 key.cpu = smp_processor_id(); 4247 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4248 if (node) 4249 event = __node_2_pe(node); 4250 4251 out: 4252 /* 4253 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4254 * finds there are unschedulable events, it will set it again. 4255 */ 4256 pmu_ctx->rotate_necessary = 0; 4257 4258 return event; 4259 } 4260 4261 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4262 { 4263 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4264 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4265 struct perf_event *cpu_event = NULL, *task_event = NULL; 4266 int cpu_rotate, task_rotate; 4267 struct pmu *pmu; 4268 4269 /* 4270 * Since we run this from IRQ context, nobody can install new 4271 * events, thus the event count values are stable. 4272 */ 4273 4274 cpu_epc = &cpc->epc; 4275 pmu = cpu_epc->pmu; 4276 task_epc = cpc->task_epc; 4277 4278 cpu_rotate = cpu_epc->rotate_necessary; 4279 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4280 4281 if (!(cpu_rotate || task_rotate)) 4282 return false; 4283 4284 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4285 perf_pmu_disable(pmu); 4286 4287 if (task_rotate) 4288 task_event = ctx_event_to_rotate(task_epc); 4289 if (cpu_rotate) 4290 cpu_event = ctx_event_to_rotate(cpu_epc); 4291 4292 /* 4293 * As per the order given at ctx_resched() first 'pop' task flexible 4294 * and then, if needed CPU flexible. 4295 */ 4296 if (task_event || (task_epc && cpu_event)) { 4297 update_context_time(task_epc->ctx); 4298 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4299 } 4300 4301 if (cpu_event) { 4302 update_context_time(&cpuctx->ctx); 4303 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4304 rotate_ctx(&cpuctx->ctx, cpu_event); 4305 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4306 } 4307 4308 if (task_event) 4309 rotate_ctx(task_epc->ctx, task_event); 4310 4311 if (task_event || (task_epc && cpu_event)) 4312 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4313 4314 perf_pmu_enable(pmu); 4315 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4316 4317 return true; 4318 } 4319 4320 void perf_event_task_tick(void) 4321 { 4322 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4323 struct perf_event_context *ctx; 4324 int throttled; 4325 4326 lockdep_assert_irqs_disabled(); 4327 4328 __this_cpu_inc(perf_throttled_seq); 4329 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4330 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4331 4332 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4333 4334 rcu_read_lock(); 4335 ctx = rcu_dereference(current->perf_event_ctxp); 4336 if (ctx) 4337 perf_adjust_freq_unthr_context(ctx, !!throttled); 4338 rcu_read_unlock(); 4339 } 4340 4341 static int event_enable_on_exec(struct perf_event *event, 4342 struct perf_event_context *ctx) 4343 { 4344 if (!event->attr.enable_on_exec) 4345 return 0; 4346 4347 event->attr.enable_on_exec = 0; 4348 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4349 return 0; 4350 4351 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4352 4353 return 1; 4354 } 4355 4356 /* 4357 * Enable all of a task's events that have been marked enable-on-exec. 4358 * This expects task == current. 4359 */ 4360 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4361 { 4362 struct perf_event_context *clone_ctx = NULL; 4363 enum event_type_t event_type = 0; 4364 struct perf_cpu_context *cpuctx; 4365 struct perf_event *event; 4366 unsigned long flags; 4367 int enabled = 0; 4368 4369 local_irq_save(flags); 4370 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4371 goto out; 4372 4373 if (!ctx->nr_events) 4374 goto out; 4375 4376 cpuctx = this_cpu_ptr(&perf_cpu_context); 4377 perf_ctx_lock(cpuctx, ctx); 4378 ctx_sched_out(ctx, EVENT_TIME); 4379 4380 list_for_each_entry(event, &ctx->event_list, event_entry) { 4381 enabled |= event_enable_on_exec(event, ctx); 4382 event_type |= get_event_type(event); 4383 } 4384 4385 /* 4386 * Unclone and reschedule this context if we enabled any event. 4387 */ 4388 if (enabled) { 4389 clone_ctx = unclone_ctx(ctx); 4390 ctx_resched(cpuctx, ctx, event_type); 4391 } else { 4392 ctx_sched_in(ctx, EVENT_TIME); 4393 } 4394 perf_ctx_unlock(cpuctx, ctx); 4395 4396 out: 4397 local_irq_restore(flags); 4398 4399 if (clone_ctx) 4400 put_ctx(clone_ctx); 4401 } 4402 4403 static void perf_remove_from_owner(struct perf_event *event); 4404 static void perf_event_exit_event(struct perf_event *event, 4405 struct perf_event_context *ctx); 4406 4407 /* 4408 * Removes all events from the current task that have been marked 4409 * remove-on-exec, and feeds their values back to parent events. 4410 */ 4411 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4412 { 4413 struct perf_event_context *clone_ctx = NULL; 4414 struct perf_event *event, *next; 4415 unsigned long flags; 4416 bool modified = false; 4417 4418 mutex_lock(&ctx->mutex); 4419 4420 if (WARN_ON_ONCE(ctx->task != current)) 4421 goto unlock; 4422 4423 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4424 if (!event->attr.remove_on_exec) 4425 continue; 4426 4427 if (!is_kernel_event(event)) 4428 perf_remove_from_owner(event); 4429 4430 modified = true; 4431 4432 perf_event_exit_event(event, ctx); 4433 } 4434 4435 raw_spin_lock_irqsave(&ctx->lock, flags); 4436 if (modified) 4437 clone_ctx = unclone_ctx(ctx); 4438 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4439 4440 unlock: 4441 mutex_unlock(&ctx->mutex); 4442 4443 if (clone_ctx) 4444 put_ctx(clone_ctx); 4445 } 4446 4447 struct perf_read_data { 4448 struct perf_event *event; 4449 bool group; 4450 int ret; 4451 }; 4452 4453 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4454 { 4455 u16 local_pkg, event_pkg; 4456 4457 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4458 int local_cpu = smp_processor_id(); 4459 4460 event_pkg = topology_physical_package_id(event_cpu); 4461 local_pkg = topology_physical_package_id(local_cpu); 4462 4463 if (event_pkg == local_pkg) 4464 return local_cpu; 4465 } 4466 4467 return event_cpu; 4468 } 4469 4470 /* 4471 * Cross CPU call to read the hardware event 4472 */ 4473 static void __perf_event_read(void *info) 4474 { 4475 struct perf_read_data *data = info; 4476 struct perf_event *sub, *event = data->event; 4477 struct perf_event_context *ctx = event->ctx; 4478 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4479 struct pmu *pmu = event->pmu; 4480 4481 /* 4482 * If this is a task context, we need to check whether it is 4483 * the current task context of this cpu. If not it has been 4484 * scheduled out before the smp call arrived. In that case 4485 * event->count would have been updated to a recent sample 4486 * when the event was scheduled out. 4487 */ 4488 if (ctx->task && cpuctx->task_ctx != ctx) 4489 return; 4490 4491 raw_spin_lock(&ctx->lock); 4492 if (ctx->is_active & EVENT_TIME) { 4493 update_context_time(ctx); 4494 update_cgrp_time_from_event(event); 4495 } 4496 4497 perf_event_update_time(event); 4498 if (data->group) 4499 perf_event_update_sibling_time(event); 4500 4501 if (event->state != PERF_EVENT_STATE_ACTIVE) 4502 goto unlock; 4503 4504 if (!data->group) { 4505 pmu->read(event); 4506 data->ret = 0; 4507 goto unlock; 4508 } 4509 4510 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4511 4512 pmu->read(event); 4513 4514 for_each_sibling_event(sub, event) { 4515 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4516 /* 4517 * Use sibling's PMU rather than @event's since 4518 * sibling could be on different (eg: software) PMU. 4519 */ 4520 sub->pmu->read(sub); 4521 } 4522 } 4523 4524 data->ret = pmu->commit_txn(pmu); 4525 4526 unlock: 4527 raw_spin_unlock(&ctx->lock); 4528 } 4529 4530 static inline u64 perf_event_count(struct perf_event *event) 4531 { 4532 return local64_read(&event->count) + atomic64_read(&event->child_count); 4533 } 4534 4535 static void calc_timer_values(struct perf_event *event, 4536 u64 *now, 4537 u64 *enabled, 4538 u64 *running) 4539 { 4540 u64 ctx_time; 4541 4542 *now = perf_clock(); 4543 ctx_time = perf_event_time_now(event, *now); 4544 __perf_update_times(event, ctx_time, enabled, running); 4545 } 4546 4547 /* 4548 * NMI-safe method to read a local event, that is an event that 4549 * is: 4550 * - either for the current task, or for this CPU 4551 * - does not have inherit set, for inherited task events 4552 * will not be local and we cannot read them atomically 4553 * - must not have a pmu::count method 4554 */ 4555 int perf_event_read_local(struct perf_event *event, u64 *value, 4556 u64 *enabled, u64 *running) 4557 { 4558 unsigned long flags; 4559 int ret = 0; 4560 4561 /* 4562 * Disabling interrupts avoids all counter scheduling (context 4563 * switches, timer based rotation and IPIs). 4564 */ 4565 local_irq_save(flags); 4566 4567 /* 4568 * It must not be an event with inherit set, we cannot read 4569 * all child counters from atomic context. 4570 */ 4571 if (event->attr.inherit) { 4572 ret = -EOPNOTSUPP; 4573 goto out; 4574 } 4575 4576 /* If this is a per-task event, it must be for current */ 4577 if ((event->attach_state & PERF_ATTACH_TASK) && 4578 event->hw.target != current) { 4579 ret = -EINVAL; 4580 goto out; 4581 } 4582 4583 /* If this is a per-CPU event, it must be for this CPU */ 4584 if (!(event->attach_state & PERF_ATTACH_TASK) && 4585 event->cpu != smp_processor_id()) { 4586 ret = -EINVAL; 4587 goto out; 4588 } 4589 4590 /* If this is a pinned event it must be running on this CPU */ 4591 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4592 ret = -EBUSY; 4593 goto out; 4594 } 4595 4596 /* 4597 * If the event is currently on this CPU, its either a per-task event, 4598 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4599 * oncpu == -1). 4600 */ 4601 if (event->oncpu == smp_processor_id()) 4602 event->pmu->read(event); 4603 4604 *value = local64_read(&event->count); 4605 if (enabled || running) { 4606 u64 __enabled, __running, __now; 4607 4608 calc_timer_values(event, &__now, &__enabled, &__running); 4609 if (enabled) 4610 *enabled = __enabled; 4611 if (running) 4612 *running = __running; 4613 } 4614 out: 4615 local_irq_restore(flags); 4616 4617 return ret; 4618 } 4619 4620 static int perf_event_read(struct perf_event *event, bool group) 4621 { 4622 enum perf_event_state state = READ_ONCE(event->state); 4623 int event_cpu, ret = 0; 4624 4625 /* 4626 * If event is enabled and currently active on a CPU, update the 4627 * value in the event structure: 4628 */ 4629 again: 4630 if (state == PERF_EVENT_STATE_ACTIVE) { 4631 struct perf_read_data data; 4632 4633 /* 4634 * Orders the ->state and ->oncpu loads such that if we see 4635 * ACTIVE we must also see the right ->oncpu. 4636 * 4637 * Matches the smp_wmb() from event_sched_in(). 4638 */ 4639 smp_rmb(); 4640 4641 event_cpu = READ_ONCE(event->oncpu); 4642 if ((unsigned)event_cpu >= nr_cpu_ids) 4643 return 0; 4644 4645 data = (struct perf_read_data){ 4646 .event = event, 4647 .group = group, 4648 .ret = 0, 4649 }; 4650 4651 preempt_disable(); 4652 event_cpu = __perf_event_read_cpu(event, event_cpu); 4653 4654 /* 4655 * Purposely ignore the smp_call_function_single() return 4656 * value. 4657 * 4658 * If event_cpu isn't a valid CPU it means the event got 4659 * scheduled out and that will have updated the event count. 4660 * 4661 * Therefore, either way, we'll have an up-to-date event count 4662 * after this. 4663 */ 4664 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4665 preempt_enable(); 4666 ret = data.ret; 4667 4668 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4669 struct perf_event_context *ctx = event->ctx; 4670 unsigned long flags; 4671 4672 raw_spin_lock_irqsave(&ctx->lock, flags); 4673 state = event->state; 4674 if (state != PERF_EVENT_STATE_INACTIVE) { 4675 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4676 goto again; 4677 } 4678 4679 /* 4680 * May read while context is not active (e.g., thread is 4681 * blocked), in that case we cannot update context time 4682 */ 4683 if (ctx->is_active & EVENT_TIME) { 4684 update_context_time(ctx); 4685 update_cgrp_time_from_event(event); 4686 } 4687 4688 perf_event_update_time(event); 4689 if (group) 4690 perf_event_update_sibling_time(event); 4691 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4692 } 4693 4694 return ret; 4695 } 4696 4697 /* 4698 * Initialize the perf_event context in a task_struct: 4699 */ 4700 static void __perf_event_init_context(struct perf_event_context *ctx) 4701 { 4702 raw_spin_lock_init(&ctx->lock); 4703 mutex_init(&ctx->mutex); 4704 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4705 perf_event_groups_init(&ctx->pinned_groups); 4706 perf_event_groups_init(&ctx->flexible_groups); 4707 INIT_LIST_HEAD(&ctx->event_list); 4708 refcount_set(&ctx->refcount, 1); 4709 } 4710 4711 static void 4712 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4713 { 4714 epc->pmu = pmu; 4715 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4716 INIT_LIST_HEAD(&epc->pinned_active); 4717 INIT_LIST_HEAD(&epc->flexible_active); 4718 atomic_set(&epc->refcount, 1); 4719 } 4720 4721 static struct perf_event_context * 4722 alloc_perf_context(struct task_struct *task) 4723 { 4724 struct perf_event_context *ctx; 4725 4726 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4727 if (!ctx) 4728 return NULL; 4729 4730 __perf_event_init_context(ctx); 4731 if (task) 4732 ctx->task = get_task_struct(task); 4733 4734 return ctx; 4735 } 4736 4737 static struct task_struct * 4738 find_lively_task_by_vpid(pid_t vpid) 4739 { 4740 struct task_struct *task; 4741 4742 rcu_read_lock(); 4743 if (!vpid) 4744 task = current; 4745 else 4746 task = find_task_by_vpid(vpid); 4747 if (task) 4748 get_task_struct(task); 4749 rcu_read_unlock(); 4750 4751 if (!task) 4752 return ERR_PTR(-ESRCH); 4753 4754 return task; 4755 } 4756 4757 /* 4758 * Returns a matching context with refcount and pincount. 4759 */ 4760 static struct perf_event_context * 4761 find_get_context(struct task_struct *task, struct perf_event *event) 4762 { 4763 struct perf_event_context *ctx, *clone_ctx = NULL; 4764 struct perf_cpu_context *cpuctx; 4765 unsigned long flags; 4766 int err; 4767 4768 if (!task) { 4769 /* Must be root to operate on a CPU event: */ 4770 err = perf_allow_cpu(&event->attr); 4771 if (err) 4772 return ERR_PTR(err); 4773 4774 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4775 ctx = &cpuctx->ctx; 4776 get_ctx(ctx); 4777 raw_spin_lock_irqsave(&ctx->lock, flags); 4778 ++ctx->pin_count; 4779 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4780 4781 return ctx; 4782 } 4783 4784 err = -EINVAL; 4785 retry: 4786 ctx = perf_lock_task_context(task, &flags); 4787 if (ctx) { 4788 clone_ctx = unclone_ctx(ctx); 4789 ++ctx->pin_count; 4790 4791 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4792 4793 if (clone_ctx) 4794 put_ctx(clone_ctx); 4795 } else { 4796 ctx = alloc_perf_context(task); 4797 err = -ENOMEM; 4798 if (!ctx) 4799 goto errout; 4800 4801 err = 0; 4802 mutex_lock(&task->perf_event_mutex); 4803 /* 4804 * If it has already passed perf_event_exit_task(). 4805 * we must see PF_EXITING, it takes this mutex too. 4806 */ 4807 if (task->flags & PF_EXITING) 4808 err = -ESRCH; 4809 else if (task->perf_event_ctxp) 4810 err = -EAGAIN; 4811 else { 4812 get_ctx(ctx); 4813 ++ctx->pin_count; 4814 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4815 } 4816 mutex_unlock(&task->perf_event_mutex); 4817 4818 if (unlikely(err)) { 4819 put_ctx(ctx); 4820 4821 if (err == -EAGAIN) 4822 goto retry; 4823 goto errout; 4824 } 4825 } 4826 4827 return ctx; 4828 4829 errout: 4830 return ERR_PTR(err); 4831 } 4832 4833 static struct perf_event_pmu_context * 4834 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4835 struct perf_event *event) 4836 { 4837 struct perf_event_pmu_context *new = NULL, *epc; 4838 void *task_ctx_data = NULL; 4839 4840 if (!ctx->task) { 4841 /* 4842 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4843 * relies on the fact that find_get_pmu_context() cannot fail 4844 * for CPU contexts. 4845 */ 4846 struct perf_cpu_pmu_context *cpc; 4847 4848 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4849 epc = &cpc->epc; 4850 raw_spin_lock_irq(&ctx->lock); 4851 if (!epc->ctx) { 4852 atomic_set(&epc->refcount, 1); 4853 epc->embedded = 1; 4854 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4855 epc->ctx = ctx; 4856 } else { 4857 WARN_ON_ONCE(epc->ctx != ctx); 4858 atomic_inc(&epc->refcount); 4859 } 4860 raw_spin_unlock_irq(&ctx->lock); 4861 return epc; 4862 } 4863 4864 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4865 if (!new) 4866 return ERR_PTR(-ENOMEM); 4867 4868 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4869 task_ctx_data = alloc_task_ctx_data(pmu); 4870 if (!task_ctx_data) { 4871 kfree(new); 4872 return ERR_PTR(-ENOMEM); 4873 } 4874 } 4875 4876 __perf_init_event_pmu_context(new, pmu); 4877 4878 /* 4879 * XXX 4880 * 4881 * lockdep_assert_held(&ctx->mutex); 4882 * 4883 * can't because perf_event_init_task() doesn't actually hold the 4884 * child_ctx->mutex. 4885 */ 4886 4887 raw_spin_lock_irq(&ctx->lock); 4888 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4889 if (epc->pmu == pmu) { 4890 WARN_ON_ONCE(epc->ctx != ctx); 4891 atomic_inc(&epc->refcount); 4892 goto found_epc; 4893 } 4894 } 4895 4896 epc = new; 4897 new = NULL; 4898 4899 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4900 epc->ctx = ctx; 4901 4902 found_epc: 4903 if (task_ctx_data && !epc->task_ctx_data) { 4904 epc->task_ctx_data = task_ctx_data; 4905 task_ctx_data = NULL; 4906 ctx->nr_task_data++; 4907 } 4908 raw_spin_unlock_irq(&ctx->lock); 4909 4910 free_task_ctx_data(pmu, task_ctx_data); 4911 kfree(new); 4912 4913 return epc; 4914 } 4915 4916 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4917 { 4918 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4919 } 4920 4921 static void free_epc_rcu(struct rcu_head *head) 4922 { 4923 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4924 4925 kfree(epc->task_ctx_data); 4926 kfree(epc); 4927 } 4928 4929 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4930 { 4931 struct perf_event_context *ctx = epc->ctx; 4932 unsigned long flags; 4933 4934 /* 4935 * XXX 4936 * 4937 * lockdep_assert_held(&ctx->mutex); 4938 * 4939 * can't because of the call-site in _free_event()/put_event() 4940 * which isn't always called under ctx->mutex. 4941 */ 4942 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4943 return; 4944 4945 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4946 4947 list_del_init(&epc->pmu_ctx_entry); 4948 epc->ctx = NULL; 4949 4950 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4951 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4952 4953 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4954 4955 if (epc->embedded) 4956 return; 4957 4958 call_rcu(&epc->rcu_head, free_epc_rcu); 4959 } 4960 4961 static void perf_event_free_filter(struct perf_event *event); 4962 4963 static void free_event_rcu(struct rcu_head *head) 4964 { 4965 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4966 4967 if (event->ns) 4968 put_pid_ns(event->ns); 4969 perf_event_free_filter(event); 4970 kmem_cache_free(perf_event_cache, event); 4971 } 4972 4973 static void ring_buffer_attach(struct perf_event *event, 4974 struct perf_buffer *rb); 4975 4976 static void detach_sb_event(struct perf_event *event) 4977 { 4978 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4979 4980 raw_spin_lock(&pel->lock); 4981 list_del_rcu(&event->sb_list); 4982 raw_spin_unlock(&pel->lock); 4983 } 4984 4985 static bool is_sb_event(struct perf_event *event) 4986 { 4987 struct perf_event_attr *attr = &event->attr; 4988 4989 if (event->parent) 4990 return false; 4991 4992 if (event->attach_state & PERF_ATTACH_TASK) 4993 return false; 4994 4995 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4996 attr->comm || attr->comm_exec || 4997 attr->task || attr->ksymbol || 4998 attr->context_switch || attr->text_poke || 4999 attr->bpf_event) 5000 return true; 5001 return false; 5002 } 5003 5004 static void unaccount_pmu_sb_event(struct perf_event *event) 5005 { 5006 if (is_sb_event(event)) 5007 detach_sb_event(event); 5008 } 5009 5010 #ifdef CONFIG_NO_HZ_FULL 5011 static DEFINE_SPINLOCK(nr_freq_lock); 5012 #endif 5013 5014 static void unaccount_freq_event_nohz(void) 5015 { 5016 #ifdef CONFIG_NO_HZ_FULL 5017 spin_lock(&nr_freq_lock); 5018 if (atomic_dec_and_test(&nr_freq_events)) 5019 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5020 spin_unlock(&nr_freq_lock); 5021 #endif 5022 } 5023 5024 static void unaccount_freq_event(void) 5025 { 5026 if (tick_nohz_full_enabled()) 5027 unaccount_freq_event_nohz(); 5028 else 5029 atomic_dec(&nr_freq_events); 5030 } 5031 5032 static void unaccount_event(struct perf_event *event) 5033 { 5034 bool dec = false; 5035 5036 if (event->parent) 5037 return; 5038 5039 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5040 dec = true; 5041 if (event->attr.mmap || event->attr.mmap_data) 5042 atomic_dec(&nr_mmap_events); 5043 if (event->attr.build_id) 5044 atomic_dec(&nr_build_id_events); 5045 if (event->attr.comm) 5046 atomic_dec(&nr_comm_events); 5047 if (event->attr.namespaces) 5048 atomic_dec(&nr_namespaces_events); 5049 if (event->attr.cgroup) 5050 atomic_dec(&nr_cgroup_events); 5051 if (event->attr.task) 5052 atomic_dec(&nr_task_events); 5053 if (event->attr.freq) 5054 unaccount_freq_event(); 5055 if (event->attr.context_switch) { 5056 dec = true; 5057 atomic_dec(&nr_switch_events); 5058 } 5059 if (is_cgroup_event(event)) 5060 dec = true; 5061 if (has_branch_stack(event)) 5062 dec = true; 5063 if (event->attr.ksymbol) 5064 atomic_dec(&nr_ksymbol_events); 5065 if (event->attr.bpf_event) 5066 atomic_dec(&nr_bpf_events); 5067 if (event->attr.text_poke) 5068 atomic_dec(&nr_text_poke_events); 5069 5070 if (dec) { 5071 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5072 schedule_delayed_work(&perf_sched_work, HZ); 5073 } 5074 5075 unaccount_pmu_sb_event(event); 5076 } 5077 5078 static void perf_sched_delayed(struct work_struct *work) 5079 { 5080 mutex_lock(&perf_sched_mutex); 5081 if (atomic_dec_and_test(&perf_sched_count)) 5082 static_branch_disable(&perf_sched_events); 5083 mutex_unlock(&perf_sched_mutex); 5084 } 5085 5086 /* 5087 * The following implement mutual exclusion of events on "exclusive" pmus 5088 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5089 * at a time, so we disallow creating events that might conflict, namely: 5090 * 5091 * 1) cpu-wide events in the presence of per-task events, 5092 * 2) per-task events in the presence of cpu-wide events, 5093 * 3) two matching events on the same perf_event_context. 5094 * 5095 * The former two cases are handled in the allocation path (perf_event_alloc(), 5096 * _free_event()), the latter -- before the first perf_install_in_context(). 5097 */ 5098 static int exclusive_event_init(struct perf_event *event) 5099 { 5100 struct pmu *pmu = event->pmu; 5101 5102 if (!is_exclusive_pmu(pmu)) 5103 return 0; 5104 5105 /* 5106 * Prevent co-existence of per-task and cpu-wide events on the 5107 * same exclusive pmu. 5108 * 5109 * Negative pmu::exclusive_cnt means there are cpu-wide 5110 * events on this "exclusive" pmu, positive means there are 5111 * per-task events. 5112 * 5113 * Since this is called in perf_event_alloc() path, event::ctx 5114 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5115 * to mean "per-task event", because unlike other attach states it 5116 * never gets cleared. 5117 */ 5118 if (event->attach_state & PERF_ATTACH_TASK) { 5119 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5120 return -EBUSY; 5121 } else { 5122 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5123 return -EBUSY; 5124 } 5125 5126 return 0; 5127 } 5128 5129 static void exclusive_event_destroy(struct perf_event *event) 5130 { 5131 struct pmu *pmu = event->pmu; 5132 5133 if (!is_exclusive_pmu(pmu)) 5134 return; 5135 5136 /* see comment in exclusive_event_init() */ 5137 if (event->attach_state & PERF_ATTACH_TASK) 5138 atomic_dec(&pmu->exclusive_cnt); 5139 else 5140 atomic_inc(&pmu->exclusive_cnt); 5141 } 5142 5143 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5144 { 5145 if ((e1->pmu == e2->pmu) && 5146 (e1->cpu == e2->cpu || 5147 e1->cpu == -1 || 5148 e2->cpu == -1)) 5149 return true; 5150 return false; 5151 } 5152 5153 static bool exclusive_event_installable(struct perf_event *event, 5154 struct perf_event_context *ctx) 5155 { 5156 struct perf_event *iter_event; 5157 struct pmu *pmu = event->pmu; 5158 5159 lockdep_assert_held(&ctx->mutex); 5160 5161 if (!is_exclusive_pmu(pmu)) 5162 return true; 5163 5164 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5165 if (exclusive_event_match(iter_event, event)) 5166 return false; 5167 } 5168 5169 return true; 5170 } 5171 5172 static void perf_addr_filters_splice(struct perf_event *event, 5173 struct list_head *head); 5174 5175 static void perf_pending_task_sync(struct perf_event *event) 5176 { 5177 struct callback_head *head = &event->pending_task; 5178 5179 if (!event->pending_work) 5180 return; 5181 /* 5182 * If the task is queued to the current task's queue, we 5183 * obviously can't wait for it to complete. Simply cancel it. 5184 */ 5185 if (task_work_cancel(current, head)) { 5186 event->pending_work = 0; 5187 local_dec(&event->ctx->nr_pending); 5188 return; 5189 } 5190 5191 /* 5192 * All accesses related to the event are within the same 5193 * non-preemptible section in perf_pending_task(). The RCU 5194 * grace period before the event is freed will make sure all 5195 * those accesses are complete by then. 5196 */ 5197 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5198 } 5199 5200 static void _free_event(struct perf_event *event) 5201 { 5202 irq_work_sync(&event->pending_irq); 5203 perf_pending_task_sync(event); 5204 5205 unaccount_event(event); 5206 5207 security_perf_event_free(event); 5208 5209 if (event->rb) { 5210 /* 5211 * Can happen when we close an event with re-directed output. 5212 * 5213 * Since we have a 0 refcount, perf_mmap_close() will skip 5214 * over us; possibly making our ring_buffer_put() the last. 5215 */ 5216 mutex_lock(&event->mmap_mutex); 5217 ring_buffer_attach(event, NULL); 5218 mutex_unlock(&event->mmap_mutex); 5219 } 5220 5221 if (is_cgroup_event(event)) 5222 perf_detach_cgroup(event); 5223 5224 if (!event->parent) { 5225 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5226 put_callchain_buffers(); 5227 } 5228 5229 perf_event_free_bpf_prog(event); 5230 perf_addr_filters_splice(event, NULL); 5231 kfree(event->addr_filter_ranges); 5232 5233 if (event->destroy) 5234 event->destroy(event); 5235 5236 /* 5237 * Must be after ->destroy(), due to uprobe_perf_close() using 5238 * hw.target. 5239 */ 5240 if (event->hw.target) 5241 put_task_struct(event->hw.target); 5242 5243 if (event->pmu_ctx) 5244 put_pmu_ctx(event->pmu_ctx); 5245 5246 /* 5247 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5248 * all task references must be cleaned up. 5249 */ 5250 if (event->ctx) 5251 put_ctx(event->ctx); 5252 5253 exclusive_event_destroy(event); 5254 module_put(event->pmu->module); 5255 5256 call_rcu(&event->rcu_head, free_event_rcu); 5257 } 5258 5259 /* 5260 * Used to free events which have a known refcount of 1, such as in error paths 5261 * where the event isn't exposed yet and inherited events. 5262 */ 5263 static void free_event(struct perf_event *event) 5264 { 5265 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5266 "unexpected event refcount: %ld; ptr=%p\n", 5267 atomic_long_read(&event->refcount), event)) { 5268 /* leak to avoid use-after-free */ 5269 return; 5270 } 5271 5272 _free_event(event); 5273 } 5274 5275 /* 5276 * Remove user event from the owner task. 5277 */ 5278 static void perf_remove_from_owner(struct perf_event *event) 5279 { 5280 struct task_struct *owner; 5281 5282 rcu_read_lock(); 5283 /* 5284 * Matches the smp_store_release() in perf_event_exit_task(). If we 5285 * observe !owner it means the list deletion is complete and we can 5286 * indeed free this event, otherwise we need to serialize on 5287 * owner->perf_event_mutex. 5288 */ 5289 owner = READ_ONCE(event->owner); 5290 if (owner) { 5291 /* 5292 * Since delayed_put_task_struct() also drops the last 5293 * task reference we can safely take a new reference 5294 * while holding the rcu_read_lock(). 5295 */ 5296 get_task_struct(owner); 5297 } 5298 rcu_read_unlock(); 5299 5300 if (owner) { 5301 /* 5302 * If we're here through perf_event_exit_task() we're already 5303 * holding ctx->mutex which would be an inversion wrt. the 5304 * normal lock order. 5305 * 5306 * However we can safely take this lock because its the child 5307 * ctx->mutex. 5308 */ 5309 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5310 5311 /* 5312 * We have to re-check the event->owner field, if it is cleared 5313 * we raced with perf_event_exit_task(), acquiring the mutex 5314 * ensured they're done, and we can proceed with freeing the 5315 * event. 5316 */ 5317 if (event->owner) { 5318 list_del_init(&event->owner_entry); 5319 smp_store_release(&event->owner, NULL); 5320 } 5321 mutex_unlock(&owner->perf_event_mutex); 5322 put_task_struct(owner); 5323 } 5324 } 5325 5326 static void put_event(struct perf_event *event) 5327 { 5328 if (!atomic_long_dec_and_test(&event->refcount)) 5329 return; 5330 5331 _free_event(event); 5332 } 5333 5334 /* 5335 * Kill an event dead; while event:refcount will preserve the event 5336 * object, it will not preserve its functionality. Once the last 'user' 5337 * gives up the object, we'll destroy the thing. 5338 */ 5339 int perf_event_release_kernel(struct perf_event *event) 5340 { 5341 struct perf_event_context *ctx = event->ctx; 5342 struct perf_event *child, *tmp; 5343 LIST_HEAD(free_list); 5344 5345 /* 5346 * If we got here through err_alloc: free_event(event); we will not 5347 * have attached to a context yet. 5348 */ 5349 if (!ctx) { 5350 WARN_ON_ONCE(event->attach_state & 5351 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5352 goto no_ctx; 5353 } 5354 5355 if (!is_kernel_event(event)) 5356 perf_remove_from_owner(event); 5357 5358 ctx = perf_event_ctx_lock(event); 5359 WARN_ON_ONCE(ctx->parent_ctx); 5360 5361 /* 5362 * Mark this event as STATE_DEAD, there is no external reference to it 5363 * anymore. 5364 * 5365 * Anybody acquiring event->child_mutex after the below loop _must_ 5366 * also see this, most importantly inherit_event() which will avoid 5367 * placing more children on the list. 5368 * 5369 * Thus this guarantees that we will in fact observe and kill _ALL_ 5370 * child events. 5371 */ 5372 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5373 5374 perf_event_ctx_unlock(event, ctx); 5375 5376 again: 5377 mutex_lock(&event->child_mutex); 5378 list_for_each_entry(child, &event->child_list, child_list) { 5379 void *var = NULL; 5380 5381 /* 5382 * Cannot change, child events are not migrated, see the 5383 * comment with perf_event_ctx_lock_nested(). 5384 */ 5385 ctx = READ_ONCE(child->ctx); 5386 /* 5387 * Since child_mutex nests inside ctx::mutex, we must jump 5388 * through hoops. We start by grabbing a reference on the ctx. 5389 * 5390 * Since the event cannot get freed while we hold the 5391 * child_mutex, the context must also exist and have a !0 5392 * reference count. 5393 */ 5394 get_ctx(ctx); 5395 5396 /* 5397 * Now that we have a ctx ref, we can drop child_mutex, and 5398 * acquire ctx::mutex without fear of it going away. Then we 5399 * can re-acquire child_mutex. 5400 */ 5401 mutex_unlock(&event->child_mutex); 5402 mutex_lock(&ctx->mutex); 5403 mutex_lock(&event->child_mutex); 5404 5405 /* 5406 * Now that we hold ctx::mutex and child_mutex, revalidate our 5407 * state, if child is still the first entry, it didn't get freed 5408 * and we can continue doing so. 5409 */ 5410 tmp = list_first_entry_or_null(&event->child_list, 5411 struct perf_event, child_list); 5412 if (tmp == child) { 5413 perf_remove_from_context(child, DETACH_GROUP); 5414 list_move(&child->child_list, &free_list); 5415 /* 5416 * This matches the refcount bump in inherit_event(); 5417 * this can't be the last reference. 5418 */ 5419 put_event(event); 5420 } else { 5421 var = &ctx->refcount; 5422 } 5423 5424 mutex_unlock(&event->child_mutex); 5425 mutex_unlock(&ctx->mutex); 5426 put_ctx(ctx); 5427 5428 if (var) { 5429 /* 5430 * If perf_event_free_task() has deleted all events from the 5431 * ctx while the child_mutex got released above, make sure to 5432 * notify about the preceding put_ctx(). 5433 */ 5434 smp_mb(); /* pairs with wait_var_event() */ 5435 wake_up_var(var); 5436 } 5437 goto again; 5438 } 5439 mutex_unlock(&event->child_mutex); 5440 5441 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5442 void *var = &child->ctx->refcount; 5443 5444 list_del(&child->child_list); 5445 free_event(child); 5446 5447 /* 5448 * Wake any perf_event_free_task() waiting for this event to be 5449 * freed. 5450 */ 5451 smp_mb(); /* pairs with wait_var_event() */ 5452 wake_up_var(var); 5453 } 5454 5455 no_ctx: 5456 put_event(event); /* Must be the 'last' reference */ 5457 return 0; 5458 } 5459 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5460 5461 /* 5462 * Called when the last reference to the file is gone. 5463 */ 5464 static int perf_release(struct inode *inode, struct file *file) 5465 { 5466 perf_event_release_kernel(file->private_data); 5467 return 0; 5468 } 5469 5470 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5471 { 5472 struct perf_event *child; 5473 u64 total = 0; 5474 5475 *enabled = 0; 5476 *running = 0; 5477 5478 mutex_lock(&event->child_mutex); 5479 5480 (void)perf_event_read(event, false); 5481 total += perf_event_count(event); 5482 5483 *enabled += event->total_time_enabled + 5484 atomic64_read(&event->child_total_time_enabled); 5485 *running += event->total_time_running + 5486 atomic64_read(&event->child_total_time_running); 5487 5488 list_for_each_entry(child, &event->child_list, child_list) { 5489 (void)perf_event_read(child, false); 5490 total += perf_event_count(child); 5491 *enabled += child->total_time_enabled; 5492 *running += child->total_time_running; 5493 } 5494 mutex_unlock(&event->child_mutex); 5495 5496 return total; 5497 } 5498 5499 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5500 { 5501 struct perf_event_context *ctx; 5502 u64 count; 5503 5504 ctx = perf_event_ctx_lock(event); 5505 count = __perf_event_read_value(event, enabled, running); 5506 perf_event_ctx_unlock(event, ctx); 5507 5508 return count; 5509 } 5510 EXPORT_SYMBOL_GPL(perf_event_read_value); 5511 5512 static int __perf_read_group_add(struct perf_event *leader, 5513 u64 read_format, u64 *values) 5514 { 5515 struct perf_event_context *ctx = leader->ctx; 5516 struct perf_event *sub, *parent; 5517 unsigned long flags; 5518 int n = 1; /* skip @nr */ 5519 int ret; 5520 5521 ret = perf_event_read(leader, true); 5522 if (ret) 5523 return ret; 5524 5525 raw_spin_lock_irqsave(&ctx->lock, flags); 5526 /* 5527 * Verify the grouping between the parent and child (inherited) 5528 * events is still in tact. 5529 * 5530 * Specifically: 5531 * - leader->ctx->lock pins leader->sibling_list 5532 * - parent->child_mutex pins parent->child_list 5533 * - parent->ctx->mutex pins parent->sibling_list 5534 * 5535 * Because parent->ctx != leader->ctx (and child_list nests inside 5536 * ctx->mutex), group destruction is not atomic between children, also 5537 * see perf_event_release_kernel(). Additionally, parent can grow the 5538 * group. 5539 * 5540 * Therefore it is possible to have parent and child groups in a 5541 * different configuration and summing over such a beast makes no sense 5542 * what so ever. 5543 * 5544 * Reject this. 5545 */ 5546 parent = leader->parent; 5547 if (parent && 5548 (parent->group_generation != leader->group_generation || 5549 parent->nr_siblings != leader->nr_siblings)) { 5550 ret = -ECHILD; 5551 goto unlock; 5552 } 5553 5554 /* 5555 * Since we co-schedule groups, {enabled,running} times of siblings 5556 * will be identical to those of the leader, so we only publish one 5557 * set. 5558 */ 5559 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5560 values[n++] += leader->total_time_enabled + 5561 atomic64_read(&leader->child_total_time_enabled); 5562 } 5563 5564 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5565 values[n++] += leader->total_time_running + 5566 atomic64_read(&leader->child_total_time_running); 5567 } 5568 5569 /* 5570 * Write {count,id} tuples for every sibling. 5571 */ 5572 values[n++] += perf_event_count(leader); 5573 if (read_format & PERF_FORMAT_ID) 5574 values[n++] = primary_event_id(leader); 5575 if (read_format & PERF_FORMAT_LOST) 5576 values[n++] = atomic64_read(&leader->lost_samples); 5577 5578 for_each_sibling_event(sub, leader) { 5579 values[n++] += perf_event_count(sub); 5580 if (read_format & PERF_FORMAT_ID) 5581 values[n++] = primary_event_id(sub); 5582 if (read_format & PERF_FORMAT_LOST) 5583 values[n++] = atomic64_read(&sub->lost_samples); 5584 } 5585 5586 unlock: 5587 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5588 return ret; 5589 } 5590 5591 static int perf_read_group(struct perf_event *event, 5592 u64 read_format, char __user *buf) 5593 { 5594 struct perf_event *leader = event->group_leader, *child; 5595 struct perf_event_context *ctx = leader->ctx; 5596 int ret; 5597 u64 *values; 5598 5599 lockdep_assert_held(&ctx->mutex); 5600 5601 values = kzalloc(event->read_size, GFP_KERNEL); 5602 if (!values) 5603 return -ENOMEM; 5604 5605 values[0] = 1 + leader->nr_siblings; 5606 5607 mutex_lock(&leader->child_mutex); 5608 5609 ret = __perf_read_group_add(leader, read_format, values); 5610 if (ret) 5611 goto unlock; 5612 5613 list_for_each_entry(child, &leader->child_list, child_list) { 5614 ret = __perf_read_group_add(child, read_format, values); 5615 if (ret) 5616 goto unlock; 5617 } 5618 5619 mutex_unlock(&leader->child_mutex); 5620 5621 ret = event->read_size; 5622 if (copy_to_user(buf, values, event->read_size)) 5623 ret = -EFAULT; 5624 goto out; 5625 5626 unlock: 5627 mutex_unlock(&leader->child_mutex); 5628 out: 5629 kfree(values); 5630 return ret; 5631 } 5632 5633 static int perf_read_one(struct perf_event *event, 5634 u64 read_format, char __user *buf) 5635 { 5636 u64 enabled, running; 5637 u64 values[5]; 5638 int n = 0; 5639 5640 values[n++] = __perf_event_read_value(event, &enabled, &running); 5641 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5642 values[n++] = enabled; 5643 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5644 values[n++] = running; 5645 if (read_format & PERF_FORMAT_ID) 5646 values[n++] = primary_event_id(event); 5647 if (read_format & PERF_FORMAT_LOST) 5648 values[n++] = atomic64_read(&event->lost_samples); 5649 5650 if (copy_to_user(buf, values, n * sizeof(u64))) 5651 return -EFAULT; 5652 5653 return n * sizeof(u64); 5654 } 5655 5656 static bool is_event_hup(struct perf_event *event) 5657 { 5658 bool no_children; 5659 5660 if (event->state > PERF_EVENT_STATE_EXIT) 5661 return false; 5662 5663 mutex_lock(&event->child_mutex); 5664 no_children = list_empty(&event->child_list); 5665 mutex_unlock(&event->child_mutex); 5666 return no_children; 5667 } 5668 5669 /* 5670 * Read the performance event - simple non blocking version for now 5671 */ 5672 static ssize_t 5673 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5674 { 5675 u64 read_format = event->attr.read_format; 5676 int ret; 5677 5678 /* 5679 * Return end-of-file for a read on an event that is in 5680 * error state (i.e. because it was pinned but it couldn't be 5681 * scheduled on to the CPU at some point). 5682 */ 5683 if (event->state == PERF_EVENT_STATE_ERROR) 5684 return 0; 5685 5686 if (count < event->read_size) 5687 return -ENOSPC; 5688 5689 WARN_ON_ONCE(event->ctx->parent_ctx); 5690 if (read_format & PERF_FORMAT_GROUP) 5691 ret = perf_read_group(event, read_format, buf); 5692 else 5693 ret = perf_read_one(event, read_format, buf); 5694 5695 return ret; 5696 } 5697 5698 static ssize_t 5699 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5700 { 5701 struct perf_event *event = file->private_data; 5702 struct perf_event_context *ctx; 5703 int ret; 5704 5705 ret = security_perf_event_read(event); 5706 if (ret) 5707 return ret; 5708 5709 ctx = perf_event_ctx_lock(event); 5710 ret = __perf_read(event, buf, count); 5711 perf_event_ctx_unlock(event, ctx); 5712 5713 return ret; 5714 } 5715 5716 static __poll_t perf_poll(struct file *file, poll_table *wait) 5717 { 5718 struct perf_event *event = file->private_data; 5719 struct perf_buffer *rb; 5720 __poll_t events = EPOLLHUP; 5721 5722 poll_wait(file, &event->waitq, wait); 5723 5724 if (is_event_hup(event)) 5725 return events; 5726 5727 /* 5728 * Pin the event->rb by taking event->mmap_mutex; otherwise 5729 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5730 */ 5731 mutex_lock(&event->mmap_mutex); 5732 rb = event->rb; 5733 if (rb) 5734 events = atomic_xchg(&rb->poll, 0); 5735 mutex_unlock(&event->mmap_mutex); 5736 return events; 5737 } 5738 5739 static void _perf_event_reset(struct perf_event *event) 5740 { 5741 (void)perf_event_read(event, false); 5742 local64_set(&event->count, 0); 5743 perf_event_update_userpage(event); 5744 } 5745 5746 /* Assume it's not an event with inherit set. */ 5747 u64 perf_event_pause(struct perf_event *event, bool reset) 5748 { 5749 struct perf_event_context *ctx; 5750 u64 count; 5751 5752 ctx = perf_event_ctx_lock(event); 5753 WARN_ON_ONCE(event->attr.inherit); 5754 _perf_event_disable(event); 5755 count = local64_read(&event->count); 5756 if (reset) 5757 local64_set(&event->count, 0); 5758 perf_event_ctx_unlock(event, ctx); 5759 5760 return count; 5761 } 5762 EXPORT_SYMBOL_GPL(perf_event_pause); 5763 5764 /* 5765 * Holding the top-level event's child_mutex means that any 5766 * descendant process that has inherited this event will block 5767 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5768 * task existence requirements of perf_event_enable/disable. 5769 */ 5770 static void perf_event_for_each_child(struct perf_event *event, 5771 void (*func)(struct perf_event *)) 5772 { 5773 struct perf_event *child; 5774 5775 WARN_ON_ONCE(event->ctx->parent_ctx); 5776 5777 mutex_lock(&event->child_mutex); 5778 func(event); 5779 list_for_each_entry(child, &event->child_list, child_list) 5780 func(child); 5781 mutex_unlock(&event->child_mutex); 5782 } 5783 5784 static void perf_event_for_each(struct perf_event *event, 5785 void (*func)(struct perf_event *)) 5786 { 5787 struct perf_event_context *ctx = event->ctx; 5788 struct perf_event *sibling; 5789 5790 lockdep_assert_held(&ctx->mutex); 5791 5792 event = event->group_leader; 5793 5794 perf_event_for_each_child(event, func); 5795 for_each_sibling_event(sibling, event) 5796 perf_event_for_each_child(sibling, func); 5797 } 5798 5799 static void __perf_event_period(struct perf_event *event, 5800 struct perf_cpu_context *cpuctx, 5801 struct perf_event_context *ctx, 5802 void *info) 5803 { 5804 u64 value = *((u64 *)info); 5805 bool active; 5806 5807 if (event->attr.freq) { 5808 event->attr.sample_freq = value; 5809 } else { 5810 event->attr.sample_period = value; 5811 event->hw.sample_period = value; 5812 } 5813 5814 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5815 if (active) { 5816 perf_pmu_disable(event->pmu); 5817 /* 5818 * We could be throttled; unthrottle now to avoid the tick 5819 * trying to unthrottle while we already re-started the event. 5820 */ 5821 if (event->hw.interrupts == MAX_INTERRUPTS) { 5822 event->hw.interrupts = 0; 5823 perf_log_throttle(event, 1); 5824 } 5825 event->pmu->stop(event, PERF_EF_UPDATE); 5826 } 5827 5828 local64_set(&event->hw.period_left, 0); 5829 5830 if (active) { 5831 event->pmu->start(event, PERF_EF_RELOAD); 5832 perf_pmu_enable(event->pmu); 5833 } 5834 } 5835 5836 static int perf_event_check_period(struct perf_event *event, u64 value) 5837 { 5838 return event->pmu->check_period(event, value); 5839 } 5840 5841 static int _perf_event_period(struct perf_event *event, u64 value) 5842 { 5843 if (!is_sampling_event(event)) 5844 return -EINVAL; 5845 5846 if (!value) 5847 return -EINVAL; 5848 5849 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5850 return -EINVAL; 5851 5852 if (perf_event_check_period(event, value)) 5853 return -EINVAL; 5854 5855 if (!event->attr.freq && (value & (1ULL << 63))) 5856 return -EINVAL; 5857 5858 event_function_call(event, __perf_event_period, &value); 5859 5860 return 0; 5861 } 5862 5863 int perf_event_period(struct perf_event *event, u64 value) 5864 { 5865 struct perf_event_context *ctx; 5866 int ret; 5867 5868 ctx = perf_event_ctx_lock(event); 5869 ret = _perf_event_period(event, value); 5870 perf_event_ctx_unlock(event, ctx); 5871 5872 return ret; 5873 } 5874 EXPORT_SYMBOL_GPL(perf_event_period); 5875 5876 static const struct file_operations perf_fops; 5877 5878 static inline int perf_fget_light(int fd, struct fd *p) 5879 { 5880 struct fd f = fdget(fd); 5881 if (!f.file) 5882 return -EBADF; 5883 5884 if (f.file->f_op != &perf_fops) { 5885 fdput(f); 5886 return -EBADF; 5887 } 5888 *p = f; 5889 return 0; 5890 } 5891 5892 static int perf_event_set_output(struct perf_event *event, 5893 struct perf_event *output_event); 5894 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5895 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5896 struct perf_event_attr *attr); 5897 5898 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5899 { 5900 void (*func)(struct perf_event *); 5901 u32 flags = arg; 5902 5903 switch (cmd) { 5904 case PERF_EVENT_IOC_ENABLE: 5905 func = _perf_event_enable; 5906 break; 5907 case PERF_EVENT_IOC_DISABLE: 5908 func = _perf_event_disable; 5909 break; 5910 case PERF_EVENT_IOC_RESET: 5911 func = _perf_event_reset; 5912 break; 5913 5914 case PERF_EVENT_IOC_REFRESH: 5915 return _perf_event_refresh(event, arg); 5916 5917 case PERF_EVENT_IOC_PERIOD: 5918 { 5919 u64 value; 5920 5921 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5922 return -EFAULT; 5923 5924 return _perf_event_period(event, value); 5925 } 5926 case PERF_EVENT_IOC_ID: 5927 { 5928 u64 id = primary_event_id(event); 5929 5930 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5931 return -EFAULT; 5932 return 0; 5933 } 5934 5935 case PERF_EVENT_IOC_SET_OUTPUT: 5936 { 5937 int ret; 5938 if (arg != -1) { 5939 struct perf_event *output_event; 5940 struct fd output; 5941 ret = perf_fget_light(arg, &output); 5942 if (ret) 5943 return ret; 5944 output_event = output.file->private_data; 5945 ret = perf_event_set_output(event, output_event); 5946 fdput(output); 5947 } else { 5948 ret = perf_event_set_output(event, NULL); 5949 } 5950 return ret; 5951 } 5952 5953 case PERF_EVENT_IOC_SET_FILTER: 5954 return perf_event_set_filter(event, (void __user *)arg); 5955 5956 case PERF_EVENT_IOC_SET_BPF: 5957 { 5958 struct bpf_prog *prog; 5959 int err; 5960 5961 prog = bpf_prog_get(arg); 5962 if (IS_ERR(prog)) 5963 return PTR_ERR(prog); 5964 5965 err = perf_event_set_bpf_prog(event, prog, 0); 5966 if (err) { 5967 bpf_prog_put(prog); 5968 return err; 5969 } 5970 5971 return 0; 5972 } 5973 5974 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5975 struct perf_buffer *rb; 5976 5977 rcu_read_lock(); 5978 rb = rcu_dereference(event->rb); 5979 if (!rb || !rb->nr_pages) { 5980 rcu_read_unlock(); 5981 return -EINVAL; 5982 } 5983 rb_toggle_paused(rb, !!arg); 5984 rcu_read_unlock(); 5985 return 0; 5986 } 5987 5988 case PERF_EVENT_IOC_QUERY_BPF: 5989 return perf_event_query_prog_array(event, (void __user *)arg); 5990 5991 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5992 struct perf_event_attr new_attr; 5993 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5994 &new_attr); 5995 5996 if (err) 5997 return err; 5998 5999 return perf_event_modify_attr(event, &new_attr); 6000 } 6001 default: 6002 return -ENOTTY; 6003 } 6004 6005 if (flags & PERF_IOC_FLAG_GROUP) 6006 perf_event_for_each(event, func); 6007 else 6008 perf_event_for_each_child(event, func); 6009 6010 return 0; 6011 } 6012 6013 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6014 { 6015 struct perf_event *event = file->private_data; 6016 struct perf_event_context *ctx; 6017 long ret; 6018 6019 /* Treat ioctl like writes as it is likely a mutating operation. */ 6020 ret = security_perf_event_write(event); 6021 if (ret) 6022 return ret; 6023 6024 ctx = perf_event_ctx_lock(event); 6025 ret = _perf_ioctl(event, cmd, arg); 6026 perf_event_ctx_unlock(event, ctx); 6027 6028 return ret; 6029 } 6030 6031 #ifdef CONFIG_COMPAT 6032 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6033 unsigned long arg) 6034 { 6035 switch (_IOC_NR(cmd)) { 6036 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6037 case _IOC_NR(PERF_EVENT_IOC_ID): 6038 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6039 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6040 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6041 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6042 cmd &= ~IOCSIZE_MASK; 6043 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6044 } 6045 break; 6046 } 6047 return perf_ioctl(file, cmd, arg); 6048 } 6049 #else 6050 # define perf_compat_ioctl NULL 6051 #endif 6052 6053 int perf_event_task_enable(void) 6054 { 6055 struct perf_event_context *ctx; 6056 struct perf_event *event; 6057 6058 mutex_lock(¤t->perf_event_mutex); 6059 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6060 ctx = perf_event_ctx_lock(event); 6061 perf_event_for_each_child(event, _perf_event_enable); 6062 perf_event_ctx_unlock(event, ctx); 6063 } 6064 mutex_unlock(¤t->perf_event_mutex); 6065 6066 return 0; 6067 } 6068 6069 int perf_event_task_disable(void) 6070 { 6071 struct perf_event_context *ctx; 6072 struct perf_event *event; 6073 6074 mutex_lock(¤t->perf_event_mutex); 6075 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6076 ctx = perf_event_ctx_lock(event); 6077 perf_event_for_each_child(event, _perf_event_disable); 6078 perf_event_ctx_unlock(event, ctx); 6079 } 6080 mutex_unlock(¤t->perf_event_mutex); 6081 6082 return 0; 6083 } 6084 6085 static int perf_event_index(struct perf_event *event) 6086 { 6087 if (event->hw.state & PERF_HES_STOPPED) 6088 return 0; 6089 6090 if (event->state != PERF_EVENT_STATE_ACTIVE) 6091 return 0; 6092 6093 return event->pmu->event_idx(event); 6094 } 6095 6096 static void perf_event_init_userpage(struct perf_event *event) 6097 { 6098 struct perf_event_mmap_page *userpg; 6099 struct perf_buffer *rb; 6100 6101 rcu_read_lock(); 6102 rb = rcu_dereference(event->rb); 6103 if (!rb) 6104 goto unlock; 6105 6106 userpg = rb->user_page; 6107 6108 /* Allow new userspace to detect that bit 0 is deprecated */ 6109 userpg->cap_bit0_is_deprecated = 1; 6110 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6111 userpg->data_offset = PAGE_SIZE; 6112 userpg->data_size = perf_data_size(rb); 6113 6114 unlock: 6115 rcu_read_unlock(); 6116 } 6117 6118 void __weak arch_perf_update_userpage( 6119 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6120 { 6121 } 6122 6123 /* 6124 * Callers need to ensure there can be no nesting of this function, otherwise 6125 * the seqlock logic goes bad. We can not serialize this because the arch 6126 * code calls this from NMI context. 6127 */ 6128 void perf_event_update_userpage(struct perf_event *event) 6129 { 6130 struct perf_event_mmap_page *userpg; 6131 struct perf_buffer *rb; 6132 u64 enabled, running, now; 6133 6134 rcu_read_lock(); 6135 rb = rcu_dereference(event->rb); 6136 if (!rb) 6137 goto unlock; 6138 6139 /* 6140 * compute total_time_enabled, total_time_running 6141 * based on snapshot values taken when the event 6142 * was last scheduled in. 6143 * 6144 * we cannot simply called update_context_time() 6145 * because of locking issue as we can be called in 6146 * NMI context 6147 */ 6148 calc_timer_values(event, &now, &enabled, &running); 6149 6150 userpg = rb->user_page; 6151 /* 6152 * Disable preemption to guarantee consistent time stamps are stored to 6153 * the user page. 6154 */ 6155 preempt_disable(); 6156 ++userpg->lock; 6157 barrier(); 6158 userpg->index = perf_event_index(event); 6159 userpg->offset = perf_event_count(event); 6160 if (userpg->index) 6161 userpg->offset -= local64_read(&event->hw.prev_count); 6162 6163 userpg->time_enabled = enabled + 6164 atomic64_read(&event->child_total_time_enabled); 6165 6166 userpg->time_running = running + 6167 atomic64_read(&event->child_total_time_running); 6168 6169 arch_perf_update_userpage(event, userpg, now); 6170 6171 barrier(); 6172 ++userpg->lock; 6173 preempt_enable(); 6174 unlock: 6175 rcu_read_unlock(); 6176 } 6177 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6178 6179 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6180 { 6181 struct perf_event *event = vmf->vma->vm_file->private_data; 6182 struct perf_buffer *rb; 6183 vm_fault_t ret = VM_FAULT_SIGBUS; 6184 6185 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6186 if (vmf->pgoff == 0) 6187 ret = 0; 6188 return ret; 6189 } 6190 6191 rcu_read_lock(); 6192 rb = rcu_dereference(event->rb); 6193 if (!rb) 6194 goto unlock; 6195 6196 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6197 goto unlock; 6198 6199 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6200 if (!vmf->page) 6201 goto unlock; 6202 6203 get_page(vmf->page); 6204 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6205 vmf->page->index = vmf->pgoff; 6206 6207 ret = 0; 6208 unlock: 6209 rcu_read_unlock(); 6210 6211 return ret; 6212 } 6213 6214 static void ring_buffer_attach(struct perf_event *event, 6215 struct perf_buffer *rb) 6216 { 6217 struct perf_buffer *old_rb = NULL; 6218 unsigned long flags; 6219 6220 WARN_ON_ONCE(event->parent); 6221 6222 if (event->rb) { 6223 /* 6224 * Should be impossible, we set this when removing 6225 * event->rb_entry and wait/clear when adding event->rb_entry. 6226 */ 6227 WARN_ON_ONCE(event->rcu_pending); 6228 6229 old_rb = event->rb; 6230 spin_lock_irqsave(&old_rb->event_lock, flags); 6231 list_del_rcu(&event->rb_entry); 6232 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6233 6234 event->rcu_batches = get_state_synchronize_rcu(); 6235 event->rcu_pending = 1; 6236 } 6237 6238 if (rb) { 6239 if (event->rcu_pending) { 6240 cond_synchronize_rcu(event->rcu_batches); 6241 event->rcu_pending = 0; 6242 } 6243 6244 spin_lock_irqsave(&rb->event_lock, flags); 6245 list_add_rcu(&event->rb_entry, &rb->event_list); 6246 spin_unlock_irqrestore(&rb->event_lock, flags); 6247 } 6248 6249 /* 6250 * Avoid racing with perf_mmap_close(AUX): stop the event 6251 * before swizzling the event::rb pointer; if it's getting 6252 * unmapped, its aux_mmap_count will be 0 and it won't 6253 * restart. See the comment in __perf_pmu_output_stop(). 6254 * 6255 * Data will inevitably be lost when set_output is done in 6256 * mid-air, but then again, whoever does it like this is 6257 * not in for the data anyway. 6258 */ 6259 if (has_aux(event)) 6260 perf_event_stop(event, 0); 6261 6262 rcu_assign_pointer(event->rb, rb); 6263 6264 if (old_rb) { 6265 ring_buffer_put(old_rb); 6266 /* 6267 * Since we detached before setting the new rb, so that we 6268 * could attach the new rb, we could have missed a wakeup. 6269 * Provide it now. 6270 */ 6271 wake_up_all(&event->waitq); 6272 } 6273 } 6274 6275 static void ring_buffer_wakeup(struct perf_event *event) 6276 { 6277 struct perf_buffer *rb; 6278 6279 if (event->parent) 6280 event = event->parent; 6281 6282 rcu_read_lock(); 6283 rb = rcu_dereference(event->rb); 6284 if (rb) { 6285 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6286 wake_up_all(&event->waitq); 6287 } 6288 rcu_read_unlock(); 6289 } 6290 6291 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6292 { 6293 struct perf_buffer *rb; 6294 6295 if (event->parent) 6296 event = event->parent; 6297 6298 rcu_read_lock(); 6299 rb = rcu_dereference(event->rb); 6300 if (rb) { 6301 if (!refcount_inc_not_zero(&rb->refcount)) 6302 rb = NULL; 6303 } 6304 rcu_read_unlock(); 6305 6306 return rb; 6307 } 6308 6309 void ring_buffer_put(struct perf_buffer *rb) 6310 { 6311 if (!refcount_dec_and_test(&rb->refcount)) 6312 return; 6313 6314 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6315 6316 call_rcu(&rb->rcu_head, rb_free_rcu); 6317 } 6318 6319 static void perf_mmap_open(struct vm_area_struct *vma) 6320 { 6321 struct perf_event *event = vma->vm_file->private_data; 6322 6323 atomic_inc(&event->mmap_count); 6324 atomic_inc(&event->rb->mmap_count); 6325 6326 if (vma->vm_pgoff) 6327 atomic_inc(&event->rb->aux_mmap_count); 6328 6329 if (event->pmu->event_mapped) 6330 event->pmu->event_mapped(event, vma->vm_mm); 6331 } 6332 6333 static void perf_pmu_output_stop(struct perf_event *event); 6334 6335 /* 6336 * A buffer can be mmap()ed multiple times; either directly through the same 6337 * event, or through other events by use of perf_event_set_output(). 6338 * 6339 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6340 * the buffer here, where we still have a VM context. This means we need 6341 * to detach all events redirecting to us. 6342 */ 6343 static void perf_mmap_close(struct vm_area_struct *vma) 6344 { 6345 struct perf_event *event = vma->vm_file->private_data; 6346 struct perf_buffer *rb = ring_buffer_get(event); 6347 struct user_struct *mmap_user = rb->mmap_user; 6348 int mmap_locked = rb->mmap_locked; 6349 unsigned long size = perf_data_size(rb); 6350 bool detach_rest = false; 6351 6352 if (event->pmu->event_unmapped) 6353 event->pmu->event_unmapped(event, vma->vm_mm); 6354 6355 /* 6356 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6357 * to avoid complications. 6358 */ 6359 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6360 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6361 /* 6362 * Stop all AUX events that are writing to this buffer, 6363 * so that we can free its AUX pages and corresponding PMU 6364 * data. Note that after rb::aux_mmap_count dropped to zero, 6365 * they won't start any more (see perf_aux_output_begin()). 6366 */ 6367 perf_pmu_output_stop(event); 6368 6369 /* now it's safe to free the pages */ 6370 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6371 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6372 6373 /* this has to be the last one */ 6374 rb_free_aux(rb); 6375 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6376 6377 mutex_unlock(&rb->aux_mutex); 6378 } 6379 6380 if (atomic_dec_and_test(&rb->mmap_count)) 6381 detach_rest = true; 6382 6383 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6384 goto out_put; 6385 6386 ring_buffer_attach(event, NULL); 6387 mutex_unlock(&event->mmap_mutex); 6388 6389 /* If there's still other mmap()s of this buffer, we're done. */ 6390 if (!detach_rest) 6391 goto out_put; 6392 6393 /* 6394 * No other mmap()s, detach from all other events that might redirect 6395 * into the now unreachable buffer. Somewhat complicated by the 6396 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6397 */ 6398 again: 6399 rcu_read_lock(); 6400 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6401 if (!atomic_long_inc_not_zero(&event->refcount)) { 6402 /* 6403 * This event is en-route to free_event() which will 6404 * detach it and remove it from the list. 6405 */ 6406 continue; 6407 } 6408 rcu_read_unlock(); 6409 6410 mutex_lock(&event->mmap_mutex); 6411 /* 6412 * Check we didn't race with perf_event_set_output() which can 6413 * swizzle the rb from under us while we were waiting to 6414 * acquire mmap_mutex. 6415 * 6416 * If we find a different rb; ignore this event, a next 6417 * iteration will no longer find it on the list. We have to 6418 * still restart the iteration to make sure we're not now 6419 * iterating the wrong list. 6420 */ 6421 if (event->rb == rb) 6422 ring_buffer_attach(event, NULL); 6423 6424 mutex_unlock(&event->mmap_mutex); 6425 put_event(event); 6426 6427 /* 6428 * Restart the iteration; either we're on the wrong list or 6429 * destroyed its integrity by doing a deletion. 6430 */ 6431 goto again; 6432 } 6433 rcu_read_unlock(); 6434 6435 /* 6436 * It could be there's still a few 0-ref events on the list; they'll 6437 * get cleaned up by free_event() -- they'll also still have their 6438 * ref on the rb and will free it whenever they are done with it. 6439 * 6440 * Aside from that, this buffer is 'fully' detached and unmapped, 6441 * undo the VM accounting. 6442 */ 6443 6444 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6445 &mmap_user->locked_vm); 6446 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6447 free_uid(mmap_user); 6448 6449 out_put: 6450 ring_buffer_put(rb); /* could be last */ 6451 } 6452 6453 static const struct vm_operations_struct perf_mmap_vmops = { 6454 .open = perf_mmap_open, 6455 .close = perf_mmap_close, /* non mergeable */ 6456 .fault = perf_mmap_fault, 6457 .page_mkwrite = perf_mmap_fault, 6458 }; 6459 6460 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6461 { 6462 struct perf_event *event = file->private_data; 6463 unsigned long user_locked, user_lock_limit; 6464 struct user_struct *user = current_user(); 6465 struct mutex *aux_mutex = NULL; 6466 struct perf_buffer *rb = NULL; 6467 unsigned long locked, lock_limit; 6468 unsigned long vma_size; 6469 unsigned long nr_pages; 6470 long user_extra = 0, extra = 0; 6471 int ret = 0, flags = 0; 6472 6473 /* 6474 * Don't allow mmap() of inherited per-task counters. This would 6475 * create a performance issue due to all children writing to the 6476 * same rb. 6477 */ 6478 if (event->cpu == -1 && event->attr.inherit) 6479 return -EINVAL; 6480 6481 if (!(vma->vm_flags & VM_SHARED)) 6482 return -EINVAL; 6483 6484 ret = security_perf_event_read(event); 6485 if (ret) 6486 return ret; 6487 6488 vma_size = vma->vm_end - vma->vm_start; 6489 6490 if (vma->vm_pgoff == 0) { 6491 nr_pages = (vma_size / PAGE_SIZE) - 1; 6492 } else { 6493 /* 6494 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6495 * mapped, all subsequent mappings should have the same size 6496 * and offset. Must be above the normal perf buffer. 6497 */ 6498 u64 aux_offset, aux_size; 6499 6500 if (!event->rb) 6501 return -EINVAL; 6502 6503 nr_pages = vma_size / PAGE_SIZE; 6504 if (nr_pages > INT_MAX) 6505 return -ENOMEM; 6506 6507 mutex_lock(&event->mmap_mutex); 6508 ret = -EINVAL; 6509 6510 rb = event->rb; 6511 if (!rb) 6512 goto aux_unlock; 6513 6514 aux_mutex = &rb->aux_mutex; 6515 mutex_lock(aux_mutex); 6516 6517 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6518 aux_size = READ_ONCE(rb->user_page->aux_size); 6519 6520 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6521 goto aux_unlock; 6522 6523 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6524 goto aux_unlock; 6525 6526 /* already mapped with a different offset */ 6527 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6528 goto aux_unlock; 6529 6530 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6531 goto aux_unlock; 6532 6533 /* already mapped with a different size */ 6534 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6535 goto aux_unlock; 6536 6537 if (!is_power_of_2(nr_pages)) 6538 goto aux_unlock; 6539 6540 if (!atomic_inc_not_zero(&rb->mmap_count)) 6541 goto aux_unlock; 6542 6543 if (rb_has_aux(rb)) { 6544 atomic_inc(&rb->aux_mmap_count); 6545 ret = 0; 6546 goto unlock; 6547 } 6548 6549 atomic_set(&rb->aux_mmap_count, 1); 6550 user_extra = nr_pages; 6551 6552 goto accounting; 6553 } 6554 6555 /* 6556 * If we have rb pages ensure they're a power-of-two number, so we 6557 * can do bitmasks instead of modulo. 6558 */ 6559 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6560 return -EINVAL; 6561 6562 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6563 return -EINVAL; 6564 6565 WARN_ON_ONCE(event->ctx->parent_ctx); 6566 again: 6567 mutex_lock(&event->mmap_mutex); 6568 if (event->rb) { 6569 if (data_page_nr(event->rb) != nr_pages) { 6570 ret = -EINVAL; 6571 goto unlock; 6572 } 6573 6574 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6575 /* 6576 * Raced against perf_mmap_close(); remove the 6577 * event and try again. 6578 */ 6579 ring_buffer_attach(event, NULL); 6580 mutex_unlock(&event->mmap_mutex); 6581 goto again; 6582 } 6583 6584 goto unlock; 6585 } 6586 6587 user_extra = nr_pages + 1; 6588 6589 accounting: 6590 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6591 6592 /* 6593 * Increase the limit linearly with more CPUs: 6594 */ 6595 user_lock_limit *= num_online_cpus(); 6596 6597 user_locked = atomic_long_read(&user->locked_vm); 6598 6599 /* 6600 * sysctl_perf_event_mlock may have changed, so that 6601 * user->locked_vm > user_lock_limit 6602 */ 6603 if (user_locked > user_lock_limit) 6604 user_locked = user_lock_limit; 6605 user_locked += user_extra; 6606 6607 if (user_locked > user_lock_limit) { 6608 /* 6609 * charge locked_vm until it hits user_lock_limit; 6610 * charge the rest from pinned_vm 6611 */ 6612 extra = user_locked - user_lock_limit; 6613 user_extra -= extra; 6614 } 6615 6616 lock_limit = rlimit(RLIMIT_MEMLOCK); 6617 lock_limit >>= PAGE_SHIFT; 6618 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6619 6620 if ((locked > lock_limit) && perf_is_paranoid() && 6621 !capable(CAP_IPC_LOCK)) { 6622 ret = -EPERM; 6623 goto unlock; 6624 } 6625 6626 WARN_ON(!rb && event->rb); 6627 6628 if (vma->vm_flags & VM_WRITE) 6629 flags |= RING_BUFFER_WRITABLE; 6630 6631 if (!rb) { 6632 rb = rb_alloc(nr_pages, 6633 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6634 event->cpu, flags); 6635 6636 if (!rb) { 6637 ret = -ENOMEM; 6638 goto unlock; 6639 } 6640 6641 atomic_set(&rb->mmap_count, 1); 6642 rb->mmap_user = get_current_user(); 6643 rb->mmap_locked = extra; 6644 6645 ring_buffer_attach(event, rb); 6646 6647 perf_event_update_time(event); 6648 perf_event_init_userpage(event); 6649 perf_event_update_userpage(event); 6650 } else { 6651 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6652 event->attr.aux_watermark, flags); 6653 if (!ret) 6654 rb->aux_mmap_locked = extra; 6655 } 6656 6657 unlock: 6658 if (!ret) { 6659 atomic_long_add(user_extra, &user->locked_vm); 6660 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6661 6662 atomic_inc(&event->mmap_count); 6663 } else if (rb) { 6664 atomic_dec(&rb->mmap_count); 6665 } 6666 aux_unlock: 6667 if (aux_mutex) 6668 mutex_unlock(aux_mutex); 6669 mutex_unlock(&event->mmap_mutex); 6670 6671 /* 6672 * Since pinned accounting is per vm we cannot allow fork() to copy our 6673 * vma. 6674 */ 6675 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6676 vma->vm_ops = &perf_mmap_vmops; 6677 6678 if (event->pmu->event_mapped) 6679 event->pmu->event_mapped(event, vma->vm_mm); 6680 6681 return ret; 6682 } 6683 6684 static int perf_fasync(int fd, struct file *filp, int on) 6685 { 6686 struct inode *inode = file_inode(filp); 6687 struct perf_event *event = filp->private_data; 6688 int retval; 6689 6690 inode_lock(inode); 6691 retval = fasync_helper(fd, filp, on, &event->fasync); 6692 inode_unlock(inode); 6693 6694 if (retval < 0) 6695 return retval; 6696 6697 return 0; 6698 } 6699 6700 static const struct file_operations perf_fops = { 6701 .llseek = no_llseek, 6702 .release = perf_release, 6703 .read = perf_read, 6704 .poll = perf_poll, 6705 .unlocked_ioctl = perf_ioctl, 6706 .compat_ioctl = perf_compat_ioctl, 6707 .mmap = perf_mmap, 6708 .fasync = perf_fasync, 6709 }; 6710 6711 /* 6712 * Perf event wakeup 6713 * 6714 * If there's data, ensure we set the poll() state and publish everything 6715 * to user-space before waking everybody up. 6716 */ 6717 6718 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6719 { 6720 /* only the parent has fasync state */ 6721 if (event->parent) 6722 event = event->parent; 6723 return &event->fasync; 6724 } 6725 6726 void perf_event_wakeup(struct perf_event *event) 6727 { 6728 ring_buffer_wakeup(event); 6729 6730 if (event->pending_kill) { 6731 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6732 event->pending_kill = 0; 6733 } 6734 } 6735 6736 static void perf_sigtrap(struct perf_event *event) 6737 { 6738 /* 6739 * We'd expect this to only occur if the irq_work is delayed and either 6740 * ctx->task or current has changed in the meantime. This can be the 6741 * case on architectures that do not implement arch_irq_work_raise(). 6742 */ 6743 if (WARN_ON_ONCE(event->ctx->task != current)) 6744 return; 6745 6746 /* 6747 * Both perf_pending_task() and perf_pending_irq() can race with the 6748 * task exiting. 6749 */ 6750 if (current->flags & PF_EXITING) 6751 return; 6752 6753 send_sig_perf((void __user *)event->pending_addr, 6754 event->orig_type, event->attr.sig_data); 6755 } 6756 6757 /* 6758 * Deliver the pending work in-event-context or follow the context. 6759 */ 6760 static void __perf_pending_irq(struct perf_event *event) 6761 { 6762 int cpu = READ_ONCE(event->oncpu); 6763 6764 /* 6765 * If the event isn't running; we done. event_sched_out() will have 6766 * taken care of things. 6767 */ 6768 if (cpu < 0) 6769 return; 6770 6771 /* 6772 * Yay, we hit home and are in the context of the event. 6773 */ 6774 if (cpu == smp_processor_id()) { 6775 if (event->pending_sigtrap) { 6776 event->pending_sigtrap = 0; 6777 perf_sigtrap(event); 6778 local_dec(&event->ctx->nr_pending); 6779 } 6780 if (event->pending_disable) { 6781 event->pending_disable = 0; 6782 perf_event_disable_local(event); 6783 } 6784 return; 6785 } 6786 6787 /* 6788 * CPU-A CPU-B 6789 * 6790 * perf_event_disable_inatomic() 6791 * @pending_disable = CPU-A; 6792 * irq_work_queue(); 6793 * 6794 * sched-out 6795 * @pending_disable = -1; 6796 * 6797 * sched-in 6798 * perf_event_disable_inatomic() 6799 * @pending_disable = CPU-B; 6800 * irq_work_queue(); // FAILS 6801 * 6802 * irq_work_run() 6803 * perf_pending_irq() 6804 * 6805 * But the event runs on CPU-B and wants disabling there. 6806 */ 6807 irq_work_queue_on(&event->pending_irq, cpu); 6808 } 6809 6810 static void perf_pending_irq(struct irq_work *entry) 6811 { 6812 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6813 int rctx; 6814 6815 /* 6816 * If we 'fail' here, that's OK, it means recursion is already disabled 6817 * and we won't recurse 'further'. 6818 */ 6819 rctx = perf_swevent_get_recursion_context(); 6820 6821 /* 6822 * The wakeup isn't bound to the context of the event -- it can happen 6823 * irrespective of where the event is. 6824 */ 6825 if (event->pending_wakeup) { 6826 event->pending_wakeup = 0; 6827 perf_event_wakeup(event); 6828 } 6829 6830 __perf_pending_irq(event); 6831 6832 if (rctx >= 0) 6833 perf_swevent_put_recursion_context(rctx); 6834 } 6835 6836 static void perf_pending_task(struct callback_head *head) 6837 { 6838 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6839 int rctx; 6840 6841 /* 6842 * All accesses to the event must belong to the same implicit RCU read-side 6843 * critical section as the ->pending_work reset. See comment in 6844 * perf_pending_task_sync(). 6845 */ 6846 preempt_disable_notrace(); 6847 /* 6848 * If we 'fail' here, that's OK, it means recursion is already disabled 6849 * and we won't recurse 'further'. 6850 */ 6851 rctx = perf_swevent_get_recursion_context(); 6852 6853 if (event->pending_work) { 6854 event->pending_work = 0; 6855 perf_sigtrap(event); 6856 local_dec(&event->ctx->nr_pending); 6857 rcuwait_wake_up(&event->pending_work_wait); 6858 } 6859 6860 if (rctx >= 0) 6861 perf_swevent_put_recursion_context(rctx); 6862 preempt_enable_notrace(); 6863 } 6864 6865 #ifdef CONFIG_GUEST_PERF_EVENTS 6866 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6867 6868 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6869 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6870 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6871 6872 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6873 { 6874 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6875 return; 6876 6877 rcu_assign_pointer(perf_guest_cbs, cbs); 6878 static_call_update(__perf_guest_state, cbs->state); 6879 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6880 6881 /* Implementing ->handle_intel_pt_intr is optional. */ 6882 if (cbs->handle_intel_pt_intr) 6883 static_call_update(__perf_guest_handle_intel_pt_intr, 6884 cbs->handle_intel_pt_intr); 6885 } 6886 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6887 6888 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6889 { 6890 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6891 return; 6892 6893 rcu_assign_pointer(perf_guest_cbs, NULL); 6894 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6895 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6896 static_call_update(__perf_guest_handle_intel_pt_intr, 6897 (void *)&__static_call_return0); 6898 synchronize_rcu(); 6899 } 6900 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6901 #endif 6902 6903 static void 6904 perf_output_sample_regs(struct perf_output_handle *handle, 6905 struct pt_regs *regs, u64 mask) 6906 { 6907 int bit; 6908 DECLARE_BITMAP(_mask, 64); 6909 6910 bitmap_from_u64(_mask, mask); 6911 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6912 u64 val; 6913 6914 val = perf_reg_value(regs, bit); 6915 perf_output_put(handle, val); 6916 } 6917 } 6918 6919 static void perf_sample_regs_user(struct perf_regs *regs_user, 6920 struct pt_regs *regs) 6921 { 6922 if (user_mode(regs)) { 6923 regs_user->abi = perf_reg_abi(current); 6924 regs_user->regs = regs; 6925 } else if (!(current->flags & PF_KTHREAD)) { 6926 perf_get_regs_user(regs_user, regs); 6927 } else { 6928 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6929 regs_user->regs = NULL; 6930 } 6931 } 6932 6933 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6934 struct pt_regs *regs) 6935 { 6936 regs_intr->regs = regs; 6937 regs_intr->abi = perf_reg_abi(current); 6938 } 6939 6940 6941 /* 6942 * Get remaining task size from user stack pointer. 6943 * 6944 * It'd be better to take stack vma map and limit this more 6945 * precisely, but there's no way to get it safely under interrupt, 6946 * so using TASK_SIZE as limit. 6947 */ 6948 static u64 perf_ustack_task_size(struct pt_regs *regs) 6949 { 6950 unsigned long addr = perf_user_stack_pointer(regs); 6951 6952 if (!addr || addr >= TASK_SIZE) 6953 return 0; 6954 6955 return TASK_SIZE - addr; 6956 } 6957 6958 static u16 6959 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6960 struct pt_regs *regs) 6961 { 6962 u64 task_size; 6963 6964 /* No regs, no stack pointer, no dump. */ 6965 if (!regs) 6966 return 0; 6967 6968 /* 6969 * Check if we fit in with the requested stack size into the: 6970 * - TASK_SIZE 6971 * If we don't, we limit the size to the TASK_SIZE. 6972 * 6973 * - remaining sample size 6974 * If we don't, we customize the stack size to 6975 * fit in to the remaining sample size. 6976 */ 6977 6978 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6979 stack_size = min(stack_size, (u16) task_size); 6980 6981 /* Current header size plus static size and dynamic size. */ 6982 header_size += 2 * sizeof(u64); 6983 6984 /* Do we fit in with the current stack dump size? */ 6985 if ((u16) (header_size + stack_size) < header_size) { 6986 /* 6987 * If we overflow the maximum size for the sample, 6988 * we customize the stack dump size to fit in. 6989 */ 6990 stack_size = USHRT_MAX - header_size - sizeof(u64); 6991 stack_size = round_up(stack_size, sizeof(u64)); 6992 } 6993 6994 return stack_size; 6995 } 6996 6997 static void 6998 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6999 struct pt_regs *regs) 7000 { 7001 /* Case of a kernel thread, nothing to dump */ 7002 if (!regs) { 7003 u64 size = 0; 7004 perf_output_put(handle, size); 7005 } else { 7006 unsigned long sp; 7007 unsigned int rem; 7008 u64 dyn_size; 7009 7010 /* 7011 * We dump: 7012 * static size 7013 * - the size requested by user or the best one we can fit 7014 * in to the sample max size 7015 * data 7016 * - user stack dump data 7017 * dynamic size 7018 * - the actual dumped size 7019 */ 7020 7021 /* Static size. */ 7022 perf_output_put(handle, dump_size); 7023 7024 /* Data. */ 7025 sp = perf_user_stack_pointer(regs); 7026 rem = __output_copy_user(handle, (void *) sp, dump_size); 7027 dyn_size = dump_size - rem; 7028 7029 perf_output_skip(handle, rem); 7030 7031 /* Dynamic size. */ 7032 perf_output_put(handle, dyn_size); 7033 } 7034 } 7035 7036 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7037 struct perf_sample_data *data, 7038 size_t size) 7039 { 7040 struct perf_event *sampler = event->aux_event; 7041 struct perf_buffer *rb; 7042 7043 data->aux_size = 0; 7044 7045 if (!sampler) 7046 goto out; 7047 7048 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7049 goto out; 7050 7051 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7052 goto out; 7053 7054 rb = ring_buffer_get(sampler); 7055 if (!rb) 7056 goto out; 7057 7058 /* 7059 * If this is an NMI hit inside sampling code, don't take 7060 * the sample. See also perf_aux_sample_output(). 7061 */ 7062 if (READ_ONCE(rb->aux_in_sampling)) { 7063 data->aux_size = 0; 7064 } else { 7065 size = min_t(size_t, size, perf_aux_size(rb)); 7066 data->aux_size = ALIGN(size, sizeof(u64)); 7067 } 7068 ring_buffer_put(rb); 7069 7070 out: 7071 return data->aux_size; 7072 } 7073 7074 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7075 struct perf_event *event, 7076 struct perf_output_handle *handle, 7077 unsigned long size) 7078 { 7079 unsigned long flags; 7080 long ret; 7081 7082 /* 7083 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7084 * paths. If we start calling them in NMI context, they may race with 7085 * the IRQ ones, that is, for example, re-starting an event that's just 7086 * been stopped, which is why we're using a separate callback that 7087 * doesn't change the event state. 7088 * 7089 * IRQs need to be disabled to prevent IPIs from racing with us. 7090 */ 7091 local_irq_save(flags); 7092 /* 7093 * Guard against NMI hits inside the critical section; 7094 * see also perf_prepare_sample_aux(). 7095 */ 7096 WRITE_ONCE(rb->aux_in_sampling, 1); 7097 barrier(); 7098 7099 ret = event->pmu->snapshot_aux(event, handle, size); 7100 7101 barrier(); 7102 WRITE_ONCE(rb->aux_in_sampling, 0); 7103 local_irq_restore(flags); 7104 7105 return ret; 7106 } 7107 7108 static void perf_aux_sample_output(struct perf_event *event, 7109 struct perf_output_handle *handle, 7110 struct perf_sample_data *data) 7111 { 7112 struct perf_event *sampler = event->aux_event; 7113 struct perf_buffer *rb; 7114 unsigned long pad; 7115 long size; 7116 7117 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7118 return; 7119 7120 rb = ring_buffer_get(sampler); 7121 if (!rb) 7122 return; 7123 7124 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7125 7126 /* 7127 * An error here means that perf_output_copy() failed (returned a 7128 * non-zero surplus that it didn't copy), which in its current 7129 * enlightened implementation is not possible. If that changes, we'd 7130 * like to know. 7131 */ 7132 if (WARN_ON_ONCE(size < 0)) 7133 goto out_put; 7134 7135 /* 7136 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7137 * perf_prepare_sample_aux(), so should not be more than that. 7138 */ 7139 pad = data->aux_size - size; 7140 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7141 pad = 8; 7142 7143 if (pad) { 7144 u64 zero = 0; 7145 perf_output_copy(handle, &zero, pad); 7146 } 7147 7148 out_put: 7149 ring_buffer_put(rb); 7150 } 7151 7152 /* 7153 * A set of common sample data types saved even for non-sample records 7154 * when event->attr.sample_id_all is set. 7155 */ 7156 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7157 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7158 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7159 7160 static void __perf_event_header__init_id(struct perf_sample_data *data, 7161 struct perf_event *event, 7162 u64 sample_type) 7163 { 7164 data->type = event->attr.sample_type; 7165 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7166 7167 if (sample_type & PERF_SAMPLE_TID) { 7168 /* namespace issues */ 7169 data->tid_entry.pid = perf_event_pid(event, current); 7170 data->tid_entry.tid = perf_event_tid(event, current); 7171 } 7172 7173 if (sample_type & PERF_SAMPLE_TIME) 7174 data->time = perf_event_clock(event); 7175 7176 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7177 data->id = primary_event_id(event); 7178 7179 if (sample_type & PERF_SAMPLE_STREAM_ID) 7180 data->stream_id = event->id; 7181 7182 if (sample_type & PERF_SAMPLE_CPU) { 7183 data->cpu_entry.cpu = raw_smp_processor_id(); 7184 data->cpu_entry.reserved = 0; 7185 } 7186 } 7187 7188 void perf_event_header__init_id(struct perf_event_header *header, 7189 struct perf_sample_data *data, 7190 struct perf_event *event) 7191 { 7192 if (event->attr.sample_id_all) { 7193 header->size += event->id_header_size; 7194 __perf_event_header__init_id(data, event, event->attr.sample_type); 7195 } 7196 } 7197 7198 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7199 struct perf_sample_data *data) 7200 { 7201 u64 sample_type = data->type; 7202 7203 if (sample_type & PERF_SAMPLE_TID) 7204 perf_output_put(handle, data->tid_entry); 7205 7206 if (sample_type & PERF_SAMPLE_TIME) 7207 perf_output_put(handle, data->time); 7208 7209 if (sample_type & PERF_SAMPLE_ID) 7210 perf_output_put(handle, data->id); 7211 7212 if (sample_type & PERF_SAMPLE_STREAM_ID) 7213 perf_output_put(handle, data->stream_id); 7214 7215 if (sample_type & PERF_SAMPLE_CPU) 7216 perf_output_put(handle, data->cpu_entry); 7217 7218 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7219 perf_output_put(handle, data->id); 7220 } 7221 7222 void perf_event__output_id_sample(struct perf_event *event, 7223 struct perf_output_handle *handle, 7224 struct perf_sample_data *sample) 7225 { 7226 if (event->attr.sample_id_all) 7227 __perf_event__output_id_sample(handle, sample); 7228 } 7229 7230 static void perf_output_read_one(struct perf_output_handle *handle, 7231 struct perf_event *event, 7232 u64 enabled, u64 running) 7233 { 7234 u64 read_format = event->attr.read_format; 7235 u64 values[5]; 7236 int n = 0; 7237 7238 values[n++] = perf_event_count(event); 7239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7240 values[n++] = enabled + 7241 atomic64_read(&event->child_total_time_enabled); 7242 } 7243 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7244 values[n++] = running + 7245 atomic64_read(&event->child_total_time_running); 7246 } 7247 if (read_format & PERF_FORMAT_ID) 7248 values[n++] = primary_event_id(event); 7249 if (read_format & PERF_FORMAT_LOST) 7250 values[n++] = atomic64_read(&event->lost_samples); 7251 7252 __output_copy(handle, values, n * sizeof(u64)); 7253 } 7254 7255 static void perf_output_read_group(struct perf_output_handle *handle, 7256 struct perf_event *event, 7257 u64 enabled, u64 running) 7258 { 7259 struct perf_event *leader = event->group_leader, *sub; 7260 u64 read_format = event->attr.read_format; 7261 unsigned long flags; 7262 u64 values[6]; 7263 int n = 0; 7264 7265 /* 7266 * Disabling interrupts avoids all counter scheduling 7267 * (context switches, timer based rotation and IPIs). 7268 */ 7269 local_irq_save(flags); 7270 7271 values[n++] = 1 + leader->nr_siblings; 7272 7273 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7274 values[n++] = enabled; 7275 7276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7277 values[n++] = running; 7278 7279 if ((leader != event) && 7280 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7281 leader->pmu->read(leader); 7282 7283 values[n++] = perf_event_count(leader); 7284 if (read_format & PERF_FORMAT_ID) 7285 values[n++] = primary_event_id(leader); 7286 if (read_format & PERF_FORMAT_LOST) 7287 values[n++] = atomic64_read(&leader->lost_samples); 7288 7289 __output_copy(handle, values, n * sizeof(u64)); 7290 7291 for_each_sibling_event(sub, leader) { 7292 n = 0; 7293 7294 if ((sub != event) && 7295 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7296 sub->pmu->read(sub); 7297 7298 values[n++] = perf_event_count(sub); 7299 if (read_format & PERF_FORMAT_ID) 7300 values[n++] = primary_event_id(sub); 7301 if (read_format & PERF_FORMAT_LOST) 7302 values[n++] = atomic64_read(&sub->lost_samples); 7303 7304 __output_copy(handle, values, n * sizeof(u64)); 7305 } 7306 7307 local_irq_restore(flags); 7308 } 7309 7310 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7311 PERF_FORMAT_TOTAL_TIME_RUNNING) 7312 7313 /* 7314 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7315 * 7316 * The problem is that its both hard and excessively expensive to iterate the 7317 * child list, not to mention that its impossible to IPI the children running 7318 * on another CPU, from interrupt/NMI context. 7319 */ 7320 static void perf_output_read(struct perf_output_handle *handle, 7321 struct perf_event *event) 7322 { 7323 u64 enabled = 0, running = 0, now; 7324 u64 read_format = event->attr.read_format; 7325 7326 /* 7327 * compute total_time_enabled, total_time_running 7328 * based on snapshot values taken when the event 7329 * was last scheduled in. 7330 * 7331 * we cannot simply called update_context_time() 7332 * because of locking issue as we are called in 7333 * NMI context 7334 */ 7335 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7336 calc_timer_values(event, &now, &enabled, &running); 7337 7338 if (event->attr.read_format & PERF_FORMAT_GROUP) 7339 perf_output_read_group(handle, event, enabled, running); 7340 else 7341 perf_output_read_one(handle, event, enabled, running); 7342 } 7343 7344 void perf_output_sample(struct perf_output_handle *handle, 7345 struct perf_event_header *header, 7346 struct perf_sample_data *data, 7347 struct perf_event *event) 7348 { 7349 u64 sample_type = data->type; 7350 7351 perf_output_put(handle, *header); 7352 7353 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7354 perf_output_put(handle, data->id); 7355 7356 if (sample_type & PERF_SAMPLE_IP) 7357 perf_output_put(handle, data->ip); 7358 7359 if (sample_type & PERF_SAMPLE_TID) 7360 perf_output_put(handle, data->tid_entry); 7361 7362 if (sample_type & PERF_SAMPLE_TIME) 7363 perf_output_put(handle, data->time); 7364 7365 if (sample_type & PERF_SAMPLE_ADDR) 7366 perf_output_put(handle, data->addr); 7367 7368 if (sample_type & PERF_SAMPLE_ID) 7369 perf_output_put(handle, data->id); 7370 7371 if (sample_type & PERF_SAMPLE_STREAM_ID) 7372 perf_output_put(handle, data->stream_id); 7373 7374 if (sample_type & PERF_SAMPLE_CPU) 7375 perf_output_put(handle, data->cpu_entry); 7376 7377 if (sample_type & PERF_SAMPLE_PERIOD) 7378 perf_output_put(handle, data->period); 7379 7380 if (sample_type & PERF_SAMPLE_READ) 7381 perf_output_read(handle, event); 7382 7383 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7384 int size = 1; 7385 7386 size += data->callchain->nr; 7387 size *= sizeof(u64); 7388 __output_copy(handle, data->callchain, size); 7389 } 7390 7391 if (sample_type & PERF_SAMPLE_RAW) { 7392 struct perf_raw_record *raw = data->raw; 7393 7394 if (raw) { 7395 struct perf_raw_frag *frag = &raw->frag; 7396 7397 perf_output_put(handle, raw->size); 7398 do { 7399 if (frag->copy) { 7400 __output_custom(handle, frag->copy, 7401 frag->data, frag->size); 7402 } else { 7403 __output_copy(handle, frag->data, 7404 frag->size); 7405 } 7406 if (perf_raw_frag_last(frag)) 7407 break; 7408 frag = frag->next; 7409 } while (1); 7410 if (frag->pad) 7411 __output_skip(handle, NULL, frag->pad); 7412 } else { 7413 struct { 7414 u32 size; 7415 u32 data; 7416 } raw = { 7417 .size = sizeof(u32), 7418 .data = 0, 7419 }; 7420 perf_output_put(handle, raw); 7421 } 7422 } 7423 7424 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7425 if (data->br_stack) { 7426 size_t size; 7427 7428 size = data->br_stack->nr 7429 * sizeof(struct perf_branch_entry); 7430 7431 perf_output_put(handle, data->br_stack->nr); 7432 if (branch_sample_hw_index(event)) 7433 perf_output_put(handle, data->br_stack->hw_idx); 7434 perf_output_copy(handle, data->br_stack->entries, size); 7435 } else { 7436 /* 7437 * we always store at least the value of nr 7438 */ 7439 u64 nr = 0; 7440 perf_output_put(handle, nr); 7441 } 7442 } 7443 7444 if (sample_type & PERF_SAMPLE_REGS_USER) { 7445 u64 abi = data->regs_user.abi; 7446 7447 /* 7448 * If there are no regs to dump, notice it through 7449 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7450 */ 7451 perf_output_put(handle, abi); 7452 7453 if (abi) { 7454 u64 mask = event->attr.sample_regs_user; 7455 perf_output_sample_regs(handle, 7456 data->regs_user.regs, 7457 mask); 7458 } 7459 } 7460 7461 if (sample_type & PERF_SAMPLE_STACK_USER) { 7462 perf_output_sample_ustack(handle, 7463 data->stack_user_size, 7464 data->regs_user.regs); 7465 } 7466 7467 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7468 perf_output_put(handle, data->weight.full); 7469 7470 if (sample_type & PERF_SAMPLE_DATA_SRC) 7471 perf_output_put(handle, data->data_src.val); 7472 7473 if (sample_type & PERF_SAMPLE_TRANSACTION) 7474 perf_output_put(handle, data->txn); 7475 7476 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7477 u64 abi = data->regs_intr.abi; 7478 /* 7479 * If there are no regs to dump, notice it through 7480 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7481 */ 7482 perf_output_put(handle, abi); 7483 7484 if (abi) { 7485 u64 mask = event->attr.sample_regs_intr; 7486 7487 perf_output_sample_regs(handle, 7488 data->regs_intr.regs, 7489 mask); 7490 } 7491 } 7492 7493 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7494 perf_output_put(handle, data->phys_addr); 7495 7496 if (sample_type & PERF_SAMPLE_CGROUP) 7497 perf_output_put(handle, data->cgroup); 7498 7499 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7500 perf_output_put(handle, data->data_page_size); 7501 7502 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7503 perf_output_put(handle, data->code_page_size); 7504 7505 if (sample_type & PERF_SAMPLE_AUX) { 7506 perf_output_put(handle, data->aux_size); 7507 7508 if (data->aux_size) 7509 perf_aux_sample_output(event, handle, data); 7510 } 7511 7512 if (!event->attr.watermark) { 7513 int wakeup_events = event->attr.wakeup_events; 7514 7515 if (wakeup_events) { 7516 struct perf_buffer *rb = handle->rb; 7517 int events = local_inc_return(&rb->events); 7518 7519 if (events >= wakeup_events) { 7520 local_sub(wakeup_events, &rb->events); 7521 local_inc(&rb->wakeup); 7522 } 7523 } 7524 } 7525 } 7526 7527 static u64 perf_virt_to_phys(u64 virt) 7528 { 7529 u64 phys_addr = 0; 7530 7531 if (!virt) 7532 return 0; 7533 7534 if (virt >= TASK_SIZE) { 7535 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7536 if (virt_addr_valid((void *)(uintptr_t)virt) && 7537 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7538 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7539 } else { 7540 /* 7541 * Walking the pages tables for user address. 7542 * Interrupts are disabled, so it prevents any tear down 7543 * of the page tables. 7544 * Try IRQ-safe get_user_page_fast_only first. 7545 * If failed, leave phys_addr as 0. 7546 */ 7547 if (current->mm != NULL) { 7548 struct page *p; 7549 7550 pagefault_disable(); 7551 if (get_user_page_fast_only(virt, 0, &p)) { 7552 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7553 put_page(p); 7554 } 7555 pagefault_enable(); 7556 } 7557 } 7558 7559 return phys_addr; 7560 } 7561 7562 /* 7563 * Return the pagetable size of a given virtual address. 7564 */ 7565 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7566 { 7567 u64 size = 0; 7568 7569 #ifdef CONFIG_HAVE_FAST_GUP 7570 pgd_t *pgdp, pgd; 7571 p4d_t *p4dp, p4d; 7572 pud_t *pudp, pud; 7573 pmd_t *pmdp, pmd; 7574 pte_t *ptep, pte; 7575 7576 pgdp = pgd_offset(mm, addr); 7577 pgd = READ_ONCE(*pgdp); 7578 if (pgd_none(pgd)) 7579 return 0; 7580 7581 if (pgd_leaf(pgd)) 7582 return pgd_leaf_size(pgd); 7583 7584 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7585 p4d = READ_ONCE(*p4dp); 7586 if (!p4d_present(p4d)) 7587 return 0; 7588 7589 if (p4d_leaf(p4d)) 7590 return p4d_leaf_size(p4d); 7591 7592 pudp = pud_offset_lockless(p4dp, p4d, addr); 7593 pud = READ_ONCE(*pudp); 7594 if (!pud_present(pud)) 7595 return 0; 7596 7597 if (pud_leaf(pud)) 7598 return pud_leaf_size(pud); 7599 7600 pmdp = pmd_offset_lockless(pudp, pud, addr); 7601 again: 7602 pmd = pmdp_get_lockless(pmdp); 7603 if (!pmd_present(pmd)) 7604 return 0; 7605 7606 if (pmd_leaf(pmd)) 7607 return pmd_leaf_size(pmd); 7608 7609 ptep = pte_offset_map(&pmd, addr); 7610 if (!ptep) 7611 goto again; 7612 7613 pte = ptep_get_lockless(ptep); 7614 if (pte_present(pte)) 7615 size = pte_leaf_size(pte); 7616 pte_unmap(ptep); 7617 #endif /* CONFIG_HAVE_FAST_GUP */ 7618 7619 return size; 7620 } 7621 7622 static u64 perf_get_page_size(unsigned long addr) 7623 { 7624 struct mm_struct *mm; 7625 unsigned long flags; 7626 u64 size; 7627 7628 if (!addr) 7629 return 0; 7630 7631 /* 7632 * Software page-table walkers must disable IRQs, 7633 * which prevents any tear down of the page tables. 7634 */ 7635 local_irq_save(flags); 7636 7637 mm = current->mm; 7638 if (!mm) { 7639 /* 7640 * For kernel threads and the like, use init_mm so that 7641 * we can find kernel memory. 7642 */ 7643 mm = &init_mm; 7644 } 7645 7646 size = perf_get_pgtable_size(mm, addr); 7647 7648 local_irq_restore(flags); 7649 7650 return size; 7651 } 7652 7653 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7654 7655 struct perf_callchain_entry * 7656 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7657 { 7658 bool kernel = !event->attr.exclude_callchain_kernel; 7659 bool user = !event->attr.exclude_callchain_user; 7660 /* Disallow cross-task user callchains. */ 7661 bool crosstask = event->ctx->task && event->ctx->task != current; 7662 const u32 max_stack = event->attr.sample_max_stack; 7663 struct perf_callchain_entry *callchain; 7664 7665 if (!kernel && !user) 7666 return &__empty_callchain; 7667 7668 callchain = get_perf_callchain(regs, 0, kernel, user, 7669 max_stack, crosstask, true); 7670 return callchain ?: &__empty_callchain; 7671 } 7672 7673 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7674 { 7675 return d * !!(flags & s); 7676 } 7677 7678 void perf_prepare_sample(struct perf_sample_data *data, 7679 struct perf_event *event, 7680 struct pt_regs *regs) 7681 { 7682 u64 sample_type = event->attr.sample_type; 7683 u64 filtered_sample_type; 7684 7685 /* 7686 * Add the sample flags that are dependent to others. And clear the 7687 * sample flags that have already been done by the PMU driver. 7688 */ 7689 filtered_sample_type = sample_type; 7690 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7691 PERF_SAMPLE_IP); 7692 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7693 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7694 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7695 PERF_SAMPLE_REGS_USER); 7696 filtered_sample_type &= ~data->sample_flags; 7697 7698 if (filtered_sample_type == 0) { 7699 /* Make sure it has the correct data->type for output */ 7700 data->type = event->attr.sample_type; 7701 return; 7702 } 7703 7704 __perf_event_header__init_id(data, event, filtered_sample_type); 7705 7706 if (filtered_sample_type & PERF_SAMPLE_IP) { 7707 data->ip = perf_instruction_pointer(regs); 7708 data->sample_flags |= PERF_SAMPLE_IP; 7709 } 7710 7711 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7712 perf_sample_save_callchain(data, event, regs); 7713 7714 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7715 data->raw = NULL; 7716 data->dyn_size += sizeof(u64); 7717 data->sample_flags |= PERF_SAMPLE_RAW; 7718 } 7719 7720 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7721 data->br_stack = NULL; 7722 data->dyn_size += sizeof(u64); 7723 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7724 } 7725 7726 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7727 perf_sample_regs_user(&data->regs_user, regs); 7728 7729 /* 7730 * It cannot use the filtered_sample_type here as REGS_USER can be set 7731 * by STACK_USER (using __cond_set() above) and we don't want to update 7732 * the dyn_size if it's not requested by users. 7733 */ 7734 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7735 /* regs dump ABI info */ 7736 int size = sizeof(u64); 7737 7738 if (data->regs_user.regs) { 7739 u64 mask = event->attr.sample_regs_user; 7740 size += hweight64(mask) * sizeof(u64); 7741 } 7742 7743 data->dyn_size += size; 7744 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7745 } 7746 7747 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7748 /* 7749 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7750 * processed as the last one or have additional check added 7751 * in case new sample type is added, because we could eat 7752 * up the rest of the sample size. 7753 */ 7754 u16 stack_size = event->attr.sample_stack_user; 7755 u16 header_size = perf_sample_data_size(data, event); 7756 u16 size = sizeof(u64); 7757 7758 stack_size = perf_sample_ustack_size(stack_size, header_size, 7759 data->regs_user.regs); 7760 7761 /* 7762 * If there is something to dump, add space for the dump 7763 * itself and for the field that tells the dynamic size, 7764 * which is how many have been actually dumped. 7765 */ 7766 if (stack_size) 7767 size += sizeof(u64) + stack_size; 7768 7769 data->stack_user_size = stack_size; 7770 data->dyn_size += size; 7771 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7772 } 7773 7774 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7775 data->weight.full = 0; 7776 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7777 } 7778 7779 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7780 data->data_src.val = PERF_MEM_NA; 7781 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7782 } 7783 7784 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7785 data->txn = 0; 7786 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7787 } 7788 7789 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7790 data->addr = 0; 7791 data->sample_flags |= PERF_SAMPLE_ADDR; 7792 } 7793 7794 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7795 /* regs dump ABI info */ 7796 int size = sizeof(u64); 7797 7798 perf_sample_regs_intr(&data->regs_intr, regs); 7799 7800 if (data->regs_intr.regs) { 7801 u64 mask = event->attr.sample_regs_intr; 7802 7803 size += hweight64(mask) * sizeof(u64); 7804 } 7805 7806 data->dyn_size += size; 7807 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7808 } 7809 7810 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7811 data->phys_addr = perf_virt_to_phys(data->addr); 7812 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7813 } 7814 7815 #ifdef CONFIG_CGROUP_PERF 7816 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7817 struct cgroup *cgrp; 7818 7819 /* protected by RCU */ 7820 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7821 data->cgroup = cgroup_id(cgrp); 7822 data->sample_flags |= PERF_SAMPLE_CGROUP; 7823 } 7824 #endif 7825 7826 /* 7827 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7828 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7829 * but the value will not dump to the userspace. 7830 */ 7831 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7832 data->data_page_size = perf_get_page_size(data->addr); 7833 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7834 } 7835 7836 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7837 data->code_page_size = perf_get_page_size(data->ip); 7838 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7839 } 7840 7841 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7842 u64 size; 7843 u16 header_size = perf_sample_data_size(data, event); 7844 7845 header_size += sizeof(u64); /* size */ 7846 7847 /* 7848 * Given the 16bit nature of header::size, an AUX sample can 7849 * easily overflow it, what with all the preceding sample bits. 7850 * Make sure this doesn't happen by using up to U16_MAX bytes 7851 * per sample in total (rounded down to 8 byte boundary). 7852 */ 7853 size = min_t(size_t, U16_MAX - header_size, 7854 event->attr.aux_sample_size); 7855 size = rounddown(size, 8); 7856 size = perf_prepare_sample_aux(event, data, size); 7857 7858 WARN_ON_ONCE(size + header_size > U16_MAX); 7859 data->dyn_size += size + sizeof(u64); /* size above */ 7860 data->sample_flags |= PERF_SAMPLE_AUX; 7861 } 7862 } 7863 7864 void perf_prepare_header(struct perf_event_header *header, 7865 struct perf_sample_data *data, 7866 struct perf_event *event, 7867 struct pt_regs *regs) 7868 { 7869 header->type = PERF_RECORD_SAMPLE; 7870 header->size = perf_sample_data_size(data, event); 7871 header->misc = perf_misc_flags(regs); 7872 7873 /* 7874 * If you're adding more sample types here, you likely need to do 7875 * something about the overflowing header::size, like repurpose the 7876 * lowest 3 bits of size, which should be always zero at the moment. 7877 * This raises a more important question, do we really need 512k sized 7878 * samples and why, so good argumentation is in order for whatever you 7879 * do here next. 7880 */ 7881 WARN_ON_ONCE(header->size & 7); 7882 } 7883 7884 static __always_inline int 7885 __perf_event_output(struct perf_event *event, 7886 struct perf_sample_data *data, 7887 struct pt_regs *regs, 7888 int (*output_begin)(struct perf_output_handle *, 7889 struct perf_sample_data *, 7890 struct perf_event *, 7891 unsigned int)) 7892 { 7893 struct perf_output_handle handle; 7894 struct perf_event_header header; 7895 int err; 7896 7897 /* protect the callchain buffers */ 7898 rcu_read_lock(); 7899 7900 perf_prepare_sample(data, event, regs); 7901 perf_prepare_header(&header, data, event, regs); 7902 7903 err = output_begin(&handle, data, event, header.size); 7904 if (err) 7905 goto exit; 7906 7907 perf_output_sample(&handle, &header, data, event); 7908 7909 perf_output_end(&handle); 7910 7911 exit: 7912 rcu_read_unlock(); 7913 return err; 7914 } 7915 7916 void 7917 perf_event_output_forward(struct perf_event *event, 7918 struct perf_sample_data *data, 7919 struct pt_regs *regs) 7920 { 7921 __perf_event_output(event, data, regs, perf_output_begin_forward); 7922 } 7923 7924 void 7925 perf_event_output_backward(struct perf_event *event, 7926 struct perf_sample_data *data, 7927 struct pt_regs *regs) 7928 { 7929 __perf_event_output(event, data, regs, perf_output_begin_backward); 7930 } 7931 7932 int 7933 perf_event_output(struct perf_event *event, 7934 struct perf_sample_data *data, 7935 struct pt_regs *regs) 7936 { 7937 return __perf_event_output(event, data, regs, perf_output_begin); 7938 } 7939 7940 /* 7941 * read event_id 7942 */ 7943 7944 struct perf_read_event { 7945 struct perf_event_header header; 7946 7947 u32 pid; 7948 u32 tid; 7949 }; 7950 7951 static void 7952 perf_event_read_event(struct perf_event *event, 7953 struct task_struct *task) 7954 { 7955 struct perf_output_handle handle; 7956 struct perf_sample_data sample; 7957 struct perf_read_event read_event = { 7958 .header = { 7959 .type = PERF_RECORD_READ, 7960 .misc = 0, 7961 .size = sizeof(read_event) + event->read_size, 7962 }, 7963 .pid = perf_event_pid(event, task), 7964 .tid = perf_event_tid(event, task), 7965 }; 7966 int ret; 7967 7968 perf_event_header__init_id(&read_event.header, &sample, event); 7969 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7970 if (ret) 7971 return; 7972 7973 perf_output_put(&handle, read_event); 7974 perf_output_read(&handle, event); 7975 perf_event__output_id_sample(event, &handle, &sample); 7976 7977 perf_output_end(&handle); 7978 } 7979 7980 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7981 7982 static void 7983 perf_iterate_ctx(struct perf_event_context *ctx, 7984 perf_iterate_f output, 7985 void *data, bool all) 7986 { 7987 struct perf_event *event; 7988 7989 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7990 if (!all) { 7991 if (event->state < PERF_EVENT_STATE_INACTIVE) 7992 continue; 7993 if (!event_filter_match(event)) 7994 continue; 7995 } 7996 7997 output(event, data); 7998 } 7999 } 8000 8001 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8002 { 8003 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8004 struct perf_event *event; 8005 8006 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8007 /* 8008 * Skip events that are not fully formed yet; ensure that 8009 * if we observe event->ctx, both event and ctx will be 8010 * complete enough. See perf_install_in_context(). 8011 */ 8012 if (!smp_load_acquire(&event->ctx)) 8013 continue; 8014 8015 if (event->state < PERF_EVENT_STATE_INACTIVE) 8016 continue; 8017 if (!event_filter_match(event)) 8018 continue; 8019 output(event, data); 8020 } 8021 } 8022 8023 /* 8024 * Iterate all events that need to receive side-band events. 8025 * 8026 * For new callers; ensure that account_pmu_sb_event() includes 8027 * your event, otherwise it might not get delivered. 8028 */ 8029 static void 8030 perf_iterate_sb(perf_iterate_f output, void *data, 8031 struct perf_event_context *task_ctx) 8032 { 8033 struct perf_event_context *ctx; 8034 8035 rcu_read_lock(); 8036 preempt_disable(); 8037 8038 /* 8039 * If we have task_ctx != NULL we only notify the task context itself. 8040 * The task_ctx is set only for EXIT events before releasing task 8041 * context. 8042 */ 8043 if (task_ctx) { 8044 perf_iterate_ctx(task_ctx, output, data, false); 8045 goto done; 8046 } 8047 8048 perf_iterate_sb_cpu(output, data); 8049 8050 ctx = rcu_dereference(current->perf_event_ctxp); 8051 if (ctx) 8052 perf_iterate_ctx(ctx, output, data, false); 8053 done: 8054 preempt_enable(); 8055 rcu_read_unlock(); 8056 } 8057 8058 /* 8059 * Clear all file-based filters at exec, they'll have to be 8060 * re-instated when/if these objects are mmapped again. 8061 */ 8062 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8063 { 8064 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8065 struct perf_addr_filter *filter; 8066 unsigned int restart = 0, count = 0; 8067 unsigned long flags; 8068 8069 if (!has_addr_filter(event)) 8070 return; 8071 8072 raw_spin_lock_irqsave(&ifh->lock, flags); 8073 list_for_each_entry(filter, &ifh->list, entry) { 8074 if (filter->path.dentry) { 8075 event->addr_filter_ranges[count].start = 0; 8076 event->addr_filter_ranges[count].size = 0; 8077 restart++; 8078 } 8079 8080 count++; 8081 } 8082 8083 if (restart) 8084 event->addr_filters_gen++; 8085 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8086 8087 if (restart) 8088 perf_event_stop(event, 1); 8089 } 8090 8091 void perf_event_exec(void) 8092 { 8093 struct perf_event_context *ctx; 8094 8095 ctx = perf_pin_task_context(current); 8096 if (!ctx) 8097 return; 8098 8099 perf_event_enable_on_exec(ctx); 8100 perf_event_remove_on_exec(ctx); 8101 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8102 8103 perf_unpin_context(ctx); 8104 put_ctx(ctx); 8105 } 8106 8107 struct remote_output { 8108 struct perf_buffer *rb; 8109 int err; 8110 }; 8111 8112 static void __perf_event_output_stop(struct perf_event *event, void *data) 8113 { 8114 struct perf_event *parent = event->parent; 8115 struct remote_output *ro = data; 8116 struct perf_buffer *rb = ro->rb; 8117 struct stop_event_data sd = { 8118 .event = event, 8119 }; 8120 8121 if (!has_aux(event)) 8122 return; 8123 8124 if (!parent) 8125 parent = event; 8126 8127 /* 8128 * In case of inheritance, it will be the parent that links to the 8129 * ring-buffer, but it will be the child that's actually using it. 8130 * 8131 * We are using event::rb to determine if the event should be stopped, 8132 * however this may race with ring_buffer_attach() (through set_output), 8133 * which will make us skip the event that actually needs to be stopped. 8134 * So ring_buffer_attach() has to stop an aux event before re-assigning 8135 * its rb pointer. 8136 */ 8137 if (rcu_dereference(parent->rb) == rb) 8138 ro->err = __perf_event_stop(&sd); 8139 } 8140 8141 static int __perf_pmu_output_stop(void *info) 8142 { 8143 struct perf_event *event = info; 8144 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8145 struct remote_output ro = { 8146 .rb = event->rb, 8147 }; 8148 8149 rcu_read_lock(); 8150 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8151 if (cpuctx->task_ctx) 8152 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8153 &ro, false); 8154 rcu_read_unlock(); 8155 8156 return ro.err; 8157 } 8158 8159 static void perf_pmu_output_stop(struct perf_event *event) 8160 { 8161 struct perf_event *iter; 8162 int err, cpu; 8163 8164 restart: 8165 rcu_read_lock(); 8166 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8167 /* 8168 * For per-CPU events, we need to make sure that neither they 8169 * nor their children are running; for cpu==-1 events it's 8170 * sufficient to stop the event itself if it's active, since 8171 * it can't have children. 8172 */ 8173 cpu = iter->cpu; 8174 if (cpu == -1) 8175 cpu = READ_ONCE(iter->oncpu); 8176 8177 if (cpu == -1) 8178 continue; 8179 8180 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8181 if (err == -EAGAIN) { 8182 rcu_read_unlock(); 8183 goto restart; 8184 } 8185 } 8186 rcu_read_unlock(); 8187 } 8188 8189 /* 8190 * task tracking -- fork/exit 8191 * 8192 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8193 */ 8194 8195 struct perf_task_event { 8196 struct task_struct *task; 8197 struct perf_event_context *task_ctx; 8198 8199 struct { 8200 struct perf_event_header header; 8201 8202 u32 pid; 8203 u32 ppid; 8204 u32 tid; 8205 u32 ptid; 8206 u64 time; 8207 } event_id; 8208 }; 8209 8210 static int perf_event_task_match(struct perf_event *event) 8211 { 8212 return event->attr.comm || event->attr.mmap || 8213 event->attr.mmap2 || event->attr.mmap_data || 8214 event->attr.task; 8215 } 8216 8217 static void perf_event_task_output(struct perf_event *event, 8218 void *data) 8219 { 8220 struct perf_task_event *task_event = data; 8221 struct perf_output_handle handle; 8222 struct perf_sample_data sample; 8223 struct task_struct *task = task_event->task; 8224 int ret, size = task_event->event_id.header.size; 8225 8226 if (!perf_event_task_match(event)) 8227 return; 8228 8229 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8230 8231 ret = perf_output_begin(&handle, &sample, event, 8232 task_event->event_id.header.size); 8233 if (ret) 8234 goto out; 8235 8236 task_event->event_id.pid = perf_event_pid(event, task); 8237 task_event->event_id.tid = perf_event_tid(event, task); 8238 8239 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8240 task_event->event_id.ppid = perf_event_pid(event, 8241 task->real_parent); 8242 task_event->event_id.ptid = perf_event_pid(event, 8243 task->real_parent); 8244 } else { /* PERF_RECORD_FORK */ 8245 task_event->event_id.ppid = perf_event_pid(event, current); 8246 task_event->event_id.ptid = perf_event_tid(event, current); 8247 } 8248 8249 task_event->event_id.time = perf_event_clock(event); 8250 8251 perf_output_put(&handle, task_event->event_id); 8252 8253 perf_event__output_id_sample(event, &handle, &sample); 8254 8255 perf_output_end(&handle); 8256 out: 8257 task_event->event_id.header.size = size; 8258 } 8259 8260 static void perf_event_task(struct task_struct *task, 8261 struct perf_event_context *task_ctx, 8262 int new) 8263 { 8264 struct perf_task_event task_event; 8265 8266 if (!atomic_read(&nr_comm_events) && 8267 !atomic_read(&nr_mmap_events) && 8268 !atomic_read(&nr_task_events)) 8269 return; 8270 8271 task_event = (struct perf_task_event){ 8272 .task = task, 8273 .task_ctx = task_ctx, 8274 .event_id = { 8275 .header = { 8276 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8277 .misc = 0, 8278 .size = sizeof(task_event.event_id), 8279 }, 8280 /* .pid */ 8281 /* .ppid */ 8282 /* .tid */ 8283 /* .ptid */ 8284 /* .time */ 8285 }, 8286 }; 8287 8288 perf_iterate_sb(perf_event_task_output, 8289 &task_event, 8290 task_ctx); 8291 } 8292 8293 void perf_event_fork(struct task_struct *task) 8294 { 8295 perf_event_task(task, NULL, 1); 8296 perf_event_namespaces(task); 8297 } 8298 8299 /* 8300 * comm tracking 8301 */ 8302 8303 struct perf_comm_event { 8304 struct task_struct *task; 8305 char *comm; 8306 int comm_size; 8307 8308 struct { 8309 struct perf_event_header header; 8310 8311 u32 pid; 8312 u32 tid; 8313 } event_id; 8314 }; 8315 8316 static int perf_event_comm_match(struct perf_event *event) 8317 { 8318 return event->attr.comm; 8319 } 8320 8321 static void perf_event_comm_output(struct perf_event *event, 8322 void *data) 8323 { 8324 struct perf_comm_event *comm_event = data; 8325 struct perf_output_handle handle; 8326 struct perf_sample_data sample; 8327 int size = comm_event->event_id.header.size; 8328 int ret; 8329 8330 if (!perf_event_comm_match(event)) 8331 return; 8332 8333 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8334 ret = perf_output_begin(&handle, &sample, event, 8335 comm_event->event_id.header.size); 8336 8337 if (ret) 8338 goto out; 8339 8340 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8341 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8342 8343 perf_output_put(&handle, comm_event->event_id); 8344 __output_copy(&handle, comm_event->comm, 8345 comm_event->comm_size); 8346 8347 perf_event__output_id_sample(event, &handle, &sample); 8348 8349 perf_output_end(&handle); 8350 out: 8351 comm_event->event_id.header.size = size; 8352 } 8353 8354 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8355 { 8356 char comm[TASK_COMM_LEN]; 8357 unsigned int size; 8358 8359 memset(comm, 0, sizeof(comm)); 8360 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8361 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8362 8363 comm_event->comm = comm; 8364 comm_event->comm_size = size; 8365 8366 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8367 8368 perf_iterate_sb(perf_event_comm_output, 8369 comm_event, 8370 NULL); 8371 } 8372 8373 void perf_event_comm(struct task_struct *task, bool exec) 8374 { 8375 struct perf_comm_event comm_event; 8376 8377 if (!atomic_read(&nr_comm_events)) 8378 return; 8379 8380 comm_event = (struct perf_comm_event){ 8381 .task = task, 8382 /* .comm */ 8383 /* .comm_size */ 8384 .event_id = { 8385 .header = { 8386 .type = PERF_RECORD_COMM, 8387 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8388 /* .size */ 8389 }, 8390 /* .pid */ 8391 /* .tid */ 8392 }, 8393 }; 8394 8395 perf_event_comm_event(&comm_event); 8396 } 8397 8398 /* 8399 * namespaces tracking 8400 */ 8401 8402 struct perf_namespaces_event { 8403 struct task_struct *task; 8404 8405 struct { 8406 struct perf_event_header header; 8407 8408 u32 pid; 8409 u32 tid; 8410 u64 nr_namespaces; 8411 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8412 } event_id; 8413 }; 8414 8415 static int perf_event_namespaces_match(struct perf_event *event) 8416 { 8417 return event->attr.namespaces; 8418 } 8419 8420 static void perf_event_namespaces_output(struct perf_event *event, 8421 void *data) 8422 { 8423 struct perf_namespaces_event *namespaces_event = data; 8424 struct perf_output_handle handle; 8425 struct perf_sample_data sample; 8426 u16 header_size = namespaces_event->event_id.header.size; 8427 int ret; 8428 8429 if (!perf_event_namespaces_match(event)) 8430 return; 8431 8432 perf_event_header__init_id(&namespaces_event->event_id.header, 8433 &sample, event); 8434 ret = perf_output_begin(&handle, &sample, event, 8435 namespaces_event->event_id.header.size); 8436 if (ret) 8437 goto out; 8438 8439 namespaces_event->event_id.pid = perf_event_pid(event, 8440 namespaces_event->task); 8441 namespaces_event->event_id.tid = perf_event_tid(event, 8442 namespaces_event->task); 8443 8444 perf_output_put(&handle, namespaces_event->event_id); 8445 8446 perf_event__output_id_sample(event, &handle, &sample); 8447 8448 perf_output_end(&handle); 8449 out: 8450 namespaces_event->event_id.header.size = header_size; 8451 } 8452 8453 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8454 struct task_struct *task, 8455 const struct proc_ns_operations *ns_ops) 8456 { 8457 struct path ns_path; 8458 struct inode *ns_inode; 8459 int error; 8460 8461 error = ns_get_path(&ns_path, task, ns_ops); 8462 if (!error) { 8463 ns_inode = ns_path.dentry->d_inode; 8464 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8465 ns_link_info->ino = ns_inode->i_ino; 8466 path_put(&ns_path); 8467 } 8468 } 8469 8470 void perf_event_namespaces(struct task_struct *task) 8471 { 8472 struct perf_namespaces_event namespaces_event; 8473 struct perf_ns_link_info *ns_link_info; 8474 8475 if (!atomic_read(&nr_namespaces_events)) 8476 return; 8477 8478 namespaces_event = (struct perf_namespaces_event){ 8479 .task = task, 8480 .event_id = { 8481 .header = { 8482 .type = PERF_RECORD_NAMESPACES, 8483 .misc = 0, 8484 .size = sizeof(namespaces_event.event_id), 8485 }, 8486 /* .pid */ 8487 /* .tid */ 8488 .nr_namespaces = NR_NAMESPACES, 8489 /* .link_info[NR_NAMESPACES] */ 8490 }, 8491 }; 8492 8493 ns_link_info = namespaces_event.event_id.link_info; 8494 8495 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8496 task, &mntns_operations); 8497 8498 #ifdef CONFIG_USER_NS 8499 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8500 task, &userns_operations); 8501 #endif 8502 #ifdef CONFIG_NET_NS 8503 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8504 task, &netns_operations); 8505 #endif 8506 #ifdef CONFIG_UTS_NS 8507 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8508 task, &utsns_operations); 8509 #endif 8510 #ifdef CONFIG_IPC_NS 8511 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8512 task, &ipcns_operations); 8513 #endif 8514 #ifdef CONFIG_PID_NS 8515 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8516 task, &pidns_operations); 8517 #endif 8518 #ifdef CONFIG_CGROUPS 8519 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8520 task, &cgroupns_operations); 8521 #endif 8522 8523 perf_iterate_sb(perf_event_namespaces_output, 8524 &namespaces_event, 8525 NULL); 8526 } 8527 8528 /* 8529 * cgroup tracking 8530 */ 8531 #ifdef CONFIG_CGROUP_PERF 8532 8533 struct perf_cgroup_event { 8534 char *path; 8535 int path_size; 8536 struct { 8537 struct perf_event_header header; 8538 u64 id; 8539 char path[]; 8540 } event_id; 8541 }; 8542 8543 static int perf_event_cgroup_match(struct perf_event *event) 8544 { 8545 return event->attr.cgroup; 8546 } 8547 8548 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8549 { 8550 struct perf_cgroup_event *cgroup_event = data; 8551 struct perf_output_handle handle; 8552 struct perf_sample_data sample; 8553 u16 header_size = cgroup_event->event_id.header.size; 8554 int ret; 8555 8556 if (!perf_event_cgroup_match(event)) 8557 return; 8558 8559 perf_event_header__init_id(&cgroup_event->event_id.header, 8560 &sample, event); 8561 ret = perf_output_begin(&handle, &sample, event, 8562 cgroup_event->event_id.header.size); 8563 if (ret) 8564 goto out; 8565 8566 perf_output_put(&handle, cgroup_event->event_id); 8567 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8568 8569 perf_event__output_id_sample(event, &handle, &sample); 8570 8571 perf_output_end(&handle); 8572 out: 8573 cgroup_event->event_id.header.size = header_size; 8574 } 8575 8576 static void perf_event_cgroup(struct cgroup *cgrp) 8577 { 8578 struct perf_cgroup_event cgroup_event; 8579 char path_enomem[16] = "//enomem"; 8580 char *pathname; 8581 size_t size; 8582 8583 if (!atomic_read(&nr_cgroup_events)) 8584 return; 8585 8586 cgroup_event = (struct perf_cgroup_event){ 8587 .event_id = { 8588 .header = { 8589 .type = PERF_RECORD_CGROUP, 8590 .misc = 0, 8591 .size = sizeof(cgroup_event.event_id), 8592 }, 8593 .id = cgroup_id(cgrp), 8594 }, 8595 }; 8596 8597 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8598 if (pathname == NULL) { 8599 cgroup_event.path = path_enomem; 8600 } else { 8601 /* just to be sure to have enough space for alignment */ 8602 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8603 cgroup_event.path = pathname; 8604 } 8605 8606 /* 8607 * Since our buffer works in 8 byte units we need to align our string 8608 * size to a multiple of 8. However, we must guarantee the tail end is 8609 * zero'd out to avoid leaking random bits to userspace. 8610 */ 8611 size = strlen(cgroup_event.path) + 1; 8612 while (!IS_ALIGNED(size, sizeof(u64))) 8613 cgroup_event.path[size++] = '\0'; 8614 8615 cgroup_event.event_id.header.size += size; 8616 cgroup_event.path_size = size; 8617 8618 perf_iterate_sb(perf_event_cgroup_output, 8619 &cgroup_event, 8620 NULL); 8621 8622 kfree(pathname); 8623 } 8624 8625 #endif 8626 8627 /* 8628 * mmap tracking 8629 */ 8630 8631 struct perf_mmap_event { 8632 struct vm_area_struct *vma; 8633 8634 const char *file_name; 8635 int file_size; 8636 int maj, min; 8637 u64 ino; 8638 u64 ino_generation; 8639 u32 prot, flags; 8640 u8 build_id[BUILD_ID_SIZE_MAX]; 8641 u32 build_id_size; 8642 8643 struct { 8644 struct perf_event_header header; 8645 8646 u32 pid; 8647 u32 tid; 8648 u64 start; 8649 u64 len; 8650 u64 pgoff; 8651 } event_id; 8652 }; 8653 8654 static int perf_event_mmap_match(struct perf_event *event, 8655 void *data) 8656 { 8657 struct perf_mmap_event *mmap_event = data; 8658 struct vm_area_struct *vma = mmap_event->vma; 8659 int executable = vma->vm_flags & VM_EXEC; 8660 8661 return (!executable && event->attr.mmap_data) || 8662 (executable && (event->attr.mmap || event->attr.mmap2)); 8663 } 8664 8665 static void perf_event_mmap_output(struct perf_event *event, 8666 void *data) 8667 { 8668 struct perf_mmap_event *mmap_event = data; 8669 struct perf_output_handle handle; 8670 struct perf_sample_data sample; 8671 int size = mmap_event->event_id.header.size; 8672 u32 type = mmap_event->event_id.header.type; 8673 bool use_build_id; 8674 int ret; 8675 8676 if (!perf_event_mmap_match(event, data)) 8677 return; 8678 8679 if (event->attr.mmap2) { 8680 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8681 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8682 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8683 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8684 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8685 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8686 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8687 } 8688 8689 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8690 ret = perf_output_begin(&handle, &sample, event, 8691 mmap_event->event_id.header.size); 8692 if (ret) 8693 goto out; 8694 8695 mmap_event->event_id.pid = perf_event_pid(event, current); 8696 mmap_event->event_id.tid = perf_event_tid(event, current); 8697 8698 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8699 8700 if (event->attr.mmap2 && use_build_id) 8701 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8702 8703 perf_output_put(&handle, mmap_event->event_id); 8704 8705 if (event->attr.mmap2) { 8706 if (use_build_id) { 8707 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8708 8709 __output_copy(&handle, size, 4); 8710 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8711 } else { 8712 perf_output_put(&handle, mmap_event->maj); 8713 perf_output_put(&handle, mmap_event->min); 8714 perf_output_put(&handle, mmap_event->ino); 8715 perf_output_put(&handle, mmap_event->ino_generation); 8716 } 8717 perf_output_put(&handle, mmap_event->prot); 8718 perf_output_put(&handle, mmap_event->flags); 8719 } 8720 8721 __output_copy(&handle, mmap_event->file_name, 8722 mmap_event->file_size); 8723 8724 perf_event__output_id_sample(event, &handle, &sample); 8725 8726 perf_output_end(&handle); 8727 out: 8728 mmap_event->event_id.header.size = size; 8729 mmap_event->event_id.header.type = type; 8730 } 8731 8732 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8733 { 8734 struct vm_area_struct *vma = mmap_event->vma; 8735 struct file *file = vma->vm_file; 8736 int maj = 0, min = 0; 8737 u64 ino = 0, gen = 0; 8738 u32 prot = 0, flags = 0; 8739 unsigned int size; 8740 char tmp[16]; 8741 char *buf = NULL; 8742 char *name = NULL; 8743 8744 if (vma->vm_flags & VM_READ) 8745 prot |= PROT_READ; 8746 if (vma->vm_flags & VM_WRITE) 8747 prot |= PROT_WRITE; 8748 if (vma->vm_flags & VM_EXEC) 8749 prot |= PROT_EXEC; 8750 8751 if (vma->vm_flags & VM_MAYSHARE) 8752 flags = MAP_SHARED; 8753 else 8754 flags = MAP_PRIVATE; 8755 8756 if (vma->vm_flags & VM_LOCKED) 8757 flags |= MAP_LOCKED; 8758 if (is_vm_hugetlb_page(vma)) 8759 flags |= MAP_HUGETLB; 8760 8761 if (file) { 8762 struct inode *inode; 8763 dev_t dev; 8764 8765 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8766 if (!buf) { 8767 name = "//enomem"; 8768 goto cpy_name; 8769 } 8770 /* 8771 * d_path() works from the end of the rb backwards, so we 8772 * need to add enough zero bytes after the string to handle 8773 * the 64bit alignment we do later. 8774 */ 8775 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8776 if (IS_ERR(name)) { 8777 name = "//toolong"; 8778 goto cpy_name; 8779 } 8780 inode = file_inode(vma->vm_file); 8781 dev = inode->i_sb->s_dev; 8782 ino = inode->i_ino; 8783 gen = inode->i_generation; 8784 maj = MAJOR(dev); 8785 min = MINOR(dev); 8786 8787 goto got_name; 8788 } else { 8789 if (vma->vm_ops && vma->vm_ops->name) 8790 name = (char *) vma->vm_ops->name(vma); 8791 if (!name) 8792 name = (char *)arch_vma_name(vma); 8793 if (!name) { 8794 if (vma_is_initial_heap(vma)) 8795 name = "[heap]"; 8796 else if (vma_is_initial_stack(vma)) 8797 name = "[stack]"; 8798 else 8799 name = "//anon"; 8800 } 8801 } 8802 8803 cpy_name: 8804 strscpy(tmp, name, sizeof(tmp)); 8805 name = tmp; 8806 got_name: 8807 /* 8808 * Since our buffer works in 8 byte units we need to align our string 8809 * size to a multiple of 8. However, we must guarantee the tail end is 8810 * zero'd out to avoid leaking random bits to userspace. 8811 */ 8812 size = strlen(name)+1; 8813 while (!IS_ALIGNED(size, sizeof(u64))) 8814 name[size++] = '\0'; 8815 8816 mmap_event->file_name = name; 8817 mmap_event->file_size = size; 8818 mmap_event->maj = maj; 8819 mmap_event->min = min; 8820 mmap_event->ino = ino; 8821 mmap_event->ino_generation = gen; 8822 mmap_event->prot = prot; 8823 mmap_event->flags = flags; 8824 8825 if (!(vma->vm_flags & VM_EXEC)) 8826 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8827 8828 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8829 8830 if (atomic_read(&nr_build_id_events)) 8831 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8832 8833 perf_iterate_sb(perf_event_mmap_output, 8834 mmap_event, 8835 NULL); 8836 8837 kfree(buf); 8838 } 8839 8840 /* 8841 * Check whether inode and address range match filter criteria. 8842 */ 8843 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8844 struct file *file, unsigned long offset, 8845 unsigned long size) 8846 { 8847 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8848 if (!filter->path.dentry) 8849 return false; 8850 8851 if (d_inode(filter->path.dentry) != file_inode(file)) 8852 return false; 8853 8854 if (filter->offset > offset + size) 8855 return false; 8856 8857 if (filter->offset + filter->size < offset) 8858 return false; 8859 8860 return true; 8861 } 8862 8863 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8864 struct vm_area_struct *vma, 8865 struct perf_addr_filter_range *fr) 8866 { 8867 unsigned long vma_size = vma->vm_end - vma->vm_start; 8868 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8869 struct file *file = vma->vm_file; 8870 8871 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8872 return false; 8873 8874 if (filter->offset < off) { 8875 fr->start = vma->vm_start; 8876 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8877 } else { 8878 fr->start = vma->vm_start + filter->offset - off; 8879 fr->size = min(vma->vm_end - fr->start, filter->size); 8880 } 8881 8882 return true; 8883 } 8884 8885 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8886 { 8887 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8888 struct vm_area_struct *vma = data; 8889 struct perf_addr_filter *filter; 8890 unsigned int restart = 0, count = 0; 8891 unsigned long flags; 8892 8893 if (!has_addr_filter(event)) 8894 return; 8895 8896 if (!vma->vm_file) 8897 return; 8898 8899 raw_spin_lock_irqsave(&ifh->lock, flags); 8900 list_for_each_entry(filter, &ifh->list, entry) { 8901 if (perf_addr_filter_vma_adjust(filter, vma, 8902 &event->addr_filter_ranges[count])) 8903 restart++; 8904 8905 count++; 8906 } 8907 8908 if (restart) 8909 event->addr_filters_gen++; 8910 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8911 8912 if (restart) 8913 perf_event_stop(event, 1); 8914 } 8915 8916 /* 8917 * Adjust all task's events' filters to the new vma 8918 */ 8919 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8920 { 8921 struct perf_event_context *ctx; 8922 8923 /* 8924 * Data tracing isn't supported yet and as such there is no need 8925 * to keep track of anything that isn't related to executable code: 8926 */ 8927 if (!(vma->vm_flags & VM_EXEC)) 8928 return; 8929 8930 rcu_read_lock(); 8931 ctx = rcu_dereference(current->perf_event_ctxp); 8932 if (ctx) 8933 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8934 rcu_read_unlock(); 8935 } 8936 8937 void perf_event_mmap(struct vm_area_struct *vma) 8938 { 8939 struct perf_mmap_event mmap_event; 8940 8941 if (!atomic_read(&nr_mmap_events)) 8942 return; 8943 8944 mmap_event = (struct perf_mmap_event){ 8945 .vma = vma, 8946 /* .file_name */ 8947 /* .file_size */ 8948 .event_id = { 8949 .header = { 8950 .type = PERF_RECORD_MMAP, 8951 .misc = PERF_RECORD_MISC_USER, 8952 /* .size */ 8953 }, 8954 /* .pid */ 8955 /* .tid */ 8956 .start = vma->vm_start, 8957 .len = vma->vm_end - vma->vm_start, 8958 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8959 }, 8960 /* .maj (attr_mmap2 only) */ 8961 /* .min (attr_mmap2 only) */ 8962 /* .ino (attr_mmap2 only) */ 8963 /* .ino_generation (attr_mmap2 only) */ 8964 /* .prot (attr_mmap2 only) */ 8965 /* .flags (attr_mmap2 only) */ 8966 }; 8967 8968 perf_addr_filters_adjust(vma); 8969 perf_event_mmap_event(&mmap_event); 8970 } 8971 8972 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8973 unsigned long size, u64 flags) 8974 { 8975 struct perf_output_handle handle; 8976 struct perf_sample_data sample; 8977 struct perf_aux_event { 8978 struct perf_event_header header; 8979 u64 offset; 8980 u64 size; 8981 u64 flags; 8982 } rec = { 8983 .header = { 8984 .type = PERF_RECORD_AUX, 8985 .misc = 0, 8986 .size = sizeof(rec), 8987 }, 8988 .offset = head, 8989 .size = size, 8990 .flags = flags, 8991 }; 8992 int ret; 8993 8994 perf_event_header__init_id(&rec.header, &sample, event); 8995 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8996 8997 if (ret) 8998 return; 8999 9000 perf_output_put(&handle, rec); 9001 perf_event__output_id_sample(event, &handle, &sample); 9002 9003 perf_output_end(&handle); 9004 } 9005 9006 /* 9007 * Lost/dropped samples logging 9008 */ 9009 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9010 { 9011 struct perf_output_handle handle; 9012 struct perf_sample_data sample; 9013 int ret; 9014 9015 struct { 9016 struct perf_event_header header; 9017 u64 lost; 9018 } lost_samples_event = { 9019 .header = { 9020 .type = PERF_RECORD_LOST_SAMPLES, 9021 .misc = 0, 9022 .size = sizeof(lost_samples_event), 9023 }, 9024 .lost = lost, 9025 }; 9026 9027 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9028 9029 ret = perf_output_begin(&handle, &sample, event, 9030 lost_samples_event.header.size); 9031 if (ret) 9032 return; 9033 9034 perf_output_put(&handle, lost_samples_event); 9035 perf_event__output_id_sample(event, &handle, &sample); 9036 perf_output_end(&handle); 9037 } 9038 9039 /* 9040 * context_switch tracking 9041 */ 9042 9043 struct perf_switch_event { 9044 struct task_struct *task; 9045 struct task_struct *next_prev; 9046 9047 struct { 9048 struct perf_event_header header; 9049 u32 next_prev_pid; 9050 u32 next_prev_tid; 9051 } event_id; 9052 }; 9053 9054 static int perf_event_switch_match(struct perf_event *event) 9055 { 9056 return event->attr.context_switch; 9057 } 9058 9059 static void perf_event_switch_output(struct perf_event *event, void *data) 9060 { 9061 struct perf_switch_event *se = data; 9062 struct perf_output_handle handle; 9063 struct perf_sample_data sample; 9064 int ret; 9065 9066 if (!perf_event_switch_match(event)) 9067 return; 9068 9069 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9070 if (event->ctx->task) { 9071 se->event_id.header.type = PERF_RECORD_SWITCH; 9072 se->event_id.header.size = sizeof(se->event_id.header); 9073 } else { 9074 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9075 se->event_id.header.size = sizeof(se->event_id); 9076 se->event_id.next_prev_pid = 9077 perf_event_pid(event, se->next_prev); 9078 se->event_id.next_prev_tid = 9079 perf_event_tid(event, se->next_prev); 9080 } 9081 9082 perf_event_header__init_id(&se->event_id.header, &sample, event); 9083 9084 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9085 if (ret) 9086 return; 9087 9088 if (event->ctx->task) 9089 perf_output_put(&handle, se->event_id.header); 9090 else 9091 perf_output_put(&handle, se->event_id); 9092 9093 perf_event__output_id_sample(event, &handle, &sample); 9094 9095 perf_output_end(&handle); 9096 } 9097 9098 static void perf_event_switch(struct task_struct *task, 9099 struct task_struct *next_prev, bool sched_in) 9100 { 9101 struct perf_switch_event switch_event; 9102 9103 /* N.B. caller checks nr_switch_events != 0 */ 9104 9105 switch_event = (struct perf_switch_event){ 9106 .task = task, 9107 .next_prev = next_prev, 9108 .event_id = { 9109 .header = { 9110 /* .type */ 9111 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9112 /* .size */ 9113 }, 9114 /* .next_prev_pid */ 9115 /* .next_prev_tid */ 9116 }, 9117 }; 9118 9119 if (!sched_in && task->on_rq) { 9120 switch_event.event_id.header.misc |= 9121 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9122 } 9123 9124 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9125 } 9126 9127 /* 9128 * IRQ throttle logging 9129 */ 9130 9131 static void perf_log_throttle(struct perf_event *event, int enable) 9132 { 9133 struct perf_output_handle handle; 9134 struct perf_sample_data sample; 9135 int ret; 9136 9137 struct { 9138 struct perf_event_header header; 9139 u64 time; 9140 u64 id; 9141 u64 stream_id; 9142 } throttle_event = { 9143 .header = { 9144 .type = PERF_RECORD_THROTTLE, 9145 .misc = 0, 9146 .size = sizeof(throttle_event), 9147 }, 9148 .time = perf_event_clock(event), 9149 .id = primary_event_id(event), 9150 .stream_id = event->id, 9151 }; 9152 9153 if (enable) 9154 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9155 9156 perf_event_header__init_id(&throttle_event.header, &sample, event); 9157 9158 ret = perf_output_begin(&handle, &sample, event, 9159 throttle_event.header.size); 9160 if (ret) 9161 return; 9162 9163 perf_output_put(&handle, throttle_event); 9164 perf_event__output_id_sample(event, &handle, &sample); 9165 perf_output_end(&handle); 9166 } 9167 9168 /* 9169 * ksymbol register/unregister tracking 9170 */ 9171 9172 struct perf_ksymbol_event { 9173 const char *name; 9174 int name_len; 9175 struct { 9176 struct perf_event_header header; 9177 u64 addr; 9178 u32 len; 9179 u16 ksym_type; 9180 u16 flags; 9181 } event_id; 9182 }; 9183 9184 static int perf_event_ksymbol_match(struct perf_event *event) 9185 { 9186 return event->attr.ksymbol; 9187 } 9188 9189 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9190 { 9191 struct perf_ksymbol_event *ksymbol_event = data; 9192 struct perf_output_handle handle; 9193 struct perf_sample_data sample; 9194 int ret; 9195 9196 if (!perf_event_ksymbol_match(event)) 9197 return; 9198 9199 perf_event_header__init_id(&ksymbol_event->event_id.header, 9200 &sample, event); 9201 ret = perf_output_begin(&handle, &sample, event, 9202 ksymbol_event->event_id.header.size); 9203 if (ret) 9204 return; 9205 9206 perf_output_put(&handle, ksymbol_event->event_id); 9207 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9208 perf_event__output_id_sample(event, &handle, &sample); 9209 9210 perf_output_end(&handle); 9211 } 9212 9213 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9214 const char *sym) 9215 { 9216 struct perf_ksymbol_event ksymbol_event; 9217 char name[KSYM_NAME_LEN]; 9218 u16 flags = 0; 9219 int name_len; 9220 9221 if (!atomic_read(&nr_ksymbol_events)) 9222 return; 9223 9224 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9225 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9226 goto err; 9227 9228 strscpy(name, sym, KSYM_NAME_LEN); 9229 name_len = strlen(name) + 1; 9230 while (!IS_ALIGNED(name_len, sizeof(u64))) 9231 name[name_len++] = '\0'; 9232 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9233 9234 if (unregister) 9235 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9236 9237 ksymbol_event = (struct perf_ksymbol_event){ 9238 .name = name, 9239 .name_len = name_len, 9240 .event_id = { 9241 .header = { 9242 .type = PERF_RECORD_KSYMBOL, 9243 .size = sizeof(ksymbol_event.event_id) + 9244 name_len, 9245 }, 9246 .addr = addr, 9247 .len = len, 9248 .ksym_type = ksym_type, 9249 .flags = flags, 9250 }, 9251 }; 9252 9253 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9254 return; 9255 err: 9256 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9257 } 9258 9259 /* 9260 * bpf program load/unload tracking 9261 */ 9262 9263 struct perf_bpf_event { 9264 struct bpf_prog *prog; 9265 struct { 9266 struct perf_event_header header; 9267 u16 type; 9268 u16 flags; 9269 u32 id; 9270 u8 tag[BPF_TAG_SIZE]; 9271 } event_id; 9272 }; 9273 9274 static int perf_event_bpf_match(struct perf_event *event) 9275 { 9276 return event->attr.bpf_event; 9277 } 9278 9279 static void perf_event_bpf_output(struct perf_event *event, void *data) 9280 { 9281 struct perf_bpf_event *bpf_event = data; 9282 struct perf_output_handle handle; 9283 struct perf_sample_data sample; 9284 int ret; 9285 9286 if (!perf_event_bpf_match(event)) 9287 return; 9288 9289 perf_event_header__init_id(&bpf_event->event_id.header, 9290 &sample, event); 9291 ret = perf_output_begin(&handle, &sample, event, 9292 bpf_event->event_id.header.size); 9293 if (ret) 9294 return; 9295 9296 perf_output_put(&handle, bpf_event->event_id); 9297 perf_event__output_id_sample(event, &handle, &sample); 9298 9299 perf_output_end(&handle); 9300 } 9301 9302 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9303 enum perf_bpf_event_type type) 9304 { 9305 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9306 int i; 9307 9308 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9309 (u64)(unsigned long)prog->bpf_func, 9310 prog->jited_len, unregister, 9311 prog->aux->ksym.name); 9312 9313 for (i = 1; i < prog->aux->func_cnt; i++) { 9314 struct bpf_prog *subprog = prog->aux->func[i]; 9315 9316 perf_event_ksymbol( 9317 PERF_RECORD_KSYMBOL_TYPE_BPF, 9318 (u64)(unsigned long)subprog->bpf_func, 9319 subprog->jited_len, unregister, 9320 subprog->aux->ksym.name); 9321 } 9322 } 9323 9324 void perf_event_bpf_event(struct bpf_prog *prog, 9325 enum perf_bpf_event_type type, 9326 u16 flags) 9327 { 9328 struct perf_bpf_event bpf_event; 9329 9330 if (type <= PERF_BPF_EVENT_UNKNOWN || 9331 type >= PERF_BPF_EVENT_MAX) 9332 return; 9333 9334 switch (type) { 9335 case PERF_BPF_EVENT_PROG_LOAD: 9336 case PERF_BPF_EVENT_PROG_UNLOAD: 9337 if (atomic_read(&nr_ksymbol_events)) 9338 perf_event_bpf_emit_ksymbols(prog, type); 9339 break; 9340 default: 9341 break; 9342 } 9343 9344 if (!atomic_read(&nr_bpf_events)) 9345 return; 9346 9347 bpf_event = (struct perf_bpf_event){ 9348 .prog = prog, 9349 .event_id = { 9350 .header = { 9351 .type = PERF_RECORD_BPF_EVENT, 9352 .size = sizeof(bpf_event.event_id), 9353 }, 9354 .type = type, 9355 .flags = flags, 9356 .id = prog->aux->id, 9357 }, 9358 }; 9359 9360 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9361 9362 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9363 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9364 } 9365 9366 struct perf_text_poke_event { 9367 const void *old_bytes; 9368 const void *new_bytes; 9369 size_t pad; 9370 u16 old_len; 9371 u16 new_len; 9372 9373 struct { 9374 struct perf_event_header header; 9375 9376 u64 addr; 9377 } event_id; 9378 }; 9379 9380 static int perf_event_text_poke_match(struct perf_event *event) 9381 { 9382 return event->attr.text_poke; 9383 } 9384 9385 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9386 { 9387 struct perf_text_poke_event *text_poke_event = data; 9388 struct perf_output_handle handle; 9389 struct perf_sample_data sample; 9390 u64 padding = 0; 9391 int ret; 9392 9393 if (!perf_event_text_poke_match(event)) 9394 return; 9395 9396 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9397 9398 ret = perf_output_begin(&handle, &sample, event, 9399 text_poke_event->event_id.header.size); 9400 if (ret) 9401 return; 9402 9403 perf_output_put(&handle, text_poke_event->event_id); 9404 perf_output_put(&handle, text_poke_event->old_len); 9405 perf_output_put(&handle, text_poke_event->new_len); 9406 9407 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9408 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9409 9410 if (text_poke_event->pad) 9411 __output_copy(&handle, &padding, text_poke_event->pad); 9412 9413 perf_event__output_id_sample(event, &handle, &sample); 9414 9415 perf_output_end(&handle); 9416 } 9417 9418 void perf_event_text_poke(const void *addr, const void *old_bytes, 9419 size_t old_len, const void *new_bytes, size_t new_len) 9420 { 9421 struct perf_text_poke_event text_poke_event; 9422 size_t tot, pad; 9423 9424 if (!atomic_read(&nr_text_poke_events)) 9425 return; 9426 9427 tot = sizeof(text_poke_event.old_len) + old_len; 9428 tot += sizeof(text_poke_event.new_len) + new_len; 9429 pad = ALIGN(tot, sizeof(u64)) - tot; 9430 9431 text_poke_event = (struct perf_text_poke_event){ 9432 .old_bytes = old_bytes, 9433 .new_bytes = new_bytes, 9434 .pad = pad, 9435 .old_len = old_len, 9436 .new_len = new_len, 9437 .event_id = { 9438 .header = { 9439 .type = PERF_RECORD_TEXT_POKE, 9440 .misc = PERF_RECORD_MISC_KERNEL, 9441 .size = sizeof(text_poke_event.event_id) + tot + pad, 9442 }, 9443 .addr = (unsigned long)addr, 9444 }, 9445 }; 9446 9447 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9448 } 9449 9450 void perf_event_itrace_started(struct perf_event *event) 9451 { 9452 event->attach_state |= PERF_ATTACH_ITRACE; 9453 } 9454 9455 static void perf_log_itrace_start(struct perf_event *event) 9456 { 9457 struct perf_output_handle handle; 9458 struct perf_sample_data sample; 9459 struct perf_aux_event { 9460 struct perf_event_header header; 9461 u32 pid; 9462 u32 tid; 9463 } rec; 9464 int ret; 9465 9466 if (event->parent) 9467 event = event->parent; 9468 9469 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9470 event->attach_state & PERF_ATTACH_ITRACE) 9471 return; 9472 9473 rec.header.type = PERF_RECORD_ITRACE_START; 9474 rec.header.misc = 0; 9475 rec.header.size = sizeof(rec); 9476 rec.pid = perf_event_pid(event, current); 9477 rec.tid = perf_event_tid(event, current); 9478 9479 perf_event_header__init_id(&rec.header, &sample, event); 9480 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9481 9482 if (ret) 9483 return; 9484 9485 perf_output_put(&handle, rec); 9486 perf_event__output_id_sample(event, &handle, &sample); 9487 9488 perf_output_end(&handle); 9489 } 9490 9491 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9492 { 9493 struct perf_output_handle handle; 9494 struct perf_sample_data sample; 9495 struct perf_aux_event { 9496 struct perf_event_header header; 9497 u64 hw_id; 9498 } rec; 9499 int ret; 9500 9501 if (event->parent) 9502 event = event->parent; 9503 9504 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9505 rec.header.misc = 0; 9506 rec.header.size = sizeof(rec); 9507 rec.hw_id = hw_id; 9508 9509 perf_event_header__init_id(&rec.header, &sample, event); 9510 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9511 9512 if (ret) 9513 return; 9514 9515 perf_output_put(&handle, rec); 9516 perf_event__output_id_sample(event, &handle, &sample); 9517 9518 perf_output_end(&handle); 9519 } 9520 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9521 9522 static int 9523 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9524 { 9525 struct hw_perf_event *hwc = &event->hw; 9526 int ret = 0; 9527 u64 seq; 9528 9529 seq = __this_cpu_read(perf_throttled_seq); 9530 if (seq != hwc->interrupts_seq) { 9531 hwc->interrupts_seq = seq; 9532 hwc->interrupts = 1; 9533 } else { 9534 hwc->interrupts++; 9535 if (unlikely(throttle && 9536 hwc->interrupts > max_samples_per_tick)) { 9537 __this_cpu_inc(perf_throttled_count); 9538 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9539 hwc->interrupts = MAX_INTERRUPTS; 9540 perf_log_throttle(event, 0); 9541 ret = 1; 9542 } 9543 } 9544 9545 if (event->attr.freq) { 9546 u64 now = perf_clock(); 9547 s64 delta = now - hwc->freq_time_stamp; 9548 9549 hwc->freq_time_stamp = now; 9550 9551 if (delta > 0 && delta < 2*TICK_NSEC) 9552 perf_adjust_period(event, delta, hwc->last_period, true); 9553 } 9554 9555 return ret; 9556 } 9557 9558 int perf_event_account_interrupt(struct perf_event *event) 9559 { 9560 return __perf_event_account_interrupt(event, 1); 9561 } 9562 9563 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9564 { 9565 /* 9566 * Due to interrupt latency (AKA "skid"), we may enter the 9567 * kernel before taking an overflow, even if the PMU is only 9568 * counting user events. 9569 */ 9570 if (event->attr.exclude_kernel && !user_mode(regs)) 9571 return false; 9572 9573 return true; 9574 } 9575 9576 /* 9577 * Generic event overflow handling, sampling. 9578 */ 9579 9580 static int __perf_event_overflow(struct perf_event *event, 9581 int throttle, struct perf_sample_data *data, 9582 struct pt_regs *regs) 9583 { 9584 int events = atomic_read(&event->event_limit); 9585 int ret = 0; 9586 9587 /* 9588 * Non-sampling counters might still use the PMI to fold short 9589 * hardware counters, ignore those. 9590 */ 9591 if (unlikely(!is_sampling_event(event))) 9592 return 0; 9593 9594 ret = __perf_event_account_interrupt(event, throttle); 9595 9596 /* 9597 * XXX event_limit might not quite work as expected on inherited 9598 * events 9599 */ 9600 9601 event->pending_kill = POLL_IN; 9602 if (events && atomic_dec_and_test(&event->event_limit)) { 9603 ret = 1; 9604 event->pending_kill = POLL_HUP; 9605 perf_event_disable_inatomic(event); 9606 } 9607 9608 if (event->attr.sigtrap) { 9609 /* 9610 * The desired behaviour of sigtrap vs invalid samples is a bit 9611 * tricky; on the one hand, one should not loose the SIGTRAP if 9612 * it is the first event, on the other hand, we should also not 9613 * trigger the WARN or override the data address. 9614 */ 9615 bool valid_sample = sample_is_allowed(event, regs); 9616 unsigned int pending_id = 1; 9617 9618 if (regs) 9619 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9620 if (!event->pending_sigtrap) { 9621 event->pending_sigtrap = pending_id; 9622 local_inc(&event->ctx->nr_pending); 9623 } else if (event->attr.exclude_kernel && valid_sample) { 9624 /* 9625 * Should not be able to return to user space without 9626 * consuming pending_sigtrap; with exceptions: 9627 * 9628 * 1. Where !exclude_kernel, events can overflow again 9629 * in the kernel without returning to user space. 9630 * 9631 * 2. Events that can overflow again before the IRQ- 9632 * work without user space progress (e.g. hrtimer). 9633 * To approximate progress (with false negatives), 9634 * check 32-bit hash of the current IP. 9635 */ 9636 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9637 } 9638 9639 event->pending_addr = 0; 9640 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9641 event->pending_addr = data->addr; 9642 irq_work_queue(&event->pending_irq); 9643 } 9644 9645 READ_ONCE(event->overflow_handler)(event, data, regs); 9646 9647 if (*perf_event_fasync(event) && event->pending_kill) { 9648 event->pending_wakeup = 1; 9649 irq_work_queue(&event->pending_irq); 9650 } 9651 9652 return ret; 9653 } 9654 9655 int perf_event_overflow(struct perf_event *event, 9656 struct perf_sample_data *data, 9657 struct pt_regs *regs) 9658 { 9659 return __perf_event_overflow(event, 1, data, regs); 9660 } 9661 9662 /* 9663 * Generic software event infrastructure 9664 */ 9665 9666 struct swevent_htable { 9667 struct swevent_hlist *swevent_hlist; 9668 struct mutex hlist_mutex; 9669 int hlist_refcount; 9670 9671 /* Recursion avoidance in each contexts */ 9672 int recursion[PERF_NR_CONTEXTS]; 9673 }; 9674 9675 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9676 9677 /* 9678 * We directly increment event->count and keep a second value in 9679 * event->hw.period_left to count intervals. This period event 9680 * is kept in the range [-sample_period, 0] so that we can use the 9681 * sign as trigger. 9682 */ 9683 9684 u64 perf_swevent_set_period(struct perf_event *event) 9685 { 9686 struct hw_perf_event *hwc = &event->hw; 9687 u64 period = hwc->last_period; 9688 u64 nr, offset; 9689 s64 old, val; 9690 9691 hwc->last_period = hwc->sample_period; 9692 9693 old = local64_read(&hwc->period_left); 9694 do { 9695 val = old; 9696 if (val < 0) 9697 return 0; 9698 9699 nr = div64_u64(period + val, period); 9700 offset = nr * period; 9701 val -= offset; 9702 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9703 9704 return nr; 9705 } 9706 9707 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9708 struct perf_sample_data *data, 9709 struct pt_regs *regs) 9710 { 9711 struct hw_perf_event *hwc = &event->hw; 9712 int throttle = 0; 9713 9714 if (!overflow) 9715 overflow = perf_swevent_set_period(event); 9716 9717 if (hwc->interrupts == MAX_INTERRUPTS) 9718 return; 9719 9720 for (; overflow; overflow--) { 9721 if (__perf_event_overflow(event, throttle, 9722 data, regs)) { 9723 /* 9724 * We inhibit the overflow from happening when 9725 * hwc->interrupts == MAX_INTERRUPTS. 9726 */ 9727 break; 9728 } 9729 throttle = 1; 9730 } 9731 } 9732 9733 static void perf_swevent_event(struct perf_event *event, u64 nr, 9734 struct perf_sample_data *data, 9735 struct pt_regs *regs) 9736 { 9737 struct hw_perf_event *hwc = &event->hw; 9738 9739 local64_add(nr, &event->count); 9740 9741 if (!regs) 9742 return; 9743 9744 if (!is_sampling_event(event)) 9745 return; 9746 9747 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9748 data->period = nr; 9749 return perf_swevent_overflow(event, 1, data, regs); 9750 } else 9751 data->period = event->hw.last_period; 9752 9753 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9754 return perf_swevent_overflow(event, 1, data, regs); 9755 9756 if (local64_add_negative(nr, &hwc->period_left)) 9757 return; 9758 9759 perf_swevent_overflow(event, 0, data, regs); 9760 } 9761 9762 static int perf_exclude_event(struct perf_event *event, 9763 struct pt_regs *regs) 9764 { 9765 if (event->hw.state & PERF_HES_STOPPED) 9766 return 1; 9767 9768 if (regs) { 9769 if (event->attr.exclude_user && user_mode(regs)) 9770 return 1; 9771 9772 if (event->attr.exclude_kernel && !user_mode(regs)) 9773 return 1; 9774 } 9775 9776 return 0; 9777 } 9778 9779 static int perf_swevent_match(struct perf_event *event, 9780 enum perf_type_id type, 9781 u32 event_id, 9782 struct perf_sample_data *data, 9783 struct pt_regs *regs) 9784 { 9785 if (event->attr.type != type) 9786 return 0; 9787 9788 if (event->attr.config != event_id) 9789 return 0; 9790 9791 if (perf_exclude_event(event, regs)) 9792 return 0; 9793 9794 return 1; 9795 } 9796 9797 static inline u64 swevent_hash(u64 type, u32 event_id) 9798 { 9799 u64 val = event_id | (type << 32); 9800 9801 return hash_64(val, SWEVENT_HLIST_BITS); 9802 } 9803 9804 static inline struct hlist_head * 9805 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9806 { 9807 u64 hash = swevent_hash(type, event_id); 9808 9809 return &hlist->heads[hash]; 9810 } 9811 9812 /* For the read side: events when they trigger */ 9813 static inline struct hlist_head * 9814 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9815 { 9816 struct swevent_hlist *hlist; 9817 9818 hlist = rcu_dereference(swhash->swevent_hlist); 9819 if (!hlist) 9820 return NULL; 9821 9822 return __find_swevent_head(hlist, type, event_id); 9823 } 9824 9825 /* For the event head insertion and removal in the hlist */ 9826 static inline struct hlist_head * 9827 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9828 { 9829 struct swevent_hlist *hlist; 9830 u32 event_id = event->attr.config; 9831 u64 type = event->attr.type; 9832 9833 /* 9834 * Event scheduling is always serialized against hlist allocation 9835 * and release. Which makes the protected version suitable here. 9836 * The context lock guarantees that. 9837 */ 9838 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9839 lockdep_is_held(&event->ctx->lock)); 9840 if (!hlist) 9841 return NULL; 9842 9843 return __find_swevent_head(hlist, type, event_id); 9844 } 9845 9846 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9847 u64 nr, 9848 struct perf_sample_data *data, 9849 struct pt_regs *regs) 9850 { 9851 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9852 struct perf_event *event; 9853 struct hlist_head *head; 9854 9855 rcu_read_lock(); 9856 head = find_swevent_head_rcu(swhash, type, event_id); 9857 if (!head) 9858 goto end; 9859 9860 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9861 if (perf_swevent_match(event, type, event_id, data, regs)) 9862 perf_swevent_event(event, nr, data, regs); 9863 } 9864 end: 9865 rcu_read_unlock(); 9866 } 9867 9868 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9869 9870 int perf_swevent_get_recursion_context(void) 9871 { 9872 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9873 9874 return get_recursion_context(swhash->recursion); 9875 } 9876 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9877 9878 void perf_swevent_put_recursion_context(int rctx) 9879 { 9880 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9881 9882 put_recursion_context(swhash->recursion, rctx); 9883 } 9884 9885 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9886 { 9887 struct perf_sample_data data; 9888 9889 if (WARN_ON_ONCE(!regs)) 9890 return; 9891 9892 perf_sample_data_init(&data, addr, 0); 9893 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9894 } 9895 9896 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9897 { 9898 int rctx; 9899 9900 preempt_disable_notrace(); 9901 rctx = perf_swevent_get_recursion_context(); 9902 if (unlikely(rctx < 0)) 9903 goto fail; 9904 9905 ___perf_sw_event(event_id, nr, regs, addr); 9906 9907 perf_swevent_put_recursion_context(rctx); 9908 fail: 9909 preempt_enable_notrace(); 9910 } 9911 9912 static void perf_swevent_read(struct perf_event *event) 9913 { 9914 } 9915 9916 static int perf_swevent_add(struct perf_event *event, int flags) 9917 { 9918 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9919 struct hw_perf_event *hwc = &event->hw; 9920 struct hlist_head *head; 9921 9922 if (is_sampling_event(event)) { 9923 hwc->last_period = hwc->sample_period; 9924 perf_swevent_set_period(event); 9925 } 9926 9927 hwc->state = !(flags & PERF_EF_START); 9928 9929 head = find_swevent_head(swhash, event); 9930 if (WARN_ON_ONCE(!head)) 9931 return -EINVAL; 9932 9933 hlist_add_head_rcu(&event->hlist_entry, head); 9934 perf_event_update_userpage(event); 9935 9936 return 0; 9937 } 9938 9939 static void perf_swevent_del(struct perf_event *event, int flags) 9940 { 9941 hlist_del_rcu(&event->hlist_entry); 9942 } 9943 9944 static void perf_swevent_start(struct perf_event *event, int flags) 9945 { 9946 event->hw.state = 0; 9947 } 9948 9949 static void perf_swevent_stop(struct perf_event *event, int flags) 9950 { 9951 event->hw.state = PERF_HES_STOPPED; 9952 } 9953 9954 /* Deref the hlist from the update side */ 9955 static inline struct swevent_hlist * 9956 swevent_hlist_deref(struct swevent_htable *swhash) 9957 { 9958 return rcu_dereference_protected(swhash->swevent_hlist, 9959 lockdep_is_held(&swhash->hlist_mutex)); 9960 } 9961 9962 static void swevent_hlist_release(struct swevent_htable *swhash) 9963 { 9964 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9965 9966 if (!hlist) 9967 return; 9968 9969 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9970 kfree_rcu(hlist, rcu_head); 9971 } 9972 9973 static void swevent_hlist_put_cpu(int cpu) 9974 { 9975 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9976 9977 mutex_lock(&swhash->hlist_mutex); 9978 9979 if (!--swhash->hlist_refcount) 9980 swevent_hlist_release(swhash); 9981 9982 mutex_unlock(&swhash->hlist_mutex); 9983 } 9984 9985 static void swevent_hlist_put(void) 9986 { 9987 int cpu; 9988 9989 for_each_possible_cpu(cpu) 9990 swevent_hlist_put_cpu(cpu); 9991 } 9992 9993 static int swevent_hlist_get_cpu(int cpu) 9994 { 9995 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9996 int err = 0; 9997 9998 mutex_lock(&swhash->hlist_mutex); 9999 if (!swevent_hlist_deref(swhash) && 10000 cpumask_test_cpu(cpu, perf_online_mask)) { 10001 struct swevent_hlist *hlist; 10002 10003 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10004 if (!hlist) { 10005 err = -ENOMEM; 10006 goto exit; 10007 } 10008 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10009 } 10010 swhash->hlist_refcount++; 10011 exit: 10012 mutex_unlock(&swhash->hlist_mutex); 10013 10014 return err; 10015 } 10016 10017 static int swevent_hlist_get(void) 10018 { 10019 int err, cpu, failed_cpu; 10020 10021 mutex_lock(&pmus_lock); 10022 for_each_possible_cpu(cpu) { 10023 err = swevent_hlist_get_cpu(cpu); 10024 if (err) { 10025 failed_cpu = cpu; 10026 goto fail; 10027 } 10028 } 10029 mutex_unlock(&pmus_lock); 10030 return 0; 10031 fail: 10032 for_each_possible_cpu(cpu) { 10033 if (cpu == failed_cpu) 10034 break; 10035 swevent_hlist_put_cpu(cpu); 10036 } 10037 mutex_unlock(&pmus_lock); 10038 return err; 10039 } 10040 10041 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10042 10043 static void sw_perf_event_destroy(struct perf_event *event) 10044 { 10045 u64 event_id = event->attr.config; 10046 10047 WARN_ON(event->parent); 10048 10049 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10050 swevent_hlist_put(); 10051 } 10052 10053 static struct pmu perf_cpu_clock; /* fwd declaration */ 10054 static struct pmu perf_task_clock; 10055 10056 static int perf_swevent_init(struct perf_event *event) 10057 { 10058 u64 event_id = event->attr.config; 10059 10060 if (event->attr.type != PERF_TYPE_SOFTWARE) 10061 return -ENOENT; 10062 10063 /* 10064 * no branch sampling for software events 10065 */ 10066 if (has_branch_stack(event)) 10067 return -EOPNOTSUPP; 10068 10069 switch (event_id) { 10070 case PERF_COUNT_SW_CPU_CLOCK: 10071 event->attr.type = perf_cpu_clock.type; 10072 return -ENOENT; 10073 case PERF_COUNT_SW_TASK_CLOCK: 10074 event->attr.type = perf_task_clock.type; 10075 return -ENOENT; 10076 10077 default: 10078 break; 10079 } 10080 10081 if (event_id >= PERF_COUNT_SW_MAX) 10082 return -ENOENT; 10083 10084 if (!event->parent) { 10085 int err; 10086 10087 err = swevent_hlist_get(); 10088 if (err) 10089 return err; 10090 10091 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10092 event->destroy = sw_perf_event_destroy; 10093 } 10094 10095 return 0; 10096 } 10097 10098 static struct pmu perf_swevent = { 10099 .task_ctx_nr = perf_sw_context, 10100 10101 .capabilities = PERF_PMU_CAP_NO_NMI, 10102 10103 .event_init = perf_swevent_init, 10104 .add = perf_swevent_add, 10105 .del = perf_swevent_del, 10106 .start = perf_swevent_start, 10107 .stop = perf_swevent_stop, 10108 .read = perf_swevent_read, 10109 }; 10110 10111 #ifdef CONFIG_EVENT_TRACING 10112 10113 static void tp_perf_event_destroy(struct perf_event *event) 10114 { 10115 perf_trace_destroy(event); 10116 } 10117 10118 static int perf_tp_event_init(struct perf_event *event) 10119 { 10120 int err; 10121 10122 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10123 return -ENOENT; 10124 10125 /* 10126 * no branch sampling for tracepoint events 10127 */ 10128 if (has_branch_stack(event)) 10129 return -EOPNOTSUPP; 10130 10131 err = perf_trace_init(event); 10132 if (err) 10133 return err; 10134 10135 event->destroy = tp_perf_event_destroy; 10136 10137 return 0; 10138 } 10139 10140 static struct pmu perf_tracepoint = { 10141 .task_ctx_nr = perf_sw_context, 10142 10143 .event_init = perf_tp_event_init, 10144 .add = perf_trace_add, 10145 .del = perf_trace_del, 10146 .start = perf_swevent_start, 10147 .stop = perf_swevent_stop, 10148 .read = perf_swevent_read, 10149 }; 10150 10151 static int perf_tp_filter_match(struct perf_event *event, 10152 struct perf_sample_data *data) 10153 { 10154 void *record = data->raw->frag.data; 10155 10156 /* only top level events have filters set */ 10157 if (event->parent) 10158 event = event->parent; 10159 10160 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10161 return 1; 10162 return 0; 10163 } 10164 10165 static int perf_tp_event_match(struct perf_event *event, 10166 struct perf_sample_data *data, 10167 struct pt_regs *regs) 10168 { 10169 if (event->hw.state & PERF_HES_STOPPED) 10170 return 0; 10171 /* 10172 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10173 */ 10174 if (event->attr.exclude_kernel && !user_mode(regs)) 10175 return 0; 10176 10177 if (!perf_tp_filter_match(event, data)) 10178 return 0; 10179 10180 return 1; 10181 } 10182 10183 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10184 struct trace_event_call *call, u64 count, 10185 struct pt_regs *regs, struct hlist_head *head, 10186 struct task_struct *task) 10187 { 10188 if (bpf_prog_array_valid(call)) { 10189 *(struct pt_regs **)raw_data = regs; 10190 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10191 perf_swevent_put_recursion_context(rctx); 10192 return; 10193 } 10194 } 10195 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10196 rctx, task); 10197 } 10198 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10199 10200 static void __perf_tp_event_target_task(u64 count, void *record, 10201 struct pt_regs *regs, 10202 struct perf_sample_data *data, 10203 struct perf_event *event) 10204 { 10205 struct trace_entry *entry = record; 10206 10207 if (event->attr.config != entry->type) 10208 return; 10209 /* Cannot deliver synchronous signal to other task. */ 10210 if (event->attr.sigtrap) 10211 return; 10212 if (perf_tp_event_match(event, data, regs)) 10213 perf_swevent_event(event, count, data, regs); 10214 } 10215 10216 static void perf_tp_event_target_task(u64 count, void *record, 10217 struct pt_regs *regs, 10218 struct perf_sample_data *data, 10219 struct perf_event_context *ctx) 10220 { 10221 unsigned int cpu = smp_processor_id(); 10222 struct pmu *pmu = &perf_tracepoint; 10223 struct perf_event *event, *sibling; 10224 10225 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10226 __perf_tp_event_target_task(count, record, regs, data, event); 10227 for_each_sibling_event(sibling, event) 10228 __perf_tp_event_target_task(count, record, regs, data, sibling); 10229 } 10230 10231 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10232 __perf_tp_event_target_task(count, record, regs, data, event); 10233 for_each_sibling_event(sibling, event) 10234 __perf_tp_event_target_task(count, record, regs, data, sibling); 10235 } 10236 } 10237 10238 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10239 struct pt_regs *regs, struct hlist_head *head, int rctx, 10240 struct task_struct *task) 10241 { 10242 struct perf_sample_data data; 10243 struct perf_event *event; 10244 10245 struct perf_raw_record raw = { 10246 .frag = { 10247 .size = entry_size, 10248 .data = record, 10249 }, 10250 }; 10251 10252 perf_sample_data_init(&data, 0, 0); 10253 perf_sample_save_raw_data(&data, &raw); 10254 10255 perf_trace_buf_update(record, event_type); 10256 10257 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10258 if (perf_tp_event_match(event, &data, regs)) { 10259 perf_swevent_event(event, count, &data, regs); 10260 10261 /* 10262 * Here use the same on-stack perf_sample_data, 10263 * some members in data are event-specific and 10264 * need to be re-computed for different sweveents. 10265 * Re-initialize data->sample_flags safely to avoid 10266 * the problem that next event skips preparing data 10267 * because data->sample_flags is set. 10268 */ 10269 perf_sample_data_init(&data, 0, 0); 10270 perf_sample_save_raw_data(&data, &raw); 10271 } 10272 } 10273 10274 /* 10275 * If we got specified a target task, also iterate its context and 10276 * deliver this event there too. 10277 */ 10278 if (task && task != current) { 10279 struct perf_event_context *ctx; 10280 10281 rcu_read_lock(); 10282 ctx = rcu_dereference(task->perf_event_ctxp); 10283 if (!ctx) 10284 goto unlock; 10285 10286 raw_spin_lock(&ctx->lock); 10287 perf_tp_event_target_task(count, record, regs, &data, ctx); 10288 raw_spin_unlock(&ctx->lock); 10289 unlock: 10290 rcu_read_unlock(); 10291 } 10292 10293 perf_swevent_put_recursion_context(rctx); 10294 } 10295 EXPORT_SYMBOL_GPL(perf_tp_event); 10296 10297 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10298 /* 10299 * Flags in config, used by dynamic PMU kprobe and uprobe 10300 * The flags should match following PMU_FORMAT_ATTR(). 10301 * 10302 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10303 * if not set, create kprobe/uprobe 10304 * 10305 * The following values specify a reference counter (or semaphore in the 10306 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10307 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10308 * 10309 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10310 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10311 */ 10312 enum perf_probe_config { 10313 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10314 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10315 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10316 }; 10317 10318 PMU_FORMAT_ATTR(retprobe, "config:0"); 10319 #endif 10320 10321 #ifdef CONFIG_KPROBE_EVENTS 10322 static struct attribute *kprobe_attrs[] = { 10323 &format_attr_retprobe.attr, 10324 NULL, 10325 }; 10326 10327 static struct attribute_group kprobe_format_group = { 10328 .name = "format", 10329 .attrs = kprobe_attrs, 10330 }; 10331 10332 static const struct attribute_group *kprobe_attr_groups[] = { 10333 &kprobe_format_group, 10334 NULL, 10335 }; 10336 10337 static int perf_kprobe_event_init(struct perf_event *event); 10338 static struct pmu perf_kprobe = { 10339 .task_ctx_nr = perf_sw_context, 10340 .event_init = perf_kprobe_event_init, 10341 .add = perf_trace_add, 10342 .del = perf_trace_del, 10343 .start = perf_swevent_start, 10344 .stop = perf_swevent_stop, 10345 .read = perf_swevent_read, 10346 .attr_groups = kprobe_attr_groups, 10347 }; 10348 10349 static int perf_kprobe_event_init(struct perf_event *event) 10350 { 10351 int err; 10352 bool is_retprobe; 10353 10354 if (event->attr.type != perf_kprobe.type) 10355 return -ENOENT; 10356 10357 if (!perfmon_capable()) 10358 return -EACCES; 10359 10360 /* 10361 * no branch sampling for probe events 10362 */ 10363 if (has_branch_stack(event)) 10364 return -EOPNOTSUPP; 10365 10366 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10367 err = perf_kprobe_init(event, is_retprobe); 10368 if (err) 10369 return err; 10370 10371 event->destroy = perf_kprobe_destroy; 10372 10373 return 0; 10374 } 10375 #endif /* CONFIG_KPROBE_EVENTS */ 10376 10377 #ifdef CONFIG_UPROBE_EVENTS 10378 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10379 10380 static struct attribute *uprobe_attrs[] = { 10381 &format_attr_retprobe.attr, 10382 &format_attr_ref_ctr_offset.attr, 10383 NULL, 10384 }; 10385 10386 static struct attribute_group uprobe_format_group = { 10387 .name = "format", 10388 .attrs = uprobe_attrs, 10389 }; 10390 10391 static const struct attribute_group *uprobe_attr_groups[] = { 10392 &uprobe_format_group, 10393 NULL, 10394 }; 10395 10396 static int perf_uprobe_event_init(struct perf_event *event); 10397 static struct pmu perf_uprobe = { 10398 .task_ctx_nr = perf_sw_context, 10399 .event_init = perf_uprobe_event_init, 10400 .add = perf_trace_add, 10401 .del = perf_trace_del, 10402 .start = perf_swevent_start, 10403 .stop = perf_swevent_stop, 10404 .read = perf_swevent_read, 10405 .attr_groups = uprobe_attr_groups, 10406 }; 10407 10408 static int perf_uprobe_event_init(struct perf_event *event) 10409 { 10410 int err; 10411 unsigned long ref_ctr_offset; 10412 bool is_retprobe; 10413 10414 if (event->attr.type != perf_uprobe.type) 10415 return -ENOENT; 10416 10417 if (!perfmon_capable()) 10418 return -EACCES; 10419 10420 /* 10421 * no branch sampling for probe events 10422 */ 10423 if (has_branch_stack(event)) 10424 return -EOPNOTSUPP; 10425 10426 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10427 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10428 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10429 if (err) 10430 return err; 10431 10432 event->destroy = perf_uprobe_destroy; 10433 10434 return 0; 10435 } 10436 #endif /* CONFIG_UPROBE_EVENTS */ 10437 10438 static inline void perf_tp_register(void) 10439 { 10440 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10441 #ifdef CONFIG_KPROBE_EVENTS 10442 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10443 #endif 10444 #ifdef CONFIG_UPROBE_EVENTS 10445 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10446 #endif 10447 } 10448 10449 static void perf_event_free_filter(struct perf_event *event) 10450 { 10451 ftrace_profile_free_filter(event); 10452 } 10453 10454 #ifdef CONFIG_BPF_SYSCALL 10455 static void bpf_overflow_handler(struct perf_event *event, 10456 struct perf_sample_data *data, 10457 struct pt_regs *regs) 10458 { 10459 struct bpf_perf_event_data_kern ctx = { 10460 .data = data, 10461 .event = event, 10462 }; 10463 struct bpf_prog *prog; 10464 int ret = 0; 10465 10466 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10467 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10468 goto out; 10469 rcu_read_lock(); 10470 prog = READ_ONCE(event->prog); 10471 if (prog) { 10472 perf_prepare_sample(data, event, regs); 10473 ret = bpf_prog_run(prog, &ctx); 10474 } 10475 rcu_read_unlock(); 10476 out: 10477 __this_cpu_dec(bpf_prog_active); 10478 if (!ret) 10479 return; 10480 10481 event->orig_overflow_handler(event, data, regs); 10482 } 10483 10484 static int perf_event_set_bpf_handler(struct perf_event *event, 10485 struct bpf_prog *prog, 10486 u64 bpf_cookie) 10487 { 10488 if (event->overflow_handler_context) 10489 /* hw breakpoint or kernel counter */ 10490 return -EINVAL; 10491 10492 if (event->prog) 10493 return -EEXIST; 10494 10495 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10496 return -EINVAL; 10497 10498 if (event->attr.precise_ip && 10499 prog->call_get_stack && 10500 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10501 event->attr.exclude_callchain_kernel || 10502 event->attr.exclude_callchain_user)) { 10503 /* 10504 * On perf_event with precise_ip, calling bpf_get_stack() 10505 * may trigger unwinder warnings and occasional crashes. 10506 * bpf_get_[stack|stackid] works around this issue by using 10507 * callchain attached to perf_sample_data. If the 10508 * perf_event does not full (kernel and user) callchain 10509 * attached to perf_sample_data, do not allow attaching BPF 10510 * program that calls bpf_get_[stack|stackid]. 10511 */ 10512 return -EPROTO; 10513 } 10514 10515 event->prog = prog; 10516 event->bpf_cookie = bpf_cookie; 10517 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10518 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10519 return 0; 10520 } 10521 10522 static void perf_event_free_bpf_handler(struct perf_event *event) 10523 { 10524 struct bpf_prog *prog = event->prog; 10525 10526 if (!prog) 10527 return; 10528 10529 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10530 event->prog = NULL; 10531 bpf_prog_put(prog); 10532 } 10533 #else 10534 static int perf_event_set_bpf_handler(struct perf_event *event, 10535 struct bpf_prog *prog, 10536 u64 bpf_cookie) 10537 { 10538 return -EOPNOTSUPP; 10539 } 10540 static void perf_event_free_bpf_handler(struct perf_event *event) 10541 { 10542 } 10543 #endif 10544 10545 /* 10546 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10547 * with perf_event_open() 10548 */ 10549 static inline bool perf_event_is_tracing(struct perf_event *event) 10550 { 10551 if (event->pmu == &perf_tracepoint) 10552 return true; 10553 #ifdef CONFIG_KPROBE_EVENTS 10554 if (event->pmu == &perf_kprobe) 10555 return true; 10556 #endif 10557 #ifdef CONFIG_UPROBE_EVENTS 10558 if (event->pmu == &perf_uprobe) 10559 return true; 10560 #endif 10561 return false; 10562 } 10563 10564 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10565 u64 bpf_cookie) 10566 { 10567 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10568 10569 if (!perf_event_is_tracing(event)) 10570 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10571 10572 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10573 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10574 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10575 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10576 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10577 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10578 return -EINVAL; 10579 10580 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10581 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10582 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10583 return -EINVAL; 10584 10585 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10586 /* only uprobe programs are allowed to be sleepable */ 10587 return -EINVAL; 10588 10589 /* Kprobe override only works for kprobes, not uprobes. */ 10590 if (prog->kprobe_override && !is_kprobe) 10591 return -EINVAL; 10592 10593 if (is_tracepoint || is_syscall_tp) { 10594 int off = trace_event_get_offsets(event->tp_event); 10595 10596 if (prog->aux->max_ctx_offset > off) 10597 return -EACCES; 10598 } 10599 10600 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10601 } 10602 10603 void perf_event_free_bpf_prog(struct perf_event *event) 10604 { 10605 if (!perf_event_is_tracing(event)) { 10606 perf_event_free_bpf_handler(event); 10607 return; 10608 } 10609 perf_event_detach_bpf_prog(event); 10610 } 10611 10612 #else 10613 10614 static inline void perf_tp_register(void) 10615 { 10616 } 10617 10618 static void perf_event_free_filter(struct perf_event *event) 10619 { 10620 } 10621 10622 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10623 u64 bpf_cookie) 10624 { 10625 return -ENOENT; 10626 } 10627 10628 void perf_event_free_bpf_prog(struct perf_event *event) 10629 { 10630 } 10631 #endif /* CONFIG_EVENT_TRACING */ 10632 10633 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10634 void perf_bp_event(struct perf_event *bp, void *data) 10635 { 10636 struct perf_sample_data sample; 10637 struct pt_regs *regs = data; 10638 10639 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10640 10641 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10642 perf_swevent_event(bp, 1, &sample, regs); 10643 } 10644 #endif 10645 10646 /* 10647 * Allocate a new address filter 10648 */ 10649 static struct perf_addr_filter * 10650 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10651 { 10652 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10653 struct perf_addr_filter *filter; 10654 10655 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10656 if (!filter) 10657 return NULL; 10658 10659 INIT_LIST_HEAD(&filter->entry); 10660 list_add_tail(&filter->entry, filters); 10661 10662 return filter; 10663 } 10664 10665 static void free_filters_list(struct list_head *filters) 10666 { 10667 struct perf_addr_filter *filter, *iter; 10668 10669 list_for_each_entry_safe(filter, iter, filters, entry) { 10670 path_put(&filter->path); 10671 list_del(&filter->entry); 10672 kfree(filter); 10673 } 10674 } 10675 10676 /* 10677 * Free existing address filters and optionally install new ones 10678 */ 10679 static void perf_addr_filters_splice(struct perf_event *event, 10680 struct list_head *head) 10681 { 10682 unsigned long flags; 10683 LIST_HEAD(list); 10684 10685 if (!has_addr_filter(event)) 10686 return; 10687 10688 /* don't bother with children, they don't have their own filters */ 10689 if (event->parent) 10690 return; 10691 10692 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10693 10694 list_splice_init(&event->addr_filters.list, &list); 10695 if (head) 10696 list_splice(head, &event->addr_filters.list); 10697 10698 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10699 10700 free_filters_list(&list); 10701 } 10702 10703 /* 10704 * Scan through mm's vmas and see if one of them matches the 10705 * @filter; if so, adjust filter's address range. 10706 * Called with mm::mmap_lock down for reading. 10707 */ 10708 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10709 struct mm_struct *mm, 10710 struct perf_addr_filter_range *fr) 10711 { 10712 struct vm_area_struct *vma; 10713 VMA_ITERATOR(vmi, mm, 0); 10714 10715 for_each_vma(vmi, vma) { 10716 if (!vma->vm_file) 10717 continue; 10718 10719 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10720 return; 10721 } 10722 } 10723 10724 /* 10725 * Update event's address range filters based on the 10726 * task's existing mappings, if any. 10727 */ 10728 static void perf_event_addr_filters_apply(struct perf_event *event) 10729 { 10730 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10731 struct task_struct *task = READ_ONCE(event->ctx->task); 10732 struct perf_addr_filter *filter; 10733 struct mm_struct *mm = NULL; 10734 unsigned int count = 0; 10735 unsigned long flags; 10736 10737 /* 10738 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10739 * will stop on the parent's child_mutex that our caller is also holding 10740 */ 10741 if (task == TASK_TOMBSTONE) 10742 return; 10743 10744 if (ifh->nr_file_filters) { 10745 mm = get_task_mm(task); 10746 if (!mm) 10747 goto restart; 10748 10749 mmap_read_lock(mm); 10750 } 10751 10752 raw_spin_lock_irqsave(&ifh->lock, flags); 10753 list_for_each_entry(filter, &ifh->list, entry) { 10754 if (filter->path.dentry) { 10755 /* 10756 * Adjust base offset if the filter is associated to a 10757 * binary that needs to be mapped: 10758 */ 10759 event->addr_filter_ranges[count].start = 0; 10760 event->addr_filter_ranges[count].size = 0; 10761 10762 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10763 } else { 10764 event->addr_filter_ranges[count].start = filter->offset; 10765 event->addr_filter_ranges[count].size = filter->size; 10766 } 10767 10768 count++; 10769 } 10770 10771 event->addr_filters_gen++; 10772 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10773 10774 if (ifh->nr_file_filters) { 10775 mmap_read_unlock(mm); 10776 10777 mmput(mm); 10778 } 10779 10780 restart: 10781 perf_event_stop(event, 1); 10782 } 10783 10784 /* 10785 * Address range filtering: limiting the data to certain 10786 * instruction address ranges. Filters are ioctl()ed to us from 10787 * userspace as ascii strings. 10788 * 10789 * Filter string format: 10790 * 10791 * ACTION RANGE_SPEC 10792 * where ACTION is one of the 10793 * * "filter": limit the trace to this region 10794 * * "start": start tracing from this address 10795 * * "stop": stop tracing at this address/region; 10796 * RANGE_SPEC is 10797 * * for kernel addresses: <start address>[/<size>] 10798 * * for object files: <start address>[/<size>]@</path/to/object/file> 10799 * 10800 * if <size> is not specified or is zero, the range is treated as a single 10801 * address; not valid for ACTION=="filter". 10802 */ 10803 enum { 10804 IF_ACT_NONE = -1, 10805 IF_ACT_FILTER, 10806 IF_ACT_START, 10807 IF_ACT_STOP, 10808 IF_SRC_FILE, 10809 IF_SRC_KERNEL, 10810 IF_SRC_FILEADDR, 10811 IF_SRC_KERNELADDR, 10812 }; 10813 10814 enum { 10815 IF_STATE_ACTION = 0, 10816 IF_STATE_SOURCE, 10817 IF_STATE_END, 10818 }; 10819 10820 static const match_table_t if_tokens = { 10821 { IF_ACT_FILTER, "filter" }, 10822 { IF_ACT_START, "start" }, 10823 { IF_ACT_STOP, "stop" }, 10824 { IF_SRC_FILE, "%u/%u@%s" }, 10825 { IF_SRC_KERNEL, "%u/%u" }, 10826 { IF_SRC_FILEADDR, "%u@%s" }, 10827 { IF_SRC_KERNELADDR, "%u" }, 10828 { IF_ACT_NONE, NULL }, 10829 }; 10830 10831 /* 10832 * Address filter string parser 10833 */ 10834 static int 10835 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10836 struct list_head *filters) 10837 { 10838 struct perf_addr_filter *filter = NULL; 10839 char *start, *orig, *filename = NULL; 10840 substring_t args[MAX_OPT_ARGS]; 10841 int state = IF_STATE_ACTION, token; 10842 unsigned int kernel = 0; 10843 int ret = -EINVAL; 10844 10845 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10846 if (!fstr) 10847 return -ENOMEM; 10848 10849 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10850 static const enum perf_addr_filter_action_t actions[] = { 10851 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10852 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10853 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10854 }; 10855 ret = -EINVAL; 10856 10857 if (!*start) 10858 continue; 10859 10860 /* filter definition begins */ 10861 if (state == IF_STATE_ACTION) { 10862 filter = perf_addr_filter_new(event, filters); 10863 if (!filter) 10864 goto fail; 10865 } 10866 10867 token = match_token(start, if_tokens, args); 10868 switch (token) { 10869 case IF_ACT_FILTER: 10870 case IF_ACT_START: 10871 case IF_ACT_STOP: 10872 if (state != IF_STATE_ACTION) 10873 goto fail; 10874 10875 filter->action = actions[token]; 10876 state = IF_STATE_SOURCE; 10877 break; 10878 10879 case IF_SRC_KERNELADDR: 10880 case IF_SRC_KERNEL: 10881 kernel = 1; 10882 fallthrough; 10883 10884 case IF_SRC_FILEADDR: 10885 case IF_SRC_FILE: 10886 if (state != IF_STATE_SOURCE) 10887 goto fail; 10888 10889 *args[0].to = 0; 10890 ret = kstrtoul(args[0].from, 0, &filter->offset); 10891 if (ret) 10892 goto fail; 10893 10894 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10895 *args[1].to = 0; 10896 ret = kstrtoul(args[1].from, 0, &filter->size); 10897 if (ret) 10898 goto fail; 10899 } 10900 10901 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10902 int fpos = token == IF_SRC_FILE ? 2 : 1; 10903 10904 kfree(filename); 10905 filename = match_strdup(&args[fpos]); 10906 if (!filename) { 10907 ret = -ENOMEM; 10908 goto fail; 10909 } 10910 } 10911 10912 state = IF_STATE_END; 10913 break; 10914 10915 default: 10916 goto fail; 10917 } 10918 10919 /* 10920 * Filter definition is fully parsed, validate and install it. 10921 * Make sure that it doesn't contradict itself or the event's 10922 * attribute. 10923 */ 10924 if (state == IF_STATE_END) { 10925 ret = -EINVAL; 10926 10927 /* 10928 * ACTION "filter" must have a non-zero length region 10929 * specified. 10930 */ 10931 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10932 !filter->size) 10933 goto fail; 10934 10935 if (!kernel) { 10936 if (!filename) 10937 goto fail; 10938 10939 /* 10940 * For now, we only support file-based filters 10941 * in per-task events; doing so for CPU-wide 10942 * events requires additional context switching 10943 * trickery, since same object code will be 10944 * mapped at different virtual addresses in 10945 * different processes. 10946 */ 10947 ret = -EOPNOTSUPP; 10948 if (!event->ctx->task) 10949 goto fail; 10950 10951 /* look up the path and grab its inode */ 10952 ret = kern_path(filename, LOOKUP_FOLLOW, 10953 &filter->path); 10954 if (ret) 10955 goto fail; 10956 10957 ret = -EINVAL; 10958 if (!filter->path.dentry || 10959 !S_ISREG(d_inode(filter->path.dentry) 10960 ->i_mode)) 10961 goto fail; 10962 10963 event->addr_filters.nr_file_filters++; 10964 } 10965 10966 /* ready to consume more filters */ 10967 kfree(filename); 10968 filename = NULL; 10969 state = IF_STATE_ACTION; 10970 filter = NULL; 10971 kernel = 0; 10972 } 10973 } 10974 10975 if (state != IF_STATE_ACTION) 10976 goto fail; 10977 10978 kfree(filename); 10979 kfree(orig); 10980 10981 return 0; 10982 10983 fail: 10984 kfree(filename); 10985 free_filters_list(filters); 10986 kfree(orig); 10987 10988 return ret; 10989 } 10990 10991 static int 10992 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10993 { 10994 LIST_HEAD(filters); 10995 int ret; 10996 10997 /* 10998 * Since this is called in perf_ioctl() path, we're already holding 10999 * ctx::mutex. 11000 */ 11001 lockdep_assert_held(&event->ctx->mutex); 11002 11003 if (WARN_ON_ONCE(event->parent)) 11004 return -EINVAL; 11005 11006 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11007 if (ret) 11008 goto fail_clear_files; 11009 11010 ret = event->pmu->addr_filters_validate(&filters); 11011 if (ret) 11012 goto fail_free_filters; 11013 11014 /* remove existing filters, if any */ 11015 perf_addr_filters_splice(event, &filters); 11016 11017 /* install new filters */ 11018 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11019 11020 return ret; 11021 11022 fail_free_filters: 11023 free_filters_list(&filters); 11024 11025 fail_clear_files: 11026 event->addr_filters.nr_file_filters = 0; 11027 11028 return ret; 11029 } 11030 11031 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11032 { 11033 int ret = -EINVAL; 11034 char *filter_str; 11035 11036 filter_str = strndup_user(arg, PAGE_SIZE); 11037 if (IS_ERR(filter_str)) 11038 return PTR_ERR(filter_str); 11039 11040 #ifdef CONFIG_EVENT_TRACING 11041 if (perf_event_is_tracing(event)) { 11042 struct perf_event_context *ctx = event->ctx; 11043 11044 /* 11045 * Beware, here be dragons!! 11046 * 11047 * the tracepoint muck will deadlock against ctx->mutex, but 11048 * the tracepoint stuff does not actually need it. So 11049 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11050 * already have a reference on ctx. 11051 * 11052 * This can result in event getting moved to a different ctx, 11053 * but that does not affect the tracepoint state. 11054 */ 11055 mutex_unlock(&ctx->mutex); 11056 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11057 mutex_lock(&ctx->mutex); 11058 } else 11059 #endif 11060 if (has_addr_filter(event)) 11061 ret = perf_event_set_addr_filter(event, filter_str); 11062 11063 kfree(filter_str); 11064 return ret; 11065 } 11066 11067 /* 11068 * hrtimer based swevent callback 11069 */ 11070 11071 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11072 { 11073 enum hrtimer_restart ret = HRTIMER_RESTART; 11074 struct perf_sample_data data; 11075 struct pt_regs *regs; 11076 struct perf_event *event; 11077 u64 period; 11078 11079 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11080 11081 if (event->state != PERF_EVENT_STATE_ACTIVE) 11082 return HRTIMER_NORESTART; 11083 11084 event->pmu->read(event); 11085 11086 perf_sample_data_init(&data, 0, event->hw.last_period); 11087 regs = get_irq_regs(); 11088 11089 if (regs && !perf_exclude_event(event, regs)) { 11090 if (!(event->attr.exclude_idle && is_idle_task(current))) 11091 if (__perf_event_overflow(event, 1, &data, regs)) 11092 ret = HRTIMER_NORESTART; 11093 } 11094 11095 period = max_t(u64, 10000, event->hw.sample_period); 11096 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11097 11098 return ret; 11099 } 11100 11101 static void perf_swevent_start_hrtimer(struct perf_event *event) 11102 { 11103 struct hw_perf_event *hwc = &event->hw; 11104 s64 period; 11105 11106 if (!is_sampling_event(event)) 11107 return; 11108 11109 period = local64_read(&hwc->period_left); 11110 if (period) { 11111 if (period < 0) 11112 period = 10000; 11113 11114 local64_set(&hwc->period_left, 0); 11115 } else { 11116 period = max_t(u64, 10000, hwc->sample_period); 11117 } 11118 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11119 HRTIMER_MODE_REL_PINNED_HARD); 11120 } 11121 11122 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11123 { 11124 struct hw_perf_event *hwc = &event->hw; 11125 11126 if (is_sampling_event(event)) { 11127 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11128 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11129 11130 hrtimer_cancel(&hwc->hrtimer); 11131 } 11132 } 11133 11134 static void perf_swevent_init_hrtimer(struct perf_event *event) 11135 { 11136 struct hw_perf_event *hwc = &event->hw; 11137 11138 if (!is_sampling_event(event)) 11139 return; 11140 11141 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11142 hwc->hrtimer.function = perf_swevent_hrtimer; 11143 11144 /* 11145 * Since hrtimers have a fixed rate, we can do a static freq->period 11146 * mapping and avoid the whole period adjust feedback stuff. 11147 */ 11148 if (event->attr.freq) { 11149 long freq = event->attr.sample_freq; 11150 11151 event->attr.sample_period = NSEC_PER_SEC / freq; 11152 hwc->sample_period = event->attr.sample_period; 11153 local64_set(&hwc->period_left, hwc->sample_period); 11154 hwc->last_period = hwc->sample_period; 11155 event->attr.freq = 0; 11156 } 11157 } 11158 11159 /* 11160 * Software event: cpu wall time clock 11161 */ 11162 11163 static void cpu_clock_event_update(struct perf_event *event) 11164 { 11165 s64 prev; 11166 u64 now; 11167 11168 now = local_clock(); 11169 prev = local64_xchg(&event->hw.prev_count, now); 11170 local64_add(now - prev, &event->count); 11171 } 11172 11173 static void cpu_clock_event_start(struct perf_event *event, int flags) 11174 { 11175 local64_set(&event->hw.prev_count, local_clock()); 11176 perf_swevent_start_hrtimer(event); 11177 } 11178 11179 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11180 { 11181 perf_swevent_cancel_hrtimer(event); 11182 cpu_clock_event_update(event); 11183 } 11184 11185 static int cpu_clock_event_add(struct perf_event *event, int flags) 11186 { 11187 if (flags & PERF_EF_START) 11188 cpu_clock_event_start(event, flags); 11189 perf_event_update_userpage(event); 11190 11191 return 0; 11192 } 11193 11194 static void cpu_clock_event_del(struct perf_event *event, int flags) 11195 { 11196 cpu_clock_event_stop(event, flags); 11197 } 11198 11199 static void cpu_clock_event_read(struct perf_event *event) 11200 { 11201 cpu_clock_event_update(event); 11202 } 11203 11204 static int cpu_clock_event_init(struct perf_event *event) 11205 { 11206 if (event->attr.type != perf_cpu_clock.type) 11207 return -ENOENT; 11208 11209 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11210 return -ENOENT; 11211 11212 /* 11213 * no branch sampling for software events 11214 */ 11215 if (has_branch_stack(event)) 11216 return -EOPNOTSUPP; 11217 11218 perf_swevent_init_hrtimer(event); 11219 11220 return 0; 11221 } 11222 11223 static struct pmu perf_cpu_clock = { 11224 .task_ctx_nr = perf_sw_context, 11225 11226 .capabilities = PERF_PMU_CAP_NO_NMI, 11227 .dev = PMU_NULL_DEV, 11228 11229 .event_init = cpu_clock_event_init, 11230 .add = cpu_clock_event_add, 11231 .del = cpu_clock_event_del, 11232 .start = cpu_clock_event_start, 11233 .stop = cpu_clock_event_stop, 11234 .read = cpu_clock_event_read, 11235 }; 11236 11237 /* 11238 * Software event: task time clock 11239 */ 11240 11241 static void task_clock_event_update(struct perf_event *event, u64 now) 11242 { 11243 u64 prev; 11244 s64 delta; 11245 11246 prev = local64_xchg(&event->hw.prev_count, now); 11247 delta = now - prev; 11248 local64_add(delta, &event->count); 11249 } 11250 11251 static void task_clock_event_start(struct perf_event *event, int flags) 11252 { 11253 local64_set(&event->hw.prev_count, event->ctx->time); 11254 perf_swevent_start_hrtimer(event); 11255 } 11256 11257 static void task_clock_event_stop(struct perf_event *event, int flags) 11258 { 11259 perf_swevent_cancel_hrtimer(event); 11260 task_clock_event_update(event, event->ctx->time); 11261 } 11262 11263 static int task_clock_event_add(struct perf_event *event, int flags) 11264 { 11265 if (flags & PERF_EF_START) 11266 task_clock_event_start(event, flags); 11267 perf_event_update_userpage(event); 11268 11269 return 0; 11270 } 11271 11272 static void task_clock_event_del(struct perf_event *event, int flags) 11273 { 11274 task_clock_event_stop(event, PERF_EF_UPDATE); 11275 } 11276 11277 static void task_clock_event_read(struct perf_event *event) 11278 { 11279 u64 now = perf_clock(); 11280 u64 delta = now - event->ctx->timestamp; 11281 u64 time = event->ctx->time + delta; 11282 11283 task_clock_event_update(event, time); 11284 } 11285 11286 static int task_clock_event_init(struct perf_event *event) 11287 { 11288 if (event->attr.type != perf_task_clock.type) 11289 return -ENOENT; 11290 11291 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11292 return -ENOENT; 11293 11294 /* 11295 * no branch sampling for software events 11296 */ 11297 if (has_branch_stack(event)) 11298 return -EOPNOTSUPP; 11299 11300 perf_swevent_init_hrtimer(event); 11301 11302 return 0; 11303 } 11304 11305 static struct pmu perf_task_clock = { 11306 .task_ctx_nr = perf_sw_context, 11307 11308 .capabilities = PERF_PMU_CAP_NO_NMI, 11309 .dev = PMU_NULL_DEV, 11310 11311 .event_init = task_clock_event_init, 11312 .add = task_clock_event_add, 11313 .del = task_clock_event_del, 11314 .start = task_clock_event_start, 11315 .stop = task_clock_event_stop, 11316 .read = task_clock_event_read, 11317 }; 11318 11319 static void perf_pmu_nop_void(struct pmu *pmu) 11320 { 11321 } 11322 11323 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11324 { 11325 } 11326 11327 static int perf_pmu_nop_int(struct pmu *pmu) 11328 { 11329 return 0; 11330 } 11331 11332 static int perf_event_nop_int(struct perf_event *event, u64 value) 11333 { 11334 return 0; 11335 } 11336 11337 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11338 11339 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11340 { 11341 __this_cpu_write(nop_txn_flags, flags); 11342 11343 if (flags & ~PERF_PMU_TXN_ADD) 11344 return; 11345 11346 perf_pmu_disable(pmu); 11347 } 11348 11349 static int perf_pmu_commit_txn(struct pmu *pmu) 11350 { 11351 unsigned int flags = __this_cpu_read(nop_txn_flags); 11352 11353 __this_cpu_write(nop_txn_flags, 0); 11354 11355 if (flags & ~PERF_PMU_TXN_ADD) 11356 return 0; 11357 11358 perf_pmu_enable(pmu); 11359 return 0; 11360 } 11361 11362 static void perf_pmu_cancel_txn(struct pmu *pmu) 11363 { 11364 unsigned int flags = __this_cpu_read(nop_txn_flags); 11365 11366 __this_cpu_write(nop_txn_flags, 0); 11367 11368 if (flags & ~PERF_PMU_TXN_ADD) 11369 return; 11370 11371 perf_pmu_enable(pmu); 11372 } 11373 11374 static int perf_event_idx_default(struct perf_event *event) 11375 { 11376 return 0; 11377 } 11378 11379 static void free_pmu_context(struct pmu *pmu) 11380 { 11381 free_percpu(pmu->cpu_pmu_context); 11382 } 11383 11384 /* 11385 * Let userspace know that this PMU supports address range filtering: 11386 */ 11387 static ssize_t nr_addr_filters_show(struct device *dev, 11388 struct device_attribute *attr, 11389 char *page) 11390 { 11391 struct pmu *pmu = dev_get_drvdata(dev); 11392 11393 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11394 } 11395 DEVICE_ATTR_RO(nr_addr_filters); 11396 11397 static struct idr pmu_idr; 11398 11399 static ssize_t 11400 type_show(struct device *dev, struct device_attribute *attr, char *page) 11401 { 11402 struct pmu *pmu = dev_get_drvdata(dev); 11403 11404 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11405 } 11406 static DEVICE_ATTR_RO(type); 11407 11408 static ssize_t 11409 perf_event_mux_interval_ms_show(struct device *dev, 11410 struct device_attribute *attr, 11411 char *page) 11412 { 11413 struct pmu *pmu = dev_get_drvdata(dev); 11414 11415 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11416 } 11417 11418 static DEFINE_MUTEX(mux_interval_mutex); 11419 11420 static ssize_t 11421 perf_event_mux_interval_ms_store(struct device *dev, 11422 struct device_attribute *attr, 11423 const char *buf, size_t count) 11424 { 11425 struct pmu *pmu = dev_get_drvdata(dev); 11426 int timer, cpu, ret; 11427 11428 ret = kstrtoint(buf, 0, &timer); 11429 if (ret) 11430 return ret; 11431 11432 if (timer < 1) 11433 return -EINVAL; 11434 11435 /* same value, noting to do */ 11436 if (timer == pmu->hrtimer_interval_ms) 11437 return count; 11438 11439 mutex_lock(&mux_interval_mutex); 11440 pmu->hrtimer_interval_ms = timer; 11441 11442 /* update all cpuctx for this PMU */ 11443 cpus_read_lock(); 11444 for_each_online_cpu(cpu) { 11445 struct perf_cpu_pmu_context *cpc; 11446 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11447 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11448 11449 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11450 } 11451 cpus_read_unlock(); 11452 mutex_unlock(&mux_interval_mutex); 11453 11454 return count; 11455 } 11456 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11457 11458 static struct attribute *pmu_dev_attrs[] = { 11459 &dev_attr_type.attr, 11460 &dev_attr_perf_event_mux_interval_ms.attr, 11461 &dev_attr_nr_addr_filters.attr, 11462 NULL, 11463 }; 11464 11465 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11466 { 11467 struct device *dev = kobj_to_dev(kobj); 11468 struct pmu *pmu = dev_get_drvdata(dev); 11469 11470 if (n == 2 && !pmu->nr_addr_filters) 11471 return 0; 11472 11473 return a->mode; 11474 } 11475 11476 static struct attribute_group pmu_dev_attr_group = { 11477 .is_visible = pmu_dev_is_visible, 11478 .attrs = pmu_dev_attrs, 11479 }; 11480 11481 static const struct attribute_group *pmu_dev_groups[] = { 11482 &pmu_dev_attr_group, 11483 NULL, 11484 }; 11485 11486 static int pmu_bus_running; 11487 static struct bus_type pmu_bus = { 11488 .name = "event_source", 11489 .dev_groups = pmu_dev_groups, 11490 }; 11491 11492 static void pmu_dev_release(struct device *dev) 11493 { 11494 kfree(dev); 11495 } 11496 11497 static int pmu_dev_alloc(struct pmu *pmu) 11498 { 11499 int ret = -ENOMEM; 11500 11501 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11502 if (!pmu->dev) 11503 goto out; 11504 11505 pmu->dev->groups = pmu->attr_groups; 11506 device_initialize(pmu->dev); 11507 11508 dev_set_drvdata(pmu->dev, pmu); 11509 pmu->dev->bus = &pmu_bus; 11510 pmu->dev->parent = pmu->parent; 11511 pmu->dev->release = pmu_dev_release; 11512 11513 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11514 if (ret) 11515 goto free_dev; 11516 11517 ret = device_add(pmu->dev); 11518 if (ret) 11519 goto free_dev; 11520 11521 if (pmu->attr_update) { 11522 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11523 if (ret) 11524 goto del_dev; 11525 } 11526 11527 out: 11528 return ret; 11529 11530 del_dev: 11531 device_del(pmu->dev); 11532 11533 free_dev: 11534 put_device(pmu->dev); 11535 goto out; 11536 } 11537 11538 static struct lock_class_key cpuctx_mutex; 11539 static struct lock_class_key cpuctx_lock; 11540 11541 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11542 { 11543 int cpu, ret, max = PERF_TYPE_MAX; 11544 11545 mutex_lock(&pmus_lock); 11546 ret = -ENOMEM; 11547 pmu->pmu_disable_count = alloc_percpu(int); 11548 if (!pmu->pmu_disable_count) 11549 goto unlock; 11550 11551 pmu->type = -1; 11552 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11553 ret = -EINVAL; 11554 goto free_pdc; 11555 } 11556 11557 pmu->name = name; 11558 11559 if (type >= 0) 11560 max = type; 11561 11562 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11563 if (ret < 0) 11564 goto free_pdc; 11565 11566 WARN_ON(type >= 0 && ret != type); 11567 11568 type = ret; 11569 pmu->type = type; 11570 11571 if (pmu_bus_running && !pmu->dev) { 11572 ret = pmu_dev_alloc(pmu); 11573 if (ret) 11574 goto free_idr; 11575 } 11576 11577 ret = -ENOMEM; 11578 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11579 if (!pmu->cpu_pmu_context) 11580 goto free_dev; 11581 11582 for_each_possible_cpu(cpu) { 11583 struct perf_cpu_pmu_context *cpc; 11584 11585 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11586 __perf_init_event_pmu_context(&cpc->epc, pmu); 11587 __perf_mux_hrtimer_init(cpc, cpu); 11588 } 11589 11590 if (!pmu->start_txn) { 11591 if (pmu->pmu_enable) { 11592 /* 11593 * If we have pmu_enable/pmu_disable calls, install 11594 * transaction stubs that use that to try and batch 11595 * hardware accesses. 11596 */ 11597 pmu->start_txn = perf_pmu_start_txn; 11598 pmu->commit_txn = perf_pmu_commit_txn; 11599 pmu->cancel_txn = perf_pmu_cancel_txn; 11600 } else { 11601 pmu->start_txn = perf_pmu_nop_txn; 11602 pmu->commit_txn = perf_pmu_nop_int; 11603 pmu->cancel_txn = perf_pmu_nop_void; 11604 } 11605 } 11606 11607 if (!pmu->pmu_enable) { 11608 pmu->pmu_enable = perf_pmu_nop_void; 11609 pmu->pmu_disable = perf_pmu_nop_void; 11610 } 11611 11612 if (!pmu->check_period) 11613 pmu->check_period = perf_event_nop_int; 11614 11615 if (!pmu->event_idx) 11616 pmu->event_idx = perf_event_idx_default; 11617 11618 list_add_rcu(&pmu->entry, &pmus); 11619 atomic_set(&pmu->exclusive_cnt, 0); 11620 ret = 0; 11621 unlock: 11622 mutex_unlock(&pmus_lock); 11623 11624 return ret; 11625 11626 free_dev: 11627 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11628 device_del(pmu->dev); 11629 put_device(pmu->dev); 11630 } 11631 11632 free_idr: 11633 idr_remove(&pmu_idr, pmu->type); 11634 11635 free_pdc: 11636 free_percpu(pmu->pmu_disable_count); 11637 goto unlock; 11638 } 11639 EXPORT_SYMBOL_GPL(perf_pmu_register); 11640 11641 void perf_pmu_unregister(struct pmu *pmu) 11642 { 11643 mutex_lock(&pmus_lock); 11644 list_del_rcu(&pmu->entry); 11645 11646 /* 11647 * We dereference the pmu list under both SRCU and regular RCU, so 11648 * synchronize against both of those. 11649 */ 11650 synchronize_srcu(&pmus_srcu); 11651 synchronize_rcu(); 11652 11653 free_percpu(pmu->pmu_disable_count); 11654 idr_remove(&pmu_idr, pmu->type); 11655 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11656 if (pmu->nr_addr_filters) 11657 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11658 device_del(pmu->dev); 11659 put_device(pmu->dev); 11660 } 11661 free_pmu_context(pmu); 11662 mutex_unlock(&pmus_lock); 11663 } 11664 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11665 11666 static inline bool has_extended_regs(struct perf_event *event) 11667 { 11668 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11669 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11670 } 11671 11672 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11673 { 11674 struct perf_event_context *ctx = NULL; 11675 int ret; 11676 11677 if (!try_module_get(pmu->module)) 11678 return -ENODEV; 11679 11680 /* 11681 * A number of pmu->event_init() methods iterate the sibling_list to, 11682 * for example, validate if the group fits on the PMU. Therefore, 11683 * if this is a sibling event, acquire the ctx->mutex to protect 11684 * the sibling_list. 11685 */ 11686 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11687 /* 11688 * This ctx->mutex can nest when we're called through 11689 * inheritance. See the perf_event_ctx_lock_nested() comment. 11690 */ 11691 ctx = perf_event_ctx_lock_nested(event->group_leader, 11692 SINGLE_DEPTH_NESTING); 11693 BUG_ON(!ctx); 11694 } 11695 11696 event->pmu = pmu; 11697 ret = pmu->event_init(event); 11698 11699 if (ctx) 11700 perf_event_ctx_unlock(event->group_leader, ctx); 11701 11702 if (!ret) { 11703 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11704 has_extended_regs(event)) 11705 ret = -EOPNOTSUPP; 11706 11707 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11708 event_has_any_exclude_flag(event)) 11709 ret = -EINVAL; 11710 11711 if (ret && event->destroy) 11712 event->destroy(event); 11713 } 11714 11715 if (ret) 11716 module_put(pmu->module); 11717 11718 return ret; 11719 } 11720 11721 static struct pmu *perf_init_event(struct perf_event *event) 11722 { 11723 bool extended_type = false; 11724 int idx, type, ret; 11725 struct pmu *pmu; 11726 11727 idx = srcu_read_lock(&pmus_srcu); 11728 11729 /* 11730 * Save original type before calling pmu->event_init() since certain 11731 * pmus overwrites event->attr.type to forward event to another pmu. 11732 */ 11733 event->orig_type = event->attr.type; 11734 11735 /* Try parent's PMU first: */ 11736 if (event->parent && event->parent->pmu) { 11737 pmu = event->parent->pmu; 11738 ret = perf_try_init_event(pmu, event); 11739 if (!ret) 11740 goto unlock; 11741 } 11742 11743 /* 11744 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11745 * are often aliases for PERF_TYPE_RAW. 11746 */ 11747 type = event->attr.type; 11748 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11749 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11750 if (!type) { 11751 type = PERF_TYPE_RAW; 11752 } else { 11753 extended_type = true; 11754 event->attr.config &= PERF_HW_EVENT_MASK; 11755 } 11756 } 11757 11758 again: 11759 rcu_read_lock(); 11760 pmu = idr_find(&pmu_idr, type); 11761 rcu_read_unlock(); 11762 if (pmu) { 11763 if (event->attr.type != type && type != PERF_TYPE_RAW && 11764 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11765 goto fail; 11766 11767 ret = perf_try_init_event(pmu, event); 11768 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11769 type = event->attr.type; 11770 goto again; 11771 } 11772 11773 if (ret) 11774 pmu = ERR_PTR(ret); 11775 11776 goto unlock; 11777 } 11778 11779 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11780 ret = perf_try_init_event(pmu, event); 11781 if (!ret) 11782 goto unlock; 11783 11784 if (ret != -ENOENT) { 11785 pmu = ERR_PTR(ret); 11786 goto unlock; 11787 } 11788 } 11789 fail: 11790 pmu = ERR_PTR(-ENOENT); 11791 unlock: 11792 srcu_read_unlock(&pmus_srcu, idx); 11793 11794 return pmu; 11795 } 11796 11797 static void attach_sb_event(struct perf_event *event) 11798 { 11799 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11800 11801 raw_spin_lock(&pel->lock); 11802 list_add_rcu(&event->sb_list, &pel->list); 11803 raw_spin_unlock(&pel->lock); 11804 } 11805 11806 /* 11807 * We keep a list of all !task (and therefore per-cpu) events 11808 * that need to receive side-band records. 11809 * 11810 * This avoids having to scan all the various PMU per-cpu contexts 11811 * looking for them. 11812 */ 11813 static void account_pmu_sb_event(struct perf_event *event) 11814 { 11815 if (is_sb_event(event)) 11816 attach_sb_event(event); 11817 } 11818 11819 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11820 static void account_freq_event_nohz(void) 11821 { 11822 #ifdef CONFIG_NO_HZ_FULL 11823 /* Lock so we don't race with concurrent unaccount */ 11824 spin_lock(&nr_freq_lock); 11825 if (atomic_inc_return(&nr_freq_events) == 1) 11826 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11827 spin_unlock(&nr_freq_lock); 11828 #endif 11829 } 11830 11831 static void account_freq_event(void) 11832 { 11833 if (tick_nohz_full_enabled()) 11834 account_freq_event_nohz(); 11835 else 11836 atomic_inc(&nr_freq_events); 11837 } 11838 11839 11840 static void account_event(struct perf_event *event) 11841 { 11842 bool inc = false; 11843 11844 if (event->parent) 11845 return; 11846 11847 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11848 inc = true; 11849 if (event->attr.mmap || event->attr.mmap_data) 11850 atomic_inc(&nr_mmap_events); 11851 if (event->attr.build_id) 11852 atomic_inc(&nr_build_id_events); 11853 if (event->attr.comm) 11854 atomic_inc(&nr_comm_events); 11855 if (event->attr.namespaces) 11856 atomic_inc(&nr_namespaces_events); 11857 if (event->attr.cgroup) 11858 atomic_inc(&nr_cgroup_events); 11859 if (event->attr.task) 11860 atomic_inc(&nr_task_events); 11861 if (event->attr.freq) 11862 account_freq_event(); 11863 if (event->attr.context_switch) { 11864 atomic_inc(&nr_switch_events); 11865 inc = true; 11866 } 11867 if (has_branch_stack(event)) 11868 inc = true; 11869 if (is_cgroup_event(event)) 11870 inc = true; 11871 if (event->attr.ksymbol) 11872 atomic_inc(&nr_ksymbol_events); 11873 if (event->attr.bpf_event) 11874 atomic_inc(&nr_bpf_events); 11875 if (event->attr.text_poke) 11876 atomic_inc(&nr_text_poke_events); 11877 11878 if (inc) { 11879 /* 11880 * We need the mutex here because static_branch_enable() 11881 * must complete *before* the perf_sched_count increment 11882 * becomes visible. 11883 */ 11884 if (atomic_inc_not_zero(&perf_sched_count)) 11885 goto enabled; 11886 11887 mutex_lock(&perf_sched_mutex); 11888 if (!atomic_read(&perf_sched_count)) { 11889 static_branch_enable(&perf_sched_events); 11890 /* 11891 * Guarantee that all CPUs observe they key change and 11892 * call the perf scheduling hooks before proceeding to 11893 * install events that need them. 11894 */ 11895 synchronize_rcu(); 11896 } 11897 /* 11898 * Now that we have waited for the sync_sched(), allow further 11899 * increments to by-pass the mutex. 11900 */ 11901 atomic_inc(&perf_sched_count); 11902 mutex_unlock(&perf_sched_mutex); 11903 } 11904 enabled: 11905 11906 account_pmu_sb_event(event); 11907 } 11908 11909 /* 11910 * Allocate and initialize an event structure 11911 */ 11912 static struct perf_event * 11913 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11914 struct task_struct *task, 11915 struct perf_event *group_leader, 11916 struct perf_event *parent_event, 11917 perf_overflow_handler_t overflow_handler, 11918 void *context, int cgroup_fd) 11919 { 11920 struct pmu *pmu; 11921 struct perf_event *event; 11922 struct hw_perf_event *hwc; 11923 long err = -EINVAL; 11924 int node; 11925 11926 if ((unsigned)cpu >= nr_cpu_ids) { 11927 if (!task || cpu != -1) 11928 return ERR_PTR(-EINVAL); 11929 } 11930 if (attr->sigtrap && !task) { 11931 /* Requires a task: avoid signalling random tasks. */ 11932 return ERR_PTR(-EINVAL); 11933 } 11934 11935 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11936 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11937 node); 11938 if (!event) 11939 return ERR_PTR(-ENOMEM); 11940 11941 /* 11942 * Single events are their own group leaders, with an 11943 * empty sibling list: 11944 */ 11945 if (!group_leader) 11946 group_leader = event; 11947 11948 mutex_init(&event->child_mutex); 11949 INIT_LIST_HEAD(&event->child_list); 11950 11951 INIT_LIST_HEAD(&event->event_entry); 11952 INIT_LIST_HEAD(&event->sibling_list); 11953 INIT_LIST_HEAD(&event->active_list); 11954 init_event_group(event); 11955 INIT_LIST_HEAD(&event->rb_entry); 11956 INIT_LIST_HEAD(&event->active_entry); 11957 INIT_LIST_HEAD(&event->addr_filters.list); 11958 INIT_HLIST_NODE(&event->hlist_entry); 11959 11960 11961 init_waitqueue_head(&event->waitq); 11962 init_irq_work(&event->pending_irq, perf_pending_irq); 11963 init_task_work(&event->pending_task, perf_pending_task); 11964 rcuwait_init(&event->pending_work_wait); 11965 11966 mutex_init(&event->mmap_mutex); 11967 raw_spin_lock_init(&event->addr_filters.lock); 11968 11969 atomic_long_set(&event->refcount, 1); 11970 event->cpu = cpu; 11971 event->attr = *attr; 11972 event->group_leader = group_leader; 11973 event->pmu = NULL; 11974 event->oncpu = -1; 11975 11976 event->parent = parent_event; 11977 11978 event->ns = get_pid_ns(task_active_pid_ns(current)); 11979 event->id = atomic64_inc_return(&perf_event_id); 11980 11981 event->state = PERF_EVENT_STATE_INACTIVE; 11982 11983 if (parent_event) 11984 event->event_caps = parent_event->event_caps; 11985 11986 if (task) { 11987 event->attach_state = PERF_ATTACH_TASK; 11988 /* 11989 * XXX pmu::event_init needs to know what task to account to 11990 * and we cannot use the ctx information because we need the 11991 * pmu before we get a ctx. 11992 */ 11993 event->hw.target = get_task_struct(task); 11994 } 11995 11996 event->clock = &local_clock; 11997 if (parent_event) 11998 event->clock = parent_event->clock; 11999 12000 if (!overflow_handler && parent_event) { 12001 overflow_handler = parent_event->overflow_handler; 12002 context = parent_event->overflow_handler_context; 12003 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12004 if (overflow_handler == bpf_overflow_handler) { 12005 struct bpf_prog *prog = parent_event->prog; 12006 12007 bpf_prog_inc(prog); 12008 event->prog = prog; 12009 event->orig_overflow_handler = 12010 parent_event->orig_overflow_handler; 12011 } 12012 #endif 12013 } 12014 12015 if (overflow_handler) { 12016 event->overflow_handler = overflow_handler; 12017 event->overflow_handler_context = context; 12018 } else if (is_write_backward(event)){ 12019 event->overflow_handler = perf_event_output_backward; 12020 event->overflow_handler_context = NULL; 12021 } else { 12022 event->overflow_handler = perf_event_output_forward; 12023 event->overflow_handler_context = NULL; 12024 } 12025 12026 perf_event__state_init(event); 12027 12028 pmu = NULL; 12029 12030 hwc = &event->hw; 12031 hwc->sample_period = attr->sample_period; 12032 if (attr->freq && attr->sample_freq) 12033 hwc->sample_period = 1; 12034 hwc->last_period = hwc->sample_period; 12035 12036 local64_set(&hwc->period_left, hwc->sample_period); 12037 12038 /* 12039 * We currently do not support PERF_SAMPLE_READ on inherited events. 12040 * See perf_output_read(). 12041 */ 12042 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12043 goto err_ns; 12044 12045 if (!has_branch_stack(event)) 12046 event->attr.branch_sample_type = 0; 12047 12048 pmu = perf_init_event(event); 12049 if (IS_ERR(pmu)) { 12050 err = PTR_ERR(pmu); 12051 goto err_ns; 12052 } 12053 12054 /* 12055 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12056 * events (they don't make sense as the cgroup will be different 12057 * on other CPUs in the uncore mask). 12058 */ 12059 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12060 err = -EINVAL; 12061 goto err_pmu; 12062 } 12063 12064 if (event->attr.aux_output && 12065 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12066 err = -EOPNOTSUPP; 12067 goto err_pmu; 12068 } 12069 12070 if (cgroup_fd != -1) { 12071 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12072 if (err) 12073 goto err_pmu; 12074 } 12075 12076 err = exclusive_event_init(event); 12077 if (err) 12078 goto err_pmu; 12079 12080 if (has_addr_filter(event)) { 12081 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12082 sizeof(struct perf_addr_filter_range), 12083 GFP_KERNEL); 12084 if (!event->addr_filter_ranges) { 12085 err = -ENOMEM; 12086 goto err_per_task; 12087 } 12088 12089 /* 12090 * Clone the parent's vma offsets: they are valid until exec() 12091 * even if the mm is not shared with the parent. 12092 */ 12093 if (event->parent) { 12094 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12095 12096 raw_spin_lock_irq(&ifh->lock); 12097 memcpy(event->addr_filter_ranges, 12098 event->parent->addr_filter_ranges, 12099 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12100 raw_spin_unlock_irq(&ifh->lock); 12101 } 12102 12103 /* force hw sync on the address filters */ 12104 event->addr_filters_gen = 1; 12105 } 12106 12107 if (!event->parent) { 12108 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12109 err = get_callchain_buffers(attr->sample_max_stack); 12110 if (err) 12111 goto err_addr_filters; 12112 } 12113 } 12114 12115 err = security_perf_event_alloc(event); 12116 if (err) 12117 goto err_callchain_buffer; 12118 12119 /* symmetric to unaccount_event() in _free_event() */ 12120 account_event(event); 12121 12122 return event; 12123 12124 err_callchain_buffer: 12125 if (!event->parent) { 12126 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12127 put_callchain_buffers(); 12128 } 12129 err_addr_filters: 12130 kfree(event->addr_filter_ranges); 12131 12132 err_per_task: 12133 exclusive_event_destroy(event); 12134 12135 err_pmu: 12136 if (is_cgroup_event(event)) 12137 perf_detach_cgroup(event); 12138 if (event->destroy) 12139 event->destroy(event); 12140 module_put(pmu->module); 12141 err_ns: 12142 if (event->hw.target) 12143 put_task_struct(event->hw.target); 12144 call_rcu(&event->rcu_head, free_event_rcu); 12145 12146 return ERR_PTR(err); 12147 } 12148 12149 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12150 struct perf_event_attr *attr) 12151 { 12152 u32 size; 12153 int ret; 12154 12155 /* Zero the full structure, so that a short copy will be nice. */ 12156 memset(attr, 0, sizeof(*attr)); 12157 12158 ret = get_user(size, &uattr->size); 12159 if (ret) 12160 return ret; 12161 12162 /* ABI compatibility quirk: */ 12163 if (!size) 12164 size = PERF_ATTR_SIZE_VER0; 12165 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12166 goto err_size; 12167 12168 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12169 if (ret) { 12170 if (ret == -E2BIG) 12171 goto err_size; 12172 return ret; 12173 } 12174 12175 attr->size = size; 12176 12177 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12178 return -EINVAL; 12179 12180 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12181 return -EINVAL; 12182 12183 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12184 return -EINVAL; 12185 12186 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12187 u64 mask = attr->branch_sample_type; 12188 12189 /* only using defined bits */ 12190 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12191 return -EINVAL; 12192 12193 /* at least one branch bit must be set */ 12194 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12195 return -EINVAL; 12196 12197 /* propagate priv level, when not set for branch */ 12198 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12199 12200 /* exclude_kernel checked on syscall entry */ 12201 if (!attr->exclude_kernel) 12202 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12203 12204 if (!attr->exclude_user) 12205 mask |= PERF_SAMPLE_BRANCH_USER; 12206 12207 if (!attr->exclude_hv) 12208 mask |= PERF_SAMPLE_BRANCH_HV; 12209 /* 12210 * adjust user setting (for HW filter setup) 12211 */ 12212 attr->branch_sample_type = mask; 12213 } 12214 /* privileged levels capture (kernel, hv): check permissions */ 12215 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12216 ret = perf_allow_kernel(attr); 12217 if (ret) 12218 return ret; 12219 } 12220 } 12221 12222 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12223 ret = perf_reg_validate(attr->sample_regs_user); 12224 if (ret) 12225 return ret; 12226 } 12227 12228 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12229 if (!arch_perf_have_user_stack_dump()) 12230 return -ENOSYS; 12231 12232 /* 12233 * We have __u32 type for the size, but so far 12234 * we can only use __u16 as maximum due to the 12235 * __u16 sample size limit. 12236 */ 12237 if (attr->sample_stack_user >= USHRT_MAX) 12238 return -EINVAL; 12239 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12240 return -EINVAL; 12241 } 12242 12243 if (!attr->sample_max_stack) 12244 attr->sample_max_stack = sysctl_perf_event_max_stack; 12245 12246 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12247 ret = perf_reg_validate(attr->sample_regs_intr); 12248 12249 #ifndef CONFIG_CGROUP_PERF 12250 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12251 return -EINVAL; 12252 #endif 12253 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12254 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12255 return -EINVAL; 12256 12257 if (!attr->inherit && attr->inherit_thread) 12258 return -EINVAL; 12259 12260 if (attr->remove_on_exec && attr->enable_on_exec) 12261 return -EINVAL; 12262 12263 if (attr->sigtrap && !attr->remove_on_exec) 12264 return -EINVAL; 12265 12266 out: 12267 return ret; 12268 12269 err_size: 12270 put_user(sizeof(*attr), &uattr->size); 12271 ret = -E2BIG; 12272 goto out; 12273 } 12274 12275 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12276 { 12277 if (b < a) 12278 swap(a, b); 12279 12280 mutex_lock(a); 12281 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12282 } 12283 12284 static int 12285 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12286 { 12287 struct perf_buffer *rb = NULL; 12288 int ret = -EINVAL; 12289 12290 if (!output_event) { 12291 mutex_lock(&event->mmap_mutex); 12292 goto set; 12293 } 12294 12295 /* don't allow circular references */ 12296 if (event == output_event) 12297 goto out; 12298 12299 /* 12300 * Don't allow cross-cpu buffers 12301 */ 12302 if (output_event->cpu != event->cpu) 12303 goto out; 12304 12305 /* 12306 * If its not a per-cpu rb, it must be the same task. 12307 */ 12308 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12309 goto out; 12310 12311 /* 12312 * Mixing clocks in the same buffer is trouble you don't need. 12313 */ 12314 if (output_event->clock != event->clock) 12315 goto out; 12316 12317 /* 12318 * Either writing ring buffer from beginning or from end. 12319 * Mixing is not allowed. 12320 */ 12321 if (is_write_backward(output_event) != is_write_backward(event)) 12322 goto out; 12323 12324 /* 12325 * If both events generate aux data, they must be on the same PMU 12326 */ 12327 if (has_aux(event) && has_aux(output_event) && 12328 event->pmu != output_event->pmu) 12329 goto out; 12330 12331 /* 12332 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12333 * output_event is already on rb->event_list, and the list iteration 12334 * restarts after every removal, it is guaranteed this new event is 12335 * observed *OR* if output_event is already removed, it's guaranteed we 12336 * observe !rb->mmap_count. 12337 */ 12338 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12339 set: 12340 /* Can't redirect output if we've got an active mmap() */ 12341 if (atomic_read(&event->mmap_count)) 12342 goto unlock; 12343 12344 if (output_event) { 12345 /* get the rb we want to redirect to */ 12346 rb = ring_buffer_get(output_event); 12347 if (!rb) 12348 goto unlock; 12349 12350 /* did we race against perf_mmap_close() */ 12351 if (!atomic_read(&rb->mmap_count)) { 12352 ring_buffer_put(rb); 12353 goto unlock; 12354 } 12355 } 12356 12357 ring_buffer_attach(event, rb); 12358 12359 ret = 0; 12360 unlock: 12361 mutex_unlock(&event->mmap_mutex); 12362 if (output_event) 12363 mutex_unlock(&output_event->mmap_mutex); 12364 12365 out: 12366 return ret; 12367 } 12368 12369 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12370 { 12371 bool nmi_safe = false; 12372 12373 switch (clk_id) { 12374 case CLOCK_MONOTONIC: 12375 event->clock = &ktime_get_mono_fast_ns; 12376 nmi_safe = true; 12377 break; 12378 12379 case CLOCK_MONOTONIC_RAW: 12380 event->clock = &ktime_get_raw_fast_ns; 12381 nmi_safe = true; 12382 break; 12383 12384 case CLOCK_REALTIME: 12385 event->clock = &ktime_get_real_ns; 12386 break; 12387 12388 case CLOCK_BOOTTIME: 12389 event->clock = &ktime_get_boottime_ns; 12390 break; 12391 12392 case CLOCK_TAI: 12393 event->clock = &ktime_get_clocktai_ns; 12394 break; 12395 12396 default: 12397 return -EINVAL; 12398 } 12399 12400 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12401 return -EINVAL; 12402 12403 return 0; 12404 } 12405 12406 static bool 12407 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12408 { 12409 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12410 bool is_capable = perfmon_capable(); 12411 12412 if (attr->sigtrap) { 12413 /* 12414 * perf_event_attr::sigtrap sends signals to the other task. 12415 * Require the current task to also have CAP_KILL. 12416 */ 12417 rcu_read_lock(); 12418 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12419 rcu_read_unlock(); 12420 12421 /* 12422 * If the required capabilities aren't available, checks for 12423 * ptrace permissions: upgrade to ATTACH, since sending signals 12424 * can effectively change the target task. 12425 */ 12426 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12427 } 12428 12429 /* 12430 * Preserve ptrace permission check for backwards compatibility. The 12431 * ptrace check also includes checks that the current task and other 12432 * task have matching uids, and is therefore not done here explicitly. 12433 */ 12434 return is_capable || ptrace_may_access(task, ptrace_mode); 12435 } 12436 12437 /** 12438 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12439 * 12440 * @attr_uptr: event_id type attributes for monitoring/sampling 12441 * @pid: target pid 12442 * @cpu: target cpu 12443 * @group_fd: group leader event fd 12444 * @flags: perf event open flags 12445 */ 12446 SYSCALL_DEFINE5(perf_event_open, 12447 struct perf_event_attr __user *, attr_uptr, 12448 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12449 { 12450 struct perf_event *group_leader = NULL, *output_event = NULL; 12451 struct perf_event_pmu_context *pmu_ctx; 12452 struct perf_event *event, *sibling; 12453 struct perf_event_attr attr; 12454 struct perf_event_context *ctx; 12455 struct file *event_file = NULL; 12456 struct fd group = {NULL, 0}; 12457 struct task_struct *task = NULL; 12458 struct pmu *pmu; 12459 int event_fd; 12460 int move_group = 0; 12461 int err; 12462 int f_flags = O_RDWR; 12463 int cgroup_fd = -1; 12464 12465 /* for future expandability... */ 12466 if (flags & ~PERF_FLAG_ALL) 12467 return -EINVAL; 12468 12469 err = perf_copy_attr(attr_uptr, &attr); 12470 if (err) 12471 return err; 12472 12473 /* Do we allow access to perf_event_open(2) ? */ 12474 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12475 if (err) 12476 return err; 12477 12478 if (!attr.exclude_kernel) { 12479 err = perf_allow_kernel(&attr); 12480 if (err) 12481 return err; 12482 } 12483 12484 if (attr.namespaces) { 12485 if (!perfmon_capable()) 12486 return -EACCES; 12487 } 12488 12489 if (attr.freq) { 12490 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12491 return -EINVAL; 12492 } else { 12493 if (attr.sample_period & (1ULL << 63)) 12494 return -EINVAL; 12495 } 12496 12497 /* Only privileged users can get physical addresses */ 12498 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12499 err = perf_allow_kernel(&attr); 12500 if (err) 12501 return err; 12502 } 12503 12504 /* REGS_INTR can leak data, lockdown must prevent this */ 12505 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12506 err = security_locked_down(LOCKDOWN_PERF); 12507 if (err) 12508 return err; 12509 } 12510 12511 /* 12512 * In cgroup mode, the pid argument is used to pass the fd 12513 * opened to the cgroup directory in cgroupfs. The cpu argument 12514 * designates the cpu on which to monitor threads from that 12515 * cgroup. 12516 */ 12517 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12518 return -EINVAL; 12519 12520 if (flags & PERF_FLAG_FD_CLOEXEC) 12521 f_flags |= O_CLOEXEC; 12522 12523 event_fd = get_unused_fd_flags(f_flags); 12524 if (event_fd < 0) 12525 return event_fd; 12526 12527 if (group_fd != -1) { 12528 err = perf_fget_light(group_fd, &group); 12529 if (err) 12530 goto err_fd; 12531 group_leader = group.file->private_data; 12532 if (flags & PERF_FLAG_FD_OUTPUT) 12533 output_event = group_leader; 12534 if (flags & PERF_FLAG_FD_NO_GROUP) 12535 group_leader = NULL; 12536 } 12537 12538 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12539 task = find_lively_task_by_vpid(pid); 12540 if (IS_ERR(task)) { 12541 err = PTR_ERR(task); 12542 goto err_group_fd; 12543 } 12544 } 12545 12546 if (task && group_leader && 12547 group_leader->attr.inherit != attr.inherit) { 12548 err = -EINVAL; 12549 goto err_task; 12550 } 12551 12552 if (flags & PERF_FLAG_PID_CGROUP) 12553 cgroup_fd = pid; 12554 12555 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12556 NULL, NULL, cgroup_fd); 12557 if (IS_ERR(event)) { 12558 err = PTR_ERR(event); 12559 goto err_task; 12560 } 12561 12562 if (is_sampling_event(event)) { 12563 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12564 err = -EOPNOTSUPP; 12565 goto err_alloc; 12566 } 12567 } 12568 12569 /* 12570 * Special case software events and allow them to be part of 12571 * any hardware group. 12572 */ 12573 pmu = event->pmu; 12574 12575 if (attr.use_clockid) { 12576 err = perf_event_set_clock(event, attr.clockid); 12577 if (err) 12578 goto err_alloc; 12579 } 12580 12581 if (pmu->task_ctx_nr == perf_sw_context) 12582 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12583 12584 if (task) { 12585 err = down_read_interruptible(&task->signal->exec_update_lock); 12586 if (err) 12587 goto err_alloc; 12588 12589 /* 12590 * We must hold exec_update_lock across this and any potential 12591 * perf_install_in_context() call for this new event to 12592 * serialize against exec() altering our credentials (and the 12593 * perf_event_exit_task() that could imply). 12594 */ 12595 err = -EACCES; 12596 if (!perf_check_permission(&attr, task)) 12597 goto err_cred; 12598 } 12599 12600 /* 12601 * Get the target context (task or percpu): 12602 */ 12603 ctx = find_get_context(task, event); 12604 if (IS_ERR(ctx)) { 12605 err = PTR_ERR(ctx); 12606 goto err_cred; 12607 } 12608 12609 mutex_lock(&ctx->mutex); 12610 12611 if (ctx->task == TASK_TOMBSTONE) { 12612 err = -ESRCH; 12613 goto err_locked; 12614 } 12615 12616 if (!task) { 12617 /* 12618 * Check if the @cpu we're creating an event for is online. 12619 * 12620 * We use the perf_cpu_context::ctx::mutex to serialize against 12621 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12622 */ 12623 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12624 12625 if (!cpuctx->online) { 12626 err = -ENODEV; 12627 goto err_locked; 12628 } 12629 } 12630 12631 if (group_leader) { 12632 err = -EINVAL; 12633 12634 /* 12635 * Do not allow a recursive hierarchy (this new sibling 12636 * becoming part of another group-sibling): 12637 */ 12638 if (group_leader->group_leader != group_leader) 12639 goto err_locked; 12640 12641 /* All events in a group should have the same clock */ 12642 if (group_leader->clock != event->clock) 12643 goto err_locked; 12644 12645 /* 12646 * Make sure we're both events for the same CPU; 12647 * grouping events for different CPUs is broken; since 12648 * you can never concurrently schedule them anyhow. 12649 */ 12650 if (group_leader->cpu != event->cpu) 12651 goto err_locked; 12652 12653 /* 12654 * Make sure we're both on the same context; either task or cpu. 12655 */ 12656 if (group_leader->ctx != ctx) 12657 goto err_locked; 12658 12659 /* 12660 * Only a group leader can be exclusive or pinned 12661 */ 12662 if (attr.exclusive || attr.pinned) 12663 goto err_locked; 12664 12665 if (is_software_event(event) && 12666 !in_software_context(group_leader)) { 12667 /* 12668 * If the event is a sw event, but the group_leader 12669 * is on hw context. 12670 * 12671 * Allow the addition of software events to hw 12672 * groups, this is safe because software events 12673 * never fail to schedule. 12674 * 12675 * Note the comment that goes with struct 12676 * perf_event_pmu_context. 12677 */ 12678 pmu = group_leader->pmu_ctx->pmu; 12679 } else if (!is_software_event(event)) { 12680 if (is_software_event(group_leader) && 12681 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12682 /* 12683 * In case the group is a pure software group, and we 12684 * try to add a hardware event, move the whole group to 12685 * the hardware context. 12686 */ 12687 move_group = 1; 12688 } 12689 12690 /* Don't allow group of multiple hw events from different pmus */ 12691 if (!in_software_context(group_leader) && 12692 group_leader->pmu_ctx->pmu != pmu) 12693 goto err_locked; 12694 } 12695 } 12696 12697 /* 12698 * Now that we're certain of the pmu; find the pmu_ctx. 12699 */ 12700 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12701 if (IS_ERR(pmu_ctx)) { 12702 err = PTR_ERR(pmu_ctx); 12703 goto err_locked; 12704 } 12705 event->pmu_ctx = pmu_ctx; 12706 12707 if (output_event) { 12708 err = perf_event_set_output(event, output_event); 12709 if (err) 12710 goto err_context; 12711 } 12712 12713 if (!perf_event_validate_size(event)) { 12714 err = -E2BIG; 12715 goto err_context; 12716 } 12717 12718 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12719 err = -EINVAL; 12720 goto err_context; 12721 } 12722 12723 /* 12724 * Must be under the same ctx::mutex as perf_install_in_context(), 12725 * because we need to serialize with concurrent event creation. 12726 */ 12727 if (!exclusive_event_installable(event, ctx)) { 12728 err = -EBUSY; 12729 goto err_context; 12730 } 12731 12732 WARN_ON_ONCE(ctx->parent_ctx); 12733 12734 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12735 if (IS_ERR(event_file)) { 12736 err = PTR_ERR(event_file); 12737 event_file = NULL; 12738 goto err_context; 12739 } 12740 12741 /* 12742 * This is the point on no return; we cannot fail hereafter. This is 12743 * where we start modifying current state. 12744 */ 12745 12746 if (move_group) { 12747 perf_remove_from_context(group_leader, 0); 12748 put_pmu_ctx(group_leader->pmu_ctx); 12749 12750 for_each_sibling_event(sibling, group_leader) { 12751 perf_remove_from_context(sibling, 0); 12752 put_pmu_ctx(sibling->pmu_ctx); 12753 } 12754 12755 /* 12756 * Install the group siblings before the group leader. 12757 * 12758 * Because a group leader will try and install the entire group 12759 * (through the sibling list, which is still in-tact), we can 12760 * end up with siblings installed in the wrong context. 12761 * 12762 * By installing siblings first we NO-OP because they're not 12763 * reachable through the group lists. 12764 */ 12765 for_each_sibling_event(sibling, group_leader) { 12766 sibling->pmu_ctx = pmu_ctx; 12767 get_pmu_ctx(pmu_ctx); 12768 perf_event__state_init(sibling); 12769 perf_install_in_context(ctx, sibling, sibling->cpu); 12770 } 12771 12772 /* 12773 * Removing from the context ends up with disabled 12774 * event. What we want here is event in the initial 12775 * startup state, ready to be add into new context. 12776 */ 12777 group_leader->pmu_ctx = pmu_ctx; 12778 get_pmu_ctx(pmu_ctx); 12779 perf_event__state_init(group_leader); 12780 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12781 } 12782 12783 /* 12784 * Precalculate sample_data sizes; do while holding ctx::mutex such 12785 * that we're serialized against further additions and before 12786 * perf_install_in_context() which is the point the event is active and 12787 * can use these values. 12788 */ 12789 perf_event__header_size(event); 12790 perf_event__id_header_size(event); 12791 12792 event->owner = current; 12793 12794 perf_install_in_context(ctx, event, event->cpu); 12795 perf_unpin_context(ctx); 12796 12797 mutex_unlock(&ctx->mutex); 12798 12799 if (task) { 12800 up_read(&task->signal->exec_update_lock); 12801 put_task_struct(task); 12802 } 12803 12804 mutex_lock(¤t->perf_event_mutex); 12805 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12806 mutex_unlock(¤t->perf_event_mutex); 12807 12808 /* 12809 * Drop the reference on the group_event after placing the 12810 * new event on the sibling_list. This ensures destruction 12811 * of the group leader will find the pointer to itself in 12812 * perf_group_detach(). 12813 */ 12814 fdput(group); 12815 fd_install(event_fd, event_file); 12816 return event_fd; 12817 12818 err_context: 12819 put_pmu_ctx(event->pmu_ctx); 12820 event->pmu_ctx = NULL; /* _free_event() */ 12821 err_locked: 12822 mutex_unlock(&ctx->mutex); 12823 perf_unpin_context(ctx); 12824 put_ctx(ctx); 12825 err_cred: 12826 if (task) 12827 up_read(&task->signal->exec_update_lock); 12828 err_alloc: 12829 free_event(event); 12830 err_task: 12831 if (task) 12832 put_task_struct(task); 12833 err_group_fd: 12834 fdput(group); 12835 err_fd: 12836 put_unused_fd(event_fd); 12837 return err; 12838 } 12839 12840 /** 12841 * perf_event_create_kernel_counter 12842 * 12843 * @attr: attributes of the counter to create 12844 * @cpu: cpu in which the counter is bound 12845 * @task: task to profile (NULL for percpu) 12846 * @overflow_handler: callback to trigger when we hit the event 12847 * @context: context data could be used in overflow_handler callback 12848 */ 12849 struct perf_event * 12850 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12851 struct task_struct *task, 12852 perf_overflow_handler_t overflow_handler, 12853 void *context) 12854 { 12855 struct perf_event_pmu_context *pmu_ctx; 12856 struct perf_event_context *ctx; 12857 struct perf_event *event; 12858 struct pmu *pmu; 12859 int err; 12860 12861 /* 12862 * Grouping is not supported for kernel events, neither is 'AUX', 12863 * make sure the caller's intentions are adjusted. 12864 */ 12865 if (attr->aux_output) 12866 return ERR_PTR(-EINVAL); 12867 12868 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12869 overflow_handler, context, -1); 12870 if (IS_ERR(event)) { 12871 err = PTR_ERR(event); 12872 goto err; 12873 } 12874 12875 /* Mark owner so we could distinguish it from user events. */ 12876 event->owner = TASK_TOMBSTONE; 12877 pmu = event->pmu; 12878 12879 if (pmu->task_ctx_nr == perf_sw_context) 12880 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12881 12882 /* 12883 * Get the target context (task or percpu): 12884 */ 12885 ctx = find_get_context(task, event); 12886 if (IS_ERR(ctx)) { 12887 err = PTR_ERR(ctx); 12888 goto err_alloc; 12889 } 12890 12891 WARN_ON_ONCE(ctx->parent_ctx); 12892 mutex_lock(&ctx->mutex); 12893 if (ctx->task == TASK_TOMBSTONE) { 12894 err = -ESRCH; 12895 goto err_unlock; 12896 } 12897 12898 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12899 if (IS_ERR(pmu_ctx)) { 12900 err = PTR_ERR(pmu_ctx); 12901 goto err_unlock; 12902 } 12903 event->pmu_ctx = pmu_ctx; 12904 12905 if (!task) { 12906 /* 12907 * Check if the @cpu we're creating an event for is online. 12908 * 12909 * We use the perf_cpu_context::ctx::mutex to serialize against 12910 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12911 */ 12912 struct perf_cpu_context *cpuctx = 12913 container_of(ctx, struct perf_cpu_context, ctx); 12914 if (!cpuctx->online) { 12915 err = -ENODEV; 12916 goto err_pmu_ctx; 12917 } 12918 } 12919 12920 if (!exclusive_event_installable(event, ctx)) { 12921 err = -EBUSY; 12922 goto err_pmu_ctx; 12923 } 12924 12925 perf_install_in_context(ctx, event, event->cpu); 12926 perf_unpin_context(ctx); 12927 mutex_unlock(&ctx->mutex); 12928 12929 return event; 12930 12931 err_pmu_ctx: 12932 put_pmu_ctx(pmu_ctx); 12933 event->pmu_ctx = NULL; /* _free_event() */ 12934 err_unlock: 12935 mutex_unlock(&ctx->mutex); 12936 perf_unpin_context(ctx); 12937 put_ctx(ctx); 12938 err_alloc: 12939 free_event(event); 12940 err: 12941 return ERR_PTR(err); 12942 } 12943 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12944 12945 static void __perf_pmu_remove(struct perf_event_context *ctx, 12946 int cpu, struct pmu *pmu, 12947 struct perf_event_groups *groups, 12948 struct list_head *events) 12949 { 12950 struct perf_event *event, *sibling; 12951 12952 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12953 perf_remove_from_context(event, 0); 12954 put_pmu_ctx(event->pmu_ctx); 12955 list_add(&event->migrate_entry, events); 12956 12957 for_each_sibling_event(sibling, event) { 12958 perf_remove_from_context(sibling, 0); 12959 put_pmu_ctx(sibling->pmu_ctx); 12960 list_add(&sibling->migrate_entry, events); 12961 } 12962 } 12963 } 12964 12965 static void __perf_pmu_install_event(struct pmu *pmu, 12966 struct perf_event_context *ctx, 12967 int cpu, struct perf_event *event) 12968 { 12969 struct perf_event_pmu_context *epc; 12970 struct perf_event_context *old_ctx = event->ctx; 12971 12972 get_ctx(ctx); /* normally find_get_context() */ 12973 12974 event->cpu = cpu; 12975 epc = find_get_pmu_context(pmu, ctx, event); 12976 event->pmu_ctx = epc; 12977 12978 if (event->state >= PERF_EVENT_STATE_OFF) 12979 event->state = PERF_EVENT_STATE_INACTIVE; 12980 perf_install_in_context(ctx, event, cpu); 12981 12982 /* 12983 * Now that event->ctx is updated and visible, put the old ctx. 12984 */ 12985 put_ctx(old_ctx); 12986 } 12987 12988 static void __perf_pmu_install(struct perf_event_context *ctx, 12989 int cpu, struct pmu *pmu, struct list_head *events) 12990 { 12991 struct perf_event *event, *tmp; 12992 12993 /* 12994 * Re-instate events in 2 passes. 12995 * 12996 * Skip over group leaders and only install siblings on this first 12997 * pass, siblings will not get enabled without a leader, however a 12998 * leader will enable its siblings, even if those are still on the old 12999 * context. 13000 */ 13001 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13002 if (event->group_leader == event) 13003 continue; 13004 13005 list_del(&event->migrate_entry); 13006 __perf_pmu_install_event(pmu, ctx, cpu, event); 13007 } 13008 13009 /* 13010 * Once all the siblings are setup properly, install the group leaders 13011 * to make it go. 13012 */ 13013 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13014 list_del(&event->migrate_entry); 13015 __perf_pmu_install_event(pmu, ctx, cpu, event); 13016 } 13017 } 13018 13019 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13020 { 13021 struct perf_event_context *src_ctx, *dst_ctx; 13022 LIST_HEAD(events); 13023 13024 /* 13025 * Since per-cpu context is persistent, no need to grab an extra 13026 * reference. 13027 */ 13028 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13029 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13030 13031 /* 13032 * See perf_event_ctx_lock() for comments on the details 13033 * of swizzling perf_event::ctx. 13034 */ 13035 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13036 13037 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13038 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13039 13040 if (!list_empty(&events)) { 13041 /* 13042 * Wait for the events to quiesce before re-instating them. 13043 */ 13044 synchronize_rcu(); 13045 13046 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13047 } 13048 13049 mutex_unlock(&dst_ctx->mutex); 13050 mutex_unlock(&src_ctx->mutex); 13051 } 13052 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13053 13054 static void sync_child_event(struct perf_event *child_event) 13055 { 13056 struct perf_event *parent_event = child_event->parent; 13057 u64 child_val; 13058 13059 if (child_event->attr.inherit_stat) { 13060 struct task_struct *task = child_event->ctx->task; 13061 13062 if (task && task != TASK_TOMBSTONE) 13063 perf_event_read_event(child_event, task); 13064 } 13065 13066 child_val = perf_event_count(child_event); 13067 13068 /* 13069 * Add back the child's count to the parent's count: 13070 */ 13071 atomic64_add(child_val, &parent_event->child_count); 13072 atomic64_add(child_event->total_time_enabled, 13073 &parent_event->child_total_time_enabled); 13074 atomic64_add(child_event->total_time_running, 13075 &parent_event->child_total_time_running); 13076 } 13077 13078 static void 13079 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13080 { 13081 struct perf_event *parent_event = event->parent; 13082 unsigned long detach_flags = 0; 13083 13084 if (parent_event) { 13085 /* 13086 * Do not destroy the 'original' grouping; because of the 13087 * context switch optimization the original events could've 13088 * ended up in a random child task. 13089 * 13090 * If we were to destroy the original group, all group related 13091 * operations would cease to function properly after this 13092 * random child dies. 13093 * 13094 * Do destroy all inherited groups, we don't care about those 13095 * and being thorough is better. 13096 */ 13097 detach_flags = DETACH_GROUP | DETACH_CHILD; 13098 mutex_lock(&parent_event->child_mutex); 13099 } 13100 13101 perf_remove_from_context(event, detach_flags); 13102 13103 raw_spin_lock_irq(&ctx->lock); 13104 if (event->state > PERF_EVENT_STATE_EXIT) 13105 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13106 raw_spin_unlock_irq(&ctx->lock); 13107 13108 /* 13109 * Child events can be freed. 13110 */ 13111 if (parent_event) { 13112 mutex_unlock(&parent_event->child_mutex); 13113 /* 13114 * Kick perf_poll() for is_event_hup(); 13115 */ 13116 perf_event_wakeup(parent_event); 13117 free_event(event); 13118 put_event(parent_event); 13119 return; 13120 } 13121 13122 /* 13123 * Parent events are governed by their filedesc, retain them. 13124 */ 13125 perf_event_wakeup(event); 13126 } 13127 13128 static void perf_event_exit_task_context(struct task_struct *child) 13129 { 13130 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13131 struct perf_event *child_event, *next; 13132 13133 WARN_ON_ONCE(child != current); 13134 13135 child_ctx = perf_pin_task_context(child); 13136 if (!child_ctx) 13137 return; 13138 13139 /* 13140 * In order to reduce the amount of tricky in ctx tear-down, we hold 13141 * ctx::mutex over the entire thing. This serializes against almost 13142 * everything that wants to access the ctx. 13143 * 13144 * The exception is sys_perf_event_open() / 13145 * perf_event_create_kernel_count() which does find_get_context() 13146 * without ctx::mutex (it cannot because of the move_group double mutex 13147 * lock thing). See the comments in perf_install_in_context(). 13148 */ 13149 mutex_lock(&child_ctx->mutex); 13150 13151 /* 13152 * In a single ctx::lock section, de-schedule the events and detach the 13153 * context from the task such that we cannot ever get it scheduled back 13154 * in. 13155 */ 13156 raw_spin_lock_irq(&child_ctx->lock); 13157 task_ctx_sched_out(child_ctx, EVENT_ALL); 13158 13159 /* 13160 * Now that the context is inactive, destroy the task <-> ctx relation 13161 * and mark the context dead. 13162 */ 13163 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13164 put_ctx(child_ctx); /* cannot be last */ 13165 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13166 put_task_struct(current); /* cannot be last */ 13167 13168 clone_ctx = unclone_ctx(child_ctx); 13169 raw_spin_unlock_irq(&child_ctx->lock); 13170 13171 if (clone_ctx) 13172 put_ctx(clone_ctx); 13173 13174 /* 13175 * Report the task dead after unscheduling the events so that we 13176 * won't get any samples after PERF_RECORD_EXIT. We can however still 13177 * get a few PERF_RECORD_READ events. 13178 */ 13179 perf_event_task(child, child_ctx, 0); 13180 13181 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13182 perf_event_exit_event(child_event, child_ctx); 13183 13184 mutex_unlock(&child_ctx->mutex); 13185 13186 put_ctx(child_ctx); 13187 } 13188 13189 /* 13190 * When a child task exits, feed back event values to parent events. 13191 * 13192 * Can be called with exec_update_lock held when called from 13193 * setup_new_exec(). 13194 */ 13195 void perf_event_exit_task(struct task_struct *child) 13196 { 13197 struct perf_event *event, *tmp; 13198 13199 mutex_lock(&child->perf_event_mutex); 13200 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13201 owner_entry) { 13202 list_del_init(&event->owner_entry); 13203 13204 /* 13205 * Ensure the list deletion is visible before we clear 13206 * the owner, closes a race against perf_release() where 13207 * we need to serialize on the owner->perf_event_mutex. 13208 */ 13209 smp_store_release(&event->owner, NULL); 13210 } 13211 mutex_unlock(&child->perf_event_mutex); 13212 13213 perf_event_exit_task_context(child); 13214 13215 /* 13216 * The perf_event_exit_task_context calls perf_event_task 13217 * with child's task_ctx, which generates EXIT events for 13218 * child contexts and sets child->perf_event_ctxp[] to NULL. 13219 * At this point we need to send EXIT events to cpu contexts. 13220 */ 13221 perf_event_task(child, NULL, 0); 13222 } 13223 13224 static void perf_free_event(struct perf_event *event, 13225 struct perf_event_context *ctx) 13226 { 13227 struct perf_event *parent = event->parent; 13228 13229 if (WARN_ON_ONCE(!parent)) 13230 return; 13231 13232 mutex_lock(&parent->child_mutex); 13233 list_del_init(&event->child_list); 13234 mutex_unlock(&parent->child_mutex); 13235 13236 put_event(parent); 13237 13238 raw_spin_lock_irq(&ctx->lock); 13239 perf_group_detach(event); 13240 list_del_event(event, ctx); 13241 raw_spin_unlock_irq(&ctx->lock); 13242 free_event(event); 13243 } 13244 13245 /* 13246 * Free a context as created by inheritance by perf_event_init_task() below, 13247 * used by fork() in case of fail. 13248 * 13249 * Even though the task has never lived, the context and events have been 13250 * exposed through the child_list, so we must take care tearing it all down. 13251 */ 13252 void perf_event_free_task(struct task_struct *task) 13253 { 13254 struct perf_event_context *ctx; 13255 struct perf_event *event, *tmp; 13256 13257 ctx = rcu_access_pointer(task->perf_event_ctxp); 13258 if (!ctx) 13259 return; 13260 13261 mutex_lock(&ctx->mutex); 13262 raw_spin_lock_irq(&ctx->lock); 13263 /* 13264 * Destroy the task <-> ctx relation and mark the context dead. 13265 * 13266 * This is important because even though the task hasn't been 13267 * exposed yet the context has been (through child_list). 13268 */ 13269 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13270 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13271 put_task_struct(task); /* cannot be last */ 13272 raw_spin_unlock_irq(&ctx->lock); 13273 13274 13275 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13276 perf_free_event(event, ctx); 13277 13278 mutex_unlock(&ctx->mutex); 13279 13280 /* 13281 * perf_event_release_kernel() could've stolen some of our 13282 * child events and still have them on its free_list. In that 13283 * case we must wait for these events to have been freed (in 13284 * particular all their references to this task must've been 13285 * dropped). 13286 * 13287 * Without this copy_process() will unconditionally free this 13288 * task (irrespective of its reference count) and 13289 * _free_event()'s put_task_struct(event->hw.target) will be a 13290 * use-after-free. 13291 * 13292 * Wait for all events to drop their context reference. 13293 */ 13294 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13295 put_ctx(ctx); /* must be last */ 13296 } 13297 13298 void perf_event_delayed_put(struct task_struct *task) 13299 { 13300 WARN_ON_ONCE(task->perf_event_ctxp); 13301 } 13302 13303 struct file *perf_event_get(unsigned int fd) 13304 { 13305 struct file *file = fget(fd); 13306 if (!file) 13307 return ERR_PTR(-EBADF); 13308 13309 if (file->f_op != &perf_fops) { 13310 fput(file); 13311 return ERR_PTR(-EBADF); 13312 } 13313 13314 return file; 13315 } 13316 13317 const struct perf_event *perf_get_event(struct file *file) 13318 { 13319 if (file->f_op != &perf_fops) 13320 return ERR_PTR(-EINVAL); 13321 13322 return file->private_data; 13323 } 13324 13325 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13326 { 13327 if (!event) 13328 return ERR_PTR(-EINVAL); 13329 13330 return &event->attr; 13331 } 13332 13333 /* 13334 * Inherit an event from parent task to child task. 13335 * 13336 * Returns: 13337 * - valid pointer on success 13338 * - NULL for orphaned events 13339 * - IS_ERR() on error 13340 */ 13341 static struct perf_event * 13342 inherit_event(struct perf_event *parent_event, 13343 struct task_struct *parent, 13344 struct perf_event_context *parent_ctx, 13345 struct task_struct *child, 13346 struct perf_event *group_leader, 13347 struct perf_event_context *child_ctx) 13348 { 13349 enum perf_event_state parent_state = parent_event->state; 13350 struct perf_event_pmu_context *pmu_ctx; 13351 struct perf_event *child_event; 13352 unsigned long flags; 13353 13354 /* 13355 * Instead of creating recursive hierarchies of events, 13356 * we link inherited events back to the original parent, 13357 * which has a filp for sure, which we use as the reference 13358 * count: 13359 */ 13360 if (parent_event->parent) 13361 parent_event = parent_event->parent; 13362 13363 child_event = perf_event_alloc(&parent_event->attr, 13364 parent_event->cpu, 13365 child, 13366 group_leader, parent_event, 13367 NULL, NULL, -1); 13368 if (IS_ERR(child_event)) 13369 return child_event; 13370 13371 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13372 if (IS_ERR(pmu_ctx)) { 13373 free_event(child_event); 13374 return ERR_CAST(pmu_ctx); 13375 } 13376 child_event->pmu_ctx = pmu_ctx; 13377 13378 /* 13379 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13380 * must be under the same lock in order to serialize against 13381 * perf_event_release_kernel(), such that either we must observe 13382 * is_orphaned_event() or they will observe us on the child_list. 13383 */ 13384 mutex_lock(&parent_event->child_mutex); 13385 if (is_orphaned_event(parent_event) || 13386 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13387 mutex_unlock(&parent_event->child_mutex); 13388 /* task_ctx_data is freed with child_ctx */ 13389 free_event(child_event); 13390 return NULL; 13391 } 13392 13393 get_ctx(child_ctx); 13394 13395 /* 13396 * Make the child state follow the state of the parent event, 13397 * not its attr.disabled bit. We hold the parent's mutex, 13398 * so we won't race with perf_event_{en, dis}able_family. 13399 */ 13400 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13401 child_event->state = PERF_EVENT_STATE_INACTIVE; 13402 else 13403 child_event->state = PERF_EVENT_STATE_OFF; 13404 13405 if (parent_event->attr.freq) { 13406 u64 sample_period = parent_event->hw.sample_period; 13407 struct hw_perf_event *hwc = &child_event->hw; 13408 13409 hwc->sample_period = sample_period; 13410 hwc->last_period = sample_period; 13411 13412 local64_set(&hwc->period_left, sample_period); 13413 } 13414 13415 child_event->ctx = child_ctx; 13416 child_event->overflow_handler = parent_event->overflow_handler; 13417 child_event->overflow_handler_context 13418 = parent_event->overflow_handler_context; 13419 13420 /* 13421 * Precalculate sample_data sizes 13422 */ 13423 perf_event__header_size(child_event); 13424 perf_event__id_header_size(child_event); 13425 13426 /* 13427 * Link it up in the child's context: 13428 */ 13429 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13430 add_event_to_ctx(child_event, child_ctx); 13431 child_event->attach_state |= PERF_ATTACH_CHILD; 13432 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13433 13434 /* 13435 * Link this into the parent event's child list 13436 */ 13437 list_add_tail(&child_event->child_list, &parent_event->child_list); 13438 mutex_unlock(&parent_event->child_mutex); 13439 13440 return child_event; 13441 } 13442 13443 /* 13444 * Inherits an event group. 13445 * 13446 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13447 * This matches with perf_event_release_kernel() removing all child events. 13448 * 13449 * Returns: 13450 * - 0 on success 13451 * - <0 on error 13452 */ 13453 static int inherit_group(struct perf_event *parent_event, 13454 struct task_struct *parent, 13455 struct perf_event_context *parent_ctx, 13456 struct task_struct *child, 13457 struct perf_event_context *child_ctx) 13458 { 13459 struct perf_event *leader; 13460 struct perf_event *sub; 13461 struct perf_event *child_ctr; 13462 13463 leader = inherit_event(parent_event, parent, parent_ctx, 13464 child, NULL, child_ctx); 13465 if (IS_ERR(leader)) 13466 return PTR_ERR(leader); 13467 /* 13468 * @leader can be NULL here because of is_orphaned_event(). In this 13469 * case inherit_event() will create individual events, similar to what 13470 * perf_group_detach() would do anyway. 13471 */ 13472 for_each_sibling_event(sub, parent_event) { 13473 child_ctr = inherit_event(sub, parent, parent_ctx, 13474 child, leader, child_ctx); 13475 if (IS_ERR(child_ctr)) 13476 return PTR_ERR(child_ctr); 13477 13478 if (sub->aux_event == parent_event && child_ctr && 13479 !perf_get_aux_event(child_ctr, leader)) 13480 return -EINVAL; 13481 } 13482 if (leader) 13483 leader->group_generation = parent_event->group_generation; 13484 return 0; 13485 } 13486 13487 /* 13488 * Creates the child task context and tries to inherit the event-group. 13489 * 13490 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13491 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13492 * consistent with perf_event_release_kernel() removing all child events. 13493 * 13494 * Returns: 13495 * - 0 on success 13496 * - <0 on error 13497 */ 13498 static int 13499 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13500 struct perf_event_context *parent_ctx, 13501 struct task_struct *child, 13502 u64 clone_flags, int *inherited_all) 13503 { 13504 struct perf_event_context *child_ctx; 13505 int ret; 13506 13507 if (!event->attr.inherit || 13508 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13509 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13510 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13511 *inherited_all = 0; 13512 return 0; 13513 } 13514 13515 child_ctx = child->perf_event_ctxp; 13516 if (!child_ctx) { 13517 /* 13518 * This is executed from the parent task context, so 13519 * inherit events that have been marked for cloning. 13520 * First allocate and initialize a context for the 13521 * child. 13522 */ 13523 child_ctx = alloc_perf_context(child); 13524 if (!child_ctx) 13525 return -ENOMEM; 13526 13527 child->perf_event_ctxp = child_ctx; 13528 } 13529 13530 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13531 if (ret) 13532 *inherited_all = 0; 13533 13534 return ret; 13535 } 13536 13537 /* 13538 * Initialize the perf_event context in task_struct 13539 */ 13540 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13541 { 13542 struct perf_event_context *child_ctx, *parent_ctx; 13543 struct perf_event_context *cloned_ctx; 13544 struct perf_event *event; 13545 struct task_struct *parent = current; 13546 int inherited_all = 1; 13547 unsigned long flags; 13548 int ret = 0; 13549 13550 if (likely(!parent->perf_event_ctxp)) 13551 return 0; 13552 13553 /* 13554 * If the parent's context is a clone, pin it so it won't get 13555 * swapped under us. 13556 */ 13557 parent_ctx = perf_pin_task_context(parent); 13558 if (!parent_ctx) 13559 return 0; 13560 13561 /* 13562 * No need to check if parent_ctx != NULL here; since we saw 13563 * it non-NULL earlier, the only reason for it to become NULL 13564 * is if we exit, and since we're currently in the middle of 13565 * a fork we can't be exiting at the same time. 13566 */ 13567 13568 /* 13569 * Lock the parent list. No need to lock the child - not PID 13570 * hashed yet and not running, so nobody can access it. 13571 */ 13572 mutex_lock(&parent_ctx->mutex); 13573 13574 /* 13575 * We dont have to disable NMIs - we are only looking at 13576 * the list, not manipulating it: 13577 */ 13578 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13579 ret = inherit_task_group(event, parent, parent_ctx, 13580 child, clone_flags, &inherited_all); 13581 if (ret) 13582 goto out_unlock; 13583 } 13584 13585 /* 13586 * We can't hold ctx->lock when iterating the ->flexible_group list due 13587 * to allocations, but we need to prevent rotation because 13588 * rotate_ctx() will change the list from interrupt context. 13589 */ 13590 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13591 parent_ctx->rotate_disable = 1; 13592 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13593 13594 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13595 ret = inherit_task_group(event, parent, parent_ctx, 13596 child, clone_flags, &inherited_all); 13597 if (ret) 13598 goto out_unlock; 13599 } 13600 13601 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13602 parent_ctx->rotate_disable = 0; 13603 13604 child_ctx = child->perf_event_ctxp; 13605 13606 if (child_ctx && inherited_all) { 13607 /* 13608 * Mark the child context as a clone of the parent 13609 * context, or of whatever the parent is a clone of. 13610 * 13611 * Note that if the parent is a clone, the holding of 13612 * parent_ctx->lock avoids it from being uncloned. 13613 */ 13614 cloned_ctx = parent_ctx->parent_ctx; 13615 if (cloned_ctx) { 13616 child_ctx->parent_ctx = cloned_ctx; 13617 child_ctx->parent_gen = parent_ctx->parent_gen; 13618 } else { 13619 child_ctx->parent_ctx = parent_ctx; 13620 child_ctx->parent_gen = parent_ctx->generation; 13621 } 13622 get_ctx(child_ctx->parent_ctx); 13623 } 13624 13625 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13626 out_unlock: 13627 mutex_unlock(&parent_ctx->mutex); 13628 13629 perf_unpin_context(parent_ctx); 13630 put_ctx(parent_ctx); 13631 13632 return ret; 13633 } 13634 13635 /* 13636 * Initialize the perf_event context in task_struct 13637 */ 13638 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13639 { 13640 int ret; 13641 13642 child->perf_event_ctxp = NULL; 13643 mutex_init(&child->perf_event_mutex); 13644 INIT_LIST_HEAD(&child->perf_event_list); 13645 13646 ret = perf_event_init_context(child, clone_flags); 13647 if (ret) { 13648 perf_event_free_task(child); 13649 return ret; 13650 } 13651 13652 return 0; 13653 } 13654 13655 static void __init perf_event_init_all_cpus(void) 13656 { 13657 struct swevent_htable *swhash; 13658 struct perf_cpu_context *cpuctx; 13659 int cpu; 13660 13661 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13662 13663 for_each_possible_cpu(cpu) { 13664 swhash = &per_cpu(swevent_htable, cpu); 13665 mutex_init(&swhash->hlist_mutex); 13666 13667 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13668 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13669 13670 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13671 13672 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13673 __perf_event_init_context(&cpuctx->ctx); 13674 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13675 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13676 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13677 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13678 cpuctx->heap = cpuctx->heap_default; 13679 } 13680 } 13681 13682 static void perf_swevent_init_cpu(unsigned int cpu) 13683 { 13684 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13685 13686 mutex_lock(&swhash->hlist_mutex); 13687 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13688 struct swevent_hlist *hlist; 13689 13690 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13691 WARN_ON(!hlist); 13692 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13693 } 13694 mutex_unlock(&swhash->hlist_mutex); 13695 } 13696 13697 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13698 static void __perf_event_exit_context(void *__info) 13699 { 13700 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13701 struct perf_event_context *ctx = __info; 13702 struct perf_event *event; 13703 13704 raw_spin_lock(&ctx->lock); 13705 ctx_sched_out(ctx, EVENT_TIME); 13706 list_for_each_entry(event, &ctx->event_list, event_entry) 13707 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13708 raw_spin_unlock(&ctx->lock); 13709 } 13710 13711 static void perf_event_exit_cpu_context(int cpu) 13712 { 13713 struct perf_cpu_context *cpuctx; 13714 struct perf_event_context *ctx; 13715 13716 // XXX simplify cpuctx->online 13717 mutex_lock(&pmus_lock); 13718 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13719 ctx = &cpuctx->ctx; 13720 13721 mutex_lock(&ctx->mutex); 13722 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13723 cpuctx->online = 0; 13724 mutex_unlock(&ctx->mutex); 13725 cpumask_clear_cpu(cpu, perf_online_mask); 13726 mutex_unlock(&pmus_lock); 13727 } 13728 #else 13729 13730 static void perf_event_exit_cpu_context(int cpu) { } 13731 13732 #endif 13733 13734 int perf_event_init_cpu(unsigned int cpu) 13735 { 13736 struct perf_cpu_context *cpuctx; 13737 struct perf_event_context *ctx; 13738 13739 perf_swevent_init_cpu(cpu); 13740 13741 mutex_lock(&pmus_lock); 13742 cpumask_set_cpu(cpu, perf_online_mask); 13743 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13744 ctx = &cpuctx->ctx; 13745 13746 mutex_lock(&ctx->mutex); 13747 cpuctx->online = 1; 13748 mutex_unlock(&ctx->mutex); 13749 mutex_unlock(&pmus_lock); 13750 13751 return 0; 13752 } 13753 13754 int perf_event_exit_cpu(unsigned int cpu) 13755 { 13756 perf_event_exit_cpu_context(cpu); 13757 return 0; 13758 } 13759 13760 static int 13761 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13762 { 13763 int cpu; 13764 13765 for_each_online_cpu(cpu) 13766 perf_event_exit_cpu(cpu); 13767 13768 return NOTIFY_OK; 13769 } 13770 13771 /* 13772 * Run the perf reboot notifier at the very last possible moment so that 13773 * the generic watchdog code runs as long as possible. 13774 */ 13775 static struct notifier_block perf_reboot_notifier = { 13776 .notifier_call = perf_reboot, 13777 .priority = INT_MIN, 13778 }; 13779 13780 void __init perf_event_init(void) 13781 { 13782 int ret; 13783 13784 idr_init(&pmu_idr); 13785 13786 perf_event_init_all_cpus(); 13787 init_srcu_struct(&pmus_srcu); 13788 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13789 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13790 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13791 perf_tp_register(); 13792 perf_event_init_cpu(smp_processor_id()); 13793 register_reboot_notifier(&perf_reboot_notifier); 13794 13795 ret = init_hw_breakpoint(); 13796 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13797 13798 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13799 13800 /* 13801 * Build time assertion that we keep the data_head at the intended 13802 * location. IOW, validation we got the __reserved[] size right. 13803 */ 13804 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13805 != 1024); 13806 } 13807 13808 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13809 char *page) 13810 { 13811 struct perf_pmu_events_attr *pmu_attr = 13812 container_of(attr, struct perf_pmu_events_attr, attr); 13813 13814 if (pmu_attr->event_str) 13815 return sprintf(page, "%s\n", pmu_attr->event_str); 13816 13817 return 0; 13818 } 13819 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13820 13821 static int __init perf_event_sysfs_init(void) 13822 { 13823 struct pmu *pmu; 13824 int ret; 13825 13826 mutex_lock(&pmus_lock); 13827 13828 ret = bus_register(&pmu_bus); 13829 if (ret) 13830 goto unlock; 13831 13832 list_for_each_entry(pmu, &pmus, entry) { 13833 if (pmu->dev) 13834 continue; 13835 13836 ret = pmu_dev_alloc(pmu); 13837 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13838 } 13839 pmu_bus_running = 1; 13840 ret = 0; 13841 13842 unlock: 13843 mutex_unlock(&pmus_lock); 13844 13845 return ret; 13846 } 13847 device_initcall(perf_event_sysfs_init); 13848 13849 #ifdef CONFIG_CGROUP_PERF 13850 static struct cgroup_subsys_state * 13851 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13852 { 13853 struct perf_cgroup *jc; 13854 13855 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13856 if (!jc) 13857 return ERR_PTR(-ENOMEM); 13858 13859 jc->info = alloc_percpu(struct perf_cgroup_info); 13860 if (!jc->info) { 13861 kfree(jc); 13862 return ERR_PTR(-ENOMEM); 13863 } 13864 13865 return &jc->css; 13866 } 13867 13868 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13869 { 13870 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13871 13872 free_percpu(jc->info); 13873 kfree(jc); 13874 } 13875 13876 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13877 { 13878 perf_event_cgroup(css->cgroup); 13879 return 0; 13880 } 13881 13882 static int __perf_cgroup_move(void *info) 13883 { 13884 struct task_struct *task = info; 13885 13886 preempt_disable(); 13887 perf_cgroup_switch(task); 13888 preempt_enable(); 13889 13890 return 0; 13891 } 13892 13893 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13894 { 13895 struct task_struct *task; 13896 struct cgroup_subsys_state *css; 13897 13898 cgroup_taskset_for_each(task, css, tset) 13899 task_function_call(task, __perf_cgroup_move, task); 13900 } 13901 13902 struct cgroup_subsys perf_event_cgrp_subsys = { 13903 .css_alloc = perf_cgroup_css_alloc, 13904 .css_free = perf_cgroup_css_free, 13905 .css_online = perf_cgroup_css_online, 13906 .attach = perf_cgroup_attach, 13907 /* 13908 * Implicitly enable on dfl hierarchy so that perf events can 13909 * always be filtered by cgroup2 path as long as perf_event 13910 * controller is not mounted on a legacy hierarchy. 13911 */ 13912 .implicit_on_dfl = true, 13913 .threaded = true, 13914 }; 13915 #endif /* CONFIG_CGROUP_PERF */ 13916 13917 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13918