xref: /openbmc/linux/kernel/events/core.c (revision 7bcae826)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	/* see ctx_resched() for details */
359 	EVENT_CPU = 0x8,
360 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361 };
362 
363 /*
364  * perf_sched_events : >0 events exist
365  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366  */
367 
368 static void perf_sched_delayed(struct work_struct *work);
369 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371 static DEFINE_MUTEX(perf_sched_mutex);
372 static atomic_t perf_sched_count;
373 
374 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
377 
378 static atomic_t nr_mmap_events __read_mostly;
379 static atomic_t nr_comm_events __read_mostly;
380 static atomic_t nr_task_events __read_mostly;
381 static atomic_t nr_freq_events __read_mostly;
382 static atomic_t nr_switch_events __read_mostly;
383 
384 static LIST_HEAD(pmus);
385 static DEFINE_MUTEX(pmus_lock);
386 static struct srcu_struct pmus_srcu;
387 
388 /*
389  * perf event paranoia level:
390  *  -1 - not paranoid at all
391  *   0 - disallow raw tracepoint access for unpriv
392  *   1 - disallow cpu events for unpriv
393  *   2 - disallow kernel profiling for unpriv
394  */
395 int sysctl_perf_event_paranoid __read_mostly = 2;
396 
397 /* Minimum for 512 kiB + 1 user control page */
398 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399 
400 /*
401  * max perf event sample rate
402  */
403 #define DEFAULT_MAX_SAMPLE_RATE		100000
404 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
406 
407 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
408 
409 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
411 
412 static int perf_sample_allowed_ns __read_mostly =
413 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414 
415 static void update_perf_cpu_limits(void)
416 {
417 	u64 tmp = perf_sample_period_ns;
418 
419 	tmp *= sysctl_perf_cpu_time_max_percent;
420 	tmp = div_u64(tmp, 100);
421 	if (!tmp)
422 		tmp = 1;
423 
424 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 }
426 
427 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428 
429 int perf_proc_update_handler(struct ctl_table *table, int write,
430 		void __user *buffer, size_t *lenp,
431 		loff_t *ppos)
432 {
433 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
434 
435 	if (ret || !write)
436 		return ret;
437 
438 	/*
439 	 * If throttling is disabled don't allow the write:
440 	 */
441 	if (sysctl_perf_cpu_time_max_percent == 100 ||
442 	    sysctl_perf_cpu_time_max_percent == 0)
443 		return -EINVAL;
444 
445 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447 	update_perf_cpu_limits();
448 
449 	return 0;
450 }
451 
452 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453 
454 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455 				void __user *buffer, size_t *lenp,
456 				loff_t *ppos)
457 {
458 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459 
460 	if (ret || !write)
461 		return ret;
462 
463 	if (sysctl_perf_cpu_time_max_percent == 100 ||
464 	    sysctl_perf_cpu_time_max_percent == 0) {
465 		printk(KERN_WARNING
466 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467 		WRITE_ONCE(perf_sample_allowed_ns, 0);
468 	} else {
469 		update_perf_cpu_limits();
470 	}
471 
472 	return 0;
473 }
474 
475 /*
476  * perf samples are done in some very critical code paths (NMIs).
477  * If they take too much CPU time, the system can lock up and not
478  * get any real work done.  This will drop the sample rate when
479  * we detect that events are taking too long.
480  */
481 #define NR_ACCUMULATED_SAMPLES 128
482 static DEFINE_PER_CPU(u64, running_sample_length);
483 
484 static u64 __report_avg;
485 static u64 __report_allowed;
486 
487 static void perf_duration_warn(struct irq_work *w)
488 {
489 	printk_ratelimited(KERN_INFO
490 		"perf: interrupt took too long (%lld > %lld), lowering "
491 		"kernel.perf_event_max_sample_rate to %d\n",
492 		__report_avg, __report_allowed,
493 		sysctl_perf_event_sample_rate);
494 }
495 
496 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497 
498 void perf_sample_event_took(u64 sample_len_ns)
499 {
500 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501 	u64 running_len;
502 	u64 avg_len;
503 	u32 max;
504 
505 	if (max_len == 0)
506 		return;
507 
508 	/* Decay the counter by 1 average sample. */
509 	running_len = __this_cpu_read(running_sample_length);
510 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511 	running_len += sample_len_ns;
512 	__this_cpu_write(running_sample_length, running_len);
513 
514 	/*
515 	 * Note: this will be biased artifically low until we have
516 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517 	 * from having to maintain a count.
518 	 */
519 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520 	if (avg_len <= max_len)
521 		return;
522 
523 	__report_avg = avg_len;
524 	__report_allowed = max_len;
525 
526 	/*
527 	 * Compute a throttle threshold 25% below the current duration.
528 	 */
529 	avg_len += avg_len / 4;
530 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531 	if (avg_len < max)
532 		max /= (u32)avg_len;
533 	else
534 		max = 1;
535 
536 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537 	WRITE_ONCE(max_samples_per_tick, max);
538 
539 	sysctl_perf_event_sample_rate = max * HZ;
540 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541 
542 	if (!irq_work_queue(&perf_duration_work)) {
543 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544 			     "kernel.perf_event_max_sample_rate to %d\n",
545 			     __report_avg, __report_allowed,
546 			     sysctl_perf_event_sample_rate);
547 	}
548 }
549 
550 static atomic64_t perf_event_id;
551 
552 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553 			      enum event_type_t event_type);
554 
555 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
556 			     enum event_type_t event_type,
557 			     struct task_struct *task);
558 
559 static void update_context_time(struct perf_event_context *ctx);
560 static u64 perf_event_time(struct perf_event *event);
561 
562 void __weak perf_event_print_debug(void)	{ }
563 
564 extern __weak const char *perf_pmu_name(void)
565 {
566 	return "pmu";
567 }
568 
569 static inline u64 perf_clock(void)
570 {
571 	return local_clock();
572 }
573 
574 static inline u64 perf_event_clock(struct perf_event *event)
575 {
576 	return event->clock();
577 }
578 
579 #ifdef CONFIG_CGROUP_PERF
580 
581 static inline bool
582 perf_cgroup_match(struct perf_event *event)
583 {
584 	struct perf_event_context *ctx = event->ctx;
585 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586 
587 	/* @event doesn't care about cgroup */
588 	if (!event->cgrp)
589 		return true;
590 
591 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
592 	if (!cpuctx->cgrp)
593 		return false;
594 
595 	/*
596 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
597 	 * also enabled for all its descendant cgroups.  If @cpuctx's
598 	 * cgroup is a descendant of @event's (the test covers identity
599 	 * case), it's a match.
600 	 */
601 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602 				    event->cgrp->css.cgroup);
603 }
604 
605 static inline void perf_detach_cgroup(struct perf_event *event)
606 {
607 	css_put(&event->cgrp->css);
608 	event->cgrp = NULL;
609 }
610 
611 static inline int is_cgroup_event(struct perf_event *event)
612 {
613 	return event->cgrp != NULL;
614 }
615 
616 static inline u64 perf_cgroup_event_time(struct perf_event *event)
617 {
618 	struct perf_cgroup_info *t;
619 
620 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
621 	return t->time;
622 }
623 
624 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625 {
626 	struct perf_cgroup_info *info;
627 	u64 now;
628 
629 	now = perf_clock();
630 
631 	info = this_cpu_ptr(cgrp->info);
632 
633 	info->time += now - info->timestamp;
634 	info->timestamp = now;
635 }
636 
637 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638 {
639 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640 	if (cgrp_out)
641 		__update_cgrp_time(cgrp_out);
642 }
643 
644 static inline void update_cgrp_time_from_event(struct perf_event *event)
645 {
646 	struct perf_cgroup *cgrp;
647 
648 	/*
649 	 * ensure we access cgroup data only when needed and
650 	 * when we know the cgroup is pinned (css_get)
651 	 */
652 	if (!is_cgroup_event(event))
653 		return;
654 
655 	cgrp = perf_cgroup_from_task(current, event->ctx);
656 	/*
657 	 * Do not update time when cgroup is not active
658 	 */
659 	if (cgrp == event->cgrp)
660 		__update_cgrp_time(event->cgrp);
661 }
662 
663 static inline void
664 perf_cgroup_set_timestamp(struct task_struct *task,
665 			  struct perf_event_context *ctx)
666 {
667 	struct perf_cgroup *cgrp;
668 	struct perf_cgroup_info *info;
669 
670 	/*
671 	 * ctx->lock held by caller
672 	 * ensure we do not access cgroup data
673 	 * unless we have the cgroup pinned (css_get)
674 	 */
675 	if (!task || !ctx->nr_cgroups)
676 		return;
677 
678 	cgrp = perf_cgroup_from_task(task, ctx);
679 	info = this_cpu_ptr(cgrp->info);
680 	info->timestamp = ctx->timestamp;
681 }
682 
683 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684 
685 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
686 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
687 
688 /*
689  * reschedule events based on the cgroup constraint of task.
690  *
691  * mode SWOUT : schedule out everything
692  * mode SWIN : schedule in based on cgroup for next
693  */
694 static void perf_cgroup_switch(struct task_struct *task, int mode)
695 {
696 	struct perf_cpu_context *cpuctx;
697 	struct list_head *list;
698 	unsigned long flags;
699 
700 	/*
701 	 * Disable interrupts and preemption to avoid this CPU's
702 	 * cgrp_cpuctx_entry to change under us.
703 	 */
704 	local_irq_save(flags);
705 
706 	list = this_cpu_ptr(&cgrp_cpuctx_list);
707 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
709 
710 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711 		perf_pmu_disable(cpuctx->ctx.pmu);
712 
713 		if (mode & PERF_CGROUP_SWOUT) {
714 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715 			/*
716 			 * must not be done before ctxswout due
717 			 * to event_filter_match() in event_sched_out()
718 			 */
719 			cpuctx->cgrp = NULL;
720 		}
721 
722 		if (mode & PERF_CGROUP_SWIN) {
723 			WARN_ON_ONCE(cpuctx->cgrp);
724 			/*
725 			 * set cgrp before ctxsw in to allow
726 			 * event_filter_match() to not have to pass
727 			 * task around
728 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
729 			 * because cgorup events are only per-cpu
730 			 */
731 			cpuctx->cgrp = perf_cgroup_from_task(task,
732 							     &cpuctx->ctx);
733 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
734 		}
735 		perf_pmu_enable(cpuctx->ctx.pmu);
736 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
737 	}
738 
739 	local_irq_restore(flags);
740 }
741 
742 static inline void perf_cgroup_sched_out(struct task_struct *task,
743 					 struct task_struct *next)
744 {
745 	struct perf_cgroup *cgrp1;
746 	struct perf_cgroup *cgrp2 = NULL;
747 
748 	rcu_read_lock();
749 	/*
750 	 * we come here when we know perf_cgroup_events > 0
751 	 * we do not need to pass the ctx here because we know
752 	 * we are holding the rcu lock
753 	 */
754 	cgrp1 = perf_cgroup_from_task(task, NULL);
755 	cgrp2 = perf_cgroup_from_task(next, NULL);
756 
757 	/*
758 	 * only schedule out current cgroup events if we know
759 	 * that we are switching to a different cgroup. Otherwise,
760 	 * do no touch the cgroup events.
761 	 */
762 	if (cgrp1 != cgrp2)
763 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764 
765 	rcu_read_unlock();
766 }
767 
768 static inline void perf_cgroup_sched_in(struct task_struct *prev,
769 					struct task_struct *task)
770 {
771 	struct perf_cgroup *cgrp1;
772 	struct perf_cgroup *cgrp2 = NULL;
773 
774 	rcu_read_lock();
775 	/*
776 	 * we come here when we know perf_cgroup_events > 0
777 	 * we do not need to pass the ctx here because we know
778 	 * we are holding the rcu lock
779 	 */
780 	cgrp1 = perf_cgroup_from_task(task, NULL);
781 	cgrp2 = perf_cgroup_from_task(prev, NULL);
782 
783 	/*
784 	 * only need to schedule in cgroup events if we are changing
785 	 * cgroup during ctxsw. Cgroup events were not scheduled
786 	 * out of ctxsw out if that was not the case.
787 	 */
788 	if (cgrp1 != cgrp2)
789 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790 
791 	rcu_read_unlock();
792 }
793 
794 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795 				      struct perf_event_attr *attr,
796 				      struct perf_event *group_leader)
797 {
798 	struct perf_cgroup *cgrp;
799 	struct cgroup_subsys_state *css;
800 	struct fd f = fdget(fd);
801 	int ret = 0;
802 
803 	if (!f.file)
804 		return -EBADF;
805 
806 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
807 					 &perf_event_cgrp_subsys);
808 	if (IS_ERR(css)) {
809 		ret = PTR_ERR(css);
810 		goto out;
811 	}
812 
813 	cgrp = container_of(css, struct perf_cgroup, css);
814 	event->cgrp = cgrp;
815 
816 	/*
817 	 * all events in a group must monitor
818 	 * the same cgroup because a task belongs
819 	 * to only one perf cgroup at a time
820 	 */
821 	if (group_leader && group_leader->cgrp != cgrp) {
822 		perf_detach_cgroup(event);
823 		ret = -EINVAL;
824 	}
825 out:
826 	fdput(f);
827 	return ret;
828 }
829 
830 static inline void
831 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832 {
833 	struct perf_cgroup_info *t;
834 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
835 	event->shadow_ctx_time = now - t->timestamp;
836 }
837 
838 static inline void
839 perf_cgroup_defer_enabled(struct perf_event *event)
840 {
841 	/*
842 	 * when the current task's perf cgroup does not match
843 	 * the event's, we need to remember to call the
844 	 * perf_mark_enable() function the first time a task with
845 	 * a matching perf cgroup is scheduled in.
846 	 */
847 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
848 		event->cgrp_defer_enabled = 1;
849 }
850 
851 static inline void
852 perf_cgroup_mark_enabled(struct perf_event *event,
853 			 struct perf_event_context *ctx)
854 {
855 	struct perf_event *sub;
856 	u64 tstamp = perf_event_time(event);
857 
858 	if (!event->cgrp_defer_enabled)
859 		return;
860 
861 	event->cgrp_defer_enabled = 0;
862 
863 	event->tstamp_enabled = tstamp - event->total_time_enabled;
864 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
865 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867 			sub->cgrp_defer_enabled = 0;
868 		}
869 	}
870 }
871 
872 /*
873  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874  * cleared when last cgroup event is removed.
875  */
876 static inline void
877 list_update_cgroup_event(struct perf_event *event,
878 			 struct perf_event_context *ctx, bool add)
879 {
880 	struct perf_cpu_context *cpuctx;
881 	struct list_head *cpuctx_entry;
882 
883 	if (!is_cgroup_event(event))
884 		return;
885 
886 	if (add && ctx->nr_cgroups++)
887 		return;
888 	else if (!add && --ctx->nr_cgroups)
889 		return;
890 	/*
891 	 * Because cgroup events are always per-cpu events,
892 	 * this will always be called from the right CPU.
893 	 */
894 	cpuctx = __get_cpu_context(ctx);
895 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897 	if (add) {
898 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900 			cpuctx->cgrp = event->cgrp;
901 	} else {
902 		list_del(cpuctx_entry);
903 		cpuctx->cgrp = NULL;
904 	}
905 }
906 
907 #else /* !CONFIG_CGROUP_PERF */
908 
909 static inline bool
910 perf_cgroup_match(struct perf_event *event)
911 {
912 	return true;
913 }
914 
915 static inline void perf_detach_cgroup(struct perf_event *event)
916 {}
917 
918 static inline int is_cgroup_event(struct perf_event *event)
919 {
920 	return 0;
921 }
922 
923 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924 {
925 	return 0;
926 }
927 
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931 
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935 
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937 					 struct task_struct *next)
938 {
939 }
940 
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942 					struct task_struct *task)
943 {
944 }
945 
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947 				      struct perf_event_attr *attr,
948 				      struct perf_event *group_leader)
949 {
950 	return -EINVAL;
951 }
952 
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955 			  struct perf_event_context *ctx)
956 {
957 }
958 
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963 
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968 
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971 	return 0;
972 }
973 
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978 
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981 			 struct perf_event_context *ctx)
982 {
983 }
984 
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987 			 struct perf_event_context *ctx, bool add)
988 {
989 }
990 
991 #endif
992 
993 /*
994  * set default to be dependent on timer tick just
995  * like original code
996  */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999  * function must be called with interrupts disbled
1000  */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003 	struct perf_cpu_context *cpuctx;
1004 	int rotations = 0;
1005 
1006 	WARN_ON(!irqs_disabled());
1007 
1008 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009 	rotations = perf_rotate_context(cpuctx);
1010 
1011 	raw_spin_lock(&cpuctx->hrtimer_lock);
1012 	if (rotations)
1013 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014 	else
1015 		cpuctx->hrtimer_active = 0;
1016 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1017 
1018 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020 
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023 	struct hrtimer *timer = &cpuctx->hrtimer;
1024 	struct pmu *pmu = cpuctx->ctx.pmu;
1025 	u64 interval;
1026 
1027 	/* no multiplexing needed for SW PMU */
1028 	if (pmu->task_ctx_nr == perf_sw_context)
1029 		return;
1030 
1031 	/*
1032 	 * check default is sane, if not set then force to
1033 	 * default interval (1/tick)
1034 	 */
1035 	interval = pmu->hrtimer_interval_ms;
1036 	if (interval < 1)
1037 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038 
1039 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040 
1041 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043 	timer->function = perf_mux_hrtimer_handler;
1044 }
1045 
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048 	struct hrtimer *timer = &cpuctx->hrtimer;
1049 	struct pmu *pmu = cpuctx->ctx.pmu;
1050 	unsigned long flags;
1051 
1052 	/* not for SW PMU */
1053 	if (pmu->task_ctx_nr == perf_sw_context)
1054 		return 0;
1055 
1056 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057 	if (!cpuctx->hrtimer_active) {
1058 		cpuctx->hrtimer_active = 1;
1059 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061 	}
1062 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063 
1064 	return 0;
1065 }
1066 
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070 	if (!(*count)++)
1071 		pmu->pmu_disable(pmu);
1072 }
1073 
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077 	if (!--(*count))
1078 		pmu->pmu_enable(pmu);
1079 }
1080 
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082 
1083 /*
1084  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085  * perf_event_task_tick() are fully serialized because they're strictly cpu
1086  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087  * disabled, while perf_event_task_tick is called from IRQ context.
1088  */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092 
1093 	WARN_ON(!irqs_disabled());
1094 
1095 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1096 
1097 	list_add(&ctx->active_ctx_list, head);
1098 }
1099 
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102 	WARN_ON(!irqs_disabled());
1103 
1104 	WARN_ON(list_empty(&ctx->active_ctx_list));
1105 
1106 	list_del_init(&ctx->active_ctx_list);
1107 }
1108 
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113 
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116 	struct perf_event_context *ctx;
1117 
1118 	ctx = container_of(head, struct perf_event_context, rcu_head);
1119 	kfree(ctx->task_ctx_data);
1120 	kfree(ctx);
1121 }
1122 
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125 	if (atomic_dec_and_test(&ctx->refcount)) {
1126 		if (ctx->parent_ctx)
1127 			put_ctx(ctx->parent_ctx);
1128 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129 			put_task_struct(ctx->task);
1130 		call_rcu(&ctx->rcu_head, free_ctx);
1131 	}
1132 }
1133 
1134 /*
1135  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136  * perf_pmu_migrate_context() we need some magic.
1137  *
1138  * Those places that change perf_event::ctx will hold both
1139  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140  *
1141  * Lock ordering is by mutex address. There are two other sites where
1142  * perf_event_context::mutex nests and those are:
1143  *
1144  *  - perf_event_exit_task_context()	[ child , 0 ]
1145  *      perf_event_exit_event()
1146  *        put_event()			[ parent, 1 ]
1147  *
1148  *  - perf_event_init_context()		[ parent, 0 ]
1149  *      inherit_task_group()
1150  *        inherit_group()
1151  *          inherit_event()
1152  *            perf_event_alloc()
1153  *              perf_init_event()
1154  *                perf_try_init_event()	[ child , 1 ]
1155  *
1156  * While it appears there is an obvious deadlock here -- the parent and child
1157  * nesting levels are inverted between the two. This is in fact safe because
1158  * life-time rules separate them. That is an exiting task cannot fork, and a
1159  * spawning task cannot (yet) exit.
1160  *
1161  * But remember that that these are parent<->child context relations, and
1162  * migration does not affect children, therefore these two orderings should not
1163  * interact.
1164  *
1165  * The change in perf_event::ctx does not affect children (as claimed above)
1166  * because the sys_perf_event_open() case will install a new event and break
1167  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168  * concerned with cpuctx and that doesn't have children.
1169  *
1170  * The places that change perf_event::ctx will issue:
1171  *
1172  *   perf_remove_from_context();
1173  *   synchronize_rcu();
1174  *   perf_install_in_context();
1175  *
1176  * to affect the change. The remove_from_context() + synchronize_rcu() should
1177  * quiesce the event, after which we can install it in the new location. This
1178  * means that only external vectors (perf_fops, prctl) can perturb the event
1179  * while in transit. Therefore all such accessors should also acquire
1180  * perf_event_context::mutex to serialize against this.
1181  *
1182  * However; because event->ctx can change while we're waiting to acquire
1183  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184  * function.
1185  *
1186  * Lock order:
1187  *    cred_guard_mutex
1188  *	task_struct::perf_event_mutex
1189  *	  perf_event_context::mutex
1190  *	    perf_event::child_mutex;
1191  *	      perf_event_context::lock
1192  *	    perf_event::mmap_mutex
1193  *	    mmap_sem
1194  */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198 	struct perf_event_context *ctx;
1199 
1200 again:
1201 	rcu_read_lock();
1202 	ctx = ACCESS_ONCE(event->ctx);
1203 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1204 		rcu_read_unlock();
1205 		goto again;
1206 	}
1207 	rcu_read_unlock();
1208 
1209 	mutex_lock_nested(&ctx->mutex, nesting);
1210 	if (event->ctx != ctx) {
1211 		mutex_unlock(&ctx->mutex);
1212 		put_ctx(ctx);
1213 		goto again;
1214 	}
1215 
1216 	return ctx;
1217 }
1218 
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222 	return perf_event_ctx_lock_nested(event, 0);
1223 }
1224 
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226 				  struct perf_event_context *ctx)
1227 {
1228 	mutex_unlock(&ctx->mutex);
1229 	put_ctx(ctx);
1230 }
1231 
1232 /*
1233  * This must be done under the ctx->lock, such as to serialize against
1234  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235  * calling scheduler related locks and ctx->lock nests inside those.
1236  */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241 
1242 	lockdep_assert_held(&ctx->lock);
1243 
1244 	if (parent_ctx)
1245 		ctx->parent_ctx = NULL;
1246 	ctx->generation++;
1247 
1248 	return parent_ctx;
1249 }
1250 
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253 	/*
1254 	 * only top level events have the pid namespace they were created in
1255 	 */
1256 	if (event->parent)
1257 		event = event->parent;
1258 
1259 	return task_tgid_nr_ns(p, event->ns);
1260 }
1261 
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264 	/*
1265 	 * only top level events have the pid namespace they were created in
1266 	 */
1267 	if (event->parent)
1268 		event = event->parent;
1269 
1270 	return task_pid_nr_ns(p, event->ns);
1271 }
1272 
1273 /*
1274  * If we inherit events we want to return the parent event id
1275  * to userspace.
1276  */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279 	u64 id = event->id;
1280 
1281 	if (event->parent)
1282 		id = event->parent->id;
1283 
1284 	return id;
1285 }
1286 
1287 /*
1288  * Get the perf_event_context for a task and lock it.
1289  *
1290  * This has to cope with with the fact that until it is locked,
1291  * the context could get moved to another task.
1292  */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296 	struct perf_event_context *ctx;
1297 
1298 retry:
1299 	/*
1300 	 * One of the few rules of preemptible RCU is that one cannot do
1301 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302 	 * part of the read side critical section was irqs-enabled -- see
1303 	 * rcu_read_unlock_special().
1304 	 *
1305 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1306 	 * side critical section has interrupts disabled.
1307 	 */
1308 	local_irq_save(*flags);
1309 	rcu_read_lock();
1310 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311 	if (ctx) {
1312 		/*
1313 		 * If this context is a clone of another, it might
1314 		 * get swapped for another underneath us by
1315 		 * perf_event_task_sched_out, though the
1316 		 * rcu_read_lock() protects us from any context
1317 		 * getting freed.  Lock the context and check if it
1318 		 * got swapped before we could get the lock, and retry
1319 		 * if so.  If we locked the right context, then it
1320 		 * can't get swapped on us any more.
1321 		 */
1322 		raw_spin_lock(&ctx->lock);
1323 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324 			raw_spin_unlock(&ctx->lock);
1325 			rcu_read_unlock();
1326 			local_irq_restore(*flags);
1327 			goto retry;
1328 		}
1329 
1330 		if (ctx->task == TASK_TOMBSTONE ||
1331 		    !atomic_inc_not_zero(&ctx->refcount)) {
1332 			raw_spin_unlock(&ctx->lock);
1333 			ctx = NULL;
1334 		} else {
1335 			WARN_ON_ONCE(ctx->task != task);
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 	if (!ctx)
1340 		local_irq_restore(*flags);
1341 	return ctx;
1342 }
1343 
1344 /*
1345  * Get the context for a task and increment its pin_count so it
1346  * can't get swapped to another task.  This also increments its
1347  * reference count so that the context can't get freed.
1348  */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352 	struct perf_event_context *ctx;
1353 	unsigned long flags;
1354 
1355 	ctx = perf_lock_task_context(task, ctxn, &flags);
1356 	if (ctx) {
1357 		++ctx->pin_count;
1358 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359 	}
1360 	return ctx;
1361 }
1362 
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365 	unsigned long flags;
1366 
1367 	raw_spin_lock_irqsave(&ctx->lock, flags);
1368 	--ctx->pin_count;
1369 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371 
1372 /*
1373  * Update the record of the current time in a context.
1374  */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377 	u64 now = perf_clock();
1378 
1379 	ctx->time += now - ctx->timestamp;
1380 	ctx->timestamp = now;
1381 }
1382 
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385 	struct perf_event_context *ctx = event->ctx;
1386 
1387 	if (is_cgroup_event(event))
1388 		return perf_cgroup_event_time(event);
1389 
1390 	return ctx ? ctx->time : 0;
1391 }
1392 
1393 /*
1394  * Update the total_time_enabled and total_time_running fields for a event.
1395  */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398 	struct perf_event_context *ctx = event->ctx;
1399 	u64 run_end;
1400 
1401 	lockdep_assert_held(&ctx->lock);
1402 
1403 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405 		return;
1406 
1407 	/*
1408 	 * in cgroup mode, time_enabled represents
1409 	 * the time the event was enabled AND active
1410 	 * tasks were in the monitored cgroup. This is
1411 	 * independent of the activity of the context as
1412 	 * there may be a mix of cgroup and non-cgroup events.
1413 	 *
1414 	 * That is why we treat cgroup events differently
1415 	 * here.
1416 	 */
1417 	if (is_cgroup_event(event))
1418 		run_end = perf_cgroup_event_time(event);
1419 	else if (ctx->is_active)
1420 		run_end = ctx->time;
1421 	else
1422 		run_end = event->tstamp_stopped;
1423 
1424 	event->total_time_enabled = run_end - event->tstamp_enabled;
1425 
1426 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1427 		run_end = event->tstamp_stopped;
1428 	else
1429 		run_end = perf_event_time(event);
1430 
1431 	event->total_time_running = run_end - event->tstamp_running;
1432 
1433 }
1434 
1435 /*
1436  * Update total_time_enabled and total_time_running for all events in a group.
1437  */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440 	struct perf_event *event;
1441 
1442 	update_event_times(leader);
1443 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1444 		update_event_times(event);
1445 }
1446 
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449 	struct perf_event_context *ctx = event->ctx;
1450 	enum event_type_t event_type;
1451 
1452 	lockdep_assert_held(&ctx->lock);
1453 
1454 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455 	if (!ctx->task)
1456 		event_type |= EVENT_CPU;
1457 
1458 	return event_type;
1459 }
1460 
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 	if (event->attr.pinned)
1465 		return &ctx->pinned_groups;
1466 	else
1467 		return &ctx->flexible_groups;
1468 }
1469 
1470 /*
1471  * Add a event from the lists for its context.
1472  * Must be called with ctx->mutex and ctx->lock held.
1473  */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 	lockdep_assert_held(&ctx->lock);
1478 
1479 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 	event->attach_state |= PERF_ATTACH_CONTEXT;
1481 
1482 	/*
1483 	 * If we're a stand alone event or group leader, we go to the context
1484 	 * list, group events are kept attached to the group so that
1485 	 * perf_group_detach can, at all times, locate all siblings.
1486 	 */
1487 	if (event->group_leader == event) {
1488 		struct list_head *list;
1489 
1490 		event->group_caps = event->event_caps;
1491 
1492 		list = ctx_group_list(event, ctx);
1493 		list_add_tail(&event->group_entry, list);
1494 	}
1495 
1496 	list_update_cgroup_event(event, ctx, true);
1497 
1498 	list_add_rcu(&event->event_entry, &ctx->event_list);
1499 	ctx->nr_events++;
1500 	if (event->attr.inherit_stat)
1501 		ctx->nr_stat++;
1502 
1503 	ctx->generation++;
1504 }
1505 
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 					      PERF_EVENT_STATE_INACTIVE;
1513 }
1514 
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 	int entry = sizeof(u64); /* value */
1518 	int size = 0;
1519 	int nr = 1;
1520 
1521 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 		size += sizeof(u64);
1523 
1524 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 		size += sizeof(u64);
1526 
1527 	if (event->attr.read_format & PERF_FORMAT_ID)
1528 		entry += sizeof(u64);
1529 
1530 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 		nr += nr_siblings;
1532 		size += sizeof(u64);
1533 	}
1534 
1535 	size += entry * nr;
1536 	event->read_size = size;
1537 }
1538 
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 	struct perf_sample_data *data;
1542 	u16 size = 0;
1543 
1544 	if (sample_type & PERF_SAMPLE_IP)
1545 		size += sizeof(data->ip);
1546 
1547 	if (sample_type & PERF_SAMPLE_ADDR)
1548 		size += sizeof(data->addr);
1549 
1550 	if (sample_type & PERF_SAMPLE_PERIOD)
1551 		size += sizeof(data->period);
1552 
1553 	if (sample_type & PERF_SAMPLE_WEIGHT)
1554 		size += sizeof(data->weight);
1555 
1556 	if (sample_type & PERF_SAMPLE_READ)
1557 		size += event->read_size;
1558 
1559 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 		size += sizeof(data->data_src.val);
1561 
1562 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 		size += sizeof(data->txn);
1564 
1565 	event->header_size = size;
1566 }
1567 
1568 /*
1569  * Called at perf_event creation and when events are attached/detached from a
1570  * group.
1571  */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574 	__perf_event_read_size(event,
1575 			       event->group_leader->nr_siblings);
1576 	__perf_event_header_size(event, event->attr.sample_type);
1577 }
1578 
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581 	struct perf_sample_data *data;
1582 	u64 sample_type = event->attr.sample_type;
1583 	u16 size = 0;
1584 
1585 	if (sample_type & PERF_SAMPLE_TID)
1586 		size += sizeof(data->tid_entry);
1587 
1588 	if (sample_type & PERF_SAMPLE_TIME)
1589 		size += sizeof(data->time);
1590 
1591 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 		size += sizeof(data->id);
1593 
1594 	if (sample_type & PERF_SAMPLE_ID)
1595 		size += sizeof(data->id);
1596 
1597 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 		size += sizeof(data->stream_id);
1599 
1600 	if (sample_type & PERF_SAMPLE_CPU)
1601 		size += sizeof(data->cpu_entry);
1602 
1603 	event->id_header_size = size;
1604 }
1605 
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608 	/*
1609 	 * The values computed here will be over-written when we actually
1610 	 * attach the event.
1611 	 */
1612 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 	perf_event__id_header_size(event);
1615 
1616 	/*
1617 	 * Sum the lot; should not exceed the 64k limit we have on records.
1618 	 * Conservative limit to allow for callchains and other variable fields.
1619 	 */
1620 	if (event->read_size + event->header_size +
1621 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 		return false;
1623 
1624 	return true;
1625 }
1626 
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629 	struct perf_event *group_leader = event->group_leader, *pos;
1630 
1631 	lockdep_assert_held(&event->ctx->lock);
1632 
1633 	/*
1634 	 * We can have double attach due to group movement in perf_event_open.
1635 	 */
1636 	if (event->attach_state & PERF_ATTACH_GROUP)
1637 		return;
1638 
1639 	event->attach_state |= PERF_ATTACH_GROUP;
1640 
1641 	if (group_leader == event)
1642 		return;
1643 
1644 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645 
1646 	group_leader->group_caps &= event->event_caps;
1647 
1648 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 	group_leader->nr_siblings++;
1650 
1651 	perf_event__header_size(group_leader);
1652 
1653 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 		perf_event__header_size(pos);
1655 }
1656 
1657 /*
1658  * Remove a event from the lists for its context.
1659  * Must be called with ctx->mutex and ctx->lock held.
1660  */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664 	WARN_ON_ONCE(event->ctx != ctx);
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	/*
1668 	 * We can have double detach due to exit/hot-unplug + close.
1669 	 */
1670 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671 		return;
1672 
1673 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674 
1675 	list_update_cgroup_event(event, ctx, false);
1676 
1677 	ctx->nr_events--;
1678 	if (event->attr.inherit_stat)
1679 		ctx->nr_stat--;
1680 
1681 	list_del_rcu(&event->event_entry);
1682 
1683 	if (event->group_leader == event)
1684 		list_del_init(&event->group_entry);
1685 
1686 	update_group_times(event);
1687 
1688 	/*
1689 	 * If event was in error state, then keep it
1690 	 * that way, otherwise bogus counts will be
1691 	 * returned on read(). The only way to get out
1692 	 * of error state is by explicit re-enabling
1693 	 * of the event
1694 	 */
1695 	if (event->state > PERF_EVENT_STATE_OFF)
1696 		event->state = PERF_EVENT_STATE_OFF;
1697 
1698 	ctx->generation++;
1699 }
1700 
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703 	struct perf_event *sibling, *tmp;
1704 	struct list_head *list = NULL;
1705 
1706 	lockdep_assert_held(&event->ctx->lock);
1707 
1708 	/*
1709 	 * We can have double detach due to exit/hot-unplug + close.
1710 	 */
1711 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 		return;
1713 
1714 	event->attach_state &= ~PERF_ATTACH_GROUP;
1715 
1716 	/*
1717 	 * If this is a sibling, remove it from its group.
1718 	 */
1719 	if (event->group_leader != event) {
1720 		list_del_init(&event->group_entry);
1721 		event->group_leader->nr_siblings--;
1722 		goto out;
1723 	}
1724 
1725 	if (!list_empty(&event->group_entry))
1726 		list = &event->group_entry;
1727 
1728 	/*
1729 	 * If this was a group event with sibling events then
1730 	 * upgrade the siblings to singleton events by adding them
1731 	 * to whatever list we are on.
1732 	 */
1733 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 		if (list)
1735 			list_move_tail(&sibling->group_entry, list);
1736 		sibling->group_leader = sibling;
1737 
1738 		/* Inherit group flags from the previous leader */
1739 		sibling->group_caps = event->group_caps;
1740 
1741 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1742 	}
1743 
1744 out:
1745 	perf_event__header_size(event->group_leader);
1746 
1747 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 		perf_event__header_size(tmp);
1749 }
1750 
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753 	return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755 
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758 	struct pmu *pmu = event->pmu;
1759 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761 
1762 /*
1763  * Check whether we should attempt to schedule an event group based on
1764  * PMU-specific filtering. An event group can consist of HW and SW events,
1765  * potentially with a SW leader, so we must check all the filters, to
1766  * determine whether a group is schedulable:
1767  */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770 	struct perf_event *child;
1771 
1772 	if (!__pmu_filter_match(event))
1773 		return 0;
1774 
1775 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 		if (!__pmu_filter_match(child))
1777 			return 0;
1778 	}
1779 
1780 	return 1;
1781 }
1782 
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 	       perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789 
1790 static void
1791 event_sched_out(struct perf_event *event,
1792 		  struct perf_cpu_context *cpuctx,
1793 		  struct perf_event_context *ctx)
1794 {
1795 	u64 tstamp = perf_event_time(event);
1796 	u64 delta;
1797 
1798 	WARN_ON_ONCE(event->ctx != ctx);
1799 	lockdep_assert_held(&ctx->lock);
1800 
1801 	/*
1802 	 * An event which could not be activated because of
1803 	 * filter mismatch still needs to have its timings
1804 	 * maintained, otherwise bogus information is return
1805 	 * via read() for time_enabled, time_running:
1806 	 */
1807 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 	    !event_filter_match(event)) {
1809 		delta = tstamp - event->tstamp_stopped;
1810 		event->tstamp_running += delta;
1811 		event->tstamp_stopped = tstamp;
1812 	}
1813 
1814 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1815 		return;
1816 
1817 	perf_pmu_disable(event->pmu);
1818 
1819 	event->tstamp_stopped = tstamp;
1820 	event->pmu->del(event, 0);
1821 	event->oncpu = -1;
1822 	event->state = PERF_EVENT_STATE_INACTIVE;
1823 	if (event->pending_disable) {
1824 		event->pending_disable = 0;
1825 		event->state = PERF_EVENT_STATE_OFF;
1826 	}
1827 
1828 	if (!is_software_event(event))
1829 		cpuctx->active_oncpu--;
1830 	if (!--ctx->nr_active)
1831 		perf_event_ctx_deactivate(ctx);
1832 	if (event->attr.freq && event->attr.sample_freq)
1833 		ctx->nr_freq--;
1834 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1835 		cpuctx->exclusive = 0;
1836 
1837 	perf_pmu_enable(event->pmu);
1838 }
1839 
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842 		struct perf_cpu_context *cpuctx,
1843 		struct perf_event_context *ctx)
1844 {
1845 	struct perf_event *event;
1846 	int state = group_event->state;
1847 
1848 	perf_pmu_disable(ctx->pmu);
1849 
1850 	event_sched_out(group_event, cpuctx, ctx);
1851 
1852 	/*
1853 	 * Schedule out siblings (if any):
1854 	 */
1855 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 		event_sched_out(event, cpuctx, ctx);
1857 
1858 	perf_pmu_enable(ctx->pmu);
1859 
1860 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 		cpuctx->exclusive = 0;
1862 }
1863 
1864 #define DETACH_GROUP	0x01UL
1865 
1866 /*
1867  * Cross CPU call to remove a performance event
1868  *
1869  * We disable the event on the hardware level first. After that we
1870  * remove it from the context list.
1871  */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874 			   struct perf_cpu_context *cpuctx,
1875 			   struct perf_event_context *ctx,
1876 			   void *info)
1877 {
1878 	unsigned long flags = (unsigned long)info;
1879 
1880 	event_sched_out(event, cpuctx, ctx);
1881 	if (flags & DETACH_GROUP)
1882 		perf_group_detach(event);
1883 	list_del_event(event, ctx);
1884 
1885 	if (!ctx->nr_events && ctx->is_active) {
1886 		ctx->is_active = 0;
1887 		if (ctx->task) {
1888 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 			cpuctx->task_ctx = NULL;
1890 		}
1891 	}
1892 }
1893 
1894 /*
1895  * Remove the event from a task's (or a CPU's) list of events.
1896  *
1897  * If event->ctx is a cloned context, callers must make sure that
1898  * every task struct that event->ctx->task could possibly point to
1899  * remains valid.  This is OK when called from perf_release since
1900  * that only calls us on the top-level context, which can't be a clone.
1901  * When called from perf_event_exit_task, it's OK because the
1902  * context has been detached from its task.
1903  */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906 	struct perf_event_context *ctx = event->ctx;
1907 
1908 	lockdep_assert_held(&ctx->mutex);
1909 
1910 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1911 
1912 	/*
1913 	 * The above event_function_call() can NO-OP when it hits
1914 	 * TASK_TOMBSTONE. In that case we must already have been detached
1915 	 * from the context (by perf_event_exit_event()) but the grouping
1916 	 * might still be in-tact.
1917 	 */
1918 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 	if ((flags & DETACH_GROUP) &&
1920 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1921 		/*
1922 		 * Since in that case we cannot possibly be scheduled, simply
1923 		 * detach now.
1924 		 */
1925 		raw_spin_lock_irq(&ctx->lock);
1926 		perf_group_detach(event);
1927 		raw_spin_unlock_irq(&ctx->lock);
1928 	}
1929 }
1930 
1931 /*
1932  * Cross CPU call to disable a performance event
1933  */
1934 static void __perf_event_disable(struct perf_event *event,
1935 				 struct perf_cpu_context *cpuctx,
1936 				 struct perf_event_context *ctx,
1937 				 void *info)
1938 {
1939 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 		return;
1941 
1942 	update_context_time(ctx);
1943 	update_cgrp_time_from_event(event);
1944 	update_group_times(event);
1945 	if (event == event->group_leader)
1946 		group_sched_out(event, cpuctx, ctx);
1947 	else
1948 		event_sched_out(event, cpuctx, ctx);
1949 	event->state = PERF_EVENT_STATE_OFF;
1950 }
1951 
1952 /*
1953  * Disable a event.
1954  *
1955  * If event->ctx is a cloned context, callers must make sure that
1956  * every task struct that event->ctx->task could possibly point to
1957  * remains valid.  This condition is satisifed when called through
1958  * perf_event_for_each_child or perf_event_for_each because they
1959  * hold the top-level event's child_mutex, so any descendant that
1960  * goes to exit will block in perf_event_exit_event().
1961  *
1962  * When called from perf_pending_event it's OK because event->ctx
1963  * is the current context on this CPU and preemption is disabled,
1964  * hence we can't get into perf_event_task_sched_out for this context.
1965  */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968 	struct perf_event_context *ctx = event->ctx;
1969 
1970 	raw_spin_lock_irq(&ctx->lock);
1971 	if (event->state <= PERF_EVENT_STATE_OFF) {
1972 		raw_spin_unlock_irq(&ctx->lock);
1973 		return;
1974 	}
1975 	raw_spin_unlock_irq(&ctx->lock);
1976 
1977 	event_function_call(event, __perf_event_disable, NULL);
1978 }
1979 
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982 	event_function_local(event, __perf_event_disable, NULL);
1983 }
1984 
1985 /*
1986  * Strictly speaking kernel users cannot create groups and therefore this
1987  * interface does not need the perf_event_ctx_lock() magic.
1988  */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991 	struct perf_event_context *ctx;
1992 
1993 	ctx = perf_event_ctx_lock(event);
1994 	_perf_event_disable(event);
1995 	perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998 
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001 	event->pending_disable = 1;
2002 	irq_work_queue(&event->pending);
2003 }
2004 
2005 static void perf_set_shadow_time(struct perf_event *event,
2006 				 struct perf_event_context *ctx,
2007 				 u64 tstamp)
2008 {
2009 	/*
2010 	 * use the correct time source for the time snapshot
2011 	 *
2012 	 * We could get by without this by leveraging the
2013 	 * fact that to get to this function, the caller
2014 	 * has most likely already called update_context_time()
2015 	 * and update_cgrp_time_xx() and thus both timestamp
2016 	 * are identical (or very close). Given that tstamp is,
2017 	 * already adjusted for cgroup, we could say that:
2018 	 *    tstamp - ctx->timestamp
2019 	 * is equivalent to
2020 	 *    tstamp - cgrp->timestamp.
2021 	 *
2022 	 * Then, in perf_output_read(), the calculation would
2023 	 * work with no changes because:
2024 	 * - event is guaranteed scheduled in
2025 	 * - no scheduled out in between
2026 	 * - thus the timestamp would be the same
2027 	 *
2028 	 * But this is a bit hairy.
2029 	 *
2030 	 * So instead, we have an explicit cgroup call to remain
2031 	 * within the time time source all along. We believe it
2032 	 * is cleaner and simpler to understand.
2033 	 */
2034 	if (is_cgroup_event(event))
2035 		perf_cgroup_set_shadow_time(event, tstamp);
2036 	else
2037 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039 
2040 #define MAX_INTERRUPTS (~0ULL)
2041 
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044 
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 		 struct perf_cpu_context *cpuctx,
2048 		 struct perf_event_context *ctx)
2049 {
2050 	u64 tstamp = perf_event_time(event);
2051 	int ret = 0;
2052 
2053 	lockdep_assert_held(&ctx->lock);
2054 
2055 	if (event->state <= PERF_EVENT_STATE_OFF)
2056 		return 0;
2057 
2058 	WRITE_ONCE(event->oncpu, smp_processor_id());
2059 	/*
2060 	 * Order event::oncpu write to happen before the ACTIVE state
2061 	 * is visible.
2062 	 */
2063 	smp_wmb();
2064 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065 
2066 	/*
2067 	 * Unthrottle events, since we scheduled we might have missed several
2068 	 * ticks already, also for a heavily scheduling task there is little
2069 	 * guarantee it'll get a tick in a timely manner.
2070 	 */
2071 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 		perf_log_throttle(event, 1);
2073 		event->hw.interrupts = 0;
2074 	}
2075 
2076 	/*
2077 	 * The new state must be visible before we turn it on in the hardware:
2078 	 */
2079 	smp_wmb();
2080 
2081 	perf_pmu_disable(event->pmu);
2082 
2083 	perf_set_shadow_time(event, ctx, tstamp);
2084 
2085 	perf_log_itrace_start(event);
2086 
2087 	if (event->pmu->add(event, PERF_EF_START)) {
2088 		event->state = PERF_EVENT_STATE_INACTIVE;
2089 		event->oncpu = -1;
2090 		ret = -EAGAIN;
2091 		goto out;
2092 	}
2093 
2094 	event->tstamp_running += tstamp - event->tstamp_stopped;
2095 
2096 	if (!is_software_event(event))
2097 		cpuctx->active_oncpu++;
2098 	if (!ctx->nr_active++)
2099 		perf_event_ctx_activate(ctx);
2100 	if (event->attr.freq && event->attr.sample_freq)
2101 		ctx->nr_freq++;
2102 
2103 	if (event->attr.exclusive)
2104 		cpuctx->exclusive = 1;
2105 
2106 out:
2107 	perf_pmu_enable(event->pmu);
2108 
2109 	return ret;
2110 }
2111 
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114 	       struct perf_cpu_context *cpuctx,
2115 	       struct perf_event_context *ctx)
2116 {
2117 	struct perf_event *event, *partial_group = NULL;
2118 	struct pmu *pmu = ctx->pmu;
2119 	u64 now = ctx->time;
2120 	bool simulate = false;
2121 
2122 	if (group_event->state == PERF_EVENT_STATE_OFF)
2123 		return 0;
2124 
2125 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126 
2127 	if (event_sched_in(group_event, cpuctx, ctx)) {
2128 		pmu->cancel_txn(pmu);
2129 		perf_mux_hrtimer_restart(cpuctx);
2130 		return -EAGAIN;
2131 	}
2132 
2133 	/*
2134 	 * Schedule in siblings as one group (if any):
2135 	 */
2136 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137 		if (event_sched_in(event, cpuctx, ctx)) {
2138 			partial_group = event;
2139 			goto group_error;
2140 		}
2141 	}
2142 
2143 	if (!pmu->commit_txn(pmu))
2144 		return 0;
2145 
2146 group_error:
2147 	/*
2148 	 * Groups can be scheduled in as one unit only, so undo any
2149 	 * partial group before returning:
2150 	 * The events up to the failed event are scheduled out normally,
2151 	 * tstamp_stopped will be updated.
2152 	 *
2153 	 * The failed events and the remaining siblings need to have
2154 	 * their timings updated as if they had gone thru event_sched_in()
2155 	 * and event_sched_out(). This is required to get consistent timings
2156 	 * across the group. This also takes care of the case where the group
2157 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 	 * the time the event was actually stopped, such that time delta
2159 	 * calculation in update_event_times() is correct.
2160 	 */
2161 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 		if (event == partial_group)
2163 			simulate = true;
2164 
2165 		if (simulate) {
2166 			event->tstamp_running += now - event->tstamp_stopped;
2167 			event->tstamp_stopped = now;
2168 		} else {
2169 			event_sched_out(event, cpuctx, ctx);
2170 		}
2171 	}
2172 	event_sched_out(group_event, cpuctx, ctx);
2173 
2174 	pmu->cancel_txn(pmu);
2175 
2176 	perf_mux_hrtimer_restart(cpuctx);
2177 
2178 	return -EAGAIN;
2179 }
2180 
2181 /*
2182  * Work out whether we can put this event group on the CPU now.
2183  */
2184 static int group_can_go_on(struct perf_event *event,
2185 			   struct perf_cpu_context *cpuctx,
2186 			   int can_add_hw)
2187 {
2188 	/*
2189 	 * Groups consisting entirely of software events can always go on.
2190 	 */
2191 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 		return 1;
2193 	/*
2194 	 * If an exclusive group is already on, no other hardware
2195 	 * events can go on.
2196 	 */
2197 	if (cpuctx->exclusive)
2198 		return 0;
2199 	/*
2200 	 * If this group is exclusive and there are already
2201 	 * events on the CPU, it can't go on.
2202 	 */
2203 	if (event->attr.exclusive && cpuctx->active_oncpu)
2204 		return 0;
2205 	/*
2206 	 * Otherwise, try to add it if all previous groups were able
2207 	 * to go on.
2208 	 */
2209 	return can_add_hw;
2210 }
2211 
2212 static void add_event_to_ctx(struct perf_event *event,
2213 			       struct perf_event_context *ctx)
2214 {
2215 	u64 tstamp = perf_event_time(event);
2216 
2217 	list_add_event(event, ctx);
2218 	perf_group_attach(event);
2219 	event->tstamp_enabled = tstamp;
2220 	event->tstamp_running = tstamp;
2221 	event->tstamp_stopped = tstamp;
2222 }
2223 
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225 			  struct perf_cpu_context *cpuctx,
2226 			  enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229 	     struct perf_cpu_context *cpuctx,
2230 	     enum event_type_t event_type,
2231 	     struct task_struct *task);
2232 
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 			       struct perf_event_context *ctx,
2235 			       enum event_type_t event_type)
2236 {
2237 	if (!cpuctx->task_ctx)
2238 		return;
2239 
2240 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241 		return;
2242 
2243 	ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245 
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247 				struct perf_event_context *ctx,
2248 				struct task_struct *task)
2249 {
2250 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251 	if (ctx)
2252 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254 	if (ctx)
2255 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257 
2258 /*
2259  * We want to maintain the following priority of scheduling:
2260  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261  *  - task pinned (EVENT_PINNED)
2262  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263  *  - task flexible (EVENT_FLEXIBLE).
2264  *
2265  * In order to avoid unscheduling and scheduling back in everything every
2266  * time an event is added, only do it for the groups of equal priority and
2267  * below.
2268  *
2269  * This can be called after a batch operation on task events, in which case
2270  * event_type is a bit mask of the types of events involved. For CPU events,
2271  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272  */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274 			struct perf_event_context *task_ctx,
2275 			enum event_type_t event_type)
2276 {
2277 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278 	bool cpu_event = !!(event_type & EVENT_CPU);
2279 
2280 	/*
2281 	 * If pinned groups are involved, flexible groups also need to be
2282 	 * scheduled out.
2283 	 */
2284 	if (event_type & EVENT_PINNED)
2285 		event_type |= EVENT_FLEXIBLE;
2286 
2287 	perf_pmu_disable(cpuctx->ctx.pmu);
2288 	if (task_ctx)
2289 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290 
2291 	/*
2292 	 * Decide which cpu ctx groups to schedule out based on the types
2293 	 * of events that caused rescheduling:
2294 	 *  - EVENT_CPU: schedule out corresponding groups;
2295 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296 	 *  - otherwise, do nothing more.
2297 	 */
2298 	if (cpu_event)
2299 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300 	else if (ctx_event_type & EVENT_PINNED)
2301 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302 
2303 	perf_event_sched_in(cpuctx, task_ctx, current);
2304 	perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306 
2307 /*
2308  * Cross CPU call to install and enable a performance event
2309  *
2310  * Very similar to remote_function() + event_function() but cannot assume that
2311  * things like ctx->is_active and cpuctx->task_ctx are set.
2312  */
2313 static int  __perf_install_in_context(void *info)
2314 {
2315 	struct perf_event *event = info;
2316 	struct perf_event_context *ctx = event->ctx;
2317 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319 	bool reprogram = true;
2320 	int ret = 0;
2321 
2322 	raw_spin_lock(&cpuctx->ctx.lock);
2323 	if (ctx->task) {
2324 		raw_spin_lock(&ctx->lock);
2325 		task_ctx = ctx;
2326 
2327 		reprogram = (ctx->task == current);
2328 
2329 		/*
2330 		 * If the task is running, it must be running on this CPU,
2331 		 * otherwise we cannot reprogram things.
2332 		 *
2333 		 * If its not running, we don't care, ctx->lock will
2334 		 * serialize against it becoming runnable.
2335 		 */
2336 		if (task_curr(ctx->task) && !reprogram) {
2337 			ret = -ESRCH;
2338 			goto unlock;
2339 		}
2340 
2341 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342 	} else if (task_ctx) {
2343 		raw_spin_lock(&task_ctx->lock);
2344 	}
2345 
2346 	if (reprogram) {
2347 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348 		add_event_to_ctx(event, ctx);
2349 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350 	} else {
2351 		add_event_to_ctx(event, ctx);
2352 	}
2353 
2354 unlock:
2355 	perf_ctx_unlock(cpuctx, task_ctx);
2356 
2357 	return ret;
2358 }
2359 
2360 /*
2361  * Attach a performance event to a context.
2362  *
2363  * Very similar to event_function_call, see comment there.
2364  */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367 			struct perf_event *event,
2368 			int cpu)
2369 {
2370 	struct task_struct *task = READ_ONCE(ctx->task);
2371 
2372 	lockdep_assert_held(&ctx->mutex);
2373 
2374 	if (event->cpu != -1)
2375 		event->cpu = cpu;
2376 
2377 	/*
2378 	 * Ensures that if we can observe event->ctx, both the event and ctx
2379 	 * will be 'complete'. See perf_iterate_sb_cpu().
2380 	 */
2381 	smp_store_release(&event->ctx, ctx);
2382 
2383 	if (!task) {
2384 		cpu_function_call(cpu, __perf_install_in_context, event);
2385 		return;
2386 	}
2387 
2388 	/*
2389 	 * Should not happen, we validate the ctx is still alive before calling.
2390 	 */
2391 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392 		return;
2393 
2394 	/*
2395 	 * Installing events is tricky because we cannot rely on ctx->is_active
2396 	 * to be set in case this is the nr_events 0 -> 1 transition.
2397 	 *
2398 	 * Instead we use task_curr(), which tells us if the task is running.
2399 	 * However, since we use task_curr() outside of rq::lock, we can race
2400 	 * against the actual state. This means the result can be wrong.
2401 	 *
2402 	 * If we get a false positive, we retry, this is harmless.
2403 	 *
2404 	 * If we get a false negative, things are complicated. If we are after
2405 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406 	 * value must be correct. If we're before, it doesn't matter since
2407 	 * perf_event_context_sched_in() will program the counter.
2408 	 *
2409 	 * However, this hinges on the remote context switch having observed
2410 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2411 	 * ctx::lock in perf_event_context_sched_in().
2412 	 *
2413 	 * We do this by task_function_call(), if the IPI fails to hit the task
2414 	 * we know any future context switch of task must see the
2415 	 * perf_event_ctpx[] store.
2416 	 */
2417 
2418 	/*
2419 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420 	 * task_cpu() load, such that if the IPI then does not find the task
2421 	 * running, a future context switch of that task must observe the
2422 	 * store.
2423 	 */
2424 	smp_mb();
2425 again:
2426 	if (!task_function_call(task, __perf_install_in_context, event))
2427 		return;
2428 
2429 	raw_spin_lock_irq(&ctx->lock);
2430 	task = ctx->task;
2431 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432 		/*
2433 		 * Cannot happen because we already checked above (which also
2434 		 * cannot happen), and we hold ctx->mutex, which serializes us
2435 		 * against perf_event_exit_task_context().
2436 		 */
2437 		raw_spin_unlock_irq(&ctx->lock);
2438 		return;
2439 	}
2440 	/*
2441 	 * If the task is not running, ctx->lock will avoid it becoming so,
2442 	 * thus we can safely install the event.
2443 	 */
2444 	if (task_curr(task)) {
2445 		raw_spin_unlock_irq(&ctx->lock);
2446 		goto again;
2447 	}
2448 	add_event_to_ctx(event, ctx);
2449 	raw_spin_unlock_irq(&ctx->lock);
2450 }
2451 
2452 /*
2453  * Put a event into inactive state and update time fields.
2454  * Enabling the leader of a group effectively enables all
2455  * the group members that aren't explicitly disabled, so we
2456  * have to update their ->tstamp_enabled also.
2457  * Note: this works for group members as well as group leaders
2458  * since the non-leader members' sibling_lists will be empty.
2459  */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462 	struct perf_event *sub;
2463 	u64 tstamp = perf_event_time(event);
2464 
2465 	event->state = PERF_EVENT_STATE_INACTIVE;
2466 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2467 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470 	}
2471 }
2472 
2473 /*
2474  * Cross CPU call to enable a performance event
2475  */
2476 static void __perf_event_enable(struct perf_event *event,
2477 				struct perf_cpu_context *cpuctx,
2478 				struct perf_event_context *ctx,
2479 				void *info)
2480 {
2481 	struct perf_event *leader = event->group_leader;
2482 	struct perf_event_context *task_ctx;
2483 
2484 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485 	    event->state <= PERF_EVENT_STATE_ERROR)
2486 		return;
2487 
2488 	if (ctx->is_active)
2489 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490 
2491 	__perf_event_mark_enabled(event);
2492 
2493 	if (!ctx->is_active)
2494 		return;
2495 
2496 	if (!event_filter_match(event)) {
2497 		if (is_cgroup_event(event))
2498 			perf_cgroup_defer_enabled(event);
2499 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500 		return;
2501 	}
2502 
2503 	/*
2504 	 * If the event is in a group and isn't the group leader,
2505 	 * then don't put it on unless the group is on.
2506 	 */
2507 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509 		return;
2510 	}
2511 
2512 	task_ctx = cpuctx->task_ctx;
2513 	if (ctx->task)
2514 		WARN_ON_ONCE(task_ctx != ctx);
2515 
2516 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518 
2519 /*
2520  * Enable a event.
2521  *
2522  * If event->ctx is a cloned context, callers must make sure that
2523  * every task struct that event->ctx->task could possibly point to
2524  * remains valid.  This condition is satisfied when called through
2525  * perf_event_for_each_child or perf_event_for_each as described
2526  * for perf_event_disable.
2527  */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530 	struct perf_event_context *ctx = event->ctx;
2531 
2532 	raw_spin_lock_irq(&ctx->lock);
2533 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534 	    event->state <  PERF_EVENT_STATE_ERROR) {
2535 		raw_spin_unlock_irq(&ctx->lock);
2536 		return;
2537 	}
2538 
2539 	/*
2540 	 * If the event is in error state, clear that first.
2541 	 *
2542 	 * That way, if we see the event in error state below, we know that it
2543 	 * has gone back into error state, as distinct from the task having
2544 	 * been scheduled away before the cross-call arrived.
2545 	 */
2546 	if (event->state == PERF_EVENT_STATE_ERROR)
2547 		event->state = PERF_EVENT_STATE_OFF;
2548 	raw_spin_unlock_irq(&ctx->lock);
2549 
2550 	event_function_call(event, __perf_event_enable, NULL);
2551 }
2552 
2553 /*
2554  * See perf_event_disable();
2555  */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558 	struct perf_event_context *ctx;
2559 
2560 	ctx = perf_event_ctx_lock(event);
2561 	_perf_event_enable(event);
2562 	perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565 
2566 struct stop_event_data {
2567 	struct perf_event	*event;
2568 	unsigned int		restart;
2569 };
2570 
2571 static int __perf_event_stop(void *info)
2572 {
2573 	struct stop_event_data *sd = info;
2574 	struct perf_event *event = sd->event;
2575 
2576 	/* if it's already INACTIVE, do nothing */
2577 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 		return 0;
2579 
2580 	/* matches smp_wmb() in event_sched_in() */
2581 	smp_rmb();
2582 
2583 	/*
2584 	 * There is a window with interrupts enabled before we get here,
2585 	 * so we need to check again lest we try to stop another CPU's event.
2586 	 */
2587 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2588 		return -EAGAIN;
2589 
2590 	event->pmu->stop(event, PERF_EF_UPDATE);
2591 
2592 	/*
2593 	 * May race with the actual stop (through perf_pmu_output_stop()),
2594 	 * but it is only used for events with AUX ring buffer, and such
2595 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2596 	 * see comments in perf_aux_output_begin().
2597 	 *
2598 	 * Since this is happening on a event-local CPU, no trace is lost
2599 	 * while restarting.
2600 	 */
2601 	if (sd->restart)
2602 		event->pmu->start(event, 0);
2603 
2604 	return 0;
2605 }
2606 
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609 	struct stop_event_data sd = {
2610 		.event		= event,
2611 		.restart	= restart,
2612 	};
2613 	int ret = 0;
2614 
2615 	do {
2616 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 			return 0;
2618 
2619 		/* matches smp_wmb() in event_sched_in() */
2620 		smp_rmb();
2621 
2622 		/*
2623 		 * We only want to restart ACTIVE events, so if the event goes
2624 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2625 		 * fall through with ret==-ENXIO.
2626 		 */
2627 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2628 					__perf_event_stop, &sd);
2629 	} while (ret == -EAGAIN);
2630 
2631 	return ret;
2632 }
2633 
2634 /*
2635  * In order to contain the amount of racy and tricky in the address filter
2636  * configuration management, it is a two part process:
2637  *
2638  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639  *      we update the addresses of corresponding vmas in
2640  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2641  * (p2) when an event is scheduled in (pmu::add), it calls
2642  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643  *      if the generation has changed since the previous call.
2644  *
2645  * If (p1) happens while the event is active, we restart it to force (p2).
2646  *
2647  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2649  *     ioctl;
2650  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2652  *     for reading;
2653  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654  *     of exec.
2655  */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659 
2660 	if (!has_addr_filter(event))
2661 		return;
2662 
2663 	raw_spin_lock(&ifh->lock);
2664 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665 		event->pmu->addr_filters_sync(event);
2666 		event->hw.addr_filters_gen = event->addr_filters_gen;
2667 	}
2668 	raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671 
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674 	/*
2675 	 * not supported on inherited events
2676 	 */
2677 	if (event->attr.inherit || !is_sampling_event(event))
2678 		return -EINVAL;
2679 
2680 	atomic_add(refresh, &event->event_limit);
2681 	_perf_event_enable(event);
2682 
2683 	return 0;
2684 }
2685 
2686 /*
2687  * See perf_event_disable()
2688  */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691 	struct perf_event_context *ctx;
2692 	int ret;
2693 
2694 	ctx = perf_event_ctx_lock(event);
2695 	ret = _perf_event_refresh(event, refresh);
2696 	perf_event_ctx_unlock(event, ctx);
2697 
2698 	return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701 
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703 			  struct perf_cpu_context *cpuctx,
2704 			  enum event_type_t event_type)
2705 {
2706 	int is_active = ctx->is_active;
2707 	struct perf_event *event;
2708 
2709 	lockdep_assert_held(&ctx->lock);
2710 
2711 	if (likely(!ctx->nr_events)) {
2712 		/*
2713 		 * See __perf_remove_from_context().
2714 		 */
2715 		WARN_ON_ONCE(ctx->is_active);
2716 		if (ctx->task)
2717 			WARN_ON_ONCE(cpuctx->task_ctx);
2718 		return;
2719 	}
2720 
2721 	ctx->is_active &= ~event_type;
2722 	if (!(ctx->is_active & EVENT_ALL))
2723 		ctx->is_active = 0;
2724 
2725 	if (ctx->task) {
2726 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727 		if (!ctx->is_active)
2728 			cpuctx->task_ctx = NULL;
2729 	}
2730 
2731 	/*
2732 	 * Always update time if it was set; not only when it changes.
2733 	 * Otherwise we can 'forget' to update time for any but the last
2734 	 * context we sched out. For example:
2735 	 *
2736 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2738 	 *
2739 	 * would only update time for the pinned events.
2740 	 */
2741 	if (is_active & EVENT_TIME) {
2742 		/* update (and stop) ctx time */
2743 		update_context_time(ctx);
2744 		update_cgrp_time_from_cpuctx(cpuctx);
2745 	}
2746 
2747 	is_active ^= ctx->is_active; /* changed bits */
2748 
2749 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750 		return;
2751 
2752 	perf_pmu_disable(ctx->pmu);
2753 	if (is_active & EVENT_PINNED) {
2754 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755 			group_sched_out(event, cpuctx, ctx);
2756 	}
2757 
2758 	if (is_active & EVENT_FLEXIBLE) {
2759 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760 			group_sched_out(event, cpuctx, ctx);
2761 	}
2762 	perf_pmu_enable(ctx->pmu);
2763 }
2764 
2765 /*
2766  * Test whether two contexts are equivalent, i.e. whether they have both been
2767  * cloned from the same version of the same context.
2768  *
2769  * Equivalence is measured using a generation number in the context that is
2770  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771  * and list_del_event().
2772  */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774 			 struct perf_event_context *ctx2)
2775 {
2776 	lockdep_assert_held(&ctx1->lock);
2777 	lockdep_assert_held(&ctx2->lock);
2778 
2779 	/* Pinning disables the swap optimization */
2780 	if (ctx1->pin_count || ctx2->pin_count)
2781 		return 0;
2782 
2783 	/* If ctx1 is the parent of ctx2 */
2784 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785 		return 1;
2786 
2787 	/* If ctx2 is the parent of ctx1 */
2788 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789 		return 1;
2790 
2791 	/*
2792 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2793 	 * hierarchy, see perf_event_init_context().
2794 	 */
2795 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796 			ctx1->parent_gen == ctx2->parent_gen)
2797 		return 1;
2798 
2799 	/* Unmatched */
2800 	return 0;
2801 }
2802 
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804 				     struct perf_event *next_event)
2805 {
2806 	u64 value;
2807 
2808 	if (!event->attr.inherit_stat)
2809 		return;
2810 
2811 	/*
2812 	 * Update the event value, we cannot use perf_event_read()
2813 	 * because we're in the middle of a context switch and have IRQs
2814 	 * disabled, which upsets smp_call_function_single(), however
2815 	 * we know the event must be on the current CPU, therefore we
2816 	 * don't need to use it.
2817 	 */
2818 	switch (event->state) {
2819 	case PERF_EVENT_STATE_ACTIVE:
2820 		event->pmu->read(event);
2821 		/* fall-through */
2822 
2823 	case PERF_EVENT_STATE_INACTIVE:
2824 		update_event_times(event);
2825 		break;
2826 
2827 	default:
2828 		break;
2829 	}
2830 
2831 	/*
2832 	 * In order to keep per-task stats reliable we need to flip the event
2833 	 * values when we flip the contexts.
2834 	 */
2835 	value = local64_read(&next_event->count);
2836 	value = local64_xchg(&event->count, value);
2837 	local64_set(&next_event->count, value);
2838 
2839 	swap(event->total_time_enabled, next_event->total_time_enabled);
2840 	swap(event->total_time_running, next_event->total_time_running);
2841 
2842 	/*
2843 	 * Since we swizzled the values, update the user visible data too.
2844 	 */
2845 	perf_event_update_userpage(event);
2846 	perf_event_update_userpage(next_event);
2847 }
2848 
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850 				   struct perf_event_context *next_ctx)
2851 {
2852 	struct perf_event *event, *next_event;
2853 
2854 	if (!ctx->nr_stat)
2855 		return;
2856 
2857 	update_context_time(ctx);
2858 
2859 	event = list_first_entry(&ctx->event_list,
2860 				   struct perf_event, event_entry);
2861 
2862 	next_event = list_first_entry(&next_ctx->event_list,
2863 					struct perf_event, event_entry);
2864 
2865 	while (&event->event_entry != &ctx->event_list &&
2866 	       &next_event->event_entry != &next_ctx->event_list) {
2867 
2868 		__perf_event_sync_stat(event, next_event);
2869 
2870 		event = list_next_entry(event, event_entry);
2871 		next_event = list_next_entry(next_event, event_entry);
2872 	}
2873 }
2874 
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876 					 struct task_struct *next)
2877 {
2878 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879 	struct perf_event_context *next_ctx;
2880 	struct perf_event_context *parent, *next_parent;
2881 	struct perf_cpu_context *cpuctx;
2882 	int do_switch = 1;
2883 
2884 	if (likely(!ctx))
2885 		return;
2886 
2887 	cpuctx = __get_cpu_context(ctx);
2888 	if (!cpuctx->task_ctx)
2889 		return;
2890 
2891 	rcu_read_lock();
2892 	next_ctx = next->perf_event_ctxp[ctxn];
2893 	if (!next_ctx)
2894 		goto unlock;
2895 
2896 	parent = rcu_dereference(ctx->parent_ctx);
2897 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2898 
2899 	/* If neither context have a parent context; they cannot be clones. */
2900 	if (!parent && !next_parent)
2901 		goto unlock;
2902 
2903 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904 		/*
2905 		 * Looks like the two contexts are clones, so we might be
2906 		 * able to optimize the context switch.  We lock both
2907 		 * contexts and check that they are clones under the
2908 		 * lock (including re-checking that neither has been
2909 		 * uncloned in the meantime).  It doesn't matter which
2910 		 * order we take the locks because no other cpu could
2911 		 * be trying to lock both of these tasks.
2912 		 */
2913 		raw_spin_lock(&ctx->lock);
2914 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915 		if (context_equiv(ctx, next_ctx)) {
2916 			WRITE_ONCE(ctx->task, next);
2917 			WRITE_ONCE(next_ctx->task, task);
2918 
2919 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920 
2921 			/*
2922 			 * RCU_INIT_POINTER here is safe because we've not
2923 			 * modified the ctx and the above modification of
2924 			 * ctx->task and ctx->task_ctx_data are immaterial
2925 			 * since those values are always verified under
2926 			 * ctx->lock which we're now holding.
2927 			 */
2928 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930 
2931 			do_switch = 0;
2932 
2933 			perf_event_sync_stat(ctx, next_ctx);
2934 		}
2935 		raw_spin_unlock(&next_ctx->lock);
2936 		raw_spin_unlock(&ctx->lock);
2937 	}
2938 unlock:
2939 	rcu_read_unlock();
2940 
2941 	if (do_switch) {
2942 		raw_spin_lock(&ctx->lock);
2943 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944 		raw_spin_unlock(&ctx->lock);
2945 	}
2946 }
2947 
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949 
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953 
2954 	this_cpu_dec(perf_sched_cb_usages);
2955 
2956 	if (!--cpuctx->sched_cb_usage)
2957 		list_del(&cpuctx->sched_cb_entry);
2958 }
2959 
2960 
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964 
2965 	if (!cpuctx->sched_cb_usage++)
2966 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967 
2968 	this_cpu_inc(perf_sched_cb_usages);
2969 }
2970 
2971 /*
2972  * This function provides the context switch callback to the lower code
2973  * layer. It is invoked ONLY when the context switch callback is enabled.
2974  *
2975  * This callback is relevant even to per-cpu events; for example multi event
2976  * PEBS requires this to provide PID/TID information. This requires we flush
2977  * all queued PEBS records before we context switch to a new task.
2978  */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980 				struct task_struct *next,
2981 				bool sched_in)
2982 {
2983 	struct perf_cpu_context *cpuctx;
2984 	struct pmu *pmu;
2985 
2986 	if (prev == next)
2987 		return;
2988 
2989 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991 
2992 		if (WARN_ON_ONCE(!pmu->sched_task))
2993 			continue;
2994 
2995 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996 		perf_pmu_disable(pmu);
2997 
2998 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2999 
3000 		perf_pmu_enable(pmu);
3001 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002 	}
3003 }
3004 
3005 static void perf_event_switch(struct task_struct *task,
3006 			      struct task_struct *next_prev, bool sched_in);
3007 
3008 #define for_each_task_context_nr(ctxn)					\
3009 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010 
3011 /*
3012  * Called from scheduler to remove the events of the current task,
3013  * with interrupts disabled.
3014  *
3015  * We stop each event and update the event value in event->count.
3016  *
3017  * This does not protect us against NMI, but disable()
3018  * sets the disabled bit in the control field of event _before_
3019  * accessing the event control register. If a NMI hits, then it will
3020  * not restart the event.
3021  */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023 				 struct task_struct *next)
3024 {
3025 	int ctxn;
3026 
3027 	if (__this_cpu_read(perf_sched_cb_usages))
3028 		perf_pmu_sched_task(task, next, false);
3029 
3030 	if (atomic_read(&nr_switch_events))
3031 		perf_event_switch(task, next, false);
3032 
3033 	for_each_task_context_nr(ctxn)
3034 		perf_event_context_sched_out(task, ctxn, next);
3035 
3036 	/*
3037 	 * if cgroup events exist on this CPU, then we need
3038 	 * to check if we have to switch out PMU state.
3039 	 * cgroup event are system-wide mode only
3040 	 */
3041 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042 		perf_cgroup_sched_out(task, next);
3043 }
3044 
3045 /*
3046  * Called with IRQs disabled
3047  */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049 			      enum event_type_t event_type)
3050 {
3051 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053 
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056 		    struct perf_cpu_context *cpuctx)
3057 {
3058 	struct perf_event *event;
3059 
3060 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061 		if (event->state <= PERF_EVENT_STATE_OFF)
3062 			continue;
3063 		if (!event_filter_match(event))
3064 			continue;
3065 
3066 		/* may need to reset tstamp_enabled */
3067 		if (is_cgroup_event(event))
3068 			perf_cgroup_mark_enabled(event, ctx);
3069 
3070 		if (group_can_go_on(event, cpuctx, 1))
3071 			group_sched_in(event, cpuctx, ctx);
3072 
3073 		/*
3074 		 * If this pinned group hasn't been scheduled,
3075 		 * put it in error state.
3076 		 */
3077 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078 			update_group_times(event);
3079 			event->state = PERF_EVENT_STATE_ERROR;
3080 		}
3081 	}
3082 }
3083 
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086 		      struct perf_cpu_context *cpuctx)
3087 {
3088 	struct perf_event *event;
3089 	int can_add_hw = 1;
3090 
3091 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092 		/* Ignore events in OFF or ERROR state */
3093 		if (event->state <= PERF_EVENT_STATE_OFF)
3094 			continue;
3095 		/*
3096 		 * Listen to the 'cpu' scheduling filter constraint
3097 		 * of events:
3098 		 */
3099 		if (!event_filter_match(event))
3100 			continue;
3101 
3102 		/* may need to reset tstamp_enabled */
3103 		if (is_cgroup_event(event))
3104 			perf_cgroup_mark_enabled(event, ctx);
3105 
3106 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107 			if (group_sched_in(event, cpuctx, ctx))
3108 				can_add_hw = 0;
3109 		}
3110 	}
3111 }
3112 
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115 	     struct perf_cpu_context *cpuctx,
3116 	     enum event_type_t event_type,
3117 	     struct task_struct *task)
3118 {
3119 	int is_active = ctx->is_active;
3120 	u64 now;
3121 
3122 	lockdep_assert_held(&ctx->lock);
3123 
3124 	if (likely(!ctx->nr_events))
3125 		return;
3126 
3127 	ctx->is_active |= (event_type | EVENT_TIME);
3128 	if (ctx->task) {
3129 		if (!is_active)
3130 			cpuctx->task_ctx = ctx;
3131 		else
3132 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133 	}
3134 
3135 	is_active ^= ctx->is_active; /* changed bits */
3136 
3137 	if (is_active & EVENT_TIME) {
3138 		/* start ctx time */
3139 		now = perf_clock();
3140 		ctx->timestamp = now;
3141 		perf_cgroup_set_timestamp(task, ctx);
3142 	}
3143 
3144 	/*
3145 	 * First go through the list and put on any pinned groups
3146 	 * in order to give them the best chance of going on.
3147 	 */
3148 	if (is_active & EVENT_PINNED)
3149 		ctx_pinned_sched_in(ctx, cpuctx);
3150 
3151 	/* Then walk through the lower prio flexible groups */
3152 	if (is_active & EVENT_FLEXIBLE)
3153 		ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155 
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157 			     enum event_type_t event_type,
3158 			     struct task_struct *task)
3159 {
3160 	struct perf_event_context *ctx = &cpuctx->ctx;
3161 
3162 	ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164 
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166 					struct task_struct *task)
3167 {
3168 	struct perf_cpu_context *cpuctx;
3169 
3170 	cpuctx = __get_cpu_context(ctx);
3171 	if (cpuctx->task_ctx == ctx)
3172 		return;
3173 
3174 	perf_ctx_lock(cpuctx, ctx);
3175 	perf_pmu_disable(ctx->pmu);
3176 	/*
3177 	 * We want to keep the following priority order:
3178 	 * cpu pinned (that don't need to move), task pinned,
3179 	 * cpu flexible, task flexible.
3180 	 *
3181 	 * However, if task's ctx is not carrying any pinned
3182 	 * events, no need to flip the cpuctx's events around.
3183 	 */
3184 	if (!list_empty(&ctx->pinned_groups))
3185 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186 	perf_event_sched_in(cpuctx, ctx, task);
3187 	perf_pmu_enable(ctx->pmu);
3188 	perf_ctx_unlock(cpuctx, ctx);
3189 }
3190 
3191 /*
3192  * Called from scheduler to add the events of the current task
3193  * with interrupts disabled.
3194  *
3195  * We restore the event value and then enable it.
3196  *
3197  * This does not protect us against NMI, but enable()
3198  * sets the enabled bit in the control field of event _before_
3199  * accessing the event control register. If a NMI hits, then it will
3200  * keep the event running.
3201  */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203 				struct task_struct *task)
3204 {
3205 	struct perf_event_context *ctx;
3206 	int ctxn;
3207 
3208 	/*
3209 	 * If cgroup events exist on this CPU, then we need to check if we have
3210 	 * to switch in PMU state; cgroup event are system-wide mode only.
3211 	 *
3212 	 * Since cgroup events are CPU events, we must schedule these in before
3213 	 * we schedule in the task events.
3214 	 */
3215 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216 		perf_cgroup_sched_in(prev, task);
3217 
3218 	for_each_task_context_nr(ctxn) {
3219 		ctx = task->perf_event_ctxp[ctxn];
3220 		if (likely(!ctx))
3221 			continue;
3222 
3223 		perf_event_context_sched_in(ctx, task);
3224 	}
3225 
3226 	if (atomic_read(&nr_switch_events))
3227 		perf_event_switch(task, prev, true);
3228 
3229 	if (__this_cpu_read(perf_sched_cb_usages))
3230 		perf_pmu_sched_task(prev, task, true);
3231 }
3232 
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235 	u64 frequency = event->attr.sample_freq;
3236 	u64 sec = NSEC_PER_SEC;
3237 	u64 divisor, dividend;
3238 
3239 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3240 
3241 	count_fls = fls64(count);
3242 	nsec_fls = fls64(nsec);
3243 	frequency_fls = fls64(frequency);
3244 	sec_fls = 30;
3245 
3246 	/*
3247 	 * We got @count in @nsec, with a target of sample_freq HZ
3248 	 * the target period becomes:
3249 	 *
3250 	 *             @count * 10^9
3251 	 * period = -------------------
3252 	 *          @nsec * sample_freq
3253 	 *
3254 	 */
3255 
3256 	/*
3257 	 * Reduce accuracy by one bit such that @a and @b converge
3258 	 * to a similar magnitude.
3259 	 */
3260 #define REDUCE_FLS(a, b)		\
3261 do {					\
3262 	if (a##_fls > b##_fls) {	\
3263 		a >>= 1;		\
3264 		a##_fls--;		\
3265 	} else {			\
3266 		b >>= 1;		\
3267 		b##_fls--;		\
3268 	}				\
3269 } while (0)
3270 
3271 	/*
3272 	 * Reduce accuracy until either term fits in a u64, then proceed with
3273 	 * the other, so that finally we can do a u64/u64 division.
3274 	 */
3275 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276 		REDUCE_FLS(nsec, frequency);
3277 		REDUCE_FLS(sec, count);
3278 	}
3279 
3280 	if (count_fls + sec_fls > 64) {
3281 		divisor = nsec * frequency;
3282 
3283 		while (count_fls + sec_fls > 64) {
3284 			REDUCE_FLS(count, sec);
3285 			divisor >>= 1;
3286 		}
3287 
3288 		dividend = count * sec;
3289 	} else {
3290 		dividend = count * sec;
3291 
3292 		while (nsec_fls + frequency_fls > 64) {
3293 			REDUCE_FLS(nsec, frequency);
3294 			dividend >>= 1;
3295 		}
3296 
3297 		divisor = nsec * frequency;
3298 	}
3299 
3300 	if (!divisor)
3301 		return dividend;
3302 
3303 	return div64_u64(dividend, divisor);
3304 }
3305 
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308 
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311 	struct hw_perf_event *hwc = &event->hw;
3312 	s64 period, sample_period;
3313 	s64 delta;
3314 
3315 	period = perf_calculate_period(event, nsec, count);
3316 
3317 	delta = (s64)(period - hwc->sample_period);
3318 	delta = (delta + 7) / 8; /* low pass filter */
3319 
3320 	sample_period = hwc->sample_period + delta;
3321 
3322 	if (!sample_period)
3323 		sample_period = 1;
3324 
3325 	hwc->sample_period = sample_period;
3326 
3327 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3328 		if (disable)
3329 			event->pmu->stop(event, PERF_EF_UPDATE);
3330 
3331 		local64_set(&hwc->period_left, 0);
3332 
3333 		if (disable)
3334 			event->pmu->start(event, PERF_EF_RELOAD);
3335 	}
3336 }
3337 
3338 /*
3339  * combine freq adjustment with unthrottling to avoid two passes over the
3340  * events. At the same time, make sure, having freq events does not change
3341  * the rate of unthrottling as that would introduce bias.
3342  */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344 					   int needs_unthr)
3345 {
3346 	struct perf_event *event;
3347 	struct hw_perf_event *hwc;
3348 	u64 now, period = TICK_NSEC;
3349 	s64 delta;
3350 
3351 	/*
3352 	 * only need to iterate over all events iff:
3353 	 * - context have events in frequency mode (needs freq adjust)
3354 	 * - there are events to unthrottle on this cpu
3355 	 */
3356 	if (!(ctx->nr_freq || needs_unthr))
3357 		return;
3358 
3359 	raw_spin_lock(&ctx->lock);
3360 	perf_pmu_disable(ctx->pmu);
3361 
3362 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3364 			continue;
3365 
3366 		if (!event_filter_match(event))
3367 			continue;
3368 
3369 		perf_pmu_disable(event->pmu);
3370 
3371 		hwc = &event->hw;
3372 
3373 		if (hwc->interrupts == MAX_INTERRUPTS) {
3374 			hwc->interrupts = 0;
3375 			perf_log_throttle(event, 1);
3376 			event->pmu->start(event, 0);
3377 		}
3378 
3379 		if (!event->attr.freq || !event->attr.sample_freq)
3380 			goto next;
3381 
3382 		/*
3383 		 * stop the event and update event->count
3384 		 */
3385 		event->pmu->stop(event, PERF_EF_UPDATE);
3386 
3387 		now = local64_read(&event->count);
3388 		delta = now - hwc->freq_count_stamp;
3389 		hwc->freq_count_stamp = now;
3390 
3391 		/*
3392 		 * restart the event
3393 		 * reload only if value has changed
3394 		 * we have stopped the event so tell that
3395 		 * to perf_adjust_period() to avoid stopping it
3396 		 * twice.
3397 		 */
3398 		if (delta > 0)
3399 			perf_adjust_period(event, period, delta, false);
3400 
3401 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402 	next:
3403 		perf_pmu_enable(event->pmu);
3404 	}
3405 
3406 	perf_pmu_enable(ctx->pmu);
3407 	raw_spin_unlock(&ctx->lock);
3408 }
3409 
3410 /*
3411  * Round-robin a context's events:
3412  */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415 	/*
3416 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3417 	 * disabled by the inheritance code.
3418 	 */
3419 	if (!ctx->rotate_disable)
3420 		list_rotate_left(&ctx->flexible_groups);
3421 }
3422 
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425 	struct perf_event_context *ctx = NULL;
3426 	int rotate = 0;
3427 
3428 	if (cpuctx->ctx.nr_events) {
3429 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430 			rotate = 1;
3431 	}
3432 
3433 	ctx = cpuctx->task_ctx;
3434 	if (ctx && ctx->nr_events) {
3435 		if (ctx->nr_events != ctx->nr_active)
3436 			rotate = 1;
3437 	}
3438 
3439 	if (!rotate)
3440 		goto done;
3441 
3442 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443 	perf_pmu_disable(cpuctx->ctx.pmu);
3444 
3445 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446 	if (ctx)
3447 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448 
3449 	rotate_ctx(&cpuctx->ctx);
3450 	if (ctx)
3451 		rotate_ctx(ctx);
3452 
3453 	perf_event_sched_in(cpuctx, ctx, current);
3454 
3455 	perf_pmu_enable(cpuctx->ctx.pmu);
3456 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458 
3459 	return rotate;
3460 }
3461 
3462 void perf_event_task_tick(void)
3463 {
3464 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465 	struct perf_event_context *ctx, *tmp;
3466 	int throttled;
3467 
3468 	WARN_ON(!irqs_disabled());
3469 
3470 	__this_cpu_inc(perf_throttled_seq);
3471 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473 
3474 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475 		perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477 
3478 static int event_enable_on_exec(struct perf_event *event,
3479 				struct perf_event_context *ctx)
3480 {
3481 	if (!event->attr.enable_on_exec)
3482 		return 0;
3483 
3484 	event->attr.enable_on_exec = 0;
3485 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486 		return 0;
3487 
3488 	__perf_event_mark_enabled(event);
3489 
3490 	return 1;
3491 }
3492 
3493 /*
3494  * Enable all of a task's events that have been marked enable-on-exec.
3495  * This expects task == current.
3496  */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499 	struct perf_event_context *ctx, *clone_ctx = NULL;
3500 	enum event_type_t event_type = 0;
3501 	struct perf_cpu_context *cpuctx;
3502 	struct perf_event *event;
3503 	unsigned long flags;
3504 	int enabled = 0;
3505 
3506 	local_irq_save(flags);
3507 	ctx = current->perf_event_ctxp[ctxn];
3508 	if (!ctx || !ctx->nr_events)
3509 		goto out;
3510 
3511 	cpuctx = __get_cpu_context(ctx);
3512 	perf_ctx_lock(cpuctx, ctx);
3513 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3515 		enabled |= event_enable_on_exec(event, ctx);
3516 		event_type |= get_event_type(event);
3517 	}
3518 
3519 	/*
3520 	 * Unclone and reschedule this context if we enabled any event.
3521 	 */
3522 	if (enabled) {
3523 		clone_ctx = unclone_ctx(ctx);
3524 		ctx_resched(cpuctx, ctx, event_type);
3525 	}
3526 	perf_ctx_unlock(cpuctx, ctx);
3527 
3528 out:
3529 	local_irq_restore(flags);
3530 
3531 	if (clone_ctx)
3532 		put_ctx(clone_ctx);
3533 }
3534 
3535 struct perf_read_data {
3536 	struct perf_event *event;
3537 	bool group;
3538 	int ret;
3539 };
3540 
3541 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3542 {
3543 	u16 local_pkg, event_pkg;
3544 
3545 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3546 		int local_cpu = smp_processor_id();
3547 
3548 		event_pkg = topology_physical_package_id(event_cpu);
3549 		local_pkg = topology_physical_package_id(local_cpu);
3550 
3551 		if (event_pkg == local_pkg)
3552 			return local_cpu;
3553 	}
3554 
3555 	return event_cpu;
3556 }
3557 
3558 /*
3559  * Cross CPU call to read the hardware event
3560  */
3561 static void __perf_event_read(void *info)
3562 {
3563 	struct perf_read_data *data = info;
3564 	struct perf_event *sub, *event = data->event;
3565 	struct perf_event_context *ctx = event->ctx;
3566 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3567 	struct pmu *pmu = event->pmu;
3568 
3569 	/*
3570 	 * If this is a task context, we need to check whether it is
3571 	 * the current task context of this cpu.  If not it has been
3572 	 * scheduled out before the smp call arrived.  In that case
3573 	 * event->count would have been updated to a recent sample
3574 	 * when the event was scheduled out.
3575 	 */
3576 	if (ctx->task && cpuctx->task_ctx != ctx)
3577 		return;
3578 
3579 	raw_spin_lock(&ctx->lock);
3580 	if (ctx->is_active) {
3581 		update_context_time(ctx);
3582 		update_cgrp_time_from_event(event);
3583 	}
3584 
3585 	update_event_times(event);
3586 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3587 		goto unlock;
3588 
3589 	if (!data->group) {
3590 		pmu->read(event);
3591 		data->ret = 0;
3592 		goto unlock;
3593 	}
3594 
3595 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3596 
3597 	pmu->read(event);
3598 
3599 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3600 		update_event_times(sub);
3601 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3602 			/*
3603 			 * Use sibling's PMU rather than @event's since
3604 			 * sibling could be on different (eg: software) PMU.
3605 			 */
3606 			sub->pmu->read(sub);
3607 		}
3608 	}
3609 
3610 	data->ret = pmu->commit_txn(pmu);
3611 
3612 unlock:
3613 	raw_spin_unlock(&ctx->lock);
3614 }
3615 
3616 static inline u64 perf_event_count(struct perf_event *event)
3617 {
3618 	if (event->pmu->count)
3619 		return event->pmu->count(event);
3620 
3621 	return __perf_event_count(event);
3622 }
3623 
3624 /*
3625  * NMI-safe method to read a local event, that is an event that
3626  * is:
3627  *   - either for the current task, or for this CPU
3628  *   - does not have inherit set, for inherited task events
3629  *     will not be local and we cannot read them atomically
3630  *   - must not have a pmu::count method
3631  */
3632 u64 perf_event_read_local(struct perf_event *event)
3633 {
3634 	unsigned long flags;
3635 	u64 val;
3636 
3637 	/*
3638 	 * Disabling interrupts avoids all counter scheduling (context
3639 	 * switches, timer based rotation and IPIs).
3640 	 */
3641 	local_irq_save(flags);
3642 
3643 	/* If this is a per-task event, it must be for current */
3644 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3645 		     event->hw.target != current);
3646 
3647 	/* If this is a per-CPU event, it must be for this CPU */
3648 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3649 		     event->cpu != smp_processor_id());
3650 
3651 	/*
3652 	 * It must not be an event with inherit set, we cannot read
3653 	 * all child counters from atomic context.
3654 	 */
3655 	WARN_ON_ONCE(event->attr.inherit);
3656 
3657 	/*
3658 	 * It must not have a pmu::count method, those are not
3659 	 * NMI safe.
3660 	 */
3661 	WARN_ON_ONCE(event->pmu->count);
3662 
3663 	/*
3664 	 * If the event is currently on this CPU, its either a per-task event,
3665 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3666 	 * oncpu == -1).
3667 	 */
3668 	if (event->oncpu == smp_processor_id())
3669 		event->pmu->read(event);
3670 
3671 	val = local64_read(&event->count);
3672 	local_irq_restore(flags);
3673 
3674 	return val;
3675 }
3676 
3677 static int perf_event_read(struct perf_event *event, bool group)
3678 {
3679 	int event_cpu, ret = 0;
3680 
3681 	/*
3682 	 * If event is enabled and currently active on a CPU, update the
3683 	 * value in the event structure:
3684 	 */
3685 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3686 		struct perf_read_data data = {
3687 			.event = event,
3688 			.group = group,
3689 			.ret = 0,
3690 		};
3691 
3692 		event_cpu = READ_ONCE(event->oncpu);
3693 		if ((unsigned)event_cpu >= nr_cpu_ids)
3694 			return 0;
3695 
3696 		preempt_disable();
3697 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3698 
3699 		/*
3700 		 * Purposely ignore the smp_call_function_single() return
3701 		 * value.
3702 		 *
3703 		 * If event_cpu isn't a valid CPU it means the event got
3704 		 * scheduled out and that will have updated the event count.
3705 		 *
3706 		 * Therefore, either way, we'll have an up-to-date event count
3707 		 * after this.
3708 		 */
3709 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3710 		preempt_enable();
3711 		ret = data.ret;
3712 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3713 		struct perf_event_context *ctx = event->ctx;
3714 		unsigned long flags;
3715 
3716 		raw_spin_lock_irqsave(&ctx->lock, flags);
3717 		/*
3718 		 * may read while context is not active
3719 		 * (e.g., thread is blocked), in that case
3720 		 * we cannot update context time
3721 		 */
3722 		if (ctx->is_active) {
3723 			update_context_time(ctx);
3724 			update_cgrp_time_from_event(event);
3725 		}
3726 		if (group)
3727 			update_group_times(event);
3728 		else
3729 			update_event_times(event);
3730 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3731 	}
3732 
3733 	return ret;
3734 }
3735 
3736 /*
3737  * Initialize the perf_event context in a task_struct:
3738  */
3739 static void __perf_event_init_context(struct perf_event_context *ctx)
3740 {
3741 	raw_spin_lock_init(&ctx->lock);
3742 	mutex_init(&ctx->mutex);
3743 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3744 	INIT_LIST_HEAD(&ctx->pinned_groups);
3745 	INIT_LIST_HEAD(&ctx->flexible_groups);
3746 	INIT_LIST_HEAD(&ctx->event_list);
3747 	atomic_set(&ctx->refcount, 1);
3748 }
3749 
3750 static struct perf_event_context *
3751 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3752 {
3753 	struct perf_event_context *ctx;
3754 
3755 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3756 	if (!ctx)
3757 		return NULL;
3758 
3759 	__perf_event_init_context(ctx);
3760 	if (task) {
3761 		ctx->task = task;
3762 		get_task_struct(task);
3763 	}
3764 	ctx->pmu = pmu;
3765 
3766 	return ctx;
3767 }
3768 
3769 static struct task_struct *
3770 find_lively_task_by_vpid(pid_t vpid)
3771 {
3772 	struct task_struct *task;
3773 
3774 	rcu_read_lock();
3775 	if (!vpid)
3776 		task = current;
3777 	else
3778 		task = find_task_by_vpid(vpid);
3779 	if (task)
3780 		get_task_struct(task);
3781 	rcu_read_unlock();
3782 
3783 	if (!task)
3784 		return ERR_PTR(-ESRCH);
3785 
3786 	return task;
3787 }
3788 
3789 /*
3790  * Returns a matching context with refcount and pincount.
3791  */
3792 static struct perf_event_context *
3793 find_get_context(struct pmu *pmu, struct task_struct *task,
3794 		struct perf_event *event)
3795 {
3796 	struct perf_event_context *ctx, *clone_ctx = NULL;
3797 	struct perf_cpu_context *cpuctx;
3798 	void *task_ctx_data = NULL;
3799 	unsigned long flags;
3800 	int ctxn, err;
3801 	int cpu = event->cpu;
3802 
3803 	if (!task) {
3804 		/* Must be root to operate on a CPU event: */
3805 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3806 			return ERR_PTR(-EACCES);
3807 
3808 		/*
3809 		 * We could be clever and allow to attach a event to an
3810 		 * offline CPU and activate it when the CPU comes up, but
3811 		 * that's for later.
3812 		 */
3813 		if (!cpu_online(cpu))
3814 			return ERR_PTR(-ENODEV);
3815 
3816 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3817 		ctx = &cpuctx->ctx;
3818 		get_ctx(ctx);
3819 		++ctx->pin_count;
3820 
3821 		return ctx;
3822 	}
3823 
3824 	err = -EINVAL;
3825 	ctxn = pmu->task_ctx_nr;
3826 	if (ctxn < 0)
3827 		goto errout;
3828 
3829 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3830 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3831 		if (!task_ctx_data) {
3832 			err = -ENOMEM;
3833 			goto errout;
3834 		}
3835 	}
3836 
3837 retry:
3838 	ctx = perf_lock_task_context(task, ctxn, &flags);
3839 	if (ctx) {
3840 		clone_ctx = unclone_ctx(ctx);
3841 		++ctx->pin_count;
3842 
3843 		if (task_ctx_data && !ctx->task_ctx_data) {
3844 			ctx->task_ctx_data = task_ctx_data;
3845 			task_ctx_data = NULL;
3846 		}
3847 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3848 
3849 		if (clone_ctx)
3850 			put_ctx(clone_ctx);
3851 	} else {
3852 		ctx = alloc_perf_context(pmu, task);
3853 		err = -ENOMEM;
3854 		if (!ctx)
3855 			goto errout;
3856 
3857 		if (task_ctx_data) {
3858 			ctx->task_ctx_data = task_ctx_data;
3859 			task_ctx_data = NULL;
3860 		}
3861 
3862 		err = 0;
3863 		mutex_lock(&task->perf_event_mutex);
3864 		/*
3865 		 * If it has already passed perf_event_exit_task().
3866 		 * we must see PF_EXITING, it takes this mutex too.
3867 		 */
3868 		if (task->flags & PF_EXITING)
3869 			err = -ESRCH;
3870 		else if (task->perf_event_ctxp[ctxn])
3871 			err = -EAGAIN;
3872 		else {
3873 			get_ctx(ctx);
3874 			++ctx->pin_count;
3875 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3876 		}
3877 		mutex_unlock(&task->perf_event_mutex);
3878 
3879 		if (unlikely(err)) {
3880 			put_ctx(ctx);
3881 
3882 			if (err == -EAGAIN)
3883 				goto retry;
3884 			goto errout;
3885 		}
3886 	}
3887 
3888 	kfree(task_ctx_data);
3889 	return ctx;
3890 
3891 errout:
3892 	kfree(task_ctx_data);
3893 	return ERR_PTR(err);
3894 }
3895 
3896 static void perf_event_free_filter(struct perf_event *event);
3897 static void perf_event_free_bpf_prog(struct perf_event *event);
3898 
3899 static void free_event_rcu(struct rcu_head *head)
3900 {
3901 	struct perf_event *event;
3902 
3903 	event = container_of(head, struct perf_event, rcu_head);
3904 	if (event->ns)
3905 		put_pid_ns(event->ns);
3906 	perf_event_free_filter(event);
3907 	kfree(event);
3908 }
3909 
3910 static void ring_buffer_attach(struct perf_event *event,
3911 			       struct ring_buffer *rb);
3912 
3913 static void detach_sb_event(struct perf_event *event)
3914 {
3915 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3916 
3917 	raw_spin_lock(&pel->lock);
3918 	list_del_rcu(&event->sb_list);
3919 	raw_spin_unlock(&pel->lock);
3920 }
3921 
3922 static bool is_sb_event(struct perf_event *event)
3923 {
3924 	struct perf_event_attr *attr = &event->attr;
3925 
3926 	if (event->parent)
3927 		return false;
3928 
3929 	if (event->attach_state & PERF_ATTACH_TASK)
3930 		return false;
3931 
3932 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3933 	    attr->comm || attr->comm_exec ||
3934 	    attr->task ||
3935 	    attr->context_switch)
3936 		return true;
3937 	return false;
3938 }
3939 
3940 static void unaccount_pmu_sb_event(struct perf_event *event)
3941 {
3942 	if (is_sb_event(event))
3943 		detach_sb_event(event);
3944 }
3945 
3946 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3947 {
3948 	if (event->parent)
3949 		return;
3950 
3951 	if (is_cgroup_event(event))
3952 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3953 }
3954 
3955 #ifdef CONFIG_NO_HZ_FULL
3956 static DEFINE_SPINLOCK(nr_freq_lock);
3957 #endif
3958 
3959 static void unaccount_freq_event_nohz(void)
3960 {
3961 #ifdef CONFIG_NO_HZ_FULL
3962 	spin_lock(&nr_freq_lock);
3963 	if (atomic_dec_and_test(&nr_freq_events))
3964 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3965 	spin_unlock(&nr_freq_lock);
3966 #endif
3967 }
3968 
3969 static void unaccount_freq_event(void)
3970 {
3971 	if (tick_nohz_full_enabled())
3972 		unaccount_freq_event_nohz();
3973 	else
3974 		atomic_dec(&nr_freq_events);
3975 }
3976 
3977 static void unaccount_event(struct perf_event *event)
3978 {
3979 	bool dec = false;
3980 
3981 	if (event->parent)
3982 		return;
3983 
3984 	if (event->attach_state & PERF_ATTACH_TASK)
3985 		dec = true;
3986 	if (event->attr.mmap || event->attr.mmap_data)
3987 		atomic_dec(&nr_mmap_events);
3988 	if (event->attr.comm)
3989 		atomic_dec(&nr_comm_events);
3990 	if (event->attr.task)
3991 		atomic_dec(&nr_task_events);
3992 	if (event->attr.freq)
3993 		unaccount_freq_event();
3994 	if (event->attr.context_switch) {
3995 		dec = true;
3996 		atomic_dec(&nr_switch_events);
3997 	}
3998 	if (is_cgroup_event(event))
3999 		dec = true;
4000 	if (has_branch_stack(event))
4001 		dec = true;
4002 
4003 	if (dec) {
4004 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4005 			schedule_delayed_work(&perf_sched_work, HZ);
4006 	}
4007 
4008 	unaccount_event_cpu(event, event->cpu);
4009 
4010 	unaccount_pmu_sb_event(event);
4011 }
4012 
4013 static void perf_sched_delayed(struct work_struct *work)
4014 {
4015 	mutex_lock(&perf_sched_mutex);
4016 	if (atomic_dec_and_test(&perf_sched_count))
4017 		static_branch_disable(&perf_sched_events);
4018 	mutex_unlock(&perf_sched_mutex);
4019 }
4020 
4021 /*
4022  * The following implement mutual exclusion of events on "exclusive" pmus
4023  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4024  * at a time, so we disallow creating events that might conflict, namely:
4025  *
4026  *  1) cpu-wide events in the presence of per-task events,
4027  *  2) per-task events in the presence of cpu-wide events,
4028  *  3) two matching events on the same context.
4029  *
4030  * The former two cases are handled in the allocation path (perf_event_alloc(),
4031  * _free_event()), the latter -- before the first perf_install_in_context().
4032  */
4033 static int exclusive_event_init(struct perf_event *event)
4034 {
4035 	struct pmu *pmu = event->pmu;
4036 
4037 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4038 		return 0;
4039 
4040 	/*
4041 	 * Prevent co-existence of per-task and cpu-wide events on the
4042 	 * same exclusive pmu.
4043 	 *
4044 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4045 	 * events on this "exclusive" pmu, positive means there are
4046 	 * per-task events.
4047 	 *
4048 	 * Since this is called in perf_event_alloc() path, event::ctx
4049 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4050 	 * to mean "per-task event", because unlike other attach states it
4051 	 * never gets cleared.
4052 	 */
4053 	if (event->attach_state & PERF_ATTACH_TASK) {
4054 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4055 			return -EBUSY;
4056 	} else {
4057 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4058 			return -EBUSY;
4059 	}
4060 
4061 	return 0;
4062 }
4063 
4064 static void exclusive_event_destroy(struct perf_event *event)
4065 {
4066 	struct pmu *pmu = event->pmu;
4067 
4068 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4069 		return;
4070 
4071 	/* see comment in exclusive_event_init() */
4072 	if (event->attach_state & PERF_ATTACH_TASK)
4073 		atomic_dec(&pmu->exclusive_cnt);
4074 	else
4075 		atomic_inc(&pmu->exclusive_cnt);
4076 }
4077 
4078 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4079 {
4080 	if ((e1->pmu == e2->pmu) &&
4081 	    (e1->cpu == e2->cpu ||
4082 	     e1->cpu == -1 ||
4083 	     e2->cpu == -1))
4084 		return true;
4085 	return false;
4086 }
4087 
4088 /* Called under the same ctx::mutex as perf_install_in_context() */
4089 static bool exclusive_event_installable(struct perf_event *event,
4090 					struct perf_event_context *ctx)
4091 {
4092 	struct perf_event *iter_event;
4093 	struct pmu *pmu = event->pmu;
4094 
4095 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4096 		return true;
4097 
4098 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4099 		if (exclusive_event_match(iter_event, event))
4100 			return false;
4101 	}
4102 
4103 	return true;
4104 }
4105 
4106 static void perf_addr_filters_splice(struct perf_event *event,
4107 				       struct list_head *head);
4108 
4109 static void _free_event(struct perf_event *event)
4110 {
4111 	irq_work_sync(&event->pending);
4112 
4113 	unaccount_event(event);
4114 
4115 	if (event->rb) {
4116 		/*
4117 		 * Can happen when we close an event with re-directed output.
4118 		 *
4119 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4120 		 * over us; possibly making our ring_buffer_put() the last.
4121 		 */
4122 		mutex_lock(&event->mmap_mutex);
4123 		ring_buffer_attach(event, NULL);
4124 		mutex_unlock(&event->mmap_mutex);
4125 	}
4126 
4127 	if (is_cgroup_event(event))
4128 		perf_detach_cgroup(event);
4129 
4130 	if (!event->parent) {
4131 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4132 			put_callchain_buffers();
4133 	}
4134 
4135 	perf_event_free_bpf_prog(event);
4136 	perf_addr_filters_splice(event, NULL);
4137 	kfree(event->addr_filters_offs);
4138 
4139 	if (event->destroy)
4140 		event->destroy(event);
4141 
4142 	if (event->ctx)
4143 		put_ctx(event->ctx);
4144 
4145 	exclusive_event_destroy(event);
4146 	module_put(event->pmu->module);
4147 
4148 	call_rcu(&event->rcu_head, free_event_rcu);
4149 }
4150 
4151 /*
4152  * Used to free events which have a known refcount of 1, such as in error paths
4153  * where the event isn't exposed yet and inherited events.
4154  */
4155 static void free_event(struct perf_event *event)
4156 {
4157 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4158 				"unexpected event refcount: %ld; ptr=%p\n",
4159 				atomic_long_read(&event->refcount), event)) {
4160 		/* leak to avoid use-after-free */
4161 		return;
4162 	}
4163 
4164 	_free_event(event);
4165 }
4166 
4167 /*
4168  * Remove user event from the owner task.
4169  */
4170 static void perf_remove_from_owner(struct perf_event *event)
4171 {
4172 	struct task_struct *owner;
4173 
4174 	rcu_read_lock();
4175 	/*
4176 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4177 	 * observe !owner it means the list deletion is complete and we can
4178 	 * indeed free this event, otherwise we need to serialize on
4179 	 * owner->perf_event_mutex.
4180 	 */
4181 	owner = lockless_dereference(event->owner);
4182 	if (owner) {
4183 		/*
4184 		 * Since delayed_put_task_struct() also drops the last
4185 		 * task reference we can safely take a new reference
4186 		 * while holding the rcu_read_lock().
4187 		 */
4188 		get_task_struct(owner);
4189 	}
4190 	rcu_read_unlock();
4191 
4192 	if (owner) {
4193 		/*
4194 		 * If we're here through perf_event_exit_task() we're already
4195 		 * holding ctx->mutex which would be an inversion wrt. the
4196 		 * normal lock order.
4197 		 *
4198 		 * However we can safely take this lock because its the child
4199 		 * ctx->mutex.
4200 		 */
4201 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4202 
4203 		/*
4204 		 * We have to re-check the event->owner field, if it is cleared
4205 		 * we raced with perf_event_exit_task(), acquiring the mutex
4206 		 * ensured they're done, and we can proceed with freeing the
4207 		 * event.
4208 		 */
4209 		if (event->owner) {
4210 			list_del_init(&event->owner_entry);
4211 			smp_store_release(&event->owner, NULL);
4212 		}
4213 		mutex_unlock(&owner->perf_event_mutex);
4214 		put_task_struct(owner);
4215 	}
4216 }
4217 
4218 static void put_event(struct perf_event *event)
4219 {
4220 	if (!atomic_long_dec_and_test(&event->refcount))
4221 		return;
4222 
4223 	_free_event(event);
4224 }
4225 
4226 /*
4227  * Kill an event dead; while event:refcount will preserve the event
4228  * object, it will not preserve its functionality. Once the last 'user'
4229  * gives up the object, we'll destroy the thing.
4230  */
4231 int perf_event_release_kernel(struct perf_event *event)
4232 {
4233 	struct perf_event_context *ctx = event->ctx;
4234 	struct perf_event *child, *tmp;
4235 
4236 	/*
4237 	 * If we got here through err_file: fput(event_file); we will not have
4238 	 * attached to a context yet.
4239 	 */
4240 	if (!ctx) {
4241 		WARN_ON_ONCE(event->attach_state &
4242 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4243 		goto no_ctx;
4244 	}
4245 
4246 	if (!is_kernel_event(event))
4247 		perf_remove_from_owner(event);
4248 
4249 	ctx = perf_event_ctx_lock(event);
4250 	WARN_ON_ONCE(ctx->parent_ctx);
4251 	perf_remove_from_context(event, DETACH_GROUP);
4252 
4253 	raw_spin_lock_irq(&ctx->lock);
4254 	/*
4255 	 * Mark this even as STATE_DEAD, there is no external reference to it
4256 	 * anymore.
4257 	 *
4258 	 * Anybody acquiring event->child_mutex after the below loop _must_
4259 	 * also see this, most importantly inherit_event() which will avoid
4260 	 * placing more children on the list.
4261 	 *
4262 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4263 	 * child events.
4264 	 */
4265 	event->state = PERF_EVENT_STATE_DEAD;
4266 	raw_spin_unlock_irq(&ctx->lock);
4267 
4268 	perf_event_ctx_unlock(event, ctx);
4269 
4270 again:
4271 	mutex_lock(&event->child_mutex);
4272 	list_for_each_entry(child, &event->child_list, child_list) {
4273 
4274 		/*
4275 		 * Cannot change, child events are not migrated, see the
4276 		 * comment with perf_event_ctx_lock_nested().
4277 		 */
4278 		ctx = lockless_dereference(child->ctx);
4279 		/*
4280 		 * Since child_mutex nests inside ctx::mutex, we must jump
4281 		 * through hoops. We start by grabbing a reference on the ctx.
4282 		 *
4283 		 * Since the event cannot get freed while we hold the
4284 		 * child_mutex, the context must also exist and have a !0
4285 		 * reference count.
4286 		 */
4287 		get_ctx(ctx);
4288 
4289 		/*
4290 		 * Now that we have a ctx ref, we can drop child_mutex, and
4291 		 * acquire ctx::mutex without fear of it going away. Then we
4292 		 * can re-acquire child_mutex.
4293 		 */
4294 		mutex_unlock(&event->child_mutex);
4295 		mutex_lock(&ctx->mutex);
4296 		mutex_lock(&event->child_mutex);
4297 
4298 		/*
4299 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4300 		 * state, if child is still the first entry, it didn't get freed
4301 		 * and we can continue doing so.
4302 		 */
4303 		tmp = list_first_entry_or_null(&event->child_list,
4304 					       struct perf_event, child_list);
4305 		if (tmp == child) {
4306 			perf_remove_from_context(child, DETACH_GROUP);
4307 			list_del(&child->child_list);
4308 			free_event(child);
4309 			/*
4310 			 * This matches the refcount bump in inherit_event();
4311 			 * this can't be the last reference.
4312 			 */
4313 			put_event(event);
4314 		}
4315 
4316 		mutex_unlock(&event->child_mutex);
4317 		mutex_unlock(&ctx->mutex);
4318 		put_ctx(ctx);
4319 		goto again;
4320 	}
4321 	mutex_unlock(&event->child_mutex);
4322 
4323 no_ctx:
4324 	put_event(event); /* Must be the 'last' reference */
4325 	return 0;
4326 }
4327 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4328 
4329 /*
4330  * Called when the last reference to the file is gone.
4331  */
4332 static int perf_release(struct inode *inode, struct file *file)
4333 {
4334 	perf_event_release_kernel(file->private_data);
4335 	return 0;
4336 }
4337 
4338 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4339 {
4340 	struct perf_event *child;
4341 	u64 total = 0;
4342 
4343 	*enabled = 0;
4344 	*running = 0;
4345 
4346 	mutex_lock(&event->child_mutex);
4347 
4348 	(void)perf_event_read(event, false);
4349 	total += perf_event_count(event);
4350 
4351 	*enabled += event->total_time_enabled +
4352 			atomic64_read(&event->child_total_time_enabled);
4353 	*running += event->total_time_running +
4354 			atomic64_read(&event->child_total_time_running);
4355 
4356 	list_for_each_entry(child, &event->child_list, child_list) {
4357 		(void)perf_event_read(child, false);
4358 		total += perf_event_count(child);
4359 		*enabled += child->total_time_enabled;
4360 		*running += child->total_time_running;
4361 	}
4362 	mutex_unlock(&event->child_mutex);
4363 
4364 	return total;
4365 }
4366 EXPORT_SYMBOL_GPL(perf_event_read_value);
4367 
4368 static int __perf_read_group_add(struct perf_event *leader,
4369 					u64 read_format, u64 *values)
4370 {
4371 	struct perf_event *sub;
4372 	int n = 1; /* skip @nr */
4373 	int ret;
4374 
4375 	ret = perf_event_read(leader, true);
4376 	if (ret)
4377 		return ret;
4378 
4379 	/*
4380 	 * Since we co-schedule groups, {enabled,running} times of siblings
4381 	 * will be identical to those of the leader, so we only publish one
4382 	 * set.
4383 	 */
4384 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4385 		values[n++] += leader->total_time_enabled +
4386 			atomic64_read(&leader->child_total_time_enabled);
4387 	}
4388 
4389 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4390 		values[n++] += leader->total_time_running +
4391 			atomic64_read(&leader->child_total_time_running);
4392 	}
4393 
4394 	/*
4395 	 * Write {count,id} tuples for every sibling.
4396 	 */
4397 	values[n++] += perf_event_count(leader);
4398 	if (read_format & PERF_FORMAT_ID)
4399 		values[n++] = primary_event_id(leader);
4400 
4401 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4402 		values[n++] += perf_event_count(sub);
4403 		if (read_format & PERF_FORMAT_ID)
4404 			values[n++] = primary_event_id(sub);
4405 	}
4406 
4407 	return 0;
4408 }
4409 
4410 static int perf_read_group(struct perf_event *event,
4411 				   u64 read_format, char __user *buf)
4412 {
4413 	struct perf_event *leader = event->group_leader, *child;
4414 	struct perf_event_context *ctx = leader->ctx;
4415 	int ret;
4416 	u64 *values;
4417 
4418 	lockdep_assert_held(&ctx->mutex);
4419 
4420 	values = kzalloc(event->read_size, GFP_KERNEL);
4421 	if (!values)
4422 		return -ENOMEM;
4423 
4424 	values[0] = 1 + leader->nr_siblings;
4425 
4426 	/*
4427 	 * By locking the child_mutex of the leader we effectively
4428 	 * lock the child list of all siblings.. XXX explain how.
4429 	 */
4430 	mutex_lock(&leader->child_mutex);
4431 
4432 	ret = __perf_read_group_add(leader, read_format, values);
4433 	if (ret)
4434 		goto unlock;
4435 
4436 	list_for_each_entry(child, &leader->child_list, child_list) {
4437 		ret = __perf_read_group_add(child, read_format, values);
4438 		if (ret)
4439 			goto unlock;
4440 	}
4441 
4442 	mutex_unlock(&leader->child_mutex);
4443 
4444 	ret = event->read_size;
4445 	if (copy_to_user(buf, values, event->read_size))
4446 		ret = -EFAULT;
4447 	goto out;
4448 
4449 unlock:
4450 	mutex_unlock(&leader->child_mutex);
4451 out:
4452 	kfree(values);
4453 	return ret;
4454 }
4455 
4456 static int perf_read_one(struct perf_event *event,
4457 				 u64 read_format, char __user *buf)
4458 {
4459 	u64 enabled, running;
4460 	u64 values[4];
4461 	int n = 0;
4462 
4463 	values[n++] = perf_event_read_value(event, &enabled, &running);
4464 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4465 		values[n++] = enabled;
4466 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4467 		values[n++] = running;
4468 	if (read_format & PERF_FORMAT_ID)
4469 		values[n++] = primary_event_id(event);
4470 
4471 	if (copy_to_user(buf, values, n * sizeof(u64)))
4472 		return -EFAULT;
4473 
4474 	return n * sizeof(u64);
4475 }
4476 
4477 static bool is_event_hup(struct perf_event *event)
4478 {
4479 	bool no_children;
4480 
4481 	if (event->state > PERF_EVENT_STATE_EXIT)
4482 		return false;
4483 
4484 	mutex_lock(&event->child_mutex);
4485 	no_children = list_empty(&event->child_list);
4486 	mutex_unlock(&event->child_mutex);
4487 	return no_children;
4488 }
4489 
4490 /*
4491  * Read the performance event - simple non blocking version for now
4492  */
4493 static ssize_t
4494 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4495 {
4496 	u64 read_format = event->attr.read_format;
4497 	int ret;
4498 
4499 	/*
4500 	 * Return end-of-file for a read on a event that is in
4501 	 * error state (i.e. because it was pinned but it couldn't be
4502 	 * scheduled on to the CPU at some point).
4503 	 */
4504 	if (event->state == PERF_EVENT_STATE_ERROR)
4505 		return 0;
4506 
4507 	if (count < event->read_size)
4508 		return -ENOSPC;
4509 
4510 	WARN_ON_ONCE(event->ctx->parent_ctx);
4511 	if (read_format & PERF_FORMAT_GROUP)
4512 		ret = perf_read_group(event, read_format, buf);
4513 	else
4514 		ret = perf_read_one(event, read_format, buf);
4515 
4516 	return ret;
4517 }
4518 
4519 static ssize_t
4520 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4521 {
4522 	struct perf_event *event = file->private_data;
4523 	struct perf_event_context *ctx;
4524 	int ret;
4525 
4526 	ctx = perf_event_ctx_lock(event);
4527 	ret = __perf_read(event, buf, count);
4528 	perf_event_ctx_unlock(event, ctx);
4529 
4530 	return ret;
4531 }
4532 
4533 static unsigned int perf_poll(struct file *file, poll_table *wait)
4534 {
4535 	struct perf_event *event = file->private_data;
4536 	struct ring_buffer *rb;
4537 	unsigned int events = POLLHUP;
4538 
4539 	poll_wait(file, &event->waitq, wait);
4540 
4541 	if (is_event_hup(event))
4542 		return events;
4543 
4544 	/*
4545 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4546 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4547 	 */
4548 	mutex_lock(&event->mmap_mutex);
4549 	rb = event->rb;
4550 	if (rb)
4551 		events = atomic_xchg(&rb->poll, 0);
4552 	mutex_unlock(&event->mmap_mutex);
4553 	return events;
4554 }
4555 
4556 static void _perf_event_reset(struct perf_event *event)
4557 {
4558 	(void)perf_event_read(event, false);
4559 	local64_set(&event->count, 0);
4560 	perf_event_update_userpage(event);
4561 }
4562 
4563 /*
4564  * Holding the top-level event's child_mutex means that any
4565  * descendant process that has inherited this event will block
4566  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4567  * task existence requirements of perf_event_enable/disable.
4568  */
4569 static void perf_event_for_each_child(struct perf_event *event,
4570 					void (*func)(struct perf_event *))
4571 {
4572 	struct perf_event *child;
4573 
4574 	WARN_ON_ONCE(event->ctx->parent_ctx);
4575 
4576 	mutex_lock(&event->child_mutex);
4577 	func(event);
4578 	list_for_each_entry(child, &event->child_list, child_list)
4579 		func(child);
4580 	mutex_unlock(&event->child_mutex);
4581 }
4582 
4583 static void perf_event_for_each(struct perf_event *event,
4584 				  void (*func)(struct perf_event *))
4585 {
4586 	struct perf_event_context *ctx = event->ctx;
4587 	struct perf_event *sibling;
4588 
4589 	lockdep_assert_held(&ctx->mutex);
4590 
4591 	event = event->group_leader;
4592 
4593 	perf_event_for_each_child(event, func);
4594 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4595 		perf_event_for_each_child(sibling, func);
4596 }
4597 
4598 static void __perf_event_period(struct perf_event *event,
4599 				struct perf_cpu_context *cpuctx,
4600 				struct perf_event_context *ctx,
4601 				void *info)
4602 {
4603 	u64 value = *((u64 *)info);
4604 	bool active;
4605 
4606 	if (event->attr.freq) {
4607 		event->attr.sample_freq = value;
4608 	} else {
4609 		event->attr.sample_period = value;
4610 		event->hw.sample_period = value;
4611 	}
4612 
4613 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4614 	if (active) {
4615 		perf_pmu_disable(ctx->pmu);
4616 		/*
4617 		 * We could be throttled; unthrottle now to avoid the tick
4618 		 * trying to unthrottle while we already re-started the event.
4619 		 */
4620 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4621 			event->hw.interrupts = 0;
4622 			perf_log_throttle(event, 1);
4623 		}
4624 		event->pmu->stop(event, PERF_EF_UPDATE);
4625 	}
4626 
4627 	local64_set(&event->hw.period_left, 0);
4628 
4629 	if (active) {
4630 		event->pmu->start(event, PERF_EF_RELOAD);
4631 		perf_pmu_enable(ctx->pmu);
4632 	}
4633 }
4634 
4635 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4636 {
4637 	u64 value;
4638 
4639 	if (!is_sampling_event(event))
4640 		return -EINVAL;
4641 
4642 	if (copy_from_user(&value, arg, sizeof(value)))
4643 		return -EFAULT;
4644 
4645 	if (!value)
4646 		return -EINVAL;
4647 
4648 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4649 		return -EINVAL;
4650 
4651 	event_function_call(event, __perf_event_period, &value);
4652 
4653 	return 0;
4654 }
4655 
4656 static const struct file_operations perf_fops;
4657 
4658 static inline int perf_fget_light(int fd, struct fd *p)
4659 {
4660 	struct fd f = fdget(fd);
4661 	if (!f.file)
4662 		return -EBADF;
4663 
4664 	if (f.file->f_op != &perf_fops) {
4665 		fdput(f);
4666 		return -EBADF;
4667 	}
4668 	*p = f;
4669 	return 0;
4670 }
4671 
4672 static int perf_event_set_output(struct perf_event *event,
4673 				 struct perf_event *output_event);
4674 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4675 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4676 
4677 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4678 {
4679 	void (*func)(struct perf_event *);
4680 	u32 flags = arg;
4681 
4682 	switch (cmd) {
4683 	case PERF_EVENT_IOC_ENABLE:
4684 		func = _perf_event_enable;
4685 		break;
4686 	case PERF_EVENT_IOC_DISABLE:
4687 		func = _perf_event_disable;
4688 		break;
4689 	case PERF_EVENT_IOC_RESET:
4690 		func = _perf_event_reset;
4691 		break;
4692 
4693 	case PERF_EVENT_IOC_REFRESH:
4694 		return _perf_event_refresh(event, arg);
4695 
4696 	case PERF_EVENT_IOC_PERIOD:
4697 		return perf_event_period(event, (u64 __user *)arg);
4698 
4699 	case PERF_EVENT_IOC_ID:
4700 	{
4701 		u64 id = primary_event_id(event);
4702 
4703 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4704 			return -EFAULT;
4705 		return 0;
4706 	}
4707 
4708 	case PERF_EVENT_IOC_SET_OUTPUT:
4709 	{
4710 		int ret;
4711 		if (arg != -1) {
4712 			struct perf_event *output_event;
4713 			struct fd output;
4714 			ret = perf_fget_light(arg, &output);
4715 			if (ret)
4716 				return ret;
4717 			output_event = output.file->private_data;
4718 			ret = perf_event_set_output(event, output_event);
4719 			fdput(output);
4720 		} else {
4721 			ret = perf_event_set_output(event, NULL);
4722 		}
4723 		return ret;
4724 	}
4725 
4726 	case PERF_EVENT_IOC_SET_FILTER:
4727 		return perf_event_set_filter(event, (void __user *)arg);
4728 
4729 	case PERF_EVENT_IOC_SET_BPF:
4730 		return perf_event_set_bpf_prog(event, arg);
4731 
4732 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4733 		struct ring_buffer *rb;
4734 
4735 		rcu_read_lock();
4736 		rb = rcu_dereference(event->rb);
4737 		if (!rb || !rb->nr_pages) {
4738 			rcu_read_unlock();
4739 			return -EINVAL;
4740 		}
4741 		rb_toggle_paused(rb, !!arg);
4742 		rcu_read_unlock();
4743 		return 0;
4744 	}
4745 	default:
4746 		return -ENOTTY;
4747 	}
4748 
4749 	if (flags & PERF_IOC_FLAG_GROUP)
4750 		perf_event_for_each(event, func);
4751 	else
4752 		perf_event_for_each_child(event, func);
4753 
4754 	return 0;
4755 }
4756 
4757 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4758 {
4759 	struct perf_event *event = file->private_data;
4760 	struct perf_event_context *ctx;
4761 	long ret;
4762 
4763 	ctx = perf_event_ctx_lock(event);
4764 	ret = _perf_ioctl(event, cmd, arg);
4765 	perf_event_ctx_unlock(event, ctx);
4766 
4767 	return ret;
4768 }
4769 
4770 #ifdef CONFIG_COMPAT
4771 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4772 				unsigned long arg)
4773 {
4774 	switch (_IOC_NR(cmd)) {
4775 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4776 	case _IOC_NR(PERF_EVENT_IOC_ID):
4777 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4778 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4779 			cmd &= ~IOCSIZE_MASK;
4780 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4781 		}
4782 		break;
4783 	}
4784 	return perf_ioctl(file, cmd, arg);
4785 }
4786 #else
4787 # define perf_compat_ioctl NULL
4788 #endif
4789 
4790 int perf_event_task_enable(void)
4791 {
4792 	struct perf_event_context *ctx;
4793 	struct perf_event *event;
4794 
4795 	mutex_lock(&current->perf_event_mutex);
4796 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4797 		ctx = perf_event_ctx_lock(event);
4798 		perf_event_for_each_child(event, _perf_event_enable);
4799 		perf_event_ctx_unlock(event, ctx);
4800 	}
4801 	mutex_unlock(&current->perf_event_mutex);
4802 
4803 	return 0;
4804 }
4805 
4806 int perf_event_task_disable(void)
4807 {
4808 	struct perf_event_context *ctx;
4809 	struct perf_event *event;
4810 
4811 	mutex_lock(&current->perf_event_mutex);
4812 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4813 		ctx = perf_event_ctx_lock(event);
4814 		perf_event_for_each_child(event, _perf_event_disable);
4815 		perf_event_ctx_unlock(event, ctx);
4816 	}
4817 	mutex_unlock(&current->perf_event_mutex);
4818 
4819 	return 0;
4820 }
4821 
4822 static int perf_event_index(struct perf_event *event)
4823 {
4824 	if (event->hw.state & PERF_HES_STOPPED)
4825 		return 0;
4826 
4827 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4828 		return 0;
4829 
4830 	return event->pmu->event_idx(event);
4831 }
4832 
4833 static void calc_timer_values(struct perf_event *event,
4834 				u64 *now,
4835 				u64 *enabled,
4836 				u64 *running)
4837 {
4838 	u64 ctx_time;
4839 
4840 	*now = perf_clock();
4841 	ctx_time = event->shadow_ctx_time + *now;
4842 	*enabled = ctx_time - event->tstamp_enabled;
4843 	*running = ctx_time - event->tstamp_running;
4844 }
4845 
4846 static void perf_event_init_userpage(struct perf_event *event)
4847 {
4848 	struct perf_event_mmap_page *userpg;
4849 	struct ring_buffer *rb;
4850 
4851 	rcu_read_lock();
4852 	rb = rcu_dereference(event->rb);
4853 	if (!rb)
4854 		goto unlock;
4855 
4856 	userpg = rb->user_page;
4857 
4858 	/* Allow new userspace to detect that bit 0 is deprecated */
4859 	userpg->cap_bit0_is_deprecated = 1;
4860 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4861 	userpg->data_offset = PAGE_SIZE;
4862 	userpg->data_size = perf_data_size(rb);
4863 
4864 unlock:
4865 	rcu_read_unlock();
4866 }
4867 
4868 void __weak arch_perf_update_userpage(
4869 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4870 {
4871 }
4872 
4873 /*
4874  * Callers need to ensure there can be no nesting of this function, otherwise
4875  * the seqlock logic goes bad. We can not serialize this because the arch
4876  * code calls this from NMI context.
4877  */
4878 void perf_event_update_userpage(struct perf_event *event)
4879 {
4880 	struct perf_event_mmap_page *userpg;
4881 	struct ring_buffer *rb;
4882 	u64 enabled, running, now;
4883 
4884 	rcu_read_lock();
4885 	rb = rcu_dereference(event->rb);
4886 	if (!rb)
4887 		goto unlock;
4888 
4889 	/*
4890 	 * compute total_time_enabled, total_time_running
4891 	 * based on snapshot values taken when the event
4892 	 * was last scheduled in.
4893 	 *
4894 	 * we cannot simply called update_context_time()
4895 	 * because of locking issue as we can be called in
4896 	 * NMI context
4897 	 */
4898 	calc_timer_values(event, &now, &enabled, &running);
4899 
4900 	userpg = rb->user_page;
4901 	/*
4902 	 * Disable preemption so as to not let the corresponding user-space
4903 	 * spin too long if we get preempted.
4904 	 */
4905 	preempt_disable();
4906 	++userpg->lock;
4907 	barrier();
4908 	userpg->index = perf_event_index(event);
4909 	userpg->offset = perf_event_count(event);
4910 	if (userpg->index)
4911 		userpg->offset -= local64_read(&event->hw.prev_count);
4912 
4913 	userpg->time_enabled = enabled +
4914 			atomic64_read(&event->child_total_time_enabled);
4915 
4916 	userpg->time_running = running +
4917 			atomic64_read(&event->child_total_time_running);
4918 
4919 	arch_perf_update_userpage(event, userpg, now);
4920 
4921 	barrier();
4922 	++userpg->lock;
4923 	preempt_enable();
4924 unlock:
4925 	rcu_read_unlock();
4926 }
4927 
4928 static int perf_mmap_fault(struct vm_fault *vmf)
4929 {
4930 	struct perf_event *event = vmf->vma->vm_file->private_data;
4931 	struct ring_buffer *rb;
4932 	int ret = VM_FAULT_SIGBUS;
4933 
4934 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4935 		if (vmf->pgoff == 0)
4936 			ret = 0;
4937 		return ret;
4938 	}
4939 
4940 	rcu_read_lock();
4941 	rb = rcu_dereference(event->rb);
4942 	if (!rb)
4943 		goto unlock;
4944 
4945 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4946 		goto unlock;
4947 
4948 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4949 	if (!vmf->page)
4950 		goto unlock;
4951 
4952 	get_page(vmf->page);
4953 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4954 	vmf->page->index   = vmf->pgoff;
4955 
4956 	ret = 0;
4957 unlock:
4958 	rcu_read_unlock();
4959 
4960 	return ret;
4961 }
4962 
4963 static void ring_buffer_attach(struct perf_event *event,
4964 			       struct ring_buffer *rb)
4965 {
4966 	struct ring_buffer *old_rb = NULL;
4967 	unsigned long flags;
4968 
4969 	if (event->rb) {
4970 		/*
4971 		 * Should be impossible, we set this when removing
4972 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4973 		 */
4974 		WARN_ON_ONCE(event->rcu_pending);
4975 
4976 		old_rb = event->rb;
4977 		spin_lock_irqsave(&old_rb->event_lock, flags);
4978 		list_del_rcu(&event->rb_entry);
4979 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4980 
4981 		event->rcu_batches = get_state_synchronize_rcu();
4982 		event->rcu_pending = 1;
4983 	}
4984 
4985 	if (rb) {
4986 		if (event->rcu_pending) {
4987 			cond_synchronize_rcu(event->rcu_batches);
4988 			event->rcu_pending = 0;
4989 		}
4990 
4991 		spin_lock_irqsave(&rb->event_lock, flags);
4992 		list_add_rcu(&event->rb_entry, &rb->event_list);
4993 		spin_unlock_irqrestore(&rb->event_lock, flags);
4994 	}
4995 
4996 	/*
4997 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4998 	 * before swizzling the event::rb pointer; if it's getting
4999 	 * unmapped, its aux_mmap_count will be 0 and it won't
5000 	 * restart. See the comment in __perf_pmu_output_stop().
5001 	 *
5002 	 * Data will inevitably be lost when set_output is done in
5003 	 * mid-air, but then again, whoever does it like this is
5004 	 * not in for the data anyway.
5005 	 */
5006 	if (has_aux(event))
5007 		perf_event_stop(event, 0);
5008 
5009 	rcu_assign_pointer(event->rb, rb);
5010 
5011 	if (old_rb) {
5012 		ring_buffer_put(old_rb);
5013 		/*
5014 		 * Since we detached before setting the new rb, so that we
5015 		 * could attach the new rb, we could have missed a wakeup.
5016 		 * Provide it now.
5017 		 */
5018 		wake_up_all(&event->waitq);
5019 	}
5020 }
5021 
5022 static void ring_buffer_wakeup(struct perf_event *event)
5023 {
5024 	struct ring_buffer *rb;
5025 
5026 	rcu_read_lock();
5027 	rb = rcu_dereference(event->rb);
5028 	if (rb) {
5029 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5030 			wake_up_all(&event->waitq);
5031 	}
5032 	rcu_read_unlock();
5033 }
5034 
5035 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5036 {
5037 	struct ring_buffer *rb;
5038 
5039 	rcu_read_lock();
5040 	rb = rcu_dereference(event->rb);
5041 	if (rb) {
5042 		if (!atomic_inc_not_zero(&rb->refcount))
5043 			rb = NULL;
5044 	}
5045 	rcu_read_unlock();
5046 
5047 	return rb;
5048 }
5049 
5050 void ring_buffer_put(struct ring_buffer *rb)
5051 {
5052 	if (!atomic_dec_and_test(&rb->refcount))
5053 		return;
5054 
5055 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5056 
5057 	call_rcu(&rb->rcu_head, rb_free_rcu);
5058 }
5059 
5060 static void perf_mmap_open(struct vm_area_struct *vma)
5061 {
5062 	struct perf_event *event = vma->vm_file->private_data;
5063 
5064 	atomic_inc(&event->mmap_count);
5065 	atomic_inc(&event->rb->mmap_count);
5066 
5067 	if (vma->vm_pgoff)
5068 		atomic_inc(&event->rb->aux_mmap_count);
5069 
5070 	if (event->pmu->event_mapped)
5071 		event->pmu->event_mapped(event);
5072 }
5073 
5074 static void perf_pmu_output_stop(struct perf_event *event);
5075 
5076 /*
5077  * A buffer can be mmap()ed multiple times; either directly through the same
5078  * event, or through other events by use of perf_event_set_output().
5079  *
5080  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5081  * the buffer here, where we still have a VM context. This means we need
5082  * to detach all events redirecting to us.
5083  */
5084 static void perf_mmap_close(struct vm_area_struct *vma)
5085 {
5086 	struct perf_event *event = vma->vm_file->private_data;
5087 
5088 	struct ring_buffer *rb = ring_buffer_get(event);
5089 	struct user_struct *mmap_user = rb->mmap_user;
5090 	int mmap_locked = rb->mmap_locked;
5091 	unsigned long size = perf_data_size(rb);
5092 
5093 	if (event->pmu->event_unmapped)
5094 		event->pmu->event_unmapped(event);
5095 
5096 	/*
5097 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5098 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5099 	 * serialize with perf_mmap here.
5100 	 */
5101 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5102 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5103 		/*
5104 		 * Stop all AUX events that are writing to this buffer,
5105 		 * so that we can free its AUX pages and corresponding PMU
5106 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5107 		 * they won't start any more (see perf_aux_output_begin()).
5108 		 */
5109 		perf_pmu_output_stop(event);
5110 
5111 		/* now it's safe to free the pages */
5112 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5113 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5114 
5115 		/* this has to be the last one */
5116 		rb_free_aux(rb);
5117 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5118 
5119 		mutex_unlock(&event->mmap_mutex);
5120 	}
5121 
5122 	atomic_dec(&rb->mmap_count);
5123 
5124 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5125 		goto out_put;
5126 
5127 	ring_buffer_attach(event, NULL);
5128 	mutex_unlock(&event->mmap_mutex);
5129 
5130 	/* If there's still other mmap()s of this buffer, we're done. */
5131 	if (atomic_read(&rb->mmap_count))
5132 		goto out_put;
5133 
5134 	/*
5135 	 * No other mmap()s, detach from all other events that might redirect
5136 	 * into the now unreachable buffer. Somewhat complicated by the
5137 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5138 	 */
5139 again:
5140 	rcu_read_lock();
5141 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5142 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5143 			/*
5144 			 * This event is en-route to free_event() which will
5145 			 * detach it and remove it from the list.
5146 			 */
5147 			continue;
5148 		}
5149 		rcu_read_unlock();
5150 
5151 		mutex_lock(&event->mmap_mutex);
5152 		/*
5153 		 * Check we didn't race with perf_event_set_output() which can
5154 		 * swizzle the rb from under us while we were waiting to
5155 		 * acquire mmap_mutex.
5156 		 *
5157 		 * If we find a different rb; ignore this event, a next
5158 		 * iteration will no longer find it on the list. We have to
5159 		 * still restart the iteration to make sure we're not now
5160 		 * iterating the wrong list.
5161 		 */
5162 		if (event->rb == rb)
5163 			ring_buffer_attach(event, NULL);
5164 
5165 		mutex_unlock(&event->mmap_mutex);
5166 		put_event(event);
5167 
5168 		/*
5169 		 * Restart the iteration; either we're on the wrong list or
5170 		 * destroyed its integrity by doing a deletion.
5171 		 */
5172 		goto again;
5173 	}
5174 	rcu_read_unlock();
5175 
5176 	/*
5177 	 * It could be there's still a few 0-ref events on the list; they'll
5178 	 * get cleaned up by free_event() -- they'll also still have their
5179 	 * ref on the rb and will free it whenever they are done with it.
5180 	 *
5181 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5182 	 * undo the VM accounting.
5183 	 */
5184 
5185 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5186 	vma->vm_mm->pinned_vm -= mmap_locked;
5187 	free_uid(mmap_user);
5188 
5189 out_put:
5190 	ring_buffer_put(rb); /* could be last */
5191 }
5192 
5193 static const struct vm_operations_struct perf_mmap_vmops = {
5194 	.open		= perf_mmap_open,
5195 	.close		= perf_mmap_close, /* non mergable */
5196 	.fault		= perf_mmap_fault,
5197 	.page_mkwrite	= perf_mmap_fault,
5198 };
5199 
5200 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5201 {
5202 	struct perf_event *event = file->private_data;
5203 	unsigned long user_locked, user_lock_limit;
5204 	struct user_struct *user = current_user();
5205 	unsigned long locked, lock_limit;
5206 	struct ring_buffer *rb = NULL;
5207 	unsigned long vma_size;
5208 	unsigned long nr_pages;
5209 	long user_extra = 0, extra = 0;
5210 	int ret = 0, flags = 0;
5211 
5212 	/*
5213 	 * Don't allow mmap() of inherited per-task counters. This would
5214 	 * create a performance issue due to all children writing to the
5215 	 * same rb.
5216 	 */
5217 	if (event->cpu == -1 && event->attr.inherit)
5218 		return -EINVAL;
5219 
5220 	if (!(vma->vm_flags & VM_SHARED))
5221 		return -EINVAL;
5222 
5223 	vma_size = vma->vm_end - vma->vm_start;
5224 
5225 	if (vma->vm_pgoff == 0) {
5226 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5227 	} else {
5228 		/*
5229 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5230 		 * mapped, all subsequent mappings should have the same size
5231 		 * and offset. Must be above the normal perf buffer.
5232 		 */
5233 		u64 aux_offset, aux_size;
5234 
5235 		if (!event->rb)
5236 			return -EINVAL;
5237 
5238 		nr_pages = vma_size / PAGE_SIZE;
5239 
5240 		mutex_lock(&event->mmap_mutex);
5241 		ret = -EINVAL;
5242 
5243 		rb = event->rb;
5244 		if (!rb)
5245 			goto aux_unlock;
5246 
5247 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5248 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5249 
5250 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5251 			goto aux_unlock;
5252 
5253 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5254 			goto aux_unlock;
5255 
5256 		/* already mapped with a different offset */
5257 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5258 			goto aux_unlock;
5259 
5260 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5261 			goto aux_unlock;
5262 
5263 		/* already mapped with a different size */
5264 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5265 			goto aux_unlock;
5266 
5267 		if (!is_power_of_2(nr_pages))
5268 			goto aux_unlock;
5269 
5270 		if (!atomic_inc_not_zero(&rb->mmap_count))
5271 			goto aux_unlock;
5272 
5273 		if (rb_has_aux(rb)) {
5274 			atomic_inc(&rb->aux_mmap_count);
5275 			ret = 0;
5276 			goto unlock;
5277 		}
5278 
5279 		atomic_set(&rb->aux_mmap_count, 1);
5280 		user_extra = nr_pages;
5281 
5282 		goto accounting;
5283 	}
5284 
5285 	/*
5286 	 * If we have rb pages ensure they're a power-of-two number, so we
5287 	 * can do bitmasks instead of modulo.
5288 	 */
5289 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5290 		return -EINVAL;
5291 
5292 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5293 		return -EINVAL;
5294 
5295 	WARN_ON_ONCE(event->ctx->parent_ctx);
5296 again:
5297 	mutex_lock(&event->mmap_mutex);
5298 	if (event->rb) {
5299 		if (event->rb->nr_pages != nr_pages) {
5300 			ret = -EINVAL;
5301 			goto unlock;
5302 		}
5303 
5304 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5305 			/*
5306 			 * Raced against perf_mmap_close() through
5307 			 * perf_event_set_output(). Try again, hope for better
5308 			 * luck.
5309 			 */
5310 			mutex_unlock(&event->mmap_mutex);
5311 			goto again;
5312 		}
5313 
5314 		goto unlock;
5315 	}
5316 
5317 	user_extra = nr_pages + 1;
5318 
5319 accounting:
5320 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5321 
5322 	/*
5323 	 * Increase the limit linearly with more CPUs:
5324 	 */
5325 	user_lock_limit *= num_online_cpus();
5326 
5327 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5328 
5329 	if (user_locked > user_lock_limit)
5330 		extra = user_locked - user_lock_limit;
5331 
5332 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5333 	lock_limit >>= PAGE_SHIFT;
5334 	locked = vma->vm_mm->pinned_vm + extra;
5335 
5336 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5337 		!capable(CAP_IPC_LOCK)) {
5338 		ret = -EPERM;
5339 		goto unlock;
5340 	}
5341 
5342 	WARN_ON(!rb && event->rb);
5343 
5344 	if (vma->vm_flags & VM_WRITE)
5345 		flags |= RING_BUFFER_WRITABLE;
5346 
5347 	if (!rb) {
5348 		rb = rb_alloc(nr_pages,
5349 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5350 			      event->cpu, flags);
5351 
5352 		if (!rb) {
5353 			ret = -ENOMEM;
5354 			goto unlock;
5355 		}
5356 
5357 		atomic_set(&rb->mmap_count, 1);
5358 		rb->mmap_user = get_current_user();
5359 		rb->mmap_locked = extra;
5360 
5361 		ring_buffer_attach(event, rb);
5362 
5363 		perf_event_init_userpage(event);
5364 		perf_event_update_userpage(event);
5365 	} else {
5366 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5367 				   event->attr.aux_watermark, flags);
5368 		if (!ret)
5369 			rb->aux_mmap_locked = extra;
5370 	}
5371 
5372 unlock:
5373 	if (!ret) {
5374 		atomic_long_add(user_extra, &user->locked_vm);
5375 		vma->vm_mm->pinned_vm += extra;
5376 
5377 		atomic_inc(&event->mmap_count);
5378 	} else if (rb) {
5379 		atomic_dec(&rb->mmap_count);
5380 	}
5381 aux_unlock:
5382 	mutex_unlock(&event->mmap_mutex);
5383 
5384 	/*
5385 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5386 	 * vma.
5387 	 */
5388 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5389 	vma->vm_ops = &perf_mmap_vmops;
5390 
5391 	if (event->pmu->event_mapped)
5392 		event->pmu->event_mapped(event);
5393 
5394 	return ret;
5395 }
5396 
5397 static int perf_fasync(int fd, struct file *filp, int on)
5398 {
5399 	struct inode *inode = file_inode(filp);
5400 	struct perf_event *event = filp->private_data;
5401 	int retval;
5402 
5403 	inode_lock(inode);
5404 	retval = fasync_helper(fd, filp, on, &event->fasync);
5405 	inode_unlock(inode);
5406 
5407 	if (retval < 0)
5408 		return retval;
5409 
5410 	return 0;
5411 }
5412 
5413 static const struct file_operations perf_fops = {
5414 	.llseek			= no_llseek,
5415 	.release		= perf_release,
5416 	.read			= perf_read,
5417 	.poll			= perf_poll,
5418 	.unlocked_ioctl		= perf_ioctl,
5419 	.compat_ioctl		= perf_compat_ioctl,
5420 	.mmap			= perf_mmap,
5421 	.fasync			= perf_fasync,
5422 };
5423 
5424 /*
5425  * Perf event wakeup
5426  *
5427  * If there's data, ensure we set the poll() state and publish everything
5428  * to user-space before waking everybody up.
5429  */
5430 
5431 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5432 {
5433 	/* only the parent has fasync state */
5434 	if (event->parent)
5435 		event = event->parent;
5436 	return &event->fasync;
5437 }
5438 
5439 void perf_event_wakeup(struct perf_event *event)
5440 {
5441 	ring_buffer_wakeup(event);
5442 
5443 	if (event->pending_kill) {
5444 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5445 		event->pending_kill = 0;
5446 	}
5447 }
5448 
5449 static void perf_pending_event(struct irq_work *entry)
5450 {
5451 	struct perf_event *event = container_of(entry,
5452 			struct perf_event, pending);
5453 	int rctx;
5454 
5455 	rctx = perf_swevent_get_recursion_context();
5456 	/*
5457 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5458 	 * and we won't recurse 'further'.
5459 	 */
5460 
5461 	if (event->pending_disable) {
5462 		event->pending_disable = 0;
5463 		perf_event_disable_local(event);
5464 	}
5465 
5466 	if (event->pending_wakeup) {
5467 		event->pending_wakeup = 0;
5468 		perf_event_wakeup(event);
5469 	}
5470 
5471 	if (rctx >= 0)
5472 		perf_swevent_put_recursion_context(rctx);
5473 }
5474 
5475 /*
5476  * We assume there is only KVM supporting the callbacks.
5477  * Later on, we might change it to a list if there is
5478  * another virtualization implementation supporting the callbacks.
5479  */
5480 struct perf_guest_info_callbacks *perf_guest_cbs;
5481 
5482 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483 {
5484 	perf_guest_cbs = cbs;
5485 	return 0;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5488 
5489 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5490 {
5491 	perf_guest_cbs = NULL;
5492 	return 0;
5493 }
5494 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5495 
5496 static void
5497 perf_output_sample_regs(struct perf_output_handle *handle,
5498 			struct pt_regs *regs, u64 mask)
5499 {
5500 	int bit;
5501 	DECLARE_BITMAP(_mask, 64);
5502 
5503 	bitmap_from_u64(_mask, mask);
5504 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5505 		u64 val;
5506 
5507 		val = perf_reg_value(regs, bit);
5508 		perf_output_put(handle, val);
5509 	}
5510 }
5511 
5512 static void perf_sample_regs_user(struct perf_regs *regs_user,
5513 				  struct pt_regs *regs,
5514 				  struct pt_regs *regs_user_copy)
5515 {
5516 	if (user_mode(regs)) {
5517 		regs_user->abi = perf_reg_abi(current);
5518 		regs_user->regs = regs;
5519 	} else if (current->mm) {
5520 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5521 	} else {
5522 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5523 		regs_user->regs = NULL;
5524 	}
5525 }
5526 
5527 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5528 				  struct pt_regs *regs)
5529 {
5530 	regs_intr->regs = regs;
5531 	regs_intr->abi  = perf_reg_abi(current);
5532 }
5533 
5534 
5535 /*
5536  * Get remaining task size from user stack pointer.
5537  *
5538  * It'd be better to take stack vma map and limit this more
5539  * precisly, but there's no way to get it safely under interrupt,
5540  * so using TASK_SIZE as limit.
5541  */
5542 static u64 perf_ustack_task_size(struct pt_regs *regs)
5543 {
5544 	unsigned long addr = perf_user_stack_pointer(regs);
5545 
5546 	if (!addr || addr >= TASK_SIZE)
5547 		return 0;
5548 
5549 	return TASK_SIZE - addr;
5550 }
5551 
5552 static u16
5553 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5554 			struct pt_regs *regs)
5555 {
5556 	u64 task_size;
5557 
5558 	/* No regs, no stack pointer, no dump. */
5559 	if (!regs)
5560 		return 0;
5561 
5562 	/*
5563 	 * Check if we fit in with the requested stack size into the:
5564 	 * - TASK_SIZE
5565 	 *   If we don't, we limit the size to the TASK_SIZE.
5566 	 *
5567 	 * - remaining sample size
5568 	 *   If we don't, we customize the stack size to
5569 	 *   fit in to the remaining sample size.
5570 	 */
5571 
5572 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5573 	stack_size = min(stack_size, (u16) task_size);
5574 
5575 	/* Current header size plus static size and dynamic size. */
5576 	header_size += 2 * sizeof(u64);
5577 
5578 	/* Do we fit in with the current stack dump size? */
5579 	if ((u16) (header_size + stack_size) < header_size) {
5580 		/*
5581 		 * If we overflow the maximum size for the sample,
5582 		 * we customize the stack dump size to fit in.
5583 		 */
5584 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5585 		stack_size = round_up(stack_size, sizeof(u64));
5586 	}
5587 
5588 	return stack_size;
5589 }
5590 
5591 static void
5592 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5593 			  struct pt_regs *regs)
5594 {
5595 	/* Case of a kernel thread, nothing to dump */
5596 	if (!regs) {
5597 		u64 size = 0;
5598 		perf_output_put(handle, size);
5599 	} else {
5600 		unsigned long sp;
5601 		unsigned int rem;
5602 		u64 dyn_size;
5603 
5604 		/*
5605 		 * We dump:
5606 		 * static size
5607 		 *   - the size requested by user or the best one we can fit
5608 		 *     in to the sample max size
5609 		 * data
5610 		 *   - user stack dump data
5611 		 * dynamic size
5612 		 *   - the actual dumped size
5613 		 */
5614 
5615 		/* Static size. */
5616 		perf_output_put(handle, dump_size);
5617 
5618 		/* Data. */
5619 		sp = perf_user_stack_pointer(regs);
5620 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5621 		dyn_size = dump_size - rem;
5622 
5623 		perf_output_skip(handle, rem);
5624 
5625 		/* Dynamic size. */
5626 		perf_output_put(handle, dyn_size);
5627 	}
5628 }
5629 
5630 static void __perf_event_header__init_id(struct perf_event_header *header,
5631 					 struct perf_sample_data *data,
5632 					 struct perf_event *event)
5633 {
5634 	u64 sample_type = event->attr.sample_type;
5635 
5636 	data->type = sample_type;
5637 	header->size += event->id_header_size;
5638 
5639 	if (sample_type & PERF_SAMPLE_TID) {
5640 		/* namespace issues */
5641 		data->tid_entry.pid = perf_event_pid(event, current);
5642 		data->tid_entry.tid = perf_event_tid(event, current);
5643 	}
5644 
5645 	if (sample_type & PERF_SAMPLE_TIME)
5646 		data->time = perf_event_clock(event);
5647 
5648 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5649 		data->id = primary_event_id(event);
5650 
5651 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5652 		data->stream_id = event->id;
5653 
5654 	if (sample_type & PERF_SAMPLE_CPU) {
5655 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5656 		data->cpu_entry.reserved = 0;
5657 	}
5658 }
5659 
5660 void perf_event_header__init_id(struct perf_event_header *header,
5661 				struct perf_sample_data *data,
5662 				struct perf_event *event)
5663 {
5664 	if (event->attr.sample_id_all)
5665 		__perf_event_header__init_id(header, data, event);
5666 }
5667 
5668 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5669 					   struct perf_sample_data *data)
5670 {
5671 	u64 sample_type = data->type;
5672 
5673 	if (sample_type & PERF_SAMPLE_TID)
5674 		perf_output_put(handle, data->tid_entry);
5675 
5676 	if (sample_type & PERF_SAMPLE_TIME)
5677 		perf_output_put(handle, data->time);
5678 
5679 	if (sample_type & PERF_SAMPLE_ID)
5680 		perf_output_put(handle, data->id);
5681 
5682 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5683 		perf_output_put(handle, data->stream_id);
5684 
5685 	if (sample_type & PERF_SAMPLE_CPU)
5686 		perf_output_put(handle, data->cpu_entry);
5687 
5688 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5689 		perf_output_put(handle, data->id);
5690 }
5691 
5692 void perf_event__output_id_sample(struct perf_event *event,
5693 				  struct perf_output_handle *handle,
5694 				  struct perf_sample_data *sample)
5695 {
5696 	if (event->attr.sample_id_all)
5697 		__perf_event__output_id_sample(handle, sample);
5698 }
5699 
5700 static void perf_output_read_one(struct perf_output_handle *handle,
5701 				 struct perf_event *event,
5702 				 u64 enabled, u64 running)
5703 {
5704 	u64 read_format = event->attr.read_format;
5705 	u64 values[4];
5706 	int n = 0;
5707 
5708 	values[n++] = perf_event_count(event);
5709 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5710 		values[n++] = enabled +
5711 			atomic64_read(&event->child_total_time_enabled);
5712 	}
5713 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5714 		values[n++] = running +
5715 			atomic64_read(&event->child_total_time_running);
5716 	}
5717 	if (read_format & PERF_FORMAT_ID)
5718 		values[n++] = primary_event_id(event);
5719 
5720 	__output_copy(handle, values, n * sizeof(u64));
5721 }
5722 
5723 /*
5724  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5725  */
5726 static void perf_output_read_group(struct perf_output_handle *handle,
5727 			    struct perf_event *event,
5728 			    u64 enabled, u64 running)
5729 {
5730 	struct perf_event *leader = event->group_leader, *sub;
5731 	u64 read_format = event->attr.read_format;
5732 	u64 values[5];
5733 	int n = 0;
5734 
5735 	values[n++] = 1 + leader->nr_siblings;
5736 
5737 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5738 		values[n++] = enabled;
5739 
5740 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5741 		values[n++] = running;
5742 
5743 	if (leader != event)
5744 		leader->pmu->read(leader);
5745 
5746 	values[n++] = perf_event_count(leader);
5747 	if (read_format & PERF_FORMAT_ID)
5748 		values[n++] = primary_event_id(leader);
5749 
5750 	__output_copy(handle, values, n * sizeof(u64));
5751 
5752 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5753 		n = 0;
5754 
5755 		if ((sub != event) &&
5756 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5757 			sub->pmu->read(sub);
5758 
5759 		values[n++] = perf_event_count(sub);
5760 		if (read_format & PERF_FORMAT_ID)
5761 			values[n++] = primary_event_id(sub);
5762 
5763 		__output_copy(handle, values, n * sizeof(u64));
5764 	}
5765 }
5766 
5767 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5768 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5769 
5770 static void perf_output_read(struct perf_output_handle *handle,
5771 			     struct perf_event *event)
5772 {
5773 	u64 enabled = 0, running = 0, now;
5774 	u64 read_format = event->attr.read_format;
5775 
5776 	/*
5777 	 * compute total_time_enabled, total_time_running
5778 	 * based on snapshot values taken when the event
5779 	 * was last scheduled in.
5780 	 *
5781 	 * we cannot simply called update_context_time()
5782 	 * because of locking issue as we are called in
5783 	 * NMI context
5784 	 */
5785 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5786 		calc_timer_values(event, &now, &enabled, &running);
5787 
5788 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5789 		perf_output_read_group(handle, event, enabled, running);
5790 	else
5791 		perf_output_read_one(handle, event, enabled, running);
5792 }
5793 
5794 void perf_output_sample(struct perf_output_handle *handle,
5795 			struct perf_event_header *header,
5796 			struct perf_sample_data *data,
5797 			struct perf_event *event)
5798 {
5799 	u64 sample_type = data->type;
5800 
5801 	perf_output_put(handle, *header);
5802 
5803 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5804 		perf_output_put(handle, data->id);
5805 
5806 	if (sample_type & PERF_SAMPLE_IP)
5807 		perf_output_put(handle, data->ip);
5808 
5809 	if (sample_type & PERF_SAMPLE_TID)
5810 		perf_output_put(handle, data->tid_entry);
5811 
5812 	if (sample_type & PERF_SAMPLE_TIME)
5813 		perf_output_put(handle, data->time);
5814 
5815 	if (sample_type & PERF_SAMPLE_ADDR)
5816 		perf_output_put(handle, data->addr);
5817 
5818 	if (sample_type & PERF_SAMPLE_ID)
5819 		perf_output_put(handle, data->id);
5820 
5821 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5822 		perf_output_put(handle, data->stream_id);
5823 
5824 	if (sample_type & PERF_SAMPLE_CPU)
5825 		perf_output_put(handle, data->cpu_entry);
5826 
5827 	if (sample_type & PERF_SAMPLE_PERIOD)
5828 		perf_output_put(handle, data->period);
5829 
5830 	if (sample_type & PERF_SAMPLE_READ)
5831 		perf_output_read(handle, event);
5832 
5833 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5834 		if (data->callchain) {
5835 			int size = 1;
5836 
5837 			if (data->callchain)
5838 				size += data->callchain->nr;
5839 
5840 			size *= sizeof(u64);
5841 
5842 			__output_copy(handle, data->callchain, size);
5843 		} else {
5844 			u64 nr = 0;
5845 			perf_output_put(handle, nr);
5846 		}
5847 	}
5848 
5849 	if (sample_type & PERF_SAMPLE_RAW) {
5850 		struct perf_raw_record *raw = data->raw;
5851 
5852 		if (raw) {
5853 			struct perf_raw_frag *frag = &raw->frag;
5854 
5855 			perf_output_put(handle, raw->size);
5856 			do {
5857 				if (frag->copy) {
5858 					__output_custom(handle, frag->copy,
5859 							frag->data, frag->size);
5860 				} else {
5861 					__output_copy(handle, frag->data,
5862 						      frag->size);
5863 				}
5864 				if (perf_raw_frag_last(frag))
5865 					break;
5866 				frag = frag->next;
5867 			} while (1);
5868 			if (frag->pad)
5869 				__output_skip(handle, NULL, frag->pad);
5870 		} else {
5871 			struct {
5872 				u32	size;
5873 				u32	data;
5874 			} raw = {
5875 				.size = sizeof(u32),
5876 				.data = 0,
5877 			};
5878 			perf_output_put(handle, raw);
5879 		}
5880 	}
5881 
5882 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5883 		if (data->br_stack) {
5884 			size_t size;
5885 
5886 			size = data->br_stack->nr
5887 			     * sizeof(struct perf_branch_entry);
5888 
5889 			perf_output_put(handle, data->br_stack->nr);
5890 			perf_output_copy(handle, data->br_stack->entries, size);
5891 		} else {
5892 			/*
5893 			 * we always store at least the value of nr
5894 			 */
5895 			u64 nr = 0;
5896 			perf_output_put(handle, nr);
5897 		}
5898 	}
5899 
5900 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5901 		u64 abi = data->regs_user.abi;
5902 
5903 		/*
5904 		 * If there are no regs to dump, notice it through
5905 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5906 		 */
5907 		perf_output_put(handle, abi);
5908 
5909 		if (abi) {
5910 			u64 mask = event->attr.sample_regs_user;
5911 			perf_output_sample_regs(handle,
5912 						data->regs_user.regs,
5913 						mask);
5914 		}
5915 	}
5916 
5917 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5918 		perf_output_sample_ustack(handle,
5919 					  data->stack_user_size,
5920 					  data->regs_user.regs);
5921 	}
5922 
5923 	if (sample_type & PERF_SAMPLE_WEIGHT)
5924 		perf_output_put(handle, data->weight);
5925 
5926 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5927 		perf_output_put(handle, data->data_src.val);
5928 
5929 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5930 		perf_output_put(handle, data->txn);
5931 
5932 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5933 		u64 abi = data->regs_intr.abi;
5934 		/*
5935 		 * If there are no regs to dump, notice it through
5936 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5937 		 */
5938 		perf_output_put(handle, abi);
5939 
5940 		if (abi) {
5941 			u64 mask = event->attr.sample_regs_intr;
5942 
5943 			perf_output_sample_regs(handle,
5944 						data->regs_intr.regs,
5945 						mask);
5946 		}
5947 	}
5948 
5949 	if (!event->attr.watermark) {
5950 		int wakeup_events = event->attr.wakeup_events;
5951 
5952 		if (wakeup_events) {
5953 			struct ring_buffer *rb = handle->rb;
5954 			int events = local_inc_return(&rb->events);
5955 
5956 			if (events >= wakeup_events) {
5957 				local_sub(wakeup_events, &rb->events);
5958 				local_inc(&rb->wakeup);
5959 			}
5960 		}
5961 	}
5962 }
5963 
5964 void perf_prepare_sample(struct perf_event_header *header,
5965 			 struct perf_sample_data *data,
5966 			 struct perf_event *event,
5967 			 struct pt_regs *regs)
5968 {
5969 	u64 sample_type = event->attr.sample_type;
5970 
5971 	header->type = PERF_RECORD_SAMPLE;
5972 	header->size = sizeof(*header) + event->header_size;
5973 
5974 	header->misc = 0;
5975 	header->misc |= perf_misc_flags(regs);
5976 
5977 	__perf_event_header__init_id(header, data, event);
5978 
5979 	if (sample_type & PERF_SAMPLE_IP)
5980 		data->ip = perf_instruction_pointer(regs);
5981 
5982 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5983 		int size = 1;
5984 
5985 		data->callchain = perf_callchain(event, regs);
5986 
5987 		if (data->callchain)
5988 			size += data->callchain->nr;
5989 
5990 		header->size += size * sizeof(u64);
5991 	}
5992 
5993 	if (sample_type & PERF_SAMPLE_RAW) {
5994 		struct perf_raw_record *raw = data->raw;
5995 		int size;
5996 
5997 		if (raw) {
5998 			struct perf_raw_frag *frag = &raw->frag;
5999 			u32 sum = 0;
6000 
6001 			do {
6002 				sum += frag->size;
6003 				if (perf_raw_frag_last(frag))
6004 					break;
6005 				frag = frag->next;
6006 			} while (1);
6007 
6008 			size = round_up(sum + sizeof(u32), sizeof(u64));
6009 			raw->size = size - sizeof(u32);
6010 			frag->pad = raw->size - sum;
6011 		} else {
6012 			size = sizeof(u64);
6013 		}
6014 
6015 		header->size += size;
6016 	}
6017 
6018 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6019 		int size = sizeof(u64); /* nr */
6020 		if (data->br_stack) {
6021 			size += data->br_stack->nr
6022 			      * sizeof(struct perf_branch_entry);
6023 		}
6024 		header->size += size;
6025 	}
6026 
6027 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6028 		perf_sample_regs_user(&data->regs_user, regs,
6029 				      &data->regs_user_copy);
6030 
6031 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6032 		/* regs dump ABI info */
6033 		int size = sizeof(u64);
6034 
6035 		if (data->regs_user.regs) {
6036 			u64 mask = event->attr.sample_regs_user;
6037 			size += hweight64(mask) * sizeof(u64);
6038 		}
6039 
6040 		header->size += size;
6041 	}
6042 
6043 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6044 		/*
6045 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6046 		 * processed as the last one or have additional check added
6047 		 * in case new sample type is added, because we could eat
6048 		 * up the rest of the sample size.
6049 		 */
6050 		u16 stack_size = event->attr.sample_stack_user;
6051 		u16 size = sizeof(u64);
6052 
6053 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6054 						     data->regs_user.regs);
6055 
6056 		/*
6057 		 * If there is something to dump, add space for the dump
6058 		 * itself and for the field that tells the dynamic size,
6059 		 * which is how many have been actually dumped.
6060 		 */
6061 		if (stack_size)
6062 			size += sizeof(u64) + stack_size;
6063 
6064 		data->stack_user_size = stack_size;
6065 		header->size += size;
6066 	}
6067 
6068 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6069 		/* regs dump ABI info */
6070 		int size = sizeof(u64);
6071 
6072 		perf_sample_regs_intr(&data->regs_intr, regs);
6073 
6074 		if (data->regs_intr.regs) {
6075 			u64 mask = event->attr.sample_regs_intr;
6076 
6077 			size += hweight64(mask) * sizeof(u64);
6078 		}
6079 
6080 		header->size += size;
6081 	}
6082 }
6083 
6084 static void __always_inline
6085 __perf_event_output(struct perf_event *event,
6086 		    struct perf_sample_data *data,
6087 		    struct pt_regs *regs,
6088 		    int (*output_begin)(struct perf_output_handle *,
6089 					struct perf_event *,
6090 					unsigned int))
6091 {
6092 	struct perf_output_handle handle;
6093 	struct perf_event_header header;
6094 
6095 	/* protect the callchain buffers */
6096 	rcu_read_lock();
6097 
6098 	perf_prepare_sample(&header, data, event, regs);
6099 
6100 	if (output_begin(&handle, event, header.size))
6101 		goto exit;
6102 
6103 	perf_output_sample(&handle, &header, data, event);
6104 
6105 	perf_output_end(&handle);
6106 
6107 exit:
6108 	rcu_read_unlock();
6109 }
6110 
6111 void
6112 perf_event_output_forward(struct perf_event *event,
6113 			 struct perf_sample_data *data,
6114 			 struct pt_regs *regs)
6115 {
6116 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6117 }
6118 
6119 void
6120 perf_event_output_backward(struct perf_event *event,
6121 			   struct perf_sample_data *data,
6122 			   struct pt_regs *regs)
6123 {
6124 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6125 }
6126 
6127 void
6128 perf_event_output(struct perf_event *event,
6129 		  struct perf_sample_data *data,
6130 		  struct pt_regs *regs)
6131 {
6132 	__perf_event_output(event, data, regs, perf_output_begin);
6133 }
6134 
6135 /*
6136  * read event_id
6137  */
6138 
6139 struct perf_read_event {
6140 	struct perf_event_header	header;
6141 
6142 	u32				pid;
6143 	u32				tid;
6144 };
6145 
6146 static void
6147 perf_event_read_event(struct perf_event *event,
6148 			struct task_struct *task)
6149 {
6150 	struct perf_output_handle handle;
6151 	struct perf_sample_data sample;
6152 	struct perf_read_event read_event = {
6153 		.header = {
6154 			.type = PERF_RECORD_READ,
6155 			.misc = 0,
6156 			.size = sizeof(read_event) + event->read_size,
6157 		},
6158 		.pid = perf_event_pid(event, task),
6159 		.tid = perf_event_tid(event, task),
6160 	};
6161 	int ret;
6162 
6163 	perf_event_header__init_id(&read_event.header, &sample, event);
6164 	ret = perf_output_begin(&handle, event, read_event.header.size);
6165 	if (ret)
6166 		return;
6167 
6168 	perf_output_put(&handle, read_event);
6169 	perf_output_read(&handle, event);
6170 	perf_event__output_id_sample(event, &handle, &sample);
6171 
6172 	perf_output_end(&handle);
6173 }
6174 
6175 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6176 
6177 static void
6178 perf_iterate_ctx(struct perf_event_context *ctx,
6179 		   perf_iterate_f output,
6180 		   void *data, bool all)
6181 {
6182 	struct perf_event *event;
6183 
6184 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6185 		if (!all) {
6186 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6187 				continue;
6188 			if (!event_filter_match(event))
6189 				continue;
6190 		}
6191 
6192 		output(event, data);
6193 	}
6194 }
6195 
6196 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6197 {
6198 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6199 	struct perf_event *event;
6200 
6201 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6202 		/*
6203 		 * Skip events that are not fully formed yet; ensure that
6204 		 * if we observe event->ctx, both event and ctx will be
6205 		 * complete enough. See perf_install_in_context().
6206 		 */
6207 		if (!smp_load_acquire(&event->ctx))
6208 			continue;
6209 
6210 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6211 			continue;
6212 		if (!event_filter_match(event))
6213 			continue;
6214 		output(event, data);
6215 	}
6216 }
6217 
6218 /*
6219  * Iterate all events that need to receive side-band events.
6220  *
6221  * For new callers; ensure that account_pmu_sb_event() includes
6222  * your event, otherwise it might not get delivered.
6223  */
6224 static void
6225 perf_iterate_sb(perf_iterate_f output, void *data,
6226 	       struct perf_event_context *task_ctx)
6227 {
6228 	struct perf_event_context *ctx;
6229 	int ctxn;
6230 
6231 	rcu_read_lock();
6232 	preempt_disable();
6233 
6234 	/*
6235 	 * If we have task_ctx != NULL we only notify the task context itself.
6236 	 * The task_ctx is set only for EXIT events before releasing task
6237 	 * context.
6238 	 */
6239 	if (task_ctx) {
6240 		perf_iterate_ctx(task_ctx, output, data, false);
6241 		goto done;
6242 	}
6243 
6244 	perf_iterate_sb_cpu(output, data);
6245 
6246 	for_each_task_context_nr(ctxn) {
6247 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6248 		if (ctx)
6249 			perf_iterate_ctx(ctx, output, data, false);
6250 	}
6251 done:
6252 	preempt_enable();
6253 	rcu_read_unlock();
6254 }
6255 
6256 /*
6257  * Clear all file-based filters at exec, they'll have to be
6258  * re-instated when/if these objects are mmapped again.
6259  */
6260 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6261 {
6262 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6263 	struct perf_addr_filter *filter;
6264 	unsigned int restart = 0, count = 0;
6265 	unsigned long flags;
6266 
6267 	if (!has_addr_filter(event))
6268 		return;
6269 
6270 	raw_spin_lock_irqsave(&ifh->lock, flags);
6271 	list_for_each_entry(filter, &ifh->list, entry) {
6272 		if (filter->inode) {
6273 			event->addr_filters_offs[count] = 0;
6274 			restart++;
6275 		}
6276 
6277 		count++;
6278 	}
6279 
6280 	if (restart)
6281 		event->addr_filters_gen++;
6282 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6283 
6284 	if (restart)
6285 		perf_event_stop(event, 1);
6286 }
6287 
6288 void perf_event_exec(void)
6289 {
6290 	struct perf_event_context *ctx;
6291 	int ctxn;
6292 
6293 	rcu_read_lock();
6294 	for_each_task_context_nr(ctxn) {
6295 		ctx = current->perf_event_ctxp[ctxn];
6296 		if (!ctx)
6297 			continue;
6298 
6299 		perf_event_enable_on_exec(ctxn);
6300 
6301 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6302 				   true);
6303 	}
6304 	rcu_read_unlock();
6305 }
6306 
6307 struct remote_output {
6308 	struct ring_buffer	*rb;
6309 	int			err;
6310 };
6311 
6312 static void __perf_event_output_stop(struct perf_event *event, void *data)
6313 {
6314 	struct perf_event *parent = event->parent;
6315 	struct remote_output *ro = data;
6316 	struct ring_buffer *rb = ro->rb;
6317 	struct stop_event_data sd = {
6318 		.event	= event,
6319 	};
6320 
6321 	if (!has_aux(event))
6322 		return;
6323 
6324 	if (!parent)
6325 		parent = event;
6326 
6327 	/*
6328 	 * In case of inheritance, it will be the parent that links to the
6329 	 * ring-buffer, but it will be the child that's actually using it.
6330 	 *
6331 	 * We are using event::rb to determine if the event should be stopped,
6332 	 * however this may race with ring_buffer_attach() (through set_output),
6333 	 * which will make us skip the event that actually needs to be stopped.
6334 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6335 	 * its rb pointer.
6336 	 */
6337 	if (rcu_dereference(parent->rb) == rb)
6338 		ro->err = __perf_event_stop(&sd);
6339 }
6340 
6341 static int __perf_pmu_output_stop(void *info)
6342 {
6343 	struct perf_event *event = info;
6344 	struct pmu *pmu = event->pmu;
6345 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6346 	struct remote_output ro = {
6347 		.rb	= event->rb,
6348 	};
6349 
6350 	rcu_read_lock();
6351 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6352 	if (cpuctx->task_ctx)
6353 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6354 				   &ro, false);
6355 	rcu_read_unlock();
6356 
6357 	return ro.err;
6358 }
6359 
6360 static void perf_pmu_output_stop(struct perf_event *event)
6361 {
6362 	struct perf_event *iter;
6363 	int err, cpu;
6364 
6365 restart:
6366 	rcu_read_lock();
6367 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6368 		/*
6369 		 * For per-CPU events, we need to make sure that neither they
6370 		 * nor their children are running; for cpu==-1 events it's
6371 		 * sufficient to stop the event itself if it's active, since
6372 		 * it can't have children.
6373 		 */
6374 		cpu = iter->cpu;
6375 		if (cpu == -1)
6376 			cpu = READ_ONCE(iter->oncpu);
6377 
6378 		if (cpu == -1)
6379 			continue;
6380 
6381 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6382 		if (err == -EAGAIN) {
6383 			rcu_read_unlock();
6384 			goto restart;
6385 		}
6386 	}
6387 	rcu_read_unlock();
6388 }
6389 
6390 /*
6391  * task tracking -- fork/exit
6392  *
6393  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6394  */
6395 
6396 struct perf_task_event {
6397 	struct task_struct		*task;
6398 	struct perf_event_context	*task_ctx;
6399 
6400 	struct {
6401 		struct perf_event_header	header;
6402 
6403 		u32				pid;
6404 		u32				ppid;
6405 		u32				tid;
6406 		u32				ptid;
6407 		u64				time;
6408 	} event_id;
6409 };
6410 
6411 static int perf_event_task_match(struct perf_event *event)
6412 {
6413 	return event->attr.comm  || event->attr.mmap ||
6414 	       event->attr.mmap2 || event->attr.mmap_data ||
6415 	       event->attr.task;
6416 }
6417 
6418 static void perf_event_task_output(struct perf_event *event,
6419 				   void *data)
6420 {
6421 	struct perf_task_event *task_event = data;
6422 	struct perf_output_handle handle;
6423 	struct perf_sample_data	sample;
6424 	struct task_struct *task = task_event->task;
6425 	int ret, size = task_event->event_id.header.size;
6426 
6427 	if (!perf_event_task_match(event))
6428 		return;
6429 
6430 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6431 
6432 	ret = perf_output_begin(&handle, event,
6433 				task_event->event_id.header.size);
6434 	if (ret)
6435 		goto out;
6436 
6437 	task_event->event_id.pid = perf_event_pid(event, task);
6438 	task_event->event_id.ppid = perf_event_pid(event, current);
6439 
6440 	task_event->event_id.tid = perf_event_tid(event, task);
6441 	task_event->event_id.ptid = perf_event_tid(event, current);
6442 
6443 	task_event->event_id.time = perf_event_clock(event);
6444 
6445 	perf_output_put(&handle, task_event->event_id);
6446 
6447 	perf_event__output_id_sample(event, &handle, &sample);
6448 
6449 	perf_output_end(&handle);
6450 out:
6451 	task_event->event_id.header.size = size;
6452 }
6453 
6454 static void perf_event_task(struct task_struct *task,
6455 			      struct perf_event_context *task_ctx,
6456 			      int new)
6457 {
6458 	struct perf_task_event task_event;
6459 
6460 	if (!atomic_read(&nr_comm_events) &&
6461 	    !atomic_read(&nr_mmap_events) &&
6462 	    !atomic_read(&nr_task_events))
6463 		return;
6464 
6465 	task_event = (struct perf_task_event){
6466 		.task	  = task,
6467 		.task_ctx = task_ctx,
6468 		.event_id    = {
6469 			.header = {
6470 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6471 				.misc = 0,
6472 				.size = sizeof(task_event.event_id),
6473 			},
6474 			/* .pid  */
6475 			/* .ppid */
6476 			/* .tid  */
6477 			/* .ptid */
6478 			/* .time */
6479 		},
6480 	};
6481 
6482 	perf_iterate_sb(perf_event_task_output,
6483 		       &task_event,
6484 		       task_ctx);
6485 }
6486 
6487 void perf_event_fork(struct task_struct *task)
6488 {
6489 	perf_event_task(task, NULL, 1);
6490 }
6491 
6492 /*
6493  * comm tracking
6494  */
6495 
6496 struct perf_comm_event {
6497 	struct task_struct	*task;
6498 	char			*comm;
6499 	int			comm_size;
6500 
6501 	struct {
6502 		struct perf_event_header	header;
6503 
6504 		u32				pid;
6505 		u32				tid;
6506 	} event_id;
6507 };
6508 
6509 static int perf_event_comm_match(struct perf_event *event)
6510 {
6511 	return event->attr.comm;
6512 }
6513 
6514 static void perf_event_comm_output(struct perf_event *event,
6515 				   void *data)
6516 {
6517 	struct perf_comm_event *comm_event = data;
6518 	struct perf_output_handle handle;
6519 	struct perf_sample_data sample;
6520 	int size = comm_event->event_id.header.size;
6521 	int ret;
6522 
6523 	if (!perf_event_comm_match(event))
6524 		return;
6525 
6526 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6527 	ret = perf_output_begin(&handle, event,
6528 				comm_event->event_id.header.size);
6529 
6530 	if (ret)
6531 		goto out;
6532 
6533 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6534 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6535 
6536 	perf_output_put(&handle, comm_event->event_id);
6537 	__output_copy(&handle, comm_event->comm,
6538 				   comm_event->comm_size);
6539 
6540 	perf_event__output_id_sample(event, &handle, &sample);
6541 
6542 	perf_output_end(&handle);
6543 out:
6544 	comm_event->event_id.header.size = size;
6545 }
6546 
6547 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6548 {
6549 	char comm[TASK_COMM_LEN];
6550 	unsigned int size;
6551 
6552 	memset(comm, 0, sizeof(comm));
6553 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6554 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6555 
6556 	comm_event->comm = comm;
6557 	comm_event->comm_size = size;
6558 
6559 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6560 
6561 	perf_iterate_sb(perf_event_comm_output,
6562 		       comm_event,
6563 		       NULL);
6564 }
6565 
6566 void perf_event_comm(struct task_struct *task, bool exec)
6567 {
6568 	struct perf_comm_event comm_event;
6569 
6570 	if (!atomic_read(&nr_comm_events))
6571 		return;
6572 
6573 	comm_event = (struct perf_comm_event){
6574 		.task	= task,
6575 		/* .comm      */
6576 		/* .comm_size */
6577 		.event_id  = {
6578 			.header = {
6579 				.type = PERF_RECORD_COMM,
6580 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6581 				/* .size */
6582 			},
6583 			/* .pid */
6584 			/* .tid */
6585 		},
6586 	};
6587 
6588 	perf_event_comm_event(&comm_event);
6589 }
6590 
6591 /*
6592  * mmap tracking
6593  */
6594 
6595 struct perf_mmap_event {
6596 	struct vm_area_struct	*vma;
6597 
6598 	const char		*file_name;
6599 	int			file_size;
6600 	int			maj, min;
6601 	u64			ino;
6602 	u64			ino_generation;
6603 	u32			prot, flags;
6604 
6605 	struct {
6606 		struct perf_event_header	header;
6607 
6608 		u32				pid;
6609 		u32				tid;
6610 		u64				start;
6611 		u64				len;
6612 		u64				pgoff;
6613 	} event_id;
6614 };
6615 
6616 static int perf_event_mmap_match(struct perf_event *event,
6617 				 void *data)
6618 {
6619 	struct perf_mmap_event *mmap_event = data;
6620 	struct vm_area_struct *vma = mmap_event->vma;
6621 	int executable = vma->vm_flags & VM_EXEC;
6622 
6623 	return (!executable && event->attr.mmap_data) ||
6624 	       (executable && (event->attr.mmap || event->attr.mmap2));
6625 }
6626 
6627 static void perf_event_mmap_output(struct perf_event *event,
6628 				   void *data)
6629 {
6630 	struct perf_mmap_event *mmap_event = data;
6631 	struct perf_output_handle handle;
6632 	struct perf_sample_data sample;
6633 	int size = mmap_event->event_id.header.size;
6634 	int ret;
6635 
6636 	if (!perf_event_mmap_match(event, data))
6637 		return;
6638 
6639 	if (event->attr.mmap2) {
6640 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6641 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6642 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6643 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6644 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6645 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6646 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6647 	}
6648 
6649 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6650 	ret = perf_output_begin(&handle, event,
6651 				mmap_event->event_id.header.size);
6652 	if (ret)
6653 		goto out;
6654 
6655 	mmap_event->event_id.pid = perf_event_pid(event, current);
6656 	mmap_event->event_id.tid = perf_event_tid(event, current);
6657 
6658 	perf_output_put(&handle, mmap_event->event_id);
6659 
6660 	if (event->attr.mmap2) {
6661 		perf_output_put(&handle, mmap_event->maj);
6662 		perf_output_put(&handle, mmap_event->min);
6663 		perf_output_put(&handle, mmap_event->ino);
6664 		perf_output_put(&handle, mmap_event->ino_generation);
6665 		perf_output_put(&handle, mmap_event->prot);
6666 		perf_output_put(&handle, mmap_event->flags);
6667 	}
6668 
6669 	__output_copy(&handle, mmap_event->file_name,
6670 				   mmap_event->file_size);
6671 
6672 	perf_event__output_id_sample(event, &handle, &sample);
6673 
6674 	perf_output_end(&handle);
6675 out:
6676 	mmap_event->event_id.header.size = size;
6677 }
6678 
6679 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6680 {
6681 	struct vm_area_struct *vma = mmap_event->vma;
6682 	struct file *file = vma->vm_file;
6683 	int maj = 0, min = 0;
6684 	u64 ino = 0, gen = 0;
6685 	u32 prot = 0, flags = 0;
6686 	unsigned int size;
6687 	char tmp[16];
6688 	char *buf = NULL;
6689 	char *name;
6690 
6691 	if (vma->vm_flags & VM_READ)
6692 		prot |= PROT_READ;
6693 	if (vma->vm_flags & VM_WRITE)
6694 		prot |= PROT_WRITE;
6695 	if (vma->vm_flags & VM_EXEC)
6696 		prot |= PROT_EXEC;
6697 
6698 	if (vma->vm_flags & VM_MAYSHARE)
6699 		flags = MAP_SHARED;
6700 	else
6701 		flags = MAP_PRIVATE;
6702 
6703 	if (vma->vm_flags & VM_DENYWRITE)
6704 		flags |= MAP_DENYWRITE;
6705 	if (vma->vm_flags & VM_MAYEXEC)
6706 		flags |= MAP_EXECUTABLE;
6707 	if (vma->vm_flags & VM_LOCKED)
6708 		flags |= MAP_LOCKED;
6709 	if (vma->vm_flags & VM_HUGETLB)
6710 		flags |= MAP_HUGETLB;
6711 
6712 	if (file) {
6713 		struct inode *inode;
6714 		dev_t dev;
6715 
6716 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6717 		if (!buf) {
6718 			name = "//enomem";
6719 			goto cpy_name;
6720 		}
6721 		/*
6722 		 * d_path() works from the end of the rb backwards, so we
6723 		 * need to add enough zero bytes after the string to handle
6724 		 * the 64bit alignment we do later.
6725 		 */
6726 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6727 		if (IS_ERR(name)) {
6728 			name = "//toolong";
6729 			goto cpy_name;
6730 		}
6731 		inode = file_inode(vma->vm_file);
6732 		dev = inode->i_sb->s_dev;
6733 		ino = inode->i_ino;
6734 		gen = inode->i_generation;
6735 		maj = MAJOR(dev);
6736 		min = MINOR(dev);
6737 
6738 		goto got_name;
6739 	} else {
6740 		if (vma->vm_ops && vma->vm_ops->name) {
6741 			name = (char *) vma->vm_ops->name(vma);
6742 			if (name)
6743 				goto cpy_name;
6744 		}
6745 
6746 		name = (char *)arch_vma_name(vma);
6747 		if (name)
6748 			goto cpy_name;
6749 
6750 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6751 				vma->vm_end >= vma->vm_mm->brk) {
6752 			name = "[heap]";
6753 			goto cpy_name;
6754 		}
6755 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6756 				vma->vm_end >= vma->vm_mm->start_stack) {
6757 			name = "[stack]";
6758 			goto cpy_name;
6759 		}
6760 
6761 		name = "//anon";
6762 		goto cpy_name;
6763 	}
6764 
6765 cpy_name:
6766 	strlcpy(tmp, name, sizeof(tmp));
6767 	name = tmp;
6768 got_name:
6769 	/*
6770 	 * Since our buffer works in 8 byte units we need to align our string
6771 	 * size to a multiple of 8. However, we must guarantee the tail end is
6772 	 * zero'd out to avoid leaking random bits to userspace.
6773 	 */
6774 	size = strlen(name)+1;
6775 	while (!IS_ALIGNED(size, sizeof(u64)))
6776 		name[size++] = '\0';
6777 
6778 	mmap_event->file_name = name;
6779 	mmap_event->file_size = size;
6780 	mmap_event->maj = maj;
6781 	mmap_event->min = min;
6782 	mmap_event->ino = ino;
6783 	mmap_event->ino_generation = gen;
6784 	mmap_event->prot = prot;
6785 	mmap_event->flags = flags;
6786 
6787 	if (!(vma->vm_flags & VM_EXEC))
6788 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6789 
6790 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6791 
6792 	perf_iterate_sb(perf_event_mmap_output,
6793 		       mmap_event,
6794 		       NULL);
6795 
6796 	kfree(buf);
6797 }
6798 
6799 /*
6800  * Check whether inode and address range match filter criteria.
6801  */
6802 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6803 				     struct file *file, unsigned long offset,
6804 				     unsigned long size)
6805 {
6806 	if (filter->inode != file_inode(file))
6807 		return false;
6808 
6809 	if (filter->offset > offset + size)
6810 		return false;
6811 
6812 	if (filter->offset + filter->size < offset)
6813 		return false;
6814 
6815 	return true;
6816 }
6817 
6818 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6819 {
6820 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6821 	struct vm_area_struct *vma = data;
6822 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6823 	struct file *file = vma->vm_file;
6824 	struct perf_addr_filter *filter;
6825 	unsigned int restart = 0, count = 0;
6826 
6827 	if (!has_addr_filter(event))
6828 		return;
6829 
6830 	if (!file)
6831 		return;
6832 
6833 	raw_spin_lock_irqsave(&ifh->lock, flags);
6834 	list_for_each_entry(filter, &ifh->list, entry) {
6835 		if (perf_addr_filter_match(filter, file, off,
6836 					     vma->vm_end - vma->vm_start)) {
6837 			event->addr_filters_offs[count] = vma->vm_start;
6838 			restart++;
6839 		}
6840 
6841 		count++;
6842 	}
6843 
6844 	if (restart)
6845 		event->addr_filters_gen++;
6846 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6847 
6848 	if (restart)
6849 		perf_event_stop(event, 1);
6850 }
6851 
6852 /*
6853  * Adjust all task's events' filters to the new vma
6854  */
6855 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6856 {
6857 	struct perf_event_context *ctx;
6858 	int ctxn;
6859 
6860 	/*
6861 	 * Data tracing isn't supported yet and as such there is no need
6862 	 * to keep track of anything that isn't related to executable code:
6863 	 */
6864 	if (!(vma->vm_flags & VM_EXEC))
6865 		return;
6866 
6867 	rcu_read_lock();
6868 	for_each_task_context_nr(ctxn) {
6869 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6870 		if (!ctx)
6871 			continue;
6872 
6873 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6874 	}
6875 	rcu_read_unlock();
6876 }
6877 
6878 void perf_event_mmap(struct vm_area_struct *vma)
6879 {
6880 	struct perf_mmap_event mmap_event;
6881 
6882 	if (!atomic_read(&nr_mmap_events))
6883 		return;
6884 
6885 	mmap_event = (struct perf_mmap_event){
6886 		.vma	= vma,
6887 		/* .file_name */
6888 		/* .file_size */
6889 		.event_id  = {
6890 			.header = {
6891 				.type = PERF_RECORD_MMAP,
6892 				.misc = PERF_RECORD_MISC_USER,
6893 				/* .size */
6894 			},
6895 			/* .pid */
6896 			/* .tid */
6897 			.start  = vma->vm_start,
6898 			.len    = vma->vm_end - vma->vm_start,
6899 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6900 		},
6901 		/* .maj (attr_mmap2 only) */
6902 		/* .min (attr_mmap2 only) */
6903 		/* .ino (attr_mmap2 only) */
6904 		/* .ino_generation (attr_mmap2 only) */
6905 		/* .prot (attr_mmap2 only) */
6906 		/* .flags (attr_mmap2 only) */
6907 	};
6908 
6909 	perf_addr_filters_adjust(vma);
6910 	perf_event_mmap_event(&mmap_event);
6911 }
6912 
6913 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6914 			  unsigned long size, u64 flags)
6915 {
6916 	struct perf_output_handle handle;
6917 	struct perf_sample_data sample;
6918 	struct perf_aux_event {
6919 		struct perf_event_header	header;
6920 		u64				offset;
6921 		u64				size;
6922 		u64				flags;
6923 	} rec = {
6924 		.header = {
6925 			.type = PERF_RECORD_AUX,
6926 			.misc = 0,
6927 			.size = sizeof(rec),
6928 		},
6929 		.offset		= head,
6930 		.size		= size,
6931 		.flags		= flags,
6932 	};
6933 	int ret;
6934 
6935 	perf_event_header__init_id(&rec.header, &sample, event);
6936 	ret = perf_output_begin(&handle, event, rec.header.size);
6937 
6938 	if (ret)
6939 		return;
6940 
6941 	perf_output_put(&handle, rec);
6942 	perf_event__output_id_sample(event, &handle, &sample);
6943 
6944 	perf_output_end(&handle);
6945 }
6946 
6947 /*
6948  * Lost/dropped samples logging
6949  */
6950 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6951 {
6952 	struct perf_output_handle handle;
6953 	struct perf_sample_data sample;
6954 	int ret;
6955 
6956 	struct {
6957 		struct perf_event_header	header;
6958 		u64				lost;
6959 	} lost_samples_event = {
6960 		.header = {
6961 			.type = PERF_RECORD_LOST_SAMPLES,
6962 			.misc = 0,
6963 			.size = sizeof(lost_samples_event),
6964 		},
6965 		.lost		= lost,
6966 	};
6967 
6968 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6969 
6970 	ret = perf_output_begin(&handle, event,
6971 				lost_samples_event.header.size);
6972 	if (ret)
6973 		return;
6974 
6975 	perf_output_put(&handle, lost_samples_event);
6976 	perf_event__output_id_sample(event, &handle, &sample);
6977 	perf_output_end(&handle);
6978 }
6979 
6980 /*
6981  * context_switch tracking
6982  */
6983 
6984 struct perf_switch_event {
6985 	struct task_struct	*task;
6986 	struct task_struct	*next_prev;
6987 
6988 	struct {
6989 		struct perf_event_header	header;
6990 		u32				next_prev_pid;
6991 		u32				next_prev_tid;
6992 	} event_id;
6993 };
6994 
6995 static int perf_event_switch_match(struct perf_event *event)
6996 {
6997 	return event->attr.context_switch;
6998 }
6999 
7000 static void perf_event_switch_output(struct perf_event *event, void *data)
7001 {
7002 	struct perf_switch_event *se = data;
7003 	struct perf_output_handle handle;
7004 	struct perf_sample_data sample;
7005 	int ret;
7006 
7007 	if (!perf_event_switch_match(event))
7008 		return;
7009 
7010 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7011 	if (event->ctx->task) {
7012 		se->event_id.header.type = PERF_RECORD_SWITCH;
7013 		se->event_id.header.size = sizeof(se->event_id.header);
7014 	} else {
7015 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7016 		se->event_id.header.size = sizeof(se->event_id);
7017 		se->event_id.next_prev_pid =
7018 					perf_event_pid(event, se->next_prev);
7019 		se->event_id.next_prev_tid =
7020 					perf_event_tid(event, se->next_prev);
7021 	}
7022 
7023 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7024 
7025 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7026 	if (ret)
7027 		return;
7028 
7029 	if (event->ctx->task)
7030 		perf_output_put(&handle, se->event_id.header);
7031 	else
7032 		perf_output_put(&handle, se->event_id);
7033 
7034 	perf_event__output_id_sample(event, &handle, &sample);
7035 
7036 	perf_output_end(&handle);
7037 }
7038 
7039 static void perf_event_switch(struct task_struct *task,
7040 			      struct task_struct *next_prev, bool sched_in)
7041 {
7042 	struct perf_switch_event switch_event;
7043 
7044 	/* N.B. caller checks nr_switch_events != 0 */
7045 
7046 	switch_event = (struct perf_switch_event){
7047 		.task		= task,
7048 		.next_prev	= next_prev,
7049 		.event_id	= {
7050 			.header = {
7051 				/* .type */
7052 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7053 				/* .size */
7054 			},
7055 			/* .next_prev_pid */
7056 			/* .next_prev_tid */
7057 		},
7058 	};
7059 
7060 	perf_iterate_sb(perf_event_switch_output,
7061 		       &switch_event,
7062 		       NULL);
7063 }
7064 
7065 /*
7066  * IRQ throttle logging
7067  */
7068 
7069 static void perf_log_throttle(struct perf_event *event, int enable)
7070 {
7071 	struct perf_output_handle handle;
7072 	struct perf_sample_data sample;
7073 	int ret;
7074 
7075 	struct {
7076 		struct perf_event_header	header;
7077 		u64				time;
7078 		u64				id;
7079 		u64				stream_id;
7080 	} throttle_event = {
7081 		.header = {
7082 			.type = PERF_RECORD_THROTTLE,
7083 			.misc = 0,
7084 			.size = sizeof(throttle_event),
7085 		},
7086 		.time		= perf_event_clock(event),
7087 		.id		= primary_event_id(event),
7088 		.stream_id	= event->id,
7089 	};
7090 
7091 	if (enable)
7092 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7093 
7094 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7095 
7096 	ret = perf_output_begin(&handle, event,
7097 				throttle_event.header.size);
7098 	if (ret)
7099 		return;
7100 
7101 	perf_output_put(&handle, throttle_event);
7102 	perf_event__output_id_sample(event, &handle, &sample);
7103 	perf_output_end(&handle);
7104 }
7105 
7106 static void perf_log_itrace_start(struct perf_event *event)
7107 {
7108 	struct perf_output_handle handle;
7109 	struct perf_sample_data sample;
7110 	struct perf_aux_event {
7111 		struct perf_event_header        header;
7112 		u32				pid;
7113 		u32				tid;
7114 	} rec;
7115 	int ret;
7116 
7117 	if (event->parent)
7118 		event = event->parent;
7119 
7120 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7121 	    event->hw.itrace_started)
7122 		return;
7123 
7124 	rec.header.type	= PERF_RECORD_ITRACE_START;
7125 	rec.header.misc	= 0;
7126 	rec.header.size	= sizeof(rec);
7127 	rec.pid	= perf_event_pid(event, current);
7128 	rec.tid	= perf_event_tid(event, current);
7129 
7130 	perf_event_header__init_id(&rec.header, &sample, event);
7131 	ret = perf_output_begin(&handle, event, rec.header.size);
7132 
7133 	if (ret)
7134 		return;
7135 
7136 	perf_output_put(&handle, rec);
7137 	perf_event__output_id_sample(event, &handle, &sample);
7138 
7139 	perf_output_end(&handle);
7140 }
7141 
7142 static int
7143 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7144 {
7145 	struct hw_perf_event *hwc = &event->hw;
7146 	int ret = 0;
7147 	u64 seq;
7148 
7149 	seq = __this_cpu_read(perf_throttled_seq);
7150 	if (seq != hwc->interrupts_seq) {
7151 		hwc->interrupts_seq = seq;
7152 		hwc->interrupts = 1;
7153 	} else {
7154 		hwc->interrupts++;
7155 		if (unlikely(throttle
7156 			     && hwc->interrupts >= max_samples_per_tick)) {
7157 			__this_cpu_inc(perf_throttled_count);
7158 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7159 			hwc->interrupts = MAX_INTERRUPTS;
7160 			perf_log_throttle(event, 0);
7161 			ret = 1;
7162 		}
7163 	}
7164 
7165 	if (event->attr.freq) {
7166 		u64 now = perf_clock();
7167 		s64 delta = now - hwc->freq_time_stamp;
7168 
7169 		hwc->freq_time_stamp = now;
7170 
7171 		if (delta > 0 && delta < 2*TICK_NSEC)
7172 			perf_adjust_period(event, delta, hwc->last_period, true);
7173 	}
7174 
7175 	return ret;
7176 }
7177 
7178 int perf_event_account_interrupt(struct perf_event *event)
7179 {
7180 	return __perf_event_account_interrupt(event, 1);
7181 }
7182 
7183 /*
7184  * Generic event overflow handling, sampling.
7185  */
7186 
7187 static int __perf_event_overflow(struct perf_event *event,
7188 				   int throttle, struct perf_sample_data *data,
7189 				   struct pt_regs *regs)
7190 {
7191 	int events = atomic_read(&event->event_limit);
7192 	int ret = 0;
7193 
7194 	/*
7195 	 * Non-sampling counters might still use the PMI to fold short
7196 	 * hardware counters, ignore those.
7197 	 */
7198 	if (unlikely(!is_sampling_event(event)))
7199 		return 0;
7200 
7201 	ret = __perf_event_account_interrupt(event, throttle);
7202 
7203 	/*
7204 	 * XXX event_limit might not quite work as expected on inherited
7205 	 * events
7206 	 */
7207 
7208 	event->pending_kill = POLL_IN;
7209 	if (events && atomic_dec_and_test(&event->event_limit)) {
7210 		ret = 1;
7211 		event->pending_kill = POLL_HUP;
7212 
7213 		perf_event_disable_inatomic(event);
7214 	}
7215 
7216 	READ_ONCE(event->overflow_handler)(event, data, regs);
7217 
7218 	if (*perf_event_fasync(event) && event->pending_kill) {
7219 		event->pending_wakeup = 1;
7220 		irq_work_queue(&event->pending);
7221 	}
7222 
7223 	return ret;
7224 }
7225 
7226 int perf_event_overflow(struct perf_event *event,
7227 			  struct perf_sample_data *data,
7228 			  struct pt_regs *regs)
7229 {
7230 	return __perf_event_overflow(event, 1, data, regs);
7231 }
7232 
7233 /*
7234  * Generic software event infrastructure
7235  */
7236 
7237 struct swevent_htable {
7238 	struct swevent_hlist		*swevent_hlist;
7239 	struct mutex			hlist_mutex;
7240 	int				hlist_refcount;
7241 
7242 	/* Recursion avoidance in each contexts */
7243 	int				recursion[PERF_NR_CONTEXTS];
7244 };
7245 
7246 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7247 
7248 /*
7249  * We directly increment event->count and keep a second value in
7250  * event->hw.period_left to count intervals. This period event
7251  * is kept in the range [-sample_period, 0] so that we can use the
7252  * sign as trigger.
7253  */
7254 
7255 u64 perf_swevent_set_period(struct perf_event *event)
7256 {
7257 	struct hw_perf_event *hwc = &event->hw;
7258 	u64 period = hwc->last_period;
7259 	u64 nr, offset;
7260 	s64 old, val;
7261 
7262 	hwc->last_period = hwc->sample_period;
7263 
7264 again:
7265 	old = val = local64_read(&hwc->period_left);
7266 	if (val < 0)
7267 		return 0;
7268 
7269 	nr = div64_u64(period + val, period);
7270 	offset = nr * period;
7271 	val -= offset;
7272 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7273 		goto again;
7274 
7275 	return nr;
7276 }
7277 
7278 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7279 				    struct perf_sample_data *data,
7280 				    struct pt_regs *regs)
7281 {
7282 	struct hw_perf_event *hwc = &event->hw;
7283 	int throttle = 0;
7284 
7285 	if (!overflow)
7286 		overflow = perf_swevent_set_period(event);
7287 
7288 	if (hwc->interrupts == MAX_INTERRUPTS)
7289 		return;
7290 
7291 	for (; overflow; overflow--) {
7292 		if (__perf_event_overflow(event, throttle,
7293 					    data, regs)) {
7294 			/*
7295 			 * We inhibit the overflow from happening when
7296 			 * hwc->interrupts == MAX_INTERRUPTS.
7297 			 */
7298 			break;
7299 		}
7300 		throttle = 1;
7301 	}
7302 }
7303 
7304 static void perf_swevent_event(struct perf_event *event, u64 nr,
7305 			       struct perf_sample_data *data,
7306 			       struct pt_regs *regs)
7307 {
7308 	struct hw_perf_event *hwc = &event->hw;
7309 
7310 	local64_add(nr, &event->count);
7311 
7312 	if (!regs)
7313 		return;
7314 
7315 	if (!is_sampling_event(event))
7316 		return;
7317 
7318 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7319 		data->period = nr;
7320 		return perf_swevent_overflow(event, 1, data, regs);
7321 	} else
7322 		data->period = event->hw.last_period;
7323 
7324 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7325 		return perf_swevent_overflow(event, 1, data, regs);
7326 
7327 	if (local64_add_negative(nr, &hwc->period_left))
7328 		return;
7329 
7330 	perf_swevent_overflow(event, 0, data, regs);
7331 }
7332 
7333 static int perf_exclude_event(struct perf_event *event,
7334 			      struct pt_regs *regs)
7335 {
7336 	if (event->hw.state & PERF_HES_STOPPED)
7337 		return 1;
7338 
7339 	if (regs) {
7340 		if (event->attr.exclude_user && user_mode(regs))
7341 			return 1;
7342 
7343 		if (event->attr.exclude_kernel && !user_mode(regs))
7344 			return 1;
7345 	}
7346 
7347 	return 0;
7348 }
7349 
7350 static int perf_swevent_match(struct perf_event *event,
7351 				enum perf_type_id type,
7352 				u32 event_id,
7353 				struct perf_sample_data *data,
7354 				struct pt_regs *regs)
7355 {
7356 	if (event->attr.type != type)
7357 		return 0;
7358 
7359 	if (event->attr.config != event_id)
7360 		return 0;
7361 
7362 	if (perf_exclude_event(event, regs))
7363 		return 0;
7364 
7365 	return 1;
7366 }
7367 
7368 static inline u64 swevent_hash(u64 type, u32 event_id)
7369 {
7370 	u64 val = event_id | (type << 32);
7371 
7372 	return hash_64(val, SWEVENT_HLIST_BITS);
7373 }
7374 
7375 static inline struct hlist_head *
7376 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7377 {
7378 	u64 hash = swevent_hash(type, event_id);
7379 
7380 	return &hlist->heads[hash];
7381 }
7382 
7383 /* For the read side: events when they trigger */
7384 static inline struct hlist_head *
7385 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7386 {
7387 	struct swevent_hlist *hlist;
7388 
7389 	hlist = rcu_dereference(swhash->swevent_hlist);
7390 	if (!hlist)
7391 		return NULL;
7392 
7393 	return __find_swevent_head(hlist, type, event_id);
7394 }
7395 
7396 /* For the event head insertion and removal in the hlist */
7397 static inline struct hlist_head *
7398 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7399 {
7400 	struct swevent_hlist *hlist;
7401 	u32 event_id = event->attr.config;
7402 	u64 type = event->attr.type;
7403 
7404 	/*
7405 	 * Event scheduling is always serialized against hlist allocation
7406 	 * and release. Which makes the protected version suitable here.
7407 	 * The context lock guarantees that.
7408 	 */
7409 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7410 					  lockdep_is_held(&event->ctx->lock));
7411 	if (!hlist)
7412 		return NULL;
7413 
7414 	return __find_swevent_head(hlist, type, event_id);
7415 }
7416 
7417 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7418 				    u64 nr,
7419 				    struct perf_sample_data *data,
7420 				    struct pt_regs *regs)
7421 {
7422 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7423 	struct perf_event *event;
7424 	struct hlist_head *head;
7425 
7426 	rcu_read_lock();
7427 	head = find_swevent_head_rcu(swhash, type, event_id);
7428 	if (!head)
7429 		goto end;
7430 
7431 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7432 		if (perf_swevent_match(event, type, event_id, data, regs))
7433 			perf_swevent_event(event, nr, data, regs);
7434 	}
7435 end:
7436 	rcu_read_unlock();
7437 }
7438 
7439 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7440 
7441 int perf_swevent_get_recursion_context(void)
7442 {
7443 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7444 
7445 	return get_recursion_context(swhash->recursion);
7446 }
7447 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7448 
7449 void perf_swevent_put_recursion_context(int rctx)
7450 {
7451 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7452 
7453 	put_recursion_context(swhash->recursion, rctx);
7454 }
7455 
7456 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7457 {
7458 	struct perf_sample_data data;
7459 
7460 	if (WARN_ON_ONCE(!regs))
7461 		return;
7462 
7463 	perf_sample_data_init(&data, addr, 0);
7464 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7465 }
7466 
7467 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7468 {
7469 	int rctx;
7470 
7471 	preempt_disable_notrace();
7472 	rctx = perf_swevent_get_recursion_context();
7473 	if (unlikely(rctx < 0))
7474 		goto fail;
7475 
7476 	___perf_sw_event(event_id, nr, regs, addr);
7477 
7478 	perf_swevent_put_recursion_context(rctx);
7479 fail:
7480 	preempt_enable_notrace();
7481 }
7482 
7483 static void perf_swevent_read(struct perf_event *event)
7484 {
7485 }
7486 
7487 static int perf_swevent_add(struct perf_event *event, int flags)
7488 {
7489 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7490 	struct hw_perf_event *hwc = &event->hw;
7491 	struct hlist_head *head;
7492 
7493 	if (is_sampling_event(event)) {
7494 		hwc->last_period = hwc->sample_period;
7495 		perf_swevent_set_period(event);
7496 	}
7497 
7498 	hwc->state = !(flags & PERF_EF_START);
7499 
7500 	head = find_swevent_head(swhash, event);
7501 	if (WARN_ON_ONCE(!head))
7502 		return -EINVAL;
7503 
7504 	hlist_add_head_rcu(&event->hlist_entry, head);
7505 	perf_event_update_userpage(event);
7506 
7507 	return 0;
7508 }
7509 
7510 static void perf_swevent_del(struct perf_event *event, int flags)
7511 {
7512 	hlist_del_rcu(&event->hlist_entry);
7513 }
7514 
7515 static void perf_swevent_start(struct perf_event *event, int flags)
7516 {
7517 	event->hw.state = 0;
7518 }
7519 
7520 static void perf_swevent_stop(struct perf_event *event, int flags)
7521 {
7522 	event->hw.state = PERF_HES_STOPPED;
7523 }
7524 
7525 /* Deref the hlist from the update side */
7526 static inline struct swevent_hlist *
7527 swevent_hlist_deref(struct swevent_htable *swhash)
7528 {
7529 	return rcu_dereference_protected(swhash->swevent_hlist,
7530 					 lockdep_is_held(&swhash->hlist_mutex));
7531 }
7532 
7533 static void swevent_hlist_release(struct swevent_htable *swhash)
7534 {
7535 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7536 
7537 	if (!hlist)
7538 		return;
7539 
7540 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7541 	kfree_rcu(hlist, rcu_head);
7542 }
7543 
7544 static void swevent_hlist_put_cpu(int cpu)
7545 {
7546 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7547 
7548 	mutex_lock(&swhash->hlist_mutex);
7549 
7550 	if (!--swhash->hlist_refcount)
7551 		swevent_hlist_release(swhash);
7552 
7553 	mutex_unlock(&swhash->hlist_mutex);
7554 }
7555 
7556 static void swevent_hlist_put(void)
7557 {
7558 	int cpu;
7559 
7560 	for_each_possible_cpu(cpu)
7561 		swevent_hlist_put_cpu(cpu);
7562 }
7563 
7564 static int swevent_hlist_get_cpu(int cpu)
7565 {
7566 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7567 	int err = 0;
7568 
7569 	mutex_lock(&swhash->hlist_mutex);
7570 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7571 		struct swevent_hlist *hlist;
7572 
7573 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7574 		if (!hlist) {
7575 			err = -ENOMEM;
7576 			goto exit;
7577 		}
7578 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7579 	}
7580 	swhash->hlist_refcount++;
7581 exit:
7582 	mutex_unlock(&swhash->hlist_mutex);
7583 
7584 	return err;
7585 }
7586 
7587 static int swevent_hlist_get(void)
7588 {
7589 	int err, cpu, failed_cpu;
7590 
7591 	get_online_cpus();
7592 	for_each_possible_cpu(cpu) {
7593 		err = swevent_hlist_get_cpu(cpu);
7594 		if (err) {
7595 			failed_cpu = cpu;
7596 			goto fail;
7597 		}
7598 	}
7599 	put_online_cpus();
7600 
7601 	return 0;
7602 fail:
7603 	for_each_possible_cpu(cpu) {
7604 		if (cpu == failed_cpu)
7605 			break;
7606 		swevent_hlist_put_cpu(cpu);
7607 	}
7608 
7609 	put_online_cpus();
7610 	return err;
7611 }
7612 
7613 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7614 
7615 static void sw_perf_event_destroy(struct perf_event *event)
7616 {
7617 	u64 event_id = event->attr.config;
7618 
7619 	WARN_ON(event->parent);
7620 
7621 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7622 	swevent_hlist_put();
7623 }
7624 
7625 static int perf_swevent_init(struct perf_event *event)
7626 {
7627 	u64 event_id = event->attr.config;
7628 
7629 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7630 		return -ENOENT;
7631 
7632 	/*
7633 	 * no branch sampling for software events
7634 	 */
7635 	if (has_branch_stack(event))
7636 		return -EOPNOTSUPP;
7637 
7638 	switch (event_id) {
7639 	case PERF_COUNT_SW_CPU_CLOCK:
7640 	case PERF_COUNT_SW_TASK_CLOCK:
7641 		return -ENOENT;
7642 
7643 	default:
7644 		break;
7645 	}
7646 
7647 	if (event_id >= PERF_COUNT_SW_MAX)
7648 		return -ENOENT;
7649 
7650 	if (!event->parent) {
7651 		int err;
7652 
7653 		err = swevent_hlist_get();
7654 		if (err)
7655 			return err;
7656 
7657 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7658 		event->destroy = sw_perf_event_destroy;
7659 	}
7660 
7661 	return 0;
7662 }
7663 
7664 static struct pmu perf_swevent = {
7665 	.task_ctx_nr	= perf_sw_context,
7666 
7667 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7668 
7669 	.event_init	= perf_swevent_init,
7670 	.add		= perf_swevent_add,
7671 	.del		= perf_swevent_del,
7672 	.start		= perf_swevent_start,
7673 	.stop		= perf_swevent_stop,
7674 	.read		= perf_swevent_read,
7675 };
7676 
7677 #ifdef CONFIG_EVENT_TRACING
7678 
7679 static int perf_tp_filter_match(struct perf_event *event,
7680 				struct perf_sample_data *data)
7681 {
7682 	void *record = data->raw->frag.data;
7683 
7684 	/* only top level events have filters set */
7685 	if (event->parent)
7686 		event = event->parent;
7687 
7688 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7689 		return 1;
7690 	return 0;
7691 }
7692 
7693 static int perf_tp_event_match(struct perf_event *event,
7694 				struct perf_sample_data *data,
7695 				struct pt_regs *regs)
7696 {
7697 	if (event->hw.state & PERF_HES_STOPPED)
7698 		return 0;
7699 	/*
7700 	 * All tracepoints are from kernel-space.
7701 	 */
7702 	if (event->attr.exclude_kernel)
7703 		return 0;
7704 
7705 	if (!perf_tp_filter_match(event, data))
7706 		return 0;
7707 
7708 	return 1;
7709 }
7710 
7711 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7712 			       struct trace_event_call *call, u64 count,
7713 			       struct pt_regs *regs, struct hlist_head *head,
7714 			       struct task_struct *task)
7715 {
7716 	struct bpf_prog *prog = call->prog;
7717 
7718 	if (prog) {
7719 		*(struct pt_regs **)raw_data = regs;
7720 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7721 			perf_swevent_put_recursion_context(rctx);
7722 			return;
7723 		}
7724 	}
7725 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7726 		      rctx, task);
7727 }
7728 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7729 
7730 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7731 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7732 		   struct task_struct *task)
7733 {
7734 	struct perf_sample_data data;
7735 	struct perf_event *event;
7736 
7737 	struct perf_raw_record raw = {
7738 		.frag = {
7739 			.size = entry_size,
7740 			.data = record,
7741 		},
7742 	};
7743 
7744 	perf_sample_data_init(&data, 0, 0);
7745 	data.raw = &raw;
7746 
7747 	perf_trace_buf_update(record, event_type);
7748 
7749 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7750 		if (perf_tp_event_match(event, &data, regs))
7751 			perf_swevent_event(event, count, &data, regs);
7752 	}
7753 
7754 	/*
7755 	 * If we got specified a target task, also iterate its context and
7756 	 * deliver this event there too.
7757 	 */
7758 	if (task && task != current) {
7759 		struct perf_event_context *ctx;
7760 		struct trace_entry *entry = record;
7761 
7762 		rcu_read_lock();
7763 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7764 		if (!ctx)
7765 			goto unlock;
7766 
7767 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7768 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7769 				continue;
7770 			if (event->attr.config != entry->type)
7771 				continue;
7772 			if (perf_tp_event_match(event, &data, regs))
7773 				perf_swevent_event(event, count, &data, regs);
7774 		}
7775 unlock:
7776 		rcu_read_unlock();
7777 	}
7778 
7779 	perf_swevent_put_recursion_context(rctx);
7780 }
7781 EXPORT_SYMBOL_GPL(perf_tp_event);
7782 
7783 static void tp_perf_event_destroy(struct perf_event *event)
7784 {
7785 	perf_trace_destroy(event);
7786 }
7787 
7788 static int perf_tp_event_init(struct perf_event *event)
7789 {
7790 	int err;
7791 
7792 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7793 		return -ENOENT;
7794 
7795 	/*
7796 	 * no branch sampling for tracepoint events
7797 	 */
7798 	if (has_branch_stack(event))
7799 		return -EOPNOTSUPP;
7800 
7801 	err = perf_trace_init(event);
7802 	if (err)
7803 		return err;
7804 
7805 	event->destroy = tp_perf_event_destroy;
7806 
7807 	return 0;
7808 }
7809 
7810 static struct pmu perf_tracepoint = {
7811 	.task_ctx_nr	= perf_sw_context,
7812 
7813 	.event_init	= perf_tp_event_init,
7814 	.add		= perf_trace_add,
7815 	.del		= perf_trace_del,
7816 	.start		= perf_swevent_start,
7817 	.stop		= perf_swevent_stop,
7818 	.read		= perf_swevent_read,
7819 };
7820 
7821 static inline void perf_tp_register(void)
7822 {
7823 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7824 }
7825 
7826 static void perf_event_free_filter(struct perf_event *event)
7827 {
7828 	ftrace_profile_free_filter(event);
7829 }
7830 
7831 #ifdef CONFIG_BPF_SYSCALL
7832 static void bpf_overflow_handler(struct perf_event *event,
7833 				 struct perf_sample_data *data,
7834 				 struct pt_regs *regs)
7835 {
7836 	struct bpf_perf_event_data_kern ctx = {
7837 		.data = data,
7838 		.regs = regs,
7839 	};
7840 	int ret = 0;
7841 
7842 	preempt_disable();
7843 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7844 		goto out;
7845 	rcu_read_lock();
7846 	ret = BPF_PROG_RUN(event->prog, &ctx);
7847 	rcu_read_unlock();
7848 out:
7849 	__this_cpu_dec(bpf_prog_active);
7850 	preempt_enable();
7851 	if (!ret)
7852 		return;
7853 
7854 	event->orig_overflow_handler(event, data, regs);
7855 }
7856 
7857 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7858 {
7859 	struct bpf_prog *prog;
7860 
7861 	if (event->overflow_handler_context)
7862 		/* hw breakpoint or kernel counter */
7863 		return -EINVAL;
7864 
7865 	if (event->prog)
7866 		return -EEXIST;
7867 
7868 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7869 	if (IS_ERR(prog))
7870 		return PTR_ERR(prog);
7871 
7872 	event->prog = prog;
7873 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7874 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7875 	return 0;
7876 }
7877 
7878 static void perf_event_free_bpf_handler(struct perf_event *event)
7879 {
7880 	struct bpf_prog *prog = event->prog;
7881 
7882 	if (!prog)
7883 		return;
7884 
7885 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7886 	event->prog = NULL;
7887 	bpf_prog_put(prog);
7888 }
7889 #else
7890 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7891 {
7892 	return -EOPNOTSUPP;
7893 }
7894 static void perf_event_free_bpf_handler(struct perf_event *event)
7895 {
7896 }
7897 #endif
7898 
7899 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7900 {
7901 	bool is_kprobe, is_tracepoint;
7902 	struct bpf_prog *prog;
7903 
7904 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7905 	    event->attr.type == PERF_TYPE_SOFTWARE)
7906 		return perf_event_set_bpf_handler(event, prog_fd);
7907 
7908 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7909 		return -EINVAL;
7910 
7911 	if (event->tp_event->prog)
7912 		return -EEXIST;
7913 
7914 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7915 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7916 	if (!is_kprobe && !is_tracepoint)
7917 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7918 		return -EINVAL;
7919 
7920 	prog = bpf_prog_get(prog_fd);
7921 	if (IS_ERR(prog))
7922 		return PTR_ERR(prog);
7923 
7924 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7925 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7926 		/* valid fd, but invalid bpf program type */
7927 		bpf_prog_put(prog);
7928 		return -EINVAL;
7929 	}
7930 
7931 	if (is_tracepoint) {
7932 		int off = trace_event_get_offsets(event->tp_event);
7933 
7934 		if (prog->aux->max_ctx_offset > off) {
7935 			bpf_prog_put(prog);
7936 			return -EACCES;
7937 		}
7938 	}
7939 	event->tp_event->prog = prog;
7940 
7941 	return 0;
7942 }
7943 
7944 static void perf_event_free_bpf_prog(struct perf_event *event)
7945 {
7946 	struct bpf_prog *prog;
7947 
7948 	perf_event_free_bpf_handler(event);
7949 
7950 	if (!event->tp_event)
7951 		return;
7952 
7953 	prog = event->tp_event->prog;
7954 	if (prog) {
7955 		event->tp_event->prog = NULL;
7956 		bpf_prog_put(prog);
7957 	}
7958 }
7959 
7960 #else
7961 
7962 static inline void perf_tp_register(void)
7963 {
7964 }
7965 
7966 static void perf_event_free_filter(struct perf_event *event)
7967 {
7968 }
7969 
7970 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7971 {
7972 	return -ENOENT;
7973 }
7974 
7975 static void perf_event_free_bpf_prog(struct perf_event *event)
7976 {
7977 }
7978 #endif /* CONFIG_EVENT_TRACING */
7979 
7980 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7981 void perf_bp_event(struct perf_event *bp, void *data)
7982 {
7983 	struct perf_sample_data sample;
7984 	struct pt_regs *regs = data;
7985 
7986 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7987 
7988 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7989 		perf_swevent_event(bp, 1, &sample, regs);
7990 }
7991 #endif
7992 
7993 /*
7994  * Allocate a new address filter
7995  */
7996 static struct perf_addr_filter *
7997 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7998 {
7999 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8000 	struct perf_addr_filter *filter;
8001 
8002 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8003 	if (!filter)
8004 		return NULL;
8005 
8006 	INIT_LIST_HEAD(&filter->entry);
8007 	list_add_tail(&filter->entry, filters);
8008 
8009 	return filter;
8010 }
8011 
8012 static void free_filters_list(struct list_head *filters)
8013 {
8014 	struct perf_addr_filter *filter, *iter;
8015 
8016 	list_for_each_entry_safe(filter, iter, filters, entry) {
8017 		if (filter->inode)
8018 			iput(filter->inode);
8019 		list_del(&filter->entry);
8020 		kfree(filter);
8021 	}
8022 }
8023 
8024 /*
8025  * Free existing address filters and optionally install new ones
8026  */
8027 static void perf_addr_filters_splice(struct perf_event *event,
8028 				     struct list_head *head)
8029 {
8030 	unsigned long flags;
8031 	LIST_HEAD(list);
8032 
8033 	if (!has_addr_filter(event))
8034 		return;
8035 
8036 	/* don't bother with children, they don't have their own filters */
8037 	if (event->parent)
8038 		return;
8039 
8040 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8041 
8042 	list_splice_init(&event->addr_filters.list, &list);
8043 	if (head)
8044 		list_splice(head, &event->addr_filters.list);
8045 
8046 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8047 
8048 	free_filters_list(&list);
8049 }
8050 
8051 /*
8052  * Scan through mm's vmas and see if one of them matches the
8053  * @filter; if so, adjust filter's address range.
8054  * Called with mm::mmap_sem down for reading.
8055  */
8056 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8057 					    struct mm_struct *mm)
8058 {
8059 	struct vm_area_struct *vma;
8060 
8061 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8062 		struct file *file = vma->vm_file;
8063 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8064 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8065 
8066 		if (!file)
8067 			continue;
8068 
8069 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8070 			continue;
8071 
8072 		return vma->vm_start;
8073 	}
8074 
8075 	return 0;
8076 }
8077 
8078 /*
8079  * Update event's address range filters based on the
8080  * task's existing mappings, if any.
8081  */
8082 static void perf_event_addr_filters_apply(struct perf_event *event)
8083 {
8084 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8085 	struct task_struct *task = READ_ONCE(event->ctx->task);
8086 	struct perf_addr_filter *filter;
8087 	struct mm_struct *mm = NULL;
8088 	unsigned int count = 0;
8089 	unsigned long flags;
8090 
8091 	/*
8092 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8093 	 * will stop on the parent's child_mutex that our caller is also holding
8094 	 */
8095 	if (task == TASK_TOMBSTONE)
8096 		return;
8097 
8098 	if (!ifh->nr_file_filters)
8099 		return;
8100 
8101 	mm = get_task_mm(event->ctx->task);
8102 	if (!mm)
8103 		goto restart;
8104 
8105 	down_read(&mm->mmap_sem);
8106 
8107 	raw_spin_lock_irqsave(&ifh->lock, flags);
8108 	list_for_each_entry(filter, &ifh->list, entry) {
8109 		event->addr_filters_offs[count] = 0;
8110 
8111 		/*
8112 		 * Adjust base offset if the filter is associated to a binary
8113 		 * that needs to be mapped:
8114 		 */
8115 		if (filter->inode)
8116 			event->addr_filters_offs[count] =
8117 				perf_addr_filter_apply(filter, mm);
8118 
8119 		count++;
8120 	}
8121 
8122 	event->addr_filters_gen++;
8123 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8124 
8125 	up_read(&mm->mmap_sem);
8126 
8127 	mmput(mm);
8128 
8129 restart:
8130 	perf_event_stop(event, 1);
8131 }
8132 
8133 /*
8134  * Address range filtering: limiting the data to certain
8135  * instruction address ranges. Filters are ioctl()ed to us from
8136  * userspace as ascii strings.
8137  *
8138  * Filter string format:
8139  *
8140  * ACTION RANGE_SPEC
8141  * where ACTION is one of the
8142  *  * "filter": limit the trace to this region
8143  *  * "start": start tracing from this address
8144  *  * "stop": stop tracing at this address/region;
8145  * RANGE_SPEC is
8146  *  * for kernel addresses: <start address>[/<size>]
8147  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8148  *
8149  * if <size> is not specified, the range is treated as a single address.
8150  */
8151 enum {
8152 	IF_ACT_NONE = -1,
8153 	IF_ACT_FILTER,
8154 	IF_ACT_START,
8155 	IF_ACT_STOP,
8156 	IF_SRC_FILE,
8157 	IF_SRC_KERNEL,
8158 	IF_SRC_FILEADDR,
8159 	IF_SRC_KERNELADDR,
8160 };
8161 
8162 enum {
8163 	IF_STATE_ACTION = 0,
8164 	IF_STATE_SOURCE,
8165 	IF_STATE_END,
8166 };
8167 
8168 static const match_table_t if_tokens = {
8169 	{ IF_ACT_FILTER,	"filter" },
8170 	{ IF_ACT_START,		"start" },
8171 	{ IF_ACT_STOP,		"stop" },
8172 	{ IF_SRC_FILE,		"%u/%u@%s" },
8173 	{ IF_SRC_KERNEL,	"%u/%u" },
8174 	{ IF_SRC_FILEADDR,	"%u@%s" },
8175 	{ IF_SRC_KERNELADDR,	"%u" },
8176 	{ IF_ACT_NONE,		NULL },
8177 };
8178 
8179 /*
8180  * Address filter string parser
8181  */
8182 static int
8183 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8184 			     struct list_head *filters)
8185 {
8186 	struct perf_addr_filter *filter = NULL;
8187 	char *start, *orig, *filename = NULL;
8188 	struct path path;
8189 	substring_t args[MAX_OPT_ARGS];
8190 	int state = IF_STATE_ACTION, token;
8191 	unsigned int kernel = 0;
8192 	int ret = -EINVAL;
8193 
8194 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8195 	if (!fstr)
8196 		return -ENOMEM;
8197 
8198 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8199 		ret = -EINVAL;
8200 
8201 		if (!*start)
8202 			continue;
8203 
8204 		/* filter definition begins */
8205 		if (state == IF_STATE_ACTION) {
8206 			filter = perf_addr_filter_new(event, filters);
8207 			if (!filter)
8208 				goto fail;
8209 		}
8210 
8211 		token = match_token(start, if_tokens, args);
8212 		switch (token) {
8213 		case IF_ACT_FILTER:
8214 		case IF_ACT_START:
8215 			filter->filter = 1;
8216 
8217 		case IF_ACT_STOP:
8218 			if (state != IF_STATE_ACTION)
8219 				goto fail;
8220 
8221 			state = IF_STATE_SOURCE;
8222 			break;
8223 
8224 		case IF_SRC_KERNELADDR:
8225 		case IF_SRC_KERNEL:
8226 			kernel = 1;
8227 
8228 		case IF_SRC_FILEADDR:
8229 		case IF_SRC_FILE:
8230 			if (state != IF_STATE_SOURCE)
8231 				goto fail;
8232 
8233 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8234 				filter->range = 1;
8235 
8236 			*args[0].to = 0;
8237 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8238 			if (ret)
8239 				goto fail;
8240 
8241 			if (filter->range) {
8242 				*args[1].to = 0;
8243 				ret = kstrtoul(args[1].from, 0, &filter->size);
8244 				if (ret)
8245 					goto fail;
8246 			}
8247 
8248 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8249 				int fpos = filter->range ? 2 : 1;
8250 
8251 				filename = match_strdup(&args[fpos]);
8252 				if (!filename) {
8253 					ret = -ENOMEM;
8254 					goto fail;
8255 				}
8256 			}
8257 
8258 			state = IF_STATE_END;
8259 			break;
8260 
8261 		default:
8262 			goto fail;
8263 		}
8264 
8265 		/*
8266 		 * Filter definition is fully parsed, validate and install it.
8267 		 * Make sure that it doesn't contradict itself or the event's
8268 		 * attribute.
8269 		 */
8270 		if (state == IF_STATE_END) {
8271 			ret = -EINVAL;
8272 			if (kernel && event->attr.exclude_kernel)
8273 				goto fail;
8274 
8275 			if (!kernel) {
8276 				if (!filename)
8277 					goto fail;
8278 
8279 				/*
8280 				 * For now, we only support file-based filters
8281 				 * in per-task events; doing so for CPU-wide
8282 				 * events requires additional context switching
8283 				 * trickery, since same object code will be
8284 				 * mapped at different virtual addresses in
8285 				 * different processes.
8286 				 */
8287 				ret = -EOPNOTSUPP;
8288 				if (!event->ctx->task)
8289 					goto fail_free_name;
8290 
8291 				/* look up the path and grab its inode */
8292 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8293 				if (ret)
8294 					goto fail_free_name;
8295 
8296 				filter->inode = igrab(d_inode(path.dentry));
8297 				path_put(&path);
8298 				kfree(filename);
8299 				filename = NULL;
8300 
8301 				ret = -EINVAL;
8302 				if (!filter->inode ||
8303 				    !S_ISREG(filter->inode->i_mode))
8304 					/* free_filters_list() will iput() */
8305 					goto fail;
8306 
8307 				event->addr_filters.nr_file_filters++;
8308 			}
8309 
8310 			/* ready to consume more filters */
8311 			state = IF_STATE_ACTION;
8312 			filter = NULL;
8313 		}
8314 	}
8315 
8316 	if (state != IF_STATE_ACTION)
8317 		goto fail;
8318 
8319 	kfree(orig);
8320 
8321 	return 0;
8322 
8323 fail_free_name:
8324 	kfree(filename);
8325 fail:
8326 	free_filters_list(filters);
8327 	kfree(orig);
8328 
8329 	return ret;
8330 }
8331 
8332 static int
8333 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8334 {
8335 	LIST_HEAD(filters);
8336 	int ret;
8337 
8338 	/*
8339 	 * Since this is called in perf_ioctl() path, we're already holding
8340 	 * ctx::mutex.
8341 	 */
8342 	lockdep_assert_held(&event->ctx->mutex);
8343 
8344 	if (WARN_ON_ONCE(event->parent))
8345 		return -EINVAL;
8346 
8347 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8348 	if (ret)
8349 		goto fail_clear_files;
8350 
8351 	ret = event->pmu->addr_filters_validate(&filters);
8352 	if (ret)
8353 		goto fail_free_filters;
8354 
8355 	/* remove existing filters, if any */
8356 	perf_addr_filters_splice(event, &filters);
8357 
8358 	/* install new filters */
8359 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8360 
8361 	return ret;
8362 
8363 fail_free_filters:
8364 	free_filters_list(&filters);
8365 
8366 fail_clear_files:
8367 	event->addr_filters.nr_file_filters = 0;
8368 
8369 	return ret;
8370 }
8371 
8372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8373 {
8374 	char *filter_str;
8375 	int ret = -EINVAL;
8376 
8377 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8378 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8379 	    !has_addr_filter(event))
8380 		return -EINVAL;
8381 
8382 	filter_str = strndup_user(arg, PAGE_SIZE);
8383 	if (IS_ERR(filter_str))
8384 		return PTR_ERR(filter_str);
8385 
8386 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8387 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8388 		ret = ftrace_profile_set_filter(event, event->attr.config,
8389 						filter_str);
8390 	else if (has_addr_filter(event))
8391 		ret = perf_event_set_addr_filter(event, filter_str);
8392 
8393 	kfree(filter_str);
8394 	return ret;
8395 }
8396 
8397 /*
8398  * hrtimer based swevent callback
8399  */
8400 
8401 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8402 {
8403 	enum hrtimer_restart ret = HRTIMER_RESTART;
8404 	struct perf_sample_data data;
8405 	struct pt_regs *regs;
8406 	struct perf_event *event;
8407 	u64 period;
8408 
8409 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8410 
8411 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8412 		return HRTIMER_NORESTART;
8413 
8414 	event->pmu->read(event);
8415 
8416 	perf_sample_data_init(&data, 0, event->hw.last_period);
8417 	regs = get_irq_regs();
8418 
8419 	if (regs && !perf_exclude_event(event, regs)) {
8420 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8421 			if (__perf_event_overflow(event, 1, &data, regs))
8422 				ret = HRTIMER_NORESTART;
8423 	}
8424 
8425 	period = max_t(u64, 10000, event->hw.sample_period);
8426 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8427 
8428 	return ret;
8429 }
8430 
8431 static void perf_swevent_start_hrtimer(struct perf_event *event)
8432 {
8433 	struct hw_perf_event *hwc = &event->hw;
8434 	s64 period;
8435 
8436 	if (!is_sampling_event(event))
8437 		return;
8438 
8439 	period = local64_read(&hwc->period_left);
8440 	if (period) {
8441 		if (period < 0)
8442 			period = 10000;
8443 
8444 		local64_set(&hwc->period_left, 0);
8445 	} else {
8446 		period = max_t(u64, 10000, hwc->sample_period);
8447 	}
8448 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8449 		      HRTIMER_MODE_REL_PINNED);
8450 }
8451 
8452 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8453 {
8454 	struct hw_perf_event *hwc = &event->hw;
8455 
8456 	if (is_sampling_event(event)) {
8457 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8458 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8459 
8460 		hrtimer_cancel(&hwc->hrtimer);
8461 	}
8462 }
8463 
8464 static void perf_swevent_init_hrtimer(struct perf_event *event)
8465 {
8466 	struct hw_perf_event *hwc = &event->hw;
8467 
8468 	if (!is_sampling_event(event))
8469 		return;
8470 
8471 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8472 	hwc->hrtimer.function = perf_swevent_hrtimer;
8473 
8474 	/*
8475 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8476 	 * mapping and avoid the whole period adjust feedback stuff.
8477 	 */
8478 	if (event->attr.freq) {
8479 		long freq = event->attr.sample_freq;
8480 
8481 		event->attr.sample_period = NSEC_PER_SEC / freq;
8482 		hwc->sample_period = event->attr.sample_period;
8483 		local64_set(&hwc->period_left, hwc->sample_period);
8484 		hwc->last_period = hwc->sample_period;
8485 		event->attr.freq = 0;
8486 	}
8487 }
8488 
8489 /*
8490  * Software event: cpu wall time clock
8491  */
8492 
8493 static void cpu_clock_event_update(struct perf_event *event)
8494 {
8495 	s64 prev;
8496 	u64 now;
8497 
8498 	now = local_clock();
8499 	prev = local64_xchg(&event->hw.prev_count, now);
8500 	local64_add(now - prev, &event->count);
8501 }
8502 
8503 static void cpu_clock_event_start(struct perf_event *event, int flags)
8504 {
8505 	local64_set(&event->hw.prev_count, local_clock());
8506 	perf_swevent_start_hrtimer(event);
8507 }
8508 
8509 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8510 {
8511 	perf_swevent_cancel_hrtimer(event);
8512 	cpu_clock_event_update(event);
8513 }
8514 
8515 static int cpu_clock_event_add(struct perf_event *event, int flags)
8516 {
8517 	if (flags & PERF_EF_START)
8518 		cpu_clock_event_start(event, flags);
8519 	perf_event_update_userpage(event);
8520 
8521 	return 0;
8522 }
8523 
8524 static void cpu_clock_event_del(struct perf_event *event, int flags)
8525 {
8526 	cpu_clock_event_stop(event, flags);
8527 }
8528 
8529 static void cpu_clock_event_read(struct perf_event *event)
8530 {
8531 	cpu_clock_event_update(event);
8532 }
8533 
8534 static int cpu_clock_event_init(struct perf_event *event)
8535 {
8536 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8537 		return -ENOENT;
8538 
8539 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8540 		return -ENOENT;
8541 
8542 	/*
8543 	 * no branch sampling for software events
8544 	 */
8545 	if (has_branch_stack(event))
8546 		return -EOPNOTSUPP;
8547 
8548 	perf_swevent_init_hrtimer(event);
8549 
8550 	return 0;
8551 }
8552 
8553 static struct pmu perf_cpu_clock = {
8554 	.task_ctx_nr	= perf_sw_context,
8555 
8556 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8557 
8558 	.event_init	= cpu_clock_event_init,
8559 	.add		= cpu_clock_event_add,
8560 	.del		= cpu_clock_event_del,
8561 	.start		= cpu_clock_event_start,
8562 	.stop		= cpu_clock_event_stop,
8563 	.read		= cpu_clock_event_read,
8564 };
8565 
8566 /*
8567  * Software event: task time clock
8568  */
8569 
8570 static void task_clock_event_update(struct perf_event *event, u64 now)
8571 {
8572 	u64 prev;
8573 	s64 delta;
8574 
8575 	prev = local64_xchg(&event->hw.prev_count, now);
8576 	delta = now - prev;
8577 	local64_add(delta, &event->count);
8578 }
8579 
8580 static void task_clock_event_start(struct perf_event *event, int flags)
8581 {
8582 	local64_set(&event->hw.prev_count, event->ctx->time);
8583 	perf_swevent_start_hrtimer(event);
8584 }
8585 
8586 static void task_clock_event_stop(struct perf_event *event, int flags)
8587 {
8588 	perf_swevent_cancel_hrtimer(event);
8589 	task_clock_event_update(event, event->ctx->time);
8590 }
8591 
8592 static int task_clock_event_add(struct perf_event *event, int flags)
8593 {
8594 	if (flags & PERF_EF_START)
8595 		task_clock_event_start(event, flags);
8596 	perf_event_update_userpage(event);
8597 
8598 	return 0;
8599 }
8600 
8601 static void task_clock_event_del(struct perf_event *event, int flags)
8602 {
8603 	task_clock_event_stop(event, PERF_EF_UPDATE);
8604 }
8605 
8606 static void task_clock_event_read(struct perf_event *event)
8607 {
8608 	u64 now = perf_clock();
8609 	u64 delta = now - event->ctx->timestamp;
8610 	u64 time = event->ctx->time + delta;
8611 
8612 	task_clock_event_update(event, time);
8613 }
8614 
8615 static int task_clock_event_init(struct perf_event *event)
8616 {
8617 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8618 		return -ENOENT;
8619 
8620 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8621 		return -ENOENT;
8622 
8623 	/*
8624 	 * no branch sampling for software events
8625 	 */
8626 	if (has_branch_stack(event))
8627 		return -EOPNOTSUPP;
8628 
8629 	perf_swevent_init_hrtimer(event);
8630 
8631 	return 0;
8632 }
8633 
8634 static struct pmu perf_task_clock = {
8635 	.task_ctx_nr	= perf_sw_context,
8636 
8637 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8638 
8639 	.event_init	= task_clock_event_init,
8640 	.add		= task_clock_event_add,
8641 	.del		= task_clock_event_del,
8642 	.start		= task_clock_event_start,
8643 	.stop		= task_clock_event_stop,
8644 	.read		= task_clock_event_read,
8645 };
8646 
8647 static void perf_pmu_nop_void(struct pmu *pmu)
8648 {
8649 }
8650 
8651 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8652 {
8653 }
8654 
8655 static int perf_pmu_nop_int(struct pmu *pmu)
8656 {
8657 	return 0;
8658 }
8659 
8660 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8661 
8662 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8663 {
8664 	__this_cpu_write(nop_txn_flags, flags);
8665 
8666 	if (flags & ~PERF_PMU_TXN_ADD)
8667 		return;
8668 
8669 	perf_pmu_disable(pmu);
8670 }
8671 
8672 static int perf_pmu_commit_txn(struct pmu *pmu)
8673 {
8674 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8675 
8676 	__this_cpu_write(nop_txn_flags, 0);
8677 
8678 	if (flags & ~PERF_PMU_TXN_ADD)
8679 		return 0;
8680 
8681 	perf_pmu_enable(pmu);
8682 	return 0;
8683 }
8684 
8685 static void perf_pmu_cancel_txn(struct pmu *pmu)
8686 {
8687 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8688 
8689 	__this_cpu_write(nop_txn_flags, 0);
8690 
8691 	if (flags & ~PERF_PMU_TXN_ADD)
8692 		return;
8693 
8694 	perf_pmu_enable(pmu);
8695 }
8696 
8697 static int perf_event_idx_default(struct perf_event *event)
8698 {
8699 	return 0;
8700 }
8701 
8702 /*
8703  * Ensures all contexts with the same task_ctx_nr have the same
8704  * pmu_cpu_context too.
8705  */
8706 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8707 {
8708 	struct pmu *pmu;
8709 
8710 	if (ctxn < 0)
8711 		return NULL;
8712 
8713 	list_for_each_entry(pmu, &pmus, entry) {
8714 		if (pmu->task_ctx_nr == ctxn)
8715 			return pmu->pmu_cpu_context;
8716 	}
8717 
8718 	return NULL;
8719 }
8720 
8721 static void free_pmu_context(struct pmu *pmu)
8722 {
8723 	mutex_lock(&pmus_lock);
8724 	free_percpu(pmu->pmu_cpu_context);
8725 	mutex_unlock(&pmus_lock);
8726 }
8727 
8728 /*
8729  * Let userspace know that this PMU supports address range filtering:
8730  */
8731 static ssize_t nr_addr_filters_show(struct device *dev,
8732 				    struct device_attribute *attr,
8733 				    char *page)
8734 {
8735 	struct pmu *pmu = dev_get_drvdata(dev);
8736 
8737 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8738 }
8739 DEVICE_ATTR_RO(nr_addr_filters);
8740 
8741 static struct idr pmu_idr;
8742 
8743 static ssize_t
8744 type_show(struct device *dev, struct device_attribute *attr, char *page)
8745 {
8746 	struct pmu *pmu = dev_get_drvdata(dev);
8747 
8748 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8749 }
8750 static DEVICE_ATTR_RO(type);
8751 
8752 static ssize_t
8753 perf_event_mux_interval_ms_show(struct device *dev,
8754 				struct device_attribute *attr,
8755 				char *page)
8756 {
8757 	struct pmu *pmu = dev_get_drvdata(dev);
8758 
8759 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8760 }
8761 
8762 static DEFINE_MUTEX(mux_interval_mutex);
8763 
8764 static ssize_t
8765 perf_event_mux_interval_ms_store(struct device *dev,
8766 				 struct device_attribute *attr,
8767 				 const char *buf, size_t count)
8768 {
8769 	struct pmu *pmu = dev_get_drvdata(dev);
8770 	int timer, cpu, ret;
8771 
8772 	ret = kstrtoint(buf, 0, &timer);
8773 	if (ret)
8774 		return ret;
8775 
8776 	if (timer < 1)
8777 		return -EINVAL;
8778 
8779 	/* same value, noting to do */
8780 	if (timer == pmu->hrtimer_interval_ms)
8781 		return count;
8782 
8783 	mutex_lock(&mux_interval_mutex);
8784 	pmu->hrtimer_interval_ms = timer;
8785 
8786 	/* update all cpuctx for this PMU */
8787 	get_online_cpus();
8788 	for_each_online_cpu(cpu) {
8789 		struct perf_cpu_context *cpuctx;
8790 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8791 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8792 
8793 		cpu_function_call(cpu,
8794 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8795 	}
8796 	put_online_cpus();
8797 	mutex_unlock(&mux_interval_mutex);
8798 
8799 	return count;
8800 }
8801 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8802 
8803 static struct attribute *pmu_dev_attrs[] = {
8804 	&dev_attr_type.attr,
8805 	&dev_attr_perf_event_mux_interval_ms.attr,
8806 	NULL,
8807 };
8808 ATTRIBUTE_GROUPS(pmu_dev);
8809 
8810 static int pmu_bus_running;
8811 static struct bus_type pmu_bus = {
8812 	.name		= "event_source",
8813 	.dev_groups	= pmu_dev_groups,
8814 };
8815 
8816 static void pmu_dev_release(struct device *dev)
8817 {
8818 	kfree(dev);
8819 }
8820 
8821 static int pmu_dev_alloc(struct pmu *pmu)
8822 {
8823 	int ret = -ENOMEM;
8824 
8825 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8826 	if (!pmu->dev)
8827 		goto out;
8828 
8829 	pmu->dev->groups = pmu->attr_groups;
8830 	device_initialize(pmu->dev);
8831 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8832 	if (ret)
8833 		goto free_dev;
8834 
8835 	dev_set_drvdata(pmu->dev, pmu);
8836 	pmu->dev->bus = &pmu_bus;
8837 	pmu->dev->release = pmu_dev_release;
8838 	ret = device_add(pmu->dev);
8839 	if (ret)
8840 		goto free_dev;
8841 
8842 	/* For PMUs with address filters, throw in an extra attribute: */
8843 	if (pmu->nr_addr_filters)
8844 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8845 
8846 	if (ret)
8847 		goto del_dev;
8848 
8849 out:
8850 	return ret;
8851 
8852 del_dev:
8853 	device_del(pmu->dev);
8854 
8855 free_dev:
8856 	put_device(pmu->dev);
8857 	goto out;
8858 }
8859 
8860 static struct lock_class_key cpuctx_mutex;
8861 static struct lock_class_key cpuctx_lock;
8862 
8863 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8864 {
8865 	int cpu, ret;
8866 
8867 	mutex_lock(&pmus_lock);
8868 	ret = -ENOMEM;
8869 	pmu->pmu_disable_count = alloc_percpu(int);
8870 	if (!pmu->pmu_disable_count)
8871 		goto unlock;
8872 
8873 	pmu->type = -1;
8874 	if (!name)
8875 		goto skip_type;
8876 	pmu->name = name;
8877 
8878 	if (type < 0) {
8879 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8880 		if (type < 0) {
8881 			ret = type;
8882 			goto free_pdc;
8883 		}
8884 	}
8885 	pmu->type = type;
8886 
8887 	if (pmu_bus_running) {
8888 		ret = pmu_dev_alloc(pmu);
8889 		if (ret)
8890 			goto free_idr;
8891 	}
8892 
8893 skip_type:
8894 	if (pmu->task_ctx_nr == perf_hw_context) {
8895 		static int hw_context_taken = 0;
8896 
8897 		/*
8898 		 * Other than systems with heterogeneous CPUs, it never makes
8899 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8900 		 * uncore must use perf_invalid_context.
8901 		 */
8902 		if (WARN_ON_ONCE(hw_context_taken &&
8903 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8904 			pmu->task_ctx_nr = perf_invalid_context;
8905 
8906 		hw_context_taken = 1;
8907 	}
8908 
8909 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8910 	if (pmu->pmu_cpu_context)
8911 		goto got_cpu_context;
8912 
8913 	ret = -ENOMEM;
8914 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8915 	if (!pmu->pmu_cpu_context)
8916 		goto free_dev;
8917 
8918 	for_each_possible_cpu(cpu) {
8919 		struct perf_cpu_context *cpuctx;
8920 
8921 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8922 		__perf_event_init_context(&cpuctx->ctx);
8923 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8924 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8925 		cpuctx->ctx.pmu = pmu;
8926 
8927 		__perf_mux_hrtimer_init(cpuctx, cpu);
8928 	}
8929 
8930 got_cpu_context:
8931 	if (!pmu->start_txn) {
8932 		if (pmu->pmu_enable) {
8933 			/*
8934 			 * If we have pmu_enable/pmu_disable calls, install
8935 			 * transaction stubs that use that to try and batch
8936 			 * hardware accesses.
8937 			 */
8938 			pmu->start_txn  = perf_pmu_start_txn;
8939 			pmu->commit_txn = perf_pmu_commit_txn;
8940 			pmu->cancel_txn = perf_pmu_cancel_txn;
8941 		} else {
8942 			pmu->start_txn  = perf_pmu_nop_txn;
8943 			pmu->commit_txn = perf_pmu_nop_int;
8944 			pmu->cancel_txn = perf_pmu_nop_void;
8945 		}
8946 	}
8947 
8948 	if (!pmu->pmu_enable) {
8949 		pmu->pmu_enable  = perf_pmu_nop_void;
8950 		pmu->pmu_disable = perf_pmu_nop_void;
8951 	}
8952 
8953 	if (!pmu->event_idx)
8954 		pmu->event_idx = perf_event_idx_default;
8955 
8956 	list_add_rcu(&pmu->entry, &pmus);
8957 	atomic_set(&pmu->exclusive_cnt, 0);
8958 	ret = 0;
8959 unlock:
8960 	mutex_unlock(&pmus_lock);
8961 
8962 	return ret;
8963 
8964 free_dev:
8965 	device_del(pmu->dev);
8966 	put_device(pmu->dev);
8967 
8968 free_idr:
8969 	if (pmu->type >= PERF_TYPE_MAX)
8970 		idr_remove(&pmu_idr, pmu->type);
8971 
8972 free_pdc:
8973 	free_percpu(pmu->pmu_disable_count);
8974 	goto unlock;
8975 }
8976 EXPORT_SYMBOL_GPL(perf_pmu_register);
8977 
8978 void perf_pmu_unregister(struct pmu *pmu)
8979 {
8980 	int remove_device;
8981 
8982 	mutex_lock(&pmus_lock);
8983 	remove_device = pmu_bus_running;
8984 	list_del_rcu(&pmu->entry);
8985 	mutex_unlock(&pmus_lock);
8986 
8987 	/*
8988 	 * We dereference the pmu list under both SRCU and regular RCU, so
8989 	 * synchronize against both of those.
8990 	 */
8991 	synchronize_srcu(&pmus_srcu);
8992 	synchronize_rcu();
8993 
8994 	free_percpu(pmu->pmu_disable_count);
8995 	if (pmu->type >= PERF_TYPE_MAX)
8996 		idr_remove(&pmu_idr, pmu->type);
8997 	if (remove_device) {
8998 		if (pmu->nr_addr_filters)
8999 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9000 		device_del(pmu->dev);
9001 		put_device(pmu->dev);
9002 	}
9003 	free_pmu_context(pmu);
9004 }
9005 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9006 
9007 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9008 {
9009 	struct perf_event_context *ctx = NULL;
9010 	int ret;
9011 
9012 	if (!try_module_get(pmu->module))
9013 		return -ENODEV;
9014 
9015 	if (event->group_leader != event) {
9016 		/*
9017 		 * This ctx->mutex can nest when we're called through
9018 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9019 		 */
9020 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9021 						 SINGLE_DEPTH_NESTING);
9022 		BUG_ON(!ctx);
9023 	}
9024 
9025 	event->pmu = pmu;
9026 	ret = pmu->event_init(event);
9027 
9028 	if (ctx)
9029 		perf_event_ctx_unlock(event->group_leader, ctx);
9030 
9031 	if (ret)
9032 		module_put(pmu->module);
9033 
9034 	return ret;
9035 }
9036 
9037 static struct pmu *perf_init_event(struct perf_event *event)
9038 {
9039 	struct pmu *pmu = NULL;
9040 	int idx;
9041 	int ret;
9042 
9043 	idx = srcu_read_lock(&pmus_srcu);
9044 
9045 	/* Try parent's PMU first: */
9046 	if (event->parent && event->parent->pmu) {
9047 		pmu = event->parent->pmu;
9048 		ret = perf_try_init_event(pmu, event);
9049 		if (!ret)
9050 			goto unlock;
9051 	}
9052 
9053 	rcu_read_lock();
9054 	pmu = idr_find(&pmu_idr, event->attr.type);
9055 	rcu_read_unlock();
9056 	if (pmu) {
9057 		ret = perf_try_init_event(pmu, event);
9058 		if (ret)
9059 			pmu = ERR_PTR(ret);
9060 		goto unlock;
9061 	}
9062 
9063 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9064 		ret = perf_try_init_event(pmu, event);
9065 		if (!ret)
9066 			goto unlock;
9067 
9068 		if (ret != -ENOENT) {
9069 			pmu = ERR_PTR(ret);
9070 			goto unlock;
9071 		}
9072 	}
9073 	pmu = ERR_PTR(-ENOENT);
9074 unlock:
9075 	srcu_read_unlock(&pmus_srcu, idx);
9076 
9077 	return pmu;
9078 }
9079 
9080 static void attach_sb_event(struct perf_event *event)
9081 {
9082 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9083 
9084 	raw_spin_lock(&pel->lock);
9085 	list_add_rcu(&event->sb_list, &pel->list);
9086 	raw_spin_unlock(&pel->lock);
9087 }
9088 
9089 /*
9090  * We keep a list of all !task (and therefore per-cpu) events
9091  * that need to receive side-band records.
9092  *
9093  * This avoids having to scan all the various PMU per-cpu contexts
9094  * looking for them.
9095  */
9096 static void account_pmu_sb_event(struct perf_event *event)
9097 {
9098 	if (is_sb_event(event))
9099 		attach_sb_event(event);
9100 }
9101 
9102 static void account_event_cpu(struct perf_event *event, int cpu)
9103 {
9104 	if (event->parent)
9105 		return;
9106 
9107 	if (is_cgroup_event(event))
9108 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9109 }
9110 
9111 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9112 static void account_freq_event_nohz(void)
9113 {
9114 #ifdef CONFIG_NO_HZ_FULL
9115 	/* Lock so we don't race with concurrent unaccount */
9116 	spin_lock(&nr_freq_lock);
9117 	if (atomic_inc_return(&nr_freq_events) == 1)
9118 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9119 	spin_unlock(&nr_freq_lock);
9120 #endif
9121 }
9122 
9123 static void account_freq_event(void)
9124 {
9125 	if (tick_nohz_full_enabled())
9126 		account_freq_event_nohz();
9127 	else
9128 		atomic_inc(&nr_freq_events);
9129 }
9130 
9131 
9132 static void account_event(struct perf_event *event)
9133 {
9134 	bool inc = false;
9135 
9136 	if (event->parent)
9137 		return;
9138 
9139 	if (event->attach_state & PERF_ATTACH_TASK)
9140 		inc = true;
9141 	if (event->attr.mmap || event->attr.mmap_data)
9142 		atomic_inc(&nr_mmap_events);
9143 	if (event->attr.comm)
9144 		atomic_inc(&nr_comm_events);
9145 	if (event->attr.task)
9146 		atomic_inc(&nr_task_events);
9147 	if (event->attr.freq)
9148 		account_freq_event();
9149 	if (event->attr.context_switch) {
9150 		atomic_inc(&nr_switch_events);
9151 		inc = true;
9152 	}
9153 	if (has_branch_stack(event))
9154 		inc = true;
9155 	if (is_cgroup_event(event))
9156 		inc = true;
9157 
9158 	if (inc) {
9159 		if (atomic_inc_not_zero(&perf_sched_count))
9160 			goto enabled;
9161 
9162 		mutex_lock(&perf_sched_mutex);
9163 		if (!atomic_read(&perf_sched_count)) {
9164 			static_branch_enable(&perf_sched_events);
9165 			/*
9166 			 * Guarantee that all CPUs observe they key change and
9167 			 * call the perf scheduling hooks before proceeding to
9168 			 * install events that need them.
9169 			 */
9170 			synchronize_sched();
9171 		}
9172 		/*
9173 		 * Now that we have waited for the sync_sched(), allow further
9174 		 * increments to by-pass the mutex.
9175 		 */
9176 		atomic_inc(&perf_sched_count);
9177 		mutex_unlock(&perf_sched_mutex);
9178 	}
9179 enabled:
9180 
9181 	account_event_cpu(event, event->cpu);
9182 
9183 	account_pmu_sb_event(event);
9184 }
9185 
9186 /*
9187  * Allocate and initialize a event structure
9188  */
9189 static struct perf_event *
9190 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9191 		 struct task_struct *task,
9192 		 struct perf_event *group_leader,
9193 		 struct perf_event *parent_event,
9194 		 perf_overflow_handler_t overflow_handler,
9195 		 void *context, int cgroup_fd)
9196 {
9197 	struct pmu *pmu;
9198 	struct perf_event *event;
9199 	struct hw_perf_event *hwc;
9200 	long err = -EINVAL;
9201 
9202 	if ((unsigned)cpu >= nr_cpu_ids) {
9203 		if (!task || cpu != -1)
9204 			return ERR_PTR(-EINVAL);
9205 	}
9206 
9207 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9208 	if (!event)
9209 		return ERR_PTR(-ENOMEM);
9210 
9211 	/*
9212 	 * Single events are their own group leaders, with an
9213 	 * empty sibling list:
9214 	 */
9215 	if (!group_leader)
9216 		group_leader = event;
9217 
9218 	mutex_init(&event->child_mutex);
9219 	INIT_LIST_HEAD(&event->child_list);
9220 
9221 	INIT_LIST_HEAD(&event->group_entry);
9222 	INIT_LIST_HEAD(&event->event_entry);
9223 	INIT_LIST_HEAD(&event->sibling_list);
9224 	INIT_LIST_HEAD(&event->rb_entry);
9225 	INIT_LIST_HEAD(&event->active_entry);
9226 	INIT_LIST_HEAD(&event->addr_filters.list);
9227 	INIT_HLIST_NODE(&event->hlist_entry);
9228 
9229 
9230 	init_waitqueue_head(&event->waitq);
9231 	init_irq_work(&event->pending, perf_pending_event);
9232 
9233 	mutex_init(&event->mmap_mutex);
9234 	raw_spin_lock_init(&event->addr_filters.lock);
9235 
9236 	atomic_long_set(&event->refcount, 1);
9237 	event->cpu		= cpu;
9238 	event->attr		= *attr;
9239 	event->group_leader	= group_leader;
9240 	event->pmu		= NULL;
9241 	event->oncpu		= -1;
9242 
9243 	event->parent		= parent_event;
9244 
9245 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9246 	event->id		= atomic64_inc_return(&perf_event_id);
9247 
9248 	event->state		= PERF_EVENT_STATE_INACTIVE;
9249 
9250 	if (task) {
9251 		event->attach_state = PERF_ATTACH_TASK;
9252 		/*
9253 		 * XXX pmu::event_init needs to know what task to account to
9254 		 * and we cannot use the ctx information because we need the
9255 		 * pmu before we get a ctx.
9256 		 */
9257 		event->hw.target = task;
9258 	}
9259 
9260 	event->clock = &local_clock;
9261 	if (parent_event)
9262 		event->clock = parent_event->clock;
9263 
9264 	if (!overflow_handler && parent_event) {
9265 		overflow_handler = parent_event->overflow_handler;
9266 		context = parent_event->overflow_handler_context;
9267 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9268 		if (overflow_handler == bpf_overflow_handler) {
9269 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9270 
9271 			if (IS_ERR(prog)) {
9272 				err = PTR_ERR(prog);
9273 				goto err_ns;
9274 			}
9275 			event->prog = prog;
9276 			event->orig_overflow_handler =
9277 				parent_event->orig_overflow_handler;
9278 		}
9279 #endif
9280 	}
9281 
9282 	if (overflow_handler) {
9283 		event->overflow_handler	= overflow_handler;
9284 		event->overflow_handler_context = context;
9285 	} else if (is_write_backward(event)){
9286 		event->overflow_handler = perf_event_output_backward;
9287 		event->overflow_handler_context = NULL;
9288 	} else {
9289 		event->overflow_handler = perf_event_output_forward;
9290 		event->overflow_handler_context = NULL;
9291 	}
9292 
9293 	perf_event__state_init(event);
9294 
9295 	pmu = NULL;
9296 
9297 	hwc = &event->hw;
9298 	hwc->sample_period = attr->sample_period;
9299 	if (attr->freq && attr->sample_freq)
9300 		hwc->sample_period = 1;
9301 	hwc->last_period = hwc->sample_period;
9302 
9303 	local64_set(&hwc->period_left, hwc->sample_period);
9304 
9305 	/*
9306 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9307 	 */
9308 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9309 		goto err_ns;
9310 
9311 	if (!has_branch_stack(event))
9312 		event->attr.branch_sample_type = 0;
9313 
9314 	if (cgroup_fd != -1) {
9315 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9316 		if (err)
9317 			goto err_ns;
9318 	}
9319 
9320 	pmu = perf_init_event(event);
9321 	if (!pmu)
9322 		goto err_ns;
9323 	else if (IS_ERR(pmu)) {
9324 		err = PTR_ERR(pmu);
9325 		goto err_ns;
9326 	}
9327 
9328 	err = exclusive_event_init(event);
9329 	if (err)
9330 		goto err_pmu;
9331 
9332 	if (has_addr_filter(event)) {
9333 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9334 						   sizeof(unsigned long),
9335 						   GFP_KERNEL);
9336 		if (!event->addr_filters_offs)
9337 			goto err_per_task;
9338 
9339 		/* force hw sync on the address filters */
9340 		event->addr_filters_gen = 1;
9341 	}
9342 
9343 	if (!event->parent) {
9344 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9345 			err = get_callchain_buffers(attr->sample_max_stack);
9346 			if (err)
9347 				goto err_addr_filters;
9348 		}
9349 	}
9350 
9351 	/* symmetric to unaccount_event() in _free_event() */
9352 	account_event(event);
9353 
9354 	return event;
9355 
9356 err_addr_filters:
9357 	kfree(event->addr_filters_offs);
9358 
9359 err_per_task:
9360 	exclusive_event_destroy(event);
9361 
9362 err_pmu:
9363 	if (event->destroy)
9364 		event->destroy(event);
9365 	module_put(pmu->module);
9366 err_ns:
9367 	if (is_cgroup_event(event))
9368 		perf_detach_cgroup(event);
9369 	if (event->ns)
9370 		put_pid_ns(event->ns);
9371 	kfree(event);
9372 
9373 	return ERR_PTR(err);
9374 }
9375 
9376 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9377 			  struct perf_event_attr *attr)
9378 {
9379 	u32 size;
9380 	int ret;
9381 
9382 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9383 		return -EFAULT;
9384 
9385 	/*
9386 	 * zero the full structure, so that a short copy will be nice.
9387 	 */
9388 	memset(attr, 0, sizeof(*attr));
9389 
9390 	ret = get_user(size, &uattr->size);
9391 	if (ret)
9392 		return ret;
9393 
9394 	if (size > PAGE_SIZE)	/* silly large */
9395 		goto err_size;
9396 
9397 	if (!size)		/* abi compat */
9398 		size = PERF_ATTR_SIZE_VER0;
9399 
9400 	if (size < PERF_ATTR_SIZE_VER0)
9401 		goto err_size;
9402 
9403 	/*
9404 	 * If we're handed a bigger struct than we know of,
9405 	 * ensure all the unknown bits are 0 - i.e. new
9406 	 * user-space does not rely on any kernel feature
9407 	 * extensions we dont know about yet.
9408 	 */
9409 	if (size > sizeof(*attr)) {
9410 		unsigned char __user *addr;
9411 		unsigned char __user *end;
9412 		unsigned char val;
9413 
9414 		addr = (void __user *)uattr + sizeof(*attr);
9415 		end  = (void __user *)uattr + size;
9416 
9417 		for (; addr < end; addr++) {
9418 			ret = get_user(val, addr);
9419 			if (ret)
9420 				return ret;
9421 			if (val)
9422 				goto err_size;
9423 		}
9424 		size = sizeof(*attr);
9425 	}
9426 
9427 	ret = copy_from_user(attr, uattr, size);
9428 	if (ret)
9429 		return -EFAULT;
9430 
9431 	if (attr->__reserved_1)
9432 		return -EINVAL;
9433 
9434 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9435 		return -EINVAL;
9436 
9437 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9438 		return -EINVAL;
9439 
9440 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9441 		u64 mask = attr->branch_sample_type;
9442 
9443 		/* only using defined bits */
9444 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9445 			return -EINVAL;
9446 
9447 		/* at least one branch bit must be set */
9448 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9449 			return -EINVAL;
9450 
9451 		/* propagate priv level, when not set for branch */
9452 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9453 
9454 			/* exclude_kernel checked on syscall entry */
9455 			if (!attr->exclude_kernel)
9456 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9457 
9458 			if (!attr->exclude_user)
9459 				mask |= PERF_SAMPLE_BRANCH_USER;
9460 
9461 			if (!attr->exclude_hv)
9462 				mask |= PERF_SAMPLE_BRANCH_HV;
9463 			/*
9464 			 * adjust user setting (for HW filter setup)
9465 			 */
9466 			attr->branch_sample_type = mask;
9467 		}
9468 		/* privileged levels capture (kernel, hv): check permissions */
9469 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9470 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9471 			return -EACCES;
9472 	}
9473 
9474 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9475 		ret = perf_reg_validate(attr->sample_regs_user);
9476 		if (ret)
9477 			return ret;
9478 	}
9479 
9480 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9481 		if (!arch_perf_have_user_stack_dump())
9482 			return -ENOSYS;
9483 
9484 		/*
9485 		 * We have __u32 type for the size, but so far
9486 		 * we can only use __u16 as maximum due to the
9487 		 * __u16 sample size limit.
9488 		 */
9489 		if (attr->sample_stack_user >= USHRT_MAX)
9490 			ret = -EINVAL;
9491 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9492 			ret = -EINVAL;
9493 	}
9494 
9495 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9496 		ret = perf_reg_validate(attr->sample_regs_intr);
9497 out:
9498 	return ret;
9499 
9500 err_size:
9501 	put_user(sizeof(*attr), &uattr->size);
9502 	ret = -E2BIG;
9503 	goto out;
9504 }
9505 
9506 static int
9507 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9508 {
9509 	struct ring_buffer *rb = NULL;
9510 	int ret = -EINVAL;
9511 
9512 	if (!output_event)
9513 		goto set;
9514 
9515 	/* don't allow circular references */
9516 	if (event == output_event)
9517 		goto out;
9518 
9519 	/*
9520 	 * Don't allow cross-cpu buffers
9521 	 */
9522 	if (output_event->cpu != event->cpu)
9523 		goto out;
9524 
9525 	/*
9526 	 * If its not a per-cpu rb, it must be the same task.
9527 	 */
9528 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9529 		goto out;
9530 
9531 	/*
9532 	 * Mixing clocks in the same buffer is trouble you don't need.
9533 	 */
9534 	if (output_event->clock != event->clock)
9535 		goto out;
9536 
9537 	/*
9538 	 * Either writing ring buffer from beginning or from end.
9539 	 * Mixing is not allowed.
9540 	 */
9541 	if (is_write_backward(output_event) != is_write_backward(event))
9542 		goto out;
9543 
9544 	/*
9545 	 * If both events generate aux data, they must be on the same PMU
9546 	 */
9547 	if (has_aux(event) && has_aux(output_event) &&
9548 	    event->pmu != output_event->pmu)
9549 		goto out;
9550 
9551 set:
9552 	mutex_lock(&event->mmap_mutex);
9553 	/* Can't redirect output if we've got an active mmap() */
9554 	if (atomic_read(&event->mmap_count))
9555 		goto unlock;
9556 
9557 	if (output_event) {
9558 		/* get the rb we want to redirect to */
9559 		rb = ring_buffer_get(output_event);
9560 		if (!rb)
9561 			goto unlock;
9562 	}
9563 
9564 	ring_buffer_attach(event, rb);
9565 
9566 	ret = 0;
9567 unlock:
9568 	mutex_unlock(&event->mmap_mutex);
9569 
9570 out:
9571 	return ret;
9572 }
9573 
9574 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9575 {
9576 	if (b < a)
9577 		swap(a, b);
9578 
9579 	mutex_lock(a);
9580 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9581 }
9582 
9583 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9584 {
9585 	bool nmi_safe = false;
9586 
9587 	switch (clk_id) {
9588 	case CLOCK_MONOTONIC:
9589 		event->clock = &ktime_get_mono_fast_ns;
9590 		nmi_safe = true;
9591 		break;
9592 
9593 	case CLOCK_MONOTONIC_RAW:
9594 		event->clock = &ktime_get_raw_fast_ns;
9595 		nmi_safe = true;
9596 		break;
9597 
9598 	case CLOCK_REALTIME:
9599 		event->clock = &ktime_get_real_ns;
9600 		break;
9601 
9602 	case CLOCK_BOOTTIME:
9603 		event->clock = &ktime_get_boot_ns;
9604 		break;
9605 
9606 	case CLOCK_TAI:
9607 		event->clock = &ktime_get_tai_ns;
9608 		break;
9609 
9610 	default:
9611 		return -EINVAL;
9612 	}
9613 
9614 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9615 		return -EINVAL;
9616 
9617 	return 0;
9618 }
9619 
9620 /*
9621  * Variation on perf_event_ctx_lock_nested(), except we take two context
9622  * mutexes.
9623  */
9624 static struct perf_event_context *
9625 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9626 			     struct perf_event_context *ctx)
9627 {
9628 	struct perf_event_context *gctx;
9629 
9630 again:
9631 	rcu_read_lock();
9632 	gctx = READ_ONCE(group_leader->ctx);
9633 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9634 		rcu_read_unlock();
9635 		goto again;
9636 	}
9637 	rcu_read_unlock();
9638 
9639 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9640 
9641 	if (group_leader->ctx != gctx) {
9642 		mutex_unlock(&ctx->mutex);
9643 		mutex_unlock(&gctx->mutex);
9644 		put_ctx(gctx);
9645 		goto again;
9646 	}
9647 
9648 	return gctx;
9649 }
9650 
9651 /**
9652  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9653  *
9654  * @attr_uptr:	event_id type attributes for monitoring/sampling
9655  * @pid:		target pid
9656  * @cpu:		target cpu
9657  * @group_fd:		group leader event fd
9658  */
9659 SYSCALL_DEFINE5(perf_event_open,
9660 		struct perf_event_attr __user *, attr_uptr,
9661 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9662 {
9663 	struct perf_event *group_leader = NULL, *output_event = NULL;
9664 	struct perf_event *event, *sibling;
9665 	struct perf_event_attr attr;
9666 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9667 	struct file *event_file = NULL;
9668 	struct fd group = {NULL, 0};
9669 	struct task_struct *task = NULL;
9670 	struct pmu *pmu;
9671 	int event_fd;
9672 	int move_group = 0;
9673 	int err;
9674 	int f_flags = O_RDWR;
9675 	int cgroup_fd = -1;
9676 
9677 	/* for future expandability... */
9678 	if (flags & ~PERF_FLAG_ALL)
9679 		return -EINVAL;
9680 
9681 	err = perf_copy_attr(attr_uptr, &attr);
9682 	if (err)
9683 		return err;
9684 
9685 	if (!attr.exclude_kernel) {
9686 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9687 			return -EACCES;
9688 	}
9689 
9690 	if (attr.freq) {
9691 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9692 			return -EINVAL;
9693 	} else {
9694 		if (attr.sample_period & (1ULL << 63))
9695 			return -EINVAL;
9696 	}
9697 
9698 	if (!attr.sample_max_stack)
9699 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9700 
9701 	/*
9702 	 * In cgroup mode, the pid argument is used to pass the fd
9703 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9704 	 * designates the cpu on which to monitor threads from that
9705 	 * cgroup.
9706 	 */
9707 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9708 		return -EINVAL;
9709 
9710 	if (flags & PERF_FLAG_FD_CLOEXEC)
9711 		f_flags |= O_CLOEXEC;
9712 
9713 	event_fd = get_unused_fd_flags(f_flags);
9714 	if (event_fd < 0)
9715 		return event_fd;
9716 
9717 	if (group_fd != -1) {
9718 		err = perf_fget_light(group_fd, &group);
9719 		if (err)
9720 			goto err_fd;
9721 		group_leader = group.file->private_data;
9722 		if (flags & PERF_FLAG_FD_OUTPUT)
9723 			output_event = group_leader;
9724 		if (flags & PERF_FLAG_FD_NO_GROUP)
9725 			group_leader = NULL;
9726 	}
9727 
9728 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9729 		task = find_lively_task_by_vpid(pid);
9730 		if (IS_ERR(task)) {
9731 			err = PTR_ERR(task);
9732 			goto err_group_fd;
9733 		}
9734 	}
9735 
9736 	if (task && group_leader &&
9737 	    group_leader->attr.inherit != attr.inherit) {
9738 		err = -EINVAL;
9739 		goto err_task;
9740 	}
9741 
9742 	get_online_cpus();
9743 
9744 	if (task) {
9745 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9746 		if (err)
9747 			goto err_cpus;
9748 
9749 		/*
9750 		 * Reuse ptrace permission checks for now.
9751 		 *
9752 		 * We must hold cred_guard_mutex across this and any potential
9753 		 * perf_install_in_context() call for this new event to
9754 		 * serialize against exec() altering our credentials (and the
9755 		 * perf_event_exit_task() that could imply).
9756 		 */
9757 		err = -EACCES;
9758 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9759 			goto err_cred;
9760 	}
9761 
9762 	if (flags & PERF_FLAG_PID_CGROUP)
9763 		cgroup_fd = pid;
9764 
9765 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9766 				 NULL, NULL, cgroup_fd);
9767 	if (IS_ERR(event)) {
9768 		err = PTR_ERR(event);
9769 		goto err_cred;
9770 	}
9771 
9772 	if (is_sampling_event(event)) {
9773 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9774 			err = -EOPNOTSUPP;
9775 			goto err_alloc;
9776 		}
9777 	}
9778 
9779 	/*
9780 	 * Special case software events and allow them to be part of
9781 	 * any hardware group.
9782 	 */
9783 	pmu = event->pmu;
9784 
9785 	if (attr.use_clockid) {
9786 		err = perf_event_set_clock(event, attr.clockid);
9787 		if (err)
9788 			goto err_alloc;
9789 	}
9790 
9791 	if (pmu->task_ctx_nr == perf_sw_context)
9792 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9793 
9794 	if (group_leader &&
9795 	    (is_software_event(event) != is_software_event(group_leader))) {
9796 		if (is_software_event(event)) {
9797 			/*
9798 			 * If event and group_leader are not both a software
9799 			 * event, and event is, then group leader is not.
9800 			 *
9801 			 * Allow the addition of software events to !software
9802 			 * groups, this is safe because software events never
9803 			 * fail to schedule.
9804 			 */
9805 			pmu = group_leader->pmu;
9806 		} else if (is_software_event(group_leader) &&
9807 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9808 			/*
9809 			 * In case the group is a pure software group, and we
9810 			 * try to add a hardware event, move the whole group to
9811 			 * the hardware context.
9812 			 */
9813 			move_group = 1;
9814 		}
9815 	}
9816 
9817 	/*
9818 	 * Get the target context (task or percpu):
9819 	 */
9820 	ctx = find_get_context(pmu, task, event);
9821 	if (IS_ERR(ctx)) {
9822 		err = PTR_ERR(ctx);
9823 		goto err_alloc;
9824 	}
9825 
9826 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9827 		err = -EBUSY;
9828 		goto err_context;
9829 	}
9830 
9831 	/*
9832 	 * Look up the group leader (we will attach this event to it):
9833 	 */
9834 	if (group_leader) {
9835 		err = -EINVAL;
9836 
9837 		/*
9838 		 * Do not allow a recursive hierarchy (this new sibling
9839 		 * becoming part of another group-sibling):
9840 		 */
9841 		if (group_leader->group_leader != group_leader)
9842 			goto err_context;
9843 
9844 		/* All events in a group should have the same clock */
9845 		if (group_leader->clock != event->clock)
9846 			goto err_context;
9847 
9848 		/*
9849 		 * Do not allow to attach to a group in a different
9850 		 * task or CPU context:
9851 		 */
9852 		if (move_group) {
9853 			/*
9854 			 * Make sure we're both on the same task, or both
9855 			 * per-cpu events.
9856 			 */
9857 			if (group_leader->ctx->task != ctx->task)
9858 				goto err_context;
9859 
9860 			/*
9861 			 * Make sure we're both events for the same CPU;
9862 			 * grouping events for different CPUs is broken; since
9863 			 * you can never concurrently schedule them anyhow.
9864 			 */
9865 			if (group_leader->cpu != event->cpu)
9866 				goto err_context;
9867 		} else {
9868 			if (group_leader->ctx != ctx)
9869 				goto err_context;
9870 		}
9871 
9872 		/*
9873 		 * Only a group leader can be exclusive or pinned
9874 		 */
9875 		if (attr.exclusive || attr.pinned)
9876 			goto err_context;
9877 	}
9878 
9879 	if (output_event) {
9880 		err = perf_event_set_output(event, output_event);
9881 		if (err)
9882 			goto err_context;
9883 	}
9884 
9885 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9886 					f_flags);
9887 	if (IS_ERR(event_file)) {
9888 		err = PTR_ERR(event_file);
9889 		event_file = NULL;
9890 		goto err_context;
9891 	}
9892 
9893 	if (move_group) {
9894 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9895 
9896 		if (gctx->task == TASK_TOMBSTONE) {
9897 			err = -ESRCH;
9898 			goto err_locked;
9899 		}
9900 
9901 		/*
9902 		 * Check if we raced against another sys_perf_event_open() call
9903 		 * moving the software group underneath us.
9904 		 */
9905 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9906 			/*
9907 			 * If someone moved the group out from under us, check
9908 			 * if this new event wound up on the same ctx, if so
9909 			 * its the regular !move_group case, otherwise fail.
9910 			 */
9911 			if (gctx != ctx) {
9912 				err = -EINVAL;
9913 				goto err_locked;
9914 			} else {
9915 				perf_event_ctx_unlock(group_leader, gctx);
9916 				move_group = 0;
9917 			}
9918 		}
9919 	} else {
9920 		mutex_lock(&ctx->mutex);
9921 	}
9922 
9923 	if (ctx->task == TASK_TOMBSTONE) {
9924 		err = -ESRCH;
9925 		goto err_locked;
9926 	}
9927 
9928 	if (!perf_event_validate_size(event)) {
9929 		err = -E2BIG;
9930 		goto err_locked;
9931 	}
9932 
9933 	/*
9934 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9935 	 * because we need to serialize with concurrent event creation.
9936 	 */
9937 	if (!exclusive_event_installable(event, ctx)) {
9938 		/* exclusive and group stuff are assumed mutually exclusive */
9939 		WARN_ON_ONCE(move_group);
9940 
9941 		err = -EBUSY;
9942 		goto err_locked;
9943 	}
9944 
9945 	WARN_ON_ONCE(ctx->parent_ctx);
9946 
9947 	/*
9948 	 * This is the point on no return; we cannot fail hereafter. This is
9949 	 * where we start modifying current state.
9950 	 */
9951 
9952 	if (move_group) {
9953 		/*
9954 		 * See perf_event_ctx_lock() for comments on the details
9955 		 * of swizzling perf_event::ctx.
9956 		 */
9957 		perf_remove_from_context(group_leader, 0);
9958 
9959 		list_for_each_entry(sibling, &group_leader->sibling_list,
9960 				    group_entry) {
9961 			perf_remove_from_context(sibling, 0);
9962 			put_ctx(gctx);
9963 		}
9964 
9965 		/*
9966 		 * Wait for everybody to stop referencing the events through
9967 		 * the old lists, before installing it on new lists.
9968 		 */
9969 		synchronize_rcu();
9970 
9971 		/*
9972 		 * Install the group siblings before the group leader.
9973 		 *
9974 		 * Because a group leader will try and install the entire group
9975 		 * (through the sibling list, which is still in-tact), we can
9976 		 * end up with siblings installed in the wrong context.
9977 		 *
9978 		 * By installing siblings first we NO-OP because they're not
9979 		 * reachable through the group lists.
9980 		 */
9981 		list_for_each_entry(sibling, &group_leader->sibling_list,
9982 				    group_entry) {
9983 			perf_event__state_init(sibling);
9984 			perf_install_in_context(ctx, sibling, sibling->cpu);
9985 			get_ctx(ctx);
9986 		}
9987 
9988 		/*
9989 		 * Removing from the context ends up with disabled
9990 		 * event. What we want here is event in the initial
9991 		 * startup state, ready to be add into new context.
9992 		 */
9993 		perf_event__state_init(group_leader);
9994 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9995 		get_ctx(ctx);
9996 
9997 		/*
9998 		 * Now that all events are installed in @ctx, nothing
9999 		 * references @gctx anymore, so drop the last reference we have
10000 		 * on it.
10001 		 */
10002 		put_ctx(gctx);
10003 	}
10004 
10005 	/*
10006 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10007 	 * that we're serialized against further additions and before
10008 	 * perf_install_in_context() which is the point the event is active and
10009 	 * can use these values.
10010 	 */
10011 	perf_event__header_size(event);
10012 	perf_event__id_header_size(event);
10013 
10014 	event->owner = current;
10015 
10016 	perf_install_in_context(ctx, event, event->cpu);
10017 	perf_unpin_context(ctx);
10018 
10019 	if (move_group)
10020 		perf_event_ctx_unlock(group_leader, gctx);
10021 	mutex_unlock(&ctx->mutex);
10022 
10023 	if (task) {
10024 		mutex_unlock(&task->signal->cred_guard_mutex);
10025 		put_task_struct(task);
10026 	}
10027 
10028 	put_online_cpus();
10029 
10030 	mutex_lock(&current->perf_event_mutex);
10031 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10032 	mutex_unlock(&current->perf_event_mutex);
10033 
10034 	/*
10035 	 * Drop the reference on the group_event after placing the
10036 	 * new event on the sibling_list. This ensures destruction
10037 	 * of the group leader will find the pointer to itself in
10038 	 * perf_group_detach().
10039 	 */
10040 	fdput(group);
10041 	fd_install(event_fd, event_file);
10042 	return event_fd;
10043 
10044 err_locked:
10045 	if (move_group)
10046 		perf_event_ctx_unlock(group_leader, gctx);
10047 	mutex_unlock(&ctx->mutex);
10048 /* err_file: */
10049 	fput(event_file);
10050 err_context:
10051 	perf_unpin_context(ctx);
10052 	put_ctx(ctx);
10053 err_alloc:
10054 	/*
10055 	 * If event_file is set, the fput() above will have called ->release()
10056 	 * and that will take care of freeing the event.
10057 	 */
10058 	if (!event_file)
10059 		free_event(event);
10060 err_cred:
10061 	if (task)
10062 		mutex_unlock(&task->signal->cred_guard_mutex);
10063 err_cpus:
10064 	put_online_cpus();
10065 err_task:
10066 	if (task)
10067 		put_task_struct(task);
10068 err_group_fd:
10069 	fdput(group);
10070 err_fd:
10071 	put_unused_fd(event_fd);
10072 	return err;
10073 }
10074 
10075 /**
10076  * perf_event_create_kernel_counter
10077  *
10078  * @attr: attributes of the counter to create
10079  * @cpu: cpu in which the counter is bound
10080  * @task: task to profile (NULL for percpu)
10081  */
10082 struct perf_event *
10083 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10084 				 struct task_struct *task,
10085 				 perf_overflow_handler_t overflow_handler,
10086 				 void *context)
10087 {
10088 	struct perf_event_context *ctx;
10089 	struct perf_event *event;
10090 	int err;
10091 
10092 	/*
10093 	 * Get the target context (task or percpu):
10094 	 */
10095 
10096 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10097 				 overflow_handler, context, -1);
10098 	if (IS_ERR(event)) {
10099 		err = PTR_ERR(event);
10100 		goto err;
10101 	}
10102 
10103 	/* Mark owner so we could distinguish it from user events. */
10104 	event->owner = TASK_TOMBSTONE;
10105 
10106 	ctx = find_get_context(event->pmu, task, event);
10107 	if (IS_ERR(ctx)) {
10108 		err = PTR_ERR(ctx);
10109 		goto err_free;
10110 	}
10111 
10112 	WARN_ON_ONCE(ctx->parent_ctx);
10113 	mutex_lock(&ctx->mutex);
10114 	if (ctx->task == TASK_TOMBSTONE) {
10115 		err = -ESRCH;
10116 		goto err_unlock;
10117 	}
10118 
10119 	if (!exclusive_event_installable(event, ctx)) {
10120 		err = -EBUSY;
10121 		goto err_unlock;
10122 	}
10123 
10124 	perf_install_in_context(ctx, event, cpu);
10125 	perf_unpin_context(ctx);
10126 	mutex_unlock(&ctx->mutex);
10127 
10128 	return event;
10129 
10130 err_unlock:
10131 	mutex_unlock(&ctx->mutex);
10132 	perf_unpin_context(ctx);
10133 	put_ctx(ctx);
10134 err_free:
10135 	free_event(event);
10136 err:
10137 	return ERR_PTR(err);
10138 }
10139 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10140 
10141 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10142 {
10143 	struct perf_event_context *src_ctx;
10144 	struct perf_event_context *dst_ctx;
10145 	struct perf_event *event, *tmp;
10146 	LIST_HEAD(events);
10147 
10148 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10149 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10150 
10151 	/*
10152 	 * See perf_event_ctx_lock() for comments on the details
10153 	 * of swizzling perf_event::ctx.
10154 	 */
10155 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10156 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10157 				 event_entry) {
10158 		perf_remove_from_context(event, 0);
10159 		unaccount_event_cpu(event, src_cpu);
10160 		put_ctx(src_ctx);
10161 		list_add(&event->migrate_entry, &events);
10162 	}
10163 
10164 	/*
10165 	 * Wait for the events to quiesce before re-instating them.
10166 	 */
10167 	synchronize_rcu();
10168 
10169 	/*
10170 	 * Re-instate events in 2 passes.
10171 	 *
10172 	 * Skip over group leaders and only install siblings on this first
10173 	 * pass, siblings will not get enabled without a leader, however a
10174 	 * leader will enable its siblings, even if those are still on the old
10175 	 * context.
10176 	 */
10177 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10178 		if (event->group_leader == event)
10179 			continue;
10180 
10181 		list_del(&event->migrate_entry);
10182 		if (event->state >= PERF_EVENT_STATE_OFF)
10183 			event->state = PERF_EVENT_STATE_INACTIVE;
10184 		account_event_cpu(event, dst_cpu);
10185 		perf_install_in_context(dst_ctx, event, dst_cpu);
10186 		get_ctx(dst_ctx);
10187 	}
10188 
10189 	/*
10190 	 * Once all the siblings are setup properly, install the group leaders
10191 	 * to make it go.
10192 	 */
10193 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10194 		list_del(&event->migrate_entry);
10195 		if (event->state >= PERF_EVENT_STATE_OFF)
10196 			event->state = PERF_EVENT_STATE_INACTIVE;
10197 		account_event_cpu(event, dst_cpu);
10198 		perf_install_in_context(dst_ctx, event, dst_cpu);
10199 		get_ctx(dst_ctx);
10200 	}
10201 	mutex_unlock(&dst_ctx->mutex);
10202 	mutex_unlock(&src_ctx->mutex);
10203 }
10204 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10205 
10206 static void sync_child_event(struct perf_event *child_event,
10207 			       struct task_struct *child)
10208 {
10209 	struct perf_event *parent_event = child_event->parent;
10210 	u64 child_val;
10211 
10212 	if (child_event->attr.inherit_stat)
10213 		perf_event_read_event(child_event, child);
10214 
10215 	child_val = perf_event_count(child_event);
10216 
10217 	/*
10218 	 * Add back the child's count to the parent's count:
10219 	 */
10220 	atomic64_add(child_val, &parent_event->child_count);
10221 	atomic64_add(child_event->total_time_enabled,
10222 		     &parent_event->child_total_time_enabled);
10223 	atomic64_add(child_event->total_time_running,
10224 		     &parent_event->child_total_time_running);
10225 }
10226 
10227 static void
10228 perf_event_exit_event(struct perf_event *child_event,
10229 		      struct perf_event_context *child_ctx,
10230 		      struct task_struct *child)
10231 {
10232 	struct perf_event *parent_event = child_event->parent;
10233 
10234 	/*
10235 	 * Do not destroy the 'original' grouping; because of the context
10236 	 * switch optimization the original events could've ended up in a
10237 	 * random child task.
10238 	 *
10239 	 * If we were to destroy the original group, all group related
10240 	 * operations would cease to function properly after this random
10241 	 * child dies.
10242 	 *
10243 	 * Do destroy all inherited groups, we don't care about those
10244 	 * and being thorough is better.
10245 	 */
10246 	raw_spin_lock_irq(&child_ctx->lock);
10247 	WARN_ON_ONCE(child_ctx->is_active);
10248 
10249 	if (parent_event)
10250 		perf_group_detach(child_event);
10251 	list_del_event(child_event, child_ctx);
10252 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10253 	raw_spin_unlock_irq(&child_ctx->lock);
10254 
10255 	/*
10256 	 * Parent events are governed by their filedesc, retain them.
10257 	 */
10258 	if (!parent_event) {
10259 		perf_event_wakeup(child_event);
10260 		return;
10261 	}
10262 	/*
10263 	 * Child events can be cleaned up.
10264 	 */
10265 
10266 	sync_child_event(child_event, child);
10267 
10268 	/*
10269 	 * Remove this event from the parent's list
10270 	 */
10271 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10272 	mutex_lock(&parent_event->child_mutex);
10273 	list_del_init(&child_event->child_list);
10274 	mutex_unlock(&parent_event->child_mutex);
10275 
10276 	/*
10277 	 * Kick perf_poll() for is_event_hup().
10278 	 */
10279 	perf_event_wakeup(parent_event);
10280 	free_event(child_event);
10281 	put_event(parent_event);
10282 }
10283 
10284 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10285 {
10286 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10287 	struct perf_event *child_event, *next;
10288 
10289 	WARN_ON_ONCE(child != current);
10290 
10291 	child_ctx = perf_pin_task_context(child, ctxn);
10292 	if (!child_ctx)
10293 		return;
10294 
10295 	/*
10296 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10297 	 * ctx::mutex over the entire thing. This serializes against almost
10298 	 * everything that wants to access the ctx.
10299 	 *
10300 	 * The exception is sys_perf_event_open() /
10301 	 * perf_event_create_kernel_count() which does find_get_context()
10302 	 * without ctx::mutex (it cannot because of the move_group double mutex
10303 	 * lock thing). See the comments in perf_install_in_context().
10304 	 */
10305 	mutex_lock(&child_ctx->mutex);
10306 
10307 	/*
10308 	 * In a single ctx::lock section, de-schedule the events and detach the
10309 	 * context from the task such that we cannot ever get it scheduled back
10310 	 * in.
10311 	 */
10312 	raw_spin_lock_irq(&child_ctx->lock);
10313 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10314 
10315 	/*
10316 	 * Now that the context is inactive, destroy the task <-> ctx relation
10317 	 * and mark the context dead.
10318 	 */
10319 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10320 	put_ctx(child_ctx); /* cannot be last */
10321 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10322 	put_task_struct(current); /* cannot be last */
10323 
10324 	clone_ctx = unclone_ctx(child_ctx);
10325 	raw_spin_unlock_irq(&child_ctx->lock);
10326 
10327 	if (clone_ctx)
10328 		put_ctx(clone_ctx);
10329 
10330 	/*
10331 	 * Report the task dead after unscheduling the events so that we
10332 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10333 	 * get a few PERF_RECORD_READ events.
10334 	 */
10335 	perf_event_task(child, child_ctx, 0);
10336 
10337 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10338 		perf_event_exit_event(child_event, child_ctx, child);
10339 
10340 	mutex_unlock(&child_ctx->mutex);
10341 
10342 	put_ctx(child_ctx);
10343 }
10344 
10345 /*
10346  * When a child task exits, feed back event values to parent events.
10347  *
10348  * Can be called with cred_guard_mutex held when called from
10349  * install_exec_creds().
10350  */
10351 void perf_event_exit_task(struct task_struct *child)
10352 {
10353 	struct perf_event *event, *tmp;
10354 	int ctxn;
10355 
10356 	mutex_lock(&child->perf_event_mutex);
10357 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10358 				 owner_entry) {
10359 		list_del_init(&event->owner_entry);
10360 
10361 		/*
10362 		 * Ensure the list deletion is visible before we clear
10363 		 * the owner, closes a race against perf_release() where
10364 		 * we need to serialize on the owner->perf_event_mutex.
10365 		 */
10366 		smp_store_release(&event->owner, NULL);
10367 	}
10368 	mutex_unlock(&child->perf_event_mutex);
10369 
10370 	for_each_task_context_nr(ctxn)
10371 		perf_event_exit_task_context(child, ctxn);
10372 
10373 	/*
10374 	 * The perf_event_exit_task_context calls perf_event_task
10375 	 * with child's task_ctx, which generates EXIT events for
10376 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10377 	 * At this point we need to send EXIT events to cpu contexts.
10378 	 */
10379 	perf_event_task(child, NULL, 0);
10380 }
10381 
10382 static void perf_free_event(struct perf_event *event,
10383 			    struct perf_event_context *ctx)
10384 {
10385 	struct perf_event *parent = event->parent;
10386 
10387 	if (WARN_ON_ONCE(!parent))
10388 		return;
10389 
10390 	mutex_lock(&parent->child_mutex);
10391 	list_del_init(&event->child_list);
10392 	mutex_unlock(&parent->child_mutex);
10393 
10394 	put_event(parent);
10395 
10396 	raw_spin_lock_irq(&ctx->lock);
10397 	perf_group_detach(event);
10398 	list_del_event(event, ctx);
10399 	raw_spin_unlock_irq(&ctx->lock);
10400 	free_event(event);
10401 }
10402 
10403 /*
10404  * Free an unexposed, unused context as created by inheritance by
10405  * perf_event_init_task below, used by fork() in case of fail.
10406  *
10407  * Not all locks are strictly required, but take them anyway to be nice and
10408  * help out with the lockdep assertions.
10409  */
10410 void perf_event_free_task(struct task_struct *task)
10411 {
10412 	struct perf_event_context *ctx;
10413 	struct perf_event *event, *tmp;
10414 	int ctxn;
10415 
10416 	for_each_task_context_nr(ctxn) {
10417 		ctx = task->perf_event_ctxp[ctxn];
10418 		if (!ctx)
10419 			continue;
10420 
10421 		mutex_lock(&ctx->mutex);
10422 again:
10423 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10424 				group_entry)
10425 			perf_free_event(event, ctx);
10426 
10427 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10428 				group_entry)
10429 			perf_free_event(event, ctx);
10430 
10431 		if (!list_empty(&ctx->pinned_groups) ||
10432 				!list_empty(&ctx->flexible_groups))
10433 			goto again;
10434 
10435 		mutex_unlock(&ctx->mutex);
10436 
10437 		put_ctx(ctx);
10438 	}
10439 }
10440 
10441 void perf_event_delayed_put(struct task_struct *task)
10442 {
10443 	int ctxn;
10444 
10445 	for_each_task_context_nr(ctxn)
10446 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10447 }
10448 
10449 struct file *perf_event_get(unsigned int fd)
10450 {
10451 	struct file *file;
10452 
10453 	file = fget_raw(fd);
10454 	if (!file)
10455 		return ERR_PTR(-EBADF);
10456 
10457 	if (file->f_op != &perf_fops) {
10458 		fput(file);
10459 		return ERR_PTR(-EBADF);
10460 	}
10461 
10462 	return file;
10463 }
10464 
10465 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10466 {
10467 	if (!event)
10468 		return ERR_PTR(-EINVAL);
10469 
10470 	return &event->attr;
10471 }
10472 
10473 /*
10474  * inherit a event from parent task to child task:
10475  */
10476 static struct perf_event *
10477 inherit_event(struct perf_event *parent_event,
10478 	      struct task_struct *parent,
10479 	      struct perf_event_context *parent_ctx,
10480 	      struct task_struct *child,
10481 	      struct perf_event *group_leader,
10482 	      struct perf_event_context *child_ctx)
10483 {
10484 	enum perf_event_active_state parent_state = parent_event->state;
10485 	struct perf_event *child_event;
10486 	unsigned long flags;
10487 
10488 	/*
10489 	 * Instead of creating recursive hierarchies of events,
10490 	 * we link inherited events back to the original parent,
10491 	 * which has a filp for sure, which we use as the reference
10492 	 * count:
10493 	 */
10494 	if (parent_event->parent)
10495 		parent_event = parent_event->parent;
10496 
10497 	child_event = perf_event_alloc(&parent_event->attr,
10498 					   parent_event->cpu,
10499 					   child,
10500 					   group_leader, parent_event,
10501 					   NULL, NULL, -1);
10502 	if (IS_ERR(child_event))
10503 		return child_event;
10504 
10505 	/*
10506 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10507 	 * must be under the same lock in order to serialize against
10508 	 * perf_event_release_kernel(), such that either we must observe
10509 	 * is_orphaned_event() or they will observe us on the child_list.
10510 	 */
10511 	mutex_lock(&parent_event->child_mutex);
10512 	if (is_orphaned_event(parent_event) ||
10513 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10514 		mutex_unlock(&parent_event->child_mutex);
10515 		free_event(child_event);
10516 		return NULL;
10517 	}
10518 
10519 	get_ctx(child_ctx);
10520 
10521 	/*
10522 	 * Make the child state follow the state of the parent event,
10523 	 * not its attr.disabled bit.  We hold the parent's mutex,
10524 	 * so we won't race with perf_event_{en, dis}able_family.
10525 	 */
10526 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10527 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10528 	else
10529 		child_event->state = PERF_EVENT_STATE_OFF;
10530 
10531 	if (parent_event->attr.freq) {
10532 		u64 sample_period = parent_event->hw.sample_period;
10533 		struct hw_perf_event *hwc = &child_event->hw;
10534 
10535 		hwc->sample_period = sample_period;
10536 		hwc->last_period   = sample_period;
10537 
10538 		local64_set(&hwc->period_left, sample_period);
10539 	}
10540 
10541 	child_event->ctx = child_ctx;
10542 	child_event->overflow_handler = parent_event->overflow_handler;
10543 	child_event->overflow_handler_context
10544 		= parent_event->overflow_handler_context;
10545 
10546 	/*
10547 	 * Precalculate sample_data sizes
10548 	 */
10549 	perf_event__header_size(child_event);
10550 	perf_event__id_header_size(child_event);
10551 
10552 	/*
10553 	 * Link it up in the child's context:
10554 	 */
10555 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10556 	add_event_to_ctx(child_event, child_ctx);
10557 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10558 
10559 	/*
10560 	 * Link this into the parent event's child list
10561 	 */
10562 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10563 	mutex_unlock(&parent_event->child_mutex);
10564 
10565 	return child_event;
10566 }
10567 
10568 static int inherit_group(struct perf_event *parent_event,
10569 	      struct task_struct *parent,
10570 	      struct perf_event_context *parent_ctx,
10571 	      struct task_struct *child,
10572 	      struct perf_event_context *child_ctx)
10573 {
10574 	struct perf_event *leader;
10575 	struct perf_event *sub;
10576 	struct perf_event *child_ctr;
10577 
10578 	leader = inherit_event(parent_event, parent, parent_ctx,
10579 				 child, NULL, child_ctx);
10580 	if (IS_ERR(leader))
10581 		return PTR_ERR(leader);
10582 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10583 		child_ctr = inherit_event(sub, parent, parent_ctx,
10584 					    child, leader, child_ctx);
10585 		if (IS_ERR(child_ctr))
10586 			return PTR_ERR(child_ctr);
10587 	}
10588 	return 0;
10589 }
10590 
10591 static int
10592 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10593 		   struct perf_event_context *parent_ctx,
10594 		   struct task_struct *child, int ctxn,
10595 		   int *inherited_all)
10596 {
10597 	int ret;
10598 	struct perf_event_context *child_ctx;
10599 
10600 	if (!event->attr.inherit) {
10601 		*inherited_all = 0;
10602 		return 0;
10603 	}
10604 
10605 	child_ctx = child->perf_event_ctxp[ctxn];
10606 	if (!child_ctx) {
10607 		/*
10608 		 * This is executed from the parent task context, so
10609 		 * inherit events that have been marked for cloning.
10610 		 * First allocate and initialize a context for the
10611 		 * child.
10612 		 */
10613 
10614 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10615 		if (!child_ctx)
10616 			return -ENOMEM;
10617 
10618 		child->perf_event_ctxp[ctxn] = child_ctx;
10619 	}
10620 
10621 	ret = inherit_group(event, parent, parent_ctx,
10622 			    child, child_ctx);
10623 
10624 	if (ret)
10625 		*inherited_all = 0;
10626 
10627 	return ret;
10628 }
10629 
10630 /*
10631  * Initialize the perf_event context in task_struct
10632  */
10633 static int perf_event_init_context(struct task_struct *child, int ctxn)
10634 {
10635 	struct perf_event_context *child_ctx, *parent_ctx;
10636 	struct perf_event_context *cloned_ctx;
10637 	struct perf_event *event;
10638 	struct task_struct *parent = current;
10639 	int inherited_all = 1;
10640 	unsigned long flags;
10641 	int ret = 0;
10642 
10643 	if (likely(!parent->perf_event_ctxp[ctxn]))
10644 		return 0;
10645 
10646 	/*
10647 	 * If the parent's context is a clone, pin it so it won't get
10648 	 * swapped under us.
10649 	 */
10650 	parent_ctx = perf_pin_task_context(parent, ctxn);
10651 	if (!parent_ctx)
10652 		return 0;
10653 
10654 	/*
10655 	 * No need to check if parent_ctx != NULL here; since we saw
10656 	 * it non-NULL earlier, the only reason for it to become NULL
10657 	 * is if we exit, and since we're currently in the middle of
10658 	 * a fork we can't be exiting at the same time.
10659 	 */
10660 
10661 	/*
10662 	 * Lock the parent list. No need to lock the child - not PID
10663 	 * hashed yet and not running, so nobody can access it.
10664 	 */
10665 	mutex_lock(&parent_ctx->mutex);
10666 
10667 	/*
10668 	 * We dont have to disable NMIs - we are only looking at
10669 	 * the list, not manipulating it:
10670 	 */
10671 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10672 		ret = inherit_task_group(event, parent, parent_ctx,
10673 					 child, ctxn, &inherited_all);
10674 		if (ret)
10675 			break;
10676 	}
10677 
10678 	/*
10679 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10680 	 * to allocations, but we need to prevent rotation because
10681 	 * rotate_ctx() will change the list from interrupt context.
10682 	 */
10683 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10684 	parent_ctx->rotate_disable = 1;
10685 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10686 
10687 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10688 		ret = inherit_task_group(event, parent, parent_ctx,
10689 					 child, ctxn, &inherited_all);
10690 		if (ret)
10691 			break;
10692 	}
10693 
10694 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10695 	parent_ctx->rotate_disable = 0;
10696 
10697 	child_ctx = child->perf_event_ctxp[ctxn];
10698 
10699 	if (child_ctx && inherited_all) {
10700 		/*
10701 		 * Mark the child context as a clone of the parent
10702 		 * context, or of whatever the parent is a clone of.
10703 		 *
10704 		 * Note that if the parent is a clone, the holding of
10705 		 * parent_ctx->lock avoids it from being uncloned.
10706 		 */
10707 		cloned_ctx = parent_ctx->parent_ctx;
10708 		if (cloned_ctx) {
10709 			child_ctx->parent_ctx = cloned_ctx;
10710 			child_ctx->parent_gen = parent_ctx->parent_gen;
10711 		} else {
10712 			child_ctx->parent_ctx = parent_ctx;
10713 			child_ctx->parent_gen = parent_ctx->generation;
10714 		}
10715 		get_ctx(child_ctx->parent_ctx);
10716 	}
10717 
10718 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10719 	mutex_unlock(&parent_ctx->mutex);
10720 
10721 	perf_unpin_context(parent_ctx);
10722 	put_ctx(parent_ctx);
10723 
10724 	return ret;
10725 }
10726 
10727 /*
10728  * Initialize the perf_event context in task_struct
10729  */
10730 int perf_event_init_task(struct task_struct *child)
10731 {
10732 	int ctxn, ret;
10733 
10734 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10735 	mutex_init(&child->perf_event_mutex);
10736 	INIT_LIST_HEAD(&child->perf_event_list);
10737 
10738 	for_each_task_context_nr(ctxn) {
10739 		ret = perf_event_init_context(child, ctxn);
10740 		if (ret) {
10741 			perf_event_free_task(child);
10742 			return ret;
10743 		}
10744 	}
10745 
10746 	return 0;
10747 }
10748 
10749 static void __init perf_event_init_all_cpus(void)
10750 {
10751 	struct swevent_htable *swhash;
10752 	int cpu;
10753 
10754 	for_each_possible_cpu(cpu) {
10755 		swhash = &per_cpu(swevent_htable, cpu);
10756 		mutex_init(&swhash->hlist_mutex);
10757 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10758 
10759 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10760 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10761 
10762 #ifdef CONFIG_CGROUP_PERF
10763 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10764 #endif
10765 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10766 	}
10767 }
10768 
10769 int perf_event_init_cpu(unsigned int cpu)
10770 {
10771 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10772 
10773 	mutex_lock(&swhash->hlist_mutex);
10774 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10775 		struct swevent_hlist *hlist;
10776 
10777 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10778 		WARN_ON(!hlist);
10779 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10780 	}
10781 	mutex_unlock(&swhash->hlist_mutex);
10782 	return 0;
10783 }
10784 
10785 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10786 static void __perf_event_exit_context(void *__info)
10787 {
10788 	struct perf_event_context *ctx = __info;
10789 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10790 	struct perf_event *event;
10791 
10792 	raw_spin_lock(&ctx->lock);
10793 	list_for_each_entry(event, &ctx->event_list, event_entry)
10794 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10795 	raw_spin_unlock(&ctx->lock);
10796 }
10797 
10798 static void perf_event_exit_cpu_context(int cpu)
10799 {
10800 	struct perf_event_context *ctx;
10801 	struct pmu *pmu;
10802 	int idx;
10803 
10804 	idx = srcu_read_lock(&pmus_srcu);
10805 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10806 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10807 
10808 		mutex_lock(&ctx->mutex);
10809 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10810 		mutex_unlock(&ctx->mutex);
10811 	}
10812 	srcu_read_unlock(&pmus_srcu, idx);
10813 }
10814 #else
10815 
10816 static void perf_event_exit_cpu_context(int cpu) { }
10817 
10818 #endif
10819 
10820 int perf_event_exit_cpu(unsigned int cpu)
10821 {
10822 	perf_event_exit_cpu_context(cpu);
10823 	return 0;
10824 }
10825 
10826 static int
10827 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10828 {
10829 	int cpu;
10830 
10831 	for_each_online_cpu(cpu)
10832 		perf_event_exit_cpu(cpu);
10833 
10834 	return NOTIFY_OK;
10835 }
10836 
10837 /*
10838  * Run the perf reboot notifier at the very last possible moment so that
10839  * the generic watchdog code runs as long as possible.
10840  */
10841 static struct notifier_block perf_reboot_notifier = {
10842 	.notifier_call = perf_reboot,
10843 	.priority = INT_MIN,
10844 };
10845 
10846 void __init perf_event_init(void)
10847 {
10848 	int ret;
10849 
10850 	idr_init(&pmu_idr);
10851 
10852 	perf_event_init_all_cpus();
10853 	init_srcu_struct(&pmus_srcu);
10854 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10855 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10856 	perf_pmu_register(&perf_task_clock, NULL, -1);
10857 	perf_tp_register();
10858 	perf_event_init_cpu(smp_processor_id());
10859 	register_reboot_notifier(&perf_reboot_notifier);
10860 
10861 	ret = init_hw_breakpoint();
10862 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10863 
10864 	/*
10865 	 * Build time assertion that we keep the data_head at the intended
10866 	 * location.  IOW, validation we got the __reserved[] size right.
10867 	 */
10868 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10869 		     != 1024);
10870 }
10871 
10872 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10873 			      char *page)
10874 {
10875 	struct perf_pmu_events_attr *pmu_attr =
10876 		container_of(attr, struct perf_pmu_events_attr, attr);
10877 
10878 	if (pmu_attr->event_str)
10879 		return sprintf(page, "%s\n", pmu_attr->event_str);
10880 
10881 	return 0;
10882 }
10883 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10884 
10885 static int __init perf_event_sysfs_init(void)
10886 {
10887 	struct pmu *pmu;
10888 	int ret;
10889 
10890 	mutex_lock(&pmus_lock);
10891 
10892 	ret = bus_register(&pmu_bus);
10893 	if (ret)
10894 		goto unlock;
10895 
10896 	list_for_each_entry(pmu, &pmus, entry) {
10897 		if (!pmu->name || pmu->type < 0)
10898 			continue;
10899 
10900 		ret = pmu_dev_alloc(pmu);
10901 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10902 	}
10903 	pmu_bus_running = 1;
10904 	ret = 0;
10905 
10906 unlock:
10907 	mutex_unlock(&pmus_lock);
10908 
10909 	return ret;
10910 }
10911 device_initcall(perf_event_sysfs_init);
10912 
10913 #ifdef CONFIG_CGROUP_PERF
10914 static struct cgroup_subsys_state *
10915 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10916 {
10917 	struct perf_cgroup *jc;
10918 
10919 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10920 	if (!jc)
10921 		return ERR_PTR(-ENOMEM);
10922 
10923 	jc->info = alloc_percpu(struct perf_cgroup_info);
10924 	if (!jc->info) {
10925 		kfree(jc);
10926 		return ERR_PTR(-ENOMEM);
10927 	}
10928 
10929 	return &jc->css;
10930 }
10931 
10932 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10933 {
10934 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10935 
10936 	free_percpu(jc->info);
10937 	kfree(jc);
10938 }
10939 
10940 static int __perf_cgroup_move(void *info)
10941 {
10942 	struct task_struct *task = info;
10943 	rcu_read_lock();
10944 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10945 	rcu_read_unlock();
10946 	return 0;
10947 }
10948 
10949 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10950 {
10951 	struct task_struct *task;
10952 	struct cgroup_subsys_state *css;
10953 
10954 	cgroup_taskset_for_each(task, css, tset)
10955 		task_function_call(task, __perf_cgroup_move, task);
10956 }
10957 
10958 struct cgroup_subsys perf_event_cgrp_subsys = {
10959 	.css_alloc	= perf_cgroup_css_alloc,
10960 	.css_free	= perf_cgroup_css_free,
10961 	.attach		= perf_cgroup_attach,
10962 };
10963 #endif /* CONFIG_CGROUP_PERF */
10964