xref: /openbmc/linux/kernel/events/core.c (revision 79a93295)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394 
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397 
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE		100000
402 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
404 
405 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
406 
407 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
409 
410 static int perf_sample_allowed_ns __read_mostly =
411 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412 
413 static void update_perf_cpu_limits(void)
414 {
415 	u64 tmp = perf_sample_period_ns;
416 
417 	tmp *= sysctl_perf_cpu_time_max_percent;
418 	tmp = div_u64(tmp, 100);
419 	if (!tmp)
420 		tmp = 1;
421 
422 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424 
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426 
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428 		void __user *buffer, size_t *lenp,
429 		loff_t *ppos)
430 {
431 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432 
433 	if (ret || !write)
434 		return ret;
435 
436 	/*
437 	 * If throttling is disabled don't allow the write:
438 	 */
439 	if (sysctl_perf_cpu_time_max_percent == 100 ||
440 	    sysctl_perf_cpu_time_max_percent == 0)
441 		return -EINVAL;
442 
443 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 	update_perf_cpu_limits();
446 
447 	return 0;
448 }
449 
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451 
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 				void __user *buffer, size_t *lenp,
454 				loff_t *ppos)
455 {
456 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457 
458 	if (ret || !write)
459 		return ret;
460 
461 	if (sysctl_perf_cpu_time_max_percent == 100 ||
462 	    sysctl_perf_cpu_time_max_percent == 0) {
463 		printk(KERN_WARNING
464 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 		WRITE_ONCE(perf_sample_allowed_ns, 0);
466 	} else {
467 		update_perf_cpu_limits();
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481 
482 static u64 __report_avg;
483 static u64 __report_allowed;
484 
485 static void perf_duration_warn(struct irq_work *w)
486 {
487 	printk_ratelimited(KERN_INFO
488 		"perf: interrupt took too long (%lld > %lld), lowering "
489 		"kernel.perf_event_max_sample_rate to %d\n",
490 		__report_avg, __report_allowed,
491 		sysctl_perf_event_sample_rate);
492 }
493 
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495 
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 	u64 running_len;
500 	u64 avg_len;
501 	u32 max;
502 
503 	if (max_len == 0)
504 		return;
505 
506 	/* Decay the counter by 1 average sample. */
507 	running_len = __this_cpu_read(running_sample_length);
508 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 	running_len += sample_len_ns;
510 	__this_cpu_write(running_sample_length, running_len);
511 
512 	/*
513 	 * Note: this will be biased artifically low until we have
514 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515 	 * from having to maintain a count.
516 	 */
517 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 	if (avg_len <= max_len)
519 		return;
520 
521 	__report_avg = avg_len;
522 	__report_allowed = max_len;
523 
524 	/*
525 	 * Compute a throttle threshold 25% below the current duration.
526 	 */
527 	avg_len += avg_len / 4;
528 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 	if (avg_len < max)
530 		max /= (u32)avg_len;
531 	else
532 		max = 1;
533 
534 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 	WRITE_ONCE(max_samples_per_tick, max);
536 
537 	sysctl_perf_event_sample_rate = max * HZ;
538 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539 
540 	if (!irq_work_queue(&perf_duration_work)) {
541 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542 			     "kernel.perf_event_max_sample_rate to %d\n",
543 			     __report_avg, __report_allowed,
544 			     sysctl_perf_event_sample_rate);
545 	}
546 }
547 
548 static atomic64_t perf_event_id;
549 
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 			      enum event_type_t event_type);
552 
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554 			     enum event_type_t event_type,
555 			     struct task_struct *task);
556 
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559 
560 void __weak perf_event_print_debug(void)	{ }
561 
562 extern __weak const char *perf_pmu_name(void)
563 {
564 	return "pmu";
565 }
566 
567 static inline u64 perf_clock(void)
568 {
569 	return local_clock();
570 }
571 
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574 	return event->clock();
575 }
576 
577 #ifdef CONFIG_CGROUP_PERF
578 
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582 	struct perf_event_context *ctx = event->ctx;
583 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584 
585 	/* @event doesn't care about cgroup */
586 	if (!event->cgrp)
587 		return true;
588 
589 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
590 	if (!cpuctx->cgrp)
591 		return false;
592 
593 	/*
594 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
595 	 * also enabled for all its descendant cgroups.  If @cpuctx's
596 	 * cgroup is a descendant of @event's (the test covers identity
597 	 * case), it's a match.
598 	 */
599 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 				    event->cgrp->css.cgroup);
601 }
602 
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605 	css_put(&event->cgrp->css);
606 	event->cgrp = NULL;
607 }
608 
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611 	return event->cgrp != NULL;
612 }
613 
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616 	struct perf_cgroup_info *t;
617 
618 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 	return t->time;
620 }
621 
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624 	struct perf_cgroup_info *info;
625 	u64 now;
626 
627 	now = perf_clock();
628 
629 	info = this_cpu_ptr(cgrp->info);
630 
631 	info->time += now - info->timestamp;
632 	info->timestamp = now;
633 }
634 
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 	if (cgrp_out)
639 		__update_cgrp_time(cgrp_out);
640 }
641 
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644 	struct perf_cgroup *cgrp;
645 
646 	/*
647 	 * ensure we access cgroup data only when needed and
648 	 * when we know the cgroup is pinned (css_get)
649 	 */
650 	if (!is_cgroup_event(event))
651 		return;
652 
653 	cgrp = perf_cgroup_from_task(current, event->ctx);
654 	/*
655 	 * Do not update time when cgroup is not active
656 	 */
657 	if (cgrp == event->cgrp)
658 		__update_cgrp_time(event->cgrp);
659 }
660 
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663 			  struct perf_event_context *ctx)
664 {
665 	struct perf_cgroup *cgrp;
666 	struct perf_cgroup_info *info;
667 
668 	/*
669 	 * ctx->lock held by caller
670 	 * ensure we do not access cgroup data
671 	 * unless we have the cgroup pinned (css_get)
672 	 */
673 	if (!task || !ctx->nr_cgroups)
674 		return;
675 
676 	cgrp = perf_cgroup_from_task(task, ctx);
677 	info = this_cpu_ptr(cgrp->info);
678 	info->timestamp = ctx->timestamp;
679 }
680 
681 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
683 
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692 	struct perf_cpu_context *cpuctx;
693 	struct pmu *pmu;
694 	unsigned long flags;
695 
696 	/*
697 	 * disable interrupts to avoid geting nr_cgroup
698 	 * changes via __perf_event_disable(). Also
699 	 * avoids preemption.
700 	 */
701 	local_irq_save(flags);
702 
703 	/*
704 	 * we reschedule only in the presence of cgroup
705 	 * constrained events.
706 	 */
707 
708 	list_for_each_entry_rcu(pmu, &pmus, entry) {
709 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710 		if (cpuctx->unique_pmu != pmu)
711 			continue; /* ensure we process each cpuctx once */
712 
713 		/*
714 		 * perf_cgroup_events says at least one
715 		 * context on this CPU has cgroup events.
716 		 *
717 		 * ctx->nr_cgroups reports the number of cgroup
718 		 * events for a context.
719 		 */
720 		if (cpuctx->ctx.nr_cgroups > 0) {
721 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 			perf_pmu_disable(cpuctx->ctx.pmu);
723 
724 			if (mode & PERF_CGROUP_SWOUT) {
725 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 				/*
727 				 * must not be done before ctxswout due
728 				 * to event_filter_match() in event_sched_out()
729 				 */
730 				cpuctx->cgrp = NULL;
731 			}
732 
733 			if (mode & PERF_CGROUP_SWIN) {
734 				WARN_ON_ONCE(cpuctx->cgrp);
735 				/*
736 				 * set cgrp before ctxsw in to allow
737 				 * event_filter_match() to not have to pass
738 				 * task around
739 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 				 * because cgorup events are only per-cpu
741 				 */
742 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 			}
745 			perf_pmu_enable(cpuctx->ctx.pmu);
746 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747 		}
748 	}
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754 					 struct task_struct *next)
755 {
756 	struct perf_cgroup *cgrp1;
757 	struct perf_cgroup *cgrp2 = NULL;
758 
759 	rcu_read_lock();
760 	/*
761 	 * we come here when we know perf_cgroup_events > 0
762 	 * we do not need to pass the ctx here because we know
763 	 * we are holding the rcu lock
764 	 */
765 	cgrp1 = perf_cgroup_from_task(task, NULL);
766 	cgrp2 = perf_cgroup_from_task(next, NULL);
767 
768 	/*
769 	 * only schedule out current cgroup events if we know
770 	 * that we are switching to a different cgroup. Otherwise,
771 	 * do no touch the cgroup events.
772 	 */
773 	if (cgrp1 != cgrp2)
774 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775 
776 	rcu_read_unlock();
777 }
778 
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 					struct task_struct *task)
781 {
782 	struct perf_cgroup *cgrp1;
783 	struct perf_cgroup *cgrp2 = NULL;
784 
785 	rcu_read_lock();
786 	/*
787 	 * we come here when we know perf_cgroup_events > 0
788 	 * we do not need to pass the ctx here because we know
789 	 * we are holding the rcu lock
790 	 */
791 	cgrp1 = perf_cgroup_from_task(task, NULL);
792 	cgrp2 = perf_cgroup_from_task(prev, NULL);
793 
794 	/*
795 	 * only need to schedule in cgroup events if we are changing
796 	 * cgroup during ctxsw. Cgroup events were not scheduled
797 	 * out of ctxsw out if that was not the case.
798 	 */
799 	if (cgrp1 != cgrp2)
800 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801 
802 	rcu_read_unlock();
803 }
804 
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 				      struct perf_event_attr *attr,
807 				      struct perf_event *group_leader)
808 {
809 	struct perf_cgroup *cgrp;
810 	struct cgroup_subsys_state *css;
811 	struct fd f = fdget(fd);
812 	int ret = 0;
813 
814 	if (!f.file)
815 		return -EBADF;
816 
817 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
818 					 &perf_event_cgrp_subsys);
819 	if (IS_ERR(css)) {
820 		ret = PTR_ERR(css);
821 		goto out;
822 	}
823 
824 	cgrp = container_of(css, struct perf_cgroup, css);
825 	event->cgrp = cgrp;
826 
827 	/*
828 	 * all events in a group must monitor
829 	 * the same cgroup because a task belongs
830 	 * to only one perf cgroup at a time
831 	 */
832 	if (group_leader && group_leader->cgrp != cgrp) {
833 		perf_detach_cgroup(event);
834 		ret = -EINVAL;
835 	}
836 out:
837 	fdput(f);
838 	return ret;
839 }
840 
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844 	struct perf_cgroup_info *t;
845 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 	event->shadow_ctx_time = now - t->timestamp;
847 }
848 
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852 	/*
853 	 * when the current task's perf cgroup does not match
854 	 * the event's, we need to remember to call the
855 	 * perf_mark_enable() function the first time a task with
856 	 * a matching perf cgroup is scheduled in.
857 	 */
858 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 		event->cgrp_defer_enabled = 1;
860 }
861 
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864 			 struct perf_event_context *ctx)
865 {
866 	struct perf_event *sub;
867 	u64 tstamp = perf_event_time(event);
868 
869 	if (!event->cgrp_defer_enabled)
870 		return;
871 
872 	event->cgrp_defer_enabled = 0;
873 
874 	event->tstamp_enabled = tstamp - event->total_time_enabled;
875 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 			sub->cgrp_defer_enabled = 0;
879 		}
880 	}
881 }
882 
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889 			 struct perf_event_context *ctx, bool add)
890 {
891 	struct perf_cpu_context *cpuctx;
892 
893 	if (!is_cgroup_event(event))
894 		return;
895 
896 	if (add && ctx->nr_cgroups++)
897 		return;
898 	else if (!add && --ctx->nr_cgroups)
899 		return;
900 	/*
901 	 * Because cgroup events are always per-cpu events,
902 	 * this will always be called from the right CPU.
903 	 */
904 	cpuctx = __get_cpu_context(ctx);
905 
906 	/*
907 	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 	 * ctx->nr_cgroup == 0 .
909 	 */
910 	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 		cpuctx->cgrp = event->cgrp;
912 	else if (!add)
913 		cpuctx->cgrp = NULL;
914 }
915 
916 #else /* !CONFIG_CGROUP_PERF */
917 
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921 	return true;
922 }
923 
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926 
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929 	return 0;
930 }
931 
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934 	return 0;
935 }
936 
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940 
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944 
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946 					 struct task_struct *next)
947 {
948 }
949 
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 					struct task_struct *task)
952 {
953 }
954 
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 				      struct perf_event_attr *attr,
957 				      struct perf_event *group_leader)
958 {
959 	return -EINVAL;
960 }
961 
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964 			  struct perf_event_context *ctx)
965 {
966 }
967 
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972 
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977 
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980 	return 0;
981 }
982 
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987 
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990 			 struct perf_event_context *ctx)
991 {
992 }
993 
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996 			 struct perf_event_context *ctx, bool add)
997 {
998 }
999 
1000 #endif
1001 
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012 	struct perf_cpu_context *cpuctx;
1013 	int rotations = 0;
1014 
1015 	WARN_ON(!irqs_disabled());
1016 
1017 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018 	rotations = perf_rotate_context(cpuctx);
1019 
1020 	raw_spin_lock(&cpuctx->hrtimer_lock);
1021 	if (rotations)
1022 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023 	else
1024 		cpuctx->hrtimer_active = 0;
1025 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1026 
1027 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029 
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032 	struct hrtimer *timer = &cpuctx->hrtimer;
1033 	struct pmu *pmu = cpuctx->ctx.pmu;
1034 	u64 interval;
1035 
1036 	/* no multiplexing needed for SW PMU */
1037 	if (pmu->task_ctx_nr == perf_sw_context)
1038 		return;
1039 
1040 	/*
1041 	 * check default is sane, if not set then force to
1042 	 * default interval (1/tick)
1043 	 */
1044 	interval = pmu->hrtimer_interval_ms;
1045 	if (interval < 1)
1046 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047 
1048 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049 
1050 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052 	timer->function = perf_mux_hrtimer_handler;
1053 }
1054 
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057 	struct hrtimer *timer = &cpuctx->hrtimer;
1058 	struct pmu *pmu = cpuctx->ctx.pmu;
1059 	unsigned long flags;
1060 
1061 	/* not for SW PMU */
1062 	if (pmu->task_ctx_nr == perf_sw_context)
1063 		return 0;
1064 
1065 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 	if (!cpuctx->hrtimer_active) {
1067 		cpuctx->hrtimer_active = 1;
1068 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 	}
1071 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072 
1073 	return 0;
1074 }
1075 
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 	if (!(*count)++)
1080 		pmu->pmu_disable(pmu);
1081 }
1082 
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 	if (!--(*count))
1087 		pmu->pmu_enable(pmu);
1088 }
1089 
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091 
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101 
1102 	WARN_ON(!irqs_disabled());
1103 
1104 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1105 
1106 	list_add(&ctx->active_ctx_list, head);
1107 }
1108 
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111 	WARN_ON(!irqs_disabled());
1112 
1113 	WARN_ON(list_empty(&ctx->active_ctx_list));
1114 
1115 	list_del_init(&ctx->active_ctx_list);
1116 }
1117 
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122 
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125 	struct perf_event_context *ctx;
1126 
1127 	ctx = container_of(head, struct perf_event_context, rcu_head);
1128 	kfree(ctx->task_ctx_data);
1129 	kfree(ctx);
1130 }
1131 
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134 	if (atomic_dec_and_test(&ctx->refcount)) {
1135 		if (ctx->parent_ctx)
1136 			put_ctx(ctx->parent_ctx);
1137 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138 			put_task_struct(ctx->task);
1139 		call_rcu(&ctx->rcu_head, free_ctx);
1140 	}
1141 }
1142 
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()	[ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()			[ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()		[ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event()	[ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *	task_struct::perf_event_mutex
1198  *	  perf_event_context::mutex
1199  *	    perf_event::child_mutex;
1200  *	      perf_event_context::lock
1201  *	    perf_event::mmap_mutex
1202  *	    mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207 	struct perf_event_context *ctx;
1208 
1209 again:
1210 	rcu_read_lock();
1211 	ctx = ACCESS_ONCE(event->ctx);
1212 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 		rcu_read_unlock();
1214 		goto again;
1215 	}
1216 	rcu_read_unlock();
1217 
1218 	mutex_lock_nested(&ctx->mutex, nesting);
1219 	if (event->ctx != ctx) {
1220 		mutex_unlock(&ctx->mutex);
1221 		put_ctx(ctx);
1222 		goto again;
1223 	}
1224 
1225 	return ctx;
1226 }
1227 
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231 	return perf_event_ctx_lock_nested(event, 0);
1232 }
1233 
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235 				  struct perf_event_context *ctx)
1236 {
1237 	mutex_unlock(&ctx->mutex);
1238 	put_ctx(ctx);
1239 }
1240 
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250 
1251 	lockdep_assert_held(&ctx->lock);
1252 
1253 	if (parent_ctx)
1254 		ctx->parent_ctx = NULL;
1255 	ctx->generation++;
1256 
1257 	return parent_ctx;
1258 }
1259 
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262 	/*
1263 	 * only top level events have the pid namespace they were created in
1264 	 */
1265 	if (event->parent)
1266 		event = event->parent;
1267 
1268 	return task_tgid_nr_ns(p, event->ns);
1269 }
1270 
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273 	/*
1274 	 * only top level events have the pid namespace they were created in
1275 	 */
1276 	if (event->parent)
1277 		event = event->parent;
1278 
1279 	return task_pid_nr_ns(p, event->ns);
1280 }
1281 
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288 	u64 id = event->id;
1289 
1290 	if (event->parent)
1291 		id = event->parent->id;
1292 
1293 	return id;
1294 }
1295 
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305 	struct perf_event_context *ctx;
1306 
1307 retry:
1308 	/*
1309 	 * One of the few rules of preemptible RCU is that one cannot do
1310 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311 	 * part of the read side critical section was irqs-enabled -- see
1312 	 * rcu_read_unlock_special().
1313 	 *
1314 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1315 	 * side critical section has interrupts disabled.
1316 	 */
1317 	local_irq_save(*flags);
1318 	rcu_read_lock();
1319 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320 	if (ctx) {
1321 		/*
1322 		 * If this context is a clone of another, it might
1323 		 * get swapped for another underneath us by
1324 		 * perf_event_task_sched_out, though the
1325 		 * rcu_read_lock() protects us from any context
1326 		 * getting freed.  Lock the context and check if it
1327 		 * got swapped before we could get the lock, and retry
1328 		 * if so.  If we locked the right context, then it
1329 		 * can't get swapped on us any more.
1330 		 */
1331 		raw_spin_lock(&ctx->lock);
1332 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			rcu_read_unlock();
1335 			local_irq_restore(*flags);
1336 			goto retry;
1337 		}
1338 
1339 		if (ctx->task == TASK_TOMBSTONE ||
1340 		    !atomic_inc_not_zero(&ctx->refcount)) {
1341 			raw_spin_unlock(&ctx->lock);
1342 			ctx = NULL;
1343 		} else {
1344 			WARN_ON_ONCE(ctx->task != task);
1345 		}
1346 	}
1347 	rcu_read_unlock();
1348 	if (!ctx)
1349 		local_irq_restore(*flags);
1350 	return ctx;
1351 }
1352 
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361 	struct perf_event_context *ctx;
1362 	unsigned long flags;
1363 
1364 	ctx = perf_lock_task_context(task, ctxn, &flags);
1365 	if (ctx) {
1366 		++ctx->pin_count;
1367 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368 	}
1369 	return ctx;
1370 }
1371 
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374 	unsigned long flags;
1375 
1376 	raw_spin_lock_irqsave(&ctx->lock, flags);
1377 	--ctx->pin_count;
1378 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380 
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386 	u64 now = perf_clock();
1387 
1388 	ctx->time += now - ctx->timestamp;
1389 	ctx->timestamp = now;
1390 }
1391 
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394 	struct perf_event_context *ctx = event->ctx;
1395 
1396 	if (is_cgroup_event(event))
1397 		return perf_cgroup_event_time(event);
1398 
1399 	return ctx ? ctx->time : 0;
1400 }
1401 
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407 	struct perf_event_context *ctx = event->ctx;
1408 	u64 run_end;
1409 
1410 	lockdep_assert_held(&ctx->lock);
1411 
1412 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 		return;
1415 
1416 	/*
1417 	 * in cgroup mode, time_enabled represents
1418 	 * the time the event was enabled AND active
1419 	 * tasks were in the monitored cgroup. This is
1420 	 * independent of the activity of the context as
1421 	 * there may be a mix of cgroup and non-cgroup events.
1422 	 *
1423 	 * That is why we treat cgroup events differently
1424 	 * here.
1425 	 */
1426 	if (is_cgroup_event(event))
1427 		run_end = perf_cgroup_event_time(event);
1428 	else if (ctx->is_active)
1429 		run_end = ctx->time;
1430 	else
1431 		run_end = event->tstamp_stopped;
1432 
1433 	event->total_time_enabled = run_end - event->tstamp_enabled;
1434 
1435 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 		run_end = event->tstamp_stopped;
1437 	else
1438 		run_end = perf_event_time(event);
1439 
1440 	event->total_time_running = run_end - event->tstamp_running;
1441 
1442 }
1443 
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449 	struct perf_event *event;
1450 
1451 	update_event_times(leader);
1452 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 		update_event_times(event);
1454 }
1455 
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459 	if (event->attr.pinned)
1460 		return &ctx->pinned_groups;
1461 	else
1462 		return &ctx->flexible_groups;
1463 }
1464 
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 
1473 	lockdep_assert_held(&ctx->lock);
1474 
1475 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476 	event->attach_state |= PERF_ATTACH_CONTEXT;
1477 
1478 	/*
1479 	 * If we're a stand alone event or group leader, we go to the context
1480 	 * list, group events are kept attached to the group so that
1481 	 * perf_group_detach can, at all times, locate all siblings.
1482 	 */
1483 	if (event->group_leader == event) {
1484 		struct list_head *list;
1485 
1486 		event->group_caps = event->event_caps;
1487 
1488 		list = ctx_group_list(event, ctx);
1489 		list_add_tail(&event->group_entry, list);
1490 	}
1491 
1492 	list_update_cgroup_event(event, ctx, true);
1493 
1494 	list_add_rcu(&event->event_entry, &ctx->event_list);
1495 	ctx->nr_events++;
1496 	if (event->attr.inherit_stat)
1497 		ctx->nr_stat++;
1498 
1499 	ctx->generation++;
1500 }
1501 
1502 /*
1503  * Initialize event state based on the perf_event_attr::disabled.
1504  */
1505 static inline void perf_event__state_init(struct perf_event *event)
1506 {
1507 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508 					      PERF_EVENT_STATE_INACTIVE;
1509 }
1510 
1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 {
1513 	int entry = sizeof(u64); /* value */
1514 	int size = 0;
1515 	int nr = 1;
1516 
1517 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518 		size += sizeof(u64);
1519 
1520 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521 		size += sizeof(u64);
1522 
1523 	if (event->attr.read_format & PERF_FORMAT_ID)
1524 		entry += sizeof(u64);
1525 
1526 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527 		nr += nr_siblings;
1528 		size += sizeof(u64);
1529 	}
1530 
1531 	size += entry * nr;
1532 	event->read_size = size;
1533 }
1534 
1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 {
1537 	struct perf_sample_data *data;
1538 	u16 size = 0;
1539 
1540 	if (sample_type & PERF_SAMPLE_IP)
1541 		size += sizeof(data->ip);
1542 
1543 	if (sample_type & PERF_SAMPLE_ADDR)
1544 		size += sizeof(data->addr);
1545 
1546 	if (sample_type & PERF_SAMPLE_PERIOD)
1547 		size += sizeof(data->period);
1548 
1549 	if (sample_type & PERF_SAMPLE_WEIGHT)
1550 		size += sizeof(data->weight);
1551 
1552 	if (sample_type & PERF_SAMPLE_READ)
1553 		size += event->read_size;
1554 
1555 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1556 		size += sizeof(data->data_src.val);
1557 
1558 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1559 		size += sizeof(data->txn);
1560 
1561 	event->header_size = size;
1562 }
1563 
1564 /*
1565  * Called at perf_event creation and when events are attached/detached from a
1566  * group.
1567  */
1568 static void perf_event__header_size(struct perf_event *event)
1569 {
1570 	__perf_event_read_size(event,
1571 			       event->group_leader->nr_siblings);
1572 	__perf_event_header_size(event, event->attr.sample_type);
1573 }
1574 
1575 static void perf_event__id_header_size(struct perf_event *event)
1576 {
1577 	struct perf_sample_data *data;
1578 	u64 sample_type = event->attr.sample_type;
1579 	u16 size = 0;
1580 
1581 	if (sample_type & PERF_SAMPLE_TID)
1582 		size += sizeof(data->tid_entry);
1583 
1584 	if (sample_type & PERF_SAMPLE_TIME)
1585 		size += sizeof(data->time);
1586 
1587 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588 		size += sizeof(data->id);
1589 
1590 	if (sample_type & PERF_SAMPLE_ID)
1591 		size += sizeof(data->id);
1592 
1593 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1594 		size += sizeof(data->stream_id);
1595 
1596 	if (sample_type & PERF_SAMPLE_CPU)
1597 		size += sizeof(data->cpu_entry);
1598 
1599 	event->id_header_size = size;
1600 }
1601 
1602 static bool perf_event_validate_size(struct perf_event *event)
1603 {
1604 	/*
1605 	 * The values computed here will be over-written when we actually
1606 	 * attach the event.
1607 	 */
1608 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610 	perf_event__id_header_size(event);
1611 
1612 	/*
1613 	 * Sum the lot; should not exceed the 64k limit we have on records.
1614 	 * Conservative limit to allow for callchains and other variable fields.
1615 	 */
1616 	if (event->read_size + event->header_size +
1617 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618 		return false;
1619 
1620 	return true;
1621 }
1622 
1623 static void perf_group_attach(struct perf_event *event)
1624 {
1625 	struct perf_event *group_leader = event->group_leader, *pos;
1626 
1627 	/*
1628 	 * We can have double attach due to group movement in perf_event_open.
1629 	 */
1630 	if (event->attach_state & PERF_ATTACH_GROUP)
1631 		return;
1632 
1633 	event->attach_state |= PERF_ATTACH_GROUP;
1634 
1635 	if (group_leader == event)
1636 		return;
1637 
1638 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639 
1640 	group_leader->group_caps &= event->event_caps;
1641 
1642 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643 	group_leader->nr_siblings++;
1644 
1645 	perf_event__header_size(group_leader);
1646 
1647 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648 		perf_event__header_size(pos);
1649 }
1650 
1651 /*
1652  * Remove a event from the lists for its context.
1653  * Must be called with ctx->mutex and ctx->lock held.
1654  */
1655 static void
1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657 {
1658 	WARN_ON_ONCE(event->ctx != ctx);
1659 	lockdep_assert_held(&ctx->lock);
1660 
1661 	/*
1662 	 * We can have double detach due to exit/hot-unplug + close.
1663 	 */
1664 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665 		return;
1666 
1667 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668 
1669 	list_update_cgroup_event(event, ctx, false);
1670 
1671 	ctx->nr_events--;
1672 	if (event->attr.inherit_stat)
1673 		ctx->nr_stat--;
1674 
1675 	list_del_rcu(&event->event_entry);
1676 
1677 	if (event->group_leader == event)
1678 		list_del_init(&event->group_entry);
1679 
1680 	update_group_times(event);
1681 
1682 	/*
1683 	 * If event was in error state, then keep it
1684 	 * that way, otherwise bogus counts will be
1685 	 * returned on read(). The only way to get out
1686 	 * of error state is by explicit re-enabling
1687 	 * of the event
1688 	 */
1689 	if (event->state > PERF_EVENT_STATE_OFF)
1690 		event->state = PERF_EVENT_STATE_OFF;
1691 
1692 	ctx->generation++;
1693 }
1694 
1695 static void perf_group_detach(struct perf_event *event)
1696 {
1697 	struct perf_event *sibling, *tmp;
1698 	struct list_head *list = NULL;
1699 
1700 	/*
1701 	 * We can have double detach due to exit/hot-unplug + close.
1702 	 */
1703 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1704 		return;
1705 
1706 	event->attach_state &= ~PERF_ATTACH_GROUP;
1707 
1708 	/*
1709 	 * If this is a sibling, remove it from its group.
1710 	 */
1711 	if (event->group_leader != event) {
1712 		list_del_init(&event->group_entry);
1713 		event->group_leader->nr_siblings--;
1714 		goto out;
1715 	}
1716 
1717 	if (!list_empty(&event->group_entry))
1718 		list = &event->group_entry;
1719 
1720 	/*
1721 	 * If this was a group event with sibling events then
1722 	 * upgrade the siblings to singleton events by adding them
1723 	 * to whatever list we are on.
1724 	 */
1725 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726 		if (list)
1727 			list_move_tail(&sibling->group_entry, list);
1728 		sibling->group_leader = sibling;
1729 
1730 		/* Inherit group flags from the previous leader */
1731 		sibling->group_caps = event->group_caps;
1732 
1733 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1734 	}
1735 
1736 out:
1737 	perf_event__header_size(event->group_leader);
1738 
1739 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740 		perf_event__header_size(tmp);
1741 }
1742 
1743 static bool is_orphaned_event(struct perf_event *event)
1744 {
1745 	return event->state == PERF_EVENT_STATE_DEAD;
1746 }
1747 
1748 static inline int __pmu_filter_match(struct perf_event *event)
1749 {
1750 	struct pmu *pmu = event->pmu;
1751 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1752 }
1753 
1754 /*
1755  * Check whether we should attempt to schedule an event group based on
1756  * PMU-specific filtering. An event group can consist of HW and SW events,
1757  * potentially with a SW leader, so we must check all the filters, to
1758  * determine whether a group is schedulable:
1759  */
1760 static inline int pmu_filter_match(struct perf_event *event)
1761 {
1762 	struct perf_event *child;
1763 
1764 	if (!__pmu_filter_match(event))
1765 		return 0;
1766 
1767 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1768 		if (!__pmu_filter_match(child))
1769 			return 0;
1770 	}
1771 
1772 	return 1;
1773 }
1774 
1775 static inline int
1776 event_filter_match(struct perf_event *event)
1777 {
1778 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779 	       perf_cgroup_match(event) && pmu_filter_match(event);
1780 }
1781 
1782 static void
1783 event_sched_out(struct perf_event *event,
1784 		  struct perf_cpu_context *cpuctx,
1785 		  struct perf_event_context *ctx)
1786 {
1787 	u64 tstamp = perf_event_time(event);
1788 	u64 delta;
1789 
1790 	WARN_ON_ONCE(event->ctx != ctx);
1791 	lockdep_assert_held(&ctx->lock);
1792 
1793 	/*
1794 	 * An event which could not be activated because of
1795 	 * filter mismatch still needs to have its timings
1796 	 * maintained, otherwise bogus information is return
1797 	 * via read() for time_enabled, time_running:
1798 	 */
1799 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800 	    !event_filter_match(event)) {
1801 		delta = tstamp - event->tstamp_stopped;
1802 		event->tstamp_running += delta;
1803 		event->tstamp_stopped = tstamp;
1804 	}
1805 
1806 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1807 		return;
1808 
1809 	perf_pmu_disable(event->pmu);
1810 
1811 	event->tstamp_stopped = tstamp;
1812 	event->pmu->del(event, 0);
1813 	event->oncpu = -1;
1814 	event->state = PERF_EVENT_STATE_INACTIVE;
1815 	if (event->pending_disable) {
1816 		event->pending_disable = 0;
1817 		event->state = PERF_EVENT_STATE_OFF;
1818 	}
1819 
1820 	if (!is_software_event(event))
1821 		cpuctx->active_oncpu--;
1822 	if (!--ctx->nr_active)
1823 		perf_event_ctx_deactivate(ctx);
1824 	if (event->attr.freq && event->attr.sample_freq)
1825 		ctx->nr_freq--;
1826 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1827 		cpuctx->exclusive = 0;
1828 
1829 	perf_pmu_enable(event->pmu);
1830 }
1831 
1832 static void
1833 group_sched_out(struct perf_event *group_event,
1834 		struct perf_cpu_context *cpuctx,
1835 		struct perf_event_context *ctx)
1836 {
1837 	struct perf_event *event;
1838 	int state = group_event->state;
1839 
1840 	perf_pmu_disable(ctx->pmu);
1841 
1842 	event_sched_out(group_event, cpuctx, ctx);
1843 
1844 	/*
1845 	 * Schedule out siblings (if any):
1846 	 */
1847 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848 		event_sched_out(event, cpuctx, ctx);
1849 
1850 	perf_pmu_enable(ctx->pmu);
1851 
1852 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853 		cpuctx->exclusive = 0;
1854 }
1855 
1856 #define DETACH_GROUP	0x01UL
1857 
1858 /*
1859  * Cross CPU call to remove a performance event
1860  *
1861  * We disable the event on the hardware level first. After that we
1862  * remove it from the context list.
1863  */
1864 static void
1865 __perf_remove_from_context(struct perf_event *event,
1866 			   struct perf_cpu_context *cpuctx,
1867 			   struct perf_event_context *ctx,
1868 			   void *info)
1869 {
1870 	unsigned long flags = (unsigned long)info;
1871 
1872 	event_sched_out(event, cpuctx, ctx);
1873 	if (flags & DETACH_GROUP)
1874 		perf_group_detach(event);
1875 	list_del_event(event, ctx);
1876 
1877 	if (!ctx->nr_events && ctx->is_active) {
1878 		ctx->is_active = 0;
1879 		if (ctx->task) {
1880 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881 			cpuctx->task_ctx = NULL;
1882 		}
1883 	}
1884 }
1885 
1886 /*
1887  * Remove the event from a task's (or a CPU's) list of events.
1888  *
1889  * If event->ctx is a cloned context, callers must make sure that
1890  * every task struct that event->ctx->task could possibly point to
1891  * remains valid.  This is OK when called from perf_release since
1892  * that only calls us on the top-level context, which can't be a clone.
1893  * When called from perf_event_exit_task, it's OK because the
1894  * context has been detached from its task.
1895  */
1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897 {
1898 	lockdep_assert_held(&event->ctx->mutex);
1899 
1900 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1901 }
1902 
1903 /*
1904  * Cross CPU call to disable a performance event
1905  */
1906 static void __perf_event_disable(struct perf_event *event,
1907 				 struct perf_cpu_context *cpuctx,
1908 				 struct perf_event_context *ctx,
1909 				 void *info)
1910 {
1911 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1912 		return;
1913 
1914 	update_context_time(ctx);
1915 	update_cgrp_time_from_event(event);
1916 	update_group_times(event);
1917 	if (event == event->group_leader)
1918 		group_sched_out(event, cpuctx, ctx);
1919 	else
1920 		event_sched_out(event, cpuctx, ctx);
1921 	event->state = PERF_EVENT_STATE_OFF;
1922 }
1923 
1924 /*
1925  * Disable a event.
1926  *
1927  * If event->ctx is a cloned context, callers must make sure that
1928  * every task struct that event->ctx->task could possibly point to
1929  * remains valid.  This condition is satisifed when called through
1930  * perf_event_for_each_child or perf_event_for_each because they
1931  * hold the top-level event's child_mutex, so any descendant that
1932  * goes to exit will block in perf_event_exit_event().
1933  *
1934  * When called from perf_pending_event it's OK because event->ctx
1935  * is the current context on this CPU and preemption is disabled,
1936  * hence we can't get into perf_event_task_sched_out for this context.
1937  */
1938 static void _perf_event_disable(struct perf_event *event)
1939 {
1940 	struct perf_event_context *ctx = event->ctx;
1941 
1942 	raw_spin_lock_irq(&ctx->lock);
1943 	if (event->state <= PERF_EVENT_STATE_OFF) {
1944 		raw_spin_unlock_irq(&ctx->lock);
1945 		return;
1946 	}
1947 	raw_spin_unlock_irq(&ctx->lock);
1948 
1949 	event_function_call(event, __perf_event_disable, NULL);
1950 }
1951 
1952 void perf_event_disable_local(struct perf_event *event)
1953 {
1954 	event_function_local(event, __perf_event_disable, NULL);
1955 }
1956 
1957 /*
1958  * Strictly speaking kernel users cannot create groups and therefore this
1959  * interface does not need the perf_event_ctx_lock() magic.
1960  */
1961 void perf_event_disable(struct perf_event *event)
1962 {
1963 	struct perf_event_context *ctx;
1964 
1965 	ctx = perf_event_ctx_lock(event);
1966 	_perf_event_disable(event);
1967 	perf_event_ctx_unlock(event, ctx);
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_disable);
1970 
1971 void perf_event_disable_inatomic(struct perf_event *event)
1972 {
1973 	event->pending_disable = 1;
1974 	irq_work_queue(&event->pending);
1975 }
1976 
1977 static void perf_set_shadow_time(struct perf_event *event,
1978 				 struct perf_event_context *ctx,
1979 				 u64 tstamp)
1980 {
1981 	/*
1982 	 * use the correct time source for the time snapshot
1983 	 *
1984 	 * We could get by without this by leveraging the
1985 	 * fact that to get to this function, the caller
1986 	 * has most likely already called update_context_time()
1987 	 * and update_cgrp_time_xx() and thus both timestamp
1988 	 * are identical (or very close). Given that tstamp is,
1989 	 * already adjusted for cgroup, we could say that:
1990 	 *    tstamp - ctx->timestamp
1991 	 * is equivalent to
1992 	 *    tstamp - cgrp->timestamp.
1993 	 *
1994 	 * Then, in perf_output_read(), the calculation would
1995 	 * work with no changes because:
1996 	 * - event is guaranteed scheduled in
1997 	 * - no scheduled out in between
1998 	 * - thus the timestamp would be the same
1999 	 *
2000 	 * But this is a bit hairy.
2001 	 *
2002 	 * So instead, we have an explicit cgroup call to remain
2003 	 * within the time time source all along. We believe it
2004 	 * is cleaner and simpler to understand.
2005 	 */
2006 	if (is_cgroup_event(event))
2007 		perf_cgroup_set_shadow_time(event, tstamp);
2008 	else
2009 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2010 }
2011 
2012 #define MAX_INTERRUPTS (~0ULL)
2013 
2014 static void perf_log_throttle(struct perf_event *event, int enable);
2015 static void perf_log_itrace_start(struct perf_event *event);
2016 
2017 static int
2018 event_sched_in(struct perf_event *event,
2019 		 struct perf_cpu_context *cpuctx,
2020 		 struct perf_event_context *ctx)
2021 {
2022 	u64 tstamp = perf_event_time(event);
2023 	int ret = 0;
2024 
2025 	lockdep_assert_held(&ctx->lock);
2026 
2027 	if (event->state <= PERF_EVENT_STATE_OFF)
2028 		return 0;
2029 
2030 	WRITE_ONCE(event->oncpu, smp_processor_id());
2031 	/*
2032 	 * Order event::oncpu write to happen before the ACTIVE state
2033 	 * is visible.
2034 	 */
2035 	smp_wmb();
2036 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037 
2038 	/*
2039 	 * Unthrottle events, since we scheduled we might have missed several
2040 	 * ticks already, also for a heavily scheduling task there is little
2041 	 * guarantee it'll get a tick in a timely manner.
2042 	 */
2043 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044 		perf_log_throttle(event, 1);
2045 		event->hw.interrupts = 0;
2046 	}
2047 
2048 	/*
2049 	 * The new state must be visible before we turn it on in the hardware:
2050 	 */
2051 	smp_wmb();
2052 
2053 	perf_pmu_disable(event->pmu);
2054 
2055 	perf_set_shadow_time(event, ctx, tstamp);
2056 
2057 	perf_log_itrace_start(event);
2058 
2059 	if (event->pmu->add(event, PERF_EF_START)) {
2060 		event->state = PERF_EVENT_STATE_INACTIVE;
2061 		event->oncpu = -1;
2062 		ret = -EAGAIN;
2063 		goto out;
2064 	}
2065 
2066 	event->tstamp_running += tstamp - event->tstamp_stopped;
2067 
2068 	if (!is_software_event(event))
2069 		cpuctx->active_oncpu++;
2070 	if (!ctx->nr_active++)
2071 		perf_event_ctx_activate(ctx);
2072 	if (event->attr.freq && event->attr.sample_freq)
2073 		ctx->nr_freq++;
2074 
2075 	if (event->attr.exclusive)
2076 		cpuctx->exclusive = 1;
2077 
2078 out:
2079 	perf_pmu_enable(event->pmu);
2080 
2081 	return ret;
2082 }
2083 
2084 static int
2085 group_sched_in(struct perf_event *group_event,
2086 	       struct perf_cpu_context *cpuctx,
2087 	       struct perf_event_context *ctx)
2088 {
2089 	struct perf_event *event, *partial_group = NULL;
2090 	struct pmu *pmu = ctx->pmu;
2091 	u64 now = ctx->time;
2092 	bool simulate = false;
2093 
2094 	if (group_event->state == PERF_EVENT_STATE_OFF)
2095 		return 0;
2096 
2097 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098 
2099 	if (event_sched_in(group_event, cpuctx, ctx)) {
2100 		pmu->cancel_txn(pmu);
2101 		perf_mux_hrtimer_restart(cpuctx);
2102 		return -EAGAIN;
2103 	}
2104 
2105 	/*
2106 	 * Schedule in siblings as one group (if any):
2107 	 */
2108 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109 		if (event_sched_in(event, cpuctx, ctx)) {
2110 			partial_group = event;
2111 			goto group_error;
2112 		}
2113 	}
2114 
2115 	if (!pmu->commit_txn(pmu))
2116 		return 0;
2117 
2118 group_error:
2119 	/*
2120 	 * Groups can be scheduled in as one unit only, so undo any
2121 	 * partial group before returning:
2122 	 * The events up to the failed event are scheduled out normally,
2123 	 * tstamp_stopped will be updated.
2124 	 *
2125 	 * The failed events and the remaining siblings need to have
2126 	 * their timings updated as if they had gone thru event_sched_in()
2127 	 * and event_sched_out(). This is required to get consistent timings
2128 	 * across the group. This also takes care of the case where the group
2129 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 	 * the time the event was actually stopped, such that time delta
2131 	 * calculation in update_event_times() is correct.
2132 	 */
2133 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134 		if (event == partial_group)
2135 			simulate = true;
2136 
2137 		if (simulate) {
2138 			event->tstamp_running += now - event->tstamp_stopped;
2139 			event->tstamp_stopped = now;
2140 		} else {
2141 			event_sched_out(event, cpuctx, ctx);
2142 		}
2143 	}
2144 	event_sched_out(group_event, cpuctx, ctx);
2145 
2146 	pmu->cancel_txn(pmu);
2147 
2148 	perf_mux_hrtimer_restart(cpuctx);
2149 
2150 	return -EAGAIN;
2151 }
2152 
2153 /*
2154  * Work out whether we can put this event group on the CPU now.
2155  */
2156 static int group_can_go_on(struct perf_event *event,
2157 			   struct perf_cpu_context *cpuctx,
2158 			   int can_add_hw)
2159 {
2160 	/*
2161 	 * Groups consisting entirely of software events can always go on.
2162 	 */
2163 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164 		return 1;
2165 	/*
2166 	 * If an exclusive group is already on, no other hardware
2167 	 * events can go on.
2168 	 */
2169 	if (cpuctx->exclusive)
2170 		return 0;
2171 	/*
2172 	 * If this group is exclusive and there are already
2173 	 * events on the CPU, it can't go on.
2174 	 */
2175 	if (event->attr.exclusive && cpuctx->active_oncpu)
2176 		return 0;
2177 	/*
2178 	 * Otherwise, try to add it if all previous groups were able
2179 	 * to go on.
2180 	 */
2181 	return can_add_hw;
2182 }
2183 
2184 static void add_event_to_ctx(struct perf_event *event,
2185 			       struct perf_event_context *ctx)
2186 {
2187 	u64 tstamp = perf_event_time(event);
2188 
2189 	list_add_event(event, ctx);
2190 	perf_group_attach(event);
2191 	event->tstamp_enabled = tstamp;
2192 	event->tstamp_running = tstamp;
2193 	event->tstamp_stopped = tstamp;
2194 }
2195 
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 			  struct perf_cpu_context *cpuctx,
2198 			  enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 	     struct perf_cpu_context *cpuctx,
2202 	     enum event_type_t event_type,
2203 	     struct task_struct *task);
2204 
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 			       struct perf_event_context *ctx)
2207 {
2208 	if (!cpuctx->task_ctx)
2209 		return;
2210 
2211 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212 		return;
2213 
2214 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215 }
2216 
2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218 				struct perf_event_context *ctx,
2219 				struct task_struct *task)
2220 {
2221 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222 	if (ctx)
2223 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225 	if (ctx)
2226 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227 }
2228 
2229 static void ctx_resched(struct perf_cpu_context *cpuctx,
2230 			struct perf_event_context *task_ctx)
2231 {
2232 	perf_pmu_disable(cpuctx->ctx.pmu);
2233 	if (task_ctx)
2234 		task_ctx_sched_out(cpuctx, task_ctx);
2235 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236 	perf_event_sched_in(cpuctx, task_ctx, current);
2237 	perf_pmu_enable(cpuctx->ctx.pmu);
2238 }
2239 
2240 /*
2241  * Cross CPU call to install and enable a performance event
2242  *
2243  * Very similar to remote_function() + event_function() but cannot assume that
2244  * things like ctx->is_active and cpuctx->task_ctx are set.
2245  */
2246 static int  __perf_install_in_context(void *info)
2247 {
2248 	struct perf_event *event = info;
2249 	struct perf_event_context *ctx = event->ctx;
2250 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252 	bool activate = true;
2253 	int ret = 0;
2254 
2255 	raw_spin_lock(&cpuctx->ctx.lock);
2256 	if (ctx->task) {
2257 		raw_spin_lock(&ctx->lock);
2258 		task_ctx = ctx;
2259 
2260 		/* If we're on the wrong CPU, try again */
2261 		if (task_cpu(ctx->task) != smp_processor_id()) {
2262 			ret = -ESRCH;
2263 			goto unlock;
2264 		}
2265 
2266 		/*
2267 		 * If we're on the right CPU, see if the task we target is
2268 		 * current, if not we don't have to activate the ctx, a future
2269 		 * context switch will do that for us.
2270 		 */
2271 		if (ctx->task != current)
2272 			activate = false;
2273 		else
2274 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275 
2276 	} else if (task_ctx) {
2277 		raw_spin_lock(&task_ctx->lock);
2278 	}
2279 
2280 	if (activate) {
2281 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2282 		add_event_to_ctx(event, ctx);
2283 		ctx_resched(cpuctx, task_ctx);
2284 	} else {
2285 		add_event_to_ctx(event, ctx);
2286 	}
2287 
2288 unlock:
2289 	perf_ctx_unlock(cpuctx, task_ctx);
2290 
2291 	return ret;
2292 }
2293 
2294 /*
2295  * Attach a performance event to a context.
2296  *
2297  * Very similar to event_function_call, see comment there.
2298  */
2299 static void
2300 perf_install_in_context(struct perf_event_context *ctx,
2301 			struct perf_event *event,
2302 			int cpu)
2303 {
2304 	struct task_struct *task = READ_ONCE(ctx->task);
2305 
2306 	lockdep_assert_held(&ctx->mutex);
2307 
2308 	if (event->cpu != -1)
2309 		event->cpu = cpu;
2310 
2311 	/*
2312 	 * Ensures that if we can observe event->ctx, both the event and ctx
2313 	 * will be 'complete'. See perf_iterate_sb_cpu().
2314 	 */
2315 	smp_store_release(&event->ctx, ctx);
2316 
2317 	if (!task) {
2318 		cpu_function_call(cpu, __perf_install_in_context, event);
2319 		return;
2320 	}
2321 
2322 	/*
2323 	 * Should not happen, we validate the ctx is still alive before calling.
2324 	 */
2325 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2326 		return;
2327 
2328 	/*
2329 	 * Installing events is tricky because we cannot rely on ctx->is_active
2330 	 * to be set in case this is the nr_events 0 -> 1 transition.
2331 	 */
2332 again:
2333 	/*
2334 	 * Cannot use task_function_call() because we need to run on the task's
2335 	 * CPU regardless of whether its current or not.
2336 	 */
2337 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2338 		return;
2339 
2340 	raw_spin_lock_irq(&ctx->lock);
2341 	task = ctx->task;
2342 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2343 		/*
2344 		 * Cannot happen because we already checked above (which also
2345 		 * cannot happen), and we hold ctx->mutex, which serializes us
2346 		 * against perf_event_exit_task_context().
2347 		 */
2348 		raw_spin_unlock_irq(&ctx->lock);
2349 		return;
2350 	}
2351 	raw_spin_unlock_irq(&ctx->lock);
2352 	/*
2353 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2354 	 * unconditionally.
2355 	 */
2356 	goto again;
2357 }
2358 
2359 /*
2360  * Put a event into inactive state and update time fields.
2361  * Enabling the leader of a group effectively enables all
2362  * the group members that aren't explicitly disabled, so we
2363  * have to update their ->tstamp_enabled also.
2364  * Note: this works for group members as well as group leaders
2365  * since the non-leader members' sibling_lists will be empty.
2366  */
2367 static void __perf_event_mark_enabled(struct perf_event *event)
2368 {
2369 	struct perf_event *sub;
2370 	u64 tstamp = perf_event_time(event);
2371 
2372 	event->state = PERF_EVENT_STATE_INACTIVE;
2373 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2374 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2375 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2376 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2377 	}
2378 }
2379 
2380 /*
2381  * Cross CPU call to enable a performance event
2382  */
2383 static void __perf_event_enable(struct perf_event *event,
2384 				struct perf_cpu_context *cpuctx,
2385 				struct perf_event_context *ctx,
2386 				void *info)
2387 {
2388 	struct perf_event *leader = event->group_leader;
2389 	struct perf_event_context *task_ctx;
2390 
2391 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2392 	    event->state <= PERF_EVENT_STATE_ERROR)
2393 		return;
2394 
2395 	if (ctx->is_active)
2396 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2397 
2398 	__perf_event_mark_enabled(event);
2399 
2400 	if (!ctx->is_active)
2401 		return;
2402 
2403 	if (!event_filter_match(event)) {
2404 		if (is_cgroup_event(event))
2405 			perf_cgroup_defer_enabled(event);
2406 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2407 		return;
2408 	}
2409 
2410 	/*
2411 	 * If the event is in a group and isn't the group leader,
2412 	 * then don't put it on unless the group is on.
2413 	 */
2414 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2415 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2416 		return;
2417 	}
2418 
2419 	task_ctx = cpuctx->task_ctx;
2420 	if (ctx->task)
2421 		WARN_ON_ONCE(task_ctx != ctx);
2422 
2423 	ctx_resched(cpuctx, task_ctx);
2424 }
2425 
2426 /*
2427  * Enable a event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each as described
2433  * for perf_event_disable.
2434  */
2435 static void _perf_event_enable(struct perf_event *event)
2436 {
2437 	struct perf_event_context *ctx = event->ctx;
2438 
2439 	raw_spin_lock_irq(&ctx->lock);
2440 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 	    event->state <  PERF_EVENT_STATE_ERROR) {
2442 		raw_spin_unlock_irq(&ctx->lock);
2443 		return;
2444 	}
2445 
2446 	/*
2447 	 * If the event is in error state, clear that first.
2448 	 *
2449 	 * That way, if we see the event in error state below, we know that it
2450 	 * has gone back into error state, as distinct from the task having
2451 	 * been scheduled away before the cross-call arrived.
2452 	 */
2453 	if (event->state == PERF_EVENT_STATE_ERROR)
2454 		event->state = PERF_EVENT_STATE_OFF;
2455 	raw_spin_unlock_irq(&ctx->lock);
2456 
2457 	event_function_call(event, __perf_event_enable, NULL);
2458 }
2459 
2460 /*
2461  * See perf_event_disable();
2462  */
2463 void perf_event_enable(struct perf_event *event)
2464 {
2465 	struct perf_event_context *ctx;
2466 
2467 	ctx = perf_event_ctx_lock(event);
2468 	_perf_event_enable(event);
2469 	perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_enable);
2472 
2473 struct stop_event_data {
2474 	struct perf_event	*event;
2475 	unsigned int		restart;
2476 };
2477 
2478 static int __perf_event_stop(void *info)
2479 {
2480 	struct stop_event_data *sd = info;
2481 	struct perf_event *event = sd->event;
2482 
2483 	/* if it's already INACTIVE, do nothing */
2484 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2485 		return 0;
2486 
2487 	/* matches smp_wmb() in event_sched_in() */
2488 	smp_rmb();
2489 
2490 	/*
2491 	 * There is a window with interrupts enabled before we get here,
2492 	 * so we need to check again lest we try to stop another CPU's event.
2493 	 */
2494 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2495 		return -EAGAIN;
2496 
2497 	event->pmu->stop(event, PERF_EF_UPDATE);
2498 
2499 	/*
2500 	 * May race with the actual stop (through perf_pmu_output_stop()),
2501 	 * but it is only used for events with AUX ring buffer, and such
2502 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2503 	 * see comments in perf_aux_output_begin().
2504 	 *
2505 	 * Since this is happening on a event-local CPU, no trace is lost
2506 	 * while restarting.
2507 	 */
2508 	if (sd->restart)
2509 		event->pmu->start(event, 0);
2510 
2511 	return 0;
2512 }
2513 
2514 static int perf_event_stop(struct perf_event *event, int restart)
2515 {
2516 	struct stop_event_data sd = {
2517 		.event		= event,
2518 		.restart	= restart,
2519 	};
2520 	int ret = 0;
2521 
2522 	do {
2523 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2524 			return 0;
2525 
2526 		/* matches smp_wmb() in event_sched_in() */
2527 		smp_rmb();
2528 
2529 		/*
2530 		 * We only want to restart ACTIVE events, so if the event goes
2531 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2532 		 * fall through with ret==-ENXIO.
2533 		 */
2534 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2535 					__perf_event_stop, &sd);
2536 	} while (ret == -EAGAIN);
2537 
2538 	return ret;
2539 }
2540 
2541 /*
2542  * In order to contain the amount of racy and tricky in the address filter
2543  * configuration management, it is a two part process:
2544  *
2545  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2546  *      we update the addresses of corresponding vmas in
2547  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2548  * (p2) when an event is scheduled in (pmu::add), it calls
2549  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2550  *      if the generation has changed since the previous call.
2551  *
2552  * If (p1) happens while the event is active, we restart it to force (p2).
2553  *
2554  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2555  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2556  *     ioctl;
2557  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2558  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2559  *     for reading;
2560  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2561  *     of exec.
2562  */
2563 void perf_event_addr_filters_sync(struct perf_event *event)
2564 {
2565 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2566 
2567 	if (!has_addr_filter(event))
2568 		return;
2569 
2570 	raw_spin_lock(&ifh->lock);
2571 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2572 		event->pmu->addr_filters_sync(event);
2573 		event->hw.addr_filters_gen = event->addr_filters_gen;
2574 	}
2575 	raw_spin_unlock(&ifh->lock);
2576 }
2577 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2578 
2579 static int _perf_event_refresh(struct perf_event *event, int refresh)
2580 {
2581 	/*
2582 	 * not supported on inherited events
2583 	 */
2584 	if (event->attr.inherit || !is_sampling_event(event))
2585 		return -EINVAL;
2586 
2587 	atomic_add(refresh, &event->event_limit);
2588 	_perf_event_enable(event);
2589 
2590 	return 0;
2591 }
2592 
2593 /*
2594  * See perf_event_disable()
2595  */
2596 int perf_event_refresh(struct perf_event *event, int refresh)
2597 {
2598 	struct perf_event_context *ctx;
2599 	int ret;
2600 
2601 	ctx = perf_event_ctx_lock(event);
2602 	ret = _perf_event_refresh(event, refresh);
2603 	perf_event_ctx_unlock(event, ctx);
2604 
2605 	return ret;
2606 }
2607 EXPORT_SYMBOL_GPL(perf_event_refresh);
2608 
2609 static void ctx_sched_out(struct perf_event_context *ctx,
2610 			  struct perf_cpu_context *cpuctx,
2611 			  enum event_type_t event_type)
2612 {
2613 	int is_active = ctx->is_active;
2614 	struct perf_event *event;
2615 
2616 	lockdep_assert_held(&ctx->lock);
2617 
2618 	if (likely(!ctx->nr_events)) {
2619 		/*
2620 		 * See __perf_remove_from_context().
2621 		 */
2622 		WARN_ON_ONCE(ctx->is_active);
2623 		if (ctx->task)
2624 			WARN_ON_ONCE(cpuctx->task_ctx);
2625 		return;
2626 	}
2627 
2628 	ctx->is_active &= ~event_type;
2629 	if (!(ctx->is_active & EVENT_ALL))
2630 		ctx->is_active = 0;
2631 
2632 	if (ctx->task) {
2633 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2634 		if (!ctx->is_active)
2635 			cpuctx->task_ctx = NULL;
2636 	}
2637 
2638 	/*
2639 	 * Always update time if it was set; not only when it changes.
2640 	 * Otherwise we can 'forget' to update time for any but the last
2641 	 * context we sched out. For example:
2642 	 *
2643 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2644 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2645 	 *
2646 	 * would only update time for the pinned events.
2647 	 */
2648 	if (is_active & EVENT_TIME) {
2649 		/* update (and stop) ctx time */
2650 		update_context_time(ctx);
2651 		update_cgrp_time_from_cpuctx(cpuctx);
2652 	}
2653 
2654 	is_active ^= ctx->is_active; /* changed bits */
2655 
2656 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2657 		return;
2658 
2659 	perf_pmu_disable(ctx->pmu);
2660 	if (is_active & EVENT_PINNED) {
2661 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2662 			group_sched_out(event, cpuctx, ctx);
2663 	}
2664 
2665 	if (is_active & EVENT_FLEXIBLE) {
2666 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2667 			group_sched_out(event, cpuctx, ctx);
2668 	}
2669 	perf_pmu_enable(ctx->pmu);
2670 }
2671 
2672 /*
2673  * Test whether two contexts are equivalent, i.e. whether they have both been
2674  * cloned from the same version of the same context.
2675  *
2676  * Equivalence is measured using a generation number in the context that is
2677  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2678  * and list_del_event().
2679  */
2680 static int context_equiv(struct perf_event_context *ctx1,
2681 			 struct perf_event_context *ctx2)
2682 {
2683 	lockdep_assert_held(&ctx1->lock);
2684 	lockdep_assert_held(&ctx2->lock);
2685 
2686 	/* Pinning disables the swap optimization */
2687 	if (ctx1->pin_count || ctx2->pin_count)
2688 		return 0;
2689 
2690 	/* If ctx1 is the parent of ctx2 */
2691 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2692 		return 1;
2693 
2694 	/* If ctx2 is the parent of ctx1 */
2695 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2696 		return 1;
2697 
2698 	/*
2699 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2700 	 * hierarchy, see perf_event_init_context().
2701 	 */
2702 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2703 			ctx1->parent_gen == ctx2->parent_gen)
2704 		return 1;
2705 
2706 	/* Unmatched */
2707 	return 0;
2708 }
2709 
2710 static void __perf_event_sync_stat(struct perf_event *event,
2711 				     struct perf_event *next_event)
2712 {
2713 	u64 value;
2714 
2715 	if (!event->attr.inherit_stat)
2716 		return;
2717 
2718 	/*
2719 	 * Update the event value, we cannot use perf_event_read()
2720 	 * because we're in the middle of a context switch and have IRQs
2721 	 * disabled, which upsets smp_call_function_single(), however
2722 	 * we know the event must be on the current CPU, therefore we
2723 	 * don't need to use it.
2724 	 */
2725 	switch (event->state) {
2726 	case PERF_EVENT_STATE_ACTIVE:
2727 		event->pmu->read(event);
2728 		/* fall-through */
2729 
2730 	case PERF_EVENT_STATE_INACTIVE:
2731 		update_event_times(event);
2732 		break;
2733 
2734 	default:
2735 		break;
2736 	}
2737 
2738 	/*
2739 	 * In order to keep per-task stats reliable we need to flip the event
2740 	 * values when we flip the contexts.
2741 	 */
2742 	value = local64_read(&next_event->count);
2743 	value = local64_xchg(&event->count, value);
2744 	local64_set(&next_event->count, value);
2745 
2746 	swap(event->total_time_enabled, next_event->total_time_enabled);
2747 	swap(event->total_time_running, next_event->total_time_running);
2748 
2749 	/*
2750 	 * Since we swizzled the values, update the user visible data too.
2751 	 */
2752 	perf_event_update_userpage(event);
2753 	perf_event_update_userpage(next_event);
2754 }
2755 
2756 static void perf_event_sync_stat(struct perf_event_context *ctx,
2757 				   struct perf_event_context *next_ctx)
2758 {
2759 	struct perf_event *event, *next_event;
2760 
2761 	if (!ctx->nr_stat)
2762 		return;
2763 
2764 	update_context_time(ctx);
2765 
2766 	event = list_first_entry(&ctx->event_list,
2767 				   struct perf_event, event_entry);
2768 
2769 	next_event = list_first_entry(&next_ctx->event_list,
2770 					struct perf_event, event_entry);
2771 
2772 	while (&event->event_entry != &ctx->event_list &&
2773 	       &next_event->event_entry != &next_ctx->event_list) {
2774 
2775 		__perf_event_sync_stat(event, next_event);
2776 
2777 		event = list_next_entry(event, event_entry);
2778 		next_event = list_next_entry(next_event, event_entry);
2779 	}
2780 }
2781 
2782 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2783 					 struct task_struct *next)
2784 {
2785 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2786 	struct perf_event_context *next_ctx;
2787 	struct perf_event_context *parent, *next_parent;
2788 	struct perf_cpu_context *cpuctx;
2789 	int do_switch = 1;
2790 
2791 	if (likely(!ctx))
2792 		return;
2793 
2794 	cpuctx = __get_cpu_context(ctx);
2795 	if (!cpuctx->task_ctx)
2796 		return;
2797 
2798 	rcu_read_lock();
2799 	next_ctx = next->perf_event_ctxp[ctxn];
2800 	if (!next_ctx)
2801 		goto unlock;
2802 
2803 	parent = rcu_dereference(ctx->parent_ctx);
2804 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2805 
2806 	/* If neither context have a parent context; they cannot be clones. */
2807 	if (!parent && !next_parent)
2808 		goto unlock;
2809 
2810 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2811 		/*
2812 		 * Looks like the two contexts are clones, so we might be
2813 		 * able to optimize the context switch.  We lock both
2814 		 * contexts and check that they are clones under the
2815 		 * lock (including re-checking that neither has been
2816 		 * uncloned in the meantime).  It doesn't matter which
2817 		 * order we take the locks because no other cpu could
2818 		 * be trying to lock both of these tasks.
2819 		 */
2820 		raw_spin_lock(&ctx->lock);
2821 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2822 		if (context_equiv(ctx, next_ctx)) {
2823 			WRITE_ONCE(ctx->task, next);
2824 			WRITE_ONCE(next_ctx->task, task);
2825 
2826 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2827 
2828 			/*
2829 			 * RCU_INIT_POINTER here is safe because we've not
2830 			 * modified the ctx and the above modification of
2831 			 * ctx->task and ctx->task_ctx_data are immaterial
2832 			 * since those values are always verified under
2833 			 * ctx->lock which we're now holding.
2834 			 */
2835 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2836 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2837 
2838 			do_switch = 0;
2839 
2840 			perf_event_sync_stat(ctx, next_ctx);
2841 		}
2842 		raw_spin_unlock(&next_ctx->lock);
2843 		raw_spin_unlock(&ctx->lock);
2844 	}
2845 unlock:
2846 	rcu_read_unlock();
2847 
2848 	if (do_switch) {
2849 		raw_spin_lock(&ctx->lock);
2850 		task_ctx_sched_out(cpuctx, ctx);
2851 		raw_spin_unlock(&ctx->lock);
2852 	}
2853 }
2854 
2855 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2856 
2857 void perf_sched_cb_dec(struct pmu *pmu)
2858 {
2859 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2860 
2861 	this_cpu_dec(perf_sched_cb_usages);
2862 
2863 	if (!--cpuctx->sched_cb_usage)
2864 		list_del(&cpuctx->sched_cb_entry);
2865 }
2866 
2867 
2868 void perf_sched_cb_inc(struct pmu *pmu)
2869 {
2870 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2871 
2872 	if (!cpuctx->sched_cb_usage++)
2873 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2874 
2875 	this_cpu_inc(perf_sched_cb_usages);
2876 }
2877 
2878 /*
2879  * This function provides the context switch callback to the lower code
2880  * layer. It is invoked ONLY when the context switch callback is enabled.
2881  *
2882  * This callback is relevant even to per-cpu events; for example multi event
2883  * PEBS requires this to provide PID/TID information. This requires we flush
2884  * all queued PEBS records before we context switch to a new task.
2885  */
2886 static void perf_pmu_sched_task(struct task_struct *prev,
2887 				struct task_struct *next,
2888 				bool sched_in)
2889 {
2890 	struct perf_cpu_context *cpuctx;
2891 	struct pmu *pmu;
2892 
2893 	if (prev == next)
2894 		return;
2895 
2896 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2897 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2898 
2899 		if (WARN_ON_ONCE(!pmu->sched_task))
2900 			continue;
2901 
2902 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2903 		perf_pmu_disable(pmu);
2904 
2905 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2906 
2907 		perf_pmu_enable(pmu);
2908 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2909 	}
2910 }
2911 
2912 static void perf_event_switch(struct task_struct *task,
2913 			      struct task_struct *next_prev, bool sched_in);
2914 
2915 #define for_each_task_context_nr(ctxn)					\
2916 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2917 
2918 /*
2919  * Called from scheduler to remove the events of the current task,
2920  * with interrupts disabled.
2921  *
2922  * We stop each event and update the event value in event->count.
2923  *
2924  * This does not protect us against NMI, but disable()
2925  * sets the disabled bit in the control field of event _before_
2926  * accessing the event control register. If a NMI hits, then it will
2927  * not restart the event.
2928  */
2929 void __perf_event_task_sched_out(struct task_struct *task,
2930 				 struct task_struct *next)
2931 {
2932 	int ctxn;
2933 
2934 	if (__this_cpu_read(perf_sched_cb_usages))
2935 		perf_pmu_sched_task(task, next, false);
2936 
2937 	if (atomic_read(&nr_switch_events))
2938 		perf_event_switch(task, next, false);
2939 
2940 	for_each_task_context_nr(ctxn)
2941 		perf_event_context_sched_out(task, ctxn, next);
2942 
2943 	/*
2944 	 * if cgroup events exist on this CPU, then we need
2945 	 * to check if we have to switch out PMU state.
2946 	 * cgroup event are system-wide mode only
2947 	 */
2948 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2949 		perf_cgroup_sched_out(task, next);
2950 }
2951 
2952 /*
2953  * Called with IRQs disabled
2954  */
2955 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2956 			      enum event_type_t event_type)
2957 {
2958 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2959 }
2960 
2961 static void
2962 ctx_pinned_sched_in(struct perf_event_context *ctx,
2963 		    struct perf_cpu_context *cpuctx)
2964 {
2965 	struct perf_event *event;
2966 
2967 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2968 		if (event->state <= PERF_EVENT_STATE_OFF)
2969 			continue;
2970 		if (!event_filter_match(event))
2971 			continue;
2972 
2973 		/* may need to reset tstamp_enabled */
2974 		if (is_cgroup_event(event))
2975 			perf_cgroup_mark_enabled(event, ctx);
2976 
2977 		if (group_can_go_on(event, cpuctx, 1))
2978 			group_sched_in(event, cpuctx, ctx);
2979 
2980 		/*
2981 		 * If this pinned group hasn't been scheduled,
2982 		 * put it in error state.
2983 		 */
2984 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2985 			update_group_times(event);
2986 			event->state = PERF_EVENT_STATE_ERROR;
2987 		}
2988 	}
2989 }
2990 
2991 static void
2992 ctx_flexible_sched_in(struct perf_event_context *ctx,
2993 		      struct perf_cpu_context *cpuctx)
2994 {
2995 	struct perf_event *event;
2996 	int can_add_hw = 1;
2997 
2998 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2999 		/* Ignore events in OFF or ERROR state */
3000 		if (event->state <= PERF_EVENT_STATE_OFF)
3001 			continue;
3002 		/*
3003 		 * Listen to the 'cpu' scheduling filter constraint
3004 		 * of events:
3005 		 */
3006 		if (!event_filter_match(event))
3007 			continue;
3008 
3009 		/* may need to reset tstamp_enabled */
3010 		if (is_cgroup_event(event))
3011 			perf_cgroup_mark_enabled(event, ctx);
3012 
3013 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3014 			if (group_sched_in(event, cpuctx, ctx))
3015 				can_add_hw = 0;
3016 		}
3017 	}
3018 }
3019 
3020 static void
3021 ctx_sched_in(struct perf_event_context *ctx,
3022 	     struct perf_cpu_context *cpuctx,
3023 	     enum event_type_t event_type,
3024 	     struct task_struct *task)
3025 {
3026 	int is_active = ctx->is_active;
3027 	u64 now;
3028 
3029 	lockdep_assert_held(&ctx->lock);
3030 
3031 	if (likely(!ctx->nr_events))
3032 		return;
3033 
3034 	ctx->is_active |= (event_type | EVENT_TIME);
3035 	if (ctx->task) {
3036 		if (!is_active)
3037 			cpuctx->task_ctx = ctx;
3038 		else
3039 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3040 	}
3041 
3042 	is_active ^= ctx->is_active; /* changed bits */
3043 
3044 	if (is_active & EVENT_TIME) {
3045 		/* start ctx time */
3046 		now = perf_clock();
3047 		ctx->timestamp = now;
3048 		perf_cgroup_set_timestamp(task, ctx);
3049 	}
3050 
3051 	/*
3052 	 * First go through the list and put on any pinned groups
3053 	 * in order to give them the best chance of going on.
3054 	 */
3055 	if (is_active & EVENT_PINNED)
3056 		ctx_pinned_sched_in(ctx, cpuctx);
3057 
3058 	/* Then walk through the lower prio flexible groups */
3059 	if (is_active & EVENT_FLEXIBLE)
3060 		ctx_flexible_sched_in(ctx, cpuctx);
3061 }
3062 
3063 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3064 			     enum event_type_t event_type,
3065 			     struct task_struct *task)
3066 {
3067 	struct perf_event_context *ctx = &cpuctx->ctx;
3068 
3069 	ctx_sched_in(ctx, cpuctx, event_type, task);
3070 }
3071 
3072 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3073 					struct task_struct *task)
3074 {
3075 	struct perf_cpu_context *cpuctx;
3076 
3077 	cpuctx = __get_cpu_context(ctx);
3078 	if (cpuctx->task_ctx == ctx)
3079 		return;
3080 
3081 	perf_ctx_lock(cpuctx, ctx);
3082 	perf_pmu_disable(ctx->pmu);
3083 	/*
3084 	 * We want to keep the following priority order:
3085 	 * cpu pinned (that don't need to move), task pinned,
3086 	 * cpu flexible, task flexible.
3087 	 */
3088 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3089 	perf_event_sched_in(cpuctx, ctx, task);
3090 	perf_pmu_enable(ctx->pmu);
3091 	perf_ctx_unlock(cpuctx, ctx);
3092 }
3093 
3094 /*
3095  * Called from scheduler to add the events of the current task
3096  * with interrupts disabled.
3097  *
3098  * We restore the event value and then enable it.
3099  *
3100  * This does not protect us against NMI, but enable()
3101  * sets the enabled bit in the control field of event _before_
3102  * accessing the event control register. If a NMI hits, then it will
3103  * keep the event running.
3104  */
3105 void __perf_event_task_sched_in(struct task_struct *prev,
3106 				struct task_struct *task)
3107 {
3108 	struct perf_event_context *ctx;
3109 	int ctxn;
3110 
3111 	/*
3112 	 * If cgroup events exist on this CPU, then we need to check if we have
3113 	 * to switch in PMU state; cgroup event are system-wide mode only.
3114 	 *
3115 	 * Since cgroup events are CPU events, we must schedule these in before
3116 	 * we schedule in the task events.
3117 	 */
3118 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3119 		perf_cgroup_sched_in(prev, task);
3120 
3121 	for_each_task_context_nr(ctxn) {
3122 		ctx = task->perf_event_ctxp[ctxn];
3123 		if (likely(!ctx))
3124 			continue;
3125 
3126 		perf_event_context_sched_in(ctx, task);
3127 	}
3128 
3129 	if (atomic_read(&nr_switch_events))
3130 		perf_event_switch(task, prev, true);
3131 
3132 	if (__this_cpu_read(perf_sched_cb_usages))
3133 		perf_pmu_sched_task(prev, task, true);
3134 }
3135 
3136 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3137 {
3138 	u64 frequency = event->attr.sample_freq;
3139 	u64 sec = NSEC_PER_SEC;
3140 	u64 divisor, dividend;
3141 
3142 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3143 
3144 	count_fls = fls64(count);
3145 	nsec_fls = fls64(nsec);
3146 	frequency_fls = fls64(frequency);
3147 	sec_fls = 30;
3148 
3149 	/*
3150 	 * We got @count in @nsec, with a target of sample_freq HZ
3151 	 * the target period becomes:
3152 	 *
3153 	 *             @count * 10^9
3154 	 * period = -------------------
3155 	 *          @nsec * sample_freq
3156 	 *
3157 	 */
3158 
3159 	/*
3160 	 * Reduce accuracy by one bit such that @a and @b converge
3161 	 * to a similar magnitude.
3162 	 */
3163 #define REDUCE_FLS(a, b)		\
3164 do {					\
3165 	if (a##_fls > b##_fls) {	\
3166 		a >>= 1;		\
3167 		a##_fls--;		\
3168 	} else {			\
3169 		b >>= 1;		\
3170 		b##_fls--;		\
3171 	}				\
3172 } while (0)
3173 
3174 	/*
3175 	 * Reduce accuracy until either term fits in a u64, then proceed with
3176 	 * the other, so that finally we can do a u64/u64 division.
3177 	 */
3178 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3179 		REDUCE_FLS(nsec, frequency);
3180 		REDUCE_FLS(sec, count);
3181 	}
3182 
3183 	if (count_fls + sec_fls > 64) {
3184 		divisor = nsec * frequency;
3185 
3186 		while (count_fls + sec_fls > 64) {
3187 			REDUCE_FLS(count, sec);
3188 			divisor >>= 1;
3189 		}
3190 
3191 		dividend = count * sec;
3192 	} else {
3193 		dividend = count * sec;
3194 
3195 		while (nsec_fls + frequency_fls > 64) {
3196 			REDUCE_FLS(nsec, frequency);
3197 			dividend >>= 1;
3198 		}
3199 
3200 		divisor = nsec * frequency;
3201 	}
3202 
3203 	if (!divisor)
3204 		return dividend;
3205 
3206 	return div64_u64(dividend, divisor);
3207 }
3208 
3209 static DEFINE_PER_CPU(int, perf_throttled_count);
3210 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3211 
3212 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3213 {
3214 	struct hw_perf_event *hwc = &event->hw;
3215 	s64 period, sample_period;
3216 	s64 delta;
3217 
3218 	period = perf_calculate_period(event, nsec, count);
3219 
3220 	delta = (s64)(period - hwc->sample_period);
3221 	delta = (delta + 7) / 8; /* low pass filter */
3222 
3223 	sample_period = hwc->sample_period + delta;
3224 
3225 	if (!sample_period)
3226 		sample_period = 1;
3227 
3228 	hwc->sample_period = sample_period;
3229 
3230 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3231 		if (disable)
3232 			event->pmu->stop(event, PERF_EF_UPDATE);
3233 
3234 		local64_set(&hwc->period_left, 0);
3235 
3236 		if (disable)
3237 			event->pmu->start(event, PERF_EF_RELOAD);
3238 	}
3239 }
3240 
3241 /*
3242  * combine freq adjustment with unthrottling to avoid two passes over the
3243  * events. At the same time, make sure, having freq events does not change
3244  * the rate of unthrottling as that would introduce bias.
3245  */
3246 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3247 					   int needs_unthr)
3248 {
3249 	struct perf_event *event;
3250 	struct hw_perf_event *hwc;
3251 	u64 now, period = TICK_NSEC;
3252 	s64 delta;
3253 
3254 	/*
3255 	 * only need to iterate over all events iff:
3256 	 * - context have events in frequency mode (needs freq adjust)
3257 	 * - there are events to unthrottle on this cpu
3258 	 */
3259 	if (!(ctx->nr_freq || needs_unthr))
3260 		return;
3261 
3262 	raw_spin_lock(&ctx->lock);
3263 	perf_pmu_disable(ctx->pmu);
3264 
3265 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3266 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3267 			continue;
3268 
3269 		if (!event_filter_match(event))
3270 			continue;
3271 
3272 		perf_pmu_disable(event->pmu);
3273 
3274 		hwc = &event->hw;
3275 
3276 		if (hwc->interrupts == MAX_INTERRUPTS) {
3277 			hwc->interrupts = 0;
3278 			perf_log_throttle(event, 1);
3279 			event->pmu->start(event, 0);
3280 		}
3281 
3282 		if (!event->attr.freq || !event->attr.sample_freq)
3283 			goto next;
3284 
3285 		/*
3286 		 * stop the event and update event->count
3287 		 */
3288 		event->pmu->stop(event, PERF_EF_UPDATE);
3289 
3290 		now = local64_read(&event->count);
3291 		delta = now - hwc->freq_count_stamp;
3292 		hwc->freq_count_stamp = now;
3293 
3294 		/*
3295 		 * restart the event
3296 		 * reload only if value has changed
3297 		 * we have stopped the event so tell that
3298 		 * to perf_adjust_period() to avoid stopping it
3299 		 * twice.
3300 		 */
3301 		if (delta > 0)
3302 			perf_adjust_period(event, period, delta, false);
3303 
3304 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3305 	next:
3306 		perf_pmu_enable(event->pmu);
3307 	}
3308 
3309 	perf_pmu_enable(ctx->pmu);
3310 	raw_spin_unlock(&ctx->lock);
3311 }
3312 
3313 /*
3314  * Round-robin a context's events:
3315  */
3316 static void rotate_ctx(struct perf_event_context *ctx)
3317 {
3318 	/*
3319 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3320 	 * disabled by the inheritance code.
3321 	 */
3322 	if (!ctx->rotate_disable)
3323 		list_rotate_left(&ctx->flexible_groups);
3324 }
3325 
3326 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3327 {
3328 	struct perf_event_context *ctx = NULL;
3329 	int rotate = 0;
3330 
3331 	if (cpuctx->ctx.nr_events) {
3332 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3333 			rotate = 1;
3334 	}
3335 
3336 	ctx = cpuctx->task_ctx;
3337 	if (ctx && ctx->nr_events) {
3338 		if (ctx->nr_events != ctx->nr_active)
3339 			rotate = 1;
3340 	}
3341 
3342 	if (!rotate)
3343 		goto done;
3344 
3345 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3346 	perf_pmu_disable(cpuctx->ctx.pmu);
3347 
3348 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3349 	if (ctx)
3350 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3351 
3352 	rotate_ctx(&cpuctx->ctx);
3353 	if (ctx)
3354 		rotate_ctx(ctx);
3355 
3356 	perf_event_sched_in(cpuctx, ctx, current);
3357 
3358 	perf_pmu_enable(cpuctx->ctx.pmu);
3359 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3360 done:
3361 
3362 	return rotate;
3363 }
3364 
3365 void perf_event_task_tick(void)
3366 {
3367 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3368 	struct perf_event_context *ctx, *tmp;
3369 	int throttled;
3370 
3371 	WARN_ON(!irqs_disabled());
3372 
3373 	__this_cpu_inc(perf_throttled_seq);
3374 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3375 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3376 
3377 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3378 		perf_adjust_freq_unthr_context(ctx, throttled);
3379 }
3380 
3381 static int event_enable_on_exec(struct perf_event *event,
3382 				struct perf_event_context *ctx)
3383 {
3384 	if (!event->attr.enable_on_exec)
3385 		return 0;
3386 
3387 	event->attr.enable_on_exec = 0;
3388 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3389 		return 0;
3390 
3391 	__perf_event_mark_enabled(event);
3392 
3393 	return 1;
3394 }
3395 
3396 /*
3397  * Enable all of a task's events that have been marked enable-on-exec.
3398  * This expects task == current.
3399  */
3400 static void perf_event_enable_on_exec(int ctxn)
3401 {
3402 	struct perf_event_context *ctx, *clone_ctx = NULL;
3403 	struct perf_cpu_context *cpuctx;
3404 	struct perf_event *event;
3405 	unsigned long flags;
3406 	int enabled = 0;
3407 
3408 	local_irq_save(flags);
3409 	ctx = current->perf_event_ctxp[ctxn];
3410 	if (!ctx || !ctx->nr_events)
3411 		goto out;
3412 
3413 	cpuctx = __get_cpu_context(ctx);
3414 	perf_ctx_lock(cpuctx, ctx);
3415 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3416 	list_for_each_entry(event, &ctx->event_list, event_entry)
3417 		enabled |= event_enable_on_exec(event, ctx);
3418 
3419 	/*
3420 	 * Unclone and reschedule this context if we enabled any event.
3421 	 */
3422 	if (enabled) {
3423 		clone_ctx = unclone_ctx(ctx);
3424 		ctx_resched(cpuctx, ctx);
3425 	}
3426 	perf_ctx_unlock(cpuctx, ctx);
3427 
3428 out:
3429 	local_irq_restore(flags);
3430 
3431 	if (clone_ctx)
3432 		put_ctx(clone_ctx);
3433 }
3434 
3435 struct perf_read_data {
3436 	struct perf_event *event;
3437 	bool group;
3438 	int ret;
3439 };
3440 
3441 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3442 {
3443 	int event_cpu = event->oncpu;
3444 	u16 local_pkg, event_pkg;
3445 
3446 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3447 		event_pkg =  topology_physical_package_id(event_cpu);
3448 		local_pkg =  topology_physical_package_id(local_cpu);
3449 
3450 		if (event_pkg == local_pkg)
3451 			return local_cpu;
3452 	}
3453 
3454 	return event_cpu;
3455 }
3456 
3457 /*
3458  * Cross CPU call to read the hardware event
3459  */
3460 static void __perf_event_read(void *info)
3461 {
3462 	struct perf_read_data *data = info;
3463 	struct perf_event *sub, *event = data->event;
3464 	struct perf_event_context *ctx = event->ctx;
3465 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3466 	struct pmu *pmu = event->pmu;
3467 
3468 	/*
3469 	 * If this is a task context, we need to check whether it is
3470 	 * the current task context of this cpu.  If not it has been
3471 	 * scheduled out before the smp call arrived.  In that case
3472 	 * event->count would have been updated to a recent sample
3473 	 * when the event was scheduled out.
3474 	 */
3475 	if (ctx->task && cpuctx->task_ctx != ctx)
3476 		return;
3477 
3478 	raw_spin_lock(&ctx->lock);
3479 	if (ctx->is_active) {
3480 		update_context_time(ctx);
3481 		update_cgrp_time_from_event(event);
3482 	}
3483 
3484 	update_event_times(event);
3485 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3486 		goto unlock;
3487 
3488 	if (!data->group) {
3489 		pmu->read(event);
3490 		data->ret = 0;
3491 		goto unlock;
3492 	}
3493 
3494 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3495 
3496 	pmu->read(event);
3497 
3498 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3499 		update_event_times(sub);
3500 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3501 			/*
3502 			 * Use sibling's PMU rather than @event's since
3503 			 * sibling could be on different (eg: software) PMU.
3504 			 */
3505 			sub->pmu->read(sub);
3506 		}
3507 	}
3508 
3509 	data->ret = pmu->commit_txn(pmu);
3510 
3511 unlock:
3512 	raw_spin_unlock(&ctx->lock);
3513 }
3514 
3515 static inline u64 perf_event_count(struct perf_event *event)
3516 {
3517 	if (event->pmu->count)
3518 		return event->pmu->count(event);
3519 
3520 	return __perf_event_count(event);
3521 }
3522 
3523 /*
3524  * NMI-safe method to read a local event, that is an event that
3525  * is:
3526  *   - either for the current task, or for this CPU
3527  *   - does not have inherit set, for inherited task events
3528  *     will not be local and we cannot read them atomically
3529  *   - must not have a pmu::count method
3530  */
3531 u64 perf_event_read_local(struct perf_event *event)
3532 {
3533 	unsigned long flags;
3534 	u64 val;
3535 
3536 	/*
3537 	 * Disabling interrupts avoids all counter scheduling (context
3538 	 * switches, timer based rotation and IPIs).
3539 	 */
3540 	local_irq_save(flags);
3541 
3542 	/* If this is a per-task event, it must be for current */
3543 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3544 		     event->hw.target != current);
3545 
3546 	/* If this is a per-CPU event, it must be for this CPU */
3547 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3548 		     event->cpu != smp_processor_id());
3549 
3550 	/*
3551 	 * It must not be an event with inherit set, we cannot read
3552 	 * all child counters from atomic context.
3553 	 */
3554 	WARN_ON_ONCE(event->attr.inherit);
3555 
3556 	/*
3557 	 * It must not have a pmu::count method, those are not
3558 	 * NMI safe.
3559 	 */
3560 	WARN_ON_ONCE(event->pmu->count);
3561 
3562 	/*
3563 	 * If the event is currently on this CPU, its either a per-task event,
3564 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3565 	 * oncpu == -1).
3566 	 */
3567 	if (event->oncpu == smp_processor_id())
3568 		event->pmu->read(event);
3569 
3570 	val = local64_read(&event->count);
3571 	local_irq_restore(flags);
3572 
3573 	return val;
3574 }
3575 
3576 static int perf_event_read(struct perf_event *event, bool group)
3577 {
3578 	int ret = 0, cpu_to_read, local_cpu;
3579 
3580 	/*
3581 	 * If event is enabled and currently active on a CPU, update the
3582 	 * value in the event structure:
3583 	 */
3584 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3585 		struct perf_read_data data = {
3586 			.event = event,
3587 			.group = group,
3588 			.ret = 0,
3589 		};
3590 
3591 		local_cpu = get_cpu();
3592 		cpu_to_read = find_cpu_to_read(event, local_cpu);
3593 		put_cpu();
3594 
3595 		/*
3596 		 * Purposely ignore the smp_call_function_single() return
3597 		 * value.
3598 		 *
3599 		 * If event->oncpu isn't a valid CPU it means the event got
3600 		 * scheduled out and that will have updated the event count.
3601 		 *
3602 		 * Therefore, either way, we'll have an up-to-date event count
3603 		 * after this.
3604 		 */
3605 		(void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3606 		ret = data.ret;
3607 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3608 		struct perf_event_context *ctx = event->ctx;
3609 		unsigned long flags;
3610 
3611 		raw_spin_lock_irqsave(&ctx->lock, flags);
3612 		/*
3613 		 * may read while context is not active
3614 		 * (e.g., thread is blocked), in that case
3615 		 * we cannot update context time
3616 		 */
3617 		if (ctx->is_active) {
3618 			update_context_time(ctx);
3619 			update_cgrp_time_from_event(event);
3620 		}
3621 		if (group)
3622 			update_group_times(event);
3623 		else
3624 			update_event_times(event);
3625 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3626 	}
3627 
3628 	return ret;
3629 }
3630 
3631 /*
3632  * Initialize the perf_event context in a task_struct:
3633  */
3634 static void __perf_event_init_context(struct perf_event_context *ctx)
3635 {
3636 	raw_spin_lock_init(&ctx->lock);
3637 	mutex_init(&ctx->mutex);
3638 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3639 	INIT_LIST_HEAD(&ctx->pinned_groups);
3640 	INIT_LIST_HEAD(&ctx->flexible_groups);
3641 	INIT_LIST_HEAD(&ctx->event_list);
3642 	atomic_set(&ctx->refcount, 1);
3643 }
3644 
3645 static struct perf_event_context *
3646 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3647 {
3648 	struct perf_event_context *ctx;
3649 
3650 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3651 	if (!ctx)
3652 		return NULL;
3653 
3654 	__perf_event_init_context(ctx);
3655 	if (task) {
3656 		ctx->task = task;
3657 		get_task_struct(task);
3658 	}
3659 	ctx->pmu = pmu;
3660 
3661 	return ctx;
3662 }
3663 
3664 static struct task_struct *
3665 find_lively_task_by_vpid(pid_t vpid)
3666 {
3667 	struct task_struct *task;
3668 
3669 	rcu_read_lock();
3670 	if (!vpid)
3671 		task = current;
3672 	else
3673 		task = find_task_by_vpid(vpid);
3674 	if (task)
3675 		get_task_struct(task);
3676 	rcu_read_unlock();
3677 
3678 	if (!task)
3679 		return ERR_PTR(-ESRCH);
3680 
3681 	return task;
3682 }
3683 
3684 /*
3685  * Returns a matching context with refcount and pincount.
3686  */
3687 static struct perf_event_context *
3688 find_get_context(struct pmu *pmu, struct task_struct *task,
3689 		struct perf_event *event)
3690 {
3691 	struct perf_event_context *ctx, *clone_ctx = NULL;
3692 	struct perf_cpu_context *cpuctx;
3693 	void *task_ctx_data = NULL;
3694 	unsigned long flags;
3695 	int ctxn, err;
3696 	int cpu = event->cpu;
3697 
3698 	if (!task) {
3699 		/* Must be root to operate on a CPU event: */
3700 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3701 			return ERR_PTR(-EACCES);
3702 
3703 		/*
3704 		 * We could be clever and allow to attach a event to an
3705 		 * offline CPU and activate it when the CPU comes up, but
3706 		 * that's for later.
3707 		 */
3708 		if (!cpu_online(cpu))
3709 			return ERR_PTR(-ENODEV);
3710 
3711 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3712 		ctx = &cpuctx->ctx;
3713 		get_ctx(ctx);
3714 		++ctx->pin_count;
3715 
3716 		return ctx;
3717 	}
3718 
3719 	err = -EINVAL;
3720 	ctxn = pmu->task_ctx_nr;
3721 	if (ctxn < 0)
3722 		goto errout;
3723 
3724 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3725 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3726 		if (!task_ctx_data) {
3727 			err = -ENOMEM;
3728 			goto errout;
3729 		}
3730 	}
3731 
3732 retry:
3733 	ctx = perf_lock_task_context(task, ctxn, &flags);
3734 	if (ctx) {
3735 		clone_ctx = unclone_ctx(ctx);
3736 		++ctx->pin_count;
3737 
3738 		if (task_ctx_data && !ctx->task_ctx_data) {
3739 			ctx->task_ctx_data = task_ctx_data;
3740 			task_ctx_data = NULL;
3741 		}
3742 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3743 
3744 		if (clone_ctx)
3745 			put_ctx(clone_ctx);
3746 	} else {
3747 		ctx = alloc_perf_context(pmu, task);
3748 		err = -ENOMEM;
3749 		if (!ctx)
3750 			goto errout;
3751 
3752 		if (task_ctx_data) {
3753 			ctx->task_ctx_data = task_ctx_data;
3754 			task_ctx_data = NULL;
3755 		}
3756 
3757 		err = 0;
3758 		mutex_lock(&task->perf_event_mutex);
3759 		/*
3760 		 * If it has already passed perf_event_exit_task().
3761 		 * we must see PF_EXITING, it takes this mutex too.
3762 		 */
3763 		if (task->flags & PF_EXITING)
3764 			err = -ESRCH;
3765 		else if (task->perf_event_ctxp[ctxn])
3766 			err = -EAGAIN;
3767 		else {
3768 			get_ctx(ctx);
3769 			++ctx->pin_count;
3770 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3771 		}
3772 		mutex_unlock(&task->perf_event_mutex);
3773 
3774 		if (unlikely(err)) {
3775 			put_ctx(ctx);
3776 
3777 			if (err == -EAGAIN)
3778 				goto retry;
3779 			goto errout;
3780 		}
3781 	}
3782 
3783 	kfree(task_ctx_data);
3784 	return ctx;
3785 
3786 errout:
3787 	kfree(task_ctx_data);
3788 	return ERR_PTR(err);
3789 }
3790 
3791 static void perf_event_free_filter(struct perf_event *event);
3792 static void perf_event_free_bpf_prog(struct perf_event *event);
3793 
3794 static void free_event_rcu(struct rcu_head *head)
3795 {
3796 	struct perf_event *event;
3797 
3798 	event = container_of(head, struct perf_event, rcu_head);
3799 	if (event->ns)
3800 		put_pid_ns(event->ns);
3801 	perf_event_free_filter(event);
3802 	kfree(event);
3803 }
3804 
3805 static void ring_buffer_attach(struct perf_event *event,
3806 			       struct ring_buffer *rb);
3807 
3808 static void detach_sb_event(struct perf_event *event)
3809 {
3810 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3811 
3812 	raw_spin_lock(&pel->lock);
3813 	list_del_rcu(&event->sb_list);
3814 	raw_spin_unlock(&pel->lock);
3815 }
3816 
3817 static bool is_sb_event(struct perf_event *event)
3818 {
3819 	struct perf_event_attr *attr = &event->attr;
3820 
3821 	if (event->parent)
3822 		return false;
3823 
3824 	if (event->attach_state & PERF_ATTACH_TASK)
3825 		return false;
3826 
3827 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3828 	    attr->comm || attr->comm_exec ||
3829 	    attr->task ||
3830 	    attr->context_switch)
3831 		return true;
3832 	return false;
3833 }
3834 
3835 static void unaccount_pmu_sb_event(struct perf_event *event)
3836 {
3837 	if (is_sb_event(event))
3838 		detach_sb_event(event);
3839 }
3840 
3841 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3842 {
3843 	if (event->parent)
3844 		return;
3845 
3846 	if (is_cgroup_event(event))
3847 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3848 }
3849 
3850 #ifdef CONFIG_NO_HZ_FULL
3851 static DEFINE_SPINLOCK(nr_freq_lock);
3852 #endif
3853 
3854 static void unaccount_freq_event_nohz(void)
3855 {
3856 #ifdef CONFIG_NO_HZ_FULL
3857 	spin_lock(&nr_freq_lock);
3858 	if (atomic_dec_and_test(&nr_freq_events))
3859 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3860 	spin_unlock(&nr_freq_lock);
3861 #endif
3862 }
3863 
3864 static void unaccount_freq_event(void)
3865 {
3866 	if (tick_nohz_full_enabled())
3867 		unaccount_freq_event_nohz();
3868 	else
3869 		atomic_dec(&nr_freq_events);
3870 }
3871 
3872 static void unaccount_event(struct perf_event *event)
3873 {
3874 	bool dec = false;
3875 
3876 	if (event->parent)
3877 		return;
3878 
3879 	if (event->attach_state & PERF_ATTACH_TASK)
3880 		dec = true;
3881 	if (event->attr.mmap || event->attr.mmap_data)
3882 		atomic_dec(&nr_mmap_events);
3883 	if (event->attr.comm)
3884 		atomic_dec(&nr_comm_events);
3885 	if (event->attr.task)
3886 		atomic_dec(&nr_task_events);
3887 	if (event->attr.freq)
3888 		unaccount_freq_event();
3889 	if (event->attr.context_switch) {
3890 		dec = true;
3891 		atomic_dec(&nr_switch_events);
3892 	}
3893 	if (is_cgroup_event(event))
3894 		dec = true;
3895 	if (has_branch_stack(event))
3896 		dec = true;
3897 
3898 	if (dec) {
3899 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3900 			schedule_delayed_work(&perf_sched_work, HZ);
3901 	}
3902 
3903 	unaccount_event_cpu(event, event->cpu);
3904 
3905 	unaccount_pmu_sb_event(event);
3906 }
3907 
3908 static void perf_sched_delayed(struct work_struct *work)
3909 {
3910 	mutex_lock(&perf_sched_mutex);
3911 	if (atomic_dec_and_test(&perf_sched_count))
3912 		static_branch_disable(&perf_sched_events);
3913 	mutex_unlock(&perf_sched_mutex);
3914 }
3915 
3916 /*
3917  * The following implement mutual exclusion of events on "exclusive" pmus
3918  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3919  * at a time, so we disallow creating events that might conflict, namely:
3920  *
3921  *  1) cpu-wide events in the presence of per-task events,
3922  *  2) per-task events in the presence of cpu-wide events,
3923  *  3) two matching events on the same context.
3924  *
3925  * The former two cases are handled in the allocation path (perf_event_alloc(),
3926  * _free_event()), the latter -- before the first perf_install_in_context().
3927  */
3928 static int exclusive_event_init(struct perf_event *event)
3929 {
3930 	struct pmu *pmu = event->pmu;
3931 
3932 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3933 		return 0;
3934 
3935 	/*
3936 	 * Prevent co-existence of per-task and cpu-wide events on the
3937 	 * same exclusive pmu.
3938 	 *
3939 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3940 	 * events on this "exclusive" pmu, positive means there are
3941 	 * per-task events.
3942 	 *
3943 	 * Since this is called in perf_event_alloc() path, event::ctx
3944 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3945 	 * to mean "per-task event", because unlike other attach states it
3946 	 * never gets cleared.
3947 	 */
3948 	if (event->attach_state & PERF_ATTACH_TASK) {
3949 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3950 			return -EBUSY;
3951 	} else {
3952 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3953 			return -EBUSY;
3954 	}
3955 
3956 	return 0;
3957 }
3958 
3959 static void exclusive_event_destroy(struct perf_event *event)
3960 {
3961 	struct pmu *pmu = event->pmu;
3962 
3963 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3964 		return;
3965 
3966 	/* see comment in exclusive_event_init() */
3967 	if (event->attach_state & PERF_ATTACH_TASK)
3968 		atomic_dec(&pmu->exclusive_cnt);
3969 	else
3970 		atomic_inc(&pmu->exclusive_cnt);
3971 }
3972 
3973 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3974 {
3975 	if ((e1->pmu == e2->pmu) &&
3976 	    (e1->cpu == e2->cpu ||
3977 	     e1->cpu == -1 ||
3978 	     e2->cpu == -1))
3979 		return true;
3980 	return false;
3981 }
3982 
3983 /* Called under the same ctx::mutex as perf_install_in_context() */
3984 static bool exclusive_event_installable(struct perf_event *event,
3985 					struct perf_event_context *ctx)
3986 {
3987 	struct perf_event *iter_event;
3988 	struct pmu *pmu = event->pmu;
3989 
3990 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3991 		return true;
3992 
3993 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3994 		if (exclusive_event_match(iter_event, event))
3995 			return false;
3996 	}
3997 
3998 	return true;
3999 }
4000 
4001 static void perf_addr_filters_splice(struct perf_event *event,
4002 				       struct list_head *head);
4003 
4004 static void _free_event(struct perf_event *event)
4005 {
4006 	irq_work_sync(&event->pending);
4007 
4008 	unaccount_event(event);
4009 
4010 	if (event->rb) {
4011 		/*
4012 		 * Can happen when we close an event with re-directed output.
4013 		 *
4014 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4015 		 * over us; possibly making our ring_buffer_put() the last.
4016 		 */
4017 		mutex_lock(&event->mmap_mutex);
4018 		ring_buffer_attach(event, NULL);
4019 		mutex_unlock(&event->mmap_mutex);
4020 	}
4021 
4022 	if (is_cgroup_event(event))
4023 		perf_detach_cgroup(event);
4024 
4025 	if (!event->parent) {
4026 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4027 			put_callchain_buffers();
4028 	}
4029 
4030 	perf_event_free_bpf_prog(event);
4031 	perf_addr_filters_splice(event, NULL);
4032 	kfree(event->addr_filters_offs);
4033 
4034 	if (event->destroy)
4035 		event->destroy(event);
4036 
4037 	if (event->ctx)
4038 		put_ctx(event->ctx);
4039 
4040 	exclusive_event_destroy(event);
4041 	module_put(event->pmu->module);
4042 
4043 	call_rcu(&event->rcu_head, free_event_rcu);
4044 }
4045 
4046 /*
4047  * Used to free events which have a known refcount of 1, such as in error paths
4048  * where the event isn't exposed yet and inherited events.
4049  */
4050 static void free_event(struct perf_event *event)
4051 {
4052 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4053 				"unexpected event refcount: %ld; ptr=%p\n",
4054 				atomic_long_read(&event->refcount), event)) {
4055 		/* leak to avoid use-after-free */
4056 		return;
4057 	}
4058 
4059 	_free_event(event);
4060 }
4061 
4062 /*
4063  * Remove user event from the owner task.
4064  */
4065 static void perf_remove_from_owner(struct perf_event *event)
4066 {
4067 	struct task_struct *owner;
4068 
4069 	rcu_read_lock();
4070 	/*
4071 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4072 	 * observe !owner it means the list deletion is complete and we can
4073 	 * indeed free this event, otherwise we need to serialize on
4074 	 * owner->perf_event_mutex.
4075 	 */
4076 	owner = lockless_dereference(event->owner);
4077 	if (owner) {
4078 		/*
4079 		 * Since delayed_put_task_struct() also drops the last
4080 		 * task reference we can safely take a new reference
4081 		 * while holding the rcu_read_lock().
4082 		 */
4083 		get_task_struct(owner);
4084 	}
4085 	rcu_read_unlock();
4086 
4087 	if (owner) {
4088 		/*
4089 		 * If we're here through perf_event_exit_task() we're already
4090 		 * holding ctx->mutex which would be an inversion wrt. the
4091 		 * normal lock order.
4092 		 *
4093 		 * However we can safely take this lock because its the child
4094 		 * ctx->mutex.
4095 		 */
4096 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4097 
4098 		/*
4099 		 * We have to re-check the event->owner field, if it is cleared
4100 		 * we raced with perf_event_exit_task(), acquiring the mutex
4101 		 * ensured they're done, and we can proceed with freeing the
4102 		 * event.
4103 		 */
4104 		if (event->owner) {
4105 			list_del_init(&event->owner_entry);
4106 			smp_store_release(&event->owner, NULL);
4107 		}
4108 		mutex_unlock(&owner->perf_event_mutex);
4109 		put_task_struct(owner);
4110 	}
4111 }
4112 
4113 static void put_event(struct perf_event *event)
4114 {
4115 	if (!atomic_long_dec_and_test(&event->refcount))
4116 		return;
4117 
4118 	_free_event(event);
4119 }
4120 
4121 /*
4122  * Kill an event dead; while event:refcount will preserve the event
4123  * object, it will not preserve its functionality. Once the last 'user'
4124  * gives up the object, we'll destroy the thing.
4125  */
4126 int perf_event_release_kernel(struct perf_event *event)
4127 {
4128 	struct perf_event_context *ctx = event->ctx;
4129 	struct perf_event *child, *tmp;
4130 
4131 	/*
4132 	 * If we got here through err_file: fput(event_file); we will not have
4133 	 * attached to a context yet.
4134 	 */
4135 	if (!ctx) {
4136 		WARN_ON_ONCE(event->attach_state &
4137 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4138 		goto no_ctx;
4139 	}
4140 
4141 	if (!is_kernel_event(event))
4142 		perf_remove_from_owner(event);
4143 
4144 	ctx = perf_event_ctx_lock(event);
4145 	WARN_ON_ONCE(ctx->parent_ctx);
4146 	perf_remove_from_context(event, DETACH_GROUP);
4147 
4148 	raw_spin_lock_irq(&ctx->lock);
4149 	/*
4150 	 * Mark this even as STATE_DEAD, there is no external reference to it
4151 	 * anymore.
4152 	 *
4153 	 * Anybody acquiring event->child_mutex after the below loop _must_
4154 	 * also see this, most importantly inherit_event() which will avoid
4155 	 * placing more children on the list.
4156 	 *
4157 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4158 	 * child events.
4159 	 */
4160 	event->state = PERF_EVENT_STATE_DEAD;
4161 	raw_spin_unlock_irq(&ctx->lock);
4162 
4163 	perf_event_ctx_unlock(event, ctx);
4164 
4165 again:
4166 	mutex_lock(&event->child_mutex);
4167 	list_for_each_entry(child, &event->child_list, child_list) {
4168 
4169 		/*
4170 		 * Cannot change, child events are not migrated, see the
4171 		 * comment with perf_event_ctx_lock_nested().
4172 		 */
4173 		ctx = lockless_dereference(child->ctx);
4174 		/*
4175 		 * Since child_mutex nests inside ctx::mutex, we must jump
4176 		 * through hoops. We start by grabbing a reference on the ctx.
4177 		 *
4178 		 * Since the event cannot get freed while we hold the
4179 		 * child_mutex, the context must also exist and have a !0
4180 		 * reference count.
4181 		 */
4182 		get_ctx(ctx);
4183 
4184 		/*
4185 		 * Now that we have a ctx ref, we can drop child_mutex, and
4186 		 * acquire ctx::mutex without fear of it going away. Then we
4187 		 * can re-acquire child_mutex.
4188 		 */
4189 		mutex_unlock(&event->child_mutex);
4190 		mutex_lock(&ctx->mutex);
4191 		mutex_lock(&event->child_mutex);
4192 
4193 		/*
4194 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4195 		 * state, if child is still the first entry, it didn't get freed
4196 		 * and we can continue doing so.
4197 		 */
4198 		tmp = list_first_entry_or_null(&event->child_list,
4199 					       struct perf_event, child_list);
4200 		if (tmp == child) {
4201 			perf_remove_from_context(child, DETACH_GROUP);
4202 			list_del(&child->child_list);
4203 			free_event(child);
4204 			/*
4205 			 * This matches the refcount bump in inherit_event();
4206 			 * this can't be the last reference.
4207 			 */
4208 			put_event(event);
4209 		}
4210 
4211 		mutex_unlock(&event->child_mutex);
4212 		mutex_unlock(&ctx->mutex);
4213 		put_ctx(ctx);
4214 		goto again;
4215 	}
4216 	mutex_unlock(&event->child_mutex);
4217 
4218 no_ctx:
4219 	put_event(event); /* Must be the 'last' reference */
4220 	return 0;
4221 }
4222 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4223 
4224 /*
4225  * Called when the last reference to the file is gone.
4226  */
4227 static int perf_release(struct inode *inode, struct file *file)
4228 {
4229 	perf_event_release_kernel(file->private_data);
4230 	return 0;
4231 }
4232 
4233 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4234 {
4235 	struct perf_event *child;
4236 	u64 total = 0;
4237 
4238 	*enabled = 0;
4239 	*running = 0;
4240 
4241 	mutex_lock(&event->child_mutex);
4242 
4243 	(void)perf_event_read(event, false);
4244 	total += perf_event_count(event);
4245 
4246 	*enabled += event->total_time_enabled +
4247 			atomic64_read(&event->child_total_time_enabled);
4248 	*running += event->total_time_running +
4249 			atomic64_read(&event->child_total_time_running);
4250 
4251 	list_for_each_entry(child, &event->child_list, child_list) {
4252 		(void)perf_event_read(child, false);
4253 		total += perf_event_count(child);
4254 		*enabled += child->total_time_enabled;
4255 		*running += child->total_time_running;
4256 	}
4257 	mutex_unlock(&event->child_mutex);
4258 
4259 	return total;
4260 }
4261 EXPORT_SYMBOL_GPL(perf_event_read_value);
4262 
4263 static int __perf_read_group_add(struct perf_event *leader,
4264 					u64 read_format, u64 *values)
4265 {
4266 	struct perf_event *sub;
4267 	int n = 1; /* skip @nr */
4268 	int ret;
4269 
4270 	ret = perf_event_read(leader, true);
4271 	if (ret)
4272 		return ret;
4273 
4274 	/*
4275 	 * Since we co-schedule groups, {enabled,running} times of siblings
4276 	 * will be identical to those of the leader, so we only publish one
4277 	 * set.
4278 	 */
4279 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4280 		values[n++] += leader->total_time_enabled +
4281 			atomic64_read(&leader->child_total_time_enabled);
4282 	}
4283 
4284 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4285 		values[n++] += leader->total_time_running +
4286 			atomic64_read(&leader->child_total_time_running);
4287 	}
4288 
4289 	/*
4290 	 * Write {count,id} tuples for every sibling.
4291 	 */
4292 	values[n++] += perf_event_count(leader);
4293 	if (read_format & PERF_FORMAT_ID)
4294 		values[n++] = primary_event_id(leader);
4295 
4296 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4297 		values[n++] += perf_event_count(sub);
4298 		if (read_format & PERF_FORMAT_ID)
4299 			values[n++] = primary_event_id(sub);
4300 	}
4301 
4302 	return 0;
4303 }
4304 
4305 static int perf_read_group(struct perf_event *event,
4306 				   u64 read_format, char __user *buf)
4307 {
4308 	struct perf_event *leader = event->group_leader, *child;
4309 	struct perf_event_context *ctx = leader->ctx;
4310 	int ret;
4311 	u64 *values;
4312 
4313 	lockdep_assert_held(&ctx->mutex);
4314 
4315 	values = kzalloc(event->read_size, GFP_KERNEL);
4316 	if (!values)
4317 		return -ENOMEM;
4318 
4319 	values[0] = 1 + leader->nr_siblings;
4320 
4321 	/*
4322 	 * By locking the child_mutex of the leader we effectively
4323 	 * lock the child list of all siblings.. XXX explain how.
4324 	 */
4325 	mutex_lock(&leader->child_mutex);
4326 
4327 	ret = __perf_read_group_add(leader, read_format, values);
4328 	if (ret)
4329 		goto unlock;
4330 
4331 	list_for_each_entry(child, &leader->child_list, child_list) {
4332 		ret = __perf_read_group_add(child, read_format, values);
4333 		if (ret)
4334 			goto unlock;
4335 	}
4336 
4337 	mutex_unlock(&leader->child_mutex);
4338 
4339 	ret = event->read_size;
4340 	if (copy_to_user(buf, values, event->read_size))
4341 		ret = -EFAULT;
4342 	goto out;
4343 
4344 unlock:
4345 	mutex_unlock(&leader->child_mutex);
4346 out:
4347 	kfree(values);
4348 	return ret;
4349 }
4350 
4351 static int perf_read_one(struct perf_event *event,
4352 				 u64 read_format, char __user *buf)
4353 {
4354 	u64 enabled, running;
4355 	u64 values[4];
4356 	int n = 0;
4357 
4358 	values[n++] = perf_event_read_value(event, &enabled, &running);
4359 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4360 		values[n++] = enabled;
4361 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4362 		values[n++] = running;
4363 	if (read_format & PERF_FORMAT_ID)
4364 		values[n++] = primary_event_id(event);
4365 
4366 	if (copy_to_user(buf, values, n * sizeof(u64)))
4367 		return -EFAULT;
4368 
4369 	return n * sizeof(u64);
4370 }
4371 
4372 static bool is_event_hup(struct perf_event *event)
4373 {
4374 	bool no_children;
4375 
4376 	if (event->state > PERF_EVENT_STATE_EXIT)
4377 		return false;
4378 
4379 	mutex_lock(&event->child_mutex);
4380 	no_children = list_empty(&event->child_list);
4381 	mutex_unlock(&event->child_mutex);
4382 	return no_children;
4383 }
4384 
4385 /*
4386  * Read the performance event - simple non blocking version for now
4387  */
4388 static ssize_t
4389 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4390 {
4391 	u64 read_format = event->attr.read_format;
4392 	int ret;
4393 
4394 	/*
4395 	 * Return end-of-file for a read on a event that is in
4396 	 * error state (i.e. because it was pinned but it couldn't be
4397 	 * scheduled on to the CPU at some point).
4398 	 */
4399 	if (event->state == PERF_EVENT_STATE_ERROR)
4400 		return 0;
4401 
4402 	if (count < event->read_size)
4403 		return -ENOSPC;
4404 
4405 	WARN_ON_ONCE(event->ctx->parent_ctx);
4406 	if (read_format & PERF_FORMAT_GROUP)
4407 		ret = perf_read_group(event, read_format, buf);
4408 	else
4409 		ret = perf_read_one(event, read_format, buf);
4410 
4411 	return ret;
4412 }
4413 
4414 static ssize_t
4415 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4416 {
4417 	struct perf_event *event = file->private_data;
4418 	struct perf_event_context *ctx;
4419 	int ret;
4420 
4421 	ctx = perf_event_ctx_lock(event);
4422 	ret = __perf_read(event, buf, count);
4423 	perf_event_ctx_unlock(event, ctx);
4424 
4425 	return ret;
4426 }
4427 
4428 static unsigned int perf_poll(struct file *file, poll_table *wait)
4429 {
4430 	struct perf_event *event = file->private_data;
4431 	struct ring_buffer *rb;
4432 	unsigned int events = POLLHUP;
4433 
4434 	poll_wait(file, &event->waitq, wait);
4435 
4436 	if (is_event_hup(event))
4437 		return events;
4438 
4439 	/*
4440 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4441 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4442 	 */
4443 	mutex_lock(&event->mmap_mutex);
4444 	rb = event->rb;
4445 	if (rb)
4446 		events = atomic_xchg(&rb->poll, 0);
4447 	mutex_unlock(&event->mmap_mutex);
4448 	return events;
4449 }
4450 
4451 static void _perf_event_reset(struct perf_event *event)
4452 {
4453 	(void)perf_event_read(event, false);
4454 	local64_set(&event->count, 0);
4455 	perf_event_update_userpage(event);
4456 }
4457 
4458 /*
4459  * Holding the top-level event's child_mutex means that any
4460  * descendant process that has inherited this event will block
4461  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4462  * task existence requirements of perf_event_enable/disable.
4463  */
4464 static void perf_event_for_each_child(struct perf_event *event,
4465 					void (*func)(struct perf_event *))
4466 {
4467 	struct perf_event *child;
4468 
4469 	WARN_ON_ONCE(event->ctx->parent_ctx);
4470 
4471 	mutex_lock(&event->child_mutex);
4472 	func(event);
4473 	list_for_each_entry(child, &event->child_list, child_list)
4474 		func(child);
4475 	mutex_unlock(&event->child_mutex);
4476 }
4477 
4478 static void perf_event_for_each(struct perf_event *event,
4479 				  void (*func)(struct perf_event *))
4480 {
4481 	struct perf_event_context *ctx = event->ctx;
4482 	struct perf_event *sibling;
4483 
4484 	lockdep_assert_held(&ctx->mutex);
4485 
4486 	event = event->group_leader;
4487 
4488 	perf_event_for_each_child(event, func);
4489 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4490 		perf_event_for_each_child(sibling, func);
4491 }
4492 
4493 static void __perf_event_period(struct perf_event *event,
4494 				struct perf_cpu_context *cpuctx,
4495 				struct perf_event_context *ctx,
4496 				void *info)
4497 {
4498 	u64 value = *((u64 *)info);
4499 	bool active;
4500 
4501 	if (event->attr.freq) {
4502 		event->attr.sample_freq = value;
4503 	} else {
4504 		event->attr.sample_period = value;
4505 		event->hw.sample_period = value;
4506 	}
4507 
4508 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4509 	if (active) {
4510 		perf_pmu_disable(ctx->pmu);
4511 		/*
4512 		 * We could be throttled; unthrottle now to avoid the tick
4513 		 * trying to unthrottle while we already re-started the event.
4514 		 */
4515 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4516 			event->hw.interrupts = 0;
4517 			perf_log_throttle(event, 1);
4518 		}
4519 		event->pmu->stop(event, PERF_EF_UPDATE);
4520 	}
4521 
4522 	local64_set(&event->hw.period_left, 0);
4523 
4524 	if (active) {
4525 		event->pmu->start(event, PERF_EF_RELOAD);
4526 		perf_pmu_enable(ctx->pmu);
4527 	}
4528 }
4529 
4530 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4531 {
4532 	u64 value;
4533 
4534 	if (!is_sampling_event(event))
4535 		return -EINVAL;
4536 
4537 	if (copy_from_user(&value, arg, sizeof(value)))
4538 		return -EFAULT;
4539 
4540 	if (!value)
4541 		return -EINVAL;
4542 
4543 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4544 		return -EINVAL;
4545 
4546 	event_function_call(event, __perf_event_period, &value);
4547 
4548 	return 0;
4549 }
4550 
4551 static const struct file_operations perf_fops;
4552 
4553 static inline int perf_fget_light(int fd, struct fd *p)
4554 {
4555 	struct fd f = fdget(fd);
4556 	if (!f.file)
4557 		return -EBADF;
4558 
4559 	if (f.file->f_op != &perf_fops) {
4560 		fdput(f);
4561 		return -EBADF;
4562 	}
4563 	*p = f;
4564 	return 0;
4565 }
4566 
4567 static int perf_event_set_output(struct perf_event *event,
4568 				 struct perf_event *output_event);
4569 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4570 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4571 
4572 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4573 {
4574 	void (*func)(struct perf_event *);
4575 	u32 flags = arg;
4576 
4577 	switch (cmd) {
4578 	case PERF_EVENT_IOC_ENABLE:
4579 		func = _perf_event_enable;
4580 		break;
4581 	case PERF_EVENT_IOC_DISABLE:
4582 		func = _perf_event_disable;
4583 		break;
4584 	case PERF_EVENT_IOC_RESET:
4585 		func = _perf_event_reset;
4586 		break;
4587 
4588 	case PERF_EVENT_IOC_REFRESH:
4589 		return _perf_event_refresh(event, arg);
4590 
4591 	case PERF_EVENT_IOC_PERIOD:
4592 		return perf_event_period(event, (u64 __user *)arg);
4593 
4594 	case PERF_EVENT_IOC_ID:
4595 	{
4596 		u64 id = primary_event_id(event);
4597 
4598 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4599 			return -EFAULT;
4600 		return 0;
4601 	}
4602 
4603 	case PERF_EVENT_IOC_SET_OUTPUT:
4604 	{
4605 		int ret;
4606 		if (arg != -1) {
4607 			struct perf_event *output_event;
4608 			struct fd output;
4609 			ret = perf_fget_light(arg, &output);
4610 			if (ret)
4611 				return ret;
4612 			output_event = output.file->private_data;
4613 			ret = perf_event_set_output(event, output_event);
4614 			fdput(output);
4615 		} else {
4616 			ret = perf_event_set_output(event, NULL);
4617 		}
4618 		return ret;
4619 	}
4620 
4621 	case PERF_EVENT_IOC_SET_FILTER:
4622 		return perf_event_set_filter(event, (void __user *)arg);
4623 
4624 	case PERF_EVENT_IOC_SET_BPF:
4625 		return perf_event_set_bpf_prog(event, arg);
4626 
4627 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4628 		struct ring_buffer *rb;
4629 
4630 		rcu_read_lock();
4631 		rb = rcu_dereference(event->rb);
4632 		if (!rb || !rb->nr_pages) {
4633 			rcu_read_unlock();
4634 			return -EINVAL;
4635 		}
4636 		rb_toggle_paused(rb, !!arg);
4637 		rcu_read_unlock();
4638 		return 0;
4639 	}
4640 	default:
4641 		return -ENOTTY;
4642 	}
4643 
4644 	if (flags & PERF_IOC_FLAG_GROUP)
4645 		perf_event_for_each(event, func);
4646 	else
4647 		perf_event_for_each_child(event, func);
4648 
4649 	return 0;
4650 }
4651 
4652 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4653 {
4654 	struct perf_event *event = file->private_data;
4655 	struct perf_event_context *ctx;
4656 	long ret;
4657 
4658 	ctx = perf_event_ctx_lock(event);
4659 	ret = _perf_ioctl(event, cmd, arg);
4660 	perf_event_ctx_unlock(event, ctx);
4661 
4662 	return ret;
4663 }
4664 
4665 #ifdef CONFIG_COMPAT
4666 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4667 				unsigned long arg)
4668 {
4669 	switch (_IOC_NR(cmd)) {
4670 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4671 	case _IOC_NR(PERF_EVENT_IOC_ID):
4672 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4673 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4674 			cmd &= ~IOCSIZE_MASK;
4675 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4676 		}
4677 		break;
4678 	}
4679 	return perf_ioctl(file, cmd, arg);
4680 }
4681 #else
4682 # define perf_compat_ioctl NULL
4683 #endif
4684 
4685 int perf_event_task_enable(void)
4686 {
4687 	struct perf_event_context *ctx;
4688 	struct perf_event *event;
4689 
4690 	mutex_lock(&current->perf_event_mutex);
4691 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4692 		ctx = perf_event_ctx_lock(event);
4693 		perf_event_for_each_child(event, _perf_event_enable);
4694 		perf_event_ctx_unlock(event, ctx);
4695 	}
4696 	mutex_unlock(&current->perf_event_mutex);
4697 
4698 	return 0;
4699 }
4700 
4701 int perf_event_task_disable(void)
4702 {
4703 	struct perf_event_context *ctx;
4704 	struct perf_event *event;
4705 
4706 	mutex_lock(&current->perf_event_mutex);
4707 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4708 		ctx = perf_event_ctx_lock(event);
4709 		perf_event_for_each_child(event, _perf_event_disable);
4710 		perf_event_ctx_unlock(event, ctx);
4711 	}
4712 	mutex_unlock(&current->perf_event_mutex);
4713 
4714 	return 0;
4715 }
4716 
4717 static int perf_event_index(struct perf_event *event)
4718 {
4719 	if (event->hw.state & PERF_HES_STOPPED)
4720 		return 0;
4721 
4722 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4723 		return 0;
4724 
4725 	return event->pmu->event_idx(event);
4726 }
4727 
4728 static void calc_timer_values(struct perf_event *event,
4729 				u64 *now,
4730 				u64 *enabled,
4731 				u64 *running)
4732 {
4733 	u64 ctx_time;
4734 
4735 	*now = perf_clock();
4736 	ctx_time = event->shadow_ctx_time + *now;
4737 	*enabled = ctx_time - event->tstamp_enabled;
4738 	*running = ctx_time - event->tstamp_running;
4739 }
4740 
4741 static void perf_event_init_userpage(struct perf_event *event)
4742 {
4743 	struct perf_event_mmap_page *userpg;
4744 	struct ring_buffer *rb;
4745 
4746 	rcu_read_lock();
4747 	rb = rcu_dereference(event->rb);
4748 	if (!rb)
4749 		goto unlock;
4750 
4751 	userpg = rb->user_page;
4752 
4753 	/* Allow new userspace to detect that bit 0 is deprecated */
4754 	userpg->cap_bit0_is_deprecated = 1;
4755 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4756 	userpg->data_offset = PAGE_SIZE;
4757 	userpg->data_size = perf_data_size(rb);
4758 
4759 unlock:
4760 	rcu_read_unlock();
4761 }
4762 
4763 void __weak arch_perf_update_userpage(
4764 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4765 {
4766 }
4767 
4768 /*
4769  * Callers need to ensure there can be no nesting of this function, otherwise
4770  * the seqlock logic goes bad. We can not serialize this because the arch
4771  * code calls this from NMI context.
4772  */
4773 void perf_event_update_userpage(struct perf_event *event)
4774 {
4775 	struct perf_event_mmap_page *userpg;
4776 	struct ring_buffer *rb;
4777 	u64 enabled, running, now;
4778 
4779 	rcu_read_lock();
4780 	rb = rcu_dereference(event->rb);
4781 	if (!rb)
4782 		goto unlock;
4783 
4784 	/*
4785 	 * compute total_time_enabled, total_time_running
4786 	 * based on snapshot values taken when the event
4787 	 * was last scheduled in.
4788 	 *
4789 	 * we cannot simply called update_context_time()
4790 	 * because of locking issue as we can be called in
4791 	 * NMI context
4792 	 */
4793 	calc_timer_values(event, &now, &enabled, &running);
4794 
4795 	userpg = rb->user_page;
4796 	/*
4797 	 * Disable preemption so as to not let the corresponding user-space
4798 	 * spin too long if we get preempted.
4799 	 */
4800 	preempt_disable();
4801 	++userpg->lock;
4802 	barrier();
4803 	userpg->index = perf_event_index(event);
4804 	userpg->offset = perf_event_count(event);
4805 	if (userpg->index)
4806 		userpg->offset -= local64_read(&event->hw.prev_count);
4807 
4808 	userpg->time_enabled = enabled +
4809 			atomic64_read(&event->child_total_time_enabled);
4810 
4811 	userpg->time_running = running +
4812 			atomic64_read(&event->child_total_time_running);
4813 
4814 	arch_perf_update_userpage(event, userpg, now);
4815 
4816 	barrier();
4817 	++userpg->lock;
4818 	preempt_enable();
4819 unlock:
4820 	rcu_read_unlock();
4821 }
4822 
4823 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4824 {
4825 	struct perf_event *event = vma->vm_file->private_data;
4826 	struct ring_buffer *rb;
4827 	int ret = VM_FAULT_SIGBUS;
4828 
4829 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4830 		if (vmf->pgoff == 0)
4831 			ret = 0;
4832 		return ret;
4833 	}
4834 
4835 	rcu_read_lock();
4836 	rb = rcu_dereference(event->rb);
4837 	if (!rb)
4838 		goto unlock;
4839 
4840 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4841 		goto unlock;
4842 
4843 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4844 	if (!vmf->page)
4845 		goto unlock;
4846 
4847 	get_page(vmf->page);
4848 	vmf->page->mapping = vma->vm_file->f_mapping;
4849 	vmf->page->index   = vmf->pgoff;
4850 
4851 	ret = 0;
4852 unlock:
4853 	rcu_read_unlock();
4854 
4855 	return ret;
4856 }
4857 
4858 static void ring_buffer_attach(struct perf_event *event,
4859 			       struct ring_buffer *rb)
4860 {
4861 	struct ring_buffer *old_rb = NULL;
4862 	unsigned long flags;
4863 
4864 	if (event->rb) {
4865 		/*
4866 		 * Should be impossible, we set this when removing
4867 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4868 		 */
4869 		WARN_ON_ONCE(event->rcu_pending);
4870 
4871 		old_rb = event->rb;
4872 		spin_lock_irqsave(&old_rb->event_lock, flags);
4873 		list_del_rcu(&event->rb_entry);
4874 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4875 
4876 		event->rcu_batches = get_state_synchronize_rcu();
4877 		event->rcu_pending = 1;
4878 	}
4879 
4880 	if (rb) {
4881 		if (event->rcu_pending) {
4882 			cond_synchronize_rcu(event->rcu_batches);
4883 			event->rcu_pending = 0;
4884 		}
4885 
4886 		spin_lock_irqsave(&rb->event_lock, flags);
4887 		list_add_rcu(&event->rb_entry, &rb->event_list);
4888 		spin_unlock_irqrestore(&rb->event_lock, flags);
4889 	}
4890 
4891 	/*
4892 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4893 	 * before swizzling the event::rb pointer; if it's getting
4894 	 * unmapped, its aux_mmap_count will be 0 and it won't
4895 	 * restart. See the comment in __perf_pmu_output_stop().
4896 	 *
4897 	 * Data will inevitably be lost when set_output is done in
4898 	 * mid-air, but then again, whoever does it like this is
4899 	 * not in for the data anyway.
4900 	 */
4901 	if (has_aux(event))
4902 		perf_event_stop(event, 0);
4903 
4904 	rcu_assign_pointer(event->rb, rb);
4905 
4906 	if (old_rb) {
4907 		ring_buffer_put(old_rb);
4908 		/*
4909 		 * Since we detached before setting the new rb, so that we
4910 		 * could attach the new rb, we could have missed a wakeup.
4911 		 * Provide it now.
4912 		 */
4913 		wake_up_all(&event->waitq);
4914 	}
4915 }
4916 
4917 static void ring_buffer_wakeup(struct perf_event *event)
4918 {
4919 	struct ring_buffer *rb;
4920 
4921 	rcu_read_lock();
4922 	rb = rcu_dereference(event->rb);
4923 	if (rb) {
4924 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4925 			wake_up_all(&event->waitq);
4926 	}
4927 	rcu_read_unlock();
4928 }
4929 
4930 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4931 {
4932 	struct ring_buffer *rb;
4933 
4934 	rcu_read_lock();
4935 	rb = rcu_dereference(event->rb);
4936 	if (rb) {
4937 		if (!atomic_inc_not_zero(&rb->refcount))
4938 			rb = NULL;
4939 	}
4940 	rcu_read_unlock();
4941 
4942 	return rb;
4943 }
4944 
4945 void ring_buffer_put(struct ring_buffer *rb)
4946 {
4947 	if (!atomic_dec_and_test(&rb->refcount))
4948 		return;
4949 
4950 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4951 
4952 	call_rcu(&rb->rcu_head, rb_free_rcu);
4953 }
4954 
4955 static void perf_mmap_open(struct vm_area_struct *vma)
4956 {
4957 	struct perf_event *event = vma->vm_file->private_data;
4958 
4959 	atomic_inc(&event->mmap_count);
4960 	atomic_inc(&event->rb->mmap_count);
4961 
4962 	if (vma->vm_pgoff)
4963 		atomic_inc(&event->rb->aux_mmap_count);
4964 
4965 	if (event->pmu->event_mapped)
4966 		event->pmu->event_mapped(event);
4967 }
4968 
4969 static void perf_pmu_output_stop(struct perf_event *event);
4970 
4971 /*
4972  * A buffer can be mmap()ed multiple times; either directly through the same
4973  * event, or through other events by use of perf_event_set_output().
4974  *
4975  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4976  * the buffer here, where we still have a VM context. This means we need
4977  * to detach all events redirecting to us.
4978  */
4979 static void perf_mmap_close(struct vm_area_struct *vma)
4980 {
4981 	struct perf_event *event = vma->vm_file->private_data;
4982 
4983 	struct ring_buffer *rb = ring_buffer_get(event);
4984 	struct user_struct *mmap_user = rb->mmap_user;
4985 	int mmap_locked = rb->mmap_locked;
4986 	unsigned long size = perf_data_size(rb);
4987 
4988 	if (event->pmu->event_unmapped)
4989 		event->pmu->event_unmapped(event);
4990 
4991 	/*
4992 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4993 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4994 	 * serialize with perf_mmap here.
4995 	 */
4996 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4997 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4998 		/*
4999 		 * Stop all AUX events that are writing to this buffer,
5000 		 * so that we can free its AUX pages and corresponding PMU
5001 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5002 		 * they won't start any more (see perf_aux_output_begin()).
5003 		 */
5004 		perf_pmu_output_stop(event);
5005 
5006 		/* now it's safe to free the pages */
5007 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5008 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5009 
5010 		/* this has to be the last one */
5011 		rb_free_aux(rb);
5012 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5013 
5014 		mutex_unlock(&event->mmap_mutex);
5015 	}
5016 
5017 	atomic_dec(&rb->mmap_count);
5018 
5019 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5020 		goto out_put;
5021 
5022 	ring_buffer_attach(event, NULL);
5023 	mutex_unlock(&event->mmap_mutex);
5024 
5025 	/* If there's still other mmap()s of this buffer, we're done. */
5026 	if (atomic_read(&rb->mmap_count))
5027 		goto out_put;
5028 
5029 	/*
5030 	 * No other mmap()s, detach from all other events that might redirect
5031 	 * into the now unreachable buffer. Somewhat complicated by the
5032 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5033 	 */
5034 again:
5035 	rcu_read_lock();
5036 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5037 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5038 			/*
5039 			 * This event is en-route to free_event() which will
5040 			 * detach it and remove it from the list.
5041 			 */
5042 			continue;
5043 		}
5044 		rcu_read_unlock();
5045 
5046 		mutex_lock(&event->mmap_mutex);
5047 		/*
5048 		 * Check we didn't race with perf_event_set_output() which can
5049 		 * swizzle the rb from under us while we were waiting to
5050 		 * acquire mmap_mutex.
5051 		 *
5052 		 * If we find a different rb; ignore this event, a next
5053 		 * iteration will no longer find it on the list. We have to
5054 		 * still restart the iteration to make sure we're not now
5055 		 * iterating the wrong list.
5056 		 */
5057 		if (event->rb == rb)
5058 			ring_buffer_attach(event, NULL);
5059 
5060 		mutex_unlock(&event->mmap_mutex);
5061 		put_event(event);
5062 
5063 		/*
5064 		 * Restart the iteration; either we're on the wrong list or
5065 		 * destroyed its integrity by doing a deletion.
5066 		 */
5067 		goto again;
5068 	}
5069 	rcu_read_unlock();
5070 
5071 	/*
5072 	 * It could be there's still a few 0-ref events on the list; they'll
5073 	 * get cleaned up by free_event() -- they'll also still have their
5074 	 * ref on the rb and will free it whenever they are done with it.
5075 	 *
5076 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5077 	 * undo the VM accounting.
5078 	 */
5079 
5080 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5081 	vma->vm_mm->pinned_vm -= mmap_locked;
5082 	free_uid(mmap_user);
5083 
5084 out_put:
5085 	ring_buffer_put(rb); /* could be last */
5086 }
5087 
5088 static const struct vm_operations_struct perf_mmap_vmops = {
5089 	.open		= perf_mmap_open,
5090 	.close		= perf_mmap_close, /* non mergable */
5091 	.fault		= perf_mmap_fault,
5092 	.page_mkwrite	= perf_mmap_fault,
5093 };
5094 
5095 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5096 {
5097 	struct perf_event *event = file->private_data;
5098 	unsigned long user_locked, user_lock_limit;
5099 	struct user_struct *user = current_user();
5100 	unsigned long locked, lock_limit;
5101 	struct ring_buffer *rb = NULL;
5102 	unsigned long vma_size;
5103 	unsigned long nr_pages;
5104 	long user_extra = 0, extra = 0;
5105 	int ret = 0, flags = 0;
5106 
5107 	/*
5108 	 * Don't allow mmap() of inherited per-task counters. This would
5109 	 * create a performance issue due to all children writing to the
5110 	 * same rb.
5111 	 */
5112 	if (event->cpu == -1 && event->attr.inherit)
5113 		return -EINVAL;
5114 
5115 	if (!(vma->vm_flags & VM_SHARED))
5116 		return -EINVAL;
5117 
5118 	vma_size = vma->vm_end - vma->vm_start;
5119 
5120 	if (vma->vm_pgoff == 0) {
5121 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5122 	} else {
5123 		/*
5124 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5125 		 * mapped, all subsequent mappings should have the same size
5126 		 * and offset. Must be above the normal perf buffer.
5127 		 */
5128 		u64 aux_offset, aux_size;
5129 
5130 		if (!event->rb)
5131 			return -EINVAL;
5132 
5133 		nr_pages = vma_size / PAGE_SIZE;
5134 
5135 		mutex_lock(&event->mmap_mutex);
5136 		ret = -EINVAL;
5137 
5138 		rb = event->rb;
5139 		if (!rb)
5140 			goto aux_unlock;
5141 
5142 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5143 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5144 
5145 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5146 			goto aux_unlock;
5147 
5148 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5149 			goto aux_unlock;
5150 
5151 		/* already mapped with a different offset */
5152 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5153 			goto aux_unlock;
5154 
5155 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5156 			goto aux_unlock;
5157 
5158 		/* already mapped with a different size */
5159 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5160 			goto aux_unlock;
5161 
5162 		if (!is_power_of_2(nr_pages))
5163 			goto aux_unlock;
5164 
5165 		if (!atomic_inc_not_zero(&rb->mmap_count))
5166 			goto aux_unlock;
5167 
5168 		if (rb_has_aux(rb)) {
5169 			atomic_inc(&rb->aux_mmap_count);
5170 			ret = 0;
5171 			goto unlock;
5172 		}
5173 
5174 		atomic_set(&rb->aux_mmap_count, 1);
5175 		user_extra = nr_pages;
5176 
5177 		goto accounting;
5178 	}
5179 
5180 	/*
5181 	 * If we have rb pages ensure they're a power-of-two number, so we
5182 	 * can do bitmasks instead of modulo.
5183 	 */
5184 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5185 		return -EINVAL;
5186 
5187 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5188 		return -EINVAL;
5189 
5190 	WARN_ON_ONCE(event->ctx->parent_ctx);
5191 again:
5192 	mutex_lock(&event->mmap_mutex);
5193 	if (event->rb) {
5194 		if (event->rb->nr_pages != nr_pages) {
5195 			ret = -EINVAL;
5196 			goto unlock;
5197 		}
5198 
5199 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5200 			/*
5201 			 * Raced against perf_mmap_close() through
5202 			 * perf_event_set_output(). Try again, hope for better
5203 			 * luck.
5204 			 */
5205 			mutex_unlock(&event->mmap_mutex);
5206 			goto again;
5207 		}
5208 
5209 		goto unlock;
5210 	}
5211 
5212 	user_extra = nr_pages + 1;
5213 
5214 accounting:
5215 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5216 
5217 	/*
5218 	 * Increase the limit linearly with more CPUs:
5219 	 */
5220 	user_lock_limit *= num_online_cpus();
5221 
5222 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5223 
5224 	if (user_locked > user_lock_limit)
5225 		extra = user_locked - user_lock_limit;
5226 
5227 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5228 	lock_limit >>= PAGE_SHIFT;
5229 	locked = vma->vm_mm->pinned_vm + extra;
5230 
5231 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5232 		!capable(CAP_IPC_LOCK)) {
5233 		ret = -EPERM;
5234 		goto unlock;
5235 	}
5236 
5237 	WARN_ON(!rb && event->rb);
5238 
5239 	if (vma->vm_flags & VM_WRITE)
5240 		flags |= RING_BUFFER_WRITABLE;
5241 
5242 	if (!rb) {
5243 		rb = rb_alloc(nr_pages,
5244 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5245 			      event->cpu, flags);
5246 
5247 		if (!rb) {
5248 			ret = -ENOMEM;
5249 			goto unlock;
5250 		}
5251 
5252 		atomic_set(&rb->mmap_count, 1);
5253 		rb->mmap_user = get_current_user();
5254 		rb->mmap_locked = extra;
5255 
5256 		ring_buffer_attach(event, rb);
5257 
5258 		perf_event_init_userpage(event);
5259 		perf_event_update_userpage(event);
5260 	} else {
5261 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5262 				   event->attr.aux_watermark, flags);
5263 		if (!ret)
5264 			rb->aux_mmap_locked = extra;
5265 	}
5266 
5267 unlock:
5268 	if (!ret) {
5269 		atomic_long_add(user_extra, &user->locked_vm);
5270 		vma->vm_mm->pinned_vm += extra;
5271 
5272 		atomic_inc(&event->mmap_count);
5273 	} else if (rb) {
5274 		atomic_dec(&rb->mmap_count);
5275 	}
5276 aux_unlock:
5277 	mutex_unlock(&event->mmap_mutex);
5278 
5279 	/*
5280 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5281 	 * vma.
5282 	 */
5283 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5284 	vma->vm_ops = &perf_mmap_vmops;
5285 
5286 	if (event->pmu->event_mapped)
5287 		event->pmu->event_mapped(event);
5288 
5289 	return ret;
5290 }
5291 
5292 static int perf_fasync(int fd, struct file *filp, int on)
5293 {
5294 	struct inode *inode = file_inode(filp);
5295 	struct perf_event *event = filp->private_data;
5296 	int retval;
5297 
5298 	inode_lock(inode);
5299 	retval = fasync_helper(fd, filp, on, &event->fasync);
5300 	inode_unlock(inode);
5301 
5302 	if (retval < 0)
5303 		return retval;
5304 
5305 	return 0;
5306 }
5307 
5308 static const struct file_operations perf_fops = {
5309 	.llseek			= no_llseek,
5310 	.release		= perf_release,
5311 	.read			= perf_read,
5312 	.poll			= perf_poll,
5313 	.unlocked_ioctl		= perf_ioctl,
5314 	.compat_ioctl		= perf_compat_ioctl,
5315 	.mmap			= perf_mmap,
5316 	.fasync			= perf_fasync,
5317 };
5318 
5319 /*
5320  * Perf event wakeup
5321  *
5322  * If there's data, ensure we set the poll() state and publish everything
5323  * to user-space before waking everybody up.
5324  */
5325 
5326 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5327 {
5328 	/* only the parent has fasync state */
5329 	if (event->parent)
5330 		event = event->parent;
5331 	return &event->fasync;
5332 }
5333 
5334 void perf_event_wakeup(struct perf_event *event)
5335 {
5336 	ring_buffer_wakeup(event);
5337 
5338 	if (event->pending_kill) {
5339 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5340 		event->pending_kill = 0;
5341 	}
5342 }
5343 
5344 static void perf_pending_event(struct irq_work *entry)
5345 {
5346 	struct perf_event *event = container_of(entry,
5347 			struct perf_event, pending);
5348 	int rctx;
5349 
5350 	rctx = perf_swevent_get_recursion_context();
5351 	/*
5352 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5353 	 * and we won't recurse 'further'.
5354 	 */
5355 
5356 	if (event->pending_disable) {
5357 		event->pending_disable = 0;
5358 		perf_event_disable_local(event);
5359 	}
5360 
5361 	if (event->pending_wakeup) {
5362 		event->pending_wakeup = 0;
5363 		perf_event_wakeup(event);
5364 	}
5365 
5366 	if (rctx >= 0)
5367 		perf_swevent_put_recursion_context(rctx);
5368 }
5369 
5370 /*
5371  * We assume there is only KVM supporting the callbacks.
5372  * Later on, we might change it to a list if there is
5373  * another virtualization implementation supporting the callbacks.
5374  */
5375 struct perf_guest_info_callbacks *perf_guest_cbs;
5376 
5377 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5378 {
5379 	perf_guest_cbs = cbs;
5380 	return 0;
5381 }
5382 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5383 
5384 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5385 {
5386 	perf_guest_cbs = NULL;
5387 	return 0;
5388 }
5389 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5390 
5391 static void
5392 perf_output_sample_regs(struct perf_output_handle *handle,
5393 			struct pt_regs *regs, u64 mask)
5394 {
5395 	int bit;
5396 	DECLARE_BITMAP(_mask, 64);
5397 
5398 	bitmap_from_u64(_mask, mask);
5399 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5400 		u64 val;
5401 
5402 		val = perf_reg_value(regs, bit);
5403 		perf_output_put(handle, val);
5404 	}
5405 }
5406 
5407 static void perf_sample_regs_user(struct perf_regs *regs_user,
5408 				  struct pt_regs *regs,
5409 				  struct pt_regs *regs_user_copy)
5410 {
5411 	if (user_mode(regs)) {
5412 		regs_user->abi = perf_reg_abi(current);
5413 		regs_user->regs = regs;
5414 	} else if (current->mm) {
5415 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5416 	} else {
5417 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5418 		regs_user->regs = NULL;
5419 	}
5420 }
5421 
5422 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5423 				  struct pt_regs *regs)
5424 {
5425 	regs_intr->regs = regs;
5426 	regs_intr->abi  = perf_reg_abi(current);
5427 }
5428 
5429 
5430 /*
5431  * Get remaining task size from user stack pointer.
5432  *
5433  * It'd be better to take stack vma map and limit this more
5434  * precisly, but there's no way to get it safely under interrupt,
5435  * so using TASK_SIZE as limit.
5436  */
5437 static u64 perf_ustack_task_size(struct pt_regs *regs)
5438 {
5439 	unsigned long addr = perf_user_stack_pointer(regs);
5440 
5441 	if (!addr || addr >= TASK_SIZE)
5442 		return 0;
5443 
5444 	return TASK_SIZE - addr;
5445 }
5446 
5447 static u16
5448 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5449 			struct pt_regs *regs)
5450 {
5451 	u64 task_size;
5452 
5453 	/* No regs, no stack pointer, no dump. */
5454 	if (!regs)
5455 		return 0;
5456 
5457 	/*
5458 	 * Check if we fit in with the requested stack size into the:
5459 	 * - TASK_SIZE
5460 	 *   If we don't, we limit the size to the TASK_SIZE.
5461 	 *
5462 	 * - remaining sample size
5463 	 *   If we don't, we customize the stack size to
5464 	 *   fit in to the remaining sample size.
5465 	 */
5466 
5467 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5468 	stack_size = min(stack_size, (u16) task_size);
5469 
5470 	/* Current header size plus static size and dynamic size. */
5471 	header_size += 2 * sizeof(u64);
5472 
5473 	/* Do we fit in with the current stack dump size? */
5474 	if ((u16) (header_size + stack_size) < header_size) {
5475 		/*
5476 		 * If we overflow the maximum size for the sample,
5477 		 * we customize the stack dump size to fit in.
5478 		 */
5479 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5480 		stack_size = round_up(stack_size, sizeof(u64));
5481 	}
5482 
5483 	return stack_size;
5484 }
5485 
5486 static void
5487 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5488 			  struct pt_regs *regs)
5489 {
5490 	/* Case of a kernel thread, nothing to dump */
5491 	if (!regs) {
5492 		u64 size = 0;
5493 		perf_output_put(handle, size);
5494 	} else {
5495 		unsigned long sp;
5496 		unsigned int rem;
5497 		u64 dyn_size;
5498 
5499 		/*
5500 		 * We dump:
5501 		 * static size
5502 		 *   - the size requested by user or the best one we can fit
5503 		 *     in to the sample max size
5504 		 * data
5505 		 *   - user stack dump data
5506 		 * dynamic size
5507 		 *   - the actual dumped size
5508 		 */
5509 
5510 		/* Static size. */
5511 		perf_output_put(handle, dump_size);
5512 
5513 		/* Data. */
5514 		sp = perf_user_stack_pointer(regs);
5515 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5516 		dyn_size = dump_size - rem;
5517 
5518 		perf_output_skip(handle, rem);
5519 
5520 		/* Dynamic size. */
5521 		perf_output_put(handle, dyn_size);
5522 	}
5523 }
5524 
5525 static void __perf_event_header__init_id(struct perf_event_header *header,
5526 					 struct perf_sample_data *data,
5527 					 struct perf_event *event)
5528 {
5529 	u64 sample_type = event->attr.sample_type;
5530 
5531 	data->type = sample_type;
5532 	header->size += event->id_header_size;
5533 
5534 	if (sample_type & PERF_SAMPLE_TID) {
5535 		/* namespace issues */
5536 		data->tid_entry.pid = perf_event_pid(event, current);
5537 		data->tid_entry.tid = perf_event_tid(event, current);
5538 	}
5539 
5540 	if (sample_type & PERF_SAMPLE_TIME)
5541 		data->time = perf_event_clock(event);
5542 
5543 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5544 		data->id = primary_event_id(event);
5545 
5546 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5547 		data->stream_id = event->id;
5548 
5549 	if (sample_type & PERF_SAMPLE_CPU) {
5550 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5551 		data->cpu_entry.reserved = 0;
5552 	}
5553 }
5554 
5555 void perf_event_header__init_id(struct perf_event_header *header,
5556 				struct perf_sample_data *data,
5557 				struct perf_event *event)
5558 {
5559 	if (event->attr.sample_id_all)
5560 		__perf_event_header__init_id(header, data, event);
5561 }
5562 
5563 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5564 					   struct perf_sample_data *data)
5565 {
5566 	u64 sample_type = data->type;
5567 
5568 	if (sample_type & PERF_SAMPLE_TID)
5569 		perf_output_put(handle, data->tid_entry);
5570 
5571 	if (sample_type & PERF_SAMPLE_TIME)
5572 		perf_output_put(handle, data->time);
5573 
5574 	if (sample_type & PERF_SAMPLE_ID)
5575 		perf_output_put(handle, data->id);
5576 
5577 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5578 		perf_output_put(handle, data->stream_id);
5579 
5580 	if (sample_type & PERF_SAMPLE_CPU)
5581 		perf_output_put(handle, data->cpu_entry);
5582 
5583 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5584 		perf_output_put(handle, data->id);
5585 }
5586 
5587 void perf_event__output_id_sample(struct perf_event *event,
5588 				  struct perf_output_handle *handle,
5589 				  struct perf_sample_data *sample)
5590 {
5591 	if (event->attr.sample_id_all)
5592 		__perf_event__output_id_sample(handle, sample);
5593 }
5594 
5595 static void perf_output_read_one(struct perf_output_handle *handle,
5596 				 struct perf_event *event,
5597 				 u64 enabled, u64 running)
5598 {
5599 	u64 read_format = event->attr.read_format;
5600 	u64 values[4];
5601 	int n = 0;
5602 
5603 	values[n++] = perf_event_count(event);
5604 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5605 		values[n++] = enabled +
5606 			atomic64_read(&event->child_total_time_enabled);
5607 	}
5608 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5609 		values[n++] = running +
5610 			atomic64_read(&event->child_total_time_running);
5611 	}
5612 	if (read_format & PERF_FORMAT_ID)
5613 		values[n++] = primary_event_id(event);
5614 
5615 	__output_copy(handle, values, n * sizeof(u64));
5616 }
5617 
5618 /*
5619  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5620  */
5621 static void perf_output_read_group(struct perf_output_handle *handle,
5622 			    struct perf_event *event,
5623 			    u64 enabled, u64 running)
5624 {
5625 	struct perf_event *leader = event->group_leader, *sub;
5626 	u64 read_format = event->attr.read_format;
5627 	u64 values[5];
5628 	int n = 0;
5629 
5630 	values[n++] = 1 + leader->nr_siblings;
5631 
5632 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5633 		values[n++] = enabled;
5634 
5635 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5636 		values[n++] = running;
5637 
5638 	if (leader != event)
5639 		leader->pmu->read(leader);
5640 
5641 	values[n++] = perf_event_count(leader);
5642 	if (read_format & PERF_FORMAT_ID)
5643 		values[n++] = primary_event_id(leader);
5644 
5645 	__output_copy(handle, values, n * sizeof(u64));
5646 
5647 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5648 		n = 0;
5649 
5650 		if ((sub != event) &&
5651 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5652 			sub->pmu->read(sub);
5653 
5654 		values[n++] = perf_event_count(sub);
5655 		if (read_format & PERF_FORMAT_ID)
5656 			values[n++] = primary_event_id(sub);
5657 
5658 		__output_copy(handle, values, n * sizeof(u64));
5659 	}
5660 }
5661 
5662 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5663 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5664 
5665 static void perf_output_read(struct perf_output_handle *handle,
5666 			     struct perf_event *event)
5667 {
5668 	u64 enabled = 0, running = 0, now;
5669 	u64 read_format = event->attr.read_format;
5670 
5671 	/*
5672 	 * compute total_time_enabled, total_time_running
5673 	 * based on snapshot values taken when the event
5674 	 * was last scheduled in.
5675 	 *
5676 	 * we cannot simply called update_context_time()
5677 	 * because of locking issue as we are called in
5678 	 * NMI context
5679 	 */
5680 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5681 		calc_timer_values(event, &now, &enabled, &running);
5682 
5683 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5684 		perf_output_read_group(handle, event, enabled, running);
5685 	else
5686 		perf_output_read_one(handle, event, enabled, running);
5687 }
5688 
5689 void perf_output_sample(struct perf_output_handle *handle,
5690 			struct perf_event_header *header,
5691 			struct perf_sample_data *data,
5692 			struct perf_event *event)
5693 {
5694 	u64 sample_type = data->type;
5695 
5696 	perf_output_put(handle, *header);
5697 
5698 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699 		perf_output_put(handle, data->id);
5700 
5701 	if (sample_type & PERF_SAMPLE_IP)
5702 		perf_output_put(handle, data->ip);
5703 
5704 	if (sample_type & PERF_SAMPLE_TID)
5705 		perf_output_put(handle, data->tid_entry);
5706 
5707 	if (sample_type & PERF_SAMPLE_TIME)
5708 		perf_output_put(handle, data->time);
5709 
5710 	if (sample_type & PERF_SAMPLE_ADDR)
5711 		perf_output_put(handle, data->addr);
5712 
5713 	if (sample_type & PERF_SAMPLE_ID)
5714 		perf_output_put(handle, data->id);
5715 
5716 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5717 		perf_output_put(handle, data->stream_id);
5718 
5719 	if (sample_type & PERF_SAMPLE_CPU)
5720 		perf_output_put(handle, data->cpu_entry);
5721 
5722 	if (sample_type & PERF_SAMPLE_PERIOD)
5723 		perf_output_put(handle, data->period);
5724 
5725 	if (sample_type & PERF_SAMPLE_READ)
5726 		perf_output_read(handle, event);
5727 
5728 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5729 		if (data->callchain) {
5730 			int size = 1;
5731 
5732 			if (data->callchain)
5733 				size += data->callchain->nr;
5734 
5735 			size *= sizeof(u64);
5736 
5737 			__output_copy(handle, data->callchain, size);
5738 		} else {
5739 			u64 nr = 0;
5740 			perf_output_put(handle, nr);
5741 		}
5742 	}
5743 
5744 	if (sample_type & PERF_SAMPLE_RAW) {
5745 		struct perf_raw_record *raw = data->raw;
5746 
5747 		if (raw) {
5748 			struct perf_raw_frag *frag = &raw->frag;
5749 
5750 			perf_output_put(handle, raw->size);
5751 			do {
5752 				if (frag->copy) {
5753 					__output_custom(handle, frag->copy,
5754 							frag->data, frag->size);
5755 				} else {
5756 					__output_copy(handle, frag->data,
5757 						      frag->size);
5758 				}
5759 				if (perf_raw_frag_last(frag))
5760 					break;
5761 				frag = frag->next;
5762 			} while (1);
5763 			if (frag->pad)
5764 				__output_skip(handle, NULL, frag->pad);
5765 		} else {
5766 			struct {
5767 				u32	size;
5768 				u32	data;
5769 			} raw = {
5770 				.size = sizeof(u32),
5771 				.data = 0,
5772 			};
5773 			perf_output_put(handle, raw);
5774 		}
5775 	}
5776 
5777 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5778 		if (data->br_stack) {
5779 			size_t size;
5780 
5781 			size = data->br_stack->nr
5782 			     * sizeof(struct perf_branch_entry);
5783 
5784 			perf_output_put(handle, data->br_stack->nr);
5785 			perf_output_copy(handle, data->br_stack->entries, size);
5786 		} else {
5787 			/*
5788 			 * we always store at least the value of nr
5789 			 */
5790 			u64 nr = 0;
5791 			perf_output_put(handle, nr);
5792 		}
5793 	}
5794 
5795 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5796 		u64 abi = data->regs_user.abi;
5797 
5798 		/*
5799 		 * If there are no regs to dump, notice it through
5800 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5801 		 */
5802 		perf_output_put(handle, abi);
5803 
5804 		if (abi) {
5805 			u64 mask = event->attr.sample_regs_user;
5806 			perf_output_sample_regs(handle,
5807 						data->regs_user.regs,
5808 						mask);
5809 		}
5810 	}
5811 
5812 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5813 		perf_output_sample_ustack(handle,
5814 					  data->stack_user_size,
5815 					  data->regs_user.regs);
5816 	}
5817 
5818 	if (sample_type & PERF_SAMPLE_WEIGHT)
5819 		perf_output_put(handle, data->weight);
5820 
5821 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5822 		perf_output_put(handle, data->data_src.val);
5823 
5824 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5825 		perf_output_put(handle, data->txn);
5826 
5827 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5828 		u64 abi = data->regs_intr.abi;
5829 		/*
5830 		 * If there are no regs to dump, notice it through
5831 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5832 		 */
5833 		perf_output_put(handle, abi);
5834 
5835 		if (abi) {
5836 			u64 mask = event->attr.sample_regs_intr;
5837 
5838 			perf_output_sample_regs(handle,
5839 						data->regs_intr.regs,
5840 						mask);
5841 		}
5842 	}
5843 
5844 	if (!event->attr.watermark) {
5845 		int wakeup_events = event->attr.wakeup_events;
5846 
5847 		if (wakeup_events) {
5848 			struct ring_buffer *rb = handle->rb;
5849 			int events = local_inc_return(&rb->events);
5850 
5851 			if (events >= wakeup_events) {
5852 				local_sub(wakeup_events, &rb->events);
5853 				local_inc(&rb->wakeup);
5854 			}
5855 		}
5856 	}
5857 }
5858 
5859 void perf_prepare_sample(struct perf_event_header *header,
5860 			 struct perf_sample_data *data,
5861 			 struct perf_event *event,
5862 			 struct pt_regs *regs)
5863 {
5864 	u64 sample_type = event->attr.sample_type;
5865 
5866 	header->type = PERF_RECORD_SAMPLE;
5867 	header->size = sizeof(*header) + event->header_size;
5868 
5869 	header->misc = 0;
5870 	header->misc |= perf_misc_flags(regs);
5871 
5872 	__perf_event_header__init_id(header, data, event);
5873 
5874 	if (sample_type & PERF_SAMPLE_IP)
5875 		data->ip = perf_instruction_pointer(regs);
5876 
5877 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5878 		int size = 1;
5879 
5880 		data->callchain = perf_callchain(event, regs);
5881 
5882 		if (data->callchain)
5883 			size += data->callchain->nr;
5884 
5885 		header->size += size * sizeof(u64);
5886 	}
5887 
5888 	if (sample_type & PERF_SAMPLE_RAW) {
5889 		struct perf_raw_record *raw = data->raw;
5890 		int size;
5891 
5892 		if (raw) {
5893 			struct perf_raw_frag *frag = &raw->frag;
5894 			u32 sum = 0;
5895 
5896 			do {
5897 				sum += frag->size;
5898 				if (perf_raw_frag_last(frag))
5899 					break;
5900 				frag = frag->next;
5901 			} while (1);
5902 
5903 			size = round_up(sum + sizeof(u32), sizeof(u64));
5904 			raw->size = size - sizeof(u32);
5905 			frag->pad = raw->size - sum;
5906 		} else {
5907 			size = sizeof(u64);
5908 		}
5909 
5910 		header->size += size;
5911 	}
5912 
5913 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5914 		int size = sizeof(u64); /* nr */
5915 		if (data->br_stack) {
5916 			size += data->br_stack->nr
5917 			      * sizeof(struct perf_branch_entry);
5918 		}
5919 		header->size += size;
5920 	}
5921 
5922 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5923 		perf_sample_regs_user(&data->regs_user, regs,
5924 				      &data->regs_user_copy);
5925 
5926 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5927 		/* regs dump ABI info */
5928 		int size = sizeof(u64);
5929 
5930 		if (data->regs_user.regs) {
5931 			u64 mask = event->attr.sample_regs_user;
5932 			size += hweight64(mask) * sizeof(u64);
5933 		}
5934 
5935 		header->size += size;
5936 	}
5937 
5938 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5939 		/*
5940 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5941 		 * processed as the last one or have additional check added
5942 		 * in case new sample type is added, because we could eat
5943 		 * up the rest of the sample size.
5944 		 */
5945 		u16 stack_size = event->attr.sample_stack_user;
5946 		u16 size = sizeof(u64);
5947 
5948 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5949 						     data->regs_user.regs);
5950 
5951 		/*
5952 		 * If there is something to dump, add space for the dump
5953 		 * itself and for the field that tells the dynamic size,
5954 		 * which is how many have been actually dumped.
5955 		 */
5956 		if (stack_size)
5957 			size += sizeof(u64) + stack_size;
5958 
5959 		data->stack_user_size = stack_size;
5960 		header->size += size;
5961 	}
5962 
5963 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5964 		/* regs dump ABI info */
5965 		int size = sizeof(u64);
5966 
5967 		perf_sample_regs_intr(&data->regs_intr, regs);
5968 
5969 		if (data->regs_intr.regs) {
5970 			u64 mask = event->attr.sample_regs_intr;
5971 
5972 			size += hweight64(mask) * sizeof(u64);
5973 		}
5974 
5975 		header->size += size;
5976 	}
5977 }
5978 
5979 static void __always_inline
5980 __perf_event_output(struct perf_event *event,
5981 		    struct perf_sample_data *data,
5982 		    struct pt_regs *regs,
5983 		    int (*output_begin)(struct perf_output_handle *,
5984 					struct perf_event *,
5985 					unsigned int))
5986 {
5987 	struct perf_output_handle handle;
5988 	struct perf_event_header header;
5989 
5990 	/* protect the callchain buffers */
5991 	rcu_read_lock();
5992 
5993 	perf_prepare_sample(&header, data, event, regs);
5994 
5995 	if (output_begin(&handle, event, header.size))
5996 		goto exit;
5997 
5998 	perf_output_sample(&handle, &header, data, event);
5999 
6000 	perf_output_end(&handle);
6001 
6002 exit:
6003 	rcu_read_unlock();
6004 }
6005 
6006 void
6007 perf_event_output_forward(struct perf_event *event,
6008 			 struct perf_sample_data *data,
6009 			 struct pt_regs *regs)
6010 {
6011 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6012 }
6013 
6014 void
6015 perf_event_output_backward(struct perf_event *event,
6016 			   struct perf_sample_data *data,
6017 			   struct pt_regs *regs)
6018 {
6019 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6020 }
6021 
6022 void
6023 perf_event_output(struct perf_event *event,
6024 		  struct perf_sample_data *data,
6025 		  struct pt_regs *regs)
6026 {
6027 	__perf_event_output(event, data, regs, perf_output_begin);
6028 }
6029 
6030 /*
6031  * read event_id
6032  */
6033 
6034 struct perf_read_event {
6035 	struct perf_event_header	header;
6036 
6037 	u32				pid;
6038 	u32				tid;
6039 };
6040 
6041 static void
6042 perf_event_read_event(struct perf_event *event,
6043 			struct task_struct *task)
6044 {
6045 	struct perf_output_handle handle;
6046 	struct perf_sample_data sample;
6047 	struct perf_read_event read_event = {
6048 		.header = {
6049 			.type = PERF_RECORD_READ,
6050 			.misc = 0,
6051 			.size = sizeof(read_event) + event->read_size,
6052 		},
6053 		.pid = perf_event_pid(event, task),
6054 		.tid = perf_event_tid(event, task),
6055 	};
6056 	int ret;
6057 
6058 	perf_event_header__init_id(&read_event.header, &sample, event);
6059 	ret = perf_output_begin(&handle, event, read_event.header.size);
6060 	if (ret)
6061 		return;
6062 
6063 	perf_output_put(&handle, read_event);
6064 	perf_output_read(&handle, event);
6065 	perf_event__output_id_sample(event, &handle, &sample);
6066 
6067 	perf_output_end(&handle);
6068 }
6069 
6070 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6071 
6072 static void
6073 perf_iterate_ctx(struct perf_event_context *ctx,
6074 		   perf_iterate_f output,
6075 		   void *data, bool all)
6076 {
6077 	struct perf_event *event;
6078 
6079 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6080 		if (!all) {
6081 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6082 				continue;
6083 			if (!event_filter_match(event))
6084 				continue;
6085 		}
6086 
6087 		output(event, data);
6088 	}
6089 }
6090 
6091 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6092 {
6093 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6094 	struct perf_event *event;
6095 
6096 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6097 		/*
6098 		 * Skip events that are not fully formed yet; ensure that
6099 		 * if we observe event->ctx, both event and ctx will be
6100 		 * complete enough. See perf_install_in_context().
6101 		 */
6102 		if (!smp_load_acquire(&event->ctx))
6103 			continue;
6104 
6105 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6106 			continue;
6107 		if (!event_filter_match(event))
6108 			continue;
6109 		output(event, data);
6110 	}
6111 }
6112 
6113 /*
6114  * Iterate all events that need to receive side-band events.
6115  *
6116  * For new callers; ensure that account_pmu_sb_event() includes
6117  * your event, otherwise it might not get delivered.
6118  */
6119 static void
6120 perf_iterate_sb(perf_iterate_f output, void *data,
6121 	       struct perf_event_context *task_ctx)
6122 {
6123 	struct perf_event_context *ctx;
6124 	int ctxn;
6125 
6126 	rcu_read_lock();
6127 	preempt_disable();
6128 
6129 	/*
6130 	 * If we have task_ctx != NULL we only notify the task context itself.
6131 	 * The task_ctx is set only for EXIT events before releasing task
6132 	 * context.
6133 	 */
6134 	if (task_ctx) {
6135 		perf_iterate_ctx(task_ctx, output, data, false);
6136 		goto done;
6137 	}
6138 
6139 	perf_iterate_sb_cpu(output, data);
6140 
6141 	for_each_task_context_nr(ctxn) {
6142 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6143 		if (ctx)
6144 			perf_iterate_ctx(ctx, output, data, false);
6145 	}
6146 done:
6147 	preempt_enable();
6148 	rcu_read_unlock();
6149 }
6150 
6151 /*
6152  * Clear all file-based filters at exec, they'll have to be
6153  * re-instated when/if these objects are mmapped again.
6154  */
6155 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6156 {
6157 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6158 	struct perf_addr_filter *filter;
6159 	unsigned int restart = 0, count = 0;
6160 	unsigned long flags;
6161 
6162 	if (!has_addr_filter(event))
6163 		return;
6164 
6165 	raw_spin_lock_irqsave(&ifh->lock, flags);
6166 	list_for_each_entry(filter, &ifh->list, entry) {
6167 		if (filter->inode) {
6168 			event->addr_filters_offs[count] = 0;
6169 			restart++;
6170 		}
6171 
6172 		count++;
6173 	}
6174 
6175 	if (restart)
6176 		event->addr_filters_gen++;
6177 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6178 
6179 	if (restart)
6180 		perf_event_stop(event, 1);
6181 }
6182 
6183 void perf_event_exec(void)
6184 {
6185 	struct perf_event_context *ctx;
6186 	int ctxn;
6187 
6188 	rcu_read_lock();
6189 	for_each_task_context_nr(ctxn) {
6190 		ctx = current->perf_event_ctxp[ctxn];
6191 		if (!ctx)
6192 			continue;
6193 
6194 		perf_event_enable_on_exec(ctxn);
6195 
6196 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6197 				   true);
6198 	}
6199 	rcu_read_unlock();
6200 }
6201 
6202 struct remote_output {
6203 	struct ring_buffer	*rb;
6204 	int			err;
6205 };
6206 
6207 static void __perf_event_output_stop(struct perf_event *event, void *data)
6208 {
6209 	struct perf_event *parent = event->parent;
6210 	struct remote_output *ro = data;
6211 	struct ring_buffer *rb = ro->rb;
6212 	struct stop_event_data sd = {
6213 		.event	= event,
6214 	};
6215 
6216 	if (!has_aux(event))
6217 		return;
6218 
6219 	if (!parent)
6220 		parent = event;
6221 
6222 	/*
6223 	 * In case of inheritance, it will be the parent that links to the
6224 	 * ring-buffer, but it will be the child that's actually using it.
6225 	 *
6226 	 * We are using event::rb to determine if the event should be stopped,
6227 	 * however this may race with ring_buffer_attach() (through set_output),
6228 	 * which will make us skip the event that actually needs to be stopped.
6229 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6230 	 * its rb pointer.
6231 	 */
6232 	if (rcu_dereference(parent->rb) == rb)
6233 		ro->err = __perf_event_stop(&sd);
6234 }
6235 
6236 static int __perf_pmu_output_stop(void *info)
6237 {
6238 	struct perf_event *event = info;
6239 	struct pmu *pmu = event->pmu;
6240 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6241 	struct remote_output ro = {
6242 		.rb	= event->rb,
6243 	};
6244 
6245 	rcu_read_lock();
6246 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6247 	if (cpuctx->task_ctx)
6248 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6249 				   &ro, false);
6250 	rcu_read_unlock();
6251 
6252 	return ro.err;
6253 }
6254 
6255 static void perf_pmu_output_stop(struct perf_event *event)
6256 {
6257 	struct perf_event *iter;
6258 	int err, cpu;
6259 
6260 restart:
6261 	rcu_read_lock();
6262 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6263 		/*
6264 		 * For per-CPU events, we need to make sure that neither they
6265 		 * nor their children are running; for cpu==-1 events it's
6266 		 * sufficient to stop the event itself if it's active, since
6267 		 * it can't have children.
6268 		 */
6269 		cpu = iter->cpu;
6270 		if (cpu == -1)
6271 			cpu = READ_ONCE(iter->oncpu);
6272 
6273 		if (cpu == -1)
6274 			continue;
6275 
6276 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6277 		if (err == -EAGAIN) {
6278 			rcu_read_unlock();
6279 			goto restart;
6280 		}
6281 	}
6282 	rcu_read_unlock();
6283 }
6284 
6285 /*
6286  * task tracking -- fork/exit
6287  *
6288  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6289  */
6290 
6291 struct perf_task_event {
6292 	struct task_struct		*task;
6293 	struct perf_event_context	*task_ctx;
6294 
6295 	struct {
6296 		struct perf_event_header	header;
6297 
6298 		u32				pid;
6299 		u32				ppid;
6300 		u32				tid;
6301 		u32				ptid;
6302 		u64				time;
6303 	} event_id;
6304 };
6305 
6306 static int perf_event_task_match(struct perf_event *event)
6307 {
6308 	return event->attr.comm  || event->attr.mmap ||
6309 	       event->attr.mmap2 || event->attr.mmap_data ||
6310 	       event->attr.task;
6311 }
6312 
6313 static void perf_event_task_output(struct perf_event *event,
6314 				   void *data)
6315 {
6316 	struct perf_task_event *task_event = data;
6317 	struct perf_output_handle handle;
6318 	struct perf_sample_data	sample;
6319 	struct task_struct *task = task_event->task;
6320 	int ret, size = task_event->event_id.header.size;
6321 
6322 	if (!perf_event_task_match(event))
6323 		return;
6324 
6325 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6326 
6327 	ret = perf_output_begin(&handle, event,
6328 				task_event->event_id.header.size);
6329 	if (ret)
6330 		goto out;
6331 
6332 	task_event->event_id.pid = perf_event_pid(event, task);
6333 	task_event->event_id.ppid = perf_event_pid(event, current);
6334 
6335 	task_event->event_id.tid = perf_event_tid(event, task);
6336 	task_event->event_id.ptid = perf_event_tid(event, current);
6337 
6338 	task_event->event_id.time = perf_event_clock(event);
6339 
6340 	perf_output_put(&handle, task_event->event_id);
6341 
6342 	perf_event__output_id_sample(event, &handle, &sample);
6343 
6344 	perf_output_end(&handle);
6345 out:
6346 	task_event->event_id.header.size = size;
6347 }
6348 
6349 static void perf_event_task(struct task_struct *task,
6350 			      struct perf_event_context *task_ctx,
6351 			      int new)
6352 {
6353 	struct perf_task_event task_event;
6354 
6355 	if (!atomic_read(&nr_comm_events) &&
6356 	    !atomic_read(&nr_mmap_events) &&
6357 	    !atomic_read(&nr_task_events))
6358 		return;
6359 
6360 	task_event = (struct perf_task_event){
6361 		.task	  = task,
6362 		.task_ctx = task_ctx,
6363 		.event_id    = {
6364 			.header = {
6365 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6366 				.misc = 0,
6367 				.size = sizeof(task_event.event_id),
6368 			},
6369 			/* .pid  */
6370 			/* .ppid */
6371 			/* .tid  */
6372 			/* .ptid */
6373 			/* .time */
6374 		},
6375 	};
6376 
6377 	perf_iterate_sb(perf_event_task_output,
6378 		       &task_event,
6379 		       task_ctx);
6380 }
6381 
6382 void perf_event_fork(struct task_struct *task)
6383 {
6384 	perf_event_task(task, NULL, 1);
6385 }
6386 
6387 /*
6388  * comm tracking
6389  */
6390 
6391 struct perf_comm_event {
6392 	struct task_struct	*task;
6393 	char			*comm;
6394 	int			comm_size;
6395 
6396 	struct {
6397 		struct perf_event_header	header;
6398 
6399 		u32				pid;
6400 		u32				tid;
6401 	} event_id;
6402 };
6403 
6404 static int perf_event_comm_match(struct perf_event *event)
6405 {
6406 	return event->attr.comm;
6407 }
6408 
6409 static void perf_event_comm_output(struct perf_event *event,
6410 				   void *data)
6411 {
6412 	struct perf_comm_event *comm_event = data;
6413 	struct perf_output_handle handle;
6414 	struct perf_sample_data sample;
6415 	int size = comm_event->event_id.header.size;
6416 	int ret;
6417 
6418 	if (!perf_event_comm_match(event))
6419 		return;
6420 
6421 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6422 	ret = perf_output_begin(&handle, event,
6423 				comm_event->event_id.header.size);
6424 
6425 	if (ret)
6426 		goto out;
6427 
6428 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6429 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6430 
6431 	perf_output_put(&handle, comm_event->event_id);
6432 	__output_copy(&handle, comm_event->comm,
6433 				   comm_event->comm_size);
6434 
6435 	perf_event__output_id_sample(event, &handle, &sample);
6436 
6437 	perf_output_end(&handle);
6438 out:
6439 	comm_event->event_id.header.size = size;
6440 }
6441 
6442 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6443 {
6444 	char comm[TASK_COMM_LEN];
6445 	unsigned int size;
6446 
6447 	memset(comm, 0, sizeof(comm));
6448 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6449 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6450 
6451 	comm_event->comm = comm;
6452 	comm_event->comm_size = size;
6453 
6454 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6455 
6456 	perf_iterate_sb(perf_event_comm_output,
6457 		       comm_event,
6458 		       NULL);
6459 }
6460 
6461 void perf_event_comm(struct task_struct *task, bool exec)
6462 {
6463 	struct perf_comm_event comm_event;
6464 
6465 	if (!atomic_read(&nr_comm_events))
6466 		return;
6467 
6468 	comm_event = (struct perf_comm_event){
6469 		.task	= task,
6470 		/* .comm      */
6471 		/* .comm_size */
6472 		.event_id  = {
6473 			.header = {
6474 				.type = PERF_RECORD_COMM,
6475 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6476 				/* .size */
6477 			},
6478 			/* .pid */
6479 			/* .tid */
6480 		},
6481 	};
6482 
6483 	perf_event_comm_event(&comm_event);
6484 }
6485 
6486 /*
6487  * mmap tracking
6488  */
6489 
6490 struct perf_mmap_event {
6491 	struct vm_area_struct	*vma;
6492 
6493 	const char		*file_name;
6494 	int			file_size;
6495 	int			maj, min;
6496 	u64			ino;
6497 	u64			ino_generation;
6498 	u32			prot, flags;
6499 
6500 	struct {
6501 		struct perf_event_header	header;
6502 
6503 		u32				pid;
6504 		u32				tid;
6505 		u64				start;
6506 		u64				len;
6507 		u64				pgoff;
6508 	} event_id;
6509 };
6510 
6511 static int perf_event_mmap_match(struct perf_event *event,
6512 				 void *data)
6513 {
6514 	struct perf_mmap_event *mmap_event = data;
6515 	struct vm_area_struct *vma = mmap_event->vma;
6516 	int executable = vma->vm_flags & VM_EXEC;
6517 
6518 	return (!executable && event->attr.mmap_data) ||
6519 	       (executable && (event->attr.mmap || event->attr.mmap2));
6520 }
6521 
6522 static void perf_event_mmap_output(struct perf_event *event,
6523 				   void *data)
6524 {
6525 	struct perf_mmap_event *mmap_event = data;
6526 	struct perf_output_handle handle;
6527 	struct perf_sample_data sample;
6528 	int size = mmap_event->event_id.header.size;
6529 	int ret;
6530 
6531 	if (!perf_event_mmap_match(event, data))
6532 		return;
6533 
6534 	if (event->attr.mmap2) {
6535 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6536 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6537 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6538 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6539 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6540 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6541 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6542 	}
6543 
6544 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6545 	ret = perf_output_begin(&handle, event,
6546 				mmap_event->event_id.header.size);
6547 	if (ret)
6548 		goto out;
6549 
6550 	mmap_event->event_id.pid = perf_event_pid(event, current);
6551 	mmap_event->event_id.tid = perf_event_tid(event, current);
6552 
6553 	perf_output_put(&handle, mmap_event->event_id);
6554 
6555 	if (event->attr.mmap2) {
6556 		perf_output_put(&handle, mmap_event->maj);
6557 		perf_output_put(&handle, mmap_event->min);
6558 		perf_output_put(&handle, mmap_event->ino);
6559 		perf_output_put(&handle, mmap_event->ino_generation);
6560 		perf_output_put(&handle, mmap_event->prot);
6561 		perf_output_put(&handle, mmap_event->flags);
6562 	}
6563 
6564 	__output_copy(&handle, mmap_event->file_name,
6565 				   mmap_event->file_size);
6566 
6567 	perf_event__output_id_sample(event, &handle, &sample);
6568 
6569 	perf_output_end(&handle);
6570 out:
6571 	mmap_event->event_id.header.size = size;
6572 }
6573 
6574 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6575 {
6576 	struct vm_area_struct *vma = mmap_event->vma;
6577 	struct file *file = vma->vm_file;
6578 	int maj = 0, min = 0;
6579 	u64 ino = 0, gen = 0;
6580 	u32 prot = 0, flags = 0;
6581 	unsigned int size;
6582 	char tmp[16];
6583 	char *buf = NULL;
6584 	char *name;
6585 
6586 	if (file) {
6587 		struct inode *inode;
6588 		dev_t dev;
6589 
6590 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6591 		if (!buf) {
6592 			name = "//enomem";
6593 			goto cpy_name;
6594 		}
6595 		/*
6596 		 * d_path() works from the end of the rb backwards, so we
6597 		 * need to add enough zero bytes after the string to handle
6598 		 * the 64bit alignment we do later.
6599 		 */
6600 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6601 		if (IS_ERR(name)) {
6602 			name = "//toolong";
6603 			goto cpy_name;
6604 		}
6605 		inode = file_inode(vma->vm_file);
6606 		dev = inode->i_sb->s_dev;
6607 		ino = inode->i_ino;
6608 		gen = inode->i_generation;
6609 		maj = MAJOR(dev);
6610 		min = MINOR(dev);
6611 
6612 		if (vma->vm_flags & VM_READ)
6613 			prot |= PROT_READ;
6614 		if (vma->vm_flags & VM_WRITE)
6615 			prot |= PROT_WRITE;
6616 		if (vma->vm_flags & VM_EXEC)
6617 			prot |= PROT_EXEC;
6618 
6619 		if (vma->vm_flags & VM_MAYSHARE)
6620 			flags = MAP_SHARED;
6621 		else
6622 			flags = MAP_PRIVATE;
6623 
6624 		if (vma->vm_flags & VM_DENYWRITE)
6625 			flags |= MAP_DENYWRITE;
6626 		if (vma->vm_flags & VM_MAYEXEC)
6627 			flags |= MAP_EXECUTABLE;
6628 		if (vma->vm_flags & VM_LOCKED)
6629 			flags |= MAP_LOCKED;
6630 		if (vma->vm_flags & VM_HUGETLB)
6631 			flags |= MAP_HUGETLB;
6632 
6633 		goto got_name;
6634 	} else {
6635 		if (vma->vm_ops && vma->vm_ops->name) {
6636 			name = (char *) vma->vm_ops->name(vma);
6637 			if (name)
6638 				goto cpy_name;
6639 		}
6640 
6641 		name = (char *)arch_vma_name(vma);
6642 		if (name)
6643 			goto cpy_name;
6644 
6645 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6646 				vma->vm_end >= vma->vm_mm->brk) {
6647 			name = "[heap]";
6648 			goto cpy_name;
6649 		}
6650 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6651 				vma->vm_end >= vma->vm_mm->start_stack) {
6652 			name = "[stack]";
6653 			goto cpy_name;
6654 		}
6655 
6656 		name = "//anon";
6657 		goto cpy_name;
6658 	}
6659 
6660 cpy_name:
6661 	strlcpy(tmp, name, sizeof(tmp));
6662 	name = tmp;
6663 got_name:
6664 	/*
6665 	 * Since our buffer works in 8 byte units we need to align our string
6666 	 * size to a multiple of 8. However, we must guarantee the tail end is
6667 	 * zero'd out to avoid leaking random bits to userspace.
6668 	 */
6669 	size = strlen(name)+1;
6670 	while (!IS_ALIGNED(size, sizeof(u64)))
6671 		name[size++] = '\0';
6672 
6673 	mmap_event->file_name = name;
6674 	mmap_event->file_size = size;
6675 	mmap_event->maj = maj;
6676 	mmap_event->min = min;
6677 	mmap_event->ino = ino;
6678 	mmap_event->ino_generation = gen;
6679 	mmap_event->prot = prot;
6680 	mmap_event->flags = flags;
6681 
6682 	if (!(vma->vm_flags & VM_EXEC))
6683 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6684 
6685 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6686 
6687 	perf_iterate_sb(perf_event_mmap_output,
6688 		       mmap_event,
6689 		       NULL);
6690 
6691 	kfree(buf);
6692 }
6693 
6694 /*
6695  * Check whether inode and address range match filter criteria.
6696  */
6697 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6698 				     struct file *file, unsigned long offset,
6699 				     unsigned long size)
6700 {
6701 	if (filter->inode != file_inode(file))
6702 		return false;
6703 
6704 	if (filter->offset > offset + size)
6705 		return false;
6706 
6707 	if (filter->offset + filter->size < offset)
6708 		return false;
6709 
6710 	return true;
6711 }
6712 
6713 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6714 {
6715 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6716 	struct vm_area_struct *vma = data;
6717 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6718 	struct file *file = vma->vm_file;
6719 	struct perf_addr_filter *filter;
6720 	unsigned int restart = 0, count = 0;
6721 
6722 	if (!has_addr_filter(event))
6723 		return;
6724 
6725 	if (!file)
6726 		return;
6727 
6728 	raw_spin_lock_irqsave(&ifh->lock, flags);
6729 	list_for_each_entry(filter, &ifh->list, entry) {
6730 		if (perf_addr_filter_match(filter, file, off,
6731 					     vma->vm_end - vma->vm_start)) {
6732 			event->addr_filters_offs[count] = vma->vm_start;
6733 			restart++;
6734 		}
6735 
6736 		count++;
6737 	}
6738 
6739 	if (restart)
6740 		event->addr_filters_gen++;
6741 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6742 
6743 	if (restart)
6744 		perf_event_stop(event, 1);
6745 }
6746 
6747 /*
6748  * Adjust all task's events' filters to the new vma
6749  */
6750 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6751 {
6752 	struct perf_event_context *ctx;
6753 	int ctxn;
6754 
6755 	/*
6756 	 * Data tracing isn't supported yet and as such there is no need
6757 	 * to keep track of anything that isn't related to executable code:
6758 	 */
6759 	if (!(vma->vm_flags & VM_EXEC))
6760 		return;
6761 
6762 	rcu_read_lock();
6763 	for_each_task_context_nr(ctxn) {
6764 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6765 		if (!ctx)
6766 			continue;
6767 
6768 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6769 	}
6770 	rcu_read_unlock();
6771 }
6772 
6773 void perf_event_mmap(struct vm_area_struct *vma)
6774 {
6775 	struct perf_mmap_event mmap_event;
6776 
6777 	if (!atomic_read(&nr_mmap_events))
6778 		return;
6779 
6780 	mmap_event = (struct perf_mmap_event){
6781 		.vma	= vma,
6782 		/* .file_name */
6783 		/* .file_size */
6784 		.event_id  = {
6785 			.header = {
6786 				.type = PERF_RECORD_MMAP,
6787 				.misc = PERF_RECORD_MISC_USER,
6788 				/* .size */
6789 			},
6790 			/* .pid */
6791 			/* .tid */
6792 			.start  = vma->vm_start,
6793 			.len    = vma->vm_end - vma->vm_start,
6794 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6795 		},
6796 		/* .maj (attr_mmap2 only) */
6797 		/* .min (attr_mmap2 only) */
6798 		/* .ino (attr_mmap2 only) */
6799 		/* .ino_generation (attr_mmap2 only) */
6800 		/* .prot (attr_mmap2 only) */
6801 		/* .flags (attr_mmap2 only) */
6802 	};
6803 
6804 	perf_addr_filters_adjust(vma);
6805 	perf_event_mmap_event(&mmap_event);
6806 }
6807 
6808 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6809 			  unsigned long size, u64 flags)
6810 {
6811 	struct perf_output_handle handle;
6812 	struct perf_sample_data sample;
6813 	struct perf_aux_event {
6814 		struct perf_event_header	header;
6815 		u64				offset;
6816 		u64				size;
6817 		u64				flags;
6818 	} rec = {
6819 		.header = {
6820 			.type = PERF_RECORD_AUX,
6821 			.misc = 0,
6822 			.size = sizeof(rec),
6823 		},
6824 		.offset		= head,
6825 		.size		= size,
6826 		.flags		= flags,
6827 	};
6828 	int ret;
6829 
6830 	perf_event_header__init_id(&rec.header, &sample, event);
6831 	ret = perf_output_begin(&handle, event, rec.header.size);
6832 
6833 	if (ret)
6834 		return;
6835 
6836 	perf_output_put(&handle, rec);
6837 	perf_event__output_id_sample(event, &handle, &sample);
6838 
6839 	perf_output_end(&handle);
6840 }
6841 
6842 /*
6843  * Lost/dropped samples logging
6844  */
6845 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6846 {
6847 	struct perf_output_handle handle;
6848 	struct perf_sample_data sample;
6849 	int ret;
6850 
6851 	struct {
6852 		struct perf_event_header	header;
6853 		u64				lost;
6854 	} lost_samples_event = {
6855 		.header = {
6856 			.type = PERF_RECORD_LOST_SAMPLES,
6857 			.misc = 0,
6858 			.size = sizeof(lost_samples_event),
6859 		},
6860 		.lost		= lost,
6861 	};
6862 
6863 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6864 
6865 	ret = perf_output_begin(&handle, event,
6866 				lost_samples_event.header.size);
6867 	if (ret)
6868 		return;
6869 
6870 	perf_output_put(&handle, lost_samples_event);
6871 	perf_event__output_id_sample(event, &handle, &sample);
6872 	perf_output_end(&handle);
6873 }
6874 
6875 /*
6876  * context_switch tracking
6877  */
6878 
6879 struct perf_switch_event {
6880 	struct task_struct	*task;
6881 	struct task_struct	*next_prev;
6882 
6883 	struct {
6884 		struct perf_event_header	header;
6885 		u32				next_prev_pid;
6886 		u32				next_prev_tid;
6887 	} event_id;
6888 };
6889 
6890 static int perf_event_switch_match(struct perf_event *event)
6891 {
6892 	return event->attr.context_switch;
6893 }
6894 
6895 static void perf_event_switch_output(struct perf_event *event, void *data)
6896 {
6897 	struct perf_switch_event *se = data;
6898 	struct perf_output_handle handle;
6899 	struct perf_sample_data sample;
6900 	int ret;
6901 
6902 	if (!perf_event_switch_match(event))
6903 		return;
6904 
6905 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6906 	if (event->ctx->task) {
6907 		se->event_id.header.type = PERF_RECORD_SWITCH;
6908 		se->event_id.header.size = sizeof(se->event_id.header);
6909 	} else {
6910 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6911 		se->event_id.header.size = sizeof(se->event_id);
6912 		se->event_id.next_prev_pid =
6913 					perf_event_pid(event, se->next_prev);
6914 		se->event_id.next_prev_tid =
6915 					perf_event_tid(event, se->next_prev);
6916 	}
6917 
6918 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6919 
6920 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6921 	if (ret)
6922 		return;
6923 
6924 	if (event->ctx->task)
6925 		perf_output_put(&handle, se->event_id.header);
6926 	else
6927 		perf_output_put(&handle, se->event_id);
6928 
6929 	perf_event__output_id_sample(event, &handle, &sample);
6930 
6931 	perf_output_end(&handle);
6932 }
6933 
6934 static void perf_event_switch(struct task_struct *task,
6935 			      struct task_struct *next_prev, bool sched_in)
6936 {
6937 	struct perf_switch_event switch_event;
6938 
6939 	/* N.B. caller checks nr_switch_events != 0 */
6940 
6941 	switch_event = (struct perf_switch_event){
6942 		.task		= task,
6943 		.next_prev	= next_prev,
6944 		.event_id	= {
6945 			.header = {
6946 				/* .type */
6947 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6948 				/* .size */
6949 			},
6950 			/* .next_prev_pid */
6951 			/* .next_prev_tid */
6952 		},
6953 	};
6954 
6955 	perf_iterate_sb(perf_event_switch_output,
6956 		       &switch_event,
6957 		       NULL);
6958 }
6959 
6960 /*
6961  * IRQ throttle logging
6962  */
6963 
6964 static void perf_log_throttle(struct perf_event *event, int enable)
6965 {
6966 	struct perf_output_handle handle;
6967 	struct perf_sample_data sample;
6968 	int ret;
6969 
6970 	struct {
6971 		struct perf_event_header	header;
6972 		u64				time;
6973 		u64				id;
6974 		u64				stream_id;
6975 	} throttle_event = {
6976 		.header = {
6977 			.type = PERF_RECORD_THROTTLE,
6978 			.misc = 0,
6979 			.size = sizeof(throttle_event),
6980 		},
6981 		.time		= perf_event_clock(event),
6982 		.id		= primary_event_id(event),
6983 		.stream_id	= event->id,
6984 	};
6985 
6986 	if (enable)
6987 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6988 
6989 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6990 
6991 	ret = perf_output_begin(&handle, event,
6992 				throttle_event.header.size);
6993 	if (ret)
6994 		return;
6995 
6996 	perf_output_put(&handle, throttle_event);
6997 	perf_event__output_id_sample(event, &handle, &sample);
6998 	perf_output_end(&handle);
6999 }
7000 
7001 static void perf_log_itrace_start(struct perf_event *event)
7002 {
7003 	struct perf_output_handle handle;
7004 	struct perf_sample_data sample;
7005 	struct perf_aux_event {
7006 		struct perf_event_header        header;
7007 		u32				pid;
7008 		u32				tid;
7009 	} rec;
7010 	int ret;
7011 
7012 	if (event->parent)
7013 		event = event->parent;
7014 
7015 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7016 	    event->hw.itrace_started)
7017 		return;
7018 
7019 	rec.header.type	= PERF_RECORD_ITRACE_START;
7020 	rec.header.misc	= 0;
7021 	rec.header.size	= sizeof(rec);
7022 	rec.pid	= perf_event_pid(event, current);
7023 	rec.tid	= perf_event_tid(event, current);
7024 
7025 	perf_event_header__init_id(&rec.header, &sample, event);
7026 	ret = perf_output_begin(&handle, event, rec.header.size);
7027 
7028 	if (ret)
7029 		return;
7030 
7031 	perf_output_put(&handle, rec);
7032 	perf_event__output_id_sample(event, &handle, &sample);
7033 
7034 	perf_output_end(&handle);
7035 }
7036 
7037 /*
7038  * Generic event overflow handling, sampling.
7039  */
7040 
7041 static int __perf_event_overflow(struct perf_event *event,
7042 				   int throttle, struct perf_sample_data *data,
7043 				   struct pt_regs *regs)
7044 {
7045 	int events = atomic_read(&event->event_limit);
7046 	struct hw_perf_event *hwc = &event->hw;
7047 	u64 seq;
7048 	int ret = 0;
7049 
7050 	/*
7051 	 * Non-sampling counters might still use the PMI to fold short
7052 	 * hardware counters, ignore those.
7053 	 */
7054 	if (unlikely(!is_sampling_event(event)))
7055 		return 0;
7056 
7057 	seq = __this_cpu_read(perf_throttled_seq);
7058 	if (seq != hwc->interrupts_seq) {
7059 		hwc->interrupts_seq = seq;
7060 		hwc->interrupts = 1;
7061 	} else {
7062 		hwc->interrupts++;
7063 		if (unlikely(throttle
7064 			     && hwc->interrupts >= max_samples_per_tick)) {
7065 			__this_cpu_inc(perf_throttled_count);
7066 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7067 			hwc->interrupts = MAX_INTERRUPTS;
7068 			perf_log_throttle(event, 0);
7069 			ret = 1;
7070 		}
7071 	}
7072 
7073 	if (event->attr.freq) {
7074 		u64 now = perf_clock();
7075 		s64 delta = now - hwc->freq_time_stamp;
7076 
7077 		hwc->freq_time_stamp = now;
7078 
7079 		if (delta > 0 && delta < 2*TICK_NSEC)
7080 			perf_adjust_period(event, delta, hwc->last_period, true);
7081 	}
7082 
7083 	/*
7084 	 * XXX event_limit might not quite work as expected on inherited
7085 	 * events
7086 	 */
7087 
7088 	event->pending_kill = POLL_IN;
7089 	if (events && atomic_dec_and_test(&event->event_limit)) {
7090 		ret = 1;
7091 		event->pending_kill = POLL_HUP;
7092 
7093 		perf_event_disable_inatomic(event);
7094 	}
7095 
7096 	READ_ONCE(event->overflow_handler)(event, data, regs);
7097 
7098 	if (*perf_event_fasync(event) && event->pending_kill) {
7099 		event->pending_wakeup = 1;
7100 		irq_work_queue(&event->pending);
7101 	}
7102 
7103 	return ret;
7104 }
7105 
7106 int perf_event_overflow(struct perf_event *event,
7107 			  struct perf_sample_data *data,
7108 			  struct pt_regs *regs)
7109 {
7110 	return __perf_event_overflow(event, 1, data, regs);
7111 }
7112 
7113 /*
7114  * Generic software event infrastructure
7115  */
7116 
7117 struct swevent_htable {
7118 	struct swevent_hlist		*swevent_hlist;
7119 	struct mutex			hlist_mutex;
7120 	int				hlist_refcount;
7121 
7122 	/* Recursion avoidance in each contexts */
7123 	int				recursion[PERF_NR_CONTEXTS];
7124 };
7125 
7126 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7127 
7128 /*
7129  * We directly increment event->count and keep a second value in
7130  * event->hw.period_left to count intervals. This period event
7131  * is kept in the range [-sample_period, 0] so that we can use the
7132  * sign as trigger.
7133  */
7134 
7135 u64 perf_swevent_set_period(struct perf_event *event)
7136 {
7137 	struct hw_perf_event *hwc = &event->hw;
7138 	u64 period = hwc->last_period;
7139 	u64 nr, offset;
7140 	s64 old, val;
7141 
7142 	hwc->last_period = hwc->sample_period;
7143 
7144 again:
7145 	old = val = local64_read(&hwc->period_left);
7146 	if (val < 0)
7147 		return 0;
7148 
7149 	nr = div64_u64(period + val, period);
7150 	offset = nr * period;
7151 	val -= offset;
7152 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7153 		goto again;
7154 
7155 	return nr;
7156 }
7157 
7158 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7159 				    struct perf_sample_data *data,
7160 				    struct pt_regs *regs)
7161 {
7162 	struct hw_perf_event *hwc = &event->hw;
7163 	int throttle = 0;
7164 
7165 	if (!overflow)
7166 		overflow = perf_swevent_set_period(event);
7167 
7168 	if (hwc->interrupts == MAX_INTERRUPTS)
7169 		return;
7170 
7171 	for (; overflow; overflow--) {
7172 		if (__perf_event_overflow(event, throttle,
7173 					    data, regs)) {
7174 			/*
7175 			 * We inhibit the overflow from happening when
7176 			 * hwc->interrupts == MAX_INTERRUPTS.
7177 			 */
7178 			break;
7179 		}
7180 		throttle = 1;
7181 	}
7182 }
7183 
7184 static void perf_swevent_event(struct perf_event *event, u64 nr,
7185 			       struct perf_sample_data *data,
7186 			       struct pt_regs *regs)
7187 {
7188 	struct hw_perf_event *hwc = &event->hw;
7189 
7190 	local64_add(nr, &event->count);
7191 
7192 	if (!regs)
7193 		return;
7194 
7195 	if (!is_sampling_event(event))
7196 		return;
7197 
7198 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7199 		data->period = nr;
7200 		return perf_swevent_overflow(event, 1, data, regs);
7201 	} else
7202 		data->period = event->hw.last_period;
7203 
7204 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7205 		return perf_swevent_overflow(event, 1, data, regs);
7206 
7207 	if (local64_add_negative(nr, &hwc->period_left))
7208 		return;
7209 
7210 	perf_swevent_overflow(event, 0, data, regs);
7211 }
7212 
7213 static int perf_exclude_event(struct perf_event *event,
7214 			      struct pt_regs *regs)
7215 {
7216 	if (event->hw.state & PERF_HES_STOPPED)
7217 		return 1;
7218 
7219 	if (regs) {
7220 		if (event->attr.exclude_user && user_mode(regs))
7221 			return 1;
7222 
7223 		if (event->attr.exclude_kernel && !user_mode(regs))
7224 			return 1;
7225 	}
7226 
7227 	return 0;
7228 }
7229 
7230 static int perf_swevent_match(struct perf_event *event,
7231 				enum perf_type_id type,
7232 				u32 event_id,
7233 				struct perf_sample_data *data,
7234 				struct pt_regs *regs)
7235 {
7236 	if (event->attr.type != type)
7237 		return 0;
7238 
7239 	if (event->attr.config != event_id)
7240 		return 0;
7241 
7242 	if (perf_exclude_event(event, regs))
7243 		return 0;
7244 
7245 	return 1;
7246 }
7247 
7248 static inline u64 swevent_hash(u64 type, u32 event_id)
7249 {
7250 	u64 val = event_id | (type << 32);
7251 
7252 	return hash_64(val, SWEVENT_HLIST_BITS);
7253 }
7254 
7255 static inline struct hlist_head *
7256 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7257 {
7258 	u64 hash = swevent_hash(type, event_id);
7259 
7260 	return &hlist->heads[hash];
7261 }
7262 
7263 /* For the read side: events when they trigger */
7264 static inline struct hlist_head *
7265 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7266 {
7267 	struct swevent_hlist *hlist;
7268 
7269 	hlist = rcu_dereference(swhash->swevent_hlist);
7270 	if (!hlist)
7271 		return NULL;
7272 
7273 	return __find_swevent_head(hlist, type, event_id);
7274 }
7275 
7276 /* For the event head insertion and removal in the hlist */
7277 static inline struct hlist_head *
7278 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7279 {
7280 	struct swevent_hlist *hlist;
7281 	u32 event_id = event->attr.config;
7282 	u64 type = event->attr.type;
7283 
7284 	/*
7285 	 * Event scheduling is always serialized against hlist allocation
7286 	 * and release. Which makes the protected version suitable here.
7287 	 * The context lock guarantees that.
7288 	 */
7289 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7290 					  lockdep_is_held(&event->ctx->lock));
7291 	if (!hlist)
7292 		return NULL;
7293 
7294 	return __find_swevent_head(hlist, type, event_id);
7295 }
7296 
7297 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7298 				    u64 nr,
7299 				    struct perf_sample_data *data,
7300 				    struct pt_regs *regs)
7301 {
7302 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7303 	struct perf_event *event;
7304 	struct hlist_head *head;
7305 
7306 	rcu_read_lock();
7307 	head = find_swevent_head_rcu(swhash, type, event_id);
7308 	if (!head)
7309 		goto end;
7310 
7311 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7312 		if (perf_swevent_match(event, type, event_id, data, regs))
7313 			perf_swevent_event(event, nr, data, regs);
7314 	}
7315 end:
7316 	rcu_read_unlock();
7317 }
7318 
7319 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7320 
7321 int perf_swevent_get_recursion_context(void)
7322 {
7323 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7324 
7325 	return get_recursion_context(swhash->recursion);
7326 }
7327 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7328 
7329 void perf_swevent_put_recursion_context(int rctx)
7330 {
7331 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7332 
7333 	put_recursion_context(swhash->recursion, rctx);
7334 }
7335 
7336 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7337 {
7338 	struct perf_sample_data data;
7339 
7340 	if (WARN_ON_ONCE(!regs))
7341 		return;
7342 
7343 	perf_sample_data_init(&data, addr, 0);
7344 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7345 }
7346 
7347 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7348 {
7349 	int rctx;
7350 
7351 	preempt_disable_notrace();
7352 	rctx = perf_swevent_get_recursion_context();
7353 	if (unlikely(rctx < 0))
7354 		goto fail;
7355 
7356 	___perf_sw_event(event_id, nr, regs, addr);
7357 
7358 	perf_swevent_put_recursion_context(rctx);
7359 fail:
7360 	preempt_enable_notrace();
7361 }
7362 
7363 static void perf_swevent_read(struct perf_event *event)
7364 {
7365 }
7366 
7367 static int perf_swevent_add(struct perf_event *event, int flags)
7368 {
7369 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7370 	struct hw_perf_event *hwc = &event->hw;
7371 	struct hlist_head *head;
7372 
7373 	if (is_sampling_event(event)) {
7374 		hwc->last_period = hwc->sample_period;
7375 		perf_swevent_set_period(event);
7376 	}
7377 
7378 	hwc->state = !(flags & PERF_EF_START);
7379 
7380 	head = find_swevent_head(swhash, event);
7381 	if (WARN_ON_ONCE(!head))
7382 		return -EINVAL;
7383 
7384 	hlist_add_head_rcu(&event->hlist_entry, head);
7385 	perf_event_update_userpage(event);
7386 
7387 	return 0;
7388 }
7389 
7390 static void perf_swevent_del(struct perf_event *event, int flags)
7391 {
7392 	hlist_del_rcu(&event->hlist_entry);
7393 }
7394 
7395 static void perf_swevent_start(struct perf_event *event, int flags)
7396 {
7397 	event->hw.state = 0;
7398 }
7399 
7400 static void perf_swevent_stop(struct perf_event *event, int flags)
7401 {
7402 	event->hw.state = PERF_HES_STOPPED;
7403 }
7404 
7405 /* Deref the hlist from the update side */
7406 static inline struct swevent_hlist *
7407 swevent_hlist_deref(struct swevent_htable *swhash)
7408 {
7409 	return rcu_dereference_protected(swhash->swevent_hlist,
7410 					 lockdep_is_held(&swhash->hlist_mutex));
7411 }
7412 
7413 static void swevent_hlist_release(struct swevent_htable *swhash)
7414 {
7415 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7416 
7417 	if (!hlist)
7418 		return;
7419 
7420 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7421 	kfree_rcu(hlist, rcu_head);
7422 }
7423 
7424 static void swevent_hlist_put_cpu(int cpu)
7425 {
7426 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7427 
7428 	mutex_lock(&swhash->hlist_mutex);
7429 
7430 	if (!--swhash->hlist_refcount)
7431 		swevent_hlist_release(swhash);
7432 
7433 	mutex_unlock(&swhash->hlist_mutex);
7434 }
7435 
7436 static void swevent_hlist_put(void)
7437 {
7438 	int cpu;
7439 
7440 	for_each_possible_cpu(cpu)
7441 		swevent_hlist_put_cpu(cpu);
7442 }
7443 
7444 static int swevent_hlist_get_cpu(int cpu)
7445 {
7446 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7447 	int err = 0;
7448 
7449 	mutex_lock(&swhash->hlist_mutex);
7450 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7451 		struct swevent_hlist *hlist;
7452 
7453 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7454 		if (!hlist) {
7455 			err = -ENOMEM;
7456 			goto exit;
7457 		}
7458 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7459 	}
7460 	swhash->hlist_refcount++;
7461 exit:
7462 	mutex_unlock(&swhash->hlist_mutex);
7463 
7464 	return err;
7465 }
7466 
7467 static int swevent_hlist_get(void)
7468 {
7469 	int err, cpu, failed_cpu;
7470 
7471 	get_online_cpus();
7472 	for_each_possible_cpu(cpu) {
7473 		err = swevent_hlist_get_cpu(cpu);
7474 		if (err) {
7475 			failed_cpu = cpu;
7476 			goto fail;
7477 		}
7478 	}
7479 	put_online_cpus();
7480 
7481 	return 0;
7482 fail:
7483 	for_each_possible_cpu(cpu) {
7484 		if (cpu == failed_cpu)
7485 			break;
7486 		swevent_hlist_put_cpu(cpu);
7487 	}
7488 
7489 	put_online_cpus();
7490 	return err;
7491 }
7492 
7493 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7494 
7495 static void sw_perf_event_destroy(struct perf_event *event)
7496 {
7497 	u64 event_id = event->attr.config;
7498 
7499 	WARN_ON(event->parent);
7500 
7501 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7502 	swevent_hlist_put();
7503 }
7504 
7505 static int perf_swevent_init(struct perf_event *event)
7506 {
7507 	u64 event_id = event->attr.config;
7508 
7509 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7510 		return -ENOENT;
7511 
7512 	/*
7513 	 * no branch sampling for software events
7514 	 */
7515 	if (has_branch_stack(event))
7516 		return -EOPNOTSUPP;
7517 
7518 	switch (event_id) {
7519 	case PERF_COUNT_SW_CPU_CLOCK:
7520 	case PERF_COUNT_SW_TASK_CLOCK:
7521 		return -ENOENT;
7522 
7523 	default:
7524 		break;
7525 	}
7526 
7527 	if (event_id >= PERF_COUNT_SW_MAX)
7528 		return -ENOENT;
7529 
7530 	if (!event->parent) {
7531 		int err;
7532 
7533 		err = swevent_hlist_get();
7534 		if (err)
7535 			return err;
7536 
7537 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7538 		event->destroy = sw_perf_event_destroy;
7539 	}
7540 
7541 	return 0;
7542 }
7543 
7544 static struct pmu perf_swevent = {
7545 	.task_ctx_nr	= perf_sw_context,
7546 
7547 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7548 
7549 	.event_init	= perf_swevent_init,
7550 	.add		= perf_swevent_add,
7551 	.del		= perf_swevent_del,
7552 	.start		= perf_swevent_start,
7553 	.stop		= perf_swevent_stop,
7554 	.read		= perf_swevent_read,
7555 };
7556 
7557 #ifdef CONFIG_EVENT_TRACING
7558 
7559 static int perf_tp_filter_match(struct perf_event *event,
7560 				struct perf_sample_data *data)
7561 {
7562 	void *record = data->raw->frag.data;
7563 
7564 	/* only top level events have filters set */
7565 	if (event->parent)
7566 		event = event->parent;
7567 
7568 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7569 		return 1;
7570 	return 0;
7571 }
7572 
7573 static int perf_tp_event_match(struct perf_event *event,
7574 				struct perf_sample_data *data,
7575 				struct pt_regs *regs)
7576 {
7577 	if (event->hw.state & PERF_HES_STOPPED)
7578 		return 0;
7579 	/*
7580 	 * All tracepoints are from kernel-space.
7581 	 */
7582 	if (event->attr.exclude_kernel)
7583 		return 0;
7584 
7585 	if (!perf_tp_filter_match(event, data))
7586 		return 0;
7587 
7588 	return 1;
7589 }
7590 
7591 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7592 			       struct trace_event_call *call, u64 count,
7593 			       struct pt_regs *regs, struct hlist_head *head,
7594 			       struct task_struct *task)
7595 {
7596 	struct bpf_prog *prog = call->prog;
7597 
7598 	if (prog) {
7599 		*(struct pt_regs **)raw_data = regs;
7600 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7601 			perf_swevent_put_recursion_context(rctx);
7602 			return;
7603 		}
7604 	}
7605 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7606 		      rctx, task);
7607 }
7608 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7609 
7610 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7611 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7612 		   struct task_struct *task)
7613 {
7614 	struct perf_sample_data data;
7615 	struct perf_event *event;
7616 
7617 	struct perf_raw_record raw = {
7618 		.frag = {
7619 			.size = entry_size,
7620 			.data = record,
7621 		},
7622 	};
7623 
7624 	perf_sample_data_init(&data, 0, 0);
7625 	data.raw = &raw;
7626 
7627 	perf_trace_buf_update(record, event_type);
7628 
7629 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7630 		if (perf_tp_event_match(event, &data, regs))
7631 			perf_swevent_event(event, count, &data, regs);
7632 	}
7633 
7634 	/*
7635 	 * If we got specified a target task, also iterate its context and
7636 	 * deliver this event there too.
7637 	 */
7638 	if (task && task != current) {
7639 		struct perf_event_context *ctx;
7640 		struct trace_entry *entry = record;
7641 
7642 		rcu_read_lock();
7643 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7644 		if (!ctx)
7645 			goto unlock;
7646 
7647 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7648 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7649 				continue;
7650 			if (event->attr.config != entry->type)
7651 				continue;
7652 			if (perf_tp_event_match(event, &data, regs))
7653 				perf_swevent_event(event, count, &data, regs);
7654 		}
7655 unlock:
7656 		rcu_read_unlock();
7657 	}
7658 
7659 	perf_swevent_put_recursion_context(rctx);
7660 }
7661 EXPORT_SYMBOL_GPL(perf_tp_event);
7662 
7663 static void tp_perf_event_destroy(struct perf_event *event)
7664 {
7665 	perf_trace_destroy(event);
7666 }
7667 
7668 static int perf_tp_event_init(struct perf_event *event)
7669 {
7670 	int err;
7671 
7672 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673 		return -ENOENT;
7674 
7675 	/*
7676 	 * no branch sampling for tracepoint events
7677 	 */
7678 	if (has_branch_stack(event))
7679 		return -EOPNOTSUPP;
7680 
7681 	err = perf_trace_init(event);
7682 	if (err)
7683 		return err;
7684 
7685 	event->destroy = tp_perf_event_destroy;
7686 
7687 	return 0;
7688 }
7689 
7690 static struct pmu perf_tracepoint = {
7691 	.task_ctx_nr	= perf_sw_context,
7692 
7693 	.event_init	= perf_tp_event_init,
7694 	.add		= perf_trace_add,
7695 	.del		= perf_trace_del,
7696 	.start		= perf_swevent_start,
7697 	.stop		= perf_swevent_stop,
7698 	.read		= perf_swevent_read,
7699 };
7700 
7701 static inline void perf_tp_register(void)
7702 {
7703 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7704 }
7705 
7706 static void perf_event_free_filter(struct perf_event *event)
7707 {
7708 	ftrace_profile_free_filter(event);
7709 }
7710 
7711 #ifdef CONFIG_BPF_SYSCALL
7712 static void bpf_overflow_handler(struct perf_event *event,
7713 				 struct perf_sample_data *data,
7714 				 struct pt_regs *regs)
7715 {
7716 	struct bpf_perf_event_data_kern ctx = {
7717 		.data = data,
7718 		.regs = regs,
7719 	};
7720 	int ret = 0;
7721 
7722 	preempt_disable();
7723 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7724 		goto out;
7725 	rcu_read_lock();
7726 	ret = BPF_PROG_RUN(event->prog, &ctx);
7727 	rcu_read_unlock();
7728 out:
7729 	__this_cpu_dec(bpf_prog_active);
7730 	preempt_enable();
7731 	if (!ret)
7732 		return;
7733 
7734 	event->orig_overflow_handler(event, data, regs);
7735 }
7736 
7737 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7738 {
7739 	struct bpf_prog *prog;
7740 
7741 	if (event->overflow_handler_context)
7742 		/* hw breakpoint or kernel counter */
7743 		return -EINVAL;
7744 
7745 	if (event->prog)
7746 		return -EEXIST;
7747 
7748 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7749 	if (IS_ERR(prog))
7750 		return PTR_ERR(prog);
7751 
7752 	event->prog = prog;
7753 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7754 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7755 	return 0;
7756 }
7757 
7758 static void perf_event_free_bpf_handler(struct perf_event *event)
7759 {
7760 	struct bpf_prog *prog = event->prog;
7761 
7762 	if (!prog)
7763 		return;
7764 
7765 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7766 	event->prog = NULL;
7767 	bpf_prog_put(prog);
7768 }
7769 #else
7770 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7771 {
7772 	return -EOPNOTSUPP;
7773 }
7774 static void perf_event_free_bpf_handler(struct perf_event *event)
7775 {
7776 }
7777 #endif
7778 
7779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7780 {
7781 	bool is_kprobe, is_tracepoint;
7782 	struct bpf_prog *prog;
7783 
7784 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7785 	    event->attr.type == PERF_TYPE_SOFTWARE)
7786 		return perf_event_set_bpf_handler(event, prog_fd);
7787 
7788 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7789 		return -EINVAL;
7790 
7791 	if (event->tp_event->prog)
7792 		return -EEXIST;
7793 
7794 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7795 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7796 	if (!is_kprobe && !is_tracepoint)
7797 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7798 		return -EINVAL;
7799 
7800 	prog = bpf_prog_get(prog_fd);
7801 	if (IS_ERR(prog))
7802 		return PTR_ERR(prog);
7803 
7804 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7805 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7806 		/* valid fd, but invalid bpf program type */
7807 		bpf_prog_put(prog);
7808 		return -EINVAL;
7809 	}
7810 
7811 	if (is_tracepoint) {
7812 		int off = trace_event_get_offsets(event->tp_event);
7813 
7814 		if (prog->aux->max_ctx_offset > off) {
7815 			bpf_prog_put(prog);
7816 			return -EACCES;
7817 		}
7818 	}
7819 	event->tp_event->prog = prog;
7820 
7821 	return 0;
7822 }
7823 
7824 static void perf_event_free_bpf_prog(struct perf_event *event)
7825 {
7826 	struct bpf_prog *prog;
7827 
7828 	perf_event_free_bpf_handler(event);
7829 
7830 	if (!event->tp_event)
7831 		return;
7832 
7833 	prog = event->tp_event->prog;
7834 	if (prog) {
7835 		event->tp_event->prog = NULL;
7836 		bpf_prog_put(prog);
7837 	}
7838 }
7839 
7840 #else
7841 
7842 static inline void perf_tp_register(void)
7843 {
7844 }
7845 
7846 static void perf_event_free_filter(struct perf_event *event)
7847 {
7848 }
7849 
7850 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7851 {
7852 	return -ENOENT;
7853 }
7854 
7855 static void perf_event_free_bpf_prog(struct perf_event *event)
7856 {
7857 }
7858 #endif /* CONFIG_EVENT_TRACING */
7859 
7860 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7861 void perf_bp_event(struct perf_event *bp, void *data)
7862 {
7863 	struct perf_sample_data sample;
7864 	struct pt_regs *regs = data;
7865 
7866 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7867 
7868 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7869 		perf_swevent_event(bp, 1, &sample, regs);
7870 }
7871 #endif
7872 
7873 /*
7874  * Allocate a new address filter
7875  */
7876 static struct perf_addr_filter *
7877 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7878 {
7879 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7880 	struct perf_addr_filter *filter;
7881 
7882 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7883 	if (!filter)
7884 		return NULL;
7885 
7886 	INIT_LIST_HEAD(&filter->entry);
7887 	list_add_tail(&filter->entry, filters);
7888 
7889 	return filter;
7890 }
7891 
7892 static void free_filters_list(struct list_head *filters)
7893 {
7894 	struct perf_addr_filter *filter, *iter;
7895 
7896 	list_for_each_entry_safe(filter, iter, filters, entry) {
7897 		if (filter->inode)
7898 			iput(filter->inode);
7899 		list_del(&filter->entry);
7900 		kfree(filter);
7901 	}
7902 }
7903 
7904 /*
7905  * Free existing address filters and optionally install new ones
7906  */
7907 static void perf_addr_filters_splice(struct perf_event *event,
7908 				     struct list_head *head)
7909 {
7910 	unsigned long flags;
7911 	LIST_HEAD(list);
7912 
7913 	if (!has_addr_filter(event))
7914 		return;
7915 
7916 	/* don't bother with children, they don't have their own filters */
7917 	if (event->parent)
7918 		return;
7919 
7920 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7921 
7922 	list_splice_init(&event->addr_filters.list, &list);
7923 	if (head)
7924 		list_splice(head, &event->addr_filters.list);
7925 
7926 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7927 
7928 	free_filters_list(&list);
7929 }
7930 
7931 /*
7932  * Scan through mm's vmas and see if one of them matches the
7933  * @filter; if so, adjust filter's address range.
7934  * Called with mm::mmap_sem down for reading.
7935  */
7936 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7937 					    struct mm_struct *mm)
7938 {
7939 	struct vm_area_struct *vma;
7940 
7941 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7942 		struct file *file = vma->vm_file;
7943 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7944 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7945 
7946 		if (!file)
7947 			continue;
7948 
7949 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7950 			continue;
7951 
7952 		return vma->vm_start;
7953 	}
7954 
7955 	return 0;
7956 }
7957 
7958 /*
7959  * Update event's address range filters based on the
7960  * task's existing mappings, if any.
7961  */
7962 static void perf_event_addr_filters_apply(struct perf_event *event)
7963 {
7964 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7965 	struct task_struct *task = READ_ONCE(event->ctx->task);
7966 	struct perf_addr_filter *filter;
7967 	struct mm_struct *mm = NULL;
7968 	unsigned int count = 0;
7969 	unsigned long flags;
7970 
7971 	/*
7972 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7973 	 * will stop on the parent's child_mutex that our caller is also holding
7974 	 */
7975 	if (task == TASK_TOMBSTONE)
7976 		return;
7977 
7978 	mm = get_task_mm(event->ctx->task);
7979 	if (!mm)
7980 		goto restart;
7981 
7982 	down_read(&mm->mmap_sem);
7983 
7984 	raw_spin_lock_irqsave(&ifh->lock, flags);
7985 	list_for_each_entry(filter, &ifh->list, entry) {
7986 		event->addr_filters_offs[count] = 0;
7987 
7988 		/*
7989 		 * Adjust base offset if the filter is associated to a binary
7990 		 * that needs to be mapped:
7991 		 */
7992 		if (filter->inode)
7993 			event->addr_filters_offs[count] =
7994 				perf_addr_filter_apply(filter, mm);
7995 
7996 		count++;
7997 	}
7998 
7999 	event->addr_filters_gen++;
8000 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8001 
8002 	up_read(&mm->mmap_sem);
8003 
8004 	mmput(mm);
8005 
8006 restart:
8007 	perf_event_stop(event, 1);
8008 }
8009 
8010 /*
8011  * Address range filtering: limiting the data to certain
8012  * instruction address ranges. Filters are ioctl()ed to us from
8013  * userspace as ascii strings.
8014  *
8015  * Filter string format:
8016  *
8017  * ACTION RANGE_SPEC
8018  * where ACTION is one of the
8019  *  * "filter": limit the trace to this region
8020  *  * "start": start tracing from this address
8021  *  * "stop": stop tracing at this address/region;
8022  * RANGE_SPEC is
8023  *  * for kernel addresses: <start address>[/<size>]
8024  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8025  *
8026  * if <size> is not specified, the range is treated as a single address.
8027  */
8028 enum {
8029 	IF_ACT_NONE = -1,
8030 	IF_ACT_FILTER,
8031 	IF_ACT_START,
8032 	IF_ACT_STOP,
8033 	IF_SRC_FILE,
8034 	IF_SRC_KERNEL,
8035 	IF_SRC_FILEADDR,
8036 	IF_SRC_KERNELADDR,
8037 };
8038 
8039 enum {
8040 	IF_STATE_ACTION = 0,
8041 	IF_STATE_SOURCE,
8042 	IF_STATE_END,
8043 };
8044 
8045 static const match_table_t if_tokens = {
8046 	{ IF_ACT_FILTER,	"filter" },
8047 	{ IF_ACT_START,		"start" },
8048 	{ IF_ACT_STOP,		"stop" },
8049 	{ IF_SRC_FILE,		"%u/%u@%s" },
8050 	{ IF_SRC_KERNEL,	"%u/%u" },
8051 	{ IF_SRC_FILEADDR,	"%u@%s" },
8052 	{ IF_SRC_KERNELADDR,	"%u" },
8053 	{ IF_ACT_NONE,		NULL },
8054 };
8055 
8056 /*
8057  * Address filter string parser
8058  */
8059 static int
8060 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8061 			     struct list_head *filters)
8062 {
8063 	struct perf_addr_filter *filter = NULL;
8064 	char *start, *orig, *filename = NULL;
8065 	struct path path;
8066 	substring_t args[MAX_OPT_ARGS];
8067 	int state = IF_STATE_ACTION, token;
8068 	unsigned int kernel = 0;
8069 	int ret = -EINVAL;
8070 
8071 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8072 	if (!fstr)
8073 		return -ENOMEM;
8074 
8075 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8076 		ret = -EINVAL;
8077 
8078 		if (!*start)
8079 			continue;
8080 
8081 		/* filter definition begins */
8082 		if (state == IF_STATE_ACTION) {
8083 			filter = perf_addr_filter_new(event, filters);
8084 			if (!filter)
8085 				goto fail;
8086 		}
8087 
8088 		token = match_token(start, if_tokens, args);
8089 		switch (token) {
8090 		case IF_ACT_FILTER:
8091 		case IF_ACT_START:
8092 			filter->filter = 1;
8093 
8094 		case IF_ACT_STOP:
8095 			if (state != IF_STATE_ACTION)
8096 				goto fail;
8097 
8098 			state = IF_STATE_SOURCE;
8099 			break;
8100 
8101 		case IF_SRC_KERNELADDR:
8102 		case IF_SRC_KERNEL:
8103 			kernel = 1;
8104 
8105 		case IF_SRC_FILEADDR:
8106 		case IF_SRC_FILE:
8107 			if (state != IF_STATE_SOURCE)
8108 				goto fail;
8109 
8110 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8111 				filter->range = 1;
8112 
8113 			*args[0].to = 0;
8114 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8115 			if (ret)
8116 				goto fail;
8117 
8118 			if (filter->range) {
8119 				*args[1].to = 0;
8120 				ret = kstrtoul(args[1].from, 0, &filter->size);
8121 				if (ret)
8122 					goto fail;
8123 			}
8124 
8125 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8126 				int fpos = filter->range ? 2 : 1;
8127 
8128 				filename = match_strdup(&args[fpos]);
8129 				if (!filename) {
8130 					ret = -ENOMEM;
8131 					goto fail;
8132 				}
8133 			}
8134 
8135 			state = IF_STATE_END;
8136 			break;
8137 
8138 		default:
8139 			goto fail;
8140 		}
8141 
8142 		/*
8143 		 * Filter definition is fully parsed, validate and install it.
8144 		 * Make sure that it doesn't contradict itself or the event's
8145 		 * attribute.
8146 		 */
8147 		if (state == IF_STATE_END) {
8148 			if (kernel && event->attr.exclude_kernel)
8149 				goto fail;
8150 
8151 			if (!kernel) {
8152 				if (!filename)
8153 					goto fail;
8154 
8155 				/* look up the path and grab its inode */
8156 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8157 				if (ret)
8158 					goto fail_free_name;
8159 
8160 				filter->inode = igrab(d_inode(path.dentry));
8161 				path_put(&path);
8162 				kfree(filename);
8163 				filename = NULL;
8164 
8165 				ret = -EINVAL;
8166 				if (!filter->inode ||
8167 				    !S_ISREG(filter->inode->i_mode))
8168 					/* free_filters_list() will iput() */
8169 					goto fail;
8170 			}
8171 
8172 			/* ready to consume more filters */
8173 			state = IF_STATE_ACTION;
8174 			filter = NULL;
8175 		}
8176 	}
8177 
8178 	if (state != IF_STATE_ACTION)
8179 		goto fail;
8180 
8181 	kfree(orig);
8182 
8183 	return 0;
8184 
8185 fail_free_name:
8186 	kfree(filename);
8187 fail:
8188 	free_filters_list(filters);
8189 	kfree(orig);
8190 
8191 	return ret;
8192 }
8193 
8194 static int
8195 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8196 {
8197 	LIST_HEAD(filters);
8198 	int ret;
8199 
8200 	/*
8201 	 * Since this is called in perf_ioctl() path, we're already holding
8202 	 * ctx::mutex.
8203 	 */
8204 	lockdep_assert_held(&event->ctx->mutex);
8205 
8206 	if (WARN_ON_ONCE(event->parent))
8207 		return -EINVAL;
8208 
8209 	/*
8210 	 * For now, we only support filtering in per-task events; doing so
8211 	 * for CPU-wide events requires additional context switching trickery,
8212 	 * since same object code will be mapped at different virtual
8213 	 * addresses in different processes.
8214 	 */
8215 	if (!event->ctx->task)
8216 		return -EOPNOTSUPP;
8217 
8218 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8219 	if (ret)
8220 		return ret;
8221 
8222 	ret = event->pmu->addr_filters_validate(&filters);
8223 	if (ret) {
8224 		free_filters_list(&filters);
8225 		return ret;
8226 	}
8227 
8228 	/* remove existing filters, if any */
8229 	perf_addr_filters_splice(event, &filters);
8230 
8231 	/* install new filters */
8232 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8233 
8234 	return ret;
8235 }
8236 
8237 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8238 {
8239 	char *filter_str;
8240 	int ret = -EINVAL;
8241 
8242 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8243 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8244 	    !has_addr_filter(event))
8245 		return -EINVAL;
8246 
8247 	filter_str = strndup_user(arg, PAGE_SIZE);
8248 	if (IS_ERR(filter_str))
8249 		return PTR_ERR(filter_str);
8250 
8251 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8252 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8253 		ret = ftrace_profile_set_filter(event, event->attr.config,
8254 						filter_str);
8255 	else if (has_addr_filter(event))
8256 		ret = perf_event_set_addr_filter(event, filter_str);
8257 
8258 	kfree(filter_str);
8259 	return ret;
8260 }
8261 
8262 /*
8263  * hrtimer based swevent callback
8264  */
8265 
8266 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8267 {
8268 	enum hrtimer_restart ret = HRTIMER_RESTART;
8269 	struct perf_sample_data data;
8270 	struct pt_regs *regs;
8271 	struct perf_event *event;
8272 	u64 period;
8273 
8274 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8275 
8276 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8277 		return HRTIMER_NORESTART;
8278 
8279 	event->pmu->read(event);
8280 
8281 	perf_sample_data_init(&data, 0, event->hw.last_period);
8282 	regs = get_irq_regs();
8283 
8284 	if (regs && !perf_exclude_event(event, regs)) {
8285 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8286 			if (__perf_event_overflow(event, 1, &data, regs))
8287 				ret = HRTIMER_NORESTART;
8288 	}
8289 
8290 	period = max_t(u64, 10000, event->hw.sample_period);
8291 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8292 
8293 	return ret;
8294 }
8295 
8296 static void perf_swevent_start_hrtimer(struct perf_event *event)
8297 {
8298 	struct hw_perf_event *hwc = &event->hw;
8299 	s64 period;
8300 
8301 	if (!is_sampling_event(event))
8302 		return;
8303 
8304 	period = local64_read(&hwc->period_left);
8305 	if (period) {
8306 		if (period < 0)
8307 			period = 10000;
8308 
8309 		local64_set(&hwc->period_left, 0);
8310 	} else {
8311 		period = max_t(u64, 10000, hwc->sample_period);
8312 	}
8313 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8314 		      HRTIMER_MODE_REL_PINNED);
8315 }
8316 
8317 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8318 {
8319 	struct hw_perf_event *hwc = &event->hw;
8320 
8321 	if (is_sampling_event(event)) {
8322 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8323 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8324 
8325 		hrtimer_cancel(&hwc->hrtimer);
8326 	}
8327 }
8328 
8329 static void perf_swevent_init_hrtimer(struct perf_event *event)
8330 {
8331 	struct hw_perf_event *hwc = &event->hw;
8332 
8333 	if (!is_sampling_event(event))
8334 		return;
8335 
8336 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8337 	hwc->hrtimer.function = perf_swevent_hrtimer;
8338 
8339 	/*
8340 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8341 	 * mapping and avoid the whole period adjust feedback stuff.
8342 	 */
8343 	if (event->attr.freq) {
8344 		long freq = event->attr.sample_freq;
8345 
8346 		event->attr.sample_period = NSEC_PER_SEC / freq;
8347 		hwc->sample_period = event->attr.sample_period;
8348 		local64_set(&hwc->period_left, hwc->sample_period);
8349 		hwc->last_period = hwc->sample_period;
8350 		event->attr.freq = 0;
8351 	}
8352 }
8353 
8354 /*
8355  * Software event: cpu wall time clock
8356  */
8357 
8358 static void cpu_clock_event_update(struct perf_event *event)
8359 {
8360 	s64 prev;
8361 	u64 now;
8362 
8363 	now = local_clock();
8364 	prev = local64_xchg(&event->hw.prev_count, now);
8365 	local64_add(now - prev, &event->count);
8366 }
8367 
8368 static void cpu_clock_event_start(struct perf_event *event, int flags)
8369 {
8370 	local64_set(&event->hw.prev_count, local_clock());
8371 	perf_swevent_start_hrtimer(event);
8372 }
8373 
8374 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8375 {
8376 	perf_swevent_cancel_hrtimer(event);
8377 	cpu_clock_event_update(event);
8378 }
8379 
8380 static int cpu_clock_event_add(struct perf_event *event, int flags)
8381 {
8382 	if (flags & PERF_EF_START)
8383 		cpu_clock_event_start(event, flags);
8384 	perf_event_update_userpage(event);
8385 
8386 	return 0;
8387 }
8388 
8389 static void cpu_clock_event_del(struct perf_event *event, int flags)
8390 {
8391 	cpu_clock_event_stop(event, flags);
8392 }
8393 
8394 static void cpu_clock_event_read(struct perf_event *event)
8395 {
8396 	cpu_clock_event_update(event);
8397 }
8398 
8399 static int cpu_clock_event_init(struct perf_event *event)
8400 {
8401 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8402 		return -ENOENT;
8403 
8404 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8405 		return -ENOENT;
8406 
8407 	/*
8408 	 * no branch sampling for software events
8409 	 */
8410 	if (has_branch_stack(event))
8411 		return -EOPNOTSUPP;
8412 
8413 	perf_swevent_init_hrtimer(event);
8414 
8415 	return 0;
8416 }
8417 
8418 static struct pmu perf_cpu_clock = {
8419 	.task_ctx_nr	= perf_sw_context,
8420 
8421 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8422 
8423 	.event_init	= cpu_clock_event_init,
8424 	.add		= cpu_clock_event_add,
8425 	.del		= cpu_clock_event_del,
8426 	.start		= cpu_clock_event_start,
8427 	.stop		= cpu_clock_event_stop,
8428 	.read		= cpu_clock_event_read,
8429 };
8430 
8431 /*
8432  * Software event: task time clock
8433  */
8434 
8435 static void task_clock_event_update(struct perf_event *event, u64 now)
8436 {
8437 	u64 prev;
8438 	s64 delta;
8439 
8440 	prev = local64_xchg(&event->hw.prev_count, now);
8441 	delta = now - prev;
8442 	local64_add(delta, &event->count);
8443 }
8444 
8445 static void task_clock_event_start(struct perf_event *event, int flags)
8446 {
8447 	local64_set(&event->hw.prev_count, event->ctx->time);
8448 	perf_swevent_start_hrtimer(event);
8449 }
8450 
8451 static void task_clock_event_stop(struct perf_event *event, int flags)
8452 {
8453 	perf_swevent_cancel_hrtimer(event);
8454 	task_clock_event_update(event, event->ctx->time);
8455 }
8456 
8457 static int task_clock_event_add(struct perf_event *event, int flags)
8458 {
8459 	if (flags & PERF_EF_START)
8460 		task_clock_event_start(event, flags);
8461 	perf_event_update_userpage(event);
8462 
8463 	return 0;
8464 }
8465 
8466 static void task_clock_event_del(struct perf_event *event, int flags)
8467 {
8468 	task_clock_event_stop(event, PERF_EF_UPDATE);
8469 }
8470 
8471 static void task_clock_event_read(struct perf_event *event)
8472 {
8473 	u64 now = perf_clock();
8474 	u64 delta = now - event->ctx->timestamp;
8475 	u64 time = event->ctx->time + delta;
8476 
8477 	task_clock_event_update(event, time);
8478 }
8479 
8480 static int task_clock_event_init(struct perf_event *event)
8481 {
8482 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8483 		return -ENOENT;
8484 
8485 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8486 		return -ENOENT;
8487 
8488 	/*
8489 	 * no branch sampling for software events
8490 	 */
8491 	if (has_branch_stack(event))
8492 		return -EOPNOTSUPP;
8493 
8494 	perf_swevent_init_hrtimer(event);
8495 
8496 	return 0;
8497 }
8498 
8499 static struct pmu perf_task_clock = {
8500 	.task_ctx_nr	= perf_sw_context,
8501 
8502 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8503 
8504 	.event_init	= task_clock_event_init,
8505 	.add		= task_clock_event_add,
8506 	.del		= task_clock_event_del,
8507 	.start		= task_clock_event_start,
8508 	.stop		= task_clock_event_stop,
8509 	.read		= task_clock_event_read,
8510 };
8511 
8512 static void perf_pmu_nop_void(struct pmu *pmu)
8513 {
8514 }
8515 
8516 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8517 {
8518 }
8519 
8520 static int perf_pmu_nop_int(struct pmu *pmu)
8521 {
8522 	return 0;
8523 }
8524 
8525 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8526 
8527 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8528 {
8529 	__this_cpu_write(nop_txn_flags, flags);
8530 
8531 	if (flags & ~PERF_PMU_TXN_ADD)
8532 		return;
8533 
8534 	perf_pmu_disable(pmu);
8535 }
8536 
8537 static int perf_pmu_commit_txn(struct pmu *pmu)
8538 {
8539 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8540 
8541 	__this_cpu_write(nop_txn_flags, 0);
8542 
8543 	if (flags & ~PERF_PMU_TXN_ADD)
8544 		return 0;
8545 
8546 	perf_pmu_enable(pmu);
8547 	return 0;
8548 }
8549 
8550 static void perf_pmu_cancel_txn(struct pmu *pmu)
8551 {
8552 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8553 
8554 	__this_cpu_write(nop_txn_flags, 0);
8555 
8556 	if (flags & ~PERF_PMU_TXN_ADD)
8557 		return;
8558 
8559 	perf_pmu_enable(pmu);
8560 }
8561 
8562 static int perf_event_idx_default(struct perf_event *event)
8563 {
8564 	return 0;
8565 }
8566 
8567 /*
8568  * Ensures all contexts with the same task_ctx_nr have the same
8569  * pmu_cpu_context too.
8570  */
8571 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8572 {
8573 	struct pmu *pmu;
8574 
8575 	if (ctxn < 0)
8576 		return NULL;
8577 
8578 	list_for_each_entry(pmu, &pmus, entry) {
8579 		if (pmu->task_ctx_nr == ctxn)
8580 			return pmu->pmu_cpu_context;
8581 	}
8582 
8583 	return NULL;
8584 }
8585 
8586 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8587 {
8588 	int cpu;
8589 
8590 	for_each_possible_cpu(cpu) {
8591 		struct perf_cpu_context *cpuctx;
8592 
8593 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8594 
8595 		if (cpuctx->unique_pmu == old_pmu)
8596 			cpuctx->unique_pmu = pmu;
8597 	}
8598 }
8599 
8600 static void free_pmu_context(struct pmu *pmu)
8601 {
8602 	struct pmu *i;
8603 
8604 	mutex_lock(&pmus_lock);
8605 	/*
8606 	 * Like a real lame refcount.
8607 	 */
8608 	list_for_each_entry(i, &pmus, entry) {
8609 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8610 			update_pmu_context(i, pmu);
8611 			goto out;
8612 		}
8613 	}
8614 
8615 	free_percpu(pmu->pmu_cpu_context);
8616 out:
8617 	mutex_unlock(&pmus_lock);
8618 }
8619 
8620 /*
8621  * Let userspace know that this PMU supports address range filtering:
8622  */
8623 static ssize_t nr_addr_filters_show(struct device *dev,
8624 				    struct device_attribute *attr,
8625 				    char *page)
8626 {
8627 	struct pmu *pmu = dev_get_drvdata(dev);
8628 
8629 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8630 }
8631 DEVICE_ATTR_RO(nr_addr_filters);
8632 
8633 static struct idr pmu_idr;
8634 
8635 static ssize_t
8636 type_show(struct device *dev, struct device_attribute *attr, char *page)
8637 {
8638 	struct pmu *pmu = dev_get_drvdata(dev);
8639 
8640 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8641 }
8642 static DEVICE_ATTR_RO(type);
8643 
8644 static ssize_t
8645 perf_event_mux_interval_ms_show(struct device *dev,
8646 				struct device_attribute *attr,
8647 				char *page)
8648 {
8649 	struct pmu *pmu = dev_get_drvdata(dev);
8650 
8651 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8652 }
8653 
8654 static DEFINE_MUTEX(mux_interval_mutex);
8655 
8656 static ssize_t
8657 perf_event_mux_interval_ms_store(struct device *dev,
8658 				 struct device_attribute *attr,
8659 				 const char *buf, size_t count)
8660 {
8661 	struct pmu *pmu = dev_get_drvdata(dev);
8662 	int timer, cpu, ret;
8663 
8664 	ret = kstrtoint(buf, 0, &timer);
8665 	if (ret)
8666 		return ret;
8667 
8668 	if (timer < 1)
8669 		return -EINVAL;
8670 
8671 	/* same value, noting to do */
8672 	if (timer == pmu->hrtimer_interval_ms)
8673 		return count;
8674 
8675 	mutex_lock(&mux_interval_mutex);
8676 	pmu->hrtimer_interval_ms = timer;
8677 
8678 	/* update all cpuctx for this PMU */
8679 	get_online_cpus();
8680 	for_each_online_cpu(cpu) {
8681 		struct perf_cpu_context *cpuctx;
8682 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8683 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8684 
8685 		cpu_function_call(cpu,
8686 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8687 	}
8688 	put_online_cpus();
8689 	mutex_unlock(&mux_interval_mutex);
8690 
8691 	return count;
8692 }
8693 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8694 
8695 static struct attribute *pmu_dev_attrs[] = {
8696 	&dev_attr_type.attr,
8697 	&dev_attr_perf_event_mux_interval_ms.attr,
8698 	NULL,
8699 };
8700 ATTRIBUTE_GROUPS(pmu_dev);
8701 
8702 static int pmu_bus_running;
8703 static struct bus_type pmu_bus = {
8704 	.name		= "event_source",
8705 	.dev_groups	= pmu_dev_groups,
8706 };
8707 
8708 static void pmu_dev_release(struct device *dev)
8709 {
8710 	kfree(dev);
8711 }
8712 
8713 static int pmu_dev_alloc(struct pmu *pmu)
8714 {
8715 	int ret = -ENOMEM;
8716 
8717 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8718 	if (!pmu->dev)
8719 		goto out;
8720 
8721 	pmu->dev->groups = pmu->attr_groups;
8722 	device_initialize(pmu->dev);
8723 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8724 	if (ret)
8725 		goto free_dev;
8726 
8727 	dev_set_drvdata(pmu->dev, pmu);
8728 	pmu->dev->bus = &pmu_bus;
8729 	pmu->dev->release = pmu_dev_release;
8730 	ret = device_add(pmu->dev);
8731 	if (ret)
8732 		goto free_dev;
8733 
8734 	/* For PMUs with address filters, throw in an extra attribute: */
8735 	if (pmu->nr_addr_filters)
8736 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8737 
8738 	if (ret)
8739 		goto del_dev;
8740 
8741 out:
8742 	return ret;
8743 
8744 del_dev:
8745 	device_del(pmu->dev);
8746 
8747 free_dev:
8748 	put_device(pmu->dev);
8749 	goto out;
8750 }
8751 
8752 static struct lock_class_key cpuctx_mutex;
8753 static struct lock_class_key cpuctx_lock;
8754 
8755 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8756 {
8757 	int cpu, ret;
8758 
8759 	mutex_lock(&pmus_lock);
8760 	ret = -ENOMEM;
8761 	pmu->pmu_disable_count = alloc_percpu(int);
8762 	if (!pmu->pmu_disable_count)
8763 		goto unlock;
8764 
8765 	pmu->type = -1;
8766 	if (!name)
8767 		goto skip_type;
8768 	pmu->name = name;
8769 
8770 	if (type < 0) {
8771 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8772 		if (type < 0) {
8773 			ret = type;
8774 			goto free_pdc;
8775 		}
8776 	}
8777 	pmu->type = type;
8778 
8779 	if (pmu_bus_running) {
8780 		ret = pmu_dev_alloc(pmu);
8781 		if (ret)
8782 			goto free_idr;
8783 	}
8784 
8785 skip_type:
8786 	if (pmu->task_ctx_nr == perf_hw_context) {
8787 		static int hw_context_taken = 0;
8788 
8789 		/*
8790 		 * Other than systems with heterogeneous CPUs, it never makes
8791 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8792 		 * uncore must use perf_invalid_context.
8793 		 */
8794 		if (WARN_ON_ONCE(hw_context_taken &&
8795 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8796 			pmu->task_ctx_nr = perf_invalid_context;
8797 
8798 		hw_context_taken = 1;
8799 	}
8800 
8801 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8802 	if (pmu->pmu_cpu_context)
8803 		goto got_cpu_context;
8804 
8805 	ret = -ENOMEM;
8806 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8807 	if (!pmu->pmu_cpu_context)
8808 		goto free_dev;
8809 
8810 	for_each_possible_cpu(cpu) {
8811 		struct perf_cpu_context *cpuctx;
8812 
8813 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8814 		__perf_event_init_context(&cpuctx->ctx);
8815 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8816 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8817 		cpuctx->ctx.pmu = pmu;
8818 
8819 		__perf_mux_hrtimer_init(cpuctx, cpu);
8820 
8821 		cpuctx->unique_pmu = pmu;
8822 	}
8823 
8824 got_cpu_context:
8825 	if (!pmu->start_txn) {
8826 		if (pmu->pmu_enable) {
8827 			/*
8828 			 * If we have pmu_enable/pmu_disable calls, install
8829 			 * transaction stubs that use that to try and batch
8830 			 * hardware accesses.
8831 			 */
8832 			pmu->start_txn  = perf_pmu_start_txn;
8833 			pmu->commit_txn = perf_pmu_commit_txn;
8834 			pmu->cancel_txn = perf_pmu_cancel_txn;
8835 		} else {
8836 			pmu->start_txn  = perf_pmu_nop_txn;
8837 			pmu->commit_txn = perf_pmu_nop_int;
8838 			pmu->cancel_txn = perf_pmu_nop_void;
8839 		}
8840 	}
8841 
8842 	if (!pmu->pmu_enable) {
8843 		pmu->pmu_enable  = perf_pmu_nop_void;
8844 		pmu->pmu_disable = perf_pmu_nop_void;
8845 	}
8846 
8847 	if (!pmu->event_idx)
8848 		pmu->event_idx = perf_event_idx_default;
8849 
8850 	list_add_rcu(&pmu->entry, &pmus);
8851 	atomic_set(&pmu->exclusive_cnt, 0);
8852 	ret = 0;
8853 unlock:
8854 	mutex_unlock(&pmus_lock);
8855 
8856 	return ret;
8857 
8858 free_dev:
8859 	device_del(pmu->dev);
8860 	put_device(pmu->dev);
8861 
8862 free_idr:
8863 	if (pmu->type >= PERF_TYPE_MAX)
8864 		idr_remove(&pmu_idr, pmu->type);
8865 
8866 free_pdc:
8867 	free_percpu(pmu->pmu_disable_count);
8868 	goto unlock;
8869 }
8870 EXPORT_SYMBOL_GPL(perf_pmu_register);
8871 
8872 void perf_pmu_unregister(struct pmu *pmu)
8873 {
8874 	int remove_device;
8875 
8876 	mutex_lock(&pmus_lock);
8877 	remove_device = pmu_bus_running;
8878 	list_del_rcu(&pmu->entry);
8879 	mutex_unlock(&pmus_lock);
8880 
8881 	/*
8882 	 * We dereference the pmu list under both SRCU and regular RCU, so
8883 	 * synchronize against both of those.
8884 	 */
8885 	synchronize_srcu(&pmus_srcu);
8886 	synchronize_rcu();
8887 
8888 	free_percpu(pmu->pmu_disable_count);
8889 	if (pmu->type >= PERF_TYPE_MAX)
8890 		idr_remove(&pmu_idr, pmu->type);
8891 	if (remove_device) {
8892 		if (pmu->nr_addr_filters)
8893 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8894 		device_del(pmu->dev);
8895 		put_device(pmu->dev);
8896 	}
8897 	free_pmu_context(pmu);
8898 }
8899 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8900 
8901 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8902 {
8903 	struct perf_event_context *ctx = NULL;
8904 	int ret;
8905 
8906 	if (!try_module_get(pmu->module))
8907 		return -ENODEV;
8908 
8909 	if (event->group_leader != event) {
8910 		/*
8911 		 * This ctx->mutex can nest when we're called through
8912 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8913 		 */
8914 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8915 						 SINGLE_DEPTH_NESTING);
8916 		BUG_ON(!ctx);
8917 	}
8918 
8919 	event->pmu = pmu;
8920 	ret = pmu->event_init(event);
8921 
8922 	if (ctx)
8923 		perf_event_ctx_unlock(event->group_leader, ctx);
8924 
8925 	if (ret)
8926 		module_put(pmu->module);
8927 
8928 	return ret;
8929 }
8930 
8931 static struct pmu *perf_init_event(struct perf_event *event)
8932 {
8933 	struct pmu *pmu = NULL;
8934 	int idx;
8935 	int ret;
8936 
8937 	idx = srcu_read_lock(&pmus_srcu);
8938 
8939 	rcu_read_lock();
8940 	pmu = idr_find(&pmu_idr, event->attr.type);
8941 	rcu_read_unlock();
8942 	if (pmu) {
8943 		ret = perf_try_init_event(pmu, event);
8944 		if (ret)
8945 			pmu = ERR_PTR(ret);
8946 		goto unlock;
8947 	}
8948 
8949 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8950 		ret = perf_try_init_event(pmu, event);
8951 		if (!ret)
8952 			goto unlock;
8953 
8954 		if (ret != -ENOENT) {
8955 			pmu = ERR_PTR(ret);
8956 			goto unlock;
8957 		}
8958 	}
8959 	pmu = ERR_PTR(-ENOENT);
8960 unlock:
8961 	srcu_read_unlock(&pmus_srcu, idx);
8962 
8963 	return pmu;
8964 }
8965 
8966 static void attach_sb_event(struct perf_event *event)
8967 {
8968 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8969 
8970 	raw_spin_lock(&pel->lock);
8971 	list_add_rcu(&event->sb_list, &pel->list);
8972 	raw_spin_unlock(&pel->lock);
8973 }
8974 
8975 /*
8976  * We keep a list of all !task (and therefore per-cpu) events
8977  * that need to receive side-band records.
8978  *
8979  * This avoids having to scan all the various PMU per-cpu contexts
8980  * looking for them.
8981  */
8982 static void account_pmu_sb_event(struct perf_event *event)
8983 {
8984 	if (is_sb_event(event))
8985 		attach_sb_event(event);
8986 }
8987 
8988 static void account_event_cpu(struct perf_event *event, int cpu)
8989 {
8990 	if (event->parent)
8991 		return;
8992 
8993 	if (is_cgroup_event(event))
8994 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8995 }
8996 
8997 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8998 static void account_freq_event_nohz(void)
8999 {
9000 #ifdef CONFIG_NO_HZ_FULL
9001 	/* Lock so we don't race with concurrent unaccount */
9002 	spin_lock(&nr_freq_lock);
9003 	if (atomic_inc_return(&nr_freq_events) == 1)
9004 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9005 	spin_unlock(&nr_freq_lock);
9006 #endif
9007 }
9008 
9009 static void account_freq_event(void)
9010 {
9011 	if (tick_nohz_full_enabled())
9012 		account_freq_event_nohz();
9013 	else
9014 		atomic_inc(&nr_freq_events);
9015 }
9016 
9017 
9018 static void account_event(struct perf_event *event)
9019 {
9020 	bool inc = false;
9021 
9022 	if (event->parent)
9023 		return;
9024 
9025 	if (event->attach_state & PERF_ATTACH_TASK)
9026 		inc = true;
9027 	if (event->attr.mmap || event->attr.mmap_data)
9028 		atomic_inc(&nr_mmap_events);
9029 	if (event->attr.comm)
9030 		atomic_inc(&nr_comm_events);
9031 	if (event->attr.task)
9032 		atomic_inc(&nr_task_events);
9033 	if (event->attr.freq)
9034 		account_freq_event();
9035 	if (event->attr.context_switch) {
9036 		atomic_inc(&nr_switch_events);
9037 		inc = true;
9038 	}
9039 	if (has_branch_stack(event))
9040 		inc = true;
9041 	if (is_cgroup_event(event))
9042 		inc = true;
9043 
9044 	if (inc) {
9045 		if (atomic_inc_not_zero(&perf_sched_count))
9046 			goto enabled;
9047 
9048 		mutex_lock(&perf_sched_mutex);
9049 		if (!atomic_read(&perf_sched_count)) {
9050 			static_branch_enable(&perf_sched_events);
9051 			/*
9052 			 * Guarantee that all CPUs observe they key change and
9053 			 * call the perf scheduling hooks before proceeding to
9054 			 * install events that need them.
9055 			 */
9056 			synchronize_sched();
9057 		}
9058 		/*
9059 		 * Now that we have waited for the sync_sched(), allow further
9060 		 * increments to by-pass the mutex.
9061 		 */
9062 		atomic_inc(&perf_sched_count);
9063 		mutex_unlock(&perf_sched_mutex);
9064 	}
9065 enabled:
9066 
9067 	account_event_cpu(event, event->cpu);
9068 
9069 	account_pmu_sb_event(event);
9070 }
9071 
9072 /*
9073  * Allocate and initialize a event structure
9074  */
9075 static struct perf_event *
9076 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9077 		 struct task_struct *task,
9078 		 struct perf_event *group_leader,
9079 		 struct perf_event *parent_event,
9080 		 perf_overflow_handler_t overflow_handler,
9081 		 void *context, int cgroup_fd)
9082 {
9083 	struct pmu *pmu;
9084 	struct perf_event *event;
9085 	struct hw_perf_event *hwc;
9086 	long err = -EINVAL;
9087 
9088 	if ((unsigned)cpu >= nr_cpu_ids) {
9089 		if (!task || cpu != -1)
9090 			return ERR_PTR(-EINVAL);
9091 	}
9092 
9093 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9094 	if (!event)
9095 		return ERR_PTR(-ENOMEM);
9096 
9097 	/*
9098 	 * Single events are their own group leaders, with an
9099 	 * empty sibling list:
9100 	 */
9101 	if (!group_leader)
9102 		group_leader = event;
9103 
9104 	mutex_init(&event->child_mutex);
9105 	INIT_LIST_HEAD(&event->child_list);
9106 
9107 	INIT_LIST_HEAD(&event->group_entry);
9108 	INIT_LIST_HEAD(&event->event_entry);
9109 	INIT_LIST_HEAD(&event->sibling_list);
9110 	INIT_LIST_HEAD(&event->rb_entry);
9111 	INIT_LIST_HEAD(&event->active_entry);
9112 	INIT_LIST_HEAD(&event->addr_filters.list);
9113 	INIT_HLIST_NODE(&event->hlist_entry);
9114 
9115 
9116 	init_waitqueue_head(&event->waitq);
9117 	init_irq_work(&event->pending, perf_pending_event);
9118 
9119 	mutex_init(&event->mmap_mutex);
9120 	raw_spin_lock_init(&event->addr_filters.lock);
9121 
9122 	atomic_long_set(&event->refcount, 1);
9123 	event->cpu		= cpu;
9124 	event->attr		= *attr;
9125 	event->group_leader	= group_leader;
9126 	event->pmu		= NULL;
9127 	event->oncpu		= -1;
9128 
9129 	event->parent		= parent_event;
9130 
9131 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9132 	event->id		= atomic64_inc_return(&perf_event_id);
9133 
9134 	event->state		= PERF_EVENT_STATE_INACTIVE;
9135 
9136 	if (task) {
9137 		event->attach_state = PERF_ATTACH_TASK;
9138 		/*
9139 		 * XXX pmu::event_init needs to know what task to account to
9140 		 * and we cannot use the ctx information because we need the
9141 		 * pmu before we get a ctx.
9142 		 */
9143 		event->hw.target = task;
9144 	}
9145 
9146 	event->clock = &local_clock;
9147 	if (parent_event)
9148 		event->clock = parent_event->clock;
9149 
9150 	if (!overflow_handler && parent_event) {
9151 		overflow_handler = parent_event->overflow_handler;
9152 		context = parent_event->overflow_handler_context;
9153 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9154 		if (overflow_handler == bpf_overflow_handler) {
9155 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9156 
9157 			if (IS_ERR(prog)) {
9158 				err = PTR_ERR(prog);
9159 				goto err_ns;
9160 			}
9161 			event->prog = prog;
9162 			event->orig_overflow_handler =
9163 				parent_event->orig_overflow_handler;
9164 		}
9165 #endif
9166 	}
9167 
9168 	if (overflow_handler) {
9169 		event->overflow_handler	= overflow_handler;
9170 		event->overflow_handler_context = context;
9171 	} else if (is_write_backward(event)){
9172 		event->overflow_handler = perf_event_output_backward;
9173 		event->overflow_handler_context = NULL;
9174 	} else {
9175 		event->overflow_handler = perf_event_output_forward;
9176 		event->overflow_handler_context = NULL;
9177 	}
9178 
9179 	perf_event__state_init(event);
9180 
9181 	pmu = NULL;
9182 
9183 	hwc = &event->hw;
9184 	hwc->sample_period = attr->sample_period;
9185 	if (attr->freq && attr->sample_freq)
9186 		hwc->sample_period = 1;
9187 	hwc->last_period = hwc->sample_period;
9188 
9189 	local64_set(&hwc->period_left, hwc->sample_period);
9190 
9191 	/*
9192 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
9193 	 */
9194 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9195 		goto err_ns;
9196 
9197 	if (!has_branch_stack(event))
9198 		event->attr.branch_sample_type = 0;
9199 
9200 	if (cgroup_fd != -1) {
9201 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9202 		if (err)
9203 			goto err_ns;
9204 	}
9205 
9206 	pmu = perf_init_event(event);
9207 	if (!pmu)
9208 		goto err_ns;
9209 	else if (IS_ERR(pmu)) {
9210 		err = PTR_ERR(pmu);
9211 		goto err_ns;
9212 	}
9213 
9214 	err = exclusive_event_init(event);
9215 	if (err)
9216 		goto err_pmu;
9217 
9218 	if (has_addr_filter(event)) {
9219 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9220 						   sizeof(unsigned long),
9221 						   GFP_KERNEL);
9222 		if (!event->addr_filters_offs)
9223 			goto err_per_task;
9224 
9225 		/* force hw sync on the address filters */
9226 		event->addr_filters_gen = 1;
9227 	}
9228 
9229 	if (!event->parent) {
9230 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9231 			err = get_callchain_buffers(attr->sample_max_stack);
9232 			if (err)
9233 				goto err_addr_filters;
9234 		}
9235 	}
9236 
9237 	/* symmetric to unaccount_event() in _free_event() */
9238 	account_event(event);
9239 
9240 	return event;
9241 
9242 err_addr_filters:
9243 	kfree(event->addr_filters_offs);
9244 
9245 err_per_task:
9246 	exclusive_event_destroy(event);
9247 
9248 err_pmu:
9249 	if (event->destroy)
9250 		event->destroy(event);
9251 	module_put(pmu->module);
9252 err_ns:
9253 	if (is_cgroup_event(event))
9254 		perf_detach_cgroup(event);
9255 	if (event->ns)
9256 		put_pid_ns(event->ns);
9257 	kfree(event);
9258 
9259 	return ERR_PTR(err);
9260 }
9261 
9262 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9263 			  struct perf_event_attr *attr)
9264 {
9265 	u32 size;
9266 	int ret;
9267 
9268 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9269 		return -EFAULT;
9270 
9271 	/*
9272 	 * zero the full structure, so that a short copy will be nice.
9273 	 */
9274 	memset(attr, 0, sizeof(*attr));
9275 
9276 	ret = get_user(size, &uattr->size);
9277 	if (ret)
9278 		return ret;
9279 
9280 	if (size > PAGE_SIZE)	/* silly large */
9281 		goto err_size;
9282 
9283 	if (!size)		/* abi compat */
9284 		size = PERF_ATTR_SIZE_VER0;
9285 
9286 	if (size < PERF_ATTR_SIZE_VER0)
9287 		goto err_size;
9288 
9289 	/*
9290 	 * If we're handed a bigger struct than we know of,
9291 	 * ensure all the unknown bits are 0 - i.e. new
9292 	 * user-space does not rely on any kernel feature
9293 	 * extensions we dont know about yet.
9294 	 */
9295 	if (size > sizeof(*attr)) {
9296 		unsigned char __user *addr;
9297 		unsigned char __user *end;
9298 		unsigned char val;
9299 
9300 		addr = (void __user *)uattr + sizeof(*attr);
9301 		end  = (void __user *)uattr + size;
9302 
9303 		for (; addr < end; addr++) {
9304 			ret = get_user(val, addr);
9305 			if (ret)
9306 				return ret;
9307 			if (val)
9308 				goto err_size;
9309 		}
9310 		size = sizeof(*attr);
9311 	}
9312 
9313 	ret = copy_from_user(attr, uattr, size);
9314 	if (ret)
9315 		return -EFAULT;
9316 
9317 	if (attr->__reserved_1)
9318 		return -EINVAL;
9319 
9320 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9321 		return -EINVAL;
9322 
9323 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9324 		return -EINVAL;
9325 
9326 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9327 		u64 mask = attr->branch_sample_type;
9328 
9329 		/* only using defined bits */
9330 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9331 			return -EINVAL;
9332 
9333 		/* at least one branch bit must be set */
9334 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9335 			return -EINVAL;
9336 
9337 		/* propagate priv level, when not set for branch */
9338 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9339 
9340 			/* exclude_kernel checked on syscall entry */
9341 			if (!attr->exclude_kernel)
9342 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9343 
9344 			if (!attr->exclude_user)
9345 				mask |= PERF_SAMPLE_BRANCH_USER;
9346 
9347 			if (!attr->exclude_hv)
9348 				mask |= PERF_SAMPLE_BRANCH_HV;
9349 			/*
9350 			 * adjust user setting (for HW filter setup)
9351 			 */
9352 			attr->branch_sample_type = mask;
9353 		}
9354 		/* privileged levels capture (kernel, hv): check permissions */
9355 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9356 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9357 			return -EACCES;
9358 	}
9359 
9360 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9361 		ret = perf_reg_validate(attr->sample_regs_user);
9362 		if (ret)
9363 			return ret;
9364 	}
9365 
9366 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9367 		if (!arch_perf_have_user_stack_dump())
9368 			return -ENOSYS;
9369 
9370 		/*
9371 		 * We have __u32 type for the size, but so far
9372 		 * we can only use __u16 as maximum due to the
9373 		 * __u16 sample size limit.
9374 		 */
9375 		if (attr->sample_stack_user >= USHRT_MAX)
9376 			ret = -EINVAL;
9377 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9378 			ret = -EINVAL;
9379 	}
9380 
9381 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9382 		ret = perf_reg_validate(attr->sample_regs_intr);
9383 out:
9384 	return ret;
9385 
9386 err_size:
9387 	put_user(sizeof(*attr), &uattr->size);
9388 	ret = -E2BIG;
9389 	goto out;
9390 }
9391 
9392 static int
9393 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9394 {
9395 	struct ring_buffer *rb = NULL;
9396 	int ret = -EINVAL;
9397 
9398 	if (!output_event)
9399 		goto set;
9400 
9401 	/* don't allow circular references */
9402 	if (event == output_event)
9403 		goto out;
9404 
9405 	/*
9406 	 * Don't allow cross-cpu buffers
9407 	 */
9408 	if (output_event->cpu != event->cpu)
9409 		goto out;
9410 
9411 	/*
9412 	 * If its not a per-cpu rb, it must be the same task.
9413 	 */
9414 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9415 		goto out;
9416 
9417 	/*
9418 	 * Mixing clocks in the same buffer is trouble you don't need.
9419 	 */
9420 	if (output_event->clock != event->clock)
9421 		goto out;
9422 
9423 	/*
9424 	 * Either writing ring buffer from beginning or from end.
9425 	 * Mixing is not allowed.
9426 	 */
9427 	if (is_write_backward(output_event) != is_write_backward(event))
9428 		goto out;
9429 
9430 	/*
9431 	 * If both events generate aux data, they must be on the same PMU
9432 	 */
9433 	if (has_aux(event) && has_aux(output_event) &&
9434 	    event->pmu != output_event->pmu)
9435 		goto out;
9436 
9437 set:
9438 	mutex_lock(&event->mmap_mutex);
9439 	/* Can't redirect output if we've got an active mmap() */
9440 	if (atomic_read(&event->mmap_count))
9441 		goto unlock;
9442 
9443 	if (output_event) {
9444 		/* get the rb we want to redirect to */
9445 		rb = ring_buffer_get(output_event);
9446 		if (!rb)
9447 			goto unlock;
9448 	}
9449 
9450 	ring_buffer_attach(event, rb);
9451 
9452 	ret = 0;
9453 unlock:
9454 	mutex_unlock(&event->mmap_mutex);
9455 
9456 out:
9457 	return ret;
9458 }
9459 
9460 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9461 {
9462 	if (b < a)
9463 		swap(a, b);
9464 
9465 	mutex_lock(a);
9466 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9467 }
9468 
9469 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9470 {
9471 	bool nmi_safe = false;
9472 
9473 	switch (clk_id) {
9474 	case CLOCK_MONOTONIC:
9475 		event->clock = &ktime_get_mono_fast_ns;
9476 		nmi_safe = true;
9477 		break;
9478 
9479 	case CLOCK_MONOTONIC_RAW:
9480 		event->clock = &ktime_get_raw_fast_ns;
9481 		nmi_safe = true;
9482 		break;
9483 
9484 	case CLOCK_REALTIME:
9485 		event->clock = &ktime_get_real_ns;
9486 		break;
9487 
9488 	case CLOCK_BOOTTIME:
9489 		event->clock = &ktime_get_boot_ns;
9490 		break;
9491 
9492 	case CLOCK_TAI:
9493 		event->clock = &ktime_get_tai_ns;
9494 		break;
9495 
9496 	default:
9497 		return -EINVAL;
9498 	}
9499 
9500 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9501 		return -EINVAL;
9502 
9503 	return 0;
9504 }
9505 
9506 /**
9507  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9508  *
9509  * @attr_uptr:	event_id type attributes for monitoring/sampling
9510  * @pid:		target pid
9511  * @cpu:		target cpu
9512  * @group_fd:		group leader event fd
9513  */
9514 SYSCALL_DEFINE5(perf_event_open,
9515 		struct perf_event_attr __user *, attr_uptr,
9516 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9517 {
9518 	struct perf_event *group_leader = NULL, *output_event = NULL;
9519 	struct perf_event *event, *sibling;
9520 	struct perf_event_attr attr;
9521 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9522 	struct file *event_file = NULL;
9523 	struct fd group = {NULL, 0};
9524 	struct task_struct *task = NULL;
9525 	struct pmu *pmu;
9526 	int event_fd;
9527 	int move_group = 0;
9528 	int err;
9529 	int f_flags = O_RDWR;
9530 	int cgroup_fd = -1;
9531 
9532 	/* for future expandability... */
9533 	if (flags & ~PERF_FLAG_ALL)
9534 		return -EINVAL;
9535 
9536 	err = perf_copy_attr(attr_uptr, &attr);
9537 	if (err)
9538 		return err;
9539 
9540 	if (!attr.exclude_kernel) {
9541 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9542 			return -EACCES;
9543 	}
9544 
9545 	if (attr.freq) {
9546 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9547 			return -EINVAL;
9548 	} else {
9549 		if (attr.sample_period & (1ULL << 63))
9550 			return -EINVAL;
9551 	}
9552 
9553 	if (!attr.sample_max_stack)
9554 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9555 
9556 	/*
9557 	 * In cgroup mode, the pid argument is used to pass the fd
9558 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9559 	 * designates the cpu on which to monitor threads from that
9560 	 * cgroup.
9561 	 */
9562 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9563 		return -EINVAL;
9564 
9565 	if (flags & PERF_FLAG_FD_CLOEXEC)
9566 		f_flags |= O_CLOEXEC;
9567 
9568 	event_fd = get_unused_fd_flags(f_flags);
9569 	if (event_fd < 0)
9570 		return event_fd;
9571 
9572 	if (group_fd != -1) {
9573 		err = perf_fget_light(group_fd, &group);
9574 		if (err)
9575 			goto err_fd;
9576 		group_leader = group.file->private_data;
9577 		if (flags & PERF_FLAG_FD_OUTPUT)
9578 			output_event = group_leader;
9579 		if (flags & PERF_FLAG_FD_NO_GROUP)
9580 			group_leader = NULL;
9581 	}
9582 
9583 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9584 		task = find_lively_task_by_vpid(pid);
9585 		if (IS_ERR(task)) {
9586 			err = PTR_ERR(task);
9587 			goto err_group_fd;
9588 		}
9589 	}
9590 
9591 	if (task && group_leader &&
9592 	    group_leader->attr.inherit != attr.inherit) {
9593 		err = -EINVAL;
9594 		goto err_task;
9595 	}
9596 
9597 	get_online_cpus();
9598 
9599 	if (task) {
9600 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9601 		if (err)
9602 			goto err_cpus;
9603 
9604 		/*
9605 		 * Reuse ptrace permission checks for now.
9606 		 *
9607 		 * We must hold cred_guard_mutex across this and any potential
9608 		 * perf_install_in_context() call for this new event to
9609 		 * serialize against exec() altering our credentials (and the
9610 		 * perf_event_exit_task() that could imply).
9611 		 */
9612 		err = -EACCES;
9613 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9614 			goto err_cred;
9615 	}
9616 
9617 	if (flags & PERF_FLAG_PID_CGROUP)
9618 		cgroup_fd = pid;
9619 
9620 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9621 				 NULL, NULL, cgroup_fd);
9622 	if (IS_ERR(event)) {
9623 		err = PTR_ERR(event);
9624 		goto err_cred;
9625 	}
9626 
9627 	if (is_sampling_event(event)) {
9628 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9629 			err = -EOPNOTSUPP;
9630 			goto err_alloc;
9631 		}
9632 	}
9633 
9634 	/*
9635 	 * Special case software events and allow them to be part of
9636 	 * any hardware group.
9637 	 */
9638 	pmu = event->pmu;
9639 
9640 	if (attr.use_clockid) {
9641 		err = perf_event_set_clock(event, attr.clockid);
9642 		if (err)
9643 			goto err_alloc;
9644 	}
9645 
9646 	if (pmu->task_ctx_nr == perf_sw_context)
9647 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9648 
9649 	if (group_leader &&
9650 	    (is_software_event(event) != is_software_event(group_leader))) {
9651 		if (is_software_event(event)) {
9652 			/*
9653 			 * If event and group_leader are not both a software
9654 			 * event, and event is, then group leader is not.
9655 			 *
9656 			 * Allow the addition of software events to !software
9657 			 * groups, this is safe because software events never
9658 			 * fail to schedule.
9659 			 */
9660 			pmu = group_leader->pmu;
9661 		} else if (is_software_event(group_leader) &&
9662 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9663 			/*
9664 			 * In case the group is a pure software group, and we
9665 			 * try to add a hardware event, move the whole group to
9666 			 * the hardware context.
9667 			 */
9668 			move_group = 1;
9669 		}
9670 	}
9671 
9672 	/*
9673 	 * Get the target context (task or percpu):
9674 	 */
9675 	ctx = find_get_context(pmu, task, event);
9676 	if (IS_ERR(ctx)) {
9677 		err = PTR_ERR(ctx);
9678 		goto err_alloc;
9679 	}
9680 
9681 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9682 		err = -EBUSY;
9683 		goto err_context;
9684 	}
9685 
9686 	/*
9687 	 * Look up the group leader (we will attach this event to it):
9688 	 */
9689 	if (group_leader) {
9690 		err = -EINVAL;
9691 
9692 		/*
9693 		 * Do not allow a recursive hierarchy (this new sibling
9694 		 * becoming part of another group-sibling):
9695 		 */
9696 		if (group_leader->group_leader != group_leader)
9697 			goto err_context;
9698 
9699 		/* All events in a group should have the same clock */
9700 		if (group_leader->clock != event->clock)
9701 			goto err_context;
9702 
9703 		/*
9704 		 * Do not allow to attach to a group in a different
9705 		 * task or CPU context:
9706 		 */
9707 		if (move_group) {
9708 			/*
9709 			 * Make sure we're both on the same task, or both
9710 			 * per-cpu events.
9711 			 */
9712 			if (group_leader->ctx->task != ctx->task)
9713 				goto err_context;
9714 
9715 			/*
9716 			 * Make sure we're both events for the same CPU;
9717 			 * grouping events for different CPUs is broken; since
9718 			 * you can never concurrently schedule them anyhow.
9719 			 */
9720 			if (group_leader->cpu != event->cpu)
9721 				goto err_context;
9722 		} else {
9723 			if (group_leader->ctx != ctx)
9724 				goto err_context;
9725 		}
9726 
9727 		/*
9728 		 * Only a group leader can be exclusive or pinned
9729 		 */
9730 		if (attr.exclusive || attr.pinned)
9731 			goto err_context;
9732 	}
9733 
9734 	if (output_event) {
9735 		err = perf_event_set_output(event, output_event);
9736 		if (err)
9737 			goto err_context;
9738 	}
9739 
9740 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9741 					f_flags);
9742 	if (IS_ERR(event_file)) {
9743 		err = PTR_ERR(event_file);
9744 		event_file = NULL;
9745 		goto err_context;
9746 	}
9747 
9748 	if (move_group) {
9749 		gctx = group_leader->ctx;
9750 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9751 		if (gctx->task == TASK_TOMBSTONE) {
9752 			err = -ESRCH;
9753 			goto err_locked;
9754 		}
9755 	} else {
9756 		mutex_lock(&ctx->mutex);
9757 	}
9758 
9759 	if (ctx->task == TASK_TOMBSTONE) {
9760 		err = -ESRCH;
9761 		goto err_locked;
9762 	}
9763 
9764 	if (!perf_event_validate_size(event)) {
9765 		err = -E2BIG;
9766 		goto err_locked;
9767 	}
9768 
9769 	/*
9770 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9771 	 * because we need to serialize with concurrent event creation.
9772 	 */
9773 	if (!exclusive_event_installable(event, ctx)) {
9774 		/* exclusive and group stuff are assumed mutually exclusive */
9775 		WARN_ON_ONCE(move_group);
9776 
9777 		err = -EBUSY;
9778 		goto err_locked;
9779 	}
9780 
9781 	WARN_ON_ONCE(ctx->parent_ctx);
9782 
9783 	/*
9784 	 * This is the point on no return; we cannot fail hereafter. This is
9785 	 * where we start modifying current state.
9786 	 */
9787 
9788 	if (move_group) {
9789 		/*
9790 		 * See perf_event_ctx_lock() for comments on the details
9791 		 * of swizzling perf_event::ctx.
9792 		 */
9793 		perf_remove_from_context(group_leader, 0);
9794 
9795 		list_for_each_entry(sibling, &group_leader->sibling_list,
9796 				    group_entry) {
9797 			perf_remove_from_context(sibling, 0);
9798 			put_ctx(gctx);
9799 		}
9800 
9801 		/*
9802 		 * Wait for everybody to stop referencing the events through
9803 		 * the old lists, before installing it on new lists.
9804 		 */
9805 		synchronize_rcu();
9806 
9807 		/*
9808 		 * Install the group siblings before the group leader.
9809 		 *
9810 		 * Because a group leader will try and install the entire group
9811 		 * (through the sibling list, which is still in-tact), we can
9812 		 * end up with siblings installed in the wrong context.
9813 		 *
9814 		 * By installing siblings first we NO-OP because they're not
9815 		 * reachable through the group lists.
9816 		 */
9817 		list_for_each_entry(sibling, &group_leader->sibling_list,
9818 				    group_entry) {
9819 			perf_event__state_init(sibling);
9820 			perf_install_in_context(ctx, sibling, sibling->cpu);
9821 			get_ctx(ctx);
9822 		}
9823 
9824 		/*
9825 		 * Removing from the context ends up with disabled
9826 		 * event. What we want here is event in the initial
9827 		 * startup state, ready to be add into new context.
9828 		 */
9829 		perf_event__state_init(group_leader);
9830 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9831 		get_ctx(ctx);
9832 
9833 		/*
9834 		 * Now that all events are installed in @ctx, nothing
9835 		 * references @gctx anymore, so drop the last reference we have
9836 		 * on it.
9837 		 */
9838 		put_ctx(gctx);
9839 	}
9840 
9841 	/*
9842 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9843 	 * that we're serialized against further additions and before
9844 	 * perf_install_in_context() which is the point the event is active and
9845 	 * can use these values.
9846 	 */
9847 	perf_event__header_size(event);
9848 	perf_event__id_header_size(event);
9849 
9850 	event->owner = current;
9851 
9852 	perf_install_in_context(ctx, event, event->cpu);
9853 	perf_unpin_context(ctx);
9854 
9855 	if (move_group)
9856 		mutex_unlock(&gctx->mutex);
9857 	mutex_unlock(&ctx->mutex);
9858 
9859 	if (task) {
9860 		mutex_unlock(&task->signal->cred_guard_mutex);
9861 		put_task_struct(task);
9862 	}
9863 
9864 	put_online_cpus();
9865 
9866 	mutex_lock(&current->perf_event_mutex);
9867 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9868 	mutex_unlock(&current->perf_event_mutex);
9869 
9870 	/*
9871 	 * Drop the reference on the group_event after placing the
9872 	 * new event on the sibling_list. This ensures destruction
9873 	 * of the group leader will find the pointer to itself in
9874 	 * perf_group_detach().
9875 	 */
9876 	fdput(group);
9877 	fd_install(event_fd, event_file);
9878 	return event_fd;
9879 
9880 err_locked:
9881 	if (move_group)
9882 		mutex_unlock(&gctx->mutex);
9883 	mutex_unlock(&ctx->mutex);
9884 /* err_file: */
9885 	fput(event_file);
9886 err_context:
9887 	perf_unpin_context(ctx);
9888 	put_ctx(ctx);
9889 err_alloc:
9890 	/*
9891 	 * If event_file is set, the fput() above will have called ->release()
9892 	 * and that will take care of freeing the event.
9893 	 */
9894 	if (!event_file)
9895 		free_event(event);
9896 err_cred:
9897 	if (task)
9898 		mutex_unlock(&task->signal->cred_guard_mutex);
9899 err_cpus:
9900 	put_online_cpus();
9901 err_task:
9902 	if (task)
9903 		put_task_struct(task);
9904 err_group_fd:
9905 	fdput(group);
9906 err_fd:
9907 	put_unused_fd(event_fd);
9908 	return err;
9909 }
9910 
9911 /**
9912  * perf_event_create_kernel_counter
9913  *
9914  * @attr: attributes of the counter to create
9915  * @cpu: cpu in which the counter is bound
9916  * @task: task to profile (NULL for percpu)
9917  */
9918 struct perf_event *
9919 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9920 				 struct task_struct *task,
9921 				 perf_overflow_handler_t overflow_handler,
9922 				 void *context)
9923 {
9924 	struct perf_event_context *ctx;
9925 	struct perf_event *event;
9926 	int err;
9927 
9928 	/*
9929 	 * Get the target context (task or percpu):
9930 	 */
9931 
9932 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9933 				 overflow_handler, context, -1);
9934 	if (IS_ERR(event)) {
9935 		err = PTR_ERR(event);
9936 		goto err;
9937 	}
9938 
9939 	/* Mark owner so we could distinguish it from user events. */
9940 	event->owner = TASK_TOMBSTONE;
9941 
9942 	ctx = find_get_context(event->pmu, task, event);
9943 	if (IS_ERR(ctx)) {
9944 		err = PTR_ERR(ctx);
9945 		goto err_free;
9946 	}
9947 
9948 	WARN_ON_ONCE(ctx->parent_ctx);
9949 	mutex_lock(&ctx->mutex);
9950 	if (ctx->task == TASK_TOMBSTONE) {
9951 		err = -ESRCH;
9952 		goto err_unlock;
9953 	}
9954 
9955 	if (!exclusive_event_installable(event, ctx)) {
9956 		err = -EBUSY;
9957 		goto err_unlock;
9958 	}
9959 
9960 	perf_install_in_context(ctx, event, cpu);
9961 	perf_unpin_context(ctx);
9962 	mutex_unlock(&ctx->mutex);
9963 
9964 	return event;
9965 
9966 err_unlock:
9967 	mutex_unlock(&ctx->mutex);
9968 	perf_unpin_context(ctx);
9969 	put_ctx(ctx);
9970 err_free:
9971 	free_event(event);
9972 err:
9973 	return ERR_PTR(err);
9974 }
9975 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9976 
9977 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9978 {
9979 	struct perf_event_context *src_ctx;
9980 	struct perf_event_context *dst_ctx;
9981 	struct perf_event *event, *tmp;
9982 	LIST_HEAD(events);
9983 
9984 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9985 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9986 
9987 	/*
9988 	 * See perf_event_ctx_lock() for comments on the details
9989 	 * of swizzling perf_event::ctx.
9990 	 */
9991 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9992 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9993 				 event_entry) {
9994 		perf_remove_from_context(event, 0);
9995 		unaccount_event_cpu(event, src_cpu);
9996 		put_ctx(src_ctx);
9997 		list_add(&event->migrate_entry, &events);
9998 	}
9999 
10000 	/*
10001 	 * Wait for the events to quiesce before re-instating them.
10002 	 */
10003 	synchronize_rcu();
10004 
10005 	/*
10006 	 * Re-instate events in 2 passes.
10007 	 *
10008 	 * Skip over group leaders and only install siblings on this first
10009 	 * pass, siblings will not get enabled without a leader, however a
10010 	 * leader will enable its siblings, even if those are still on the old
10011 	 * context.
10012 	 */
10013 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10014 		if (event->group_leader == event)
10015 			continue;
10016 
10017 		list_del(&event->migrate_entry);
10018 		if (event->state >= PERF_EVENT_STATE_OFF)
10019 			event->state = PERF_EVENT_STATE_INACTIVE;
10020 		account_event_cpu(event, dst_cpu);
10021 		perf_install_in_context(dst_ctx, event, dst_cpu);
10022 		get_ctx(dst_ctx);
10023 	}
10024 
10025 	/*
10026 	 * Once all the siblings are setup properly, install the group leaders
10027 	 * to make it go.
10028 	 */
10029 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10030 		list_del(&event->migrate_entry);
10031 		if (event->state >= PERF_EVENT_STATE_OFF)
10032 			event->state = PERF_EVENT_STATE_INACTIVE;
10033 		account_event_cpu(event, dst_cpu);
10034 		perf_install_in_context(dst_ctx, event, dst_cpu);
10035 		get_ctx(dst_ctx);
10036 	}
10037 	mutex_unlock(&dst_ctx->mutex);
10038 	mutex_unlock(&src_ctx->mutex);
10039 }
10040 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10041 
10042 static void sync_child_event(struct perf_event *child_event,
10043 			       struct task_struct *child)
10044 {
10045 	struct perf_event *parent_event = child_event->parent;
10046 	u64 child_val;
10047 
10048 	if (child_event->attr.inherit_stat)
10049 		perf_event_read_event(child_event, child);
10050 
10051 	child_val = perf_event_count(child_event);
10052 
10053 	/*
10054 	 * Add back the child's count to the parent's count:
10055 	 */
10056 	atomic64_add(child_val, &parent_event->child_count);
10057 	atomic64_add(child_event->total_time_enabled,
10058 		     &parent_event->child_total_time_enabled);
10059 	atomic64_add(child_event->total_time_running,
10060 		     &parent_event->child_total_time_running);
10061 }
10062 
10063 static void
10064 perf_event_exit_event(struct perf_event *child_event,
10065 		      struct perf_event_context *child_ctx,
10066 		      struct task_struct *child)
10067 {
10068 	struct perf_event *parent_event = child_event->parent;
10069 
10070 	/*
10071 	 * Do not destroy the 'original' grouping; because of the context
10072 	 * switch optimization the original events could've ended up in a
10073 	 * random child task.
10074 	 *
10075 	 * If we were to destroy the original group, all group related
10076 	 * operations would cease to function properly after this random
10077 	 * child dies.
10078 	 *
10079 	 * Do destroy all inherited groups, we don't care about those
10080 	 * and being thorough is better.
10081 	 */
10082 	raw_spin_lock_irq(&child_ctx->lock);
10083 	WARN_ON_ONCE(child_ctx->is_active);
10084 
10085 	if (parent_event)
10086 		perf_group_detach(child_event);
10087 	list_del_event(child_event, child_ctx);
10088 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10089 	raw_spin_unlock_irq(&child_ctx->lock);
10090 
10091 	/*
10092 	 * Parent events are governed by their filedesc, retain them.
10093 	 */
10094 	if (!parent_event) {
10095 		perf_event_wakeup(child_event);
10096 		return;
10097 	}
10098 	/*
10099 	 * Child events can be cleaned up.
10100 	 */
10101 
10102 	sync_child_event(child_event, child);
10103 
10104 	/*
10105 	 * Remove this event from the parent's list
10106 	 */
10107 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10108 	mutex_lock(&parent_event->child_mutex);
10109 	list_del_init(&child_event->child_list);
10110 	mutex_unlock(&parent_event->child_mutex);
10111 
10112 	/*
10113 	 * Kick perf_poll() for is_event_hup().
10114 	 */
10115 	perf_event_wakeup(parent_event);
10116 	free_event(child_event);
10117 	put_event(parent_event);
10118 }
10119 
10120 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10121 {
10122 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10123 	struct perf_event *child_event, *next;
10124 
10125 	WARN_ON_ONCE(child != current);
10126 
10127 	child_ctx = perf_pin_task_context(child, ctxn);
10128 	if (!child_ctx)
10129 		return;
10130 
10131 	/*
10132 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10133 	 * ctx::mutex over the entire thing. This serializes against almost
10134 	 * everything that wants to access the ctx.
10135 	 *
10136 	 * The exception is sys_perf_event_open() /
10137 	 * perf_event_create_kernel_count() which does find_get_context()
10138 	 * without ctx::mutex (it cannot because of the move_group double mutex
10139 	 * lock thing). See the comments in perf_install_in_context().
10140 	 */
10141 	mutex_lock(&child_ctx->mutex);
10142 
10143 	/*
10144 	 * In a single ctx::lock section, de-schedule the events and detach the
10145 	 * context from the task such that we cannot ever get it scheduled back
10146 	 * in.
10147 	 */
10148 	raw_spin_lock_irq(&child_ctx->lock);
10149 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10150 
10151 	/*
10152 	 * Now that the context is inactive, destroy the task <-> ctx relation
10153 	 * and mark the context dead.
10154 	 */
10155 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10156 	put_ctx(child_ctx); /* cannot be last */
10157 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10158 	put_task_struct(current); /* cannot be last */
10159 
10160 	clone_ctx = unclone_ctx(child_ctx);
10161 	raw_spin_unlock_irq(&child_ctx->lock);
10162 
10163 	if (clone_ctx)
10164 		put_ctx(clone_ctx);
10165 
10166 	/*
10167 	 * Report the task dead after unscheduling the events so that we
10168 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10169 	 * get a few PERF_RECORD_READ events.
10170 	 */
10171 	perf_event_task(child, child_ctx, 0);
10172 
10173 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10174 		perf_event_exit_event(child_event, child_ctx, child);
10175 
10176 	mutex_unlock(&child_ctx->mutex);
10177 
10178 	put_ctx(child_ctx);
10179 }
10180 
10181 /*
10182  * When a child task exits, feed back event values to parent events.
10183  *
10184  * Can be called with cred_guard_mutex held when called from
10185  * install_exec_creds().
10186  */
10187 void perf_event_exit_task(struct task_struct *child)
10188 {
10189 	struct perf_event *event, *tmp;
10190 	int ctxn;
10191 
10192 	mutex_lock(&child->perf_event_mutex);
10193 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10194 				 owner_entry) {
10195 		list_del_init(&event->owner_entry);
10196 
10197 		/*
10198 		 * Ensure the list deletion is visible before we clear
10199 		 * the owner, closes a race against perf_release() where
10200 		 * we need to serialize on the owner->perf_event_mutex.
10201 		 */
10202 		smp_store_release(&event->owner, NULL);
10203 	}
10204 	mutex_unlock(&child->perf_event_mutex);
10205 
10206 	for_each_task_context_nr(ctxn)
10207 		perf_event_exit_task_context(child, ctxn);
10208 
10209 	/*
10210 	 * The perf_event_exit_task_context calls perf_event_task
10211 	 * with child's task_ctx, which generates EXIT events for
10212 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10213 	 * At this point we need to send EXIT events to cpu contexts.
10214 	 */
10215 	perf_event_task(child, NULL, 0);
10216 }
10217 
10218 static void perf_free_event(struct perf_event *event,
10219 			    struct perf_event_context *ctx)
10220 {
10221 	struct perf_event *parent = event->parent;
10222 
10223 	if (WARN_ON_ONCE(!parent))
10224 		return;
10225 
10226 	mutex_lock(&parent->child_mutex);
10227 	list_del_init(&event->child_list);
10228 	mutex_unlock(&parent->child_mutex);
10229 
10230 	put_event(parent);
10231 
10232 	raw_spin_lock_irq(&ctx->lock);
10233 	perf_group_detach(event);
10234 	list_del_event(event, ctx);
10235 	raw_spin_unlock_irq(&ctx->lock);
10236 	free_event(event);
10237 }
10238 
10239 /*
10240  * Free an unexposed, unused context as created by inheritance by
10241  * perf_event_init_task below, used by fork() in case of fail.
10242  *
10243  * Not all locks are strictly required, but take them anyway to be nice and
10244  * help out with the lockdep assertions.
10245  */
10246 void perf_event_free_task(struct task_struct *task)
10247 {
10248 	struct perf_event_context *ctx;
10249 	struct perf_event *event, *tmp;
10250 	int ctxn;
10251 
10252 	for_each_task_context_nr(ctxn) {
10253 		ctx = task->perf_event_ctxp[ctxn];
10254 		if (!ctx)
10255 			continue;
10256 
10257 		mutex_lock(&ctx->mutex);
10258 again:
10259 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10260 				group_entry)
10261 			perf_free_event(event, ctx);
10262 
10263 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10264 				group_entry)
10265 			perf_free_event(event, ctx);
10266 
10267 		if (!list_empty(&ctx->pinned_groups) ||
10268 				!list_empty(&ctx->flexible_groups))
10269 			goto again;
10270 
10271 		mutex_unlock(&ctx->mutex);
10272 
10273 		put_ctx(ctx);
10274 	}
10275 }
10276 
10277 void perf_event_delayed_put(struct task_struct *task)
10278 {
10279 	int ctxn;
10280 
10281 	for_each_task_context_nr(ctxn)
10282 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10283 }
10284 
10285 struct file *perf_event_get(unsigned int fd)
10286 {
10287 	struct file *file;
10288 
10289 	file = fget_raw(fd);
10290 	if (!file)
10291 		return ERR_PTR(-EBADF);
10292 
10293 	if (file->f_op != &perf_fops) {
10294 		fput(file);
10295 		return ERR_PTR(-EBADF);
10296 	}
10297 
10298 	return file;
10299 }
10300 
10301 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10302 {
10303 	if (!event)
10304 		return ERR_PTR(-EINVAL);
10305 
10306 	return &event->attr;
10307 }
10308 
10309 /*
10310  * inherit a event from parent task to child task:
10311  */
10312 static struct perf_event *
10313 inherit_event(struct perf_event *parent_event,
10314 	      struct task_struct *parent,
10315 	      struct perf_event_context *parent_ctx,
10316 	      struct task_struct *child,
10317 	      struct perf_event *group_leader,
10318 	      struct perf_event_context *child_ctx)
10319 {
10320 	enum perf_event_active_state parent_state = parent_event->state;
10321 	struct perf_event *child_event;
10322 	unsigned long flags;
10323 
10324 	/*
10325 	 * Instead of creating recursive hierarchies of events,
10326 	 * we link inherited events back to the original parent,
10327 	 * which has a filp for sure, which we use as the reference
10328 	 * count:
10329 	 */
10330 	if (parent_event->parent)
10331 		parent_event = parent_event->parent;
10332 
10333 	child_event = perf_event_alloc(&parent_event->attr,
10334 					   parent_event->cpu,
10335 					   child,
10336 					   group_leader, parent_event,
10337 					   NULL, NULL, -1);
10338 	if (IS_ERR(child_event))
10339 		return child_event;
10340 
10341 	/*
10342 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10343 	 * must be under the same lock in order to serialize against
10344 	 * perf_event_release_kernel(), such that either we must observe
10345 	 * is_orphaned_event() or they will observe us on the child_list.
10346 	 */
10347 	mutex_lock(&parent_event->child_mutex);
10348 	if (is_orphaned_event(parent_event) ||
10349 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10350 		mutex_unlock(&parent_event->child_mutex);
10351 		free_event(child_event);
10352 		return NULL;
10353 	}
10354 
10355 	get_ctx(child_ctx);
10356 
10357 	/*
10358 	 * Make the child state follow the state of the parent event,
10359 	 * not its attr.disabled bit.  We hold the parent's mutex,
10360 	 * so we won't race with perf_event_{en, dis}able_family.
10361 	 */
10362 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10363 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10364 	else
10365 		child_event->state = PERF_EVENT_STATE_OFF;
10366 
10367 	if (parent_event->attr.freq) {
10368 		u64 sample_period = parent_event->hw.sample_period;
10369 		struct hw_perf_event *hwc = &child_event->hw;
10370 
10371 		hwc->sample_period = sample_period;
10372 		hwc->last_period   = sample_period;
10373 
10374 		local64_set(&hwc->period_left, sample_period);
10375 	}
10376 
10377 	child_event->ctx = child_ctx;
10378 	child_event->overflow_handler = parent_event->overflow_handler;
10379 	child_event->overflow_handler_context
10380 		= parent_event->overflow_handler_context;
10381 
10382 	/*
10383 	 * Precalculate sample_data sizes
10384 	 */
10385 	perf_event__header_size(child_event);
10386 	perf_event__id_header_size(child_event);
10387 
10388 	/*
10389 	 * Link it up in the child's context:
10390 	 */
10391 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10392 	add_event_to_ctx(child_event, child_ctx);
10393 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10394 
10395 	/*
10396 	 * Link this into the parent event's child list
10397 	 */
10398 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10399 	mutex_unlock(&parent_event->child_mutex);
10400 
10401 	return child_event;
10402 }
10403 
10404 static int inherit_group(struct perf_event *parent_event,
10405 	      struct task_struct *parent,
10406 	      struct perf_event_context *parent_ctx,
10407 	      struct task_struct *child,
10408 	      struct perf_event_context *child_ctx)
10409 {
10410 	struct perf_event *leader;
10411 	struct perf_event *sub;
10412 	struct perf_event *child_ctr;
10413 
10414 	leader = inherit_event(parent_event, parent, parent_ctx,
10415 				 child, NULL, child_ctx);
10416 	if (IS_ERR(leader))
10417 		return PTR_ERR(leader);
10418 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10419 		child_ctr = inherit_event(sub, parent, parent_ctx,
10420 					    child, leader, child_ctx);
10421 		if (IS_ERR(child_ctr))
10422 			return PTR_ERR(child_ctr);
10423 	}
10424 	return 0;
10425 }
10426 
10427 static int
10428 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10429 		   struct perf_event_context *parent_ctx,
10430 		   struct task_struct *child, int ctxn,
10431 		   int *inherited_all)
10432 {
10433 	int ret;
10434 	struct perf_event_context *child_ctx;
10435 
10436 	if (!event->attr.inherit) {
10437 		*inherited_all = 0;
10438 		return 0;
10439 	}
10440 
10441 	child_ctx = child->perf_event_ctxp[ctxn];
10442 	if (!child_ctx) {
10443 		/*
10444 		 * This is executed from the parent task context, so
10445 		 * inherit events that have been marked for cloning.
10446 		 * First allocate and initialize a context for the
10447 		 * child.
10448 		 */
10449 
10450 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10451 		if (!child_ctx)
10452 			return -ENOMEM;
10453 
10454 		child->perf_event_ctxp[ctxn] = child_ctx;
10455 	}
10456 
10457 	ret = inherit_group(event, parent, parent_ctx,
10458 			    child, child_ctx);
10459 
10460 	if (ret)
10461 		*inherited_all = 0;
10462 
10463 	return ret;
10464 }
10465 
10466 /*
10467  * Initialize the perf_event context in task_struct
10468  */
10469 static int perf_event_init_context(struct task_struct *child, int ctxn)
10470 {
10471 	struct perf_event_context *child_ctx, *parent_ctx;
10472 	struct perf_event_context *cloned_ctx;
10473 	struct perf_event *event;
10474 	struct task_struct *parent = current;
10475 	int inherited_all = 1;
10476 	unsigned long flags;
10477 	int ret = 0;
10478 
10479 	if (likely(!parent->perf_event_ctxp[ctxn]))
10480 		return 0;
10481 
10482 	/*
10483 	 * If the parent's context is a clone, pin it so it won't get
10484 	 * swapped under us.
10485 	 */
10486 	parent_ctx = perf_pin_task_context(parent, ctxn);
10487 	if (!parent_ctx)
10488 		return 0;
10489 
10490 	/*
10491 	 * No need to check if parent_ctx != NULL here; since we saw
10492 	 * it non-NULL earlier, the only reason for it to become NULL
10493 	 * is if we exit, and since we're currently in the middle of
10494 	 * a fork we can't be exiting at the same time.
10495 	 */
10496 
10497 	/*
10498 	 * Lock the parent list. No need to lock the child - not PID
10499 	 * hashed yet and not running, so nobody can access it.
10500 	 */
10501 	mutex_lock(&parent_ctx->mutex);
10502 
10503 	/*
10504 	 * We dont have to disable NMIs - we are only looking at
10505 	 * the list, not manipulating it:
10506 	 */
10507 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10508 		ret = inherit_task_group(event, parent, parent_ctx,
10509 					 child, ctxn, &inherited_all);
10510 		if (ret)
10511 			break;
10512 	}
10513 
10514 	/*
10515 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10516 	 * to allocations, but we need to prevent rotation because
10517 	 * rotate_ctx() will change the list from interrupt context.
10518 	 */
10519 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10520 	parent_ctx->rotate_disable = 1;
10521 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10522 
10523 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10524 		ret = inherit_task_group(event, parent, parent_ctx,
10525 					 child, ctxn, &inherited_all);
10526 		if (ret)
10527 			break;
10528 	}
10529 
10530 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10531 	parent_ctx->rotate_disable = 0;
10532 
10533 	child_ctx = child->perf_event_ctxp[ctxn];
10534 
10535 	if (child_ctx && inherited_all) {
10536 		/*
10537 		 * Mark the child context as a clone of the parent
10538 		 * context, or of whatever the parent is a clone of.
10539 		 *
10540 		 * Note that if the parent is a clone, the holding of
10541 		 * parent_ctx->lock avoids it from being uncloned.
10542 		 */
10543 		cloned_ctx = parent_ctx->parent_ctx;
10544 		if (cloned_ctx) {
10545 			child_ctx->parent_ctx = cloned_ctx;
10546 			child_ctx->parent_gen = parent_ctx->parent_gen;
10547 		} else {
10548 			child_ctx->parent_ctx = parent_ctx;
10549 			child_ctx->parent_gen = parent_ctx->generation;
10550 		}
10551 		get_ctx(child_ctx->parent_ctx);
10552 	}
10553 
10554 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10555 	mutex_unlock(&parent_ctx->mutex);
10556 
10557 	perf_unpin_context(parent_ctx);
10558 	put_ctx(parent_ctx);
10559 
10560 	return ret;
10561 }
10562 
10563 /*
10564  * Initialize the perf_event context in task_struct
10565  */
10566 int perf_event_init_task(struct task_struct *child)
10567 {
10568 	int ctxn, ret;
10569 
10570 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10571 	mutex_init(&child->perf_event_mutex);
10572 	INIT_LIST_HEAD(&child->perf_event_list);
10573 
10574 	for_each_task_context_nr(ctxn) {
10575 		ret = perf_event_init_context(child, ctxn);
10576 		if (ret) {
10577 			perf_event_free_task(child);
10578 			return ret;
10579 		}
10580 	}
10581 
10582 	return 0;
10583 }
10584 
10585 static void __init perf_event_init_all_cpus(void)
10586 {
10587 	struct swevent_htable *swhash;
10588 	int cpu;
10589 
10590 	for_each_possible_cpu(cpu) {
10591 		swhash = &per_cpu(swevent_htable, cpu);
10592 		mutex_init(&swhash->hlist_mutex);
10593 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10594 
10595 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10596 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10597 
10598 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10599 	}
10600 }
10601 
10602 int perf_event_init_cpu(unsigned int cpu)
10603 {
10604 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10605 
10606 	mutex_lock(&swhash->hlist_mutex);
10607 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10608 		struct swevent_hlist *hlist;
10609 
10610 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10611 		WARN_ON(!hlist);
10612 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10613 	}
10614 	mutex_unlock(&swhash->hlist_mutex);
10615 	return 0;
10616 }
10617 
10618 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10619 static void __perf_event_exit_context(void *__info)
10620 {
10621 	struct perf_event_context *ctx = __info;
10622 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10623 	struct perf_event *event;
10624 
10625 	raw_spin_lock(&ctx->lock);
10626 	list_for_each_entry(event, &ctx->event_list, event_entry)
10627 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10628 	raw_spin_unlock(&ctx->lock);
10629 }
10630 
10631 static void perf_event_exit_cpu_context(int cpu)
10632 {
10633 	struct perf_event_context *ctx;
10634 	struct pmu *pmu;
10635 	int idx;
10636 
10637 	idx = srcu_read_lock(&pmus_srcu);
10638 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10639 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10640 
10641 		mutex_lock(&ctx->mutex);
10642 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10643 		mutex_unlock(&ctx->mutex);
10644 	}
10645 	srcu_read_unlock(&pmus_srcu, idx);
10646 }
10647 #else
10648 
10649 static void perf_event_exit_cpu_context(int cpu) { }
10650 
10651 #endif
10652 
10653 int perf_event_exit_cpu(unsigned int cpu)
10654 {
10655 	perf_event_exit_cpu_context(cpu);
10656 	return 0;
10657 }
10658 
10659 static int
10660 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10661 {
10662 	int cpu;
10663 
10664 	for_each_online_cpu(cpu)
10665 		perf_event_exit_cpu(cpu);
10666 
10667 	return NOTIFY_OK;
10668 }
10669 
10670 /*
10671  * Run the perf reboot notifier at the very last possible moment so that
10672  * the generic watchdog code runs as long as possible.
10673  */
10674 static struct notifier_block perf_reboot_notifier = {
10675 	.notifier_call = perf_reboot,
10676 	.priority = INT_MIN,
10677 };
10678 
10679 void __init perf_event_init(void)
10680 {
10681 	int ret;
10682 
10683 	idr_init(&pmu_idr);
10684 
10685 	perf_event_init_all_cpus();
10686 	init_srcu_struct(&pmus_srcu);
10687 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10688 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10689 	perf_pmu_register(&perf_task_clock, NULL, -1);
10690 	perf_tp_register();
10691 	perf_event_init_cpu(smp_processor_id());
10692 	register_reboot_notifier(&perf_reboot_notifier);
10693 
10694 	ret = init_hw_breakpoint();
10695 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10696 
10697 	/*
10698 	 * Build time assertion that we keep the data_head at the intended
10699 	 * location.  IOW, validation we got the __reserved[] size right.
10700 	 */
10701 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10702 		     != 1024);
10703 }
10704 
10705 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10706 			      char *page)
10707 {
10708 	struct perf_pmu_events_attr *pmu_attr =
10709 		container_of(attr, struct perf_pmu_events_attr, attr);
10710 
10711 	if (pmu_attr->event_str)
10712 		return sprintf(page, "%s\n", pmu_attr->event_str);
10713 
10714 	return 0;
10715 }
10716 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10717 
10718 static int __init perf_event_sysfs_init(void)
10719 {
10720 	struct pmu *pmu;
10721 	int ret;
10722 
10723 	mutex_lock(&pmus_lock);
10724 
10725 	ret = bus_register(&pmu_bus);
10726 	if (ret)
10727 		goto unlock;
10728 
10729 	list_for_each_entry(pmu, &pmus, entry) {
10730 		if (!pmu->name || pmu->type < 0)
10731 			continue;
10732 
10733 		ret = pmu_dev_alloc(pmu);
10734 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10735 	}
10736 	pmu_bus_running = 1;
10737 	ret = 0;
10738 
10739 unlock:
10740 	mutex_unlock(&pmus_lock);
10741 
10742 	return ret;
10743 }
10744 device_initcall(perf_event_sysfs_init);
10745 
10746 #ifdef CONFIG_CGROUP_PERF
10747 static struct cgroup_subsys_state *
10748 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10749 {
10750 	struct perf_cgroup *jc;
10751 
10752 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10753 	if (!jc)
10754 		return ERR_PTR(-ENOMEM);
10755 
10756 	jc->info = alloc_percpu(struct perf_cgroup_info);
10757 	if (!jc->info) {
10758 		kfree(jc);
10759 		return ERR_PTR(-ENOMEM);
10760 	}
10761 
10762 	return &jc->css;
10763 }
10764 
10765 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10766 {
10767 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10768 
10769 	free_percpu(jc->info);
10770 	kfree(jc);
10771 }
10772 
10773 static int __perf_cgroup_move(void *info)
10774 {
10775 	struct task_struct *task = info;
10776 	rcu_read_lock();
10777 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10778 	rcu_read_unlock();
10779 	return 0;
10780 }
10781 
10782 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10783 {
10784 	struct task_struct *task;
10785 	struct cgroup_subsys_state *css;
10786 
10787 	cgroup_taskset_for_each(task, css, tset)
10788 		task_function_call(task, __perf_cgroup_move, task);
10789 }
10790 
10791 struct cgroup_subsys perf_event_cgrp_subsys = {
10792 	.css_alloc	= perf_cgroup_css_alloc,
10793 	.css_free	= perf_cgroup_css_free,
10794 	.attach		= perf_cgroup_attach,
10795 };
10796 #endif /* CONFIG_CGROUP_PERF */
10797