xref: /openbmc/linux/kernel/events/core.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893 	if (!has_aux(aux_event))
1894 		return 0;
1895 
1896 	if (!event->pmu->aux_output_match)
1897 		return 0;
1898 
1899 	return event->pmu->aux_output_match(aux_event);
1900 }
1901 
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904 			    struct perf_cpu_context *cpuctx,
1905 			    struct perf_event_context *ctx);
1906 
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909 	struct perf_event_context *ctx = event->ctx;
1910 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911 	struct perf_event *iter;
1912 
1913 	/*
1914 	 * If event uses aux_event tear down the link
1915 	 */
1916 	if (event->aux_event) {
1917 		iter = event->aux_event;
1918 		event->aux_event = NULL;
1919 		put_event(iter);
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If the event is an aux_event, tear down all links to
1925 	 * it from other events.
1926 	 */
1927 	for_each_sibling_event(iter, event->group_leader) {
1928 		if (iter->aux_event != event)
1929 			continue;
1930 
1931 		iter->aux_event = NULL;
1932 		put_event(event);
1933 
1934 		/*
1935 		 * If it's ACTIVE, schedule it out and put it into ERROR
1936 		 * state so that we don't try to schedule it again. Note
1937 		 * that perf_event_enable() will clear the ERROR status.
1938 		 */
1939 		event_sched_out(iter, cpuctx, ctx);
1940 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941 	}
1942 }
1943 
1944 static int perf_get_aux_event(struct perf_event *event,
1945 			      struct perf_event *group_leader)
1946 {
1947 	/*
1948 	 * Our group leader must be an aux event if we want to be
1949 	 * an aux_output. This way, the aux event will precede its
1950 	 * aux_output events in the group, and therefore will always
1951 	 * schedule first.
1952 	 */
1953 	if (!group_leader)
1954 		return 0;
1955 
1956 	if (!perf_aux_output_match(event, group_leader))
1957 		return 0;
1958 
1959 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1960 		return 0;
1961 
1962 	/*
1963 	 * Link aux_outputs to their aux event; this is undone in
1964 	 * perf_group_detach() by perf_put_aux_event(). When the
1965 	 * group in torn down, the aux_output events loose their
1966 	 * link to the aux_event and can't schedule any more.
1967 	 */
1968 	event->aux_event = group_leader;
1969 
1970 	return 1;
1971 }
1972 
1973 static void perf_group_detach(struct perf_event *event)
1974 {
1975 	struct perf_event *sibling, *tmp;
1976 	struct perf_event_context *ctx = event->ctx;
1977 
1978 	lockdep_assert_held(&ctx->lock);
1979 
1980 	/*
1981 	 * We can have double detach due to exit/hot-unplug + close.
1982 	 */
1983 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1984 		return;
1985 
1986 	event->attach_state &= ~PERF_ATTACH_GROUP;
1987 
1988 	perf_put_aux_event(event);
1989 
1990 	/*
1991 	 * If this is a sibling, remove it from its group.
1992 	 */
1993 	if (event->group_leader != event) {
1994 		list_del_init(&event->sibling_list);
1995 		event->group_leader->nr_siblings--;
1996 		goto out;
1997 	}
1998 
1999 	/*
2000 	 * If this was a group event with sibling events then
2001 	 * upgrade the siblings to singleton events by adding them
2002 	 * to whatever list we are on.
2003 	 */
2004 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2005 
2006 		sibling->group_leader = sibling;
2007 		list_del_init(&sibling->sibling_list);
2008 
2009 		/* Inherit group flags from the previous leader */
2010 		sibling->group_caps = event->group_caps;
2011 
2012 		if (!RB_EMPTY_NODE(&event->group_node)) {
2013 			add_event_to_groups(sibling, event->ctx);
2014 
2015 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2016 				struct list_head *list = sibling->attr.pinned ?
2017 					&ctx->pinned_active : &ctx->flexible_active;
2018 
2019 				list_add_tail(&sibling->active_list, list);
2020 			}
2021 		}
2022 
2023 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2024 	}
2025 
2026 out:
2027 	perf_event__header_size(event->group_leader);
2028 
2029 	for_each_sibling_event(tmp, event->group_leader)
2030 		perf_event__header_size(tmp);
2031 }
2032 
2033 static bool is_orphaned_event(struct perf_event *event)
2034 {
2035 	return event->state == PERF_EVENT_STATE_DEAD;
2036 }
2037 
2038 static inline int __pmu_filter_match(struct perf_event *event)
2039 {
2040 	struct pmu *pmu = event->pmu;
2041 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2042 }
2043 
2044 /*
2045  * Check whether we should attempt to schedule an event group based on
2046  * PMU-specific filtering. An event group can consist of HW and SW events,
2047  * potentially with a SW leader, so we must check all the filters, to
2048  * determine whether a group is schedulable:
2049  */
2050 static inline int pmu_filter_match(struct perf_event *event)
2051 {
2052 	struct perf_event *sibling;
2053 
2054 	if (!__pmu_filter_match(event))
2055 		return 0;
2056 
2057 	for_each_sibling_event(sibling, event) {
2058 		if (!__pmu_filter_match(sibling))
2059 			return 0;
2060 	}
2061 
2062 	return 1;
2063 }
2064 
2065 static inline int
2066 event_filter_match(struct perf_event *event)
2067 {
2068 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2069 	       perf_cgroup_match(event) && pmu_filter_match(event);
2070 }
2071 
2072 static void
2073 event_sched_out(struct perf_event *event,
2074 		  struct perf_cpu_context *cpuctx,
2075 		  struct perf_event_context *ctx)
2076 {
2077 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2078 
2079 	WARN_ON_ONCE(event->ctx != ctx);
2080 	lockdep_assert_held(&ctx->lock);
2081 
2082 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2083 		return;
2084 
2085 	/*
2086 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2087 	 * we can schedule events _OUT_ individually through things like
2088 	 * __perf_remove_from_context().
2089 	 */
2090 	list_del_init(&event->active_list);
2091 
2092 	perf_pmu_disable(event->pmu);
2093 
2094 	event->pmu->del(event, 0);
2095 	event->oncpu = -1;
2096 
2097 	if (READ_ONCE(event->pending_disable) >= 0) {
2098 		WRITE_ONCE(event->pending_disable, -1);
2099 		state = PERF_EVENT_STATE_OFF;
2100 	}
2101 	perf_event_set_state(event, state);
2102 
2103 	if (!is_software_event(event))
2104 		cpuctx->active_oncpu--;
2105 	if (!--ctx->nr_active)
2106 		perf_event_ctx_deactivate(ctx);
2107 	if (event->attr.freq && event->attr.sample_freq)
2108 		ctx->nr_freq--;
2109 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2110 		cpuctx->exclusive = 0;
2111 
2112 	perf_pmu_enable(event->pmu);
2113 }
2114 
2115 static void
2116 group_sched_out(struct perf_event *group_event,
2117 		struct perf_cpu_context *cpuctx,
2118 		struct perf_event_context *ctx)
2119 {
2120 	struct perf_event *event;
2121 
2122 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2123 		return;
2124 
2125 	perf_pmu_disable(ctx->pmu);
2126 
2127 	event_sched_out(group_event, cpuctx, ctx);
2128 
2129 	/*
2130 	 * Schedule out siblings (if any):
2131 	 */
2132 	for_each_sibling_event(event, group_event)
2133 		event_sched_out(event, cpuctx, ctx);
2134 
2135 	perf_pmu_enable(ctx->pmu);
2136 
2137 	if (group_event->attr.exclusive)
2138 		cpuctx->exclusive = 0;
2139 }
2140 
2141 #define DETACH_GROUP	0x01UL
2142 
2143 /*
2144  * Cross CPU call to remove a performance event
2145  *
2146  * We disable the event on the hardware level first. After that we
2147  * remove it from the context list.
2148  */
2149 static void
2150 __perf_remove_from_context(struct perf_event *event,
2151 			   struct perf_cpu_context *cpuctx,
2152 			   struct perf_event_context *ctx,
2153 			   void *info)
2154 {
2155 	unsigned long flags = (unsigned long)info;
2156 
2157 	if (ctx->is_active & EVENT_TIME) {
2158 		update_context_time(ctx);
2159 		update_cgrp_time_from_cpuctx(cpuctx);
2160 	}
2161 
2162 	event_sched_out(event, cpuctx, ctx);
2163 	if (flags & DETACH_GROUP)
2164 		perf_group_detach(event);
2165 	list_del_event(event, ctx);
2166 
2167 	if (!ctx->nr_events && ctx->is_active) {
2168 		ctx->is_active = 0;
2169 		if (ctx->task) {
2170 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2171 			cpuctx->task_ctx = NULL;
2172 		}
2173 	}
2174 }
2175 
2176 /*
2177  * Remove the event from a task's (or a CPU's) list of events.
2178  *
2179  * If event->ctx is a cloned context, callers must make sure that
2180  * every task struct that event->ctx->task could possibly point to
2181  * remains valid.  This is OK when called from perf_release since
2182  * that only calls us on the top-level context, which can't be a clone.
2183  * When called from perf_event_exit_task, it's OK because the
2184  * context has been detached from its task.
2185  */
2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2187 {
2188 	struct perf_event_context *ctx = event->ctx;
2189 
2190 	lockdep_assert_held(&ctx->mutex);
2191 
2192 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2193 
2194 	/*
2195 	 * The above event_function_call() can NO-OP when it hits
2196 	 * TASK_TOMBSTONE. In that case we must already have been detached
2197 	 * from the context (by perf_event_exit_event()) but the grouping
2198 	 * might still be in-tact.
2199 	 */
2200 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2201 	if ((flags & DETACH_GROUP) &&
2202 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2203 		/*
2204 		 * Since in that case we cannot possibly be scheduled, simply
2205 		 * detach now.
2206 		 */
2207 		raw_spin_lock_irq(&ctx->lock);
2208 		perf_group_detach(event);
2209 		raw_spin_unlock_irq(&ctx->lock);
2210 	}
2211 }
2212 
2213 /*
2214  * Cross CPU call to disable a performance event
2215  */
2216 static void __perf_event_disable(struct perf_event *event,
2217 				 struct perf_cpu_context *cpuctx,
2218 				 struct perf_event_context *ctx,
2219 				 void *info)
2220 {
2221 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2222 		return;
2223 
2224 	if (ctx->is_active & EVENT_TIME) {
2225 		update_context_time(ctx);
2226 		update_cgrp_time_from_event(event);
2227 	}
2228 
2229 	if (event == event->group_leader)
2230 		group_sched_out(event, cpuctx, ctx);
2231 	else
2232 		event_sched_out(event, cpuctx, ctx);
2233 
2234 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2235 }
2236 
2237 /*
2238  * Disable an event.
2239  *
2240  * If event->ctx is a cloned context, callers must make sure that
2241  * every task struct that event->ctx->task could possibly point to
2242  * remains valid.  This condition is satisifed when called through
2243  * perf_event_for_each_child or perf_event_for_each because they
2244  * hold the top-level event's child_mutex, so any descendant that
2245  * goes to exit will block in perf_event_exit_event().
2246  *
2247  * When called from perf_pending_event it's OK because event->ctx
2248  * is the current context on this CPU and preemption is disabled,
2249  * hence we can't get into perf_event_task_sched_out for this context.
2250  */
2251 static void _perf_event_disable(struct perf_event *event)
2252 {
2253 	struct perf_event_context *ctx = event->ctx;
2254 
2255 	raw_spin_lock_irq(&ctx->lock);
2256 	if (event->state <= PERF_EVENT_STATE_OFF) {
2257 		raw_spin_unlock_irq(&ctx->lock);
2258 		return;
2259 	}
2260 	raw_spin_unlock_irq(&ctx->lock);
2261 
2262 	event_function_call(event, __perf_event_disable, NULL);
2263 }
2264 
2265 void perf_event_disable_local(struct perf_event *event)
2266 {
2267 	event_function_local(event, __perf_event_disable, NULL);
2268 }
2269 
2270 /*
2271  * Strictly speaking kernel users cannot create groups and therefore this
2272  * interface does not need the perf_event_ctx_lock() magic.
2273  */
2274 void perf_event_disable(struct perf_event *event)
2275 {
2276 	struct perf_event_context *ctx;
2277 
2278 	ctx = perf_event_ctx_lock(event);
2279 	_perf_event_disable(event);
2280 	perf_event_ctx_unlock(event, ctx);
2281 }
2282 EXPORT_SYMBOL_GPL(perf_event_disable);
2283 
2284 void perf_event_disable_inatomic(struct perf_event *event)
2285 {
2286 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2287 	/* can fail, see perf_pending_event_disable() */
2288 	irq_work_queue(&event->pending);
2289 }
2290 
2291 static void perf_set_shadow_time(struct perf_event *event,
2292 				 struct perf_event_context *ctx)
2293 {
2294 	/*
2295 	 * use the correct time source for the time snapshot
2296 	 *
2297 	 * We could get by without this by leveraging the
2298 	 * fact that to get to this function, the caller
2299 	 * has most likely already called update_context_time()
2300 	 * and update_cgrp_time_xx() and thus both timestamp
2301 	 * are identical (or very close). Given that tstamp is,
2302 	 * already adjusted for cgroup, we could say that:
2303 	 *    tstamp - ctx->timestamp
2304 	 * is equivalent to
2305 	 *    tstamp - cgrp->timestamp.
2306 	 *
2307 	 * Then, in perf_output_read(), the calculation would
2308 	 * work with no changes because:
2309 	 * - event is guaranteed scheduled in
2310 	 * - no scheduled out in between
2311 	 * - thus the timestamp would be the same
2312 	 *
2313 	 * But this is a bit hairy.
2314 	 *
2315 	 * So instead, we have an explicit cgroup call to remain
2316 	 * within the time time source all along. We believe it
2317 	 * is cleaner and simpler to understand.
2318 	 */
2319 	if (is_cgroup_event(event))
2320 		perf_cgroup_set_shadow_time(event, event->tstamp);
2321 	else
2322 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2323 }
2324 
2325 #define MAX_INTERRUPTS (~0ULL)
2326 
2327 static void perf_log_throttle(struct perf_event *event, int enable);
2328 static void perf_log_itrace_start(struct perf_event *event);
2329 
2330 static int
2331 event_sched_in(struct perf_event *event,
2332 		 struct perf_cpu_context *cpuctx,
2333 		 struct perf_event_context *ctx)
2334 {
2335 	int ret = 0;
2336 
2337 	lockdep_assert_held(&ctx->lock);
2338 
2339 	if (event->state <= PERF_EVENT_STATE_OFF)
2340 		return 0;
2341 
2342 	WRITE_ONCE(event->oncpu, smp_processor_id());
2343 	/*
2344 	 * Order event::oncpu write to happen before the ACTIVE state is
2345 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2346 	 * ->oncpu if it sees ACTIVE.
2347 	 */
2348 	smp_wmb();
2349 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2350 
2351 	/*
2352 	 * Unthrottle events, since we scheduled we might have missed several
2353 	 * ticks already, also for a heavily scheduling task there is little
2354 	 * guarantee it'll get a tick in a timely manner.
2355 	 */
2356 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2357 		perf_log_throttle(event, 1);
2358 		event->hw.interrupts = 0;
2359 	}
2360 
2361 	perf_pmu_disable(event->pmu);
2362 
2363 	perf_set_shadow_time(event, ctx);
2364 
2365 	perf_log_itrace_start(event);
2366 
2367 	if (event->pmu->add(event, PERF_EF_START)) {
2368 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2369 		event->oncpu = -1;
2370 		ret = -EAGAIN;
2371 		goto out;
2372 	}
2373 
2374 	if (!is_software_event(event))
2375 		cpuctx->active_oncpu++;
2376 	if (!ctx->nr_active++)
2377 		perf_event_ctx_activate(ctx);
2378 	if (event->attr.freq && event->attr.sample_freq)
2379 		ctx->nr_freq++;
2380 
2381 	if (event->attr.exclusive)
2382 		cpuctx->exclusive = 1;
2383 
2384 out:
2385 	perf_pmu_enable(event->pmu);
2386 
2387 	return ret;
2388 }
2389 
2390 static int
2391 group_sched_in(struct perf_event *group_event,
2392 	       struct perf_cpu_context *cpuctx,
2393 	       struct perf_event_context *ctx)
2394 {
2395 	struct perf_event *event, *partial_group = NULL;
2396 	struct pmu *pmu = ctx->pmu;
2397 
2398 	if (group_event->state == PERF_EVENT_STATE_OFF)
2399 		return 0;
2400 
2401 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2402 
2403 	if (event_sched_in(group_event, cpuctx, ctx)) {
2404 		pmu->cancel_txn(pmu);
2405 		perf_mux_hrtimer_restart(cpuctx);
2406 		return -EAGAIN;
2407 	}
2408 
2409 	/*
2410 	 * Schedule in siblings as one group (if any):
2411 	 */
2412 	for_each_sibling_event(event, group_event) {
2413 		if (event_sched_in(event, cpuctx, ctx)) {
2414 			partial_group = event;
2415 			goto group_error;
2416 		}
2417 	}
2418 
2419 	if (!pmu->commit_txn(pmu))
2420 		return 0;
2421 
2422 group_error:
2423 	/*
2424 	 * Groups can be scheduled in as one unit only, so undo any
2425 	 * partial group before returning:
2426 	 * The events up to the failed event are scheduled out normally.
2427 	 */
2428 	for_each_sibling_event(event, group_event) {
2429 		if (event == partial_group)
2430 			break;
2431 
2432 		event_sched_out(event, cpuctx, ctx);
2433 	}
2434 	event_sched_out(group_event, cpuctx, ctx);
2435 
2436 	pmu->cancel_txn(pmu);
2437 
2438 	perf_mux_hrtimer_restart(cpuctx);
2439 
2440 	return -EAGAIN;
2441 }
2442 
2443 /*
2444  * Work out whether we can put this event group on the CPU now.
2445  */
2446 static int group_can_go_on(struct perf_event *event,
2447 			   struct perf_cpu_context *cpuctx,
2448 			   int can_add_hw)
2449 {
2450 	/*
2451 	 * Groups consisting entirely of software events can always go on.
2452 	 */
2453 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2454 		return 1;
2455 	/*
2456 	 * If an exclusive group is already on, no other hardware
2457 	 * events can go on.
2458 	 */
2459 	if (cpuctx->exclusive)
2460 		return 0;
2461 	/*
2462 	 * If this group is exclusive and there are already
2463 	 * events on the CPU, it can't go on.
2464 	 */
2465 	if (event->attr.exclusive && cpuctx->active_oncpu)
2466 		return 0;
2467 	/*
2468 	 * Otherwise, try to add it if all previous groups were able
2469 	 * to go on.
2470 	 */
2471 	return can_add_hw;
2472 }
2473 
2474 static void add_event_to_ctx(struct perf_event *event,
2475 			       struct perf_event_context *ctx)
2476 {
2477 	list_add_event(event, ctx);
2478 	perf_group_attach(event);
2479 }
2480 
2481 static void ctx_sched_out(struct perf_event_context *ctx,
2482 			  struct perf_cpu_context *cpuctx,
2483 			  enum event_type_t event_type);
2484 static void
2485 ctx_sched_in(struct perf_event_context *ctx,
2486 	     struct perf_cpu_context *cpuctx,
2487 	     enum event_type_t event_type,
2488 	     struct task_struct *task);
2489 
2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2491 			       struct perf_event_context *ctx,
2492 			       enum event_type_t event_type)
2493 {
2494 	if (!cpuctx->task_ctx)
2495 		return;
2496 
2497 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2498 		return;
2499 
2500 	ctx_sched_out(ctx, cpuctx, event_type);
2501 }
2502 
2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2504 				struct perf_event_context *ctx,
2505 				struct task_struct *task)
2506 {
2507 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2508 	if (ctx)
2509 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2510 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2511 	if (ctx)
2512 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2513 }
2514 
2515 /*
2516  * We want to maintain the following priority of scheduling:
2517  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2518  *  - task pinned (EVENT_PINNED)
2519  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2520  *  - task flexible (EVENT_FLEXIBLE).
2521  *
2522  * In order to avoid unscheduling and scheduling back in everything every
2523  * time an event is added, only do it for the groups of equal priority and
2524  * below.
2525  *
2526  * This can be called after a batch operation on task events, in which case
2527  * event_type is a bit mask of the types of events involved. For CPU events,
2528  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2529  */
2530 static void ctx_resched(struct perf_cpu_context *cpuctx,
2531 			struct perf_event_context *task_ctx,
2532 			enum event_type_t event_type)
2533 {
2534 	enum event_type_t ctx_event_type;
2535 	bool cpu_event = !!(event_type & EVENT_CPU);
2536 
2537 	/*
2538 	 * If pinned groups are involved, flexible groups also need to be
2539 	 * scheduled out.
2540 	 */
2541 	if (event_type & EVENT_PINNED)
2542 		event_type |= EVENT_FLEXIBLE;
2543 
2544 	ctx_event_type = event_type & EVENT_ALL;
2545 
2546 	perf_pmu_disable(cpuctx->ctx.pmu);
2547 	if (task_ctx)
2548 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2549 
2550 	/*
2551 	 * Decide which cpu ctx groups to schedule out based on the types
2552 	 * of events that caused rescheduling:
2553 	 *  - EVENT_CPU: schedule out corresponding groups;
2554 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2555 	 *  - otherwise, do nothing more.
2556 	 */
2557 	if (cpu_event)
2558 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2559 	else if (ctx_event_type & EVENT_PINNED)
2560 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2561 
2562 	perf_event_sched_in(cpuctx, task_ctx, current);
2563 	perf_pmu_enable(cpuctx->ctx.pmu);
2564 }
2565 
2566 void perf_pmu_resched(struct pmu *pmu)
2567 {
2568 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2569 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2570 
2571 	perf_ctx_lock(cpuctx, task_ctx);
2572 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2573 	perf_ctx_unlock(cpuctx, task_ctx);
2574 }
2575 
2576 /*
2577  * Cross CPU call to install and enable a performance event
2578  *
2579  * Very similar to remote_function() + event_function() but cannot assume that
2580  * things like ctx->is_active and cpuctx->task_ctx are set.
2581  */
2582 static int  __perf_install_in_context(void *info)
2583 {
2584 	struct perf_event *event = info;
2585 	struct perf_event_context *ctx = event->ctx;
2586 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2587 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2588 	bool reprogram = true;
2589 	int ret = 0;
2590 
2591 	raw_spin_lock(&cpuctx->ctx.lock);
2592 	if (ctx->task) {
2593 		raw_spin_lock(&ctx->lock);
2594 		task_ctx = ctx;
2595 
2596 		reprogram = (ctx->task == current);
2597 
2598 		/*
2599 		 * If the task is running, it must be running on this CPU,
2600 		 * otherwise we cannot reprogram things.
2601 		 *
2602 		 * If its not running, we don't care, ctx->lock will
2603 		 * serialize against it becoming runnable.
2604 		 */
2605 		if (task_curr(ctx->task) && !reprogram) {
2606 			ret = -ESRCH;
2607 			goto unlock;
2608 		}
2609 
2610 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2611 	} else if (task_ctx) {
2612 		raw_spin_lock(&task_ctx->lock);
2613 	}
2614 
2615 #ifdef CONFIG_CGROUP_PERF
2616 	if (is_cgroup_event(event)) {
2617 		/*
2618 		 * If the current cgroup doesn't match the event's
2619 		 * cgroup, we should not try to schedule it.
2620 		 */
2621 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2622 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2623 					event->cgrp->css.cgroup);
2624 	}
2625 #endif
2626 
2627 	if (reprogram) {
2628 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2629 		add_event_to_ctx(event, ctx);
2630 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2631 	} else {
2632 		add_event_to_ctx(event, ctx);
2633 	}
2634 
2635 unlock:
2636 	perf_ctx_unlock(cpuctx, task_ctx);
2637 
2638 	return ret;
2639 }
2640 
2641 static bool exclusive_event_installable(struct perf_event *event,
2642 					struct perf_event_context *ctx);
2643 
2644 /*
2645  * Attach a performance event to a context.
2646  *
2647  * Very similar to event_function_call, see comment there.
2648  */
2649 static void
2650 perf_install_in_context(struct perf_event_context *ctx,
2651 			struct perf_event *event,
2652 			int cpu)
2653 {
2654 	struct task_struct *task = READ_ONCE(ctx->task);
2655 
2656 	lockdep_assert_held(&ctx->mutex);
2657 
2658 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2659 
2660 	if (event->cpu != -1)
2661 		event->cpu = cpu;
2662 
2663 	/*
2664 	 * Ensures that if we can observe event->ctx, both the event and ctx
2665 	 * will be 'complete'. See perf_iterate_sb_cpu().
2666 	 */
2667 	smp_store_release(&event->ctx, ctx);
2668 
2669 	if (!task) {
2670 		cpu_function_call(cpu, __perf_install_in_context, event);
2671 		return;
2672 	}
2673 
2674 	/*
2675 	 * Should not happen, we validate the ctx is still alive before calling.
2676 	 */
2677 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2678 		return;
2679 
2680 	/*
2681 	 * Installing events is tricky because we cannot rely on ctx->is_active
2682 	 * to be set in case this is the nr_events 0 -> 1 transition.
2683 	 *
2684 	 * Instead we use task_curr(), which tells us if the task is running.
2685 	 * However, since we use task_curr() outside of rq::lock, we can race
2686 	 * against the actual state. This means the result can be wrong.
2687 	 *
2688 	 * If we get a false positive, we retry, this is harmless.
2689 	 *
2690 	 * If we get a false negative, things are complicated. If we are after
2691 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2692 	 * value must be correct. If we're before, it doesn't matter since
2693 	 * perf_event_context_sched_in() will program the counter.
2694 	 *
2695 	 * However, this hinges on the remote context switch having observed
2696 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2697 	 * ctx::lock in perf_event_context_sched_in().
2698 	 *
2699 	 * We do this by task_function_call(), if the IPI fails to hit the task
2700 	 * we know any future context switch of task must see the
2701 	 * perf_event_ctpx[] store.
2702 	 */
2703 
2704 	/*
2705 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2706 	 * task_cpu() load, such that if the IPI then does not find the task
2707 	 * running, a future context switch of that task must observe the
2708 	 * store.
2709 	 */
2710 	smp_mb();
2711 again:
2712 	if (!task_function_call(task, __perf_install_in_context, event))
2713 		return;
2714 
2715 	raw_spin_lock_irq(&ctx->lock);
2716 	task = ctx->task;
2717 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2718 		/*
2719 		 * Cannot happen because we already checked above (which also
2720 		 * cannot happen), and we hold ctx->mutex, which serializes us
2721 		 * against perf_event_exit_task_context().
2722 		 */
2723 		raw_spin_unlock_irq(&ctx->lock);
2724 		return;
2725 	}
2726 	/*
2727 	 * If the task is not running, ctx->lock will avoid it becoming so,
2728 	 * thus we can safely install the event.
2729 	 */
2730 	if (task_curr(task)) {
2731 		raw_spin_unlock_irq(&ctx->lock);
2732 		goto again;
2733 	}
2734 	add_event_to_ctx(event, ctx);
2735 	raw_spin_unlock_irq(&ctx->lock);
2736 }
2737 
2738 /*
2739  * Cross CPU call to enable a performance event
2740  */
2741 static void __perf_event_enable(struct perf_event *event,
2742 				struct perf_cpu_context *cpuctx,
2743 				struct perf_event_context *ctx,
2744 				void *info)
2745 {
2746 	struct perf_event *leader = event->group_leader;
2747 	struct perf_event_context *task_ctx;
2748 
2749 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2750 	    event->state <= PERF_EVENT_STATE_ERROR)
2751 		return;
2752 
2753 	if (ctx->is_active)
2754 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2755 
2756 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2757 
2758 	if (!ctx->is_active)
2759 		return;
2760 
2761 	if (!event_filter_match(event)) {
2762 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the event is in a group and isn't the group leader,
2768 	 * then don't put it on unless the group is on.
2769 	 */
2770 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2771 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2772 		return;
2773 	}
2774 
2775 	task_ctx = cpuctx->task_ctx;
2776 	if (ctx->task)
2777 		WARN_ON_ONCE(task_ctx != ctx);
2778 
2779 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2780 }
2781 
2782 /*
2783  * Enable an event.
2784  *
2785  * If event->ctx is a cloned context, callers must make sure that
2786  * every task struct that event->ctx->task could possibly point to
2787  * remains valid.  This condition is satisfied when called through
2788  * perf_event_for_each_child or perf_event_for_each as described
2789  * for perf_event_disable.
2790  */
2791 static void _perf_event_enable(struct perf_event *event)
2792 {
2793 	struct perf_event_context *ctx = event->ctx;
2794 
2795 	raw_spin_lock_irq(&ctx->lock);
2796 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2797 	    event->state <  PERF_EVENT_STATE_ERROR) {
2798 		raw_spin_unlock_irq(&ctx->lock);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * If the event is in error state, clear that first.
2804 	 *
2805 	 * That way, if we see the event in error state below, we know that it
2806 	 * has gone back into error state, as distinct from the task having
2807 	 * been scheduled away before the cross-call arrived.
2808 	 */
2809 	if (event->state == PERF_EVENT_STATE_ERROR)
2810 		event->state = PERF_EVENT_STATE_OFF;
2811 	raw_spin_unlock_irq(&ctx->lock);
2812 
2813 	event_function_call(event, __perf_event_enable, NULL);
2814 }
2815 
2816 /*
2817  * See perf_event_disable();
2818  */
2819 void perf_event_enable(struct perf_event *event)
2820 {
2821 	struct perf_event_context *ctx;
2822 
2823 	ctx = perf_event_ctx_lock(event);
2824 	_perf_event_enable(event);
2825 	perf_event_ctx_unlock(event, ctx);
2826 }
2827 EXPORT_SYMBOL_GPL(perf_event_enable);
2828 
2829 struct stop_event_data {
2830 	struct perf_event	*event;
2831 	unsigned int		restart;
2832 };
2833 
2834 static int __perf_event_stop(void *info)
2835 {
2836 	struct stop_event_data *sd = info;
2837 	struct perf_event *event = sd->event;
2838 
2839 	/* if it's already INACTIVE, do nothing */
2840 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2841 		return 0;
2842 
2843 	/* matches smp_wmb() in event_sched_in() */
2844 	smp_rmb();
2845 
2846 	/*
2847 	 * There is a window with interrupts enabled before we get here,
2848 	 * so we need to check again lest we try to stop another CPU's event.
2849 	 */
2850 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2851 		return -EAGAIN;
2852 
2853 	event->pmu->stop(event, PERF_EF_UPDATE);
2854 
2855 	/*
2856 	 * May race with the actual stop (through perf_pmu_output_stop()),
2857 	 * but it is only used for events with AUX ring buffer, and such
2858 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2859 	 * see comments in perf_aux_output_begin().
2860 	 *
2861 	 * Since this is happening on an event-local CPU, no trace is lost
2862 	 * while restarting.
2863 	 */
2864 	if (sd->restart)
2865 		event->pmu->start(event, 0);
2866 
2867 	return 0;
2868 }
2869 
2870 static int perf_event_stop(struct perf_event *event, int restart)
2871 {
2872 	struct stop_event_data sd = {
2873 		.event		= event,
2874 		.restart	= restart,
2875 	};
2876 	int ret = 0;
2877 
2878 	do {
2879 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2880 			return 0;
2881 
2882 		/* matches smp_wmb() in event_sched_in() */
2883 		smp_rmb();
2884 
2885 		/*
2886 		 * We only want to restart ACTIVE events, so if the event goes
2887 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2888 		 * fall through with ret==-ENXIO.
2889 		 */
2890 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2891 					__perf_event_stop, &sd);
2892 	} while (ret == -EAGAIN);
2893 
2894 	return ret;
2895 }
2896 
2897 /*
2898  * In order to contain the amount of racy and tricky in the address filter
2899  * configuration management, it is a two part process:
2900  *
2901  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2902  *      we update the addresses of corresponding vmas in
2903  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2904  * (p2) when an event is scheduled in (pmu::add), it calls
2905  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2906  *      if the generation has changed since the previous call.
2907  *
2908  * If (p1) happens while the event is active, we restart it to force (p2).
2909  *
2910  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2911  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2912  *     ioctl;
2913  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2914  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2915  *     for reading;
2916  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2917  *     of exec.
2918  */
2919 void perf_event_addr_filters_sync(struct perf_event *event)
2920 {
2921 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2922 
2923 	if (!has_addr_filter(event))
2924 		return;
2925 
2926 	raw_spin_lock(&ifh->lock);
2927 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2928 		event->pmu->addr_filters_sync(event);
2929 		event->hw.addr_filters_gen = event->addr_filters_gen;
2930 	}
2931 	raw_spin_unlock(&ifh->lock);
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2934 
2935 static int _perf_event_refresh(struct perf_event *event, int refresh)
2936 {
2937 	/*
2938 	 * not supported on inherited events
2939 	 */
2940 	if (event->attr.inherit || !is_sampling_event(event))
2941 		return -EINVAL;
2942 
2943 	atomic_add(refresh, &event->event_limit);
2944 	_perf_event_enable(event);
2945 
2946 	return 0;
2947 }
2948 
2949 /*
2950  * See perf_event_disable()
2951  */
2952 int perf_event_refresh(struct perf_event *event, int refresh)
2953 {
2954 	struct perf_event_context *ctx;
2955 	int ret;
2956 
2957 	ctx = perf_event_ctx_lock(event);
2958 	ret = _perf_event_refresh(event, refresh);
2959 	perf_event_ctx_unlock(event, ctx);
2960 
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(perf_event_refresh);
2964 
2965 static int perf_event_modify_breakpoint(struct perf_event *bp,
2966 					 struct perf_event_attr *attr)
2967 {
2968 	int err;
2969 
2970 	_perf_event_disable(bp);
2971 
2972 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2973 
2974 	if (!bp->attr.disabled)
2975 		_perf_event_enable(bp);
2976 
2977 	return err;
2978 }
2979 
2980 static int perf_event_modify_attr(struct perf_event *event,
2981 				  struct perf_event_attr *attr)
2982 {
2983 	if (event->attr.type != attr->type)
2984 		return -EINVAL;
2985 
2986 	switch (event->attr.type) {
2987 	case PERF_TYPE_BREAKPOINT:
2988 		return perf_event_modify_breakpoint(event, attr);
2989 	default:
2990 		/* Place holder for future additions. */
2991 		return -EOPNOTSUPP;
2992 	}
2993 }
2994 
2995 static void ctx_sched_out(struct perf_event_context *ctx,
2996 			  struct perf_cpu_context *cpuctx,
2997 			  enum event_type_t event_type)
2998 {
2999 	struct perf_event *event, *tmp;
3000 	int is_active = ctx->is_active;
3001 
3002 	lockdep_assert_held(&ctx->lock);
3003 
3004 	if (likely(!ctx->nr_events)) {
3005 		/*
3006 		 * See __perf_remove_from_context().
3007 		 */
3008 		WARN_ON_ONCE(ctx->is_active);
3009 		if (ctx->task)
3010 			WARN_ON_ONCE(cpuctx->task_ctx);
3011 		return;
3012 	}
3013 
3014 	ctx->is_active &= ~event_type;
3015 	if (!(ctx->is_active & EVENT_ALL))
3016 		ctx->is_active = 0;
3017 
3018 	if (ctx->task) {
3019 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3020 		if (!ctx->is_active)
3021 			cpuctx->task_ctx = NULL;
3022 	}
3023 
3024 	/*
3025 	 * Always update time if it was set; not only when it changes.
3026 	 * Otherwise we can 'forget' to update time for any but the last
3027 	 * context we sched out. For example:
3028 	 *
3029 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3030 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3031 	 *
3032 	 * would only update time for the pinned events.
3033 	 */
3034 	if (is_active & EVENT_TIME) {
3035 		/* update (and stop) ctx time */
3036 		update_context_time(ctx);
3037 		update_cgrp_time_from_cpuctx(cpuctx);
3038 	}
3039 
3040 	is_active ^= ctx->is_active; /* changed bits */
3041 
3042 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3043 		return;
3044 
3045 	/*
3046 	 * If we had been multiplexing, no rotations are necessary, now no events
3047 	 * are active.
3048 	 */
3049 	ctx->rotate_necessary = 0;
3050 
3051 	perf_pmu_disable(ctx->pmu);
3052 	if (is_active & EVENT_PINNED) {
3053 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3054 			group_sched_out(event, cpuctx, ctx);
3055 	}
3056 
3057 	if (is_active & EVENT_FLEXIBLE) {
3058 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3059 			group_sched_out(event, cpuctx, ctx);
3060 	}
3061 	perf_pmu_enable(ctx->pmu);
3062 }
3063 
3064 /*
3065  * Test whether two contexts are equivalent, i.e. whether they have both been
3066  * cloned from the same version of the same context.
3067  *
3068  * Equivalence is measured using a generation number in the context that is
3069  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3070  * and list_del_event().
3071  */
3072 static int context_equiv(struct perf_event_context *ctx1,
3073 			 struct perf_event_context *ctx2)
3074 {
3075 	lockdep_assert_held(&ctx1->lock);
3076 	lockdep_assert_held(&ctx2->lock);
3077 
3078 	/* Pinning disables the swap optimization */
3079 	if (ctx1->pin_count || ctx2->pin_count)
3080 		return 0;
3081 
3082 	/* If ctx1 is the parent of ctx2 */
3083 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3084 		return 1;
3085 
3086 	/* If ctx2 is the parent of ctx1 */
3087 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3088 		return 1;
3089 
3090 	/*
3091 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3092 	 * hierarchy, see perf_event_init_context().
3093 	 */
3094 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3095 			ctx1->parent_gen == ctx2->parent_gen)
3096 		return 1;
3097 
3098 	/* Unmatched */
3099 	return 0;
3100 }
3101 
3102 static void __perf_event_sync_stat(struct perf_event *event,
3103 				     struct perf_event *next_event)
3104 {
3105 	u64 value;
3106 
3107 	if (!event->attr.inherit_stat)
3108 		return;
3109 
3110 	/*
3111 	 * Update the event value, we cannot use perf_event_read()
3112 	 * because we're in the middle of a context switch and have IRQs
3113 	 * disabled, which upsets smp_call_function_single(), however
3114 	 * we know the event must be on the current CPU, therefore we
3115 	 * don't need to use it.
3116 	 */
3117 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3118 		event->pmu->read(event);
3119 
3120 	perf_event_update_time(event);
3121 
3122 	/*
3123 	 * In order to keep per-task stats reliable we need to flip the event
3124 	 * values when we flip the contexts.
3125 	 */
3126 	value = local64_read(&next_event->count);
3127 	value = local64_xchg(&event->count, value);
3128 	local64_set(&next_event->count, value);
3129 
3130 	swap(event->total_time_enabled, next_event->total_time_enabled);
3131 	swap(event->total_time_running, next_event->total_time_running);
3132 
3133 	/*
3134 	 * Since we swizzled the values, update the user visible data too.
3135 	 */
3136 	perf_event_update_userpage(event);
3137 	perf_event_update_userpage(next_event);
3138 }
3139 
3140 static void perf_event_sync_stat(struct perf_event_context *ctx,
3141 				   struct perf_event_context *next_ctx)
3142 {
3143 	struct perf_event *event, *next_event;
3144 
3145 	if (!ctx->nr_stat)
3146 		return;
3147 
3148 	update_context_time(ctx);
3149 
3150 	event = list_first_entry(&ctx->event_list,
3151 				   struct perf_event, event_entry);
3152 
3153 	next_event = list_first_entry(&next_ctx->event_list,
3154 					struct perf_event, event_entry);
3155 
3156 	while (&event->event_entry != &ctx->event_list &&
3157 	       &next_event->event_entry != &next_ctx->event_list) {
3158 
3159 		__perf_event_sync_stat(event, next_event);
3160 
3161 		event = list_next_entry(event, event_entry);
3162 		next_event = list_next_entry(next_event, event_entry);
3163 	}
3164 }
3165 
3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3167 					 struct task_struct *next)
3168 {
3169 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3170 	struct perf_event_context *next_ctx;
3171 	struct perf_event_context *parent, *next_parent;
3172 	struct perf_cpu_context *cpuctx;
3173 	int do_switch = 1;
3174 
3175 	if (likely(!ctx))
3176 		return;
3177 
3178 	cpuctx = __get_cpu_context(ctx);
3179 	if (!cpuctx->task_ctx)
3180 		return;
3181 
3182 	rcu_read_lock();
3183 	next_ctx = next->perf_event_ctxp[ctxn];
3184 	if (!next_ctx)
3185 		goto unlock;
3186 
3187 	parent = rcu_dereference(ctx->parent_ctx);
3188 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3189 
3190 	/* If neither context have a parent context; they cannot be clones. */
3191 	if (!parent && !next_parent)
3192 		goto unlock;
3193 
3194 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3195 		/*
3196 		 * Looks like the two contexts are clones, so we might be
3197 		 * able to optimize the context switch.  We lock both
3198 		 * contexts and check that they are clones under the
3199 		 * lock (including re-checking that neither has been
3200 		 * uncloned in the meantime).  It doesn't matter which
3201 		 * order we take the locks because no other cpu could
3202 		 * be trying to lock both of these tasks.
3203 		 */
3204 		raw_spin_lock(&ctx->lock);
3205 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3206 		if (context_equiv(ctx, next_ctx)) {
3207 			WRITE_ONCE(ctx->task, next);
3208 			WRITE_ONCE(next_ctx->task, task);
3209 
3210 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3211 
3212 			/*
3213 			 * RCU_INIT_POINTER here is safe because we've not
3214 			 * modified the ctx and the above modification of
3215 			 * ctx->task and ctx->task_ctx_data are immaterial
3216 			 * since those values are always verified under
3217 			 * ctx->lock which we're now holding.
3218 			 */
3219 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3220 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3221 
3222 			do_switch = 0;
3223 
3224 			perf_event_sync_stat(ctx, next_ctx);
3225 		}
3226 		raw_spin_unlock(&next_ctx->lock);
3227 		raw_spin_unlock(&ctx->lock);
3228 	}
3229 unlock:
3230 	rcu_read_unlock();
3231 
3232 	if (do_switch) {
3233 		raw_spin_lock(&ctx->lock);
3234 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3235 		raw_spin_unlock(&ctx->lock);
3236 	}
3237 }
3238 
3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3240 
3241 void perf_sched_cb_dec(struct pmu *pmu)
3242 {
3243 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3244 
3245 	this_cpu_dec(perf_sched_cb_usages);
3246 
3247 	if (!--cpuctx->sched_cb_usage)
3248 		list_del(&cpuctx->sched_cb_entry);
3249 }
3250 
3251 
3252 void perf_sched_cb_inc(struct pmu *pmu)
3253 {
3254 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3255 
3256 	if (!cpuctx->sched_cb_usage++)
3257 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3258 
3259 	this_cpu_inc(perf_sched_cb_usages);
3260 }
3261 
3262 /*
3263  * This function provides the context switch callback to the lower code
3264  * layer. It is invoked ONLY when the context switch callback is enabled.
3265  *
3266  * This callback is relevant even to per-cpu events; for example multi event
3267  * PEBS requires this to provide PID/TID information. This requires we flush
3268  * all queued PEBS records before we context switch to a new task.
3269  */
3270 static void perf_pmu_sched_task(struct task_struct *prev,
3271 				struct task_struct *next,
3272 				bool sched_in)
3273 {
3274 	struct perf_cpu_context *cpuctx;
3275 	struct pmu *pmu;
3276 
3277 	if (prev == next)
3278 		return;
3279 
3280 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3281 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3282 
3283 		if (WARN_ON_ONCE(!pmu->sched_task))
3284 			continue;
3285 
3286 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3287 		perf_pmu_disable(pmu);
3288 
3289 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3290 
3291 		perf_pmu_enable(pmu);
3292 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3293 	}
3294 }
3295 
3296 static void perf_event_switch(struct task_struct *task,
3297 			      struct task_struct *next_prev, bool sched_in);
3298 
3299 #define for_each_task_context_nr(ctxn)					\
3300 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3301 
3302 /*
3303  * Called from scheduler to remove the events of the current task,
3304  * with interrupts disabled.
3305  *
3306  * We stop each event and update the event value in event->count.
3307  *
3308  * This does not protect us against NMI, but disable()
3309  * sets the disabled bit in the control field of event _before_
3310  * accessing the event control register. If a NMI hits, then it will
3311  * not restart the event.
3312  */
3313 void __perf_event_task_sched_out(struct task_struct *task,
3314 				 struct task_struct *next)
3315 {
3316 	int ctxn;
3317 
3318 	if (__this_cpu_read(perf_sched_cb_usages))
3319 		perf_pmu_sched_task(task, next, false);
3320 
3321 	if (atomic_read(&nr_switch_events))
3322 		perf_event_switch(task, next, false);
3323 
3324 	for_each_task_context_nr(ctxn)
3325 		perf_event_context_sched_out(task, ctxn, next);
3326 
3327 	/*
3328 	 * if cgroup events exist on this CPU, then we need
3329 	 * to check if we have to switch out PMU state.
3330 	 * cgroup event are system-wide mode only
3331 	 */
3332 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3333 		perf_cgroup_sched_out(task, next);
3334 }
3335 
3336 /*
3337  * Called with IRQs disabled
3338  */
3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3340 			      enum event_type_t event_type)
3341 {
3342 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3343 }
3344 
3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3346 			      int (*func)(struct perf_event *, void *), void *data)
3347 {
3348 	struct perf_event **evt, *evt1, *evt2;
3349 	int ret;
3350 
3351 	evt1 = perf_event_groups_first(groups, -1);
3352 	evt2 = perf_event_groups_first(groups, cpu);
3353 
3354 	while (evt1 || evt2) {
3355 		if (evt1 && evt2) {
3356 			if (evt1->group_index < evt2->group_index)
3357 				evt = &evt1;
3358 			else
3359 				evt = &evt2;
3360 		} else if (evt1) {
3361 			evt = &evt1;
3362 		} else {
3363 			evt = &evt2;
3364 		}
3365 
3366 		ret = func(*evt, data);
3367 		if (ret)
3368 			return ret;
3369 
3370 		*evt = perf_event_groups_next(*evt);
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 struct sched_in_data {
3377 	struct perf_event_context *ctx;
3378 	struct perf_cpu_context *cpuctx;
3379 	int can_add_hw;
3380 };
3381 
3382 static int pinned_sched_in(struct perf_event *event, void *data)
3383 {
3384 	struct sched_in_data *sid = data;
3385 
3386 	if (event->state <= PERF_EVENT_STATE_OFF)
3387 		return 0;
3388 
3389 	if (!event_filter_match(event))
3390 		return 0;
3391 
3392 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3393 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3394 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3395 	}
3396 
3397 	/*
3398 	 * If this pinned group hasn't been scheduled,
3399 	 * put it in error state.
3400 	 */
3401 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3402 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3403 
3404 	return 0;
3405 }
3406 
3407 static int flexible_sched_in(struct perf_event *event, void *data)
3408 {
3409 	struct sched_in_data *sid = data;
3410 
3411 	if (event->state <= PERF_EVENT_STATE_OFF)
3412 		return 0;
3413 
3414 	if (!event_filter_match(event))
3415 		return 0;
3416 
3417 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3418 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3419 		if (ret) {
3420 			sid->can_add_hw = 0;
3421 			sid->ctx->rotate_necessary = 1;
3422 			return 0;
3423 		}
3424 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void
3431 ctx_pinned_sched_in(struct perf_event_context *ctx,
3432 		    struct perf_cpu_context *cpuctx)
3433 {
3434 	struct sched_in_data sid = {
3435 		.ctx = ctx,
3436 		.cpuctx = cpuctx,
3437 		.can_add_hw = 1,
3438 	};
3439 
3440 	visit_groups_merge(&ctx->pinned_groups,
3441 			   smp_processor_id(),
3442 			   pinned_sched_in, &sid);
3443 }
3444 
3445 static void
3446 ctx_flexible_sched_in(struct perf_event_context *ctx,
3447 		      struct perf_cpu_context *cpuctx)
3448 {
3449 	struct sched_in_data sid = {
3450 		.ctx = ctx,
3451 		.cpuctx = cpuctx,
3452 		.can_add_hw = 1,
3453 	};
3454 
3455 	visit_groups_merge(&ctx->flexible_groups,
3456 			   smp_processor_id(),
3457 			   flexible_sched_in, &sid);
3458 }
3459 
3460 static void
3461 ctx_sched_in(struct perf_event_context *ctx,
3462 	     struct perf_cpu_context *cpuctx,
3463 	     enum event_type_t event_type,
3464 	     struct task_struct *task)
3465 {
3466 	int is_active = ctx->is_active;
3467 	u64 now;
3468 
3469 	lockdep_assert_held(&ctx->lock);
3470 
3471 	if (likely(!ctx->nr_events))
3472 		return;
3473 
3474 	ctx->is_active |= (event_type | EVENT_TIME);
3475 	if (ctx->task) {
3476 		if (!is_active)
3477 			cpuctx->task_ctx = ctx;
3478 		else
3479 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3480 	}
3481 
3482 	is_active ^= ctx->is_active; /* changed bits */
3483 
3484 	if (is_active & EVENT_TIME) {
3485 		/* start ctx time */
3486 		now = perf_clock();
3487 		ctx->timestamp = now;
3488 		perf_cgroup_set_timestamp(task, ctx);
3489 	}
3490 
3491 	/*
3492 	 * First go through the list and put on any pinned groups
3493 	 * in order to give them the best chance of going on.
3494 	 */
3495 	if (is_active & EVENT_PINNED)
3496 		ctx_pinned_sched_in(ctx, cpuctx);
3497 
3498 	/* Then walk through the lower prio flexible groups */
3499 	if (is_active & EVENT_FLEXIBLE)
3500 		ctx_flexible_sched_in(ctx, cpuctx);
3501 }
3502 
3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3504 			     enum event_type_t event_type,
3505 			     struct task_struct *task)
3506 {
3507 	struct perf_event_context *ctx = &cpuctx->ctx;
3508 
3509 	ctx_sched_in(ctx, cpuctx, event_type, task);
3510 }
3511 
3512 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3513 					struct task_struct *task)
3514 {
3515 	struct perf_cpu_context *cpuctx;
3516 
3517 	cpuctx = __get_cpu_context(ctx);
3518 	if (cpuctx->task_ctx == ctx)
3519 		return;
3520 
3521 	perf_ctx_lock(cpuctx, ctx);
3522 	/*
3523 	 * We must check ctx->nr_events while holding ctx->lock, such
3524 	 * that we serialize against perf_install_in_context().
3525 	 */
3526 	if (!ctx->nr_events)
3527 		goto unlock;
3528 
3529 	perf_pmu_disable(ctx->pmu);
3530 	/*
3531 	 * We want to keep the following priority order:
3532 	 * cpu pinned (that don't need to move), task pinned,
3533 	 * cpu flexible, task flexible.
3534 	 *
3535 	 * However, if task's ctx is not carrying any pinned
3536 	 * events, no need to flip the cpuctx's events around.
3537 	 */
3538 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3539 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3540 	perf_event_sched_in(cpuctx, ctx, task);
3541 	perf_pmu_enable(ctx->pmu);
3542 
3543 unlock:
3544 	perf_ctx_unlock(cpuctx, ctx);
3545 }
3546 
3547 /*
3548  * Called from scheduler to add the events of the current task
3549  * with interrupts disabled.
3550  *
3551  * We restore the event value and then enable it.
3552  *
3553  * This does not protect us against NMI, but enable()
3554  * sets the enabled bit in the control field of event _before_
3555  * accessing the event control register. If a NMI hits, then it will
3556  * keep the event running.
3557  */
3558 void __perf_event_task_sched_in(struct task_struct *prev,
3559 				struct task_struct *task)
3560 {
3561 	struct perf_event_context *ctx;
3562 	int ctxn;
3563 
3564 	/*
3565 	 * If cgroup events exist on this CPU, then we need to check if we have
3566 	 * to switch in PMU state; cgroup event are system-wide mode only.
3567 	 *
3568 	 * Since cgroup events are CPU events, we must schedule these in before
3569 	 * we schedule in the task events.
3570 	 */
3571 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3572 		perf_cgroup_sched_in(prev, task);
3573 
3574 	for_each_task_context_nr(ctxn) {
3575 		ctx = task->perf_event_ctxp[ctxn];
3576 		if (likely(!ctx))
3577 			continue;
3578 
3579 		perf_event_context_sched_in(ctx, task);
3580 	}
3581 
3582 	if (atomic_read(&nr_switch_events))
3583 		perf_event_switch(task, prev, true);
3584 
3585 	if (__this_cpu_read(perf_sched_cb_usages))
3586 		perf_pmu_sched_task(prev, task, true);
3587 }
3588 
3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3590 {
3591 	u64 frequency = event->attr.sample_freq;
3592 	u64 sec = NSEC_PER_SEC;
3593 	u64 divisor, dividend;
3594 
3595 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3596 
3597 	count_fls = fls64(count);
3598 	nsec_fls = fls64(nsec);
3599 	frequency_fls = fls64(frequency);
3600 	sec_fls = 30;
3601 
3602 	/*
3603 	 * We got @count in @nsec, with a target of sample_freq HZ
3604 	 * the target period becomes:
3605 	 *
3606 	 *             @count * 10^9
3607 	 * period = -------------------
3608 	 *          @nsec * sample_freq
3609 	 *
3610 	 */
3611 
3612 	/*
3613 	 * Reduce accuracy by one bit such that @a and @b converge
3614 	 * to a similar magnitude.
3615 	 */
3616 #define REDUCE_FLS(a, b)		\
3617 do {					\
3618 	if (a##_fls > b##_fls) {	\
3619 		a >>= 1;		\
3620 		a##_fls--;		\
3621 	} else {			\
3622 		b >>= 1;		\
3623 		b##_fls--;		\
3624 	}				\
3625 } while (0)
3626 
3627 	/*
3628 	 * Reduce accuracy until either term fits in a u64, then proceed with
3629 	 * the other, so that finally we can do a u64/u64 division.
3630 	 */
3631 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3632 		REDUCE_FLS(nsec, frequency);
3633 		REDUCE_FLS(sec, count);
3634 	}
3635 
3636 	if (count_fls + sec_fls > 64) {
3637 		divisor = nsec * frequency;
3638 
3639 		while (count_fls + sec_fls > 64) {
3640 			REDUCE_FLS(count, sec);
3641 			divisor >>= 1;
3642 		}
3643 
3644 		dividend = count * sec;
3645 	} else {
3646 		dividend = count * sec;
3647 
3648 		while (nsec_fls + frequency_fls > 64) {
3649 			REDUCE_FLS(nsec, frequency);
3650 			dividend >>= 1;
3651 		}
3652 
3653 		divisor = nsec * frequency;
3654 	}
3655 
3656 	if (!divisor)
3657 		return dividend;
3658 
3659 	return div64_u64(dividend, divisor);
3660 }
3661 
3662 static DEFINE_PER_CPU(int, perf_throttled_count);
3663 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3664 
3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3666 {
3667 	struct hw_perf_event *hwc = &event->hw;
3668 	s64 period, sample_period;
3669 	s64 delta;
3670 
3671 	period = perf_calculate_period(event, nsec, count);
3672 
3673 	delta = (s64)(period - hwc->sample_period);
3674 	delta = (delta + 7) / 8; /* low pass filter */
3675 
3676 	sample_period = hwc->sample_period + delta;
3677 
3678 	if (!sample_period)
3679 		sample_period = 1;
3680 
3681 	hwc->sample_period = sample_period;
3682 
3683 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3684 		if (disable)
3685 			event->pmu->stop(event, PERF_EF_UPDATE);
3686 
3687 		local64_set(&hwc->period_left, 0);
3688 
3689 		if (disable)
3690 			event->pmu->start(event, PERF_EF_RELOAD);
3691 	}
3692 }
3693 
3694 /*
3695  * combine freq adjustment with unthrottling to avoid two passes over the
3696  * events. At the same time, make sure, having freq events does not change
3697  * the rate of unthrottling as that would introduce bias.
3698  */
3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3700 					   int needs_unthr)
3701 {
3702 	struct perf_event *event;
3703 	struct hw_perf_event *hwc;
3704 	u64 now, period = TICK_NSEC;
3705 	s64 delta;
3706 
3707 	/*
3708 	 * only need to iterate over all events iff:
3709 	 * - context have events in frequency mode (needs freq adjust)
3710 	 * - there are events to unthrottle on this cpu
3711 	 */
3712 	if (!(ctx->nr_freq || needs_unthr))
3713 		return;
3714 
3715 	raw_spin_lock(&ctx->lock);
3716 	perf_pmu_disable(ctx->pmu);
3717 
3718 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3719 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3720 			continue;
3721 
3722 		if (!event_filter_match(event))
3723 			continue;
3724 
3725 		perf_pmu_disable(event->pmu);
3726 
3727 		hwc = &event->hw;
3728 
3729 		if (hwc->interrupts == MAX_INTERRUPTS) {
3730 			hwc->interrupts = 0;
3731 			perf_log_throttle(event, 1);
3732 			event->pmu->start(event, 0);
3733 		}
3734 
3735 		if (!event->attr.freq || !event->attr.sample_freq)
3736 			goto next;
3737 
3738 		/*
3739 		 * stop the event and update event->count
3740 		 */
3741 		event->pmu->stop(event, PERF_EF_UPDATE);
3742 
3743 		now = local64_read(&event->count);
3744 		delta = now - hwc->freq_count_stamp;
3745 		hwc->freq_count_stamp = now;
3746 
3747 		/*
3748 		 * restart the event
3749 		 * reload only if value has changed
3750 		 * we have stopped the event so tell that
3751 		 * to perf_adjust_period() to avoid stopping it
3752 		 * twice.
3753 		 */
3754 		if (delta > 0)
3755 			perf_adjust_period(event, period, delta, false);
3756 
3757 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3758 	next:
3759 		perf_pmu_enable(event->pmu);
3760 	}
3761 
3762 	perf_pmu_enable(ctx->pmu);
3763 	raw_spin_unlock(&ctx->lock);
3764 }
3765 
3766 /*
3767  * Move @event to the tail of the @ctx's elegible events.
3768  */
3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3770 {
3771 	/*
3772 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3773 	 * disabled by the inheritance code.
3774 	 */
3775 	if (ctx->rotate_disable)
3776 		return;
3777 
3778 	perf_event_groups_delete(&ctx->flexible_groups, event);
3779 	perf_event_groups_insert(&ctx->flexible_groups, event);
3780 }
3781 
3782 static inline struct perf_event *
3783 ctx_first_active(struct perf_event_context *ctx)
3784 {
3785 	return list_first_entry_or_null(&ctx->flexible_active,
3786 					struct perf_event, active_list);
3787 }
3788 
3789 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3790 {
3791 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3792 	struct perf_event_context *task_ctx = NULL;
3793 	int cpu_rotate, task_rotate;
3794 
3795 	/*
3796 	 * Since we run this from IRQ context, nobody can install new
3797 	 * events, thus the event count values are stable.
3798 	 */
3799 
3800 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3801 	task_ctx = cpuctx->task_ctx;
3802 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3803 
3804 	if (!(cpu_rotate || task_rotate))
3805 		return false;
3806 
3807 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3808 	perf_pmu_disable(cpuctx->ctx.pmu);
3809 
3810 	if (task_rotate)
3811 		task_event = ctx_first_active(task_ctx);
3812 	if (cpu_rotate)
3813 		cpu_event = ctx_first_active(&cpuctx->ctx);
3814 
3815 	/*
3816 	 * As per the order given at ctx_resched() first 'pop' task flexible
3817 	 * and then, if needed CPU flexible.
3818 	 */
3819 	if (task_event || (task_ctx && cpu_event))
3820 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3821 	if (cpu_event)
3822 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3823 
3824 	if (task_event)
3825 		rotate_ctx(task_ctx, task_event);
3826 	if (cpu_event)
3827 		rotate_ctx(&cpuctx->ctx, cpu_event);
3828 
3829 	perf_event_sched_in(cpuctx, task_ctx, current);
3830 
3831 	perf_pmu_enable(cpuctx->ctx.pmu);
3832 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3833 
3834 	return true;
3835 }
3836 
3837 void perf_event_task_tick(void)
3838 {
3839 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3840 	struct perf_event_context *ctx, *tmp;
3841 	int throttled;
3842 
3843 	lockdep_assert_irqs_disabled();
3844 
3845 	__this_cpu_inc(perf_throttled_seq);
3846 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3847 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3848 
3849 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3850 		perf_adjust_freq_unthr_context(ctx, throttled);
3851 }
3852 
3853 static int event_enable_on_exec(struct perf_event *event,
3854 				struct perf_event_context *ctx)
3855 {
3856 	if (!event->attr.enable_on_exec)
3857 		return 0;
3858 
3859 	event->attr.enable_on_exec = 0;
3860 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3861 		return 0;
3862 
3863 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3864 
3865 	return 1;
3866 }
3867 
3868 /*
3869  * Enable all of a task's events that have been marked enable-on-exec.
3870  * This expects task == current.
3871  */
3872 static void perf_event_enable_on_exec(int ctxn)
3873 {
3874 	struct perf_event_context *ctx, *clone_ctx = NULL;
3875 	enum event_type_t event_type = 0;
3876 	struct perf_cpu_context *cpuctx;
3877 	struct perf_event *event;
3878 	unsigned long flags;
3879 	int enabled = 0;
3880 
3881 	local_irq_save(flags);
3882 	ctx = current->perf_event_ctxp[ctxn];
3883 	if (!ctx || !ctx->nr_events)
3884 		goto out;
3885 
3886 	cpuctx = __get_cpu_context(ctx);
3887 	perf_ctx_lock(cpuctx, ctx);
3888 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3889 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3890 		enabled |= event_enable_on_exec(event, ctx);
3891 		event_type |= get_event_type(event);
3892 	}
3893 
3894 	/*
3895 	 * Unclone and reschedule this context if we enabled any event.
3896 	 */
3897 	if (enabled) {
3898 		clone_ctx = unclone_ctx(ctx);
3899 		ctx_resched(cpuctx, ctx, event_type);
3900 	} else {
3901 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3902 	}
3903 	perf_ctx_unlock(cpuctx, ctx);
3904 
3905 out:
3906 	local_irq_restore(flags);
3907 
3908 	if (clone_ctx)
3909 		put_ctx(clone_ctx);
3910 }
3911 
3912 struct perf_read_data {
3913 	struct perf_event *event;
3914 	bool group;
3915 	int ret;
3916 };
3917 
3918 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3919 {
3920 	u16 local_pkg, event_pkg;
3921 
3922 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3923 		int local_cpu = smp_processor_id();
3924 
3925 		event_pkg = topology_physical_package_id(event_cpu);
3926 		local_pkg = topology_physical_package_id(local_cpu);
3927 
3928 		if (event_pkg == local_pkg)
3929 			return local_cpu;
3930 	}
3931 
3932 	return event_cpu;
3933 }
3934 
3935 /*
3936  * Cross CPU call to read the hardware event
3937  */
3938 static void __perf_event_read(void *info)
3939 {
3940 	struct perf_read_data *data = info;
3941 	struct perf_event *sub, *event = data->event;
3942 	struct perf_event_context *ctx = event->ctx;
3943 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3944 	struct pmu *pmu = event->pmu;
3945 
3946 	/*
3947 	 * If this is a task context, we need to check whether it is
3948 	 * the current task context of this cpu.  If not it has been
3949 	 * scheduled out before the smp call arrived.  In that case
3950 	 * event->count would have been updated to a recent sample
3951 	 * when the event was scheduled out.
3952 	 */
3953 	if (ctx->task && cpuctx->task_ctx != ctx)
3954 		return;
3955 
3956 	raw_spin_lock(&ctx->lock);
3957 	if (ctx->is_active & EVENT_TIME) {
3958 		update_context_time(ctx);
3959 		update_cgrp_time_from_event(event);
3960 	}
3961 
3962 	perf_event_update_time(event);
3963 	if (data->group)
3964 		perf_event_update_sibling_time(event);
3965 
3966 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3967 		goto unlock;
3968 
3969 	if (!data->group) {
3970 		pmu->read(event);
3971 		data->ret = 0;
3972 		goto unlock;
3973 	}
3974 
3975 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3976 
3977 	pmu->read(event);
3978 
3979 	for_each_sibling_event(sub, event) {
3980 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3981 			/*
3982 			 * Use sibling's PMU rather than @event's since
3983 			 * sibling could be on different (eg: software) PMU.
3984 			 */
3985 			sub->pmu->read(sub);
3986 		}
3987 	}
3988 
3989 	data->ret = pmu->commit_txn(pmu);
3990 
3991 unlock:
3992 	raw_spin_unlock(&ctx->lock);
3993 }
3994 
3995 static inline u64 perf_event_count(struct perf_event *event)
3996 {
3997 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3998 }
3999 
4000 /*
4001  * NMI-safe method to read a local event, that is an event that
4002  * is:
4003  *   - either for the current task, or for this CPU
4004  *   - does not have inherit set, for inherited task events
4005  *     will not be local and we cannot read them atomically
4006  *   - must not have a pmu::count method
4007  */
4008 int perf_event_read_local(struct perf_event *event, u64 *value,
4009 			  u64 *enabled, u64 *running)
4010 {
4011 	unsigned long flags;
4012 	int ret = 0;
4013 
4014 	/*
4015 	 * Disabling interrupts avoids all counter scheduling (context
4016 	 * switches, timer based rotation and IPIs).
4017 	 */
4018 	local_irq_save(flags);
4019 
4020 	/*
4021 	 * It must not be an event with inherit set, we cannot read
4022 	 * all child counters from atomic context.
4023 	 */
4024 	if (event->attr.inherit) {
4025 		ret = -EOPNOTSUPP;
4026 		goto out;
4027 	}
4028 
4029 	/* If this is a per-task event, it must be for current */
4030 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4031 	    event->hw.target != current) {
4032 		ret = -EINVAL;
4033 		goto out;
4034 	}
4035 
4036 	/* If this is a per-CPU event, it must be for this CPU */
4037 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4038 	    event->cpu != smp_processor_id()) {
4039 		ret = -EINVAL;
4040 		goto out;
4041 	}
4042 
4043 	/* If this is a pinned event it must be running on this CPU */
4044 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4045 		ret = -EBUSY;
4046 		goto out;
4047 	}
4048 
4049 	/*
4050 	 * If the event is currently on this CPU, its either a per-task event,
4051 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4052 	 * oncpu == -1).
4053 	 */
4054 	if (event->oncpu == smp_processor_id())
4055 		event->pmu->read(event);
4056 
4057 	*value = local64_read(&event->count);
4058 	if (enabled || running) {
4059 		u64 now = event->shadow_ctx_time + perf_clock();
4060 		u64 __enabled, __running;
4061 
4062 		__perf_update_times(event, now, &__enabled, &__running);
4063 		if (enabled)
4064 			*enabled = __enabled;
4065 		if (running)
4066 			*running = __running;
4067 	}
4068 out:
4069 	local_irq_restore(flags);
4070 
4071 	return ret;
4072 }
4073 
4074 static int perf_event_read(struct perf_event *event, bool group)
4075 {
4076 	enum perf_event_state state = READ_ONCE(event->state);
4077 	int event_cpu, ret = 0;
4078 
4079 	/*
4080 	 * If event is enabled and currently active on a CPU, update the
4081 	 * value in the event structure:
4082 	 */
4083 again:
4084 	if (state == PERF_EVENT_STATE_ACTIVE) {
4085 		struct perf_read_data data;
4086 
4087 		/*
4088 		 * Orders the ->state and ->oncpu loads such that if we see
4089 		 * ACTIVE we must also see the right ->oncpu.
4090 		 *
4091 		 * Matches the smp_wmb() from event_sched_in().
4092 		 */
4093 		smp_rmb();
4094 
4095 		event_cpu = READ_ONCE(event->oncpu);
4096 		if ((unsigned)event_cpu >= nr_cpu_ids)
4097 			return 0;
4098 
4099 		data = (struct perf_read_data){
4100 			.event = event,
4101 			.group = group,
4102 			.ret = 0,
4103 		};
4104 
4105 		preempt_disable();
4106 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4107 
4108 		/*
4109 		 * Purposely ignore the smp_call_function_single() return
4110 		 * value.
4111 		 *
4112 		 * If event_cpu isn't a valid CPU it means the event got
4113 		 * scheduled out and that will have updated the event count.
4114 		 *
4115 		 * Therefore, either way, we'll have an up-to-date event count
4116 		 * after this.
4117 		 */
4118 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4119 		preempt_enable();
4120 		ret = data.ret;
4121 
4122 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4123 		struct perf_event_context *ctx = event->ctx;
4124 		unsigned long flags;
4125 
4126 		raw_spin_lock_irqsave(&ctx->lock, flags);
4127 		state = event->state;
4128 		if (state != PERF_EVENT_STATE_INACTIVE) {
4129 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4130 			goto again;
4131 		}
4132 
4133 		/*
4134 		 * May read while context is not active (e.g., thread is
4135 		 * blocked), in that case we cannot update context time
4136 		 */
4137 		if (ctx->is_active & EVENT_TIME) {
4138 			update_context_time(ctx);
4139 			update_cgrp_time_from_event(event);
4140 		}
4141 
4142 		perf_event_update_time(event);
4143 		if (group)
4144 			perf_event_update_sibling_time(event);
4145 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4146 	}
4147 
4148 	return ret;
4149 }
4150 
4151 /*
4152  * Initialize the perf_event context in a task_struct:
4153  */
4154 static void __perf_event_init_context(struct perf_event_context *ctx)
4155 {
4156 	raw_spin_lock_init(&ctx->lock);
4157 	mutex_init(&ctx->mutex);
4158 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4159 	perf_event_groups_init(&ctx->pinned_groups);
4160 	perf_event_groups_init(&ctx->flexible_groups);
4161 	INIT_LIST_HEAD(&ctx->event_list);
4162 	INIT_LIST_HEAD(&ctx->pinned_active);
4163 	INIT_LIST_HEAD(&ctx->flexible_active);
4164 	refcount_set(&ctx->refcount, 1);
4165 }
4166 
4167 static struct perf_event_context *
4168 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4169 {
4170 	struct perf_event_context *ctx;
4171 
4172 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4173 	if (!ctx)
4174 		return NULL;
4175 
4176 	__perf_event_init_context(ctx);
4177 	if (task)
4178 		ctx->task = get_task_struct(task);
4179 	ctx->pmu = pmu;
4180 
4181 	return ctx;
4182 }
4183 
4184 static struct task_struct *
4185 find_lively_task_by_vpid(pid_t vpid)
4186 {
4187 	struct task_struct *task;
4188 
4189 	rcu_read_lock();
4190 	if (!vpid)
4191 		task = current;
4192 	else
4193 		task = find_task_by_vpid(vpid);
4194 	if (task)
4195 		get_task_struct(task);
4196 	rcu_read_unlock();
4197 
4198 	if (!task)
4199 		return ERR_PTR(-ESRCH);
4200 
4201 	return task;
4202 }
4203 
4204 /*
4205  * Returns a matching context with refcount and pincount.
4206  */
4207 static struct perf_event_context *
4208 find_get_context(struct pmu *pmu, struct task_struct *task,
4209 		struct perf_event *event)
4210 {
4211 	struct perf_event_context *ctx, *clone_ctx = NULL;
4212 	struct perf_cpu_context *cpuctx;
4213 	void *task_ctx_data = NULL;
4214 	unsigned long flags;
4215 	int ctxn, err;
4216 	int cpu = event->cpu;
4217 
4218 	if (!task) {
4219 		/* Must be root to operate on a CPU event: */
4220 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4221 			return ERR_PTR(-EACCES);
4222 
4223 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4224 		ctx = &cpuctx->ctx;
4225 		get_ctx(ctx);
4226 		++ctx->pin_count;
4227 
4228 		return ctx;
4229 	}
4230 
4231 	err = -EINVAL;
4232 	ctxn = pmu->task_ctx_nr;
4233 	if (ctxn < 0)
4234 		goto errout;
4235 
4236 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4237 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4238 		if (!task_ctx_data) {
4239 			err = -ENOMEM;
4240 			goto errout;
4241 		}
4242 	}
4243 
4244 retry:
4245 	ctx = perf_lock_task_context(task, ctxn, &flags);
4246 	if (ctx) {
4247 		clone_ctx = unclone_ctx(ctx);
4248 		++ctx->pin_count;
4249 
4250 		if (task_ctx_data && !ctx->task_ctx_data) {
4251 			ctx->task_ctx_data = task_ctx_data;
4252 			task_ctx_data = NULL;
4253 		}
4254 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4255 
4256 		if (clone_ctx)
4257 			put_ctx(clone_ctx);
4258 	} else {
4259 		ctx = alloc_perf_context(pmu, task);
4260 		err = -ENOMEM;
4261 		if (!ctx)
4262 			goto errout;
4263 
4264 		if (task_ctx_data) {
4265 			ctx->task_ctx_data = task_ctx_data;
4266 			task_ctx_data = NULL;
4267 		}
4268 
4269 		err = 0;
4270 		mutex_lock(&task->perf_event_mutex);
4271 		/*
4272 		 * If it has already passed perf_event_exit_task().
4273 		 * we must see PF_EXITING, it takes this mutex too.
4274 		 */
4275 		if (task->flags & PF_EXITING)
4276 			err = -ESRCH;
4277 		else if (task->perf_event_ctxp[ctxn])
4278 			err = -EAGAIN;
4279 		else {
4280 			get_ctx(ctx);
4281 			++ctx->pin_count;
4282 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4283 		}
4284 		mutex_unlock(&task->perf_event_mutex);
4285 
4286 		if (unlikely(err)) {
4287 			put_ctx(ctx);
4288 
4289 			if (err == -EAGAIN)
4290 				goto retry;
4291 			goto errout;
4292 		}
4293 	}
4294 
4295 	kfree(task_ctx_data);
4296 	return ctx;
4297 
4298 errout:
4299 	kfree(task_ctx_data);
4300 	return ERR_PTR(err);
4301 }
4302 
4303 static void perf_event_free_filter(struct perf_event *event);
4304 static void perf_event_free_bpf_prog(struct perf_event *event);
4305 
4306 static void free_event_rcu(struct rcu_head *head)
4307 {
4308 	struct perf_event *event;
4309 
4310 	event = container_of(head, struct perf_event, rcu_head);
4311 	if (event->ns)
4312 		put_pid_ns(event->ns);
4313 	perf_event_free_filter(event);
4314 	kfree(event);
4315 }
4316 
4317 static void ring_buffer_attach(struct perf_event *event,
4318 			       struct ring_buffer *rb);
4319 
4320 static void detach_sb_event(struct perf_event *event)
4321 {
4322 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4323 
4324 	raw_spin_lock(&pel->lock);
4325 	list_del_rcu(&event->sb_list);
4326 	raw_spin_unlock(&pel->lock);
4327 }
4328 
4329 static bool is_sb_event(struct perf_event *event)
4330 {
4331 	struct perf_event_attr *attr = &event->attr;
4332 
4333 	if (event->parent)
4334 		return false;
4335 
4336 	if (event->attach_state & PERF_ATTACH_TASK)
4337 		return false;
4338 
4339 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4340 	    attr->comm || attr->comm_exec ||
4341 	    attr->task || attr->ksymbol ||
4342 	    attr->context_switch ||
4343 	    attr->bpf_event)
4344 		return true;
4345 	return false;
4346 }
4347 
4348 static void unaccount_pmu_sb_event(struct perf_event *event)
4349 {
4350 	if (is_sb_event(event))
4351 		detach_sb_event(event);
4352 }
4353 
4354 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4355 {
4356 	if (event->parent)
4357 		return;
4358 
4359 	if (is_cgroup_event(event))
4360 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4361 }
4362 
4363 #ifdef CONFIG_NO_HZ_FULL
4364 static DEFINE_SPINLOCK(nr_freq_lock);
4365 #endif
4366 
4367 static void unaccount_freq_event_nohz(void)
4368 {
4369 #ifdef CONFIG_NO_HZ_FULL
4370 	spin_lock(&nr_freq_lock);
4371 	if (atomic_dec_and_test(&nr_freq_events))
4372 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4373 	spin_unlock(&nr_freq_lock);
4374 #endif
4375 }
4376 
4377 static void unaccount_freq_event(void)
4378 {
4379 	if (tick_nohz_full_enabled())
4380 		unaccount_freq_event_nohz();
4381 	else
4382 		atomic_dec(&nr_freq_events);
4383 }
4384 
4385 static void unaccount_event(struct perf_event *event)
4386 {
4387 	bool dec = false;
4388 
4389 	if (event->parent)
4390 		return;
4391 
4392 	if (event->attach_state & PERF_ATTACH_TASK)
4393 		dec = true;
4394 	if (event->attr.mmap || event->attr.mmap_data)
4395 		atomic_dec(&nr_mmap_events);
4396 	if (event->attr.comm)
4397 		atomic_dec(&nr_comm_events);
4398 	if (event->attr.namespaces)
4399 		atomic_dec(&nr_namespaces_events);
4400 	if (event->attr.task)
4401 		atomic_dec(&nr_task_events);
4402 	if (event->attr.freq)
4403 		unaccount_freq_event();
4404 	if (event->attr.context_switch) {
4405 		dec = true;
4406 		atomic_dec(&nr_switch_events);
4407 	}
4408 	if (is_cgroup_event(event))
4409 		dec = true;
4410 	if (has_branch_stack(event))
4411 		dec = true;
4412 	if (event->attr.ksymbol)
4413 		atomic_dec(&nr_ksymbol_events);
4414 	if (event->attr.bpf_event)
4415 		atomic_dec(&nr_bpf_events);
4416 
4417 	if (dec) {
4418 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4419 			schedule_delayed_work(&perf_sched_work, HZ);
4420 	}
4421 
4422 	unaccount_event_cpu(event, event->cpu);
4423 
4424 	unaccount_pmu_sb_event(event);
4425 }
4426 
4427 static void perf_sched_delayed(struct work_struct *work)
4428 {
4429 	mutex_lock(&perf_sched_mutex);
4430 	if (atomic_dec_and_test(&perf_sched_count))
4431 		static_branch_disable(&perf_sched_events);
4432 	mutex_unlock(&perf_sched_mutex);
4433 }
4434 
4435 /*
4436  * The following implement mutual exclusion of events on "exclusive" pmus
4437  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4438  * at a time, so we disallow creating events that might conflict, namely:
4439  *
4440  *  1) cpu-wide events in the presence of per-task events,
4441  *  2) per-task events in the presence of cpu-wide events,
4442  *  3) two matching events on the same context.
4443  *
4444  * The former two cases are handled in the allocation path (perf_event_alloc(),
4445  * _free_event()), the latter -- before the first perf_install_in_context().
4446  */
4447 static int exclusive_event_init(struct perf_event *event)
4448 {
4449 	struct pmu *pmu = event->pmu;
4450 
4451 	if (!is_exclusive_pmu(pmu))
4452 		return 0;
4453 
4454 	/*
4455 	 * Prevent co-existence of per-task and cpu-wide events on the
4456 	 * same exclusive pmu.
4457 	 *
4458 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4459 	 * events on this "exclusive" pmu, positive means there are
4460 	 * per-task events.
4461 	 *
4462 	 * Since this is called in perf_event_alloc() path, event::ctx
4463 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4464 	 * to mean "per-task event", because unlike other attach states it
4465 	 * never gets cleared.
4466 	 */
4467 	if (event->attach_state & PERF_ATTACH_TASK) {
4468 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4469 			return -EBUSY;
4470 	} else {
4471 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4472 			return -EBUSY;
4473 	}
4474 
4475 	return 0;
4476 }
4477 
4478 static void exclusive_event_destroy(struct perf_event *event)
4479 {
4480 	struct pmu *pmu = event->pmu;
4481 
4482 	if (!is_exclusive_pmu(pmu))
4483 		return;
4484 
4485 	/* see comment in exclusive_event_init() */
4486 	if (event->attach_state & PERF_ATTACH_TASK)
4487 		atomic_dec(&pmu->exclusive_cnt);
4488 	else
4489 		atomic_inc(&pmu->exclusive_cnt);
4490 }
4491 
4492 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4493 {
4494 	if ((e1->pmu == e2->pmu) &&
4495 	    (e1->cpu == e2->cpu ||
4496 	     e1->cpu == -1 ||
4497 	     e2->cpu == -1))
4498 		return true;
4499 	return false;
4500 }
4501 
4502 static bool exclusive_event_installable(struct perf_event *event,
4503 					struct perf_event_context *ctx)
4504 {
4505 	struct perf_event *iter_event;
4506 	struct pmu *pmu = event->pmu;
4507 
4508 	lockdep_assert_held(&ctx->mutex);
4509 
4510 	if (!is_exclusive_pmu(pmu))
4511 		return true;
4512 
4513 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4514 		if (exclusive_event_match(iter_event, event))
4515 			return false;
4516 	}
4517 
4518 	return true;
4519 }
4520 
4521 static void perf_addr_filters_splice(struct perf_event *event,
4522 				       struct list_head *head);
4523 
4524 static void _free_event(struct perf_event *event)
4525 {
4526 	irq_work_sync(&event->pending);
4527 
4528 	unaccount_event(event);
4529 
4530 	if (event->rb) {
4531 		/*
4532 		 * Can happen when we close an event with re-directed output.
4533 		 *
4534 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4535 		 * over us; possibly making our ring_buffer_put() the last.
4536 		 */
4537 		mutex_lock(&event->mmap_mutex);
4538 		ring_buffer_attach(event, NULL);
4539 		mutex_unlock(&event->mmap_mutex);
4540 	}
4541 
4542 	if (is_cgroup_event(event))
4543 		perf_detach_cgroup(event);
4544 
4545 	if (!event->parent) {
4546 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4547 			put_callchain_buffers();
4548 	}
4549 
4550 	perf_event_free_bpf_prog(event);
4551 	perf_addr_filters_splice(event, NULL);
4552 	kfree(event->addr_filter_ranges);
4553 
4554 	if (event->destroy)
4555 		event->destroy(event);
4556 
4557 	/*
4558 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4559 	 * hw.target.
4560 	 */
4561 	if (event->hw.target)
4562 		put_task_struct(event->hw.target);
4563 
4564 	/*
4565 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4566 	 * all task references must be cleaned up.
4567 	 */
4568 	if (event->ctx)
4569 		put_ctx(event->ctx);
4570 
4571 	exclusive_event_destroy(event);
4572 	module_put(event->pmu->module);
4573 
4574 	call_rcu(&event->rcu_head, free_event_rcu);
4575 }
4576 
4577 /*
4578  * Used to free events which have a known refcount of 1, such as in error paths
4579  * where the event isn't exposed yet and inherited events.
4580  */
4581 static void free_event(struct perf_event *event)
4582 {
4583 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4584 				"unexpected event refcount: %ld; ptr=%p\n",
4585 				atomic_long_read(&event->refcount), event)) {
4586 		/* leak to avoid use-after-free */
4587 		return;
4588 	}
4589 
4590 	_free_event(event);
4591 }
4592 
4593 /*
4594  * Remove user event from the owner task.
4595  */
4596 static void perf_remove_from_owner(struct perf_event *event)
4597 {
4598 	struct task_struct *owner;
4599 
4600 	rcu_read_lock();
4601 	/*
4602 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4603 	 * observe !owner it means the list deletion is complete and we can
4604 	 * indeed free this event, otherwise we need to serialize on
4605 	 * owner->perf_event_mutex.
4606 	 */
4607 	owner = READ_ONCE(event->owner);
4608 	if (owner) {
4609 		/*
4610 		 * Since delayed_put_task_struct() also drops the last
4611 		 * task reference we can safely take a new reference
4612 		 * while holding the rcu_read_lock().
4613 		 */
4614 		get_task_struct(owner);
4615 	}
4616 	rcu_read_unlock();
4617 
4618 	if (owner) {
4619 		/*
4620 		 * If we're here through perf_event_exit_task() we're already
4621 		 * holding ctx->mutex which would be an inversion wrt. the
4622 		 * normal lock order.
4623 		 *
4624 		 * However we can safely take this lock because its the child
4625 		 * ctx->mutex.
4626 		 */
4627 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4628 
4629 		/*
4630 		 * We have to re-check the event->owner field, if it is cleared
4631 		 * we raced with perf_event_exit_task(), acquiring the mutex
4632 		 * ensured they're done, and we can proceed with freeing the
4633 		 * event.
4634 		 */
4635 		if (event->owner) {
4636 			list_del_init(&event->owner_entry);
4637 			smp_store_release(&event->owner, NULL);
4638 		}
4639 		mutex_unlock(&owner->perf_event_mutex);
4640 		put_task_struct(owner);
4641 	}
4642 }
4643 
4644 static void put_event(struct perf_event *event)
4645 {
4646 	if (!atomic_long_dec_and_test(&event->refcount))
4647 		return;
4648 
4649 	_free_event(event);
4650 }
4651 
4652 /*
4653  * Kill an event dead; while event:refcount will preserve the event
4654  * object, it will not preserve its functionality. Once the last 'user'
4655  * gives up the object, we'll destroy the thing.
4656  */
4657 int perf_event_release_kernel(struct perf_event *event)
4658 {
4659 	struct perf_event_context *ctx = event->ctx;
4660 	struct perf_event *child, *tmp;
4661 	LIST_HEAD(free_list);
4662 
4663 	/*
4664 	 * If we got here through err_file: fput(event_file); we will not have
4665 	 * attached to a context yet.
4666 	 */
4667 	if (!ctx) {
4668 		WARN_ON_ONCE(event->attach_state &
4669 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4670 		goto no_ctx;
4671 	}
4672 
4673 	if (!is_kernel_event(event))
4674 		perf_remove_from_owner(event);
4675 
4676 	ctx = perf_event_ctx_lock(event);
4677 	WARN_ON_ONCE(ctx->parent_ctx);
4678 	perf_remove_from_context(event, DETACH_GROUP);
4679 
4680 	raw_spin_lock_irq(&ctx->lock);
4681 	/*
4682 	 * Mark this event as STATE_DEAD, there is no external reference to it
4683 	 * anymore.
4684 	 *
4685 	 * Anybody acquiring event->child_mutex after the below loop _must_
4686 	 * also see this, most importantly inherit_event() which will avoid
4687 	 * placing more children on the list.
4688 	 *
4689 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4690 	 * child events.
4691 	 */
4692 	event->state = PERF_EVENT_STATE_DEAD;
4693 	raw_spin_unlock_irq(&ctx->lock);
4694 
4695 	perf_event_ctx_unlock(event, ctx);
4696 
4697 again:
4698 	mutex_lock(&event->child_mutex);
4699 	list_for_each_entry(child, &event->child_list, child_list) {
4700 
4701 		/*
4702 		 * Cannot change, child events are not migrated, see the
4703 		 * comment with perf_event_ctx_lock_nested().
4704 		 */
4705 		ctx = READ_ONCE(child->ctx);
4706 		/*
4707 		 * Since child_mutex nests inside ctx::mutex, we must jump
4708 		 * through hoops. We start by grabbing a reference on the ctx.
4709 		 *
4710 		 * Since the event cannot get freed while we hold the
4711 		 * child_mutex, the context must also exist and have a !0
4712 		 * reference count.
4713 		 */
4714 		get_ctx(ctx);
4715 
4716 		/*
4717 		 * Now that we have a ctx ref, we can drop child_mutex, and
4718 		 * acquire ctx::mutex without fear of it going away. Then we
4719 		 * can re-acquire child_mutex.
4720 		 */
4721 		mutex_unlock(&event->child_mutex);
4722 		mutex_lock(&ctx->mutex);
4723 		mutex_lock(&event->child_mutex);
4724 
4725 		/*
4726 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4727 		 * state, if child is still the first entry, it didn't get freed
4728 		 * and we can continue doing so.
4729 		 */
4730 		tmp = list_first_entry_or_null(&event->child_list,
4731 					       struct perf_event, child_list);
4732 		if (tmp == child) {
4733 			perf_remove_from_context(child, DETACH_GROUP);
4734 			list_move(&child->child_list, &free_list);
4735 			/*
4736 			 * This matches the refcount bump in inherit_event();
4737 			 * this can't be the last reference.
4738 			 */
4739 			put_event(event);
4740 		}
4741 
4742 		mutex_unlock(&event->child_mutex);
4743 		mutex_unlock(&ctx->mutex);
4744 		put_ctx(ctx);
4745 		goto again;
4746 	}
4747 	mutex_unlock(&event->child_mutex);
4748 
4749 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4750 		void *var = &child->ctx->refcount;
4751 
4752 		list_del(&child->child_list);
4753 		free_event(child);
4754 
4755 		/*
4756 		 * Wake any perf_event_free_task() waiting for this event to be
4757 		 * freed.
4758 		 */
4759 		smp_mb(); /* pairs with wait_var_event() */
4760 		wake_up_var(var);
4761 	}
4762 
4763 no_ctx:
4764 	put_event(event); /* Must be the 'last' reference */
4765 	return 0;
4766 }
4767 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4768 
4769 /*
4770  * Called when the last reference to the file is gone.
4771  */
4772 static int perf_release(struct inode *inode, struct file *file)
4773 {
4774 	perf_event_release_kernel(file->private_data);
4775 	return 0;
4776 }
4777 
4778 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4779 {
4780 	struct perf_event *child;
4781 	u64 total = 0;
4782 
4783 	*enabled = 0;
4784 	*running = 0;
4785 
4786 	mutex_lock(&event->child_mutex);
4787 
4788 	(void)perf_event_read(event, false);
4789 	total += perf_event_count(event);
4790 
4791 	*enabled += event->total_time_enabled +
4792 			atomic64_read(&event->child_total_time_enabled);
4793 	*running += event->total_time_running +
4794 			atomic64_read(&event->child_total_time_running);
4795 
4796 	list_for_each_entry(child, &event->child_list, child_list) {
4797 		(void)perf_event_read(child, false);
4798 		total += perf_event_count(child);
4799 		*enabled += child->total_time_enabled;
4800 		*running += child->total_time_running;
4801 	}
4802 	mutex_unlock(&event->child_mutex);
4803 
4804 	return total;
4805 }
4806 
4807 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4808 {
4809 	struct perf_event_context *ctx;
4810 	u64 count;
4811 
4812 	ctx = perf_event_ctx_lock(event);
4813 	count = __perf_event_read_value(event, enabled, running);
4814 	perf_event_ctx_unlock(event, ctx);
4815 
4816 	return count;
4817 }
4818 EXPORT_SYMBOL_GPL(perf_event_read_value);
4819 
4820 static int __perf_read_group_add(struct perf_event *leader,
4821 					u64 read_format, u64 *values)
4822 {
4823 	struct perf_event_context *ctx = leader->ctx;
4824 	struct perf_event *sub;
4825 	unsigned long flags;
4826 	int n = 1; /* skip @nr */
4827 	int ret;
4828 
4829 	ret = perf_event_read(leader, true);
4830 	if (ret)
4831 		return ret;
4832 
4833 	raw_spin_lock_irqsave(&ctx->lock, flags);
4834 
4835 	/*
4836 	 * Since we co-schedule groups, {enabled,running} times of siblings
4837 	 * will be identical to those of the leader, so we only publish one
4838 	 * set.
4839 	 */
4840 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4841 		values[n++] += leader->total_time_enabled +
4842 			atomic64_read(&leader->child_total_time_enabled);
4843 	}
4844 
4845 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4846 		values[n++] += leader->total_time_running +
4847 			atomic64_read(&leader->child_total_time_running);
4848 	}
4849 
4850 	/*
4851 	 * Write {count,id} tuples for every sibling.
4852 	 */
4853 	values[n++] += perf_event_count(leader);
4854 	if (read_format & PERF_FORMAT_ID)
4855 		values[n++] = primary_event_id(leader);
4856 
4857 	for_each_sibling_event(sub, leader) {
4858 		values[n++] += perf_event_count(sub);
4859 		if (read_format & PERF_FORMAT_ID)
4860 			values[n++] = primary_event_id(sub);
4861 	}
4862 
4863 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4864 	return 0;
4865 }
4866 
4867 static int perf_read_group(struct perf_event *event,
4868 				   u64 read_format, char __user *buf)
4869 {
4870 	struct perf_event *leader = event->group_leader, *child;
4871 	struct perf_event_context *ctx = leader->ctx;
4872 	int ret;
4873 	u64 *values;
4874 
4875 	lockdep_assert_held(&ctx->mutex);
4876 
4877 	values = kzalloc(event->read_size, GFP_KERNEL);
4878 	if (!values)
4879 		return -ENOMEM;
4880 
4881 	values[0] = 1 + leader->nr_siblings;
4882 
4883 	/*
4884 	 * By locking the child_mutex of the leader we effectively
4885 	 * lock the child list of all siblings.. XXX explain how.
4886 	 */
4887 	mutex_lock(&leader->child_mutex);
4888 
4889 	ret = __perf_read_group_add(leader, read_format, values);
4890 	if (ret)
4891 		goto unlock;
4892 
4893 	list_for_each_entry(child, &leader->child_list, child_list) {
4894 		ret = __perf_read_group_add(child, read_format, values);
4895 		if (ret)
4896 			goto unlock;
4897 	}
4898 
4899 	mutex_unlock(&leader->child_mutex);
4900 
4901 	ret = event->read_size;
4902 	if (copy_to_user(buf, values, event->read_size))
4903 		ret = -EFAULT;
4904 	goto out;
4905 
4906 unlock:
4907 	mutex_unlock(&leader->child_mutex);
4908 out:
4909 	kfree(values);
4910 	return ret;
4911 }
4912 
4913 static int perf_read_one(struct perf_event *event,
4914 				 u64 read_format, char __user *buf)
4915 {
4916 	u64 enabled, running;
4917 	u64 values[4];
4918 	int n = 0;
4919 
4920 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4921 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4922 		values[n++] = enabled;
4923 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4924 		values[n++] = running;
4925 	if (read_format & PERF_FORMAT_ID)
4926 		values[n++] = primary_event_id(event);
4927 
4928 	if (copy_to_user(buf, values, n * sizeof(u64)))
4929 		return -EFAULT;
4930 
4931 	return n * sizeof(u64);
4932 }
4933 
4934 static bool is_event_hup(struct perf_event *event)
4935 {
4936 	bool no_children;
4937 
4938 	if (event->state > PERF_EVENT_STATE_EXIT)
4939 		return false;
4940 
4941 	mutex_lock(&event->child_mutex);
4942 	no_children = list_empty(&event->child_list);
4943 	mutex_unlock(&event->child_mutex);
4944 	return no_children;
4945 }
4946 
4947 /*
4948  * Read the performance event - simple non blocking version for now
4949  */
4950 static ssize_t
4951 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4952 {
4953 	u64 read_format = event->attr.read_format;
4954 	int ret;
4955 
4956 	/*
4957 	 * Return end-of-file for a read on an event that is in
4958 	 * error state (i.e. because it was pinned but it couldn't be
4959 	 * scheduled on to the CPU at some point).
4960 	 */
4961 	if (event->state == PERF_EVENT_STATE_ERROR)
4962 		return 0;
4963 
4964 	if (count < event->read_size)
4965 		return -ENOSPC;
4966 
4967 	WARN_ON_ONCE(event->ctx->parent_ctx);
4968 	if (read_format & PERF_FORMAT_GROUP)
4969 		ret = perf_read_group(event, read_format, buf);
4970 	else
4971 		ret = perf_read_one(event, read_format, buf);
4972 
4973 	return ret;
4974 }
4975 
4976 static ssize_t
4977 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4978 {
4979 	struct perf_event *event = file->private_data;
4980 	struct perf_event_context *ctx;
4981 	int ret;
4982 
4983 	ctx = perf_event_ctx_lock(event);
4984 	ret = __perf_read(event, buf, count);
4985 	perf_event_ctx_unlock(event, ctx);
4986 
4987 	return ret;
4988 }
4989 
4990 static __poll_t perf_poll(struct file *file, poll_table *wait)
4991 {
4992 	struct perf_event *event = file->private_data;
4993 	struct ring_buffer *rb;
4994 	__poll_t events = EPOLLHUP;
4995 
4996 	poll_wait(file, &event->waitq, wait);
4997 
4998 	if (is_event_hup(event))
4999 		return events;
5000 
5001 	/*
5002 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5003 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5004 	 */
5005 	mutex_lock(&event->mmap_mutex);
5006 	rb = event->rb;
5007 	if (rb)
5008 		events = atomic_xchg(&rb->poll, 0);
5009 	mutex_unlock(&event->mmap_mutex);
5010 	return events;
5011 }
5012 
5013 static void _perf_event_reset(struct perf_event *event)
5014 {
5015 	(void)perf_event_read(event, false);
5016 	local64_set(&event->count, 0);
5017 	perf_event_update_userpage(event);
5018 }
5019 
5020 /*
5021  * Holding the top-level event's child_mutex means that any
5022  * descendant process that has inherited this event will block
5023  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5024  * task existence requirements of perf_event_enable/disable.
5025  */
5026 static void perf_event_for_each_child(struct perf_event *event,
5027 					void (*func)(struct perf_event *))
5028 {
5029 	struct perf_event *child;
5030 
5031 	WARN_ON_ONCE(event->ctx->parent_ctx);
5032 
5033 	mutex_lock(&event->child_mutex);
5034 	func(event);
5035 	list_for_each_entry(child, &event->child_list, child_list)
5036 		func(child);
5037 	mutex_unlock(&event->child_mutex);
5038 }
5039 
5040 static void perf_event_for_each(struct perf_event *event,
5041 				  void (*func)(struct perf_event *))
5042 {
5043 	struct perf_event_context *ctx = event->ctx;
5044 	struct perf_event *sibling;
5045 
5046 	lockdep_assert_held(&ctx->mutex);
5047 
5048 	event = event->group_leader;
5049 
5050 	perf_event_for_each_child(event, func);
5051 	for_each_sibling_event(sibling, event)
5052 		perf_event_for_each_child(sibling, func);
5053 }
5054 
5055 static void __perf_event_period(struct perf_event *event,
5056 				struct perf_cpu_context *cpuctx,
5057 				struct perf_event_context *ctx,
5058 				void *info)
5059 {
5060 	u64 value = *((u64 *)info);
5061 	bool active;
5062 
5063 	if (event->attr.freq) {
5064 		event->attr.sample_freq = value;
5065 	} else {
5066 		event->attr.sample_period = value;
5067 		event->hw.sample_period = value;
5068 	}
5069 
5070 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5071 	if (active) {
5072 		perf_pmu_disable(ctx->pmu);
5073 		/*
5074 		 * We could be throttled; unthrottle now to avoid the tick
5075 		 * trying to unthrottle while we already re-started the event.
5076 		 */
5077 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5078 			event->hw.interrupts = 0;
5079 			perf_log_throttle(event, 1);
5080 		}
5081 		event->pmu->stop(event, PERF_EF_UPDATE);
5082 	}
5083 
5084 	local64_set(&event->hw.period_left, 0);
5085 
5086 	if (active) {
5087 		event->pmu->start(event, PERF_EF_RELOAD);
5088 		perf_pmu_enable(ctx->pmu);
5089 	}
5090 }
5091 
5092 static int perf_event_check_period(struct perf_event *event, u64 value)
5093 {
5094 	return event->pmu->check_period(event, value);
5095 }
5096 
5097 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5098 {
5099 	u64 value;
5100 
5101 	if (!is_sampling_event(event))
5102 		return -EINVAL;
5103 
5104 	if (copy_from_user(&value, arg, sizeof(value)))
5105 		return -EFAULT;
5106 
5107 	if (!value)
5108 		return -EINVAL;
5109 
5110 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5111 		return -EINVAL;
5112 
5113 	if (perf_event_check_period(event, value))
5114 		return -EINVAL;
5115 
5116 	if (!event->attr.freq && (value & (1ULL << 63)))
5117 		return -EINVAL;
5118 
5119 	event_function_call(event, __perf_event_period, &value);
5120 
5121 	return 0;
5122 }
5123 
5124 static const struct file_operations perf_fops;
5125 
5126 static inline int perf_fget_light(int fd, struct fd *p)
5127 {
5128 	struct fd f = fdget(fd);
5129 	if (!f.file)
5130 		return -EBADF;
5131 
5132 	if (f.file->f_op != &perf_fops) {
5133 		fdput(f);
5134 		return -EBADF;
5135 	}
5136 	*p = f;
5137 	return 0;
5138 }
5139 
5140 static int perf_event_set_output(struct perf_event *event,
5141 				 struct perf_event *output_event);
5142 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5143 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5144 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5145 			  struct perf_event_attr *attr);
5146 
5147 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5148 {
5149 	void (*func)(struct perf_event *);
5150 	u32 flags = arg;
5151 
5152 	switch (cmd) {
5153 	case PERF_EVENT_IOC_ENABLE:
5154 		func = _perf_event_enable;
5155 		break;
5156 	case PERF_EVENT_IOC_DISABLE:
5157 		func = _perf_event_disable;
5158 		break;
5159 	case PERF_EVENT_IOC_RESET:
5160 		func = _perf_event_reset;
5161 		break;
5162 
5163 	case PERF_EVENT_IOC_REFRESH:
5164 		return _perf_event_refresh(event, arg);
5165 
5166 	case PERF_EVENT_IOC_PERIOD:
5167 		return perf_event_period(event, (u64 __user *)arg);
5168 
5169 	case PERF_EVENT_IOC_ID:
5170 	{
5171 		u64 id = primary_event_id(event);
5172 
5173 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5174 			return -EFAULT;
5175 		return 0;
5176 	}
5177 
5178 	case PERF_EVENT_IOC_SET_OUTPUT:
5179 	{
5180 		int ret;
5181 		if (arg != -1) {
5182 			struct perf_event *output_event;
5183 			struct fd output;
5184 			ret = perf_fget_light(arg, &output);
5185 			if (ret)
5186 				return ret;
5187 			output_event = output.file->private_data;
5188 			ret = perf_event_set_output(event, output_event);
5189 			fdput(output);
5190 		} else {
5191 			ret = perf_event_set_output(event, NULL);
5192 		}
5193 		return ret;
5194 	}
5195 
5196 	case PERF_EVENT_IOC_SET_FILTER:
5197 		return perf_event_set_filter(event, (void __user *)arg);
5198 
5199 	case PERF_EVENT_IOC_SET_BPF:
5200 		return perf_event_set_bpf_prog(event, arg);
5201 
5202 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5203 		struct ring_buffer *rb;
5204 
5205 		rcu_read_lock();
5206 		rb = rcu_dereference(event->rb);
5207 		if (!rb || !rb->nr_pages) {
5208 			rcu_read_unlock();
5209 			return -EINVAL;
5210 		}
5211 		rb_toggle_paused(rb, !!arg);
5212 		rcu_read_unlock();
5213 		return 0;
5214 	}
5215 
5216 	case PERF_EVENT_IOC_QUERY_BPF:
5217 		return perf_event_query_prog_array(event, (void __user *)arg);
5218 
5219 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5220 		struct perf_event_attr new_attr;
5221 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5222 					 &new_attr);
5223 
5224 		if (err)
5225 			return err;
5226 
5227 		return perf_event_modify_attr(event,  &new_attr);
5228 	}
5229 	default:
5230 		return -ENOTTY;
5231 	}
5232 
5233 	if (flags & PERF_IOC_FLAG_GROUP)
5234 		perf_event_for_each(event, func);
5235 	else
5236 		perf_event_for_each_child(event, func);
5237 
5238 	return 0;
5239 }
5240 
5241 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5242 {
5243 	struct perf_event *event = file->private_data;
5244 	struct perf_event_context *ctx;
5245 	long ret;
5246 
5247 	ctx = perf_event_ctx_lock(event);
5248 	ret = _perf_ioctl(event, cmd, arg);
5249 	perf_event_ctx_unlock(event, ctx);
5250 
5251 	return ret;
5252 }
5253 
5254 #ifdef CONFIG_COMPAT
5255 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5256 				unsigned long arg)
5257 {
5258 	switch (_IOC_NR(cmd)) {
5259 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5260 	case _IOC_NR(PERF_EVENT_IOC_ID):
5261 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5262 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5263 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5264 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5265 			cmd &= ~IOCSIZE_MASK;
5266 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5267 		}
5268 		break;
5269 	}
5270 	return perf_ioctl(file, cmd, arg);
5271 }
5272 #else
5273 # define perf_compat_ioctl NULL
5274 #endif
5275 
5276 int perf_event_task_enable(void)
5277 {
5278 	struct perf_event_context *ctx;
5279 	struct perf_event *event;
5280 
5281 	mutex_lock(&current->perf_event_mutex);
5282 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5283 		ctx = perf_event_ctx_lock(event);
5284 		perf_event_for_each_child(event, _perf_event_enable);
5285 		perf_event_ctx_unlock(event, ctx);
5286 	}
5287 	mutex_unlock(&current->perf_event_mutex);
5288 
5289 	return 0;
5290 }
5291 
5292 int perf_event_task_disable(void)
5293 {
5294 	struct perf_event_context *ctx;
5295 	struct perf_event *event;
5296 
5297 	mutex_lock(&current->perf_event_mutex);
5298 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5299 		ctx = perf_event_ctx_lock(event);
5300 		perf_event_for_each_child(event, _perf_event_disable);
5301 		perf_event_ctx_unlock(event, ctx);
5302 	}
5303 	mutex_unlock(&current->perf_event_mutex);
5304 
5305 	return 0;
5306 }
5307 
5308 static int perf_event_index(struct perf_event *event)
5309 {
5310 	if (event->hw.state & PERF_HES_STOPPED)
5311 		return 0;
5312 
5313 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5314 		return 0;
5315 
5316 	return event->pmu->event_idx(event);
5317 }
5318 
5319 static void calc_timer_values(struct perf_event *event,
5320 				u64 *now,
5321 				u64 *enabled,
5322 				u64 *running)
5323 {
5324 	u64 ctx_time;
5325 
5326 	*now = perf_clock();
5327 	ctx_time = event->shadow_ctx_time + *now;
5328 	__perf_update_times(event, ctx_time, enabled, running);
5329 }
5330 
5331 static void perf_event_init_userpage(struct perf_event *event)
5332 {
5333 	struct perf_event_mmap_page *userpg;
5334 	struct ring_buffer *rb;
5335 
5336 	rcu_read_lock();
5337 	rb = rcu_dereference(event->rb);
5338 	if (!rb)
5339 		goto unlock;
5340 
5341 	userpg = rb->user_page;
5342 
5343 	/* Allow new userspace to detect that bit 0 is deprecated */
5344 	userpg->cap_bit0_is_deprecated = 1;
5345 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5346 	userpg->data_offset = PAGE_SIZE;
5347 	userpg->data_size = perf_data_size(rb);
5348 
5349 unlock:
5350 	rcu_read_unlock();
5351 }
5352 
5353 void __weak arch_perf_update_userpage(
5354 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5355 {
5356 }
5357 
5358 /*
5359  * Callers need to ensure there can be no nesting of this function, otherwise
5360  * the seqlock logic goes bad. We can not serialize this because the arch
5361  * code calls this from NMI context.
5362  */
5363 void perf_event_update_userpage(struct perf_event *event)
5364 {
5365 	struct perf_event_mmap_page *userpg;
5366 	struct ring_buffer *rb;
5367 	u64 enabled, running, now;
5368 
5369 	rcu_read_lock();
5370 	rb = rcu_dereference(event->rb);
5371 	if (!rb)
5372 		goto unlock;
5373 
5374 	/*
5375 	 * compute total_time_enabled, total_time_running
5376 	 * based on snapshot values taken when the event
5377 	 * was last scheduled in.
5378 	 *
5379 	 * we cannot simply called update_context_time()
5380 	 * because of locking issue as we can be called in
5381 	 * NMI context
5382 	 */
5383 	calc_timer_values(event, &now, &enabled, &running);
5384 
5385 	userpg = rb->user_page;
5386 	/*
5387 	 * Disable preemption to guarantee consistent time stamps are stored to
5388 	 * the user page.
5389 	 */
5390 	preempt_disable();
5391 	++userpg->lock;
5392 	barrier();
5393 	userpg->index = perf_event_index(event);
5394 	userpg->offset = perf_event_count(event);
5395 	if (userpg->index)
5396 		userpg->offset -= local64_read(&event->hw.prev_count);
5397 
5398 	userpg->time_enabled = enabled +
5399 			atomic64_read(&event->child_total_time_enabled);
5400 
5401 	userpg->time_running = running +
5402 			atomic64_read(&event->child_total_time_running);
5403 
5404 	arch_perf_update_userpage(event, userpg, now);
5405 
5406 	barrier();
5407 	++userpg->lock;
5408 	preempt_enable();
5409 unlock:
5410 	rcu_read_unlock();
5411 }
5412 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5413 
5414 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5415 {
5416 	struct perf_event *event = vmf->vma->vm_file->private_data;
5417 	struct ring_buffer *rb;
5418 	vm_fault_t ret = VM_FAULT_SIGBUS;
5419 
5420 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5421 		if (vmf->pgoff == 0)
5422 			ret = 0;
5423 		return ret;
5424 	}
5425 
5426 	rcu_read_lock();
5427 	rb = rcu_dereference(event->rb);
5428 	if (!rb)
5429 		goto unlock;
5430 
5431 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5432 		goto unlock;
5433 
5434 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5435 	if (!vmf->page)
5436 		goto unlock;
5437 
5438 	get_page(vmf->page);
5439 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5440 	vmf->page->index   = vmf->pgoff;
5441 
5442 	ret = 0;
5443 unlock:
5444 	rcu_read_unlock();
5445 
5446 	return ret;
5447 }
5448 
5449 static void ring_buffer_attach(struct perf_event *event,
5450 			       struct ring_buffer *rb)
5451 {
5452 	struct ring_buffer *old_rb = NULL;
5453 	unsigned long flags;
5454 
5455 	if (event->rb) {
5456 		/*
5457 		 * Should be impossible, we set this when removing
5458 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5459 		 */
5460 		WARN_ON_ONCE(event->rcu_pending);
5461 
5462 		old_rb = event->rb;
5463 		spin_lock_irqsave(&old_rb->event_lock, flags);
5464 		list_del_rcu(&event->rb_entry);
5465 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5466 
5467 		event->rcu_batches = get_state_synchronize_rcu();
5468 		event->rcu_pending = 1;
5469 	}
5470 
5471 	if (rb) {
5472 		if (event->rcu_pending) {
5473 			cond_synchronize_rcu(event->rcu_batches);
5474 			event->rcu_pending = 0;
5475 		}
5476 
5477 		spin_lock_irqsave(&rb->event_lock, flags);
5478 		list_add_rcu(&event->rb_entry, &rb->event_list);
5479 		spin_unlock_irqrestore(&rb->event_lock, flags);
5480 	}
5481 
5482 	/*
5483 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5484 	 * before swizzling the event::rb pointer; if it's getting
5485 	 * unmapped, its aux_mmap_count will be 0 and it won't
5486 	 * restart. See the comment in __perf_pmu_output_stop().
5487 	 *
5488 	 * Data will inevitably be lost when set_output is done in
5489 	 * mid-air, but then again, whoever does it like this is
5490 	 * not in for the data anyway.
5491 	 */
5492 	if (has_aux(event))
5493 		perf_event_stop(event, 0);
5494 
5495 	rcu_assign_pointer(event->rb, rb);
5496 
5497 	if (old_rb) {
5498 		ring_buffer_put(old_rb);
5499 		/*
5500 		 * Since we detached before setting the new rb, so that we
5501 		 * could attach the new rb, we could have missed a wakeup.
5502 		 * Provide it now.
5503 		 */
5504 		wake_up_all(&event->waitq);
5505 	}
5506 }
5507 
5508 static void ring_buffer_wakeup(struct perf_event *event)
5509 {
5510 	struct ring_buffer *rb;
5511 
5512 	rcu_read_lock();
5513 	rb = rcu_dereference(event->rb);
5514 	if (rb) {
5515 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5516 			wake_up_all(&event->waitq);
5517 	}
5518 	rcu_read_unlock();
5519 }
5520 
5521 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5522 {
5523 	struct ring_buffer *rb;
5524 
5525 	rcu_read_lock();
5526 	rb = rcu_dereference(event->rb);
5527 	if (rb) {
5528 		if (!refcount_inc_not_zero(&rb->refcount))
5529 			rb = NULL;
5530 	}
5531 	rcu_read_unlock();
5532 
5533 	return rb;
5534 }
5535 
5536 void ring_buffer_put(struct ring_buffer *rb)
5537 {
5538 	if (!refcount_dec_and_test(&rb->refcount))
5539 		return;
5540 
5541 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5542 
5543 	call_rcu(&rb->rcu_head, rb_free_rcu);
5544 }
5545 
5546 static void perf_mmap_open(struct vm_area_struct *vma)
5547 {
5548 	struct perf_event *event = vma->vm_file->private_data;
5549 
5550 	atomic_inc(&event->mmap_count);
5551 	atomic_inc(&event->rb->mmap_count);
5552 
5553 	if (vma->vm_pgoff)
5554 		atomic_inc(&event->rb->aux_mmap_count);
5555 
5556 	if (event->pmu->event_mapped)
5557 		event->pmu->event_mapped(event, vma->vm_mm);
5558 }
5559 
5560 static void perf_pmu_output_stop(struct perf_event *event);
5561 
5562 /*
5563  * A buffer can be mmap()ed multiple times; either directly through the same
5564  * event, or through other events by use of perf_event_set_output().
5565  *
5566  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5567  * the buffer here, where we still have a VM context. This means we need
5568  * to detach all events redirecting to us.
5569  */
5570 static void perf_mmap_close(struct vm_area_struct *vma)
5571 {
5572 	struct perf_event *event = vma->vm_file->private_data;
5573 
5574 	struct ring_buffer *rb = ring_buffer_get(event);
5575 	struct user_struct *mmap_user = rb->mmap_user;
5576 	int mmap_locked = rb->mmap_locked;
5577 	unsigned long size = perf_data_size(rb);
5578 
5579 	if (event->pmu->event_unmapped)
5580 		event->pmu->event_unmapped(event, vma->vm_mm);
5581 
5582 	/*
5583 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5584 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5585 	 * serialize with perf_mmap here.
5586 	 */
5587 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5588 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5589 		/*
5590 		 * Stop all AUX events that are writing to this buffer,
5591 		 * so that we can free its AUX pages and corresponding PMU
5592 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5593 		 * they won't start any more (see perf_aux_output_begin()).
5594 		 */
5595 		perf_pmu_output_stop(event);
5596 
5597 		/* now it's safe to free the pages */
5598 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5599 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5600 
5601 		/* this has to be the last one */
5602 		rb_free_aux(rb);
5603 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5604 
5605 		mutex_unlock(&event->mmap_mutex);
5606 	}
5607 
5608 	atomic_dec(&rb->mmap_count);
5609 
5610 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5611 		goto out_put;
5612 
5613 	ring_buffer_attach(event, NULL);
5614 	mutex_unlock(&event->mmap_mutex);
5615 
5616 	/* If there's still other mmap()s of this buffer, we're done. */
5617 	if (atomic_read(&rb->mmap_count))
5618 		goto out_put;
5619 
5620 	/*
5621 	 * No other mmap()s, detach from all other events that might redirect
5622 	 * into the now unreachable buffer. Somewhat complicated by the
5623 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5624 	 */
5625 again:
5626 	rcu_read_lock();
5627 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5628 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5629 			/*
5630 			 * This event is en-route to free_event() which will
5631 			 * detach it and remove it from the list.
5632 			 */
5633 			continue;
5634 		}
5635 		rcu_read_unlock();
5636 
5637 		mutex_lock(&event->mmap_mutex);
5638 		/*
5639 		 * Check we didn't race with perf_event_set_output() which can
5640 		 * swizzle the rb from under us while we were waiting to
5641 		 * acquire mmap_mutex.
5642 		 *
5643 		 * If we find a different rb; ignore this event, a next
5644 		 * iteration will no longer find it on the list. We have to
5645 		 * still restart the iteration to make sure we're not now
5646 		 * iterating the wrong list.
5647 		 */
5648 		if (event->rb == rb)
5649 			ring_buffer_attach(event, NULL);
5650 
5651 		mutex_unlock(&event->mmap_mutex);
5652 		put_event(event);
5653 
5654 		/*
5655 		 * Restart the iteration; either we're on the wrong list or
5656 		 * destroyed its integrity by doing a deletion.
5657 		 */
5658 		goto again;
5659 	}
5660 	rcu_read_unlock();
5661 
5662 	/*
5663 	 * It could be there's still a few 0-ref events on the list; they'll
5664 	 * get cleaned up by free_event() -- they'll also still have their
5665 	 * ref on the rb and will free it whenever they are done with it.
5666 	 *
5667 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5668 	 * undo the VM accounting.
5669 	 */
5670 
5671 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5672 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5673 	free_uid(mmap_user);
5674 
5675 out_put:
5676 	ring_buffer_put(rb); /* could be last */
5677 }
5678 
5679 static const struct vm_operations_struct perf_mmap_vmops = {
5680 	.open		= perf_mmap_open,
5681 	.close		= perf_mmap_close, /* non mergeable */
5682 	.fault		= perf_mmap_fault,
5683 	.page_mkwrite	= perf_mmap_fault,
5684 };
5685 
5686 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5687 {
5688 	struct perf_event *event = file->private_data;
5689 	unsigned long user_locked, user_lock_limit;
5690 	struct user_struct *user = current_user();
5691 	unsigned long locked, lock_limit;
5692 	struct ring_buffer *rb = NULL;
5693 	unsigned long vma_size;
5694 	unsigned long nr_pages;
5695 	long user_extra = 0, extra = 0;
5696 	int ret = 0, flags = 0;
5697 
5698 	/*
5699 	 * Don't allow mmap() of inherited per-task counters. This would
5700 	 * create a performance issue due to all children writing to the
5701 	 * same rb.
5702 	 */
5703 	if (event->cpu == -1 && event->attr.inherit)
5704 		return -EINVAL;
5705 
5706 	if (!(vma->vm_flags & VM_SHARED))
5707 		return -EINVAL;
5708 
5709 	vma_size = vma->vm_end - vma->vm_start;
5710 
5711 	if (vma->vm_pgoff == 0) {
5712 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5713 	} else {
5714 		/*
5715 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5716 		 * mapped, all subsequent mappings should have the same size
5717 		 * and offset. Must be above the normal perf buffer.
5718 		 */
5719 		u64 aux_offset, aux_size;
5720 
5721 		if (!event->rb)
5722 			return -EINVAL;
5723 
5724 		nr_pages = vma_size / PAGE_SIZE;
5725 
5726 		mutex_lock(&event->mmap_mutex);
5727 		ret = -EINVAL;
5728 
5729 		rb = event->rb;
5730 		if (!rb)
5731 			goto aux_unlock;
5732 
5733 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5734 		aux_size = READ_ONCE(rb->user_page->aux_size);
5735 
5736 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5737 			goto aux_unlock;
5738 
5739 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5740 			goto aux_unlock;
5741 
5742 		/* already mapped with a different offset */
5743 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5744 			goto aux_unlock;
5745 
5746 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5747 			goto aux_unlock;
5748 
5749 		/* already mapped with a different size */
5750 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5751 			goto aux_unlock;
5752 
5753 		if (!is_power_of_2(nr_pages))
5754 			goto aux_unlock;
5755 
5756 		if (!atomic_inc_not_zero(&rb->mmap_count))
5757 			goto aux_unlock;
5758 
5759 		if (rb_has_aux(rb)) {
5760 			atomic_inc(&rb->aux_mmap_count);
5761 			ret = 0;
5762 			goto unlock;
5763 		}
5764 
5765 		atomic_set(&rb->aux_mmap_count, 1);
5766 		user_extra = nr_pages;
5767 
5768 		goto accounting;
5769 	}
5770 
5771 	/*
5772 	 * If we have rb pages ensure they're a power-of-two number, so we
5773 	 * can do bitmasks instead of modulo.
5774 	 */
5775 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5776 		return -EINVAL;
5777 
5778 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5779 		return -EINVAL;
5780 
5781 	WARN_ON_ONCE(event->ctx->parent_ctx);
5782 again:
5783 	mutex_lock(&event->mmap_mutex);
5784 	if (event->rb) {
5785 		if (event->rb->nr_pages != nr_pages) {
5786 			ret = -EINVAL;
5787 			goto unlock;
5788 		}
5789 
5790 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5791 			/*
5792 			 * Raced against perf_mmap_close() through
5793 			 * perf_event_set_output(). Try again, hope for better
5794 			 * luck.
5795 			 */
5796 			mutex_unlock(&event->mmap_mutex);
5797 			goto again;
5798 		}
5799 
5800 		goto unlock;
5801 	}
5802 
5803 	user_extra = nr_pages + 1;
5804 
5805 accounting:
5806 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5807 
5808 	/*
5809 	 * Increase the limit linearly with more CPUs:
5810 	 */
5811 	user_lock_limit *= num_online_cpus();
5812 
5813 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5814 
5815 	if (user_locked > user_lock_limit)
5816 		extra = user_locked - user_lock_limit;
5817 
5818 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5819 	lock_limit >>= PAGE_SHIFT;
5820 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5821 
5822 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5823 		!capable(CAP_IPC_LOCK)) {
5824 		ret = -EPERM;
5825 		goto unlock;
5826 	}
5827 
5828 	WARN_ON(!rb && event->rb);
5829 
5830 	if (vma->vm_flags & VM_WRITE)
5831 		flags |= RING_BUFFER_WRITABLE;
5832 
5833 	if (!rb) {
5834 		rb = rb_alloc(nr_pages,
5835 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5836 			      event->cpu, flags);
5837 
5838 		if (!rb) {
5839 			ret = -ENOMEM;
5840 			goto unlock;
5841 		}
5842 
5843 		atomic_set(&rb->mmap_count, 1);
5844 		rb->mmap_user = get_current_user();
5845 		rb->mmap_locked = extra;
5846 
5847 		ring_buffer_attach(event, rb);
5848 
5849 		perf_event_init_userpage(event);
5850 		perf_event_update_userpage(event);
5851 	} else {
5852 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5853 				   event->attr.aux_watermark, flags);
5854 		if (!ret)
5855 			rb->aux_mmap_locked = extra;
5856 	}
5857 
5858 unlock:
5859 	if (!ret) {
5860 		atomic_long_add(user_extra, &user->locked_vm);
5861 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5862 
5863 		atomic_inc(&event->mmap_count);
5864 	} else if (rb) {
5865 		atomic_dec(&rb->mmap_count);
5866 	}
5867 aux_unlock:
5868 	mutex_unlock(&event->mmap_mutex);
5869 
5870 	/*
5871 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5872 	 * vma.
5873 	 */
5874 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5875 	vma->vm_ops = &perf_mmap_vmops;
5876 
5877 	if (event->pmu->event_mapped)
5878 		event->pmu->event_mapped(event, vma->vm_mm);
5879 
5880 	return ret;
5881 }
5882 
5883 static int perf_fasync(int fd, struct file *filp, int on)
5884 {
5885 	struct inode *inode = file_inode(filp);
5886 	struct perf_event *event = filp->private_data;
5887 	int retval;
5888 
5889 	inode_lock(inode);
5890 	retval = fasync_helper(fd, filp, on, &event->fasync);
5891 	inode_unlock(inode);
5892 
5893 	if (retval < 0)
5894 		return retval;
5895 
5896 	return 0;
5897 }
5898 
5899 static const struct file_operations perf_fops = {
5900 	.llseek			= no_llseek,
5901 	.release		= perf_release,
5902 	.read			= perf_read,
5903 	.poll			= perf_poll,
5904 	.unlocked_ioctl		= perf_ioctl,
5905 	.compat_ioctl		= perf_compat_ioctl,
5906 	.mmap			= perf_mmap,
5907 	.fasync			= perf_fasync,
5908 };
5909 
5910 /*
5911  * Perf event wakeup
5912  *
5913  * If there's data, ensure we set the poll() state and publish everything
5914  * to user-space before waking everybody up.
5915  */
5916 
5917 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5918 {
5919 	/* only the parent has fasync state */
5920 	if (event->parent)
5921 		event = event->parent;
5922 	return &event->fasync;
5923 }
5924 
5925 void perf_event_wakeup(struct perf_event *event)
5926 {
5927 	ring_buffer_wakeup(event);
5928 
5929 	if (event->pending_kill) {
5930 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5931 		event->pending_kill = 0;
5932 	}
5933 }
5934 
5935 static void perf_pending_event_disable(struct perf_event *event)
5936 {
5937 	int cpu = READ_ONCE(event->pending_disable);
5938 
5939 	if (cpu < 0)
5940 		return;
5941 
5942 	if (cpu == smp_processor_id()) {
5943 		WRITE_ONCE(event->pending_disable, -1);
5944 		perf_event_disable_local(event);
5945 		return;
5946 	}
5947 
5948 	/*
5949 	 *  CPU-A			CPU-B
5950 	 *
5951 	 *  perf_event_disable_inatomic()
5952 	 *    @pending_disable = CPU-A;
5953 	 *    irq_work_queue();
5954 	 *
5955 	 *  sched-out
5956 	 *    @pending_disable = -1;
5957 	 *
5958 	 *				sched-in
5959 	 *				perf_event_disable_inatomic()
5960 	 *				  @pending_disable = CPU-B;
5961 	 *				  irq_work_queue(); // FAILS
5962 	 *
5963 	 *  irq_work_run()
5964 	 *    perf_pending_event()
5965 	 *
5966 	 * But the event runs on CPU-B and wants disabling there.
5967 	 */
5968 	irq_work_queue_on(&event->pending, cpu);
5969 }
5970 
5971 static void perf_pending_event(struct irq_work *entry)
5972 {
5973 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5974 	int rctx;
5975 
5976 	rctx = perf_swevent_get_recursion_context();
5977 	/*
5978 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5979 	 * and we won't recurse 'further'.
5980 	 */
5981 
5982 	perf_pending_event_disable(event);
5983 
5984 	if (event->pending_wakeup) {
5985 		event->pending_wakeup = 0;
5986 		perf_event_wakeup(event);
5987 	}
5988 
5989 	if (rctx >= 0)
5990 		perf_swevent_put_recursion_context(rctx);
5991 }
5992 
5993 /*
5994  * We assume there is only KVM supporting the callbacks.
5995  * Later on, we might change it to a list if there is
5996  * another virtualization implementation supporting the callbacks.
5997  */
5998 struct perf_guest_info_callbacks *perf_guest_cbs;
5999 
6000 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6001 {
6002 	perf_guest_cbs = cbs;
6003 	return 0;
6004 }
6005 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6006 
6007 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6008 {
6009 	perf_guest_cbs = NULL;
6010 	return 0;
6011 }
6012 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6013 
6014 static void
6015 perf_output_sample_regs(struct perf_output_handle *handle,
6016 			struct pt_regs *regs, u64 mask)
6017 {
6018 	int bit;
6019 	DECLARE_BITMAP(_mask, 64);
6020 
6021 	bitmap_from_u64(_mask, mask);
6022 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6023 		u64 val;
6024 
6025 		val = perf_reg_value(regs, bit);
6026 		perf_output_put(handle, val);
6027 	}
6028 }
6029 
6030 static void perf_sample_regs_user(struct perf_regs *regs_user,
6031 				  struct pt_regs *regs,
6032 				  struct pt_regs *regs_user_copy)
6033 {
6034 	if (user_mode(regs)) {
6035 		regs_user->abi = perf_reg_abi(current);
6036 		regs_user->regs = regs;
6037 	} else if (!(current->flags & PF_KTHREAD)) {
6038 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6039 	} else {
6040 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6041 		regs_user->regs = NULL;
6042 	}
6043 }
6044 
6045 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6046 				  struct pt_regs *regs)
6047 {
6048 	regs_intr->regs = regs;
6049 	regs_intr->abi  = perf_reg_abi(current);
6050 }
6051 
6052 
6053 /*
6054  * Get remaining task size from user stack pointer.
6055  *
6056  * It'd be better to take stack vma map and limit this more
6057  * precisly, but there's no way to get it safely under interrupt,
6058  * so using TASK_SIZE as limit.
6059  */
6060 static u64 perf_ustack_task_size(struct pt_regs *regs)
6061 {
6062 	unsigned long addr = perf_user_stack_pointer(regs);
6063 
6064 	if (!addr || addr >= TASK_SIZE)
6065 		return 0;
6066 
6067 	return TASK_SIZE - addr;
6068 }
6069 
6070 static u16
6071 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6072 			struct pt_regs *regs)
6073 {
6074 	u64 task_size;
6075 
6076 	/* No regs, no stack pointer, no dump. */
6077 	if (!regs)
6078 		return 0;
6079 
6080 	/*
6081 	 * Check if we fit in with the requested stack size into the:
6082 	 * - TASK_SIZE
6083 	 *   If we don't, we limit the size to the TASK_SIZE.
6084 	 *
6085 	 * - remaining sample size
6086 	 *   If we don't, we customize the stack size to
6087 	 *   fit in to the remaining sample size.
6088 	 */
6089 
6090 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6091 	stack_size = min(stack_size, (u16) task_size);
6092 
6093 	/* Current header size plus static size and dynamic size. */
6094 	header_size += 2 * sizeof(u64);
6095 
6096 	/* Do we fit in with the current stack dump size? */
6097 	if ((u16) (header_size + stack_size) < header_size) {
6098 		/*
6099 		 * If we overflow the maximum size for the sample,
6100 		 * we customize the stack dump size to fit in.
6101 		 */
6102 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6103 		stack_size = round_up(stack_size, sizeof(u64));
6104 	}
6105 
6106 	return stack_size;
6107 }
6108 
6109 static void
6110 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6111 			  struct pt_regs *regs)
6112 {
6113 	/* Case of a kernel thread, nothing to dump */
6114 	if (!regs) {
6115 		u64 size = 0;
6116 		perf_output_put(handle, size);
6117 	} else {
6118 		unsigned long sp;
6119 		unsigned int rem;
6120 		u64 dyn_size;
6121 		mm_segment_t fs;
6122 
6123 		/*
6124 		 * We dump:
6125 		 * static size
6126 		 *   - the size requested by user or the best one we can fit
6127 		 *     in to the sample max size
6128 		 * data
6129 		 *   - user stack dump data
6130 		 * dynamic size
6131 		 *   - the actual dumped size
6132 		 */
6133 
6134 		/* Static size. */
6135 		perf_output_put(handle, dump_size);
6136 
6137 		/* Data. */
6138 		sp = perf_user_stack_pointer(regs);
6139 		fs = get_fs();
6140 		set_fs(USER_DS);
6141 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6142 		set_fs(fs);
6143 		dyn_size = dump_size - rem;
6144 
6145 		perf_output_skip(handle, rem);
6146 
6147 		/* Dynamic size. */
6148 		perf_output_put(handle, dyn_size);
6149 	}
6150 }
6151 
6152 static void __perf_event_header__init_id(struct perf_event_header *header,
6153 					 struct perf_sample_data *data,
6154 					 struct perf_event *event)
6155 {
6156 	u64 sample_type = event->attr.sample_type;
6157 
6158 	data->type = sample_type;
6159 	header->size += event->id_header_size;
6160 
6161 	if (sample_type & PERF_SAMPLE_TID) {
6162 		/* namespace issues */
6163 		data->tid_entry.pid = perf_event_pid(event, current);
6164 		data->tid_entry.tid = perf_event_tid(event, current);
6165 	}
6166 
6167 	if (sample_type & PERF_SAMPLE_TIME)
6168 		data->time = perf_event_clock(event);
6169 
6170 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6171 		data->id = primary_event_id(event);
6172 
6173 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6174 		data->stream_id = event->id;
6175 
6176 	if (sample_type & PERF_SAMPLE_CPU) {
6177 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6178 		data->cpu_entry.reserved = 0;
6179 	}
6180 }
6181 
6182 void perf_event_header__init_id(struct perf_event_header *header,
6183 				struct perf_sample_data *data,
6184 				struct perf_event *event)
6185 {
6186 	if (event->attr.sample_id_all)
6187 		__perf_event_header__init_id(header, data, event);
6188 }
6189 
6190 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6191 					   struct perf_sample_data *data)
6192 {
6193 	u64 sample_type = data->type;
6194 
6195 	if (sample_type & PERF_SAMPLE_TID)
6196 		perf_output_put(handle, data->tid_entry);
6197 
6198 	if (sample_type & PERF_SAMPLE_TIME)
6199 		perf_output_put(handle, data->time);
6200 
6201 	if (sample_type & PERF_SAMPLE_ID)
6202 		perf_output_put(handle, data->id);
6203 
6204 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6205 		perf_output_put(handle, data->stream_id);
6206 
6207 	if (sample_type & PERF_SAMPLE_CPU)
6208 		perf_output_put(handle, data->cpu_entry);
6209 
6210 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6211 		perf_output_put(handle, data->id);
6212 }
6213 
6214 void perf_event__output_id_sample(struct perf_event *event,
6215 				  struct perf_output_handle *handle,
6216 				  struct perf_sample_data *sample)
6217 {
6218 	if (event->attr.sample_id_all)
6219 		__perf_event__output_id_sample(handle, sample);
6220 }
6221 
6222 static void perf_output_read_one(struct perf_output_handle *handle,
6223 				 struct perf_event *event,
6224 				 u64 enabled, u64 running)
6225 {
6226 	u64 read_format = event->attr.read_format;
6227 	u64 values[4];
6228 	int n = 0;
6229 
6230 	values[n++] = perf_event_count(event);
6231 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6232 		values[n++] = enabled +
6233 			atomic64_read(&event->child_total_time_enabled);
6234 	}
6235 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6236 		values[n++] = running +
6237 			atomic64_read(&event->child_total_time_running);
6238 	}
6239 	if (read_format & PERF_FORMAT_ID)
6240 		values[n++] = primary_event_id(event);
6241 
6242 	__output_copy(handle, values, n * sizeof(u64));
6243 }
6244 
6245 static void perf_output_read_group(struct perf_output_handle *handle,
6246 			    struct perf_event *event,
6247 			    u64 enabled, u64 running)
6248 {
6249 	struct perf_event *leader = event->group_leader, *sub;
6250 	u64 read_format = event->attr.read_format;
6251 	u64 values[5];
6252 	int n = 0;
6253 
6254 	values[n++] = 1 + leader->nr_siblings;
6255 
6256 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6257 		values[n++] = enabled;
6258 
6259 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6260 		values[n++] = running;
6261 
6262 	if ((leader != event) &&
6263 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6264 		leader->pmu->read(leader);
6265 
6266 	values[n++] = perf_event_count(leader);
6267 	if (read_format & PERF_FORMAT_ID)
6268 		values[n++] = primary_event_id(leader);
6269 
6270 	__output_copy(handle, values, n * sizeof(u64));
6271 
6272 	for_each_sibling_event(sub, leader) {
6273 		n = 0;
6274 
6275 		if ((sub != event) &&
6276 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6277 			sub->pmu->read(sub);
6278 
6279 		values[n++] = perf_event_count(sub);
6280 		if (read_format & PERF_FORMAT_ID)
6281 			values[n++] = primary_event_id(sub);
6282 
6283 		__output_copy(handle, values, n * sizeof(u64));
6284 	}
6285 }
6286 
6287 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6288 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6289 
6290 /*
6291  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6292  *
6293  * The problem is that its both hard and excessively expensive to iterate the
6294  * child list, not to mention that its impossible to IPI the children running
6295  * on another CPU, from interrupt/NMI context.
6296  */
6297 static void perf_output_read(struct perf_output_handle *handle,
6298 			     struct perf_event *event)
6299 {
6300 	u64 enabled = 0, running = 0, now;
6301 	u64 read_format = event->attr.read_format;
6302 
6303 	/*
6304 	 * compute total_time_enabled, total_time_running
6305 	 * based on snapshot values taken when the event
6306 	 * was last scheduled in.
6307 	 *
6308 	 * we cannot simply called update_context_time()
6309 	 * because of locking issue as we are called in
6310 	 * NMI context
6311 	 */
6312 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6313 		calc_timer_values(event, &now, &enabled, &running);
6314 
6315 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6316 		perf_output_read_group(handle, event, enabled, running);
6317 	else
6318 		perf_output_read_one(handle, event, enabled, running);
6319 }
6320 
6321 void perf_output_sample(struct perf_output_handle *handle,
6322 			struct perf_event_header *header,
6323 			struct perf_sample_data *data,
6324 			struct perf_event *event)
6325 {
6326 	u64 sample_type = data->type;
6327 
6328 	perf_output_put(handle, *header);
6329 
6330 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6331 		perf_output_put(handle, data->id);
6332 
6333 	if (sample_type & PERF_SAMPLE_IP)
6334 		perf_output_put(handle, data->ip);
6335 
6336 	if (sample_type & PERF_SAMPLE_TID)
6337 		perf_output_put(handle, data->tid_entry);
6338 
6339 	if (sample_type & PERF_SAMPLE_TIME)
6340 		perf_output_put(handle, data->time);
6341 
6342 	if (sample_type & PERF_SAMPLE_ADDR)
6343 		perf_output_put(handle, data->addr);
6344 
6345 	if (sample_type & PERF_SAMPLE_ID)
6346 		perf_output_put(handle, data->id);
6347 
6348 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6349 		perf_output_put(handle, data->stream_id);
6350 
6351 	if (sample_type & PERF_SAMPLE_CPU)
6352 		perf_output_put(handle, data->cpu_entry);
6353 
6354 	if (sample_type & PERF_SAMPLE_PERIOD)
6355 		perf_output_put(handle, data->period);
6356 
6357 	if (sample_type & PERF_SAMPLE_READ)
6358 		perf_output_read(handle, event);
6359 
6360 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6361 		int size = 1;
6362 
6363 		size += data->callchain->nr;
6364 		size *= sizeof(u64);
6365 		__output_copy(handle, data->callchain, size);
6366 	}
6367 
6368 	if (sample_type & PERF_SAMPLE_RAW) {
6369 		struct perf_raw_record *raw = data->raw;
6370 
6371 		if (raw) {
6372 			struct perf_raw_frag *frag = &raw->frag;
6373 
6374 			perf_output_put(handle, raw->size);
6375 			do {
6376 				if (frag->copy) {
6377 					__output_custom(handle, frag->copy,
6378 							frag->data, frag->size);
6379 				} else {
6380 					__output_copy(handle, frag->data,
6381 						      frag->size);
6382 				}
6383 				if (perf_raw_frag_last(frag))
6384 					break;
6385 				frag = frag->next;
6386 			} while (1);
6387 			if (frag->pad)
6388 				__output_skip(handle, NULL, frag->pad);
6389 		} else {
6390 			struct {
6391 				u32	size;
6392 				u32	data;
6393 			} raw = {
6394 				.size = sizeof(u32),
6395 				.data = 0,
6396 			};
6397 			perf_output_put(handle, raw);
6398 		}
6399 	}
6400 
6401 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6402 		if (data->br_stack) {
6403 			size_t size;
6404 
6405 			size = data->br_stack->nr
6406 			     * sizeof(struct perf_branch_entry);
6407 
6408 			perf_output_put(handle, data->br_stack->nr);
6409 			perf_output_copy(handle, data->br_stack->entries, size);
6410 		} else {
6411 			/*
6412 			 * we always store at least the value of nr
6413 			 */
6414 			u64 nr = 0;
6415 			perf_output_put(handle, nr);
6416 		}
6417 	}
6418 
6419 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6420 		u64 abi = data->regs_user.abi;
6421 
6422 		/*
6423 		 * If there are no regs to dump, notice it through
6424 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6425 		 */
6426 		perf_output_put(handle, abi);
6427 
6428 		if (abi) {
6429 			u64 mask = event->attr.sample_regs_user;
6430 			perf_output_sample_regs(handle,
6431 						data->regs_user.regs,
6432 						mask);
6433 		}
6434 	}
6435 
6436 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6437 		perf_output_sample_ustack(handle,
6438 					  data->stack_user_size,
6439 					  data->regs_user.regs);
6440 	}
6441 
6442 	if (sample_type & PERF_SAMPLE_WEIGHT)
6443 		perf_output_put(handle, data->weight);
6444 
6445 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6446 		perf_output_put(handle, data->data_src.val);
6447 
6448 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6449 		perf_output_put(handle, data->txn);
6450 
6451 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6452 		u64 abi = data->regs_intr.abi;
6453 		/*
6454 		 * If there are no regs to dump, notice it through
6455 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6456 		 */
6457 		perf_output_put(handle, abi);
6458 
6459 		if (abi) {
6460 			u64 mask = event->attr.sample_regs_intr;
6461 
6462 			perf_output_sample_regs(handle,
6463 						data->regs_intr.regs,
6464 						mask);
6465 		}
6466 	}
6467 
6468 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6469 		perf_output_put(handle, data->phys_addr);
6470 
6471 	if (!event->attr.watermark) {
6472 		int wakeup_events = event->attr.wakeup_events;
6473 
6474 		if (wakeup_events) {
6475 			struct ring_buffer *rb = handle->rb;
6476 			int events = local_inc_return(&rb->events);
6477 
6478 			if (events >= wakeup_events) {
6479 				local_sub(wakeup_events, &rb->events);
6480 				local_inc(&rb->wakeup);
6481 			}
6482 		}
6483 	}
6484 }
6485 
6486 static u64 perf_virt_to_phys(u64 virt)
6487 {
6488 	u64 phys_addr = 0;
6489 	struct page *p = NULL;
6490 
6491 	if (!virt)
6492 		return 0;
6493 
6494 	if (virt >= TASK_SIZE) {
6495 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6496 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6497 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6498 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6499 	} else {
6500 		/*
6501 		 * Walking the pages tables for user address.
6502 		 * Interrupts are disabled, so it prevents any tear down
6503 		 * of the page tables.
6504 		 * Try IRQ-safe __get_user_pages_fast first.
6505 		 * If failed, leave phys_addr as 0.
6506 		 */
6507 		if ((current->mm != NULL) &&
6508 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6509 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6510 
6511 		if (p)
6512 			put_page(p);
6513 	}
6514 
6515 	return phys_addr;
6516 }
6517 
6518 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6519 
6520 struct perf_callchain_entry *
6521 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6522 {
6523 	bool kernel = !event->attr.exclude_callchain_kernel;
6524 	bool user   = !event->attr.exclude_callchain_user;
6525 	/* Disallow cross-task user callchains. */
6526 	bool crosstask = event->ctx->task && event->ctx->task != current;
6527 	const u32 max_stack = event->attr.sample_max_stack;
6528 	struct perf_callchain_entry *callchain;
6529 
6530 	if (!kernel && !user)
6531 		return &__empty_callchain;
6532 
6533 	callchain = get_perf_callchain(regs, 0, kernel, user,
6534 				       max_stack, crosstask, true);
6535 	return callchain ?: &__empty_callchain;
6536 }
6537 
6538 void perf_prepare_sample(struct perf_event_header *header,
6539 			 struct perf_sample_data *data,
6540 			 struct perf_event *event,
6541 			 struct pt_regs *regs)
6542 {
6543 	u64 sample_type = event->attr.sample_type;
6544 
6545 	header->type = PERF_RECORD_SAMPLE;
6546 	header->size = sizeof(*header) + event->header_size;
6547 
6548 	header->misc = 0;
6549 	header->misc |= perf_misc_flags(regs);
6550 
6551 	__perf_event_header__init_id(header, data, event);
6552 
6553 	if (sample_type & PERF_SAMPLE_IP)
6554 		data->ip = perf_instruction_pointer(regs);
6555 
6556 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6557 		int size = 1;
6558 
6559 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6560 			data->callchain = perf_callchain(event, regs);
6561 
6562 		size += data->callchain->nr;
6563 
6564 		header->size += size * sizeof(u64);
6565 	}
6566 
6567 	if (sample_type & PERF_SAMPLE_RAW) {
6568 		struct perf_raw_record *raw = data->raw;
6569 		int size;
6570 
6571 		if (raw) {
6572 			struct perf_raw_frag *frag = &raw->frag;
6573 			u32 sum = 0;
6574 
6575 			do {
6576 				sum += frag->size;
6577 				if (perf_raw_frag_last(frag))
6578 					break;
6579 				frag = frag->next;
6580 			} while (1);
6581 
6582 			size = round_up(sum + sizeof(u32), sizeof(u64));
6583 			raw->size = size - sizeof(u32);
6584 			frag->pad = raw->size - sum;
6585 		} else {
6586 			size = sizeof(u64);
6587 		}
6588 
6589 		header->size += size;
6590 	}
6591 
6592 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6593 		int size = sizeof(u64); /* nr */
6594 		if (data->br_stack) {
6595 			size += data->br_stack->nr
6596 			      * sizeof(struct perf_branch_entry);
6597 		}
6598 		header->size += size;
6599 	}
6600 
6601 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6602 		perf_sample_regs_user(&data->regs_user, regs,
6603 				      &data->regs_user_copy);
6604 
6605 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6606 		/* regs dump ABI info */
6607 		int size = sizeof(u64);
6608 
6609 		if (data->regs_user.regs) {
6610 			u64 mask = event->attr.sample_regs_user;
6611 			size += hweight64(mask) * sizeof(u64);
6612 		}
6613 
6614 		header->size += size;
6615 	}
6616 
6617 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6618 		/*
6619 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6620 		 * processed as the last one or have additional check added
6621 		 * in case new sample type is added, because we could eat
6622 		 * up the rest of the sample size.
6623 		 */
6624 		u16 stack_size = event->attr.sample_stack_user;
6625 		u16 size = sizeof(u64);
6626 
6627 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6628 						     data->regs_user.regs);
6629 
6630 		/*
6631 		 * If there is something to dump, add space for the dump
6632 		 * itself and for the field that tells the dynamic size,
6633 		 * which is how many have been actually dumped.
6634 		 */
6635 		if (stack_size)
6636 			size += sizeof(u64) + stack_size;
6637 
6638 		data->stack_user_size = stack_size;
6639 		header->size += size;
6640 	}
6641 
6642 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6643 		/* regs dump ABI info */
6644 		int size = sizeof(u64);
6645 
6646 		perf_sample_regs_intr(&data->regs_intr, regs);
6647 
6648 		if (data->regs_intr.regs) {
6649 			u64 mask = event->attr.sample_regs_intr;
6650 
6651 			size += hweight64(mask) * sizeof(u64);
6652 		}
6653 
6654 		header->size += size;
6655 	}
6656 
6657 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6658 		data->phys_addr = perf_virt_to_phys(data->addr);
6659 }
6660 
6661 static __always_inline int
6662 __perf_event_output(struct perf_event *event,
6663 		    struct perf_sample_data *data,
6664 		    struct pt_regs *regs,
6665 		    int (*output_begin)(struct perf_output_handle *,
6666 					struct perf_event *,
6667 					unsigned int))
6668 {
6669 	struct perf_output_handle handle;
6670 	struct perf_event_header header;
6671 	int err;
6672 
6673 	/* protect the callchain buffers */
6674 	rcu_read_lock();
6675 
6676 	perf_prepare_sample(&header, data, event, regs);
6677 
6678 	err = output_begin(&handle, event, header.size);
6679 	if (err)
6680 		goto exit;
6681 
6682 	perf_output_sample(&handle, &header, data, event);
6683 
6684 	perf_output_end(&handle);
6685 
6686 exit:
6687 	rcu_read_unlock();
6688 	return err;
6689 }
6690 
6691 void
6692 perf_event_output_forward(struct perf_event *event,
6693 			 struct perf_sample_data *data,
6694 			 struct pt_regs *regs)
6695 {
6696 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6697 }
6698 
6699 void
6700 perf_event_output_backward(struct perf_event *event,
6701 			   struct perf_sample_data *data,
6702 			   struct pt_regs *regs)
6703 {
6704 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6705 }
6706 
6707 int
6708 perf_event_output(struct perf_event *event,
6709 		  struct perf_sample_data *data,
6710 		  struct pt_regs *regs)
6711 {
6712 	return __perf_event_output(event, data, regs, perf_output_begin);
6713 }
6714 
6715 /*
6716  * read event_id
6717  */
6718 
6719 struct perf_read_event {
6720 	struct perf_event_header	header;
6721 
6722 	u32				pid;
6723 	u32				tid;
6724 };
6725 
6726 static void
6727 perf_event_read_event(struct perf_event *event,
6728 			struct task_struct *task)
6729 {
6730 	struct perf_output_handle handle;
6731 	struct perf_sample_data sample;
6732 	struct perf_read_event read_event = {
6733 		.header = {
6734 			.type = PERF_RECORD_READ,
6735 			.misc = 0,
6736 			.size = sizeof(read_event) + event->read_size,
6737 		},
6738 		.pid = perf_event_pid(event, task),
6739 		.tid = perf_event_tid(event, task),
6740 	};
6741 	int ret;
6742 
6743 	perf_event_header__init_id(&read_event.header, &sample, event);
6744 	ret = perf_output_begin(&handle, event, read_event.header.size);
6745 	if (ret)
6746 		return;
6747 
6748 	perf_output_put(&handle, read_event);
6749 	perf_output_read(&handle, event);
6750 	perf_event__output_id_sample(event, &handle, &sample);
6751 
6752 	perf_output_end(&handle);
6753 }
6754 
6755 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6756 
6757 static void
6758 perf_iterate_ctx(struct perf_event_context *ctx,
6759 		   perf_iterate_f output,
6760 		   void *data, bool all)
6761 {
6762 	struct perf_event *event;
6763 
6764 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6765 		if (!all) {
6766 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6767 				continue;
6768 			if (!event_filter_match(event))
6769 				continue;
6770 		}
6771 
6772 		output(event, data);
6773 	}
6774 }
6775 
6776 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6777 {
6778 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6779 	struct perf_event *event;
6780 
6781 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6782 		/*
6783 		 * Skip events that are not fully formed yet; ensure that
6784 		 * if we observe event->ctx, both event and ctx will be
6785 		 * complete enough. See perf_install_in_context().
6786 		 */
6787 		if (!smp_load_acquire(&event->ctx))
6788 			continue;
6789 
6790 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6791 			continue;
6792 		if (!event_filter_match(event))
6793 			continue;
6794 		output(event, data);
6795 	}
6796 }
6797 
6798 /*
6799  * Iterate all events that need to receive side-band events.
6800  *
6801  * For new callers; ensure that account_pmu_sb_event() includes
6802  * your event, otherwise it might not get delivered.
6803  */
6804 static void
6805 perf_iterate_sb(perf_iterate_f output, void *data,
6806 	       struct perf_event_context *task_ctx)
6807 {
6808 	struct perf_event_context *ctx;
6809 	int ctxn;
6810 
6811 	rcu_read_lock();
6812 	preempt_disable();
6813 
6814 	/*
6815 	 * If we have task_ctx != NULL we only notify the task context itself.
6816 	 * The task_ctx is set only for EXIT events before releasing task
6817 	 * context.
6818 	 */
6819 	if (task_ctx) {
6820 		perf_iterate_ctx(task_ctx, output, data, false);
6821 		goto done;
6822 	}
6823 
6824 	perf_iterate_sb_cpu(output, data);
6825 
6826 	for_each_task_context_nr(ctxn) {
6827 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6828 		if (ctx)
6829 			perf_iterate_ctx(ctx, output, data, false);
6830 	}
6831 done:
6832 	preempt_enable();
6833 	rcu_read_unlock();
6834 }
6835 
6836 /*
6837  * Clear all file-based filters at exec, they'll have to be
6838  * re-instated when/if these objects are mmapped again.
6839  */
6840 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6841 {
6842 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6843 	struct perf_addr_filter *filter;
6844 	unsigned int restart = 0, count = 0;
6845 	unsigned long flags;
6846 
6847 	if (!has_addr_filter(event))
6848 		return;
6849 
6850 	raw_spin_lock_irqsave(&ifh->lock, flags);
6851 	list_for_each_entry(filter, &ifh->list, entry) {
6852 		if (filter->path.dentry) {
6853 			event->addr_filter_ranges[count].start = 0;
6854 			event->addr_filter_ranges[count].size = 0;
6855 			restart++;
6856 		}
6857 
6858 		count++;
6859 	}
6860 
6861 	if (restart)
6862 		event->addr_filters_gen++;
6863 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6864 
6865 	if (restart)
6866 		perf_event_stop(event, 1);
6867 }
6868 
6869 void perf_event_exec(void)
6870 {
6871 	struct perf_event_context *ctx;
6872 	int ctxn;
6873 
6874 	rcu_read_lock();
6875 	for_each_task_context_nr(ctxn) {
6876 		ctx = current->perf_event_ctxp[ctxn];
6877 		if (!ctx)
6878 			continue;
6879 
6880 		perf_event_enable_on_exec(ctxn);
6881 
6882 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6883 				   true);
6884 	}
6885 	rcu_read_unlock();
6886 }
6887 
6888 struct remote_output {
6889 	struct ring_buffer	*rb;
6890 	int			err;
6891 };
6892 
6893 static void __perf_event_output_stop(struct perf_event *event, void *data)
6894 {
6895 	struct perf_event *parent = event->parent;
6896 	struct remote_output *ro = data;
6897 	struct ring_buffer *rb = ro->rb;
6898 	struct stop_event_data sd = {
6899 		.event	= event,
6900 	};
6901 
6902 	if (!has_aux(event))
6903 		return;
6904 
6905 	if (!parent)
6906 		parent = event;
6907 
6908 	/*
6909 	 * In case of inheritance, it will be the parent that links to the
6910 	 * ring-buffer, but it will be the child that's actually using it.
6911 	 *
6912 	 * We are using event::rb to determine if the event should be stopped,
6913 	 * however this may race with ring_buffer_attach() (through set_output),
6914 	 * which will make us skip the event that actually needs to be stopped.
6915 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6916 	 * its rb pointer.
6917 	 */
6918 	if (rcu_dereference(parent->rb) == rb)
6919 		ro->err = __perf_event_stop(&sd);
6920 }
6921 
6922 static int __perf_pmu_output_stop(void *info)
6923 {
6924 	struct perf_event *event = info;
6925 	struct pmu *pmu = event->pmu;
6926 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6927 	struct remote_output ro = {
6928 		.rb	= event->rb,
6929 	};
6930 
6931 	rcu_read_lock();
6932 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6933 	if (cpuctx->task_ctx)
6934 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6935 				   &ro, false);
6936 	rcu_read_unlock();
6937 
6938 	return ro.err;
6939 }
6940 
6941 static void perf_pmu_output_stop(struct perf_event *event)
6942 {
6943 	struct perf_event *iter;
6944 	int err, cpu;
6945 
6946 restart:
6947 	rcu_read_lock();
6948 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6949 		/*
6950 		 * For per-CPU events, we need to make sure that neither they
6951 		 * nor their children are running; for cpu==-1 events it's
6952 		 * sufficient to stop the event itself if it's active, since
6953 		 * it can't have children.
6954 		 */
6955 		cpu = iter->cpu;
6956 		if (cpu == -1)
6957 			cpu = READ_ONCE(iter->oncpu);
6958 
6959 		if (cpu == -1)
6960 			continue;
6961 
6962 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6963 		if (err == -EAGAIN) {
6964 			rcu_read_unlock();
6965 			goto restart;
6966 		}
6967 	}
6968 	rcu_read_unlock();
6969 }
6970 
6971 /*
6972  * task tracking -- fork/exit
6973  *
6974  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6975  */
6976 
6977 struct perf_task_event {
6978 	struct task_struct		*task;
6979 	struct perf_event_context	*task_ctx;
6980 
6981 	struct {
6982 		struct perf_event_header	header;
6983 
6984 		u32				pid;
6985 		u32				ppid;
6986 		u32				tid;
6987 		u32				ptid;
6988 		u64				time;
6989 	} event_id;
6990 };
6991 
6992 static int perf_event_task_match(struct perf_event *event)
6993 {
6994 	return event->attr.comm  || event->attr.mmap ||
6995 	       event->attr.mmap2 || event->attr.mmap_data ||
6996 	       event->attr.task;
6997 }
6998 
6999 static void perf_event_task_output(struct perf_event *event,
7000 				   void *data)
7001 {
7002 	struct perf_task_event *task_event = data;
7003 	struct perf_output_handle handle;
7004 	struct perf_sample_data	sample;
7005 	struct task_struct *task = task_event->task;
7006 	int ret, size = task_event->event_id.header.size;
7007 
7008 	if (!perf_event_task_match(event))
7009 		return;
7010 
7011 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7012 
7013 	ret = perf_output_begin(&handle, event,
7014 				task_event->event_id.header.size);
7015 	if (ret)
7016 		goto out;
7017 
7018 	task_event->event_id.pid = perf_event_pid(event, task);
7019 	task_event->event_id.ppid = perf_event_pid(event, current);
7020 
7021 	task_event->event_id.tid = perf_event_tid(event, task);
7022 	task_event->event_id.ptid = perf_event_tid(event, current);
7023 
7024 	task_event->event_id.time = perf_event_clock(event);
7025 
7026 	perf_output_put(&handle, task_event->event_id);
7027 
7028 	perf_event__output_id_sample(event, &handle, &sample);
7029 
7030 	perf_output_end(&handle);
7031 out:
7032 	task_event->event_id.header.size = size;
7033 }
7034 
7035 static void perf_event_task(struct task_struct *task,
7036 			      struct perf_event_context *task_ctx,
7037 			      int new)
7038 {
7039 	struct perf_task_event task_event;
7040 
7041 	if (!atomic_read(&nr_comm_events) &&
7042 	    !atomic_read(&nr_mmap_events) &&
7043 	    !atomic_read(&nr_task_events))
7044 		return;
7045 
7046 	task_event = (struct perf_task_event){
7047 		.task	  = task,
7048 		.task_ctx = task_ctx,
7049 		.event_id    = {
7050 			.header = {
7051 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7052 				.misc = 0,
7053 				.size = sizeof(task_event.event_id),
7054 			},
7055 			/* .pid  */
7056 			/* .ppid */
7057 			/* .tid  */
7058 			/* .ptid */
7059 			/* .time */
7060 		},
7061 	};
7062 
7063 	perf_iterate_sb(perf_event_task_output,
7064 		       &task_event,
7065 		       task_ctx);
7066 }
7067 
7068 void perf_event_fork(struct task_struct *task)
7069 {
7070 	perf_event_task(task, NULL, 1);
7071 	perf_event_namespaces(task);
7072 }
7073 
7074 /*
7075  * comm tracking
7076  */
7077 
7078 struct perf_comm_event {
7079 	struct task_struct	*task;
7080 	char			*comm;
7081 	int			comm_size;
7082 
7083 	struct {
7084 		struct perf_event_header	header;
7085 
7086 		u32				pid;
7087 		u32				tid;
7088 	} event_id;
7089 };
7090 
7091 static int perf_event_comm_match(struct perf_event *event)
7092 {
7093 	return event->attr.comm;
7094 }
7095 
7096 static void perf_event_comm_output(struct perf_event *event,
7097 				   void *data)
7098 {
7099 	struct perf_comm_event *comm_event = data;
7100 	struct perf_output_handle handle;
7101 	struct perf_sample_data sample;
7102 	int size = comm_event->event_id.header.size;
7103 	int ret;
7104 
7105 	if (!perf_event_comm_match(event))
7106 		return;
7107 
7108 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7109 	ret = perf_output_begin(&handle, event,
7110 				comm_event->event_id.header.size);
7111 
7112 	if (ret)
7113 		goto out;
7114 
7115 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7116 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7117 
7118 	perf_output_put(&handle, comm_event->event_id);
7119 	__output_copy(&handle, comm_event->comm,
7120 				   comm_event->comm_size);
7121 
7122 	perf_event__output_id_sample(event, &handle, &sample);
7123 
7124 	perf_output_end(&handle);
7125 out:
7126 	comm_event->event_id.header.size = size;
7127 }
7128 
7129 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7130 {
7131 	char comm[TASK_COMM_LEN];
7132 	unsigned int size;
7133 
7134 	memset(comm, 0, sizeof(comm));
7135 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7136 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7137 
7138 	comm_event->comm = comm;
7139 	comm_event->comm_size = size;
7140 
7141 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7142 
7143 	perf_iterate_sb(perf_event_comm_output,
7144 		       comm_event,
7145 		       NULL);
7146 }
7147 
7148 void perf_event_comm(struct task_struct *task, bool exec)
7149 {
7150 	struct perf_comm_event comm_event;
7151 
7152 	if (!atomic_read(&nr_comm_events))
7153 		return;
7154 
7155 	comm_event = (struct perf_comm_event){
7156 		.task	= task,
7157 		/* .comm      */
7158 		/* .comm_size */
7159 		.event_id  = {
7160 			.header = {
7161 				.type = PERF_RECORD_COMM,
7162 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7163 				/* .size */
7164 			},
7165 			/* .pid */
7166 			/* .tid */
7167 		},
7168 	};
7169 
7170 	perf_event_comm_event(&comm_event);
7171 }
7172 
7173 /*
7174  * namespaces tracking
7175  */
7176 
7177 struct perf_namespaces_event {
7178 	struct task_struct		*task;
7179 
7180 	struct {
7181 		struct perf_event_header	header;
7182 
7183 		u32				pid;
7184 		u32				tid;
7185 		u64				nr_namespaces;
7186 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7187 	} event_id;
7188 };
7189 
7190 static int perf_event_namespaces_match(struct perf_event *event)
7191 {
7192 	return event->attr.namespaces;
7193 }
7194 
7195 static void perf_event_namespaces_output(struct perf_event *event,
7196 					 void *data)
7197 {
7198 	struct perf_namespaces_event *namespaces_event = data;
7199 	struct perf_output_handle handle;
7200 	struct perf_sample_data sample;
7201 	u16 header_size = namespaces_event->event_id.header.size;
7202 	int ret;
7203 
7204 	if (!perf_event_namespaces_match(event))
7205 		return;
7206 
7207 	perf_event_header__init_id(&namespaces_event->event_id.header,
7208 				   &sample, event);
7209 	ret = perf_output_begin(&handle, event,
7210 				namespaces_event->event_id.header.size);
7211 	if (ret)
7212 		goto out;
7213 
7214 	namespaces_event->event_id.pid = perf_event_pid(event,
7215 							namespaces_event->task);
7216 	namespaces_event->event_id.tid = perf_event_tid(event,
7217 							namespaces_event->task);
7218 
7219 	perf_output_put(&handle, namespaces_event->event_id);
7220 
7221 	perf_event__output_id_sample(event, &handle, &sample);
7222 
7223 	perf_output_end(&handle);
7224 out:
7225 	namespaces_event->event_id.header.size = header_size;
7226 }
7227 
7228 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7229 				   struct task_struct *task,
7230 				   const struct proc_ns_operations *ns_ops)
7231 {
7232 	struct path ns_path;
7233 	struct inode *ns_inode;
7234 	void *error;
7235 
7236 	error = ns_get_path(&ns_path, task, ns_ops);
7237 	if (!error) {
7238 		ns_inode = ns_path.dentry->d_inode;
7239 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7240 		ns_link_info->ino = ns_inode->i_ino;
7241 		path_put(&ns_path);
7242 	}
7243 }
7244 
7245 void perf_event_namespaces(struct task_struct *task)
7246 {
7247 	struct perf_namespaces_event namespaces_event;
7248 	struct perf_ns_link_info *ns_link_info;
7249 
7250 	if (!atomic_read(&nr_namespaces_events))
7251 		return;
7252 
7253 	namespaces_event = (struct perf_namespaces_event){
7254 		.task	= task,
7255 		.event_id  = {
7256 			.header = {
7257 				.type = PERF_RECORD_NAMESPACES,
7258 				.misc = 0,
7259 				.size = sizeof(namespaces_event.event_id),
7260 			},
7261 			/* .pid */
7262 			/* .tid */
7263 			.nr_namespaces = NR_NAMESPACES,
7264 			/* .link_info[NR_NAMESPACES] */
7265 		},
7266 	};
7267 
7268 	ns_link_info = namespaces_event.event_id.link_info;
7269 
7270 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7271 			       task, &mntns_operations);
7272 
7273 #ifdef CONFIG_USER_NS
7274 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7275 			       task, &userns_operations);
7276 #endif
7277 #ifdef CONFIG_NET_NS
7278 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7279 			       task, &netns_operations);
7280 #endif
7281 #ifdef CONFIG_UTS_NS
7282 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7283 			       task, &utsns_operations);
7284 #endif
7285 #ifdef CONFIG_IPC_NS
7286 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7287 			       task, &ipcns_operations);
7288 #endif
7289 #ifdef CONFIG_PID_NS
7290 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7291 			       task, &pidns_operations);
7292 #endif
7293 #ifdef CONFIG_CGROUPS
7294 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7295 			       task, &cgroupns_operations);
7296 #endif
7297 
7298 	perf_iterate_sb(perf_event_namespaces_output,
7299 			&namespaces_event,
7300 			NULL);
7301 }
7302 
7303 /*
7304  * mmap tracking
7305  */
7306 
7307 struct perf_mmap_event {
7308 	struct vm_area_struct	*vma;
7309 
7310 	const char		*file_name;
7311 	int			file_size;
7312 	int			maj, min;
7313 	u64			ino;
7314 	u64			ino_generation;
7315 	u32			prot, flags;
7316 
7317 	struct {
7318 		struct perf_event_header	header;
7319 
7320 		u32				pid;
7321 		u32				tid;
7322 		u64				start;
7323 		u64				len;
7324 		u64				pgoff;
7325 	} event_id;
7326 };
7327 
7328 static int perf_event_mmap_match(struct perf_event *event,
7329 				 void *data)
7330 {
7331 	struct perf_mmap_event *mmap_event = data;
7332 	struct vm_area_struct *vma = mmap_event->vma;
7333 	int executable = vma->vm_flags & VM_EXEC;
7334 
7335 	return (!executable && event->attr.mmap_data) ||
7336 	       (executable && (event->attr.mmap || event->attr.mmap2));
7337 }
7338 
7339 static void perf_event_mmap_output(struct perf_event *event,
7340 				   void *data)
7341 {
7342 	struct perf_mmap_event *mmap_event = data;
7343 	struct perf_output_handle handle;
7344 	struct perf_sample_data sample;
7345 	int size = mmap_event->event_id.header.size;
7346 	u32 type = mmap_event->event_id.header.type;
7347 	int ret;
7348 
7349 	if (!perf_event_mmap_match(event, data))
7350 		return;
7351 
7352 	if (event->attr.mmap2) {
7353 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7354 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7355 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7356 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7357 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7358 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7359 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7360 	}
7361 
7362 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7363 	ret = perf_output_begin(&handle, event,
7364 				mmap_event->event_id.header.size);
7365 	if (ret)
7366 		goto out;
7367 
7368 	mmap_event->event_id.pid = perf_event_pid(event, current);
7369 	mmap_event->event_id.tid = perf_event_tid(event, current);
7370 
7371 	perf_output_put(&handle, mmap_event->event_id);
7372 
7373 	if (event->attr.mmap2) {
7374 		perf_output_put(&handle, mmap_event->maj);
7375 		perf_output_put(&handle, mmap_event->min);
7376 		perf_output_put(&handle, mmap_event->ino);
7377 		perf_output_put(&handle, mmap_event->ino_generation);
7378 		perf_output_put(&handle, mmap_event->prot);
7379 		perf_output_put(&handle, mmap_event->flags);
7380 	}
7381 
7382 	__output_copy(&handle, mmap_event->file_name,
7383 				   mmap_event->file_size);
7384 
7385 	perf_event__output_id_sample(event, &handle, &sample);
7386 
7387 	perf_output_end(&handle);
7388 out:
7389 	mmap_event->event_id.header.size = size;
7390 	mmap_event->event_id.header.type = type;
7391 }
7392 
7393 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7394 {
7395 	struct vm_area_struct *vma = mmap_event->vma;
7396 	struct file *file = vma->vm_file;
7397 	int maj = 0, min = 0;
7398 	u64 ino = 0, gen = 0;
7399 	u32 prot = 0, flags = 0;
7400 	unsigned int size;
7401 	char tmp[16];
7402 	char *buf = NULL;
7403 	char *name;
7404 
7405 	if (vma->vm_flags & VM_READ)
7406 		prot |= PROT_READ;
7407 	if (vma->vm_flags & VM_WRITE)
7408 		prot |= PROT_WRITE;
7409 	if (vma->vm_flags & VM_EXEC)
7410 		prot |= PROT_EXEC;
7411 
7412 	if (vma->vm_flags & VM_MAYSHARE)
7413 		flags = MAP_SHARED;
7414 	else
7415 		flags = MAP_PRIVATE;
7416 
7417 	if (vma->vm_flags & VM_DENYWRITE)
7418 		flags |= MAP_DENYWRITE;
7419 	if (vma->vm_flags & VM_MAYEXEC)
7420 		flags |= MAP_EXECUTABLE;
7421 	if (vma->vm_flags & VM_LOCKED)
7422 		flags |= MAP_LOCKED;
7423 	if (vma->vm_flags & VM_HUGETLB)
7424 		flags |= MAP_HUGETLB;
7425 
7426 	if (file) {
7427 		struct inode *inode;
7428 		dev_t dev;
7429 
7430 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7431 		if (!buf) {
7432 			name = "//enomem";
7433 			goto cpy_name;
7434 		}
7435 		/*
7436 		 * d_path() works from the end of the rb backwards, so we
7437 		 * need to add enough zero bytes after the string to handle
7438 		 * the 64bit alignment we do later.
7439 		 */
7440 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7441 		if (IS_ERR(name)) {
7442 			name = "//toolong";
7443 			goto cpy_name;
7444 		}
7445 		inode = file_inode(vma->vm_file);
7446 		dev = inode->i_sb->s_dev;
7447 		ino = inode->i_ino;
7448 		gen = inode->i_generation;
7449 		maj = MAJOR(dev);
7450 		min = MINOR(dev);
7451 
7452 		goto got_name;
7453 	} else {
7454 		if (vma->vm_ops && vma->vm_ops->name) {
7455 			name = (char *) vma->vm_ops->name(vma);
7456 			if (name)
7457 				goto cpy_name;
7458 		}
7459 
7460 		name = (char *)arch_vma_name(vma);
7461 		if (name)
7462 			goto cpy_name;
7463 
7464 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7465 				vma->vm_end >= vma->vm_mm->brk) {
7466 			name = "[heap]";
7467 			goto cpy_name;
7468 		}
7469 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7470 				vma->vm_end >= vma->vm_mm->start_stack) {
7471 			name = "[stack]";
7472 			goto cpy_name;
7473 		}
7474 
7475 		name = "//anon";
7476 		goto cpy_name;
7477 	}
7478 
7479 cpy_name:
7480 	strlcpy(tmp, name, sizeof(tmp));
7481 	name = tmp;
7482 got_name:
7483 	/*
7484 	 * Since our buffer works in 8 byte units we need to align our string
7485 	 * size to a multiple of 8. However, we must guarantee the tail end is
7486 	 * zero'd out to avoid leaking random bits to userspace.
7487 	 */
7488 	size = strlen(name)+1;
7489 	while (!IS_ALIGNED(size, sizeof(u64)))
7490 		name[size++] = '\0';
7491 
7492 	mmap_event->file_name = name;
7493 	mmap_event->file_size = size;
7494 	mmap_event->maj = maj;
7495 	mmap_event->min = min;
7496 	mmap_event->ino = ino;
7497 	mmap_event->ino_generation = gen;
7498 	mmap_event->prot = prot;
7499 	mmap_event->flags = flags;
7500 
7501 	if (!(vma->vm_flags & VM_EXEC))
7502 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7503 
7504 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7505 
7506 	perf_iterate_sb(perf_event_mmap_output,
7507 		       mmap_event,
7508 		       NULL);
7509 
7510 	kfree(buf);
7511 }
7512 
7513 /*
7514  * Check whether inode and address range match filter criteria.
7515  */
7516 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7517 				     struct file *file, unsigned long offset,
7518 				     unsigned long size)
7519 {
7520 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7521 	if (!filter->path.dentry)
7522 		return false;
7523 
7524 	if (d_inode(filter->path.dentry) != file_inode(file))
7525 		return false;
7526 
7527 	if (filter->offset > offset + size)
7528 		return false;
7529 
7530 	if (filter->offset + filter->size < offset)
7531 		return false;
7532 
7533 	return true;
7534 }
7535 
7536 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7537 					struct vm_area_struct *vma,
7538 					struct perf_addr_filter_range *fr)
7539 {
7540 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7541 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7542 	struct file *file = vma->vm_file;
7543 
7544 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7545 		return false;
7546 
7547 	if (filter->offset < off) {
7548 		fr->start = vma->vm_start;
7549 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7550 	} else {
7551 		fr->start = vma->vm_start + filter->offset - off;
7552 		fr->size = min(vma->vm_end - fr->start, filter->size);
7553 	}
7554 
7555 	return true;
7556 }
7557 
7558 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7559 {
7560 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7561 	struct vm_area_struct *vma = data;
7562 	struct perf_addr_filter *filter;
7563 	unsigned int restart = 0, count = 0;
7564 	unsigned long flags;
7565 
7566 	if (!has_addr_filter(event))
7567 		return;
7568 
7569 	if (!vma->vm_file)
7570 		return;
7571 
7572 	raw_spin_lock_irqsave(&ifh->lock, flags);
7573 	list_for_each_entry(filter, &ifh->list, entry) {
7574 		if (perf_addr_filter_vma_adjust(filter, vma,
7575 						&event->addr_filter_ranges[count]))
7576 			restart++;
7577 
7578 		count++;
7579 	}
7580 
7581 	if (restart)
7582 		event->addr_filters_gen++;
7583 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7584 
7585 	if (restart)
7586 		perf_event_stop(event, 1);
7587 }
7588 
7589 /*
7590  * Adjust all task's events' filters to the new vma
7591  */
7592 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7593 {
7594 	struct perf_event_context *ctx;
7595 	int ctxn;
7596 
7597 	/*
7598 	 * Data tracing isn't supported yet and as such there is no need
7599 	 * to keep track of anything that isn't related to executable code:
7600 	 */
7601 	if (!(vma->vm_flags & VM_EXEC))
7602 		return;
7603 
7604 	rcu_read_lock();
7605 	for_each_task_context_nr(ctxn) {
7606 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7607 		if (!ctx)
7608 			continue;
7609 
7610 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7611 	}
7612 	rcu_read_unlock();
7613 }
7614 
7615 void perf_event_mmap(struct vm_area_struct *vma)
7616 {
7617 	struct perf_mmap_event mmap_event;
7618 
7619 	if (!atomic_read(&nr_mmap_events))
7620 		return;
7621 
7622 	mmap_event = (struct perf_mmap_event){
7623 		.vma	= vma,
7624 		/* .file_name */
7625 		/* .file_size */
7626 		.event_id  = {
7627 			.header = {
7628 				.type = PERF_RECORD_MMAP,
7629 				.misc = PERF_RECORD_MISC_USER,
7630 				/* .size */
7631 			},
7632 			/* .pid */
7633 			/* .tid */
7634 			.start  = vma->vm_start,
7635 			.len    = vma->vm_end - vma->vm_start,
7636 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7637 		},
7638 		/* .maj (attr_mmap2 only) */
7639 		/* .min (attr_mmap2 only) */
7640 		/* .ino (attr_mmap2 only) */
7641 		/* .ino_generation (attr_mmap2 only) */
7642 		/* .prot (attr_mmap2 only) */
7643 		/* .flags (attr_mmap2 only) */
7644 	};
7645 
7646 	perf_addr_filters_adjust(vma);
7647 	perf_event_mmap_event(&mmap_event);
7648 }
7649 
7650 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7651 			  unsigned long size, u64 flags)
7652 {
7653 	struct perf_output_handle handle;
7654 	struct perf_sample_data sample;
7655 	struct perf_aux_event {
7656 		struct perf_event_header	header;
7657 		u64				offset;
7658 		u64				size;
7659 		u64				flags;
7660 	} rec = {
7661 		.header = {
7662 			.type = PERF_RECORD_AUX,
7663 			.misc = 0,
7664 			.size = sizeof(rec),
7665 		},
7666 		.offset		= head,
7667 		.size		= size,
7668 		.flags		= flags,
7669 	};
7670 	int ret;
7671 
7672 	perf_event_header__init_id(&rec.header, &sample, event);
7673 	ret = perf_output_begin(&handle, event, rec.header.size);
7674 
7675 	if (ret)
7676 		return;
7677 
7678 	perf_output_put(&handle, rec);
7679 	perf_event__output_id_sample(event, &handle, &sample);
7680 
7681 	perf_output_end(&handle);
7682 }
7683 
7684 /*
7685  * Lost/dropped samples logging
7686  */
7687 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7688 {
7689 	struct perf_output_handle handle;
7690 	struct perf_sample_data sample;
7691 	int ret;
7692 
7693 	struct {
7694 		struct perf_event_header	header;
7695 		u64				lost;
7696 	} lost_samples_event = {
7697 		.header = {
7698 			.type = PERF_RECORD_LOST_SAMPLES,
7699 			.misc = 0,
7700 			.size = sizeof(lost_samples_event),
7701 		},
7702 		.lost		= lost,
7703 	};
7704 
7705 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7706 
7707 	ret = perf_output_begin(&handle, event,
7708 				lost_samples_event.header.size);
7709 	if (ret)
7710 		return;
7711 
7712 	perf_output_put(&handle, lost_samples_event);
7713 	perf_event__output_id_sample(event, &handle, &sample);
7714 	perf_output_end(&handle);
7715 }
7716 
7717 /*
7718  * context_switch tracking
7719  */
7720 
7721 struct perf_switch_event {
7722 	struct task_struct	*task;
7723 	struct task_struct	*next_prev;
7724 
7725 	struct {
7726 		struct perf_event_header	header;
7727 		u32				next_prev_pid;
7728 		u32				next_prev_tid;
7729 	} event_id;
7730 };
7731 
7732 static int perf_event_switch_match(struct perf_event *event)
7733 {
7734 	return event->attr.context_switch;
7735 }
7736 
7737 static void perf_event_switch_output(struct perf_event *event, void *data)
7738 {
7739 	struct perf_switch_event *se = data;
7740 	struct perf_output_handle handle;
7741 	struct perf_sample_data sample;
7742 	int ret;
7743 
7744 	if (!perf_event_switch_match(event))
7745 		return;
7746 
7747 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7748 	if (event->ctx->task) {
7749 		se->event_id.header.type = PERF_RECORD_SWITCH;
7750 		se->event_id.header.size = sizeof(se->event_id.header);
7751 	} else {
7752 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7753 		se->event_id.header.size = sizeof(se->event_id);
7754 		se->event_id.next_prev_pid =
7755 					perf_event_pid(event, se->next_prev);
7756 		se->event_id.next_prev_tid =
7757 					perf_event_tid(event, se->next_prev);
7758 	}
7759 
7760 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7761 
7762 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7763 	if (ret)
7764 		return;
7765 
7766 	if (event->ctx->task)
7767 		perf_output_put(&handle, se->event_id.header);
7768 	else
7769 		perf_output_put(&handle, se->event_id);
7770 
7771 	perf_event__output_id_sample(event, &handle, &sample);
7772 
7773 	perf_output_end(&handle);
7774 }
7775 
7776 static void perf_event_switch(struct task_struct *task,
7777 			      struct task_struct *next_prev, bool sched_in)
7778 {
7779 	struct perf_switch_event switch_event;
7780 
7781 	/* N.B. caller checks nr_switch_events != 0 */
7782 
7783 	switch_event = (struct perf_switch_event){
7784 		.task		= task,
7785 		.next_prev	= next_prev,
7786 		.event_id	= {
7787 			.header = {
7788 				/* .type */
7789 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7790 				/* .size */
7791 			},
7792 			/* .next_prev_pid */
7793 			/* .next_prev_tid */
7794 		},
7795 	};
7796 
7797 	if (!sched_in && task->state == TASK_RUNNING)
7798 		switch_event.event_id.header.misc |=
7799 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7800 
7801 	perf_iterate_sb(perf_event_switch_output,
7802 		       &switch_event,
7803 		       NULL);
7804 }
7805 
7806 /*
7807  * IRQ throttle logging
7808  */
7809 
7810 static void perf_log_throttle(struct perf_event *event, int enable)
7811 {
7812 	struct perf_output_handle handle;
7813 	struct perf_sample_data sample;
7814 	int ret;
7815 
7816 	struct {
7817 		struct perf_event_header	header;
7818 		u64				time;
7819 		u64				id;
7820 		u64				stream_id;
7821 	} throttle_event = {
7822 		.header = {
7823 			.type = PERF_RECORD_THROTTLE,
7824 			.misc = 0,
7825 			.size = sizeof(throttle_event),
7826 		},
7827 		.time		= perf_event_clock(event),
7828 		.id		= primary_event_id(event),
7829 		.stream_id	= event->id,
7830 	};
7831 
7832 	if (enable)
7833 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7834 
7835 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7836 
7837 	ret = perf_output_begin(&handle, event,
7838 				throttle_event.header.size);
7839 	if (ret)
7840 		return;
7841 
7842 	perf_output_put(&handle, throttle_event);
7843 	perf_event__output_id_sample(event, &handle, &sample);
7844 	perf_output_end(&handle);
7845 }
7846 
7847 /*
7848  * ksymbol register/unregister tracking
7849  */
7850 
7851 struct perf_ksymbol_event {
7852 	const char	*name;
7853 	int		name_len;
7854 	struct {
7855 		struct perf_event_header        header;
7856 		u64				addr;
7857 		u32				len;
7858 		u16				ksym_type;
7859 		u16				flags;
7860 	} event_id;
7861 };
7862 
7863 static int perf_event_ksymbol_match(struct perf_event *event)
7864 {
7865 	return event->attr.ksymbol;
7866 }
7867 
7868 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7869 {
7870 	struct perf_ksymbol_event *ksymbol_event = data;
7871 	struct perf_output_handle handle;
7872 	struct perf_sample_data sample;
7873 	int ret;
7874 
7875 	if (!perf_event_ksymbol_match(event))
7876 		return;
7877 
7878 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7879 				   &sample, event);
7880 	ret = perf_output_begin(&handle, event,
7881 				ksymbol_event->event_id.header.size);
7882 	if (ret)
7883 		return;
7884 
7885 	perf_output_put(&handle, ksymbol_event->event_id);
7886 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7887 	perf_event__output_id_sample(event, &handle, &sample);
7888 
7889 	perf_output_end(&handle);
7890 }
7891 
7892 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7893 			const char *sym)
7894 {
7895 	struct perf_ksymbol_event ksymbol_event;
7896 	char name[KSYM_NAME_LEN];
7897 	u16 flags = 0;
7898 	int name_len;
7899 
7900 	if (!atomic_read(&nr_ksymbol_events))
7901 		return;
7902 
7903 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7904 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7905 		goto err;
7906 
7907 	strlcpy(name, sym, KSYM_NAME_LEN);
7908 	name_len = strlen(name) + 1;
7909 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7910 		name[name_len++] = '\0';
7911 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7912 
7913 	if (unregister)
7914 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7915 
7916 	ksymbol_event = (struct perf_ksymbol_event){
7917 		.name = name,
7918 		.name_len = name_len,
7919 		.event_id = {
7920 			.header = {
7921 				.type = PERF_RECORD_KSYMBOL,
7922 				.size = sizeof(ksymbol_event.event_id) +
7923 					name_len,
7924 			},
7925 			.addr = addr,
7926 			.len = len,
7927 			.ksym_type = ksym_type,
7928 			.flags = flags,
7929 		},
7930 	};
7931 
7932 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7933 	return;
7934 err:
7935 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7936 }
7937 
7938 /*
7939  * bpf program load/unload tracking
7940  */
7941 
7942 struct perf_bpf_event {
7943 	struct bpf_prog	*prog;
7944 	struct {
7945 		struct perf_event_header        header;
7946 		u16				type;
7947 		u16				flags;
7948 		u32				id;
7949 		u8				tag[BPF_TAG_SIZE];
7950 	} event_id;
7951 };
7952 
7953 static int perf_event_bpf_match(struct perf_event *event)
7954 {
7955 	return event->attr.bpf_event;
7956 }
7957 
7958 static void perf_event_bpf_output(struct perf_event *event, void *data)
7959 {
7960 	struct perf_bpf_event *bpf_event = data;
7961 	struct perf_output_handle handle;
7962 	struct perf_sample_data sample;
7963 	int ret;
7964 
7965 	if (!perf_event_bpf_match(event))
7966 		return;
7967 
7968 	perf_event_header__init_id(&bpf_event->event_id.header,
7969 				   &sample, event);
7970 	ret = perf_output_begin(&handle, event,
7971 				bpf_event->event_id.header.size);
7972 	if (ret)
7973 		return;
7974 
7975 	perf_output_put(&handle, bpf_event->event_id);
7976 	perf_event__output_id_sample(event, &handle, &sample);
7977 
7978 	perf_output_end(&handle);
7979 }
7980 
7981 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7982 					 enum perf_bpf_event_type type)
7983 {
7984 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7985 	char sym[KSYM_NAME_LEN];
7986 	int i;
7987 
7988 	if (prog->aux->func_cnt == 0) {
7989 		bpf_get_prog_name(prog, sym);
7990 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7991 				   (u64)(unsigned long)prog->bpf_func,
7992 				   prog->jited_len, unregister, sym);
7993 	} else {
7994 		for (i = 0; i < prog->aux->func_cnt; i++) {
7995 			struct bpf_prog *subprog = prog->aux->func[i];
7996 
7997 			bpf_get_prog_name(subprog, sym);
7998 			perf_event_ksymbol(
7999 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8000 				(u64)(unsigned long)subprog->bpf_func,
8001 				subprog->jited_len, unregister, sym);
8002 		}
8003 	}
8004 }
8005 
8006 void perf_event_bpf_event(struct bpf_prog *prog,
8007 			  enum perf_bpf_event_type type,
8008 			  u16 flags)
8009 {
8010 	struct perf_bpf_event bpf_event;
8011 
8012 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8013 	    type >= PERF_BPF_EVENT_MAX)
8014 		return;
8015 
8016 	switch (type) {
8017 	case PERF_BPF_EVENT_PROG_LOAD:
8018 	case PERF_BPF_EVENT_PROG_UNLOAD:
8019 		if (atomic_read(&nr_ksymbol_events))
8020 			perf_event_bpf_emit_ksymbols(prog, type);
8021 		break;
8022 	default:
8023 		break;
8024 	}
8025 
8026 	if (!atomic_read(&nr_bpf_events))
8027 		return;
8028 
8029 	bpf_event = (struct perf_bpf_event){
8030 		.prog = prog,
8031 		.event_id = {
8032 			.header = {
8033 				.type = PERF_RECORD_BPF_EVENT,
8034 				.size = sizeof(bpf_event.event_id),
8035 			},
8036 			.type = type,
8037 			.flags = flags,
8038 			.id = prog->aux->id,
8039 		},
8040 	};
8041 
8042 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8043 
8044 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8045 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8046 }
8047 
8048 void perf_event_itrace_started(struct perf_event *event)
8049 {
8050 	event->attach_state |= PERF_ATTACH_ITRACE;
8051 }
8052 
8053 static void perf_log_itrace_start(struct perf_event *event)
8054 {
8055 	struct perf_output_handle handle;
8056 	struct perf_sample_data sample;
8057 	struct perf_aux_event {
8058 		struct perf_event_header        header;
8059 		u32				pid;
8060 		u32				tid;
8061 	} rec;
8062 	int ret;
8063 
8064 	if (event->parent)
8065 		event = event->parent;
8066 
8067 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8068 	    event->attach_state & PERF_ATTACH_ITRACE)
8069 		return;
8070 
8071 	rec.header.type	= PERF_RECORD_ITRACE_START;
8072 	rec.header.misc	= 0;
8073 	rec.header.size	= sizeof(rec);
8074 	rec.pid	= perf_event_pid(event, current);
8075 	rec.tid	= perf_event_tid(event, current);
8076 
8077 	perf_event_header__init_id(&rec.header, &sample, event);
8078 	ret = perf_output_begin(&handle, event, rec.header.size);
8079 
8080 	if (ret)
8081 		return;
8082 
8083 	perf_output_put(&handle, rec);
8084 	perf_event__output_id_sample(event, &handle, &sample);
8085 
8086 	perf_output_end(&handle);
8087 }
8088 
8089 static int
8090 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8091 {
8092 	struct hw_perf_event *hwc = &event->hw;
8093 	int ret = 0;
8094 	u64 seq;
8095 
8096 	seq = __this_cpu_read(perf_throttled_seq);
8097 	if (seq != hwc->interrupts_seq) {
8098 		hwc->interrupts_seq = seq;
8099 		hwc->interrupts = 1;
8100 	} else {
8101 		hwc->interrupts++;
8102 		if (unlikely(throttle
8103 			     && hwc->interrupts >= max_samples_per_tick)) {
8104 			__this_cpu_inc(perf_throttled_count);
8105 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8106 			hwc->interrupts = MAX_INTERRUPTS;
8107 			perf_log_throttle(event, 0);
8108 			ret = 1;
8109 		}
8110 	}
8111 
8112 	if (event->attr.freq) {
8113 		u64 now = perf_clock();
8114 		s64 delta = now - hwc->freq_time_stamp;
8115 
8116 		hwc->freq_time_stamp = now;
8117 
8118 		if (delta > 0 && delta < 2*TICK_NSEC)
8119 			perf_adjust_period(event, delta, hwc->last_period, true);
8120 	}
8121 
8122 	return ret;
8123 }
8124 
8125 int perf_event_account_interrupt(struct perf_event *event)
8126 {
8127 	return __perf_event_account_interrupt(event, 1);
8128 }
8129 
8130 /*
8131  * Generic event overflow handling, sampling.
8132  */
8133 
8134 static int __perf_event_overflow(struct perf_event *event,
8135 				   int throttle, struct perf_sample_data *data,
8136 				   struct pt_regs *regs)
8137 {
8138 	int events = atomic_read(&event->event_limit);
8139 	int ret = 0;
8140 
8141 	/*
8142 	 * Non-sampling counters might still use the PMI to fold short
8143 	 * hardware counters, ignore those.
8144 	 */
8145 	if (unlikely(!is_sampling_event(event)))
8146 		return 0;
8147 
8148 	ret = __perf_event_account_interrupt(event, throttle);
8149 
8150 	/*
8151 	 * XXX event_limit might not quite work as expected on inherited
8152 	 * events
8153 	 */
8154 
8155 	event->pending_kill = POLL_IN;
8156 	if (events && atomic_dec_and_test(&event->event_limit)) {
8157 		ret = 1;
8158 		event->pending_kill = POLL_HUP;
8159 
8160 		perf_event_disable_inatomic(event);
8161 	}
8162 
8163 	READ_ONCE(event->overflow_handler)(event, data, regs);
8164 
8165 	if (*perf_event_fasync(event) && event->pending_kill) {
8166 		event->pending_wakeup = 1;
8167 		irq_work_queue(&event->pending);
8168 	}
8169 
8170 	return ret;
8171 }
8172 
8173 int perf_event_overflow(struct perf_event *event,
8174 			  struct perf_sample_data *data,
8175 			  struct pt_regs *regs)
8176 {
8177 	return __perf_event_overflow(event, 1, data, regs);
8178 }
8179 
8180 /*
8181  * Generic software event infrastructure
8182  */
8183 
8184 struct swevent_htable {
8185 	struct swevent_hlist		*swevent_hlist;
8186 	struct mutex			hlist_mutex;
8187 	int				hlist_refcount;
8188 
8189 	/* Recursion avoidance in each contexts */
8190 	int				recursion[PERF_NR_CONTEXTS];
8191 };
8192 
8193 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8194 
8195 /*
8196  * We directly increment event->count and keep a second value in
8197  * event->hw.period_left to count intervals. This period event
8198  * is kept in the range [-sample_period, 0] so that we can use the
8199  * sign as trigger.
8200  */
8201 
8202 u64 perf_swevent_set_period(struct perf_event *event)
8203 {
8204 	struct hw_perf_event *hwc = &event->hw;
8205 	u64 period = hwc->last_period;
8206 	u64 nr, offset;
8207 	s64 old, val;
8208 
8209 	hwc->last_period = hwc->sample_period;
8210 
8211 again:
8212 	old = val = local64_read(&hwc->period_left);
8213 	if (val < 0)
8214 		return 0;
8215 
8216 	nr = div64_u64(period + val, period);
8217 	offset = nr * period;
8218 	val -= offset;
8219 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8220 		goto again;
8221 
8222 	return nr;
8223 }
8224 
8225 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8226 				    struct perf_sample_data *data,
8227 				    struct pt_regs *regs)
8228 {
8229 	struct hw_perf_event *hwc = &event->hw;
8230 	int throttle = 0;
8231 
8232 	if (!overflow)
8233 		overflow = perf_swevent_set_period(event);
8234 
8235 	if (hwc->interrupts == MAX_INTERRUPTS)
8236 		return;
8237 
8238 	for (; overflow; overflow--) {
8239 		if (__perf_event_overflow(event, throttle,
8240 					    data, regs)) {
8241 			/*
8242 			 * We inhibit the overflow from happening when
8243 			 * hwc->interrupts == MAX_INTERRUPTS.
8244 			 */
8245 			break;
8246 		}
8247 		throttle = 1;
8248 	}
8249 }
8250 
8251 static void perf_swevent_event(struct perf_event *event, u64 nr,
8252 			       struct perf_sample_data *data,
8253 			       struct pt_regs *regs)
8254 {
8255 	struct hw_perf_event *hwc = &event->hw;
8256 
8257 	local64_add(nr, &event->count);
8258 
8259 	if (!regs)
8260 		return;
8261 
8262 	if (!is_sampling_event(event))
8263 		return;
8264 
8265 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8266 		data->period = nr;
8267 		return perf_swevent_overflow(event, 1, data, regs);
8268 	} else
8269 		data->period = event->hw.last_period;
8270 
8271 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8272 		return perf_swevent_overflow(event, 1, data, regs);
8273 
8274 	if (local64_add_negative(nr, &hwc->period_left))
8275 		return;
8276 
8277 	perf_swevent_overflow(event, 0, data, regs);
8278 }
8279 
8280 static int perf_exclude_event(struct perf_event *event,
8281 			      struct pt_regs *regs)
8282 {
8283 	if (event->hw.state & PERF_HES_STOPPED)
8284 		return 1;
8285 
8286 	if (regs) {
8287 		if (event->attr.exclude_user && user_mode(regs))
8288 			return 1;
8289 
8290 		if (event->attr.exclude_kernel && !user_mode(regs))
8291 			return 1;
8292 	}
8293 
8294 	return 0;
8295 }
8296 
8297 static int perf_swevent_match(struct perf_event *event,
8298 				enum perf_type_id type,
8299 				u32 event_id,
8300 				struct perf_sample_data *data,
8301 				struct pt_regs *regs)
8302 {
8303 	if (event->attr.type != type)
8304 		return 0;
8305 
8306 	if (event->attr.config != event_id)
8307 		return 0;
8308 
8309 	if (perf_exclude_event(event, regs))
8310 		return 0;
8311 
8312 	return 1;
8313 }
8314 
8315 static inline u64 swevent_hash(u64 type, u32 event_id)
8316 {
8317 	u64 val = event_id | (type << 32);
8318 
8319 	return hash_64(val, SWEVENT_HLIST_BITS);
8320 }
8321 
8322 static inline struct hlist_head *
8323 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8324 {
8325 	u64 hash = swevent_hash(type, event_id);
8326 
8327 	return &hlist->heads[hash];
8328 }
8329 
8330 /* For the read side: events when they trigger */
8331 static inline struct hlist_head *
8332 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8333 {
8334 	struct swevent_hlist *hlist;
8335 
8336 	hlist = rcu_dereference(swhash->swevent_hlist);
8337 	if (!hlist)
8338 		return NULL;
8339 
8340 	return __find_swevent_head(hlist, type, event_id);
8341 }
8342 
8343 /* For the event head insertion and removal in the hlist */
8344 static inline struct hlist_head *
8345 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8346 {
8347 	struct swevent_hlist *hlist;
8348 	u32 event_id = event->attr.config;
8349 	u64 type = event->attr.type;
8350 
8351 	/*
8352 	 * Event scheduling is always serialized against hlist allocation
8353 	 * and release. Which makes the protected version suitable here.
8354 	 * The context lock guarantees that.
8355 	 */
8356 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8357 					  lockdep_is_held(&event->ctx->lock));
8358 	if (!hlist)
8359 		return NULL;
8360 
8361 	return __find_swevent_head(hlist, type, event_id);
8362 }
8363 
8364 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8365 				    u64 nr,
8366 				    struct perf_sample_data *data,
8367 				    struct pt_regs *regs)
8368 {
8369 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8370 	struct perf_event *event;
8371 	struct hlist_head *head;
8372 
8373 	rcu_read_lock();
8374 	head = find_swevent_head_rcu(swhash, type, event_id);
8375 	if (!head)
8376 		goto end;
8377 
8378 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8379 		if (perf_swevent_match(event, type, event_id, data, regs))
8380 			perf_swevent_event(event, nr, data, regs);
8381 	}
8382 end:
8383 	rcu_read_unlock();
8384 }
8385 
8386 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8387 
8388 int perf_swevent_get_recursion_context(void)
8389 {
8390 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8391 
8392 	return get_recursion_context(swhash->recursion);
8393 }
8394 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8395 
8396 void perf_swevent_put_recursion_context(int rctx)
8397 {
8398 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8399 
8400 	put_recursion_context(swhash->recursion, rctx);
8401 }
8402 
8403 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8404 {
8405 	struct perf_sample_data data;
8406 
8407 	if (WARN_ON_ONCE(!regs))
8408 		return;
8409 
8410 	perf_sample_data_init(&data, addr, 0);
8411 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8412 }
8413 
8414 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8415 {
8416 	int rctx;
8417 
8418 	preempt_disable_notrace();
8419 	rctx = perf_swevent_get_recursion_context();
8420 	if (unlikely(rctx < 0))
8421 		goto fail;
8422 
8423 	___perf_sw_event(event_id, nr, regs, addr);
8424 
8425 	perf_swevent_put_recursion_context(rctx);
8426 fail:
8427 	preempt_enable_notrace();
8428 }
8429 
8430 static void perf_swevent_read(struct perf_event *event)
8431 {
8432 }
8433 
8434 static int perf_swevent_add(struct perf_event *event, int flags)
8435 {
8436 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8437 	struct hw_perf_event *hwc = &event->hw;
8438 	struct hlist_head *head;
8439 
8440 	if (is_sampling_event(event)) {
8441 		hwc->last_period = hwc->sample_period;
8442 		perf_swevent_set_period(event);
8443 	}
8444 
8445 	hwc->state = !(flags & PERF_EF_START);
8446 
8447 	head = find_swevent_head(swhash, event);
8448 	if (WARN_ON_ONCE(!head))
8449 		return -EINVAL;
8450 
8451 	hlist_add_head_rcu(&event->hlist_entry, head);
8452 	perf_event_update_userpage(event);
8453 
8454 	return 0;
8455 }
8456 
8457 static void perf_swevent_del(struct perf_event *event, int flags)
8458 {
8459 	hlist_del_rcu(&event->hlist_entry);
8460 }
8461 
8462 static void perf_swevent_start(struct perf_event *event, int flags)
8463 {
8464 	event->hw.state = 0;
8465 }
8466 
8467 static void perf_swevent_stop(struct perf_event *event, int flags)
8468 {
8469 	event->hw.state = PERF_HES_STOPPED;
8470 }
8471 
8472 /* Deref the hlist from the update side */
8473 static inline struct swevent_hlist *
8474 swevent_hlist_deref(struct swevent_htable *swhash)
8475 {
8476 	return rcu_dereference_protected(swhash->swevent_hlist,
8477 					 lockdep_is_held(&swhash->hlist_mutex));
8478 }
8479 
8480 static void swevent_hlist_release(struct swevent_htable *swhash)
8481 {
8482 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8483 
8484 	if (!hlist)
8485 		return;
8486 
8487 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8488 	kfree_rcu(hlist, rcu_head);
8489 }
8490 
8491 static void swevent_hlist_put_cpu(int cpu)
8492 {
8493 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8494 
8495 	mutex_lock(&swhash->hlist_mutex);
8496 
8497 	if (!--swhash->hlist_refcount)
8498 		swevent_hlist_release(swhash);
8499 
8500 	mutex_unlock(&swhash->hlist_mutex);
8501 }
8502 
8503 static void swevent_hlist_put(void)
8504 {
8505 	int cpu;
8506 
8507 	for_each_possible_cpu(cpu)
8508 		swevent_hlist_put_cpu(cpu);
8509 }
8510 
8511 static int swevent_hlist_get_cpu(int cpu)
8512 {
8513 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8514 	int err = 0;
8515 
8516 	mutex_lock(&swhash->hlist_mutex);
8517 	if (!swevent_hlist_deref(swhash) &&
8518 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8519 		struct swevent_hlist *hlist;
8520 
8521 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8522 		if (!hlist) {
8523 			err = -ENOMEM;
8524 			goto exit;
8525 		}
8526 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8527 	}
8528 	swhash->hlist_refcount++;
8529 exit:
8530 	mutex_unlock(&swhash->hlist_mutex);
8531 
8532 	return err;
8533 }
8534 
8535 static int swevent_hlist_get(void)
8536 {
8537 	int err, cpu, failed_cpu;
8538 
8539 	mutex_lock(&pmus_lock);
8540 	for_each_possible_cpu(cpu) {
8541 		err = swevent_hlist_get_cpu(cpu);
8542 		if (err) {
8543 			failed_cpu = cpu;
8544 			goto fail;
8545 		}
8546 	}
8547 	mutex_unlock(&pmus_lock);
8548 	return 0;
8549 fail:
8550 	for_each_possible_cpu(cpu) {
8551 		if (cpu == failed_cpu)
8552 			break;
8553 		swevent_hlist_put_cpu(cpu);
8554 	}
8555 	mutex_unlock(&pmus_lock);
8556 	return err;
8557 }
8558 
8559 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8560 
8561 static void sw_perf_event_destroy(struct perf_event *event)
8562 {
8563 	u64 event_id = event->attr.config;
8564 
8565 	WARN_ON(event->parent);
8566 
8567 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8568 	swevent_hlist_put();
8569 }
8570 
8571 static int perf_swevent_init(struct perf_event *event)
8572 {
8573 	u64 event_id = event->attr.config;
8574 
8575 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8576 		return -ENOENT;
8577 
8578 	/*
8579 	 * no branch sampling for software events
8580 	 */
8581 	if (has_branch_stack(event))
8582 		return -EOPNOTSUPP;
8583 
8584 	switch (event_id) {
8585 	case PERF_COUNT_SW_CPU_CLOCK:
8586 	case PERF_COUNT_SW_TASK_CLOCK:
8587 		return -ENOENT;
8588 
8589 	default:
8590 		break;
8591 	}
8592 
8593 	if (event_id >= PERF_COUNT_SW_MAX)
8594 		return -ENOENT;
8595 
8596 	if (!event->parent) {
8597 		int err;
8598 
8599 		err = swevent_hlist_get();
8600 		if (err)
8601 			return err;
8602 
8603 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8604 		event->destroy = sw_perf_event_destroy;
8605 	}
8606 
8607 	return 0;
8608 }
8609 
8610 static struct pmu perf_swevent = {
8611 	.task_ctx_nr	= perf_sw_context,
8612 
8613 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8614 
8615 	.event_init	= perf_swevent_init,
8616 	.add		= perf_swevent_add,
8617 	.del		= perf_swevent_del,
8618 	.start		= perf_swevent_start,
8619 	.stop		= perf_swevent_stop,
8620 	.read		= perf_swevent_read,
8621 };
8622 
8623 #ifdef CONFIG_EVENT_TRACING
8624 
8625 static int perf_tp_filter_match(struct perf_event *event,
8626 				struct perf_sample_data *data)
8627 {
8628 	void *record = data->raw->frag.data;
8629 
8630 	/* only top level events have filters set */
8631 	if (event->parent)
8632 		event = event->parent;
8633 
8634 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8635 		return 1;
8636 	return 0;
8637 }
8638 
8639 static int perf_tp_event_match(struct perf_event *event,
8640 				struct perf_sample_data *data,
8641 				struct pt_regs *regs)
8642 {
8643 	if (event->hw.state & PERF_HES_STOPPED)
8644 		return 0;
8645 	/*
8646 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8647 	 */
8648 	if (event->attr.exclude_kernel && !user_mode(regs))
8649 		return 0;
8650 
8651 	if (!perf_tp_filter_match(event, data))
8652 		return 0;
8653 
8654 	return 1;
8655 }
8656 
8657 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8658 			       struct trace_event_call *call, u64 count,
8659 			       struct pt_regs *regs, struct hlist_head *head,
8660 			       struct task_struct *task)
8661 {
8662 	if (bpf_prog_array_valid(call)) {
8663 		*(struct pt_regs **)raw_data = regs;
8664 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8665 			perf_swevent_put_recursion_context(rctx);
8666 			return;
8667 		}
8668 	}
8669 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8670 		      rctx, task);
8671 }
8672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8673 
8674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8675 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8676 		   struct task_struct *task)
8677 {
8678 	struct perf_sample_data data;
8679 	struct perf_event *event;
8680 
8681 	struct perf_raw_record raw = {
8682 		.frag = {
8683 			.size = entry_size,
8684 			.data = record,
8685 		},
8686 	};
8687 
8688 	perf_sample_data_init(&data, 0, 0);
8689 	data.raw = &raw;
8690 
8691 	perf_trace_buf_update(record, event_type);
8692 
8693 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8694 		if (perf_tp_event_match(event, &data, regs))
8695 			perf_swevent_event(event, count, &data, regs);
8696 	}
8697 
8698 	/*
8699 	 * If we got specified a target task, also iterate its context and
8700 	 * deliver this event there too.
8701 	 */
8702 	if (task && task != current) {
8703 		struct perf_event_context *ctx;
8704 		struct trace_entry *entry = record;
8705 
8706 		rcu_read_lock();
8707 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8708 		if (!ctx)
8709 			goto unlock;
8710 
8711 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8712 			if (event->cpu != smp_processor_id())
8713 				continue;
8714 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8715 				continue;
8716 			if (event->attr.config != entry->type)
8717 				continue;
8718 			if (perf_tp_event_match(event, &data, regs))
8719 				perf_swevent_event(event, count, &data, regs);
8720 		}
8721 unlock:
8722 		rcu_read_unlock();
8723 	}
8724 
8725 	perf_swevent_put_recursion_context(rctx);
8726 }
8727 EXPORT_SYMBOL_GPL(perf_tp_event);
8728 
8729 static void tp_perf_event_destroy(struct perf_event *event)
8730 {
8731 	perf_trace_destroy(event);
8732 }
8733 
8734 static int perf_tp_event_init(struct perf_event *event)
8735 {
8736 	int err;
8737 
8738 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8739 		return -ENOENT;
8740 
8741 	/*
8742 	 * no branch sampling for tracepoint events
8743 	 */
8744 	if (has_branch_stack(event))
8745 		return -EOPNOTSUPP;
8746 
8747 	err = perf_trace_init(event);
8748 	if (err)
8749 		return err;
8750 
8751 	event->destroy = tp_perf_event_destroy;
8752 
8753 	return 0;
8754 }
8755 
8756 static struct pmu perf_tracepoint = {
8757 	.task_ctx_nr	= perf_sw_context,
8758 
8759 	.event_init	= perf_tp_event_init,
8760 	.add		= perf_trace_add,
8761 	.del		= perf_trace_del,
8762 	.start		= perf_swevent_start,
8763 	.stop		= perf_swevent_stop,
8764 	.read		= perf_swevent_read,
8765 };
8766 
8767 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8768 /*
8769  * Flags in config, used by dynamic PMU kprobe and uprobe
8770  * The flags should match following PMU_FORMAT_ATTR().
8771  *
8772  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8773  *                               if not set, create kprobe/uprobe
8774  *
8775  * The following values specify a reference counter (or semaphore in the
8776  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8777  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8778  *
8779  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8780  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8781  */
8782 enum perf_probe_config {
8783 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8784 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8785 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8786 };
8787 
8788 PMU_FORMAT_ATTR(retprobe, "config:0");
8789 #endif
8790 
8791 #ifdef CONFIG_KPROBE_EVENTS
8792 static struct attribute *kprobe_attrs[] = {
8793 	&format_attr_retprobe.attr,
8794 	NULL,
8795 };
8796 
8797 static struct attribute_group kprobe_format_group = {
8798 	.name = "format",
8799 	.attrs = kprobe_attrs,
8800 };
8801 
8802 static const struct attribute_group *kprobe_attr_groups[] = {
8803 	&kprobe_format_group,
8804 	NULL,
8805 };
8806 
8807 static int perf_kprobe_event_init(struct perf_event *event);
8808 static struct pmu perf_kprobe = {
8809 	.task_ctx_nr	= perf_sw_context,
8810 	.event_init	= perf_kprobe_event_init,
8811 	.add		= perf_trace_add,
8812 	.del		= perf_trace_del,
8813 	.start		= perf_swevent_start,
8814 	.stop		= perf_swevent_stop,
8815 	.read		= perf_swevent_read,
8816 	.attr_groups	= kprobe_attr_groups,
8817 };
8818 
8819 static int perf_kprobe_event_init(struct perf_event *event)
8820 {
8821 	int err;
8822 	bool is_retprobe;
8823 
8824 	if (event->attr.type != perf_kprobe.type)
8825 		return -ENOENT;
8826 
8827 	if (!capable(CAP_SYS_ADMIN))
8828 		return -EACCES;
8829 
8830 	/*
8831 	 * no branch sampling for probe events
8832 	 */
8833 	if (has_branch_stack(event))
8834 		return -EOPNOTSUPP;
8835 
8836 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8837 	err = perf_kprobe_init(event, is_retprobe);
8838 	if (err)
8839 		return err;
8840 
8841 	event->destroy = perf_kprobe_destroy;
8842 
8843 	return 0;
8844 }
8845 #endif /* CONFIG_KPROBE_EVENTS */
8846 
8847 #ifdef CONFIG_UPROBE_EVENTS
8848 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8849 
8850 static struct attribute *uprobe_attrs[] = {
8851 	&format_attr_retprobe.attr,
8852 	&format_attr_ref_ctr_offset.attr,
8853 	NULL,
8854 };
8855 
8856 static struct attribute_group uprobe_format_group = {
8857 	.name = "format",
8858 	.attrs = uprobe_attrs,
8859 };
8860 
8861 static const struct attribute_group *uprobe_attr_groups[] = {
8862 	&uprobe_format_group,
8863 	NULL,
8864 };
8865 
8866 static int perf_uprobe_event_init(struct perf_event *event);
8867 static struct pmu perf_uprobe = {
8868 	.task_ctx_nr	= perf_sw_context,
8869 	.event_init	= perf_uprobe_event_init,
8870 	.add		= perf_trace_add,
8871 	.del		= perf_trace_del,
8872 	.start		= perf_swevent_start,
8873 	.stop		= perf_swevent_stop,
8874 	.read		= perf_swevent_read,
8875 	.attr_groups	= uprobe_attr_groups,
8876 };
8877 
8878 static int perf_uprobe_event_init(struct perf_event *event)
8879 {
8880 	int err;
8881 	unsigned long ref_ctr_offset;
8882 	bool is_retprobe;
8883 
8884 	if (event->attr.type != perf_uprobe.type)
8885 		return -ENOENT;
8886 
8887 	if (!capable(CAP_SYS_ADMIN))
8888 		return -EACCES;
8889 
8890 	/*
8891 	 * no branch sampling for probe events
8892 	 */
8893 	if (has_branch_stack(event))
8894 		return -EOPNOTSUPP;
8895 
8896 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8897 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8898 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8899 	if (err)
8900 		return err;
8901 
8902 	event->destroy = perf_uprobe_destroy;
8903 
8904 	return 0;
8905 }
8906 #endif /* CONFIG_UPROBE_EVENTS */
8907 
8908 static inline void perf_tp_register(void)
8909 {
8910 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8911 #ifdef CONFIG_KPROBE_EVENTS
8912 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8913 #endif
8914 #ifdef CONFIG_UPROBE_EVENTS
8915 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8916 #endif
8917 }
8918 
8919 static void perf_event_free_filter(struct perf_event *event)
8920 {
8921 	ftrace_profile_free_filter(event);
8922 }
8923 
8924 #ifdef CONFIG_BPF_SYSCALL
8925 static void bpf_overflow_handler(struct perf_event *event,
8926 				 struct perf_sample_data *data,
8927 				 struct pt_regs *regs)
8928 {
8929 	struct bpf_perf_event_data_kern ctx = {
8930 		.data = data,
8931 		.event = event,
8932 	};
8933 	int ret = 0;
8934 
8935 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8936 	preempt_disable();
8937 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8938 		goto out;
8939 	rcu_read_lock();
8940 	ret = BPF_PROG_RUN(event->prog, &ctx);
8941 	rcu_read_unlock();
8942 out:
8943 	__this_cpu_dec(bpf_prog_active);
8944 	preempt_enable();
8945 	if (!ret)
8946 		return;
8947 
8948 	event->orig_overflow_handler(event, data, regs);
8949 }
8950 
8951 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8952 {
8953 	struct bpf_prog *prog;
8954 
8955 	if (event->overflow_handler_context)
8956 		/* hw breakpoint or kernel counter */
8957 		return -EINVAL;
8958 
8959 	if (event->prog)
8960 		return -EEXIST;
8961 
8962 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8963 	if (IS_ERR(prog))
8964 		return PTR_ERR(prog);
8965 
8966 	event->prog = prog;
8967 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8968 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8969 	return 0;
8970 }
8971 
8972 static void perf_event_free_bpf_handler(struct perf_event *event)
8973 {
8974 	struct bpf_prog *prog = event->prog;
8975 
8976 	if (!prog)
8977 		return;
8978 
8979 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8980 	event->prog = NULL;
8981 	bpf_prog_put(prog);
8982 }
8983 #else
8984 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8985 {
8986 	return -EOPNOTSUPP;
8987 }
8988 static void perf_event_free_bpf_handler(struct perf_event *event)
8989 {
8990 }
8991 #endif
8992 
8993 /*
8994  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8995  * with perf_event_open()
8996  */
8997 static inline bool perf_event_is_tracing(struct perf_event *event)
8998 {
8999 	if (event->pmu == &perf_tracepoint)
9000 		return true;
9001 #ifdef CONFIG_KPROBE_EVENTS
9002 	if (event->pmu == &perf_kprobe)
9003 		return true;
9004 #endif
9005 #ifdef CONFIG_UPROBE_EVENTS
9006 	if (event->pmu == &perf_uprobe)
9007 		return true;
9008 #endif
9009 	return false;
9010 }
9011 
9012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9013 {
9014 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9015 	struct bpf_prog *prog;
9016 	int ret;
9017 
9018 	if (!perf_event_is_tracing(event))
9019 		return perf_event_set_bpf_handler(event, prog_fd);
9020 
9021 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9022 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9023 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9024 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9025 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9026 		return -EINVAL;
9027 
9028 	prog = bpf_prog_get(prog_fd);
9029 	if (IS_ERR(prog))
9030 		return PTR_ERR(prog);
9031 
9032 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9033 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9034 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9035 		/* valid fd, but invalid bpf program type */
9036 		bpf_prog_put(prog);
9037 		return -EINVAL;
9038 	}
9039 
9040 	/* Kprobe override only works for kprobes, not uprobes. */
9041 	if (prog->kprobe_override &&
9042 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9043 		bpf_prog_put(prog);
9044 		return -EINVAL;
9045 	}
9046 
9047 	if (is_tracepoint || is_syscall_tp) {
9048 		int off = trace_event_get_offsets(event->tp_event);
9049 
9050 		if (prog->aux->max_ctx_offset > off) {
9051 			bpf_prog_put(prog);
9052 			return -EACCES;
9053 		}
9054 	}
9055 
9056 	ret = perf_event_attach_bpf_prog(event, prog);
9057 	if (ret)
9058 		bpf_prog_put(prog);
9059 	return ret;
9060 }
9061 
9062 static void perf_event_free_bpf_prog(struct perf_event *event)
9063 {
9064 	if (!perf_event_is_tracing(event)) {
9065 		perf_event_free_bpf_handler(event);
9066 		return;
9067 	}
9068 	perf_event_detach_bpf_prog(event);
9069 }
9070 
9071 #else
9072 
9073 static inline void perf_tp_register(void)
9074 {
9075 }
9076 
9077 static void perf_event_free_filter(struct perf_event *event)
9078 {
9079 }
9080 
9081 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9082 {
9083 	return -ENOENT;
9084 }
9085 
9086 static void perf_event_free_bpf_prog(struct perf_event *event)
9087 {
9088 }
9089 #endif /* CONFIG_EVENT_TRACING */
9090 
9091 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9092 void perf_bp_event(struct perf_event *bp, void *data)
9093 {
9094 	struct perf_sample_data sample;
9095 	struct pt_regs *regs = data;
9096 
9097 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9098 
9099 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9100 		perf_swevent_event(bp, 1, &sample, regs);
9101 }
9102 #endif
9103 
9104 /*
9105  * Allocate a new address filter
9106  */
9107 static struct perf_addr_filter *
9108 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9109 {
9110 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9111 	struct perf_addr_filter *filter;
9112 
9113 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9114 	if (!filter)
9115 		return NULL;
9116 
9117 	INIT_LIST_HEAD(&filter->entry);
9118 	list_add_tail(&filter->entry, filters);
9119 
9120 	return filter;
9121 }
9122 
9123 static void free_filters_list(struct list_head *filters)
9124 {
9125 	struct perf_addr_filter *filter, *iter;
9126 
9127 	list_for_each_entry_safe(filter, iter, filters, entry) {
9128 		path_put(&filter->path);
9129 		list_del(&filter->entry);
9130 		kfree(filter);
9131 	}
9132 }
9133 
9134 /*
9135  * Free existing address filters and optionally install new ones
9136  */
9137 static void perf_addr_filters_splice(struct perf_event *event,
9138 				     struct list_head *head)
9139 {
9140 	unsigned long flags;
9141 	LIST_HEAD(list);
9142 
9143 	if (!has_addr_filter(event))
9144 		return;
9145 
9146 	/* don't bother with children, they don't have their own filters */
9147 	if (event->parent)
9148 		return;
9149 
9150 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9151 
9152 	list_splice_init(&event->addr_filters.list, &list);
9153 	if (head)
9154 		list_splice(head, &event->addr_filters.list);
9155 
9156 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9157 
9158 	free_filters_list(&list);
9159 }
9160 
9161 /*
9162  * Scan through mm's vmas and see if one of them matches the
9163  * @filter; if so, adjust filter's address range.
9164  * Called with mm::mmap_sem down for reading.
9165  */
9166 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9167 				   struct mm_struct *mm,
9168 				   struct perf_addr_filter_range *fr)
9169 {
9170 	struct vm_area_struct *vma;
9171 
9172 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9173 		if (!vma->vm_file)
9174 			continue;
9175 
9176 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9177 			return;
9178 	}
9179 }
9180 
9181 /*
9182  * Update event's address range filters based on the
9183  * task's existing mappings, if any.
9184  */
9185 static void perf_event_addr_filters_apply(struct perf_event *event)
9186 {
9187 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9188 	struct task_struct *task = READ_ONCE(event->ctx->task);
9189 	struct perf_addr_filter *filter;
9190 	struct mm_struct *mm = NULL;
9191 	unsigned int count = 0;
9192 	unsigned long flags;
9193 
9194 	/*
9195 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9196 	 * will stop on the parent's child_mutex that our caller is also holding
9197 	 */
9198 	if (task == TASK_TOMBSTONE)
9199 		return;
9200 
9201 	if (ifh->nr_file_filters) {
9202 		mm = get_task_mm(event->ctx->task);
9203 		if (!mm)
9204 			goto restart;
9205 
9206 		down_read(&mm->mmap_sem);
9207 	}
9208 
9209 	raw_spin_lock_irqsave(&ifh->lock, flags);
9210 	list_for_each_entry(filter, &ifh->list, entry) {
9211 		if (filter->path.dentry) {
9212 			/*
9213 			 * Adjust base offset if the filter is associated to a
9214 			 * binary that needs to be mapped:
9215 			 */
9216 			event->addr_filter_ranges[count].start = 0;
9217 			event->addr_filter_ranges[count].size = 0;
9218 
9219 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9220 		} else {
9221 			event->addr_filter_ranges[count].start = filter->offset;
9222 			event->addr_filter_ranges[count].size  = filter->size;
9223 		}
9224 
9225 		count++;
9226 	}
9227 
9228 	event->addr_filters_gen++;
9229 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9230 
9231 	if (ifh->nr_file_filters) {
9232 		up_read(&mm->mmap_sem);
9233 
9234 		mmput(mm);
9235 	}
9236 
9237 restart:
9238 	perf_event_stop(event, 1);
9239 }
9240 
9241 /*
9242  * Address range filtering: limiting the data to certain
9243  * instruction address ranges. Filters are ioctl()ed to us from
9244  * userspace as ascii strings.
9245  *
9246  * Filter string format:
9247  *
9248  * ACTION RANGE_SPEC
9249  * where ACTION is one of the
9250  *  * "filter": limit the trace to this region
9251  *  * "start": start tracing from this address
9252  *  * "stop": stop tracing at this address/region;
9253  * RANGE_SPEC is
9254  *  * for kernel addresses: <start address>[/<size>]
9255  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9256  *
9257  * if <size> is not specified or is zero, the range is treated as a single
9258  * address; not valid for ACTION=="filter".
9259  */
9260 enum {
9261 	IF_ACT_NONE = -1,
9262 	IF_ACT_FILTER,
9263 	IF_ACT_START,
9264 	IF_ACT_STOP,
9265 	IF_SRC_FILE,
9266 	IF_SRC_KERNEL,
9267 	IF_SRC_FILEADDR,
9268 	IF_SRC_KERNELADDR,
9269 };
9270 
9271 enum {
9272 	IF_STATE_ACTION = 0,
9273 	IF_STATE_SOURCE,
9274 	IF_STATE_END,
9275 };
9276 
9277 static const match_table_t if_tokens = {
9278 	{ IF_ACT_FILTER,	"filter" },
9279 	{ IF_ACT_START,		"start" },
9280 	{ IF_ACT_STOP,		"stop" },
9281 	{ IF_SRC_FILE,		"%u/%u@%s" },
9282 	{ IF_SRC_KERNEL,	"%u/%u" },
9283 	{ IF_SRC_FILEADDR,	"%u@%s" },
9284 	{ IF_SRC_KERNELADDR,	"%u" },
9285 	{ IF_ACT_NONE,		NULL },
9286 };
9287 
9288 /*
9289  * Address filter string parser
9290  */
9291 static int
9292 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9293 			     struct list_head *filters)
9294 {
9295 	struct perf_addr_filter *filter = NULL;
9296 	char *start, *orig, *filename = NULL;
9297 	substring_t args[MAX_OPT_ARGS];
9298 	int state = IF_STATE_ACTION, token;
9299 	unsigned int kernel = 0;
9300 	int ret = -EINVAL;
9301 
9302 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9303 	if (!fstr)
9304 		return -ENOMEM;
9305 
9306 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9307 		static const enum perf_addr_filter_action_t actions[] = {
9308 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9309 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9310 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9311 		};
9312 		ret = -EINVAL;
9313 
9314 		if (!*start)
9315 			continue;
9316 
9317 		/* filter definition begins */
9318 		if (state == IF_STATE_ACTION) {
9319 			filter = perf_addr_filter_new(event, filters);
9320 			if (!filter)
9321 				goto fail;
9322 		}
9323 
9324 		token = match_token(start, if_tokens, args);
9325 		switch (token) {
9326 		case IF_ACT_FILTER:
9327 		case IF_ACT_START:
9328 		case IF_ACT_STOP:
9329 			if (state != IF_STATE_ACTION)
9330 				goto fail;
9331 
9332 			filter->action = actions[token];
9333 			state = IF_STATE_SOURCE;
9334 			break;
9335 
9336 		case IF_SRC_KERNELADDR:
9337 		case IF_SRC_KERNEL:
9338 			kernel = 1;
9339 			/* fall through */
9340 
9341 		case IF_SRC_FILEADDR:
9342 		case IF_SRC_FILE:
9343 			if (state != IF_STATE_SOURCE)
9344 				goto fail;
9345 
9346 			*args[0].to = 0;
9347 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9348 			if (ret)
9349 				goto fail;
9350 
9351 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9352 				*args[1].to = 0;
9353 				ret = kstrtoul(args[1].from, 0, &filter->size);
9354 				if (ret)
9355 					goto fail;
9356 			}
9357 
9358 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9359 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9360 
9361 				filename = match_strdup(&args[fpos]);
9362 				if (!filename) {
9363 					ret = -ENOMEM;
9364 					goto fail;
9365 				}
9366 			}
9367 
9368 			state = IF_STATE_END;
9369 			break;
9370 
9371 		default:
9372 			goto fail;
9373 		}
9374 
9375 		/*
9376 		 * Filter definition is fully parsed, validate and install it.
9377 		 * Make sure that it doesn't contradict itself or the event's
9378 		 * attribute.
9379 		 */
9380 		if (state == IF_STATE_END) {
9381 			ret = -EINVAL;
9382 			if (kernel && event->attr.exclude_kernel)
9383 				goto fail;
9384 
9385 			/*
9386 			 * ACTION "filter" must have a non-zero length region
9387 			 * specified.
9388 			 */
9389 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9390 			    !filter->size)
9391 				goto fail;
9392 
9393 			if (!kernel) {
9394 				if (!filename)
9395 					goto fail;
9396 
9397 				/*
9398 				 * For now, we only support file-based filters
9399 				 * in per-task events; doing so for CPU-wide
9400 				 * events requires additional context switching
9401 				 * trickery, since same object code will be
9402 				 * mapped at different virtual addresses in
9403 				 * different processes.
9404 				 */
9405 				ret = -EOPNOTSUPP;
9406 				if (!event->ctx->task)
9407 					goto fail_free_name;
9408 
9409 				/* look up the path and grab its inode */
9410 				ret = kern_path(filename, LOOKUP_FOLLOW,
9411 						&filter->path);
9412 				if (ret)
9413 					goto fail_free_name;
9414 
9415 				kfree(filename);
9416 				filename = NULL;
9417 
9418 				ret = -EINVAL;
9419 				if (!filter->path.dentry ||
9420 				    !S_ISREG(d_inode(filter->path.dentry)
9421 					     ->i_mode))
9422 					goto fail;
9423 
9424 				event->addr_filters.nr_file_filters++;
9425 			}
9426 
9427 			/* ready to consume more filters */
9428 			state = IF_STATE_ACTION;
9429 			filter = NULL;
9430 		}
9431 	}
9432 
9433 	if (state != IF_STATE_ACTION)
9434 		goto fail;
9435 
9436 	kfree(orig);
9437 
9438 	return 0;
9439 
9440 fail_free_name:
9441 	kfree(filename);
9442 fail:
9443 	free_filters_list(filters);
9444 	kfree(orig);
9445 
9446 	return ret;
9447 }
9448 
9449 static int
9450 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9451 {
9452 	LIST_HEAD(filters);
9453 	int ret;
9454 
9455 	/*
9456 	 * Since this is called in perf_ioctl() path, we're already holding
9457 	 * ctx::mutex.
9458 	 */
9459 	lockdep_assert_held(&event->ctx->mutex);
9460 
9461 	if (WARN_ON_ONCE(event->parent))
9462 		return -EINVAL;
9463 
9464 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9465 	if (ret)
9466 		goto fail_clear_files;
9467 
9468 	ret = event->pmu->addr_filters_validate(&filters);
9469 	if (ret)
9470 		goto fail_free_filters;
9471 
9472 	/* remove existing filters, if any */
9473 	perf_addr_filters_splice(event, &filters);
9474 
9475 	/* install new filters */
9476 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9477 
9478 	return ret;
9479 
9480 fail_free_filters:
9481 	free_filters_list(&filters);
9482 
9483 fail_clear_files:
9484 	event->addr_filters.nr_file_filters = 0;
9485 
9486 	return ret;
9487 }
9488 
9489 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9490 {
9491 	int ret = -EINVAL;
9492 	char *filter_str;
9493 
9494 	filter_str = strndup_user(arg, PAGE_SIZE);
9495 	if (IS_ERR(filter_str))
9496 		return PTR_ERR(filter_str);
9497 
9498 #ifdef CONFIG_EVENT_TRACING
9499 	if (perf_event_is_tracing(event)) {
9500 		struct perf_event_context *ctx = event->ctx;
9501 
9502 		/*
9503 		 * Beware, here be dragons!!
9504 		 *
9505 		 * the tracepoint muck will deadlock against ctx->mutex, but
9506 		 * the tracepoint stuff does not actually need it. So
9507 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9508 		 * already have a reference on ctx.
9509 		 *
9510 		 * This can result in event getting moved to a different ctx,
9511 		 * but that does not affect the tracepoint state.
9512 		 */
9513 		mutex_unlock(&ctx->mutex);
9514 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9515 		mutex_lock(&ctx->mutex);
9516 	} else
9517 #endif
9518 	if (has_addr_filter(event))
9519 		ret = perf_event_set_addr_filter(event, filter_str);
9520 
9521 	kfree(filter_str);
9522 	return ret;
9523 }
9524 
9525 /*
9526  * hrtimer based swevent callback
9527  */
9528 
9529 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9530 {
9531 	enum hrtimer_restart ret = HRTIMER_RESTART;
9532 	struct perf_sample_data data;
9533 	struct pt_regs *regs;
9534 	struct perf_event *event;
9535 	u64 period;
9536 
9537 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9538 
9539 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9540 		return HRTIMER_NORESTART;
9541 
9542 	event->pmu->read(event);
9543 
9544 	perf_sample_data_init(&data, 0, event->hw.last_period);
9545 	regs = get_irq_regs();
9546 
9547 	if (regs && !perf_exclude_event(event, regs)) {
9548 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9549 			if (__perf_event_overflow(event, 1, &data, regs))
9550 				ret = HRTIMER_NORESTART;
9551 	}
9552 
9553 	period = max_t(u64, 10000, event->hw.sample_period);
9554 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9555 
9556 	return ret;
9557 }
9558 
9559 static void perf_swevent_start_hrtimer(struct perf_event *event)
9560 {
9561 	struct hw_perf_event *hwc = &event->hw;
9562 	s64 period;
9563 
9564 	if (!is_sampling_event(event))
9565 		return;
9566 
9567 	period = local64_read(&hwc->period_left);
9568 	if (period) {
9569 		if (period < 0)
9570 			period = 10000;
9571 
9572 		local64_set(&hwc->period_left, 0);
9573 	} else {
9574 		period = max_t(u64, 10000, hwc->sample_period);
9575 	}
9576 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9577 		      HRTIMER_MODE_REL_PINNED_HARD);
9578 }
9579 
9580 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9581 {
9582 	struct hw_perf_event *hwc = &event->hw;
9583 
9584 	if (is_sampling_event(event)) {
9585 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9586 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9587 
9588 		hrtimer_cancel(&hwc->hrtimer);
9589 	}
9590 }
9591 
9592 static void perf_swevent_init_hrtimer(struct perf_event *event)
9593 {
9594 	struct hw_perf_event *hwc = &event->hw;
9595 
9596 	if (!is_sampling_event(event))
9597 		return;
9598 
9599 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9600 	hwc->hrtimer.function = perf_swevent_hrtimer;
9601 
9602 	/*
9603 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9604 	 * mapping and avoid the whole period adjust feedback stuff.
9605 	 */
9606 	if (event->attr.freq) {
9607 		long freq = event->attr.sample_freq;
9608 
9609 		event->attr.sample_period = NSEC_PER_SEC / freq;
9610 		hwc->sample_period = event->attr.sample_period;
9611 		local64_set(&hwc->period_left, hwc->sample_period);
9612 		hwc->last_period = hwc->sample_period;
9613 		event->attr.freq = 0;
9614 	}
9615 }
9616 
9617 /*
9618  * Software event: cpu wall time clock
9619  */
9620 
9621 static void cpu_clock_event_update(struct perf_event *event)
9622 {
9623 	s64 prev;
9624 	u64 now;
9625 
9626 	now = local_clock();
9627 	prev = local64_xchg(&event->hw.prev_count, now);
9628 	local64_add(now - prev, &event->count);
9629 }
9630 
9631 static void cpu_clock_event_start(struct perf_event *event, int flags)
9632 {
9633 	local64_set(&event->hw.prev_count, local_clock());
9634 	perf_swevent_start_hrtimer(event);
9635 }
9636 
9637 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9638 {
9639 	perf_swevent_cancel_hrtimer(event);
9640 	cpu_clock_event_update(event);
9641 }
9642 
9643 static int cpu_clock_event_add(struct perf_event *event, int flags)
9644 {
9645 	if (flags & PERF_EF_START)
9646 		cpu_clock_event_start(event, flags);
9647 	perf_event_update_userpage(event);
9648 
9649 	return 0;
9650 }
9651 
9652 static void cpu_clock_event_del(struct perf_event *event, int flags)
9653 {
9654 	cpu_clock_event_stop(event, flags);
9655 }
9656 
9657 static void cpu_clock_event_read(struct perf_event *event)
9658 {
9659 	cpu_clock_event_update(event);
9660 }
9661 
9662 static int cpu_clock_event_init(struct perf_event *event)
9663 {
9664 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9665 		return -ENOENT;
9666 
9667 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9668 		return -ENOENT;
9669 
9670 	/*
9671 	 * no branch sampling for software events
9672 	 */
9673 	if (has_branch_stack(event))
9674 		return -EOPNOTSUPP;
9675 
9676 	perf_swevent_init_hrtimer(event);
9677 
9678 	return 0;
9679 }
9680 
9681 static struct pmu perf_cpu_clock = {
9682 	.task_ctx_nr	= perf_sw_context,
9683 
9684 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9685 
9686 	.event_init	= cpu_clock_event_init,
9687 	.add		= cpu_clock_event_add,
9688 	.del		= cpu_clock_event_del,
9689 	.start		= cpu_clock_event_start,
9690 	.stop		= cpu_clock_event_stop,
9691 	.read		= cpu_clock_event_read,
9692 };
9693 
9694 /*
9695  * Software event: task time clock
9696  */
9697 
9698 static void task_clock_event_update(struct perf_event *event, u64 now)
9699 {
9700 	u64 prev;
9701 	s64 delta;
9702 
9703 	prev = local64_xchg(&event->hw.prev_count, now);
9704 	delta = now - prev;
9705 	local64_add(delta, &event->count);
9706 }
9707 
9708 static void task_clock_event_start(struct perf_event *event, int flags)
9709 {
9710 	local64_set(&event->hw.prev_count, event->ctx->time);
9711 	perf_swevent_start_hrtimer(event);
9712 }
9713 
9714 static void task_clock_event_stop(struct perf_event *event, int flags)
9715 {
9716 	perf_swevent_cancel_hrtimer(event);
9717 	task_clock_event_update(event, event->ctx->time);
9718 }
9719 
9720 static int task_clock_event_add(struct perf_event *event, int flags)
9721 {
9722 	if (flags & PERF_EF_START)
9723 		task_clock_event_start(event, flags);
9724 	perf_event_update_userpage(event);
9725 
9726 	return 0;
9727 }
9728 
9729 static void task_clock_event_del(struct perf_event *event, int flags)
9730 {
9731 	task_clock_event_stop(event, PERF_EF_UPDATE);
9732 }
9733 
9734 static void task_clock_event_read(struct perf_event *event)
9735 {
9736 	u64 now = perf_clock();
9737 	u64 delta = now - event->ctx->timestamp;
9738 	u64 time = event->ctx->time + delta;
9739 
9740 	task_clock_event_update(event, time);
9741 }
9742 
9743 static int task_clock_event_init(struct perf_event *event)
9744 {
9745 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9746 		return -ENOENT;
9747 
9748 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9749 		return -ENOENT;
9750 
9751 	/*
9752 	 * no branch sampling for software events
9753 	 */
9754 	if (has_branch_stack(event))
9755 		return -EOPNOTSUPP;
9756 
9757 	perf_swevent_init_hrtimer(event);
9758 
9759 	return 0;
9760 }
9761 
9762 static struct pmu perf_task_clock = {
9763 	.task_ctx_nr	= perf_sw_context,
9764 
9765 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9766 
9767 	.event_init	= task_clock_event_init,
9768 	.add		= task_clock_event_add,
9769 	.del		= task_clock_event_del,
9770 	.start		= task_clock_event_start,
9771 	.stop		= task_clock_event_stop,
9772 	.read		= task_clock_event_read,
9773 };
9774 
9775 static void perf_pmu_nop_void(struct pmu *pmu)
9776 {
9777 }
9778 
9779 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9780 {
9781 }
9782 
9783 static int perf_pmu_nop_int(struct pmu *pmu)
9784 {
9785 	return 0;
9786 }
9787 
9788 static int perf_event_nop_int(struct perf_event *event, u64 value)
9789 {
9790 	return 0;
9791 }
9792 
9793 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9794 
9795 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9796 {
9797 	__this_cpu_write(nop_txn_flags, flags);
9798 
9799 	if (flags & ~PERF_PMU_TXN_ADD)
9800 		return;
9801 
9802 	perf_pmu_disable(pmu);
9803 }
9804 
9805 static int perf_pmu_commit_txn(struct pmu *pmu)
9806 {
9807 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9808 
9809 	__this_cpu_write(nop_txn_flags, 0);
9810 
9811 	if (flags & ~PERF_PMU_TXN_ADD)
9812 		return 0;
9813 
9814 	perf_pmu_enable(pmu);
9815 	return 0;
9816 }
9817 
9818 static void perf_pmu_cancel_txn(struct pmu *pmu)
9819 {
9820 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9821 
9822 	__this_cpu_write(nop_txn_flags, 0);
9823 
9824 	if (flags & ~PERF_PMU_TXN_ADD)
9825 		return;
9826 
9827 	perf_pmu_enable(pmu);
9828 }
9829 
9830 static int perf_event_idx_default(struct perf_event *event)
9831 {
9832 	return 0;
9833 }
9834 
9835 /*
9836  * Ensures all contexts with the same task_ctx_nr have the same
9837  * pmu_cpu_context too.
9838  */
9839 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9840 {
9841 	struct pmu *pmu;
9842 
9843 	if (ctxn < 0)
9844 		return NULL;
9845 
9846 	list_for_each_entry(pmu, &pmus, entry) {
9847 		if (pmu->task_ctx_nr == ctxn)
9848 			return pmu->pmu_cpu_context;
9849 	}
9850 
9851 	return NULL;
9852 }
9853 
9854 static void free_pmu_context(struct pmu *pmu)
9855 {
9856 	/*
9857 	 * Static contexts such as perf_sw_context have a global lifetime
9858 	 * and may be shared between different PMUs. Avoid freeing them
9859 	 * when a single PMU is going away.
9860 	 */
9861 	if (pmu->task_ctx_nr > perf_invalid_context)
9862 		return;
9863 
9864 	free_percpu(pmu->pmu_cpu_context);
9865 }
9866 
9867 /*
9868  * Let userspace know that this PMU supports address range filtering:
9869  */
9870 static ssize_t nr_addr_filters_show(struct device *dev,
9871 				    struct device_attribute *attr,
9872 				    char *page)
9873 {
9874 	struct pmu *pmu = dev_get_drvdata(dev);
9875 
9876 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9877 }
9878 DEVICE_ATTR_RO(nr_addr_filters);
9879 
9880 static struct idr pmu_idr;
9881 
9882 static ssize_t
9883 type_show(struct device *dev, struct device_attribute *attr, char *page)
9884 {
9885 	struct pmu *pmu = dev_get_drvdata(dev);
9886 
9887 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9888 }
9889 static DEVICE_ATTR_RO(type);
9890 
9891 static ssize_t
9892 perf_event_mux_interval_ms_show(struct device *dev,
9893 				struct device_attribute *attr,
9894 				char *page)
9895 {
9896 	struct pmu *pmu = dev_get_drvdata(dev);
9897 
9898 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9899 }
9900 
9901 static DEFINE_MUTEX(mux_interval_mutex);
9902 
9903 static ssize_t
9904 perf_event_mux_interval_ms_store(struct device *dev,
9905 				 struct device_attribute *attr,
9906 				 const char *buf, size_t count)
9907 {
9908 	struct pmu *pmu = dev_get_drvdata(dev);
9909 	int timer, cpu, ret;
9910 
9911 	ret = kstrtoint(buf, 0, &timer);
9912 	if (ret)
9913 		return ret;
9914 
9915 	if (timer < 1)
9916 		return -EINVAL;
9917 
9918 	/* same value, noting to do */
9919 	if (timer == pmu->hrtimer_interval_ms)
9920 		return count;
9921 
9922 	mutex_lock(&mux_interval_mutex);
9923 	pmu->hrtimer_interval_ms = timer;
9924 
9925 	/* update all cpuctx for this PMU */
9926 	cpus_read_lock();
9927 	for_each_online_cpu(cpu) {
9928 		struct perf_cpu_context *cpuctx;
9929 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9930 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9931 
9932 		cpu_function_call(cpu,
9933 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9934 	}
9935 	cpus_read_unlock();
9936 	mutex_unlock(&mux_interval_mutex);
9937 
9938 	return count;
9939 }
9940 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9941 
9942 static struct attribute *pmu_dev_attrs[] = {
9943 	&dev_attr_type.attr,
9944 	&dev_attr_perf_event_mux_interval_ms.attr,
9945 	NULL,
9946 };
9947 ATTRIBUTE_GROUPS(pmu_dev);
9948 
9949 static int pmu_bus_running;
9950 static struct bus_type pmu_bus = {
9951 	.name		= "event_source",
9952 	.dev_groups	= pmu_dev_groups,
9953 };
9954 
9955 static void pmu_dev_release(struct device *dev)
9956 {
9957 	kfree(dev);
9958 }
9959 
9960 static int pmu_dev_alloc(struct pmu *pmu)
9961 {
9962 	int ret = -ENOMEM;
9963 
9964 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9965 	if (!pmu->dev)
9966 		goto out;
9967 
9968 	pmu->dev->groups = pmu->attr_groups;
9969 	device_initialize(pmu->dev);
9970 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9971 	if (ret)
9972 		goto free_dev;
9973 
9974 	dev_set_drvdata(pmu->dev, pmu);
9975 	pmu->dev->bus = &pmu_bus;
9976 	pmu->dev->release = pmu_dev_release;
9977 	ret = device_add(pmu->dev);
9978 	if (ret)
9979 		goto free_dev;
9980 
9981 	/* For PMUs with address filters, throw in an extra attribute: */
9982 	if (pmu->nr_addr_filters)
9983 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9984 
9985 	if (ret)
9986 		goto del_dev;
9987 
9988 	if (pmu->attr_update)
9989 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9990 
9991 	if (ret)
9992 		goto del_dev;
9993 
9994 out:
9995 	return ret;
9996 
9997 del_dev:
9998 	device_del(pmu->dev);
9999 
10000 free_dev:
10001 	put_device(pmu->dev);
10002 	goto out;
10003 }
10004 
10005 static struct lock_class_key cpuctx_mutex;
10006 static struct lock_class_key cpuctx_lock;
10007 
10008 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10009 {
10010 	int cpu, ret;
10011 
10012 	mutex_lock(&pmus_lock);
10013 	ret = -ENOMEM;
10014 	pmu->pmu_disable_count = alloc_percpu(int);
10015 	if (!pmu->pmu_disable_count)
10016 		goto unlock;
10017 
10018 	pmu->type = -1;
10019 	if (!name)
10020 		goto skip_type;
10021 	pmu->name = name;
10022 
10023 	if (type < 0) {
10024 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10025 		if (type < 0) {
10026 			ret = type;
10027 			goto free_pdc;
10028 		}
10029 	}
10030 	pmu->type = type;
10031 
10032 	if (pmu_bus_running) {
10033 		ret = pmu_dev_alloc(pmu);
10034 		if (ret)
10035 			goto free_idr;
10036 	}
10037 
10038 skip_type:
10039 	if (pmu->task_ctx_nr == perf_hw_context) {
10040 		static int hw_context_taken = 0;
10041 
10042 		/*
10043 		 * Other than systems with heterogeneous CPUs, it never makes
10044 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10045 		 * uncore must use perf_invalid_context.
10046 		 */
10047 		if (WARN_ON_ONCE(hw_context_taken &&
10048 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10049 			pmu->task_ctx_nr = perf_invalid_context;
10050 
10051 		hw_context_taken = 1;
10052 	}
10053 
10054 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10055 	if (pmu->pmu_cpu_context)
10056 		goto got_cpu_context;
10057 
10058 	ret = -ENOMEM;
10059 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10060 	if (!pmu->pmu_cpu_context)
10061 		goto free_dev;
10062 
10063 	for_each_possible_cpu(cpu) {
10064 		struct perf_cpu_context *cpuctx;
10065 
10066 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10067 		__perf_event_init_context(&cpuctx->ctx);
10068 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10069 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10070 		cpuctx->ctx.pmu = pmu;
10071 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10072 
10073 		__perf_mux_hrtimer_init(cpuctx, cpu);
10074 	}
10075 
10076 got_cpu_context:
10077 	if (!pmu->start_txn) {
10078 		if (pmu->pmu_enable) {
10079 			/*
10080 			 * If we have pmu_enable/pmu_disable calls, install
10081 			 * transaction stubs that use that to try and batch
10082 			 * hardware accesses.
10083 			 */
10084 			pmu->start_txn  = perf_pmu_start_txn;
10085 			pmu->commit_txn = perf_pmu_commit_txn;
10086 			pmu->cancel_txn = perf_pmu_cancel_txn;
10087 		} else {
10088 			pmu->start_txn  = perf_pmu_nop_txn;
10089 			pmu->commit_txn = perf_pmu_nop_int;
10090 			pmu->cancel_txn = perf_pmu_nop_void;
10091 		}
10092 	}
10093 
10094 	if (!pmu->pmu_enable) {
10095 		pmu->pmu_enable  = perf_pmu_nop_void;
10096 		pmu->pmu_disable = perf_pmu_nop_void;
10097 	}
10098 
10099 	if (!pmu->check_period)
10100 		pmu->check_period = perf_event_nop_int;
10101 
10102 	if (!pmu->event_idx)
10103 		pmu->event_idx = perf_event_idx_default;
10104 
10105 	list_add_rcu(&pmu->entry, &pmus);
10106 	atomic_set(&pmu->exclusive_cnt, 0);
10107 	ret = 0;
10108 unlock:
10109 	mutex_unlock(&pmus_lock);
10110 
10111 	return ret;
10112 
10113 free_dev:
10114 	device_del(pmu->dev);
10115 	put_device(pmu->dev);
10116 
10117 free_idr:
10118 	if (pmu->type >= PERF_TYPE_MAX)
10119 		idr_remove(&pmu_idr, pmu->type);
10120 
10121 free_pdc:
10122 	free_percpu(pmu->pmu_disable_count);
10123 	goto unlock;
10124 }
10125 EXPORT_SYMBOL_GPL(perf_pmu_register);
10126 
10127 void perf_pmu_unregister(struct pmu *pmu)
10128 {
10129 	mutex_lock(&pmus_lock);
10130 	list_del_rcu(&pmu->entry);
10131 
10132 	/*
10133 	 * We dereference the pmu list under both SRCU and regular RCU, so
10134 	 * synchronize against both of those.
10135 	 */
10136 	synchronize_srcu(&pmus_srcu);
10137 	synchronize_rcu();
10138 
10139 	free_percpu(pmu->pmu_disable_count);
10140 	if (pmu->type >= PERF_TYPE_MAX)
10141 		idr_remove(&pmu_idr, pmu->type);
10142 	if (pmu_bus_running) {
10143 		if (pmu->nr_addr_filters)
10144 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10145 		device_del(pmu->dev);
10146 		put_device(pmu->dev);
10147 	}
10148 	free_pmu_context(pmu);
10149 	mutex_unlock(&pmus_lock);
10150 }
10151 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10152 
10153 static inline bool has_extended_regs(struct perf_event *event)
10154 {
10155 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10156 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10157 }
10158 
10159 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10160 {
10161 	struct perf_event_context *ctx = NULL;
10162 	int ret;
10163 
10164 	if (!try_module_get(pmu->module))
10165 		return -ENODEV;
10166 
10167 	/*
10168 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10169 	 * for example, validate if the group fits on the PMU. Therefore,
10170 	 * if this is a sibling event, acquire the ctx->mutex to protect
10171 	 * the sibling_list.
10172 	 */
10173 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10174 		/*
10175 		 * This ctx->mutex can nest when we're called through
10176 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10177 		 */
10178 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10179 						 SINGLE_DEPTH_NESTING);
10180 		BUG_ON(!ctx);
10181 	}
10182 
10183 	event->pmu = pmu;
10184 	ret = pmu->event_init(event);
10185 
10186 	if (ctx)
10187 		perf_event_ctx_unlock(event->group_leader, ctx);
10188 
10189 	if (!ret) {
10190 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10191 		    has_extended_regs(event))
10192 			ret = -EOPNOTSUPP;
10193 
10194 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10195 		    event_has_any_exclude_flag(event))
10196 			ret = -EINVAL;
10197 
10198 		if (ret && event->destroy)
10199 			event->destroy(event);
10200 	}
10201 
10202 	if (ret)
10203 		module_put(pmu->module);
10204 
10205 	return ret;
10206 }
10207 
10208 static struct pmu *perf_init_event(struct perf_event *event)
10209 {
10210 	struct pmu *pmu;
10211 	int idx;
10212 	int ret;
10213 
10214 	idx = srcu_read_lock(&pmus_srcu);
10215 
10216 	/* Try parent's PMU first: */
10217 	if (event->parent && event->parent->pmu) {
10218 		pmu = event->parent->pmu;
10219 		ret = perf_try_init_event(pmu, event);
10220 		if (!ret)
10221 			goto unlock;
10222 	}
10223 
10224 	rcu_read_lock();
10225 	pmu = idr_find(&pmu_idr, event->attr.type);
10226 	rcu_read_unlock();
10227 	if (pmu) {
10228 		ret = perf_try_init_event(pmu, event);
10229 		if (ret)
10230 			pmu = ERR_PTR(ret);
10231 		goto unlock;
10232 	}
10233 
10234 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10235 		ret = perf_try_init_event(pmu, event);
10236 		if (!ret)
10237 			goto unlock;
10238 
10239 		if (ret != -ENOENT) {
10240 			pmu = ERR_PTR(ret);
10241 			goto unlock;
10242 		}
10243 	}
10244 	pmu = ERR_PTR(-ENOENT);
10245 unlock:
10246 	srcu_read_unlock(&pmus_srcu, idx);
10247 
10248 	return pmu;
10249 }
10250 
10251 static void attach_sb_event(struct perf_event *event)
10252 {
10253 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10254 
10255 	raw_spin_lock(&pel->lock);
10256 	list_add_rcu(&event->sb_list, &pel->list);
10257 	raw_spin_unlock(&pel->lock);
10258 }
10259 
10260 /*
10261  * We keep a list of all !task (and therefore per-cpu) events
10262  * that need to receive side-band records.
10263  *
10264  * This avoids having to scan all the various PMU per-cpu contexts
10265  * looking for them.
10266  */
10267 static void account_pmu_sb_event(struct perf_event *event)
10268 {
10269 	if (is_sb_event(event))
10270 		attach_sb_event(event);
10271 }
10272 
10273 static void account_event_cpu(struct perf_event *event, int cpu)
10274 {
10275 	if (event->parent)
10276 		return;
10277 
10278 	if (is_cgroup_event(event))
10279 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10280 }
10281 
10282 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10283 static void account_freq_event_nohz(void)
10284 {
10285 #ifdef CONFIG_NO_HZ_FULL
10286 	/* Lock so we don't race with concurrent unaccount */
10287 	spin_lock(&nr_freq_lock);
10288 	if (atomic_inc_return(&nr_freq_events) == 1)
10289 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10290 	spin_unlock(&nr_freq_lock);
10291 #endif
10292 }
10293 
10294 static void account_freq_event(void)
10295 {
10296 	if (tick_nohz_full_enabled())
10297 		account_freq_event_nohz();
10298 	else
10299 		atomic_inc(&nr_freq_events);
10300 }
10301 
10302 
10303 static void account_event(struct perf_event *event)
10304 {
10305 	bool inc = false;
10306 
10307 	if (event->parent)
10308 		return;
10309 
10310 	if (event->attach_state & PERF_ATTACH_TASK)
10311 		inc = true;
10312 	if (event->attr.mmap || event->attr.mmap_data)
10313 		atomic_inc(&nr_mmap_events);
10314 	if (event->attr.comm)
10315 		atomic_inc(&nr_comm_events);
10316 	if (event->attr.namespaces)
10317 		atomic_inc(&nr_namespaces_events);
10318 	if (event->attr.task)
10319 		atomic_inc(&nr_task_events);
10320 	if (event->attr.freq)
10321 		account_freq_event();
10322 	if (event->attr.context_switch) {
10323 		atomic_inc(&nr_switch_events);
10324 		inc = true;
10325 	}
10326 	if (has_branch_stack(event))
10327 		inc = true;
10328 	if (is_cgroup_event(event))
10329 		inc = true;
10330 	if (event->attr.ksymbol)
10331 		atomic_inc(&nr_ksymbol_events);
10332 	if (event->attr.bpf_event)
10333 		atomic_inc(&nr_bpf_events);
10334 
10335 	if (inc) {
10336 		/*
10337 		 * We need the mutex here because static_branch_enable()
10338 		 * must complete *before* the perf_sched_count increment
10339 		 * becomes visible.
10340 		 */
10341 		if (atomic_inc_not_zero(&perf_sched_count))
10342 			goto enabled;
10343 
10344 		mutex_lock(&perf_sched_mutex);
10345 		if (!atomic_read(&perf_sched_count)) {
10346 			static_branch_enable(&perf_sched_events);
10347 			/*
10348 			 * Guarantee that all CPUs observe they key change and
10349 			 * call the perf scheduling hooks before proceeding to
10350 			 * install events that need them.
10351 			 */
10352 			synchronize_rcu();
10353 		}
10354 		/*
10355 		 * Now that we have waited for the sync_sched(), allow further
10356 		 * increments to by-pass the mutex.
10357 		 */
10358 		atomic_inc(&perf_sched_count);
10359 		mutex_unlock(&perf_sched_mutex);
10360 	}
10361 enabled:
10362 
10363 	account_event_cpu(event, event->cpu);
10364 
10365 	account_pmu_sb_event(event);
10366 }
10367 
10368 /*
10369  * Allocate and initialize an event structure
10370  */
10371 static struct perf_event *
10372 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10373 		 struct task_struct *task,
10374 		 struct perf_event *group_leader,
10375 		 struct perf_event *parent_event,
10376 		 perf_overflow_handler_t overflow_handler,
10377 		 void *context, int cgroup_fd)
10378 {
10379 	struct pmu *pmu;
10380 	struct perf_event *event;
10381 	struct hw_perf_event *hwc;
10382 	long err = -EINVAL;
10383 
10384 	if ((unsigned)cpu >= nr_cpu_ids) {
10385 		if (!task || cpu != -1)
10386 			return ERR_PTR(-EINVAL);
10387 	}
10388 
10389 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10390 	if (!event)
10391 		return ERR_PTR(-ENOMEM);
10392 
10393 	/*
10394 	 * Single events are their own group leaders, with an
10395 	 * empty sibling list:
10396 	 */
10397 	if (!group_leader)
10398 		group_leader = event;
10399 
10400 	mutex_init(&event->child_mutex);
10401 	INIT_LIST_HEAD(&event->child_list);
10402 
10403 	INIT_LIST_HEAD(&event->event_entry);
10404 	INIT_LIST_HEAD(&event->sibling_list);
10405 	INIT_LIST_HEAD(&event->active_list);
10406 	init_event_group(event);
10407 	INIT_LIST_HEAD(&event->rb_entry);
10408 	INIT_LIST_HEAD(&event->active_entry);
10409 	INIT_LIST_HEAD(&event->addr_filters.list);
10410 	INIT_HLIST_NODE(&event->hlist_entry);
10411 
10412 
10413 	init_waitqueue_head(&event->waitq);
10414 	event->pending_disable = -1;
10415 	init_irq_work(&event->pending, perf_pending_event);
10416 
10417 	mutex_init(&event->mmap_mutex);
10418 	raw_spin_lock_init(&event->addr_filters.lock);
10419 
10420 	atomic_long_set(&event->refcount, 1);
10421 	event->cpu		= cpu;
10422 	event->attr		= *attr;
10423 	event->group_leader	= group_leader;
10424 	event->pmu		= NULL;
10425 	event->oncpu		= -1;
10426 
10427 	event->parent		= parent_event;
10428 
10429 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10430 	event->id		= atomic64_inc_return(&perf_event_id);
10431 
10432 	event->state		= PERF_EVENT_STATE_INACTIVE;
10433 
10434 	if (task) {
10435 		event->attach_state = PERF_ATTACH_TASK;
10436 		/*
10437 		 * XXX pmu::event_init needs to know what task to account to
10438 		 * and we cannot use the ctx information because we need the
10439 		 * pmu before we get a ctx.
10440 		 */
10441 		event->hw.target = get_task_struct(task);
10442 	}
10443 
10444 	event->clock = &local_clock;
10445 	if (parent_event)
10446 		event->clock = parent_event->clock;
10447 
10448 	if (!overflow_handler && parent_event) {
10449 		overflow_handler = parent_event->overflow_handler;
10450 		context = parent_event->overflow_handler_context;
10451 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10452 		if (overflow_handler == bpf_overflow_handler) {
10453 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10454 
10455 			if (IS_ERR(prog)) {
10456 				err = PTR_ERR(prog);
10457 				goto err_ns;
10458 			}
10459 			event->prog = prog;
10460 			event->orig_overflow_handler =
10461 				parent_event->orig_overflow_handler;
10462 		}
10463 #endif
10464 	}
10465 
10466 	if (overflow_handler) {
10467 		event->overflow_handler	= overflow_handler;
10468 		event->overflow_handler_context = context;
10469 	} else if (is_write_backward(event)){
10470 		event->overflow_handler = perf_event_output_backward;
10471 		event->overflow_handler_context = NULL;
10472 	} else {
10473 		event->overflow_handler = perf_event_output_forward;
10474 		event->overflow_handler_context = NULL;
10475 	}
10476 
10477 	perf_event__state_init(event);
10478 
10479 	pmu = NULL;
10480 
10481 	hwc = &event->hw;
10482 	hwc->sample_period = attr->sample_period;
10483 	if (attr->freq && attr->sample_freq)
10484 		hwc->sample_period = 1;
10485 	hwc->last_period = hwc->sample_period;
10486 
10487 	local64_set(&hwc->period_left, hwc->sample_period);
10488 
10489 	/*
10490 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10491 	 * See perf_output_read().
10492 	 */
10493 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10494 		goto err_ns;
10495 
10496 	if (!has_branch_stack(event))
10497 		event->attr.branch_sample_type = 0;
10498 
10499 	if (cgroup_fd != -1) {
10500 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10501 		if (err)
10502 			goto err_ns;
10503 	}
10504 
10505 	pmu = perf_init_event(event);
10506 	if (IS_ERR(pmu)) {
10507 		err = PTR_ERR(pmu);
10508 		goto err_ns;
10509 	}
10510 
10511 	if (event->attr.aux_output &&
10512 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10513 		err = -EOPNOTSUPP;
10514 		goto err_pmu;
10515 	}
10516 
10517 	err = exclusive_event_init(event);
10518 	if (err)
10519 		goto err_pmu;
10520 
10521 	if (has_addr_filter(event)) {
10522 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10523 						    sizeof(struct perf_addr_filter_range),
10524 						    GFP_KERNEL);
10525 		if (!event->addr_filter_ranges) {
10526 			err = -ENOMEM;
10527 			goto err_per_task;
10528 		}
10529 
10530 		/*
10531 		 * Clone the parent's vma offsets: they are valid until exec()
10532 		 * even if the mm is not shared with the parent.
10533 		 */
10534 		if (event->parent) {
10535 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10536 
10537 			raw_spin_lock_irq(&ifh->lock);
10538 			memcpy(event->addr_filter_ranges,
10539 			       event->parent->addr_filter_ranges,
10540 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10541 			raw_spin_unlock_irq(&ifh->lock);
10542 		}
10543 
10544 		/* force hw sync on the address filters */
10545 		event->addr_filters_gen = 1;
10546 	}
10547 
10548 	if (!event->parent) {
10549 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10550 			err = get_callchain_buffers(attr->sample_max_stack);
10551 			if (err)
10552 				goto err_addr_filters;
10553 		}
10554 	}
10555 
10556 	/* symmetric to unaccount_event() in _free_event() */
10557 	account_event(event);
10558 
10559 	return event;
10560 
10561 err_addr_filters:
10562 	kfree(event->addr_filter_ranges);
10563 
10564 err_per_task:
10565 	exclusive_event_destroy(event);
10566 
10567 err_pmu:
10568 	if (event->destroy)
10569 		event->destroy(event);
10570 	module_put(pmu->module);
10571 err_ns:
10572 	if (is_cgroup_event(event))
10573 		perf_detach_cgroup(event);
10574 	if (event->ns)
10575 		put_pid_ns(event->ns);
10576 	if (event->hw.target)
10577 		put_task_struct(event->hw.target);
10578 	kfree(event);
10579 
10580 	return ERR_PTR(err);
10581 }
10582 
10583 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10584 			  struct perf_event_attr *attr)
10585 {
10586 	u32 size;
10587 	int ret;
10588 
10589 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10590 		return -EFAULT;
10591 
10592 	/*
10593 	 * zero the full structure, so that a short copy will be nice.
10594 	 */
10595 	memset(attr, 0, sizeof(*attr));
10596 
10597 	ret = get_user(size, &uattr->size);
10598 	if (ret)
10599 		return ret;
10600 
10601 	if (size > PAGE_SIZE)	/* silly large */
10602 		goto err_size;
10603 
10604 	if (!size)		/* abi compat */
10605 		size = PERF_ATTR_SIZE_VER0;
10606 
10607 	if (size < PERF_ATTR_SIZE_VER0)
10608 		goto err_size;
10609 
10610 	/*
10611 	 * If we're handed a bigger struct than we know of,
10612 	 * ensure all the unknown bits are 0 - i.e. new
10613 	 * user-space does not rely on any kernel feature
10614 	 * extensions we dont know about yet.
10615 	 */
10616 	if (size > sizeof(*attr)) {
10617 		unsigned char __user *addr;
10618 		unsigned char __user *end;
10619 		unsigned char val;
10620 
10621 		addr = (void __user *)uattr + sizeof(*attr);
10622 		end  = (void __user *)uattr + size;
10623 
10624 		for (; addr < end; addr++) {
10625 			ret = get_user(val, addr);
10626 			if (ret)
10627 				return ret;
10628 			if (val)
10629 				goto err_size;
10630 		}
10631 		size = sizeof(*attr);
10632 	}
10633 
10634 	ret = copy_from_user(attr, uattr, size);
10635 	if (ret)
10636 		return -EFAULT;
10637 
10638 	attr->size = size;
10639 
10640 	if (attr->__reserved_1)
10641 		return -EINVAL;
10642 
10643 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10644 		return -EINVAL;
10645 
10646 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10647 		return -EINVAL;
10648 
10649 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10650 		u64 mask = attr->branch_sample_type;
10651 
10652 		/* only using defined bits */
10653 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10654 			return -EINVAL;
10655 
10656 		/* at least one branch bit must be set */
10657 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10658 			return -EINVAL;
10659 
10660 		/* propagate priv level, when not set for branch */
10661 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10662 
10663 			/* exclude_kernel checked on syscall entry */
10664 			if (!attr->exclude_kernel)
10665 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10666 
10667 			if (!attr->exclude_user)
10668 				mask |= PERF_SAMPLE_BRANCH_USER;
10669 
10670 			if (!attr->exclude_hv)
10671 				mask |= PERF_SAMPLE_BRANCH_HV;
10672 			/*
10673 			 * adjust user setting (for HW filter setup)
10674 			 */
10675 			attr->branch_sample_type = mask;
10676 		}
10677 		/* privileged levels capture (kernel, hv): check permissions */
10678 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10679 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10680 			return -EACCES;
10681 	}
10682 
10683 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10684 		ret = perf_reg_validate(attr->sample_regs_user);
10685 		if (ret)
10686 			return ret;
10687 	}
10688 
10689 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10690 		if (!arch_perf_have_user_stack_dump())
10691 			return -ENOSYS;
10692 
10693 		/*
10694 		 * We have __u32 type for the size, but so far
10695 		 * we can only use __u16 as maximum due to the
10696 		 * __u16 sample size limit.
10697 		 */
10698 		if (attr->sample_stack_user >= USHRT_MAX)
10699 			return -EINVAL;
10700 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10701 			return -EINVAL;
10702 	}
10703 
10704 	if (!attr->sample_max_stack)
10705 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10706 
10707 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10708 		ret = perf_reg_validate(attr->sample_regs_intr);
10709 out:
10710 	return ret;
10711 
10712 err_size:
10713 	put_user(sizeof(*attr), &uattr->size);
10714 	ret = -E2BIG;
10715 	goto out;
10716 }
10717 
10718 static int
10719 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10720 {
10721 	struct ring_buffer *rb = NULL;
10722 	int ret = -EINVAL;
10723 
10724 	if (!output_event)
10725 		goto set;
10726 
10727 	/* don't allow circular references */
10728 	if (event == output_event)
10729 		goto out;
10730 
10731 	/*
10732 	 * Don't allow cross-cpu buffers
10733 	 */
10734 	if (output_event->cpu != event->cpu)
10735 		goto out;
10736 
10737 	/*
10738 	 * If its not a per-cpu rb, it must be the same task.
10739 	 */
10740 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10741 		goto out;
10742 
10743 	/*
10744 	 * Mixing clocks in the same buffer is trouble you don't need.
10745 	 */
10746 	if (output_event->clock != event->clock)
10747 		goto out;
10748 
10749 	/*
10750 	 * Either writing ring buffer from beginning or from end.
10751 	 * Mixing is not allowed.
10752 	 */
10753 	if (is_write_backward(output_event) != is_write_backward(event))
10754 		goto out;
10755 
10756 	/*
10757 	 * If both events generate aux data, they must be on the same PMU
10758 	 */
10759 	if (has_aux(event) && has_aux(output_event) &&
10760 	    event->pmu != output_event->pmu)
10761 		goto out;
10762 
10763 set:
10764 	mutex_lock(&event->mmap_mutex);
10765 	/* Can't redirect output if we've got an active mmap() */
10766 	if (atomic_read(&event->mmap_count))
10767 		goto unlock;
10768 
10769 	if (output_event) {
10770 		/* get the rb we want to redirect to */
10771 		rb = ring_buffer_get(output_event);
10772 		if (!rb)
10773 			goto unlock;
10774 	}
10775 
10776 	ring_buffer_attach(event, rb);
10777 
10778 	ret = 0;
10779 unlock:
10780 	mutex_unlock(&event->mmap_mutex);
10781 
10782 out:
10783 	return ret;
10784 }
10785 
10786 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10787 {
10788 	if (b < a)
10789 		swap(a, b);
10790 
10791 	mutex_lock(a);
10792 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10793 }
10794 
10795 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10796 {
10797 	bool nmi_safe = false;
10798 
10799 	switch (clk_id) {
10800 	case CLOCK_MONOTONIC:
10801 		event->clock = &ktime_get_mono_fast_ns;
10802 		nmi_safe = true;
10803 		break;
10804 
10805 	case CLOCK_MONOTONIC_RAW:
10806 		event->clock = &ktime_get_raw_fast_ns;
10807 		nmi_safe = true;
10808 		break;
10809 
10810 	case CLOCK_REALTIME:
10811 		event->clock = &ktime_get_real_ns;
10812 		break;
10813 
10814 	case CLOCK_BOOTTIME:
10815 		event->clock = &ktime_get_boottime_ns;
10816 		break;
10817 
10818 	case CLOCK_TAI:
10819 		event->clock = &ktime_get_clocktai_ns;
10820 		break;
10821 
10822 	default:
10823 		return -EINVAL;
10824 	}
10825 
10826 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10827 		return -EINVAL;
10828 
10829 	return 0;
10830 }
10831 
10832 /*
10833  * Variation on perf_event_ctx_lock_nested(), except we take two context
10834  * mutexes.
10835  */
10836 static struct perf_event_context *
10837 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10838 			     struct perf_event_context *ctx)
10839 {
10840 	struct perf_event_context *gctx;
10841 
10842 again:
10843 	rcu_read_lock();
10844 	gctx = READ_ONCE(group_leader->ctx);
10845 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10846 		rcu_read_unlock();
10847 		goto again;
10848 	}
10849 	rcu_read_unlock();
10850 
10851 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10852 
10853 	if (group_leader->ctx != gctx) {
10854 		mutex_unlock(&ctx->mutex);
10855 		mutex_unlock(&gctx->mutex);
10856 		put_ctx(gctx);
10857 		goto again;
10858 	}
10859 
10860 	return gctx;
10861 }
10862 
10863 /**
10864  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10865  *
10866  * @attr_uptr:	event_id type attributes for monitoring/sampling
10867  * @pid:		target pid
10868  * @cpu:		target cpu
10869  * @group_fd:		group leader event fd
10870  */
10871 SYSCALL_DEFINE5(perf_event_open,
10872 		struct perf_event_attr __user *, attr_uptr,
10873 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10874 {
10875 	struct perf_event *group_leader = NULL, *output_event = NULL;
10876 	struct perf_event *event, *sibling;
10877 	struct perf_event_attr attr;
10878 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10879 	struct file *event_file = NULL;
10880 	struct fd group = {NULL, 0};
10881 	struct task_struct *task = NULL;
10882 	struct pmu *pmu;
10883 	int event_fd;
10884 	int move_group = 0;
10885 	int err;
10886 	int f_flags = O_RDWR;
10887 	int cgroup_fd = -1;
10888 
10889 	/* for future expandability... */
10890 	if (flags & ~PERF_FLAG_ALL)
10891 		return -EINVAL;
10892 
10893 	err = perf_copy_attr(attr_uptr, &attr);
10894 	if (err)
10895 		return err;
10896 
10897 	if (!attr.exclude_kernel) {
10898 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10899 			return -EACCES;
10900 	}
10901 
10902 	if (attr.namespaces) {
10903 		if (!capable(CAP_SYS_ADMIN))
10904 			return -EACCES;
10905 	}
10906 
10907 	if (attr.freq) {
10908 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10909 			return -EINVAL;
10910 	} else {
10911 		if (attr.sample_period & (1ULL << 63))
10912 			return -EINVAL;
10913 	}
10914 
10915 	/* Only privileged users can get physical addresses */
10916 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10917 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10918 		return -EACCES;
10919 
10920 	/*
10921 	 * In cgroup mode, the pid argument is used to pass the fd
10922 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10923 	 * designates the cpu on which to monitor threads from that
10924 	 * cgroup.
10925 	 */
10926 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10927 		return -EINVAL;
10928 
10929 	if (flags & PERF_FLAG_FD_CLOEXEC)
10930 		f_flags |= O_CLOEXEC;
10931 
10932 	event_fd = get_unused_fd_flags(f_flags);
10933 	if (event_fd < 0)
10934 		return event_fd;
10935 
10936 	if (group_fd != -1) {
10937 		err = perf_fget_light(group_fd, &group);
10938 		if (err)
10939 			goto err_fd;
10940 		group_leader = group.file->private_data;
10941 		if (flags & PERF_FLAG_FD_OUTPUT)
10942 			output_event = group_leader;
10943 		if (flags & PERF_FLAG_FD_NO_GROUP)
10944 			group_leader = NULL;
10945 	}
10946 
10947 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10948 		task = find_lively_task_by_vpid(pid);
10949 		if (IS_ERR(task)) {
10950 			err = PTR_ERR(task);
10951 			goto err_group_fd;
10952 		}
10953 	}
10954 
10955 	if (task && group_leader &&
10956 	    group_leader->attr.inherit != attr.inherit) {
10957 		err = -EINVAL;
10958 		goto err_task;
10959 	}
10960 
10961 	if (task) {
10962 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10963 		if (err)
10964 			goto err_task;
10965 
10966 		/*
10967 		 * Reuse ptrace permission checks for now.
10968 		 *
10969 		 * We must hold cred_guard_mutex across this and any potential
10970 		 * perf_install_in_context() call for this new event to
10971 		 * serialize against exec() altering our credentials (and the
10972 		 * perf_event_exit_task() that could imply).
10973 		 */
10974 		err = -EACCES;
10975 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10976 			goto err_cred;
10977 	}
10978 
10979 	if (flags & PERF_FLAG_PID_CGROUP)
10980 		cgroup_fd = pid;
10981 
10982 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10983 				 NULL, NULL, cgroup_fd);
10984 	if (IS_ERR(event)) {
10985 		err = PTR_ERR(event);
10986 		goto err_cred;
10987 	}
10988 
10989 	if (is_sampling_event(event)) {
10990 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10991 			err = -EOPNOTSUPP;
10992 			goto err_alloc;
10993 		}
10994 	}
10995 
10996 	/*
10997 	 * Special case software events and allow them to be part of
10998 	 * any hardware group.
10999 	 */
11000 	pmu = event->pmu;
11001 
11002 	if (attr.use_clockid) {
11003 		err = perf_event_set_clock(event, attr.clockid);
11004 		if (err)
11005 			goto err_alloc;
11006 	}
11007 
11008 	if (pmu->task_ctx_nr == perf_sw_context)
11009 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11010 
11011 	if (group_leader) {
11012 		if (is_software_event(event) &&
11013 		    !in_software_context(group_leader)) {
11014 			/*
11015 			 * If the event is a sw event, but the group_leader
11016 			 * is on hw context.
11017 			 *
11018 			 * Allow the addition of software events to hw
11019 			 * groups, this is safe because software events
11020 			 * never fail to schedule.
11021 			 */
11022 			pmu = group_leader->ctx->pmu;
11023 		} else if (!is_software_event(event) &&
11024 			   is_software_event(group_leader) &&
11025 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11026 			/*
11027 			 * In case the group is a pure software group, and we
11028 			 * try to add a hardware event, move the whole group to
11029 			 * the hardware context.
11030 			 */
11031 			move_group = 1;
11032 		}
11033 	}
11034 
11035 	/*
11036 	 * Get the target context (task or percpu):
11037 	 */
11038 	ctx = find_get_context(pmu, task, event);
11039 	if (IS_ERR(ctx)) {
11040 		err = PTR_ERR(ctx);
11041 		goto err_alloc;
11042 	}
11043 
11044 	/*
11045 	 * Look up the group leader (we will attach this event to it):
11046 	 */
11047 	if (group_leader) {
11048 		err = -EINVAL;
11049 
11050 		/*
11051 		 * Do not allow a recursive hierarchy (this new sibling
11052 		 * becoming part of another group-sibling):
11053 		 */
11054 		if (group_leader->group_leader != group_leader)
11055 			goto err_context;
11056 
11057 		/* All events in a group should have the same clock */
11058 		if (group_leader->clock != event->clock)
11059 			goto err_context;
11060 
11061 		/*
11062 		 * Make sure we're both events for the same CPU;
11063 		 * grouping events for different CPUs is broken; since
11064 		 * you can never concurrently schedule them anyhow.
11065 		 */
11066 		if (group_leader->cpu != event->cpu)
11067 			goto err_context;
11068 
11069 		/*
11070 		 * Make sure we're both on the same task, or both
11071 		 * per-CPU events.
11072 		 */
11073 		if (group_leader->ctx->task != ctx->task)
11074 			goto err_context;
11075 
11076 		/*
11077 		 * Do not allow to attach to a group in a different task
11078 		 * or CPU context. If we're moving SW events, we'll fix
11079 		 * this up later, so allow that.
11080 		 */
11081 		if (!move_group && group_leader->ctx != ctx)
11082 			goto err_context;
11083 
11084 		/*
11085 		 * Only a group leader can be exclusive or pinned
11086 		 */
11087 		if (attr.exclusive || attr.pinned)
11088 			goto err_context;
11089 	}
11090 
11091 	if (output_event) {
11092 		err = perf_event_set_output(event, output_event);
11093 		if (err)
11094 			goto err_context;
11095 	}
11096 
11097 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11098 					f_flags);
11099 	if (IS_ERR(event_file)) {
11100 		err = PTR_ERR(event_file);
11101 		event_file = NULL;
11102 		goto err_context;
11103 	}
11104 
11105 	if (move_group) {
11106 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11107 
11108 		if (gctx->task == TASK_TOMBSTONE) {
11109 			err = -ESRCH;
11110 			goto err_locked;
11111 		}
11112 
11113 		/*
11114 		 * Check if we raced against another sys_perf_event_open() call
11115 		 * moving the software group underneath us.
11116 		 */
11117 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11118 			/*
11119 			 * If someone moved the group out from under us, check
11120 			 * if this new event wound up on the same ctx, if so
11121 			 * its the regular !move_group case, otherwise fail.
11122 			 */
11123 			if (gctx != ctx) {
11124 				err = -EINVAL;
11125 				goto err_locked;
11126 			} else {
11127 				perf_event_ctx_unlock(group_leader, gctx);
11128 				move_group = 0;
11129 			}
11130 		}
11131 
11132 		/*
11133 		 * Failure to create exclusive events returns -EBUSY.
11134 		 */
11135 		err = -EBUSY;
11136 		if (!exclusive_event_installable(group_leader, ctx))
11137 			goto err_locked;
11138 
11139 		for_each_sibling_event(sibling, group_leader) {
11140 			if (!exclusive_event_installable(sibling, ctx))
11141 				goto err_locked;
11142 		}
11143 	} else {
11144 		mutex_lock(&ctx->mutex);
11145 	}
11146 
11147 	if (ctx->task == TASK_TOMBSTONE) {
11148 		err = -ESRCH;
11149 		goto err_locked;
11150 	}
11151 
11152 	if (!perf_event_validate_size(event)) {
11153 		err = -E2BIG;
11154 		goto err_locked;
11155 	}
11156 
11157 	if (!task) {
11158 		/*
11159 		 * Check if the @cpu we're creating an event for is online.
11160 		 *
11161 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11162 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11163 		 */
11164 		struct perf_cpu_context *cpuctx =
11165 			container_of(ctx, struct perf_cpu_context, ctx);
11166 
11167 		if (!cpuctx->online) {
11168 			err = -ENODEV;
11169 			goto err_locked;
11170 		}
11171 	}
11172 
11173 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader))
11174 		goto err_locked;
11175 
11176 	/*
11177 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11178 	 * because we need to serialize with concurrent event creation.
11179 	 */
11180 	if (!exclusive_event_installable(event, ctx)) {
11181 		err = -EBUSY;
11182 		goto err_locked;
11183 	}
11184 
11185 	WARN_ON_ONCE(ctx->parent_ctx);
11186 
11187 	/*
11188 	 * This is the point on no return; we cannot fail hereafter. This is
11189 	 * where we start modifying current state.
11190 	 */
11191 
11192 	if (move_group) {
11193 		/*
11194 		 * See perf_event_ctx_lock() for comments on the details
11195 		 * of swizzling perf_event::ctx.
11196 		 */
11197 		perf_remove_from_context(group_leader, 0);
11198 		put_ctx(gctx);
11199 
11200 		for_each_sibling_event(sibling, group_leader) {
11201 			perf_remove_from_context(sibling, 0);
11202 			put_ctx(gctx);
11203 		}
11204 
11205 		/*
11206 		 * Wait for everybody to stop referencing the events through
11207 		 * the old lists, before installing it on new lists.
11208 		 */
11209 		synchronize_rcu();
11210 
11211 		/*
11212 		 * Install the group siblings before the group leader.
11213 		 *
11214 		 * Because a group leader will try and install the entire group
11215 		 * (through the sibling list, which is still in-tact), we can
11216 		 * end up with siblings installed in the wrong context.
11217 		 *
11218 		 * By installing siblings first we NO-OP because they're not
11219 		 * reachable through the group lists.
11220 		 */
11221 		for_each_sibling_event(sibling, group_leader) {
11222 			perf_event__state_init(sibling);
11223 			perf_install_in_context(ctx, sibling, sibling->cpu);
11224 			get_ctx(ctx);
11225 		}
11226 
11227 		/*
11228 		 * Removing from the context ends up with disabled
11229 		 * event. What we want here is event in the initial
11230 		 * startup state, ready to be add into new context.
11231 		 */
11232 		perf_event__state_init(group_leader);
11233 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11234 		get_ctx(ctx);
11235 	}
11236 
11237 	/*
11238 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11239 	 * that we're serialized against further additions and before
11240 	 * perf_install_in_context() which is the point the event is active and
11241 	 * can use these values.
11242 	 */
11243 	perf_event__header_size(event);
11244 	perf_event__id_header_size(event);
11245 
11246 	event->owner = current;
11247 
11248 	perf_install_in_context(ctx, event, event->cpu);
11249 	perf_unpin_context(ctx);
11250 
11251 	if (move_group)
11252 		perf_event_ctx_unlock(group_leader, gctx);
11253 	mutex_unlock(&ctx->mutex);
11254 
11255 	if (task) {
11256 		mutex_unlock(&task->signal->cred_guard_mutex);
11257 		put_task_struct(task);
11258 	}
11259 
11260 	mutex_lock(&current->perf_event_mutex);
11261 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11262 	mutex_unlock(&current->perf_event_mutex);
11263 
11264 	/*
11265 	 * Drop the reference on the group_event after placing the
11266 	 * new event on the sibling_list. This ensures destruction
11267 	 * of the group leader will find the pointer to itself in
11268 	 * perf_group_detach().
11269 	 */
11270 	fdput(group);
11271 	fd_install(event_fd, event_file);
11272 	return event_fd;
11273 
11274 err_locked:
11275 	if (move_group)
11276 		perf_event_ctx_unlock(group_leader, gctx);
11277 	mutex_unlock(&ctx->mutex);
11278 /* err_file: */
11279 	fput(event_file);
11280 err_context:
11281 	perf_unpin_context(ctx);
11282 	put_ctx(ctx);
11283 err_alloc:
11284 	/*
11285 	 * If event_file is set, the fput() above will have called ->release()
11286 	 * and that will take care of freeing the event.
11287 	 */
11288 	if (!event_file)
11289 		free_event(event);
11290 err_cred:
11291 	if (task)
11292 		mutex_unlock(&task->signal->cred_guard_mutex);
11293 err_task:
11294 	if (task)
11295 		put_task_struct(task);
11296 err_group_fd:
11297 	fdput(group);
11298 err_fd:
11299 	put_unused_fd(event_fd);
11300 	return err;
11301 }
11302 
11303 /**
11304  * perf_event_create_kernel_counter
11305  *
11306  * @attr: attributes of the counter to create
11307  * @cpu: cpu in which the counter is bound
11308  * @task: task to profile (NULL for percpu)
11309  */
11310 struct perf_event *
11311 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11312 				 struct task_struct *task,
11313 				 perf_overflow_handler_t overflow_handler,
11314 				 void *context)
11315 {
11316 	struct perf_event_context *ctx;
11317 	struct perf_event *event;
11318 	int err;
11319 
11320 	/*
11321 	 * Get the target context (task or percpu):
11322 	 */
11323 
11324 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11325 				 overflow_handler, context, -1);
11326 	if (IS_ERR(event)) {
11327 		err = PTR_ERR(event);
11328 		goto err;
11329 	}
11330 
11331 	/* Mark owner so we could distinguish it from user events. */
11332 	event->owner = TASK_TOMBSTONE;
11333 
11334 	ctx = find_get_context(event->pmu, task, event);
11335 	if (IS_ERR(ctx)) {
11336 		err = PTR_ERR(ctx);
11337 		goto err_free;
11338 	}
11339 
11340 	WARN_ON_ONCE(ctx->parent_ctx);
11341 	mutex_lock(&ctx->mutex);
11342 	if (ctx->task == TASK_TOMBSTONE) {
11343 		err = -ESRCH;
11344 		goto err_unlock;
11345 	}
11346 
11347 	if (!task) {
11348 		/*
11349 		 * Check if the @cpu we're creating an event for is online.
11350 		 *
11351 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11352 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11353 		 */
11354 		struct perf_cpu_context *cpuctx =
11355 			container_of(ctx, struct perf_cpu_context, ctx);
11356 		if (!cpuctx->online) {
11357 			err = -ENODEV;
11358 			goto err_unlock;
11359 		}
11360 	}
11361 
11362 	if (!exclusive_event_installable(event, ctx)) {
11363 		err = -EBUSY;
11364 		goto err_unlock;
11365 	}
11366 
11367 	perf_install_in_context(ctx, event, event->cpu);
11368 	perf_unpin_context(ctx);
11369 	mutex_unlock(&ctx->mutex);
11370 
11371 	return event;
11372 
11373 err_unlock:
11374 	mutex_unlock(&ctx->mutex);
11375 	perf_unpin_context(ctx);
11376 	put_ctx(ctx);
11377 err_free:
11378 	free_event(event);
11379 err:
11380 	return ERR_PTR(err);
11381 }
11382 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11383 
11384 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11385 {
11386 	struct perf_event_context *src_ctx;
11387 	struct perf_event_context *dst_ctx;
11388 	struct perf_event *event, *tmp;
11389 	LIST_HEAD(events);
11390 
11391 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11392 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11393 
11394 	/*
11395 	 * See perf_event_ctx_lock() for comments on the details
11396 	 * of swizzling perf_event::ctx.
11397 	 */
11398 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11399 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11400 				 event_entry) {
11401 		perf_remove_from_context(event, 0);
11402 		unaccount_event_cpu(event, src_cpu);
11403 		put_ctx(src_ctx);
11404 		list_add(&event->migrate_entry, &events);
11405 	}
11406 
11407 	/*
11408 	 * Wait for the events to quiesce before re-instating them.
11409 	 */
11410 	synchronize_rcu();
11411 
11412 	/*
11413 	 * Re-instate events in 2 passes.
11414 	 *
11415 	 * Skip over group leaders and only install siblings on this first
11416 	 * pass, siblings will not get enabled without a leader, however a
11417 	 * leader will enable its siblings, even if those are still on the old
11418 	 * context.
11419 	 */
11420 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11421 		if (event->group_leader == event)
11422 			continue;
11423 
11424 		list_del(&event->migrate_entry);
11425 		if (event->state >= PERF_EVENT_STATE_OFF)
11426 			event->state = PERF_EVENT_STATE_INACTIVE;
11427 		account_event_cpu(event, dst_cpu);
11428 		perf_install_in_context(dst_ctx, event, dst_cpu);
11429 		get_ctx(dst_ctx);
11430 	}
11431 
11432 	/*
11433 	 * Once all the siblings are setup properly, install the group leaders
11434 	 * to make it go.
11435 	 */
11436 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11437 		list_del(&event->migrate_entry);
11438 		if (event->state >= PERF_EVENT_STATE_OFF)
11439 			event->state = PERF_EVENT_STATE_INACTIVE;
11440 		account_event_cpu(event, dst_cpu);
11441 		perf_install_in_context(dst_ctx, event, dst_cpu);
11442 		get_ctx(dst_ctx);
11443 	}
11444 	mutex_unlock(&dst_ctx->mutex);
11445 	mutex_unlock(&src_ctx->mutex);
11446 }
11447 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11448 
11449 static void sync_child_event(struct perf_event *child_event,
11450 			       struct task_struct *child)
11451 {
11452 	struct perf_event *parent_event = child_event->parent;
11453 	u64 child_val;
11454 
11455 	if (child_event->attr.inherit_stat)
11456 		perf_event_read_event(child_event, child);
11457 
11458 	child_val = perf_event_count(child_event);
11459 
11460 	/*
11461 	 * Add back the child's count to the parent's count:
11462 	 */
11463 	atomic64_add(child_val, &parent_event->child_count);
11464 	atomic64_add(child_event->total_time_enabled,
11465 		     &parent_event->child_total_time_enabled);
11466 	atomic64_add(child_event->total_time_running,
11467 		     &parent_event->child_total_time_running);
11468 }
11469 
11470 static void
11471 perf_event_exit_event(struct perf_event *child_event,
11472 		      struct perf_event_context *child_ctx,
11473 		      struct task_struct *child)
11474 {
11475 	struct perf_event *parent_event = child_event->parent;
11476 
11477 	/*
11478 	 * Do not destroy the 'original' grouping; because of the context
11479 	 * switch optimization the original events could've ended up in a
11480 	 * random child task.
11481 	 *
11482 	 * If we were to destroy the original group, all group related
11483 	 * operations would cease to function properly after this random
11484 	 * child dies.
11485 	 *
11486 	 * Do destroy all inherited groups, we don't care about those
11487 	 * and being thorough is better.
11488 	 */
11489 	raw_spin_lock_irq(&child_ctx->lock);
11490 	WARN_ON_ONCE(child_ctx->is_active);
11491 
11492 	if (parent_event)
11493 		perf_group_detach(child_event);
11494 	list_del_event(child_event, child_ctx);
11495 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11496 	raw_spin_unlock_irq(&child_ctx->lock);
11497 
11498 	/*
11499 	 * Parent events are governed by their filedesc, retain them.
11500 	 */
11501 	if (!parent_event) {
11502 		perf_event_wakeup(child_event);
11503 		return;
11504 	}
11505 	/*
11506 	 * Child events can be cleaned up.
11507 	 */
11508 
11509 	sync_child_event(child_event, child);
11510 
11511 	/*
11512 	 * Remove this event from the parent's list
11513 	 */
11514 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11515 	mutex_lock(&parent_event->child_mutex);
11516 	list_del_init(&child_event->child_list);
11517 	mutex_unlock(&parent_event->child_mutex);
11518 
11519 	/*
11520 	 * Kick perf_poll() for is_event_hup().
11521 	 */
11522 	perf_event_wakeup(parent_event);
11523 	free_event(child_event);
11524 	put_event(parent_event);
11525 }
11526 
11527 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11528 {
11529 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11530 	struct perf_event *child_event, *next;
11531 
11532 	WARN_ON_ONCE(child != current);
11533 
11534 	child_ctx = perf_pin_task_context(child, ctxn);
11535 	if (!child_ctx)
11536 		return;
11537 
11538 	/*
11539 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11540 	 * ctx::mutex over the entire thing. This serializes against almost
11541 	 * everything that wants to access the ctx.
11542 	 *
11543 	 * The exception is sys_perf_event_open() /
11544 	 * perf_event_create_kernel_count() which does find_get_context()
11545 	 * without ctx::mutex (it cannot because of the move_group double mutex
11546 	 * lock thing). See the comments in perf_install_in_context().
11547 	 */
11548 	mutex_lock(&child_ctx->mutex);
11549 
11550 	/*
11551 	 * In a single ctx::lock section, de-schedule the events and detach the
11552 	 * context from the task such that we cannot ever get it scheduled back
11553 	 * in.
11554 	 */
11555 	raw_spin_lock_irq(&child_ctx->lock);
11556 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11557 
11558 	/*
11559 	 * Now that the context is inactive, destroy the task <-> ctx relation
11560 	 * and mark the context dead.
11561 	 */
11562 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11563 	put_ctx(child_ctx); /* cannot be last */
11564 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11565 	put_task_struct(current); /* cannot be last */
11566 
11567 	clone_ctx = unclone_ctx(child_ctx);
11568 	raw_spin_unlock_irq(&child_ctx->lock);
11569 
11570 	if (clone_ctx)
11571 		put_ctx(clone_ctx);
11572 
11573 	/*
11574 	 * Report the task dead after unscheduling the events so that we
11575 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11576 	 * get a few PERF_RECORD_READ events.
11577 	 */
11578 	perf_event_task(child, child_ctx, 0);
11579 
11580 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11581 		perf_event_exit_event(child_event, child_ctx, child);
11582 
11583 	mutex_unlock(&child_ctx->mutex);
11584 
11585 	put_ctx(child_ctx);
11586 }
11587 
11588 /*
11589  * When a child task exits, feed back event values to parent events.
11590  *
11591  * Can be called with cred_guard_mutex held when called from
11592  * install_exec_creds().
11593  */
11594 void perf_event_exit_task(struct task_struct *child)
11595 {
11596 	struct perf_event *event, *tmp;
11597 	int ctxn;
11598 
11599 	mutex_lock(&child->perf_event_mutex);
11600 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11601 				 owner_entry) {
11602 		list_del_init(&event->owner_entry);
11603 
11604 		/*
11605 		 * Ensure the list deletion is visible before we clear
11606 		 * the owner, closes a race against perf_release() where
11607 		 * we need to serialize on the owner->perf_event_mutex.
11608 		 */
11609 		smp_store_release(&event->owner, NULL);
11610 	}
11611 	mutex_unlock(&child->perf_event_mutex);
11612 
11613 	for_each_task_context_nr(ctxn)
11614 		perf_event_exit_task_context(child, ctxn);
11615 
11616 	/*
11617 	 * The perf_event_exit_task_context calls perf_event_task
11618 	 * with child's task_ctx, which generates EXIT events for
11619 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11620 	 * At this point we need to send EXIT events to cpu contexts.
11621 	 */
11622 	perf_event_task(child, NULL, 0);
11623 }
11624 
11625 static void perf_free_event(struct perf_event *event,
11626 			    struct perf_event_context *ctx)
11627 {
11628 	struct perf_event *parent = event->parent;
11629 
11630 	if (WARN_ON_ONCE(!parent))
11631 		return;
11632 
11633 	mutex_lock(&parent->child_mutex);
11634 	list_del_init(&event->child_list);
11635 	mutex_unlock(&parent->child_mutex);
11636 
11637 	put_event(parent);
11638 
11639 	raw_spin_lock_irq(&ctx->lock);
11640 	perf_group_detach(event);
11641 	list_del_event(event, ctx);
11642 	raw_spin_unlock_irq(&ctx->lock);
11643 	free_event(event);
11644 }
11645 
11646 /*
11647  * Free a context as created by inheritance by perf_event_init_task() below,
11648  * used by fork() in case of fail.
11649  *
11650  * Even though the task has never lived, the context and events have been
11651  * exposed through the child_list, so we must take care tearing it all down.
11652  */
11653 void perf_event_free_task(struct task_struct *task)
11654 {
11655 	struct perf_event_context *ctx;
11656 	struct perf_event *event, *tmp;
11657 	int ctxn;
11658 
11659 	for_each_task_context_nr(ctxn) {
11660 		ctx = task->perf_event_ctxp[ctxn];
11661 		if (!ctx)
11662 			continue;
11663 
11664 		mutex_lock(&ctx->mutex);
11665 		raw_spin_lock_irq(&ctx->lock);
11666 		/*
11667 		 * Destroy the task <-> ctx relation and mark the context dead.
11668 		 *
11669 		 * This is important because even though the task hasn't been
11670 		 * exposed yet the context has been (through child_list).
11671 		 */
11672 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11673 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11674 		put_task_struct(task); /* cannot be last */
11675 		raw_spin_unlock_irq(&ctx->lock);
11676 
11677 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11678 			perf_free_event(event, ctx);
11679 
11680 		mutex_unlock(&ctx->mutex);
11681 
11682 		/*
11683 		 * perf_event_release_kernel() could've stolen some of our
11684 		 * child events and still have them on its free_list. In that
11685 		 * case we must wait for these events to have been freed (in
11686 		 * particular all their references to this task must've been
11687 		 * dropped).
11688 		 *
11689 		 * Without this copy_process() will unconditionally free this
11690 		 * task (irrespective of its reference count) and
11691 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11692 		 * use-after-free.
11693 		 *
11694 		 * Wait for all events to drop their context reference.
11695 		 */
11696 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11697 		put_ctx(ctx); /* must be last */
11698 	}
11699 }
11700 
11701 void perf_event_delayed_put(struct task_struct *task)
11702 {
11703 	int ctxn;
11704 
11705 	for_each_task_context_nr(ctxn)
11706 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11707 }
11708 
11709 struct file *perf_event_get(unsigned int fd)
11710 {
11711 	struct file *file = fget(fd);
11712 	if (!file)
11713 		return ERR_PTR(-EBADF);
11714 
11715 	if (file->f_op != &perf_fops) {
11716 		fput(file);
11717 		return ERR_PTR(-EBADF);
11718 	}
11719 
11720 	return file;
11721 }
11722 
11723 const struct perf_event *perf_get_event(struct file *file)
11724 {
11725 	if (file->f_op != &perf_fops)
11726 		return ERR_PTR(-EINVAL);
11727 
11728 	return file->private_data;
11729 }
11730 
11731 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11732 {
11733 	if (!event)
11734 		return ERR_PTR(-EINVAL);
11735 
11736 	return &event->attr;
11737 }
11738 
11739 /*
11740  * Inherit an event from parent task to child task.
11741  *
11742  * Returns:
11743  *  - valid pointer on success
11744  *  - NULL for orphaned events
11745  *  - IS_ERR() on error
11746  */
11747 static struct perf_event *
11748 inherit_event(struct perf_event *parent_event,
11749 	      struct task_struct *parent,
11750 	      struct perf_event_context *parent_ctx,
11751 	      struct task_struct *child,
11752 	      struct perf_event *group_leader,
11753 	      struct perf_event_context *child_ctx)
11754 {
11755 	enum perf_event_state parent_state = parent_event->state;
11756 	struct perf_event *child_event;
11757 	unsigned long flags;
11758 
11759 	/*
11760 	 * Instead of creating recursive hierarchies of events,
11761 	 * we link inherited events back to the original parent,
11762 	 * which has a filp for sure, which we use as the reference
11763 	 * count:
11764 	 */
11765 	if (parent_event->parent)
11766 		parent_event = parent_event->parent;
11767 
11768 	child_event = perf_event_alloc(&parent_event->attr,
11769 					   parent_event->cpu,
11770 					   child,
11771 					   group_leader, parent_event,
11772 					   NULL, NULL, -1);
11773 	if (IS_ERR(child_event))
11774 		return child_event;
11775 
11776 
11777 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11778 	    !child_ctx->task_ctx_data) {
11779 		struct pmu *pmu = child_event->pmu;
11780 
11781 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11782 						   GFP_KERNEL);
11783 		if (!child_ctx->task_ctx_data) {
11784 			free_event(child_event);
11785 			return NULL;
11786 		}
11787 	}
11788 
11789 	/*
11790 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11791 	 * must be under the same lock in order to serialize against
11792 	 * perf_event_release_kernel(), such that either we must observe
11793 	 * is_orphaned_event() or they will observe us on the child_list.
11794 	 */
11795 	mutex_lock(&parent_event->child_mutex);
11796 	if (is_orphaned_event(parent_event) ||
11797 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11798 		mutex_unlock(&parent_event->child_mutex);
11799 		/* task_ctx_data is freed with child_ctx */
11800 		free_event(child_event);
11801 		return NULL;
11802 	}
11803 
11804 	get_ctx(child_ctx);
11805 
11806 	/*
11807 	 * Make the child state follow the state of the parent event,
11808 	 * not its attr.disabled bit.  We hold the parent's mutex,
11809 	 * so we won't race with perf_event_{en, dis}able_family.
11810 	 */
11811 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11812 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11813 	else
11814 		child_event->state = PERF_EVENT_STATE_OFF;
11815 
11816 	if (parent_event->attr.freq) {
11817 		u64 sample_period = parent_event->hw.sample_period;
11818 		struct hw_perf_event *hwc = &child_event->hw;
11819 
11820 		hwc->sample_period = sample_period;
11821 		hwc->last_period   = sample_period;
11822 
11823 		local64_set(&hwc->period_left, sample_period);
11824 	}
11825 
11826 	child_event->ctx = child_ctx;
11827 	child_event->overflow_handler = parent_event->overflow_handler;
11828 	child_event->overflow_handler_context
11829 		= parent_event->overflow_handler_context;
11830 
11831 	/*
11832 	 * Precalculate sample_data sizes
11833 	 */
11834 	perf_event__header_size(child_event);
11835 	perf_event__id_header_size(child_event);
11836 
11837 	/*
11838 	 * Link it up in the child's context:
11839 	 */
11840 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11841 	add_event_to_ctx(child_event, child_ctx);
11842 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11843 
11844 	/*
11845 	 * Link this into the parent event's child list
11846 	 */
11847 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11848 	mutex_unlock(&parent_event->child_mutex);
11849 
11850 	return child_event;
11851 }
11852 
11853 /*
11854  * Inherits an event group.
11855  *
11856  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11857  * This matches with perf_event_release_kernel() removing all child events.
11858  *
11859  * Returns:
11860  *  - 0 on success
11861  *  - <0 on error
11862  */
11863 static int inherit_group(struct perf_event *parent_event,
11864 	      struct task_struct *parent,
11865 	      struct perf_event_context *parent_ctx,
11866 	      struct task_struct *child,
11867 	      struct perf_event_context *child_ctx)
11868 {
11869 	struct perf_event *leader;
11870 	struct perf_event *sub;
11871 	struct perf_event *child_ctr;
11872 
11873 	leader = inherit_event(parent_event, parent, parent_ctx,
11874 				 child, NULL, child_ctx);
11875 	if (IS_ERR(leader))
11876 		return PTR_ERR(leader);
11877 	/*
11878 	 * @leader can be NULL here because of is_orphaned_event(). In this
11879 	 * case inherit_event() will create individual events, similar to what
11880 	 * perf_group_detach() would do anyway.
11881 	 */
11882 	for_each_sibling_event(sub, parent_event) {
11883 		child_ctr = inherit_event(sub, parent, parent_ctx,
11884 					    child, leader, child_ctx);
11885 		if (IS_ERR(child_ctr))
11886 			return PTR_ERR(child_ctr);
11887 	}
11888 	return 0;
11889 }
11890 
11891 /*
11892  * Creates the child task context and tries to inherit the event-group.
11893  *
11894  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11895  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11896  * consistent with perf_event_release_kernel() removing all child events.
11897  *
11898  * Returns:
11899  *  - 0 on success
11900  *  - <0 on error
11901  */
11902 static int
11903 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11904 		   struct perf_event_context *parent_ctx,
11905 		   struct task_struct *child, int ctxn,
11906 		   int *inherited_all)
11907 {
11908 	int ret;
11909 	struct perf_event_context *child_ctx;
11910 
11911 	if (!event->attr.inherit) {
11912 		*inherited_all = 0;
11913 		return 0;
11914 	}
11915 
11916 	child_ctx = child->perf_event_ctxp[ctxn];
11917 	if (!child_ctx) {
11918 		/*
11919 		 * This is executed from the parent task context, so
11920 		 * inherit events that have been marked for cloning.
11921 		 * First allocate and initialize a context for the
11922 		 * child.
11923 		 */
11924 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11925 		if (!child_ctx)
11926 			return -ENOMEM;
11927 
11928 		child->perf_event_ctxp[ctxn] = child_ctx;
11929 	}
11930 
11931 	ret = inherit_group(event, parent, parent_ctx,
11932 			    child, child_ctx);
11933 
11934 	if (ret)
11935 		*inherited_all = 0;
11936 
11937 	return ret;
11938 }
11939 
11940 /*
11941  * Initialize the perf_event context in task_struct
11942  */
11943 static int perf_event_init_context(struct task_struct *child, int ctxn)
11944 {
11945 	struct perf_event_context *child_ctx, *parent_ctx;
11946 	struct perf_event_context *cloned_ctx;
11947 	struct perf_event *event;
11948 	struct task_struct *parent = current;
11949 	int inherited_all = 1;
11950 	unsigned long flags;
11951 	int ret = 0;
11952 
11953 	if (likely(!parent->perf_event_ctxp[ctxn]))
11954 		return 0;
11955 
11956 	/*
11957 	 * If the parent's context is a clone, pin it so it won't get
11958 	 * swapped under us.
11959 	 */
11960 	parent_ctx = perf_pin_task_context(parent, ctxn);
11961 	if (!parent_ctx)
11962 		return 0;
11963 
11964 	/*
11965 	 * No need to check if parent_ctx != NULL here; since we saw
11966 	 * it non-NULL earlier, the only reason for it to become NULL
11967 	 * is if we exit, and since we're currently in the middle of
11968 	 * a fork we can't be exiting at the same time.
11969 	 */
11970 
11971 	/*
11972 	 * Lock the parent list. No need to lock the child - not PID
11973 	 * hashed yet and not running, so nobody can access it.
11974 	 */
11975 	mutex_lock(&parent_ctx->mutex);
11976 
11977 	/*
11978 	 * We dont have to disable NMIs - we are only looking at
11979 	 * the list, not manipulating it:
11980 	 */
11981 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11982 		ret = inherit_task_group(event, parent, parent_ctx,
11983 					 child, ctxn, &inherited_all);
11984 		if (ret)
11985 			goto out_unlock;
11986 	}
11987 
11988 	/*
11989 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11990 	 * to allocations, but we need to prevent rotation because
11991 	 * rotate_ctx() will change the list from interrupt context.
11992 	 */
11993 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11994 	parent_ctx->rotate_disable = 1;
11995 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11996 
11997 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11998 		ret = inherit_task_group(event, parent, parent_ctx,
11999 					 child, ctxn, &inherited_all);
12000 		if (ret)
12001 			goto out_unlock;
12002 	}
12003 
12004 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12005 	parent_ctx->rotate_disable = 0;
12006 
12007 	child_ctx = child->perf_event_ctxp[ctxn];
12008 
12009 	if (child_ctx && inherited_all) {
12010 		/*
12011 		 * Mark the child context as a clone of the parent
12012 		 * context, or of whatever the parent is a clone of.
12013 		 *
12014 		 * Note that if the parent is a clone, the holding of
12015 		 * parent_ctx->lock avoids it from being uncloned.
12016 		 */
12017 		cloned_ctx = parent_ctx->parent_ctx;
12018 		if (cloned_ctx) {
12019 			child_ctx->parent_ctx = cloned_ctx;
12020 			child_ctx->parent_gen = parent_ctx->parent_gen;
12021 		} else {
12022 			child_ctx->parent_ctx = parent_ctx;
12023 			child_ctx->parent_gen = parent_ctx->generation;
12024 		}
12025 		get_ctx(child_ctx->parent_ctx);
12026 	}
12027 
12028 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12029 out_unlock:
12030 	mutex_unlock(&parent_ctx->mutex);
12031 
12032 	perf_unpin_context(parent_ctx);
12033 	put_ctx(parent_ctx);
12034 
12035 	return ret;
12036 }
12037 
12038 /*
12039  * Initialize the perf_event context in task_struct
12040  */
12041 int perf_event_init_task(struct task_struct *child)
12042 {
12043 	int ctxn, ret;
12044 
12045 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12046 	mutex_init(&child->perf_event_mutex);
12047 	INIT_LIST_HEAD(&child->perf_event_list);
12048 
12049 	for_each_task_context_nr(ctxn) {
12050 		ret = perf_event_init_context(child, ctxn);
12051 		if (ret) {
12052 			perf_event_free_task(child);
12053 			return ret;
12054 		}
12055 	}
12056 
12057 	return 0;
12058 }
12059 
12060 static void __init perf_event_init_all_cpus(void)
12061 {
12062 	struct swevent_htable *swhash;
12063 	int cpu;
12064 
12065 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12066 
12067 	for_each_possible_cpu(cpu) {
12068 		swhash = &per_cpu(swevent_htable, cpu);
12069 		mutex_init(&swhash->hlist_mutex);
12070 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12071 
12072 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12073 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12074 
12075 #ifdef CONFIG_CGROUP_PERF
12076 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12077 #endif
12078 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12079 	}
12080 }
12081 
12082 static void perf_swevent_init_cpu(unsigned int cpu)
12083 {
12084 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12085 
12086 	mutex_lock(&swhash->hlist_mutex);
12087 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12088 		struct swevent_hlist *hlist;
12089 
12090 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12091 		WARN_ON(!hlist);
12092 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12093 	}
12094 	mutex_unlock(&swhash->hlist_mutex);
12095 }
12096 
12097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12098 static void __perf_event_exit_context(void *__info)
12099 {
12100 	struct perf_event_context *ctx = __info;
12101 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12102 	struct perf_event *event;
12103 
12104 	raw_spin_lock(&ctx->lock);
12105 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12106 	list_for_each_entry(event, &ctx->event_list, event_entry)
12107 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12108 	raw_spin_unlock(&ctx->lock);
12109 }
12110 
12111 static void perf_event_exit_cpu_context(int cpu)
12112 {
12113 	struct perf_cpu_context *cpuctx;
12114 	struct perf_event_context *ctx;
12115 	struct pmu *pmu;
12116 
12117 	mutex_lock(&pmus_lock);
12118 	list_for_each_entry(pmu, &pmus, entry) {
12119 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12120 		ctx = &cpuctx->ctx;
12121 
12122 		mutex_lock(&ctx->mutex);
12123 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12124 		cpuctx->online = 0;
12125 		mutex_unlock(&ctx->mutex);
12126 	}
12127 	cpumask_clear_cpu(cpu, perf_online_mask);
12128 	mutex_unlock(&pmus_lock);
12129 }
12130 #else
12131 
12132 static void perf_event_exit_cpu_context(int cpu) { }
12133 
12134 #endif
12135 
12136 int perf_event_init_cpu(unsigned int cpu)
12137 {
12138 	struct perf_cpu_context *cpuctx;
12139 	struct perf_event_context *ctx;
12140 	struct pmu *pmu;
12141 
12142 	perf_swevent_init_cpu(cpu);
12143 
12144 	mutex_lock(&pmus_lock);
12145 	cpumask_set_cpu(cpu, perf_online_mask);
12146 	list_for_each_entry(pmu, &pmus, entry) {
12147 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12148 		ctx = &cpuctx->ctx;
12149 
12150 		mutex_lock(&ctx->mutex);
12151 		cpuctx->online = 1;
12152 		mutex_unlock(&ctx->mutex);
12153 	}
12154 	mutex_unlock(&pmus_lock);
12155 
12156 	return 0;
12157 }
12158 
12159 int perf_event_exit_cpu(unsigned int cpu)
12160 {
12161 	perf_event_exit_cpu_context(cpu);
12162 	return 0;
12163 }
12164 
12165 static int
12166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12167 {
12168 	int cpu;
12169 
12170 	for_each_online_cpu(cpu)
12171 		perf_event_exit_cpu(cpu);
12172 
12173 	return NOTIFY_OK;
12174 }
12175 
12176 /*
12177  * Run the perf reboot notifier at the very last possible moment so that
12178  * the generic watchdog code runs as long as possible.
12179  */
12180 static struct notifier_block perf_reboot_notifier = {
12181 	.notifier_call = perf_reboot,
12182 	.priority = INT_MIN,
12183 };
12184 
12185 void __init perf_event_init(void)
12186 {
12187 	int ret;
12188 
12189 	idr_init(&pmu_idr);
12190 
12191 	perf_event_init_all_cpus();
12192 	init_srcu_struct(&pmus_srcu);
12193 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12194 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12195 	perf_pmu_register(&perf_task_clock, NULL, -1);
12196 	perf_tp_register();
12197 	perf_event_init_cpu(smp_processor_id());
12198 	register_reboot_notifier(&perf_reboot_notifier);
12199 
12200 	ret = init_hw_breakpoint();
12201 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12202 
12203 	/*
12204 	 * Build time assertion that we keep the data_head at the intended
12205 	 * location.  IOW, validation we got the __reserved[] size right.
12206 	 */
12207 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12208 		     != 1024);
12209 }
12210 
12211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12212 			      char *page)
12213 {
12214 	struct perf_pmu_events_attr *pmu_attr =
12215 		container_of(attr, struct perf_pmu_events_attr, attr);
12216 
12217 	if (pmu_attr->event_str)
12218 		return sprintf(page, "%s\n", pmu_attr->event_str);
12219 
12220 	return 0;
12221 }
12222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12223 
12224 static int __init perf_event_sysfs_init(void)
12225 {
12226 	struct pmu *pmu;
12227 	int ret;
12228 
12229 	mutex_lock(&pmus_lock);
12230 
12231 	ret = bus_register(&pmu_bus);
12232 	if (ret)
12233 		goto unlock;
12234 
12235 	list_for_each_entry(pmu, &pmus, entry) {
12236 		if (!pmu->name || pmu->type < 0)
12237 			continue;
12238 
12239 		ret = pmu_dev_alloc(pmu);
12240 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12241 	}
12242 	pmu_bus_running = 1;
12243 	ret = 0;
12244 
12245 unlock:
12246 	mutex_unlock(&pmus_lock);
12247 
12248 	return ret;
12249 }
12250 device_initcall(perf_event_sysfs_init);
12251 
12252 #ifdef CONFIG_CGROUP_PERF
12253 static struct cgroup_subsys_state *
12254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12255 {
12256 	struct perf_cgroup *jc;
12257 
12258 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12259 	if (!jc)
12260 		return ERR_PTR(-ENOMEM);
12261 
12262 	jc->info = alloc_percpu(struct perf_cgroup_info);
12263 	if (!jc->info) {
12264 		kfree(jc);
12265 		return ERR_PTR(-ENOMEM);
12266 	}
12267 
12268 	return &jc->css;
12269 }
12270 
12271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12272 {
12273 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12274 
12275 	free_percpu(jc->info);
12276 	kfree(jc);
12277 }
12278 
12279 static int __perf_cgroup_move(void *info)
12280 {
12281 	struct task_struct *task = info;
12282 	rcu_read_lock();
12283 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12284 	rcu_read_unlock();
12285 	return 0;
12286 }
12287 
12288 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12289 {
12290 	struct task_struct *task;
12291 	struct cgroup_subsys_state *css;
12292 
12293 	cgroup_taskset_for_each(task, css, tset)
12294 		task_function_call(task, __perf_cgroup_move, task);
12295 }
12296 
12297 struct cgroup_subsys perf_event_cgrp_subsys = {
12298 	.css_alloc	= perf_cgroup_css_alloc,
12299 	.css_free	= perf_cgroup_css_free,
12300 	.attach		= perf_cgroup_attach,
12301 	/*
12302 	 * Implicitly enable on dfl hierarchy so that perf events can
12303 	 * always be filtered by cgroup2 path as long as perf_event
12304 	 * controller is not mounted on a legacy hierarchy.
12305 	 */
12306 	.implicit_on_dfl = true,
12307 	.threaded	= true,
12308 };
12309 #endif /* CONFIG_CGROUP_PERF */
12310