1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static int 1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 1892 { 1893 if (!has_aux(aux_event)) 1894 return 0; 1895 1896 if (!event->pmu->aux_output_match) 1897 return 0; 1898 1899 return event->pmu->aux_output_match(aux_event); 1900 } 1901 1902 static void put_event(struct perf_event *event); 1903 static void event_sched_out(struct perf_event *event, 1904 struct perf_cpu_context *cpuctx, 1905 struct perf_event_context *ctx); 1906 1907 static void perf_put_aux_event(struct perf_event *event) 1908 { 1909 struct perf_event_context *ctx = event->ctx; 1910 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1911 struct perf_event *iter; 1912 1913 /* 1914 * If event uses aux_event tear down the link 1915 */ 1916 if (event->aux_event) { 1917 iter = event->aux_event; 1918 event->aux_event = NULL; 1919 put_event(iter); 1920 return; 1921 } 1922 1923 /* 1924 * If the event is an aux_event, tear down all links to 1925 * it from other events. 1926 */ 1927 for_each_sibling_event(iter, event->group_leader) { 1928 if (iter->aux_event != event) 1929 continue; 1930 1931 iter->aux_event = NULL; 1932 put_event(event); 1933 1934 /* 1935 * If it's ACTIVE, schedule it out and put it into ERROR 1936 * state so that we don't try to schedule it again. Note 1937 * that perf_event_enable() will clear the ERROR status. 1938 */ 1939 event_sched_out(iter, cpuctx, ctx); 1940 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 1941 } 1942 } 1943 1944 static int perf_get_aux_event(struct perf_event *event, 1945 struct perf_event *group_leader) 1946 { 1947 /* 1948 * Our group leader must be an aux event if we want to be 1949 * an aux_output. This way, the aux event will precede its 1950 * aux_output events in the group, and therefore will always 1951 * schedule first. 1952 */ 1953 if (!group_leader) 1954 return 0; 1955 1956 if (!perf_aux_output_match(event, group_leader)) 1957 return 0; 1958 1959 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 1960 return 0; 1961 1962 /* 1963 * Link aux_outputs to their aux event; this is undone in 1964 * perf_group_detach() by perf_put_aux_event(). When the 1965 * group in torn down, the aux_output events loose their 1966 * link to the aux_event and can't schedule any more. 1967 */ 1968 event->aux_event = group_leader; 1969 1970 return 1; 1971 } 1972 1973 static void perf_group_detach(struct perf_event *event) 1974 { 1975 struct perf_event *sibling, *tmp; 1976 struct perf_event_context *ctx = event->ctx; 1977 1978 lockdep_assert_held(&ctx->lock); 1979 1980 /* 1981 * We can have double detach due to exit/hot-unplug + close. 1982 */ 1983 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1984 return; 1985 1986 event->attach_state &= ~PERF_ATTACH_GROUP; 1987 1988 perf_put_aux_event(event); 1989 1990 /* 1991 * If this is a sibling, remove it from its group. 1992 */ 1993 if (event->group_leader != event) { 1994 list_del_init(&event->sibling_list); 1995 event->group_leader->nr_siblings--; 1996 goto out; 1997 } 1998 1999 /* 2000 * If this was a group event with sibling events then 2001 * upgrade the siblings to singleton events by adding them 2002 * to whatever list we are on. 2003 */ 2004 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2005 2006 sibling->group_leader = sibling; 2007 list_del_init(&sibling->sibling_list); 2008 2009 /* Inherit group flags from the previous leader */ 2010 sibling->group_caps = event->group_caps; 2011 2012 if (!RB_EMPTY_NODE(&event->group_node)) { 2013 add_event_to_groups(sibling, event->ctx); 2014 2015 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 2016 struct list_head *list = sibling->attr.pinned ? 2017 &ctx->pinned_active : &ctx->flexible_active; 2018 2019 list_add_tail(&sibling->active_list, list); 2020 } 2021 } 2022 2023 WARN_ON_ONCE(sibling->ctx != event->ctx); 2024 } 2025 2026 out: 2027 perf_event__header_size(event->group_leader); 2028 2029 for_each_sibling_event(tmp, event->group_leader) 2030 perf_event__header_size(tmp); 2031 } 2032 2033 static bool is_orphaned_event(struct perf_event *event) 2034 { 2035 return event->state == PERF_EVENT_STATE_DEAD; 2036 } 2037 2038 static inline int __pmu_filter_match(struct perf_event *event) 2039 { 2040 struct pmu *pmu = event->pmu; 2041 return pmu->filter_match ? pmu->filter_match(event) : 1; 2042 } 2043 2044 /* 2045 * Check whether we should attempt to schedule an event group based on 2046 * PMU-specific filtering. An event group can consist of HW and SW events, 2047 * potentially with a SW leader, so we must check all the filters, to 2048 * determine whether a group is schedulable: 2049 */ 2050 static inline int pmu_filter_match(struct perf_event *event) 2051 { 2052 struct perf_event *sibling; 2053 2054 if (!__pmu_filter_match(event)) 2055 return 0; 2056 2057 for_each_sibling_event(sibling, event) { 2058 if (!__pmu_filter_match(sibling)) 2059 return 0; 2060 } 2061 2062 return 1; 2063 } 2064 2065 static inline int 2066 event_filter_match(struct perf_event *event) 2067 { 2068 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2069 perf_cgroup_match(event) && pmu_filter_match(event); 2070 } 2071 2072 static void 2073 event_sched_out(struct perf_event *event, 2074 struct perf_cpu_context *cpuctx, 2075 struct perf_event_context *ctx) 2076 { 2077 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2078 2079 WARN_ON_ONCE(event->ctx != ctx); 2080 lockdep_assert_held(&ctx->lock); 2081 2082 if (event->state != PERF_EVENT_STATE_ACTIVE) 2083 return; 2084 2085 /* 2086 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2087 * we can schedule events _OUT_ individually through things like 2088 * __perf_remove_from_context(). 2089 */ 2090 list_del_init(&event->active_list); 2091 2092 perf_pmu_disable(event->pmu); 2093 2094 event->pmu->del(event, 0); 2095 event->oncpu = -1; 2096 2097 if (READ_ONCE(event->pending_disable) >= 0) { 2098 WRITE_ONCE(event->pending_disable, -1); 2099 state = PERF_EVENT_STATE_OFF; 2100 } 2101 perf_event_set_state(event, state); 2102 2103 if (!is_software_event(event)) 2104 cpuctx->active_oncpu--; 2105 if (!--ctx->nr_active) 2106 perf_event_ctx_deactivate(ctx); 2107 if (event->attr.freq && event->attr.sample_freq) 2108 ctx->nr_freq--; 2109 if (event->attr.exclusive || !cpuctx->active_oncpu) 2110 cpuctx->exclusive = 0; 2111 2112 perf_pmu_enable(event->pmu); 2113 } 2114 2115 static void 2116 group_sched_out(struct perf_event *group_event, 2117 struct perf_cpu_context *cpuctx, 2118 struct perf_event_context *ctx) 2119 { 2120 struct perf_event *event; 2121 2122 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2123 return; 2124 2125 perf_pmu_disable(ctx->pmu); 2126 2127 event_sched_out(group_event, cpuctx, ctx); 2128 2129 /* 2130 * Schedule out siblings (if any): 2131 */ 2132 for_each_sibling_event(event, group_event) 2133 event_sched_out(event, cpuctx, ctx); 2134 2135 perf_pmu_enable(ctx->pmu); 2136 2137 if (group_event->attr.exclusive) 2138 cpuctx->exclusive = 0; 2139 } 2140 2141 #define DETACH_GROUP 0x01UL 2142 2143 /* 2144 * Cross CPU call to remove a performance event 2145 * 2146 * We disable the event on the hardware level first. After that we 2147 * remove it from the context list. 2148 */ 2149 static void 2150 __perf_remove_from_context(struct perf_event *event, 2151 struct perf_cpu_context *cpuctx, 2152 struct perf_event_context *ctx, 2153 void *info) 2154 { 2155 unsigned long flags = (unsigned long)info; 2156 2157 if (ctx->is_active & EVENT_TIME) { 2158 update_context_time(ctx); 2159 update_cgrp_time_from_cpuctx(cpuctx); 2160 } 2161 2162 event_sched_out(event, cpuctx, ctx); 2163 if (flags & DETACH_GROUP) 2164 perf_group_detach(event); 2165 list_del_event(event, ctx); 2166 2167 if (!ctx->nr_events && ctx->is_active) { 2168 ctx->is_active = 0; 2169 if (ctx->task) { 2170 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2171 cpuctx->task_ctx = NULL; 2172 } 2173 } 2174 } 2175 2176 /* 2177 * Remove the event from a task's (or a CPU's) list of events. 2178 * 2179 * If event->ctx is a cloned context, callers must make sure that 2180 * every task struct that event->ctx->task could possibly point to 2181 * remains valid. This is OK when called from perf_release since 2182 * that only calls us on the top-level context, which can't be a clone. 2183 * When called from perf_event_exit_task, it's OK because the 2184 * context has been detached from its task. 2185 */ 2186 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2187 { 2188 struct perf_event_context *ctx = event->ctx; 2189 2190 lockdep_assert_held(&ctx->mutex); 2191 2192 event_function_call(event, __perf_remove_from_context, (void *)flags); 2193 2194 /* 2195 * The above event_function_call() can NO-OP when it hits 2196 * TASK_TOMBSTONE. In that case we must already have been detached 2197 * from the context (by perf_event_exit_event()) but the grouping 2198 * might still be in-tact. 2199 */ 2200 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2201 if ((flags & DETACH_GROUP) && 2202 (event->attach_state & PERF_ATTACH_GROUP)) { 2203 /* 2204 * Since in that case we cannot possibly be scheduled, simply 2205 * detach now. 2206 */ 2207 raw_spin_lock_irq(&ctx->lock); 2208 perf_group_detach(event); 2209 raw_spin_unlock_irq(&ctx->lock); 2210 } 2211 } 2212 2213 /* 2214 * Cross CPU call to disable a performance event 2215 */ 2216 static void __perf_event_disable(struct perf_event *event, 2217 struct perf_cpu_context *cpuctx, 2218 struct perf_event_context *ctx, 2219 void *info) 2220 { 2221 if (event->state < PERF_EVENT_STATE_INACTIVE) 2222 return; 2223 2224 if (ctx->is_active & EVENT_TIME) { 2225 update_context_time(ctx); 2226 update_cgrp_time_from_event(event); 2227 } 2228 2229 if (event == event->group_leader) 2230 group_sched_out(event, cpuctx, ctx); 2231 else 2232 event_sched_out(event, cpuctx, ctx); 2233 2234 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2235 } 2236 2237 /* 2238 * Disable an event. 2239 * 2240 * If event->ctx is a cloned context, callers must make sure that 2241 * every task struct that event->ctx->task could possibly point to 2242 * remains valid. This condition is satisifed when called through 2243 * perf_event_for_each_child or perf_event_for_each because they 2244 * hold the top-level event's child_mutex, so any descendant that 2245 * goes to exit will block in perf_event_exit_event(). 2246 * 2247 * When called from perf_pending_event it's OK because event->ctx 2248 * is the current context on this CPU and preemption is disabled, 2249 * hence we can't get into perf_event_task_sched_out for this context. 2250 */ 2251 static void _perf_event_disable(struct perf_event *event) 2252 { 2253 struct perf_event_context *ctx = event->ctx; 2254 2255 raw_spin_lock_irq(&ctx->lock); 2256 if (event->state <= PERF_EVENT_STATE_OFF) { 2257 raw_spin_unlock_irq(&ctx->lock); 2258 return; 2259 } 2260 raw_spin_unlock_irq(&ctx->lock); 2261 2262 event_function_call(event, __perf_event_disable, NULL); 2263 } 2264 2265 void perf_event_disable_local(struct perf_event *event) 2266 { 2267 event_function_local(event, __perf_event_disable, NULL); 2268 } 2269 2270 /* 2271 * Strictly speaking kernel users cannot create groups and therefore this 2272 * interface does not need the perf_event_ctx_lock() magic. 2273 */ 2274 void perf_event_disable(struct perf_event *event) 2275 { 2276 struct perf_event_context *ctx; 2277 2278 ctx = perf_event_ctx_lock(event); 2279 _perf_event_disable(event); 2280 perf_event_ctx_unlock(event, ctx); 2281 } 2282 EXPORT_SYMBOL_GPL(perf_event_disable); 2283 2284 void perf_event_disable_inatomic(struct perf_event *event) 2285 { 2286 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2287 /* can fail, see perf_pending_event_disable() */ 2288 irq_work_queue(&event->pending); 2289 } 2290 2291 static void perf_set_shadow_time(struct perf_event *event, 2292 struct perf_event_context *ctx) 2293 { 2294 /* 2295 * use the correct time source for the time snapshot 2296 * 2297 * We could get by without this by leveraging the 2298 * fact that to get to this function, the caller 2299 * has most likely already called update_context_time() 2300 * and update_cgrp_time_xx() and thus both timestamp 2301 * are identical (or very close). Given that tstamp is, 2302 * already adjusted for cgroup, we could say that: 2303 * tstamp - ctx->timestamp 2304 * is equivalent to 2305 * tstamp - cgrp->timestamp. 2306 * 2307 * Then, in perf_output_read(), the calculation would 2308 * work with no changes because: 2309 * - event is guaranteed scheduled in 2310 * - no scheduled out in between 2311 * - thus the timestamp would be the same 2312 * 2313 * But this is a bit hairy. 2314 * 2315 * So instead, we have an explicit cgroup call to remain 2316 * within the time time source all along. We believe it 2317 * is cleaner and simpler to understand. 2318 */ 2319 if (is_cgroup_event(event)) 2320 perf_cgroup_set_shadow_time(event, event->tstamp); 2321 else 2322 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2323 } 2324 2325 #define MAX_INTERRUPTS (~0ULL) 2326 2327 static void perf_log_throttle(struct perf_event *event, int enable); 2328 static void perf_log_itrace_start(struct perf_event *event); 2329 2330 static int 2331 event_sched_in(struct perf_event *event, 2332 struct perf_cpu_context *cpuctx, 2333 struct perf_event_context *ctx) 2334 { 2335 int ret = 0; 2336 2337 lockdep_assert_held(&ctx->lock); 2338 2339 if (event->state <= PERF_EVENT_STATE_OFF) 2340 return 0; 2341 2342 WRITE_ONCE(event->oncpu, smp_processor_id()); 2343 /* 2344 * Order event::oncpu write to happen before the ACTIVE state is 2345 * visible. This allows perf_event_{stop,read}() to observe the correct 2346 * ->oncpu if it sees ACTIVE. 2347 */ 2348 smp_wmb(); 2349 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2350 2351 /* 2352 * Unthrottle events, since we scheduled we might have missed several 2353 * ticks already, also for a heavily scheduling task there is little 2354 * guarantee it'll get a tick in a timely manner. 2355 */ 2356 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2357 perf_log_throttle(event, 1); 2358 event->hw.interrupts = 0; 2359 } 2360 2361 perf_pmu_disable(event->pmu); 2362 2363 perf_set_shadow_time(event, ctx); 2364 2365 perf_log_itrace_start(event); 2366 2367 if (event->pmu->add(event, PERF_EF_START)) { 2368 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2369 event->oncpu = -1; 2370 ret = -EAGAIN; 2371 goto out; 2372 } 2373 2374 if (!is_software_event(event)) 2375 cpuctx->active_oncpu++; 2376 if (!ctx->nr_active++) 2377 perf_event_ctx_activate(ctx); 2378 if (event->attr.freq && event->attr.sample_freq) 2379 ctx->nr_freq++; 2380 2381 if (event->attr.exclusive) 2382 cpuctx->exclusive = 1; 2383 2384 out: 2385 perf_pmu_enable(event->pmu); 2386 2387 return ret; 2388 } 2389 2390 static int 2391 group_sched_in(struct perf_event *group_event, 2392 struct perf_cpu_context *cpuctx, 2393 struct perf_event_context *ctx) 2394 { 2395 struct perf_event *event, *partial_group = NULL; 2396 struct pmu *pmu = ctx->pmu; 2397 2398 if (group_event->state == PERF_EVENT_STATE_OFF) 2399 return 0; 2400 2401 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2402 2403 if (event_sched_in(group_event, cpuctx, ctx)) { 2404 pmu->cancel_txn(pmu); 2405 perf_mux_hrtimer_restart(cpuctx); 2406 return -EAGAIN; 2407 } 2408 2409 /* 2410 * Schedule in siblings as one group (if any): 2411 */ 2412 for_each_sibling_event(event, group_event) { 2413 if (event_sched_in(event, cpuctx, ctx)) { 2414 partial_group = event; 2415 goto group_error; 2416 } 2417 } 2418 2419 if (!pmu->commit_txn(pmu)) 2420 return 0; 2421 2422 group_error: 2423 /* 2424 * Groups can be scheduled in as one unit only, so undo any 2425 * partial group before returning: 2426 * The events up to the failed event are scheduled out normally. 2427 */ 2428 for_each_sibling_event(event, group_event) { 2429 if (event == partial_group) 2430 break; 2431 2432 event_sched_out(event, cpuctx, ctx); 2433 } 2434 event_sched_out(group_event, cpuctx, ctx); 2435 2436 pmu->cancel_txn(pmu); 2437 2438 perf_mux_hrtimer_restart(cpuctx); 2439 2440 return -EAGAIN; 2441 } 2442 2443 /* 2444 * Work out whether we can put this event group on the CPU now. 2445 */ 2446 static int group_can_go_on(struct perf_event *event, 2447 struct perf_cpu_context *cpuctx, 2448 int can_add_hw) 2449 { 2450 /* 2451 * Groups consisting entirely of software events can always go on. 2452 */ 2453 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2454 return 1; 2455 /* 2456 * If an exclusive group is already on, no other hardware 2457 * events can go on. 2458 */ 2459 if (cpuctx->exclusive) 2460 return 0; 2461 /* 2462 * If this group is exclusive and there are already 2463 * events on the CPU, it can't go on. 2464 */ 2465 if (event->attr.exclusive && cpuctx->active_oncpu) 2466 return 0; 2467 /* 2468 * Otherwise, try to add it if all previous groups were able 2469 * to go on. 2470 */ 2471 return can_add_hw; 2472 } 2473 2474 static void add_event_to_ctx(struct perf_event *event, 2475 struct perf_event_context *ctx) 2476 { 2477 list_add_event(event, ctx); 2478 perf_group_attach(event); 2479 } 2480 2481 static void ctx_sched_out(struct perf_event_context *ctx, 2482 struct perf_cpu_context *cpuctx, 2483 enum event_type_t event_type); 2484 static void 2485 ctx_sched_in(struct perf_event_context *ctx, 2486 struct perf_cpu_context *cpuctx, 2487 enum event_type_t event_type, 2488 struct task_struct *task); 2489 2490 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2491 struct perf_event_context *ctx, 2492 enum event_type_t event_type) 2493 { 2494 if (!cpuctx->task_ctx) 2495 return; 2496 2497 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2498 return; 2499 2500 ctx_sched_out(ctx, cpuctx, event_type); 2501 } 2502 2503 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2504 struct perf_event_context *ctx, 2505 struct task_struct *task) 2506 { 2507 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2508 if (ctx) 2509 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2510 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2511 if (ctx) 2512 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2513 } 2514 2515 /* 2516 * We want to maintain the following priority of scheduling: 2517 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2518 * - task pinned (EVENT_PINNED) 2519 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2520 * - task flexible (EVENT_FLEXIBLE). 2521 * 2522 * In order to avoid unscheduling and scheduling back in everything every 2523 * time an event is added, only do it for the groups of equal priority and 2524 * below. 2525 * 2526 * This can be called after a batch operation on task events, in which case 2527 * event_type is a bit mask of the types of events involved. For CPU events, 2528 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2529 */ 2530 static void ctx_resched(struct perf_cpu_context *cpuctx, 2531 struct perf_event_context *task_ctx, 2532 enum event_type_t event_type) 2533 { 2534 enum event_type_t ctx_event_type; 2535 bool cpu_event = !!(event_type & EVENT_CPU); 2536 2537 /* 2538 * If pinned groups are involved, flexible groups also need to be 2539 * scheduled out. 2540 */ 2541 if (event_type & EVENT_PINNED) 2542 event_type |= EVENT_FLEXIBLE; 2543 2544 ctx_event_type = event_type & EVENT_ALL; 2545 2546 perf_pmu_disable(cpuctx->ctx.pmu); 2547 if (task_ctx) 2548 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2549 2550 /* 2551 * Decide which cpu ctx groups to schedule out based on the types 2552 * of events that caused rescheduling: 2553 * - EVENT_CPU: schedule out corresponding groups; 2554 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2555 * - otherwise, do nothing more. 2556 */ 2557 if (cpu_event) 2558 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2559 else if (ctx_event_type & EVENT_PINNED) 2560 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2561 2562 perf_event_sched_in(cpuctx, task_ctx, current); 2563 perf_pmu_enable(cpuctx->ctx.pmu); 2564 } 2565 2566 void perf_pmu_resched(struct pmu *pmu) 2567 { 2568 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2569 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2570 2571 perf_ctx_lock(cpuctx, task_ctx); 2572 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2573 perf_ctx_unlock(cpuctx, task_ctx); 2574 } 2575 2576 /* 2577 * Cross CPU call to install and enable a performance event 2578 * 2579 * Very similar to remote_function() + event_function() but cannot assume that 2580 * things like ctx->is_active and cpuctx->task_ctx are set. 2581 */ 2582 static int __perf_install_in_context(void *info) 2583 { 2584 struct perf_event *event = info; 2585 struct perf_event_context *ctx = event->ctx; 2586 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2587 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2588 bool reprogram = true; 2589 int ret = 0; 2590 2591 raw_spin_lock(&cpuctx->ctx.lock); 2592 if (ctx->task) { 2593 raw_spin_lock(&ctx->lock); 2594 task_ctx = ctx; 2595 2596 reprogram = (ctx->task == current); 2597 2598 /* 2599 * If the task is running, it must be running on this CPU, 2600 * otherwise we cannot reprogram things. 2601 * 2602 * If its not running, we don't care, ctx->lock will 2603 * serialize against it becoming runnable. 2604 */ 2605 if (task_curr(ctx->task) && !reprogram) { 2606 ret = -ESRCH; 2607 goto unlock; 2608 } 2609 2610 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2611 } else if (task_ctx) { 2612 raw_spin_lock(&task_ctx->lock); 2613 } 2614 2615 #ifdef CONFIG_CGROUP_PERF 2616 if (is_cgroup_event(event)) { 2617 /* 2618 * If the current cgroup doesn't match the event's 2619 * cgroup, we should not try to schedule it. 2620 */ 2621 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2622 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2623 event->cgrp->css.cgroup); 2624 } 2625 #endif 2626 2627 if (reprogram) { 2628 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2629 add_event_to_ctx(event, ctx); 2630 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2631 } else { 2632 add_event_to_ctx(event, ctx); 2633 } 2634 2635 unlock: 2636 perf_ctx_unlock(cpuctx, task_ctx); 2637 2638 return ret; 2639 } 2640 2641 static bool exclusive_event_installable(struct perf_event *event, 2642 struct perf_event_context *ctx); 2643 2644 /* 2645 * Attach a performance event to a context. 2646 * 2647 * Very similar to event_function_call, see comment there. 2648 */ 2649 static void 2650 perf_install_in_context(struct perf_event_context *ctx, 2651 struct perf_event *event, 2652 int cpu) 2653 { 2654 struct task_struct *task = READ_ONCE(ctx->task); 2655 2656 lockdep_assert_held(&ctx->mutex); 2657 2658 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2659 2660 if (event->cpu != -1) 2661 event->cpu = cpu; 2662 2663 /* 2664 * Ensures that if we can observe event->ctx, both the event and ctx 2665 * will be 'complete'. See perf_iterate_sb_cpu(). 2666 */ 2667 smp_store_release(&event->ctx, ctx); 2668 2669 if (!task) { 2670 cpu_function_call(cpu, __perf_install_in_context, event); 2671 return; 2672 } 2673 2674 /* 2675 * Should not happen, we validate the ctx is still alive before calling. 2676 */ 2677 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2678 return; 2679 2680 /* 2681 * Installing events is tricky because we cannot rely on ctx->is_active 2682 * to be set in case this is the nr_events 0 -> 1 transition. 2683 * 2684 * Instead we use task_curr(), which tells us if the task is running. 2685 * However, since we use task_curr() outside of rq::lock, we can race 2686 * against the actual state. This means the result can be wrong. 2687 * 2688 * If we get a false positive, we retry, this is harmless. 2689 * 2690 * If we get a false negative, things are complicated. If we are after 2691 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2692 * value must be correct. If we're before, it doesn't matter since 2693 * perf_event_context_sched_in() will program the counter. 2694 * 2695 * However, this hinges on the remote context switch having observed 2696 * our task->perf_event_ctxp[] store, such that it will in fact take 2697 * ctx::lock in perf_event_context_sched_in(). 2698 * 2699 * We do this by task_function_call(), if the IPI fails to hit the task 2700 * we know any future context switch of task must see the 2701 * perf_event_ctpx[] store. 2702 */ 2703 2704 /* 2705 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2706 * task_cpu() load, such that if the IPI then does not find the task 2707 * running, a future context switch of that task must observe the 2708 * store. 2709 */ 2710 smp_mb(); 2711 again: 2712 if (!task_function_call(task, __perf_install_in_context, event)) 2713 return; 2714 2715 raw_spin_lock_irq(&ctx->lock); 2716 task = ctx->task; 2717 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2718 /* 2719 * Cannot happen because we already checked above (which also 2720 * cannot happen), and we hold ctx->mutex, which serializes us 2721 * against perf_event_exit_task_context(). 2722 */ 2723 raw_spin_unlock_irq(&ctx->lock); 2724 return; 2725 } 2726 /* 2727 * If the task is not running, ctx->lock will avoid it becoming so, 2728 * thus we can safely install the event. 2729 */ 2730 if (task_curr(task)) { 2731 raw_spin_unlock_irq(&ctx->lock); 2732 goto again; 2733 } 2734 add_event_to_ctx(event, ctx); 2735 raw_spin_unlock_irq(&ctx->lock); 2736 } 2737 2738 /* 2739 * Cross CPU call to enable a performance event 2740 */ 2741 static void __perf_event_enable(struct perf_event *event, 2742 struct perf_cpu_context *cpuctx, 2743 struct perf_event_context *ctx, 2744 void *info) 2745 { 2746 struct perf_event *leader = event->group_leader; 2747 struct perf_event_context *task_ctx; 2748 2749 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2750 event->state <= PERF_EVENT_STATE_ERROR) 2751 return; 2752 2753 if (ctx->is_active) 2754 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2755 2756 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2757 2758 if (!ctx->is_active) 2759 return; 2760 2761 if (!event_filter_match(event)) { 2762 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2763 return; 2764 } 2765 2766 /* 2767 * If the event is in a group and isn't the group leader, 2768 * then don't put it on unless the group is on. 2769 */ 2770 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2771 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2772 return; 2773 } 2774 2775 task_ctx = cpuctx->task_ctx; 2776 if (ctx->task) 2777 WARN_ON_ONCE(task_ctx != ctx); 2778 2779 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2780 } 2781 2782 /* 2783 * Enable an event. 2784 * 2785 * If event->ctx is a cloned context, callers must make sure that 2786 * every task struct that event->ctx->task could possibly point to 2787 * remains valid. This condition is satisfied when called through 2788 * perf_event_for_each_child or perf_event_for_each as described 2789 * for perf_event_disable. 2790 */ 2791 static void _perf_event_enable(struct perf_event *event) 2792 { 2793 struct perf_event_context *ctx = event->ctx; 2794 2795 raw_spin_lock_irq(&ctx->lock); 2796 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2797 event->state < PERF_EVENT_STATE_ERROR) { 2798 raw_spin_unlock_irq(&ctx->lock); 2799 return; 2800 } 2801 2802 /* 2803 * If the event is in error state, clear that first. 2804 * 2805 * That way, if we see the event in error state below, we know that it 2806 * has gone back into error state, as distinct from the task having 2807 * been scheduled away before the cross-call arrived. 2808 */ 2809 if (event->state == PERF_EVENT_STATE_ERROR) 2810 event->state = PERF_EVENT_STATE_OFF; 2811 raw_spin_unlock_irq(&ctx->lock); 2812 2813 event_function_call(event, __perf_event_enable, NULL); 2814 } 2815 2816 /* 2817 * See perf_event_disable(); 2818 */ 2819 void perf_event_enable(struct perf_event *event) 2820 { 2821 struct perf_event_context *ctx; 2822 2823 ctx = perf_event_ctx_lock(event); 2824 _perf_event_enable(event); 2825 perf_event_ctx_unlock(event, ctx); 2826 } 2827 EXPORT_SYMBOL_GPL(perf_event_enable); 2828 2829 struct stop_event_data { 2830 struct perf_event *event; 2831 unsigned int restart; 2832 }; 2833 2834 static int __perf_event_stop(void *info) 2835 { 2836 struct stop_event_data *sd = info; 2837 struct perf_event *event = sd->event; 2838 2839 /* if it's already INACTIVE, do nothing */ 2840 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2841 return 0; 2842 2843 /* matches smp_wmb() in event_sched_in() */ 2844 smp_rmb(); 2845 2846 /* 2847 * There is a window with interrupts enabled before we get here, 2848 * so we need to check again lest we try to stop another CPU's event. 2849 */ 2850 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2851 return -EAGAIN; 2852 2853 event->pmu->stop(event, PERF_EF_UPDATE); 2854 2855 /* 2856 * May race with the actual stop (through perf_pmu_output_stop()), 2857 * but it is only used for events with AUX ring buffer, and such 2858 * events will refuse to restart because of rb::aux_mmap_count==0, 2859 * see comments in perf_aux_output_begin(). 2860 * 2861 * Since this is happening on an event-local CPU, no trace is lost 2862 * while restarting. 2863 */ 2864 if (sd->restart) 2865 event->pmu->start(event, 0); 2866 2867 return 0; 2868 } 2869 2870 static int perf_event_stop(struct perf_event *event, int restart) 2871 { 2872 struct stop_event_data sd = { 2873 .event = event, 2874 .restart = restart, 2875 }; 2876 int ret = 0; 2877 2878 do { 2879 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2880 return 0; 2881 2882 /* matches smp_wmb() in event_sched_in() */ 2883 smp_rmb(); 2884 2885 /* 2886 * We only want to restart ACTIVE events, so if the event goes 2887 * inactive here (event->oncpu==-1), there's nothing more to do; 2888 * fall through with ret==-ENXIO. 2889 */ 2890 ret = cpu_function_call(READ_ONCE(event->oncpu), 2891 __perf_event_stop, &sd); 2892 } while (ret == -EAGAIN); 2893 2894 return ret; 2895 } 2896 2897 /* 2898 * In order to contain the amount of racy and tricky in the address filter 2899 * configuration management, it is a two part process: 2900 * 2901 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2902 * we update the addresses of corresponding vmas in 2903 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2904 * (p2) when an event is scheduled in (pmu::add), it calls 2905 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2906 * if the generation has changed since the previous call. 2907 * 2908 * If (p1) happens while the event is active, we restart it to force (p2). 2909 * 2910 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2911 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2912 * ioctl; 2913 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2914 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2915 * for reading; 2916 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2917 * of exec. 2918 */ 2919 void perf_event_addr_filters_sync(struct perf_event *event) 2920 { 2921 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2922 2923 if (!has_addr_filter(event)) 2924 return; 2925 2926 raw_spin_lock(&ifh->lock); 2927 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2928 event->pmu->addr_filters_sync(event); 2929 event->hw.addr_filters_gen = event->addr_filters_gen; 2930 } 2931 raw_spin_unlock(&ifh->lock); 2932 } 2933 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2934 2935 static int _perf_event_refresh(struct perf_event *event, int refresh) 2936 { 2937 /* 2938 * not supported on inherited events 2939 */ 2940 if (event->attr.inherit || !is_sampling_event(event)) 2941 return -EINVAL; 2942 2943 atomic_add(refresh, &event->event_limit); 2944 _perf_event_enable(event); 2945 2946 return 0; 2947 } 2948 2949 /* 2950 * See perf_event_disable() 2951 */ 2952 int perf_event_refresh(struct perf_event *event, int refresh) 2953 { 2954 struct perf_event_context *ctx; 2955 int ret; 2956 2957 ctx = perf_event_ctx_lock(event); 2958 ret = _perf_event_refresh(event, refresh); 2959 perf_event_ctx_unlock(event, ctx); 2960 2961 return ret; 2962 } 2963 EXPORT_SYMBOL_GPL(perf_event_refresh); 2964 2965 static int perf_event_modify_breakpoint(struct perf_event *bp, 2966 struct perf_event_attr *attr) 2967 { 2968 int err; 2969 2970 _perf_event_disable(bp); 2971 2972 err = modify_user_hw_breakpoint_check(bp, attr, true); 2973 2974 if (!bp->attr.disabled) 2975 _perf_event_enable(bp); 2976 2977 return err; 2978 } 2979 2980 static int perf_event_modify_attr(struct perf_event *event, 2981 struct perf_event_attr *attr) 2982 { 2983 if (event->attr.type != attr->type) 2984 return -EINVAL; 2985 2986 switch (event->attr.type) { 2987 case PERF_TYPE_BREAKPOINT: 2988 return perf_event_modify_breakpoint(event, attr); 2989 default: 2990 /* Place holder for future additions. */ 2991 return -EOPNOTSUPP; 2992 } 2993 } 2994 2995 static void ctx_sched_out(struct perf_event_context *ctx, 2996 struct perf_cpu_context *cpuctx, 2997 enum event_type_t event_type) 2998 { 2999 struct perf_event *event, *tmp; 3000 int is_active = ctx->is_active; 3001 3002 lockdep_assert_held(&ctx->lock); 3003 3004 if (likely(!ctx->nr_events)) { 3005 /* 3006 * See __perf_remove_from_context(). 3007 */ 3008 WARN_ON_ONCE(ctx->is_active); 3009 if (ctx->task) 3010 WARN_ON_ONCE(cpuctx->task_ctx); 3011 return; 3012 } 3013 3014 ctx->is_active &= ~event_type; 3015 if (!(ctx->is_active & EVENT_ALL)) 3016 ctx->is_active = 0; 3017 3018 if (ctx->task) { 3019 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3020 if (!ctx->is_active) 3021 cpuctx->task_ctx = NULL; 3022 } 3023 3024 /* 3025 * Always update time if it was set; not only when it changes. 3026 * Otherwise we can 'forget' to update time for any but the last 3027 * context we sched out. For example: 3028 * 3029 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3030 * ctx_sched_out(.event_type = EVENT_PINNED) 3031 * 3032 * would only update time for the pinned events. 3033 */ 3034 if (is_active & EVENT_TIME) { 3035 /* update (and stop) ctx time */ 3036 update_context_time(ctx); 3037 update_cgrp_time_from_cpuctx(cpuctx); 3038 } 3039 3040 is_active ^= ctx->is_active; /* changed bits */ 3041 3042 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3043 return; 3044 3045 /* 3046 * If we had been multiplexing, no rotations are necessary, now no events 3047 * are active. 3048 */ 3049 ctx->rotate_necessary = 0; 3050 3051 perf_pmu_disable(ctx->pmu); 3052 if (is_active & EVENT_PINNED) { 3053 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3054 group_sched_out(event, cpuctx, ctx); 3055 } 3056 3057 if (is_active & EVENT_FLEXIBLE) { 3058 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3059 group_sched_out(event, cpuctx, ctx); 3060 } 3061 perf_pmu_enable(ctx->pmu); 3062 } 3063 3064 /* 3065 * Test whether two contexts are equivalent, i.e. whether they have both been 3066 * cloned from the same version of the same context. 3067 * 3068 * Equivalence is measured using a generation number in the context that is 3069 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3070 * and list_del_event(). 3071 */ 3072 static int context_equiv(struct perf_event_context *ctx1, 3073 struct perf_event_context *ctx2) 3074 { 3075 lockdep_assert_held(&ctx1->lock); 3076 lockdep_assert_held(&ctx2->lock); 3077 3078 /* Pinning disables the swap optimization */ 3079 if (ctx1->pin_count || ctx2->pin_count) 3080 return 0; 3081 3082 /* If ctx1 is the parent of ctx2 */ 3083 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3084 return 1; 3085 3086 /* If ctx2 is the parent of ctx1 */ 3087 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3088 return 1; 3089 3090 /* 3091 * If ctx1 and ctx2 have the same parent; we flatten the parent 3092 * hierarchy, see perf_event_init_context(). 3093 */ 3094 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3095 ctx1->parent_gen == ctx2->parent_gen) 3096 return 1; 3097 3098 /* Unmatched */ 3099 return 0; 3100 } 3101 3102 static void __perf_event_sync_stat(struct perf_event *event, 3103 struct perf_event *next_event) 3104 { 3105 u64 value; 3106 3107 if (!event->attr.inherit_stat) 3108 return; 3109 3110 /* 3111 * Update the event value, we cannot use perf_event_read() 3112 * because we're in the middle of a context switch and have IRQs 3113 * disabled, which upsets smp_call_function_single(), however 3114 * we know the event must be on the current CPU, therefore we 3115 * don't need to use it. 3116 */ 3117 if (event->state == PERF_EVENT_STATE_ACTIVE) 3118 event->pmu->read(event); 3119 3120 perf_event_update_time(event); 3121 3122 /* 3123 * In order to keep per-task stats reliable we need to flip the event 3124 * values when we flip the contexts. 3125 */ 3126 value = local64_read(&next_event->count); 3127 value = local64_xchg(&event->count, value); 3128 local64_set(&next_event->count, value); 3129 3130 swap(event->total_time_enabled, next_event->total_time_enabled); 3131 swap(event->total_time_running, next_event->total_time_running); 3132 3133 /* 3134 * Since we swizzled the values, update the user visible data too. 3135 */ 3136 perf_event_update_userpage(event); 3137 perf_event_update_userpage(next_event); 3138 } 3139 3140 static void perf_event_sync_stat(struct perf_event_context *ctx, 3141 struct perf_event_context *next_ctx) 3142 { 3143 struct perf_event *event, *next_event; 3144 3145 if (!ctx->nr_stat) 3146 return; 3147 3148 update_context_time(ctx); 3149 3150 event = list_first_entry(&ctx->event_list, 3151 struct perf_event, event_entry); 3152 3153 next_event = list_first_entry(&next_ctx->event_list, 3154 struct perf_event, event_entry); 3155 3156 while (&event->event_entry != &ctx->event_list && 3157 &next_event->event_entry != &next_ctx->event_list) { 3158 3159 __perf_event_sync_stat(event, next_event); 3160 3161 event = list_next_entry(event, event_entry); 3162 next_event = list_next_entry(next_event, event_entry); 3163 } 3164 } 3165 3166 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3167 struct task_struct *next) 3168 { 3169 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3170 struct perf_event_context *next_ctx; 3171 struct perf_event_context *parent, *next_parent; 3172 struct perf_cpu_context *cpuctx; 3173 int do_switch = 1; 3174 3175 if (likely(!ctx)) 3176 return; 3177 3178 cpuctx = __get_cpu_context(ctx); 3179 if (!cpuctx->task_ctx) 3180 return; 3181 3182 rcu_read_lock(); 3183 next_ctx = next->perf_event_ctxp[ctxn]; 3184 if (!next_ctx) 3185 goto unlock; 3186 3187 parent = rcu_dereference(ctx->parent_ctx); 3188 next_parent = rcu_dereference(next_ctx->parent_ctx); 3189 3190 /* If neither context have a parent context; they cannot be clones. */ 3191 if (!parent && !next_parent) 3192 goto unlock; 3193 3194 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3195 /* 3196 * Looks like the two contexts are clones, so we might be 3197 * able to optimize the context switch. We lock both 3198 * contexts and check that they are clones under the 3199 * lock (including re-checking that neither has been 3200 * uncloned in the meantime). It doesn't matter which 3201 * order we take the locks because no other cpu could 3202 * be trying to lock both of these tasks. 3203 */ 3204 raw_spin_lock(&ctx->lock); 3205 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3206 if (context_equiv(ctx, next_ctx)) { 3207 WRITE_ONCE(ctx->task, next); 3208 WRITE_ONCE(next_ctx->task, task); 3209 3210 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3211 3212 /* 3213 * RCU_INIT_POINTER here is safe because we've not 3214 * modified the ctx and the above modification of 3215 * ctx->task and ctx->task_ctx_data are immaterial 3216 * since those values are always verified under 3217 * ctx->lock which we're now holding. 3218 */ 3219 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3220 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3221 3222 do_switch = 0; 3223 3224 perf_event_sync_stat(ctx, next_ctx); 3225 } 3226 raw_spin_unlock(&next_ctx->lock); 3227 raw_spin_unlock(&ctx->lock); 3228 } 3229 unlock: 3230 rcu_read_unlock(); 3231 3232 if (do_switch) { 3233 raw_spin_lock(&ctx->lock); 3234 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3235 raw_spin_unlock(&ctx->lock); 3236 } 3237 } 3238 3239 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3240 3241 void perf_sched_cb_dec(struct pmu *pmu) 3242 { 3243 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3244 3245 this_cpu_dec(perf_sched_cb_usages); 3246 3247 if (!--cpuctx->sched_cb_usage) 3248 list_del(&cpuctx->sched_cb_entry); 3249 } 3250 3251 3252 void perf_sched_cb_inc(struct pmu *pmu) 3253 { 3254 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3255 3256 if (!cpuctx->sched_cb_usage++) 3257 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3258 3259 this_cpu_inc(perf_sched_cb_usages); 3260 } 3261 3262 /* 3263 * This function provides the context switch callback to the lower code 3264 * layer. It is invoked ONLY when the context switch callback is enabled. 3265 * 3266 * This callback is relevant even to per-cpu events; for example multi event 3267 * PEBS requires this to provide PID/TID information. This requires we flush 3268 * all queued PEBS records before we context switch to a new task. 3269 */ 3270 static void perf_pmu_sched_task(struct task_struct *prev, 3271 struct task_struct *next, 3272 bool sched_in) 3273 { 3274 struct perf_cpu_context *cpuctx; 3275 struct pmu *pmu; 3276 3277 if (prev == next) 3278 return; 3279 3280 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3281 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3282 3283 if (WARN_ON_ONCE(!pmu->sched_task)) 3284 continue; 3285 3286 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3287 perf_pmu_disable(pmu); 3288 3289 pmu->sched_task(cpuctx->task_ctx, sched_in); 3290 3291 perf_pmu_enable(pmu); 3292 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3293 } 3294 } 3295 3296 static void perf_event_switch(struct task_struct *task, 3297 struct task_struct *next_prev, bool sched_in); 3298 3299 #define for_each_task_context_nr(ctxn) \ 3300 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3301 3302 /* 3303 * Called from scheduler to remove the events of the current task, 3304 * with interrupts disabled. 3305 * 3306 * We stop each event and update the event value in event->count. 3307 * 3308 * This does not protect us against NMI, but disable() 3309 * sets the disabled bit in the control field of event _before_ 3310 * accessing the event control register. If a NMI hits, then it will 3311 * not restart the event. 3312 */ 3313 void __perf_event_task_sched_out(struct task_struct *task, 3314 struct task_struct *next) 3315 { 3316 int ctxn; 3317 3318 if (__this_cpu_read(perf_sched_cb_usages)) 3319 perf_pmu_sched_task(task, next, false); 3320 3321 if (atomic_read(&nr_switch_events)) 3322 perf_event_switch(task, next, false); 3323 3324 for_each_task_context_nr(ctxn) 3325 perf_event_context_sched_out(task, ctxn, next); 3326 3327 /* 3328 * if cgroup events exist on this CPU, then we need 3329 * to check if we have to switch out PMU state. 3330 * cgroup event are system-wide mode only 3331 */ 3332 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3333 perf_cgroup_sched_out(task, next); 3334 } 3335 3336 /* 3337 * Called with IRQs disabled 3338 */ 3339 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3340 enum event_type_t event_type) 3341 { 3342 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3343 } 3344 3345 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3346 int (*func)(struct perf_event *, void *), void *data) 3347 { 3348 struct perf_event **evt, *evt1, *evt2; 3349 int ret; 3350 3351 evt1 = perf_event_groups_first(groups, -1); 3352 evt2 = perf_event_groups_first(groups, cpu); 3353 3354 while (evt1 || evt2) { 3355 if (evt1 && evt2) { 3356 if (evt1->group_index < evt2->group_index) 3357 evt = &evt1; 3358 else 3359 evt = &evt2; 3360 } else if (evt1) { 3361 evt = &evt1; 3362 } else { 3363 evt = &evt2; 3364 } 3365 3366 ret = func(*evt, data); 3367 if (ret) 3368 return ret; 3369 3370 *evt = perf_event_groups_next(*evt); 3371 } 3372 3373 return 0; 3374 } 3375 3376 struct sched_in_data { 3377 struct perf_event_context *ctx; 3378 struct perf_cpu_context *cpuctx; 3379 int can_add_hw; 3380 }; 3381 3382 static int pinned_sched_in(struct perf_event *event, void *data) 3383 { 3384 struct sched_in_data *sid = data; 3385 3386 if (event->state <= PERF_EVENT_STATE_OFF) 3387 return 0; 3388 3389 if (!event_filter_match(event)) 3390 return 0; 3391 3392 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3393 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3394 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3395 } 3396 3397 /* 3398 * If this pinned group hasn't been scheduled, 3399 * put it in error state. 3400 */ 3401 if (event->state == PERF_EVENT_STATE_INACTIVE) 3402 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3403 3404 return 0; 3405 } 3406 3407 static int flexible_sched_in(struct perf_event *event, void *data) 3408 { 3409 struct sched_in_data *sid = data; 3410 3411 if (event->state <= PERF_EVENT_STATE_OFF) 3412 return 0; 3413 3414 if (!event_filter_match(event)) 3415 return 0; 3416 3417 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3418 int ret = group_sched_in(event, sid->cpuctx, sid->ctx); 3419 if (ret) { 3420 sid->can_add_hw = 0; 3421 sid->ctx->rotate_necessary = 1; 3422 return 0; 3423 } 3424 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3425 } 3426 3427 return 0; 3428 } 3429 3430 static void 3431 ctx_pinned_sched_in(struct perf_event_context *ctx, 3432 struct perf_cpu_context *cpuctx) 3433 { 3434 struct sched_in_data sid = { 3435 .ctx = ctx, 3436 .cpuctx = cpuctx, 3437 .can_add_hw = 1, 3438 }; 3439 3440 visit_groups_merge(&ctx->pinned_groups, 3441 smp_processor_id(), 3442 pinned_sched_in, &sid); 3443 } 3444 3445 static void 3446 ctx_flexible_sched_in(struct perf_event_context *ctx, 3447 struct perf_cpu_context *cpuctx) 3448 { 3449 struct sched_in_data sid = { 3450 .ctx = ctx, 3451 .cpuctx = cpuctx, 3452 .can_add_hw = 1, 3453 }; 3454 3455 visit_groups_merge(&ctx->flexible_groups, 3456 smp_processor_id(), 3457 flexible_sched_in, &sid); 3458 } 3459 3460 static void 3461 ctx_sched_in(struct perf_event_context *ctx, 3462 struct perf_cpu_context *cpuctx, 3463 enum event_type_t event_type, 3464 struct task_struct *task) 3465 { 3466 int is_active = ctx->is_active; 3467 u64 now; 3468 3469 lockdep_assert_held(&ctx->lock); 3470 3471 if (likely(!ctx->nr_events)) 3472 return; 3473 3474 ctx->is_active |= (event_type | EVENT_TIME); 3475 if (ctx->task) { 3476 if (!is_active) 3477 cpuctx->task_ctx = ctx; 3478 else 3479 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3480 } 3481 3482 is_active ^= ctx->is_active; /* changed bits */ 3483 3484 if (is_active & EVENT_TIME) { 3485 /* start ctx time */ 3486 now = perf_clock(); 3487 ctx->timestamp = now; 3488 perf_cgroup_set_timestamp(task, ctx); 3489 } 3490 3491 /* 3492 * First go through the list and put on any pinned groups 3493 * in order to give them the best chance of going on. 3494 */ 3495 if (is_active & EVENT_PINNED) 3496 ctx_pinned_sched_in(ctx, cpuctx); 3497 3498 /* Then walk through the lower prio flexible groups */ 3499 if (is_active & EVENT_FLEXIBLE) 3500 ctx_flexible_sched_in(ctx, cpuctx); 3501 } 3502 3503 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3504 enum event_type_t event_type, 3505 struct task_struct *task) 3506 { 3507 struct perf_event_context *ctx = &cpuctx->ctx; 3508 3509 ctx_sched_in(ctx, cpuctx, event_type, task); 3510 } 3511 3512 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3513 struct task_struct *task) 3514 { 3515 struct perf_cpu_context *cpuctx; 3516 3517 cpuctx = __get_cpu_context(ctx); 3518 if (cpuctx->task_ctx == ctx) 3519 return; 3520 3521 perf_ctx_lock(cpuctx, ctx); 3522 /* 3523 * We must check ctx->nr_events while holding ctx->lock, such 3524 * that we serialize against perf_install_in_context(). 3525 */ 3526 if (!ctx->nr_events) 3527 goto unlock; 3528 3529 perf_pmu_disable(ctx->pmu); 3530 /* 3531 * We want to keep the following priority order: 3532 * cpu pinned (that don't need to move), task pinned, 3533 * cpu flexible, task flexible. 3534 * 3535 * However, if task's ctx is not carrying any pinned 3536 * events, no need to flip the cpuctx's events around. 3537 */ 3538 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3540 perf_event_sched_in(cpuctx, ctx, task); 3541 perf_pmu_enable(ctx->pmu); 3542 3543 unlock: 3544 perf_ctx_unlock(cpuctx, ctx); 3545 } 3546 3547 /* 3548 * Called from scheduler to add the events of the current task 3549 * with interrupts disabled. 3550 * 3551 * We restore the event value and then enable it. 3552 * 3553 * This does not protect us against NMI, but enable() 3554 * sets the enabled bit in the control field of event _before_ 3555 * accessing the event control register. If a NMI hits, then it will 3556 * keep the event running. 3557 */ 3558 void __perf_event_task_sched_in(struct task_struct *prev, 3559 struct task_struct *task) 3560 { 3561 struct perf_event_context *ctx; 3562 int ctxn; 3563 3564 /* 3565 * If cgroup events exist on this CPU, then we need to check if we have 3566 * to switch in PMU state; cgroup event are system-wide mode only. 3567 * 3568 * Since cgroup events are CPU events, we must schedule these in before 3569 * we schedule in the task events. 3570 */ 3571 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3572 perf_cgroup_sched_in(prev, task); 3573 3574 for_each_task_context_nr(ctxn) { 3575 ctx = task->perf_event_ctxp[ctxn]; 3576 if (likely(!ctx)) 3577 continue; 3578 3579 perf_event_context_sched_in(ctx, task); 3580 } 3581 3582 if (atomic_read(&nr_switch_events)) 3583 perf_event_switch(task, prev, true); 3584 3585 if (__this_cpu_read(perf_sched_cb_usages)) 3586 perf_pmu_sched_task(prev, task, true); 3587 } 3588 3589 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3590 { 3591 u64 frequency = event->attr.sample_freq; 3592 u64 sec = NSEC_PER_SEC; 3593 u64 divisor, dividend; 3594 3595 int count_fls, nsec_fls, frequency_fls, sec_fls; 3596 3597 count_fls = fls64(count); 3598 nsec_fls = fls64(nsec); 3599 frequency_fls = fls64(frequency); 3600 sec_fls = 30; 3601 3602 /* 3603 * We got @count in @nsec, with a target of sample_freq HZ 3604 * the target period becomes: 3605 * 3606 * @count * 10^9 3607 * period = ------------------- 3608 * @nsec * sample_freq 3609 * 3610 */ 3611 3612 /* 3613 * Reduce accuracy by one bit such that @a and @b converge 3614 * to a similar magnitude. 3615 */ 3616 #define REDUCE_FLS(a, b) \ 3617 do { \ 3618 if (a##_fls > b##_fls) { \ 3619 a >>= 1; \ 3620 a##_fls--; \ 3621 } else { \ 3622 b >>= 1; \ 3623 b##_fls--; \ 3624 } \ 3625 } while (0) 3626 3627 /* 3628 * Reduce accuracy until either term fits in a u64, then proceed with 3629 * the other, so that finally we can do a u64/u64 division. 3630 */ 3631 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3632 REDUCE_FLS(nsec, frequency); 3633 REDUCE_FLS(sec, count); 3634 } 3635 3636 if (count_fls + sec_fls > 64) { 3637 divisor = nsec * frequency; 3638 3639 while (count_fls + sec_fls > 64) { 3640 REDUCE_FLS(count, sec); 3641 divisor >>= 1; 3642 } 3643 3644 dividend = count * sec; 3645 } else { 3646 dividend = count * sec; 3647 3648 while (nsec_fls + frequency_fls > 64) { 3649 REDUCE_FLS(nsec, frequency); 3650 dividend >>= 1; 3651 } 3652 3653 divisor = nsec * frequency; 3654 } 3655 3656 if (!divisor) 3657 return dividend; 3658 3659 return div64_u64(dividend, divisor); 3660 } 3661 3662 static DEFINE_PER_CPU(int, perf_throttled_count); 3663 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3664 3665 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3666 { 3667 struct hw_perf_event *hwc = &event->hw; 3668 s64 period, sample_period; 3669 s64 delta; 3670 3671 period = perf_calculate_period(event, nsec, count); 3672 3673 delta = (s64)(period - hwc->sample_period); 3674 delta = (delta + 7) / 8; /* low pass filter */ 3675 3676 sample_period = hwc->sample_period + delta; 3677 3678 if (!sample_period) 3679 sample_period = 1; 3680 3681 hwc->sample_period = sample_period; 3682 3683 if (local64_read(&hwc->period_left) > 8*sample_period) { 3684 if (disable) 3685 event->pmu->stop(event, PERF_EF_UPDATE); 3686 3687 local64_set(&hwc->period_left, 0); 3688 3689 if (disable) 3690 event->pmu->start(event, PERF_EF_RELOAD); 3691 } 3692 } 3693 3694 /* 3695 * combine freq adjustment with unthrottling to avoid two passes over the 3696 * events. At the same time, make sure, having freq events does not change 3697 * the rate of unthrottling as that would introduce bias. 3698 */ 3699 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3700 int needs_unthr) 3701 { 3702 struct perf_event *event; 3703 struct hw_perf_event *hwc; 3704 u64 now, period = TICK_NSEC; 3705 s64 delta; 3706 3707 /* 3708 * only need to iterate over all events iff: 3709 * - context have events in frequency mode (needs freq adjust) 3710 * - there are events to unthrottle on this cpu 3711 */ 3712 if (!(ctx->nr_freq || needs_unthr)) 3713 return; 3714 3715 raw_spin_lock(&ctx->lock); 3716 perf_pmu_disable(ctx->pmu); 3717 3718 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3719 if (event->state != PERF_EVENT_STATE_ACTIVE) 3720 continue; 3721 3722 if (!event_filter_match(event)) 3723 continue; 3724 3725 perf_pmu_disable(event->pmu); 3726 3727 hwc = &event->hw; 3728 3729 if (hwc->interrupts == MAX_INTERRUPTS) { 3730 hwc->interrupts = 0; 3731 perf_log_throttle(event, 1); 3732 event->pmu->start(event, 0); 3733 } 3734 3735 if (!event->attr.freq || !event->attr.sample_freq) 3736 goto next; 3737 3738 /* 3739 * stop the event and update event->count 3740 */ 3741 event->pmu->stop(event, PERF_EF_UPDATE); 3742 3743 now = local64_read(&event->count); 3744 delta = now - hwc->freq_count_stamp; 3745 hwc->freq_count_stamp = now; 3746 3747 /* 3748 * restart the event 3749 * reload only if value has changed 3750 * we have stopped the event so tell that 3751 * to perf_adjust_period() to avoid stopping it 3752 * twice. 3753 */ 3754 if (delta > 0) 3755 perf_adjust_period(event, period, delta, false); 3756 3757 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3758 next: 3759 perf_pmu_enable(event->pmu); 3760 } 3761 3762 perf_pmu_enable(ctx->pmu); 3763 raw_spin_unlock(&ctx->lock); 3764 } 3765 3766 /* 3767 * Move @event to the tail of the @ctx's elegible events. 3768 */ 3769 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3770 { 3771 /* 3772 * Rotate the first entry last of non-pinned groups. Rotation might be 3773 * disabled by the inheritance code. 3774 */ 3775 if (ctx->rotate_disable) 3776 return; 3777 3778 perf_event_groups_delete(&ctx->flexible_groups, event); 3779 perf_event_groups_insert(&ctx->flexible_groups, event); 3780 } 3781 3782 static inline struct perf_event * 3783 ctx_first_active(struct perf_event_context *ctx) 3784 { 3785 return list_first_entry_or_null(&ctx->flexible_active, 3786 struct perf_event, active_list); 3787 } 3788 3789 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3790 { 3791 struct perf_event *cpu_event = NULL, *task_event = NULL; 3792 struct perf_event_context *task_ctx = NULL; 3793 int cpu_rotate, task_rotate; 3794 3795 /* 3796 * Since we run this from IRQ context, nobody can install new 3797 * events, thus the event count values are stable. 3798 */ 3799 3800 cpu_rotate = cpuctx->ctx.rotate_necessary; 3801 task_ctx = cpuctx->task_ctx; 3802 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 3803 3804 if (!(cpu_rotate || task_rotate)) 3805 return false; 3806 3807 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3808 perf_pmu_disable(cpuctx->ctx.pmu); 3809 3810 if (task_rotate) 3811 task_event = ctx_first_active(task_ctx); 3812 if (cpu_rotate) 3813 cpu_event = ctx_first_active(&cpuctx->ctx); 3814 3815 /* 3816 * As per the order given at ctx_resched() first 'pop' task flexible 3817 * and then, if needed CPU flexible. 3818 */ 3819 if (task_event || (task_ctx && cpu_event)) 3820 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 3821 if (cpu_event) 3822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3823 3824 if (task_event) 3825 rotate_ctx(task_ctx, task_event); 3826 if (cpu_event) 3827 rotate_ctx(&cpuctx->ctx, cpu_event); 3828 3829 perf_event_sched_in(cpuctx, task_ctx, current); 3830 3831 perf_pmu_enable(cpuctx->ctx.pmu); 3832 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3833 3834 return true; 3835 } 3836 3837 void perf_event_task_tick(void) 3838 { 3839 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3840 struct perf_event_context *ctx, *tmp; 3841 int throttled; 3842 3843 lockdep_assert_irqs_disabled(); 3844 3845 __this_cpu_inc(perf_throttled_seq); 3846 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3847 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3848 3849 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3850 perf_adjust_freq_unthr_context(ctx, throttled); 3851 } 3852 3853 static int event_enable_on_exec(struct perf_event *event, 3854 struct perf_event_context *ctx) 3855 { 3856 if (!event->attr.enable_on_exec) 3857 return 0; 3858 3859 event->attr.enable_on_exec = 0; 3860 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3861 return 0; 3862 3863 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3864 3865 return 1; 3866 } 3867 3868 /* 3869 * Enable all of a task's events that have been marked enable-on-exec. 3870 * This expects task == current. 3871 */ 3872 static void perf_event_enable_on_exec(int ctxn) 3873 { 3874 struct perf_event_context *ctx, *clone_ctx = NULL; 3875 enum event_type_t event_type = 0; 3876 struct perf_cpu_context *cpuctx; 3877 struct perf_event *event; 3878 unsigned long flags; 3879 int enabled = 0; 3880 3881 local_irq_save(flags); 3882 ctx = current->perf_event_ctxp[ctxn]; 3883 if (!ctx || !ctx->nr_events) 3884 goto out; 3885 3886 cpuctx = __get_cpu_context(ctx); 3887 perf_ctx_lock(cpuctx, ctx); 3888 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3889 list_for_each_entry(event, &ctx->event_list, event_entry) { 3890 enabled |= event_enable_on_exec(event, ctx); 3891 event_type |= get_event_type(event); 3892 } 3893 3894 /* 3895 * Unclone and reschedule this context if we enabled any event. 3896 */ 3897 if (enabled) { 3898 clone_ctx = unclone_ctx(ctx); 3899 ctx_resched(cpuctx, ctx, event_type); 3900 } else { 3901 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3902 } 3903 perf_ctx_unlock(cpuctx, ctx); 3904 3905 out: 3906 local_irq_restore(flags); 3907 3908 if (clone_ctx) 3909 put_ctx(clone_ctx); 3910 } 3911 3912 struct perf_read_data { 3913 struct perf_event *event; 3914 bool group; 3915 int ret; 3916 }; 3917 3918 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3919 { 3920 u16 local_pkg, event_pkg; 3921 3922 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3923 int local_cpu = smp_processor_id(); 3924 3925 event_pkg = topology_physical_package_id(event_cpu); 3926 local_pkg = topology_physical_package_id(local_cpu); 3927 3928 if (event_pkg == local_pkg) 3929 return local_cpu; 3930 } 3931 3932 return event_cpu; 3933 } 3934 3935 /* 3936 * Cross CPU call to read the hardware event 3937 */ 3938 static void __perf_event_read(void *info) 3939 { 3940 struct perf_read_data *data = info; 3941 struct perf_event *sub, *event = data->event; 3942 struct perf_event_context *ctx = event->ctx; 3943 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3944 struct pmu *pmu = event->pmu; 3945 3946 /* 3947 * If this is a task context, we need to check whether it is 3948 * the current task context of this cpu. If not it has been 3949 * scheduled out before the smp call arrived. In that case 3950 * event->count would have been updated to a recent sample 3951 * when the event was scheduled out. 3952 */ 3953 if (ctx->task && cpuctx->task_ctx != ctx) 3954 return; 3955 3956 raw_spin_lock(&ctx->lock); 3957 if (ctx->is_active & EVENT_TIME) { 3958 update_context_time(ctx); 3959 update_cgrp_time_from_event(event); 3960 } 3961 3962 perf_event_update_time(event); 3963 if (data->group) 3964 perf_event_update_sibling_time(event); 3965 3966 if (event->state != PERF_EVENT_STATE_ACTIVE) 3967 goto unlock; 3968 3969 if (!data->group) { 3970 pmu->read(event); 3971 data->ret = 0; 3972 goto unlock; 3973 } 3974 3975 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3976 3977 pmu->read(event); 3978 3979 for_each_sibling_event(sub, event) { 3980 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3981 /* 3982 * Use sibling's PMU rather than @event's since 3983 * sibling could be on different (eg: software) PMU. 3984 */ 3985 sub->pmu->read(sub); 3986 } 3987 } 3988 3989 data->ret = pmu->commit_txn(pmu); 3990 3991 unlock: 3992 raw_spin_unlock(&ctx->lock); 3993 } 3994 3995 static inline u64 perf_event_count(struct perf_event *event) 3996 { 3997 return local64_read(&event->count) + atomic64_read(&event->child_count); 3998 } 3999 4000 /* 4001 * NMI-safe method to read a local event, that is an event that 4002 * is: 4003 * - either for the current task, or for this CPU 4004 * - does not have inherit set, for inherited task events 4005 * will not be local and we cannot read them atomically 4006 * - must not have a pmu::count method 4007 */ 4008 int perf_event_read_local(struct perf_event *event, u64 *value, 4009 u64 *enabled, u64 *running) 4010 { 4011 unsigned long flags; 4012 int ret = 0; 4013 4014 /* 4015 * Disabling interrupts avoids all counter scheduling (context 4016 * switches, timer based rotation and IPIs). 4017 */ 4018 local_irq_save(flags); 4019 4020 /* 4021 * It must not be an event with inherit set, we cannot read 4022 * all child counters from atomic context. 4023 */ 4024 if (event->attr.inherit) { 4025 ret = -EOPNOTSUPP; 4026 goto out; 4027 } 4028 4029 /* If this is a per-task event, it must be for current */ 4030 if ((event->attach_state & PERF_ATTACH_TASK) && 4031 event->hw.target != current) { 4032 ret = -EINVAL; 4033 goto out; 4034 } 4035 4036 /* If this is a per-CPU event, it must be for this CPU */ 4037 if (!(event->attach_state & PERF_ATTACH_TASK) && 4038 event->cpu != smp_processor_id()) { 4039 ret = -EINVAL; 4040 goto out; 4041 } 4042 4043 /* If this is a pinned event it must be running on this CPU */ 4044 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4045 ret = -EBUSY; 4046 goto out; 4047 } 4048 4049 /* 4050 * If the event is currently on this CPU, its either a per-task event, 4051 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4052 * oncpu == -1). 4053 */ 4054 if (event->oncpu == smp_processor_id()) 4055 event->pmu->read(event); 4056 4057 *value = local64_read(&event->count); 4058 if (enabled || running) { 4059 u64 now = event->shadow_ctx_time + perf_clock(); 4060 u64 __enabled, __running; 4061 4062 __perf_update_times(event, now, &__enabled, &__running); 4063 if (enabled) 4064 *enabled = __enabled; 4065 if (running) 4066 *running = __running; 4067 } 4068 out: 4069 local_irq_restore(flags); 4070 4071 return ret; 4072 } 4073 4074 static int perf_event_read(struct perf_event *event, bool group) 4075 { 4076 enum perf_event_state state = READ_ONCE(event->state); 4077 int event_cpu, ret = 0; 4078 4079 /* 4080 * If event is enabled and currently active on a CPU, update the 4081 * value in the event structure: 4082 */ 4083 again: 4084 if (state == PERF_EVENT_STATE_ACTIVE) { 4085 struct perf_read_data data; 4086 4087 /* 4088 * Orders the ->state and ->oncpu loads such that if we see 4089 * ACTIVE we must also see the right ->oncpu. 4090 * 4091 * Matches the smp_wmb() from event_sched_in(). 4092 */ 4093 smp_rmb(); 4094 4095 event_cpu = READ_ONCE(event->oncpu); 4096 if ((unsigned)event_cpu >= nr_cpu_ids) 4097 return 0; 4098 4099 data = (struct perf_read_data){ 4100 .event = event, 4101 .group = group, 4102 .ret = 0, 4103 }; 4104 4105 preempt_disable(); 4106 event_cpu = __perf_event_read_cpu(event, event_cpu); 4107 4108 /* 4109 * Purposely ignore the smp_call_function_single() return 4110 * value. 4111 * 4112 * If event_cpu isn't a valid CPU it means the event got 4113 * scheduled out and that will have updated the event count. 4114 * 4115 * Therefore, either way, we'll have an up-to-date event count 4116 * after this. 4117 */ 4118 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4119 preempt_enable(); 4120 ret = data.ret; 4121 4122 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4123 struct perf_event_context *ctx = event->ctx; 4124 unsigned long flags; 4125 4126 raw_spin_lock_irqsave(&ctx->lock, flags); 4127 state = event->state; 4128 if (state != PERF_EVENT_STATE_INACTIVE) { 4129 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4130 goto again; 4131 } 4132 4133 /* 4134 * May read while context is not active (e.g., thread is 4135 * blocked), in that case we cannot update context time 4136 */ 4137 if (ctx->is_active & EVENT_TIME) { 4138 update_context_time(ctx); 4139 update_cgrp_time_from_event(event); 4140 } 4141 4142 perf_event_update_time(event); 4143 if (group) 4144 perf_event_update_sibling_time(event); 4145 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4146 } 4147 4148 return ret; 4149 } 4150 4151 /* 4152 * Initialize the perf_event context in a task_struct: 4153 */ 4154 static void __perf_event_init_context(struct perf_event_context *ctx) 4155 { 4156 raw_spin_lock_init(&ctx->lock); 4157 mutex_init(&ctx->mutex); 4158 INIT_LIST_HEAD(&ctx->active_ctx_list); 4159 perf_event_groups_init(&ctx->pinned_groups); 4160 perf_event_groups_init(&ctx->flexible_groups); 4161 INIT_LIST_HEAD(&ctx->event_list); 4162 INIT_LIST_HEAD(&ctx->pinned_active); 4163 INIT_LIST_HEAD(&ctx->flexible_active); 4164 refcount_set(&ctx->refcount, 1); 4165 } 4166 4167 static struct perf_event_context * 4168 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4169 { 4170 struct perf_event_context *ctx; 4171 4172 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4173 if (!ctx) 4174 return NULL; 4175 4176 __perf_event_init_context(ctx); 4177 if (task) 4178 ctx->task = get_task_struct(task); 4179 ctx->pmu = pmu; 4180 4181 return ctx; 4182 } 4183 4184 static struct task_struct * 4185 find_lively_task_by_vpid(pid_t vpid) 4186 { 4187 struct task_struct *task; 4188 4189 rcu_read_lock(); 4190 if (!vpid) 4191 task = current; 4192 else 4193 task = find_task_by_vpid(vpid); 4194 if (task) 4195 get_task_struct(task); 4196 rcu_read_unlock(); 4197 4198 if (!task) 4199 return ERR_PTR(-ESRCH); 4200 4201 return task; 4202 } 4203 4204 /* 4205 * Returns a matching context with refcount and pincount. 4206 */ 4207 static struct perf_event_context * 4208 find_get_context(struct pmu *pmu, struct task_struct *task, 4209 struct perf_event *event) 4210 { 4211 struct perf_event_context *ctx, *clone_ctx = NULL; 4212 struct perf_cpu_context *cpuctx; 4213 void *task_ctx_data = NULL; 4214 unsigned long flags; 4215 int ctxn, err; 4216 int cpu = event->cpu; 4217 4218 if (!task) { 4219 /* Must be root to operate on a CPU event: */ 4220 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4221 return ERR_PTR(-EACCES); 4222 4223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4224 ctx = &cpuctx->ctx; 4225 get_ctx(ctx); 4226 ++ctx->pin_count; 4227 4228 return ctx; 4229 } 4230 4231 err = -EINVAL; 4232 ctxn = pmu->task_ctx_nr; 4233 if (ctxn < 0) 4234 goto errout; 4235 4236 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4237 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4238 if (!task_ctx_data) { 4239 err = -ENOMEM; 4240 goto errout; 4241 } 4242 } 4243 4244 retry: 4245 ctx = perf_lock_task_context(task, ctxn, &flags); 4246 if (ctx) { 4247 clone_ctx = unclone_ctx(ctx); 4248 ++ctx->pin_count; 4249 4250 if (task_ctx_data && !ctx->task_ctx_data) { 4251 ctx->task_ctx_data = task_ctx_data; 4252 task_ctx_data = NULL; 4253 } 4254 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4255 4256 if (clone_ctx) 4257 put_ctx(clone_ctx); 4258 } else { 4259 ctx = alloc_perf_context(pmu, task); 4260 err = -ENOMEM; 4261 if (!ctx) 4262 goto errout; 4263 4264 if (task_ctx_data) { 4265 ctx->task_ctx_data = task_ctx_data; 4266 task_ctx_data = NULL; 4267 } 4268 4269 err = 0; 4270 mutex_lock(&task->perf_event_mutex); 4271 /* 4272 * If it has already passed perf_event_exit_task(). 4273 * we must see PF_EXITING, it takes this mutex too. 4274 */ 4275 if (task->flags & PF_EXITING) 4276 err = -ESRCH; 4277 else if (task->perf_event_ctxp[ctxn]) 4278 err = -EAGAIN; 4279 else { 4280 get_ctx(ctx); 4281 ++ctx->pin_count; 4282 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4283 } 4284 mutex_unlock(&task->perf_event_mutex); 4285 4286 if (unlikely(err)) { 4287 put_ctx(ctx); 4288 4289 if (err == -EAGAIN) 4290 goto retry; 4291 goto errout; 4292 } 4293 } 4294 4295 kfree(task_ctx_data); 4296 return ctx; 4297 4298 errout: 4299 kfree(task_ctx_data); 4300 return ERR_PTR(err); 4301 } 4302 4303 static void perf_event_free_filter(struct perf_event *event); 4304 static void perf_event_free_bpf_prog(struct perf_event *event); 4305 4306 static void free_event_rcu(struct rcu_head *head) 4307 { 4308 struct perf_event *event; 4309 4310 event = container_of(head, struct perf_event, rcu_head); 4311 if (event->ns) 4312 put_pid_ns(event->ns); 4313 perf_event_free_filter(event); 4314 kfree(event); 4315 } 4316 4317 static void ring_buffer_attach(struct perf_event *event, 4318 struct ring_buffer *rb); 4319 4320 static void detach_sb_event(struct perf_event *event) 4321 { 4322 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4323 4324 raw_spin_lock(&pel->lock); 4325 list_del_rcu(&event->sb_list); 4326 raw_spin_unlock(&pel->lock); 4327 } 4328 4329 static bool is_sb_event(struct perf_event *event) 4330 { 4331 struct perf_event_attr *attr = &event->attr; 4332 4333 if (event->parent) 4334 return false; 4335 4336 if (event->attach_state & PERF_ATTACH_TASK) 4337 return false; 4338 4339 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4340 attr->comm || attr->comm_exec || 4341 attr->task || attr->ksymbol || 4342 attr->context_switch || 4343 attr->bpf_event) 4344 return true; 4345 return false; 4346 } 4347 4348 static void unaccount_pmu_sb_event(struct perf_event *event) 4349 { 4350 if (is_sb_event(event)) 4351 detach_sb_event(event); 4352 } 4353 4354 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4355 { 4356 if (event->parent) 4357 return; 4358 4359 if (is_cgroup_event(event)) 4360 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4361 } 4362 4363 #ifdef CONFIG_NO_HZ_FULL 4364 static DEFINE_SPINLOCK(nr_freq_lock); 4365 #endif 4366 4367 static void unaccount_freq_event_nohz(void) 4368 { 4369 #ifdef CONFIG_NO_HZ_FULL 4370 spin_lock(&nr_freq_lock); 4371 if (atomic_dec_and_test(&nr_freq_events)) 4372 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4373 spin_unlock(&nr_freq_lock); 4374 #endif 4375 } 4376 4377 static void unaccount_freq_event(void) 4378 { 4379 if (tick_nohz_full_enabled()) 4380 unaccount_freq_event_nohz(); 4381 else 4382 atomic_dec(&nr_freq_events); 4383 } 4384 4385 static void unaccount_event(struct perf_event *event) 4386 { 4387 bool dec = false; 4388 4389 if (event->parent) 4390 return; 4391 4392 if (event->attach_state & PERF_ATTACH_TASK) 4393 dec = true; 4394 if (event->attr.mmap || event->attr.mmap_data) 4395 atomic_dec(&nr_mmap_events); 4396 if (event->attr.comm) 4397 atomic_dec(&nr_comm_events); 4398 if (event->attr.namespaces) 4399 atomic_dec(&nr_namespaces_events); 4400 if (event->attr.task) 4401 atomic_dec(&nr_task_events); 4402 if (event->attr.freq) 4403 unaccount_freq_event(); 4404 if (event->attr.context_switch) { 4405 dec = true; 4406 atomic_dec(&nr_switch_events); 4407 } 4408 if (is_cgroup_event(event)) 4409 dec = true; 4410 if (has_branch_stack(event)) 4411 dec = true; 4412 if (event->attr.ksymbol) 4413 atomic_dec(&nr_ksymbol_events); 4414 if (event->attr.bpf_event) 4415 atomic_dec(&nr_bpf_events); 4416 4417 if (dec) { 4418 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4419 schedule_delayed_work(&perf_sched_work, HZ); 4420 } 4421 4422 unaccount_event_cpu(event, event->cpu); 4423 4424 unaccount_pmu_sb_event(event); 4425 } 4426 4427 static void perf_sched_delayed(struct work_struct *work) 4428 { 4429 mutex_lock(&perf_sched_mutex); 4430 if (atomic_dec_and_test(&perf_sched_count)) 4431 static_branch_disable(&perf_sched_events); 4432 mutex_unlock(&perf_sched_mutex); 4433 } 4434 4435 /* 4436 * The following implement mutual exclusion of events on "exclusive" pmus 4437 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4438 * at a time, so we disallow creating events that might conflict, namely: 4439 * 4440 * 1) cpu-wide events in the presence of per-task events, 4441 * 2) per-task events in the presence of cpu-wide events, 4442 * 3) two matching events on the same context. 4443 * 4444 * The former two cases are handled in the allocation path (perf_event_alloc(), 4445 * _free_event()), the latter -- before the first perf_install_in_context(). 4446 */ 4447 static int exclusive_event_init(struct perf_event *event) 4448 { 4449 struct pmu *pmu = event->pmu; 4450 4451 if (!is_exclusive_pmu(pmu)) 4452 return 0; 4453 4454 /* 4455 * Prevent co-existence of per-task and cpu-wide events on the 4456 * same exclusive pmu. 4457 * 4458 * Negative pmu::exclusive_cnt means there are cpu-wide 4459 * events on this "exclusive" pmu, positive means there are 4460 * per-task events. 4461 * 4462 * Since this is called in perf_event_alloc() path, event::ctx 4463 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4464 * to mean "per-task event", because unlike other attach states it 4465 * never gets cleared. 4466 */ 4467 if (event->attach_state & PERF_ATTACH_TASK) { 4468 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4469 return -EBUSY; 4470 } else { 4471 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4472 return -EBUSY; 4473 } 4474 4475 return 0; 4476 } 4477 4478 static void exclusive_event_destroy(struct perf_event *event) 4479 { 4480 struct pmu *pmu = event->pmu; 4481 4482 if (!is_exclusive_pmu(pmu)) 4483 return; 4484 4485 /* see comment in exclusive_event_init() */ 4486 if (event->attach_state & PERF_ATTACH_TASK) 4487 atomic_dec(&pmu->exclusive_cnt); 4488 else 4489 atomic_inc(&pmu->exclusive_cnt); 4490 } 4491 4492 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4493 { 4494 if ((e1->pmu == e2->pmu) && 4495 (e1->cpu == e2->cpu || 4496 e1->cpu == -1 || 4497 e2->cpu == -1)) 4498 return true; 4499 return false; 4500 } 4501 4502 static bool exclusive_event_installable(struct perf_event *event, 4503 struct perf_event_context *ctx) 4504 { 4505 struct perf_event *iter_event; 4506 struct pmu *pmu = event->pmu; 4507 4508 lockdep_assert_held(&ctx->mutex); 4509 4510 if (!is_exclusive_pmu(pmu)) 4511 return true; 4512 4513 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4514 if (exclusive_event_match(iter_event, event)) 4515 return false; 4516 } 4517 4518 return true; 4519 } 4520 4521 static void perf_addr_filters_splice(struct perf_event *event, 4522 struct list_head *head); 4523 4524 static void _free_event(struct perf_event *event) 4525 { 4526 irq_work_sync(&event->pending); 4527 4528 unaccount_event(event); 4529 4530 if (event->rb) { 4531 /* 4532 * Can happen when we close an event with re-directed output. 4533 * 4534 * Since we have a 0 refcount, perf_mmap_close() will skip 4535 * over us; possibly making our ring_buffer_put() the last. 4536 */ 4537 mutex_lock(&event->mmap_mutex); 4538 ring_buffer_attach(event, NULL); 4539 mutex_unlock(&event->mmap_mutex); 4540 } 4541 4542 if (is_cgroup_event(event)) 4543 perf_detach_cgroup(event); 4544 4545 if (!event->parent) { 4546 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4547 put_callchain_buffers(); 4548 } 4549 4550 perf_event_free_bpf_prog(event); 4551 perf_addr_filters_splice(event, NULL); 4552 kfree(event->addr_filter_ranges); 4553 4554 if (event->destroy) 4555 event->destroy(event); 4556 4557 /* 4558 * Must be after ->destroy(), due to uprobe_perf_close() using 4559 * hw.target. 4560 */ 4561 if (event->hw.target) 4562 put_task_struct(event->hw.target); 4563 4564 /* 4565 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4566 * all task references must be cleaned up. 4567 */ 4568 if (event->ctx) 4569 put_ctx(event->ctx); 4570 4571 exclusive_event_destroy(event); 4572 module_put(event->pmu->module); 4573 4574 call_rcu(&event->rcu_head, free_event_rcu); 4575 } 4576 4577 /* 4578 * Used to free events which have a known refcount of 1, such as in error paths 4579 * where the event isn't exposed yet and inherited events. 4580 */ 4581 static void free_event(struct perf_event *event) 4582 { 4583 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4584 "unexpected event refcount: %ld; ptr=%p\n", 4585 atomic_long_read(&event->refcount), event)) { 4586 /* leak to avoid use-after-free */ 4587 return; 4588 } 4589 4590 _free_event(event); 4591 } 4592 4593 /* 4594 * Remove user event from the owner task. 4595 */ 4596 static void perf_remove_from_owner(struct perf_event *event) 4597 { 4598 struct task_struct *owner; 4599 4600 rcu_read_lock(); 4601 /* 4602 * Matches the smp_store_release() in perf_event_exit_task(). If we 4603 * observe !owner it means the list deletion is complete and we can 4604 * indeed free this event, otherwise we need to serialize on 4605 * owner->perf_event_mutex. 4606 */ 4607 owner = READ_ONCE(event->owner); 4608 if (owner) { 4609 /* 4610 * Since delayed_put_task_struct() also drops the last 4611 * task reference we can safely take a new reference 4612 * while holding the rcu_read_lock(). 4613 */ 4614 get_task_struct(owner); 4615 } 4616 rcu_read_unlock(); 4617 4618 if (owner) { 4619 /* 4620 * If we're here through perf_event_exit_task() we're already 4621 * holding ctx->mutex which would be an inversion wrt. the 4622 * normal lock order. 4623 * 4624 * However we can safely take this lock because its the child 4625 * ctx->mutex. 4626 */ 4627 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4628 4629 /* 4630 * We have to re-check the event->owner field, if it is cleared 4631 * we raced with perf_event_exit_task(), acquiring the mutex 4632 * ensured they're done, and we can proceed with freeing the 4633 * event. 4634 */ 4635 if (event->owner) { 4636 list_del_init(&event->owner_entry); 4637 smp_store_release(&event->owner, NULL); 4638 } 4639 mutex_unlock(&owner->perf_event_mutex); 4640 put_task_struct(owner); 4641 } 4642 } 4643 4644 static void put_event(struct perf_event *event) 4645 { 4646 if (!atomic_long_dec_and_test(&event->refcount)) 4647 return; 4648 4649 _free_event(event); 4650 } 4651 4652 /* 4653 * Kill an event dead; while event:refcount will preserve the event 4654 * object, it will not preserve its functionality. Once the last 'user' 4655 * gives up the object, we'll destroy the thing. 4656 */ 4657 int perf_event_release_kernel(struct perf_event *event) 4658 { 4659 struct perf_event_context *ctx = event->ctx; 4660 struct perf_event *child, *tmp; 4661 LIST_HEAD(free_list); 4662 4663 /* 4664 * If we got here through err_file: fput(event_file); we will not have 4665 * attached to a context yet. 4666 */ 4667 if (!ctx) { 4668 WARN_ON_ONCE(event->attach_state & 4669 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4670 goto no_ctx; 4671 } 4672 4673 if (!is_kernel_event(event)) 4674 perf_remove_from_owner(event); 4675 4676 ctx = perf_event_ctx_lock(event); 4677 WARN_ON_ONCE(ctx->parent_ctx); 4678 perf_remove_from_context(event, DETACH_GROUP); 4679 4680 raw_spin_lock_irq(&ctx->lock); 4681 /* 4682 * Mark this event as STATE_DEAD, there is no external reference to it 4683 * anymore. 4684 * 4685 * Anybody acquiring event->child_mutex after the below loop _must_ 4686 * also see this, most importantly inherit_event() which will avoid 4687 * placing more children on the list. 4688 * 4689 * Thus this guarantees that we will in fact observe and kill _ALL_ 4690 * child events. 4691 */ 4692 event->state = PERF_EVENT_STATE_DEAD; 4693 raw_spin_unlock_irq(&ctx->lock); 4694 4695 perf_event_ctx_unlock(event, ctx); 4696 4697 again: 4698 mutex_lock(&event->child_mutex); 4699 list_for_each_entry(child, &event->child_list, child_list) { 4700 4701 /* 4702 * Cannot change, child events are not migrated, see the 4703 * comment with perf_event_ctx_lock_nested(). 4704 */ 4705 ctx = READ_ONCE(child->ctx); 4706 /* 4707 * Since child_mutex nests inside ctx::mutex, we must jump 4708 * through hoops. We start by grabbing a reference on the ctx. 4709 * 4710 * Since the event cannot get freed while we hold the 4711 * child_mutex, the context must also exist and have a !0 4712 * reference count. 4713 */ 4714 get_ctx(ctx); 4715 4716 /* 4717 * Now that we have a ctx ref, we can drop child_mutex, and 4718 * acquire ctx::mutex without fear of it going away. Then we 4719 * can re-acquire child_mutex. 4720 */ 4721 mutex_unlock(&event->child_mutex); 4722 mutex_lock(&ctx->mutex); 4723 mutex_lock(&event->child_mutex); 4724 4725 /* 4726 * Now that we hold ctx::mutex and child_mutex, revalidate our 4727 * state, if child is still the first entry, it didn't get freed 4728 * and we can continue doing so. 4729 */ 4730 tmp = list_first_entry_or_null(&event->child_list, 4731 struct perf_event, child_list); 4732 if (tmp == child) { 4733 perf_remove_from_context(child, DETACH_GROUP); 4734 list_move(&child->child_list, &free_list); 4735 /* 4736 * This matches the refcount bump in inherit_event(); 4737 * this can't be the last reference. 4738 */ 4739 put_event(event); 4740 } 4741 4742 mutex_unlock(&event->child_mutex); 4743 mutex_unlock(&ctx->mutex); 4744 put_ctx(ctx); 4745 goto again; 4746 } 4747 mutex_unlock(&event->child_mutex); 4748 4749 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4750 void *var = &child->ctx->refcount; 4751 4752 list_del(&child->child_list); 4753 free_event(child); 4754 4755 /* 4756 * Wake any perf_event_free_task() waiting for this event to be 4757 * freed. 4758 */ 4759 smp_mb(); /* pairs with wait_var_event() */ 4760 wake_up_var(var); 4761 } 4762 4763 no_ctx: 4764 put_event(event); /* Must be the 'last' reference */ 4765 return 0; 4766 } 4767 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4768 4769 /* 4770 * Called when the last reference to the file is gone. 4771 */ 4772 static int perf_release(struct inode *inode, struct file *file) 4773 { 4774 perf_event_release_kernel(file->private_data); 4775 return 0; 4776 } 4777 4778 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4779 { 4780 struct perf_event *child; 4781 u64 total = 0; 4782 4783 *enabled = 0; 4784 *running = 0; 4785 4786 mutex_lock(&event->child_mutex); 4787 4788 (void)perf_event_read(event, false); 4789 total += perf_event_count(event); 4790 4791 *enabled += event->total_time_enabled + 4792 atomic64_read(&event->child_total_time_enabled); 4793 *running += event->total_time_running + 4794 atomic64_read(&event->child_total_time_running); 4795 4796 list_for_each_entry(child, &event->child_list, child_list) { 4797 (void)perf_event_read(child, false); 4798 total += perf_event_count(child); 4799 *enabled += child->total_time_enabled; 4800 *running += child->total_time_running; 4801 } 4802 mutex_unlock(&event->child_mutex); 4803 4804 return total; 4805 } 4806 4807 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4808 { 4809 struct perf_event_context *ctx; 4810 u64 count; 4811 4812 ctx = perf_event_ctx_lock(event); 4813 count = __perf_event_read_value(event, enabled, running); 4814 perf_event_ctx_unlock(event, ctx); 4815 4816 return count; 4817 } 4818 EXPORT_SYMBOL_GPL(perf_event_read_value); 4819 4820 static int __perf_read_group_add(struct perf_event *leader, 4821 u64 read_format, u64 *values) 4822 { 4823 struct perf_event_context *ctx = leader->ctx; 4824 struct perf_event *sub; 4825 unsigned long flags; 4826 int n = 1; /* skip @nr */ 4827 int ret; 4828 4829 ret = perf_event_read(leader, true); 4830 if (ret) 4831 return ret; 4832 4833 raw_spin_lock_irqsave(&ctx->lock, flags); 4834 4835 /* 4836 * Since we co-schedule groups, {enabled,running} times of siblings 4837 * will be identical to those of the leader, so we only publish one 4838 * set. 4839 */ 4840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4841 values[n++] += leader->total_time_enabled + 4842 atomic64_read(&leader->child_total_time_enabled); 4843 } 4844 4845 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4846 values[n++] += leader->total_time_running + 4847 atomic64_read(&leader->child_total_time_running); 4848 } 4849 4850 /* 4851 * Write {count,id} tuples for every sibling. 4852 */ 4853 values[n++] += perf_event_count(leader); 4854 if (read_format & PERF_FORMAT_ID) 4855 values[n++] = primary_event_id(leader); 4856 4857 for_each_sibling_event(sub, leader) { 4858 values[n++] += perf_event_count(sub); 4859 if (read_format & PERF_FORMAT_ID) 4860 values[n++] = primary_event_id(sub); 4861 } 4862 4863 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4864 return 0; 4865 } 4866 4867 static int perf_read_group(struct perf_event *event, 4868 u64 read_format, char __user *buf) 4869 { 4870 struct perf_event *leader = event->group_leader, *child; 4871 struct perf_event_context *ctx = leader->ctx; 4872 int ret; 4873 u64 *values; 4874 4875 lockdep_assert_held(&ctx->mutex); 4876 4877 values = kzalloc(event->read_size, GFP_KERNEL); 4878 if (!values) 4879 return -ENOMEM; 4880 4881 values[0] = 1 + leader->nr_siblings; 4882 4883 /* 4884 * By locking the child_mutex of the leader we effectively 4885 * lock the child list of all siblings.. XXX explain how. 4886 */ 4887 mutex_lock(&leader->child_mutex); 4888 4889 ret = __perf_read_group_add(leader, read_format, values); 4890 if (ret) 4891 goto unlock; 4892 4893 list_for_each_entry(child, &leader->child_list, child_list) { 4894 ret = __perf_read_group_add(child, read_format, values); 4895 if (ret) 4896 goto unlock; 4897 } 4898 4899 mutex_unlock(&leader->child_mutex); 4900 4901 ret = event->read_size; 4902 if (copy_to_user(buf, values, event->read_size)) 4903 ret = -EFAULT; 4904 goto out; 4905 4906 unlock: 4907 mutex_unlock(&leader->child_mutex); 4908 out: 4909 kfree(values); 4910 return ret; 4911 } 4912 4913 static int perf_read_one(struct perf_event *event, 4914 u64 read_format, char __user *buf) 4915 { 4916 u64 enabled, running; 4917 u64 values[4]; 4918 int n = 0; 4919 4920 values[n++] = __perf_event_read_value(event, &enabled, &running); 4921 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4922 values[n++] = enabled; 4923 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4924 values[n++] = running; 4925 if (read_format & PERF_FORMAT_ID) 4926 values[n++] = primary_event_id(event); 4927 4928 if (copy_to_user(buf, values, n * sizeof(u64))) 4929 return -EFAULT; 4930 4931 return n * sizeof(u64); 4932 } 4933 4934 static bool is_event_hup(struct perf_event *event) 4935 { 4936 bool no_children; 4937 4938 if (event->state > PERF_EVENT_STATE_EXIT) 4939 return false; 4940 4941 mutex_lock(&event->child_mutex); 4942 no_children = list_empty(&event->child_list); 4943 mutex_unlock(&event->child_mutex); 4944 return no_children; 4945 } 4946 4947 /* 4948 * Read the performance event - simple non blocking version for now 4949 */ 4950 static ssize_t 4951 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4952 { 4953 u64 read_format = event->attr.read_format; 4954 int ret; 4955 4956 /* 4957 * Return end-of-file for a read on an event that is in 4958 * error state (i.e. because it was pinned but it couldn't be 4959 * scheduled on to the CPU at some point). 4960 */ 4961 if (event->state == PERF_EVENT_STATE_ERROR) 4962 return 0; 4963 4964 if (count < event->read_size) 4965 return -ENOSPC; 4966 4967 WARN_ON_ONCE(event->ctx->parent_ctx); 4968 if (read_format & PERF_FORMAT_GROUP) 4969 ret = perf_read_group(event, read_format, buf); 4970 else 4971 ret = perf_read_one(event, read_format, buf); 4972 4973 return ret; 4974 } 4975 4976 static ssize_t 4977 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4978 { 4979 struct perf_event *event = file->private_data; 4980 struct perf_event_context *ctx; 4981 int ret; 4982 4983 ctx = perf_event_ctx_lock(event); 4984 ret = __perf_read(event, buf, count); 4985 perf_event_ctx_unlock(event, ctx); 4986 4987 return ret; 4988 } 4989 4990 static __poll_t perf_poll(struct file *file, poll_table *wait) 4991 { 4992 struct perf_event *event = file->private_data; 4993 struct ring_buffer *rb; 4994 __poll_t events = EPOLLHUP; 4995 4996 poll_wait(file, &event->waitq, wait); 4997 4998 if (is_event_hup(event)) 4999 return events; 5000 5001 /* 5002 * Pin the event->rb by taking event->mmap_mutex; otherwise 5003 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5004 */ 5005 mutex_lock(&event->mmap_mutex); 5006 rb = event->rb; 5007 if (rb) 5008 events = atomic_xchg(&rb->poll, 0); 5009 mutex_unlock(&event->mmap_mutex); 5010 return events; 5011 } 5012 5013 static void _perf_event_reset(struct perf_event *event) 5014 { 5015 (void)perf_event_read(event, false); 5016 local64_set(&event->count, 0); 5017 perf_event_update_userpage(event); 5018 } 5019 5020 /* 5021 * Holding the top-level event's child_mutex means that any 5022 * descendant process that has inherited this event will block 5023 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5024 * task existence requirements of perf_event_enable/disable. 5025 */ 5026 static void perf_event_for_each_child(struct perf_event *event, 5027 void (*func)(struct perf_event *)) 5028 { 5029 struct perf_event *child; 5030 5031 WARN_ON_ONCE(event->ctx->parent_ctx); 5032 5033 mutex_lock(&event->child_mutex); 5034 func(event); 5035 list_for_each_entry(child, &event->child_list, child_list) 5036 func(child); 5037 mutex_unlock(&event->child_mutex); 5038 } 5039 5040 static void perf_event_for_each(struct perf_event *event, 5041 void (*func)(struct perf_event *)) 5042 { 5043 struct perf_event_context *ctx = event->ctx; 5044 struct perf_event *sibling; 5045 5046 lockdep_assert_held(&ctx->mutex); 5047 5048 event = event->group_leader; 5049 5050 perf_event_for_each_child(event, func); 5051 for_each_sibling_event(sibling, event) 5052 perf_event_for_each_child(sibling, func); 5053 } 5054 5055 static void __perf_event_period(struct perf_event *event, 5056 struct perf_cpu_context *cpuctx, 5057 struct perf_event_context *ctx, 5058 void *info) 5059 { 5060 u64 value = *((u64 *)info); 5061 bool active; 5062 5063 if (event->attr.freq) { 5064 event->attr.sample_freq = value; 5065 } else { 5066 event->attr.sample_period = value; 5067 event->hw.sample_period = value; 5068 } 5069 5070 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5071 if (active) { 5072 perf_pmu_disable(ctx->pmu); 5073 /* 5074 * We could be throttled; unthrottle now to avoid the tick 5075 * trying to unthrottle while we already re-started the event. 5076 */ 5077 if (event->hw.interrupts == MAX_INTERRUPTS) { 5078 event->hw.interrupts = 0; 5079 perf_log_throttle(event, 1); 5080 } 5081 event->pmu->stop(event, PERF_EF_UPDATE); 5082 } 5083 5084 local64_set(&event->hw.period_left, 0); 5085 5086 if (active) { 5087 event->pmu->start(event, PERF_EF_RELOAD); 5088 perf_pmu_enable(ctx->pmu); 5089 } 5090 } 5091 5092 static int perf_event_check_period(struct perf_event *event, u64 value) 5093 { 5094 return event->pmu->check_period(event, value); 5095 } 5096 5097 static int perf_event_period(struct perf_event *event, u64 __user *arg) 5098 { 5099 u64 value; 5100 5101 if (!is_sampling_event(event)) 5102 return -EINVAL; 5103 5104 if (copy_from_user(&value, arg, sizeof(value))) 5105 return -EFAULT; 5106 5107 if (!value) 5108 return -EINVAL; 5109 5110 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5111 return -EINVAL; 5112 5113 if (perf_event_check_period(event, value)) 5114 return -EINVAL; 5115 5116 if (!event->attr.freq && (value & (1ULL << 63))) 5117 return -EINVAL; 5118 5119 event_function_call(event, __perf_event_period, &value); 5120 5121 return 0; 5122 } 5123 5124 static const struct file_operations perf_fops; 5125 5126 static inline int perf_fget_light(int fd, struct fd *p) 5127 { 5128 struct fd f = fdget(fd); 5129 if (!f.file) 5130 return -EBADF; 5131 5132 if (f.file->f_op != &perf_fops) { 5133 fdput(f); 5134 return -EBADF; 5135 } 5136 *p = f; 5137 return 0; 5138 } 5139 5140 static int perf_event_set_output(struct perf_event *event, 5141 struct perf_event *output_event); 5142 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5143 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5144 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5145 struct perf_event_attr *attr); 5146 5147 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5148 { 5149 void (*func)(struct perf_event *); 5150 u32 flags = arg; 5151 5152 switch (cmd) { 5153 case PERF_EVENT_IOC_ENABLE: 5154 func = _perf_event_enable; 5155 break; 5156 case PERF_EVENT_IOC_DISABLE: 5157 func = _perf_event_disable; 5158 break; 5159 case PERF_EVENT_IOC_RESET: 5160 func = _perf_event_reset; 5161 break; 5162 5163 case PERF_EVENT_IOC_REFRESH: 5164 return _perf_event_refresh(event, arg); 5165 5166 case PERF_EVENT_IOC_PERIOD: 5167 return perf_event_period(event, (u64 __user *)arg); 5168 5169 case PERF_EVENT_IOC_ID: 5170 { 5171 u64 id = primary_event_id(event); 5172 5173 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5174 return -EFAULT; 5175 return 0; 5176 } 5177 5178 case PERF_EVENT_IOC_SET_OUTPUT: 5179 { 5180 int ret; 5181 if (arg != -1) { 5182 struct perf_event *output_event; 5183 struct fd output; 5184 ret = perf_fget_light(arg, &output); 5185 if (ret) 5186 return ret; 5187 output_event = output.file->private_data; 5188 ret = perf_event_set_output(event, output_event); 5189 fdput(output); 5190 } else { 5191 ret = perf_event_set_output(event, NULL); 5192 } 5193 return ret; 5194 } 5195 5196 case PERF_EVENT_IOC_SET_FILTER: 5197 return perf_event_set_filter(event, (void __user *)arg); 5198 5199 case PERF_EVENT_IOC_SET_BPF: 5200 return perf_event_set_bpf_prog(event, arg); 5201 5202 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5203 struct ring_buffer *rb; 5204 5205 rcu_read_lock(); 5206 rb = rcu_dereference(event->rb); 5207 if (!rb || !rb->nr_pages) { 5208 rcu_read_unlock(); 5209 return -EINVAL; 5210 } 5211 rb_toggle_paused(rb, !!arg); 5212 rcu_read_unlock(); 5213 return 0; 5214 } 5215 5216 case PERF_EVENT_IOC_QUERY_BPF: 5217 return perf_event_query_prog_array(event, (void __user *)arg); 5218 5219 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5220 struct perf_event_attr new_attr; 5221 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5222 &new_attr); 5223 5224 if (err) 5225 return err; 5226 5227 return perf_event_modify_attr(event, &new_attr); 5228 } 5229 default: 5230 return -ENOTTY; 5231 } 5232 5233 if (flags & PERF_IOC_FLAG_GROUP) 5234 perf_event_for_each(event, func); 5235 else 5236 perf_event_for_each_child(event, func); 5237 5238 return 0; 5239 } 5240 5241 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5242 { 5243 struct perf_event *event = file->private_data; 5244 struct perf_event_context *ctx; 5245 long ret; 5246 5247 ctx = perf_event_ctx_lock(event); 5248 ret = _perf_ioctl(event, cmd, arg); 5249 perf_event_ctx_unlock(event, ctx); 5250 5251 return ret; 5252 } 5253 5254 #ifdef CONFIG_COMPAT 5255 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5256 unsigned long arg) 5257 { 5258 switch (_IOC_NR(cmd)) { 5259 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5260 case _IOC_NR(PERF_EVENT_IOC_ID): 5261 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5262 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5263 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5264 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5265 cmd &= ~IOCSIZE_MASK; 5266 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5267 } 5268 break; 5269 } 5270 return perf_ioctl(file, cmd, arg); 5271 } 5272 #else 5273 # define perf_compat_ioctl NULL 5274 #endif 5275 5276 int perf_event_task_enable(void) 5277 { 5278 struct perf_event_context *ctx; 5279 struct perf_event *event; 5280 5281 mutex_lock(¤t->perf_event_mutex); 5282 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5283 ctx = perf_event_ctx_lock(event); 5284 perf_event_for_each_child(event, _perf_event_enable); 5285 perf_event_ctx_unlock(event, ctx); 5286 } 5287 mutex_unlock(¤t->perf_event_mutex); 5288 5289 return 0; 5290 } 5291 5292 int perf_event_task_disable(void) 5293 { 5294 struct perf_event_context *ctx; 5295 struct perf_event *event; 5296 5297 mutex_lock(¤t->perf_event_mutex); 5298 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5299 ctx = perf_event_ctx_lock(event); 5300 perf_event_for_each_child(event, _perf_event_disable); 5301 perf_event_ctx_unlock(event, ctx); 5302 } 5303 mutex_unlock(¤t->perf_event_mutex); 5304 5305 return 0; 5306 } 5307 5308 static int perf_event_index(struct perf_event *event) 5309 { 5310 if (event->hw.state & PERF_HES_STOPPED) 5311 return 0; 5312 5313 if (event->state != PERF_EVENT_STATE_ACTIVE) 5314 return 0; 5315 5316 return event->pmu->event_idx(event); 5317 } 5318 5319 static void calc_timer_values(struct perf_event *event, 5320 u64 *now, 5321 u64 *enabled, 5322 u64 *running) 5323 { 5324 u64 ctx_time; 5325 5326 *now = perf_clock(); 5327 ctx_time = event->shadow_ctx_time + *now; 5328 __perf_update_times(event, ctx_time, enabled, running); 5329 } 5330 5331 static void perf_event_init_userpage(struct perf_event *event) 5332 { 5333 struct perf_event_mmap_page *userpg; 5334 struct ring_buffer *rb; 5335 5336 rcu_read_lock(); 5337 rb = rcu_dereference(event->rb); 5338 if (!rb) 5339 goto unlock; 5340 5341 userpg = rb->user_page; 5342 5343 /* Allow new userspace to detect that bit 0 is deprecated */ 5344 userpg->cap_bit0_is_deprecated = 1; 5345 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5346 userpg->data_offset = PAGE_SIZE; 5347 userpg->data_size = perf_data_size(rb); 5348 5349 unlock: 5350 rcu_read_unlock(); 5351 } 5352 5353 void __weak arch_perf_update_userpage( 5354 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5355 { 5356 } 5357 5358 /* 5359 * Callers need to ensure there can be no nesting of this function, otherwise 5360 * the seqlock logic goes bad. We can not serialize this because the arch 5361 * code calls this from NMI context. 5362 */ 5363 void perf_event_update_userpage(struct perf_event *event) 5364 { 5365 struct perf_event_mmap_page *userpg; 5366 struct ring_buffer *rb; 5367 u64 enabled, running, now; 5368 5369 rcu_read_lock(); 5370 rb = rcu_dereference(event->rb); 5371 if (!rb) 5372 goto unlock; 5373 5374 /* 5375 * compute total_time_enabled, total_time_running 5376 * based on snapshot values taken when the event 5377 * was last scheduled in. 5378 * 5379 * we cannot simply called update_context_time() 5380 * because of locking issue as we can be called in 5381 * NMI context 5382 */ 5383 calc_timer_values(event, &now, &enabled, &running); 5384 5385 userpg = rb->user_page; 5386 /* 5387 * Disable preemption to guarantee consistent time stamps are stored to 5388 * the user page. 5389 */ 5390 preempt_disable(); 5391 ++userpg->lock; 5392 barrier(); 5393 userpg->index = perf_event_index(event); 5394 userpg->offset = perf_event_count(event); 5395 if (userpg->index) 5396 userpg->offset -= local64_read(&event->hw.prev_count); 5397 5398 userpg->time_enabled = enabled + 5399 atomic64_read(&event->child_total_time_enabled); 5400 5401 userpg->time_running = running + 5402 atomic64_read(&event->child_total_time_running); 5403 5404 arch_perf_update_userpage(event, userpg, now); 5405 5406 barrier(); 5407 ++userpg->lock; 5408 preempt_enable(); 5409 unlock: 5410 rcu_read_unlock(); 5411 } 5412 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5413 5414 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5415 { 5416 struct perf_event *event = vmf->vma->vm_file->private_data; 5417 struct ring_buffer *rb; 5418 vm_fault_t ret = VM_FAULT_SIGBUS; 5419 5420 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5421 if (vmf->pgoff == 0) 5422 ret = 0; 5423 return ret; 5424 } 5425 5426 rcu_read_lock(); 5427 rb = rcu_dereference(event->rb); 5428 if (!rb) 5429 goto unlock; 5430 5431 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5432 goto unlock; 5433 5434 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5435 if (!vmf->page) 5436 goto unlock; 5437 5438 get_page(vmf->page); 5439 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5440 vmf->page->index = vmf->pgoff; 5441 5442 ret = 0; 5443 unlock: 5444 rcu_read_unlock(); 5445 5446 return ret; 5447 } 5448 5449 static void ring_buffer_attach(struct perf_event *event, 5450 struct ring_buffer *rb) 5451 { 5452 struct ring_buffer *old_rb = NULL; 5453 unsigned long flags; 5454 5455 if (event->rb) { 5456 /* 5457 * Should be impossible, we set this when removing 5458 * event->rb_entry and wait/clear when adding event->rb_entry. 5459 */ 5460 WARN_ON_ONCE(event->rcu_pending); 5461 5462 old_rb = event->rb; 5463 spin_lock_irqsave(&old_rb->event_lock, flags); 5464 list_del_rcu(&event->rb_entry); 5465 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5466 5467 event->rcu_batches = get_state_synchronize_rcu(); 5468 event->rcu_pending = 1; 5469 } 5470 5471 if (rb) { 5472 if (event->rcu_pending) { 5473 cond_synchronize_rcu(event->rcu_batches); 5474 event->rcu_pending = 0; 5475 } 5476 5477 spin_lock_irqsave(&rb->event_lock, flags); 5478 list_add_rcu(&event->rb_entry, &rb->event_list); 5479 spin_unlock_irqrestore(&rb->event_lock, flags); 5480 } 5481 5482 /* 5483 * Avoid racing with perf_mmap_close(AUX): stop the event 5484 * before swizzling the event::rb pointer; if it's getting 5485 * unmapped, its aux_mmap_count will be 0 and it won't 5486 * restart. See the comment in __perf_pmu_output_stop(). 5487 * 5488 * Data will inevitably be lost when set_output is done in 5489 * mid-air, but then again, whoever does it like this is 5490 * not in for the data anyway. 5491 */ 5492 if (has_aux(event)) 5493 perf_event_stop(event, 0); 5494 5495 rcu_assign_pointer(event->rb, rb); 5496 5497 if (old_rb) { 5498 ring_buffer_put(old_rb); 5499 /* 5500 * Since we detached before setting the new rb, so that we 5501 * could attach the new rb, we could have missed a wakeup. 5502 * Provide it now. 5503 */ 5504 wake_up_all(&event->waitq); 5505 } 5506 } 5507 5508 static void ring_buffer_wakeup(struct perf_event *event) 5509 { 5510 struct ring_buffer *rb; 5511 5512 rcu_read_lock(); 5513 rb = rcu_dereference(event->rb); 5514 if (rb) { 5515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5516 wake_up_all(&event->waitq); 5517 } 5518 rcu_read_unlock(); 5519 } 5520 5521 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5522 { 5523 struct ring_buffer *rb; 5524 5525 rcu_read_lock(); 5526 rb = rcu_dereference(event->rb); 5527 if (rb) { 5528 if (!refcount_inc_not_zero(&rb->refcount)) 5529 rb = NULL; 5530 } 5531 rcu_read_unlock(); 5532 5533 return rb; 5534 } 5535 5536 void ring_buffer_put(struct ring_buffer *rb) 5537 { 5538 if (!refcount_dec_and_test(&rb->refcount)) 5539 return; 5540 5541 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5542 5543 call_rcu(&rb->rcu_head, rb_free_rcu); 5544 } 5545 5546 static void perf_mmap_open(struct vm_area_struct *vma) 5547 { 5548 struct perf_event *event = vma->vm_file->private_data; 5549 5550 atomic_inc(&event->mmap_count); 5551 atomic_inc(&event->rb->mmap_count); 5552 5553 if (vma->vm_pgoff) 5554 atomic_inc(&event->rb->aux_mmap_count); 5555 5556 if (event->pmu->event_mapped) 5557 event->pmu->event_mapped(event, vma->vm_mm); 5558 } 5559 5560 static void perf_pmu_output_stop(struct perf_event *event); 5561 5562 /* 5563 * A buffer can be mmap()ed multiple times; either directly through the same 5564 * event, or through other events by use of perf_event_set_output(). 5565 * 5566 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5567 * the buffer here, where we still have a VM context. This means we need 5568 * to detach all events redirecting to us. 5569 */ 5570 static void perf_mmap_close(struct vm_area_struct *vma) 5571 { 5572 struct perf_event *event = vma->vm_file->private_data; 5573 5574 struct ring_buffer *rb = ring_buffer_get(event); 5575 struct user_struct *mmap_user = rb->mmap_user; 5576 int mmap_locked = rb->mmap_locked; 5577 unsigned long size = perf_data_size(rb); 5578 5579 if (event->pmu->event_unmapped) 5580 event->pmu->event_unmapped(event, vma->vm_mm); 5581 5582 /* 5583 * rb->aux_mmap_count will always drop before rb->mmap_count and 5584 * event->mmap_count, so it is ok to use event->mmap_mutex to 5585 * serialize with perf_mmap here. 5586 */ 5587 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5588 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5589 /* 5590 * Stop all AUX events that are writing to this buffer, 5591 * so that we can free its AUX pages and corresponding PMU 5592 * data. Note that after rb::aux_mmap_count dropped to zero, 5593 * they won't start any more (see perf_aux_output_begin()). 5594 */ 5595 perf_pmu_output_stop(event); 5596 5597 /* now it's safe to free the pages */ 5598 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5599 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5600 5601 /* this has to be the last one */ 5602 rb_free_aux(rb); 5603 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5604 5605 mutex_unlock(&event->mmap_mutex); 5606 } 5607 5608 atomic_dec(&rb->mmap_count); 5609 5610 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5611 goto out_put; 5612 5613 ring_buffer_attach(event, NULL); 5614 mutex_unlock(&event->mmap_mutex); 5615 5616 /* If there's still other mmap()s of this buffer, we're done. */ 5617 if (atomic_read(&rb->mmap_count)) 5618 goto out_put; 5619 5620 /* 5621 * No other mmap()s, detach from all other events that might redirect 5622 * into the now unreachable buffer. Somewhat complicated by the 5623 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5624 */ 5625 again: 5626 rcu_read_lock(); 5627 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5628 if (!atomic_long_inc_not_zero(&event->refcount)) { 5629 /* 5630 * This event is en-route to free_event() which will 5631 * detach it and remove it from the list. 5632 */ 5633 continue; 5634 } 5635 rcu_read_unlock(); 5636 5637 mutex_lock(&event->mmap_mutex); 5638 /* 5639 * Check we didn't race with perf_event_set_output() which can 5640 * swizzle the rb from under us while we were waiting to 5641 * acquire mmap_mutex. 5642 * 5643 * If we find a different rb; ignore this event, a next 5644 * iteration will no longer find it on the list. We have to 5645 * still restart the iteration to make sure we're not now 5646 * iterating the wrong list. 5647 */ 5648 if (event->rb == rb) 5649 ring_buffer_attach(event, NULL); 5650 5651 mutex_unlock(&event->mmap_mutex); 5652 put_event(event); 5653 5654 /* 5655 * Restart the iteration; either we're on the wrong list or 5656 * destroyed its integrity by doing a deletion. 5657 */ 5658 goto again; 5659 } 5660 rcu_read_unlock(); 5661 5662 /* 5663 * It could be there's still a few 0-ref events on the list; they'll 5664 * get cleaned up by free_event() -- they'll also still have their 5665 * ref on the rb and will free it whenever they are done with it. 5666 * 5667 * Aside from that, this buffer is 'fully' detached and unmapped, 5668 * undo the VM accounting. 5669 */ 5670 5671 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5672 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5673 free_uid(mmap_user); 5674 5675 out_put: 5676 ring_buffer_put(rb); /* could be last */ 5677 } 5678 5679 static const struct vm_operations_struct perf_mmap_vmops = { 5680 .open = perf_mmap_open, 5681 .close = perf_mmap_close, /* non mergeable */ 5682 .fault = perf_mmap_fault, 5683 .page_mkwrite = perf_mmap_fault, 5684 }; 5685 5686 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5687 { 5688 struct perf_event *event = file->private_data; 5689 unsigned long user_locked, user_lock_limit; 5690 struct user_struct *user = current_user(); 5691 unsigned long locked, lock_limit; 5692 struct ring_buffer *rb = NULL; 5693 unsigned long vma_size; 5694 unsigned long nr_pages; 5695 long user_extra = 0, extra = 0; 5696 int ret = 0, flags = 0; 5697 5698 /* 5699 * Don't allow mmap() of inherited per-task counters. This would 5700 * create a performance issue due to all children writing to the 5701 * same rb. 5702 */ 5703 if (event->cpu == -1 && event->attr.inherit) 5704 return -EINVAL; 5705 5706 if (!(vma->vm_flags & VM_SHARED)) 5707 return -EINVAL; 5708 5709 vma_size = vma->vm_end - vma->vm_start; 5710 5711 if (vma->vm_pgoff == 0) { 5712 nr_pages = (vma_size / PAGE_SIZE) - 1; 5713 } else { 5714 /* 5715 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5716 * mapped, all subsequent mappings should have the same size 5717 * and offset. Must be above the normal perf buffer. 5718 */ 5719 u64 aux_offset, aux_size; 5720 5721 if (!event->rb) 5722 return -EINVAL; 5723 5724 nr_pages = vma_size / PAGE_SIZE; 5725 5726 mutex_lock(&event->mmap_mutex); 5727 ret = -EINVAL; 5728 5729 rb = event->rb; 5730 if (!rb) 5731 goto aux_unlock; 5732 5733 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5734 aux_size = READ_ONCE(rb->user_page->aux_size); 5735 5736 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5737 goto aux_unlock; 5738 5739 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5740 goto aux_unlock; 5741 5742 /* already mapped with a different offset */ 5743 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5744 goto aux_unlock; 5745 5746 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5747 goto aux_unlock; 5748 5749 /* already mapped with a different size */ 5750 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5751 goto aux_unlock; 5752 5753 if (!is_power_of_2(nr_pages)) 5754 goto aux_unlock; 5755 5756 if (!atomic_inc_not_zero(&rb->mmap_count)) 5757 goto aux_unlock; 5758 5759 if (rb_has_aux(rb)) { 5760 atomic_inc(&rb->aux_mmap_count); 5761 ret = 0; 5762 goto unlock; 5763 } 5764 5765 atomic_set(&rb->aux_mmap_count, 1); 5766 user_extra = nr_pages; 5767 5768 goto accounting; 5769 } 5770 5771 /* 5772 * If we have rb pages ensure they're a power-of-two number, so we 5773 * can do bitmasks instead of modulo. 5774 */ 5775 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5776 return -EINVAL; 5777 5778 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5779 return -EINVAL; 5780 5781 WARN_ON_ONCE(event->ctx->parent_ctx); 5782 again: 5783 mutex_lock(&event->mmap_mutex); 5784 if (event->rb) { 5785 if (event->rb->nr_pages != nr_pages) { 5786 ret = -EINVAL; 5787 goto unlock; 5788 } 5789 5790 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5791 /* 5792 * Raced against perf_mmap_close() through 5793 * perf_event_set_output(). Try again, hope for better 5794 * luck. 5795 */ 5796 mutex_unlock(&event->mmap_mutex); 5797 goto again; 5798 } 5799 5800 goto unlock; 5801 } 5802 5803 user_extra = nr_pages + 1; 5804 5805 accounting: 5806 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5807 5808 /* 5809 * Increase the limit linearly with more CPUs: 5810 */ 5811 user_lock_limit *= num_online_cpus(); 5812 5813 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5814 5815 if (user_locked > user_lock_limit) 5816 extra = user_locked - user_lock_limit; 5817 5818 lock_limit = rlimit(RLIMIT_MEMLOCK); 5819 lock_limit >>= PAGE_SHIFT; 5820 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5821 5822 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5823 !capable(CAP_IPC_LOCK)) { 5824 ret = -EPERM; 5825 goto unlock; 5826 } 5827 5828 WARN_ON(!rb && event->rb); 5829 5830 if (vma->vm_flags & VM_WRITE) 5831 flags |= RING_BUFFER_WRITABLE; 5832 5833 if (!rb) { 5834 rb = rb_alloc(nr_pages, 5835 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5836 event->cpu, flags); 5837 5838 if (!rb) { 5839 ret = -ENOMEM; 5840 goto unlock; 5841 } 5842 5843 atomic_set(&rb->mmap_count, 1); 5844 rb->mmap_user = get_current_user(); 5845 rb->mmap_locked = extra; 5846 5847 ring_buffer_attach(event, rb); 5848 5849 perf_event_init_userpage(event); 5850 perf_event_update_userpage(event); 5851 } else { 5852 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5853 event->attr.aux_watermark, flags); 5854 if (!ret) 5855 rb->aux_mmap_locked = extra; 5856 } 5857 5858 unlock: 5859 if (!ret) { 5860 atomic_long_add(user_extra, &user->locked_vm); 5861 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5862 5863 atomic_inc(&event->mmap_count); 5864 } else if (rb) { 5865 atomic_dec(&rb->mmap_count); 5866 } 5867 aux_unlock: 5868 mutex_unlock(&event->mmap_mutex); 5869 5870 /* 5871 * Since pinned accounting is per vm we cannot allow fork() to copy our 5872 * vma. 5873 */ 5874 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5875 vma->vm_ops = &perf_mmap_vmops; 5876 5877 if (event->pmu->event_mapped) 5878 event->pmu->event_mapped(event, vma->vm_mm); 5879 5880 return ret; 5881 } 5882 5883 static int perf_fasync(int fd, struct file *filp, int on) 5884 { 5885 struct inode *inode = file_inode(filp); 5886 struct perf_event *event = filp->private_data; 5887 int retval; 5888 5889 inode_lock(inode); 5890 retval = fasync_helper(fd, filp, on, &event->fasync); 5891 inode_unlock(inode); 5892 5893 if (retval < 0) 5894 return retval; 5895 5896 return 0; 5897 } 5898 5899 static const struct file_operations perf_fops = { 5900 .llseek = no_llseek, 5901 .release = perf_release, 5902 .read = perf_read, 5903 .poll = perf_poll, 5904 .unlocked_ioctl = perf_ioctl, 5905 .compat_ioctl = perf_compat_ioctl, 5906 .mmap = perf_mmap, 5907 .fasync = perf_fasync, 5908 }; 5909 5910 /* 5911 * Perf event wakeup 5912 * 5913 * If there's data, ensure we set the poll() state and publish everything 5914 * to user-space before waking everybody up. 5915 */ 5916 5917 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5918 { 5919 /* only the parent has fasync state */ 5920 if (event->parent) 5921 event = event->parent; 5922 return &event->fasync; 5923 } 5924 5925 void perf_event_wakeup(struct perf_event *event) 5926 { 5927 ring_buffer_wakeup(event); 5928 5929 if (event->pending_kill) { 5930 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5931 event->pending_kill = 0; 5932 } 5933 } 5934 5935 static void perf_pending_event_disable(struct perf_event *event) 5936 { 5937 int cpu = READ_ONCE(event->pending_disable); 5938 5939 if (cpu < 0) 5940 return; 5941 5942 if (cpu == smp_processor_id()) { 5943 WRITE_ONCE(event->pending_disable, -1); 5944 perf_event_disable_local(event); 5945 return; 5946 } 5947 5948 /* 5949 * CPU-A CPU-B 5950 * 5951 * perf_event_disable_inatomic() 5952 * @pending_disable = CPU-A; 5953 * irq_work_queue(); 5954 * 5955 * sched-out 5956 * @pending_disable = -1; 5957 * 5958 * sched-in 5959 * perf_event_disable_inatomic() 5960 * @pending_disable = CPU-B; 5961 * irq_work_queue(); // FAILS 5962 * 5963 * irq_work_run() 5964 * perf_pending_event() 5965 * 5966 * But the event runs on CPU-B and wants disabling there. 5967 */ 5968 irq_work_queue_on(&event->pending, cpu); 5969 } 5970 5971 static void perf_pending_event(struct irq_work *entry) 5972 { 5973 struct perf_event *event = container_of(entry, struct perf_event, pending); 5974 int rctx; 5975 5976 rctx = perf_swevent_get_recursion_context(); 5977 /* 5978 * If we 'fail' here, that's OK, it means recursion is already disabled 5979 * and we won't recurse 'further'. 5980 */ 5981 5982 perf_pending_event_disable(event); 5983 5984 if (event->pending_wakeup) { 5985 event->pending_wakeup = 0; 5986 perf_event_wakeup(event); 5987 } 5988 5989 if (rctx >= 0) 5990 perf_swevent_put_recursion_context(rctx); 5991 } 5992 5993 /* 5994 * We assume there is only KVM supporting the callbacks. 5995 * Later on, we might change it to a list if there is 5996 * another virtualization implementation supporting the callbacks. 5997 */ 5998 struct perf_guest_info_callbacks *perf_guest_cbs; 5999 6000 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6001 { 6002 perf_guest_cbs = cbs; 6003 return 0; 6004 } 6005 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6006 6007 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6008 { 6009 perf_guest_cbs = NULL; 6010 return 0; 6011 } 6012 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6013 6014 static void 6015 perf_output_sample_regs(struct perf_output_handle *handle, 6016 struct pt_regs *regs, u64 mask) 6017 { 6018 int bit; 6019 DECLARE_BITMAP(_mask, 64); 6020 6021 bitmap_from_u64(_mask, mask); 6022 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6023 u64 val; 6024 6025 val = perf_reg_value(regs, bit); 6026 perf_output_put(handle, val); 6027 } 6028 } 6029 6030 static void perf_sample_regs_user(struct perf_regs *regs_user, 6031 struct pt_regs *regs, 6032 struct pt_regs *regs_user_copy) 6033 { 6034 if (user_mode(regs)) { 6035 regs_user->abi = perf_reg_abi(current); 6036 regs_user->regs = regs; 6037 } else if (!(current->flags & PF_KTHREAD)) { 6038 perf_get_regs_user(regs_user, regs, regs_user_copy); 6039 } else { 6040 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6041 regs_user->regs = NULL; 6042 } 6043 } 6044 6045 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6046 struct pt_regs *regs) 6047 { 6048 regs_intr->regs = regs; 6049 regs_intr->abi = perf_reg_abi(current); 6050 } 6051 6052 6053 /* 6054 * Get remaining task size from user stack pointer. 6055 * 6056 * It'd be better to take stack vma map and limit this more 6057 * precisly, but there's no way to get it safely under interrupt, 6058 * so using TASK_SIZE as limit. 6059 */ 6060 static u64 perf_ustack_task_size(struct pt_regs *regs) 6061 { 6062 unsigned long addr = perf_user_stack_pointer(regs); 6063 6064 if (!addr || addr >= TASK_SIZE) 6065 return 0; 6066 6067 return TASK_SIZE - addr; 6068 } 6069 6070 static u16 6071 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6072 struct pt_regs *regs) 6073 { 6074 u64 task_size; 6075 6076 /* No regs, no stack pointer, no dump. */ 6077 if (!regs) 6078 return 0; 6079 6080 /* 6081 * Check if we fit in with the requested stack size into the: 6082 * - TASK_SIZE 6083 * If we don't, we limit the size to the TASK_SIZE. 6084 * 6085 * - remaining sample size 6086 * If we don't, we customize the stack size to 6087 * fit in to the remaining sample size. 6088 */ 6089 6090 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6091 stack_size = min(stack_size, (u16) task_size); 6092 6093 /* Current header size plus static size and dynamic size. */ 6094 header_size += 2 * sizeof(u64); 6095 6096 /* Do we fit in with the current stack dump size? */ 6097 if ((u16) (header_size + stack_size) < header_size) { 6098 /* 6099 * If we overflow the maximum size for the sample, 6100 * we customize the stack dump size to fit in. 6101 */ 6102 stack_size = USHRT_MAX - header_size - sizeof(u64); 6103 stack_size = round_up(stack_size, sizeof(u64)); 6104 } 6105 6106 return stack_size; 6107 } 6108 6109 static void 6110 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6111 struct pt_regs *regs) 6112 { 6113 /* Case of a kernel thread, nothing to dump */ 6114 if (!regs) { 6115 u64 size = 0; 6116 perf_output_put(handle, size); 6117 } else { 6118 unsigned long sp; 6119 unsigned int rem; 6120 u64 dyn_size; 6121 mm_segment_t fs; 6122 6123 /* 6124 * We dump: 6125 * static size 6126 * - the size requested by user or the best one we can fit 6127 * in to the sample max size 6128 * data 6129 * - user stack dump data 6130 * dynamic size 6131 * - the actual dumped size 6132 */ 6133 6134 /* Static size. */ 6135 perf_output_put(handle, dump_size); 6136 6137 /* Data. */ 6138 sp = perf_user_stack_pointer(regs); 6139 fs = get_fs(); 6140 set_fs(USER_DS); 6141 rem = __output_copy_user(handle, (void *) sp, dump_size); 6142 set_fs(fs); 6143 dyn_size = dump_size - rem; 6144 6145 perf_output_skip(handle, rem); 6146 6147 /* Dynamic size. */ 6148 perf_output_put(handle, dyn_size); 6149 } 6150 } 6151 6152 static void __perf_event_header__init_id(struct perf_event_header *header, 6153 struct perf_sample_data *data, 6154 struct perf_event *event) 6155 { 6156 u64 sample_type = event->attr.sample_type; 6157 6158 data->type = sample_type; 6159 header->size += event->id_header_size; 6160 6161 if (sample_type & PERF_SAMPLE_TID) { 6162 /* namespace issues */ 6163 data->tid_entry.pid = perf_event_pid(event, current); 6164 data->tid_entry.tid = perf_event_tid(event, current); 6165 } 6166 6167 if (sample_type & PERF_SAMPLE_TIME) 6168 data->time = perf_event_clock(event); 6169 6170 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6171 data->id = primary_event_id(event); 6172 6173 if (sample_type & PERF_SAMPLE_STREAM_ID) 6174 data->stream_id = event->id; 6175 6176 if (sample_type & PERF_SAMPLE_CPU) { 6177 data->cpu_entry.cpu = raw_smp_processor_id(); 6178 data->cpu_entry.reserved = 0; 6179 } 6180 } 6181 6182 void perf_event_header__init_id(struct perf_event_header *header, 6183 struct perf_sample_data *data, 6184 struct perf_event *event) 6185 { 6186 if (event->attr.sample_id_all) 6187 __perf_event_header__init_id(header, data, event); 6188 } 6189 6190 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6191 struct perf_sample_data *data) 6192 { 6193 u64 sample_type = data->type; 6194 6195 if (sample_type & PERF_SAMPLE_TID) 6196 perf_output_put(handle, data->tid_entry); 6197 6198 if (sample_type & PERF_SAMPLE_TIME) 6199 perf_output_put(handle, data->time); 6200 6201 if (sample_type & PERF_SAMPLE_ID) 6202 perf_output_put(handle, data->id); 6203 6204 if (sample_type & PERF_SAMPLE_STREAM_ID) 6205 perf_output_put(handle, data->stream_id); 6206 6207 if (sample_type & PERF_SAMPLE_CPU) 6208 perf_output_put(handle, data->cpu_entry); 6209 6210 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6211 perf_output_put(handle, data->id); 6212 } 6213 6214 void perf_event__output_id_sample(struct perf_event *event, 6215 struct perf_output_handle *handle, 6216 struct perf_sample_data *sample) 6217 { 6218 if (event->attr.sample_id_all) 6219 __perf_event__output_id_sample(handle, sample); 6220 } 6221 6222 static void perf_output_read_one(struct perf_output_handle *handle, 6223 struct perf_event *event, 6224 u64 enabled, u64 running) 6225 { 6226 u64 read_format = event->attr.read_format; 6227 u64 values[4]; 6228 int n = 0; 6229 6230 values[n++] = perf_event_count(event); 6231 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6232 values[n++] = enabled + 6233 atomic64_read(&event->child_total_time_enabled); 6234 } 6235 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6236 values[n++] = running + 6237 atomic64_read(&event->child_total_time_running); 6238 } 6239 if (read_format & PERF_FORMAT_ID) 6240 values[n++] = primary_event_id(event); 6241 6242 __output_copy(handle, values, n * sizeof(u64)); 6243 } 6244 6245 static void perf_output_read_group(struct perf_output_handle *handle, 6246 struct perf_event *event, 6247 u64 enabled, u64 running) 6248 { 6249 struct perf_event *leader = event->group_leader, *sub; 6250 u64 read_format = event->attr.read_format; 6251 u64 values[5]; 6252 int n = 0; 6253 6254 values[n++] = 1 + leader->nr_siblings; 6255 6256 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6257 values[n++] = enabled; 6258 6259 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6260 values[n++] = running; 6261 6262 if ((leader != event) && 6263 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6264 leader->pmu->read(leader); 6265 6266 values[n++] = perf_event_count(leader); 6267 if (read_format & PERF_FORMAT_ID) 6268 values[n++] = primary_event_id(leader); 6269 6270 __output_copy(handle, values, n * sizeof(u64)); 6271 6272 for_each_sibling_event(sub, leader) { 6273 n = 0; 6274 6275 if ((sub != event) && 6276 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6277 sub->pmu->read(sub); 6278 6279 values[n++] = perf_event_count(sub); 6280 if (read_format & PERF_FORMAT_ID) 6281 values[n++] = primary_event_id(sub); 6282 6283 __output_copy(handle, values, n * sizeof(u64)); 6284 } 6285 } 6286 6287 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6288 PERF_FORMAT_TOTAL_TIME_RUNNING) 6289 6290 /* 6291 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6292 * 6293 * The problem is that its both hard and excessively expensive to iterate the 6294 * child list, not to mention that its impossible to IPI the children running 6295 * on another CPU, from interrupt/NMI context. 6296 */ 6297 static void perf_output_read(struct perf_output_handle *handle, 6298 struct perf_event *event) 6299 { 6300 u64 enabled = 0, running = 0, now; 6301 u64 read_format = event->attr.read_format; 6302 6303 /* 6304 * compute total_time_enabled, total_time_running 6305 * based on snapshot values taken when the event 6306 * was last scheduled in. 6307 * 6308 * we cannot simply called update_context_time() 6309 * because of locking issue as we are called in 6310 * NMI context 6311 */ 6312 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6313 calc_timer_values(event, &now, &enabled, &running); 6314 6315 if (event->attr.read_format & PERF_FORMAT_GROUP) 6316 perf_output_read_group(handle, event, enabled, running); 6317 else 6318 perf_output_read_one(handle, event, enabled, running); 6319 } 6320 6321 void perf_output_sample(struct perf_output_handle *handle, 6322 struct perf_event_header *header, 6323 struct perf_sample_data *data, 6324 struct perf_event *event) 6325 { 6326 u64 sample_type = data->type; 6327 6328 perf_output_put(handle, *header); 6329 6330 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6331 perf_output_put(handle, data->id); 6332 6333 if (sample_type & PERF_SAMPLE_IP) 6334 perf_output_put(handle, data->ip); 6335 6336 if (sample_type & PERF_SAMPLE_TID) 6337 perf_output_put(handle, data->tid_entry); 6338 6339 if (sample_type & PERF_SAMPLE_TIME) 6340 perf_output_put(handle, data->time); 6341 6342 if (sample_type & PERF_SAMPLE_ADDR) 6343 perf_output_put(handle, data->addr); 6344 6345 if (sample_type & PERF_SAMPLE_ID) 6346 perf_output_put(handle, data->id); 6347 6348 if (sample_type & PERF_SAMPLE_STREAM_ID) 6349 perf_output_put(handle, data->stream_id); 6350 6351 if (sample_type & PERF_SAMPLE_CPU) 6352 perf_output_put(handle, data->cpu_entry); 6353 6354 if (sample_type & PERF_SAMPLE_PERIOD) 6355 perf_output_put(handle, data->period); 6356 6357 if (sample_type & PERF_SAMPLE_READ) 6358 perf_output_read(handle, event); 6359 6360 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6361 int size = 1; 6362 6363 size += data->callchain->nr; 6364 size *= sizeof(u64); 6365 __output_copy(handle, data->callchain, size); 6366 } 6367 6368 if (sample_type & PERF_SAMPLE_RAW) { 6369 struct perf_raw_record *raw = data->raw; 6370 6371 if (raw) { 6372 struct perf_raw_frag *frag = &raw->frag; 6373 6374 perf_output_put(handle, raw->size); 6375 do { 6376 if (frag->copy) { 6377 __output_custom(handle, frag->copy, 6378 frag->data, frag->size); 6379 } else { 6380 __output_copy(handle, frag->data, 6381 frag->size); 6382 } 6383 if (perf_raw_frag_last(frag)) 6384 break; 6385 frag = frag->next; 6386 } while (1); 6387 if (frag->pad) 6388 __output_skip(handle, NULL, frag->pad); 6389 } else { 6390 struct { 6391 u32 size; 6392 u32 data; 6393 } raw = { 6394 .size = sizeof(u32), 6395 .data = 0, 6396 }; 6397 perf_output_put(handle, raw); 6398 } 6399 } 6400 6401 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6402 if (data->br_stack) { 6403 size_t size; 6404 6405 size = data->br_stack->nr 6406 * sizeof(struct perf_branch_entry); 6407 6408 perf_output_put(handle, data->br_stack->nr); 6409 perf_output_copy(handle, data->br_stack->entries, size); 6410 } else { 6411 /* 6412 * we always store at least the value of nr 6413 */ 6414 u64 nr = 0; 6415 perf_output_put(handle, nr); 6416 } 6417 } 6418 6419 if (sample_type & PERF_SAMPLE_REGS_USER) { 6420 u64 abi = data->regs_user.abi; 6421 6422 /* 6423 * If there are no regs to dump, notice it through 6424 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6425 */ 6426 perf_output_put(handle, abi); 6427 6428 if (abi) { 6429 u64 mask = event->attr.sample_regs_user; 6430 perf_output_sample_regs(handle, 6431 data->regs_user.regs, 6432 mask); 6433 } 6434 } 6435 6436 if (sample_type & PERF_SAMPLE_STACK_USER) { 6437 perf_output_sample_ustack(handle, 6438 data->stack_user_size, 6439 data->regs_user.regs); 6440 } 6441 6442 if (sample_type & PERF_SAMPLE_WEIGHT) 6443 perf_output_put(handle, data->weight); 6444 6445 if (sample_type & PERF_SAMPLE_DATA_SRC) 6446 perf_output_put(handle, data->data_src.val); 6447 6448 if (sample_type & PERF_SAMPLE_TRANSACTION) 6449 perf_output_put(handle, data->txn); 6450 6451 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6452 u64 abi = data->regs_intr.abi; 6453 /* 6454 * If there are no regs to dump, notice it through 6455 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6456 */ 6457 perf_output_put(handle, abi); 6458 6459 if (abi) { 6460 u64 mask = event->attr.sample_regs_intr; 6461 6462 perf_output_sample_regs(handle, 6463 data->regs_intr.regs, 6464 mask); 6465 } 6466 } 6467 6468 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6469 perf_output_put(handle, data->phys_addr); 6470 6471 if (!event->attr.watermark) { 6472 int wakeup_events = event->attr.wakeup_events; 6473 6474 if (wakeup_events) { 6475 struct ring_buffer *rb = handle->rb; 6476 int events = local_inc_return(&rb->events); 6477 6478 if (events >= wakeup_events) { 6479 local_sub(wakeup_events, &rb->events); 6480 local_inc(&rb->wakeup); 6481 } 6482 } 6483 } 6484 } 6485 6486 static u64 perf_virt_to_phys(u64 virt) 6487 { 6488 u64 phys_addr = 0; 6489 struct page *p = NULL; 6490 6491 if (!virt) 6492 return 0; 6493 6494 if (virt >= TASK_SIZE) { 6495 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6496 if (virt_addr_valid((void *)(uintptr_t)virt) && 6497 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6498 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6499 } else { 6500 /* 6501 * Walking the pages tables for user address. 6502 * Interrupts are disabled, so it prevents any tear down 6503 * of the page tables. 6504 * Try IRQ-safe __get_user_pages_fast first. 6505 * If failed, leave phys_addr as 0. 6506 */ 6507 if ((current->mm != NULL) && 6508 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6509 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6510 6511 if (p) 6512 put_page(p); 6513 } 6514 6515 return phys_addr; 6516 } 6517 6518 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6519 6520 struct perf_callchain_entry * 6521 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6522 { 6523 bool kernel = !event->attr.exclude_callchain_kernel; 6524 bool user = !event->attr.exclude_callchain_user; 6525 /* Disallow cross-task user callchains. */ 6526 bool crosstask = event->ctx->task && event->ctx->task != current; 6527 const u32 max_stack = event->attr.sample_max_stack; 6528 struct perf_callchain_entry *callchain; 6529 6530 if (!kernel && !user) 6531 return &__empty_callchain; 6532 6533 callchain = get_perf_callchain(regs, 0, kernel, user, 6534 max_stack, crosstask, true); 6535 return callchain ?: &__empty_callchain; 6536 } 6537 6538 void perf_prepare_sample(struct perf_event_header *header, 6539 struct perf_sample_data *data, 6540 struct perf_event *event, 6541 struct pt_regs *regs) 6542 { 6543 u64 sample_type = event->attr.sample_type; 6544 6545 header->type = PERF_RECORD_SAMPLE; 6546 header->size = sizeof(*header) + event->header_size; 6547 6548 header->misc = 0; 6549 header->misc |= perf_misc_flags(regs); 6550 6551 __perf_event_header__init_id(header, data, event); 6552 6553 if (sample_type & PERF_SAMPLE_IP) 6554 data->ip = perf_instruction_pointer(regs); 6555 6556 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6557 int size = 1; 6558 6559 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6560 data->callchain = perf_callchain(event, regs); 6561 6562 size += data->callchain->nr; 6563 6564 header->size += size * sizeof(u64); 6565 } 6566 6567 if (sample_type & PERF_SAMPLE_RAW) { 6568 struct perf_raw_record *raw = data->raw; 6569 int size; 6570 6571 if (raw) { 6572 struct perf_raw_frag *frag = &raw->frag; 6573 u32 sum = 0; 6574 6575 do { 6576 sum += frag->size; 6577 if (perf_raw_frag_last(frag)) 6578 break; 6579 frag = frag->next; 6580 } while (1); 6581 6582 size = round_up(sum + sizeof(u32), sizeof(u64)); 6583 raw->size = size - sizeof(u32); 6584 frag->pad = raw->size - sum; 6585 } else { 6586 size = sizeof(u64); 6587 } 6588 6589 header->size += size; 6590 } 6591 6592 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6593 int size = sizeof(u64); /* nr */ 6594 if (data->br_stack) { 6595 size += data->br_stack->nr 6596 * sizeof(struct perf_branch_entry); 6597 } 6598 header->size += size; 6599 } 6600 6601 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6602 perf_sample_regs_user(&data->regs_user, regs, 6603 &data->regs_user_copy); 6604 6605 if (sample_type & PERF_SAMPLE_REGS_USER) { 6606 /* regs dump ABI info */ 6607 int size = sizeof(u64); 6608 6609 if (data->regs_user.regs) { 6610 u64 mask = event->attr.sample_regs_user; 6611 size += hweight64(mask) * sizeof(u64); 6612 } 6613 6614 header->size += size; 6615 } 6616 6617 if (sample_type & PERF_SAMPLE_STACK_USER) { 6618 /* 6619 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6620 * processed as the last one or have additional check added 6621 * in case new sample type is added, because we could eat 6622 * up the rest of the sample size. 6623 */ 6624 u16 stack_size = event->attr.sample_stack_user; 6625 u16 size = sizeof(u64); 6626 6627 stack_size = perf_sample_ustack_size(stack_size, header->size, 6628 data->regs_user.regs); 6629 6630 /* 6631 * If there is something to dump, add space for the dump 6632 * itself and for the field that tells the dynamic size, 6633 * which is how many have been actually dumped. 6634 */ 6635 if (stack_size) 6636 size += sizeof(u64) + stack_size; 6637 6638 data->stack_user_size = stack_size; 6639 header->size += size; 6640 } 6641 6642 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6643 /* regs dump ABI info */ 6644 int size = sizeof(u64); 6645 6646 perf_sample_regs_intr(&data->regs_intr, regs); 6647 6648 if (data->regs_intr.regs) { 6649 u64 mask = event->attr.sample_regs_intr; 6650 6651 size += hweight64(mask) * sizeof(u64); 6652 } 6653 6654 header->size += size; 6655 } 6656 6657 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6658 data->phys_addr = perf_virt_to_phys(data->addr); 6659 } 6660 6661 static __always_inline int 6662 __perf_event_output(struct perf_event *event, 6663 struct perf_sample_data *data, 6664 struct pt_regs *regs, 6665 int (*output_begin)(struct perf_output_handle *, 6666 struct perf_event *, 6667 unsigned int)) 6668 { 6669 struct perf_output_handle handle; 6670 struct perf_event_header header; 6671 int err; 6672 6673 /* protect the callchain buffers */ 6674 rcu_read_lock(); 6675 6676 perf_prepare_sample(&header, data, event, regs); 6677 6678 err = output_begin(&handle, event, header.size); 6679 if (err) 6680 goto exit; 6681 6682 perf_output_sample(&handle, &header, data, event); 6683 6684 perf_output_end(&handle); 6685 6686 exit: 6687 rcu_read_unlock(); 6688 return err; 6689 } 6690 6691 void 6692 perf_event_output_forward(struct perf_event *event, 6693 struct perf_sample_data *data, 6694 struct pt_regs *regs) 6695 { 6696 __perf_event_output(event, data, regs, perf_output_begin_forward); 6697 } 6698 6699 void 6700 perf_event_output_backward(struct perf_event *event, 6701 struct perf_sample_data *data, 6702 struct pt_regs *regs) 6703 { 6704 __perf_event_output(event, data, regs, perf_output_begin_backward); 6705 } 6706 6707 int 6708 perf_event_output(struct perf_event *event, 6709 struct perf_sample_data *data, 6710 struct pt_regs *regs) 6711 { 6712 return __perf_event_output(event, data, regs, perf_output_begin); 6713 } 6714 6715 /* 6716 * read event_id 6717 */ 6718 6719 struct perf_read_event { 6720 struct perf_event_header header; 6721 6722 u32 pid; 6723 u32 tid; 6724 }; 6725 6726 static void 6727 perf_event_read_event(struct perf_event *event, 6728 struct task_struct *task) 6729 { 6730 struct perf_output_handle handle; 6731 struct perf_sample_data sample; 6732 struct perf_read_event read_event = { 6733 .header = { 6734 .type = PERF_RECORD_READ, 6735 .misc = 0, 6736 .size = sizeof(read_event) + event->read_size, 6737 }, 6738 .pid = perf_event_pid(event, task), 6739 .tid = perf_event_tid(event, task), 6740 }; 6741 int ret; 6742 6743 perf_event_header__init_id(&read_event.header, &sample, event); 6744 ret = perf_output_begin(&handle, event, read_event.header.size); 6745 if (ret) 6746 return; 6747 6748 perf_output_put(&handle, read_event); 6749 perf_output_read(&handle, event); 6750 perf_event__output_id_sample(event, &handle, &sample); 6751 6752 perf_output_end(&handle); 6753 } 6754 6755 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6756 6757 static void 6758 perf_iterate_ctx(struct perf_event_context *ctx, 6759 perf_iterate_f output, 6760 void *data, bool all) 6761 { 6762 struct perf_event *event; 6763 6764 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6765 if (!all) { 6766 if (event->state < PERF_EVENT_STATE_INACTIVE) 6767 continue; 6768 if (!event_filter_match(event)) 6769 continue; 6770 } 6771 6772 output(event, data); 6773 } 6774 } 6775 6776 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6777 { 6778 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6779 struct perf_event *event; 6780 6781 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6782 /* 6783 * Skip events that are not fully formed yet; ensure that 6784 * if we observe event->ctx, both event and ctx will be 6785 * complete enough. See perf_install_in_context(). 6786 */ 6787 if (!smp_load_acquire(&event->ctx)) 6788 continue; 6789 6790 if (event->state < PERF_EVENT_STATE_INACTIVE) 6791 continue; 6792 if (!event_filter_match(event)) 6793 continue; 6794 output(event, data); 6795 } 6796 } 6797 6798 /* 6799 * Iterate all events that need to receive side-band events. 6800 * 6801 * For new callers; ensure that account_pmu_sb_event() includes 6802 * your event, otherwise it might not get delivered. 6803 */ 6804 static void 6805 perf_iterate_sb(perf_iterate_f output, void *data, 6806 struct perf_event_context *task_ctx) 6807 { 6808 struct perf_event_context *ctx; 6809 int ctxn; 6810 6811 rcu_read_lock(); 6812 preempt_disable(); 6813 6814 /* 6815 * If we have task_ctx != NULL we only notify the task context itself. 6816 * The task_ctx is set only for EXIT events before releasing task 6817 * context. 6818 */ 6819 if (task_ctx) { 6820 perf_iterate_ctx(task_ctx, output, data, false); 6821 goto done; 6822 } 6823 6824 perf_iterate_sb_cpu(output, data); 6825 6826 for_each_task_context_nr(ctxn) { 6827 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6828 if (ctx) 6829 perf_iterate_ctx(ctx, output, data, false); 6830 } 6831 done: 6832 preempt_enable(); 6833 rcu_read_unlock(); 6834 } 6835 6836 /* 6837 * Clear all file-based filters at exec, they'll have to be 6838 * re-instated when/if these objects are mmapped again. 6839 */ 6840 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6841 { 6842 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6843 struct perf_addr_filter *filter; 6844 unsigned int restart = 0, count = 0; 6845 unsigned long flags; 6846 6847 if (!has_addr_filter(event)) 6848 return; 6849 6850 raw_spin_lock_irqsave(&ifh->lock, flags); 6851 list_for_each_entry(filter, &ifh->list, entry) { 6852 if (filter->path.dentry) { 6853 event->addr_filter_ranges[count].start = 0; 6854 event->addr_filter_ranges[count].size = 0; 6855 restart++; 6856 } 6857 6858 count++; 6859 } 6860 6861 if (restart) 6862 event->addr_filters_gen++; 6863 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6864 6865 if (restart) 6866 perf_event_stop(event, 1); 6867 } 6868 6869 void perf_event_exec(void) 6870 { 6871 struct perf_event_context *ctx; 6872 int ctxn; 6873 6874 rcu_read_lock(); 6875 for_each_task_context_nr(ctxn) { 6876 ctx = current->perf_event_ctxp[ctxn]; 6877 if (!ctx) 6878 continue; 6879 6880 perf_event_enable_on_exec(ctxn); 6881 6882 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6883 true); 6884 } 6885 rcu_read_unlock(); 6886 } 6887 6888 struct remote_output { 6889 struct ring_buffer *rb; 6890 int err; 6891 }; 6892 6893 static void __perf_event_output_stop(struct perf_event *event, void *data) 6894 { 6895 struct perf_event *parent = event->parent; 6896 struct remote_output *ro = data; 6897 struct ring_buffer *rb = ro->rb; 6898 struct stop_event_data sd = { 6899 .event = event, 6900 }; 6901 6902 if (!has_aux(event)) 6903 return; 6904 6905 if (!parent) 6906 parent = event; 6907 6908 /* 6909 * In case of inheritance, it will be the parent that links to the 6910 * ring-buffer, but it will be the child that's actually using it. 6911 * 6912 * We are using event::rb to determine if the event should be stopped, 6913 * however this may race with ring_buffer_attach() (through set_output), 6914 * which will make us skip the event that actually needs to be stopped. 6915 * So ring_buffer_attach() has to stop an aux event before re-assigning 6916 * its rb pointer. 6917 */ 6918 if (rcu_dereference(parent->rb) == rb) 6919 ro->err = __perf_event_stop(&sd); 6920 } 6921 6922 static int __perf_pmu_output_stop(void *info) 6923 { 6924 struct perf_event *event = info; 6925 struct pmu *pmu = event->pmu; 6926 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6927 struct remote_output ro = { 6928 .rb = event->rb, 6929 }; 6930 6931 rcu_read_lock(); 6932 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6933 if (cpuctx->task_ctx) 6934 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6935 &ro, false); 6936 rcu_read_unlock(); 6937 6938 return ro.err; 6939 } 6940 6941 static void perf_pmu_output_stop(struct perf_event *event) 6942 { 6943 struct perf_event *iter; 6944 int err, cpu; 6945 6946 restart: 6947 rcu_read_lock(); 6948 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6949 /* 6950 * For per-CPU events, we need to make sure that neither they 6951 * nor their children are running; for cpu==-1 events it's 6952 * sufficient to stop the event itself if it's active, since 6953 * it can't have children. 6954 */ 6955 cpu = iter->cpu; 6956 if (cpu == -1) 6957 cpu = READ_ONCE(iter->oncpu); 6958 6959 if (cpu == -1) 6960 continue; 6961 6962 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6963 if (err == -EAGAIN) { 6964 rcu_read_unlock(); 6965 goto restart; 6966 } 6967 } 6968 rcu_read_unlock(); 6969 } 6970 6971 /* 6972 * task tracking -- fork/exit 6973 * 6974 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6975 */ 6976 6977 struct perf_task_event { 6978 struct task_struct *task; 6979 struct perf_event_context *task_ctx; 6980 6981 struct { 6982 struct perf_event_header header; 6983 6984 u32 pid; 6985 u32 ppid; 6986 u32 tid; 6987 u32 ptid; 6988 u64 time; 6989 } event_id; 6990 }; 6991 6992 static int perf_event_task_match(struct perf_event *event) 6993 { 6994 return event->attr.comm || event->attr.mmap || 6995 event->attr.mmap2 || event->attr.mmap_data || 6996 event->attr.task; 6997 } 6998 6999 static void perf_event_task_output(struct perf_event *event, 7000 void *data) 7001 { 7002 struct perf_task_event *task_event = data; 7003 struct perf_output_handle handle; 7004 struct perf_sample_data sample; 7005 struct task_struct *task = task_event->task; 7006 int ret, size = task_event->event_id.header.size; 7007 7008 if (!perf_event_task_match(event)) 7009 return; 7010 7011 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7012 7013 ret = perf_output_begin(&handle, event, 7014 task_event->event_id.header.size); 7015 if (ret) 7016 goto out; 7017 7018 task_event->event_id.pid = perf_event_pid(event, task); 7019 task_event->event_id.ppid = perf_event_pid(event, current); 7020 7021 task_event->event_id.tid = perf_event_tid(event, task); 7022 task_event->event_id.ptid = perf_event_tid(event, current); 7023 7024 task_event->event_id.time = perf_event_clock(event); 7025 7026 perf_output_put(&handle, task_event->event_id); 7027 7028 perf_event__output_id_sample(event, &handle, &sample); 7029 7030 perf_output_end(&handle); 7031 out: 7032 task_event->event_id.header.size = size; 7033 } 7034 7035 static void perf_event_task(struct task_struct *task, 7036 struct perf_event_context *task_ctx, 7037 int new) 7038 { 7039 struct perf_task_event task_event; 7040 7041 if (!atomic_read(&nr_comm_events) && 7042 !atomic_read(&nr_mmap_events) && 7043 !atomic_read(&nr_task_events)) 7044 return; 7045 7046 task_event = (struct perf_task_event){ 7047 .task = task, 7048 .task_ctx = task_ctx, 7049 .event_id = { 7050 .header = { 7051 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7052 .misc = 0, 7053 .size = sizeof(task_event.event_id), 7054 }, 7055 /* .pid */ 7056 /* .ppid */ 7057 /* .tid */ 7058 /* .ptid */ 7059 /* .time */ 7060 }, 7061 }; 7062 7063 perf_iterate_sb(perf_event_task_output, 7064 &task_event, 7065 task_ctx); 7066 } 7067 7068 void perf_event_fork(struct task_struct *task) 7069 { 7070 perf_event_task(task, NULL, 1); 7071 perf_event_namespaces(task); 7072 } 7073 7074 /* 7075 * comm tracking 7076 */ 7077 7078 struct perf_comm_event { 7079 struct task_struct *task; 7080 char *comm; 7081 int comm_size; 7082 7083 struct { 7084 struct perf_event_header header; 7085 7086 u32 pid; 7087 u32 tid; 7088 } event_id; 7089 }; 7090 7091 static int perf_event_comm_match(struct perf_event *event) 7092 { 7093 return event->attr.comm; 7094 } 7095 7096 static void perf_event_comm_output(struct perf_event *event, 7097 void *data) 7098 { 7099 struct perf_comm_event *comm_event = data; 7100 struct perf_output_handle handle; 7101 struct perf_sample_data sample; 7102 int size = comm_event->event_id.header.size; 7103 int ret; 7104 7105 if (!perf_event_comm_match(event)) 7106 return; 7107 7108 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7109 ret = perf_output_begin(&handle, event, 7110 comm_event->event_id.header.size); 7111 7112 if (ret) 7113 goto out; 7114 7115 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7116 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7117 7118 perf_output_put(&handle, comm_event->event_id); 7119 __output_copy(&handle, comm_event->comm, 7120 comm_event->comm_size); 7121 7122 perf_event__output_id_sample(event, &handle, &sample); 7123 7124 perf_output_end(&handle); 7125 out: 7126 comm_event->event_id.header.size = size; 7127 } 7128 7129 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7130 { 7131 char comm[TASK_COMM_LEN]; 7132 unsigned int size; 7133 7134 memset(comm, 0, sizeof(comm)); 7135 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7136 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7137 7138 comm_event->comm = comm; 7139 comm_event->comm_size = size; 7140 7141 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7142 7143 perf_iterate_sb(perf_event_comm_output, 7144 comm_event, 7145 NULL); 7146 } 7147 7148 void perf_event_comm(struct task_struct *task, bool exec) 7149 { 7150 struct perf_comm_event comm_event; 7151 7152 if (!atomic_read(&nr_comm_events)) 7153 return; 7154 7155 comm_event = (struct perf_comm_event){ 7156 .task = task, 7157 /* .comm */ 7158 /* .comm_size */ 7159 .event_id = { 7160 .header = { 7161 .type = PERF_RECORD_COMM, 7162 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7163 /* .size */ 7164 }, 7165 /* .pid */ 7166 /* .tid */ 7167 }, 7168 }; 7169 7170 perf_event_comm_event(&comm_event); 7171 } 7172 7173 /* 7174 * namespaces tracking 7175 */ 7176 7177 struct perf_namespaces_event { 7178 struct task_struct *task; 7179 7180 struct { 7181 struct perf_event_header header; 7182 7183 u32 pid; 7184 u32 tid; 7185 u64 nr_namespaces; 7186 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7187 } event_id; 7188 }; 7189 7190 static int perf_event_namespaces_match(struct perf_event *event) 7191 { 7192 return event->attr.namespaces; 7193 } 7194 7195 static void perf_event_namespaces_output(struct perf_event *event, 7196 void *data) 7197 { 7198 struct perf_namespaces_event *namespaces_event = data; 7199 struct perf_output_handle handle; 7200 struct perf_sample_data sample; 7201 u16 header_size = namespaces_event->event_id.header.size; 7202 int ret; 7203 7204 if (!perf_event_namespaces_match(event)) 7205 return; 7206 7207 perf_event_header__init_id(&namespaces_event->event_id.header, 7208 &sample, event); 7209 ret = perf_output_begin(&handle, event, 7210 namespaces_event->event_id.header.size); 7211 if (ret) 7212 goto out; 7213 7214 namespaces_event->event_id.pid = perf_event_pid(event, 7215 namespaces_event->task); 7216 namespaces_event->event_id.tid = perf_event_tid(event, 7217 namespaces_event->task); 7218 7219 perf_output_put(&handle, namespaces_event->event_id); 7220 7221 perf_event__output_id_sample(event, &handle, &sample); 7222 7223 perf_output_end(&handle); 7224 out: 7225 namespaces_event->event_id.header.size = header_size; 7226 } 7227 7228 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7229 struct task_struct *task, 7230 const struct proc_ns_operations *ns_ops) 7231 { 7232 struct path ns_path; 7233 struct inode *ns_inode; 7234 void *error; 7235 7236 error = ns_get_path(&ns_path, task, ns_ops); 7237 if (!error) { 7238 ns_inode = ns_path.dentry->d_inode; 7239 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7240 ns_link_info->ino = ns_inode->i_ino; 7241 path_put(&ns_path); 7242 } 7243 } 7244 7245 void perf_event_namespaces(struct task_struct *task) 7246 { 7247 struct perf_namespaces_event namespaces_event; 7248 struct perf_ns_link_info *ns_link_info; 7249 7250 if (!atomic_read(&nr_namespaces_events)) 7251 return; 7252 7253 namespaces_event = (struct perf_namespaces_event){ 7254 .task = task, 7255 .event_id = { 7256 .header = { 7257 .type = PERF_RECORD_NAMESPACES, 7258 .misc = 0, 7259 .size = sizeof(namespaces_event.event_id), 7260 }, 7261 /* .pid */ 7262 /* .tid */ 7263 .nr_namespaces = NR_NAMESPACES, 7264 /* .link_info[NR_NAMESPACES] */ 7265 }, 7266 }; 7267 7268 ns_link_info = namespaces_event.event_id.link_info; 7269 7270 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7271 task, &mntns_operations); 7272 7273 #ifdef CONFIG_USER_NS 7274 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7275 task, &userns_operations); 7276 #endif 7277 #ifdef CONFIG_NET_NS 7278 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7279 task, &netns_operations); 7280 #endif 7281 #ifdef CONFIG_UTS_NS 7282 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7283 task, &utsns_operations); 7284 #endif 7285 #ifdef CONFIG_IPC_NS 7286 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7287 task, &ipcns_operations); 7288 #endif 7289 #ifdef CONFIG_PID_NS 7290 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7291 task, &pidns_operations); 7292 #endif 7293 #ifdef CONFIG_CGROUPS 7294 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7295 task, &cgroupns_operations); 7296 #endif 7297 7298 perf_iterate_sb(perf_event_namespaces_output, 7299 &namespaces_event, 7300 NULL); 7301 } 7302 7303 /* 7304 * mmap tracking 7305 */ 7306 7307 struct perf_mmap_event { 7308 struct vm_area_struct *vma; 7309 7310 const char *file_name; 7311 int file_size; 7312 int maj, min; 7313 u64 ino; 7314 u64 ino_generation; 7315 u32 prot, flags; 7316 7317 struct { 7318 struct perf_event_header header; 7319 7320 u32 pid; 7321 u32 tid; 7322 u64 start; 7323 u64 len; 7324 u64 pgoff; 7325 } event_id; 7326 }; 7327 7328 static int perf_event_mmap_match(struct perf_event *event, 7329 void *data) 7330 { 7331 struct perf_mmap_event *mmap_event = data; 7332 struct vm_area_struct *vma = mmap_event->vma; 7333 int executable = vma->vm_flags & VM_EXEC; 7334 7335 return (!executable && event->attr.mmap_data) || 7336 (executable && (event->attr.mmap || event->attr.mmap2)); 7337 } 7338 7339 static void perf_event_mmap_output(struct perf_event *event, 7340 void *data) 7341 { 7342 struct perf_mmap_event *mmap_event = data; 7343 struct perf_output_handle handle; 7344 struct perf_sample_data sample; 7345 int size = mmap_event->event_id.header.size; 7346 u32 type = mmap_event->event_id.header.type; 7347 int ret; 7348 7349 if (!perf_event_mmap_match(event, data)) 7350 return; 7351 7352 if (event->attr.mmap2) { 7353 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7354 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7355 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7356 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7357 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7358 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7359 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7360 } 7361 7362 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7363 ret = perf_output_begin(&handle, event, 7364 mmap_event->event_id.header.size); 7365 if (ret) 7366 goto out; 7367 7368 mmap_event->event_id.pid = perf_event_pid(event, current); 7369 mmap_event->event_id.tid = perf_event_tid(event, current); 7370 7371 perf_output_put(&handle, mmap_event->event_id); 7372 7373 if (event->attr.mmap2) { 7374 perf_output_put(&handle, mmap_event->maj); 7375 perf_output_put(&handle, mmap_event->min); 7376 perf_output_put(&handle, mmap_event->ino); 7377 perf_output_put(&handle, mmap_event->ino_generation); 7378 perf_output_put(&handle, mmap_event->prot); 7379 perf_output_put(&handle, mmap_event->flags); 7380 } 7381 7382 __output_copy(&handle, mmap_event->file_name, 7383 mmap_event->file_size); 7384 7385 perf_event__output_id_sample(event, &handle, &sample); 7386 7387 perf_output_end(&handle); 7388 out: 7389 mmap_event->event_id.header.size = size; 7390 mmap_event->event_id.header.type = type; 7391 } 7392 7393 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7394 { 7395 struct vm_area_struct *vma = mmap_event->vma; 7396 struct file *file = vma->vm_file; 7397 int maj = 0, min = 0; 7398 u64 ino = 0, gen = 0; 7399 u32 prot = 0, flags = 0; 7400 unsigned int size; 7401 char tmp[16]; 7402 char *buf = NULL; 7403 char *name; 7404 7405 if (vma->vm_flags & VM_READ) 7406 prot |= PROT_READ; 7407 if (vma->vm_flags & VM_WRITE) 7408 prot |= PROT_WRITE; 7409 if (vma->vm_flags & VM_EXEC) 7410 prot |= PROT_EXEC; 7411 7412 if (vma->vm_flags & VM_MAYSHARE) 7413 flags = MAP_SHARED; 7414 else 7415 flags = MAP_PRIVATE; 7416 7417 if (vma->vm_flags & VM_DENYWRITE) 7418 flags |= MAP_DENYWRITE; 7419 if (vma->vm_flags & VM_MAYEXEC) 7420 flags |= MAP_EXECUTABLE; 7421 if (vma->vm_flags & VM_LOCKED) 7422 flags |= MAP_LOCKED; 7423 if (vma->vm_flags & VM_HUGETLB) 7424 flags |= MAP_HUGETLB; 7425 7426 if (file) { 7427 struct inode *inode; 7428 dev_t dev; 7429 7430 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7431 if (!buf) { 7432 name = "//enomem"; 7433 goto cpy_name; 7434 } 7435 /* 7436 * d_path() works from the end of the rb backwards, so we 7437 * need to add enough zero bytes after the string to handle 7438 * the 64bit alignment we do later. 7439 */ 7440 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7441 if (IS_ERR(name)) { 7442 name = "//toolong"; 7443 goto cpy_name; 7444 } 7445 inode = file_inode(vma->vm_file); 7446 dev = inode->i_sb->s_dev; 7447 ino = inode->i_ino; 7448 gen = inode->i_generation; 7449 maj = MAJOR(dev); 7450 min = MINOR(dev); 7451 7452 goto got_name; 7453 } else { 7454 if (vma->vm_ops && vma->vm_ops->name) { 7455 name = (char *) vma->vm_ops->name(vma); 7456 if (name) 7457 goto cpy_name; 7458 } 7459 7460 name = (char *)arch_vma_name(vma); 7461 if (name) 7462 goto cpy_name; 7463 7464 if (vma->vm_start <= vma->vm_mm->start_brk && 7465 vma->vm_end >= vma->vm_mm->brk) { 7466 name = "[heap]"; 7467 goto cpy_name; 7468 } 7469 if (vma->vm_start <= vma->vm_mm->start_stack && 7470 vma->vm_end >= vma->vm_mm->start_stack) { 7471 name = "[stack]"; 7472 goto cpy_name; 7473 } 7474 7475 name = "//anon"; 7476 goto cpy_name; 7477 } 7478 7479 cpy_name: 7480 strlcpy(tmp, name, sizeof(tmp)); 7481 name = tmp; 7482 got_name: 7483 /* 7484 * Since our buffer works in 8 byte units we need to align our string 7485 * size to a multiple of 8. However, we must guarantee the tail end is 7486 * zero'd out to avoid leaking random bits to userspace. 7487 */ 7488 size = strlen(name)+1; 7489 while (!IS_ALIGNED(size, sizeof(u64))) 7490 name[size++] = '\0'; 7491 7492 mmap_event->file_name = name; 7493 mmap_event->file_size = size; 7494 mmap_event->maj = maj; 7495 mmap_event->min = min; 7496 mmap_event->ino = ino; 7497 mmap_event->ino_generation = gen; 7498 mmap_event->prot = prot; 7499 mmap_event->flags = flags; 7500 7501 if (!(vma->vm_flags & VM_EXEC)) 7502 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7503 7504 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7505 7506 perf_iterate_sb(perf_event_mmap_output, 7507 mmap_event, 7508 NULL); 7509 7510 kfree(buf); 7511 } 7512 7513 /* 7514 * Check whether inode and address range match filter criteria. 7515 */ 7516 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7517 struct file *file, unsigned long offset, 7518 unsigned long size) 7519 { 7520 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7521 if (!filter->path.dentry) 7522 return false; 7523 7524 if (d_inode(filter->path.dentry) != file_inode(file)) 7525 return false; 7526 7527 if (filter->offset > offset + size) 7528 return false; 7529 7530 if (filter->offset + filter->size < offset) 7531 return false; 7532 7533 return true; 7534 } 7535 7536 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7537 struct vm_area_struct *vma, 7538 struct perf_addr_filter_range *fr) 7539 { 7540 unsigned long vma_size = vma->vm_end - vma->vm_start; 7541 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7542 struct file *file = vma->vm_file; 7543 7544 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7545 return false; 7546 7547 if (filter->offset < off) { 7548 fr->start = vma->vm_start; 7549 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7550 } else { 7551 fr->start = vma->vm_start + filter->offset - off; 7552 fr->size = min(vma->vm_end - fr->start, filter->size); 7553 } 7554 7555 return true; 7556 } 7557 7558 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7559 { 7560 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7561 struct vm_area_struct *vma = data; 7562 struct perf_addr_filter *filter; 7563 unsigned int restart = 0, count = 0; 7564 unsigned long flags; 7565 7566 if (!has_addr_filter(event)) 7567 return; 7568 7569 if (!vma->vm_file) 7570 return; 7571 7572 raw_spin_lock_irqsave(&ifh->lock, flags); 7573 list_for_each_entry(filter, &ifh->list, entry) { 7574 if (perf_addr_filter_vma_adjust(filter, vma, 7575 &event->addr_filter_ranges[count])) 7576 restart++; 7577 7578 count++; 7579 } 7580 7581 if (restart) 7582 event->addr_filters_gen++; 7583 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7584 7585 if (restart) 7586 perf_event_stop(event, 1); 7587 } 7588 7589 /* 7590 * Adjust all task's events' filters to the new vma 7591 */ 7592 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7593 { 7594 struct perf_event_context *ctx; 7595 int ctxn; 7596 7597 /* 7598 * Data tracing isn't supported yet and as such there is no need 7599 * to keep track of anything that isn't related to executable code: 7600 */ 7601 if (!(vma->vm_flags & VM_EXEC)) 7602 return; 7603 7604 rcu_read_lock(); 7605 for_each_task_context_nr(ctxn) { 7606 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7607 if (!ctx) 7608 continue; 7609 7610 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7611 } 7612 rcu_read_unlock(); 7613 } 7614 7615 void perf_event_mmap(struct vm_area_struct *vma) 7616 { 7617 struct perf_mmap_event mmap_event; 7618 7619 if (!atomic_read(&nr_mmap_events)) 7620 return; 7621 7622 mmap_event = (struct perf_mmap_event){ 7623 .vma = vma, 7624 /* .file_name */ 7625 /* .file_size */ 7626 .event_id = { 7627 .header = { 7628 .type = PERF_RECORD_MMAP, 7629 .misc = PERF_RECORD_MISC_USER, 7630 /* .size */ 7631 }, 7632 /* .pid */ 7633 /* .tid */ 7634 .start = vma->vm_start, 7635 .len = vma->vm_end - vma->vm_start, 7636 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7637 }, 7638 /* .maj (attr_mmap2 only) */ 7639 /* .min (attr_mmap2 only) */ 7640 /* .ino (attr_mmap2 only) */ 7641 /* .ino_generation (attr_mmap2 only) */ 7642 /* .prot (attr_mmap2 only) */ 7643 /* .flags (attr_mmap2 only) */ 7644 }; 7645 7646 perf_addr_filters_adjust(vma); 7647 perf_event_mmap_event(&mmap_event); 7648 } 7649 7650 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7651 unsigned long size, u64 flags) 7652 { 7653 struct perf_output_handle handle; 7654 struct perf_sample_data sample; 7655 struct perf_aux_event { 7656 struct perf_event_header header; 7657 u64 offset; 7658 u64 size; 7659 u64 flags; 7660 } rec = { 7661 .header = { 7662 .type = PERF_RECORD_AUX, 7663 .misc = 0, 7664 .size = sizeof(rec), 7665 }, 7666 .offset = head, 7667 .size = size, 7668 .flags = flags, 7669 }; 7670 int ret; 7671 7672 perf_event_header__init_id(&rec.header, &sample, event); 7673 ret = perf_output_begin(&handle, event, rec.header.size); 7674 7675 if (ret) 7676 return; 7677 7678 perf_output_put(&handle, rec); 7679 perf_event__output_id_sample(event, &handle, &sample); 7680 7681 perf_output_end(&handle); 7682 } 7683 7684 /* 7685 * Lost/dropped samples logging 7686 */ 7687 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7688 { 7689 struct perf_output_handle handle; 7690 struct perf_sample_data sample; 7691 int ret; 7692 7693 struct { 7694 struct perf_event_header header; 7695 u64 lost; 7696 } lost_samples_event = { 7697 .header = { 7698 .type = PERF_RECORD_LOST_SAMPLES, 7699 .misc = 0, 7700 .size = sizeof(lost_samples_event), 7701 }, 7702 .lost = lost, 7703 }; 7704 7705 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7706 7707 ret = perf_output_begin(&handle, event, 7708 lost_samples_event.header.size); 7709 if (ret) 7710 return; 7711 7712 perf_output_put(&handle, lost_samples_event); 7713 perf_event__output_id_sample(event, &handle, &sample); 7714 perf_output_end(&handle); 7715 } 7716 7717 /* 7718 * context_switch tracking 7719 */ 7720 7721 struct perf_switch_event { 7722 struct task_struct *task; 7723 struct task_struct *next_prev; 7724 7725 struct { 7726 struct perf_event_header header; 7727 u32 next_prev_pid; 7728 u32 next_prev_tid; 7729 } event_id; 7730 }; 7731 7732 static int perf_event_switch_match(struct perf_event *event) 7733 { 7734 return event->attr.context_switch; 7735 } 7736 7737 static void perf_event_switch_output(struct perf_event *event, void *data) 7738 { 7739 struct perf_switch_event *se = data; 7740 struct perf_output_handle handle; 7741 struct perf_sample_data sample; 7742 int ret; 7743 7744 if (!perf_event_switch_match(event)) 7745 return; 7746 7747 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7748 if (event->ctx->task) { 7749 se->event_id.header.type = PERF_RECORD_SWITCH; 7750 se->event_id.header.size = sizeof(se->event_id.header); 7751 } else { 7752 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7753 se->event_id.header.size = sizeof(se->event_id); 7754 se->event_id.next_prev_pid = 7755 perf_event_pid(event, se->next_prev); 7756 se->event_id.next_prev_tid = 7757 perf_event_tid(event, se->next_prev); 7758 } 7759 7760 perf_event_header__init_id(&se->event_id.header, &sample, event); 7761 7762 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7763 if (ret) 7764 return; 7765 7766 if (event->ctx->task) 7767 perf_output_put(&handle, se->event_id.header); 7768 else 7769 perf_output_put(&handle, se->event_id); 7770 7771 perf_event__output_id_sample(event, &handle, &sample); 7772 7773 perf_output_end(&handle); 7774 } 7775 7776 static void perf_event_switch(struct task_struct *task, 7777 struct task_struct *next_prev, bool sched_in) 7778 { 7779 struct perf_switch_event switch_event; 7780 7781 /* N.B. caller checks nr_switch_events != 0 */ 7782 7783 switch_event = (struct perf_switch_event){ 7784 .task = task, 7785 .next_prev = next_prev, 7786 .event_id = { 7787 .header = { 7788 /* .type */ 7789 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7790 /* .size */ 7791 }, 7792 /* .next_prev_pid */ 7793 /* .next_prev_tid */ 7794 }, 7795 }; 7796 7797 if (!sched_in && task->state == TASK_RUNNING) 7798 switch_event.event_id.header.misc |= 7799 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7800 7801 perf_iterate_sb(perf_event_switch_output, 7802 &switch_event, 7803 NULL); 7804 } 7805 7806 /* 7807 * IRQ throttle logging 7808 */ 7809 7810 static void perf_log_throttle(struct perf_event *event, int enable) 7811 { 7812 struct perf_output_handle handle; 7813 struct perf_sample_data sample; 7814 int ret; 7815 7816 struct { 7817 struct perf_event_header header; 7818 u64 time; 7819 u64 id; 7820 u64 stream_id; 7821 } throttle_event = { 7822 .header = { 7823 .type = PERF_RECORD_THROTTLE, 7824 .misc = 0, 7825 .size = sizeof(throttle_event), 7826 }, 7827 .time = perf_event_clock(event), 7828 .id = primary_event_id(event), 7829 .stream_id = event->id, 7830 }; 7831 7832 if (enable) 7833 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7834 7835 perf_event_header__init_id(&throttle_event.header, &sample, event); 7836 7837 ret = perf_output_begin(&handle, event, 7838 throttle_event.header.size); 7839 if (ret) 7840 return; 7841 7842 perf_output_put(&handle, throttle_event); 7843 perf_event__output_id_sample(event, &handle, &sample); 7844 perf_output_end(&handle); 7845 } 7846 7847 /* 7848 * ksymbol register/unregister tracking 7849 */ 7850 7851 struct perf_ksymbol_event { 7852 const char *name; 7853 int name_len; 7854 struct { 7855 struct perf_event_header header; 7856 u64 addr; 7857 u32 len; 7858 u16 ksym_type; 7859 u16 flags; 7860 } event_id; 7861 }; 7862 7863 static int perf_event_ksymbol_match(struct perf_event *event) 7864 { 7865 return event->attr.ksymbol; 7866 } 7867 7868 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7869 { 7870 struct perf_ksymbol_event *ksymbol_event = data; 7871 struct perf_output_handle handle; 7872 struct perf_sample_data sample; 7873 int ret; 7874 7875 if (!perf_event_ksymbol_match(event)) 7876 return; 7877 7878 perf_event_header__init_id(&ksymbol_event->event_id.header, 7879 &sample, event); 7880 ret = perf_output_begin(&handle, event, 7881 ksymbol_event->event_id.header.size); 7882 if (ret) 7883 return; 7884 7885 perf_output_put(&handle, ksymbol_event->event_id); 7886 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7887 perf_event__output_id_sample(event, &handle, &sample); 7888 7889 perf_output_end(&handle); 7890 } 7891 7892 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7893 const char *sym) 7894 { 7895 struct perf_ksymbol_event ksymbol_event; 7896 char name[KSYM_NAME_LEN]; 7897 u16 flags = 0; 7898 int name_len; 7899 7900 if (!atomic_read(&nr_ksymbol_events)) 7901 return; 7902 7903 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7904 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7905 goto err; 7906 7907 strlcpy(name, sym, KSYM_NAME_LEN); 7908 name_len = strlen(name) + 1; 7909 while (!IS_ALIGNED(name_len, sizeof(u64))) 7910 name[name_len++] = '\0'; 7911 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7912 7913 if (unregister) 7914 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7915 7916 ksymbol_event = (struct perf_ksymbol_event){ 7917 .name = name, 7918 .name_len = name_len, 7919 .event_id = { 7920 .header = { 7921 .type = PERF_RECORD_KSYMBOL, 7922 .size = sizeof(ksymbol_event.event_id) + 7923 name_len, 7924 }, 7925 .addr = addr, 7926 .len = len, 7927 .ksym_type = ksym_type, 7928 .flags = flags, 7929 }, 7930 }; 7931 7932 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7933 return; 7934 err: 7935 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7936 } 7937 7938 /* 7939 * bpf program load/unload tracking 7940 */ 7941 7942 struct perf_bpf_event { 7943 struct bpf_prog *prog; 7944 struct { 7945 struct perf_event_header header; 7946 u16 type; 7947 u16 flags; 7948 u32 id; 7949 u8 tag[BPF_TAG_SIZE]; 7950 } event_id; 7951 }; 7952 7953 static int perf_event_bpf_match(struct perf_event *event) 7954 { 7955 return event->attr.bpf_event; 7956 } 7957 7958 static void perf_event_bpf_output(struct perf_event *event, void *data) 7959 { 7960 struct perf_bpf_event *bpf_event = data; 7961 struct perf_output_handle handle; 7962 struct perf_sample_data sample; 7963 int ret; 7964 7965 if (!perf_event_bpf_match(event)) 7966 return; 7967 7968 perf_event_header__init_id(&bpf_event->event_id.header, 7969 &sample, event); 7970 ret = perf_output_begin(&handle, event, 7971 bpf_event->event_id.header.size); 7972 if (ret) 7973 return; 7974 7975 perf_output_put(&handle, bpf_event->event_id); 7976 perf_event__output_id_sample(event, &handle, &sample); 7977 7978 perf_output_end(&handle); 7979 } 7980 7981 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7982 enum perf_bpf_event_type type) 7983 { 7984 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7985 char sym[KSYM_NAME_LEN]; 7986 int i; 7987 7988 if (prog->aux->func_cnt == 0) { 7989 bpf_get_prog_name(prog, sym); 7990 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7991 (u64)(unsigned long)prog->bpf_func, 7992 prog->jited_len, unregister, sym); 7993 } else { 7994 for (i = 0; i < prog->aux->func_cnt; i++) { 7995 struct bpf_prog *subprog = prog->aux->func[i]; 7996 7997 bpf_get_prog_name(subprog, sym); 7998 perf_event_ksymbol( 7999 PERF_RECORD_KSYMBOL_TYPE_BPF, 8000 (u64)(unsigned long)subprog->bpf_func, 8001 subprog->jited_len, unregister, sym); 8002 } 8003 } 8004 } 8005 8006 void perf_event_bpf_event(struct bpf_prog *prog, 8007 enum perf_bpf_event_type type, 8008 u16 flags) 8009 { 8010 struct perf_bpf_event bpf_event; 8011 8012 if (type <= PERF_BPF_EVENT_UNKNOWN || 8013 type >= PERF_BPF_EVENT_MAX) 8014 return; 8015 8016 switch (type) { 8017 case PERF_BPF_EVENT_PROG_LOAD: 8018 case PERF_BPF_EVENT_PROG_UNLOAD: 8019 if (atomic_read(&nr_ksymbol_events)) 8020 perf_event_bpf_emit_ksymbols(prog, type); 8021 break; 8022 default: 8023 break; 8024 } 8025 8026 if (!atomic_read(&nr_bpf_events)) 8027 return; 8028 8029 bpf_event = (struct perf_bpf_event){ 8030 .prog = prog, 8031 .event_id = { 8032 .header = { 8033 .type = PERF_RECORD_BPF_EVENT, 8034 .size = sizeof(bpf_event.event_id), 8035 }, 8036 .type = type, 8037 .flags = flags, 8038 .id = prog->aux->id, 8039 }, 8040 }; 8041 8042 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8043 8044 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8045 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8046 } 8047 8048 void perf_event_itrace_started(struct perf_event *event) 8049 { 8050 event->attach_state |= PERF_ATTACH_ITRACE; 8051 } 8052 8053 static void perf_log_itrace_start(struct perf_event *event) 8054 { 8055 struct perf_output_handle handle; 8056 struct perf_sample_data sample; 8057 struct perf_aux_event { 8058 struct perf_event_header header; 8059 u32 pid; 8060 u32 tid; 8061 } rec; 8062 int ret; 8063 8064 if (event->parent) 8065 event = event->parent; 8066 8067 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8068 event->attach_state & PERF_ATTACH_ITRACE) 8069 return; 8070 8071 rec.header.type = PERF_RECORD_ITRACE_START; 8072 rec.header.misc = 0; 8073 rec.header.size = sizeof(rec); 8074 rec.pid = perf_event_pid(event, current); 8075 rec.tid = perf_event_tid(event, current); 8076 8077 perf_event_header__init_id(&rec.header, &sample, event); 8078 ret = perf_output_begin(&handle, event, rec.header.size); 8079 8080 if (ret) 8081 return; 8082 8083 perf_output_put(&handle, rec); 8084 perf_event__output_id_sample(event, &handle, &sample); 8085 8086 perf_output_end(&handle); 8087 } 8088 8089 static int 8090 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8091 { 8092 struct hw_perf_event *hwc = &event->hw; 8093 int ret = 0; 8094 u64 seq; 8095 8096 seq = __this_cpu_read(perf_throttled_seq); 8097 if (seq != hwc->interrupts_seq) { 8098 hwc->interrupts_seq = seq; 8099 hwc->interrupts = 1; 8100 } else { 8101 hwc->interrupts++; 8102 if (unlikely(throttle 8103 && hwc->interrupts >= max_samples_per_tick)) { 8104 __this_cpu_inc(perf_throttled_count); 8105 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8106 hwc->interrupts = MAX_INTERRUPTS; 8107 perf_log_throttle(event, 0); 8108 ret = 1; 8109 } 8110 } 8111 8112 if (event->attr.freq) { 8113 u64 now = perf_clock(); 8114 s64 delta = now - hwc->freq_time_stamp; 8115 8116 hwc->freq_time_stamp = now; 8117 8118 if (delta > 0 && delta < 2*TICK_NSEC) 8119 perf_adjust_period(event, delta, hwc->last_period, true); 8120 } 8121 8122 return ret; 8123 } 8124 8125 int perf_event_account_interrupt(struct perf_event *event) 8126 { 8127 return __perf_event_account_interrupt(event, 1); 8128 } 8129 8130 /* 8131 * Generic event overflow handling, sampling. 8132 */ 8133 8134 static int __perf_event_overflow(struct perf_event *event, 8135 int throttle, struct perf_sample_data *data, 8136 struct pt_regs *regs) 8137 { 8138 int events = atomic_read(&event->event_limit); 8139 int ret = 0; 8140 8141 /* 8142 * Non-sampling counters might still use the PMI to fold short 8143 * hardware counters, ignore those. 8144 */ 8145 if (unlikely(!is_sampling_event(event))) 8146 return 0; 8147 8148 ret = __perf_event_account_interrupt(event, throttle); 8149 8150 /* 8151 * XXX event_limit might not quite work as expected on inherited 8152 * events 8153 */ 8154 8155 event->pending_kill = POLL_IN; 8156 if (events && atomic_dec_and_test(&event->event_limit)) { 8157 ret = 1; 8158 event->pending_kill = POLL_HUP; 8159 8160 perf_event_disable_inatomic(event); 8161 } 8162 8163 READ_ONCE(event->overflow_handler)(event, data, regs); 8164 8165 if (*perf_event_fasync(event) && event->pending_kill) { 8166 event->pending_wakeup = 1; 8167 irq_work_queue(&event->pending); 8168 } 8169 8170 return ret; 8171 } 8172 8173 int perf_event_overflow(struct perf_event *event, 8174 struct perf_sample_data *data, 8175 struct pt_regs *regs) 8176 { 8177 return __perf_event_overflow(event, 1, data, regs); 8178 } 8179 8180 /* 8181 * Generic software event infrastructure 8182 */ 8183 8184 struct swevent_htable { 8185 struct swevent_hlist *swevent_hlist; 8186 struct mutex hlist_mutex; 8187 int hlist_refcount; 8188 8189 /* Recursion avoidance in each contexts */ 8190 int recursion[PERF_NR_CONTEXTS]; 8191 }; 8192 8193 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8194 8195 /* 8196 * We directly increment event->count and keep a second value in 8197 * event->hw.period_left to count intervals. This period event 8198 * is kept in the range [-sample_period, 0] so that we can use the 8199 * sign as trigger. 8200 */ 8201 8202 u64 perf_swevent_set_period(struct perf_event *event) 8203 { 8204 struct hw_perf_event *hwc = &event->hw; 8205 u64 period = hwc->last_period; 8206 u64 nr, offset; 8207 s64 old, val; 8208 8209 hwc->last_period = hwc->sample_period; 8210 8211 again: 8212 old = val = local64_read(&hwc->period_left); 8213 if (val < 0) 8214 return 0; 8215 8216 nr = div64_u64(period + val, period); 8217 offset = nr * period; 8218 val -= offset; 8219 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8220 goto again; 8221 8222 return nr; 8223 } 8224 8225 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8226 struct perf_sample_data *data, 8227 struct pt_regs *regs) 8228 { 8229 struct hw_perf_event *hwc = &event->hw; 8230 int throttle = 0; 8231 8232 if (!overflow) 8233 overflow = perf_swevent_set_period(event); 8234 8235 if (hwc->interrupts == MAX_INTERRUPTS) 8236 return; 8237 8238 for (; overflow; overflow--) { 8239 if (__perf_event_overflow(event, throttle, 8240 data, regs)) { 8241 /* 8242 * We inhibit the overflow from happening when 8243 * hwc->interrupts == MAX_INTERRUPTS. 8244 */ 8245 break; 8246 } 8247 throttle = 1; 8248 } 8249 } 8250 8251 static void perf_swevent_event(struct perf_event *event, u64 nr, 8252 struct perf_sample_data *data, 8253 struct pt_regs *regs) 8254 { 8255 struct hw_perf_event *hwc = &event->hw; 8256 8257 local64_add(nr, &event->count); 8258 8259 if (!regs) 8260 return; 8261 8262 if (!is_sampling_event(event)) 8263 return; 8264 8265 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8266 data->period = nr; 8267 return perf_swevent_overflow(event, 1, data, regs); 8268 } else 8269 data->period = event->hw.last_period; 8270 8271 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8272 return perf_swevent_overflow(event, 1, data, regs); 8273 8274 if (local64_add_negative(nr, &hwc->period_left)) 8275 return; 8276 8277 perf_swevent_overflow(event, 0, data, regs); 8278 } 8279 8280 static int perf_exclude_event(struct perf_event *event, 8281 struct pt_regs *regs) 8282 { 8283 if (event->hw.state & PERF_HES_STOPPED) 8284 return 1; 8285 8286 if (regs) { 8287 if (event->attr.exclude_user && user_mode(regs)) 8288 return 1; 8289 8290 if (event->attr.exclude_kernel && !user_mode(regs)) 8291 return 1; 8292 } 8293 8294 return 0; 8295 } 8296 8297 static int perf_swevent_match(struct perf_event *event, 8298 enum perf_type_id type, 8299 u32 event_id, 8300 struct perf_sample_data *data, 8301 struct pt_regs *regs) 8302 { 8303 if (event->attr.type != type) 8304 return 0; 8305 8306 if (event->attr.config != event_id) 8307 return 0; 8308 8309 if (perf_exclude_event(event, regs)) 8310 return 0; 8311 8312 return 1; 8313 } 8314 8315 static inline u64 swevent_hash(u64 type, u32 event_id) 8316 { 8317 u64 val = event_id | (type << 32); 8318 8319 return hash_64(val, SWEVENT_HLIST_BITS); 8320 } 8321 8322 static inline struct hlist_head * 8323 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8324 { 8325 u64 hash = swevent_hash(type, event_id); 8326 8327 return &hlist->heads[hash]; 8328 } 8329 8330 /* For the read side: events when they trigger */ 8331 static inline struct hlist_head * 8332 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8333 { 8334 struct swevent_hlist *hlist; 8335 8336 hlist = rcu_dereference(swhash->swevent_hlist); 8337 if (!hlist) 8338 return NULL; 8339 8340 return __find_swevent_head(hlist, type, event_id); 8341 } 8342 8343 /* For the event head insertion and removal in the hlist */ 8344 static inline struct hlist_head * 8345 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8346 { 8347 struct swevent_hlist *hlist; 8348 u32 event_id = event->attr.config; 8349 u64 type = event->attr.type; 8350 8351 /* 8352 * Event scheduling is always serialized against hlist allocation 8353 * and release. Which makes the protected version suitable here. 8354 * The context lock guarantees that. 8355 */ 8356 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8357 lockdep_is_held(&event->ctx->lock)); 8358 if (!hlist) 8359 return NULL; 8360 8361 return __find_swevent_head(hlist, type, event_id); 8362 } 8363 8364 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8365 u64 nr, 8366 struct perf_sample_data *data, 8367 struct pt_regs *regs) 8368 { 8369 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8370 struct perf_event *event; 8371 struct hlist_head *head; 8372 8373 rcu_read_lock(); 8374 head = find_swevent_head_rcu(swhash, type, event_id); 8375 if (!head) 8376 goto end; 8377 8378 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8379 if (perf_swevent_match(event, type, event_id, data, regs)) 8380 perf_swevent_event(event, nr, data, regs); 8381 } 8382 end: 8383 rcu_read_unlock(); 8384 } 8385 8386 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8387 8388 int perf_swevent_get_recursion_context(void) 8389 { 8390 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8391 8392 return get_recursion_context(swhash->recursion); 8393 } 8394 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8395 8396 void perf_swevent_put_recursion_context(int rctx) 8397 { 8398 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8399 8400 put_recursion_context(swhash->recursion, rctx); 8401 } 8402 8403 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8404 { 8405 struct perf_sample_data data; 8406 8407 if (WARN_ON_ONCE(!regs)) 8408 return; 8409 8410 perf_sample_data_init(&data, addr, 0); 8411 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8412 } 8413 8414 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8415 { 8416 int rctx; 8417 8418 preempt_disable_notrace(); 8419 rctx = perf_swevent_get_recursion_context(); 8420 if (unlikely(rctx < 0)) 8421 goto fail; 8422 8423 ___perf_sw_event(event_id, nr, regs, addr); 8424 8425 perf_swevent_put_recursion_context(rctx); 8426 fail: 8427 preempt_enable_notrace(); 8428 } 8429 8430 static void perf_swevent_read(struct perf_event *event) 8431 { 8432 } 8433 8434 static int perf_swevent_add(struct perf_event *event, int flags) 8435 { 8436 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8437 struct hw_perf_event *hwc = &event->hw; 8438 struct hlist_head *head; 8439 8440 if (is_sampling_event(event)) { 8441 hwc->last_period = hwc->sample_period; 8442 perf_swevent_set_period(event); 8443 } 8444 8445 hwc->state = !(flags & PERF_EF_START); 8446 8447 head = find_swevent_head(swhash, event); 8448 if (WARN_ON_ONCE(!head)) 8449 return -EINVAL; 8450 8451 hlist_add_head_rcu(&event->hlist_entry, head); 8452 perf_event_update_userpage(event); 8453 8454 return 0; 8455 } 8456 8457 static void perf_swevent_del(struct perf_event *event, int flags) 8458 { 8459 hlist_del_rcu(&event->hlist_entry); 8460 } 8461 8462 static void perf_swevent_start(struct perf_event *event, int flags) 8463 { 8464 event->hw.state = 0; 8465 } 8466 8467 static void perf_swevent_stop(struct perf_event *event, int flags) 8468 { 8469 event->hw.state = PERF_HES_STOPPED; 8470 } 8471 8472 /* Deref the hlist from the update side */ 8473 static inline struct swevent_hlist * 8474 swevent_hlist_deref(struct swevent_htable *swhash) 8475 { 8476 return rcu_dereference_protected(swhash->swevent_hlist, 8477 lockdep_is_held(&swhash->hlist_mutex)); 8478 } 8479 8480 static void swevent_hlist_release(struct swevent_htable *swhash) 8481 { 8482 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8483 8484 if (!hlist) 8485 return; 8486 8487 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8488 kfree_rcu(hlist, rcu_head); 8489 } 8490 8491 static void swevent_hlist_put_cpu(int cpu) 8492 { 8493 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8494 8495 mutex_lock(&swhash->hlist_mutex); 8496 8497 if (!--swhash->hlist_refcount) 8498 swevent_hlist_release(swhash); 8499 8500 mutex_unlock(&swhash->hlist_mutex); 8501 } 8502 8503 static void swevent_hlist_put(void) 8504 { 8505 int cpu; 8506 8507 for_each_possible_cpu(cpu) 8508 swevent_hlist_put_cpu(cpu); 8509 } 8510 8511 static int swevent_hlist_get_cpu(int cpu) 8512 { 8513 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8514 int err = 0; 8515 8516 mutex_lock(&swhash->hlist_mutex); 8517 if (!swevent_hlist_deref(swhash) && 8518 cpumask_test_cpu(cpu, perf_online_mask)) { 8519 struct swevent_hlist *hlist; 8520 8521 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8522 if (!hlist) { 8523 err = -ENOMEM; 8524 goto exit; 8525 } 8526 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8527 } 8528 swhash->hlist_refcount++; 8529 exit: 8530 mutex_unlock(&swhash->hlist_mutex); 8531 8532 return err; 8533 } 8534 8535 static int swevent_hlist_get(void) 8536 { 8537 int err, cpu, failed_cpu; 8538 8539 mutex_lock(&pmus_lock); 8540 for_each_possible_cpu(cpu) { 8541 err = swevent_hlist_get_cpu(cpu); 8542 if (err) { 8543 failed_cpu = cpu; 8544 goto fail; 8545 } 8546 } 8547 mutex_unlock(&pmus_lock); 8548 return 0; 8549 fail: 8550 for_each_possible_cpu(cpu) { 8551 if (cpu == failed_cpu) 8552 break; 8553 swevent_hlist_put_cpu(cpu); 8554 } 8555 mutex_unlock(&pmus_lock); 8556 return err; 8557 } 8558 8559 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8560 8561 static void sw_perf_event_destroy(struct perf_event *event) 8562 { 8563 u64 event_id = event->attr.config; 8564 8565 WARN_ON(event->parent); 8566 8567 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8568 swevent_hlist_put(); 8569 } 8570 8571 static int perf_swevent_init(struct perf_event *event) 8572 { 8573 u64 event_id = event->attr.config; 8574 8575 if (event->attr.type != PERF_TYPE_SOFTWARE) 8576 return -ENOENT; 8577 8578 /* 8579 * no branch sampling for software events 8580 */ 8581 if (has_branch_stack(event)) 8582 return -EOPNOTSUPP; 8583 8584 switch (event_id) { 8585 case PERF_COUNT_SW_CPU_CLOCK: 8586 case PERF_COUNT_SW_TASK_CLOCK: 8587 return -ENOENT; 8588 8589 default: 8590 break; 8591 } 8592 8593 if (event_id >= PERF_COUNT_SW_MAX) 8594 return -ENOENT; 8595 8596 if (!event->parent) { 8597 int err; 8598 8599 err = swevent_hlist_get(); 8600 if (err) 8601 return err; 8602 8603 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8604 event->destroy = sw_perf_event_destroy; 8605 } 8606 8607 return 0; 8608 } 8609 8610 static struct pmu perf_swevent = { 8611 .task_ctx_nr = perf_sw_context, 8612 8613 .capabilities = PERF_PMU_CAP_NO_NMI, 8614 8615 .event_init = perf_swevent_init, 8616 .add = perf_swevent_add, 8617 .del = perf_swevent_del, 8618 .start = perf_swevent_start, 8619 .stop = perf_swevent_stop, 8620 .read = perf_swevent_read, 8621 }; 8622 8623 #ifdef CONFIG_EVENT_TRACING 8624 8625 static int perf_tp_filter_match(struct perf_event *event, 8626 struct perf_sample_data *data) 8627 { 8628 void *record = data->raw->frag.data; 8629 8630 /* only top level events have filters set */ 8631 if (event->parent) 8632 event = event->parent; 8633 8634 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8635 return 1; 8636 return 0; 8637 } 8638 8639 static int perf_tp_event_match(struct perf_event *event, 8640 struct perf_sample_data *data, 8641 struct pt_regs *regs) 8642 { 8643 if (event->hw.state & PERF_HES_STOPPED) 8644 return 0; 8645 /* 8646 * If exclude_kernel, only trace user-space tracepoints (uprobes) 8647 */ 8648 if (event->attr.exclude_kernel && !user_mode(regs)) 8649 return 0; 8650 8651 if (!perf_tp_filter_match(event, data)) 8652 return 0; 8653 8654 return 1; 8655 } 8656 8657 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8658 struct trace_event_call *call, u64 count, 8659 struct pt_regs *regs, struct hlist_head *head, 8660 struct task_struct *task) 8661 { 8662 if (bpf_prog_array_valid(call)) { 8663 *(struct pt_regs **)raw_data = regs; 8664 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8665 perf_swevent_put_recursion_context(rctx); 8666 return; 8667 } 8668 } 8669 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8670 rctx, task); 8671 } 8672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8673 8674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8675 struct pt_regs *regs, struct hlist_head *head, int rctx, 8676 struct task_struct *task) 8677 { 8678 struct perf_sample_data data; 8679 struct perf_event *event; 8680 8681 struct perf_raw_record raw = { 8682 .frag = { 8683 .size = entry_size, 8684 .data = record, 8685 }, 8686 }; 8687 8688 perf_sample_data_init(&data, 0, 0); 8689 data.raw = &raw; 8690 8691 perf_trace_buf_update(record, event_type); 8692 8693 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8694 if (perf_tp_event_match(event, &data, regs)) 8695 perf_swevent_event(event, count, &data, regs); 8696 } 8697 8698 /* 8699 * If we got specified a target task, also iterate its context and 8700 * deliver this event there too. 8701 */ 8702 if (task && task != current) { 8703 struct perf_event_context *ctx; 8704 struct trace_entry *entry = record; 8705 8706 rcu_read_lock(); 8707 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8708 if (!ctx) 8709 goto unlock; 8710 8711 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8712 if (event->cpu != smp_processor_id()) 8713 continue; 8714 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8715 continue; 8716 if (event->attr.config != entry->type) 8717 continue; 8718 if (perf_tp_event_match(event, &data, regs)) 8719 perf_swevent_event(event, count, &data, regs); 8720 } 8721 unlock: 8722 rcu_read_unlock(); 8723 } 8724 8725 perf_swevent_put_recursion_context(rctx); 8726 } 8727 EXPORT_SYMBOL_GPL(perf_tp_event); 8728 8729 static void tp_perf_event_destroy(struct perf_event *event) 8730 { 8731 perf_trace_destroy(event); 8732 } 8733 8734 static int perf_tp_event_init(struct perf_event *event) 8735 { 8736 int err; 8737 8738 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8739 return -ENOENT; 8740 8741 /* 8742 * no branch sampling for tracepoint events 8743 */ 8744 if (has_branch_stack(event)) 8745 return -EOPNOTSUPP; 8746 8747 err = perf_trace_init(event); 8748 if (err) 8749 return err; 8750 8751 event->destroy = tp_perf_event_destroy; 8752 8753 return 0; 8754 } 8755 8756 static struct pmu perf_tracepoint = { 8757 .task_ctx_nr = perf_sw_context, 8758 8759 .event_init = perf_tp_event_init, 8760 .add = perf_trace_add, 8761 .del = perf_trace_del, 8762 .start = perf_swevent_start, 8763 .stop = perf_swevent_stop, 8764 .read = perf_swevent_read, 8765 }; 8766 8767 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8768 /* 8769 * Flags in config, used by dynamic PMU kprobe and uprobe 8770 * The flags should match following PMU_FORMAT_ATTR(). 8771 * 8772 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8773 * if not set, create kprobe/uprobe 8774 * 8775 * The following values specify a reference counter (or semaphore in the 8776 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8777 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8778 * 8779 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8780 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8781 */ 8782 enum perf_probe_config { 8783 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8784 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8785 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8786 }; 8787 8788 PMU_FORMAT_ATTR(retprobe, "config:0"); 8789 #endif 8790 8791 #ifdef CONFIG_KPROBE_EVENTS 8792 static struct attribute *kprobe_attrs[] = { 8793 &format_attr_retprobe.attr, 8794 NULL, 8795 }; 8796 8797 static struct attribute_group kprobe_format_group = { 8798 .name = "format", 8799 .attrs = kprobe_attrs, 8800 }; 8801 8802 static const struct attribute_group *kprobe_attr_groups[] = { 8803 &kprobe_format_group, 8804 NULL, 8805 }; 8806 8807 static int perf_kprobe_event_init(struct perf_event *event); 8808 static struct pmu perf_kprobe = { 8809 .task_ctx_nr = perf_sw_context, 8810 .event_init = perf_kprobe_event_init, 8811 .add = perf_trace_add, 8812 .del = perf_trace_del, 8813 .start = perf_swevent_start, 8814 .stop = perf_swevent_stop, 8815 .read = perf_swevent_read, 8816 .attr_groups = kprobe_attr_groups, 8817 }; 8818 8819 static int perf_kprobe_event_init(struct perf_event *event) 8820 { 8821 int err; 8822 bool is_retprobe; 8823 8824 if (event->attr.type != perf_kprobe.type) 8825 return -ENOENT; 8826 8827 if (!capable(CAP_SYS_ADMIN)) 8828 return -EACCES; 8829 8830 /* 8831 * no branch sampling for probe events 8832 */ 8833 if (has_branch_stack(event)) 8834 return -EOPNOTSUPP; 8835 8836 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8837 err = perf_kprobe_init(event, is_retprobe); 8838 if (err) 8839 return err; 8840 8841 event->destroy = perf_kprobe_destroy; 8842 8843 return 0; 8844 } 8845 #endif /* CONFIG_KPROBE_EVENTS */ 8846 8847 #ifdef CONFIG_UPROBE_EVENTS 8848 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8849 8850 static struct attribute *uprobe_attrs[] = { 8851 &format_attr_retprobe.attr, 8852 &format_attr_ref_ctr_offset.attr, 8853 NULL, 8854 }; 8855 8856 static struct attribute_group uprobe_format_group = { 8857 .name = "format", 8858 .attrs = uprobe_attrs, 8859 }; 8860 8861 static const struct attribute_group *uprobe_attr_groups[] = { 8862 &uprobe_format_group, 8863 NULL, 8864 }; 8865 8866 static int perf_uprobe_event_init(struct perf_event *event); 8867 static struct pmu perf_uprobe = { 8868 .task_ctx_nr = perf_sw_context, 8869 .event_init = perf_uprobe_event_init, 8870 .add = perf_trace_add, 8871 .del = perf_trace_del, 8872 .start = perf_swevent_start, 8873 .stop = perf_swevent_stop, 8874 .read = perf_swevent_read, 8875 .attr_groups = uprobe_attr_groups, 8876 }; 8877 8878 static int perf_uprobe_event_init(struct perf_event *event) 8879 { 8880 int err; 8881 unsigned long ref_ctr_offset; 8882 bool is_retprobe; 8883 8884 if (event->attr.type != perf_uprobe.type) 8885 return -ENOENT; 8886 8887 if (!capable(CAP_SYS_ADMIN)) 8888 return -EACCES; 8889 8890 /* 8891 * no branch sampling for probe events 8892 */ 8893 if (has_branch_stack(event)) 8894 return -EOPNOTSUPP; 8895 8896 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8897 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8898 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8899 if (err) 8900 return err; 8901 8902 event->destroy = perf_uprobe_destroy; 8903 8904 return 0; 8905 } 8906 #endif /* CONFIG_UPROBE_EVENTS */ 8907 8908 static inline void perf_tp_register(void) 8909 { 8910 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8911 #ifdef CONFIG_KPROBE_EVENTS 8912 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8913 #endif 8914 #ifdef CONFIG_UPROBE_EVENTS 8915 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8916 #endif 8917 } 8918 8919 static void perf_event_free_filter(struct perf_event *event) 8920 { 8921 ftrace_profile_free_filter(event); 8922 } 8923 8924 #ifdef CONFIG_BPF_SYSCALL 8925 static void bpf_overflow_handler(struct perf_event *event, 8926 struct perf_sample_data *data, 8927 struct pt_regs *regs) 8928 { 8929 struct bpf_perf_event_data_kern ctx = { 8930 .data = data, 8931 .event = event, 8932 }; 8933 int ret = 0; 8934 8935 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8936 preempt_disable(); 8937 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8938 goto out; 8939 rcu_read_lock(); 8940 ret = BPF_PROG_RUN(event->prog, &ctx); 8941 rcu_read_unlock(); 8942 out: 8943 __this_cpu_dec(bpf_prog_active); 8944 preempt_enable(); 8945 if (!ret) 8946 return; 8947 8948 event->orig_overflow_handler(event, data, regs); 8949 } 8950 8951 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8952 { 8953 struct bpf_prog *prog; 8954 8955 if (event->overflow_handler_context) 8956 /* hw breakpoint or kernel counter */ 8957 return -EINVAL; 8958 8959 if (event->prog) 8960 return -EEXIST; 8961 8962 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8963 if (IS_ERR(prog)) 8964 return PTR_ERR(prog); 8965 8966 event->prog = prog; 8967 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8968 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8969 return 0; 8970 } 8971 8972 static void perf_event_free_bpf_handler(struct perf_event *event) 8973 { 8974 struct bpf_prog *prog = event->prog; 8975 8976 if (!prog) 8977 return; 8978 8979 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8980 event->prog = NULL; 8981 bpf_prog_put(prog); 8982 } 8983 #else 8984 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8985 { 8986 return -EOPNOTSUPP; 8987 } 8988 static void perf_event_free_bpf_handler(struct perf_event *event) 8989 { 8990 } 8991 #endif 8992 8993 /* 8994 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8995 * with perf_event_open() 8996 */ 8997 static inline bool perf_event_is_tracing(struct perf_event *event) 8998 { 8999 if (event->pmu == &perf_tracepoint) 9000 return true; 9001 #ifdef CONFIG_KPROBE_EVENTS 9002 if (event->pmu == &perf_kprobe) 9003 return true; 9004 #endif 9005 #ifdef CONFIG_UPROBE_EVENTS 9006 if (event->pmu == &perf_uprobe) 9007 return true; 9008 #endif 9009 return false; 9010 } 9011 9012 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9013 { 9014 bool is_kprobe, is_tracepoint, is_syscall_tp; 9015 struct bpf_prog *prog; 9016 int ret; 9017 9018 if (!perf_event_is_tracing(event)) 9019 return perf_event_set_bpf_handler(event, prog_fd); 9020 9021 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9022 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9023 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9024 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9025 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9026 return -EINVAL; 9027 9028 prog = bpf_prog_get(prog_fd); 9029 if (IS_ERR(prog)) 9030 return PTR_ERR(prog); 9031 9032 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9033 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9034 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9035 /* valid fd, but invalid bpf program type */ 9036 bpf_prog_put(prog); 9037 return -EINVAL; 9038 } 9039 9040 /* Kprobe override only works for kprobes, not uprobes. */ 9041 if (prog->kprobe_override && 9042 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9043 bpf_prog_put(prog); 9044 return -EINVAL; 9045 } 9046 9047 if (is_tracepoint || is_syscall_tp) { 9048 int off = trace_event_get_offsets(event->tp_event); 9049 9050 if (prog->aux->max_ctx_offset > off) { 9051 bpf_prog_put(prog); 9052 return -EACCES; 9053 } 9054 } 9055 9056 ret = perf_event_attach_bpf_prog(event, prog); 9057 if (ret) 9058 bpf_prog_put(prog); 9059 return ret; 9060 } 9061 9062 static void perf_event_free_bpf_prog(struct perf_event *event) 9063 { 9064 if (!perf_event_is_tracing(event)) { 9065 perf_event_free_bpf_handler(event); 9066 return; 9067 } 9068 perf_event_detach_bpf_prog(event); 9069 } 9070 9071 #else 9072 9073 static inline void perf_tp_register(void) 9074 { 9075 } 9076 9077 static void perf_event_free_filter(struct perf_event *event) 9078 { 9079 } 9080 9081 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9082 { 9083 return -ENOENT; 9084 } 9085 9086 static void perf_event_free_bpf_prog(struct perf_event *event) 9087 { 9088 } 9089 #endif /* CONFIG_EVENT_TRACING */ 9090 9091 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9092 void perf_bp_event(struct perf_event *bp, void *data) 9093 { 9094 struct perf_sample_data sample; 9095 struct pt_regs *regs = data; 9096 9097 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9098 9099 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9100 perf_swevent_event(bp, 1, &sample, regs); 9101 } 9102 #endif 9103 9104 /* 9105 * Allocate a new address filter 9106 */ 9107 static struct perf_addr_filter * 9108 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9109 { 9110 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9111 struct perf_addr_filter *filter; 9112 9113 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9114 if (!filter) 9115 return NULL; 9116 9117 INIT_LIST_HEAD(&filter->entry); 9118 list_add_tail(&filter->entry, filters); 9119 9120 return filter; 9121 } 9122 9123 static void free_filters_list(struct list_head *filters) 9124 { 9125 struct perf_addr_filter *filter, *iter; 9126 9127 list_for_each_entry_safe(filter, iter, filters, entry) { 9128 path_put(&filter->path); 9129 list_del(&filter->entry); 9130 kfree(filter); 9131 } 9132 } 9133 9134 /* 9135 * Free existing address filters and optionally install new ones 9136 */ 9137 static void perf_addr_filters_splice(struct perf_event *event, 9138 struct list_head *head) 9139 { 9140 unsigned long flags; 9141 LIST_HEAD(list); 9142 9143 if (!has_addr_filter(event)) 9144 return; 9145 9146 /* don't bother with children, they don't have their own filters */ 9147 if (event->parent) 9148 return; 9149 9150 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9151 9152 list_splice_init(&event->addr_filters.list, &list); 9153 if (head) 9154 list_splice(head, &event->addr_filters.list); 9155 9156 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9157 9158 free_filters_list(&list); 9159 } 9160 9161 /* 9162 * Scan through mm's vmas and see if one of them matches the 9163 * @filter; if so, adjust filter's address range. 9164 * Called with mm::mmap_sem down for reading. 9165 */ 9166 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9167 struct mm_struct *mm, 9168 struct perf_addr_filter_range *fr) 9169 { 9170 struct vm_area_struct *vma; 9171 9172 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9173 if (!vma->vm_file) 9174 continue; 9175 9176 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9177 return; 9178 } 9179 } 9180 9181 /* 9182 * Update event's address range filters based on the 9183 * task's existing mappings, if any. 9184 */ 9185 static void perf_event_addr_filters_apply(struct perf_event *event) 9186 { 9187 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9188 struct task_struct *task = READ_ONCE(event->ctx->task); 9189 struct perf_addr_filter *filter; 9190 struct mm_struct *mm = NULL; 9191 unsigned int count = 0; 9192 unsigned long flags; 9193 9194 /* 9195 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9196 * will stop on the parent's child_mutex that our caller is also holding 9197 */ 9198 if (task == TASK_TOMBSTONE) 9199 return; 9200 9201 if (ifh->nr_file_filters) { 9202 mm = get_task_mm(event->ctx->task); 9203 if (!mm) 9204 goto restart; 9205 9206 down_read(&mm->mmap_sem); 9207 } 9208 9209 raw_spin_lock_irqsave(&ifh->lock, flags); 9210 list_for_each_entry(filter, &ifh->list, entry) { 9211 if (filter->path.dentry) { 9212 /* 9213 * Adjust base offset if the filter is associated to a 9214 * binary that needs to be mapped: 9215 */ 9216 event->addr_filter_ranges[count].start = 0; 9217 event->addr_filter_ranges[count].size = 0; 9218 9219 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9220 } else { 9221 event->addr_filter_ranges[count].start = filter->offset; 9222 event->addr_filter_ranges[count].size = filter->size; 9223 } 9224 9225 count++; 9226 } 9227 9228 event->addr_filters_gen++; 9229 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9230 9231 if (ifh->nr_file_filters) { 9232 up_read(&mm->mmap_sem); 9233 9234 mmput(mm); 9235 } 9236 9237 restart: 9238 perf_event_stop(event, 1); 9239 } 9240 9241 /* 9242 * Address range filtering: limiting the data to certain 9243 * instruction address ranges. Filters are ioctl()ed to us from 9244 * userspace as ascii strings. 9245 * 9246 * Filter string format: 9247 * 9248 * ACTION RANGE_SPEC 9249 * where ACTION is one of the 9250 * * "filter": limit the trace to this region 9251 * * "start": start tracing from this address 9252 * * "stop": stop tracing at this address/region; 9253 * RANGE_SPEC is 9254 * * for kernel addresses: <start address>[/<size>] 9255 * * for object files: <start address>[/<size>]@</path/to/object/file> 9256 * 9257 * if <size> is not specified or is zero, the range is treated as a single 9258 * address; not valid for ACTION=="filter". 9259 */ 9260 enum { 9261 IF_ACT_NONE = -1, 9262 IF_ACT_FILTER, 9263 IF_ACT_START, 9264 IF_ACT_STOP, 9265 IF_SRC_FILE, 9266 IF_SRC_KERNEL, 9267 IF_SRC_FILEADDR, 9268 IF_SRC_KERNELADDR, 9269 }; 9270 9271 enum { 9272 IF_STATE_ACTION = 0, 9273 IF_STATE_SOURCE, 9274 IF_STATE_END, 9275 }; 9276 9277 static const match_table_t if_tokens = { 9278 { IF_ACT_FILTER, "filter" }, 9279 { IF_ACT_START, "start" }, 9280 { IF_ACT_STOP, "stop" }, 9281 { IF_SRC_FILE, "%u/%u@%s" }, 9282 { IF_SRC_KERNEL, "%u/%u" }, 9283 { IF_SRC_FILEADDR, "%u@%s" }, 9284 { IF_SRC_KERNELADDR, "%u" }, 9285 { IF_ACT_NONE, NULL }, 9286 }; 9287 9288 /* 9289 * Address filter string parser 9290 */ 9291 static int 9292 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9293 struct list_head *filters) 9294 { 9295 struct perf_addr_filter *filter = NULL; 9296 char *start, *orig, *filename = NULL; 9297 substring_t args[MAX_OPT_ARGS]; 9298 int state = IF_STATE_ACTION, token; 9299 unsigned int kernel = 0; 9300 int ret = -EINVAL; 9301 9302 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9303 if (!fstr) 9304 return -ENOMEM; 9305 9306 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9307 static const enum perf_addr_filter_action_t actions[] = { 9308 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9309 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9310 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9311 }; 9312 ret = -EINVAL; 9313 9314 if (!*start) 9315 continue; 9316 9317 /* filter definition begins */ 9318 if (state == IF_STATE_ACTION) { 9319 filter = perf_addr_filter_new(event, filters); 9320 if (!filter) 9321 goto fail; 9322 } 9323 9324 token = match_token(start, if_tokens, args); 9325 switch (token) { 9326 case IF_ACT_FILTER: 9327 case IF_ACT_START: 9328 case IF_ACT_STOP: 9329 if (state != IF_STATE_ACTION) 9330 goto fail; 9331 9332 filter->action = actions[token]; 9333 state = IF_STATE_SOURCE; 9334 break; 9335 9336 case IF_SRC_KERNELADDR: 9337 case IF_SRC_KERNEL: 9338 kernel = 1; 9339 /* fall through */ 9340 9341 case IF_SRC_FILEADDR: 9342 case IF_SRC_FILE: 9343 if (state != IF_STATE_SOURCE) 9344 goto fail; 9345 9346 *args[0].to = 0; 9347 ret = kstrtoul(args[0].from, 0, &filter->offset); 9348 if (ret) 9349 goto fail; 9350 9351 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9352 *args[1].to = 0; 9353 ret = kstrtoul(args[1].from, 0, &filter->size); 9354 if (ret) 9355 goto fail; 9356 } 9357 9358 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9359 int fpos = token == IF_SRC_FILE ? 2 : 1; 9360 9361 filename = match_strdup(&args[fpos]); 9362 if (!filename) { 9363 ret = -ENOMEM; 9364 goto fail; 9365 } 9366 } 9367 9368 state = IF_STATE_END; 9369 break; 9370 9371 default: 9372 goto fail; 9373 } 9374 9375 /* 9376 * Filter definition is fully parsed, validate and install it. 9377 * Make sure that it doesn't contradict itself or the event's 9378 * attribute. 9379 */ 9380 if (state == IF_STATE_END) { 9381 ret = -EINVAL; 9382 if (kernel && event->attr.exclude_kernel) 9383 goto fail; 9384 9385 /* 9386 * ACTION "filter" must have a non-zero length region 9387 * specified. 9388 */ 9389 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9390 !filter->size) 9391 goto fail; 9392 9393 if (!kernel) { 9394 if (!filename) 9395 goto fail; 9396 9397 /* 9398 * For now, we only support file-based filters 9399 * in per-task events; doing so for CPU-wide 9400 * events requires additional context switching 9401 * trickery, since same object code will be 9402 * mapped at different virtual addresses in 9403 * different processes. 9404 */ 9405 ret = -EOPNOTSUPP; 9406 if (!event->ctx->task) 9407 goto fail_free_name; 9408 9409 /* look up the path and grab its inode */ 9410 ret = kern_path(filename, LOOKUP_FOLLOW, 9411 &filter->path); 9412 if (ret) 9413 goto fail_free_name; 9414 9415 kfree(filename); 9416 filename = NULL; 9417 9418 ret = -EINVAL; 9419 if (!filter->path.dentry || 9420 !S_ISREG(d_inode(filter->path.dentry) 9421 ->i_mode)) 9422 goto fail; 9423 9424 event->addr_filters.nr_file_filters++; 9425 } 9426 9427 /* ready to consume more filters */ 9428 state = IF_STATE_ACTION; 9429 filter = NULL; 9430 } 9431 } 9432 9433 if (state != IF_STATE_ACTION) 9434 goto fail; 9435 9436 kfree(orig); 9437 9438 return 0; 9439 9440 fail_free_name: 9441 kfree(filename); 9442 fail: 9443 free_filters_list(filters); 9444 kfree(orig); 9445 9446 return ret; 9447 } 9448 9449 static int 9450 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9451 { 9452 LIST_HEAD(filters); 9453 int ret; 9454 9455 /* 9456 * Since this is called in perf_ioctl() path, we're already holding 9457 * ctx::mutex. 9458 */ 9459 lockdep_assert_held(&event->ctx->mutex); 9460 9461 if (WARN_ON_ONCE(event->parent)) 9462 return -EINVAL; 9463 9464 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9465 if (ret) 9466 goto fail_clear_files; 9467 9468 ret = event->pmu->addr_filters_validate(&filters); 9469 if (ret) 9470 goto fail_free_filters; 9471 9472 /* remove existing filters, if any */ 9473 perf_addr_filters_splice(event, &filters); 9474 9475 /* install new filters */ 9476 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9477 9478 return ret; 9479 9480 fail_free_filters: 9481 free_filters_list(&filters); 9482 9483 fail_clear_files: 9484 event->addr_filters.nr_file_filters = 0; 9485 9486 return ret; 9487 } 9488 9489 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9490 { 9491 int ret = -EINVAL; 9492 char *filter_str; 9493 9494 filter_str = strndup_user(arg, PAGE_SIZE); 9495 if (IS_ERR(filter_str)) 9496 return PTR_ERR(filter_str); 9497 9498 #ifdef CONFIG_EVENT_TRACING 9499 if (perf_event_is_tracing(event)) { 9500 struct perf_event_context *ctx = event->ctx; 9501 9502 /* 9503 * Beware, here be dragons!! 9504 * 9505 * the tracepoint muck will deadlock against ctx->mutex, but 9506 * the tracepoint stuff does not actually need it. So 9507 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9508 * already have a reference on ctx. 9509 * 9510 * This can result in event getting moved to a different ctx, 9511 * but that does not affect the tracepoint state. 9512 */ 9513 mutex_unlock(&ctx->mutex); 9514 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9515 mutex_lock(&ctx->mutex); 9516 } else 9517 #endif 9518 if (has_addr_filter(event)) 9519 ret = perf_event_set_addr_filter(event, filter_str); 9520 9521 kfree(filter_str); 9522 return ret; 9523 } 9524 9525 /* 9526 * hrtimer based swevent callback 9527 */ 9528 9529 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9530 { 9531 enum hrtimer_restart ret = HRTIMER_RESTART; 9532 struct perf_sample_data data; 9533 struct pt_regs *regs; 9534 struct perf_event *event; 9535 u64 period; 9536 9537 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9538 9539 if (event->state != PERF_EVENT_STATE_ACTIVE) 9540 return HRTIMER_NORESTART; 9541 9542 event->pmu->read(event); 9543 9544 perf_sample_data_init(&data, 0, event->hw.last_period); 9545 regs = get_irq_regs(); 9546 9547 if (regs && !perf_exclude_event(event, regs)) { 9548 if (!(event->attr.exclude_idle && is_idle_task(current))) 9549 if (__perf_event_overflow(event, 1, &data, regs)) 9550 ret = HRTIMER_NORESTART; 9551 } 9552 9553 period = max_t(u64, 10000, event->hw.sample_period); 9554 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9555 9556 return ret; 9557 } 9558 9559 static void perf_swevent_start_hrtimer(struct perf_event *event) 9560 { 9561 struct hw_perf_event *hwc = &event->hw; 9562 s64 period; 9563 9564 if (!is_sampling_event(event)) 9565 return; 9566 9567 period = local64_read(&hwc->period_left); 9568 if (period) { 9569 if (period < 0) 9570 period = 10000; 9571 9572 local64_set(&hwc->period_left, 0); 9573 } else { 9574 period = max_t(u64, 10000, hwc->sample_period); 9575 } 9576 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9577 HRTIMER_MODE_REL_PINNED_HARD); 9578 } 9579 9580 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9581 { 9582 struct hw_perf_event *hwc = &event->hw; 9583 9584 if (is_sampling_event(event)) { 9585 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9586 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9587 9588 hrtimer_cancel(&hwc->hrtimer); 9589 } 9590 } 9591 9592 static void perf_swevent_init_hrtimer(struct perf_event *event) 9593 { 9594 struct hw_perf_event *hwc = &event->hw; 9595 9596 if (!is_sampling_event(event)) 9597 return; 9598 9599 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 9600 hwc->hrtimer.function = perf_swevent_hrtimer; 9601 9602 /* 9603 * Since hrtimers have a fixed rate, we can do a static freq->period 9604 * mapping and avoid the whole period adjust feedback stuff. 9605 */ 9606 if (event->attr.freq) { 9607 long freq = event->attr.sample_freq; 9608 9609 event->attr.sample_period = NSEC_PER_SEC / freq; 9610 hwc->sample_period = event->attr.sample_period; 9611 local64_set(&hwc->period_left, hwc->sample_period); 9612 hwc->last_period = hwc->sample_period; 9613 event->attr.freq = 0; 9614 } 9615 } 9616 9617 /* 9618 * Software event: cpu wall time clock 9619 */ 9620 9621 static void cpu_clock_event_update(struct perf_event *event) 9622 { 9623 s64 prev; 9624 u64 now; 9625 9626 now = local_clock(); 9627 prev = local64_xchg(&event->hw.prev_count, now); 9628 local64_add(now - prev, &event->count); 9629 } 9630 9631 static void cpu_clock_event_start(struct perf_event *event, int flags) 9632 { 9633 local64_set(&event->hw.prev_count, local_clock()); 9634 perf_swevent_start_hrtimer(event); 9635 } 9636 9637 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9638 { 9639 perf_swevent_cancel_hrtimer(event); 9640 cpu_clock_event_update(event); 9641 } 9642 9643 static int cpu_clock_event_add(struct perf_event *event, int flags) 9644 { 9645 if (flags & PERF_EF_START) 9646 cpu_clock_event_start(event, flags); 9647 perf_event_update_userpage(event); 9648 9649 return 0; 9650 } 9651 9652 static void cpu_clock_event_del(struct perf_event *event, int flags) 9653 { 9654 cpu_clock_event_stop(event, flags); 9655 } 9656 9657 static void cpu_clock_event_read(struct perf_event *event) 9658 { 9659 cpu_clock_event_update(event); 9660 } 9661 9662 static int cpu_clock_event_init(struct perf_event *event) 9663 { 9664 if (event->attr.type != PERF_TYPE_SOFTWARE) 9665 return -ENOENT; 9666 9667 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9668 return -ENOENT; 9669 9670 /* 9671 * no branch sampling for software events 9672 */ 9673 if (has_branch_stack(event)) 9674 return -EOPNOTSUPP; 9675 9676 perf_swevent_init_hrtimer(event); 9677 9678 return 0; 9679 } 9680 9681 static struct pmu perf_cpu_clock = { 9682 .task_ctx_nr = perf_sw_context, 9683 9684 .capabilities = PERF_PMU_CAP_NO_NMI, 9685 9686 .event_init = cpu_clock_event_init, 9687 .add = cpu_clock_event_add, 9688 .del = cpu_clock_event_del, 9689 .start = cpu_clock_event_start, 9690 .stop = cpu_clock_event_stop, 9691 .read = cpu_clock_event_read, 9692 }; 9693 9694 /* 9695 * Software event: task time clock 9696 */ 9697 9698 static void task_clock_event_update(struct perf_event *event, u64 now) 9699 { 9700 u64 prev; 9701 s64 delta; 9702 9703 prev = local64_xchg(&event->hw.prev_count, now); 9704 delta = now - prev; 9705 local64_add(delta, &event->count); 9706 } 9707 9708 static void task_clock_event_start(struct perf_event *event, int flags) 9709 { 9710 local64_set(&event->hw.prev_count, event->ctx->time); 9711 perf_swevent_start_hrtimer(event); 9712 } 9713 9714 static void task_clock_event_stop(struct perf_event *event, int flags) 9715 { 9716 perf_swevent_cancel_hrtimer(event); 9717 task_clock_event_update(event, event->ctx->time); 9718 } 9719 9720 static int task_clock_event_add(struct perf_event *event, int flags) 9721 { 9722 if (flags & PERF_EF_START) 9723 task_clock_event_start(event, flags); 9724 perf_event_update_userpage(event); 9725 9726 return 0; 9727 } 9728 9729 static void task_clock_event_del(struct perf_event *event, int flags) 9730 { 9731 task_clock_event_stop(event, PERF_EF_UPDATE); 9732 } 9733 9734 static void task_clock_event_read(struct perf_event *event) 9735 { 9736 u64 now = perf_clock(); 9737 u64 delta = now - event->ctx->timestamp; 9738 u64 time = event->ctx->time + delta; 9739 9740 task_clock_event_update(event, time); 9741 } 9742 9743 static int task_clock_event_init(struct perf_event *event) 9744 { 9745 if (event->attr.type != PERF_TYPE_SOFTWARE) 9746 return -ENOENT; 9747 9748 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9749 return -ENOENT; 9750 9751 /* 9752 * no branch sampling for software events 9753 */ 9754 if (has_branch_stack(event)) 9755 return -EOPNOTSUPP; 9756 9757 perf_swevent_init_hrtimer(event); 9758 9759 return 0; 9760 } 9761 9762 static struct pmu perf_task_clock = { 9763 .task_ctx_nr = perf_sw_context, 9764 9765 .capabilities = PERF_PMU_CAP_NO_NMI, 9766 9767 .event_init = task_clock_event_init, 9768 .add = task_clock_event_add, 9769 .del = task_clock_event_del, 9770 .start = task_clock_event_start, 9771 .stop = task_clock_event_stop, 9772 .read = task_clock_event_read, 9773 }; 9774 9775 static void perf_pmu_nop_void(struct pmu *pmu) 9776 { 9777 } 9778 9779 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9780 { 9781 } 9782 9783 static int perf_pmu_nop_int(struct pmu *pmu) 9784 { 9785 return 0; 9786 } 9787 9788 static int perf_event_nop_int(struct perf_event *event, u64 value) 9789 { 9790 return 0; 9791 } 9792 9793 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9794 9795 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9796 { 9797 __this_cpu_write(nop_txn_flags, flags); 9798 9799 if (flags & ~PERF_PMU_TXN_ADD) 9800 return; 9801 9802 perf_pmu_disable(pmu); 9803 } 9804 9805 static int perf_pmu_commit_txn(struct pmu *pmu) 9806 { 9807 unsigned int flags = __this_cpu_read(nop_txn_flags); 9808 9809 __this_cpu_write(nop_txn_flags, 0); 9810 9811 if (flags & ~PERF_PMU_TXN_ADD) 9812 return 0; 9813 9814 perf_pmu_enable(pmu); 9815 return 0; 9816 } 9817 9818 static void perf_pmu_cancel_txn(struct pmu *pmu) 9819 { 9820 unsigned int flags = __this_cpu_read(nop_txn_flags); 9821 9822 __this_cpu_write(nop_txn_flags, 0); 9823 9824 if (flags & ~PERF_PMU_TXN_ADD) 9825 return; 9826 9827 perf_pmu_enable(pmu); 9828 } 9829 9830 static int perf_event_idx_default(struct perf_event *event) 9831 { 9832 return 0; 9833 } 9834 9835 /* 9836 * Ensures all contexts with the same task_ctx_nr have the same 9837 * pmu_cpu_context too. 9838 */ 9839 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9840 { 9841 struct pmu *pmu; 9842 9843 if (ctxn < 0) 9844 return NULL; 9845 9846 list_for_each_entry(pmu, &pmus, entry) { 9847 if (pmu->task_ctx_nr == ctxn) 9848 return pmu->pmu_cpu_context; 9849 } 9850 9851 return NULL; 9852 } 9853 9854 static void free_pmu_context(struct pmu *pmu) 9855 { 9856 /* 9857 * Static contexts such as perf_sw_context have a global lifetime 9858 * and may be shared between different PMUs. Avoid freeing them 9859 * when a single PMU is going away. 9860 */ 9861 if (pmu->task_ctx_nr > perf_invalid_context) 9862 return; 9863 9864 free_percpu(pmu->pmu_cpu_context); 9865 } 9866 9867 /* 9868 * Let userspace know that this PMU supports address range filtering: 9869 */ 9870 static ssize_t nr_addr_filters_show(struct device *dev, 9871 struct device_attribute *attr, 9872 char *page) 9873 { 9874 struct pmu *pmu = dev_get_drvdata(dev); 9875 9876 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9877 } 9878 DEVICE_ATTR_RO(nr_addr_filters); 9879 9880 static struct idr pmu_idr; 9881 9882 static ssize_t 9883 type_show(struct device *dev, struct device_attribute *attr, char *page) 9884 { 9885 struct pmu *pmu = dev_get_drvdata(dev); 9886 9887 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9888 } 9889 static DEVICE_ATTR_RO(type); 9890 9891 static ssize_t 9892 perf_event_mux_interval_ms_show(struct device *dev, 9893 struct device_attribute *attr, 9894 char *page) 9895 { 9896 struct pmu *pmu = dev_get_drvdata(dev); 9897 9898 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9899 } 9900 9901 static DEFINE_MUTEX(mux_interval_mutex); 9902 9903 static ssize_t 9904 perf_event_mux_interval_ms_store(struct device *dev, 9905 struct device_attribute *attr, 9906 const char *buf, size_t count) 9907 { 9908 struct pmu *pmu = dev_get_drvdata(dev); 9909 int timer, cpu, ret; 9910 9911 ret = kstrtoint(buf, 0, &timer); 9912 if (ret) 9913 return ret; 9914 9915 if (timer < 1) 9916 return -EINVAL; 9917 9918 /* same value, noting to do */ 9919 if (timer == pmu->hrtimer_interval_ms) 9920 return count; 9921 9922 mutex_lock(&mux_interval_mutex); 9923 pmu->hrtimer_interval_ms = timer; 9924 9925 /* update all cpuctx for this PMU */ 9926 cpus_read_lock(); 9927 for_each_online_cpu(cpu) { 9928 struct perf_cpu_context *cpuctx; 9929 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9930 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9931 9932 cpu_function_call(cpu, 9933 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9934 } 9935 cpus_read_unlock(); 9936 mutex_unlock(&mux_interval_mutex); 9937 9938 return count; 9939 } 9940 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9941 9942 static struct attribute *pmu_dev_attrs[] = { 9943 &dev_attr_type.attr, 9944 &dev_attr_perf_event_mux_interval_ms.attr, 9945 NULL, 9946 }; 9947 ATTRIBUTE_GROUPS(pmu_dev); 9948 9949 static int pmu_bus_running; 9950 static struct bus_type pmu_bus = { 9951 .name = "event_source", 9952 .dev_groups = pmu_dev_groups, 9953 }; 9954 9955 static void pmu_dev_release(struct device *dev) 9956 { 9957 kfree(dev); 9958 } 9959 9960 static int pmu_dev_alloc(struct pmu *pmu) 9961 { 9962 int ret = -ENOMEM; 9963 9964 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9965 if (!pmu->dev) 9966 goto out; 9967 9968 pmu->dev->groups = pmu->attr_groups; 9969 device_initialize(pmu->dev); 9970 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9971 if (ret) 9972 goto free_dev; 9973 9974 dev_set_drvdata(pmu->dev, pmu); 9975 pmu->dev->bus = &pmu_bus; 9976 pmu->dev->release = pmu_dev_release; 9977 ret = device_add(pmu->dev); 9978 if (ret) 9979 goto free_dev; 9980 9981 /* For PMUs with address filters, throw in an extra attribute: */ 9982 if (pmu->nr_addr_filters) 9983 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9984 9985 if (ret) 9986 goto del_dev; 9987 9988 if (pmu->attr_update) 9989 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 9990 9991 if (ret) 9992 goto del_dev; 9993 9994 out: 9995 return ret; 9996 9997 del_dev: 9998 device_del(pmu->dev); 9999 10000 free_dev: 10001 put_device(pmu->dev); 10002 goto out; 10003 } 10004 10005 static struct lock_class_key cpuctx_mutex; 10006 static struct lock_class_key cpuctx_lock; 10007 10008 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10009 { 10010 int cpu, ret; 10011 10012 mutex_lock(&pmus_lock); 10013 ret = -ENOMEM; 10014 pmu->pmu_disable_count = alloc_percpu(int); 10015 if (!pmu->pmu_disable_count) 10016 goto unlock; 10017 10018 pmu->type = -1; 10019 if (!name) 10020 goto skip_type; 10021 pmu->name = name; 10022 10023 if (type < 0) { 10024 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 10025 if (type < 0) { 10026 ret = type; 10027 goto free_pdc; 10028 } 10029 } 10030 pmu->type = type; 10031 10032 if (pmu_bus_running) { 10033 ret = pmu_dev_alloc(pmu); 10034 if (ret) 10035 goto free_idr; 10036 } 10037 10038 skip_type: 10039 if (pmu->task_ctx_nr == perf_hw_context) { 10040 static int hw_context_taken = 0; 10041 10042 /* 10043 * Other than systems with heterogeneous CPUs, it never makes 10044 * sense for two PMUs to share perf_hw_context. PMUs which are 10045 * uncore must use perf_invalid_context. 10046 */ 10047 if (WARN_ON_ONCE(hw_context_taken && 10048 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10049 pmu->task_ctx_nr = perf_invalid_context; 10050 10051 hw_context_taken = 1; 10052 } 10053 10054 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10055 if (pmu->pmu_cpu_context) 10056 goto got_cpu_context; 10057 10058 ret = -ENOMEM; 10059 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10060 if (!pmu->pmu_cpu_context) 10061 goto free_dev; 10062 10063 for_each_possible_cpu(cpu) { 10064 struct perf_cpu_context *cpuctx; 10065 10066 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10067 __perf_event_init_context(&cpuctx->ctx); 10068 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10069 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10070 cpuctx->ctx.pmu = pmu; 10071 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10072 10073 __perf_mux_hrtimer_init(cpuctx, cpu); 10074 } 10075 10076 got_cpu_context: 10077 if (!pmu->start_txn) { 10078 if (pmu->pmu_enable) { 10079 /* 10080 * If we have pmu_enable/pmu_disable calls, install 10081 * transaction stubs that use that to try and batch 10082 * hardware accesses. 10083 */ 10084 pmu->start_txn = perf_pmu_start_txn; 10085 pmu->commit_txn = perf_pmu_commit_txn; 10086 pmu->cancel_txn = perf_pmu_cancel_txn; 10087 } else { 10088 pmu->start_txn = perf_pmu_nop_txn; 10089 pmu->commit_txn = perf_pmu_nop_int; 10090 pmu->cancel_txn = perf_pmu_nop_void; 10091 } 10092 } 10093 10094 if (!pmu->pmu_enable) { 10095 pmu->pmu_enable = perf_pmu_nop_void; 10096 pmu->pmu_disable = perf_pmu_nop_void; 10097 } 10098 10099 if (!pmu->check_period) 10100 pmu->check_period = perf_event_nop_int; 10101 10102 if (!pmu->event_idx) 10103 pmu->event_idx = perf_event_idx_default; 10104 10105 list_add_rcu(&pmu->entry, &pmus); 10106 atomic_set(&pmu->exclusive_cnt, 0); 10107 ret = 0; 10108 unlock: 10109 mutex_unlock(&pmus_lock); 10110 10111 return ret; 10112 10113 free_dev: 10114 device_del(pmu->dev); 10115 put_device(pmu->dev); 10116 10117 free_idr: 10118 if (pmu->type >= PERF_TYPE_MAX) 10119 idr_remove(&pmu_idr, pmu->type); 10120 10121 free_pdc: 10122 free_percpu(pmu->pmu_disable_count); 10123 goto unlock; 10124 } 10125 EXPORT_SYMBOL_GPL(perf_pmu_register); 10126 10127 void perf_pmu_unregister(struct pmu *pmu) 10128 { 10129 mutex_lock(&pmus_lock); 10130 list_del_rcu(&pmu->entry); 10131 10132 /* 10133 * We dereference the pmu list under both SRCU and regular RCU, so 10134 * synchronize against both of those. 10135 */ 10136 synchronize_srcu(&pmus_srcu); 10137 synchronize_rcu(); 10138 10139 free_percpu(pmu->pmu_disable_count); 10140 if (pmu->type >= PERF_TYPE_MAX) 10141 idr_remove(&pmu_idr, pmu->type); 10142 if (pmu_bus_running) { 10143 if (pmu->nr_addr_filters) 10144 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10145 device_del(pmu->dev); 10146 put_device(pmu->dev); 10147 } 10148 free_pmu_context(pmu); 10149 mutex_unlock(&pmus_lock); 10150 } 10151 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10152 10153 static inline bool has_extended_regs(struct perf_event *event) 10154 { 10155 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10156 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10157 } 10158 10159 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10160 { 10161 struct perf_event_context *ctx = NULL; 10162 int ret; 10163 10164 if (!try_module_get(pmu->module)) 10165 return -ENODEV; 10166 10167 /* 10168 * A number of pmu->event_init() methods iterate the sibling_list to, 10169 * for example, validate if the group fits on the PMU. Therefore, 10170 * if this is a sibling event, acquire the ctx->mutex to protect 10171 * the sibling_list. 10172 */ 10173 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10174 /* 10175 * This ctx->mutex can nest when we're called through 10176 * inheritance. See the perf_event_ctx_lock_nested() comment. 10177 */ 10178 ctx = perf_event_ctx_lock_nested(event->group_leader, 10179 SINGLE_DEPTH_NESTING); 10180 BUG_ON(!ctx); 10181 } 10182 10183 event->pmu = pmu; 10184 ret = pmu->event_init(event); 10185 10186 if (ctx) 10187 perf_event_ctx_unlock(event->group_leader, ctx); 10188 10189 if (!ret) { 10190 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10191 has_extended_regs(event)) 10192 ret = -EOPNOTSUPP; 10193 10194 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10195 event_has_any_exclude_flag(event)) 10196 ret = -EINVAL; 10197 10198 if (ret && event->destroy) 10199 event->destroy(event); 10200 } 10201 10202 if (ret) 10203 module_put(pmu->module); 10204 10205 return ret; 10206 } 10207 10208 static struct pmu *perf_init_event(struct perf_event *event) 10209 { 10210 struct pmu *pmu; 10211 int idx; 10212 int ret; 10213 10214 idx = srcu_read_lock(&pmus_srcu); 10215 10216 /* Try parent's PMU first: */ 10217 if (event->parent && event->parent->pmu) { 10218 pmu = event->parent->pmu; 10219 ret = perf_try_init_event(pmu, event); 10220 if (!ret) 10221 goto unlock; 10222 } 10223 10224 rcu_read_lock(); 10225 pmu = idr_find(&pmu_idr, event->attr.type); 10226 rcu_read_unlock(); 10227 if (pmu) { 10228 ret = perf_try_init_event(pmu, event); 10229 if (ret) 10230 pmu = ERR_PTR(ret); 10231 goto unlock; 10232 } 10233 10234 list_for_each_entry_rcu(pmu, &pmus, entry) { 10235 ret = perf_try_init_event(pmu, event); 10236 if (!ret) 10237 goto unlock; 10238 10239 if (ret != -ENOENT) { 10240 pmu = ERR_PTR(ret); 10241 goto unlock; 10242 } 10243 } 10244 pmu = ERR_PTR(-ENOENT); 10245 unlock: 10246 srcu_read_unlock(&pmus_srcu, idx); 10247 10248 return pmu; 10249 } 10250 10251 static void attach_sb_event(struct perf_event *event) 10252 { 10253 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10254 10255 raw_spin_lock(&pel->lock); 10256 list_add_rcu(&event->sb_list, &pel->list); 10257 raw_spin_unlock(&pel->lock); 10258 } 10259 10260 /* 10261 * We keep a list of all !task (and therefore per-cpu) events 10262 * that need to receive side-band records. 10263 * 10264 * This avoids having to scan all the various PMU per-cpu contexts 10265 * looking for them. 10266 */ 10267 static void account_pmu_sb_event(struct perf_event *event) 10268 { 10269 if (is_sb_event(event)) 10270 attach_sb_event(event); 10271 } 10272 10273 static void account_event_cpu(struct perf_event *event, int cpu) 10274 { 10275 if (event->parent) 10276 return; 10277 10278 if (is_cgroup_event(event)) 10279 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10280 } 10281 10282 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10283 static void account_freq_event_nohz(void) 10284 { 10285 #ifdef CONFIG_NO_HZ_FULL 10286 /* Lock so we don't race with concurrent unaccount */ 10287 spin_lock(&nr_freq_lock); 10288 if (atomic_inc_return(&nr_freq_events) == 1) 10289 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10290 spin_unlock(&nr_freq_lock); 10291 #endif 10292 } 10293 10294 static void account_freq_event(void) 10295 { 10296 if (tick_nohz_full_enabled()) 10297 account_freq_event_nohz(); 10298 else 10299 atomic_inc(&nr_freq_events); 10300 } 10301 10302 10303 static void account_event(struct perf_event *event) 10304 { 10305 bool inc = false; 10306 10307 if (event->parent) 10308 return; 10309 10310 if (event->attach_state & PERF_ATTACH_TASK) 10311 inc = true; 10312 if (event->attr.mmap || event->attr.mmap_data) 10313 atomic_inc(&nr_mmap_events); 10314 if (event->attr.comm) 10315 atomic_inc(&nr_comm_events); 10316 if (event->attr.namespaces) 10317 atomic_inc(&nr_namespaces_events); 10318 if (event->attr.task) 10319 atomic_inc(&nr_task_events); 10320 if (event->attr.freq) 10321 account_freq_event(); 10322 if (event->attr.context_switch) { 10323 atomic_inc(&nr_switch_events); 10324 inc = true; 10325 } 10326 if (has_branch_stack(event)) 10327 inc = true; 10328 if (is_cgroup_event(event)) 10329 inc = true; 10330 if (event->attr.ksymbol) 10331 atomic_inc(&nr_ksymbol_events); 10332 if (event->attr.bpf_event) 10333 atomic_inc(&nr_bpf_events); 10334 10335 if (inc) { 10336 /* 10337 * We need the mutex here because static_branch_enable() 10338 * must complete *before* the perf_sched_count increment 10339 * becomes visible. 10340 */ 10341 if (atomic_inc_not_zero(&perf_sched_count)) 10342 goto enabled; 10343 10344 mutex_lock(&perf_sched_mutex); 10345 if (!atomic_read(&perf_sched_count)) { 10346 static_branch_enable(&perf_sched_events); 10347 /* 10348 * Guarantee that all CPUs observe they key change and 10349 * call the perf scheduling hooks before proceeding to 10350 * install events that need them. 10351 */ 10352 synchronize_rcu(); 10353 } 10354 /* 10355 * Now that we have waited for the sync_sched(), allow further 10356 * increments to by-pass the mutex. 10357 */ 10358 atomic_inc(&perf_sched_count); 10359 mutex_unlock(&perf_sched_mutex); 10360 } 10361 enabled: 10362 10363 account_event_cpu(event, event->cpu); 10364 10365 account_pmu_sb_event(event); 10366 } 10367 10368 /* 10369 * Allocate and initialize an event structure 10370 */ 10371 static struct perf_event * 10372 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10373 struct task_struct *task, 10374 struct perf_event *group_leader, 10375 struct perf_event *parent_event, 10376 perf_overflow_handler_t overflow_handler, 10377 void *context, int cgroup_fd) 10378 { 10379 struct pmu *pmu; 10380 struct perf_event *event; 10381 struct hw_perf_event *hwc; 10382 long err = -EINVAL; 10383 10384 if ((unsigned)cpu >= nr_cpu_ids) { 10385 if (!task || cpu != -1) 10386 return ERR_PTR(-EINVAL); 10387 } 10388 10389 event = kzalloc(sizeof(*event), GFP_KERNEL); 10390 if (!event) 10391 return ERR_PTR(-ENOMEM); 10392 10393 /* 10394 * Single events are their own group leaders, with an 10395 * empty sibling list: 10396 */ 10397 if (!group_leader) 10398 group_leader = event; 10399 10400 mutex_init(&event->child_mutex); 10401 INIT_LIST_HEAD(&event->child_list); 10402 10403 INIT_LIST_HEAD(&event->event_entry); 10404 INIT_LIST_HEAD(&event->sibling_list); 10405 INIT_LIST_HEAD(&event->active_list); 10406 init_event_group(event); 10407 INIT_LIST_HEAD(&event->rb_entry); 10408 INIT_LIST_HEAD(&event->active_entry); 10409 INIT_LIST_HEAD(&event->addr_filters.list); 10410 INIT_HLIST_NODE(&event->hlist_entry); 10411 10412 10413 init_waitqueue_head(&event->waitq); 10414 event->pending_disable = -1; 10415 init_irq_work(&event->pending, perf_pending_event); 10416 10417 mutex_init(&event->mmap_mutex); 10418 raw_spin_lock_init(&event->addr_filters.lock); 10419 10420 atomic_long_set(&event->refcount, 1); 10421 event->cpu = cpu; 10422 event->attr = *attr; 10423 event->group_leader = group_leader; 10424 event->pmu = NULL; 10425 event->oncpu = -1; 10426 10427 event->parent = parent_event; 10428 10429 event->ns = get_pid_ns(task_active_pid_ns(current)); 10430 event->id = atomic64_inc_return(&perf_event_id); 10431 10432 event->state = PERF_EVENT_STATE_INACTIVE; 10433 10434 if (task) { 10435 event->attach_state = PERF_ATTACH_TASK; 10436 /* 10437 * XXX pmu::event_init needs to know what task to account to 10438 * and we cannot use the ctx information because we need the 10439 * pmu before we get a ctx. 10440 */ 10441 event->hw.target = get_task_struct(task); 10442 } 10443 10444 event->clock = &local_clock; 10445 if (parent_event) 10446 event->clock = parent_event->clock; 10447 10448 if (!overflow_handler && parent_event) { 10449 overflow_handler = parent_event->overflow_handler; 10450 context = parent_event->overflow_handler_context; 10451 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10452 if (overflow_handler == bpf_overflow_handler) { 10453 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10454 10455 if (IS_ERR(prog)) { 10456 err = PTR_ERR(prog); 10457 goto err_ns; 10458 } 10459 event->prog = prog; 10460 event->orig_overflow_handler = 10461 parent_event->orig_overflow_handler; 10462 } 10463 #endif 10464 } 10465 10466 if (overflow_handler) { 10467 event->overflow_handler = overflow_handler; 10468 event->overflow_handler_context = context; 10469 } else if (is_write_backward(event)){ 10470 event->overflow_handler = perf_event_output_backward; 10471 event->overflow_handler_context = NULL; 10472 } else { 10473 event->overflow_handler = perf_event_output_forward; 10474 event->overflow_handler_context = NULL; 10475 } 10476 10477 perf_event__state_init(event); 10478 10479 pmu = NULL; 10480 10481 hwc = &event->hw; 10482 hwc->sample_period = attr->sample_period; 10483 if (attr->freq && attr->sample_freq) 10484 hwc->sample_period = 1; 10485 hwc->last_period = hwc->sample_period; 10486 10487 local64_set(&hwc->period_left, hwc->sample_period); 10488 10489 /* 10490 * We currently do not support PERF_SAMPLE_READ on inherited events. 10491 * See perf_output_read(). 10492 */ 10493 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10494 goto err_ns; 10495 10496 if (!has_branch_stack(event)) 10497 event->attr.branch_sample_type = 0; 10498 10499 if (cgroup_fd != -1) { 10500 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10501 if (err) 10502 goto err_ns; 10503 } 10504 10505 pmu = perf_init_event(event); 10506 if (IS_ERR(pmu)) { 10507 err = PTR_ERR(pmu); 10508 goto err_ns; 10509 } 10510 10511 if (event->attr.aux_output && 10512 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 10513 err = -EOPNOTSUPP; 10514 goto err_pmu; 10515 } 10516 10517 err = exclusive_event_init(event); 10518 if (err) 10519 goto err_pmu; 10520 10521 if (has_addr_filter(event)) { 10522 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10523 sizeof(struct perf_addr_filter_range), 10524 GFP_KERNEL); 10525 if (!event->addr_filter_ranges) { 10526 err = -ENOMEM; 10527 goto err_per_task; 10528 } 10529 10530 /* 10531 * Clone the parent's vma offsets: they are valid until exec() 10532 * even if the mm is not shared with the parent. 10533 */ 10534 if (event->parent) { 10535 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10536 10537 raw_spin_lock_irq(&ifh->lock); 10538 memcpy(event->addr_filter_ranges, 10539 event->parent->addr_filter_ranges, 10540 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10541 raw_spin_unlock_irq(&ifh->lock); 10542 } 10543 10544 /* force hw sync on the address filters */ 10545 event->addr_filters_gen = 1; 10546 } 10547 10548 if (!event->parent) { 10549 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10550 err = get_callchain_buffers(attr->sample_max_stack); 10551 if (err) 10552 goto err_addr_filters; 10553 } 10554 } 10555 10556 /* symmetric to unaccount_event() in _free_event() */ 10557 account_event(event); 10558 10559 return event; 10560 10561 err_addr_filters: 10562 kfree(event->addr_filter_ranges); 10563 10564 err_per_task: 10565 exclusive_event_destroy(event); 10566 10567 err_pmu: 10568 if (event->destroy) 10569 event->destroy(event); 10570 module_put(pmu->module); 10571 err_ns: 10572 if (is_cgroup_event(event)) 10573 perf_detach_cgroup(event); 10574 if (event->ns) 10575 put_pid_ns(event->ns); 10576 if (event->hw.target) 10577 put_task_struct(event->hw.target); 10578 kfree(event); 10579 10580 return ERR_PTR(err); 10581 } 10582 10583 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10584 struct perf_event_attr *attr) 10585 { 10586 u32 size; 10587 int ret; 10588 10589 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10590 return -EFAULT; 10591 10592 /* 10593 * zero the full structure, so that a short copy will be nice. 10594 */ 10595 memset(attr, 0, sizeof(*attr)); 10596 10597 ret = get_user(size, &uattr->size); 10598 if (ret) 10599 return ret; 10600 10601 if (size > PAGE_SIZE) /* silly large */ 10602 goto err_size; 10603 10604 if (!size) /* abi compat */ 10605 size = PERF_ATTR_SIZE_VER0; 10606 10607 if (size < PERF_ATTR_SIZE_VER0) 10608 goto err_size; 10609 10610 /* 10611 * If we're handed a bigger struct than we know of, 10612 * ensure all the unknown bits are 0 - i.e. new 10613 * user-space does not rely on any kernel feature 10614 * extensions we dont know about yet. 10615 */ 10616 if (size > sizeof(*attr)) { 10617 unsigned char __user *addr; 10618 unsigned char __user *end; 10619 unsigned char val; 10620 10621 addr = (void __user *)uattr + sizeof(*attr); 10622 end = (void __user *)uattr + size; 10623 10624 for (; addr < end; addr++) { 10625 ret = get_user(val, addr); 10626 if (ret) 10627 return ret; 10628 if (val) 10629 goto err_size; 10630 } 10631 size = sizeof(*attr); 10632 } 10633 10634 ret = copy_from_user(attr, uattr, size); 10635 if (ret) 10636 return -EFAULT; 10637 10638 attr->size = size; 10639 10640 if (attr->__reserved_1) 10641 return -EINVAL; 10642 10643 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10644 return -EINVAL; 10645 10646 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10647 return -EINVAL; 10648 10649 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10650 u64 mask = attr->branch_sample_type; 10651 10652 /* only using defined bits */ 10653 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10654 return -EINVAL; 10655 10656 /* at least one branch bit must be set */ 10657 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10658 return -EINVAL; 10659 10660 /* propagate priv level, when not set for branch */ 10661 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10662 10663 /* exclude_kernel checked on syscall entry */ 10664 if (!attr->exclude_kernel) 10665 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10666 10667 if (!attr->exclude_user) 10668 mask |= PERF_SAMPLE_BRANCH_USER; 10669 10670 if (!attr->exclude_hv) 10671 mask |= PERF_SAMPLE_BRANCH_HV; 10672 /* 10673 * adjust user setting (for HW filter setup) 10674 */ 10675 attr->branch_sample_type = mask; 10676 } 10677 /* privileged levels capture (kernel, hv): check permissions */ 10678 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10679 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10680 return -EACCES; 10681 } 10682 10683 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10684 ret = perf_reg_validate(attr->sample_regs_user); 10685 if (ret) 10686 return ret; 10687 } 10688 10689 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10690 if (!arch_perf_have_user_stack_dump()) 10691 return -ENOSYS; 10692 10693 /* 10694 * We have __u32 type for the size, but so far 10695 * we can only use __u16 as maximum due to the 10696 * __u16 sample size limit. 10697 */ 10698 if (attr->sample_stack_user >= USHRT_MAX) 10699 return -EINVAL; 10700 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10701 return -EINVAL; 10702 } 10703 10704 if (!attr->sample_max_stack) 10705 attr->sample_max_stack = sysctl_perf_event_max_stack; 10706 10707 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10708 ret = perf_reg_validate(attr->sample_regs_intr); 10709 out: 10710 return ret; 10711 10712 err_size: 10713 put_user(sizeof(*attr), &uattr->size); 10714 ret = -E2BIG; 10715 goto out; 10716 } 10717 10718 static int 10719 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10720 { 10721 struct ring_buffer *rb = NULL; 10722 int ret = -EINVAL; 10723 10724 if (!output_event) 10725 goto set; 10726 10727 /* don't allow circular references */ 10728 if (event == output_event) 10729 goto out; 10730 10731 /* 10732 * Don't allow cross-cpu buffers 10733 */ 10734 if (output_event->cpu != event->cpu) 10735 goto out; 10736 10737 /* 10738 * If its not a per-cpu rb, it must be the same task. 10739 */ 10740 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10741 goto out; 10742 10743 /* 10744 * Mixing clocks in the same buffer is trouble you don't need. 10745 */ 10746 if (output_event->clock != event->clock) 10747 goto out; 10748 10749 /* 10750 * Either writing ring buffer from beginning or from end. 10751 * Mixing is not allowed. 10752 */ 10753 if (is_write_backward(output_event) != is_write_backward(event)) 10754 goto out; 10755 10756 /* 10757 * If both events generate aux data, they must be on the same PMU 10758 */ 10759 if (has_aux(event) && has_aux(output_event) && 10760 event->pmu != output_event->pmu) 10761 goto out; 10762 10763 set: 10764 mutex_lock(&event->mmap_mutex); 10765 /* Can't redirect output if we've got an active mmap() */ 10766 if (atomic_read(&event->mmap_count)) 10767 goto unlock; 10768 10769 if (output_event) { 10770 /* get the rb we want to redirect to */ 10771 rb = ring_buffer_get(output_event); 10772 if (!rb) 10773 goto unlock; 10774 } 10775 10776 ring_buffer_attach(event, rb); 10777 10778 ret = 0; 10779 unlock: 10780 mutex_unlock(&event->mmap_mutex); 10781 10782 out: 10783 return ret; 10784 } 10785 10786 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10787 { 10788 if (b < a) 10789 swap(a, b); 10790 10791 mutex_lock(a); 10792 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10793 } 10794 10795 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10796 { 10797 bool nmi_safe = false; 10798 10799 switch (clk_id) { 10800 case CLOCK_MONOTONIC: 10801 event->clock = &ktime_get_mono_fast_ns; 10802 nmi_safe = true; 10803 break; 10804 10805 case CLOCK_MONOTONIC_RAW: 10806 event->clock = &ktime_get_raw_fast_ns; 10807 nmi_safe = true; 10808 break; 10809 10810 case CLOCK_REALTIME: 10811 event->clock = &ktime_get_real_ns; 10812 break; 10813 10814 case CLOCK_BOOTTIME: 10815 event->clock = &ktime_get_boottime_ns; 10816 break; 10817 10818 case CLOCK_TAI: 10819 event->clock = &ktime_get_clocktai_ns; 10820 break; 10821 10822 default: 10823 return -EINVAL; 10824 } 10825 10826 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10827 return -EINVAL; 10828 10829 return 0; 10830 } 10831 10832 /* 10833 * Variation on perf_event_ctx_lock_nested(), except we take two context 10834 * mutexes. 10835 */ 10836 static struct perf_event_context * 10837 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10838 struct perf_event_context *ctx) 10839 { 10840 struct perf_event_context *gctx; 10841 10842 again: 10843 rcu_read_lock(); 10844 gctx = READ_ONCE(group_leader->ctx); 10845 if (!refcount_inc_not_zero(&gctx->refcount)) { 10846 rcu_read_unlock(); 10847 goto again; 10848 } 10849 rcu_read_unlock(); 10850 10851 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10852 10853 if (group_leader->ctx != gctx) { 10854 mutex_unlock(&ctx->mutex); 10855 mutex_unlock(&gctx->mutex); 10856 put_ctx(gctx); 10857 goto again; 10858 } 10859 10860 return gctx; 10861 } 10862 10863 /** 10864 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10865 * 10866 * @attr_uptr: event_id type attributes for monitoring/sampling 10867 * @pid: target pid 10868 * @cpu: target cpu 10869 * @group_fd: group leader event fd 10870 */ 10871 SYSCALL_DEFINE5(perf_event_open, 10872 struct perf_event_attr __user *, attr_uptr, 10873 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10874 { 10875 struct perf_event *group_leader = NULL, *output_event = NULL; 10876 struct perf_event *event, *sibling; 10877 struct perf_event_attr attr; 10878 struct perf_event_context *ctx, *uninitialized_var(gctx); 10879 struct file *event_file = NULL; 10880 struct fd group = {NULL, 0}; 10881 struct task_struct *task = NULL; 10882 struct pmu *pmu; 10883 int event_fd; 10884 int move_group = 0; 10885 int err; 10886 int f_flags = O_RDWR; 10887 int cgroup_fd = -1; 10888 10889 /* for future expandability... */ 10890 if (flags & ~PERF_FLAG_ALL) 10891 return -EINVAL; 10892 10893 err = perf_copy_attr(attr_uptr, &attr); 10894 if (err) 10895 return err; 10896 10897 if (!attr.exclude_kernel) { 10898 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10899 return -EACCES; 10900 } 10901 10902 if (attr.namespaces) { 10903 if (!capable(CAP_SYS_ADMIN)) 10904 return -EACCES; 10905 } 10906 10907 if (attr.freq) { 10908 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10909 return -EINVAL; 10910 } else { 10911 if (attr.sample_period & (1ULL << 63)) 10912 return -EINVAL; 10913 } 10914 10915 /* Only privileged users can get physical addresses */ 10916 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10917 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10918 return -EACCES; 10919 10920 /* 10921 * In cgroup mode, the pid argument is used to pass the fd 10922 * opened to the cgroup directory in cgroupfs. The cpu argument 10923 * designates the cpu on which to monitor threads from that 10924 * cgroup. 10925 */ 10926 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10927 return -EINVAL; 10928 10929 if (flags & PERF_FLAG_FD_CLOEXEC) 10930 f_flags |= O_CLOEXEC; 10931 10932 event_fd = get_unused_fd_flags(f_flags); 10933 if (event_fd < 0) 10934 return event_fd; 10935 10936 if (group_fd != -1) { 10937 err = perf_fget_light(group_fd, &group); 10938 if (err) 10939 goto err_fd; 10940 group_leader = group.file->private_data; 10941 if (flags & PERF_FLAG_FD_OUTPUT) 10942 output_event = group_leader; 10943 if (flags & PERF_FLAG_FD_NO_GROUP) 10944 group_leader = NULL; 10945 } 10946 10947 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10948 task = find_lively_task_by_vpid(pid); 10949 if (IS_ERR(task)) { 10950 err = PTR_ERR(task); 10951 goto err_group_fd; 10952 } 10953 } 10954 10955 if (task && group_leader && 10956 group_leader->attr.inherit != attr.inherit) { 10957 err = -EINVAL; 10958 goto err_task; 10959 } 10960 10961 if (task) { 10962 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10963 if (err) 10964 goto err_task; 10965 10966 /* 10967 * Reuse ptrace permission checks for now. 10968 * 10969 * We must hold cred_guard_mutex across this and any potential 10970 * perf_install_in_context() call for this new event to 10971 * serialize against exec() altering our credentials (and the 10972 * perf_event_exit_task() that could imply). 10973 */ 10974 err = -EACCES; 10975 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10976 goto err_cred; 10977 } 10978 10979 if (flags & PERF_FLAG_PID_CGROUP) 10980 cgroup_fd = pid; 10981 10982 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10983 NULL, NULL, cgroup_fd); 10984 if (IS_ERR(event)) { 10985 err = PTR_ERR(event); 10986 goto err_cred; 10987 } 10988 10989 if (is_sampling_event(event)) { 10990 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10991 err = -EOPNOTSUPP; 10992 goto err_alloc; 10993 } 10994 } 10995 10996 /* 10997 * Special case software events and allow them to be part of 10998 * any hardware group. 10999 */ 11000 pmu = event->pmu; 11001 11002 if (attr.use_clockid) { 11003 err = perf_event_set_clock(event, attr.clockid); 11004 if (err) 11005 goto err_alloc; 11006 } 11007 11008 if (pmu->task_ctx_nr == perf_sw_context) 11009 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11010 11011 if (group_leader) { 11012 if (is_software_event(event) && 11013 !in_software_context(group_leader)) { 11014 /* 11015 * If the event is a sw event, but the group_leader 11016 * is on hw context. 11017 * 11018 * Allow the addition of software events to hw 11019 * groups, this is safe because software events 11020 * never fail to schedule. 11021 */ 11022 pmu = group_leader->ctx->pmu; 11023 } else if (!is_software_event(event) && 11024 is_software_event(group_leader) && 11025 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11026 /* 11027 * In case the group is a pure software group, and we 11028 * try to add a hardware event, move the whole group to 11029 * the hardware context. 11030 */ 11031 move_group = 1; 11032 } 11033 } 11034 11035 /* 11036 * Get the target context (task or percpu): 11037 */ 11038 ctx = find_get_context(pmu, task, event); 11039 if (IS_ERR(ctx)) { 11040 err = PTR_ERR(ctx); 11041 goto err_alloc; 11042 } 11043 11044 /* 11045 * Look up the group leader (we will attach this event to it): 11046 */ 11047 if (group_leader) { 11048 err = -EINVAL; 11049 11050 /* 11051 * Do not allow a recursive hierarchy (this new sibling 11052 * becoming part of another group-sibling): 11053 */ 11054 if (group_leader->group_leader != group_leader) 11055 goto err_context; 11056 11057 /* All events in a group should have the same clock */ 11058 if (group_leader->clock != event->clock) 11059 goto err_context; 11060 11061 /* 11062 * Make sure we're both events for the same CPU; 11063 * grouping events for different CPUs is broken; since 11064 * you can never concurrently schedule them anyhow. 11065 */ 11066 if (group_leader->cpu != event->cpu) 11067 goto err_context; 11068 11069 /* 11070 * Make sure we're both on the same task, or both 11071 * per-CPU events. 11072 */ 11073 if (group_leader->ctx->task != ctx->task) 11074 goto err_context; 11075 11076 /* 11077 * Do not allow to attach to a group in a different task 11078 * or CPU context. If we're moving SW events, we'll fix 11079 * this up later, so allow that. 11080 */ 11081 if (!move_group && group_leader->ctx != ctx) 11082 goto err_context; 11083 11084 /* 11085 * Only a group leader can be exclusive or pinned 11086 */ 11087 if (attr.exclusive || attr.pinned) 11088 goto err_context; 11089 } 11090 11091 if (output_event) { 11092 err = perf_event_set_output(event, output_event); 11093 if (err) 11094 goto err_context; 11095 } 11096 11097 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11098 f_flags); 11099 if (IS_ERR(event_file)) { 11100 err = PTR_ERR(event_file); 11101 event_file = NULL; 11102 goto err_context; 11103 } 11104 11105 if (move_group) { 11106 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11107 11108 if (gctx->task == TASK_TOMBSTONE) { 11109 err = -ESRCH; 11110 goto err_locked; 11111 } 11112 11113 /* 11114 * Check if we raced against another sys_perf_event_open() call 11115 * moving the software group underneath us. 11116 */ 11117 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11118 /* 11119 * If someone moved the group out from under us, check 11120 * if this new event wound up on the same ctx, if so 11121 * its the regular !move_group case, otherwise fail. 11122 */ 11123 if (gctx != ctx) { 11124 err = -EINVAL; 11125 goto err_locked; 11126 } else { 11127 perf_event_ctx_unlock(group_leader, gctx); 11128 move_group = 0; 11129 } 11130 } 11131 11132 /* 11133 * Failure to create exclusive events returns -EBUSY. 11134 */ 11135 err = -EBUSY; 11136 if (!exclusive_event_installable(group_leader, ctx)) 11137 goto err_locked; 11138 11139 for_each_sibling_event(sibling, group_leader) { 11140 if (!exclusive_event_installable(sibling, ctx)) 11141 goto err_locked; 11142 } 11143 } else { 11144 mutex_lock(&ctx->mutex); 11145 } 11146 11147 if (ctx->task == TASK_TOMBSTONE) { 11148 err = -ESRCH; 11149 goto err_locked; 11150 } 11151 11152 if (!perf_event_validate_size(event)) { 11153 err = -E2BIG; 11154 goto err_locked; 11155 } 11156 11157 if (!task) { 11158 /* 11159 * Check if the @cpu we're creating an event for is online. 11160 * 11161 * We use the perf_cpu_context::ctx::mutex to serialize against 11162 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11163 */ 11164 struct perf_cpu_context *cpuctx = 11165 container_of(ctx, struct perf_cpu_context, ctx); 11166 11167 if (!cpuctx->online) { 11168 err = -ENODEV; 11169 goto err_locked; 11170 } 11171 } 11172 11173 if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) 11174 goto err_locked; 11175 11176 /* 11177 * Must be under the same ctx::mutex as perf_install_in_context(), 11178 * because we need to serialize with concurrent event creation. 11179 */ 11180 if (!exclusive_event_installable(event, ctx)) { 11181 err = -EBUSY; 11182 goto err_locked; 11183 } 11184 11185 WARN_ON_ONCE(ctx->parent_ctx); 11186 11187 /* 11188 * This is the point on no return; we cannot fail hereafter. This is 11189 * where we start modifying current state. 11190 */ 11191 11192 if (move_group) { 11193 /* 11194 * See perf_event_ctx_lock() for comments on the details 11195 * of swizzling perf_event::ctx. 11196 */ 11197 perf_remove_from_context(group_leader, 0); 11198 put_ctx(gctx); 11199 11200 for_each_sibling_event(sibling, group_leader) { 11201 perf_remove_from_context(sibling, 0); 11202 put_ctx(gctx); 11203 } 11204 11205 /* 11206 * Wait for everybody to stop referencing the events through 11207 * the old lists, before installing it on new lists. 11208 */ 11209 synchronize_rcu(); 11210 11211 /* 11212 * Install the group siblings before the group leader. 11213 * 11214 * Because a group leader will try and install the entire group 11215 * (through the sibling list, which is still in-tact), we can 11216 * end up with siblings installed in the wrong context. 11217 * 11218 * By installing siblings first we NO-OP because they're not 11219 * reachable through the group lists. 11220 */ 11221 for_each_sibling_event(sibling, group_leader) { 11222 perf_event__state_init(sibling); 11223 perf_install_in_context(ctx, sibling, sibling->cpu); 11224 get_ctx(ctx); 11225 } 11226 11227 /* 11228 * Removing from the context ends up with disabled 11229 * event. What we want here is event in the initial 11230 * startup state, ready to be add into new context. 11231 */ 11232 perf_event__state_init(group_leader); 11233 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11234 get_ctx(ctx); 11235 } 11236 11237 /* 11238 * Precalculate sample_data sizes; do while holding ctx::mutex such 11239 * that we're serialized against further additions and before 11240 * perf_install_in_context() which is the point the event is active and 11241 * can use these values. 11242 */ 11243 perf_event__header_size(event); 11244 perf_event__id_header_size(event); 11245 11246 event->owner = current; 11247 11248 perf_install_in_context(ctx, event, event->cpu); 11249 perf_unpin_context(ctx); 11250 11251 if (move_group) 11252 perf_event_ctx_unlock(group_leader, gctx); 11253 mutex_unlock(&ctx->mutex); 11254 11255 if (task) { 11256 mutex_unlock(&task->signal->cred_guard_mutex); 11257 put_task_struct(task); 11258 } 11259 11260 mutex_lock(¤t->perf_event_mutex); 11261 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11262 mutex_unlock(¤t->perf_event_mutex); 11263 11264 /* 11265 * Drop the reference on the group_event after placing the 11266 * new event on the sibling_list. This ensures destruction 11267 * of the group leader will find the pointer to itself in 11268 * perf_group_detach(). 11269 */ 11270 fdput(group); 11271 fd_install(event_fd, event_file); 11272 return event_fd; 11273 11274 err_locked: 11275 if (move_group) 11276 perf_event_ctx_unlock(group_leader, gctx); 11277 mutex_unlock(&ctx->mutex); 11278 /* err_file: */ 11279 fput(event_file); 11280 err_context: 11281 perf_unpin_context(ctx); 11282 put_ctx(ctx); 11283 err_alloc: 11284 /* 11285 * If event_file is set, the fput() above will have called ->release() 11286 * and that will take care of freeing the event. 11287 */ 11288 if (!event_file) 11289 free_event(event); 11290 err_cred: 11291 if (task) 11292 mutex_unlock(&task->signal->cred_guard_mutex); 11293 err_task: 11294 if (task) 11295 put_task_struct(task); 11296 err_group_fd: 11297 fdput(group); 11298 err_fd: 11299 put_unused_fd(event_fd); 11300 return err; 11301 } 11302 11303 /** 11304 * perf_event_create_kernel_counter 11305 * 11306 * @attr: attributes of the counter to create 11307 * @cpu: cpu in which the counter is bound 11308 * @task: task to profile (NULL for percpu) 11309 */ 11310 struct perf_event * 11311 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11312 struct task_struct *task, 11313 perf_overflow_handler_t overflow_handler, 11314 void *context) 11315 { 11316 struct perf_event_context *ctx; 11317 struct perf_event *event; 11318 int err; 11319 11320 /* 11321 * Get the target context (task or percpu): 11322 */ 11323 11324 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11325 overflow_handler, context, -1); 11326 if (IS_ERR(event)) { 11327 err = PTR_ERR(event); 11328 goto err; 11329 } 11330 11331 /* Mark owner so we could distinguish it from user events. */ 11332 event->owner = TASK_TOMBSTONE; 11333 11334 ctx = find_get_context(event->pmu, task, event); 11335 if (IS_ERR(ctx)) { 11336 err = PTR_ERR(ctx); 11337 goto err_free; 11338 } 11339 11340 WARN_ON_ONCE(ctx->parent_ctx); 11341 mutex_lock(&ctx->mutex); 11342 if (ctx->task == TASK_TOMBSTONE) { 11343 err = -ESRCH; 11344 goto err_unlock; 11345 } 11346 11347 if (!task) { 11348 /* 11349 * Check if the @cpu we're creating an event for is online. 11350 * 11351 * We use the perf_cpu_context::ctx::mutex to serialize against 11352 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11353 */ 11354 struct perf_cpu_context *cpuctx = 11355 container_of(ctx, struct perf_cpu_context, ctx); 11356 if (!cpuctx->online) { 11357 err = -ENODEV; 11358 goto err_unlock; 11359 } 11360 } 11361 11362 if (!exclusive_event_installable(event, ctx)) { 11363 err = -EBUSY; 11364 goto err_unlock; 11365 } 11366 11367 perf_install_in_context(ctx, event, event->cpu); 11368 perf_unpin_context(ctx); 11369 mutex_unlock(&ctx->mutex); 11370 11371 return event; 11372 11373 err_unlock: 11374 mutex_unlock(&ctx->mutex); 11375 perf_unpin_context(ctx); 11376 put_ctx(ctx); 11377 err_free: 11378 free_event(event); 11379 err: 11380 return ERR_PTR(err); 11381 } 11382 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11383 11384 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11385 { 11386 struct perf_event_context *src_ctx; 11387 struct perf_event_context *dst_ctx; 11388 struct perf_event *event, *tmp; 11389 LIST_HEAD(events); 11390 11391 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11392 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11393 11394 /* 11395 * See perf_event_ctx_lock() for comments on the details 11396 * of swizzling perf_event::ctx. 11397 */ 11398 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11399 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11400 event_entry) { 11401 perf_remove_from_context(event, 0); 11402 unaccount_event_cpu(event, src_cpu); 11403 put_ctx(src_ctx); 11404 list_add(&event->migrate_entry, &events); 11405 } 11406 11407 /* 11408 * Wait for the events to quiesce before re-instating them. 11409 */ 11410 synchronize_rcu(); 11411 11412 /* 11413 * Re-instate events in 2 passes. 11414 * 11415 * Skip over group leaders and only install siblings on this first 11416 * pass, siblings will not get enabled without a leader, however a 11417 * leader will enable its siblings, even if those are still on the old 11418 * context. 11419 */ 11420 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11421 if (event->group_leader == event) 11422 continue; 11423 11424 list_del(&event->migrate_entry); 11425 if (event->state >= PERF_EVENT_STATE_OFF) 11426 event->state = PERF_EVENT_STATE_INACTIVE; 11427 account_event_cpu(event, dst_cpu); 11428 perf_install_in_context(dst_ctx, event, dst_cpu); 11429 get_ctx(dst_ctx); 11430 } 11431 11432 /* 11433 * Once all the siblings are setup properly, install the group leaders 11434 * to make it go. 11435 */ 11436 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11437 list_del(&event->migrate_entry); 11438 if (event->state >= PERF_EVENT_STATE_OFF) 11439 event->state = PERF_EVENT_STATE_INACTIVE; 11440 account_event_cpu(event, dst_cpu); 11441 perf_install_in_context(dst_ctx, event, dst_cpu); 11442 get_ctx(dst_ctx); 11443 } 11444 mutex_unlock(&dst_ctx->mutex); 11445 mutex_unlock(&src_ctx->mutex); 11446 } 11447 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11448 11449 static void sync_child_event(struct perf_event *child_event, 11450 struct task_struct *child) 11451 { 11452 struct perf_event *parent_event = child_event->parent; 11453 u64 child_val; 11454 11455 if (child_event->attr.inherit_stat) 11456 perf_event_read_event(child_event, child); 11457 11458 child_val = perf_event_count(child_event); 11459 11460 /* 11461 * Add back the child's count to the parent's count: 11462 */ 11463 atomic64_add(child_val, &parent_event->child_count); 11464 atomic64_add(child_event->total_time_enabled, 11465 &parent_event->child_total_time_enabled); 11466 atomic64_add(child_event->total_time_running, 11467 &parent_event->child_total_time_running); 11468 } 11469 11470 static void 11471 perf_event_exit_event(struct perf_event *child_event, 11472 struct perf_event_context *child_ctx, 11473 struct task_struct *child) 11474 { 11475 struct perf_event *parent_event = child_event->parent; 11476 11477 /* 11478 * Do not destroy the 'original' grouping; because of the context 11479 * switch optimization the original events could've ended up in a 11480 * random child task. 11481 * 11482 * If we were to destroy the original group, all group related 11483 * operations would cease to function properly after this random 11484 * child dies. 11485 * 11486 * Do destroy all inherited groups, we don't care about those 11487 * and being thorough is better. 11488 */ 11489 raw_spin_lock_irq(&child_ctx->lock); 11490 WARN_ON_ONCE(child_ctx->is_active); 11491 11492 if (parent_event) 11493 perf_group_detach(child_event); 11494 list_del_event(child_event, child_ctx); 11495 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11496 raw_spin_unlock_irq(&child_ctx->lock); 11497 11498 /* 11499 * Parent events are governed by their filedesc, retain them. 11500 */ 11501 if (!parent_event) { 11502 perf_event_wakeup(child_event); 11503 return; 11504 } 11505 /* 11506 * Child events can be cleaned up. 11507 */ 11508 11509 sync_child_event(child_event, child); 11510 11511 /* 11512 * Remove this event from the parent's list 11513 */ 11514 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11515 mutex_lock(&parent_event->child_mutex); 11516 list_del_init(&child_event->child_list); 11517 mutex_unlock(&parent_event->child_mutex); 11518 11519 /* 11520 * Kick perf_poll() for is_event_hup(). 11521 */ 11522 perf_event_wakeup(parent_event); 11523 free_event(child_event); 11524 put_event(parent_event); 11525 } 11526 11527 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11528 { 11529 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11530 struct perf_event *child_event, *next; 11531 11532 WARN_ON_ONCE(child != current); 11533 11534 child_ctx = perf_pin_task_context(child, ctxn); 11535 if (!child_ctx) 11536 return; 11537 11538 /* 11539 * In order to reduce the amount of tricky in ctx tear-down, we hold 11540 * ctx::mutex over the entire thing. This serializes against almost 11541 * everything that wants to access the ctx. 11542 * 11543 * The exception is sys_perf_event_open() / 11544 * perf_event_create_kernel_count() which does find_get_context() 11545 * without ctx::mutex (it cannot because of the move_group double mutex 11546 * lock thing). See the comments in perf_install_in_context(). 11547 */ 11548 mutex_lock(&child_ctx->mutex); 11549 11550 /* 11551 * In a single ctx::lock section, de-schedule the events and detach the 11552 * context from the task such that we cannot ever get it scheduled back 11553 * in. 11554 */ 11555 raw_spin_lock_irq(&child_ctx->lock); 11556 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11557 11558 /* 11559 * Now that the context is inactive, destroy the task <-> ctx relation 11560 * and mark the context dead. 11561 */ 11562 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11563 put_ctx(child_ctx); /* cannot be last */ 11564 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11565 put_task_struct(current); /* cannot be last */ 11566 11567 clone_ctx = unclone_ctx(child_ctx); 11568 raw_spin_unlock_irq(&child_ctx->lock); 11569 11570 if (clone_ctx) 11571 put_ctx(clone_ctx); 11572 11573 /* 11574 * Report the task dead after unscheduling the events so that we 11575 * won't get any samples after PERF_RECORD_EXIT. We can however still 11576 * get a few PERF_RECORD_READ events. 11577 */ 11578 perf_event_task(child, child_ctx, 0); 11579 11580 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11581 perf_event_exit_event(child_event, child_ctx, child); 11582 11583 mutex_unlock(&child_ctx->mutex); 11584 11585 put_ctx(child_ctx); 11586 } 11587 11588 /* 11589 * When a child task exits, feed back event values to parent events. 11590 * 11591 * Can be called with cred_guard_mutex held when called from 11592 * install_exec_creds(). 11593 */ 11594 void perf_event_exit_task(struct task_struct *child) 11595 { 11596 struct perf_event *event, *tmp; 11597 int ctxn; 11598 11599 mutex_lock(&child->perf_event_mutex); 11600 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11601 owner_entry) { 11602 list_del_init(&event->owner_entry); 11603 11604 /* 11605 * Ensure the list deletion is visible before we clear 11606 * the owner, closes a race against perf_release() where 11607 * we need to serialize on the owner->perf_event_mutex. 11608 */ 11609 smp_store_release(&event->owner, NULL); 11610 } 11611 mutex_unlock(&child->perf_event_mutex); 11612 11613 for_each_task_context_nr(ctxn) 11614 perf_event_exit_task_context(child, ctxn); 11615 11616 /* 11617 * The perf_event_exit_task_context calls perf_event_task 11618 * with child's task_ctx, which generates EXIT events for 11619 * child contexts and sets child->perf_event_ctxp[] to NULL. 11620 * At this point we need to send EXIT events to cpu contexts. 11621 */ 11622 perf_event_task(child, NULL, 0); 11623 } 11624 11625 static void perf_free_event(struct perf_event *event, 11626 struct perf_event_context *ctx) 11627 { 11628 struct perf_event *parent = event->parent; 11629 11630 if (WARN_ON_ONCE(!parent)) 11631 return; 11632 11633 mutex_lock(&parent->child_mutex); 11634 list_del_init(&event->child_list); 11635 mutex_unlock(&parent->child_mutex); 11636 11637 put_event(parent); 11638 11639 raw_spin_lock_irq(&ctx->lock); 11640 perf_group_detach(event); 11641 list_del_event(event, ctx); 11642 raw_spin_unlock_irq(&ctx->lock); 11643 free_event(event); 11644 } 11645 11646 /* 11647 * Free a context as created by inheritance by perf_event_init_task() below, 11648 * used by fork() in case of fail. 11649 * 11650 * Even though the task has never lived, the context and events have been 11651 * exposed through the child_list, so we must take care tearing it all down. 11652 */ 11653 void perf_event_free_task(struct task_struct *task) 11654 { 11655 struct perf_event_context *ctx; 11656 struct perf_event *event, *tmp; 11657 int ctxn; 11658 11659 for_each_task_context_nr(ctxn) { 11660 ctx = task->perf_event_ctxp[ctxn]; 11661 if (!ctx) 11662 continue; 11663 11664 mutex_lock(&ctx->mutex); 11665 raw_spin_lock_irq(&ctx->lock); 11666 /* 11667 * Destroy the task <-> ctx relation and mark the context dead. 11668 * 11669 * This is important because even though the task hasn't been 11670 * exposed yet the context has been (through child_list). 11671 */ 11672 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11673 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11674 put_task_struct(task); /* cannot be last */ 11675 raw_spin_unlock_irq(&ctx->lock); 11676 11677 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11678 perf_free_event(event, ctx); 11679 11680 mutex_unlock(&ctx->mutex); 11681 11682 /* 11683 * perf_event_release_kernel() could've stolen some of our 11684 * child events and still have them on its free_list. In that 11685 * case we must wait for these events to have been freed (in 11686 * particular all their references to this task must've been 11687 * dropped). 11688 * 11689 * Without this copy_process() will unconditionally free this 11690 * task (irrespective of its reference count) and 11691 * _free_event()'s put_task_struct(event->hw.target) will be a 11692 * use-after-free. 11693 * 11694 * Wait for all events to drop their context reference. 11695 */ 11696 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 11697 put_ctx(ctx); /* must be last */ 11698 } 11699 } 11700 11701 void perf_event_delayed_put(struct task_struct *task) 11702 { 11703 int ctxn; 11704 11705 for_each_task_context_nr(ctxn) 11706 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11707 } 11708 11709 struct file *perf_event_get(unsigned int fd) 11710 { 11711 struct file *file = fget(fd); 11712 if (!file) 11713 return ERR_PTR(-EBADF); 11714 11715 if (file->f_op != &perf_fops) { 11716 fput(file); 11717 return ERR_PTR(-EBADF); 11718 } 11719 11720 return file; 11721 } 11722 11723 const struct perf_event *perf_get_event(struct file *file) 11724 { 11725 if (file->f_op != &perf_fops) 11726 return ERR_PTR(-EINVAL); 11727 11728 return file->private_data; 11729 } 11730 11731 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11732 { 11733 if (!event) 11734 return ERR_PTR(-EINVAL); 11735 11736 return &event->attr; 11737 } 11738 11739 /* 11740 * Inherit an event from parent task to child task. 11741 * 11742 * Returns: 11743 * - valid pointer on success 11744 * - NULL for orphaned events 11745 * - IS_ERR() on error 11746 */ 11747 static struct perf_event * 11748 inherit_event(struct perf_event *parent_event, 11749 struct task_struct *parent, 11750 struct perf_event_context *parent_ctx, 11751 struct task_struct *child, 11752 struct perf_event *group_leader, 11753 struct perf_event_context *child_ctx) 11754 { 11755 enum perf_event_state parent_state = parent_event->state; 11756 struct perf_event *child_event; 11757 unsigned long flags; 11758 11759 /* 11760 * Instead of creating recursive hierarchies of events, 11761 * we link inherited events back to the original parent, 11762 * which has a filp for sure, which we use as the reference 11763 * count: 11764 */ 11765 if (parent_event->parent) 11766 parent_event = parent_event->parent; 11767 11768 child_event = perf_event_alloc(&parent_event->attr, 11769 parent_event->cpu, 11770 child, 11771 group_leader, parent_event, 11772 NULL, NULL, -1); 11773 if (IS_ERR(child_event)) 11774 return child_event; 11775 11776 11777 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11778 !child_ctx->task_ctx_data) { 11779 struct pmu *pmu = child_event->pmu; 11780 11781 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11782 GFP_KERNEL); 11783 if (!child_ctx->task_ctx_data) { 11784 free_event(child_event); 11785 return NULL; 11786 } 11787 } 11788 11789 /* 11790 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11791 * must be under the same lock in order to serialize against 11792 * perf_event_release_kernel(), such that either we must observe 11793 * is_orphaned_event() or they will observe us on the child_list. 11794 */ 11795 mutex_lock(&parent_event->child_mutex); 11796 if (is_orphaned_event(parent_event) || 11797 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11798 mutex_unlock(&parent_event->child_mutex); 11799 /* task_ctx_data is freed with child_ctx */ 11800 free_event(child_event); 11801 return NULL; 11802 } 11803 11804 get_ctx(child_ctx); 11805 11806 /* 11807 * Make the child state follow the state of the parent event, 11808 * not its attr.disabled bit. We hold the parent's mutex, 11809 * so we won't race with perf_event_{en, dis}able_family. 11810 */ 11811 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11812 child_event->state = PERF_EVENT_STATE_INACTIVE; 11813 else 11814 child_event->state = PERF_EVENT_STATE_OFF; 11815 11816 if (parent_event->attr.freq) { 11817 u64 sample_period = parent_event->hw.sample_period; 11818 struct hw_perf_event *hwc = &child_event->hw; 11819 11820 hwc->sample_period = sample_period; 11821 hwc->last_period = sample_period; 11822 11823 local64_set(&hwc->period_left, sample_period); 11824 } 11825 11826 child_event->ctx = child_ctx; 11827 child_event->overflow_handler = parent_event->overflow_handler; 11828 child_event->overflow_handler_context 11829 = parent_event->overflow_handler_context; 11830 11831 /* 11832 * Precalculate sample_data sizes 11833 */ 11834 perf_event__header_size(child_event); 11835 perf_event__id_header_size(child_event); 11836 11837 /* 11838 * Link it up in the child's context: 11839 */ 11840 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11841 add_event_to_ctx(child_event, child_ctx); 11842 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11843 11844 /* 11845 * Link this into the parent event's child list 11846 */ 11847 list_add_tail(&child_event->child_list, &parent_event->child_list); 11848 mutex_unlock(&parent_event->child_mutex); 11849 11850 return child_event; 11851 } 11852 11853 /* 11854 * Inherits an event group. 11855 * 11856 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11857 * This matches with perf_event_release_kernel() removing all child events. 11858 * 11859 * Returns: 11860 * - 0 on success 11861 * - <0 on error 11862 */ 11863 static int inherit_group(struct perf_event *parent_event, 11864 struct task_struct *parent, 11865 struct perf_event_context *parent_ctx, 11866 struct task_struct *child, 11867 struct perf_event_context *child_ctx) 11868 { 11869 struct perf_event *leader; 11870 struct perf_event *sub; 11871 struct perf_event *child_ctr; 11872 11873 leader = inherit_event(parent_event, parent, parent_ctx, 11874 child, NULL, child_ctx); 11875 if (IS_ERR(leader)) 11876 return PTR_ERR(leader); 11877 /* 11878 * @leader can be NULL here because of is_orphaned_event(). In this 11879 * case inherit_event() will create individual events, similar to what 11880 * perf_group_detach() would do anyway. 11881 */ 11882 for_each_sibling_event(sub, parent_event) { 11883 child_ctr = inherit_event(sub, parent, parent_ctx, 11884 child, leader, child_ctx); 11885 if (IS_ERR(child_ctr)) 11886 return PTR_ERR(child_ctr); 11887 } 11888 return 0; 11889 } 11890 11891 /* 11892 * Creates the child task context and tries to inherit the event-group. 11893 * 11894 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11895 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11896 * consistent with perf_event_release_kernel() removing all child events. 11897 * 11898 * Returns: 11899 * - 0 on success 11900 * - <0 on error 11901 */ 11902 static int 11903 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11904 struct perf_event_context *parent_ctx, 11905 struct task_struct *child, int ctxn, 11906 int *inherited_all) 11907 { 11908 int ret; 11909 struct perf_event_context *child_ctx; 11910 11911 if (!event->attr.inherit) { 11912 *inherited_all = 0; 11913 return 0; 11914 } 11915 11916 child_ctx = child->perf_event_ctxp[ctxn]; 11917 if (!child_ctx) { 11918 /* 11919 * This is executed from the parent task context, so 11920 * inherit events that have been marked for cloning. 11921 * First allocate and initialize a context for the 11922 * child. 11923 */ 11924 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11925 if (!child_ctx) 11926 return -ENOMEM; 11927 11928 child->perf_event_ctxp[ctxn] = child_ctx; 11929 } 11930 11931 ret = inherit_group(event, parent, parent_ctx, 11932 child, child_ctx); 11933 11934 if (ret) 11935 *inherited_all = 0; 11936 11937 return ret; 11938 } 11939 11940 /* 11941 * Initialize the perf_event context in task_struct 11942 */ 11943 static int perf_event_init_context(struct task_struct *child, int ctxn) 11944 { 11945 struct perf_event_context *child_ctx, *parent_ctx; 11946 struct perf_event_context *cloned_ctx; 11947 struct perf_event *event; 11948 struct task_struct *parent = current; 11949 int inherited_all = 1; 11950 unsigned long flags; 11951 int ret = 0; 11952 11953 if (likely(!parent->perf_event_ctxp[ctxn])) 11954 return 0; 11955 11956 /* 11957 * If the parent's context is a clone, pin it so it won't get 11958 * swapped under us. 11959 */ 11960 parent_ctx = perf_pin_task_context(parent, ctxn); 11961 if (!parent_ctx) 11962 return 0; 11963 11964 /* 11965 * No need to check if parent_ctx != NULL here; since we saw 11966 * it non-NULL earlier, the only reason for it to become NULL 11967 * is if we exit, and since we're currently in the middle of 11968 * a fork we can't be exiting at the same time. 11969 */ 11970 11971 /* 11972 * Lock the parent list. No need to lock the child - not PID 11973 * hashed yet and not running, so nobody can access it. 11974 */ 11975 mutex_lock(&parent_ctx->mutex); 11976 11977 /* 11978 * We dont have to disable NMIs - we are only looking at 11979 * the list, not manipulating it: 11980 */ 11981 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11982 ret = inherit_task_group(event, parent, parent_ctx, 11983 child, ctxn, &inherited_all); 11984 if (ret) 11985 goto out_unlock; 11986 } 11987 11988 /* 11989 * We can't hold ctx->lock when iterating the ->flexible_group list due 11990 * to allocations, but we need to prevent rotation because 11991 * rotate_ctx() will change the list from interrupt context. 11992 */ 11993 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11994 parent_ctx->rotate_disable = 1; 11995 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11996 11997 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11998 ret = inherit_task_group(event, parent, parent_ctx, 11999 child, ctxn, &inherited_all); 12000 if (ret) 12001 goto out_unlock; 12002 } 12003 12004 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12005 parent_ctx->rotate_disable = 0; 12006 12007 child_ctx = child->perf_event_ctxp[ctxn]; 12008 12009 if (child_ctx && inherited_all) { 12010 /* 12011 * Mark the child context as a clone of the parent 12012 * context, or of whatever the parent is a clone of. 12013 * 12014 * Note that if the parent is a clone, the holding of 12015 * parent_ctx->lock avoids it from being uncloned. 12016 */ 12017 cloned_ctx = parent_ctx->parent_ctx; 12018 if (cloned_ctx) { 12019 child_ctx->parent_ctx = cloned_ctx; 12020 child_ctx->parent_gen = parent_ctx->parent_gen; 12021 } else { 12022 child_ctx->parent_ctx = parent_ctx; 12023 child_ctx->parent_gen = parent_ctx->generation; 12024 } 12025 get_ctx(child_ctx->parent_ctx); 12026 } 12027 12028 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12029 out_unlock: 12030 mutex_unlock(&parent_ctx->mutex); 12031 12032 perf_unpin_context(parent_ctx); 12033 put_ctx(parent_ctx); 12034 12035 return ret; 12036 } 12037 12038 /* 12039 * Initialize the perf_event context in task_struct 12040 */ 12041 int perf_event_init_task(struct task_struct *child) 12042 { 12043 int ctxn, ret; 12044 12045 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12046 mutex_init(&child->perf_event_mutex); 12047 INIT_LIST_HEAD(&child->perf_event_list); 12048 12049 for_each_task_context_nr(ctxn) { 12050 ret = perf_event_init_context(child, ctxn); 12051 if (ret) { 12052 perf_event_free_task(child); 12053 return ret; 12054 } 12055 } 12056 12057 return 0; 12058 } 12059 12060 static void __init perf_event_init_all_cpus(void) 12061 { 12062 struct swevent_htable *swhash; 12063 int cpu; 12064 12065 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12066 12067 for_each_possible_cpu(cpu) { 12068 swhash = &per_cpu(swevent_htable, cpu); 12069 mutex_init(&swhash->hlist_mutex); 12070 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12071 12072 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12073 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12074 12075 #ifdef CONFIG_CGROUP_PERF 12076 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12077 #endif 12078 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12079 } 12080 } 12081 12082 static void perf_swevent_init_cpu(unsigned int cpu) 12083 { 12084 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12085 12086 mutex_lock(&swhash->hlist_mutex); 12087 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12088 struct swevent_hlist *hlist; 12089 12090 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12091 WARN_ON(!hlist); 12092 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12093 } 12094 mutex_unlock(&swhash->hlist_mutex); 12095 } 12096 12097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12098 static void __perf_event_exit_context(void *__info) 12099 { 12100 struct perf_event_context *ctx = __info; 12101 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12102 struct perf_event *event; 12103 12104 raw_spin_lock(&ctx->lock); 12105 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12106 list_for_each_entry(event, &ctx->event_list, event_entry) 12107 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12108 raw_spin_unlock(&ctx->lock); 12109 } 12110 12111 static void perf_event_exit_cpu_context(int cpu) 12112 { 12113 struct perf_cpu_context *cpuctx; 12114 struct perf_event_context *ctx; 12115 struct pmu *pmu; 12116 12117 mutex_lock(&pmus_lock); 12118 list_for_each_entry(pmu, &pmus, entry) { 12119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12120 ctx = &cpuctx->ctx; 12121 12122 mutex_lock(&ctx->mutex); 12123 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12124 cpuctx->online = 0; 12125 mutex_unlock(&ctx->mutex); 12126 } 12127 cpumask_clear_cpu(cpu, perf_online_mask); 12128 mutex_unlock(&pmus_lock); 12129 } 12130 #else 12131 12132 static void perf_event_exit_cpu_context(int cpu) { } 12133 12134 #endif 12135 12136 int perf_event_init_cpu(unsigned int cpu) 12137 { 12138 struct perf_cpu_context *cpuctx; 12139 struct perf_event_context *ctx; 12140 struct pmu *pmu; 12141 12142 perf_swevent_init_cpu(cpu); 12143 12144 mutex_lock(&pmus_lock); 12145 cpumask_set_cpu(cpu, perf_online_mask); 12146 list_for_each_entry(pmu, &pmus, entry) { 12147 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12148 ctx = &cpuctx->ctx; 12149 12150 mutex_lock(&ctx->mutex); 12151 cpuctx->online = 1; 12152 mutex_unlock(&ctx->mutex); 12153 } 12154 mutex_unlock(&pmus_lock); 12155 12156 return 0; 12157 } 12158 12159 int perf_event_exit_cpu(unsigned int cpu) 12160 { 12161 perf_event_exit_cpu_context(cpu); 12162 return 0; 12163 } 12164 12165 static int 12166 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12167 { 12168 int cpu; 12169 12170 for_each_online_cpu(cpu) 12171 perf_event_exit_cpu(cpu); 12172 12173 return NOTIFY_OK; 12174 } 12175 12176 /* 12177 * Run the perf reboot notifier at the very last possible moment so that 12178 * the generic watchdog code runs as long as possible. 12179 */ 12180 static struct notifier_block perf_reboot_notifier = { 12181 .notifier_call = perf_reboot, 12182 .priority = INT_MIN, 12183 }; 12184 12185 void __init perf_event_init(void) 12186 { 12187 int ret; 12188 12189 idr_init(&pmu_idr); 12190 12191 perf_event_init_all_cpus(); 12192 init_srcu_struct(&pmus_srcu); 12193 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12194 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12195 perf_pmu_register(&perf_task_clock, NULL, -1); 12196 perf_tp_register(); 12197 perf_event_init_cpu(smp_processor_id()); 12198 register_reboot_notifier(&perf_reboot_notifier); 12199 12200 ret = init_hw_breakpoint(); 12201 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12202 12203 /* 12204 * Build time assertion that we keep the data_head at the intended 12205 * location. IOW, validation we got the __reserved[] size right. 12206 */ 12207 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12208 != 1024); 12209 } 12210 12211 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12212 char *page) 12213 { 12214 struct perf_pmu_events_attr *pmu_attr = 12215 container_of(attr, struct perf_pmu_events_attr, attr); 12216 12217 if (pmu_attr->event_str) 12218 return sprintf(page, "%s\n", pmu_attr->event_str); 12219 12220 return 0; 12221 } 12222 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12223 12224 static int __init perf_event_sysfs_init(void) 12225 { 12226 struct pmu *pmu; 12227 int ret; 12228 12229 mutex_lock(&pmus_lock); 12230 12231 ret = bus_register(&pmu_bus); 12232 if (ret) 12233 goto unlock; 12234 12235 list_for_each_entry(pmu, &pmus, entry) { 12236 if (!pmu->name || pmu->type < 0) 12237 continue; 12238 12239 ret = pmu_dev_alloc(pmu); 12240 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12241 } 12242 pmu_bus_running = 1; 12243 ret = 0; 12244 12245 unlock: 12246 mutex_unlock(&pmus_lock); 12247 12248 return ret; 12249 } 12250 device_initcall(perf_event_sysfs_init); 12251 12252 #ifdef CONFIG_CGROUP_PERF 12253 static struct cgroup_subsys_state * 12254 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12255 { 12256 struct perf_cgroup *jc; 12257 12258 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12259 if (!jc) 12260 return ERR_PTR(-ENOMEM); 12261 12262 jc->info = alloc_percpu(struct perf_cgroup_info); 12263 if (!jc->info) { 12264 kfree(jc); 12265 return ERR_PTR(-ENOMEM); 12266 } 12267 12268 return &jc->css; 12269 } 12270 12271 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12272 { 12273 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12274 12275 free_percpu(jc->info); 12276 kfree(jc); 12277 } 12278 12279 static int __perf_cgroup_move(void *info) 12280 { 12281 struct task_struct *task = info; 12282 rcu_read_lock(); 12283 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12284 rcu_read_unlock(); 12285 return 0; 12286 } 12287 12288 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12289 { 12290 struct task_struct *task; 12291 struct cgroup_subsys_state *css; 12292 12293 cgroup_taskset_for_each(task, css, tset) 12294 task_function_call(task, __perf_cgroup_move, task); 12295 } 12296 12297 struct cgroup_subsys perf_event_cgrp_subsys = { 12298 .css_alloc = perf_cgroup_css_alloc, 12299 .css_free = perf_cgroup_css_free, 12300 .attach = perf_cgroup_attach, 12301 /* 12302 * Implicitly enable on dfl hierarchy so that perf events can 12303 * always be filtered by cgroup2 path as long as perf_event 12304 * controller is not mounted on a legacy hierarchy. 12305 */ 12306 .implicit_on_dfl = true, 12307 .threaded = true, 12308 }; 12309 #endif /* CONFIG_CGROUP_PERF */ 12310