1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 static atomic_t nr_freq_events __read_mostly; 149 150 static LIST_HEAD(pmus); 151 static DEFINE_MUTEX(pmus_lock); 152 static struct srcu_struct pmus_srcu; 153 154 /* 155 * perf event paranoia level: 156 * -1 - not paranoid at all 157 * 0 - disallow raw tracepoint access for unpriv 158 * 1 - disallow cpu events for unpriv 159 * 2 - disallow kernel profiling for unpriv 160 */ 161 int sysctl_perf_event_paranoid __read_mostly = 1; 162 163 /* Minimum for 512 kiB + 1 user control page */ 164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 165 166 /* 167 * max perf event sample rate 168 */ 169 #define DEFAULT_MAX_SAMPLE_RATE 100000 170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 172 173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 174 175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 177 178 static int perf_sample_allowed_ns __read_mostly = 179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 180 181 void update_perf_cpu_limits(void) 182 { 183 u64 tmp = perf_sample_period_ns; 184 185 tmp *= sysctl_perf_cpu_time_max_percent; 186 do_div(tmp, 100); 187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 188 } 189 190 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 191 192 int perf_proc_update_handler(struct ctl_table *table, int write, 193 void __user *buffer, size_t *lenp, 194 loff_t *ppos) 195 { 196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 197 198 if (ret || !write) 199 return ret; 200 201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 203 update_perf_cpu_limits(); 204 205 return 0; 206 } 207 208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 209 210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 update_perf_cpu_limits(); 220 221 return 0; 222 } 223 224 /* 225 * perf samples are done in some very critical code paths (NMIs). 226 * If they take too much CPU time, the system can lock up and not 227 * get any real work done. This will drop the sample rate when 228 * we detect that events are taking too long. 229 */ 230 #define NR_ACCUMULATED_SAMPLES 128 231 static DEFINE_PER_CPU(u64, running_sample_length); 232 233 void perf_sample_event_took(u64 sample_len_ns) 234 { 235 u64 avg_local_sample_len; 236 u64 local_samples_len; 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 238 239 if (allowed_ns == 0) 240 return; 241 242 /* decay the counter by 1 average sample */ 243 local_samples_len = __get_cpu_var(running_sample_length); 244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 245 local_samples_len += sample_len_ns; 246 __get_cpu_var(running_sample_length) = local_samples_len; 247 248 /* 249 * note: this will be biased artifically low until we have 250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 251 * from having to maintain a count. 252 */ 253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 254 255 if (avg_local_sample_len <= allowed_ns) 256 return; 257 258 if (max_samples_per_tick <= 1) 259 return; 260 261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 264 265 printk_ratelimited(KERN_WARNING 266 "perf samples too long (%lld > %lld), lowering " 267 "kernel.perf_event_max_sample_rate to %d\n", 268 avg_local_sample_len, allowed_ns, 269 sysctl_perf_event_sample_rate); 270 271 update_perf_cpu_limits(); 272 } 273 274 static atomic64_t perf_event_id; 275 276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 277 enum event_type_t event_type); 278 279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 280 enum event_type_t event_type, 281 struct task_struct *task); 282 283 static void update_context_time(struct perf_event_context *ctx); 284 static u64 perf_event_time(struct perf_event *event); 285 286 void __weak perf_event_print_debug(void) { } 287 288 extern __weak const char *perf_pmu_name(void) 289 { 290 return "pmu"; 291 } 292 293 static inline u64 perf_clock(void) 294 { 295 return local_clock(); 296 } 297 298 static inline struct perf_cpu_context * 299 __get_cpu_context(struct perf_event_context *ctx) 300 { 301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 302 } 303 304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 305 struct perf_event_context *ctx) 306 { 307 raw_spin_lock(&cpuctx->ctx.lock); 308 if (ctx) 309 raw_spin_lock(&ctx->lock); 310 } 311 312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 313 struct perf_event_context *ctx) 314 { 315 if (ctx) 316 raw_spin_unlock(&ctx->lock); 317 raw_spin_unlock(&cpuctx->ctx.lock); 318 } 319 320 #ifdef CONFIG_CGROUP_PERF 321 322 /* 323 * perf_cgroup_info keeps track of time_enabled for a cgroup. 324 * This is a per-cpu dynamically allocated data structure. 325 */ 326 struct perf_cgroup_info { 327 u64 time; 328 u64 timestamp; 329 }; 330 331 struct perf_cgroup { 332 struct cgroup_subsys_state css; 333 struct perf_cgroup_info __percpu *info; 334 }; 335 336 /* 337 * Must ensure cgroup is pinned (css_get) before calling 338 * this function. In other words, we cannot call this function 339 * if there is no cgroup event for the current CPU context. 340 */ 341 static inline struct perf_cgroup * 342 perf_cgroup_from_task(struct task_struct *task) 343 { 344 return container_of(task_css(task, perf_subsys_id), 345 struct perf_cgroup, css); 346 } 347 348 static inline bool 349 perf_cgroup_match(struct perf_event *event) 350 { 351 struct perf_event_context *ctx = event->ctx; 352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 353 354 /* @event doesn't care about cgroup */ 355 if (!event->cgrp) 356 return true; 357 358 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 359 if (!cpuctx->cgrp) 360 return false; 361 362 /* 363 * Cgroup scoping is recursive. An event enabled for a cgroup is 364 * also enabled for all its descendant cgroups. If @cpuctx's 365 * cgroup is a descendant of @event's (the test covers identity 366 * case), it's a match. 367 */ 368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 369 event->cgrp->css.cgroup); 370 } 371 372 static inline bool perf_tryget_cgroup(struct perf_event *event) 373 { 374 return css_tryget(&event->cgrp->css); 375 } 376 377 static inline void perf_put_cgroup(struct perf_event *event) 378 { 379 css_put(&event->cgrp->css); 380 } 381 382 static inline void perf_detach_cgroup(struct perf_event *event) 383 { 384 perf_put_cgroup(event); 385 event->cgrp = NULL; 386 } 387 388 static inline int is_cgroup_event(struct perf_event *event) 389 { 390 return event->cgrp != NULL; 391 } 392 393 static inline u64 perf_cgroup_event_time(struct perf_event *event) 394 { 395 struct perf_cgroup_info *t; 396 397 t = per_cpu_ptr(event->cgrp->info, event->cpu); 398 return t->time; 399 } 400 401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 402 { 403 struct perf_cgroup_info *info; 404 u64 now; 405 406 now = perf_clock(); 407 408 info = this_cpu_ptr(cgrp->info); 409 410 info->time += now - info->timestamp; 411 info->timestamp = now; 412 } 413 414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 415 { 416 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 417 if (cgrp_out) 418 __update_cgrp_time(cgrp_out); 419 } 420 421 static inline void update_cgrp_time_from_event(struct perf_event *event) 422 { 423 struct perf_cgroup *cgrp; 424 425 /* 426 * ensure we access cgroup data only when needed and 427 * when we know the cgroup is pinned (css_get) 428 */ 429 if (!is_cgroup_event(event)) 430 return; 431 432 cgrp = perf_cgroup_from_task(current); 433 /* 434 * Do not update time when cgroup is not active 435 */ 436 if (cgrp == event->cgrp) 437 __update_cgrp_time(event->cgrp); 438 } 439 440 static inline void 441 perf_cgroup_set_timestamp(struct task_struct *task, 442 struct perf_event_context *ctx) 443 { 444 struct perf_cgroup *cgrp; 445 struct perf_cgroup_info *info; 446 447 /* 448 * ctx->lock held by caller 449 * ensure we do not access cgroup data 450 * unless we have the cgroup pinned (css_get) 451 */ 452 if (!task || !ctx->nr_cgroups) 453 return; 454 455 cgrp = perf_cgroup_from_task(task); 456 info = this_cpu_ptr(cgrp->info); 457 info->timestamp = ctx->timestamp; 458 } 459 460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 462 463 /* 464 * reschedule events based on the cgroup constraint of task. 465 * 466 * mode SWOUT : schedule out everything 467 * mode SWIN : schedule in based on cgroup for next 468 */ 469 void perf_cgroup_switch(struct task_struct *task, int mode) 470 { 471 struct perf_cpu_context *cpuctx; 472 struct pmu *pmu; 473 unsigned long flags; 474 475 /* 476 * disable interrupts to avoid geting nr_cgroup 477 * changes via __perf_event_disable(). Also 478 * avoids preemption. 479 */ 480 local_irq_save(flags); 481 482 /* 483 * we reschedule only in the presence of cgroup 484 * constrained events. 485 */ 486 rcu_read_lock(); 487 488 list_for_each_entry_rcu(pmu, &pmus, entry) { 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 490 if (cpuctx->unique_pmu != pmu) 491 continue; /* ensure we process each cpuctx once */ 492 493 /* 494 * perf_cgroup_events says at least one 495 * context on this CPU has cgroup events. 496 * 497 * ctx->nr_cgroups reports the number of cgroup 498 * events for a context. 499 */ 500 if (cpuctx->ctx.nr_cgroups > 0) { 501 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 502 perf_pmu_disable(cpuctx->ctx.pmu); 503 504 if (mode & PERF_CGROUP_SWOUT) { 505 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 506 /* 507 * must not be done before ctxswout due 508 * to event_filter_match() in event_sched_out() 509 */ 510 cpuctx->cgrp = NULL; 511 } 512 513 if (mode & PERF_CGROUP_SWIN) { 514 WARN_ON_ONCE(cpuctx->cgrp); 515 /* 516 * set cgrp before ctxsw in to allow 517 * event_filter_match() to not have to pass 518 * task around 519 */ 520 cpuctx->cgrp = perf_cgroup_from_task(task); 521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 522 } 523 perf_pmu_enable(cpuctx->ctx.pmu); 524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 525 } 526 } 527 528 rcu_read_unlock(); 529 530 local_irq_restore(flags); 531 } 532 533 static inline void perf_cgroup_sched_out(struct task_struct *task, 534 struct task_struct *next) 535 { 536 struct perf_cgroup *cgrp1; 537 struct perf_cgroup *cgrp2 = NULL; 538 539 /* 540 * we come here when we know perf_cgroup_events > 0 541 */ 542 cgrp1 = perf_cgroup_from_task(task); 543 544 /* 545 * next is NULL when called from perf_event_enable_on_exec() 546 * that will systematically cause a cgroup_switch() 547 */ 548 if (next) 549 cgrp2 = perf_cgroup_from_task(next); 550 551 /* 552 * only schedule out current cgroup events if we know 553 * that we are switching to a different cgroup. Otherwise, 554 * do no touch the cgroup events. 555 */ 556 if (cgrp1 != cgrp2) 557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 558 } 559 560 static inline void perf_cgroup_sched_in(struct task_struct *prev, 561 struct task_struct *task) 562 { 563 struct perf_cgroup *cgrp1; 564 struct perf_cgroup *cgrp2 = NULL; 565 566 /* 567 * we come here when we know perf_cgroup_events > 0 568 */ 569 cgrp1 = perf_cgroup_from_task(task); 570 571 /* prev can never be NULL */ 572 cgrp2 = perf_cgroup_from_task(prev); 573 574 /* 575 * only need to schedule in cgroup events if we are changing 576 * cgroup during ctxsw. Cgroup events were not scheduled 577 * out of ctxsw out if that was not the case. 578 */ 579 if (cgrp1 != cgrp2) 580 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 581 } 582 583 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 584 struct perf_event_attr *attr, 585 struct perf_event *group_leader) 586 { 587 struct perf_cgroup *cgrp; 588 struct cgroup_subsys_state *css; 589 struct fd f = fdget(fd); 590 int ret = 0; 591 592 if (!f.file) 593 return -EBADF; 594 595 rcu_read_lock(); 596 597 css = css_from_dir(f.file->f_dentry, &perf_subsys); 598 if (IS_ERR(css)) { 599 ret = PTR_ERR(css); 600 goto out; 601 } 602 603 cgrp = container_of(css, struct perf_cgroup, css); 604 event->cgrp = cgrp; 605 606 /* must be done before we fput() the file */ 607 if (!perf_tryget_cgroup(event)) { 608 event->cgrp = NULL; 609 ret = -ENOENT; 610 goto out; 611 } 612 613 /* 614 * all events in a group must monitor 615 * the same cgroup because a task belongs 616 * to only one perf cgroup at a time 617 */ 618 if (group_leader && group_leader->cgrp != cgrp) { 619 perf_detach_cgroup(event); 620 ret = -EINVAL; 621 } 622 out: 623 rcu_read_unlock(); 624 fdput(f); 625 return ret; 626 } 627 628 static inline void 629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 630 { 631 struct perf_cgroup_info *t; 632 t = per_cpu_ptr(event->cgrp->info, event->cpu); 633 event->shadow_ctx_time = now - t->timestamp; 634 } 635 636 static inline void 637 perf_cgroup_defer_enabled(struct perf_event *event) 638 { 639 /* 640 * when the current task's perf cgroup does not match 641 * the event's, we need to remember to call the 642 * perf_mark_enable() function the first time a task with 643 * a matching perf cgroup is scheduled in. 644 */ 645 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 646 event->cgrp_defer_enabled = 1; 647 } 648 649 static inline void 650 perf_cgroup_mark_enabled(struct perf_event *event, 651 struct perf_event_context *ctx) 652 { 653 struct perf_event *sub; 654 u64 tstamp = perf_event_time(event); 655 656 if (!event->cgrp_defer_enabled) 657 return; 658 659 event->cgrp_defer_enabled = 0; 660 661 event->tstamp_enabled = tstamp - event->total_time_enabled; 662 list_for_each_entry(sub, &event->sibling_list, group_entry) { 663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 664 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 665 sub->cgrp_defer_enabled = 0; 666 } 667 } 668 } 669 #else /* !CONFIG_CGROUP_PERF */ 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 return true; 675 } 676 677 static inline void perf_detach_cgroup(struct perf_event *event) 678 {} 679 680 static inline int is_cgroup_event(struct perf_event *event) 681 { 682 return 0; 683 } 684 685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 686 { 687 return 0; 688 } 689 690 static inline void update_cgrp_time_from_event(struct perf_event *event) 691 { 692 } 693 694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 695 { 696 } 697 698 static inline void perf_cgroup_sched_out(struct task_struct *task, 699 struct task_struct *next) 700 { 701 } 702 703 static inline void perf_cgroup_sched_in(struct task_struct *prev, 704 struct task_struct *task) 705 { 706 } 707 708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 709 struct perf_event_attr *attr, 710 struct perf_event *group_leader) 711 { 712 return -EINVAL; 713 } 714 715 static inline void 716 perf_cgroup_set_timestamp(struct task_struct *task, 717 struct perf_event_context *ctx) 718 { 719 } 720 721 void 722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 723 { 724 } 725 726 static inline void 727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 728 { 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 return 0; 734 } 735 736 static inline void 737 perf_cgroup_defer_enabled(struct perf_event *event) 738 { 739 } 740 741 static inline void 742 perf_cgroup_mark_enabled(struct perf_event *event, 743 struct perf_event_context *ctx) 744 { 745 } 746 #endif 747 748 /* 749 * set default to be dependent on timer tick just 750 * like original code 751 */ 752 #define PERF_CPU_HRTIMER (1000 / HZ) 753 /* 754 * function must be called with interrupts disbled 755 */ 756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 757 { 758 struct perf_cpu_context *cpuctx; 759 enum hrtimer_restart ret = HRTIMER_NORESTART; 760 int rotations = 0; 761 762 WARN_ON(!irqs_disabled()); 763 764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 765 766 rotations = perf_rotate_context(cpuctx); 767 768 /* 769 * arm timer if needed 770 */ 771 if (rotations) { 772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 773 ret = HRTIMER_RESTART; 774 } 775 776 return ret; 777 } 778 779 /* CPU is going down */ 780 void perf_cpu_hrtimer_cancel(int cpu) 781 { 782 struct perf_cpu_context *cpuctx; 783 struct pmu *pmu; 784 unsigned long flags; 785 786 if (WARN_ON(cpu != smp_processor_id())) 787 return; 788 789 local_irq_save(flags); 790 791 rcu_read_lock(); 792 793 list_for_each_entry_rcu(pmu, &pmus, entry) { 794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 795 796 if (pmu->task_ctx_nr == perf_sw_context) 797 continue; 798 799 hrtimer_cancel(&cpuctx->hrtimer); 800 } 801 802 rcu_read_unlock(); 803 804 local_irq_restore(flags); 805 } 806 807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 808 { 809 struct hrtimer *hr = &cpuctx->hrtimer; 810 struct pmu *pmu = cpuctx->ctx.pmu; 811 int timer; 812 813 /* no multiplexing needed for SW PMU */ 814 if (pmu->task_ctx_nr == perf_sw_context) 815 return; 816 817 /* 818 * check default is sane, if not set then force to 819 * default interval (1/tick) 820 */ 821 timer = pmu->hrtimer_interval_ms; 822 if (timer < 1) 823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 824 825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 826 827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 828 hr->function = perf_cpu_hrtimer_handler; 829 } 830 831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 832 { 833 struct hrtimer *hr = &cpuctx->hrtimer; 834 struct pmu *pmu = cpuctx->ctx.pmu; 835 836 /* not for SW PMU */ 837 if (pmu->task_ctx_nr == perf_sw_context) 838 return; 839 840 if (hrtimer_active(hr)) 841 return; 842 843 if (!hrtimer_callback_running(hr)) 844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 845 0, HRTIMER_MODE_REL_PINNED, 0); 846 } 847 848 void perf_pmu_disable(struct pmu *pmu) 849 { 850 int *count = this_cpu_ptr(pmu->pmu_disable_count); 851 if (!(*count)++) 852 pmu->pmu_disable(pmu); 853 } 854 855 void perf_pmu_enable(struct pmu *pmu) 856 { 857 int *count = this_cpu_ptr(pmu->pmu_disable_count); 858 if (!--(*count)) 859 pmu->pmu_enable(pmu); 860 } 861 862 static DEFINE_PER_CPU(struct list_head, rotation_list); 863 864 /* 865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 866 * because they're strictly cpu affine and rotate_start is called with IRQs 867 * disabled, while rotate_context is called from IRQ context. 868 */ 869 static void perf_pmu_rotate_start(struct pmu *pmu) 870 { 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 872 struct list_head *head = &__get_cpu_var(rotation_list); 873 874 WARN_ON(!irqs_disabled()); 875 876 if (list_empty(&cpuctx->rotation_list)) 877 list_add(&cpuctx->rotation_list, head); 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 ctx->generation++; 903 } 904 905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 906 { 907 /* 908 * only top level events have the pid namespace they were created in 909 */ 910 if (event->parent) 911 event = event->parent; 912 913 return task_tgid_nr_ns(p, event->ns); 914 } 915 916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 917 { 918 /* 919 * only top level events have the pid namespace they were created in 920 */ 921 if (event->parent) 922 event = event->parent; 923 924 return task_pid_nr_ns(p, event->ns); 925 } 926 927 /* 928 * If we inherit events we want to return the parent event id 929 * to userspace. 930 */ 931 static u64 primary_event_id(struct perf_event *event) 932 { 933 u64 id = event->id; 934 935 if (event->parent) 936 id = event->parent->id; 937 938 return id; 939 } 940 941 /* 942 * Get the perf_event_context for a task and lock it. 943 * This has to cope with with the fact that until it is locked, 944 * the context could get moved to another task. 945 */ 946 static struct perf_event_context * 947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 948 { 949 struct perf_event_context *ctx; 950 951 retry: 952 /* 953 * One of the few rules of preemptible RCU is that one cannot do 954 * rcu_read_unlock() while holding a scheduler (or nested) lock when 955 * part of the read side critical section was preemptible -- see 956 * rcu_read_unlock_special(). 957 * 958 * Since ctx->lock nests under rq->lock we must ensure the entire read 959 * side critical section is non-preemptible. 960 */ 961 preempt_disable(); 962 rcu_read_lock(); 963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 964 if (ctx) { 965 /* 966 * If this context is a clone of another, it might 967 * get swapped for another underneath us by 968 * perf_event_task_sched_out, though the 969 * rcu_read_lock() protects us from any context 970 * getting freed. Lock the context and check if it 971 * got swapped before we could get the lock, and retry 972 * if so. If we locked the right context, then it 973 * can't get swapped on us any more. 974 */ 975 raw_spin_lock_irqsave(&ctx->lock, *flags); 976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 977 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 978 rcu_read_unlock(); 979 preempt_enable(); 980 goto retry; 981 } 982 983 if (!atomic_inc_not_zero(&ctx->refcount)) { 984 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 985 ctx = NULL; 986 } 987 } 988 rcu_read_unlock(); 989 preempt_enable(); 990 return ctx; 991 } 992 993 /* 994 * Get the context for a task and increment its pin_count so it 995 * can't get swapped to another task. This also increments its 996 * reference count so that the context can't get freed. 997 */ 998 static struct perf_event_context * 999 perf_pin_task_context(struct task_struct *task, int ctxn) 1000 { 1001 struct perf_event_context *ctx; 1002 unsigned long flags; 1003 1004 ctx = perf_lock_task_context(task, ctxn, &flags); 1005 if (ctx) { 1006 ++ctx->pin_count; 1007 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1008 } 1009 return ctx; 1010 } 1011 1012 static void perf_unpin_context(struct perf_event_context *ctx) 1013 { 1014 unsigned long flags; 1015 1016 raw_spin_lock_irqsave(&ctx->lock, flags); 1017 --ctx->pin_count; 1018 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1019 } 1020 1021 /* 1022 * Update the record of the current time in a context. 1023 */ 1024 static void update_context_time(struct perf_event_context *ctx) 1025 { 1026 u64 now = perf_clock(); 1027 1028 ctx->time += now - ctx->timestamp; 1029 ctx->timestamp = now; 1030 } 1031 1032 static u64 perf_event_time(struct perf_event *event) 1033 { 1034 struct perf_event_context *ctx = event->ctx; 1035 1036 if (is_cgroup_event(event)) 1037 return perf_cgroup_event_time(event); 1038 1039 return ctx ? ctx->time : 0; 1040 } 1041 1042 /* 1043 * Update the total_time_enabled and total_time_running fields for a event. 1044 * The caller of this function needs to hold the ctx->lock. 1045 */ 1046 static void update_event_times(struct perf_event *event) 1047 { 1048 struct perf_event_context *ctx = event->ctx; 1049 u64 run_end; 1050 1051 if (event->state < PERF_EVENT_STATE_INACTIVE || 1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1053 return; 1054 /* 1055 * in cgroup mode, time_enabled represents 1056 * the time the event was enabled AND active 1057 * tasks were in the monitored cgroup. This is 1058 * independent of the activity of the context as 1059 * there may be a mix of cgroup and non-cgroup events. 1060 * 1061 * That is why we treat cgroup events differently 1062 * here. 1063 */ 1064 if (is_cgroup_event(event)) 1065 run_end = perf_cgroup_event_time(event); 1066 else if (ctx->is_active) 1067 run_end = ctx->time; 1068 else 1069 run_end = event->tstamp_stopped; 1070 1071 event->total_time_enabled = run_end - event->tstamp_enabled; 1072 1073 if (event->state == PERF_EVENT_STATE_INACTIVE) 1074 run_end = event->tstamp_stopped; 1075 else 1076 run_end = perf_event_time(event); 1077 1078 event->total_time_running = run_end - event->tstamp_running; 1079 1080 } 1081 1082 /* 1083 * Update total_time_enabled and total_time_running for all events in a group. 1084 */ 1085 static void update_group_times(struct perf_event *leader) 1086 { 1087 struct perf_event *event; 1088 1089 update_event_times(leader); 1090 list_for_each_entry(event, &leader->sibling_list, group_entry) 1091 update_event_times(event); 1092 } 1093 1094 static struct list_head * 1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1096 { 1097 if (event->attr.pinned) 1098 return &ctx->pinned_groups; 1099 else 1100 return &ctx->flexible_groups; 1101 } 1102 1103 /* 1104 * Add a event from the lists for its context. 1105 * Must be called with ctx->mutex and ctx->lock held. 1106 */ 1107 static void 1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1109 { 1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1111 event->attach_state |= PERF_ATTACH_CONTEXT; 1112 1113 /* 1114 * If we're a stand alone event or group leader, we go to the context 1115 * list, group events are kept attached to the group so that 1116 * perf_group_detach can, at all times, locate all siblings. 1117 */ 1118 if (event->group_leader == event) { 1119 struct list_head *list; 1120 1121 if (is_software_event(event)) 1122 event->group_flags |= PERF_GROUP_SOFTWARE; 1123 1124 list = ctx_group_list(event, ctx); 1125 list_add_tail(&event->group_entry, list); 1126 } 1127 1128 if (is_cgroup_event(event)) 1129 ctx->nr_cgroups++; 1130 1131 if (has_branch_stack(event)) 1132 ctx->nr_branch_stack++; 1133 1134 list_add_rcu(&event->event_entry, &ctx->event_list); 1135 if (!ctx->nr_events) 1136 perf_pmu_rotate_start(ctx->pmu); 1137 ctx->nr_events++; 1138 if (event->attr.inherit_stat) 1139 ctx->nr_stat++; 1140 1141 ctx->generation++; 1142 } 1143 1144 /* 1145 * Initialize event state based on the perf_event_attr::disabled. 1146 */ 1147 static inline void perf_event__state_init(struct perf_event *event) 1148 { 1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1150 PERF_EVENT_STATE_INACTIVE; 1151 } 1152 1153 /* 1154 * Called at perf_event creation and when events are attached/detached from a 1155 * group. 1156 */ 1157 static void perf_event__read_size(struct perf_event *event) 1158 { 1159 int entry = sizeof(u64); /* value */ 1160 int size = 0; 1161 int nr = 1; 1162 1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1164 size += sizeof(u64); 1165 1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1167 size += sizeof(u64); 1168 1169 if (event->attr.read_format & PERF_FORMAT_ID) 1170 entry += sizeof(u64); 1171 1172 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1173 nr += event->group_leader->nr_siblings; 1174 size += sizeof(u64); 1175 } 1176 1177 size += entry * nr; 1178 event->read_size = size; 1179 } 1180 1181 static void perf_event__header_size(struct perf_event *event) 1182 { 1183 struct perf_sample_data *data; 1184 u64 sample_type = event->attr.sample_type; 1185 u16 size = 0; 1186 1187 perf_event__read_size(event); 1188 1189 if (sample_type & PERF_SAMPLE_IP) 1190 size += sizeof(data->ip); 1191 1192 if (sample_type & PERF_SAMPLE_ADDR) 1193 size += sizeof(data->addr); 1194 1195 if (sample_type & PERF_SAMPLE_PERIOD) 1196 size += sizeof(data->period); 1197 1198 if (sample_type & PERF_SAMPLE_WEIGHT) 1199 size += sizeof(data->weight); 1200 1201 if (sample_type & PERF_SAMPLE_READ) 1202 size += event->read_size; 1203 1204 if (sample_type & PERF_SAMPLE_DATA_SRC) 1205 size += sizeof(data->data_src.val); 1206 1207 if (sample_type & PERF_SAMPLE_TRANSACTION) 1208 size += sizeof(data->txn); 1209 1210 event->header_size = size; 1211 } 1212 1213 static void perf_event__id_header_size(struct perf_event *event) 1214 { 1215 struct perf_sample_data *data; 1216 u64 sample_type = event->attr.sample_type; 1217 u16 size = 0; 1218 1219 if (sample_type & PERF_SAMPLE_TID) 1220 size += sizeof(data->tid_entry); 1221 1222 if (sample_type & PERF_SAMPLE_TIME) 1223 size += sizeof(data->time); 1224 1225 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1226 size += sizeof(data->id); 1227 1228 if (sample_type & PERF_SAMPLE_ID) 1229 size += sizeof(data->id); 1230 1231 if (sample_type & PERF_SAMPLE_STREAM_ID) 1232 size += sizeof(data->stream_id); 1233 1234 if (sample_type & PERF_SAMPLE_CPU) 1235 size += sizeof(data->cpu_entry); 1236 1237 event->id_header_size = size; 1238 } 1239 1240 static void perf_group_attach(struct perf_event *event) 1241 { 1242 struct perf_event *group_leader = event->group_leader, *pos; 1243 1244 /* 1245 * We can have double attach due to group movement in perf_event_open. 1246 */ 1247 if (event->attach_state & PERF_ATTACH_GROUP) 1248 return; 1249 1250 event->attach_state |= PERF_ATTACH_GROUP; 1251 1252 if (group_leader == event) 1253 return; 1254 1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1256 !is_software_event(event)) 1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1258 1259 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1260 group_leader->nr_siblings++; 1261 1262 perf_event__header_size(group_leader); 1263 1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1265 perf_event__header_size(pos); 1266 } 1267 1268 /* 1269 * Remove a event from the lists for its context. 1270 * Must be called with ctx->mutex and ctx->lock held. 1271 */ 1272 static void 1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1274 { 1275 struct perf_cpu_context *cpuctx; 1276 /* 1277 * We can have double detach due to exit/hot-unplug + close. 1278 */ 1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1280 return; 1281 1282 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1283 1284 if (is_cgroup_event(event)) { 1285 ctx->nr_cgroups--; 1286 cpuctx = __get_cpu_context(ctx); 1287 /* 1288 * if there are no more cgroup events 1289 * then cler cgrp to avoid stale pointer 1290 * in update_cgrp_time_from_cpuctx() 1291 */ 1292 if (!ctx->nr_cgroups) 1293 cpuctx->cgrp = NULL; 1294 } 1295 1296 if (has_branch_stack(event)) 1297 ctx->nr_branch_stack--; 1298 1299 ctx->nr_events--; 1300 if (event->attr.inherit_stat) 1301 ctx->nr_stat--; 1302 1303 list_del_rcu(&event->event_entry); 1304 1305 if (event->group_leader == event) 1306 list_del_init(&event->group_entry); 1307 1308 update_group_times(event); 1309 1310 /* 1311 * If event was in error state, then keep it 1312 * that way, otherwise bogus counts will be 1313 * returned on read(). The only way to get out 1314 * of error state is by explicit re-enabling 1315 * of the event 1316 */ 1317 if (event->state > PERF_EVENT_STATE_OFF) 1318 event->state = PERF_EVENT_STATE_OFF; 1319 1320 ctx->generation++; 1321 } 1322 1323 static void perf_group_detach(struct perf_event *event) 1324 { 1325 struct perf_event *sibling, *tmp; 1326 struct list_head *list = NULL; 1327 1328 /* 1329 * We can have double detach due to exit/hot-unplug + close. 1330 */ 1331 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1332 return; 1333 1334 event->attach_state &= ~PERF_ATTACH_GROUP; 1335 1336 /* 1337 * If this is a sibling, remove it from its group. 1338 */ 1339 if (event->group_leader != event) { 1340 list_del_init(&event->group_entry); 1341 event->group_leader->nr_siblings--; 1342 goto out; 1343 } 1344 1345 if (!list_empty(&event->group_entry)) 1346 list = &event->group_entry; 1347 1348 /* 1349 * If this was a group event with sibling events then 1350 * upgrade the siblings to singleton events by adding them 1351 * to whatever list we are on. 1352 */ 1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1354 if (list) 1355 list_move_tail(&sibling->group_entry, list); 1356 sibling->group_leader = sibling; 1357 1358 /* Inherit group flags from the previous leader */ 1359 sibling->group_flags = event->group_flags; 1360 } 1361 1362 out: 1363 perf_event__header_size(event->group_leader); 1364 1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1366 perf_event__header_size(tmp); 1367 } 1368 1369 static inline int 1370 event_filter_match(struct perf_event *event) 1371 { 1372 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1373 && perf_cgroup_match(event); 1374 } 1375 1376 static void 1377 event_sched_out(struct perf_event *event, 1378 struct perf_cpu_context *cpuctx, 1379 struct perf_event_context *ctx) 1380 { 1381 u64 tstamp = perf_event_time(event); 1382 u64 delta; 1383 /* 1384 * An event which could not be activated because of 1385 * filter mismatch still needs to have its timings 1386 * maintained, otherwise bogus information is return 1387 * via read() for time_enabled, time_running: 1388 */ 1389 if (event->state == PERF_EVENT_STATE_INACTIVE 1390 && !event_filter_match(event)) { 1391 delta = tstamp - event->tstamp_stopped; 1392 event->tstamp_running += delta; 1393 event->tstamp_stopped = tstamp; 1394 } 1395 1396 if (event->state != PERF_EVENT_STATE_ACTIVE) 1397 return; 1398 1399 event->state = PERF_EVENT_STATE_INACTIVE; 1400 if (event->pending_disable) { 1401 event->pending_disable = 0; 1402 event->state = PERF_EVENT_STATE_OFF; 1403 } 1404 event->tstamp_stopped = tstamp; 1405 event->pmu->del(event, 0); 1406 event->oncpu = -1; 1407 1408 if (!is_software_event(event)) 1409 cpuctx->active_oncpu--; 1410 ctx->nr_active--; 1411 if (event->attr.freq && event->attr.sample_freq) 1412 ctx->nr_freq--; 1413 if (event->attr.exclusive || !cpuctx->active_oncpu) 1414 cpuctx->exclusive = 0; 1415 } 1416 1417 static void 1418 group_sched_out(struct perf_event *group_event, 1419 struct perf_cpu_context *cpuctx, 1420 struct perf_event_context *ctx) 1421 { 1422 struct perf_event *event; 1423 int state = group_event->state; 1424 1425 event_sched_out(group_event, cpuctx, ctx); 1426 1427 /* 1428 * Schedule out siblings (if any): 1429 */ 1430 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1431 event_sched_out(event, cpuctx, ctx); 1432 1433 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1434 cpuctx->exclusive = 0; 1435 } 1436 1437 /* 1438 * Cross CPU call to remove a performance event 1439 * 1440 * We disable the event on the hardware level first. After that we 1441 * remove it from the context list. 1442 */ 1443 static int __perf_remove_from_context(void *info) 1444 { 1445 struct perf_event *event = info; 1446 struct perf_event_context *ctx = event->ctx; 1447 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1448 1449 raw_spin_lock(&ctx->lock); 1450 event_sched_out(event, cpuctx, ctx); 1451 list_del_event(event, ctx); 1452 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1453 ctx->is_active = 0; 1454 cpuctx->task_ctx = NULL; 1455 } 1456 raw_spin_unlock(&ctx->lock); 1457 1458 return 0; 1459 } 1460 1461 1462 /* 1463 * Remove the event from a task's (or a CPU's) list of events. 1464 * 1465 * CPU events are removed with a smp call. For task events we only 1466 * call when the task is on a CPU. 1467 * 1468 * If event->ctx is a cloned context, callers must make sure that 1469 * every task struct that event->ctx->task could possibly point to 1470 * remains valid. This is OK when called from perf_release since 1471 * that only calls us on the top-level context, which can't be a clone. 1472 * When called from perf_event_exit_task, it's OK because the 1473 * context has been detached from its task. 1474 */ 1475 static void perf_remove_from_context(struct perf_event *event) 1476 { 1477 struct perf_event_context *ctx = event->ctx; 1478 struct task_struct *task = ctx->task; 1479 1480 lockdep_assert_held(&ctx->mutex); 1481 1482 if (!task) { 1483 /* 1484 * Per cpu events are removed via an smp call and 1485 * the removal is always successful. 1486 */ 1487 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1488 return; 1489 } 1490 1491 retry: 1492 if (!task_function_call(task, __perf_remove_from_context, event)) 1493 return; 1494 1495 raw_spin_lock_irq(&ctx->lock); 1496 /* 1497 * If we failed to find a running task, but find the context active now 1498 * that we've acquired the ctx->lock, retry. 1499 */ 1500 if (ctx->is_active) { 1501 raw_spin_unlock_irq(&ctx->lock); 1502 goto retry; 1503 } 1504 1505 /* 1506 * Since the task isn't running, its safe to remove the event, us 1507 * holding the ctx->lock ensures the task won't get scheduled in. 1508 */ 1509 list_del_event(event, ctx); 1510 raw_spin_unlock_irq(&ctx->lock); 1511 } 1512 1513 /* 1514 * Cross CPU call to disable a performance event 1515 */ 1516 int __perf_event_disable(void *info) 1517 { 1518 struct perf_event *event = info; 1519 struct perf_event_context *ctx = event->ctx; 1520 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1521 1522 /* 1523 * If this is a per-task event, need to check whether this 1524 * event's task is the current task on this cpu. 1525 * 1526 * Can trigger due to concurrent perf_event_context_sched_out() 1527 * flipping contexts around. 1528 */ 1529 if (ctx->task && cpuctx->task_ctx != ctx) 1530 return -EINVAL; 1531 1532 raw_spin_lock(&ctx->lock); 1533 1534 /* 1535 * If the event is on, turn it off. 1536 * If it is in error state, leave it in error state. 1537 */ 1538 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1539 update_context_time(ctx); 1540 update_cgrp_time_from_event(event); 1541 update_group_times(event); 1542 if (event == event->group_leader) 1543 group_sched_out(event, cpuctx, ctx); 1544 else 1545 event_sched_out(event, cpuctx, ctx); 1546 event->state = PERF_EVENT_STATE_OFF; 1547 } 1548 1549 raw_spin_unlock(&ctx->lock); 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * Disable a event. 1556 * 1557 * If event->ctx is a cloned context, callers must make sure that 1558 * every task struct that event->ctx->task could possibly point to 1559 * remains valid. This condition is satisifed when called through 1560 * perf_event_for_each_child or perf_event_for_each because they 1561 * hold the top-level event's child_mutex, so any descendant that 1562 * goes to exit will block in sync_child_event. 1563 * When called from perf_pending_event it's OK because event->ctx 1564 * is the current context on this CPU and preemption is disabled, 1565 * hence we can't get into perf_event_task_sched_out for this context. 1566 */ 1567 void perf_event_disable(struct perf_event *event) 1568 { 1569 struct perf_event_context *ctx = event->ctx; 1570 struct task_struct *task = ctx->task; 1571 1572 if (!task) { 1573 /* 1574 * Disable the event on the cpu that it's on 1575 */ 1576 cpu_function_call(event->cpu, __perf_event_disable, event); 1577 return; 1578 } 1579 1580 retry: 1581 if (!task_function_call(task, __perf_event_disable, event)) 1582 return; 1583 1584 raw_spin_lock_irq(&ctx->lock); 1585 /* 1586 * If the event is still active, we need to retry the cross-call. 1587 */ 1588 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1589 raw_spin_unlock_irq(&ctx->lock); 1590 /* 1591 * Reload the task pointer, it might have been changed by 1592 * a concurrent perf_event_context_sched_out(). 1593 */ 1594 task = ctx->task; 1595 goto retry; 1596 } 1597 1598 /* 1599 * Since we have the lock this context can't be scheduled 1600 * in, so we can change the state safely. 1601 */ 1602 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1603 update_group_times(event); 1604 event->state = PERF_EVENT_STATE_OFF; 1605 } 1606 raw_spin_unlock_irq(&ctx->lock); 1607 } 1608 EXPORT_SYMBOL_GPL(perf_event_disable); 1609 1610 static void perf_set_shadow_time(struct perf_event *event, 1611 struct perf_event_context *ctx, 1612 u64 tstamp) 1613 { 1614 /* 1615 * use the correct time source for the time snapshot 1616 * 1617 * We could get by without this by leveraging the 1618 * fact that to get to this function, the caller 1619 * has most likely already called update_context_time() 1620 * and update_cgrp_time_xx() and thus both timestamp 1621 * are identical (or very close). Given that tstamp is, 1622 * already adjusted for cgroup, we could say that: 1623 * tstamp - ctx->timestamp 1624 * is equivalent to 1625 * tstamp - cgrp->timestamp. 1626 * 1627 * Then, in perf_output_read(), the calculation would 1628 * work with no changes because: 1629 * - event is guaranteed scheduled in 1630 * - no scheduled out in between 1631 * - thus the timestamp would be the same 1632 * 1633 * But this is a bit hairy. 1634 * 1635 * So instead, we have an explicit cgroup call to remain 1636 * within the time time source all along. We believe it 1637 * is cleaner and simpler to understand. 1638 */ 1639 if (is_cgroup_event(event)) 1640 perf_cgroup_set_shadow_time(event, tstamp); 1641 else 1642 event->shadow_ctx_time = tstamp - ctx->timestamp; 1643 } 1644 1645 #define MAX_INTERRUPTS (~0ULL) 1646 1647 static void perf_log_throttle(struct perf_event *event, int enable); 1648 1649 static int 1650 event_sched_in(struct perf_event *event, 1651 struct perf_cpu_context *cpuctx, 1652 struct perf_event_context *ctx) 1653 { 1654 u64 tstamp = perf_event_time(event); 1655 1656 if (event->state <= PERF_EVENT_STATE_OFF) 1657 return 0; 1658 1659 event->state = PERF_EVENT_STATE_ACTIVE; 1660 event->oncpu = smp_processor_id(); 1661 1662 /* 1663 * Unthrottle events, since we scheduled we might have missed several 1664 * ticks already, also for a heavily scheduling task there is little 1665 * guarantee it'll get a tick in a timely manner. 1666 */ 1667 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1668 perf_log_throttle(event, 1); 1669 event->hw.interrupts = 0; 1670 } 1671 1672 /* 1673 * The new state must be visible before we turn it on in the hardware: 1674 */ 1675 smp_wmb(); 1676 1677 if (event->pmu->add(event, PERF_EF_START)) { 1678 event->state = PERF_EVENT_STATE_INACTIVE; 1679 event->oncpu = -1; 1680 return -EAGAIN; 1681 } 1682 1683 event->tstamp_running += tstamp - event->tstamp_stopped; 1684 1685 perf_set_shadow_time(event, ctx, tstamp); 1686 1687 if (!is_software_event(event)) 1688 cpuctx->active_oncpu++; 1689 ctx->nr_active++; 1690 if (event->attr.freq && event->attr.sample_freq) 1691 ctx->nr_freq++; 1692 1693 if (event->attr.exclusive) 1694 cpuctx->exclusive = 1; 1695 1696 return 0; 1697 } 1698 1699 static int 1700 group_sched_in(struct perf_event *group_event, 1701 struct perf_cpu_context *cpuctx, 1702 struct perf_event_context *ctx) 1703 { 1704 struct perf_event *event, *partial_group = NULL; 1705 struct pmu *pmu = group_event->pmu; 1706 u64 now = ctx->time; 1707 bool simulate = false; 1708 1709 if (group_event->state == PERF_EVENT_STATE_OFF) 1710 return 0; 1711 1712 pmu->start_txn(pmu); 1713 1714 if (event_sched_in(group_event, cpuctx, ctx)) { 1715 pmu->cancel_txn(pmu); 1716 perf_cpu_hrtimer_restart(cpuctx); 1717 return -EAGAIN; 1718 } 1719 1720 /* 1721 * Schedule in siblings as one group (if any): 1722 */ 1723 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1724 if (event_sched_in(event, cpuctx, ctx)) { 1725 partial_group = event; 1726 goto group_error; 1727 } 1728 } 1729 1730 if (!pmu->commit_txn(pmu)) 1731 return 0; 1732 1733 group_error: 1734 /* 1735 * Groups can be scheduled in as one unit only, so undo any 1736 * partial group before returning: 1737 * The events up to the failed event are scheduled out normally, 1738 * tstamp_stopped will be updated. 1739 * 1740 * The failed events and the remaining siblings need to have 1741 * their timings updated as if they had gone thru event_sched_in() 1742 * and event_sched_out(). This is required to get consistent timings 1743 * across the group. This also takes care of the case where the group 1744 * could never be scheduled by ensuring tstamp_stopped is set to mark 1745 * the time the event was actually stopped, such that time delta 1746 * calculation in update_event_times() is correct. 1747 */ 1748 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1749 if (event == partial_group) 1750 simulate = true; 1751 1752 if (simulate) { 1753 event->tstamp_running += now - event->tstamp_stopped; 1754 event->tstamp_stopped = now; 1755 } else { 1756 event_sched_out(event, cpuctx, ctx); 1757 } 1758 } 1759 event_sched_out(group_event, cpuctx, ctx); 1760 1761 pmu->cancel_txn(pmu); 1762 1763 perf_cpu_hrtimer_restart(cpuctx); 1764 1765 return -EAGAIN; 1766 } 1767 1768 /* 1769 * Work out whether we can put this event group on the CPU now. 1770 */ 1771 static int group_can_go_on(struct perf_event *event, 1772 struct perf_cpu_context *cpuctx, 1773 int can_add_hw) 1774 { 1775 /* 1776 * Groups consisting entirely of software events can always go on. 1777 */ 1778 if (event->group_flags & PERF_GROUP_SOFTWARE) 1779 return 1; 1780 /* 1781 * If an exclusive group is already on, no other hardware 1782 * events can go on. 1783 */ 1784 if (cpuctx->exclusive) 1785 return 0; 1786 /* 1787 * If this group is exclusive and there are already 1788 * events on the CPU, it can't go on. 1789 */ 1790 if (event->attr.exclusive && cpuctx->active_oncpu) 1791 return 0; 1792 /* 1793 * Otherwise, try to add it if all previous groups were able 1794 * to go on. 1795 */ 1796 return can_add_hw; 1797 } 1798 1799 static void add_event_to_ctx(struct perf_event *event, 1800 struct perf_event_context *ctx) 1801 { 1802 u64 tstamp = perf_event_time(event); 1803 1804 list_add_event(event, ctx); 1805 perf_group_attach(event); 1806 event->tstamp_enabled = tstamp; 1807 event->tstamp_running = tstamp; 1808 event->tstamp_stopped = tstamp; 1809 } 1810 1811 static void task_ctx_sched_out(struct perf_event_context *ctx); 1812 static void 1813 ctx_sched_in(struct perf_event_context *ctx, 1814 struct perf_cpu_context *cpuctx, 1815 enum event_type_t event_type, 1816 struct task_struct *task); 1817 1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1819 struct perf_event_context *ctx, 1820 struct task_struct *task) 1821 { 1822 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1823 if (ctx) 1824 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1825 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1826 if (ctx) 1827 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1828 } 1829 1830 /* 1831 * Cross CPU call to install and enable a performance event 1832 * 1833 * Must be called with ctx->mutex held 1834 */ 1835 static int __perf_install_in_context(void *info) 1836 { 1837 struct perf_event *event = info; 1838 struct perf_event_context *ctx = event->ctx; 1839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1840 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1841 struct task_struct *task = current; 1842 1843 perf_ctx_lock(cpuctx, task_ctx); 1844 perf_pmu_disable(cpuctx->ctx.pmu); 1845 1846 /* 1847 * If there was an active task_ctx schedule it out. 1848 */ 1849 if (task_ctx) 1850 task_ctx_sched_out(task_ctx); 1851 1852 /* 1853 * If the context we're installing events in is not the 1854 * active task_ctx, flip them. 1855 */ 1856 if (ctx->task && task_ctx != ctx) { 1857 if (task_ctx) 1858 raw_spin_unlock(&task_ctx->lock); 1859 raw_spin_lock(&ctx->lock); 1860 task_ctx = ctx; 1861 } 1862 1863 if (task_ctx) { 1864 cpuctx->task_ctx = task_ctx; 1865 task = task_ctx->task; 1866 } 1867 1868 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1869 1870 update_context_time(ctx); 1871 /* 1872 * update cgrp time only if current cgrp 1873 * matches event->cgrp. Must be done before 1874 * calling add_event_to_ctx() 1875 */ 1876 update_cgrp_time_from_event(event); 1877 1878 add_event_to_ctx(event, ctx); 1879 1880 /* 1881 * Schedule everything back in 1882 */ 1883 perf_event_sched_in(cpuctx, task_ctx, task); 1884 1885 perf_pmu_enable(cpuctx->ctx.pmu); 1886 perf_ctx_unlock(cpuctx, task_ctx); 1887 1888 return 0; 1889 } 1890 1891 /* 1892 * Attach a performance event to a context 1893 * 1894 * First we add the event to the list with the hardware enable bit 1895 * in event->hw_config cleared. 1896 * 1897 * If the event is attached to a task which is on a CPU we use a smp 1898 * call to enable it in the task context. The task might have been 1899 * scheduled away, but we check this in the smp call again. 1900 */ 1901 static void 1902 perf_install_in_context(struct perf_event_context *ctx, 1903 struct perf_event *event, 1904 int cpu) 1905 { 1906 struct task_struct *task = ctx->task; 1907 1908 lockdep_assert_held(&ctx->mutex); 1909 1910 event->ctx = ctx; 1911 if (event->cpu != -1) 1912 event->cpu = cpu; 1913 1914 if (!task) { 1915 /* 1916 * Per cpu events are installed via an smp call and 1917 * the install is always successful. 1918 */ 1919 cpu_function_call(cpu, __perf_install_in_context, event); 1920 return; 1921 } 1922 1923 retry: 1924 if (!task_function_call(task, __perf_install_in_context, event)) 1925 return; 1926 1927 raw_spin_lock_irq(&ctx->lock); 1928 /* 1929 * If we failed to find a running task, but find the context active now 1930 * that we've acquired the ctx->lock, retry. 1931 */ 1932 if (ctx->is_active) { 1933 raw_spin_unlock_irq(&ctx->lock); 1934 goto retry; 1935 } 1936 1937 /* 1938 * Since the task isn't running, its safe to add the event, us holding 1939 * the ctx->lock ensures the task won't get scheduled in. 1940 */ 1941 add_event_to_ctx(event, ctx); 1942 raw_spin_unlock_irq(&ctx->lock); 1943 } 1944 1945 /* 1946 * Put a event into inactive state and update time fields. 1947 * Enabling the leader of a group effectively enables all 1948 * the group members that aren't explicitly disabled, so we 1949 * have to update their ->tstamp_enabled also. 1950 * Note: this works for group members as well as group leaders 1951 * since the non-leader members' sibling_lists will be empty. 1952 */ 1953 static void __perf_event_mark_enabled(struct perf_event *event) 1954 { 1955 struct perf_event *sub; 1956 u64 tstamp = perf_event_time(event); 1957 1958 event->state = PERF_EVENT_STATE_INACTIVE; 1959 event->tstamp_enabled = tstamp - event->total_time_enabled; 1960 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1961 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1962 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1963 } 1964 } 1965 1966 /* 1967 * Cross CPU call to enable a performance event 1968 */ 1969 static int __perf_event_enable(void *info) 1970 { 1971 struct perf_event *event = info; 1972 struct perf_event_context *ctx = event->ctx; 1973 struct perf_event *leader = event->group_leader; 1974 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1975 int err; 1976 1977 /* 1978 * There's a time window between 'ctx->is_active' check 1979 * in perf_event_enable function and this place having: 1980 * - IRQs on 1981 * - ctx->lock unlocked 1982 * 1983 * where the task could be killed and 'ctx' deactivated 1984 * by perf_event_exit_task. 1985 */ 1986 if (!ctx->is_active) 1987 return -EINVAL; 1988 1989 raw_spin_lock(&ctx->lock); 1990 update_context_time(ctx); 1991 1992 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1993 goto unlock; 1994 1995 /* 1996 * set current task's cgroup time reference point 1997 */ 1998 perf_cgroup_set_timestamp(current, ctx); 1999 2000 __perf_event_mark_enabled(event); 2001 2002 if (!event_filter_match(event)) { 2003 if (is_cgroup_event(event)) 2004 perf_cgroup_defer_enabled(event); 2005 goto unlock; 2006 } 2007 2008 /* 2009 * If the event is in a group and isn't the group leader, 2010 * then don't put it on unless the group is on. 2011 */ 2012 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2013 goto unlock; 2014 2015 if (!group_can_go_on(event, cpuctx, 1)) { 2016 err = -EEXIST; 2017 } else { 2018 if (event == leader) 2019 err = group_sched_in(event, cpuctx, ctx); 2020 else 2021 err = event_sched_in(event, cpuctx, ctx); 2022 } 2023 2024 if (err) { 2025 /* 2026 * If this event can't go on and it's part of a 2027 * group, then the whole group has to come off. 2028 */ 2029 if (leader != event) { 2030 group_sched_out(leader, cpuctx, ctx); 2031 perf_cpu_hrtimer_restart(cpuctx); 2032 } 2033 if (leader->attr.pinned) { 2034 update_group_times(leader); 2035 leader->state = PERF_EVENT_STATE_ERROR; 2036 } 2037 } 2038 2039 unlock: 2040 raw_spin_unlock(&ctx->lock); 2041 2042 return 0; 2043 } 2044 2045 /* 2046 * Enable a event. 2047 * 2048 * If event->ctx is a cloned context, callers must make sure that 2049 * every task struct that event->ctx->task could possibly point to 2050 * remains valid. This condition is satisfied when called through 2051 * perf_event_for_each_child or perf_event_for_each as described 2052 * for perf_event_disable. 2053 */ 2054 void perf_event_enable(struct perf_event *event) 2055 { 2056 struct perf_event_context *ctx = event->ctx; 2057 struct task_struct *task = ctx->task; 2058 2059 if (!task) { 2060 /* 2061 * Enable the event on the cpu that it's on 2062 */ 2063 cpu_function_call(event->cpu, __perf_event_enable, event); 2064 return; 2065 } 2066 2067 raw_spin_lock_irq(&ctx->lock); 2068 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2069 goto out; 2070 2071 /* 2072 * If the event is in error state, clear that first. 2073 * That way, if we see the event in error state below, we 2074 * know that it has gone back into error state, as distinct 2075 * from the task having been scheduled away before the 2076 * cross-call arrived. 2077 */ 2078 if (event->state == PERF_EVENT_STATE_ERROR) 2079 event->state = PERF_EVENT_STATE_OFF; 2080 2081 retry: 2082 if (!ctx->is_active) { 2083 __perf_event_mark_enabled(event); 2084 goto out; 2085 } 2086 2087 raw_spin_unlock_irq(&ctx->lock); 2088 2089 if (!task_function_call(task, __perf_event_enable, event)) 2090 return; 2091 2092 raw_spin_lock_irq(&ctx->lock); 2093 2094 /* 2095 * If the context is active and the event is still off, 2096 * we need to retry the cross-call. 2097 */ 2098 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2099 /* 2100 * task could have been flipped by a concurrent 2101 * perf_event_context_sched_out() 2102 */ 2103 task = ctx->task; 2104 goto retry; 2105 } 2106 2107 out: 2108 raw_spin_unlock_irq(&ctx->lock); 2109 } 2110 EXPORT_SYMBOL_GPL(perf_event_enable); 2111 2112 int perf_event_refresh(struct perf_event *event, int refresh) 2113 { 2114 /* 2115 * not supported on inherited events 2116 */ 2117 if (event->attr.inherit || !is_sampling_event(event)) 2118 return -EINVAL; 2119 2120 atomic_add(refresh, &event->event_limit); 2121 perf_event_enable(event); 2122 2123 return 0; 2124 } 2125 EXPORT_SYMBOL_GPL(perf_event_refresh); 2126 2127 static void ctx_sched_out(struct perf_event_context *ctx, 2128 struct perf_cpu_context *cpuctx, 2129 enum event_type_t event_type) 2130 { 2131 struct perf_event *event; 2132 int is_active = ctx->is_active; 2133 2134 ctx->is_active &= ~event_type; 2135 if (likely(!ctx->nr_events)) 2136 return; 2137 2138 update_context_time(ctx); 2139 update_cgrp_time_from_cpuctx(cpuctx); 2140 if (!ctx->nr_active) 2141 return; 2142 2143 perf_pmu_disable(ctx->pmu); 2144 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2145 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2146 group_sched_out(event, cpuctx, ctx); 2147 } 2148 2149 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2150 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2151 group_sched_out(event, cpuctx, ctx); 2152 } 2153 perf_pmu_enable(ctx->pmu); 2154 } 2155 2156 /* 2157 * Test whether two contexts are equivalent, i.e. whether they have both been 2158 * cloned from the same version of the same context. 2159 * 2160 * Equivalence is measured using a generation number in the context that is 2161 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2162 * and list_del_event(). 2163 */ 2164 static int context_equiv(struct perf_event_context *ctx1, 2165 struct perf_event_context *ctx2) 2166 { 2167 /* Pinning disables the swap optimization */ 2168 if (ctx1->pin_count || ctx2->pin_count) 2169 return 0; 2170 2171 /* If ctx1 is the parent of ctx2 */ 2172 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2173 return 1; 2174 2175 /* If ctx2 is the parent of ctx1 */ 2176 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2177 return 1; 2178 2179 /* 2180 * If ctx1 and ctx2 have the same parent; we flatten the parent 2181 * hierarchy, see perf_event_init_context(). 2182 */ 2183 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2184 ctx1->parent_gen == ctx2->parent_gen) 2185 return 1; 2186 2187 /* Unmatched */ 2188 return 0; 2189 } 2190 2191 static void __perf_event_sync_stat(struct perf_event *event, 2192 struct perf_event *next_event) 2193 { 2194 u64 value; 2195 2196 if (!event->attr.inherit_stat) 2197 return; 2198 2199 /* 2200 * Update the event value, we cannot use perf_event_read() 2201 * because we're in the middle of a context switch and have IRQs 2202 * disabled, which upsets smp_call_function_single(), however 2203 * we know the event must be on the current CPU, therefore we 2204 * don't need to use it. 2205 */ 2206 switch (event->state) { 2207 case PERF_EVENT_STATE_ACTIVE: 2208 event->pmu->read(event); 2209 /* fall-through */ 2210 2211 case PERF_EVENT_STATE_INACTIVE: 2212 update_event_times(event); 2213 break; 2214 2215 default: 2216 break; 2217 } 2218 2219 /* 2220 * In order to keep per-task stats reliable we need to flip the event 2221 * values when we flip the contexts. 2222 */ 2223 value = local64_read(&next_event->count); 2224 value = local64_xchg(&event->count, value); 2225 local64_set(&next_event->count, value); 2226 2227 swap(event->total_time_enabled, next_event->total_time_enabled); 2228 swap(event->total_time_running, next_event->total_time_running); 2229 2230 /* 2231 * Since we swizzled the values, update the user visible data too. 2232 */ 2233 perf_event_update_userpage(event); 2234 perf_event_update_userpage(next_event); 2235 } 2236 2237 static void perf_event_sync_stat(struct perf_event_context *ctx, 2238 struct perf_event_context *next_ctx) 2239 { 2240 struct perf_event *event, *next_event; 2241 2242 if (!ctx->nr_stat) 2243 return; 2244 2245 update_context_time(ctx); 2246 2247 event = list_first_entry(&ctx->event_list, 2248 struct perf_event, event_entry); 2249 2250 next_event = list_first_entry(&next_ctx->event_list, 2251 struct perf_event, event_entry); 2252 2253 while (&event->event_entry != &ctx->event_list && 2254 &next_event->event_entry != &next_ctx->event_list) { 2255 2256 __perf_event_sync_stat(event, next_event); 2257 2258 event = list_next_entry(event, event_entry); 2259 next_event = list_next_entry(next_event, event_entry); 2260 } 2261 } 2262 2263 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2264 struct task_struct *next) 2265 { 2266 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2267 struct perf_event_context *next_ctx; 2268 struct perf_event_context *parent, *next_parent; 2269 struct perf_cpu_context *cpuctx; 2270 int do_switch = 1; 2271 2272 if (likely(!ctx)) 2273 return; 2274 2275 cpuctx = __get_cpu_context(ctx); 2276 if (!cpuctx->task_ctx) 2277 return; 2278 2279 rcu_read_lock(); 2280 next_ctx = next->perf_event_ctxp[ctxn]; 2281 if (!next_ctx) 2282 goto unlock; 2283 2284 parent = rcu_dereference(ctx->parent_ctx); 2285 next_parent = rcu_dereference(next_ctx->parent_ctx); 2286 2287 /* If neither context have a parent context; they cannot be clones. */ 2288 if (!parent && !next_parent) 2289 goto unlock; 2290 2291 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2292 /* 2293 * Looks like the two contexts are clones, so we might be 2294 * able to optimize the context switch. We lock both 2295 * contexts and check that they are clones under the 2296 * lock (including re-checking that neither has been 2297 * uncloned in the meantime). It doesn't matter which 2298 * order we take the locks because no other cpu could 2299 * be trying to lock both of these tasks. 2300 */ 2301 raw_spin_lock(&ctx->lock); 2302 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2303 if (context_equiv(ctx, next_ctx)) { 2304 /* 2305 * XXX do we need a memory barrier of sorts 2306 * wrt to rcu_dereference() of perf_event_ctxp 2307 */ 2308 task->perf_event_ctxp[ctxn] = next_ctx; 2309 next->perf_event_ctxp[ctxn] = ctx; 2310 ctx->task = next; 2311 next_ctx->task = task; 2312 do_switch = 0; 2313 2314 perf_event_sync_stat(ctx, next_ctx); 2315 } 2316 raw_spin_unlock(&next_ctx->lock); 2317 raw_spin_unlock(&ctx->lock); 2318 } 2319 unlock: 2320 rcu_read_unlock(); 2321 2322 if (do_switch) { 2323 raw_spin_lock(&ctx->lock); 2324 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2325 cpuctx->task_ctx = NULL; 2326 raw_spin_unlock(&ctx->lock); 2327 } 2328 } 2329 2330 #define for_each_task_context_nr(ctxn) \ 2331 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2332 2333 /* 2334 * Called from scheduler to remove the events of the current task, 2335 * with interrupts disabled. 2336 * 2337 * We stop each event and update the event value in event->count. 2338 * 2339 * This does not protect us against NMI, but disable() 2340 * sets the disabled bit in the control field of event _before_ 2341 * accessing the event control register. If a NMI hits, then it will 2342 * not restart the event. 2343 */ 2344 void __perf_event_task_sched_out(struct task_struct *task, 2345 struct task_struct *next) 2346 { 2347 int ctxn; 2348 2349 for_each_task_context_nr(ctxn) 2350 perf_event_context_sched_out(task, ctxn, next); 2351 2352 /* 2353 * if cgroup events exist on this CPU, then we need 2354 * to check if we have to switch out PMU state. 2355 * cgroup event are system-wide mode only 2356 */ 2357 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2358 perf_cgroup_sched_out(task, next); 2359 } 2360 2361 static void task_ctx_sched_out(struct perf_event_context *ctx) 2362 { 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2364 2365 if (!cpuctx->task_ctx) 2366 return; 2367 2368 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2369 return; 2370 2371 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2372 cpuctx->task_ctx = NULL; 2373 } 2374 2375 /* 2376 * Called with IRQs disabled 2377 */ 2378 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2379 enum event_type_t event_type) 2380 { 2381 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2382 } 2383 2384 static void 2385 ctx_pinned_sched_in(struct perf_event_context *ctx, 2386 struct perf_cpu_context *cpuctx) 2387 { 2388 struct perf_event *event; 2389 2390 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2391 if (event->state <= PERF_EVENT_STATE_OFF) 2392 continue; 2393 if (!event_filter_match(event)) 2394 continue; 2395 2396 /* may need to reset tstamp_enabled */ 2397 if (is_cgroup_event(event)) 2398 perf_cgroup_mark_enabled(event, ctx); 2399 2400 if (group_can_go_on(event, cpuctx, 1)) 2401 group_sched_in(event, cpuctx, ctx); 2402 2403 /* 2404 * If this pinned group hasn't been scheduled, 2405 * put it in error state. 2406 */ 2407 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2408 update_group_times(event); 2409 event->state = PERF_EVENT_STATE_ERROR; 2410 } 2411 } 2412 } 2413 2414 static void 2415 ctx_flexible_sched_in(struct perf_event_context *ctx, 2416 struct perf_cpu_context *cpuctx) 2417 { 2418 struct perf_event *event; 2419 int can_add_hw = 1; 2420 2421 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2422 /* Ignore events in OFF or ERROR state */ 2423 if (event->state <= PERF_EVENT_STATE_OFF) 2424 continue; 2425 /* 2426 * Listen to the 'cpu' scheduling filter constraint 2427 * of events: 2428 */ 2429 if (!event_filter_match(event)) 2430 continue; 2431 2432 /* may need to reset tstamp_enabled */ 2433 if (is_cgroup_event(event)) 2434 perf_cgroup_mark_enabled(event, ctx); 2435 2436 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2437 if (group_sched_in(event, cpuctx, ctx)) 2438 can_add_hw = 0; 2439 } 2440 } 2441 } 2442 2443 static void 2444 ctx_sched_in(struct perf_event_context *ctx, 2445 struct perf_cpu_context *cpuctx, 2446 enum event_type_t event_type, 2447 struct task_struct *task) 2448 { 2449 u64 now; 2450 int is_active = ctx->is_active; 2451 2452 ctx->is_active |= event_type; 2453 if (likely(!ctx->nr_events)) 2454 return; 2455 2456 now = perf_clock(); 2457 ctx->timestamp = now; 2458 perf_cgroup_set_timestamp(task, ctx); 2459 /* 2460 * First go through the list and put on any pinned groups 2461 * in order to give them the best chance of going on. 2462 */ 2463 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2464 ctx_pinned_sched_in(ctx, cpuctx); 2465 2466 /* Then walk through the lower prio flexible groups */ 2467 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2468 ctx_flexible_sched_in(ctx, cpuctx); 2469 } 2470 2471 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2472 enum event_type_t event_type, 2473 struct task_struct *task) 2474 { 2475 struct perf_event_context *ctx = &cpuctx->ctx; 2476 2477 ctx_sched_in(ctx, cpuctx, event_type, task); 2478 } 2479 2480 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2481 struct task_struct *task) 2482 { 2483 struct perf_cpu_context *cpuctx; 2484 2485 cpuctx = __get_cpu_context(ctx); 2486 if (cpuctx->task_ctx == ctx) 2487 return; 2488 2489 perf_ctx_lock(cpuctx, ctx); 2490 perf_pmu_disable(ctx->pmu); 2491 /* 2492 * We want to keep the following priority order: 2493 * cpu pinned (that don't need to move), task pinned, 2494 * cpu flexible, task flexible. 2495 */ 2496 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2497 2498 if (ctx->nr_events) 2499 cpuctx->task_ctx = ctx; 2500 2501 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2502 2503 perf_pmu_enable(ctx->pmu); 2504 perf_ctx_unlock(cpuctx, ctx); 2505 2506 /* 2507 * Since these rotations are per-cpu, we need to ensure the 2508 * cpu-context we got scheduled on is actually rotating. 2509 */ 2510 perf_pmu_rotate_start(ctx->pmu); 2511 } 2512 2513 /* 2514 * When sampling the branck stack in system-wide, it may be necessary 2515 * to flush the stack on context switch. This happens when the branch 2516 * stack does not tag its entries with the pid of the current task. 2517 * Otherwise it becomes impossible to associate a branch entry with a 2518 * task. This ambiguity is more likely to appear when the branch stack 2519 * supports priv level filtering and the user sets it to monitor only 2520 * at the user level (which could be a useful measurement in system-wide 2521 * mode). In that case, the risk is high of having a branch stack with 2522 * branch from multiple tasks. Flushing may mean dropping the existing 2523 * entries or stashing them somewhere in the PMU specific code layer. 2524 * 2525 * This function provides the context switch callback to the lower code 2526 * layer. It is invoked ONLY when there is at least one system-wide context 2527 * with at least one active event using taken branch sampling. 2528 */ 2529 static void perf_branch_stack_sched_in(struct task_struct *prev, 2530 struct task_struct *task) 2531 { 2532 struct perf_cpu_context *cpuctx; 2533 struct pmu *pmu; 2534 unsigned long flags; 2535 2536 /* no need to flush branch stack if not changing task */ 2537 if (prev == task) 2538 return; 2539 2540 local_irq_save(flags); 2541 2542 rcu_read_lock(); 2543 2544 list_for_each_entry_rcu(pmu, &pmus, entry) { 2545 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2546 2547 /* 2548 * check if the context has at least one 2549 * event using PERF_SAMPLE_BRANCH_STACK 2550 */ 2551 if (cpuctx->ctx.nr_branch_stack > 0 2552 && pmu->flush_branch_stack) { 2553 2554 pmu = cpuctx->ctx.pmu; 2555 2556 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2557 2558 perf_pmu_disable(pmu); 2559 2560 pmu->flush_branch_stack(); 2561 2562 perf_pmu_enable(pmu); 2563 2564 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2565 } 2566 } 2567 2568 rcu_read_unlock(); 2569 2570 local_irq_restore(flags); 2571 } 2572 2573 /* 2574 * Called from scheduler to add the events of the current task 2575 * with interrupts disabled. 2576 * 2577 * We restore the event value and then enable it. 2578 * 2579 * This does not protect us against NMI, but enable() 2580 * sets the enabled bit in the control field of event _before_ 2581 * accessing the event control register. If a NMI hits, then it will 2582 * keep the event running. 2583 */ 2584 void __perf_event_task_sched_in(struct task_struct *prev, 2585 struct task_struct *task) 2586 { 2587 struct perf_event_context *ctx; 2588 int ctxn; 2589 2590 for_each_task_context_nr(ctxn) { 2591 ctx = task->perf_event_ctxp[ctxn]; 2592 if (likely(!ctx)) 2593 continue; 2594 2595 perf_event_context_sched_in(ctx, task); 2596 } 2597 /* 2598 * if cgroup events exist on this CPU, then we need 2599 * to check if we have to switch in PMU state. 2600 * cgroup event are system-wide mode only 2601 */ 2602 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2603 perf_cgroup_sched_in(prev, task); 2604 2605 /* check for system-wide branch_stack events */ 2606 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2607 perf_branch_stack_sched_in(prev, task); 2608 } 2609 2610 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2611 { 2612 u64 frequency = event->attr.sample_freq; 2613 u64 sec = NSEC_PER_SEC; 2614 u64 divisor, dividend; 2615 2616 int count_fls, nsec_fls, frequency_fls, sec_fls; 2617 2618 count_fls = fls64(count); 2619 nsec_fls = fls64(nsec); 2620 frequency_fls = fls64(frequency); 2621 sec_fls = 30; 2622 2623 /* 2624 * We got @count in @nsec, with a target of sample_freq HZ 2625 * the target period becomes: 2626 * 2627 * @count * 10^9 2628 * period = ------------------- 2629 * @nsec * sample_freq 2630 * 2631 */ 2632 2633 /* 2634 * Reduce accuracy by one bit such that @a and @b converge 2635 * to a similar magnitude. 2636 */ 2637 #define REDUCE_FLS(a, b) \ 2638 do { \ 2639 if (a##_fls > b##_fls) { \ 2640 a >>= 1; \ 2641 a##_fls--; \ 2642 } else { \ 2643 b >>= 1; \ 2644 b##_fls--; \ 2645 } \ 2646 } while (0) 2647 2648 /* 2649 * Reduce accuracy until either term fits in a u64, then proceed with 2650 * the other, so that finally we can do a u64/u64 division. 2651 */ 2652 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2653 REDUCE_FLS(nsec, frequency); 2654 REDUCE_FLS(sec, count); 2655 } 2656 2657 if (count_fls + sec_fls > 64) { 2658 divisor = nsec * frequency; 2659 2660 while (count_fls + sec_fls > 64) { 2661 REDUCE_FLS(count, sec); 2662 divisor >>= 1; 2663 } 2664 2665 dividend = count * sec; 2666 } else { 2667 dividend = count * sec; 2668 2669 while (nsec_fls + frequency_fls > 64) { 2670 REDUCE_FLS(nsec, frequency); 2671 dividend >>= 1; 2672 } 2673 2674 divisor = nsec * frequency; 2675 } 2676 2677 if (!divisor) 2678 return dividend; 2679 2680 return div64_u64(dividend, divisor); 2681 } 2682 2683 static DEFINE_PER_CPU(int, perf_throttled_count); 2684 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2685 2686 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2687 { 2688 struct hw_perf_event *hwc = &event->hw; 2689 s64 period, sample_period; 2690 s64 delta; 2691 2692 period = perf_calculate_period(event, nsec, count); 2693 2694 delta = (s64)(period - hwc->sample_period); 2695 delta = (delta + 7) / 8; /* low pass filter */ 2696 2697 sample_period = hwc->sample_period + delta; 2698 2699 if (!sample_period) 2700 sample_period = 1; 2701 2702 hwc->sample_period = sample_period; 2703 2704 if (local64_read(&hwc->period_left) > 8*sample_period) { 2705 if (disable) 2706 event->pmu->stop(event, PERF_EF_UPDATE); 2707 2708 local64_set(&hwc->period_left, 0); 2709 2710 if (disable) 2711 event->pmu->start(event, PERF_EF_RELOAD); 2712 } 2713 } 2714 2715 /* 2716 * combine freq adjustment with unthrottling to avoid two passes over the 2717 * events. At the same time, make sure, having freq events does not change 2718 * the rate of unthrottling as that would introduce bias. 2719 */ 2720 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2721 int needs_unthr) 2722 { 2723 struct perf_event *event; 2724 struct hw_perf_event *hwc; 2725 u64 now, period = TICK_NSEC; 2726 s64 delta; 2727 2728 /* 2729 * only need to iterate over all events iff: 2730 * - context have events in frequency mode (needs freq adjust) 2731 * - there are events to unthrottle on this cpu 2732 */ 2733 if (!(ctx->nr_freq || needs_unthr)) 2734 return; 2735 2736 raw_spin_lock(&ctx->lock); 2737 perf_pmu_disable(ctx->pmu); 2738 2739 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2740 if (event->state != PERF_EVENT_STATE_ACTIVE) 2741 continue; 2742 2743 if (!event_filter_match(event)) 2744 continue; 2745 2746 hwc = &event->hw; 2747 2748 if (hwc->interrupts == MAX_INTERRUPTS) { 2749 hwc->interrupts = 0; 2750 perf_log_throttle(event, 1); 2751 event->pmu->start(event, 0); 2752 } 2753 2754 if (!event->attr.freq || !event->attr.sample_freq) 2755 continue; 2756 2757 /* 2758 * stop the event and update event->count 2759 */ 2760 event->pmu->stop(event, PERF_EF_UPDATE); 2761 2762 now = local64_read(&event->count); 2763 delta = now - hwc->freq_count_stamp; 2764 hwc->freq_count_stamp = now; 2765 2766 /* 2767 * restart the event 2768 * reload only if value has changed 2769 * we have stopped the event so tell that 2770 * to perf_adjust_period() to avoid stopping it 2771 * twice. 2772 */ 2773 if (delta > 0) 2774 perf_adjust_period(event, period, delta, false); 2775 2776 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2777 } 2778 2779 perf_pmu_enable(ctx->pmu); 2780 raw_spin_unlock(&ctx->lock); 2781 } 2782 2783 /* 2784 * Round-robin a context's events: 2785 */ 2786 static void rotate_ctx(struct perf_event_context *ctx) 2787 { 2788 /* 2789 * Rotate the first entry last of non-pinned groups. Rotation might be 2790 * disabled by the inheritance code. 2791 */ 2792 if (!ctx->rotate_disable) 2793 list_rotate_left(&ctx->flexible_groups); 2794 } 2795 2796 /* 2797 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2798 * because they're strictly cpu affine and rotate_start is called with IRQs 2799 * disabled, while rotate_context is called from IRQ context. 2800 */ 2801 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2802 { 2803 struct perf_event_context *ctx = NULL; 2804 int rotate = 0, remove = 1; 2805 2806 if (cpuctx->ctx.nr_events) { 2807 remove = 0; 2808 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2809 rotate = 1; 2810 } 2811 2812 ctx = cpuctx->task_ctx; 2813 if (ctx && ctx->nr_events) { 2814 remove = 0; 2815 if (ctx->nr_events != ctx->nr_active) 2816 rotate = 1; 2817 } 2818 2819 if (!rotate) 2820 goto done; 2821 2822 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2823 perf_pmu_disable(cpuctx->ctx.pmu); 2824 2825 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2826 if (ctx) 2827 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2828 2829 rotate_ctx(&cpuctx->ctx); 2830 if (ctx) 2831 rotate_ctx(ctx); 2832 2833 perf_event_sched_in(cpuctx, ctx, current); 2834 2835 perf_pmu_enable(cpuctx->ctx.pmu); 2836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2837 done: 2838 if (remove) 2839 list_del_init(&cpuctx->rotation_list); 2840 2841 return rotate; 2842 } 2843 2844 #ifdef CONFIG_NO_HZ_FULL 2845 bool perf_event_can_stop_tick(void) 2846 { 2847 if (atomic_read(&nr_freq_events) || 2848 __this_cpu_read(perf_throttled_count)) 2849 return false; 2850 else 2851 return true; 2852 } 2853 #endif 2854 2855 void perf_event_task_tick(void) 2856 { 2857 struct list_head *head = &__get_cpu_var(rotation_list); 2858 struct perf_cpu_context *cpuctx, *tmp; 2859 struct perf_event_context *ctx; 2860 int throttled; 2861 2862 WARN_ON(!irqs_disabled()); 2863 2864 __this_cpu_inc(perf_throttled_seq); 2865 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2866 2867 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2868 ctx = &cpuctx->ctx; 2869 perf_adjust_freq_unthr_context(ctx, throttled); 2870 2871 ctx = cpuctx->task_ctx; 2872 if (ctx) 2873 perf_adjust_freq_unthr_context(ctx, throttled); 2874 } 2875 } 2876 2877 static int event_enable_on_exec(struct perf_event *event, 2878 struct perf_event_context *ctx) 2879 { 2880 if (!event->attr.enable_on_exec) 2881 return 0; 2882 2883 event->attr.enable_on_exec = 0; 2884 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2885 return 0; 2886 2887 __perf_event_mark_enabled(event); 2888 2889 return 1; 2890 } 2891 2892 /* 2893 * Enable all of a task's events that have been marked enable-on-exec. 2894 * This expects task == current. 2895 */ 2896 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2897 { 2898 struct perf_event *event; 2899 unsigned long flags; 2900 int enabled = 0; 2901 int ret; 2902 2903 local_irq_save(flags); 2904 if (!ctx || !ctx->nr_events) 2905 goto out; 2906 2907 /* 2908 * We must ctxsw out cgroup events to avoid conflict 2909 * when invoking perf_task_event_sched_in() later on 2910 * in this function. Otherwise we end up trying to 2911 * ctxswin cgroup events which are already scheduled 2912 * in. 2913 */ 2914 perf_cgroup_sched_out(current, NULL); 2915 2916 raw_spin_lock(&ctx->lock); 2917 task_ctx_sched_out(ctx); 2918 2919 list_for_each_entry(event, &ctx->event_list, event_entry) { 2920 ret = event_enable_on_exec(event, ctx); 2921 if (ret) 2922 enabled = 1; 2923 } 2924 2925 /* 2926 * Unclone this context if we enabled any event. 2927 */ 2928 if (enabled) 2929 unclone_ctx(ctx); 2930 2931 raw_spin_unlock(&ctx->lock); 2932 2933 /* 2934 * Also calls ctxswin for cgroup events, if any: 2935 */ 2936 perf_event_context_sched_in(ctx, ctx->task); 2937 out: 2938 local_irq_restore(flags); 2939 } 2940 2941 /* 2942 * Cross CPU call to read the hardware event 2943 */ 2944 static void __perf_event_read(void *info) 2945 { 2946 struct perf_event *event = info; 2947 struct perf_event_context *ctx = event->ctx; 2948 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2949 2950 /* 2951 * If this is a task context, we need to check whether it is 2952 * the current task context of this cpu. If not it has been 2953 * scheduled out before the smp call arrived. In that case 2954 * event->count would have been updated to a recent sample 2955 * when the event was scheduled out. 2956 */ 2957 if (ctx->task && cpuctx->task_ctx != ctx) 2958 return; 2959 2960 raw_spin_lock(&ctx->lock); 2961 if (ctx->is_active) { 2962 update_context_time(ctx); 2963 update_cgrp_time_from_event(event); 2964 } 2965 update_event_times(event); 2966 if (event->state == PERF_EVENT_STATE_ACTIVE) 2967 event->pmu->read(event); 2968 raw_spin_unlock(&ctx->lock); 2969 } 2970 2971 static inline u64 perf_event_count(struct perf_event *event) 2972 { 2973 return local64_read(&event->count) + atomic64_read(&event->child_count); 2974 } 2975 2976 static u64 perf_event_read(struct perf_event *event) 2977 { 2978 /* 2979 * If event is enabled and currently active on a CPU, update the 2980 * value in the event structure: 2981 */ 2982 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2983 smp_call_function_single(event->oncpu, 2984 __perf_event_read, event, 1); 2985 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2986 struct perf_event_context *ctx = event->ctx; 2987 unsigned long flags; 2988 2989 raw_spin_lock_irqsave(&ctx->lock, flags); 2990 /* 2991 * may read while context is not active 2992 * (e.g., thread is blocked), in that case 2993 * we cannot update context time 2994 */ 2995 if (ctx->is_active) { 2996 update_context_time(ctx); 2997 update_cgrp_time_from_event(event); 2998 } 2999 update_event_times(event); 3000 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3001 } 3002 3003 return perf_event_count(event); 3004 } 3005 3006 /* 3007 * Initialize the perf_event context in a task_struct: 3008 */ 3009 static void __perf_event_init_context(struct perf_event_context *ctx) 3010 { 3011 raw_spin_lock_init(&ctx->lock); 3012 mutex_init(&ctx->mutex); 3013 INIT_LIST_HEAD(&ctx->pinned_groups); 3014 INIT_LIST_HEAD(&ctx->flexible_groups); 3015 INIT_LIST_HEAD(&ctx->event_list); 3016 atomic_set(&ctx->refcount, 1); 3017 } 3018 3019 static struct perf_event_context * 3020 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3021 { 3022 struct perf_event_context *ctx; 3023 3024 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3025 if (!ctx) 3026 return NULL; 3027 3028 __perf_event_init_context(ctx); 3029 if (task) { 3030 ctx->task = task; 3031 get_task_struct(task); 3032 } 3033 ctx->pmu = pmu; 3034 3035 return ctx; 3036 } 3037 3038 static struct task_struct * 3039 find_lively_task_by_vpid(pid_t vpid) 3040 { 3041 struct task_struct *task; 3042 int err; 3043 3044 rcu_read_lock(); 3045 if (!vpid) 3046 task = current; 3047 else 3048 task = find_task_by_vpid(vpid); 3049 if (task) 3050 get_task_struct(task); 3051 rcu_read_unlock(); 3052 3053 if (!task) 3054 return ERR_PTR(-ESRCH); 3055 3056 /* Reuse ptrace permission checks for now. */ 3057 err = -EACCES; 3058 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3059 goto errout; 3060 3061 return task; 3062 errout: 3063 put_task_struct(task); 3064 return ERR_PTR(err); 3065 3066 } 3067 3068 /* 3069 * Returns a matching context with refcount and pincount. 3070 */ 3071 static struct perf_event_context * 3072 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3073 { 3074 struct perf_event_context *ctx; 3075 struct perf_cpu_context *cpuctx; 3076 unsigned long flags; 3077 int ctxn, err; 3078 3079 if (!task) { 3080 /* Must be root to operate on a CPU event: */ 3081 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3082 return ERR_PTR(-EACCES); 3083 3084 /* 3085 * We could be clever and allow to attach a event to an 3086 * offline CPU and activate it when the CPU comes up, but 3087 * that's for later. 3088 */ 3089 if (!cpu_online(cpu)) 3090 return ERR_PTR(-ENODEV); 3091 3092 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3093 ctx = &cpuctx->ctx; 3094 get_ctx(ctx); 3095 ++ctx->pin_count; 3096 3097 return ctx; 3098 } 3099 3100 err = -EINVAL; 3101 ctxn = pmu->task_ctx_nr; 3102 if (ctxn < 0) 3103 goto errout; 3104 3105 retry: 3106 ctx = perf_lock_task_context(task, ctxn, &flags); 3107 if (ctx) { 3108 unclone_ctx(ctx); 3109 ++ctx->pin_count; 3110 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3111 } else { 3112 ctx = alloc_perf_context(pmu, task); 3113 err = -ENOMEM; 3114 if (!ctx) 3115 goto errout; 3116 3117 err = 0; 3118 mutex_lock(&task->perf_event_mutex); 3119 /* 3120 * If it has already passed perf_event_exit_task(). 3121 * we must see PF_EXITING, it takes this mutex too. 3122 */ 3123 if (task->flags & PF_EXITING) 3124 err = -ESRCH; 3125 else if (task->perf_event_ctxp[ctxn]) 3126 err = -EAGAIN; 3127 else { 3128 get_ctx(ctx); 3129 ++ctx->pin_count; 3130 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3131 } 3132 mutex_unlock(&task->perf_event_mutex); 3133 3134 if (unlikely(err)) { 3135 put_ctx(ctx); 3136 3137 if (err == -EAGAIN) 3138 goto retry; 3139 goto errout; 3140 } 3141 } 3142 3143 return ctx; 3144 3145 errout: 3146 return ERR_PTR(err); 3147 } 3148 3149 static void perf_event_free_filter(struct perf_event *event); 3150 3151 static void free_event_rcu(struct rcu_head *head) 3152 { 3153 struct perf_event *event; 3154 3155 event = container_of(head, struct perf_event, rcu_head); 3156 if (event->ns) 3157 put_pid_ns(event->ns); 3158 perf_event_free_filter(event); 3159 kfree(event); 3160 } 3161 3162 static void ring_buffer_put(struct ring_buffer *rb); 3163 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3164 3165 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3166 { 3167 if (event->parent) 3168 return; 3169 3170 if (has_branch_stack(event)) { 3171 if (!(event->attach_state & PERF_ATTACH_TASK)) 3172 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3173 } 3174 if (is_cgroup_event(event)) 3175 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3176 } 3177 3178 static void unaccount_event(struct perf_event *event) 3179 { 3180 if (event->parent) 3181 return; 3182 3183 if (event->attach_state & PERF_ATTACH_TASK) 3184 static_key_slow_dec_deferred(&perf_sched_events); 3185 if (event->attr.mmap || event->attr.mmap_data) 3186 atomic_dec(&nr_mmap_events); 3187 if (event->attr.comm) 3188 atomic_dec(&nr_comm_events); 3189 if (event->attr.task) 3190 atomic_dec(&nr_task_events); 3191 if (event->attr.freq) 3192 atomic_dec(&nr_freq_events); 3193 if (is_cgroup_event(event)) 3194 static_key_slow_dec_deferred(&perf_sched_events); 3195 if (has_branch_stack(event)) 3196 static_key_slow_dec_deferred(&perf_sched_events); 3197 3198 unaccount_event_cpu(event, event->cpu); 3199 } 3200 3201 static void __free_event(struct perf_event *event) 3202 { 3203 if (!event->parent) { 3204 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3205 put_callchain_buffers(); 3206 } 3207 3208 if (event->destroy) 3209 event->destroy(event); 3210 3211 if (event->ctx) 3212 put_ctx(event->ctx); 3213 3214 call_rcu(&event->rcu_head, free_event_rcu); 3215 } 3216 static void free_event(struct perf_event *event) 3217 { 3218 irq_work_sync(&event->pending); 3219 3220 unaccount_event(event); 3221 3222 if (event->rb) { 3223 struct ring_buffer *rb; 3224 3225 /* 3226 * Can happen when we close an event with re-directed output. 3227 * 3228 * Since we have a 0 refcount, perf_mmap_close() will skip 3229 * over us; possibly making our ring_buffer_put() the last. 3230 */ 3231 mutex_lock(&event->mmap_mutex); 3232 rb = event->rb; 3233 if (rb) { 3234 rcu_assign_pointer(event->rb, NULL); 3235 ring_buffer_detach(event, rb); 3236 ring_buffer_put(rb); /* could be last */ 3237 } 3238 mutex_unlock(&event->mmap_mutex); 3239 } 3240 3241 if (is_cgroup_event(event)) 3242 perf_detach_cgroup(event); 3243 3244 3245 __free_event(event); 3246 } 3247 3248 int perf_event_release_kernel(struct perf_event *event) 3249 { 3250 struct perf_event_context *ctx = event->ctx; 3251 3252 WARN_ON_ONCE(ctx->parent_ctx); 3253 /* 3254 * There are two ways this annotation is useful: 3255 * 3256 * 1) there is a lock recursion from perf_event_exit_task 3257 * see the comment there. 3258 * 3259 * 2) there is a lock-inversion with mmap_sem through 3260 * perf_event_read_group(), which takes faults while 3261 * holding ctx->mutex, however this is called after 3262 * the last filedesc died, so there is no possibility 3263 * to trigger the AB-BA case. 3264 */ 3265 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3266 raw_spin_lock_irq(&ctx->lock); 3267 perf_group_detach(event); 3268 raw_spin_unlock_irq(&ctx->lock); 3269 perf_remove_from_context(event); 3270 mutex_unlock(&ctx->mutex); 3271 3272 free_event(event); 3273 3274 return 0; 3275 } 3276 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3277 3278 /* 3279 * Called when the last reference to the file is gone. 3280 */ 3281 static void put_event(struct perf_event *event) 3282 { 3283 struct task_struct *owner; 3284 3285 if (!atomic_long_dec_and_test(&event->refcount)) 3286 return; 3287 3288 rcu_read_lock(); 3289 owner = ACCESS_ONCE(event->owner); 3290 /* 3291 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3292 * !owner it means the list deletion is complete and we can indeed 3293 * free this event, otherwise we need to serialize on 3294 * owner->perf_event_mutex. 3295 */ 3296 smp_read_barrier_depends(); 3297 if (owner) { 3298 /* 3299 * Since delayed_put_task_struct() also drops the last 3300 * task reference we can safely take a new reference 3301 * while holding the rcu_read_lock(). 3302 */ 3303 get_task_struct(owner); 3304 } 3305 rcu_read_unlock(); 3306 3307 if (owner) { 3308 mutex_lock(&owner->perf_event_mutex); 3309 /* 3310 * We have to re-check the event->owner field, if it is cleared 3311 * we raced with perf_event_exit_task(), acquiring the mutex 3312 * ensured they're done, and we can proceed with freeing the 3313 * event. 3314 */ 3315 if (event->owner) 3316 list_del_init(&event->owner_entry); 3317 mutex_unlock(&owner->perf_event_mutex); 3318 put_task_struct(owner); 3319 } 3320 3321 perf_event_release_kernel(event); 3322 } 3323 3324 static int perf_release(struct inode *inode, struct file *file) 3325 { 3326 put_event(file->private_data); 3327 return 0; 3328 } 3329 3330 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3331 { 3332 struct perf_event *child; 3333 u64 total = 0; 3334 3335 *enabled = 0; 3336 *running = 0; 3337 3338 mutex_lock(&event->child_mutex); 3339 total += perf_event_read(event); 3340 *enabled += event->total_time_enabled + 3341 atomic64_read(&event->child_total_time_enabled); 3342 *running += event->total_time_running + 3343 atomic64_read(&event->child_total_time_running); 3344 3345 list_for_each_entry(child, &event->child_list, child_list) { 3346 total += perf_event_read(child); 3347 *enabled += child->total_time_enabled; 3348 *running += child->total_time_running; 3349 } 3350 mutex_unlock(&event->child_mutex); 3351 3352 return total; 3353 } 3354 EXPORT_SYMBOL_GPL(perf_event_read_value); 3355 3356 static int perf_event_read_group(struct perf_event *event, 3357 u64 read_format, char __user *buf) 3358 { 3359 struct perf_event *leader = event->group_leader, *sub; 3360 int n = 0, size = 0, ret = -EFAULT; 3361 struct perf_event_context *ctx = leader->ctx; 3362 u64 values[5]; 3363 u64 count, enabled, running; 3364 3365 mutex_lock(&ctx->mutex); 3366 count = perf_event_read_value(leader, &enabled, &running); 3367 3368 values[n++] = 1 + leader->nr_siblings; 3369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3370 values[n++] = enabled; 3371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3372 values[n++] = running; 3373 values[n++] = count; 3374 if (read_format & PERF_FORMAT_ID) 3375 values[n++] = primary_event_id(leader); 3376 3377 size = n * sizeof(u64); 3378 3379 if (copy_to_user(buf, values, size)) 3380 goto unlock; 3381 3382 ret = size; 3383 3384 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3385 n = 0; 3386 3387 values[n++] = perf_event_read_value(sub, &enabled, &running); 3388 if (read_format & PERF_FORMAT_ID) 3389 values[n++] = primary_event_id(sub); 3390 3391 size = n * sizeof(u64); 3392 3393 if (copy_to_user(buf + ret, values, size)) { 3394 ret = -EFAULT; 3395 goto unlock; 3396 } 3397 3398 ret += size; 3399 } 3400 unlock: 3401 mutex_unlock(&ctx->mutex); 3402 3403 return ret; 3404 } 3405 3406 static int perf_event_read_one(struct perf_event *event, 3407 u64 read_format, char __user *buf) 3408 { 3409 u64 enabled, running; 3410 u64 values[4]; 3411 int n = 0; 3412 3413 values[n++] = perf_event_read_value(event, &enabled, &running); 3414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3415 values[n++] = enabled; 3416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3417 values[n++] = running; 3418 if (read_format & PERF_FORMAT_ID) 3419 values[n++] = primary_event_id(event); 3420 3421 if (copy_to_user(buf, values, n * sizeof(u64))) 3422 return -EFAULT; 3423 3424 return n * sizeof(u64); 3425 } 3426 3427 /* 3428 * Read the performance event - simple non blocking version for now 3429 */ 3430 static ssize_t 3431 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3432 { 3433 u64 read_format = event->attr.read_format; 3434 int ret; 3435 3436 /* 3437 * Return end-of-file for a read on a event that is in 3438 * error state (i.e. because it was pinned but it couldn't be 3439 * scheduled on to the CPU at some point). 3440 */ 3441 if (event->state == PERF_EVENT_STATE_ERROR) 3442 return 0; 3443 3444 if (count < event->read_size) 3445 return -ENOSPC; 3446 3447 WARN_ON_ONCE(event->ctx->parent_ctx); 3448 if (read_format & PERF_FORMAT_GROUP) 3449 ret = perf_event_read_group(event, read_format, buf); 3450 else 3451 ret = perf_event_read_one(event, read_format, buf); 3452 3453 return ret; 3454 } 3455 3456 static ssize_t 3457 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3458 { 3459 struct perf_event *event = file->private_data; 3460 3461 return perf_read_hw(event, buf, count); 3462 } 3463 3464 static unsigned int perf_poll(struct file *file, poll_table *wait) 3465 { 3466 struct perf_event *event = file->private_data; 3467 struct ring_buffer *rb; 3468 unsigned int events = POLL_HUP; 3469 3470 /* 3471 * Pin the event->rb by taking event->mmap_mutex; otherwise 3472 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3473 */ 3474 mutex_lock(&event->mmap_mutex); 3475 rb = event->rb; 3476 if (rb) 3477 events = atomic_xchg(&rb->poll, 0); 3478 mutex_unlock(&event->mmap_mutex); 3479 3480 poll_wait(file, &event->waitq, wait); 3481 3482 return events; 3483 } 3484 3485 static void perf_event_reset(struct perf_event *event) 3486 { 3487 (void)perf_event_read(event); 3488 local64_set(&event->count, 0); 3489 perf_event_update_userpage(event); 3490 } 3491 3492 /* 3493 * Holding the top-level event's child_mutex means that any 3494 * descendant process that has inherited this event will block 3495 * in sync_child_event if it goes to exit, thus satisfying the 3496 * task existence requirements of perf_event_enable/disable. 3497 */ 3498 static void perf_event_for_each_child(struct perf_event *event, 3499 void (*func)(struct perf_event *)) 3500 { 3501 struct perf_event *child; 3502 3503 WARN_ON_ONCE(event->ctx->parent_ctx); 3504 mutex_lock(&event->child_mutex); 3505 func(event); 3506 list_for_each_entry(child, &event->child_list, child_list) 3507 func(child); 3508 mutex_unlock(&event->child_mutex); 3509 } 3510 3511 static void perf_event_for_each(struct perf_event *event, 3512 void (*func)(struct perf_event *)) 3513 { 3514 struct perf_event_context *ctx = event->ctx; 3515 struct perf_event *sibling; 3516 3517 WARN_ON_ONCE(ctx->parent_ctx); 3518 mutex_lock(&ctx->mutex); 3519 event = event->group_leader; 3520 3521 perf_event_for_each_child(event, func); 3522 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3523 perf_event_for_each_child(sibling, func); 3524 mutex_unlock(&ctx->mutex); 3525 } 3526 3527 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3528 { 3529 struct perf_event_context *ctx = event->ctx; 3530 int ret = 0; 3531 u64 value; 3532 3533 if (!is_sampling_event(event)) 3534 return -EINVAL; 3535 3536 if (copy_from_user(&value, arg, sizeof(value))) 3537 return -EFAULT; 3538 3539 if (!value) 3540 return -EINVAL; 3541 3542 raw_spin_lock_irq(&ctx->lock); 3543 if (event->attr.freq) { 3544 if (value > sysctl_perf_event_sample_rate) { 3545 ret = -EINVAL; 3546 goto unlock; 3547 } 3548 3549 event->attr.sample_freq = value; 3550 } else { 3551 event->attr.sample_period = value; 3552 event->hw.sample_period = value; 3553 } 3554 unlock: 3555 raw_spin_unlock_irq(&ctx->lock); 3556 3557 return ret; 3558 } 3559 3560 static const struct file_operations perf_fops; 3561 3562 static inline int perf_fget_light(int fd, struct fd *p) 3563 { 3564 struct fd f = fdget(fd); 3565 if (!f.file) 3566 return -EBADF; 3567 3568 if (f.file->f_op != &perf_fops) { 3569 fdput(f); 3570 return -EBADF; 3571 } 3572 *p = f; 3573 return 0; 3574 } 3575 3576 static int perf_event_set_output(struct perf_event *event, 3577 struct perf_event *output_event); 3578 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3579 3580 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3581 { 3582 struct perf_event *event = file->private_data; 3583 void (*func)(struct perf_event *); 3584 u32 flags = arg; 3585 3586 switch (cmd) { 3587 case PERF_EVENT_IOC_ENABLE: 3588 func = perf_event_enable; 3589 break; 3590 case PERF_EVENT_IOC_DISABLE: 3591 func = perf_event_disable; 3592 break; 3593 case PERF_EVENT_IOC_RESET: 3594 func = perf_event_reset; 3595 break; 3596 3597 case PERF_EVENT_IOC_REFRESH: 3598 return perf_event_refresh(event, arg); 3599 3600 case PERF_EVENT_IOC_PERIOD: 3601 return perf_event_period(event, (u64 __user *)arg); 3602 3603 case PERF_EVENT_IOC_ID: 3604 { 3605 u64 id = primary_event_id(event); 3606 3607 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3608 return -EFAULT; 3609 return 0; 3610 } 3611 3612 case PERF_EVENT_IOC_SET_OUTPUT: 3613 { 3614 int ret; 3615 if (arg != -1) { 3616 struct perf_event *output_event; 3617 struct fd output; 3618 ret = perf_fget_light(arg, &output); 3619 if (ret) 3620 return ret; 3621 output_event = output.file->private_data; 3622 ret = perf_event_set_output(event, output_event); 3623 fdput(output); 3624 } else { 3625 ret = perf_event_set_output(event, NULL); 3626 } 3627 return ret; 3628 } 3629 3630 case PERF_EVENT_IOC_SET_FILTER: 3631 return perf_event_set_filter(event, (void __user *)arg); 3632 3633 default: 3634 return -ENOTTY; 3635 } 3636 3637 if (flags & PERF_IOC_FLAG_GROUP) 3638 perf_event_for_each(event, func); 3639 else 3640 perf_event_for_each_child(event, func); 3641 3642 return 0; 3643 } 3644 3645 int perf_event_task_enable(void) 3646 { 3647 struct perf_event *event; 3648 3649 mutex_lock(¤t->perf_event_mutex); 3650 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3651 perf_event_for_each_child(event, perf_event_enable); 3652 mutex_unlock(¤t->perf_event_mutex); 3653 3654 return 0; 3655 } 3656 3657 int perf_event_task_disable(void) 3658 { 3659 struct perf_event *event; 3660 3661 mutex_lock(¤t->perf_event_mutex); 3662 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3663 perf_event_for_each_child(event, perf_event_disable); 3664 mutex_unlock(¤t->perf_event_mutex); 3665 3666 return 0; 3667 } 3668 3669 static int perf_event_index(struct perf_event *event) 3670 { 3671 if (event->hw.state & PERF_HES_STOPPED) 3672 return 0; 3673 3674 if (event->state != PERF_EVENT_STATE_ACTIVE) 3675 return 0; 3676 3677 return event->pmu->event_idx(event); 3678 } 3679 3680 static void calc_timer_values(struct perf_event *event, 3681 u64 *now, 3682 u64 *enabled, 3683 u64 *running) 3684 { 3685 u64 ctx_time; 3686 3687 *now = perf_clock(); 3688 ctx_time = event->shadow_ctx_time + *now; 3689 *enabled = ctx_time - event->tstamp_enabled; 3690 *running = ctx_time - event->tstamp_running; 3691 } 3692 3693 static void perf_event_init_userpage(struct perf_event *event) 3694 { 3695 struct perf_event_mmap_page *userpg; 3696 struct ring_buffer *rb; 3697 3698 rcu_read_lock(); 3699 rb = rcu_dereference(event->rb); 3700 if (!rb) 3701 goto unlock; 3702 3703 userpg = rb->user_page; 3704 3705 /* Allow new userspace to detect that bit 0 is deprecated */ 3706 userpg->cap_bit0_is_deprecated = 1; 3707 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3708 3709 unlock: 3710 rcu_read_unlock(); 3711 } 3712 3713 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3714 { 3715 } 3716 3717 /* 3718 * Callers need to ensure there can be no nesting of this function, otherwise 3719 * the seqlock logic goes bad. We can not serialize this because the arch 3720 * code calls this from NMI context. 3721 */ 3722 void perf_event_update_userpage(struct perf_event *event) 3723 { 3724 struct perf_event_mmap_page *userpg; 3725 struct ring_buffer *rb; 3726 u64 enabled, running, now; 3727 3728 rcu_read_lock(); 3729 rb = rcu_dereference(event->rb); 3730 if (!rb) 3731 goto unlock; 3732 3733 /* 3734 * compute total_time_enabled, total_time_running 3735 * based on snapshot values taken when the event 3736 * was last scheduled in. 3737 * 3738 * we cannot simply called update_context_time() 3739 * because of locking issue as we can be called in 3740 * NMI context 3741 */ 3742 calc_timer_values(event, &now, &enabled, &running); 3743 3744 userpg = rb->user_page; 3745 /* 3746 * Disable preemption so as to not let the corresponding user-space 3747 * spin too long if we get preempted. 3748 */ 3749 preempt_disable(); 3750 ++userpg->lock; 3751 barrier(); 3752 userpg->index = perf_event_index(event); 3753 userpg->offset = perf_event_count(event); 3754 if (userpg->index) 3755 userpg->offset -= local64_read(&event->hw.prev_count); 3756 3757 userpg->time_enabled = enabled + 3758 atomic64_read(&event->child_total_time_enabled); 3759 3760 userpg->time_running = running + 3761 atomic64_read(&event->child_total_time_running); 3762 3763 arch_perf_update_userpage(userpg, now); 3764 3765 barrier(); 3766 ++userpg->lock; 3767 preempt_enable(); 3768 unlock: 3769 rcu_read_unlock(); 3770 } 3771 3772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3773 { 3774 struct perf_event *event = vma->vm_file->private_data; 3775 struct ring_buffer *rb; 3776 int ret = VM_FAULT_SIGBUS; 3777 3778 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3779 if (vmf->pgoff == 0) 3780 ret = 0; 3781 return ret; 3782 } 3783 3784 rcu_read_lock(); 3785 rb = rcu_dereference(event->rb); 3786 if (!rb) 3787 goto unlock; 3788 3789 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3790 goto unlock; 3791 3792 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3793 if (!vmf->page) 3794 goto unlock; 3795 3796 get_page(vmf->page); 3797 vmf->page->mapping = vma->vm_file->f_mapping; 3798 vmf->page->index = vmf->pgoff; 3799 3800 ret = 0; 3801 unlock: 3802 rcu_read_unlock(); 3803 3804 return ret; 3805 } 3806 3807 static void ring_buffer_attach(struct perf_event *event, 3808 struct ring_buffer *rb) 3809 { 3810 unsigned long flags; 3811 3812 if (!list_empty(&event->rb_entry)) 3813 return; 3814 3815 spin_lock_irqsave(&rb->event_lock, flags); 3816 if (list_empty(&event->rb_entry)) 3817 list_add(&event->rb_entry, &rb->event_list); 3818 spin_unlock_irqrestore(&rb->event_lock, flags); 3819 } 3820 3821 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3822 { 3823 unsigned long flags; 3824 3825 if (list_empty(&event->rb_entry)) 3826 return; 3827 3828 spin_lock_irqsave(&rb->event_lock, flags); 3829 list_del_init(&event->rb_entry); 3830 wake_up_all(&event->waitq); 3831 spin_unlock_irqrestore(&rb->event_lock, flags); 3832 } 3833 3834 static void ring_buffer_wakeup(struct perf_event *event) 3835 { 3836 struct ring_buffer *rb; 3837 3838 rcu_read_lock(); 3839 rb = rcu_dereference(event->rb); 3840 if (rb) { 3841 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3842 wake_up_all(&event->waitq); 3843 } 3844 rcu_read_unlock(); 3845 } 3846 3847 static void rb_free_rcu(struct rcu_head *rcu_head) 3848 { 3849 struct ring_buffer *rb; 3850 3851 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3852 rb_free(rb); 3853 } 3854 3855 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3856 { 3857 struct ring_buffer *rb; 3858 3859 rcu_read_lock(); 3860 rb = rcu_dereference(event->rb); 3861 if (rb) { 3862 if (!atomic_inc_not_zero(&rb->refcount)) 3863 rb = NULL; 3864 } 3865 rcu_read_unlock(); 3866 3867 return rb; 3868 } 3869 3870 static void ring_buffer_put(struct ring_buffer *rb) 3871 { 3872 if (!atomic_dec_and_test(&rb->refcount)) 3873 return; 3874 3875 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3876 3877 call_rcu(&rb->rcu_head, rb_free_rcu); 3878 } 3879 3880 static void perf_mmap_open(struct vm_area_struct *vma) 3881 { 3882 struct perf_event *event = vma->vm_file->private_data; 3883 3884 atomic_inc(&event->mmap_count); 3885 atomic_inc(&event->rb->mmap_count); 3886 } 3887 3888 /* 3889 * A buffer can be mmap()ed multiple times; either directly through the same 3890 * event, or through other events by use of perf_event_set_output(). 3891 * 3892 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3893 * the buffer here, where we still have a VM context. This means we need 3894 * to detach all events redirecting to us. 3895 */ 3896 static void perf_mmap_close(struct vm_area_struct *vma) 3897 { 3898 struct perf_event *event = vma->vm_file->private_data; 3899 3900 struct ring_buffer *rb = event->rb; 3901 struct user_struct *mmap_user = rb->mmap_user; 3902 int mmap_locked = rb->mmap_locked; 3903 unsigned long size = perf_data_size(rb); 3904 3905 atomic_dec(&rb->mmap_count); 3906 3907 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3908 return; 3909 3910 /* Detach current event from the buffer. */ 3911 rcu_assign_pointer(event->rb, NULL); 3912 ring_buffer_detach(event, rb); 3913 mutex_unlock(&event->mmap_mutex); 3914 3915 /* If there's still other mmap()s of this buffer, we're done. */ 3916 if (atomic_read(&rb->mmap_count)) { 3917 ring_buffer_put(rb); /* can't be last */ 3918 return; 3919 } 3920 3921 /* 3922 * No other mmap()s, detach from all other events that might redirect 3923 * into the now unreachable buffer. Somewhat complicated by the 3924 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3925 */ 3926 again: 3927 rcu_read_lock(); 3928 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3929 if (!atomic_long_inc_not_zero(&event->refcount)) { 3930 /* 3931 * This event is en-route to free_event() which will 3932 * detach it and remove it from the list. 3933 */ 3934 continue; 3935 } 3936 rcu_read_unlock(); 3937 3938 mutex_lock(&event->mmap_mutex); 3939 /* 3940 * Check we didn't race with perf_event_set_output() which can 3941 * swizzle the rb from under us while we were waiting to 3942 * acquire mmap_mutex. 3943 * 3944 * If we find a different rb; ignore this event, a next 3945 * iteration will no longer find it on the list. We have to 3946 * still restart the iteration to make sure we're not now 3947 * iterating the wrong list. 3948 */ 3949 if (event->rb == rb) { 3950 rcu_assign_pointer(event->rb, NULL); 3951 ring_buffer_detach(event, rb); 3952 ring_buffer_put(rb); /* can't be last, we still have one */ 3953 } 3954 mutex_unlock(&event->mmap_mutex); 3955 put_event(event); 3956 3957 /* 3958 * Restart the iteration; either we're on the wrong list or 3959 * destroyed its integrity by doing a deletion. 3960 */ 3961 goto again; 3962 } 3963 rcu_read_unlock(); 3964 3965 /* 3966 * It could be there's still a few 0-ref events on the list; they'll 3967 * get cleaned up by free_event() -- they'll also still have their 3968 * ref on the rb and will free it whenever they are done with it. 3969 * 3970 * Aside from that, this buffer is 'fully' detached and unmapped, 3971 * undo the VM accounting. 3972 */ 3973 3974 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3975 vma->vm_mm->pinned_vm -= mmap_locked; 3976 free_uid(mmap_user); 3977 3978 ring_buffer_put(rb); /* could be last */ 3979 } 3980 3981 static const struct vm_operations_struct perf_mmap_vmops = { 3982 .open = perf_mmap_open, 3983 .close = perf_mmap_close, 3984 .fault = perf_mmap_fault, 3985 .page_mkwrite = perf_mmap_fault, 3986 }; 3987 3988 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3989 { 3990 struct perf_event *event = file->private_data; 3991 unsigned long user_locked, user_lock_limit; 3992 struct user_struct *user = current_user(); 3993 unsigned long locked, lock_limit; 3994 struct ring_buffer *rb; 3995 unsigned long vma_size; 3996 unsigned long nr_pages; 3997 long user_extra, extra; 3998 int ret = 0, flags = 0; 3999 4000 /* 4001 * Don't allow mmap() of inherited per-task counters. This would 4002 * create a performance issue due to all children writing to the 4003 * same rb. 4004 */ 4005 if (event->cpu == -1 && event->attr.inherit) 4006 return -EINVAL; 4007 4008 if (!(vma->vm_flags & VM_SHARED)) 4009 return -EINVAL; 4010 4011 vma_size = vma->vm_end - vma->vm_start; 4012 nr_pages = (vma_size / PAGE_SIZE) - 1; 4013 4014 /* 4015 * If we have rb pages ensure they're a power-of-two number, so we 4016 * can do bitmasks instead of modulo. 4017 */ 4018 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4019 return -EINVAL; 4020 4021 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4022 return -EINVAL; 4023 4024 if (vma->vm_pgoff != 0) 4025 return -EINVAL; 4026 4027 WARN_ON_ONCE(event->ctx->parent_ctx); 4028 again: 4029 mutex_lock(&event->mmap_mutex); 4030 if (event->rb) { 4031 if (event->rb->nr_pages != nr_pages) { 4032 ret = -EINVAL; 4033 goto unlock; 4034 } 4035 4036 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4037 /* 4038 * Raced against perf_mmap_close() through 4039 * perf_event_set_output(). Try again, hope for better 4040 * luck. 4041 */ 4042 mutex_unlock(&event->mmap_mutex); 4043 goto again; 4044 } 4045 4046 goto unlock; 4047 } 4048 4049 user_extra = nr_pages + 1; 4050 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4051 4052 /* 4053 * Increase the limit linearly with more CPUs: 4054 */ 4055 user_lock_limit *= num_online_cpus(); 4056 4057 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4058 4059 extra = 0; 4060 if (user_locked > user_lock_limit) 4061 extra = user_locked - user_lock_limit; 4062 4063 lock_limit = rlimit(RLIMIT_MEMLOCK); 4064 lock_limit >>= PAGE_SHIFT; 4065 locked = vma->vm_mm->pinned_vm + extra; 4066 4067 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4068 !capable(CAP_IPC_LOCK)) { 4069 ret = -EPERM; 4070 goto unlock; 4071 } 4072 4073 WARN_ON(event->rb); 4074 4075 if (vma->vm_flags & VM_WRITE) 4076 flags |= RING_BUFFER_WRITABLE; 4077 4078 rb = rb_alloc(nr_pages, 4079 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4080 event->cpu, flags); 4081 4082 if (!rb) { 4083 ret = -ENOMEM; 4084 goto unlock; 4085 } 4086 4087 atomic_set(&rb->mmap_count, 1); 4088 rb->mmap_locked = extra; 4089 rb->mmap_user = get_current_user(); 4090 4091 atomic_long_add(user_extra, &user->locked_vm); 4092 vma->vm_mm->pinned_vm += extra; 4093 4094 ring_buffer_attach(event, rb); 4095 rcu_assign_pointer(event->rb, rb); 4096 4097 perf_event_init_userpage(event); 4098 perf_event_update_userpage(event); 4099 4100 unlock: 4101 if (!ret) 4102 atomic_inc(&event->mmap_count); 4103 mutex_unlock(&event->mmap_mutex); 4104 4105 /* 4106 * Since pinned accounting is per vm we cannot allow fork() to copy our 4107 * vma. 4108 */ 4109 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4110 vma->vm_ops = &perf_mmap_vmops; 4111 4112 return ret; 4113 } 4114 4115 static int perf_fasync(int fd, struct file *filp, int on) 4116 { 4117 struct inode *inode = file_inode(filp); 4118 struct perf_event *event = filp->private_data; 4119 int retval; 4120 4121 mutex_lock(&inode->i_mutex); 4122 retval = fasync_helper(fd, filp, on, &event->fasync); 4123 mutex_unlock(&inode->i_mutex); 4124 4125 if (retval < 0) 4126 return retval; 4127 4128 return 0; 4129 } 4130 4131 static const struct file_operations perf_fops = { 4132 .llseek = no_llseek, 4133 .release = perf_release, 4134 .read = perf_read, 4135 .poll = perf_poll, 4136 .unlocked_ioctl = perf_ioctl, 4137 .compat_ioctl = perf_ioctl, 4138 .mmap = perf_mmap, 4139 .fasync = perf_fasync, 4140 }; 4141 4142 /* 4143 * Perf event wakeup 4144 * 4145 * If there's data, ensure we set the poll() state and publish everything 4146 * to user-space before waking everybody up. 4147 */ 4148 4149 void perf_event_wakeup(struct perf_event *event) 4150 { 4151 ring_buffer_wakeup(event); 4152 4153 if (event->pending_kill) { 4154 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4155 event->pending_kill = 0; 4156 } 4157 } 4158 4159 static void perf_pending_event(struct irq_work *entry) 4160 { 4161 struct perf_event *event = container_of(entry, 4162 struct perf_event, pending); 4163 4164 if (event->pending_disable) { 4165 event->pending_disable = 0; 4166 __perf_event_disable(event); 4167 } 4168 4169 if (event->pending_wakeup) { 4170 event->pending_wakeup = 0; 4171 perf_event_wakeup(event); 4172 } 4173 } 4174 4175 /* 4176 * We assume there is only KVM supporting the callbacks. 4177 * Later on, we might change it to a list if there is 4178 * another virtualization implementation supporting the callbacks. 4179 */ 4180 struct perf_guest_info_callbacks *perf_guest_cbs; 4181 4182 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4183 { 4184 perf_guest_cbs = cbs; 4185 return 0; 4186 } 4187 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4188 4189 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4190 { 4191 perf_guest_cbs = NULL; 4192 return 0; 4193 } 4194 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4195 4196 static void 4197 perf_output_sample_regs(struct perf_output_handle *handle, 4198 struct pt_regs *regs, u64 mask) 4199 { 4200 int bit; 4201 4202 for_each_set_bit(bit, (const unsigned long *) &mask, 4203 sizeof(mask) * BITS_PER_BYTE) { 4204 u64 val; 4205 4206 val = perf_reg_value(regs, bit); 4207 perf_output_put(handle, val); 4208 } 4209 } 4210 4211 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4212 struct pt_regs *regs) 4213 { 4214 if (!user_mode(regs)) { 4215 if (current->mm) 4216 regs = task_pt_regs(current); 4217 else 4218 regs = NULL; 4219 } 4220 4221 if (regs) { 4222 regs_user->regs = regs; 4223 regs_user->abi = perf_reg_abi(current); 4224 } 4225 } 4226 4227 /* 4228 * Get remaining task size from user stack pointer. 4229 * 4230 * It'd be better to take stack vma map and limit this more 4231 * precisly, but there's no way to get it safely under interrupt, 4232 * so using TASK_SIZE as limit. 4233 */ 4234 static u64 perf_ustack_task_size(struct pt_regs *regs) 4235 { 4236 unsigned long addr = perf_user_stack_pointer(regs); 4237 4238 if (!addr || addr >= TASK_SIZE) 4239 return 0; 4240 4241 return TASK_SIZE - addr; 4242 } 4243 4244 static u16 4245 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4246 struct pt_regs *regs) 4247 { 4248 u64 task_size; 4249 4250 /* No regs, no stack pointer, no dump. */ 4251 if (!regs) 4252 return 0; 4253 4254 /* 4255 * Check if we fit in with the requested stack size into the: 4256 * - TASK_SIZE 4257 * If we don't, we limit the size to the TASK_SIZE. 4258 * 4259 * - remaining sample size 4260 * If we don't, we customize the stack size to 4261 * fit in to the remaining sample size. 4262 */ 4263 4264 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4265 stack_size = min(stack_size, (u16) task_size); 4266 4267 /* Current header size plus static size and dynamic size. */ 4268 header_size += 2 * sizeof(u64); 4269 4270 /* Do we fit in with the current stack dump size? */ 4271 if ((u16) (header_size + stack_size) < header_size) { 4272 /* 4273 * If we overflow the maximum size for the sample, 4274 * we customize the stack dump size to fit in. 4275 */ 4276 stack_size = USHRT_MAX - header_size - sizeof(u64); 4277 stack_size = round_up(stack_size, sizeof(u64)); 4278 } 4279 4280 return stack_size; 4281 } 4282 4283 static void 4284 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4285 struct pt_regs *regs) 4286 { 4287 /* Case of a kernel thread, nothing to dump */ 4288 if (!regs) { 4289 u64 size = 0; 4290 perf_output_put(handle, size); 4291 } else { 4292 unsigned long sp; 4293 unsigned int rem; 4294 u64 dyn_size; 4295 4296 /* 4297 * We dump: 4298 * static size 4299 * - the size requested by user or the best one we can fit 4300 * in to the sample max size 4301 * data 4302 * - user stack dump data 4303 * dynamic size 4304 * - the actual dumped size 4305 */ 4306 4307 /* Static size. */ 4308 perf_output_put(handle, dump_size); 4309 4310 /* Data. */ 4311 sp = perf_user_stack_pointer(regs); 4312 rem = __output_copy_user(handle, (void *) sp, dump_size); 4313 dyn_size = dump_size - rem; 4314 4315 perf_output_skip(handle, rem); 4316 4317 /* Dynamic size. */ 4318 perf_output_put(handle, dyn_size); 4319 } 4320 } 4321 4322 static void __perf_event_header__init_id(struct perf_event_header *header, 4323 struct perf_sample_data *data, 4324 struct perf_event *event) 4325 { 4326 u64 sample_type = event->attr.sample_type; 4327 4328 data->type = sample_type; 4329 header->size += event->id_header_size; 4330 4331 if (sample_type & PERF_SAMPLE_TID) { 4332 /* namespace issues */ 4333 data->tid_entry.pid = perf_event_pid(event, current); 4334 data->tid_entry.tid = perf_event_tid(event, current); 4335 } 4336 4337 if (sample_type & PERF_SAMPLE_TIME) 4338 data->time = perf_clock(); 4339 4340 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4341 data->id = primary_event_id(event); 4342 4343 if (sample_type & PERF_SAMPLE_STREAM_ID) 4344 data->stream_id = event->id; 4345 4346 if (sample_type & PERF_SAMPLE_CPU) { 4347 data->cpu_entry.cpu = raw_smp_processor_id(); 4348 data->cpu_entry.reserved = 0; 4349 } 4350 } 4351 4352 void perf_event_header__init_id(struct perf_event_header *header, 4353 struct perf_sample_data *data, 4354 struct perf_event *event) 4355 { 4356 if (event->attr.sample_id_all) 4357 __perf_event_header__init_id(header, data, event); 4358 } 4359 4360 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4361 struct perf_sample_data *data) 4362 { 4363 u64 sample_type = data->type; 4364 4365 if (sample_type & PERF_SAMPLE_TID) 4366 perf_output_put(handle, data->tid_entry); 4367 4368 if (sample_type & PERF_SAMPLE_TIME) 4369 perf_output_put(handle, data->time); 4370 4371 if (sample_type & PERF_SAMPLE_ID) 4372 perf_output_put(handle, data->id); 4373 4374 if (sample_type & PERF_SAMPLE_STREAM_ID) 4375 perf_output_put(handle, data->stream_id); 4376 4377 if (sample_type & PERF_SAMPLE_CPU) 4378 perf_output_put(handle, data->cpu_entry); 4379 4380 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4381 perf_output_put(handle, data->id); 4382 } 4383 4384 void perf_event__output_id_sample(struct perf_event *event, 4385 struct perf_output_handle *handle, 4386 struct perf_sample_data *sample) 4387 { 4388 if (event->attr.sample_id_all) 4389 __perf_event__output_id_sample(handle, sample); 4390 } 4391 4392 static void perf_output_read_one(struct perf_output_handle *handle, 4393 struct perf_event *event, 4394 u64 enabled, u64 running) 4395 { 4396 u64 read_format = event->attr.read_format; 4397 u64 values[4]; 4398 int n = 0; 4399 4400 values[n++] = perf_event_count(event); 4401 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4402 values[n++] = enabled + 4403 atomic64_read(&event->child_total_time_enabled); 4404 } 4405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4406 values[n++] = running + 4407 atomic64_read(&event->child_total_time_running); 4408 } 4409 if (read_format & PERF_FORMAT_ID) 4410 values[n++] = primary_event_id(event); 4411 4412 __output_copy(handle, values, n * sizeof(u64)); 4413 } 4414 4415 /* 4416 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4417 */ 4418 static void perf_output_read_group(struct perf_output_handle *handle, 4419 struct perf_event *event, 4420 u64 enabled, u64 running) 4421 { 4422 struct perf_event *leader = event->group_leader, *sub; 4423 u64 read_format = event->attr.read_format; 4424 u64 values[5]; 4425 int n = 0; 4426 4427 values[n++] = 1 + leader->nr_siblings; 4428 4429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4430 values[n++] = enabled; 4431 4432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4433 values[n++] = running; 4434 4435 if (leader != event) 4436 leader->pmu->read(leader); 4437 4438 values[n++] = perf_event_count(leader); 4439 if (read_format & PERF_FORMAT_ID) 4440 values[n++] = primary_event_id(leader); 4441 4442 __output_copy(handle, values, n * sizeof(u64)); 4443 4444 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4445 n = 0; 4446 4447 if ((sub != event) && 4448 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4449 sub->pmu->read(sub); 4450 4451 values[n++] = perf_event_count(sub); 4452 if (read_format & PERF_FORMAT_ID) 4453 values[n++] = primary_event_id(sub); 4454 4455 __output_copy(handle, values, n * sizeof(u64)); 4456 } 4457 } 4458 4459 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4460 PERF_FORMAT_TOTAL_TIME_RUNNING) 4461 4462 static void perf_output_read(struct perf_output_handle *handle, 4463 struct perf_event *event) 4464 { 4465 u64 enabled = 0, running = 0, now; 4466 u64 read_format = event->attr.read_format; 4467 4468 /* 4469 * compute total_time_enabled, total_time_running 4470 * based on snapshot values taken when the event 4471 * was last scheduled in. 4472 * 4473 * we cannot simply called update_context_time() 4474 * because of locking issue as we are called in 4475 * NMI context 4476 */ 4477 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4478 calc_timer_values(event, &now, &enabled, &running); 4479 4480 if (event->attr.read_format & PERF_FORMAT_GROUP) 4481 perf_output_read_group(handle, event, enabled, running); 4482 else 4483 perf_output_read_one(handle, event, enabled, running); 4484 } 4485 4486 void perf_output_sample(struct perf_output_handle *handle, 4487 struct perf_event_header *header, 4488 struct perf_sample_data *data, 4489 struct perf_event *event) 4490 { 4491 u64 sample_type = data->type; 4492 4493 perf_output_put(handle, *header); 4494 4495 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4496 perf_output_put(handle, data->id); 4497 4498 if (sample_type & PERF_SAMPLE_IP) 4499 perf_output_put(handle, data->ip); 4500 4501 if (sample_type & PERF_SAMPLE_TID) 4502 perf_output_put(handle, data->tid_entry); 4503 4504 if (sample_type & PERF_SAMPLE_TIME) 4505 perf_output_put(handle, data->time); 4506 4507 if (sample_type & PERF_SAMPLE_ADDR) 4508 perf_output_put(handle, data->addr); 4509 4510 if (sample_type & PERF_SAMPLE_ID) 4511 perf_output_put(handle, data->id); 4512 4513 if (sample_type & PERF_SAMPLE_STREAM_ID) 4514 perf_output_put(handle, data->stream_id); 4515 4516 if (sample_type & PERF_SAMPLE_CPU) 4517 perf_output_put(handle, data->cpu_entry); 4518 4519 if (sample_type & PERF_SAMPLE_PERIOD) 4520 perf_output_put(handle, data->period); 4521 4522 if (sample_type & PERF_SAMPLE_READ) 4523 perf_output_read(handle, event); 4524 4525 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4526 if (data->callchain) { 4527 int size = 1; 4528 4529 if (data->callchain) 4530 size += data->callchain->nr; 4531 4532 size *= sizeof(u64); 4533 4534 __output_copy(handle, data->callchain, size); 4535 } else { 4536 u64 nr = 0; 4537 perf_output_put(handle, nr); 4538 } 4539 } 4540 4541 if (sample_type & PERF_SAMPLE_RAW) { 4542 if (data->raw) { 4543 perf_output_put(handle, data->raw->size); 4544 __output_copy(handle, data->raw->data, 4545 data->raw->size); 4546 } else { 4547 struct { 4548 u32 size; 4549 u32 data; 4550 } raw = { 4551 .size = sizeof(u32), 4552 .data = 0, 4553 }; 4554 perf_output_put(handle, raw); 4555 } 4556 } 4557 4558 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4559 if (data->br_stack) { 4560 size_t size; 4561 4562 size = data->br_stack->nr 4563 * sizeof(struct perf_branch_entry); 4564 4565 perf_output_put(handle, data->br_stack->nr); 4566 perf_output_copy(handle, data->br_stack->entries, size); 4567 } else { 4568 /* 4569 * we always store at least the value of nr 4570 */ 4571 u64 nr = 0; 4572 perf_output_put(handle, nr); 4573 } 4574 } 4575 4576 if (sample_type & PERF_SAMPLE_REGS_USER) { 4577 u64 abi = data->regs_user.abi; 4578 4579 /* 4580 * If there are no regs to dump, notice it through 4581 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4582 */ 4583 perf_output_put(handle, abi); 4584 4585 if (abi) { 4586 u64 mask = event->attr.sample_regs_user; 4587 perf_output_sample_regs(handle, 4588 data->regs_user.regs, 4589 mask); 4590 } 4591 } 4592 4593 if (sample_type & PERF_SAMPLE_STACK_USER) { 4594 perf_output_sample_ustack(handle, 4595 data->stack_user_size, 4596 data->regs_user.regs); 4597 } 4598 4599 if (sample_type & PERF_SAMPLE_WEIGHT) 4600 perf_output_put(handle, data->weight); 4601 4602 if (sample_type & PERF_SAMPLE_DATA_SRC) 4603 perf_output_put(handle, data->data_src.val); 4604 4605 if (sample_type & PERF_SAMPLE_TRANSACTION) 4606 perf_output_put(handle, data->txn); 4607 4608 if (!event->attr.watermark) { 4609 int wakeup_events = event->attr.wakeup_events; 4610 4611 if (wakeup_events) { 4612 struct ring_buffer *rb = handle->rb; 4613 int events = local_inc_return(&rb->events); 4614 4615 if (events >= wakeup_events) { 4616 local_sub(wakeup_events, &rb->events); 4617 local_inc(&rb->wakeup); 4618 } 4619 } 4620 } 4621 } 4622 4623 void perf_prepare_sample(struct perf_event_header *header, 4624 struct perf_sample_data *data, 4625 struct perf_event *event, 4626 struct pt_regs *regs) 4627 { 4628 u64 sample_type = event->attr.sample_type; 4629 4630 header->type = PERF_RECORD_SAMPLE; 4631 header->size = sizeof(*header) + event->header_size; 4632 4633 header->misc = 0; 4634 header->misc |= perf_misc_flags(regs); 4635 4636 __perf_event_header__init_id(header, data, event); 4637 4638 if (sample_type & PERF_SAMPLE_IP) 4639 data->ip = perf_instruction_pointer(regs); 4640 4641 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4642 int size = 1; 4643 4644 data->callchain = perf_callchain(event, regs); 4645 4646 if (data->callchain) 4647 size += data->callchain->nr; 4648 4649 header->size += size * sizeof(u64); 4650 } 4651 4652 if (sample_type & PERF_SAMPLE_RAW) { 4653 int size = sizeof(u32); 4654 4655 if (data->raw) 4656 size += data->raw->size; 4657 else 4658 size += sizeof(u32); 4659 4660 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4661 header->size += size; 4662 } 4663 4664 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4665 int size = sizeof(u64); /* nr */ 4666 if (data->br_stack) { 4667 size += data->br_stack->nr 4668 * sizeof(struct perf_branch_entry); 4669 } 4670 header->size += size; 4671 } 4672 4673 if (sample_type & PERF_SAMPLE_REGS_USER) { 4674 /* regs dump ABI info */ 4675 int size = sizeof(u64); 4676 4677 perf_sample_regs_user(&data->regs_user, regs); 4678 4679 if (data->regs_user.regs) { 4680 u64 mask = event->attr.sample_regs_user; 4681 size += hweight64(mask) * sizeof(u64); 4682 } 4683 4684 header->size += size; 4685 } 4686 4687 if (sample_type & PERF_SAMPLE_STACK_USER) { 4688 /* 4689 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4690 * processed as the last one or have additional check added 4691 * in case new sample type is added, because we could eat 4692 * up the rest of the sample size. 4693 */ 4694 struct perf_regs_user *uregs = &data->regs_user; 4695 u16 stack_size = event->attr.sample_stack_user; 4696 u16 size = sizeof(u64); 4697 4698 if (!uregs->abi) 4699 perf_sample_regs_user(uregs, regs); 4700 4701 stack_size = perf_sample_ustack_size(stack_size, header->size, 4702 uregs->regs); 4703 4704 /* 4705 * If there is something to dump, add space for the dump 4706 * itself and for the field that tells the dynamic size, 4707 * which is how many have been actually dumped. 4708 */ 4709 if (stack_size) 4710 size += sizeof(u64) + stack_size; 4711 4712 data->stack_user_size = stack_size; 4713 header->size += size; 4714 } 4715 } 4716 4717 static void perf_event_output(struct perf_event *event, 4718 struct perf_sample_data *data, 4719 struct pt_regs *regs) 4720 { 4721 struct perf_output_handle handle; 4722 struct perf_event_header header; 4723 4724 /* protect the callchain buffers */ 4725 rcu_read_lock(); 4726 4727 perf_prepare_sample(&header, data, event, regs); 4728 4729 if (perf_output_begin(&handle, event, header.size)) 4730 goto exit; 4731 4732 perf_output_sample(&handle, &header, data, event); 4733 4734 perf_output_end(&handle); 4735 4736 exit: 4737 rcu_read_unlock(); 4738 } 4739 4740 /* 4741 * read event_id 4742 */ 4743 4744 struct perf_read_event { 4745 struct perf_event_header header; 4746 4747 u32 pid; 4748 u32 tid; 4749 }; 4750 4751 static void 4752 perf_event_read_event(struct perf_event *event, 4753 struct task_struct *task) 4754 { 4755 struct perf_output_handle handle; 4756 struct perf_sample_data sample; 4757 struct perf_read_event read_event = { 4758 .header = { 4759 .type = PERF_RECORD_READ, 4760 .misc = 0, 4761 .size = sizeof(read_event) + event->read_size, 4762 }, 4763 .pid = perf_event_pid(event, task), 4764 .tid = perf_event_tid(event, task), 4765 }; 4766 int ret; 4767 4768 perf_event_header__init_id(&read_event.header, &sample, event); 4769 ret = perf_output_begin(&handle, event, read_event.header.size); 4770 if (ret) 4771 return; 4772 4773 perf_output_put(&handle, read_event); 4774 perf_output_read(&handle, event); 4775 perf_event__output_id_sample(event, &handle, &sample); 4776 4777 perf_output_end(&handle); 4778 } 4779 4780 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4781 4782 static void 4783 perf_event_aux_ctx(struct perf_event_context *ctx, 4784 perf_event_aux_output_cb output, 4785 void *data) 4786 { 4787 struct perf_event *event; 4788 4789 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4790 if (event->state < PERF_EVENT_STATE_INACTIVE) 4791 continue; 4792 if (!event_filter_match(event)) 4793 continue; 4794 output(event, data); 4795 } 4796 } 4797 4798 static void 4799 perf_event_aux(perf_event_aux_output_cb output, void *data, 4800 struct perf_event_context *task_ctx) 4801 { 4802 struct perf_cpu_context *cpuctx; 4803 struct perf_event_context *ctx; 4804 struct pmu *pmu; 4805 int ctxn; 4806 4807 rcu_read_lock(); 4808 list_for_each_entry_rcu(pmu, &pmus, entry) { 4809 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4810 if (cpuctx->unique_pmu != pmu) 4811 goto next; 4812 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4813 if (task_ctx) 4814 goto next; 4815 ctxn = pmu->task_ctx_nr; 4816 if (ctxn < 0) 4817 goto next; 4818 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4819 if (ctx) 4820 perf_event_aux_ctx(ctx, output, data); 4821 next: 4822 put_cpu_ptr(pmu->pmu_cpu_context); 4823 } 4824 4825 if (task_ctx) { 4826 preempt_disable(); 4827 perf_event_aux_ctx(task_ctx, output, data); 4828 preempt_enable(); 4829 } 4830 rcu_read_unlock(); 4831 } 4832 4833 /* 4834 * task tracking -- fork/exit 4835 * 4836 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4837 */ 4838 4839 struct perf_task_event { 4840 struct task_struct *task; 4841 struct perf_event_context *task_ctx; 4842 4843 struct { 4844 struct perf_event_header header; 4845 4846 u32 pid; 4847 u32 ppid; 4848 u32 tid; 4849 u32 ptid; 4850 u64 time; 4851 } event_id; 4852 }; 4853 4854 static int perf_event_task_match(struct perf_event *event) 4855 { 4856 return event->attr.comm || event->attr.mmap || 4857 event->attr.mmap2 || event->attr.mmap_data || 4858 event->attr.task; 4859 } 4860 4861 static void perf_event_task_output(struct perf_event *event, 4862 void *data) 4863 { 4864 struct perf_task_event *task_event = data; 4865 struct perf_output_handle handle; 4866 struct perf_sample_data sample; 4867 struct task_struct *task = task_event->task; 4868 int ret, size = task_event->event_id.header.size; 4869 4870 if (!perf_event_task_match(event)) 4871 return; 4872 4873 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4874 4875 ret = perf_output_begin(&handle, event, 4876 task_event->event_id.header.size); 4877 if (ret) 4878 goto out; 4879 4880 task_event->event_id.pid = perf_event_pid(event, task); 4881 task_event->event_id.ppid = perf_event_pid(event, current); 4882 4883 task_event->event_id.tid = perf_event_tid(event, task); 4884 task_event->event_id.ptid = perf_event_tid(event, current); 4885 4886 perf_output_put(&handle, task_event->event_id); 4887 4888 perf_event__output_id_sample(event, &handle, &sample); 4889 4890 perf_output_end(&handle); 4891 out: 4892 task_event->event_id.header.size = size; 4893 } 4894 4895 static void perf_event_task(struct task_struct *task, 4896 struct perf_event_context *task_ctx, 4897 int new) 4898 { 4899 struct perf_task_event task_event; 4900 4901 if (!atomic_read(&nr_comm_events) && 4902 !atomic_read(&nr_mmap_events) && 4903 !atomic_read(&nr_task_events)) 4904 return; 4905 4906 task_event = (struct perf_task_event){ 4907 .task = task, 4908 .task_ctx = task_ctx, 4909 .event_id = { 4910 .header = { 4911 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4912 .misc = 0, 4913 .size = sizeof(task_event.event_id), 4914 }, 4915 /* .pid */ 4916 /* .ppid */ 4917 /* .tid */ 4918 /* .ptid */ 4919 .time = perf_clock(), 4920 }, 4921 }; 4922 4923 perf_event_aux(perf_event_task_output, 4924 &task_event, 4925 task_ctx); 4926 } 4927 4928 void perf_event_fork(struct task_struct *task) 4929 { 4930 perf_event_task(task, NULL, 1); 4931 } 4932 4933 /* 4934 * comm tracking 4935 */ 4936 4937 struct perf_comm_event { 4938 struct task_struct *task; 4939 char *comm; 4940 int comm_size; 4941 4942 struct { 4943 struct perf_event_header header; 4944 4945 u32 pid; 4946 u32 tid; 4947 } event_id; 4948 }; 4949 4950 static int perf_event_comm_match(struct perf_event *event) 4951 { 4952 return event->attr.comm; 4953 } 4954 4955 static void perf_event_comm_output(struct perf_event *event, 4956 void *data) 4957 { 4958 struct perf_comm_event *comm_event = data; 4959 struct perf_output_handle handle; 4960 struct perf_sample_data sample; 4961 int size = comm_event->event_id.header.size; 4962 int ret; 4963 4964 if (!perf_event_comm_match(event)) 4965 return; 4966 4967 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4968 ret = perf_output_begin(&handle, event, 4969 comm_event->event_id.header.size); 4970 4971 if (ret) 4972 goto out; 4973 4974 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4975 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4976 4977 perf_output_put(&handle, comm_event->event_id); 4978 __output_copy(&handle, comm_event->comm, 4979 comm_event->comm_size); 4980 4981 perf_event__output_id_sample(event, &handle, &sample); 4982 4983 perf_output_end(&handle); 4984 out: 4985 comm_event->event_id.header.size = size; 4986 } 4987 4988 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4989 { 4990 char comm[TASK_COMM_LEN]; 4991 unsigned int size; 4992 4993 memset(comm, 0, sizeof(comm)); 4994 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4995 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4996 4997 comm_event->comm = comm; 4998 comm_event->comm_size = size; 4999 5000 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5001 5002 perf_event_aux(perf_event_comm_output, 5003 comm_event, 5004 NULL); 5005 } 5006 5007 void perf_event_comm(struct task_struct *task) 5008 { 5009 struct perf_comm_event comm_event; 5010 struct perf_event_context *ctx; 5011 int ctxn; 5012 5013 rcu_read_lock(); 5014 for_each_task_context_nr(ctxn) { 5015 ctx = task->perf_event_ctxp[ctxn]; 5016 if (!ctx) 5017 continue; 5018 5019 perf_event_enable_on_exec(ctx); 5020 } 5021 rcu_read_unlock(); 5022 5023 if (!atomic_read(&nr_comm_events)) 5024 return; 5025 5026 comm_event = (struct perf_comm_event){ 5027 .task = task, 5028 /* .comm */ 5029 /* .comm_size */ 5030 .event_id = { 5031 .header = { 5032 .type = PERF_RECORD_COMM, 5033 .misc = 0, 5034 /* .size */ 5035 }, 5036 /* .pid */ 5037 /* .tid */ 5038 }, 5039 }; 5040 5041 perf_event_comm_event(&comm_event); 5042 } 5043 5044 /* 5045 * mmap tracking 5046 */ 5047 5048 struct perf_mmap_event { 5049 struct vm_area_struct *vma; 5050 5051 const char *file_name; 5052 int file_size; 5053 int maj, min; 5054 u64 ino; 5055 u64 ino_generation; 5056 5057 struct { 5058 struct perf_event_header header; 5059 5060 u32 pid; 5061 u32 tid; 5062 u64 start; 5063 u64 len; 5064 u64 pgoff; 5065 } event_id; 5066 }; 5067 5068 static int perf_event_mmap_match(struct perf_event *event, 5069 void *data) 5070 { 5071 struct perf_mmap_event *mmap_event = data; 5072 struct vm_area_struct *vma = mmap_event->vma; 5073 int executable = vma->vm_flags & VM_EXEC; 5074 5075 return (!executable && event->attr.mmap_data) || 5076 (executable && (event->attr.mmap || event->attr.mmap2)); 5077 } 5078 5079 static void perf_event_mmap_output(struct perf_event *event, 5080 void *data) 5081 { 5082 struct perf_mmap_event *mmap_event = data; 5083 struct perf_output_handle handle; 5084 struct perf_sample_data sample; 5085 int size = mmap_event->event_id.header.size; 5086 int ret; 5087 5088 if (!perf_event_mmap_match(event, data)) 5089 return; 5090 5091 if (event->attr.mmap2) { 5092 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5093 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5094 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5095 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5096 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5097 } 5098 5099 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5100 ret = perf_output_begin(&handle, event, 5101 mmap_event->event_id.header.size); 5102 if (ret) 5103 goto out; 5104 5105 mmap_event->event_id.pid = perf_event_pid(event, current); 5106 mmap_event->event_id.tid = perf_event_tid(event, current); 5107 5108 perf_output_put(&handle, mmap_event->event_id); 5109 5110 if (event->attr.mmap2) { 5111 perf_output_put(&handle, mmap_event->maj); 5112 perf_output_put(&handle, mmap_event->min); 5113 perf_output_put(&handle, mmap_event->ino); 5114 perf_output_put(&handle, mmap_event->ino_generation); 5115 } 5116 5117 __output_copy(&handle, mmap_event->file_name, 5118 mmap_event->file_size); 5119 5120 perf_event__output_id_sample(event, &handle, &sample); 5121 5122 perf_output_end(&handle); 5123 out: 5124 mmap_event->event_id.header.size = size; 5125 } 5126 5127 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5128 { 5129 struct vm_area_struct *vma = mmap_event->vma; 5130 struct file *file = vma->vm_file; 5131 int maj = 0, min = 0; 5132 u64 ino = 0, gen = 0; 5133 unsigned int size; 5134 char tmp[16]; 5135 char *buf = NULL; 5136 char *name; 5137 5138 if (file) { 5139 struct inode *inode; 5140 dev_t dev; 5141 5142 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5143 if (!buf) { 5144 name = "//enomem"; 5145 goto cpy_name; 5146 } 5147 /* 5148 * d_path() works from the end of the rb backwards, so we 5149 * need to add enough zero bytes after the string to handle 5150 * the 64bit alignment we do later. 5151 */ 5152 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5153 if (IS_ERR(name)) { 5154 name = "//toolong"; 5155 goto cpy_name; 5156 } 5157 inode = file_inode(vma->vm_file); 5158 dev = inode->i_sb->s_dev; 5159 ino = inode->i_ino; 5160 gen = inode->i_generation; 5161 maj = MAJOR(dev); 5162 min = MINOR(dev); 5163 goto got_name; 5164 } else { 5165 name = (char *)arch_vma_name(vma); 5166 if (name) 5167 goto cpy_name; 5168 5169 if (vma->vm_start <= vma->vm_mm->start_brk && 5170 vma->vm_end >= vma->vm_mm->brk) { 5171 name = "[heap]"; 5172 goto cpy_name; 5173 } 5174 if (vma->vm_start <= vma->vm_mm->start_stack && 5175 vma->vm_end >= vma->vm_mm->start_stack) { 5176 name = "[stack]"; 5177 goto cpy_name; 5178 } 5179 5180 name = "//anon"; 5181 goto cpy_name; 5182 } 5183 5184 cpy_name: 5185 strlcpy(tmp, name, sizeof(tmp)); 5186 name = tmp; 5187 got_name: 5188 /* 5189 * Since our buffer works in 8 byte units we need to align our string 5190 * size to a multiple of 8. However, we must guarantee the tail end is 5191 * zero'd out to avoid leaking random bits to userspace. 5192 */ 5193 size = strlen(name)+1; 5194 while (!IS_ALIGNED(size, sizeof(u64))) 5195 name[size++] = '\0'; 5196 5197 mmap_event->file_name = name; 5198 mmap_event->file_size = size; 5199 mmap_event->maj = maj; 5200 mmap_event->min = min; 5201 mmap_event->ino = ino; 5202 mmap_event->ino_generation = gen; 5203 5204 if (!(vma->vm_flags & VM_EXEC)) 5205 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5206 5207 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5208 5209 perf_event_aux(perf_event_mmap_output, 5210 mmap_event, 5211 NULL); 5212 5213 kfree(buf); 5214 } 5215 5216 void perf_event_mmap(struct vm_area_struct *vma) 5217 { 5218 struct perf_mmap_event mmap_event; 5219 5220 if (!atomic_read(&nr_mmap_events)) 5221 return; 5222 5223 mmap_event = (struct perf_mmap_event){ 5224 .vma = vma, 5225 /* .file_name */ 5226 /* .file_size */ 5227 .event_id = { 5228 .header = { 5229 .type = PERF_RECORD_MMAP, 5230 .misc = PERF_RECORD_MISC_USER, 5231 /* .size */ 5232 }, 5233 /* .pid */ 5234 /* .tid */ 5235 .start = vma->vm_start, 5236 .len = vma->vm_end - vma->vm_start, 5237 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5238 }, 5239 /* .maj (attr_mmap2 only) */ 5240 /* .min (attr_mmap2 only) */ 5241 /* .ino (attr_mmap2 only) */ 5242 /* .ino_generation (attr_mmap2 only) */ 5243 }; 5244 5245 perf_event_mmap_event(&mmap_event); 5246 } 5247 5248 /* 5249 * IRQ throttle logging 5250 */ 5251 5252 static void perf_log_throttle(struct perf_event *event, int enable) 5253 { 5254 struct perf_output_handle handle; 5255 struct perf_sample_data sample; 5256 int ret; 5257 5258 struct { 5259 struct perf_event_header header; 5260 u64 time; 5261 u64 id; 5262 u64 stream_id; 5263 } throttle_event = { 5264 .header = { 5265 .type = PERF_RECORD_THROTTLE, 5266 .misc = 0, 5267 .size = sizeof(throttle_event), 5268 }, 5269 .time = perf_clock(), 5270 .id = primary_event_id(event), 5271 .stream_id = event->id, 5272 }; 5273 5274 if (enable) 5275 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5276 5277 perf_event_header__init_id(&throttle_event.header, &sample, event); 5278 5279 ret = perf_output_begin(&handle, event, 5280 throttle_event.header.size); 5281 if (ret) 5282 return; 5283 5284 perf_output_put(&handle, throttle_event); 5285 perf_event__output_id_sample(event, &handle, &sample); 5286 perf_output_end(&handle); 5287 } 5288 5289 /* 5290 * Generic event overflow handling, sampling. 5291 */ 5292 5293 static int __perf_event_overflow(struct perf_event *event, 5294 int throttle, struct perf_sample_data *data, 5295 struct pt_regs *regs) 5296 { 5297 int events = atomic_read(&event->event_limit); 5298 struct hw_perf_event *hwc = &event->hw; 5299 u64 seq; 5300 int ret = 0; 5301 5302 /* 5303 * Non-sampling counters might still use the PMI to fold short 5304 * hardware counters, ignore those. 5305 */ 5306 if (unlikely(!is_sampling_event(event))) 5307 return 0; 5308 5309 seq = __this_cpu_read(perf_throttled_seq); 5310 if (seq != hwc->interrupts_seq) { 5311 hwc->interrupts_seq = seq; 5312 hwc->interrupts = 1; 5313 } else { 5314 hwc->interrupts++; 5315 if (unlikely(throttle 5316 && hwc->interrupts >= max_samples_per_tick)) { 5317 __this_cpu_inc(perf_throttled_count); 5318 hwc->interrupts = MAX_INTERRUPTS; 5319 perf_log_throttle(event, 0); 5320 tick_nohz_full_kick(); 5321 ret = 1; 5322 } 5323 } 5324 5325 if (event->attr.freq) { 5326 u64 now = perf_clock(); 5327 s64 delta = now - hwc->freq_time_stamp; 5328 5329 hwc->freq_time_stamp = now; 5330 5331 if (delta > 0 && delta < 2*TICK_NSEC) 5332 perf_adjust_period(event, delta, hwc->last_period, true); 5333 } 5334 5335 /* 5336 * XXX event_limit might not quite work as expected on inherited 5337 * events 5338 */ 5339 5340 event->pending_kill = POLL_IN; 5341 if (events && atomic_dec_and_test(&event->event_limit)) { 5342 ret = 1; 5343 event->pending_kill = POLL_HUP; 5344 event->pending_disable = 1; 5345 irq_work_queue(&event->pending); 5346 } 5347 5348 if (event->overflow_handler) 5349 event->overflow_handler(event, data, regs); 5350 else 5351 perf_event_output(event, data, regs); 5352 5353 if (event->fasync && event->pending_kill) { 5354 event->pending_wakeup = 1; 5355 irq_work_queue(&event->pending); 5356 } 5357 5358 return ret; 5359 } 5360 5361 int perf_event_overflow(struct perf_event *event, 5362 struct perf_sample_data *data, 5363 struct pt_regs *regs) 5364 { 5365 return __perf_event_overflow(event, 1, data, regs); 5366 } 5367 5368 /* 5369 * Generic software event infrastructure 5370 */ 5371 5372 struct swevent_htable { 5373 struct swevent_hlist *swevent_hlist; 5374 struct mutex hlist_mutex; 5375 int hlist_refcount; 5376 5377 /* Recursion avoidance in each contexts */ 5378 int recursion[PERF_NR_CONTEXTS]; 5379 }; 5380 5381 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5382 5383 /* 5384 * We directly increment event->count and keep a second value in 5385 * event->hw.period_left to count intervals. This period event 5386 * is kept in the range [-sample_period, 0] so that we can use the 5387 * sign as trigger. 5388 */ 5389 5390 u64 perf_swevent_set_period(struct perf_event *event) 5391 { 5392 struct hw_perf_event *hwc = &event->hw; 5393 u64 period = hwc->last_period; 5394 u64 nr, offset; 5395 s64 old, val; 5396 5397 hwc->last_period = hwc->sample_period; 5398 5399 again: 5400 old = val = local64_read(&hwc->period_left); 5401 if (val < 0) 5402 return 0; 5403 5404 nr = div64_u64(period + val, period); 5405 offset = nr * period; 5406 val -= offset; 5407 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5408 goto again; 5409 5410 return nr; 5411 } 5412 5413 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5414 struct perf_sample_data *data, 5415 struct pt_regs *regs) 5416 { 5417 struct hw_perf_event *hwc = &event->hw; 5418 int throttle = 0; 5419 5420 if (!overflow) 5421 overflow = perf_swevent_set_period(event); 5422 5423 if (hwc->interrupts == MAX_INTERRUPTS) 5424 return; 5425 5426 for (; overflow; overflow--) { 5427 if (__perf_event_overflow(event, throttle, 5428 data, regs)) { 5429 /* 5430 * We inhibit the overflow from happening when 5431 * hwc->interrupts == MAX_INTERRUPTS. 5432 */ 5433 break; 5434 } 5435 throttle = 1; 5436 } 5437 } 5438 5439 static void perf_swevent_event(struct perf_event *event, u64 nr, 5440 struct perf_sample_data *data, 5441 struct pt_regs *regs) 5442 { 5443 struct hw_perf_event *hwc = &event->hw; 5444 5445 local64_add(nr, &event->count); 5446 5447 if (!regs) 5448 return; 5449 5450 if (!is_sampling_event(event)) 5451 return; 5452 5453 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5454 data->period = nr; 5455 return perf_swevent_overflow(event, 1, data, regs); 5456 } else 5457 data->period = event->hw.last_period; 5458 5459 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5460 return perf_swevent_overflow(event, 1, data, regs); 5461 5462 if (local64_add_negative(nr, &hwc->period_left)) 5463 return; 5464 5465 perf_swevent_overflow(event, 0, data, regs); 5466 } 5467 5468 static int perf_exclude_event(struct perf_event *event, 5469 struct pt_regs *regs) 5470 { 5471 if (event->hw.state & PERF_HES_STOPPED) 5472 return 1; 5473 5474 if (regs) { 5475 if (event->attr.exclude_user && user_mode(regs)) 5476 return 1; 5477 5478 if (event->attr.exclude_kernel && !user_mode(regs)) 5479 return 1; 5480 } 5481 5482 return 0; 5483 } 5484 5485 static int perf_swevent_match(struct perf_event *event, 5486 enum perf_type_id type, 5487 u32 event_id, 5488 struct perf_sample_data *data, 5489 struct pt_regs *regs) 5490 { 5491 if (event->attr.type != type) 5492 return 0; 5493 5494 if (event->attr.config != event_id) 5495 return 0; 5496 5497 if (perf_exclude_event(event, regs)) 5498 return 0; 5499 5500 return 1; 5501 } 5502 5503 static inline u64 swevent_hash(u64 type, u32 event_id) 5504 { 5505 u64 val = event_id | (type << 32); 5506 5507 return hash_64(val, SWEVENT_HLIST_BITS); 5508 } 5509 5510 static inline struct hlist_head * 5511 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5512 { 5513 u64 hash = swevent_hash(type, event_id); 5514 5515 return &hlist->heads[hash]; 5516 } 5517 5518 /* For the read side: events when they trigger */ 5519 static inline struct hlist_head * 5520 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5521 { 5522 struct swevent_hlist *hlist; 5523 5524 hlist = rcu_dereference(swhash->swevent_hlist); 5525 if (!hlist) 5526 return NULL; 5527 5528 return __find_swevent_head(hlist, type, event_id); 5529 } 5530 5531 /* For the event head insertion and removal in the hlist */ 5532 static inline struct hlist_head * 5533 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5534 { 5535 struct swevent_hlist *hlist; 5536 u32 event_id = event->attr.config; 5537 u64 type = event->attr.type; 5538 5539 /* 5540 * Event scheduling is always serialized against hlist allocation 5541 * and release. Which makes the protected version suitable here. 5542 * The context lock guarantees that. 5543 */ 5544 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5545 lockdep_is_held(&event->ctx->lock)); 5546 if (!hlist) 5547 return NULL; 5548 5549 return __find_swevent_head(hlist, type, event_id); 5550 } 5551 5552 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5553 u64 nr, 5554 struct perf_sample_data *data, 5555 struct pt_regs *regs) 5556 { 5557 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5558 struct perf_event *event; 5559 struct hlist_head *head; 5560 5561 rcu_read_lock(); 5562 head = find_swevent_head_rcu(swhash, type, event_id); 5563 if (!head) 5564 goto end; 5565 5566 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5567 if (perf_swevent_match(event, type, event_id, data, regs)) 5568 perf_swevent_event(event, nr, data, regs); 5569 } 5570 end: 5571 rcu_read_unlock(); 5572 } 5573 5574 int perf_swevent_get_recursion_context(void) 5575 { 5576 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5577 5578 return get_recursion_context(swhash->recursion); 5579 } 5580 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5581 5582 inline void perf_swevent_put_recursion_context(int rctx) 5583 { 5584 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5585 5586 put_recursion_context(swhash->recursion, rctx); 5587 } 5588 5589 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5590 { 5591 struct perf_sample_data data; 5592 int rctx; 5593 5594 preempt_disable_notrace(); 5595 rctx = perf_swevent_get_recursion_context(); 5596 if (rctx < 0) 5597 return; 5598 5599 perf_sample_data_init(&data, addr, 0); 5600 5601 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5602 5603 perf_swevent_put_recursion_context(rctx); 5604 preempt_enable_notrace(); 5605 } 5606 5607 static void perf_swevent_read(struct perf_event *event) 5608 { 5609 } 5610 5611 static int perf_swevent_add(struct perf_event *event, int flags) 5612 { 5613 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5614 struct hw_perf_event *hwc = &event->hw; 5615 struct hlist_head *head; 5616 5617 if (is_sampling_event(event)) { 5618 hwc->last_period = hwc->sample_period; 5619 perf_swevent_set_period(event); 5620 } 5621 5622 hwc->state = !(flags & PERF_EF_START); 5623 5624 head = find_swevent_head(swhash, event); 5625 if (WARN_ON_ONCE(!head)) 5626 return -EINVAL; 5627 5628 hlist_add_head_rcu(&event->hlist_entry, head); 5629 5630 return 0; 5631 } 5632 5633 static void perf_swevent_del(struct perf_event *event, int flags) 5634 { 5635 hlist_del_rcu(&event->hlist_entry); 5636 } 5637 5638 static void perf_swevent_start(struct perf_event *event, int flags) 5639 { 5640 event->hw.state = 0; 5641 } 5642 5643 static void perf_swevent_stop(struct perf_event *event, int flags) 5644 { 5645 event->hw.state = PERF_HES_STOPPED; 5646 } 5647 5648 /* Deref the hlist from the update side */ 5649 static inline struct swevent_hlist * 5650 swevent_hlist_deref(struct swevent_htable *swhash) 5651 { 5652 return rcu_dereference_protected(swhash->swevent_hlist, 5653 lockdep_is_held(&swhash->hlist_mutex)); 5654 } 5655 5656 static void swevent_hlist_release(struct swevent_htable *swhash) 5657 { 5658 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5659 5660 if (!hlist) 5661 return; 5662 5663 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5664 kfree_rcu(hlist, rcu_head); 5665 } 5666 5667 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5668 { 5669 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5670 5671 mutex_lock(&swhash->hlist_mutex); 5672 5673 if (!--swhash->hlist_refcount) 5674 swevent_hlist_release(swhash); 5675 5676 mutex_unlock(&swhash->hlist_mutex); 5677 } 5678 5679 static void swevent_hlist_put(struct perf_event *event) 5680 { 5681 int cpu; 5682 5683 for_each_possible_cpu(cpu) 5684 swevent_hlist_put_cpu(event, cpu); 5685 } 5686 5687 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5688 { 5689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5690 int err = 0; 5691 5692 mutex_lock(&swhash->hlist_mutex); 5693 5694 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5695 struct swevent_hlist *hlist; 5696 5697 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5698 if (!hlist) { 5699 err = -ENOMEM; 5700 goto exit; 5701 } 5702 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5703 } 5704 swhash->hlist_refcount++; 5705 exit: 5706 mutex_unlock(&swhash->hlist_mutex); 5707 5708 return err; 5709 } 5710 5711 static int swevent_hlist_get(struct perf_event *event) 5712 { 5713 int err; 5714 int cpu, failed_cpu; 5715 5716 get_online_cpus(); 5717 for_each_possible_cpu(cpu) { 5718 err = swevent_hlist_get_cpu(event, cpu); 5719 if (err) { 5720 failed_cpu = cpu; 5721 goto fail; 5722 } 5723 } 5724 put_online_cpus(); 5725 5726 return 0; 5727 fail: 5728 for_each_possible_cpu(cpu) { 5729 if (cpu == failed_cpu) 5730 break; 5731 swevent_hlist_put_cpu(event, cpu); 5732 } 5733 5734 put_online_cpus(); 5735 return err; 5736 } 5737 5738 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5739 5740 static void sw_perf_event_destroy(struct perf_event *event) 5741 { 5742 u64 event_id = event->attr.config; 5743 5744 WARN_ON(event->parent); 5745 5746 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5747 swevent_hlist_put(event); 5748 } 5749 5750 static int perf_swevent_init(struct perf_event *event) 5751 { 5752 u64 event_id = event->attr.config; 5753 5754 if (event->attr.type != PERF_TYPE_SOFTWARE) 5755 return -ENOENT; 5756 5757 /* 5758 * no branch sampling for software events 5759 */ 5760 if (has_branch_stack(event)) 5761 return -EOPNOTSUPP; 5762 5763 switch (event_id) { 5764 case PERF_COUNT_SW_CPU_CLOCK: 5765 case PERF_COUNT_SW_TASK_CLOCK: 5766 return -ENOENT; 5767 5768 default: 5769 break; 5770 } 5771 5772 if (event_id >= PERF_COUNT_SW_MAX) 5773 return -ENOENT; 5774 5775 if (!event->parent) { 5776 int err; 5777 5778 err = swevent_hlist_get(event); 5779 if (err) 5780 return err; 5781 5782 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5783 event->destroy = sw_perf_event_destroy; 5784 } 5785 5786 return 0; 5787 } 5788 5789 static int perf_swevent_event_idx(struct perf_event *event) 5790 { 5791 return 0; 5792 } 5793 5794 static struct pmu perf_swevent = { 5795 .task_ctx_nr = perf_sw_context, 5796 5797 .event_init = perf_swevent_init, 5798 .add = perf_swevent_add, 5799 .del = perf_swevent_del, 5800 .start = perf_swevent_start, 5801 .stop = perf_swevent_stop, 5802 .read = perf_swevent_read, 5803 5804 .event_idx = perf_swevent_event_idx, 5805 }; 5806 5807 #ifdef CONFIG_EVENT_TRACING 5808 5809 static int perf_tp_filter_match(struct perf_event *event, 5810 struct perf_sample_data *data) 5811 { 5812 void *record = data->raw->data; 5813 5814 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5815 return 1; 5816 return 0; 5817 } 5818 5819 static int perf_tp_event_match(struct perf_event *event, 5820 struct perf_sample_data *data, 5821 struct pt_regs *regs) 5822 { 5823 if (event->hw.state & PERF_HES_STOPPED) 5824 return 0; 5825 /* 5826 * All tracepoints are from kernel-space. 5827 */ 5828 if (event->attr.exclude_kernel) 5829 return 0; 5830 5831 if (!perf_tp_filter_match(event, data)) 5832 return 0; 5833 5834 return 1; 5835 } 5836 5837 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5838 struct pt_regs *regs, struct hlist_head *head, int rctx, 5839 struct task_struct *task) 5840 { 5841 struct perf_sample_data data; 5842 struct perf_event *event; 5843 5844 struct perf_raw_record raw = { 5845 .size = entry_size, 5846 .data = record, 5847 }; 5848 5849 perf_sample_data_init(&data, addr, 0); 5850 data.raw = &raw; 5851 5852 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5853 if (perf_tp_event_match(event, &data, regs)) 5854 perf_swevent_event(event, count, &data, regs); 5855 } 5856 5857 /* 5858 * If we got specified a target task, also iterate its context and 5859 * deliver this event there too. 5860 */ 5861 if (task && task != current) { 5862 struct perf_event_context *ctx; 5863 struct trace_entry *entry = record; 5864 5865 rcu_read_lock(); 5866 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5867 if (!ctx) 5868 goto unlock; 5869 5870 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5871 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5872 continue; 5873 if (event->attr.config != entry->type) 5874 continue; 5875 if (perf_tp_event_match(event, &data, regs)) 5876 perf_swevent_event(event, count, &data, regs); 5877 } 5878 unlock: 5879 rcu_read_unlock(); 5880 } 5881 5882 perf_swevent_put_recursion_context(rctx); 5883 } 5884 EXPORT_SYMBOL_GPL(perf_tp_event); 5885 5886 static void tp_perf_event_destroy(struct perf_event *event) 5887 { 5888 perf_trace_destroy(event); 5889 } 5890 5891 static int perf_tp_event_init(struct perf_event *event) 5892 { 5893 int err; 5894 5895 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5896 return -ENOENT; 5897 5898 /* 5899 * no branch sampling for tracepoint events 5900 */ 5901 if (has_branch_stack(event)) 5902 return -EOPNOTSUPP; 5903 5904 err = perf_trace_init(event); 5905 if (err) 5906 return err; 5907 5908 event->destroy = tp_perf_event_destroy; 5909 5910 return 0; 5911 } 5912 5913 static struct pmu perf_tracepoint = { 5914 .task_ctx_nr = perf_sw_context, 5915 5916 .event_init = perf_tp_event_init, 5917 .add = perf_trace_add, 5918 .del = perf_trace_del, 5919 .start = perf_swevent_start, 5920 .stop = perf_swevent_stop, 5921 .read = perf_swevent_read, 5922 5923 .event_idx = perf_swevent_event_idx, 5924 }; 5925 5926 static inline void perf_tp_register(void) 5927 { 5928 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5929 } 5930 5931 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5932 { 5933 char *filter_str; 5934 int ret; 5935 5936 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5937 return -EINVAL; 5938 5939 filter_str = strndup_user(arg, PAGE_SIZE); 5940 if (IS_ERR(filter_str)) 5941 return PTR_ERR(filter_str); 5942 5943 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5944 5945 kfree(filter_str); 5946 return ret; 5947 } 5948 5949 static void perf_event_free_filter(struct perf_event *event) 5950 { 5951 ftrace_profile_free_filter(event); 5952 } 5953 5954 #else 5955 5956 static inline void perf_tp_register(void) 5957 { 5958 } 5959 5960 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5961 { 5962 return -ENOENT; 5963 } 5964 5965 static void perf_event_free_filter(struct perf_event *event) 5966 { 5967 } 5968 5969 #endif /* CONFIG_EVENT_TRACING */ 5970 5971 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5972 void perf_bp_event(struct perf_event *bp, void *data) 5973 { 5974 struct perf_sample_data sample; 5975 struct pt_regs *regs = data; 5976 5977 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5978 5979 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5980 perf_swevent_event(bp, 1, &sample, regs); 5981 } 5982 #endif 5983 5984 /* 5985 * hrtimer based swevent callback 5986 */ 5987 5988 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5989 { 5990 enum hrtimer_restart ret = HRTIMER_RESTART; 5991 struct perf_sample_data data; 5992 struct pt_regs *regs; 5993 struct perf_event *event; 5994 u64 period; 5995 5996 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5997 5998 if (event->state != PERF_EVENT_STATE_ACTIVE) 5999 return HRTIMER_NORESTART; 6000 6001 event->pmu->read(event); 6002 6003 perf_sample_data_init(&data, 0, event->hw.last_period); 6004 regs = get_irq_regs(); 6005 6006 if (regs && !perf_exclude_event(event, regs)) { 6007 if (!(event->attr.exclude_idle && is_idle_task(current))) 6008 if (__perf_event_overflow(event, 1, &data, regs)) 6009 ret = HRTIMER_NORESTART; 6010 } 6011 6012 period = max_t(u64, 10000, event->hw.sample_period); 6013 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6014 6015 return ret; 6016 } 6017 6018 static void perf_swevent_start_hrtimer(struct perf_event *event) 6019 { 6020 struct hw_perf_event *hwc = &event->hw; 6021 s64 period; 6022 6023 if (!is_sampling_event(event)) 6024 return; 6025 6026 period = local64_read(&hwc->period_left); 6027 if (period) { 6028 if (period < 0) 6029 period = 10000; 6030 6031 local64_set(&hwc->period_left, 0); 6032 } else { 6033 period = max_t(u64, 10000, hwc->sample_period); 6034 } 6035 __hrtimer_start_range_ns(&hwc->hrtimer, 6036 ns_to_ktime(period), 0, 6037 HRTIMER_MODE_REL_PINNED, 0); 6038 } 6039 6040 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6041 { 6042 struct hw_perf_event *hwc = &event->hw; 6043 6044 if (is_sampling_event(event)) { 6045 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6046 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6047 6048 hrtimer_cancel(&hwc->hrtimer); 6049 } 6050 } 6051 6052 static void perf_swevent_init_hrtimer(struct perf_event *event) 6053 { 6054 struct hw_perf_event *hwc = &event->hw; 6055 6056 if (!is_sampling_event(event)) 6057 return; 6058 6059 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6060 hwc->hrtimer.function = perf_swevent_hrtimer; 6061 6062 /* 6063 * Since hrtimers have a fixed rate, we can do a static freq->period 6064 * mapping and avoid the whole period adjust feedback stuff. 6065 */ 6066 if (event->attr.freq) { 6067 long freq = event->attr.sample_freq; 6068 6069 event->attr.sample_period = NSEC_PER_SEC / freq; 6070 hwc->sample_period = event->attr.sample_period; 6071 local64_set(&hwc->period_left, hwc->sample_period); 6072 hwc->last_period = hwc->sample_period; 6073 event->attr.freq = 0; 6074 } 6075 } 6076 6077 /* 6078 * Software event: cpu wall time clock 6079 */ 6080 6081 static void cpu_clock_event_update(struct perf_event *event) 6082 { 6083 s64 prev; 6084 u64 now; 6085 6086 now = local_clock(); 6087 prev = local64_xchg(&event->hw.prev_count, now); 6088 local64_add(now - prev, &event->count); 6089 } 6090 6091 static void cpu_clock_event_start(struct perf_event *event, int flags) 6092 { 6093 local64_set(&event->hw.prev_count, local_clock()); 6094 perf_swevent_start_hrtimer(event); 6095 } 6096 6097 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6098 { 6099 perf_swevent_cancel_hrtimer(event); 6100 cpu_clock_event_update(event); 6101 } 6102 6103 static int cpu_clock_event_add(struct perf_event *event, int flags) 6104 { 6105 if (flags & PERF_EF_START) 6106 cpu_clock_event_start(event, flags); 6107 6108 return 0; 6109 } 6110 6111 static void cpu_clock_event_del(struct perf_event *event, int flags) 6112 { 6113 cpu_clock_event_stop(event, flags); 6114 } 6115 6116 static void cpu_clock_event_read(struct perf_event *event) 6117 { 6118 cpu_clock_event_update(event); 6119 } 6120 6121 static int cpu_clock_event_init(struct perf_event *event) 6122 { 6123 if (event->attr.type != PERF_TYPE_SOFTWARE) 6124 return -ENOENT; 6125 6126 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6127 return -ENOENT; 6128 6129 /* 6130 * no branch sampling for software events 6131 */ 6132 if (has_branch_stack(event)) 6133 return -EOPNOTSUPP; 6134 6135 perf_swevent_init_hrtimer(event); 6136 6137 return 0; 6138 } 6139 6140 static struct pmu perf_cpu_clock = { 6141 .task_ctx_nr = perf_sw_context, 6142 6143 .event_init = cpu_clock_event_init, 6144 .add = cpu_clock_event_add, 6145 .del = cpu_clock_event_del, 6146 .start = cpu_clock_event_start, 6147 .stop = cpu_clock_event_stop, 6148 .read = cpu_clock_event_read, 6149 6150 .event_idx = perf_swevent_event_idx, 6151 }; 6152 6153 /* 6154 * Software event: task time clock 6155 */ 6156 6157 static void task_clock_event_update(struct perf_event *event, u64 now) 6158 { 6159 u64 prev; 6160 s64 delta; 6161 6162 prev = local64_xchg(&event->hw.prev_count, now); 6163 delta = now - prev; 6164 local64_add(delta, &event->count); 6165 } 6166 6167 static void task_clock_event_start(struct perf_event *event, int flags) 6168 { 6169 local64_set(&event->hw.prev_count, event->ctx->time); 6170 perf_swevent_start_hrtimer(event); 6171 } 6172 6173 static void task_clock_event_stop(struct perf_event *event, int flags) 6174 { 6175 perf_swevent_cancel_hrtimer(event); 6176 task_clock_event_update(event, event->ctx->time); 6177 } 6178 6179 static int task_clock_event_add(struct perf_event *event, int flags) 6180 { 6181 if (flags & PERF_EF_START) 6182 task_clock_event_start(event, flags); 6183 6184 return 0; 6185 } 6186 6187 static void task_clock_event_del(struct perf_event *event, int flags) 6188 { 6189 task_clock_event_stop(event, PERF_EF_UPDATE); 6190 } 6191 6192 static void task_clock_event_read(struct perf_event *event) 6193 { 6194 u64 now = perf_clock(); 6195 u64 delta = now - event->ctx->timestamp; 6196 u64 time = event->ctx->time + delta; 6197 6198 task_clock_event_update(event, time); 6199 } 6200 6201 static int task_clock_event_init(struct perf_event *event) 6202 { 6203 if (event->attr.type != PERF_TYPE_SOFTWARE) 6204 return -ENOENT; 6205 6206 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6207 return -ENOENT; 6208 6209 /* 6210 * no branch sampling for software events 6211 */ 6212 if (has_branch_stack(event)) 6213 return -EOPNOTSUPP; 6214 6215 perf_swevent_init_hrtimer(event); 6216 6217 return 0; 6218 } 6219 6220 static struct pmu perf_task_clock = { 6221 .task_ctx_nr = perf_sw_context, 6222 6223 .event_init = task_clock_event_init, 6224 .add = task_clock_event_add, 6225 .del = task_clock_event_del, 6226 .start = task_clock_event_start, 6227 .stop = task_clock_event_stop, 6228 .read = task_clock_event_read, 6229 6230 .event_idx = perf_swevent_event_idx, 6231 }; 6232 6233 static void perf_pmu_nop_void(struct pmu *pmu) 6234 { 6235 } 6236 6237 static int perf_pmu_nop_int(struct pmu *pmu) 6238 { 6239 return 0; 6240 } 6241 6242 static void perf_pmu_start_txn(struct pmu *pmu) 6243 { 6244 perf_pmu_disable(pmu); 6245 } 6246 6247 static int perf_pmu_commit_txn(struct pmu *pmu) 6248 { 6249 perf_pmu_enable(pmu); 6250 return 0; 6251 } 6252 6253 static void perf_pmu_cancel_txn(struct pmu *pmu) 6254 { 6255 perf_pmu_enable(pmu); 6256 } 6257 6258 static int perf_event_idx_default(struct perf_event *event) 6259 { 6260 return event->hw.idx + 1; 6261 } 6262 6263 /* 6264 * Ensures all contexts with the same task_ctx_nr have the same 6265 * pmu_cpu_context too. 6266 */ 6267 static void *find_pmu_context(int ctxn) 6268 { 6269 struct pmu *pmu; 6270 6271 if (ctxn < 0) 6272 return NULL; 6273 6274 list_for_each_entry(pmu, &pmus, entry) { 6275 if (pmu->task_ctx_nr == ctxn) 6276 return pmu->pmu_cpu_context; 6277 } 6278 6279 return NULL; 6280 } 6281 6282 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6283 { 6284 int cpu; 6285 6286 for_each_possible_cpu(cpu) { 6287 struct perf_cpu_context *cpuctx; 6288 6289 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6290 6291 if (cpuctx->unique_pmu == old_pmu) 6292 cpuctx->unique_pmu = pmu; 6293 } 6294 } 6295 6296 static void free_pmu_context(struct pmu *pmu) 6297 { 6298 struct pmu *i; 6299 6300 mutex_lock(&pmus_lock); 6301 /* 6302 * Like a real lame refcount. 6303 */ 6304 list_for_each_entry(i, &pmus, entry) { 6305 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6306 update_pmu_context(i, pmu); 6307 goto out; 6308 } 6309 } 6310 6311 free_percpu(pmu->pmu_cpu_context); 6312 out: 6313 mutex_unlock(&pmus_lock); 6314 } 6315 static struct idr pmu_idr; 6316 6317 static ssize_t 6318 type_show(struct device *dev, struct device_attribute *attr, char *page) 6319 { 6320 struct pmu *pmu = dev_get_drvdata(dev); 6321 6322 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6323 } 6324 static DEVICE_ATTR_RO(type); 6325 6326 static ssize_t 6327 perf_event_mux_interval_ms_show(struct device *dev, 6328 struct device_attribute *attr, 6329 char *page) 6330 { 6331 struct pmu *pmu = dev_get_drvdata(dev); 6332 6333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6334 } 6335 6336 static ssize_t 6337 perf_event_mux_interval_ms_store(struct device *dev, 6338 struct device_attribute *attr, 6339 const char *buf, size_t count) 6340 { 6341 struct pmu *pmu = dev_get_drvdata(dev); 6342 int timer, cpu, ret; 6343 6344 ret = kstrtoint(buf, 0, &timer); 6345 if (ret) 6346 return ret; 6347 6348 if (timer < 1) 6349 return -EINVAL; 6350 6351 /* same value, noting to do */ 6352 if (timer == pmu->hrtimer_interval_ms) 6353 return count; 6354 6355 pmu->hrtimer_interval_ms = timer; 6356 6357 /* update all cpuctx for this PMU */ 6358 for_each_possible_cpu(cpu) { 6359 struct perf_cpu_context *cpuctx; 6360 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6361 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6362 6363 if (hrtimer_active(&cpuctx->hrtimer)) 6364 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6365 } 6366 6367 return count; 6368 } 6369 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6370 6371 static struct attribute *pmu_dev_attrs[] = { 6372 &dev_attr_type.attr, 6373 &dev_attr_perf_event_mux_interval_ms.attr, 6374 NULL, 6375 }; 6376 ATTRIBUTE_GROUPS(pmu_dev); 6377 6378 static int pmu_bus_running; 6379 static struct bus_type pmu_bus = { 6380 .name = "event_source", 6381 .dev_groups = pmu_dev_groups, 6382 }; 6383 6384 static void pmu_dev_release(struct device *dev) 6385 { 6386 kfree(dev); 6387 } 6388 6389 static int pmu_dev_alloc(struct pmu *pmu) 6390 { 6391 int ret = -ENOMEM; 6392 6393 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6394 if (!pmu->dev) 6395 goto out; 6396 6397 pmu->dev->groups = pmu->attr_groups; 6398 device_initialize(pmu->dev); 6399 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6400 if (ret) 6401 goto free_dev; 6402 6403 dev_set_drvdata(pmu->dev, pmu); 6404 pmu->dev->bus = &pmu_bus; 6405 pmu->dev->release = pmu_dev_release; 6406 ret = device_add(pmu->dev); 6407 if (ret) 6408 goto free_dev; 6409 6410 out: 6411 return ret; 6412 6413 free_dev: 6414 put_device(pmu->dev); 6415 goto out; 6416 } 6417 6418 static struct lock_class_key cpuctx_mutex; 6419 static struct lock_class_key cpuctx_lock; 6420 6421 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6422 { 6423 int cpu, ret; 6424 6425 mutex_lock(&pmus_lock); 6426 ret = -ENOMEM; 6427 pmu->pmu_disable_count = alloc_percpu(int); 6428 if (!pmu->pmu_disable_count) 6429 goto unlock; 6430 6431 pmu->type = -1; 6432 if (!name) 6433 goto skip_type; 6434 pmu->name = name; 6435 6436 if (type < 0) { 6437 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6438 if (type < 0) { 6439 ret = type; 6440 goto free_pdc; 6441 } 6442 } 6443 pmu->type = type; 6444 6445 if (pmu_bus_running) { 6446 ret = pmu_dev_alloc(pmu); 6447 if (ret) 6448 goto free_idr; 6449 } 6450 6451 skip_type: 6452 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6453 if (pmu->pmu_cpu_context) 6454 goto got_cpu_context; 6455 6456 ret = -ENOMEM; 6457 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6458 if (!pmu->pmu_cpu_context) 6459 goto free_dev; 6460 6461 for_each_possible_cpu(cpu) { 6462 struct perf_cpu_context *cpuctx; 6463 6464 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6465 __perf_event_init_context(&cpuctx->ctx); 6466 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6467 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6468 cpuctx->ctx.type = cpu_context; 6469 cpuctx->ctx.pmu = pmu; 6470 6471 __perf_cpu_hrtimer_init(cpuctx, cpu); 6472 6473 INIT_LIST_HEAD(&cpuctx->rotation_list); 6474 cpuctx->unique_pmu = pmu; 6475 } 6476 6477 got_cpu_context: 6478 if (!pmu->start_txn) { 6479 if (pmu->pmu_enable) { 6480 /* 6481 * If we have pmu_enable/pmu_disable calls, install 6482 * transaction stubs that use that to try and batch 6483 * hardware accesses. 6484 */ 6485 pmu->start_txn = perf_pmu_start_txn; 6486 pmu->commit_txn = perf_pmu_commit_txn; 6487 pmu->cancel_txn = perf_pmu_cancel_txn; 6488 } else { 6489 pmu->start_txn = perf_pmu_nop_void; 6490 pmu->commit_txn = perf_pmu_nop_int; 6491 pmu->cancel_txn = perf_pmu_nop_void; 6492 } 6493 } 6494 6495 if (!pmu->pmu_enable) { 6496 pmu->pmu_enable = perf_pmu_nop_void; 6497 pmu->pmu_disable = perf_pmu_nop_void; 6498 } 6499 6500 if (!pmu->event_idx) 6501 pmu->event_idx = perf_event_idx_default; 6502 6503 list_add_rcu(&pmu->entry, &pmus); 6504 ret = 0; 6505 unlock: 6506 mutex_unlock(&pmus_lock); 6507 6508 return ret; 6509 6510 free_dev: 6511 device_del(pmu->dev); 6512 put_device(pmu->dev); 6513 6514 free_idr: 6515 if (pmu->type >= PERF_TYPE_MAX) 6516 idr_remove(&pmu_idr, pmu->type); 6517 6518 free_pdc: 6519 free_percpu(pmu->pmu_disable_count); 6520 goto unlock; 6521 } 6522 6523 void perf_pmu_unregister(struct pmu *pmu) 6524 { 6525 mutex_lock(&pmus_lock); 6526 list_del_rcu(&pmu->entry); 6527 mutex_unlock(&pmus_lock); 6528 6529 /* 6530 * We dereference the pmu list under both SRCU and regular RCU, so 6531 * synchronize against both of those. 6532 */ 6533 synchronize_srcu(&pmus_srcu); 6534 synchronize_rcu(); 6535 6536 free_percpu(pmu->pmu_disable_count); 6537 if (pmu->type >= PERF_TYPE_MAX) 6538 idr_remove(&pmu_idr, pmu->type); 6539 device_del(pmu->dev); 6540 put_device(pmu->dev); 6541 free_pmu_context(pmu); 6542 } 6543 6544 struct pmu *perf_init_event(struct perf_event *event) 6545 { 6546 struct pmu *pmu = NULL; 6547 int idx; 6548 int ret; 6549 6550 idx = srcu_read_lock(&pmus_srcu); 6551 6552 rcu_read_lock(); 6553 pmu = idr_find(&pmu_idr, event->attr.type); 6554 rcu_read_unlock(); 6555 if (pmu) { 6556 event->pmu = pmu; 6557 ret = pmu->event_init(event); 6558 if (ret) 6559 pmu = ERR_PTR(ret); 6560 goto unlock; 6561 } 6562 6563 list_for_each_entry_rcu(pmu, &pmus, entry) { 6564 event->pmu = pmu; 6565 ret = pmu->event_init(event); 6566 if (!ret) 6567 goto unlock; 6568 6569 if (ret != -ENOENT) { 6570 pmu = ERR_PTR(ret); 6571 goto unlock; 6572 } 6573 } 6574 pmu = ERR_PTR(-ENOENT); 6575 unlock: 6576 srcu_read_unlock(&pmus_srcu, idx); 6577 6578 return pmu; 6579 } 6580 6581 static void account_event_cpu(struct perf_event *event, int cpu) 6582 { 6583 if (event->parent) 6584 return; 6585 6586 if (has_branch_stack(event)) { 6587 if (!(event->attach_state & PERF_ATTACH_TASK)) 6588 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6589 } 6590 if (is_cgroup_event(event)) 6591 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6592 } 6593 6594 static void account_event(struct perf_event *event) 6595 { 6596 if (event->parent) 6597 return; 6598 6599 if (event->attach_state & PERF_ATTACH_TASK) 6600 static_key_slow_inc(&perf_sched_events.key); 6601 if (event->attr.mmap || event->attr.mmap_data) 6602 atomic_inc(&nr_mmap_events); 6603 if (event->attr.comm) 6604 atomic_inc(&nr_comm_events); 6605 if (event->attr.task) 6606 atomic_inc(&nr_task_events); 6607 if (event->attr.freq) { 6608 if (atomic_inc_return(&nr_freq_events) == 1) 6609 tick_nohz_full_kick_all(); 6610 } 6611 if (has_branch_stack(event)) 6612 static_key_slow_inc(&perf_sched_events.key); 6613 if (is_cgroup_event(event)) 6614 static_key_slow_inc(&perf_sched_events.key); 6615 6616 account_event_cpu(event, event->cpu); 6617 } 6618 6619 /* 6620 * Allocate and initialize a event structure 6621 */ 6622 static struct perf_event * 6623 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6624 struct task_struct *task, 6625 struct perf_event *group_leader, 6626 struct perf_event *parent_event, 6627 perf_overflow_handler_t overflow_handler, 6628 void *context) 6629 { 6630 struct pmu *pmu; 6631 struct perf_event *event; 6632 struct hw_perf_event *hwc; 6633 long err = -EINVAL; 6634 6635 if ((unsigned)cpu >= nr_cpu_ids) { 6636 if (!task || cpu != -1) 6637 return ERR_PTR(-EINVAL); 6638 } 6639 6640 event = kzalloc(sizeof(*event), GFP_KERNEL); 6641 if (!event) 6642 return ERR_PTR(-ENOMEM); 6643 6644 /* 6645 * Single events are their own group leaders, with an 6646 * empty sibling list: 6647 */ 6648 if (!group_leader) 6649 group_leader = event; 6650 6651 mutex_init(&event->child_mutex); 6652 INIT_LIST_HEAD(&event->child_list); 6653 6654 INIT_LIST_HEAD(&event->group_entry); 6655 INIT_LIST_HEAD(&event->event_entry); 6656 INIT_LIST_HEAD(&event->sibling_list); 6657 INIT_LIST_HEAD(&event->rb_entry); 6658 6659 init_waitqueue_head(&event->waitq); 6660 init_irq_work(&event->pending, perf_pending_event); 6661 6662 mutex_init(&event->mmap_mutex); 6663 6664 atomic_long_set(&event->refcount, 1); 6665 event->cpu = cpu; 6666 event->attr = *attr; 6667 event->group_leader = group_leader; 6668 event->pmu = NULL; 6669 event->oncpu = -1; 6670 6671 event->parent = parent_event; 6672 6673 event->ns = get_pid_ns(task_active_pid_ns(current)); 6674 event->id = atomic64_inc_return(&perf_event_id); 6675 6676 event->state = PERF_EVENT_STATE_INACTIVE; 6677 6678 if (task) { 6679 event->attach_state = PERF_ATTACH_TASK; 6680 6681 if (attr->type == PERF_TYPE_TRACEPOINT) 6682 event->hw.tp_target = task; 6683 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6684 /* 6685 * hw_breakpoint is a bit difficult here.. 6686 */ 6687 else if (attr->type == PERF_TYPE_BREAKPOINT) 6688 event->hw.bp_target = task; 6689 #endif 6690 } 6691 6692 if (!overflow_handler && parent_event) { 6693 overflow_handler = parent_event->overflow_handler; 6694 context = parent_event->overflow_handler_context; 6695 } 6696 6697 event->overflow_handler = overflow_handler; 6698 event->overflow_handler_context = context; 6699 6700 perf_event__state_init(event); 6701 6702 pmu = NULL; 6703 6704 hwc = &event->hw; 6705 hwc->sample_period = attr->sample_period; 6706 if (attr->freq && attr->sample_freq) 6707 hwc->sample_period = 1; 6708 hwc->last_period = hwc->sample_period; 6709 6710 local64_set(&hwc->period_left, hwc->sample_period); 6711 6712 /* 6713 * we currently do not support PERF_FORMAT_GROUP on inherited events 6714 */ 6715 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6716 goto err_ns; 6717 6718 pmu = perf_init_event(event); 6719 if (!pmu) 6720 goto err_ns; 6721 else if (IS_ERR(pmu)) { 6722 err = PTR_ERR(pmu); 6723 goto err_ns; 6724 } 6725 6726 if (!event->parent) { 6727 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6728 err = get_callchain_buffers(); 6729 if (err) 6730 goto err_pmu; 6731 } 6732 } 6733 6734 return event; 6735 6736 err_pmu: 6737 if (event->destroy) 6738 event->destroy(event); 6739 err_ns: 6740 if (event->ns) 6741 put_pid_ns(event->ns); 6742 kfree(event); 6743 6744 return ERR_PTR(err); 6745 } 6746 6747 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6748 struct perf_event_attr *attr) 6749 { 6750 u32 size; 6751 int ret; 6752 6753 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6754 return -EFAULT; 6755 6756 /* 6757 * zero the full structure, so that a short copy will be nice. 6758 */ 6759 memset(attr, 0, sizeof(*attr)); 6760 6761 ret = get_user(size, &uattr->size); 6762 if (ret) 6763 return ret; 6764 6765 if (size > PAGE_SIZE) /* silly large */ 6766 goto err_size; 6767 6768 if (!size) /* abi compat */ 6769 size = PERF_ATTR_SIZE_VER0; 6770 6771 if (size < PERF_ATTR_SIZE_VER0) 6772 goto err_size; 6773 6774 /* 6775 * If we're handed a bigger struct than we know of, 6776 * ensure all the unknown bits are 0 - i.e. new 6777 * user-space does not rely on any kernel feature 6778 * extensions we dont know about yet. 6779 */ 6780 if (size > sizeof(*attr)) { 6781 unsigned char __user *addr; 6782 unsigned char __user *end; 6783 unsigned char val; 6784 6785 addr = (void __user *)uattr + sizeof(*attr); 6786 end = (void __user *)uattr + size; 6787 6788 for (; addr < end; addr++) { 6789 ret = get_user(val, addr); 6790 if (ret) 6791 return ret; 6792 if (val) 6793 goto err_size; 6794 } 6795 size = sizeof(*attr); 6796 } 6797 6798 ret = copy_from_user(attr, uattr, size); 6799 if (ret) 6800 return -EFAULT; 6801 6802 /* disabled for now */ 6803 if (attr->mmap2) 6804 return -EINVAL; 6805 6806 if (attr->__reserved_1) 6807 return -EINVAL; 6808 6809 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6810 return -EINVAL; 6811 6812 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6813 return -EINVAL; 6814 6815 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6816 u64 mask = attr->branch_sample_type; 6817 6818 /* only using defined bits */ 6819 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6820 return -EINVAL; 6821 6822 /* at least one branch bit must be set */ 6823 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6824 return -EINVAL; 6825 6826 /* propagate priv level, when not set for branch */ 6827 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6828 6829 /* exclude_kernel checked on syscall entry */ 6830 if (!attr->exclude_kernel) 6831 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6832 6833 if (!attr->exclude_user) 6834 mask |= PERF_SAMPLE_BRANCH_USER; 6835 6836 if (!attr->exclude_hv) 6837 mask |= PERF_SAMPLE_BRANCH_HV; 6838 /* 6839 * adjust user setting (for HW filter setup) 6840 */ 6841 attr->branch_sample_type = mask; 6842 } 6843 /* privileged levels capture (kernel, hv): check permissions */ 6844 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6845 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6846 return -EACCES; 6847 } 6848 6849 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6850 ret = perf_reg_validate(attr->sample_regs_user); 6851 if (ret) 6852 return ret; 6853 } 6854 6855 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6856 if (!arch_perf_have_user_stack_dump()) 6857 return -ENOSYS; 6858 6859 /* 6860 * We have __u32 type for the size, but so far 6861 * we can only use __u16 as maximum due to the 6862 * __u16 sample size limit. 6863 */ 6864 if (attr->sample_stack_user >= USHRT_MAX) 6865 ret = -EINVAL; 6866 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6867 ret = -EINVAL; 6868 } 6869 6870 out: 6871 return ret; 6872 6873 err_size: 6874 put_user(sizeof(*attr), &uattr->size); 6875 ret = -E2BIG; 6876 goto out; 6877 } 6878 6879 static int 6880 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6881 { 6882 struct ring_buffer *rb = NULL, *old_rb = NULL; 6883 int ret = -EINVAL; 6884 6885 if (!output_event) 6886 goto set; 6887 6888 /* don't allow circular references */ 6889 if (event == output_event) 6890 goto out; 6891 6892 /* 6893 * Don't allow cross-cpu buffers 6894 */ 6895 if (output_event->cpu != event->cpu) 6896 goto out; 6897 6898 /* 6899 * If its not a per-cpu rb, it must be the same task. 6900 */ 6901 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6902 goto out; 6903 6904 set: 6905 mutex_lock(&event->mmap_mutex); 6906 /* Can't redirect output if we've got an active mmap() */ 6907 if (atomic_read(&event->mmap_count)) 6908 goto unlock; 6909 6910 old_rb = event->rb; 6911 6912 if (output_event) { 6913 /* get the rb we want to redirect to */ 6914 rb = ring_buffer_get(output_event); 6915 if (!rb) 6916 goto unlock; 6917 } 6918 6919 if (old_rb) 6920 ring_buffer_detach(event, old_rb); 6921 6922 if (rb) 6923 ring_buffer_attach(event, rb); 6924 6925 rcu_assign_pointer(event->rb, rb); 6926 6927 if (old_rb) { 6928 ring_buffer_put(old_rb); 6929 /* 6930 * Since we detached before setting the new rb, so that we 6931 * could attach the new rb, we could have missed a wakeup. 6932 * Provide it now. 6933 */ 6934 wake_up_all(&event->waitq); 6935 } 6936 6937 ret = 0; 6938 unlock: 6939 mutex_unlock(&event->mmap_mutex); 6940 6941 out: 6942 return ret; 6943 } 6944 6945 /** 6946 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6947 * 6948 * @attr_uptr: event_id type attributes for monitoring/sampling 6949 * @pid: target pid 6950 * @cpu: target cpu 6951 * @group_fd: group leader event fd 6952 */ 6953 SYSCALL_DEFINE5(perf_event_open, 6954 struct perf_event_attr __user *, attr_uptr, 6955 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6956 { 6957 struct perf_event *group_leader = NULL, *output_event = NULL; 6958 struct perf_event *event, *sibling; 6959 struct perf_event_attr attr; 6960 struct perf_event_context *ctx; 6961 struct file *event_file = NULL; 6962 struct fd group = {NULL, 0}; 6963 struct task_struct *task = NULL; 6964 struct pmu *pmu; 6965 int event_fd; 6966 int move_group = 0; 6967 int err; 6968 6969 /* for future expandability... */ 6970 if (flags & ~PERF_FLAG_ALL) 6971 return -EINVAL; 6972 6973 err = perf_copy_attr(attr_uptr, &attr); 6974 if (err) 6975 return err; 6976 6977 if (!attr.exclude_kernel) { 6978 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6979 return -EACCES; 6980 } 6981 6982 if (attr.freq) { 6983 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6984 return -EINVAL; 6985 } 6986 6987 /* 6988 * In cgroup mode, the pid argument is used to pass the fd 6989 * opened to the cgroup directory in cgroupfs. The cpu argument 6990 * designates the cpu on which to monitor threads from that 6991 * cgroup. 6992 */ 6993 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6994 return -EINVAL; 6995 6996 event_fd = get_unused_fd(); 6997 if (event_fd < 0) 6998 return event_fd; 6999 7000 if (group_fd != -1) { 7001 err = perf_fget_light(group_fd, &group); 7002 if (err) 7003 goto err_fd; 7004 group_leader = group.file->private_data; 7005 if (flags & PERF_FLAG_FD_OUTPUT) 7006 output_event = group_leader; 7007 if (flags & PERF_FLAG_FD_NO_GROUP) 7008 group_leader = NULL; 7009 } 7010 7011 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7012 task = find_lively_task_by_vpid(pid); 7013 if (IS_ERR(task)) { 7014 err = PTR_ERR(task); 7015 goto err_group_fd; 7016 } 7017 } 7018 7019 get_online_cpus(); 7020 7021 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7022 NULL, NULL); 7023 if (IS_ERR(event)) { 7024 err = PTR_ERR(event); 7025 goto err_task; 7026 } 7027 7028 if (flags & PERF_FLAG_PID_CGROUP) { 7029 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7030 if (err) { 7031 __free_event(event); 7032 goto err_task; 7033 } 7034 } 7035 7036 account_event(event); 7037 7038 /* 7039 * Special case software events and allow them to be part of 7040 * any hardware group. 7041 */ 7042 pmu = event->pmu; 7043 7044 if (group_leader && 7045 (is_software_event(event) != is_software_event(group_leader))) { 7046 if (is_software_event(event)) { 7047 /* 7048 * If event and group_leader are not both a software 7049 * event, and event is, then group leader is not. 7050 * 7051 * Allow the addition of software events to !software 7052 * groups, this is safe because software events never 7053 * fail to schedule. 7054 */ 7055 pmu = group_leader->pmu; 7056 } else if (is_software_event(group_leader) && 7057 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7058 /* 7059 * In case the group is a pure software group, and we 7060 * try to add a hardware event, move the whole group to 7061 * the hardware context. 7062 */ 7063 move_group = 1; 7064 } 7065 } 7066 7067 /* 7068 * Get the target context (task or percpu): 7069 */ 7070 ctx = find_get_context(pmu, task, event->cpu); 7071 if (IS_ERR(ctx)) { 7072 err = PTR_ERR(ctx); 7073 goto err_alloc; 7074 } 7075 7076 if (task) { 7077 put_task_struct(task); 7078 task = NULL; 7079 } 7080 7081 /* 7082 * Look up the group leader (we will attach this event to it): 7083 */ 7084 if (group_leader) { 7085 err = -EINVAL; 7086 7087 /* 7088 * Do not allow a recursive hierarchy (this new sibling 7089 * becoming part of another group-sibling): 7090 */ 7091 if (group_leader->group_leader != group_leader) 7092 goto err_context; 7093 /* 7094 * Do not allow to attach to a group in a different 7095 * task or CPU context: 7096 */ 7097 if (move_group) { 7098 if (group_leader->ctx->type != ctx->type) 7099 goto err_context; 7100 } else { 7101 if (group_leader->ctx != ctx) 7102 goto err_context; 7103 } 7104 7105 /* 7106 * Only a group leader can be exclusive or pinned 7107 */ 7108 if (attr.exclusive || attr.pinned) 7109 goto err_context; 7110 } 7111 7112 if (output_event) { 7113 err = perf_event_set_output(event, output_event); 7114 if (err) 7115 goto err_context; 7116 } 7117 7118 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 7119 if (IS_ERR(event_file)) { 7120 err = PTR_ERR(event_file); 7121 goto err_context; 7122 } 7123 7124 if (move_group) { 7125 struct perf_event_context *gctx = group_leader->ctx; 7126 7127 mutex_lock(&gctx->mutex); 7128 perf_remove_from_context(group_leader); 7129 7130 /* 7131 * Removing from the context ends up with disabled 7132 * event. What we want here is event in the initial 7133 * startup state, ready to be add into new context. 7134 */ 7135 perf_event__state_init(group_leader); 7136 list_for_each_entry(sibling, &group_leader->sibling_list, 7137 group_entry) { 7138 perf_remove_from_context(sibling); 7139 perf_event__state_init(sibling); 7140 put_ctx(gctx); 7141 } 7142 mutex_unlock(&gctx->mutex); 7143 put_ctx(gctx); 7144 } 7145 7146 WARN_ON_ONCE(ctx->parent_ctx); 7147 mutex_lock(&ctx->mutex); 7148 7149 if (move_group) { 7150 synchronize_rcu(); 7151 perf_install_in_context(ctx, group_leader, event->cpu); 7152 get_ctx(ctx); 7153 list_for_each_entry(sibling, &group_leader->sibling_list, 7154 group_entry) { 7155 perf_install_in_context(ctx, sibling, event->cpu); 7156 get_ctx(ctx); 7157 } 7158 } 7159 7160 perf_install_in_context(ctx, event, event->cpu); 7161 perf_unpin_context(ctx); 7162 mutex_unlock(&ctx->mutex); 7163 7164 put_online_cpus(); 7165 7166 event->owner = current; 7167 7168 mutex_lock(¤t->perf_event_mutex); 7169 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7170 mutex_unlock(¤t->perf_event_mutex); 7171 7172 /* 7173 * Precalculate sample_data sizes 7174 */ 7175 perf_event__header_size(event); 7176 perf_event__id_header_size(event); 7177 7178 /* 7179 * Drop the reference on the group_event after placing the 7180 * new event on the sibling_list. This ensures destruction 7181 * of the group leader will find the pointer to itself in 7182 * perf_group_detach(). 7183 */ 7184 fdput(group); 7185 fd_install(event_fd, event_file); 7186 return event_fd; 7187 7188 err_context: 7189 perf_unpin_context(ctx); 7190 put_ctx(ctx); 7191 err_alloc: 7192 free_event(event); 7193 err_task: 7194 put_online_cpus(); 7195 if (task) 7196 put_task_struct(task); 7197 err_group_fd: 7198 fdput(group); 7199 err_fd: 7200 put_unused_fd(event_fd); 7201 return err; 7202 } 7203 7204 /** 7205 * perf_event_create_kernel_counter 7206 * 7207 * @attr: attributes of the counter to create 7208 * @cpu: cpu in which the counter is bound 7209 * @task: task to profile (NULL for percpu) 7210 */ 7211 struct perf_event * 7212 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7213 struct task_struct *task, 7214 perf_overflow_handler_t overflow_handler, 7215 void *context) 7216 { 7217 struct perf_event_context *ctx; 7218 struct perf_event *event; 7219 int err; 7220 7221 /* 7222 * Get the target context (task or percpu): 7223 */ 7224 7225 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7226 overflow_handler, context); 7227 if (IS_ERR(event)) { 7228 err = PTR_ERR(event); 7229 goto err; 7230 } 7231 7232 account_event(event); 7233 7234 ctx = find_get_context(event->pmu, task, cpu); 7235 if (IS_ERR(ctx)) { 7236 err = PTR_ERR(ctx); 7237 goto err_free; 7238 } 7239 7240 WARN_ON_ONCE(ctx->parent_ctx); 7241 mutex_lock(&ctx->mutex); 7242 perf_install_in_context(ctx, event, cpu); 7243 perf_unpin_context(ctx); 7244 mutex_unlock(&ctx->mutex); 7245 7246 return event; 7247 7248 err_free: 7249 free_event(event); 7250 err: 7251 return ERR_PTR(err); 7252 } 7253 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7254 7255 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7256 { 7257 struct perf_event_context *src_ctx; 7258 struct perf_event_context *dst_ctx; 7259 struct perf_event *event, *tmp; 7260 LIST_HEAD(events); 7261 7262 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7263 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7264 7265 mutex_lock(&src_ctx->mutex); 7266 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7267 event_entry) { 7268 perf_remove_from_context(event); 7269 unaccount_event_cpu(event, src_cpu); 7270 put_ctx(src_ctx); 7271 list_add(&event->migrate_entry, &events); 7272 } 7273 mutex_unlock(&src_ctx->mutex); 7274 7275 synchronize_rcu(); 7276 7277 mutex_lock(&dst_ctx->mutex); 7278 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7279 list_del(&event->migrate_entry); 7280 if (event->state >= PERF_EVENT_STATE_OFF) 7281 event->state = PERF_EVENT_STATE_INACTIVE; 7282 account_event_cpu(event, dst_cpu); 7283 perf_install_in_context(dst_ctx, event, dst_cpu); 7284 get_ctx(dst_ctx); 7285 } 7286 mutex_unlock(&dst_ctx->mutex); 7287 } 7288 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7289 7290 static void sync_child_event(struct perf_event *child_event, 7291 struct task_struct *child) 7292 { 7293 struct perf_event *parent_event = child_event->parent; 7294 u64 child_val; 7295 7296 if (child_event->attr.inherit_stat) 7297 perf_event_read_event(child_event, child); 7298 7299 child_val = perf_event_count(child_event); 7300 7301 /* 7302 * Add back the child's count to the parent's count: 7303 */ 7304 atomic64_add(child_val, &parent_event->child_count); 7305 atomic64_add(child_event->total_time_enabled, 7306 &parent_event->child_total_time_enabled); 7307 atomic64_add(child_event->total_time_running, 7308 &parent_event->child_total_time_running); 7309 7310 /* 7311 * Remove this event from the parent's list 7312 */ 7313 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7314 mutex_lock(&parent_event->child_mutex); 7315 list_del_init(&child_event->child_list); 7316 mutex_unlock(&parent_event->child_mutex); 7317 7318 /* 7319 * Release the parent event, if this was the last 7320 * reference to it. 7321 */ 7322 put_event(parent_event); 7323 } 7324 7325 static void 7326 __perf_event_exit_task(struct perf_event *child_event, 7327 struct perf_event_context *child_ctx, 7328 struct task_struct *child) 7329 { 7330 if (child_event->parent) { 7331 raw_spin_lock_irq(&child_ctx->lock); 7332 perf_group_detach(child_event); 7333 raw_spin_unlock_irq(&child_ctx->lock); 7334 } 7335 7336 perf_remove_from_context(child_event); 7337 7338 /* 7339 * It can happen that the parent exits first, and has events 7340 * that are still around due to the child reference. These 7341 * events need to be zapped. 7342 */ 7343 if (child_event->parent) { 7344 sync_child_event(child_event, child); 7345 free_event(child_event); 7346 } 7347 } 7348 7349 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7350 { 7351 struct perf_event *child_event, *tmp; 7352 struct perf_event_context *child_ctx; 7353 unsigned long flags; 7354 7355 if (likely(!child->perf_event_ctxp[ctxn])) { 7356 perf_event_task(child, NULL, 0); 7357 return; 7358 } 7359 7360 local_irq_save(flags); 7361 /* 7362 * We can't reschedule here because interrupts are disabled, 7363 * and either child is current or it is a task that can't be 7364 * scheduled, so we are now safe from rescheduling changing 7365 * our context. 7366 */ 7367 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7368 7369 /* 7370 * Take the context lock here so that if find_get_context is 7371 * reading child->perf_event_ctxp, we wait until it has 7372 * incremented the context's refcount before we do put_ctx below. 7373 */ 7374 raw_spin_lock(&child_ctx->lock); 7375 task_ctx_sched_out(child_ctx); 7376 child->perf_event_ctxp[ctxn] = NULL; 7377 /* 7378 * If this context is a clone; unclone it so it can't get 7379 * swapped to another process while we're removing all 7380 * the events from it. 7381 */ 7382 unclone_ctx(child_ctx); 7383 update_context_time(child_ctx); 7384 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7385 7386 /* 7387 * Report the task dead after unscheduling the events so that we 7388 * won't get any samples after PERF_RECORD_EXIT. We can however still 7389 * get a few PERF_RECORD_READ events. 7390 */ 7391 perf_event_task(child, child_ctx, 0); 7392 7393 /* 7394 * We can recurse on the same lock type through: 7395 * 7396 * __perf_event_exit_task() 7397 * sync_child_event() 7398 * put_event() 7399 * mutex_lock(&ctx->mutex) 7400 * 7401 * But since its the parent context it won't be the same instance. 7402 */ 7403 mutex_lock(&child_ctx->mutex); 7404 7405 again: 7406 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7407 group_entry) 7408 __perf_event_exit_task(child_event, child_ctx, child); 7409 7410 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7411 group_entry) 7412 __perf_event_exit_task(child_event, child_ctx, child); 7413 7414 /* 7415 * If the last event was a group event, it will have appended all 7416 * its siblings to the list, but we obtained 'tmp' before that which 7417 * will still point to the list head terminating the iteration. 7418 */ 7419 if (!list_empty(&child_ctx->pinned_groups) || 7420 !list_empty(&child_ctx->flexible_groups)) 7421 goto again; 7422 7423 mutex_unlock(&child_ctx->mutex); 7424 7425 put_ctx(child_ctx); 7426 } 7427 7428 /* 7429 * When a child task exits, feed back event values to parent events. 7430 */ 7431 void perf_event_exit_task(struct task_struct *child) 7432 { 7433 struct perf_event *event, *tmp; 7434 int ctxn; 7435 7436 mutex_lock(&child->perf_event_mutex); 7437 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7438 owner_entry) { 7439 list_del_init(&event->owner_entry); 7440 7441 /* 7442 * Ensure the list deletion is visible before we clear 7443 * the owner, closes a race against perf_release() where 7444 * we need to serialize on the owner->perf_event_mutex. 7445 */ 7446 smp_wmb(); 7447 event->owner = NULL; 7448 } 7449 mutex_unlock(&child->perf_event_mutex); 7450 7451 for_each_task_context_nr(ctxn) 7452 perf_event_exit_task_context(child, ctxn); 7453 } 7454 7455 static void perf_free_event(struct perf_event *event, 7456 struct perf_event_context *ctx) 7457 { 7458 struct perf_event *parent = event->parent; 7459 7460 if (WARN_ON_ONCE(!parent)) 7461 return; 7462 7463 mutex_lock(&parent->child_mutex); 7464 list_del_init(&event->child_list); 7465 mutex_unlock(&parent->child_mutex); 7466 7467 put_event(parent); 7468 7469 perf_group_detach(event); 7470 list_del_event(event, ctx); 7471 free_event(event); 7472 } 7473 7474 /* 7475 * free an unexposed, unused context as created by inheritance by 7476 * perf_event_init_task below, used by fork() in case of fail. 7477 */ 7478 void perf_event_free_task(struct task_struct *task) 7479 { 7480 struct perf_event_context *ctx; 7481 struct perf_event *event, *tmp; 7482 int ctxn; 7483 7484 for_each_task_context_nr(ctxn) { 7485 ctx = task->perf_event_ctxp[ctxn]; 7486 if (!ctx) 7487 continue; 7488 7489 mutex_lock(&ctx->mutex); 7490 again: 7491 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7492 group_entry) 7493 perf_free_event(event, ctx); 7494 7495 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7496 group_entry) 7497 perf_free_event(event, ctx); 7498 7499 if (!list_empty(&ctx->pinned_groups) || 7500 !list_empty(&ctx->flexible_groups)) 7501 goto again; 7502 7503 mutex_unlock(&ctx->mutex); 7504 7505 put_ctx(ctx); 7506 } 7507 } 7508 7509 void perf_event_delayed_put(struct task_struct *task) 7510 { 7511 int ctxn; 7512 7513 for_each_task_context_nr(ctxn) 7514 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7515 } 7516 7517 /* 7518 * inherit a event from parent task to child task: 7519 */ 7520 static struct perf_event * 7521 inherit_event(struct perf_event *parent_event, 7522 struct task_struct *parent, 7523 struct perf_event_context *parent_ctx, 7524 struct task_struct *child, 7525 struct perf_event *group_leader, 7526 struct perf_event_context *child_ctx) 7527 { 7528 struct perf_event *child_event; 7529 unsigned long flags; 7530 7531 /* 7532 * Instead of creating recursive hierarchies of events, 7533 * we link inherited events back to the original parent, 7534 * which has a filp for sure, which we use as the reference 7535 * count: 7536 */ 7537 if (parent_event->parent) 7538 parent_event = parent_event->parent; 7539 7540 child_event = perf_event_alloc(&parent_event->attr, 7541 parent_event->cpu, 7542 child, 7543 group_leader, parent_event, 7544 NULL, NULL); 7545 if (IS_ERR(child_event)) 7546 return child_event; 7547 7548 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7549 free_event(child_event); 7550 return NULL; 7551 } 7552 7553 get_ctx(child_ctx); 7554 7555 /* 7556 * Make the child state follow the state of the parent event, 7557 * not its attr.disabled bit. We hold the parent's mutex, 7558 * so we won't race with perf_event_{en, dis}able_family. 7559 */ 7560 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7561 child_event->state = PERF_EVENT_STATE_INACTIVE; 7562 else 7563 child_event->state = PERF_EVENT_STATE_OFF; 7564 7565 if (parent_event->attr.freq) { 7566 u64 sample_period = parent_event->hw.sample_period; 7567 struct hw_perf_event *hwc = &child_event->hw; 7568 7569 hwc->sample_period = sample_period; 7570 hwc->last_period = sample_period; 7571 7572 local64_set(&hwc->period_left, sample_period); 7573 } 7574 7575 child_event->ctx = child_ctx; 7576 child_event->overflow_handler = parent_event->overflow_handler; 7577 child_event->overflow_handler_context 7578 = parent_event->overflow_handler_context; 7579 7580 /* 7581 * Precalculate sample_data sizes 7582 */ 7583 perf_event__header_size(child_event); 7584 perf_event__id_header_size(child_event); 7585 7586 /* 7587 * Link it up in the child's context: 7588 */ 7589 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7590 add_event_to_ctx(child_event, child_ctx); 7591 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7592 7593 /* 7594 * Link this into the parent event's child list 7595 */ 7596 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7597 mutex_lock(&parent_event->child_mutex); 7598 list_add_tail(&child_event->child_list, &parent_event->child_list); 7599 mutex_unlock(&parent_event->child_mutex); 7600 7601 return child_event; 7602 } 7603 7604 static int inherit_group(struct perf_event *parent_event, 7605 struct task_struct *parent, 7606 struct perf_event_context *parent_ctx, 7607 struct task_struct *child, 7608 struct perf_event_context *child_ctx) 7609 { 7610 struct perf_event *leader; 7611 struct perf_event *sub; 7612 struct perf_event *child_ctr; 7613 7614 leader = inherit_event(parent_event, parent, parent_ctx, 7615 child, NULL, child_ctx); 7616 if (IS_ERR(leader)) 7617 return PTR_ERR(leader); 7618 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7619 child_ctr = inherit_event(sub, parent, parent_ctx, 7620 child, leader, child_ctx); 7621 if (IS_ERR(child_ctr)) 7622 return PTR_ERR(child_ctr); 7623 } 7624 return 0; 7625 } 7626 7627 static int 7628 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7629 struct perf_event_context *parent_ctx, 7630 struct task_struct *child, int ctxn, 7631 int *inherited_all) 7632 { 7633 int ret; 7634 struct perf_event_context *child_ctx; 7635 7636 if (!event->attr.inherit) { 7637 *inherited_all = 0; 7638 return 0; 7639 } 7640 7641 child_ctx = child->perf_event_ctxp[ctxn]; 7642 if (!child_ctx) { 7643 /* 7644 * This is executed from the parent task context, so 7645 * inherit events that have been marked for cloning. 7646 * First allocate and initialize a context for the 7647 * child. 7648 */ 7649 7650 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7651 if (!child_ctx) 7652 return -ENOMEM; 7653 7654 child->perf_event_ctxp[ctxn] = child_ctx; 7655 } 7656 7657 ret = inherit_group(event, parent, parent_ctx, 7658 child, child_ctx); 7659 7660 if (ret) 7661 *inherited_all = 0; 7662 7663 return ret; 7664 } 7665 7666 /* 7667 * Initialize the perf_event context in task_struct 7668 */ 7669 int perf_event_init_context(struct task_struct *child, int ctxn) 7670 { 7671 struct perf_event_context *child_ctx, *parent_ctx; 7672 struct perf_event_context *cloned_ctx; 7673 struct perf_event *event; 7674 struct task_struct *parent = current; 7675 int inherited_all = 1; 7676 unsigned long flags; 7677 int ret = 0; 7678 7679 if (likely(!parent->perf_event_ctxp[ctxn])) 7680 return 0; 7681 7682 /* 7683 * If the parent's context is a clone, pin it so it won't get 7684 * swapped under us. 7685 */ 7686 parent_ctx = perf_pin_task_context(parent, ctxn); 7687 7688 /* 7689 * No need to check if parent_ctx != NULL here; since we saw 7690 * it non-NULL earlier, the only reason for it to become NULL 7691 * is if we exit, and since we're currently in the middle of 7692 * a fork we can't be exiting at the same time. 7693 */ 7694 7695 /* 7696 * Lock the parent list. No need to lock the child - not PID 7697 * hashed yet and not running, so nobody can access it. 7698 */ 7699 mutex_lock(&parent_ctx->mutex); 7700 7701 /* 7702 * We dont have to disable NMIs - we are only looking at 7703 * the list, not manipulating it: 7704 */ 7705 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7706 ret = inherit_task_group(event, parent, parent_ctx, 7707 child, ctxn, &inherited_all); 7708 if (ret) 7709 break; 7710 } 7711 7712 /* 7713 * We can't hold ctx->lock when iterating the ->flexible_group list due 7714 * to allocations, but we need to prevent rotation because 7715 * rotate_ctx() will change the list from interrupt context. 7716 */ 7717 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7718 parent_ctx->rotate_disable = 1; 7719 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7720 7721 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7722 ret = inherit_task_group(event, parent, parent_ctx, 7723 child, ctxn, &inherited_all); 7724 if (ret) 7725 break; 7726 } 7727 7728 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7729 parent_ctx->rotate_disable = 0; 7730 7731 child_ctx = child->perf_event_ctxp[ctxn]; 7732 7733 if (child_ctx && inherited_all) { 7734 /* 7735 * Mark the child context as a clone of the parent 7736 * context, or of whatever the parent is a clone of. 7737 * 7738 * Note that if the parent is a clone, the holding of 7739 * parent_ctx->lock avoids it from being uncloned. 7740 */ 7741 cloned_ctx = parent_ctx->parent_ctx; 7742 if (cloned_ctx) { 7743 child_ctx->parent_ctx = cloned_ctx; 7744 child_ctx->parent_gen = parent_ctx->parent_gen; 7745 } else { 7746 child_ctx->parent_ctx = parent_ctx; 7747 child_ctx->parent_gen = parent_ctx->generation; 7748 } 7749 get_ctx(child_ctx->parent_ctx); 7750 } 7751 7752 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7753 mutex_unlock(&parent_ctx->mutex); 7754 7755 perf_unpin_context(parent_ctx); 7756 put_ctx(parent_ctx); 7757 7758 return ret; 7759 } 7760 7761 /* 7762 * Initialize the perf_event context in task_struct 7763 */ 7764 int perf_event_init_task(struct task_struct *child) 7765 { 7766 int ctxn, ret; 7767 7768 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7769 mutex_init(&child->perf_event_mutex); 7770 INIT_LIST_HEAD(&child->perf_event_list); 7771 7772 for_each_task_context_nr(ctxn) { 7773 ret = perf_event_init_context(child, ctxn); 7774 if (ret) 7775 return ret; 7776 } 7777 7778 return 0; 7779 } 7780 7781 static void __init perf_event_init_all_cpus(void) 7782 { 7783 struct swevent_htable *swhash; 7784 int cpu; 7785 7786 for_each_possible_cpu(cpu) { 7787 swhash = &per_cpu(swevent_htable, cpu); 7788 mutex_init(&swhash->hlist_mutex); 7789 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7790 } 7791 } 7792 7793 static void perf_event_init_cpu(int cpu) 7794 { 7795 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7796 7797 mutex_lock(&swhash->hlist_mutex); 7798 if (swhash->hlist_refcount > 0) { 7799 struct swevent_hlist *hlist; 7800 7801 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7802 WARN_ON(!hlist); 7803 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7804 } 7805 mutex_unlock(&swhash->hlist_mutex); 7806 } 7807 7808 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7809 static void perf_pmu_rotate_stop(struct pmu *pmu) 7810 { 7811 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7812 7813 WARN_ON(!irqs_disabled()); 7814 7815 list_del_init(&cpuctx->rotation_list); 7816 } 7817 7818 static void __perf_event_exit_context(void *__info) 7819 { 7820 struct perf_event_context *ctx = __info; 7821 struct perf_event *event, *tmp; 7822 7823 perf_pmu_rotate_stop(ctx->pmu); 7824 7825 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7826 __perf_remove_from_context(event); 7827 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7828 __perf_remove_from_context(event); 7829 } 7830 7831 static void perf_event_exit_cpu_context(int cpu) 7832 { 7833 struct perf_event_context *ctx; 7834 struct pmu *pmu; 7835 int idx; 7836 7837 idx = srcu_read_lock(&pmus_srcu); 7838 list_for_each_entry_rcu(pmu, &pmus, entry) { 7839 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7840 7841 mutex_lock(&ctx->mutex); 7842 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7843 mutex_unlock(&ctx->mutex); 7844 } 7845 srcu_read_unlock(&pmus_srcu, idx); 7846 } 7847 7848 static void perf_event_exit_cpu(int cpu) 7849 { 7850 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7851 7852 mutex_lock(&swhash->hlist_mutex); 7853 swevent_hlist_release(swhash); 7854 mutex_unlock(&swhash->hlist_mutex); 7855 7856 perf_event_exit_cpu_context(cpu); 7857 } 7858 #else 7859 static inline void perf_event_exit_cpu(int cpu) { } 7860 #endif 7861 7862 static int 7863 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7864 { 7865 int cpu; 7866 7867 for_each_online_cpu(cpu) 7868 perf_event_exit_cpu(cpu); 7869 7870 return NOTIFY_OK; 7871 } 7872 7873 /* 7874 * Run the perf reboot notifier at the very last possible moment so that 7875 * the generic watchdog code runs as long as possible. 7876 */ 7877 static struct notifier_block perf_reboot_notifier = { 7878 .notifier_call = perf_reboot, 7879 .priority = INT_MIN, 7880 }; 7881 7882 static int 7883 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7884 { 7885 unsigned int cpu = (long)hcpu; 7886 7887 switch (action & ~CPU_TASKS_FROZEN) { 7888 7889 case CPU_UP_PREPARE: 7890 case CPU_DOWN_FAILED: 7891 perf_event_init_cpu(cpu); 7892 break; 7893 7894 case CPU_UP_CANCELED: 7895 case CPU_DOWN_PREPARE: 7896 perf_event_exit_cpu(cpu); 7897 break; 7898 default: 7899 break; 7900 } 7901 7902 return NOTIFY_OK; 7903 } 7904 7905 void __init perf_event_init(void) 7906 { 7907 int ret; 7908 7909 idr_init(&pmu_idr); 7910 7911 perf_event_init_all_cpus(); 7912 init_srcu_struct(&pmus_srcu); 7913 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7914 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7915 perf_pmu_register(&perf_task_clock, NULL, -1); 7916 perf_tp_register(); 7917 perf_cpu_notifier(perf_cpu_notify); 7918 register_reboot_notifier(&perf_reboot_notifier); 7919 7920 ret = init_hw_breakpoint(); 7921 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7922 7923 /* do not patch jump label more than once per second */ 7924 jump_label_rate_limit(&perf_sched_events, HZ); 7925 7926 /* 7927 * Build time assertion that we keep the data_head at the intended 7928 * location. IOW, validation we got the __reserved[] size right. 7929 */ 7930 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7931 != 1024); 7932 } 7933 7934 static int __init perf_event_sysfs_init(void) 7935 { 7936 struct pmu *pmu; 7937 int ret; 7938 7939 mutex_lock(&pmus_lock); 7940 7941 ret = bus_register(&pmu_bus); 7942 if (ret) 7943 goto unlock; 7944 7945 list_for_each_entry(pmu, &pmus, entry) { 7946 if (!pmu->name || pmu->type < 0) 7947 continue; 7948 7949 ret = pmu_dev_alloc(pmu); 7950 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7951 } 7952 pmu_bus_running = 1; 7953 ret = 0; 7954 7955 unlock: 7956 mutex_unlock(&pmus_lock); 7957 7958 return ret; 7959 } 7960 device_initcall(perf_event_sysfs_init); 7961 7962 #ifdef CONFIG_CGROUP_PERF 7963 static struct cgroup_subsys_state * 7964 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7965 { 7966 struct perf_cgroup *jc; 7967 7968 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7969 if (!jc) 7970 return ERR_PTR(-ENOMEM); 7971 7972 jc->info = alloc_percpu(struct perf_cgroup_info); 7973 if (!jc->info) { 7974 kfree(jc); 7975 return ERR_PTR(-ENOMEM); 7976 } 7977 7978 return &jc->css; 7979 } 7980 7981 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 7982 { 7983 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 7984 7985 free_percpu(jc->info); 7986 kfree(jc); 7987 } 7988 7989 static int __perf_cgroup_move(void *info) 7990 { 7991 struct task_struct *task = info; 7992 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7993 return 0; 7994 } 7995 7996 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 7997 struct cgroup_taskset *tset) 7998 { 7999 struct task_struct *task; 8000 8001 cgroup_taskset_for_each(task, css, tset) 8002 task_function_call(task, __perf_cgroup_move, task); 8003 } 8004 8005 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8006 struct cgroup_subsys_state *old_css, 8007 struct task_struct *task) 8008 { 8009 /* 8010 * cgroup_exit() is called in the copy_process() failure path. 8011 * Ignore this case since the task hasn't ran yet, this avoids 8012 * trying to poke a half freed task state from generic code. 8013 */ 8014 if (!(task->flags & PF_EXITING)) 8015 return; 8016 8017 task_function_call(task, __perf_cgroup_move, task); 8018 } 8019 8020 struct cgroup_subsys perf_subsys = { 8021 .name = "perf_event", 8022 .subsys_id = perf_subsys_id, 8023 .css_alloc = perf_cgroup_css_alloc, 8024 .css_free = perf_cgroup_css_free, 8025 .exit = perf_cgroup_exit, 8026 .attach = perf_cgroup_attach, 8027 }; 8028 #endif /* CONFIG_CGROUP_PERF */ 8029