xref: /openbmc/linux/kernel/events/core.c (revision 77d84ff8)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149 
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153 
154 /*
155  * perf event paranoia level:
156  *  -1 - not paranoid at all
157  *   0 - disallow raw tracepoint access for unpriv
158  *   1 - disallow cpu events for unpriv
159  *   2 - disallow kernel profiling for unpriv
160  */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162 
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 
166 /*
167  * max perf event sample rate
168  */
169 #define DEFAULT_MAX_SAMPLE_RATE		100000
170 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
172 
173 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
174 
175 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
177 
178 static int perf_sample_allowed_ns __read_mostly =
179 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180 
181 void update_perf_cpu_limits(void)
182 {
183 	u64 tmp = perf_sample_period_ns;
184 
185 	tmp *= sysctl_perf_cpu_time_max_percent;
186 	do_div(tmp, 100);
187 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188 }
189 
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191 
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 		void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
197 
198 	if (ret || !write)
199 		return ret;
200 
201 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 	update_perf_cpu_limits();
204 
205 	return 0;
206 }
207 
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209 
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 				void __user *buffer, size_t *lenp,
212 				loff_t *ppos)
213 {
214 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	update_perf_cpu_limits();
220 
221 	return 0;
222 }
223 
224 /*
225  * perf samples are done in some very critical code paths (NMIs).
226  * If they take too much CPU time, the system can lock up and not
227  * get any real work done.  This will drop the sample rate when
228  * we detect that events are taking too long.
229  */
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
232 
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 	u64 avg_local_sample_len;
236 	u64 local_samples_len;
237 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238 
239 	if (allowed_ns == 0)
240 		return;
241 
242 	/* decay the counter by 1 average sample */
243 	local_samples_len = __get_cpu_var(running_sample_length);
244 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 	local_samples_len += sample_len_ns;
246 	__get_cpu_var(running_sample_length) = local_samples_len;
247 
248 	/*
249 	 * note: this will be biased artifically low until we have
250 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
251 	 * from having to maintain a count.
252 	 */
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	if (avg_local_sample_len <= allowed_ns)
256 		return;
257 
258 	if (max_samples_per_tick <= 1)
259 		return;
260 
261 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264 
265 	printk_ratelimited(KERN_WARNING
266 			"perf samples too long (%lld > %lld), lowering "
267 			"kernel.perf_event_max_sample_rate to %d\n",
268 			avg_local_sample_len, allowed_ns,
269 			sysctl_perf_event_sample_rate);
270 
271 	update_perf_cpu_limits();
272 }
273 
274 static atomic64_t perf_event_id;
275 
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 			      enum event_type_t event_type);
278 
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 			     enum event_type_t event_type,
281 			     struct task_struct *task);
282 
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285 
286 void __weak perf_event_print_debug(void)	{ }
287 
288 extern __weak const char *perf_pmu_name(void)
289 {
290 	return "pmu";
291 }
292 
293 static inline u64 perf_clock(void)
294 {
295 	return local_clock();
296 }
297 
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303 
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 			  struct perf_event_context *ctx)
306 {
307 	raw_spin_lock(&cpuctx->ctx.lock);
308 	if (ctx)
309 		raw_spin_lock(&ctx->lock);
310 }
311 
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 			    struct perf_event_context *ctx)
314 {
315 	if (ctx)
316 		raw_spin_unlock(&ctx->lock);
317 	raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319 
320 #ifdef CONFIG_CGROUP_PERF
321 
322 /*
323  * perf_cgroup_info keeps track of time_enabled for a cgroup.
324  * This is a per-cpu dynamically allocated data structure.
325  */
326 struct perf_cgroup_info {
327 	u64				time;
328 	u64				timestamp;
329 };
330 
331 struct perf_cgroup {
332 	struct cgroup_subsys_state	css;
333 	struct perf_cgroup_info	__percpu *info;
334 };
335 
336 /*
337  * Must ensure cgroup is pinned (css_get) before calling
338  * this function. In other words, we cannot call this function
339  * if there is no cgroup event for the current CPU context.
340  */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 	return container_of(task_css(task, perf_subsys_id),
345 			    struct perf_cgroup, css);
346 }
347 
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 	struct perf_event_context *ctx = event->ctx;
352 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353 
354 	/* @event doesn't care about cgroup */
355 	if (!event->cgrp)
356 		return true;
357 
358 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
359 	if (!cpuctx->cgrp)
360 		return false;
361 
362 	/*
363 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
364 	 * also enabled for all its descendant cgroups.  If @cpuctx's
365 	 * cgroup is a descendant of @event's (the test covers identity
366 	 * case), it's a match.
367 	 */
368 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 				    event->cgrp->css.cgroup);
370 }
371 
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 	return css_tryget(&event->cgrp->css);
375 }
376 
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 	css_put(&event->cgrp->css);
380 }
381 
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 	perf_put_cgroup(event);
385 	event->cgrp = NULL;
386 }
387 
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 	return event->cgrp != NULL;
391 }
392 
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 	struct perf_cgroup_info *t;
396 
397 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 	return t->time;
399 }
400 
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 	struct perf_cgroup_info *info;
404 	u64 now;
405 
406 	now = perf_clock();
407 
408 	info = this_cpu_ptr(cgrp->info);
409 
410 	info->time += now - info->timestamp;
411 	info->timestamp = now;
412 }
413 
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 	if (cgrp_out)
418 		__update_cgrp_time(cgrp_out);
419 }
420 
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 	struct perf_cgroup *cgrp;
424 
425 	/*
426 	 * ensure we access cgroup data only when needed and
427 	 * when we know the cgroup is pinned (css_get)
428 	 */
429 	if (!is_cgroup_event(event))
430 		return;
431 
432 	cgrp = perf_cgroup_from_task(current);
433 	/*
434 	 * Do not update time when cgroup is not active
435 	 */
436 	if (cgrp == event->cgrp)
437 		__update_cgrp_time(event->cgrp);
438 }
439 
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 			  struct perf_event_context *ctx)
443 {
444 	struct perf_cgroup *cgrp;
445 	struct perf_cgroup_info *info;
446 
447 	/*
448 	 * ctx->lock held by caller
449 	 * ensure we do not access cgroup data
450 	 * unless we have the cgroup pinned (css_get)
451 	 */
452 	if (!task || !ctx->nr_cgroups)
453 		return;
454 
455 	cgrp = perf_cgroup_from_task(task);
456 	info = this_cpu_ptr(cgrp->info);
457 	info->timestamp = ctx->timestamp;
458 }
459 
460 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
462 
463 /*
464  * reschedule events based on the cgroup constraint of task.
465  *
466  * mode SWOUT : schedule out everything
467  * mode SWIN : schedule in based on cgroup for next
468  */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 	struct perf_cpu_context *cpuctx;
472 	struct pmu *pmu;
473 	unsigned long flags;
474 
475 	/*
476 	 * disable interrupts to avoid geting nr_cgroup
477 	 * changes via __perf_event_disable(). Also
478 	 * avoids preemption.
479 	 */
480 	local_irq_save(flags);
481 
482 	/*
483 	 * we reschedule only in the presence of cgroup
484 	 * constrained events.
485 	 */
486 	rcu_read_lock();
487 
488 	list_for_each_entry_rcu(pmu, &pmus, entry) {
489 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 		if (cpuctx->unique_pmu != pmu)
491 			continue; /* ensure we process each cpuctx once */
492 
493 		/*
494 		 * perf_cgroup_events says at least one
495 		 * context on this CPU has cgroup events.
496 		 *
497 		 * ctx->nr_cgroups reports the number of cgroup
498 		 * events for a context.
499 		 */
500 		if (cpuctx->ctx.nr_cgroups > 0) {
501 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 			perf_pmu_disable(cpuctx->ctx.pmu);
503 
504 			if (mode & PERF_CGROUP_SWOUT) {
505 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 				/*
507 				 * must not be done before ctxswout due
508 				 * to event_filter_match() in event_sched_out()
509 				 */
510 				cpuctx->cgrp = NULL;
511 			}
512 
513 			if (mode & PERF_CGROUP_SWIN) {
514 				WARN_ON_ONCE(cpuctx->cgrp);
515 				/*
516 				 * set cgrp before ctxsw in to allow
517 				 * event_filter_match() to not have to pass
518 				 * task around
519 				 */
520 				cpuctx->cgrp = perf_cgroup_from_task(task);
521 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 			}
523 			perf_pmu_enable(cpuctx->ctx.pmu);
524 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 		}
526 	}
527 
528 	rcu_read_unlock();
529 
530 	local_irq_restore(flags);
531 }
532 
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 					 struct task_struct *next)
535 {
536 	struct perf_cgroup *cgrp1;
537 	struct perf_cgroup *cgrp2 = NULL;
538 
539 	/*
540 	 * we come here when we know perf_cgroup_events > 0
541 	 */
542 	cgrp1 = perf_cgroup_from_task(task);
543 
544 	/*
545 	 * next is NULL when called from perf_event_enable_on_exec()
546 	 * that will systematically cause a cgroup_switch()
547 	 */
548 	if (next)
549 		cgrp2 = perf_cgroup_from_task(next);
550 
551 	/*
552 	 * only schedule out current cgroup events if we know
553 	 * that we are switching to a different cgroup. Otherwise,
554 	 * do no touch the cgroup events.
555 	 */
556 	if (cgrp1 != cgrp2)
557 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559 
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 					struct task_struct *task)
562 {
563 	struct perf_cgroup *cgrp1;
564 	struct perf_cgroup *cgrp2 = NULL;
565 
566 	/*
567 	 * we come here when we know perf_cgroup_events > 0
568 	 */
569 	cgrp1 = perf_cgroup_from_task(task);
570 
571 	/* prev can never be NULL */
572 	cgrp2 = perf_cgroup_from_task(prev);
573 
574 	/*
575 	 * only need to schedule in cgroup events if we are changing
576 	 * cgroup during ctxsw. Cgroup events were not scheduled
577 	 * out of ctxsw out if that was not the case.
578 	 */
579 	if (cgrp1 != cgrp2)
580 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582 
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 				      struct perf_event_attr *attr,
585 				      struct perf_event *group_leader)
586 {
587 	struct perf_cgroup *cgrp;
588 	struct cgroup_subsys_state *css;
589 	struct fd f = fdget(fd);
590 	int ret = 0;
591 
592 	if (!f.file)
593 		return -EBADF;
594 
595 	rcu_read_lock();
596 
597 	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 	if (IS_ERR(css)) {
599 		ret = PTR_ERR(css);
600 		goto out;
601 	}
602 
603 	cgrp = container_of(css, struct perf_cgroup, css);
604 	event->cgrp = cgrp;
605 
606 	/* must be done before we fput() the file */
607 	if (!perf_tryget_cgroup(event)) {
608 		event->cgrp = NULL;
609 		ret = -ENOENT;
610 		goto out;
611 	}
612 
613 	/*
614 	 * all events in a group must monitor
615 	 * the same cgroup because a task belongs
616 	 * to only one perf cgroup at a time
617 	 */
618 	if (group_leader && group_leader->cgrp != cgrp) {
619 		perf_detach_cgroup(event);
620 		ret = -EINVAL;
621 	}
622 out:
623 	rcu_read_unlock();
624 	fdput(f);
625 	return ret;
626 }
627 
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 	struct perf_cgroup_info *t;
632 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 	event->shadow_ctx_time = now - t->timestamp;
634 }
635 
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 	/*
640 	 * when the current task's perf cgroup does not match
641 	 * the event's, we need to remember to call the
642 	 * perf_mark_enable() function the first time a task with
643 	 * a matching perf cgroup is scheduled in.
644 	 */
645 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 		event->cgrp_defer_enabled = 1;
647 }
648 
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 			 struct perf_event_context *ctx)
652 {
653 	struct perf_event *sub;
654 	u64 tstamp = perf_event_time(event);
655 
656 	if (!event->cgrp_defer_enabled)
657 		return;
658 
659 	event->cgrp_defer_enabled = 0;
660 
661 	event->tstamp_enabled = tstamp - event->total_time_enabled;
662 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 			sub->cgrp_defer_enabled = 0;
666 		}
667 	}
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	return true;
675 }
676 
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679 
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 	return 0;
683 }
684 
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 	return 0;
688 }
689 
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693 
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697 
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 					 struct task_struct *next)
700 {
701 }
702 
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 					struct task_struct *task)
705 {
706 }
707 
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 				      struct perf_event_attr *attr,
710 				      struct perf_event *group_leader)
711 {
712 	return -EINVAL;
713 }
714 
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 			  struct perf_event_context *ctx)
718 {
719 }
720 
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725 
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	return 0;
734 }
735 
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740 
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 			 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747 
748 /*
749  * set default to be dependent on timer tick just
750  * like original code
751  */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754  * function must be called with interrupts disbled
755  */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 	struct perf_cpu_context *cpuctx;
759 	enum hrtimer_restart ret = HRTIMER_NORESTART;
760 	int rotations = 0;
761 
762 	WARN_ON(!irqs_disabled());
763 
764 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765 
766 	rotations = perf_rotate_context(cpuctx);
767 
768 	/*
769 	 * arm timer if needed
770 	 */
771 	if (rotations) {
772 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 		ret = HRTIMER_RESTART;
774 	}
775 
776 	return ret;
777 }
778 
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 	struct perf_cpu_context *cpuctx;
783 	struct pmu *pmu;
784 	unsigned long flags;
785 
786 	if (WARN_ON(cpu != smp_processor_id()))
787 		return;
788 
789 	local_irq_save(flags);
790 
791 	rcu_read_lock();
792 
793 	list_for_each_entry_rcu(pmu, &pmus, entry) {
794 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795 
796 		if (pmu->task_ctx_nr == perf_sw_context)
797 			continue;
798 
799 		hrtimer_cancel(&cpuctx->hrtimer);
800 	}
801 
802 	rcu_read_unlock();
803 
804 	local_irq_restore(flags);
805 }
806 
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 	struct hrtimer *hr = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	int timer;
812 
813 	/* no multiplexing needed for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return;
816 
817 	/*
818 	 * check default is sane, if not set then force to
819 	 * default interval (1/tick)
820 	 */
821 	timer = pmu->hrtimer_interval_ms;
822 	if (timer < 1)
823 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824 
825 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 
827 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 	hr->function = perf_cpu_hrtimer_handler;
829 }
830 
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 	struct hrtimer *hr = &cpuctx->hrtimer;
834 	struct pmu *pmu = cpuctx->ctx.pmu;
835 
836 	/* not for SW PMU */
837 	if (pmu->task_ctx_nr == perf_sw_context)
838 		return;
839 
840 	if (hrtimer_active(hr))
841 		return;
842 
843 	if (!hrtimer_callback_running(hr))
844 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 					 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847 
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 	if (!(*count)++)
852 		pmu->pmu_disable(pmu);
853 }
854 
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 	if (!--(*count))
859 		pmu->pmu_enable(pmu);
860 }
861 
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863 
864 /*
865  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866  * because they're strictly cpu affine and rotate_start is called with IRQs
867  * disabled, while rotate_context is called from IRQ context.
868  */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 	struct list_head *head = &__get_cpu_var(rotation_list);
873 
874 	WARN_ON(!irqs_disabled());
875 
876 	if (list_empty(&cpuctx->rotation_list))
877 		list_add(&cpuctx->rotation_list, head);
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 	ctx->generation++;
903 }
904 
905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
906 {
907 	/*
908 	 * only top level events have the pid namespace they were created in
909 	 */
910 	if (event->parent)
911 		event = event->parent;
912 
913 	return task_tgid_nr_ns(p, event->ns);
914 }
915 
916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
917 {
918 	/*
919 	 * only top level events have the pid namespace they were created in
920 	 */
921 	if (event->parent)
922 		event = event->parent;
923 
924 	return task_pid_nr_ns(p, event->ns);
925 }
926 
927 /*
928  * If we inherit events we want to return the parent event id
929  * to userspace.
930  */
931 static u64 primary_event_id(struct perf_event *event)
932 {
933 	u64 id = event->id;
934 
935 	if (event->parent)
936 		id = event->parent->id;
937 
938 	return id;
939 }
940 
941 /*
942  * Get the perf_event_context for a task and lock it.
943  * This has to cope with with the fact that until it is locked,
944  * the context could get moved to another task.
945  */
946 static struct perf_event_context *
947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948 {
949 	struct perf_event_context *ctx;
950 
951 retry:
952 	/*
953 	 * One of the few rules of preemptible RCU is that one cannot do
954 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 	 * part of the read side critical section was preemptible -- see
956 	 * rcu_read_unlock_special().
957 	 *
958 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 	 * side critical section is non-preemptible.
960 	 */
961 	preempt_disable();
962 	rcu_read_lock();
963 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 	if (ctx) {
965 		/*
966 		 * If this context is a clone of another, it might
967 		 * get swapped for another underneath us by
968 		 * perf_event_task_sched_out, though the
969 		 * rcu_read_lock() protects us from any context
970 		 * getting freed.  Lock the context and check if it
971 		 * got swapped before we could get the lock, and retry
972 		 * if so.  If we locked the right context, then it
973 		 * can't get swapped on us any more.
974 		 */
975 		raw_spin_lock_irqsave(&ctx->lock, *flags);
976 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 			rcu_read_unlock();
979 			preempt_enable();
980 			goto retry;
981 		}
982 
983 		if (!atomic_inc_not_zero(&ctx->refcount)) {
984 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 			ctx = NULL;
986 		}
987 	}
988 	rcu_read_unlock();
989 	preempt_enable();
990 	return ctx;
991 }
992 
993 /*
994  * Get the context for a task and increment its pin_count so it
995  * can't get swapped to another task.  This also increments its
996  * reference count so that the context can't get freed.
997  */
998 static struct perf_event_context *
999 perf_pin_task_context(struct task_struct *task, int ctxn)
1000 {
1001 	struct perf_event_context *ctx;
1002 	unsigned long flags;
1003 
1004 	ctx = perf_lock_task_context(task, ctxn, &flags);
1005 	if (ctx) {
1006 		++ctx->pin_count;
1007 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 	}
1009 	return ctx;
1010 }
1011 
1012 static void perf_unpin_context(struct perf_event_context *ctx)
1013 {
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&ctx->lock, flags);
1017 	--ctx->pin_count;
1018 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1019 }
1020 
1021 /*
1022  * Update the record of the current time in a context.
1023  */
1024 static void update_context_time(struct perf_event_context *ctx)
1025 {
1026 	u64 now = perf_clock();
1027 
1028 	ctx->time += now - ctx->timestamp;
1029 	ctx->timestamp = now;
1030 }
1031 
1032 static u64 perf_event_time(struct perf_event *event)
1033 {
1034 	struct perf_event_context *ctx = event->ctx;
1035 
1036 	if (is_cgroup_event(event))
1037 		return perf_cgroup_event_time(event);
1038 
1039 	return ctx ? ctx->time : 0;
1040 }
1041 
1042 /*
1043  * Update the total_time_enabled and total_time_running fields for a event.
1044  * The caller of this function needs to hold the ctx->lock.
1045  */
1046 static void update_event_times(struct perf_event *event)
1047 {
1048 	struct perf_event_context *ctx = event->ctx;
1049 	u64 run_end;
1050 
1051 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 		return;
1054 	/*
1055 	 * in cgroup mode, time_enabled represents
1056 	 * the time the event was enabled AND active
1057 	 * tasks were in the monitored cgroup. This is
1058 	 * independent of the activity of the context as
1059 	 * there may be a mix of cgroup and non-cgroup events.
1060 	 *
1061 	 * That is why we treat cgroup events differently
1062 	 * here.
1063 	 */
1064 	if (is_cgroup_event(event))
1065 		run_end = perf_cgroup_event_time(event);
1066 	else if (ctx->is_active)
1067 		run_end = ctx->time;
1068 	else
1069 		run_end = event->tstamp_stopped;
1070 
1071 	event->total_time_enabled = run_end - event->tstamp_enabled;
1072 
1073 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 		run_end = event->tstamp_stopped;
1075 	else
1076 		run_end = perf_event_time(event);
1077 
1078 	event->total_time_running = run_end - event->tstamp_running;
1079 
1080 }
1081 
1082 /*
1083  * Update total_time_enabled and total_time_running for all events in a group.
1084  */
1085 static void update_group_times(struct perf_event *leader)
1086 {
1087 	struct perf_event *event;
1088 
1089 	update_event_times(leader);
1090 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 		update_event_times(event);
1092 }
1093 
1094 static struct list_head *
1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 	if (event->attr.pinned)
1098 		return &ctx->pinned_groups;
1099 	else
1100 		return &ctx->flexible_groups;
1101 }
1102 
1103 /*
1104  * Add a event from the lists for its context.
1105  * Must be called with ctx->mutex and ctx->lock held.
1106  */
1107 static void
1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109 {
1110 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 	event->attach_state |= PERF_ATTACH_CONTEXT;
1112 
1113 	/*
1114 	 * If we're a stand alone event or group leader, we go to the context
1115 	 * list, group events are kept attached to the group so that
1116 	 * perf_group_detach can, at all times, locate all siblings.
1117 	 */
1118 	if (event->group_leader == event) {
1119 		struct list_head *list;
1120 
1121 		if (is_software_event(event))
1122 			event->group_flags |= PERF_GROUP_SOFTWARE;
1123 
1124 		list = ctx_group_list(event, ctx);
1125 		list_add_tail(&event->group_entry, list);
1126 	}
1127 
1128 	if (is_cgroup_event(event))
1129 		ctx->nr_cgroups++;
1130 
1131 	if (has_branch_stack(event))
1132 		ctx->nr_branch_stack++;
1133 
1134 	list_add_rcu(&event->event_entry, &ctx->event_list);
1135 	if (!ctx->nr_events)
1136 		perf_pmu_rotate_start(ctx->pmu);
1137 	ctx->nr_events++;
1138 	if (event->attr.inherit_stat)
1139 		ctx->nr_stat++;
1140 
1141 	ctx->generation++;
1142 }
1143 
1144 /*
1145  * Initialize event state based on the perf_event_attr::disabled.
1146  */
1147 static inline void perf_event__state_init(struct perf_event *event)
1148 {
1149 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 					      PERF_EVENT_STATE_INACTIVE;
1151 }
1152 
1153 /*
1154  * Called at perf_event creation and when events are attached/detached from a
1155  * group.
1156  */
1157 static void perf_event__read_size(struct perf_event *event)
1158 {
1159 	int entry = sizeof(u64); /* value */
1160 	int size = 0;
1161 	int nr = 1;
1162 
1163 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 		size += sizeof(u64);
1165 
1166 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 		size += sizeof(u64);
1168 
1169 	if (event->attr.read_format & PERF_FORMAT_ID)
1170 		entry += sizeof(u64);
1171 
1172 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 		nr += event->group_leader->nr_siblings;
1174 		size += sizeof(u64);
1175 	}
1176 
1177 	size += entry * nr;
1178 	event->read_size = size;
1179 }
1180 
1181 static void perf_event__header_size(struct perf_event *event)
1182 {
1183 	struct perf_sample_data *data;
1184 	u64 sample_type = event->attr.sample_type;
1185 	u16 size = 0;
1186 
1187 	perf_event__read_size(event);
1188 
1189 	if (sample_type & PERF_SAMPLE_IP)
1190 		size += sizeof(data->ip);
1191 
1192 	if (sample_type & PERF_SAMPLE_ADDR)
1193 		size += sizeof(data->addr);
1194 
1195 	if (sample_type & PERF_SAMPLE_PERIOD)
1196 		size += sizeof(data->period);
1197 
1198 	if (sample_type & PERF_SAMPLE_WEIGHT)
1199 		size += sizeof(data->weight);
1200 
1201 	if (sample_type & PERF_SAMPLE_READ)
1202 		size += event->read_size;
1203 
1204 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 		size += sizeof(data->data_src.val);
1206 
1207 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 		size += sizeof(data->txn);
1209 
1210 	event->header_size = size;
1211 }
1212 
1213 static void perf_event__id_header_size(struct perf_event *event)
1214 {
1215 	struct perf_sample_data *data;
1216 	u64 sample_type = event->attr.sample_type;
1217 	u16 size = 0;
1218 
1219 	if (sample_type & PERF_SAMPLE_TID)
1220 		size += sizeof(data->tid_entry);
1221 
1222 	if (sample_type & PERF_SAMPLE_TIME)
1223 		size += sizeof(data->time);
1224 
1225 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 		size += sizeof(data->id);
1227 
1228 	if (sample_type & PERF_SAMPLE_ID)
1229 		size += sizeof(data->id);
1230 
1231 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 		size += sizeof(data->stream_id);
1233 
1234 	if (sample_type & PERF_SAMPLE_CPU)
1235 		size += sizeof(data->cpu_entry);
1236 
1237 	event->id_header_size = size;
1238 }
1239 
1240 static void perf_group_attach(struct perf_event *event)
1241 {
1242 	struct perf_event *group_leader = event->group_leader, *pos;
1243 
1244 	/*
1245 	 * We can have double attach due to group movement in perf_event_open.
1246 	 */
1247 	if (event->attach_state & PERF_ATTACH_GROUP)
1248 		return;
1249 
1250 	event->attach_state |= PERF_ATTACH_GROUP;
1251 
1252 	if (group_leader == event)
1253 		return;
1254 
1255 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 			!is_software_event(event))
1257 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1258 
1259 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 	group_leader->nr_siblings++;
1261 
1262 	perf_event__header_size(group_leader);
1263 
1264 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 		perf_event__header_size(pos);
1266 }
1267 
1268 /*
1269  * Remove a event from the lists for its context.
1270  * Must be called with ctx->mutex and ctx->lock held.
1271  */
1272 static void
1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1274 {
1275 	struct perf_cpu_context *cpuctx;
1276 	/*
1277 	 * We can have double detach due to exit/hot-unplug + close.
1278 	 */
1279 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280 		return;
1281 
1282 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1283 
1284 	if (is_cgroup_event(event)) {
1285 		ctx->nr_cgroups--;
1286 		cpuctx = __get_cpu_context(ctx);
1287 		/*
1288 		 * if there are no more cgroup events
1289 		 * then cler cgrp to avoid stale pointer
1290 		 * in update_cgrp_time_from_cpuctx()
1291 		 */
1292 		if (!ctx->nr_cgroups)
1293 			cpuctx->cgrp = NULL;
1294 	}
1295 
1296 	if (has_branch_stack(event))
1297 		ctx->nr_branch_stack--;
1298 
1299 	ctx->nr_events--;
1300 	if (event->attr.inherit_stat)
1301 		ctx->nr_stat--;
1302 
1303 	list_del_rcu(&event->event_entry);
1304 
1305 	if (event->group_leader == event)
1306 		list_del_init(&event->group_entry);
1307 
1308 	update_group_times(event);
1309 
1310 	/*
1311 	 * If event was in error state, then keep it
1312 	 * that way, otherwise bogus counts will be
1313 	 * returned on read(). The only way to get out
1314 	 * of error state is by explicit re-enabling
1315 	 * of the event
1316 	 */
1317 	if (event->state > PERF_EVENT_STATE_OFF)
1318 		event->state = PERF_EVENT_STATE_OFF;
1319 
1320 	ctx->generation++;
1321 }
1322 
1323 static void perf_group_detach(struct perf_event *event)
1324 {
1325 	struct perf_event *sibling, *tmp;
1326 	struct list_head *list = NULL;
1327 
1328 	/*
1329 	 * We can have double detach due to exit/hot-unplug + close.
1330 	 */
1331 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 		return;
1333 
1334 	event->attach_state &= ~PERF_ATTACH_GROUP;
1335 
1336 	/*
1337 	 * If this is a sibling, remove it from its group.
1338 	 */
1339 	if (event->group_leader != event) {
1340 		list_del_init(&event->group_entry);
1341 		event->group_leader->nr_siblings--;
1342 		goto out;
1343 	}
1344 
1345 	if (!list_empty(&event->group_entry))
1346 		list = &event->group_entry;
1347 
1348 	/*
1349 	 * If this was a group event with sibling events then
1350 	 * upgrade the siblings to singleton events by adding them
1351 	 * to whatever list we are on.
1352 	 */
1353 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 		if (list)
1355 			list_move_tail(&sibling->group_entry, list);
1356 		sibling->group_leader = sibling;
1357 
1358 		/* Inherit group flags from the previous leader */
1359 		sibling->group_flags = event->group_flags;
1360 	}
1361 
1362 out:
1363 	perf_event__header_size(event->group_leader);
1364 
1365 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 		perf_event__header_size(tmp);
1367 }
1368 
1369 static inline int
1370 event_filter_match(struct perf_event *event)
1371 {
1372 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 	    && perf_cgroup_match(event);
1374 }
1375 
1376 static void
1377 event_sched_out(struct perf_event *event,
1378 		  struct perf_cpu_context *cpuctx,
1379 		  struct perf_event_context *ctx)
1380 {
1381 	u64 tstamp = perf_event_time(event);
1382 	u64 delta;
1383 	/*
1384 	 * An event which could not be activated because of
1385 	 * filter mismatch still needs to have its timings
1386 	 * maintained, otherwise bogus information is return
1387 	 * via read() for time_enabled, time_running:
1388 	 */
1389 	if (event->state == PERF_EVENT_STATE_INACTIVE
1390 	    && !event_filter_match(event)) {
1391 		delta = tstamp - event->tstamp_stopped;
1392 		event->tstamp_running += delta;
1393 		event->tstamp_stopped = tstamp;
1394 	}
1395 
1396 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1397 		return;
1398 
1399 	event->state = PERF_EVENT_STATE_INACTIVE;
1400 	if (event->pending_disable) {
1401 		event->pending_disable = 0;
1402 		event->state = PERF_EVENT_STATE_OFF;
1403 	}
1404 	event->tstamp_stopped = tstamp;
1405 	event->pmu->del(event, 0);
1406 	event->oncpu = -1;
1407 
1408 	if (!is_software_event(event))
1409 		cpuctx->active_oncpu--;
1410 	ctx->nr_active--;
1411 	if (event->attr.freq && event->attr.sample_freq)
1412 		ctx->nr_freq--;
1413 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1414 		cpuctx->exclusive = 0;
1415 }
1416 
1417 static void
1418 group_sched_out(struct perf_event *group_event,
1419 		struct perf_cpu_context *cpuctx,
1420 		struct perf_event_context *ctx)
1421 {
1422 	struct perf_event *event;
1423 	int state = group_event->state;
1424 
1425 	event_sched_out(group_event, cpuctx, ctx);
1426 
1427 	/*
1428 	 * Schedule out siblings (if any):
1429 	 */
1430 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1431 		event_sched_out(event, cpuctx, ctx);
1432 
1433 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1434 		cpuctx->exclusive = 0;
1435 }
1436 
1437 /*
1438  * Cross CPU call to remove a performance event
1439  *
1440  * We disable the event on the hardware level first. After that we
1441  * remove it from the context list.
1442  */
1443 static int __perf_remove_from_context(void *info)
1444 {
1445 	struct perf_event *event = info;
1446 	struct perf_event_context *ctx = event->ctx;
1447 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1448 
1449 	raw_spin_lock(&ctx->lock);
1450 	event_sched_out(event, cpuctx, ctx);
1451 	list_del_event(event, ctx);
1452 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1453 		ctx->is_active = 0;
1454 		cpuctx->task_ctx = NULL;
1455 	}
1456 	raw_spin_unlock(&ctx->lock);
1457 
1458 	return 0;
1459 }
1460 
1461 
1462 /*
1463  * Remove the event from a task's (or a CPU's) list of events.
1464  *
1465  * CPU events are removed with a smp call. For task events we only
1466  * call when the task is on a CPU.
1467  *
1468  * If event->ctx is a cloned context, callers must make sure that
1469  * every task struct that event->ctx->task could possibly point to
1470  * remains valid.  This is OK when called from perf_release since
1471  * that only calls us on the top-level context, which can't be a clone.
1472  * When called from perf_event_exit_task, it's OK because the
1473  * context has been detached from its task.
1474  */
1475 static void perf_remove_from_context(struct perf_event *event)
1476 {
1477 	struct perf_event_context *ctx = event->ctx;
1478 	struct task_struct *task = ctx->task;
1479 
1480 	lockdep_assert_held(&ctx->mutex);
1481 
1482 	if (!task) {
1483 		/*
1484 		 * Per cpu events are removed via an smp call and
1485 		 * the removal is always successful.
1486 		 */
1487 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1488 		return;
1489 	}
1490 
1491 retry:
1492 	if (!task_function_call(task, __perf_remove_from_context, event))
1493 		return;
1494 
1495 	raw_spin_lock_irq(&ctx->lock);
1496 	/*
1497 	 * If we failed to find a running task, but find the context active now
1498 	 * that we've acquired the ctx->lock, retry.
1499 	 */
1500 	if (ctx->is_active) {
1501 		raw_spin_unlock_irq(&ctx->lock);
1502 		goto retry;
1503 	}
1504 
1505 	/*
1506 	 * Since the task isn't running, its safe to remove the event, us
1507 	 * holding the ctx->lock ensures the task won't get scheduled in.
1508 	 */
1509 	list_del_event(event, ctx);
1510 	raw_spin_unlock_irq(&ctx->lock);
1511 }
1512 
1513 /*
1514  * Cross CPU call to disable a performance event
1515  */
1516 int __perf_event_disable(void *info)
1517 {
1518 	struct perf_event *event = info;
1519 	struct perf_event_context *ctx = event->ctx;
1520 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1521 
1522 	/*
1523 	 * If this is a per-task event, need to check whether this
1524 	 * event's task is the current task on this cpu.
1525 	 *
1526 	 * Can trigger due to concurrent perf_event_context_sched_out()
1527 	 * flipping contexts around.
1528 	 */
1529 	if (ctx->task && cpuctx->task_ctx != ctx)
1530 		return -EINVAL;
1531 
1532 	raw_spin_lock(&ctx->lock);
1533 
1534 	/*
1535 	 * If the event is on, turn it off.
1536 	 * If it is in error state, leave it in error state.
1537 	 */
1538 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1539 		update_context_time(ctx);
1540 		update_cgrp_time_from_event(event);
1541 		update_group_times(event);
1542 		if (event == event->group_leader)
1543 			group_sched_out(event, cpuctx, ctx);
1544 		else
1545 			event_sched_out(event, cpuctx, ctx);
1546 		event->state = PERF_EVENT_STATE_OFF;
1547 	}
1548 
1549 	raw_spin_unlock(&ctx->lock);
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Disable a event.
1556  *
1557  * If event->ctx is a cloned context, callers must make sure that
1558  * every task struct that event->ctx->task could possibly point to
1559  * remains valid.  This condition is satisifed when called through
1560  * perf_event_for_each_child or perf_event_for_each because they
1561  * hold the top-level event's child_mutex, so any descendant that
1562  * goes to exit will block in sync_child_event.
1563  * When called from perf_pending_event it's OK because event->ctx
1564  * is the current context on this CPU and preemption is disabled,
1565  * hence we can't get into perf_event_task_sched_out for this context.
1566  */
1567 void perf_event_disable(struct perf_event *event)
1568 {
1569 	struct perf_event_context *ctx = event->ctx;
1570 	struct task_struct *task = ctx->task;
1571 
1572 	if (!task) {
1573 		/*
1574 		 * Disable the event on the cpu that it's on
1575 		 */
1576 		cpu_function_call(event->cpu, __perf_event_disable, event);
1577 		return;
1578 	}
1579 
1580 retry:
1581 	if (!task_function_call(task, __perf_event_disable, event))
1582 		return;
1583 
1584 	raw_spin_lock_irq(&ctx->lock);
1585 	/*
1586 	 * If the event is still active, we need to retry the cross-call.
1587 	 */
1588 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1589 		raw_spin_unlock_irq(&ctx->lock);
1590 		/*
1591 		 * Reload the task pointer, it might have been changed by
1592 		 * a concurrent perf_event_context_sched_out().
1593 		 */
1594 		task = ctx->task;
1595 		goto retry;
1596 	}
1597 
1598 	/*
1599 	 * Since we have the lock this context can't be scheduled
1600 	 * in, so we can change the state safely.
1601 	 */
1602 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1603 		update_group_times(event);
1604 		event->state = PERF_EVENT_STATE_OFF;
1605 	}
1606 	raw_spin_unlock_irq(&ctx->lock);
1607 }
1608 EXPORT_SYMBOL_GPL(perf_event_disable);
1609 
1610 static void perf_set_shadow_time(struct perf_event *event,
1611 				 struct perf_event_context *ctx,
1612 				 u64 tstamp)
1613 {
1614 	/*
1615 	 * use the correct time source for the time snapshot
1616 	 *
1617 	 * We could get by without this by leveraging the
1618 	 * fact that to get to this function, the caller
1619 	 * has most likely already called update_context_time()
1620 	 * and update_cgrp_time_xx() and thus both timestamp
1621 	 * are identical (or very close). Given that tstamp is,
1622 	 * already adjusted for cgroup, we could say that:
1623 	 *    tstamp - ctx->timestamp
1624 	 * is equivalent to
1625 	 *    tstamp - cgrp->timestamp.
1626 	 *
1627 	 * Then, in perf_output_read(), the calculation would
1628 	 * work with no changes because:
1629 	 * - event is guaranteed scheduled in
1630 	 * - no scheduled out in between
1631 	 * - thus the timestamp would be the same
1632 	 *
1633 	 * But this is a bit hairy.
1634 	 *
1635 	 * So instead, we have an explicit cgroup call to remain
1636 	 * within the time time source all along. We believe it
1637 	 * is cleaner and simpler to understand.
1638 	 */
1639 	if (is_cgroup_event(event))
1640 		perf_cgroup_set_shadow_time(event, tstamp);
1641 	else
1642 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1643 }
1644 
1645 #define MAX_INTERRUPTS (~0ULL)
1646 
1647 static void perf_log_throttle(struct perf_event *event, int enable);
1648 
1649 static int
1650 event_sched_in(struct perf_event *event,
1651 		 struct perf_cpu_context *cpuctx,
1652 		 struct perf_event_context *ctx)
1653 {
1654 	u64 tstamp = perf_event_time(event);
1655 
1656 	if (event->state <= PERF_EVENT_STATE_OFF)
1657 		return 0;
1658 
1659 	event->state = PERF_EVENT_STATE_ACTIVE;
1660 	event->oncpu = smp_processor_id();
1661 
1662 	/*
1663 	 * Unthrottle events, since we scheduled we might have missed several
1664 	 * ticks already, also for a heavily scheduling task there is little
1665 	 * guarantee it'll get a tick in a timely manner.
1666 	 */
1667 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1668 		perf_log_throttle(event, 1);
1669 		event->hw.interrupts = 0;
1670 	}
1671 
1672 	/*
1673 	 * The new state must be visible before we turn it on in the hardware:
1674 	 */
1675 	smp_wmb();
1676 
1677 	if (event->pmu->add(event, PERF_EF_START)) {
1678 		event->state = PERF_EVENT_STATE_INACTIVE;
1679 		event->oncpu = -1;
1680 		return -EAGAIN;
1681 	}
1682 
1683 	event->tstamp_running += tstamp - event->tstamp_stopped;
1684 
1685 	perf_set_shadow_time(event, ctx, tstamp);
1686 
1687 	if (!is_software_event(event))
1688 		cpuctx->active_oncpu++;
1689 	ctx->nr_active++;
1690 	if (event->attr.freq && event->attr.sample_freq)
1691 		ctx->nr_freq++;
1692 
1693 	if (event->attr.exclusive)
1694 		cpuctx->exclusive = 1;
1695 
1696 	return 0;
1697 }
1698 
1699 static int
1700 group_sched_in(struct perf_event *group_event,
1701 	       struct perf_cpu_context *cpuctx,
1702 	       struct perf_event_context *ctx)
1703 {
1704 	struct perf_event *event, *partial_group = NULL;
1705 	struct pmu *pmu = group_event->pmu;
1706 	u64 now = ctx->time;
1707 	bool simulate = false;
1708 
1709 	if (group_event->state == PERF_EVENT_STATE_OFF)
1710 		return 0;
1711 
1712 	pmu->start_txn(pmu);
1713 
1714 	if (event_sched_in(group_event, cpuctx, ctx)) {
1715 		pmu->cancel_txn(pmu);
1716 		perf_cpu_hrtimer_restart(cpuctx);
1717 		return -EAGAIN;
1718 	}
1719 
1720 	/*
1721 	 * Schedule in siblings as one group (if any):
1722 	 */
1723 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1724 		if (event_sched_in(event, cpuctx, ctx)) {
1725 			partial_group = event;
1726 			goto group_error;
1727 		}
1728 	}
1729 
1730 	if (!pmu->commit_txn(pmu))
1731 		return 0;
1732 
1733 group_error:
1734 	/*
1735 	 * Groups can be scheduled in as one unit only, so undo any
1736 	 * partial group before returning:
1737 	 * The events up to the failed event are scheduled out normally,
1738 	 * tstamp_stopped will be updated.
1739 	 *
1740 	 * The failed events and the remaining siblings need to have
1741 	 * their timings updated as if they had gone thru event_sched_in()
1742 	 * and event_sched_out(). This is required to get consistent timings
1743 	 * across the group. This also takes care of the case where the group
1744 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1745 	 * the time the event was actually stopped, such that time delta
1746 	 * calculation in update_event_times() is correct.
1747 	 */
1748 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1749 		if (event == partial_group)
1750 			simulate = true;
1751 
1752 		if (simulate) {
1753 			event->tstamp_running += now - event->tstamp_stopped;
1754 			event->tstamp_stopped = now;
1755 		} else {
1756 			event_sched_out(event, cpuctx, ctx);
1757 		}
1758 	}
1759 	event_sched_out(group_event, cpuctx, ctx);
1760 
1761 	pmu->cancel_txn(pmu);
1762 
1763 	perf_cpu_hrtimer_restart(cpuctx);
1764 
1765 	return -EAGAIN;
1766 }
1767 
1768 /*
1769  * Work out whether we can put this event group on the CPU now.
1770  */
1771 static int group_can_go_on(struct perf_event *event,
1772 			   struct perf_cpu_context *cpuctx,
1773 			   int can_add_hw)
1774 {
1775 	/*
1776 	 * Groups consisting entirely of software events can always go on.
1777 	 */
1778 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1779 		return 1;
1780 	/*
1781 	 * If an exclusive group is already on, no other hardware
1782 	 * events can go on.
1783 	 */
1784 	if (cpuctx->exclusive)
1785 		return 0;
1786 	/*
1787 	 * If this group is exclusive and there are already
1788 	 * events on the CPU, it can't go on.
1789 	 */
1790 	if (event->attr.exclusive && cpuctx->active_oncpu)
1791 		return 0;
1792 	/*
1793 	 * Otherwise, try to add it if all previous groups were able
1794 	 * to go on.
1795 	 */
1796 	return can_add_hw;
1797 }
1798 
1799 static void add_event_to_ctx(struct perf_event *event,
1800 			       struct perf_event_context *ctx)
1801 {
1802 	u64 tstamp = perf_event_time(event);
1803 
1804 	list_add_event(event, ctx);
1805 	perf_group_attach(event);
1806 	event->tstamp_enabled = tstamp;
1807 	event->tstamp_running = tstamp;
1808 	event->tstamp_stopped = tstamp;
1809 }
1810 
1811 static void task_ctx_sched_out(struct perf_event_context *ctx);
1812 static void
1813 ctx_sched_in(struct perf_event_context *ctx,
1814 	     struct perf_cpu_context *cpuctx,
1815 	     enum event_type_t event_type,
1816 	     struct task_struct *task);
1817 
1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1819 				struct perf_event_context *ctx,
1820 				struct task_struct *task)
1821 {
1822 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1823 	if (ctx)
1824 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1825 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1826 	if (ctx)
1827 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1828 }
1829 
1830 /*
1831  * Cross CPU call to install and enable a performance event
1832  *
1833  * Must be called with ctx->mutex held
1834  */
1835 static int  __perf_install_in_context(void *info)
1836 {
1837 	struct perf_event *event = info;
1838 	struct perf_event_context *ctx = event->ctx;
1839 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1840 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1841 	struct task_struct *task = current;
1842 
1843 	perf_ctx_lock(cpuctx, task_ctx);
1844 	perf_pmu_disable(cpuctx->ctx.pmu);
1845 
1846 	/*
1847 	 * If there was an active task_ctx schedule it out.
1848 	 */
1849 	if (task_ctx)
1850 		task_ctx_sched_out(task_ctx);
1851 
1852 	/*
1853 	 * If the context we're installing events in is not the
1854 	 * active task_ctx, flip them.
1855 	 */
1856 	if (ctx->task && task_ctx != ctx) {
1857 		if (task_ctx)
1858 			raw_spin_unlock(&task_ctx->lock);
1859 		raw_spin_lock(&ctx->lock);
1860 		task_ctx = ctx;
1861 	}
1862 
1863 	if (task_ctx) {
1864 		cpuctx->task_ctx = task_ctx;
1865 		task = task_ctx->task;
1866 	}
1867 
1868 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1869 
1870 	update_context_time(ctx);
1871 	/*
1872 	 * update cgrp time only if current cgrp
1873 	 * matches event->cgrp. Must be done before
1874 	 * calling add_event_to_ctx()
1875 	 */
1876 	update_cgrp_time_from_event(event);
1877 
1878 	add_event_to_ctx(event, ctx);
1879 
1880 	/*
1881 	 * Schedule everything back in
1882 	 */
1883 	perf_event_sched_in(cpuctx, task_ctx, task);
1884 
1885 	perf_pmu_enable(cpuctx->ctx.pmu);
1886 	perf_ctx_unlock(cpuctx, task_ctx);
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * Attach a performance event to a context
1893  *
1894  * First we add the event to the list with the hardware enable bit
1895  * in event->hw_config cleared.
1896  *
1897  * If the event is attached to a task which is on a CPU we use a smp
1898  * call to enable it in the task context. The task might have been
1899  * scheduled away, but we check this in the smp call again.
1900  */
1901 static void
1902 perf_install_in_context(struct perf_event_context *ctx,
1903 			struct perf_event *event,
1904 			int cpu)
1905 {
1906 	struct task_struct *task = ctx->task;
1907 
1908 	lockdep_assert_held(&ctx->mutex);
1909 
1910 	event->ctx = ctx;
1911 	if (event->cpu != -1)
1912 		event->cpu = cpu;
1913 
1914 	if (!task) {
1915 		/*
1916 		 * Per cpu events are installed via an smp call and
1917 		 * the install is always successful.
1918 		 */
1919 		cpu_function_call(cpu, __perf_install_in_context, event);
1920 		return;
1921 	}
1922 
1923 retry:
1924 	if (!task_function_call(task, __perf_install_in_context, event))
1925 		return;
1926 
1927 	raw_spin_lock_irq(&ctx->lock);
1928 	/*
1929 	 * If we failed to find a running task, but find the context active now
1930 	 * that we've acquired the ctx->lock, retry.
1931 	 */
1932 	if (ctx->is_active) {
1933 		raw_spin_unlock_irq(&ctx->lock);
1934 		goto retry;
1935 	}
1936 
1937 	/*
1938 	 * Since the task isn't running, its safe to add the event, us holding
1939 	 * the ctx->lock ensures the task won't get scheduled in.
1940 	 */
1941 	add_event_to_ctx(event, ctx);
1942 	raw_spin_unlock_irq(&ctx->lock);
1943 }
1944 
1945 /*
1946  * Put a event into inactive state and update time fields.
1947  * Enabling the leader of a group effectively enables all
1948  * the group members that aren't explicitly disabled, so we
1949  * have to update their ->tstamp_enabled also.
1950  * Note: this works for group members as well as group leaders
1951  * since the non-leader members' sibling_lists will be empty.
1952  */
1953 static void __perf_event_mark_enabled(struct perf_event *event)
1954 {
1955 	struct perf_event *sub;
1956 	u64 tstamp = perf_event_time(event);
1957 
1958 	event->state = PERF_EVENT_STATE_INACTIVE;
1959 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1960 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1961 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1962 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1963 	}
1964 }
1965 
1966 /*
1967  * Cross CPU call to enable a performance event
1968  */
1969 static int __perf_event_enable(void *info)
1970 {
1971 	struct perf_event *event = info;
1972 	struct perf_event_context *ctx = event->ctx;
1973 	struct perf_event *leader = event->group_leader;
1974 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975 	int err;
1976 
1977 	/*
1978 	 * There's a time window between 'ctx->is_active' check
1979 	 * in perf_event_enable function and this place having:
1980 	 *   - IRQs on
1981 	 *   - ctx->lock unlocked
1982 	 *
1983 	 * where the task could be killed and 'ctx' deactivated
1984 	 * by perf_event_exit_task.
1985 	 */
1986 	if (!ctx->is_active)
1987 		return -EINVAL;
1988 
1989 	raw_spin_lock(&ctx->lock);
1990 	update_context_time(ctx);
1991 
1992 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1993 		goto unlock;
1994 
1995 	/*
1996 	 * set current task's cgroup time reference point
1997 	 */
1998 	perf_cgroup_set_timestamp(current, ctx);
1999 
2000 	__perf_event_mark_enabled(event);
2001 
2002 	if (!event_filter_match(event)) {
2003 		if (is_cgroup_event(event))
2004 			perf_cgroup_defer_enabled(event);
2005 		goto unlock;
2006 	}
2007 
2008 	/*
2009 	 * If the event is in a group and isn't the group leader,
2010 	 * then don't put it on unless the group is on.
2011 	 */
2012 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2013 		goto unlock;
2014 
2015 	if (!group_can_go_on(event, cpuctx, 1)) {
2016 		err = -EEXIST;
2017 	} else {
2018 		if (event == leader)
2019 			err = group_sched_in(event, cpuctx, ctx);
2020 		else
2021 			err = event_sched_in(event, cpuctx, ctx);
2022 	}
2023 
2024 	if (err) {
2025 		/*
2026 		 * If this event can't go on and it's part of a
2027 		 * group, then the whole group has to come off.
2028 		 */
2029 		if (leader != event) {
2030 			group_sched_out(leader, cpuctx, ctx);
2031 			perf_cpu_hrtimer_restart(cpuctx);
2032 		}
2033 		if (leader->attr.pinned) {
2034 			update_group_times(leader);
2035 			leader->state = PERF_EVENT_STATE_ERROR;
2036 		}
2037 	}
2038 
2039 unlock:
2040 	raw_spin_unlock(&ctx->lock);
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Enable a event.
2047  *
2048  * If event->ctx is a cloned context, callers must make sure that
2049  * every task struct that event->ctx->task could possibly point to
2050  * remains valid.  This condition is satisfied when called through
2051  * perf_event_for_each_child or perf_event_for_each as described
2052  * for perf_event_disable.
2053  */
2054 void perf_event_enable(struct perf_event *event)
2055 {
2056 	struct perf_event_context *ctx = event->ctx;
2057 	struct task_struct *task = ctx->task;
2058 
2059 	if (!task) {
2060 		/*
2061 		 * Enable the event on the cpu that it's on
2062 		 */
2063 		cpu_function_call(event->cpu, __perf_event_enable, event);
2064 		return;
2065 	}
2066 
2067 	raw_spin_lock_irq(&ctx->lock);
2068 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2069 		goto out;
2070 
2071 	/*
2072 	 * If the event is in error state, clear that first.
2073 	 * That way, if we see the event in error state below, we
2074 	 * know that it has gone back into error state, as distinct
2075 	 * from the task having been scheduled away before the
2076 	 * cross-call arrived.
2077 	 */
2078 	if (event->state == PERF_EVENT_STATE_ERROR)
2079 		event->state = PERF_EVENT_STATE_OFF;
2080 
2081 retry:
2082 	if (!ctx->is_active) {
2083 		__perf_event_mark_enabled(event);
2084 		goto out;
2085 	}
2086 
2087 	raw_spin_unlock_irq(&ctx->lock);
2088 
2089 	if (!task_function_call(task, __perf_event_enable, event))
2090 		return;
2091 
2092 	raw_spin_lock_irq(&ctx->lock);
2093 
2094 	/*
2095 	 * If the context is active and the event is still off,
2096 	 * we need to retry the cross-call.
2097 	 */
2098 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2099 		/*
2100 		 * task could have been flipped by a concurrent
2101 		 * perf_event_context_sched_out()
2102 		 */
2103 		task = ctx->task;
2104 		goto retry;
2105 	}
2106 
2107 out:
2108 	raw_spin_unlock_irq(&ctx->lock);
2109 }
2110 EXPORT_SYMBOL_GPL(perf_event_enable);
2111 
2112 int perf_event_refresh(struct perf_event *event, int refresh)
2113 {
2114 	/*
2115 	 * not supported on inherited events
2116 	 */
2117 	if (event->attr.inherit || !is_sampling_event(event))
2118 		return -EINVAL;
2119 
2120 	atomic_add(refresh, &event->event_limit);
2121 	perf_event_enable(event);
2122 
2123 	return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(perf_event_refresh);
2126 
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 			  struct perf_cpu_context *cpuctx,
2129 			  enum event_type_t event_type)
2130 {
2131 	struct perf_event *event;
2132 	int is_active = ctx->is_active;
2133 
2134 	ctx->is_active &= ~event_type;
2135 	if (likely(!ctx->nr_events))
2136 		return;
2137 
2138 	update_context_time(ctx);
2139 	update_cgrp_time_from_cpuctx(cpuctx);
2140 	if (!ctx->nr_active)
2141 		return;
2142 
2143 	perf_pmu_disable(ctx->pmu);
2144 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2145 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2146 			group_sched_out(event, cpuctx, ctx);
2147 	}
2148 
2149 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2150 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2151 			group_sched_out(event, cpuctx, ctx);
2152 	}
2153 	perf_pmu_enable(ctx->pmu);
2154 }
2155 
2156 /*
2157  * Test whether two contexts are equivalent, i.e. whether they have both been
2158  * cloned from the same version of the same context.
2159  *
2160  * Equivalence is measured using a generation number in the context that is
2161  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2162  * and list_del_event().
2163  */
2164 static int context_equiv(struct perf_event_context *ctx1,
2165 			 struct perf_event_context *ctx2)
2166 {
2167 	/* Pinning disables the swap optimization */
2168 	if (ctx1->pin_count || ctx2->pin_count)
2169 		return 0;
2170 
2171 	/* If ctx1 is the parent of ctx2 */
2172 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2173 		return 1;
2174 
2175 	/* If ctx2 is the parent of ctx1 */
2176 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2177 		return 1;
2178 
2179 	/*
2180 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2181 	 * hierarchy, see perf_event_init_context().
2182 	 */
2183 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2184 			ctx1->parent_gen == ctx2->parent_gen)
2185 		return 1;
2186 
2187 	/* Unmatched */
2188 	return 0;
2189 }
2190 
2191 static void __perf_event_sync_stat(struct perf_event *event,
2192 				     struct perf_event *next_event)
2193 {
2194 	u64 value;
2195 
2196 	if (!event->attr.inherit_stat)
2197 		return;
2198 
2199 	/*
2200 	 * Update the event value, we cannot use perf_event_read()
2201 	 * because we're in the middle of a context switch and have IRQs
2202 	 * disabled, which upsets smp_call_function_single(), however
2203 	 * we know the event must be on the current CPU, therefore we
2204 	 * don't need to use it.
2205 	 */
2206 	switch (event->state) {
2207 	case PERF_EVENT_STATE_ACTIVE:
2208 		event->pmu->read(event);
2209 		/* fall-through */
2210 
2211 	case PERF_EVENT_STATE_INACTIVE:
2212 		update_event_times(event);
2213 		break;
2214 
2215 	default:
2216 		break;
2217 	}
2218 
2219 	/*
2220 	 * In order to keep per-task stats reliable we need to flip the event
2221 	 * values when we flip the contexts.
2222 	 */
2223 	value = local64_read(&next_event->count);
2224 	value = local64_xchg(&event->count, value);
2225 	local64_set(&next_event->count, value);
2226 
2227 	swap(event->total_time_enabled, next_event->total_time_enabled);
2228 	swap(event->total_time_running, next_event->total_time_running);
2229 
2230 	/*
2231 	 * Since we swizzled the values, update the user visible data too.
2232 	 */
2233 	perf_event_update_userpage(event);
2234 	perf_event_update_userpage(next_event);
2235 }
2236 
2237 static void perf_event_sync_stat(struct perf_event_context *ctx,
2238 				   struct perf_event_context *next_ctx)
2239 {
2240 	struct perf_event *event, *next_event;
2241 
2242 	if (!ctx->nr_stat)
2243 		return;
2244 
2245 	update_context_time(ctx);
2246 
2247 	event = list_first_entry(&ctx->event_list,
2248 				   struct perf_event, event_entry);
2249 
2250 	next_event = list_first_entry(&next_ctx->event_list,
2251 					struct perf_event, event_entry);
2252 
2253 	while (&event->event_entry != &ctx->event_list &&
2254 	       &next_event->event_entry != &next_ctx->event_list) {
2255 
2256 		__perf_event_sync_stat(event, next_event);
2257 
2258 		event = list_next_entry(event, event_entry);
2259 		next_event = list_next_entry(next_event, event_entry);
2260 	}
2261 }
2262 
2263 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2264 					 struct task_struct *next)
2265 {
2266 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2267 	struct perf_event_context *next_ctx;
2268 	struct perf_event_context *parent, *next_parent;
2269 	struct perf_cpu_context *cpuctx;
2270 	int do_switch = 1;
2271 
2272 	if (likely(!ctx))
2273 		return;
2274 
2275 	cpuctx = __get_cpu_context(ctx);
2276 	if (!cpuctx->task_ctx)
2277 		return;
2278 
2279 	rcu_read_lock();
2280 	next_ctx = next->perf_event_ctxp[ctxn];
2281 	if (!next_ctx)
2282 		goto unlock;
2283 
2284 	parent = rcu_dereference(ctx->parent_ctx);
2285 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2286 
2287 	/* If neither context have a parent context; they cannot be clones. */
2288 	if (!parent && !next_parent)
2289 		goto unlock;
2290 
2291 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2292 		/*
2293 		 * Looks like the two contexts are clones, so we might be
2294 		 * able to optimize the context switch.  We lock both
2295 		 * contexts and check that they are clones under the
2296 		 * lock (including re-checking that neither has been
2297 		 * uncloned in the meantime).  It doesn't matter which
2298 		 * order we take the locks because no other cpu could
2299 		 * be trying to lock both of these tasks.
2300 		 */
2301 		raw_spin_lock(&ctx->lock);
2302 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2303 		if (context_equiv(ctx, next_ctx)) {
2304 			/*
2305 			 * XXX do we need a memory barrier of sorts
2306 			 * wrt to rcu_dereference() of perf_event_ctxp
2307 			 */
2308 			task->perf_event_ctxp[ctxn] = next_ctx;
2309 			next->perf_event_ctxp[ctxn] = ctx;
2310 			ctx->task = next;
2311 			next_ctx->task = task;
2312 			do_switch = 0;
2313 
2314 			perf_event_sync_stat(ctx, next_ctx);
2315 		}
2316 		raw_spin_unlock(&next_ctx->lock);
2317 		raw_spin_unlock(&ctx->lock);
2318 	}
2319 unlock:
2320 	rcu_read_unlock();
2321 
2322 	if (do_switch) {
2323 		raw_spin_lock(&ctx->lock);
2324 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2325 		cpuctx->task_ctx = NULL;
2326 		raw_spin_unlock(&ctx->lock);
2327 	}
2328 }
2329 
2330 #define for_each_task_context_nr(ctxn)					\
2331 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2332 
2333 /*
2334  * Called from scheduler to remove the events of the current task,
2335  * with interrupts disabled.
2336  *
2337  * We stop each event and update the event value in event->count.
2338  *
2339  * This does not protect us against NMI, but disable()
2340  * sets the disabled bit in the control field of event _before_
2341  * accessing the event control register. If a NMI hits, then it will
2342  * not restart the event.
2343  */
2344 void __perf_event_task_sched_out(struct task_struct *task,
2345 				 struct task_struct *next)
2346 {
2347 	int ctxn;
2348 
2349 	for_each_task_context_nr(ctxn)
2350 		perf_event_context_sched_out(task, ctxn, next);
2351 
2352 	/*
2353 	 * if cgroup events exist on this CPU, then we need
2354 	 * to check if we have to switch out PMU state.
2355 	 * cgroup event are system-wide mode only
2356 	 */
2357 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2358 		perf_cgroup_sched_out(task, next);
2359 }
2360 
2361 static void task_ctx_sched_out(struct perf_event_context *ctx)
2362 {
2363 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364 
2365 	if (!cpuctx->task_ctx)
2366 		return;
2367 
2368 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2369 		return;
2370 
2371 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2372 	cpuctx->task_ctx = NULL;
2373 }
2374 
2375 /*
2376  * Called with IRQs disabled
2377  */
2378 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2379 			      enum event_type_t event_type)
2380 {
2381 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2382 }
2383 
2384 static void
2385 ctx_pinned_sched_in(struct perf_event_context *ctx,
2386 		    struct perf_cpu_context *cpuctx)
2387 {
2388 	struct perf_event *event;
2389 
2390 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2391 		if (event->state <= PERF_EVENT_STATE_OFF)
2392 			continue;
2393 		if (!event_filter_match(event))
2394 			continue;
2395 
2396 		/* may need to reset tstamp_enabled */
2397 		if (is_cgroup_event(event))
2398 			perf_cgroup_mark_enabled(event, ctx);
2399 
2400 		if (group_can_go_on(event, cpuctx, 1))
2401 			group_sched_in(event, cpuctx, ctx);
2402 
2403 		/*
2404 		 * If this pinned group hasn't been scheduled,
2405 		 * put it in error state.
2406 		 */
2407 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2408 			update_group_times(event);
2409 			event->state = PERF_EVENT_STATE_ERROR;
2410 		}
2411 	}
2412 }
2413 
2414 static void
2415 ctx_flexible_sched_in(struct perf_event_context *ctx,
2416 		      struct perf_cpu_context *cpuctx)
2417 {
2418 	struct perf_event *event;
2419 	int can_add_hw = 1;
2420 
2421 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2422 		/* Ignore events in OFF or ERROR state */
2423 		if (event->state <= PERF_EVENT_STATE_OFF)
2424 			continue;
2425 		/*
2426 		 * Listen to the 'cpu' scheduling filter constraint
2427 		 * of events:
2428 		 */
2429 		if (!event_filter_match(event))
2430 			continue;
2431 
2432 		/* may need to reset tstamp_enabled */
2433 		if (is_cgroup_event(event))
2434 			perf_cgroup_mark_enabled(event, ctx);
2435 
2436 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2437 			if (group_sched_in(event, cpuctx, ctx))
2438 				can_add_hw = 0;
2439 		}
2440 	}
2441 }
2442 
2443 static void
2444 ctx_sched_in(struct perf_event_context *ctx,
2445 	     struct perf_cpu_context *cpuctx,
2446 	     enum event_type_t event_type,
2447 	     struct task_struct *task)
2448 {
2449 	u64 now;
2450 	int is_active = ctx->is_active;
2451 
2452 	ctx->is_active |= event_type;
2453 	if (likely(!ctx->nr_events))
2454 		return;
2455 
2456 	now = perf_clock();
2457 	ctx->timestamp = now;
2458 	perf_cgroup_set_timestamp(task, ctx);
2459 	/*
2460 	 * First go through the list and put on any pinned groups
2461 	 * in order to give them the best chance of going on.
2462 	 */
2463 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2464 		ctx_pinned_sched_in(ctx, cpuctx);
2465 
2466 	/* Then walk through the lower prio flexible groups */
2467 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2468 		ctx_flexible_sched_in(ctx, cpuctx);
2469 }
2470 
2471 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2472 			     enum event_type_t event_type,
2473 			     struct task_struct *task)
2474 {
2475 	struct perf_event_context *ctx = &cpuctx->ctx;
2476 
2477 	ctx_sched_in(ctx, cpuctx, event_type, task);
2478 }
2479 
2480 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2481 					struct task_struct *task)
2482 {
2483 	struct perf_cpu_context *cpuctx;
2484 
2485 	cpuctx = __get_cpu_context(ctx);
2486 	if (cpuctx->task_ctx == ctx)
2487 		return;
2488 
2489 	perf_ctx_lock(cpuctx, ctx);
2490 	perf_pmu_disable(ctx->pmu);
2491 	/*
2492 	 * We want to keep the following priority order:
2493 	 * cpu pinned (that don't need to move), task pinned,
2494 	 * cpu flexible, task flexible.
2495 	 */
2496 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2497 
2498 	if (ctx->nr_events)
2499 		cpuctx->task_ctx = ctx;
2500 
2501 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2502 
2503 	perf_pmu_enable(ctx->pmu);
2504 	perf_ctx_unlock(cpuctx, ctx);
2505 
2506 	/*
2507 	 * Since these rotations are per-cpu, we need to ensure the
2508 	 * cpu-context we got scheduled on is actually rotating.
2509 	 */
2510 	perf_pmu_rotate_start(ctx->pmu);
2511 }
2512 
2513 /*
2514  * When sampling the branck stack in system-wide, it may be necessary
2515  * to flush the stack on context switch. This happens when the branch
2516  * stack does not tag its entries with the pid of the current task.
2517  * Otherwise it becomes impossible to associate a branch entry with a
2518  * task. This ambiguity is more likely to appear when the branch stack
2519  * supports priv level filtering and the user sets it to monitor only
2520  * at the user level (which could be a useful measurement in system-wide
2521  * mode). In that case, the risk is high of having a branch stack with
2522  * branch from multiple tasks. Flushing may mean dropping the existing
2523  * entries or stashing them somewhere in the PMU specific code layer.
2524  *
2525  * This function provides the context switch callback to the lower code
2526  * layer. It is invoked ONLY when there is at least one system-wide context
2527  * with at least one active event using taken branch sampling.
2528  */
2529 static void perf_branch_stack_sched_in(struct task_struct *prev,
2530 				       struct task_struct *task)
2531 {
2532 	struct perf_cpu_context *cpuctx;
2533 	struct pmu *pmu;
2534 	unsigned long flags;
2535 
2536 	/* no need to flush branch stack if not changing task */
2537 	if (prev == task)
2538 		return;
2539 
2540 	local_irq_save(flags);
2541 
2542 	rcu_read_lock();
2543 
2544 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2545 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2546 
2547 		/*
2548 		 * check if the context has at least one
2549 		 * event using PERF_SAMPLE_BRANCH_STACK
2550 		 */
2551 		if (cpuctx->ctx.nr_branch_stack > 0
2552 		    && pmu->flush_branch_stack) {
2553 
2554 			pmu = cpuctx->ctx.pmu;
2555 
2556 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2557 
2558 			perf_pmu_disable(pmu);
2559 
2560 			pmu->flush_branch_stack();
2561 
2562 			perf_pmu_enable(pmu);
2563 
2564 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2565 		}
2566 	}
2567 
2568 	rcu_read_unlock();
2569 
2570 	local_irq_restore(flags);
2571 }
2572 
2573 /*
2574  * Called from scheduler to add the events of the current task
2575  * with interrupts disabled.
2576  *
2577  * We restore the event value and then enable it.
2578  *
2579  * This does not protect us against NMI, but enable()
2580  * sets the enabled bit in the control field of event _before_
2581  * accessing the event control register. If a NMI hits, then it will
2582  * keep the event running.
2583  */
2584 void __perf_event_task_sched_in(struct task_struct *prev,
2585 				struct task_struct *task)
2586 {
2587 	struct perf_event_context *ctx;
2588 	int ctxn;
2589 
2590 	for_each_task_context_nr(ctxn) {
2591 		ctx = task->perf_event_ctxp[ctxn];
2592 		if (likely(!ctx))
2593 			continue;
2594 
2595 		perf_event_context_sched_in(ctx, task);
2596 	}
2597 	/*
2598 	 * if cgroup events exist on this CPU, then we need
2599 	 * to check if we have to switch in PMU state.
2600 	 * cgroup event are system-wide mode only
2601 	 */
2602 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2603 		perf_cgroup_sched_in(prev, task);
2604 
2605 	/* check for system-wide branch_stack events */
2606 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2607 		perf_branch_stack_sched_in(prev, task);
2608 }
2609 
2610 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2611 {
2612 	u64 frequency = event->attr.sample_freq;
2613 	u64 sec = NSEC_PER_SEC;
2614 	u64 divisor, dividend;
2615 
2616 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2617 
2618 	count_fls = fls64(count);
2619 	nsec_fls = fls64(nsec);
2620 	frequency_fls = fls64(frequency);
2621 	sec_fls = 30;
2622 
2623 	/*
2624 	 * We got @count in @nsec, with a target of sample_freq HZ
2625 	 * the target period becomes:
2626 	 *
2627 	 *             @count * 10^9
2628 	 * period = -------------------
2629 	 *          @nsec * sample_freq
2630 	 *
2631 	 */
2632 
2633 	/*
2634 	 * Reduce accuracy by one bit such that @a and @b converge
2635 	 * to a similar magnitude.
2636 	 */
2637 #define REDUCE_FLS(a, b)		\
2638 do {					\
2639 	if (a##_fls > b##_fls) {	\
2640 		a >>= 1;		\
2641 		a##_fls--;		\
2642 	} else {			\
2643 		b >>= 1;		\
2644 		b##_fls--;		\
2645 	}				\
2646 } while (0)
2647 
2648 	/*
2649 	 * Reduce accuracy until either term fits in a u64, then proceed with
2650 	 * the other, so that finally we can do a u64/u64 division.
2651 	 */
2652 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2653 		REDUCE_FLS(nsec, frequency);
2654 		REDUCE_FLS(sec, count);
2655 	}
2656 
2657 	if (count_fls + sec_fls > 64) {
2658 		divisor = nsec * frequency;
2659 
2660 		while (count_fls + sec_fls > 64) {
2661 			REDUCE_FLS(count, sec);
2662 			divisor >>= 1;
2663 		}
2664 
2665 		dividend = count * sec;
2666 	} else {
2667 		dividend = count * sec;
2668 
2669 		while (nsec_fls + frequency_fls > 64) {
2670 			REDUCE_FLS(nsec, frequency);
2671 			dividend >>= 1;
2672 		}
2673 
2674 		divisor = nsec * frequency;
2675 	}
2676 
2677 	if (!divisor)
2678 		return dividend;
2679 
2680 	return div64_u64(dividend, divisor);
2681 }
2682 
2683 static DEFINE_PER_CPU(int, perf_throttled_count);
2684 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2685 
2686 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2687 {
2688 	struct hw_perf_event *hwc = &event->hw;
2689 	s64 period, sample_period;
2690 	s64 delta;
2691 
2692 	period = perf_calculate_period(event, nsec, count);
2693 
2694 	delta = (s64)(period - hwc->sample_period);
2695 	delta = (delta + 7) / 8; /* low pass filter */
2696 
2697 	sample_period = hwc->sample_period + delta;
2698 
2699 	if (!sample_period)
2700 		sample_period = 1;
2701 
2702 	hwc->sample_period = sample_period;
2703 
2704 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2705 		if (disable)
2706 			event->pmu->stop(event, PERF_EF_UPDATE);
2707 
2708 		local64_set(&hwc->period_left, 0);
2709 
2710 		if (disable)
2711 			event->pmu->start(event, PERF_EF_RELOAD);
2712 	}
2713 }
2714 
2715 /*
2716  * combine freq adjustment with unthrottling to avoid two passes over the
2717  * events. At the same time, make sure, having freq events does not change
2718  * the rate of unthrottling as that would introduce bias.
2719  */
2720 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2721 					   int needs_unthr)
2722 {
2723 	struct perf_event *event;
2724 	struct hw_perf_event *hwc;
2725 	u64 now, period = TICK_NSEC;
2726 	s64 delta;
2727 
2728 	/*
2729 	 * only need to iterate over all events iff:
2730 	 * - context have events in frequency mode (needs freq adjust)
2731 	 * - there are events to unthrottle on this cpu
2732 	 */
2733 	if (!(ctx->nr_freq || needs_unthr))
2734 		return;
2735 
2736 	raw_spin_lock(&ctx->lock);
2737 	perf_pmu_disable(ctx->pmu);
2738 
2739 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2740 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 			continue;
2742 
2743 		if (!event_filter_match(event))
2744 			continue;
2745 
2746 		hwc = &event->hw;
2747 
2748 		if (hwc->interrupts == MAX_INTERRUPTS) {
2749 			hwc->interrupts = 0;
2750 			perf_log_throttle(event, 1);
2751 			event->pmu->start(event, 0);
2752 		}
2753 
2754 		if (!event->attr.freq || !event->attr.sample_freq)
2755 			continue;
2756 
2757 		/*
2758 		 * stop the event and update event->count
2759 		 */
2760 		event->pmu->stop(event, PERF_EF_UPDATE);
2761 
2762 		now = local64_read(&event->count);
2763 		delta = now - hwc->freq_count_stamp;
2764 		hwc->freq_count_stamp = now;
2765 
2766 		/*
2767 		 * restart the event
2768 		 * reload only if value has changed
2769 		 * we have stopped the event so tell that
2770 		 * to perf_adjust_period() to avoid stopping it
2771 		 * twice.
2772 		 */
2773 		if (delta > 0)
2774 			perf_adjust_period(event, period, delta, false);
2775 
2776 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2777 	}
2778 
2779 	perf_pmu_enable(ctx->pmu);
2780 	raw_spin_unlock(&ctx->lock);
2781 }
2782 
2783 /*
2784  * Round-robin a context's events:
2785  */
2786 static void rotate_ctx(struct perf_event_context *ctx)
2787 {
2788 	/*
2789 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2790 	 * disabled by the inheritance code.
2791 	 */
2792 	if (!ctx->rotate_disable)
2793 		list_rotate_left(&ctx->flexible_groups);
2794 }
2795 
2796 /*
2797  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2798  * because they're strictly cpu affine and rotate_start is called with IRQs
2799  * disabled, while rotate_context is called from IRQ context.
2800  */
2801 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2802 {
2803 	struct perf_event_context *ctx = NULL;
2804 	int rotate = 0, remove = 1;
2805 
2806 	if (cpuctx->ctx.nr_events) {
2807 		remove = 0;
2808 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2809 			rotate = 1;
2810 	}
2811 
2812 	ctx = cpuctx->task_ctx;
2813 	if (ctx && ctx->nr_events) {
2814 		remove = 0;
2815 		if (ctx->nr_events != ctx->nr_active)
2816 			rotate = 1;
2817 	}
2818 
2819 	if (!rotate)
2820 		goto done;
2821 
2822 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2823 	perf_pmu_disable(cpuctx->ctx.pmu);
2824 
2825 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2826 	if (ctx)
2827 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2828 
2829 	rotate_ctx(&cpuctx->ctx);
2830 	if (ctx)
2831 		rotate_ctx(ctx);
2832 
2833 	perf_event_sched_in(cpuctx, ctx, current);
2834 
2835 	perf_pmu_enable(cpuctx->ctx.pmu);
2836 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2837 done:
2838 	if (remove)
2839 		list_del_init(&cpuctx->rotation_list);
2840 
2841 	return rotate;
2842 }
2843 
2844 #ifdef CONFIG_NO_HZ_FULL
2845 bool perf_event_can_stop_tick(void)
2846 {
2847 	if (atomic_read(&nr_freq_events) ||
2848 	    __this_cpu_read(perf_throttled_count))
2849 		return false;
2850 	else
2851 		return true;
2852 }
2853 #endif
2854 
2855 void perf_event_task_tick(void)
2856 {
2857 	struct list_head *head = &__get_cpu_var(rotation_list);
2858 	struct perf_cpu_context *cpuctx, *tmp;
2859 	struct perf_event_context *ctx;
2860 	int throttled;
2861 
2862 	WARN_ON(!irqs_disabled());
2863 
2864 	__this_cpu_inc(perf_throttled_seq);
2865 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2866 
2867 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2868 		ctx = &cpuctx->ctx;
2869 		perf_adjust_freq_unthr_context(ctx, throttled);
2870 
2871 		ctx = cpuctx->task_ctx;
2872 		if (ctx)
2873 			perf_adjust_freq_unthr_context(ctx, throttled);
2874 	}
2875 }
2876 
2877 static int event_enable_on_exec(struct perf_event *event,
2878 				struct perf_event_context *ctx)
2879 {
2880 	if (!event->attr.enable_on_exec)
2881 		return 0;
2882 
2883 	event->attr.enable_on_exec = 0;
2884 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2885 		return 0;
2886 
2887 	__perf_event_mark_enabled(event);
2888 
2889 	return 1;
2890 }
2891 
2892 /*
2893  * Enable all of a task's events that have been marked enable-on-exec.
2894  * This expects task == current.
2895  */
2896 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2897 {
2898 	struct perf_event *event;
2899 	unsigned long flags;
2900 	int enabled = 0;
2901 	int ret;
2902 
2903 	local_irq_save(flags);
2904 	if (!ctx || !ctx->nr_events)
2905 		goto out;
2906 
2907 	/*
2908 	 * We must ctxsw out cgroup events to avoid conflict
2909 	 * when invoking perf_task_event_sched_in() later on
2910 	 * in this function. Otherwise we end up trying to
2911 	 * ctxswin cgroup events which are already scheduled
2912 	 * in.
2913 	 */
2914 	perf_cgroup_sched_out(current, NULL);
2915 
2916 	raw_spin_lock(&ctx->lock);
2917 	task_ctx_sched_out(ctx);
2918 
2919 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2920 		ret = event_enable_on_exec(event, ctx);
2921 		if (ret)
2922 			enabled = 1;
2923 	}
2924 
2925 	/*
2926 	 * Unclone this context if we enabled any event.
2927 	 */
2928 	if (enabled)
2929 		unclone_ctx(ctx);
2930 
2931 	raw_spin_unlock(&ctx->lock);
2932 
2933 	/*
2934 	 * Also calls ctxswin for cgroup events, if any:
2935 	 */
2936 	perf_event_context_sched_in(ctx, ctx->task);
2937 out:
2938 	local_irq_restore(flags);
2939 }
2940 
2941 /*
2942  * Cross CPU call to read the hardware event
2943  */
2944 static void __perf_event_read(void *info)
2945 {
2946 	struct perf_event *event = info;
2947 	struct perf_event_context *ctx = event->ctx;
2948 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2949 
2950 	/*
2951 	 * If this is a task context, we need to check whether it is
2952 	 * the current task context of this cpu.  If not it has been
2953 	 * scheduled out before the smp call arrived.  In that case
2954 	 * event->count would have been updated to a recent sample
2955 	 * when the event was scheduled out.
2956 	 */
2957 	if (ctx->task && cpuctx->task_ctx != ctx)
2958 		return;
2959 
2960 	raw_spin_lock(&ctx->lock);
2961 	if (ctx->is_active) {
2962 		update_context_time(ctx);
2963 		update_cgrp_time_from_event(event);
2964 	}
2965 	update_event_times(event);
2966 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2967 		event->pmu->read(event);
2968 	raw_spin_unlock(&ctx->lock);
2969 }
2970 
2971 static inline u64 perf_event_count(struct perf_event *event)
2972 {
2973 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2974 }
2975 
2976 static u64 perf_event_read(struct perf_event *event)
2977 {
2978 	/*
2979 	 * If event is enabled and currently active on a CPU, update the
2980 	 * value in the event structure:
2981 	 */
2982 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2983 		smp_call_function_single(event->oncpu,
2984 					 __perf_event_read, event, 1);
2985 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2986 		struct perf_event_context *ctx = event->ctx;
2987 		unsigned long flags;
2988 
2989 		raw_spin_lock_irqsave(&ctx->lock, flags);
2990 		/*
2991 		 * may read while context is not active
2992 		 * (e.g., thread is blocked), in that case
2993 		 * we cannot update context time
2994 		 */
2995 		if (ctx->is_active) {
2996 			update_context_time(ctx);
2997 			update_cgrp_time_from_event(event);
2998 		}
2999 		update_event_times(event);
3000 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3001 	}
3002 
3003 	return perf_event_count(event);
3004 }
3005 
3006 /*
3007  * Initialize the perf_event context in a task_struct:
3008  */
3009 static void __perf_event_init_context(struct perf_event_context *ctx)
3010 {
3011 	raw_spin_lock_init(&ctx->lock);
3012 	mutex_init(&ctx->mutex);
3013 	INIT_LIST_HEAD(&ctx->pinned_groups);
3014 	INIT_LIST_HEAD(&ctx->flexible_groups);
3015 	INIT_LIST_HEAD(&ctx->event_list);
3016 	atomic_set(&ctx->refcount, 1);
3017 }
3018 
3019 static struct perf_event_context *
3020 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3021 {
3022 	struct perf_event_context *ctx;
3023 
3024 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3025 	if (!ctx)
3026 		return NULL;
3027 
3028 	__perf_event_init_context(ctx);
3029 	if (task) {
3030 		ctx->task = task;
3031 		get_task_struct(task);
3032 	}
3033 	ctx->pmu = pmu;
3034 
3035 	return ctx;
3036 }
3037 
3038 static struct task_struct *
3039 find_lively_task_by_vpid(pid_t vpid)
3040 {
3041 	struct task_struct *task;
3042 	int err;
3043 
3044 	rcu_read_lock();
3045 	if (!vpid)
3046 		task = current;
3047 	else
3048 		task = find_task_by_vpid(vpid);
3049 	if (task)
3050 		get_task_struct(task);
3051 	rcu_read_unlock();
3052 
3053 	if (!task)
3054 		return ERR_PTR(-ESRCH);
3055 
3056 	/* Reuse ptrace permission checks for now. */
3057 	err = -EACCES;
3058 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3059 		goto errout;
3060 
3061 	return task;
3062 errout:
3063 	put_task_struct(task);
3064 	return ERR_PTR(err);
3065 
3066 }
3067 
3068 /*
3069  * Returns a matching context with refcount and pincount.
3070  */
3071 static struct perf_event_context *
3072 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3073 {
3074 	struct perf_event_context *ctx;
3075 	struct perf_cpu_context *cpuctx;
3076 	unsigned long flags;
3077 	int ctxn, err;
3078 
3079 	if (!task) {
3080 		/* Must be root to operate on a CPU event: */
3081 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3082 			return ERR_PTR(-EACCES);
3083 
3084 		/*
3085 		 * We could be clever and allow to attach a event to an
3086 		 * offline CPU and activate it when the CPU comes up, but
3087 		 * that's for later.
3088 		 */
3089 		if (!cpu_online(cpu))
3090 			return ERR_PTR(-ENODEV);
3091 
3092 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3093 		ctx = &cpuctx->ctx;
3094 		get_ctx(ctx);
3095 		++ctx->pin_count;
3096 
3097 		return ctx;
3098 	}
3099 
3100 	err = -EINVAL;
3101 	ctxn = pmu->task_ctx_nr;
3102 	if (ctxn < 0)
3103 		goto errout;
3104 
3105 retry:
3106 	ctx = perf_lock_task_context(task, ctxn, &flags);
3107 	if (ctx) {
3108 		unclone_ctx(ctx);
3109 		++ctx->pin_count;
3110 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3111 	} else {
3112 		ctx = alloc_perf_context(pmu, task);
3113 		err = -ENOMEM;
3114 		if (!ctx)
3115 			goto errout;
3116 
3117 		err = 0;
3118 		mutex_lock(&task->perf_event_mutex);
3119 		/*
3120 		 * If it has already passed perf_event_exit_task().
3121 		 * we must see PF_EXITING, it takes this mutex too.
3122 		 */
3123 		if (task->flags & PF_EXITING)
3124 			err = -ESRCH;
3125 		else if (task->perf_event_ctxp[ctxn])
3126 			err = -EAGAIN;
3127 		else {
3128 			get_ctx(ctx);
3129 			++ctx->pin_count;
3130 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3131 		}
3132 		mutex_unlock(&task->perf_event_mutex);
3133 
3134 		if (unlikely(err)) {
3135 			put_ctx(ctx);
3136 
3137 			if (err == -EAGAIN)
3138 				goto retry;
3139 			goto errout;
3140 		}
3141 	}
3142 
3143 	return ctx;
3144 
3145 errout:
3146 	return ERR_PTR(err);
3147 }
3148 
3149 static void perf_event_free_filter(struct perf_event *event);
3150 
3151 static void free_event_rcu(struct rcu_head *head)
3152 {
3153 	struct perf_event *event;
3154 
3155 	event = container_of(head, struct perf_event, rcu_head);
3156 	if (event->ns)
3157 		put_pid_ns(event->ns);
3158 	perf_event_free_filter(event);
3159 	kfree(event);
3160 }
3161 
3162 static void ring_buffer_put(struct ring_buffer *rb);
3163 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3164 
3165 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3166 {
3167 	if (event->parent)
3168 		return;
3169 
3170 	if (has_branch_stack(event)) {
3171 		if (!(event->attach_state & PERF_ATTACH_TASK))
3172 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3173 	}
3174 	if (is_cgroup_event(event))
3175 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3176 }
3177 
3178 static void unaccount_event(struct perf_event *event)
3179 {
3180 	if (event->parent)
3181 		return;
3182 
3183 	if (event->attach_state & PERF_ATTACH_TASK)
3184 		static_key_slow_dec_deferred(&perf_sched_events);
3185 	if (event->attr.mmap || event->attr.mmap_data)
3186 		atomic_dec(&nr_mmap_events);
3187 	if (event->attr.comm)
3188 		atomic_dec(&nr_comm_events);
3189 	if (event->attr.task)
3190 		atomic_dec(&nr_task_events);
3191 	if (event->attr.freq)
3192 		atomic_dec(&nr_freq_events);
3193 	if (is_cgroup_event(event))
3194 		static_key_slow_dec_deferred(&perf_sched_events);
3195 	if (has_branch_stack(event))
3196 		static_key_slow_dec_deferred(&perf_sched_events);
3197 
3198 	unaccount_event_cpu(event, event->cpu);
3199 }
3200 
3201 static void __free_event(struct perf_event *event)
3202 {
3203 	if (!event->parent) {
3204 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3205 			put_callchain_buffers();
3206 	}
3207 
3208 	if (event->destroy)
3209 		event->destroy(event);
3210 
3211 	if (event->ctx)
3212 		put_ctx(event->ctx);
3213 
3214 	call_rcu(&event->rcu_head, free_event_rcu);
3215 }
3216 static void free_event(struct perf_event *event)
3217 {
3218 	irq_work_sync(&event->pending);
3219 
3220 	unaccount_event(event);
3221 
3222 	if (event->rb) {
3223 		struct ring_buffer *rb;
3224 
3225 		/*
3226 		 * Can happen when we close an event with re-directed output.
3227 		 *
3228 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3229 		 * over us; possibly making our ring_buffer_put() the last.
3230 		 */
3231 		mutex_lock(&event->mmap_mutex);
3232 		rb = event->rb;
3233 		if (rb) {
3234 			rcu_assign_pointer(event->rb, NULL);
3235 			ring_buffer_detach(event, rb);
3236 			ring_buffer_put(rb); /* could be last */
3237 		}
3238 		mutex_unlock(&event->mmap_mutex);
3239 	}
3240 
3241 	if (is_cgroup_event(event))
3242 		perf_detach_cgroup(event);
3243 
3244 
3245 	__free_event(event);
3246 }
3247 
3248 int perf_event_release_kernel(struct perf_event *event)
3249 {
3250 	struct perf_event_context *ctx = event->ctx;
3251 
3252 	WARN_ON_ONCE(ctx->parent_ctx);
3253 	/*
3254 	 * There are two ways this annotation is useful:
3255 	 *
3256 	 *  1) there is a lock recursion from perf_event_exit_task
3257 	 *     see the comment there.
3258 	 *
3259 	 *  2) there is a lock-inversion with mmap_sem through
3260 	 *     perf_event_read_group(), which takes faults while
3261 	 *     holding ctx->mutex, however this is called after
3262 	 *     the last filedesc died, so there is no possibility
3263 	 *     to trigger the AB-BA case.
3264 	 */
3265 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3266 	raw_spin_lock_irq(&ctx->lock);
3267 	perf_group_detach(event);
3268 	raw_spin_unlock_irq(&ctx->lock);
3269 	perf_remove_from_context(event);
3270 	mutex_unlock(&ctx->mutex);
3271 
3272 	free_event(event);
3273 
3274 	return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3277 
3278 /*
3279  * Called when the last reference to the file is gone.
3280  */
3281 static void put_event(struct perf_event *event)
3282 {
3283 	struct task_struct *owner;
3284 
3285 	if (!atomic_long_dec_and_test(&event->refcount))
3286 		return;
3287 
3288 	rcu_read_lock();
3289 	owner = ACCESS_ONCE(event->owner);
3290 	/*
3291 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3292 	 * !owner it means the list deletion is complete and we can indeed
3293 	 * free this event, otherwise we need to serialize on
3294 	 * owner->perf_event_mutex.
3295 	 */
3296 	smp_read_barrier_depends();
3297 	if (owner) {
3298 		/*
3299 		 * Since delayed_put_task_struct() also drops the last
3300 		 * task reference we can safely take a new reference
3301 		 * while holding the rcu_read_lock().
3302 		 */
3303 		get_task_struct(owner);
3304 	}
3305 	rcu_read_unlock();
3306 
3307 	if (owner) {
3308 		mutex_lock(&owner->perf_event_mutex);
3309 		/*
3310 		 * We have to re-check the event->owner field, if it is cleared
3311 		 * we raced with perf_event_exit_task(), acquiring the mutex
3312 		 * ensured they're done, and we can proceed with freeing the
3313 		 * event.
3314 		 */
3315 		if (event->owner)
3316 			list_del_init(&event->owner_entry);
3317 		mutex_unlock(&owner->perf_event_mutex);
3318 		put_task_struct(owner);
3319 	}
3320 
3321 	perf_event_release_kernel(event);
3322 }
3323 
3324 static int perf_release(struct inode *inode, struct file *file)
3325 {
3326 	put_event(file->private_data);
3327 	return 0;
3328 }
3329 
3330 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3331 {
3332 	struct perf_event *child;
3333 	u64 total = 0;
3334 
3335 	*enabled = 0;
3336 	*running = 0;
3337 
3338 	mutex_lock(&event->child_mutex);
3339 	total += perf_event_read(event);
3340 	*enabled += event->total_time_enabled +
3341 			atomic64_read(&event->child_total_time_enabled);
3342 	*running += event->total_time_running +
3343 			atomic64_read(&event->child_total_time_running);
3344 
3345 	list_for_each_entry(child, &event->child_list, child_list) {
3346 		total += perf_event_read(child);
3347 		*enabled += child->total_time_enabled;
3348 		*running += child->total_time_running;
3349 	}
3350 	mutex_unlock(&event->child_mutex);
3351 
3352 	return total;
3353 }
3354 EXPORT_SYMBOL_GPL(perf_event_read_value);
3355 
3356 static int perf_event_read_group(struct perf_event *event,
3357 				   u64 read_format, char __user *buf)
3358 {
3359 	struct perf_event *leader = event->group_leader, *sub;
3360 	int n = 0, size = 0, ret = -EFAULT;
3361 	struct perf_event_context *ctx = leader->ctx;
3362 	u64 values[5];
3363 	u64 count, enabled, running;
3364 
3365 	mutex_lock(&ctx->mutex);
3366 	count = perf_event_read_value(leader, &enabled, &running);
3367 
3368 	values[n++] = 1 + leader->nr_siblings;
3369 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3370 		values[n++] = enabled;
3371 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3372 		values[n++] = running;
3373 	values[n++] = count;
3374 	if (read_format & PERF_FORMAT_ID)
3375 		values[n++] = primary_event_id(leader);
3376 
3377 	size = n * sizeof(u64);
3378 
3379 	if (copy_to_user(buf, values, size))
3380 		goto unlock;
3381 
3382 	ret = size;
3383 
3384 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3385 		n = 0;
3386 
3387 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3388 		if (read_format & PERF_FORMAT_ID)
3389 			values[n++] = primary_event_id(sub);
3390 
3391 		size = n * sizeof(u64);
3392 
3393 		if (copy_to_user(buf + ret, values, size)) {
3394 			ret = -EFAULT;
3395 			goto unlock;
3396 		}
3397 
3398 		ret += size;
3399 	}
3400 unlock:
3401 	mutex_unlock(&ctx->mutex);
3402 
3403 	return ret;
3404 }
3405 
3406 static int perf_event_read_one(struct perf_event *event,
3407 				 u64 read_format, char __user *buf)
3408 {
3409 	u64 enabled, running;
3410 	u64 values[4];
3411 	int n = 0;
3412 
3413 	values[n++] = perf_event_read_value(event, &enabled, &running);
3414 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3415 		values[n++] = enabled;
3416 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3417 		values[n++] = running;
3418 	if (read_format & PERF_FORMAT_ID)
3419 		values[n++] = primary_event_id(event);
3420 
3421 	if (copy_to_user(buf, values, n * sizeof(u64)))
3422 		return -EFAULT;
3423 
3424 	return n * sizeof(u64);
3425 }
3426 
3427 /*
3428  * Read the performance event - simple non blocking version for now
3429  */
3430 static ssize_t
3431 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3432 {
3433 	u64 read_format = event->attr.read_format;
3434 	int ret;
3435 
3436 	/*
3437 	 * Return end-of-file for a read on a event that is in
3438 	 * error state (i.e. because it was pinned but it couldn't be
3439 	 * scheduled on to the CPU at some point).
3440 	 */
3441 	if (event->state == PERF_EVENT_STATE_ERROR)
3442 		return 0;
3443 
3444 	if (count < event->read_size)
3445 		return -ENOSPC;
3446 
3447 	WARN_ON_ONCE(event->ctx->parent_ctx);
3448 	if (read_format & PERF_FORMAT_GROUP)
3449 		ret = perf_event_read_group(event, read_format, buf);
3450 	else
3451 		ret = perf_event_read_one(event, read_format, buf);
3452 
3453 	return ret;
3454 }
3455 
3456 static ssize_t
3457 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3458 {
3459 	struct perf_event *event = file->private_data;
3460 
3461 	return perf_read_hw(event, buf, count);
3462 }
3463 
3464 static unsigned int perf_poll(struct file *file, poll_table *wait)
3465 {
3466 	struct perf_event *event = file->private_data;
3467 	struct ring_buffer *rb;
3468 	unsigned int events = POLL_HUP;
3469 
3470 	/*
3471 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3472 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3473 	 */
3474 	mutex_lock(&event->mmap_mutex);
3475 	rb = event->rb;
3476 	if (rb)
3477 		events = atomic_xchg(&rb->poll, 0);
3478 	mutex_unlock(&event->mmap_mutex);
3479 
3480 	poll_wait(file, &event->waitq, wait);
3481 
3482 	return events;
3483 }
3484 
3485 static void perf_event_reset(struct perf_event *event)
3486 {
3487 	(void)perf_event_read(event);
3488 	local64_set(&event->count, 0);
3489 	perf_event_update_userpage(event);
3490 }
3491 
3492 /*
3493  * Holding the top-level event's child_mutex means that any
3494  * descendant process that has inherited this event will block
3495  * in sync_child_event if it goes to exit, thus satisfying the
3496  * task existence requirements of perf_event_enable/disable.
3497  */
3498 static void perf_event_for_each_child(struct perf_event *event,
3499 					void (*func)(struct perf_event *))
3500 {
3501 	struct perf_event *child;
3502 
3503 	WARN_ON_ONCE(event->ctx->parent_ctx);
3504 	mutex_lock(&event->child_mutex);
3505 	func(event);
3506 	list_for_each_entry(child, &event->child_list, child_list)
3507 		func(child);
3508 	mutex_unlock(&event->child_mutex);
3509 }
3510 
3511 static void perf_event_for_each(struct perf_event *event,
3512 				  void (*func)(struct perf_event *))
3513 {
3514 	struct perf_event_context *ctx = event->ctx;
3515 	struct perf_event *sibling;
3516 
3517 	WARN_ON_ONCE(ctx->parent_ctx);
3518 	mutex_lock(&ctx->mutex);
3519 	event = event->group_leader;
3520 
3521 	perf_event_for_each_child(event, func);
3522 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3523 		perf_event_for_each_child(sibling, func);
3524 	mutex_unlock(&ctx->mutex);
3525 }
3526 
3527 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3528 {
3529 	struct perf_event_context *ctx = event->ctx;
3530 	int ret = 0;
3531 	u64 value;
3532 
3533 	if (!is_sampling_event(event))
3534 		return -EINVAL;
3535 
3536 	if (copy_from_user(&value, arg, sizeof(value)))
3537 		return -EFAULT;
3538 
3539 	if (!value)
3540 		return -EINVAL;
3541 
3542 	raw_spin_lock_irq(&ctx->lock);
3543 	if (event->attr.freq) {
3544 		if (value > sysctl_perf_event_sample_rate) {
3545 			ret = -EINVAL;
3546 			goto unlock;
3547 		}
3548 
3549 		event->attr.sample_freq = value;
3550 	} else {
3551 		event->attr.sample_period = value;
3552 		event->hw.sample_period = value;
3553 	}
3554 unlock:
3555 	raw_spin_unlock_irq(&ctx->lock);
3556 
3557 	return ret;
3558 }
3559 
3560 static const struct file_operations perf_fops;
3561 
3562 static inline int perf_fget_light(int fd, struct fd *p)
3563 {
3564 	struct fd f = fdget(fd);
3565 	if (!f.file)
3566 		return -EBADF;
3567 
3568 	if (f.file->f_op != &perf_fops) {
3569 		fdput(f);
3570 		return -EBADF;
3571 	}
3572 	*p = f;
3573 	return 0;
3574 }
3575 
3576 static int perf_event_set_output(struct perf_event *event,
3577 				 struct perf_event *output_event);
3578 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3579 
3580 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3581 {
3582 	struct perf_event *event = file->private_data;
3583 	void (*func)(struct perf_event *);
3584 	u32 flags = arg;
3585 
3586 	switch (cmd) {
3587 	case PERF_EVENT_IOC_ENABLE:
3588 		func = perf_event_enable;
3589 		break;
3590 	case PERF_EVENT_IOC_DISABLE:
3591 		func = perf_event_disable;
3592 		break;
3593 	case PERF_EVENT_IOC_RESET:
3594 		func = perf_event_reset;
3595 		break;
3596 
3597 	case PERF_EVENT_IOC_REFRESH:
3598 		return perf_event_refresh(event, arg);
3599 
3600 	case PERF_EVENT_IOC_PERIOD:
3601 		return perf_event_period(event, (u64 __user *)arg);
3602 
3603 	case PERF_EVENT_IOC_ID:
3604 	{
3605 		u64 id = primary_event_id(event);
3606 
3607 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3608 			return -EFAULT;
3609 		return 0;
3610 	}
3611 
3612 	case PERF_EVENT_IOC_SET_OUTPUT:
3613 	{
3614 		int ret;
3615 		if (arg != -1) {
3616 			struct perf_event *output_event;
3617 			struct fd output;
3618 			ret = perf_fget_light(arg, &output);
3619 			if (ret)
3620 				return ret;
3621 			output_event = output.file->private_data;
3622 			ret = perf_event_set_output(event, output_event);
3623 			fdput(output);
3624 		} else {
3625 			ret = perf_event_set_output(event, NULL);
3626 		}
3627 		return ret;
3628 	}
3629 
3630 	case PERF_EVENT_IOC_SET_FILTER:
3631 		return perf_event_set_filter(event, (void __user *)arg);
3632 
3633 	default:
3634 		return -ENOTTY;
3635 	}
3636 
3637 	if (flags & PERF_IOC_FLAG_GROUP)
3638 		perf_event_for_each(event, func);
3639 	else
3640 		perf_event_for_each_child(event, func);
3641 
3642 	return 0;
3643 }
3644 
3645 int perf_event_task_enable(void)
3646 {
3647 	struct perf_event *event;
3648 
3649 	mutex_lock(&current->perf_event_mutex);
3650 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3651 		perf_event_for_each_child(event, perf_event_enable);
3652 	mutex_unlock(&current->perf_event_mutex);
3653 
3654 	return 0;
3655 }
3656 
3657 int perf_event_task_disable(void)
3658 {
3659 	struct perf_event *event;
3660 
3661 	mutex_lock(&current->perf_event_mutex);
3662 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3663 		perf_event_for_each_child(event, perf_event_disable);
3664 	mutex_unlock(&current->perf_event_mutex);
3665 
3666 	return 0;
3667 }
3668 
3669 static int perf_event_index(struct perf_event *event)
3670 {
3671 	if (event->hw.state & PERF_HES_STOPPED)
3672 		return 0;
3673 
3674 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3675 		return 0;
3676 
3677 	return event->pmu->event_idx(event);
3678 }
3679 
3680 static void calc_timer_values(struct perf_event *event,
3681 				u64 *now,
3682 				u64 *enabled,
3683 				u64 *running)
3684 {
3685 	u64 ctx_time;
3686 
3687 	*now = perf_clock();
3688 	ctx_time = event->shadow_ctx_time + *now;
3689 	*enabled = ctx_time - event->tstamp_enabled;
3690 	*running = ctx_time - event->tstamp_running;
3691 }
3692 
3693 static void perf_event_init_userpage(struct perf_event *event)
3694 {
3695 	struct perf_event_mmap_page *userpg;
3696 	struct ring_buffer *rb;
3697 
3698 	rcu_read_lock();
3699 	rb = rcu_dereference(event->rb);
3700 	if (!rb)
3701 		goto unlock;
3702 
3703 	userpg = rb->user_page;
3704 
3705 	/* Allow new userspace to detect that bit 0 is deprecated */
3706 	userpg->cap_bit0_is_deprecated = 1;
3707 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3708 
3709 unlock:
3710 	rcu_read_unlock();
3711 }
3712 
3713 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3714 {
3715 }
3716 
3717 /*
3718  * Callers need to ensure there can be no nesting of this function, otherwise
3719  * the seqlock logic goes bad. We can not serialize this because the arch
3720  * code calls this from NMI context.
3721  */
3722 void perf_event_update_userpage(struct perf_event *event)
3723 {
3724 	struct perf_event_mmap_page *userpg;
3725 	struct ring_buffer *rb;
3726 	u64 enabled, running, now;
3727 
3728 	rcu_read_lock();
3729 	rb = rcu_dereference(event->rb);
3730 	if (!rb)
3731 		goto unlock;
3732 
3733 	/*
3734 	 * compute total_time_enabled, total_time_running
3735 	 * based on snapshot values taken when the event
3736 	 * was last scheduled in.
3737 	 *
3738 	 * we cannot simply called update_context_time()
3739 	 * because of locking issue as we can be called in
3740 	 * NMI context
3741 	 */
3742 	calc_timer_values(event, &now, &enabled, &running);
3743 
3744 	userpg = rb->user_page;
3745 	/*
3746 	 * Disable preemption so as to not let the corresponding user-space
3747 	 * spin too long if we get preempted.
3748 	 */
3749 	preempt_disable();
3750 	++userpg->lock;
3751 	barrier();
3752 	userpg->index = perf_event_index(event);
3753 	userpg->offset = perf_event_count(event);
3754 	if (userpg->index)
3755 		userpg->offset -= local64_read(&event->hw.prev_count);
3756 
3757 	userpg->time_enabled = enabled +
3758 			atomic64_read(&event->child_total_time_enabled);
3759 
3760 	userpg->time_running = running +
3761 			atomic64_read(&event->child_total_time_running);
3762 
3763 	arch_perf_update_userpage(userpg, now);
3764 
3765 	barrier();
3766 	++userpg->lock;
3767 	preempt_enable();
3768 unlock:
3769 	rcu_read_unlock();
3770 }
3771 
3772 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3773 {
3774 	struct perf_event *event = vma->vm_file->private_data;
3775 	struct ring_buffer *rb;
3776 	int ret = VM_FAULT_SIGBUS;
3777 
3778 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3779 		if (vmf->pgoff == 0)
3780 			ret = 0;
3781 		return ret;
3782 	}
3783 
3784 	rcu_read_lock();
3785 	rb = rcu_dereference(event->rb);
3786 	if (!rb)
3787 		goto unlock;
3788 
3789 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3790 		goto unlock;
3791 
3792 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3793 	if (!vmf->page)
3794 		goto unlock;
3795 
3796 	get_page(vmf->page);
3797 	vmf->page->mapping = vma->vm_file->f_mapping;
3798 	vmf->page->index   = vmf->pgoff;
3799 
3800 	ret = 0;
3801 unlock:
3802 	rcu_read_unlock();
3803 
3804 	return ret;
3805 }
3806 
3807 static void ring_buffer_attach(struct perf_event *event,
3808 			       struct ring_buffer *rb)
3809 {
3810 	unsigned long flags;
3811 
3812 	if (!list_empty(&event->rb_entry))
3813 		return;
3814 
3815 	spin_lock_irqsave(&rb->event_lock, flags);
3816 	if (list_empty(&event->rb_entry))
3817 		list_add(&event->rb_entry, &rb->event_list);
3818 	spin_unlock_irqrestore(&rb->event_lock, flags);
3819 }
3820 
3821 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3822 {
3823 	unsigned long flags;
3824 
3825 	if (list_empty(&event->rb_entry))
3826 		return;
3827 
3828 	spin_lock_irqsave(&rb->event_lock, flags);
3829 	list_del_init(&event->rb_entry);
3830 	wake_up_all(&event->waitq);
3831 	spin_unlock_irqrestore(&rb->event_lock, flags);
3832 }
3833 
3834 static void ring_buffer_wakeup(struct perf_event *event)
3835 {
3836 	struct ring_buffer *rb;
3837 
3838 	rcu_read_lock();
3839 	rb = rcu_dereference(event->rb);
3840 	if (rb) {
3841 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3842 			wake_up_all(&event->waitq);
3843 	}
3844 	rcu_read_unlock();
3845 }
3846 
3847 static void rb_free_rcu(struct rcu_head *rcu_head)
3848 {
3849 	struct ring_buffer *rb;
3850 
3851 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3852 	rb_free(rb);
3853 }
3854 
3855 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3856 {
3857 	struct ring_buffer *rb;
3858 
3859 	rcu_read_lock();
3860 	rb = rcu_dereference(event->rb);
3861 	if (rb) {
3862 		if (!atomic_inc_not_zero(&rb->refcount))
3863 			rb = NULL;
3864 	}
3865 	rcu_read_unlock();
3866 
3867 	return rb;
3868 }
3869 
3870 static void ring_buffer_put(struct ring_buffer *rb)
3871 {
3872 	if (!atomic_dec_and_test(&rb->refcount))
3873 		return;
3874 
3875 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3876 
3877 	call_rcu(&rb->rcu_head, rb_free_rcu);
3878 }
3879 
3880 static void perf_mmap_open(struct vm_area_struct *vma)
3881 {
3882 	struct perf_event *event = vma->vm_file->private_data;
3883 
3884 	atomic_inc(&event->mmap_count);
3885 	atomic_inc(&event->rb->mmap_count);
3886 }
3887 
3888 /*
3889  * A buffer can be mmap()ed multiple times; either directly through the same
3890  * event, or through other events by use of perf_event_set_output().
3891  *
3892  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3893  * the buffer here, where we still have a VM context. This means we need
3894  * to detach all events redirecting to us.
3895  */
3896 static void perf_mmap_close(struct vm_area_struct *vma)
3897 {
3898 	struct perf_event *event = vma->vm_file->private_data;
3899 
3900 	struct ring_buffer *rb = event->rb;
3901 	struct user_struct *mmap_user = rb->mmap_user;
3902 	int mmap_locked = rb->mmap_locked;
3903 	unsigned long size = perf_data_size(rb);
3904 
3905 	atomic_dec(&rb->mmap_count);
3906 
3907 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3908 		return;
3909 
3910 	/* Detach current event from the buffer. */
3911 	rcu_assign_pointer(event->rb, NULL);
3912 	ring_buffer_detach(event, rb);
3913 	mutex_unlock(&event->mmap_mutex);
3914 
3915 	/* If there's still other mmap()s of this buffer, we're done. */
3916 	if (atomic_read(&rb->mmap_count)) {
3917 		ring_buffer_put(rb); /* can't be last */
3918 		return;
3919 	}
3920 
3921 	/*
3922 	 * No other mmap()s, detach from all other events that might redirect
3923 	 * into the now unreachable buffer. Somewhat complicated by the
3924 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3925 	 */
3926 again:
3927 	rcu_read_lock();
3928 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3929 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3930 			/*
3931 			 * This event is en-route to free_event() which will
3932 			 * detach it and remove it from the list.
3933 			 */
3934 			continue;
3935 		}
3936 		rcu_read_unlock();
3937 
3938 		mutex_lock(&event->mmap_mutex);
3939 		/*
3940 		 * Check we didn't race with perf_event_set_output() which can
3941 		 * swizzle the rb from under us while we were waiting to
3942 		 * acquire mmap_mutex.
3943 		 *
3944 		 * If we find a different rb; ignore this event, a next
3945 		 * iteration will no longer find it on the list. We have to
3946 		 * still restart the iteration to make sure we're not now
3947 		 * iterating the wrong list.
3948 		 */
3949 		if (event->rb == rb) {
3950 			rcu_assign_pointer(event->rb, NULL);
3951 			ring_buffer_detach(event, rb);
3952 			ring_buffer_put(rb); /* can't be last, we still have one */
3953 		}
3954 		mutex_unlock(&event->mmap_mutex);
3955 		put_event(event);
3956 
3957 		/*
3958 		 * Restart the iteration; either we're on the wrong list or
3959 		 * destroyed its integrity by doing a deletion.
3960 		 */
3961 		goto again;
3962 	}
3963 	rcu_read_unlock();
3964 
3965 	/*
3966 	 * It could be there's still a few 0-ref events on the list; they'll
3967 	 * get cleaned up by free_event() -- they'll also still have their
3968 	 * ref on the rb and will free it whenever they are done with it.
3969 	 *
3970 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3971 	 * undo the VM accounting.
3972 	 */
3973 
3974 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3975 	vma->vm_mm->pinned_vm -= mmap_locked;
3976 	free_uid(mmap_user);
3977 
3978 	ring_buffer_put(rb); /* could be last */
3979 }
3980 
3981 static const struct vm_operations_struct perf_mmap_vmops = {
3982 	.open		= perf_mmap_open,
3983 	.close		= perf_mmap_close,
3984 	.fault		= perf_mmap_fault,
3985 	.page_mkwrite	= perf_mmap_fault,
3986 };
3987 
3988 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3989 {
3990 	struct perf_event *event = file->private_data;
3991 	unsigned long user_locked, user_lock_limit;
3992 	struct user_struct *user = current_user();
3993 	unsigned long locked, lock_limit;
3994 	struct ring_buffer *rb;
3995 	unsigned long vma_size;
3996 	unsigned long nr_pages;
3997 	long user_extra, extra;
3998 	int ret = 0, flags = 0;
3999 
4000 	/*
4001 	 * Don't allow mmap() of inherited per-task counters. This would
4002 	 * create a performance issue due to all children writing to the
4003 	 * same rb.
4004 	 */
4005 	if (event->cpu == -1 && event->attr.inherit)
4006 		return -EINVAL;
4007 
4008 	if (!(vma->vm_flags & VM_SHARED))
4009 		return -EINVAL;
4010 
4011 	vma_size = vma->vm_end - vma->vm_start;
4012 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4013 
4014 	/*
4015 	 * If we have rb pages ensure they're a power-of-two number, so we
4016 	 * can do bitmasks instead of modulo.
4017 	 */
4018 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4019 		return -EINVAL;
4020 
4021 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4022 		return -EINVAL;
4023 
4024 	if (vma->vm_pgoff != 0)
4025 		return -EINVAL;
4026 
4027 	WARN_ON_ONCE(event->ctx->parent_ctx);
4028 again:
4029 	mutex_lock(&event->mmap_mutex);
4030 	if (event->rb) {
4031 		if (event->rb->nr_pages != nr_pages) {
4032 			ret = -EINVAL;
4033 			goto unlock;
4034 		}
4035 
4036 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4037 			/*
4038 			 * Raced against perf_mmap_close() through
4039 			 * perf_event_set_output(). Try again, hope for better
4040 			 * luck.
4041 			 */
4042 			mutex_unlock(&event->mmap_mutex);
4043 			goto again;
4044 		}
4045 
4046 		goto unlock;
4047 	}
4048 
4049 	user_extra = nr_pages + 1;
4050 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4051 
4052 	/*
4053 	 * Increase the limit linearly with more CPUs:
4054 	 */
4055 	user_lock_limit *= num_online_cpus();
4056 
4057 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4058 
4059 	extra = 0;
4060 	if (user_locked > user_lock_limit)
4061 		extra = user_locked - user_lock_limit;
4062 
4063 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4064 	lock_limit >>= PAGE_SHIFT;
4065 	locked = vma->vm_mm->pinned_vm + extra;
4066 
4067 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4068 		!capable(CAP_IPC_LOCK)) {
4069 		ret = -EPERM;
4070 		goto unlock;
4071 	}
4072 
4073 	WARN_ON(event->rb);
4074 
4075 	if (vma->vm_flags & VM_WRITE)
4076 		flags |= RING_BUFFER_WRITABLE;
4077 
4078 	rb = rb_alloc(nr_pages,
4079 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4080 		event->cpu, flags);
4081 
4082 	if (!rb) {
4083 		ret = -ENOMEM;
4084 		goto unlock;
4085 	}
4086 
4087 	atomic_set(&rb->mmap_count, 1);
4088 	rb->mmap_locked = extra;
4089 	rb->mmap_user = get_current_user();
4090 
4091 	atomic_long_add(user_extra, &user->locked_vm);
4092 	vma->vm_mm->pinned_vm += extra;
4093 
4094 	ring_buffer_attach(event, rb);
4095 	rcu_assign_pointer(event->rb, rb);
4096 
4097 	perf_event_init_userpage(event);
4098 	perf_event_update_userpage(event);
4099 
4100 unlock:
4101 	if (!ret)
4102 		atomic_inc(&event->mmap_count);
4103 	mutex_unlock(&event->mmap_mutex);
4104 
4105 	/*
4106 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4107 	 * vma.
4108 	 */
4109 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4110 	vma->vm_ops = &perf_mmap_vmops;
4111 
4112 	return ret;
4113 }
4114 
4115 static int perf_fasync(int fd, struct file *filp, int on)
4116 {
4117 	struct inode *inode = file_inode(filp);
4118 	struct perf_event *event = filp->private_data;
4119 	int retval;
4120 
4121 	mutex_lock(&inode->i_mutex);
4122 	retval = fasync_helper(fd, filp, on, &event->fasync);
4123 	mutex_unlock(&inode->i_mutex);
4124 
4125 	if (retval < 0)
4126 		return retval;
4127 
4128 	return 0;
4129 }
4130 
4131 static const struct file_operations perf_fops = {
4132 	.llseek			= no_llseek,
4133 	.release		= perf_release,
4134 	.read			= perf_read,
4135 	.poll			= perf_poll,
4136 	.unlocked_ioctl		= perf_ioctl,
4137 	.compat_ioctl		= perf_ioctl,
4138 	.mmap			= perf_mmap,
4139 	.fasync			= perf_fasync,
4140 };
4141 
4142 /*
4143  * Perf event wakeup
4144  *
4145  * If there's data, ensure we set the poll() state and publish everything
4146  * to user-space before waking everybody up.
4147  */
4148 
4149 void perf_event_wakeup(struct perf_event *event)
4150 {
4151 	ring_buffer_wakeup(event);
4152 
4153 	if (event->pending_kill) {
4154 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4155 		event->pending_kill = 0;
4156 	}
4157 }
4158 
4159 static void perf_pending_event(struct irq_work *entry)
4160 {
4161 	struct perf_event *event = container_of(entry,
4162 			struct perf_event, pending);
4163 
4164 	if (event->pending_disable) {
4165 		event->pending_disable = 0;
4166 		__perf_event_disable(event);
4167 	}
4168 
4169 	if (event->pending_wakeup) {
4170 		event->pending_wakeup = 0;
4171 		perf_event_wakeup(event);
4172 	}
4173 }
4174 
4175 /*
4176  * We assume there is only KVM supporting the callbacks.
4177  * Later on, we might change it to a list if there is
4178  * another virtualization implementation supporting the callbacks.
4179  */
4180 struct perf_guest_info_callbacks *perf_guest_cbs;
4181 
4182 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4183 {
4184 	perf_guest_cbs = cbs;
4185 	return 0;
4186 }
4187 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4188 
4189 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4190 {
4191 	perf_guest_cbs = NULL;
4192 	return 0;
4193 }
4194 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4195 
4196 static void
4197 perf_output_sample_regs(struct perf_output_handle *handle,
4198 			struct pt_regs *regs, u64 mask)
4199 {
4200 	int bit;
4201 
4202 	for_each_set_bit(bit, (const unsigned long *) &mask,
4203 			 sizeof(mask) * BITS_PER_BYTE) {
4204 		u64 val;
4205 
4206 		val = perf_reg_value(regs, bit);
4207 		perf_output_put(handle, val);
4208 	}
4209 }
4210 
4211 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4212 				  struct pt_regs *regs)
4213 {
4214 	if (!user_mode(regs)) {
4215 		if (current->mm)
4216 			regs = task_pt_regs(current);
4217 		else
4218 			regs = NULL;
4219 	}
4220 
4221 	if (regs) {
4222 		regs_user->regs = regs;
4223 		regs_user->abi  = perf_reg_abi(current);
4224 	}
4225 }
4226 
4227 /*
4228  * Get remaining task size from user stack pointer.
4229  *
4230  * It'd be better to take stack vma map and limit this more
4231  * precisly, but there's no way to get it safely under interrupt,
4232  * so using TASK_SIZE as limit.
4233  */
4234 static u64 perf_ustack_task_size(struct pt_regs *regs)
4235 {
4236 	unsigned long addr = perf_user_stack_pointer(regs);
4237 
4238 	if (!addr || addr >= TASK_SIZE)
4239 		return 0;
4240 
4241 	return TASK_SIZE - addr;
4242 }
4243 
4244 static u16
4245 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4246 			struct pt_regs *regs)
4247 {
4248 	u64 task_size;
4249 
4250 	/* No regs, no stack pointer, no dump. */
4251 	if (!regs)
4252 		return 0;
4253 
4254 	/*
4255 	 * Check if we fit in with the requested stack size into the:
4256 	 * - TASK_SIZE
4257 	 *   If we don't, we limit the size to the TASK_SIZE.
4258 	 *
4259 	 * - remaining sample size
4260 	 *   If we don't, we customize the stack size to
4261 	 *   fit in to the remaining sample size.
4262 	 */
4263 
4264 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4265 	stack_size = min(stack_size, (u16) task_size);
4266 
4267 	/* Current header size plus static size and dynamic size. */
4268 	header_size += 2 * sizeof(u64);
4269 
4270 	/* Do we fit in with the current stack dump size? */
4271 	if ((u16) (header_size + stack_size) < header_size) {
4272 		/*
4273 		 * If we overflow the maximum size for the sample,
4274 		 * we customize the stack dump size to fit in.
4275 		 */
4276 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4277 		stack_size = round_up(stack_size, sizeof(u64));
4278 	}
4279 
4280 	return stack_size;
4281 }
4282 
4283 static void
4284 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4285 			  struct pt_regs *regs)
4286 {
4287 	/* Case of a kernel thread, nothing to dump */
4288 	if (!regs) {
4289 		u64 size = 0;
4290 		perf_output_put(handle, size);
4291 	} else {
4292 		unsigned long sp;
4293 		unsigned int rem;
4294 		u64 dyn_size;
4295 
4296 		/*
4297 		 * We dump:
4298 		 * static size
4299 		 *   - the size requested by user or the best one we can fit
4300 		 *     in to the sample max size
4301 		 * data
4302 		 *   - user stack dump data
4303 		 * dynamic size
4304 		 *   - the actual dumped size
4305 		 */
4306 
4307 		/* Static size. */
4308 		perf_output_put(handle, dump_size);
4309 
4310 		/* Data. */
4311 		sp = perf_user_stack_pointer(regs);
4312 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4313 		dyn_size = dump_size - rem;
4314 
4315 		perf_output_skip(handle, rem);
4316 
4317 		/* Dynamic size. */
4318 		perf_output_put(handle, dyn_size);
4319 	}
4320 }
4321 
4322 static void __perf_event_header__init_id(struct perf_event_header *header,
4323 					 struct perf_sample_data *data,
4324 					 struct perf_event *event)
4325 {
4326 	u64 sample_type = event->attr.sample_type;
4327 
4328 	data->type = sample_type;
4329 	header->size += event->id_header_size;
4330 
4331 	if (sample_type & PERF_SAMPLE_TID) {
4332 		/* namespace issues */
4333 		data->tid_entry.pid = perf_event_pid(event, current);
4334 		data->tid_entry.tid = perf_event_tid(event, current);
4335 	}
4336 
4337 	if (sample_type & PERF_SAMPLE_TIME)
4338 		data->time = perf_clock();
4339 
4340 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4341 		data->id = primary_event_id(event);
4342 
4343 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4344 		data->stream_id = event->id;
4345 
4346 	if (sample_type & PERF_SAMPLE_CPU) {
4347 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4348 		data->cpu_entry.reserved = 0;
4349 	}
4350 }
4351 
4352 void perf_event_header__init_id(struct perf_event_header *header,
4353 				struct perf_sample_data *data,
4354 				struct perf_event *event)
4355 {
4356 	if (event->attr.sample_id_all)
4357 		__perf_event_header__init_id(header, data, event);
4358 }
4359 
4360 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4361 					   struct perf_sample_data *data)
4362 {
4363 	u64 sample_type = data->type;
4364 
4365 	if (sample_type & PERF_SAMPLE_TID)
4366 		perf_output_put(handle, data->tid_entry);
4367 
4368 	if (sample_type & PERF_SAMPLE_TIME)
4369 		perf_output_put(handle, data->time);
4370 
4371 	if (sample_type & PERF_SAMPLE_ID)
4372 		perf_output_put(handle, data->id);
4373 
4374 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4375 		perf_output_put(handle, data->stream_id);
4376 
4377 	if (sample_type & PERF_SAMPLE_CPU)
4378 		perf_output_put(handle, data->cpu_entry);
4379 
4380 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4381 		perf_output_put(handle, data->id);
4382 }
4383 
4384 void perf_event__output_id_sample(struct perf_event *event,
4385 				  struct perf_output_handle *handle,
4386 				  struct perf_sample_data *sample)
4387 {
4388 	if (event->attr.sample_id_all)
4389 		__perf_event__output_id_sample(handle, sample);
4390 }
4391 
4392 static void perf_output_read_one(struct perf_output_handle *handle,
4393 				 struct perf_event *event,
4394 				 u64 enabled, u64 running)
4395 {
4396 	u64 read_format = event->attr.read_format;
4397 	u64 values[4];
4398 	int n = 0;
4399 
4400 	values[n++] = perf_event_count(event);
4401 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4402 		values[n++] = enabled +
4403 			atomic64_read(&event->child_total_time_enabled);
4404 	}
4405 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4406 		values[n++] = running +
4407 			atomic64_read(&event->child_total_time_running);
4408 	}
4409 	if (read_format & PERF_FORMAT_ID)
4410 		values[n++] = primary_event_id(event);
4411 
4412 	__output_copy(handle, values, n * sizeof(u64));
4413 }
4414 
4415 /*
4416  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4417  */
4418 static void perf_output_read_group(struct perf_output_handle *handle,
4419 			    struct perf_event *event,
4420 			    u64 enabled, u64 running)
4421 {
4422 	struct perf_event *leader = event->group_leader, *sub;
4423 	u64 read_format = event->attr.read_format;
4424 	u64 values[5];
4425 	int n = 0;
4426 
4427 	values[n++] = 1 + leader->nr_siblings;
4428 
4429 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4430 		values[n++] = enabled;
4431 
4432 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4433 		values[n++] = running;
4434 
4435 	if (leader != event)
4436 		leader->pmu->read(leader);
4437 
4438 	values[n++] = perf_event_count(leader);
4439 	if (read_format & PERF_FORMAT_ID)
4440 		values[n++] = primary_event_id(leader);
4441 
4442 	__output_copy(handle, values, n * sizeof(u64));
4443 
4444 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4445 		n = 0;
4446 
4447 		if ((sub != event) &&
4448 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4449 			sub->pmu->read(sub);
4450 
4451 		values[n++] = perf_event_count(sub);
4452 		if (read_format & PERF_FORMAT_ID)
4453 			values[n++] = primary_event_id(sub);
4454 
4455 		__output_copy(handle, values, n * sizeof(u64));
4456 	}
4457 }
4458 
4459 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4460 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4461 
4462 static void perf_output_read(struct perf_output_handle *handle,
4463 			     struct perf_event *event)
4464 {
4465 	u64 enabled = 0, running = 0, now;
4466 	u64 read_format = event->attr.read_format;
4467 
4468 	/*
4469 	 * compute total_time_enabled, total_time_running
4470 	 * based on snapshot values taken when the event
4471 	 * was last scheduled in.
4472 	 *
4473 	 * we cannot simply called update_context_time()
4474 	 * because of locking issue as we are called in
4475 	 * NMI context
4476 	 */
4477 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4478 		calc_timer_values(event, &now, &enabled, &running);
4479 
4480 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4481 		perf_output_read_group(handle, event, enabled, running);
4482 	else
4483 		perf_output_read_one(handle, event, enabled, running);
4484 }
4485 
4486 void perf_output_sample(struct perf_output_handle *handle,
4487 			struct perf_event_header *header,
4488 			struct perf_sample_data *data,
4489 			struct perf_event *event)
4490 {
4491 	u64 sample_type = data->type;
4492 
4493 	perf_output_put(handle, *header);
4494 
4495 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4496 		perf_output_put(handle, data->id);
4497 
4498 	if (sample_type & PERF_SAMPLE_IP)
4499 		perf_output_put(handle, data->ip);
4500 
4501 	if (sample_type & PERF_SAMPLE_TID)
4502 		perf_output_put(handle, data->tid_entry);
4503 
4504 	if (sample_type & PERF_SAMPLE_TIME)
4505 		perf_output_put(handle, data->time);
4506 
4507 	if (sample_type & PERF_SAMPLE_ADDR)
4508 		perf_output_put(handle, data->addr);
4509 
4510 	if (sample_type & PERF_SAMPLE_ID)
4511 		perf_output_put(handle, data->id);
4512 
4513 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4514 		perf_output_put(handle, data->stream_id);
4515 
4516 	if (sample_type & PERF_SAMPLE_CPU)
4517 		perf_output_put(handle, data->cpu_entry);
4518 
4519 	if (sample_type & PERF_SAMPLE_PERIOD)
4520 		perf_output_put(handle, data->period);
4521 
4522 	if (sample_type & PERF_SAMPLE_READ)
4523 		perf_output_read(handle, event);
4524 
4525 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4526 		if (data->callchain) {
4527 			int size = 1;
4528 
4529 			if (data->callchain)
4530 				size += data->callchain->nr;
4531 
4532 			size *= sizeof(u64);
4533 
4534 			__output_copy(handle, data->callchain, size);
4535 		} else {
4536 			u64 nr = 0;
4537 			perf_output_put(handle, nr);
4538 		}
4539 	}
4540 
4541 	if (sample_type & PERF_SAMPLE_RAW) {
4542 		if (data->raw) {
4543 			perf_output_put(handle, data->raw->size);
4544 			__output_copy(handle, data->raw->data,
4545 					   data->raw->size);
4546 		} else {
4547 			struct {
4548 				u32	size;
4549 				u32	data;
4550 			} raw = {
4551 				.size = sizeof(u32),
4552 				.data = 0,
4553 			};
4554 			perf_output_put(handle, raw);
4555 		}
4556 	}
4557 
4558 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4559 		if (data->br_stack) {
4560 			size_t size;
4561 
4562 			size = data->br_stack->nr
4563 			     * sizeof(struct perf_branch_entry);
4564 
4565 			perf_output_put(handle, data->br_stack->nr);
4566 			perf_output_copy(handle, data->br_stack->entries, size);
4567 		} else {
4568 			/*
4569 			 * we always store at least the value of nr
4570 			 */
4571 			u64 nr = 0;
4572 			perf_output_put(handle, nr);
4573 		}
4574 	}
4575 
4576 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4577 		u64 abi = data->regs_user.abi;
4578 
4579 		/*
4580 		 * If there are no regs to dump, notice it through
4581 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4582 		 */
4583 		perf_output_put(handle, abi);
4584 
4585 		if (abi) {
4586 			u64 mask = event->attr.sample_regs_user;
4587 			perf_output_sample_regs(handle,
4588 						data->regs_user.regs,
4589 						mask);
4590 		}
4591 	}
4592 
4593 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4594 		perf_output_sample_ustack(handle,
4595 					  data->stack_user_size,
4596 					  data->regs_user.regs);
4597 	}
4598 
4599 	if (sample_type & PERF_SAMPLE_WEIGHT)
4600 		perf_output_put(handle, data->weight);
4601 
4602 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4603 		perf_output_put(handle, data->data_src.val);
4604 
4605 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4606 		perf_output_put(handle, data->txn);
4607 
4608 	if (!event->attr.watermark) {
4609 		int wakeup_events = event->attr.wakeup_events;
4610 
4611 		if (wakeup_events) {
4612 			struct ring_buffer *rb = handle->rb;
4613 			int events = local_inc_return(&rb->events);
4614 
4615 			if (events >= wakeup_events) {
4616 				local_sub(wakeup_events, &rb->events);
4617 				local_inc(&rb->wakeup);
4618 			}
4619 		}
4620 	}
4621 }
4622 
4623 void perf_prepare_sample(struct perf_event_header *header,
4624 			 struct perf_sample_data *data,
4625 			 struct perf_event *event,
4626 			 struct pt_regs *regs)
4627 {
4628 	u64 sample_type = event->attr.sample_type;
4629 
4630 	header->type = PERF_RECORD_SAMPLE;
4631 	header->size = sizeof(*header) + event->header_size;
4632 
4633 	header->misc = 0;
4634 	header->misc |= perf_misc_flags(regs);
4635 
4636 	__perf_event_header__init_id(header, data, event);
4637 
4638 	if (sample_type & PERF_SAMPLE_IP)
4639 		data->ip = perf_instruction_pointer(regs);
4640 
4641 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4642 		int size = 1;
4643 
4644 		data->callchain = perf_callchain(event, regs);
4645 
4646 		if (data->callchain)
4647 			size += data->callchain->nr;
4648 
4649 		header->size += size * sizeof(u64);
4650 	}
4651 
4652 	if (sample_type & PERF_SAMPLE_RAW) {
4653 		int size = sizeof(u32);
4654 
4655 		if (data->raw)
4656 			size += data->raw->size;
4657 		else
4658 			size += sizeof(u32);
4659 
4660 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4661 		header->size += size;
4662 	}
4663 
4664 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4665 		int size = sizeof(u64); /* nr */
4666 		if (data->br_stack) {
4667 			size += data->br_stack->nr
4668 			      * sizeof(struct perf_branch_entry);
4669 		}
4670 		header->size += size;
4671 	}
4672 
4673 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4674 		/* regs dump ABI info */
4675 		int size = sizeof(u64);
4676 
4677 		perf_sample_regs_user(&data->regs_user, regs);
4678 
4679 		if (data->regs_user.regs) {
4680 			u64 mask = event->attr.sample_regs_user;
4681 			size += hweight64(mask) * sizeof(u64);
4682 		}
4683 
4684 		header->size += size;
4685 	}
4686 
4687 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4688 		/*
4689 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4690 		 * processed as the last one or have additional check added
4691 		 * in case new sample type is added, because we could eat
4692 		 * up the rest of the sample size.
4693 		 */
4694 		struct perf_regs_user *uregs = &data->regs_user;
4695 		u16 stack_size = event->attr.sample_stack_user;
4696 		u16 size = sizeof(u64);
4697 
4698 		if (!uregs->abi)
4699 			perf_sample_regs_user(uregs, regs);
4700 
4701 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4702 						     uregs->regs);
4703 
4704 		/*
4705 		 * If there is something to dump, add space for the dump
4706 		 * itself and for the field that tells the dynamic size,
4707 		 * which is how many have been actually dumped.
4708 		 */
4709 		if (stack_size)
4710 			size += sizeof(u64) + stack_size;
4711 
4712 		data->stack_user_size = stack_size;
4713 		header->size += size;
4714 	}
4715 }
4716 
4717 static void perf_event_output(struct perf_event *event,
4718 				struct perf_sample_data *data,
4719 				struct pt_regs *regs)
4720 {
4721 	struct perf_output_handle handle;
4722 	struct perf_event_header header;
4723 
4724 	/* protect the callchain buffers */
4725 	rcu_read_lock();
4726 
4727 	perf_prepare_sample(&header, data, event, regs);
4728 
4729 	if (perf_output_begin(&handle, event, header.size))
4730 		goto exit;
4731 
4732 	perf_output_sample(&handle, &header, data, event);
4733 
4734 	perf_output_end(&handle);
4735 
4736 exit:
4737 	rcu_read_unlock();
4738 }
4739 
4740 /*
4741  * read event_id
4742  */
4743 
4744 struct perf_read_event {
4745 	struct perf_event_header	header;
4746 
4747 	u32				pid;
4748 	u32				tid;
4749 };
4750 
4751 static void
4752 perf_event_read_event(struct perf_event *event,
4753 			struct task_struct *task)
4754 {
4755 	struct perf_output_handle handle;
4756 	struct perf_sample_data sample;
4757 	struct perf_read_event read_event = {
4758 		.header = {
4759 			.type = PERF_RECORD_READ,
4760 			.misc = 0,
4761 			.size = sizeof(read_event) + event->read_size,
4762 		},
4763 		.pid = perf_event_pid(event, task),
4764 		.tid = perf_event_tid(event, task),
4765 	};
4766 	int ret;
4767 
4768 	perf_event_header__init_id(&read_event.header, &sample, event);
4769 	ret = perf_output_begin(&handle, event, read_event.header.size);
4770 	if (ret)
4771 		return;
4772 
4773 	perf_output_put(&handle, read_event);
4774 	perf_output_read(&handle, event);
4775 	perf_event__output_id_sample(event, &handle, &sample);
4776 
4777 	perf_output_end(&handle);
4778 }
4779 
4780 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4781 
4782 static void
4783 perf_event_aux_ctx(struct perf_event_context *ctx,
4784 		   perf_event_aux_output_cb output,
4785 		   void *data)
4786 {
4787 	struct perf_event *event;
4788 
4789 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4790 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4791 			continue;
4792 		if (!event_filter_match(event))
4793 			continue;
4794 		output(event, data);
4795 	}
4796 }
4797 
4798 static void
4799 perf_event_aux(perf_event_aux_output_cb output, void *data,
4800 	       struct perf_event_context *task_ctx)
4801 {
4802 	struct perf_cpu_context *cpuctx;
4803 	struct perf_event_context *ctx;
4804 	struct pmu *pmu;
4805 	int ctxn;
4806 
4807 	rcu_read_lock();
4808 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4809 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4810 		if (cpuctx->unique_pmu != pmu)
4811 			goto next;
4812 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4813 		if (task_ctx)
4814 			goto next;
4815 		ctxn = pmu->task_ctx_nr;
4816 		if (ctxn < 0)
4817 			goto next;
4818 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4819 		if (ctx)
4820 			perf_event_aux_ctx(ctx, output, data);
4821 next:
4822 		put_cpu_ptr(pmu->pmu_cpu_context);
4823 	}
4824 
4825 	if (task_ctx) {
4826 		preempt_disable();
4827 		perf_event_aux_ctx(task_ctx, output, data);
4828 		preempt_enable();
4829 	}
4830 	rcu_read_unlock();
4831 }
4832 
4833 /*
4834  * task tracking -- fork/exit
4835  *
4836  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4837  */
4838 
4839 struct perf_task_event {
4840 	struct task_struct		*task;
4841 	struct perf_event_context	*task_ctx;
4842 
4843 	struct {
4844 		struct perf_event_header	header;
4845 
4846 		u32				pid;
4847 		u32				ppid;
4848 		u32				tid;
4849 		u32				ptid;
4850 		u64				time;
4851 	} event_id;
4852 };
4853 
4854 static int perf_event_task_match(struct perf_event *event)
4855 {
4856 	return event->attr.comm  || event->attr.mmap ||
4857 	       event->attr.mmap2 || event->attr.mmap_data ||
4858 	       event->attr.task;
4859 }
4860 
4861 static void perf_event_task_output(struct perf_event *event,
4862 				   void *data)
4863 {
4864 	struct perf_task_event *task_event = data;
4865 	struct perf_output_handle handle;
4866 	struct perf_sample_data	sample;
4867 	struct task_struct *task = task_event->task;
4868 	int ret, size = task_event->event_id.header.size;
4869 
4870 	if (!perf_event_task_match(event))
4871 		return;
4872 
4873 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4874 
4875 	ret = perf_output_begin(&handle, event,
4876 				task_event->event_id.header.size);
4877 	if (ret)
4878 		goto out;
4879 
4880 	task_event->event_id.pid = perf_event_pid(event, task);
4881 	task_event->event_id.ppid = perf_event_pid(event, current);
4882 
4883 	task_event->event_id.tid = perf_event_tid(event, task);
4884 	task_event->event_id.ptid = perf_event_tid(event, current);
4885 
4886 	perf_output_put(&handle, task_event->event_id);
4887 
4888 	perf_event__output_id_sample(event, &handle, &sample);
4889 
4890 	perf_output_end(&handle);
4891 out:
4892 	task_event->event_id.header.size = size;
4893 }
4894 
4895 static void perf_event_task(struct task_struct *task,
4896 			      struct perf_event_context *task_ctx,
4897 			      int new)
4898 {
4899 	struct perf_task_event task_event;
4900 
4901 	if (!atomic_read(&nr_comm_events) &&
4902 	    !atomic_read(&nr_mmap_events) &&
4903 	    !atomic_read(&nr_task_events))
4904 		return;
4905 
4906 	task_event = (struct perf_task_event){
4907 		.task	  = task,
4908 		.task_ctx = task_ctx,
4909 		.event_id    = {
4910 			.header = {
4911 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4912 				.misc = 0,
4913 				.size = sizeof(task_event.event_id),
4914 			},
4915 			/* .pid  */
4916 			/* .ppid */
4917 			/* .tid  */
4918 			/* .ptid */
4919 			.time = perf_clock(),
4920 		},
4921 	};
4922 
4923 	perf_event_aux(perf_event_task_output,
4924 		       &task_event,
4925 		       task_ctx);
4926 }
4927 
4928 void perf_event_fork(struct task_struct *task)
4929 {
4930 	perf_event_task(task, NULL, 1);
4931 }
4932 
4933 /*
4934  * comm tracking
4935  */
4936 
4937 struct perf_comm_event {
4938 	struct task_struct	*task;
4939 	char			*comm;
4940 	int			comm_size;
4941 
4942 	struct {
4943 		struct perf_event_header	header;
4944 
4945 		u32				pid;
4946 		u32				tid;
4947 	} event_id;
4948 };
4949 
4950 static int perf_event_comm_match(struct perf_event *event)
4951 {
4952 	return event->attr.comm;
4953 }
4954 
4955 static void perf_event_comm_output(struct perf_event *event,
4956 				   void *data)
4957 {
4958 	struct perf_comm_event *comm_event = data;
4959 	struct perf_output_handle handle;
4960 	struct perf_sample_data sample;
4961 	int size = comm_event->event_id.header.size;
4962 	int ret;
4963 
4964 	if (!perf_event_comm_match(event))
4965 		return;
4966 
4967 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4968 	ret = perf_output_begin(&handle, event,
4969 				comm_event->event_id.header.size);
4970 
4971 	if (ret)
4972 		goto out;
4973 
4974 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4975 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4976 
4977 	perf_output_put(&handle, comm_event->event_id);
4978 	__output_copy(&handle, comm_event->comm,
4979 				   comm_event->comm_size);
4980 
4981 	perf_event__output_id_sample(event, &handle, &sample);
4982 
4983 	perf_output_end(&handle);
4984 out:
4985 	comm_event->event_id.header.size = size;
4986 }
4987 
4988 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4989 {
4990 	char comm[TASK_COMM_LEN];
4991 	unsigned int size;
4992 
4993 	memset(comm, 0, sizeof(comm));
4994 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4995 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4996 
4997 	comm_event->comm = comm;
4998 	comm_event->comm_size = size;
4999 
5000 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5001 
5002 	perf_event_aux(perf_event_comm_output,
5003 		       comm_event,
5004 		       NULL);
5005 }
5006 
5007 void perf_event_comm(struct task_struct *task)
5008 {
5009 	struct perf_comm_event comm_event;
5010 	struct perf_event_context *ctx;
5011 	int ctxn;
5012 
5013 	rcu_read_lock();
5014 	for_each_task_context_nr(ctxn) {
5015 		ctx = task->perf_event_ctxp[ctxn];
5016 		if (!ctx)
5017 			continue;
5018 
5019 		perf_event_enable_on_exec(ctx);
5020 	}
5021 	rcu_read_unlock();
5022 
5023 	if (!atomic_read(&nr_comm_events))
5024 		return;
5025 
5026 	comm_event = (struct perf_comm_event){
5027 		.task	= task,
5028 		/* .comm      */
5029 		/* .comm_size */
5030 		.event_id  = {
5031 			.header = {
5032 				.type = PERF_RECORD_COMM,
5033 				.misc = 0,
5034 				/* .size */
5035 			},
5036 			/* .pid */
5037 			/* .tid */
5038 		},
5039 	};
5040 
5041 	perf_event_comm_event(&comm_event);
5042 }
5043 
5044 /*
5045  * mmap tracking
5046  */
5047 
5048 struct perf_mmap_event {
5049 	struct vm_area_struct	*vma;
5050 
5051 	const char		*file_name;
5052 	int			file_size;
5053 	int			maj, min;
5054 	u64			ino;
5055 	u64			ino_generation;
5056 
5057 	struct {
5058 		struct perf_event_header	header;
5059 
5060 		u32				pid;
5061 		u32				tid;
5062 		u64				start;
5063 		u64				len;
5064 		u64				pgoff;
5065 	} event_id;
5066 };
5067 
5068 static int perf_event_mmap_match(struct perf_event *event,
5069 				 void *data)
5070 {
5071 	struct perf_mmap_event *mmap_event = data;
5072 	struct vm_area_struct *vma = mmap_event->vma;
5073 	int executable = vma->vm_flags & VM_EXEC;
5074 
5075 	return (!executable && event->attr.mmap_data) ||
5076 	       (executable && (event->attr.mmap || event->attr.mmap2));
5077 }
5078 
5079 static void perf_event_mmap_output(struct perf_event *event,
5080 				   void *data)
5081 {
5082 	struct perf_mmap_event *mmap_event = data;
5083 	struct perf_output_handle handle;
5084 	struct perf_sample_data sample;
5085 	int size = mmap_event->event_id.header.size;
5086 	int ret;
5087 
5088 	if (!perf_event_mmap_match(event, data))
5089 		return;
5090 
5091 	if (event->attr.mmap2) {
5092 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5093 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5094 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5095 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5096 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5097 	}
5098 
5099 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5100 	ret = perf_output_begin(&handle, event,
5101 				mmap_event->event_id.header.size);
5102 	if (ret)
5103 		goto out;
5104 
5105 	mmap_event->event_id.pid = perf_event_pid(event, current);
5106 	mmap_event->event_id.tid = perf_event_tid(event, current);
5107 
5108 	perf_output_put(&handle, mmap_event->event_id);
5109 
5110 	if (event->attr.mmap2) {
5111 		perf_output_put(&handle, mmap_event->maj);
5112 		perf_output_put(&handle, mmap_event->min);
5113 		perf_output_put(&handle, mmap_event->ino);
5114 		perf_output_put(&handle, mmap_event->ino_generation);
5115 	}
5116 
5117 	__output_copy(&handle, mmap_event->file_name,
5118 				   mmap_event->file_size);
5119 
5120 	perf_event__output_id_sample(event, &handle, &sample);
5121 
5122 	perf_output_end(&handle);
5123 out:
5124 	mmap_event->event_id.header.size = size;
5125 }
5126 
5127 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5128 {
5129 	struct vm_area_struct *vma = mmap_event->vma;
5130 	struct file *file = vma->vm_file;
5131 	int maj = 0, min = 0;
5132 	u64 ino = 0, gen = 0;
5133 	unsigned int size;
5134 	char tmp[16];
5135 	char *buf = NULL;
5136 	char *name;
5137 
5138 	if (file) {
5139 		struct inode *inode;
5140 		dev_t dev;
5141 
5142 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5143 		if (!buf) {
5144 			name = "//enomem";
5145 			goto cpy_name;
5146 		}
5147 		/*
5148 		 * d_path() works from the end of the rb backwards, so we
5149 		 * need to add enough zero bytes after the string to handle
5150 		 * the 64bit alignment we do later.
5151 		 */
5152 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5153 		if (IS_ERR(name)) {
5154 			name = "//toolong";
5155 			goto cpy_name;
5156 		}
5157 		inode = file_inode(vma->vm_file);
5158 		dev = inode->i_sb->s_dev;
5159 		ino = inode->i_ino;
5160 		gen = inode->i_generation;
5161 		maj = MAJOR(dev);
5162 		min = MINOR(dev);
5163 		goto got_name;
5164 	} else {
5165 		name = (char *)arch_vma_name(vma);
5166 		if (name)
5167 			goto cpy_name;
5168 
5169 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5170 				vma->vm_end >= vma->vm_mm->brk) {
5171 			name = "[heap]";
5172 			goto cpy_name;
5173 		}
5174 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5175 				vma->vm_end >= vma->vm_mm->start_stack) {
5176 			name = "[stack]";
5177 			goto cpy_name;
5178 		}
5179 
5180 		name = "//anon";
5181 		goto cpy_name;
5182 	}
5183 
5184 cpy_name:
5185 	strlcpy(tmp, name, sizeof(tmp));
5186 	name = tmp;
5187 got_name:
5188 	/*
5189 	 * Since our buffer works in 8 byte units we need to align our string
5190 	 * size to a multiple of 8. However, we must guarantee the tail end is
5191 	 * zero'd out to avoid leaking random bits to userspace.
5192 	 */
5193 	size = strlen(name)+1;
5194 	while (!IS_ALIGNED(size, sizeof(u64)))
5195 		name[size++] = '\0';
5196 
5197 	mmap_event->file_name = name;
5198 	mmap_event->file_size = size;
5199 	mmap_event->maj = maj;
5200 	mmap_event->min = min;
5201 	mmap_event->ino = ino;
5202 	mmap_event->ino_generation = gen;
5203 
5204 	if (!(vma->vm_flags & VM_EXEC))
5205 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5206 
5207 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5208 
5209 	perf_event_aux(perf_event_mmap_output,
5210 		       mmap_event,
5211 		       NULL);
5212 
5213 	kfree(buf);
5214 }
5215 
5216 void perf_event_mmap(struct vm_area_struct *vma)
5217 {
5218 	struct perf_mmap_event mmap_event;
5219 
5220 	if (!atomic_read(&nr_mmap_events))
5221 		return;
5222 
5223 	mmap_event = (struct perf_mmap_event){
5224 		.vma	= vma,
5225 		/* .file_name */
5226 		/* .file_size */
5227 		.event_id  = {
5228 			.header = {
5229 				.type = PERF_RECORD_MMAP,
5230 				.misc = PERF_RECORD_MISC_USER,
5231 				/* .size */
5232 			},
5233 			/* .pid */
5234 			/* .tid */
5235 			.start  = vma->vm_start,
5236 			.len    = vma->vm_end - vma->vm_start,
5237 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5238 		},
5239 		/* .maj (attr_mmap2 only) */
5240 		/* .min (attr_mmap2 only) */
5241 		/* .ino (attr_mmap2 only) */
5242 		/* .ino_generation (attr_mmap2 only) */
5243 	};
5244 
5245 	perf_event_mmap_event(&mmap_event);
5246 }
5247 
5248 /*
5249  * IRQ throttle logging
5250  */
5251 
5252 static void perf_log_throttle(struct perf_event *event, int enable)
5253 {
5254 	struct perf_output_handle handle;
5255 	struct perf_sample_data sample;
5256 	int ret;
5257 
5258 	struct {
5259 		struct perf_event_header	header;
5260 		u64				time;
5261 		u64				id;
5262 		u64				stream_id;
5263 	} throttle_event = {
5264 		.header = {
5265 			.type = PERF_RECORD_THROTTLE,
5266 			.misc = 0,
5267 			.size = sizeof(throttle_event),
5268 		},
5269 		.time		= perf_clock(),
5270 		.id		= primary_event_id(event),
5271 		.stream_id	= event->id,
5272 	};
5273 
5274 	if (enable)
5275 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5276 
5277 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5278 
5279 	ret = perf_output_begin(&handle, event,
5280 				throttle_event.header.size);
5281 	if (ret)
5282 		return;
5283 
5284 	perf_output_put(&handle, throttle_event);
5285 	perf_event__output_id_sample(event, &handle, &sample);
5286 	perf_output_end(&handle);
5287 }
5288 
5289 /*
5290  * Generic event overflow handling, sampling.
5291  */
5292 
5293 static int __perf_event_overflow(struct perf_event *event,
5294 				   int throttle, struct perf_sample_data *data,
5295 				   struct pt_regs *regs)
5296 {
5297 	int events = atomic_read(&event->event_limit);
5298 	struct hw_perf_event *hwc = &event->hw;
5299 	u64 seq;
5300 	int ret = 0;
5301 
5302 	/*
5303 	 * Non-sampling counters might still use the PMI to fold short
5304 	 * hardware counters, ignore those.
5305 	 */
5306 	if (unlikely(!is_sampling_event(event)))
5307 		return 0;
5308 
5309 	seq = __this_cpu_read(perf_throttled_seq);
5310 	if (seq != hwc->interrupts_seq) {
5311 		hwc->interrupts_seq = seq;
5312 		hwc->interrupts = 1;
5313 	} else {
5314 		hwc->interrupts++;
5315 		if (unlikely(throttle
5316 			     && hwc->interrupts >= max_samples_per_tick)) {
5317 			__this_cpu_inc(perf_throttled_count);
5318 			hwc->interrupts = MAX_INTERRUPTS;
5319 			perf_log_throttle(event, 0);
5320 			tick_nohz_full_kick();
5321 			ret = 1;
5322 		}
5323 	}
5324 
5325 	if (event->attr.freq) {
5326 		u64 now = perf_clock();
5327 		s64 delta = now - hwc->freq_time_stamp;
5328 
5329 		hwc->freq_time_stamp = now;
5330 
5331 		if (delta > 0 && delta < 2*TICK_NSEC)
5332 			perf_adjust_period(event, delta, hwc->last_period, true);
5333 	}
5334 
5335 	/*
5336 	 * XXX event_limit might not quite work as expected on inherited
5337 	 * events
5338 	 */
5339 
5340 	event->pending_kill = POLL_IN;
5341 	if (events && atomic_dec_and_test(&event->event_limit)) {
5342 		ret = 1;
5343 		event->pending_kill = POLL_HUP;
5344 		event->pending_disable = 1;
5345 		irq_work_queue(&event->pending);
5346 	}
5347 
5348 	if (event->overflow_handler)
5349 		event->overflow_handler(event, data, regs);
5350 	else
5351 		perf_event_output(event, data, regs);
5352 
5353 	if (event->fasync && event->pending_kill) {
5354 		event->pending_wakeup = 1;
5355 		irq_work_queue(&event->pending);
5356 	}
5357 
5358 	return ret;
5359 }
5360 
5361 int perf_event_overflow(struct perf_event *event,
5362 			  struct perf_sample_data *data,
5363 			  struct pt_regs *regs)
5364 {
5365 	return __perf_event_overflow(event, 1, data, regs);
5366 }
5367 
5368 /*
5369  * Generic software event infrastructure
5370  */
5371 
5372 struct swevent_htable {
5373 	struct swevent_hlist		*swevent_hlist;
5374 	struct mutex			hlist_mutex;
5375 	int				hlist_refcount;
5376 
5377 	/* Recursion avoidance in each contexts */
5378 	int				recursion[PERF_NR_CONTEXTS];
5379 };
5380 
5381 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5382 
5383 /*
5384  * We directly increment event->count and keep a second value in
5385  * event->hw.period_left to count intervals. This period event
5386  * is kept in the range [-sample_period, 0] so that we can use the
5387  * sign as trigger.
5388  */
5389 
5390 u64 perf_swevent_set_period(struct perf_event *event)
5391 {
5392 	struct hw_perf_event *hwc = &event->hw;
5393 	u64 period = hwc->last_period;
5394 	u64 nr, offset;
5395 	s64 old, val;
5396 
5397 	hwc->last_period = hwc->sample_period;
5398 
5399 again:
5400 	old = val = local64_read(&hwc->period_left);
5401 	if (val < 0)
5402 		return 0;
5403 
5404 	nr = div64_u64(period + val, period);
5405 	offset = nr * period;
5406 	val -= offset;
5407 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5408 		goto again;
5409 
5410 	return nr;
5411 }
5412 
5413 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5414 				    struct perf_sample_data *data,
5415 				    struct pt_regs *regs)
5416 {
5417 	struct hw_perf_event *hwc = &event->hw;
5418 	int throttle = 0;
5419 
5420 	if (!overflow)
5421 		overflow = perf_swevent_set_period(event);
5422 
5423 	if (hwc->interrupts == MAX_INTERRUPTS)
5424 		return;
5425 
5426 	for (; overflow; overflow--) {
5427 		if (__perf_event_overflow(event, throttle,
5428 					    data, regs)) {
5429 			/*
5430 			 * We inhibit the overflow from happening when
5431 			 * hwc->interrupts == MAX_INTERRUPTS.
5432 			 */
5433 			break;
5434 		}
5435 		throttle = 1;
5436 	}
5437 }
5438 
5439 static void perf_swevent_event(struct perf_event *event, u64 nr,
5440 			       struct perf_sample_data *data,
5441 			       struct pt_regs *regs)
5442 {
5443 	struct hw_perf_event *hwc = &event->hw;
5444 
5445 	local64_add(nr, &event->count);
5446 
5447 	if (!regs)
5448 		return;
5449 
5450 	if (!is_sampling_event(event))
5451 		return;
5452 
5453 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5454 		data->period = nr;
5455 		return perf_swevent_overflow(event, 1, data, regs);
5456 	} else
5457 		data->period = event->hw.last_period;
5458 
5459 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5460 		return perf_swevent_overflow(event, 1, data, regs);
5461 
5462 	if (local64_add_negative(nr, &hwc->period_left))
5463 		return;
5464 
5465 	perf_swevent_overflow(event, 0, data, regs);
5466 }
5467 
5468 static int perf_exclude_event(struct perf_event *event,
5469 			      struct pt_regs *regs)
5470 {
5471 	if (event->hw.state & PERF_HES_STOPPED)
5472 		return 1;
5473 
5474 	if (regs) {
5475 		if (event->attr.exclude_user && user_mode(regs))
5476 			return 1;
5477 
5478 		if (event->attr.exclude_kernel && !user_mode(regs))
5479 			return 1;
5480 	}
5481 
5482 	return 0;
5483 }
5484 
5485 static int perf_swevent_match(struct perf_event *event,
5486 				enum perf_type_id type,
5487 				u32 event_id,
5488 				struct perf_sample_data *data,
5489 				struct pt_regs *regs)
5490 {
5491 	if (event->attr.type != type)
5492 		return 0;
5493 
5494 	if (event->attr.config != event_id)
5495 		return 0;
5496 
5497 	if (perf_exclude_event(event, regs))
5498 		return 0;
5499 
5500 	return 1;
5501 }
5502 
5503 static inline u64 swevent_hash(u64 type, u32 event_id)
5504 {
5505 	u64 val = event_id | (type << 32);
5506 
5507 	return hash_64(val, SWEVENT_HLIST_BITS);
5508 }
5509 
5510 static inline struct hlist_head *
5511 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5512 {
5513 	u64 hash = swevent_hash(type, event_id);
5514 
5515 	return &hlist->heads[hash];
5516 }
5517 
5518 /* For the read side: events when they trigger */
5519 static inline struct hlist_head *
5520 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5521 {
5522 	struct swevent_hlist *hlist;
5523 
5524 	hlist = rcu_dereference(swhash->swevent_hlist);
5525 	if (!hlist)
5526 		return NULL;
5527 
5528 	return __find_swevent_head(hlist, type, event_id);
5529 }
5530 
5531 /* For the event head insertion and removal in the hlist */
5532 static inline struct hlist_head *
5533 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5534 {
5535 	struct swevent_hlist *hlist;
5536 	u32 event_id = event->attr.config;
5537 	u64 type = event->attr.type;
5538 
5539 	/*
5540 	 * Event scheduling is always serialized against hlist allocation
5541 	 * and release. Which makes the protected version suitable here.
5542 	 * The context lock guarantees that.
5543 	 */
5544 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5545 					  lockdep_is_held(&event->ctx->lock));
5546 	if (!hlist)
5547 		return NULL;
5548 
5549 	return __find_swevent_head(hlist, type, event_id);
5550 }
5551 
5552 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5553 				    u64 nr,
5554 				    struct perf_sample_data *data,
5555 				    struct pt_regs *regs)
5556 {
5557 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5558 	struct perf_event *event;
5559 	struct hlist_head *head;
5560 
5561 	rcu_read_lock();
5562 	head = find_swevent_head_rcu(swhash, type, event_id);
5563 	if (!head)
5564 		goto end;
5565 
5566 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5567 		if (perf_swevent_match(event, type, event_id, data, regs))
5568 			perf_swevent_event(event, nr, data, regs);
5569 	}
5570 end:
5571 	rcu_read_unlock();
5572 }
5573 
5574 int perf_swevent_get_recursion_context(void)
5575 {
5576 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5577 
5578 	return get_recursion_context(swhash->recursion);
5579 }
5580 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5581 
5582 inline void perf_swevent_put_recursion_context(int rctx)
5583 {
5584 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5585 
5586 	put_recursion_context(swhash->recursion, rctx);
5587 }
5588 
5589 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5590 {
5591 	struct perf_sample_data data;
5592 	int rctx;
5593 
5594 	preempt_disable_notrace();
5595 	rctx = perf_swevent_get_recursion_context();
5596 	if (rctx < 0)
5597 		return;
5598 
5599 	perf_sample_data_init(&data, addr, 0);
5600 
5601 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5602 
5603 	perf_swevent_put_recursion_context(rctx);
5604 	preempt_enable_notrace();
5605 }
5606 
5607 static void perf_swevent_read(struct perf_event *event)
5608 {
5609 }
5610 
5611 static int perf_swevent_add(struct perf_event *event, int flags)
5612 {
5613 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5614 	struct hw_perf_event *hwc = &event->hw;
5615 	struct hlist_head *head;
5616 
5617 	if (is_sampling_event(event)) {
5618 		hwc->last_period = hwc->sample_period;
5619 		perf_swevent_set_period(event);
5620 	}
5621 
5622 	hwc->state = !(flags & PERF_EF_START);
5623 
5624 	head = find_swevent_head(swhash, event);
5625 	if (WARN_ON_ONCE(!head))
5626 		return -EINVAL;
5627 
5628 	hlist_add_head_rcu(&event->hlist_entry, head);
5629 
5630 	return 0;
5631 }
5632 
5633 static void perf_swevent_del(struct perf_event *event, int flags)
5634 {
5635 	hlist_del_rcu(&event->hlist_entry);
5636 }
5637 
5638 static void perf_swevent_start(struct perf_event *event, int flags)
5639 {
5640 	event->hw.state = 0;
5641 }
5642 
5643 static void perf_swevent_stop(struct perf_event *event, int flags)
5644 {
5645 	event->hw.state = PERF_HES_STOPPED;
5646 }
5647 
5648 /* Deref the hlist from the update side */
5649 static inline struct swevent_hlist *
5650 swevent_hlist_deref(struct swevent_htable *swhash)
5651 {
5652 	return rcu_dereference_protected(swhash->swevent_hlist,
5653 					 lockdep_is_held(&swhash->hlist_mutex));
5654 }
5655 
5656 static void swevent_hlist_release(struct swevent_htable *swhash)
5657 {
5658 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5659 
5660 	if (!hlist)
5661 		return;
5662 
5663 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5664 	kfree_rcu(hlist, rcu_head);
5665 }
5666 
5667 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5668 {
5669 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5670 
5671 	mutex_lock(&swhash->hlist_mutex);
5672 
5673 	if (!--swhash->hlist_refcount)
5674 		swevent_hlist_release(swhash);
5675 
5676 	mutex_unlock(&swhash->hlist_mutex);
5677 }
5678 
5679 static void swevent_hlist_put(struct perf_event *event)
5680 {
5681 	int cpu;
5682 
5683 	for_each_possible_cpu(cpu)
5684 		swevent_hlist_put_cpu(event, cpu);
5685 }
5686 
5687 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5688 {
5689 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5690 	int err = 0;
5691 
5692 	mutex_lock(&swhash->hlist_mutex);
5693 
5694 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5695 		struct swevent_hlist *hlist;
5696 
5697 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5698 		if (!hlist) {
5699 			err = -ENOMEM;
5700 			goto exit;
5701 		}
5702 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5703 	}
5704 	swhash->hlist_refcount++;
5705 exit:
5706 	mutex_unlock(&swhash->hlist_mutex);
5707 
5708 	return err;
5709 }
5710 
5711 static int swevent_hlist_get(struct perf_event *event)
5712 {
5713 	int err;
5714 	int cpu, failed_cpu;
5715 
5716 	get_online_cpus();
5717 	for_each_possible_cpu(cpu) {
5718 		err = swevent_hlist_get_cpu(event, cpu);
5719 		if (err) {
5720 			failed_cpu = cpu;
5721 			goto fail;
5722 		}
5723 	}
5724 	put_online_cpus();
5725 
5726 	return 0;
5727 fail:
5728 	for_each_possible_cpu(cpu) {
5729 		if (cpu == failed_cpu)
5730 			break;
5731 		swevent_hlist_put_cpu(event, cpu);
5732 	}
5733 
5734 	put_online_cpus();
5735 	return err;
5736 }
5737 
5738 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5739 
5740 static void sw_perf_event_destroy(struct perf_event *event)
5741 {
5742 	u64 event_id = event->attr.config;
5743 
5744 	WARN_ON(event->parent);
5745 
5746 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5747 	swevent_hlist_put(event);
5748 }
5749 
5750 static int perf_swevent_init(struct perf_event *event)
5751 {
5752 	u64 event_id = event->attr.config;
5753 
5754 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5755 		return -ENOENT;
5756 
5757 	/*
5758 	 * no branch sampling for software events
5759 	 */
5760 	if (has_branch_stack(event))
5761 		return -EOPNOTSUPP;
5762 
5763 	switch (event_id) {
5764 	case PERF_COUNT_SW_CPU_CLOCK:
5765 	case PERF_COUNT_SW_TASK_CLOCK:
5766 		return -ENOENT;
5767 
5768 	default:
5769 		break;
5770 	}
5771 
5772 	if (event_id >= PERF_COUNT_SW_MAX)
5773 		return -ENOENT;
5774 
5775 	if (!event->parent) {
5776 		int err;
5777 
5778 		err = swevent_hlist_get(event);
5779 		if (err)
5780 			return err;
5781 
5782 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5783 		event->destroy = sw_perf_event_destroy;
5784 	}
5785 
5786 	return 0;
5787 }
5788 
5789 static int perf_swevent_event_idx(struct perf_event *event)
5790 {
5791 	return 0;
5792 }
5793 
5794 static struct pmu perf_swevent = {
5795 	.task_ctx_nr	= perf_sw_context,
5796 
5797 	.event_init	= perf_swevent_init,
5798 	.add		= perf_swevent_add,
5799 	.del		= perf_swevent_del,
5800 	.start		= perf_swevent_start,
5801 	.stop		= perf_swevent_stop,
5802 	.read		= perf_swevent_read,
5803 
5804 	.event_idx	= perf_swevent_event_idx,
5805 };
5806 
5807 #ifdef CONFIG_EVENT_TRACING
5808 
5809 static int perf_tp_filter_match(struct perf_event *event,
5810 				struct perf_sample_data *data)
5811 {
5812 	void *record = data->raw->data;
5813 
5814 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5815 		return 1;
5816 	return 0;
5817 }
5818 
5819 static int perf_tp_event_match(struct perf_event *event,
5820 				struct perf_sample_data *data,
5821 				struct pt_regs *regs)
5822 {
5823 	if (event->hw.state & PERF_HES_STOPPED)
5824 		return 0;
5825 	/*
5826 	 * All tracepoints are from kernel-space.
5827 	 */
5828 	if (event->attr.exclude_kernel)
5829 		return 0;
5830 
5831 	if (!perf_tp_filter_match(event, data))
5832 		return 0;
5833 
5834 	return 1;
5835 }
5836 
5837 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5838 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5839 		   struct task_struct *task)
5840 {
5841 	struct perf_sample_data data;
5842 	struct perf_event *event;
5843 
5844 	struct perf_raw_record raw = {
5845 		.size = entry_size,
5846 		.data = record,
5847 	};
5848 
5849 	perf_sample_data_init(&data, addr, 0);
5850 	data.raw = &raw;
5851 
5852 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5853 		if (perf_tp_event_match(event, &data, regs))
5854 			perf_swevent_event(event, count, &data, regs);
5855 	}
5856 
5857 	/*
5858 	 * If we got specified a target task, also iterate its context and
5859 	 * deliver this event there too.
5860 	 */
5861 	if (task && task != current) {
5862 		struct perf_event_context *ctx;
5863 		struct trace_entry *entry = record;
5864 
5865 		rcu_read_lock();
5866 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5867 		if (!ctx)
5868 			goto unlock;
5869 
5870 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5871 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5872 				continue;
5873 			if (event->attr.config != entry->type)
5874 				continue;
5875 			if (perf_tp_event_match(event, &data, regs))
5876 				perf_swevent_event(event, count, &data, regs);
5877 		}
5878 unlock:
5879 		rcu_read_unlock();
5880 	}
5881 
5882 	perf_swevent_put_recursion_context(rctx);
5883 }
5884 EXPORT_SYMBOL_GPL(perf_tp_event);
5885 
5886 static void tp_perf_event_destroy(struct perf_event *event)
5887 {
5888 	perf_trace_destroy(event);
5889 }
5890 
5891 static int perf_tp_event_init(struct perf_event *event)
5892 {
5893 	int err;
5894 
5895 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5896 		return -ENOENT;
5897 
5898 	/*
5899 	 * no branch sampling for tracepoint events
5900 	 */
5901 	if (has_branch_stack(event))
5902 		return -EOPNOTSUPP;
5903 
5904 	err = perf_trace_init(event);
5905 	if (err)
5906 		return err;
5907 
5908 	event->destroy = tp_perf_event_destroy;
5909 
5910 	return 0;
5911 }
5912 
5913 static struct pmu perf_tracepoint = {
5914 	.task_ctx_nr	= perf_sw_context,
5915 
5916 	.event_init	= perf_tp_event_init,
5917 	.add		= perf_trace_add,
5918 	.del		= perf_trace_del,
5919 	.start		= perf_swevent_start,
5920 	.stop		= perf_swevent_stop,
5921 	.read		= perf_swevent_read,
5922 
5923 	.event_idx	= perf_swevent_event_idx,
5924 };
5925 
5926 static inline void perf_tp_register(void)
5927 {
5928 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5929 }
5930 
5931 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5932 {
5933 	char *filter_str;
5934 	int ret;
5935 
5936 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5937 		return -EINVAL;
5938 
5939 	filter_str = strndup_user(arg, PAGE_SIZE);
5940 	if (IS_ERR(filter_str))
5941 		return PTR_ERR(filter_str);
5942 
5943 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5944 
5945 	kfree(filter_str);
5946 	return ret;
5947 }
5948 
5949 static void perf_event_free_filter(struct perf_event *event)
5950 {
5951 	ftrace_profile_free_filter(event);
5952 }
5953 
5954 #else
5955 
5956 static inline void perf_tp_register(void)
5957 {
5958 }
5959 
5960 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5961 {
5962 	return -ENOENT;
5963 }
5964 
5965 static void perf_event_free_filter(struct perf_event *event)
5966 {
5967 }
5968 
5969 #endif /* CONFIG_EVENT_TRACING */
5970 
5971 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5972 void perf_bp_event(struct perf_event *bp, void *data)
5973 {
5974 	struct perf_sample_data sample;
5975 	struct pt_regs *regs = data;
5976 
5977 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5978 
5979 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5980 		perf_swevent_event(bp, 1, &sample, regs);
5981 }
5982 #endif
5983 
5984 /*
5985  * hrtimer based swevent callback
5986  */
5987 
5988 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5989 {
5990 	enum hrtimer_restart ret = HRTIMER_RESTART;
5991 	struct perf_sample_data data;
5992 	struct pt_regs *regs;
5993 	struct perf_event *event;
5994 	u64 period;
5995 
5996 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5997 
5998 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5999 		return HRTIMER_NORESTART;
6000 
6001 	event->pmu->read(event);
6002 
6003 	perf_sample_data_init(&data, 0, event->hw.last_period);
6004 	regs = get_irq_regs();
6005 
6006 	if (regs && !perf_exclude_event(event, regs)) {
6007 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6008 			if (__perf_event_overflow(event, 1, &data, regs))
6009 				ret = HRTIMER_NORESTART;
6010 	}
6011 
6012 	period = max_t(u64, 10000, event->hw.sample_period);
6013 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6014 
6015 	return ret;
6016 }
6017 
6018 static void perf_swevent_start_hrtimer(struct perf_event *event)
6019 {
6020 	struct hw_perf_event *hwc = &event->hw;
6021 	s64 period;
6022 
6023 	if (!is_sampling_event(event))
6024 		return;
6025 
6026 	period = local64_read(&hwc->period_left);
6027 	if (period) {
6028 		if (period < 0)
6029 			period = 10000;
6030 
6031 		local64_set(&hwc->period_left, 0);
6032 	} else {
6033 		period = max_t(u64, 10000, hwc->sample_period);
6034 	}
6035 	__hrtimer_start_range_ns(&hwc->hrtimer,
6036 				ns_to_ktime(period), 0,
6037 				HRTIMER_MODE_REL_PINNED, 0);
6038 }
6039 
6040 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6041 {
6042 	struct hw_perf_event *hwc = &event->hw;
6043 
6044 	if (is_sampling_event(event)) {
6045 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6046 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6047 
6048 		hrtimer_cancel(&hwc->hrtimer);
6049 	}
6050 }
6051 
6052 static void perf_swevent_init_hrtimer(struct perf_event *event)
6053 {
6054 	struct hw_perf_event *hwc = &event->hw;
6055 
6056 	if (!is_sampling_event(event))
6057 		return;
6058 
6059 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6060 	hwc->hrtimer.function = perf_swevent_hrtimer;
6061 
6062 	/*
6063 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6064 	 * mapping and avoid the whole period adjust feedback stuff.
6065 	 */
6066 	if (event->attr.freq) {
6067 		long freq = event->attr.sample_freq;
6068 
6069 		event->attr.sample_period = NSEC_PER_SEC / freq;
6070 		hwc->sample_period = event->attr.sample_period;
6071 		local64_set(&hwc->period_left, hwc->sample_period);
6072 		hwc->last_period = hwc->sample_period;
6073 		event->attr.freq = 0;
6074 	}
6075 }
6076 
6077 /*
6078  * Software event: cpu wall time clock
6079  */
6080 
6081 static void cpu_clock_event_update(struct perf_event *event)
6082 {
6083 	s64 prev;
6084 	u64 now;
6085 
6086 	now = local_clock();
6087 	prev = local64_xchg(&event->hw.prev_count, now);
6088 	local64_add(now - prev, &event->count);
6089 }
6090 
6091 static void cpu_clock_event_start(struct perf_event *event, int flags)
6092 {
6093 	local64_set(&event->hw.prev_count, local_clock());
6094 	perf_swevent_start_hrtimer(event);
6095 }
6096 
6097 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6098 {
6099 	perf_swevent_cancel_hrtimer(event);
6100 	cpu_clock_event_update(event);
6101 }
6102 
6103 static int cpu_clock_event_add(struct perf_event *event, int flags)
6104 {
6105 	if (flags & PERF_EF_START)
6106 		cpu_clock_event_start(event, flags);
6107 
6108 	return 0;
6109 }
6110 
6111 static void cpu_clock_event_del(struct perf_event *event, int flags)
6112 {
6113 	cpu_clock_event_stop(event, flags);
6114 }
6115 
6116 static void cpu_clock_event_read(struct perf_event *event)
6117 {
6118 	cpu_clock_event_update(event);
6119 }
6120 
6121 static int cpu_clock_event_init(struct perf_event *event)
6122 {
6123 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6124 		return -ENOENT;
6125 
6126 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6127 		return -ENOENT;
6128 
6129 	/*
6130 	 * no branch sampling for software events
6131 	 */
6132 	if (has_branch_stack(event))
6133 		return -EOPNOTSUPP;
6134 
6135 	perf_swevent_init_hrtimer(event);
6136 
6137 	return 0;
6138 }
6139 
6140 static struct pmu perf_cpu_clock = {
6141 	.task_ctx_nr	= perf_sw_context,
6142 
6143 	.event_init	= cpu_clock_event_init,
6144 	.add		= cpu_clock_event_add,
6145 	.del		= cpu_clock_event_del,
6146 	.start		= cpu_clock_event_start,
6147 	.stop		= cpu_clock_event_stop,
6148 	.read		= cpu_clock_event_read,
6149 
6150 	.event_idx	= perf_swevent_event_idx,
6151 };
6152 
6153 /*
6154  * Software event: task time clock
6155  */
6156 
6157 static void task_clock_event_update(struct perf_event *event, u64 now)
6158 {
6159 	u64 prev;
6160 	s64 delta;
6161 
6162 	prev = local64_xchg(&event->hw.prev_count, now);
6163 	delta = now - prev;
6164 	local64_add(delta, &event->count);
6165 }
6166 
6167 static void task_clock_event_start(struct perf_event *event, int flags)
6168 {
6169 	local64_set(&event->hw.prev_count, event->ctx->time);
6170 	perf_swevent_start_hrtimer(event);
6171 }
6172 
6173 static void task_clock_event_stop(struct perf_event *event, int flags)
6174 {
6175 	perf_swevent_cancel_hrtimer(event);
6176 	task_clock_event_update(event, event->ctx->time);
6177 }
6178 
6179 static int task_clock_event_add(struct perf_event *event, int flags)
6180 {
6181 	if (flags & PERF_EF_START)
6182 		task_clock_event_start(event, flags);
6183 
6184 	return 0;
6185 }
6186 
6187 static void task_clock_event_del(struct perf_event *event, int flags)
6188 {
6189 	task_clock_event_stop(event, PERF_EF_UPDATE);
6190 }
6191 
6192 static void task_clock_event_read(struct perf_event *event)
6193 {
6194 	u64 now = perf_clock();
6195 	u64 delta = now - event->ctx->timestamp;
6196 	u64 time = event->ctx->time + delta;
6197 
6198 	task_clock_event_update(event, time);
6199 }
6200 
6201 static int task_clock_event_init(struct perf_event *event)
6202 {
6203 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6204 		return -ENOENT;
6205 
6206 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6207 		return -ENOENT;
6208 
6209 	/*
6210 	 * no branch sampling for software events
6211 	 */
6212 	if (has_branch_stack(event))
6213 		return -EOPNOTSUPP;
6214 
6215 	perf_swevent_init_hrtimer(event);
6216 
6217 	return 0;
6218 }
6219 
6220 static struct pmu perf_task_clock = {
6221 	.task_ctx_nr	= perf_sw_context,
6222 
6223 	.event_init	= task_clock_event_init,
6224 	.add		= task_clock_event_add,
6225 	.del		= task_clock_event_del,
6226 	.start		= task_clock_event_start,
6227 	.stop		= task_clock_event_stop,
6228 	.read		= task_clock_event_read,
6229 
6230 	.event_idx	= perf_swevent_event_idx,
6231 };
6232 
6233 static void perf_pmu_nop_void(struct pmu *pmu)
6234 {
6235 }
6236 
6237 static int perf_pmu_nop_int(struct pmu *pmu)
6238 {
6239 	return 0;
6240 }
6241 
6242 static void perf_pmu_start_txn(struct pmu *pmu)
6243 {
6244 	perf_pmu_disable(pmu);
6245 }
6246 
6247 static int perf_pmu_commit_txn(struct pmu *pmu)
6248 {
6249 	perf_pmu_enable(pmu);
6250 	return 0;
6251 }
6252 
6253 static void perf_pmu_cancel_txn(struct pmu *pmu)
6254 {
6255 	perf_pmu_enable(pmu);
6256 }
6257 
6258 static int perf_event_idx_default(struct perf_event *event)
6259 {
6260 	return event->hw.idx + 1;
6261 }
6262 
6263 /*
6264  * Ensures all contexts with the same task_ctx_nr have the same
6265  * pmu_cpu_context too.
6266  */
6267 static void *find_pmu_context(int ctxn)
6268 {
6269 	struct pmu *pmu;
6270 
6271 	if (ctxn < 0)
6272 		return NULL;
6273 
6274 	list_for_each_entry(pmu, &pmus, entry) {
6275 		if (pmu->task_ctx_nr == ctxn)
6276 			return pmu->pmu_cpu_context;
6277 	}
6278 
6279 	return NULL;
6280 }
6281 
6282 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6283 {
6284 	int cpu;
6285 
6286 	for_each_possible_cpu(cpu) {
6287 		struct perf_cpu_context *cpuctx;
6288 
6289 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6290 
6291 		if (cpuctx->unique_pmu == old_pmu)
6292 			cpuctx->unique_pmu = pmu;
6293 	}
6294 }
6295 
6296 static void free_pmu_context(struct pmu *pmu)
6297 {
6298 	struct pmu *i;
6299 
6300 	mutex_lock(&pmus_lock);
6301 	/*
6302 	 * Like a real lame refcount.
6303 	 */
6304 	list_for_each_entry(i, &pmus, entry) {
6305 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6306 			update_pmu_context(i, pmu);
6307 			goto out;
6308 		}
6309 	}
6310 
6311 	free_percpu(pmu->pmu_cpu_context);
6312 out:
6313 	mutex_unlock(&pmus_lock);
6314 }
6315 static struct idr pmu_idr;
6316 
6317 static ssize_t
6318 type_show(struct device *dev, struct device_attribute *attr, char *page)
6319 {
6320 	struct pmu *pmu = dev_get_drvdata(dev);
6321 
6322 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6323 }
6324 static DEVICE_ATTR_RO(type);
6325 
6326 static ssize_t
6327 perf_event_mux_interval_ms_show(struct device *dev,
6328 				struct device_attribute *attr,
6329 				char *page)
6330 {
6331 	struct pmu *pmu = dev_get_drvdata(dev);
6332 
6333 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6334 }
6335 
6336 static ssize_t
6337 perf_event_mux_interval_ms_store(struct device *dev,
6338 				 struct device_attribute *attr,
6339 				 const char *buf, size_t count)
6340 {
6341 	struct pmu *pmu = dev_get_drvdata(dev);
6342 	int timer, cpu, ret;
6343 
6344 	ret = kstrtoint(buf, 0, &timer);
6345 	if (ret)
6346 		return ret;
6347 
6348 	if (timer < 1)
6349 		return -EINVAL;
6350 
6351 	/* same value, noting to do */
6352 	if (timer == pmu->hrtimer_interval_ms)
6353 		return count;
6354 
6355 	pmu->hrtimer_interval_ms = timer;
6356 
6357 	/* update all cpuctx for this PMU */
6358 	for_each_possible_cpu(cpu) {
6359 		struct perf_cpu_context *cpuctx;
6360 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6361 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6362 
6363 		if (hrtimer_active(&cpuctx->hrtimer))
6364 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6365 	}
6366 
6367 	return count;
6368 }
6369 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6370 
6371 static struct attribute *pmu_dev_attrs[] = {
6372 	&dev_attr_type.attr,
6373 	&dev_attr_perf_event_mux_interval_ms.attr,
6374 	NULL,
6375 };
6376 ATTRIBUTE_GROUPS(pmu_dev);
6377 
6378 static int pmu_bus_running;
6379 static struct bus_type pmu_bus = {
6380 	.name		= "event_source",
6381 	.dev_groups	= pmu_dev_groups,
6382 };
6383 
6384 static void pmu_dev_release(struct device *dev)
6385 {
6386 	kfree(dev);
6387 }
6388 
6389 static int pmu_dev_alloc(struct pmu *pmu)
6390 {
6391 	int ret = -ENOMEM;
6392 
6393 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6394 	if (!pmu->dev)
6395 		goto out;
6396 
6397 	pmu->dev->groups = pmu->attr_groups;
6398 	device_initialize(pmu->dev);
6399 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6400 	if (ret)
6401 		goto free_dev;
6402 
6403 	dev_set_drvdata(pmu->dev, pmu);
6404 	pmu->dev->bus = &pmu_bus;
6405 	pmu->dev->release = pmu_dev_release;
6406 	ret = device_add(pmu->dev);
6407 	if (ret)
6408 		goto free_dev;
6409 
6410 out:
6411 	return ret;
6412 
6413 free_dev:
6414 	put_device(pmu->dev);
6415 	goto out;
6416 }
6417 
6418 static struct lock_class_key cpuctx_mutex;
6419 static struct lock_class_key cpuctx_lock;
6420 
6421 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6422 {
6423 	int cpu, ret;
6424 
6425 	mutex_lock(&pmus_lock);
6426 	ret = -ENOMEM;
6427 	pmu->pmu_disable_count = alloc_percpu(int);
6428 	if (!pmu->pmu_disable_count)
6429 		goto unlock;
6430 
6431 	pmu->type = -1;
6432 	if (!name)
6433 		goto skip_type;
6434 	pmu->name = name;
6435 
6436 	if (type < 0) {
6437 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6438 		if (type < 0) {
6439 			ret = type;
6440 			goto free_pdc;
6441 		}
6442 	}
6443 	pmu->type = type;
6444 
6445 	if (pmu_bus_running) {
6446 		ret = pmu_dev_alloc(pmu);
6447 		if (ret)
6448 			goto free_idr;
6449 	}
6450 
6451 skip_type:
6452 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6453 	if (pmu->pmu_cpu_context)
6454 		goto got_cpu_context;
6455 
6456 	ret = -ENOMEM;
6457 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6458 	if (!pmu->pmu_cpu_context)
6459 		goto free_dev;
6460 
6461 	for_each_possible_cpu(cpu) {
6462 		struct perf_cpu_context *cpuctx;
6463 
6464 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6465 		__perf_event_init_context(&cpuctx->ctx);
6466 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6467 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6468 		cpuctx->ctx.type = cpu_context;
6469 		cpuctx->ctx.pmu = pmu;
6470 
6471 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6472 
6473 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6474 		cpuctx->unique_pmu = pmu;
6475 	}
6476 
6477 got_cpu_context:
6478 	if (!pmu->start_txn) {
6479 		if (pmu->pmu_enable) {
6480 			/*
6481 			 * If we have pmu_enable/pmu_disable calls, install
6482 			 * transaction stubs that use that to try and batch
6483 			 * hardware accesses.
6484 			 */
6485 			pmu->start_txn  = perf_pmu_start_txn;
6486 			pmu->commit_txn = perf_pmu_commit_txn;
6487 			pmu->cancel_txn = perf_pmu_cancel_txn;
6488 		} else {
6489 			pmu->start_txn  = perf_pmu_nop_void;
6490 			pmu->commit_txn = perf_pmu_nop_int;
6491 			pmu->cancel_txn = perf_pmu_nop_void;
6492 		}
6493 	}
6494 
6495 	if (!pmu->pmu_enable) {
6496 		pmu->pmu_enable  = perf_pmu_nop_void;
6497 		pmu->pmu_disable = perf_pmu_nop_void;
6498 	}
6499 
6500 	if (!pmu->event_idx)
6501 		pmu->event_idx = perf_event_idx_default;
6502 
6503 	list_add_rcu(&pmu->entry, &pmus);
6504 	ret = 0;
6505 unlock:
6506 	mutex_unlock(&pmus_lock);
6507 
6508 	return ret;
6509 
6510 free_dev:
6511 	device_del(pmu->dev);
6512 	put_device(pmu->dev);
6513 
6514 free_idr:
6515 	if (pmu->type >= PERF_TYPE_MAX)
6516 		idr_remove(&pmu_idr, pmu->type);
6517 
6518 free_pdc:
6519 	free_percpu(pmu->pmu_disable_count);
6520 	goto unlock;
6521 }
6522 
6523 void perf_pmu_unregister(struct pmu *pmu)
6524 {
6525 	mutex_lock(&pmus_lock);
6526 	list_del_rcu(&pmu->entry);
6527 	mutex_unlock(&pmus_lock);
6528 
6529 	/*
6530 	 * We dereference the pmu list under both SRCU and regular RCU, so
6531 	 * synchronize against both of those.
6532 	 */
6533 	synchronize_srcu(&pmus_srcu);
6534 	synchronize_rcu();
6535 
6536 	free_percpu(pmu->pmu_disable_count);
6537 	if (pmu->type >= PERF_TYPE_MAX)
6538 		idr_remove(&pmu_idr, pmu->type);
6539 	device_del(pmu->dev);
6540 	put_device(pmu->dev);
6541 	free_pmu_context(pmu);
6542 }
6543 
6544 struct pmu *perf_init_event(struct perf_event *event)
6545 {
6546 	struct pmu *pmu = NULL;
6547 	int idx;
6548 	int ret;
6549 
6550 	idx = srcu_read_lock(&pmus_srcu);
6551 
6552 	rcu_read_lock();
6553 	pmu = idr_find(&pmu_idr, event->attr.type);
6554 	rcu_read_unlock();
6555 	if (pmu) {
6556 		event->pmu = pmu;
6557 		ret = pmu->event_init(event);
6558 		if (ret)
6559 			pmu = ERR_PTR(ret);
6560 		goto unlock;
6561 	}
6562 
6563 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6564 		event->pmu = pmu;
6565 		ret = pmu->event_init(event);
6566 		if (!ret)
6567 			goto unlock;
6568 
6569 		if (ret != -ENOENT) {
6570 			pmu = ERR_PTR(ret);
6571 			goto unlock;
6572 		}
6573 	}
6574 	pmu = ERR_PTR(-ENOENT);
6575 unlock:
6576 	srcu_read_unlock(&pmus_srcu, idx);
6577 
6578 	return pmu;
6579 }
6580 
6581 static void account_event_cpu(struct perf_event *event, int cpu)
6582 {
6583 	if (event->parent)
6584 		return;
6585 
6586 	if (has_branch_stack(event)) {
6587 		if (!(event->attach_state & PERF_ATTACH_TASK))
6588 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6589 	}
6590 	if (is_cgroup_event(event))
6591 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6592 }
6593 
6594 static void account_event(struct perf_event *event)
6595 {
6596 	if (event->parent)
6597 		return;
6598 
6599 	if (event->attach_state & PERF_ATTACH_TASK)
6600 		static_key_slow_inc(&perf_sched_events.key);
6601 	if (event->attr.mmap || event->attr.mmap_data)
6602 		atomic_inc(&nr_mmap_events);
6603 	if (event->attr.comm)
6604 		atomic_inc(&nr_comm_events);
6605 	if (event->attr.task)
6606 		atomic_inc(&nr_task_events);
6607 	if (event->attr.freq) {
6608 		if (atomic_inc_return(&nr_freq_events) == 1)
6609 			tick_nohz_full_kick_all();
6610 	}
6611 	if (has_branch_stack(event))
6612 		static_key_slow_inc(&perf_sched_events.key);
6613 	if (is_cgroup_event(event))
6614 		static_key_slow_inc(&perf_sched_events.key);
6615 
6616 	account_event_cpu(event, event->cpu);
6617 }
6618 
6619 /*
6620  * Allocate and initialize a event structure
6621  */
6622 static struct perf_event *
6623 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6624 		 struct task_struct *task,
6625 		 struct perf_event *group_leader,
6626 		 struct perf_event *parent_event,
6627 		 perf_overflow_handler_t overflow_handler,
6628 		 void *context)
6629 {
6630 	struct pmu *pmu;
6631 	struct perf_event *event;
6632 	struct hw_perf_event *hwc;
6633 	long err = -EINVAL;
6634 
6635 	if ((unsigned)cpu >= nr_cpu_ids) {
6636 		if (!task || cpu != -1)
6637 			return ERR_PTR(-EINVAL);
6638 	}
6639 
6640 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6641 	if (!event)
6642 		return ERR_PTR(-ENOMEM);
6643 
6644 	/*
6645 	 * Single events are their own group leaders, with an
6646 	 * empty sibling list:
6647 	 */
6648 	if (!group_leader)
6649 		group_leader = event;
6650 
6651 	mutex_init(&event->child_mutex);
6652 	INIT_LIST_HEAD(&event->child_list);
6653 
6654 	INIT_LIST_HEAD(&event->group_entry);
6655 	INIT_LIST_HEAD(&event->event_entry);
6656 	INIT_LIST_HEAD(&event->sibling_list);
6657 	INIT_LIST_HEAD(&event->rb_entry);
6658 
6659 	init_waitqueue_head(&event->waitq);
6660 	init_irq_work(&event->pending, perf_pending_event);
6661 
6662 	mutex_init(&event->mmap_mutex);
6663 
6664 	atomic_long_set(&event->refcount, 1);
6665 	event->cpu		= cpu;
6666 	event->attr		= *attr;
6667 	event->group_leader	= group_leader;
6668 	event->pmu		= NULL;
6669 	event->oncpu		= -1;
6670 
6671 	event->parent		= parent_event;
6672 
6673 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6674 	event->id		= atomic64_inc_return(&perf_event_id);
6675 
6676 	event->state		= PERF_EVENT_STATE_INACTIVE;
6677 
6678 	if (task) {
6679 		event->attach_state = PERF_ATTACH_TASK;
6680 
6681 		if (attr->type == PERF_TYPE_TRACEPOINT)
6682 			event->hw.tp_target = task;
6683 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6684 		/*
6685 		 * hw_breakpoint is a bit difficult here..
6686 		 */
6687 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6688 			event->hw.bp_target = task;
6689 #endif
6690 	}
6691 
6692 	if (!overflow_handler && parent_event) {
6693 		overflow_handler = parent_event->overflow_handler;
6694 		context = parent_event->overflow_handler_context;
6695 	}
6696 
6697 	event->overflow_handler	= overflow_handler;
6698 	event->overflow_handler_context = context;
6699 
6700 	perf_event__state_init(event);
6701 
6702 	pmu = NULL;
6703 
6704 	hwc = &event->hw;
6705 	hwc->sample_period = attr->sample_period;
6706 	if (attr->freq && attr->sample_freq)
6707 		hwc->sample_period = 1;
6708 	hwc->last_period = hwc->sample_period;
6709 
6710 	local64_set(&hwc->period_left, hwc->sample_period);
6711 
6712 	/*
6713 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6714 	 */
6715 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6716 		goto err_ns;
6717 
6718 	pmu = perf_init_event(event);
6719 	if (!pmu)
6720 		goto err_ns;
6721 	else if (IS_ERR(pmu)) {
6722 		err = PTR_ERR(pmu);
6723 		goto err_ns;
6724 	}
6725 
6726 	if (!event->parent) {
6727 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6728 			err = get_callchain_buffers();
6729 			if (err)
6730 				goto err_pmu;
6731 		}
6732 	}
6733 
6734 	return event;
6735 
6736 err_pmu:
6737 	if (event->destroy)
6738 		event->destroy(event);
6739 err_ns:
6740 	if (event->ns)
6741 		put_pid_ns(event->ns);
6742 	kfree(event);
6743 
6744 	return ERR_PTR(err);
6745 }
6746 
6747 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6748 			  struct perf_event_attr *attr)
6749 {
6750 	u32 size;
6751 	int ret;
6752 
6753 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6754 		return -EFAULT;
6755 
6756 	/*
6757 	 * zero the full structure, so that a short copy will be nice.
6758 	 */
6759 	memset(attr, 0, sizeof(*attr));
6760 
6761 	ret = get_user(size, &uattr->size);
6762 	if (ret)
6763 		return ret;
6764 
6765 	if (size > PAGE_SIZE)	/* silly large */
6766 		goto err_size;
6767 
6768 	if (!size)		/* abi compat */
6769 		size = PERF_ATTR_SIZE_VER0;
6770 
6771 	if (size < PERF_ATTR_SIZE_VER0)
6772 		goto err_size;
6773 
6774 	/*
6775 	 * If we're handed a bigger struct than we know of,
6776 	 * ensure all the unknown bits are 0 - i.e. new
6777 	 * user-space does not rely on any kernel feature
6778 	 * extensions we dont know about yet.
6779 	 */
6780 	if (size > sizeof(*attr)) {
6781 		unsigned char __user *addr;
6782 		unsigned char __user *end;
6783 		unsigned char val;
6784 
6785 		addr = (void __user *)uattr + sizeof(*attr);
6786 		end  = (void __user *)uattr + size;
6787 
6788 		for (; addr < end; addr++) {
6789 			ret = get_user(val, addr);
6790 			if (ret)
6791 				return ret;
6792 			if (val)
6793 				goto err_size;
6794 		}
6795 		size = sizeof(*attr);
6796 	}
6797 
6798 	ret = copy_from_user(attr, uattr, size);
6799 	if (ret)
6800 		return -EFAULT;
6801 
6802 	/* disabled for now */
6803 	if (attr->mmap2)
6804 		return -EINVAL;
6805 
6806 	if (attr->__reserved_1)
6807 		return -EINVAL;
6808 
6809 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6810 		return -EINVAL;
6811 
6812 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6813 		return -EINVAL;
6814 
6815 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6816 		u64 mask = attr->branch_sample_type;
6817 
6818 		/* only using defined bits */
6819 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6820 			return -EINVAL;
6821 
6822 		/* at least one branch bit must be set */
6823 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6824 			return -EINVAL;
6825 
6826 		/* propagate priv level, when not set for branch */
6827 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6828 
6829 			/* exclude_kernel checked on syscall entry */
6830 			if (!attr->exclude_kernel)
6831 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6832 
6833 			if (!attr->exclude_user)
6834 				mask |= PERF_SAMPLE_BRANCH_USER;
6835 
6836 			if (!attr->exclude_hv)
6837 				mask |= PERF_SAMPLE_BRANCH_HV;
6838 			/*
6839 			 * adjust user setting (for HW filter setup)
6840 			 */
6841 			attr->branch_sample_type = mask;
6842 		}
6843 		/* privileged levels capture (kernel, hv): check permissions */
6844 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6845 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6846 			return -EACCES;
6847 	}
6848 
6849 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6850 		ret = perf_reg_validate(attr->sample_regs_user);
6851 		if (ret)
6852 			return ret;
6853 	}
6854 
6855 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6856 		if (!arch_perf_have_user_stack_dump())
6857 			return -ENOSYS;
6858 
6859 		/*
6860 		 * We have __u32 type for the size, but so far
6861 		 * we can only use __u16 as maximum due to the
6862 		 * __u16 sample size limit.
6863 		 */
6864 		if (attr->sample_stack_user >= USHRT_MAX)
6865 			ret = -EINVAL;
6866 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6867 			ret = -EINVAL;
6868 	}
6869 
6870 out:
6871 	return ret;
6872 
6873 err_size:
6874 	put_user(sizeof(*attr), &uattr->size);
6875 	ret = -E2BIG;
6876 	goto out;
6877 }
6878 
6879 static int
6880 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6881 {
6882 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6883 	int ret = -EINVAL;
6884 
6885 	if (!output_event)
6886 		goto set;
6887 
6888 	/* don't allow circular references */
6889 	if (event == output_event)
6890 		goto out;
6891 
6892 	/*
6893 	 * Don't allow cross-cpu buffers
6894 	 */
6895 	if (output_event->cpu != event->cpu)
6896 		goto out;
6897 
6898 	/*
6899 	 * If its not a per-cpu rb, it must be the same task.
6900 	 */
6901 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6902 		goto out;
6903 
6904 set:
6905 	mutex_lock(&event->mmap_mutex);
6906 	/* Can't redirect output if we've got an active mmap() */
6907 	if (atomic_read(&event->mmap_count))
6908 		goto unlock;
6909 
6910 	old_rb = event->rb;
6911 
6912 	if (output_event) {
6913 		/* get the rb we want to redirect to */
6914 		rb = ring_buffer_get(output_event);
6915 		if (!rb)
6916 			goto unlock;
6917 	}
6918 
6919 	if (old_rb)
6920 		ring_buffer_detach(event, old_rb);
6921 
6922 	if (rb)
6923 		ring_buffer_attach(event, rb);
6924 
6925 	rcu_assign_pointer(event->rb, rb);
6926 
6927 	if (old_rb) {
6928 		ring_buffer_put(old_rb);
6929 		/*
6930 		 * Since we detached before setting the new rb, so that we
6931 		 * could attach the new rb, we could have missed a wakeup.
6932 		 * Provide it now.
6933 		 */
6934 		wake_up_all(&event->waitq);
6935 	}
6936 
6937 	ret = 0;
6938 unlock:
6939 	mutex_unlock(&event->mmap_mutex);
6940 
6941 out:
6942 	return ret;
6943 }
6944 
6945 /**
6946  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6947  *
6948  * @attr_uptr:	event_id type attributes for monitoring/sampling
6949  * @pid:		target pid
6950  * @cpu:		target cpu
6951  * @group_fd:		group leader event fd
6952  */
6953 SYSCALL_DEFINE5(perf_event_open,
6954 		struct perf_event_attr __user *, attr_uptr,
6955 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6956 {
6957 	struct perf_event *group_leader = NULL, *output_event = NULL;
6958 	struct perf_event *event, *sibling;
6959 	struct perf_event_attr attr;
6960 	struct perf_event_context *ctx;
6961 	struct file *event_file = NULL;
6962 	struct fd group = {NULL, 0};
6963 	struct task_struct *task = NULL;
6964 	struct pmu *pmu;
6965 	int event_fd;
6966 	int move_group = 0;
6967 	int err;
6968 
6969 	/* for future expandability... */
6970 	if (flags & ~PERF_FLAG_ALL)
6971 		return -EINVAL;
6972 
6973 	err = perf_copy_attr(attr_uptr, &attr);
6974 	if (err)
6975 		return err;
6976 
6977 	if (!attr.exclude_kernel) {
6978 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6979 			return -EACCES;
6980 	}
6981 
6982 	if (attr.freq) {
6983 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6984 			return -EINVAL;
6985 	}
6986 
6987 	/*
6988 	 * In cgroup mode, the pid argument is used to pass the fd
6989 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6990 	 * designates the cpu on which to monitor threads from that
6991 	 * cgroup.
6992 	 */
6993 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6994 		return -EINVAL;
6995 
6996 	event_fd = get_unused_fd();
6997 	if (event_fd < 0)
6998 		return event_fd;
6999 
7000 	if (group_fd != -1) {
7001 		err = perf_fget_light(group_fd, &group);
7002 		if (err)
7003 			goto err_fd;
7004 		group_leader = group.file->private_data;
7005 		if (flags & PERF_FLAG_FD_OUTPUT)
7006 			output_event = group_leader;
7007 		if (flags & PERF_FLAG_FD_NO_GROUP)
7008 			group_leader = NULL;
7009 	}
7010 
7011 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7012 		task = find_lively_task_by_vpid(pid);
7013 		if (IS_ERR(task)) {
7014 			err = PTR_ERR(task);
7015 			goto err_group_fd;
7016 		}
7017 	}
7018 
7019 	get_online_cpus();
7020 
7021 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7022 				 NULL, NULL);
7023 	if (IS_ERR(event)) {
7024 		err = PTR_ERR(event);
7025 		goto err_task;
7026 	}
7027 
7028 	if (flags & PERF_FLAG_PID_CGROUP) {
7029 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7030 		if (err) {
7031 			__free_event(event);
7032 			goto err_task;
7033 		}
7034 	}
7035 
7036 	account_event(event);
7037 
7038 	/*
7039 	 * Special case software events and allow them to be part of
7040 	 * any hardware group.
7041 	 */
7042 	pmu = event->pmu;
7043 
7044 	if (group_leader &&
7045 	    (is_software_event(event) != is_software_event(group_leader))) {
7046 		if (is_software_event(event)) {
7047 			/*
7048 			 * If event and group_leader are not both a software
7049 			 * event, and event is, then group leader is not.
7050 			 *
7051 			 * Allow the addition of software events to !software
7052 			 * groups, this is safe because software events never
7053 			 * fail to schedule.
7054 			 */
7055 			pmu = group_leader->pmu;
7056 		} else if (is_software_event(group_leader) &&
7057 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7058 			/*
7059 			 * In case the group is a pure software group, and we
7060 			 * try to add a hardware event, move the whole group to
7061 			 * the hardware context.
7062 			 */
7063 			move_group = 1;
7064 		}
7065 	}
7066 
7067 	/*
7068 	 * Get the target context (task or percpu):
7069 	 */
7070 	ctx = find_get_context(pmu, task, event->cpu);
7071 	if (IS_ERR(ctx)) {
7072 		err = PTR_ERR(ctx);
7073 		goto err_alloc;
7074 	}
7075 
7076 	if (task) {
7077 		put_task_struct(task);
7078 		task = NULL;
7079 	}
7080 
7081 	/*
7082 	 * Look up the group leader (we will attach this event to it):
7083 	 */
7084 	if (group_leader) {
7085 		err = -EINVAL;
7086 
7087 		/*
7088 		 * Do not allow a recursive hierarchy (this new sibling
7089 		 * becoming part of another group-sibling):
7090 		 */
7091 		if (group_leader->group_leader != group_leader)
7092 			goto err_context;
7093 		/*
7094 		 * Do not allow to attach to a group in a different
7095 		 * task or CPU context:
7096 		 */
7097 		if (move_group) {
7098 			if (group_leader->ctx->type != ctx->type)
7099 				goto err_context;
7100 		} else {
7101 			if (group_leader->ctx != ctx)
7102 				goto err_context;
7103 		}
7104 
7105 		/*
7106 		 * Only a group leader can be exclusive or pinned
7107 		 */
7108 		if (attr.exclusive || attr.pinned)
7109 			goto err_context;
7110 	}
7111 
7112 	if (output_event) {
7113 		err = perf_event_set_output(event, output_event);
7114 		if (err)
7115 			goto err_context;
7116 	}
7117 
7118 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7119 	if (IS_ERR(event_file)) {
7120 		err = PTR_ERR(event_file);
7121 		goto err_context;
7122 	}
7123 
7124 	if (move_group) {
7125 		struct perf_event_context *gctx = group_leader->ctx;
7126 
7127 		mutex_lock(&gctx->mutex);
7128 		perf_remove_from_context(group_leader);
7129 
7130 		/*
7131 		 * Removing from the context ends up with disabled
7132 		 * event. What we want here is event in the initial
7133 		 * startup state, ready to be add into new context.
7134 		 */
7135 		perf_event__state_init(group_leader);
7136 		list_for_each_entry(sibling, &group_leader->sibling_list,
7137 				    group_entry) {
7138 			perf_remove_from_context(sibling);
7139 			perf_event__state_init(sibling);
7140 			put_ctx(gctx);
7141 		}
7142 		mutex_unlock(&gctx->mutex);
7143 		put_ctx(gctx);
7144 	}
7145 
7146 	WARN_ON_ONCE(ctx->parent_ctx);
7147 	mutex_lock(&ctx->mutex);
7148 
7149 	if (move_group) {
7150 		synchronize_rcu();
7151 		perf_install_in_context(ctx, group_leader, event->cpu);
7152 		get_ctx(ctx);
7153 		list_for_each_entry(sibling, &group_leader->sibling_list,
7154 				    group_entry) {
7155 			perf_install_in_context(ctx, sibling, event->cpu);
7156 			get_ctx(ctx);
7157 		}
7158 	}
7159 
7160 	perf_install_in_context(ctx, event, event->cpu);
7161 	perf_unpin_context(ctx);
7162 	mutex_unlock(&ctx->mutex);
7163 
7164 	put_online_cpus();
7165 
7166 	event->owner = current;
7167 
7168 	mutex_lock(&current->perf_event_mutex);
7169 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7170 	mutex_unlock(&current->perf_event_mutex);
7171 
7172 	/*
7173 	 * Precalculate sample_data sizes
7174 	 */
7175 	perf_event__header_size(event);
7176 	perf_event__id_header_size(event);
7177 
7178 	/*
7179 	 * Drop the reference on the group_event after placing the
7180 	 * new event on the sibling_list. This ensures destruction
7181 	 * of the group leader will find the pointer to itself in
7182 	 * perf_group_detach().
7183 	 */
7184 	fdput(group);
7185 	fd_install(event_fd, event_file);
7186 	return event_fd;
7187 
7188 err_context:
7189 	perf_unpin_context(ctx);
7190 	put_ctx(ctx);
7191 err_alloc:
7192 	free_event(event);
7193 err_task:
7194 	put_online_cpus();
7195 	if (task)
7196 		put_task_struct(task);
7197 err_group_fd:
7198 	fdput(group);
7199 err_fd:
7200 	put_unused_fd(event_fd);
7201 	return err;
7202 }
7203 
7204 /**
7205  * perf_event_create_kernel_counter
7206  *
7207  * @attr: attributes of the counter to create
7208  * @cpu: cpu in which the counter is bound
7209  * @task: task to profile (NULL for percpu)
7210  */
7211 struct perf_event *
7212 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7213 				 struct task_struct *task,
7214 				 perf_overflow_handler_t overflow_handler,
7215 				 void *context)
7216 {
7217 	struct perf_event_context *ctx;
7218 	struct perf_event *event;
7219 	int err;
7220 
7221 	/*
7222 	 * Get the target context (task or percpu):
7223 	 */
7224 
7225 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7226 				 overflow_handler, context);
7227 	if (IS_ERR(event)) {
7228 		err = PTR_ERR(event);
7229 		goto err;
7230 	}
7231 
7232 	account_event(event);
7233 
7234 	ctx = find_get_context(event->pmu, task, cpu);
7235 	if (IS_ERR(ctx)) {
7236 		err = PTR_ERR(ctx);
7237 		goto err_free;
7238 	}
7239 
7240 	WARN_ON_ONCE(ctx->parent_ctx);
7241 	mutex_lock(&ctx->mutex);
7242 	perf_install_in_context(ctx, event, cpu);
7243 	perf_unpin_context(ctx);
7244 	mutex_unlock(&ctx->mutex);
7245 
7246 	return event;
7247 
7248 err_free:
7249 	free_event(event);
7250 err:
7251 	return ERR_PTR(err);
7252 }
7253 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7254 
7255 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7256 {
7257 	struct perf_event_context *src_ctx;
7258 	struct perf_event_context *dst_ctx;
7259 	struct perf_event *event, *tmp;
7260 	LIST_HEAD(events);
7261 
7262 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7263 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7264 
7265 	mutex_lock(&src_ctx->mutex);
7266 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7267 				 event_entry) {
7268 		perf_remove_from_context(event);
7269 		unaccount_event_cpu(event, src_cpu);
7270 		put_ctx(src_ctx);
7271 		list_add(&event->migrate_entry, &events);
7272 	}
7273 	mutex_unlock(&src_ctx->mutex);
7274 
7275 	synchronize_rcu();
7276 
7277 	mutex_lock(&dst_ctx->mutex);
7278 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7279 		list_del(&event->migrate_entry);
7280 		if (event->state >= PERF_EVENT_STATE_OFF)
7281 			event->state = PERF_EVENT_STATE_INACTIVE;
7282 		account_event_cpu(event, dst_cpu);
7283 		perf_install_in_context(dst_ctx, event, dst_cpu);
7284 		get_ctx(dst_ctx);
7285 	}
7286 	mutex_unlock(&dst_ctx->mutex);
7287 }
7288 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7289 
7290 static void sync_child_event(struct perf_event *child_event,
7291 			       struct task_struct *child)
7292 {
7293 	struct perf_event *parent_event = child_event->parent;
7294 	u64 child_val;
7295 
7296 	if (child_event->attr.inherit_stat)
7297 		perf_event_read_event(child_event, child);
7298 
7299 	child_val = perf_event_count(child_event);
7300 
7301 	/*
7302 	 * Add back the child's count to the parent's count:
7303 	 */
7304 	atomic64_add(child_val, &parent_event->child_count);
7305 	atomic64_add(child_event->total_time_enabled,
7306 		     &parent_event->child_total_time_enabled);
7307 	atomic64_add(child_event->total_time_running,
7308 		     &parent_event->child_total_time_running);
7309 
7310 	/*
7311 	 * Remove this event from the parent's list
7312 	 */
7313 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7314 	mutex_lock(&parent_event->child_mutex);
7315 	list_del_init(&child_event->child_list);
7316 	mutex_unlock(&parent_event->child_mutex);
7317 
7318 	/*
7319 	 * Release the parent event, if this was the last
7320 	 * reference to it.
7321 	 */
7322 	put_event(parent_event);
7323 }
7324 
7325 static void
7326 __perf_event_exit_task(struct perf_event *child_event,
7327 			 struct perf_event_context *child_ctx,
7328 			 struct task_struct *child)
7329 {
7330 	if (child_event->parent) {
7331 		raw_spin_lock_irq(&child_ctx->lock);
7332 		perf_group_detach(child_event);
7333 		raw_spin_unlock_irq(&child_ctx->lock);
7334 	}
7335 
7336 	perf_remove_from_context(child_event);
7337 
7338 	/*
7339 	 * It can happen that the parent exits first, and has events
7340 	 * that are still around due to the child reference. These
7341 	 * events need to be zapped.
7342 	 */
7343 	if (child_event->parent) {
7344 		sync_child_event(child_event, child);
7345 		free_event(child_event);
7346 	}
7347 }
7348 
7349 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7350 {
7351 	struct perf_event *child_event, *tmp;
7352 	struct perf_event_context *child_ctx;
7353 	unsigned long flags;
7354 
7355 	if (likely(!child->perf_event_ctxp[ctxn])) {
7356 		perf_event_task(child, NULL, 0);
7357 		return;
7358 	}
7359 
7360 	local_irq_save(flags);
7361 	/*
7362 	 * We can't reschedule here because interrupts are disabled,
7363 	 * and either child is current or it is a task that can't be
7364 	 * scheduled, so we are now safe from rescheduling changing
7365 	 * our context.
7366 	 */
7367 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7368 
7369 	/*
7370 	 * Take the context lock here so that if find_get_context is
7371 	 * reading child->perf_event_ctxp, we wait until it has
7372 	 * incremented the context's refcount before we do put_ctx below.
7373 	 */
7374 	raw_spin_lock(&child_ctx->lock);
7375 	task_ctx_sched_out(child_ctx);
7376 	child->perf_event_ctxp[ctxn] = NULL;
7377 	/*
7378 	 * If this context is a clone; unclone it so it can't get
7379 	 * swapped to another process while we're removing all
7380 	 * the events from it.
7381 	 */
7382 	unclone_ctx(child_ctx);
7383 	update_context_time(child_ctx);
7384 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7385 
7386 	/*
7387 	 * Report the task dead after unscheduling the events so that we
7388 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7389 	 * get a few PERF_RECORD_READ events.
7390 	 */
7391 	perf_event_task(child, child_ctx, 0);
7392 
7393 	/*
7394 	 * We can recurse on the same lock type through:
7395 	 *
7396 	 *   __perf_event_exit_task()
7397 	 *     sync_child_event()
7398 	 *       put_event()
7399 	 *         mutex_lock(&ctx->mutex)
7400 	 *
7401 	 * But since its the parent context it won't be the same instance.
7402 	 */
7403 	mutex_lock(&child_ctx->mutex);
7404 
7405 again:
7406 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7407 				 group_entry)
7408 		__perf_event_exit_task(child_event, child_ctx, child);
7409 
7410 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7411 				 group_entry)
7412 		__perf_event_exit_task(child_event, child_ctx, child);
7413 
7414 	/*
7415 	 * If the last event was a group event, it will have appended all
7416 	 * its siblings to the list, but we obtained 'tmp' before that which
7417 	 * will still point to the list head terminating the iteration.
7418 	 */
7419 	if (!list_empty(&child_ctx->pinned_groups) ||
7420 	    !list_empty(&child_ctx->flexible_groups))
7421 		goto again;
7422 
7423 	mutex_unlock(&child_ctx->mutex);
7424 
7425 	put_ctx(child_ctx);
7426 }
7427 
7428 /*
7429  * When a child task exits, feed back event values to parent events.
7430  */
7431 void perf_event_exit_task(struct task_struct *child)
7432 {
7433 	struct perf_event *event, *tmp;
7434 	int ctxn;
7435 
7436 	mutex_lock(&child->perf_event_mutex);
7437 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7438 				 owner_entry) {
7439 		list_del_init(&event->owner_entry);
7440 
7441 		/*
7442 		 * Ensure the list deletion is visible before we clear
7443 		 * the owner, closes a race against perf_release() where
7444 		 * we need to serialize on the owner->perf_event_mutex.
7445 		 */
7446 		smp_wmb();
7447 		event->owner = NULL;
7448 	}
7449 	mutex_unlock(&child->perf_event_mutex);
7450 
7451 	for_each_task_context_nr(ctxn)
7452 		perf_event_exit_task_context(child, ctxn);
7453 }
7454 
7455 static void perf_free_event(struct perf_event *event,
7456 			    struct perf_event_context *ctx)
7457 {
7458 	struct perf_event *parent = event->parent;
7459 
7460 	if (WARN_ON_ONCE(!parent))
7461 		return;
7462 
7463 	mutex_lock(&parent->child_mutex);
7464 	list_del_init(&event->child_list);
7465 	mutex_unlock(&parent->child_mutex);
7466 
7467 	put_event(parent);
7468 
7469 	perf_group_detach(event);
7470 	list_del_event(event, ctx);
7471 	free_event(event);
7472 }
7473 
7474 /*
7475  * free an unexposed, unused context as created by inheritance by
7476  * perf_event_init_task below, used by fork() in case of fail.
7477  */
7478 void perf_event_free_task(struct task_struct *task)
7479 {
7480 	struct perf_event_context *ctx;
7481 	struct perf_event *event, *tmp;
7482 	int ctxn;
7483 
7484 	for_each_task_context_nr(ctxn) {
7485 		ctx = task->perf_event_ctxp[ctxn];
7486 		if (!ctx)
7487 			continue;
7488 
7489 		mutex_lock(&ctx->mutex);
7490 again:
7491 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7492 				group_entry)
7493 			perf_free_event(event, ctx);
7494 
7495 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7496 				group_entry)
7497 			perf_free_event(event, ctx);
7498 
7499 		if (!list_empty(&ctx->pinned_groups) ||
7500 				!list_empty(&ctx->flexible_groups))
7501 			goto again;
7502 
7503 		mutex_unlock(&ctx->mutex);
7504 
7505 		put_ctx(ctx);
7506 	}
7507 }
7508 
7509 void perf_event_delayed_put(struct task_struct *task)
7510 {
7511 	int ctxn;
7512 
7513 	for_each_task_context_nr(ctxn)
7514 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7515 }
7516 
7517 /*
7518  * inherit a event from parent task to child task:
7519  */
7520 static struct perf_event *
7521 inherit_event(struct perf_event *parent_event,
7522 	      struct task_struct *parent,
7523 	      struct perf_event_context *parent_ctx,
7524 	      struct task_struct *child,
7525 	      struct perf_event *group_leader,
7526 	      struct perf_event_context *child_ctx)
7527 {
7528 	struct perf_event *child_event;
7529 	unsigned long flags;
7530 
7531 	/*
7532 	 * Instead of creating recursive hierarchies of events,
7533 	 * we link inherited events back to the original parent,
7534 	 * which has a filp for sure, which we use as the reference
7535 	 * count:
7536 	 */
7537 	if (parent_event->parent)
7538 		parent_event = parent_event->parent;
7539 
7540 	child_event = perf_event_alloc(&parent_event->attr,
7541 					   parent_event->cpu,
7542 					   child,
7543 					   group_leader, parent_event,
7544 				           NULL, NULL);
7545 	if (IS_ERR(child_event))
7546 		return child_event;
7547 
7548 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7549 		free_event(child_event);
7550 		return NULL;
7551 	}
7552 
7553 	get_ctx(child_ctx);
7554 
7555 	/*
7556 	 * Make the child state follow the state of the parent event,
7557 	 * not its attr.disabled bit.  We hold the parent's mutex,
7558 	 * so we won't race with perf_event_{en, dis}able_family.
7559 	 */
7560 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7561 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7562 	else
7563 		child_event->state = PERF_EVENT_STATE_OFF;
7564 
7565 	if (parent_event->attr.freq) {
7566 		u64 sample_period = parent_event->hw.sample_period;
7567 		struct hw_perf_event *hwc = &child_event->hw;
7568 
7569 		hwc->sample_period = sample_period;
7570 		hwc->last_period   = sample_period;
7571 
7572 		local64_set(&hwc->period_left, sample_period);
7573 	}
7574 
7575 	child_event->ctx = child_ctx;
7576 	child_event->overflow_handler = parent_event->overflow_handler;
7577 	child_event->overflow_handler_context
7578 		= parent_event->overflow_handler_context;
7579 
7580 	/*
7581 	 * Precalculate sample_data sizes
7582 	 */
7583 	perf_event__header_size(child_event);
7584 	perf_event__id_header_size(child_event);
7585 
7586 	/*
7587 	 * Link it up in the child's context:
7588 	 */
7589 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7590 	add_event_to_ctx(child_event, child_ctx);
7591 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7592 
7593 	/*
7594 	 * Link this into the parent event's child list
7595 	 */
7596 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7597 	mutex_lock(&parent_event->child_mutex);
7598 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7599 	mutex_unlock(&parent_event->child_mutex);
7600 
7601 	return child_event;
7602 }
7603 
7604 static int inherit_group(struct perf_event *parent_event,
7605 	      struct task_struct *parent,
7606 	      struct perf_event_context *parent_ctx,
7607 	      struct task_struct *child,
7608 	      struct perf_event_context *child_ctx)
7609 {
7610 	struct perf_event *leader;
7611 	struct perf_event *sub;
7612 	struct perf_event *child_ctr;
7613 
7614 	leader = inherit_event(parent_event, parent, parent_ctx,
7615 				 child, NULL, child_ctx);
7616 	if (IS_ERR(leader))
7617 		return PTR_ERR(leader);
7618 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7619 		child_ctr = inherit_event(sub, parent, parent_ctx,
7620 					    child, leader, child_ctx);
7621 		if (IS_ERR(child_ctr))
7622 			return PTR_ERR(child_ctr);
7623 	}
7624 	return 0;
7625 }
7626 
7627 static int
7628 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7629 		   struct perf_event_context *parent_ctx,
7630 		   struct task_struct *child, int ctxn,
7631 		   int *inherited_all)
7632 {
7633 	int ret;
7634 	struct perf_event_context *child_ctx;
7635 
7636 	if (!event->attr.inherit) {
7637 		*inherited_all = 0;
7638 		return 0;
7639 	}
7640 
7641 	child_ctx = child->perf_event_ctxp[ctxn];
7642 	if (!child_ctx) {
7643 		/*
7644 		 * This is executed from the parent task context, so
7645 		 * inherit events that have been marked for cloning.
7646 		 * First allocate and initialize a context for the
7647 		 * child.
7648 		 */
7649 
7650 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7651 		if (!child_ctx)
7652 			return -ENOMEM;
7653 
7654 		child->perf_event_ctxp[ctxn] = child_ctx;
7655 	}
7656 
7657 	ret = inherit_group(event, parent, parent_ctx,
7658 			    child, child_ctx);
7659 
7660 	if (ret)
7661 		*inherited_all = 0;
7662 
7663 	return ret;
7664 }
7665 
7666 /*
7667  * Initialize the perf_event context in task_struct
7668  */
7669 int perf_event_init_context(struct task_struct *child, int ctxn)
7670 {
7671 	struct perf_event_context *child_ctx, *parent_ctx;
7672 	struct perf_event_context *cloned_ctx;
7673 	struct perf_event *event;
7674 	struct task_struct *parent = current;
7675 	int inherited_all = 1;
7676 	unsigned long flags;
7677 	int ret = 0;
7678 
7679 	if (likely(!parent->perf_event_ctxp[ctxn]))
7680 		return 0;
7681 
7682 	/*
7683 	 * If the parent's context is a clone, pin it so it won't get
7684 	 * swapped under us.
7685 	 */
7686 	parent_ctx = perf_pin_task_context(parent, ctxn);
7687 
7688 	/*
7689 	 * No need to check if parent_ctx != NULL here; since we saw
7690 	 * it non-NULL earlier, the only reason for it to become NULL
7691 	 * is if we exit, and since we're currently in the middle of
7692 	 * a fork we can't be exiting at the same time.
7693 	 */
7694 
7695 	/*
7696 	 * Lock the parent list. No need to lock the child - not PID
7697 	 * hashed yet and not running, so nobody can access it.
7698 	 */
7699 	mutex_lock(&parent_ctx->mutex);
7700 
7701 	/*
7702 	 * We dont have to disable NMIs - we are only looking at
7703 	 * the list, not manipulating it:
7704 	 */
7705 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7706 		ret = inherit_task_group(event, parent, parent_ctx,
7707 					 child, ctxn, &inherited_all);
7708 		if (ret)
7709 			break;
7710 	}
7711 
7712 	/*
7713 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7714 	 * to allocations, but we need to prevent rotation because
7715 	 * rotate_ctx() will change the list from interrupt context.
7716 	 */
7717 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7718 	parent_ctx->rotate_disable = 1;
7719 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7720 
7721 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7722 		ret = inherit_task_group(event, parent, parent_ctx,
7723 					 child, ctxn, &inherited_all);
7724 		if (ret)
7725 			break;
7726 	}
7727 
7728 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7729 	parent_ctx->rotate_disable = 0;
7730 
7731 	child_ctx = child->perf_event_ctxp[ctxn];
7732 
7733 	if (child_ctx && inherited_all) {
7734 		/*
7735 		 * Mark the child context as a clone of the parent
7736 		 * context, or of whatever the parent is a clone of.
7737 		 *
7738 		 * Note that if the parent is a clone, the holding of
7739 		 * parent_ctx->lock avoids it from being uncloned.
7740 		 */
7741 		cloned_ctx = parent_ctx->parent_ctx;
7742 		if (cloned_ctx) {
7743 			child_ctx->parent_ctx = cloned_ctx;
7744 			child_ctx->parent_gen = parent_ctx->parent_gen;
7745 		} else {
7746 			child_ctx->parent_ctx = parent_ctx;
7747 			child_ctx->parent_gen = parent_ctx->generation;
7748 		}
7749 		get_ctx(child_ctx->parent_ctx);
7750 	}
7751 
7752 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7753 	mutex_unlock(&parent_ctx->mutex);
7754 
7755 	perf_unpin_context(parent_ctx);
7756 	put_ctx(parent_ctx);
7757 
7758 	return ret;
7759 }
7760 
7761 /*
7762  * Initialize the perf_event context in task_struct
7763  */
7764 int perf_event_init_task(struct task_struct *child)
7765 {
7766 	int ctxn, ret;
7767 
7768 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7769 	mutex_init(&child->perf_event_mutex);
7770 	INIT_LIST_HEAD(&child->perf_event_list);
7771 
7772 	for_each_task_context_nr(ctxn) {
7773 		ret = perf_event_init_context(child, ctxn);
7774 		if (ret)
7775 			return ret;
7776 	}
7777 
7778 	return 0;
7779 }
7780 
7781 static void __init perf_event_init_all_cpus(void)
7782 {
7783 	struct swevent_htable *swhash;
7784 	int cpu;
7785 
7786 	for_each_possible_cpu(cpu) {
7787 		swhash = &per_cpu(swevent_htable, cpu);
7788 		mutex_init(&swhash->hlist_mutex);
7789 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7790 	}
7791 }
7792 
7793 static void perf_event_init_cpu(int cpu)
7794 {
7795 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7796 
7797 	mutex_lock(&swhash->hlist_mutex);
7798 	if (swhash->hlist_refcount > 0) {
7799 		struct swevent_hlist *hlist;
7800 
7801 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7802 		WARN_ON(!hlist);
7803 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7804 	}
7805 	mutex_unlock(&swhash->hlist_mutex);
7806 }
7807 
7808 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7809 static void perf_pmu_rotate_stop(struct pmu *pmu)
7810 {
7811 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7812 
7813 	WARN_ON(!irqs_disabled());
7814 
7815 	list_del_init(&cpuctx->rotation_list);
7816 }
7817 
7818 static void __perf_event_exit_context(void *__info)
7819 {
7820 	struct perf_event_context *ctx = __info;
7821 	struct perf_event *event, *tmp;
7822 
7823 	perf_pmu_rotate_stop(ctx->pmu);
7824 
7825 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7826 		__perf_remove_from_context(event);
7827 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7828 		__perf_remove_from_context(event);
7829 }
7830 
7831 static void perf_event_exit_cpu_context(int cpu)
7832 {
7833 	struct perf_event_context *ctx;
7834 	struct pmu *pmu;
7835 	int idx;
7836 
7837 	idx = srcu_read_lock(&pmus_srcu);
7838 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7839 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7840 
7841 		mutex_lock(&ctx->mutex);
7842 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7843 		mutex_unlock(&ctx->mutex);
7844 	}
7845 	srcu_read_unlock(&pmus_srcu, idx);
7846 }
7847 
7848 static void perf_event_exit_cpu(int cpu)
7849 {
7850 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7851 
7852 	mutex_lock(&swhash->hlist_mutex);
7853 	swevent_hlist_release(swhash);
7854 	mutex_unlock(&swhash->hlist_mutex);
7855 
7856 	perf_event_exit_cpu_context(cpu);
7857 }
7858 #else
7859 static inline void perf_event_exit_cpu(int cpu) { }
7860 #endif
7861 
7862 static int
7863 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7864 {
7865 	int cpu;
7866 
7867 	for_each_online_cpu(cpu)
7868 		perf_event_exit_cpu(cpu);
7869 
7870 	return NOTIFY_OK;
7871 }
7872 
7873 /*
7874  * Run the perf reboot notifier at the very last possible moment so that
7875  * the generic watchdog code runs as long as possible.
7876  */
7877 static struct notifier_block perf_reboot_notifier = {
7878 	.notifier_call = perf_reboot,
7879 	.priority = INT_MIN,
7880 };
7881 
7882 static int
7883 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7884 {
7885 	unsigned int cpu = (long)hcpu;
7886 
7887 	switch (action & ~CPU_TASKS_FROZEN) {
7888 
7889 	case CPU_UP_PREPARE:
7890 	case CPU_DOWN_FAILED:
7891 		perf_event_init_cpu(cpu);
7892 		break;
7893 
7894 	case CPU_UP_CANCELED:
7895 	case CPU_DOWN_PREPARE:
7896 		perf_event_exit_cpu(cpu);
7897 		break;
7898 	default:
7899 		break;
7900 	}
7901 
7902 	return NOTIFY_OK;
7903 }
7904 
7905 void __init perf_event_init(void)
7906 {
7907 	int ret;
7908 
7909 	idr_init(&pmu_idr);
7910 
7911 	perf_event_init_all_cpus();
7912 	init_srcu_struct(&pmus_srcu);
7913 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7914 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7915 	perf_pmu_register(&perf_task_clock, NULL, -1);
7916 	perf_tp_register();
7917 	perf_cpu_notifier(perf_cpu_notify);
7918 	register_reboot_notifier(&perf_reboot_notifier);
7919 
7920 	ret = init_hw_breakpoint();
7921 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7922 
7923 	/* do not patch jump label more than once per second */
7924 	jump_label_rate_limit(&perf_sched_events, HZ);
7925 
7926 	/*
7927 	 * Build time assertion that we keep the data_head at the intended
7928 	 * location.  IOW, validation we got the __reserved[] size right.
7929 	 */
7930 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7931 		     != 1024);
7932 }
7933 
7934 static int __init perf_event_sysfs_init(void)
7935 {
7936 	struct pmu *pmu;
7937 	int ret;
7938 
7939 	mutex_lock(&pmus_lock);
7940 
7941 	ret = bus_register(&pmu_bus);
7942 	if (ret)
7943 		goto unlock;
7944 
7945 	list_for_each_entry(pmu, &pmus, entry) {
7946 		if (!pmu->name || pmu->type < 0)
7947 			continue;
7948 
7949 		ret = pmu_dev_alloc(pmu);
7950 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7951 	}
7952 	pmu_bus_running = 1;
7953 	ret = 0;
7954 
7955 unlock:
7956 	mutex_unlock(&pmus_lock);
7957 
7958 	return ret;
7959 }
7960 device_initcall(perf_event_sysfs_init);
7961 
7962 #ifdef CONFIG_CGROUP_PERF
7963 static struct cgroup_subsys_state *
7964 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7965 {
7966 	struct perf_cgroup *jc;
7967 
7968 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7969 	if (!jc)
7970 		return ERR_PTR(-ENOMEM);
7971 
7972 	jc->info = alloc_percpu(struct perf_cgroup_info);
7973 	if (!jc->info) {
7974 		kfree(jc);
7975 		return ERR_PTR(-ENOMEM);
7976 	}
7977 
7978 	return &jc->css;
7979 }
7980 
7981 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7982 {
7983 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7984 
7985 	free_percpu(jc->info);
7986 	kfree(jc);
7987 }
7988 
7989 static int __perf_cgroup_move(void *info)
7990 {
7991 	struct task_struct *task = info;
7992 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7993 	return 0;
7994 }
7995 
7996 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7997 			       struct cgroup_taskset *tset)
7998 {
7999 	struct task_struct *task;
8000 
8001 	cgroup_taskset_for_each(task, css, tset)
8002 		task_function_call(task, __perf_cgroup_move, task);
8003 }
8004 
8005 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8006 			     struct cgroup_subsys_state *old_css,
8007 			     struct task_struct *task)
8008 {
8009 	/*
8010 	 * cgroup_exit() is called in the copy_process() failure path.
8011 	 * Ignore this case since the task hasn't ran yet, this avoids
8012 	 * trying to poke a half freed task state from generic code.
8013 	 */
8014 	if (!(task->flags & PF_EXITING))
8015 		return;
8016 
8017 	task_function_call(task, __perf_cgroup_move, task);
8018 }
8019 
8020 struct cgroup_subsys perf_subsys = {
8021 	.name		= "perf_event",
8022 	.subsys_id	= perf_subsys_id,
8023 	.css_alloc	= perf_cgroup_css_alloc,
8024 	.css_free	= perf_cgroup_css_free,
8025 	.exit		= perf_cgroup_exit,
8026 	.attach		= perf_cgroup_attach,
8027 };
8028 #endif /* CONFIG_CGROUP_PERF */
8029