1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_local(struct perf_event *event, event_f func, void *data) 246 { 247 struct event_function_struct efs = { 248 .event = event, 249 .func = func, 250 .data = data, 251 }; 252 253 int ret = event_function(&efs); 254 WARN_ON_ONCE(ret); 255 } 256 257 static void event_function_call(struct perf_event *event, event_f func, void *data) 258 { 259 struct perf_event_context *ctx = event->ctx; 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 261 struct event_function_struct efs = { 262 .event = event, 263 .func = func, 264 .data = data, 265 }; 266 267 if (!event->parent) { 268 /* 269 * If this is a !child event, we must hold ctx::mutex to 270 * stabilize the the event->ctx relation. See 271 * perf_event_ctx_lock(). 272 */ 273 lockdep_assert_held(&ctx->mutex); 274 } 275 276 if (!task) { 277 cpu_function_call(event->cpu, event_function, &efs); 278 return; 279 } 280 281 if (task == TASK_TOMBSTONE) 282 return; 283 284 again: 285 if (!task_function_call(task, event_function, &efs)) 286 return; 287 288 raw_spin_lock_irq(&ctx->lock); 289 /* 290 * Reload the task pointer, it might have been changed by 291 * a concurrent perf_event_context_sched_out(). 292 */ 293 task = ctx->task; 294 if (task == TASK_TOMBSTONE) { 295 raw_spin_unlock_irq(&ctx->lock); 296 return; 297 } 298 if (ctx->is_active) { 299 raw_spin_unlock_irq(&ctx->lock); 300 goto again; 301 } 302 func(event, NULL, ctx, data); 303 raw_spin_unlock_irq(&ctx->lock); 304 } 305 306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 307 PERF_FLAG_FD_OUTPUT |\ 308 PERF_FLAG_PID_CGROUP |\ 309 PERF_FLAG_FD_CLOEXEC) 310 311 /* 312 * branch priv levels that need permission checks 313 */ 314 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 315 (PERF_SAMPLE_BRANCH_KERNEL |\ 316 PERF_SAMPLE_BRANCH_HV) 317 318 enum event_type_t { 319 EVENT_FLEXIBLE = 0x1, 320 EVENT_PINNED = 0x2, 321 EVENT_TIME = 0x4, 322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 323 }; 324 325 /* 326 * perf_sched_events : >0 events exist 327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 328 */ 329 330 static void perf_sched_delayed(struct work_struct *work); 331 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 333 static DEFINE_MUTEX(perf_sched_mutex); 334 static atomic_t perf_sched_count; 335 336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 337 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 339 340 static atomic_t nr_mmap_events __read_mostly; 341 static atomic_t nr_comm_events __read_mostly; 342 static atomic_t nr_task_events __read_mostly; 343 static atomic_t nr_freq_events __read_mostly; 344 static atomic_t nr_switch_events __read_mostly; 345 346 static LIST_HEAD(pmus); 347 static DEFINE_MUTEX(pmus_lock); 348 static struct srcu_struct pmus_srcu; 349 350 /* 351 * perf event paranoia level: 352 * -1 - not paranoid at all 353 * 0 - disallow raw tracepoint access for unpriv 354 * 1 - disallow cpu events for unpriv 355 * 2 - disallow kernel profiling for unpriv 356 */ 357 int sysctl_perf_event_paranoid __read_mostly = 2; 358 359 /* Minimum for 512 kiB + 1 user control page */ 360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 361 362 /* 363 * max perf event sample rate 364 */ 365 #define DEFAULT_MAX_SAMPLE_RATE 100000 366 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 367 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 368 369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 370 371 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 372 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 373 374 static int perf_sample_allowed_ns __read_mostly = 375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 376 377 static void update_perf_cpu_limits(void) 378 { 379 u64 tmp = perf_sample_period_ns; 380 381 tmp *= sysctl_perf_cpu_time_max_percent; 382 tmp = div_u64(tmp, 100); 383 if (!tmp) 384 tmp = 1; 385 386 WRITE_ONCE(perf_sample_allowed_ns, tmp); 387 } 388 389 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 390 391 int perf_proc_update_handler(struct ctl_table *table, int write, 392 void __user *buffer, size_t *lenp, 393 loff_t *ppos) 394 { 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 396 397 if (ret || !write) 398 return ret; 399 400 /* 401 * If throttling is disabled don't allow the write: 402 */ 403 if (sysctl_perf_cpu_time_max_percent == 100 || 404 sysctl_perf_cpu_time_max_percent == 0) 405 return -EINVAL; 406 407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 409 update_perf_cpu_limits(); 410 411 return 0; 412 } 413 414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 415 416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 417 void __user *buffer, size_t *lenp, 418 loff_t *ppos) 419 { 420 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 421 422 if (ret || !write) 423 return ret; 424 425 if (sysctl_perf_cpu_time_max_percent == 100 || 426 sysctl_perf_cpu_time_max_percent == 0) { 427 printk(KERN_WARNING 428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 429 WRITE_ONCE(perf_sample_allowed_ns, 0); 430 } else { 431 update_perf_cpu_limits(); 432 } 433 434 return 0; 435 } 436 437 /* 438 * perf samples are done in some very critical code paths (NMIs). 439 * If they take too much CPU time, the system can lock up and not 440 * get any real work done. This will drop the sample rate when 441 * we detect that events are taking too long. 442 */ 443 #define NR_ACCUMULATED_SAMPLES 128 444 static DEFINE_PER_CPU(u64, running_sample_length); 445 446 static u64 __report_avg; 447 static u64 __report_allowed; 448 449 static void perf_duration_warn(struct irq_work *w) 450 { 451 printk_ratelimited(KERN_WARNING 452 "perf: interrupt took too long (%lld > %lld), lowering " 453 "kernel.perf_event_max_sample_rate to %d\n", 454 __report_avg, __report_allowed, 455 sysctl_perf_event_sample_rate); 456 } 457 458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 459 460 void perf_sample_event_took(u64 sample_len_ns) 461 { 462 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 463 u64 running_len; 464 u64 avg_len; 465 u32 max; 466 467 if (max_len == 0) 468 return; 469 470 /* Decay the counter by 1 average sample. */ 471 running_len = __this_cpu_read(running_sample_length); 472 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 473 running_len += sample_len_ns; 474 __this_cpu_write(running_sample_length, running_len); 475 476 /* 477 * Note: this will be biased artifically low until we have 478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 479 * from having to maintain a count. 480 */ 481 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 482 if (avg_len <= max_len) 483 return; 484 485 __report_avg = avg_len; 486 __report_allowed = max_len; 487 488 /* 489 * Compute a throttle threshold 25% below the current duration. 490 */ 491 avg_len += avg_len / 4; 492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 493 if (avg_len < max) 494 max /= (u32)avg_len; 495 else 496 max = 1; 497 498 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 499 WRITE_ONCE(max_samples_per_tick, max); 500 501 sysctl_perf_event_sample_rate = max * HZ; 502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 503 504 if (!irq_work_queue(&perf_duration_work)) { 505 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 506 "kernel.perf_event_max_sample_rate to %d\n", 507 __report_avg, __report_allowed, 508 sysctl_perf_event_sample_rate); 509 } 510 } 511 512 static atomic64_t perf_event_id; 513 514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 515 enum event_type_t event_type); 516 517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 518 enum event_type_t event_type, 519 struct task_struct *task); 520 521 static void update_context_time(struct perf_event_context *ctx); 522 static u64 perf_event_time(struct perf_event *event); 523 524 void __weak perf_event_print_debug(void) { } 525 526 extern __weak const char *perf_pmu_name(void) 527 { 528 return "pmu"; 529 } 530 531 static inline u64 perf_clock(void) 532 { 533 return local_clock(); 534 } 535 536 static inline u64 perf_event_clock(struct perf_event *event) 537 { 538 return event->clock(); 539 } 540 541 #ifdef CONFIG_CGROUP_PERF 542 543 static inline bool 544 perf_cgroup_match(struct perf_event *event) 545 { 546 struct perf_event_context *ctx = event->ctx; 547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 548 549 /* @event doesn't care about cgroup */ 550 if (!event->cgrp) 551 return true; 552 553 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 554 if (!cpuctx->cgrp) 555 return false; 556 557 /* 558 * Cgroup scoping is recursive. An event enabled for a cgroup is 559 * also enabled for all its descendant cgroups. If @cpuctx's 560 * cgroup is a descendant of @event's (the test covers identity 561 * case), it's a match. 562 */ 563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 564 event->cgrp->css.cgroup); 565 } 566 567 static inline void perf_detach_cgroup(struct perf_event *event) 568 { 569 css_put(&event->cgrp->css); 570 event->cgrp = NULL; 571 } 572 573 static inline int is_cgroup_event(struct perf_event *event) 574 { 575 return event->cgrp != NULL; 576 } 577 578 static inline u64 perf_cgroup_event_time(struct perf_event *event) 579 { 580 struct perf_cgroup_info *t; 581 582 t = per_cpu_ptr(event->cgrp->info, event->cpu); 583 return t->time; 584 } 585 586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 587 { 588 struct perf_cgroup_info *info; 589 u64 now; 590 591 now = perf_clock(); 592 593 info = this_cpu_ptr(cgrp->info); 594 595 info->time += now - info->timestamp; 596 info->timestamp = now; 597 } 598 599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 600 { 601 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 602 if (cgrp_out) 603 __update_cgrp_time(cgrp_out); 604 } 605 606 static inline void update_cgrp_time_from_event(struct perf_event *event) 607 { 608 struct perf_cgroup *cgrp; 609 610 /* 611 * ensure we access cgroup data only when needed and 612 * when we know the cgroup is pinned (css_get) 613 */ 614 if (!is_cgroup_event(event)) 615 return; 616 617 cgrp = perf_cgroup_from_task(current, event->ctx); 618 /* 619 * Do not update time when cgroup is not active 620 */ 621 if (cgrp == event->cgrp) 622 __update_cgrp_time(event->cgrp); 623 } 624 625 static inline void 626 perf_cgroup_set_timestamp(struct task_struct *task, 627 struct perf_event_context *ctx) 628 { 629 struct perf_cgroup *cgrp; 630 struct perf_cgroup_info *info; 631 632 /* 633 * ctx->lock held by caller 634 * ensure we do not access cgroup data 635 * unless we have the cgroup pinned (css_get) 636 */ 637 if (!task || !ctx->nr_cgroups) 638 return; 639 640 cgrp = perf_cgroup_from_task(task, ctx); 641 info = this_cpu_ptr(cgrp->info); 642 info->timestamp = ctx->timestamp; 643 } 644 645 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 646 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 647 648 /* 649 * reschedule events based on the cgroup constraint of task. 650 * 651 * mode SWOUT : schedule out everything 652 * mode SWIN : schedule in based on cgroup for next 653 */ 654 static void perf_cgroup_switch(struct task_struct *task, int mode) 655 { 656 struct perf_cpu_context *cpuctx; 657 struct pmu *pmu; 658 unsigned long flags; 659 660 /* 661 * disable interrupts to avoid geting nr_cgroup 662 * changes via __perf_event_disable(). Also 663 * avoids preemption. 664 */ 665 local_irq_save(flags); 666 667 /* 668 * we reschedule only in the presence of cgroup 669 * constrained events. 670 */ 671 672 list_for_each_entry_rcu(pmu, &pmus, entry) { 673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 674 if (cpuctx->unique_pmu != pmu) 675 continue; /* ensure we process each cpuctx once */ 676 677 /* 678 * perf_cgroup_events says at least one 679 * context on this CPU has cgroup events. 680 * 681 * ctx->nr_cgroups reports the number of cgroup 682 * events for a context. 683 */ 684 if (cpuctx->ctx.nr_cgroups > 0) { 685 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 686 perf_pmu_disable(cpuctx->ctx.pmu); 687 688 if (mode & PERF_CGROUP_SWOUT) { 689 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 690 /* 691 * must not be done before ctxswout due 692 * to event_filter_match() in event_sched_out() 693 */ 694 cpuctx->cgrp = NULL; 695 } 696 697 if (mode & PERF_CGROUP_SWIN) { 698 WARN_ON_ONCE(cpuctx->cgrp); 699 /* 700 * set cgrp before ctxsw in to allow 701 * event_filter_match() to not have to pass 702 * task around 703 * we pass the cpuctx->ctx to perf_cgroup_from_task() 704 * because cgorup events are only per-cpu 705 */ 706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 708 } 709 perf_pmu_enable(cpuctx->ctx.pmu); 710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 711 } 712 } 713 714 local_irq_restore(flags); 715 } 716 717 static inline void perf_cgroup_sched_out(struct task_struct *task, 718 struct task_struct *next) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(next, NULL); 731 732 /* 733 * only schedule out current cgroup events if we know 734 * that we are switching to a different cgroup. Otherwise, 735 * do no touch the cgroup events. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 739 740 rcu_read_unlock(); 741 } 742 743 static inline void perf_cgroup_sched_in(struct task_struct *prev, 744 struct task_struct *task) 745 { 746 struct perf_cgroup *cgrp1; 747 struct perf_cgroup *cgrp2 = NULL; 748 749 rcu_read_lock(); 750 /* 751 * we come here when we know perf_cgroup_events > 0 752 * we do not need to pass the ctx here because we know 753 * we are holding the rcu lock 754 */ 755 cgrp1 = perf_cgroup_from_task(task, NULL); 756 cgrp2 = perf_cgroup_from_task(prev, NULL); 757 758 /* 759 * only need to schedule in cgroup events if we are changing 760 * cgroup during ctxsw. Cgroup events were not scheduled 761 * out of ctxsw out if that was not the case. 762 */ 763 if (cgrp1 != cgrp2) 764 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 765 766 rcu_read_unlock(); 767 } 768 769 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 770 struct perf_event_attr *attr, 771 struct perf_event *group_leader) 772 { 773 struct perf_cgroup *cgrp; 774 struct cgroup_subsys_state *css; 775 struct fd f = fdget(fd); 776 int ret = 0; 777 778 if (!f.file) 779 return -EBADF; 780 781 css = css_tryget_online_from_dir(f.file->f_path.dentry, 782 &perf_event_cgrp_subsys); 783 if (IS_ERR(css)) { 784 ret = PTR_ERR(css); 785 goto out; 786 } 787 788 cgrp = container_of(css, struct perf_cgroup, css); 789 event->cgrp = cgrp; 790 791 /* 792 * all events in a group must monitor 793 * the same cgroup because a task belongs 794 * to only one perf cgroup at a time 795 */ 796 if (group_leader && group_leader->cgrp != cgrp) { 797 perf_detach_cgroup(event); 798 ret = -EINVAL; 799 } 800 out: 801 fdput(f); 802 return ret; 803 } 804 805 static inline void 806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 807 { 808 struct perf_cgroup_info *t; 809 t = per_cpu_ptr(event->cgrp->info, event->cpu); 810 event->shadow_ctx_time = now - t->timestamp; 811 } 812 813 static inline void 814 perf_cgroup_defer_enabled(struct perf_event *event) 815 { 816 /* 817 * when the current task's perf cgroup does not match 818 * the event's, we need to remember to call the 819 * perf_mark_enable() function the first time a task with 820 * a matching perf cgroup is scheduled in. 821 */ 822 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 823 event->cgrp_defer_enabled = 1; 824 } 825 826 static inline void 827 perf_cgroup_mark_enabled(struct perf_event *event, 828 struct perf_event_context *ctx) 829 { 830 struct perf_event *sub; 831 u64 tstamp = perf_event_time(event); 832 833 if (!event->cgrp_defer_enabled) 834 return; 835 836 event->cgrp_defer_enabled = 0; 837 838 event->tstamp_enabled = tstamp - event->total_time_enabled; 839 list_for_each_entry(sub, &event->sibling_list, group_entry) { 840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 841 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 842 sub->cgrp_defer_enabled = 0; 843 } 844 } 845 } 846 #else /* !CONFIG_CGROUP_PERF */ 847 848 static inline bool 849 perf_cgroup_match(struct perf_event *event) 850 { 851 return true; 852 } 853 854 static inline void perf_detach_cgroup(struct perf_event *event) 855 {} 856 857 static inline int is_cgroup_event(struct perf_event *event) 858 { 859 return 0; 860 } 861 862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 863 { 864 return 0; 865 } 866 867 static inline void update_cgrp_time_from_event(struct perf_event *event) 868 { 869 } 870 871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 872 { 873 } 874 875 static inline void perf_cgroup_sched_out(struct task_struct *task, 876 struct task_struct *next) 877 { 878 } 879 880 static inline void perf_cgroup_sched_in(struct task_struct *prev, 881 struct task_struct *task) 882 { 883 } 884 885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 886 struct perf_event_attr *attr, 887 struct perf_event *group_leader) 888 { 889 return -EINVAL; 890 } 891 892 static inline void 893 perf_cgroup_set_timestamp(struct task_struct *task, 894 struct perf_event_context *ctx) 895 { 896 } 897 898 void 899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 900 { 901 } 902 903 static inline void 904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 905 { 906 } 907 908 static inline u64 perf_cgroup_event_time(struct perf_event *event) 909 { 910 return 0; 911 } 912 913 static inline void 914 perf_cgroup_defer_enabled(struct perf_event *event) 915 { 916 } 917 918 static inline void 919 perf_cgroup_mark_enabled(struct perf_event *event, 920 struct perf_event_context *ctx) 921 { 922 } 923 #endif 924 925 /* 926 * set default to be dependent on timer tick just 927 * like original code 928 */ 929 #define PERF_CPU_HRTIMER (1000 / HZ) 930 /* 931 * function must be called with interrupts disbled 932 */ 933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 934 { 935 struct perf_cpu_context *cpuctx; 936 int rotations = 0; 937 938 WARN_ON(!irqs_disabled()); 939 940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 941 rotations = perf_rotate_context(cpuctx); 942 943 raw_spin_lock(&cpuctx->hrtimer_lock); 944 if (rotations) 945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 946 else 947 cpuctx->hrtimer_active = 0; 948 raw_spin_unlock(&cpuctx->hrtimer_lock); 949 950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 951 } 952 953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 954 { 955 struct hrtimer *timer = &cpuctx->hrtimer; 956 struct pmu *pmu = cpuctx->ctx.pmu; 957 u64 interval; 958 959 /* no multiplexing needed for SW PMU */ 960 if (pmu->task_ctx_nr == perf_sw_context) 961 return; 962 963 /* 964 * check default is sane, if not set then force to 965 * default interval (1/tick) 966 */ 967 interval = pmu->hrtimer_interval_ms; 968 if (interval < 1) 969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 970 971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 972 973 raw_spin_lock_init(&cpuctx->hrtimer_lock); 974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 975 timer->function = perf_mux_hrtimer_handler; 976 } 977 978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 979 { 980 struct hrtimer *timer = &cpuctx->hrtimer; 981 struct pmu *pmu = cpuctx->ctx.pmu; 982 unsigned long flags; 983 984 /* not for SW PMU */ 985 if (pmu->task_ctx_nr == perf_sw_context) 986 return 0; 987 988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 989 if (!cpuctx->hrtimer_active) { 990 cpuctx->hrtimer_active = 1; 991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 993 } 994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 995 996 return 0; 997 } 998 999 void perf_pmu_disable(struct pmu *pmu) 1000 { 1001 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1002 if (!(*count)++) 1003 pmu->pmu_disable(pmu); 1004 } 1005 1006 void perf_pmu_enable(struct pmu *pmu) 1007 { 1008 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1009 if (!--(*count)) 1010 pmu->pmu_enable(pmu); 1011 } 1012 1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1014 1015 /* 1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1017 * perf_event_task_tick() are fully serialized because they're strictly cpu 1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1019 * disabled, while perf_event_task_tick is called from IRQ context. 1020 */ 1021 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1022 { 1023 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1024 1025 WARN_ON(!irqs_disabled()); 1026 1027 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1028 1029 list_add(&ctx->active_ctx_list, head); 1030 } 1031 1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1033 { 1034 WARN_ON(!irqs_disabled()); 1035 1036 WARN_ON(list_empty(&ctx->active_ctx_list)); 1037 1038 list_del_init(&ctx->active_ctx_list); 1039 } 1040 1041 static void get_ctx(struct perf_event_context *ctx) 1042 { 1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1044 } 1045 1046 static void free_ctx(struct rcu_head *head) 1047 { 1048 struct perf_event_context *ctx; 1049 1050 ctx = container_of(head, struct perf_event_context, rcu_head); 1051 kfree(ctx->task_ctx_data); 1052 kfree(ctx); 1053 } 1054 1055 static void put_ctx(struct perf_event_context *ctx) 1056 { 1057 if (atomic_dec_and_test(&ctx->refcount)) { 1058 if (ctx->parent_ctx) 1059 put_ctx(ctx->parent_ctx); 1060 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1061 put_task_struct(ctx->task); 1062 call_rcu(&ctx->rcu_head, free_ctx); 1063 } 1064 } 1065 1066 /* 1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1068 * perf_pmu_migrate_context() we need some magic. 1069 * 1070 * Those places that change perf_event::ctx will hold both 1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1072 * 1073 * Lock ordering is by mutex address. There are two other sites where 1074 * perf_event_context::mutex nests and those are: 1075 * 1076 * - perf_event_exit_task_context() [ child , 0 ] 1077 * perf_event_exit_event() 1078 * put_event() [ parent, 1 ] 1079 * 1080 * - perf_event_init_context() [ parent, 0 ] 1081 * inherit_task_group() 1082 * inherit_group() 1083 * inherit_event() 1084 * perf_event_alloc() 1085 * perf_init_event() 1086 * perf_try_init_event() [ child , 1 ] 1087 * 1088 * While it appears there is an obvious deadlock here -- the parent and child 1089 * nesting levels are inverted between the two. This is in fact safe because 1090 * life-time rules separate them. That is an exiting task cannot fork, and a 1091 * spawning task cannot (yet) exit. 1092 * 1093 * But remember that that these are parent<->child context relations, and 1094 * migration does not affect children, therefore these two orderings should not 1095 * interact. 1096 * 1097 * The change in perf_event::ctx does not affect children (as claimed above) 1098 * because the sys_perf_event_open() case will install a new event and break 1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1100 * concerned with cpuctx and that doesn't have children. 1101 * 1102 * The places that change perf_event::ctx will issue: 1103 * 1104 * perf_remove_from_context(); 1105 * synchronize_rcu(); 1106 * perf_install_in_context(); 1107 * 1108 * to affect the change. The remove_from_context() + synchronize_rcu() should 1109 * quiesce the event, after which we can install it in the new location. This 1110 * means that only external vectors (perf_fops, prctl) can perturb the event 1111 * while in transit. Therefore all such accessors should also acquire 1112 * perf_event_context::mutex to serialize against this. 1113 * 1114 * However; because event->ctx can change while we're waiting to acquire 1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1116 * function. 1117 * 1118 * Lock order: 1119 * cred_guard_mutex 1120 * task_struct::perf_event_mutex 1121 * perf_event_context::mutex 1122 * perf_event::child_mutex; 1123 * perf_event_context::lock 1124 * perf_event::mmap_mutex 1125 * mmap_sem 1126 */ 1127 static struct perf_event_context * 1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1129 { 1130 struct perf_event_context *ctx; 1131 1132 again: 1133 rcu_read_lock(); 1134 ctx = ACCESS_ONCE(event->ctx); 1135 if (!atomic_inc_not_zero(&ctx->refcount)) { 1136 rcu_read_unlock(); 1137 goto again; 1138 } 1139 rcu_read_unlock(); 1140 1141 mutex_lock_nested(&ctx->mutex, nesting); 1142 if (event->ctx != ctx) { 1143 mutex_unlock(&ctx->mutex); 1144 put_ctx(ctx); 1145 goto again; 1146 } 1147 1148 return ctx; 1149 } 1150 1151 static inline struct perf_event_context * 1152 perf_event_ctx_lock(struct perf_event *event) 1153 { 1154 return perf_event_ctx_lock_nested(event, 0); 1155 } 1156 1157 static void perf_event_ctx_unlock(struct perf_event *event, 1158 struct perf_event_context *ctx) 1159 { 1160 mutex_unlock(&ctx->mutex); 1161 put_ctx(ctx); 1162 } 1163 1164 /* 1165 * This must be done under the ctx->lock, such as to serialize against 1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1167 * calling scheduler related locks and ctx->lock nests inside those. 1168 */ 1169 static __must_check struct perf_event_context * 1170 unclone_ctx(struct perf_event_context *ctx) 1171 { 1172 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1173 1174 lockdep_assert_held(&ctx->lock); 1175 1176 if (parent_ctx) 1177 ctx->parent_ctx = NULL; 1178 ctx->generation++; 1179 1180 return parent_ctx; 1181 } 1182 1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1184 { 1185 /* 1186 * only top level events have the pid namespace they were created in 1187 */ 1188 if (event->parent) 1189 event = event->parent; 1190 1191 return task_tgid_nr_ns(p, event->ns); 1192 } 1193 1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1195 { 1196 /* 1197 * only top level events have the pid namespace they were created in 1198 */ 1199 if (event->parent) 1200 event = event->parent; 1201 1202 return task_pid_nr_ns(p, event->ns); 1203 } 1204 1205 /* 1206 * If we inherit events we want to return the parent event id 1207 * to userspace. 1208 */ 1209 static u64 primary_event_id(struct perf_event *event) 1210 { 1211 u64 id = event->id; 1212 1213 if (event->parent) 1214 id = event->parent->id; 1215 1216 return id; 1217 } 1218 1219 /* 1220 * Get the perf_event_context for a task and lock it. 1221 * 1222 * This has to cope with with the fact that until it is locked, 1223 * the context could get moved to another task. 1224 */ 1225 static struct perf_event_context * 1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1227 { 1228 struct perf_event_context *ctx; 1229 1230 retry: 1231 /* 1232 * One of the few rules of preemptible RCU is that one cannot do 1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1234 * part of the read side critical section was irqs-enabled -- see 1235 * rcu_read_unlock_special(). 1236 * 1237 * Since ctx->lock nests under rq->lock we must ensure the entire read 1238 * side critical section has interrupts disabled. 1239 */ 1240 local_irq_save(*flags); 1241 rcu_read_lock(); 1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1243 if (ctx) { 1244 /* 1245 * If this context is a clone of another, it might 1246 * get swapped for another underneath us by 1247 * perf_event_task_sched_out, though the 1248 * rcu_read_lock() protects us from any context 1249 * getting freed. Lock the context and check if it 1250 * got swapped before we could get the lock, and retry 1251 * if so. If we locked the right context, then it 1252 * can't get swapped on us any more. 1253 */ 1254 raw_spin_lock(&ctx->lock); 1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1256 raw_spin_unlock(&ctx->lock); 1257 rcu_read_unlock(); 1258 local_irq_restore(*flags); 1259 goto retry; 1260 } 1261 1262 if (ctx->task == TASK_TOMBSTONE || 1263 !atomic_inc_not_zero(&ctx->refcount)) { 1264 raw_spin_unlock(&ctx->lock); 1265 ctx = NULL; 1266 } else { 1267 WARN_ON_ONCE(ctx->task != task); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 if (!ctx) 1272 local_irq_restore(*flags); 1273 return ctx; 1274 } 1275 1276 /* 1277 * Get the context for a task and increment its pin_count so it 1278 * can't get swapped to another task. This also increments its 1279 * reference count so that the context can't get freed. 1280 */ 1281 static struct perf_event_context * 1282 perf_pin_task_context(struct task_struct *task, int ctxn) 1283 { 1284 struct perf_event_context *ctx; 1285 unsigned long flags; 1286 1287 ctx = perf_lock_task_context(task, ctxn, &flags); 1288 if (ctx) { 1289 ++ctx->pin_count; 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1291 } 1292 return ctx; 1293 } 1294 1295 static void perf_unpin_context(struct perf_event_context *ctx) 1296 { 1297 unsigned long flags; 1298 1299 raw_spin_lock_irqsave(&ctx->lock, flags); 1300 --ctx->pin_count; 1301 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1302 } 1303 1304 /* 1305 * Update the record of the current time in a context. 1306 */ 1307 static void update_context_time(struct perf_event_context *ctx) 1308 { 1309 u64 now = perf_clock(); 1310 1311 ctx->time += now - ctx->timestamp; 1312 ctx->timestamp = now; 1313 } 1314 1315 static u64 perf_event_time(struct perf_event *event) 1316 { 1317 struct perf_event_context *ctx = event->ctx; 1318 1319 if (is_cgroup_event(event)) 1320 return perf_cgroup_event_time(event); 1321 1322 return ctx ? ctx->time : 0; 1323 } 1324 1325 /* 1326 * Update the total_time_enabled and total_time_running fields for a event. 1327 */ 1328 static void update_event_times(struct perf_event *event) 1329 { 1330 struct perf_event_context *ctx = event->ctx; 1331 u64 run_end; 1332 1333 lockdep_assert_held(&ctx->lock); 1334 1335 if (event->state < PERF_EVENT_STATE_INACTIVE || 1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1337 return; 1338 1339 /* 1340 * in cgroup mode, time_enabled represents 1341 * the time the event was enabled AND active 1342 * tasks were in the monitored cgroup. This is 1343 * independent of the activity of the context as 1344 * there may be a mix of cgroup and non-cgroup events. 1345 * 1346 * That is why we treat cgroup events differently 1347 * here. 1348 */ 1349 if (is_cgroup_event(event)) 1350 run_end = perf_cgroup_event_time(event); 1351 else if (ctx->is_active) 1352 run_end = ctx->time; 1353 else 1354 run_end = event->tstamp_stopped; 1355 1356 event->total_time_enabled = run_end - event->tstamp_enabled; 1357 1358 if (event->state == PERF_EVENT_STATE_INACTIVE) 1359 run_end = event->tstamp_stopped; 1360 else 1361 run_end = perf_event_time(event); 1362 1363 event->total_time_running = run_end - event->tstamp_running; 1364 1365 } 1366 1367 /* 1368 * Update total_time_enabled and total_time_running for all events in a group. 1369 */ 1370 static void update_group_times(struct perf_event *leader) 1371 { 1372 struct perf_event *event; 1373 1374 update_event_times(leader); 1375 list_for_each_entry(event, &leader->sibling_list, group_entry) 1376 update_event_times(event); 1377 } 1378 1379 static struct list_head * 1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1381 { 1382 if (event->attr.pinned) 1383 return &ctx->pinned_groups; 1384 else 1385 return &ctx->flexible_groups; 1386 } 1387 1388 /* 1389 * Add a event from the lists for its context. 1390 * Must be called with ctx->mutex and ctx->lock held. 1391 */ 1392 static void 1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1394 { 1395 lockdep_assert_held(&ctx->lock); 1396 1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1398 event->attach_state |= PERF_ATTACH_CONTEXT; 1399 1400 /* 1401 * If we're a stand alone event or group leader, we go to the context 1402 * list, group events are kept attached to the group so that 1403 * perf_group_detach can, at all times, locate all siblings. 1404 */ 1405 if (event->group_leader == event) { 1406 struct list_head *list; 1407 1408 if (is_software_event(event)) 1409 event->group_flags |= PERF_GROUP_SOFTWARE; 1410 1411 list = ctx_group_list(event, ctx); 1412 list_add_tail(&event->group_entry, list); 1413 } 1414 1415 if (is_cgroup_event(event)) 1416 ctx->nr_cgroups++; 1417 1418 list_add_rcu(&event->event_entry, &ctx->event_list); 1419 ctx->nr_events++; 1420 if (event->attr.inherit_stat) 1421 ctx->nr_stat++; 1422 1423 ctx->generation++; 1424 } 1425 1426 /* 1427 * Initialize event state based on the perf_event_attr::disabled. 1428 */ 1429 static inline void perf_event__state_init(struct perf_event *event) 1430 { 1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1432 PERF_EVENT_STATE_INACTIVE; 1433 } 1434 1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1436 { 1437 int entry = sizeof(u64); /* value */ 1438 int size = 0; 1439 int nr = 1; 1440 1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1442 size += sizeof(u64); 1443 1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1445 size += sizeof(u64); 1446 1447 if (event->attr.read_format & PERF_FORMAT_ID) 1448 entry += sizeof(u64); 1449 1450 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1451 nr += nr_siblings; 1452 size += sizeof(u64); 1453 } 1454 1455 size += entry * nr; 1456 event->read_size = size; 1457 } 1458 1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1460 { 1461 struct perf_sample_data *data; 1462 u16 size = 0; 1463 1464 if (sample_type & PERF_SAMPLE_IP) 1465 size += sizeof(data->ip); 1466 1467 if (sample_type & PERF_SAMPLE_ADDR) 1468 size += sizeof(data->addr); 1469 1470 if (sample_type & PERF_SAMPLE_PERIOD) 1471 size += sizeof(data->period); 1472 1473 if (sample_type & PERF_SAMPLE_WEIGHT) 1474 size += sizeof(data->weight); 1475 1476 if (sample_type & PERF_SAMPLE_READ) 1477 size += event->read_size; 1478 1479 if (sample_type & PERF_SAMPLE_DATA_SRC) 1480 size += sizeof(data->data_src.val); 1481 1482 if (sample_type & PERF_SAMPLE_TRANSACTION) 1483 size += sizeof(data->txn); 1484 1485 event->header_size = size; 1486 } 1487 1488 /* 1489 * Called at perf_event creation and when events are attached/detached from a 1490 * group. 1491 */ 1492 static void perf_event__header_size(struct perf_event *event) 1493 { 1494 __perf_event_read_size(event, 1495 event->group_leader->nr_siblings); 1496 __perf_event_header_size(event, event->attr.sample_type); 1497 } 1498 1499 static void perf_event__id_header_size(struct perf_event *event) 1500 { 1501 struct perf_sample_data *data; 1502 u64 sample_type = event->attr.sample_type; 1503 u16 size = 0; 1504 1505 if (sample_type & PERF_SAMPLE_TID) 1506 size += sizeof(data->tid_entry); 1507 1508 if (sample_type & PERF_SAMPLE_TIME) 1509 size += sizeof(data->time); 1510 1511 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1512 size += sizeof(data->id); 1513 1514 if (sample_type & PERF_SAMPLE_ID) 1515 size += sizeof(data->id); 1516 1517 if (sample_type & PERF_SAMPLE_STREAM_ID) 1518 size += sizeof(data->stream_id); 1519 1520 if (sample_type & PERF_SAMPLE_CPU) 1521 size += sizeof(data->cpu_entry); 1522 1523 event->id_header_size = size; 1524 } 1525 1526 static bool perf_event_validate_size(struct perf_event *event) 1527 { 1528 /* 1529 * The values computed here will be over-written when we actually 1530 * attach the event. 1531 */ 1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1534 perf_event__id_header_size(event); 1535 1536 /* 1537 * Sum the lot; should not exceed the 64k limit we have on records. 1538 * Conservative limit to allow for callchains and other variable fields. 1539 */ 1540 if (event->read_size + event->header_size + 1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 static void perf_group_attach(struct perf_event *event) 1548 { 1549 struct perf_event *group_leader = event->group_leader, *pos; 1550 1551 /* 1552 * We can have double attach due to group movement in perf_event_open. 1553 */ 1554 if (event->attach_state & PERF_ATTACH_GROUP) 1555 return; 1556 1557 event->attach_state |= PERF_ATTACH_GROUP; 1558 1559 if (group_leader == event) 1560 return; 1561 1562 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1563 1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1565 !is_software_event(event)) 1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1567 1568 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1569 group_leader->nr_siblings++; 1570 1571 perf_event__header_size(group_leader); 1572 1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1574 perf_event__header_size(pos); 1575 } 1576 1577 /* 1578 * Remove a event from the lists for its context. 1579 * Must be called with ctx->mutex and ctx->lock held. 1580 */ 1581 static void 1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1583 { 1584 struct perf_cpu_context *cpuctx; 1585 1586 WARN_ON_ONCE(event->ctx != ctx); 1587 lockdep_assert_held(&ctx->lock); 1588 1589 /* 1590 * We can have double detach due to exit/hot-unplug + close. 1591 */ 1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1593 return; 1594 1595 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1596 1597 if (is_cgroup_event(event)) { 1598 ctx->nr_cgroups--; 1599 /* 1600 * Because cgroup events are always per-cpu events, this will 1601 * always be called from the right CPU. 1602 */ 1603 cpuctx = __get_cpu_context(ctx); 1604 /* 1605 * If there are no more cgroup events then clear cgrp to avoid 1606 * stale pointer in update_cgrp_time_from_cpuctx(). 1607 */ 1608 if (!ctx->nr_cgroups) 1609 cpuctx->cgrp = NULL; 1610 } 1611 1612 ctx->nr_events--; 1613 if (event->attr.inherit_stat) 1614 ctx->nr_stat--; 1615 1616 list_del_rcu(&event->event_entry); 1617 1618 if (event->group_leader == event) 1619 list_del_init(&event->group_entry); 1620 1621 update_group_times(event); 1622 1623 /* 1624 * If event was in error state, then keep it 1625 * that way, otherwise bogus counts will be 1626 * returned on read(). The only way to get out 1627 * of error state is by explicit re-enabling 1628 * of the event 1629 */ 1630 if (event->state > PERF_EVENT_STATE_OFF) 1631 event->state = PERF_EVENT_STATE_OFF; 1632 1633 ctx->generation++; 1634 } 1635 1636 static void perf_group_detach(struct perf_event *event) 1637 { 1638 struct perf_event *sibling, *tmp; 1639 struct list_head *list = NULL; 1640 1641 /* 1642 * We can have double detach due to exit/hot-unplug + close. 1643 */ 1644 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1645 return; 1646 1647 event->attach_state &= ~PERF_ATTACH_GROUP; 1648 1649 /* 1650 * If this is a sibling, remove it from its group. 1651 */ 1652 if (event->group_leader != event) { 1653 list_del_init(&event->group_entry); 1654 event->group_leader->nr_siblings--; 1655 goto out; 1656 } 1657 1658 if (!list_empty(&event->group_entry)) 1659 list = &event->group_entry; 1660 1661 /* 1662 * If this was a group event with sibling events then 1663 * upgrade the siblings to singleton events by adding them 1664 * to whatever list we are on. 1665 */ 1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1667 if (list) 1668 list_move_tail(&sibling->group_entry, list); 1669 sibling->group_leader = sibling; 1670 1671 /* Inherit group flags from the previous leader */ 1672 sibling->group_flags = event->group_flags; 1673 1674 WARN_ON_ONCE(sibling->ctx != event->ctx); 1675 } 1676 1677 out: 1678 perf_event__header_size(event->group_leader); 1679 1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1681 perf_event__header_size(tmp); 1682 } 1683 1684 static bool is_orphaned_event(struct perf_event *event) 1685 { 1686 return event->state == PERF_EVENT_STATE_DEAD; 1687 } 1688 1689 static inline int __pmu_filter_match(struct perf_event *event) 1690 { 1691 struct pmu *pmu = event->pmu; 1692 return pmu->filter_match ? pmu->filter_match(event) : 1; 1693 } 1694 1695 /* 1696 * Check whether we should attempt to schedule an event group based on 1697 * PMU-specific filtering. An event group can consist of HW and SW events, 1698 * potentially with a SW leader, so we must check all the filters, to 1699 * determine whether a group is schedulable: 1700 */ 1701 static inline int pmu_filter_match(struct perf_event *event) 1702 { 1703 struct perf_event *child; 1704 1705 if (!__pmu_filter_match(event)) 1706 return 0; 1707 1708 list_for_each_entry(child, &event->sibling_list, group_entry) { 1709 if (!__pmu_filter_match(child)) 1710 return 0; 1711 } 1712 1713 return 1; 1714 } 1715 1716 static inline int 1717 event_filter_match(struct perf_event *event) 1718 { 1719 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1720 && perf_cgroup_match(event) && pmu_filter_match(event); 1721 } 1722 1723 static void 1724 event_sched_out(struct perf_event *event, 1725 struct perf_cpu_context *cpuctx, 1726 struct perf_event_context *ctx) 1727 { 1728 u64 tstamp = perf_event_time(event); 1729 u64 delta; 1730 1731 WARN_ON_ONCE(event->ctx != ctx); 1732 lockdep_assert_held(&ctx->lock); 1733 1734 /* 1735 * An event which could not be activated because of 1736 * filter mismatch still needs to have its timings 1737 * maintained, otherwise bogus information is return 1738 * via read() for time_enabled, time_running: 1739 */ 1740 if (event->state == PERF_EVENT_STATE_INACTIVE 1741 && !event_filter_match(event)) { 1742 delta = tstamp - event->tstamp_stopped; 1743 event->tstamp_running += delta; 1744 event->tstamp_stopped = tstamp; 1745 } 1746 1747 if (event->state != PERF_EVENT_STATE_ACTIVE) 1748 return; 1749 1750 perf_pmu_disable(event->pmu); 1751 1752 event->tstamp_stopped = tstamp; 1753 event->pmu->del(event, 0); 1754 event->oncpu = -1; 1755 event->state = PERF_EVENT_STATE_INACTIVE; 1756 if (event->pending_disable) { 1757 event->pending_disable = 0; 1758 event->state = PERF_EVENT_STATE_OFF; 1759 } 1760 1761 if (!is_software_event(event)) 1762 cpuctx->active_oncpu--; 1763 if (!--ctx->nr_active) 1764 perf_event_ctx_deactivate(ctx); 1765 if (event->attr.freq && event->attr.sample_freq) 1766 ctx->nr_freq--; 1767 if (event->attr.exclusive || !cpuctx->active_oncpu) 1768 cpuctx->exclusive = 0; 1769 1770 perf_pmu_enable(event->pmu); 1771 } 1772 1773 static void 1774 group_sched_out(struct perf_event *group_event, 1775 struct perf_cpu_context *cpuctx, 1776 struct perf_event_context *ctx) 1777 { 1778 struct perf_event *event; 1779 int state = group_event->state; 1780 1781 event_sched_out(group_event, cpuctx, ctx); 1782 1783 /* 1784 * Schedule out siblings (if any): 1785 */ 1786 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1787 event_sched_out(event, cpuctx, ctx); 1788 1789 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1790 cpuctx->exclusive = 0; 1791 } 1792 1793 #define DETACH_GROUP 0x01UL 1794 1795 /* 1796 * Cross CPU call to remove a performance event 1797 * 1798 * We disable the event on the hardware level first. After that we 1799 * remove it from the context list. 1800 */ 1801 static void 1802 __perf_remove_from_context(struct perf_event *event, 1803 struct perf_cpu_context *cpuctx, 1804 struct perf_event_context *ctx, 1805 void *info) 1806 { 1807 unsigned long flags = (unsigned long)info; 1808 1809 event_sched_out(event, cpuctx, ctx); 1810 if (flags & DETACH_GROUP) 1811 perf_group_detach(event); 1812 list_del_event(event, ctx); 1813 1814 if (!ctx->nr_events && ctx->is_active) { 1815 ctx->is_active = 0; 1816 if (ctx->task) { 1817 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1818 cpuctx->task_ctx = NULL; 1819 } 1820 } 1821 } 1822 1823 /* 1824 * Remove the event from a task's (or a CPU's) list of events. 1825 * 1826 * If event->ctx is a cloned context, callers must make sure that 1827 * every task struct that event->ctx->task could possibly point to 1828 * remains valid. This is OK when called from perf_release since 1829 * that only calls us on the top-level context, which can't be a clone. 1830 * When called from perf_event_exit_task, it's OK because the 1831 * context has been detached from its task. 1832 */ 1833 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1834 { 1835 lockdep_assert_held(&event->ctx->mutex); 1836 1837 event_function_call(event, __perf_remove_from_context, (void *)flags); 1838 } 1839 1840 /* 1841 * Cross CPU call to disable a performance event 1842 */ 1843 static void __perf_event_disable(struct perf_event *event, 1844 struct perf_cpu_context *cpuctx, 1845 struct perf_event_context *ctx, 1846 void *info) 1847 { 1848 if (event->state < PERF_EVENT_STATE_INACTIVE) 1849 return; 1850 1851 update_context_time(ctx); 1852 update_cgrp_time_from_event(event); 1853 update_group_times(event); 1854 if (event == event->group_leader) 1855 group_sched_out(event, cpuctx, ctx); 1856 else 1857 event_sched_out(event, cpuctx, ctx); 1858 event->state = PERF_EVENT_STATE_OFF; 1859 } 1860 1861 /* 1862 * Disable a event. 1863 * 1864 * If event->ctx is a cloned context, callers must make sure that 1865 * every task struct that event->ctx->task could possibly point to 1866 * remains valid. This condition is satisifed when called through 1867 * perf_event_for_each_child or perf_event_for_each because they 1868 * hold the top-level event's child_mutex, so any descendant that 1869 * goes to exit will block in perf_event_exit_event(). 1870 * 1871 * When called from perf_pending_event it's OK because event->ctx 1872 * is the current context on this CPU and preemption is disabled, 1873 * hence we can't get into perf_event_task_sched_out for this context. 1874 */ 1875 static void _perf_event_disable(struct perf_event *event) 1876 { 1877 struct perf_event_context *ctx = event->ctx; 1878 1879 raw_spin_lock_irq(&ctx->lock); 1880 if (event->state <= PERF_EVENT_STATE_OFF) { 1881 raw_spin_unlock_irq(&ctx->lock); 1882 return; 1883 } 1884 raw_spin_unlock_irq(&ctx->lock); 1885 1886 event_function_call(event, __perf_event_disable, NULL); 1887 } 1888 1889 void perf_event_disable_local(struct perf_event *event) 1890 { 1891 event_function_local(event, __perf_event_disable, NULL); 1892 } 1893 1894 /* 1895 * Strictly speaking kernel users cannot create groups and therefore this 1896 * interface does not need the perf_event_ctx_lock() magic. 1897 */ 1898 void perf_event_disable(struct perf_event *event) 1899 { 1900 struct perf_event_context *ctx; 1901 1902 ctx = perf_event_ctx_lock(event); 1903 _perf_event_disable(event); 1904 perf_event_ctx_unlock(event, ctx); 1905 } 1906 EXPORT_SYMBOL_GPL(perf_event_disable); 1907 1908 static void perf_set_shadow_time(struct perf_event *event, 1909 struct perf_event_context *ctx, 1910 u64 tstamp) 1911 { 1912 /* 1913 * use the correct time source for the time snapshot 1914 * 1915 * We could get by without this by leveraging the 1916 * fact that to get to this function, the caller 1917 * has most likely already called update_context_time() 1918 * and update_cgrp_time_xx() and thus both timestamp 1919 * are identical (or very close). Given that tstamp is, 1920 * already adjusted for cgroup, we could say that: 1921 * tstamp - ctx->timestamp 1922 * is equivalent to 1923 * tstamp - cgrp->timestamp. 1924 * 1925 * Then, in perf_output_read(), the calculation would 1926 * work with no changes because: 1927 * - event is guaranteed scheduled in 1928 * - no scheduled out in between 1929 * - thus the timestamp would be the same 1930 * 1931 * But this is a bit hairy. 1932 * 1933 * So instead, we have an explicit cgroup call to remain 1934 * within the time time source all along. We believe it 1935 * is cleaner and simpler to understand. 1936 */ 1937 if (is_cgroup_event(event)) 1938 perf_cgroup_set_shadow_time(event, tstamp); 1939 else 1940 event->shadow_ctx_time = tstamp - ctx->timestamp; 1941 } 1942 1943 #define MAX_INTERRUPTS (~0ULL) 1944 1945 static void perf_log_throttle(struct perf_event *event, int enable); 1946 static void perf_log_itrace_start(struct perf_event *event); 1947 1948 static int 1949 event_sched_in(struct perf_event *event, 1950 struct perf_cpu_context *cpuctx, 1951 struct perf_event_context *ctx) 1952 { 1953 u64 tstamp = perf_event_time(event); 1954 int ret = 0; 1955 1956 lockdep_assert_held(&ctx->lock); 1957 1958 if (event->state <= PERF_EVENT_STATE_OFF) 1959 return 0; 1960 1961 WRITE_ONCE(event->oncpu, smp_processor_id()); 1962 /* 1963 * Order event::oncpu write to happen before the ACTIVE state 1964 * is visible. 1965 */ 1966 smp_wmb(); 1967 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 1968 1969 /* 1970 * Unthrottle events, since we scheduled we might have missed several 1971 * ticks already, also for a heavily scheduling task there is little 1972 * guarantee it'll get a tick in a timely manner. 1973 */ 1974 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1975 perf_log_throttle(event, 1); 1976 event->hw.interrupts = 0; 1977 } 1978 1979 /* 1980 * The new state must be visible before we turn it on in the hardware: 1981 */ 1982 smp_wmb(); 1983 1984 perf_pmu_disable(event->pmu); 1985 1986 perf_set_shadow_time(event, ctx, tstamp); 1987 1988 perf_log_itrace_start(event); 1989 1990 if (event->pmu->add(event, PERF_EF_START)) { 1991 event->state = PERF_EVENT_STATE_INACTIVE; 1992 event->oncpu = -1; 1993 ret = -EAGAIN; 1994 goto out; 1995 } 1996 1997 event->tstamp_running += tstamp - event->tstamp_stopped; 1998 1999 if (!is_software_event(event)) 2000 cpuctx->active_oncpu++; 2001 if (!ctx->nr_active++) 2002 perf_event_ctx_activate(ctx); 2003 if (event->attr.freq && event->attr.sample_freq) 2004 ctx->nr_freq++; 2005 2006 if (event->attr.exclusive) 2007 cpuctx->exclusive = 1; 2008 2009 out: 2010 perf_pmu_enable(event->pmu); 2011 2012 return ret; 2013 } 2014 2015 static int 2016 group_sched_in(struct perf_event *group_event, 2017 struct perf_cpu_context *cpuctx, 2018 struct perf_event_context *ctx) 2019 { 2020 struct perf_event *event, *partial_group = NULL; 2021 struct pmu *pmu = ctx->pmu; 2022 u64 now = ctx->time; 2023 bool simulate = false; 2024 2025 if (group_event->state == PERF_EVENT_STATE_OFF) 2026 return 0; 2027 2028 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2029 2030 if (event_sched_in(group_event, cpuctx, ctx)) { 2031 pmu->cancel_txn(pmu); 2032 perf_mux_hrtimer_restart(cpuctx); 2033 return -EAGAIN; 2034 } 2035 2036 /* 2037 * Schedule in siblings as one group (if any): 2038 */ 2039 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2040 if (event_sched_in(event, cpuctx, ctx)) { 2041 partial_group = event; 2042 goto group_error; 2043 } 2044 } 2045 2046 if (!pmu->commit_txn(pmu)) 2047 return 0; 2048 2049 group_error: 2050 /* 2051 * Groups can be scheduled in as one unit only, so undo any 2052 * partial group before returning: 2053 * The events up to the failed event are scheduled out normally, 2054 * tstamp_stopped will be updated. 2055 * 2056 * The failed events and the remaining siblings need to have 2057 * their timings updated as if they had gone thru event_sched_in() 2058 * and event_sched_out(). This is required to get consistent timings 2059 * across the group. This also takes care of the case where the group 2060 * could never be scheduled by ensuring tstamp_stopped is set to mark 2061 * the time the event was actually stopped, such that time delta 2062 * calculation in update_event_times() is correct. 2063 */ 2064 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2065 if (event == partial_group) 2066 simulate = true; 2067 2068 if (simulate) { 2069 event->tstamp_running += now - event->tstamp_stopped; 2070 event->tstamp_stopped = now; 2071 } else { 2072 event_sched_out(event, cpuctx, ctx); 2073 } 2074 } 2075 event_sched_out(group_event, cpuctx, ctx); 2076 2077 pmu->cancel_txn(pmu); 2078 2079 perf_mux_hrtimer_restart(cpuctx); 2080 2081 return -EAGAIN; 2082 } 2083 2084 /* 2085 * Work out whether we can put this event group on the CPU now. 2086 */ 2087 static int group_can_go_on(struct perf_event *event, 2088 struct perf_cpu_context *cpuctx, 2089 int can_add_hw) 2090 { 2091 /* 2092 * Groups consisting entirely of software events can always go on. 2093 */ 2094 if (event->group_flags & PERF_GROUP_SOFTWARE) 2095 return 1; 2096 /* 2097 * If an exclusive group is already on, no other hardware 2098 * events can go on. 2099 */ 2100 if (cpuctx->exclusive) 2101 return 0; 2102 /* 2103 * If this group is exclusive and there are already 2104 * events on the CPU, it can't go on. 2105 */ 2106 if (event->attr.exclusive && cpuctx->active_oncpu) 2107 return 0; 2108 /* 2109 * Otherwise, try to add it if all previous groups were able 2110 * to go on. 2111 */ 2112 return can_add_hw; 2113 } 2114 2115 static void add_event_to_ctx(struct perf_event *event, 2116 struct perf_event_context *ctx) 2117 { 2118 u64 tstamp = perf_event_time(event); 2119 2120 list_add_event(event, ctx); 2121 perf_group_attach(event); 2122 event->tstamp_enabled = tstamp; 2123 event->tstamp_running = tstamp; 2124 event->tstamp_stopped = tstamp; 2125 } 2126 2127 static void ctx_sched_out(struct perf_event_context *ctx, 2128 struct perf_cpu_context *cpuctx, 2129 enum event_type_t event_type); 2130 static void 2131 ctx_sched_in(struct perf_event_context *ctx, 2132 struct perf_cpu_context *cpuctx, 2133 enum event_type_t event_type, 2134 struct task_struct *task); 2135 2136 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2137 struct perf_event_context *ctx) 2138 { 2139 if (!cpuctx->task_ctx) 2140 return; 2141 2142 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2143 return; 2144 2145 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2146 } 2147 2148 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2149 struct perf_event_context *ctx, 2150 struct task_struct *task) 2151 { 2152 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2153 if (ctx) 2154 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2155 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2156 if (ctx) 2157 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2158 } 2159 2160 static void ctx_resched(struct perf_cpu_context *cpuctx, 2161 struct perf_event_context *task_ctx) 2162 { 2163 perf_pmu_disable(cpuctx->ctx.pmu); 2164 if (task_ctx) 2165 task_ctx_sched_out(cpuctx, task_ctx); 2166 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2167 perf_event_sched_in(cpuctx, task_ctx, current); 2168 perf_pmu_enable(cpuctx->ctx.pmu); 2169 } 2170 2171 /* 2172 * Cross CPU call to install and enable a performance event 2173 * 2174 * Very similar to remote_function() + event_function() but cannot assume that 2175 * things like ctx->is_active and cpuctx->task_ctx are set. 2176 */ 2177 static int __perf_install_in_context(void *info) 2178 { 2179 struct perf_event *event = info; 2180 struct perf_event_context *ctx = event->ctx; 2181 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2182 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2183 bool activate = true; 2184 int ret = 0; 2185 2186 raw_spin_lock(&cpuctx->ctx.lock); 2187 if (ctx->task) { 2188 raw_spin_lock(&ctx->lock); 2189 task_ctx = ctx; 2190 2191 /* If we're on the wrong CPU, try again */ 2192 if (task_cpu(ctx->task) != smp_processor_id()) { 2193 ret = -ESRCH; 2194 goto unlock; 2195 } 2196 2197 /* 2198 * If we're on the right CPU, see if the task we target is 2199 * current, if not we don't have to activate the ctx, a future 2200 * context switch will do that for us. 2201 */ 2202 if (ctx->task != current) 2203 activate = false; 2204 else 2205 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2206 2207 } else if (task_ctx) { 2208 raw_spin_lock(&task_ctx->lock); 2209 } 2210 2211 if (activate) { 2212 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2213 add_event_to_ctx(event, ctx); 2214 ctx_resched(cpuctx, task_ctx); 2215 } else { 2216 add_event_to_ctx(event, ctx); 2217 } 2218 2219 unlock: 2220 perf_ctx_unlock(cpuctx, task_ctx); 2221 2222 return ret; 2223 } 2224 2225 /* 2226 * Attach a performance event to a context. 2227 * 2228 * Very similar to event_function_call, see comment there. 2229 */ 2230 static void 2231 perf_install_in_context(struct perf_event_context *ctx, 2232 struct perf_event *event, 2233 int cpu) 2234 { 2235 struct task_struct *task = READ_ONCE(ctx->task); 2236 2237 lockdep_assert_held(&ctx->mutex); 2238 2239 event->ctx = ctx; 2240 if (event->cpu != -1) 2241 event->cpu = cpu; 2242 2243 if (!task) { 2244 cpu_function_call(cpu, __perf_install_in_context, event); 2245 return; 2246 } 2247 2248 /* 2249 * Should not happen, we validate the ctx is still alive before calling. 2250 */ 2251 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2252 return; 2253 2254 /* 2255 * Installing events is tricky because we cannot rely on ctx->is_active 2256 * to be set in case this is the nr_events 0 -> 1 transition. 2257 */ 2258 again: 2259 /* 2260 * Cannot use task_function_call() because we need to run on the task's 2261 * CPU regardless of whether its current or not. 2262 */ 2263 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2264 return; 2265 2266 raw_spin_lock_irq(&ctx->lock); 2267 task = ctx->task; 2268 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2269 /* 2270 * Cannot happen because we already checked above (which also 2271 * cannot happen), and we hold ctx->mutex, which serializes us 2272 * against perf_event_exit_task_context(). 2273 */ 2274 raw_spin_unlock_irq(&ctx->lock); 2275 return; 2276 } 2277 raw_spin_unlock_irq(&ctx->lock); 2278 /* 2279 * Since !ctx->is_active doesn't mean anything, we must IPI 2280 * unconditionally. 2281 */ 2282 goto again; 2283 } 2284 2285 /* 2286 * Put a event into inactive state and update time fields. 2287 * Enabling the leader of a group effectively enables all 2288 * the group members that aren't explicitly disabled, so we 2289 * have to update their ->tstamp_enabled also. 2290 * Note: this works for group members as well as group leaders 2291 * since the non-leader members' sibling_lists will be empty. 2292 */ 2293 static void __perf_event_mark_enabled(struct perf_event *event) 2294 { 2295 struct perf_event *sub; 2296 u64 tstamp = perf_event_time(event); 2297 2298 event->state = PERF_EVENT_STATE_INACTIVE; 2299 event->tstamp_enabled = tstamp - event->total_time_enabled; 2300 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2301 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2302 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2303 } 2304 } 2305 2306 /* 2307 * Cross CPU call to enable a performance event 2308 */ 2309 static void __perf_event_enable(struct perf_event *event, 2310 struct perf_cpu_context *cpuctx, 2311 struct perf_event_context *ctx, 2312 void *info) 2313 { 2314 struct perf_event *leader = event->group_leader; 2315 struct perf_event_context *task_ctx; 2316 2317 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2318 event->state <= PERF_EVENT_STATE_ERROR) 2319 return; 2320 2321 if (ctx->is_active) 2322 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2323 2324 __perf_event_mark_enabled(event); 2325 2326 if (!ctx->is_active) 2327 return; 2328 2329 if (!event_filter_match(event)) { 2330 if (is_cgroup_event(event)) 2331 perf_cgroup_defer_enabled(event); 2332 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2333 return; 2334 } 2335 2336 /* 2337 * If the event is in a group and isn't the group leader, 2338 * then don't put it on unless the group is on. 2339 */ 2340 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2341 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2342 return; 2343 } 2344 2345 task_ctx = cpuctx->task_ctx; 2346 if (ctx->task) 2347 WARN_ON_ONCE(task_ctx != ctx); 2348 2349 ctx_resched(cpuctx, task_ctx); 2350 } 2351 2352 /* 2353 * Enable a event. 2354 * 2355 * If event->ctx is a cloned context, callers must make sure that 2356 * every task struct that event->ctx->task could possibly point to 2357 * remains valid. This condition is satisfied when called through 2358 * perf_event_for_each_child or perf_event_for_each as described 2359 * for perf_event_disable. 2360 */ 2361 static void _perf_event_enable(struct perf_event *event) 2362 { 2363 struct perf_event_context *ctx = event->ctx; 2364 2365 raw_spin_lock_irq(&ctx->lock); 2366 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2367 event->state < PERF_EVENT_STATE_ERROR) { 2368 raw_spin_unlock_irq(&ctx->lock); 2369 return; 2370 } 2371 2372 /* 2373 * If the event is in error state, clear that first. 2374 * 2375 * That way, if we see the event in error state below, we know that it 2376 * has gone back into error state, as distinct from the task having 2377 * been scheduled away before the cross-call arrived. 2378 */ 2379 if (event->state == PERF_EVENT_STATE_ERROR) 2380 event->state = PERF_EVENT_STATE_OFF; 2381 raw_spin_unlock_irq(&ctx->lock); 2382 2383 event_function_call(event, __perf_event_enable, NULL); 2384 } 2385 2386 /* 2387 * See perf_event_disable(); 2388 */ 2389 void perf_event_enable(struct perf_event *event) 2390 { 2391 struct perf_event_context *ctx; 2392 2393 ctx = perf_event_ctx_lock(event); 2394 _perf_event_enable(event); 2395 perf_event_ctx_unlock(event, ctx); 2396 } 2397 EXPORT_SYMBOL_GPL(perf_event_enable); 2398 2399 struct stop_event_data { 2400 struct perf_event *event; 2401 unsigned int restart; 2402 }; 2403 2404 static int __perf_event_stop(void *info) 2405 { 2406 struct stop_event_data *sd = info; 2407 struct perf_event *event = sd->event; 2408 2409 /* if it's already INACTIVE, do nothing */ 2410 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2411 return 0; 2412 2413 /* matches smp_wmb() in event_sched_in() */ 2414 smp_rmb(); 2415 2416 /* 2417 * There is a window with interrupts enabled before we get here, 2418 * so we need to check again lest we try to stop another CPU's event. 2419 */ 2420 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2421 return -EAGAIN; 2422 2423 event->pmu->stop(event, PERF_EF_UPDATE); 2424 2425 /* 2426 * May race with the actual stop (through perf_pmu_output_stop()), 2427 * but it is only used for events with AUX ring buffer, and such 2428 * events will refuse to restart because of rb::aux_mmap_count==0, 2429 * see comments in perf_aux_output_begin(). 2430 * 2431 * Since this is happening on a event-local CPU, no trace is lost 2432 * while restarting. 2433 */ 2434 if (sd->restart) 2435 event->pmu->start(event, PERF_EF_START); 2436 2437 return 0; 2438 } 2439 2440 static int perf_event_restart(struct perf_event *event) 2441 { 2442 struct stop_event_data sd = { 2443 .event = event, 2444 .restart = 1, 2445 }; 2446 int ret = 0; 2447 2448 do { 2449 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2450 return 0; 2451 2452 /* matches smp_wmb() in event_sched_in() */ 2453 smp_rmb(); 2454 2455 /* 2456 * We only want to restart ACTIVE events, so if the event goes 2457 * inactive here (event->oncpu==-1), there's nothing more to do; 2458 * fall through with ret==-ENXIO. 2459 */ 2460 ret = cpu_function_call(READ_ONCE(event->oncpu), 2461 __perf_event_stop, &sd); 2462 } while (ret == -EAGAIN); 2463 2464 return ret; 2465 } 2466 2467 /* 2468 * In order to contain the amount of racy and tricky in the address filter 2469 * configuration management, it is a two part process: 2470 * 2471 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2472 * we update the addresses of corresponding vmas in 2473 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2474 * (p2) when an event is scheduled in (pmu::add), it calls 2475 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2476 * if the generation has changed since the previous call. 2477 * 2478 * If (p1) happens while the event is active, we restart it to force (p2). 2479 * 2480 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2481 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2482 * ioctl; 2483 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2484 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2485 * for reading; 2486 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2487 * of exec. 2488 */ 2489 void perf_event_addr_filters_sync(struct perf_event *event) 2490 { 2491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2492 2493 if (!has_addr_filter(event)) 2494 return; 2495 2496 raw_spin_lock(&ifh->lock); 2497 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2498 event->pmu->addr_filters_sync(event); 2499 event->hw.addr_filters_gen = event->addr_filters_gen; 2500 } 2501 raw_spin_unlock(&ifh->lock); 2502 } 2503 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2504 2505 static int _perf_event_refresh(struct perf_event *event, int refresh) 2506 { 2507 /* 2508 * not supported on inherited events 2509 */ 2510 if (event->attr.inherit || !is_sampling_event(event)) 2511 return -EINVAL; 2512 2513 atomic_add(refresh, &event->event_limit); 2514 _perf_event_enable(event); 2515 2516 return 0; 2517 } 2518 2519 /* 2520 * See perf_event_disable() 2521 */ 2522 int perf_event_refresh(struct perf_event *event, int refresh) 2523 { 2524 struct perf_event_context *ctx; 2525 int ret; 2526 2527 ctx = perf_event_ctx_lock(event); 2528 ret = _perf_event_refresh(event, refresh); 2529 perf_event_ctx_unlock(event, ctx); 2530 2531 return ret; 2532 } 2533 EXPORT_SYMBOL_GPL(perf_event_refresh); 2534 2535 static void ctx_sched_out(struct perf_event_context *ctx, 2536 struct perf_cpu_context *cpuctx, 2537 enum event_type_t event_type) 2538 { 2539 int is_active = ctx->is_active; 2540 struct perf_event *event; 2541 2542 lockdep_assert_held(&ctx->lock); 2543 2544 if (likely(!ctx->nr_events)) { 2545 /* 2546 * See __perf_remove_from_context(). 2547 */ 2548 WARN_ON_ONCE(ctx->is_active); 2549 if (ctx->task) 2550 WARN_ON_ONCE(cpuctx->task_ctx); 2551 return; 2552 } 2553 2554 ctx->is_active &= ~event_type; 2555 if (!(ctx->is_active & EVENT_ALL)) 2556 ctx->is_active = 0; 2557 2558 if (ctx->task) { 2559 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2560 if (!ctx->is_active) 2561 cpuctx->task_ctx = NULL; 2562 } 2563 2564 /* 2565 * Always update time if it was set; not only when it changes. 2566 * Otherwise we can 'forget' to update time for any but the last 2567 * context we sched out. For example: 2568 * 2569 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2570 * ctx_sched_out(.event_type = EVENT_PINNED) 2571 * 2572 * would only update time for the pinned events. 2573 */ 2574 if (is_active & EVENT_TIME) { 2575 /* update (and stop) ctx time */ 2576 update_context_time(ctx); 2577 update_cgrp_time_from_cpuctx(cpuctx); 2578 } 2579 2580 is_active ^= ctx->is_active; /* changed bits */ 2581 2582 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2583 return; 2584 2585 perf_pmu_disable(ctx->pmu); 2586 if (is_active & EVENT_PINNED) { 2587 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2588 group_sched_out(event, cpuctx, ctx); 2589 } 2590 2591 if (is_active & EVENT_FLEXIBLE) { 2592 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2593 group_sched_out(event, cpuctx, ctx); 2594 } 2595 perf_pmu_enable(ctx->pmu); 2596 } 2597 2598 /* 2599 * Test whether two contexts are equivalent, i.e. whether they have both been 2600 * cloned from the same version of the same context. 2601 * 2602 * Equivalence is measured using a generation number in the context that is 2603 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2604 * and list_del_event(). 2605 */ 2606 static int context_equiv(struct perf_event_context *ctx1, 2607 struct perf_event_context *ctx2) 2608 { 2609 lockdep_assert_held(&ctx1->lock); 2610 lockdep_assert_held(&ctx2->lock); 2611 2612 /* Pinning disables the swap optimization */ 2613 if (ctx1->pin_count || ctx2->pin_count) 2614 return 0; 2615 2616 /* If ctx1 is the parent of ctx2 */ 2617 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2618 return 1; 2619 2620 /* If ctx2 is the parent of ctx1 */ 2621 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2622 return 1; 2623 2624 /* 2625 * If ctx1 and ctx2 have the same parent; we flatten the parent 2626 * hierarchy, see perf_event_init_context(). 2627 */ 2628 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2629 ctx1->parent_gen == ctx2->parent_gen) 2630 return 1; 2631 2632 /* Unmatched */ 2633 return 0; 2634 } 2635 2636 static void __perf_event_sync_stat(struct perf_event *event, 2637 struct perf_event *next_event) 2638 { 2639 u64 value; 2640 2641 if (!event->attr.inherit_stat) 2642 return; 2643 2644 /* 2645 * Update the event value, we cannot use perf_event_read() 2646 * because we're in the middle of a context switch and have IRQs 2647 * disabled, which upsets smp_call_function_single(), however 2648 * we know the event must be on the current CPU, therefore we 2649 * don't need to use it. 2650 */ 2651 switch (event->state) { 2652 case PERF_EVENT_STATE_ACTIVE: 2653 event->pmu->read(event); 2654 /* fall-through */ 2655 2656 case PERF_EVENT_STATE_INACTIVE: 2657 update_event_times(event); 2658 break; 2659 2660 default: 2661 break; 2662 } 2663 2664 /* 2665 * In order to keep per-task stats reliable we need to flip the event 2666 * values when we flip the contexts. 2667 */ 2668 value = local64_read(&next_event->count); 2669 value = local64_xchg(&event->count, value); 2670 local64_set(&next_event->count, value); 2671 2672 swap(event->total_time_enabled, next_event->total_time_enabled); 2673 swap(event->total_time_running, next_event->total_time_running); 2674 2675 /* 2676 * Since we swizzled the values, update the user visible data too. 2677 */ 2678 perf_event_update_userpage(event); 2679 perf_event_update_userpage(next_event); 2680 } 2681 2682 static void perf_event_sync_stat(struct perf_event_context *ctx, 2683 struct perf_event_context *next_ctx) 2684 { 2685 struct perf_event *event, *next_event; 2686 2687 if (!ctx->nr_stat) 2688 return; 2689 2690 update_context_time(ctx); 2691 2692 event = list_first_entry(&ctx->event_list, 2693 struct perf_event, event_entry); 2694 2695 next_event = list_first_entry(&next_ctx->event_list, 2696 struct perf_event, event_entry); 2697 2698 while (&event->event_entry != &ctx->event_list && 2699 &next_event->event_entry != &next_ctx->event_list) { 2700 2701 __perf_event_sync_stat(event, next_event); 2702 2703 event = list_next_entry(event, event_entry); 2704 next_event = list_next_entry(next_event, event_entry); 2705 } 2706 } 2707 2708 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2709 struct task_struct *next) 2710 { 2711 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2712 struct perf_event_context *next_ctx; 2713 struct perf_event_context *parent, *next_parent; 2714 struct perf_cpu_context *cpuctx; 2715 int do_switch = 1; 2716 2717 if (likely(!ctx)) 2718 return; 2719 2720 cpuctx = __get_cpu_context(ctx); 2721 if (!cpuctx->task_ctx) 2722 return; 2723 2724 rcu_read_lock(); 2725 next_ctx = next->perf_event_ctxp[ctxn]; 2726 if (!next_ctx) 2727 goto unlock; 2728 2729 parent = rcu_dereference(ctx->parent_ctx); 2730 next_parent = rcu_dereference(next_ctx->parent_ctx); 2731 2732 /* If neither context have a parent context; they cannot be clones. */ 2733 if (!parent && !next_parent) 2734 goto unlock; 2735 2736 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2737 /* 2738 * Looks like the two contexts are clones, so we might be 2739 * able to optimize the context switch. We lock both 2740 * contexts and check that they are clones under the 2741 * lock (including re-checking that neither has been 2742 * uncloned in the meantime). It doesn't matter which 2743 * order we take the locks because no other cpu could 2744 * be trying to lock both of these tasks. 2745 */ 2746 raw_spin_lock(&ctx->lock); 2747 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2748 if (context_equiv(ctx, next_ctx)) { 2749 WRITE_ONCE(ctx->task, next); 2750 WRITE_ONCE(next_ctx->task, task); 2751 2752 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2753 2754 /* 2755 * RCU_INIT_POINTER here is safe because we've not 2756 * modified the ctx and the above modification of 2757 * ctx->task and ctx->task_ctx_data are immaterial 2758 * since those values are always verified under 2759 * ctx->lock which we're now holding. 2760 */ 2761 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2762 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2763 2764 do_switch = 0; 2765 2766 perf_event_sync_stat(ctx, next_ctx); 2767 } 2768 raw_spin_unlock(&next_ctx->lock); 2769 raw_spin_unlock(&ctx->lock); 2770 } 2771 unlock: 2772 rcu_read_unlock(); 2773 2774 if (do_switch) { 2775 raw_spin_lock(&ctx->lock); 2776 task_ctx_sched_out(cpuctx, ctx); 2777 raw_spin_unlock(&ctx->lock); 2778 } 2779 } 2780 2781 void perf_sched_cb_dec(struct pmu *pmu) 2782 { 2783 this_cpu_dec(perf_sched_cb_usages); 2784 } 2785 2786 void perf_sched_cb_inc(struct pmu *pmu) 2787 { 2788 this_cpu_inc(perf_sched_cb_usages); 2789 } 2790 2791 /* 2792 * This function provides the context switch callback to the lower code 2793 * layer. It is invoked ONLY when the context switch callback is enabled. 2794 */ 2795 static void perf_pmu_sched_task(struct task_struct *prev, 2796 struct task_struct *next, 2797 bool sched_in) 2798 { 2799 struct perf_cpu_context *cpuctx; 2800 struct pmu *pmu; 2801 unsigned long flags; 2802 2803 if (prev == next) 2804 return; 2805 2806 local_irq_save(flags); 2807 2808 rcu_read_lock(); 2809 2810 list_for_each_entry_rcu(pmu, &pmus, entry) { 2811 if (pmu->sched_task) { 2812 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2813 2814 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2815 2816 perf_pmu_disable(pmu); 2817 2818 pmu->sched_task(cpuctx->task_ctx, sched_in); 2819 2820 perf_pmu_enable(pmu); 2821 2822 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2823 } 2824 } 2825 2826 rcu_read_unlock(); 2827 2828 local_irq_restore(flags); 2829 } 2830 2831 static void perf_event_switch(struct task_struct *task, 2832 struct task_struct *next_prev, bool sched_in); 2833 2834 #define for_each_task_context_nr(ctxn) \ 2835 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2836 2837 /* 2838 * Called from scheduler to remove the events of the current task, 2839 * with interrupts disabled. 2840 * 2841 * We stop each event and update the event value in event->count. 2842 * 2843 * This does not protect us against NMI, but disable() 2844 * sets the disabled bit in the control field of event _before_ 2845 * accessing the event control register. If a NMI hits, then it will 2846 * not restart the event. 2847 */ 2848 void __perf_event_task_sched_out(struct task_struct *task, 2849 struct task_struct *next) 2850 { 2851 int ctxn; 2852 2853 if (__this_cpu_read(perf_sched_cb_usages)) 2854 perf_pmu_sched_task(task, next, false); 2855 2856 if (atomic_read(&nr_switch_events)) 2857 perf_event_switch(task, next, false); 2858 2859 for_each_task_context_nr(ctxn) 2860 perf_event_context_sched_out(task, ctxn, next); 2861 2862 /* 2863 * if cgroup events exist on this CPU, then we need 2864 * to check if we have to switch out PMU state. 2865 * cgroup event are system-wide mode only 2866 */ 2867 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2868 perf_cgroup_sched_out(task, next); 2869 } 2870 2871 /* 2872 * Called with IRQs disabled 2873 */ 2874 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2875 enum event_type_t event_type) 2876 { 2877 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2878 } 2879 2880 static void 2881 ctx_pinned_sched_in(struct perf_event_context *ctx, 2882 struct perf_cpu_context *cpuctx) 2883 { 2884 struct perf_event *event; 2885 2886 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2887 if (event->state <= PERF_EVENT_STATE_OFF) 2888 continue; 2889 if (!event_filter_match(event)) 2890 continue; 2891 2892 /* may need to reset tstamp_enabled */ 2893 if (is_cgroup_event(event)) 2894 perf_cgroup_mark_enabled(event, ctx); 2895 2896 if (group_can_go_on(event, cpuctx, 1)) 2897 group_sched_in(event, cpuctx, ctx); 2898 2899 /* 2900 * If this pinned group hasn't been scheduled, 2901 * put it in error state. 2902 */ 2903 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2904 update_group_times(event); 2905 event->state = PERF_EVENT_STATE_ERROR; 2906 } 2907 } 2908 } 2909 2910 static void 2911 ctx_flexible_sched_in(struct perf_event_context *ctx, 2912 struct perf_cpu_context *cpuctx) 2913 { 2914 struct perf_event *event; 2915 int can_add_hw = 1; 2916 2917 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2918 /* Ignore events in OFF or ERROR state */ 2919 if (event->state <= PERF_EVENT_STATE_OFF) 2920 continue; 2921 /* 2922 * Listen to the 'cpu' scheduling filter constraint 2923 * of events: 2924 */ 2925 if (!event_filter_match(event)) 2926 continue; 2927 2928 /* may need to reset tstamp_enabled */ 2929 if (is_cgroup_event(event)) 2930 perf_cgroup_mark_enabled(event, ctx); 2931 2932 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2933 if (group_sched_in(event, cpuctx, ctx)) 2934 can_add_hw = 0; 2935 } 2936 } 2937 } 2938 2939 static void 2940 ctx_sched_in(struct perf_event_context *ctx, 2941 struct perf_cpu_context *cpuctx, 2942 enum event_type_t event_type, 2943 struct task_struct *task) 2944 { 2945 int is_active = ctx->is_active; 2946 u64 now; 2947 2948 lockdep_assert_held(&ctx->lock); 2949 2950 if (likely(!ctx->nr_events)) 2951 return; 2952 2953 ctx->is_active |= (event_type | EVENT_TIME); 2954 if (ctx->task) { 2955 if (!is_active) 2956 cpuctx->task_ctx = ctx; 2957 else 2958 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2959 } 2960 2961 is_active ^= ctx->is_active; /* changed bits */ 2962 2963 if (is_active & EVENT_TIME) { 2964 /* start ctx time */ 2965 now = perf_clock(); 2966 ctx->timestamp = now; 2967 perf_cgroup_set_timestamp(task, ctx); 2968 } 2969 2970 /* 2971 * First go through the list and put on any pinned groups 2972 * in order to give them the best chance of going on. 2973 */ 2974 if (is_active & EVENT_PINNED) 2975 ctx_pinned_sched_in(ctx, cpuctx); 2976 2977 /* Then walk through the lower prio flexible groups */ 2978 if (is_active & EVENT_FLEXIBLE) 2979 ctx_flexible_sched_in(ctx, cpuctx); 2980 } 2981 2982 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2983 enum event_type_t event_type, 2984 struct task_struct *task) 2985 { 2986 struct perf_event_context *ctx = &cpuctx->ctx; 2987 2988 ctx_sched_in(ctx, cpuctx, event_type, task); 2989 } 2990 2991 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2992 struct task_struct *task) 2993 { 2994 struct perf_cpu_context *cpuctx; 2995 2996 cpuctx = __get_cpu_context(ctx); 2997 if (cpuctx->task_ctx == ctx) 2998 return; 2999 3000 perf_ctx_lock(cpuctx, ctx); 3001 perf_pmu_disable(ctx->pmu); 3002 /* 3003 * We want to keep the following priority order: 3004 * cpu pinned (that don't need to move), task pinned, 3005 * cpu flexible, task flexible. 3006 */ 3007 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3008 perf_event_sched_in(cpuctx, ctx, task); 3009 perf_pmu_enable(ctx->pmu); 3010 perf_ctx_unlock(cpuctx, ctx); 3011 } 3012 3013 /* 3014 * Called from scheduler to add the events of the current task 3015 * with interrupts disabled. 3016 * 3017 * We restore the event value and then enable it. 3018 * 3019 * This does not protect us against NMI, but enable() 3020 * sets the enabled bit in the control field of event _before_ 3021 * accessing the event control register. If a NMI hits, then it will 3022 * keep the event running. 3023 */ 3024 void __perf_event_task_sched_in(struct task_struct *prev, 3025 struct task_struct *task) 3026 { 3027 struct perf_event_context *ctx; 3028 int ctxn; 3029 3030 /* 3031 * If cgroup events exist on this CPU, then we need to check if we have 3032 * to switch in PMU state; cgroup event are system-wide mode only. 3033 * 3034 * Since cgroup events are CPU events, we must schedule these in before 3035 * we schedule in the task events. 3036 */ 3037 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3038 perf_cgroup_sched_in(prev, task); 3039 3040 for_each_task_context_nr(ctxn) { 3041 ctx = task->perf_event_ctxp[ctxn]; 3042 if (likely(!ctx)) 3043 continue; 3044 3045 perf_event_context_sched_in(ctx, task); 3046 } 3047 3048 if (atomic_read(&nr_switch_events)) 3049 perf_event_switch(task, prev, true); 3050 3051 if (__this_cpu_read(perf_sched_cb_usages)) 3052 perf_pmu_sched_task(prev, task, true); 3053 } 3054 3055 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3056 { 3057 u64 frequency = event->attr.sample_freq; 3058 u64 sec = NSEC_PER_SEC; 3059 u64 divisor, dividend; 3060 3061 int count_fls, nsec_fls, frequency_fls, sec_fls; 3062 3063 count_fls = fls64(count); 3064 nsec_fls = fls64(nsec); 3065 frequency_fls = fls64(frequency); 3066 sec_fls = 30; 3067 3068 /* 3069 * We got @count in @nsec, with a target of sample_freq HZ 3070 * the target period becomes: 3071 * 3072 * @count * 10^9 3073 * period = ------------------- 3074 * @nsec * sample_freq 3075 * 3076 */ 3077 3078 /* 3079 * Reduce accuracy by one bit such that @a and @b converge 3080 * to a similar magnitude. 3081 */ 3082 #define REDUCE_FLS(a, b) \ 3083 do { \ 3084 if (a##_fls > b##_fls) { \ 3085 a >>= 1; \ 3086 a##_fls--; \ 3087 } else { \ 3088 b >>= 1; \ 3089 b##_fls--; \ 3090 } \ 3091 } while (0) 3092 3093 /* 3094 * Reduce accuracy until either term fits in a u64, then proceed with 3095 * the other, so that finally we can do a u64/u64 division. 3096 */ 3097 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3098 REDUCE_FLS(nsec, frequency); 3099 REDUCE_FLS(sec, count); 3100 } 3101 3102 if (count_fls + sec_fls > 64) { 3103 divisor = nsec * frequency; 3104 3105 while (count_fls + sec_fls > 64) { 3106 REDUCE_FLS(count, sec); 3107 divisor >>= 1; 3108 } 3109 3110 dividend = count * sec; 3111 } else { 3112 dividend = count * sec; 3113 3114 while (nsec_fls + frequency_fls > 64) { 3115 REDUCE_FLS(nsec, frequency); 3116 dividend >>= 1; 3117 } 3118 3119 divisor = nsec * frequency; 3120 } 3121 3122 if (!divisor) 3123 return dividend; 3124 3125 return div64_u64(dividend, divisor); 3126 } 3127 3128 static DEFINE_PER_CPU(int, perf_throttled_count); 3129 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3130 3131 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3132 { 3133 struct hw_perf_event *hwc = &event->hw; 3134 s64 period, sample_period; 3135 s64 delta; 3136 3137 period = perf_calculate_period(event, nsec, count); 3138 3139 delta = (s64)(period - hwc->sample_period); 3140 delta = (delta + 7) / 8; /* low pass filter */ 3141 3142 sample_period = hwc->sample_period + delta; 3143 3144 if (!sample_period) 3145 sample_period = 1; 3146 3147 hwc->sample_period = sample_period; 3148 3149 if (local64_read(&hwc->period_left) > 8*sample_period) { 3150 if (disable) 3151 event->pmu->stop(event, PERF_EF_UPDATE); 3152 3153 local64_set(&hwc->period_left, 0); 3154 3155 if (disable) 3156 event->pmu->start(event, PERF_EF_RELOAD); 3157 } 3158 } 3159 3160 /* 3161 * combine freq adjustment with unthrottling to avoid two passes over the 3162 * events. At the same time, make sure, having freq events does not change 3163 * the rate of unthrottling as that would introduce bias. 3164 */ 3165 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3166 int needs_unthr) 3167 { 3168 struct perf_event *event; 3169 struct hw_perf_event *hwc; 3170 u64 now, period = TICK_NSEC; 3171 s64 delta; 3172 3173 /* 3174 * only need to iterate over all events iff: 3175 * - context have events in frequency mode (needs freq adjust) 3176 * - there are events to unthrottle on this cpu 3177 */ 3178 if (!(ctx->nr_freq || needs_unthr)) 3179 return; 3180 3181 raw_spin_lock(&ctx->lock); 3182 perf_pmu_disable(ctx->pmu); 3183 3184 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3185 if (event->state != PERF_EVENT_STATE_ACTIVE) 3186 continue; 3187 3188 if (!event_filter_match(event)) 3189 continue; 3190 3191 perf_pmu_disable(event->pmu); 3192 3193 hwc = &event->hw; 3194 3195 if (hwc->interrupts == MAX_INTERRUPTS) { 3196 hwc->interrupts = 0; 3197 perf_log_throttle(event, 1); 3198 event->pmu->start(event, 0); 3199 } 3200 3201 if (!event->attr.freq || !event->attr.sample_freq) 3202 goto next; 3203 3204 /* 3205 * stop the event and update event->count 3206 */ 3207 event->pmu->stop(event, PERF_EF_UPDATE); 3208 3209 now = local64_read(&event->count); 3210 delta = now - hwc->freq_count_stamp; 3211 hwc->freq_count_stamp = now; 3212 3213 /* 3214 * restart the event 3215 * reload only if value has changed 3216 * we have stopped the event so tell that 3217 * to perf_adjust_period() to avoid stopping it 3218 * twice. 3219 */ 3220 if (delta > 0) 3221 perf_adjust_period(event, period, delta, false); 3222 3223 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3224 next: 3225 perf_pmu_enable(event->pmu); 3226 } 3227 3228 perf_pmu_enable(ctx->pmu); 3229 raw_spin_unlock(&ctx->lock); 3230 } 3231 3232 /* 3233 * Round-robin a context's events: 3234 */ 3235 static void rotate_ctx(struct perf_event_context *ctx) 3236 { 3237 /* 3238 * Rotate the first entry last of non-pinned groups. Rotation might be 3239 * disabled by the inheritance code. 3240 */ 3241 if (!ctx->rotate_disable) 3242 list_rotate_left(&ctx->flexible_groups); 3243 } 3244 3245 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3246 { 3247 struct perf_event_context *ctx = NULL; 3248 int rotate = 0; 3249 3250 if (cpuctx->ctx.nr_events) { 3251 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3252 rotate = 1; 3253 } 3254 3255 ctx = cpuctx->task_ctx; 3256 if (ctx && ctx->nr_events) { 3257 if (ctx->nr_events != ctx->nr_active) 3258 rotate = 1; 3259 } 3260 3261 if (!rotate) 3262 goto done; 3263 3264 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3265 perf_pmu_disable(cpuctx->ctx.pmu); 3266 3267 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3268 if (ctx) 3269 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3270 3271 rotate_ctx(&cpuctx->ctx); 3272 if (ctx) 3273 rotate_ctx(ctx); 3274 3275 perf_event_sched_in(cpuctx, ctx, current); 3276 3277 perf_pmu_enable(cpuctx->ctx.pmu); 3278 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3279 done: 3280 3281 return rotate; 3282 } 3283 3284 void perf_event_task_tick(void) 3285 { 3286 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3287 struct perf_event_context *ctx, *tmp; 3288 int throttled; 3289 3290 WARN_ON(!irqs_disabled()); 3291 3292 __this_cpu_inc(perf_throttled_seq); 3293 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3294 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3295 3296 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3297 perf_adjust_freq_unthr_context(ctx, throttled); 3298 } 3299 3300 static int event_enable_on_exec(struct perf_event *event, 3301 struct perf_event_context *ctx) 3302 { 3303 if (!event->attr.enable_on_exec) 3304 return 0; 3305 3306 event->attr.enable_on_exec = 0; 3307 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3308 return 0; 3309 3310 __perf_event_mark_enabled(event); 3311 3312 return 1; 3313 } 3314 3315 /* 3316 * Enable all of a task's events that have been marked enable-on-exec. 3317 * This expects task == current. 3318 */ 3319 static void perf_event_enable_on_exec(int ctxn) 3320 { 3321 struct perf_event_context *ctx, *clone_ctx = NULL; 3322 struct perf_cpu_context *cpuctx; 3323 struct perf_event *event; 3324 unsigned long flags; 3325 int enabled = 0; 3326 3327 local_irq_save(flags); 3328 ctx = current->perf_event_ctxp[ctxn]; 3329 if (!ctx || !ctx->nr_events) 3330 goto out; 3331 3332 cpuctx = __get_cpu_context(ctx); 3333 perf_ctx_lock(cpuctx, ctx); 3334 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3335 list_for_each_entry(event, &ctx->event_list, event_entry) 3336 enabled |= event_enable_on_exec(event, ctx); 3337 3338 /* 3339 * Unclone and reschedule this context if we enabled any event. 3340 */ 3341 if (enabled) { 3342 clone_ctx = unclone_ctx(ctx); 3343 ctx_resched(cpuctx, ctx); 3344 } 3345 perf_ctx_unlock(cpuctx, ctx); 3346 3347 out: 3348 local_irq_restore(flags); 3349 3350 if (clone_ctx) 3351 put_ctx(clone_ctx); 3352 } 3353 3354 struct perf_read_data { 3355 struct perf_event *event; 3356 bool group; 3357 int ret; 3358 }; 3359 3360 /* 3361 * Cross CPU call to read the hardware event 3362 */ 3363 static void __perf_event_read(void *info) 3364 { 3365 struct perf_read_data *data = info; 3366 struct perf_event *sub, *event = data->event; 3367 struct perf_event_context *ctx = event->ctx; 3368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3369 struct pmu *pmu = event->pmu; 3370 3371 /* 3372 * If this is a task context, we need to check whether it is 3373 * the current task context of this cpu. If not it has been 3374 * scheduled out before the smp call arrived. In that case 3375 * event->count would have been updated to a recent sample 3376 * when the event was scheduled out. 3377 */ 3378 if (ctx->task && cpuctx->task_ctx != ctx) 3379 return; 3380 3381 raw_spin_lock(&ctx->lock); 3382 if (ctx->is_active) { 3383 update_context_time(ctx); 3384 update_cgrp_time_from_event(event); 3385 } 3386 3387 update_event_times(event); 3388 if (event->state != PERF_EVENT_STATE_ACTIVE) 3389 goto unlock; 3390 3391 if (!data->group) { 3392 pmu->read(event); 3393 data->ret = 0; 3394 goto unlock; 3395 } 3396 3397 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3398 3399 pmu->read(event); 3400 3401 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3402 update_event_times(sub); 3403 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3404 /* 3405 * Use sibling's PMU rather than @event's since 3406 * sibling could be on different (eg: software) PMU. 3407 */ 3408 sub->pmu->read(sub); 3409 } 3410 } 3411 3412 data->ret = pmu->commit_txn(pmu); 3413 3414 unlock: 3415 raw_spin_unlock(&ctx->lock); 3416 } 3417 3418 static inline u64 perf_event_count(struct perf_event *event) 3419 { 3420 if (event->pmu->count) 3421 return event->pmu->count(event); 3422 3423 return __perf_event_count(event); 3424 } 3425 3426 /* 3427 * NMI-safe method to read a local event, that is an event that 3428 * is: 3429 * - either for the current task, or for this CPU 3430 * - does not have inherit set, for inherited task events 3431 * will not be local and we cannot read them atomically 3432 * - must not have a pmu::count method 3433 */ 3434 u64 perf_event_read_local(struct perf_event *event) 3435 { 3436 unsigned long flags; 3437 u64 val; 3438 3439 /* 3440 * Disabling interrupts avoids all counter scheduling (context 3441 * switches, timer based rotation and IPIs). 3442 */ 3443 local_irq_save(flags); 3444 3445 /* If this is a per-task event, it must be for current */ 3446 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3447 event->hw.target != current); 3448 3449 /* If this is a per-CPU event, it must be for this CPU */ 3450 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3451 event->cpu != smp_processor_id()); 3452 3453 /* 3454 * It must not be an event with inherit set, we cannot read 3455 * all child counters from atomic context. 3456 */ 3457 WARN_ON_ONCE(event->attr.inherit); 3458 3459 /* 3460 * It must not have a pmu::count method, those are not 3461 * NMI safe. 3462 */ 3463 WARN_ON_ONCE(event->pmu->count); 3464 3465 /* 3466 * If the event is currently on this CPU, its either a per-task event, 3467 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3468 * oncpu == -1). 3469 */ 3470 if (event->oncpu == smp_processor_id()) 3471 event->pmu->read(event); 3472 3473 val = local64_read(&event->count); 3474 local_irq_restore(flags); 3475 3476 return val; 3477 } 3478 3479 static int perf_event_read(struct perf_event *event, bool group) 3480 { 3481 int ret = 0; 3482 3483 /* 3484 * If event is enabled and currently active on a CPU, update the 3485 * value in the event structure: 3486 */ 3487 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3488 struct perf_read_data data = { 3489 .event = event, 3490 .group = group, 3491 .ret = 0, 3492 }; 3493 smp_call_function_single(event->oncpu, 3494 __perf_event_read, &data, 1); 3495 ret = data.ret; 3496 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3497 struct perf_event_context *ctx = event->ctx; 3498 unsigned long flags; 3499 3500 raw_spin_lock_irqsave(&ctx->lock, flags); 3501 /* 3502 * may read while context is not active 3503 * (e.g., thread is blocked), in that case 3504 * we cannot update context time 3505 */ 3506 if (ctx->is_active) { 3507 update_context_time(ctx); 3508 update_cgrp_time_from_event(event); 3509 } 3510 if (group) 3511 update_group_times(event); 3512 else 3513 update_event_times(event); 3514 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3515 } 3516 3517 return ret; 3518 } 3519 3520 /* 3521 * Initialize the perf_event context in a task_struct: 3522 */ 3523 static void __perf_event_init_context(struct perf_event_context *ctx) 3524 { 3525 raw_spin_lock_init(&ctx->lock); 3526 mutex_init(&ctx->mutex); 3527 INIT_LIST_HEAD(&ctx->active_ctx_list); 3528 INIT_LIST_HEAD(&ctx->pinned_groups); 3529 INIT_LIST_HEAD(&ctx->flexible_groups); 3530 INIT_LIST_HEAD(&ctx->event_list); 3531 atomic_set(&ctx->refcount, 1); 3532 } 3533 3534 static struct perf_event_context * 3535 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3536 { 3537 struct perf_event_context *ctx; 3538 3539 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3540 if (!ctx) 3541 return NULL; 3542 3543 __perf_event_init_context(ctx); 3544 if (task) { 3545 ctx->task = task; 3546 get_task_struct(task); 3547 } 3548 ctx->pmu = pmu; 3549 3550 return ctx; 3551 } 3552 3553 static struct task_struct * 3554 find_lively_task_by_vpid(pid_t vpid) 3555 { 3556 struct task_struct *task; 3557 3558 rcu_read_lock(); 3559 if (!vpid) 3560 task = current; 3561 else 3562 task = find_task_by_vpid(vpid); 3563 if (task) 3564 get_task_struct(task); 3565 rcu_read_unlock(); 3566 3567 if (!task) 3568 return ERR_PTR(-ESRCH); 3569 3570 return task; 3571 } 3572 3573 /* 3574 * Returns a matching context with refcount and pincount. 3575 */ 3576 static struct perf_event_context * 3577 find_get_context(struct pmu *pmu, struct task_struct *task, 3578 struct perf_event *event) 3579 { 3580 struct perf_event_context *ctx, *clone_ctx = NULL; 3581 struct perf_cpu_context *cpuctx; 3582 void *task_ctx_data = NULL; 3583 unsigned long flags; 3584 int ctxn, err; 3585 int cpu = event->cpu; 3586 3587 if (!task) { 3588 /* Must be root to operate on a CPU event: */ 3589 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3590 return ERR_PTR(-EACCES); 3591 3592 /* 3593 * We could be clever and allow to attach a event to an 3594 * offline CPU and activate it when the CPU comes up, but 3595 * that's for later. 3596 */ 3597 if (!cpu_online(cpu)) 3598 return ERR_PTR(-ENODEV); 3599 3600 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3601 ctx = &cpuctx->ctx; 3602 get_ctx(ctx); 3603 ++ctx->pin_count; 3604 3605 return ctx; 3606 } 3607 3608 err = -EINVAL; 3609 ctxn = pmu->task_ctx_nr; 3610 if (ctxn < 0) 3611 goto errout; 3612 3613 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3614 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3615 if (!task_ctx_data) { 3616 err = -ENOMEM; 3617 goto errout; 3618 } 3619 } 3620 3621 retry: 3622 ctx = perf_lock_task_context(task, ctxn, &flags); 3623 if (ctx) { 3624 clone_ctx = unclone_ctx(ctx); 3625 ++ctx->pin_count; 3626 3627 if (task_ctx_data && !ctx->task_ctx_data) { 3628 ctx->task_ctx_data = task_ctx_data; 3629 task_ctx_data = NULL; 3630 } 3631 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3632 3633 if (clone_ctx) 3634 put_ctx(clone_ctx); 3635 } else { 3636 ctx = alloc_perf_context(pmu, task); 3637 err = -ENOMEM; 3638 if (!ctx) 3639 goto errout; 3640 3641 if (task_ctx_data) { 3642 ctx->task_ctx_data = task_ctx_data; 3643 task_ctx_data = NULL; 3644 } 3645 3646 err = 0; 3647 mutex_lock(&task->perf_event_mutex); 3648 /* 3649 * If it has already passed perf_event_exit_task(). 3650 * we must see PF_EXITING, it takes this mutex too. 3651 */ 3652 if (task->flags & PF_EXITING) 3653 err = -ESRCH; 3654 else if (task->perf_event_ctxp[ctxn]) 3655 err = -EAGAIN; 3656 else { 3657 get_ctx(ctx); 3658 ++ctx->pin_count; 3659 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3660 } 3661 mutex_unlock(&task->perf_event_mutex); 3662 3663 if (unlikely(err)) { 3664 put_ctx(ctx); 3665 3666 if (err == -EAGAIN) 3667 goto retry; 3668 goto errout; 3669 } 3670 } 3671 3672 kfree(task_ctx_data); 3673 return ctx; 3674 3675 errout: 3676 kfree(task_ctx_data); 3677 return ERR_PTR(err); 3678 } 3679 3680 static void perf_event_free_filter(struct perf_event *event); 3681 static void perf_event_free_bpf_prog(struct perf_event *event); 3682 3683 static void free_event_rcu(struct rcu_head *head) 3684 { 3685 struct perf_event *event; 3686 3687 event = container_of(head, struct perf_event, rcu_head); 3688 if (event->ns) 3689 put_pid_ns(event->ns); 3690 perf_event_free_filter(event); 3691 kfree(event); 3692 } 3693 3694 static void ring_buffer_attach(struct perf_event *event, 3695 struct ring_buffer *rb); 3696 3697 static void detach_sb_event(struct perf_event *event) 3698 { 3699 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3700 3701 raw_spin_lock(&pel->lock); 3702 list_del_rcu(&event->sb_list); 3703 raw_spin_unlock(&pel->lock); 3704 } 3705 3706 static bool is_sb_event(struct perf_event *event) 3707 { 3708 struct perf_event_attr *attr = &event->attr; 3709 3710 if (event->parent) 3711 return false; 3712 3713 if (event->attach_state & PERF_ATTACH_TASK) 3714 return false; 3715 3716 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3717 attr->comm || attr->comm_exec || 3718 attr->task || 3719 attr->context_switch) 3720 return true; 3721 return false; 3722 } 3723 3724 static void unaccount_pmu_sb_event(struct perf_event *event) 3725 { 3726 if (is_sb_event(event)) 3727 detach_sb_event(event); 3728 } 3729 3730 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3731 { 3732 if (event->parent) 3733 return; 3734 3735 if (is_cgroup_event(event)) 3736 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3737 } 3738 3739 #ifdef CONFIG_NO_HZ_FULL 3740 static DEFINE_SPINLOCK(nr_freq_lock); 3741 #endif 3742 3743 static void unaccount_freq_event_nohz(void) 3744 { 3745 #ifdef CONFIG_NO_HZ_FULL 3746 spin_lock(&nr_freq_lock); 3747 if (atomic_dec_and_test(&nr_freq_events)) 3748 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3749 spin_unlock(&nr_freq_lock); 3750 #endif 3751 } 3752 3753 static void unaccount_freq_event(void) 3754 { 3755 if (tick_nohz_full_enabled()) 3756 unaccount_freq_event_nohz(); 3757 else 3758 atomic_dec(&nr_freq_events); 3759 } 3760 3761 static void unaccount_event(struct perf_event *event) 3762 { 3763 bool dec = false; 3764 3765 if (event->parent) 3766 return; 3767 3768 if (event->attach_state & PERF_ATTACH_TASK) 3769 dec = true; 3770 if (event->attr.mmap || event->attr.mmap_data) 3771 atomic_dec(&nr_mmap_events); 3772 if (event->attr.comm) 3773 atomic_dec(&nr_comm_events); 3774 if (event->attr.task) 3775 atomic_dec(&nr_task_events); 3776 if (event->attr.freq) 3777 unaccount_freq_event(); 3778 if (event->attr.context_switch) { 3779 dec = true; 3780 atomic_dec(&nr_switch_events); 3781 } 3782 if (is_cgroup_event(event)) 3783 dec = true; 3784 if (has_branch_stack(event)) 3785 dec = true; 3786 3787 if (dec) { 3788 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3789 schedule_delayed_work(&perf_sched_work, HZ); 3790 } 3791 3792 unaccount_event_cpu(event, event->cpu); 3793 3794 unaccount_pmu_sb_event(event); 3795 } 3796 3797 static void perf_sched_delayed(struct work_struct *work) 3798 { 3799 mutex_lock(&perf_sched_mutex); 3800 if (atomic_dec_and_test(&perf_sched_count)) 3801 static_branch_disable(&perf_sched_events); 3802 mutex_unlock(&perf_sched_mutex); 3803 } 3804 3805 /* 3806 * The following implement mutual exclusion of events on "exclusive" pmus 3807 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3808 * at a time, so we disallow creating events that might conflict, namely: 3809 * 3810 * 1) cpu-wide events in the presence of per-task events, 3811 * 2) per-task events in the presence of cpu-wide events, 3812 * 3) two matching events on the same context. 3813 * 3814 * The former two cases are handled in the allocation path (perf_event_alloc(), 3815 * _free_event()), the latter -- before the first perf_install_in_context(). 3816 */ 3817 static int exclusive_event_init(struct perf_event *event) 3818 { 3819 struct pmu *pmu = event->pmu; 3820 3821 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3822 return 0; 3823 3824 /* 3825 * Prevent co-existence of per-task and cpu-wide events on the 3826 * same exclusive pmu. 3827 * 3828 * Negative pmu::exclusive_cnt means there are cpu-wide 3829 * events on this "exclusive" pmu, positive means there are 3830 * per-task events. 3831 * 3832 * Since this is called in perf_event_alloc() path, event::ctx 3833 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3834 * to mean "per-task event", because unlike other attach states it 3835 * never gets cleared. 3836 */ 3837 if (event->attach_state & PERF_ATTACH_TASK) { 3838 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3839 return -EBUSY; 3840 } else { 3841 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3842 return -EBUSY; 3843 } 3844 3845 return 0; 3846 } 3847 3848 static void exclusive_event_destroy(struct perf_event *event) 3849 { 3850 struct pmu *pmu = event->pmu; 3851 3852 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3853 return; 3854 3855 /* see comment in exclusive_event_init() */ 3856 if (event->attach_state & PERF_ATTACH_TASK) 3857 atomic_dec(&pmu->exclusive_cnt); 3858 else 3859 atomic_inc(&pmu->exclusive_cnt); 3860 } 3861 3862 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3863 { 3864 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3865 (e1->cpu == e2->cpu || 3866 e1->cpu == -1 || 3867 e2->cpu == -1)) 3868 return true; 3869 return false; 3870 } 3871 3872 /* Called under the same ctx::mutex as perf_install_in_context() */ 3873 static bool exclusive_event_installable(struct perf_event *event, 3874 struct perf_event_context *ctx) 3875 { 3876 struct perf_event *iter_event; 3877 struct pmu *pmu = event->pmu; 3878 3879 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3880 return true; 3881 3882 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3883 if (exclusive_event_match(iter_event, event)) 3884 return false; 3885 } 3886 3887 return true; 3888 } 3889 3890 static void perf_addr_filters_splice(struct perf_event *event, 3891 struct list_head *head); 3892 3893 static void _free_event(struct perf_event *event) 3894 { 3895 irq_work_sync(&event->pending); 3896 3897 unaccount_event(event); 3898 3899 if (event->rb) { 3900 /* 3901 * Can happen when we close an event with re-directed output. 3902 * 3903 * Since we have a 0 refcount, perf_mmap_close() will skip 3904 * over us; possibly making our ring_buffer_put() the last. 3905 */ 3906 mutex_lock(&event->mmap_mutex); 3907 ring_buffer_attach(event, NULL); 3908 mutex_unlock(&event->mmap_mutex); 3909 } 3910 3911 if (is_cgroup_event(event)) 3912 perf_detach_cgroup(event); 3913 3914 if (!event->parent) { 3915 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3916 put_callchain_buffers(); 3917 } 3918 3919 perf_event_free_bpf_prog(event); 3920 perf_addr_filters_splice(event, NULL); 3921 kfree(event->addr_filters_offs); 3922 3923 if (event->destroy) 3924 event->destroy(event); 3925 3926 if (event->ctx) 3927 put_ctx(event->ctx); 3928 3929 exclusive_event_destroy(event); 3930 module_put(event->pmu->module); 3931 3932 call_rcu(&event->rcu_head, free_event_rcu); 3933 } 3934 3935 /* 3936 * Used to free events which have a known refcount of 1, such as in error paths 3937 * where the event isn't exposed yet and inherited events. 3938 */ 3939 static void free_event(struct perf_event *event) 3940 { 3941 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3942 "unexpected event refcount: %ld; ptr=%p\n", 3943 atomic_long_read(&event->refcount), event)) { 3944 /* leak to avoid use-after-free */ 3945 return; 3946 } 3947 3948 _free_event(event); 3949 } 3950 3951 /* 3952 * Remove user event from the owner task. 3953 */ 3954 static void perf_remove_from_owner(struct perf_event *event) 3955 { 3956 struct task_struct *owner; 3957 3958 rcu_read_lock(); 3959 /* 3960 * Matches the smp_store_release() in perf_event_exit_task(). If we 3961 * observe !owner it means the list deletion is complete and we can 3962 * indeed free this event, otherwise we need to serialize on 3963 * owner->perf_event_mutex. 3964 */ 3965 owner = lockless_dereference(event->owner); 3966 if (owner) { 3967 /* 3968 * Since delayed_put_task_struct() also drops the last 3969 * task reference we can safely take a new reference 3970 * while holding the rcu_read_lock(). 3971 */ 3972 get_task_struct(owner); 3973 } 3974 rcu_read_unlock(); 3975 3976 if (owner) { 3977 /* 3978 * If we're here through perf_event_exit_task() we're already 3979 * holding ctx->mutex which would be an inversion wrt. the 3980 * normal lock order. 3981 * 3982 * However we can safely take this lock because its the child 3983 * ctx->mutex. 3984 */ 3985 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3986 3987 /* 3988 * We have to re-check the event->owner field, if it is cleared 3989 * we raced with perf_event_exit_task(), acquiring the mutex 3990 * ensured they're done, and we can proceed with freeing the 3991 * event. 3992 */ 3993 if (event->owner) { 3994 list_del_init(&event->owner_entry); 3995 smp_store_release(&event->owner, NULL); 3996 } 3997 mutex_unlock(&owner->perf_event_mutex); 3998 put_task_struct(owner); 3999 } 4000 } 4001 4002 static void put_event(struct perf_event *event) 4003 { 4004 if (!atomic_long_dec_and_test(&event->refcount)) 4005 return; 4006 4007 _free_event(event); 4008 } 4009 4010 /* 4011 * Kill an event dead; while event:refcount will preserve the event 4012 * object, it will not preserve its functionality. Once the last 'user' 4013 * gives up the object, we'll destroy the thing. 4014 */ 4015 int perf_event_release_kernel(struct perf_event *event) 4016 { 4017 struct perf_event_context *ctx = event->ctx; 4018 struct perf_event *child, *tmp; 4019 4020 /* 4021 * If we got here through err_file: fput(event_file); we will not have 4022 * attached to a context yet. 4023 */ 4024 if (!ctx) { 4025 WARN_ON_ONCE(event->attach_state & 4026 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4027 goto no_ctx; 4028 } 4029 4030 if (!is_kernel_event(event)) 4031 perf_remove_from_owner(event); 4032 4033 ctx = perf_event_ctx_lock(event); 4034 WARN_ON_ONCE(ctx->parent_ctx); 4035 perf_remove_from_context(event, DETACH_GROUP); 4036 4037 raw_spin_lock_irq(&ctx->lock); 4038 /* 4039 * Mark this even as STATE_DEAD, there is no external reference to it 4040 * anymore. 4041 * 4042 * Anybody acquiring event->child_mutex after the below loop _must_ 4043 * also see this, most importantly inherit_event() which will avoid 4044 * placing more children on the list. 4045 * 4046 * Thus this guarantees that we will in fact observe and kill _ALL_ 4047 * child events. 4048 */ 4049 event->state = PERF_EVENT_STATE_DEAD; 4050 raw_spin_unlock_irq(&ctx->lock); 4051 4052 perf_event_ctx_unlock(event, ctx); 4053 4054 again: 4055 mutex_lock(&event->child_mutex); 4056 list_for_each_entry(child, &event->child_list, child_list) { 4057 4058 /* 4059 * Cannot change, child events are not migrated, see the 4060 * comment with perf_event_ctx_lock_nested(). 4061 */ 4062 ctx = lockless_dereference(child->ctx); 4063 /* 4064 * Since child_mutex nests inside ctx::mutex, we must jump 4065 * through hoops. We start by grabbing a reference on the ctx. 4066 * 4067 * Since the event cannot get freed while we hold the 4068 * child_mutex, the context must also exist and have a !0 4069 * reference count. 4070 */ 4071 get_ctx(ctx); 4072 4073 /* 4074 * Now that we have a ctx ref, we can drop child_mutex, and 4075 * acquire ctx::mutex without fear of it going away. Then we 4076 * can re-acquire child_mutex. 4077 */ 4078 mutex_unlock(&event->child_mutex); 4079 mutex_lock(&ctx->mutex); 4080 mutex_lock(&event->child_mutex); 4081 4082 /* 4083 * Now that we hold ctx::mutex and child_mutex, revalidate our 4084 * state, if child is still the first entry, it didn't get freed 4085 * and we can continue doing so. 4086 */ 4087 tmp = list_first_entry_or_null(&event->child_list, 4088 struct perf_event, child_list); 4089 if (tmp == child) { 4090 perf_remove_from_context(child, DETACH_GROUP); 4091 list_del(&child->child_list); 4092 free_event(child); 4093 /* 4094 * This matches the refcount bump in inherit_event(); 4095 * this can't be the last reference. 4096 */ 4097 put_event(event); 4098 } 4099 4100 mutex_unlock(&event->child_mutex); 4101 mutex_unlock(&ctx->mutex); 4102 put_ctx(ctx); 4103 goto again; 4104 } 4105 mutex_unlock(&event->child_mutex); 4106 4107 no_ctx: 4108 put_event(event); /* Must be the 'last' reference */ 4109 return 0; 4110 } 4111 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4112 4113 /* 4114 * Called when the last reference to the file is gone. 4115 */ 4116 static int perf_release(struct inode *inode, struct file *file) 4117 { 4118 perf_event_release_kernel(file->private_data); 4119 return 0; 4120 } 4121 4122 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4123 { 4124 struct perf_event *child; 4125 u64 total = 0; 4126 4127 *enabled = 0; 4128 *running = 0; 4129 4130 mutex_lock(&event->child_mutex); 4131 4132 (void)perf_event_read(event, false); 4133 total += perf_event_count(event); 4134 4135 *enabled += event->total_time_enabled + 4136 atomic64_read(&event->child_total_time_enabled); 4137 *running += event->total_time_running + 4138 atomic64_read(&event->child_total_time_running); 4139 4140 list_for_each_entry(child, &event->child_list, child_list) { 4141 (void)perf_event_read(child, false); 4142 total += perf_event_count(child); 4143 *enabled += child->total_time_enabled; 4144 *running += child->total_time_running; 4145 } 4146 mutex_unlock(&event->child_mutex); 4147 4148 return total; 4149 } 4150 EXPORT_SYMBOL_GPL(perf_event_read_value); 4151 4152 static int __perf_read_group_add(struct perf_event *leader, 4153 u64 read_format, u64 *values) 4154 { 4155 struct perf_event *sub; 4156 int n = 1; /* skip @nr */ 4157 int ret; 4158 4159 ret = perf_event_read(leader, true); 4160 if (ret) 4161 return ret; 4162 4163 /* 4164 * Since we co-schedule groups, {enabled,running} times of siblings 4165 * will be identical to those of the leader, so we only publish one 4166 * set. 4167 */ 4168 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4169 values[n++] += leader->total_time_enabled + 4170 atomic64_read(&leader->child_total_time_enabled); 4171 } 4172 4173 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4174 values[n++] += leader->total_time_running + 4175 atomic64_read(&leader->child_total_time_running); 4176 } 4177 4178 /* 4179 * Write {count,id} tuples for every sibling. 4180 */ 4181 values[n++] += perf_event_count(leader); 4182 if (read_format & PERF_FORMAT_ID) 4183 values[n++] = primary_event_id(leader); 4184 4185 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4186 values[n++] += perf_event_count(sub); 4187 if (read_format & PERF_FORMAT_ID) 4188 values[n++] = primary_event_id(sub); 4189 } 4190 4191 return 0; 4192 } 4193 4194 static int perf_read_group(struct perf_event *event, 4195 u64 read_format, char __user *buf) 4196 { 4197 struct perf_event *leader = event->group_leader, *child; 4198 struct perf_event_context *ctx = leader->ctx; 4199 int ret; 4200 u64 *values; 4201 4202 lockdep_assert_held(&ctx->mutex); 4203 4204 values = kzalloc(event->read_size, GFP_KERNEL); 4205 if (!values) 4206 return -ENOMEM; 4207 4208 values[0] = 1 + leader->nr_siblings; 4209 4210 /* 4211 * By locking the child_mutex of the leader we effectively 4212 * lock the child list of all siblings.. XXX explain how. 4213 */ 4214 mutex_lock(&leader->child_mutex); 4215 4216 ret = __perf_read_group_add(leader, read_format, values); 4217 if (ret) 4218 goto unlock; 4219 4220 list_for_each_entry(child, &leader->child_list, child_list) { 4221 ret = __perf_read_group_add(child, read_format, values); 4222 if (ret) 4223 goto unlock; 4224 } 4225 4226 mutex_unlock(&leader->child_mutex); 4227 4228 ret = event->read_size; 4229 if (copy_to_user(buf, values, event->read_size)) 4230 ret = -EFAULT; 4231 goto out; 4232 4233 unlock: 4234 mutex_unlock(&leader->child_mutex); 4235 out: 4236 kfree(values); 4237 return ret; 4238 } 4239 4240 static int perf_read_one(struct perf_event *event, 4241 u64 read_format, char __user *buf) 4242 { 4243 u64 enabled, running; 4244 u64 values[4]; 4245 int n = 0; 4246 4247 values[n++] = perf_event_read_value(event, &enabled, &running); 4248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4249 values[n++] = enabled; 4250 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4251 values[n++] = running; 4252 if (read_format & PERF_FORMAT_ID) 4253 values[n++] = primary_event_id(event); 4254 4255 if (copy_to_user(buf, values, n * sizeof(u64))) 4256 return -EFAULT; 4257 4258 return n * sizeof(u64); 4259 } 4260 4261 static bool is_event_hup(struct perf_event *event) 4262 { 4263 bool no_children; 4264 4265 if (event->state > PERF_EVENT_STATE_EXIT) 4266 return false; 4267 4268 mutex_lock(&event->child_mutex); 4269 no_children = list_empty(&event->child_list); 4270 mutex_unlock(&event->child_mutex); 4271 return no_children; 4272 } 4273 4274 /* 4275 * Read the performance event - simple non blocking version for now 4276 */ 4277 static ssize_t 4278 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4279 { 4280 u64 read_format = event->attr.read_format; 4281 int ret; 4282 4283 /* 4284 * Return end-of-file for a read on a event that is in 4285 * error state (i.e. because it was pinned but it couldn't be 4286 * scheduled on to the CPU at some point). 4287 */ 4288 if (event->state == PERF_EVENT_STATE_ERROR) 4289 return 0; 4290 4291 if (count < event->read_size) 4292 return -ENOSPC; 4293 4294 WARN_ON_ONCE(event->ctx->parent_ctx); 4295 if (read_format & PERF_FORMAT_GROUP) 4296 ret = perf_read_group(event, read_format, buf); 4297 else 4298 ret = perf_read_one(event, read_format, buf); 4299 4300 return ret; 4301 } 4302 4303 static ssize_t 4304 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4305 { 4306 struct perf_event *event = file->private_data; 4307 struct perf_event_context *ctx; 4308 int ret; 4309 4310 ctx = perf_event_ctx_lock(event); 4311 ret = __perf_read(event, buf, count); 4312 perf_event_ctx_unlock(event, ctx); 4313 4314 return ret; 4315 } 4316 4317 static unsigned int perf_poll(struct file *file, poll_table *wait) 4318 { 4319 struct perf_event *event = file->private_data; 4320 struct ring_buffer *rb; 4321 unsigned int events = POLLHUP; 4322 4323 poll_wait(file, &event->waitq, wait); 4324 4325 if (is_event_hup(event)) 4326 return events; 4327 4328 /* 4329 * Pin the event->rb by taking event->mmap_mutex; otherwise 4330 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4331 */ 4332 mutex_lock(&event->mmap_mutex); 4333 rb = event->rb; 4334 if (rb) 4335 events = atomic_xchg(&rb->poll, 0); 4336 mutex_unlock(&event->mmap_mutex); 4337 return events; 4338 } 4339 4340 static void _perf_event_reset(struct perf_event *event) 4341 { 4342 (void)perf_event_read(event, false); 4343 local64_set(&event->count, 0); 4344 perf_event_update_userpage(event); 4345 } 4346 4347 /* 4348 * Holding the top-level event's child_mutex means that any 4349 * descendant process that has inherited this event will block 4350 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4351 * task existence requirements of perf_event_enable/disable. 4352 */ 4353 static void perf_event_for_each_child(struct perf_event *event, 4354 void (*func)(struct perf_event *)) 4355 { 4356 struct perf_event *child; 4357 4358 WARN_ON_ONCE(event->ctx->parent_ctx); 4359 4360 mutex_lock(&event->child_mutex); 4361 func(event); 4362 list_for_each_entry(child, &event->child_list, child_list) 4363 func(child); 4364 mutex_unlock(&event->child_mutex); 4365 } 4366 4367 static void perf_event_for_each(struct perf_event *event, 4368 void (*func)(struct perf_event *)) 4369 { 4370 struct perf_event_context *ctx = event->ctx; 4371 struct perf_event *sibling; 4372 4373 lockdep_assert_held(&ctx->mutex); 4374 4375 event = event->group_leader; 4376 4377 perf_event_for_each_child(event, func); 4378 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4379 perf_event_for_each_child(sibling, func); 4380 } 4381 4382 static void __perf_event_period(struct perf_event *event, 4383 struct perf_cpu_context *cpuctx, 4384 struct perf_event_context *ctx, 4385 void *info) 4386 { 4387 u64 value = *((u64 *)info); 4388 bool active; 4389 4390 if (event->attr.freq) { 4391 event->attr.sample_freq = value; 4392 } else { 4393 event->attr.sample_period = value; 4394 event->hw.sample_period = value; 4395 } 4396 4397 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4398 if (active) { 4399 perf_pmu_disable(ctx->pmu); 4400 /* 4401 * We could be throttled; unthrottle now to avoid the tick 4402 * trying to unthrottle while we already re-started the event. 4403 */ 4404 if (event->hw.interrupts == MAX_INTERRUPTS) { 4405 event->hw.interrupts = 0; 4406 perf_log_throttle(event, 1); 4407 } 4408 event->pmu->stop(event, PERF_EF_UPDATE); 4409 } 4410 4411 local64_set(&event->hw.period_left, 0); 4412 4413 if (active) { 4414 event->pmu->start(event, PERF_EF_RELOAD); 4415 perf_pmu_enable(ctx->pmu); 4416 } 4417 } 4418 4419 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4420 { 4421 u64 value; 4422 4423 if (!is_sampling_event(event)) 4424 return -EINVAL; 4425 4426 if (copy_from_user(&value, arg, sizeof(value))) 4427 return -EFAULT; 4428 4429 if (!value) 4430 return -EINVAL; 4431 4432 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4433 return -EINVAL; 4434 4435 event_function_call(event, __perf_event_period, &value); 4436 4437 return 0; 4438 } 4439 4440 static const struct file_operations perf_fops; 4441 4442 static inline int perf_fget_light(int fd, struct fd *p) 4443 { 4444 struct fd f = fdget(fd); 4445 if (!f.file) 4446 return -EBADF; 4447 4448 if (f.file->f_op != &perf_fops) { 4449 fdput(f); 4450 return -EBADF; 4451 } 4452 *p = f; 4453 return 0; 4454 } 4455 4456 static int perf_event_set_output(struct perf_event *event, 4457 struct perf_event *output_event); 4458 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4459 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4460 4461 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4462 { 4463 void (*func)(struct perf_event *); 4464 u32 flags = arg; 4465 4466 switch (cmd) { 4467 case PERF_EVENT_IOC_ENABLE: 4468 func = _perf_event_enable; 4469 break; 4470 case PERF_EVENT_IOC_DISABLE: 4471 func = _perf_event_disable; 4472 break; 4473 case PERF_EVENT_IOC_RESET: 4474 func = _perf_event_reset; 4475 break; 4476 4477 case PERF_EVENT_IOC_REFRESH: 4478 return _perf_event_refresh(event, arg); 4479 4480 case PERF_EVENT_IOC_PERIOD: 4481 return perf_event_period(event, (u64 __user *)arg); 4482 4483 case PERF_EVENT_IOC_ID: 4484 { 4485 u64 id = primary_event_id(event); 4486 4487 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4488 return -EFAULT; 4489 return 0; 4490 } 4491 4492 case PERF_EVENT_IOC_SET_OUTPUT: 4493 { 4494 int ret; 4495 if (arg != -1) { 4496 struct perf_event *output_event; 4497 struct fd output; 4498 ret = perf_fget_light(arg, &output); 4499 if (ret) 4500 return ret; 4501 output_event = output.file->private_data; 4502 ret = perf_event_set_output(event, output_event); 4503 fdput(output); 4504 } else { 4505 ret = perf_event_set_output(event, NULL); 4506 } 4507 return ret; 4508 } 4509 4510 case PERF_EVENT_IOC_SET_FILTER: 4511 return perf_event_set_filter(event, (void __user *)arg); 4512 4513 case PERF_EVENT_IOC_SET_BPF: 4514 return perf_event_set_bpf_prog(event, arg); 4515 4516 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4517 struct ring_buffer *rb; 4518 4519 rcu_read_lock(); 4520 rb = rcu_dereference(event->rb); 4521 if (!rb || !rb->nr_pages) { 4522 rcu_read_unlock(); 4523 return -EINVAL; 4524 } 4525 rb_toggle_paused(rb, !!arg); 4526 rcu_read_unlock(); 4527 return 0; 4528 } 4529 default: 4530 return -ENOTTY; 4531 } 4532 4533 if (flags & PERF_IOC_FLAG_GROUP) 4534 perf_event_for_each(event, func); 4535 else 4536 perf_event_for_each_child(event, func); 4537 4538 return 0; 4539 } 4540 4541 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4542 { 4543 struct perf_event *event = file->private_data; 4544 struct perf_event_context *ctx; 4545 long ret; 4546 4547 ctx = perf_event_ctx_lock(event); 4548 ret = _perf_ioctl(event, cmd, arg); 4549 perf_event_ctx_unlock(event, ctx); 4550 4551 return ret; 4552 } 4553 4554 #ifdef CONFIG_COMPAT 4555 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4556 unsigned long arg) 4557 { 4558 switch (_IOC_NR(cmd)) { 4559 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4560 case _IOC_NR(PERF_EVENT_IOC_ID): 4561 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4562 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4563 cmd &= ~IOCSIZE_MASK; 4564 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4565 } 4566 break; 4567 } 4568 return perf_ioctl(file, cmd, arg); 4569 } 4570 #else 4571 # define perf_compat_ioctl NULL 4572 #endif 4573 4574 int perf_event_task_enable(void) 4575 { 4576 struct perf_event_context *ctx; 4577 struct perf_event *event; 4578 4579 mutex_lock(¤t->perf_event_mutex); 4580 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4581 ctx = perf_event_ctx_lock(event); 4582 perf_event_for_each_child(event, _perf_event_enable); 4583 perf_event_ctx_unlock(event, ctx); 4584 } 4585 mutex_unlock(¤t->perf_event_mutex); 4586 4587 return 0; 4588 } 4589 4590 int perf_event_task_disable(void) 4591 { 4592 struct perf_event_context *ctx; 4593 struct perf_event *event; 4594 4595 mutex_lock(¤t->perf_event_mutex); 4596 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4597 ctx = perf_event_ctx_lock(event); 4598 perf_event_for_each_child(event, _perf_event_disable); 4599 perf_event_ctx_unlock(event, ctx); 4600 } 4601 mutex_unlock(¤t->perf_event_mutex); 4602 4603 return 0; 4604 } 4605 4606 static int perf_event_index(struct perf_event *event) 4607 { 4608 if (event->hw.state & PERF_HES_STOPPED) 4609 return 0; 4610 4611 if (event->state != PERF_EVENT_STATE_ACTIVE) 4612 return 0; 4613 4614 return event->pmu->event_idx(event); 4615 } 4616 4617 static void calc_timer_values(struct perf_event *event, 4618 u64 *now, 4619 u64 *enabled, 4620 u64 *running) 4621 { 4622 u64 ctx_time; 4623 4624 *now = perf_clock(); 4625 ctx_time = event->shadow_ctx_time + *now; 4626 *enabled = ctx_time - event->tstamp_enabled; 4627 *running = ctx_time - event->tstamp_running; 4628 } 4629 4630 static void perf_event_init_userpage(struct perf_event *event) 4631 { 4632 struct perf_event_mmap_page *userpg; 4633 struct ring_buffer *rb; 4634 4635 rcu_read_lock(); 4636 rb = rcu_dereference(event->rb); 4637 if (!rb) 4638 goto unlock; 4639 4640 userpg = rb->user_page; 4641 4642 /* Allow new userspace to detect that bit 0 is deprecated */ 4643 userpg->cap_bit0_is_deprecated = 1; 4644 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4645 userpg->data_offset = PAGE_SIZE; 4646 userpg->data_size = perf_data_size(rb); 4647 4648 unlock: 4649 rcu_read_unlock(); 4650 } 4651 4652 void __weak arch_perf_update_userpage( 4653 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4654 { 4655 } 4656 4657 /* 4658 * Callers need to ensure there can be no nesting of this function, otherwise 4659 * the seqlock logic goes bad. We can not serialize this because the arch 4660 * code calls this from NMI context. 4661 */ 4662 void perf_event_update_userpage(struct perf_event *event) 4663 { 4664 struct perf_event_mmap_page *userpg; 4665 struct ring_buffer *rb; 4666 u64 enabled, running, now; 4667 4668 rcu_read_lock(); 4669 rb = rcu_dereference(event->rb); 4670 if (!rb) 4671 goto unlock; 4672 4673 /* 4674 * compute total_time_enabled, total_time_running 4675 * based on snapshot values taken when the event 4676 * was last scheduled in. 4677 * 4678 * we cannot simply called update_context_time() 4679 * because of locking issue as we can be called in 4680 * NMI context 4681 */ 4682 calc_timer_values(event, &now, &enabled, &running); 4683 4684 userpg = rb->user_page; 4685 /* 4686 * Disable preemption so as to not let the corresponding user-space 4687 * spin too long if we get preempted. 4688 */ 4689 preempt_disable(); 4690 ++userpg->lock; 4691 barrier(); 4692 userpg->index = perf_event_index(event); 4693 userpg->offset = perf_event_count(event); 4694 if (userpg->index) 4695 userpg->offset -= local64_read(&event->hw.prev_count); 4696 4697 userpg->time_enabled = enabled + 4698 atomic64_read(&event->child_total_time_enabled); 4699 4700 userpg->time_running = running + 4701 atomic64_read(&event->child_total_time_running); 4702 4703 arch_perf_update_userpage(event, userpg, now); 4704 4705 barrier(); 4706 ++userpg->lock; 4707 preempt_enable(); 4708 unlock: 4709 rcu_read_unlock(); 4710 } 4711 4712 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4713 { 4714 struct perf_event *event = vma->vm_file->private_data; 4715 struct ring_buffer *rb; 4716 int ret = VM_FAULT_SIGBUS; 4717 4718 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4719 if (vmf->pgoff == 0) 4720 ret = 0; 4721 return ret; 4722 } 4723 4724 rcu_read_lock(); 4725 rb = rcu_dereference(event->rb); 4726 if (!rb) 4727 goto unlock; 4728 4729 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4730 goto unlock; 4731 4732 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4733 if (!vmf->page) 4734 goto unlock; 4735 4736 get_page(vmf->page); 4737 vmf->page->mapping = vma->vm_file->f_mapping; 4738 vmf->page->index = vmf->pgoff; 4739 4740 ret = 0; 4741 unlock: 4742 rcu_read_unlock(); 4743 4744 return ret; 4745 } 4746 4747 static void ring_buffer_attach(struct perf_event *event, 4748 struct ring_buffer *rb) 4749 { 4750 struct ring_buffer *old_rb = NULL; 4751 unsigned long flags; 4752 4753 if (event->rb) { 4754 /* 4755 * Should be impossible, we set this when removing 4756 * event->rb_entry and wait/clear when adding event->rb_entry. 4757 */ 4758 WARN_ON_ONCE(event->rcu_pending); 4759 4760 old_rb = event->rb; 4761 spin_lock_irqsave(&old_rb->event_lock, flags); 4762 list_del_rcu(&event->rb_entry); 4763 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4764 4765 event->rcu_batches = get_state_synchronize_rcu(); 4766 event->rcu_pending = 1; 4767 } 4768 4769 if (rb) { 4770 if (event->rcu_pending) { 4771 cond_synchronize_rcu(event->rcu_batches); 4772 event->rcu_pending = 0; 4773 } 4774 4775 spin_lock_irqsave(&rb->event_lock, flags); 4776 list_add_rcu(&event->rb_entry, &rb->event_list); 4777 spin_unlock_irqrestore(&rb->event_lock, flags); 4778 } 4779 4780 rcu_assign_pointer(event->rb, rb); 4781 4782 if (old_rb) { 4783 ring_buffer_put(old_rb); 4784 /* 4785 * Since we detached before setting the new rb, so that we 4786 * could attach the new rb, we could have missed a wakeup. 4787 * Provide it now. 4788 */ 4789 wake_up_all(&event->waitq); 4790 } 4791 } 4792 4793 static void ring_buffer_wakeup(struct perf_event *event) 4794 { 4795 struct ring_buffer *rb; 4796 4797 rcu_read_lock(); 4798 rb = rcu_dereference(event->rb); 4799 if (rb) { 4800 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4801 wake_up_all(&event->waitq); 4802 } 4803 rcu_read_unlock(); 4804 } 4805 4806 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4807 { 4808 struct ring_buffer *rb; 4809 4810 rcu_read_lock(); 4811 rb = rcu_dereference(event->rb); 4812 if (rb) { 4813 if (!atomic_inc_not_zero(&rb->refcount)) 4814 rb = NULL; 4815 } 4816 rcu_read_unlock(); 4817 4818 return rb; 4819 } 4820 4821 void ring_buffer_put(struct ring_buffer *rb) 4822 { 4823 if (!atomic_dec_and_test(&rb->refcount)) 4824 return; 4825 4826 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4827 4828 call_rcu(&rb->rcu_head, rb_free_rcu); 4829 } 4830 4831 static void perf_mmap_open(struct vm_area_struct *vma) 4832 { 4833 struct perf_event *event = vma->vm_file->private_data; 4834 4835 atomic_inc(&event->mmap_count); 4836 atomic_inc(&event->rb->mmap_count); 4837 4838 if (vma->vm_pgoff) 4839 atomic_inc(&event->rb->aux_mmap_count); 4840 4841 if (event->pmu->event_mapped) 4842 event->pmu->event_mapped(event); 4843 } 4844 4845 static void perf_pmu_output_stop(struct perf_event *event); 4846 4847 /* 4848 * A buffer can be mmap()ed multiple times; either directly through the same 4849 * event, or through other events by use of perf_event_set_output(). 4850 * 4851 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4852 * the buffer here, where we still have a VM context. This means we need 4853 * to detach all events redirecting to us. 4854 */ 4855 static void perf_mmap_close(struct vm_area_struct *vma) 4856 { 4857 struct perf_event *event = vma->vm_file->private_data; 4858 4859 struct ring_buffer *rb = ring_buffer_get(event); 4860 struct user_struct *mmap_user = rb->mmap_user; 4861 int mmap_locked = rb->mmap_locked; 4862 unsigned long size = perf_data_size(rb); 4863 4864 if (event->pmu->event_unmapped) 4865 event->pmu->event_unmapped(event); 4866 4867 /* 4868 * rb->aux_mmap_count will always drop before rb->mmap_count and 4869 * event->mmap_count, so it is ok to use event->mmap_mutex to 4870 * serialize with perf_mmap here. 4871 */ 4872 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4873 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4874 /* 4875 * Stop all AUX events that are writing to this buffer, 4876 * so that we can free its AUX pages and corresponding PMU 4877 * data. Note that after rb::aux_mmap_count dropped to zero, 4878 * they won't start any more (see perf_aux_output_begin()). 4879 */ 4880 perf_pmu_output_stop(event); 4881 4882 /* now it's safe to free the pages */ 4883 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4884 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4885 4886 /* this has to be the last one */ 4887 rb_free_aux(rb); 4888 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4889 4890 mutex_unlock(&event->mmap_mutex); 4891 } 4892 4893 atomic_dec(&rb->mmap_count); 4894 4895 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4896 goto out_put; 4897 4898 ring_buffer_attach(event, NULL); 4899 mutex_unlock(&event->mmap_mutex); 4900 4901 /* If there's still other mmap()s of this buffer, we're done. */ 4902 if (atomic_read(&rb->mmap_count)) 4903 goto out_put; 4904 4905 /* 4906 * No other mmap()s, detach from all other events that might redirect 4907 * into the now unreachable buffer. Somewhat complicated by the 4908 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4909 */ 4910 again: 4911 rcu_read_lock(); 4912 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4913 if (!atomic_long_inc_not_zero(&event->refcount)) { 4914 /* 4915 * This event is en-route to free_event() which will 4916 * detach it and remove it from the list. 4917 */ 4918 continue; 4919 } 4920 rcu_read_unlock(); 4921 4922 mutex_lock(&event->mmap_mutex); 4923 /* 4924 * Check we didn't race with perf_event_set_output() which can 4925 * swizzle the rb from under us while we were waiting to 4926 * acquire mmap_mutex. 4927 * 4928 * If we find a different rb; ignore this event, a next 4929 * iteration will no longer find it on the list. We have to 4930 * still restart the iteration to make sure we're not now 4931 * iterating the wrong list. 4932 */ 4933 if (event->rb == rb) 4934 ring_buffer_attach(event, NULL); 4935 4936 mutex_unlock(&event->mmap_mutex); 4937 put_event(event); 4938 4939 /* 4940 * Restart the iteration; either we're on the wrong list or 4941 * destroyed its integrity by doing a deletion. 4942 */ 4943 goto again; 4944 } 4945 rcu_read_unlock(); 4946 4947 /* 4948 * It could be there's still a few 0-ref events on the list; they'll 4949 * get cleaned up by free_event() -- they'll also still have their 4950 * ref on the rb and will free it whenever they are done with it. 4951 * 4952 * Aside from that, this buffer is 'fully' detached and unmapped, 4953 * undo the VM accounting. 4954 */ 4955 4956 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4957 vma->vm_mm->pinned_vm -= mmap_locked; 4958 free_uid(mmap_user); 4959 4960 out_put: 4961 ring_buffer_put(rb); /* could be last */ 4962 } 4963 4964 static const struct vm_operations_struct perf_mmap_vmops = { 4965 .open = perf_mmap_open, 4966 .close = perf_mmap_close, /* non mergable */ 4967 .fault = perf_mmap_fault, 4968 .page_mkwrite = perf_mmap_fault, 4969 }; 4970 4971 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4972 { 4973 struct perf_event *event = file->private_data; 4974 unsigned long user_locked, user_lock_limit; 4975 struct user_struct *user = current_user(); 4976 unsigned long locked, lock_limit; 4977 struct ring_buffer *rb = NULL; 4978 unsigned long vma_size; 4979 unsigned long nr_pages; 4980 long user_extra = 0, extra = 0; 4981 int ret = 0, flags = 0; 4982 4983 /* 4984 * Don't allow mmap() of inherited per-task counters. This would 4985 * create a performance issue due to all children writing to the 4986 * same rb. 4987 */ 4988 if (event->cpu == -1 && event->attr.inherit) 4989 return -EINVAL; 4990 4991 if (!(vma->vm_flags & VM_SHARED)) 4992 return -EINVAL; 4993 4994 vma_size = vma->vm_end - vma->vm_start; 4995 4996 if (vma->vm_pgoff == 0) { 4997 nr_pages = (vma_size / PAGE_SIZE) - 1; 4998 } else { 4999 /* 5000 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5001 * mapped, all subsequent mappings should have the same size 5002 * and offset. Must be above the normal perf buffer. 5003 */ 5004 u64 aux_offset, aux_size; 5005 5006 if (!event->rb) 5007 return -EINVAL; 5008 5009 nr_pages = vma_size / PAGE_SIZE; 5010 5011 mutex_lock(&event->mmap_mutex); 5012 ret = -EINVAL; 5013 5014 rb = event->rb; 5015 if (!rb) 5016 goto aux_unlock; 5017 5018 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5019 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5020 5021 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5022 goto aux_unlock; 5023 5024 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5025 goto aux_unlock; 5026 5027 /* already mapped with a different offset */ 5028 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5029 goto aux_unlock; 5030 5031 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5032 goto aux_unlock; 5033 5034 /* already mapped with a different size */ 5035 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5036 goto aux_unlock; 5037 5038 if (!is_power_of_2(nr_pages)) 5039 goto aux_unlock; 5040 5041 if (!atomic_inc_not_zero(&rb->mmap_count)) 5042 goto aux_unlock; 5043 5044 if (rb_has_aux(rb)) { 5045 atomic_inc(&rb->aux_mmap_count); 5046 ret = 0; 5047 goto unlock; 5048 } 5049 5050 atomic_set(&rb->aux_mmap_count, 1); 5051 user_extra = nr_pages; 5052 5053 goto accounting; 5054 } 5055 5056 /* 5057 * If we have rb pages ensure they're a power-of-two number, so we 5058 * can do bitmasks instead of modulo. 5059 */ 5060 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5061 return -EINVAL; 5062 5063 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5064 return -EINVAL; 5065 5066 WARN_ON_ONCE(event->ctx->parent_ctx); 5067 again: 5068 mutex_lock(&event->mmap_mutex); 5069 if (event->rb) { 5070 if (event->rb->nr_pages != nr_pages) { 5071 ret = -EINVAL; 5072 goto unlock; 5073 } 5074 5075 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5076 /* 5077 * Raced against perf_mmap_close() through 5078 * perf_event_set_output(). Try again, hope for better 5079 * luck. 5080 */ 5081 mutex_unlock(&event->mmap_mutex); 5082 goto again; 5083 } 5084 5085 goto unlock; 5086 } 5087 5088 user_extra = nr_pages + 1; 5089 5090 accounting: 5091 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5092 5093 /* 5094 * Increase the limit linearly with more CPUs: 5095 */ 5096 user_lock_limit *= num_online_cpus(); 5097 5098 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5099 5100 if (user_locked > user_lock_limit) 5101 extra = user_locked - user_lock_limit; 5102 5103 lock_limit = rlimit(RLIMIT_MEMLOCK); 5104 lock_limit >>= PAGE_SHIFT; 5105 locked = vma->vm_mm->pinned_vm + extra; 5106 5107 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5108 !capable(CAP_IPC_LOCK)) { 5109 ret = -EPERM; 5110 goto unlock; 5111 } 5112 5113 WARN_ON(!rb && event->rb); 5114 5115 if (vma->vm_flags & VM_WRITE) 5116 flags |= RING_BUFFER_WRITABLE; 5117 5118 if (!rb) { 5119 rb = rb_alloc(nr_pages, 5120 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5121 event->cpu, flags); 5122 5123 if (!rb) { 5124 ret = -ENOMEM; 5125 goto unlock; 5126 } 5127 5128 atomic_set(&rb->mmap_count, 1); 5129 rb->mmap_user = get_current_user(); 5130 rb->mmap_locked = extra; 5131 5132 ring_buffer_attach(event, rb); 5133 5134 perf_event_init_userpage(event); 5135 perf_event_update_userpage(event); 5136 } else { 5137 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5138 event->attr.aux_watermark, flags); 5139 if (!ret) 5140 rb->aux_mmap_locked = extra; 5141 } 5142 5143 unlock: 5144 if (!ret) { 5145 atomic_long_add(user_extra, &user->locked_vm); 5146 vma->vm_mm->pinned_vm += extra; 5147 5148 atomic_inc(&event->mmap_count); 5149 } else if (rb) { 5150 atomic_dec(&rb->mmap_count); 5151 } 5152 aux_unlock: 5153 mutex_unlock(&event->mmap_mutex); 5154 5155 /* 5156 * Since pinned accounting is per vm we cannot allow fork() to copy our 5157 * vma. 5158 */ 5159 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5160 vma->vm_ops = &perf_mmap_vmops; 5161 5162 if (event->pmu->event_mapped) 5163 event->pmu->event_mapped(event); 5164 5165 return ret; 5166 } 5167 5168 static int perf_fasync(int fd, struct file *filp, int on) 5169 { 5170 struct inode *inode = file_inode(filp); 5171 struct perf_event *event = filp->private_data; 5172 int retval; 5173 5174 inode_lock(inode); 5175 retval = fasync_helper(fd, filp, on, &event->fasync); 5176 inode_unlock(inode); 5177 5178 if (retval < 0) 5179 return retval; 5180 5181 return 0; 5182 } 5183 5184 static const struct file_operations perf_fops = { 5185 .llseek = no_llseek, 5186 .release = perf_release, 5187 .read = perf_read, 5188 .poll = perf_poll, 5189 .unlocked_ioctl = perf_ioctl, 5190 .compat_ioctl = perf_compat_ioctl, 5191 .mmap = perf_mmap, 5192 .fasync = perf_fasync, 5193 }; 5194 5195 /* 5196 * Perf event wakeup 5197 * 5198 * If there's data, ensure we set the poll() state and publish everything 5199 * to user-space before waking everybody up. 5200 */ 5201 5202 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5203 { 5204 /* only the parent has fasync state */ 5205 if (event->parent) 5206 event = event->parent; 5207 return &event->fasync; 5208 } 5209 5210 void perf_event_wakeup(struct perf_event *event) 5211 { 5212 ring_buffer_wakeup(event); 5213 5214 if (event->pending_kill) { 5215 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5216 event->pending_kill = 0; 5217 } 5218 } 5219 5220 static void perf_pending_event(struct irq_work *entry) 5221 { 5222 struct perf_event *event = container_of(entry, 5223 struct perf_event, pending); 5224 int rctx; 5225 5226 rctx = perf_swevent_get_recursion_context(); 5227 /* 5228 * If we 'fail' here, that's OK, it means recursion is already disabled 5229 * and we won't recurse 'further'. 5230 */ 5231 5232 if (event->pending_disable) { 5233 event->pending_disable = 0; 5234 perf_event_disable_local(event); 5235 } 5236 5237 if (event->pending_wakeup) { 5238 event->pending_wakeup = 0; 5239 perf_event_wakeup(event); 5240 } 5241 5242 if (rctx >= 0) 5243 perf_swevent_put_recursion_context(rctx); 5244 } 5245 5246 /* 5247 * We assume there is only KVM supporting the callbacks. 5248 * Later on, we might change it to a list if there is 5249 * another virtualization implementation supporting the callbacks. 5250 */ 5251 struct perf_guest_info_callbacks *perf_guest_cbs; 5252 5253 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5254 { 5255 perf_guest_cbs = cbs; 5256 return 0; 5257 } 5258 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5259 5260 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5261 { 5262 perf_guest_cbs = NULL; 5263 return 0; 5264 } 5265 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5266 5267 static void 5268 perf_output_sample_regs(struct perf_output_handle *handle, 5269 struct pt_regs *regs, u64 mask) 5270 { 5271 int bit; 5272 5273 for_each_set_bit(bit, (const unsigned long *) &mask, 5274 sizeof(mask) * BITS_PER_BYTE) { 5275 u64 val; 5276 5277 val = perf_reg_value(regs, bit); 5278 perf_output_put(handle, val); 5279 } 5280 } 5281 5282 static void perf_sample_regs_user(struct perf_regs *regs_user, 5283 struct pt_regs *regs, 5284 struct pt_regs *regs_user_copy) 5285 { 5286 if (user_mode(regs)) { 5287 regs_user->abi = perf_reg_abi(current); 5288 regs_user->regs = regs; 5289 } else if (current->mm) { 5290 perf_get_regs_user(regs_user, regs, regs_user_copy); 5291 } else { 5292 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5293 regs_user->regs = NULL; 5294 } 5295 } 5296 5297 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5298 struct pt_regs *regs) 5299 { 5300 regs_intr->regs = regs; 5301 regs_intr->abi = perf_reg_abi(current); 5302 } 5303 5304 5305 /* 5306 * Get remaining task size from user stack pointer. 5307 * 5308 * It'd be better to take stack vma map and limit this more 5309 * precisly, but there's no way to get it safely under interrupt, 5310 * so using TASK_SIZE as limit. 5311 */ 5312 static u64 perf_ustack_task_size(struct pt_regs *regs) 5313 { 5314 unsigned long addr = perf_user_stack_pointer(regs); 5315 5316 if (!addr || addr >= TASK_SIZE) 5317 return 0; 5318 5319 return TASK_SIZE - addr; 5320 } 5321 5322 static u16 5323 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5324 struct pt_regs *regs) 5325 { 5326 u64 task_size; 5327 5328 /* No regs, no stack pointer, no dump. */ 5329 if (!regs) 5330 return 0; 5331 5332 /* 5333 * Check if we fit in with the requested stack size into the: 5334 * - TASK_SIZE 5335 * If we don't, we limit the size to the TASK_SIZE. 5336 * 5337 * - remaining sample size 5338 * If we don't, we customize the stack size to 5339 * fit in to the remaining sample size. 5340 */ 5341 5342 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5343 stack_size = min(stack_size, (u16) task_size); 5344 5345 /* Current header size plus static size and dynamic size. */ 5346 header_size += 2 * sizeof(u64); 5347 5348 /* Do we fit in with the current stack dump size? */ 5349 if ((u16) (header_size + stack_size) < header_size) { 5350 /* 5351 * If we overflow the maximum size for the sample, 5352 * we customize the stack dump size to fit in. 5353 */ 5354 stack_size = USHRT_MAX - header_size - sizeof(u64); 5355 stack_size = round_up(stack_size, sizeof(u64)); 5356 } 5357 5358 return stack_size; 5359 } 5360 5361 static void 5362 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5363 struct pt_regs *regs) 5364 { 5365 /* Case of a kernel thread, nothing to dump */ 5366 if (!regs) { 5367 u64 size = 0; 5368 perf_output_put(handle, size); 5369 } else { 5370 unsigned long sp; 5371 unsigned int rem; 5372 u64 dyn_size; 5373 5374 /* 5375 * We dump: 5376 * static size 5377 * - the size requested by user or the best one we can fit 5378 * in to the sample max size 5379 * data 5380 * - user stack dump data 5381 * dynamic size 5382 * - the actual dumped size 5383 */ 5384 5385 /* Static size. */ 5386 perf_output_put(handle, dump_size); 5387 5388 /* Data. */ 5389 sp = perf_user_stack_pointer(regs); 5390 rem = __output_copy_user(handle, (void *) sp, dump_size); 5391 dyn_size = dump_size - rem; 5392 5393 perf_output_skip(handle, rem); 5394 5395 /* Dynamic size. */ 5396 perf_output_put(handle, dyn_size); 5397 } 5398 } 5399 5400 static void __perf_event_header__init_id(struct perf_event_header *header, 5401 struct perf_sample_data *data, 5402 struct perf_event *event) 5403 { 5404 u64 sample_type = event->attr.sample_type; 5405 5406 data->type = sample_type; 5407 header->size += event->id_header_size; 5408 5409 if (sample_type & PERF_SAMPLE_TID) { 5410 /* namespace issues */ 5411 data->tid_entry.pid = perf_event_pid(event, current); 5412 data->tid_entry.tid = perf_event_tid(event, current); 5413 } 5414 5415 if (sample_type & PERF_SAMPLE_TIME) 5416 data->time = perf_event_clock(event); 5417 5418 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5419 data->id = primary_event_id(event); 5420 5421 if (sample_type & PERF_SAMPLE_STREAM_ID) 5422 data->stream_id = event->id; 5423 5424 if (sample_type & PERF_SAMPLE_CPU) { 5425 data->cpu_entry.cpu = raw_smp_processor_id(); 5426 data->cpu_entry.reserved = 0; 5427 } 5428 } 5429 5430 void perf_event_header__init_id(struct perf_event_header *header, 5431 struct perf_sample_data *data, 5432 struct perf_event *event) 5433 { 5434 if (event->attr.sample_id_all) 5435 __perf_event_header__init_id(header, data, event); 5436 } 5437 5438 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5439 struct perf_sample_data *data) 5440 { 5441 u64 sample_type = data->type; 5442 5443 if (sample_type & PERF_SAMPLE_TID) 5444 perf_output_put(handle, data->tid_entry); 5445 5446 if (sample_type & PERF_SAMPLE_TIME) 5447 perf_output_put(handle, data->time); 5448 5449 if (sample_type & PERF_SAMPLE_ID) 5450 perf_output_put(handle, data->id); 5451 5452 if (sample_type & PERF_SAMPLE_STREAM_ID) 5453 perf_output_put(handle, data->stream_id); 5454 5455 if (sample_type & PERF_SAMPLE_CPU) 5456 perf_output_put(handle, data->cpu_entry); 5457 5458 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5459 perf_output_put(handle, data->id); 5460 } 5461 5462 void perf_event__output_id_sample(struct perf_event *event, 5463 struct perf_output_handle *handle, 5464 struct perf_sample_data *sample) 5465 { 5466 if (event->attr.sample_id_all) 5467 __perf_event__output_id_sample(handle, sample); 5468 } 5469 5470 static void perf_output_read_one(struct perf_output_handle *handle, 5471 struct perf_event *event, 5472 u64 enabled, u64 running) 5473 { 5474 u64 read_format = event->attr.read_format; 5475 u64 values[4]; 5476 int n = 0; 5477 5478 values[n++] = perf_event_count(event); 5479 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5480 values[n++] = enabled + 5481 atomic64_read(&event->child_total_time_enabled); 5482 } 5483 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5484 values[n++] = running + 5485 atomic64_read(&event->child_total_time_running); 5486 } 5487 if (read_format & PERF_FORMAT_ID) 5488 values[n++] = primary_event_id(event); 5489 5490 __output_copy(handle, values, n * sizeof(u64)); 5491 } 5492 5493 /* 5494 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5495 */ 5496 static void perf_output_read_group(struct perf_output_handle *handle, 5497 struct perf_event *event, 5498 u64 enabled, u64 running) 5499 { 5500 struct perf_event *leader = event->group_leader, *sub; 5501 u64 read_format = event->attr.read_format; 5502 u64 values[5]; 5503 int n = 0; 5504 5505 values[n++] = 1 + leader->nr_siblings; 5506 5507 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5508 values[n++] = enabled; 5509 5510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5511 values[n++] = running; 5512 5513 if (leader != event) 5514 leader->pmu->read(leader); 5515 5516 values[n++] = perf_event_count(leader); 5517 if (read_format & PERF_FORMAT_ID) 5518 values[n++] = primary_event_id(leader); 5519 5520 __output_copy(handle, values, n * sizeof(u64)); 5521 5522 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5523 n = 0; 5524 5525 if ((sub != event) && 5526 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5527 sub->pmu->read(sub); 5528 5529 values[n++] = perf_event_count(sub); 5530 if (read_format & PERF_FORMAT_ID) 5531 values[n++] = primary_event_id(sub); 5532 5533 __output_copy(handle, values, n * sizeof(u64)); 5534 } 5535 } 5536 5537 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5538 PERF_FORMAT_TOTAL_TIME_RUNNING) 5539 5540 static void perf_output_read(struct perf_output_handle *handle, 5541 struct perf_event *event) 5542 { 5543 u64 enabled = 0, running = 0, now; 5544 u64 read_format = event->attr.read_format; 5545 5546 /* 5547 * compute total_time_enabled, total_time_running 5548 * based on snapshot values taken when the event 5549 * was last scheduled in. 5550 * 5551 * we cannot simply called update_context_time() 5552 * because of locking issue as we are called in 5553 * NMI context 5554 */ 5555 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5556 calc_timer_values(event, &now, &enabled, &running); 5557 5558 if (event->attr.read_format & PERF_FORMAT_GROUP) 5559 perf_output_read_group(handle, event, enabled, running); 5560 else 5561 perf_output_read_one(handle, event, enabled, running); 5562 } 5563 5564 void perf_output_sample(struct perf_output_handle *handle, 5565 struct perf_event_header *header, 5566 struct perf_sample_data *data, 5567 struct perf_event *event) 5568 { 5569 u64 sample_type = data->type; 5570 5571 perf_output_put(handle, *header); 5572 5573 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5574 perf_output_put(handle, data->id); 5575 5576 if (sample_type & PERF_SAMPLE_IP) 5577 perf_output_put(handle, data->ip); 5578 5579 if (sample_type & PERF_SAMPLE_TID) 5580 perf_output_put(handle, data->tid_entry); 5581 5582 if (sample_type & PERF_SAMPLE_TIME) 5583 perf_output_put(handle, data->time); 5584 5585 if (sample_type & PERF_SAMPLE_ADDR) 5586 perf_output_put(handle, data->addr); 5587 5588 if (sample_type & PERF_SAMPLE_ID) 5589 perf_output_put(handle, data->id); 5590 5591 if (sample_type & PERF_SAMPLE_STREAM_ID) 5592 perf_output_put(handle, data->stream_id); 5593 5594 if (sample_type & PERF_SAMPLE_CPU) 5595 perf_output_put(handle, data->cpu_entry); 5596 5597 if (sample_type & PERF_SAMPLE_PERIOD) 5598 perf_output_put(handle, data->period); 5599 5600 if (sample_type & PERF_SAMPLE_READ) 5601 perf_output_read(handle, event); 5602 5603 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5604 if (data->callchain) { 5605 int size = 1; 5606 5607 if (data->callchain) 5608 size += data->callchain->nr; 5609 5610 size *= sizeof(u64); 5611 5612 __output_copy(handle, data->callchain, size); 5613 } else { 5614 u64 nr = 0; 5615 perf_output_put(handle, nr); 5616 } 5617 } 5618 5619 if (sample_type & PERF_SAMPLE_RAW) { 5620 struct perf_raw_record *raw = data->raw; 5621 5622 if (raw) { 5623 struct perf_raw_frag *frag = &raw->frag; 5624 5625 perf_output_put(handle, raw->size); 5626 do { 5627 if (frag->copy) { 5628 __output_custom(handle, frag->copy, 5629 frag->data, frag->size); 5630 } else { 5631 __output_copy(handle, frag->data, 5632 frag->size); 5633 } 5634 if (perf_raw_frag_last(frag)) 5635 break; 5636 frag = frag->next; 5637 } while (1); 5638 if (frag->pad) 5639 __output_skip(handle, NULL, frag->pad); 5640 } else { 5641 struct { 5642 u32 size; 5643 u32 data; 5644 } raw = { 5645 .size = sizeof(u32), 5646 .data = 0, 5647 }; 5648 perf_output_put(handle, raw); 5649 } 5650 } 5651 5652 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5653 if (data->br_stack) { 5654 size_t size; 5655 5656 size = data->br_stack->nr 5657 * sizeof(struct perf_branch_entry); 5658 5659 perf_output_put(handle, data->br_stack->nr); 5660 perf_output_copy(handle, data->br_stack->entries, size); 5661 } else { 5662 /* 5663 * we always store at least the value of nr 5664 */ 5665 u64 nr = 0; 5666 perf_output_put(handle, nr); 5667 } 5668 } 5669 5670 if (sample_type & PERF_SAMPLE_REGS_USER) { 5671 u64 abi = data->regs_user.abi; 5672 5673 /* 5674 * If there are no regs to dump, notice it through 5675 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5676 */ 5677 perf_output_put(handle, abi); 5678 5679 if (abi) { 5680 u64 mask = event->attr.sample_regs_user; 5681 perf_output_sample_regs(handle, 5682 data->regs_user.regs, 5683 mask); 5684 } 5685 } 5686 5687 if (sample_type & PERF_SAMPLE_STACK_USER) { 5688 perf_output_sample_ustack(handle, 5689 data->stack_user_size, 5690 data->regs_user.regs); 5691 } 5692 5693 if (sample_type & PERF_SAMPLE_WEIGHT) 5694 perf_output_put(handle, data->weight); 5695 5696 if (sample_type & PERF_SAMPLE_DATA_SRC) 5697 perf_output_put(handle, data->data_src.val); 5698 5699 if (sample_type & PERF_SAMPLE_TRANSACTION) 5700 perf_output_put(handle, data->txn); 5701 5702 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5703 u64 abi = data->regs_intr.abi; 5704 /* 5705 * If there are no regs to dump, notice it through 5706 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5707 */ 5708 perf_output_put(handle, abi); 5709 5710 if (abi) { 5711 u64 mask = event->attr.sample_regs_intr; 5712 5713 perf_output_sample_regs(handle, 5714 data->regs_intr.regs, 5715 mask); 5716 } 5717 } 5718 5719 if (!event->attr.watermark) { 5720 int wakeup_events = event->attr.wakeup_events; 5721 5722 if (wakeup_events) { 5723 struct ring_buffer *rb = handle->rb; 5724 int events = local_inc_return(&rb->events); 5725 5726 if (events >= wakeup_events) { 5727 local_sub(wakeup_events, &rb->events); 5728 local_inc(&rb->wakeup); 5729 } 5730 } 5731 } 5732 } 5733 5734 void perf_prepare_sample(struct perf_event_header *header, 5735 struct perf_sample_data *data, 5736 struct perf_event *event, 5737 struct pt_regs *regs) 5738 { 5739 u64 sample_type = event->attr.sample_type; 5740 5741 header->type = PERF_RECORD_SAMPLE; 5742 header->size = sizeof(*header) + event->header_size; 5743 5744 header->misc = 0; 5745 header->misc |= perf_misc_flags(regs); 5746 5747 __perf_event_header__init_id(header, data, event); 5748 5749 if (sample_type & PERF_SAMPLE_IP) 5750 data->ip = perf_instruction_pointer(regs); 5751 5752 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5753 int size = 1; 5754 5755 data->callchain = perf_callchain(event, regs); 5756 5757 if (data->callchain) 5758 size += data->callchain->nr; 5759 5760 header->size += size * sizeof(u64); 5761 } 5762 5763 if (sample_type & PERF_SAMPLE_RAW) { 5764 struct perf_raw_record *raw = data->raw; 5765 int size; 5766 5767 if (raw) { 5768 struct perf_raw_frag *frag = &raw->frag; 5769 u32 sum = 0; 5770 5771 do { 5772 sum += frag->size; 5773 if (perf_raw_frag_last(frag)) 5774 break; 5775 frag = frag->next; 5776 } while (1); 5777 5778 size = round_up(sum + sizeof(u32), sizeof(u64)); 5779 raw->size = size - sizeof(u32); 5780 frag->pad = raw->size - sum; 5781 } else { 5782 size = sizeof(u64); 5783 } 5784 5785 header->size += size; 5786 } 5787 5788 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5789 int size = sizeof(u64); /* nr */ 5790 if (data->br_stack) { 5791 size += data->br_stack->nr 5792 * sizeof(struct perf_branch_entry); 5793 } 5794 header->size += size; 5795 } 5796 5797 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5798 perf_sample_regs_user(&data->regs_user, regs, 5799 &data->regs_user_copy); 5800 5801 if (sample_type & PERF_SAMPLE_REGS_USER) { 5802 /* regs dump ABI info */ 5803 int size = sizeof(u64); 5804 5805 if (data->regs_user.regs) { 5806 u64 mask = event->attr.sample_regs_user; 5807 size += hweight64(mask) * sizeof(u64); 5808 } 5809 5810 header->size += size; 5811 } 5812 5813 if (sample_type & PERF_SAMPLE_STACK_USER) { 5814 /* 5815 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5816 * processed as the last one or have additional check added 5817 * in case new sample type is added, because we could eat 5818 * up the rest of the sample size. 5819 */ 5820 u16 stack_size = event->attr.sample_stack_user; 5821 u16 size = sizeof(u64); 5822 5823 stack_size = perf_sample_ustack_size(stack_size, header->size, 5824 data->regs_user.regs); 5825 5826 /* 5827 * If there is something to dump, add space for the dump 5828 * itself and for the field that tells the dynamic size, 5829 * which is how many have been actually dumped. 5830 */ 5831 if (stack_size) 5832 size += sizeof(u64) + stack_size; 5833 5834 data->stack_user_size = stack_size; 5835 header->size += size; 5836 } 5837 5838 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5839 /* regs dump ABI info */ 5840 int size = sizeof(u64); 5841 5842 perf_sample_regs_intr(&data->regs_intr, regs); 5843 5844 if (data->regs_intr.regs) { 5845 u64 mask = event->attr.sample_regs_intr; 5846 5847 size += hweight64(mask) * sizeof(u64); 5848 } 5849 5850 header->size += size; 5851 } 5852 } 5853 5854 static void __always_inline 5855 __perf_event_output(struct perf_event *event, 5856 struct perf_sample_data *data, 5857 struct pt_regs *regs, 5858 int (*output_begin)(struct perf_output_handle *, 5859 struct perf_event *, 5860 unsigned int)) 5861 { 5862 struct perf_output_handle handle; 5863 struct perf_event_header header; 5864 5865 /* protect the callchain buffers */ 5866 rcu_read_lock(); 5867 5868 perf_prepare_sample(&header, data, event, regs); 5869 5870 if (output_begin(&handle, event, header.size)) 5871 goto exit; 5872 5873 perf_output_sample(&handle, &header, data, event); 5874 5875 perf_output_end(&handle); 5876 5877 exit: 5878 rcu_read_unlock(); 5879 } 5880 5881 void 5882 perf_event_output_forward(struct perf_event *event, 5883 struct perf_sample_data *data, 5884 struct pt_regs *regs) 5885 { 5886 __perf_event_output(event, data, regs, perf_output_begin_forward); 5887 } 5888 5889 void 5890 perf_event_output_backward(struct perf_event *event, 5891 struct perf_sample_data *data, 5892 struct pt_regs *regs) 5893 { 5894 __perf_event_output(event, data, regs, perf_output_begin_backward); 5895 } 5896 5897 void 5898 perf_event_output(struct perf_event *event, 5899 struct perf_sample_data *data, 5900 struct pt_regs *regs) 5901 { 5902 __perf_event_output(event, data, regs, perf_output_begin); 5903 } 5904 5905 /* 5906 * read event_id 5907 */ 5908 5909 struct perf_read_event { 5910 struct perf_event_header header; 5911 5912 u32 pid; 5913 u32 tid; 5914 }; 5915 5916 static void 5917 perf_event_read_event(struct perf_event *event, 5918 struct task_struct *task) 5919 { 5920 struct perf_output_handle handle; 5921 struct perf_sample_data sample; 5922 struct perf_read_event read_event = { 5923 .header = { 5924 .type = PERF_RECORD_READ, 5925 .misc = 0, 5926 .size = sizeof(read_event) + event->read_size, 5927 }, 5928 .pid = perf_event_pid(event, task), 5929 .tid = perf_event_tid(event, task), 5930 }; 5931 int ret; 5932 5933 perf_event_header__init_id(&read_event.header, &sample, event); 5934 ret = perf_output_begin(&handle, event, read_event.header.size); 5935 if (ret) 5936 return; 5937 5938 perf_output_put(&handle, read_event); 5939 perf_output_read(&handle, event); 5940 perf_event__output_id_sample(event, &handle, &sample); 5941 5942 perf_output_end(&handle); 5943 } 5944 5945 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 5946 5947 static void 5948 perf_iterate_ctx(struct perf_event_context *ctx, 5949 perf_iterate_f output, 5950 void *data, bool all) 5951 { 5952 struct perf_event *event; 5953 5954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5955 if (!all) { 5956 if (event->state < PERF_EVENT_STATE_INACTIVE) 5957 continue; 5958 if (!event_filter_match(event)) 5959 continue; 5960 } 5961 5962 output(event, data); 5963 } 5964 } 5965 5966 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 5967 { 5968 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 5969 struct perf_event *event; 5970 5971 list_for_each_entry_rcu(event, &pel->list, sb_list) { 5972 if (event->state < PERF_EVENT_STATE_INACTIVE) 5973 continue; 5974 if (!event_filter_match(event)) 5975 continue; 5976 output(event, data); 5977 } 5978 } 5979 5980 /* 5981 * Iterate all events that need to receive side-band events. 5982 * 5983 * For new callers; ensure that account_pmu_sb_event() includes 5984 * your event, otherwise it might not get delivered. 5985 */ 5986 static void 5987 perf_iterate_sb(perf_iterate_f output, void *data, 5988 struct perf_event_context *task_ctx) 5989 { 5990 struct perf_event_context *ctx; 5991 int ctxn; 5992 5993 rcu_read_lock(); 5994 preempt_disable(); 5995 5996 /* 5997 * If we have task_ctx != NULL we only notify the task context itself. 5998 * The task_ctx is set only for EXIT events before releasing task 5999 * context. 6000 */ 6001 if (task_ctx) { 6002 perf_iterate_ctx(task_ctx, output, data, false); 6003 goto done; 6004 } 6005 6006 perf_iterate_sb_cpu(output, data); 6007 6008 for_each_task_context_nr(ctxn) { 6009 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6010 if (ctx) 6011 perf_iterate_ctx(ctx, output, data, false); 6012 } 6013 done: 6014 preempt_enable(); 6015 rcu_read_unlock(); 6016 } 6017 6018 /* 6019 * Clear all file-based filters at exec, they'll have to be 6020 * re-instated when/if these objects are mmapped again. 6021 */ 6022 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6023 { 6024 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6025 struct perf_addr_filter *filter; 6026 unsigned int restart = 0, count = 0; 6027 unsigned long flags; 6028 6029 if (!has_addr_filter(event)) 6030 return; 6031 6032 raw_spin_lock_irqsave(&ifh->lock, flags); 6033 list_for_each_entry(filter, &ifh->list, entry) { 6034 if (filter->inode) { 6035 event->addr_filters_offs[count] = 0; 6036 restart++; 6037 } 6038 6039 count++; 6040 } 6041 6042 if (restart) 6043 event->addr_filters_gen++; 6044 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6045 6046 if (restart) 6047 perf_event_restart(event); 6048 } 6049 6050 void perf_event_exec(void) 6051 { 6052 struct perf_event_context *ctx; 6053 int ctxn; 6054 6055 rcu_read_lock(); 6056 for_each_task_context_nr(ctxn) { 6057 ctx = current->perf_event_ctxp[ctxn]; 6058 if (!ctx) 6059 continue; 6060 6061 perf_event_enable_on_exec(ctxn); 6062 6063 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6064 true); 6065 } 6066 rcu_read_unlock(); 6067 } 6068 6069 struct remote_output { 6070 struct ring_buffer *rb; 6071 int err; 6072 }; 6073 6074 static void __perf_event_output_stop(struct perf_event *event, void *data) 6075 { 6076 struct perf_event *parent = event->parent; 6077 struct remote_output *ro = data; 6078 struct ring_buffer *rb = ro->rb; 6079 struct stop_event_data sd = { 6080 .event = event, 6081 }; 6082 6083 if (!has_aux(event)) 6084 return; 6085 6086 if (!parent) 6087 parent = event; 6088 6089 /* 6090 * In case of inheritance, it will be the parent that links to the 6091 * ring-buffer, but it will be the child that's actually using it: 6092 */ 6093 if (rcu_dereference(parent->rb) == rb) 6094 ro->err = __perf_event_stop(&sd); 6095 } 6096 6097 static int __perf_pmu_output_stop(void *info) 6098 { 6099 struct perf_event *event = info; 6100 struct pmu *pmu = event->pmu; 6101 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 6102 struct remote_output ro = { 6103 .rb = event->rb, 6104 }; 6105 6106 rcu_read_lock(); 6107 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6108 if (cpuctx->task_ctx) 6109 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6110 &ro, false); 6111 rcu_read_unlock(); 6112 6113 return ro.err; 6114 } 6115 6116 static void perf_pmu_output_stop(struct perf_event *event) 6117 { 6118 struct perf_event *iter; 6119 int err, cpu; 6120 6121 restart: 6122 rcu_read_lock(); 6123 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6124 /* 6125 * For per-CPU events, we need to make sure that neither they 6126 * nor their children are running; for cpu==-1 events it's 6127 * sufficient to stop the event itself if it's active, since 6128 * it can't have children. 6129 */ 6130 cpu = iter->cpu; 6131 if (cpu == -1) 6132 cpu = READ_ONCE(iter->oncpu); 6133 6134 if (cpu == -1) 6135 continue; 6136 6137 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6138 if (err == -EAGAIN) { 6139 rcu_read_unlock(); 6140 goto restart; 6141 } 6142 } 6143 rcu_read_unlock(); 6144 } 6145 6146 /* 6147 * task tracking -- fork/exit 6148 * 6149 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6150 */ 6151 6152 struct perf_task_event { 6153 struct task_struct *task; 6154 struct perf_event_context *task_ctx; 6155 6156 struct { 6157 struct perf_event_header header; 6158 6159 u32 pid; 6160 u32 ppid; 6161 u32 tid; 6162 u32 ptid; 6163 u64 time; 6164 } event_id; 6165 }; 6166 6167 static int perf_event_task_match(struct perf_event *event) 6168 { 6169 return event->attr.comm || event->attr.mmap || 6170 event->attr.mmap2 || event->attr.mmap_data || 6171 event->attr.task; 6172 } 6173 6174 static void perf_event_task_output(struct perf_event *event, 6175 void *data) 6176 { 6177 struct perf_task_event *task_event = data; 6178 struct perf_output_handle handle; 6179 struct perf_sample_data sample; 6180 struct task_struct *task = task_event->task; 6181 int ret, size = task_event->event_id.header.size; 6182 6183 if (!perf_event_task_match(event)) 6184 return; 6185 6186 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6187 6188 ret = perf_output_begin(&handle, event, 6189 task_event->event_id.header.size); 6190 if (ret) 6191 goto out; 6192 6193 task_event->event_id.pid = perf_event_pid(event, task); 6194 task_event->event_id.ppid = perf_event_pid(event, current); 6195 6196 task_event->event_id.tid = perf_event_tid(event, task); 6197 task_event->event_id.ptid = perf_event_tid(event, current); 6198 6199 task_event->event_id.time = perf_event_clock(event); 6200 6201 perf_output_put(&handle, task_event->event_id); 6202 6203 perf_event__output_id_sample(event, &handle, &sample); 6204 6205 perf_output_end(&handle); 6206 out: 6207 task_event->event_id.header.size = size; 6208 } 6209 6210 static void perf_event_task(struct task_struct *task, 6211 struct perf_event_context *task_ctx, 6212 int new) 6213 { 6214 struct perf_task_event task_event; 6215 6216 if (!atomic_read(&nr_comm_events) && 6217 !atomic_read(&nr_mmap_events) && 6218 !atomic_read(&nr_task_events)) 6219 return; 6220 6221 task_event = (struct perf_task_event){ 6222 .task = task, 6223 .task_ctx = task_ctx, 6224 .event_id = { 6225 .header = { 6226 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6227 .misc = 0, 6228 .size = sizeof(task_event.event_id), 6229 }, 6230 /* .pid */ 6231 /* .ppid */ 6232 /* .tid */ 6233 /* .ptid */ 6234 /* .time */ 6235 }, 6236 }; 6237 6238 perf_iterate_sb(perf_event_task_output, 6239 &task_event, 6240 task_ctx); 6241 } 6242 6243 void perf_event_fork(struct task_struct *task) 6244 { 6245 perf_event_task(task, NULL, 1); 6246 } 6247 6248 /* 6249 * comm tracking 6250 */ 6251 6252 struct perf_comm_event { 6253 struct task_struct *task; 6254 char *comm; 6255 int comm_size; 6256 6257 struct { 6258 struct perf_event_header header; 6259 6260 u32 pid; 6261 u32 tid; 6262 } event_id; 6263 }; 6264 6265 static int perf_event_comm_match(struct perf_event *event) 6266 { 6267 return event->attr.comm; 6268 } 6269 6270 static void perf_event_comm_output(struct perf_event *event, 6271 void *data) 6272 { 6273 struct perf_comm_event *comm_event = data; 6274 struct perf_output_handle handle; 6275 struct perf_sample_data sample; 6276 int size = comm_event->event_id.header.size; 6277 int ret; 6278 6279 if (!perf_event_comm_match(event)) 6280 return; 6281 6282 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6283 ret = perf_output_begin(&handle, event, 6284 comm_event->event_id.header.size); 6285 6286 if (ret) 6287 goto out; 6288 6289 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6290 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6291 6292 perf_output_put(&handle, comm_event->event_id); 6293 __output_copy(&handle, comm_event->comm, 6294 comm_event->comm_size); 6295 6296 perf_event__output_id_sample(event, &handle, &sample); 6297 6298 perf_output_end(&handle); 6299 out: 6300 comm_event->event_id.header.size = size; 6301 } 6302 6303 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6304 { 6305 char comm[TASK_COMM_LEN]; 6306 unsigned int size; 6307 6308 memset(comm, 0, sizeof(comm)); 6309 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6310 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6311 6312 comm_event->comm = comm; 6313 comm_event->comm_size = size; 6314 6315 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6316 6317 perf_iterate_sb(perf_event_comm_output, 6318 comm_event, 6319 NULL); 6320 } 6321 6322 void perf_event_comm(struct task_struct *task, bool exec) 6323 { 6324 struct perf_comm_event comm_event; 6325 6326 if (!atomic_read(&nr_comm_events)) 6327 return; 6328 6329 comm_event = (struct perf_comm_event){ 6330 .task = task, 6331 /* .comm */ 6332 /* .comm_size */ 6333 .event_id = { 6334 .header = { 6335 .type = PERF_RECORD_COMM, 6336 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6337 /* .size */ 6338 }, 6339 /* .pid */ 6340 /* .tid */ 6341 }, 6342 }; 6343 6344 perf_event_comm_event(&comm_event); 6345 } 6346 6347 /* 6348 * mmap tracking 6349 */ 6350 6351 struct perf_mmap_event { 6352 struct vm_area_struct *vma; 6353 6354 const char *file_name; 6355 int file_size; 6356 int maj, min; 6357 u64 ino; 6358 u64 ino_generation; 6359 u32 prot, flags; 6360 6361 struct { 6362 struct perf_event_header header; 6363 6364 u32 pid; 6365 u32 tid; 6366 u64 start; 6367 u64 len; 6368 u64 pgoff; 6369 } event_id; 6370 }; 6371 6372 static int perf_event_mmap_match(struct perf_event *event, 6373 void *data) 6374 { 6375 struct perf_mmap_event *mmap_event = data; 6376 struct vm_area_struct *vma = mmap_event->vma; 6377 int executable = vma->vm_flags & VM_EXEC; 6378 6379 return (!executable && event->attr.mmap_data) || 6380 (executable && (event->attr.mmap || event->attr.mmap2)); 6381 } 6382 6383 static void perf_event_mmap_output(struct perf_event *event, 6384 void *data) 6385 { 6386 struct perf_mmap_event *mmap_event = data; 6387 struct perf_output_handle handle; 6388 struct perf_sample_data sample; 6389 int size = mmap_event->event_id.header.size; 6390 int ret; 6391 6392 if (!perf_event_mmap_match(event, data)) 6393 return; 6394 6395 if (event->attr.mmap2) { 6396 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6397 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6398 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6399 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6400 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6401 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6402 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6403 } 6404 6405 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6406 ret = perf_output_begin(&handle, event, 6407 mmap_event->event_id.header.size); 6408 if (ret) 6409 goto out; 6410 6411 mmap_event->event_id.pid = perf_event_pid(event, current); 6412 mmap_event->event_id.tid = perf_event_tid(event, current); 6413 6414 perf_output_put(&handle, mmap_event->event_id); 6415 6416 if (event->attr.mmap2) { 6417 perf_output_put(&handle, mmap_event->maj); 6418 perf_output_put(&handle, mmap_event->min); 6419 perf_output_put(&handle, mmap_event->ino); 6420 perf_output_put(&handle, mmap_event->ino_generation); 6421 perf_output_put(&handle, mmap_event->prot); 6422 perf_output_put(&handle, mmap_event->flags); 6423 } 6424 6425 __output_copy(&handle, mmap_event->file_name, 6426 mmap_event->file_size); 6427 6428 perf_event__output_id_sample(event, &handle, &sample); 6429 6430 perf_output_end(&handle); 6431 out: 6432 mmap_event->event_id.header.size = size; 6433 } 6434 6435 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6436 { 6437 struct vm_area_struct *vma = mmap_event->vma; 6438 struct file *file = vma->vm_file; 6439 int maj = 0, min = 0; 6440 u64 ino = 0, gen = 0; 6441 u32 prot = 0, flags = 0; 6442 unsigned int size; 6443 char tmp[16]; 6444 char *buf = NULL; 6445 char *name; 6446 6447 if (file) { 6448 struct inode *inode; 6449 dev_t dev; 6450 6451 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6452 if (!buf) { 6453 name = "//enomem"; 6454 goto cpy_name; 6455 } 6456 /* 6457 * d_path() works from the end of the rb backwards, so we 6458 * need to add enough zero bytes after the string to handle 6459 * the 64bit alignment we do later. 6460 */ 6461 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6462 if (IS_ERR(name)) { 6463 name = "//toolong"; 6464 goto cpy_name; 6465 } 6466 inode = file_inode(vma->vm_file); 6467 dev = inode->i_sb->s_dev; 6468 ino = inode->i_ino; 6469 gen = inode->i_generation; 6470 maj = MAJOR(dev); 6471 min = MINOR(dev); 6472 6473 if (vma->vm_flags & VM_READ) 6474 prot |= PROT_READ; 6475 if (vma->vm_flags & VM_WRITE) 6476 prot |= PROT_WRITE; 6477 if (vma->vm_flags & VM_EXEC) 6478 prot |= PROT_EXEC; 6479 6480 if (vma->vm_flags & VM_MAYSHARE) 6481 flags = MAP_SHARED; 6482 else 6483 flags = MAP_PRIVATE; 6484 6485 if (vma->vm_flags & VM_DENYWRITE) 6486 flags |= MAP_DENYWRITE; 6487 if (vma->vm_flags & VM_MAYEXEC) 6488 flags |= MAP_EXECUTABLE; 6489 if (vma->vm_flags & VM_LOCKED) 6490 flags |= MAP_LOCKED; 6491 if (vma->vm_flags & VM_HUGETLB) 6492 flags |= MAP_HUGETLB; 6493 6494 goto got_name; 6495 } else { 6496 if (vma->vm_ops && vma->vm_ops->name) { 6497 name = (char *) vma->vm_ops->name(vma); 6498 if (name) 6499 goto cpy_name; 6500 } 6501 6502 name = (char *)arch_vma_name(vma); 6503 if (name) 6504 goto cpy_name; 6505 6506 if (vma->vm_start <= vma->vm_mm->start_brk && 6507 vma->vm_end >= vma->vm_mm->brk) { 6508 name = "[heap]"; 6509 goto cpy_name; 6510 } 6511 if (vma->vm_start <= vma->vm_mm->start_stack && 6512 vma->vm_end >= vma->vm_mm->start_stack) { 6513 name = "[stack]"; 6514 goto cpy_name; 6515 } 6516 6517 name = "//anon"; 6518 goto cpy_name; 6519 } 6520 6521 cpy_name: 6522 strlcpy(tmp, name, sizeof(tmp)); 6523 name = tmp; 6524 got_name: 6525 /* 6526 * Since our buffer works in 8 byte units we need to align our string 6527 * size to a multiple of 8. However, we must guarantee the tail end is 6528 * zero'd out to avoid leaking random bits to userspace. 6529 */ 6530 size = strlen(name)+1; 6531 while (!IS_ALIGNED(size, sizeof(u64))) 6532 name[size++] = '\0'; 6533 6534 mmap_event->file_name = name; 6535 mmap_event->file_size = size; 6536 mmap_event->maj = maj; 6537 mmap_event->min = min; 6538 mmap_event->ino = ino; 6539 mmap_event->ino_generation = gen; 6540 mmap_event->prot = prot; 6541 mmap_event->flags = flags; 6542 6543 if (!(vma->vm_flags & VM_EXEC)) 6544 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6545 6546 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6547 6548 perf_iterate_sb(perf_event_mmap_output, 6549 mmap_event, 6550 NULL); 6551 6552 kfree(buf); 6553 } 6554 6555 /* 6556 * Whether this @filter depends on a dynamic object which is not loaded 6557 * yet or its load addresses are not known. 6558 */ 6559 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter) 6560 { 6561 return filter->filter && filter->inode; 6562 } 6563 6564 /* 6565 * Check whether inode and address range match filter criteria. 6566 */ 6567 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6568 struct file *file, unsigned long offset, 6569 unsigned long size) 6570 { 6571 if (filter->inode != file->f_inode) 6572 return false; 6573 6574 if (filter->offset > offset + size) 6575 return false; 6576 6577 if (filter->offset + filter->size < offset) 6578 return false; 6579 6580 return true; 6581 } 6582 6583 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6584 { 6585 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6586 struct vm_area_struct *vma = data; 6587 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6588 struct file *file = vma->vm_file; 6589 struct perf_addr_filter *filter; 6590 unsigned int restart = 0, count = 0; 6591 6592 if (!has_addr_filter(event)) 6593 return; 6594 6595 if (!file) 6596 return; 6597 6598 raw_spin_lock_irqsave(&ifh->lock, flags); 6599 list_for_each_entry(filter, &ifh->list, entry) { 6600 if (perf_addr_filter_match(filter, file, off, 6601 vma->vm_end - vma->vm_start)) { 6602 event->addr_filters_offs[count] = vma->vm_start; 6603 restart++; 6604 } 6605 6606 count++; 6607 } 6608 6609 if (restart) 6610 event->addr_filters_gen++; 6611 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6612 6613 if (restart) 6614 perf_event_restart(event); 6615 } 6616 6617 /* 6618 * Adjust all task's events' filters to the new vma 6619 */ 6620 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6621 { 6622 struct perf_event_context *ctx; 6623 int ctxn; 6624 6625 rcu_read_lock(); 6626 for_each_task_context_nr(ctxn) { 6627 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6628 if (!ctx) 6629 continue; 6630 6631 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6632 } 6633 rcu_read_unlock(); 6634 } 6635 6636 void perf_event_mmap(struct vm_area_struct *vma) 6637 { 6638 struct perf_mmap_event mmap_event; 6639 6640 if (!atomic_read(&nr_mmap_events)) 6641 return; 6642 6643 mmap_event = (struct perf_mmap_event){ 6644 .vma = vma, 6645 /* .file_name */ 6646 /* .file_size */ 6647 .event_id = { 6648 .header = { 6649 .type = PERF_RECORD_MMAP, 6650 .misc = PERF_RECORD_MISC_USER, 6651 /* .size */ 6652 }, 6653 /* .pid */ 6654 /* .tid */ 6655 .start = vma->vm_start, 6656 .len = vma->vm_end - vma->vm_start, 6657 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6658 }, 6659 /* .maj (attr_mmap2 only) */ 6660 /* .min (attr_mmap2 only) */ 6661 /* .ino (attr_mmap2 only) */ 6662 /* .ino_generation (attr_mmap2 only) */ 6663 /* .prot (attr_mmap2 only) */ 6664 /* .flags (attr_mmap2 only) */ 6665 }; 6666 6667 perf_addr_filters_adjust(vma); 6668 perf_event_mmap_event(&mmap_event); 6669 } 6670 6671 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6672 unsigned long size, u64 flags) 6673 { 6674 struct perf_output_handle handle; 6675 struct perf_sample_data sample; 6676 struct perf_aux_event { 6677 struct perf_event_header header; 6678 u64 offset; 6679 u64 size; 6680 u64 flags; 6681 } rec = { 6682 .header = { 6683 .type = PERF_RECORD_AUX, 6684 .misc = 0, 6685 .size = sizeof(rec), 6686 }, 6687 .offset = head, 6688 .size = size, 6689 .flags = flags, 6690 }; 6691 int ret; 6692 6693 perf_event_header__init_id(&rec.header, &sample, event); 6694 ret = perf_output_begin(&handle, event, rec.header.size); 6695 6696 if (ret) 6697 return; 6698 6699 perf_output_put(&handle, rec); 6700 perf_event__output_id_sample(event, &handle, &sample); 6701 6702 perf_output_end(&handle); 6703 } 6704 6705 /* 6706 * Lost/dropped samples logging 6707 */ 6708 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6709 { 6710 struct perf_output_handle handle; 6711 struct perf_sample_data sample; 6712 int ret; 6713 6714 struct { 6715 struct perf_event_header header; 6716 u64 lost; 6717 } lost_samples_event = { 6718 .header = { 6719 .type = PERF_RECORD_LOST_SAMPLES, 6720 .misc = 0, 6721 .size = sizeof(lost_samples_event), 6722 }, 6723 .lost = lost, 6724 }; 6725 6726 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6727 6728 ret = perf_output_begin(&handle, event, 6729 lost_samples_event.header.size); 6730 if (ret) 6731 return; 6732 6733 perf_output_put(&handle, lost_samples_event); 6734 perf_event__output_id_sample(event, &handle, &sample); 6735 perf_output_end(&handle); 6736 } 6737 6738 /* 6739 * context_switch tracking 6740 */ 6741 6742 struct perf_switch_event { 6743 struct task_struct *task; 6744 struct task_struct *next_prev; 6745 6746 struct { 6747 struct perf_event_header header; 6748 u32 next_prev_pid; 6749 u32 next_prev_tid; 6750 } event_id; 6751 }; 6752 6753 static int perf_event_switch_match(struct perf_event *event) 6754 { 6755 return event->attr.context_switch; 6756 } 6757 6758 static void perf_event_switch_output(struct perf_event *event, void *data) 6759 { 6760 struct perf_switch_event *se = data; 6761 struct perf_output_handle handle; 6762 struct perf_sample_data sample; 6763 int ret; 6764 6765 if (!perf_event_switch_match(event)) 6766 return; 6767 6768 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6769 if (event->ctx->task) { 6770 se->event_id.header.type = PERF_RECORD_SWITCH; 6771 se->event_id.header.size = sizeof(se->event_id.header); 6772 } else { 6773 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6774 se->event_id.header.size = sizeof(se->event_id); 6775 se->event_id.next_prev_pid = 6776 perf_event_pid(event, se->next_prev); 6777 se->event_id.next_prev_tid = 6778 perf_event_tid(event, se->next_prev); 6779 } 6780 6781 perf_event_header__init_id(&se->event_id.header, &sample, event); 6782 6783 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6784 if (ret) 6785 return; 6786 6787 if (event->ctx->task) 6788 perf_output_put(&handle, se->event_id.header); 6789 else 6790 perf_output_put(&handle, se->event_id); 6791 6792 perf_event__output_id_sample(event, &handle, &sample); 6793 6794 perf_output_end(&handle); 6795 } 6796 6797 static void perf_event_switch(struct task_struct *task, 6798 struct task_struct *next_prev, bool sched_in) 6799 { 6800 struct perf_switch_event switch_event; 6801 6802 /* N.B. caller checks nr_switch_events != 0 */ 6803 6804 switch_event = (struct perf_switch_event){ 6805 .task = task, 6806 .next_prev = next_prev, 6807 .event_id = { 6808 .header = { 6809 /* .type */ 6810 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6811 /* .size */ 6812 }, 6813 /* .next_prev_pid */ 6814 /* .next_prev_tid */ 6815 }, 6816 }; 6817 6818 perf_iterate_sb(perf_event_switch_output, 6819 &switch_event, 6820 NULL); 6821 } 6822 6823 /* 6824 * IRQ throttle logging 6825 */ 6826 6827 static void perf_log_throttle(struct perf_event *event, int enable) 6828 { 6829 struct perf_output_handle handle; 6830 struct perf_sample_data sample; 6831 int ret; 6832 6833 struct { 6834 struct perf_event_header header; 6835 u64 time; 6836 u64 id; 6837 u64 stream_id; 6838 } throttle_event = { 6839 .header = { 6840 .type = PERF_RECORD_THROTTLE, 6841 .misc = 0, 6842 .size = sizeof(throttle_event), 6843 }, 6844 .time = perf_event_clock(event), 6845 .id = primary_event_id(event), 6846 .stream_id = event->id, 6847 }; 6848 6849 if (enable) 6850 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6851 6852 perf_event_header__init_id(&throttle_event.header, &sample, event); 6853 6854 ret = perf_output_begin(&handle, event, 6855 throttle_event.header.size); 6856 if (ret) 6857 return; 6858 6859 perf_output_put(&handle, throttle_event); 6860 perf_event__output_id_sample(event, &handle, &sample); 6861 perf_output_end(&handle); 6862 } 6863 6864 static void perf_log_itrace_start(struct perf_event *event) 6865 { 6866 struct perf_output_handle handle; 6867 struct perf_sample_data sample; 6868 struct perf_aux_event { 6869 struct perf_event_header header; 6870 u32 pid; 6871 u32 tid; 6872 } rec; 6873 int ret; 6874 6875 if (event->parent) 6876 event = event->parent; 6877 6878 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6879 event->hw.itrace_started) 6880 return; 6881 6882 rec.header.type = PERF_RECORD_ITRACE_START; 6883 rec.header.misc = 0; 6884 rec.header.size = sizeof(rec); 6885 rec.pid = perf_event_pid(event, current); 6886 rec.tid = perf_event_tid(event, current); 6887 6888 perf_event_header__init_id(&rec.header, &sample, event); 6889 ret = perf_output_begin(&handle, event, rec.header.size); 6890 6891 if (ret) 6892 return; 6893 6894 perf_output_put(&handle, rec); 6895 perf_event__output_id_sample(event, &handle, &sample); 6896 6897 perf_output_end(&handle); 6898 } 6899 6900 /* 6901 * Generic event overflow handling, sampling. 6902 */ 6903 6904 static int __perf_event_overflow(struct perf_event *event, 6905 int throttle, struct perf_sample_data *data, 6906 struct pt_regs *regs) 6907 { 6908 int events = atomic_read(&event->event_limit); 6909 struct hw_perf_event *hwc = &event->hw; 6910 u64 seq; 6911 int ret = 0; 6912 6913 /* 6914 * Non-sampling counters might still use the PMI to fold short 6915 * hardware counters, ignore those. 6916 */ 6917 if (unlikely(!is_sampling_event(event))) 6918 return 0; 6919 6920 seq = __this_cpu_read(perf_throttled_seq); 6921 if (seq != hwc->interrupts_seq) { 6922 hwc->interrupts_seq = seq; 6923 hwc->interrupts = 1; 6924 } else { 6925 hwc->interrupts++; 6926 if (unlikely(throttle 6927 && hwc->interrupts >= max_samples_per_tick)) { 6928 __this_cpu_inc(perf_throttled_count); 6929 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6930 hwc->interrupts = MAX_INTERRUPTS; 6931 perf_log_throttle(event, 0); 6932 ret = 1; 6933 } 6934 } 6935 6936 if (event->attr.freq) { 6937 u64 now = perf_clock(); 6938 s64 delta = now - hwc->freq_time_stamp; 6939 6940 hwc->freq_time_stamp = now; 6941 6942 if (delta > 0 && delta < 2*TICK_NSEC) 6943 perf_adjust_period(event, delta, hwc->last_period, true); 6944 } 6945 6946 /* 6947 * XXX event_limit might not quite work as expected on inherited 6948 * events 6949 */ 6950 6951 event->pending_kill = POLL_IN; 6952 if (events && atomic_dec_and_test(&event->event_limit)) { 6953 ret = 1; 6954 event->pending_kill = POLL_HUP; 6955 event->pending_disable = 1; 6956 irq_work_queue(&event->pending); 6957 } 6958 6959 event->overflow_handler(event, data, regs); 6960 6961 if (*perf_event_fasync(event) && event->pending_kill) { 6962 event->pending_wakeup = 1; 6963 irq_work_queue(&event->pending); 6964 } 6965 6966 return ret; 6967 } 6968 6969 int perf_event_overflow(struct perf_event *event, 6970 struct perf_sample_data *data, 6971 struct pt_regs *regs) 6972 { 6973 return __perf_event_overflow(event, 1, data, regs); 6974 } 6975 6976 /* 6977 * Generic software event infrastructure 6978 */ 6979 6980 struct swevent_htable { 6981 struct swevent_hlist *swevent_hlist; 6982 struct mutex hlist_mutex; 6983 int hlist_refcount; 6984 6985 /* Recursion avoidance in each contexts */ 6986 int recursion[PERF_NR_CONTEXTS]; 6987 }; 6988 6989 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6990 6991 /* 6992 * We directly increment event->count and keep a second value in 6993 * event->hw.period_left to count intervals. This period event 6994 * is kept in the range [-sample_period, 0] so that we can use the 6995 * sign as trigger. 6996 */ 6997 6998 u64 perf_swevent_set_period(struct perf_event *event) 6999 { 7000 struct hw_perf_event *hwc = &event->hw; 7001 u64 period = hwc->last_period; 7002 u64 nr, offset; 7003 s64 old, val; 7004 7005 hwc->last_period = hwc->sample_period; 7006 7007 again: 7008 old = val = local64_read(&hwc->period_left); 7009 if (val < 0) 7010 return 0; 7011 7012 nr = div64_u64(period + val, period); 7013 offset = nr * period; 7014 val -= offset; 7015 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7016 goto again; 7017 7018 return nr; 7019 } 7020 7021 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7022 struct perf_sample_data *data, 7023 struct pt_regs *regs) 7024 { 7025 struct hw_perf_event *hwc = &event->hw; 7026 int throttle = 0; 7027 7028 if (!overflow) 7029 overflow = perf_swevent_set_period(event); 7030 7031 if (hwc->interrupts == MAX_INTERRUPTS) 7032 return; 7033 7034 for (; overflow; overflow--) { 7035 if (__perf_event_overflow(event, throttle, 7036 data, regs)) { 7037 /* 7038 * We inhibit the overflow from happening when 7039 * hwc->interrupts == MAX_INTERRUPTS. 7040 */ 7041 break; 7042 } 7043 throttle = 1; 7044 } 7045 } 7046 7047 static void perf_swevent_event(struct perf_event *event, u64 nr, 7048 struct perf_sample_data *data, 7049 struct pt_regs *regs) 7050 { 7051 struct hw_perf_event *hwc = &event->hw; 7052 7053 local64_add(nr, &event->count); 7054 7055 if (!regs) 7056 return; 7057 7058 if (!is_sampling_event(event)) 7059 return; 7060 7061 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7062 data->period = nr; 7063 return perf_swevent_overflow(event, 1, data, regs); 7064 } else 7065 data->period = event->hw.last_period; 7066 7067 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7068 return perf_swevent_overflow(event, 1, data, regs); 7069 7070 if (local64_add_negative(nr, &hwc->period_left)) 7071 return; 7072 7073 perf_swevent_overflow(event, 0, data, regs); 7074 } 7075 7076 static int perf_exclude_event(struct perf_event *event, 7077 struct pt_regs *regs) 7078 { 7079 if (event->hw.state & PERF_HES_STOPPED) 7080 return 1; 7081 7082 if (regs) { 7083 if (event->attr.exclude_user && user_mode(regs)) 7084 return 1; 7085 7086 if (event->attr.exclude_kernel && !user_mode(regs)) 7087 return 1; 7088 } 7089 7090 return 0; 7091 } 7092 7093 static int perf_swevent_match(struct perf_event *event, 7094 enum perf_type_id type, 7095 u32 event_id, 7096 struct perf_sample_data *data, 7097 struct pt_regs *regs) 7098 { 7099 if (event->attr.type != type) 7100 return 0; 7101 7102 if (event->attr.config != event_id) 7103 return 0; 7104 7105 if (perf_exclude_event(event, regs)) 7106 return 0; 7107 7108 return 1; 7109 } 7110 7111 static inline u64 swevent_hash(u64 type, u32 event_id) 7112 { 7113 u64 val = event_id | (type << 32); 7114 7115 return hash_64(val, SWEVENT_HLIST_BITS); 7116 } 7117 7118 static inline struct hlist_head * 7119 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7120 { 7121 u64 hash = swevent_hash(type, event_id); 7122 7123 return &hlist->heads[hash]; 7124 } 7125 7126 /* For the read side: events when they trigger */ 7127 static inline struct hlist_head * 7128 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7129 { 7130 struct swevent_hlist *hlist; 7131 7132 hlist = rcu_dereference(swhash->swevent_hlist); 7133 if (!hlist) 7134 return NULL; 7135 7136 return __find_swevent_head(hlist, type, event_id); 7137 } 7138 7139 /* For the event head insertion and removal in the hlist */ 7140 static inline struct hlist_head * 7141 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7142 { 7143 struct swevent_hlist *hlist; 7144 u32 event_id = event->attr.config; 7145 u64 type = event->attr.type; 7146 7147 /* 7148 * Event scheduling is always serialized against hlist allocation 7149 * and release. Which makes the protected version suitable here. 7150 * The context lock guarantees that. 7151 */ 7152 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7153 lockdep_is_held(&event->ctx->lock)); 7154 if (!hlist) 7155 return NULL; 7156 7157 return __find_swevent_head(hlist, type, event_id); 7158 } 7159 7160 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7161 u64 nr, 7162 struct perf_sample_data *data, 7163 struct pt_regs *regs) 7164 { 7165 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7166 struct perf_event *event; 7167 struct hlist_head *head; 7168 7169 rcu_read_lock(); 7170 head = find_swevent_head_rcu(swhash, type, event_id); 7171 if (!head) 7172 goto end; 7173 7174 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7175 if (perf_swevent_match(event, type, event_id, data, regs)) 7176 perf_swevent_event(event, nr, data, regs); 7177 } 7178 end: 7179 rcu_read_unlock(); 7180 } 7181 7182 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7183 7184 int perf_swevent_get_recursion_context(void) 7185 { 7186 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7187 7188 return get_recursion_context(swhash->recursion); 7189 } 7190 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7191 7192 void perf_swevent_put_recursion_context(int rctx) 7193 { 7194 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7195 7196 put_recursion_context(swhash->recursion, rctx); 7197 } 7198 7199 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7200 { 7201 struct perf_sample_data data; 7202 7203 if (WARN_ON_ONCE(!regs)) 7204 return; 7205 7206 perf_sample_data_init(&data, addr, 0); 7207 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7208 } 7209 7210 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7211 { 7212 int rctx; 7213 7214 preempt_disable_notrace(); 7215 rctx = perf_swevent_get_recursion_context(); 7216 if (unlikely(rctx < 0)) 7217 goto fail; 7218 7219 ___perf_sw_event(event_id, nr, regs, addr); 7220 7221 perf_swevent_put_recursion_context(rctx); 7222 fail: 7223 preempt_enable_notrace(); 7224 } 7225 7226 static void perf_swevent_read(struct perf_event *event) 7227 { 7228 } 7229 7230 static int perf_swevent_add(struct perf_event *event, int flags) 7231 { 7232 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7233 struct hw_perf_event *hwc = &event->hw; 7234 struct hlist_head *head; 7235 7236 if (is_sampling_event(event)) { 7237 hwc->last_period = hwc->sample_period; 7238 perf_swevent_set_period(event); 7239 } 7240 7241 hwc->state = !(flags & PERF_EF_START); 7242 7243 head = find_swevent_head(swhash, event); 7244 if (WARN_ON_ONCE(!head)) 7245 return -EINVAL; 7246 7247 hlist_add_head_rcu(&event->hlist_entry, head); 7248 perf_event_update_userpage(event); 7249 7250 return 0; 7251 } 7252 7253 static void perf_swevent_del(struct perf_event *event, int flags) 7254 { 7255 hlist_del_rcu(&event->hlist_entry); 7256 } 7257 7258 static void perf_swevent_start(struct perf_event *event, int flags) 7259 { 7260 event->hw.state = 0; 7261 } 7262 7263 static void perf_swevent_stop(struct perf_event *event, int flags) 7264 { 7265 event->hw.state = PERF_HES_STOPPED; 7266 } 7267 7268 /* Deref the hlist from the update side */ 7269 static inline struct swevent_hlist * 7270 swevent_hlist_deref(struct swevent_htable *swhash) 7271 { 7272 return rcu_dereference_protected(swhash->swevent_hlist, 7273 lockdep_is_held(&swhash->hlist_mutex)); 7274 } 7275 7276 static void swevent_hlist_release(struct swevent_htable *swhash) 7277 { 7278 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7279 7280 if (!hlist) 7281 return; 7282 7283 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7284 kfree_rcu(hlist, rcu_head); 7285 } 7286 7287 static void swevent_hlist_put_cpu(int cpu) 7288 { 7289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7290 7291 mutex_lock(&swhash->hlist_mutex); 7292 7293 if (!--swhash->hlist_refcount) 7294 swevent_hlist_release(swhash); 7295 7296 mutex_unlock(&swhash->hlist_mutex); 7297 } 7298 7299 static void swevent_hlist_put(void) 7300 { 7301 int cpu; 7302 7303 for_each_possible_cpu(cpu) 7304 swevent_hlist_put_cpu(cpu); 7305 } 7306 7307 static int swevent_hlist_get_cpu(int cpu) 7308 { 7309 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7310 int err = 0; 7311 7312 mutex_lock(&swhash->hlist_mutex); 7313 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7314 struct swevent_hlist *hlist; 7315 7316 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7317 if (!hlist) { 7318 err = -ENOMEM; 7319 goto exit; 7320 } 7321 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7322 } 7323 swhash->hlist_refcount++; 7324 exit: 7325 mutex_unlock(&swhash->hlist_mutex); 7326 7327 return err; 7328 } 7329 7330 static int swevent_hlist_get(void) 7331 { 7332 int err, cpu, failed_cpu; 7333 7334 get_online_cpus(); 7335 for_each_possible_cpu(cpu) { 7336 err = swevent_hlist_get_cpu(cpu); 7337 if (err) { 7338 failed_cpu = cpu; 7339 goto fail; 7340 } 7341 } 7342 put_online_cpus(); 7343 7344 return 0; 7345 fail: 7346 for_each_possible_cpu(cpu) { 7347 if (cpu == failed_cpu) 7348 break; 7349 swevent_hlist_put_cpu(cpu); 7350 } 7351 7352 put_online_cpus(); 7353 return err; 7354 } 7355 7356 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7357 7358 static void sw_perf_event_destroy(struct perf_event *event) 7359 { 7360 u64 event_id = event->attr.config; 7361 7362 WARN_ON(event->parent); 7363 7364 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7365 swevent_hlist_put(); 7366 } 7367 7368 static int perf_swevent_init(struct perf_event *event) 7369 { 7370 u64 event_id = event->attr.config; 7371 7372 if (event->attr.type != PERF_TYPE_SOFTWARE) 7373 return -ENOENT; 7374 7375 /* 7376 * no branch sampling for software events 7377 */ 7378 if (has_branch_stack(event)) 7379 return -EOPNOTSUPP; 7380 7381 switch (event_id) { 7382 case PERF_COUNT_SW_CPU_CLOCK: 7383 case PERF_COUNT_SW_TASK_CLOCK: 7384 return -ENOENT; 7385 7386 default: 7387 break; 7388 } 7389 7390 if (event_id >= PERF_COUNT_SW_MAX) 7391 return -ENOENT; 7392 7393 if (!event->parent) { 7394 int err; 7395 7396 err = swevent_hlist_get(); 7397 if (err) 7398 return err; 7399 7400 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7401 event->destroy = sw_perf_event_destroy; 7402 } 7403 7404 return 0; 7405 } 7406 7407 static struct pmu perf_swevent = { 7408 .task_ctx_nr = perf_sw_context, 7409 7410 .capabilities = PERF_PMU_CAP_NO_NMI, 7411 7412 .event_init = perf_swevent_init, 7413 .add = perf_swevent_add, 7414 .del = perf_swevent_del, 7415 .start = perf_swevent_start, 7416 .stop = perf_swevent_stop, 7417 .read = perf_swevent_read, 7418 }; 7419 7420 #ifdef CONFIG_EVENT_TRACING 7421 7422 static int perf_tp_filter_match(struct perf_event *event, 7423 struct perf_sample_data *data) 7424 { 7425 void *record = data->raw->frag.data; 7426 7427 /* only top level events have filters set */ 7428 if (event->parent) 7429 event = event->parent; 7430 7431 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7432 return 1; 7433 return 0; 7434 } 7435 7436 static int perf_tp_event_match(struct perf_event *event, 7437 struct perf_sample_data *data, 7438 struct pt_regs *regs) 7439 { 7440 if (event->hw.state & PERF_HES_STOPPED) 7441 return 0; 7442 /* 7443 * All tracepoints are from kernel-space. 7444 */ 7445 if (event->attr.exclude_kernel) 7446 return 0; 7447 7448 if (!perf_tp_filter_match(event, data)) 7449 return 0; 7450 7451 return 1; 7452 } 7453 7454 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7455 struct trace_event_call *call, u64 count, 7456 struct pt_regs *regs, struct hlist_head *head, 7457 struct task_struct *task) 7458 { 7459 struct bpf_prog *prog = call->prog; 7460 7461 if (prog) { 7462 *(struct pt_regs **)raw_data = regs; 7463 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7464 perf_swevent_put_recursion_context(rctx); 7465 return; 7466 } 7467 } 7468 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7469 rctx, task); 7470 } 7471 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7472 7473 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7474 struct pt_regs *regs, struct hlist_head *head, int rctx, 7475 struct task_struct *task) 7476 { 7477 struct perf_sample_data data; 7478 struct perf_event *event; 7479 7480 struct perf_raw_record raw = { 7481 .frag = { 7482 .size = entry_size, 7483 .data = record, 7484 }, 7485 }; 7486 7487 perf_sample_data_init(&data, 0, 0); 7488 data.raw = &raw; 7489 7490 perf_trace_buf_update(record, event_type); 7491 7492 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7493 if (perf_tp_event_match(event, &data, regs)) 7494 perf_swevent_event(event, count, &data, regs); 7495 } 7496 7497 /* 7498 * If we got specified a target task, also iterate its context and 7499 * deliver this event there too. 7500 */ 7501 if (task && task != current) { 7502 struct perf_event_context *ctx; 7503 struct trace_entry *entry = record; 7504 7505 rcu_read_lock(); 7506 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7507 if (!ctx) 7508 goto unlock; 7509 7510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7511 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7512 continue; 7513 if (event->attr.config != entry->type) 7514 continue; 7515 if (perf_tp_event_match(event, &data, regs)) 7516 perf_swevent_event(event, count, &data, regs); 7517 } 7518 unlock: 7519 rcu_read_unlock(); 7520 } 7521 7522 perf_swevent_put_recursion_context(rctx); 7523 } 7524 EXPORT_SYMBOL_GPL(perf_tp_event); 7525 7526 static void tp_perf_event_destroy(struct perf_event *event) 7527 { 7528 perf_trace_destroy(event); 7529 } 7530 7531 static int perf_tp_event_init(struct perf_event *event) 7532 { 7533 int err; 7534 7535 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7536 return -ENOENT; 7537 7538 /* 7539 * no branch sampling for tracepoint events 7540 */ 7541 if (has_branch_stack(event)) 7542 return -EOPNOTSUPP; 7543 7544 err = perf_trace_init(event); 7545 if (err) 7546 return err; 7547 7548 event->destroy = tp_perf_event_destroy; 7549 7550 return 0; 7551 } 7552 7553 static struct pmu perf_tracepoint = { 7554 .task_ctx_nr = perf_sw_context, 7555 7556 .event_init = perf_tp_event_init, 7557 .add = perf_trace_add, 7558 .del = perf_trace_del, 7559 .start = perf_swevent_start, 7560 .stop = perf_swevent_stop, 7561 .read = perf_swevent_read, 7562 }; 7563 7564 static inline void perf_tp_register(void) 7565 { 7566 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7567 } 7568 7569 static void perf_event_free_filter(struct perf_event *event) 7570 { 7571 ftrace_profile_free_filter(event); 7572 } 7573 7574 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7575 { 7576 bool is_kprobe, is_tracepoint; 7577 struct bpf_prog *prog; 7578 7579 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7580 return -EINVAL; 7581 7582 if (event->tp_event->prog) 7583 return -EEXIST; 7584 7585 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7586 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7587 if (!is_kprobe && !is_tracepoint) 7588 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7589 return -EINVAL; 7590 7591 prog = bpf_prog_get(prog_fd); 7592 if (IS_ERR(prog)) 7593 return PTR_ERR(prog); 7594 7595 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7596 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7597 /* valid fd, but invalid bpf program type */ 7598 bpf_prog_put(prog); 7599 return -EINVAL; 7600 } 7601 7602 if (is_tracepoint) { 7603 int off = trace_event_get_offsets(event->tp_event); 7604 7605 if (prog->aux->max_ctx_offset > off) { 7606 bpf_prog_put(prog); 7607 return -EACCES; 7608 } 7609 } 7610 event->tp_event->prog = prog; 7611 7612 return 0; 7613 } 7614 7615 static void perf_event_free_bpf_prog(struct perf_event *event) 7616 { 7617 struct bpf_prog *prog; 7618 7619 if (!event->tp_event) 7620 return; 7621 7622 prog = event->tp_event->prog; 7623 if (prog) { 7624 event->tp_event->prog = NULL; 7625 bpf_prog_put(prog); 7626 } 7627 } 7628 7629 #else 7630 7631 static inline void perf_tp_register(void) 7632 { 7633 } 7634 7635 static void perf_event_free_filter(struct perf_event *event) 7636 { 7637 } 7638 7639 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7640 { 7641 return -ENOENT; 7642 } 7643 7644 static void perf_event_free_bpf_prog(struct perf_event *event) 7645 { 7646 } 7647 #endif /* CONFIG_EVENT_TRACING */ 7648 7649 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7650 void perf_bp_event(struct perf_event *bp, void *data) 7651 { 7652 struct perf_sample_data sample; 7653 struct pt_regs *regs = data; 7654 7655 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7656 7657 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7658 perf_swevent_event(bp, 1, &sample, regs); 7659 } 7660 #endif 7661 7662 /* 7663 * Allocate a new address filter 7664 */ 7665 static struct perf_addr_filter * 7666 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7667 { 7668 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7669 struct perf_addr_filter *filter; 7670 7671 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7672 if (!filter) 7673 return NULL; 7674 7675 INIT_LIST_HEAD(&filter->entry); 7676 list_add_tail(&filter->entry, filters); 7677 7678 return filter; 7679 } 7680 7681 static void free_filters_list(struct list_head *filters) 7682 { 7683 struct perf_addr_filter *filter, *iter; 7684 7685 list_for_each_entry_safe(filter, iter, filters, entry) { 7686 if (filter->inode) 7687 iput(filter->inode); 7688 list_del(&filter->entry); 7689 kfree(filter); 7690 } 7691 } 7692 7693 /* 7694 * Free existing address filters and optionally install new ones 7695 */ 7696 static void perf_addr_filters_splice(struct perf_event *event, 7697 struct list_head *head) 7698 { 7699 unsigned long flags; 7700 LIST_HEAD(list); 7701 7702 if (!has_addr_filter(event)) 7703 return; 7704 7705 /* don't bother with children, they don't have their own filters */ 7706 if (event->parent) 7707 return; 7708 7709 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7710 7711 list_splice_init(&event->addr_filters.list, &list); 7712 if (head) 7713 list_splice(head, &event->addr_filters.list); 7714 7715 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7716 7717 free_filters_list(&list); 7718 } 7719 7720 /* 7721 * Scan through mm's vmas and see if one of them matches the 7722 * @filter; if so, adjust filter's address range. 7723 * Called with mm::mmap_sem down for reading. 7724 */ 7725 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7726 struct mm_struct *mm) 7727 { 7728 struct vm_area_struct *vma; 7729 7730 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7731 struct file *file = vma->vm_file; 7732 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7733 unsigned long vma_size = vma->vm_end - vma->vm_start; 7734 7735 if (!file) 7736 continue; 7737 7738 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7739 continue; 7740 7741 return vma->vm_start; 7742 } 7743 7744 return 0; 7745 } 7746 7747 /* 7748 * Update event's address range filters based on the 7749 * task's existing mappings, if any. 7750 */ 7751 static void perf_event_addr_filters_apply(struct perf_event *event) 7752 { 7753 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7754 struct task_struct *task = READ_ONCE(event->ctx->task); 7755 struct perf_addr_filter *filter; 7756 struct mm_struct *mm = NULL; 7757 unsigned int count = 0; 7758 unsigned long flags; 7759 7760 /* 7761 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7762 * will stop on the parent's child_mutex that our caller is also holding 7763 */ 7764 if (task == TASK_TOMBSTONE) 7765 return; 7766 7767 mm = get_task_mm(event->ctx->task); 7768 if (!mm) 7769 goto restart; 7770 7771 down_read(&mm->mmap_sem); 7772 7773 raw_spin_lock_irqsave(&ifh->lock, flags); 7774 list_for_each_entry(filter, &ifh->list, entry) { 7775 event->addr_filters_offs[count] = 0; 7776 7777 if (perf_addr_filter_needs_mmap(filter)) 7778 event->addr_filters_offs[count] = 7779 perf_addr_filter_apply(filter, mm); 7780 7781 count++; 7782 } 7783 7784 event->addr_filters_gen++; 7785 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7786 7787 up_read(&mm->mmap_sem); 7788 7789 mmput(mm); 7790 7791 restart: 7792 perf_event_restart(event); 7793 } 7794 7795 /* 7796 * Address range filtering: limiting the data to certain 7797 * instruction address ranges. Filters are ioctl()ed to us from 7798 * userspace as ascii strings. 7799 * 7800 * Filter string format: 7801 * 7802 * ACTION RANGE_SPEC 7803 * where ACTION is one of the 7804 * * "filter": limit the trace to this region 7805 * * "start": start tracing from this address 7806 * * "stop": stop tracing at this address/region; 7807 * RANGE_SPEC is 7808 * * for kernel addresses: <start address>[/<size>] 7809 * * for object files: <start address>[/<size>]@</path/to/object/file> 7810 * 7811 * if <size> is not specified, the range is treated as a single address. 7812 */ 7813 enum { 7814 IF_ACT_FILTER, 7815 IF_ACT_START, 7816 IF_ACT_STOP, 7817 IF_SRC_FILE, 7818 IF_SRC_KERNEL, 7819 IF_SRC_FILEADDR, 7820 IF_SRC_KERNELADDR, 7821 }; 7822 7823 enum { 7824 IF_STATE_ACTION = 0, 7825 IF_STATE_SOURCE, 7826 IF_STATE_END, 7827 }; 7828 7829 static const match_table_t if_tokens = { 7830 { IF_ACT_FILTER, "filter" }, 7831 { IF_ACT_START, "start" }, 7832 { IF_ACT_STOP, "stop" }, 7833 { IF_SRC_FILE, "%u/%u@%s" }, 7834 { IF_SRC_KERNEL, "%u/%u" }, 7835 { IF_SRC_FILEADDR, "%u@%s" }, 7836 { IF_SRC_KERNELADDR, "%u" }, 7837 }; 7838 7839 /* 7840 * Address filter string parser 7841 */ 7842 static int 7843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7844 struct list_head *filters) 7845 { 7846 struct perf_addr_filter *filter = NULL; 7847 char *start, *orig, *filename = NULL; 7848 struct path path; 7849 substring_t args[MAX_OPT_ARGS]; 7850 int state = IF_STATE_ACTION, token; 7851 unsigned int kernel = 0; 7852 int ret = -EINVAL; 7853 7854 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7855 if (!fstr) 7856 return -ENOMEM; 7857 7858 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7859 ret = -EINVAL; 7860 7861 if (!*start) 7862 continue; 7863 7864 /* filter definition begins */ 7865 if (state == IF_STATE_ACTION) { 7866 filter = perf_addr_filter_new(event, filters); 7867 if (!filter) 7868 goto fail; 7869 } 7870 7871 token = match_token(start, if_tokens, args); 7872 switch (token) { 7873 case IF_ACT_FILTER: 7874 case IF_ACT_START: 7875 filter->filter = 1; 7876 7877 case IF_ACT_STOP: 7878 if (state != IF_STATE_ACTION) 7879 goto fail; 7880 7881 state = IF_STATE_SOURCE; 7882 break; 7883 7884 case IF_SRC_KERNELADDR: 7885 case IF_SRC_KERNEL: 7886 kernel = 1; 7887 7888 case IF_SRC_FILEADDR: 7889 case IF_SRC_FILE: 7890 if (state != IF_STATE_SOURCE) 7891 goto fail; 7892 7893 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7894 filter->range = 1; 7895 7896 *args[0].to = 0; 7897 ret = kstrtoul(args[0].from, 0, &filter->offset); 7898 if (ret) 7899 goto fail; 7900 7901 if (filter->range) { 7902 *args[1].to = 0; 7903 ret = kstrtoul(args[1].from, 0, &filter->size); 7904 if (ret) 7905 goto fail; 7906 } 7907 7908 if (token == IF_SRC_FILE) { 7909 filename = match_strdup(&args[2]); 7910 if (!filename) { 7911 ret = -ENOMEM; 7912 goto fail; 7913 } 7914 } 7915 7916 state = IF_STATE_END; 7917 break; 7918 7919 default: 7920 goto fail; 7921 } 7922 7923 /* 7924 * Filter definition is fully parsed, validate and install it. 7925 * Make sure that it doesn't contradict itself or the event's 7926 * attribute. 7927 */ 7928 if (state == IF_STATE_END) { 7929 if (kernel && event->attr.exclude_kernel) 7930 goto fail; 7931 7932 if (!kernel) { 7933 if (!filename) 7934 goto fail; 7935 7936 /* look up the path and grab its inode */ 7937 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 7938 if (ret) 7939 goto fail_free_name; 7940 7941 filter->inode = igrab(d_inode(path.dentry)); 7942 path_put(&path); 7943 kfree(filename); 7944 filename = NULL; 7945 7946 ret = -EINVAL; 7947 if (!filter->inode || 7948 !S_ISREG(filter->inode->i_mode)) 7949 /* free_filters_list() will iput() */ 7950 goto fail; 7951 } 7952 7953 /* ready to consume more filters */ 7954 state = IF_STATE_ACTION; 7955 filter = NULL; 7956 } 7957 } 7958 7959 if (state != IF_STATE_ACTION) 7960 goto fail; 7961 7962 kfree(orig); 7963 7964 return 0; 7965 7966 fail_free_name: 7967 kfree(filename); 7968 fail: 7969 free_filters_list(filters); 7970 kfree(orig); 7971 7972 return ret; 7973 } 7974 7975 static int 7976 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 7977 { 7978 LIST_HEAD(filters); 7979 int ret; 7980 7981 /* 7982 * Since this is called in perf_ioctl() path, we're already holding 7983 * ctx::mutex. 7984 */ 7985 lockdep_assert_held(&event->ctx->mutex); 7986 7987 if (WARN_ON_ONCE(event->parent)) 7988 return -EINVAL; 7989 7990 /* 7991 * For now, we only support filtering in per-task events; doing so 7992 * for CPU-wide events requires additional context switching trickery, 7993 * since same object code will be mapped at different virtual 7994 * addresses in different processes. 7995 */ 7996 if (!event->ctx->task) 7997 return -EOPNOTSUPP; 7998 7999 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8000 if (ret) 8001 return ret; 8002 8003 ret = event->pmu->addr_filters_validate(&filters); 8004 if (ret) { 8005 free_filters_list(&filters); 8006 return ret; 8007 } 8008 8009 /* remove existing filters, if any */ 8010 perf_addr_filters_splice(event, &filters); 8011 8012 /* install new filters */ 8013 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8014 8015 return ret; 8016 } 8017 8018 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8019 { 8020 char *filter_str; 8021 int ret = -EINVAL; 8022 8023 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8024 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8025 !has_addr_filter(event)) 8026 return -EINVAL; 8027 8028 filter_str = strndup_user(arg, PAGE_SIZE); 8029 if (IS_ERR(filter_str)) 8030 return PTR_ERR(filter_str); 8031 8032 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8033 event->attr.type == PERF_TYPE_TRACEPOINT) 8034 ret = ftrace_profile_set_filter(event, event->attr.config, 8035 filter_str); 8036 else if (has_addr_filter(event)) 8037 ret = perf_event_set_addr_filter(event, filter_str); 8038 8039 kfree(filter_str); 8040 return ret; 8041 } 8042 8043 /* 8044 * hrtimer based swevent callback 8045 */ 8046 8047 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8048 { 8049 enum hrtimer_restart ret = HRTIMER_RESTART; 8050 struct perf_sample_data data; 8051 struct pt_regs *regs; 8052 struct perf_event *event; 8053 u64 period; 8054 8055 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8056 8057 if (event->state != PERF_EVENT_STATE_ACTIVE) 8058 return HRTIMER_NORESTART; 8059 8060 event->pmu->read(event); 8061 8062 perf_sample_data_init(&data, 0, event->hw.last_period); 8063 regs = get_irq_regs(); 8064 8065 if (regs && !perf_exclude_event(event, regs)) { 8066 if (!(event->attr.exclude_idle && is_idle_task(current))) 8067 if (__perf_event_overflow(event, 1, &data, regs)) 8068 ret = HRTIMER_NORESTART; 8069 } 8070 8071 period = max_t(u64, 10000, event->hw.sample_period); 8072 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8073 8074 return ret; 8075 } 8076 8077 static void perf_swevent_start_hrtimer(struct perf_event *event) 8078 { 8079 struct hw_perf_event *hwc = &event->hw; 8080 s64 period; 8081 8082 if (!is_sampling_event(event)) 8083 return; 8084 8085 period = local64_read(&hwc->period_left); 8086 if (period) { 8087 if (period < 0) 8088 period = 10000; 8089 8090 local64_set(&hwc->period_left, 0); 8091 } else { 8092 period = max_t(u64, 10000, hwc->sample_period); 8093 } 8094 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8095 HRTIMER_MODE_REL_PINNED); 8096 } 8097 8098 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8099 { 8100 struct hw_perf_event *hwc = &event->hw; 8101 8102 if (is_sampling_event(event)) { 8103 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8104 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8105 8106 hrtimer_cancel(&hwc->hrtimer); 8107 } 8108 } 8109 8110 static void perf_swevent_init_hrtimer(struct perf_event *event) 8111 { 8112 struct hw_perf_event *hwc = &event->hw; 8113 8114 if (!is_sampling_event(event)) 8115 return; 8116 8117 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8118 hwc->hrtimer.function = perf_swevent_hrtimer; 8119 8120 /* 8121 * Since hrtimers have a fixed rate, we can do a static freq->period 8122 * mapping and avoid the whole period adjust feedback stuff. 8123 */ 8124 if (event->attr.freq) { 8125 long freq = event->attr.sample_freq; 8126 8127 event->attr.sample_period = NSEC_PER_SEC / freq; 8128 hwc->sample_period = event->attr.sample_period; 8129 local64_set(&hwc->period_left, hwc->sample_period); 8130 hwc->last_period = hwc->sample_period; 8131 event->attr.freq = 0; 8132 } 8133 } 8134 8135 /* 8136 * Software event: cpu wall time clock 8137 */ 8138 8139 static void cpu_clock_event_update(struct perf_event *event) 8140 { 8141 s64 prev; 8142 u64 now; 8143 8144 now = local_clock(); 8145 prev = local64_xchg(&event->hw.prev_count, now); 8146 local64_add(now - prev, &event->count); 8147 } 8148 8149 static void cpu_clock_event_start(struct perf_event *event, int flags) 8150 { 8151 local64_set(&event->hw.prev_count, local_clock()); 8152 perf_swevent_start_hrtimer(event); 8153 } 8154 8155 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8156 { 8157 perf_swevent_cancel_hrtimer(event); 8158 cpu_clock_event_update(event); 8159 } 8160 8161 static int cpu_clock_event_add(struct perf_event *event, int flags) 8162 { 8163 if (flags & PERF_EF_START) 8164 cpu_clock_event_start(event, flags); 8165 perf_event_update_userpage(event); 8166 8167 return 0; 8168 } 8169 8170 static void cpu_clock_event_del(struct perf_event *event, int flags) 8171 { 8172 cpu_clock_event_stop(event, flags); 8173 } 8174 8175 static void cpu_clock_event_read(struct perf_event *event) 8176 { 8177 cpu_clock_event_update(event); 8178 } 8179 8180 static int cpu_clock_event_init(struct perf_event *event) 8181 { 8182 if (event->attr.type != PERF_TYPE_SOFTWARE) 8183 return -ENOENT; 8184 8185 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8186 return -ENOENT; 8187 8188 /* 8189 * no branch sampling for software events 8190 */ 8191 if (has_branch_stack(event)) 8192 return -EOPNOTSUPP; 8193 8194 perf_swevent_init_hrtimer(event); 8195 8196 return 0; 8197 } 8198 8199 static struct pmu perf_cpu_clock = { 8200 .task_ctx_nr = perf_sw_context, 8201 8202 .capabilities = PERF_PMU_CAP_NO_NMI, 8203 8204 .event_init = cpu_clock_event_init, 8205 .add = cpu_clock_event_add, 8206 .del = cpu_clock_event_del, 8207 .start = cpu_clock_event_start, 8208 .stop = cpu_clock_event_stop, 8209 .read = cpu_clock_event_read, 8210 }; 8211 8212 /* 8213 * Software event: task time clock 8214 */ 8215 8216 static void task_clock_event_update(struct perf_event *event, u64 now) 8217 { 8218 u64 prev; 8219 s64 delta; 8220 8221 prev = local64_xchg(&event->hw.prev_count, now); 8222 delta = now - prev; 8223 local64_add(delta, &event->count); 8224 } 8225 8226 static void task_clock_event_start(struct perf_event *event, int flags) 8227 { 8228 local64_set(&event->hw.prev_count, event->ctx->time); 8229 perf_swevent_start_hrtimer(event); 8230 } 8231 8232 static void task_clock_event_stop(struct perf_event *event, int flags) 8233 { 8234 perf_swevent_cancel_hrtimer(event); 8235 task_clock_event_update(event, event->ctx->time); 8236 } 8237 8238 static int task_clock_event_add(struct perf_event *event, int flags) 8239 { 8240 if (flags & PERF_EF_START) 8241 task_clock_event_start(event, flags); 8242 perf_event_update_userpage(event); 8243 8244 return 0; 8245 } 8246 8247 static void task_clock_event_del(struct perf_event *event, int flags) 8248 { 8249 task_clock_event_stop(event, PERF_EF_UPDATE); 8250 } 8251 8252 static void task_clock_event_read(struct perf_event *event) 8253 { 8254 u64 now = perf_clock(); 8255 u64 delta = now - event->ctx->timestamp; 8256 u64 time = event->ctx->time + delta; 8257 8258 task_clock_event_update(event, time); 8259 } 8260 8261 static int task_clock_event_init(struct perf_event *event) 8262 { 8263 if (event->attr.type != PERF_TYPE_SOFTWARE) 8264 return -ENOENT; 8265 8266 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8267 return -ENOENT; 8268 8269 /* 8270 * no branch sampling for software events 8271 */ 8272 if (has_branch_stack(event)) 8273 return -EOPNOTSUPP; 8274 8275 perf_swevent_init_hrtimer(event); 8276 8277 return 0; 8278 } 8279 8280 static struct pmu perf_task_clock = { 8281 .task_ctx_nr = perf_sw_context, 8282 8283 .capabilities = PERF_PMU_CAP_NO_NMI, 8284 8285 .event_init = task_clock_event_init, 8286 .add = task_clock_event_add, 8287 .del = task_clock_event_del, 8288 .start = task_clock_event_start, 8289 .stop = task_clock_event_stop, 8290 .read = task_clock_event_read, 8291 }; 8292 8293 static void perf_pmu_nop_void(struct pmu *pmu) 8294 { 8295 } 8296 8297 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8298 { 8299 } 8300 8301 static int perf_pmu_nop_int(struct pmu *pmu) 8302 { 8303 return 0; 8304 } 8305 8306 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8307 8308 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8309 { 8310 __this_cpu_write(nop_txn_flags, flags); 8311 8312 if (flags & ~PERF_PMU_TXN_ADD) 8313 return; 8314 8315 perf_pmu_disable(pmu); 8316 } 8317 8318 static int perf_pmu_commit_txn(struct pmu *pmu) 8319 { 8320 unsigned int flags = __this_cpu_read(nop_txn_flags); 8321 8322 __this_cpu_write(nop_txn_flags, 0); 8323 8324 if (flags & ~PERF_PMU_TXN_ADD) 8325 return 0; 8326 8327 perf_pmu_enable(pmu); 8328 return 0; 8329 } 8330 8331 static void perf_pmu_cancel_txn(struct pmu *pmu) 8332 { 8333 unsigned int flags = __this_cpu_read(nop_txn_flags); 8334 8335 __this_cpu_write(nop_txn_flags, 0); 8336 8337 if (flags & ~PERF_PMU_TXN_ADD) 8338 return; 8339 8340 perf_pmu_enable(pmu); 8341 } 8342 8343 static int perf_event_idx_default(struct perf_event *event) 8344 { 8345 return 0; 8346 } 8347 8348 /* 8349 * Ensures all contexts with the same task_ctx_nr have the same 8350 * pmu_cpu_context too. 8351 */ 8352 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8353 { 8354 struct pmu *pmu; 8355 8356 if (ctxn < 0) 8357 return NULL; 8358 8359 list_for_each_entry(pmu, &pmus, entry) { 8360 if (pmu->task_ctx_nr == ctxn) 8361 return pmu->pmu_cpu_context; 8362 } 8363 8364 return NULL; 8365 } 8366 8367 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8368 { 8369 int cpu; 8370 8371 for_each_possible_cpu(cpu) { 8372 struct perf_cpu_context *cpuctx; 8373 8374 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8375 8376 if (cpuctx->unique_pmu == old_pmu) 8377 cpuctx->unique_pmu = pmu; 8378 } 8379 } 8380 8381 static void free_pmu_context(struct pmu *pmu) 8382 { 8383 struct pmu *i; 8384 8385 mutex_lock(&pmus_lock); 8386 /* 8387 * Like a real lame refcount. 8388 */ 8389 list_for_each_entry(i, &pmus, entry) { 8390 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8391 update_pmu_context(i, pmu); 8392 goto out; 8393 } 8394 } 8395 8396 free_percpu(pmu->pmu_cpu_context); 8397 out: 8398 mutex_unlock(&pmus_lock); 8399 } 8400 8401 /* 8402 * Let userspace know that this PMU supports address range filtering: 8403 */ 8404 static ssize_t nr_addr_filters_show(struct device *dev, 8405 struct device_attribute *attr, 8406 char *page) 8407 { 8408 struct pmu *pmu = dev_get_drvdata(dev); 8409 8410 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8411 } 8412 DEVICE_ATTR_RO(nr_addr_filters); 8413 8414 static struct idr pmu_idr; 8415 8416 static ssize_t 8417 type_show(struct device *dev, struct device_attribute *attr, char *page) 8418 { 8419 struct pmu *pmu = dev_get_drvdata(dev); 8420 8421 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8422 } 8423 static DEVICE_ATTR_RO(type); 8424 8425 static ssize_t 8426 perf_event_mux_interval_ms_show(struct device *dev, 8427 struct device_attribute *attr, 8428 char *page) 8429 { 8430 struct pmu *pmu = dev_get_drvdata(dev); 8431 8432 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8433 } 8434 8435 static DEFINE_MUTEX(mux_interval_mutex); 8436 8437 static ssize_t 8438 perf_event_mux_interval_ms_store(struct device *dev, 8439 struct device_attribute *attr, 8440 const char *buf, size_t count) 8441 { 8442 struct pmu *pmu = dev_get_drvdata(dev); 8443 int timer, cpu, ret; 8444 8445 ret = kstrtoint(buf, 0, &timer); 8446 if (ret) 8447 return ret; 8448 8449 if (timer < 1) 8450 return -EINVAL; 8451 8452 /* same value, noting to do */ 8453 if (timer == pmu->hrtimer_interval_ms) 8454 return count; 8455 8456 mutex_lock(&mux_interval_mutex); 8457 pmu->hrtimer_interval_ms = timer; 8458 8459 /* update all cpuctx for this PMU */ 8460 get_online_cpus(); 8461 for_each_online_cpu(cpu) { 8462 struct perf_cpu_context *cpuctx; 8463 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8464 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8465 8466 cpu_function_call(cpu, 8467 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8468 } 8469 put_online_cpus(); 8470 mutex_unlock(&mux_interval_mutex); 8471 8472 return count; 8473 } 8474 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8475 8476 static struct attribute *pmu_dev_attrs[] = { 8477 &dev_attr_type.attr, 8478 &dev_attr_perf_event_mux_interval_ms.attr, 8479 NULL, 8480 }; 8481 ATTRIBUTE_GROUPS(pmu_dev); 8482 8483 static int pmu_bus_running; 8484 static struct bus_type pmu_bus = { 8485 .name = "event_source", 8486 .dev_groups = pmu_dev_groups, 8487 }; 8488 8489 static void pmu_dev_release(struct device *dev) 8490 { 8491 kfree(dev); 8492 } 8493 8494 static int pmu_dev_alloc(struct pmu *pmu) 8495 { 8496 int ret = -ENOMEM; 8497 8498 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8499 if (!pmu->dev) 8500 goto out; 8501 8502 pmu->dev->groups = pmu->attr_groups; 8503 device_initialize(pmu->dev); 8504 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8505 if (ret) 8506 goto free_dev; 8507 8508 dev_set_drvdata(pmu->dev, pmu); 8509 pmu->dev->bus = &pmu_bus; 8510 pmu->dev->release = pmu_dev_release; 8511 ret = device_add(pmu->dev); 8512 if (ret) 8513 goto free_dev; 8514 8515 /* For PMUs with address filters, throw in an extra attribute: */ 8516 if (pmu->nr_addr_filters) 8517 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8518 8519 if (ret) 8520 goto del_dev; 8521 8522 out: 8523 return ret; 8524 8525 del_dev: 8526 device_del(pmu->dev); 8527 8528 free_dev: 8529 put_device(pmu->dev); 8530 goto out; 8531 } 8532 8533 static struct lock_class_key cpuctx_mutex; 8534 static struct lock_class_key cpuctx_lock; 8535 8536 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8537 { 8538 int cpu, ret; 8539 8540 mutex_lock(&pmus_lock); 8541 ret = -ENOMEM; 8542 pmu->pmu_disable_count = alloc_percpu(int); 8543 if (!pmu->pmu_disable_count) 8544 goto unlock; 8545 8546 pmu->type = -1; 8547 if (!name) 8548 goto skip_type; 8549 pmu->name = name; 8550 8551 if (type < 0) { 8552 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8553 if (type < 0) { 8554 ret = type; 8555 goto free_pdc; 8556 } 8557 } 8558 pmu->type = type; 8559 8560 if (pmu_bus_running) { 8561 ret = pmu_dev_alloc(pmu); 8562 if (ret) 8563 goto free_idr; 8564 } 8565 8566 skip_type: 8567 if (pmu->task_ctx_nr == perf_hw_context) { 8568 static int hw_context_taken = 0; 8569 8570 /* 8571 * Other than systems with heterogeneous CPUs, it never makes 8572 * sense for two PMUs to share perf_hw_context. PMUs which are 8573 * uncore must use perf_invalid_context. 8574 */ 8575 if (WARN_ON_ONCE(hw_context_taken && 8576 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8577 pmu->task_ctx_nr = perf_invalid_context; 8578 8579 hw_context_taken = 1; 8580 } 8581 8582 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8583 if (pmu->pmu_cpu_context) 8584 goto got_cpu_context; 8585 8586 ret = -ENOMEM; 8587 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8588 if (!pmu->pmu_cpu_context) 8589 goto free_dev; 8590 8591 for_each_possible_cpu(cpu) { 8592 struct perf_cpu_context *cpuctx; 8593 8594 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8595 __perf_event_init_context(&cpuctx->ctx); 8596 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8597 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8598 cpuctx->ctx.pmu = pmu; 8599 8600 __perf_mux_hrtimer_init(cpuctx, cpu); 8601 8602 cpuctx->unique_pmu = pmu; 8603 } 8604 8605 got_cpu_context: 8606 if (!pmu->start_txn) { 8607 if (pmu->pmu_enable) { 8608 /* 8609 * If we have pmu_enable/pmu_disable calls, install 8610 * transaction stubs that use that to try and batch 8611 * hardware accesses. 8612 */ 8613 pmu->start_txn = perf_pmu_start_txn; 8614 pmu->commit_txn = perf_pmu_commit_txn; 8615 pmu->cancel_txn = perf_pmu_cancel_txn; 8616 } else { 8617 pmu->start_txn = perf_pmu_nop_txn; 8618 pmu->commit_txn = perf_pmu_nop_int; 8619 pmu->cancel_txn = perf_pmu_nop_void; 8620 } 8621 } 8622 8623 if (!pmu->pmu_enable) { 8624 pmu->pmu_enable = perf_pmu_nop_void; 8625 pmu->pmu_disable = perf_pmu_nop_void; 8626 } 8627 8628 if (!pmu->event_idx) 8629 pmu->event_idx = perf_event_idx_default; 8630 8631 list_add_rcu(&pmu->entry, &pmus); 8632 atomic_set(&pmu->exclusive_cnt, 0); 8633 ret = 0; 8634 unlock: 8635 mutex_unlock(&pmus_lock); 8636 8637 return ret; 8638 8639 free_dev: 8640 device_del(pmu->dev); 8641 put_device(pmu->dev); 8642 8643 free_idr: 8644 if (pmu->type >= PERF_TYPE_MAX) 8645 idr_remove(&pmu_idr, pmu->type); 8646 8647 free_pdc: 8648 free_percpu(pmu->pmu_disable_count); 8649 goto unlock; 8650 } 8651 EXPORT_SYMBOL_GPL(perf_pmu_register); 8652 8653 void perf_pmu_unregister(struct pmu *pmu) 8654 { 8655 mutex_lock(&pmus_lock); 8656 list_del_rcu(&pmu->entry); 8657 mutex_unlock(&pmus_lock); 8658 8659 /* 8660 * We dereference the pmu list under both SRCU and regular RCU, so 8661 * synchronize against both of those. 8662 */ 8663 synchronize_srcu(&pmus_srcu); 8664 synchronize_rcu(); 8665 8666 free_percpu(pmu->pmu_disable_count); 8667 if (pmu->type >= PERF_TYPE_MAX) 8668 idr_remove(&pmu_idr, pmu->type); 8669 if (pmu->nr_addr_filters) 8670 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8671 device_del(pmu->dev); 8672 put_device(pmu->dev); 8673 free_pmu_context(pmu); 8674 } 8675 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8676 8677 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8678 { 8679 struct perf_event_context *ctx = NULL; 8680 int ret; 8681 8682 if (!try_module_get(pmu->module)) 8683 return -ENODEV; 8684 8685 if (event->group_leader != event) { 8686 /* 8687 * This ctx->mutex can nest when we're called through 8688 * inheritance. See the perf_event_ctx_lock_nested() comment. 8689 */ 8690 ctx = perf_event_ctx_lock_nested(event->group_leader, 8691 SINGLE_DEPTH_NESTING); 8692 BUG_ON(!ctx); 8693 } 8694 8695 event->pmu = pmu; 8696 ret = pmu->event_init(event); 8697 8698 if (ctx) 8699 perf_event_ctx_unlock(event->group_leader, ctx); 8700 8701 if (ret) 8702 module_put(pmu->module); 8703 8704 return ret; 8705 } 8706 8707 static struct pmu *perf_init_event(struct perf_event *event) 8708 { 8709 struct pmu *pmu = NULL; 8710 int idx; 8711 int ret; 8712 8713 idx = srcu_read_lock(&pmus_srcu); 8714 8715 rcu_read_lock(); 8716 pmu = idr_find(&pmu_idr, event->attr.type); 8717 rcu_read_unlock(); 8718 if (pmu) { 8719 ret = perf_try_init_event(pmu, event); 8720 if (ret) 8721 pmu = ERR_PTR(ret); 8722 goto unlock; 8723 } 8724 8725 list_for_each_entry_rcu(pmu, &pmus, entry) { 8726 ret = perf_try_init_event(pmu, event); 8727 if (!ret) 8728 goto unlock; 8729 8730 if (ret != -ENOENT) { 8731 pmu = ERR_PTR(ret); 8732 goto unlock; 8733 } 8734 } 8735 pmu = ERR_PTR(-ENOENT); 8736 unlock: 8737 srcu_read_unlock(&pmus_srcu, idx); 8738 8739 return pmu; 8740 } 8741 8742 static void attach_sb_event(struct perf_event *event) 8743 { 8744 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 8745 8746 raw_spin_lock(&pel->lock); 8747 list_add_rcu(&event->sb_list, &pel->list); 8748 raw_spin_unlock(&pel->lock); 8749 } 8750 8751 /* 8752 * We keep a list of all !task (and therefore per-cpu) events 8753 * that need to receive side-band records. 8754 * 8755 * This avoids having to scan all the various PMU per-cpu contexts 8756 * looking for them. 8757 */ 8758 static void account_pmu_sb_event(struct perf_event *event) 8759 { 8760 if (is_sb_event(event)) 8761 attach_sb_event(event); 8762 } 8763 8764 static void account_event_cpu(struct perf_event *event, int cpu) 8765 { 8766 if (event->parent) 8767 return; 8768 8769 if (is_cgroup_event(event)) 8770 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8771 } 8772 8773 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8774 static void account_freq_event_nohz(void) 8775 { 8776 #ifdef CONFIG_NO_HZ_FULL 8777 /* Lock so we don't race with concurrent unaccount */ 8778 spin_lock(&nr_freq_lock); 8779 if (atomic_inc_return(&nr_freq_events) == 1) 8780 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8781 spin_unlock(&nr_freq_lock); 8782 #endif 8783 } 8784 8785 static void account_freq_event(void) 8786 { 8787 if (tick_nohz_full_enabled()) 8788 account_freq_event_nohz(); 8789 else 8790 atomic_inc(&nr_freq_events); 8791 } 8792 8793 8794 static void account_event(struct perf_event *event) 8795 { 8796 bool inc = false; 8797 8798 if (event->parent) 8799 return; 8800 8801 if (event->attach_state & PERF_ATTACH_TASK) 8802 inc = true; 8803 if (event->attr.mmap || event->attr.mmap_data) 8804 atomic_inc(&nr_mmap_events); 8805 if (event->attr.comm) 8806 atomic_inc(&nr_comm_events); 8807 if (event->attr.task) 8808 atomic_inc(&nr_task_events); 8809 if (event->attr.freq) 8810 account_freq_event(); 8811 if (event->attr.context_switch) { 8812 atomic_inc(&nr_switch_events); 8813 inc = true; 8814 } 8815 if (has_branch_stack(event)) 8816 inc = true; 8817 if (is_cgroup_event(event)) 8818 inc = true; 8819 8820 if (inc) { 8821 if (atomic_inc_not_zero(&perf_sched_count)) 8822 goto enabled; 8823 8824 mutex_lock(&perf_sched_mutex); 8825 if (!atomic_read(&perf_sched_count)) { 8826 static_branch_enable(&perf_sched_events); 8827 /* 8828 * Guarantee that all CPUs observe they key change and 8829 * call the perf scheduling hooks before proceeding to 8830 * install events that need them. 8831 */ 8832 synchronize_sched(); 8833 } 8834 /* 8835 * Now that we have waited for the sync_sched(), allow further 8836 * increments to by-pass the mutex. 8837 */ 8838 atomic_inc(&perf_sched_count); 8839 mutex_unlock(&perf_sched_mutex); 8840 } 8841 enabled: 8842 8843 account_event_cpu(event, event->cpu); 8844 8845 account_pmu_sb_event(event); 8846 } 8847 8848 /* 8849 * Allocate and initialize a event structure 8850 */ 8851 static struct perf_event * 8852 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8853 struct task_struct *task, 8854 struct perf_event *group_leader, 8855 struct perf_event *parent_event, 8856 perf_overflow_handler_t overflow_handler, 8857 void *context, int cgroup_fd) 8858 { 8859 struct pmu *pmu; 8860 struct perf_event *event; 8861 struct hw_perf_event *hwc; 8862 long err = -EINVAL; 8863 8864 if ((unsigned)cpu >= nr_cpu_ids) { 8865 if (!task || cpu != -1) 8866 return ERR_PTR(-EINVAL); 8867 } 8868 8869 event = kzalloc(sizeof(*event), GFP_KERNEL); 8870 if (!event) 8871 return ERR_PTR(-ENOMEM); 8872 8873 /* 8874 * Single events are their own group leaders, with an 8875 * empty sibling list: 8876 */ 8877 if (!group_leader) 8878 group_leader = event; 8879 8880 mutex_init(&event->child_mutex); 8881 INIT_LIST_HEAD(&event->child_list); 8882 8883 INIT_LIST_HEAD(&event->group_entry); 8884 INIT_LIST_HEAD(&event->event_entry); 8885 INIT_LIST_HEAD(&event->sibling_list); 8886 INIT_LIST_HEAD(&event->rb_entry); 8887 INIT_LIST_HEAD(&event->active_entry); 8888 INIT_LIST_HEAD(&event->addr_filters.list); 8889 INIT_HLIST_NODE(&event->hlist_entry); 8890 8891 8892 init_waitqueue_head(&event->waitq); 8893 init_irq_work(&event->pending, perf_pending_event); 8894 8895 mutex_init(&event->mmap_mutex); 8896 raw_spin_lock_init(&event->addr_filters.lock); 8897 8898 atomic_long_set(&event->refcount, 1); 8899 event->cpu = cpu; 8900 event->attr = *attr; 8901 event->group_leader = group_leader; 8902 event->pmu = NULL; 8903 event->oncpu = -1; 8904 8905 event->parent = parent_event; 8906 8907 event->ns = get_pid_ns(task_active_pid_ns(current)); 8908 event->id = atomic64_inc_return(&perf_event_id); 8909 8910 event->state = PERF_EVENT_STATE_INACTIVE; 8911 8912 if (task) { 8913 event->attach_state = PERF_ATTACH_TASK; 8914 /* 8915 * XXX pmu::event_init needs to know what task to account to 8916 * and we cannot use the ctx information because we need the 8917 * pmu before we get a ctx. 8918 */ 8919 event->hw.target = task; 8920 } 8921 8922 event->clock = &local_clock; 8923 if (parent_event) 8924 event->clock = parent_event->clock; 8925 8926 if (!overflow_handler && parent_event) { 8927 overflow_handler = parent_event->overflow_handler; 8928 context = parent_event->overflow_handler_context; 8929 } 8930 8931 if (overflow_handler) { 8932 event->overflow_handler = overflow_handler; 8933 event->overflow_handler_context = context; 8934 } else if (is_write_backward(event)){ 8935 event->overflow_handler = perf_event_output_backward; 8936 event->overflow_handler_context = NULL; 8937 } else { 8938 event->overflow_handler = perf_event_output_forward; 8939 event->overflow_handler_context = NULL; 8940 } 8941 8942 perf_event__state_init(event); 8943 8944 pmu = NULL; 8945 8946 hwc = &event->hw; 8947 hwc->sample_period = attr->sample_period; 8948 if (attr->freq && attr->sample_freq) 8949 hwc->sample_period = 1; 8950 hwc->last_period = hwc->sample_period; 8951 8952 local64_set(&hwc->period_left, hwc->sample_period); 8953 8954 /* 8955 * we currently do not support PERF_FORMAT_GROUP on inherited events 8956 */ 8957 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8958 goto err_ns; 8959 8960 if (!has_branch_stack(event)) 8961 event->attr.branch_sample_type = 0; 8962 8963 if (cgroup_fd != -1) { 8964 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8965 if (err) 8966 goto err_ns; 8967 } 8968 8969 pmu = perf_init_event(event); 8970 if (!pmu) 8971 goto err_ns; 8972 else if (IS_ERR(pmu)) { 8973 err = PTR_ERR(pmu); 8974 goto err_ns; 8975 } 8976 8977 err = exclusive_event_init(event); 8978 if (err) 8979 goto err_pmu; 8980 8981 if (has_addr_filter(event)) { 8982 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 8983 sizeof(unsigned long), 8984 GFP_KERNEL); 8985 if (!event->addr_filters_offs) 8986 goto err_per_task; 8987 8988 /* force hw sync on the address filters */ 8989 event->addr_filters_gen = 1; 8990 } 8991 8992 if (!event->parent) { 8993 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8994 err = get_callchain_buffers(attr->sample_max_stack); 8995 if (err) 8996 goto err_addr_filters; 8997 } 8998 } 8999 9000 /* symmetric to unaccount_event() in _free_event() */ 9001 account_event(event); 9002 9003 return event; 9004 9005 err_addr_filters: 9006 kfree(event->addr_filters_offs); 9007 9008 err_per_task: 9009 exclusive_event_destroy(event); 9010 9011 err_pmu: 9012 if (event->destroy) 9013 event->destroy(event); 9014 module_put(pmu->module); 9015 err_ns: 9016 if (is_cgroup_event(event)) 9017 perf_detach_cgroup(event); 9018 if (event->ns) 9019 put_pid_ns(event->ns); 9020 kfree(event); 9021 9022 return ERR_PTR(err); 9023 } 9024 9025 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9026 struct perf_event_attr *attr) 9027 { 9028 u32 size; 9029 int ret; 9030 9031 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9032 return -EFAULT; 9033 9034 /* 9035 * zero the full structure, so that a short copy will be nice. 9036 */ 9037 memset(attr, 0, sizeof(*attr)); 9038 9039 ret = get_user(size, &uattr->size); 9040 if (ret) 9041 return ret; 9042 9043 if (size > PAGE_SIZE) /* silly large */ 9044 goto err_size; 9045 9046 if (!size) /* abi compat */ 9047 size = PERF_ATTR_SIZE_VER0; 9048 9049 if (size < PERF_ATTR_SIZE_VER0) 9050 goto err_size; 9051 9052 /* 9053 * If we're handed a bigger struct than we know of, 9054 * ensure all the unknown bits are 0 - i.e. new 9055 * user-space does not rely on any kernel feature 9056 * extensions we dont know about yet. 9057 */ 9058 if (size > sizeof(*attr)) { 9059 unsigned char __user *addr; 9060 unsigned char __user *end; 9061 unsigned char val; 9062 9063 addr = (void __user *)uattr + sizeof(*attr); 9064 end = (void __user *)uattr + size; 9065 9066 for (; addr < end; addr++) { 9067 ret = get_user(val, addr); 9068 if (ret) 9069 return ret; 9070 if (val) 9071 goto err_size; 9072 } 9073 size = sizeof(*attr); 9074 } 9075 9076 ret = copy_from_user(attr, uattr, size); 9077 if (ret) 9078 return -EFAULT; 9079 9080 if (attr->__reserved_1) 9081 return -EINVAL; 9082 9083 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9084 return -EINVAL; 9085 9086 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9087 return -EINVAL; 9088 9089 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9090 u64 mask = attr->branch_sample_type; 9091 9092 /* only using defined bits */ 9093 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9094 return -EINVAL; 9095 9096 /* at least one branch bit must be set */ 9097 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9098 return -EINVAL; 9099 9100 /* propagate priv level, when not set for branch */ 9101 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9102 9103 /* exclude_kernel checked on syscall entry */ 9104 if (!attr->exclude_kernel) 9105 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9106 9107 if (!attr->exclude_user) 9108 mask |= PERF_SAMPLE_BRANCH_USER; 9109 9110 if (!attr->exclude_hv) 9111 mask |= PERF_SAMPLE_BRANCH_HV; 9112 /* 9113 * adjust user setting (for HW filter setup) 9114 */ 9115 attr->branch_sample_type = mask; 9116 } 9117 /* privileged levels capture (kernel, hv): check permissions */ 9118 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9119 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9120 return -EACCES; 9121 } 9122 9123 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9124 ret = perf_reg_validate(attr->sample_regs_user); 9125 if (ret) 9126 return ret; 9127 } 9128 9129 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9130 if (!arch_perf_have_user_stack_dump()) 9131 return -ENOSYS; 9132 9133 /* 9134 * We have __u32 type for the size, but so far 9135 * we can only use __u16 as maximum due to the 9136 * __u16 sample size limit. 9137 */ 9138 if (attr->sample_stack_user >= USHRT_MAX) 9139 ret = -EINVAL; 9140 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9141 ret = -EINVAL; 9142 } 9143 9144 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9145 ret = perf_reg_validate(attr->sample_regs_intr); 9146 out: 9147 return ret; 9148 9149 err_size: 9150 put_user(sizeof(*attr), &uattr->size); 9151 ret = -E2BIG; 9152 goto out; 9153 } 9154 9155 static int 9156 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9157 { 9158 struct ring_buffer *rb = NULL; 9159 int ret = -EINVAL; 9160 9161 if (!output_event) 9162 goto set; 9163 9164 /* don't allow circular references */ 9165 if (event == output_event) 9166 goto out; 9167 9168 /* 9169 * Don't allow cross-cpu buffers 9170 */ 9171 if (output_event->cpu != event->cpu) 9172 goto out; 9173 9174 /* 9175 * If its not a per-cpu rb, it must be the same task. 9176 */ 9177 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9178 goto out; 9179 9180 /* 9181 * Mixing clocks in the same buffer is trouble you don't need. 9182 */ 9183 if (output_event->clock != event->clock) 9184 goto out; 9185 9186 /* 9187 * Either writing ring buffer from beginning or from end. 9188 * Mixing is not allowed. 9189 */ 9190 if (is_write_backward(output_event) != is_write_backward(event)) 9191 goto out; 9192 9193 /* 9194 * If both events generate aux data, they must be on the same PMU 9195 */ 9196 if (has_aux(event) && has_aux(output_event) && 9197 event->pmu != output_event->pmu) 9198 goto out; 9199 9200 set: 9201 mutex_lock(&event->mmap_mutex); 9202 /* Can't redirect output if we've got an active mmap() */ 9203 if (atomic_read(&event->mmap_count)) 9204 goto unlock; 9205 9206 if (output_event) { 9207 /* get the rb we want to redirect to */ 9208 rb = ring_buffer_get(output_event); 9209 if (!rb) 9210 goto unlock; 9211 } 9212 9213 ring_buffer_attach(event, rb); 9214 9215 ret = 0; 9216 unlock: 9217 mutex_unlock(&event->mmap_mutex); 9218 9219 out: 9220 return ret; 9221 } 9222 9223 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9224 { 9225 if (b < a) 9226 swap(a, b); 9227 9228 mutex_lock(a); 9229 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9230 } 9231 9232 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9233 { 9234 bool nmi_safe = false; 9235 9236 switch (clk_id) { 9237 case CLOCK_MONOTONIC: 9238 event->clock = &ktime_get_mono_fast_ns; 9239 nmi_safe = true; 9240 break; 9241 9242 case CLOCK_MONOTONIC_RAW: 9243 event->clock = &ktime_get_raw_fast_ns; 9244 nmi_safe = true; 9245 break; 9246 9247 case CLOCK_REALTIME: 9248 event->clock = &ktime_get_real_ns; 9249 break; 9250 9251 case CLOCK_BOOTTIME: 9252 event->clock = &ktime_get_boot_ns; 9253 break; 9254 9255 case CLOCK_TAI: 9256 event->clock = &ktime_get_tai_ns; 9257 break; 9258 9259 default: 9260 return -EINVAL; 9261 } 9262 9263 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9264 return -EINVAL; 9265 9266 return 0; 9267 } 9268 9269 /** 9270 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9271 * 9272 * @attr_uptr: event_id type attributes for monitoring/sampling 9273 * @pid: target pid 9274 * @cpu: target cpu 9275 * @group_fd: group leader event fd 9276 */ 9277 SYSCALL_DEFINE5(perf_event_open, 9278 struct perf_event_attr __user *, attr_uptr, 9279 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9280 { 9281 struct perf_event *group_leader = NULL, *output_event = NULL; 9282 struct perf_event *event, *sibling; 9283 struct perf_event_attr attr; 9284 struct perf_event_context *ctx, *uninitialized_var(gctx); 9285 struct file *event_file = NULL; 9286 struct fd group = {NULL, 0}; 9287 struct task_struct *task = NULL; 9288 struct pmu *pmu; 9289 int event_fd; 9290 int move_group = 0; 9291 int err; 9292 int f_flags = O_RDWR; 9293 int cgroup_fd = -1; 9294 9295 /* for future expandability... */ 9296 if (flags & ~PERF_FLAG_ALL) 9297 return -EINVAL; 9298 9299 err = perf_copy_attr(attr_uptr, &attr); 9300 if (err) 9301 return err; 9302 9303 if (!attr.exclude_kernel) { 9304 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9305 return -EACCES; 9306 } 9307 9308 if (attr.freq) { 9309 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9310 return -EINVAL; 9311 } else { 9312 if (attr.sample_period & (1ULL << 63)) 9313 return -EINVAL; 9314 } 9315 9316 if (!attr.sample_max_stack) 9317 attr.sample_max_stack = sysctl_perf_event_max_stack; 9318 9319 /* 9320 * In cgroup mode, the pid argument is used to pass the fd 9321 * opened to the cgroup directory in cgroupfs. The cpu argument 9322 * designates the cpu on which to monitor threads from that 9323 * cgroup. 9324 */ 9325 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9326 return -EINVAL; 9327 9328 if (flags & PERF_FLAG_FD_CLOEXEC) 9329 f_flags |= O_CLOEXEC; 9330 9331 event_fd = get_unused_fd_flags(f_flags); 9332 if (event_fd < 0) 9333 return event_fd; 9334 9335 if (group_fd != -1) { 9336 err = perf_fget_light(group_fd, &group); 9337 if (err) 9338 goto err_fd; 9339 group_leader = group.file->private_data; 9340 if (flags & PERF_FLAG_FD_OUTPUT) 9341 output_event = group_leader; 9342 if (flags & PERF_FLAG_FD_NO_GROUP) 9343 group_leader = NULL; 9344 } 9345 9346 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9347 task = find_lively_task_by_vpid(pid); 9348 if (IS_ERR(task)) { 9349 err = PTR_ERR(task); 9350 goto err_group_fd; 9351 } 9352 } 9353 9354 if (task && group_leader && 9355 group_leader->attr.inherit != attr.inherit) { 9356 err = -EINVAL; 9357 goto err_task; 9358 } 9359 9360 get_online_cpus(); 9361 9362 if (task) { 9363 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9364 if (err) 9365 goto err_cpus; 9366 9367 /* 9368 * Reuse ptrace permission checks for now. 9369 * 9370 * We must hold cred_guard_mutex across this and any potential 9371 * perf_install_in_context() call for this new event to 9372 * serialize against exec() altering our credentials (and the 9373 * perf_event_exit_task() that could imply). 9374 */ 9375 err = -EACCES; 9376 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9377 goto err_cred; 9378 } 9379 9380 if (flags & PERF_FLAG_PID_CGROUP) 9381 cgroup_fd = pid; 9382 9383 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9384 NULL, NULL, cgroup_fd); 9385 if (IS_ERR(event)) { 9386 err = PTR_ERR(event); 9387 goto err_cred; 9388 } 9389 9390 if (is_sampling_event(event)) { 9391 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9392 err = -EOPNOTSUPP; 9393 goto err_alloc; 9394 } 9395 } 9396 9397 /* 9398 * Special case software events and allow them to be part of 9399 * any hardware group. 9400 */ 9401 pmu = event->pmu; 9402 9403 if (attr.use_clockid) { 9404 err = perf_event_set_clock(event, attr.clockid); 9405 if (err) 9406 goto err_alloc; 9407 } 9408 9409 if (group_leader && 9410 (is_software_event(event) != is_software_event(group_leader))) { 9411 if (is_software_event(event)) { 9412 /* 9413 * If event and group_leader are not both a software 9414 * event, and event is, then group leader is not. 9415 * 9416 * Allow the addition of software events to !software 9417 * groups, this is safe because software events never 9418 * fail to schedule. 9419 */ 9420 pmu = group_leader->pmu; 9421 } else if (is_software_event(group_leader) && 9422 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9423 /* 9424 * In case the group is a pure software group, and we 9425 * try to add a hardware event, move the whole group to 9426 * the hardware context. 9427 */ 9428 move_group = 1; 9429 } 9430 } 9431 9432 /* 9433 * Get the target context (task or percpu): 9434 */ 9435 ctx = find_get_context(pmu, task, event); 9436 if (IS_ERR(ctx)) { 9437 err = PTR_ERR(ctx); 9438 goto err_alloc; 9439 } 9440 9441 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9442 err = -EBUSY; 9443 goto err_context; 9444 } 9445 9446 /* 9447 * Look up the group leader (we will attach this event to it): 9448 */ 9449 if (group_leader) { 9450 err = -EINVAL; 9451 9452 /* 9453 * Do not allow a recursive hierarchy (this new sibling 9454 * becoming part of another group-sibling): 9455 */ 9456 if (group_leader->group_leader != group_leader) 9457 goto err_context; 9458 9459 /* All events in a group should have the same clock */ 9460 if (group_leader->clock != event->clock) 9461 goto err_context; 9462 9463 /* 9464 * Do not allow to attach to a group in a different 9465 * task or CPU context: 9466 */ 9467 if (move_group) { 9468 /* 9469 * Make sure we're both on the same task, or both 9470 * per-cpu events. 9471 */ 9472 if (group_leader->ctx->task != ctx->task) 9473 goto err_context; 9474 9475 /* 9476 * Make sure we're both events for the same CPU; 9477 * grouping events for different CPUs is broken; since 9478 * you can never concurrently schedule them anyhow. 9479 */ 9480 if (group_leader->cpu != event->cpu) 9481 goto err_context; 9482 } else { 9483 if (group_leader->ctx != ctx) 9484 goto err_context; 9485 } 9486 9487 /* 9488 * Only a group leader can be exclusive or pinned 9489 */ 9490 if (attr.exclusive || attr.pinned) 9491 goto err_context; 9492 } 9493 9494 if (output_event) { 9495 err = perf_event_set_output(event, output_event); 9496 if (err) 9497 goto err_context; 9498 } 9499 9500 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9501 f_flags); 9502 if (IS_ERR(event_file)) { 9503 err = PTR_ERR(event_file); 9504 event_file = NULL; 9505 goto err_context; 9506 } 9507 9508 if (move_group) { 9509 gctx = group_leader->ctx; 9510 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9511 if (gctx->task == TASK_TOMBSTONE) { 9512 err = -ESRCH; 9513 goto err_locked; 9514 } 9515 } else { 9516 mutex_lock(&ctx->mutex); 9517 } 9518 9519 if (ctx->task == TASK_TOMBSTONE) { 9520 err = -ESRCH; 9521 goto err_locked; 9522 } 9523 9524 if (!perf_event_validate_size(event)) { 9525 err = -E2BIG; 9526 goto err_locked; 9527 } 9528 9529 /* 9530 * Must be under the same ctx::mutex as perf_install_in_context(), 9531 * because we need to serialize with concurrent event creation. 9532 */ 9533 if (!exclusive_event_installable(event, ctx)) { 9534 /* exclusive and group stuff are assumed mutually exclusive */ 9535 WARN_ON_ONCE(move_group); 9536 9537 err = -EBUSY; 9538 goto err_locked; 9539 } 9540 9541 WARN_ON_ONCE(ctx->parent_ctx); 9542 9543 /* 9544 * This is the point on no return; we cannot fail hereafter. This is 9545 * where we start modifying current state. 9546 */ 9547 9548 if (move_group) { 9549 /* 9550 * See perf_event_ctx_lock() for comments on the details 9551 * of swizzling perf_event::ctx. 9552 */ 9553 perf_remove_from_context(group_leader, 0); 9554 9555 list_for_each_entry(sibling, &group_leader->sibling_list, 9556 group_entry) { 9557 perf_remove_from_context(sibling, 0); 9558 put_ctx(gctx); 9559 } 9560 9561 /* 9562 * Wait for everybody to stop referencing the events through 9563 * the old lists, before installing it on new lists. 9564 */ 9565 synchronize_rcu(); 9566 9567 /* 9568 * Install the group siblings before the group leader. 9569 * 9570 * Because a group leader will try and install the entire group 9571 * (through the sibling list, which is still in-tact), we can 9572 * end up with siblings installed in the wrong context. 9573 * 9574 * By installing siblings first we NO-OP because they're not 9575 * reachable through the group lists. 9576 */ 9577 list_for_each_entry(sibling, &group_leader->sibling_list, 9578 group_entry) { 9579 perf_event__state_init(sibling); 9580 perf_install_in_context(ctx, sibling, sibling->cpu); 9581 get_ctx(ctx); 9582 } 9583 9584 /* 9585 * Removing from the context ends up with disabled 9586 * event. What we want here is event in the initial 9587 * startup state, ready to be add into new context. 9588 */ 9589 perf_event__state_init(group_leader); 9590 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9591 get_ctx(ctx); 9592 9593 /* 9594 * Now that all events are installed in @ctx, nothing 9595 * references @gctx anymore, so drop the last reference we have 9596 * on it. 9597 */ 9598 put_ctx(gctx); 9599 } 9600 9601 /* 9602 * Precalculate sample_data sizes; do while holding ctx::mutex such 9603 * that we're serialized against further additions and before 9604 * perf_install_in_context() which is the point the event is active and 9605 * can use these values. 9606 */ 9607 perf_event__header_size(event); 9608 perf_event__id_header_size(event); 9609 9610 event->owner = current; 9611 9612 perf_install_in_context(ctx, event, event->cpu); 9613 perf_unpin_context(ctx); 9614 9615 if (move_group) 9616 mutex_unlock(&gctx->mutex); 9617 mutex_unlock(&ctx->mutex); 9618 9619 if (task) { 9620 mutex_unlock(&task->signal->cred_guard_mutex); 9621 put_task_struct(task); 9622 } 9623 9624 put_online_cpus(); 9625 9626 mutex_lock(¤t->perf_event_mutex); 9627 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9628 mutex_unlock(¤t->perf_event_mutex); 9629 9630 /* 9631 * Drop the reference on the group_event after placing the 9632 * new event on the sibling_list. This ensures destruction 9633 * of the group leader will find the pointer to itself in 9634 * perf_group_detach(). 9635 */ 9636 fdput(group); 9637 fd_install(event_fd, event_file); 9638 return event_fd; 9639 9640 err_locked: 9641 if (move_group) 9642 mutex_unlock(&gctx->mutex); 9643 mutex_unlock(&ctx->mutex); 9644 /* err_file: */ 9645 fput(event_file); 9646 err_context: 9647 perf_unpin_context(ctx); 9648 put_ctx(ctx); 9649 err_alloc: 9650 /* 9651 * If event_file is set, the fput() above will have called ->release() 9652 * and that will take care of freeing the event. 9653 */ 9654 if (!event_file) 9655 free_event(event); 9656 err_cred: 9657 if (task) 9658 mutex_unlock(&task->signal->cred_guard_mutex); 9659 err_cpus: 9660 put_online_cpus(); 9661 err_task: 9662 if (task) 9663 put_task_struct(task); 9664 err_group_fd: 9665 fdput(group); 9666 err_fd: 9667 put_unused_fd(event_fd); 9668 return err; 9669 } 9670 9671 /** 9672 * perf_event_create_kernel_counter 9673 * 9674 * @attr: attributes of the counter to create 9675 * @cpu: cpu in which the counter is bound 9676 * @task: task to profile (NULL for percpu) 9677 */ 9678 struct perf_event * 9679 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9680 struct task_struct *task, 9681 perf_overflow_handler_t overflow_handler, 9682 void *context) 9683 { 9684 struct perf_event_context *ctx; 9685 struct perf_event *event; 9686 int err; 9687 9688 /* 9689 * Get the target context (task or percpu): 9690 */ 9691 9692 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9693 overflow_handler, context, -1); 9694 if (IS_ERR(event)) { 9695 err = PTR_ERR(event); 9696 goto err; 9697 } 9698 9699 /* Mark owner so we could distinguish it from user events. */ 9700 event->owner = TASK_TOMBSTONE; 9701 9702 ctx = find_get_context(event->pmu, task, event); 9703 if (IS_ERR(ctx)) { 9704 err = PTR_ERR(ctx); 9705 goto err_free; 9706 } 9707 9708 WARN_ON_ONCE(ctx->parent_ctx); 9709 mutex_lock(&ctx->mutex); 9710 if (ctx->task == TASK_TOMBSTONE) { 9711 err = -ESRCH; 9712 goto err_unlock; 9713 } 9714 9715 if (!exclusive_event_installable(event, ctx)) { 9716 err = -EBUSY; 9717 goto err_unlock; 9718 } 9719 9720 perf_install_in_context(ctx, event, cpu); 9721 perf_unpin_context(ctx); 9722 mutex_unlock(&ctx->mutex); 9723 9724 return event; 9725 9726 err_unlock: 9727 mutex_unlock(&ctx->mutex); 9728 perf_unpin_context(ctx); 9729 put_ctx(ctx); 9730 err_free: 9731 free_event(event); 9732 err: 9733 return ERR_PTR(err); 9734 } 9735 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9736 9737 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9738 { 9739 struct perf_event_context *src_ctx; 9740 struct perf_event_context *dst_ctx; 9741 struct perf_event *event, *tmp; 9742 LIST_HEAD(events); 9743 9744 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9745 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9746 9747 /* 9748 * See perf_event_ctx_lock() for comments on the details 9749 * of swizzling perf_event::ctx. 9750 */ 9751 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9752 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9753 event_entry) { 9754 perf_remove_from_context(event, 0); 9755 unaccount_event_cpu(event, src_cpu); 9756 put_ctx(src_ctx); 9757 list_add(&event->migrate_entry, &events); 9758 } 9759 9760 /* 9761 * Wait for the events to quiesce before re-instating them. 9762 */ 9763 synchronize_rcu(); 9764 9765 /* 9766 * Re-instate events in 2 passes. 9767 * 9768 * Skip over group leaders and only install siblings on this first 9769 * pass, siblings will not get enabled without a leader, however a 9770 * leader will enable its siblings, even if those are still on the old 9771 * context. 9772 */ 9773 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9774 if (event->group_leader == event) 9775 continue; 9776 9777 list_del(&event->migrate_entry); 9778 if (event->state >= PERF_EVENT_STATE_OFF) 9779 event->state = PERF_EVENT_STATE_INACTIVE; 9780 account_event_cpu(event, dst_cpu); 9781 perf_install_in_context(dst_ctx, event, dst_cpu); 9782 get_ctx(dst_ctx); 9783 } 9784 9785 /* 9786 * Once all the siblings are setup properly, install the group leaders 9787 * to make it go. 9788 */ 9789 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9790 list_del(&event->migrate_entry); 9791 if (event->state >= PERF_EVENT_STATE_OFF) 9792 event->state = PERF_EVENT_STATE_INACTIVE; 9793 account_event_cpu(event, dst_cpu); 9794 perf_install_in_context(dst_ctx, event, dst_cpu); 9795 get_ctx(dst_ctx); 9796 } 9797 mutex_unlock(&dst_ctx->mutex); 9798 mutex_unlock(&src_ctx->mutex); 9799 } 9800 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9801 9802 static void sync_child_event(struct perf_event *child_event, 9803 struct task_struct *child) 9804 { 9805 struct perf_event *parent_event = child_event->parent; 9806 u64 child_val; 9807 9808 if (child_event->attr.inherit_stat) 9809 perf_event_read_event(child_event, child); 9810 9811 child_val = perf_event_count(child_event); 9812 9813 /* 9814 * Add back the child's count to the parent's count: 9815 */ 9816 atomic64_add(child_val, &parent_event->child_count); 9817 atomic64_add(child_event->total_time_enabled, 9818 &parent_event->child_total_time_enabled); 9819 atomic64_add(child_event->total_time_running, 9820 &parent_event->child_total_time_running); 9821 } 9822 9823 static void 9824 perf_event_exit_event(struct perf_event *child_event, 9825 struct perf_event_context *child_ctx, 9826 struct task_struct *child) 9827 { 9828 struct perf_event *parent_event = child_event->parent; 9829 9830 /* 9831 * Do not destroy the 'original' grouping; because of the context 9832 * switch optimization the original events could've ended up in a 9833 * random child task. 9834 * 9835 * If we were to destroy the original group, all group related 9836 * operations would cease to function properly after this random 9837 * child dies. 9838 * 9839 * Do destroy all inherited groups, we don't care about those 9840 * and being thorough is better. 9841 */ 9842 raw_spin_lock_irq(&child_ctx->lock); 9843 WARN_ON_ONCE(child_ctx->is_active); 9844 9845 if (parent_event) 9846 perf_group_detach(child_event); 9847 list_del_event(child_event, child_ctx); 9848 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9849 raw_spin_unlock_irq(&child_ctx->lock); 9850 9851 /* 9852 * Parent events are governed by their filedesc, retain them. 9853 */ 9854 if (!parent_event) { 9855 perf_event_wakeup(child_event); 9856 return; 9857 } 9858 /* 9859 * Child events can be cleaned up. 9860 */ 9861 9862 sync_child_event(child_event, child); 9863 9864 /* 9865 * Remove this event from the parent's list 9866 */ 9867 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9868 mutex_lock(&parent_event->child_mutex); 9869 list_del_init(&child_event->child_list); 9870 mutex_unlock(&parent_event->child_mutex); 9871 9872 /* 9873 * Kick perf_poll() for is_event_hup(). 9874 */ 9875 perf_event_wakeup(parent_event); 9876 free_event(child_event); 9877 put_event(parent_event); 9878 } 9879 9880 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9881 { 9882 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9883 struct perf_event *child_event, *next; 9884 9885 WARN_ON_ONCE(child != current); 9886 9887 child_ctx = perf_pin_task_context(child, ctxn); 9888 if (!child_ctx) 9889 return; 9890 9891 /* 9892 * In order to reduce the amount of tricky in ctx tear-down, we hold 9893 * ctx::mutex over the entire thing. This serializes against almost 9894 * everything that wants to access the ctx. 9895 * 9896 * The exception is sys_perf_event_open() / 9897 * perf_event_create_kernel_count() which does find_get_context() 9898 * without ctx::mutex (it cannot because of the move_group double mutex 9899 * lock thing). See the comments in perf_install_in_context(). 9900 */ 9901 mutex_lock(&child_ctx->mutex); 9902 9903 /* 9904 * In a single ctx::lock section, de-schedule the events and detach the 9905 * context from the task such that we cannot ever get it scheduled back 9906 * in. 9907 */ 9908 raw_spin_lock_irq(&child_ctx->lock); 9909 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9910 9911 /* 9912 * Now that the context is inactive, destroy the task <-> ctx relation 9913 * and mark the context dead. 9914 */ 9915 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9916 put_ctx(child_ctx); /* cannot be last */ 9917 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9918 put_task_struct(current); /* cannot be last */ 9919 9920 clone_ctx = unclone_ctx(child_ctx); 9921 raw_spin_unlock_irq(&child_ctx->lock); 9922 9923 if (clone_ctx) 9924 put_ctx(clone_ctx); 9925 9926 /* 9927 * Report the task dead after unscheduling the events so that we 9928 * won't get any samples after PERF_RECORD_EXIT. We can however still 9929 * get a few PERF_RECORD_READ events. 9930 */ 9931 perf_event_task(child, child_ctx, 0); 9932 9933 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 9934 perf_event_exit_event(child_event, child_ctx, child); 9935 9936 mutex_unlock(&child_ctx->mutex); 9937 9938 put_ctx(child_ctx); 9939 } 9940 9941 /* 9942 * When a child task exits, feed back event values to parent events. 9943 * 9944 * Can be called with cred_guard_mutex held when called from 9945 * install_exec_creds(). 9946 */ 9947 void perf_event_exit_task(struct task_struct *child) 9948 { 9949 struct perf_event *event, *tmp; 9950 int ctxn; 9951 9952 mutex_lock(&child->perf_event_mutex); 9953 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9954 owner_entry) { 9955 list_del_init(&event->owner_entry); 9956 9957 /* 9958 * Ensure the list deletion is visible before we clear 9959 * the owner, closes a race against perf_release() where 9960 * we need to serialize on the owner->perf_event_mutex. 9961 */ 9962 smp_store_release(&event->owner, NULL); 9963 } 9964 mutex_unlock(&child->perf_event_mutex); 9965 9966 for_each_task_context_nr(ctxn) 9967 perf_event_exit_task_context(child, ctxn); 9968 9969 /* 9970 * The perf_event_exit_task_context calls perf_event_task 9971 * with child's task_ctx, which generates EXIT events for 9972 * child contexts and sets child->perf_event_ctxp[] to NULL. 9973 * At this point we need to send EXIT events to cpu contexts. 9974 */ 9975 perf_event_task(child, NULL, 0); 9976 } 9977 9978 static void perf_free_event(struct perf_event *event, 9979 struct perf_event_context *ctx) 9980 { 9981 struct perf_event *parent = event->parent; 9982 9983 if (WARN_ON_ONCE(!parent)) 9984 return; 9985 9986 mutex_lock(&parent->child_mutex); 9987 list_del_init(&event->child_list); 9988 mutex_unlock(&parent->child_mutex); 9989 9990 put_event(parent); 9991 9992 raw_spin_lock_irq(&ctx->lock); 9993 perf_group_detach(event); 9994 list_del_event(event, ctx); 9995 raw_spin_unlock_irq(&ctx->lock); 9996 free_event(event); 9997 } 9998 9999 /* 10000 * Free an unexposed, unused context as created by inheritance by 10001 * perf_event_init_task below, used by fork() in case of fail. 10002 * 10003 * Not all locks are strictly required, but take them anyway to be nice and 10004 * help out with the lockdep assertions. 10005 */ 10006 void perf_event_free_task(struct task_struct *task) 10007 { 10008 struct perf_event_context *ctx; 10009 struct perf_event *event, *tmp; 10010 int ctxn; 10011 10012 for_each_task_context_nr(ctxn) { 10013 ctx = task->perf_event_ctxp[ctxn]; 10014 if (!ctx) 10015 continue; 10016 10017 mutex_lock(&ctx->mutex); 10018 again: 10019 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 10020 group_entry) 10021 perf_free_event(event, ctx); 10022 10023 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 10024 group_entry) 10025 perf_free_event(event, ctx); 10026 10027 if (!list_empty(&ctx->pinned_groups) || 10028 !list_empty(&ctx->flexible_groups)) 10029 goto again; 10030 10031 mutex_unlock(&ctx->mutex); 10032 10033 put_ctx(ctx); 10034 } 10035 } 10036 10037 void perf_event_delayed_put(struct task_struct *task) 10038 { 10039 int ctxn; 10040 10041 for_each_task_context_nr(ctxn) 10042 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10043 } 10044 10045 struct file *perf_event_get(unsigned int fd) 10046 { 10047 struct file *file; 10048 10049 file = fget_raw(fd); 10050 if (!file) 10051 return ERR_PTR(-EBADF); 10052 10053 if (file->f_op != &perf_fops) { 10054 fput(file); 10055 return ERR_PTR(-EBADF); 10056 } 10057 10058 return file; 10059 } 10060 10061 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10062 { 10063 if (!event) 10064 return ERR_PTR(-EINVAL); 10065 10066 return &event->attr; 10067 } 10068 10069 /* 10070 * inherit a event from parent task to child task: 10071 */ 10072 static struct perf_event * 10073 inherit_event(struct perf_event *parent_event, 10074 struct task_struct *parent, 10075 struct perf_event_context *parent_ctx, 10076 struct task_struct *child, 10077 struct perf_event *group_leader, 10078 struct perf_event_context *child_ctx) 10079 { 10080 enum perf_event_active_state parent_state = parent_event->state; 10081 struct perf_event *child_event; 10082 unsigned long flags; 10083 10084 /* 10085 * Instead of creating recursive hierarchies of events, 10086 * we link inherited events back to the original parent, 10087 * which has a filp for sure, which we use as the reference 10088 * count: 10089 */ 10090 if (parent_event->parent) 10091 parent_event = parent_event->parent; 10092 10093 child_event = perf_event_alloc(&parent_event->attr, 10094 parent_event->cpu, 10095 child, 10096 group_leader, parent_event, 10097 NULL, NULL, -1); 10098 if (IS_ERR(child_event)) 10099 return child_event; 10100 10101 /* 10102 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10103 * must be under the same lock in order to serialize against 10104 * perf_event_release_kernel(), such that either we must observe 10105 * is_orphaned_event() or they will observe us on the child_list. 10106 */ 10107 mutex_lock(&parent_event->child_mutex); 10108 if (is_orphaned_event(parent_event) || 10109 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10110 mutex_unlock(&parent_event->child_mutex); 10111 free_event(child_event); 10112 return NULL; 10113 } 10114 10115 get_ctx(child_ctx); 10116 10117 /* 10118 * Make the child state follow the state of the parent event, 10119 * not its attr.disabled bit. We hold the parent's mutex, 10120 * so we won't race with perf_event_{en, dis}able_family. 10121 */ 10122 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10123 child_event->state = PERF_EVENT_STATE_INACTIVE; 10124 else 10125 child_event->state = PERF_EVENT_STATE_OFF; 10126 10127 if (parent_event->attr.freq) { 10128 u64 sample_period = parent_event->hw.sample_period; 10129 struct hw_perf_event *hwc = &child_event->hw; 10130 10131 hwc->sample_period = sample_period; 10132 hwc->last_period = sample_period; 10133 10134 local64_set(&hwc->period_left, sample_period); 10135 } 10136 10137 child_event->ctx = child_ctx; 10138 child_event->overflow_handler = parent_event->overflow_handler; 10139 child_event->overflow_handler_context 10140 = parent_event->overflow_handler_context; 10141 10142 /* 10143 * Precalculate sample_data sizes 10144 */ 10145 perf_event__header_size(child_event); 10146 perf_event__id_header_size(child_event); 10147 10148 /* 10149 * Link it up in the child's context: 10150 */ 10151 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10152 add_event_to_ctx(child_event, child_ctx); 10153 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10154 10155 /* 10156 * Link this into the parent event's child list 10157 */ 10158 list_add_tail(&child_event->child_list, &parent_event->child_list); 10159 mutex_unlock(&parent_event->child_mutex); 10160 10161 return child_event; 10162 } 10163 10164 static int inherit_group(struct perf_event *parent_event, 10165 struct task_struct *parent, 10166 struct perf_event_context *parent_ctx, 10167 struct task_struct *child, 10168 struct perf_event_context *child_ctx) 10169 { 10170 struct perf_event *leader; 10171 struct perf_event *sub; 10172 struct perf_event *child_ctr; 10173 10174 leader = inherit_event(parent_event, parent, parent_ctx, 10175 child, NULL, child_ctx); 10176 if (IS_ERR(leader)) 10177 return PTR_ERR(leader); 10178 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10179 child_ctr = inherit_event(sub, parent, parent_ctx, 10180 child, leader, child_ctx); 10181 if (IS_ERR(child_ctr)) 10182 return PTR_ERR(child_ctr); 10183 } 10184 return 0; 10185 } 10186 10187 static int 10188 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10189 struct perf_event_context *parent_ctx, 10190 struct task_struct *child, int ctxn, 10191 int *inherited_all) 10192 { 10193 int ret; 10194 struct perf_event_context *child_ctx; 10195 10196 if (!event->attr.inherit) { 10197 *inherited_all = 0; 10198 return 0; 10199 } 10200 10201 child_ctx = child->perf_event_ctxp[ctxn]; 10202 if (!child_ctx) { 10203 /* 10204 * This is executed from the parent task context, so 10205 * inherit events that have been marked for cloning. 10206 * First allocate and initialize a context for the 10207 * child. 10208 */ 10209 10210 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10211 if (!child_ctx) 10212 return -ENOMEM; 10213 10214 child->perf_event_ctxp[ctxn] = child_ctx; 10215 } 10216 10217 ret = inherit_group(event, parent, parent_ctx, 10218 child, child_ctx); 10219 10220 if (ret) 10221 *inherited_all = 0; 10222 10223 return ret; 10224 } 10225 10226 /* 10227 * Initialize the perf_event context in task_struct 10228 */ 10229 static int perf_event_init_context(struct task_struct *child, int ctxn) 10230 { 10231 struct perf_event_context *child_ctx, *parent_ctx; 10232 struct perf_event_context *cloned_ctx; 10233 struct perf_event *event; 10234 struct task_struct *parent = current; 10235 int inherited_all = 1; 10236 unsigned long flags; 10237 int ret = 0; 10238 10239 if (likely(!parent->perf_event_ctxp[ctxn])) 10240 return 0; 10241 10242 /* 10243 * If the parent's context is a clone, pin it so it won't get 10244 * swapped under us. 10245 */ 10246 parent_ctx = perf_pin_task_context(parent, ctxn); 10247 if (!parent_ctx) 10248 return 0; 10249 10250 /* 10251 * No need to check if parent_ctx != NULL here; since we saw 10252 * it non-NULL earlier, the only reason for it to become NULL 10253 * is if we exit, and since we're currently in the middle of 10254 * a fork we can't be exiting at the same time. 10255 */ 10256 10257 /* 10258 * Lock the parent list. No need to lock the child - not PID 10259 * hashed yet and not running, so nobody can access it. 10260 */ 10261 mutex_lock(&parent_ctx->mutex); 10262 10263 /* 10264 * We dont have to disable NMIs - we are only looking at 10265 * the list, not manipulating it: 10266 */ 10267 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10268 ret = inherit_task_group(event, parent, parent_ctx, 10269 child, ctxn, &inherited_all); 10270 if (ret) 10271 break; 10272 } 10273 10274 /* 10275 * We can't hold ctx->lock when iterating the ->flexible_group list due 10276 * to allocations, but we need to prevent rotation because 10277 * rotate_ctx() will change the list from interrupt context. 10278 */ 10279 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10280 parent_ctx->rotate_disable = 1; 10281 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10282 10283 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10284 ret = inherit_task_group(event, parent, parent_ctx, 10285 child, ctxn, &inherited_all); 10286 if (ret) 10287 break; 10288 } 10289 10290 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10291 parent_ctx->rotate_disable = 0; 10292 10293 child_ctx = child->perf_event_ctxp[ctxn]; 10294 10295 if (child_ctx && inherited_all) { 10296 /* 10297 * Mark the child context as a clone of the parent 10298 * context, or of whatever the parent is a clone of. 10299 * 10300 * Note that if the parent is a clone, the holding of 10301 * parent_ctx->lock avoids it from being uncloned. 10302 */ 10303 cloned_ctx = parent_ctx->parent_ctx; 10304 if (cloned_ctx) { 10305 child_ctx->parent_ctx = cloned_ctx; 10306 child_ctx->parent_gen = parent_ctx->parent_gen; 10307 } else { 10308 child_ctx->parent_ctx = parent_ctx; 10309 child_ctx->parent_gen = parent_ctx->generation; 10310 } 10311 get_ctx(child_ctx->parent_ctx); 10312 } 10313 10314 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10315 mutex_unlock(&parent_ctx->mutex); 10316 10317 perf_unpin_context(parent_ctx); 10318 put_ctx(parent_ctx); 10319 10320 return ret; 10321 } 10322 10323 /* 10324 * Initialize the perf_event context in task_struct 10325 */ 10326 int perf_event_init_task(struct task_struct *child) 10327 { 10328 int ctxn, ret; 10329 10330 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10331 mutex_init(&child->perf_event_mutex); 10332 INIT_LIST_HEAD(&child->perf_event_list); 10333 10334 for_each_task_context_nr(ctxn) { 10335 ret = perf_event_init_context(child, ctxn); 10336 if (ret) { 10337 perf_event_free_task(child); 10338 return ret; 10339 } 10340 } 10341 10342 return 0; 10343 } 10344 10345 static void __init perf_event_init_all_cpus(void) 10346 { 10347 struct swevent_htable *swhash; 10348 int cpu; 10349 10350 for_each_possible_cpu(cpu) { 10351 swhash = &per_cpu(swevent_htable, cpu); 10352 mutex_init(&swhash->hlist_mutex); 10353 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10354 10355 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10356 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10357 } 10358 } 10359 10360 int perf_event_init_cpu(unsigned int cpu) 10361 { 10362 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10363 10364 mutex_lock(&swhash->hlist_mutex); 10365 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10366 struct swevent_hlist *hlist; 10367 10368 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10369 WARN_ON(!hlist); 10370 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10371 } 10372 mutex_unlock(&swhash->hlist_mutex); 10373 return 0; 10374 } 10375 10376 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10377 static void __perf_event_exit_context(void *__info) 10378 { 10379 struct perf_event_context *ctx = __info; 10380 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10381 struct perf_event *event; 10382 10383 raw_spin_lock(&ctx->lock); 10384 list_for_each_entry(event, &ctx->event_list, event_entry) 10385 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10386 raw_spin_unlock(&ctx->lock); 10387 } 10388 10389 static void perf_event_exit_cpu_context(int cpu) 10390 { 10391 struct perf_event_context *ctx; 10392 struct pmu *pmu; 10393 int idx; 10394 10395 idx = srcu_read_lock(&pmus_srcu); 10396 list_for_each_entry_rcu(pmu, &pmus, entry) { 10397 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10398 10399 mutex_lock(&ctx->mutex); 10400 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10401 mutex_unlock(&ctx->mutex); 10402 } 10403 srcu_read_unlock(&pmus_srcu, idx); 10404 } 10405 #else 10406 10407 static void perf_event_exit_cpu_context(int cpu) { } 10408 10409 #endif 10410 10411 int perf_event_exit_cpu(unsigned int cpu) 10412 { 10413 perf_event_exit_cpu_context(cpu); 10414 return 0; 10415 } 10416 10417 static int 10418 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10419 { 10420 int cpu; 10421 10422 for_each_online_cpu(cpu) 10423 perf_event_exit_cpu(cpu); 10424 10425 return NOTIFY_OK; 10426 } 10427 10428 /* 10429 * Run the perf reboot notifier at the very last possible moment so that 10430 * the generic watchdog code runs as long as possible. 10431 */ 10432 static struct notifier_block perf_reboot_notifier = { 10433 .notifier_call = perf_reboot, 10434 .priority = INT_MIN, 10435 }; 10436 10437 void __init perf_event_init(void) 10438 { 10439 int ret; 10440 10441 idr_init(&pmu_idr); 10442 10443 perf_event_init_all_cpus(); 10444 init_srcu_struct(&pmus_srcu); 10445 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10446 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10447 perf_pmu_register(&perf_task_clock, NULL, -1); 10448 perf_tp_register(); 10449 perf_event_init_cpu(smp_processor_id()); 10450 register_reboot_notifier(&perf_reboot_notifier); 10451 10452 ret = init_hw_breakpoint(); 10453 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10454 10455 /* 10456 * Build time assertion that we keep the data_head at the intended 10457 * location. IOW, validation we got the __reserved[] size right. 10458 */ 10459 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10460 != 1024); 10461 } 10462 10463 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10464 char *page) 10465 { 10466 struct perf_pmu_events_attr *pmu_attr = 10467 container_of(attr, struct perf_pmu_events_attr, attr); 10468 10469 if (pmu_attr->event_str) 10470 return sprintf(page, "%s\n", pmu_attr->event_str); 10471 10472 return 0; 10473 } 10474 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10475 10476 static int __init perf_event_sysfs_init(void) 10477 { 10478 struct pmu *pmu; 10479 int ret; 10480 10481 mutex_lock(&pmus_lock); 10482 10483 ret = bus_register(&pmu_bus); 10484 if (ret) 10485 goto unlock; 10486 10487 list_for_each_entry(pmu, &pmus, entry) { 10488 if (!pmu->name || pmu->type < 0) 10489 continue; 10490 10491 ret = pmu_dev_alloc(pmu); 10492 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10493 } 10494 pmu_bus_running = 1; 10495 ret = 0; 10496 10497 unlock: 10498 mutex_unlock(&pmus_lock); 10499 10500 return ret; 10501 } 10502 device_initcall(perf_event_sysfs_init); 10503 10504 #ifdef CONFIG_CGROUP_PERF 10505 static struct cgroup_subsys_state * 10506 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10507 { 10508 struct perf_cgroup *jc; 10509 10510 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10511 if (!jc) 10512 return ERR_PTR(-ENOMEM); 10513 10514 jc->info = alloc_percpu(struct perf_cgroup_info); 10515 if (!jc->info) { 10516 kfree(jc); 10517 return ERR_PTR(-ENOMEM); 10518 } 10519 10520 return &jc->css; 10521 } 10522 10523 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10524 { 10525 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10526 10527 free_percpu(jc->info); 10528 kfree(jc); 10529 } 10530 10531 static int __perf_cgroup_move(void *info) 10532 { 10533 struct task_struct *task = info; 10534 rcu_read_lock(); 10535 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10536 rcu_read_unlock(); 10537 return 0; 10538 } 10539 10540 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10541 { 10542 struct task_struct *task; 10543 struct cgroup_subsys_state *css; 10544 10545 cgroup_taskset_for_each(task, css, tset) 10546 task_function_call(task, __perf_cgroup_move, task); 10547 } 10548 10549 struct cgroup_subsys perf_event_cgrp_subsys = { 10550 .css_alloc = perf_cgroup_css_alloc, 10551 .css_free = perf_cgroup_css_free, 10552 .attach = perf_cgroup_attach, 10553 }; 10554 #endif /* CONFIG_CGROUP_PERF */ 10555