xref: /openbmc/linux/kernel/events/core.c (revision 6fcd6fea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct perf_cpu_context *cpuctx;
268 	struct event_function_struct efs = {
269 		.event = event,
270 		.func = func,
271 		.data = data,
272 	};
273 
274 	if (!event->parent) {
275 		/*
276 		 * If this is a !child event, we must hold ctx::mutex to
277 		 * stabilize the event->ctx relation. See
278 		 * perf_event_ctx_lock().
279 		 */
280 		lockdep_assert_held(&ctx->mutex);
281 	}
282 
283 	if (!task) {
284 		cpu_function_call(event->cpu, event_function, &efs);
285 		return;
286 	}
287 
288 	if (task == TASK_TOMBSTONE)
289 		return;
290 
291 again:
292 	if (!task_function_call(task, event_function, &efs))
293 		return;
294 
295 	local_irq_disable();
296 	cpuctx = this_cpu_ptr(&perf_cpu_context);
297 	perf_ctx_lock(cpuctx, ctx);
298 	/*
299 	 * Reload the task pointer, it might have been changed by
300 	 * a concurrent perf_event_context_sched_out().
301 	 */
302 	task = ctx->task;
303 	if (task == TASK_TOMBSTONE)
304 		goto unlock;
305 	if (ctx->is_active) {
306 		perf_ctx_unlock(cpuctx, ctx);
307 		local_irq_enable();
308 		goto again;
309 	}
310 	func(event, NULL, ctx, data);
311 unlock:
312 	perf_ctx_unlock(cpuctx, ctx);
313 	local_irq_enable();
314 }
315 
316 /*
317  * Similar to event_function_call() + event_function(), but hard assumes IRQs
318  * are already disabled and we're on the right CPU.
319  */
320 static void event_function_local(struct perf_event *event, event_f func, void *data)
321 {
322 	struct perf_event_context *ctx = event->ctx;
323 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
324 	struct task_struct *task = READ_ONCE(ctx->task);
325 	struct perf_event_context *task_ctx = NULL;
326 
327 	lockdep_assert_irqs_disabled();
328 
329 	if (task) {
330 		if (task == TASK_TOMBSTONE)
331 			return;
332 
333 		task_ctx = ctx;
334 	}
335 
336 	perf_ctx_lock(cpuctx, task_ctx);
337 
338 	task = ctx->task;
339 	if (task == TASK_TOMBSTONE)
340 		goto unlock;
341 
342 	if (task) {
343 		/*
344 		 * We must be either inactive or active and the right task,
345 		 * otherwise we're screwed, since we cannot IPI to somewhere
346 		 * else.
347 		 */
348 		if (ctx->is_active) {
349 			if (WARN_ON_ONCE(task != current))
350 				goto unlock;
351 
352 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
353 				goto unlock;
354 		}
355 	} else {
356 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
357 	}
358 
359 	func(event, cpuctx, ctx, data);
360 unlock:
361 	perf_ctx_unlock(cpuctx, task_ctx);
362 }
363 
364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
365 		       PERF_FLAG_FD_OUTPUT  |\
366 		       PERF_FLAG_PID_CGROUP |\
367 		       PERF_FLAG_FD_CLOEXEC)
368 
369 /*
370  * branch priv levels that need permission checks
371  */
372 #define PERF_SAMPLE_BRANCH_PERM_PLM \
373 	(PERF_SAMPLE_BRANCH_KERNEL |\
374 	 PERF_SAMPLE_BRANCH_HV)
375 
376 enum event_type_t {
377 	EVENT_FLEXIBLE = 0x1,
378 	EVENT_PINNED = 0x2,
379 	EVENT_TIME = 0x4,
380 	/* see ctx_resched() for details */
381 	EVENT_CPU = 0x8,
382 	EVENT_CGROUP = 0x10,
383 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
384 };
385 
386 /*
387  * perf_sched_events : >0 events exist
388  */
389 
390 static void perf_sched_delayed(struct work_struct *work);
391 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
393 static DEFINE_MUTEX(perf_sched_mutex);
394 static atomic_t perf_sched_count;
395 
396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
397 
398 static atomic_t nr_mmap_events __read_mostly;
399 static atomic_t nr_comm_events __read_mostly;
400 static atomic_t nr_namespaces_events __read_mostly;
401 static atomic_t nr_task_events __read_mostly;
402 static atomic_t nr_freq_events __read_mostly;
403 static atomic_t nr_switch_events __read_mostly;
404 static atomic_t nr_ksymbol_events __read_mostly;
405 static atomic_t nr_bpf_events __read_mostly;
406 static atomic_t nr_cgroup_events __read_mostly;
407 static atomic_t nr_text_poke_events __read_mostly;
408 static atomic_t nr_build_id_events __read_mostly;
409 
410 static LIST_HEAD(pmus);
411 static DEFINE_MUTEX(pmus_lock);
412 static struct srcu_struct pmus_srcu;
413 static cpumask_var_t perf_online_mask;
414 static struct kmem_cache *perf_event_cache;
415 
416 /*
417  * perf event paranoia level:
418  *  -1 - not paranoid at all
419  *   0 - disallow raw tracepoint access for unpriv
420  *   1 - disallow cpu events for unpriv
421  *   2 - disallow kernel profiling for unpriv
422  */
423 int sysctl_perf_event_paranoid __read_mostly = 2;
424 
425 /* Minimum for 512 kiB + 1 user control page */
426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
427 
428 /*
429  * max perf event sample rate
430  */
431 #define DEFAULT_MAX_SAMPLE_RATE		100000
432 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
433 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
434 
435 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
436 
437 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
438 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
439 
440 static int perf_sample_allowed_ns __read_mostly =
441 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
442 
443 static void update_perf_cpu_limits(void)
444 {
445 	u64 tmp = perf_sample_period_ns;
446 
447 	tmp *= sysctl_perf_cpu_time_max_percent;
448 	tmp = div_u64(tmp, 100);
449 	if (!tmp)
450 		tmp = 1;
451 
452 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
453 }
454 
455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
456 
457 int perf_proc_update_handler(struct ctl_table *table, int write,
458 		void *buffer, size_t *lenp, loff_t *ppos)
459 {
460 	int ret;
461 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
462 	/*
463 	 * If throttling is disabled don't allow the write:
464 	 */
465 	if (write && (perf_cpu == 100 || perf_cpu == 0))
466 		return -EINVAL;
467 
468 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 	if (ret || !write)
470 		return ret;
471 
472 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
473 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
474 	update_perf_cpu_limits();
475 
476 	return 0;
477 }
478 
479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
480 
481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
482 		void *buffer, size_t *lenp, loff_t *ppos)
483 {
484 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
485 
486 	if (ret || !write)
487 		return ret;
488 
489 	if (sysctl_perf_cpu_time_max_percent == 100 ||
490 	    sysctl_perf_cpu_time_max_percent == 0) {
491 		printk(KERN_WARNING
492 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
493 		WRITE_ONCE(perf_sample_allowed_ns, 0);
494 	} else {
495 		update_perf_cpu_limits();
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * perf samples are done in some very critical code paths (NMIs).
503  * If they take too much CPU time, the system can lock up and not
504  * get any real work done.  This will drop the sample rate when
505  * we detect that events are taking too long.
506  */
507 #define NR_ACCUMULATED_SAMPLES 128
508 static DEFINE_PER_CPU(u64, running_sample_length);
509 
510 static u64 __report_avg;
511 static u64 __report_allowed;
512 
513 static void perf_duration_warn(struct irq_work *w)
514 {
515 	printk_ratelimited(KERN_INFO
516 		"perf: interrupt took too long (%lld > %lld), lowering "
517 		"kernel.perf_event_max_sample_rate to %d\n",
518 		__report_avg, __report_allowed,
519 		sysctl_perf_event_sample_rate);
520 }
521 
522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
523 
524 void perf_sample_event_took(u64 sample_len_ns)
525 {
526 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
527 	u64 running_len;
528 	u64 avg_len;
529 	u32 max;
530 
531 	if (max_len == 0)
532 		return;
533 
534 	/* Decay the counter by 1 average sample. */
535 	running_len = __this_cpu_read(running_sample_length);
536 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
537 	running_len += sample_len_ns;
538 	__this_cpu_write(running_sample_length, running_len);
539 
540 	/*
541 	 * Note: this will be biased artifically low until we have
542 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
543 	 * from having to maintain a count.
544 	 */
545 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
546 	if (avg_len <= max_len)
547 		return;
548 
549 	__report_avg = avg_len;
550 	__report_allowed = max_len;
551 
552 	/*
553 	 * Compute a throttle threshold 25% below the current duration.
554 	 */
555 	avg_len += avg_len / 4;
556 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
557 	if (avg_len < max)
558 		max /= (u32)avg_len;
559 	else
560 		max = 1;
561 
562 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
563 	WRITE_ONCE(max_samples_per_tick, max);
564 
565 	sysctl_perf_event_sample_rate = max * HZ;
566 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
567 
568 	if (!irq_work_queue(&perf_duration_work)) {
569 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
570 			     "kernel.perf_event_max_sample_rate to %d\n",
571 			     __report_avg, __report_allowed,
572 			     sysctl_perf_event_sample_rate);
573 	}
574 }
575 
576 static atomic64_t perf_event_id;
577 
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580 
581 void __weak perf_event_print_debug(void)	{ }
582 
583 static inline u64 perf_clock(void)
584 {
585 	return local_clock();
586 }
587 
588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 	return event->clock();
591 }
592 
593 /*
594  * State based event timekeeping...
595  *
596  * The basic idea is to use event->state to determine which (if any) time
597  * fields to increment with the current delta. This means we only need to
598  * update timestamps when we change state or when they are explicitly requested
599  * (read).
600  *
601  * Event groups make things a little more complicated, but not terribly so. The
602  * rules for a group are that if the group leader is OFF the entire group is
603  * OFF, irrespecive of what the group member states are. This results in
604  * __perf_effective_state().
605  *
606  * A futher ramification is that when a group leader flips between OFF and
607  * !OFF, we need to update all group member times.
608  *
609  *
610  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611  * need to make sure the relevant context time is updated before we try and
612  * update our timestamps.
613  */
614 
615 static __always_inline enum perf_event_state
616 __perf_effective_state(struct perf_event *event)
617 {
618 	struct perf_event *leader = event->group_leader;
619 
620 	if (leader->state <= PERF_EVENT_STATE_OFF)
621 		return leader->state;
622 
623 	return event->state;
624 }
625 
626 static __always_inline void
627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 	enum perf_event_state state = __perf_effective_state(event);
630 	u64 delta = now - event->tstamp;
631 
632 	*enabled = event->total_time_enabled;
633 	if (state >= PERF_EVENT_STATE_INACTIVE)
634 		*enabled += delta;
635 
636 	*running = event->total_time_running;
637 	if (state >= PERF_EVENT_STATE_ACTIVE)
638 		*running += delta;
639 }
640 
641 static void perf_event_update_time(struct perf_event *event)
642 {
643 	u64 now = perf_event_time(event);
644 
645 	__perf_update_times(event, now, &event->total_time_enabled,
646 					&event->total_time_running);
647 	event->tstamp = now;
648 }
649 
650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 	struct perf_event *sibling;
653 
654 	for_each_sibling_event(sibling, leader)
655 		perf_event_update_time(sibling);
656 }
657 
658 static void
659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 	if (event->state == state)
662 		return;
663 
664 	perf_event_update_time(event);
665 	/*
666 	 * If a group leader gets enabled/disabled all its siblings
667 	 * are affected too.
668 	 */
669 	if ((event->state < 0) ^ (state < 0))
670 		perf_event_update_sibling_time(event);
671 
672 	WRITE_ONCE(event->state, state);
673 }
674 
675 /*
676  * UP store-release, load-acquire
677  */
678 
679 #define __store_release(ptr, val)					\
680 do {									\
681 	barrier();							\
682 	WRITE_ONCE(*(ptr), (val));					\
683 } while (0)
684 
685 #define __load_acquire(ptr)						\
686 ({									\
687 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
688 	barrier();							\
689 	___p;								\
690 })
691 
692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
693 {
694 	struct perf_event_pmu_context *pmu_ctx;
695 
696 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
697 		if (cgroup && !pmu_ctx->nr_cgroups)
698 			continue;
699 		perf_pmu_disable(pmu_ctx->pmu);
700 	}
701 }
702 
703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
704 {
705 	struct perf_event_pmu_context *pmu_ctx;
706 
707 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
708 		if (cgroup && !pmu_ctx->nr_cgroups)
709 			continue;
710 		perf_pmu_enable(pmu_ctx->pmu);
711 	}
712 }
713 
714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
716 
717 #ifdef CONFIG_CGROUP_PERF
718 
719 static inline bool
720 perf_cgroup_match(struct perf_event *event)
721 {
722 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
723 
724 	/* @event doesn't care about cgroup */
725 	if (!event->cgrp)
726 		return true;
727 
728 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
729 	if (!cpuctx->cgrp)
730 		return false;
731 
732 	/*
733 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
734 	 * also enabled for all its descendant cgroups.  If @cpuctx's
735 	 * cgroup is a descendant of @event's (the test covers identity
736 	 * case), it's a match.
737 	 */
738 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
739 				    event->cgrp->css.cgroup);
740 }
741 
742 static inline void perf_detach_cgroup(struct perf_event *event)
743 {
744 	css_put(&event->cgrp->css);
745 	event->cgrp = NULL;
746 }
747 
748 static inline int is_cgroup_event(struct perf_event *event)
749 {
750 	return event->cgrp != NULL;
751 }
752 
753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 	struct perf_cgroup_info *t;
756 
757 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
758 	return t->time;
759 }
760 
761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
762 {
763 	struct perf_cgroup_info *t;
764 
765 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
766 	if (!__load_acquire(&t->active))
767 		return t->time;
768 	now += READ_ONCE(t->timeoffset);
769 	return now;
770 }
771 
772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
773 {
774 	if (adv)
775 		info->time += now - info->timestamp;
776 	info->timestamp = now;
777 	/*
778 	 * see update_context_time()
779 	 */
780 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
781 }
782 
783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
784 {
785 	struct perf_cgroup *cgrp = cpuctx->cgrp;
786 	struct cgroup_subsys_state *css;
787 	struct perf_cgroup_info *info;
788 
789 	if (cgrp) {
790 		u64 now = perf_clock();
791 
792 		for (css = &cgrp->css; css; css = css->parent) {
793 			cgrp = container_of(css, struct perf_cgroup, css);
794 			info = this_cpu_ptr(cgrp->info);
795 
796 			__update_cgrp_time(info, now, true);
797 			if (final)
798 				__store_release(&info->active, 0);
799 		}
800 	}
801 }
802 
803 static inline void update_cgrp_time_from_event(struct perf_event *event)
804 {
805 	struct perf_cgroup_info *info;
806 
807 	/*
808 	 * ensure we access cgroup data only when needed and
809 	 * when we know the cgroup is pinned (css_get)
810 	 */
811 	if (!is_cgroup_event(event))
812 		return;
813 
814 	info = this_cpu_ptr(event->cgrp->info);
815 	/*
816 	 * Do not update time when cgroup is not active
817 	 */
818 	if (info->active)
819 		__update_cgrp_time(info, perf_clock(), true);
820 }
821 
822 static inline void
823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
824 {
825 	struct perf_event_context *ctx = &cpuctx->ctx;
826 	struct perf_cgroup *cgrp = cpuctx->cgrp;
827 	struct perf_cgroup_info *info;
828 	struct cgroup_subsys_state *css;
829 
830 	/*
831 	 * ctx->lock held by caller
832 	 * ensure we do not access cgroup data
833 	 * unless we have the cgroup pinned (css_get)
834 	 */
835 	if (!cgrp)
836 		return;
837 
838 	WARN_ON_ONCE(!ctx->nr_cgroups);
839 
840 	for (css = &cgrp->css; css; css = css->parent) {
841 		cgrp = container_of(css, struct perf_cgroup, css);
842 		info = this_cpu_ptr(cgrp->info);
843 		__update_cgrp_time(info, ctx->timestamp, false);
844 		__store_release(&info->active, 1);
845 	}
846 }
847 
848 /*
849  * reschedule events based on the cgroup constraint of task.
850  */
851 static void perf_cgroup_switch(struct task_struct *task)
852 {
853 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
854 	struct perf_cgroup *cgrp;
855 
856 	/*
857 	 * cpuctx->cgrp is set when the first cgroup event enabled,
858 	 * and is cleared when the last cgroup event disabled.
859 	 */
860 	if (READ_ONCE(cpuctx->cgrp) == NULL)
861 		return;
862 
863 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
864 
865 	cgrp = perf_cgroup_from_task(task, NULL);
866 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
867 		return;
868 
869 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
870 	perf_ctx_disable(&cpuctx->ctx, true);
871 
872 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
873 	/*
874 	 * must not be done before ctxswout due
875 	 * to update_cgrp_time_from_cpuctx() in
876 	 * ctx_sched_out()
877 	 */
878 	cpuctx->cgrp = cgrp;
879 	/*
880 	 * set cgrp before ctxsw in to allow
881 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
882 	 * to not have to pass task around
883 	 */
884 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
885 
886 	perf_ctx_enable(&cpuctx->ctx, true);
887 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
888 }
889 
890 static int perf_cgroup_ensure_storage(struct perf_event *event,
891 				struct cgroup_subsys_state *css)
892 {
893 	struct perf_cpu_context *cpuctx;
894 	struct perf_event **storage;
895 	int cpu, heap_size, ret = 0;
896 
897 	/*
898 	 * Allow storage to have sufficent space for an iterator for each
899 	 * possibly nested cgroup plus an iterator for events with no cgroup.
900 	 */
901 	for (heap_size = 1; css; css = css->parent)
902 		heap_size++;
903 
904 	for_each_possible_cpu(cpu) {
905 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
906 		if (heap_size <= cpuctx->heap_size)
907 			continue;
908 
909 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
910 				       GFP_KERNEL, cpu_to_node(cpu));
911 		if (!storage) {
912 			ret = -ENOMEM;
913 			break;
914 		}
915 
916 		raw_spin_lock_irq(&cpuctx->ctx.lock);
917 		if (cpuctx->heap_size < heap_size) {
918 			swap(cpuctx->heap, storage);
919 			if (storage == cpuctx->heap_default)
920 				storage = NULL;
921 			cpuctx->heap_size = heap_size;
922 		}
923 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
924 
925 		kfree(storage);
926 	}
927 
928 	return ret;
929 }
930 
931 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
932 				      struct perf_event_attr *attr,
933 				      struct perf_event *group_leader)
934 {
935 	struct perf_cgroup *cgrp;
936 	struct cgroup_subsys_state *css;
937 	struct fd f = fdget(fd);
938 	int ret = 0;
939 
940 	if (!f.file)
941 		return -EBADF;
942 
943 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
944 					 &perf_event_cgrp_subsys);
945 	if (IS_ERR(css)) {
946 		ret = PTR_ERR(css);
947 		goto out;
948 	}
949 
950 	ret = perf_cgroup_ensure_storage(event, css);
951 	if (ret)
952 		goto out;
953 
954 	cgrp = container_of(css, struct perf_cgroup, css);
955 	event->cgrp = cgrp;
956 
957 	/*
958 	 * all events in a group must monitor
959 	 * the same cgroup because a task belongs
960 	 * to only one perf cgroup at a time
961 	 */
962 	if (group_leader && group_leader->cgrp != cgrp) {
963 		perf_detach_cgroup(event);
964 		ret = -EINVAL;
965 	}
966 out:
967 	fdput(f);
968 	return ret;
969 }
970 
971 static inline void
972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
973 {
974 	struct perf_cpu_context *cpuctx;
975 
976 	if (!is_cgroup_event(event))
977 		return;
978 
979 	event->pmu_ctx->nr_cgroups++;
980 
981 	/*
982 	 * Because cgroup events are always per-cpu events,
983 	 * @ctx == &cpuctx->ctx.
984 	 */
985 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986 
987 	if (ctx->nr_cgroups++)
988 		return;
989 
990 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
991 }
992 
993 static inline void
994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
995 {
996 	struct perf_cpu_context *cpuctx;
997 
998 	if (!is_cgroup_event(event))
999 		return;
1000 
1001 	event->pmu_ctx->nr_cgroups--;
1002 
1003 	/*
1004 	 * Because cgroup events are always per-cpu events,
1005 	 * @ctx == &cpuctx->ctx.
1006 	 */
1007 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008 
1009 	if (--ctx->nr_cgroups)
1010 		return;
1011 
1012 	cpuctx->cgrp = NULL;
1013 }
1014 
1015 #else /* !CONFIG_CGROUP_PERF */
1016 
1017 static inline bool
1018 perf_cgroup_match(struct perf_event *event)
1019 {
1020 	return true;
1021 }
1022 
1023 static inline void perf_detach_cgroup(struct perf_event *event)
1024 {}
1025 
1026 static inline int is_cgroup_event(struct perf_event *event)
1027 {
1028 	return 0;
1029 }
1030 
1031 static inline void update_cgrp_time_from_event(struct perf_event *event)
1032 {
1033 }
1034 
1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1036 						bool final)
1037 {
1038 }
1039 
1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1041 				      struct perf_event_attr *attr,
1042 				      struct perf_event *group_leader)
1043 {
1044 	return -EINVAL;
1045 }
1046 
1047 static inline void
1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1049 {
1050 }
1051 
1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1053 {
1054 	return 0;
1055 }
1056 
1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1058 {
1059 	return 0;
1060 }
1061 
1062 static inline void
1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 }
1066 
1067 static inline void
1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 }
1071 
1072 static void perf_cgroup_switch(struct task_struct *task)
1073 {
1074 }
1075 #endif
1076 
1077 /*
1078  * set default to be dependent on timer tick just
1079  * like original code
1080  */
1081 #define PERF_CPU_HRTIMER (1000 / HZ)
1082 /*
1083  * function must be called with interrupts disabled
1084  */
1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1086 {
1087 	struct perf_cpu_pmu_context *cpc;
1088 	bool rotations;
1089 
1090 	lockdep_assert_irqs_disabled();
1091 
1092 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1093 	rotations = perf_rotate_context(cpc);
1094 
1095 	raw_spin_lock(&cpc->hrtimer_lock);
1096 	if (rotations)
1097 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1098 	else
1099 		cpc->hrtimer_active = 0;
1100 	raw_spin_unlock(&cpc->hrtimer_lock);
1101 
1102 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1103 }
1104 
1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1106 {
1107 	struct hrtimer *timer = &cpc->hrtimer;
1108 	struct pmu *pmu = cpc->epc.pmu;
1109 	u64 interval;
1110 
1111 	/*
1112 	 * check default is sane, if not set then force to
1113 	 * default interval (1/tick)
1114 	 */
1115 	interval = pmu->hrtimer_interval_ms;
1116 	if (interval < 1)
1117 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1118 
1119 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1120 
1121 	raw_spin_lock_init(&cpc->hrtimer_lock);
1122 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1123 	timer->function = perf_mux_hrtimer_handler;
1124 }
1125 
1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1127 {
1128 	struct hrtimer *timer = &cpc->hrtimer;
1129 	unsigned long flags;
1130 
1131 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1132 	if (!cpc->hrtimer_active) {
1133 		cpc->hrtimer_active = 1;
1134 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1135 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1136 	}
1137 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1138 
1139 	return 0;
1140 }
1141 
1142 static int perf_mux_hrtimer_restart_ipi(void *arg)
1143 {
1144 	return perf_mux_hrtimer_restart(arg);
1145 }
1146 
1147 void perf_pmu_disable(struct pmu *pmu)
1148 {
1149 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1150 	if (!(*count)++)
1151 		pmu->pmu_disable(pmu);
1152 }
1153 
1154 void perf_pmu_enable(struct pmu *pmu)
1155 {
1156 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1157 	if (!--(*count))
1158 		pmu->pmu_enable(pmu);
1159 }
1160 
1161 static void perf_assert_pmu_disabled(struct pmu *pmu)
1162 {
1163 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1164 }
1165 
1166 static void get_ctx(struct perf_event_context *ctx)
1167 {
1168 	refcount_inc(&ctx->refcount);
1169 }
1170 
1171 static void *alloc_task_ctx_data(struct pmu *pmu)
1172 {
1173 	if (pmu->task_ctx_cache)
1174 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1175 
1176 	return NULL;
1177 }
1178 
1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1180 {
1181 	if (pmu->task_ctx_cache && task_ctx_data)
1182 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1183 }
1184 
1185 static void free_ctx(struct rcu_head *head)
1186 {
1187 	struct perf_event_context *ctx;
1188 
1189 	ctx = container_of(head, struct perf_event_context, rcu_head);
1190 	kfree(ctx);
1191 }
1192 
1193 static void put_ctx(struct perf_event_context *ctx)
1194 {
1195 	if (refcount_dec_and_test(&ctx->refcount)) {
1196 		if (ctx->parent_ctx)
1197 			put_ctx(ctx->parent_ctx);
1198 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1199 			put_task_struct(ctx->task);
1200 		call_rcu(&ctx->rcu_head, free_ctx);
1201 	}
1202 }
1203 
1204 /*
1205  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1206  * perf_pmu_migrate_context() we need some magic.
1207  *
1208  * Those places that change perf_event::ctx will hold both
1209  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1210  *
1211  * Lock ordering is by mutex address. There are two other sites where
1212  * perf_event_context::mutex nests and those are:
1213  *
1214  *  - perf_event_exit_task_context()	[ child , 0 ]
1215  *      perf_event_exit_event()
1216  *        put_event()			[ parent, 1 ]
1217  *
1218  *  - perf_event_init_context()		[ parent, 0 ]
1219  *      inherit_task_group()
1220  *        inherit_group()
1221  *          inherit_event()
1222  *            perf_event_alloc()
1223  *              perf_init_event()
1224  *                perf_try_init_event()	[ child , 1 ]
1225  *
1226  * While it appears there is an obvious deadlock here -- the parent and child
1227  * nesting levels are inverted between the two. This is in fact safe because
1228  * life-time rules separate them. That is an exiting task cannot fork, and a
1229  * spawning task cannot (yet) exit.
1230  *
1231  * But remember that these are parent<->child context relations, and
1232  * migration does not affect children, therefore these two orderings should not
1233  * interact.
1234  *
1235  * The change in perf_event::ctx does not affect children (as claimed above)
1236  * because the sys_perf_event_open() case will install a new event and break
1237  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1238  * concerned with cpuctx and that doesn't have children.
1239  *
1240  * The places that change perf_event::ctx will issue:
1241  *
1242  *   perf_remove_from_context();
1243  *   synchronize_rcu();
1244  *   perf_install_in_context();
1245  *
1246  * to affect the change. The remove_from_context() + synchronize_rcu() should
1247  * quiesce the event, after which we can install it in the new location. This
1248  * means that only external vectors (perf_fops, prctl) can perturb the event
1249  * while in transit. Therefore all such accessors should also acquire
1250  * perf_event_context::mutex to serialize against this.
1251  *
1252  * However; because event->ctx can change while we're waiting to acquire
1253  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1254  * function.
1255  *
1256  * Lock order:
1257  *    exec_update_lock
1258  *	task_struct::perf_event_mutex
1259  *	  perf_event_context::mutex
1260  *	    perf_event::child_mutex;
1261  *	      perf_event_context::lock
1262  *	    mmap_lock
1263  *	      perf_event::mmap_mutex
1264  *	        perf_buffer::aux_mutex
1265  *	      perf_addr_filters_head::lock
1266  *
1267  *    cpu_hotplug_lock
1268  *      pmus_lock
1269  *	  cpuctx->mutex / perf_event_context::mutex
1270  */
1271 static struct perf_event_context *
1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1273 {
1274 	struct perf_event_context *ctx;
1275 
1276 again:
1277 	rcu_read_lock();
1278 	ctx = READ_ONCE(event->ctx);
1279 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1280 		rcu_read_unlock();
1281 		goto again;
1282 	}
1283 	rcu_read_unlock();
1284 
1285 	mutex_lock_nested(&ctx->mutex, nesting);
1286 	if (event->ctx != ctx) {
1287 		mutex_unlock(&ctx->mutex);
1288 		put_ctx(ctx);
1289 		goto again;
1290 	}
1291 
1292 	return ctx;
1293 }
1294 
1295 static inline struct perf_event_context *
1296 perf_event_ctx_lock(struct perf_event *event)
1297 {
1298 	return perf_event_ctx_lock_nested(event, 0);
1299 }
1300 
1301 static void perf_event_ctx_unlock(struct perf_event *event,
1302 				  struct perf_event_context *ctx)
1303 {
1304 	mutex_unlock(&ctx->mutex);
1305 	put_ctx(ctx);
1306 }
1307 
1308 /*
1309  * This must be done under the ctx->lock, such as to serialize against
1310  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1311  * calling scheduler related locks and ctx->lock nests inside those.
1312  */
1313 static __must_check struct perf_event_context *
1314 unclone_ctx(struct perf_event_context *ctx)
1315 {
1316 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1317 
1318 	lockdep_assert_held(&ctx->lock);
1319 
1320 	if (parent_ctx)
1321 		ctx->parent_ctx = NULL;
1322 	ctx->generation++;
1323 
1324 	return parent_ctx;
1325 }
1326 
1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1328 				enum pid_type type)
1329 {
1330 	u32 nr;
1331 	/*
1332 	 * only top level events have the pid namespace they were created in
1333 	 */
1334 	if (event->parent)
1335 		event = event->parent;
1336 
1337 	nr = __task_pid_nr_ns(p, type, event->ns);
1338 	/* avoid -1 if it is idle thread or runs in another ns */
1339 	if (!nr && !pid_alive(p))
1340 		nr = -1;
1341 	return nr;
1342 }
1343 
1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1347 }
1348 
1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1350 {
1351 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1352 }
1353 
1354 /*
1355  * If we inherit events we want to return the parent event id
1356  * to userspace.
1357  */
1358 static u64 primary_event_id(struct perf_event *event)
1359 {
1360 	u64 id = event->id;
1361 
1362 	if (event->parent)
1363 		id = event->parent->id;
1364 
1365 	return id;
1366 }
1367 
1368 /*
1369  * Get the perf_event_context for a task and lock it.
1370  *
1371  * This has to cope with the fact that until it is locked,
1372  * the context could get moved to another task.
1373  */
1374 static struct perf_event_context *
1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1376 {
1377 	struct perf_event_context *ctx;
1378 
1379 retry:
1380 	/*
1381 	 * One of the few rules of preemptible RCU is that one cannot do
1382 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1383 	 * part of the read side critical section was irqs-enabled -- see
1384 	 * rcu_read_unlock_special().
1385 	 *
1386 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1387 	 * side critical section has interrupts disabled.
1388 	 */
1389 	local_irq_save(*flags);
1390 	rcu_read_lock();
1391 	ctx = rcu_dereference(task->perf_event_ctxp);
1392 	if (ctx) {
1393 		/*
1394 		 * If this context is a clone of another, it might
1395 		 * get swapped for another underneath us by
1396 		 * perf_event_task_sched_out, though the
1397 		 * rcu_read_lock() protects us from any context
1398 		 * getting freed.  Lock the context and check if it
1399 		 * got swapped before we could get the lock, and retry
1400 		 * if so.  If we locked the right context, then it
1401 		 * can't get swapped on us any more.
1402 		 */
1403 		raw_spin_lock(&ctx->lock);
1404 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1405 			raw_spin_unlock(&ctx->lock);
1406 			rcu_read_unlock();
1407 			local_irq_restore(*flags);
1408 			goto retry;
1409 		}
1410 
1411 		if (ctx->task == TASK_TOMBSTONE ||
1412 		    !refcount_inc_not_zero(&ctx->refcount)) {
1413 			raw_spin_unlock(&ctx->lock);
1414 			ctx = NULL;
1415 		} else {
1416 			WARN_ON_ONCE(ctx->task != task);
1417 		}
1418 	}
1419 	rcu_read_unlock();
1420 	if (!ctx)
1421 		local_irq_restore(*flags);
1422 	return ctx;
1423 }
1424 
1425 /*
1426  * Get the context for a task and increment its pin_count so it
1427  * can't get swapped to another task.  This also increments its
1428  * reference count so that the context can't get freed.
1429  */
1430 static struct perf_event_context *
1431 perf_pin_task_context(struct task_struct *task)
1432 {
1433 	struct perf_event_context *ctx;
1434 	unsigned long flags;
1435 
1436 	ctx = perf_lock_task_context(task, &flags);
1437 	if (ctx) {
1438 		++ctx->pin_count;
1439 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1440 	}
1441 	return ctx;
1442 }
1443 
1444 static void perf_unpin_context(struct perf_event_context *ctx)
1445 {
1446 	unsigned long flags;
1447 
1448 	raw_spin_lock_irqsave(&ctx->lock, flags);
1449 	--ctx->pin_count;
1450 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 }
1452 
1453 /*
1454  * Update the record of the current time in a context.
1455  */
1456 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1457 {
1458 	u64 now = perf_clock();
1459 
1460 	lockdep_assert_held(&ctx->lock);
1461 
1462 	if (adv)
1463 		ctx->time += now - ctx->timestamp;
1464 	ctx->timestamp = now;
1465 
1466 	/*
1467 	 * The above: time' = time + (now - timestamp), can be re-arranged
1468 	 * into: time` = now + (time - timestamp), which gives a single value
1469 	 * offset to compute future time without locks on.
1470 	 *
1471 	 * See perf_event_time_now(), which can be used from NMI context where
1472 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1473 	 * both the above values in a consistent manner.
1474 	 */
1475 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1476 }
1477 
1478 static void update_context_time(struct perf_event_context *ctx)
1479 {
1480 	__update_context_time(ctx, true);
1481 }
1482 
1483 static u64 perf_event_time(struct perf_event *event)
1484 {
1485 	struct perf_event_context *ctx = event->ctx;
1486 
1487 	if (unlikely(!ctx))
1488 		return 0;
1489 
1490 	if (is_cgroup_event(event))
1491 		return perf_cgroup_event_time(event);
1492 
1493 	return ctx->time;
1494 }
1495 
1496 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1497 {
1498 	struct perf_event_context *ctx = event->ctx;
1499 
1500 	if (unlikely(!ctx))
1501 		return 0;
1502 
1503 	if (is_cgroup_event(event))
1504 		return perf_cgroup_event_time_now(event, now);
1505 
1506 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1507 		return ctx->time;
1508 
1509 	now += READ_ONCE(ctx->timeoffset);
1510 	return now;
1511 }
1512 
1513 static enum event_type_t get_event_type(struct perf_event *event)
1514 {
1515 	struct perf_event_context *ctx = event->ctx;
1516 	enum event_type_t event_type;
1517 
1518 	lockdep_assert_held(&ctx->lock);
1519 
1520 	/*
1521 	 * It's 'group type', really, because if our group leader is
1522 	 * pinned, so are we.
1523 	 */
1524 	if (event->group_leader != event)
1525 		event = event->group_leader;
1526 
1527 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1528 	if (!ctx->task)
1529 		event_type |= EVENT_CPU;
1530 
1531 	return event_type;
1532 }
1533 
1534 /*
1535  * Helper function to initialize event group nodes.
1536  */
1537 static void init_event_group(struct perf_event *event)
1538 {
1539 	RB_CLEAR_NODE(&event->group_node);
1540 	event->group_index = 0;
1541 }
1542 
1543 /*
1544  * Extract pinned or flexible groups from the context
1545  * based on event attrs bits.
1546  */
1547 static struct perf_event_groups *
1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1549 {
1550 	if (event->attr.pinned)
1551 		return &ctx->pinned_groups;
1552 	else
1553 		return &ctx->flexible_groups;
1554 }
1555 
1556 /*
1557  * Helper function to initializes perf_event_group trees.
1558  */
1559 static void perf_event_groups_init(struct perf_event_groups *groups)
1560 {
1561 	groups->tree = RB_ROOT;
1562 	groups->index = 0;
1563 }
1564 
1565 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1566 {
1567 	struct cgroup *cgroup = NULL;
1568 
1569 #ifdef CONFIG_CGROUP_PERF
1570 	if (event->cgrp)
1571 		cgroup = event->cgrp->css.cgroup;
1572 #endif
1573 
1574 	return cgroup;
1575 }
1576 
1577 /*
1578  * Compare function for event groups;
1579  *
1580  * Implements complex key that first sorts by CPU and then by virtual index
1581  * which provides ordering when rotating groups for the same CPU.
1582  */
1583 static __always_inline int
1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1585 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1586 		      const struct perf_event *right)
1587 {
1588 	if (left_cpu < right->cpu)
1589 		return -1;
1590 	if (left_cpu > right->cpu)
1591 		return 1;
1592 
1593 	if (left_pmu) {
1594 		if (left_pmu < right->pmu_ctx->pmu)
1595 			return -1;
1596 		if (left_pmu > right->pmu_ctx->pmu)
1597 			return 1;
1598 	}
1599 
1600 #ifdef CONFIG_CGROUP_PERF
1601 	{
1602 		const struct cgroup *right_cgroup = event_cgroup(right);
1603 
1604 		if (left_cgroup != right_cgroup) {
1605 			if (!left_cgroup) {
1606 				/*
1607 				 * Left has no cgroup but right does, no
1608 				 * cgroups come first.
1609 				 */
1610 				return -1;
1611 			}
1612 			if (!right_cgroup) {
1613 				/*
1614 				 * Right has no cgroup but left does, no
1615 				 * cgroups come first.
1616 				 */
1617 				return 1;
1618 			}
1619 			/* Two dissimilar cgroups, order by id. */
1620 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1621 				return -1;
1622 
1623 			return 1;
1624 		}
1625 	}
1626 #endif
1627 
1628 	if (left_group_index < right->group_index)
1629 		return -1;
1630 	if (left_group_index > right->group_index)
1631 		return 1;
1632 
1633 	return 0;
1634 }
1635 
1636 #define __node_2_pe(node) \
1637 	rb_entry((node), struct perf_event, group_node)
1638 
1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1640 {
1641 	struct perf_event *e = __node_2_pe(a);
1642 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1643 				     e->group_index, __node_2_pe(b)) < 0;
1644 }
1645 
1646 struct __group_key {
1647 	int cpu;
1648 	struct pmu *pmu;
1649 	struct cgroup *cgroup;
1650 };
1651 
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 	const struct __group_key *a = key;
1655 	const struct perf_event *b = __node_2_pe(node);
1656 
1657 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1658 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1659 }
1660 
1661 static inline int
1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1663 {
1664 	const struct __group_key *a = key;
1665 	const struct perf_event *b = __node_2_pe(node);
1666 
1667 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1668 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1669 				     b->group_index, b);
1670 }
1671 
1672 /*
1673  * Insert @event into @groups' tree; using
1674  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1675  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1676  */
1677 static void
1678 perf_event_groups_insert(struct perf_event_groups *groups,
1679 			 struct perf_event *event)
1680 {
1681 	event->group_index = ++groups->index;
1682 
1683 	rb_add(&event->group_node, &groups->tree, __group_less);
1684 }
1685 
1686 /*
1687  * Helper function to insert event into the pinned or flexible groups.
1688  */
1689 static void
1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1691 {
1692 	struct perf_event_groups *groups;
1693 
1694 	groups = get_event_groups(event, ctx);
1695 	perf_event_groups_insert(groups, event);
1696 }
1697 
1698 /*
1699  * Delete a group from a tree.
1700  */
1701 static void
1702 perf_event_groups_delete(struct perf_event_groups *groups,
1703 			 struct perf_event *event)
1704 {
1705 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1706 		     RB_EMPTY_ROOT(&groups->tree));
1707 
1708 	rb_erase(&event->group_node, &groups->tree);
1709 	init_event_group(event);
1710 }
1711 
1712 /*
1713  * Helper function to delete event from its groups.
1714  */
1715 static void
1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1717 {
1718 	struct perf_event_groups *groups;
1719 
1720 	groups = get_event_groups(event, ctx);
1721 	perf_event_groups_delete(groups, event);
1722 }
1723 
1724 /*
1725  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1726  */
1727 static struct perf_event *
1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1729 			struct pmu *pmu, struct cgroup *cgrp)
1730 {
1731 	struct __group_key key = {
1732 		.cpu = cpu,
1733 		.pmu = pmu,
1734 		.cgroup = cgrp,
1735 	};
1736 	struct rb_node *node;
1737 
1738 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1739 	if (node)
1740 		return __node_2_pe(node);
1741 
1742 	return NULL;
1743 }
1744 
1745 static struct perf_event *
1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1747 {
1748 	struct __group_key key = {
1749 		.cpu = event->cpu,
1750 		.pmu = pmu,
1751 		.cgroup = event_cgroup(event),
1752 	};
1753 	struct rb_node *next;
1754 
1755 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1756 	if (next)
1757 		return __node_2_pe(next);
1758 
1759 	return NULL;
1760 }
1761 
1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1763 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1764 	     event; event = perf_event_groups_next(event, pmu))
1765 
1766 /*
1767  * Iterate through the whole groups tree.
1768  */
1769 #define perf_event_groups_for_each(event, groups)			\
1770 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1771 				typeof(*event), group_node); event;	\
1772 		event = rb_entry_safe(rb_next(&event->group_node),	\
1773 				typeof(*event), group_node))
1774 
1775 /*
1776  * Add an event from the lists for its context.
1777  * Must be called with ctx->mutex and ctx->lock held.
1778  */
1779 static void
1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1781 {
1782 	lockdep_assert_held(&ctx->lock);
1783 
1784 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1785 	event->attach_state |= PERF_ATTACH_CONTEXT;
1786 
1787 	event->tstamp = perf_event_time(event);
1788 
1789 	/*
1790 	 * If we're a stand alone event or group leader, we go to the context
1791 	 * list, group events are kept attached to the group so that
1792 	 * perf_group_detach can, at all times, locate all siblings.
1793 	 */
1794 	if (event->group_leader == event) {
1795 		event->group_caps = event->event_caps;
1796 		add_event_to_groups(event, ctx);
1797 	}
1798 
1799 	list_add_rcu(&event->event_entry, &ctx->event_list);
1800 	ctx->nr_events++;
1801 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1802 		ctx->nr_user++;
1803 	if (event->attr.inherit_stat)
1804 		ctx->nr_stat++;
1805 
1806 	if (event->state > PERF_EVENT_STATE_OFF)
1807 		perf_cgroup_event_enable(event, ctx);
1808 
1809 	ctx->generation++;
1810 	event->pmu_ctx->nr_events++;
1811 }
1812 
1813 /*
1814  * Initialize event state based on the perf_event_attr::disabled.
1815  */
1816 static inline void perf_event__state_init(struct perf_event *event)
1817 {
1818 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1819 					      PERF_EVENT_STATE_INACTIVE;
1820 }
1821 
1822 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1823 {
1824 	int entry = sizeof(u64); /* value */
1825 	int size = 0;
1826 	int nr = 1;
1827 
1828 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1829 		size += sizeof(u64);
1830 
1831 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1832 		size += sizeof(u64);
1833 
1834 	if (read_format & PERF_FORMAT_ID)
1835 		entry += sizeof(u64);
1836 
1837 	if (read_format & PERF_FORMAT_LOST)
1838 		entry += sizeof(u64);
1839 
1840 	if (read_format & PERF_FORMAT_GROUP) {
1841 		nr += nr_siblings;
1842 		size += sizeof(u64);
1843 	}
1844 
1845 	/*
1846 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1847 	 * adding more siblings, this will never overflow.
1848 	 */
1849 	return size + nr * entry;
1850 }
1851 
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 	struct perf_sample_data *data;
1855 	u16 size = 0;
1856 
1857 	if (sample_type & PERF_SAMPLE_IP)
1858 		size += sizeof(data->ip);
1859 
1860 	if (sample_type & PERF_SAMPLE_ADDR)
1861 		size += sizeof(data->addr);
1862 
1863 	if (sample_type & PERF_SAMPLE_PERIOD)
1864 		size += sizeof(data->period);
1865 
1866 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 		size += sizeof(data->weight.full);
1868 
1869 	if (sample_type & PERF_SAMPLE_READ)
1870 		size += event->read_size;
1871 
1872 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 		size += sizeof(data->data_src.val);
1874 
1875 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 		size += sizeof(data->txn);
1877 
1878 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 		size += sizeof(data->phys_addr);
1880 
1881 	if (sample_type & PERF_SAMPLE_CGROUP)
1882 		size += sizeof(data->cgroup);
1883 
1884 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 		size += sizeof(data->data_page_size);
1886 
1887 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 		size += sizeof(data->code_page_size);
1889 
1890 	event->header_size = size;
1891 }
1892 
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 	event->read_size =
1900 		__perf_event_read_size(event->attr.read_format,
1901 				       event->group_leader->nr_siblings);
1902 	__perf_event_header_size(event, event->attr.sample_type);
1903 }
1904 
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 	struct perf_sample_data *data;
1908 	u64 sample_type = event->attr.sample_type;
1909 	u16 size = 0;
1910 
1911 	if (sample_type & PERF_SAMPLE_TID)
1912 		size += sizeof(data->tid_entry);
1913 
1914 	if (sample_type & PERF_SAMPLE_TIME)
1915 		size += sizeof(data->time);
1916 
1917 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 		size += sizeof(data->id);
1919 
1920 	if (sample_type & PERF_SAMPLE_ID)
1921 		size += sizeof(data->id);
1922 
1923 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 		size += sizeof(data->stream_id);
1925 
1926 	if (sample_type & PERF_SAMPLE_CPU)
1927 		size += sizeof(data->cpu_entry);
1928 
1929 	event->id_header_size = size;
1930 }
1931 
1932 /*
1933  * Check that adding an event to the group does not result in anybody
1934  * overflowing the 64k event limit imposed by the output buffer.
1935  *
1936  * Specifically, check that the read_size for the event does not exceed 16k,
1937  * read_size being the one term that grows with groups size. Since read_size
1938  * depends on per-event read_format, also (re)check the existing events.
1939  *
1940  * This leaves 48k for the constant size fields and things like callchains,
1941  * branch stacks and register sets.
1942  */
1943 static bool perf_event_validate_size(struct perf_event *event)
1944 {
1945 	struct perf_event *sibling, *group_leader = event->group_leader;
1946 
1947 	if (__perf_event_read_size(event->attr.read_format,
1948 				   group_leader->nr_siblings + 1) > 16*1024)
1949 		return false;
1950 
1951 	if (__perf_event_read_size(group_leader->attr.read_format,
1952 				   group_leader->nr_siblings + 1) > 16*1024)
1953 		return false;
1954 
1955 	/*
1956 	 * When creating a new group leader, group_leader->ctx is initialized
1957 	 * after the size has been validated, but we cannot safely use
1958 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1959 	 * leader cannot have any siblings yet, so we can safely skip checking
1960 	 * the non-existent siblings.
1961 	 */
1962 	if (event == group_leader)
1963 		return true;
1964 
1965 	for_each_sibling_event(sibling, group_leader) {
1966 		if (__perf_event_read_size(sibling->attr.read_format,
1967 					   group_leader->nr_siblings + 1) > 16*1024)
1968 			return false;
1969 	}
1970 
1971 	return true;
1972 }
1973 
1974 static void perf_group_attach(struct perf_event *event)
1975 {
1976 	struct perf_event *group_leader = event->group_leader, *pos;
1977 
1978 	lockdep_assert_held(&event->ctx->lock);
1979 
1980 	/*
1981 	 * We can have double attach due to group movement (move_group) in
1982 	 * perf_event_open().
1983 	 */
1984 	if (event->attach_state & PERF_ATTACH_GROUP)
1985 		return;
1986 
1987 	event->attach_state |= PERF_ATTACH_GROUP;
1988 
1989 	if (group_leader == event)
1990 		return;
1991 
1992 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1993 
1994 	group_leader->group_caps &= event->event_caps;
1995 
1996 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1997 	group_leader->nr_siblings++;
1998 	group_leader->group_generation++;
1999 
2000 	perf_event__header_size(group_leader);
2001 
2002 	for_each_sibling_event(pos, group_leader)
2003 		perf_event__header_size(pos);
2004 }
2005 
2006 /*
2007  * Remove an event from the lists for its context.
2008  * Must be called with ctx->mutex and ctx->lock held.
2009  */
2010 static void
2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2012 {
2013 	WARN_ON_ONCE(event->ctx != ctx);
2014 	lockdep_assert_held(&ctx->lock);
2015 
2016 	/*
2017 	 * We can have double detach due to exit/hot-unplug + close.
2018 	 */
2019 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2020 		return;
2021 
2022 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2023 
2024 	ctx->nr_events--;
2025 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2026 		ctx->nr_user--;
2027 	if (event->attr.inherit_stat)
2028 		ctx->nr_stat--;
2029 
2030 	list_del_rcu(&event->event_entry);
2031 
2032 	if (event->group_leader == event)
2033 		del_event_from_groups(event, ctx);
2034 
2035 	/*
2036 	 * If event was in error state, then keep it
2037 	 * that way, otherwise bogus counts will be
2038 	 * returned on read(). The only way to get out
2039 	 * of error state is by explicit re-enabling
2040 	 * of the event
2041 	 */
2042 	if (event->state > PERF_EVENT_STATE_OFF) {
2043 		perf_cgroup_event_disable(event, ctx);
2044 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2045 	}
2046 
2047 	ctx->generation++;
2048 	event->pmu_ctx->nr_events--;
2049 }
2050 
2051 static int
2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2053 {
2054 	if (!has_aux(aux_event))
2055 		return 0;
2056 
2057 	if (!event->pmu->aux_output_match)
2058 		return 0;
2059 
2060 	return event->pmu->aux_output_match(aux_event);
2061 }
2062 
2063 static void put_event(struct perf_event *event);
2064 static void event_sched_out(struct perf_event *event,
2065 			    struct perf_event_context *ctx);
2066 
2067 static void perf_put_aux_event(struct perf_event *event)
2068 {
2069 	struct perf_event_context *ctx = event->ctx;
2070 	struct perf_event *iter;
2071 
2072 	/*
2073 	 * If event uses aux_event tear down the link
2074 	 */
2075 	if (event->aux_event) {
2076 		iter = event->aux_event;
2077 		event->aux_event = NULL;
2078 		put_event(iter);
2079 		return;
2080 	}
2081 
2082 	/*
2083 	 * If the event is an aux_event, tear down all links to
2084 	 * it from other events.
2085 	 */
2086 	for_each_sibling_event(iter, event->group_leader) {
2087 		if (iter->aux_event != event)
2088 			continue;
2089 
2090 		iter->aux_event = NULL;
2091 		put_event(event);
2092 
2093 		/*
2094 		 * If it's ACTIVE, schedule it out and put it into ERROR
2095 		 * state so that we don't try to schedule it again. Note
2096 		 * that perf_event_enable() will clear the ERROR status.
2097 		 */
2098 		event_sched_out(iter, ctx);
2099 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2100 	}
2101 }
2102 
2103 static bool perf_need_aux_event(struct perf_event *event)
2104 {
2105 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2106 }
2107 
2108 static int perf_get_aux_event(struct perf_event *event,
2109 			      struct perf_event *group_leader)
2110 {
2111 	/*
2112 	 * Our group leader must be an aux event if we want to be
2113 	 * an aux_output. This way, the aux event will precede its
2114 	 * aux_output events in the group, and therefore will always
2115 	 * schedule first.
2116 	 */
2117 	if (!group_leader)
2118 		return 0;
2119 
2120 	/*
2121 	 * aux_output and aux_sample_size are mutually exclusive.
2122 	 */
2123 	if (event->attr.aux_output && event->attr.aux_sample_size)
2124 		return 0;
2125 
2126 	if (event->attr.aux_output &&
2127 	    !perf_aux_output_match(event, group_leader))
2128 		return 0;
2129 
2130 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2131 		return 0;
2132 
2133 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2134 		return 0;
2135 
2136 	/*
2137 	 * Link aux_outputs to their aux event; this is undone in
2138 	 * perf_group_detach() by perf_put_aux_event(). When the
2139 	 * group in torn down, the aux_output events loose their
2140 	 * link to the aux_event and can't schedule any more.
2141 	 */
2142 	event->aux_event = group_leader;
2143 
2144 	return 1;
2145 }
2146 
2147 static inline struct list_head *get_event_list(struct perf_event *event)
2148 {
2149 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2150 				    &event->pmu_ctx->flexible_active;
2151 }
2152 
2153 /*
2154  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2155  * cannot exist on their own, schedule them out and move them into the ERROR
2156  * state. Also see _perf_event_enable(), it will not be able to recover
2157  * this ERROR state.
2158  */
2159 static inline void perf_remove_sibling_event(struct perf_event *event)
2160 {
2161 	event_sched_out(event, event->ctx);
2162 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2163 }
2164 
2165 static void perf_group_detach(struct perf_event *event)
2166 {
2167 	struct perf_event *leader = event->group_leader;
2168 	struct perf_event *sibling, *tmp;
2169 	struct perf_event_context *ctx = event->ctx;
2170 
2171 	lockdep_assert_held(&ctx->lock);
2172 
2173 	/*
2174 	 * We can have double detach due to exit/hot-unplug + close.
2175 	 */
2176 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2177 		return;
2178 
2179 	event->attach_state &= ~PERF_ATTACH_GROUP;
2180 
2181 	perf_put_aux_event(event);
2182 
2183 	/*
2184 	 * If this is a sibling, remove it from its group.
2185 	 */
2186 	if (leader != event) {
2187 		list_del_init(&event->sibling_list);
2188 		event->group_leader->nr_siblings--;
2189 		event->group_leader->group_generation++;
2190 		goto out;
2191 	}
2192 
2193 	/*
2194 	 * If this was a group event with sibling events then
2195 	 * upgrade the siblings to singleton events by adding them
2196 	 * to whatever list we are on.
2197 	 */
2198 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2199 
2200 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2201 			perf_remove_sibling_event(sibling);
2202 
2203 		sibling->group_leader = sibling;
2204 		list_del_init(&sibling->sibling_list);
2205 
2206 		/* Inherit group flags from the previous leader */
2207 		sibling->group_caps = event->group_caps;
2208 
2209 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2210 			add_event_to_groups(sibling, event->ctx);
2211 
2212 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2213 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2214 		}
2215 
2216 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2217 	}
2218 
2219 out:
2220 	for_each_sibling_event(tmp, leader)
2221 		perf_event__header_size(tmp);
2222 
2223 	perf_event__header_size(leader);
2224 }
2225 
2226 static void sync_child_event(struct perf_event *child_event);
2227 
2228 static void perf_child_detach(struct perf_event *event)
2229 {
2230 	struct perf_event *parent_event = event->parent;
2231 
2232 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2233 		return;
2234 
2235 	event->attach_state &= ~PERF_ATTACH_CHILD;
2236 
2237 	if (WARN_ON_ONCE(!parent_event))
2238 		return;
2239 
2240 	lockdep_assert_held(&parent_event->child_mutex);
2241 
2242 	sync_child_event(event);
2243 	list_del_init(&event->child_list);
2244 }
2245 
2246 static bool is_orphaned_event(struct perf_event *event)
2247 {
2248 	return event->state == PERF_EVENT_STATE_DEAD;
2249 }
2250 
2251 static inline int
2252 event_filter_match(struct perf_event *event)
2253 {
2254 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2255 	       perf_cgroup_match(event);
2256 }
2257 
2258 static void
2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2260 {
2261 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2262 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2263 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2264 
2265 	// XXX cpc serialization, probably per-cpu IRQ disabled
2266 
2267 	WARN_ON_ONCE(event->ctx != ctx);
2268 	lockdep_assert_held(&ctx->lock);
2269 
2270 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 		return;
2272 
2273 	/*
2274 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2275 	 * we can schedule events _OUT_ individually through things like
2276 	 * __perf_remove_from_context().
2277 	 */
2278 	list_del_init(&event->active_list);
2279 
2280 	perf_pmu_disable(event->pmu);
2281 
2282 	event->pmu->del(event, 0);
2283 	event->oncpu = -1;
2284 
2285 	if (event->pending_disable) {
2286 		event->pending_disable = 0;
2287 		perf_cgroup_event_disable(event, ctx);
2288 		state = PERF_EVENT_STATE_OFF;
2289 	}
2290 
2291 	if (event->pending_sigtrap) {
2292 		event->pending_sigtrap = 0;
2293 		if (state != PERF_EVENT_STATE_OFF &&
2294 		    !event->pending_work &&
2295 		    !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2296 			event->pending_work = 1;
2297 		} else {
2298 			local_dec(&event->ctx->nr_pending);
2299 		}
2300 	}
2301 
2302 	perf_event_set_state(event, state);
2303 
2304 	if (!is_software_event(event))
2305 		cpc->active_oncpu--;
2306 	if (event->attr.freq && event->attr.sample_freq)
2307 		ctx->nr_freq--;
2308 	if (event->attr.exclusive || !cpc->active_oncpu)
2309 		cpc->exclusive = 0;
2310 
2311 	perf_pmu_enable(event->pmu);
2312 }
2313 
2314 static void
2315 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2316 {
2317 	struct perf_event *event;
2318 
2319 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2320 		return;
2321 
2322 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2323 
2324 	event_sched_out(group_event, ctx);
2325 
2326 	/*
2327 	 * Schedule out siblings (if any):
2328 	 */
2329 	for_each_sibling_event(event, group_event)
2330 		event_sched_out(event, ctx);
2331 }
2332 
2333 #define DETACH_GROUP	0x01UL
2334 #define DETACH_CHILD	0x02UL
2335 #define DETACH_DEAD	0x04UL
2336 
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345 			   struct perf_cpu_context *cpuctx,
2346 			   struct perf_event_context *ctx,
2347 			   void *info)
2348 {
2349 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2350 	unsigned long flags = (unsigned long)info;
2351 
2352 	if (ctx->is_active & EVENT_TIME) {
2353 		update_context_time(ctx);
2354 		update_cgrp_time_from_cpuctx(cpuctx, false);
2355 	}
2356 
2357 	/*
2358 	 * Ensure event_sched_out() switches to OFF, at the very least
2359 	 * this avoids raising perf_pending_task() at this time.
2360 	 */
2361 	if (flags & DETACH_DEAD)
2362 		event->pending_disable = 1;
2363 	event_sched_out(event, ctx);
2364 	if (flags & DETACH_GROUP)
2365 		perf_group_detach(event);
2366 	if (flags & DETACH_CHILD)
2367 		perf_child_detach(event);
2368 	list_del_event(event, ctx);
2369 	if (flags & DETACH_DEAD)
2370 		event->state = PERF_EVENT_STATE_DEAD;
2371 
2372 	if (!pmu_ctx->nr_events) {
2373 		pmu_ctx->rotate_necessary = 0;
2374 
2375 		if (ctx->task && ctx->is_active) {
2376 			struct perf_cpu_pmu_context *cpc;
2377 
2378 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2379 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2380 			cpc->task_epc = NULL;
2381 		}
2382 	}
2383 
2384 	if (!ctx->nr_events && ctx->is_active) {
2385 		if (ctx == &cpuctx->ctx)
2386 			update_cgrp_time_from_cpuctx(cpuctx, true);
2387 
2388 		ctx->is_active = 0;
2389 		if (ctx->task) {
2390 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2391 			cpuctx->task_ctx = NULL;
2392 		}
2393 	}
2394 }
2395 
2396 /*
2397  * Remove the event from a task's (or a CPU's) list of events.
2398  *
2399  * If event->ctx is a cloned context, callers must make sure that
2400  * every task struct that event->ctx->task could possibly point to
2401  * remains valid.  This is OK when called from perf_release since
2402  * that only calls us on the top-level context, which can't be a clone.
2403  * When called from perf_event_exit_task, it's OK because the
2404  * context has been detached from its task.
2405  */
2406 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2407 {
2408 	struct perf_event_context *ctx = event->ctx;
2409 
2410 	lockdep_assert_held(&ctx->mutex);
2411 
2412 	/*
2413 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2414 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2415 	 * event_function_call() user.
2416 	 */
2417 	raw_spin_lock_irq(&ctx->lock);
2418 	if (!ctx->is_active) {
2419 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2420 					   ctx, (void *)flags);
2421 		raw_spin_unlock_irq(&ctx->lock);
2422 		return;
2423 	}
2424 	raw_spin_unlock_irq(&ctx->lock);
2425 
2426 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2427 }
2428 
2429 /*
2430  * Cross CPU call to disable a performance event
2431  */
2432 static void __perf_event_disable(struct perf_event *event,
2433 				 struct perf_cpu_context *cpuctx,
2434 				 struct perf_event_context *ctx,
2435 				 void *info)
2436 {
2437 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2438 		return;
2439 
2440 	if (ctx->is_active & EVENT_TIME) {
2441 		update_context_time(ctx);
2442 		update_cgrp_time_from_event(event);
2443 	}
2444 
2445 	perf_pmu_disable(event->pmu_ctx->pmu);
2446 
2447 	if (event == event->group_leader)
2448 		group_sched_out(event, ctx);
2449 	else
2450 		event_sched_out(event, ctx);
2451 
2452 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2453 	perf_cgroup_event_disable(event, ctx);
2454 
2455 	perf_pmu_enable(event->pmu_ctx->pmu);
2456 }
2457 
2458 /*
2459  * Disable an event.
2460  *
2461  * If event->ctx is a cloned context, callers must make sure that
2462  * every task struct that event->ctx->task could possibly point to
2463  * remains valid.  This condition is satisfied when called through
2464  * perf_event_for_each_child or perf_event_for_each because they
2465  * hold the top-level event's child_mutex, so any descendant that
2466  * goes to exit will block in perf_event_exit_event().
2467  *
2468  * When called from perf_pending_irq it's OK because event->ctx
2469  * is the current context on this CPU and preemption is disabled,
2470  * hence we can't get into perf_event_task_sched_out for this context.
2471  */
2472 static void _perf_event_disable(struct perf_event *event)
2473 {
2474 	struct perf_event_context *ctx = event->ctx;
2475 
2476 	raw_spin_lock_irq(&ctx->lock);
2477 	if (event->state <= PERF_EVENT_STATE_OFF) {
2478 		raw_spin_unlock_irq(&ctx->lock);
2479 		return;
2480 	}
2481 	raw_spin_unlock_irq(&ctx->lock);
2482 
2483 	event_function_call(event, __perf_event_disable, NULL);
2484 }
2485 
2486 void perf_event_disable_local(struct perf_event *event)
2487 {
2488 	event_function_local(event, __perf_event_disable, NULL);
2489 }
2490 
2491 /*
2492  * Strictly speaking kernel users cannot create groups and therefore this
2493  * interface does not need the perf_event_ctx_lock() magic.
2494  */
2495 void perf_event_disable(struct perf_event *event)
2496 {
2497 	struct perf_event_context *ctx;
2498 
2499 	ctx = perf_event_ctx_lock(event);
2500 	_perf_event_disable(event);
2501 	perf_event_ctx_unlock(event, ctx);
2502 }
2503 EXPORT_SYMBOL_GPL(perf_event_disable);
2504 
2505 void perf_event_disable_inatomic(struct perf_event *event)
2506 {
2507 	event->pending_disable = 1;
2508 	irq_work_queue(&event->pending_irq);
2509 }
2510 
2511 #define MAX_INTERRUPTS (~0ULL)
2512 
2513 static void perf_log_throttle(struct perf_event *event, int enable);
2514 static void perf_log_itrace_start(struct perf_event *event);
2515 
2516 static int
2517 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2518 {
2519 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2520 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2521 	int ret = 0;
2522 
2523 	WARN_ON_ONCE(event->ctx != ctx);
2524 
2525 	lockdep_assert_held(&ctx->lock);
2526 
2527 	if (event->state <= PERF_EVENT_STATE_OFF)
2528 		return 0;
2529 
2530 	WRITE_ONCE(event->oncpu, smp_processor_id());
2531 	/*
2532 	 * Order event::oncpu write to happen before the ACTIVE state is
2533 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2534 	 * ->oncpu if it sees ACTIVE.
2535 	 */
2536 	smp_wmb();
2537 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2538 
2539 	/*
2540 	 * Unthrottle events, since we scheduled we might have missed several
2541 	 * ticks already, also for a heavily scheduling task there is little
2542 	 * guarantee it'll get a tick in a timely manner.
2543 	 */
2544 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2545 		perf_log_throttle(event, 1);
2546 		event->hw.interrupts = 0;
2547 	}
2548 
2549 	perf_pmu_disable(event->pmu);
2550 
2551 	perf_log_itrace_start(event);
2552 
2553 	if (event->pmu->add(event, PERF_EF_START)) {
2554 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2555 		event->oncpu = -1;
2556 		ret = -EAGAIN;
2557 		goto out;
2558 	}
2559 
2560 	if (!is_software_event(event))
2561 		cpc->active_oncpu++;
2562 	if (event->attr.freq && event->attr.sample_freq)
2563 		ctx->nr_freq++;
2564 
2565 	if (event->attr.exclusive)
2566 		cpc->exclusive = 1;
2567 
2568 out:
2569 	perf_pmu_enable(event->pmu);
2570 
2571 	return ret;
2572 }
2573 
2574 static int
2575 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2576 {
2577 	struct perf_event *event, *partial_group = NULL;
2578 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2579 
2580 	if (group_event->state == PERF_EVENT_STATE_OFF)
2581 		return 0;
2582 
2583 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2584 
2585 	if (event_sched_in(group_event, ctx))
2586 		goto error;
2587 
2588 	/*
2589 	 * Schedule in siblings as one group (if any):
2590 	 */
2591 	for_each_sibling_event(event, group_event) {
2592 		if (event_sched_in(event, ctx)) {
2593 			partial_group = event;
2594 			goto group_error;
2595 		}
2596 	}
2597 
2598 	if (!pmu->commit_txn(pmu))
2599 		return 0;
2600 
2601 group_error:
2602 	/*
2603 	 * Groups can be scheduled in as one unit only, so undo any
2604 	 * partial group before returning:
2605 	 * The events up to the failed event are scheduled out normally.
2606 	 */
2607 	for_each_sibling_event(event, group_event) {
2608 		if (event == partial_group)
2609 			break;
2610 
2611 		event_sched_out(event, ctx);
2612 	}
2613 	event_sched_out(group_event, ctx);
2614 
2615 error:
2616 	pmu->cancel_txn(pmu);
2617 	return -EAGAIN;
2618 }
2619 
2620 /*
2621  * Work out whether we can put this event group on the CPU now.
2622  */
2623 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2624 {
2625 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2626 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2627 
2628 	/*
2629 	 * Groups consisting entirely of software events can always go on.
2630 	 */
2631 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2632 		return 1;
2633 	/*
2634 	 * If an exclusive group is already on, no other hardware
2635 	 * events can go on.
2636 	 */
2637 	if (cpc->exclusive)
2638 		return 0;
2639 	/*
2640 	 * If this group is exclusive and there are already
2641 	 * events on the CPU, it can't go on.
2642 	 */
2643 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2644 		return 0;
2645 	/*
2646 	 * Otherwise, try to add it if all previous groups were able
2647 	 * to go on.
2648 	 */
2649 	return can_add_hw;
2650 }
2651 
2652 static void add_event_to_ctx(struct perf_event *event,
2653 			       struct perf_event_context *ctx)
2654 {
2655 	list_add_event(event, ctx);
2656 	perf_group_attach(event);
2657 }
2658 
2659 static void task_ctx_sched_out(struct perf_event_context *ctx,
2660 				enum event_type_t event_type)
2661 {
2662 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2663 
2664 	if (!cpuctx->task_ctx)
2665 		return;
2666 
2667 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2668 		return;
2669 
2670 	ctx_sched_out(ctx, event_type);
2671 }
2672 
2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2674 				struct perf_event_context *ctx)
2675 {
2676 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2677 	if (ctx)
2678 		 ctx_sched_in(ctx, EVENT_PINNED);
2679 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2680 	if (ctx)
2681 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2682 }
2683 
2684 /*
2685  * We want to maintain the following priority of scheduling:
2686  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2687  *  - task pinned (EVENT_PINNED)
2688  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2689  *  - task flexible (EVENT_FLEXIBLE).
2690  *
2691  * In order to avoid unscheduling and scheduling back in everything every
2692  * time an event is added, only do it for the groups of equal priority and
2693  * below.
2694  *
2695  * This can be called after a batch operation on task events, in which case
2696  * event_type is a bit mask of the types of events involved. For CPU events,
2697  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2698  */
2699 /*
2700  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2701  * event to the context or enabling existing event in the context. We can
2702  * probably optimize it by rescheduling only affected pmu_ctx.
2703  */
2704 static void ctx_resched(struct perf_cpu_context *cpuctx,
2705 			struct perf_event_context *task_ctx,
2706 			enum event_type_t event_type)
2707 {
2708 	bool cpu_event = !!(event_type & EVENT_CPU);
2709 
2710 	/*
2711 	 * If pinned groups are involved, flexible groups also need to be
2712 	 * scheduled out.
2713 	 */
2714 	if (event_type & EVENT_PINNED)
2715 		event_type |= EVENT_FLEXIBLE;
2716 
2717 	event_type &= EVENT_ALL;
2718 
2719 	perf_ctx_disable(&cpuctx->ctx, false);
2720 	if (task_ctx) {
2721 		perf_ctx_disable(task_ctx, false);
2722 		task_ctx_sched_out(task_ctx, event_type);
2723 	}
2724 
2725 	/*
2726 	 * Decide which cpu ctx groups to schedule out based on the types
2727 	 * of events that caused rescheduling:
2728 	 *  - EVENT_CPU: schedule out corresponding groups;
2729 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730 	 *  - otherwise, do nothing more.
2731 	 */
2732 	if (cpu_event)
2733 		ctx_sched_out(&cpuctx->ctx, event_type);
2734 	else if (event_type & EVENT_PINNED)
2735 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2736 
2737 	perf_event_sched_in(cpuctx, task_ctx);
2738 
2739 	perf_ctx_enable(&cpuctx->ctx, false);
2740 	if (task_ctx)
2741 		perf_ctx_enable(task_ctx, false);
2742 }
2743 
2744 void perf_pmu_resched(struct pmu *pmu)
2745 {
2746 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2747 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2748 
2749 	perf_ctx_lock(cpuctx, task_ctx);
2750 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2751 	perf_ctx_unlock(cpuctx, task_ctx);
2752 }
2753 
2754 /*
2755  * Cross CPU call to install and enable a performance event
2756  *
2757  * Very similar to remote_function() + event_function() but cannot assume that
2758  * things like ctx->is_active and cpuctx->task_ctx are set.
2759  */
2760 static int  __perf_install_in_context(void *info)
2761 {
2762 	struct perf_event *event = info;
2763 	struct perf_event_context *ctx = event->ctx;
2764 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2765 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2766 	bool reprogram = true;
2767 	int ret = 0;
2768 
2769 	raw_spin_lock(&cpuctx->ctx.lock);
2770 	if (ctx->task) {
2771 		raw_spin_lock(&ctx->lock);
2772 		task_ctx = ctx;
2773 
2774 		reprogram = (ctx->task == current);
2775 
2776 		/*
2777 		 * If the task is running, it must be running on this CPU,
2778 		 * otherwise we cannot reprogram things.
2779 		 *
2780 		 * If its not running, we don't care, ctx->lock will
2781 		 * serialize against it becoming runnable.
2782 		 */
2783 		if (task_curr(ctx->task) && !reprogram) {
2784 			ret = -ESRCH;
2785 			goto unlock;
2786 		}
2787 
2788 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2789 	} else if (task_ctx) {
2790 		raw_spin_lock(&task_ctx->lock);
2791 	}
2792 
2793 #ifdef CONFIG_CGROUP_PERF
2794 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2795 		/*
2796 		 * If the current cgroup doesn't match the event's
2797 		 * cgroup, we should not try to schedule it.
2798 		 */
2799 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2800 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2801 					event->cgrp->css.cgroup);
2802 	}
2803 #endif
2804 
2805 	if (reprogram) {
2806 		ctx_sched_out(ctx, EVENT_TIME);
2807 		add_event_to_ctx(event, ctx);
2808 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2809 	} else {
2810 		add_event_to_ctx(event, ctx);
2811 	}
2812 
2813 unlock:
2814 	perf_ctx_unlock(cpuctx, task_ctx);
2815 
2816 	return ret;
2817 }
2818 
2819 static bool exclusive_event_installable(struct perf_event *event,
2820 					struct perf_event_context *ctx);
2821 
2822 /*
2823  * Attach a performance event to a context.
2824  *
2825  * Very similar to event_function_call, see comment there.
2826  */
2827 static void
2828 perf_install_in_context(struct perf_event_context *ctx,
2829 			struct perf_event *event,
2830 			int cpu)
2831 {
2832 	struct task_struct *task = READ_ONCE(ctx->task);
2833 
2834 	lockdep_assert_held(&ctx->mutex);
2835 
2836 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2837 
2838 	if (event->cpu != -1)
2839 		WARN_ON_ONCE(event->cpu != cpu);
2840 
2841 	/*
2842 	 * Ensures that if we can observe event->ctx, both the event and ctx
2843 	 * will be 'complete'. See perf_iterate_sb_cpu().
2844 	 */
2845 	smp_store_release(&event->ctx, ctx);
2846 
2847 	/*
2848 	 * perf_event_attr::disabled events will not run and can be initialized
2849 	 * without IPI. Except when this is the first event for the context, in
2850 	 * that case we need the magic of the IPI to set ctx->is_active.
2851 	 *
2852 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2853 	 * event will issue the IPI and reprogram the hardware.
2854 	 */
2855 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2856 	    ctx->nr_events && !is_cgroup_event(event)) {
2857 		raw_spin_lock_irq(&ctx->lock);
2858 		if (ctx->task == TASK_TOMBSTONE) {
2859 			raw_spin_unlock_irq(&ctx->lock);
2860 			return;
2861 		}
2862 		add_event_to_ctx(event, ctx);
2863 		raw_spin_unlock_irq(&ctx->lock);
2864 		return;
2865 	}
2866 
2867 	if (!task) {
2868 		cpu_function_call(cpu, __perf_install_in_context, event);
2869 		return;
2870 	}
2871 
2872 	/*
2873 	 * Should not happen, we validate the ctx is still alive before calling.
2874 	 */
2875 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2876 		return;
2877 
2878 	/*
2879 	 * Installing events is tricky because we cannot rely on ctx->is_active
2880 	 * to be set in case this is the nr_events 0 -> 1 transition.
2881 	 *
2882 	 * Instead we use task_curr(), which tells us if the task is running.
2883 	 * However, since we use task_curr() outside of rq::lock, we can race
2884 	 * against the actual state. This means the result can be wrong.
2885 	 *
2886 	 * If we get a false positive, we retry, this is harmless.
2887 	 *
2888 	 * If we get a false negative, things are complicated. If we are after
2889 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2890 	 * value must be correct. If we're before, it doesn't matter since
2891 	 * perf_event_context_sched_in() will program the counter.
2892 	 *
2893 	 * However, this hinges on the remote context switch having observed
2894 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2895 	 * ctx::lock in perf_event_context_sched_in().
2896 	 *
2897 	 * We do this by task_function_call(), if the IPI fails to hit the task
2898 	 * we know any future context switch of task must see the
2899 	 * perf_event_ctpx[] store.
2900 	 */
2901 
2902 	/*
2903 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2904 	 * task_cpu() load, such that if the IPI then does not find the task
2905 	 * running, a future context switch of that task must observe the
2906 	 * store.
2907 	 */
2908 	smp_mb();
2909 again:
2910 	if (!task_function_call(task, __perf_install_in_context, event))
2911 		return;
2912 
2913 	raw_spin_lock_irq(&ctx->lock);
2914 	task = ctx->task;
2915 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2916 		/*
2917 		 * Cannot happen because we already checked above (which also
2918 		 * cannot happen), and we hold ctx->mutex, which serializes us
2919 		 * against perf_event_exit_task_context().
2920 		 */
2921 		raw_spin_unlock_irq(&ctx->lock);
2922 		return;
2923 	}
2924 	/*
2925 	 * If the task is not running, ctx->lock will avoid it becoming so,
2926 	 * thus we can safely install the event.
2927 	 */
2928 	if (task_curr(task)) {
2929 		raw_spin_unlock_irq(&ctx->lock);
2930 		goto again;
2931 	}
2932 	add_event_to_ctx(event, ctx);
2933 	raw_spin_unlock_irq(&ctx->lock);
2934 }
2935 
2936 /*
2937  * Cross CPU call to enable a performance event
2938  */
2939 static void __perf_event_enable(struct perf_event *event,
2940 				struct perf_cpu_context *cpuctx,
2941 				struct perf_event_context *ctx,
2942 				void *info)
2943 {
2944 	struct perf_event *leader = event->group_leader;
2945 	struct perf_event_context *task_ctx;
2946 
2947 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2948 	    event->state <= PERF_EVENT_STATE_ERROR)
2949 		return;
2950 
2951 	if (ctx->is_active)
2952 		ctx_sched_out(ctx, EVENT_TIME);
2953 
2954 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2955 	perf_cgroup_event_enable(event, ctx);
2956 
2957 	if (!ctx->is_active)
2958 		return;
2959 
2960 	if (!event_filter_match(event)) {
2961 		ctx_sched_in(ctx, EVENT_TIME);
2962 		return;
2963 	}
2964 
2965 	/*
2966 	 * If the event is in a group and isn't the group leader,
2967 	 * then don't put it on unless the group is on.
2968 	 */
2969 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2970 		ctx_sched_in(ctx, EVENT_TIME);
2971 		return;
2972 	}
2973 
2974 	task_ctx = cpuctx->task_ctx;
2975 	if (ctx->task)
2976 		WARN_ON_ONCE(task_ctx != ctx);
2977 
2978 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2979 }
2980 
2981 /*
2982  * Enable an event.
2983  *
2984  * If event->ctx is a cloned context, callers must make sure that
2985  * every task struct that event->ctx->task could possibly point to
2986  * remains valid.  This condition is satisfied when called through
2987  * perf_event_for_each_child or perf_event_for_each as described
2988  * for perf_event_disable.
2989  */
2990 static void _perf_event_enable(struct perf_event *event)
2991 {
2992 	struct perf_event_context *ctx = event->ctx;
2993 
2994 	raw_spin_lock_irq(&ctx->lock);
2995 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2996 	    event->state <  PERF_EVENT_STATE_ERROR) {
2997 out:
2998 		raw_spin_unlock_irq(&ctx->lock);
2999 		return;
3000 	}
3001 
3002 	/*
3003 	 * If the event is in error state, clear that first.
3004 	 *
3005 	 * That way, if we see the event in error state below, we know that it
3006 	 * has gone back into error state, as distinct from the task having
3007 	 * been scheduled away before the cross-call arrived.
3008 	 */
3009 	if (event->state == PERF_EVENT_STATE_ERROR) {
3010 		/*
3011 		 * Detached SIBLING events cannot leave ERROR state.
3012 		 */
3013 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3014 		    event->group_leader == event)
3015 			goto out;
3016 
3017 		event->state = PERF_EVENT_STATE_OFF;
3018 	}
3019 	raw_spin_unlock_irq(&ctx->lock);
3020 
3021 	event_function_call(event, __perf_event_enable, NULL);
3022 }
3023 
3024 /*
3025  * See perf_event_disable();
3026  */
3027 void perf_event_enable(struct perf_event *event)
3028 {
3029 	struct perf_event_context *ctx;
3030 
3031 	ctx = perf_event_ctx_lock(event);
3032 	_perf_event_enable(event);
3033 	perf_event_ctx_unlock(event, ctx);
3034 }
3035 EXPORT_SYMBOL_GPL(perf_event_enable);
3036 
3037 struct stop_event_data {
3038 	struct perf_event	*event;
3039 	unsigned int		restart;
3040 };
3041 
3042 static int __perf_event_stop(void *info)
3043 {
3044 	struct stop_event_data *sd = info;
3045 	struct perf_event *event = sd->event;
3046 
3047 	/* if it's already INACTIVE, do nothing */
3048 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3049 		return 0;
3050 
3051 	/* matches smp_wmb() in event_sched_in() */
3052 	smp_rmb();
3053 
3054 	/*
3055 	 * There is a window with interrupts enabled before we get here,
3056 	 * so we need to check again lest we try to stop another CPU's event.
3057 	 */
3058 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3059 		return -EAGAIN;
3060 
3061 	event->pmu->stop(event, PERF_EF_UPDATE);
3062 
3063 	/*
3064 	 * May race with the actual stop (through perf_pmu_output_stop()),
3065 	 * but it is only used for events with AUX ring buffer, and such
3066 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3067 	 * see comments in perf_aux_output_begin().
3068 	 *
3069 	 * Since this is happening on an event-local CPU, no trace is lost
3070 	 * while restarting.
3071 	 */
3072 	if (sd->restart)
3073 		event->pmu->start(event, 0);
3074 
3075 	return 0;
3076 }
3077 
3078 static int perf_event_stop(struct perf_event *event, int restart)
3079 {
3080 	struct stop_event_data sd = {
3081 		.event		= event,
3082 		.restart	= restart,
3083 	};
3084 	int ret = 0;
3085 
3086 	do {
3087 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3088 			return 0;
3089 
3090 		/* matches smp_wmb() in event_sched_in() */
3091 		smp_rmb();
3092 
3093 		/*
3094 		 * We only want to restart ACTIVE events, so if the event goes
3095 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3096 		 * fall through with ret==-ENXIO.
3097 		 */
3098 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3099 					__perf_event_stop, &sd);
3100 	} while (ret == -EAGAIN);
3101 
3102 	return ret;
3103 }
3104 
3105 /*
3106  * In order to contain the amount of racy and tricky in the address filter
3107  * configuration management, it is a two part process:
3108  *
3109  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3110  *      we update the addresses of corresponding vmas in
3111  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3112  * (p2) when an event is scheduled in (pmu::add), it calls
3113  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3114  *      if the generation has changed since the previous call.
3115  *
3116  * If (p1) happens while the event is active, we restart it to force (p2).
3117  *
3118  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3119  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3120  *     ioctl;
3121  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3122  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3123  *     for reading;
3124  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3125  *     of exec.
3126  */
3127 void perf_event_addr_filters_sync(struct perf_event *event)
3128 {
3129 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3130 
3131 	if (!has_addr_filter(event))
3132 		return;
3133 
3134 	raw_spin_lock(&ifh->lock);
3135 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3136 		event->pmu->addr_filters_sync(event);
3137 		event->hw.addr_filters_gen = event->addr_filters_gen;
3138 	}
3139 	raw_spin_unlock(&ifh->lock);
3140 }
3141 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3142 
3143 static int _perf_event_refresh(struct perf_event *event, int refresh)
3144 {
3145 	/*
3146 	 * not supported on inherited events
3147 	 */
3148 	if (event->attr.inherit || !is_sampling_event(event))
3149 		return -EINVAL;
3150 
3151 	atomic_add(refresh, &event->event_limit);
3152 	_perf_event_enable(event);
3153 
3154 	return 0;
3155 }
3156 
3157 /*
3158  * See perf_event_disable()
3159  */
3160 int perf_event_refresh(struct perf_event *event, int refresh)
3161 {
3162 	struct perf_event_context *ctx;
3163 	int ret;
3164 
3165 	ctx = perf_event_ctx_lock(event);
3166 	ret = _perf_event_refresh(event, refresh);
3167 	perf_event_ctx_unlock(event, ctx);
3168 
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(perf_event_refresh);
3172 
3173 static int perf_event_modify_breakpoint(struct perf_event *bp,
3174 					 struct perf_event_attr *attr)
3175 {
3176 	int err;
3177 
3178 	_perf_event_disable(bp);
3179 
3180 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3181 
3182 	if (!bp->attr.disabled)
3183 		_perf_event_enable(bp);
3184 
3185 	return err;
3186 }
3187 
3188 /*
3189  * Copy event-type-independent attributes that may be modified.
3190  */
3191 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3192 					const struct perf_event_attr *from)
3193 {
3194 	to->sig_data = from->sig_data;
3195 }
3196 
3197 static int perf_event_modify_attr(struct perf_event *event,
3198 				  struct perf_event_attr *attr)
3199 {
3200 	int (*func)(struct perf_event *, struct perf_event_attr *);
3201 	struct perf_event *child;
3202 	int err;
3203 
3204 	if (event->attr.type != attr->type)
3205 		return -EINVAL;
3206 
3207 	switch (event->attr.type) {
3208 	case PERF_TYPE_BREAKPOINT:
3209 		func = perf_event_modify_breakpoint;
3210 		break;
3211 	default:
3212 		/* Place holder for future additions. */
3213 		return -EOPNOTSUPP;
3214 	}
3215 
3216 	WARN_ON_ONCE(event->ctx->parent_ctx);
3217 
3218 	mutex_lock(&event->child_mutex);
3219 	/*
3220 	 * Event-type-independent attributes must be copied before event-type
3221 	 * modification, which will validate that final attributes match the
3222 	 * source attributes after all relevant attributes have been copied.
3223 	 */
3224 	perf_event_modify_copy_attr(&event->attr, attr);
3225 	err = func(event, attr);
3226 	if (err)
3227 		goto out;
3228 	list_for_each_entry(child, &event->child_list, child_list) {
3229 		perf_event_modify_copy_attr(&child->attr, attr);
3230 		err = func(child, attr);
3231 		if (err)
3232 			goto out;
3233 	}
3234 out:
3235 	mutex_unlock(&event->child_mutex);
3236 	return err;
3237 }
3238 
3239 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3240 				enum event_type_t event_type)
3241 {
3242 	struct perf_event_context *ctx = pmu_ctx->ctx;
3243 	struct perf_event *event, *tmp;
3244 	struct pmu *pmu = pmu_ctx->pmu;
3245 
3246 	if (ctx->task && !ctx->is_active) {
3247 		struct perf_cpu_pmu_context *cpc;
3248 
3249 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3250 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3251 		cpc->task_epc = NULL;
3252 	}
3253 
3254 	if (!event_type)
3255 		return;
3256 
3257 	perf_pmu_disable(pmu);
3258 	if (event_type & EVENT_PINNED) {
3259 		list_for_each_entry_safe(event, tmp,
3260 					 &pmu_ctx->pinned_active,
3261 					 active_list)
3262 			group_sched_out(event, ctx);
3263 	}
3264 
3265 	if (event_type & EVENT_FLEXIBLE) {
3266 		list_for_each_entry_safe(event, tmp,
3267 					 &pmu_ctx->flexible_active,
3268 					 active_list)
3269 			group_sched_out(event, ctx);
3270 		/*
3271 		 * Since we cleared EVENT_FLEXIBLE, also clear
3272 		 * rotate_necessary, is will be reset by
3273 		 * ctx_flexible_sched_in() when needed.
3274 		 */
3275 		pmu_ctx->rotate_necessary = 0;
3276 	}
3277 	perf_pmu_enable(pmu);
3278 }
3279 
3280 static void
3281 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3282 {
3283 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3284 	struct perf_event_pmu_context *pmu_ctx;
3285 	int is_active = ctx->is_active;
3286 	bool cgroup = event_type & EVENT_CGROUP;
3287 
3288 	event_type &= ~EVENT_CGROUP;
3289 
3290 	lockdep_assert_held(&ctx->lock);
3291 
3292 	if (likely(!ctx->nr_events)) {
3293 		/*
3294 		 * See __perf_remove_from_context().
3295 		 */
3296 		WARN_ON_ONCE(ctx->is_active);
3297 		if (ctx->task)
3298 			WARN_ON_ONCE(cpuctx->task_ctx);
3299 		return;
3300 	}
3301 
3302 	/*
3303 	 * Always update time if it was set; not only when it changes.
3304 	 * Otherwise we can 'forget' to update time for any but the last
3305 	 * context we sched out. For example:
3306 	 *
3307 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3308 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3309 	 *
3310 	 * would only update time for the pinned events.
3311 	 */
3312 	if (is_active & EVENT_TIME) {
3313 		/* update (and stop) ctx time */
3314 		update_context_time(ctx);
3315 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3316 		/*
3317 		 * CPU-release for the below ->is_active store,
3318 		 * see __load_acquire() in perf_event_time_now()
3319 		 */
3320 		barrier();
3321 	}
3322 
3323 	ctx->is_active &= ~event_type;
3324 	if (!(ctx->is_active & EVENT_ALL))
3325 		ctx->is_active = 0;
3326 
3327 	if (ctx->task) {
3328 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3329 		if (!ctx->is_active)
3330 			cpuctx->task_ctx = NULL;
3331 	}
3332 
3333 	is_active ^= ctx->is_active; /* changed bits */
3334 
3335 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3336 		if (cgroup && !pmu_ctx->nr_cgroups)
3337 			continue;
3338 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3339 	}
3340 }
3341 
3342 /*
3343  * Test whether two contexts are equivalent, i.e. whether they have both been
3344  * cloned from the same version of the same context.
3345  *
3346  * Equivalence is measured using a generation number in the context that is
3347  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3348  * and list_del_event().
3349  */
3350 static int context_equiv(struct perf_event_context *ctx1,
3351 			 struct perf_event_context *ctx2)
3352 {
3353 	lockdep_assert_held(&ctx1->lock);
3354 	lockdep_assert_held(&ctx2->lock);
3355 
3356 	/* Pinning disables the swap optimization */
3357 	if (ctx1->pin_count || ctx2->pin_count)
3358 		return 0;
3359 
3360 	/* If ctx1 is the parent of ctx2 */
3361 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3362 		return 1;
3363 
3364 	/* If ctx2 is the parent of ctx1 */
3365 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3366 		return 1;
3367 
3368 	/*
3369 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3370 	 * hierarchy, see perf_event_init_context().
3371 	 */
3372 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3373 			ctx1->parent_gen == ctx2->parent_gen)
3374 		return 1;
3375 
3376 	/* Unmatched */
3377 	return 0;
3378 }
3379 
3380 static void __perf_event_sync_stat(struct perf_event *event,
3381 				     struct perf_event *next_event)
3382 {
3383 	u64 value;
3384 
3385 	if (!event->attr.inherit_stat)
3386 		return;
3387 
3388 	/*
3389 	 * Update the event value, we cannot use perf_event_read()
3390 	 * because we're in the middle of a context switch and have IRQs
3391 	 * disabled, which upsets smp_call_function_single(), however
3392 	 * we know the event must be on the current CPU, therefore we
3393 	 * don't need to use it.
3394 	 */
3395 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3396 		event->pmu->read(event);
3397 
3398 	perf_event_update_time(event);
3399 
3400 	/*
3401 	 * In order to keep per-task stats reliable we need to flip the event
3402 	 * values when we flip the contexts.
3403 	 */
3404 	value = local64_read(&next_event->count);
3405 	value = local64_xchg(&event->count, value);
3406 	local64_set(&next_event->count, value);
3407 
3408 	swap(event->total_time_enabled, next_event->total_time_enabled);
3409 	swap(event->total_time_running, next_event->total_time_running);
3410 
3411 	/*
3412 	 * Since we swizzled the values, update the user visible data too.
3413 	 */
3414 	perf_event_update_userpage(event);
3415 	perf_event_update_userpage(next_event);
3416 }
3417 
3418 static void perf_event_sync_stat(struct perf_event_context *ctx,
3419 				   struct perf_event_context *next_ctx)
3420 {
3421 	struct perf_event *event, *next_event;
3422 
3423 	if (!ctx->nr_stat)
3424 		return;
3425 
3426 	update_context_time(ctx);
3427 
3428 	event = list_first_entry(&ctx->event_list,
3429 				   struct perf_event, event_entry);
3430 
3431 	next_event = list_first_entry(&next_ctx->event_list,
3432 					struct perf_event, event_entry);
3433 
3434 	while (&event->event_entry != &ctx->event_list &&
3435 	       &next_event->event_entry != &next_ctx->event_list) {
3436 
3437 		__perf_event_sync_stat(event, next_event);
3438 
3439 		event = list_next_entry(event, event_entry);
3440 		next_event = list_next_entry(next_event, event_entry);
3441 	}
3442 }
3443 
3444 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3445 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3446 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3447 	     !list_entry_is_head(pos1, head1, member) &&		\
3448 	     !list_entry_is_head(pos2, head2, member);			\
3449 	     pos1 = list_next_entry(pos1, member),			\
3450 	     pos2 = list_next_entry(pos2, member))
3451 
3452 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3453 					  struct perf_event_context *next_ctx)
3454 {
3455 	struct perf_event_pmu_context *prev_epc, *next_epc;
3456 
3457 	if (!prev_ctx->nr_task_data)
3458 		return;
3459 
3460 	double_list_for_each_entry(prev_epc, next_epc,
3461 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3462 				   pmu_ctx_entry) {
3463 
3464 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3465 			continue;
3466 
3467 		/*
3468 		 * PMU specific parts of task perf context can require
3469 		 * additional synchronization. As an example of such
3470 		 * synchronization see implementation details of Intel
3471 		 * LBR call stack data profiling;
3472 		 */
3473 		if (prev_epc->pmu->swap_task_ctx)
3474 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3475 		else
3476 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3477 	}
3478 }
3479 
3480 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3481 {
3482 	struct perf_event_pmu_context *pmu_ctx;
3483 	struct perf_cpu_pmu_context *cpc;
3484 
3485 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3486 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3487 
3488 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3489 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3490 	}
3491 }
3492 
3493 static void
3494 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3495 {
3496 	struct perf_event_context *ctx = task->perf_event_ctxp;
3497 	struct perf_event_context *next_ctx;
3498 	struct perf_event_context *parent, *next_parent;
3499 	int do_switch = 1;
3500 
3501 	if (likely(!ctx))
3502 		return;
3503 
3504 	rcu_read_lock();
3505 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3506 	if (!next_ctx)
3507 		goto unlock;
3508 
3509 	parent = rcu_dereference(ctx->parent_ctx);
3510 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3511 
3512 	/* If neither context have a parent context; they cannot be clones. */
3513 	if (!parent && !next_parent)
3514 		goto unlock;
3515 
3516 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3517 		/*
3518 		 * Looks like the two contexts are clones, so we might be
3519 		 * able to optimize the context switch.  We lock both
3520 		 * contexts and check that they are clones under the
3521 		 * lock (including re-checking that neither has been
3522 		 * uncloned in the meantime).  It doesn't matter which
3523 		 * order we take the locks because no other cpu could
3524 		 * be trying to lock both of these tasks.
3525 		 */
3526 		raw_spin_lock(&ctx->lock);
3527 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3528 		if (context_equiv(ctx, next_ctx)) {
3529 
3530 			perf_ctx_disable(ctx, false);
3531 
3532 			/* PMIs are disabled; ctx->nr_pending is stable. */
3533 			if (local_read(&ctx->nr_pending) ||
3534 			    local_read(&next_ctx->nr_pending)) {
3535 				/*
3536 				 * Must not swap out ctx when there's pending
3537 				 * events that rely on the ctx->task relation.
3538 				 */
3539 				raw_spin_unlock(&next_ctx->lock);
3540 				rcu_read_unlock();
3541 				goto inside_switch;
3542 			}
3543 
3544 			WRITE_ONCE(ctx->task, next);
3545 			WRITE_ONCE(next_ctx->task, task);
3546 
3547 			perf_ctx_sched_task_cb(ctx, false);
3548 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3549 
3550 			perf_ctx_enable(ctx, false);
3551 
3552 			/*
3553 			 * RCU_INIT_POINTER here is safe because we've not
3554 			 * modified the ctx and the above modification of
3555 			 * ctx->task and ctx->task_ctx_data are immaterial
3556 			 * since those values are always verified under
3557 			 * ctx->lock which we're now holding.
3558 			 */
3559 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3560 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3561 
3562 			do_switch = 0;
3563 
3564 			perf_event_sync_stat(ctx, next_ctx);
3565 		}
3566 		raw_spin_unlock(&next_ctx->lock);
3567 		raw_spin_unlock(&ctx->lock);
3568 	}
3569 unlock:
3570 	rcu_read_unlock();
3571 
3572 	if (do_switch) {
3573 		raw_spin_lock(&ctx->lock);
3574 		perf_ctx_disable(ctx, false);
3575 
3576 inside_switch:
3577 		perf_ctx_sched_task_cb(ctx, false);
3578 		task_ctx_sched_out(ctx, EVENT_ALL);
3579 
3580 		perf_ctx_enable(ctx, false);
3581 		raw_spin_unlock(&ctx->lock);
3582 	}
3583 }
3584 
3585 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3586 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3587 
3588 void perf_sched_cb_dec(struct pmu *pmu)
3589 {
3590 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3591 
3592 	this_cpu_dec(perf_sched_cb_usages);
3593 	barrier();
3594 
3595 	if (!--cpc->sched_cb_usage)
3596 		list_del(&cpc->sched_cb_entry);
3597 }
3598 
3599 
3600 void perf_sched_cb_inc(struct pmu *pmu)
3601 {
3602 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3603 
3604 	if (!cpc->sched_cb_usage++)
3605 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3606 
3607 	barrier();
3608 	this_cpu_inc(perf_sched_cb_usages);
3609 }
3610 
3611 /*
3612  * This function provides the context switch callback to the lower code
3613  * layer. It is invoked ONLY when the context switch callback is enabled.
3614  *
3615  * This callback is relevant even to per-cpu events; for example multi event
3616  * PEBS requires this to provide PID/TID information. This requires we flush
3617  * all queued PEBS records before we context switch to a new task.
3618  */
3619 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3620 {
3621 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3622 	struct pmu *pmu;
3623 
3624 	pmu = cpc->epc.pmu;
3625 
3626 	/* software PMUs will not have sched_task */
3627 	if (WARN_ON_ONCE(!pmu->sched_task))
3628 		return;
3629 
3630 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3631 	perf_pmu_disable(pmu);
3632 
3633 	pmu->sched_task(cpc->task_epc, sched_in);
3634 
3635 	perf_pmu_enable(pmu);
3636 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3637 }
3638 
3639 static void perf_pmu_sched_task(struct task_struct *prev,
3640 				struct task_struct *next,
3641 				bool sched_in)
3642 {
3643 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3644 	struct perf_cpu_pmu_context *cpc;
3645 
3646 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3647 	if (prev == next || cpuctx->task_ctx)
3648 		return;
3649 
3650 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3651 		__perf_pmu_sched_task(cpc, sched_in);
3652 }
3653 
3654 static void perf_event_switch(struct task_struct *task,
3655 			      struct task_struct *next_prev, bool sched_in);
3656 
3657 /*
3658  * Called from scheduler to remove the events of the current task,
3659  * with interrupts disabled.
3660  *
3661  * We stop each event and update the event value in event->count.
3662  *
3663  * This does not protect us against NMI, but disable()
3664  * sets the disabled bit in the control field of event _before_
3665  * accessing the event control register. If a NMI hits, then it will
3666  * not restart the event.
3667  */
3668 void __perf_event_task_sched_out(struct task_struct *task,
3669 				 struct task_struct *next)
3670 {
3671 	if (__this_cpu_read(perf_sched_cb_usages))
3672 		perf_pmu_sched_task(task, next, false);
3673 
3674 	if (atomic_read(&nr_switch_events))
3675 		perf_event_switch(task, next, false);
3676 
3677 	perf_event_context_sched_out(task, next);
3678 
3679 	/*
3680 	 * if cgroup events exist on this CPU, then we need
3681 	 * to check if we have to switch out PMU state.
3682 	 * cgroup event are system-wide mode only
3683 	 */
3684 	perf_cgroup_switch(next);
3685 }
3686 
3687 static bool perf_less_group_idx(const void *l, const void *r)
3688 {
3689 	const struct perf_event *le = *(const struct perf_event **)l;
3690 	const struct perf_event *re = *(const struct perf_event **)r;
3691 
3692 	return le->group_index < re->group_index;
3693 }
3694 
3695 static void swap_ptr(void *l, void *r)
3696 {
3697 	void **lp = l, **rp = r;
3698 
3699 	swap(*lp, *rp);
3700 }
3701 
3702 static const struct min_heap_callbacks perf_min_heap = {
3703 	.elem_size = sizeof(struct perf_event *),
3704 	.less = perf_less_group_idx,
3705 	.swp = swap_ptr,
3706 };
3707 
3708 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3709 {
3710 	struct perf_event **itrs = heap->data;
3711 
3712 	if (event) {
3713 		itrs[heap->nr] = event;
3714 		heap->nr++;
3715 	}
3716 }
3717 
3718 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3719 {
3720 	struct perf_cpu_pmu_context *cpc;
3721 
3722 	if (!pmu_ctx->ctx->task)
3723 		return;
3724 
3725 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3726 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3727 	cpc->task_epc = pmu_ctx;
3728 }
3729 
3730 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3731 				struct perf_event_groups *groups, int cpu,
3732 				struct pmu *pmu,
3733 				int (*func)(struct perf_event *, void *),
3734 				void *data)
3735 {
3736 #ifdef CONFIG_CGROUP_PERF
3737 	struct cgroup_subsys_state *css = NULL;
3738 #endif
3739 	struct perf_cpu_context *cpuctx = NULL;
3740 	/* Space for per CPU and/or any CPU event iterators. */
3741 	struct perf_event *itrs[2];
3742 	struct min_heap event_heap;
3743 	struct perf_event **evt;
3744 	int ret;
3745 
3746 	if (pmu->filter && pmu->filter(pmu, cpu))
3747 		return 0;
3748 
3749 	if (!ctx->task) {
3750 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3751 		event_heap = (struct min_heap){
3752 			.data = cpuctx->heap,
3753 			.nr = 0,
3754 			.size = cpuctx->heap_size,
3755 		};
3756 
3757 		lockdep_assert_held(&cpuctx->ctx.lock);
3758 
3759 #ifdef CONFIG_CGROUP_PERF
3760 		if (cpuctx->cgrp)
3761 			css = &cpuctx->cgrp->css;
3762 #endif
3763 	} else {
3764 		event_heap = (struct min_heap){
3765 			.data = itrs,
3766 			.nr = 0,
3767 			.size = ARRAY_SIZE(itrs),
3768 		};
3769 		/* Events not within a CPU context may be on any CPU. */
3770 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3771 	}
3772 	evt = event_heap.data;
3773 
3774 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3775 
3776 #ifdef CONFIG_CGROUP_PERF
3777 	for (; css; css = css->parent)
3778 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3779 #endif
3780 
3781 	if (event_heap.nr) {
3782 		__link_epc((*evt)->pmu_ctx);
3783 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3784 	}
3785 
3786 	min_heapify_all(&event_heap, &perf_min_heap);
3787 
3788 	while (event_heap.nr) {
3789 		ret = func(*evt, data);
3790 		if (ret)
3791 			return ret;
3792 
3793 		*evt = perf_event_groups_next(*evt, pmu);
3794 		if (*evt)
3795 			min_heapify(&event_heap, 0, &perf_min_heap);
3796 		else
3797 			min_heap_pop(&event_heap, &perf_min_heap);
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 /*
3804  * Because the userpage is strictly per-event (there is no concept of context,
3805  * so there cannot be a context indirection), every userpage must be updated
3806  * when context time starts :-(
3807  *
3808  * IOW, we must not miss EVENT_TIME edges.
3809  */
3810 static inline bool event_update_userpage(struct perf_event *event)
3811 {
3812 	if (likely(!atomic_read(&event->mmap_count)))
3813 		return false;
3814 
3815 	perf_event_update_time(event);
3816 	perf_event_update_userpage(event);
3817 
3818 	return true;
3819 }
3820 
3821 static inline void group_update_userpage(struct perf_event *group_event)
3822 {
3823 	struct perf_event *event;
3824 
3825 	if (!event_update_userpage(group_event))
3826 		return;
3827 
3828 	for_each_sibling_event(event, group_event)
3829 		event_update_userpage(event);
3830 }
3831 
3832 static int merge_sched_in(struct perf_event *event, void *data)
3833 {
3834 	struct perf_event_context *ctx = event->ctx;
3835 	int *can_add_hw = data;
3836 
3837 	if (event->state <= PERF_EVENT_STATE_OFF)
3838 		return 0;
3839 
3840 	if (!event_filter_match(event))
3841 		return 0;
3842 
3843 	if (group_can_go_on(event, *can_add_hw)) {
3844 		if (!group_sched_in(event, ctx))
3845 			list_add_tail(&event->active_list, get_event_list(event));
3846 	}
3847 
3848 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3849 		*can_add_hw = 0;
3850 		if (event->attr.pinned) {
3851 			perf_cgroup_event_disable(event, ctx);
3852 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3853 		} else {
3854 			struct perf_cpu_pmu_context *cpc;
3855 
3856 			event->pmu_ctx->rotate_necessary = 1;
3857 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3858 			perf_mux_hrtimer_restart(cpc);
3859 			group_update_userpage(event);
3860 		}
3861 	}
3862 
3863 	return 0;
3864 }
3865 
3866 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3867 				struct perf_event_groups *groups,
3868 				struct pmu *pmu)
3869 {
3870 	int can_add_hw = 1;
3871 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3872 			   merge_sched_in, &can_add_hw);
3873 }
3874 
3875 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3876 				struct perf_event_groups *groups,
3877 				bool cgroup)
3878 {
3879 	struct perf_event_pmu_context *pmu_ctx;
3880 
3881 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3882 		if (cgroup && !pmu_ctx->nr_cgroups)
3883 			continue;
3884 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3885 	}
3886 }
3887 
3888 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3889 			       struct pmu *pmu)
3890 {
3891 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3892 }
3893 
3894 static void
3895 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3896 {
3897 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3898 	int is_active = ctx->is_active;
3899 	bool cgroup = event_type & EVENT_CGROUP;
3900 
3901 	event_type &= ~EVENT_CGROUP;
3902 
3903 	lockdep_assert_held(&ctx->lock);
3904 
3905 	if (likely(!ctx->nr_events))
3906 		return;
3907 
3908 	if (!(is_active & EVENT_TIME)) {
3909 		/* start ctx time */
3910 		__update_context_time(ctx, false);
3911 		perf_cgroup_set_timestamp(cpuctx);
3912 		/*
3913 		 * CPU-release for the below ->is_active store,
3914 		 * see __load_acquire() in perf_event_time_now()
3915 		 */
3916 		barrier();
3917 	}
3918 
3919 	ctx->is_active |= (event_type | EVENT_TIME);
3920 	if (ctx->task) {
3921 		if (!is_active)
3922 			cpuctx->task_ctx = ctx;
3923 		else
3924 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3925 	}
3926 
3927 	is_active ^= ctx->is_active; /* changed bits */
3928 
3929 	/*
3930 	 * First go through the list and put on any pinned groups
3931 	 * in order to give them the best chance of going on.
3932 	 */
3933 	if (is_active & EVENT_PINNED)
3934 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3935 
3936 	/* Then walk through the lower prio flexible groups */
3937 	if (is_active & EVENT_FLEXIBLE)
3938 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3939 }
3940 
3941 static void perf_event_context_sched_in(struct task_struct *task)
3942 {
3943 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3944 	struct perf_event_context *ctx;
3945 
3946 	rcu_read_lock();
3947 	ctx = rcu_dereference(task->perf_event_ctxp);
3948 	if (!ctx)
3949 		goto rcu_unlock;
3950 
3951 	if (cpuctx->task_ctx == ctx) {
3952 		perf_ctx_lock(cpuctx, ctx);
3953 		perf_ctx_disable(ctx, false);
3954 
3955 		perf_ctx_sched_task_cb(ctx, true);
3956 
3957 		perf_ctx_enable(ctx, false);
3958 		perf_ctx_unlock(cpuctx, ctx);
3959 		goto rcu_unlock;
3960 	}
3961 
3962 	perf_ctx_lock(cpuctx, ctx);
3963 	/*
3964 	 * We must check ctx->nr_events while holding ctx->lock, such
3965 	 * that we serialize against perf_install_in_context().
3966 	 */
3967 	if (!ctx->nr_events)
3968 		goto unlock;
3969 
3970 	perf_ctx_disable(ctx, false);
3971 	/*
3972 	 * We want to keep the following priority order:
3973 	 * cpu pinned (that don't need to move), task pinned,
3974 	 * cpu flexible, task flexible.
3975 	 *
3976 	 * However, if task's ctx is not carrying any pinned
3977 	 * events, no need to flip the cpuctx's events around.
3978 	 */
3979 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3980 		perf_ctx_disable(&cpuctx->ctx, false);
3981 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3982 	}
3983 
3984 	perf_event_sched_in(cpuctx, ctx);
3985 
3986 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3987 
3988 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3989 		perf_ctx_enable(&cpuctx->ctx, false);
3990 
3991 	perf_ctx_enable(ctx, false);
3992 
3993 unlock:
3994 	perf_ctx_unlock(cpuctx, ctx);
3995 rcu_unlock:
3996 	rcu_read_unlock();
3997 }
3998 
3999 /*
4000  * Called from scheduler to add the events of the current task
4001  * with interrupts disabled.
4002  *
4003  * We restore the event value and then enable it.
4004  *
4005  * This does not protect us against NMI, but enable()
4006  * sets the enabled bit in the control field of event _before_
4007  * accessing the event control register. If a NMI hits, then it will
4008  * keep the event running.
4009  */
4010 void __perf_event_task_sched_in(struct task_struct *prev,
4011 				struct task_struct *task)
4012 {
4013 	perf_event_context_sched_in(task);
4014 
4015 	if (atomic_read(&nr_switch_events))
4016 		perf_event_switch(task, prev, true);
4017 
4018 	if (__this_cpu_read(perf_sched_cb_usages))
4019 		perf_pmu_sched_task(prev, task, true);
4020 }
4021 
4022 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4023 {
4024 	u64 frequency = event->attr.sample_freq;
4025 	u64 sec = NSEC_PER_SEC;
4026 	u64 divisor, dividend;
4027 
4028 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4029 
4030 	count_fls = fls64(count);
4031 	nsec_fls = fls64(nsec);
4032 	frequency_fls = fls64(frequency);
4033 	sec_fls = 30;
4034 
4035 	/*
4036 	 * We got @count in @nsec, with a target of sample_freq HZ
4037 	 * the target period becomes:
4038 	 *
4039 	 *             @count * 10^9
4040 	 * period = -------------------
4041 	 *          @nsec * sample_freq
4042 	 *
4043 	 */
4044 
4045 	/*
4046 	 * Reduce accuracy by one bit such that @a and @b converge
4047 	 * to a similar magnitude.
4048 	 */
4049 #define REDUCE_FLS(a, b)		\
4050 do {					\
4051 	if (a##_fls > b##_fls) {	\
4052 		a >>= 1;		\
4053 		a##_fls--;		\
4054 	} else {			\
4055 		b >>= 1;		\
4056 		b##_fls--;		\
4057 	}				\
4058 } while (0)
4059 
4060 	/*
4061 	 * Reduce accuracy until either term fits in a u64, then proceed with
4062 	 * the other, so that finally we can do a u64/u64 division.
4063 	 */
4064 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4065 		REDUCE_FLS(nsec, frequency);
4066 		REDUCE_FLS(sec, count);
4067 	}
4068 
4069 	if (count_fls + sec_fls > 64) {
4070 		divisor = nsec * frequency;
4071 
4072 		while (count_fls + sec_fls > 64) {
4073 			REDUCE_FLS(count, sec);
4074 			divisor >>= 1;
4075 		}
4076 
4077 		dividend = count * sec;
4078 	} else {
4079 		dividend = count * sec;
4080 
4081 		while (nsec_fls + frequency_fls > 64) {
4082 			REDUCE_FLS(nsec, frequency);
4083 			dividend >>= 1;
4084 		}
4085 
4086 		divisor = nsec * frequency;
4087 	}
4088 
4089 	if (!divisor)
4090 		return dividend;
4091 
4092 	return div64_u64(dividend, divisor);
4093 }
4094 
4095 static DEFINE_PER_CPU(int, perf_throttled_count);
4096 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4097 
4098 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4099 {
4100 	struct hw_perf_event *hwc = &event->hw;
4101 	s64 period, sample_period;
4102 	s64 delta;
4103 
4104 	period = perf_calculate_period(event, nsec, count);
4105 
4106 	delta = (s64)(period - hwc->sample_period);
4107 	delta = (delta + 7) / 8; /* low pass filter */
4108 
4109 	sample_period = hwc->sample_period + delta;
4110 
4111 	if (!sample_period)
4112 		sample_period = 1;
4113 
4114 	hwc->sample_period = sample_period;
4115 
4116 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4117 		if (disable)
4118 			event->pmu->stop(event, PERF_EF_UPDATE);
4119 
4120 		local64_set(&hwc->period_left, 0);
4121 
4122 		if (disable)
4123 			event->pmu->start(event, PERF_EF_RELOAD);
4124 	}
4125 }
4126 
4127 /*
4128  * combine freq adjustment with unthrottling to avoid two passes over the
4129  * events. At the same time, make sure, having freq events does not change
4130  * the rate of unthrottling as that would introduce bias.
4131  */
4132 static void
4133 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4134 {
4135 	struct perf_event *event;
4136 	struct hw_perf_event *hwc;
4137 	u64 now, period = TICK_NSEC;
4138 	s64 delta;
4139 
4140 	/*
4141 	 * only need to iterate over all events iff:
4142 	 * - context have events in frequency mode (needs freq adjust)
4143 	 * - there are events to unthrottle on this cpu
4144 	 */
4145 	if (!(ctx->nr_freq || unthrottle))
4146 		return;
4147 
4148 	raw_spin_lock(&ctx->lock);
4149 
4150 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4151 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4152 			continue;
4153 
4154 		// XXX use visit thingy to avoid the -1,cpu match
4155 		if (!event_filter_match(event))
4156 			continue;
4157 
4158 		perf_pmu_disable(event->pmu);
4159 
4160 		hwc = &event->hw;
4161 
4162 		if (hwc->interrupts == MAX_INTERRUPTS) {
4163 			hwc->interrupts = 0;
4164 			perf_log_throttle(event, 1);
4165 			event->pmu->start(event, 0);
4166 		}
4167 
4168 		if (!event->attr.freq || !event->attr.sample_freq)
4169 			goto next;
4170 
4171 		/*
4172 		 * stop the event and update event->count
4173 		 */
4174 		event->pmu->stop(event, PERF_EF_UPDATE);
4175 
4176 		now = local64_read(&event->count);
4177 		delta = now - hwc->freq_count_stamp;
4178 		hwc->freq_count_stamp = now;
4179 
4180 		/*
4181 		 * restart the event
4182 		 * reload only if value has changed
4183 		 * we have stopped the event so tell that
4184 		 * to perf_adjust_period() to avoid stopping it
4185 		 * twice.
4186 		 */
4187 		if (delta > 0)
4188 			perf_adjust_period(event, period, delta, false);
4189 
4190 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4191 	next:
4192 		perf_pmu_enable(event->pmu);
4193 	}
4194 
4195 	raw_spin_unlock(&ctx->lock);
4196 }
4197 
4198 /*
4199  * Move @event to the tail of the @ctx's elegible events.
4200  */
4201 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4202 {
4203 	/*
4204 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4205 	 * disabled by the inheritance code.
4206 	 */
4207 	if (ctx->rotate_disable)
4208 		return;
4209 
4210 	perf_event_groups_delete(&ctx->flexible_groups, event);
4211 	perf_event_groups_insert(&ctx->flexible_groups, event);
4212 }
4213 
4214 /* pick an event from the flexible_groups to rotate */
4215 static inline struct perf_event *
4216 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4217 {
4218 	struct perf_event *event;
4219 	struct rb_node *node;
4220 	struct rb_root *tree;
4221 	struct __group_key key = {
4222 		.pmu = pmu_ctx->pmu,
4223 	};
4224 
4225 	/* pick the first active flexible event */
4226 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4227 					 struct perf_event, active_list);
4228 	if (event)
4229 		goto out;
4230 
4231 	/* if no active flexible event, pick the first event */
4232 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4233 
4234 	if (!pmu_ctx->ctx->task) {
4235 		key.cpu = smp_processor_id();
4236 
4237 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4238 		if (node)
4239 			event = __node_2_pe(node);
4240 		goto out;
4241 	}
4242 
4243 	key.cpu = -1;
4244 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4245 	if (node) {
4246 		event = __node_2_pe(node);
4247 		goto out;
4248 	}
4249 
4250 	key.cpu = smp_processor_id();
4251 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4252 	if (node)
4253 		event = __node_2_pe(node);
4254 
4255 out:
4256 	/*
4257 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4258 	 * finds there are unschedulable events, it will set it again.
4259 	 */
4260 	pmu_ctx->rotate_necessary = 0;
4261 
4262 	return event;
4263 }
4264 
4265 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4266 {
4267 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4268 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4269 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4270 	int cpu_rotate, task_rotate;
4271 	struct pmu *pmu;
4272 
4273 	/*
4274 	 * Since we run this from IRQ context, nobody can install new
4275 	 * events, thus the event count values are stable.
4276 	 */
4277 
4278 	cpu_epc = &cpc->epc;
4279 	pmu = cpu_epc->pmu;
4280 	task_epc = cpc->task_epc;
4281 
4282 	cpu_rotate = cpu_epc->rotate_necessary;
4283 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4284 
4285 	if (!(cpu_rotate || task_rotate))
4286 		return false;
4287 
4288 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4289 	perf_pmu_disable(pmu);
4290 
4291 	if (task_rotate)
4292 		task_event = ctx_event_to_rotate(task_epc);
4293 	if (cpu_rotate)
4294 		cpu_event = ctx_event_to_rotate(cpu_epc);
4295 
4296 	/*
4297 	 * As per the order given at ctx_resched() first 'pop' task flexible
4298 	 * and then, if needed CPU flexible.
4299 	 */
4300 	if (task_event || (task_epc && cpu_event)) {
4301 		update_context_time(task_epc->ctx);
4302 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4303 	}
4304 
4305 	if (cpu_event) {
4306 		update_context_time(&cpuctx->ctx);
4307 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4308 		rotate_ctx(&cpuctx->ctx, cpu_event);
4309 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4310 	}
4311 
4312 	if (task_event)
4313 		rotate_ctx(task_epc->ctx, task_event);
4314 
4315 	if (task_event || (task_epc && cpu_event))
4316 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4317 
4318 	perf_pmu_enable(pmu);
4319 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4320 
4321 	return true;
4322 }
4323 
4324 void perf_event_task_tick(void)
4325 {
4326 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4327 	struct perf_event_context *ctx;
4328 	int throttled;
4329 
4330 	lockdep_assert_irqs_disabled();
4331 
4332 	__this_cpu_inc(perf_throttled_seq);
4333 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4334 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4335 
4336 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4337 
4338 	rcu_read_lock();
4339 	ctx = rcu_dereference(current->perf_event_ctxp);
4340 	if (ctx)
4341 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4342 	rcu_read_unlock();
4343 }
4344 
4345 static int event_enable_on_exec(struct perf_event *event,
4346 				struct perf_event_context *ctx)
4347 {
4348 	if (!event->attr.enable_on_exec)
4349 		return 0;
4350 
4351 	event->attr.enable_on_exec = 0;
4352 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4353 		return 0;
4354 
4355 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4356 
4357 	return 1;
4358 }
4359 
4360 /*
4361  * Enable all of a task's events that have been marked enable-on-exec.
4362  * This expects task == current.
4363  */
4364 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4365 {
4366 	struct perf_event_context *clone_ctx = NULL;
4367 	enum event_type_t event_type = 0;
4368 	struct perf_cpu_context *cpuctx;
4369 	struct perf_event *event;
4370 	unsigned long flags;
4371 	int enabled = 0;
4372 
4373 	local_irq_save(flags);
4374 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4375 		goto out;
4376 
4377 	if (!ctx->nr_events)
4378 		goto out;
4379 
4380 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4381 	perf_ctx_lock(cpuctx, ctx);
4382 	ctx_sched_out(ctx, EVENT_TIME);
4383 
4384 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4385 		enabled |= event_enable_on_exec(event, ctx);
4386 		event_type |= get_event_type(event);
4387 	}
4388 
4389 	/*
4390 	 * Unclone and reschedule this context if we enabled any event.
4391 	 */
4392 	if (enabled) {
4393 		clone_ctx = unclone_ctx(ctx);
4394 		ctx_resched(cpuctx, ctx, event_type);
4395 	} else {
4396 		ctx_sched_in(ctx, EVENT_TIME);
4397 	}
4398 	perf_ctx_unlock(cpuctx, ctx);
4399 
4400 out:
4401 	local_irq_restore(flags);
4402 
4403 	if (clone_ctx)
4404 		put_ctx(clone_ctx);
4405 }
4406 
4407 static void perf_remove_from_owner(struct perf_event *event);
4408 static void perf_event_exit_event(struct perf_event *event,
4409 				  struct perf_event_context *ctx);
4410 
4411 /*
4412  * Removes all events from the current task that have been marked
4413  * remove-on-exec, and feeds their values back to parent events.
4414  */
4415 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4416 {
4417 	struct perf_event_context *clone_ctx = NULL;
4418 	struct perf_event *event, *next;
4419 	unsigned long flags;
4420 	bool modified = false;
4421 
4422 	mutex_lock(&ctx->mutex);
4423 
4424 	if (WARN_ON_ONCE(ctx->task != current))
4425 		goto unlock;
4426 
4427 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4428 		if (!event->attr.remove_on_exec)
4429 			continue;
4430 
4431 		if (!is_kernel_event(event))
4432 			perf_remove_from_owner(event);
4433 
4434 		modified = true;
4435 
4436 		perf_event_exit_event(event, ctx);
4437 	}
4438 
4439 	raw_spin_lock_irqsave(&ctx->lock, flags);
4440 	if (modified)
4441 		clone_ctx = unclone_ctx(ctx);
4442 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4443 
4444 unlock:
4445 	mutex_unlock(&ctx->mutex);
4446 
4447 	if (clone_ctx)
4448 		put_ctx(clone_ctx);
4449 }
4450 
4451 struct perf_read_data {
4452 	struct perf_event *event;
4453 	bool group;
4454 	int ret;
4455 };
4456 
4457 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4458 {
4459 	u16 local_pkg, event_pkg;
4460 
4461 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4462 		int local_cpu = smp_processor_id();
4463 
4464 		event_pkg = topology_physical_package_id(event_cpu);
4465 		local_pkg = topology_physical_package_id(local_cpu);
4466 
4467 		if (event_pkg == local_pkg)
4468 			return local_cpu;
4469 	}
4470 
4471 	return event_cpu;
4472 }
4473 
4474 /*
4475  * Cross CPU call to read the hardware event
4476  */
4477 static void __perf_event_read(void *info)
4478 {
4479 	struct perf_read_data *data = info;
4480 	struct perf_event *sub, *event = data->event;
4481 	struct perf_event_context *ctx = event->ctx;
4482 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4483 	struct pmu *pmu = event->pmu;
4484 
4485 	/*
4486 	 * If this is a task context, we need to check whether it is
4487 	 * the current task context of this cpu.  If not it has been
4488 	 * scheduled out before the smp call arrived.  In that case
4489 	 * event->count would have been updated to a recent sample
4490 	 * when the event was scheduled out.
4491 	 */
4492 	if (ctx->task && cpuctx->task_ctx != ctx)
4493 		return;
4494 
4495 	raw_spin_lock(&ctx->lock);
4496 	if (ctx->is_active & EVENT_TIME) {
4497 		update_context_time(ctx);
4498 		update_cgrp_time_from_event(event);
4499 	}
4500 
4501 	perf_event_update_time(event);
4502 	if (data->group)
4503 		perf_event_update_sibling_time(event);
4504 
4505 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4506 		goto unlock;
4507 
4508 	if (!data->group) {
4509 		pmu->read(event);
4510 		data->ret = 0;
4511 		goto unlock;
4512 	}
4513 
4514 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4515 
4516 	pmu->read(event);
4517 
4518 	for_each_sibling_event(sub, event) {
4519 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4520 			/*
4521 			 * Use sibling's PMU rather than @event's since
4522 			 * sibling could be on different (eg: software) PMU.
4523 			 */
4524 			sub->pmu->read(sub);
4525 		}
4526 	}
4527 
4528 	data->ret = pmu->commit_txn(pmu);
4529 
4530 unlock:
4531 	raw_spin_unlock(&ctx->lock);
4532 }
4533 
4534 static inline u64 perf_event_count(struct perf_event *event)
4535 {
4536 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4537 }
4538 
4539 static void calc_timer_values(struct perf_event *event,
4540 				u64 *now,
4541 				u64 *enabled,
4542 				u64 *running)
4543 {
4544 	u64 ctx_time;
4545 
4546 	*now = perf_clock();
4547 	ctx_time = perf_event_time_now(event, *now);
4548 	__perf_update_times(event, ctx_time, enabled, running);
4549 }
4550 
4551 /*
4552  * NMI-safe method to read a local event, that is an event that
4553  * is:
4554  *   - either for the current task, or for this CPU
4555  *   - does not have inherit set, for inherited task events
4556  *     will not be local and we cannot read them atomically
4557  *   - must not have a pmu::count method
4558  */
4559 int perf_event_read_local(struct perf_event *event, u64 *value,
4560 			  u64 *enabled, u64 *running)
4561 {
4562 	unsigned long flags;
4563 	int ret = 0;
4564 
4565 	/*
4566 	 * Disabling interrupts avoids all counter scheduling (context
4567 	 * switches, timer based rotation and IPIs).
4568 	 */
4569 	local_irq_save(flags);
4570 
4571 	/*
4572 	 * It must not be an event with inherit set, we cannot read
4573 	 * all child counters from atomic context.
4574 	 */
4575 	if (event->attr.inherit) {
4576 		ret = -EOPNOTSUPP;
4577 		goto out;
4578 	}
4579 
4580 	/* If this is a per-task event, it must be for current */
4581 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4582 	    event->hw.target != current) {
4583 		ret = -EINVAL;
4584 		goto out;
4585 	}
4586 
4587 	/* If this is a per-CPU event, it must be for this CPU */
4588 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4589 	    event->cpu != smp_processor_id()) {
4590 		ret = -EINVAL;
4591 		goto out;
4592 	}
4593 
4594 	/* If this is a pinned event it must be running on this CPU */
4595 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4596 		ret = -EBUSY;
4597 		goto out;
4598 	}
4599 
4600 	/*
4601 	 * If the event is currently on this CPU, its either a per-task event,
4602 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4603 	 * oncpu == -1).
4604 	 */
4605 	if (event->oncpu == smp_processor_id())
4606 		event->pmu->read(event);
4607 
4608 	*value = local64_read(&event->count);
4609 	if (enabled || running) {
4610 		u64 __enabled, __running, __now;
4611 
4612 		calc_timer_values(event, &__now, &__enabled, &__running);
4613 		if (enabled)
4614 			*enabled = __enabled;
4615 		if (running)
4616 			*running = __running;
4617 	}
4618 out:
4619 	local_irq_restore(flags);
4620 
4621 	return ret;
4622 }
4623 
4624 static int perf_event_read(struct perf_event *event, bool group)
4625 {
4626 	enum perf_event_state state = READ_ONCE(event->state);
4627 	int event_cpu, ret = 0;
4628 
4629 	/*
4630 	 * If event is enabled and currently active on a CPU, update the
4631 	 * value in the event structure:
4632 	 */
4633 again:
4634 	if (state == PERF_EVENT_STATE_ACTIVE) {
4635 		struct perf_read_data data;
4636 
4637 		/*
4638 		 * Orders the ->state and ->oncpu loads such that if we see
4639 		 * ACTIVE we must also see the right ->oncpu.
4640 		 *
4641 		 * Matches the smp_wmb() from event_sched_in().
4642 		 */
4643 		smp_rmb();
4644 
4645 		event_cpu = READ_ONCE(event->oncpu);
4646 		if ((unsigned)event_cpu >= nr_cpu_ids)
4647 			return 0;
4648 
4649 		data = (struct perf_read_data){
4650 			.event = event,
4651 			.group = group,
4652 			.ret = 0,
4653 		};
4654 
4655 		preempt_disable();
4656 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4657 
4658 		/*
4659 		 * Purposely ignore the smp_call_function_single() return
4660 		 * value.
4661 		 *
4662 		 * If event_cpu isn't a valid CPU it means the event got
4663 		 * scheduled out and that will have updated the event count.
4664 		 *
4665 		 * Therefore, either way, we'll have an up-to-date event count
4666 		 * after this.
4667 		 */
4668 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4669 		preempt_enable();
4670 		ret = data.ret;
4671 
4672 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4673 		struct perf_event_context *ctx = event->ctx;
4674 		unsigned long flags;
4675 
4676 		raw_spin_lock_irqsave(&ctx->lock, flags);
4677 		state = event->state;
4678 		if (state != PERF_EVENT_STATE_INACTIVE) {
4679 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4680 			goto again;
4681 		}
4682 
4683 		/*
4684 		 * May read while context is not active (e.g., thread is
4685 		 * blocked), in that case we cannot update context time
4686 		 */
4687 		if (ctx->is_active & EVENT_TIME) {
4688 			update_context_time(ctx);
4689 			update_cgrp_time_from_event(event);
4690 		}
4691 
4692 		perf_event_update_time(event);
4693 		if (group)
4694 			perf_event_update_sibling_time(event);
4695 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4696 	}
4697 
4698 	return ret;
4699 }
4700 
4701 /*
4702  * Initialize the perf_event context in a task_struct:
4703  */
4704 static void __perf_event_init_context(struct perf_event_context *ctx)
4705 {
4706 	raw_spin_lock_init(&ctx->lock);
4707 	mutex_init(&ctx->mutex);
4708 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4709 	perf_event_groups_init(&ctx->pinned_groups);
4710 	perf_event_groups_init(&ctx->flexible_groups);
4711 	INIT_LIST_HEAD(&ctx->event_list);
4712 	refcount_set(&ctx->refcount, 1);
4713 }
4714 
4715 static void
4716 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4717 {
4718 	epc->pmu = pmu;
4719 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4720 	INIT_LIST_HEAD(&epc->pinned_active);
4721 	INIT_LIST_HEAD(&epc->flexible_active);
4722 	atomic_set(&epc->refcount, 1);
4723 }
4724 
4725 static struct perf_event_context *
4726 alloc_perf_context(struct task_struct *task)
4727 {
4728 	struct perf_event_context *ctx;
4729 
4730 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4731 	if (!ctx)
4732 		return NULL;
4733 
4734 	__perf_event_init_context(ctx);
4735 	if (task)
4736 		ctx->task = get_task_struct(task);
4737 
4738 	return ctx;
4739 }
4740 
4741 static struct task_struct *
4742 find_lively_task_by_vpid(pid_t vpid)
4743 {
4744 	struct task_struct *task;
4745 
4746 	rcu_read_lock();
4747 	if (!vpid)
4748 		task = current;
4749 	else
4750 		task = find_task_by_vpid(vpid);
4751 	if (task)
4752 		get_task_struct(task);
4753 	rcu_read_unlock();
4754 
4755 	if (!task)
4756 		return ERR_PTR(-ESRCH);
4757 
4758 	return task;
4759 }
4760 
4761 /*
4762  * Returns a matching context with refcount and pincount.
4763  */
4764 static struct perf_event_context *
4765 find_get_context(struct task_struct *task, struct perf_event *event)
4766 {
4767 	struct perf_event_context *ctx, *clone_ctx = NULL;
4768 	struct perf_cpu_context *cpuctx;
4769 	unsigned long flags;
4770 	int err;
4771 
4772 	if (!task) {
4773 		/* Must be root to operate on a CPU event: */
4774 		err = perf_allow_cpu(&event->attr);
4775 		if (err)
4776 			return ERR_PTR(err);
4777 
4778 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4779 		ctx = &cpuctx->ctx;
4780 		get_ctx(ctx);
4781 		raw_spin_lock_irqsave(&ctx->lock, flags);
4782 		++ctx->pin_count;
4783 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4784 
4785 		return ctx;
4786 	}
4787 
4788 	err = -EINVAL;
4789 retry:
4790 	ctx = perf_lock_task_context(task, &flags);
4791 	if (ctx) {
4792 		clone_ctx = unclone_ctx(ctx);
4793 		++ctx->pin_count;
4794 
4795 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4796 
4797 		if (clone_ctx)
4798 			put_ctx(clone_ctx);
4799 	} else {
4800 		ctx = alloc_perf_context(task);
4801 		err = -ENOMEM;
4802 		if (!ctx)
4803 			goto errout;
4804 
4805 		err = 0;
4806 		mutex_lock(&task->perf_event_mutex);
4807 		/*
4808 		 * If it has already passed perf_event_exit_task().
4809 		 * we must see PF_EXITING, it takes this mutex too.
4810 		 */
4811 		if (task->flags & PF_EXITING)
4812 			err = -ESRCH;
4813 		else if (task->perf_event_ctxp)
4814 			err = -EAGAIN;
4815 		else {
4816 			get_ctx(ctx);
4817 			++ctx->pin_count;
4818 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4819 		}
4820 		mutex_unlock(&task->perf_event_mutex);
4821 
4822 		if (unlikely(err)) {
4823 			put_ctx(ctx);
4824 
4825 			if (err == -EAGAIN)
4826 				goto retry;
4827 			goto errout;
4828 		}
4829 	}
4830 
4831 	return ctx;
4832 
4833 errout:
4834 	return ERR_PTR(err);
4835 }
4836 
4837 static struct perf_event_pmu_context *
4838 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4839 		     struct perf_event *event)
4840 {
4841 	struct perf_event_pmu_context *new = NULL, *epc;
4842 	void *task_ctx_data = NULL;
4843 
4844 	if (!ctx->task) {
4845 		/*
4846 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4847 		 * relies on the fact that find_get_pmu_context() cannot fail
4848 		 * for CPU contexts.
4849 		 */
4850 		struct perf_cpu_pmu_context *cpc;
4851 
4852 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4853 		epc = &cpc->epc;
4854 		raw_spin_lock_irq(&ctx->lock);
4855 		if (!epc->ctx) {
4856 			atomic_set(&epc->refcount, 1);
4857 			epc->embedded = 1;
4858 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4859 			epc->ctx = ctx;
4860 		} else {
4861 			WARN_ON_ONCE(epc->ctx != ctx);
4862 			atomic_inc(&epc->refcount);
4863 		}
4864 		raw_spin_unlock_irq(&ctx->lock);
4865 		return epc;
4866 	}
4867 
4868 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4869 	if (!new)
4870 		return ERR_PTR(-ENOMEM);
4871 
4872 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4873 		task_ctx_data = alloc_task_ctx_data(pmu);
4874 		if (!task_ctx_data) {
4875 			kfree(new);
4876 			return ERR_PTR(-ENOMEM);
4877 		}
4878 	}
4879 
4880 	__perf_init_event_pmu_context(new, pmu);
4881 
4882 	/*
4883 	 * XXX
4884 	 *
4885 	 * lockdep_assert_held(&ctx->mutex);
4886 	 *
4887 	 * can't because perf_event_init_task() doesn't actually hold the
4888 	 * child_ctx->mutex.
4889 	 */
4890 
4891 	raw_spin_lock_irq(&ctx->lock);
4892 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4893 		if (epc->pmu == pmu) {
4894 			WARN_ON_ONCE(epc->ctx != ctx);
4895 			atomic_inc(&epc->refcount);
4896 			goto found_epc;
4897 		}
4898 	}
4899 
4900 	epc = new;
4901 	new = NULL;
4902 
4903 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4904 	epc->ctx = ctx;
4905 
4906 found_epc:
4907 	if (task_ctx_data && !epc->task_ctx_data) {
4908 		epc->task_ctx_data = task_ctx_data;
4909 		task_ctx_data = NULL;
4910 		ctx->nr_task_data++;
4911 	}
4912 	raw_spin_unlock_irq(&ctx->lock);
4913 
4914 	free_task_ctx_data(pmu, task_ctx_data);
4915 	kfree(new);
4916 
4917 	return epc;
4918 }
4919 
4920 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4921 {
4922 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4923 }
4924 
4925 static void free_epc_rcu(struct rcu_head *head)
4926 {
4927 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4928 
4929 	kfree(epc->task_ctx_data);
4930 	kfree(epc);
4931 }
4932 
4933 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4934 {
4935 	struct perf_event_context *ctx = epc->ctx;
4936 	unsigned long flags;
4937 
4938 	/*
4939 	 * XXX
4940 	 *
4941 	 * lockdep_assert_held(&ctx->mutex);
4942 	 *
4943 	 * can't because of the call-site in _free_event()/put_event()
4944 	 * which isn't always called under ctx->mutex.
4945 	 */
4946 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4947 		return;
4948 
4949 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4950 
4951 	list_del_init(&epc->pmu_ctx_entry);
4952 	epc->ctx = NULL;
4953 
4954 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4955 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4956 
4957 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4958 
4959 	if (epc->embedded)
4960 		return;
4961 
4962 	call_rcu(&epc->rcu_head, free_epc_rcu);
4963 }
4964 
4965 static void perf_event_free_filter(struct perf_event *event);
4966 
4967 static void free_event_rcu(struct rcu_head *head)
4968 {
4969 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4970 
4971 	if (event->ns)
4972 		put_pid_ns(event->ns);
4973 	perf_event_free_filter(event);
4974 	kmem_cache_free(perf_event_cache, event);
4975 }
4976 
4977 static void ring_buffer_attach(struct perf_event *event,
4978 			       struct perf_buffer *rb);
4979 
4980 static void detach_sb_event(struct perf_event *event)
4981 {
4982 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4983 
4984 	raw_spin_lock(&pel->lock);
4985 	list_del_rcu(&event->sb_list);
4986 	raw_spin_unlock(&pel->lock);
4987 }
4988 
4989 static bool is_sb_event(struct perf_event *event)
4990 {
4991 	struct perf_event_attr *attr = &event->attr;
4992 
4993 	if (event->parent)
4994 		return false;
4995 
4996 	if (event->attach_state & PERF_ATTACH_TASK)
4997 		return false;
4998 
4999 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5000 	    attr->comm || attr->comm_exec ||
5001 	    attr->task || attr->ksymbol ||
5002 	    attr->context_switch || attr->text_poke ||
5003 	    attr->bpf_event)
5004 		return true;
5005 	return false;
5006 }
5007 
5008 static void unaccount_pmu_sb_event(struct perf_event *event)
5009 {
5010 	if (is_sb_event(event))
5011 		detach_sb_event(event);
5012 }
5013 
5014 #ifdef CONFIG_NO_HZ_FULL
5015 static DEFINE_SPINLOCK(nr_freq_lock);
5016 #endif
5017 
5018 static void unaccount_freq_event_nohz(void)
5019 {
5020 #ifdef CONFIG_NO_HZ_FULL
5021 	spin_lock(&nr_freq_lock);
5022 	if (atomic_dec_and_test(&nr_freq_events))
5023 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5024 	spin_unlock(&nr_freq_lock);
5025 #endif
5026 }
5027 
5028 static void unaccount_freq_event(void)
5029 {
5030 	if (tick_nohz_full_enabled())
5031 		unaccount_freq_event_nohz();
5032 	else
5033 		atomic_dec(&nr_freq_events);
5034 }
5035 
5036 static void unaccount_event(struct perf_event *event)
5037 {
5038 	bool dec = false;
5039 
5040 	if (event->parent)
5041 		return;
5042 
5043 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5044 		dec = true;
5045 	if (event->attr.mmap || event->attr.mmap_data)
5046 		atomic_dec(&nr_mmap_events);
5047 	if (event->attr.build_id)
5048 		atomic_dec(&nr_build_id_events);
5049 	if (event->attr.comm)
5050 		atomic_dec(&nr_comm_events);
5051 	if (event->attr.namespaces)
5052 		atomic_dec(&nr_namespaces_events);
5053 	if (event->attr.cgroup)
5054 		atomic_dec(&nr_cgroup_events);
5055 	if (event->attr.task)
5056 		atomic_dec(&nr_task_events);
5057 	if (event->attr.freq)
5058 		unaccount_freq_event();
5059 	if (event->attr.context_switch) {
5060 		dec = true;
5061 		atomic_dec(&nr_switch_events);
5062 	}
5063 	if (is_cgroup_event(event))
5064 		dec = true;
5065 	if (has_branch_stack(event))
5066 		dec = true;
5067 	if (event->attr.ksymbol)
5068 		atomic_dec(&nr_ksymbol_events);
5069 	if (event->attr.bpf_event)
5070 		atomic_dec(&nr_bpf_events);
5071 	if (event->attr.text_poke)
5072 		atomic_dec(&nr_text_poke_events);
5073 
5074 	if (dec) {
5075 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5076 			schedule_delayed_work(&perf_sched_work, HZ);
5077 	}
5078 
5079 	unaccount_pmu_sb_event(event);
5080 }
5081 
5082 static void perf_sched_delayed(struct work_struct *work)
5083 {
5084 	mutex_lock(&perf_sched_mutex);
5085 	if (atomic_dec_and_test(&perf_sched_count))
5086 		static_branch_disable(&perf_sched_events);
5087 	mutex_unlock(&perf_sched_mutex);
5088 }
5089 
5090 /*
5091  * The following implement mutual exclusion of events on "exclusive" pmus
5092  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5093  * at a time, so we disallow creating events that might conflict, namely:
5094  *
5095  *  1) cpu-wide events in the presence of per-task events,
5096  *  2) per-task events in the presence of cpu-wide events,
5097  *  3) two matching events on the same perf_event_context.
5098  *
5099  * The former two cases are handled in the allocation path (perf_event_alloc(),
5100  * _free_event()), the latter -- before the first perf_install_in_context().
5101  */
5102 static int exclusive_event_init(struct perf_event *event)
5103 {
5104 	struct pmu *pmu = event->pmu;
5105 
5106 	if (!is_exclusive_pmu(pmu))
5107 		return 0;
5108 
5109 	/*
5110 	 * Prevent co-existence of per-task and cpu-wide events on the
5111 	 * same exclusive pmu.
5112 	 *
5113 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5114 	 * events on this "exclusive" pmu, positive means there are
5115 	 * per-task events.
5116 	 *
5117 	 * Since this is called in perf_event_alloc() path, event::ctx
5118 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5119 	 * to mean "per-task event", because unlike other attach states it
5120 	 * never gets cleared.
5121 	 */
5122 	if (event->attach_state & PERF_ATTACH_TASK) {
5123 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5124 			return -EBUSY;
5125 	} else {
5126 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5127 			return -EBUSY;
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static void exclusive_event_destroy(struct perf_event *event)
5134 {
5135 	struct pmu *pmu = event->pmu;
5136 
5137 	if (!is_exclusive_pmu(pmu))
5138 		return;
5139 
5140 	/* see comment in exclusive_event_init() */
5141 	if (event->attach_state & PERF_ATTACH_TASK)
5142 		atomic_dec(&pmu->exclusive_cnt);
5143 	else
5144 		atomic_inc(&pmu->exclusive_cnt);
5145 }
5146 
5147 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5148 {
5149 	if ((e1->pmu == e2->pmu) &&
5150 	    (e1->cpu == e2->cpu ||
5151 	     e1->cpu == -1 ||
5152 	     e2->cpu == -1))
5153 		return true;
5154 	return false;
5155 }
5156 
5157 static bool exclusive_event_installable(struct perf_event *event,
5158 					struct perf_event_context *ctx)
5159 {
5160 	struct perf_event *iter_event;
5161 	struct pmu *pmu = event->pmu;
5162 
5163 	lockdep_assert_held(&ctx->mutex);
5164 
5165 	if (!is_exclusive_pmu(pmu))
5166 		return true;
5167 
5168 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5169 		if (exclusive_event_match(iter_event, event))
5170 			return false;
5171 	}
5172 
5173 	return true;
5174 }
5175 
5176 static void perf_addr_filters_splice(struct perf_event *event,
5177 				       struct list_head *head);
5178 
5179 static void perf_pending_task_sync(struct perf_event *event)
5180 {
5181 	struct callback_head *head = &event->pending_task;
5182 
5183 	if (!event->pending_work)
5184 		return;
5185 	/*
5186 	 * If the task is queued to the current task's queue, we
5187 	 * obviously can't wait for it to complete. Simply cancel it.
5188 	 */
5189 	if (task_work_cancel(current, head)) {
5190 		event->pending_work = 0;
5191 		local_dec(&event->ctx->nr_pending);
5192 		return;
5193 	}
5194 
5195 	/*
5196 	 * All accesses related to the event are within the same
5197 	 * non-preemptible section in perf_pending_task(). The RCU
5198 	 * grace period before the event is freed will make sure all
5199 	 * those accesses are complete by then.
5200 	 */
5201 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5202 }
5203 
5204 static void _free_event(struct perf_event *event)
5205 {
5206 	irq_work_sync(&event->pending_irq);
5207 	perf_pending_task_sync(event);
5208 
5209 	unaccount_event(event);
5210 
5211 	security_perf_event_free(event);
5212 
5213 	if (event->rb) {
5214 		/*
5215 		 * Can happen when we close an event with re-directed output.
5216 		 *
5217 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5218 		 * over us; possibly making our ring_buffer_put() the last.
5219 		 */
5220 		mutex_lock(&event->mmap_mutex);
5221 		ring_buffer_attach(event, NULL);
5222 		mutex_unlock(&event->mmap_mutex);
5223 	}
5224 
5225 	if (is_cgroup_event(event))
5226 		perf_detach_cgroup(event);
5227 
5228 	if (!event->parent) {
5229 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5230 			put_callchain_buffers();
5231 	}
5232 
5233 	perf_event_free_bpf_prog(event);
5234 	perf_addr_filters_splice(event, NULL);
5235 	kfree(event->addr_filter_ranges);
5236 
5237 	if (event->destroy)
5238 		event->destroy(event);
5239 
5240 	/*
5241 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5242 	 * hw.target.
5243 	 */
5244 	if (event->hw.target)
5245 		put_task_struct(event->hw.target);
5246 
5247 	if (event->pmu_ctx)
5248 		put_pmu_ctx(event->pmu_ctx);
5249 
5250 	/*
5251 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5252 	 * all task references must be cleaned up.
5253 	 */
5254 	if (event->ctx)
5255 		put_ctx(event->ctx);
5256 
5257 	exclusive_event_destroy(event);
5258 	module_put(event->pmu->module);
5259 
5260 	call_rcu(&event->rcu_head, free_event_rcu);
5261 }
5262 
5263 /*
5264  * Used to free events which have a known refcount of 1, such as in error paths
5265  * where the event isn't exposed yet and inherited events.
5266  */
5267 static void free_event(struct perf_event *event)
5268 {
5269 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5270 				"unexpected event refcount: %ld; ptr=%p\n",
5271 				atomic_long_read(&event->refcount), event)) {
5272 		/* leak to avoid use-after-free */
5273 		return;
5274 	}
5275 
5276 	_free_event(event);
5277 }
5278 
5279 /*
5280  * Remove user event from the owner task.
5281  */
5282 static void perf_remove_from_owner(struct perf_event *event)
5283 {
5284 	struct task_struct *owner;
5285 
5286 	rcu_read_lock();
5287 	/*
5288 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5289 	 * observe !owner it means the list deletion is complete and we can
5290 	 * indeed free this event, otherwise we need to serialize on
5291 	 * owner->perf_event_mutex.
5292 	 */
5293 	owner = READ_ONCE(event->owner);
5294 	if (owner) {
5295 		/*
5296 		 * Since delayed_put_task_struct() also drops the last
5297 		 * task reference we can safely take a new reference
5298 		 * while holding the rcu_read_lock().
5299 		 */
5300 		get_task_struct(owner);
5301 	}
5302 	rcu_read_unlock();
5303 
5304 	if (owner) {
5305 		/*
5306 		 * If we're here through perf_event_exit_task() we're already
5307 		 * holding ctx->mutex which would be an inversion wrt. the
5308 		 * normal lock order.
5309 		 *
5310 		 * However we can safely take this lock because its the child
5311 		 * ctx->mutex.
5312 		 */
5313 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5314 
5315 		/*
5316 		 * We have to re-check the event->owner field, if it is cleared
5317 		 * we raced with perf_event_exit_task(), acquiring the mutex
5318 		 * ensured they're done, and we can proceed with freeing the
5319 		 * event.
5320 		 */
5321 		if (event->owner) {
5322 			list_del_init(&event->owner_entry);
5323 			smp_store_release(&event->owner, NULL);
5324 		}
5325 		mutex_unlock(&owner->perf_event_mutex);
5326 		put_task_struct(owner);
5327 	}
5328 }
5329 
5330 static void put_event(struct perf_event *event)
5331 {
5332 	if (!atomic_long_dec_and_test(&event->refcount))
5333 		return;
5334 
5335 	_free_event(event);
5336 }
5337 
5338 /*
5339  * Kill an event dead; while event:refcount will preserve the event
5340  * object, it will not preserve its functionality. Once the last 'user'
5341  * gives up the object, we'll destroy the thing.
5342  */
5343 int perf_event_release_kernel(struct perf_event *event)
5344 {
5345 	struct perf_event_context *ctx = event->ctx;
5346 	struct perf_event *child, *tmp;
5347 	LIST_HEAD(free_list);
5348 
5349 	/*
5350 	 * If we got here through err_alloc: free_event(event); we will not
5351 	 * have attached to a context yet.
5352 	 */
5353 	if (!ctx) {
5354 		WARN_ON_ONCE(event->attach_state &
5355 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5356 		goto no_ctx;
5357 	}
5358 
5359 	if (!is_kernel_event(event))
5360 		perf_remove_from_owner(event);
5361 
5362 	ctx = perf_event_ctx_lock(event);
5363 	WARN_ON_ONCE(ctx->parent_ctx);
5364 
5365 	/*
5366 	 * Mark this event as STATE_DEAD, there is no external reference to it
5367 	 * anymore.
5368 	 *
5369 	 * Anybody acquiring event->child_mutex after the below loop _must_
5370 	 * also see this, most importantly inherit_event() which will avoid
5371 	 * placing more children on the list.
5372 	 *
5373 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5374 	 * child events.
5375 	 */
5376 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5377 
5378 	perf_event_ctx_unlock(event, ctx);
5379 
5380 again:
5381 	mutex_lock(&event->child_mutex);
5382 	list_for_each_entry(child, &event->child_list, child_list) {
5383 		void *var = NULL;
5384 
5385 		/*
5386 		 * Cannot change, child events are not migrated, see the
5387 		 * comment with perf_event_ctx_lock_nested().
5388 		 */
5389 		ctx = READ_ONCE(child->ctx);
5390 		/*
5391 		 * Since child_mutex nests inside ctx::mutex, we must jump
5392 		 * through hoops. We start by grabbing a reference on the ctx.
5393 		 *
5394 		 * Since the event cannot get freed while we hold the
5395 		 * child_mutex, the context must also exist and have a !0
5396 		 * reference count.
5397 		 */
5398 		get_ctx(ctx);
5399 
5400 		/*
5401 		 * Now that we have a ctx ref, we can drop child_mutex, and
5402 		 * acquire ctx::mutex without fear of it going away. Then we
5403 		 * can re-acquire child_mutex.
5404 		 */
5405 		mutex_unlock(&event->child_mutex);
5406 		mutex_lock(&ctx->mutex);
5407 		mutex_lock(&event->child_mutex);
5408 
5409 		/*
5410 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5411 		 * state, if child is still the first entry, it didn't get freed
5412 		 * and we can continue doing so.
5413 		 */
5414 		tmp = list_first_entry_or_null(&event->child_list,
5415 					       struct perf_event, child_list);
5416 		if (tmp == child) {
5417 			perf_remove_from_context(child, DETACH_GROUP);
5418 			list_move(&child->child_list, &free_list);
5419 			/*
5420 			 * This matches the refcount bump in inherit_event();
5421 			 * this can't be the last reference.
5422 			 */
5423 			put_event(event);
5424 		} else {
5425 			var = &ctx->refcount;
5426 		}
5427 
5428 		mutex_unlock(&event->child_mutex);
5429 		mutex_unlock(&ctx->mutex);
5430 		put_ctx(ctx);
5431 
5432 		if (var) {
5433 			/*
5434 			 * If perf_event_free_task() has deleted all events from the
5435 			 * ctx while the child_mutex got released above, make sure to
5436 			 * notify about the preceding put_ctx().
5437 			 */
5438 			smp_mb(); /* pairs with wait_var_event() */
5439 			wake_up_var(var);
5440 		}
5441 		goto again;
5442 	}
5443 	mutex_unlock(&event->child_mutex);
5444 
5445 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5446 		void *var = &child->ctx->refcount;
5447 
5448 		list_del(&child->child_list);
5449 		free_event(child);
5450 
5451 		/*
5452 		 * Wake any perf_event_free_task() waiting for this event to be
5453 		 * freed.
5454 		 */
5455 		smp_mb(); /* pairs with wait_var_event() */
5456 		wake_up_var(var);
5457 	}
5458 
5459 no_ctx:
5460 	put_event(event); /* Must be the 'last' reference */
5461 	return 0;
5462 }
5463 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5464 
5465 /*
5466  * Called when the last reference to the file is gone.
5467  */
5468 static int perf_release(struct inode *inode, struct file *file)
5469 {
5470 	perf_event_release_kernel(file->private_data);
5471 	return 0;
5472 }
5473 
5474 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5475 {
5476 	struct perf_event *child;
5477 	u64 total = 0;
5478 
5479 	*enabled = 0;
5480 	*running = 0;
5481 
5482 	mutex_lock(&event->child_mutex);
5483 
5484 	(void)perf_event_read(event, false);
5485 	total += perf_event_count(event);
5486 
5487 	*enabled += event->total_time_enabled +
5488 			atomic64_read(&event->child_total_time_enabled);
5489 	*running += event->total_time_running +
5490 			atomic64_read(&event->child_total_time_running);
5491 
5492 	list_for_each_entry(child, &event->child_list, child_list) {
5493 		(void)perf_event_read(child, false);
5494 		total += perf_event_count(child);
5495 		*enabled += child->total_time_enabled;
5496 		*running += child->total_time_running;
5497 	}
5498 	mutex_unlock(&event->child_mutex);
5499 
5500 	return total;
5501 }
5502 
5503 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5504 {
5505 	struct perf_event_context *ctx;
5506 	u64 count;
5507 
5508 	ctx = perf_event_ctx_lock(event);
5509 	count = __perf_event_read_value(event, enabled, running);
5510 	perf_event_ctx_unlock(event, ctx);
5511 
5512 	return count;
5513 }
5514 EXPORT_SYMBOL_GPL(perf_event_read_value);
5515 
5516 static int __perf_read_group_add(struct perf_event *leader,
5517 					u64 read_format, u64 *values)
5518 {
5519 	struct perf_event_context *ctx = leader->ctx;
5520 	struct perf_event *sub, *parent;
5521 	unsigned long flags;
5522 	int n = 1; /* skip @nr */
5523 	int ret;
5524 
5525 	ret = perf_event_read(leader, true);
5526 	if (ret)
5527 		return ret;
5528 
5529 	raw_spin_lock_irqsave(&ctx->lock, flags);
5530 	/*
5531 	 * Verify the grouping between the parent and child (inherited)
5532 	 * events is still in tact.
5533 	 *
5534 	 * Specifically:
5535 	 *  - leader->ctx->lock pins leader->sibling_list
5536 	 *  - parent->child_mutex pins parent->child_list
5537 	 *  - parent->ctx->mutex pins parent->sibling_list
5538 	 *
5539 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5540 	 * ctx->mutex), group destruction is not atomic between children, also
5541 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5542 	 * group.
5543 	 *
5544 	 * Therefore it is possible to have parent and child groups in a
5545 	 * different configuration and summing over such a beast makes no sense
5546 	 * what so ever.
5547 	 *
5548 	 * Reject this.
5549 	 */
5550 	parent = leader->parent;
5551 	if (parent &&
5552 	    (parent->group_generation != leader->group_generation ||
5553 	     parent->nr_siblings != leader->nr_siblings)) {
5554 		ret = -ECHILD;
5555 		goto unlock;
5556 	}
5557 
5558 	/*
5559 	 * Since we co-schedule groups, {enabled,running} times of siblings
5560 	 * will be identical to those of the leader, so we only publish one
5561 	 * set.
5562 	 */
5563 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5564 		values[n++] += leader->total_time_enabled +
5565 			atomic64_read(&leader->child_total_time_enabled);
5566 	}
5567 
5568 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5569 		values[n++] += leader->total_time_running +
5570 			atomic64_read(&leader->child_total_time_running);
5571 	}
5572 
5573 	/*
5574 	 * Write {count,id} tuples for every sibling.
5575 	 */
5576 	values[n++] += perf_event_count(leader);
5577 	if (read_format & PERF_FORMAT_ID)
5578 		values[n++] = primary_event_id(leader);
5579 	if (read_format & PERF_FORMAT_LOST)
5580 		values[n++] = atomic64_read(&leader->lost_samples);
5581 
5582 	for_each_sibling_event(sub, leader) {
5583 		values[n++] += perf_event_count(sub);
5584 		if (read_format & PERF_FORMAT_ID)
5585 			values[n++] = primary_event_id(sub);
5586 		if (read_format & PERF_FORMAT_LOST)
5587 			values[n++] = atomic64_read(&sub->lost_samples);
5588 	}
5589 
5590 unlock:
5591 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5592 	return ret;
5593 }
5594 
5595 static int perf_read_group(struct perf_event *event,
5596 				   u64 read_format, char __user *buf)
5597 {
5598 	struct perf_event *leader = event->group_leader, *child;
5599 	struct perf_event_context *ctx = leader->ctx;
5600 	int ret;
5601 	u64 *values;
5602 
5603 	lockdep_assert_held(&ctx->mutex);
5604 
5605 	values = kzalloc(event->read_size, GFP_KERNEL);
5606 	if (!values)
5607 		return -ENOMEM;
5608 
5609 	values[0] = 1 + leader->nr_siblings;
5610 
5611 	mutex_lock(&leader->child_mutex);
5612 
5613 	ret = __perf_read_group_add(leader, read_format, values);
5614 	if (ret)
5615 		goto unlock;
5616 
5617 	list_for_each_entry(child, &leader->child_list, child_list) {
5618 		ret = __perf_read_group_add(child, read_format, values);
5619 		if (ret)
5620 			goto unlock;
5621 	}
5622 
5623 	mutex_unlock(&leader->child_mutex);
5624 
5625 	ret = event->read_size;
5626 	if (copy_to_user(buf, values, event->read_size))
5627 		ret = -EFAULT;
5628 	goto out;
5629 
5630 unlock:
5631 	mutex_unlock(&leader->child_mutex);
5632 out:
5633 	kfree(values);
5634 	return ret;
5635 }
5636 
5637 static int perf_read_one(struct perf_event *event,
5638 				 u64 read_format, char __user *buf)
5639 {
5640 	u64 enabled, running;
5641 	u64 values[5];
5642 	int n = 0;
5643 
5644 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5645 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5646 		values[n++] = enabled;
5647 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5648 		values[n++] = running;
5649 	if (read_format & PERF_FORMAT_ID)
5650 		values[n++] = primary_event_id(event);
5651 	if (read_format & PERF_FORMAT_LOST)
5652 		values[n++] = atomic64_read(&event->lost_samples);
5653 
5654 	if (copy_to_user(buf, values, n * sizeof(u64)))
5655 		return -EFAULT;
5656 
5657 	return n * sizeof(u64);
5658 }
5659 
5660 static bool is_event_hup(struct perf_event *event)
5661 {
5662 	bool no_children;
5663 
5664 	if (event->state > PERF_EVENT_STATE_EXIT)
5665 		return false;
5666 
5667 	mutex_lock(&event->child_mutex);
5668 	no_children = list_empty(&event->child_list);
5669 	mutex_unlock(&event->child_mutex);
5670 	return no_children;
5671 }
5672 
5673 /*
5674  * Read the performance event - simple non blocking version for now
5675  */
5676 static ssize_t
5677 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5678 {
5679 	u64 read_format = event->attr.read_format;
5680 	int ret;
5681 
5682 	/*
5683 	 * Return end-of-file for a read on an event that is in
5684 	 * error state (i.e. because it was pinned but it couldn't be
5685 	 * scheduled on to the CPU at some point).
5686 	 */
5687 	if (event->state == PERF_EVENT_STATE_ERROR)
5688 		return 0;
5689 
5690 	if (count < event->read_size)
5691 		return -ENOSPC;
5692 
5693 	WARN_ON_ONCE(event->ctx->parent_ctx);
5694 	if (read_format & PERF_FORMAT_GROUP)
5695 		ret = perf_read_group(event, read_format, buf);
5696 	else
5697 		ret = perf_read_one(event, read_format, buf);
5698 
5699 	return ret;
5700 }
5701 
5702 static ssize_t
5703 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5704 {
5705 	struct perf_event *event = file->private_data;
5706 	struct perf_event_context *ctx;
5707 	int ret;
5708 
5709 	ret = security_perf_event_read(event);
5710 	if (ret)
5711 		return ret;
5712 
5713 	ctx = perf_event_ctx_lock(event);
5714 	ret = __perf_read(event, buf, count);
5715 	perf_event_ctx_unlock(event, ctx);
5716 
5717 	return ret;
5718 }
5719 
5720 static __poll_t perf_poll(struct file *file, poll_table *wait)
5721 {
5722 	struct perf_event *event = file->private_data;
5723 	struct perf_buffer *rb;
5724 	__poll_t events = EPOLLHUP;
5725 
5726 	poll_wait(file, &event->waitq, wait);
5727 
5728 	if (is_event_hup(event))
5729 		return events;
5730 
5731 	/*
5732 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5733 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5734 	 */
5735 	mutex_lock(&event->mmap_mutex);
5736 	rb = event->rb;
5737 	if (rb)
5738 		events = atomic_xchg(&rb->poll, 0);
5739 	mutex_unlock(&event->mmap_mutex);
5740 	return events;
5741 }
5742 
5743 static void _perf_event_reset(struct perf_event *event)
5744 {
5745 	(void)perf_event_read(event, false);
5746 	local64_set(&event->count, 0);
5747 	perf_event_update_userpage(event);
5748 }
5749 
5750 /* Assume it's not an event with inherit set. */
5751 u64 perf_event_pause(struct perf_event *event, bool reset)
5752 {
5753 	struct perf_event_context *ctx;
5754 	u64 count;
5755 
5756 	ctx = perf_event_ctx_lock(event);
5757 	WARN_ON_ONCE(event->attr.inherit);
5758 	_perf_event_disable(event);
5759 	count = local64_read(&event->count);
5760 	if (reset)
5761 		local64_set(&event->count, 0);
5762 	perf_event_ctx_unlock(event, ctx);
5763 
5764 	return count;
5765 }
5766 EXPORT_SYMBOL_GPL(perf_event_pause);
5767 
5768 /*
5769  * Holding the top-level event's child_mutex means that any
5770  * descendant process that has inherited this event will block
5771  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5772  * task existence requirements of perf_event_enable/disable.
5773  */
5774 static void perf_event_for_each_child(struct perf_event *event,
5775 					void (*func)(struct perf_event *))
5776 {
5777 	struct perf_event *child;
5778 
5779 	WARN_ON_ONCE(event->ctx->parent_ctx);
5780 
5781 	mutex_lock(&event->child_mutex);
5782 	func(event);
5783 	list_for_each_entry(child, &event->child_list, child_list)
5784 		func(child);
5785 	mutex_unlock(&event->child_mutex);
5786 }
5787 
5788 static void perf_event_for_each(struct perf_event *event,
5789 				  void (*func)(struct perf_event *))
5790 {
5791 	struct perf_event_context *ctx = event->ctx;
5792 	struct perf_event *sibling;
5793 
5794 	lockdep_assert_held(&ctx->mutex);
5795 
5796 	event = event->group_leader;
5797 
5798 	perf_event_for_each_child(event, func);
5799 	for_each_sibling_event(sibling, event)
5800 		perf_event_for_each_child(sibling, func);
5801 }
5802 
5803 static void __perf_event_period(struct perf_event *event,
5804 				struct perf_cpu_context *cpuctx,
5805 				struct perf_event_context *ctx,
5806 				void *info)
5807 {
5808 	u64 value = *((u64 *)info);
5809 	bool active;
5810 
5811 	if (event->attr.freq) {
5812 		event->attr.sample_freq = value;
5813 	} else {
5814 		event->attr.sample_period = value;
5815 		event->hw.sample_period = value;
5816 	}
5817 
5818 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5819 	if (active) {
5820 		perf_pmu_disable(event->pmu);
5821 		/*
5822 		 * We could be throttled; unthrottle now to avoid the tick
5823 		 * trying to unthrottle while we already re-started the event.
5824 		 */
5825 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5826 			event->hw.interrupts = 0;
5827 			perf_log_throttle(event, 1);
5828 		}
5829 		event->pmu->stop(event, PERF_EF_UPDATE);
5830 	}
5831 
5832 	local64_set(&event->hw.period_left, 0);
5833 
5834 	if (active) {
5835 		event->pmu->start(event, PERF_EF_RELOAD);
5836 		perf_pmu_enable(event->pmu);
5837 	}
5838 }
5839 
5840 static int perf_event_check_period(struct perf_event *event, u64 value)
5841 {
5842 	return event->pmu->check_period(event, value);
5843 }
5844 
5845 static int _perf_event_period(struct perf_event *event, u64 value)
5846 {
5847 	if (!is_sampling_event(event))
5848 		return -EINVAL;
5849 
5850 	if (!value)
5851 		return -EINVAL;
5852 
5853 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5854 		return -EINVAL;
5855 
5856 	if (perf_event_check_period(event, value))
5857 		return -EINVAL;
5858 
5859 	if (!event->attr.freq && (value & (1ULL << 63)))
5860 		return -EINVAL;
5861 
5862 	event_function_call(event, __perf_event_period, &value);
5863 
5864 	return 0;
5865 }
5866 
5867 int perf_event_period(struct perf_event *event, u64 value)
5868 {
5869 	struct perf_event_context *ctx;
5870 	int ret;
5871 
5872 	ctx = perf_event_ctx_lock(event);
5873 	ret = _perf_event_period(event, value);
5874 	perf_event_ctx_unlock(event, ctx);
5875 
5876 	return ret;
5877 }
5878 EXPORT_SYMBOL_GPL(perf_event_period);
5879 
5880 static const struct file_operations perf_fops;
5881 
5882 static inline int perf_fget_light(int fd, struct fd *p)
5883 {
5884 	struct fd f = fdget(fd);
5885 	if (!f.file)
5886 		return -EBADF;
5887 
5888 	if (f.file->f_op != &perf_fops) {
5889 		fdput(f);
5890 		return -EBADF;
5891 	}
5892 	*p = f;
5893 	return 0;
5894 }
5895 
5896 static int perf_event_set_output(struct perf_event *event,
5897 				 struct perf_event *output_event);
5898 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5899 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5900 			  struct perf_event_attr *attr);
5901 
5902 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5903 {
5904 	void (*func)(struct perf_event *);
5905 	u32 flags = arg;
5906 
5907 	switch (cmd) {
5908 	case PERF_EVENT_IOC_ENABLE:
5909 		func = _perf_event_enable;
5910 		break;
5911 	case PERF_EVENT_IOC_DISABLE:
5912 		func = _perf_event_disable;
5913 		break;
5914 	case PERF_EVENT_IOC_RESET:
5915 		func = _perf_event_reset;
5916 		break;
5917 
5918 	case PERF_EVENT_IOC_REFRESH:
5919 		return _perf_event_refresh(event, arg);
5920 
5921 	case PERF_EVENT_IOC_PERIOD:
5922 	{
5923 		u64 value;
5924 
5925 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5926 			return -EFAULT;
5927 
5928 		return _perf_event_period(event, value);
5929 	}
5930 	case PERF_EVENT_IOC_ID:
5931 	{
5932 		u64 id = primary_event_id(event);
5933 
5934 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5935 			return -EFAULT;
5936 		return 0;
5937 	}
5938 
5939 	case PERF_EVENT_IOC_SET_OUTPUT:
5940 	{
5941 		int ret;
5942 		if (arg != -1) {
5943 			struct perf_event *output_event;
5944 			struct fd output;
5945 			ret = perf_fget_light(arg, &output);
5946 			if (ret)
5947 				return ret;
5948 			output_event = output.file->private_data;
5949 			ret = perf_event_set_output(event, output_event);
5950 			fdput(output);
5951 		} else {
5952 			ret = perf_event_set_output(event, NULL);
5953 		}
5954 		return ret;
5955 	}
5956 
5957 	case PERF_EVENT_IOC_SET_FILTER:
5958 		return perf_event_set_filter(event, (void __user *)arg);
5959 
5960 	case PERF_EVENT_IOC_SET_BPF:
5961 	{
5962 		struct bpf_prog *prog;
5963 		int err;
5964 
5965 		prog = bpf_prog_get(arg);
5966 		if (IS_ERR(prog))
5967 			return PTR_ERR(prog);
5968 
5969 		err = perf_event_set_bpf_prog(event, prog, 0);
5970 		if (err) {
5971 			bpf_prog_put(prog);
5972 			return err;
5973 		}
5974 
5975 		return 0;
5976 	}
5977 
5978 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5979 		struct perf_buffer *rb;
5980 
5981 		rcu_read_lock();
5982 		rb = rcu_dereference(event->rb);
5983 		if (!rb || !rb->nr_pages) {
5984 			rcu_read_unlock();
5985 			return -EINVAL;
5986 		}
5987 		rb_toggle_paused(rb, !!arg);
5988 		rcu_read_unlock();
5989 		return 0;
5990 	}
5991 
5992 	case PERF_EVENT_IOC_QUERY_BPF:
5993 		return perf_event_query_prog_array(event, (void __user *)arg);
5994 
5995 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5996 		struct perf_event_attr new_attr;
5997 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5998 					 &new_attr);
5999 
6000 		if (err)
6001 			return err;
6002 
6003 		return perf_event_modify_attr(event,  &new_attr);
6004 	}
6005 	default:
6006 		return -ENOTTY;
6007 	}
6008 
6009 	if (flags & PERF_IOC_FLAG_GROUP)
6010 		perf_event_for_each(event, func);
6011 	else
6012 		perf_event_for_each_child(event, func);
6013 
6014 	return 0;
6015 }
6016 
6017 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6018 {
6019 	struct perf_event *event = file->private_data;
6020 	struct perf_event_context *ctx;
6021 	long ret;
6022 
6023 	/* Treat ioctl like writes as it is likely a mutating operation. */
6024 	ret = security_perf_event_write(event);
6025 	if (ret)
6026 		return ret;
6027 
6028 	ctx = perf_event_ctx_lock(event);
6029 	ret = _perf_ioctl(event, cmd, arg);
6030 	perf_event_ctx_unlock(event, ctx);
6031 
6032 	return ret;
6033 }
6034 
6035 #ifdef CONFIG_COMPAT
6036 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6037 				unsigned long arg)
6038 {
6039 	switch (_IOC_NR(cmd)) {
6040 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6041 	case _IOC_NR(PERF_EVENT_IOC_ID):
6042 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6043 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6044 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6045 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6046 			cmd &= ~IOCSIZE_MASK;
6047 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6048 		}
6049 		break;
6050 	}
6051 	return perf_ioctl(file, cmd, arg);
6052 }
6053 #else
6054 # define perf_compat_ioctl NULL
6055 #endif
6056 
6057 int perf_event_task_enable(void)
6058 {
6059 	struct perf_event_context *ctx;
6060 	struct perf_event *event;
6061 
6062 	mutex_lock(&current->perf_event_mutex);
6063 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6064 		ctx = perf_event_ctx_lock(event);
6065 		perf_event_for_each_child(event, _perf_event_enable);
6066 		perf_event_ctx_unlock(event, ctx);
6067 	}
6068 	mutex_unlock(&current->perf_event_mutex);
6069 
6070 	return 0;
6071 }
6072 
6073 int perf_event_task_disable(void)
6074 {
6075 	struct perf_event_context *ctx;
6076 	struct perf_event *event;
6077 
6078 	mutex_lock(&current->perf_event_mutex);
6079 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6080 		ctx = perf_event_ctx_lock(event);
6081 		perf_event_for_each_child(event, _perf_event_disable);
6082 		perf_event_ctx_unlock(event, ctx);
6083 	}
6084 	mutex_unlock(&current->perf_event_mutex);
6085 
6086 	return 0;
6087 }
6088 
6089 static int perf_event_index(struct perf_event *event)
6090 {
6091 	if (event->hw.state & PERF_HES_STOPPED)
6092 		return 0;
6093 
6094 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6095 		return 0;
6096 
6097 	return event->pmu->event_idx(event);
6098 }
6099 
6100 static void perf_event_init_userpage(struct perf_event *event)
6101 {
6102 	struct perf_event_mmap_page *userpg;
6103 	struct perf_buffer *rb;
6104 
6105 	rcu_read_lock();
6106 	rb = rcu_dereference(event->rb);
6107 	if (!rb)
6108 		goto unlock;
6109 
6110 	userpg = rb->user_page;
6111 
6112 	/* Allow new userspace to detect that bit 0 is deprecated */
6113 	userpg->cap_bit0_is_deprecated = 1;
6114 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6115 	userpg->data_offset = PAGE_SIZE;
6116 	userpg->data_size = perf_data_size(rb);
6117 
6118 unlock:
6119 	rcu_read_unlock();
6120 }
6121 
6122 void __weak arch_perf_update_userpage(
6123 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6124 {
6125 }
6126 
6127 /*
6128  * Callers need to ensure there can be no nesting of this function, otherwise
6129  * the seqlock logic goes bad. We can not serialize this because the arch
6130  * code calls this from NMI context.
6131  */
6132 void perf_event_update_userpage(struct perf_event *event)
6133 {
6134 	struct perf_event_mmap_page *userpg;
6135 	struct perf_buffer *rb;
6136 	u64 enabled, running, now;
6137 
6138 	rcu_read_lock();
6139 	rb = rcu_dereference(event->rb);
6140 	if (!rb)
6141 		goto unlock;
6142 
6143 	/*
6144 	 * compute total_time_enabled, total_time_running
6145 	 * based on snapshot values taken when the event
6146 	 * was last scheduled in.
6147 	 *
6148 	 * we cannot simply called update_context_time()
6149 	 * because of locking issue as we can be called in
6150 	 * NMI context
6151 	 */
6152 	calc_timer_values(event, &now, &enabled, &running);
6153 
6154 	userpg = rb->user_page;
6155 	/*
6156 	 * Disable preemption to guarantee consistent time stamps are stored to
6157 	 * the user page.
6158 	 */
6159 	preempt_disable();
6160 	++userpg->lock;
6161 	barrier();
6162 	userpg->index = perf_event_index(event);
6163 	userpg->offset = perf_event_count(event);
6164 	if (userpg->index)
6165 		userpg->offset -= local64_read(&event->hw.prev_count);
6166 
6167 	userpg->time_enabled = enabled +
6168 			atomic64_read(&event->child_total_time_enabled);
6169 
6170 	userpg->time_running = running +
6171 			atomic64_read(&event->child_total_time_running);
6172 
6173 	arch_perf_update_userpage(event, userpg, now);
6174 
6175 	barrier();
6176 	++userpg->lock;
6177 	preempt_enable();
6178 unlock:
6179 	rcu_read_unlock();
6180 }
6181 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6182 
6183 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6184 {
6185 	struct perf_event *event = vmf->vma->vm_file->private_data;
6186 	struct perf_buffer *rb;
6187 	vm_fault_t ret = VM_FAULT_SIGBUS;
6188 
6189 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6190 		if (vmf->pgoff == 0)
6191 			ret = 0;
6192 		return ret;
6193 	}
6194 
6195 	rcu_read_lock();
6196 	rb = rcu_dereference(event->rb);
6197 	if (!rb)
6198 		goto unlock;
6199 
6200 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6201 		goto unlock;
6202 
6203 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6204 	if (!vmf->page)
6205 		goto unlock;
6206 
6207 	get_page(vmf->page);
6208 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6209 	vmf->page->index   = vmf->pgoff;
6210 
6211 	ret = 0;
6212 unlock:
6213 	rcu_read_unlock();
6214 
6215 	return ret;
6216 }
6217 
6218 static void ring_buffer_attach(struct perf_event *event,
6219 			       struct perf_buffer *rb)
6220 {
6221 	struct perf_buffer *old_rb = NULL;
6222 	unsigned long flags;
6223 
6224 	WARN_ON_ONCE(event->parent);
6225 
6226 	if (event->rb) {
6227 		/*
6228 		 * Should be impossible, we set this when removing
6229 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6230 		 */
6231 		WARN_ON_ONCE(event->rcu_pending);
6232 
6233 		old_rb = event->rb;
6234 		spin_lock_irqsave(&old_rb->event_lock, flags);
6235 		list_del_rcu(&event->rb_entry);
6236 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6237 
6238 		event->rcu_batches = get_state_synchronize_rcu();
6239 		event->rcu_pending = 1;
6240 	}
6241 
6242 	if (rb) {
6243 		if (event->rcu_pending) {
6244 			cond_synchronize_rcu(event->rcu_batches);
6245 			event->rcu_pending = 0;
6246 		}
6247 
6248 		spin_lock_irqsave(&rb->event_lock, flags);
6249 		list_add_rcu(&event->rb_entry, &rb->event_list);
6250 		spin_unlock_irqrestore(&rb->event_lock, flags);
6251 	}
6252 
6253 	/*
6254 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6255 	 * before swizzling the event::rb pointer; if it's getting
6256 	 * unmapped, its aux_mmap_count will be 0 and it won't
6257 	 * restart. See the comment in __perf_pmu_output_stop().
6258 	 *
6259 	 * Data will inevitably be lost when set_output is done in
6260 	 * mid-air, but then again, whoever does it like this is
6261 	 * not in for the data anyway.
6262 	 */
6263 	if (has_aux(event))
6264 		perf_event_stop(event, 0);
6265 
6266 	rcu_assign_pointer(event->rb, rb);
6267 
6268 	if (old_rb) {
6269 		ring_buffer_put(old_rb);
6270 		/*
6271 		 * Since we detached before setting the new rb, so that we
6272 		 * could attach the new rb, we could have missed a wakeup.
6273 		 * Provide it now.
6274 		 */
6275 		wake_up_all(&event->waitq);
6276 	}
6277 }
6278 
6279 static void ring_buffer_wakeup(struct perf_event *event)
6280 {
6281 	struct perf_buffer *rb;
6282 
6283 	if (event->parent)
6284 		event = event->parent;
6285 
6286 	rcu_read_lock();
6287 	rb = rcu_dereference(event->rb);
6288 	if (rb) {
6289 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6290 			wake_up_all(&event->waitq);
6291 	}
6292 	rcu_read_unlock();
6293 }
6294 
6295 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6296 {
6297 	struct perf_buffer *rb;
6298 
6299 	if (event->parent)
6300 		event = event->parent;
6301 
6302 	rcu_read_lock();
6303 	rb = rcu_dereference(event->rb);
6304 	if (rb) {
6305 		if (!refcount_inc_not_zero(&rb->refcount))
6306 			rb = NULL;
6307 	}
6308 	rcu_read_unlock();
6309 
6310 	return rb;
6311 }
6312 
6313 void ring_buffer_put(struct perf_buffer *rb)
6314 {
6315 	if (!refcount_dec_and_test(&rb->refcount))
6316 		return;
6317 
6318 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6319 
6320 	call_rcu(&rb->rcu_head, rb_free_rcu);
6321 }
6322 
6323 static void perf_mmap_open(struct vm_area_struct *vma)
6324 {
6325 	struct perf_event *event = vma->vm_file->private_data;
6326 
6327 	atomic_inc(&event->mmap_count);
6328 	atomic_inc(&event->rb->mmap_count);
6329 
6330 	if (vma->vm_pgoff)
6331 		atomic_inc(&event->rb->aux_mmap_count);
6332 
6333 	if (event->pmu->event_mapped)
6334 		event->pmu->event_mapped(event, vma->vm_mm);
6335 }
6336 
6337 static void perf_pmu_output_stop(struct perf_event *event);
6338 
6339 /*
6340  * A buffer can be mmap()ed multiple times; either directly through the same
6341  * event, or through other events by use of perf_event_set_output().
6342  *
6343  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6344  * the buffer here, where we still have a VM context. This means we need
6345  * to detach all events redirecting to us.
6346  */
6347 static void perf_mmap_close(struct vm_area_struct *vma)
6348 {
6349 	struct perf_event *event = vma->vm_file->private_data;
6350 	struct perf_buffer *rb = ring_buffer_get(event);
6351 	struct user_struct *mmap_user = rb->mmap_user;
6352 	int mmap_locked = rb->mmap_locked;
6353 	unsigned long size = perf_data_size(rb);
6354 	bool detach_rest = false;
6355 
6356 	if (event->pmu->event_unmapped)
6357 		event->pmu->event_unmapped(event, vma->vm_mm);
6358 
6359 	/*
6360 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6361 	 * to avoid complications.
6362 	 */
6363 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6364 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6365 		/*
6366 		 * Stop all AUX events that are writing to this buffer,
6367 		 * so that we can free its AUX pages and corresponding PMU
6368 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6369 		 * they won't start any more (see perf_aux_output_begin()).
6370 		 */
6371 		perf_pmu_output_stop(event);
6372 
6373 		/* now it's safe to free the pages */
6374 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6375 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6376 
6377 		/* this has to be the last one */
6378 		rb_free_aux(rb);
6379 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6380 
6381 		mutex_unlock(&rb->aux_mutex);
6382 	}
6383 
6384 	if (atomic_dec_and_test(&rb->mmap_count))
6385 		detach_rest = true;
6386 
6387 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6388 		goto out_put;
6389 
6390 	ring_buffer_attach(event, NULL);
6391 	mutex_unlock(&event->mmap_mutex);
6392 
6393 	/* If there's still other mmap()s of this buffer, we're done. */
6394 	if (!detach_rest)
6395 		goto out_put;
6396 
6397 	/*
6398 	 * No other mmap()s, detach from all other events that might redirect
6399 	 * into the now unreachable buffer. Somewhat complicated by the
6400 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6401 	 */
6402 again:
6403 	rcu_read_lock();
6404 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6405 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6406 			/*
6407 			 * This event is en-route to free_event() which will
6408 			 * detach it and remove it from the list.
6409 			 */
6410 			continue;
6411 		}
6412 		rcu_read_unlock();
6413 
6414 		mutex_lock(&event->mmap_mutex);
6415 		/*
6416 		 * Check we didn't race with perf_event_set_output() which can
6417 		 * swizzle the rb from under us while we were waiting to
6418 		 * acquire mmap_mutex.
6419 		 *
6420 		 * If we find a different rb; ignore this event, a next
6421 		 * iteration will no longer find it on the list. We have to
6422 		 * still restart the iteration to make sure we're not now
6423 		 * iterating the wrong list.
6424 		 */
6425 		if (event->rb == rb)
6426 			ring_buffer_attach(event, NULL);
6427 
6428 		mutex_unlock(&event->mmap_mutex);
6429 		put_event(event);
6430 
6431 		/*
6432 		 * Restart the iteration; either we're on the wrong list or
6433 		 * destroyed its integrity by doing a deletion.
6434 		 */
6435 		goto again;
6436 	}
6437 	rcu_read_unlock();
6438 
6439 	/*
6440 	 * It could be there's still a few 0-ref events on the list; they'll
6441 	 * get cleaned up by free_event() -- they'll also still have their
6442 	 * ref on the rb and will free it whenever they are done with it.
6443 	 *
6444 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6445 	 * undo the VM accounting.
6446 	 */
6447 
6448 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6449 			&mmap_user->locked_vm);
6450 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6451 	free_uid(mmap_user);
6452 
6453 out_put:
6454 	ring_buffer_put(rb); /* could be last */
6455 }
6456 
6457 static const struct vm_operations_struct perf_mmap_vmops = {
6458 	.open		= perf_mmap_open,
6459 	.close		= perf_mmap_close, /* non mergeable */
6460 	.fault		= perf_mmap_fault,
6461 	.page_mkwrite	= perf_mmap_fault,
6462 };
6463 
6464 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6465 {
6466 	struct perf_event *event = file->private_data;
6467 	unsigned long user_locked, user_lock_limit;
6468 	struct user_struct *user = current_user();
6469 	struct mutex *aux_mutex = NULL;
6470 	struct perf_buffer *rb = NULL;
6471 	unsigned long locked, lock_limit;
6472 	unsigned long vma_size;
6473 	unsigned long nr_pages;
6474 	long user_extra = 0, extra = 0;
6475 	int ret = 0, flags = 0;
6476 
6477 	/*
6478 	 * Don't allow mmap() of inherited per-task counters. This would
6479 	 * create a performance issue due to all children writing to the
6480 	 * same rb.
6481 	 */
6482 	if (event->cpu == -1 && event->attr.inherit)
6483 		return -EINVAL;
6484 
6485 	if (!(vma->vm_flags & VM_SHARED))
6486 		return -EINVAL;
6487 
6488 	ret = security_perf_event_read(event);
6489 	if (ret)
6490 		return ret;
6491 
6492 	vma_size = vma->vm_end - vma->vm_start;
6493 
6494 	if (vma->vm_pgoff == 0) {
6495 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6496 	} else {
6497 		/*
6498 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6499 		 * mapped, all subsequent mappings should have the same size
6500 		 * and offset. Must be above the normal perf buffer.
6501 		 */
6502 		u64 aux_offset, aux_size;
6503 
6504 		if (!event->rb)
6505 			return -EINVAL;
6506 
6507 		nr_pages = vma_size / PAGE_SIZE;
6508 		if (nr_pages > INT_MAX)
6509 			return -ENOMEM;
6510 
6511 		mutex_lock(&event->mmap_mutex);
6512 		ret = -EINVAL;
6513 
6514 		rb = event->rb;
6515 		if (!rb)
6516 			goto aux_unlock;
6517 
6518 		aux_mutex = &rb->aux_mutex;
6519 		mutex_lock(aux_mutex);
6520 
6521 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6522 		aux_size = READ_ONCE(rb->user_page->aux_size);
6523 
6524 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6525 			goto aux_unlock;
6526 
6527 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6528 			goto aux_unlock;
6529 
6530 		/* already mapped with a different offset */
6531 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6532 			goto aux_unlock;
6533 
6534 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6535 			goto aux_unlock;
6536 
6537 		/* already mapped with a different size */
6538 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6539 			goto aux_unlock;
6540 
6541 		if (!is_power_of_2(nr_pages))
6542 			goto aux_unlock;
6543 
6544 		if (!atomic_inc_not_zero(&rb->mmap_count))
6545 			goto aux_unlock;
6546 
6547 		if (rb_has_aux(rb)) {
6548 			atomic_inc(&rb->aux_mmap_count);
6549 			ret = 0;
6550 			goto unlock;
6551 		}
6552 
6553 		atomic_set(&rb->aux_mmap_count, 1);
6554 		user_extra = nr_pages;
6555 
6556 		goto accounting;
6557 	}
6558 
6559 	/*
6560 	 * If we have rb pages ensure they're a power-of-two number, so we
6561 	 * can do bitmasks instead of modulo.
6562 	 */
6563 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6564 		return -EINVAL;
6565 
6566 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6567 		return -EINVAL;
6568 
6569 	WARN_ON_ONCE(event->ctx->parent_ctx);
6570 again:
6571 	mutex_lock(&event->mmap_mutex);
6572 	if (event->rb) {
6573 		if (data_page_nr(event->rb) != nr_pages) {
6574 			ret = -EINVAL;
6575 			goto unlock;
6576 		}
6577 
6578 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6579 			/*
6580 			 * Raced against perf_mmap_close(); remove the
6581 			 * event and try again.
6582 			 */
6583 			ring_buffer_attach(event, NULL);
6584 			mutex_unlock(&event->mmap_mutex);
6585 			goto again;
6586 		}
6587 
6588 		goto unlock;
6589 	}
6590 
6591 	user_extra = nr_pages + 1;
6592 
6593 accounting:
6594 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6595 
6596 	/*
6597 	 * Increase the limit linearly with more CPUs:
6598 	 */
6599 	user_lock_limit *= num_online_cpus();
6600 
6601 	user_locked = atomic_long_read(&user->locked_vm);
6602 
6603 	/*
6604 	 * sysctl_perf_event_mlock may have changed, so that
6605 	 *     user->locked_vm > user_lock_limit
6606 	 */
6607 	if (user_locked > user_lock_limit)
6608 		user_locked = user_lock_limit;
6609 	user_locked += user_extra;
6610 
6611 	if (user_locked > user_lock_limit) {
6612 		/*
6613 		 * charge locked_vm until it hits user_lock_limit;
6614 		 * charge the rest from pinned_vm
6615 		 */
6616 		extra = user_locked - user_lock_limit;
6617 		user_extra -= extra;
6618 	}
6619 
6620 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6621 	lock_limit >>= PAGE_SHIFT;
6622 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6623 
6624 	if ((locked > lock_limit) && perf_is_paranoid() &&
6625 		!capable(CAP_IPC_LOCK)) {
6626 		ret = -EPERM;
6627 		goto unlock;
6628 	}
6629 
6630 	WARN_ON(!rb && event->rb);
6631 
6632 	if (vma->vm_flags & VM_WRITE)
6633 		flags |= RING_BUFFER_WRITABLE;
6634 
6635 	if (!rb) {
6636 		rb = rb_alloc(nr_pages,
6637 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6638 			      event->cpu, flags);
6639 
6640 		if (!rb) {
6641 			ret = -ENOMEM;
6642 			goto unlock;
6643 		}
6644 
6645 		atomic_set(&rb->mmap_count, 1);
6646 		rb->mmap_user = get_current_user();
6647 		rb->mmap_locked = extra;
6648 
6649 		ring_buffer_attach(event, rb);
6650 
6651 		perf_event_update_time(event);
6652 		perf_event_init_userpage(event);
6653 		perf_event_update_userpage(event);
6654 	} else {
6655 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6656 				   event->attr.aux_watermark, flags);
6657 		if (!ret)
6658 			rb->aux_mmap_locked = extra;
6659 	}
6660 
6661 unlock:
6662 	if (!ret) {
6663 		atomic_long_add(user_extra, &user->locked_vm);
6664 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6665 
6666 		atomic_inc(&event->mmap_count);
6667 	} else if (rb) {
6668 		atomic_dec(&rb->mmap_count);
6669 	}
6670 aux_unlock:
6671 	if (aux_mutex)
6672 		mutex_unlock(aux_mutex);
6673 	mutex_unlock(&event->mmap_mutex);
6674 
6675 	/*
6676 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6677 	 * vma.
6678 	 */
6679 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6680 	vma->vm_ops = &perf_mmap_vmops;
6681 
6682 	if (event->pmu->event_mapped)
6683 		event->pmu->event_mapped(event, vma->vm_mm);
6684 
6685 	return ret;
6686 }
6687 
6688 static int perf_fasync(int fd, struct file *filp, int on)
6689 {
6690 	struct inode *inode = file_inode(filp);
6691 	struct perf_event *event = filp->private_data;
6692 	int retval;
6693 
6694 	inode_lock(inode);
6695 	retval = fasync_helper(fd, filp, on, &event->fasync);
6696 	inode_unlock(inode);
6697 
6698 	if (retval < 0)
6699 		return retval;
6700 
6701 	return 0;
6702 }
6703 
6704 static const struct file_operations perf_fops = {
6705 	.llseek			= no_llseek,
6706 	.release		= perf_release,
6707 	.read			= perf_read,
6708 	.poll			= perf_poll,
6709 	.unlocked_ioctl		= perf_ioctl,
6710 	.compat_ioctl		= perf_compat_ioctl,
6711 	.mmap			= perf_mmap,
6712 	.fasync			= perf_fasync,
6713 };
6714 
6715 /*
6716  * Perf event wakeup
6717  *
6718  * If there's data, ensure we set the poll() state and publish everything
6719  * to user-space before waking everybody up.
6720  */
6721 
6722 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6723 {
6724 	/* only the parent has fasync state */
6725 	if (event->parent)
6726 		event = event->parent;
6727 	return &event->fasync;
6728 }
6729 
6730 void perf_event_wakeup(struct perf_event *event)
6731 {
6732 	ring_buffer_wakeup(event);
6733 
6734 	if (event->pending_kill) {
6735 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6736 		event->pending_kill = 0;
6737 	}
6738 }
6739 
6740 static void perf_sigtrap(struct perf_event *event)
6741 {
6742 	/*
6743 	 * We'd expect this to only occur if the irq_work is delayed and either
6744 	 * ctx->task or current has changed in the meantime. This can be the
6745 	 * case on architectures that do not implement arch_irq_work_raise().
6746 	 */
6747 	if (WARN_ON_ONCE(event->ctx->task != current))
6748 		return;
6749 
6750 	/*
6751 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6752 	 * task exiting.
6753 	 */
6754 	if (current->flags & PF_EXITING)
6755 		return;
6756 
6757 	send_sig_perf((void __user *)event->pending_addr,
6758 		      event->orig_type, event->attr.sig_data);
6759 }
6760 
6761 /*
6762  * Deliver the pending work in-event-context or follow the context.
6763  */
6764 static void __perf_pending_irq(struct perf_event *event)
6765 {
6766 	int cpu = READ_ONCE(event->oncpu);
6767 
6768 	/*
6769 	 * If the event isn't running; we done. event_sched_out() will have
6770 	 * taken care of things.
6771 	 */
6772 	if (cpu < 0)
6773 		return;
6774 
6775 	/*
6776 	 * Yay, we hit home and are in the context of the event.
6777 	 */
6778 	if (cpu == smp_processor_id()) {
6779 		if (event->pending_sigtrap) {
6780 			event->pending_sigtrap = 0;
6781 			perf_sigtrap(event);
6782 			local_dec(&event->ctx->nr_pending);
6783 		}
6784 		if (event->pending_disable) {
6785 			event->pending_disable = 0;
6786 			perf_event_disable_local(event);
6787 		}
6788 		return;
6789 	}
6790 
6791 	/*
6792 	 *  CPU-A			CPU-B
6793 	 *
6794 	 *  perf_event_disable_inatomic()
6795 	 *    @pending_disable = CPU-A;
6796 	 *    irq_work_queue();
6797 	 *
6798 	 *  sched-out
6799 	 *    @pending_disable = -1;
6800 	 *
6801 	 *				sched-in
6802 	 *				perf_event_disable_inatomic()
6803 	 *				  @pending_disable = CPU-B;
6804 	 *				  irq_work_queue(); // FAILS
6805 	 *
6806 	 *  irq_work_run()
6807 	 *    perf_pending_irq()
6808 	 *
6809 	 * But the event runs on CPU-B and wants disabling there.
6810 	 */
6811 	irq_work_queue_on(&event->pending_irq, cpu);
6812 }
6813 
6814 static void perf_pending_irq(struct irq_work *entry)
6815 {
6816 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6817 	int rctx;
6818 
6819 	/*
6820 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6821 	 * and we won't recurse 'further'.
6822 	 */
6823 	rctx = perf_swevent_get_recursion_context();
6824 
6825 	/*
6826 	 * The wakeup isn't bound to the context of the event -- it can happen
6827 	 * irrespective of where the event is.
6828 	 */
6829 	if (event->pending_wakeup) {
6830 		event->pending_wakeup = 0;
6831 		perf_event_wakeup(event);
6832 	}
6833 
6834 	__perf_pending_irq(event);
6835 
6836 	if (rctx >= 0)
6837 		perf_swevent_put_recursion_context(rctx);
6838 }
6839 
6840 static void perf_pending_task(struct callback_head *head)
6841 {
6842 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6843 	int rctx;
6844 
6845 	/*
6846 	 * All accesses to the event must belong to the same implicit RCU read-side
6847 	 * critical section as the ->pending_work reset. See comment in
6848 	 * perf_pending_task_sync().
6849 	 */
6850 	preempt_disable_notrace();
6851 	/*
6852 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6853 	 * and we won't recurse 'further'.
6854 	 */
6855 	rctx = perf_swevent_get_recursion_context();
6856 
6857 	if (event->pending_work) {
6858 		event->pending_work = 0;
6859 		perf_sigtrap(event);
6860 		local_dec(&event->ctx->nr_pending);
6861 		rcuwait_wake_up(&event->pending_work_wait);
6862 	}
6863 
6864 	if (rctx >= 0)
6865 		perf_swevent_put_recursion_context(rctx);
6866 	preempt_enable_notrace();
6867 }
6868 
6869 #ifdef CONFIG_GUEST_PERF_EVENTS
6870 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6871 
6872 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6873 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6874 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6875 
6876 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6877 {
6878 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6879 		return;
6880 
6881 	rcu_assign_pointer(perf_guest_cbs, cbs);
6882 	static_call_update(__perf_guest_state, cbs->state);
6883 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6884 
6885 	/* Implementing ->handle_intel_pt_intr is optional. */
6886 	if (cbs->handle_intel_pt_intr)
6887 		static_call_update(__perf_guest_handle_intel_pt_intr,
6888 				   cbs->handle_intel_pt_intr);
6889 }
6890 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6891 
6892 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6893 {
6894 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6895 		return;
6896 
6897 	rcu_assign_pointer(perf_guest_cbs, NULL);
6898 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6899 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6900 	static_call_update(__perf_guest_handle_intel_pt_intr,
6901 			   (void *)&__static_call_return0);
6902 	synchronize_rcu();
6903 }
6904 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6905 #endif
6906 
6907 static void
6908 perf_output_sample_regs(struct perf_output_handle *handle,
6909 			struct pt_regs *regs, u64 mask)
6910 {
6911 	int bit;
6912 	DECLARE_BITMAP(_mask, 64);
6913 
6914 	bitmap_from_u64(_mask, mask);
6915 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6916 		u64 val;
6917 
6918 		val = perf_reg_value(regs, bit);
6919 		perf_output_put(handle, val);
6920 	}
6921 }
6922 
6923 static void perf_sample_regs_user(struct perf_regs *regs_user,
6924 				  struct pt_regs *regs)
6925 {
6926 	if (user_mode(regs)) {
6927 		regs_user->abi = perf_reg_abi(current);
6928 		regs_user->regs = regs;
6929 	} else if (!(current->flags & PF_KTHREAD)) {
6930 		perf_get_regs_user(regs_user, regs);
6931 	} else {
6932 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6933 		regs_user->regs = NULL;
6934 	}
6935 }
6936 
6937 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6938 				  struct pt_regs *regs)
6939 {
6940 	regs_intr->regs = regs;
6941 	regs_intr->abi  = perf_reg_abi(current);
6942 }
6943 
6944 
6945 /*
6946  * Get remaining task size from user stack pointer.
6947  *
6948  * It'd be better to take stack vma map and limit this more
6949  * precisely, but there's no way to get it safely under interrupt,
6950  * so using TASK_SIZE as limit.
6951  */
6952 static u64 perf_ustack_task_size(struct pt_regs *regs)
6953 {
6954 	unsigned long addr = perf_user_stack_pointer(regs);
6955 
6956 	if (!addr || addr >= TASK_SIZE)
6957 		return 0;
6958 
6959 	return TASK_SIZE - addr;
6960 }
6961 
6962 static u16
6963 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6964 			struct pt_regs *regs)
6965 {
6966 	u64 task_size;
6967 
6968 	/* No regs, no stack pointer, no dump. */
6969 	if (!regs)
6970 		return 0;
6971 
6972 	/*
6973 	 * Check if we fit in with the requested stack size into the:
6974 	 * - TASK_SIZE
6975 	 *   If we don't, we limit the size to the TASK_SIZE.
6976 	 *
6977 	 * - remaining sample size
6978 	 *   If we don't, we customize the stack size to
6979 	 *   fit in to the remaining sample size.
6980 	 */
6981 
6982 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6983 	stack_size = min(stack_size, (u16) task_size);
6984 
6985 	/* Current header size plus static size and dynamic size. */
6986 	header_size += 2 * sizeof(u64);
6987 
6988 	/* Do we fit in with the current stack dump size? */
6989 	if ((u16) (header_size + stack_size) < header_size) {
6990 		/*
6991 		 * If we overflow the maximum size for the sample,
6992 		 * we customize the stack dump size to fit in.
6993 		 */
6994 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6995 		stack_size = round_up(stack_size, sizeof(u64));
6996 	}
6997 
6998 	return stack_size;
6999 }
7000 
7001 static void
7002 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7003 			  struct pt_regs *regs)
7004 {
7005 	/* Case of a kernel thread, nothing to dump */
7006 	if (!regs) {
7007 		u64 size = 0;
7008 		perf_output_put(handle, size);
7009 	} else {
7010 		unsigned long sp;
7011 		unsigned int rem;
7012 		u64 dyn_size;
7013 
7014 		/*
7015 		 * We dump:
7016 		 * static size
7017 		 *   - the size requested by user or the best one we can fit
7018 		 *     in to the sample max size
7019 		 * data
7020 		 *   - user stack dump data
7021 		 * dynamic size
7022 		 *   - the actual dumped size
7023 		 */
7024 
7025 		/* Static size. */
7026 		perf_output_put(handle, dump_size);
7027 
7028 		/* Data. */
7029 		sp = perf_user_stack_pointer(regs);
7030 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7031 		dyn_size = dump_size - rem;
7032 
7033 		perf_output_skip(handle, rem);
7034 
7035 		/* Dynamic size. */
7036 		perf_output_put(handle, dyn_size);
7037 	}
7038 }
7039 
7040 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7041 					  struct perf_sample_data *data,
7042 					  size_t size)
7043 {
7044 	struct perf_event *sampler = event->aux_event;
7045 	struct perf_buffer *rb;
7046 
7047 	data->aux_size = 0;
7048 
7049 	if (!sampler)
7050 		goto out;
7051 
7052 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7053 		goto out;
7054 
7055 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7056 		goto out;
7057 
7058 	rb = ring_buffer_get(sampler);
7059 	if (!rb)
7060 		goto out;
7061 
7062 	/*
7063 	 * If this is an NMI hit inside sampling code, don't take
7064 	 * the sample. See also perf_aux_sample_output().
7065 	 */
7066 	if (READ_ONCE(rb->aux_in_sampling)) {
7067 		data->aux_size = 0;
7068 	} else {
7069 		size = min_t(size_t, size, perf_aux_size(rb));
7070 		data->aux_size = ALIGN(size, sizeof(u64));
7071 	}
7072 	ring_buffer_put(rb);
7073 
7074 out:
7075 	return data->aux_size;
7076 }
7077 
7078 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7079                                  struct perf_event *event,
7080                                  struct perf_output_handle *handle,
7081                                  unsigned long size)
7082 {
7083 	unsigned long flags;
7084 	long ret;
7085 
7086 	/*
7087 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7088 	 * paths. If we start calling them in NMI context, they may race with
7089 	 * the IRQ ones, that is, for example, re-starting an event that's just
7090 	 * been stopped, which is why we're using a separate callback that
7091 	 * doesn't change the event state.
7092 	 *
7093 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7094 	 */
7095 	local_irq_save(flags);
7096 	/*
7097 	 * Guard against NMI hits inside the critical section;
7098 	 * see also perf_prepare_sample_aux().
7099 	 */
7100 	WRITE_ONCE(rb->aux_in_sampling, 1);
7101 	barrier();
7102 
7103 	ret = event->pmu->snapshot_aux(event, handle, size);
7104 
7105 	barrier();
7106 	WRITE_ONCE(rb->aux_in_sampling, 0);
7107 	local_irq_restore(flags);
7108 
7109 	return ret;
7110 }
7111 
7112 static void perf_aux_sample_output(struct perf_event *event,
7113 				   struct perf_output_handle *handle,
7114 				   struct perf_sample_data *data)
7115 {
7116 	struct perf_event *sampler = event->aux_event;
7117 	struct perf_buffer *rb;
7118 	unsigned long pad;
7119 	long size;
7120 
7121 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7122 		return;
7123 
7124 	rb = ring_buffer_get(sampler);
7125 	if (!rb)
7126 		return;
7127 
7128 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7129 
7130 	/*
7131 	 * An error here means that perf_output_copy() failed (returned a
7132 	 * non-zero surplus that it didn't copy), which in its current
7133 	 * enlightened implementation is not possible. If that changes, we'd
7134 	 * like to know.
7135 	 */
7136 	if (WARN_ON_ONCE(size < 0))
7137 		goto out_put;
7138 
7139 	/*
7140 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7141 	 * perf_prepare_sample_aux(), so should not be more than that.
7142 	 */
7143 	pad = data->aux_size - size;
7144 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7145 		pad = 8;
7146 
7147 	if (pad) {
7148 		u64 zero = 0;
7149 		perf_output_copy(handle, &zero, pad);
7150 	}
7151 
7152 out_put:
7153 	ring_buffer_put(rb);
7154 }
7155 
7156 /*
7157  * A set of common sample data types saved even for non-sample records
7158  * when event->attr.sample_id_all is set.
7159  */
7160 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7161 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7162 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7163 
7164 static void __perf_event_header__init_id(struct perf_sample_data *data,
7165 					 struct perf_event *event,
7166 					 u64 sample_type)
7167 {
7168 	data->type = event->attr.sample_type;
7169 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7170 
7171 	if (sample_type & PERF_SAMPLE_TID) {
7172 		/* namespace issues */
7173 		data->tid_entry.pid = perf_event_pid(event, current);
7174 		data->tid_entry.tid = perf_event_tid(event, current);
7175 	}
7176 
7177 	if (sample_type & PERF_SAMPLE_TIME)
7178 		data->time = perf_event_clock(event);
7179 
7180 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7181 		data->id = primary_event_id(event);
7182 
7183 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7184 		data->stream_id = event->id;
7185 
7186 	if (sample_type & PERF_SAMPLE_CPU) {
7187 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7188 		data->cpu_entry.reserved = 0;
7189 	}
7190 }
7191 
7192 void perf_event_header__init_id(struct perf_event_header *header,
7193 				struct perf_sample_data *data,
7194 				struct perf_event *event)
7195 {
7196 	if (event->attr.sample_id_all) {
7197 		header->size += event->id_header_size;
7198 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7199 	}
7200 }
7201 
7202 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7203 					   struct perf_sample_data *data)
7204 {
7205 	u64 sample_type = data->type;
7206 
7207 	if (sample_type & PERF_SAMPLE_TID)
7208 		perf_output_put(handle, data->tid_entry);
7209 
7210 	if (sample_type & PERF_SAMPLE_TIME)
7211 		perf_output_put(handle, data->time);
7212 
7213 	if (sample_type & PERF_SAMPLE_ID)
7214 		perf_output_put(handle, data->id);
7215 
7216 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7217 		perf_output_put(handle, data->stream_id);
7218 
7219 	if (sample_type & PERF_SAMPLE_CPU)
7220 		perf_output_put(handle, data->cpu_entry);
7221 
7222 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7223 		perf_output_put(handle, data->id);
7224 }
7225 
7226 void perf_event__output_id_sample(struct perf_event *event,
7227 				  struct perf_output_handle *handle,
7228 				  struct perf_sample_data *sample)
7229 {
7230 	if (event->attr.sample_id_all)
7231 		__perf_event__output_id_sample(handle, sample);
7232 }
7233 
7234 static void perf_output_read_one(struct perf_output_handle *handle,
7235 				 struct perf_event *event,
7236 				 u64 enabled, u64 running)
7237 {
7238 	u64 read_format = event->attr.read_format;
7239 	u64 values[5];
7240 	int n = 0;
7241 
7242 	values[n++] = perf_event_count(event);
7243 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7244 		values[n++] = enabled +
7245 			atomic64_read(&event->child_total_time_enabled);
7246 	}
7247 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7248 		values[n++] = running +
7249 			atomic64_read(&event->child_total_time_running);
7250 	}
7251 	if (read_format & PERF_FORMAT_ID)
7252 		values[n++] = primary_event_id(event);
7253 	if (read_format & PERF_FORMAT_LOST)
7254 		values[n++] = atomic64_read(&event->lost_samples);
7255 
7256 	__output_copy(handle, values, n * sizeof(u64));
7257 }
7258 
7259 static void perf_output_read_group(struct perf_output_handle *handle,
7260 			    struct perf_event *event,
7261 			    u64 enabled, u64 running)
7262 {
7263 	struct perf_event *leader = event->group_leader, *sub;
7264 	u64 read_format = event->attr.read_format;
7265 	unsigned long flags;
7266 	u64 values[6];
7267 	int n = 0;
7268 
7269 	/*
7270 	 * Disabling interrupts avoids all counter scheduling
7271 	 * (context switches, timer based rotation and IPIs).
7272 	 */
7273 	local_irq_save(flags);
7274 
7275 	values[n++] = 1 + leader->nr_siblings;
7276 
7277 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7278 		values[n++] = enabled;
7279 
7280 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7281 		values[n++] = running;
7282 
7283 	if ((leader != event) &&
7284 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7285 		leader->pmu->read(leader);
7286 
7287 	values[n++] = perf_event_count(leader);
7288 	if (read_format & PERF_FORMAT_ID)
7289 		values[n++] = primary_event_id(leader);
7290 	if (read_format & PERF_FORMAT_LOST)
7291 		values[n++] = atomic64_read(&leader->lost_samples);
7292 
7293 	__output_copy(handle, values, n * sizeof(u64));
7294 
7295 	for_each_sibling_event(sub, leader) {
7296 		n = 0;
7297 
7298 		if ((sub != event) &&
7299 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7300 			sub->pmu->read(sub);
7301 
7302 		values[n++] = perf_event_count(sub);
7303 		if (read_format & PERF_FORMAT_ID)
7304 			values[n++] = primary_event_id(sub);
7305 		if (read_format & PERF_FORMAT_LOST)
7306 			values[n++] = atomic64_read(&sub->lost_samples);
7307 
7308 		__output_copy(handle, values, n * sizeof(u64));
7309 	}
7310 
7311 	local_irq_restore(flags);
7312 }
7313 
7314 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7315 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7316 
7317 /*
7318  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7319  *
7320  * The problem is that its both hard and excessively expensive to iterate the
7321  * child list, not to mention that its impossible to IPI the children running
7322  * on another CPU, from interrupt/NMI context.
7323  */
7324 static void perf_output_read(struct perf_output_handle *handle,
7325 			     struct perf_event *event)
7326 {
7327 	u64 enabled = 0, running = 0, now;
7328 	u64 read_format = event->attr.read_format;
7329 
7330 	/*
7331 	 * compute total_time_enabled, total_time_running
7332 	 * based on snapshot values taken when the event
7333 	 * was last scheduled in.
7334 	 *
7335 	 * we cannot simply called update_context_time()
7336 	 * because of locking issue as we are called in
7337 	 * NMI context
7338 	 */
7339 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7340 		calc_timer_values(event, &now, &enabled, &running);
7341 
7342 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7343 		perf_output_read_group(handle, event, enabled, running);
7344 	else
7345 		perf_output_read_one(handle, event, enabled, running);
7346 }
7347 
7348 void perf_output_sample(struct perf_output_handle *handle,
7349 			struct perf_event_header *header,
7350 			struct perf_sample_data *data,
7351 			struct perf_event *event)
7352 {
7353 	u64 sample_type = data->type;
7354 
7355 	perf_output_put(handle, *header);
7356 
7357 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7358 		perf_output_put(handle, data->id);
7359 
7360 	if (sample_type & PERF_SAMPLE_IP)
7361 		perf_output_put(handle, data->ip);
7362 
7363 	if (sample_type & PERF_SAMPLE_TID)
7364 		perf_output_put(handle, data->tid_entry);
7365 
7366 	if (sample_type & PERF_SAMPLE_TIME)
7367 		perf_output_put(handle, data->time);
7368 
7369 	if (sample_type & PERF_SAMPLE_ADDR)
7370 		perf_output_put(handle, data->addr);
7371 
7372 	if (sample_type & PERF_SAMPLE_ID)
7373 		perf_output_put(handle, data->id);
7374 
7375 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7376 		perf_output_put(handle, data->stream_id);
7377 
7378 	if (sample_type & PERF_SAMPLE_CPU)
7379 		perf_output_put(handle, data->cpu_entry);
7380 
7381 	if (sample_type & PERF_SAMPLE_PERIOD)
7382 		perf_output_put(handle, data->period);
7383 
7384 	if (sample_type & PERF_SAMPLE_READ)
7385 		perf_output_read(handle, event);
7386 
7387 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7388 		int size = 1;
7389 
7390 		size += data->callchain->nr;
7391 		size *= sizeof(u64);
7392 		__output_copy(handle, data->callchain, size);
7393 	}
7394 
7395 	if (sample_type & PERF_SAMPLE_RAW) {
7396 		struct perf_raw_record *raw = data->raw;
7397 
7398 		if (raw) {
7399 			struct perf_raw_frag *frag = &raw->frag;
7400 
7401 			perf_output_put(handle, raw->size);
7402 			do {
7403 				if (frag->copy) {
7404 					__output_custom(handle, frag->copy,
7405 							frag->data, frag->size);
7406 				} else {
7407 					__output_copy(handle, frag->data,
7408 						      frag->size);
7409 				}
7410 				if (perf_raw_frag_last(frag))
7411 					break;
7412 				frag = frag->next;
7413 			} while (1);
7414 			if (frag->pad)
7415 				__output_skip(handle, NULL, frag->pad);
7416 		} else {
7417 			struct {
7418 				u32	size;
7419 				u32	data;
7420 			} raw = {
7421 				.size = sizeof(u32),
7422 				.data = 0,
7423 			};
7424 			perf_output_put(handle, raw);
7425 		}
7426 	}
7427 
7428 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7429 		if (data->br_stack) {
7430 			size_t size;
7431 
7432 			size = data->br_stack->nr
7433 			     * sizeof(struct perf_branch_entry);
7434 
7435 			perf_output_put(handle, data->br_stack->nr);
7436 			if (branch_sample_hw_index(event))
7437 				perf_output_put(handle, data->br_stack->hw_idx);
7438 			perf_output_copy(handle, data->br_stack->entries, size);
7439 		} else {
7440 			/*
7441 			 * we always store at least the value of nr
7442 			 */
7443 			u64 nr = 0;
7444 			perf_output_put(handle, nr);
7445 		}
7446 	}
7447 
7448 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7449 		u64 abi = data->regs_user.abi;
7450 
7451 		/*
7452 		 * If there are no regs to dump, notice it through
7453 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7454 		 */
7455 		perf_output_put(handle, abi);
7456 
7457 		if (abi) {
7458 			u64 mask = event->attr.sample_regs_user;
7459 			perf_output_sample_regs(handle,
7460 						data->regs_user.regs,
7461 						mask);
7462 		}
7463 	}
7464 
7465 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7466 		perf_output_sample_ustack(handle,
7467 					  data->stack_user_size,
7468 					  data->regs_user.regs);
7469 	}
7470 
7471 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7472 		perf_output_put(handle, data->weight.full);
7473 
7474 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7475 		perf_output_put(handle, data->data_src.val);
7476 
7477 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7478 		perf_output_put(handle, data->txn);
7479 
7480 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7481 		u64 abi = data->regs_intr.abi;
7482 		/*
7483 		 * If there are no regs to dump, notice it through
7484 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7485 		 */
7486 		perf_output_put(handle, abi);
7487 
7488 		if (abi) {
7489 			u64 mask = event->attr.sample_regs_intr;
7490 
7491 			perf_output_sample_regs(handle,
7492 						data->regs_intr.regs,
7493 						mask);
7494 		}
7495 	}
7496 
7497 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7498 		perf_output_put(handle, data->phys_addr);
7499 
7500 	if (sample_type & PERF_SAMPLE_CGROUP)
7501 		perf_output_put(handle, data->cgroup);
7502 
7503 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7504 		perf_output_put(handle, data->data_page_size);
7505 
7506 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7507 		perf_output_put(handle, data->code_page_size);
7508 
7509 	if (sample_type & PERF_SAMPLE_AUX) {
7510 		perf_output_put(handle, data->aux_size);
7511 
7512 		if (data->aux_size)
7513 			perf_aux_sample_output(event, handle, data);
7514 	}
7515 
7516 	if (!event->attr.watermark) {
7517 		int wakeup_events = event->attr.wakeup_events;
7518 
7519 		if (wakeup_events) {
7520 			struct perf_buffer *rb = handle->rb;
7521 			int events = local_inc_return(&rb->events);
7522 
7523 			if (events >= wakeup_events) {
7524 				local_sub(wakeup_events, &rb->events);
7525 				local_inc(&rb->wakeup);
7526 			}
7527 		}
7528 	}
7529 }
7530 
7531 static u64 perf_virt_to_phys(u64 virt)
7532 {
7533 	u64 phys_addr = 0;
7534 
7535 	if (!virt)
7536 		return 0;
7537 
7538 	if (virt >= TASK_SIZE) {
7539 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7540 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7541 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7542 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7543 	} else {
7544 		/*
7545 		 * Walking the pages tables for user address.
7546 		 * Interrupts are disabled, so it prevents any tear down
7547 		 * of the page tables.
7548 		 * Try IRQ-safe get_user_page_fast_only first.
7549 		 * If failed, leave phys_addr as 0.
7550 		 */
7551 		if (current->mm != NULL) {
7552 			struct page *p;
7553 
7554 			pagefault_disable();
7555 			if (get_user_page_fast_only(virt, 0, &p)) {
7556 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7557 				put_page(p);
7558 			}
7559 			pagefault_enable();
7560 		}
7561 	}
7562 
7563 	return phys_addr;
7564 }
7565 
7566 /*
7567  * Return the pagetable size of a given virtual address.
7568  */
7569 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7570 {
7571 	u64 size = 0;
7572 
7573 #ifdef CONFIG_HAVE_FAST_GUP
7574 	pgd_t *pgdp, pgd;
7575 	p4d_t *p4dp, p4d;
7576 	pud_t *pudp, pud;
7577 	pmd_t *pmdp, pmd;
7578 	pte_t *ptep, pte;
7579 
7580 	pgdp = pgd_offset(mm, addr);
7581 	pgd = READ_ONCE(*pgdp);
7582 	if (pgd_none(pgd))
7583 		return 0;
7584 
7585 	if (pgd_leaf(pgd))
7586 		return pgd_leaf_size(pgd);
7587 
7588 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7589 	p4d = READ_ONCE(*p4dp);
7590 	if (!p4d_present(p4d))
7591 		return 0;
7592 
7593 	if (p4d_leaf(p4d))
7594 		return p4d_leaf_size(p4d);
7595 
7596 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7597 	pud = READ_ONCE(*pudp);
7598 	if (!pud_present(pud))
7599 		return 0;
7600 
7601 	if (pud_leaf(pud))
7602 		return pud_leaf_size(pud);
7603 
7604 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7605 again:
7606 	pmd = pmdp_get_lockless(pmdp);
7607 	if (!pmd_present(pmd))
7608 		return 0;
7609 
7610 	if (pmd_leaf(pmd))
7611 		return pmd_leaf_size(pmd);
7612 
7613 	ptep = pte_offset_map(&pmd, addr);
7614 	if (!ptep)
7615 		goto again;
7616 
7617 	pte = ptep_get_lockless(ptep);
7618 	if (pte_present(pte))
7619 		size = pte_leaf_size(pte);
7620 	pte_unmap(ptep);
7621 #endif /* CONFIG_HAVE_FAST_GUP */
7622 
7623 	return size;
7624 }
7625 
7626 static u64 perf_get_page_size(unsigned long addr)
7627 {
7628 	struct mm_struct *mm;
7629 	unsigned long flags;
7630 	u64 size;
7631 
7632 	if (!addr)
7633 		return 0;
7634 
7635 	/*
7636 	 * Software page-table walkers must disable IRQs,
7637 	 * which prevents any tear down of the page tables.
7638 	 */
7639 	local_irq_save(flags);
7640 
7641 	mm = current->mm;
7642 	if (!mm) {
7643 		/*
7644 		 * For kernel threads and the like, use init_mm so that
7645 		 * we can find kernel memory.
7646 		 */
7647 		mm = &init_mm;
7648 	}
7649 
7650 	size = perf_get_pgtable_size(mm, addr);
7651 
7652 	local_irq_restore(flags);
7653 
7654 	return size;
7655 }
7656 
7657 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7658 
7659 struct perf_callchain_entry *
7660 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7661 {
7662 	bool kernel = !event->attr.exclude_callchain_kernel;
7663 	bool user   = !event->attr.exclude_callchain_user;
7664 	/* Disallow cross-task user callchains. */
7665 	bool crosstask = event->ctx->task && event->ctx->task != current;
7666 	const u32 max_stack = event->attr.sample_max_stack;
7667 	struct perf_callchain_entry *callchain;
7668 
7669 	if (!kernel && !user)
7670 		return &__empty_callchain;
7671 
7672 	callchain = get_perf_callchain(regs, 0, kernel, user,
7673 				       max_stack, crosstask, true);
7674 	return callchain ?: &__empty_callchain;
7675 }
7676 
7677 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7678 {
7679 	return d * !!(flags & s);
7680 }
7681 
7682 void perf_prepare_sample(struct perf_sample_data *data,
7683 			 struct perf_event *event,
7684 			 struct pt_regs *regs)
7685 {
7686 	u64 sample_type = event->attr.sample_type;
7687 	u64 filtered_sample_type;
7688 
7689 	/*
7690 	 * Add the sample flags that are dependent to others.  And clear the
7691 	 * sample flags that have already been done by the PMU driver.
7692 	 */
7693 	filtered_sample_type = sample_type;
7694 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7695 					   PERF_SAMPLE_IP);
7696 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7697 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7698 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7699 					   PERF_SAMPLE_REGS_USER);
7700 	filtered_sample_type &= ~data->sample_flags;
7701 
7702 	if (filtered_sample_type == 0) {
7703 		/* Make sure it has the correct data->type for output */
7704 		data->type = event->attr.sample_type;
7705 		return;
7706 	}
7707 
7708 	__perf_event_header__init_id(data, event, filtered_sample_type);
7709 
7710 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7711 		data->ip = perf_instruction_pointer(regs);
7712 		data->sample_flags |= PERF_SAMPLE_IP;
7713 	}
7714 
7715 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7716 		perf_sample_save_callchain(data, event, regs);
7717 
7718 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7719 		data->raw = NULL;
7720 		data->dyn_size += sizeof(u64);
7721 		data->sample_flags |= PERF_SAMPLE_RAW;
7722 	}
7723 
7724 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7725 		data->br_stack = NULL;
7726 		data->dyn_size += sizeof(u64);
7727 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7728 	}
7729 
7730 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7731 		perf_sample_regs_user(&data->regs_user, regs);
7732 
7733 	/*
7734 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7735 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7736 	 * the dyn_size if it's not requested by users.
7737 	 */
7738 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7739 		/* regs dump ABI info */
7740 		int size = sizeof(u64);
7741 
7742 		if (data->regs_user.regs) {
7743 			u64 mask = event->attr.sample_regs_user;
7744 			size += hweight64(mask) * sizeof(u64);
7745 		}
7746 
7747 		data->dyn_size += size;
7748 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7749 	}
7750 
7751 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7752 		/*
7753 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7754 		 * processed as the last one or have additional check added
7755 		 * in case new sample type is added, because we could eat
7756 		 * up the rest of the sample size.
7757 		 */
7758 		u16 stack_size = event->attr.sample_stack_user;
7759 		u16 header_size = perf_sample_data_size(data, event);
7760 		u16 size = sizeof(u64);
7761 
7762 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7763 						     data->regs_user.regs);
7764 
7765 		/*
7766 		 * If there is something to dump, add space for the dump
7767 		 * itself and for the field that tells the dynamic size,
7768 		 * which is how many have been actually dumped.
7769 		 */
7770 		if (stack_size)
7771 			size += sizeof(u64) + stack_size;
7772 
7773 		data->stack_user_size = stack_size;
7774 		data->dyn_size += size;
7775 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7776 	}
7777 
7778 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7779 		data->weight.full = 0;
7780 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7781 	}
7782 
7783 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7784 		data->data_src.val = PERF_MEM_NA;
7785 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7786 	}
7787 
7788 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7789 		data->txn = 0;
7790 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7791 	}
7792 
7793 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7794 		data->addr = 0;
7795 		data->sample_flags |= PERF_SAMPLE_ADDR;
7796 	}
7797 
7798 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7799 		/* regs dump ABI info */
7800 		int size = sizeof(u64);
7801 
7802 		perf_sample_regs_intr(&data->regs_intr, regs);
7803 
7804 		if (data->regs_intr.regs) {
7805 			u64 mask = event->attr.sample_regs_intr;
7806 
7807 			size += hweight64(mask) * sizeof(u64);
7808 		}
7809 
7810 		data->dyn_size += size;
7811 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7812 	}
7813 
7814 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7815 		data->phys_addr = perf_virt_to_phys(data->addr);
7816 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7817 	}
7818 
7819 #ifdef CONFIG_CGROUP_PERF
7820 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7821 		struct cgroup *cgrp;
7822 
7823 		/* protected by RCU */
7824 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7825 		data->cgroup = cgroup_id(cgrp);
7826 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7827 	}
7828 #endif
7829 
7830 	/*
7831 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7832 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7833 	 * but the value will not dump to the userspace.
7834 	 */
7835 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7836 		data->data_page_size = perf_get_page_size(data->addr);
7837 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7838 	}
7839 
7840 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7841 		data->code_page_size = perf_get_page_size(data->ip);
7842 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7843 	}
7844 
7845 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7846 		u64 size;
7847 		u16 header_size = perf_sample_data_size(data, event);
7848 
7849 		header_size += sizeof(u64); /* size */
7850 
7851 		/*
7852 		 * Given the 16bit nature of header::size, an AUX sample can
7853 		 * easily overflow it, what with all the preceding sample bits.
7854 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7855 		 * per sample in total (rounded down to 8 byte boundary).
7856 		 */
7857 		size = min_t(size_t, U16_MAX - header_size,
7858 			     event->attr.aux_sample_size);
7859 		size = rounddown(size, 8);
7860 		size = perf_prepare_sample_aux(event, data, size);
7861 
7862 		WARN_ON_ONCE(size + header_size > U16_MAX);
7863 		data->dyn_size += size + sizeof(u64); /* size above */
7864 		data->sample_flags |= PERF_SAMPLE_AUX;
7865 	}
7866 }
7867 
7868 void perf_prepare_header(struct perf_event_header *header,
7869 			 struct perf_sample_data *data,
7870 			 struct perf_event *event,
7871 			 struct pt_regs *regs)
7872 {
7873 	header->type = PERF_RECORD_SAMPLE;
7874 	header->size = perf_sample_data_size(data, event);
7875 	header->misc = perf_misc_flags(regs);
7876 
7877 	/*
7878 	 * If you're adding more sample types here, you likely need to do
7879 	 * something about the overflowing header::size, like repurpose the
7880 	 * lowest 3 bits of size, which should be always zero at the moment.
7881 	 * This raises a more important question, do we really need 512k sized
7882 	 * samples and why, so good argumentation is in order for whatever you
7883 	 * do here next.
7884 	 */
7885 	WARN_ON_ONCE(header->size & 7);
7886 }
7887 
7888 static __always_inline int
7889 __perf_event_output(struct perf_event *event,
7890 		    struct perf_sample_data *data,
7891 		    struct pt_regs *regs,
7892 		    int (*output_begin)(struct perf_output_handle *,
7893 					struct perf_sample_data *,
7894 					struct perf_event *,
7895 					unsigned int))
7896 {
7897 	struct perf_output_handle handle;
7898 	struct perf_event_header header;
7899 	int err;
7900 
7901 	/* protect the callchain buffers */
7902 	rcu_read_lock();
7903 
7904 	perf_prepare_sample(data, event, regs);
7905 	perf_prepare_header(&header, data, event, regs);
7906 
7907 	err = output_begin(&handle, data, event, header.size);
7908 	if (err)
7909 		goto exit;
7910 
7911 	perf_output_sample(&handle, &header, data, event);
7912 
7913 	perf_output_end(&handle);
7914 
7915 exit:
7916 	rcu_read_unlock();
7917 	return err;
7918 }
7919 
7920 void
7921 perf_event_output_forward(struct perf_event *event,
7922 			 struct perf_sample_data *data,
7923 			 struct pt_regs *regs)
7924 {
7925 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7926 }
7927 
7928 void
7929 perf_event_output_backward(struct perf_event *event,
7930 			   struct perf_sample_data *data,
7931 			   struct pt_regs *regs)
7932 {
7933 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7934 }
7935 
7936 int
7937 perf_event_output(struct perf_event *event,
7938 		  struct perf_sample_data *data,
7939 		  struct pt_regs *regs)
7940 {
7941 	return __perf_event_output(event, data, regs, perf_output_begin);
7942 }
7943 
7944 /*
7945  * read event_id
7946  */
7947 
7948 struct perf_read_event {
7949 	struct perf_event_header	header;
7950 
7951 	u32				pid;
7952 	u32				tid;
7953 };
7954 
7955 static void
7956 perf_event_read_event(struct perf_event *event,
7957 			struct task_struct *task)
7958 {
7959 	struct perf_output_handle handle;
7960 	struct perf_sample_data sample;
7961 	struct perf_read_event read_event = {
7962 		.header = {
7963 			.type = PERF_RECORD_READ,
7964 			.misc = 0,
7965 			.size = sizeof(read_event) + event->read_size,
7966 		},
7967 		.pid = perf_event_pid(event, task),
7968 		.tid = perf_event_tid(event, task),
7969 	};
7970 	int ret;
7971 
7972 	perf_event_header__init_id(&read_event.header, &sample, event);
7973 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7974 	if (ret)
7975 		return;
7976 
7977 	perf_output_put(&handle, read_event);
7978 	perf_output_read(&handle, event);
7979 	perf_event__output_id_sample(event, &handle, &sample);
7980 
7981 	perf_output_end(&handle);
7982 }
7983 
7984 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7985 
7986 static void
7987 perf_iterate_ctx(struct perf_event_context *ctx,
7988 		   perf_iterate_f output,
7989 		   void *data, bool all)
7990 {
7991 	struct perf_event *event;
7992 
7993 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7994 		if (!all) {
7995 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7996 				continue;
7997 			if (!event_filter_match(event))
7998 				continue;
7999 		}
8000 
8001 		output(event, data);
8002 	}
8003 }
8004 
8005 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8006 {
8007 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8008 	struct perf_event *event;
8009 
8010 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8011 		/*
8012 		 * Skip events that are not fully formed yet; ensure that
8013 		 * if we observe event->ctx, both event and ctx will be
8014 		 * complete enough. See perf_install_in_context().
8015 		 */
8016 		if (!smp_load_acquire(&event->ctx))
8017 			continue;
8018 
8019 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8020 			continue;
8021 		if (!event_filter_match(event))
8022 			continue;
8023 		output(event, data);
8024 	}
8025 }
8026 
8027 /*
8028  * Iterate all events that need to receive side-band events.
8029  *
8030  * For new callers; ensure that account_pmu_sb_event() includes
8031  * your event, otherwise it might not get delivered.
8032  */
8033 static void
8034 perf_iterate_sb(perf_iterate_f output, void *data,
8035 	       struct perf_event_context *task_ctx)
8036 {
8037 	struct perf_event_context *ctx;
8038 
8039 	rcu_read_lock();
8040 	preempt_disable();
8041 
8042 	/*
8043 	 * If we have task_ctx != NULL we only notify the task context itself.
8044 	 * The task_ctx is set only for EXIT events before releasing task
8045 	 * context.
8046 	 */
8047 	if (task_ctx) {
8048 		perf_iterate_ctx(task_ctx, output, data, false);
8049 		goto done;
8050 	}
8051 
8052 	perf_iterate_sb_cpu(output, data);
8053 
8054 	ctx = rcu_dereference(current->perf_event_ctxp);
8055 	if (ctx)
8056 		perf_iterate_ctx(ctx, output, data, false);
8057 done:
8058 	preempt_enable();
8059 	rcu_read_unlock();
8060 }
8061 
8062 /*
8063  * Clear all file-based filters at exec, they'll have to be
8064  * re-instated when/if these objects are mmapped again.
8065  */
8066 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8067 {
8068 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8069 	struct perf_addr_filter *filter;
8070 	unsigned int restart = 0, count = 0;
8071 	unsigned long flags;
8072 
8073 	if (!has_addr_filter(event))
8074 		return;
8075 
8076 	raw_spin_lock_irqsave(&ifh->lock, flags);
8077 	list_for_each_entry(filter, &ifh->list, entry) {
8078 		if (filter->path.dentry) {
8079 			event->addr_filter_ranges[count].start = 0;
8080 			event->addr_filter_ranges[count].size = 0;
8081 			restart++;
8082 		}
8083 
8084 		count++;
8085 	}
8086 
8087 	if (restart)
8088 		event->addr_filters_gen++;
8089 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8090 
8091 	if (restart)
8092 		perf_event_stop(event, 1);
8093 }
8094 
8095 void perf_event_exec(void)
8096 {
8097 	struct perf_event_context *ctx;
8098 
8099 	ctx = perf_pin_task_context(current);
8100 	if (!ctx)
8101 		return;
8102 
8103 	perf_event_enable_on_exec(ctx);
8104 	perf_event_remove_on_exec(ctx);
8105 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8106 
8107 	perf_unpin_context(ctx);
8108 	put_ctx(ctx);
8109 }
8110 
8111 struct remote_output {
8112 	struct perf_buffer	*rb;
8113 	int			err;
8114 };
8115 
8116 static void __perf_event_output_stop(struct perf_event *event, void *data)
8117 {
8118 	struct perf_event *parent = event->parent;
8119 	struct remote_output *ro = data;
8120 	struct perf_buffer *rb = ro->rb;
8121 	struct stop_event_data sd = {
8122 		.event	= event,
8123 	};
8124 
8125 	if (!has_aux(event))
8126 		return;
8127 
8128 	if (!parent)
8129 		parent = event;
8130 
8131 	/*
8132 	 * In case of inheritance, it will be the parent that links to the
8133 	 * ring-buffer, but it will be the child that's actually using it.
8134 	 *
8135 	 * We are using event::rb to determine if the event should be stopped,
8136 	 * however this may race with ring_buffer_attach() (through set_output),
8137 	 * which will make us skip the event that actually needs to be stopped.
8138 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8139 	 * its rb pointer.
8140 	 */
8141 	if (rcu_dereference(parent->rb) == rb)
8142 		ro->err = __perf_event_stop(&sd);
8143 }
8144 
8145 static int __perf_pmu_output_stop(void *info)
8146 {
8147 	struct perf_event *event = info;
8148 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8149 	struct remote_output ro = {
8150 		.rb	= event->rb,
8151 	};
8152 
8153 	rcu_read_lock();
8154 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8155 	if (cpuctx->task_ctx)
8156 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8157 				   &ro, false);
8158 	rcu_read_unlock();
8159 
8160 	return ro.err;
8161 }
8162 
8163 static void perf_pmu_output_stop(struct perf_event *event)
8164 {
8165 	struct perf_event *iter;
8166 	int err, cpu;
8167 
8168 restart:
8169 	rcu_read_lock();
8170 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8171 		/*
8172 		 * For per-CPU events, we need to make sure that neither they
8173 		 * nor their children are running; for cpu==-1 events it's
8174 		 * sufficient to stop the event itself if it's active, since
8175 		 * it can't have children.
8176 		 */
8177 		cpu = iter->cpu;
8178 		if (cpu == -1)
8179 			cpu = READ_ONCE(iter->oncpu);
8180 
8181 		if (cpu == -1)
8182 			continue;
8183 
8184 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8185 		if (err == -EAGAIN) {
8186 			rcu_read_unlock();
8187 			goto restart;
8188 		}
8189 	}
8190 	rcu_read_unlock();
8191 }
8192 
8193 /*
8194  * task tracking -- fork/exit
8195  *
8196  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8197  */
8198 
8199 struct perf_task_event {
8200 	struct task_struct		*task;
8201 	struct perf_event_context	*task_ctx;
8202 
8203 	struct {
8204 		struct perf_event_header	header;
8205 
8206 		u32				pid;
8207 		u32				ppid;
8208 		u32				tid;
8209 		u32				ptid;
8210 		u64				time;
8211 	} event_id;
8212 };
8213 
8214 static int perf_event_task_match(struct perf_event *event)
8215 {
8216 	return event->attr.comm  || event->attr.mmap ||
8217 	       event->attr.mmap2 || event->attr.mmap_data ||
8218 	       event->attr.task;
8219 }
8220 
8221 static void perf_event_task_output(struct perf_event *event,
8222 				   void *data)
8223 {
8224 	struct perf_task_event *task_event = data;
8225 	struct perf_output_handle handle;
8226 	struct perf_sample_data	sample;
8227 	struct task_struct *task = task_event->task;
8228 	int ret, size = task_event->event_id.header.size;
8229 
8230 	if (!perf_event_task_match(event))
8231 		return;
8232 
8233 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8234 
8235 	ret = perf_output_begin(&handle, &sample, event,
8236 				task_event->event_id.header.size);
8237 	if (ret)
8238 		goto out;
8239 
8240 	task_event->event_id.pid = perf_event_pid(event, task);
8241 	task_event->event_id.tid = perf_event_tid(event, task);
8242 
8243 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8244 		task_event->event_id.ppid = perf_event_pid(event,
8245 							task->real_parent);
8246 		task_event->event_id.ptid = perf_event_pid(event,
8247 							task->real_parent);
8248 	} else {  /* PERF_RECORD_FORK */
8249 		task_event->event_id.ppid = perf_event_pid(event, current);
8250 		task_event->event_id.ptid = perf_event_tid(event, current);
8251 	}
8252 
8253 	task_event->event_id.time = perf_event_clock(event);
8254 
8255 	perf_output_put(&handle, task_event->event_id);
8256 
8257 	perf_event__output_id_sample(event, &handle, &sample);
8258 
8259 	perf_output_end(&handle);
8260 out:
8261 	task_event->event_id.header.size = size;
8262 }
8263 
8264 static void perf_event_task(struct task_struct *task,
8265 			      struct perf_event_context *task_ctx,
8266 			      int new)
8267 {
8268 	struct perf_task_event task_event;
8269 
8270 	if (!atomic_read(&nr_comm_events) &&
8271 	    !atomic_read(&nr_mmap_events) &&
8272 	    !atomic_read(&nr_task_events))
8273 		return;
8274 
8275 	task_event = (struct perf_task_event){
8276 		.task	  = task,
8277 		.task_ctx = task_ctx,
8278 		.event_id    = {
8279 			.header = {
8280 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8281 				.misc = 0,
8282 				.size = sizeof(task_event.event_id),
8283 			},
8284 			/* .pid  */
8285 			/* .ppid */
8286 			/* .tid  */
8287 			/* .ptid */
8288 			/* .time */
8289 		},
8290 	};
8291 
8292 	perf_iterate_sb(perf_event_task_output,
8293 		       &task_event,
8294 		       task_ctx);
8295 }
8296 
8297 void perf_event_fork(struct task_struct *task)
8298 {
8299 	perf_event_task(task, NULL, 1);
8300 	perf_event_namespaces(task);
8301 }
8302 
8303 /*
8304  * comm tracking
8305  */
8306 
8307 struct perf_comm_event {
8308 	struct task_struct	*task;
8309 	char			*comm;
8310 	int			comm_size;
8311 
8312 	struct {
8313 		struct perf_event_header	header;
8314 
8315 		u32				pid;
8316 		u32				tid;
8317 	} event_id;
8318 };
8319 
8320 static int perf_event_comm_match(struct perf_event *event)
8321 {
8322 	return event->attr.comm;
8323 }
8324 
8325 static void perf_event_comm_output(struct perf_event *event,
8326 				   void *data)
8327 {
8328 	struct perf_comm_event *comm_event = data;
8329 	struct perf_output_handle handle;
8330 	struct perf_sample_data sample;
8331 	int size = comm_event->event_id.header.size;
8332 	int ret;
8333 
8334 	if (!perf_event_comm_match(event))
8335 		return;
8336 
8337 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8338 	ret = perf_output_begin(&handle, &sample, event,
8339 				comm_event->event_id.header.size);
8340 
8341 	if (ret)
8342 		goto out;
8343 
8344 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8345 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8346 
8347 	perf_output_put(&handle, comm_event->event_id);
8348 	__output_copy(&handle, comm_event->comm,
8349 				   comm_event->comm_size);
8350 
8351 	perf_event__output_id_sample(event, &handle, &sample);
8352 
8353 	perf_output_end(&handle);
8354 out:
8355 	comm_event->event_id.header.size = size;
8356 }
8357 
8358 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8359 {
8360 	char comm[TASK_COMM_LEN];
8361 	unsigned int size;
8362 
8363 	memset(comm, 0, sizeof(comm));
8364 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8365 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8366 
8367 	comm_event->comm = comm;
8368 	comm_event->comm_size = size;
8369 
8370 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8371 
8372 	perf_iterate_sb(perf_event_comm_output,
8373 		       comm_event,
8374 		       NULL);
8375 }
8376 
8377 void perf_event_comm(struct task_struct *task, bool exec)
8378 {
8379 	struct perf_comm_event comm_event;
8380 
8381 	if (!atomic_read(&nr_comm_events))
8382 		return;
8383 
8384 	comm_event = (struct perf_comm_event){
8385 		.task	= task,
8386 		/* .comm      */
8387 		/* .comm_size */
8388 		.event_id  = {
8389 			.header = {
8390 				.type = PERF_RECORD_COMM,
8391 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8392 				/* .size */
8393 			},
8394 			/* .pid */
8395 			/* .tid */
8396 		},
8397 	};
8398 
8399 	perf_event_comm_event(&comm_event);
8400 }
8401 
8402 /*
8403  * namespaces tracking
8404  */
8405 
8406 struct perf_namespaces_event {
8407 	struct task_struct		*task;
8408 
8409 	struct {
8410 		struct perf_event_header	header;
8411 
8412 		u32				pid;
8413 		u32				tid;
8414 		u64				nr_namespaces;
8415 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8416 	} event_id;
8417 };
8418 
8419 static int perf_event_namespaces_match(struct perf_event *event)
8420 {
8421 	return event->attr.namespaces;
8422 }
8423 
8424 static void perf_event_namespaces_output(struct perf_event *event,
8425 					 void *data)
8426 {
8427 	struct perf_namespaces_event *namespaces_event = data;
8428 	struct perf_output_handle handle;
8429 	struct perf_sample_data sample;
8430 	u16 header_size = namespaces_event->event_id.header.size;
8431 	int ret;
8432 
8433 	if (!perf_event_namespaces_match(event))
8434 		return;
8435 
8436 	perf_event_header__init_id(&namespaces_event->event_id.header,
8437 				   &sample, event);
8438 	ret = perf_output_begin(&handle, &sample, event,
8439 				namespaces_event->event_id.header.size);
8440 	if (ret)
8441 		goto out;
8442 
8443 	namespaces_event->event_id.pid = perf_event_pid(event,
8444 							namespaces_event->task);
8445 	namespaces_event->event_id.tid = perf_event_tid(event,
8446 							namespaces_event->task);
8447 
8448 	perf_output_put(&handle, namespaces_event->event_id);
8449 
8450 	perf_event__output_id_sample(event, &handle, &sample);
8451 
8452 	perf_output_end(&handle);
8453 out:
8454 	namespaces_event->event_id.header.size = header_size;
8455 }
8456 
8457 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8458 				   struct task_struct *task,
8459 				   const struct proc_ns_operations *ns_ops)
8460 {
8461 	struct path ns_path;
8462 	struct inode *ns_inode;
8463 	int error;
8464 
8465 	error = ns_get_path(&ns_path, task, ns_ops);
8466 	if (!error) {
8467 		ns_inode = ns_path.dentry->d_inode;
8468 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8469 		ns_link_info->ino = ns_inode->i_ino;
8470 		path_put(&ns_path);
8471 	}
8472 }
8473 
8474 void perf_event_namespaces(struct task_struct *task)
8475 {
8476 	struct perf_namespaces_event namespaces_event;
8477 	struct perf_ns_link_info *ns_link_info;
8478 
8479 	if (!atomic_read(&nr_namespaces_events))
8480 		return;
8481 
8482 	namespaces_event = (struct perf_namespaces_event){
8483 		.task	= task,
8484 		.event_id  = {
8485 			.header = {
8486 				.type = PERF_RECORD_NAMESPACES,
8487 				.misc = 0,
8488 				.size = sizeof(namespaces_event.event_id),
8489 			},
8490 			/* .pid */
8491 			/* .tid */
8492 			.nr_namespaces = NR_NAMESPACES,
8493 			/* .link_info[NR_NAMESPACES] */
8494 		},
8495 	};
8496 
8497 	ns_link_info = namespaces_event.event_id.link_info;
8498 
8499 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8500 			       task, &mntns_operations);
8501 
8502 #ifdef CONFIG_USER_NS
8503 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8504 			       task, &userns_operations);
8505 #endif
8506 #ifdef CONFIG_NET_NS
8507 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8508 			       task, &netns_operations);
8509 #endif
8510 #ifdef CONFIG_UTS_NS
8511 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8512 			       task, &utsns_operations);
8513 #endif
8514 #ifdef CONFIG_IPC_NS
8515 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8516 			       task, &ipcns_operations);
8517 #endif
8518 #ifdef CONFIG_PID_NS
8519 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8520 			       task, &pidns_operations);
8521 #endif
8522 #ifdef CONFIG_CGROUPS
8523 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8524 			       task, &cgroupns_operations);
8525 #endif
8526 
8527 	perf_iterate_sb(perf_event_namespaces_output,
8528 			&namespaces_event,
8529 			NULL);
8530 }
8531 
8532 /*
8533  * cgroup tracking
8534  */
8535 #ifdef CONFIG_CGROUP_PERF
8536 
8537 struct perf_cgroup_event {
8538 	char				*path;
8539 	int				path_size;
8540 	struct {
8541 		struct perf_event_header	header;
8542 		u64				id;
8543 		char				path[];
8544 	} event_id;
8545 };
8546 
8547 static int perf_event_cgroup_match(struct perf_event *event)
8548 {
8549 	return event->attr.cgroup;
8550 }
8551 
8552 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8553 {
8554 	struct perf_cgroup_event *cgroup_event = data;
8555 	struct perf_output_handle handle;
8556 	struct perf_sample_data sample;
8557 	u16 header_size = cgroup_event->event_id.header.size;
8558 	int ret;
8559 
8560 	if (!perf_event_cgroup_match(event))
8561 		return;
8562 
8563 	perf_event_header__init_id(&cgroup_event->event_id.header,
8564 				   &sample, event);
8565 	ret = perf_output_begin(&handle, &sample, event,
8566 				cgroup_event->event_id.header.size);
8567 	if (ret)
8568 		goto out;
8569 
8570 	perf_output_put(&handle, cgroup_event->event_id);
8571 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8572 
8573 	perf_event__output_id_sample(event, &handle, &sample);
8574 
8575 	perf_output_end(&handle);
8576 out:
8577 	cgroup_event->event_id.header.size = header_size;
8578 }
8579 
8580 static void perf_event_cgroup(struct cgroup *cgrp)
8581 {
8582 	struct perf_cgroup_event cgroup_event;
8583 	char path_enomem[16] = "//enomem";
8584 	char *pathname;
8585 	size_t size;
8586 
8587 	if (!atomic_read(&nr_cgroup_events))
8588 		return;
8589 
8590 	cgroup_event = (struct perf_cgroup_event){
8591 		.event_id  = {
8592 			.header = {
8593 				.type = PERF_RECORD_CGROUP,
8594 				.misc = 0,
8595 				.size = sizeof(cgroup_event.event_id),
8596 			},
8597 			.id = cgroup_id(cgrp),
8598 		},
8599 	};
8600 
8601 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8602 	if (pathname == NULL) {
8603 		cgroup_event.path = path_enomem;
8604 	} else {
8605 		/* just to be sure to have enough space for alignment */
8606 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8607 		cgroup_event.path = pathname;
8608 	}
8609 
8610 	/*
8611 	 * Since our buffer works in 8 byte units we need to align our string
8612 	 * size to a multiple of 8. However, we must guarantee the tail end is
8613 	 * zero'd out to avoid leaking random bits to userspace.
8614 	 */
8615 	size = strlen(cgroup_event.path) + 1;
8616 	while (!IS_ALIGNED(size, sizeof(u64)))
8617 		cgroup_event.path[size++] = '\0';
8618 
8619 	cgroup_event.event_id.header.size += size;
8620 	cgroup_event.path_size = size;
8621 
8622 	perf_iterate_sb(perf_event_cgroup_output,
8623 			&cgroup_event,
8624 			NULL);
8625 
8626 	kfree(pathname);
8627 }
8628 
8629 #endif
8630 
8631 /*
8632  * mmap tracking
8633  */
8634 
8635 struct perf_mmap_event {
8636 	struct vm_area_struct	*vma;
8637 
8638 	const char		*file_name;
8639 	int			file_size;
8640 	int			maj, min;
8641 	u64			ino;
8642 	u64			ino_generation;
8643 	u32			prot, flags;
8644 	u8			build_id[BUILD_ID_SIZE_MAX];
8645 	u32			build_id_size;
8646 
8647 	struct {
8648 		struct perf_event_header	header;
8649 
8650 		u32				pid;
8651 		u32				tid;
8652 		u64				start;
8653 		u64				len;
8654 		u64				pgoff;
8655 	} event_id;
8656 };
8657 
8658 static int perf_event_mmap_match(struct perf_event *event,
8659 				 void *data)
8660 {
8661 	struct perf_mmap_event *mmap_event = data;
8662 	struct vm_area_struct *vma = mmap_event->vma;
8663 	int executable = vma->vm_flags & VM_EXEC;
8664 
8665 	return (!executable && event->attr.mmap_data) ||
8666 	       (executable && (event->attr.mmap || event->attr.mmap2));
8667 }
8668 
8669 static void perf_event_mmap_output(struct perf_event *event,
8670 				   void *data)
8671 {
8672 	struct perf_mmap_event *mmap_event = data;
8673 	struct perf_output_handle handle;
8674 	struct perf_sample_data sample;
8675 	int size = mmap_event->event_id.header.size;
8676 	u32 type = mmap_event->event_id.header.type;
8677 	bool use_build_id;
8678 	int ret;
8679 
8680 	if (!perf_event_mmap_match(event, data))
8681 		return;
8682 
8683 	if (event->attr.mmap2) {
8684 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8685 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8686 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8687 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8688 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8689 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8690 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8691 	}
8692 
8693 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8694 	ret = perf_output_begin(&handle, &sample, event,
8695 				mmap_event->event_id.header.size);
8696 	if (ret)
8697 		goto out;
8698 
8699 	mmap_event->event_id.pid = perf_event_pid(event, current);
8700 	mmap_event->event_id.tid = perf_event_tid(event, current);
8701 
8702 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8703 
8704 	if (event->attr.mmap2 && use_build_id)
8705 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8706 
8707 	perf_output_put(&handle, mmap_event->event_id);
8708 
8709 	if (event->attr.mmap2) {
8710 		if (use_build_id) {
8711 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8712 
8713 			__output_copy(&handle, size, 4);
8714 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8715 		} else {
8716 			perf_output_put(&handle, mmap_event->maj);
8717 			perf_output_put(&handle, mmap_event->min);
8718 			perf_output_put(&handle, mmap_event->ino);
8719 			perf_output_put(&handle, mmap_event->ino_generation);
8720 		}
8721 		perf_output_put(&handle, mmap_event->prot);
8722 		perf_output_put(&handle, mmap_event->flags);
8723 	}
8724 
8725 	__output_copy(&handle, mmap_event->file_name,
8726 				   mmap_event->file_size);
8727 
8728 	perf_event__output_id_sample(event, &handle, &sample);
8729 
8730 	perf_output_end(&handle);
8731 out:
8732 	mmap_event->event_id.header.size = size;
8733 	mmap_event->event_id.header.type = type;
8734 }
8735 
8736 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8737 {
8738 	struct vm_area_struct *vma = mmap_event->vma;
8739 	struct file *file = vma->vm_file;
8740 	int maj = 0, min = 0;
8741 	u64 ino = 0, gen = 0;
8742 	u32 prot = 0, flags = 0;
8743 	unsigned int size;
8744 	char tmp[16];
8745 	char *buf = NULL;
8746 	char *name = NULL;
8747 
8748 	if (vma->vm_flags & VM_READ)
8749 		prot |= PROT_READ;
8750 	if (vma->vm_flags & VM_WRITE)
8751 		prot |= PROT_WRITE;
8752 	if (vma->vm_flags & VM_EXEC)
8753 		prot |= PROT_EXEC;
8754 
8755 	if (vma->vm_flags & VM_MAYSHARE)
8756 		flags = MAP_SHARED;
8757 	else
8758 		flags = MAP_PRIVATE;
8759 
8760 	if (vma->vm_flags & VM_LOCKED)
8761 		flags |= MAP_LOCKED;
8762 	if (is_vm_hugetlb_page(vma))
8763 		flags |= MAP_HUGETLB;
8764 
8765 	if (file) {
8766 		struct inode *inode;
8767 		dev_t dev;
8768 
8769 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8770 		if (!buf) {
8771 			name = "//enomem";
8772 			goto cpy_name;
8773 		}
8774 		/*
8775 		 * d_path() works from the end of the rb backwards, so we
8776 		 * need to add enough zero bytes after the string to handle
8777 		 * the 64bit alignment we do later.
8778 		 */
8779 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8780 		if (IS_ERR(name)) {
8781 			name = "//toolong";
8782 			goto cpy_name;
8783 		}
8784 		inode = file_inode(vma->vm_file);
8785 		dev = inode->i_sb->s_dev;
8786 		ino = inode->i_ino;
8787 		gen = inode->i_generation;
8788 		maj = MAJOR(dev);
8789 		min = MINOR(dev);
8790 
8791 		goto got_name;
8792 	} else {
8793 		if (vma->vm_ops && vma->vm_ops->name)
8794 			name = (char *) vma->vm_ops->name(vma);
8795 		if (!name)
8796 			name = (char *)arch_vma_name(vma);
8797 		if (!name) {
8798 			if (vma_is_initial_heap(vma))
8799 				name = "[heap]";
8800 			else if (vma_is_initial_stack(vma))
8801 				name = "[stack]";
8802 			else
8803 				name = "//anon";
8804 		}
8805 	}
8806 
8807 cpy_name:
8808 	strscpy(tmp, name, sizeof(tmp));
8809 	name = tmp;
8810 got_name:
8811 	/*
8812 	 * Since our buffer works in 8 byte units we need to align our string
8813 	 * size to a multiple of 8. However, we must guarantee the tail end is
8814 	 * zero'd out to avoid leaking random bits to userspace.
8815 	 */
8816 	size = strlen(name)+1;
8817 	while (!IS_ALIGNED(size, sizeof(u64)))
8818 		name[size++] = '\0';
8819 
8820 	mmap_event->file_name = name;
8821 	mmap_event->file_size = size;
8822 	mmap_event->maj = maj;
8823 	mmap_event->min = min;
8824 	mmap_event->ino = ino;
8825 	mmap_event->ino_generation = gen;
8826 	mmap_event->prot = prot;
8827 	mmap_event->flags = flags;
8828 
8829 	if (!(vma->vm_flags & VM_EXEC))
8830 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8831 
8832 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8833 
8834 	if (atomic_read(&nr_build_id_events))
8835 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8836 
8837 	perf_iterate_sb(perf_event_mmap_output,
8838 		       mmap_event,
8839 		       NULL);
8840 
8841 	kfree(buf);
8842 }
8843 
8844 /*
8845  * Check whether inode and address range match filter criteria.
8846  */
8847 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8848 				     struct file *file, unsigned long offset,
8849 				     unsigned long size)
8850 {
8851 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8852 	if (!filter->path.dentry)
8853 		return false;
8854 
8855 	if (d_inode(filter->path.dentry) != file_inode(file))
8856 		return false;
8857 
8858 	if (filter->offset > offset + size)
8859 		return false;
8860 
8861 	if (filter->offset + filter->size < offset)
8862 		return false;
8863 
8864 	return true;
8865 }
8866 
8867 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8868 					struct vm_area_struct *vma,
8869 					struct perf_addr_filter_range *fr)
8870 {
8871 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8872 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8873 	struct file *file = vma->vm_file;
8874 
8875 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8876 		return false;
8877 
8878 	if (filter->offset < off) {
8879 		fr->start = vma->vm_start;
8880 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8881 	} else {
8882 		fr->start = vma->vm_start + filter->offset - off;
8883 		fr->size = min(vma->vm_end - fr->start, filter->size);
8884 	}
8885 
8886 	return true;
8887 }
8888 
8889 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8890 {
8891 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8892 	struct vm_area_struct *vma = data;
8893 	struct perf_addr_filter *filter;
8894 	unsigned int restart = 0, count = 0;
8895 	unsigned long flags;
8896 
8897 	if (!has_addr_filter(event))
8898 		return;
8899 
8900 	if (!vma->vm_file)
8901 		return;
8902 
8903 	raw_spin_lock_irqsave(&ifh->lock, flags);
8904 	list_for_each_entry(filter, &ifh->list, entry) {
8905 		if (perf_addr_filter_vma_adjust(filter, vma,
8906 						&event->addr_filter_ranges[count]))
8907 			restart++;
8908 
8909 		count++;
8910 	}
8911 
8912 	if (restart)
8913 		event->addr_filters_gen++;
8914 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8915 
8916 	if (restart)
8917 		perf_event_stop(event, 1);
8918 }
8919 
8920 /*
8921  * Adjust all task's events' filters to the new vma
8922  */
8923 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8924 {
8925 	struct perf_event_context *ctx;
8926 
8927 	/*
8928 	 * Data tracing isn't supported yet and as such there is no need
8929 	 * to keep track of anything that isn't related to executable code:
8930 	 */
8931 	if (!(vma->vm_flags & VM_EXEC))
8932 		return;
8933 
8934 	rcu_read_lock();
8935 	ctx = rcu_dereference(current->perf_event_ctxp);
8936 	if (ctx)
8937 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8938 	rcu_read_unlock();
8939 }
8940 
8941 void perf_event_mmap(struct vm_area_struct *vma)
8942 {
8943 	struct perf_mmap_event mmap_event;
8944 
8945 	if (!atomic_read(&nr_mmap_events))
8946 		return;
8947 
8948 	mmap_event = (struct perf_mmap_event){
8949 		.vma	= vma,
8950 		/* .file_name */
8951 		/* .file_size */
8952 		.event_id  = {
8953 			.header = {
8954 				.type = PERF_RECORD_MMAP,
8955 				.misc = PERF_RECORD_MISC_USER,
8956 				/* .size */
8957 			},
8958 			/* .pid */
8959 			/* .tid */
8960 			.start  = vma->vm_start,
8961 			.len    = vma->vm_end - vma->vm_start,
8962 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8963 		},
8964 		/* .maj (attr_mmap2 only) */
8965 		/* .min (attr_mmap2 only) */
8966 		/* .ino (attr_mmap2 only) */
8967 		/* .ino_generation (attr_mmap2 only) */
8968 		/* .prot (attr_mmap2 only) */
8969 		/* .flags (attr_mmap2 only) */
8970 	};
8971 
8972 	perf_addr_filters_adjust(vma);
8973 	perf_event_mmap_event(&mmap_event);
8974 }
8975 
8976 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8977 			  unsigned long size, u64 flags)
8978 {
8979 	struct perf_output_handle handle;
8980 	struct perf_sample_data sample;
8981 	struct perf_aux_event {
8982 		struct perf_event_header	header;
8983 		u64				offset;
8984 		u64				size;
8985 		u64				flags;
8986 	} rec = {
8987 		.header = {
8988 			.type = PERF_RECORD_AUX,
8989 			.misc = 0,
8990 			.size = sizeof(rec),
8991 		},
8992 		.offset		= head,
8993 		.size		= size,
8994 		.flags		= flags,
8995 	};
8996 	int ret;
8997 
8998 	perf_event_header__init_id(&rec.header, &sample, event);
8999 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9000 
9001 	if (ret)
9002 		return;
9003 
9004 	perf_output_put(&handle, rec);
9005 	perf_event__output_id_sample(event, &handle, &sample);
9006 
9007 	perf_output_end(&handle);
9008 }
9009 
9010 /*
9011  * Lost/dropped samples logging
9012  */
9013 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9014 {
9015 	struct perf_output_handle handle;
9016 	struct perf_sample_data sample;
9017 	int ret;
9018 
9019 	struct {
9020 		struct perf_event_header	header;
9021 		u64				lost;
9022 	} lost_samples_event = {
9023 		.header = {
9024 			.type = PERF_RECORD_LOST_SAMPLES,
9025 			.misc = 0,
9026 			.size = sizeof(lost_samples_event),
9027 		},
9028 		.lost		= lost,
9029 	};
9030 
9031 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9032 
9033 	ret = perf_output_begin(&handle, &sample, event,
9034 				lost_samples_event.header.size);
9035 	if (ret)
9036 		return;
9037 
9038 	perf_output_put(&handle, lost_samples_event);
9039 	perf_event__output_id_sample(event, &handle, &sample);
9040 	perf_output_end(&handle);
9041 }
9042 
9043 /*
9044  * context_switch tracking
9045  */
9046 
9047 struct perf_switch_event {
9048 	struct task_struct	*task;
9049 	struct task_struct	*next_prev;
9050 
9051 	struct {
9052 		struct perf_event_header	header;
9053 		u32				next_prev_pid;
9054 		u32				next_prev_tid;
9055 	} event_id;
9056 };
9057 
9058 static int perf_event_switch_match(struct perf_event *event)
9059 {
9060 	return event->attr.context_switch;
9061 }
9062 
9063 static void perf_event_switch_output(struct perf_event *event, void *data)
9064 {
9065 	struct perf_switch_event *se = data;
9066 	struct perf_output_handle handle;
9067 	struct perf_sample_data sample;
9068 	int ret;
9069 
9070 	if (!perf_event_switch_match(event))
9071 		return;
9072 
9073 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9074 	if (event->ctx->task) {
9075 		se->event_id.header.type = PERF_RECORD_SWITCH;
9076 		se->event_id.header.size = sizeof(se->event_id.header);
9077 	} else {
9078 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9079 		se->event_id.header.size = sizeof(se->event_id);
9080 		se->event_id.next_prev_pid =
9081 					perf_event_pid(event, se->next_prev);
9082 		se->event_id.next_prev_tid =
9083 					perf_event_tid(event, se->next_prev);
9084 	}
9085 
9086 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9087 
9088 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9089 	if (ret)
9090 		return;
9091 
9092 	if (event->ctx->task)
9093 		perf_output_put(&handle, se->event_id.header);
9094 	else
9095 		perf_output_put(&handle, se->event_id);
9096 
9097 	perf_event__output_id_sample(event, &handle, &sample);
9098 
9099 	perf_output_end(&handle);
9100 }
9101 
9102 static void perf_event_switch(struct task_struct *task,
9103 			      struct task_struct *next_prev, bool sched_in)
9104 {
9105 	struct perf_switch_event switch_event;
9106 
9107 	/* N.B. caller checks nr_switch_events != 0 */
9108 
9109 	switch_event = (struct perf_switch_event){
9110 		.task		= task,
9111 		.next_prev	= next_prev,
9112 		.event_id	= {
9113 			.header = {
9114 				/* .type */
9115 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9116 				/* .size */
9117 			},
9118 			/* .next_prev_pid */
9119 			/* .next_prev_tid */
9120 		},
9121 	};
9122 
9123 	if (!sched_in && task->on_rq) {
9124 		switch_event.event_id.header.misc |=
9125 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9126 	}
9127 
9128 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9129 }
9130 
9131 /*
9132  * IRQ throttle logging
9133  */
9134 
9135 static void perf_log_throttle(struct perf_event *event, int enable)
9136 {
9137 	struct perf_output_handle handle;
9138 	struct perf_sample_data sample;
9139 	int ret;
9140 
9141 	struct {
9142 		struct perf_event_header	header;
9143 		u64				time;
9144 		u64				id;
9145 		u64				stream_id;
9146 	} throttle_event = {
9147 		.header = {
9148 			.type = PERF_RECORD_THROTTLE,
9149 			.misc = 0,
9150 			.size = sizeof(throttle_event),
9151 		},
9152 		.time		= perf_event_clock(event),
9153 		.id		= primary_event_id(event),
9154 		.stream_id	= event->id,
9155 	};
9156 
9157 	if (enable)
9158 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9159 
9160 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9161 
9162 	ret = perf_output_begin(&handle, &sample, event,
9163 				throttle_event.header.size);
9164 	if (ret)
9165 		return;
9166 
9167 	perf_output_put(&handle, throttle_event);
9168 	perf_event__output_id_sample(event, &handle, &sample);
9169 	perf_output_end(&handle);
9170 }
9171 
9172 /*
9173  * ksymbol register/unregister tracking
9174  */
9175 
9176 struct perf_ksymbol_event {
9177 	const char	*name;
9178 	int		name_len;
9179 	struct {
9180 		struct perf_event_header        header;
9181 		u64				addr;
9182 		u32				len;
9183 		u16				ksym_type;
9184 		u16				flags;
9185 	} event_id;
9186 };
9187 
9188 static int perf_event_ksymbol_match(struct perf_event *event)
9189 {
9190 	return event->attr.ksymbol;
9191 }
9192 
9193 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9194 {
9195 	struct perf_ksymbol_event *ksymbol_event = data;
9196 	struct perf_output_handle handle;
9197 	struct perf_sample_data sample;
9198 	int ret;
9199 
9200 	if (!perf_event_ksymbol_match(event))
9201 		return;
9202 
9203 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9204 				   &sample, event);
9205 	ret = perf_output_begin(&handle, &sample, event,
9206 				ksymbol_event->event_id.header.size);
9207 	if (ret)
9208 		return;
9209 
9210 	perf_output_put(&handle, ksymbol_event->event_id);
9211 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9212 	perf_event__output_id_sample(event, &handle, &sample);
9213 
9214 	perf_output_end(&handle);
9215 }
9216 
9217 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9218 			const char *sym)
9219 {
9220 	struct perf_ksymbol_event ksymbol_event;
9221 	char name[KSYM_NAME_LEN];
9222 	u16 flags = 0;
9223 	int name_len;
9224 
9225 	if (!atomic_read(&nr_ksymbol_events))
9226 		return;
9227 
9228 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9229 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9230 		goto err;
9231 
9232 	strscpy(name, sym, KSYM_NAME_LEN);
9233 	name_len = strlen(name) + 1;
9234 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9235 		name[name_len++] = '\0';
9236 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9237 
9238 	if (unregister)
9239 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9240 
9241 	ksymbol_event = (struct perf_ksymbol_event){
9242 		.name = name,
9243 		.name_len = name_len,
9244 		.event_id = {
9245 			.header = {
9246 				.type = PERF_RECORD_KSYMBOL,
9247 				.size = sizeof(ksymbol_event.event_id) +
9248 					name_len,
9249 			},
9250 			.addr = addr,
9251 			.len = len,
9252 			.ksym_type = ksym_type,
9253 			.flags = flags,
9254 		},
9255 	};
9256 
9257 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9258 	return;
9259 err:
9260 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9261 }
9262 
9263 /*
9264  * bpf program load/unload tracking
9265  */
9266 
9267 struct perf_bpf_event {
9268 	struct bpf_prog	*prog;
9269 	struct {
9270 		struct perf_event_header        header;
9271 		u16				type;
9272 		u16				flags;
9273 		u32				id;
9274 		u8				tag[BPF_TAG_SIZE];
9275 	} event_id;
9276 };
9277 
9278 static int perf_event_bpf_match(struct perf_event *event)
9279 {
9280 	return event->attr.bpf_event;
9281 }
9282 
9283 static void perf_event_bpf_output(struct perf_event *event, void *data)
9284 {
9285 	struct perf_bpf_event *bpf_event = data;
9286 	struct perf_output_handle handle;
9287 	struct perf_sample_data sample;
9288 	int ret;
9289 
9290 	if (!perf_event_bpf_match(event))
9291 		return;
9292 
9293 	perf_event_header__init_id(&bpf_event->event_id.header,
9294 				   &sample, event);
9295 	ret = perf_output_begin(&handle, &sample, event,
9296 				bpf_event->event_id.header.size);
9297 	if (ret)
9298 		return;
9299 
9300 	perf_output_put(&handle, bpf_event->event_id);
9301 	perf_event__output_id_sample(event, &handle, &sample);
9302 
9303 	perf_output_end(&handle);
9304 }
9305 
9306 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9307 					 enum perf_bpf_event_type type)
9308 {
9309 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9310 	int i;
9311 
9312 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9313 			   (u64)(unsigned long)prog->bpf_func,
9314 			   prog->jited_len, unregister,
9315 			   prog->aux->ksym.name);
9316 
9317 	for (i = 1; i < prog->aux->func_cnt; i++) {
9318 		struct bpf_prog *subprog = prog->aux->func[i];
9319 
9320 		perf_event_ksymbol(
9321 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9322 			(u64)(unsigned long)subprog->bpf_func,
9323 			subprog->jited_len, unregister,
9324 			subprog->aux->ksym.name);
9325 	}
9326 }
9327 
9328 void perf_event_bpf_event(struct bpf_prog *prog,
9329 			  enum perf_bpf_event_type type,
9330 			  u16 flags)
9331 {
9332 	struct perf_bpf_event bpf_event;
9333 
9334 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9335 	    type >= PERF_BPF_EVENT_MAX)
9336 		return;
9337 
9338 	switch (type) {
9339 	case PERF_BPF_EVENT_PROG_LOAD:
9340 	case PERF_BPF_EVENT_PROG_UNLOAD:
9341 		if (atomic_read(&nr_ksymbol_events))
9342 			perf_event_bpf_emit_ksymbols(prog, type);
9343 		break;
9344 	default:
9345 		break;
9346 	}
9347 
9348 	if (!atomic_read(&nr_bpf_events))
9349 		return;
9350 
9351 	bpf_event = (struct perf_bpf_event){
9352 		.prog = prog,
9353 		.event_id = {
9354 			.header = {
9355 				.type = PERF_RECORD_BPF_EVENT,
9356 				.size = sizeof(bpf_event.event_id),
9357 			},
9358 			.type = type,
9359 			.flags = flags,
9360 			.id = prog->aux->id,
9361 		},
9362 	};
9363 
9364 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9365 
9366 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9367 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9368 }
9369 
9370 struct perf_text_poke_event {
9371 	const void		*old_bytes;
9372 	const void		*new_bytes;
9373 	size_t			pad;
9374 	u16			old_len;
9375 	u16			new_len;
9376 
9377 	struct {
9378 		struct perf_event_header	header;
9379 
9380 		u64				addr;
9381 	} event_id;
9382 };
9383 
9384 static int perf_event_text_poke_match(struct perf_event *event)
9385 {
9386 	return event->attr.text_poke;
9387 }
9388 
9389 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9390 {
9391 	struct perf_text_poke_event *text_poke_event = data;
9392 	struct perf_output_handle handle;
9393 	struct perf_sample_data sample;
9394 	u64 padding = 0;
9395 	int ret;
9396 
9397 	if (!perf_event_text_poke_match(event))
9398 		return;
9399 
9400 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9401 
9402 	ret = perf_output_begin(&handle, &sample, event,
9403 				text_poke_event->event_id.header.size);
9404 	if (ret)
9405 		return;
9406 
9407 	perf_output_put(&handle, text_poke_event->event_id);
9408 	perf_output_put(&handle, text_poke_event->old_len);
9409 	perf_output_put(&handle, text_poke_event->new_len);
9410 
9411 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9412 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9413 
9414 	if (text_poke_event->pad)
9415 		__output_copy(&handle, &padding, text_poke_event->pad);
9416 
9417 	perf_event__output_id_sample(event, &handle, &sample);
9418 
9419 	perf_output_end(&handle);
9420 }
9421 
9422 void perf_event_text_poke(const void *addr, const void *old_bytes,
9423 			  size_t old_len, const void *new_bytes, size_t new_len)
9424 {
9425 	struct perf_text_poke_event text_poke_event;
9426 	size_t tot, pad;
9427 
9428 	if (!atomic_read(&nr_text_poke_events))
9429 		return;
9430 
9431 	tot  = sizeof(text_poke_event.old_len) + old_len;
9432 	tot += sizeof(text_poke_event.new_len) + new_len;
9433 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9434 
9435 	text_poke_event = (struct perf_text_poke_event){
9436 		.old_bytes    = old_bytes,
9437 		.new_bytes    = new_bytes,
9438 		.pad          = pad,
9439 		.old_len      = old_len,
9440 		.new_len      = new_len,
9441 		.event_id  = {
9442 			.header = {
9443 				.type = PERF_RECORD_TEXT_POKE,
9444 				.misc = PERF_RECORD_MISC_KERNEL,
9445 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9446 			},
9447 			.addr = (unsigned long)addr,
9448 		},
9449 	};
9450 
9451 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9452 }
9453 
9454 void perf_event_itrace_started(struct perf_event *event)
9455 {
9456 	event->attach_state |= PERF_ATTACH_ITRACE;
9457 }
9458 
9459 static void perf_log_itrace_start(struct perf_event *event)
9460 {
9461 	struct perf_output_handle handle;
9462 	struct perf_sample_data sample;
9463 	struct perf_aux_event {
9464 		struct perf_event_header        header;
9465 		u32				pid;
9466 		u32				tid;
9467 	} rec;
9468 	int ret;
9469 
9470 	if (event->parent)
9471 		event = event->parent;
9472 
9473 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9474 	    event->attach_state & PERF_ATTACH_ITRACE)
9475 		return;
9476 
9477 	rec.header.type	= PERF_RECORD_ITRACE_START;
9478 	rec.header.misc	= 0;
9479 	rec.header.size	= sizeof(rec);
9480 	rec.pid	= perf_event_pid(event, current);
9481 	rec.tid	= perf_event_tid(event, current);
9482 
9483 	perf_event_header__init_id(&rec.header, &sample, event);
9484 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9485 
9486 	if (ret)
9487 		return;
9488 
9489 	perf_output_put(&handle, rec);
9490 	perf_event__output_id_sample(event, &handle, &sample);
9491 
9492 	perf_output_end(&handle);
9493 }
9494 
9495 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9496 {
9497 	struct perf_output_handle handle;
9498 	struct perf_sample_data sample;
9499 	struct perf_aux_event {
9500 		struct perf_event_header        header;
9501 		u64				hw_id;
9502 	} rec;
9503 	int ret;
9504 
9505 	if (event->parent)
9506 		event = event->parent;
9507 
9508 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9509 	rec.header.misc	= 0;
9510 	rec.header.size	= sizeof(rec);
9511 	rec.hw_id	= hw_id;
9512 
9513 	perf_event_header__init_id(&rec.header, &sample, event);
9514 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9515 
9516 	if (ret)
9517 		return;
9518 
9519 	perf_output_put(&handle, rec);
9520 	perf_event__output_id_sample(event, &handle, &sample);
9521 
9522 	perf_output_end(&handle);
9523 }
9524 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9525 
9526 static int
9527 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9528 {
9529 	struct hw_perf_event *hwc = &event->hw;
9530 	int ret = 0;
9531 	u64 seq;
9532 
9533 	seq = __this_cpu_read(perf_throttled_seq);
9534 	if (seq != hwc->interrupts_seq) {
9535 		hwc->interrupts_seq = seq;
9536 		hwc->interrupts = 1;
9537 	} else {
9538 		hwc->interrupts++;
9539 		if (unlikely(throttle &&
9540 			     hwc->interrupts > max_samples_per_tick)) {
9541 			__this_cpu_inc(perf_throttled_count);
9542 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9543 			hwc->interrupts = MAX_INTERRUPTS;
9544 			perf_log_throttle(event, 0);
9545 			ret = 1;
9546 		}
9547 	}
9548 
9549 	if (event->attr.freq) {
9550 		u64 now = perf_clock();
9551 		s64 delta = now - hwc->freq_time_stamp;
9552 
9553 		hwc->freq_time_stamp = now;
9554 
9555 		if (delta > 0 && delta < 2*TICK_NSEC)
9556 			perf_adjust_period(event, delta, hwc->last_period, true);
9557 	}
9558 
9559 	return ret;
9560 }
9561 
9562 int perf_event_account_interrupt(struct perf_event *event)
9563 {
9564 	return __perf_event_account_interrupt(event, 1);
9565 }
9566 
9567 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9568 {
9569 	/*
9570 	 * Due to interrupt latency (AKA "skid"), we may enter the
9571 	 * kernel before taking an overflow, even if the PMU is only
9572 	 * counting user events.
9573 	 */
9574 	if (event->attr.exclude_kernel && !user_mode(regs))
9575 		return false;
9576 
9577 	return true;
9578 }
9579 
9580 /*
9581  * Generic event overflow handling, sampling.
9582  */
9583 
9584 static int __perf_event_overflow(struct perf_event *event,
9585 				 int throttle, struct perf_sample_data *data,
9586 				 struct pt_regs *regs)
9587 {
9588 	int events = atomic_read(&event->event_limit);
9589 	int ret = 0;
9590 
9591 	/*
9592 	 * Non-sampling counters might still use the PMI to fold short
9593 	 * hardware counters, ignore those.
9594 	 */
9595 	if (unlikely(!is_sampling_event(event)))
9596 		return 0;
9597 
9598 	ret = __perf_event_account_interrupt(event, throttle);
9599 
9600 	/*
9601 	 * XXX event_limit might not quite work as expected on inherited
9602 	 * events
9603 	 */
9604 
9605 	event->pending_kill = POLL_IN;
9606 	if (events && atomic_dec_and_test(&event->event_limit)) {
9607 		ret = 1;
9608 		event->pending_kill = POLL_HUP;
9609 		perf_event_disable_inatomic(event);
9610 	}
9611 
9612 	if (event->attr.sigtrap) {
9613 		/*
9614 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9615 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9616 		 * it is the first event, on the other hand, we should also not
9617 		 * trigger the WARN or override the data address.
9618 		 */
9619 		bool valid_sample = sample_is_allowed(event, regs);
9620 		unsigned int pending_id = 1;
9621 
9622 		if (regs)
9623 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9624 		if (!event->pending_sigtrap) {
9625 			event->pending_sigtrap = pending_id;
9626 			local_inc(&event->ctx->nr_pending);
9627 		} else if (event->attr.exclude_kernel && valid_sample) {
9628 			/*
9629 			 * Should not be able to return to user space without
9630 			 * consuming pending_sigtrap; with exceptions:
9631 			 *
9632 			 *  1. Where !exclude_kernel, events can overflow again
9633 			 *     in the kernel without returning to user space.
9634 			 *
9635 			 *  2. Events that can overflow again before the IRQ-
9636 			 *     work without user space progress (e.g. hrtimer).
9637 			 *     To approximate progress (with false negatives),
9638 			 *     check 32-bit hash of the current IP.
9639 			 */
9640 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9641 		}
9642 
9643 		event->pending_addr = 0;
9644 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9645 			event->pending_addr = data->addr;
9646 		irq_work_queue(&event->pending_irq);
9647 	}
9648 
9649 	READ_ONCE(event->overflow_handler)(event, data, regs);
9650 
9651 	if (*perf_event_fasync(event) && event->pending_kill) {
9652 		event->pending_wakeup = 1;
9653 		irq_work_queue(&event->pending_irq);
9654 	}
9655 
9656 	return ret;
9657 }
9658 
9659 int perf_event_overflow(struct perf_event *event,
9660 			struct perf_sample_data *data,
9661 			struct pt_regs *regs)
9662 {
9663 	return __perf_event_overflow(event, 1, data, regs);
9664 }
9665 
9666 /*
9667  * Generic software event infrastructure
9668  */
9669 
9670 struct swevent_htable {
9671 	struct swevent_hlist		*swevent_hlist;
9672 	struct mutex			hlist_mutex;
9673 	int				hlist_refcount;
9674 
9675 	/* Recursion avoidance in each contexts */
9676 	int				recursion[PERF_NR_CONTEXTS];
9677 };
9678 
9679 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9680 
9681 /*
9682  * We directly increment event->count and keep a second value in
9683  * event->hw.period_left to count intervals. This period event
9684  * is kept in the range [-sample_period, 0] so that we can use the
9685  * sign as trigger.
9686  */
9687 
9688 u64 perf_swevent_set_period(struct perf_event *event)
9689 {
9690 	struct hw_perf_event *hwc = &event->hw;
9691 	u64 period = hwc->last_period;
9692 	u64 nr, offset;
9693 	s64 old, val;
9694 
9695 	hwc->last_period = hwc->sample_period;
9696 
9697 	old = local64_read(&hwc->period_left);
9698 	do {
9699 		val = old;
9700 		if (val < 0)
9701 			return 0;
9702 
9703 		nr = div64_u64(period + val, period);
9704 		offset = nr * period;
9705 		val -= offset;
9706 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9707 
9708 	return nr;
9709 }
9710 
9711 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9712 				    struct perf_sample_data *data,
9713 				    struct pt_regs *regs)
9714 {
9715 	struct hw_perf_event *hwc = &event->hw;
9716 	int throttle = 0;
9717 
9718 	if (!overflow)
9719 		overflow = perf_swevent_set_period(event);
9720 
9721 	if (hwc->interrupts == MAX_INTERRUPTS)
9722 		return;
9723 
9724 	for (; overflow; overflow--) {
9725 		if (__perf_event_overflow(event, throttle,
9726 					    data, regs)) {
9727 			/*
9728 			 * We inhibit the overflow from happening when
9729 			 * hwc->interrupts == MAX_INTERRUPTS.
9730 			 */
9731 			break;
9732 		}
9733 		throttle = 1;
9734 	}
9735 }
9736 
9737 static void perf_swevent_event(struct perf_event *event, u64 nr,
9738 			       struct perf_sample_data *data,
9739 			       struct pt_regs *regs)
9740 {
9741 	struct hw_perf_event *hwc = &event->hw;
9742 
9743 	local64_add(nr, &event->count);
9744 
9745 	if (!regs)
9746 		return;
9747 
9748 	if (!is_sampling_event(event))
9749 		return;
9750 
9751 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9752 		data->period = nr;
9753 		return perf_swevent_overflow(event, 1, data, regs);
9754 	} else
9755 		data->period = event->hw.last_period;
9756 
9757 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9758 		return perf_swevent_overflow(event, 1, data, regs);
9759 
9760 	if (local64_add_negative(nr, &hwc->period_left))
9761 		return;
9762 
9763 	perf_swevent_overflow(event, 0, data, regs);
9764 }
9765 
9766 static int perf_exclude_event(struct perf_event *event,
9767 			      struct pt_regs *regs)
9768 {
9769 	if (event->hw.state & PERF_HES_STOPPED)
9770 		return 1;
9771 
9772 	if (regs) {
9773 		if (event->attr.exclude_user && user_mode(regs))
9774 			return 1;
9775 
9776 		if (event->attr.exclude_kernel && !user_mode(regs))
9777 			return 1;
9778 	}
9779 
9780 	return 0;
9781 }
9782 
9783 static int perf_swevent_match(struct perf_event *event,
9784 				enum perf_type_id type,
9785 				u32 event_id,
9786 				struct perf_sample_data *data,
9787 				struct pt_regs *regs)
9788 {
9789 	if (event->attr.type != type)
9790 		return 0;
9791 
9792 	if (event->attr.config != event_id)
9793 		return 0;
9794 
9795 	if (perf_exclude_event(event, regs))
9796 		return 0;
9797 
9798 	return 1;
9799 }
9800 
9801 static inline u64 swevent_hash(u64 type, u32 event_id)
9802 {
9803 	u64 val = event_id | (type << 32);
9804 
9805 	return hash_64(val, SWEVENT_HLIST_BITS);
9806 }
9807 
9808 static inline struct hlist_head *
9809 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9810 {
9811 	u64 hash = swevent_hash(type, event_id);
9812 
9813 	return &hlist->heads[hash];
9814 }
9815 
9816 /* For the read side: events when they trigger */
9817 static inline struct hlist_head *
9818 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9819 {
9820 	struct swevent_hlist *hlist;
9821 
9822 	hlist = rcu_dereference(swhash->swevent_hlist);
9823 	if (!hlist)
9824 		return NULL;
9825 
9826 	return __find_swevent_head(hlist, type, event_id);
9827 }
9828 
9829 /* For the event head insertion and removal in the hlist */
9830 static inline struct hlist_head *
9831 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9832 {
9833 	struct swevent_hlist *hlist;
9834 	u32 event_id = event->attr.config;
9835 	u64 type = event->attr.type;
9836 
9837 	/*
9838 	 * Event scheduling is always serialized against hlist allocation
9839 	 * and release. Which makes the protected version suitable here.
9840 	 * The context lock guarantees that.
9841 	 */
9842 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9843 					  lockdep_is_held(&event->ctx->lock));
9844 	if (!hlist)
9845 		return NULL;
9846 
9847 	return __find_swevent_head(hlist, type, event_id);
9848 }
9849 
9850 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9851 				    u64 nr,
9852 				    struct perf_sample_data *data,
9853 				    struct pt_regs *regs)
9854 {
9855 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9856 	struct perf_event *event;
9857 	struct hlist_head *head;
9858 
9859 	rcu_read_lock();
9860 	head = find_swevent_head_rcu(swhash, type, event_id);
9861 	if (!head)
9862 		goto end;
9863 
9864 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9865 		if (perf_swevent_match(event, type, event_id, data, regs))
9866 			perf_swevent_event(event, nr, data, regs);
9867 	}
9868 end:
9869 	rcu_read_unlock();
9870 }
9871 
9872 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9873 
9874 int perf_swevent_get_recursion_context(void)
9875 {
9876 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9877 
9878 	return get_recursion_context(swhash->recursion);
9879 }
9880 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9881 
9882 void perf_swevent_put_recursion_context(int rctx)
9883 {
9884 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9885 
9886 	put_recursion_context(swhash->recursion, rctx);
9887 }
9888 
9889 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9890 {
9891 	struct perf_sample_data data;
9892 
9893 	if (WARN_ON_ONCE(!regs))
9894 		return;
9895 
9896 	perf_sample_data_init(&data, addr, 0);
9897 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9898 }
9899 
9900 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9901 {
9902 	int rctx;
9903 
9904 	preempt_disable_notrace();
9905 	rctx = perf_swevent_get_recursion_context();
9906 	if (unlikely(rctx < 0))
9907 		goto fail;
9908 
9909 	___perf_sw_event(event_id, nr, regs, addr);
9910 
9911 	perf_swevent_put_recursion_context(rctx);
9912 fail:
9913 	preempt_enable_notrace();
9914 }
9915 
9916 static void perf_swevent_read(struct perf_event *event)
9917 {
9918 }
9919 
9920 static int perf_swevent_add(struct perf_event *event, int flags)
9921 {
9922 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9923 	struct hw_perf_event *hwc = &event->hw;
9924 	struct hlist_head *head;
9925 
9926 	if (is_sampling_event(event)) {
9927 		hwc->last_period = hwc->sample_period;
9928 		perf_swevent_set_period(event);
9929 	}
9930 
9931 	hwc->state = !(flags & PERF_EF_START);
9932 
9933 	head = find_swevent_head(swhash, event);
9934 	if (WARN_ON_ONCE(!head))
9935 		return -EINVAL;
9936 
9937 	hlist_add_head_rcu(&event->hlist_entry, head);
9938 	perf_event_update_userpage(event);
9939 
9940 	return 0;
9941 }
9942 
9943 static void perf_swevent_del(struct perf_event *event, int flags)
9944 {
9945 	hlist_del_rcu(&event->hlist_entry);
9946 }
9947 
9948 static void perf_swevent_start(struct perf_event *event, int flags)
9949 {
9950 	event->hw.state = 0;
9951 }
9952 
9953 static void perf_swevent_stop(struct perf_event *event, int flags)
9954 {
9955 	event->hw.state = PERF_HES_STOPPED;
9956 }
9957 
9958 /* Deref the hlist from the update side */
9959 static inline struct swevent_hlist *
9960 swevent_hlist_deref(struct swevent_htable *swhash)
9961 {
9962 	return rcu_dereference_protected(swhash->swevent_hlist,
9963 					 lockdep_is_held(&swhash->hlist_mutex));
9964 }
9965 
9966 static void swevent_hlist_release(struct swevent_htable *swhash)
9967 {
9968 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9969 
9970 	if (!hlist)
9971 		return;
9972 
9973 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9974 	kfree_rcu(hlist, rcu_head);
9975 }
9976 
9977 static void swevent_hlist_put_cpu(int cpu)
9978 {
9979 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9980 
9981 	mutex_lock(&swhash->hlist_mutex);
9982 
9983 	if (!--swhash->hlist_refcount)
9984 		swevent_hlist_release(swhash);
9985 
9986 	mutex_unlock(&swhash->hlist_mutex);
9987 }
9988 
9989 static void swevent_hlist_put(void)
9990 {
9991 	int cpu;
9992 
9993 	for_each_possible_cpu(cpu)
9994 		swevent_hlist_put_cpu(cpu);
9995 }
9996 
9997 static int swevent_hlist_get_cpu(int cpu)
9998 {
9999 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10000 	int err = 0;
10001 
10002 	mutex_lock(&swhash->hlist_mutex);
10003 	if (!swevent_hlist_deref(swhash) &&
10004 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10005 		struct swevent_hlist *hlist;
10006 
10007 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10008 		if (!hlist) {
10009 			err = -ENOMEM;
10010 			goto exit;
10011 		}
10012 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10013 	}
10014 	swhash->hlist_refcount++;
10015 exit:
10016 	mutex_unlock(&swhash->hlist_mutex);
10017 
10018 	return err;
10019 }
10020 
10021 static int swevent_hlist_get(void)
10022 {
10023 	int err, cpu, failed_cpu;
10024 
10025 	mutex_lock(&pmus_lock);
10026 	for_each_possible_cpu(cpu) {
10027 		err = swevent_hlist_get_cpu(cpu);
10028 		if (err) {
10029 			failed_cpu = cpu;
10030 			goto fail;
10031 		}
10032 	}
10033 	mutex_unlock(&pmus_lock);
10034 	return 0;
10035 fail:
10036 	for_each_possible_cpu(cpu) {
10037 		if (cpu == failed_cpu)
10038 			break;
10039 		swevent_hlist_put_cpu(cpu);
10040 	}
10041 	mutex_unlock(&pmus_lock);
10042 	return err;
10043 }
10044 
10045 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10046 
10047 static void sw_perf_event_destroy(struct perf_event *event)
10048 {
10049 	u64 event_id = event->attr.config;
10050 
10051 	WARN_ON(event->parent);
10052 
10053 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10054 	swevent_hlist_put();
10055 }
10056 
10057 static struct pmu perf_cpu_clock; /* fwd declaration */
10058 static struct pmu perf_task_clock;
10059 
10060 static int perf_swevent_init(struct perf_event *event)
10061 {
10062 	u64 event_id = event->attr.config;
10063 
10064 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10065 		return -ENOENT;
10066 
10067 	/*
10068 	 * no branch sampling for software events
10069 	 */
10070 	if (has_branch_stack(event))
10071 		return -EOPNOTSUPP;
10072 
10073 	switch (event_id) {
10074 	case PERF_COUNT_SW_CPU_CLOCK:
10075 		event->attr.type = perf_cpu_clock.type;
10076 		return -ENOENT;
10077 	case PERF_COUNT_SW_TASK_CLOCK:
10078 		event->attr.type = perf_task_clock.type;
10079 		return -ENOENT;
10080 
10081 	default:
10082 		break;
10083 	}
10084 
10085 	if (event_id >= PERF_COUNT_SW_MAX)
10086 		return -ENOENT;
10087 
10088 	if (!event->parent) {
10089 		int err;
10090 
10091 		err = swevent_hlist_get();
10092 		if (err)
10093 			return err;
10094 
10095 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10096 		event->destroy = sw_perf_event_destroy;
10097 	}
10098 
10099 	return 0;
10100 }
10101 
10102 static struct pmu perf_swevent = {
10103 	.task_ctx_nr	= perf_sw_context,
10104 
10105 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10106 
10107 	.event_init	= perf_swevent_init,
10108 	.add		= perf_swevent_add,
10109 	.del		= perf_swevent_del,
10110 	.start		= perf_swevent_start,
10111 	.stop		= perf_swevent_stop,
10112 	.read		= perf_swevent_read,
10113 };
10114 
10115 #ifdef CONFIG_EVENT_TRACING
10116 
10117 static void tp_perf_event_destroy(struct perf_event *event)
10118 {
10119 	perf_trace_destroy(event);
10120 }
10121 
10122 static int perf_tp_event_init(struct perf_event *event)
10123 {
10124 	int err;
10125 
10126 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10127 		return -ENOENT;
10128 
10129 	/*
10130 	 * no branch sampling for tracepoint events
10131 	 */
10132 	if (has_branch_stack(event))
10133 		return -EOPNOTSUPP;
10134 
10135 	err = perf_trace_init(event);
10136 	if (err)
10137 		return err;
10138 
10139 	event->destroy = tp_perf_event_destroy;
10140 
10141 	return 0;
10142 }
10143 
10144 static struct pmu perf_tracepoint = {
10145 	.task_ctx_nr	= perf_sw_context,
10146 
10147 	.event_init	= perf_tp_event_init,
10148 	.add		= perf_trace_add,
10149 	.del		= perf_trace_del,
10150 	.start		= perf_swevent_start,
10151 	.stop		= perf_swevent_stop,
10152 	.read		= perf_swevent_read,
10153 };
10154 
10155 static int perf_tp_filter_match(struct perf_event *event,
10156 				struct perf_sample_data *data)
10157 {
10158 	void *record = data->raw->frag.data;
10159 
10160 	/* only top level events have filters set */
10161 	if (event->parent)
10162 		event = event->parent;
10163 
10164 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10165 		return 1;
10166 	return 0;
10167 }
10168 
10169 static int perf_tp_event_match(struct perf_event *event,
10170 				struct perf_sample_data *data,
10171 				struct pt_regs *regs)
10172 {
10173 	if (event->hw.state & PERF_HES_STOPPED)
10174 		return 0;
10175 	/*
10176 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10177 	 */
10178 	if (event->attr.exclude_kernel && !user_mode(regs))
10179 		return 0;
10180 
10181 	if (!perf_tp_filter_match(event, data))
10182 		return 0;
10183 
10184 	return 1;
10185 }
10186 
10187 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10188 			       struct trace_event_call *call, u64 count,
10189 			       struct pt_regs *regs, struct hlist_head *head,
10190 			       struct task_struct *task)
10191 {
10192 	if (bpf_prog_array_valid(call)) {
10193 		*(struct pt_regs **)raw_data = regs;
10194 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10195 			perf_swevent_put_recursion_context(rctx);
10196 			return;
10197 		}
10198 	}
10199 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10200 		      rctx, task);
10201 }
10202 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10203 
10204 static void __perf_tp_event_target_task(u64 count, void *record,
10205 					struct pt_regs *regs,
10206 					struct perf_sample_data *data,
10207 					struct perf_event *event)
10208 {
10209 	struct trace_entry *entry = record;
10210 
10211 	if (event->attr.config != entry->type)
10212 		return;
10213 	/* Cannot deliver synchronous signal to other task. */
10214 	if (event->attr.sigtrap)
10215 		return;
10216 	if (perf_tp_event_match(event, data, regs))
10217 		perf_swevent_event(event, count, data, regs);
10218 }
10219 
10220 static void perf_tp_event_target_task(u64 count, void *record,
10221 				      struct pt_regs *regs,
10222 				      struct perf_sample_data *data,
10223 				      struct perf_event_context *ctx)
10224 {
10225 	unsigned int cpu = smp_processor_id();
10226 	struct pmu *pmu = &perf_tracepoint;
10227 	struct perf_event *event, *sibling;
10228 
10229 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10230 		__perf_tp_event_target_task(count, record, regs, data, event);
10231 		for_each_sibling_event(sibling, event)
10232 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10233 	}
10234 
10235 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10236 		__perf_tp_event_target_task(count, record, regs, data, event);
10237 		for_each_sibling_event(sibling, event)
10238 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10239 	}
10240 }
10241 
10242 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10243 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10244 		   struct task_struct *task)
10245 {
10246 	struct perf_sample_data data;
10247 	struct perf_event *event;
10248 
10249 	struct perf_raw_record raw = {
10250 		.frag = {
10251 			.size = entry_size,
10252 			.data = record,
10253 		},
10254 	};
10255 
10256 	perf_sample_data_init(&data, 0, 0);
10257 	perf_sample_save_raw_data(&data, &raw);
10258 
10259 	perf_trace_buf_update(record, event_type);
10260 
10261 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10262 		if (perf_tp_event_match(event, &data, regs)) {
10263 			perf_swevent_event(event, count, &data, regs);
10264 
10265 			/*
10266 			 * Here use the same on-stack perf_sample_data,
10267 			 * some members in data are event-specific and
10268 			 * need to be re-computed for different sweveents.
10269 			 * Re-initialize data->sample_flags safely to avoid
10270 			 * the problem that next event skips preparing data
10271 			 * because data->sample_flags is set.
10272 			 */
10273 			perf_sample_data_init(&data, 0, 0);
10274 			perf_sample_save_raw_data(&data, &raw);
10275 		}
10276 	}
10277 
10278 	/*
10279 	 * If we got specified a target task, also iterate its context and
10280 	 * deliver this event there too.
10281 	 */
10282 	if (task && task != current) {
10283 		struct perf_event_context *ctx;
10284 
10285 		rcu_read_lock();
10286 		ctx = rcu_dereference(task->perf_event_ctxp);
10287 		if (!ctx)
10288 			goto unlock;
10289 
10290 		raw_spin_lock(&ctx->lock);
10291 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10292 		raw_spin_unlock(&ctx->lock);
10293 unlock:
10294 		rcu_read_unlock();
10295 	}
10296 
10297 	perf_swevent_put_recursion_context(rctx);
10298 }
10299 EXPORT_SYMBOL_GPL(perf_tp_event);
10300 
10301 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10302 /*
10303  * Flags in config, used by dynamic PMU kprobe and uprobe
10304  * The flags should match following PMU_FORMAT_ATTR().
10305  *
10306  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10307  *                               if not set, create kprobe/uprobe
10308  *
10309  * The following values specify a reference counter (or semaphore in the
10310  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10311  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10312  *
10313  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10314  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10315  */
10316 enum perf_probe_config {
10317 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10318 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10319 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10320 };
10321 
10322 PMU_FORMAT_ATTR(retprobe, "config:0");
10323 #endif
10324 
10325 #ifdef CONFIG_KPROBE_EVENTS
10326 static struct attribute *kprobe_attrs[] = {
10327 	&format_attr_retprobe.attr,
10328 	NULL,
10329 };
10330 
10331 static struct attribute_group kprobe_format_group = {
10332 	.name = "format",
10333 	.attrs = kprobe_attrs,
10334 };
10335 
10336 static const struct attribute_group *kprobe_attr_groups[] = {
10337 	&kprobe_format_group,
10338 	NULL,
10339 };
10340 
10341 static int perf_kprobe_event_init(struct perf_event *event);
10342 static struct pmu perf_kprobe = {
10343 	.task_ctx_nr	= perf_sw_context,
10344 	.event_init	= perf_kprobe_event_init,
10345 	.add		= perf_trace_add,
10346 	.del		= perf_trace_del,
10347 	.start		= perf_swevent_start,
10348 	.stop		= perf_swevent_stop,
10349 	.read		= perf_swevent_read,
10350 	.attr_groups	= kprobe_attr_groups,
10351 };
10352 
10353 static int perf_kprobe_event_init(struct perf_event *event)
10354 {
10355 	int err;
10356 	bool is_retprobe;
10357 
10358 	if (event->attr.type != perf_kprobe.type)
10359 		return -ENOENT;
10360 
10361 	if (!perfmon_capable())
10362 		return -EACCES;
10363 
10364 	/*
10365 	 * no branch sampling for probe events
10366 	 */
10367 	if (has_branch_stack(event))
10368 		return -EOPNOTSUPP;
10369 
10370 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10371 	err = perf_kprobe_init(event, is_retprobe);
10372 	if (err)
10373 		return err;
10374 
10375 	event->destroy = perf_kprobe_destroy;
10376 
10377 	return 0;
10378 }
10379 #endif /* CONFIG_KPROBE_EVENTS */
10380 
10381 #ifdef CONFIG_UPROBE_EVENTS
10382 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10383 
10384 static struct attribute *uprobe_attrs[] = {
10385 	&format_attr_retprobe.attr,
10386 	&format_attr_ref_ctr_offset.attr,
10387 	NULL,
10388 };
10389 
10390 static struct attribute_group uprobe_format_group = {
10391 	.name = "format",
10392 	.attrs = uprobe_attrs,
10393 };
10394 
10395 static const struct attribute_group *uprobe_attr_groups[] = {
10396 	&uprobe_format_group,
10397 	NULL,
10398 };
10399 
10400 static int perf_uprobe_event_init(struct perf_event *event);
10401 static struct pmu perf_uprobe = {
10402 	.task_ctx_nr	= perf_sw_context,
10403 	.event_init	= perf_uprobe_event_init,
10404 	.add		= perf_trace_add,
10405 	.del		= perf_trace_del,
10406 	.start		= perf_swevent_start,
10407 	.stop		= perf_swevent_stop,
10408 	.read		= perf_swevent_read,
10409 	.attr_groups	= uprobe_attr_groups,
10410 };
10411 
10412 static int perf_uprobe_event_init(struct perf_event *event)
10413 {
10414 	int err;
10415 	unsigned long ref_ctr_offset;
10416 	bool is_retprobe;
10417 
10418 	if (event->attr.type != perf_uprobe.type)
10419 		return -ENOENT;
10420 
10421 	if (!perfmon_capable())
10422 		return -EACCES;
10423 
10424 	/*
10425 	 * no branch sampling for probe events
10426 	 */
10427 	if (has_branch_stack(event))
10428 		return -EOPNOTSUPP;
10429 
10430 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10431 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10432 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10433 	if (err)
10434 		return err;
10435 
10436 	event->destroy = perf_uprobe_destroy;
10437 
10438 	return 0;
10439 }
10440 #endif /* CONFIG_UPROBE_EVENTS */
10441 
10442 static inline void perf_tp_register(void)
10443 {
10444 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10445 #ifdef CONFIG_KPROBE_EVENTS
10446 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10447 #endif
10448 #ifdef CONFIG_UPROBE_EVENTS
10449 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10450 #endif
10451 }
10452 
10453 static void perf_event_free_filter(struct perf_event *event)
10454 {
10455 	ftrace_profile_free_filter(event);
10456 }
10457 
10458 #ifdef CONFIG_BPF_SYSCALL
10459 static void bpf_overflow_handler(struct perf_event *event,
10460 				 struct perf_sample_data *data,
10461 				 struct pt_regs *regs)
10462 {
10463 	struct bpf_perf_event_data_kern ctx = {
10464 		.data = data,
10465 		.event = event,
10466 	};
10467 	struct bpf_prog *prog;
10468 	int ret = 0;
10469 
10470 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10471 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10472 		goto out;
10473 	rcu_read_lock();
10474 	prog = READ_ONCE(event->prog);
10475 	if (prog) {
10476 		perf_prepare_sample(data, event, regs);
10477 		ret = bpf_prog_run(prog, &ctx);
10478 	}
10479 	rcu_read_unlock();
10480 out:
10481 	__this_cpu_dec(bpf_prog_active);
10482 	if (!ret)
10483 		return;
10484 
10485 	event->orig_overflow_handler(event, data, regs);
10486 }
10487 
10488 static int perf_event_set_bpf_handler(struct perf_event *event,
10489 				      struct bpf_prog *prog,
10490 				      u64 bpf_cookie)
10491 {
10492 	if (event->overflow_handler_context)
10493 		/* hw breakpoint or kernel counter */
10494 		return -EINVAL;
10495 
10496 	if (event->prog)
10497 		return -EEXIST;
10498 
10499 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10500 		return -EINVAL;
10501 
10502 	if (event->attr.precise_ip &&
10503 	    prog->call_get_stack &&
10504 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10505 	     event->attr.exclude_callchain_kernel ||
10506 	     event->attr.exclude_callchain_user)) {
10507 		/*
10508 		 * On perf_event with precise_ip, calling bpf_get_stack()
10509 		 * may trigger unwinder warnings and occasional crashes.
10510 		 * bpf_get_[stack|stackid] works around this issue by using
10511 		 * callchain attached to perf_sample_data. If the
10512 		 * perf_event does not full (kernel and user) callchain
10513 		 * attached to perf_sample_data, do not allow attaching BPF
10514 		 * program that calls bpf_get_[stack|stackid].
10515 		 */
10516 		return -EPROTO;
10517 	}
10518 
10519 	event->prog = prog;
10520 	event->bpf_cookie = bpf_cookie;
10521 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10522 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10523 	return 0;
10524 }
10525 
10526 static void perf_event_free_bpf_handler(struct perf_event *event)
10527 {
10528 	struct bpf_prog *prog = event->prog;
10529 
10530 	if (!prog)
10531 		return;
10532 
10533 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10534 	event->prog = NULL;
10535 	bpf_prog_put(prog);
10536 }
10537 #else
10538 static int perf_event_set_bpf_handler(struct perf_event *event,
10539 				      struct bpf_prog *prog,
10540 				      u64 bpf_cookie)
10541 {
10542 	return -EOPNOTSUPP;
10543 }
10544 static void perf_event_free_bpf_handler(struct perf_event *event)
10545 {
10546 }
10547 #endif
10548 
10549 /*
10550  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10551  * with perf_event_open()
10552  */
10553 static inline bool perf_event_is_tracing(struct perf_event *event)
10554 {
10555 	if (event->pmu == &perf_tracepoint)
10556 		return true;
10557 #ifdef CONFIG_KPROBE_EVENTS
10558 	if (event->pmu == &perf_kprobe)
10559 		return true;
10560 #endif
10561 #ifdef CONFIG_UPROBE_EVENTS
10562 	if (event->pmu == &perf_uprobe)
10563 		return true;
10564 #endif
10565 	return false;
10566 }
10567 
10568 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10569 			    u64 bpf_cookie)
10570 {
10571 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10572 
10573 	if (!perf_event_is_tracing(event))
10574 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10575 
10576 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10577 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10578 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10579 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10580 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10581 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10582 		return -EINVAL;
10583 
10584 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10585 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10586 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10587 		return -EINVAL;
10588 
10589 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10590 		/* only uprobe programs are allowed to be sleepable */
10591 		return -EINVAL;
10592 
10593 	/* Kprobe override only works for kprobes, not uprobes. */
10594 	if (prog->kprobe_override && !is_kprobe)
10595 		return -EINVAL;
10596 
10597 	if (is_tracepoint || is_syscall_tp) {
10598 		int off = trace_event_get_offsets(event->tp_event);
10599 
10600 		if (prog->aux->max_ctx_offset > off)
10601 			return -EACCES;
10602 	}
10603 
10604 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10605 }
10606 
10607 void perf_event_free_bpf_prog(struct perf_event *event)
10608 {
10609 	if (!perf_event_is_tracing(event)) {
10610 		perf_event_free_bpf_handler(event);
10611 		return;
10612 	}
10613 	perf_event_detach_bpf_prog(event);
10614 }
10615 
10616 #else
10617 
10618 static inline void perf_tp_register(void)
10619 {
10620 }
10621 
10622 static void perf_event_free_filter(struct perf_event *event)
10623 {
10624 }
10625 
10626 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10627 			    u64 bpf_cookie)
10628 {
10629 	return -ENOENT;
10630 }
10631 
10632 void perf_event_free_bpf_prog(struct perf_event *event)
10633 {
10634 }
10635 #endif /* CONFIG_EVENT_TRACING */
10636 
10637 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10638 void perf_bp_event(struct perf_event *bp, void *data)
10639 {
10640 	struct perf_sample_data sample;
10641 	struct pt_regs *regs = data;
10642 
10643 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10644 
10645 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10646 		perf_swevent_event(bp, 1, &sample, regs);
10647 }
10648 #endif
10649 
10650 /*
10651  * Allocate a new address filter
10652  */
10653 static struct perf_addr_filter *
10654 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10655 {
10656 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10657 	struct perf_addr_filter *filter;
10658 
10659 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10660 	if (!filter)
10661 		return NULL;
10662 
10663 	INIT_LIST_HEAD(&filter->entry);
10664 	list_add_tail(&filter->entry, filters);
10665 
10666 	return filter;
10667 }
10668 
10669 static void free_filters_list(struct list_head *filters)
10670 {
10671 	struct perf_addr_filter *filter, *iter;
10672 
10673 	list_for_each_entry_safe(filter, iter, filters, entry) {
10674 		path_put(&filter->path);
10675 		list_del(&filter->entry);
10676 		kfree(filter);
10677 	}
10678 }
10679 
10680 /*
10681  * Free existing address filters and optionally install new ones
10682  */
10683 static void perf_addr_filters_splice(struct perf_event *event,
10684 				     struct list_head *head)
10685 {
10686 	unsigned long flags;
10687 	LIST_HEAD(list);
10688 
10689 	if (!has_addr_filter(event))
10690 		return;
10691 
10692 	/* don't bother with children, they don't have their own filters */
10693 	if (event->parent)
10694 		return;
10695 
10696 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10697 
10698 	list_splice_init(&event->addr_filters.list, &list);
10699 	if (head)
10700 		list_splice(head, &event->addr_filters.list);
10701 
10702 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10703 
10704 	free_filters_list(&list);
10705 }
10706 
10707 /*
10708  * Scan through mm's vmas and see if one of them matches the
10709  * @filter; if so, adjust filter's address range.
10710  * Called with mm::mmap_lock down for reading.
10711  */
10712 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10713 				   struct mm_struct *mm,
10714 				   struct perf_addr_filter_range *fr)
10715 {
10716 	struct vm_area_struct *vma;
10717 	VMA_ITERATOR(vmi, mm, 0);
10718 
10719 	for_each_vma(vmi, vma) {
10720 		if (!vma->vm_file)
10721 			continue;
10722 
10723 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10724 			return;
10725 	}
10726 }
10727 
10728 /*
10729  * Update event's address range filters based on the
10730  * task's existing mappings, if any.
10731  */
10732 static void perf_event_addr_filters_apply(struct perf_event *event)
10733 {
10734 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10735 	struct task_struct *task = READ_ONCE(event->ctx->task);
10736 	struct perf_addr_filter *filter;
10737 	struct mm_struct *mm = NULL;
10738 	unsigned int count = 0;
10739 	unsigned long flags;
10740 
10741 	/*
10742 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10743 	 * will stop on the parent's child_mutex that our caller is also holding
10744 	 */
10745 	if (task == TASK_TOMBSTONE)
10746 		return;
10747 
10748 	if (ifh->nr_file_filters) {
10749 		mm = get_task_mm(task);
10750 		if (!mm)
10751 			goto restart;
10752 
10753 		mmap_read_lock(mm);
10754 	}
10755 
10756 	raw_spin_lock_irqsave(&ifh->lock, flags);
10757 	list_for_each_entry(filter, &ifh->list, entry) {
10758 		if (filter->path.dentry) {
10759 			/*
10760 			 * Adjust base offset if the filter is associated to a
10761 			 * binary that needs to be mapped:
10762 			 */
10763 			event->addr_filter_ranges[count].start = 0;
10764 			event->addr_filter_ranges[count].size = 0;
10765 
10766 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10767 		} else {
10768 			event->addr_filter_ranges[count].start = filter->offset;
10769 			event->addr_filter_ranges[count].size  = filter->size;
10770 		}
10771 
10772 		count++;
10773 	}
10774 
10775 	event->addr_filters_gen++;
10776 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10777 
10778 	if (ifh->nr_file_filters) {
10779 		mmap_read_unlock(mm);
10780 
10781 		mmput(mm);
10782 	}
10783 
10784 restart:
10785 	perf_event_stop(event, 1);
10786 }
10787 
10788 /*
10789  * Address range filtering: limiting the data to certain
10790  * instruction address ranges. Filters are ioctl()ed to us from
10791  * userspace as ascii strings.
10792  *
10793  * Filter string format:
10794  *
10795  * ACTION RANGE_SPEC
10796  * where ACTION is one of the
10797  *  * "filter": limit the trace to this region
10798  *  * "start": start tracing from this address
10799  *  * "stop": stop tracing at this address/region;
10800  * RANGE_SPEC is
10801  *  * for kernel addresses: <start address>[/<size>]
10802  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10803  *
10804  * if <size> is not specified or is zero, the range is treated as a single
10805  * address; not valid for ACTION=="filter".
10806  */
10807 enum {
10808 	IF_ACT_NONE = -1,
10809 	IF_ACT_FILTER,
10810 	IF_ACT_START,
10811 	IF_ACT_STOP,
10812 	IF_SRC_FILE,
10813 	IF_SRC_KERNEL,
10814 	IF_SRC_FILEADDR,
10815 	IF_SRC_KERNELADDR,
10816 };
10817 
10818 enum {
10819 	IF_STATE_ACTION = 0,
10820 	IF_STATE_SOURCE,
10821 	IF_STATE_END,
10822 };
10823 
10824 static const match_table_t if_tokens = {
10825 	{ IF_ACT_FILTER,	"filter" },
10826 	{ IF_ACT_START,		"start" },
10827 	{ IF_ACT_STOP,		"stop" },
10828 	{ IF_SRC_FILE,		"%u/%u@%s" },
10829 	{ IF_SRC_KERNEL,	"%u/%u" },
10830 	{ IF_SRC_FILEADDR,	"%u@%s" },
10831 	{ IF_SRC_KERNELADDR,	"%u" },
10832 	{ IF_ACT_NONE,		NULL },
10833 };
10834 
10835 /*
10836  * Address filter string parser
10837  */
10838 static int
10839 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10840 			     struct list_head *filters)
10841 {
10842 	struct perf_addr_filter *filter = NULL;
10843 	char *start, *orig, *filename = NULL;
10844 	substring_t args[MAX_OPT_ARGS];
10845 	int state = IF_STATE_ACTION, token;
10846 	unsigned int kernel = 0;
10847 	int ret = -EINVAL;
10848 
10849 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10850 	if (!fstr)
10851 		return -ENOMEM;
10852 
10853 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10854 		static const enum perf_addr_filter_action_t actions[] = {
10855 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10856 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10857 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10858 		};
10859 		ret = -EINVAL;
10860 
10861 		if (!*start)
10862 			continue;
10863 
10864 		/* filter definition begins */
10865 		if (state == IF_STATE_ACTION) {
10866 			filter = perf_addr_filter_new(event, filters);
10867 			if (!filter)
10868 				goto fail;
10869 		}
10870 
10871 		token = match_token(start, if_tokens, args);
10872 		switch (token) {
10873 		case IF_ACT_FILTER:
10874 		case IF_ACT_START:
10875 		case IF_ACT_STOP:
10876 			if (state != IF_STATE_ACTION)
10877 				goto fail;
10878 
10879 			filter->action = actions[token];
10880 			state = IF_STATE_SOURCE;
10881 			break;
10882 
10883 		case IF_SRC_KERNELADDR:
10884 		case IF_SRC_KERNEL:
10885 			kernel = 1;
10886 			fallthrough;
10887 
10888 		case IF_SRC_FILEADDR:
10889 		case IF_SRC_FILE:
10890 			if (state != IF_STATE_SOURCE)
10891 				goto fail;
10892 
10893 			*args[0].to = 0;
10894 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10895 			if (ret)
10896 				goto fail;
10897 
10898 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10899 				*args[1].to = 0;
10900 				ret = kstrtoul(args[1].from, 0, &filter->size);
10901 				if (ret)
10902 					goto fail;
10903 			}
10904 
10905 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10906 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10907 
10908 				kfree(filename);
10909 				filename = match_strdup(&args[fpos]);
10910 				if (!filename) {
10911 					ret = -ENOMEM;
10912 					goto fail;
10913 				}
10914 			}
10915 
10916 			state = IF_STATE_END;
10917 			break;
10918 
10919 		default:
10920 			goto fail;
10921 		}
10922 
10923 		/*
10924 		 * Filter definition is fully parsed, validate and install it.
10925 		 * Make sure that it doesn't contradict itself or the event's
10926 		 * attribute.
10927 		 */
10928 		if (state == IF_STATE_END) {
10929 			ret = -EINVAL;
10930 
10931 			/*
10932 			 * ACTION "filter" must have a non-zero length region
10933 			 * specified.
10934 			 */
10935 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10936 			    !filter->size)
10937 				goto fail;
10938 
10939 			if (!kernel) {
10940 				if (!filename)
10941 					goto fail;
10942 
10943 				/*
10944 				 * For now, we only support file-based filters
10945 				 * in per-task events; doing so for CPU-wide
10946 				 * events requires additional context switching
10947 				 * trickery, since same object code will be
10948 				 * mapped at different virtual addresses in
10949 				 * different processes.
10950 				 */
10951 				ret = -EOPNOTSUPP;
10952 				if (!event->ctx->task)
10953 					goto fail;
10954 
10955 				/* look up the path and grab its inode */
10956 				ret = kern_path(filename, LOOKUP_FOLLOW,
10957 						&filter->path);
10958 				if (ret)
10959 					goto fail;
10960 
10961 				ret = -EINVAL;
10962 				if (!filter->path.dentry ||
10963 				    !S_ISREG(d_inode(filter->path.dentry)
10964 					     ->i_mode))
10965 					goto fail;
10966 
10967 				event->addr_filters.nr_file_filters++;
10968 			}
10969 
10970 			/* ready to consume more filters */
10971 			kfree(filename);
10972 			filename = NULL;
10973 			state = IF_STATE_ACTION;
10974 			filter = NULL;
10975 			kernel = 0;
10976 		}
10977 	}
10978 
10979 	if (state != IF_STATE_ACTION)
10980 		goto fail;
10981 
10982 	kfree(filename);
10983 	kfree(orig);
10984 
10985 	return 0;
10986 
10987 fail:
10988 	kfree(filename);
10989 	free_filters_list(filters);
10990 	kfree(orig);
10991 
10992 	return ret;
10993 }
10994 
10995 static int
10996 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10997 {
10998 	LIST_HEAD(filters);
10999 	int ret;
11000 
11001 	/*
11002 	 * Since this is called in perf_ioctl() path, we're already holding
11003 	 * ctx::mutex.
11004 	 */
11005 	lockdep_assert_held(&event->ctx->mutex);
11006 
11007 	if (WARN_ON_ONCE(event->parent))
11008 		return -EINVAL;
11009 
11010 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11011 	if (ret)
11012 		goto fail_clear_files;
11013 
11014 	ret = event->pmu->addr_filters_validate(&filters);
11015 	if (ret)
11016 		goto fail_free_filters;
11017 
11018 	/* remove existing filters, if any */
11019 	perf_addr_filters_splice(event, &filters);
11020 
11021 	/* install new filters */
11022 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11023 
11024 	return ret;
11025 
11026 fail_free_filters:
11027 	free_filters_list(&filters);
11028 
11029 fail_clear_files:
11030 	event->addr_filters.nr_file_filters = 0;
11031 
11032 	return ret;
11033 }
11034 
11035 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11036 {
11037 	int ret = -EINVAL;
11038 	char *filter_str;
11039 
11040 	filter_str = strndup_user(arg, PAGE_SIZE);
11041 	if (IS_ERR(filter_str))
11042 		return PTR_ERR(filter_str);
11043 
11044 #ifdef CONFIG_EVENT_TRACING
11045 	if (perf_event_is_tracing(event)) {
11046 		struct perf_event_context *ctx = event->ctx;
11047 
11048 		/*
11049 		 * Beware, here be dragons!!
11050 		 *
11051 		 * the tracepoint muck will deadlock against ctx->mutex, but
11052 		 * the tracepoint stuff does not actually need it. So
11053 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11054 		 * already have a reference on ctx.
11055 		 *
11056 		 * This can result in event getting moved to a different ctx,
11057 		 * but that does not affect the tracepoint state.
11058 		 */
11059 		mutex_unlock(&ctx->mutex);
11060 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11061 		mutex_lock(&ctx->mutex);
11062 	} else
11063 #endif
11064 	if (has_addr_filter(event))
11065 		ret = perf_event_set_addr_filter(event, filter_str);
11066 
11067 	kfree(filter_str);
11068 	return ret;
11069 }
11070 
11071 /*
11072  * hrtimer based swevent callback
11073  */
11074 
11075 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11076 {
11077 	enum hrtimer_restart ret = HRTIMER_RESTART;
11078 	struct perf_sample_data data;
11079 	struct pt_regs *regs;
11080 	struct perf_event *event;
11081 	u64 period;
11082 
11083 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11084 
11085 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11086 		return HRTIMER_NORESTART;
11087 
11088 	event->pmu->read(event);
11089 
11090 	perf_sample_data_init(&data, 0, event->hw.last_period);
11091 	regs = get_irq_regs();
11092 
11093 	if (regs && !perf_exclude_event(event, regs)) {
11094 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11095 			if (__perf_event_overflow(event, 1, &data, regs))
11096 				ret = HRTIMER_NORESTART;
11097 	}
11098 
11099 	period = max_t(u64, 10000, event->hw.sample_period);
11100 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11101 
11102 	return ret;
11103 }
11104 
11105 static void perf_swevent_start_hrtimer(struct perf_event *event)
11106 {
11107 	struct hw_perf_event *hwc = &event->hw;
11108 	s64 period;
11109 
11110 	if (!is_sampling_event(event))
11111 		return;
11112 
11113 	period = local64_read(&hwc->period_left);
11114 	if (period) {
11115 		if (period < 0)
11116 			period = 10000;
11117 
11118 		local64_set(&hwc->period_left, 0);
11119 	} else {
11120 		period = max_t(u64, 10000, hwc->sample_period);
11121 	}
11122 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11123 		      HRTIMER_MODE_REL_PINNED_HARD);
11124 }
11125 
11126 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11127 {
11128 	struct hw_perf_event *hwc = &event->hw;
11129 
11130 	if (is_sampling_event(event)) {
11131 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11132 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11133 
11134 		hrtimer_cancel(&hwc->hrtimer);
11135 	}
11136 }
11137 
11138 static void perf_swevent_init_hrtimer(struct perf_event *event)
11139 {
11140 	struct hw_perf_event *hwc = &event->hw;
11141 
11142 	if (!is_sampling_event(event))
11143 		return;
11144 
11145 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11146 	hwc->hrtimer.function = perf_swevent_hrtimer;
11147 
11148 	/*
11149 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11150 	 * mapping and avoid the whole period adjust feedback stuff.
11151 	 */
11152 	if (event->attr.freq) {
11153 		long freq = event->attr.sample_freq;
11154 
11155 		event->attr.sample_period = NSEC_PER_SEC / freq;
11156 		hwc->sample_period = event->attr.sample_period;
11157 		local64_set(&hwc->period_left, hwc->sample_period);
11158 		hwc->last_period = hwc->sample_period;
11159 		event->attr.freq = 0;
11160 	}
11161 }
11162 
11163 /*
11164  * Software event: cpu wall time clock
11165  */
11166 
11167 static void cpu_clock_event_update(struct perf_event *event)
11168 {
11169 	s64 prev;
11170 	u64 now;
11171 
11172 	now = local_clock();
11173 	prev = local64_xchg(&event->hw.prev_count, now);
11174 	local64_add(now - prev, &event->count);
11175 }
11176 
11177 static void cpu_clock_event_start(struct perf_event *event, int flags)
11178 {
11179 	local64_set(&event->hw.prev_count, local_clock());
11180 	perf_swevent_start_hrtimer(event);
11181 }
11182 
11183 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11184 {
11185 	perf_swevent_cancel_hrtimer(event);
11186 	cpu_clock_event_update(event);
11187 }
11188 
11189 static int cpu_clock_event_add(struct perf_event *event, int flags)
11190 {
11191 	if (flags & PERF_EF_START)
11192 		cpu_clock_event_start(event, flags);
11193 	perf_event_update_userpage(event);
11194 
11195 	return 0;
11196 }
11197 
11198 static void cpu_clock_event_del(struct perf_event *event, int flags)
11199 {
11200 	cpu_clock_event_stop(event, flags);
11201 }
11202 
11203 static void cpu_clock_event_read(struct perf_event *event)
11204 {
11205 	cpu_clock_event_update(event);
11206 }
11207 
11208 static int cpu_clock_event_init(struct perf_event *event)
11209 {
11210 	if (event->attr.type != perf_cpu_clock.type)
11211 		return -ENOENT;
11212 
11213 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11214 		return -ENOENT;
11215 
11216 	/*
11217 	 * no branch sampling for software events
11218 	 */
11219 	if (has_branch_stack(event))
11220 		return -EOPNOTSUPP;
11221 
11222 	perf_swevent_init_hrtimer(event);
11223 
11224 	return 0;
11225 }
11226 
11227 static struct pmu perf_cpu_clock = {
11228 	.task_ctx_nr	= perf_sw_context,
11229 
11230 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11231 	.dev		= PMU_NULL_DEV,
11232 
11233 	.event_init	= cpu_clock_event_init,
11234 	.add		= cpu_clock_event_add,
11235 	.del		= cpu_clock_event_del,
11236 	.start		= cpu_clock_event_start,
11237 	.stop		= cpu_clock_event_stop,
11238 	.read		= cpu_clock_event_read,
11239 };
11240 
11241 /*
11242  * Software event: task time clock
11243  */
11244 
11245 static void task_clock_event_update(struct perf_event *event, u64 now)
11246 {
11247 	u64 prev;
11248 	s64 delta;
11249 
11250 	prev = local64_xchg(&event->hw.prev_count, now);
11251 	delta = now - prev;
11252 	local64_add(delta, &event->count);
11253 }
11254 
11255 static void task_clock_event_start(struct perf_event *event, int flags)
11256 {
11257 	local64_set(&event->hw.prev_count, event->ctx->time);
11258 	perf_swevent_start_hrtimer(event);
11259 }
11260 
11261 static void task_clock_event_stop(struct perf_event *event, int flags)
11262 {
11263 	perf_swevent_cancel_hrtimer(event);
11264 	task_clock_event_update(event, event->ctx->time);
11265 }
11266 
11267 static int task_clock_event_add(struct perf_event *event, int flags)
11268 {
11269 	if (flags & PERF_EF_START)
11270 		task_clock_event_start(event, flags);
11271 	perf_event_update_userpage(event);
11272 
11273 	return 0;
11274 }
11275 
11276 static void task_clock_event_del(struct perf_event *event, int flags)
11277 {
11278 	task_clock_event_stop(event, PERF_EF_UPDATE);
11279 }
11280 
11281 static void task_clock_event_read(struct perf_event *event)
11282 {
11283 	u64 now = perf_clock();
11284 	u64 delta = now - event->ctx->timestamp;
11285 	u64 time = event->ctx->time + delta;
11286 
11287 	task_clock_event_update(event, time);
11288 }
11289 
11290 static int task_clock_event_init(struct perf_event *event)
11291 {
11292 	if (event->attr.type != perf_task_clock.type)
11293 		return -ENOENT;
11294 
11295 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11296 		return -ENOENT;
11297 
11298 	/*
11299 	 * no branch sampling for software events
11300 	 */
11301 	if (has_branch_stack(event))
11302 		return -EOPNOTSUPP;
11303 
11304 	perf_swevent_init_hrtimer(event);
11305 
11306 	return 0;
11307 }
11308 
11309 static struct pmu perf_task_clock = {
11310 	.task_ctx_nr	= perf_sw_context,
11311 
11312 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11313 	.dev		= PMU_NULL_DEV,
11314 
11315 	.event_init	= task_clock_event_init,
11316 	.add		= task_clock_event_add,
11317 	.del		= task_clock_event_del,
11318 	.start		= task_clock_event_start,
11319 	.stop		= task_clock_event_stop,
11320 	.read		= task_clock_event_read,
11321 };
11322 
11323 static void perf_pmu_nop_void(struct pmu *pmu)
11324 {
11325 }
11326 
11327 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11328 {
11329 }
11330 
11331 static int perf_pmu_nop_int(struct pmu *pmu)
11332 {
11333 	return 0;
11334 }
11335 
11336 static int perf_event_nop_int(struct perf_event *event, u64 value)
11337 {
11338 	return 0;
11339 }
11340 
11341 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11342 
11343 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11344 {
11345 	__this_cpu_write(nop_txn_flags, flags);
11346 
11347 	if (flags & ~PERF_PMU_TXN_ADD)
11348 		return;
11349 
11350 	perf_pmu_disable(pmu);
11351 }
11352 
11353 static int perf_pmu_commit_txn(struct pmu *pmu)
11354 {
11355 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11356 
11357 	__this_cpu_write(nop_txn_flags, 0);
11358 
11359 	if (flags & ~PERF_PMU_TXN_ADD)
11360 		return 0;
11361 
11362 	perf_pmu_enable(pmu);
11363 	return 0;
11364 }
11365 
11366 static void perf_pmu_cancel_txn(struct pmu *pmu)
11367 {
11368 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11369 
11370 	__this_cpu_write(nop_txn_flags, 0);
11371 
11372 	if (flags & ~PERF_PMU_TXN_ADD)
11373 		return;
11374 
11375 	perf_pmu_enable(pmu);
11376 }
11377 
11378 static int perf_event_idx_default(struct perf_event *event)
11379 {
11380 	return 0;
11381 }
11382 
11383 static void free_pmu_context(struct pmu *pmu)
11384 {
11385 	free_percpu(pmu->cpu_pmu_context);
11386 }
11387 
11388 /*
11389  * Let userspace know that this PMU supports address range filtering:
11390  */
11391 static ssize_t nr_addr_filters_show(struct device *dev,
11392 				    struct device_attribute *attr,
11393 				    char *page)
11394 {
11395 	struct pmu *pmu = dev_get_drvdata(dev);
11396 
11397 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11398 }
11399 DEVICE_ATTR_RO(nr_addr_filters);
11400 
11401 static struct idr pmu_idr;
11402 
11403 static ssize_t
11404 type_show(struct device *dev, struct device_attribute *attr, char *page)
11405 {
11406 	struct pmu *pmu = dev_get_drvdata(dev);
11407 
11408 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11409 }
11410 static DEVICE_ATTR_RO(type);
11411 
11412 static ssize_t
11413 perf_event_mux_interval_ms_show(struct device *dev,
11414 				struct device_attribute *attr,
11415 				char *page)
11416 {
11417 	struct pmu *pmu = dev_get_drvdata(dev);
11418 
11419 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11420 }
11421 
11422 static DEFINE_MUTEX(mux_interval_mutex);
11423 
11424 static ssize_t
11425 perf_event_mux_interval_ms_store(struct device *dev,
11426 				 struct device_attribute *attr,
11427 				 const char *buf, size_t count)
11428 {
11429 	struct pmu *pmu = dev_get_drvdata(dev);
11430 	int timer, cpu, ret;
11431 
11432 	ret = kstrtoint(buf, 0, &timer);
11433 	if (ret)
11434 		return ret;
11435 
11436 	if (timer < 1)
11437 		return -EINVAL;
11438 
11439 	/* same value, noting to do */
11440 	if (timer == pmu->hrtimer_interval_ms)
11441 		return count;
11442 
11443 	mutex_lock(&mux_interval_mutex);
11444 	pmu->hrtimer_interval_ms = timer;
11445 
11446 	/* update all cpuctx for this PMU */
11447 	cpus_read_lock();
11448 	for_each_online_cpu(cpu) {
11449 		struct perf_cpu_pmu_context *cpc;
11450 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11451 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11452 
11453 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11454 	}
11455 	cpus_read_unlock();
11456 	mutex_unlock(&mux_interval_mutex);
11457 
11458 	return count;
11459 }
11460 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11461 
11462 static struct attribute *pmu_dev_attrs[] = {
11463 	&dev_attr_type.attr,
11464 	&dev_attr_perf_event_mux_interval_ms.attr,
11465 	&dev_attr_nr_addr_filters.attr,
11466 	NULL,
11467 };
11468 
11469 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11470 {
11471 	struct device *dev = kobj_to_dev(kobj);
11472 	struct pmu *pmu = dev_get_drvdata(dev);
11473 
11474 	if (n == 2 && !pmu->nr_addr_filters)
11475 		return 0;
11476 
11477 	return a->mode;
11478 }
11479 
11480 static struct attribute_group pmu_dev_attr_group = {
11481 	.is_visible = pmu_dev_is_visible,
11482 	.attrs = pmu_dev_attrs,
11483 };
11484 
11485 static const struct attribute_group *pmu_dev_groups[] = {
11486 	&pmu_dev_attr_group,
11487 	NULL,
11488 };
11489 
11490 static int pmu_bus_running;
11491 static struct bus_type pmu_bus = {
11492 	.name		= "event_source",
11493 	.dev_groups	= pmu_dev_groups,
11494 };
11495 
11496 static void pmu_dev_release(struct device *dev)
11497 {
11498 	kfree(dev);
11499 }
11500 
11501 static int pmu_dev_alloc(struct pmu *pmu)
11502 {
11503 	int ret = -ENOMEM;
11504 
11505 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11506 	if (!pmu->dev)
11507 		goto out;
11508 
11509 	pmu->dev->groups = pmu->attr_groups;
11510 	device_initialize(pmu->dev);
11511 
11512 	dev_set_drvdata(pmu->dev, pmu);
11513 	pmu->dev->bus = &pmu_bus;
11514 	pmu->dev->parent = pmu->parent;
11515 	pmu->dev->release = pmu_dev_release;
11516 
11517 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11518 	if (ret)
11519 		goto free_dev;
11520 
11521 	ret = device_add(pmu->dev);
11522 	if (ret)
11523 		goto free_dev;
11524 
11525 	if (pmu->attr_update) {
11526 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11527 		if (ret)
11528 			goto del_dev;
11529 	}
11530 
11531 out:
11532 	return ret;
11533 
11534 del_dev:
11535 	device_del(pmu->dev);
11536 
11537 free_dev:
11538 	put_device(pmu->dev);
11539 	goto out;
11540 }
11541 
11542 static struct lock_class_key cpuctx_mutex;
11543 static struct lock_class_key cpuctx_lock;
11544 
11545 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11546 {
11547 	int cpu, ret, max = PERF_TYPE_MAX;
11548 
11549 	mutex_lock(&pmus_lock);
11550 	ret = -ENOMEM;
11551 	pmu->pmu_disable_count = alloc_percpu(int);
11552 	if (!pmu->pmu_disable_count)
11553 		goto unlock;
11554 
11555 	pmu->type = -1;
11556 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11557 		ret = -EINVAL;
11558 		goto free_pdc;
11559 	}
11560 
11561 	pmu->name = name;
11562 
11563 	if (type >= 0)
11564 		max = type;
11565 
11566 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11567 	if (ret < 0)
11568 		goto free_pdc;
11569 
11570 	WARN_ON(type >= 0 && ret != type);
11571 
11572 	type = ret;
11573 	pmu->type = type;
11574 
11575 	if (pmu_bus_running && !pmu->dev) {
11576 		ret = pmu_dev_alloc(pmu);
11577 		if (ret)
11578 			goto free_idr;
11579 	}
11580 
11581 	ret = -ENOMEM;
11582 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11583 	if (!pmu->cpu_pmu_context)
11584 		goto free_dev;
11585 
11586 	for_each_possible_cpu(cpu) {
11587 		struct perf_cpu_pmu_context *cpc;
11588 
11589 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11590 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11591 		__perf_mux_hrtimer_init(cpc, cpu);
11592 	}
11593 
11594 	if (!pmu->start_txn) {
11595 		if (pmu->pmu_enable) {
11596 			/*
11597 			 * If we have pmu_enable/pmu_disable calls, install
11598 			 * transaction stubs that use that to try and batch
11599 			 * hardware accesses.
11600 			 */
11601 			pmu->start_txn  = perf_pmu_start_txn;
11602 			pmu->commit_txn = perf_pmu_commit_txn;
11603 			pmu->cancel_txn = perf_pmu_cancel_txn;
11604 		} else {
11605 			pmu->start_txn  = perf_pmu_nop_txn;
11606 			pmu->commit_txn = perf_pmu_nop_int;
11607 			pmu->cancel_txn = perf_pmu_nop_void;
11608 		}
11609 	}
11610 
11611 	if (!pmu->pmu_enable) {
11612 		pmu->pmu_enable  = perf_pmu_nop_void;
11613 		pmu->pmu_disable = perf_pmu_nop_void;
11614 	}
11615 
11616 	if (!pmu->check_period)
11617 		pmu->check_period = perf_event_nop_int;
11618 
11619 	if (!pmu->event_idx)
11620 		pmu->event_idx = perf_event_idx_default;
11621 
11622 	list_add_rcu(&pmu->entry, &pmus);
11623 	atomic_set(&pmu->exclusive_cnt, 0);
11624 	ret = 0;
11625 unlock:
11626 	mutex_unlock(&pmus_lock);
11627 
11628 	return ret;
11629 
11630 free_dev:
11631 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11632 		device_del(pmu->dev);
11633 		put_device(pmu->dev);
11634 	}
11635 
11636 free_idr:
11637 	idr_remove(&pmu_idr, pmu->type);
11638 
11639 free_pdc:
11640 	free_percpu(pmu->pmu_disable_count);
11641 	goto unlock;
11642 }
11643 EXPORT_SYMBOL_GPL(perf_pmu_register);
11644 
11645 void perf_pmu_unregister(struct pmu *pmu)
11646 {
11647 	mutex_lock(&pmus_lock);
11648 	list_del_rcu(&pmu->entry);
11649 
11650 	/*
11651 	 * We dereference the pmu list under both SRCU and regular RCU, so
11652 	 * synchronize against both of those.
11653 	 */
11654 	synchronize_srcu(&pmus_srcu);
11655 	synchronize_rcu();
11656 
11657 	free_percpu(pmu->pmu_disable_count);
11658 	idr_remove(&pmu_idr, pmu->type);
11659 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11660 		if (pmu->nr_addr_filters)
11661 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11662 		device_del(pmu->dev);
11663 		put_device(pmu->dev);
11664 	}
11665 	free_pmu_context(pmu);
11666 	mutex_unlock(&pmus_lock);
11667 }
11668 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11669 
11670 static inline bool has_extended_regs(struct perf_event *event)
11671 {
11672 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11673 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11674 }
11675 
11676 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11677 {
11678 	struct perf_event_context *ctx = NULL;
11679 	int ret;
11680 
11681 	if (!try_module_get(pmu->module))
11682 		return -ENODEV;
11683 
11684 	/*
11685 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11686 	 * for example, validate if the group fits on the PMU. Therefore,
11687 	 * if this is a sibling event, acquire the ctx->mutex to protect
11688 	 * the sibling_list.
11689 	 */
11690 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11691 		/*
11692 		 * This ctx->mutex can nest when we're called through
11693 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11694 		 */
11695 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11696 						 SINGLE_DEPTH_NESTING);
11697 		BUG_ON(!ctx);
11698 	}
11699 
11700 	event->pmu = pmu;
11701 	ret = pmu->event_init(event);
11702 
11703 	if (ctx)
11704 		perf_event_ctx_unlock(event->group_leader, ctx);
11705 
11706 	if (!ret) {
11707 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11708 		    has_extended_regs(event))
11709 			ret = -EOPNOTSUPP;
11710 
11711 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11712 		    event_has_any_exclude_flag(event))
11713 			ret = -EINVAL;
11714 
11715 		if (ret && event->destroy)
11716 			event->destroy(event);
11717 	}
11718 
11719 	if (ret)
11720 		module_put(pmu->module);
11721 
11722 	return ret;
11723 }
11724 
11725 static struct pmu *perf_init_event(struct perf_event *event)
11726 {
11727 	bool extended_type = false;
11728 	int idx, type, ret;
11729 	struct pmu *pmu;
11730 
11731 	idx = srcu_read_lock(&pmus_srcu);
11732 
11733 	/*
11734 	 * Save original type before calling pmu->event_init() since certain
11735 	 * pmus overwrites event->attr.type to forward event to another pmu.
11736 	 */
11737 	event->orig_type = event->attr.type;
11738 
11739 	/* Try parent's PMU first: */
11740 	if (event->parent && event->parent->pmu) {
11741 		pmu = event->parent->pmu;
11742 		ret = perf_try_init_event(pmu, event);
11743 		if (!ret)
11744 			goto unlock;
11745 	}
11746 
11747 	/*
11748 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11749 	 * are often aliases for PERF_TYPE_RAW.
11750 	 */
11751 	type = event->attr.type;
11752 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11753 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11754 		if (!type) {
11755 			type = PERF_TYPE_RAW;
11756 		} else {
11757 			extended_type = true;
11758 			event->attr.config &= PERF_HW_EVENT_MASK;
11759 		}
11760 	}
11761 
11762 again:
11763 	rcu_read_lock();
11764 	pmu = idr_find(&pmu_idr, type);
11765 	rcu_read_unlock();
11766 	if (pmu) {
11767 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11768 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11769 			goto fail;
11770 
11771 		ret = perf_try_init_event(pmu, event);
11772 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11773 			type = event->attr.type;
11774 			goto again;
11775 		}
11776 
11777 		if (ret)
11778 			pmu = ERR_PTR(ret);
11779 
11780 		goto unlock;
11781 	}
11782 
11783 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11784 		ret = perf_try_init_event(pmu, event);
11785 		if (!ret)
11786 			goto unlock;
11787 
11788 		if (ret != -ENOENT) {
11789 			pmu = ERR_PTR(ret);
11790 			goto unlock;
11791 		}
11792 	}
11793 fail:
11794 	pmu = ERR_PTR(-ENOENT);
11795 unlock:
11796 	srcu_read_unlock(&pmus_srcu, idx);
11797 
11798 	return pmu;
11799 }
11800 
11801 static void attach_sb_event(struct perf_event *event)
11802 {
11803 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11804 
11805 	raw_spin_lock(&pel->lock);
11806 	list_add_rcu(&event->sb_list, &pel->list);
11807 	raw_spin_unlock(&pel->lock);
11808 }
11809 
11810 /*
11811  * We keep a list of all !task (and therefore per-cpu) events
11812  * that need to receive side-band records.
11813  *
11814  * This avoids having to scan all the various PMU per-cpu contexts
11815  * looking for them.
11816  */
11817 static void account_pmu_sb_event(struct perf_event *event)
11818 {
11819 	if (is_sb_event(event))
11820 		attach_sb_event(event);
11821 }
11822 
11823 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11824 static void account_freq_event_nohz(void)
11825 {
11826 #ifdef CONFIG_NO_HZ_FULL
11827 	/* Lock so we don't race with concurrent unaccount */
11828 	spin_lock(&nr_freq_lock);
11829 	if (atomic_inc_return(&nr_freq_events) == 1)
11830 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11831 	spin_unlock(&nr_freq_lock);
11832 #endif
11833 }
11834 
11835 static void account_freq_event(void)
11836 {
11837 	if (tick_nohz_full_enabled())
11838 		account_freq_event_nohz();
11839 	else
11840 		atomic_inc(&nr_freq_events);
11841 }
11842 
11843 
11844 static void account_event(struct perf_event *event)
11845 {
11846 	bool inc = false;
11847 
11848 	if (event->parent)
11849 		return;
11850 
11851 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11852 		inc = true;
11853 	if (event->attr.mmap || event->attr.mmap_data)
11854 		atomic_inc(&nr_mmap_events);
11855 	if (event->attr.build_id)
11856 		atomic_inc(&nr_build_id_events);
11857 	if (event->attr.comm)
11858 		atomic_inc(&nr_comm_events);
11859 	if (event->attr.namespaces)
11860 		atomic_inc(&nr_namespaces_events);
11861 	if (event->attr.cgroup)
11862 		atomic_inc(&nr_cgroup_events);
11863 	if (event->attr.task)
11864 		atomic_inc(&nr_task_events);
11865 	if (event->attr.freq)
11866 		account_freq_event();
11867 	if (event->attr.context_switch) {
11868 		atomic_inc(&nr_switch_events);
11869 		inc = true;
11870 	}
11871 	if (has_branch_stack(event))
11872 		inc = true;
11873 	if (is_cgroup_event(event))
11874 		inc = true;
11875 	if (event->attr.ksymbol)
11876 		atomic_inc(&nr_ksymbol_events);
11877 	if (event->attr.bpf_event)
11878 		atomic_inc(&nr_bpf_events);
11879 	if (event->attr.text_poke)
11880 		atomic_inc(&nr_text_poke_events);
11881 
11882 	if (inc) {
11883 		/*
11884 		 * We need the mutex here because static_branch_enable()
11885 		 * must complete *before* the perf_sched_count increment
11886 		 * becomes visible.
11887 		 */
11888 		if (atomic_inc_not_zero(&perf_sched_count))
11889 			goto enabled;
11890 
11891 		mutex_lock(&perf_sched_mutex);
11892 		if (!atomic_read(&perf_sched_count)) {
11893 			static_branch_enable(&perf_sched_events);
11894 			/*
11895 			 * Guarantee that all CPUs observe they key change and
11896 			 * call the perf scheduling hooks before proceeding to
11897 			 * install events that need them.
11898 			 */
11899 			synchronize_rcu();
11900 		}
11901 		/*
11902 		 * Now that we have waited for the sync_sched(), allow further
11903 		 * increments to by-pass the mutex.
11904 		 */
11905 		atomic_inc(&perf_sched_count);
11906 		mutex_unlock(&perf_sched_mutex);
11907 	}
11908 enabled:
11909 
11910 	account_pmu_sb_event(event);
11911 }
11912 
11913 /*
11914  * Allocate and initialize an event structure
11915  */
11916 static struct perf_event *
11917 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11918 		 struct task_struct *task,
11919 		 struct perf_event *group_leader,
11920 		 struct perf_event *parent_event,
11921 		 perf_overflow_handler_t overflow_handler,
11922 		 void *context, int cgroup_fd)
11923 {
11924 	struct pmu *pmu;
11925 	struct perf_event *event;
11926 	struct hw_perf_event *hwc;
11927 	long err = -EINVAL;
11928 	int node;
11929 
11930 	if ((unsigned)cpu >= nr_cpu_ids) {
11931 		if (!task || cpu != -1)
11932 			return ERR_PTR(-EINVAL);
11933 	}
11934 	if (attr->sigtrap && !task) {
11935 		/* Requires a task: avoid signalling random tasks. */
11936 		return ERR_PTR(-EINVAL);
11937 	}
11938 
11939 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11940 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11941 				      node);
11942 	if (!event)
11943 		return ERR_PTR(-ENOMEM);
11944 
11945 	/*
11946 	 * Single events are their own group leaders, with an
11947 	 * empty sibling list:
11948 	 */
11949 	if (!group_leader)
11950 		group_leader = event;
11951 
11952 	mutex_init(&event->child_mutex);
11953 	INIT_LIST_HEAD(&event->child_list);
11954 
11955 	INIT_LIST_HEAD(&event->event_entry);
11956 	INIT_LIST_HEAD(&event->sibling_list);
11957 	INIT_LIST_HEAD(&event->active_list);
11958 	init_event_group(event);
11959 	INIT_LIST_HEAD(&event->rb_entry);
11960 	INIT_LIST_HEAD(&event->active_entry);
11961 	INIT_LIST_HEAD(&event->addr_filters.list);
11962 	INIT_HLIST_NODE(&event->hlist_entry);
11963 
11964 
11965 	init_waitqueue_head(&event->waitq);
11966 	init_irq_work(&event->pending_irq, perf_pending_irq);
11967 	init_task_work(&event->pending_task, perf_pending_task);
11968 	rcuwait_init(&event->pending_work_wait);
11969 
11970 	mutex_init(&event->mmap_mutex);
11971 	raw_spin_lock_init(&event->addr_filters.lock);
11972 
11973 	atomic_long_set(&event->refcount, 1);
11974 	event->cpu		= cpu;
11975 	event->attr		= *attr;
11976 	event->group_leader	= group_leader;
11977 	event->pmu		= NULL;
11978 	event->oncpu		= -1;
11979 
11980 	event->parent		= parent_event;
11981 
11982 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11983 	event->id		= atomic64_inc_return(&perf_event_id);
11984 
11985 	event->state		= PERF_EVENT_STATE_INACTIVE;
11986 
11987 	if (parent_event)
11988 		event->event_caps = parent_event->event_caps;
11989 
11990 	if (task) {
11991 		event->attach_state = PERF_ATTACH_TASK;
11992 		/*
11993 		 * XXX pmu::event_init needs to know what task to account to
11994 		 * and we cannot use the ctx information because we need the
11995 		 * pmu before we get a ctx.
11996 		 */
11997 		event->hw.target = get_task_struct(task);
11998 	}
11999 
12000 	event->clock = &local_clock;
12001 	if (parent_event)
12002 		event->clock = parent_event->clock;
12003 
12004 	if (!overflow_handler && parent_event) {
12005 		overflow_handler = parent_event->overflow_handler;
12006 		context = parent_event->overflow_handler_context;
12007 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12008 		if (overflow_handler == bpf_overflow_handler) {
12009 			struct bpf_prog *prog = parent_event->prog;
12010 
12011 			bpf_prog_inc(prog);
12012 			event->prog = prog;
12013 			event->orig_overflow_handler =
12014 				parent_event->orig_overflow_handler;
12015 		}
12016 #endif
12017 	}
12018 
12019 	if (overflow_handler) {
12020 		event->overflow_handler	= overflow_handler;
12021 		event->overflow_handler_context = context;
12022 	} else if (is_write_backward(event)){
12023 		event->overflow_handler = perf_event_output_backward;
12024 		event->overflow_handler_context = NULL;
12025 	} else {
12026 		event->overflow_handler = perf_event_output_forward;
12027 		event->overflow_handler_context = NULL;
12028 	}
12029 
12030 	perf_event__state_init(event);
12031 
12032 	pmu = NULL;
12033 
12034 	hwc = &event->hw;
12035 	hwc->sample_period = attr->sample_period;
12036 	if (attr->freq && attr->sample_freq)
12037 		hwc->sample_period = 1;
12038 	hwc->last_period = hwc->sample_period;
12039 
12040 	local64_set(&hwc->period_left, hwc->sample_period);
12041 
12042 	/*
12043 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12044 	 * See perf_output_read().
12045 	 */
12046 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12047 		goto err_ns;
12048 
12049 	if (!has_branch_stack(event))
12050 		event->attr.branch_sample_type = 0;
12051 
12052 	pmu = perf_init_event(event);
12053 	if (IS_ERR(pmu)) {
12054 		err = PTR_ERR(pmu);
12055 		goto err_ns;
12056 	}
12057 
12058 	/*
12059 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12060 	 * events (they don't make sense as the cgroup will be different
12061 	 * on other CPUs in the uncore mask).
12062 	 */
12063 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12064 		err = -EINVAL;
12065 		goto err_pmu;
12066 	}
12067 
12068 	if (event->attr.aux_output &&
12069 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12070 		err = -EOPNOTSUPP;
12071 		goto err_pmu;
12072 	}
12073 
12074 	if (cgroup_fd != -1) {
12075 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12076 		if (err)
12077 			goto err_pmu;
12078 	}
12079 
12080 	err = exclusive_event_init(event);
12081 	if (err)
12082 		goto err_pmu;
12083 
12084 	if (has_addr_filter(event)) {
12085 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12086 						    sizeof(struct perf_addr_filter_range),
12087 						    GFP_KERNEL);
12088 		if (!event->addr_filter_ranges) {
12089 			err = -ENOMEM;
12090 			goto err_per_task;
12091 		}
12092 
12093 		/*
12094 		 * Clone the parent's vma offsets: they are valid until exec()
12095 		 * even if the mm is not shared with the parent.
12096 		 */
12097 		if (event->parent) {
12098 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12099 
12100 			raw_spin_lock_irq(&ifh->lock);
12101 			memcpy(event->addr_filter_ranges,
12102 			       event->parent->addr_filter_ranges,
12103 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12104 			raw_spin_unlock_irq(&ifh->lock);
12105 		}
12106 
12107 		/* force hw sync on the address filters */
12108 		event->addr_filters_gen = 1;
12109 	}
12110 
12111 	if (!event->parent) {
12112 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12113 			err = get_callchain_buffers(attr->sample_max_stack);
12114 			if (err)
12115 				goto err_addr_filters;
12116 		}
12117 	}
12118 
12119 	err = security_perf_event_alloc(event);
12120 	if (err)
12121 		goto err_callchain_buffer;
12122 
12123 	/* symmetric to unaccount_event() in _free_event() */
12124 	account_event(event);
12125 
12126 	return event;
12127 
12128 err_callchain_buffer:
12129 	if (!event->parent) {
12130 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12131 			put_callchain_buffers();
12132 	}
12133 err_addr_filters:
12134 	kfree(event->addr_filter_ranges);
12135 
12136 err_per_task:
12137 	exclusive_event_destroy(event);
12138 
12139 err_pmu:
12140 	if (is_cgroup_event(event))
12141 		perf_detach_cgroup(event);
12142 	if (event->destroy)
12143 		event->destroy(event);
12144 	module_put(pmu->module);
12145 err_ns:
12146 	if (event->hw.target)
12147 		put_task_struct(event->hw.target);
12148 	call_rcu(&event->rcu_head, free_event_rcu);
12149 
12150 	return ERR_PTR(err);
12151 }
12152 
12153 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12154 			  struct perf_event_attr *attr)
12155 {
12156 	u32 size;
12157 	int ret;
12158 
12159 	/* Zero the full structure, so that a short copy will be nice. */
12160 	memset(attr, 0, sizeof(*attr));
12161 
12162 	ret = get_user(size, &uattr->size);
12163 	if (ret)
12164 		return ret;
12165 
12166 	/* ABI compatibility quirk: */
12167 	if (!size)
12168 		size = PERF_ATTR_SIZE_VER0;
12169 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12170 		goto err_size;
12171 
12172 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12173 	if (ret) {
12174 		if (ret == -E2BIG)
12175 			goto err_size;
12176 		return ret;
12177 	}
12178 
12179 	attr->size = size;
12180 
12181 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12182 		return -EINVAL;
12183 
12184 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12185 		return -EINVAL;
12186 
12187 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12188 		return -EINVAL;
12189 
12190 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12191 		u64 mask = attr->branch_sample_type;
12192 
12193 		/* only using defined bits */
12194 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12195 			return -EINVAL;
12196 
12197 		/* at least one branch bit must be set */
12198 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12199 			return -EINVAL;
12200 
12201 		/* propagate priv level, when not set for branch */
12202 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12203 
12204 			/* exclude_kernel checked on syscall entry */
12205 			if (!attr->exclude_kernel)
12206 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12207 
12208 			if (!attr->exclude_user)
12209 				mask |= PERF_SAMPLE_BRANCH_USER;
12210 
12211 			if (!attr->exclude_hv)
12212 				mask |= PERF_SAMPLE_BRANCH_HV;
12213 			/*
12214 			 * adjust user setting (for HW filter setup)
12215 			 */
12216 			attr->branch_sample_type = mask;
12217 		}
12218 		/* privileged levels capture (kernel, hv): check permissions */
12219 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12220 			ret = perf_allow_kernel(attr);
12221 			if (ret)
12222 				return ret;
12223 		}
12224 	}
12225 
12226 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12227 		ret = perf_reg_validate(attr->sample_regs_user);
12228 		if (ret)
12229 			return ret;
12230 	}
12231 
12232 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12233 		if (!arch_perf_have_user_stack_dump())
12234 			return -ENOSYS;
12235 
12236 		/*
12237 		 * We have __u32 type for the size, but so far
12238 		 * we can only use __u16 as maximum due to the
12239 		 * __u16 sample size limit.
12240 		 */
12241 		if (attr->sample_stack_user >= USHRT_MAX)
12242 			return -EINVAL;
12243 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12244 			return -EINVAL;
12245 	}
12246 
12247 	if (!attr->sample_max_stack)
12248 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12249 
12250 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12251 		ret = perf_reg_validate(attr->sample_regs_intr);
12252 
12253 #ifndef CONFIG_CGROUP_PERF
12254 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12255 		return -EINVAL;
12256 #endif
12257 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12258 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12259 		return -EINVAL;
12260 
12261 	if (!attr->inherit && attr->inherit_thread)
12262 		return -EINVAL;
12263 
12264 	if (attr->remove_on_exec && attr->enable_on_exec)
12265 		return -EINVAL;
12266 
12267 	if (attr->sigtrap && !attr->remove_on_exec)
12268 		return -EINVAL;
12269 
12270 out:
12271 	return ret;
12272 
12273 err_size:
12274 	put_user(sizeof(*attr), &uattr->size);
12275 	ret = -E2BIG;
12276 	goto out;
12277 }
12278 
12279 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12280 {
12281 	if (b < a)
12282 		swap(a, b);
12283 
12284 	mutex_lock(a);
12285 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12286 }
12287 
12288 static int
12289 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12290 {
12291 	struct perf_buffer *rb = NULL;
12292 	int ret = -EINVAL;
12293 
12294 	if (!output_event) {
12295 		mutex_lock(&event->mmap_mutex);
12296 		goto set;
12297 	}
12298 
12299 	/* don't allow circular references */
12300 	if (event == output_event)
12301 		goto out;
12302 
12303 	/*
12304 	 * Don't allow cross-cpu buffers
12305 	 */
12306 	if (output_event->cpu != event->cpu)
12307 		goto out;
12308 
12309 	/*
12310 	 * If its not a per-cpu rb, it must be the same task.
12311 	 */
12312 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12313 		goto out;
12314 
12315 	/*
12316 	 * Mixing clocks in the same buffer is trouble you don't need.
12317 	 */
12318 	if (output_event->clock != event->clock)
12319 		goto out;
12320 
12321 	/*
12322 	 * Either writing ring buffer from beginning or from end.
12323 	 * Mixing is not allowed.
12324 	 */
12325 	if (is_write_backward(output_event) != is_write_backward(event))
12326 		goto out;
12327 
12328 	/*
12329 	 * If both events generate aux data, they must be on the same PMU
12330 	 */
12331 	if (has_aux(event) && has_aux(output_event) &&
12332 	    event->pmu != output_event->pmu)
12333 		goto out;
12334 
12335 	/*
12336 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12337 	 * output_event is already on rb->event_list, and the list iteration
12338 	 * restarts after every removal, it is guaranteed this new event is
12339 	 * observed *OR* if output_event is already removed, it's guaranteed we
12340 	 * observe !rb->mmap_count.
12341 	 */
12342 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12343 set:
12344 	/* Can't redirect output if we've got an active mmap() */
12345 	if (atomic_read(&event->mmap_count))
12346 		goto unlock;
12347 
12348 	if (output_event) {
12349 		/* get the rb we want to redirect to */
12350 		rb = ring_buffer_get(output_event);
12351 		if (!rb)
12352 			goto unlock;
12353 
12354 		/* did we race against perf_mmap_close() */
12355 		if (!atomic_read(&rb->mmap_count)) {
12356 			ring_buffer_put(rb);
12357 			goto unlock;
12358 		}
12359 	}
12360 
12361 	ring_buffer_attach(event, rb);
12362 
12363 	ret = 0;
12364 unlock:
12365 	mutex_unlock(&event->mmap_mutex);
12366 	if (output_event)
12367 		mutex_unlock(&output_event->mmap_mutex);
12368 
12369 out:
12370 	return ret;
12371 }
12372 
12373 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12374 {
12375 	bool nmi_safe = false;
12376 
12377 	switch (clk_id) {
12378 	case CLOCK_MONOTONIC:
12379 		event->clock = &ktime_get_mono_fast_ns;
12380 		nmi_safe = true;
12381 		break;
12382 
12383 	case CLOCK_MONOTONIC_RAW:
12384 		event->clock = &ktime_get_raw_fast_ns;
12385 		nmi_safe = true;
12386 		break;
12387 
12388 	case CLOCK_REALTIME:
12389 		event->clock = &ktime_get_real_ns;
12390 		break;
12391 
12392 	case CLOCK_BOOTTIME:
12393 		event->clock = &ktime_get_boottime_ns;
12394 		break;
12395 
12396 	case CLOCK_TAI:
12397 		event->clock = &ktime_get_clocktai_ns;
12398 		break;
12399 
12400 	default:
12401 		return -EINVAL;
12402 	}
12403 
12404 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12405 		return -EINVAL;
12406 
12407 	return 0;
12408 }
12409 
12410 static bool
12411 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12412 {
12413 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12414 	bool is_capable = perfmon_capable();
12415 
12416 	if (attr->sigtrap) {
12417 		/*
12418 		 * perf_event_attr::sigtrap sends signals to the other task.
12419 		 * Require the current task to also have CAP_KILL.
12420 		 */
12421 		rcu_read_lock();
12422 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12423 		rcu_read_unlock();
12424 
12425 		/*
12426 		 * If the required capabilities aren't available, checks for
12427 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12428 		 * can effectively change the target task.
12429 		 */
12430 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12431 	}
12432 
12433 	/*
12434 	 * Preserve ptrace permission check for backwards compatibility. The
12435 	 * ptrace check also includes checks that the current task and other
12436 	 * task have matching uids, and is therefore not done here explicitly.
12437 	 */
12438 	return is_capable || ptrace_may_access(task, ptrace_mode);
12439 }
12440 
12441 /**
12442  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12443  *
12444  * @attr_uptr:	event_id type attributes for monitoring/sampling
12445  * @pid:		target pid
12446  * @cpu:		target cpu
12447  * @group_fd:		group leader event fd
12448  * @flags:		perf event open flags
12449  */
12450 SYSCALL_DEFINE5(perf_event_open,
12451 		struct perf_event_attr __user *, attr_uptr,
12452 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12453 {
12454 	struct perf_event *group_leader = NULL, *output_event = NULL;
12455 	struct perf_event_pmu_context *pmu_ctx;
12456 	struct perf_event *event, *sibling;
12457 	struct perf_event_attr attr;
12458 	struct perf_event_context *ctx;
12459 	struct file *event_file = NULL;
12460 	struct fd group = {NULL, 0};
12461 	struct task_struct *task = NULL;
12462 	struct pmu *pmu;
12463 	int event_fd;
12464 	int move_group = 0;
12465 	int err;
12466 	int f_flags = O_RDWR;
12467 	int cgroup_fd = -1;
12468 
12469 	/* for future expandability... */
12470 	if (flags & ~PERF_FLAG_ALL)
12471 		return -EINVAL;
12472 
12473 	err = perf_copy_attr(attr_uptr, &attr);
12474 	if (err)
12475 		return err;
12476 
12477 	/* Do we allow access to perf_event_open(2) ? */
12478 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12479 	if (err)
12480 		return err;
12481 
12482 	if (!attr.exclude_kernel) {
12483 		err = perf_allow_kernel(&attr);
12484 		if (err)
12485 			return err;
12486 	}
12487 
12488 	if (attr.namespaces) {
12489 		if (!perfmon_capable())
12490 			return -EACCES;
12491 	}
12492 
12493 	if (attr.freq) {
12494 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12495 			return -EINVAL;
12496 	} else {
12497 		if (attr.sample_period & (1ULL << 63))
12498 			return -EINVAL;
12499 	}
12500 
12501 	/* Only privileged users can get physical addresses */
12502 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12503 		err = perf_allow_kernel(&attr);
12504 		if (err)
12505 			return err;
12506 	}
12507 
12508 	/* REGS_INTR can leak data, lockdown must prevent this */
12509 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12510 		err = security_locked_down(LOCKDOWN_PERF);
12511 		if (err)
12512 			return err;
12513 	}
12514 
12515 	/*
12516 	 * In cgroup mode, the pid argument is used to pass the fd
12517 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12518 	 * designates the cpu on which to monitor threads from that
12519 	 * cgroup.
12520 	 */
12521 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12522 		return -EINVAL;
12523 
12524 	if (flags & PERF_FLAG_FD_CLOEXEC)
12525 		f_flags |= O_CLOEXEC;
12526 
12527 	event_fd = get_unused_fd_flags(f_flags);
12528 	if (event_fd < 0)
12529 		return event_fd;
12530 
12531 	if (group_fd != -1) {
12532 		err = perf_fget_light(group_fd, &group);
12533 		if (err)
12534 			goto err_fd;
12535 		group_leader = group.file->private_data;
12536 		if (flags & PERF_FLAG_FD_OUTPUT)
12537 			output_event = group_leader;
12538 		if (flags & PERF_FLAG_FD_NO_GROUP)
12539 			group_leader = NULL;
12540 	}
12541 
12542 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12543 		task = find_lively_task_by_vpid(pid);
12544 		if (IS_ERR(task)) {
12545 			err = PTR_ERR(task);
12546 			goto err_group_fd;
12547 		}
12548 	}
12549 
12550 	if (task && group_leader &&
12551 	    group_leader->attr.inherit != attr.inherit) {
12552 		err = -EINVAL;
12553 		goto err_task;
12554 	}
12555 
12556 	if (flags & PERF_FLAG_PID_CGROUP)
12557 		cgroup_fd = pid;
12558 
12559 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12560 				 NULL, NULL, cgroup_fd);
12561 	if (IS_ERR(event)) {
12562 		err = PTR_ERR(event);
12563 		goto err_task;
12564 	}
12565 
12566 	if (is_sampling_event(event)) {
12567 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12568 			err = -EOPNOTSUPP;
12569 			goto err_alloc;
12570 		}
12571 	}
12572 
12573 	/*
12574 	 * Special case software events and allow them to be part of
12575 	 * any hardware group.
12576 	 */
12577 	pmu = event->pmu;
12578 
12579 	if (attr.use_clockid) {
12580 		err = perf_event_set_clock(event, attr.clockid);
12581 		if (err)
12582 			goto err_alloc;
12583 	}
12584 
12585 	if (pmu->task_ctx_nr == perf_sw_context)
12586 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12587 
12588 	if (task) {
12589 		err = down_read_interruptible(&task->signal->exec_update_lock);
12590 		if (err)
12591 			goto err_alloc;
12592 
12593 		/*
12594 		 * We must hold exec_update_lock across this and any potential
12595 		 * perf_install_in_context() call for this new event to
12596 		 * serialize against exec() altering our credentials (and the
12597 		 * perf_event_exit_task() that could imply).
12598 		 */
12599 		err = -EACCES;
12600 		if (!perf_check_permission(&attr, task))
12601 			goto err_cred;
12602 	}
12603 
12604 	/*
12605 	 * Get the target context (task or percpu):
12606 	 */
12607 	ctx = find_get_context(task, event);
12608 	if (IS_ERR(ctx)) {
12609 		err = PTR_ERR(ctx);
12610 		goto err_cred;
12611 	}
12612 
12613 	mutex_lock(&ctx->mutex);
12614 
12615 	if (ctx->task == TASK_TOMBSTONE) {
12616 		err = -ESRCH;
12617 		goto err_locked;
12618 	}
12619 
12620 	if (!task) {
12621 		/*
12622 		 * Check if the @cpu we're creating an event for is online.
12623 		 *
12624 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12625 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12626 		 */
12627 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12628 
12629 		if (!cpuctx->online) {
12630 			err = -ENODEV;
12631 			goto err_locked;
12632 		}
12633 	}
12634 
12635 	if (group_leader) {
12636 		err = -EINVAL;
12637 
12638 		/*
12639 		 * Do not allow a recursive hierarchy (this new sibling
12640 		 * becoming part of another group-sibling):
12641 		 */
12642 		if (group_leader->group_leader != group_leader)
12643 			goto err_locked;
12644 
12645 		/* All events in a group should have the same clock */
12646 		if (group_leader->clock != event->clock)
12647 			goto err_locked;
12648 
12649 		/*
12650 		 * Make sure we're both events for the same CPU;
12651 		 * grouping events for different CPUs is broken; since
12652 		 * you can never concurrently schedule them anyhow.
12653 		 */
12654 		if (group_leader->cpu != event->cpu)
12655 			goto err_locked;
12656 
12657 		/*
12658 		 * Make sure we're both on the same context; either task or cpu.
12659 		 */
12660 		if (group_leader->ctx != ctx)
12661 			goto err_locked;
12662 
12663 		/*
12664 		 * Only a group leader can be exclusive or pinned
12665 		 */
12666 		if (attr.exclusive || attr.pinned)
12667 			goto err_locked;
12668 
12669 		if (is_software_event(event) &&
12670 		    !in_software_context(group_leader)) {
12671 			/*
12672 			 * If the event is a sw event, but the group_leader
12673 			 * is on hw context.
12674 			 *
12675 			 * Allow the addition of software events to hw
12676 			 * groups, this is safe because software events
12677 			 * never fail to schedule.
12678 			 *
12679 			 * Note the comment that goes with struct
12680 			 * perf_event_pmu_context.
12681 			 */
12682 			pmu = group_leader->pmu_ctx->pmu;
12683 		} else if (!is_software_event(event)) {
12684 			if (is_software_event(group_leader) &&
12685 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12686 				/*
12687 				 * In case the group is a pure software group, and we
12688 				 * try to add a hardware event, move the whole group to
12689 				 * the hardware context.
12690 				 */
12691 				move_group = 1;
12692 			}
12693 
12694 			/* Don't allow group of multiple hw events from different pmus */
12695 			if (!in_software_context(group_leader) &&
12696 			    group_leader->pmu_ctx->pmu != pmu)
12697 				goto err_locked;
12698 		}
12699 	}
12700 
12701 	/*
12702 	 * Now that we're certain of the pmu; find the pmu_ctx.
12703 	 */
12704 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12705 	if (IS_ERR(pmu_ctx)) {
12706 		err = PTR_ERR(pmu_ctx);
12707 		goto err_locked;
12708 	}
12709 	event->pmu_ctx = pmu_ctx;
12710 
12711 	if (output_event) {
12712 		err = perf_event_set_output(event, output_event);
12713 		if (err)
12714 			goto err_context;
12715 	}
12716 
12717 	if (!perf_event_validate_size(event)) {
12718 		err = -E2BIG;
12719 		goto err_context;
12720 	}
12721 
12722 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12723 		err = -EINVAL;
12724 		goto err_context;
12725 	}
12726 
12727 	/*
12728 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12729 	 * because we need to serialize with concurrent event creation.
12730 	 */
12731 	if (!exclusive_event_installable(event, ctx)) {
12732 		err = -EBUSY;
12733 		goto err_context;
12734 	}
12735 
12736 	WARN_ON_ONCE(ctx->parent_ctx);
12737 
12738 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12739 	if (IS_ERR(event_file)) {
12740 		err = PTR_ERR(event_file);
12741 		event_file = NULL;
12742 		goto err_context;
12743 	}
12744 
12745 	/*
12746 	 * This is the point on no return; we cannot fail hereafter. This is
12747 	 * where we start modifying current state.
12748 	 */
12749 
12750 	if (move_group) {
12751 		perf_remove_from_context(group_leader, 0);
12752 		put_pmu_ctx(group_leader->pmu_ctx);
12753 
12754 		for_each_sibling_event(sibling, group_leader) {
12755 			perf_remove_from_context(sibling, 0);
12756 			put_pmu_ctx(sibling->pmu_ctx);
12757 		}
12758 
12759 		/*
12760 		 * Install the group siblings before the group leader.
12761 		 *
12762 		 * Because a group leader will try and install the entire group
12763 		 * (through the sibling list, which is still in-tact), we can
12764 		 * end up with siblings installed in the wrong context.
12765 		 *
12766 		 * By installing siblings first we NO-OP because they're not
12767 		 * reachable through the group lists.
12768 		 */
12769 		for_each_sibling_event(sibling, group_leader) {
12770 			sibling->pmu_ctx = pmu_ctx;
12771 			get_pmu_ctx(pmu_ctx);
12772 			perf_event__state_init(sibling);
12773 			perf_install_in_context(ctx, sibling, sibling->cpu);
12774 		}
12775 
12776 		/*
12777 		 * Removing from the context ends up with disabled
12778 		 * event. What we want here is event in the initial
12779 		 * startup state, ready to be add into new context.
12780 		 */
12781 		group_leader->pmu_ctx = pmu_ctx;
12782 		get_pmu_ctx(pmu_ctx);
12783 		perf_event__state_init(group_leader);
12784 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12785 	}
12786 
12787 	/*
12788 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12789 	 * that we're serialized against further additions and before
12790 	 * perf_install_in_context() which is the point the event is active and
12791 	 * can use these values.
12792 	 */
12793 	perf_event__header_size(event);
12794 	perf_event__id_header_size(event);
12795 
12796 	event->owner = current;
12797 
12798 	perf_install_in_context(ctx, event, event->cpu);
12799 	perf_unpin_context(ctx);
12800 
12801 	mutex_unlock(&ctx->mutex);
12802 
12803 	if (task) {
12804 		up_read(&task->signal->exec_update_lock);
12805 		put_task_struct(task);
12806 	}
12807 
12808 	mutex_lock(&current->perf_event_mutex);
12809 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12810 	mutex_unlock(&current->perf_event_mutex);
12811 
12812 	/*
12813 	 * Drop the reference on the group_event after placing the
12814 	 * new event on the sibling_list. This ensures destruction
12815 	 * of the group leader will find the pointer to itself in
12816 	 * perf_group_detach().
12817 	 */
12818 	fdput(group);
12819 	fd_install(event_fd, event_file);
12820 	return event_fd;
12821 
12822 err_context:
12823 	put_pmu_ctx(event->pmu_ctx);
12824 	event->pmu_ctx = NULL; /* _free_event() */
12825 err_locked:
12826 	mutex_unlock(&ctx->mutex);
12827 	perf_unpin_context(ctx);
12828 	put_ctx(ctx);
12829 err_cred:
12830 	if (task)
12831 		up_read(&task->signal->exec_update_lock);
12832 err_alloc:
12833 	free_event(event);
12834 err_task:
12835 	if (task)
12836 		put_task_struct(task);
12837 err_group_fd:
12838 	fdput(group);
12839 err_fd:
12840 	put_unused_fd(event_fd);
12841 	return err;
12842 }
12843 
12844 /**
12845  * perf_event_create_kernel_counter
12846  *
12847  * @attr: attributes of the counter to create
12848  * @cpu: cpu in which the counter is bound
12849  * @task: task to profile (NULL for percpu)
12850  * @overflow_handler: callback to trigger when we hit the event
12851  * @context: context data could be used in overflow_handler callback
12852  */
12853 struct perf_event *
12854 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12855 				 struct task_struct *task,
12856 				 perf_overflow_handler_t overflow_handler,
12857 				 void *context)
12858 {
12859 	struct perf_event_pmu_context *pmu_ctx;
12860 	struct perf_event_context *ctx;
12861 	struct perf_event *event;
12862 	struct pmu *pmu;
12863 	int err;
12864 
12865 	/*
12866 	 * Grouping is not supported for kernel events, neither is 'AUX',
12867 	 * make sure the caller's intentions are adjusted.
12868 	 */
12869 	if (attr->aux_output)
12870 		return ERR_PTR(-EINVAL);
12871 
12872 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12873 				 overflow_handler, context, -1);
12874 	if (IS_ERR(event)) {
12875 		err = PTR_ERR(event);
12876 		goto err;
12877 	}
12878 
12879 	/* Mark owner so we could distinguish it from user events. */
12880 	event->owner = TASK_TOMBSTONE;
12881 	pmu = event->pmu;
12882 
12883 	if (pmu->task_ctx_nr == perf_sw_context)
12884 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12885 
12886 	/*
12887 	 * Get the target context (task or percpu):
12888 	 */
12889 	ctx = find_get_context(task, event);
12890 	if (IS_ERR(ctx)) {
12891 		err = PTR_ERR(ctx);
12892 		goto err_alloc;
12893 	}
12894 
12895 	WARN_ON_ONCE(ctx->parent_ctx);
12896 	mutex_lock(&ctx->mutex);
12897 	if (ctx->task == TASK_TOMBSTONE) {
12898 		err = -ESRCH;
12899 		goto err_unlock;
12900 	}
12901 
12902 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12903 	if (IS_ERR(pmu_ctx)) {
12904 		err = PTR_ERR(pmu_ctx);
12905 		goto err_unlock;
12906 	}
12907 	event->pmu_ctx = pmu_ctx;
12908 
12909 	if (!task) {
12910 		/*
12911 		 * Check if the @cpu we're creating an event for is online.
12912 		 *
12913 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12914 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12915 		 */
12916 		struct perf_cpu_context *cpuctx =
12917 			container_of(ctx, struct perf_cpu_context, ctx);
12918 		if (!cpuctx->online) {
12919 			err = -ENODEV;
12920 			goto err_pmu_ctx;
12921 		}
12922 	}
12923 
12924 	if (!exclusive_event_installable(event, ctx)) {
12925 		err = -EBUSY;
12926 		goto err_pmu_ctx;
12927 	}
12928 
12929 	perf_install_in_context(ctx, event, event->cpu);
12930 	perf_unpin_context(ctx);
12931 	mutex_unlock(&ctx->mutex);
12932 
12933 	return event;
12934 
12935 err_pmu_ctx:
12936 	put_pmu_ctx(pmu_ctx);
12937 	event->pmu_ctx = NULL; /* _free_event() */
12938 err_unlock:
12939 	mutex_unlock(&ctx->mutex);
12940 	perf_unpin_context(ctx);
12941 	put_ctx(ctx);
12942 err_alloc:
12943 	free_event(event);
12944 err:
12945 	return ERR_PTR(err);
12946 }
12947 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12948 
12949 static void __perf_pmu_remove(struct perf_event_context *ctx,
12950 			      int cpu, struct pmu *pmu,
12951 			      struct perf_event_groups *groups,
12952 			      struct list_head *events)
12953 {
12954 	struct perf_event *event, *sibling;
12955 
12956 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12957 		perf_remove_from_context(event, 0);
12958 		put_pmu_ctx(event->pmu_ctx);
12959 		list_add(&event->migrate_entry, events);
12960 
12961 		for_each_sibling_event(sibling, event) {
12962 			perf_remove_from_context(sibling, 0);
12963 			put_pmu_ctx(sibling->pmu_ctx);
12964 			list_add(&sibling->migrate_entry, events);
12965 		}
12966 	}
12967 }
12968 
12969 static void __perf_pmu_install_event(struct pmu *pmu,
12970 				     struct perf_event_context *ctx,
12971 				     int cpu, struct perf_event *event)
12972 {
12973 	struct perf_event_pmu_context *epc;
12974 	struct perf_event_context *old_ctx = event->ctx;
12975 
12976 	get_ctx(ctx); /* normally find_get_context() */
12977 
12978 	event->cpu = cpu;
12979 	epc = find_get_pmu_context(pmu, ctx, event);
12980 	event->pmu_ctx = epc;
12981 
12982 	if (event->state >= PERF_EVENT_STATE_OFF)
12983 		event->state = PERF_EVENT_STATE_INACTIVE;
12984 	perf_install_in_context(ctx, event, cpu);
12985 
12986 	/*
12987 	 * Now that event->ctx is updated and visible, put the old ctx.
12988 	 */
12989 	put_ctx(old_ctx);
12990 }
12991 
12992 static void __perf_pmu_install(struct perf_event_context *ctx,
12993 			       int cpu, struct pmu *pmu, struct list_head *events)
12994 {
12995 	struct perf_event *event, *tmp;
12996 
12997 	/*
12998 	 * Re-instate events in 2 passes.
12999 	 *
13000 	 * Skip over group leaders and only install siblings on this first
13001 	 * pass, siblings will not get enabled without a leader, however a
13002 	 * leader will enable its siblings, even if those are still on the old
13003 	 * context.
13004 	 */
13005 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13006 		if (event->group_leader == event)
13007 			continue;
13008 
13009 		list_del(&event->migrate_entry);
13010 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13011 	}
13012 
13013 	/*
13014 	 * Once all the siblings are setup properly, install the group leaders
13015 	 * to make it go.
13016 	 */
13017 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13018 		list_del(&event->migrate_entry);
13019 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13020 	}
13021 }
13022 
13023 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13024 {
13025 	struct perf_event_context *src_ctx, *dst_ctx;
13026 	LIST_HEAD(events);
13027 
13028 	/*
13029 	 * Since per-cpu context is persistent, no need to grab an extra
13030 	 * reference.
13031 	 */
13032 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13033 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13034 
13035 	/*
13036 	 * See perf_event_ctx_lock() for comments on the details
13037 	 * of swizzling perf_event::ctx.
13038 	 */
13039 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13040 
13041 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13042 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13043 
13044 	if (!list_empty(&events)) {
13045 		/*
13046 		 * Wait for the events to quiesce before re-instating them.
13047 		 */
13048 		synchronize_rcu();
13049 
13050 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13051 	}
13052 
13053 	mutex_unlock(&dst_ctx->mutex);
13054 	mutex_unlock(&src_ctx->mutex);
13055 }
13056 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13057 
13058 static void sync_child_event(struct perf_event *child_event)
13059 {
13060 	struct perf_event *parent_event = child_event->parent;
13061 	u64 child_val;
13062 
13063 	if (child_event->attr.inherit_stat) {
13064 		struct task_struct *task = child_event->ctx->task;
13065 
13066 		if (task && task != TASK_TOMBSTONE)
13067 			perf_event_read_event(child_event, task);
13068 	}
13069 
13070 	child_val = perf_event_count(child_event);
13071 
13072 	/*
13073 	 * Add back the child's count to the parent's count:
13074 	 */
13075 	atomic64_add(child_val, &parent_event->child_count);
13076 	atomic64_add(child_event->total_time_enabled,
13077 		     &parent_event->child_total_time_enabled);
13078 	atomic64_add(child_event->total_time_running,
13079 		     &parent_event->child_total_time_running);
13080 }
13081 
13082 static void
13083 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13084 {
13085 	struct perf_event *parent_event = event->parent;
13086 	unsigned long detach_flags = 0;
13087 
13088 	if (parent_event) {
13089 		/*
13090 		 * Do not destroy the 'original' grouping; because of the
13091 		 * context switch optimization the original events could've
13092 		 * ended up in a random child task.
13093 		 *
13094 		 * If we were to destroy the original group, all group related
13095 		 * operations would cease to function properly after this
13096 		 * random child dies.
13097 		 *
13098 		 * Do destroy all inherited groups, we don't care about those
13099 		 * and being thorough is better.
13100 		 */
13101 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13102 		mutex_lock(&parent_event->child_mutex);
13103 	}
13104 
13105 	perf_remove_from_context(event, detach_flags);
13106 
13107 	raw_spin_lock_irq(&ctx->lock);
13108 	if (event->state > PERF_EVENT_STATE_EXIT)
13109 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13110 	raw_spin_unlock_irq(&ctx->lock);
13111 
13112 	/*
13113 	 * Child events can be freed.
13114 	 */
13115 	if (parent_event) {
13116 		mutex_unlock(&parent_event->child_mutex);
13117 		/*
13118 		 * Kick perf_poll() for is_event_hup();
13119 		 */
13120 		perf_event_wakeup(parent_event);
13121 		free_event(event);
13122 		put_event(parent_event);
13123 		return;
13124 	}
13125 
13126 	/*
13127 	 * Parent events are governed by their filedesc, retain them.
13128 	 */
13129 	perf_event_wakeup(event);
13130 }
13131 
13132 static void perf_event_exit_task_context(struct task_struct *child)
13133 {
13134 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13135 	struct perf_event *child_event, *next;
13136 
13137 	WARN_ON_ONCE(child != current);
13138 
13139 	child_ctx = perf_pin_task_context(child);
13140 	if (!child_ctx)
13141 		return;
13142 
13143 	/*
13144 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13145 	 * ctx::mutex over the entire thing. This serializes against almost
13146 	 * everything that wants to access the ctx.
13147 	 *
13148 	 * The exception is sys_perf_event_open() /
13149 	 * perf_event_create_kernel_count() which does find_get_context()
13150 	 * without ctx::mutex (it cannot because of the move_group double mutex
13151 	 * lock thing). See the comments in perf_install_in_context().
13152 	 */
13153 	mutex_lock(&child_ctx->mutex);
13154 
13155 	/*
13156 	 * In a single ctx::lock section, de-schedule the events and detach the
13157 	 * context from the task such that we cannot ever get it scheduled back
13158 	 * in.
13159 	 */
13160 	raw_spin_lock_irq(&child_ctx->lock);
13161 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13162 
13163 	/*
13164 	 * Now that the context is inactive, destroy the task <-> ctx relation
13165 	 * and mark the context dead.
13166 	 */
13167 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13168 	put_ctx(child_ctx); /* cannot be last */
13169 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13170 	put_task_struct(current); /* cannot be last */
13171 
13172 	clone_ctx = unclone_ctx(child_ctx);
13173 	raw_spin_unlock_irq(&child_ctx->lock);
13174 
13175 	if (clone_ctx)
13176 		put_ctx(clone_ctx);
13177 
13178 	/*
13179 	 * Report the task dead after unscheduling the events so that we
13180 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13181 	 * get a few PERF_RECORD_READ events.
13182 	 */
13183 	perf_event_task(child, child_ctx, 0);
13184 
13185 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13186 		perf_event_exit_event(child_event, child_ctx);
13187 
13188 	mutex_unlock(&child_ctx->mutex);
13189 
13190 	put_ctx(child_ctx);
13191 }
13192 
13193 /*
13194  * When a child task exits, feed back event values to parent events.
13195  *
13196  * Can be called with exec_update_lock held when called from
13197  * setup_new_exec().
13198  */
13199 void perf_event_exit_task(struct task_struct *child)
13200 {
13201 	struct perf_event *event, *tmp;
13202 
13203 	mutex_lock(&child->perf_event_mutex);
13204 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13205 				 owner_entry) {
13206 		list_del_init(&event->owner_entry);
13207 
13208 		/*
13209 		 * Ensure the list deletion is visible before we clear
13210 		 * the owner, closes a race against perf_release() where
13211 		 * we need to serialize on the owner->perf_event_mutex.
13212 		 */
13213 		smp_store_release(&event->owner, NULL);
13214 	}
13215 	mutex_unlock(&child->perf_event_mutex);
13216 
13217 	perf_event_exit_task_context(child);
13218 
13219 	/*
13220 	 * The perf_event_exit_task_context calls perf_event_task
13221 	 * with child's task_ctx, which generates EXIT events for
13222 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13223 	 * At this point we need to send EXIT events to cpu contexts.
13224 	 */
13225 	perf_event_task(child, NULL, 0);
13226 }
13227 
13228 static void perf_free_event(struct perf_event *event,
13229 			    struct perf_event_context *ctx)
13230 {
13231 	struct perf_event *parent = event->parent;
13232 
13233 	if (WARN_ON_ONCE(!parent))
13234 		return;
13235 
13236 	mutex_lock(&parent->child_mutex);
13237 	list_del_init(&event->child_list);
13238 	mutex_unlock(&parent->child_mutex);
13239 
13240 	put_event(parent);
13241 
13242 	raw_spin_lock_irq(&ctx->lock);
13243 	perf_group_detach(event);
13244 	list_del_event(event, ctx);
13245 	raw_spin_unlock_irq(&ctx->lock);
13246 	free_event(event);
13247 }
13248 
13249 /*
13250  * Free a context as created by inheritance by perf_event_init_task() below,
13251  * used by fork() in case of fail.
13252  *
13253  * Even though the task has never lived, the context and events have been
13254  * exposed through the child_list, so we must take care tearing it all down.
13255  */
13256 void perf_event_free_task(struct task_struct *task)
13257 {
13258 	struct perf_event_context *ctx;
13259 	struct perf_event *event, *tmp;
13260 
13261 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13262 	if (!ctx)
13263 		return;
13264 
13265 	mutex_lock(&ctx->mutex);
13266 	raw_spin_lock_irq(&ctx->lock);
13267 	/*
13268 	 * Destroy the task <-> ctx relation and mark the context dead.
13269 	 *
13270 	 * This is important because even though the task hasn't been
13271 	 * exposed yet the context has been (through child_list).
13272 	 */
13273 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13274 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13275 	put_task_struct(task); /* cannot be last */
13276 	raw_spin_unlock_irq(&ctx->lock);
13277 
13278 
13279 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13280 		perf_free_event(event, ctx);
13281 
13282 	mutex_unlock(&ctx->mutex);
13283 
13284 	/*
13285 	 * perf_event_release_kernel() could've stolen some of our
13286 	 * child events and still have them on its free_list. In that
13287 	 * case we must wait for these events to have been freed (in
13288 	 * particular all their references to this task must've been
13289 	 * dropped).
13290 	 *
13291 	 * Without this copy_process() will unconditionally free this
13292 	 * task (irrespective of its reference count) and
13293 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13294 	 * use-after-free.
13295 	 *
13296 	 * Wait for all events to drop their context reference.
13297 	 */
13298 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13299 	put_ctx(ctx); /* must be last */
13300 }
13301 
13302 void perf_event_delayed_put(struct task_struct *task)
13303 {
13304 	WARN_ON_ONCE(task->perf_event_ctxp);
13305 }
13306 
13307 struct file *perf_event_get(unsigned int fd)
13308 {
13309 	struct file *file = fget(fd);
13310 	if (!file)
13311 		return ERR_PTR(-EBADF);
13312 
13313 	if (file->f_op != &perf_fops) {
13314 		fput(file);
13315 		return ERR_PTR(-EBADF);
13316 	}
13317 
13318 	return file;
13319 }
13320 
13321 const struct perf_event *perf_get_event(struct file *file)
13322 {
13323 	if (file->f_op != &perf_fops)
13324 		return ERR_PTR(-EINVAL);
13325 
13326 	return file->private_data;
13327 }
13328 
13329 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13330 {
13331 	if (!event)
13332 		return ERR_PTR(-EINVAL);
13333 
13334 	return &event->attr;
13335 }
13336 
13337 int perf_allow_kernel(struct perf_event_attr *attr)
13338 {
13339 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13340 		return -EACCES;
13341 
13342 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13343 }
13344 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13345 
13346 /*
13347  * Inherit an event from parent task to child task.
13348  *
13349  * Returns:
13350  *  - valid pointer on success
13351  *  - NULL for orphaned events
13352  *  - IS_ERR() on error
13353  */
13354 static struct perf_event *
13355 inherit_event(struct perf_event *parent_event,
13356 	      struct task_struct *parent,
13357 	      struct perf_event_context *parent_ctx,
13358 	      struct task_struct *child,
13359 	      struct perf_event *group_leader,
13360 	      struct perf_event_context *child_ctx)
13361 {
13362 	enum perf_event_state parent_state = parent_event->state;
13363 	struct perf_event_pmu_context *pmu_ctx;
13364 	struct perf_event *child_event;
13365 	unsigned long flags;
13366 
13367 	/*
13368 	 * Instead of creating recursive hierarchies of events,
13369 	 * we link inherited events back to the original parent,
13370 	 * which has a filp for sure, which we use as the reference
13371 	 * count:
13372 	 */
13373 	if (parent_event->parent)
13374 		parent_event = parent_event->parent;
13375 
13376 	child_event = perf_event_alloc(&parent_event->attr,
13377 					   parent_event->cpu,
13378 					   child,
13379 					   group_leader, parent_event,
13380 					   NULL, NULL, -1);
13381 	if (IS_ERR(child_event))
13382 		return child_event;
13383 
13384 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13385 	if (IS_ERR(pmu_ctx)) {
13386 		free_event(child_event);
13387 		return ERR_CAST(pmu_ctx);
13388 	}
13389 	child_event->pmu_ctx = pmu_ctx;
13390 
13391 	/*
13392 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13393 	 * must be under the same lock in order to serialize against
13394 	 * perf_event_release_kernel(), such that either we must observe
13395 	 * is_orphaned_event() or they will observe us on the child_list.
13396 	 */
13397 	mutex_lock(&parent_event->child_mutex);
13398 	if (is_orphaned_event(parent_event) ||
13399 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13400 		mutex_unlock(&parent_event->child_mutex);
13401 		/* task_ctx_data is freed with child_ctx */
13402 		free_event(child_event);
13403 		return NULL;
13404 	}
13405 
13406 	get_ctx(child_ctx);
13407 
13408 	/*
13409 	 * Make the child state follow the state of the parent event,
13410 	 * not its attr.disabled bit.  We hold the parent's mutex,
13411 	 * so we won't race with perf_event_{en, dis}able_family.
13412 	 */
13413 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13414 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13415 	else
13416 		child_event->state = PERF_EVENT_STATE_OFF;
13417 
13418 	if (parent_event->attr.freq) {
13419 		u64 sample_period = parent_event->hw.sample_period;
13420 		struct hw_perf_event *hwc = &child_event->hw;
13421 
13422 		hwc->sample_period = sample_period;
13423 		hwc->last_period   = sample_period;
13424 
13425 		local64_set(&hwc->period_left, sample_period);
13426 	}
13427 
13428 	child_event->ctx = child_ctx;
13429 	child_event->overflow_handler = parent_event->overflow_handler;
13430 	child_event->overflow_handler_context
13431 		= parent_event->overflow_handler_context;
13432 
13433 	/*
13434 	 * Precalculate sample_data sizes
13435 	 */
13436 	perf_event__header_size(child_event);
13437 	perf_event__id_header_size(child_event);
13438 
13439 	/*
13440 	 * Link it up in the child's context:
13441 	 */
13442 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13443 	add_event_to_ctx(child_event, child_ctx);
13444 	child_event->attach_state |= PERF_ATTACH_CHILD;
13445 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13446 
13447 	/*
13448 	 * Link this into the parent event's child list
13449 	 */
13450 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13451 	mutex_unlock(&parent_event->child_mutex);
13452 
13453 	return child_event;
13454 }
13455 
13456 /*
13457  * Inherits an event group.
13458  *
13459  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13460  * This matches with perf_event_release_kernel() removing all child events.
13461  *
13462  * Returns:
13463  *  - 0 on success
13464  *  - <0 on error
13465  */
13466 static int inherit_group(struct perf_event *parent_event,
13467 	      struct task_struct *parent,
13468 	      struct perf_event_context *parent_ctx,
13469 	      struct task_struct *child,
13470 	      struct perf_event_context *child_ctx)
13471 {
13472 	struct perf_event *leader;
13473 	struct perf_event *sub;
13474 	struct perf_event *child_ctr;
13475 
13476 	leader = inherit_event(parent_event, parent, parent_ctx,
13477 				 child, NULL, child_ctx);
13478 	if (IS_ERR(leader))
13479 		return PTR_ERR(leader);
13480 	/*
13481 	 * @leader can be NULL here because of is_orphaned_event(). In this
13482 	 * case inherit_event() will create individual events, similar to what
13483 	 * perf_group_detach() would do anyway.
13484 	 */
13485 	for_each_sibling_event(sub, parent_event) {
13486 		child_ctr = inherit_event(sub, parent, parent_ctx,
13487 					    child, leader, child_ctx);
13488 		if (IS_ERR(child_ctr))
13489 			return PTR_ERR(child_ctr);
13490 
13491 		if (sub->aux_event == parent_event && child_ctr &&
13492 		    !perf_get_aux_event(child_ctr, leader))
13493 			return -EINVAL;
13494 	}
13495 	if (leader)
13496 		leader->group_generation = parent_event->group_generation;
13497 	return 0;
13498 }
13499 
13500 /*
13501  * Creates the child task context and tries to inherit the event-group.
13502  *
13503  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13504  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13505  * consistent with perf_event_release_kernel() removing all child events.
13506  *
13507  * Returns:
13508  *  - 0 on success
13509  *  - <0 on error
13510  */
13511 static int
13512 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13513 		   struct perf_event_context *parent_ctx,
13514 		   struct task_struct *child,
13515 		   u64 clone_flags, int *inherited_all)
13516 {
13517 	struct perf_event_context *child_ctx;
13518 	int ret;
13519 
13520 	if (!event->attr.inherit ||
13521 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13522 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13523 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13524 		*inherited_all = 0;
13525 		return 0;
13526 	}
13527 
13528 	child_ctx = child->perf_event_ctxp;
13529 	if (!child_ctx) {
13530 		/*
13531 		 * This is executed from the parent task context, so
13532 		 * inherit events that have been marked for cloning.
13533 		 * First allocate and initialize a context for the
13534 		 * child.
13535 		 */
13536 		child_ctx = alloc_perf_context(child);
13537 		if (!child_ctx)
13538 			return -ENOMEM;
13539 
13540 		child->perf_event_ctxp = child_ctx;
13541 	}
13542 
13543 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13544 	if (ret)
13545 		*inherited_all = 0;
13546 
13547 	return ret;
13548 }
13549 
13550 /*
13551  * Initialize the perf_event context in task_struct
13552  */
13553 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13554 {
13555 	struct perf_event_context *child_ctx, *parent_ctx;
13556 	struct perf_event_context *cloned_ctx;
13557 	struct perf_event *event;
13558 	struct task_struct *parent = current;
13559 	int inherited_all = 1;
13560 	unsigned long flags;
13561 	int ret = 0;
13562 
13563 	if (likely(!parent->perf_event_ctxp))
13564 		return 0;
13565 
13566 	/*
13567 	 * If the parent's context is a clone, pin it so it won't get
13568 	 * swapped under us.
13569 	 */
13570 	parent_ctx = perf_pin_task_context(parent);
13571 	if (!parent_ctx)
13572 		return 0;
13573 
13574 	/*
13575 	 * No need to check if parent_ctx != NULL here; since we saw
13576 	 * it non-NULL earlier, the only reason for it to become NULL
13577 	 * is if we exit, and since we're currently in the middle of
13578 	 * a fork we can't be exiting at the same time.
13579 	 */
13580 
13581 	/*
13582 	 * Lock the parent list. No need to lock the child - not PID
13583 	 * hashed yet and not running, so nobody can access it.
13584 	 */
13585 	mutex_lock(&parent_ctx->mutex);
13586 
13587 	/*
13588 	 * We dont have to disable NMIs - we are only looking at
13589 	 * the list, not manipulating it:
13590 	 */
13591 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13592 		ret = inherit_task_group(event, parent, parent_ctx,
13593 					 child, clone_flags, &inherited_all);
13594 		if (ret)
13595 			goto out_unlock;
13596 	}
13597 
13598 	/*
13599 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13600 	 * to allocations, but we need to prevent rotation because
13601 	 * rotate_ctx() will change the list from interrupt context.
13602 	 */
13603 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13604 	parent_ctx->rotate_disable = 1;
13605 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13606 
13607 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13608 		ret = inherit_task_group(event, parent, parent_ctx,
13609 					 child, clone_flags, &inherited_all);
13610 		if (ret)
13611 			goto out_unlock;
13612 	}
13613 
13614 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13615 	parent_ctx->rotate_disable = 0;
13616 
13617 	child_ctx = child->perf_event_ctxp;
13618 
13619 	if (child_ctx && inherited_all) {
13620 		/*
13621 		 * Mark the child context as a clone of the parent
13622 		 * context, or of whatever the parent is a clone of.
13623 		 *
13624 		 * Note that if the parent is a clone, the holding of
13625 		 * parent_ctx->lock avoids it from being uncloned.
13626 		 */
13627 		cloned_ctx = parent_ctx->parent_ctx;
13628 		if (cloned_ctx) {
13629 			child_ctx->parent_ctx = cloned_ctx;
13630 			child_ctx->parent_gen = parent_ctx->parent_gen;
13631 		} else {
13632 			child_ctx->parent_ctx = parent_ctx;
13633 			child_ctx->parent_gen = parent_ctx->generation;
13634 		}
13635 		get_ctx(child_ctx->parent_ctx);
13636 	}
13637 
13638 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13639 out_unlock:
13640 	mutex_unlock(&parent_ctx->mutex);
13641 
13642 	perf_unpin_context(parent_ctx);
13643 	put_ctx(parent_ctx);
13644 
13645 	return ret;
13646 }
13647 
13648 /*
13649  * Initialize the perf_event context in task_struct
13650  */
13651 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13652 {
13653 	int ret;
13654 
13655 	child->perf_event_ctxp = NULL;
13656 	mutex_init(&child->perf_event_mutex);
13657 	INIT_LIST_HEAD(&child->perf_event_list);
13658 
13659 	ret = perf_event_init_context(child, clone_flags);
13660 	if (ret) {
13661 		perf_event_free_task(child);
13662 		return ret;
13663 	}
13664 
13665 	return 0;
13666 }
13667 
13668 static void __init perf_event_init_all_cpus(void)
13669 {
13670 	struct swevent_htable *swhash;
13671 	struct perf_cpu_context *cpuctx;
13672 	int cpu;
13673 
13674 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13675 
13676 	for_each_possible_cpu(cpu) {
13677 		swhash = &per_cpu(swevent_htable, cpu);
13678 		mutex_init(&swhash->hlist_mutex);
13679 
13680 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13681 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13682 
13683 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13684 
13685 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13686 		__perf_event_init_context(&cpuctx->ctx);
13687 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13688 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13689 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13690 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13691 		cpuctx->heap = cpuctx->heap_default;
13692 	}
13693 }
13694 
13695 static void perf_swevent_init_cpu(unsigned int cpu)
13696 {
13697 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13698 
13699 	mutex_lock(&swhash->hlist_mutex);
13700 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13701 		struct swevent_hlist *hlist;
13702 
13703 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13704 		WARN_ON(!hlist);
13705 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13706 	}
13707 	mutex_unlock(&swhash->hlist_mutex);
13708 }
13709 
13710 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13711 static void __perf_event_exit_context(void *__info)
13712 {
13713 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13714 	struct perf_event_context *ctx = __info;
13715 	struct perf_event *event;
13716 
13717 	raw_spin_lock(&ctx->lock);
13718 	ctx_sched_out(ctx, EVENT_TIME);
13719 	list_for_each_entry(event, &ctx->event_list, event_entry)
13720 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13721 	raw_spin_unlock(&ctx->lock);
13722 }
13723 
13724 static void perf_event_exit_cpu_context(int cpu)
13725 {
13726 	struct perf_cpu_context *cpuctx;
13727 	struct perf_event_context *ctx;
13728 
13729 	// XXX simplify cpuctx->online
13730 	mutex_lock(&pmus_lock);
13731 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13732 	ctx = &cpuctx->ctx;
13733 
13734 	mutex_lock(&ctx->mutex);
13735 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13736 	cpuctx->online = 0;
13737 	mutex_unlock(&ctx->mutex);
13738 	cpumask_clear_cpu(cpu, perf_online_mask);
13739 	mutex_unlock(&pmus_lock);
13740 }
13741 #else
13742 
13743 static void perf_event_exit_cpu_context(int cpu) { }
13744 
13745 #endif
13746 
13747 int perf_event_init_cpu(unsigned int cpu)
13748 {
13749 	struct perf_cpu_context *cpuctx;
13750 	struct perf_event_context *ctx;
13751 
13752 	perf_swevent_init_cpu(cpu);
13753 
13754 	mutex_lock(&pmus_lock);
13755 	cpumask_set_cpu(cpu, perf_online_mask);
13756 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13757 	ctx = &cpuctx->ctx;
13758 
13759 	mutex_lock(&ctx->mutex);
13760 	cpuctx->online = 1;
13761 	mutex_unlock(&ctx->mutex);
13762 	mutex_unlock(&pmus_lock);
13763 
13764 	return 0;
13765 }
13766 
13767 int perf_event_exit_cpu(unsigned int cpu)
13768 {
13769 	perf_event_exit_cpu_context(cpu);
13770 	return 0;
13771 }
13772 
13773 static int
13774 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13775 {
13776 	int cpu;
13777 
13778 	for_each_online_cpu(cpu)
13779 		perf_event_exit_cpu(cpu);
13780 
13781 	return NOTIFY_OK;
13782 }
13783 
13784 /*
13785  * Run the perf reboot notifier at the very last possible moment so that
13786  * the generic watchdog code runs as long as possible.
13787  */
13788 static struct notifier_block perf_reboot_notifier = {
13789 	.notifier_call = perf_reboot,
13790 	.priority = INT_MIN,
13791 };
13792 
13793 void __init perf_event_init(void)
13794 {
13795 	int ret;
13796 
13797 	idr_init(&pmu_idr);
13798 
13799 	perf_event_init_all_cpus();
13800 	init_srcu_struct(&pmus_srcu);
13801 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13802 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13803 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13804 	perf_tp_register();
13805 	perf_event_init_cpu(smp_processor_id());
13806 	register_reboot_notifier(&perf_reboot_notifier);
13807 
13808 	ret = init_hw_breakpoint();
13809 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13810 
13811 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13812 
13813 	/*
13814 	 * Build time assertion that we keep the data_head at the intended
13815 	 * location.  IOW, validation we got the __reserved[] size right.
13816 	 */
13817 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13818 		     != 1024);
13819 }
13820 
13821 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13822 			      char *page)
13823 {
13824 	struct perf_pmu_events_attr *pmu_attr =
13825 		container_of(attr, struct perf_pmu_events_attr, attr);
13826 
13827 	if (pmu_attr->event_str)
13828 		return sprintf(page, "%s\n", pmu_attr->event_str);
13829 
13830 	return 0;
13831 }
13832 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13833 
13834 static int __init perf_event_sysfs_init(void)
13835 {
13836 	struct pmu *pmu;
13837 	int ret;
13838 
13839 	mutex_lock(&pmus_lock);
13840 
13841 	ret = bus_register(&pmu_bus);
13842 	if (ret)
13843 		goto unlock;
13844 
13845 	list_for_each_entry(pmu, &pmus, entry) {
13846 		if (pmu->dev)
13847 			continue;
13848 
13849 		ret = pmu_dev_alloc(pmu);
13850 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13851 	}
13852 	pmu_bus_running = 1;
13853 	ret = 0;
13854 
13855 unlock:
13856 	mutex_unlock(&pmus_lock);
13857 
13858 	return ret;
13859 }
13860 device_initcall(perf_event_sysfs_init);
13861 
13862 #ifdef CONFIG_CGROUP_PERF
13863 static struct cgroup_subsys_state *
13864 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13865 {
13866 	struct perf_cgroup *jc;
13867 
13868 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13869 	if (!jc)
13870 		return ERR_PTR(-ENOMEM);
13871 
13872 	jc->info = alloc_percpu(struct perf_cgroup_info);
13873 	if (!jc->info) {
13874 		kfree(jc);
13875 		return ERR_PTR(-ENOMEM);
13876 	}
13877 
13878 	return &jc->css;
13879 }
13880 
13881 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13882 {
13883 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13884 
13885 	free_percpu(jc->info);
13886 	kfree(jc);
13887 }
13888 
13889 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13890 {
13891 	perf_event_cgroup(css->cgroup);
13892 	return 0;
13893 }
13894 
13895 static int __perf_cgroup_move(void *info)
13896 {
13897 	struct task_struct *task = info;
13898 
13899 	preempt_disable();
13900 	perf_cgroup_switch(task);
13901 	preempt_enable();
13902 
13903 	return 0;
13904 }
13905 
13906 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13907 {
13908 	struct task_struct *task;
13909 	struct cgroup_subsys_state *css;
13910 
13911 	cgroup_taskset_for_each(task, css, tset)
13912 		task_function_call(task, __perf_cgroup_move, task);
13913 }
13914 
13915 struct cgroup_subsys perf_event_cgrp_subsys = {
13916 	.css_alloc	= perf_cgroup_css_alloc,
13917 	.css_free	= perf_cgroup_css_free,
13918 	.css_online	= perf_cgroup_css_online,
13919 	.attach		= perf_cgroup_attach,
13920 	/*
13921 	 * Implicitly enable on dfl hierarchy so that perf events can
13922 	 * always be filtered by cgroup2 path as long as perf_event
13923 	 * controller is not mounted on a legacy hierarchy.
13924 	 */
13925 	.implicit_on_dfl = true,
13926 	.threaded	= true,
13927 };
13928 #endif /* CONFIG_CGROUP_PERF */
13929 
13930 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13931