1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 379 }; 380 381 /* 382 * perf_sched_events : >0 events exist 383 */ 384 385 static void perf_sched_delayed(struct work_struct *work); 386 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 387 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 388 static DEFINE_MUTEX(perf_sched_mutex); 389 static atomic_t perf_sched_count; 390 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void update_context_time(struct perf_event_context *ctx); 574 static u64 perf_event_time(struct perf_event *event); 575 576 void __weak perf_event_print_debug(void) { } 577 578 static inline u64 perf_clock(void) 579 { 580 return local_clock(); 581 } 582 583 static inline u64 perf_event_clock(struct perf_event *event) 584 { 585 return event->clock(); 586 } 587 588 /* 589 * State based event timekeeping... 590 * 591 * The basic idea is to use event->state to determine which (if any) time 592 * fields to increment with the current delta. This means we only need to 593 * update timestamps when we change state or when they are explicitly requested 594 * (read). 595 * 596 * Event groups make things a little more complicated, but not terribly so. The 597 * rules for a group are that if the group leader is OFF the entire group is 598 * OFF, irrespecive of what the group member states are. This results in 599 * __perf_effective_state(). 600 * 601 * A futher ramification is that when a group leader flips between OFF and 602 * !OFF, we need to update all group member times. 603 * 604 * 605 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 606 * need to make sure the relevant context time is updated before we try and 607 * update our timestamps. 608 */ 609 610 static __always_inline enum perf_event_state 611 __perf_effective_state(struct perf_event *event) 612 { 613 struct perf_event *leader = event->group_leader; 614 615 if (leader->state <= PERF_EVENT_STATE_OFF) 616 return leader->state; 617 618 return event->state; 619 } 620 621 static __always_inline void 622 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 623 { 624 enum perf_event_state state = __perf_effective_state(event); 625 u64 delta = now - event->tstamp; 626 627 *enabled = event->total_time_enabled; 628 if (state >= PERF_EVENT_STATE_INACTIVE) 629 *enabled += delta; 630 631 *running = event->total_time_running; 632 if (state >= PERF_EVENT_STATE_ACTIVE) 633 *running += delta; 634 } 635 636 static void perf_event_update_time(struct perf_event *event) 637 { 638 u64 now = perf_event_time(event); 639 640 __perf_update_times(event, now, &event->total_time_enabled, 641 &event->total_time_running); 642 event->tstamp = now; 643 } 644 645 static void perf_event_update_sibling_time(struct perf_event *leader) 646 { 647 struct perf_event *sibling; 648 649 for_each_sibling_event(sibling, leader) 650 perf_event_update_time(sibling); 651 } 652 653 static void 654 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 655 { 656 if (event->state == state) 657 return; 658 659 perf_event_update_time(event); 660 /* 661 * If a group leader gets enabled/disabled all its siblings 662 * are affected too. 663 */ 664 if ((event->state < 0) ^ (state < 0)) 665 perf_event_update_sibling_time(event); 666 667 WRITE_ONCE(event->state, state); 668 } 669 670 /* 671 * UP store-release, load-acquire 672 */ 673 674 #define __store_release(ptr, val) \ 675 do { \ 676 barrier(); \ 677 WRITE_ONCE(*(ptr), (val)); \ 678 } while (0) 679 680 #define __load_acquire(ptr) \ 681 ({ \ 682 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 683 barrier(); \ 684 ___p; \ 685 }) 686 687 static void perf_ctx_disable(struct perf_event_context *ctx) 688 { 689 struct perf_event_pmu_context *pmu_ctx; 690 691 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 692 perf_pmu_disable(pmu_ctx->pmu); 693 } 694 695 static void perf_ctx_enable(struct perf_event_context *ctx) 696 { 697 struct perf_event_pmu_context *pmu_ctx; 698 699 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 700 perf_pmu_enable(pmu_ctx->pmu); 701 } 702 703 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 704 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 705 706 #ifdef CONFIG_CGROUP_PERF 707 708 static inline bool 709 perf_cgroup_match(struct perf_event *event) 710 { 711 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 712 713 /* @event doesn't care about cgroup */ 714 if (!event->cgrp) 715 return true; 716 717 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 718 if (!cpuctx->cgrp) 719 return false; 720 721 /* 722 * Cgroup scoping is recursive. An event enabled for a cgroup is 723 * also enabled for all its descendant cgroups. If @cpuctx's 724 * cgroup is a descendant of @event's (the test covers identity 725 * case), it's a match. 726 */ 727 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 728 event->cgrp->css.cgroup); 729 } 730 731 static inline void perf_detach_cgroup(struct perf_event *event) 732 { 733 css_put(&event->cgrp->css); 734 event->cgrp = NULL; 735 } 736 737 static inline int is_cgroup_event(struct perf_event *event) 738 { 739 return event->cgrp != NULL; 740 } 741 742 static inline u64 perf_cgroup_event_time(struct perf_event *event) 743 { 744 struct perf_cgroup_info *t; 745 746 t = per_cpu_ptr(event->cgrp->info, event->cpu); 747 return t->time; 748 } 749 750 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 751 { 752 struct perf_cgroup_info *t; 753 754 t = per_cpu_ptr(event->cgrp->info, event->cpu); 755 if (!__load_acquire(&t->active)) 756 return t->time; 757 now += READ_ONCE(t->timeoffset); 758 return now; 759 } 760 761 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 762 { 763 if (adv) 764 info->time += now - info->timestamp; 765 info->timestamp = now; 766 /* 767 * see update_context_time() 768 */ 769 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 770 } 771 772 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 773 { 774 struct perf_cgroup *cgrp = cpuctx->cgrp; 775 struct cgroup_subsys_state *css; 776 struct perf_cgroup_info *info; 777 778 if (cgrp) { 779 u64 now = perf_clock(); 780 781 for (css = &cgrp->css; css; css = css->parent) { 782 cgrp = container_of(css, struct perf_cgroup, css); 783 info = this_cpu_ptr(cgrp->info); 784 785 __update_cgrp_time(info, now, true); 786 if (final) 787 __store_release(&info->active, 0); 788 } 789 } 790 } 791 792 static inline void update_cgrp_time_from_event(struct perf_event *event) 793 { 794 struct perf_cgroup_info *info; 795 796 /* 797 * ensure we access cgroup data only when needed and 798 * when we know the cgroup is pinned (css_get) 799 */ 800 if (!is_cgroup_event(event)) 801 return; 802 803 info = this_cpu_ptr(event->cgrp->info); 804 /* 805 * Do not update time when cgroup is not active 806 */ 807 if (info->active) 808 __update_cgrp_time(info, perf_clock(), true); 809 } 810 811 static inline void 812 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 813 { 814 struct perf_event_context *ctx = &cpuctx->ctx; 815 struct perf_cgroup *cgrp = cpuctx->cgrp; 816 struct perf_cgroup_info *info; 817 struct cgroup_subsys_state *css; 818 819 /* 820 * ctx->lock held by caller 821 * ensure we do not access cgroup data 822 * unless we have the cgroup pinned (css_get) 823 */ 824 if (!cgrp) 825 return; 826 827 WARN_ON_ONCE(!ctx->nr_cgroups); 828 829 for (css = &cgrp->css; css; css = css->parent) { 830 cgrp = container_of(css, struct perf_cgroup, css); 831 info = this_cpu_ptr(cgrp->info); 832 __update_cgrp_time(info, ctx->timestamp, false); 833 __store_release(&info->active, 1); 834 } 835 } 836 837 /* 838 * reschedule events based on the cgroup constraint of task. 839 */ 840 static void perf_cgroup_switch(struct task_struct *task) 841 { 842 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 843 struct perf_cgroup *cgrp; 844 845 /* 846 * cpuctx->cgrp is set when the first cgroup event enabled, 847 * and is cleared when the last cgroup event disabled. 848 */ 849 if (READ_ONCE(cpuctx->cgrp) == NULL) 850 return; 851 852 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 853 854 cgrp = perf_cgroup_from_task(task, NULL); 855 if (READ_ONCE(cpuctx->cgrp) == cgrp) 856 return; 857 858 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 859 perf_ctx_disable(&cpuctx->ctx); 860 861 ctx_sched_out(&cpuctx->ctx, EVENT_ALL); 862 /* 863 * must not be done before ctxswout due 864 * to update_cgrp_time_from_cpuctx() in 865 * ctx_sched_out() 866 */ 867 cpuctx->cgrp = cgrp; 868 /* 869 * set cgrp before ctxsw in to allow 870 * perf_cgroup_set_timestamp() in ctx_sched_in() 871 * to not have to pass task around 872 */ 873 ctx_sched_in(&cpuctx->ctx, EVENT_ALL); 874 875 perf_ctx_enable(&cpuctx->ctx); 876 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 877 } 878 879 static int perf_cgroup_ensure_storage(struct perf_event *event, 880 struct cgroup_subsys_state *css) 881 { 882 struct perf_cpu_context *cpuctx; 883 struct perf_event **storage; 884 int cpu, heap_size, ret = 0; 885 886 /* 887 * Allow storage to have sufficent space for an iterator for each 888 * possibly nested cgroup plus an iterator for events with no cgroup. 889 */ 890 for (heap_size = 1; css; css = css->parent) 891 heap_size++; 892 893 for_each_possible_cpu(cpu) { 894 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 895 if (heap_size <= cpuctx->heap_size) 896 continue; 897 898 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 899 GFP_KERNEL, cpu_to_node(cpu)); 900 if (!storage) { 901 ret = -ENOMEM; 902 break; 903 } 904 905 raw_spin_lock_irq(&cpuctx->ctx.lock); 906 if (cpuctx->heap_size < heap_size) { 907 swap(cpuctx->heap, storage); 908 if (storage == cpuctx->heap_default) 909 storage = NULL; 910 cpuctx->heap_size = heap_size; 911 } 912 raw_spin_unlock_irq(&cpuctx->ctx.lock); 913 914 kfree(storage); 915 } 916 917 return ret; 918 } 919 920 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 921 struct perf_event_attr *attr, 922 struct perf_event *group_leader) 923 { 924 struct perf_cgroup *cgrp; 925 struct cgroup_subsys_state *css; 926 struct fd f = fdget(fd); 927 int ret = 0; 928 929 if (!f.file) 930 return -EBADF; 931 932 css = css_tryget_online_from_dir(f.file->f_path.dentry, 933 &perf_event_cgrp_subsys); 934 if (IS_ERR(css)) { 935 ret = PTR_ERR(css); 936 goto out; 937 } 938 939 ret = perf_cgroup_ensure_storage(event, css); 940 if (ret) 941 goto out; 942 943 cgrp = container_of(css, struct perf_cgroup, css); 944 event->cgrp = cgrp; 945 946 /* 947 * all events in a group must monitor 948 * the same cgroup because a task belongs 949 * to only one perf cgroup at a time 950 */ 951 if (group_leader && group_leader->cgrp != cgrp) { 952 perf_detach_cgroup(event); 953 ret = -EINVAL; 954 } 955 out: 956 fdput(f); 957 return ret; 958 } 959 960 static inline void 961 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 962 { 963 struct perf_cpu_context *cpuctx; 964 965 if (!is_cgroup_event(event)) 966 return; 967 968 /* 969 * Because cgroup events are always per-cpu events, 970 * @ctx == &cpuctx->ctx. 971 */ 972 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 973 974 if (ctx->nr_cgroups++) 975 return; 976 977 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 978 } 979 980 static inline void 981 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 982 { 983 struct perf_cpu_context *cpuctx; 984 985 if (!is_cgroup_event(event)) 986 return; 987 988 /* 989 * Because cgroup events are always per-cpu events, 990 * @ctx == &cpuctx->ctx. 991 */ 992 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 993 994 if (--ctx->nr_cgroups) 995 return; 996 997 cpuctx->cgrp = NULL; 998 } 999 1000 #else /* !CONFIG_CGROUP_PERF */ 1001 1002 static inline bool 1003 perf_cgroup_match(struct perf_event *event) 1004 { 1005 return true; 1006 } 1007 1008 static inline void perf_detach_cgroup(struct perf_event *event) 1009 {} 1010 1011 static inline int is_cgroup_event(struct perf_event *event) 1012 { 1013 return 0; 1014 } 1015 1016 static inline void update_cgrp_time_from_event(struct perf_event *event) 1017 { 1018 } 1019 1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1021 bool final) 1022 { 1023 } 1024 1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1026 struct perf_event_attr *attr, 1027 struct perf_event *group_leader) 1028 { 1029 return -EINVAL; 1030 } 1031 1032 static inline void 1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1034 { 1035 } 1036 1037 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1038 { 1039 return 0; 1040 } 1041 1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1043 { 1044 return 0; 1045 } 1046 1047 static inline void 1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1049 { 1050 } 1051 1052 static inline void 1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1054 { 1055 } 1056 1057 static void perf_cgroup_switch(struct task_struct *task) 1058 { 1059 } 1060 #endif 1061 1062 /* 1063 * set default to be dependent on timer tick just 1064 * like original code 1065 */ 1066 #define PERF_CPU_HRTIMER (1000 / HZ) 1067 /* 1068 * function must be called with interrupts disabled 1069 */ 1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1071 { 1072 struct perf_cpu_pmu_context *cpc; 1073 bool rotations; 1074 1075 lockdep_assert_irqs_disabled(); 1076 1077 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1078 rotations = perf_rotate_context(cpc); 1079 1080 raw_spin_lock(&cpc->hrtimer_lock); 1081 if (rotations) 1082 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1083 else 1084 cpc->hrtimer_active = 0; 1085 raw_spin_unlock(&cpc->hrtimer_lock); 1086 1087 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1088 } 1089 1090 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1091 { 1092 struct hrtimer *timer = &cpc->hrtimer; 1093 struct pmu *pmu = cpc->epc.pmu; 1094 u64 interval; 1095 1096 /* 1097 * check default is sane, if not set then force to 1098 * default interval (1/tick) 1099 */ 1100 interval = pmu->hrtimer_interval_ms; 1101 if (interval < 1) 1102 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1103 1104 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1105 1106 raw_spin_lock_init(&cpc->hrtimer_lock); 1107 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1108 timer->function = perf_mux_hrtimer_handler; 1109 } 1110 1111 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1112 { 1113 struct hrtimer *timer = &cpc->hrtimer; 1114 unsigned long flags; 1115 1116 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1117 if (!cpc->hrtimer_active) { 1118 cpc->hrtimer_active = 1; 1119 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1120 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1121 } 1122 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1123 1124 return 0; 1125 } 1126 1127 static int perf_mux_hrtimer_restart_ipi(void *arg) 1128 { 1129 return perf_mux_hrtimer_restart(arg); 1130 } 1131 1132 void perf_pmu_disable(struct pmu *pmu) 1133 { 1134 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1135 if (!(*count)++) 1136 pmu->pmu_disable(pmu); 1137 } 1138 1139 void perf_pmu_enable(struct pmu *pmu) 1140 { 1141 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1142 if (!--(*count)) 1143 pmu->pmu_enable(pmu); 1144 } 1145 1146 static void perf_assert_pmu_disabled(struct pmu *pmu) 1147 { 1148 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1149 } 1150 1151 static void get_ctx(struct perf_event_context *ctx) 1152 { 1153 refcount_inc(&ctx->refcount); 1154 } 1155 1156 static void *alloc_task_ctx_data(struct pmu *pmu) 1157 { 1158 if (pmu->task_ctx_cache) 1159 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1160 1161 return NULL; 1162 } 1163 1164 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1165 { 1166 if (pmu->task_ctx_cache && task_ctx_data) 1167 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1168 } 1169 1170 static void free_ctx(struct rcu_head *head) 1171 { 1172 struct perf_event_context *ctx; 1173 1174 ctx = container_of(head, struct perf_event_context, rcu_head); 1175 kfree(ctx); 1176 } 1177 1178 static void put_ctx(struct perf_event_context *ctx) 1179 { 1180 if (refcount_dec_and_test(&ctx->refcount)) { 1181 if (ctx->parent_ctx) 1182 put_ctx(ctx->parent_ctx); 1183 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1184 put_task_struct(ctx->task); 1185 call_rcu(&ctx->rcu_head, free_ctx); 1186 } 1187 } 1188 1189 /* 1190 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1191 * perf_pmu_migrate_context() we need some magic. 1192 * 1193 * Those places that change perf_event::ctx will hold both 1194 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1195 * 1196 * Lock ordering is by mutex address. There are two other sites where 1197 * perf_event_context::mutex nests and those are: 1198 * 1199 * - perf_event_exit_task_context() [ child , 0 ] 1200 * perf_event_exit_event() 1201 * put_event() [ parent, 1 ] 1202 * 1203 * - perf_event_init_context() [ parent, 0 ] 1204 * inherit_task_group() 1205 * inherit_group() 1206 * inherit_event() 1207 * perf_event_alloc() 1208 * perf_init_event() 1209 * perf_try_init_event() [ child , 1 ] 1210 * 1211 * While it appears there is an obvious deadlock here -- the parent and child 1212 * nesting levels are inverted between the two. This is in fact safe because 1213 * life-time rules separate them. That is an exiting task cannot fork, and a 1214 * spawning task cannot (yet) exit. 1215 * 1216 * But remember that these are parent<->child context relations, and 1217 * migration does not affect children, therefore these two orderings should not 1218 * interact. 1219 * 1220 * The change in perf_event::ctx does not affect children (as claimed above) 1221 * because the sys_perf_event_open() case will install a new event and break 1222 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1223 * concerned with cpuctx and that doesn't have children. 1224 * 1225 * The places that change perf_event::ctx will issue: 1226 * 1227 * perf_remove_from_context(); 1228 * synchronize_rcu(); 1229 * perf_install_in_context(); 1230 * 1231 * to affect the change. The remove_from_context() + synchronize_rcu() should 1232 * quiesce the event, after which we can install it in the new location. This 1233 * means that only external vectors (perf_fops, prctl) can perturb the event 1234 * while in transit. Therefore all such accessors should also acquire 1235 * perf_event_context::mutex to serialize against this. 1236 * 1237 * However; because event->ctx can change while we're waiting to acquire 1238 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1239 * function. 1240 * 1241 * Lock order: 1242 * exec_update_lock 1243 * task_struct::perf_event_mutex 1244 * perf_event_context::mutex 1245 * perf_event::child_mutex; 1246 * perf_event_context::lock 1247 * perf_event::mmap_mutex 1248 * mmap_lock 1249 * perf_addr_filters_head::lock 1250 * 1251 * cpu_hotplug_lock 1252 * pmus_lock 1253 * cpuctx->mutex / perf_event_context::mutex 1254 */ 1255 static struct perf_event_context * 1256 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1257 { 1258 struct perf_event_context *ctx; 1259 1260 again: 1261 rcu_read_lock(); 1262 ctx = READ_ONCE(event->ctx); 1263 if (!refcount_inc_not_zero(&ctx->refcount)) { 1264 rcu_read_unlock(); 1265 goto again; 1266 } 1267 rcu_read_unlock(); 1268 1269 mutex_lock_nested(&ctx->mutex, nesting); 1270 if (event->ctx != ctx) { 1271 mutex_unlock(&ctx->mutex); 1272 put_ctx(ctx); 1273 goto again; 1274 } 1275 1276 return ctx; 1277 } 1278 1279 static inline struct perf_event_context * 1280 perf_event_ctx_lock(struct perf_event *event) 1281 { 1282 return perf_event_ctx_lock_nested(event, 0); 1283 } 1284 1285 static void perf_event_ctx_unlock(struct perf_event *event, 1286 struct perf_event_context *ctx) 1287 { 1288 mutex_unlock(&ctx->mutex); 1289 put_ctx(ctx); 1290 } 1291 1292 /* 1293 * This must be done under the ctx->lock, such as to serialize against 1294 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1295 * calling scheduler related locks and ctx->lock nests inside those. 1296 */ 1297 static __must_check struct perf_event_context * 1298 unclone_ctx(struct perf_event_context *ctx) 1299 { 1300 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1301 1302 lockdep_assert_held(&ctx->lock); 1303 1304 if (parent_ctx) 1305 ctx->parent_ctx = NULL; 1306 ctx->generation++; 1307 1308 return parent_ctx; 1309 } 1310 1311 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1312 enum pid_type type) 1313 { 1314 u32 nr; 1315 /* 1316 * only top level events have the pid namespace they were created in 1317 */ 1318 if (event->parent) 1319 event = event->parent; 1320 1321 nr = __task_pid_nr_ns(p, type, event->ns); 1322 /* avoid -1 if it is idle thread or runs in another ns */ 1323 if (!nr && !pid_alive(p)) 1324 nr = -1; 1325 return nr; 1326 } 1327 1328 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1329 { 1330 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1331 } 1332 1333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1334 { 1335 return perf_event_pid_type(event, p, PIDTYPE_PID); 1336 } 1337 1338 /* 1339 * If we inherit events we want to return the parent event id 1340 * to userspace. 1341 */ 1342 static u64 primary_event_id(struct perf_event *event) 1343 { 1344 u64 id = event->id; 1345 1346 if (event->parent) 1347 id = event->parent->id; 1348 1349 return id; 1350 } 1351 1352 /* 1353 * Get the perf_event_context for a task and lock it. 1354 * 1355 * This has to cope with the fact that until it is locked, 1356 * the context could get moved to another task. 1357 */ 1358 static struct perf_event_context * 1359 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1360 { 1361 struct perf_event_context *ctx; 1362 1363 retry: 1364 /* 1365 * One of the few rules of preemptible RCU is that one cannot do 1366 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1367 * part of the read side critical section was irqs-enabled -- see 1368 * rcu_read_unlock_special(). 1369 * 1370 * Since ctx->lock nests under rq->lock we must ensure the entire read 1371 * side critical section has interrupts disabled. 1372 */ 1373 local_irq_save(*flags); 1374 rcu_read_lock(); 1375 ctx = rcu_dereference(task->perf_event_ctxp); 1376 if (ctx) { 1377 /* 1378 * If this context is a clone of another, it might 1379 * get swapped for another underneath us by 1380 * perf_event_task_sched_out, though the 1381 * rcu_read_lock() protects us from any context 1382 * getting freed. Lock the context and check if it 1383 * got swapped before we could get the lock, and retry 1384 * if so. If we locked the right context, then it 1385 * can't get swapped on us any more. 1386 */ 1387 raw_spin_lock(&ctx->lock); 1388 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1389 raw_spin_unlock(&ctx->lock); 1390 rcu_read_unlock(); 1391 local_irq_restore(*flags); 1392 goto retry; 1393 } 1394 1395 if (ctx->task == TASK_TOMBSTONE || 1396 !refcount_inc_not_zero(&ctx->refcount)) { 1397 raw_spin_unlock(&ctx->lock); 1398 ctx = NULL; 1399 } else { 1400 WARN_ON_ONCE(ctx->task != task); 1401 } 1402 } 1403 rcu_read_unlock(); 1404 if (!ctx) 1405 local_irq_restore(*flags); 1406 return ctx; 1407 } 1408 1409 /* 1410 * Get the context for a task and increment its pin_count so it 1411 * can't get swapped to another task. This also increments its 1412 * reference count so that the context can't get freed. 1413 */ 1414 static struct perf_event_context * 1415 perf_pin_task_context(struct task_struct *task) 1416 { 1417 struct perf_event_context *ctx; 1418 unsigned long flags; 1419 1420 ctx = perf_lock_task_context(task, &flags); 1421 if (ctx) { 1422 ++ctx->pin_count; 1423 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1424 } 1425 return ctx; 1426 } 1427 1428 static void perf_unpin_context(struct perf_event_context *ctx) 1429 { 1430 unsigned long flags; 1431 1432 raw_spin_lock_irqsave(&ctx->lock, flags); 1433 --ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 1437 /* 1438 * Update the record of the current time in a context. 1439 */ 1440 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1441 { 1442 u64 now = perf_clock(); 1443 1444 lockdep_assert_held(&ctx->lock); 1445 1446 if (adv) 1447 ctx->time += now - ctx->timestamp; 1448 ctx->timestamp = now; 1449 1450 /* 1451 * The above: time' = time + (now - timestamp), can be re-arranged 1452 * into: time` = now + (time - timestamp), which gives a single value 1453 * offset to compute future time without locks on. 1454 * 1455 * See perf_event_time_now(), which can be used from NMI context where 1456 * it's (obviously) not possible to acquire ctx->lock in order to read 1457 * both the above values in a consistent manner. 1458 */ 1459 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1460 } 1461 1462 static void update_context_time(struct perf_event_context *ctx) 1463 { 1464 __update_context_time(ctx, true); 1465 } 1466 1467 static u64 perf_event_time(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 1471 if (unlikely(!ctx)) 1472 return 0; 1473 1474 if (is_cgroup_event(event)) 1475 return perf_cgroup_event_time(event); 1476 1477 return ctx->time; 1478 } 1479 1480 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1481 { 1482 struct perf_event_context *ctx = event->ctx; 1483 1484 if (unlikely(!ctx)) 1485 return 0; 1486 1487 if (is_cgroup_event(event)) 1488 return perf_cgroup_event_time_now(event, now); 1489 1490 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1491 return ctx->time; 1492 1493 now += READ_ONCE(ctx->timeoffset); 1494 return now; 1495 } 1496 1497 static enum event_type_t get_event_type(struct perf_event *event) 1498 { 1499 struct perf_event_context *ctx = event->ctx; 1500 enum event_type_t event_type; 1501 1502 lockdep_assert_held(&ctx->lock); 1503 1504 /* 1505 * It's 'group type', really, because if our group leader is 1506 * pinned, so are we. 1507 */ 1508 if (event->group_leader != event) 1509 event = event->group_leader; 1510 1511 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1512 if (!ctx->task) 1513 event_type |= EVENT_CPU; 1514 1515 return event_type; 1516 } 1517 1518 /* 1519 * Helper function to initialize event group nodes. 1520 */ 1521 static void init_event_group(struct perf_event *event) 1522 { 1523 RB_CLEAR_NODE(&event->group_node); 1524 event->group_index = 0; 1525 } 1526 1527 /* 1528 * Extract pinned or flexible groups from the context 1529 * based on event attrs bits. 1530 */ 1531 static struct perf_event_groups * 1532 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1533 { 1534 if (event->attr.pinned) 1535 return &ctx->pinned_groups; 1536 else 1537 return &ctx->flexible_groups; 1538 } 1539 1540 /* 1541 * Helper function to initializes perf_event_group trees. 1542 */ 1543 static void perf_event_groups_init(struct perf_event_groups *groups) 1544 { 1545 groups->tree = RB_ROOT; 1546 groups->index = 0; 1547 } 1548 1549 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1550 { 1551 struct cgroup *cgroup = NULL; 1552 1553 #ifdef CONFIG_CGROUP_PERF 1554 if (event->cgrp) 1555 cgroup = event->cgrp->css.cgroup; 1556 #endif 1557 1558 return cgroup; 1559 } 1560 1561 /* 1562 * Compare function for event groups; 1563 * 1564 * Implements complex key that first sorts by CPU and then by virtual index 1565 * which provides ordering when rotating groups for the same CPU. 1566 */ 1567 static __always_inline int 1568 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1569 const struct cgroup *left_cgroup, const u64 left_group_index, 1570 const struct perf_event *right) 1571 { 1572 if (left_cpu < right->cpu) 1573 return -1; 1574 if (left_cpu > right->cpu) 1575 return 1; 1576 1577 if (left_pmu) { 1578 if (left_pmu < right->pmu_ctx->pmu) 1579 return -1; 1580 if (left_pmu > right->pmu_ctx->pmu) 1581 return 1; 1582 } 1583 1584 #ifdef CONFIG_CGROUP_PERF 1585 { 1586 const struct cgroup *right_cgroup = event_cgroup(right); 1587 1588 if (left_cgroup != right_cgroup) { 1589 if (!left_cgroup) { 1590 /* 1591 * Left has no cgroup but right does, no 1592 * cgroups come first. 1593 */ 1594 return -1; 1595 } 1596 if (!right_cgroup) { 1597 /* 1598 * Right has no cgroup but left does, no 1599 * cgroups come first. 1600 */ 1601 return 1; 1602 } 1603 /* Two dissimilar cgroups, order by id. */ 1604 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1605 return -1; 1606 1607 return 1; 1608 } 1609 } 1610 #endif 1611 1612 if (left_group_index < right->group_index) 1613 return -1; 1614 if (left_group_index > right->group_index) 1615 return 1; 1616 1617 return 0; 1618 } 1619 1620 #define __node_2_pe(node) \ 1621 rb_entry((node), struct perf_event, group_node) 1622 1623 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1624 { 1625 struct perf_event *e = __node_2_pe(a); 1626 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1627 e->group_index, __node_2_pe(b)) < 0; 1628 } 1629 1630 struct __group_key { 1631 int cpu; 1632 struct pmu *pmu; 1633 struct cgroup *cgroup; 1634 }; 1635 1636 static inline int __group_cmp(const void *key, const struct rb_node *node) 1637 { 1638 const struct __group_key *a = key; 1639 const struct perf_event *b = __node_2_pe(node); 1640 1641 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1642 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1643 } 1644 1645 static inline int 1646 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1647 { 1648 const struct __group_key *a = key; 1649 const struct perf_event *b = __node_2_pe(node); 1650 1651 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1652 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1653 b->group_index, b); 1654 } 1655 1656 /* 1657 * Insert @event into @groups' tree; using 1658 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1659 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1660 */ 1661 static void 1662 perf_event_groups_insert(struct perf_event_groups *groups, 1663 struct perf_event *event) 1664 { 1665 event->group_index = ++groups->index; 1666 1667 rb_add(&event->group_node, &groups->tree, __group_less); 1668 } 1669 1670 /* 1671 * Helper function to insert event into the pinned or flexible groups. 1672 */ 1673 static void 1674 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1675 { 1676 struct perf_event_groups *groups; 1677 1678 groups = get_event_groups(event, ctx); 1679 perf_event_groups_insert(groups, event); 1680 } 1681 1682 /* 1683 * Delete a group from a tree. 1684 */ 1685 static void 1686 perf_event_groups_delete(struct perf_event_groups *groups, 1687 struct perf_event *event) 1688 { 1689 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1690 RB_EMPTY_ROOT(&groups->tree)); 1691 1692 rb_erase(&event->group_node, &groups->tree); 1693 init_event_group(event); 1694 } 1695 1696 /* 1697 * Helper function to delete event from its groups. 1698 */ 1699 static void 1700 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1701 { 1702 struct perf_event_groups *groups; 1703 1704 groups = get_event_groups(event, ctx); 1705 perf_event_groups_delete(groups, event); 1706 } 1707 1708 /* 1709 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1710 */ 1711 static struct perf_event * 1712 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1713 struct pmu *pmu, struct cgroup *cgrp) 1714 { 1715 struct __group_key key = { 1716 .cpu = cpu, 1717 .pmu = pmu, 1718 .cgroup = cgrp, 1719 }; 1720 struct rb_node *node; 1721 1722 node = rb_find_first(&key, &groups->tree, __group_cmp); 1723 if (node) 1724 return __node_2_pe(node); 1725 1726 return NULL; 1727 } 1728 1729 static struct perf_event * 1730 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1731 { 1732 struct __group_key key = { 1733 .cpu = event->cpu, 1734 .pmu = pmu, 1735 .cgroup = event_cgroup(event), 1736 }; 1737 struct rb_node *next; 1738 1739 next = rb_next_match(&key, &event->group_node, __group_cmp); 1740 if (next) 1741 return __node_2_pe(next); 1742 1743 return NULL; 1744 } 1745 1746 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1747 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1748 event; event = perf_event_groups_next(event, pmu)) 1749 1750 /* 1751 * Iterate through the whole groups tree. 1752 */ 1753 #define perf_event_groups_for_each(event, groups) \ 1754 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1755 typeof(*event), group_node); event; \ 1756 event = rb_entry_safe(rb_next(&event->group_node), \ 1757 typeof(*event), group_node)) 1758 1759 /* 1760 * Add an event from the lists for its context. 1761 * Must be called with ctx->mutex and ctx->lock held. 1762 */ 1763 static void 1764 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1765 { 1766 lockdep_assert_held(&ctx->lock); 1767 1768 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1769 event->attach_state |= PERF_ATTACH_CONTEXT; 1770 1771 event->tstamp = perf_event_time(event); 1772 1773 /* 1774 * If we're a stand alone event or group leader, we go to the context 1775 * list, group events are kept attached to the group so that 1776 * perf_group_detach can, at all times, locate all siblings. 1777 */ 1778 if (event->group_leader == event) { 1779 event->group_caps = event->event_caps; 1780 add_event_to_groups(event, ctx); 1781 } 1782 1783 list_add_rcu(&event->event_entry, &ctx->event_list); 1784 ctx->nr_events++; 1785 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1786 ctx->nr_user++; 1787 if (event->attr.inherit_stat) 1788 ctx->nr_stat++; 1789 1790 if (event->state > PERF_EVENT_STATE_OFF) 1791 perf_cgroup_event_enable(event, ctx); 1792 1793 ctx->generation++; 1794 event->pmu_ctx->nr_events++; 1795 } 1796 1797 /* 1798 * Initialize event state based on the perf_event_attr::disabled. 1799 */ 1800 static inline void perf_event__state_init(struct perf_event *event) 1801 { 1802 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1803 PERF_EVENT_STATE_INACTIVE; 1804 } 1805 1806 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1807 { 1808 int entry = sizeof(u64); /* value */ 1809 int size = 0; 1810 int nr = 1; 1811 1812 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1813 size += sizeof(u64); 1814 1815 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1816 size += sizeof(u64); 1817 1818 if (event->attr.read_format & PERF_FORMAT_ID) 1819 entry += sizeof(u64); 1820 1821 if (event->attr.read_format & PERF_FORMAT_LOST) 1822 entry += sizeof(u64); 1823 1824 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1825 nr += nr_siblings; 1826 size += sizeof(u64); 1827 } 1828 1829 size += entry * nr; 1830 event->read_size = size; 1831 } 1832 1833 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1834 { 1835 struct perf_sample_data *data; 1836 u16 size = 0; 1837 1838 if (sample_type & PERF_SAMPLE_IP) 1839 size += sizeof(data->ip); 1840 1841 if (sample_type & PERF_SAMPLE_ADDR) 1842 size += sizeof(data->addr); 1843 1844 if (sample_type & PERF_SAMPLE_PERIOD) 1845 size += sizeof(data->period); 1846 1847 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1848 size += sizeof(data->weight.full); 1849 1850 if (sample_type & PERF_SAMPLE_READ) 1851 size += event->read_size; 1852 1853 if (sample_type & PERF_SAMPLE_DATA_SRC) 1854 size += sizeof(data->data_src.val); 1855 1856 if (sample_type & PERF_SAMPLE_TRANSACTION) 1857 size += sizeof(data->txn); 1858 1859 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1860 size += sizeof(data->phys_addr); 1861 1862 if (sample_type & PERF_SAMPLE_CGROUP) 1863 size += sizeof(data->cgroup); 1864 1865 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1866 size += sizeof(data->data_page_size); 1867 1868 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1869 size += sizeof(data->code_page_size); 1870 1871 event->header_size = size; 1872 } 1873 1874 /* 1875 * Called at perf_event creation and when events are attached/detached from a 1876 * group. 1877 */ 1878 static void perf_event__header_size(struct perf_event *event) 1879 { 1880 __perf_event_read_size(event, 1881 event->group_leader->nr_siblings); 1882 __perf_event_header_size(event, event->attr.sample_type); 1883 } 1884 1885 static void perf_event__id_header_size(struct perf_event *event) 1886 { 1887 struct perf_sample_data *data; 1888 u64 sample_type = event->attr.sample_type; 1889 u16 size = 0; 1890 1891 if (sample_type & PERF_SAMPLE_TID) 1892 size += sizeof(data->tid_entry); 1893 1894 if (sample_type & PERF_SAMPLE_TIME) 1895 size += sizeof(data->time); 1896 1897 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1898 size += sizeof(data->id); 1899 1900 if (sample_type & PERF_SAMPLE_ID) 1901 size += sizeof(data->id); 1902 1903 if (sample_type & PERF_SAMPLE_STREAM_ID) 1904 size += sizeof(data->stream_id); 1905 1906 if (sample_type & PERF_SAMPLE_CPU) 1907 size += sizeof(data->cpu_entry); 1908 1909 event->id_header_size = size; 1910 } 1911 1912 static bool perf_event_validate_size(struct perf_event *event) 1913 { 1914 /* 1915 * The values computed here will be over-written when we actually 1916 * attach the event. 1917 */ 1918 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1919 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1920 perf_event__id_header_size(event); 1921 1922 /* 1923 * Sum the lot; should not exceed the 64k limit we have on records. 1924 * Conservative limit to allow for callchains and other variable fields. 1925 */ 1926 if (event->read_size + event->header_size + 1927 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1928 return false; 1929 1930 return true; 1931 } 1932 1933 static void perf_group_attach(struct perf_event *event) 1934 { 1935 struct perf_event *group_leader = event->group_leader, *pos; 1936 1937 lockdep_assert_held(&event->ctx->lock); 1938 1939 /* 1940 * We can have double attach due to group movement (move_group) in 1941 * perf_event_open(). 1942 */ 1943 if (event->attach_state & PERF_ATTACH_GROUP) 1944 return; 1945 1946 event->attach_state |= PERF_ATTACH_GROUP; 1947 1948 if (group_leader == event) 1949 return; 1950 1951 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1952 1953 group_leader->group_caps &= event->event_caps; 1954 1955 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1956 group_leader->nr_siblings++; 1957 group_leader->group_generation++; 1958 1959 perf_event__header_size(group_leader); 1960 1961 for_each_sibling_event(pos, group_leader) 1962 perf_event__header_size(pos); 1963 } 1964 1965 /* 1966 * Remove an event from the lists for its context. 1967 * Must be called with ctx->mutex and ctx->lock held. 1968 */ 1969 static void 1970 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1971 { 1972 WARN_ON_ONCE(event->ctx != ctx); 1973 lockdep_assert_held(&ctx->lock); 1974 1975 /* 1976 * We can have double detach due to exit/hot-unplug + close. 1977 */ 1978 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1979 return; 1980 1981 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1982 1983 ctx->nr_events--; 1984 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1985 ctx->nr_user--; 1986 if (event->attr.inherit_stat) 1987 ctx->nr_stat--; 1988 1989 list_del_rcu(&event->event_entry); 1990 1991 if (event->group_leader == event) 1992 del_event_from_groups(event, ctx); 1993 1994 /* 1995 * If event was in error state, then keep it 1996 * that way, otherwise bogus counts will be 1997 * returned on read(). The only way to get out 1998 * of error state is by explicit re-enabling 1999 * of the event 2000 */ 2001 if (event->state > PERF_EVENT_STATE_OFF) { 2002 perf_cgroup_event_disable(event, ctx); 2003 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2004 } 2005 2006 ctx->generation++; 2007 event->pmu_ctx->nr_events--; 2008 } 2009 2010 static int 2011 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2012 { 2013 if (!has_aux(aux_event)) 2014 return 0; 2015 2016 if (!event->pmu->aux_output_match) 2017 return 0; 2018 2019 return event->pmu->aux_output_match(aux_event); 2020 } 2021 2022 static void put_event(struct perf_event *event); 2023 static void event_sched_out(struct perf_event *event, 2024 struct perf_event_context *ctx); 2025 2026 static void perf_put_aux_event(struct perf_event *event) 2027 { 2028 struct perf_event_context *ctx = event->ctx; 2029 struct perf_event *iter; 2030 2031 /* 2032 * If event uses aux_event tear down the link 2033 */ 2034 if (event->aux_event) { 2035 iter = event->aux_event; 2036 event->aux_event = NULL; 2037 put_event(iter); 2038 return; 2039 } 2040 2041 /* 2042 * If the event is an aux_event, tear down all links to 2043 * it from other events. 2044 */ 2045 for_each_sibling_event(iter, event->group_leader) { 2046 if (iter->aux_event != event) 2047 continue; 2048 2049 iter->aux_event = NULL; 2050 put_event(event); 2051 2052 /* 2053 * If it's ACTIVE, schedule it out and put it into ERROR 2054 * state so that we don't try to schedule it again. Note 2055 * that perf_event_enable() will clear the ERROR status. 2056 */ 2057 event_sched_out(iter, ctx); 2058 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2059 } 2060 } 2061 2062 static bool perf_need_aux_event(struct perf_event *event) 2063 { 2064 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2065 } 2066 2067 static int perf_get_aux_event(struct perf_event *event, 2068 struct perf_event *group_leader) 2069 { 2070 /* 2071 * Our group leader must be an aux event if we want to be 2072 * an aux_output. This way, the aux event will precede its 2073 * aux_output events in the group, and therefore will always 2074 * schedule first. 2075 */ 2076 if (!group_leader) 2077 return 0; 2078 2079 /* 2080 * aux_output and aux_sample_size are mutually exclusive. 2081 */ 2082 if (event->attr.aux_output && event->attr.aux_sample_size) 2083 return 0; 2084 2085 if (event->attr.aux_output && 2086 !perf_aux_output_match(event, group_leader)) 2087 return 0; 2088 2089 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2090 return 0; 2091 2092 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2093 return 0; 2094 2095 /* 2096 * Link aux_outputs to their aux event; this is undone in 2097 * perf_group_detach() by perf_put_aux_event(). When the 2098 * group in torn down, the aux_output events loose their 2099 * link to the aux_event and can't schedule any more. 2100 */ 2101 event->aux_event = group_leader; 2102 2103 return 1; 2104 } 2105 2106 static inline struct list_head *get_event_list(struct perf_event *event) 2107 { 2108 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2109 &event->pmu_ctx->flexible_active; 2110 } 2111 2112 /* 2113 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2114 * cannot exist on their own, schedule them out and move them into the ERROR 2115 * state. Also see _perf_event_enable(), it will not be able to recover 2116 * this ERROR state. 2117 */ 2118 static inline void perf_remove_sibling_event(struct perf_event *event) 2119 { 2120 event_sched_out(event, event->ctx); 2121 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2122 } 2123 2124 static void perf_group_detach(struct perf_event *event) 2125 { 2126 struct perf_event *leader = event->group_leader; 2127 struct perf_event *sibling, *tmp; 2128 struct perf_event_context *ctx = event->ctx; 2129 2130 lockdep_assert_held(&ctx->lock); 2131 2132 /* 2133 * We can have double detach due to exit/hot-unplug + close. 2134 */ 2135 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2136 return; 2137 2138 event->attach_state &= ~PERF_ATTACH_GROUP; 2139 2140 perf_put_aux_event(event); 2141 2142 /* 2143 * If this is a sibling, remove it from its group. 2144 */ 2145 if (leader != event) { 2146 list_del_init(&event->sibling_list); 2147 event->group_leader->nr_siblings--; 2148 event->group_leader->group_generation++; 2149 goto out; 2150 } 2151 2152 /* 2153 * If this was a group event with sibling events then 2154 * upgrade the siblings to singleton events by adding them 2155 * to whatever list we are on. 2156 */ 2157 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2158 2159 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2160 perf_remove_sibling_event(sibling); 2161 2162 sibling->group_leader = sibling; 2163 list_del_init(&sibling->sibling_list); 2164 2165 /* Inherit group flags from the previous leader */ 2166 sibling->group_caps = event->group_caps; 2167 2168 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2169 add_event_to_groups(sibling, event->ctx); 2170 2171 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2172 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2173 } 2174 2175 WARN_ON_ONCE(sibling->ctx != event->ctx); 2176 } 2177 2178 out: 2179 for_each_sibling_event(tmp, leader) 2180 perf_event__header_size(tmp); 2181 2182 perf_event__header_size(leader); 2183 } 2184 2185 static void sync_child_event(struct perf_event *child_event); 2186 2187 static void perf_child_detach(struct perf_event *event) 2188 { 2189 struct perf_event *parent_event = event->parent; 2190 2191 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2192 return; 2193 2194 event->attach_state &= ~PERF_ATTACH_CHILD; 2195 2196 if (WARN_ON_ONCE(!parent_event)) 2197 return; 2198 2199 lockdep_assert_held(&parent_event->child_mutex); 2200 2201 sync_child_event(event); 2202 list_del_init(&event->child_list); 2203 } 2204 2205 static bool is_orphaned_event(struct perf_event *event) 2206 { 2207 return event->state == PERF_EVENT_STATE_DEAD; 2208 } 2209 2210 static inline int 2211 event_filter_match(struct perf_event *event) 2212 { 2213 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2214 perf_cgroup_match(event); 2215 } 2216 2217 static void 2218 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2219 { 2220 struct perf_event_pmu_context *epc = event->pmu_ctx; 2221 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2222 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2223 2224 // XXX cpc serialization, probably per-cpu IRQ disabled 2225 2226 WARN_ON_ONCE(event->ctx != ctx); 2227 lockdep_assert_held(&ctx->lock); 2228 2229 if (event->state != PERF_EVENT_STATE_ACTIVE) 2230 return; 2231 2232 /* 2233 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2234 * we can schedule events _OUT_ individually through things like 2235 * __perf_remove_from_context(). 2236 */ 2237 list_del_init(&event->active_list); 2238 2239 perf_pmu_disable(event->pmu); 2240 2241 event->pmu->del(event, 0); 2242 event->oncpu = -1; 2243 2244 if (event->pending_disable) { 2245 event->pending_disable = 0; 2246 perf_cgroup_event_disable(event, ctx); 2247 state = PERF_EVENT_STATE_OFF; 2248 } 2249 2250 if (event->pending_sigtrap) { 2251 bool dec = true; 2252 2253 event->pending_sigtrap = 0; 2254 if (state != PERF_EVENT_STATE_OFF && 2255 !event->pending_work) { 2256 event->pending_work = 1; 2257 dec = false; 2258 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2259 task_work_add(current, &event->pending_task, TWA_RESUME); 2260 } 2261 if (dec) 2262 local_dec(&event->ctx->nr_pending); 2263 } 2264 2265 perf_event_set_state(event, state); 2266 2267 if (!is_software_event(event)) 2268 cpc->active_oncpu--; 2269 if (event->attr.freq && event->attr.sample_freq) 2270 ctx->nr_freq--; 2271 if (event->attr.exclusive || !cpc->active_oncpu) 2272 cpc->exclusive = 0; 2273 2274 perf_pmu_enable(event->pmu); 2275 } 2276 2277 static void 2278 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2279 { 2280 struct perf_event *event; 2281 2282 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2283 return; 2284 2285 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2286 2287 event_sched_out(group_event, ctx); 2288 2289 /* 2290 * Schedule out siblings (if any): 2291 */ 2292 for_each_sibling_event(event, group_event) 2293 event_sched_out(event, ctx); 2294 } 2295 2296 #define DETACH_GROUP 0x01UL 2297 #define DETACH_CHILD 0x02UL 2298 #define DETACH_DEAD 0x04UL 2299 2300 /* 2301 * Cross CPU call to remove a performance event 2302 * 2303 * We disable the event on the hardware level first. After that we 2304 * remove it from the context list. 2305 */ 2306 static void 2307 __perf_remove_from_context(struct perf_event *event, 2308 struct perf_cpu_context *cpuctx, 2309 struct perf_event_context *ctx, 2310 void *info) 2311 { 2312 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2313 unsigned long flags = (unsigned long)info; 2314 2315 if (ctx->is_active & EVENT_TIME) { 2316 update_context_time(ctx); 2317 update_cgrp_time_from_cpuctx(cpuctx, false); 2318 } 2319 2320 /* 2321 * Ensure event_sched_out() switches to OFF, at the very least 2322 * this avoids raising perf_pending_task() at this time. 2323 */ 2324 if (flags & DETACH_DEAD) 2325 event->pending_disable = 1; 2326 event_sched_out(event, ctx); 2327 if (flags & DETACH_GROUP) 2328 perf_group_detach(event); 2329 if (flags & DETACH_CHILD) 2330 perf_child_detach(event); 2331 list_del_event(event, ctx); 2332 if (flags & DETACH_DEAD) 2333 event->state = PERF_EVENT_STATE_DEAD; 2334 2335 if (!pmu_ctx->nr_events) { 2336 pmu_ctx->rotate_necessary = 0; 2337 2338 if (ctx->task && ctx->is_active) { 2339 struct perf_cpu_pmu_context *cpc; 2340 2341 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2342 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2343 cpc->task_epc = NULL; 2344 } 2345 } 2346 2347 if (!ctx->nr_events && ctx->is_active) { 2348 if (ctx == &cpuctx->ctx) 2349 update_cgrp_time_from_cpuctx(cpuctx, true); 2350 2351 ctx->is_active = 0; 2352 if (ctx->task) { 2353 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2354 cpuctx->task_ctx = NULL; 2355 } 2356 } 2357 } 2358 2359 /* 2360 * Remove the event from a task's (or a CPU's) list of events. 2361 * 2362 * If event->ctx is a cloned context, callers must make sure that 2363 * every task struct that event->ctx->task could possibly point to 2364 * remains valid. This is OK when called from perf_release since 2365 * that only calls us on the top-level context, which can't be a clone. 2366 * When called from perf_event_exit_task, it's OK because the 2367 * context has been detached from its task. 2368 */ 2369 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2370 { 2371 struct perf_event_context *ctx = event->ctx; 2372 2373 lockdep_assert_held(&ctx->mutex); 2374 2375 /* 2376 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2377 * to work in the face of TASK_TOMBSTONE, unlike every other 2378 * event_function_call() user. 2379 */ 2380 raw_spin_lock_irq(&ctx->lock); 2381 if (!ctx->is_active) { 2382 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2383 ctx, (void *)flags); 2384 raw_spin_unlock_irq(&ctx->lock); 2385 return; 2386 } 2387 raw_spin_unlock_irq(&ctx->lock); 2388 2389 event_function_call(event, __perf_remove_from_context, (void *)flags); 2390 } 2391 2392 /* 2393 * Cross CPU call to disable a performance event 2394 */ 2395 static void __perf_event_disable(struct perf_event *event, 2396 struct perf_cpu_context *cpuctx, 2397 struct perf_event_context *ctx, 2398 void *info) 2399 { 2400 if (event->state < PERF_EVENT_STATE_INACTIVE) 2401 return; 2402 2403 if (ctx->is_active & EVENT_TIME) { 2404 update_context_time(ctx); 2405 update_cgrp_time_from_event(event); 2406 } 2407 2408 perf_pmu_disable(event->pmu_ctx->pmu); 2409 2410 if (event == event->group_leader) 2411 group_sched_out(event, ctx); 2412 else 2413 event_sched_out(event, ctx); 2414 2415 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2416 perf_cgroup_event_disable(event, ctx); 2417 2418 perf_pmu_enable(event->pmu_ctx->pmu); 2419 } 2420 2421 /* 2422 * Disable an event. 2423 * 2424 * If event->ctx is a cloned context, callers must make sure that 2425 * every task struct that event->ctx->task could possibly point to 2426 * remains valid. This condition is satisfied when called through 2427 * perf_event_for_each_child or perf_event_for_each because they 2428 * hold the top-level event's child_mutex, so any descendant that 2429 * goes to exit will block in perf_event_exit_event(). 2430 * 2431 * When called from perf_pending_irq it's OK because event->ctx 2432 * is the current context on this CPU and preemption is disabled, 2433 * hence we can't get into perf_event_task_sched_out for this context. 2434 */ 2435 static void _perf_event_disable(struct perf_event *event) 2436 { 2437 struct perf_event_context *ctx = event->ctx; 2438 2439 raw_spin_lock_irq(&ctx->lock); 2440 if (event->state <= PERF_EVENT_STATE_OFF) { 2441 raw_spin_unlock_irq(&ctx->lock); 2442 return; 2443 } 2444 raw_spin_unlock_irq(&ctx->lock); 2445 2446 event_function_call(event, __perf_event_disable, NULL); 2447 } 2448 2449 void perf_event_disable_local(struct perf_event *event) 2450 { 2451 event_function_local(event, __perf_event_disable, NULL); 2452 } 2453 2454 /* 2455 * Strictly speaking kernel users cannot create groups and therefore this 2456 * interface does not need the perf_event_ctx_lock() magic. 2457 */ 2458 void perf_event_disable(struct perf_event *event) 2459 { 2460 struct perf_event_context *ctx; 2461 2462 ctx = perf_event_ctx_lock(event); 2463 _perf_event_disable(event); 2464 perf_event_ctx_unlock(event, ctx); 2465 } 2466 EXPORT_SYMBOL_GPL(perf_event_disable); 2467 2468 void perf_event_disable_inatomic(struct perf_event *event) 2469 { 2470 event->pending_disable = 1; 2471 irq_work_queue(&event->pending_irq); 2472 } 2473 2474 #define MAX_INTERRUPTS (~0ULL) 2475 2476 static void perf_log_throttle(struct perf_event *event, int enable); 2477 static void perf_log_itrace_start(struct perf_event *event); 2478 2479 static int 2480 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2481 { 2482 struct perf_event_pmu_context *epc = event->pmu_ctx; 2483 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2484 int ret = 0; 2485 2486 WARN_ON_ONCE(event->ctx != ctx); 2487 2488 lockdep_assert_held(&ctx->lock); 2489 2490 if (event->state <= PERF_EVENT_STATE_OFF) 2491 return 0; 2492 2493 WRITE_ONCE(event->oncpu, smp_processor_id()); 2494 /* 2495 * Order event::oncpu write to happen before the ACTIVE state is 2496 * visible. This allows perf_event_{stop,read}() to observe the correct 2497 * ->oncpu if it sees ACTIVE. 2498 */ 2499 smp_wmb(); 2500 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2501 2502 /* 2503 * Unthrottle events, since we scheduled we might have missed several 2504 * ticks already, also for a heavily scheduling task there is little 2505 * guarantee it'll get a tick in a timely manner. 2506 */ 2507 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2508 perf_log_throttle(event, 1); 2509 event->hw.interrupts = 0; 2510 } 2511 2512 perf_pmu_disable(event->pmu); 2513 2514 perf_log_itrace_start(event); 2515 2516 if (event->pmu->add(event, PERF_EF_START)) { 2517 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2518 event->oncpu = -1; 2519 ret = -EAGAIN; 2520 goto out; 2521 } 2522 2523 if (!is_software_event(event)) 2524 cpc->active_oncpu++; 2525 if (event->attr.freq && event->attr.sample_freq) 2526 ctx->nr_freq++; 2527 2528 if (event->attr.exclusive) 2529 cpc->exclusive = 1; 2530 2531 out: 2532 perf_pmu_enable(event->pmu); 2533 2534 return ret; 2535 } 2536 2537 static int 2538 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2539 { 2540 struct perf_event *event, *partial_group = NULL; 2541 struct pmu *pmu = group_event->pmu_ctx->pmu; 2542 2543 if (group_event->state == PERF_EVENT_STATE_OFF) 2544 return 0; 2545 2546 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2547 2548 if (event_sched_in(group_event, ctx)) 2549 goto error; 2550 2551 /* 2552 * Schedule in siblings as one group (if any): 2553 */ 2554 for_each_sibling_event(event, group_event) { 2555 if (event_sched_in(event, ctx)) { 2556 partial_group = event; 2557 goto group_error; 2558 } 2559 } 2560 2561 if (!pmu->commit_txn(pmu)) 2562 return 0; 2563 2564 group_error: 2565 /* 2566 * Groups can be scheduled in as one unit only, so undo any 2567 * partial group before returning: 2568 * The events up to the failed event are scheduled out normally. 2569 */ 2570 for_each_sibling_event(event, group_event) { 2571 if (event == partial_group) 2572 break; 2573 2574 event_sched_out(event, ctx); 2575 } 2576 event_sched_out(group_event, ctx); 2577 2578 error: 2579 pmu->cancel_txn(pmu); 2580 return -EAGAIN; 2581 } 2582 2583 /* 2584 * Work out whether we can put this event group on the CPU now. 2585 */ 2586 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2587 { 2588 struct perf_event_pmu_context *epc = event->pmu_ctx; 2589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2590 2591 /* 2592 * Groups consisting entirely of software events can always go on. 2593 */ 2594 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2595 return 1; 2596 /* 2597 * If an exclusive group is already on, no other hardware 2598 * events can go on. 2599 */ 2600 if (cpc->exclusive) 2601 return 0; 2602 /* 2603 * If this group is exclusive and there are already 2604 * events on the CPU, it can't go on. 2605 */ 2606 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2607 return 0; 2608 /* 2609 * Otherwise, try to add it if all previous groups were able 2610 * to go on. 2611 */ 2612 return can_add_hw; 2613 } 2614 2615 static void add_event_to_ctx(struct perf_event *event, 2616 struct perf_event_context *ctx) 2617 { 2618 list_add_event(event, ctx); 2619 perf_group_attach(event); 2620 } 2621 2622 static void task_ctx_sched_out(struct perf_event_context *ctx, 2623 enum event_type_t event_type) 2624 { 2625 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2626 2627 if (!cpuctx->task_ctx) 2628 return; 2629 2630 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2631 return; 2632 2633 ctx_sched_out(ctx, event_type); 2634 } 2635 2636 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2637 struct perf_event_context *ctx) 2638 { 2639 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2640 if (ctx) 2641 ctx_sched_in(ctx, EVENT_PINNED); 2642 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2643 if (ctx) 2644 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2645 } 2646 2647 /* 2648 * We want to maintain the following priority of scheduling: 2649 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2650 * - task pinned (EVENT_PINNED) 2651 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2652 * - task flexible (EVENT_FLEXIBLE). 2653 * 2654 * In order to avoid unscheduling and scheduling back in everything every 2655 * time an event is added, only do it for the groups of equal priority and 2656 * below. 2657 * 2658 * This can be called after a batch operation on task events, in which case 2659 * event_type is a bit mask of the types of events involved. For CPU events, 2660 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2661 */ 2662 /* 2663 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2664 * event to the context or enabling existing event in the context. We can 2665 * probably optimize it by rescheduling only affected pmu_ctx. 2666 */ 2667 static void ctx_resched(struct perf_cpu_context *cpuctx, 2668 struct perf_event_context *task_ctx, 2669 enum event_type_t event_type) 2670 { 2671 bool cpu_event = !!(event_type & EVENT_CPU); 2672 2673 /* 2674 * If pinned groups are involved, flexible groups also need to be 2675 * scheduled out. 2676 */ 2677 if (event_type & EVENT_PINNED) 2678 event_type |= EVENT_FLEXIBLE; 2679 2680 event_type &= EVENT_ALL; 2681 2682 perf_ctx_disable(&cpuctx->ctx); 2683 if (task_ctx) { 2684 perf_ctx_disable(task_ctx); 2685 task_ctx_sched_out(task_ctx, event_type); 2686 } 2687 2688 /* 2689 * Decide which cpu ctx groups to schedule out based on the types 2690 * of events that caused rescheduling: 2691 * - EVENT_CPU: schedule out corresponding groups; 2692 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2693 * - otherwise, do nothing more. 2694 */ 2695 if (cpu_event) 2696 ctx_sched_out(&cpuctx->ctx, event_type); 2697 else if (event_type & EVENT_PINNED) 2698 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2699 2700 perf_event_sched_in(cpuctx, task_ctx); 2701 2702 perf_ctx_enable(&cpuctx->ctx); 2703 if (task_ctx) 2704 perf_ctx_enable(task_ctx); 2705 } 2706 2707 void perf_pmu_resched(struct pmu *pmu) 2708 { 2709 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2710 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2711 2712 perf_ctx_lock(cpuctx, task_ctx); 2713 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2714 perf_ctx_unlock(cpuctx, task_ctx); 2715 } 2716 2717 /* 2718 * Cross CPU call to install and enable a performance event 2719 * 2720 * Very similar to remote_function() + event_function() but cannot assume that 2721 * things like ctx->is_active and cpuctx->task_ctx are set. 2722 */ 2723 static int __perf_install_in_context(void *info) 2724 { 2725 struct perf_event *event = info; 2726 struct perf_event_context *ctx = event->ctx; 2727 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2728 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2729 bool reprogram = true; 2730 int ret = 0; 2731 2732 raw_spin_lock(&cpuctx->ctx.lock); 2733 if (ctx->task) { 2734 raw_spin_lock(&ctx->lock); 2735 task_ctx = ctx; 2736 2737 reprogram = (ctx->task == current); 2738 2739 /* 2740 * If the task is running, it must be running on this CPU, 2741 * otherwise we cannot reprogram things. 2742 * 2743 * If its not running, we don't care, ctx->lock will 2744 * serialize against it becoming runnable. 2745 */ 2746 if (task_curr(ctx->task) && !reprogram) { 2747 ret = -ESRCH; 2748 goto unlock; 2749 } 2750 2751 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2752 } else if (task_ctx) { 2753 raw_spin_lock(&task_ctx->lock); 2754 } 2755 2756 #ifdef CONFIG_CGROUP_PERF 2757 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2758 /* 2759 * If the current cgroup doesn't match the event's 2760 * cgroup, we should not try to schedule it. 2761 */ 2762 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2763 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2764 event->cgrp->css.cgroup); 2765 } 2766 #endif 2767 2768 if (reprogram) { 2769 ctx_sched_out(ctx, EVENT_TIME); 2770 add_event_to_ctx(event, ctx); 2771 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2772 } else { 2773 add_event_to_ctx(event, ctx); 2774 } 2775 2776 unlock: 2777 perf_ctx_unlock(cpuctx, task_ctx); 2778 2779 return ret; 2780 } 2781 2782 static bool exclusive_event_installable(struct perf_event *event, 2783 struct perf_event_context *ctx); 2784 2785 /* 2786 * Attach a performance event to a context. 2787 * 2788 * Very similar to event_function_call, see comment there. 2789 */ 2790 static void 2791 perf_install_in_context(struct perf_event_context *ctx, 2792 struct perf_event *event, 2793 int cpu) 2794 { 2795 struct task_struct *task = READ_ONCE(ctx->task); 2796 2797 lockdep_assert_held(&ctx->mutex); 2798 2799 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2800 2801 if (event->cpu != -1) 2802 WARN_ON_ONCE(event->cpu != cpu); 2803 2804 /* 2805 * Ensures that if we can observe event->ctx, both the event and ctx 2806 * will be 'complete'. See perf_iterate_sb_cpu(). 2807 */ 2808 smp_store_release(&event->ctx, ctx); 2809 2810 /* 2811 * perf_event_attr::disabled events will not run and can be initialized 2812 * without IPI. Except when this is the first event for the context, in 2813 * that case we need the magic of the IPI to set ctx->is_active. 2814 * 2815 * The IOC_ENABLE that is sure to follow the creation of a disabled 2816 * event will issue the IPI and reprogram the hardware. 2817 */ 2818 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2819 ctx->nr_events && !is_cgroup_event(event)) { 2820 raw_spin_lock_irq(&ctx->lock); 2821 if (ctx->task == TASK_TOMBSTONE) { 2822 raw_spin_unlock_irq(&ctx->lock); 2823 return; 2824 } 2825 add_event_to_ctx(event, ctx); 2826 raw_spin_unlock_irq(&ctx->lock); 2827 return; 2828 } 2829 2830 if (!task) { 2831 cpu_function_call(cpu, __perf_install_in_context, event); 2832 return; 2833 } 2834 2835 /* 2836 * Should not happen, we validate the ctx is still alive before calling. 2837 */ 2838 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2839 return; 2840 2841 /* 2842 * Installing events is tricky because we cannot rely on ctx->is_active 2843 * to be set in case this is the nr_events 0 -> 1 transition. 2844 * 2845 * Instead we use task_curr(), which tells us if the task is running. 2846 * However, since we use task_curr() outside of rq::lock, we can race 2847 * against the actual state. This means the result can be wrong. 2848 * 2849 * If we get a false positive, we retry, this is harmless. 2850 * 2851 * If we get a false negative, things are complicated. If we are after 2852 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2853 * value must be correct. If we're before, it doesn't matter since 2854 * perf_event_context_sched_in() will program the counter. 2855 * 2856 * However, this hinges on the remote context switch having observed 2857 * our task->perf_event_ctxp[] store, such that it will in fact take 2858 * ctx::lock in perf_event_context_sched_in(). 2859 * 2860 * We do this by task_function_call(), if the IPI fails to hit the task 2861 * we know any future context switch of task must see the 2862 * perf_event_ctpx[] store. 2863 */ 2864 2865 /* 2866 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2867 * task_cpu() load, such that if the IPI then does not find the task 2868 * running, a future context switch of that task must observe the 2869 * store. 2870 */ 2871 smp_mb(); 2872 again: 2873 if (!task_function_call(task, __perf_install_in_context, event)) 2874 return; 2875 2876 raw_spin_lock_irq(&ctx->lock); 2877 task = ctx->task; 2878 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2879 /* 2880 * Cannot happen because we already checked above (which also 2881 * cannot happen), and we hold ctx->mutex, which serializes us 2882 * against perf_event_exit_task_context(). 2883 */ 2884 raw_spin_unlock_irq(&ctx->lock); 2885 return; 2886 } 2887 /* 2888 * If the task is not running, ctx->lock will avoid it becoming so, 2889 * thus we can safely install the event. 2890 */ 2891 if (task_curr(task)) { 2892 raw_spin_unlock_irq(&ctx->lock); 2893 goto again; 2894 } 2895 add_event_to_ctx(event, ctx); 2896 raw_spin_unlock_irq(&ctx->lock); 2897 } 2898 2899 /* 2900 * Cross CPU call to enable a performance event 2901 */ 2902 static void __perf_event_enable(struct perf_event *event, 2903 struct perf_cpu_context *cpuctx, 2904 struct perf_event_context *ctx, 2905 void *info) 2906 { 2907 struct perf_event *leader = event->group_leader; 2908 struct perf_event_context *task_ctx; 2909 2910 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2911 event->state <= PERF_EVENT_STATE_ERROR) 2912 return; 2913 2914 if (ctx->is_active) 2915 ctx_sched_out(ctx, EVENT_TIME); 2916 2917 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2918 perf_cgroup_event_enable(event, ctx); 2919 2920 if (!ctx->is_active) 2921 return; 2922 2923 if (!event_filter_match(event)) { 2924 ctx_sched_in(ctx, EVENT_TIME); 2925 return; 2926 } 2927 2928 /* 2929 * If the event is in a group and isn't the group leader, 2930 * then don't put it on unless the group is on. 2931 */ 2932 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2933 ctx_sched_in(ctx, EVENT_TIME); 2934 return; 2935 } 2936 2937 task_ctx = cpuctx->task_ctx; 2938 if (ctx->task) 2939 WARN_ON_ONCE(task_ctx != ctx); 2940 2941 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2942 } 2943 2944 /* 2945 * Enable an event. 2946 * 2947 * If event->ctx is a cloned context, callers must make sure that 2948 * every task struct that event->ctx->task could possibly point to 2949 * remains valid. This condition is satisfied when called through 2950 * perf_event_for_each_child or perf_event_for_each as described 2951 * for perf_event_disable. 2952 */ 2953 static void _perf_event_enable(struct perf_event *event) 2954 { 2955 struct perf_event_context *ctx = event->ctx; 2956 2957 raw_spin_lock_irq(&ctx->lock); 2958 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2959 event->state < PERF_EVENT_STATE_ERROR) { 2960 out: 2961 raw_spin_unlock_irq(&ctx->lock); 2962 return; 2963 } 2964 2965 /* 2966 * If the event is in error state, clear that first. 2967 * 2968 * That way, if we see the event in error state below, we know that it 2969 * has gone back into error state, as distinct from the task having 2970 * been scheduled away before the cross-call arrived. 2971 */ 2972 if (event->state == PERF_EVENT_STATE_ERROR) { 2973 /* 2974 * Detached SIBLING events cannot leave ERROR state. 2975 */ 2976 if (event->event_caps & PERF_EV_CAP_SIBLING && 2977 event->group_leader == event) 2978 goto out; 2979 2980 event->state = PERF_EVENT_STATE_OFF; 2981 } 2982 raw_spin_unlock_irq(&ctx->lock); 2983 2984 event_function_call(event, __perf_event_enable, NULL); 2985 } 2986 2987 /* 2988 * See perf_event_disable(); 2989 */ 2990 void perf_event_enable(struct perf_event *event) 2991 { 2992 struct perf_event_context *ctx; 2993 2994 ctx = perf_event_ctx_lock(event); 2995 _perf_event_enable(event); 2996 perf_event_ctx_unlock(event, ctx); 2997 } 2998 EXPORT_SYMBOL_GPL(perf_event_enable); 2999 3000 struct stop_event_data { 3001 struct perf_event *event; 3002 unsigned int restart; 3003 }; 3004 3005 static int __perf_event_stop(void *info) 3006 { 3007 struct stop_event_data *sd = info; 3008 struct perf_event *event = sd->event; 3009 3010 /* if it's already INACTIVE, do nothing */ 3011 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3012 return 0; 3013 3014 /* matches smp_wmb() in event_sched_in() */ 3015 smp_rmb(); 3016 3017 /* 3018 * There is a window with interrupts enabled before we get here, 3019 * so we need to check again lest we try to stop another CPU's event. 3020 */ 3021 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3022 return -EAGAIN; 3023 3024 event->pmu->stop(event, PERF_EF_UPDATE); 3025 3026 /* 3027 * May race with the actual stop (through perf_pmu_output_stop()), 3028 * but it is only used for events with AUX ring buffer, and such 3029 * events will refuse to restart because of rb::aux_mmap_count==0, 3030 * see comments in perf_aux_output_begin(). 3031 * 3032 * Since this is happening on an event-local CPU, no trace is lost 3033 * while restarting. 3034 */ 3035 if (sd->restart) 3036 event->pmu->start(event, 0); 3037 3038 return 0; 3039 } 3040 3041 static int perf_event_stop(struct perf_event *event, int restart) 3042 { 3043 struct stop_event_data sd = { 3044 .event = event, 3045 .restart = restart, 3046 }; 3047 int ret = 0; 3048 3049 do { 3050 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3051 return 0; 3052 3053 /* matches smp_wmb() in event_sched_in() */ 3054 smp_rmb(); 3055 3056 /* 3057 * We only want to restart ACTIVE events, so if the event goes 3058 * inactive here (event->oncpu==-1), there's nothing more to do; 3059 * fall through with ret==-ENXIO. 3060 */ 3061 ret = cpu_function_call(READ_ONCE(event->oncpu), 3062 __perf_event_stop, &sd); 3063 } while (ret == -EAGAIN); 3064 3065 return ret; 3066 } 3067 3068 /* 3069 * In order to contain the amount of racy and tricky in the address filter 3070 * configuration management, it is a two part process: 3071 * 3072 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3073 * we update the addresses of corresponding vmas in 3074 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3075 * (p2) when an event is scheduled in (pmu::add), it calls 3076 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3077 * if the generation has changed since the previous call. 3078 * 3079 * If (p1) happens while the event is active, we restart it to force (p2). 3080 * 3081 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3082 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3083 * ioctl; 3084 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3085 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3086 * for reading; 3087 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3088 * of exec. 3089 */ 3090 void perf_event_addr_filters_sync(struct perf_event *event) 3091 { 3092 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3093 3094 if (!has_addr_filter(event)) 3095 return; 3096 3097 raw_spin_lock(&ifh->lock); 3098 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3099 event->pmu->addr_filters_sync(event); 3100 event->hw.addr_filters_gen = event->addr_filters_gen; 3101 } 3102 raw_spin_unlock(&ifh->lock); 3103 } 3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3105 3106 static int _perf_event_refresh(struct perf_event *event, int refresh) 3107 { 3108 /* 3109 * not supported on inherited events 3110 */ 3111 if (event->attr.inherit || !is_sampling_event(event)) 3112 return -EINVAL; 3113 3114 atomic_add(refresh, &event->event_limit); 3115 _perf_event_enable(event); 3116 3117 return 0; 3118 } 3119 3120 /* 3121 * See perf_event_disable() 3122 */ 3123 int perf_event_refresh(struct perf_event *event, int refresh) 3124 { 3125 struct perf_event_context *ctx; 3126 int ret; 3127 3128 ctx = perf_event_ctx_lock(event); 3129 ret = _perf_event_refresh(event, refresh); 3130 perf_event_ctx_unlock(event, ctx); 3131 3132 return ret; 3133 } 3134 EXPORT_SYMBOL_GPL(perf_event_refresh); 3135 3136 static int perf_event_modify_breakpoint(struct perf_event *bp, 3137 struct perf_event_attr *attr) 3138 { 3139 int err; 3140 3141 _perf_event_disable(bp); 3142 3143 err = modify_user_hw_breakpoint_check(bp, attr, true); 3144 3145 if (!bp->attr.disabled) 3146 _perf_event_enable(bp); 3147 3148 return err; 3149 } 3150 3151 /* 3152 * Copy event-type-independent attributes that may be modified. 3153 */ 3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3155 const struct perf_event_attr *from) 3156 { 3157 to->sig_data = from->sig_data; 3158 } 3159 3160 static int perf_event_modify_attr(struct perf_event *event, 3161 struct perf_event_attr *attr) 3162 { 3163 int (*func)(struct perf_event *, struct perf_event_attr *); 3164 struct perf_event *child; 3165 int err; 3166 3167 if (event->attr.type != attr->type) 3168 return -EINVAL; 3169 3170 switch (event->attr.type) { 3171 case PERF_TYPE_BREAKPOINT: 3172 func = perf_event_modify_breakpoint; 3173 break; 3174 default: 3175 /* Place holder for future additions. */ 3176 return -EOPNOTSUPP; 3177 } 3178 3179 WARN_ON_ONCE(event->ctx->parent_ctx); 3180 3181 mutex_lock(&event->child_mutex); 3182 /* 3183 * Event-type-independent attributes must be copied before event-type 3184 * modification, which will validate that final attributes match the 3185 * source attributes after all relevant attributes have been copied. 3186 */ 3187 perf_event_modify_copy_attr(&event->attr, attr); 3188 err = func(event, attr); 3189 if (err) 3190 goto out; 3191 list_for_each_entry(child, &event->child_list, child_list) { 3192 perf_event_modify_copy_attr(&child->attr, attr); 3193 err = func(child, attr); 3194 if (err) 3195 goto out; 3196 } 3197 out: 3198 mutex_unlock(&event->child_mutex); 3199 return err; 3200 } 3201 3202 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3203 enum event_type_t event_type) 3204 { 3205 struct perf_event_context *ctx = pmu_ctx->ctx; 3206 struct perf_event *event, *tmp; 3207 struct pmu *pmu = pmu_ctx->pmu; 3208 3209 if (ctx->task && !ctx->is_active) { 3210 struct perf_cpu_pmu_context *cpc; 3211 3212 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3213 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3214 cpc->task_epc = NULL; 3215 } 3216 3217 if (!event_type) 3218 return; 3219 3220 perf_pmu_disable(pmu); 3221 if (event_type & EVENT_PINNED) { 3222 list_for_each_entry_safe(event, tmp, 3223 &pmu_ctx->pinned_active, 3224 active_list) 3225 group_sched_out(event, ctx); 3226 } 3227 3228 if (event_type & EVENT_FLEXIBLE) { 3229 list_for_each_entry_safe(event, tmp, 3230 &pmu_ctx->flexible_active, 3231 active_list) 3232 group_sched_out(event, ctx); 3233 /* 3234 * Since we cleared EVENT_FLEXIBLE, also clear 3235 * rotate_necessary, is will be reset by 3236 * ctx_flexible_sched_in() when needed. 3237 */ 3238 pmu_ctx->rotate_necessary = 0; 3239 } 3240 perf_pmu_enable(pmu); 3241 } 3242 3243 static void 3244 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3245 { 3246 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3247 struct perf_event_pmu_context *pmu_ctx; 3248 int is_active = ctx->is_active; 3249 3250 lockdep_assert_held(&ctx->lock); 3251 3252 if (likely(!ctx->nr_events)) { 3253 /* 3254 * See __perf_remove_from_context(). 3255 */ 3256 WARN_ON_ONCE(ctx->is_active); 3257 if (ctx->task) 3258 WARN_ON_ONCE(cpuctx->task_ctx); 3259 return; 3260 } 3261 3262 /* 3263 * Always update time if it was set; not only when it changes. 3264 * Otherwise we can 'forget' to update time for any but the last 3265 * context we sched out. For example: 3266 * 3267 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3268 * ctx_sched_out(.event_type = EVENT_PINNED) 3269 * 3270 * would only update time for the pinned events. 3271 */ 3272 if (is_active & EVENT_TIME) { 3273 /* update (and stop) ctx time */ 3274 update_context_time(ctx); 3275 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3276 /* 3277 * CPU-release for the below ->is_active store, 3278 * see __load_acquire() in perf_event_time_now() 3279 */ 3280 barrier(); 3281 } 3282 3283 ctx->is_active &= ~event_type; 3284 if (!(ctx->is_active & EVENT_ALL)) 3285 ctx->is_active = 0; 3286 3287 if (ctx->task) { 3288 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3289 if (!ctx->is_active) 3290 cpuctx->task_ctx = NULL; 3291 } 3292 3293 is_active ^= ctx->is_active; /* changed bits */ 3294 3295 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) 3296 __pmu_ctx_sched_out(pmu_ctx, is_active); 3297 } 3298 3299 /* 3300 * Test whether two contexts are equivalent, i.e. whether they have both been 3301 * cloned from the same version of the same context. 3302 * 3303 * Equivalence is measured using a generation number in the context that is 3304 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3305 * and list_del_event(). 3306 */ 3307 static int context_equiv(struct perf_event_context *ctx1, 3308 struct perf_event_context *ctx2) 3309 { 3310 lockdep_assert_held(&ctx1->lock); 3311 lockdep_assert_held(&ctx2->lock); 3312 3313 /* Pinning disables the swap optimization */ 3314 if (ctx1->pin_count || ctx2->pin_count) 3315 return 0; 3316 3317 /* If ctx1 is the parent of ctx2 */ 3318 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3319 return 1; 3320 3321 /* If ctx2 is the parent of ctx1 */ 3322 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3323 return 1; 3324 3325 /* 3326 * If ctx1 and ctx2 have the same parent; we flatten the parent 3327 * hierarchy, see perf_event_init_context(). 3328 */ 3329 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3330 ctx1->parent_gen == ctx2->parent_gen) 3331 return 1; 3332 3333 /* Unmatched */ 3334 return 0; 3335 } 3336 3337 static void __perf_event_sync_stat(struct perf_event *event, 3338 struct perf_event *next_event) 3339 { 3340 u64 value; 3341 3342 if (!event->attr.inherit_stat) 3343 return; 3344 3345 /* 3346 * Update the event value, we cannot use perf_event_read() 3347 * because we're in the middle of a context switch and have IRQs 3348 * disabled, which upsets smp_call_function_single(), however 3349 * we know the event must be on the current CPU, therefore we 3350 * don't need to use it. 3351 */ 3352 if (event->state == PERF_EVENT_STATE_ACTIVE) 3353 event->pmu->read(event); 3354 3355 perf_event_update_time(event); 3356 3357 /* 3358 * In order to keep per-task stats reliable we need to flip the event 3359 * values when we flip the contexts. 3360 */ 3361 value = local64_read(&next_event->count); 3362 value = local64_xchg(&event->count, value); 3363 local64_set(&next_event->count, value); 3364 3365 swap(event->total_time_enabled, next_event->total_time_enabled); 3366 swap(event->total_time_running, next_event->total_time_running); 3367 3368 /* 3369 * Since we swizzled the values, update the user visible data too. 3370 */ 3371 perf_event_update_userpage(event); 3372 perf_event_update_userpage(next_event); 3373 } 3374 3375 static void perf_event_sync_stat(struct perf_event_context *ctx, 3376 struct perf_event_context *next_ctx) 3377 { 3378 struct perf_event *event, *next_event; 3379 3380 if (!ctx->nr_stat) 3381 return; 3382 3383 update_context_time(ctx); 3384 3385 event = list_first_entry(&ctx->event_list, 3386 struct perf_event, event_entry); 3387 3388 next_event = list_first_entry(&next_ctx->event_list, 3389 struct perf_event, event_entry); 3390 3391 while (&event->event_entry != &ctx->event_list && 3392 &next_event->event_entry != &next_ctx->event_list) { 3393 3394 __perf_event_sync_stat(event, next_event); 3395 3396 event = list_next_entry(event, event_entry); 3397 next_event = list_next_entry(next_event, event_entry); 3398 } 3399 } 3400 3401 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3402 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3403 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3404 !list_entry_is_head(pos1, head1, member) && \ 3405 !list_entry_is_head(pos2, head2, member); \ 3406 pos1 = list_next_entry(pos1, member), \ 3407 pos2 = list_next_entry(pos2, member)) 3408 3409 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3410 struct perf_event_context *next_ctx) 3411 { 3412 struct perf_event_pmu_context *prev_epc, *next_epc; 3413 3414 if (!prev_ctx->nr_task_data) 3415 return; 3416 3417 double_list_for_each_entry(prev_epc, next_epc, 3418 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3419 pmu_ctx_entry) { 3420 3421 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3422 continue; 3423 3424 /* 3425 * PMU specific parts of task perf context can require 3426 * additional synchronization. As an example of such 3427 * synchronization see implementation details of Intel 3428 * LBR call stack data profiling; 3429 */ 3430 if (prev_epc->pmu->swap_task_ctx) 3431 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3432 else 3433 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3434 } 3435 } 3436 3437 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3438 { 3439 struct perf_event_pmu_context *pmu_ctx; 3440 struct perf_cpu_pmu_context *cpc; 3441 3442 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3443 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3444 3445 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3446 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3447 } 3448 } 3449 3450 static void 3451 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3452 { 3453 struct perf_event_context *ctx = task->perf_event_ctxp; 3454 struct perf_event_context *next_ctx; 3455 struct perf_event_context *parent, *next_parent; 3456 int do_switch = 1; 3457 3458 if (likely(!ctx)) 3459 return; 3460 3461 rcu_read_lock(); 3462 next_ctx = rcu_dereference(next->perf_event_ctxp); 3463 if (!next_ctx) 3464 goto unlock; 3465 3466 parent = rcu_dereference(ctx->parent_ctx); 3467 next_parent = rcu_dereference(next_ctx->parent_ctx); 3468 3469 /* If neither context have a parent context; they cannot be clones. */ 3470 if (!parent && !next_parent) 3471 goto unlock; 3472 3473 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3474 /* 3475 * Looks like the two contexts are clones, so we might be 3476 * able to optimize the context switch. We lock both 3477 * contexts and check that they are clones under the 3478 * lock (including re-checking that neither has been 3479 * uncloned in the meantime). It doesn't matter which 3480 * order we take the locks because no other cpu could 3481 * be trying to lock both of these tasks. 3482 */ 3483 raw_spin_lock(&ctx->lock); 3484 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3485 if (context_equiv(ctx, next_ctx)) { 3486 3487 perf_ctx_disable(ctx); 3488 3489 /* PMIs are disabled; ctx->nr_pending is stable. */ 3490 if (local_read(&ctx->nr_pending) || 3491 local_read(&next_ctx->nr_pending)) { 3492 /* 3493 * Must not swap out ctx when there's pending 3494 * events that rely on the ctx->task relation. 3495 */ 3496 raw_spin_unlock(&next_ctx->lock); 3497 rcu_read_unlock(); 3498 goto inside_switch; 3499 } 3500 3501 WRITE_ONCE(ctx->task, next); 3502 WRITE_ONCE(next_ctx->task, task); 3503 3504 perf_ctx_sched_task_cb(ctx, false); 3505 perf_event_swap_task_ctx_data(ctx, next_ctx); 3506 3507 perf_ctx_enable(ctx); 3508 3509 /* 3510 * RCU_INIT_POINTER here is safe because we've not 3511 * modified the ctx and the above modification of 3512 * ctx->task and ctx->task_ctx_data are immaterial 3513 * since those values are always verified under 3514 * ctx->lock which we're now holding. 3515 */ 3516 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3517 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3518 3519 do_switch = 0; 3520 3521 perf_event_sync_stat(ctx, next_ctx); 3522 } 3523 raw_spin_unlock(&next_ctx->lock); 3524 raw_spin_unlock(&ctx->lock); 3525 } 3526 unlock: 3527 rcu_read_unlock(); 3528 3529 if (do_switch) { 3530 raw_spin_lock(&ctx->lock); 3531 perf_ctx_disable(ctx); 3532 3533 inside_switch: 3534 perf_ctx_sched_task_cb(ctx, false); 3535 task_ctx_sched_out(ctx, EVENT_ALL); 3536 3537 perf_ctx_enable(ctx); 3538 raw_spin_unlock(&ctx->lock); 3539 } 3540 } 3541 3542 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3543 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3544 3545 void perf_sched_cb_dec(struct pmu *pmu) 3546 { 3547 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3548 3549 this_cpu_dec(perf_sched_cb_usages); 3550 barrier(); 3551 3552 if (!--cpc->sched_cb_usage) 3553 list_del(&cpc->sched_cb_entry); 3554 } 3555 3556 3557 void perf_sched_cb_inc(struct pmu *pmu) 3558 { 3559 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3560 3561 if (!cpc->sched_cb_usage++) 3562 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3563 3564 barrier(); 3565 this_cpu_inc(perf_sched_cb_usages); 3566 } 3567 3568 /* 3569 * This function provides the context switch callback to the lower code 3570 * layer. It is invoked ONLY when the context switch callback is enabled. 3571 * 3572 * This callback is relevant even to per-cpu events; for example multi event 3573 * PEBS requires this to provide PID/TID information. This requires we flush 3574 * all queued PEBS records before we context switch to a new task. 3575 */ 3576 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3577 { 3578 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3579 struct pmu *pmu; 3580 3581 pmu = cpc->epc.pmu; 3582 3583 /* software PMUs will not have sched_task */ 3584 if (WARN_ON_ONCE(!pmu->sched_task)) 3585 return; 3586 3587 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3588 perf_pmu_disable(pmu); 3589 3590 pmu->sched_task(cpc->task_epc, sched_in); 3591 3592 perf_pmu_enable(pmu); 3593 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3594 } 3595 3596 static void perf_pmu_sched_task(struct task_struct *prev, 3597 struct task_struct *next, 3598 bool sched_in) 3599 { 3600 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3601 struct perf_cpu_pmu_context *cpc; 3602 3603 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3604 if (prev == next || cpuctx->task_ctx) 3605 return; 3606 3607 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3608 __perf_pmu_sched_task(cpc, sched_in); 3609 } 3610 3611 static void perf_event_switch(struct task_struct *task, 3612 struct task_struct *next_prev, bool sched_in); 3613 3614 /* 3615 * Called from scheduler to remove the events of the current task, 3616 * with interrupts disabled. 3617 * 3618 * We stop each event and update the event value in event->count. 3619 * 3620 * This does not protect us against NMI, but disable() 3621 * sets the disabled bit in the control field of event _before_ 3622 * accessing the event control register. If a NMI hits, then it will 3623 * not restart the event. 3624 */ 3625 void __perf_event_task_sched_out(struct task_struct *task, 3626 struct task_struct *next) 3627 { 3628 if (__this_cpu_read(perf_sched_cb_usages)) 3629 perf_pmu_sched_task(task, next, false); 3630 3631 if (atomic_read(&nr_switch_events)) 3632 perf_event_switch(task, next, false); 3633 3634 perf_event_context_sched_out(task, next); 3635 3636 /* 3637 * if cgroup events exist on this CPU, then we need 3638 * to check if we have to switch out PMU state. 3639 * cgroup event are system-wide mode only 3640 */ 3641 perf_cgroup_switch(next); 3642 } 3643 3644 static bool perf_less_group_idx(const void *l, const void *r) 3645 { 3646 const struct perf_event *le = *(const struct perf_event **)l; 3647 const struct perf_event *re = *(const struct perf_event **)r; 3648 3649 return le->group_index < re->group_index; 3650 } 3651 3652 static void swap_ptr(void *l, void *r) 3653 { 3654 void **lp = l, **rp = r; 3655 3656 swap(*lp, *rp); 3657 } 3658 3659 static const struct min_heap_callbacks perf_min_heap = { 3660 .elem_size = sizeof(struct perf_event *), 3661 .less = perf_less_group_idx, 3662 .swp = swap_ptr, 3663 }; 3664 3665 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3666 { 3667 struct perf_event **itrs = heap->data; 3668 3669 if (event) { 3670 itrs[heap->nr] = event; 3671 heap->nr++; 3672 } 3673 } 3674 3675 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3676 { 3677 struct perf_cpu_pmu_context *cpc; 3678 3679 if (!pmu_ctx->ctx->task) 3680 return; 3681 3682 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3683 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3684 cpc->task_epc = pmu_ctx; 3685 } 3686 3687 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3688 struct perf_event_groups *groups, int cpu, 3689 struct pmu *pmu, 3690 int (*func)(struct perf_event *, void *), 3691 void *data) 3692 { 3693 #ifdef CONFIG_CGROUP_PERF 3694 struct cgroup_subsys_state *css = NULL; 3695 #endif 3696 struct perf_cpu_context *cpuctx = NULL; 3697 /* Space for per CPU and/or any CPU event iterators. */ 3698 struct perf_event *itrs[2]; 3699 struct min_heap event_heap; 3700 struct perf_event **evt; 3701 int ret; 3702 3703 if (pmu->filter && pmu->filter(pmu, cpu)) 3704 return 0; 3705 3706 if (!ctx->task) { 3707 cpuctx = this_cpu_ptr(&perf_cpu_context); 3708 event_heap = (struct min_heap){ 3709 .data = cpuctx->heap, 3710 .nr = 0, 3711 .size = cpuctx->heap_size, 3712 }; 3713 3714 lockdep_assert_held(&cpuctx->ctx.lock); 3715 3716 #ifdef CONFIG_CGROUP_PERF 3717 if (cpuctx->cgrp) 3718 css = &cpuctx->cgrp->css; 3719 #endif 3720 } else { 3721 event_heap = (struct min_heap){ 3722 .data = itrs, 3723 .nr = 0, 3724 .size = ARRAY_SIZE(itrs), 3725 }; 3726 /* Events not within a CPU context may be on any CPU. */ 3727 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3728 } 3729 evt = event_heap.data; 3730 3731 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3732 3733 #ifdef CONFIG_CGROUP_PERF 3734 for (; css; css = css->parent) 3735 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3736 #endif 3737 3738 if (event_heap.nr) { 3739 __link_epc((*evt)->pmu_ctx); 3740 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3741 } 3742 3743 min_heapify_all(&event_heap, &perf_min_heap); 3744 3745 while (event_heap.nr) { 3746 ret = func(*evt, data); 3747 if (ret) 3748 return ret; 3749 3750 *evt = perf_event_groups_next(*evt, pmu); 3751 if (*evt) 3752 min_heapify(&event_heap, 0, &perf_min_heap); 3753 else 3754 min_heap_pop(&event_heap, &perf_min_heap); 3755 } 3756 3757 return 0; 3758 } 3759 3760 /* 3761 * Because the userpage is strictly per-event (there is no concept of context, 3762 * so there cannot be a context indirection), every userpage must be updated 3763 * when context time starts :-( 3764 * 3765 * IOW, we must not miss EVENT_TIME edges. 3766 */ 3767 static inline bool event_update_userpage(struct perf_event *event) 3768 { 3769 if (likely(!atomic_read(&event->mmap_count))) 3770 return false; 3771 3772 perf_event_update_time(event); 3773 perf_event_update_userpage(event); 3774 3775 return true; 3776 } 3777 3778 static inline void group_update_userpage(struct perf_event *group_event) 3779 { 3780 struct perf_event *event; 3781 3782 if (!event_update_userpage(group_event)) 3783 return; 3784 3785 for_each_sibling_event(event, group_event) 3786 event_update_userpage(event); 3787 } 3788 3789 static int merge_sched_in(struct perf_event *event, void *data) 3790 { 3791 struct perf_event_context *ctx = event->ctx; 3792 int *can_add_hw = data; 3793 3794 if (event->state <= PERF_EVENT_STATE_OFF) 3795 return 0; 3796 3797 if (!event_filter_match(event)) 3798 return 0; 3799 3800 if (group_can_go_on(event, *can_add_hw)) { 3801 if (!group_sched_in(event, ctx)) 3802 list_add_tail(&event->active_list, get_event_list(event)); 3803 } 3804 3805 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3806 *can_add_hw = 0; 3807 if (event->attr.pinned) { 3808 perf_cgroup_event_disable(event, ctx); 3809 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3810 } else { 3811 struct perf_cpu_pmu_context *cpc; 3812 3813 event->pmu_ctx->rotate_necessary = 1; 3814 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3815 perf_mux_hrtimer_restart(cpc); 3816 group_update_userpage(event); 3817 } 3818 } 3819 3820 return 0; 3821 } 3822 3823 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3824 { 3825 struct perf_event_pmu_context *pmu_ctx; 3826 int can_add_hw = 1; 3827 3828 if (pmu) { 3829 visit_groups_merge(ctx, &ctx->pinned_groups, 3830 smp_processor_id(), pmu, 3831 merge_sched_in, &can_add_hw); 3832 } else { 3833 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3834 can_add_hw = 1; 3835 visit_groups_merge(ctx, &ctx->pinned_groups, 3836 smp_processor_id(), pmu_ctx->pmu, 3837 merge_sched_in, &can_add_hw); 3838 } 3839 } 3840 } 3841 3842 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3843 { 3844 struct perf_event_pmu_context *pmu_ctx; 3845 int can_add_hw = 1; 3846 3847 if (pmu) { 3848 visit_groups_merge(ctx, &ctx->flexible_groups, 3849 smp_processor_id(), pmu, 3850 merge_sched_in, &can_add_hw); 3851 } else { 3852 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3853 can_add_hw = 1; 3854 visit_groups_merge(ctx, &ctx->flexible_groups, 3855 smp_processor_id(), pmu_ctx->pmu, 3856 merge_sched_in, &can_add_hw); 3857 } 3858 } 3859 } 3860 3861 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu) 3862 { 3863 ctx_flexible_sched_in(ctx, pmu); 3864 } 3865 3866 static void 3867 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3868 { 3869 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3870 int is_active = ctx->is_active; 3871 3872 lockdep_assert_held(&ctx->lock); 3873 3874 if (likely(!ctx->nr_events)) 3875 return; 3876 3877 if (!(is_active & EVENT_TIME)) { 3878 /* start ctx time */ 3879 __update_context_time(ctx, false); 3880 perf_cgroup_set_timestamp(cpuctx); 3881 /* 3882 * CPU-release for the below ->is_active store, 3883 * see __load_acquire() in perf_event_time_now() 3884 */ 3885 barrier(); 3886 } 3887 3888 ctx->is_active |= (event_type | EVENT_TIME); 3889 if (ctx->task) { 3890 if (!is_active) 3891 cpuctx->task_ctx = ctx; 3892 else 3893 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3894 } 3895 3896 is_active ^= ctx->is_active; /* changed bits */ 3897 3898 /* 3899 * First go through the list and put on any pinned groups 3900 * in order to give them the best chance of going on. 3901 */ 3902 if (is_active & EVENT_PINNED) 3903 ctx_pinned_sched_in(ctx, NULL); 3904 3905 /* Then walk through the lower prio flexible groups */ 3906 if (is_active & EVENT_FLEXIBLE) 3907 ctx_flexible_sched_in(ctx, NULL); 3908 } 3909 3910 static void perf_event_context_sched_in(struct task_struct *task) 3911 { 3912 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3913 struct perf_event_context *ctx; 3914 3915 rcu_read_lock(); 3916 ctx = rcu_dereference(task->perf_event_ctxp); 3917 if (!ctx) 3918 goto rcu_unlock; 3919 3920 if (cpuctx->task_ctx == ctx) { 3921 perf_ctx_lock(cpuctx, ctx); 3922 perf_ctx_disable(ctx); 3923 3924 perf_ctx_sched_task_cb(ctx, true); 3925 3926 perf_ctx_enable(ctx); 3927 perf_ctx_unlock(cpuctx, ctx); 3928 goto rcu_unlock; 3929 } 3930 3931 perf_ctx_lock(cpuctx, ctx); 3932 /* 3933 * We must check ctx->nr_events while holding ctx->lock, such 3934 * that we serialize against perf_install_in_context(). 3935 */ 3936 if (!ctx->nr_events) 3937 goto unlock; 3938 3939 perf_ctx_disable(ctx); 3940 /* 3941 * We want to keep the following priority order: 3942 * cpu pinned (that don't need to move), task pinned, 3943 * cpu flexible, task flexible. 3944 * 3945 * However, if task's ctx is not carrying any pinned 3946 * events, no need to flip the cpuctx's events around. 3947 */ 3948 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3949 perf_ctx_disable(&cpuctx->ctx); 3950 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3951 } 3952 3953 perf_event_sched_in(cpuctx, ctx); 3954 3955 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3956 3957 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3958 perf_ctx_enable(&cpuctx->ctx); 3959 3960 perf_ctx_enable(ctx); 3961 3962 unlock: 3963 perf_ctx_unlock(cpuctx, ctx); 3964 rcu_unlock: 3965 rcu_read_unlock(); 3966 } 3967 3968 /* 3969 * Called from scheduler to add the events of the current task 3970 * with interrupts disabled. 3971 * 3972 * We restore the event value and then enable it. 3973 * 3974 * This does not protect us against NMI, but enable() 3975 * sets the enabled bit in the control field of event _before_ 3976 * accessing the event control register. If a NMI hits, then it will 3977 * keep the event running. 3978 */ 3979 void __perf_event_task_sched_in(struct task_struct *prev, 3980 struct task_struct *task) 3981 { 3982 perf_event_context_sched_in(task); 3983 3984 if (atomic_read(&nr_switch_events)) 3985 perf_event_switch(task, prev, true); 3986 3987 if (__this_cpu_read(perf_sched_cb_usages)) 3988 perf_pmu_sched_task(prev, task, true); 3989 } 3990 3991 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3992 { 3993 u64 frequency = event->attr.sample_freq; 3994 u64 sec = NSEC_PER_SEC; 3995 u64 divisor, dividend; 3996 3997 int count_fls, nsec_fls, frequency_fls, sec_fls; 3998 3999 count_fls = fls64(count); 4000 nsec_fls = fls64(nsec); 4001 frequency_fls = fls64(frequency); 4002 sec_fls = 30; 4003 4004 /* 4005 * We got @count in @nsec, with a target of sample_freq HZ 4006 * the target period becomes: 4007 * 4008 * @count * 10^9 4009 * period = ------------------- 4010 * @nsec * sample_freq 4011 * 4012 */ 4013 4014 /* 4015 * Reduce accuracy by one bit such that @a and @b converge 4016 * to a similar magnitude. 4017 */ 4018 #define REDUCE_FLS(a, b) \ 4019 do { \ 4020 if (a##_fls > b##_fls) { \ 4021 a >>= 1; \ 4022 a##_fls--; \ 4023 } else { \ 4024 b >>= 1; \ 4025 b##_fls--; \ 4026 } \ 4027 } while (0) 4028 4029 /* 4030 * Reduce accuracy until either term fits in a u64, then proceed with 4031 * the other, so that finally we can do a u64/u64 division. 4032 */ 4033 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4034 REDUCE_FLS(nsec, frequency); 4035 REDUCE_FLS(sec, count); 4036 } 4037 4038 if (count_fls + sec_fls > 64) { 4039 divisor = nsec * frequency; 4040 4041 while (count_fls + sec_fls > 64) { 4042 REDUCE_FLS(count, sec); 4043 divisor >>= 1; 4044 } 4045 4046 dividend = count * sec; 4047 } else { 4048 dividend = count * sec; 4049 4050 while (nsec_fls + frequency_fls > 64) { 4051 REDUCE_FLS(nsec, frequency); 4052 dividend >>= 1; 4053 } 4054 4055 divisor = nsec * frequency; 4056 } 4057 4058 if (!divisor) 4059 return dividend; 4060 4061 return div64_u64(dividend, divisor); 4062 } 4063 4064 static DEFINE_PER_CPU(int, perf_throttled_count); 4065 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4066 4067 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4068 { 4069 struct hw_perf_event *hwc = &event->hw; 4070 s64 period, sample_period; 4071 s64 delta; 4072 4073 period = perf_calculate_period(event, nsec, count); 4074 4075 delta = (s64)(period - hwc->sample_period); 4076 delta = (delta + 7) / 8; /* low pass filter */ 4077 4078 sample_period = hwc->sample_period + delta; 4079 4080 if (!sample_period) 4081 sample_period = 1; 4082 4083 hwc->sample_period = sample_period; 4084 4085 if (local64_read(&hwc->period_left) > 8*sample_period) { 4086 if (disable) 4087 event->pmu->stop(event, PERF_EF_UPDATE); 4088 4089 local64_set(&hwc->period_left, 0); 4090 4091 if (disable) 4092 event->pmu->start(event, PERF_EF_RELOAD); 4093 } 4094 } 4095 4096 /* 4097 * combine freq adjustment with unthrottling to avoid two passes over the 4098 * events. At the same time, make sure, having freq events does not change 4099 * the rate of unthrottling as that would introduce bias. 4100 */ 4101 static void 4102 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4103 { 4104 struct perf_event *event; 4105 struct hw_perf_event *hwc; 4106 u64 now, period = TICK_NSEC; 4107 s64 delta; 4108 4109 /* 4110 * only need to iterate over all events iff: 4111 * - context have events in frequency mode (needs freq adjust) 4112 * - there are events to unthrottle on this cpu 4113 */ 4114 if (!(ctx->nr_freq || unthrottle)) 4115 return; 4116 4117 raw_spin_lock(&ctx->lock); 4118 4119 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4120 if (event->state != PERF_EVENT_STATE_ACTIVE) 4121 continue; 4122 4123 // XXX use visit thingy to avoid the -1,cpu match 4124 if (!event_filter_match(event)) 4125 continue; 4126 4127 perf_pmu_disable(event->pmu); 4128 4129 hwc = &event->hw; 4130 4131 if (hwc->interrupts == MAX_INTERRUPTS) { 4132 hwc->interrupts = 0; 4133 perf_log_throttle(event, 1); 4134 event->pmu->start(event, 0); 4135 } 4136 4137 if (!event->attr.freq || !event->attr.sample_freq) 4138 goto next; 4139 4140 /* 4141 * stop the event and update event->count 4142 */ 4143 event->pmu->stop(event, PERF_EF_UPDATE); 4144 4145 now = local64_read(&event->count); 4146 delta = now - hwc->freq_count_stamp; 4147 hwc->freq_count_stamp = now; 4148 4149 /* 4150 * restart the event 4151 * reload only if value has changed 4152 * we have stopped the event so tell that 4153 * to perf_adjust_period() to avoid stopping it 4154 * twice. 4155 */ 4156 if (delta > 0) 4157 perf_adjust_period(event, period, delta, false); 4158 4159 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4160 next: 4161 perf_pmu_enable(event->pmu); 4162 } 4163 4164 raw_spin_unlock(&ctx->lock); 4165 } 4166 4167 /* 4168 * Move @event to the tail of the @ctx's elegible events. 4169 */ 4170 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4171 { 4172 /* 4173 * Rotate the first entry last of non-pinned groups. Rotation might be 4174 * disabled by the inheritance code. 4175 */ 4176 if (ctx->rotate_disable) 4177 return; 4178 4179 perf_event_groups_delete(&ctx->flexible_groups, event); 4180 perf_event_groups_insert(&ctx->flexible_groups, event); 4181 } 4182 4183 /* pick an event from the flexible_groups to rotate */ 4184 static inline struct perf_event * 4185 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4186 { 4187 struct perf_event *event; 4188 struct rb_node *node; 4189 struct rb_root *tree; 4190 struct __group_key key = { 4191 .pmu = pmu_ctx->pmu, 4192 }; 4193 4194 /* pick the first active flexible event */ 4195 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4196 struct perf_event, active_list); 4197 if (event) 4198 goto out; 4199 4200 /* if no active flexible event, pick the first event */ 4201 tree = &pmu_ctx->ctx->flexible_groups.tree; 4202 4203 if (!pmu_ctx->ctx->task) { 4204 key.cpu = smp_processor_id(); 4205 4206 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4207 if (node) 4208 event = __node_2_pe(node); 4209 goto out; 4210 } 4211 4212 key.cpu = -1; 4213 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4214 if (node) { 4215 event = __node_2_pe(node); 4216 goto out; 4217 } 4218 4219 key.cpu = smp_processor_id(); 4220 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4221 if (node) 4222 event = __node_2_pe(node); 4223 4224 out: 4225 /* 4226 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4227 * finds there are unschedulable events, it will set it again. 4228 */ 4229 pmu_ctx->rotate_necessary = 0; 4230 4231 return event; 4232 } 4233 4234 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4235 { 4236 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4237 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4238 struct perf_event *cpu_event = NULL, *task_event = NULL; 4239 int cpu_rotate, task_rotate; 4240 struct pmu *pmu; 4241 4242 /* 4243 * Since we run this from IRQ context, nobody can install new 4244 * events, thus the event count values are stable. 4245 */ 4246 4247 cpu_epc = &cpc->epc; 4248 pmu = cpu_epc->pmu; 4249 task_epc = cpc->task_epc; 4250 4251 cpu_rotate = cpu_epc->rotate_necessary; 4252 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4253 4254 if (!(cpu_rotate || task_rotate)) 4255 return false; 4256 4257 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4258 perf_pmu_disable(pmu); 4259 4260 if (task_rotate) 4261 task_event = ctx_event_to_rotate(task_epc); 4262 if (cpu_rotate) 4263 cpu_event = ctx_event_to_rotate(cpu_epc); 4264 4265 /* 4266 * As per the order given at ctx_resched() first 'pop' task flexible 4267 * and then, if needed CPU flexible. 4268 */ 4269 if (task_event || (task_epc && cpu_event)) { 4270 update_context_time(task_epc->ctx); 4271 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4272 } 4273 4274 if (cpu_event) { 4275 update_context_time(&cpuctx->ctx); 4276 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4277 rotate_ctx(&cpuctx->ctx, cpu_event); 4278 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4279 } 4280 4281 if (task_event) 4282 rotate_ctx(task_epc->ctx, task_event); 4283 4284 if (task_event || (task_epc && cpu_event)) 4285 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4286 4287 perf_pmu_enable(pmu); 4288 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4289 4290 return true; 4291 } 4292 4293 void perf_event_task_tick(void) 4294 { 4295 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4296 struct perf_event_context *ctx; 4297 int throttled; 4298 4299 lockdep_assert_irqs_disabled(); 4300 4301 __this_cpu_inc(perf_throttled_seq); 4302 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4303 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4304 4305 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4306 4307 rcu_read_lock(); 4308 ctx = rcu_dereference(current->perf_event_ctxp); 4309 if (ctx) 4310 perf_adjust_freq_unthr_context(ctx, !!throttled); 4311 rcu_read_unlock(); 4312 } 4313 4314 static int event_enable_on_exec(struct perf_event *event, 4315 struct perf_event_context *ctx) 4316 { 4317 if (!event->attr.enable_on_exec) 4318 return 0; 4319 4320 event->attr.enable_on_exec = 0; 4321 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4322 return 0; 4323 4324 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4325 4326 return 1; 4327 } 4328 4329 /* 4330 * Enable all of a task's events that have been marked enable-on-exec. 4331 * This expects task == current. 4332 */ 4333 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4334 { 4335 struct perf_event_context *clone_ctx = NULL; 4336 enum event_type_t event_type = 0; 4337 struct perf_cpu_context *cpuctx; 4338 struct perf_event *event; 4339 unsigned long flags; 4340 int enabled = 0; 4341 4342 local_irq_save(flags); 4343 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4344 goto out; 4345 4346 if (!ctx->nr_events) 4347 goto out; 4348 4349 cpuctx = this_cpu_ptr(&perf_cpu_context); 4350 perf_ctx_lock(cpuctx, ctx); 4351 ctx_sched_out(ctx, EVENT_TIME); 4352 4353 list_for_each_entry(event, &ctx->event_list, event_entry) { 4354 enabled |= event_enable_on_exec(event, ctx); 4355 event_type |= get_event_type(event); 4356 } 4357 4358 /* 4359 * Unclone and reschedule this context if we enabled any event. 4360 */ 4361 if (enabled) { 4362 clone_ctx = unclone_ctx(ctx); 4363 ctx_resched(cpuctx, ctx, event_type); 4364 } else { 4365 ctx_sched_in(ctx, EVENT_TIME); 4366 } 4367 perf_ctx_unlock(cpuctx, ctx); 4368 4369 out: 4370 local_irq_restore(flags); 4371 4372 if (clone_ctx) 4373 put_ctx(clone_ctx); 4374 } 4375 4376 static void perf_remove_from_owner(struct perf_event *event); 4377 static void perf_event_exit_event(struct perf_event *event, 4378 struct perf_event_context *ctx); 4379 4380 /* 4381 * Removes all events from the current task that have been marked 4382 * remove-on-exec, and feeds their values back to parent events. 4383 */ 4384 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4385 { 4386 struct perf_event_context *clone_ctx = NULL; 4387 struct perf_event *event, *next; 4388 unsigned long flags; 4389 bool modified = false; 4390 4391 mutex_lock(&ctx->mutex); 4392 4393 if (WARN_ON_ONCE(ctx->task != current)) 4394 goto unlock; 4395 4396 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4397 if (!event->attr.remove_on_exec) 4398 continue; 4399 4400 if (!is_kernel_event(event)) 4401 perf_remove_from_owner(event); 4402 4403 modified = true; 4404 4405 perf_event_exit_event(event, ctx); 4406 } 4407 4408 raw_spin_lock_irqsave(&ctx->lock, flags); 4409 if (modified) 4410 clone_ctx = unclone_ctx(ctx); 4411 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4412 4413 unlock: 4414 mutex_unlock(&ctx->mutex); 4415 4416 if (clone_ctx) 4417 put_ctx(clone_ctx); 4418 } 4419 4420 struct perf_read_data { 4421 struct perf_event *event; 4422 bool group; 4423 int ret; 4424 }; 4425 4426 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4427 { 4428 u16 local_pkg, event_pkg; 4429 4430 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4431 int local_cpu = smp_processor_id(); 4432 4433 event_pkg = topology_physical_package_id(event_cpu); 4434 local_pkg = topology_physical_package_id(local_cpu); 4435 4436 if (event_pkg == local_pkg) 4437 return local_cpu; 4438 } 4439 4440 return event_cpu; 4441 } 4442 4443 /* 4444 * Cross CPU call to read the hardware event 4445 */ 4446 static void __perf_event_read(void *info) 4447 { 4448 struct perf_read_data *data = info; 4449 struct perf_event *sub, *event = data->event; 4450 struct perf_event_context *ctx = event->ctx; 4451 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4452 struct pmu *pmu = event->pmu; 4453 4454 /* 4455 * If this is a task context, we need to check whether it is 4456 * the current task context of this cpu. If not it has been 4457 * scheduled out before the smp call arrived. In that case 4458 * event->count would have been updated to a recent sample 4459 * when the event was scheduled out. 4460 */ 4461 if (ctx->task && cpuctx->task_ctx != ctx) 4462 return; 4463 4464 raw_spin_lock(&ctx->lock); 4465 if (ctx->is_active & EVENT_TIME) { 4466 update_context_time(ctx); 4467 update_cgrp_time_from_event(event); 4468 } 4469 4470 perf_event_update_time(event); 4471 if (data->group) 4472 perf_event_update_sibling_time(event); 4473 4474 if (event->state != PERF_EVENT_STATE_ACTIVE) 4475 goto unlock; 4476 4477 if (!data->group) { 4478 pmu->read(event); 4479 data->ret = 0; 4480 goto unlock; 4481 } 4482 4483 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4484 4485 pmu->read(event); 4486 4487 for_each_sibling_event(sub, event) { 4488 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4489 /* 4490 * Use sibling's PMU rather than @event's since 4491 * sibling could be on different (eg: software) PMU. 4492 */ 4493 sub->pmu->read(sub); 4494 } 4495 } 4496 4497 data->ret = pmu->commit_txn(pmu); 4498 4499 unlock: 4500 raw_spin_unlock(&ctx->lock); 4501 } 4502 4503 static inline u64 perf_event_count(struct perf_event *event) 4504 { 4505 return local64_read(&event->count) + atomic64_read(&event->child_count); 4506 } 4507 4508 static void calc_timer_values(struct perf_event *event, 4509 u64 *now, 4510 u64 *enabled, 4511 u64 *running) 4512 { 4513 u64 ctx_time; 4514 4515 *now = perf_clock(); 4516 ctx_time = perf_event_time_now(event, *now); 4517 __perf_update_times(event, ctx_time, enabled, running); 4518 } 4519 4520 /* 4521 * NMI-safe method to read a local event, that is an event that 4522 * is: 4523 * - either for the current task, or for this CPU 4524 * - does not have inherit set, for inherited task events 4525 * will not be local and we cannot read them atomically 4526 * - must not have a pmu::count method 4527 */ 4528 int perf_event_read_local(struct perf_event *event, u64 *value, 4529 u64 *enabled, u64 *running) 4530 { 4531 unsigned long flags; 4532 int ret = 0; 4533 4534 /* 4535 * Disabling interrupts avoids all counter scheduling (context 4536 * switches, timer based rotation and IPIs). 4537 */ 4538 local_irq_save(flags); 4539 4540 /* 4541 * It must not be an event with inherit set, we cannot read 4542 * all child counters from atomic context. 4543 */ 4544 if (event->attr.inherit) { 4545 ret = -EOPNOTSUPP; 4546 goto out; 4547 } 4548 4549 /* If this is a per-task event, it must be for current */ 4550 if ((event->attach_state & PERF_ATTACH_TASK) && 4551 event->hw.target != current) { 4552 ret = -EINVAL; 4553 goto out; 4554 } 4555 4556 /* If this is a per-CPU event, it must be for this CPU */ 4557 if (!(event->attach_state & PERF_ATTACH_TASK) && 4558 event->cpu != smp_processor_id()) { 4559 ret = -EINVAL; 4560 goto out; 4561 } 4562 4563 /* If this is a pinned event it must be running on this CPU */ 4564 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4565 ret = -EBUSY; 4566 goto out; 4567 } 4568 4569 /* 4570 * If the event is currently on this CPU, its either a per-task event, 4571 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4572 * oncpu == -1). 4573 */ 4574 if (event->oncpu == smp_processor_id()) 4575 event->pmu->read(event); 4576 4577 *value = local64_read(&event->count); 4578 if (enabled || running) { 4579 u64 __enabled, __running, __now; 4580 4581 calc_timer_values(event, &__now, &__enabled, &__running); 4582 if (enabled) 4583 *enabled = __enabled; 4584 if (running) 4585 *running = __running; 4586 } 4587 out: 4588 local_irq_restore(flags); 4589 4590 return ret; 4591 } 4592 4593 static int perf_event_read(struct perf_event *event, bool group) 4594 { 4595 enum perf_event_state state = READ_ONCE(event->state); 4596 int event_cpu, ret = 0; 4597 4598 /* 4599 * If event is enabled and currently active on a CPU, update the 4600 * value in the event structure: 4601 */ 4602 again: 4603 if (state == PERF_EVENT_STATE_ACTIVE) { 4604 struct perf_read_data data; 4605 4606 /* 4607 * Orders the ->state and ->oncpu loads such that if we see 4608 * ACTIVE we must also see the right ->oncpu. 4609 * 4610 * Matches the smp_wmb() from event_sched_in(). 4611 */ 4612 smp_rmb(); 4613 4614 event_cpu = READ_ONCE(event->oncpu); 4615 if ((unsigned)event_cpu >= nr_cpu_ids) 4616 return 0; 4617 4618 data = (struct perf_read_data){ 4619 .event = event, 4620 .group = group, 4621 .ret = 0, 4622 }; 4623 4624 preempt_disable(); 4625 event_cpu = __perf_event_read_cpu(event, event_cpu); 4626 4627 /* 4628 * Purposely ignore the smp_call_function_single() return 4629 * value. 4630 * 4631 * If event_cpu isn't a valid CPU it means the event got 4632 * scheduled out and that will have updated the event count. 4633 * 4634 * Therefore, either way, we'll have an up-to-date event count 4635 * after this. 4636 */ 4637 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4638 preempt_enable(); 4639 ret = data.ret; 4640 4641 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4642 struct perf_event_context *ctx = event->ctx; 4643 unsigned long flags; 4644 4645 raw_spin_lock_irqsave(&ctx->lock, flags); 4646 state = event->state; 4647 if (state != PERF_EVENT_STATE_INACTIVE) { 4648 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4649 goto again; 4650 } 4651 4652 /* 4653 * May read while context is not active (e.g., thread is 4654 * blocked), in that case we cannot update context time 4655 */ 4656 if (ctx->is_active & EVENT_TIME) { 4657 update_context_time(ctx); 4658 update_cgrp_time_from_event(event); 4659 } 4660 4661 perf_event_update_time(event); 4662 if (group) 4663 perf_event_update_sibling_time(event); 4664 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4665 } 4666 4667 return ret; 4668 } 4669 4670 /* 4671 * Initialize the perf_event context in a task_struct: 4672 */ 4673 static void __perf_event_init_context(struct perf_event_context *ctx) 4674 { 4675 raw_spin_lock_init(&ctx->lock); 4676 mutex_init(&ctx->mutex); 4677 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4678 perf_event_groups_init(&ctx->pinned_groups); 4679 perf_event_groups_init(&ctx->flexible_groups); 4680 INIT_LIST_HEAD(&ctx->event_list); 4681 refcount_set(&ctx->refcount, 1); 4682 } 4683 4684 static void 4685 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4686 { 4687 epc->pmu = pmu; 4688 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4689 INIT_LIST_HEAD(&epc->pinned_active); 4690 INIT_LIST_HEAD(&epc->flexible_active); 4691 atomic_set(&epc->refcount, 1); 4692 } 4693 4694 static struct perf_event_context * 4695 alloc_perf_context(struct task_struct *task) 4696 { 4697 struct perf_event_context *ctx; 4698 4699 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4700 if (!ctx) 4701 return NULL; 4702 4703 __perf_event_init_context(ctx); 4704 if (task) 4705 ctx->task = get_task_struct(task); 4706 4707 return ctx; 4708 } 4709 4710 static struct task_struct * 4711 find_lively_task_by_vpid(pid_t vpid) 4712 { 4713 struct task_struct *task; 4714 4715 rcu_read_lock(); 4716 if (!vpid) 4717 task = current; 4718 else 4719 task = find_task_by_vpid(vpid); 4720 if (task) 4721 get_task_struct(task); 4722 rcu_read_unlock(); 4723 4724 if (!task) 4725 return ERR_PTR(-ESRCH); 4726 4727 return task; 4728 } 4729 4730 /* 4731 * Returns a matching context with refcount and pincount. 4732 */ 4733 static struct perf_event_context * 4734 find_get_context(struct task_struct *task, struct perf_event *event) 4735 { 4736 struct perf_event_context *ctx, *clone_ctx = NULL; 4737 struct perf_cpu_context *cpuctx; 4738 unsigned long flags; 4739 int err; 4740 4741 if (!task) { 4742 /* Must be root to operate on a CPU event: */ 4743 err = perf_allow_cpu(&event->attr); 4744 if (err) 4745 return ERR_PTR(err); 4746 4747 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4748 ctx = &cpuctx->ctx; 4749 get_ctx(ctx); 4750 raw_spin_lock_irqsave(&ctx->lock, flags); 4751 ++ctx->pin_count; 4752 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4753 4754 return ctx; 4755 } 4756 4757 err = -EINVAL; 4758 retry: 4759 ctx = perf_lock_task_context(task, &flags); 4760 if (ctx) { 4761 clone_ctx = unclone_ctx(ctx); 4762 ++ctx->pin_count; 4763 4764 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4765 4766 if (clone_ctx) 4767 put_ctx(clone_ctx); 4768 } else { 4769 ctx = alloc_perf_context(task); 4770 err = -ENOMEM; 4771 if (!ctx) 4772 goto errout; 4773 4774 err = 0; 4775 mutex_lock(&task->perf_event_mutex); 4776 /* 4777 * If it has already passed perf_event_exit_task(). 4778 * we must see PF_EXITING, it takes this mutex too. 4779 */ 4780 if (task->flags & PF_EXITING) 4781 err = -ESRCH; 4782 else if (task->perf_event_ctxp) 4783 err = -EAGAIN; 4784 else { 4785 get_ctx(ctx); 4786 ++ctx->pin_count; 4787 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4788 } 4789 mutex_unlock(&task->perf_event_mutex); 4790 4791 if (unlikely(err)) { 4792 put_ctx(ctx); 4793 4794 if (err == -EAGAIN) 4795 goto retry; 4796 goto errout; 4797 } 4798 } 4799 4800 return ctx; 4801 4802 errout: 4803 return ERR_PTR(err); 4804 } 4805 4806 static struct perf_event_pmu_context * 4807 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4808 struct perf_event *event) 4809 { 4810 struct perf_event_pmu_context *new = NULL, *epc; 4811 void *task_ctx_data = NULL; 4812 4813 if (!ctx->task) { 4814 struct perf_cpu_pmu_context *cpc; 4815 4816 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4817 epc = &cpc->epc; 4818 raw_spin_lock_irq(&ctx->lock); 4819 if (!epc->ctx) { 4820 atomic_set(&epc->refcount, 1); 4821 epc->embedded = 1; 4822 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4823 epc->ctx = ctx; 4824 } else { 4825 WARN_ON_ONCE(epc->ctx != ctx); 4826 atomic_inc(&epc->refcount); 4827 } 4828 raw_spin_unlock_irq(&ctx->lock); 4829 return epc; 4830 } 4831 4832 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4833 if (!new) 4834 return ERR_PTR(-ENOMEM); 4835 4836 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4837 task_ctx_data = alloc_task_ctx_data(pmu); 4838 if (!task_ctx_data) { 4839 kfree(new); 4840 return ERR_PTR(-ENOMEM); 4841 } 4842 } 4843 4844 __perf_init_event_pmu_context(new, pmu); 4845 4846 /* 4847 * XXX 4848 * 4849 * lockdep_assert_held(&ctx->mutex); 4850 * 4851 * can't because perf_event_init_task() doesn't actually hold the 4852 * child_ctx->mutex. 4853 */ 4854 4855 raw_spin_lock_irq(&ctx->lock); 4856 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4857 if (epc->pmu == pmu) { 4858 WARN_ON_ONCE(epc->ctx != ctx); 4859 atomic_inc(&epc->refcount); 4860 goto found_epc; 4861 } 4862 } 4863 4864 epc = new; 4865 new = NULL; 4866 4867 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4868 epc->ctx = ctx; 4869 4870 found_epc: 4871 if (task_ctx_data && !epc->task_ctx_data) { 4872 epc->task_ctx_data = task_ctx_data; 4873 task_ctx_data = NULL; 4874 ctx->nr_task_data++; 4875 } 4876 raw_spin_unlock_irq(&ctx->lock); 4877 4878 free_task_ctx_data(pmu, task_ctx_data); 4879 kfree(new); 4880 4881 return epc; 4882 } 4883 4884 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4885 { 4886 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4887 } 4888 4889 static void free_epc_rcu(struct rcu_head *head) 4890 { 4891 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4892 4893 kfree(epc->task_ctx_data); 4894 kfree(epc); 4895 } 4896 4897 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4898 { 4899 struct perf_event_context *ctx = epc->ctx; 4900 unsigned long flags; 4901 4902 /* 4903 * XXX 4904 * 4905 * lockdep_assert_held(&ctx->mutex); 4906 * 4907 * can't because of the call-site in _free_event()/put_event() 4908 * which isn't always called under ctx->mutex. 4909 */ 4910 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4911 return; 4912 4913 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4914 4915 list_del_init(&epc->pmu_ctx_entry); 4916 epc->ctx = NULL; 4917 4918 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4919 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4920 4921 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4922 4923 if (epc->embedded) 4924 return; 4925 4926 call_rcu(&epc->rcu_head, free_epc_rcu); 4927 } 4928 4929 static void perf_event_free_filter(struct perf_event *event); 4930 4931 static void free_event_rcu(struct rcu_head *head) 4932 { 4933 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4934 4935 if (event->ns) 4936 put_pid_ns(event->ns); 4937 perf_event_free_filter(event); 4938 kmem_cache_free(perf_event_cache, event); 4939 } 4940 4941 static void ring_buffer_attach(struct perf_event *event, 4942 struct perf_buffer *rb); 4943 4944 static void detach_sb_event(struct perf_event *event) 4945 { 4946 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4947 4948 raw_spin_lock(&pel->lock); 4949 list_del_rcu(&event->sb_list); 4950 raw_spin_unlock(&pel->lock); 4951 } 4952 4953 static bool is_sb_event(struct perf_event *event) 4954 { 4955 struct perf_event_attr *attr = &event->attr; 4956 4957 if (event->parent) 4958 return false; 4959 4960 if (event->attach_state & PERF_ATTACH_TASK) 4961 return false; 4962 4963 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4964 attr->comm || attr->comm_exec || 4965 attr->task || attr->ksymbol || 4966 attr->context_switch || attr->text_poke || 4967 attr->bpf_event) 4968 return true; 4969 return false; 4970 } 4971 4972 static void unaccount_pmu_sb_event(struct perf_event *event) 4973 { 4974 if (is_sb_event(event)) 4975 detach_sb_event(event); 4976 } 4977 4978 #ifdef CONFIG_NO_HZ_FULL 4979 static DEFINE_SPINLOCK(nr_freq_lock); 4980 #endif 4981 4982 static void unaccount_freq_event_nohz(void) 4983 { 4984 #ifdef CONFIG_NO_HZ_FULL 4985 spin_lock(&nr_freq_lock); 4986 if (atomic_dec_and_test(&nr_freq_events)) 4987 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4988 spin_unlock(&nr_freq_lock); 4989 #endif 4990 } 4991 4992 static void unaccount_freq_event(void) 4993 { 4994 if (tick_nohz_full_enabled()) 4995 unaccount_freq_event_nohz(); 4996 else 4997 atomic_dec(&nr_freq_events); 4998 } 4999 5000 static void unaccount_event(struct perf_event *event) 5001 { 5002 bool dec = false; 5003 5004 if (event->parent) 5005 return; 5006 5007 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5008 dec = true; 5009 if (event->attr.mmap || event->attr.mmap_data) 5010 atomic_dec(&nr_mmap_events); 5011 if (event->attr.build_id) 5012 atomic_dec(&nr_build_id_events); 5013 if (event->attr.comm) 5014 atomic_dec(&nr_comm_events); 5015 if (event->attr.namespaces) 5016 atomic_dec(&nr_namespaces_events); 5017 if (event->attr.cgroup) 5018 atomic_dec(&nr_cgroup_events); 5019 if (event->attr.task) 5020 atomic_dec(&nr_task_events); 5021 if (event->attr.freq) 5022 unaccount_freq_event(); 5023 if (event->attr.context_switch) { 5024 dec = true; 5025 atomic_dec(&nr_switch_events); 5026 } 5027 if (is_cgroup_event(event)) 5028 dec = true; 5029 if (has_branch_stack(event)) 5030 dec = true; 5031 if (event->attr.ksymbol) 5032 atomic_dec(&nr_ksymbol_events); 5033 if (event->attr.bpf_event) 5034 atomic_dec(&nr_bpf_events); 5035 if (event->attr.text_poke) 5036 atomic_dec(&nr_text_poke_events); 5037 5038 if (dec) { 5039 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5040 schedule_delayed_work(&perf_sched_work, HZ); 5041 } 5042 5043 unaccount_pmu_sb_event(event); 5044 } 5045 5046 static void perf_sched_delayed(struct work_struct *work) 5047 { 5048 mutex_lock(&perf_sched_mutex); 5049 if (atomic_dec_and_test(&perf_sched_count)) 5050 static_branch_disable(&perf_sched_events); 5051 mutex_unlock(&perf_sched_mutex); 5052 } 5053 5054 /* 5055 * The following implement mutual exclusion of events on "exclusive" pmus 5056 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5057 * at a time, so we disallow creating events that might conflict, namely: 5058 * 5059 * 1) cpu-wide events in the presence of per-task events, 5060 * 2) per-task events in the presence of cpu-wide events, 5061 * 3) two matching events on the same perf_event_context. 5062 * 5063 * The former two cases are handled in the allocation path (perf_event_alloc(), 5064 * _free_event()), the latter -- before the first perf_install_in_context(). 5065 */ 5066 static int exclusive_event_init(struct perf_event *event) 5067 { 5068 struct pmu *pmu = event->pmu; 5069 5070 if (!is_exclusive_pmu(pmu)) 5071 return 0; 5072 5073 /* 5074 * Prevent co-existence of per-task and cpu-wide events on the 5075 * same exclusive pmu. 5076 * 5077 * Negative pmu::exclusive_cnt means there are cpu-wide 5078 * events on this "exclusive" pmu, positive means there are 5079 * per-task events. 5080 * 5081 * Since this is called in perf_event_alloc() path, event::ctx 5082 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5083 * to mean "per-task event", because unlike other attach states it 5084 * never gets cleared. 5085 */ 5086 if (event->attach_state & PERF_ATTACH_TASK) { 5087 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5088 return -EBUSY; 5089 } else { 5090 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5091 return -EBUSY; 5092 } 5093 5094 return 0; 5095 } 5096 5097 static void exclusive_event_destroy(struct perf_event *event) 5098 { 5099 struct pmu *pmu = event->pmu; 5100 5101 if (!is_exclusive_pmu(pmu)) 5102 return; 5103 5104 /* see comment in exclusive_event_init() */ 5105 if (event->attach_state & PERF_ATTACH_TASK) 5106 atomic_dec(&pmu->exclusive_cnt); 5107 else 5108 atomic_inc(&pmu->exclusive_cnt); 5109 } 5110 5111 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5112 { 5113 if ((e1->pmu == e2->pmu) && 5114 (e1->cpu == e2->cpu || 5115 e1->cpu == -1 || 5116 e2->cpu == -1)) 5117 return true; 5118 return false; 5119 } 5120 5121 static bool exclusive_event_installable(struct perf_event *event, 5122 struct perf_event_context *ctx) 5123 { 5124 struct perf_event *iter_event; 5125 struct pmu *pmu = event->pmu; 5126 5127 lockdep_assert_held(&ctx->mutex); 5128 5129 if (!is_exclusive_pmu(pmu)) 5130 return true; 5131 5132 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5133 if (exclusive_event_match(iter_event, event)) 5134 return false; 5135 } 5136 5137 return true; 5138 } 5139 5140 static void perf_addr_filters_splice(struct perf_event *event, 5141 struct list_head *head); 5142 5143 static void _free_event(struct perf_event *event) 5144 { 5145 irq_work_sync(&event->pending_irq); 5146 5147 unaccount_event(event); 5148 5149 security_perf_event_free(event); 5150 5151 if (event->rb) { 5152 /* 5153 * Can happen when we close an event with re-directed output. 5154 * 5155 * Since we have a 0 refcount, perf_mmap_close() will skip 5156 * over us; possibly making our ring_buffer_put() the last. 5157 */ 5158 mutex_lock(&event->mmap_mutex); 5159 ring_buffer_attach(event, NULL); 5160 mutex_unlock(&event->mmap_mutex); 5161 } 5162 5163 if (is_cgroup_event(event)) 5164 perf_detach_cgroup(event); 5165 5166 if (!event->parent) { 5167 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5168 put_callchain_buffers(); 5169 } 5170 5171 perf_event_free_bpf_prog(event); 5172 perf_addr_filters_splice(event, NULL); 5173 kfree(event->addr_filter_ranges); 5174 5175 if (event->destroy) 5176 event->destroy(event); 5177 5178 /* 5179 * Must be after ->destroy(), due to uprobe_perf_close() using 5180 * hw.target. 5181 */ 5182 if (event->hw.target) 5183 put_task_struct(event->hw.target); 5184 5185 if (event->pmu_ctx) 5186 put_pmu_ctx(event->pmu_ctx); 5187 5188 /* 5189 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5190 * all task references must be cleaned up. 5191 */ 5192 if (event->ctx) 5193 put_ctx(event->ctx); 5194 5195 exclusive_event_destroy(event); 5196 module_put(event->pmu->module); 5197 5198 call_rcu(&event->rcu_head, free_event_rcu); 5199 } 5200 5201 /* 5202 * Used to free events which have a known refcount of 1, such as in error paths 5203 * where the event isn't exposed yet and inherited events. 5204 */ 5205 static void free_event(struct perf_event *event) 5206 { 5207 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5208 "unexpected event refcount: %ld; ptr=%p\n", 5209 atomic_long_read(&event->refcount), event)) { 5210 /* leak to avoid use-after-free */ 5211 return; 5212 } 5213 5214 _free_event(event); 5215 } 5216 5217 /* 5218 * Remove user event from the owner task. 5219 */ 5220 static void perf_remove_from_owner(struct perf_event *event) 5221 { 5222 struct task_struct *owner; 5223 5224 rcu_read_lock(); 5225 /* 5226 * Matches the smp_store_release() in perf_event_exit_task(). If we 5227 * observe !owner it means the list deletion is complete and we can 5228 * indeed free this event, otherwise we need to serialize on 5229 * owner->perf_event_mutex. 5230 */ 5231 owner = READ_ONCE(event->owner); 5232 if (owner) { 5233 /* 5234 * Since delayed_put_task_struct() also drops the last 5235 * task reference we can safely take a new reference 5236 * while holding the rcu_read_lock(). 5237 */ 5238 get_task_struct(owner); 5239 } 5240 rcu_read_unlock(); 5241 5242 if (owner) { 5243 /* 5244 * If we're here through perf_event_exit_task() we're already 5245 * holding ctx->mutex which would be an inversion wrt. the 5246 * normal lock order. 5247 * 5248 * However we can safely take this lock because its the child 5249 * ctx->mutex. 5250 */ 5251 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5252 5253 /* 5254 * We have to re-check the event->owner field, if it is cleared 5255 * we raced with perf_event_exit_task(), acquiring the mutex 5256 * ensured they're done, and we can proceed with freeing the 5257 * event. 5258 */ 5259 if (event->owner) { 5260 list_del_init(&event->owner_entry); 5261 smp_store_release(&event->owner, NULL); 5262 } 5263 mutex_unlock(&owner->perf_event_mutex); 5264 put_task_struct(owner); 5265 } 5266 } 5267 5268 static void put_event(struct perf_event *event) 5269 { 5270 if (!atomic_long_dec_and_test(&event->refcount)) 5271 return; 5272 5273 _free_event(event); 5274 } 5275 5276 /* 5277 * Kill an event dead; while event:refcount will preserve the event 5278 * object, it will not preserve its functionality. Once the last 'user' 5279 * gives up the object, we'll destroy the thing. 5280 */ 5281 int perf_event_release_kernel(struct perf_event *event) 5282 { 5283 struct perf_event_context *ctx = event->ctx; 5284 struct perf_event *child, *tmp; 5285 LIST_HEAD(free_list); 5286 5287 /* 5288 * If we got here through err_alloc: free_event(event); we will not 5289 * have attached to a context yet. 5290 */ 5291 if (!ctx) { 5292 WARN_ON_ONCE(event->attach_state & 5293 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5294 goto no_ctx; 5295 } 5296 5297 if (!is_kernel_event(event)) 5298 perf_remove_from_owner(event); 5299 5300 ctx = perf_event_ctx_lock(event); 5301 WARN_ON_ONCE(ctx->parent_ctx); 5302 5303 /* 5304 * Mark this event as STATE_DEAD, there is no external reference to it 5305 * anymore. 5306 * 5307 * Anybody acquiring event->child_mutex after the below loop _must_ 5308 * also see this, most importantly inherit_event() which will avoid 5309 * placing more children on the list. 5310 * 5311 * Thus this guarantees that we will in fact observe and kill _ALL_ 5312 * child events. 5313 */ 5314 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5315 5316 perf_event_ctx_unlock(event, ctx); 5317 5318 again: 5319 mutex_lock(&event->child_mutex); 5320 list_for_each_entry(child, &event->child_list, child_list) { 5321 5322 /* 5323 * Cannot change, child events are not migrated, see the 5324 * comment with perf_event_ctx_lock_nested(). 5325 */ 5326 ctx = READ_ONCE(child->ctx); 5327 /* 5328 * Since child_mutex nests inside ctx::mutex, we must jump 5329 * through hoops. We start by grabbing a reference on the ctx. 5330 * 5331 * Since the event cannot get freed while we hold the 5332 * child_mutex, the context must also exist and have a !0 5333 * reference count. 5334 */ 5335 get_ctx(ctx); 5336 5337 /* 5338 * Now that we have a ctx ref, we can drop child_mutex, and 5339 * acquire ctx::mutex without fear of it going away. Then we 5340 * can re-acquire child_mutex. 5341 */ 5342 mutex_unlock(&event->child_mutex); 5343 mutex_lock(&ctx->mutex); 5344 mutex_lock(&event->child_mutex); 5345 5346 /* 5347 * Now that we hold ctx::mutex and child_mutex, revalidate our 5348 * state, if child is still the first entry, it didn't get freed 5349 * and we can continue doing so. 5350 */ 5351 tmp = list_first_entry_or_null(&event->child_list, 5352 struct perf_event, child_list); 5353 if (tmp == child) { 5354 perf_remove_from_context(child, DETACH_GROUP); 5355 list_move(&child->child_list, &free_list); 5356 /* 5357 * This matches the refcount bump in inherit_event(); 5358 * this can't be the last reference. 5359 */ 5360 put_event(event); 5361 } 5362 5363 mutex_unlock(&event->child_mutex); 5364 mutex_unlock(&ctx->mutex); 5365 put_ctx(ctx); 5366 goto again; 5367 } 5368 mutex_unlock(&event->child_mutex); 5369 5370 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5371 void *var = &child->ctx->refcount; 5372 5373 list_del(&child->child_list); 5374 free_event(child); 5375 5376 /* 5377 * Wake any perf_event_free_task() waiting for this event to be 5378 * freed. 5379 */ 5380 smp_mb(); /* pairs with wait_var_event() */ 5381 wake_up_var(var); 5382 } 5383 5384 no_ctx: 5385 put_event(event); /* Must be the 'last' reference */ 5386 return 0; 5387 } 5388 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5389 5390 /* 5391 * Called when the last reference to the file is gone. 5392 */ 5393 static int perf_release(struct inode *inode, struct file *file) 5394 { 5395 perf_event_release_kernel(file->private_data); 5396 return 0; 5397 } 5398 5399 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5400 { 5401 struct perf_event *child; 5402 u64 total = 0; 5403 5404 *enabled = 0; 5405 *running = 0; 5406 5407 mutex_lock(&event->child_mutex); 5408 5409 (void)perf_event_read(event, false); 5410 total += perf_event_count(event); 5411 5412 *enabled += event->total_time_enabled + 5413 atomic64_read(&event->child_total_time_enabled); 5414 *running += event->total_time_running + 5415 atomic64_read(&event->child_total_time_running); 5416 5417 list_for_each_entry(child, &event->child_list, child_list) { 5418 (void)perf_event_read(child, false); 5419 total += perf_event_count(child); 5420 *enabled += child->total_time_enabled; 5421 *running += child->total_time_running; 5422 } 5423 mutex_unlock(&event->child_mutex); 5424 5425 return total; 5426 } 5427 5428 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5429 { 5430 struct perf_event_context *ctx; 5431 u64 count; 5432 5433 ctx = perf_event_ctx_lock(event); 5434 count = __perf_event_read_value(event, enabled, running); 5435 perf_event_ctx_unlock(event, ctx); 5436 5437 return count; 5438 } 5439 EXPORT_SYMBOL_GPL(perf_event_read_value); 5440 5441 static int __perf_read_group_add(struct perf_event *leader, 5442 u64 read_format, u64 *values) 5443 { 5444 struct perf_event_context *ctx = leader->ctx; 5445 struct perf_event *sub, *parent; 5446 unsigned long flags; 5447 int n = 1; /* skip @nr */ 5448 int ret; 5449 5450 ret = perf_event_read(leader, true); 5451 if (ret) 5452 return ret; 5453 5454 raw_spin_lock_irqsave(&ctx->lock, flags); 5455 /* 5456 * Verify the grouping between the parent and child (inherited) 5457 * events is still in tact. 5458 * 5459 * Specifically: 5460 * - leader->ctx->lock pins leader->sibling_list 5461 * - parent->child_mutex pins parent->child_list 5462 * - parent->ctx->mutex pins parent->sibling_list 5463 * 5464 * Because parent->ctx != leader->ctx (and child_list nests inside 5465 * ctx->mutex), group destruction is not atomic between children, also 5466 * see perf_event_release_kernel(). Additionally, parent can grow the 5467 * group. 5468 * 5469 * Therefore it is possible to have parent and child groups in a 5470 * different configuration and summing over such a beast makes no sense 5471 * what so ever. 5472 * 5473 * Reject this. 5474 */ 5475 parent = leader->parent; 5476 if (parent && 5477 (parent->group_generation != leader->group_generation || 5478 parent->nr_siblings != leader->nr_siblings)) { 5479 ret = -ECHILD; 5480 goto unlock; 5481 } 5482 5483 /* 5484 * Since we co-schedule groups, {enabled,running} times of siblings 5485 * will be identical to those of the leader, so we only publish one 5486 * set. 5487 */ 5488 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5489 values[n++] += leader->total_time_enabled + 5490 atomic64_read(&leader->child_total_time_enabled); 5491 } 5492 5493 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5494 values[n++] += leader->total_time_running + 5495 atomic64_read(&leader->child_total_time_running); 5496 } 5497 5498 /* 5499 * Write {count,id} tuples for every sibling. 5500 */ 5501 values[n++] += perf_event_count(leader); 5502 if (read_format & PERF_FORMAT_ID) 5503 values[n++] = primary_event_id(leader); 5504 if (read_format & PERF_FORMAT_LOST) 5505 values[n++] = atomic64_read(&leader->lost_samples); 5506 5507 for_each_sibling_event(sub, leader) { 5508 values[n++] += perf_event_count(sub); 5509 if (read_format & PERF_FORMAT_ID) 5510 values[n++] = primary_event_id(sub); 5511 if (read_format & PERF_FORMAT_LOST) 5512 values[n++] = atomic64_read(&sub->lost_samples); 5513 } 5514 5515 unlock: 5516 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5517 return ret; 5518 } 5519 5520 static int perf_read_group(struct perf_event *event, 5521 u64 read_format, char __user *buf) 5522 { 5523 struct perf_event *leader = event->group_leader, *child; 5524 struct perf_event_context *ctx = leader->ctx; 5525 int ret; 5526 u64 *values; 5527 5528 lockdep_assert_held(&ctx->mutex); 5529 5530 values = kzalloc(event->read_size, GFP_KERNEL); 5531 if (!values) 5532 return -ENOMEM; 5533 5534 values[0] = 1 + leader->nr_siblings; 5535 5536 mutex_lock(&leader->child_mutex); 5537 5538 ret = __perf_read_group_add(leader, read_format, values); 5539 if (ret) 5540 goto unlock; 5541 5542 list_for_each_entry(child, &leader->child_list, child_list) { 5543 ret = __perf_read_group_add(child, read_format, values); 5544 if (ret) 5545 goto unlock; 5546 } 5547 5548 mutex_unlock(&leader->child_mutex); 5549 5550 ret = event->read_size; 5551 if (copy_to_user(buf, values, event->read_size)) 5552 ret = -EFAULT; 5553 goto out; 5554 5555 unlock: 5556 mutex_unlock(&leader->child_mutex); 5557 out: 5558 kfree(values); 5559 return ret; 5560 } 5561 5562 static int perf_read_one(struct perf_event *event, 5563 u64 read_format, char __user *buf) 5564 { 5565 u64 enabled, running; 5566 u64 values[5]; 5567 int n = 0; 5568 5569 values[n++] = __perf_event_read_value(event, &enabled, &running); 5570 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5571 values[n++] = enabled; 5572 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5573 values[n++] = running; 5574 if (read_format & PERF_FORMAT_ID) 5575 values[n++] = primary_event_id(event); 5576 if (read_format & PERF_FORMAT_LOST) 5577 values[n++] = atomic64_read(&event->lost_samples); 5578 5579 if (copy_to_user(buf, values, n * sizeof(u64))) 5580 return -EFAULT; 5581 5582 return n * sizeof(u64); 5583 } 5584 5585 static bool is_event_hup(struct perf_event *event) 5586 { 5587 bool no_children; 5588 5589 if (event->state > PERF_EVENT_STATE_EXIT) 5590 return false; 5591 5592 mutex_lock(&event->child_mutex); 5593 no_children = list_empty(&event->child_list); 5594 mutex_unlock(&event->child_mutex); 5595 return no_children; 5596 } 5597 5598 /* 5599 * Read the performance event - simple non blocking version for now 5600 */ 5601 static ssize_t 5602 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5603 { 5604 u64 read_format = event->attr.read_format; 5605 int ret; 5606 5607 /* 5608 * Return end-of-file for a read on an event that is in 5609 * error state (i.e. because it was pinned but it couldn't be 5610 * scheduled on to the CPU at some point). 5611 */ 5612 if (event->state == PERF_EVENT_STATE_ERROR) 5613 return 0; 5614 5615 if (count < event->read_size) 5616 return -ENOSPC; 5617 5618 WARN_ON_ONCE(event->ctx->parent_ctx); 5619 if (read_format & PERF_FORMAT_GROUP) 5620 ret = perf_read_group(event, read_format, buf); 5621 else 5622 ret = perf_read_one(event, read_format, buf); 5623 5624 return ret; 5625 } 5626 5627 static ssize_t 5628 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5629 { 5630 struct perf_event *event = file->private_data; 5631 struct perf_event_context *ctx; 5632 int ret; 5633 5634 ret = security_perf_event_read(event); 5635 if (ret) 5636 return ret; 5637 5638 ctx = perf_event_ctx_lock(event); 5639 ret = __perf_read(event, buf, count); 5640 perf_event_ctx_unlock(event, ctx); 5641 5642 return ret; 5643 } 5644 5645 static __poll_t perf_poll(struct file *file, poll_table *wait) 5646 { 5647 struct perf_event *event = file->private_data; 5648 struct perf_buffer *rb; 5649 __poll_t events = EPOLLHUP; 5650 5651 poll_wait(file, &event->waitq, wait); 5652 5653 if (is_event_hup(event)) 5654 return events; 5655 5656 /* 5657 * Pin the event->rb by taking event->mmap_mutex; otherwise 5658 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5659 */ 5660 mutex_lock(&event->mmap_mutex); 5661 rb = event->rb; 5662 if (rb) 5663 events = atomic_xchg(&rb->poll, 0); 5664 mutex_unlock(&event->mmap_mutex); 5665 return events; 5666 } 5667 5668 static void _perf_event_reset(struct perf_event *event) 5669 { 5670 (void)perf_event_read(event, false); 5671 local64_set(&event->count, 0); 5672 perf_event_update_userpage(event); 5673 } 5674 5675 /* Assume it's not an event with inherit set. */ 5676 u64 perf_event_pause(struct perf_event *event, bool reset) 5677 { 5678 struct perf_event_context *ctx; 5679 u64 count; 5680 5681 ctx = perf_event_ctx_lock(event); 5682 WARN_ON_ONCE(event->attr.inherit); 5683 _perf_event_disable(event); 5684 count = local64_read(&event->count); 5685 if (reset) 5686 local64_set(&event->count, 0); 5687 perf_event_ctx_unlock(event, ctx); 5688 5689 return count; 5690 } 5691 EXPORT_SYMBOL_GPL(perf_event_pause); 5692 5693 /* 5694 * Holding the top-level event's child_mutex means that any 5695 * descendant process that has inherited this event will block 5696 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5697 * task existence requirements of perf_event_enable/disable. 5698 */ 5699 static void perf_event_for_each_child(struct perf_event *event, 5700 void (*func)(struct perf_event *)) 5701 { 5702 struct perf_event *child; 5703 5704 WARN_ON_ONCE(event->ctx->parent_ctx); 5705 5706 mutex_lock(&event->child_mutex); 5707 func(event); 5708 list_for_each_entry(child, &event->child_list, child_list) 5709 func(child); 5710 mutex_unlock(&event->child_mutex); 5711 } 5712 5713 static void perf_event_for_each(struct perf_event *event, 5714 void (*func)(struct perf_event *)) 5715 { 5716 struct perf_event_context *ctx = event->ctx; 5717 struct perf_event *sibling; 5718 5719 lockdep_assert_held(&ctx->mutex); 5720 5721 event = event->group_leader; 5722 5723 perf_event_for_each_child(event, func); 5724 for_each_sibling_event(sibling, event) 5725 perf_event_for_each_child(sibling, func); 5726 } 5727 5728 static void __perf_event_period(struct perf_event *event, 5729 struct perf_cpu_context *cpuctx, 5730 struct perf_event_context *ctx, 5731 void *info) 5732 { 5733 u64 value = *((u64 *)info); 5734 bool active; 5735 5736 if (event->attr.freq) { 5737 event->attr.sample_freq = value; 5738 } else { 5739 event->attr.sample_period = value; 5740 event->hw.sample_period = value; 5741 } 5742 5743 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5744 if (active) { 5745 perf_pmu_disable(event->pmu); 5746 /* 5747 * We could be throttled; unthrottle now to avoid the tick 5748 * trying to unthrottle while we already re-started the event. 5749 */ 5750 if (event->hw.interrupts == MAX_INTERRUPTS) { 5751 event->hw.interrupts = 0; 5752 perf_log_throttle(event, 1); 5753 } 5754 event->pmu->stop(event, PERF_EF_UPDATE); 5755 } 5756 5757 local64_set(&event->hw.period_left, 0); 5758 5759 if (active) { 5760 event->pmu->start(event, PERF_EF_RELOAD); 5761 perf_pmu_enable(event->pmu); 5762 } 5763 } 5764 5765 static int perf_event_check_period(struct perf_event *event, u64 value) 5766 { 5767 return event->pmu->check_period(event, value); 5768 } 5769 5770 static int _perf_event_period(struct perf_event *event, u64 value) 5771 { 5772 if (!is_sampling_event(event)) 5773 return -EINVAL; 5774 5775 if (!value) 5776 return -EINVAL; 5777 5778 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5779 return -EINVAL; 5780 5781 if (perf_event_check_period(event, value)) 5782 return -EINVAL; 5783 5784 if (!event->attr.freq && (value & (1ULL << 63))) 5785 return -EINVAL; 5786 5787 event_function_call(event, __perf_event_period, &value); 5788 5789 return 0; 5790 } 5791 5792 int perf_event_period(struct perf_event *event, u64 value) 5793 { 5794 struct perf_event_context *ctx; 5795 int ret; 5796 5797 ctx = perf_event_ctx_lock(event); 5798 ret = _perf_event_period(event, value); 5799 perf_event_ctx_unlock(event, ctx); 5800 5801 return ret; 5802 } 5803 EXPORT_SYMBOL_GPL(perf_event_period); 5804 5805 static const struct file_operations perf_fops; 5806 5807 static inline int perf_fget_light(int fd, struct fd *p) 5808 { 5809 struct fd f = fdget(fd); 5810 if (!f.file) 5811 return -EBADF; 5812 5813 if (f.file->f_op != &perf_fops) { 5814 fdput(f); 5815 return -EBADF; 5816 } 5817 *p = f; 5818 return 0; 5819 } 5820 5821 static int perf_event_set_output(struct perf_event *event, 5822 struct perf_event *output_event); 5823 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5824 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5825 struct perf_event_attr *attr); 5826 5827 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5828 { 5829 void (*func)(struct perf_event *); 5830 u32 flags = arg; 5831 5832 switch (cmd) { 5833 case PERF_EVENT_IOC_ENABLE: 5834 func = _perf_event_enable; 5835 break; 5836 case PERF_EVENT_IOC_DISABLE: 5837 func = _perf_event_disable; 5838 break; 5839 case PERF_EVENT_IOC_RESET: 5840 func = _perf_event_reset; 5841 break; 5842 5843 case PERF_EVENT_IOC_REFRESH: 5844 return _perf_event_refresh(event, arg); 5845 5846 case PERF_EVENT_IOC_PERIOD: 5847 { 5848 u64 value; 5849 5850 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5851 return -EFAULT; 5852 5853 return _perf_event_period(event, value); 5854 } 5855 case PERF_EVENT_IOC_ID: 5856 { 5857 u64 id = primary_event_id(event); 5858 5859 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5860 return -EFAULT; 5861 return 0; 5862 } 5863 5864 case PERF_EVENT_IOC_SET_OUTPUT: 5865 { 5866 int ret; 5867 if (arg != -1) { 5868 struct perf_event *output_event; 5869 struct fd output; 5870 ret = perf_fget_light(arg, &output); 5871 if (ret) 5872 return ret; 5873 output_event = output.file->private_data; 5874 ret = perf_event_set_output(event, output_event); 5875 fdput(output); 5876 } else { 5877 ret = perf_event_set_output(event, NULL); 5878 } 5879 return ret; 5880 } 5881 5882 case PERF_EVENT_IOC_SET_FILTER: 5883 return perf_event_set_filter(event, (void __user *)arg); 5884 5885 case PERF_EVENT_IOC_SET_BPF: 5886 { 5887 struct bpf_prog *prog; 5888 int err; 5889 5890 prog = bpf_prog_get(arg); 5891 if (IS_ERR(prog)) 5892 return PTR_ERR(prog); 5893 5894 err = perf_event_set_bpf_prog(event, prog, 0); 5895 if (err) { 5896 bpf_prog_put(prog); 5897 return err; 5898 } 5899 5900 return 0; 5901 } 5902 5903 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5904 struct perf_buffer *rb; 5905 5906 rcu_read_lock(); 5907 rb = rcu_dereference(event->rb); 5908 if (!rb || !rb->nr_pages) { 5909 rcu_read_unlock(); 5910 return -EINVAL; 5911 } 5912 rb_toggle_paused(rb, !!arg); 5913 rcu_read_unlock(); 5914 return 0; 5915 } 5916 5917 case PERF_EVENT_IOC_QUERY_BPF: 5918 return perf_event_query_prog_array(event, (void __user *)arg); 5919 5920 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5921 struct perf_event_attr new_attr; 5922 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5923 &new_attr); 5924 5925 if (err) 5926 return err; 5927 5928 return perf_event_modify_attr(event, &new_attr); 5929 } 5930 default: 5931 return -ENOTTY; 5932 } 5933 5934 if (flags & PERF_IOC_FLAG_GROUP) 5935 perf_event_for_each(event, func); 5936 else 5937 perf_event_for_each_child(event, func); 5938 5939 return 0; 5940 } 5941 5942 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5943 { 5944 struct perf_event *event = file->private_data; 5945 struct perf_event_context *ctx; 5946 long ret; 5947 5948 /* Treat ioctl like writes as it is likely a mutating operation. */ 5949 ret = security_perf_event_write(event); 5950 if (ret) 5951 return ret; 5952 5953 ctx = perf_event_ctx_lock(event); 5954 ret = _perf_ioctl(event, cmd, arg); 5955 perf_event_ctx_unlock(event, ctx); 5956 5957 return ret; 5958 } 5959 5960 #ifdef CONFIG_COMPAT 5961 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5962 unsigned long arg) 5963 { 5964 switch (_IOC_NR(cmd)) { 5965 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5966 case _IOC_NR(PERF_EVENT_IOC_ID): 5967 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5968 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5969 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5970 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5971 cmd &= ~IOCSIZE_MASK; 5972 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5973 } 5974 break; 5975 } 5976 return perf_ioctl(file, cmd, arg); 5977 } 5978 #else 5979 # define perf_compat_ioctl NULL 5980 #endif 5981 5982 int perf_event_task_enable(void) 5983 { 5984 struct perf_event_context *ctx; 5985 struct perf_event *event; 5986 5987 mutex_lock(¤t->perf_event_mutex); 5988 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5989 ctx = perf_event_ctx_lock(event); 5990 perf_event_for_each_child(event, _perf_event_enable); 5991 perf_event_ctx_unlock(event, ctx); 5992 } 5993 mutex_unlock(¤t->perf_event_mutex); 5994 5995 return 0; 5996 } 5997 5998 int perf_event_task_disable(void) 5999 { 6000 struct perf_event_context *ctx; 6001 struct perf_event *event; 6002 6003 mutex_lock(¤t->perf_event_mutex); 6004 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6005 ctx = perf_event_ctx_lock(event); 6006 perf_event_for_each_child(event, _perf_event_disable); 6007 perf_event_ctx_unlock(event, ctx); 6008 } 6009 mutex_unlock(¤t->perf_event_mutex); 6010 6011 return 0; 6012 } 6013 6014 static int perf_event_index(struct perf_event *event) 6015 { 6016 if (event->hw.state & PERF_HES_STOPPED) 6017 return 0; 6018 6019 if (event->state != PERF_EVENT_STATE_ACTIVE) 6020 return 0; 6021 6022 return event->pmu->event_idx(event); 6023 } 6024 6025 static void perf_event_init_userpage(struct perf_event *event) 6026 { 6027 struct perf_event_mmap_page *userpg; 6028 struct perf_buffer *rb; 6029 6030 rcu_read_lock(); 6031 rb = rcu_dereference(event->rb); 6032 if (!rb) 6033 goto unlock; 6034 6035 userpg = rb->user_page; 6036 6037 /* Allow new userspace to detect that bit 0 is deprecated */ 6038 userpg->cap_bit0_is_deprecated = 1; 6039 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6040 userpg->data_offset = PAGE_SIZE; 6041 userpg->data_size = perf_data_size(rb); 6042 6043 unlock: 6044 rcu_read_unlock(); 6045 } 6046 6047 void __weak arch_perf_update_userpage( 6048 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6049 { 6050 } 6051 6052 /* 6053 * Callers need to ensure there can be no nesting of this function, otherwise 6054 * the seqlock logic goes bad. We can not serialize this because the arch 6055 * code calls this from NMI context. 6056 */ 6057 void perf_event_update_userpage(struct perf_event *event) 6058 { 6059 struct perf_event_mmap_page *userpg; 6060 struct perf_buffer *rb; 6061 u64 enabled, running, now; 6062 6063 rcu_read_lock(); 6064 rb = rcu_dereference(event->rb); 6065 if (!rb) 6066 goto unlock; 6067 6068 /* 6069 * compute total_time_enabled, total_time_running 6070 * based on snapshot values taken when the event 6071 * was last scheduled in. 6072 * 6073 * we cannot simply called update_context_time() 6074 * because of locking issue as we can be called in 6075 * NMI context 6076 */ 6077 calc_timer_values(event, &now, &enabled, &running); 6078 6079 userpg = rb->user_page; 6080 /* 6081 * Disable preemption to guarantee consistent time stamps are stored to 6082 * the user page. 6083 */ 6084 preempt_disable(); 6085 ++userpg->lock; 6086 barrier(); 6087 userpg->index = perf_event_index(event); 6088 userpg->offset = perf_event_count(event); 6089 if (userpg->index) 6090 userpg->offset -= local64_read(&event->hw.prev_count); 6091 6092 userpg->time_enabled = enabled + 6093 atomic64_read(&event->child_total_time_enabled); 6094 6095 userpg->time_running = running + 6096 atomic64_read(&event->child_total_time_running); 6097 6098 arch_perf_update_userpage(event, userpg, now); 6099 6100 barrier(); 6101 ++userpg->lock; 6102 preempt_enable(); 6103 unlock: 6104 rcu_read_unlock(); 6105 } 6106 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6107 6108 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6109 { 6110 struct perf_event *event = vmf->vma->vm_file->private_data; 6111 struct perf_buffer *rb; 6112 vm_fault_t ret = VM_FAULT_SIGBUS; 6113 6114 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6115 if (vmf->pgoff == 0) 6116 ret = 0; 6117 return ret; 6118 } 6119 6120 rcu_read_lock(); 6121 rb = rcu_dereference(event->rb); 6122 if (!rb) 6123 goto unlock; 6124 6125 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6126 goto unlock; 6127 6128 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6129 if (!vmf->page) 6130 goto unlock; 6131 6132 get_page(vmf->page); 6133 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6134 vmf->page->index = vmf->pgoff; 6135 6136 ret = 0; 6137 unlock: 6138 rcu_read_unlock(); 6139 6140 return ret; 6141 } 6142 6143 static void ring_buffer_attach(struct perf_event *event, 6144 struct perf_buffer *rb) 6145 { 6146 struct perf_buffer *old_rb = NULL; 6147 unsigned long flags; 6148 6149 WARN_ON_ONCE(event->parent); 6150 6151 if (event->rb) { 6152 /* 6153 * Should be impossible, we set this when removing 6154 * event->rb_entry and wait/clear when adding event->rb_entry. 6155 */ 6156 WARN_ON_ONCE(event->rcu_pending); 6157 6158 old_rb = event->rb; 6159 spin_lock_irqsave(&old_rb->event_lock, flags); 6160 list_del_rcu(&event->rb_entry); 6161 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6162 6163 event->rcu_batches = get_state_synchronize_rcu(); 6164 event->rcu_pending = 1; 6165 } 6166 6167 if (rb) { 6168 if (event->rcu_pending) { 6169 cond_synchronize_rcu(event->rcu_batches); 6170 event->rcu_pending = 0; 6171 } 6172 6173 spin_lock_irqsave(&rb->event_lock, flags); 6174 list_add_rcu(&event->rb_entry, &rb->event_list); 6175 spin_unlock_irqrestore(&rb->event_lock, flags); 6176 } 6177 6178 /* 6179 * Avoid racing with perf_mmap_close(AUX): stop the event 6180 * before swizzling the event::rb pointer; if it's getting 6181 * unmapped, its aux_mmap_count will be 0 and it won't 6182 * restart. See the comment in __perf_pmu_output_stop(). 6183 * 6184 * Data will inevitably be lost when set_output is done in 6185 * mid-air, but then again, whoever does it like this is 6186 * not in for the data anyway. 6187 */ 6188 if (has_aux(event)) 6189 perf_event_stop(event, 0); 6190 6191 rcu_assign_pointer(event->rb, rb); 6192 6193 if (old_rb) { 6194 ring_buffer_put(old_rb); 6195 /* 6196 * Since we detached before setting the new rb, so that we 6197 * could attach the new rb, we could have missed a wakeup. 6198 * Provide it now. 6199 */ 6200 wake_up_all(&event->waitq); 6201 } 6202 } 6203 6204 static void ring_buffer_wakeup(struct perf_event *event) 6205 { 6206 struct perf_buffer *rb; 6207 6208 if (event->parent) 6209 event = event->parent; 6210 6211 rcu_read_lock(); 6212 rb = rcu_dereference(event->rb); 6213 if (rb) { 6214 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6215 wake_up_all(&event->waitq); 6216 } 6217 rcu_read_unlock(); 6218 } 6219 6220 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6221 { 6222 struct perf_buffer *rb; 6223 6224 if (event->parent) 6225 event = event->parent; 6226 6227 rcu_read_lock(); 6228 rb = rcu_dereference(event->rb); 6229 if (rb) { 6230 if (!refcount_inc_not_zero(&rb->refcount)) 6231 rb = NULL; 6232 } 6233 rcu_read_unlock(); 6234 6235 return rb; 6236 } 6237 6238 void ring_buffer_put(struct perf_buffer *rb) 6239 { 6240 if (!refcount_dec_and_test(&rb->refcount)) 6241 return; 6242 6243 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6244 6245 call_rcu(&rb->rcu_head, rb_free_rcu); 6246 } 6247 6248 static void perf_mmap_open(struct vm_area_struct *vma) 6249 { 6250 struct perf_event *event = vma->vm_file->private_data; 6251 6252 atomic_inc(&event->mmap_count); 6253 atomic_inc(&event->rb->mmap_count); 6254 6255 if (vma->vm_pgoff) 6256 atomic_inc(&event->rb->aux_mmap_count); 6257 6258 if (event->pmu->event_mapped) 6259 event->pmu->event_mapped(event, vma->vm_mm); 6260 } 6261 6262 static void perf_pmu_output_stop(struct perf_event *event); 6263 6264 /* 6265 * A buffer can be mmap()ed multiple times; either directly through the same 6266 * event, or through other events by use of perf_event_set_output(). 6267 * 6268 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6269 * the buffer here, where we still have a VM context. This means we need 6270 * to detach all events redirecting to us. 6271 */ 6272 static void perf_mmap_close(struct vm_area_struct *vma) 6273 { 6274 struct perf_event *event = vma->vm_file->private_data; 6275 struct perf_buffer *rb = ring_buffer_get(event); 6276 struct user_struct *mmap_user = rb->mmap_user; 6277 int mmap_locked = rb->mmap_locked; 6278 unsigned long size = perf_data_size(rb); 6279 bool detach_rest = false; 6280 6281 if (event->pmu->event_unmapped) 6282 event->pmu->event_unmapped(event, vma->vm_mm); 6283 6284 /* 6285 * rb->aux_mmap_count will always drop before rb->mmap_count and 6286 * event->mmap_count, so it is ok to use event->mmap_mutex to 6287 * serialize with perf_mmap here. 6288 */ 6289 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6290 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6291 /* 6292 * Stop all AUX events that are writing to this buffer, 6293 * so that we can free its AUX pages and corresponding PMU 6294 * data. Note that after rb::aux_mmap_count dropped to zero, 6295 * they won't start any more (see perf_aux_output_begin()). 6296 */ 6297 perf_pmu_output_stop(event); 6298 6299 /* now it's safe to free the pages */ 6300 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6301 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6302 6303 /* this has to be the last one */ 6304 rb_free_aux(rb); 6305 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6306 6307 mutex_unlock(&event->mmap_mutex); 6308 } 6309 6310 if (atomic_dec_and_test(&rb->mmap_count)) 6311 detach_rest = true; 6312 6313 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6314 goto out_put; 6315 6316 ring_buffer_attach(event, NULL); 6317 mutex_unlock(&event->mmap_mutex); 6318 6319 /* If there's still other mmap()s of this buffer, we're done. */ 6320 if (!detach_rest) 6321 goto out_put; 6322 6323 /* 6324 * No other mmap()s, detach from all other events that might redirect 6325 * into the now unreachable buffer. Somewhat complicated by the 6326 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6327 */ 6328 again: 6329 rcu_read_lock(); 6330 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6331 if (!atomic_long_inc_not_zero(&event->refcount)) { 6332 /* 6333 * This event is en-route to free_event() which will 6334 * detach it and remove it from the list. 6335 */ 6336 continue; 6337 } 6338 rcu_read_unlock(); 6339 6340 mutex_lock(&event->mmap_mutex); 6341 /* 6342 * Check we didn't race with perf_event_set_output() which can 6343 * swizzle the rb from under us while we were waiting to 6344 * acquire mmap_mutex. 6345 * 6346 * If we find a different rb; ignore this event, a next 6347 * iteration will no longer find it on the list. We have to 6348 * still restart the iteration to make sure we're not now 6349 * iterating the wrong list. 6350 */ 6351 if (event->rb == rb) 6352 ring_buffer_attach(event, NULL); 6353 6354 mutex_unlock(&event->mmap_mutex); 6355 put_event(event); 6356 6357 /* 6358 * Restart the iteration; either we're on the wrong list or 6359 * destroyed its integrity by doing a deletion. 6360 */ 6361 goto again; 6362 } 6363 rcu_read_unlock(); 6364 6365 /* 6366 * It could be there's still a few 0-ref events on the list; they'll 6367 * get cleaned up by free_event() -- they'll also still have their 6368 * ref on the rb and will free it whenever they are done with it. 6369 * 6370 * Aside from that, this buffer is 'fully' detached and unmapped, 6371 * undo the VM accounting. 6372 */ 6373 6374 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6375 &mmap_user->locked_vm); 6376 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6377 free_uid(mmap_user); 6378 6379 out_put: 6380 ring_buffer_put(rb); /* could be last */ 6381 } 6382 6383 static const struct vm_operations_struct perf_mmap_vmops = { 6384 .open = perf_mmap_open, 6385 .close = perf_mmap_close, /* non mergeable */ 6386 .fault = perf_mmap_fault, 6387 .page_mkwrite = perf_mmap_fault, 6388 }; 6389 6390 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6391 { 6392 struct perf_event *event = file->private_data; 6393 unsigned long user_locked, user_lock_limit; 6394 struct user_struct *user = current_user(); 6395 struct perf_buffer *rb = NULL; 6396 unsigned long locked, lock_limit; 6397 unsigned long vma_size; 6398 unsigned long nr_pages; 6399 long user_extra = 0, extra = 0; 6400 int ret = 0, flags = 0; 6401 6402 /* 6403 * Don't allow mmap() of inherited per-task counters. This would 6404 * create a performance issue due to all children writing to the 6405 * same rb. 6406 */ 6407 if (event->cpu == -1 && event->attr.inherit) 6408 return -EINVAL; 6409 6410 if (!(vma->vm_flags & VM_SHARED)) 6411 return -EINVAL; 6412 6413 ret = security_perf_event_read(event); 6414 if (ret) 6415 return ret; 6416 6417 vma_size = vma->vm_end - vma->vm_start; 6418 6419 if (vma->vm_pgoff == 0) { 6420 nr_pages = (vma_size / PAGE_SIZE) - 1; 6421 } else { 6422 /* 6423 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6424 * mapped, all subsequent mappings should have the same size 6425 * and offset. Must be above the normal perf buffer. 6426 */ 6427 u64 aux_offset, aux_size; 6428 6429 if (!event->rb) 6430 return -EINVAL; 6431 6432 nr_pages = vma_size / PAGE_SIZE; 6433 6434 mutex_lock(&event->mmap_mutex); 6435 ret = -EINVAL; 6436 6437 rb = event->rb; 6438 if (!rb) 6439 goto aux_unlock; 6440 6441 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6442 aux_size = READ_ONCE(rb->user_page->aux_size); 6443 6444 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6445 goto aux_unlock; 6446 6447 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6448 goto aux_unlock; 6449 6450 /* already mapped with a different offset */ 6451 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6452 goto aux_unlock; 6453 6454 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6455 goto aux_unlock; 6456 6457 /* already mapped with a different size */ 6458 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6459 goto aux_unlock; 6460 6461 if (!is_power_of_2(nr_pages)) 6462 goto aux_unlock; 6463 6464 if (!atomic_inc_not_zero(&rb->mmap_count)) 6465 goto aux_unlock; 6466 6467 if (rb_has_aux(rb)) { 6468 atomic_inc(&rb->aux_mmap_count); 6469 ret = 0; 6470 goto unlock; 6471 } 6472 6473 atomic_set(&rb->aux_mmap_count, 1); 6474 user_extra = nr_pages; 6475 6476 goto accounting; 6477 } 6478 6479 /* 6480 * If we have rb pages ensure they're a power-of-two number, so we 6481 * can do bitmasks instead of modulo. 6482 */ 6483 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6484 return -EINVAL; 6485 6486 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6487 return -EINVAL; 6488 6489 WARN_ON_ONCE(event->ctx->parent_ctx); 6490 again: 6491 mutex_lock(&event->mmap_mutex); 6492 if (event->rb) { 6493 if (data_page_nr(event->rb) != nr_pages) { 6494 ret = -EINVAL; 6495 goto unlock; 6496 } 6497 6498 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6499 /* 6500 * Raced against perf_mmap_close(); remove the 6501 * event and try again. 6502 */ 6503 ring_buffer_attach(event, NULL); 6504 mutex_unlock(&event->mmap_mutex); 6505 goto again; 6506 } 6507 6508 goto unlock; 6509 } 6510 6511 user_extra = nr_pages + 1; 6512 6513 accounting: 6514 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6515 6516 /* 6517 * Increase the limit linearly with more CPUs: 6518 */ 6519 user_lock_limit *= num_online_cpus(); 6520 6521 user_locked = atomic_long_read(&user->locked_vm); 6522 6523 /* 6524 * sysctl_perf_event_mlock may have changed, so that 6525 * user->locked_vm > user_lock_limit 6526 */ 6527 if (user_locked > user_lock_limit) 6528 user_locked = user_lock_limit; 6529 user_locked += user_extra; 6530 6531 if (user_locked > user_lock_limit) { 6532 /* 6533 * charge locked_vm until it hits user_lock_limit; 6534 * charge the rest from pinned_vm 6535 */ 6536 extra = user_locked - user_lock_limit; 6537 user_extra -= extra; 6538 } 6539 6540 lock_limit = rlimit(RLIMIT_MEMLOCK); 6541 lock_limit >>= PAGE_SHIFT; 6542 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6543 6544 if ((locked > lock_limit) && perf_is_paranoid() && 6545 !capable(CAP_IPC_LOCK)) { 6546 ret = -EPERM; 6547 goto unlock; 6548 } 6549 6550 WARN_ON(!rb && event->rb); 6551 6552 if (vma->vm_flags & VM_WRITE) 6553 flags |= RING_BUFFER_WRITABLE; 6554 6555 if (!rb) { 6556 rb = rb_alloc(nr_pages, 6557 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6558 event->cpu, flags); 6559 6560 if (!rb) { 6561 ret = -ENOMEM; 6562 goto unlock; 6563 } 6564 6565 atomic_set(&rb->mmap_count, 1); 6566 rb->mmap_user = get_current_user(); 6567 rb->mmap_locked = extra; 6568 6569 ring_buffer_attach(event, rb); 6570 6571 perf_event_update_time(event); 6572 perf_event_init_userpage(event); 6573 perf_event_update_userpage(event); 6574 } else { 6575 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6576 event->attr.aux_watermark, flags); 6577 if (!ret) 6578 rb->aux_mmap_locked = extra; 6579 } 6580 6581 unlock: 6582 if (!ret) { 6583 atomic_long_add(user_extra, &user->locked_vm); 6584 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6585 6586 atomic_inc(&event->mmap_count); 6587 } else if (rb) { 6588 atomic_dec(&rb->mmap_count); 6589 } 6590 aux_unlock: 6591 mutex_unlock(&event->mmap_mutex); 6592 6593 /* 6594 * Since pinned accounting is per vm we cannot allow fork() to copy our 6595 * vma. 6596 */ 6597 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6598 vma->vm_ops = &perf_mmap_vmops; 6599 6600 if (event->pmu->event_mapped) 6601 event->pmu->event_mapped(event, vma->vm_mm); 6602 6603 return ret; 6604 } 6605 6606 static int perf_fasync(int fd, struct file *filp, int on) 6607 { 6608 struct inode *inode = file_inode(filp); 6609 struct perf_event *event = filp->private_data; 6610 int retval; 6611 6612 inode_lock(inode); 6613 retval = fasync_helper(fd, filp, on, &event->fasync); 6614 inode_unlock(inode); 6615 6616 if (retval < 0) 6617 return retval; 6618 6619 return 0; 6620 } 6621 6622 static const struct file_operations perf_fops = { 6623 .llseek = no_llseek, 6624 .release = perf_release, 6625 .read = perf_read, 6626 .poll = perf_poll, 6627 .unlocked_ioctl = perf_ioctl, 6628 .compat_ioctl = perf_compat_ioctl, 6629 .mmap = perf_mmap, 6630 .fasync = perf_fasync, 6631 }; 6632 6633 /* 6634 * Perf event wakeup 6635 * 6636 * If there's data, ensure we set the poll() state and publish everything 6637 * to user-space before waking everybody up. 6638 */ 6639 6640 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6641 { 6642 /* only the parent has fasync state */ 6643 if (event->parent) 6644 event = event->parent; 6645 return &event->fasync; 6646 } 6647 6648 void perf_event_wakeup(struct perf_event *event) 6649 { 6650 ring_buffer_wakeup(event); 6651 6652 if (event->pending_kill) { 6653 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6654 event->pending_kill = 0; 6655 } 6656 } 6657 6658 static void perf_sigtrap(struct perf_event *event) 6659 { 6660 /* 6661 * We'd expect this to only occur if the irq_work is delayed and either 6662 * ctx->task or current has changed in the meantime. This can be the 6663 * case on architectures that do not implement arch_irq_work_raise(). 6664 */ 6665 if (WARN_ON_ONCE(event->ctx->task != current)) 6666 return; 6667 6668 /* 6669 * Both perf_pending_task() and perf_pending_irq() can race with the 6670 * task exiting. 6671 */ 6672 if (current->flags & PF_EXITING) 6673 return; 6674 6675 send_sig_perf((void __user *)event->pending_addr, 6676 event->orig_type, event->attr.sig_data); 6677 } 6678 6679 /* 6680 * Deliver the pending work in-event-context or follow the context. 6681 */ 6682 static void __perf_pending_irq(struct perf_event *event) 6683 { 6684 int cpu = READ_ONCE(event->oncpu); 6685 6686 /* 6687 * If the event isn't running; we done. event_sched_out() will have 6688 * taken care of things. 6689 */ 6690 if (cpu < 0) 6691 return; 6692 6693 /* 6694 * Yay, we hit home and are in the context of the event. 6695 */ 6696 if (cpu == smp_processor_id()) { 6697 if (event->pending_sigtrap) { 6698 event->pending_sigtrap = 0; 6699 perf_sigtrap(event); 6700 local_dec(&event->ctx->nr_pending); 6701 } 6702 if (event->pending_disable) { 6703 event->pending_disable = 0; 6704 perf_event_disable_local(event); 6705 } 6706 return; 6707 } 6708 6709 /* 6710 * CPU-A CPU-B 6711 * 6712 * perf_event_disable_inatomic() 6713 * @pending_disable = CPU-A; 6714 * irq_work_queue(); 6715 * 6716 * sched-out 6717 * @pending_disable = -1; 6718 * 6719 * sched-in 6720 * perf_event_disable_inatomic() 6721 * @pending_disable = CPU-B; 6722 * irq_work_queue(); // FAILS 6723 * 6724 * irq_work_run() 6725 * perf_pending_irq() 6726 * 6727 * But the event runs on CPU-B and wants disabling there. 6728 */ 6729 irq_work_queue_on(&event->pending_irq, cpu); 6730 } 6731 6732 static void perf_pending_irq(struct irq_work *entry) 6733 { 6734 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6735 int rctx; 6736 6737 /* 6738 * If we 'fail' here, that's OK, it means recursion is already disabled 6739 * and we won't recurse 'further'. 6740 */ 6741 rctx = perf_swevent_get_recursion_context(); 6742 6743 /* 6744 * The wakeup isn't bound to the context of the event -- it can happen 6745 * irrespective of where the event is. 6746 */ 6747 if (event->pending_wakeup) { 6748 event->pending_wakeup = 0; 6749 perf_event_wakeup(event); 6750 } 6751 6752 __perf_pending_irq(event); 6753 6754 if (rctx >= 0) 6755 perf_swevent_put_recursion_context(rctx); 6756 } 6757 6758 static void perf_pending_task(struct callback_head *head) 6759 { 6760 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6761 int rctx; 6762 6763 /* 6764 * If we 'fail' here, that's OK, it means recursion is already disabled 6765 * and we won't recurse 'further'. 6766 */ 6767 preempt_disable_notrace(); 6768 rctx = perf_swevent_get_recursion_context(); 6769 6770 if (event->pending_work) { 6771 event->pending_work = 0; 6772 perf_sigtrap(event); 6773 local_dec(&event->ctx->nr_pending); 6774 } 6775 6776 if (rctx >= 0) 6777 perf_swevent_put_recursion_context(rctx); 6778 preempt_enable_notrace(); 6779 6780 put_event(event); 6781 } 6782 6783 #ifdef CONFIG_GUEST_PERF_EVENTS 6784 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6785 6786 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6787 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6788 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6789 6790 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6791 { 6792 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6793 return; 6794 6795 rcu_assign_pointer(perf_guest_cbs, cbs); 6796 static_call_update(__perf_guest_state, cbs->state); 6797 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6798 6799 /* Implementing ->handle_intel_pt_intr is optional. */ 6800 if (cbs->handle_intel_pt_intr) 6801 static_call_update(__perf_guest_handle_intel_pt_intr, 6802 cbs->handle_intel_pt_intr); 6803 } 6804 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6805 6806 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6807 { 6808 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6809 return; 6810 6811 rcu_assign_pointer(perf_guest_cbs, NULL); 6812 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6813 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6814 static_call_update(__perf_guest_handle_intel_pt_intr, 6815 (void *)&__static_call_return0); 6816 synchronize_rcu(); 6817 } 6818 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6819 #endif 6820 6821 static void 6822 perf_output_sample_regs(struct perf_output_handle *handle, 6823 struct pt_regs *regs, u64 mask) 6824 { 6825 int bit; 6826 DECLARE_BITMAP(_mask, 64); 6827 6828 bitmap_from_u64(_mask, mask); 6829 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6830 u64 val; 6831 6832 val = perf_reg_value(regs, bit); 6833 perf_output_put(handle, val); 6834 } 6835 } 6836 6837 static void perf_sample_regs_user(struct perf_regs *regs_user, 6838 struct pt_regs *regs) 6839 { 6840 if (user_mode(regs)) { 6841 regs_user->abi = perf_reg_abi(current); 6842 regs_user->regs = regs; 6843 } else if (!(current->flags & PF_KTHREAD)) { 6844 perf_get_regs_user(regs_user, regs); 6845 } else { 6846 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6847 regs_user->regs = NULL; 6848 } 6849 } 6850 6851 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6852 struct pt_regs *regs) 6853 { 6854 regs_intr->regs = regs; 6855 regs_intr->abi = perf_reg_abi(current); 6856 } 6857 6858 6859 /* 6860 * Get remaining task size from user stack pointer. 6861 * 6862 * It'd be better to take stack vma map and limit this more 6863 * precisely, but there's no way to get it safely under interrupt, 6864 * so using TASK_SIZE as limit. 6865 */ 6866 static u64 perf_ustack_task_size(struct pt_regs *regs) 6867 { 6868 unsigned long addr = perf_user_stack_pointer(regs); 6869 6870 if (!addr || addr >= TASK_SIZE) 6871 return 0; 6872 6873 return TASK_SIZE - addr; 6874 } 6875 6876 static u16 6877 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6878 struct pt_regs *regs) 6879 { 6880 u64 task_size; 6881 6882 /* No regs, no stack pointer, no dump. */ 6883 if (!regs) 6884 return 0; 6885 6886 /* 6887 * Check if we fit in with the requested stack size into the: 6888 * - TASK_SIZE 6889 * If we don't, we limit the size to the TASK_SIZE. 6890 * 6891 * - remaining sample size 6892 * If we don't, we customize the stack size to 6893 * fit in to the remaining sample size. 6894 */ 6895 6896 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6897 stack_size = min(stack_size, (u16) task_size); 6898 6899 /* Current header size plus static size and dynamic size. */ 6900 header_size += 2 * sizeof(u64); 6901 6902 /* Do we fit in with the current stack dump size? */ 6903 if ((u16) (header_size + stack_size) < header_size) { 6904 /* 6905 * If we overflow the maximum size for the sample, 6906 * we customize the stack dump size to fit in. 6907 */ 6908 stack_size = USHRT_MAX - header_size - sizeof(u64); 6909 stack_size = round_up(stack_size, sizeof(u64)); 6910 } 6911 6912 return stack_size; 6913 } 6914 6915 static void 6916 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6917 struct pt_regs *regs) 6918 { 6919 /* Case of a kernel thread, nothing to dump */ 6920 if (!regs) { 6921 u64 size = 0; 6922 perf_output_put(handle, size); 6923 } else { 6924 unsigned long sp; 6925 unsigned int rem; 6926 u64 dyn_size; 6927 6928 /* 6929 * We dump: 6930 * static size 6931 * - the size requested by user or the best one we can fit 6932 * in to the sample max size 6933 * data 6934 * - user stack dump data 6935 * dynamic size 6936 * - the actual dumped size 6937 */ 6938 6939 /* Static size. */ 6940 perf_output_put(handle, dump_size); 6941 6942 /* Data. */ 6943 sp = perf_user_stack_pointer(regs); 6944 rem = __output_copy_user(handle, (void *) sp, dump_size); 6945 dyn_size = dump_size - rem; 6946 6947 perf_output_skip(handle, rem); 6948 6949 /* Dynamic size. */ 6950 perf_output_put(handle, dyn_size); 6951 } 6952 } 6953 6954 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6955 struct perf_sample_data *data, 6956 size_t size) 6957 { 6958 struct perf_event *sampler = event->aux_event; 6959 struct perf_buffer *rb; 6960 6961 data->aux_size = 0; 6962 6963 if (!sampler) 6964 goto out; 6965 6966 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6967 goto out; 6968 6969 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6970 goto out; 6971 6972 rb = ring_buffer_get(sampler); 6973 if (!rb) 6974 goto out; 6975 6976 /* 6977 * If this is an NMI hit inside sampling code, don't take 6978 * the sample. See also perf_aux_sample_output(). 6979 */ 6980 if (READ_ONCE(rb->aux_in_sampling)) { 6981 data->aux_size = 0; 6982 } else { 6983 size = min_t(size_t, size, perf_aux_size(rb)); 6984 data->aux_size = ALIGN(size, sizeof(u64)); 6985 } 6986 ring_buffer_put(rb); 6987 6988 out: 6989 return data->aux_size; 6990 } 6991 6992 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6993 struct perf_event *event, 6994 struct perf_output_handle *handle, 6995 unsigned long size) 6996 { 6997 unsigned long flags; 6998 long ret; 6999 7000 /* 7001 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7002 * paths. If we start calling them in NMI context, they may race with 7003 * the IRQ ones, that is, for example, re-starting an event that's just 7004 * been stopped, which is why we're using a separate callback that 7005 * doesn't change the event state. 7006 * 7007 * IRQs need to be disabled to prevent IPIs from racing with us. 7008 */ 7009 local_irq_save(flags); 7010 /* 7011 * Guard against NMI hits inside the critical section; 7012 * see also perf_prepare_sample_aux(). 7013 */ 7014 WRITE_ONCE(rb->aux_in_sampling, 1); 7015 barrier(); 7016 7017 ret = event->pmu->snapshot_aux(event, handle, size); 7018 7019 barrier(); 7020 WRITE_ONCE(rb->aux_in_sampling, 0); 7021 local_irq_restore(flags); 7022 7023 return ret; 7024 } 7025 7026 static void perf_aux_sample_output(struct perf_event *event, 7027 struct perf_output_handle *handle, 7028 struct perf_sample_data *data) 7029 { 7030 struct perf_event *sampler = event->aux_event; 7031 struct perf_buffer *rb; 7032 unsigned long pad; 7033 long size; 7034 7035 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7036 return; 7037 7038 rb = ring_buffer_get(sampler); 7039 if (!rb) 7040 return; 7041 7042 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7043 7044 /* 7045 * An error here means that perf_output_copy() failed (returned a 7046 * non-zero surplus that it didn't copy), which in its current 7047 * enlightened implementation is not possible. If that changes, we'd 7048 * like to know. 7049 */ 7050 if (WARN_ON_ONCE(size < 0)) 7051 goto out_put; 7052 7053 /* 7054 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7055 * perf_prepare_sample_aux(), so should not be more than that. 7056 */ 7057 pad = data->aux_size - size; 7058 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7059 pad = 8; 7060 7061 if (pad) { 7062 u64 zero = 0; 7063 perf_output_copy(handle, &zero, pad); 7064 } 7065 7066 out_put: 7067 ring_buffer_put(rb); 7068 } 7069 7070 /* 7071 * A set of common sample data types saved even for non-sample records 7072 * when event->attr.sample_id_all is set. 7073 */ 7074 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7075 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7076 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7077 7078 static void __perf_event_header__init_id(struct perf_sample_data *data, 7079 struct perf_event *event, 7080 u64 sample_type) 7081 { 7082 data->type = event->attr.sample_type; 7083 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7084 7085 if (sample_type & PERF_SAMPLE_TID) { 7086 /* namespace issues */ 7087 data->tid_entry.pid = perf_event_pid(event, current); 7088 data->tid_entry.tid = perf_event_tid(event, current); 7089 } 7090 7091 if (sample_type & PERF_SAMPLE_TIME) 7092 data->time = perf_event_clock(event); 7093 7094 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7095 data->id = primary_event_id(event); 7096 7097 if (sample_type & PERF_SAMPLE_STREAM_ID) 7098 data->stream_id = event->id; 7099 7100 if (sample_type & PERF_SAMPLE_CPU) { 7101 data->cpu_entry.cpu = raw_smp_processor_id(); 7102 data->cpu_entry.reserved = 0; 7103 } 7104 } 7105 7106 void perf_event_header__init_id(struct perf_event_header *header, 7107 struct perf_sample_data *data, 7108 struct perf_event *event) 7109 { 7110 if (event->attr.sample_id_all) { 7111 header->size += event->id_header_size; 7112 __perf_event_header__init_id(data, event, event->attr.sample_type); 7113 } 7114 } 7115 7116 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7117 struct perf_sample_data *data) 7118 { 7119 u64 sample_type = data->type; 7120 7121 if (sample_type & PERF_SAMPLE_TID) 7122 perf_output_put(handle, data->tid_entry); 7123 7124 if (sample_type & PERF_SAMPLE_TIME) 7125 perf_output_put(handle, data->time); 7126 7127 if (sample_type & PERF_SAMPLE_ID) 7128 perf_output_put(handle, data->id); 7129 7130 if (sample_type & PERF_SAMPLE_STREAM_ID) 7131 perf_output_put(handle, data->stream_id); 7132 7133 if (sample_type & PERF_SAMPLE_CPU) 7134 perf_output_put(handle, data->cpu_entry); 7135 7136 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7137 perf_output_put(handle, data->id); 7138 } 7139 7140 void perf_event__output_id_sample(struct perf_event *event, 7141 struct perf_output_handle *handle, 7142 struct perf_sample_data *sample) 7143 { 7144 if (event->attr.sample_id_all) 7145 __perf_event__output_id_sample(handle, sample); 7146 } 7147 7148 static void perf_output_read_one(struct perf_output_handle *handle, 7149 struct perf_event *event, 7150 u64 enabled, u64 running) 7151 { 7152 u64 read_format = event->attr.read_format; 7153 u64 values[5]; 7154 int n = 0; 7155 7156 values[n++] = perf_event_count(event); 7157 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7158 values[n++] = enabled + 7159 atomic64_read(&event->child_total_time_enabled); 7160 } 7161 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7162 values[n++] = running + 7163 atomic64_read(&event->child_total_time_running); 7164 } 7165 if (read_format & PERF_FORMAT_ID) 7166 values[n++] = primary_event_id(event); 7167 if (read_format & PERF_FORMAT_LOST) 7168 values[n++] = atomic64_read(&event->lost_samples); 7169 7170 __output_copy(handle, values, n * sizeof(u64)); 7171 } 7172 7173 static void perf_output_read_group(struct perf_output_handle *handle, 7174 struct perf_event *event, 7175 u64 enabled, u64 running) 7176 { 7177 struct perf_event *leader = event->group_leader, *sub; 7178 u64 read_format = event->attr.read_format; 7179 unsigned long flags; 7180 u64 values[6]; 7181 int n = 0; 7182 7183 /* 7184 * Disabling interrupts avoids all counter scheduling 7185 * (context switches, timer based rotation and IPIs). 7186 */ 7187 local_irq_save(flags); 7188 7189 values[n++] = 1 + leader->nr_siblings; 7190 7191 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7192 values[n++] = enabled; 7193 7194 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7195 values[n++] = running; 7196 7197 if ((leader != event) && 7198 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7199 leader->pmu->read(leader); 7200 7201 values[n++] = perf_event_count(leader); 7202 if (read_format & PERF_FORMAT_ID) 7203 values[n++] = primary_event_id(leader); 7204 if (read_format & PERF_FORMAT_LOST) 7205 values[n++] = atomic64_read(&leader->lost_samples); 7206 7207 __output_copy(handle, values, n * sizeof(u64)); 7208 7209 for_each_sibling_event(sub, leader) { 7210 n = 0; 7211 7212 if ((sub != event) && 7213 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7214 sub->pmu->read(sub); 7215 7216 values[n++] = perf_event_count(sub); 7217 if (read_format & PERF_FORMAT_ID) 7218 values[n++] = primary_event_id(sub); 7219 if (read_format & PERF_FORMAT_LOST) 7220 values[n++] = atomic64_read(&sub->lost_samples); 7221 7222 __output_copy(handle, values, n * sizeof(u64)); 7223 } 7224 7225 local_irq_restore(flags); 7226 } 7227 7228 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7229 PERF_FORMAT_TOTAL_TIME_RUNNING) 7230 7231 /* 7232 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7233 * 7234 * The problem is that its both hard and excessively expensive to iterate the 7235 * child list, not to mention that its impossible to IPI the children running 7236 * on another CPU, from interrupt/NMI context. 7237 */ 7238 static void perf_output_read(struct perf_output_handle *handle, 7239 struct perf_event *event) 7240 { 7241 u64 enabled = 0, running = 0, now; 7242 u64 read_format = event->attr.read_format; 7243 7244 /* 7245 * compute total_time_enabled, total_time_running 7246 * based on snapshot values taken when the event 7247 * was last scheduled in. 7248 * 7249 * we cannot simply called update_context_time() 7250 * because of locking issue as we are called in 7251 * NMI context 7252 */ 7253 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7254 calc_timer_values(event, &now, &enabled, &running); 7255 7256 if (event->attr.read_format & PERF_FORMAT_GROUP) 7257 perf_output_read_group(handle, event, enabled, running); 7258 else 7259 perf_output_read_one(handle, event, enabled, running); 7260 } 7261 7262 void perf_output_sample(struct perf_output_handle *handle, 7263 struct perf_event_header *header, 7264 struct perf_sample_data *data, 7265 struct perf_event *event) 7266 { 7267 u64 sample_type = data->type; 7268 7269 perf_output_put(handle, *header); 7270 7271 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7272 perf_output_put(handle, data->id); 7273 7274 if (sample_type & PERF_SAMPLE_IP) 7275 perf_output_put(handle, data->ip); 7276 7277 if (sample_type & PERF_SAMPLE_TID) 7278 perf_output_put(handle, data->tid_entry); 7279 7280 if (sample_type & PERF_SAMPLE_TIME) 7281 perf_output_put(handle, data->time); 7282 7283 if (sample_type & PERF_SAMPLE_ADDR) 7284 perf_output_put(handle, data->addr); 7285 7286 if (sample_type & PERF_SAMPLE_ID) 7287 perf_output_put(handle, data->id); 7288 7289 if (sample_type & PERF_SAMPLE_STREAM_ID) 7290 perf_output_put(handle, data->stream_id); 7291 7292 if (sample_type & PERF_SAMPLE_CPU) 7293 perf_output_put(handle, data->cpu_entry); 7294 7295 if (sample_type & PERF_SAMPLE_PERIOD) 7296 perf_output_put(handle, data->period); 7297 7298 if (sample_type & PERF_SAMPLE_READ) 7299 perf_output_read(handle, event); 7300 7301 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7302 int size = 1; 7303 7304 size += data->callchain->nr; 7305 size *= sizeof(u64); 7306 __output_copy(handle, data->callchain, size); 7307 } 7308 7309 if (sample_type & PERF_SAMPLE_RAW) { 7310 struct perf_raw_record *raw = data->raw; 7311 7312 if (raw) { 7313 struct perf_raw_frag *frag = &raw->frag; 7314 7315 perf_output_put(handle, raw->size); 7316 do { 7317 if (frag->copy) { 7318 __output_custom(handle, frag->copy, 7319 frag->data, frag->size); 7320 } else { 7321 __output_copy(handle, frag->data, 7322 frag->size); 7323 } 7324 if (perf_raw_frag_last(frag)) 7325 break; 7326 frag = frag->next; 7327 } while (1); 7328 if (frag->pad) 7329 __output_skip(handle, NULL, frag->pad); 7330 } else { 7331 struct { 7332 u32 size; 7333 u32 data; 7334 } raw = { 7335 .size = sizeof(u32), 7336 .data = 0, 7337 }; 7338 perf_output_put(handle, raw); 7339 } 7340 } 7341 7342 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7343 if (data->br_stack) { 7344 size_t size; 7345 7346 size = data->br_stack->nr 7347 * sizeof(struct perf_branch_entry); 7348 7349 perf_output_put(handle, data->br_stack->nr); 7350 if (branch_sample_hw_index(event)) 7351 perf_output_put(handle, data->br_stack->hw_idx); 7352 perf_output_copy(handle, data->br_stack->entries, size); 7353 } else { 7354 /* 7355 * we always store at least the value of nr 7356 */ 7357 u64 nr = 0; 7358 perf_output_put(handle, nr); 7359 } 7360 } 7361 7362 if (sample_type & PERF_SAMPLE_REGS_USER) { 7363 u64 abi = data->regs_user.abi; 7364 7365 /* 7366 * If there are no regs to dump, notice it through 7367 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7368 */ 7369 perf_output_put(handle, abi); 7370 7371 if (abi) { 7372 u64 mask = event->attr.sample_regs_user; 7373 perf_output_sample_regs(handle, 7374 data->regs_user.regs, 7375 mask); 7376 } 7377 } 7378 7379 if (sample_type & PERF_SAMPLE_STACK_USER) { 7380 perf_output_sample_ustack(handle, 7381 data->stack_user_size, 7382 data->regs_user.regs); 7383 } 7384 7385 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7386 perf_output_put(handle, data->weight.full); 7387 7388 if (sample_type & PERF_SAMPLE_DATA_SRC) 7389 perf_output_put(handle, data->data_src.val); 7390 7391 if (sample_type & PERF_SAMPLE_TRANSACTION) 7392 perf_output_put(handle, data->txn); 7393 7394 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7395 u64 abi = data->regs_intr.abi; 7396 /* 7397 * If there are no regs to dump, notice it through 7398 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7399 */ 7400 perf_output_put(handle, abi); 7401 7402 if (abi) { 7403 u64 mask = event->attr.sample_regs_intr; 7404 7405 perf_output_sample_regs(handle, 7406 data->regs_intr.regs, 7407 mask); 7408 } 7409 } 7410 7411 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7412 perf_output_put(handle, data->phys_addr); 7413 7414 if (sample_type & PERF_SAMPLE_CGROUP) 7415 perf_output_put(handle, data->cgroup); 7416 7417 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7418 perf_output_put(handle, data->data_page_size); 7419 7420 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7421 perf_output_put(handle, data->code_page_size); 7422 7423 if (sample_type & PERF_SAMPLE_AUX) { 7424 perf_output_put(handle, data->aux_size); 7425 7426 if (data->aux_size) 7427 perf_aux_sample_output(event, handle, data); 7428 } 7429 7430 if (!event->attr.watermark) { 7431 int wakeup_events = event->attr.wakeup_events; 7432 7433 if (wakeup_events) { 7434 struct perf_buffer *rb = handle->rb; 7435 int events = local_inc_return(&rb->events); 7436 7437 if (events >= wakeup_events) { 7438 local_sub(wakeup_events, &rb->events); 7439 local_inc(&rb->wakeup); 7440 } 7441 } 7442 } 7443 } 7444 7445 static u64 perf_virt_to_phys(u64 virt) 7446 { 7447 u64 phys_addr = 0; 7448 7449 if (!virt) 7450 return 0; 7451 7452 if (virt >= TASK_SIZE) { 7453 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7454 if (virt_addr_valid((void *)(uintptr_t)virt) && 7455 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7456 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7457 } else { 7458 /* 7459 * Walking the pages tables for user address. 7460 * Interrupts are disabled, so it prevents any tear down 7461 * of the page tables. 7462 * Try IRQ-safe get_user_page_fast_only first. 7463 * If failed, leave phys_addr as 0. 7464 */ 7465 if (current->mm != NULL) { 7466 struct page *p; 7467 7468 pagefault_disable(); 7469 if (get_user_page_fast_only(virt, 0, &p)) { 7470 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7471 put_page(p); 7472 } 7473 pagefault_enable(); 7474 } 7475 } 7476 7477 return phys_addr; 7478 } 7479 7480 /* 7481 * Return the pagetable size of a given virtual address. 7482 */ 7483 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7484 { 7485 u64 size = 0; 7486 7487 #ifdef CONFIG_HAVE_FAST_GUP 7488 pgd_t *pgdp, pgd; 7489 p4d_t *p4dp, p4d; 7490 pud_t *pudp, pud; 7491 pmd_t *pmdp, pmd; 7492 pte_t *ptep, pte; 7493 7494 pgdp = pgd_offset(mm, addr); 7495 pgd = READ_ONCE(*pgdp); 7496 if (pgd_none(pgd)) 7497 return 0; 7498 7499 if (pgd_leaf(pgd)) 7500 return pgd_leaf_size(pgd); 7501 7502 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7503 p4d = READ_ONCE(*p4dp); 7504 if (!p4d_present(p4d)) 7505 return 0; 7506 7507 if (p4d_leaf(p4d)) 7508 return p4d_leaf_size(p4d); 7509 7510 pudp = pud_offset_lockless(p4dp, p4d, addr); 7511 pud = READ_ONCE(*pudp); 7512 if (!pud_present(pud)) 7513 return 0; 7514 7515 if (pud_leaf(pud)) 7516 return pud_leaf_size(pud); 7517 7518 pmdp = pmd_offset_lockless(pudp, pud, addr); 7519 again: 7520 pmd = pmdp_get_lockless(pmdp); 7521 if (!pmd_present(pmd)) 7522 return 0; 7523 7524 if (pmd_leaf(pmd)) 7525 return pmd_leaf_size(pmd); 7526 7527 ptep = pte_offset_map(&pmd, addr); 7528 if (!ptep) 7529 goto again; 7530 7531 pte = ptep_get_lockless(ptep); 7532 if (pte_present(pte)) 7533 size = pte_leaf_size(pte); 7534 pte_unmap(ptep); 7535 #endif /* CONFIG_HAVE_FAST_GUP */ 7536 7537 return size; 7538 } 7539 7540 static u64 perf_get_page_size(unsigned long addr) 7541 { 7542 struct mm_struct *mm; 7543 unsigned long flags; 7544 u64 size; 7545 7546 if (!addr) 7547 return 0; 7548 7549 /* 7550 * Software page-table walkers must disable IRQs, 7551 * which prevents any tear down of the page tables. 7552 */ 7553 local_irq_save(flags); 7554 7555 mm = current->mm; 7556 if (!mm) { 7557 /* 7558 * For kernel threads and the like, use init_mm so that 7559 * we can find kernel memory. 7560 */ 7561 mm = &init_mm; 7562 } 7563 7564 size = perf_get_pgtable_size(mm, addr); 7565 7566 local_irq_restore(flags); 7567 7568 return size; 7569 } 7570 7571 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7572 7573 struct perf_callchain_entry * 7574 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7575 { 7576 bool kernel = !event->attr.exclude_callchain_kernel; 7577 bool user = !event->attr.exclude_callchain_user; 7578 /* Disallow cross-task user callchains. */ 7579 bool crosstask = event->ctx->task && event->ctx->task != current; 7580 const u32 max_stack = event->attr.sample_max_stack; 7581 struct perf_callchain_entry *callchain; 7582 7583 if (!kernel && !user) 7584 return &__empty_callchain; 7585 7586 callchain = get_perf_callchain(regs, 0, kernel, user, 7587 max_stack, crosstask, true); 7588 return callchain ?: &__empty_callchain; 7589 } 7590 7591 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7592 { 7593 return d * !!(flags & s); 7594 } 7595 7596 void perf_prepare_sample(struct perf_sample_data *data, 7597 struct perf_event *event, 7598 struct pt_regs *regs) 7599 { 7600 u64 sample_type = event->attr.sample_type; 7601 u64 filtered_sample_type; 7602 7603 /* 7604 * Add the sample flags that are dependent to others. And clear the 7605 * sample flags that have already been done by the PMU driver. 7606 */ 7607 filtered_sample_type = sample_type; 7608 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7609 PERF_SAMPLE_IP); 7610 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7611 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7612 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7613 PERF_SAMPLE_REGS_USER); 7614 filtered_sample_type &= ~data->sample_flags; 7615 7616 if (filtered_sample_type == 0) { 7617 /* Make sure it has the correct data->type for output */ 7618 data->type = event->attr.sample_type; 7619 return; 7620 } 7621 7622 __perf_event_header__init_id(data, event, filtered_sample_type); 7623 7624 if (filtered_sample_type & PERF_SAMPLE_IP) { 7625 data->ip = perf_instruction_pointer(regs); 7626 data->sample_flags |= PERF_SAMPLE_IP; 7627 } 7628 7629 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7630 perf_sample_save_callchain(data, event, regs); 7631 7632 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7633 data->raw = NULL; 7634 data->dyn_size += sizeof(u64); 7635 data->sample_flags |= PERF_SAMPLE_RAW; 7636 } 7637 7638 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7639 data->br_stack = NULL; 7640 data->dyn_size += sizeof(u64); 7641 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7642 } 7643 7644 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7645 perf_sample_regs_user(&data->regs_user, regs); 7646 7647 /* 7648 * It cannot use the filtered_sample_type here as REGS_USER can be set 7649 * by STACK_USER (using __cond_set() above) and we don't want to update 7650 * the dyn_size if it's not requested by users. 7651 */ 7652 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7653 /* regs dump ABI info */ 7654 int size = sizeof(u64); 7655 7656 if (data->regs_user.regs) { 7657 u64 mask = event->attr.sample_regs_user; 7658 size += hweight64(mask) * sizeof(u64); 7659 } 7660 7661 data->dyn_size += size; 7662 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7663 } 7664 7665 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7666 /* 7667 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7668 * processed as the last one or have additional check added 7669 * in case new sample type is added, because we could eat 7670 * up the rest of the sample size. 7671 */ 7672 u16 stack_size = event->attr.sample_stack_user; 7673 u16 header_size = perf_sample_data_size(data, event); 7674 u16 size = sizeof(u64); 7675 7676 stack_size = perf_sample_ustack_size(stack_size, header_size, 7677 data->regs_user.regs); 7678 7679 /* 7680 * If there is something to dump, add space for the dump 7681 * itself and for the field that tells the dynamic size, 7682 * which is how many have been actually dumped. 7683 */ 7684 if (stack_size) 7685 size += sizeof(u64) + stack_size; 7686 7687 data->stack_user_size = stack_size; 7688 data->dyn_size += size; 7689 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7690 } 7691 7692 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7693 data->weight.full = 0; 7694 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7695 } 7696 7697 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7698 data->data_src.val = PERF_MEM_NA; 7699 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7700 } 7701 7702 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7703 data->txn = 0; 7704 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7705 } 7706 7707 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7708 data->addr = 0; 7709 data->sample_flags |= PERF_SAMPLE_ADDR; 7710 } 7711 7712 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7713 /* regs dump ABI info */ 7714 int size = sizeof(u64); 7715 7716 perf_sample_regs_intr(&data->regs_intr, regs); 7717 7718 if (data->regs_intr.regs) { 7719 u64 mask = event->attr.sample_regs_intr; 7720 7721 size += hweight64(mask) * sizeof(u64); 7722 } 7723 7724 data->dyn_size += size; 7725 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7726 } 7727 7728 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7729 data->phys_addr = perf_virt_to_phys(data->addr); 7730 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7731 } 7732 7733 #ifdef CONFIG_CGROUP_PERF 7734 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7735 struct cgroup *cgrp; 7736 7737 /* protected by RCU */ 7738 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7739 data->cgroup = cgroup_id(cgrp); 7740 data->sample_flags |= PERF_SAMPLE_CGROUP; 7741 } 7742 #endif 7743 7744 /* 7745 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7746 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7747 * but the value will not dump to the userspace. 7748 */ 7749 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7750 data->data_page_size = perf_get_page_size(data->addr); 7751 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7752 } 7753 7754 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7755 data->code_page_size = perf_get_page_size(data->ip); 7756 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7757 } 7758 7759 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7760 u64 size; 7761 u16 header_size = perf_sample_data_size(data, event); 7762 7763 header_size += sizeof(u64); /* size */ 7764 7765 /* 7766 * Given the 16bit nature of header::size, an AUX sample can 7767 * easily overflow it, what with all the preceding sample bits. 7768 * Make sure this doesn't happen by using up to U16_MAX bytes 7769 * per sample in total (rounded down to 8 byte boundary). 7770 */ 7771 size = min_t(size_t, U16_MAX - header_size, 7772 event->attr.aux_sample_size); 7773 size = rounddown(size, 8); 7774 size = perf_prepare_sample_aux(event, data, size); 7775 7776 WARN_ON_ONCE(size + header_size > U16_MAX); 7777 data->dyn_size += size + sizeof(u64); /* size above */ 7778 data->sample_flags |= PERF_SAMPLE_AUX; 7779 } 7780 } 7781 7782 void perf_prepare_header(struct perf_event_header *header, 7783 struct perf_sample_data *data, 7784 struct perf_event *event, 7785 struct pt_regs *regs) 7786 { 7787 header->type = PERF_RECORD_SAMPLE; 7788 header->size = perf_sample_data_size(data, event); 7789 header->misc = perf_misc_flags(regs); 7790 7791 /* 7792 * If you're adding more sample types here, you likely need to do 7793 * something about the overflowing header::size, like repurpose the 7794 * lowest 3 bits of size, which should be always zero at the moment. 7795 * This raises a more important question, do we really need 512k sized 7796 * samples and why, so good argumentation is in order for whatever you 7797 * do here next. 7798 */ 7799 WARN_ON_ONCE(header->size & 7); 7800 } 7801 7802 static __always_inline int 7803 __perf_event_output(struct perf_event *event, 7804 struct perf_sample_data *data, 7805 struct pt_regs *regs, 7806 int (*output_begin)(struct perf_output_handle *, 7807 struct perf_sample_data *, 7808 struct perf_event *, 7809 unsigned int)) 7810 { 7811 struct perf_output_handle handle; 7812 struct perf_event_header header; 7813 int err; 7814 7815 /* protect the callchain buffers */ 7816 rcu_read_lock(); 7817 7818 perf_prepare_sample(data, event, regs); 7819 perf_prepare_header(&header, data, event, regs); 7820 7821 err = output_begin(&handle, data, event, header.size); 7822 if (err) 7823 goto exit; 7824 7825 perf_output_sample(&handle, &header, data, event); 7826 7827 perf_output_end(&handle); 7828 7829 exit: 7830 rcu_read_unlock(); 7831 return err; 7832 } 7833 7834 void 7835 perf_event_output_forward(struct perf_event *event, 7836 struct perf_sample_data *data, 7837 struct pt_regs *regs) 7838 { 7839 __perf_event_output(event, data, regs, perf_output_begin_forward); 7840 } 7841 7842 void 7843 perf_event_output_backward(struct perf_event *event, 7844 struct perf_sample_data *data, 7845 struct pt_regs *regs) 7846 { 7847 __perf_event_output(event, data, regs, perf_output_begin_backward); 7848 } 7849 7850 int 7851 perf_event_output(struct perf_event *event, 7852 struct perf_sample_data *data, 7853 struct pt_regs *regs) 7854 { 7855 return __perf_event_output(event, data, regs, perf_output_begin); 7856 } 7857 7858 /* 7859 * read event_id 7860 */ 7861 7862 struct perf_read_event { 7863 struct perf_event_header header; 7864 7865 u32 pid; 7866 u32 tid; 7867 }; 7868 7869 static void 7870 perf_event_read_event(struct perf_event *event, 7871 struct task_struct *task) 7872 { 7873 struct perf_output_handle handle; 7874 struct perf_sample_data sample; 7875 struct perf_read_event read_event = { 7876 .header = { 7877 .type = PERF_RECORD_READ, 7878 .misc = 0, 7879 .size = sizeof(read_event) + event->read_size, 7880 }, 7881 .pid = perf_event_pid(event, task), 7882 .tid = perf_event_tid(event, task), 7883 }; 7884 int ret; 7885 7886 perf_event_header__init_id(&read_event.header, &sample, event); 7887 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7888 if (ret) 7889 return; 7890 7891 perf_output_put(&handle, read_event); 7892 perf_output_read(&handle, event); 7893 perf_event__output_id_sample(event, &handle, &sample); 7894 7895 perf_output_end(&handle); 7896 } 7897 7898 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7899 7900 static void 7901 perf_iterate_ctx(struct perf_event_context *ctx, 7902 perf_iterate_f output, 7903 void *data, bool all) 7904 { 7905 struct perf_event *event; 7906 7907 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7908 if (!all) { 7909 if (event->state < PERF_EVENT_STATE_INACTIVE) 7910 continue; 7911 if (!event_filter_match(event)) 7912 continue; 7913 } 7914 7915 output(event, data); 7916 } 7917 } 7918 7919 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7920 { 7921 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7922 struct perf_event *event; 7923 7924 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7925 /* 7926 * Skip events that are not fully formed yet; ensure that 7927 * if we observe event->ctx, both event and ctx will be 7928 * complete enough. See perf_install_in_context(). 7929 */ 7930 if (!smp_load_acquire(&event->ctx)) 7931 continue; 7932 7933 if (event->state < PERF_EVENT_STATE_INACTIVE) 7934 continue; 7935 if (!event_filter_match(event)) 7936 continue; 7937 output(event, data); 7938 } 7939 } 7940 7941 /* 7942 * Iterate all events that need to receive side-band events. 7943 * 7944 * For new callers; ensure that account_pmu_sb_event() includes 7945 * your event, otherwise it might not get delivered. 7946 */ 7947 static void 7948 perf_iterate_sb(perf_iterate_f output, void *data, 7949 struct perf_event_context *task_ctx) 7950 { 7951 struct perf_event_context *ctx; 7952 7953 rcu_read_lock(); 7954 preempt_disable(); 7955 7956 /* 7957 * If we have task_ctx != NULL we only notify the task context itself. 7958 * The task_ctx is set only for EXIT events before releasing task 7959 * context. 7960 */ 7961 if (task_ctx) { 7962 perf_iterate_ctx(task_ctx, output, data, false); 7963 goto done; 7964 } 7965 7966 perf_iterate_sb_cpu(output, data); 7967 7968 ctx = rcu_dereference(current->perf_event_ctxp); 7969 if (ctx) 7970 perf_iterate_ctx(ctx, output, data, false); 7971 done: 7972 preempt_enable(); 7973 rcu_read_unlock(); 7974 } 7975 7976 /* 7977 * Clear all file-based filters at exec, they'll have to be 7978 * re-instated when/if these objects are mmapped again. 7979 */ 7980 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7981 { 7982 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7983 struct perf_addr_filter *filter; 7984 unsigned int restart = 0, count = 0; 7985 unsigned long flags; 7986 7987 if (!has_addr_filter(event)) 7988 return; 7989 7990 raw_spin_lock_irqsave(&ifh->lock, flags); 7991 list_for_each_entry(filter, &ifh->list, entry) { 7992 if (filter->path.dentry) { 7993 event->addr_filter_ranges[count].start = 0; 7994 event->addr_filter_ranges[count].size = 0; 7995 restart++; 7996 } 7997 7998 count++; 7999 } 8000 8001 if (restart) 8002 event->addr_filters_gen++; 8003 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8004 8005 if (restart) 8006 perf_event_stop(event, 1); 8007 } 8008 8009 void perf_event_exec(void) 8010 { 8011 struct perf_event_context *ctx; 8012 8013 ctx = perf_pin_task_context(current); 8014 if (!ctx) 8015 return; 8016 8017 perf_event_enable_on_exec(ctx); 8018 perf_event_remove_on_exec(ctx); 8019 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8020 8021 perf_unpin_context(ctx); 8022 put_ctx(ctx); 8023 } 8024 8025 struct remote_output { 8026 struct perf_buffer *rb; 8027 int err; 8028 }; 8029 8030 static void __perf_event_output_stop(struct perf_event *event, void *data) 8031 { 8032 struct perf_event *parent = event->parent; 8033 struct remote_output *ro = data; 8034 struct perf_buffer *rb = ro->rb; 8035 struct stop_event_data sd = { 8036 .event = event, 8037 }; 8038 8039 if (!has_aux(event)) 8040 return; 8041 8042 if (!parent) 8043 parent = event; 8044 8045 /* 8046 * In case of inheritance, it will be the parent that links to the 8047 * ring-buffer, but it will be the child that's actually using it. 8048 * 8049 * We are using event::rb to determine if the event should be stopped, 8050 * however this may race with ring_buffer_attach() (through set_output), 8051 * which will make us skip the event that actually needs to be stopped. 8052 * So ring_buffer_attach() has to stop an aux event before re-assigning 8053 * its rb pointer. 8054 */ 8055 if (rcu_dereference(parent->rb) == rb) 8056 ro->err = __perf_event_stop(&sd); 8057 } 8058 8059 static int __perf_pmu_output_stop(void *info) 8060 { 8061 struct perf_event *event = info; 8062 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8063 struct remote_output ro = { 8064 .rb = event->rb, 8065 }; 8066 8067 rcu_read_lock(); 8068 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8069 if (cpuctx->task_ctx) 8070 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8071 &ro, false); 8072 rcu_read_unlock(); 8073 8074 return ro.err; 8075 } 8076 8077 static void perf_pmu_output_stop(struct perf_event *event) 8078 { 8079 struct perf_event *iter; 8080 int err, cpu; 8081 8082 restart: 8083 rcu_read_lock(); 8084 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8085 /* 8086 * For per-CPU events, we need to make sure that neither they 8087 * nor their children are running; for cpu==-1 events it's 8088 * sufficient to stop the event itself if it's active, since 8089 * it can't have children. 8090 */ 8091 cpu = iter->cpu; 8092 if (cpu == -1) 8093 cpu = READ_ONCE(iter->oncpu); 8094 8095 if (cpu == -1) 8096 continue; 8097 8098 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8099 if (err == -EAGAIN) { 8100 rcu_read_unlock(); 8101 goto restart; 8102 } 8103 } 8104 rcu_read_unlock(); 8105 } 8106 8107 /* 8108 * task tracking -- fork/exit 8109 * 8110 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8111 */ 8112 8113 struct perf_task_event { 8114 struct task_struct *task; 8115 struct perf_event_context *task_ctx; 8116 8117 struct { 8118 struct perf_event_header header; 8119 8120 u32 pid; 8121 u32 ppid; 8122 u32 tid; 8123 u32 ptid; 8124 u64 time; 8125 } event_id; 8126 }; 8127 8128 static int perf_event_task_match(struct perf_event *event) 8129 { 8130 return event->attr.comm || event->attr.mmap || 8131 event->attr.mmap2 || event->attr.mmap_data || 8132 event->attr.task; 8133 } 8134 8135 static void perf_event_task_output(struct perf_event *event, 8136 void *data) 8137 { 8138 struct perf_task_event *task_event = data; 8139 struct perf_output_handle handle; 8140 struct perf_sample_data sample; 8141 struct task_struct *task = task_event->task; 8142 int ret, size = task_event->event_id.header.size; 8143 8144 if (!perf_event_task_match(event)) 8145 return; 8146 8147 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8148 8149 ret = perf_output_begin(&handle, &sample, event, 8150 task_event->event_id.header.size); 8151 if (ret) 8152 goto out; 8153 8154 task_event->event_id.pid = perf_event_pid(event, task); 8155 task_event->event_id.tid = perf_event_tid(event, task); 8156 8157 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8158 task_event->event_id.ppid = perf_event_pid(event, 8159 task->real_parent); 8160 task_event->event_id.ptid = perf_event_pid(event, 8161 task->real_parent); 8162 } else { /* PERF_RECORD_FORK */ 8163 task_event->event_id.ppid = perf_event_pid(event, current); 8164 task_event->event_id.ptid = perf_event_tid(event, current); 8165 } 8166 8167 task_event->event_id.time = perf_event_clock(event); 8168 8169 perf_output_put(&handle, task_event->event_id); 8170 8171 perf_event__output_id_sample(event, &handle, &sample); 8172 8173 perf_output_end(&handle); 8174 out: 8175 task_event->event_id.header.size = size; 8176 } 8177 8178 static void perf_event_task(struct task_struct *task, 8179 struct perf_event_context *task_ctx, 8180 int new) 8181 { 8182 struct perf_task_event task_event; 8183 8184 if (!atomic_read(&nr_comm_events) && 8185 !atomic_read(&nr_mmap_events) && 8186 !atomic_read(&nr_task_events)) 8187 return; 8188 8189 task_event = (struct perf_task_event){ 8190 .task = task, 8191 .task_ctx = task_ctx, 8192 .event_id = { 8193 .header = { 8194 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8195 .misc = 0, 8196 .size = sizeof(task_event.event_id), 8197 }, 8198 /* .pid */ 8199 /* .ppid */ 8200 /* .tid */ 8201 /* .ptid */ 8202 /* .time */ 8203 }, 8204 }; 8205 8206 perf_iterate_sb(perf_event_task_output, 8207 &task_event, 8208 task_ctx); 8209 } 8210 8211 void perf_event_fork(struct task_struct *task) 8212 { 8213 perf_event_task(task, NULL, 1); 8214 perf_event_namespaces(task); 8215 } 8216 8217 /* 8218 * comm tracking 8219 */ 8220 8221 struct perf_comm_event { 8222 struct task_struct *task; 8223 char *comm; 8224 int comm_size; 8225 8226 struct { 8227 struct perf_event_header header; 8228 8229 u32 pid; 8230 u32 tid; 8231 } event_id; 8232 }; 8233 8234 static int perf_event_comm_match(struct perf_event *event) 8235 { 8236 return event->attr.comm; 8237 } 8238 8239 static void perf_event_comm_output(struct perf_event *event, 8240 void *data) 8241 { 8242 struct perf_comm_event *comm_event = data; 8243 struct perf_output_handle handle; 8244 struct perf_sample_data sample; 8245 int size = comm_event->event_id.header.size; 8246 int ret; 8247 8248 if (!perf_event_comm_match(event)) 8249 return; 8250 8251 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8252 ret = perf_output_begin(&handle, &sample, event, 8253 comm_event->event_id.header.size); 8254 8255 if (ret) 8256 goto out; 8257 8258 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8259 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8260 8261 perf_output_put(&handle, comm_event->event_id); 8262 __output_copy(&handle, comm_event->comm, 8263 comm_event->comm_size); 8264 8265 perf_event__output_id_sample(event, &handle, &sample); 8266 8267 perf_output_end(&handle); 8268 out: 8269 comm_event->event_id.header.size = size; 8270 } 8271 8272 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8273 { 8274 char comm[TASK_COMM_LEN]; 8275 unsigned int size; 8276 8277 memset(comm, 0, sizeof(comm)); 8278 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8279 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8280 8281 comm_event->comm = comm; 8282 comm_event->comm_size = size; 8283 8284 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8285 8286 perf_iterate_sb(perf_event_comm_output, 8287 comm_event, 8288 NULL); 8289 } 8290 8291 void perf_event_comm(struct task_struct *task, bool exec) 8292 { 8293 struct perf_comm_event comm_event; 8294 8295 if (!atomic_read(&nr_comm_events)) 8296 return; 8297 8298 comm_event = (struct perf_comm_event){ 8299 .task = task, 8300 /* .comm */ 8301 /* .comm_size */ 8302 .event_id = { 8303 .header = { 8304 .type = PERF_RECORD_COMM, 8305 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8306 /* .size */ 8307 }, 8308 /* .pid */ 8309 /* .tid */ 8310 }, 8311 }; 8312 8313 perf_event_comm_event(&comm_event); 8314 } 8315 8316 /* 8317 * namespaces tracking 8318 */ 8319 8320 struct perf_namespaces_event { 8321 struct task_struct *task; 8322 8323 struct { 8324 struct perf_event_header header; 8325 8326 u32 pid; 8327 u32 tid; 8328 u64 nr_namespaces; 8329 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8330 } event_id; 8331 }; 8332 8333 static int perf_event_namespaces_match(struct perf_event *event) 8334 { 8335 return event->attr.namespaces; 8336 } 8337 8338 static void perf_event_namespaces_output(struct perf_event *event, 8339 void *data) 8340 { 8341 struct perf_namespaces_event *namespaces_event = data; 8342 struct perf_output_handle handle; 8343 struct perf_sample_data sample; 8344 u16 header_size = namespaces_event->event_id.header.size; 8345 int ret; 8346 8347 if (!perf_event_namespaces_match(event)) 8348 return; 8349 8350 perf_event_header__init_id(&namespaces_event->event_id.header, 8351 &sample, event); 8352 ret = perf_output_begin(&handle, &sample, event, 8353 namespaces_event->event_id.header.size); 8354 if (ret) 8355 goto out; 8356 8357 namespaces_event->event_id.pid = perf_event_pid(event, 8358 namespaces_event->task); 8359 namespaces_event->event_id.tid = perf_event_tid(event, 8360 namespaces_event->task); 8361 8362 perf_output_put(&handle, namespaces_event->event_id); 8363 8364 perf_event__output_id_sample(event, &handle, &sample); 8365 8366 perf_output_end(&handle); 8367 out: 8368 namespaces_event->event_id.header.size = header_size; 8369 } 8370 8371 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8372 struct task_struct *task, 8373 const struct proc_ns_operations *ns_ops) 8374 { 8375 struct path ns_path; 8376 struct inode *ns_inode; 8377 int error; 8378 8379 error = ns_get_path(&ns_path, task, ns_ops); 8380 if (!error) { 8381 ns_inode = ns_path.dentry->d_inode; 8382 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8383 ns_link_info->ino = ns_inode->i_ino; 8384 path_put(&ns_path); 8385 } 8386 } 8387 8388 void perf_event_namespaces(struct task_struct *task) 8389 { 8390 struct perf_namespaces_event namespaces_event; 8391 struct perf_ns_link_info *ns_link_info; 8392 8393 if (!atomic_read(&nr_namespaces_events)) 8394 return; 8395 8396 namespaces_event = (struct perf_namespaces_event){ 8397 .task = task, 8398 .event_id = { 8399 .header = { 8400 .type = PERF_RECORD_NAMESPACES, 8401 .misc = 0, 8402 .size = sizeof(namespaces_event.event_id), 8403 }, 8404 /* .pid */ 8405 /* .tid */ 8406 .nr_namespaces = NR_NAMESPACES, 8407 /* .link_info[NR_NAMESPACES] */ 8408 }, 8409 }; 8410 8411 ns_link_info = namespaces_event.event_id.link_info; 8412 8413 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8414 task, &mntns_operations); 8415 8416 #ifdef CONFIG_USER_NS 8417 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8418 task, &userns_operations); 8419 #endif 8420 #ifdef CONFIG_NET_NS 8421 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8422 task, &netns_operations); 8423 #endif 8424 #ifdef CONFIG_UTS_NS 8425 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8426 task, &utsns_operations); 8427 #endif 8428 #ifdef CONFIG_IPC_NS 8429 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8430 task, &ipcns_operations); 8431 #endif 8432 #ifdef CONFIG_PID_NS 8433 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8434 task, &pidns_operations); 8435 #endif 8436 #ifdef CONFIG_CGROUPS 8437 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8438 task, &cgroupns_operations); 8439 #endif 8440 8441 perf_iterate_sb(perf_event_namespaces_output, 8442 &namespaces_event, 8443 NULL); 8444 } 8445 8446 /* 8447 * cgroup tracking 8448 */ 8449 #ifdef CONFIG_CGROUP_PERF 8450 8451 struct perf_cgroup_event { 8452 char *path; 8453 int path_size; 8454 struct { 8455 struct perf_event_header header; 8456 u64 id; 8457 char path[]; 8458 } event_id; 8459 }; 8460 8461 static int perf_event_cgroup_match(struct perf_event *event) 8462 { 8463 return event->attr.cgroup; 8464 } 8465 8466 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8467 { 8468 struct perf_cgroup_event *cgroup_event = data; 8469 struct perf_output_handle handle; 8470 struct perf_sample_data sample; 8471 u16 header_size = cgroup_event->event_id.header.size; 8472 int ret; 8473 8474 if (!perf_event_cgroup_match(event)) 8475 return; 8476 8477 perf_event_header__init_id(&cgroup_event->event_id.header, 8478 &sample, event); 8479 ret = perf_output_begin(&handle, &sample, event, 8480 cgroup_event->event_id.header.size); 8481 if (ret) 8482 goto out; 8483 8484 perf_output_put(&handle, cgroup_event->event_id); 8485 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8486 8487 perf_event__output_id_sample(event, &handle, &sample); 8488 8489 perf_output_end(&handle); 8490 out: 8491 cgroup_event->event_id.header.size = header_size; 8492 } 8493 8494 static void perf_event_cgroup(struct cgroup *cgrp) 8495 { 8496 struct perf_cgroup_event cgroup_event; 8497 char path_enomem[16] = "//enomem"; 8498 char *pathname; 8499 size_t size; 8500 8501 if (!atomic_read(&nr_cgroup_events)) 8502 return; 8503 8504 cgroup_event = (struct perf_cgroup_event){ 8505 .event_id = { 8506 .header = { 8507 .type = PERF_RECORD_CGROUP, 8508 .misc = 0, 8509 .size = sizeof(cgroup_event.event_id), 8510 }, 8511 .id = cgroup_id(cgrp), 8512 }, 8513 }; 8514 8515 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8516 if (pathname == NULL) { 8517 cgroup_event.path = path_enomem; 8518 } else { 8519 /* just to be sure to have enough space for alignment */ 8520 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8521 cgroup_event.path = pathname; 8522 } 8523 8524 /* 8525 * Since our buffer works in 8 byte units we need to align our string 8526 * size to a multiple of 8. However, we must guarantee the tail end is 8527 * zero'd out to avoid leaking random bits to userspace. 8528 */ 8529 size = strlen(cgroup_event.path) + 1; 8530 while (!IS_ALIGNED(size, sizeof(u64))) 8531 cgroup_event.path[size++] = '\0'; 8532 8533 cgroup_event.event_id.header.size += size; 8534 cgroup_event.path_size = size; 8535 8536 perf_iterate_sb(perf_event_cgroup_output, 8537 &cgroup_event, 8538 NULL); 8539 8540 kfree(pathname); 8541 } 8542 8543 #endif 8544 8545 /* 8546 * mmap tracking 8547 */ 8548 8549 struct perf_mmap_event { 8550 struct vm_area_struct *vma; 8551 8552 const char *file_name; 8553 int file_size; 8554 int maj, min; 8555 u64 ino; 8556 u64 ino_generation; 8557 u32 prot, flags; 8558 u8 build_id[BUILD_ID_SIZE_MAX]; 8559 u32 build_id_size; 8560 8561 struct { 8562 struct perf_event_header header; 8563 8564 u32 pid; 8565 u32 tid; 8566 u64 start; 8567 u64 len; 8568 u64 pgoff; 8569 } event_id; 8570 }; 8571 8572 static int perf_event_mmap_match(struct perf_event *event, 8573 void *data) 8574 { 8575 struct perf_mmap_event *mmap_event = data; 8576 struct vm_area_struct *vma = mmap_event->vma; 8577 int executable = vma->vm_flags & VM_EXEC; 8578 8579 return (!executable && event->attr.mmap_data) || 8580 (executable && (event->attr.mmap || event->attr.mmap2)); 8581 } 8582 8583 static void perf_event_mmap_output(struct perf_event *event, 8584 void *data) 8585 { 8586 struct perf_mmap_event *mmap_event = data; 8587 struct perf_output_handle handle; 8588 struct perf_sample_data sample; 8589 int size = mmap_event->event_id.header.size; 8590 u32 type = mmap_event->event_id.header.type; 8591 bool use_build_id; 8592 int ret; 8593 8594 if (!perf_event_mmap_match(event, data)) 8595 return; 8596 8597 if (event->attr.mmap2) { 8598 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8599 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8600 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8601 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8602 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8603 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8604 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8605 } 8606 8607 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8608 ret = perf_output_begin(&handle, &sample, event, 8609 mmap_event->event_id.header.size); 8610 if (ret) 8611 goto out; 8612 8613 mmap_event->event_id.pid = perf_event_pid(event, current); 8614 mmap_event->event_id.tid = perf_event_tid(event, current); 8615 8616 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8617 8618 if (event->attr.mmap2 && use_build_id) 8619 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8620 8621 perf_output_put(&handle, mmap_event->event_id); 8622 8623 if (event->attr.mmap2) { 8624 if (use_build_id) { 8625 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8626 8627 __output_copy(&handle, size, 4); 8628 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8629 } else { 8630 perf_output_put(&handle, mmap_event->maj); 8631 perf_output_put(&handle, mmap_event->min); 8632 perf_output_put(&handle, mmap_event->ino); 8633 perf_output_put(&handle, mmap_event->ino_generation); 8634 } 8635 perf_output_put(&handle, mmap_event->prot); 8636 perf_output_put(&handle, mmap_event->flags); 8637 } 8638 8639 __output_copy(&handle, mmap_event->file_name, 8640 mmap_event->file_size); 8641 8642 perf_event__output_id_sample(event, &handle, &sample); 8643 8644 perf_output_end(&handle); 8645 out: 8646 mmap_event->event_id.header.size = size; 8647 mmap_event->event_id.header.type = type; 8648 } 8649 8650 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8651 { 8652 struct vm_area_struct *vma = mmap_event->vma; 8653 struct file *file = vma->vm_file; 8654 int maj = 0, min = 0; 8655 u64 ino = 0, gen = 0; 8656 u32 prot = 0, flags = 0; 8657 unsigned int size; 8658 char tmp[16]; 8659 char *buf = NULL; 8660 char *name = NULL; 8661 8662 if (vma->vm_flags & VM_READ) 8663 prot |= PROT_READ; 8664 if (vma->vm_flags & VM_WRITE) 8665 prot |= PROT_WRITE; 8666 if (vma->vm_flags & VM_EXEC) 8667 prot |= PROT_EXEC; 8668 8669 if (vma->vm_flags & VM_MAYSHARE) 8670 flags = MAP_SHARED; 8671 else 8672 flags = MAP_PRIVATE; 8673 8674 if (vma->vm_flags & VM_LOCKED) 8675 flags |= MAP_LOCKED; 8676 if (is_vm_hugetlb_page(vma)) 8677 flags |= MAP_HUGETLB; 8678 8679 if (file) { 8680 struct inode *inode; 8681 dev_t dev; 8682 8683 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8684 if (!buf) { 8685 name = "//enomem"; 8686 goto cpy_name; 8687 } 8688 /* 8689 * d_path() works from the end of the rb backwards, so we 8690 * need to add enough zero bytes after the string to handle 8691 * the 64bit alignment we do later. 8692 */ 8693 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8694 if (IS_ERR(name)) { 8695 name = "//toolong"; 8696 goto cpy_name; 8697 } 8698 inode = file_inode(vma->vm_file); 8699 dev = inode->i_sb->s_dev; 8700 ino = inode->i_ino; 8701 gen = inode->i_generation; 8702 maj = MAJOR(dev); 8703 min = MINOR(dev); 8704 8705 goto got_name; 8706 } else { 8707 if (vma->vm_ops && vma->vm_ops->name) 8708 name = (char *) vma->vm_ops->name(vma); 8709 if (!name) 8710 name = (char *)arch_vma_name(vma); 8711 if (!name) { 8712 if (vma_is_initial_heap(vma)) 8713 name = "[heap]"; 8714 else if (vma_is_initial_stack(vma)) 8715 name = "[stack]"; 8716 else 8717 name = "//anon"; 8718 } 8719 } 8720 8721 cpy_name: 8722 strscpy(tmp, name, sizeof(tmp)); 8723 name = tmp; 8724 got_name: 8725 /* 8726 * Since our buffer works in 8 byte units we need to align our string 8727 * size to a multiple of 8. However, we must guarantee the tail end is 8728 * zero'd out to avoid leaking random bits to userspace. 8729 */ 8730 size = strlen(name)+1; 8731 while (!IS_ALIGNED(size, sizeof(u64))) 8732 name[size++] = '\0'; 8733 8734 mmap_event->file_name = name; 8735 mmap_event->file_size = size; 8736 mmap_event->maj = maj; 8737 mmap_event->min = min; 8738 mmap_event->ino = ino; 8739 mmap_event->ino_generation = gen; 8740 mmap_event->prot = prot; 8741 mmap_event->flags = flags; 8742 8743 if (!(vma->vm_flags & VM_EXEC)) 8744 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8745 8746 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8747 8748 if (atomic_read(&nr_build_id_events)) 8749 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8750 8751 perf_iterate_sb(perf_event_mmap_output, 8752 mmap_event, 8753 NULL); 8754 8755 kfree(buf); 8756 } 8757 8758 /* 8759 * Check whether inode and address range match filter criteria. 8760 */ 8761 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8762 struct file *file, unsigned long offset, 8763 unsigned long size) 8764 { 8765 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8766 if (!filter->path.dentry) 8767 return false; 8768 8769 if (d_inode(filter->path.dentry) != file_inode(file)) 8770 return false; 8771 8772 if (filter->offset > offset + size) 8773 return false; 8774 8775 if (filter->offset + filter->size < offset) 8776 return false; 8777 8778 return true; 8779 } 8780 8781 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8782 struct vm_area_struct *vma, 8783 struct perf_addr_filter_range *fr) 8784 { 8785 unsigned long vma_size = vma->vm_end - vma->vm_start; 8786 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8787 struct file *file = vma->vm_file; 8788 8789 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8790 return false; 8791 8792 if (filter->offset < off) { 8793 fr->start = vma->vm_start; 8794 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8795 } else { 8796 fr->start = vma->vm_start + filter->offset - off; 8797 fr->size = min(vma->vm_end - fr->start, filter->size); 8798 } 8799 8800 return true; 8801 } 8802 8803 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8804 { 8805 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8806 struct vm_area_struct *vma = data; 8807 struct perf_addr_filter *filter; 8808 unsigned int restart = 0, count = 0; 8809 unsigned long flags; 8810 8811 if (!has_addr_filter(event)) 8812 return; 8813 8814 if (!vma->vm_file) 8815 return; 8816 8817 raw_spin_lock_irqsave(&ifh->lock, flags); 8818 list_for_each_entry(filter, &ifh->list, entry) { 8819 if (perf_addr_filter_vma_adjust(filter, vma, 8820 &event->addr_filter_ranges[count])) 8821 restart++; 8822 8823 count++; 8824 } 8825 8826 if (restart) 8827 event->addr_filters_gen++; 8828 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8829 8830 if (restart) 8831 perf_event_stop(event, 1); 8832 } 8833 8834 /* 8835 * Adjust all task's events' filters to the new vma 8836 */ 8837 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8838 { 8839 struct perf_event_context *ctx; 8840 8841 /* 8842 * Data tracing isn't supported yet and as such there is no need 8843 * to keep track of anything that isn't related to executable code: 8844 */ 8845 if (!(vma->vm_flags & VM_EXEC)) 8846 return; 8847 8848 rcu_read_lock(); 8849 ctx = rcu_dereference(current->perf_event_ctxp); 8850 if (ctx) 8851 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8852 rcu_read_unlock(); 8853 } 8854 8855 void perf_event_mmap(struct vm_area_struct *vma) 8856 { 8857 struct perf_mmap_event mmap_event; 8858 8859 if (!atomic_read(&nr_mmap_events)) 8860 return; 8861 8862 mmap_event = (struct perf_mmap_event){ 8863 .vma = vma, 8864 /* .file_name */ 8865 /* .file_size */ 8866 .event_id = { 8867 .header = { 8868 .type = PERF_RECORD_MMAP, 8869 .misc = PERF_RECORD_MISC_USER, 8870 /* .size */ 8871 }, 8872 /* .pid */ 8873 /* .tid */ 8874 .start = vma->vm_start, 8875 .len = vma->vm_end - vma->vm_start, 8876 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8877 }, 8878 /* .maj (attr_mmap2 only) */ 8879 /* .min (attr_mmap2 only) */ 8880 /* .ino (attr_mmap2 only) */ 8881 /* .ino_generation (attr_mmap2 only) */ 8882 /* .prot (attr_mmap2 only) */ 8883 /* .flags (attr_mmap2 only) */ 8884 }; 8885 8886 perf_addr_filters_adjust(vma); 8887 perf_event_mmap_event(&mmap_event); 8888 } 8889 8890 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8891 unsigned long size, u64 flags) 8892 { 8893 struct perf_output_handle handle; 8894 struct perf_sample_data sample; 8895 struct perf_aux_event { 8896 struct perf_event_header header; 8897 u64 offset; 8898 u64 size; 8899 u64 flags; 8900 } rec = { 8901 .header = { 8902 .type = PERF_RECORD_AUX, 8903 .misc = 0, 8904 .size = sizeof(rec), 8905 }, 8906 .offset = head, 8907 .size = size, 8908 .flags = flags, 8909 }; 8910 int ret; 8911 8912 perf_event_header__init_id(&rec.header, &sample, event); 8913 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8914 8915 if (ret) 8916 return; 8917 8918 perf_output_put(&handle, rec); 8919 perf_event__output_id_sample(event, &handle, &sample); 8920 8921 perf_output_end(&handle); 8922 } 8923 8924 /* 8925 * Lost/dropped samples logging 8926 */ 8927 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8928 { 8929 struct perf_output_handle handle; 8930 struct perf_sample_data sample; 8931 int ret; 8932 8933 struct { 8934 struct perf_event_header header; 8935 u64 lost; 8936 } lost_samples_event = { 8937 .header = { 8938 .type = PERF_RECORD_LOST_SAMPLES, 8939 .misc = 0, 8940 .size = sizeof(lost_samples_event), 8941 }, 8942 .lost = lost, 8943 }; 8944 8945 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8946 8947 ret = perf_output_begin(&handle, &sample, event, 8948 lost_samples_event.header.size); 8949 if (ret) 8950 return; 8951 8952 perf_output_put(&handle, lost_samples_event); 8953 perf_event__output_id_sample(event, &handle, &sample); 8954 perf_output_end(&handle); 8955 } 8956 8957 /* 8958 * context_switch tracking 8959 */ 8960 8961 struct perf_switch_event { 8962 struct task_struct *task; 8963 struct task_struct *next_prev; 8964 8965 struct { 8966 struct perf_event_header header; 8967 u32 next_prev_pid; 8968 u32 next_prev_tid; 8969 } event_id; 8970 }; 8971 8972 static int perf_event_switch_match(struct perf_event *event) 8973 { 8974 return event->attr.context_switch; 8975 } 8976 8977 static void perf_event_switch_output(struct perf_event *event, void *data) 8978 { 8979 struct perf_switch_event *se = data; 8980 struct perf_output_handle handle; 8981 struct perf_sample_data sample; 8982 int ret; 8983 8984 if (!perf_event_switch_match(event)) 8985 return; 8986 8987 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8988 if (event->ctx->task) { 8989 se->event_id.header.type = PERF_RECORD_SWITCH; 8990 se->event_id.header.size = sizeof(se->event_id.header); 8991 } else { 8992 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8993 se->event_id.header.size = sizeof(se->event_id); 8994 se->event_id.next_prev_pid = 8995 perf_event_pid(event, se->next_prev); 8996 se->event_id.next_prev_tid = 8997 perf_event_tid(event, se->next_prev); 8998 } 8999 9000 perf_event_header__init_id(&se->event_id.header, &sample, event); 9001 9002 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9003 if (ret) 9004 return; 9005 9006 if (event->ctx->task) 9007 perf_output_put(&handle, se->event_id.header); 9008 else 9009 perf_output_put(&handle, se->event_id); 9010 9011 perf_event__output_id_sample(event, &handle, &sample); 9012 9013 perf_output_end(&handle); 9014 } 9015 9016 static void perf_event_switch(struct task_struct *task, 9017 struct task_struct *next_prev, bool sched_in) 9018 { 9019 struct perf_switch_event switch_event; 9020 9021 /* N.B. caller checks nr_switch_events != 0 */ 9022 9023 switch_event = (struct perf_switch_event){ 9024 .task = task, 9025 .next_prev = next_prev, 9026 .event_id = { 9027 .header = { 9028 /* .type */ 9029 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9030 /* .size */ 9031 }, 9032 /* .next_prev_pid */ 9033 /* .next_prev_tid */ 9034 }, 9035 }; 9036 9037 if (!sched_in && task->on_rq) { 9038 switch_event.event_id.header.misc |= 9039 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9040 } 9041 9042 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9043 } 9044 9045 /* 9046 * IRQ throttle logging 9047 */ 9048 9049 static void perf_log_throttle(struct perf_event *event, int enable) 9050 { 9051 struct perf_output_handle handle; 9052 struct perf_sample_data sample; 9053 int ret; 9054 9055 struct { 9056 struct perf_event_header header; 9057 u64 time; 9058 u64 id; 9059 u64 stream_id; 9060 } throttle_event = { 9061 .header = { 9062 .type = PERF_RECORD_THROTTLE, 9063 .misc = 0, 9064 .size = sizeof(throttle_event), 9065 }, 9066 .time = perf_event_clock(event), 9067 .id = primary_event_id(event), 9068 .stream_id = event->id, 9069 }; 9070 9071 if (enable) 9072 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9073 9074 perf_event_header__init_id(&throttle_event.header, &sample, event); 9075 9076 ret = perf_output_begin(&handle, &sample, event, 9077 throttle_event.header.size); 9078 if (ret) 9079 return; 9080 9081 perf_output_put(&handle, throttle_event); 9082 perf_event__output_id_sample(event, &handle, &sample); 9083 perf_output_end(&handle); 9084 } 9085 9086 /* 9087 * ksymbol register/unregister tracking 9088 */ 9089 9090 struct perf_ksymbol_event { 9091 const char *name; 9092 int name_len; 9093 struct { 9094 struct perf_event_header header; 9095 u64 addr; 9096 u32 len; 9097 u16 ksym_type; 9098 u16 flags; 9099 } event_id; 9100 }; 9101 9102 static int perf_event_ksymbol_match(struct perf_event *event) 9103 { 9104 return event->attr.ksymbol; 9105 } 9106 9107 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9108 { 9109 struct perf_ksymbol_event *ksymbol_event = data; 9110 struct perf_output_handle handle; 9111 struct perf_sample_data sample; 9112 int ret; 9113 9114 if (!perf_event_ksymbol_match(event)) 9115 return; 9116 9117 perf_event_header__init_id(&ksymbol_event->event_id.header, 9118 &sample, event); 9119 ret = perf_output_begin(&handle, &sample, event, 9120 ksymbol_event->event_id.header.size); 9121 if (ret) 9122 return; 9123 9124 perf_output_put(&handle, ksymbol_event->event_id); 9125 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9126 perf_event__output_id_sample(event, &handle, &sample); 9127 9128 perf_output_end(&handle); 9129 } 9130 9131 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9132 const char *sym) 9133 { 9134 struct perf_ksymbol_event ksymbol_event; 9135 char name[KSYM_NAME_LEN]; 9136 u16 flags = 0; 9137 int name_len; 9138 9139 if (!atomic_read(&nr_ksymbol_events)) 9140 return; 9141 9142 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9143 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9144 goto err; 9145 9146 strscpy(name, sym, KSYM_NAME_LEN); 9147 name_len = strlen(name) + 1; 9148 while (!IS_ALIGNED(name_len, sizeof(u64))) 9149 name[name_len++] = '\0'; 9150 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9151 9152 if (unregister) 9153 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9154 9155 ksymbol_event = (struct perf_ksymbol_event){ 9156 .name = name, 9157 .name_len = name_len, 9158 .event_id = { 9159 .header = { 9160 .type = PERF_RECORD_KSYMBOL, 9161 .size = sizeof(ksymbol_event.event_id) + 9162 name_len, 9163 }, 9164 .addr = addr, 9165 .len = len, 9166 .ksym_type = ksym_type, 9167 .flags = flags, 9168 }, 9169 }; 9170 9171 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9172 return; 9173 err: 9174 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9175 } 9176 9177 /* 9178 * bpf program load/unload tracking 9179 */ 9180 9181 struct perf_bpf_event { 9182 struct bpf_prog *prog; 9183 struct { 9184 struct perf_event_header header; 9185 u16 type; 9186 u16 flags; 9187 u32 id; 9188 u8 tag[BPF_TAG_SIZE]; 9189 } event_id; 9190 }; 9191 9192 static int perf_event_bpf_match(struct perf_event *event) 9193 { 9194 return event->attr.bpf_event; 9195 } 9196 9197 static void perf_event_bpf_output(struct perf_event *event, void *data) 9198 { 9199 struct perf_bpf_event *bpf_event = data; 9200 struct perf_output_handle handle; 9201 struct perf_sample_data sample; 9202 int ret; 9203 9204 if (!perf_event_bpf_match(event)) 9205 return; 9206 9207 perf_event_header__init_id(&bpf_event->event_id.header, 9208 &sample, event); 9209 ret = perf_output_begin(&handle, &sample, event, 9210 bpf_event->event_id.header.size); 9211 if (ret) 9212 return; 9213 9214 perf_output_put(&handle, bpf_event->event_id); 9215 perf_event__output_id_sample(event, &handle, &sample); 9216 9217 perf_output_end(&handle); 9218 } 9219 9220 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9221 enum perf_bpf_event_type type) 9222 { 9223 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9224 int i; 9225 9226 if (prog->aux->func_cnt == 0) { 9227 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9228 (u64)(unsigned long)prog->bpf_func, 9229 prog->jited_len, unregister, 9230 prog->aux->ksym.name); 9231 } else { 9232 for (i = 0; i < prog->aux->func_cnt; i++) { 9233 struct bpf_prog *subprog = prog->aux->func[i]; 9234 9235 perf_event_ksymbol( 9236 PERF_RECORD_KSYMBOL_TYPE_BPF, 9237 (u64)(unsigned long)subprog->bpf_func, 9238 subprog->jited_len, unregister, 9239 subprog->aux->ksym.name); 9240 } 9241 } 9242 } 9243 9244 void perf_event_bpf_event(struct bpf_prog *prog, 9245 enum perf_bpf_event_type type, 9246 u16 flags) 9247 { 9248 struct perf_bpf_event bpf_event; 9249 9250 if (type <= PERF_BPF_EVENT_UNKNOWN || 9251 type >= PERF_BPF_EVENT_MAX) 9252 return; 9253 9254 switch (type) { 9255 case PERF_BPF_EVENT_PROG_LOAD: 9256 case PERF_BPF_EVENT_PROG_UNLOAD: 9257 if (atomic_read(&nr_ksymbol_events)) 9258 perf_event_bpf_emit_ksymbols(prog, type); 9259 break; 9260 default: 9261 break; 9262 } 9263 9264 if (!atomic_read(&nr_bpf_events)) 9265 return; 9266 9267 bpf_event = (struct perf_bpf_event){ 9268 .prog = prog, 9269 .event_id = { 9270 .header = { 9271 .type = PERF_RECORD_BPF_EVENT, 9272 .size = sizeof(bpf_event.event_id), 9273 }, 9274 .type = type, 9275 .flags = flags, 9276 .id = prog->aux->id, 9277 }, 9278 }; 9279 9280 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9281 9282 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9283 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9284 } 9285 9286 struct perf_text_poke_event { 9287 const void *old_bytes; 9288 const void *new_bytes; 9289 size_t pad; 9290 u16 old_len; 9291 u16 new_len; 9292 9293 struct { 9294 struct perf_event_header header; 9295 9296 u64 addr; 9297 } event_id; 9298 }; 9299 9300 static int perf_event_text_poke_match(struct perf_event *event) 9301 { 9302 return event->attr.text_poke; 9303 } 9304 9305 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9306 { 9307 struct perf_text_poke_event *text_poke_event = data; 9308 struct perf_output_handle handle; 9309 struct perf_sample_data sample; 9310 u64 padding = 0; 9311 int ret; 9312 9313 if (!perf_event_text_poke_match(event)) 9314 return; 9315 9316 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9317 9318 ret = perf_output_begin(&handle, &sample, event, 9319 text_poke_event->event_id.header.size); 9320 if (ret) 9321 return; 9322 9323 perf_output_put(&handle, text_poke_event->event_id); 9324 perf_output_put(&handle, text_poke_event->old_len); 9325 perf_output_put(&handle, text_poke_event->new_len); 9326 9327 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9328 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9329 9330 if (text_poke_event->pad) 9331 __output_copy(&handle, &padding, text_poke_event->pad); 9332 9333 perf_event__output_id_sample(event, &handle, &sample); 9334 9335 perf_output_end(&handle); 9336 } 9337 9338 void perf_event_text_poke(const void *addr, const void *old_bytes, 9339 size_t old_len, const void *new_bytes, size_t new_len) 9340 { 9341 struct perf_text_poke_event text_poke_event; 9342 size_t tot, pad; 9343 9344 if (!atomic_read(&nr_text_poke_events)) 9345 return; 9346 9347 tot = sizeof(text_poke_event.old_len) + old_len; 9348 tot += sizeof(text_poke_event.new_len) + new_len; 9349 pad = ALIGN(tot, sizeof(u64)) - tot; 9350 9351 text_poke_event = (struct perf_text_poke_event){ 9352 .old_bytes = old_bytes, 9353 .new_bytes = new_bytes, 9354 .pad = pad, 9355 .old_len = old_len, 9356 .new_len = new_len, 9357 .event_id = { 9358 .header = { 9359 .type = PERF_RECORD_TEXT_POKE, 9360 .misc = PERF_RECORD_MISC_KERNEL, 9361 .size = sizeof(text_poke_event.event_id) + tot + pad, 9362 }, 9363 .addr = (unsigned long)addr, 9364 }, 9365 }; 9366 9367 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9368 } 9369 9370 void perf_event_itrace_started(struct perf_event *event) 9371 { 9372 event->attach_state |= PERF_ATTACH_ITRACE; 9373 } 9374 9375 static void perf_log_itrace_start(struct perf_event *event) 9376 { 9377 struct perf_output_handle handle; 9378 struct perf_sample_data sample; 9379 struct perf_aux_event { 9380 struct perf_event_header header; 9381 u32 pid; 9382 u32 tid; 9383 } rec; 9384 int ret; 9385 9386 if (event->parent) 9387 event = event->parent; 9388 9389 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9390 event->attach_state & PERF_ATTACH_ITRACE) 9391 return; 9392 9393 rec.header.type = PERF_RECORD_ITRACE_START; 9394 rec.header.misc = 0; 9395 rec.header.size = sizeof(rec); 9396 rec.pid = perf_event_pid(event, current); 9397 rec.tid = perf_event_tid(event, current); 9398 9399 perf_event_header__init_id(&rec.header, &sample, event); 9400 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9401 9402 if (ret) 9403 return; 9404 9405 perf_output_put(&handle, rec); 9406 perf_event__output_id_sample(event, &handle, &sample); 9407 9408 perf_output_end(&handle); 9409 } 9410 9411 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9412 { 9413 struct perf_output_handle handle; 9414 struct perf_sample_data sample; 9415 struct perf_aux_event { 9416 struct perf_event_header header; 9417 u64 hw_id; 9418 } rec; 9419 int ret; 9420 9421 if (event->parent) 9422 event = event->parent; 9423 9424 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9425 rec.header.misc = 0; 9426 rec.header.size = sizeof(rec); 9427 rec.hw_id = hw_id; 9428 9429 perf_event_header__init_id(&rec.header, &sample, event); 9430 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9431 9432 if (ret) 9433 return; 9434 9435 perf_output_put(&handle, rec); 9436 perf_event__output_id_sample(event, &handle, &sample); 9437 9438 perf_output_end(&handle); 9439 } 9440 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9441 9442 static int 9443 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9444 { 9445 struct hw_perf_event *hwc = &event->hw; 9446 int ret = 0; 9447 u64 seq; 9448 9449 seq = __this_cpu_read(perf_throttled_seq); 9450 if (seq != hwc->interrupts_seq) { 9451 hwc->interrupts_seq = seq; 9452 hwc->interrupts = 1; 9453 } else { 9454 hwc->interrupts++; 9455 if (unlikely(throttle && 9456 hwc->interrupts > max_samples_per_tick)) { 9457 __this_cpu_inc(perf_throttled_count); 9458 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9459 hwc->interrupts = MAX_INTERRUPTS; 9460 perf_log_throttle(event, 0); 9461 ret = 1; 9462 } 9463 } 9464 9465 if (event->attr.freq) { 9466 u64 now = perf_clock(); 9467 s64 delta = now - hwc->freq_time_stamp; 9468 9469 hwc->freq_time_stamp = now; 9470 9471 if (delta > 0 && delta < 2*TICK_NSEC) 9472 perf_adjust_period(event, delta, hwc->last_period, true); 9473 } 9474 9475 return ret; 9476 } 9477 9478 int perf_event_account_interrupt(struct perf_event *event) 9479 { 9480 return __perf_event_account_interrupt(event, 1); 9481 } 9482 9483 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9484 { 9485 /* 9486 * Due to interrupt latency (AKA "skid"), we may enter the 9487 * kernel before taking an overflow, even if the PMU is only 9488 * counting user events. 9489 */ 9490 if (event->attr.exclude_kernel && !user_mode(regs)) 9491 return false; 9492 9493 return true; 9494 } 9495 9496 /* 9497 * Generic event overflow handling, sampling. 9498 */ 9499 9500 static int __perf_event_overflow(struct perf_event *event, 9501 int throttle, struct perf_sample_data *data, 9502 struct pt_regs *regs) 9503 { 9504 int events = atomic_read(&event->event_limit); 9505 int ret = 0; 9506 9507 /* 9508 * Non-sampling counters might still use the PMI to fold short 9509 * hardware counters, ignore those. 9510 */ 9511 if (unlikely(!is_sampling_event(event))) 9512 return 0; 9513 9514 ret = __perf_event_account_interrupt(event, throttle); 9515 9516 /* 9517 * XXX event_limit might not quite work as expected on inherited 9518 * events 9519 */ 9520 9521 event->pending_kill = POLL_IN; 9522 if (events && atomic_dec_and_test(&event->event_limit)) { 9523 ret = 1; 9524 event->pending_kill = POLL_HUP; 9525 perf_event_disable_inatomic(event); 9526 } 9527 9528 if (event->attr.sigtrap) { 9529 /* 9530 * The desired behaviour of sigtrap vs invalid samples is a bit 9531 * tricky; on the one hand, one should not loose the SIGTRAP if 9532 * it is the first event, on the other hand, we should also not 9533 * trigger the WARN or override the data address. 9534 */ 9535 bool valid_sample = sample_is_allowed(event, regs); 9536 unsigned int pending_id = 1; 9537 9538 if (regs) 9539 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9540 if (!event->pending_sigtrap) { 9541 event->pending_sigtrap = pending_id; 9542 local_inc(&event->ctx->nr_pending); 9543 } else if (event->attr.exclude_kernel && valid_sample) { 9544 /* 9545 * Should not be able to return to user space without 9546 * consuming pending_sigtrap; with exceptions: 9547 * 9548 * 1. Where !exclude_kernel, events can overflow again 9549 * in the kernel without returning to user space. 9550 * 9551 * 2. Events that can overflow again before the IRQ- 9552 * work without user space progress (e.g. hrtimer). 9553 * To approximate progress (with false negatives), 9554 * check 32-bit hash of the current IP. 9555 */ 9556 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9557 } 9558 9559 event->pending_addr = 0; 9560 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9561 event->pending_addr = data->addr; 9562 irq_work_queue(&event->pending_irq); 9563 } 9564 9565 READ_ONCE(event->overflow_handler)(event, data, regs); 9566 9567 if (*perf_event_fasync(event) && event->pending_kill) { 9568 event->pending_wakeup = 1; 9569 irq_work_queue(&event->pending_irq); 9570 } 9571 9572 return ret; 9573 } 9574 9575 int perf_event_overflow(struct perf_event *event, 9576 struct perf_sample_data *data, 9577 struct pt_regs *regs) 9578 { 9579 return __perf_event_overflow(event, 1, data, regs); 9580 } 9581 9582 /* 9583 * Generic software event infrastructure 9584 */ 9585 9586 struct swevent_htable { 9587 struct swevent_hlist *swevent_hlist; 9588 struct mutex hlist_mutex; 9589 int hlist_refcount; 9590 9591 /* Recursion avoidance in each contexts */ 9592 int recursion[PERF_NR_CONTEXTS]; 9593 }; 9594 9595 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9596 9597 /* 9598 * We directly increment event->count and keep a second value in 9599 * event->hw.period_left to count intervals. This period event 9600 * is kept in the range [-sample_period, 0] so that we can use the 9601 * sign as trigger. 9602 */ 9603 9604 u64 perf_swevent_set_period(struct perf_event *event) 9605 { 9606 struct hw_perf_event *hwc = &event->hw; 9607 u64 period = hwc->last_period; 9608 u64 nr, offset; 9609 s64 old, val; 9610 9611 hwc->last_period = hwc->sample_period; 9612 9613 old = local64_read(&hwc->period_left); 9614 do { 9615 val = old; 9616 if (val < 0) 9617 return 0; 9618 9619 nr = div64_u64(period + val, period); 9620 offset = nr * period; 9621 val -= offset; 9622 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9623 9624 return nr; 9625 } 9626 9627 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9628 struct perf_sample_data *data, 9629 struct pt_regs *regs) 9630 { 9631 struct hw_perf_event *hwc = &event->hw; 9632 int throttle = 0; 9633 9634 if (!overflow) 9635 overflow = perf_swevent_set_period(event); 9636 9637 if (hwc->interrupts == MAX_INTERRUPTS) 9638 return; 9639 9640 for (; overflow; overflow--) { 9641 if (__perf_event_overflow(event, throttle, 9642 data, regs)) { 9643 /* 9644 * We inhibit the overflow from happening when 9645 * hwc->interrupts == MAX_INTERRUPTS. 9646 */ 9647 break; 9648 } 9649 throttle = 1; 9650 } 9651 } 9652 9653 static void perf_swevent_event(struct perf_event *event, u64 nr, 9654 struct perf_sample_data *data, 9655 struct pt_regs *regs) 9656 { 9657 struct hw_perf_event *hwc = &event->hw; 9658 9659 local64_add(nr, &event->count); 9660 9661 if (!regs) 9662 return; 9663 9664 if (!is_sampling_event(event)) 9665 return; 9666 9667 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9668 data->period = nr; 9669 return perf_swevent_overflow(event, 1, data, regs); 9670 } else 9671 data->period = event->hw.last_period; 9672 9673 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9674 return perf_swevent_overflow(event, 1, data, regs); 9675 9676 if (local64_add_negative(nr, &hwc->period_left)) 9677 return; 9678 9679 perf_swevent_overflow(event, 0, data, regs); 9680 } 9681 9682 static int perf_exclude_event(struct perf_event *event, 9683 struct pt_regs *regs) 9684 { 9685 if (event->hw.state & PERF_HES_STOPPED) 9686 return 1; 9687 9688 if (regs) { 9689 if (event->attr.exclude_user && user_mode(regs)) 9690 return 1; 9691 9692 if (event->attr.exclude_kernel && !user_mode(regs)) 9693 return 1; 9694 } 9695 9696 return 0; 9697 } 9698 9699 static int perf_swevent_match(struct perf_event *event, 9700 enum perf_type_id type, 9701 u32 event_id, 9702 struct perf_sample_data *data, 9703 struct pt_regs *regs) 9704 { 9705 if (event->attr.type != type) 9706 return 0; 9707 9708 if (event->attr.config != event_id) 9709 return 0; 9710 9711 if (perf_exclude_event(event, regs)) 9712 return 0; 9713 9714 return 1; 9715 } 9716 9717 static inline u64 swevent_hash(u64 type, u32 event_id) 9718 { 9719 u64 val = event_id | (type << 32); 9720 9721 return hash_64(val, SWEVENT_HLIST_BITS); 9722 } 9723 9724 static inline struct hlist_head * 9725 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9726 { 9727 u64 hash = swevent_hash(type, event_id); 9728 9729 return &hlist->heads[hash]; 9730 } 9731 9732 /* For the read side: events when they trigger */ 9733 static inline struct hlist_head * 9734 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9735 { 9736 struct swevent_hlist *hlist; 9737 9738 hlist = rcu_dereference(swhash->swevent_hlist); 9739 if (!hlist) 9740 return NULL; 9741 9742 return __find_swevent_head(hlist, type, event_id); 9743 } 9744 9745 /* For the event head insertion and removal in the hlist */ 9746 static inline struct hlist_head * 9747 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9748 { 9749 struct swevent_hlist *hlist; 9750 u32 event_id = event->attr.config; 9751 u64 type = event->attr.type; 9752 9753 /* 9754 * Event scheduling is always serialized against hlist allocation 9755 * and release. Which makes the protected version suitable here. 9756 * The context lock guarantees that. 9757 */ 9758 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9759 lockdep_is_held(&event->ctx->lock)); 9760 if (!hlist) 9761 return NULL; 9762 9763 return __find_swevent_head(hlist, type, event_id); 9764 } 9765 9766 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9767 u64 nr, 9768 struct perf_sample_data *data, 9769 struct pt_regs *regs) 9770 { 9771 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9772 struct perf_event *event; 9773 struct hlist_head *head; 9774 9775 rcu_read_lock(); 9776 head = find_swevent_head_rcu(swhash, type, event_id); 9777 if (!head) 9778 goto end; 9779 9780 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9781 if (perf_swevent_match(event, type, event_id, data, regs)) 9782 perf_swevent_event(event, nr, data, regs); 9783 } 9784 end: 9785 rcu_read_unlock(); 9786 } 9787 9788 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9789 9790 int perf_swevent_get_recursion_context(void) 9791 { 9792 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9793 9794 return get_recursion_context(swhash->recursion); 9795 } 9796 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9797 9798 void perf_swevent_put_recursion_context(int rctx) 9799 { 9800 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9801 9802 put_recursion_context(swhash->recursion, rctx); 9803 } 9804 9805 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9806 { 9807 struct perf_sample_data data; 9808 9809 if (WARN_ON_ONCE(!regs)) 9810 return; 9811 9812 perf_sample_data_init(&data, addr, 0); 9813 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9814 } 9815 9816 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9817 { 9818 int rctx; 9819 9820 preempt_disable_notrace(); 9821 rctx = perf_swevent_get_recursion_context(); 9822 if (unlikely(rctx < 0)) 9823 goto fail; 9824 9825 ___perf_sw_event(event_id, nr, regs, addr); 9826 9827 perf_swevent_put_recursion_context(rctx); 9828 fail: 9829 preempt_enable_notrace(); 9830 } 9831 9832 static void perf_swevent_read(struct perf_event *event) 9833 { 9834 } 9835 9836 static int perf_swevent_add(struct perf_event *event, int flags) 9837 { 9838 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9839 struct hw_perf_event *hwc = &event->hw; 9840 struct hlist_head *head; 9841 9842 if (is_sampling_event(event)) { 9843 hwc->last_period = hwc->sample_period; 9844 perf_swevent_set_period(event); 9845 } 9846 9847 hwc->state = !(flags & PERF_EF_START); 9848 9849 head = find_swevent_head(swhash, event); 9850 if (WARN_ON_ONCE(!head)) 9851 return -EINVAL; 9852 9853 hlist_add_head_rcu(&event->hlist_entry, head); 9854 perf_event_update_userpage(event); 9855 9856 return 0; 9857 } 9858 9859 static void perf_swevent_del(struct perf_event *event, int flags) 9860 { 9861 hlist_del_rcu(&event->hlist_entry); 9862 } 9863 9864 static void perf_swevent_start(struct perf_event *event, int flags) 9865 { 9866 event->hw.state = 0; 9867 } 9868 9869 static void perf_swevent_stop(struct perf_event *event, int flags) 9870 { 9871 event->hw.state = PERF_HES_STOPPED; 9872 } 9873 9874 /* Deref the hlist from the update side */ 9875 static inline struct swevent_hlist * 9876 swevent_hlist_deref(struct swevent_htable *swhash) 9877 { 9878 return rcu_dereference_protected(swhash->swevent_hlist, 9879 lockdep_is_held(&swhash->hlist_mutex)); 9880 } 9881 9882 static void swevent_hlist_release(struct swevent_htable *swhash) 9883 { 9884 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9885 9886 if (!hlist) 9887 return; 9888 9889 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9890 kfree_rcu(hlist, rcu_head); 9891 } 9892 9893 static void swevent_hlist_put_cpu(int cpu) 9894 { 9895 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9896 9897 mutex_lock(&swhash->hlist_mutex); 9898 9899 if (!--swhash->hlist_refcount) 9900 swevent_hlist_release(swhash); 9901 9902 mutex_unlock(&swhash->hlist_mutex); 9903 } 9904 9905 static void swevent_hlist_put(void) 9906 { 9907 int cpu; 9908 9909 for_each_possible_cpu(cpu) 9910 swevent_hlist_put_cpu(cpu); 9911 } 9912 9913 static int swevent_hlist_get_cpu(int cpu) 9914 { 9915 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9916 int err = 0; 9917 9918 mutex_lock(&swhash->hlist_mutex); 9919 if (!swevent_hlist_deref(swhash) && 9920 cpumask_test_cpu(cpu, perf_online_mask)) { 9921 struct swevent_hlist *hlist; 9922 9923 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9924 if (!hlist) { 9925 err = -ENOMEM; 9926 goto exit; 9927 } 9928 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9929 } 9930 swhash->hlist_refcount++; 9931 exit: 9932 mutex_unlock(&swhash->hlist_mutex); 9933 9934 return err; 9935 } 9936 9937 static int swevent_hlist_get(void) 9938 { 9939 int err, cpu, failed_cpu; 9940 9941 mutex_lock(&pmus_lock); 9942 for_each_possible_cpu(cpu) { 9943 err = swevent_hlist_get_cpu(cpu); 9944 if (err) { 9945 failed_cpu = cpu; 9946 goto fail; 9947 } 9948 } 9949 mutex_unlock(&pmus_lock); 9950 return 0; 9951 fail: 9952 for_each_possible_cpu(cpu) { 9953 if (cpu == failed_cpu) 9954 break; 9955 swevent_hlist_put_cpu(cpu); 9956 } 9957 mutex_unlock(&pmus_lock); 9958 return err; 9959 } 9960 9961 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9962 9963 static void sw_perf_event_destroy(struct perf_event *event) 9964 { 9965 u64 event_id = event->attr.config; 9966 9967 WARN_ON(event->parent); 9968 9969 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9970 swevent_hlist_put(); 9971 } 9972 9973 static struct pmu perf_cpu_clock; /* fwd declaration */ 9974 static struct pmu perf_task_clock; 9975 9976 static int perf_swevent_init(struct perf_event *event) 9977 { 9978 u64 event_id = event->attr.config; 9979 9980 if (event->attr.type != PERF_TYPE_SOFTWARE) 9981 return -ENOENT; 9982 9983 /* 9984 * no branch sampling for software events 9985 */ 9986 if (has_branch_stack(event)) 9987 return -EOPNOTSUPP; 9988 9989 switch (event_id) { 9990 case PERF_COUNT_SW_CPU_CLOCK: 9991 event->attr.type = perf_cpu_clock.type; 9992 return -ENOENT; 9993 case PERF_COUNT_SW_TASK_CLOCK: 9994 event->attr.type = perf_task_clock.type; 9995 return -ENOENT; 9996 9997 default: 9998 break; 9999 } 10000 10001 if (event_id >= PERF_COUNT_SW_MAX) 10002 return -ENOENT; 10003 10004 if (!event->parent) { 10005 int err; 10006 10007 err = swevent_hlist_get(); 10008 if (err) 10009 return err; 10010 10011 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10012 event->destroy = sw_perf_event_destroy; 10013 } 10014 10015 return 0; 10016 } 10017 10018 static struct pmu perf_swevent = { 10019 .task_ctx_nr = perf_sw_context, 10020 10021 .capabilities = PERF_PMU_CAP_NO_NMI, 10022 10023 .event_init = perf_swevent_init, 10024 .add = perf_swevent_add, 10025 .del = perf_swevent_del, 10026 .start = perf_swevent_start, 10027 .stop = perf_swevent_stop, 10028 .read = perf_swevent_read, 10029 }; 10030 10031 #ifdef CONFIG_EVENT_TRACING 10032 10033 static void tp_perf_event_destroy(struct perf_event *event) 10034 { 10035 perf_trace_destroy(event); 10036 } 10037 10038 static int perf_tp_event_init(struct perf_event *event) 10039 { 10040 int err; 10041 10042 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10043 return -ENOENT; 10044 10045 /* 10046 * no branch sampling for tracepoint events 10047 */ 10048 if (has_branch_stack(event)) 10049 return -EOPNOTSUPP; 10050 10051 err = perf_trace_init(event); 10052 if (err) 10053 return err; 10054 10055 event->destroy = tp_perf_event_destroy; 10056 10057 return 0; 10058 } 10059 10060 static struct pmu perf_tracepoint = { 10061 .task_ctx_nr = perf_sw_context, 10062 10063 .event_init = perf_tp_event_init, 10064 .add = perf_trace_add, 10065 .del = perf_trace_del, 10066 .start = perf_swevent_start, 10067 .stop = perf_swevent_stop, 10068 .read = perf_swevent_read, 10069 }; 10070 10071 static int perf_tp_filter_match(struct perf_event *event, 10072 struct perf_sample_data *data) 10073 { 10074 void *record = data->raw->frag.data; 10075 10076 /* only top level events have filters set */ 10077 if (event->parent) 10078 event = event->parent; 10079 10080 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10081 return 1; 10082 return 0; 10083 } 10084 10085 static int perf_tp_event_match(struct perf_event *event, 10086 struct perf_sample_data *data, 10087 struct pt_regs *regs) 10088 { 10089 if (event->hw.state & PERF_HES_STOPPED) 10090 return 0; 10091 /* 10092 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10093 */ 10094 if (event->attr.exclude_kernel && !user_mode(regs)) 10095 return 0; 10096 10097 if (!perf_tp_filter_match(event, data)) 10098 return 0; 10099 10100 return 1; 10101 } 10102 10103 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10104 struct trace_event_call *call, u64 count, 10105 struct pt_regs *regs, struct hlist_head *head, 10106 struct task_struct *task) 10107 { 10108 if (bpf_prog_array_valid(call)) { 10109 *(struct pt_regs **)raw_data = regs; 10110 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10111 perf_swevent_put_recursion_context(rctx); 10112 return; 10113 } 10114 } 10115 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10116 rctx, task); 10117 } 10118 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10119 10120 static void __perf_tp_event_target_task(u64 count, void *record, 10121 struct pt_regs *regs, 10122 struct perf_sample_data *data, 10123 struct perf_event *event) 10124 { 10125 struct trace_entry *entry = record; 10126 10127 if (event->attr.config != entry->type) 10128 return; 10129 /* Cannot deliver synchronous signal to other task. */ 10130 if (event->attr.sigtrap) 10131 return; 10132 if (perf_tp_event_match(event, data, regs)) 10133 perf_swevent_event(event, count, data, regs); 10134 } 10135 10136 static void perf_tp_event_target_task(u64 count, void *record, 10137 struct pt_regs *regs, 10138 struct perf_sample_data *data, 10139 struct perf_event_context *ctx) 10140 { 10141 unsigned int cpu = smp_processor_id(); 10142 struct pmu *pmu = &perf_tracepoint; 10143 struct perf_event *event, *sibling; 10144 10145 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10146 __perf_tp_event_target_task(count, record, regs, data, event); 10147 for_each_sibling_event(sibling, event) 10148 __perf_tp_event_target_task(count, record, regs, data, sibling); 10149 } 10150 10151 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10152 __perf_tp_event_target_task(count, record, regs, data, event); 10153 for_each_sibling_event(sibling, event) 10154 __perf_tp_event_target_task(count, record, regs, data, sibling); 10155 } 10156 } 10157 10158 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10159 struct pt_regs *regs, struct hlist_head *head, int rctx, 10160 struct task_struct *task) 10161 { 10162 struct perf_sample_data data; 10163 struct perf_event *event; 10164 10165 struct perf_raw_record raw = { 10166 .frag = { 10167 .size = entry_size, 10168 .data = record, 10169 }, 10170 }; 10171 10172 perf_sample_data_init(&data, 0, 0); 10173 perf_sample_save_raw_data(&data, &raw); 10174 10175 perf_trace_buf_update(record, event_type); 10176 10177 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10178 if (perf_tp_event_match(event, &data, regs)) { 10179 perf_swevent_event(event, count, &data, regs); 10180 10181 /* 10182 * Here use the same on-stack perf_sample_data, 10183 * some members in data are event-specific and 10184 * need to be re-computed for different sweveents. 10185 * Re-initialize data->sample_flags safely to avoid 10186 * the problem that next event skips preparing data 10187 * because data->sample_flags is set. 10188 */ 10189 perf_sample_data_init(&data, 0, 0); 10190 perf_sample_save_raw_data(&data, &raw); 10191 } 10192 } 10193 10194 /* 10195 * If we got specified a target task, also iterate its context and 10196 * deliver this event there too. 10197 */ 10198 if (task && task != current) { 10199 struct perf_event_context *ctx; 10200 10201 rcu_read_lock(); 10202 ctx = rcu_dereference(task->perf_event_ctxp); 10203 if (!ctx) 10204 goto unlock; 10205 10206 raw_spin_lock(&ctx->lock); 10207 perf_tp_event_target_task(count, record, regs, &data, ctx); 10208 raw_spin_unlock(&ctx->lock); 10209 unlock: 10210 rcu_read_unlock(); 10211 } 10212 10213 perf_swevent_put_recursion_context(rctx); 10214 } 10215 EXPORT_SYMBOL_GPL(perf_tp_event); 10216 10217 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10218 /* 10219 * Flags in config, used by dynamic PMU kprobe and uprobe 10220 * The flags should match following PMU_FORMAT_ATTR(). 10221 * 10222 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10223 * if not set, create kprobe/uprobe 10224 * 10225 * The following values specify a reference counter (or semaphore in the 10226 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10227 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10228 * 10229 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10230 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10231 */ 10232 enum perf_probe_config { 10233 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10234 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10235 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10236 }; 10237 10238 PMU_FORMAT_ATTR(retprobe, "config:0"); 10239 #endif 10240 10241 #ifdef CONFIG_KPROBE_EVENTS 10242 static struct attribute *kprobe_attrs[] = { 10243 &format_attr_retprobe.attr, 10244 NULL, 10245 }; 10246 10247 static struct attribute_group kprobe_format_group = { 10248 .name = "format", 10249 .attrs = kprobe_attrs, 10250 }; 10251 10252 static const struct attribute_group *kprobe_attr_groups[] = { 10253 &kprobe_format_group, 10254 NULL, 10255 }; 10256 10257 static int perf_kprobe_event_init(struct perf_event *event); 10258 static struct pmu perf_kprobe = { 10259 .task_ctx_nr = perf_sw_context, 10260 .event_init = perf_kprobe_event_init, 10261 .add = perf_trace_add, 10262 .del = perf_trace_del, 10263 .start = perf_swevent_start, 10264 .stop = perf_swevent_stop, 10265 .read = perf_swevent_read, 10266 .attr_groups = kprobe_attr_groups, 10267 }; 10268 10269 static int perf_kprobe_event_init(struct perf_event *event) 10270 { 10271 int err; 10272 bool is_retprobe; 10273 10274 if (event->attr.type != perf_kprobe.type) 10275 return -ENOENT; 10276 10277 if (!perfmon_capable()) 10278 return -EACCES; 10279 10280 /* 10281 * no branch sampling for probe events 10282 */ 10283 if (has_branch_stack(event)) 10284 return -EOPNOTSUPP; 10285 10286 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10287 err = perf_kprobe_init(event, is_retprobe); 10288 if (err) 10289 return err; 10290 10291 event->destroy = perf_kprobe_destroy; 10292 10293 return 0; 10294 } 10295 #endif /* CONFIG_KPROBE_EVENTS */ 10296 10297 #ifdef CONFIG_UPROBE_EVENTS 10298 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10299 10300 static struct attribute *uprobe_attrs[] = { 10301 &format_attr_retprobe.attr, 10302 &format_attr_ref_ctr_offset.attr, 10303 NULL, 10304 }; 10305 10306 static struct attribute_group uprobe_format_group = { 10307 .name = "format", 10308 .attrs = uprobe_attrs, 10309 }; 10310 10311 static const struct attribute_group *uprobe_attr_groups[] = { 10312 &uprobe_format_group, 10313 NULL, 10314 }; 10315 10316 static int perf_uprobe_event_init(struct perf_event *event); 10317 static struct pmu perf_uprobe = { 10318 .task_ctx_nr = perf_sw_context, 10319 .event_init = perf_uprobe_event_init, 10320 .add = perf_trace_add, 10321 .del = perf_trace_del, 10322 .start = perf_swevent_start, 10323 .stop = perf_swevent_stop, 10324 .read = perf_swevent_read, 10325 .attr_groups = uprobe_attr_groups, 10326 }; 10327 10328 static int perf_uprobe_event_init(struct perf_event *event) 10329 { 10330 int err; 10331 unsigned long ref_ctr_offset; 10332 bool is_retprobe; 10333 10334 if (event->attr.type != perf_uprobe.type) 10335 return -ENOENT; 10336 10337 if (!perfmon_capable()) 10338 return -EACCES; 10339 10340 /* 10341 * no branch sampling for probe events 10342 */ 10343 if (has_branch_stack(event)) 10344 return -EOPNOTSUPP; 10345 10346 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10347 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10348 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10349 if (err) 10350 return err; 10351 10352 event->destroy = perf_uprobe_destroy; 10353 10354 return 0; 10355 } 10356 #endif /* CONFIG_UPROBE_EVENTS */ 10357 10358 static inline void perf_tp_register(void) 10359 { 10360 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10361 #ifdef CONFIG_KPROBE_EVENTS 10362 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10363 #endif 10364 #ifdef CONFIG_UPROBE_EVENTS 10365 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10366 #endif 10367 } 10368 10369 static void perf_event_free_filter(struct perf_event *event) 10370 { 10371 ftrace_profile_free_filter(event); 10372 } 10373 10374 #ifdef CONFIG_BPF_SYSCALL 10375 static void bpf_overflow_handler(struct perf_event *event, 10376 struct perf_sample_data *data, 10377 struct pt_regs *regs) 10378 { 10379 struct bpf_perf_event_data_kern ctx = { 10380 .data = data, 10381 .event = event, 10382 }; 10383 struct bpf_prog *prog; 10384 int ret = 0; 10385 10386 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10387 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10388 goto out; 10389 rcu_read_lock(); 10390 prog = READ_ONCE(event->prog); 10391 if (prog) { 10392 perf_prepare_sample(data, event, regs); 10393 ret = bpf_prog_run(prog, &ctx); 10394 } 10395 rcu_read_unlock(); 10396 out: 10397 __this_cpu_dec(bpf_prog_active); 10398 if (!ret) 10399 return; 10400 10401 event->orig_overflow_handler(event, data, regs); 10402 } 10403 10404 static int perf_event_set_bpf_handler(struct perf_event *event, 10405 struct bpf_prog *prog, 10406 u64 bpf_cookie) 10407 { 10408 if (event->overflow_handler_context) 10409 /* hw breakpoint or kernel counter */ 10410 return -EINVAL; 10411 10412 if (event->prog) 10413 return -EEXIST; 10414 10415 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10416 return -EINVAL; 10417 10418 if (event->attr.precise_ip && 10419 prog->call_get_stack && 10420 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10421 event->attr.exclude_callchain_kernel || 10422 event->attr.exclude_callchain_user)) { 10423 /* 10424 * On perf_event with precise_ip, calling bpf_get_stack() 10425 * may trigger unwinder warnings and occasional crashes. 10426 * bpf_get_[stack|stackid] works around this issue by using 10427 * callchain attached to perf_sample_data. If the 10428 * perf_event does not full (kernel and user) callchain 10429 * attached to perf_sample_data, do not allow attaching BPF 10430 * program that calls bpf_get_[stack|stackid]. 10431 */ 10432 return -EPROTO; 10433 } 10434 10435 event->prog = prog; 10436 event->bpf_cookie = bpf_cookie; 10437 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10438 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10439 return 0; 10440 } 10441 10442 static void perf_event_free_bpf_handler(struct perf_event *event) 10443 { 10444 struct bpf_prog *prog = event->prog; 10445 10446 if (!prog) 10447 return; 10448 10449 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10450 event->prog = NULL; 10451 bpf_prog_put(prog); 10452 } 10453 #else 10454 static int perf_event_set_bpf_handler(struct perf_event *event, 10455 struct bpf_prog *prog, 10456 u64 bpf_cookie) 10457 { 10458 return -EOPNOTSUPP; 10459 } 10460 static void perf_event_free_bpf_handler(struct perf_event *event) 10461 { 10462 } 10463 #endif 10464 10465 /* 10466 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10467 * with perf_event_open() 10468 */ 10469 static inline bool perf_event_is_tracing(struct perf_event *event) 10470 { 10471 if (event->pmu == &perf_tracepoint) 10472 return true; 10473 #ifdef CONFIG_KPROBE_EVENTS 10474 if (event->pmu == &perf_kprobe) 10475 return true; 10476 #endif 10477 #ifdef CONFIG_UPROBE_EVENTS 10478 if (event->pmu == &perf_uprobe) 10479 return true; 10480 #endif 10481 return false; 10482 } 10483 10484 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10485 u64 bpf_cookie) 10486 { 10487 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10488 10489 if (!perf_event_is_tracing(event)) 10490 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10491 10492 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10493 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10494 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10495 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10496 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10497 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10498 return -EINVAL; 10499 10500 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10501 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10502 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10503 return -EINVAL; 10504 10505 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10506 /* only uprobe programs are allowed to be sleepable */ 10507 return -EINVAL; 10508 10509 /* Kprobe override only works for kprobes, not uprobes. */ 10510 if (prog->kprobe_override && !is_kprobe) 10511 return -EINVAL; 10512 10513 if (is_tracepoint || is_syscall_tp) { 10514 int off = trace_event_get_offsets(event->tp_event); 10515 10516 if (prog->aux->max_ctx_offset > off) 10517 return -EACCES; 10518 } 10519 10520 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10521 } 10522 10523 void perf_event_free_bpf_prog(struct perf_event *event) 10524 { 10525 if (!perf_event_is_tracing(event)) { 10526 perf_event_free_bpf_handler(event); 10527 return; 10528 } 10529 perf_event_detach_bpf_prog(event); 10530 } 10531 10532 #else 10533 10534 static inline void perf_tp_register(void) 10535 { 10536 } 10537 10538 static void perf_event_free_filter(struct perf_event *event) 10539 { 10540 } 10541 10542 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10543 u64 bpf_cookie) 10544 { 10545 return -ENOENT; 10546 } 10547 10548 void perf_event_free_bpf_prog(struct perf_event *event) 10549 { 10550 } 10551 #endif /* CONFIG_EVENT_TRACING */ 10552 10553 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10554 void perf_bp_event(struct perf_event *bp, void *data) 10555 { 10556 struct perf_sample_data sample; 10557 struct pt_regs *regs = data; 10558 10559 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10560 10561 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10562 perf_swevent_event(bp, 1, &sample, regs); 10563 } 10564 #endif 10565 10566 /* 10567 * Allocate a new address filter 10568 */ 10569 static struct perf_addr_filter * 10570 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10571 { 10572 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10573 struct perf_addr_filter *filter; 10574 10575 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10576 if (!filter) 10577 return NULL; 10578 10579 INIT_LIST_HEAD(&filter->entry); 10580 list_add_tail(&filter->entry, filters); 10581 10582 return filter; 10583 } 10584 10585 static void free_filters_list(struct list_head *filters) 10586 { 10587 struct perf_addr_filter *filter, *iter; 10588 10589 list_for_each_entry_safe(filter, iter, filters, entry) { 10590 path_put(&filter->path); 10591 list_del(&filter->entry); 10592 kfree(filter); 10593 } 10594 } 10595 10596 /* 10597 * Free existing address filters and optionally install new ones 10598 */ 10599 static void perf_addr_filters_splice(struct perf_event *event, 10600 struct list_head *head) 10601 { 10602 unsigned long flags; 10603 LIST_HEAD(list); 10604 10605 if (!has_addr_filter(event)) 10606 return; 10607 10608 /* don't bother with children, they don't have their own filters */ 10609 if (event->parent) 10610 return; 10611 10612 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10613 10614 list_splice_init(&event->addr_filters.list, &list); 10615 if (head) 10616 list_splice(head, &event->addr_filters.list); 10617 10618 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10619 10620 free_filters_list(&list); 10621 } 10622 10623 /* 10624 * Scan through mm's vmas and see if one of them matches the 10625 * @filter; if so, adjust filter's address range. 10626 * Called with mm::mmap_lock down for reading. 10627 */ 10628 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10629 struct mm_struct *mm, 10630 struct perf_addr_filter_range *fr) 10631 { 10632 struct vm_area_struct *vma; 10633 VMA_ITERATOR(vmi, mm, 0); 10634 10635 for_each_vma(vmi, vma) { 10636 if (!vma->vm_file) 10637 continue; 10638 10639 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10640 return; 10641 } 10642 } 10643 10644 /* 10645 * Update event's address range filters based on the 10646 * task's existing mappings, if any. 10647 */ 10648 static void perf_event_addr_filters_apply(struct perf_event *event) 10649 { 10650 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10651 struct task_struct *task = READ_ONCE(event->ctx->task); 10652 struct perf_addr_filter *filter; 10653 struct mm_struct *mm = NULL; 10654 unsigned int count = 0; 10655 unsigned long flags; 10656 10657 /* 10658 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10659 * will stop on the parent's child_mutex that our caller is also holding 10660 */ 10661 if (task == TASK_TOMBSTONE) 10662 return; 10663 10664 if (ifh->nr_file_filters) { 10665 mm = get_task_mm(task); 10666 if (!mm) 10667 goto restart; 10668 10669 mmap_read_lock(mm); 10670 } 10671 10672 raw_spin_lock_irqsave(&ifh->lock, flags); 10673 list_for_each_entry(filter, &ifh->list, entry) { 10674 if (filter->path.dentry) { 10675 /* 10676 * Adjust base offset if the filter is associated to a 10677 * binary that needs to be mapped: 10678 */ 10679 event->addr_filter_ranges[count].start = 0; 10680 event->addr_filter_ranges[count].size = 0; 10681 10682 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10683 } else { 10684 event->addr_filter_ranges[count].start = filter->offset; 10685 event->addr_filter_ranges[count].size = filter->size; 10686 } 10687 10688 count++; 10689 } 10690 10691 event->addr_filters_gen++; 10692 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10693 10694 if (ifh->nr_file_filters) { 10695 mmap_read_unlock(mm); 10696 10697 mmput(mm); 10698 } 10699 10700 restart: 10701 perf_event_stop(event, 1); 10702 } 10703 10704 /* 10705 * Address range filtering: limiting the data to certain 10706 * instruction address ranges. Filters are ioctl()ed to us from 10707 * userspace as ascii strings. 10708 * 10709 * Filter string format: 10710 * 10711 * ACTION RANGE_SPEC 10712 * where ACTION is one of the 10713 * * "filter": limit the trace to this region 10714 * * "start": start tracing from this address 10715 * * "stop": stop tracing at this address/region; 10716 * RANGE_SPEC is 10717 * * for kernel addresses: <start address>[/<size>] 10718 * * for object files: <start address>[/<size>]@</path/to/object/file> 10719 * 10720 * if <size> is not specified or is zero, the range is treated as a single 10721 * address; not valid for ACTION=="filter". 10722 */ 10723 enum { 10724 IF_ACT_NONE = -1, 10725 IF_ACT_FILTER, 10726 IF_ACT_START, 10727 IF_ACT_STOP, 10728 IF_SRC_FILE, 10729 IF_SRC_KERNEL, 10730 IF_SRC_FILEADDR, 10731 IF_SRC_KERNELADDR, 10732 }; 10733 10734 enum { 10735 IF_STATE_ACTION = 0, 10736 IF_STATE_SOURCE, 10737 IF_STATE_END, 10738 }; 10739 10740 static const match_table_t if_tokens = { 10741 { IF_ACT_FILTER, "filter" }, 10742 { IF_ACT_START, "start" }, 10743 { IF_ACT_STOP, "stop" }, 10744 { IF_SRC_FILE, "%u/%u@%s" }, 10745 { IF_SRC_KERNEL, "%u/%u" }, 10746 { IF_SRC_FILEADDR, "%u@%s" }, 10747 { IF_SRC_KERNELADDR, "%u" }, 10748 { IF_ACT_NONE, NULL }, 10749 }; 10750 10751 /* 10752 * Address filter string parser 10753 */ 10754 static int 10755 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10756 struct list_head *filters) 10757 { 10758 struct perf_addr_filter *filter = NULL; 10759 char *start, *orig, *filename = NULL; 10760 substring_t args[MAX_OPT_ARGS]; 10761 int state = IF_STATE_ACTION, token; 10762 unsigned int kernel = 0; 10763 int ret = -EINVAL; 10764 10765 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10766 if (!fstr) 10767 return -ENOMEM; 10768 10769 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10770 static const enum perf_addr_filter_action_t actions[] = { 10771 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10772 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10773 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10774 }; 10775 ret = -EINVAL; 10776 10777 if (!*start) 10778 continue; 10779 10780 /* filter definition begins */ 10781 if (state == IF_STATE_ACTION) { 10782 filter = perf_addr_filter_new(event, filters); 10783 if (!filter) 10784 goto fail; 10785 } 10786 10787 token = match_token(start, if_tokens, args); 10788 switch (token) { 10789 case IF_ACT_FILTER: 10790 case IF_ACT_START: 10791 case IF_ACT_STOP: 10792 if (state != IF_STATE_ACTION) 10793 goto fail; 10794 10795 filter->action = actions[token]; 10796 state = IF_STATE_SOURCE; 10797 break; 10798 10799 case IF_SRC_KERNELADDR: 10800 case IF_SRC_KERNEL: 10801 kernel = 1; 10802 fallthrough; 10803 10804 case IF_SRC_FILEADDR: 10805 case IF_SRC_FILE: 10806 if (state != IF_STATE_SOURCE) 10807 goto fail; 10808 10809 *args[0].to = 0; 10810 ret = kstrtoul(args[0].from, 0, &filter->offset); 10811 if (ret) 10812 goto fail; 10813 10814 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10815 *args[1].to = 0; 10816 ret = kstrtoul(args[1].from, 0, &filter->size); 10817 if (ret) 10818 goto fail; 10819 } 10820 10821 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10822 int fpos = token == IF_SRC_FILE ? 2 : 1; 10823 10824 kfree(filename); 10825 filename = match_strdup(&args[fpos]); 10826 if (!filename) { 10827 ret = -ENOMEM; 10828 goto fail; 10829 } 10830 } 10831 10832 state = IF_STATE_END; 10833 break; 10834 10835 default: 10836 goto fail; 10837 } 10838 10839 /* 10840 * Filter definition is fully parsed, validate and install it. 10841 * Make sure that it doesn't contradict itself or the event's 10842 * attribute. 10843 */ 10844 if (state == IF_STATE_END) { 10845 ret = -EINVAL; 10846 10847 /* 10848 * ACTION "filter" must have a non-zero length region 10849 * specified. 10850 */ 10851 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10852 !filter->size) 10853 goto fail; 10854 10855 if (!kernel) { 10856 if (!filename) 10857 goto fail; 10858 10859 /* 10860 * For now, we only support file-based filters 10861 * in per-task events; doing so for CPU-wide 10862 * events requires additional context switching 10863 * trickery, since same object code will be 10864 * mapped at different virtual addresses in 10865 * different processes. 10866 */ 10867 ret = -EOPNOTSUPP; 10868 if (!event->ctx->task) 10869 goto fail; 10870 10871 /* look up the path and grab its inode */ 10872 ret = kern_path(filename, LOOKUP_FOLLOW, 10873 &filter->path); 10874 if (ret) 10875 goto fail; 10876 10877 ret = -EINVAL; 10878 if (!filter->path.dentry || 10879 !S_ISREG(d_inode(filter->path.dentry) 10880 ->i_mode)) 10881 goto fail; 10882 10883 event->addr_filters.nr_file_filters++; 10884 } 10885 10886 /* ready to consume more filters */ 10887 kfree(filename); 10888 filename = NULL; 10889 state = IF_STATE_ACTION; 10890 filter = NULL; 10891 kernel = 0; 10892 } 10893 } 10894 10895 if (state != IF_STATE_ACTION) 10896 goto fail; 10897 10898 kfree(filename); 10899 kfree(orig); 10900 10901 return 0; 10902 10903 fail: 10904 kfree(filename); 10905 free_filters_list(filters); 10906 kfree(orig); 10907 10908 return ret; 10909 } 10910 10911 static int 10912 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10913 { 10914 LIST_HEAD(filters); 10915 int ret; 10916 10917 /* 10918 * Since this is called in perf_ioctl() path, we're already holding 10919 * ctx::mutex. 10920 */ 10921 lockdep_assert_held(&event->ctx->mutex); 10922 10923 if (WARN_ON_ONCE(event->parent)) 10924 return -EINVAL; 10925 10926 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10927 if (ret) 10928 goto fail_clear_files; 10929 10930 ret = event->pmu->addr_filters_validate(&filters); 10931 if (ret) 10932 goto fail_free_filters; 10933 10934 /* remove existing filters, if any */ 10935 perf_addr_filters_splice(event, &filters); 10936 10937 /* install new filters */ 10938 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10939 10940 return ret; 10941 10942 fail_free_filters: 10943 free_filters_list(&filters); 10944 10945 fail_clear_files: 10946 event->addr_filters.nr_file_filters = 0; 10947 10948 return ret; 10949 } 10950 10951 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10952 { 10953 int ret = -EINVAL; 10954 char *filter_str; 10955 10956 filter_str = strndup_user(arg, PAGE_SIZE); 10957 if (IS_ERR(filter_str)) 10958 return PTR_ERR(filter_str); 10959 10960 #ifdef CONFIG_EVENT_TRACING 10961 if (perf_event_is_tracing(event)) { 10962 struct perf_event_context *ctx = event->ctx; 10963 10964 /* 10965 * Beware, here be dragons!! 10966 * 10967 * the tracepoint muck will deadlock against ctx->mutex, but 10968 * the tracepoint stuff does not actually need it. So 10969 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10970 * already have a reference on ctx. 10971 * 10972 * This can result in event getting moved to a different ctx, 10973 * but that does not affect the tracepoint state. 10974 */ 10975 mutex_unlock(&ctx->mutex); 10976 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10977 mutex_lock(&ctx->mutex); 10978 } else 10979 #endif 10980 if (has_addr_filter(event)) 10981 ret = perf_event_set_addr_filter(event, filter_str); 10982 10983 kfree(filter_str); 10984 return ret; 10985 } 10986 10987 /* 10988 * hrtimer based swevent callback 10989 */ 10990 10991 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10992 { 10993 enum hrtimer_restart ret = HRTIMER_RESTART; 10994 struct perf_sample_data data; 10995 struct pt_regs *regs; 10996 struct perf_event *event; 10997 u64 period; 10998 10999 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11000 11001 if (event->state != PERF_EVENT_STATE_ACTIVE) 11002 return HRTIMER_NORESTART; 11003 11004 event->pmu->read(event); 11005 11006 perf_sample_data_init(&data, 0, event->hw.last_period); 11007 regs = get_irq_regs(); 11008 11009 if (regs && !perf_exclude_event(event, regs)) { 11010 if (!(event->attr.exclude_idle && is_idle_task(current))) 11011 if (__perf_event_overflow(event, 1, &data, regs)) 11012 ret = HRTIMER_NORESTART; 11013 } 11014 11015 period = max_t(u64, 10000, event->hw.sample_period); 11016 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11017 11018 return ret; 11019 } 11020 11021 static void perf_swevent_start_hrtimer(struct perf_event *event) 11022 { 11023 struct hw_perf_event *hwc = &event->hw; 11024 s64 period; 11025 11026 if (!is_sampling_event(event)) 11027 return; 11028 11029 period = local64_read(&hwc->period_left); 11030 if (period) { 11031 if (period < 0) 11032 period = 10000; 11033 11034 local64_set(&hwc->period_left, 0); 11035 } else { 11036 period = max_t(u64, 10000, hwc->sample_period); 11037 } 11038 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11039 HRTIMER_MODE_REL_PINNED_HARD); 11040 } 11041 11042 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11043 { 11044 struct hw_perf_event *hwc = &event->hw; 11045 11046 if (is_sampling_event(event)) { 11047 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11048 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11049 11050 hrtimer_cancel(&hwc->hrtimer); 11051 } 11052 } 11053 11054 static void perf_swevent_init_hrtimer(struct perf_event *event) 11055 { 11056 struct hw_perf_event *hwc = &event->hw; 11057 11058 if (!is_sampling_event(event)) 11059 return; 11060 11061 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11062 hwc->hrtimer.function = perf_swevent_hrtimer; 11063 11064 /* 11065 * Since hrtimers have a fixed rate, we can do a static freq->period 11066 * mapping and avoid the whole period adjust feedback stuff. 11067 */ 11068 if (event->attr.freq) { 11069 long freq = event->attr.sample_freq; 11070 11071 event->attr.sample_period = NSEC_PER_SEC / freq; 11072 hwc->sample_period = event->attr.sample_period; 11073 local64_set(&hwc->period_left, hwc->sample_period); 11074 hwc->last_period = hwc->sample_period; 11075 event->attr.freq = 0; 11076 } 11077 } 11078 11079 /* 11080 * Software event: cpu wall time clock 11081 */ 11082 11083 static void cpu_clock_event_update(struct perf_event *event) 11084 { 11085 s64 prev; 11086 u64 now; 11087 11088 now = local_clock(); 11089 prev = local64_xchg(&event->hw.prev_count, now); 11090 local64_add(now - prev, &event->count); 11091 } 11092 11093 static void cpu_clock_event_start(struct perf_event *event, int flags) 11094 { 11095 local64_set(&event->hw.prev_count, local_clock()); 11096 perf_swevent_start_hrtimer(event); 11097 } 11098 11099 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11100 { 11101 perf_swevent_cancel_hrtimer(event); 11102 cpu_clock_event_update(event); 11103 } 11104 11105 static int cpu_clock_event_add(struct perf_event *event, int flags) 11106 { 11107 if (flags & PERF_EF_START) 11108 cpu_clock_event_start(event, flags); 11109 perf_event_update_userpage(event); 11110 11111 return 0; 11112 } 11113 11114 static void cpu_clock_event_del(struct perf_event *event, int flags) 11115 { 11116 cpu_clock_event_stop(event, flags); 11117 } 11118 11119 static void cpu_clock_event_read(struct perf_event *event) 11120 { 11121 cpu_clock_event_update(event); 11122 } 11123 11124 static int cpu_clock_event_init(struct perf_event *event) 11125 { 11126 if (event->attr.type != perf_cpu_clock.type) 11127 return -ENOENT; 11128 11129 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11130 return -ENOENT; 11131 11132 /* 11133 * no branch sampling for software events 11134 */ 11135 if (has_branch_stack(event)) 11136 return -EOPNOTSUPP; 11137 11138 perf_swevent_init_hrtimer(event); 11139 11140 return 0; 11141 } 11142 11143 static struct pmu perf_cpu_clock = { 11144 .task_ctx_nr = perf_sw_context, 11145 11146 .capabilities = PERF_PMU_CAP_NO_NMI, 11147 .dev = PMU_NULL_DEV, 11148 11149 .event_init = cpu_clock_event_init, 11150 .add = cpu_clock_event_add, 11151 .del = cpu_clock_event_del, 11152 .start = cpu_clock_event_start, 11153 .stop = cpu_clock_event_stop, 11154 .read = cpu_clock_event_read, 11155 }; 11156 11157 /* 11158 * Software event: task time clock 11159 */ 11160 11161 static void task_clock_event_update(struct perf_event *event, u64 now) 11162 { 11163 u64 prev; 11164 s64 delta; 11165 11166 prev = local64_xchg(&event->hw.prev_count, now); 11167 delta = now - prev; 11168 local64_add(delta, &event->count); 11169 } 11170 11171 static void task_clock_event_start(struct perf_event *event, int flags) 11172 { 11173 local64_set(&event->hw.prev_count, event->ctx->time); 11174 perf_swevent_start_hrtimer(event); 11175 } 11176 11177 static void task_clock_event_stop(struct perf_event *event, int flags) 11178 { 11179 perf_swevent_cancel_hrtimer(event); 11180 task_clock_event_update(event, event->ctx->time); 11181 } 11182 11183 static int task_clock_event_add(struct perf_event *event, int flags) 11184 { 11185 if (flags & PERF_EF_START) 11186 task_clock_event_start(event, flags); 11187 perf_event_update_userpage(event); 11188 11189 return 0; 11190 } 11191 11192 static void task_clock_event_del(struct perf_event *event, int flags) 11193 { 11194 task_clock_event_stop(event, PERF_EF_UPDATE); 11195 } 11196 11197 static void task_clock_event_read(struct perf_event *event) 11198 { 11199 u64 now = perf_clock(); 11200 u64 delta = now - event->ctx->timestamp; 11201 u64 time = event->ctx->time + delta; 11202 11203 task_clock_event_update(event, time); 11204 } 11205 11206 static int task_clock_event_init(struct perf_event *event) 11207 { 11208 if (event->attr.type != perf_task_clock.type) 11209 return -ENOENT; 11210 11211 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11212 return -ENOENT; 11213 11214 /* 11215 * no branch sampling for software events 11216 */ 11217 if (has_branch_stack(event)) 11218 return -EOPNOTSUPP; 11219 11220 perf_swevent_init_hrtimer(event); 11221 11222 return 0; 11223 } 11224 11225 static struct pmu perf_task_clock = { 11226 .task_ctx_nr = perf_sw_context, 11227 11228 .capabilities = PERF_PMU_CAP_NO_NMI, 11229 .dev = PMU_NULL_DEV, 11230 11231 .event_init = task_clock_event_init, 11232 .add = task_clock_event_add, 11233 .del = task_clock_event_del, 11234 .start = task_clock_event_start, 11235 .stop = task_clock_event_stop, 11236 .read = task_clock_event_read, 11237 }; 11238 11239 static void perf_pmu_nop_void(struct pmu *pmu) 11240 { 11241 } 11242 11243 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11244 { 11245 } 11246 11247 static int perf_pmu_nop_int(struct pmu *pmu) 11248 { 11249 return 0; 11250 } 11251 11252 static int perf_event_nop_int(struct perf_event *event, u64 value) 11253 { 11254 return 0; 11255 } 11256 11257 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11258 11259 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11260 { 11261 __this_cpu_write(nop_txn_flags, flags); 11262 11263 if (flags & ~PERF_PMU_TXN_ADD) 11264 return; 11265 11266 perf_pmu_disable(pmu); 11267 } 11268 11269 static int perf_pmu_commit_txn(struct pmu *pmu) 11270 { 11271 unsigned int flags = __this_cpu_read(nop_txn_flags); 11272 11273 __this_cpu_write(nop_txn_flags, 0); 11274 11275 if (flags & ~PERF_PMU_TXN_ADD) 11276 return 0; 11277 11278 perf_pmu_enable(pmu); 11279 return 0; 11280 } 11281 11282 static void perf_pmu_cancel_txn(struct pmu *pmu) 11283 { 11284 unsigned int flags = __this_cpu_read(nop_txn_flags); 11285 11286 __this_cpu_write(nop_txn_flags, 0); 11287 11288 if (flags & ~PERF_PMU_TXN_ADD) 11289 return; 11290 11291 perf_pmu_enable(pmu); 11292 } 11293 11294 static int perf_event_idx_default(struct perf_event *event) 11295 { 11296 return 0; 11297 } 11298 11299 static void free_pmu_context(struct pmu *pmu) 11300 { 11301 free_percpu(pmu->cpu_pmu_context); 11302 } 11303 11304 /* 11305 * Let userspace know that this PMU supports address range filtering: 11306 */ 11307 static ssize_t nr_addr_filters_show(struct device *dev, 11308 struct device_attribute *attr, 11309 char *page) 11310 { 11311 struct pmu *pmu = dev_get_drvdata(dev); 11312 11313 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11314 } 11315 DEVICE_ATTR_RO(nr_addr_filters); 11316 11317 static struct idr pmu_idr; 11318 11319 static ssize_t 11320 type_show(struct device *dev, struct device_attribute *attr, char *page) 11321 { 11322 struct pmu *pmu = dev_get_drvdata(dev); 11323 11324 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11325 } 11326 static DEVICE_ATTR_RO(type); 11327 11328 static ssize_t 11329 perf_event_mux_interval_ms_show(struct device *dev, 11330 struct device_attribute *attr, 11331 char *page) 11332 { 11333 struct pmu *pmu = dev_get_drvdata(dev); 11334 11335 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11336 } 11337 11338 static DEFINE_MUTEX(mux_interval_mutex); 11339 11340 static ssize_t 11341 perf_event_mux_interval_ms_store(struct device *dev, 11342 struct device_attribute *attr, 11343 const char *buf, size_t count) 11344 { 11345 struct pmu *pmu = dev_get_drvdata(dev); 11346 int timer, cpu, ret; 11347 11348 ret = kstrtoint(buf, 0, &timer); 11349 if (ret) 11350 return ret; 11351 11352 if (timer < 1) 11353 return -EINVAL; 11354 11355 /* same value, noting to do */ 11356 if (timer == pmu->hrtimer_interval_ms) 11357 return count; 11358 11359 mutex_lock(&mux_interval_mutex); 11360 pmu->hrtimer_interval_ms = timer; 11361 11362 /* update all cpuctx for this PMU */ 11363 cpus_read_lock(); 11364 for_each_online_cpu(cpu) { 11365 struct perf_cpu_pmu_context *cpc; 11366 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11367 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11368 11369 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11370 } 11371 cpus_read_unlock(); 11372 mutex_unlock(&mux_interval_mutex); 11373 11374 return count; 11375 } 11376 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11377 11378 static struct attribute *pmu_dev_attrs[] = { 11379 &dev_attr_type.attr, 11380 &dev_attr_perf_event_mux_interval_ms.attr, 11381 NULL, 11382 }; 11383 ATTRIBUTE_GROUPS(pmu_dev); 11384 11385 static int pmu_bus_running; 11386 static struct bus_type pmu_bus = { 11387 .name = "event_source", 11388 .dev_groups = pmu_dev_groups, 11389 }; 11390 11391 static void pmu_dev_release(struct device *dev) 11392 { 11393 kfree(dev); 11394 } 11395 11396 static int pmu_dev_alloc(struct pmu *pmu) 11397 { 11398 int ret = -ENOMEM; 11399 11400 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11401 if (!pmu->dev) 11402 goto out; 11403 11404 pmu->dev->groups = pmu->attr_groups; 11405 device_initialize(pmu->dev); 11406 11407 dev_set_drvdata(pmu->dev, pmu); 11408 pmu->dev->bus = &pmu_bus; 11409 pmu->dev->parent = pmu->parent; 11410 pmu->dev->release = pmu_dev_release; 11411 11412 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11413 if (ret) 11414 goto free_dev; 11415 11416 ret = device_add(pmu->dev); 11417 if (ret) 11418 goto free_dev; 11419 11420 /* For PMUs with address filters, throw in an extra attribute: */ 11421 if (pmu->nr_addr_filters) 11422 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11423 11424 if (ret) 11425 goto del_dev; 11426 11427 if (pmu->attr_update) 11428 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11429 11430 if (ret) 11431 goto del_dev; 11432 11433 out: 11434 return ret; 11435 11436 del_dev: 11437 device_del(pmu->dev); 11438 11439 free_dev: 11440 put_device(pmu->dev); 11441 goto out; 11442 } 11443 11444 static struct lock_class_key cpuctx_mutex; 11445 static struct lock_class_key cpuctx_lock; 11446 11447 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11448 { 11449 int cpu, ret, max = PERF_TYPE_MAX; 11450 11451 mutex_lock(&pmus_lock); 11452 ret = -ENOMEM; 11453 pmu->pmu_disable_count = alloc_percpu(int); 11454 if (!pmu->pmu_disable_count) 11455 goto unlock; 11456 11457 pmu->type = -1; 11458 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11459 ret = -EINVAL; 11460 goto free_pdc; 11461 } 11462 11463 pmu->name = name; 11464 11465 if (type >= 0) 11466 max = type; 11467 11468 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11469 if (ret < 0) 11470 goto free_pdc; 11471 11472 WARN_ON(type >= 0 && ret != type); 11473 11474 type = ret; 11475 pmu->type = type; 11476 11477 if (pmu_bus_running && !pmu->dev) { 11478 ret = pmu_dev_alloc(pmu); 11479 if (ret) 11480 goto free_idr; 11481 } 11482 11483 ret = -ENOMEM; 11484 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11485 if (!pmu->cpu_pmu_context) 11486 goto free_dev; 11487 11488 for_each_possible_cpu(cpu) { 11489 struct perf_cpu_pmu_context *cpc; 11490 11491 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11492 __perf_init_event_pmu_context(&cpc->epc, pmu); 11493 __perf_mux_hrtimer_init(cpc, cpu); 11494 } 11495 11496 if (!pmu->start_txn) { 11497 if (pmu->pmu_enable) { 11498 /* 11499 * If we have pmu_enable/pmu_disable calls, install 11500 * transaction stubs that use that to try and batch 11501 * hardware accesses. 11502 */ 11503 pmu->start_txn = perf_pmu_start_txn; 11504 pmu->commit_txn = perf_pmu_commit_txn; 11505 pmu->cancel_txn = perf_pmu_cancel_txn; 11506 } else { 11507 pmu->start_txn = perf_pmu_nop_txn; 11508 pmu->commit_txn = perf_pmu_nop_int; 11509 pmu->cancel_txn = perf_pmu_nop_void; 11510 } 11511 } 11512 11513 if (!pmu->pmu_enable) { 11514 pmu->pmu_enable = perf_pmu_nop_void; 11515 pmu->pmu_disable = perf_pmu_nop_void; 11516 } 11517 11518 if (!pmu->check_period) 11519 pmu->check_period = perf_event_nop_int; 11520 11521 if (!pmu->event_idx) 11522 pmu->event_idx = perf_event_idx_default; 11523 11524 list_add_rcu(&pmu->entry, &pmus); 11525 atomic_set(&pmu->exclusive_cnt, 0); 11526 ret = 0; 11527 unlock: 11528 mutex_unlock(&pmus_lock); 11529 11530 return ret; 11531 11532 free_dev: 11533 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11534 device_del(pmu->dev); 11535 put_device(pmu->dev); 11536 } 11537 11538 free_idr: 11539 idr_remove(&pmu_idr, pmu->type); 11540 11541 free_pdc: 11542 free_percpu(pmu->pmu_disable_count); 11543 goto unlock; 11544 } 11545 EXPORT_SYMBOL_GPL(perf_pmu_register); 11546 11547 void perf_pmu_unregister(struct pmu *pmu) 11548 { 11549 mutex_lock(&pmus_lock); 11550 list_del_rcu(&pmu->entry); 11551 11552 /* 11553 * We dereference the pmu list under both SRCU and regular RCU, so 11554 * synchronize against both of those. 11555 */ 11556 synchronize_srcu(&pmus_srcu); 11557 synchronize_rcu(); 11558 11559 free_percpu(pmu->pmu_disable_count); 11560 idr_remove(&pmu_idr, pmu->type); 11561 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11562 if (pmu->nr_addr_filters) 11563 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11564 device_del(pmu->dev); 11565 put_device(pmu->dev); 11566 } 11567 free_pmu_context(pmu); 11568 mutex_unlock(&pmus_lock); 11569 } 11570 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11571 11572 static inline bool has_extended_regs(struct perf_event *event) 11573 { 11574 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11575 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11576 } 11577 11578 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11579 { 11580 struct perf_event_context *ctx = NULL; 11581 int ret; 11582 11583 if (!try_module_get(pmu->module)) 11584 return -ENODEV; 11585 11586 /* 11587 * A number of pmu->event_init() methods iterate the sibling_list to, 11588 * for example, validate if the group fits on the PMU. Therefore, 11589 * if this is a sibling event, acquire the ctx->mutex to protect 11590 * the sibling_list. 11591 */ 11592 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11593 /* 11594 * This ctx->mutex can nest when we're called through 11595 * inheritance. See the perf_event_ctx_lock_nested() comment. 11596 */ 11597 ctx = perf_event_ctx_lock_nested(event->group_leader, 11598 SINGLE_DEPTH_NESTING); 11599 BUG_ON(!ctx); 11600 } 11601 11602 event->pmu = pmu; 11603 ret = pmu->event_init(event); 11604 11605 if (ctx) 11606 perf_event_ctx_unlock(event->group_leader, ctx); 11607 11608 if (!ret) { 11609 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11610 has_extended_regs(event)) 11611 ret = -EOPNOTSUPP; 11612 11613 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11614 event_has_any_exclude_flag(event)) 11615 ret = -EINVAL; 11616 11617 if (ret && event->destroy) 11618 event->destroy(event); 11619 } 11620 11621 if (ret) 11622 module_put(pmu->module); 11623 11624 return ret; 11625 } 11626 11627 static struct pmu *perf_init_event(struct perf_event *event) 11628 { 11629 bool extended_type = false; 11630 int idx, type, ret; 11631 struct pmu *pmu; 11632 11633 idx = srcu_read_lock(&pmus_srcu); 11634 11635 /* 11636 * Save original type before calling pmu->event_init() since certain 11637 * pmus overwrites event->attr.type to forward event to another pmu. 11638 */ 11639 event->orig_type = event->attr.type; 11640 11641 /* Try parent's PMU first: */ 11642 if (event->parent && event->parent->pmu) { 11643 pmu = event->parent->pmu; 11644 ret = perf_try_init_event(pmu, event); 11645 if (!ret) 11646 goto unlock; 11647 } 11648 11649 /* 11650 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11651 * are often aliases for PERF_TYPE_RAW. 11652 */ 11653 type = event->attr.type; 11654 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11655 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11656 if (!type) { 11657 type = PERF_TYPE_RAW; 11658 } else { 11659 extended_type = true; 11660 event->attr.config &= PERF_HW_EVENT_MASK; 11661 } 11662 } 11663 11664 again: 11665 rcu_read_lock(); 11666 pmu = idr_find(&pmu_idr, type); 11667 rcu_read_unlock(); 11668 if (pmu) { 11669 if (event->attr.type != type && type != PERF_TYPE_RAW && 11670 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11671 goto fail; 11672 11673 ret = perf_try_init_event(pmu, event); 11674 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11675 type = event->attr.type; 11676 goto again; 11677 } 11678 11679 if (ret) 11680 pmu = ERR_PTR(ret); 11681 11682 goto unlock; 11683 } 11684 11685 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11686 ret = perf_try_init_event(pmu, event); 11687 if (!ret) 11688 goto unlock; 11689 11690 if (ret != -ENOENT) { 11691 pmu = ERR_PTR(ret); 11692 goto unlock; 11693 } 11694 } 11695 fail: 11696 pmu = ERR_PTR(-ENOENT); 11697 unlock: 11698 srcu_read_unlock(&pmus_srcu, idx); 11699 11700 return pmu; 11701 } 11702 11703 static void attach_sb_event(struct perf_event *event) 11704 { 11705 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11706 11707 raw_spin_lock(&pel->lock); 11708 list_add_rcu(&event->sb_list, &pel->list); 11709 raw_spin_unlock(&pel->lock); 11710 } 11711 11712 /* 11713 * We keep a list of all !task (and therefore per-cpu) events 11714 * that need to receive side-band records. 11715 * 11716 * This avoids having to scan all the various PMU per-cpu contexts 11717 * looking for them. 11718 */ 11719 static void account_pmu_sb_event(struct perf_event *event) 11720 { 11721 if (is_sb_event(event)) 11722 attach_sb_event(event); 11723 } 11724 11725 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11726 static void account_freq_event_nohz(void) 11727 { 11728 #ifdef CONFIG_NO_HZ_FULL 11729 /* Lock so we don't race with concurrent unaccount */ 11730 spin_lock(&nr_freq_lock); 11731 if (atomic_inc_return(&nr_freq_events) == 1) 11732 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11733 spin_unlock(&nr_freq_lock); 11734 #endif 11735 } 11736 11737 static void account_freq_event(void) 11738 { 11739 if (tick_nohz_full_enabled()) 11740 account_freq_event_nohz(); 11741 else 11742 atomic_inc(&nr_freq_events); 11743 } 11744 11745 11746 static void account_event(struct perf_event *event) 11747 { 11748 bool inc = false; 11749 11750 if (event->parent) 11751 return; 11752 11753 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11754 inc = true; 11755 if (event->attr.mmap || event->attr.mmap_data) 11756 atomic_inc(&nr_mmap_events); 11757 if (event->attr.build_id) 11758 atomic_inc(&nr_build_id_events); 11759 if (event->attr.comm) 11760 atomic_inc(&nr_comm_events); 11761 if (event->attr.namespaces) 11762 atomic_inc(&nr_namespaces_events); 11763 if (event->attr.cgroup) 11764 atomic_inc(&nr_cgroup_events); 11765 if (event->attr.task) 11766 atomic_inc(&nr_task_events); 11767 if (event->attr.freq) 11768 account_freq_event(); 11769 if (event->attr.context_switch) { 11770 atomic_inc(&nr_switch_events); 11771 inc = true; 11772 } 11773 if (has_branch_stack(event)) 11774 inc = true; 11775 if (is_cgroup_event(event)) 11776 inc = true; 11777 if (event->attr.ksymbol) 11778 atomic_inc(&nr_ksymbol_events); 11779 if (event->attr.bpf_event) 11780 atomic_inc(&nr_bpf_events); 11781 if (event->attr.text_poke) 11782 atomic_inc(&nr_text_poke_events); 11783 11784 if (inc) { 11785 /* 11786 * We need the mutex here because static_branch_enable() 11787 * must complete *before* the perf_sched_count increment 11788 * becomes visible. 11789 */ 11790 if (atomic_inc_not_zero(&perf_sched_count)) 11791 goto enabled; 11792 11793 mutex_lock(&perf_sched_mutex); 11794 if (!atomic_read(&perf_sched_count)) { 11795 static_branch_enable(&perf_sched_events); 11796 /* 11797 * Guarantee that all CPUs observe they key change and 11798 * call the perf scheduling hooks before proceeding to 11799 * install events that need them. 11800 */ 11801 synchronize_rcu(); 11802 } 11803 /* 11804 * Now that we have waited for the sync_sched(), allow further 11805 * increments to by-pass the mutex. 11806 */ 11807 atomic_inc(&perf_sched_count); 11808 mutex_unlock(&perf_sched_mutex); 11809 } 11810 enabled: 11811 11812 account_pmu_sb_event(event); 11813 } 11814 11815 /* 11816 * Allocate and initialize an event structure 11817 */ 11818 static struct perf_event * 11819 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11820 struct task_struct *task, 11821 struct perf_event *group_leader, 11822 struct perf_event *parent_event, 11823 perf_overflow_handler_t overflow_handler, 11824 void *context, int cgroup_fd) 11825 { 11826 struct pmu *pmu; 11827 struct perf_event *event; 11828 struct hw_perf_event *hwc; 11829 long err = -EINVAL; 11830 int node; 11831 11832 if ((unsigned)cpu >= nr_cpu_ids) { 11833 if (!task || cpu != -1) 11834 return ERR_PTR(-EINVAL); 11835 } 11836 if (attr->sigtrap && !task) { 11837 /* Requires a task: avoid signalling random tasks. */ 11838 return ERR_PTR(-EINVAL); 11839 } 11840 11841 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11842 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11843 node); 11844 if (!event) 11845 return ERR_PTR(-ENOMEM); 11846 11847 /* 11848 * Single events are their own group leaders, with an 11849 * empty sibling list: 11850 */ 11851 if (!group_leader) 11852 group_leader = event; 11853 11854 mutex_init(&event->child_mutex); 11855 INIT_LIST_HEAD(&event->child_list); 11856 11857 INIT_LIST_HEAD(&event->event_entry); 11858 INIT_LIST_HEAD(&event->sibling_list); 11859 INIT_LIST_HEAD(&event->active_list); 11860 init_event_group(event); 11861 INIT_LIST_HEAD(&event->rb_entry); 11862 INIT_LIST_HEAD(&event->active_entry); 11863 INIT_LIST_HEAD(&event->addr_filters.list); 11864 INIT_HLIST_NODE(&event->hlist_entry); 11865 11866 11867 init_waitqueue_head(&event->waitq); 11868 init_irq_work(&event->pending_irq, perf_pending_irq); 11869 init_task_work(&event->pending_task, perf_pending_task); 11870 11871 mutex_init(&event->mmap_mutex); 11872 raw_spin_lock_init(&event->addr_filters.lock); 11873 11874 atomic_long_set(&event->refcount, 1); 11875 event->cpu = cpu; 11876 event->attr = *attr; 11877 event->group_leader = group_leader; 11878 event->pmu = NULL; 11879 event->oncpu = -1; 11880 11881 event->parent = parent_event; 11882 11883 event->ns = get_pid_ns(task_active_pid_ns(current)); 11884 event->id = atomic64_inc_return(&perf_event_id); 11885 11886 event->state = PERF_EVENT_STATE_INACTIVE; 11887 11888 if (parent_event) 11889 event->event_caps = parent_event->event_caps; 11890 11891 if (task) { 11892 event->attach_state = PERF_ATTACH_TASK; 11893 /* 11894 * XXX pmu::event_init needs to know what task to account to 11895 * and we cannot use the ctx information because we need the 11896 * pmu before we get a ctx. 11897 */ 11898 event->hw.target = get_task_struct(task); 11899 } 11900 11901 event->clock = &local_clock; 11902 if (parent_event) 11903 event->clock = parent_event->clock; 11904 11905 if (!overflow_handler && parent_event) { 11906 overflow_handler = parent_event->overflow_handler; 11907 context = parent_event->overflow_handler_context; 11908 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11909 if (overflow_handler == bpf_overflow_handler) { 11910 struct bpf_prog *prog = parent_event->prog; 11911 11912 bpf_prog_inc(prog); 11913 event->prog = prog; 11914 event->orig_overflow_handler = 11915 parent_event->orig_overflow_handler; 11916 } 11917 #endif 11918 } 11919 11920 if (overflow_handler) { 11921 event->overflow_handler = overflow_handler; 11922 event->overflow_handler_context = context; 11923 } else if (is_write_backward(event)){ 11924 event->overflow_handler = perf_event_output_backward; 11925 event->overflow_handler_context = NULL; 11926 } else { 11927 event->overflow_handler = perf_event_output_forward; 11928 event->overflow_handler_context = NULL; 11929 } 11930 11931 perf_event__state_init(event); 11932 11933 pmu = NULL; 11934 11935 hwc = &event->hw; 11936 hwc->sample_period = attr->sample_period; 11937 if (attr->freq && attr->sample_freq) 11938 hwc->sample_period = 1; 11939 hwc->last_period = hwc->sample_period; 11940 11941 local64_set(&hwc->period_left, hwc->sample_period); 11942 11943 /* 11944 * We currently do not support PERF_SAMPLE_READ on inherited events. 11945 * See perf_output_read(). 11946 */ 11947 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11948 goto err_ns; 11949 11950 if (!has_branch_stack(event)) 11951 event->attr.branch_sample_type = 0; 11952 11953 pmu = perf_init_event(event); 11954 if (IS_ERR(pmu)) { 11955 err = PTR_ERR(pmu); 11956 goto err_ns; 11957 } 11958 11959 /* 11960 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11961 * events (they don't make sense as the cgroup will be different 11962 * on other CPUs in the uncore mask). 11963 */ 11964 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11965 err = -EINVAL; 11966 goto err_pmu; 11967 } 11968 11969 if (event->attr.aux_output && 11970 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11971 err = -EOPNOTSUPP; 11972 goto err_pmu; 11973 } 11974 11975 if (cgroup_fd != -1) { 11976 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11977 if (err) 11978 goto err_pmu; 11979 } 11980 11981 err = exclusive_event_init(event); 11982 if (err) 11983 goto err_pmu; 11984 11985 if (has_addr_filter(event)) { 11986 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11987 sizeof(struct perf_addr_filter_range), 11988 GFP_KERNEL); 11989 if (!event->addr_filter_ranges) { 11990 err = -ENOMEM; 11991 goto err_per_task; 11992 } 11993 11994 /* 11995 * Clone the parent's vma offsets: they are valid until exec() 11996 * even if the mm is not shared with the parent. 11997 */ 11998 if (event->parent) { 11999 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12000 12001 raw_spin_lock_irq(&ifh->lock); 12002 memcpy(event->addr_filter_ranges, 12003 event->parent->addr_filter_ranges, 12004 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12005 raw_spin_unlock_irq(&ifh->lock); 12006 } 12007 12008 /* force hw sync on the address filters */ 12009 event->addr_filters_gen = 1; 12010 } 12011 12012 if (!event->parent) { 12013 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12014 err = get_callchain_buffers(attr->sample_max_stack); 12015 if (err) 12016 goto err_addr_filters; 12017 } 12018 } 12019 12020 err = security_perf_event_alloc(event); 12021 if (err) 12022 goto err_callchain_buffer; 12023 12024 /* symmetric to unaccount_event() in _free_event() */ 12025 account_event(event); 12026 12027 return event; 12028 12029 err_callchain_buffer: 12030 if (!event->parent) { 12031 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12032 put_callchain_buffers(); 12033 } 12034 err_addr_filters: 12035 kfree(event->addr_filter_ranges); 12036 12037 err_per_task: 12038 exclusive_event_destroy(event); 12039 12040 err_pmu: 12041 if (is_cgroup_event(event)) 12042 perf_detach_cgroup(event); 12043 if (event->destroy) 12044 event->destroy(event); 12045 module_put(pmu->module); 12046 err_ns: 12047 if (event->hw.target) 12048 put_task_struct(event->hw.target); 12049 call_rcu(&event->rcu_head, free_event_rcu); 12050 12051 return ERR_PTR(err); 12052 } 12053 12054 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12055 struct perf_event_attr *attr) 12056 { 12057 u32 size; 12058 int ret; 12059 12060 /* Zero the full structure, so that a short copy will be nice. */ 12061 memset(attr, 0, sizeof(*attr)); 12062 12063 ret = get_user(size, &uattr->size); 12064 if (ret) 12065 return ret; 12066 12067 /* ABI compatibility quirk: */ 12068 if (!size) 12069 size = PERF_ATTR_SIZE_VER0; 12070 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12071 goto err_size; 12072 12073 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12074 if (ret) { 12075 if (ret == -E2BIG) 12076 goto err_size; 12077 return ret; 12078 } 12079 12080 attr->size = size; 12081 12082 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12083 return -EINVAL; 12084 12085 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12086 return -EINVAL; 12087 12088 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12089 return -EINVAL; 12090 12091 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12092 u64 mask = attr->branch_sample_type; 12093 12094 /* only using defined bits */ 12095 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12096 return -EINVAL; 12097 12098 /* at least one branch bit must be set */ 12099 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12100 return -EINVAL; 12101 12102 /* propagate priv level, when not set for branch */ 12103 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12104 12105 /* exclude_kernel checked on syscall entry */ 12106 if (!attr->exclude_kernel) 12107 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12108 12109 if (!attr->exclude_user) 12110 mask |= PERF_SAMPLE_BRANCH_USER; 12111 12112 if (!attr->exclude_hv) 12113 mask |= PERF_SAMPLE_BRANCH_HV; 12114 /* 12115 * adjust user setting (for HW filter setup) 12116 */ 12117 attr->branch_sample_type = mask; 12118 } 12119 /* privileged levels capture (kernel, hv): check permissions */ 12120 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12121 ret = perf_allow_kernel(attr); 12122 if (ret) 12123 return ret; 12124 } 12125 } 12126 12127 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12128 ret = perf_reg_validate(attr->sample_regs_user); 12129 if (ret) 12130 return ret; 12131 } 12132 12133 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12134 if (!arch_perf_have_user_stack_dump()) 12135 return -ENOSYS; 12136 12137 /* 12138 * We have __u32 type for the size, but so far 12139 * we can only use __u16 as maximum due to the 12140 * __u16 sample size limit. 12141 */ 12142 if (attr->sample_stack_user >= USHRT_MAX) 12143 return -EINVAL; 12144 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12145 return -EINVAL; 12146 } 12147 12148 if (!attr->sample_max_stack) 12149 attr->sample_max_stack = sysctl_perf_event_max_stack; 12150 12151 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12152 ret = perf_reg_validate(attr->sample_regs_intr); 12153 12154 #ifndef CONFIG_CGROUP_PERF 12155 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12156 return -EINVAL; 12157 #endif 12158 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12159 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12160 return -EINVAL; 12161 12162 if (!attr->inherit && attr->inherit_thread) 12163 return -EINVAL; 12164 12165 if (attr->remove_on_exec && attr->enable_on_exec) 12166 return -EINVAL; 12167 12168 if (attr->sigtrap && !attr->remove_on_exec) 12169 return -EINVAL; 12170 12171 out: 12172 return ret; 12173 12174 err_size: 12175 put_user(sizeof(*attr), &uattr->size); 12176 ret = -E2BIG; 12177 goto out; 12178 } 12179 12180 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12181 { 12182 if (b < a) 12183 swap(a, b); 12184 12185 mutex_lock(a); 12186 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12187 } 12188 12189 static int 12190 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12191 { 12192 struct perf_buffer *rb = NULL; 12193 int ret = -EINVAL; 12194 12195 if (!output_event) { 12196 mutex_lock(&event->mmap_mutex); 12197 goto set; 12198 } 12199 12200 /* don't allow circular references */ 12201 if (event == output_event) 12202 goto out; 12203 12204 /* 12205 * Don't allow cross-cpu buffers 12206 */ 12207 if (output_event->cpu != event->cpu) 12208 goto out; 12209 12210 /* 12211 * If its not a per-cpu rb, it must be the same task. 12212 */ 12213 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12214 goto out; 12215 12216 /* 12217 * Mixing clocks in the same buffer is trouble you don't need. 12218 */ 12219 if (output_event->clock != event->clock) 12220 goto out; 12221 12222 /* 12223 * Either writing ring buffer from beginning or from end. 12224 * Mixing is not allowed. 12225 */ 12226 if (is_write_backward(output_event) != is_write_backward(event)) 12227 goto out; 12228 12229 /* 12230 * If both events generate aux data, they must be on the same PMU 12231 */ 12232 if (has_aux(event) && has_aux(output_event) && 12233 event->pmu != output_event->pmu) 12234 goto out; 12235 12236 /* 12237 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12238 * output_event is already on rb->event_list, and the list iteration 12239 * restarts after every removal, it is guaranteed this new event is 12240 * observed *OR* if output_event is already removed, it's guaranteed we 12241 * observe !rb->mmap_count. 12242 */ 12243 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12244 set: 12245 /* Can't redirect output if we've got an active mmap() */ 12246 if (atomic_read(&event->mmap_count)) 12247 goto unlock; 12248 12249 if (output_event) { 12250 /* get the rb we want to redirect to */ 12251 rb = ring_buffer_get(output_event); 12252 if (!rb) 12253 goto unlock; 12254 12255 /* did we race against perf_mmap_close() */ 12256 if (!atomic_read(&rb->mmap_count)) { 12257 ring_buffer_put(rb); 12258 goto unlock; 12259 } 12260 } 12261 12262 ring_buffer_attach(event, rb); 12263 12264 ret = 0; 12265 unlock: 12266 mutex_unlock(&event->mmap_mutex); 12267 if (output_event) 12268 mutex_unlock(&output_event->mmap_mutex); 12269 12270 out: 12271 return ret; 12272 } 12273 12274 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12275 { 12276 bool nmi_safe = false; 12277 12278 switch (clk_id) { 12279 case CLOCK_MONOTONIC: 12280 event->clock = &ktime_get_mono_fast_ns; 12281 nmi_safe = true; 12282 break; 12283 12284 case CLOCK_MONOTONIC_RAW: 12285 event->clock = &ktime_get_raw_fast_ns; 12286 nmi_safe = true; 12287 break; 12288 12289 case CLOCK_REALTIME: 12290 event->clock = &ktime_get_real_ns; 12291 break; 12292 12293 case CLOCK_BOOTTIME: 12294 event->clock = &ktime_get_boottime_ns; 12295 break; 12296 12297 case CLOCK_TAI: 12298 event->clock = &ktime_get_clocktai_ns; 12299 break; 12300 12301 default: 12302 return -EINVAL; 12303 } 12304 12305 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12306 return -EINVAL; 12307 12308 return 0; 12309 } 12310 12311 static bool 12312 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12313 { 12314 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12315 bool is_capable = perfmon_capable(); 12316 12317 if (attr->sigtrap) { 12318 /* 12319 * perf_event_attr::sigtrap sends signals to the other task. 12320 * Require the current task to also have CAP_KILL. 12321 */ 12322 rcu_read_lock(); 12323 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12324 rcu_read_unlock(); 12325 12326 /* 12327 * If the required capabilities aren't available, checks for 12328 * ptrace permissions: upgrade to ATTACH, since sending signals 12329 * can effectively change the target task. 12330 */ 12331 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12332 } 12333 12334 /* 12335 * Preserve ptrace permission check for backwards compatibility. The 12336 * ptrace check also includes checks that the current task and other 12337 * task have matching uids, and is therefore not done here explicitly. 12338 */ 12339 return is_capable || ptrace_may_access(task, ptrace_mode); 12340 } 12341 12342 /** 12343 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12344 * 12345 * @attr_uptr: event_id type attributes for monitoring/sampling 12346 * @pid: target pid 12347 * @cpu: target cpu 12348 * @group_fd: group leader event fd 12349 * @flags: perf event open flags 12350 */ 12351 SYSCALL_DEFINE5(perf_event_open, 12352 struct perf_event_attr __user *, attr_uptr, 12353 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12354 { 12355 struct perf_event *group_leader = NULL, *output_event = NULL; 12356 struct perf_event_pmu_context *pmu_ctx; 12357 struct perf_event *event, *sibling; 12358 struct perf_event_attr attr; 12359 struct perf_event_context *ctx; 12360 struct file *event_file = NULL; 12361 struct fd group = {NULL, 0}; 12362 struct task_struct *task = NULL; 12363 struct pmu *pmu; 12364 int event_fd; 12365 int move_group = 0; 12366 int err; 12367 int f_flags = O_RDWR; 12368 int cgroup_fd = -1; 12369 12370 /* for future expandability... */ 12371 if (flags & ~PERF_FLAG_ALL) 12372 return -EINVAL; 12373 12374 err = perf_copy_attr(attr_uptr, &attr); 12375 if (err) 12376 return err; 12377 12378 /* Do we allow access to perf_event_open(2) ? */ 12379 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12380 if (err) 12381 return err; 12382 12383 if (!attr.exclude_kernel) { 12384 err = perf_allow_kernel(&attr); 12385 if (err) 12386 return err; 12387 } 12388 12389 if (attr.namespaces) { 12390 if (!perfmon_capable()) 12391 return -EACCES; 12392 } 12393 12394 if (attr.freq) { 12395 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12396 return -EINVAL; 12397 } else { 12398 if (attr.sample_period & (1ULL << 63)) 12399 return -EINVAL; 12400 } 12401 12402 /* Only privileged users can get physical addresses */ 12403 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12404 err = perf_allow_kernel(&attr); 12405 if (err) 12406 return err; 12407 } 12408 12409 /* REGS_INTR can leak data, lockdown must prevent this */ 12410 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12411 err = security_locked_down(LOCKDOWN_PERF); 12412 if (err) 12413 return err; 12414 } 12415 12416 /* 12417 * In cgroup mode, the pid argument is used to pass the fd 12418 * opened to the cgroup directory in cgroupfs. The cpu argument 12419 * designates the cpu on which to monitor threads from that 12420 * cgroup. 12421 */ 12422 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12423 return -EINVAL; 12424 12425 if (flags & PERF_FLAG_FD_CLOEXEC) 12426 f_flags |= O_CLOEXEC; 12427 12428 event_fd = get_unused_fd_flags(f_flags); 12429 if (event_fd < 0) 12430 return event_fd; 12431 12432 if (group_fd != -1) { 12433 err = perf_fget_light(group_fd, &group); 12434 if (err) 12435 goto err_fd; 12436 group_leader = group.file->private_data; 12437 if (flags & PERF_FLAG_FD_OUTPUT) 12438 output_event = group_leader; 12439 if (flags & PERF_FLAG_FD_NO_GROUP) 12440 group_leader = NULL; 12441 } 12442 12443 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12444 task = find_lively_task_by_vpid(pid); 12445 if (IS_ERR(task)) { 12446 err = PTR_ERR(task); 12447 goto err_group_fd; 12448 } 12449 } 12450 12451 if (task && group_leader && 12452 group_leader->attr.inherit != attr.inherit) { 12453 err = -EINVAL; 12454 goto err_task; 12455 } 12456 12457 if (flags & PERF_FLAG_PID_CGROUP) 12458 cgroup_fd = pid; 12459 12460 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12461 NULL, NULL, cgroup_fd); 12462 if (IS_ERR(event)) { 12463 err = PTR_ERR(event); 12464 goto err_task; 12465 } 12466 12467 if (is_sampling_event(event)) { 12468 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12469 err = -EOPNOTSUPP; 12470 goto err_alloc; 12471 } 12472 } 12473 12474 /* 12475 * Special case software events and allow them to be part of 12476 * any hardware group. 12477 */ 12478 pmu = event->pmu; 12479 12480 if (attr.use_clockid) { 12481 err = perf_event_set_clock(event, attr.clockid); 12482 if (err) 12483 goto err_alloc; 12484 } 12485 12486 if (pmu->task_ctx_nr == perf_sw_context) 12487 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12488 12489 if (task) { 12490 err = down_read_interruptible(&task->signal->exec_update_lock); 12491 if (err) 12492 goto err_alloc; 12493 12494 /* 12495 * We must hold exec_update_lock across this and any potential 12496 * perf_install_in_context() call for this new event to 12497 * serialize against exec() altering our credentials (and the 12498 * perf_event_exit_task() that could imply). 12499 */ 12500 err = -EACCES; 12501 if (!perf_check_permission(&attr, task)) 12502 goto err_cred; 12503 } 12504 12505 /* 12506 * Get the target context (task or percpu): 12507 */ 12508 ctx = find_get_context(task, event); 12509 if (IS_ERR(ctx)) { 12510 err = PTR_ERR(ctx); 12511 goto err_cred; 12512 } 12513 12514 mutex_lock(&ctx->mutex); 12515 12516 if (ctx->task == TASK_TOMBSTONE) { 12517 err = -ESRCH; 12518 goto err_locked; 12519 } 12520 12521 if (!task) { 12522 /* 12523 * Check if the @cpu we're creating an event for is online. 12524 * 12525 * We use the perf_cpu_context::ctx::mutex to serialize against 12526 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12527 */ 12528 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12529 12530 if (!cpuctx->online) { 12531 err = -ENODEV; 12532 goto err_locked; 12533 } 12534 } 12535 12536 if (group_leader) { 12537 err = -EINVAL; 12538 12539 /* 12540 * Do not allow a recursive hierarchy (this new sibling 12541 * becoming part of another group-sibling): 12542 */ 12543 if (group_leader->group_leader != group_leader) 12544 goto err_locked; 12545 12546 /* All events in a group should have the same clock */ 12547 if (group_leader->clock != event->clock) 12548 goto err_locked; 12549 12550 /* 12551 * Make sure we're both events for the same CPU; 12552 * grouping events for different CPUs is broken; since 12553 * you can never concurrently schedule them anyhow. 12554 */ 12555 if (group_leader->cpu != event->cpu) 12556 goto err_locked; 12557 12558 /* 12559 * Make sure we're both on the same context; either task or cpu. 12560 */ 12561 if (group_leader->ctx != ctx) 12562 goto err_locked; 12563 12564 /* 12565 * Only a group leader can be exclusive or pinned 12566 */ 12567 if (attr.exclusive || attr.pinned) 12568 goto err_locked; 12569 12570 if (is_software_event(event) && 12571 !in_software_context(group_leader)) { 12572 /* 12573 * If the event is a sw event, but the group_leader 12574 * is on hw context. 12575 * 12576 * Allow the addition of software events to hw 12577 * groups, this is safe because software events 12578 * never fail to schedule. 12579 * 12580 * Note the comment that goes with struct 12581 * perf_event_pmu_context. 12582 */ 12583 pmu = group_leader->pmu_ctx->pmu; 12584 } else if (!is_software_event(event)) { 12585 if (is_software_event(group_leader) && 12586 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12587 /* 12588 * In case the group is a pure software group, and we 12589 * try to add a hardware event, move the whole group to 12590 * the hardware context. 12591 */ 12592 move_group = 1; 12593 } 12594 12595 /* Don't allow group of multiple hw events from different pmus */ 12596 if (!in_software_context(group_leader) && 12597 group_leader->pmu_ctx->pmu != pmu) 12598 goto err_locked; 12599 } 12600 } 12601 12602 /* 12603 * Now that we're certain of the pmu; find the pmu_ctx. 12604 */ 12605 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12606 if (IS_ERR(pmu_ctx)) { 12607 err = PTR_ERR(pmu_ctx); 12608 goto err_locked; 12609 } 12610 event->pmu_ctx = pmu_ctx; 12611 12612 if (output_event) { 12613 err = perf_event_set_output(event, output_event); 12614 if (err) 12615 goto err_context; 12616 } 12617 12618 if (!perf_event_validate_size(event)) { 12619 err = -E2BIG; 12620 goto err_context; 12621 } 12622 12623 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12624 err = -EINVAL; 12625 goto err_context; 12626 } 12627 12628 /* 12629 * Must be under the same ctx::mutex as perf_install_in_context(), 12630 * because we need to serialize with concurrent event creation. 12631 */ 12632 if (!exclusive_event_installable(event, ctx)) { 12633 err = -EBUSY; 12634 goto err_context; 12635 } 12636 12637 WARN_ON_ONCE(ctx->parent_ctx); 12638 12639 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12640 if (IS_ERR(event_file)) { 12641 err = PTR_ERR(event_file); 12642 event_file = NULL; 12643 goto err_context; 12644 } 12645 12646 /* 12647 * This is the point on no return; we cannot fail hereafter. This is 12648 * where we start modifying current state. 12649 */ 12650 12651 if (move_group) { 12652 perf_remove_from_context(group_leader, 0); 12653 put_pmu_ctx(group_leader->pmu_ctx); 12654 12655 for_each_sibling_event(sibling, group_leader) { 12656 perf_remove_from_context(sibling, 0); 12657 put_pmu_ctx(sibling->pmu_ctx); 12658 } 12659 12660 /* 12661 * Install the group siblings before the group leader. 12662 * 12663 * Because a group leader will try and install the entire group 12664 * (through the sibling list, which is still in-tact), we can 12665 * end up with siblings installed in the wrong context. 12666 * 12667 * By installing siblings first we NO-OP because they're not 12668 * reachable through the group lists. 12669 */ 12670 for_each_sibling_event(sibling, group_leader) { 12671 sibling->pmu_ctx = pmu_ctx; 12672 get_pmu_ctx(pmu_ctx); 12673 perf_event__state_init(sibling); 12674 perf_install_in_context(ctx, sibling, sibling->cpu); 12675 } 12676 12677 /* 12678 * Removing from the context ends up with disabled 12679 * event. What we want here is event in the initial 12680 * startup state, ready to be add into new context. 12681 */ 12682 group_leader->pmu_ctx = pmu_ctx; 12683 get_pmu_ctx(pmu_ctx); 12684 perf_event__state_init(group_leader); 12685 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12686 } 12687 12688 /* 12689 * Precalculate sample_data sizes; do while holding ctx::mutex such 12690 * that we're serialized against further additions and before 12691 * perf_install_in_context() which is the point the event is active and 12692 * can use these values. 12693 */ 12694 perf_event__header_size(event); 12695 perf_event__id_header_size(event); 12696 12697 event->owner = current; 12698 12699 perf_install_in_context(ctx, event, event->cpu); 12700 perf_unpin_context(ctx); 12701 12702 mutex_unlock(&ctx->mutex); 12703 12704 if (task) { 12705 up_read(&task->signal->exec_update_lock); 12706 put_task_struct(task); 12707 } 12708 12709 mutex_lock(¤t->perf_event_mutex); 12710 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12711 mutex_unlock(¤t->perf_event_mutex); 12712 12713 /* 12714 * Drop the reference on the group_event after placing the 12715 * new event on the sibling_list. This ensures destruction 12716 * of the group leader will find the pointer to itself in 12717 * perf_group_detach(). 12718 */ 12719 fdput(group); 12720 fd_install(event_fd, event_file); 12721 return event_fd; 12722 12723 err_context: 12724 put_pmu_ctx(event->pmu_ctx); 12725 event->pmu_ctx = NULL; /* _free_event() */ 12726 err_locked: 12727 mutex_unlock(&ctx->mutex); 12728 perf_unpin_context(ctx); 12729 put_ctx(ctx); 12730 err_cred: 12731 if (task) 12732 up_read(&task->signal->exec_update_lock); 12733 err_alloc: 12734 free_event(event); 12735 err_task: 12736 if (task) 12737 put_task_struct(task); 12738 err_group_fd: 12739 fdput(group); 12740 err_fd: 12741 put_unused_fd(event_fd); 12742 return err; 12743 } 12744 12745 /** 12746 * perf_event_create_kernel_counter 12747 * 12748 * @attr: attributes of the counter to create 12749 * @cpu: cpu in which the counter is bound 12750 * @task: task to profile (NULL for percpu) 12751 * @overflow_handler: callback to trigger when we hit the event 12752 * @context: context data could be used in overflow_handler callback 12753 */ 12754 struct perf_event * 12755 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12756 struct task_struct *task, 12757 perf_overflow_handler_t overflow_handler, 12758 void *context) 12759 { 12760 struct perf_event_pmu_context *pmu_ctx; 12761 struct perf_event_context *ctx; 12762 struct perf_event *event; 12763 struct pmu *pmu; 12764 int err; 12765 12766 /* 12767 * Grouping is not supported for kernel events, neither is 'AUX', 12768 * make sure the caller's intentions are adjusted. 12769 */ 12770 if (attr->aux_output) 12771 return ERR_PTR(-EINVAL); 12772 12773 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12774 overflow_handler, context, -1); 12775 if (IS_ERR(event)) { 12776 err = PTR_ERR(event); 12777 goto err; 12778 } 12779 12780 /* Mark owner so we could distinguish it from user events. */ 12781 event->owner = TASK_TOMBSTONE; 12782 pmu = event->pmu; 12783 12784 if (pmu->task_ctx_nr == perf_sw_context) 12785 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12786 12787 /* 12788 * Get the target context (task or percpu): 12789 */ 12790 ctx = find_get_context(task, event); 12791 if (IS_ERR(ctx)) { 12792 err = PTR_ERR(ctx); 12793 goto err_alloc; 12794 } 12795 12796 WARN_ON_ONCE(ctx->parent_ctx); 12797 mutex_lock(&ctx->mutex); 12798 if (ctx->task == TASK_TOMBSTONE) { 12799 err = -ESRCH; 12800 goto err_unlock; 12801 } 12802 12803 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12804 if (IS_ERR(pmu_ctx)) { 12805 err = PTR_ERR(pmu_ctx); 12806 goto err_unlock; 12807 } 12808 event->pmu_ctx = pmu_ctx; 12809 12810 if (!task) { 12811 /* 12812 * Check if the @cpu we're creating an event for is online. 12813 * 12814 * We use the perf_cpu_context::ctx::mutex to serialize against 12815 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12816 */ 12817 struct perf_cpu_context *cpuctx = 12818 container_of(ctx, struct perf_cpu_context, ctx); 12819 if (!cpuctx->online) { 12820 err = -ENODEV; 12821 goto err_pmu_ctx; 12822 } 12823 } 12824 12825 if (!exclusive_event_installable(event, ctx)) { 12826 err = -EBUSY; 12827 goto err_pmu_ctx; 12828 } 12829 12830 perf_install_in_context(ctx, event, event->cpu); 12831 perf_unpin_context(ctx); 12832 mutex_unlock(&ctx->mutex); 12833 12834 return event; 12835 12836 err_pmu_ctx: 12837 put_pmu_ctx(pmu_ctx); 12838 event->pmu_ctx = NULL; /* _free_event() */ 12839 err_unlock: 12840 mutex_unlock(&ctx->mutex); 12841 perf_unpin_context(ctx); 12842 put_ctx(ctx); 12843 err_alloc: 12844 free_event(event); 12845 err: 12846 return ERR_PTR(err); 12847 } 12848 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12849 12850 static void __perf_pmu_remove(struct perf_event_context *ctx, 12851 int cpu, struct pmu *pmu, 12852 struct perf_event_groups *groups, 12853 struct list_head *events) 12854 { 12855 struct perf_event *event, *sibling; 12856 12857 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12858 perf_remove_from_context(event, 0); 12859 put_pmu_ctx(event->pmu_ctx); 12860 list_add(&event->migrate_entry, events); 12861 12862 for_each_sibling_event(sibling, event) { 12863 perf_remove_from_context(sibling, 0); 12864 put_pmu_ctx(sibling->pmu_ctx); 12865 list_add(&sibling->migrate_entry, events); 12866 } 12867 } 12868 } 12869 12870 static void __perf_pmu_install_event(struct pmu *pmu, 12871 struct perf_event_context *ctx, 12872 int cpu, struct perf_event *event) 12873 { 12874 struct perf_event_pmu_context *epc; 12875 12876 event->cpu = cpu; 12877 epc = find_get_pmu_context(pmu, ctx, event); 12878 event->pmu_ctx = epc; 12879 12880 if (event->state >= PERF_EVENT_STATE_OFF) 12881 event->state = PERF_EVENT_STATE_INACTIVE; 12882 perf_install_in_context(ctx, event, cpu); 12883 } 12884 12885 static void __perf_pmu_install(struct perf_event_context *ctx, 12886 int cpu, struct pmu *pmu, struct list_head *events) 12887 { 12888 struct perf_event *event, *tmp; 12889 12890 /* 12891 * Re-instate events in 2 passes. 12892 * 12893 * Skip over group leaders and only install siblings on this first 12894 * pass, siblings will not get enabled without a leader, however a 12895 * leader will enable its siblings, even if those are still on the old 12896 * context. 12897 */ 12898 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12899 if (event->group_leader == event) 12900 continue; 12901 12902 list_del(&event->migrate_entry); 12903 __perf_pmu_install_event(pmu, ctx, cpu, event); 12904 } 12905 12906 /* 12907 * Once all the siblings are setup properly, install the group leaders 12908 * to make it go. 12909 */ 12910 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12911 list_del(&event->migrate_entry); 12912 __perf_pmu_install_event(pmu, ctx, cpu, event); 12913 } 12914 } 12915 12916 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12917 { 12918 struct perf_event_context *src_ctx, *dst_ctx; 12919 LIST_HEAD(events); 12920 12921 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12922 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12923 12924 /* 12925 * See perf_event_ctx_lock() for comments on the details 12926 * of swizzling perf_event::ctx. 12927 */ 12928 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12929 12930 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12931 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12932 12933 if (!list_empty(&events)) { 12934 /* 12935 * Wait for the events to quiesce before re-instating them. 12936 */ 12937 synchronize_rcu(); 12938 12939 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12940 } 12941 12942 mutex_unlock(&dst_ctx->mutex); 12943 mutex_unlock(&src_ctx->mutex); 12944 } 12945 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12946 12947 static void sync_child_event(struct perf_event *child_event) 12948 { 12949 struct perf_event *parent_event = child_event->parent; 12950 u64 child_val; 12951 12952 if (child_event->attr.inherit_stat) { 12953 struct task_struct *task = child_event->ctx->task; 12954 12955 if (task && task != TASK_TOMBSTONE) 12956 perf_event_read_event(child_event, task); 12957 } 12958 12959 child_val = perf_event_count(child_event); 12960 12961 /* 12962 * Add back the child's count to the parent's count: 12963 */ 12964 atomic64_add(child_val, &parent_event->child_count); 12965 atomic64_add(child_event->total_time_enabled, 12966 &parent_event->child_total_time_enabled); 12967 atomic64_add(child_event->total_time_running, 12968 &parent_event->child_total_time_running); 12969 } 12970 12971 static void 12972 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12973 { 12974 struct perf_event *parent_event = event->parent; 12975 unsigned long detach_flags = 0; 12976 12977 if (parent_event) { 12978 /* 12979 * Do not destroy the 'original' grouping; because of the 12980 * context switch optimization the original events could've 12981 * ended up in a random child task. 12982 * 12983 * If we were to destroy the original group, all group related 12984 * operations would cease to function properly after this 12985 * random child dies. 12986 * 12987 * Do destroy all inherited groups, we don't care about those 12988 * and being thorough is better. 12989 */ 12990 detach_flags = DETACH_GROUP | DETACH_CHILD; 12991 mutex_lock(&parent_event->child_mutex); 12992 } 12993 12994 perf_remove_from_context(event, detach_flags); 12995 12996 raw_spin_lock_irq(&ctx->lock); 12997 if (event->state > PERF_EVENT_STATE_EXIT) 12998 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12999 raw_spin_unlock_irq(&ctx->lock); 13000 13001 /* 13002 * Child events can be freed. 13003 */ 13004 if (parent_event) { 13005 mutex_unlock(&parent_event->child_mutex); 13006 /* 13007 * Kick perf_poll() for is_event_hup(); 13008 */ 13009 perf_event_wakeup(parent_event); 13010 free_event(event); 13011 put_event(parent_event); 13012 return; 13013 } 13014 13015 /* 13016 * Parent events are governed by their filedesc, retain them. 13017 */ 13018 perf_event_wakeup(event); 13019 } 13020 13021 static void perf_event_exit_task_context(struct task_struct *child) 13022 { 13023 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13024 struct perf_event *child_event, *next; 13025 13026 WARN_ON_ONCE(child != current); 13027 13028 child_ctx = perf_pin_task_context(child); 13029 if (!child_ctx) 13030 return; 13031 13032 /* 13033 * In order to reduce the amount of tricky in ctx tear-down, we hold 13034 * ctx::mutex over the entire thing. This serializes against almost 13035 * everything that wants to access the ctx. 13036 * 13037 * The exception is sys_perf_event_open() / 13038 * perf_event_create_kernel_count() which does find_get_context() 13039 * without ctx::mutex (it cannot because of the move_group double mutex 13040 * lock thing). See the comments in perf_install_in_context(). 13041 */ 13042 mutex_lock(&child_ctx->mutex); 13043 13044 /* 13045 * In a single ctx::lock section, de-schedule the events and detach the 13046 * context from the task such that we cannot ever get it scheduled back 13047 * in. 13048 */ 13049 raw_spin_lock_irq(&child_ctx->lock); 13050 task_ctx_sched_out(child_ctx, EVENT_ALL); 13051 13052 /* 13053 * Now that the context is inactive, destroy the task <-> ctx relation 13054 * and mark the context dead. 13055 */ 13056 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13057 put_ctx(child_ctx); /* cannot be last */ 13058 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13059 put_task_struct(current); /* cannot be last */ 13060 13061 clone_ctx = unclone_ctx(child_ctx); 13062 raw_spin_unlock_irq(&child_ctx->lock); 13063 13064 if (clone_ctx) 13065 put_ctx(clone_ctx); 13066 13067 /* 13068 * Report the task dead after unscheduling the events so that we 13069 * won't get any samples after PERF_RECORD_EXIT. We can however still 13070 * get a few PERF_RECORD_READ events. 13071 */ 13072 perf_event_task(child, child_ctx, 0); 13073 13074 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13075 perf_event_exit_event(child_event, child_ctx); 13076 13077 mutex_unlock(&child_ctx->mutex); 13078 13079 put_ctx(child_ctx); 13080 } 13081 13082 /* 13083 * When a child task exits, feed back event values to parent events. 13084 * 13085 * Can be called with exec_update_lock held when called from 13086 * setup_new_exec(). 13087 */ 13088 void perf_event_exit_task(struct task_struct *child) 13089 { 13090 struct perf_event *event, *tmp; 13091 13092 mutex_lock(&child->perf_event_mutex); 13093 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13094 owner_entry) { 13095 list_del_init(&event->owner_entry); 13096 13097 /* 13098 * Ensure the list deletion is visible before we clear 13099 * the owner, closes a race against perf_release() where 13100 * we need to serialize on the owner->perf_event_mutex. 13101 */ 13102 smp_store_release(&event->owner, NULL); 13103 } 13104 mutex_unlock(&child->perf_event_mutex); 13105 13106 perf_event_exit_task_context(child); 13107 13108 /* 13109 * The perf_event_exit_task_context calls perf_event_task 13110 * with child's task_ctx, which generates EXIT events for 13111 * child contexts and sets child->perf_event_ctxp[] to NULL. 13112 * At this point we need to send EXIT events to cpu contexts. 13113 */ 13114 perf_event_task(child, NULL, 0); 13115 } 13116 13117 static void perf_free_event(struct perf_event *event, 13118 struct perf_event_context *ctx) 13119 { 13120 struct perf_event *parent = event->parent; 13121 13122 if (WARN_ON_ONCE(!parent)) 13123 return; 13124 13125 mutex_lock(&parent->child_mutex); 13126 list_del_init(&event->child_list); 13127 mutex_unlock(&parent->child_mutex); 13128 13129 put_event(parent); 13130 13131 raw_spin_lock_irq(&ctx->lock); 13132 perf_group_detach(event); 13133 list_del_event(event, ctx); 13134 raw_spin_unlock_irq(&ctx->lock); 13135 free_event(event); 13136 } 13137 13138 /* 13139 * Free a context as created by inheritance by perf_event_init_task() below, 13140 * used by fork() in case of fail. 13141 * 13142 * Even though the task has never lived, the context and events have been 13143 * exposed through the child_list, so we must take care tearing it all down. 13144 */ 13145 void perf_event_free_task(struct task_struct *task) 13146 { 13147 struct perf_event_context *ctx; 13148 struct perf_event *event, *tmp; 13149 13150 ctx = rcu_access_pointer(task->perf_event_ctxp); 13151 if (!ctx) 13152 return; 13153 13154 mutex_lock(&ctx->mutex); 13155 raw_spin_lock_irq(&ctx->lock); 13156 /* 13157 * Destroy the task <-> ctx relation and mark the context dead. 13158 * 13159 * This is important because even though the task hasn't been 13160 * exposed yet the context has been (through child_list). 13161 */ 13162 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13163 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13164 put_task_struct(task); /* cannot be last */ 13165 raw_spin_unlock_irq(&ctx->lock); 13166 13167 13168 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13169 perf_free_event(event, ctx); 13170 13171 mutex_unlock(&ctx->mutex); 13172 13173 /* 13174 * perf_event_release_kernel() could've stolen some of our 13175 * child events and still have them on its free_list. In that 13176 * case we must wait for these events to have been freed (in 13177 * particular all their references to this task must've been 13178 * dropped). 13179 * 13180 * Without this copy_process() will unconditionally free this 13181 * task (irrespective of its reference count) and 13182 * _free_event()'s put_task_struct(event->hw.target) will be a 13183 * use-after-free. 13184 * 13185 * Wait for all events to drop their context reference. 13186 */ 13187 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13188 put_ctx(ctx); /* must be last */ 13189 } 13190 13191 void perf_event_delayed_put(struct task_struct *task) 13192 { 13193 WARN_ON_ONCE(task->perf_event_ctxp); 13194 } 13195 13196 struct file *perf_event_get(unsigned int fd) 13197 { 13198 struct file *file = fget(fd); 13199 if (!file) 13200 return ERR_PTR(-EBADF); 13201 13202 if (file->f_op != &perf_fops) { 13203 fput(file); 13204 return ERR_PTR(-EBADF); 13205 } 13206 13207 return file; 13208 } 13209 13210 const struct perf_event *perf_get_event(struct file *file) 13211 { 13212 if (file->f_op != &perf_fops) 13213 return ERR_PTR(-EINVAL); 13214 13215 return file->private_data; 13216 } 13217 13218 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13219 { 13220 if (!event) 13221 return ERR_PTR(-EINVAL); 13222 13223 return &event->attr; 13224 } 13225 13226 /* 13227 * Inherit an event from parent task to child task. 13228 * 13229 * Returns: 13230 * - valid pointer on success 13231 * - NULL for orphaned events 13232 * - IS_ERR() on error 13233 */ 13234 static struct perf_event * 13235 inherit_event(struct perf_event *parent_event, 13236 struct task_struct *parent, 13237 struct perf_event_context *parent_ctx, 13238 struct task_struct *child, 13239 struct perf_event *group_leader, 13240 struct perf_event_context *child_ctx) 13241 { 13242 enum perf_event_state parent_state = parent_event->state; 13243 struct perf_event_pmu_context *pmu_ctx; 13244 struct perf_event *child_event; 13245 unsigned long flags; 13246 13247 /* 13248 * Instead of creating recursive hierarchies of events, 13249 * we link inherited events back to the original parent, 13250 * which has a filp for sure, which we use as the reference 13251 * count: 13252 */ 13253 if (parent_event->parent) 13254 parent_event = parent_event->parent; 13255 13256 child_event = perf_event_alloc(&parent_event->attr, 13257 parent_event->cpu, 13258 child, 13259 group_leader, parent_event, 13260 NULL, NULL, -1); 13261 if (IS_ERR(child_event)) 13262 return child_event; 13263 13264 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13265 if (IS_ERR(pmu_ctx)) { 13266 free_event(child_event); 13267 return ERR_CAST(pmu_ctx); 13268 } 13269 child_event->pmu_ctx = pmu_ctx; 13270 13271 /* 13272 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13273 * must be under the same lock in order to serialize against 13274 * perf_event_release_kernel(), such that either we must observe 13275 * is_orphaned_event() or they will observe us on the child_list. 13276 */ 13277 mutex_lock(&parent_event->child_mutex); 13278 if (is_orphaned_event(parent_event) || 13279 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13280 mutex_unlock(&parent_event->child_mutex); 13281 /* task_ctx_data is freed with child_ctx */ 13282 free_event(child_event); 13283 return NULL; 13284 } 13285 13286 get_ctx(child_ctx); 13287 13288 /* 13289 * Make the child state follow the state of the parent event, 13290 * not its attr.disabled bit. We hold the parent's mutex, 13291 * so we won't race with perf_event_{en, dis}able_family. 13292 */ 13293 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13294 child_event->state = PERF_EVENT_STATE_INACTIVE; 13295 else 13296 child_event->state = PERF_EVENT_STATE_OFF; 13297 13298 if (parent_event->attr.freq) { 13299 u64 sample_period = parent_event->hw.sample_period; 13300 struct hw_perf_event *hwc = &child_event->hw; 13301 13302 hwc->sample_period = sample_period; 13303 hwc->last_period = sample_period; 13304 13305 local64_set(&hwc->period_left, sample_period); 13306 } 13307 13308 child_event->ctx = child_ctx; 13309 child_event->overflow_handler = parent_event->overflow_handler; 13310 child_event->overflow_handler_context 13311 = parent_event->overflow_handler_context; 13312 13313 /* 13314 * Precalculate sample_data sizes 13315 */ 13316 perf_event__header_size(child_event); 13317 perf_event__id_header_size(child_event); 13318 13319 /* 13320 * Link it up in the child's context: 13321 */ 13322 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13323 add_event_to_ctx(child_event, child_ctx); 13324 child_event->attach_state |= PERF_ATTACH_CHILD; 13325 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13326 13327 /* 13328 * Link this into the parent event's child list 13329 */ 13330 list_add_tail(&child_event->child_list, &parent_event->child_list); 13331 mutex_unlock(&parent_event->child_mutex); 13332 13333 return child_event; 13334 } 13335 13336 /* 13337 * Inherits an event group. 13338 * 13339 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13340 * This matches with perf_event_release_kernel() removing all child events. 13341 * 13342 * Returns: 13343 * - 0 on success 13344 * - <0 on error 13345 */ 13346 static int inherit_group(struct perf_event *parent_event, 13347 struct task_struct *parent, 13348 struct perf_event_context *parent_ctx, 13349 struct task_struct *child, 13350 struct perf_event_context *child_ctx) 13351 { 13352 struct perf_event *leader; 13353 struct perf_event *sub; 13354 struct perf_event *child_ctr; 13355 13356 leader = inherit_event(parent_event, parent, parent_ctx, 13357 child, NULL, child_ctx); 13358 if (IS_ERR(leader)) 13359 return PTR_ERR(leader); 13360 /* 13361 * @leader can be NULL here because of is_orphaned_event(). In this 13362 * case inherit_event() will create individual events, similar to what 13363 * perf_group_detach() would do anyway. 13364 */ 13365 for_each_sibling_event(sub, parent_event) { 13366 child_ctr = inherit_event(sub, parent, parent_ctx, 13367 child, leader, child_ctx); 13368 if (IS_ERR(child_ctr)) 13369 return PTR_ERR(child_ctr); 13370 13371 if (sub->aux_event == parent_event && child_ctr && 13372 !perf_get_aux_event(child_ctr, leader)) 13373 return -EINVAL; 13374 } 13375 if (leader) 13376 leader->group_generation = parent_event->group_generation; 13377 return 0; 13378 } 13379 13380 /* 13381 * Creates the child task context and tries to inherit the event-group. 13382 * 13383 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13384 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13385 * consistent with perf_event_release_kernel() removing all child events. 13386 * 13387 * Returns: 13388 * - 0 on success 13389 * - <0 on error 13390 */ 13391 static int 13392 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13393 struct perf_event_context *parent_ctx, 13394 struct task_struct *child, 13395 u64 clone_flags, int *inherited_all) 13396 { 13397 struct perf_event_context *child_ctx; 13398 int ret; 13399 13400 if (!event->attr.inherit || 13401 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13402 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13403 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13404 *inherited_all = 0; 13405 return 0; 13406 } 13407 13408 child_ctx = child->perf_event_ctxp; 13409 if (!child_ctx) { 13410 /* 13411 * This is executed from the parent task context, so 13412 * inherit events that have been marked for cloning. 13413 * First allocate and initialize a context for the 13414 * child. 13415 */ 13416 child_ctx = alloc_perf_context(child); 13417 if (!child_ctx) 13418 return -ENOMEM; 13419 13420 child->perf_event_ctxp = child_ctx; 13421 } 13422 13423 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13424 if (ret) 13425 *inherited_all = 0; 13426 13427 return ret; 13428 } 13429 13430 /* 13431 * Initialize the perf_event context in task_struct 13432 */ 13433 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13434 { 13435 struct perf_event_context *child_ctx, *parent_ctx; 13436 struct perf_event_context *cloned_ctx; 13437 struct perf_event *event; 13438 struct task_struct *parent = current; 13439 int inherited_all = 1; 13440 unsigned long flags; 13441 int ret = 0; 13442 13443 if (likely(!parent->perf_event_ctxp)) 13444 return 0; 13445 13446 /* 13447 * If the parent's context is a clone, pin it so it won't get 13448 * swapped under us. 13449 */ 13450 parent_ctx = perf_pin_task_context(parent); 13451 if (!parent_ctx) 13452 return 0; 13453 13454 /* 13455 * No need to check if parent_ctx != NULL here; since we saw 13456 * it non-NULL earlier, the only reason for it to become NULL 13457 * is if we exit, and since we're currently in the middle of 13458 * a fork we can't be exiting at the same time. 13459 */ 13460 13461 /* 13462 * Lock the parent list. No need to lock the child - not PID 13463 * hashed yet and not running, so nobody can access it. 13464 */ 13465 mutex_lock(&parent_ctx->mutex); 13466 13467 /* 13468 * We dont have to disable NMIs - we are only looking at 13469 * the list, not manipulating it: 13470 */ 13471 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13472 ret = inherit_task_group(event, parent, parent_ctx, 13473 child, clone_flags, &inherited_all); 13474 if (ret) 13475 goto out_unlock; 13476 } 13477 13478 /* 13479 * We can't hold ctx->lock when iterating the ->flexible_group list due 13480 * to allocations, but we need to prevent rotation because 13481 * rotate_ctx() will change the list from interrupt context. 13482 */ 13483 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13484 parent_ctx->rotate_disable = 1; 13485 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13486 13487 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13488 ret = inherit_task_group(event, parent, parent_ctx, 13489 child, clone_flags, &inherited_all); 13490 if (ret) 13491 goto out_unlock; 13492 } 13493 13494 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13495 parent_ctx->rotate_disable = 0; 13496 13497 child_ctx = child->perf_event_ctxp; 13498 13499 if (child_ctx && inherited_all) { 13500 /* 13501 * Mark the child context as a clone of the parent 13502 * context, or of whatever the parent is a clone of. 13503 * 13504 * Note that if the parent is a clone, the holding of 13505 * parent_ctx->lock avoids it from being uncloned. 13506 */ 13507 cloned_ctx = parent_ctx->parent_ctx; 13508 if (cloned_ctx) { 13509 child_ctx->parent_ctx = cloned_ctx; 13510 child_ctx->parent_gen = parent_ctx->parent_gen; 13511 } else { 13512 child_ctx->parent_ctx = parent_ctx; 13513 child_ctx->parent_gen = parent_ctx->generation; 13514 } 13515 get_ctx(child_ctx->parent_ctx); 13516 } 13517 13518 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13519 out_unlock: 13520 mutex_unlock(&parent_ctx->mutex); 13521 13522 perf_unpin_context(parent_ctx); 13523 put_ctx(parent_ctx); 13524 13525 return ret; 13526 } 13527 13528 /* 13529 * Initialize the perf_event context in task_struct 13530 */ 13531 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13532 { 13533 int ret; 13534 13535 child->perf_event_ctxp = NULL; 13536 mutex_init(&child->perf_event_mutex); 13537 INIT_LIST_HEAD(&child->perf_event_list); 13538 13539 ret = perf_event_init_context(child, clone_flags); 13540 if (ret) { 13541 perf_event_free_task(child); 13542 return ret; 13543 } 13544 13545 return 0; 13546 } 13547 13548 static void __init perf_event_init_all_cpus(void) 13549 { 13550 struct swevent_htable *swhash; 13551 struct perf_cpu_context *cpuctx; 13552 int cpu; 13553 13554 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13555 13556 for_each_possible_cpu(cpu) { 13557 swhash = &per_cpu(swevent_htable, cpu); 13558 mutex_init(&swhash->hlist_mutex); 13559 13560 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13561 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13562 13563 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13564 13565 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13566 __perf_event_init_context(&cpuctx->ctx); 13567 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13568 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13569 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13570 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13571 cpuctx->heap = cpuctx->heap_default; 13572 } 13573 } 13574 13575 static void perf_swevent_init_cpu(unsigned int cpu) 13576 { 13577 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13578 13579 mutex_lock(&swhash->hlist_mutex); 13580 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13581 struct swevent_hlist *hlist; 13582 13583 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13584 WARN_ON(!hlist); 13585 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13586 } 13587 mutex_unlock(&swhash->hlist_mutex); 13588 } 13589 13590 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13591 static void __perf_event_exit_context(void *__info) 13592 { 13593 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13594 struct perf_event_context *ctx = __info; 13595 struct perf_event *event; 13596 13597 raw_spin_lock(&ctx->lock); 13598 ctx_sched_out(ctx, EVENT_TIME); 13599 list_for_each_entry(event, &ctx->event_list, event_entry) 13600 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13601 raw_spin_unlock(&ctx->lock); 13602 } 13603 13604 static void perf_event_exit_cpu_context(int cpu) 13605 { 13606 struct perf_cpu_context *cpuctx; 13607 struct perf_event_context *ctx; 13608 13609 // XXX simplify cpuctx->online 13610 mutex_lock(&pmus_lock); 13611 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13612 ctx = &cpuctx->ctx; 13613 13614 mutex_lock(&ctx->mutex); 13615 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13616 cpuctx->online = 0; 13617 mutex_unlock(&ctx->mutex); 13618 cpumask_clear_cpu(cpu, perf_online_mask); 13619 mutex_unlock(&pmus_lock); 13620 } 13621 #else 13622 13623 static void perf_event_exit_cpu_context(int cpu) { } 13624 13625 #endif 13626 13627 int perf_event_init_cpu(unsigned int cpu) 13628 { 13629 struct perf_cpu_context *cpuctx; 13630 struct perf_event_context *ctx; 13631 13632 perf_swevent_init_cpu(cpu); 13633 13634 mutex_lock(&pmus_lock); 13635 cpumask_set_cpu(cpu, perf_online_mask); 13636 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13637 ctx = &cpuctx->ctx; 13638 13639 mutex_lock(&ctx->mutex); 13640 cpuctx->online = 1; 13641 mutex_unlock(&ctx->mutex); 13642 mutex_unlock(&pmus_lock); 13643 13644 return 0; 13645 } 13646 13647 int perf_event_exit_cpu(unsigned int cpu) 13648 { 13649 perf_event_exit_cpu_context(cpu); 13650 return 0; 13651 } 13652 13653 static int 13654 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13655 { 13656 int cpu; 13657 13658 for_each_online_cpu(cpu) 13659 perf_event_exit_cpu(cpu); 13660 13661 return NOTIFY_OK; 13662 } 13663 13664 /* 13665 * Run the perf reboot notifier at the very last possible moment so that 13666 * the generic watchdog code runs as long as possible. 13667 */ 13668 static struct notifier_block perf_reboot_notifier = { 13669 .notifier_call = perf_reboot, 13670 .priority = INT_MIN, 13671 }; 13672 13673 void __init perf_event_init(void) 13674 { 13675 int ret; 13676 13677 idr_init(&pmu_idr); 13678 13679 perf_event_init_all_cpus(); 13680 init_srcu_struct(&pmus_srcu); 13681 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13682 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13683 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13684 perf_tp_register(); 13685 perf_event_init_cpu(smp_processor_id()); 13686 register_reboot_notifier(&perf_reboot_notifier); 13687 13688 ret = init_hw_breakpoint(); 13689 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13690 13691 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13692 13693 /* 13694 * Build time assertion that we keep the data_head at the intended 13695 * location. IOW, validation we got the __reserved[] size right. 13696 */ 13697 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13698 != 1024); 13699 } 13700 13701 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13702 char *page) 13703 { 13704 struct perf_pmu_events_attr *pmu_attr = 13705 container_of(attr, struct perf_pmu_events_attr, attr); 13706 13707 if (pmu_attr->event_str) 13708 return sprintf(page, "%s\n", pmu_attr->event_str); 13709 13710 return 0; 13711 } 13712 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13713 13714 static int __init perf_event_sysfs_init(void) 13715 { 13716 struct pmu *pmu; 13717 int ret; 13718 13719 mutex_lock(&pmus_lock); 13720 13721 ret = bus_register(&pmu_bus); 13722 if (ret) 13723 goto unlock; 13724 13725 list_for_each_entry(pmu, &pmus, entry) { 13726 if (pmu->dev) 13727 continue; 13728 13729 ret = pmu_dev_alloc(pmu); 13730 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13731 } 13732 pmu_bus_running = 1; 13733 ret = 0; 13734 13735 unlock: 13736 mutex_unlock(&pmus_lock); 13737 13738 return ret; 13739 } 13740 device_initcall(perf_event_sysfs_init); 13741 13742 #ifdef CONFIG_CGROUP_PERF 13743 static struct cgroup_subsys_state * 13744 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13745 { 13746 struct perf_cgroup *jc; 13747 13748 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13749 if (!jc) 13750 return ERR_PTR(-ENOMEM); 13751 13752 jc->info = alloc_percpu(struct perf_cgroup_info); 13753 if (!jc->info) { 13754 kfree(jc); 13755 return ERR_PTR(-ENOMEM); 13756 } 13757 13758 return &jc->css; 13759 } 13760 13761 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13762 { 13763 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13764 13765 free_percpu(jc->info); 13766 kfree(jc); 13767 } 13768 13769 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13770 { 13771 perf_event_cgroup(css->cgroup); 13772 return 0; 13773 } 13774 13775 static int __perf_cgroup_move(void *info) 13776 { 13777 struct task_struct *task = info; 13778 13779 preempt_disable(); 13780 perf_cgroup_switch(task); 13781 preempt_enable(); 13782 13783 return 0; 13784 } 13785 13786 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13787 { 13788 struct task_struct *task; 13789 struct cgroup_subsys_state *css; 13790 13791 cgroup_taskset_for_each(task, css, tset) 13792 task_function_call(task, __perf_cgroup_move, task); 13793 } 13794 13795 struct cgroup_subsys perf_event_cgrp_subsys = { 13796 .css_alloc = perf_cgroup_css_alloc, 13797 .css_free = perf_cgroup_css_free, 13798 .css_online = perf_cgroup_css_online, 13799 .attach = perf_cgroup_attach, 13800 /* 13801 * Implicitly enable on dfl hierarchy so that perf events can 13802 * always be filtered by cgroup2 path as long as perf_event 13803 * controller is not mounted on a legacy hierarchy. 13804 */ 13805 .implicit_on_dfl = true, 13806 .threaded = true, 13807 }; 13808 #endif /* CONFIG_CGROUP_PERF */ 13809 13810 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13811