xref: /openbmc/linux/kernel/events/core.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP |\
123 		       PERF_FLAG_FD_CLOEXEC)
124 
125 /*
126  * branch priv levels that need permission checks
127  */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 	(PERF_SAMPLE_BRANCH_KERNEL |\
130 	 PERF_SAMPLE_BRANCH_HV)
131 
132 enum event_type_t {
133 	EVENT_FLEXIBLE = 0x1,
134 	EVENT_PINNED = 0x2,
135 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137 
138 /*
139  * perf_sched_events : >0 events exist
140  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141  */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145 
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149 static atomic_t nr_freq_events __read_mostly;
150 
151 static LIST_HEAD(pmus);
152 static DEFINE_MUTEX(pmus_lock);
153 static struct srcu_struct pmus_srcu;
154 
155 /*
156  * perf event paranoia level:
157  *  -1 - not paranoid at all
158  *   0 - disallow raw tracepoint access for unpriv
159  *   1 - disallow cpu events for unpriv
160  *   2 - disallow kernel profiling for unpriv
161  */
162 int sysctl_perf_event_paranoid __read_mostly = 1;
163 
164 /* Minimum for 512 kiB + 1 user control page */
165 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
166 
167 /*
168  * max perf event sample rate
169  */
170 #define DEFAULT_MAX_SAMPLE_RATE		100000
171 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
172 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
173 
174 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
175 
176 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
177 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
178 
179 static int perf_sample_allowed_ns __read_mostly =
180 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
181 
182 void update_perf_cpu_limits(void)
183 {
184 	u64 tmp = perf_sample_period_ns;
185 
186 	tmp *= sysctl_perf_cpu_time_max_percent;
187 	do_div(tmp, 100);
188 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
189 }
190 
191 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
192 
193 int perf_proc_update_handler(struct ctl_table *table, int write,
194 		void __user *buffer, size_t *lenp,
195 		loff_t *ppos)
196 {
197 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
198 
199 	if (ret || !write)
200 		return ret;
201 
202 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
203 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
204 	update_perf_cpu_limits();
205 
206 	return 0;
207 }
208 
209 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
210 
211 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
212 				void __user *buffer, size_t *lenp,
213 				loff_t *ppos)
214 {
215 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
216 
217 	if (ret || !write)
218 		return ret;
219 
220 	update_perf_cpu_limits();
221 
222 	return 0;
223 }
224 
225 /*
226  * perf samples are done in some very critical code paths (NMIs).
227  * If they take too much CPU time, the system can lock up and not
228  * get any real work done.  This will drop the sample rate when
229  * we detect that events are taking too long.
230  */
231 #define NR_ACCUMULATED_SAMPLES 128
232 static DEFINE_PER_CPU(u64, running_sample_length);
233 
234 static void perf_duration_warn(struct irq_work *w)
235 {
236 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
237 	u64 avg_local_sample_len;
238 	u64 local_samples_len;
239 
240 	local_samples_len = __get_cpu_var(running_sample_length);
241 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
242 
243 	printk_ratelimited(KERN_WARNING
244 			"perf interrupt took too long (%lld > %lld), lowering "
245 			"kernel.perf_event_max_sample_rate to %d\n",
246 			avg_local_sample_len, allowed_ns >> 1,
247 			sysctl_perf_event_sample_rate);
248 }
249 
250 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
251 
252 void perf_sample_event_took(u64 sample_len_ns)
253 {
254 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
255 	u64 avg_local_sample_len;
256 	u64 local_samples_len;
257 
258 	if (allowed_ns == 0)
259 		return;
260 
261 	/* decay the counter by 1 average sample */
262 	local_samples_len = __get_cpu_var(running_sample_length);
263 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
264 	local_samples_len += sample_len_ns;
265 	__get_cpu_var(running_sample_length) = local_samples_len;
266 
267 	/*
268 	 * note: this will be biased artifically low until we have
269 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
270 	 * from having to maintain a count.
271 	 */
272 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
273 
274 	if (avg_local_sample_len <= allowed_ns)
275 		return;
276 
277 	if (max_samples_per_tick <= 1)
278 		return;
279 
280 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
281 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
282 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
283 
284 	update_perf_cpu_limits();
285 
286 	if (!irq_work_queue(&perf_duration_work)) {
287 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
288 			     "kernel.perf_event_max_sample_rate to %d\n",
289 			     avg_local_sample_len, allowed_ns >> 1,
290 			     sysctl_perf_event_sample_rate);
291 	}
292 }
293 
294 static atomic64_t perf_event_id;
295 
296 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
297 			      enum event_type_t event_type);
298 
299 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
300 			     enum event_type_t event_type,
301 			     struct task_struct *task);
302 
303 static void update_context_time(struct perf_event_context *ctx);
304 static u64 perf_event_time(struct perf_event *event);
305 
306 void __weak perf_event_print_debug(void)	{ }
307 
308 extern __weak const char *perf_pmu_name(void)
309 {
310 	return "pmu";
311 }
312 
313 static inline u64 perf_clock(void)
314 {
315 	return local_clock();
316 }
317 
318 static inline struct perf_cpu_context *
319 __get_cpu_context(struct perf_event_context *ctx)
320 {
321 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
322 }
323 
324 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
325 			  struct perf_event_context *ctx)
326 {
327 	raw_spin_lock(&cpuctx->ctx.lock);
328 	if (ctx)
329 		raw_spin_lock(&ctx->lock);
330 }
331 
332 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
333 			    struct perf_event_context *ctx)
334 {
335 	if (ctx)
336 		raw_spin_unlock(&ctx->lock);
337 	raw_spin_unlock(&cpuctx->ctx.lock);
338 }
339 
340 #ifdef CONFIG_CGROUP_PERF
341 
342 /*
343  * perf_cgroup_info keeps track of time_enabled for a cgroup.
344  * This is a per-cpu dynamically allocated data structure.
345  */
346 struct perf_cgroup_info {
347 	u64				time;
348 	u64				timestamp;
349 };
350 
351 struct perf_cgroup {
352 	struct cgroup_subsys_state	css;
353 	struct perf_cgroup_info	__percpu *info;
354 };
355 
356 /*
357  * Must ensure cgroup is pinned (css_get) before calling
358  * this function. In other words, we cannot call this function
359  * if there is no cgroup event for the current CPU context.
360  */
361 static inline struct perf_cgroup *
362 perf_cgroup_from_task(struct task_struct *task)
363 {
364 	return container_of(task_css(task, perf_event_cgrp_id),
365 			    struct perf_cgroup, css);
366 }
367 
368 static inline bool
369 perf_cgroup_match(struct perf_event *event)
370 {
371 	struct perf_event_context *ctx = event->ctx;
372 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
373 
374 	/* @event doesn't care about cgroup */
375 	if (!event->cgrp)
376 		return true;
377 
378 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
379 	if (!cpuctx->cgrp)
380 		return false;
381 
382 	/*
383 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
384 	 * also enabled for all its descendant cgroups.  If @cpuctx's
385 	 * cgroup is a descendant of @event's (the test covers identity
386 	 * case), it's a match.
387 	 */
388 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
389 				    event->cgrp->css.cgroup);
390 }
391 
392 static inline void perf_put_cgroup(struct perf_event *event)
393 {
394 	css_put(&event->cgrp->css);
395 }
396 
397 static inline void perf_detach_cgroup(struct perf_event *event)
398 {
399 	perf_put_cgroup(event);
400 	event->cgrp = NULL;
401 }
402 
403 static inline int is_cgroup_event(struct perf_event *event)
404 {
405 	return event->cgrp != NULL;
406 }
407 
408 static inline u64 perf_cgroup_event_time(struct perf_event *event)
409 {
410 	struct perf_cgroup_info *t;
411 
412 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
413 	return t->time;
414 }
415 
416 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
417 {
418 	struct perf_cgroup_info *info;
419 	u64 now;
420 
421 	now = perf_clock();
422 
423 	info = this_cpu_ptr(cgrp->info);
424 
425 	info->time += now - info->timestamp;
426 	info->timestamp = now;
427 }
428 
429 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
430 {
431 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
432 	if (cgrp_out)
433 		__update_cgrp_time(cgrp_out);
434 }
435 
436 static inline void update_cgrp_time_from_event(struct perf_event *event)
437 {
438 	struct perf_cgroup *cgrp;
439 
440 	/*
441 	 * ensure we access cgroup data only when needed and
442 	 * when we know the cgroup is pinned (css_get)
443 	 */
444 	if (!is_cgroup_event(event))
445 		return;
446 
447 	cgrp = perf_cgroup_from_task(current);
448 	/*
449 	 * Do not update time when cgroup is not active
450 	 */
451 	if (cgrp == event->cgrp)
452 		__update_cgrp_time(event->cgrp);
453 }
454 
455 static inline void
456 perf_cgroup_set_timestamp(struct task_struct *task,
457 			  struct perf_event_context *ctx)
458 {
459 	struct perf_cgroup *cgrp;
460 	struct perf_cgroup_info *info;
461 
462 	/*
463 	 * ctx->lock held by caller
464 	 * ensure we do not access cgroup data
465 	 * unless we have the cgroup pinned (css_get)
466 	 */
467 	if (!task || !ctx->nr_cgroups)
468 		return;
469 
470 	cgrp = perf_cgroup_from_task(task);
471 	info = this_cpu_ptr(cgrp->info);
472 	info->timestamp = ctx->timestamp;
473 }
474 
475 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
476 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
477 
478 /*
479  * reschedule events based on the cgroup constraint of task.
480  *
481  * mode SWOUT : schedule out everything
482  * mode SWIN : schedule in based on cgroup for next
483  */
484 void perf_cgroup_switch(struct task_struct *task, int mode)
485 {
486 	struct perf_cpu_context *cpuctx;
487 	struct pmu *pmu;
488 	unsigned long flags;
489 
490 	/*
491 	 * disable interrupts to avoid geting nr_cgroup
492 	 * changes via __perf_event_disable(). Also
493 	 * avoids preemption.
494 	 */
495 	local_irq_save(flags);
496 
497 	/*
498 	 * we reschedule only in the presence of cgroup
499 	 * constrained events.
500 	 */
501 	rcu_read_lock();
502 
503 	list_for_each_entry_rcu(pmu, &pmus, entry) {
504 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
505 		if (cpuctx->unique_pmu != pmu)
506 			continue; /* ensure we process each cpuctx once */
507 
508 		/*
509 		 * perf_cgroup_events says at least one
510 		 * context on this CPU has cgroup events.
511 		 *
512 		 * ctx->nr_cgroups reports the number of cgroup
513 		 * events for a context.
514 		 */
515 		if (cpuctx->ctx.nr_cgroups > 0) {
516 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
517 			perf_pmu_disable(cpuctx->ctx.pmu);
518 
519 			if (mode & PERF_CGROUP_SWOUT) {
520 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
521 				/*
522 				 * must not be done before ctxswout due
523 				 * to event_filter_match() in event_sched_out()
524 				 */
525 				cpuctx->cgrp = NULL;
526 			}
527 
528 			if (mode & PERF_CGROUP_SWIN) {
529 				WARN_ON_ONCE(cpuctx->cgrp);
530 				/*
531 				 * set cgrp before ctxsw in to allow
532 				 * event_filter_match() to not have to pass
533 				 * task around
534 				 */
535 				cpuctx->cgrp = perf_cgroup_from_task(task);
536 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
537 			}
538 			perf_pmu_enable(cpuctx->ctx.pmu);
539 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
540 		}
541 	}
542 
543 	rcu_read_unlock();
544 
545 	local_irq_restore(flags);
546 }
547 
548 static inline void perf_cgroup_sched_out(struct task_struct *task,
549 					 struct task_struct *next)
550 {
551 	struct perf_cgroup *cgrp1;
552 	struct perf_cgroup *cgrp2 = NULL;
553 
554 	/*
555 	 * we come here when we know perf_cgroup_events > 0
556 	 */
557 	cgrp1 = perf_cgroup_from_task(task);
558 
559 	/*
560 	 * next is NULL when called from perf_event_enable_on_exec()
561 	 * that will systematically cause a cgroup_switch()
562 	 */
563 	if (next)
564 		cgrp2 = perf_cgroup_from_task(next);
565 
566 	/*
567 	 * only schedule out current cgroup events if we know
568 	 * that we are switching to a different cgroup. Otherwise,
569 	 * do no touch the cgroup events.
570 	 */
571 	if (cgrp1 != cgrp2)
572 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
573 }
574 
575 static inline void perf_cgroup_sched_in(struct task_struct *prev,
576 					struct task_struct *task)
577 {
578 	struct perf_cgroup *cgrp1;
579 	struct perf_cgroup *cgrp2 = NULL;
580 
581 	/*
582 	 * we come here when we know perf_cgroup_events > 0
583 	 */
584 	cgrp1 = perf_cgroup_from_task(task);
585 
586 	/* prev can never be NULL */
587 	cgrp2 = perf_cgroup_from_task(prev);
588 
589 	/*
590 	 * only need to schedule in cgroup events if we are changing
591 	 * cgroup during ctxsw. Cgroup events were not scheduled
592 	 * out of ctxsw out if that was not the case.
593 	 */
594 	if (cgrp1 != cgrp2)
595 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
596 }
597 
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 				      struct perf_event_attr *attr,
600 				      struct perf_event *group_leader)
601 {
602 	struct perf_cgroup *cgrp;
603 	struct cgroup_subsys_state *css;
604 	struct fd f = fdget(fd);
605 	int ret = 0;
606 
607 	if (!f.file)
608 		return -EBADF;
609 
610 	css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
611 	if (IS_ERR(css)) {
612 		ret = PTR_ERR(css);
613 		goto out;
614 	}
615 
616 	cgrp = container_of(css, struct perf_cgroup, css);
617 	event->cgrp = cgrp;
618 
619 	/*
620 	 * all events in a group must monitor
621 	 * the same cgroup because a task belongs
622 	 * to only one perf cgroup at a time
623 	 */
624 	if (group_leader && group_leader->cgrp != cgrp) {
625 		perf_detach_cgroup(event);
626 		ret = -EINVAL;
627 	}
628 out:
629 	fdput(f);
630 	return ret;
631 }
632 
633 static inline void
634 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
635 {
636 	struct perf_cgroup_info *t;
637 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
638 	event->shadow_ctx_time = now - t->timestamp;
639 }
640 
641 static inline void
642 perf_cgroup_defer_enabled(struct perf_event *event)
643 {
644 	/*
645 	 * when the current task's perf cgroup does not match
646 	 * the event's, we need to remember to call the
647 	 * perf_mark_enable() function the first time a task with
648 	 * a matching perf cgroup is scheduled in.
649 	 */
650 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
651 		event->cgrp_defer_enabled = 1;
652 }
653 
654 static inline void
655 perf_cgroup_mark_enabled(struct perf_event *event,
656 			 struct perf_event_context *ctx)
657 {
658 	struct perf_event *sub;
659 	u64 tstamp = perf_event_time(event);
660 
661 	if (!event->cgrp_defer_enabled)
662 		return;
663 
664 	event->cgrp_defer_enabled = 0;
665 
666 	event->tstamp_enabled = tstamp - event->total_time_enabled;
667 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
668 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
669 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
670 			sub->cgrp_defer_enabled = 0;
671 		}
672 	}
673 }
674 #else /* !CONFIG_CGROUP_PERF */
675 
676 static inline bool
677 perf_cgroup_match(struct perf_event *event)
678 {
679 	return true;
680 }
681 
682 static inline void perf_detach_cgroup(struct perf_event *event)
683 {}
684 
685 static inline int is_cgroup_event(struct perf_event *event)
686 {
687 	return 0;
688 }
689 
690 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
691 {
692 	return 0;
693 }
694 
695 static inline void update_cgrp_time_from_event(struct perf_event *event)
696 {
697 }
698 
699 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
700 {
701 }
702 
703 static inline void perf_cgroup_sched_out(struct task_struct *task,
704 					 struct task_struct *next)
705 {
706 }
707 
708 static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 					struct task_struct *task)
710 {
711 }
712 
713 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
714 				      struct perf_event_attr *attr,
715 				      struct perf_event *group_leader)
716 {
717 	return -EINVAL;
718 }
719 
720 static inline void
721 perf_cgroup_set_timestamp(struct task_struct *task,
722 			  struct perf_event_context *ctx)
723 {
724 }
725 
726 void
727 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
728 {
729 }
730 
731 static inline void
732 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
733 {
734 }
735 
736 static inline u64 perf_cgroup_event_time(struct perf_event *event)
737 {
738 	return 0;
739 }
740 
741 static inline void
742 perf_cgroup_defer_enabled(struct perf_event *event)
743 {
744 }
745 
746 static inline void
747 perf_cgroup_mark_enabled(struct perf_event *event,
748 			 struct perf_event_context *ctx)
749 {
750 }
751 #endif
752 
753 /*
754  * set default to be dependent on timer tick just
755  * like original code
756  */
757 #define PERF_CPU_HRTIMER (1000 / HZ)
758 /*
759  * function must be called with interrupts disbled
760  */
761 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
762 {
763 	struct perf_cpu_context *cpuctx;
764 	enum hrtimer_restart ret = HRTIMER_NORESTART;
765 	int rotations = 0;
766 
767 	WARN_ON(!irqs_disabled());
768 
769 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770 
771 	rotations = perf_rotate_context(cpuctx);
772 
773 	/*
774 	 * arm timer if needed
775 	 */
776 	if (rotations) {
777 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
778 		ret = HRTIMER_RESTART;
779 	}
780 
781 	return ret;
782 }
783 
784 /* CPU is going down */
785 void perf_cpu_hrtimer_cancel(int cpu)
786 {
787 	struct perf_cpu_context *cpuctx;
788 	struct pmu *pmu;
789 	unsigned long flags;
790 
791 	if (WARN_ON(cpu != smp_processor_id()))
792 		return;
793 
794 	local_irq_save(flags);
795 
796 	rcu_read_lock();
797 
798 	list_for_each_entry_rcu(pmu, &pmus, entry) {
799 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
800 
801 		if (pmu->task_ctx_nr == perf_sw_context)
802 			continue;
803 
804 		hrtimer_cancel(&cpuctx->hrtimer);
805 	}
806 
807 	rcu_read_unlock();
808 
809 	local_irq_restore(flags);
810 }
811 
812 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
813 {
814 	struct hrtimer *hr = &cpuctx->hrtimer;
815 	struct pmu *pmu = cpuctx->ctx.pmu;
816 	int timer;
817 
818 	/* no multiplexing needed for SW PMU */
819 	if (pmu->task_ctx_nr == perf_sw_context)
820 		return;
821 
822 	/*
823 	 * check default is sane, if not set then force to
824 	 * default interval (1/tick)
825 	 */
826 	timer = pmu->hrtimer_interval_ms;
827 	if (timer < 1)
828 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
829 
830 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
831 
832 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
833 	hr->function = perf_cpu_hrtimer_handler;
834 }
835 
836 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
837 {
838 	struct hrtimer *hr = &cpuctx->hrtimer;
839 	struct pmu *pmu = cpuctx->ctx.pmu;
840 
841 	/* not for SW PMU */
842 	if (pmu->task_ctx_nr == perf_sw_context)
843 		return;
844 
845 	if (hrtimer_active(hr))
846 		return;
847 
848 	if (!hrtimer_callback_running(hr))
849 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
850 					 0, HRTIMER_MODE_REL_PINNED, 0);
851 }
852 
853 void perf_pmu_disable(struct pmu *pmu)
854 {
855 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
856 	if (!(*count)++)
857 		pmu->pmu_disable(pmu);
858 }
859 
860 void perf_pmu_enable(struct pmu *pmu)
861 {
862 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
863 	if (!--(*count))
864 		pmu->pmu_enable(pmu);
865 }
866 
867 static DEFINE_PER_CPU(struct list_head, rotation_list);
868 
869 /*
870  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
871  * because they're strictly cpu affine and rotate_start is called with IRQs
872  * disabled, while rotate_context is called from IRQ context.
873  */
874 static void perf_pmu_rotate_start(struct pmu *pmu)
875 {
876 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
877 	struct list_head *head = &__get_cpu_var(rotation_list);
878 
879 	WARN_ON(!irqs_disabled());
880 
881 	if (list_empty(&cpuctx->rotation_list))
882 		list_add(&cpuctx->rotation_list, head);
883 }
884 
885 static void get_ctx(struct perf_event_context *ctx)
886 {
887 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
888 }
889 
890 static void put_ctx(struct perf_event_context *ctx)
891 {
892 	if (atomic_dec_and_test(&ctx->refcount)) {
893 		if (ctx->parent_ctx)
894 			put_ctx(ctx->parent_ctx);
895 		if (ctx->task)
896 			put_task_struct(ctx->task);
897 		kfree_rcu(ctx, rcu_head);
898 	}
899 }
900 
901 static void unclone_ctx(struct perf_event_context *ctx)
902 {
903 	if (ctx->parent_ctx) {
904 		put_ctx(ctx->parent_ctx);
905 		ctx->parent_ctx = NULL;
906 	}
907 	ctx->generation++;
908 }
909 
910 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
911 {
912 	/*
913 	 * only top level events have the pid namespace they were created in
914 	 */
915 	if (event->parent)
916 		event = event->parent;
917 
918 	return task_tgid_nr_ns(p, event->ns);
919 }
920 
921 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
922 {
923 	/*
924 	 * only top level events have the pid namespace they were created in
925 	 */
926 	if (event->parent)
927 		event = event->parent;
928 
929 	return task_pid_nr_ns(p, event->ns);
930 }
931 
932 /*
933  * If we inherit events we want to return the parent event id
934  * to userspace.
935  */
936 static u64 primary_event_id(struct perf_event *event)
937 {
938 	u64 id = event->id;
939 
940 	if (event->parent)
941 		id = event->parent->id;
942 
943 	return id;
944 }
945 
946 /*
947  * Get the perf_event_context for a task and lock it.
948  * This has to cope with with the fact that until it is locked,
949  * the context could get moved to another task.
950  */
951 static struct perf_event_context *
952 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
953 {
954 	struct perf_event_context *ctx;
955 
956 retry:
957 	/*
958 	 * One of the few rules of preemptible RCU is that one cannot do
959 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
960 	 * part of the read side critical section was preemptible -- see
961 	 * rcu_read_unlock_special().
962 	 *
963 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
964 	 * side critical section is non-preemptible.
965 	 */
966 	preempt_disable();
967 	rcu_read_lock();
968 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
969 	if (ctx) {
970 		/*
971 		 * If this context is a clone of another, it might
972 		 * get swapped for another underneath us by
973 		 * perf_event_task_sched_out, though the
974 		 * rcu_read_lock() protects us from any context
975 		 * getting freed.  Lock the context and check if it
976 		 * got swapped before we could get the lock, and retry
977 		 * if so.  If we locked the right context, then it
978 		 * can't get swapped on us any more.
979 		 */
980 		raw_spin_lock_irqsave(&ctx->lock, *flags);
981 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
982 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
983 			rcu_read_unlock();
984 			preempt_enable();
985 			goto retry;
986 		}
987 
988 		if (!atomic_inc_not_zero(&ctx->refcount)) {
989 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
990 			ctx = NULL;
991 		}
992 	}
993 	rcu_read_unlock();
994 	preempt_enable();
995 	return ctx;
996 }
997 
998 /*
999  * Get the context for a task and increment its pin_count so it
1000  * can't get swapped to another task.  This also increments its
1001  * reference count so that the context can't get freed.
1002  */
1003 static struct perf_event_context *
1004 perf_pin_task_context(struct task_struct *task, int ctxn)
1005 {
1006 	struct perf_event_context *ctx;
1007 	unsigned long flags;
1008 
1009 	ctx = perf_lock_task_context(task, ctxn, &flags);
1010 	if (ctx) {
1011 		++ctx->pin_count;
1012 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1013 	}
1014 	return ctx;
1015 }
1016 
1017 static void perf_unpin_context(struct perf_event_context *ctx)
1018 {
1019 	unsigned long flags;
1020 
1021 	raw_spin_lock_irqsave(&ctx->lock, flags);
1022 	--ctx->pin_count;
1023 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1024 }
1025 
1026 /*
1027  * Update the record of the current time in a context.
1028  */
1029 static void update_context_time(struct perf_event_context *ctx)
1030 {
1031 	u64 now = perf_clock();
1032 
1033 	ctx->time += now - ctx->timestamp;
1034 	ctx->timestamp = now;
1035 }
1036 
1037 static u64 perf_event_time(struct perf_event *event)
1038 {
1039 	struct perf_event_context *ctx = event->ctx;
1040 
1041 	if (is_cgroup_event(event))
1042 		return perf_cgroup_event_time(event);
1043 
1044 	return ctx ? ctx->time : 0;
1045 }
1046 
1047 /*
1048  * Update the total_time_enabled and total_time_running fields for a event.
1049  * The caller of this function needs to hold the ctx->lock.
1050  */
1051 static void update_event_times(struct perf_event *event)
1052 {
1053 	struct perf_event_context *ctx = event->ctx;
1054 	u64 run_end;
1055 
1056 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1057 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1058 		return;
1059 	/*
1060 	 * in cgroup mode, time_enabled represents
1061 	 * the time the event was enabled AND active
1062 	 * tasks were in the monitored cgroup. This is
1063 	 * independent of the activity of the context as
1064 	 * there may be a mix of cgroup and non-cgroup events.
1065 	 *
1066 	 * That is why we treat cgroup events differently
1067 	 * here.
1068 	 */
1069 	if (is_cgroup_event(event))
1070 		run_end = perf_cgroup_event_time(event);
1071 	else if (ctx->is_active)
1072 		run_end = ctx->time;
1073 	else
1074 		run_end = event->tstamp_stopped;
1075 
1076 	event->total_time_enabled = run_end - event->tstamp_enabled;
1077 
1078 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1079 		run_end = event->tstamp_stopped;
1080 	else
1081 		run_end = perf_event_time(event);
1082 
1083 	event->total_time_running = run_end - event->tstamp_running;
1084 
1085 }
1086 
1087 /*
1088  * Update total_time_enabled and total_time_running for all events in a group.
1089  */
1090 static void update_group_times(struct perf_event *leader)
1091 {
1092 	struct perf_event *event;
1093 
1094 	update_event_times(leader);
1095 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1096 		update_event_times(event);
1097 }
1098 
1099 static struct list_head *
1100 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1101 {
1102 	if (event->attr.pinned)
1103 		return &ctx->pinned_groups;
1104 	else
1105 		return &ctx->flexible_groups;
1106 }
1107 
1108 /*
1109  * Add a event from the lists for its context.
1110  * Must be called with ctx->mutex and ctx->lock held.
1111  */
1112 static void
1113 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1114 {
1115 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1116 	event->attach_state |= PERF_ATTACH_CONTEXT;
1117 
1118 	/*
1119 	 * If we're a stand alone event or group leader, we go to the context
1120 	 * list, group events are kept attached to the group so that
1121 	 * perf_group_detach can, at all times, locate all siblings.
1122 	 */
1123 	if (event->group_leader == event) {
1124 		struct list_head *list;
1125 
1126 		if (is_software_event(event))
1127 			event->group_flags |= PERF_GROUP_SOFTWARE;
1128 
1129 		list = ctx_group_list(event, ctx);
1130 		list_add_tail(&event->group_entry, list);
1131 	}
1132 
1133 	if (is_cgroup_event(event))
1134 		ctx->nr_cgroups++;
1135 
1136 	if (has_branch_stack(event))
1137 		ctx->nr_branch_stack++;
1138 
1139 	list_add_rcu(&event->event_entry, &ctx->event_list);
1140 	if (!ctx->nr_events)
1141 		perf_pmu_rotate_start(ctx->pmu);
1142 	ctx->nr_events++;
1143 	if (event->attr.inherit_stat)
1144 		ctx->nr_stat++;
1145 
1146 	ctx->generation++;
1147 }
1148 
1149 /*
1150  * Initialize event state based on the perf_event_attr::disabled.
1151  */
1152 static inline void perf_event__state_init(struct perf_event *event)
1153 {
1154 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1155 					      PERF_EVENT_STATE_INACTIVE;
1156 }
1157 
1158 /*
1159  * Called at perf_event creation and when events are attached/detached from a
1160  * group.
1161  */
1162 static void perf_event__read_size(struct perf_event *event)
1163 {
1164 	int entry = sizeof(u64); /* value */
1165 	int size = 0;
1166 	int nr = 1;
1167 
1168 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1169 		size += sizeof(u64);
1170 
1171 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1172 		size += sizeof(u64);
1173 
1174 	if (event->attr.read_format & PERF_FORMAT_ID)
1175 		entry += sizeof(u64);
1176 
1177 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1178 		nr += event->group_leader->nr_siblings;
1179 		size += sizeof(u64);
1180 	}
1181 
1182 	size += entry * nr;
1183 	event->read_size = size;
1184 }
1185 
1186 static void perf_event__header_size(struct perf_event *event)
1187 {
1188 	struct perf_sample_data *data;
1189 	u64 sample_type = event->attr.sample_type;
1190 	u16 size = 0;
1191 
1192 	perf_event__read_size(event);
1193 
1194 	if (sample_type & PERF_SAMPLE_IP)
1195 		size += sizeof(data->ip);
1196 
1197 	if (sample_type & PERF_SAMPLE_ADDR)
1198 		size += sizeof(data->addr);
1199 
1200 	if (sample_type & PERF_SAMPLE_PERIOD)
1201 		size += sizeof(data->period);
1202 
1203 	if (sample_type & PERF_SAMPLE_WEIGHT)
1204 		size += sizeof(data->weight);
1205 
1206 	if (sample_type & PERF_SAMPLE_READ)
1207 		size += event->read_size;
1208 
1209 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1210 		size += sizeof(data->data_src.val);
1211 
1212 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1213 		size += sizeof(data->txn);
1214 
1215 	event->header_size = size;
1216 }
1217 
1218 static void perf_event__id_header_size(struct perf_event *event)
1219 {
1220 	struct perf_sample_data *data;
1221 	u64 sample_type = event->attr.sample_type;
1222 	u16 size = 0;
1223 
1224 	if (sample_type & PERF_SAMPLE_TID)
1225 		size += sizeof(data->tid_entry);
1226 
1227 	if (sample_type & PERF_SAMPLE_TIME)
1228 		size += sizeof(data->time);
1229 
1230 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1231 		size += sizeof(data->id);
1232 
1233 	if (sample_type & PERF_SAMPLE_ID)
1234 		size += sizeof(data->id);
1235 
1236 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1237 		size += sizeof(data->stream_id);
1238 
1239 	if (sample_type & PERF_SAMPLE_CPU)
1240 		size += sizeof(data->cpu_entry);
1241 
1242 	event->id_header_size = size;
1243 }
1244 
1245 static void perf_group_attach(struct perf_event *event)
1246 {
1247 	struct perf_event *group_leader = event->group_leader, *pos;
1248 
1249 	/*
1250 	 * We can have double attach due to group movement in perf_event_open.
1251 	 */
1252 	if (event->attach_state & PERF_ATTACH_GROUP)
1253 		return;
1254 
1255 	event->attach_state |= PERF_ATTACH_GROUP;
1256 
1257 	if (group_leader == event)
1258 		return;
1259 
1260 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1261 			!is_software_event(event))
1262 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1263 
1264 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1265 	group_leader->nr_siblings++;
1266 
1267 	perf_event__header_size(group_leader);
1268 
1269 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1270 		perf_event__header_size(pos);
1271 }
1272 
1273 /*
1274  * Remove a event from the lists for its context.
1275  * Must be called with ctx->mutex and ctx->lock held.
1276  */
1277 static void
1278 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1279 {
1280 	struct perf_cpu_context *cpuctx;
1281 	/*
1282 	 * We can have double detach due to exit/hot-unplug + close.
1283 	 */
1284 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1285 		return;
1286 
1287 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1288 
1289 	if (is_cgroup_event(event)) {
1290 		ctx->nr_cgroups--;
1291 		cpuctx = __get_cpu_context(ctx);
1292 		/*
1293 		 * if there are no more cgroup events
1294 		 * then cler cgrp to avoid stale pointer
1295 		 * in update_cgrp_time_from_cpuctx()
1296 		 */
1297 		if (!ctx->nr_cgroups)
1298 			cpuctx->cgrp = NULL;
1299 	}
1300 
1301 	if (has_branch_stack(event))
1302 		ctx->nr_branch_stack--;
1303 
1304 	ctx->nr_events--;
1305 	if (event->attr.inherit_stat)
1306 		ctx->nr_stat--;
1307 
1308 	list_del_rcu(&event->event_entry);
1309 
1310 	if (event->group_leader == event)
1311 		list_del_init(&event->group_entry);
1312 
1313 	update_group_times(event);
1314 
1315 	/*
1316 	 * If event was in error state, then keep it
1317 	 * that way, otherwise bogus counts will be
1318 	 * returned on read(). The only way to get out
1319 	 * of error state is by explicit re-enabling
1320 	 * of the event
1321 	 */
1322 	if (event->state > PERF_EVENT_STATE_OFF)
1323 		event->state = PERF_EVENT_STATE_OFF;
1324 
1325 	ctx->generation++;
1326 }
1327 
1328 static void perf_group_detach(struct perf_event *event)
1329 {
1330 	struct perf_event *sibling, *tmp;
1331 	struct list_head *list = NULL;
1332 
1333 	/*
1334 	 * We can have double detach due to exit/hot-unplug + close.
1335 	 */
1336 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1337 		return;
1338 
1339 	event->attach_state &= ~PERF_ATTACH_GROUP;
1340 
1341 	/*
1342 	 * If this is a sibling, remove it from its group.
1343 	 */
1344 	if (event->group_leader != event) {
1345 		list_del_init(&event->group_entry);
1346 		event->group_leader->nr_siblings--;
1347 		goto out;
1348 	}
1349 
1350 	if (!list_empty(&event->group_entry))
1351 		list = &event->group_entry;
1352 
1353 	/*
1354 	 * If this was a group event with sibling events then
1355 	 * upgrade the siblings to singleton events by adding them
1356 	 * to whatever list we are on.
1357 	 */
1358 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1359 		if (list)
1360 			list_move_tail(&sibling->group_entry, list);
1361 		sibling->group_leader = sibling;
1362 
1363 		/* Inherit group flags from the previous leader */
1364 		sibling->group_flags = event->group_flags;
1365 	}
1366 
1367 out:
1368 	perf_event__header_size(event->group_leader);
1369 
1370 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1371 		perf_event__header_size(tmp);
1372 }
1373 
1374 static inline int
1375 event_filter_match(struct perf_event *event)
1376 {
1377 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1378 	    && perf_cgroup_match(event);
1379 }
1380 
1381 static void
1382 event_sched_out(struct perf_event *event,
1383 		  struct perf_cpu_context *cpuctx,
1384 		  struct perf_event_context *ctx)
1385 {
1386 	u64 tstamp = perf_event_time(event);
1387 	u64 delta;
1388 	/*
1389 	 * An event which could not be activated because of
1390 	 * filter mismatch still needs to have its timings
1391 	 * maintained, otherwise bogus information is return
1392 	 * via read() for time_enabled, time_running:
1393 	 */
1394 	if (event->state == PERF_EVENT_STATE_INACTIVE
1395 	    && !event_filter_match(event)) {
1396 		delta = tstamp - event->tstamp_stopped;
1397 		event->tstamp_running += delta;
1398 		event->tstamp_stopped = tstamp;
1399 	}
1400 
1401 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1402 		return;
1403 
1404 	perf_pmu_disable(event->pmu);
1405 
1406 	event->state = PERF_EVENT_STATE_INACTIVE;
1407 	if (event->pending_disable) {
1408 		event->pending_disable = 0;
1409 		event->state = PERF_EVENT_STATE_OFF;
1410 	}
1411 	event->tstamp_stopped = tstamp;
1412 	event->pmu->del(event, 0);
1413 	event->oncpu = -1;
1414 
1415 	if (!is_software_event(event))
1416 		cpuctx->active_oncpu--;
1417 	ctx->nr_active--;
1418 	if (event->attr.freq && event->attr.sample_freq)
1419 		ctx->nr_freq--;
1420 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1421 		cpuctx->exclusive = 0;
1422 
1423 	perf_pmu_enable(event->pmu);
1424 }
1425 
1426 static void
1427 group_sched_out(struct perf_event *group_event,
1428 		struct perf_cpu_context *cpuctx,
1429 		struct perf_event_context *ctx)
1430 {
1431 	struct perf_event *event;
1432 	int state = group_event->state;
1433 
1434 	event_sched_out(group_event, cpuctx, ctx);
1435 
1436 	/*
1437 	 * Schedule out siblings (if any):
1438 	 */
1439 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1440 		event_sched_out(event, cpuctx, ctx);
1441 
1442 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1443 		cpuctx->exclusive = 0;
1444 }
1445 
1446 /*
1447  * Cross CPU call to remove a performance event
1448  *
1449  * We disable the event on the hardware level first. After that we
1450  * remove it from the context list.
1451  */
1452 static int __perf_remove_from_context(void *info)
1453 {
1454 	struct perf_event *event = info;
1455 	struct perf_event_context *ctx = event->ctx;
1456 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1457 
1458 	raw_spin_lock(&ctx->lock);
1459 	event_sched_out(event, cpuctx, ctx);
1460 	list_del_event(event, ctx);
1461 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1462 		ctx->is_active = 0;
1463 		cpuctx->task_ctx = NULL;
1464 	}
1465 	raw_spin_unlock(&ctx->lock);
1466 
1467 	return 0;
1468 }
1469 
1470 
1471 /*
1472  * Remove the event from a task's (or a CPU's) list of events.
1473  *
1474  * CPU events are removed with a smp call. For task events we only
1475  * call when the task is on a CPU.
1476  *
1477  * If event->ctx is a cloned context, callers must make sure that
1478  * every task struct that event->ctx->task could possibly point to
1479  * remains valid.  This is OK when called from perf_release since
1480  * that only calls us on the top-level context, which can't be a clone.
1481  * When called from perf_event_exit_task, it's OK because the
1482  * context has been detached from its task.
1483  */
1484 static void perf_remove_from_context(struct perf_event *event)
1485 {
1486 	struct perf_event_context *ctx = event->ctx;
1487 	struct task_struct *task = ctx->task;
1488 
1489 	lockdep_assert_held(&ctx->mutex);
1490 
1491 	if (!task) {
1492 		/*
1493 		 * Per cpu events are removed via an smp call and
1494 		 * the removal is always successful.
1495 		 */
1496 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1497 		return;
1498 	}
1499 
1500 retry:
1501 	if (!task_function_call(task, __perf_remove_from_context, event))
1502 		return;
1503 
1504 	raw_spin_lock_irq(&ctx->lock);
1505 	/*
1506 	 * If we failed to find a running task, but find the context active now
1507 	 * that we've acquired the ctx->lock, retry.
1508 	 */
1509 	if (ctx->is_active) {
1510 		raw_spin_unlock_irq(&ctx->lock);
1511 		goto retry;
1512 	}
1513 
1514 	/*
1515 	 * Since the task isn't running, its safe to remove the event, us
1516 	 * holding the ctx->lock ensures the task won't get scheduled in.
1517 	 */
1518 	list_del_event(event, ctx);
1519 	raw_spin_unlock_irq(&ctx->lock);
1520 }
1521 
1522 /*
1523  * Cross CPU call to disable a performance event
1524  */
1525 int __perf_event_disable(void *info)
1526 {
1527 	struct perf_event *event = info;
1528 	struct perf_event_context *ctx = event->ctx;
1529 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1530 
1531 	/*
1532 	 * If this is a per-task event, need to check whether this
1533 	 * event's task is the current task on this cpu.
1534 	 *
1535 	 * Can trigger due to concurrent perf_event_context_sched_out()
1536 	 * flipping contexts around.
1537 	 */
1538 	if (ctx->task && cpuctx->task_ctx != ctx)
1539 		return -EINVAL;
1540 
1541 	raw_spin_lock(&ctx->lock);
1542 
1543 	/*
1544 	 * If the event is on, turn it off.
1545 	 * If it is in error state, leave it in error state.
1546 	 */
1547 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1548 		update_context_time(ctx);
1549 		update_cgrp_time_from_event(event);
1550 		update_group_times(event);
1551 		if (event == event->group_leader)
1552 			group_sched_out(event, cpuctx, ctx);
1553 		else
1554 			event_sched_out(event, cpuctx, ctx);
1555 		event->state = PERF_EVENT_STATE_OFF;
1556 	}
1557 
1558 	raw_spin_unlock(&ctx->lock);
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Disable a event.
1565  *
1566  * If event->ctx is a cloned context, callers must make sure that
1567  * every task struct that event->ctx->task could possibly point to
1568  * remains valid.  This condition is satisifed when called through
1569  * perf_event_for_each_child or perf_event_for_each because they
1570  * hold the top-level event's child_mutex, so any descendant that
1571  * goes to exit will block in sync_child_event.
1572  * When called from perf_pending_event it's OK because event->ctx
1573  * is the current context on this CPU and preemption is disabled,
1574  * hence we can't get into perf_event_task_sched_out for this context.
1575  */
1576 void perf_event_disable(struct perf_event *event)
1577 {
1578 	struct perf_event_context *ctx = event->ctx;
1579 	struct task_struct *task = ctx->task;
1580 
1581 	if (!task) {
1582 		/*
1583 		 * Disable the event on the cpu that it's on
1584 		 */
1585 		cpu_function_call(event->cpu, __perf_event_disable, event);
1586 		return;
1587 	}
1588 
1589 retry:
1590 	if (!task_function_call(task, __perf_event_disable, event))
1591 		return;
1592 
1593 	raw_spin_lock_irq(&ctx->lock);
1594 	/*
1595 	 * If the event is still active, we need to retry the cross-call.
1596 	 */
1597 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1598 		raw_spin_unlock_irq(&ctx->lock);
1599 		/*
1600 		 * Reload the task pointer, it might have been changed by
1601 		 * a concurrent perf_event_context_sched_out().
1602 		 */
1603 		task = ctx->task;
1604 		goto retry;
1605 	}
1606 
1607 	/*
1608 	 * Since we have the lock this context can't be scheduled
1609 	 * in, so we can change the state safely.
1610 	 */
1611 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1612 		update_group_times(event);
1613 		event->state = PERF_EVENT_STATE_OFF;
1614 	}
1615 	raw_spin_unlock_irq(&ctx->lock);
1616 }
1617 EXPORT_SYMBOL_GPL(perf_event_disable);
1618 
1619 static void perf_set_shadow_time(struct perf_event *event,
1620 				 struct perf_event_context *ctx,
1621 				 u64 tstamp)
1622 {
1623 	/*
1624 	 * use the correct time source for the time snapshot
1625 	 *
1626 	 * We could get by without this by leveraging the
1627 	 * fact that to get to this function, the caller
1628 	 * has most likely already called update_context_time()
1629 	 * and update_cgrp_time_xx() and thus both timestamp
1630 	 * are identical (or very close). Given that tstamp is,
1631 	 * already adjusted for cgroup, we could say that:
1632 	 *    tstamp - ctx->timestamp
1633 	 * is equivalent to
1634 	 *    tstamp - cgrp->timestamp.
1635 	 *
1636 	 * Then, in perf_output_read(), the calculation would
1637 	 * work with no changes because:
1638 	 * - event is guaranteed scheduled in
1639 	 * - no scheduled out in between
1640 	 * - thus the timestamp would be the same
1641 	 *
1642 	 * But this is a bit hairy.
1643 	 *
1644 	 * So instead, we have an explicit cgroup call to remain
1645 	 * within the time time source all along. We believe it
1646 	 * is cleaner and simpler to understand.
1647 	 */
1648 	if (is_cgroup_event(event))
1649 		perf_cgroup_set_shadow_time(event, tstamp);
1650 	else
1651 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1652 }
1653 
1654 #define MAX_INTERRUPTS (~0ULL)
1655 
1656 static void perf_log_throttle(struct perf_event *event, int enable);
1657 
1658 static int
1659 event_sched_in(struct perf_event *event,
1660 		 struct perf_cpu_context *cpuctx,
1661 		 struct perf_event_context *ctx)
1662 {
1663 	u64 tstamp = perf_event_time(event);
1664 	int ret = 0;
1665 
1666 	if (event->state <= PERF_EVENT_STATE_OFF)
1667 		return 0;
1668 
1669 	event->state = PERF_EVENT_STATE_ACTIVE;
1670 	event->oncpu = smp_processor_id();
1671 
1672 	/*
1673 	 * Unthrottle events, since we scheduled we might have missed several
1674 	 * ticks already, also for a heavily scheduling task there is little
1675 	 * guarantee it'll get a tick in a timely manner.
1676 	 */
1677 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1678 		perf_log_throttle(event, 1);
1679 		event->hw.interrupts = 0;
1680 	}
1681 
1682 	/*
1683 	 * The new state must be visible before we turn it on in the hardware:
1684 	 */
1685 	smp_wmb();
1686 
1687 	perf_pmu_disable(event->pmu);
1688 
1689 	if (event->pmu->add(event, PERF_EF_START)) {
1690 		event->state = PERF_EVENT_STATE_INACTIVE;
1691 		event->oncpu = -1;
1692 		ret = -EAGAIN;
1693 		goto out;
1694 	}
1695 
1696 	event->tstamp_running += tstamp - event->tstamp_stopped;
1697 
1698 	perf_set_shadow_time(event, ctx, tstamp);
1699 
1700 	if (!is_software_event(event))
1701 		cpuctx->active_oncpu++;
1702 	ctx->nr_active++;
1703 	if (event->attr.freq && event->attr.sample_freq)
1704 		ctx->nr_freq++;
1705 
1706 	if (event->attr.exclusive)
1707 		cpuctx->exclusive = 1;
1708 
1709 out:
1710 	perf_pmu_enable(event->pmu);
1711 
1712 	return ret;
1713 }
1714 
1715 static int
1716 group_sched_in(struct perf_event *group_event,
1717 	       struct perf_cpu_context *cpuctx,
1718 	       struct perf_event_context *ctx)
1719 {
1720 	struct perf_event *event, *partial_group = NULL;
1721 	struct pmu *pmu = ctx->pmu;
1722 	u64 now = ctx->time;
1723 	bool simulate = false;
1724 
1725 	if (group_event->state == PERF_EVENT_STATE_OFF)
1726 		return 0;
1727 
1728 	pmu->start_txn(pmu);
1729 
1730 	if (event_sched_in(group_event, cpuctx, ctx)) {
1731 		pmu->cancel_txn(pmu);
1732 		perf_cpu_hrtimer_restart(cpuctx);
1733 		return -EAGAIN;
1734 	}
1735 
1736 	/*
1737 	 * Schedule in siblings as one group (if any):
1738 	 */
1739 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1740 		if (event_sched_in(event, cpuctx, ctx)) {
1741 			partial_group = event;
1742 			goto group_error;
1743 		}
1744 	}
1745 
1746 	if (!pmu->commit_txn(pmu))
1747 		return 0;
1748 
1749 group_error:
1750 	/*
1751 	 * Groups can be scheduled in as one unit only, so undo any
1752 	 * partial group before returning:
1753 	 * The events up to the failed event are scheduled out normally,
1754 	 * tstamp_stopped will be updated.
1755 	 *
1756 	 * The failed events and the remaining siblings need to have
1757 	 * their timings updated as if they had gone thru event_sched_in()
1758 	 * and event_sched_out(). This is required to get consistent timings
1759 	 * across the group. This also takes care of the case where the group
1760 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1761 	 * the time the event was actually stopped, such that time delta
1762 	 * calculation in update_event_times() is correct.
1763 	 */
1764 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1765 		if (event == partial_group)
1766 			simulate = true;
1767 
1768 		if (simulate) {
1769 			event->tstamp_running += now - event->tstamp_stopped;
1770 			event->tstamp_stopped = now;
1771 		} else {
1772 			event_sched_out(event, cpuctx, ctx);
1773 		}
1774 	}
1775 	event_sched_out(group_event, cpuctx, ctx);
1776 
1777 	pmu->cancel_txn(pmu);
1778 
1779 	perf_cpu_hrtimer_restart(cpuctx);
1780 
1781 	return -EAGAIN;
1782 }
1783 
1784 /*
1785  * Work out whether we can put this event group on the CPU now.
1786  */
1787 static int group_can_go_on(struct perf_event *event,
1788 			   struct perf_cpu_context *cpuctx,
1789 			   int can_add_hw)
1790 {
1791 	/*
1792 	 * Groups consisting entirely of software events can always go on.
1793 	 */
1794 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1795 		return 1;
1796 	/*
1797 	 * If an exclusive group is already on, no other hardware
1798 	 * events can go on.
1799 	 */
1800 	if (cpuctx->exclusive)
1801 		return 0;
1802 	/*
1803 	 * If this group is exclusive and there are already
1804 	 * events on the CPU, it can't go on.
1805 	 */
1806 	if (event->attr.exclusive && cpuctx->active_oncpu)
1807 		return 0;
1808 	/*
1809 	 * Otherwise, try to add it if all previous groups were able
1810 	 * to go on.
1811 	 */
1812 	return can_add_hw;
1813 }
1814 
1815 static void add_event_to_ctx(struct perf_event *event,
1816 			       struct perf_event_context *ctx)
1817 {
1818 	u64 tstamp = perf_event_time(event);
1819 
1820 	list_add_event(event, ctx);
1821 	perf_group_attach(event);
1822 	event->tstamp_enabled = tstamp;
1823 	event->tstamp_running = tstamp;
1824 	event->tstamp_stopped = tstamp;
1825 }
1826 
1827 static void task_ctx_sched_out(struct perf_event_context *ctx);
1828 static void
1829 ctx_sched_in(struct perf_event_context *ctx,
1830 	     struct perf_cpu_context *cpuctx,
1831 	     enum event_type_t event_type,
1832 	     struct task_struct *task);
1833 
1834 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1835 				struct perf_event_context *ctx,
1836 				struct task_struct *task)
1837 {
1838 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1839 	if (ctx)
1840 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1841 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1842 	if (ctx)
1843 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1844 }
1845 
1846 /*
1847  * Cross CPU call to install and enable a performance event
1848  *
1849  * Must be called with ctx->mutex held
1850  */
1851 static int  __perf_install_in_context(void *info)
1852 {
1853 	struct perf_event *event = info;
1854 	struct perf_event_context *ctx = event->ctx;
1855 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1856 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1857 	struct task_struct *task = current;
1858 
1859 	perf_ctx_lock(cpuctx, task_ctx);
1860 	perf_pmu_disable(cpuctx->ctx.pmu);
1861 
1862 	/*
1863 	 * If there was an active task_ctx schedule it out.
1864 	 */
1865 	if (task_ctx)
1866 		task_ctx_sched_out(task_ctx);
1867 
1868 	/*
1869 	 * If the context we're installing events in is not the
1870 	 * active task_ctx, flip them.
1871 	 */
1872 	if (ctx->task && task_ctx != ctx) {
1873 		if (task_ctx)
1874 			raw_spin_unlock(&task_ctx->lock);
1875 		raw_spin_lock(&ctx->lock);
1876 		task_ctx = ctx;
1877 	}
1878 
1879 	if (task_ctx) {
1880 		cpuctx->task_ctx = task_ctx;
1881 		task = task_ctx->task;
1882 	}
1883 
1884 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1885 
1886 	update_context_time(ctx);
1887 	/*
1888 	 * update cgrp time only if current cgrp
1889 	 * matches event->cgrp. Must be done before
1890 	 * calling add_event_to_ctx()
1891 	 */
1892 	update_cgrp_time_from_event(event);
1893 
1894 	add_event_to_ctx(event, ctx);
1895 
1896 	/*
1897 	 * Schedule everything back in
1898 	 */
1899 	perf_event_sched_in(cpuctx, task_ctx, task);
1900 
1901 	perf_pmu_enable(cpuctx->ctx.pmu);
1902 	perf_ctx_unlock(cpuctx, task_ctx);
1903 
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Attach a performance event to a context
1909  *
1910  * First we add the event to the list with the hardware enable bit
1911  * in event->hw_config cleared.
1912  *
1913  * If the event is attached to a task which is on a CPU we use a smp
1914  * call to enable it in the task context. The task might have been
1915  * scheduled away, but we check this in the smp call again.
1916  */
1917 static void
1918 perf_install_in_context(struct perf_event_context *ctx,
1919 			struct perf_event *event,
1920 			int cpu)
1921 {
1922 	struct task_struct *task = ctx->task;
1923 
1924 	lockdep_assert_held(&ctx->mutex);
1925 
1926 	event->ctx = ctx;
1927 	if (event->cpu != -1)
1928 		event->cpu = cpu;
1929 
1930 	if (!task) {
1931 		/*
1932 		 * Per cpu events are installed via an smp call and
1933 		 * the install is always successful.
1934 		 */
1935 		cpu_function_call(cpu, __perf_install_in_context, event);
1936 		return;
1937 	}
1938 
1939 retry:
1940 	if (!task_function_call(task, __perf_install_in_context, event))
1941 		return;
1942 
1943 	raw_spin_lock_irq(&ctx->lock);
1944 	/*
1945 	 * If we failed to find a running task, but find the context active now
1946 	 * that we've acquired the ctx->lock, retry.
1947 	 */
1948 	if (ctx->is_active) {
1949 		raw_spin_unlock_irq(&ctx->lock);
1950 		goto retry;
1951 	}
1952 
1953 	/*
1954 	 * Since the task isn't running, its safe to add the event, us holding
1955 	 * the ctx->lock ensures the task won't get scheduled in.
1956 	 */
1957 	add_event_to_ctx(event, ctx);
1958 	raw_spin_unlock_irq(&ctx->lock);
1959 }
1960 
1961 /*
1962  * Put a event into inactive state and update time fields.
1963  * Enabling the leader of a group effectively enables all
1964  * the group members that aren't explicitly disabled, so we
1965  * have to update their ->tstamp_enabled also.
1966  * Note: this works for group members as well as group leaders
1967  * since the non-leader members' sibling_lists will be empty.
1968  */
1969 static void __perf_event_mark_enabled(struct perf_event *event)
1970 {
1971 	struct perf_event *sub;
1972 	u64 tstamp = perf_event_time(event);
1973 
1974 	event->state = PERF_EVENT_STATE_INACTIVE;
1975 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1976 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1977 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1978 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1979 	}
1980 }
1981 
1982 /*
1983  * Cross CPU call to enable a performance event
1984  */
1985 static int __perf_event_enable(void *info)
1986 {
1987 	struct perf_event *event = info;
1988 	struct perf_event_context *ctx = event->ctx;
1989 	struct perf_event *leader = event->group_leader;
1990 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1991 	int err;
1992 
1993 	/*
1994 	 * There's a time window between 'ctx->is_active' check
1995 	 * in perf_event_enable function and this place having:
1996 	 *   - IRQs on
1997 	 *   - ctx->lock unlocked
1998 	 *
1999 	 * where the task could be killed and 'ctx' deactivated
2000 	 * by perf_event_exit_task.
2001 	 */
2002 	if (!ctx->is_active)
2003 		return -EINVAL;
2004 
2005 	raw_spin_lock(&ctx->lock);
2006 	update_context_time(ctx);
2007 
2008 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2009 		goto unlock;
2010 
2011 	/*
2012 	 * set current task's cgroup time reference point
2013 	 */
2014 	perf_cgroup_set_timestamp(current, ctx);
2015 
2016 	__perf_event_mark_enabled(event);
2017 
2018 	if (!event_filter_match(event)) {
2019 		if (is_cgroup_event(event))
2020 			perf_cgroup_defer_enabled(event);
2021 		goto unlock;
2022 	}
2023 
2024 	/*
2025 	 * If the event is in a group and isn't the group leader,
2026 	 * then don't put it on unless the group is on.
2027 	 */
2028 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2029 		goto unlock;
2030 
2031 	if (!group_can_go_on(event, cpuctx, 1)) {
2032 		err = -EEXIST;
2033 	} else {
2034 		if (event == leader)
2035 			err = group_sched_in(event, cpuctx, ctx);
2036 		else
2037 			err = event_sched_in(event, cpuctx, ctx);
2038 	}
2039 
2040 	if (err) {
2041 		/*
2042 		 * If this event can't go on and it's part of a
2043 		 * group, then the whole group has to come off.
2044 		 */
2045 		if (leader != event) {
2046 			group_sched_out(leader, cpuctx, ctx);
2047 			perf_cpu_hrtimer_restart(cpuctx);
2048 		}
2049 		if (leader->attr.pinned) {
2050 			update_group_times(leader);
2051 			leader->state = PERF_EVENT_STATE_ERROR;
2052 		}
2053 	}
2054 
2055 unlock:
2056 	raw_spin_unlock(&ctx->lock);
2057 
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Enable a event.
2063  *
2064  * If event->ctx is a cloned context, callers must make sure that
2065  * every task struct that event->ctx->task could possibly point to
2066  * remains valid.  This condition is satisfied when called through
2067  * perf_event_for_each_child or perf_event_for_each as described
2068  * for perf_event_disable.
2069  */
2070 void perf_event_enable(struct perf_event *event)
2071 {
2072 	struct perf_event_context *ctx = event->ctx;
2073 	struct task_struct *task = ctx->task;
2074 
2075 	if (!task) {
2076 		/*
2077 		 * Enable the event on the cpu that it's on
2078 		 */
2079 		cpu_function_call(event->cpu, __perf_event_enable, event);
2080 		return;
2081 	}
2082 
2083 	raw_spin_lock_irq(&ctx->lock);
2084 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2085 		goto out;
2086 
2087 	/*
2088 	 * If the event is in error state, clear that first.
2089 	 * That way, if we see the event in error state below, we
2090 	 * know that it has gone back into error state, as distinct
2091 	 * from the task having been scheduled away before the
2092 	 * cross-call arrived.
2093 	 */
2094 	if (event->state == PERF_EVENT_STATE_ERROR)
2095 		event->state = PERF_EVENT_STATE_OFF;
2096 
2097 retry:
2098 	if (!ctx->is_active) {
2099 		__perf_event_mark_enabled(event);
2100 		goto out;
2101 	}
2102 
2103 	raw_spin_unlock_irq(&ctx->lock);
2104 
2105 	if (!task_function_call(task, __perf_event_enable, event))
2106 		return;
2107 
2108 	raw_spin_lock_irq(&ctx->lock);
2109 
2110 	/*
2111 	 * If the context is active and the event is still off,
2112 	 * we need to retry the cross-call.
2113 	 */
2114 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2115 		/*
2116 		 * task could have been flipped by a concurrent
2117 		 * perf_event_context_sched_out()
2118 		 */
2119 		task = ctx->task;
2120 		goto retry;
2121 	}
2122 
2123 out:
2124 	raw_spin_unlock_irq(&ctx->lock);
2125 }
2126 EXPORT_SYMBOL_GPL(perf_event_enable);
2127 
2128 int perf_event_refresh(struct perf_event *event, int refresh)
2129 {
2130 	/*
2131 	 * not supported on inherited events
2132 	 */
2133 	if (event->attr.inherit || !is_sampling_event(event))
2134 		return -EINVAL;
2135 
2136 	atomic_add(refresh, &event->event_limit);
2137 	perf_event_enable(event);
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(perf_event_refresh);
2142 
2143 static void ctx_sched_out(struct perf_event_context *ctx,
2144 			  struct perf_cpu_context *cpuctx,
2145 			  enum event_type_t event_type)
2146 {
2147 	struct perf_event *event;
2148 	int is_active = ctx->is_active;
2149 
2150 	ctx->is_active &= ~event_type;
2151 	if (likely(!ctx->nr_events))
2152 		return;
2153 
2154 	update_context_time(ctx);
2155 	update_cgrp_time_from_cpuctx(cpuctx);
2156 	if (!ctx->nr_active)
2157 		return;
2158 
2159 	perf_pmu_disable(ctx->pmu);
2160 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2161 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2162 			group_sched_out(event, cpuctx, ctx);
2163 	}
2164 
2165 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2166 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2167 			group_sched_out(event, cpuctx, ctx);
2168 	}
2169 	perf_pmu_enable(ctx->pmu);
2170 }
2171 
2172 /*
2173  * Test whether two contexts are equivalent, i.e. whether they have both been
2174  * cloned from the same version of the same context.
2175  *
2176  * Equivalence is measured using a generation number in the context that is
2177  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2178  * and list_del_event().
2179  */
2180 static int context_equiv(struct perf_event_context *ctx1,
2181 			 struct perf_event_context *ctx2)
2182 {
2183 	/* Pinning disables the swap optimization */
2184 	if (ctx1->pin_count || ctx2->pin_count)
2185 		return 0;
2186 
2187 	/* If ctx1 is the parent of ctx2 */
2188 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2189 		return 1;
2190 
2191 	/* If ctx2 is the parent of ctx1 */
2192 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2193 		return 1;
2194 
2195 	/*
2196 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2197 	 * hierarchy, see perf_event_init_context().
2198 	 */
2199 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2200 			ctx1->parent_gen == ctx2->parent_gen)
2201 		return 1;
2202 
2203 	/* Unmatched */
2204 	return 0;
2205 }
2206 
2207 static void __perf_event_sync_stat(struct perf_event *event,
2208 				     struct perf_event *next_event)
2209 {
2210 	u64 value;
2211 
2212 	if (!event->attr.inherit_stat)
2213 		return;
2214 
2215 	/*
2216 	 * Update the event value, we cannot use perf_event_read()
2217 	 * because we're in the middle of a context switch and have IRQs
2218 	 * disabled, which upsets smp_call_function_single(), however
2219 	 * we know the event must be on the current CPU, therefore we
2220 	 * don't need to use it.
2221 	 */
2222 	switch (event->state) {
2223 	case PERF_EVENT_STATE_ACTIVE:
2224 		event->pmu->read(event);
2225 		/* fall-through */
2226 
2227 	case PERF_EVENT_STATE_INACTIVE:
2228 		update_event_times(event);
2229 		break;
2230 
2231 	default:
2232 		break;
2233 	}
2234 
2235 	/*
2236 	 * In order to keep per-task stats reliable we need to flip the event
2237 	 * values when we flip the contexts.
2238 	 */
2239 	value = local64_read(&next_event->count);
2240 	value = local64_xchg(&event->count, value);
2241 	local64_set(&next_event->count, value);
2242 
2243 	swap(event->total_time_enabled, next_event->total_time_enabled);
2244 	swap(event->total_time_running, next_event->total_time_running);
2245 
2246 	/*
2247 	 * Since we swizzled the values, update the user visible data too.
2248 	 */
2249 	perf_event_update_userpage(event);
2250 	perf_event_update_userpage(next_event);
2251 }
2252 
2253 static void perf_event_sync_stat(struct perf_event_context *ctx,
2254 				   struct perf_event_context *next_ctx)
2255 {
2256 	struct perf_event *event, *next_event;
2257 
2258 	if (!ctx->nr_stat)
2259 		return;
2260 
2261 	update_context_time(ctx);
2262 
2263 	event = list_first_entry(&ctx->event_list,
2264 				   struct perf_event, event_entry);
2265 
2266 	next_event = list_first_entry(&next_ctx->event_list,
2267 					struct perf_event, event_entry);
2268 
2269 	while (&event->event_entry != &ctx->event_list &&
2270 	       &next_event->event_entry != &next_ctx->event_list) {
2271 
2272 		__perf_event_sync_stat(event, next_event);
2273 
2274 		event = list_next_entry(event, event_entry);
2275 		next_event = list_next_entry(next_event, event_entry);
2276 	}
2277 }
2278 
2279 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2280 					 struct task_struct *next)
2281 {
2282 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2283 	struct perf_event_context *next_ctx;
2284 	struct perf_event_context *parent, *next_parent;
2285 	struct perf_cpu_context *cpuctx;
2286 	int do_switch = 1;
2287 
2288 	if (likely(!ctx))
2289 		return;
2290 
2291 	cpuctx = __get_cpu_context(ctx);
2292 	if (!cpuctx->task_ctx)
2293 		return;
2294 
2295 	rcu_read_lock();
2296 	next_ctx = next->perf_event_ctxp[ctxn];
2297 	if (!next_ctx)
2298 		goto unlock;
2299 
2300 	parent = rcu_dereference(ctx->parent_ctx);
2301 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2302 
2303 	/* If neither context have a parent context; they cannot be clones. */
2304 	if (!parent && !next_parent)
2305 		goto unlock;
2306 
2307 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2308 		/*
2309 		 * Looks like the two contexts are clones, so we might be
2310 		 * able to optimize the context switch.  We lock both
2311 		 * contexts and check that they are clones under the
2312 		 * lock (including re-checking that neither has been
2313 		 * uncloned in the meantime).  It doesn't matter which
2314 		 * order we take the locks because no other cpu could
2315 		 * be trying to lock both of these tasks.
2316 		 */
2317 		raw_spin_lock(&ctx->lock);
2318 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2319 		if (context_equiv(ctx, next_ctx)) {
2320 			/*
2321 			 * XXX do we need a memory barrier of sorts
2322 			 * wrt to rcu_dereference() of perf_event_ctxp
2323 			 */
2324 			task->perf_event_ctxp[ctxn] = next_ctx;
2325 			next->perf_event_ctxp[ctxn] = ctx;
2326 			ctx->task = next;
2327 			next_ctx->task = task;
2328 			do_switch = 0;
2329 
2330 			perf_event_sync_stat(ctx, next_ctx);
2331 		}
2332 		raw_spin_unlock(&next_ctx->lock);
2333 		raw_spin_unlock(&ctx->lock);
2334 	}
2335 unlock:
2336 	rcu_read_unlock();
2337 
2338 	if (do_switch) {
2339 		raw_spin_lock(&ctx->lock);
2340 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2341 		cpuctx->task_ctx = NULL;
2342 		raw_spin_unlock(&ctx->lock);
2343 	}
2344 }
2345 
2346 #define for_each_task_context_nr(ctxn)					\
2347 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2348 
2349 /*
2350  * Called from scheduler to remove the events of the current task,
2351  * with interrupts disabled.
2352  *
2353  * We stop each event and update the event value in event->count.
2354  *
2355  * This does not protect us against NMI, but disable()
2356  * sets the disabled bit in the control field of event _before_
2357  * accessing the event control register. If a NMI hits, then it will
2358  * not restart the event.
2359  */
2360 void __perf_event_task_sched_out(struct task_struct *task,
2361 				 struct task_struct *next)
2362 {
2363 	int ctxn;
2364 
2365 	for_each_task_context_nr(ctxn)
2366 		perf_event_context_sched_out(task, ctxn, next);
2367 
2368 	/*
2369 	 * if cgroup events exist on this CPU, then we need
2370 	 * to check if we have to switch out PMU state.
2371 	 * cgroup event are system-wide mode only
2372 	 */
2373 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2374 		perf_cgroup_sched_out(task, next);
2375 }
2376 
2377 static void task_ctx_sched_out(struct perf_event_context *ctx)
2378 {
2379 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2380 
2381 	if (!cpuctx->task_ctx)
2382 		return;
2383 
2384 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2385 		return;
2386 
2387 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2388 	cpuctx->task_ctx = NULL;
2389 }
2390 
2391 /*
2392  * Called with IRQs disabled
2393  */
2394 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2395 			      enum event_type_t event_type)
2396 {
2397 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2398 }
2399 
2400 static void
2401 ctx_pinned_sched_in(struct perf_event_context *ctx,
2402 		    struct perf_cpu_context *cpuctx)
2403 {
2404 	struct perf_event *event;
2405 
2406 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2407 		if (event->state <= PERF_EVENT_STATE_OFF)
2408 			continue;
2409 		if (!event_filter_match(event))
2410 			continue;
2411 
2412 		/* may need to reset tstamp_enabled */
2413 		if (is_cgroup_event(event))
2414 			perf_cgroup_mark_enabled(event, ctx);
2415 
2416 		if (group_can_go_on(event, cpuctx, 1))
2417 			group_sched_in(event, cpuctx, ctx);
2418 
2419 		/*
2420 		 * If this pinned group hasn't been scheduled,
2421 		 * put it in error state.
2422 		 */
2423 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2424 			update_group_times(event);
2425 			event->state = PERF_EVENT_STATE_ERROR;
2426 		}
2427 	}
2428 }
2429 
2430 static void
2431 ctx_flexible_sched_in(struct perf_event_context *ctx,
2432 		      struct perf_cpu_context *cpuctx)
2433 {
2434 	struct perf_event *event;
2435 	int can_add_hw = 1;
2436 
2437 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2438 		/* Ignore events in OFF or ERROR state */
2439 		if (event->state <= PERF_EVENT_STATE_OFF)
2440 			continue;
2441 		/*
2442 		 * Listen to the 'cpu' scheduling filter constraint
2443 		 * of events:
2444 		 */
2445 		if (!event_filter_match(event))
2446 			continue;
2447 
2448 		/* may need to reset tstamp_enabled */
2449 		if (is_cgroup_event(event))
2450 			perf_cgroup_mark_enabled(event, ctx);
2451 
2452 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2453 			if (group_sched_in(event, cpuctx, ctx))
2454 				can_add_hw = 0;
2455 		}
2456 	}
2457 }
2458 
2459 static void
2460 ctx_sched_in(struct perf_event_context *ctx,
2461 	     struct perf_cpu_context *cpuctx,
2462 	     enum event_type_t event_type,
2463 	     struct task_struct *task)
2464 {
2465 	u64 now;
2466 	int is_active = ctx->is_active;
2467 
2468 	ctx->is_active |= event_type;
2469 	if (likely(!ctx->nr_events))
2470 		return;
2471 
2472 	now = perf_clock();
2473 	ctx->timestamp = now;
2474 	perf_cgroup_set_timestamp(task, ctx);
2475 	/*
2476 	 * First go through the list and put on any pinned groups
2477 	 * in order to give them the best chance of going on.
2478 	 */
2479 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2480 		ctx_pinned_sched_in(ctx, cpuctx);
2481 
2482 	/* Then walk through the lower prio flexible groups */
2483 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2484 		ctx_flexible_sched_in(ctx, cpuctx);
2485 }
2486 
2487 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2488 			     enum event_type_t event_type,
2489 			     struct task_struct *task)
2490 {
2491 	struct perf_event_context *ctx = &cpuctx->ctx;
2492 
2493 	ctx_sched_in(ctx, cpuctx, event_type, task);
2494 }
2495 
2496 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2497 					struct task_struct *task)
2498 {
2499 	struct perf_cpu_context *cpuctx;
2500 
2501 	cpuctx = __get_cpu_context(ctx);
2502 	if (cpuctx->task_ctx == ctx)
2503 		return;
2504 
2505 	perf_ctx_lock(cpuctx, ctx);
2506 	perf_pmu_disable(ctx->pmu);
2507 	/*
2508 	 * We want to keep the following priority order:
2509 	 * cpu pinned (that don't need to move), task pinned,
2510 	 * cpu flexible, task flexible.
2511 	 */
2512 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2513 
2514 	if (ctx->nr_events)
2515 		cpuctx->task_ctx = ctx;
2516 
2517 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2518 
2519 	perf_pmu_enable(ctx->pmu);
2520 	perf_ctx_unlock(cpuctx, ctx);
2521 
2522 	/*
2523 	 * Since these rotations are per-cpu, we need to ensure the
2524 	 * cpu-context we got scheduled on is actually rotating.
2525 	 */
2526 	perf_pmu_rotate_start(ctx->pmu);
2527 }
2528 
2529 /*
2530  * When sampling the branck stack in system-wide, it may be necessary
2531  * to flush the stack on context switch. This happens when the branch
2532  * stack does not tag its entries with the pid of the current task.
2533  * Otherwise it becomes impossible to associate a branch entry with a
2534  * task. This ambiguity is more likely to appear when the branch stack
2535  * supports priv level filtering and the user sets it to monitor only
2536  * at the user level (which could be a useful measurement in system-wide
2537  * mode). In that case, the risk is high of having a branch stack with
2538  * branch from multiple tasks. Flushing may mean dropping the existing
2539  * entries or stashing them somewhere in the PMU specific code layer.
2540  *
2541  * This function provides the context switch callback to the lower code
2542  * layer. It is invoked ONLY when there is at least one system-wide context
2543  * with at least one active event using taken branch sampling.
2544  */
2545 static void perf_branch_stack_sched_in(struct task_struct *prev,
2546 				       struct task_struct *task)
2547 {
2548 	struct perf_cpu_context *cpuctx;
2549 	struct pmu *pmu;
2550 	unsigned long flags;
2551 
2552 	/* no need to flush branch stack if not changing task */
2553 	if (prev == task)
2554 		return;
2555 
2556 	local_irq_save(flags);
2557 
2558 	rcu_read_lock();
2559 
2560 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2561 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2562 
2563 		/*
2564 		 * check if the context has at least one
2565 		 * event using PERF_SAMPLE_BRANCH_STACK
2566 		 */
2567 		if (cpuctx->ctx.nr_branch_stack > 0
2568 		    && pmu->flush_branch_stack) {
2569 
2570 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2571 
2572 			perf_pmu_disable(pmu);
2573 
2574 			pmu->flush_branch_stack();
2575 
2576 			perf_pmu_enable(pmu);
2577 
2578 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2579 		}
2580 	}
2581 
2582 	rcu_read_unlock();
2583 
2584 	local_irq_restore(flags);
2585 }
2586 
2587 /*
2588  * Called from scheduler to add the events of the current task
2589  * with interrupts disabled.
2590  *
2591  * We restore the event value and then enable it.
2592  *
2593  * This does not protect us against NMI, but enable()
2594  * sets the enabled bit in the control field of event _before_
2595  * accessing the event control register. If a NMI hits, then it will
2596  * keep the event running.
2597  */
2598 void __perf_event_task_sched_in(struct task_struct *prev,
2599 				struct task_struct *task)
2600 {
2601 	struct perf_event_context *ctx;
2602 	int ctxn;
2603 
2604 	for_each_task_context_nr(ctxn) {
2605 		ctx = task->perf_event_ctxp[ctxn];
2606 		if (likely(!ctx))
2607 			continue;
2608 
2609 		perf_event_context_sched_in(ctx, task);
2610 	}
2611 	/*
2612 	 * if cgroup events exist on this CPU, then we need
2613 	 * to check if we have to switch in PMU state.
2614 	 * cgroup event are system-wide mode only
2615 	 */
2616 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2617 		perf_cgroup_sched_in(prev, task);
2618 
2619 	/* check for system-wide branch_stack events */
2620 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2621 		perf_branch_stack_sched_in(prev, task);
2622 }
2623 
2624 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2625 {
2626 	u64 frequency = event->attr.sample_freq;
2627 	u64 sec = NSEC_PER_SEC;
2628 	u64 divisor, dividend;
2629 
2630 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2631 
2632 	count_fls = fls64(count);
2633 	nsec_fls = fls64(nsec);
2634 	frequency_fls = fls64(frequency);
2635 	sec_fls = 30;
2636 
2637 	/*
2638 	 * We got @count in @nsec, with a target of sample_freq HZ
2639 	 * the target period becomes:
2640 	 *
2641 	 *             @count * 10^9
2642 	 * period = -------------------
2643 	 *          @nsec * sample_freq
2644 	 *
2645 	 */
2646 
2647 	/*
2648 	 * Reduce accuracy by one bit such that @a and @b converge
2649 	 * to a similar magnitude.
2650 	 */
2651 #define REDUCE_FLS(a, b)		\
2652 do {					\
2653 	if (a##_fls > b##_fls) {	\
2654 		a >>= 1;		\
2655 		a##_fls--;		\
2656 	} else {			\
2657 		b >>= 1;		\
2658 		b##_fls--;		\
2659 	}				\
2660 } while (0)
2661 
2662 	/*
2663 	 * Reduce accuracy until either term fits in a u64, then proceed with
2664 	 * the other, so that finally we can do a u64/u64 division.
2665 	 */
2666 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2667 		REDUCE_FLS(nsec, frequency);
2668 		REDUCE_FLS(sec, count);
2669 	}
2670 
2671 	if (count_fls + sec_fls > 64) {
2672 		divisor = nsec * frequency;
2673 
2674 		while (count_fls + sec_fls > 64) {
2675 			REDUCE_FLS(count, sec);
2676 			divisor >>= 1;
2677 		}
2678 
2679 		dividend = count * sec;
2680 	} else {
2681 		dividend = count * sec;
2682 
2683 		while (nsec_fls + frequency_fls > 64) {
2684 			REDUCE_FLS(nsec, frequency);
2685 			dividend >>= 1;
2686 		}
2687 
2688 		divisor = nsec * frequency;
2689 	}
2690 
2691 	if (!divisor)
2692 		return dividend;
2693 
2694 	return div64_u64(dividend, divisor);
2695 }
2696 
2697 static DEFINE_PER_CPU(int, perf_throttled_count);
2698 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2699 
2700 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2701 {
2702 	struct hw_perf_event *hwc = &event->hw;
2703 	s64 period, sample_period;
2704 	s64 delta;
2705 
2706 	period = perf_calculate_period(event, nsec, count);
2707 
2708 	delta = (s64)(period - hwc->sample_period);
2709 	delta = (delta + 7) / 8; /* low pass filter */
2710 
2711 	sample_period = hwc->sample_period + delta;
2712 
2713 	if (!sample_period)
2714 		sample_period = 1;
2715 
2716 	hwc->sample_period = sample_period;
2717 
2718 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2719 		if (disable)
2720 			event->pmu->stop(event, PERF_EF_UPDATE);
2721 
2722 		local64_set(&hwc->period_left, 0);
2723 
2724 		if (disable)
2725 			event->pmu->start(event, PERF_EF_RELOAD);
2726 	}
2727 }
2728 
2729 /*
2730  * combine freq adjustment with unthrottling to avoid two passes over the
2731  * events. At the same time, make sure, having freq events does not change
2732  * the rate of unthrottling as that would introduce bias.
2733  */
2734 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2735 					   int needs_unthr)
2736 {
2737 	struct perf_event *event;
2738 	struct hw_perf_event *hwc;
2739 	u64 now, period = TICK_NSEC;
2740 	s64 delta;
2741 
2742 	/*
2743 	 * only need to iterate over all events iff:
2744 	 * - context have events in frequency mode (needs freq adjust)
2745 	 * - there are events to unthrottle on this cpu
2746 	 */
2747 	if (!(ctx->nr_freq || needs_unthr))
2748 		return;
2749 
2750 	raw_spin_lock(&ctx->lock);
2751 	perf_pmu_disable(ctx->pmu);
2752 
2753 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2754 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2755 			continue;
2756 
2757 		if (!event_filter_match(event))
2758 			continue;
2759 
2760 		perf_pmu_disable(event->pmu);
2761 
2762 		hwc = &event->hw;
2763 
2764 		if (hwc->interrupts == MAX_INTERRUPTS) {
2765 			hwc->interrupts = 0;
2766 			perf_log_throttle(event, 1);
2767 			event->pmu->start(event, 0);
2768 		}
2769 
2770 		if (!event->attr.freq || !event->attr.sample_freq)
2771 			goto next;
2772 
2773 		/*
2774 		 * stop the event and update event->count
2775 		 */
2776 		event->pmu->stop(event, PERF_EF_UPDATE);
2777 
2778 		now = local64_read(&event->count);
2779 		delta = now - hwc->freq_count_stamp;
2780 		hwc->freq_count_stamp = now;
2781 
2782 		/*
2783 		 * restart the event
2784 		 * reload only if value has changed
2785 		 * we have stopped the event so tell that
2786 		 * to perf_adjust_period() to avoid stopping it
2787 		 * twice.
2788 		 */
2789 		if (delta > 0)
2790 			perf_adjust_period(event, period, delta, false);
2791 
2792 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2793 	next:
2794 		perf_pmu_enable(event->pmu);
2795 	}
2796 
2797 	perf_pmu_enable(ctx->pmu);
2798 	raw_spin_unlock(&ctx->lock);
2799 }
2800 
2801 /*
2802  * Round-robin a context's events:
2803  */
2804 static void rotate_ctx(struct perf_event_context *ctx)
2805 {
2806 	/*
2807 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2808 	 * disabled by the inheritance code.
2809 	 */
2810 	if (!ctx->rotate_disable)
2811 		list_rotate_left(&ctx->flexible_groups);
2812 }
2813 
2814 /*
2815  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2816  * because they're strictly cpu affine and rotate_start is called with IRQs
2817  * disabled, while rotate_context is called from IRQ context.
2818  */
2819 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2820 {
2821 	struct perf_event_context *ctx = NULL;
2822 	int rotate = 0, remove = 1;
2823 
2824 	if (cpuctx->ctx.nr_events) {
2825 		remove = 0;
2826 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2827 			rotate = 1;
2828 	}
2829 
2830 	ctx = cpuctx->task_ctx;
2831 	if (ctx && ctx->nr_events) {
2832 		remove = 0;
2833 		if (ctx->nr_events != ctx->nr_active)
2834 			rotate = 1;
2835 	}
2836 
2837 	if (!rotate)
2838 		goto done;
2839 
2840 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2841 	perf_pmu_disable(cpuctx->ctx.pmu);
2842 
2843 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2844 	if (ctx)
2845 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2846 
2847 	rotate_ctx(&cpuctx->ctx);
2848 	if (ctx)
2849 		rotate_ctx(ctx);
2850 
2851 	perf_event_sched_in(cpuctx, ctx, current);
2852 
2853 	perf_pmu_enable(cpuctx->ctx.pmu);
2854 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2855 done:
2856 	if (remove)
2857 		list_del_init(&cpuctx->rotation_list);
2858 
2859 	return rotate;
2860 }
2861 
2862 #ifdef CONFIG_NO_HZ_FULL
2863 bool perf_event_can_stop_tick(void)
2864 {
2865 	if (atomic_read(&nr_freq_events) ||
2866 	    __this_cpu_read(perf_throttled_count))
2867 		return false;
2868 	else
2869 		return true;
2870 }
2871 #endif
2872 
2873 void perf_event_task_tick(void)
2874 {
2875 	struct list_head *head = &__get_cpu_var(rotation_list);
2876 	struct perf_cpu_context *cpuctx, *tmp;
2877 	struct perf_event_context *ctx;
2878 	int throttled;
2879 
2880 	WARN_ON(!irqs_disabled());
2881 
2882 	__this_cpu_inc(perf_throttled_seq);
2883 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2884 
2885 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2886 		ctx = &cpuctx->ctx;
2887 		perf_adjust_freq_unthr_context(ctx, throttled);
2888 
2889 		ctx = cpuctx->task_ctx;
2890 		if (ctx)
2891 			perf_adjust_freq_unthr_context(ctx, throttled);
2892 	}
2893 }
2894 
2895 static int event_enable_on_exec(struct perf_event *event,
2896 				struct perf_event_context *ctx)
2897 {
2898 	if (!event->attr.enable_on_exec)
2899 		return 0;
2900 
2901 	event->attr.enable_on_exec = 0;
2902 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2903 		return 0;
2904 
2905 	__perf_event_mark_enabled(event);
2906 
2907 	return 1;
2908 }
2909 
2910 /*
2911  * Enable all of a task's events that have been marked enable-on-exec.
2912  * This expects task == current.
2913  */
2914 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2915 {
2916 	struct perf_event *event;
2917 	unsigned long flags;
2918 	int enabled = 0;
2919 	int ret;
2920 
2921 	local_irq_save(flags);
2922 	if (!ctx || !ctx->nr_events)
2923 		goto out;
2924 
2925 	/*
2926 	 * We must ctxsw out cgroup events to avoid conflict
2927 	 * when invoking perf_task_event_sched_in() later on
2928 	 * in this function. Otherwise we end up trying to
2929 	 * ctxswin cgroup events which are already scheduled
2930 	 * in.
2931 	 */
2932 	perf_cgroup_sched_out(current, NULL);
2933 
2934 	raw_spin_lock(&ctx->lock);
2935 	task_ctx_sched_out(ctx);
2936 
2937 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2938 		ret = event_enable_on_exec(event, ctx);
2939 		if (ret)
2940 			enabled = 1;
2941 	}
2942 
2943 	/*
2944 	 * Unclone this context if we enabled any event.
2945 	 */
2946 	if (enabled)
2947 		unclone_ctx(ctx);
2948 
2949 	raw_spin_unlock(&ctx->lock);
2950 
2951 	/*
2952 	 * Also calls ctxswin for cgroup events, if any:
2953 	 */
2954 	perf_event_context_sched_in(ctx, ctx->task);
2955 out:
2956 	local_irq_restore(flags);
2957 }
2958 
2959 /*
2960  * Cross CPU call to read the hardware event
2961  */
2962 static void __perf_event_read(void *info)
2963 {
2964 	struct perf_event *event = info;
2965 	struct perf_event_context *ctx = event->ctx;
2966 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2967 
2968 	/*
2969 	 * If this is a task context, we need to check whether it is
2970 	 * the current task context of this cpu.  If not it has been
2971 	 * scheduled out before the smp call arrived.  In that case
2972 	 * event->count would have been updated to a recent sample
2973 	 * when the event was scheduled out.
2974 	 */
2975 	if (ctx->task && cpuctx->task_ctx != ctx)
2976 		return;
2977 
2978 	raw_spin_lock(&ctx->lock);
2979 	if (ctx->is_active) {
2980 		update_context_time(ctx);
2981 		update_cgrp_time_from_event(event);
2982 	}
2983 	update_event_times(event);
2984 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2985 		event->pmu->read(event);
2986 	raw_spin_unlock(&ctx->lock);
2987 }
2988 
2989 static inline u64 perf_event_count(struct perf_event *event)
2990 {
2991 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2992 }
2993 
2994 static u64 perf_event_read(struct perf_event *event)
2995 {
2996 	/*
2997 	 * If event is enabled and currently active on a CPU, update the
2998 	 * value in the event structure:
2999 	 */
3000 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3001 		smp_call_function_single(event->oncpu,
3002 					 __perf_event_read, event, 1);
3003 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3004 		struct perf_event_context *ctx = event->ctx;
3005 		unsigned long flags;
3006 
3007 		raw_spin_lock_irqsave(&ctx->lock, flags);
3008 		/*
3009 		 * may read while context is not active
3010 		 * (e.g., thread is blocked), in that case
3011 		 * we cannot update context time
3012 		 */
3013 		if (ctx->is_active) {
3014 			update_context_time(ctx);
3015 			update_cgrp_time_from_event(event);
3016 		}
3017 		update_event_times(event);
3018 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3019 	}
3020 
3021 	return perf_event_count(event);
3022 }
3023 
3024 /*
3025  * Initialize the perf_event context in a task_struct:
3026  */
3027 static void __perf_event_init_context(struct perf_event_context *ctx)
3028 {
3029 	raw_spin_lock_init(&ctx->lock);
3030 	mutex_init(&ctx->mutex);
3031 	INIT_LIST_HEAD(&ctx->pinned_groups);
3032 	INIT_LIST_HEAD(&ctx->flexible_groups);
3033 	INIT_LIST_HEAD(&ctx->event_list);
3034 	atomic_set(&ctx->refcount, 1);
3035 }
3036 
3037 static struct perf_event_context *
3038 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3039 {
3040 	struct perf_event_context *ctx;
3041 
3042 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3043 	if (!ctx)
3044 		return NULL;
3045 
3046 	__perf_event_init_context(ctx);
3047 	if (task) {
3048 		ctx->task = task;
3049 		get_task_struct(task);
3050 	}
3051 	ctx->pmu = pmu;
3052 
3053 	return ctx;
3054 }
3055 
3056 static struct task_struct *
3057 find_lively_task_by_vpid(pid_t vpid)
3058 {
3059 	struct task_struct *task;
3060 	int err;
3061 
3062 	rcu_read_lock();
3063 	if (!vpid)
3064 		task = current;
3065 	else
3066 		task = find_task_by_vpid(vpid);
3067 	if (task)
3068 		get_task_struct(task);
3069 	rcu_read_unlock();
3070 
3071 	if (!task)
3072 		return ERR_PTR(-ESRCH);
3073 
3074 	/* Reuse ptrace permission checks for now. */
3075 	err = -EACCES;
3076 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3077 		goto errout;
3078 
3079 	return task;
3080 errout:
3081 	put_task_struct(task);
3082 	return ERR_PTR(err);
3083 
3084 }
3085 
3086 /*
3087  * Returns a matching context with refcount and pincount.
3088  */
3089 static struct perf_event_context *
3090 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3091 {
3092 	struct perf_event_context *ctx;
3093 	struct perf_cpu_context *cpuctx;
3094 	unsigned long flags;
3095 	int ctxn, err;
3096 
3097 	if (!task) {
3098 		/* Must be root to operate on a CPU event: */
3099 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3100 			return ERR_PTR(-EACCES);
3101 
3102 		/*
3103 		 * We could be clever and allow to attach a event to an
3104 		 * offline CPU and activate it when the CPU comes up, but
3105 		 * that's for later.
3106 		 */
3107 		if (!cpu_online(cpu))
3108 			return ERR_PTR(-ENODEV);
3109 
3110 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3111 		ctx = &cpuctx->ctx;
3112 		get_ctx(ctx);
3113 		++ctx->pin_count;
3114 
3115 		return ctx;
3116 	}
3117 
3118 	err = -EINVAL;
3119 	ctxn = pmu->task_ctx_nr;
3120 	if (ctxn < 0)
3121 		goto errout;
3122 
3123 retry:
3124 	ctx = perf_lock_task_context(task, ctxn, &flags);
3125 	if (ctx) {
3126 		unclone_ctx(ctx);
3127 		++ctx->pin_count;
3128 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3129 	} else {
3130 		ctx = alloc_perf_context(pmu, task);
3131 		err = -ENOMEM;
3132 		if (!ctx)
3133 			goto errout;
3134 
3135 		err = 0;
3136 		mutex_lock(&task->perf_event_mutex);
3137 		/*
3138 		 * If it has already passed perf_event_exit_task().
3139 		 * we must see PF_EXITING, it takes this mutex too.
3140 		 */
3141 		if (task->flags & PF_EXITING)
3142 			err = -ESRCH;
3143 		else if (task->perf_event_ctxp[ctxn])
3144 			err = -EAGAIN;
3145 		else {
3146 			get_ctx(ctx);
3147 			++ctx->pin_count;
3148 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3149 		}
3150 		mutex_unlock(&task->perf_event_mutex);
3151 
3152 		if (unlikely(err)) {
3153 			put_ctx(ctx);
3154 
3155 			if (err == -EAGAIN)
3156 				goto retry;
3157 			goto errout;
3158 		}
3159 	}
3160 
3161 	return ctx;
3162 
3163 errout:
3164 	return ERR_PTR(err);
3165 }
3166 
3167 static void perf_event_free_filter(struct perf_event *event);
3168 
3169 static void free_event_rcu(struct rcu_head *head)
3170 {
3171 	struct perf_event *event;
3172 
3173 	event = container_of(head, struct perf_event, rcu_head);
3174 	if (event->ns)
3175 		put_pid_ns(event->ns);
3176 	perf_event_free_filter(event);
3177 	kfree(event);
3178 }
3179 
3180 static void ring_buffer_put(struct ring_buffer *rb);
3181 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3182 
3183 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3184 {
3185 	if (event->parent)
3186 		return;
3187 
3188 	if (has_branch_stack(event)) {
3189 		if (!(event->attach_state & PERF_ATTACH_TASK))
3190 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3191 	}
3192 	if (is_cgroup_event(event))
3193 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3194 }
3195 
3196 static void unaccount_event(struct perf_event *event)
3197 {
3198 	if (event->parent)
3199 		return;
3200 
3201 	if (event->attach_state & PERF_ATTACH_TASK)
3202 		static_key_slow_dec_deferred(&perf_sched_events);
3203 	if (event->attr.mmap || event->attr.mmap_data)
3204 		atomic_dec(&nr_mmap_events);
3205 	if (event->attr.comm)
3206 		atomic_dec(&nr_comm_events);
3207 	if (event->attr.task)
3208 		atomic_dec(&nr_task_events);
3209 	if (event->attr.freq)
3210 		atomic_dec(&nr_freq_events);
3211 	if (is_cgroup_event(event))
3212 		static_key_slow_dec_deferred(&perf_sched_events);
3213 	if (has_branch_stack(event))
3214 		static_key_slow_dec_deferred(&perf_sched_events);
3215 
3216 	unaccount_event_cpu(event, event->cpu);
3217 }
3218 
3219 static void __free_event(struct perf_event *event)
3220 {
3221 	if (!event->parent) {
3222 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3223 			put_callchain_buffers();
3224 	}
3225 
3226 	if (event->destroy)
3227 		event->destroy(event);
3228 
3229 	if (event->ctx)
3230 		put_ctx(event->ctx);
3231 
3232 	call_rcu(&event->rcu_head, free_event_rcu);
3233 }
3234 static void free_event(struct perf_event *event)
3235 {
3236 	irq_work_sync(&event->pending);
3237 
3238 	unaccount_event(event);
3239 
3240 	if (event->rb) {
3241 		struct ring_buffer *rb;
3242 
3243 		/*
3244 		 * Can happen when we close an event with re-directed output.
3245 		 *
3246 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3247 		 * over us; possibly making our ring_buffer_put() the last.
3248 		 */
3249 		mutex_lock(&event->mmap_mutex);
3250 		rb = event->rb;
3251 		if (rb) {
3252 			rcu_assign_pointer(event->rb, NULL);
3253 			ring_buffer_detach(event, rb);
3254 			ring_buffer_put(rb); /* could be last */
3255 		}
3256 		mutex_unlock(&event->mmap_mutex);
3257 	}
3258 
3259 	if (is_cgroup_event(event))
3260 		perf_detach_cgroup(event);
3261 
3262 
3263 	__free_event(event);
3264 }
3265 
3266 int perf_event_release_kernel(struct perf_event *event)
3267 {
3268 	struct perf_event_context *ctx = event->ctx;
3269 
3270 	WARN_ON_ONCE(ctx->parent_ctx);
3271 	/*
3272 	 * There are two ways this annotation is useful:
3273 	 *
3274 	 *  1) there is a lock recursion from perf_event_exit_task
3275 	 *     see the comment there.
3276 	 *
3277 	 *  2) there is a lock-inversion with mmap_sem through
3278 	 *     perf_event_read_group(), which takes faults while
3279 	 *     holding ctx->mutex, however this is called after
3280 	 *     the last filedesc died, so there is no possibility
3281 	 *     to trigger the AB-BA case.
3282 	 */
3283 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3284 	raw_spin_lock_irq(&ctx->lock);
3285 	perf_group_detach(event);
3286 	raw_spin_unlock_irq(&ctx->lock);
3287 	perf_remove_from_context(event);
3288 	mutex_unlock(&ctx->mutex);
3289 
3290 	free_event(event);
3291 
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3295 
3296 /*
3297  * Called when the last reference to the file is gone.
3298  */
3299 static void put_event(struct perf_event *event)
3300 {
3301 	struct task_struct *owner;
3302 
3303 	if (!atomic_long_dec_and_test(&event->refcount))
3304 		return;
3305 
3306 	rcu_read_lock();
3307 	owner = ACCESS_ONCE(event->owner);
3308 	/*
3309 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3310 	 * !owner it means the list deletion is complete and we can indeed
3311 	 * free this event, otherwise we need to serialize on
3312 	 * owner->perf_event_mutex.
3313 	 */
3314 	smp_read_barrier_depends();
3315 	if (owner) {
3316 		/*
3317 		 * Since delayed_put_task_struct() also drops the last
3318 		 * task reference we can safely take a new reference
3319 		 * while holding the rcu_read_lock().
3320 		 */
3321 		get_task_struct(owner);
3322 	}
3323 	rcu_read_unlock();
3324 
3325 	if (owner) {
3326 		mutex_lock(&owner->perf_event_mutex);
3327 		/*
3328 		 * We have to re-check the event->owner field, if it is cleared
3329 		 * we raced with perf_event_exit_task(), acquiring the mutex
3330 		 * ensured they're done, and we can proceed with freeing the
3331 		 * event.
3332 		 */
3333 		if (event->owner)
3334 			list_del_init(&event->owner_entry);
3335 		mutex_unlock(&owner->perf_event_mutex);
3336 		put_task_struct(owner);
3337 	}
3338 
3339 	perf_event_release_kernel(event);
3340 }
3341 
3342 static int perf_release(struct inode *inode, struct file *file)
3343 {
3344 	put_event(file->private_data);
3345 	return 0;
3346 }
3347 
3348 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3349 {
3350 	struct perf_event *child;
3351 	u64 total = 0;
3352 
3353 	*enabled = 0;
3354 	*running = 0;
3355 
3356 	mutex_lock(&event->child_mutex);
3357 	total += perf_event_read(event);
3358 	*enabled += event->total_time_enabled +
3359 			atomic64_read(&event->child_total_time_enabled);
3360 	*running += event->total_time_running +
3361 			atomic64_read(&event->child_total_time_running);
3362 
3363 	list_for_each_entry(child, &event->child_list, child_list) {
3364 		total += perf_event_read(child);
3365 		*enabled += child->total_time_enabled;
3366 		*running += child->total_time_running;
3367 	}
3368 	mutex_unlock(&event->child_mutex);
3369 
3370 	return total;
3371 }
3372 EXPORT_SYMBOL_GPL(perf_event_read_value);
3373 
3374 static int perf_event_read_group(struct perf_event *event,
3375 				   u64 read_format, char __user *buf)
3376 {
3377 	struct perf_event *leader = event->group_leader, *sub;
3378 	int n = 0, size = 0, ret = -EFAULT;
3379 	struct perf_event_context *ctx = leader->ctx;
3380 	u64 values[5];
3381 	u64 count, enabled, running;
3382 
3383 	mutex_lock(&ctx->mutex);
3384 	count = perf_event_read_value(leader, &enabled, &running);
3385 
3386 	values[n++] = 1 + leader->nr_siblings;
3387 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3388 		values[n++] = enabled;
3389 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3390 		values[n++] = running;
3391 	values[n++] = count;
3392 	if (read_format & PERF_FORMAT_ID)
3393 		values[n++] = primary_event_id(leader);
3394 
3395 	size = n * sizeof(u64);
3396 
3397 	if (copy_to_user(buf, values, size))
3398 		goto unlock;
3399 
3400 	ret = size;
3401 
3402 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3403 		n = 0;
3404 
3405 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3406 		if (read_format & PERF_FORMAT_ID)
3407 			values[n++] = primary_event_id(sub);
3408 
3409 		size = n * sizeof(u64);
3410 
3411 		if (copy_to_user(buf + ret, values, size)) {
3412 			ret = -EFAULT;
3413 			goto unlock;
3414 		}
3415 
3416 		ret += size;
3417 	}
3418 unlock:
3419 	mutex_unlock(&ctx->mutex);
3420 
3421 	return ret;
3422 }
3423 
3424 static int perf_event_read_one(struct perf_event *event,
3425 				 u64 read_format, char __user *buf)
3426 {
3427 	u64 enabled, running;
3428 	u64 values[4];
3429 	int n = 0;
3430 
3431 	values[n++] = perf_event_read_value(event, &enabled, &running);
3432 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3433 		values[n++] = enabled;
3434 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3435 		values[n++] = running;
3436 	if (read_format & PERF_FORMAT_ID)
3437 		values[n++] = primary_event_id(event);
3438 
3439 	if (copy_to_user(buf, values, n * sizeof(u64)))
3440 		return -EFAULT;
3441 
3442 	return n * sizeof(u64);
3443 }
3444 
3445 /*
3446  * Read the performance event - simple non blocking version for now
3447  */
3448 static ssize_t
3449 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3450 {
3451 	u64 read_format = event->attr.read_format;
3452 	int ret;
3453 
3454 	/*
3455 	 * Return end-of-file for a read on a event that is in
3456 	 * error state (i.e. because it was pinned but it couldn't be
3457 	 * scheduled on to the CPU at some point).
3458 	 */
3459 	if (event->state == PERF_EVENT_STATE_ERROR)
3460 		return 0;
3461 
3462 	if (count < event->read_size)
3463 		return -ENOSPC;
3464 
3465 	WARN_ON_ONCE(event->ctx->parent_ctx);
3466 	if (read_format & PERF_FORMAT_GROUP)
3467 		ret = perf_event_read_group(event, read_format, buf);
3468 	else
3469 		ret = perf_event_read_one(event, read_format, buf);
3470 
3471 	return ret;
3472 }
3473 
3474 static ssize_t
3475 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3476 {
3477 	struct perf_event *event = file->private_data;
3478 
3479 	return perf_read_hw(event, buf, count);
3480 }
3481 
3482 static unsigned int perf_poll(struct file *file, poll_table *wait)
3483 {
3484 	struct perf_event *event = file->private_data;
3485 	struct ring_buffer *rb;
3486 	unsigned int events = POLL_HUP;
3487 
3488 	/*
3489 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3490 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3491 	 */
3492 	mutex_lock(&event->mmap_mutex);
3493 	rb = event->rb;
3494 	if (rb)
3495 		events = atomic_xchg(&rb->poll, 0);
3496 	mutex_unlock(&event->mmap_mutex);
3497 
3498 	poll_wait(file, &event->waitq, wait);
3499 
3500 	return events;
3501 }
3502 
3503 static void perf_event_reset(struct perf_event *event)
3504 {
3505 	(void)perf_event_read(event);
3506 	local64_set(&event->count, 0);
3507 	perf_event_update_userpage(event);
3508 }
3509 
3510 /*
3511  * Holding the top-level event's child_mutex means that any
3512  * descendant process that has inherited this event will block
3513  * in sync_child_event if it goes to exit, thus satisfying the
3514  * task existence requirements of perf_event_enable/disable.
3515  */
3516 static void perf_event_for_each_child(struct perf_event *event,
3517 					void (*func)(struct perf_event *))
3518 {
3519 	struct perf_event *child;
3520 
3521 	WARN_ON_ONCE(event->ctx->parent_ctx);
3522 	mutex_lock(&event->child_mutex);
3523 	func(event);
3524 	list_for_each_entry(child, &event->child_list, child_list)
3525 		func(child);
3526 	mutex_unlock(&event->child_mutex);
3527 }
3528 
3529 static void perf_event_for_each(struct perf_event *event,
3530 				  void (*func)(struct perf_event *))
3531 {
3532 	struct perf_event_context *ctx = event->ctx;
3533 	struct perf_event *sibling;
3534 
3535 	WARN_ON_ONCE(ctx->parent_ctx);
3536 	mutex_lock(&ctx->mutex);
3537 	event = event->group_leader;
3538 
3539 	perf_event_for_each_child(event, func);
3540 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3541 		perf_event_for_each_child(sibling, func);
3542 	mutex_unlock(&ctx->mutex);
3543 }
3544 
3545 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3546 {
3547 	struct perf_event_context *ctx = event->ctx;
3548 	int ret = 0, active;
3549 	u64 value;
3550 
3551 	if (!is_sampling_event(event))
3552 		return -EINVAL;
3553 
3554 	if (copy_from_user(&value, arg, sizeof(value)))
3555 		return -EFAULT;
3556 
3557 	if (!value)
3558 		return -EINVAL;
3559 
3560 	raw_spin_lock_irq(&ctx->lock);
3561 	if (event->attr.freq) {
3562 		if (value > sysctl_perf_event_sample_rate) {
3563 			ret = -EINVAL;
3564 			goto unlock;
3565 		}
3566 
3567 		event->attr.sample_freq = value;
3568 	} else {
3569 		event->attr.sample_period = value;
3570 		event->hw.sample_period = value;
3571 	}
3572 
3573 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3574 	if (active) {
3575 		perf_pmu_disable(ctx->pmu);
3576 		event->pmu->stop(event, PERF_EF_UPDATE);
3577 	}
3578 
3579 	local64_set(&event->hw.period_left, 0);
3580 
3581 	if (active) {
3582 		event->pmu->start(event, PERF_EF_RELOAD);
3583 		perf_pmu_enable(ctx->pmu);
3584 	}
3585 
3586 unlock:
3587 	raw_spin_unlock_irq(&ctx->lock);
3588 
3589 	return ret;
3590 }
3591 
3592 static const struct file_operations perf_fops;
3593 
3594 static inline int perf_fget_light(int fd, struct fd *p)
3595 {
3596 	struct fd f = fdget(fd);
3597 	if (!f.file)
3598 		return -EBADF;
3599 
3600 	if (f.file->f_op != &perf_fops) {
3601 		fdput(f);
3602 		return -EBADF;
3603 	}
3604 	*p = f;
3605 	return 0;
3606 }
3607 
3608 static int perf_event_set_output(struct perf_event *event,
3609 				 struct perf_event *output_event);
3610 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3611 
3612 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3613 {
3614 	struct perf_event *event = file->private_data;
3615 	void (*func)(struct perf_event *);
3616 	u32 flags = arg;
3617 
3618 	switch (cmd) {
3619 	case PERF_EVENT_IOC_ENABLE:
3620 		func = perf_event_enable;
3621 		break;
3622 	case PERF_EVENT_IOC_DISABLE:
3623 		func = perf_event_disable;
3624 		break;
3625 	case PERF_EVENT_IOC_RESET:
3626 		func = perf_event_reset;
3627 		break;
3628 
3629 	case PERF_EVENT_IOC_REFRESH:
3630 		return perf_event_refresh(event, arg);
3631 
3632 	case PERF_EVENT_IOC_PERIOD:
3633 		return perf_event_period(event, (u64 __user *)arg);
3634 
3635 	case PERF_EVENT_IOC_ID:
3636 	{
3637 		u64 id = primary_event_id(event);
3638 
3639 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3640 			return -EFAULT;
3641 		return 0;
3642 	}
3643 
3644 	case PERF_EVENT_IOC_SET_OUTPUT:
3645 	{
3646 		int ret;
3647 		if (arg != -1) {
3648 			struct perf_event *output_event;
3649 			struct fd output;
3650 			ret = perf_fget_light(arg, &output);
3651 			if (ret)
3652 				return ret;
3653 			output_event = output.file->private_data;
3654 			ret = perf_event_set_output(event, output_event);
3655 			fdput(output);
3656 		} else {
3657 			ret = perf_event_set_output(event, NULL);
3658 		}
3659 		return ret;
3660 	}
3661 
3662 	case PERF_EVENT_IOC_SET_FILTER:
3663 		return perf_event_set_filter(event, (void __user *)arg);
3664 
3665 	default:
3666 		return -ENOTTY;
3667 	}
3668 
3669 	if (flags & PERF_IOC_FLAG_GROUP)
3670 		perf_event_for_each(event, func);
3671 	else
3672 		perf_event_for_each_child(event, func);
3673 
3674 	return 0;
3675 }
3676 
3677 int perf_event_task_enable(void)
3678 {
3679 	struct perf_event *event;
3680 
3681 	mutex_lock(&current->perf_event_mutex);
3682 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3683 		perf_event_for_each_child(event, perf_event_enable);
3684 	mutex_unlock(&current->perf_event_mutex);
3685 
3686 	return 0;
3687 }
3688 
3689 int perf_event_task_disable(void)
3690 {
3691 	struct perf_event *event;
3692 
3693 	mutex_lock(&current->perf_event_mutex);
3694 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3695 		perf_event_for_each_child(event, perf_event_disable);
3696 	mutex_unlock(&current->perf_event_mutex);
3697 
3698 	return 0;
3699 }
3700 
3701 static int perf_event_index(struct perf_event *event)
3702 {
3703 	if (event->hw.state & PERF_HES_STOPPED)
3704 		return 0;
3705 
3706 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3707 		return 0;
3708 
3709 	return event->pmu->event_idx(event);
3710 }
3711 
3712 static void calc_timer_values(struct perf_event *event,
3713 				u64 *now,
3714 				u64 *enabled,
3715 				u64 *running)
3716 {
3717 	u64 ctx_time;
3718 
3719 	*now = perf_clock();
3720 	ctx_time = event->shadow_ctx_time + *now;
3721 	*enabled = ctx_time - event->tstamp_enabled;
3722 	*running = ctx_time - event->tstamp_running;
3723 }
3724 
3725 static void perf_event_init_userpage(struct perf_event *event)
3726 {
3727 	struct perf_event_mmap_page *userpg;
3728 	struct ring_buffer *rb;
3729 
3730 	rcu_read_lock();
3731 	rb = rcu_dereference(event->rb);
3732 	if (!rb)
3733 		goto unlock;
3734 
3735 	userpg = rb->user_page;
3736 
3737 	/* Allow new userspace to detect that bit 0 is deprecated */
3738 	userpg->cap_bit0_is_deprecated = 1;
3739 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3740 
3741 unlock:
3742 	rcu_read_unlock();
3743 }
3744 
3745 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3746 {
3747 }
3748 
3749 /*
3750  * Callers need to ensure there can be no nesting of this function, otherwise
3751  * the seqlock logic goes bad. We can not serialize this because the arch
3752  * code calls this from NMI context.
3753  */
3754 void perf_event_update_userpage(struct perf_event *event)
3755 {
3756 	struct perf_event_mmap_page *userpg;
3757 	struct ring_buffer *rb;
3758 	u64 enabled, running, now;
3759 
3760 	rcu_read_lock();
3761 	rb = rcu_dereference(event->rb);
3762 	if (!rb)
3763 		goto unlock;
3764 
3765 	/*
3766 	 * compute total_time_enabled, total_time_running
3767 	 * based on snapshot values taken when the event
3768 	 * was last scheduled in.
3769 	 *
3770 	 * we cannot simply called update_context_time()
3771 	 * because of locking issue as we can be called in
3772 	 * NMI context
3773 	 */
3774 	calc_timer_values(event, &now, &enabled, &running);
3775 
3776 	userpg = rb->user_page;
3777 	/*
3778 	 * Disable preemption so as to not let the corresponding user-space
3779 	 * spin too long if we get preempted.
3780 	 */
3781 	preempt_disable();
3782 	++userpg->lock;
3783 	barrier();
3784 	userpg->index = perf_event_index(event);
3785 	userpg->offset = perf_event_count(event);
3786 	if (userpg->index)
3787 		userpg->offset -= local64_read(&event->hw.prev_count);
3788 
3789 	userpg->time_enabled = enabled +
3790 			atomic64_read(&event->child_total_time_enabled);
3791 
3792 	userpg->time_running = running +
3793 			atomic64_read(&event->child_total_time_running);
3794 
3795 	arch_perf_update_userpage(userpg, now);
3796 
3797 	barrier();
3798 	++userpg->lock;
3799 	preempt_enable();
3800 unlock:
3801 	rcu_read_unlock();
3802 }
3803 
3804 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3805 {
3806 	struct perf_event *event = vma->vm_file->private_data;
3807 	struct ring_buffer *rb;
3808 	int ret = VM_FAULT_SIGBUS;
3809 
3810 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3811 		if (vmf->pgoff == 0)
3812 			ret = 0;
3813 		return ret;
3814 	}
3815 
3816 	rcu_read_lock();
3817 	rb = rcu_dereference(event->rb);
3818 	if (!rb)
3819 		goto unlock;
3820 
3821 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3822 		goto unlock;
3823 
3824 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3825 	if (!vmf->page)
3826 		goto unlock;
3827 
3828 	get_page(vmf->page);
3829 	vmf->page->mapping = vma->vm_file->f_mapping;
3830 	vmf->page->index   = vmf->pgoff;
3831 
3832 	ret = 0;
3833 unlock:
3834 	rcu_read_unlock();
3835 
3836 	return ret;
3837 }
3838 
3839 static void ring_buffer_attach(struct perf_event *event,
3840 			       struct ring_buffer *rb)
3841 {
3842 	unsigned long flags;
3843 
3844 	if (!list_empty(&event->rb_entry))
3845 		return;
3846 
3847 	spin_lock_irqsave(&rb->event_lock, flags);
3848 	if (list_empty(&event->rb_entry))
3849 		list_add(&event->rb_entry, &rb->event_list);
3850 	spin_unlock_irqrestore(&rb->event_lock, flags);
3851 }
3852 
3853 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3854 {
3855 	unsigned long flags;
3856 
3857 	if (list_empty(&event->rb_entry))
3858 		return;
3859 
3860 	spin_lock_irqsave(&rb->event_lock, flags);
3861 	list_del_init(&event->rb_entry);
3862 	wake_up_all(&event->waitq);
3863 	spin_unlock_irqrestore(&rb->event_lock, flags);
3864 }
3865 
3866 static void ring_buffer_wakeup(struct perf_event *event)
3867 {
3868 	struct ring_buffer *rb;
3869 
3870 	rcu_read_lock();
3871 	rb = rcu_dereference(event->rb);
3872 	if (rb) {
3873 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3874 			wake_up_all(&event->waitq);
3875 	}
3876 	rcu_read_unlock();
3877 }
3878 
3879 static void rb_free_rcu(struct rcu_head *rcu_head)
3880 {
3881 	struct ring_buffer *rb;
3882 
3883 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3884 	rb_free(rb);
3885 }
3886 
3887 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3888 {
3889 	struct ring_buffer *rb;
3890 
3891 	rcu_read_lock();
3892 	rb = rcu_dereference(event->rb);
3893 	if (rb) {
3894 		if (!atomic_inc_not_zero(&rb->refcount))
3895 			rb = NULL;
3896 	}
3897 	rcu_read_unlock();
3898 
3899 	return rb;
3900 }
3901 
3902 static void ring_buffer_put(struct ring_buffer *rb)
3903 {
3904 	if (!atomic_dec_and_test(&rb->refcount))
3905 		return;
3906 
3907 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3908 
3909 	call_rcu(&rb->rcu_head, rb_free_rcu);
3910 }
3911 
3912 static void perf_mmap_open(struct vm_area_struct *vma)
3913 {
3914 	struct perf_event *event = vma->vm_file->private_data;
3915 
3916 	atomic_inc(&event->mmap_count);
3917 	atomic_inc(&event->rb->mmap_count);
3918 }
3919 
3920 /*
3921  * A buffer can be mmap()ed multiple times; either directly through the same
3922  * event, or through other events by use of perf_event_set_output().
3923  *
3924  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3925  * the buffer here, where we still have a VM context. This means we need
3926  * to detach all events redirecting to us.
3927  */
3928 static void perf_mmap_close(struct vm_area_struct *vma)
3929 {
3930 	struct perf_event *event = vma->vm_file->private_data;
3931 
3932 	struct ring_buffer *rb = event->rb;
3933 	struct user_struct *mmap_user = rb->mmap_user;
3934 	int mmap_locked = rb->mmap_locked;
3935 	unsigned long size = perf_data_size(rb);
3936 
3937 	atomic_dec(&rb->mmap_count);
3938 
3939 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3940 		return;
3941 
3942 	/* Detach current event from the buffer. */
3943 	rcu_assign_pointer(event->rb, NULL);
3944 	ring_buffer_detach(event, rb);
3945 	mutex_unlock(&event->mmap_mutex);
3946 
3947 	/* If there's still other mmap()s of this buffer, we're done. */
3948 	if (atomic_read(&rb->mmap_count)) {
3949 		ring_buffer_put(rb); /* can't be last */
3950 		return;
3951 	}
3952 
3953 	/*
3954 	 * No other mmap()s, detach from all other events that might redirect
3955 	 * into the now unreachable buffer. Somewhat complicated by the
3956 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3957 	 */
3958 again:
3959 	rcu_read_lock();
3960 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3961 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3962 			/*
3963 			 * This event is en-route to free_event() which will
3964 			 * detach it and remove it from the list.
3965 			 */
3966 			continue;
3967 		}
3968 		rcu_read_unlock();
3969 
3970 		mutex_lock(&event->mmap_mutex);
3971 		/*
3972 		 * Check we didn't race with perf_event_set_output() which can
3973 		 * swizzle the rb from under us while we were waiting to
3974 		 * acquire mmap_mutex.
3975 		 *
3976 		 * If we find a different rb; ignore this event, a next
3977 		 * iteration will no longer find it on the list. We have to
3978 		 * still restart the iteration to make sure we're not now
3979 		 * iterating the wrong list.
3980 		 */
3981 		if (event->rb == rb) {
3982 			rcu_assign_pointer(event->rb, NULL);
3983 			ring_buffer_detach(event, rb);
3984 			ring_buffer_put(rb); /* can't be last, we still have one */
3985 		}
3986 		mutex_unlock(&event->mmap_mutex);
3987 		put_event(event);
3988 
3989 		/*
3990 		 * Restart the iteration; either we're on the wrong list or
3991 		 * destroyed its integrity by doing a deletion.
3992 		 */
3993 		goto again;
3994 	}
3995 	rcu_read_unlock();
3996 
3997 	/*
3998 	 * It could be there's still a few 0-ref events on the list; they'll
3999 	 * get cleaned up by free_event() -- they'll also still have their
4000 	 * ref on the rb and will free it whenever they are done with it.
4001 	 *
4002 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4003 	 * undo the VM accounting.
4004 	 */
4005 
4006 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4007 	vma->vm_mm->pinned_vm -= mmap_locked;
4008 	free_uid(mmap_user);
4009 
4010 	ring_buffer_put(rb); /* could be last */
4011 }
4012 
4013 static const struct vm_operations_struct perf_mmap_vmops = {
4014 	.open		= perf_mmap_open,
4015 	.close		= perf_mmap_close,
4016 	.fault		= perf_mmap_fault,
4017 	.page_mkwrite	= perf_mmap_fault,
4018 };
4019 
4020 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4021 {
4022 	struct perf_event *event = file->private_data;
4023 	unsigned long user_locked, user_lock_limit;
4024 	struct user_struct *user = current_user();
4025 	unsigned long locked, lock_limit;
4026 	struct ring_buffer *rb;
4027 	unsigned long vma_size;
4028 	unsigned long nr_pages;
4029 	long user_extra, extra;
4030 	int ret = 0, flags = 0;
4031 
4032 	/*
4033 	 * Don't allow mmap() of inherited per-task counters. This would
4034 	 * create a performance issue due to all children writing to the
4035 	 * same rb.
4036 	 */
4037 	if (event->cpu == -1 && event->attr.inherit)
4038 		return -EINVAL;
4039 
4040 	if (!(vma->vm_flags & VM_SHARED))
4041 		return -EINVAL;
4042 
4043 	vma_size = vma->vm_end - vma->vm_start;
4044 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4045 
4046 	/*
4047 	 * If we have rb pages ensure they're a power-of-two number, so we
4048 	 * can do bitmasks instead of modulo.
4049 	 */
4050 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4051 		return -EINVAL;
4052 
4053 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4054 		return -EINVAL;
4055 
4056 	if (vma->vm_pgoff != 0)
4057 		return -EINVAL;
4058 
4059 	WARN_ON_ONCE(event->ctx->parent_ctx);
4060 again:
4061 	mutex_lock(&event->mmap_mutex);
4062 	if (event->rb) {
4063 		if (event->rb->nr_pages != nr_pages) {
4064 			ret = -EINVAL;
4065 			goto unlock;
4066 		}
4067 
4068 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4069 			/*
4070 			 * Raced against perf_mmap_close() through
4071 			 * perf_event_set_output(). Try again, hope for better
4072 			 * luck.
4073 			 */
4074 			mutex_unlock(&event->mmap_mutex);
4075 			goto again;
4076 		}
4077 
4078 		goto unlock;
4079 	}
4080 
4081 	user_extra = nr_pages + 1;
4082 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4083 
4084 	/*
4085 	 * Increase the limit linearly with more CPUs:
4086 	 */
4087 	user_lock_limit *= num_online_cpus();
4088 
4089 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4090 
4091 	extra = 0;
4092 	if (user_locked > user_lock_limit)
4093 		extra = user_locked - user_lock_limit;
4094 
4095 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4096 	lock_limit >>= PAGE_SHIFT;
4097 	locked = vma->vm_mm->pinned_vm + extra;
4098 
4099 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4100 		!capable(CAP_IPC_LOCK)) {
4101 		ret = -EPERM;
4102 		goto unlock;
4103 	}
4104 
4105 	WARN_ON(event->rb);
4106 
4107 	if (vma->vm_flags & VM_WRITE)
4108 		flags |= RING_BUFFER_WRITABLE;
4109 
4110 	rb = rb_alloc(nr_pages,
4111 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4112 		event->cpu, flags);
4113 
4114 	if (!rb) {
4115 		ret = -ENOMEM;
4116 		goto unlock;
4117 	}
4118 
4119 	atomic_set(&rb->mmap_count, 1);
4120 	rb->mmap_locked = extra;
4121 	rb->mmap_user = get_current_user();
4122 
4123 	atomic_long_add(user_extra, &user->locked_vm);
4124 	vma->vm_mm->pinned_vm += extra;
4125 
4126 	ring_buffer_attach(event, rb);
4127 	rcu_assign_pointer(event->rb, rb);
4128 
4129 	perf_event_init_userpage(event);
4130 	perf_event_update_userpage(event);
4131 
4132 unlock:
4133 	if (!ret)
4134 		atomic_inc(&event->mmap_count);
4135 	mutex_unlock(&event->mmap_mutex);
4136 
4137 	/*
4138 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4139 	 * vma.
4140 	 */
4141 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4142 	vma->vm_ops = &perf_mmap_vmops;
4143 
4144 	return ret;
4145 }
4146 
4147 static int perf_fasync(int fd, struct file *filp, int on)
4148 {
4149 	struct inode *inode = file_inode(filp);
4150 	struct perf_event *event = filp->private_data;
4151 	int retval;
4152 
4153 	mutex_lock(&inode->i_mutex);
4154 	retval = fasync_helper(fd, filp, on, &event->fasync);
4155 	mutex_unlock(&inode->i_mutex);
4156 
4157 	if (retval < 0)
4158 		return retval;
4159 
4160 	return 0;
4161 }
4162 
4163 static const struct file_operations perf_fops = {
4164 	.llseek			= no_llseek,
4165 	.release		= perf_release,
4166 	.read			= perf_read,
4167 	.poll			= perf_poll,
4168 	.unlocked_ioctl		= perf_ioctl,
4169 	.compat_ioctl		= perf_ioctl,
4170 	.mmap			= perf_mmap,
4171 	.fasync			= perf_fasync,
4172 };
4173 
4174 /*
4175  * Perf event wakeup
4176  *
4177  * If there's data, ensure we set the poll() state and publish everything
4178  * to user-space before waking everybody up.
4179  */
4180 
4181 void perf_event_wakeup(struct perf_event *event)
4182 {
4183 	ring_buffer_wakeup(event);
4184 
4185 	if (event->pending_kill) {
4186 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4187 		event->pending_kill = 0;
4188 	}
4189 }
4190 
4191 static void perf_pending_event(struct irq_work *entry)
4192 {
4193 	struct perf_event *event = container_of(entry,
4194 			struct perf_event, pending);
4195 
4196 	if (event->pending_disable) {
4197 		event->pending_disable = 0;
4198 		__perf_event_disable(event);
4199 	}
4200 
4201 	if (event->pending_wakeup) {
4202 		event->pending_wakeup = 0;
4203 		perf_event_wakeup(event);
4204 	}
4205 }
4206 
4207 /*
4208  * We assume there is only KVM supporting the callbacks.
4209  * Later on, we might change it to a list if there is
4210  * another virtualization implementation supporting the callbacks.
4211  */
4212 struct perf_guest_info_callbacks *perf_guest_cbs;
4213 
4214 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4215 {
4216 	perf_guest_cbs = cbs;
4217 	return 0;
4218 }
4219 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4220 
4221 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4222 {
4223 	perf_guest_cbs = NULL;
4224 	return 0;
4225 }
4226 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4227 
4228 static void
4229 perf_output_sample_regs(struct perf_output_handle *handle,
4230 			struct pt_regs *regs, u64 mask)
4231 {
4232 	int bit;
4233 
4234 	for_each_set_bit(bit, (const unsigned long *) &mask,
4235 			 sizeof(mask) * BITS_PER_BYTE) {
4236 		u64 val;
4237 
4238 		val = perf_reg_value(regs, bit);
4239 		perf_output_put(handle, val);
4240 	}
4241 }
4242 
4243 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4244 				  struct pt_regs *regs)
4245 {
4246 	if (!user_mode(regs)) {
4247 		if (current->mm)
4248 			regs = task_pt_regs(current);
4249 		else
4250 			regs = NULL;
4251 	}
4252 
4253 	if (regs) {
4254 		regs_user->regs = regs;
4255 		regs_user->abi  = perf_reg_abi(current);
4256 	}
4257 }
4258 
4259 /*
4260  * Get remaining task size from user stack pointer.
4261  *
4262  * It'd be better to take stack vma map and limit this more
4263  * precisly, but there's no way to get it safely under interrupt,
4264  * so using TASK_SIZE as limit.
4265  */
4266 static u64 perf_ustack_task_size(struct pt_regs *regs)
4267 {
4268 	unsigned long addr = perf_user_stack_pointer(regs);
4269 
4270 	if (!addr || addr >= TASK_SIZE)
4271 		return 0;
4272 
4273 	return TASK_SIZE - addr;
4274 }
4275 
4276 static u16
4277 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4278 			struct pt_regs *regs)
4279 {
4280 	u64 task_size;
4281 
4282 	/* No regs, no stack pointer, no dump. */
4283 	if (!regs)
4284 		return 0;
4285 
4286 	/*
4287 	 * Check if we fit in with the requested stack size into the:
4288 	 * - TASK_SIZE
4289 	 *   If we don't, we limit the size to the TASK_SIZE.
4290 	 *
4291 	 * - remaining sample size
4292 	 *   If we don't, we customize the stack size to
4293 	 *   fit in to the remaining sample size.
4294 	 */
4295 
4296 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4297 	stack_size = min(stack_size, (u16) task_size);
4298 
4299 	/* Current header size plus static size and dynamic size. */
4300 	header_size += 2 * sizeof(u64);
4301 
4302 	/* Do we fit in with the current stack dump size? */
4303 	if ((u16) (header_size + stack_size) < header_size) {
4304 		/*
4305 		 * If we overflow the maximum size for the sample,
4306 		 * we customize the stack dump size to fit in.
4307 		 */
4308 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4309 		stack_size = round_up(stack_size, sizeof(u64));
4310 	}
4311 
4312 	return stack_size;
4313 }
4314 
4315 static void
4316 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4317 			  struct pt_regs *regs)
4318 {
4319 	/* Case of a kernel thread, nothing to dump */
4320 	if (!regs) {
4321 		u64 size = 0;
4322 		perf_output_put(handle, size);
4323 	} else {
4324 		unsigned long sp;
4325 		unsigned int rem;
4326 		u64 dyn_size;
4327 
4328 		/*
4329 		 * We dump:
4330 		 * static size
4331 		 *   - the size requested by user or the best one we can fit
4332 		 *     in to the sample max size
4333 		 * data
4334 		 *   - user stack dump data
4335 		 * dynamic size
4336 		 *   - the actual dumped size
4337 		 */
4338 
4339 		/* Static size. */
4340 		perf_output_put(handle, dump_size);
4341 
4342 		/* Data. */
4343 		sp = perf_user_stack_pointer(regs);
4344 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4345 		dyn_size = dump_size - rem;
4346 
4347 		perf_output_skip(handle, rem);
4348 
4349 		/* Dynamic size. */
4350 		perf_output_put(handle, dyn_size);
4351 	}
4352 }
4353 
4354 static void __perf_event_header__init_id(struct perf_event_header *header,
4355 					 struct perf_sample_data *data,
4356 					 struct perf_event *event)
4357 {
4358 	u64 sample_type = event->attr.sample_type;
4359 
4360 	data->type = sample_type;
4361 	header->size += event->id_header_size;
4362 
4363 	if (sample_type & PERF_SAMPLE_TID) {
4364 		/* namespace issues */
4365 		data->tid_entry.pid = perf_event_pid(event, current);
4366 		data->tid_entry.tid = perf_event_tid(event, current);
4367 	}
4368 
4369 	if (sample_type & PERF_SAMPLE_TIME)
4370 		data->time = perf_clock();
4371 
4372 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4373 		data->id = primary_event_id(event);
4374 
4375 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4376 		data->stream_id = event->id;
4377 
4378 	if (sample_type & PERF_SAMPLE_CPU) {
4379 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4380 		data->cpu_entry.reserved = 0;
4381 	}
4382 }
4383 
4384 void perf_event_header__init_id(struct perf_event_header *header,
4385 				struct perf_sample_data *data,
4386 				struct perf_event *event)
4387 {
4388 	if (event->attr.sample_id_all)
4389 		__perf_event_header__init_id(header, data, event);
4390 }
4391 
4392 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4393 					   struct perf_sample_data *data)
4394 {
4395 	u64 sample_type = data->type;
4396 
4397 	if (sample_type & PERF_SAMPLE_TID)
4398 		perf_output_put(handle, data->tid_entry);
4399 
4400 	if (sample_type & PERF_SAMPLE_TIME)
4401 		perf_output_put(handle, data->time);
4402 
4403 	if (sample_type & PERF_SAMPLE_ID)
4404 		perf_output_put(handle, data->id);
4405 
4406 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4407 		perf_output_put(handle, data->stream_id);
4408 
4409 	if (sample_type & PERF_SAMPLE_CPU)
4410 		perf_output_put(handle, data->cpu_entry);
4411 
4412 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4413 		perf_output_put(handle, data->id);
4414 }
4415 
4416 void perf_event__output_id_sample(struct perf_event *event,
4417 				  struct perf_output_handle *handle,
4418 				  struct perf_sample_data *sample)
4419 {
4420 	if (event->attr.sample_id_all)
4421 		__perf_event__output_id_sample(handle, sample);
4422 }
4423 
4424 static void perf_output_read_one(struct perf_output_handle *handle,
4425 				 struct perf_event *event,
4426 				 u64 enabled, u64 running)
4427 {
4428 	u64 read_format = event->attr.read_format;
4429 	u64 values[4];
4430 	int n = 0;
4431 
4432 	values[n++] = perf_event_count(event);
4433 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4434 		values[n++] = enabled +
4435 			atomic64_read(&event->child_total_time_enabled);
4436 	}
4437 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4438 		values[n++] = running +
4439 			atomic64_read(&event->child_total_time_running);
4440 	}
4441 	if (read_format & PERF_FORMAT_ID)
4442 		values[n++] = primary_event_id(event);
4443 
4444 	__output_copy(handle, values, n * sizeof(u64));
4445 }
4446 
4447 /*
4448  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4449  */
4450 static void perf_output_read_group(struct perf_output_handle *handle,
4451 			    struct perf_event *event,
4452 			    u64 enabled, u64 running)
4453 {
4454 	struct perf_event *leader = event->group_leader, *sub;
4455 	u64 read_format = event->attr.read_format;
4456 	u64 values[5];
4457 	int n = 0;
4458 
4459 	values[n++] = 1 + leader->nr_siblings;
4460 
4461 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4462 		values[n++] = enabled;
4463 
4464 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4465 		values[n++] = running;
4466 
4467 	if (leader != event)
4468 		leader->pmu->read(leader);
4469 
4470 	values[n++] = perf_event_count(leader);
4471 	if (read_format & PERF_FORMAT_ID)
4472 		values[n++] = primary_event_id(leader);
4473 
4474 	__output_copy(handle, values, n * sizeof(u64));
4475 
4476 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4477 		n = 0;
4478 
4479 		if ((sub != event) &&
4480 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4481 			sub->pmu->read(sub);
4482 
4483 		values[n++] = perf_event_count(sub);
4484 		if (read_format & PERF_FORMAT_ID)
4485 			values[n++] = primary_event_id(sub);
4486 
4487 		__output_copy(handle, values, n * sizeof(u64));
4488 	}
4489 }
4490 
4491 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4492 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4493 
4494 static void perf_output_read(struct perf_output_handle *handle,
4495 			     struct perf_event *event)
4496 {
4497 	u64 enabled = 0, running = 0, now;
4498 	u64 read_format = event->attr.read_format;
4499 
4500 	/*
4501 	 * compute total_time_enabled, total_time_running
4502 	 * based on snapshot values taken when the event
4503 	 * was last scheduled in.
4504 	 *
4505 	 * we cannot simply called update_context_time()
4506 	 * because of locking issue as we are called in
4507 	 * NMI context
4508 	 */
4509 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4510 		calc_timer_values(event, &now, &enabled, &running);
4511 
4512 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4513 		perf_output_read_group(handle, event, enabled, running);
4514 	else
4515 		perf_output_read_one(handle, event, enabled, running);
4516 }
4517 
4518 void perf_output_sample(struct perf_output_handle *handle,
4519 			struct perf_event_header *header,
4520 			struct perf_sample_data *data,
4521 			struct perf_event *event)
4522 {
4523 	u64 sample_type = data->type;
4524 
4525 	perf_output_put(handle, *header);
4526 
4527 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4528 		perf_output_put(handle, data->id);
4529 
4530 	if (sample_type & PERF_SAMPLE_IP)
4531 		perf_output_put(handle, data->ip);
4532 
4533 	if (sample_type & PERF_SAMPLE_TID)
4534 		perf_output_put(handle, data->tid_entry);
4535 
4536 	if (sample_type & PERF_SAMPLE_TIME)
4537 		perf_output_put(handle, data->time);
4538 
4539 	if (sample_type & PERF_SAMPLE_ADDR)
4540 		perf_output_put(handle, data->addr);
4541 
4542 	if (sample_type & PERF_SAMPLE_ID)
4543 		perf_output_put(handle, data->id);
4544 
4545 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4546 		perf_output_put(handle, data->stream_id);
4547 
4548 	if (sample_type & PERF_SAMPLE_CPU)
4549 		perf_output_put(handle, data->cpu_entry);
4550 
4551 	if (sample_type & PERF_SAMPLE_PERIOD)
4552 		perf_output_put(handle, data->period);
4553 
4554 	if (sample_type & PERF_SAMPLE_READ)
4555 		perf_output_read(handle, event);
4556 
4557 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4558 		if (data->callchain) {
4559 			int size = 1;
4560 
4561 			if (data->callchain)
4562 				size += data->callchain->nr;
4563 
4564 			size *= sizeof(u64);
4565 
4566 			__output_copy(handle, data->callchain, size);
4567 		} else {
4568 			u64 nr = 0;
4569 			perf_output_put(handle, nr);
4570 		}
4571 	}
4572 
4573 	if (sample_type & PERF_SAMPLE_RAW) {
4574 		if (data->raw) {
4575 			perf_output_put(handle, data->raw->size);
4576 			__output_copy(handle, data->raw->data,
4577 					   data->raw->size);
4578 		} else {
4579 			struct {
4580 				u32	size;
4581 				u32	data;
4582 			} raw = {
4583 				.size = sizeof(u32),
4584 				.data = 0,
4585 			};
4586 			perf_output_put(handle, raw);
4587 		}
4588 	}
4589 
4590 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4591 		if (data->br_stack) {
4592 			size_t size;
4593 
4594 			size = data->br_stack->nr
4595 			     * sizeof(struct perf_branch_entry);
4596 
4597 			perf_output_put(handle, data->br_stack->nr);
4598 			perf_output_copy(handle, data->br_stack->entries, size);
4599 		} else {
4600 			/*
4601 			 * we always store at least the value of nr
4602 			 */
4603 			u64 nr = 0;
4604 			perf_output_put(handle, nr);
4605 		}
4606 	}
4607 
4608 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4609 		u64 abi = data->regs_user.abi;
4610 
4611 		/*
4612 		 * If there are no regs to dump, notice it through
4613 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4614 		 */
4615 		perf_output_put(handle, abi);
4616 
4617 		if (abi) {
4618 			u64 mask = event->attr.sample_regs_user;
4619 			perf_output_sample_regs(handle,
4620 						data->regs_user.regs,
4621 						mask);
4622 		}
4623 	}
4624 
4625 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4626 		perf_output_sample_ustack(handle,
4627 					  data->stack_user_size,
4628 					  data->regs_user.regs);
4629 	}
4630 
4631 	if (sample_type & PERF_SAMPLE_WEIGHT)
4632 		perf_output_put(handle, data->weight);
4633 
4634 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4635 		perf_output_put(handle, data->data_src.val);
4636 
4637 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4638 		perf_output_put(handle, data->txn);
4639 
4640 	if (!event->attr.watermark) {
4641 		int wakeup_events = event->attr.wakeup_events;
4642 
4643 		if (wakeup_events) {
4644 			struct ring_buffer *rb = handle->rb;
4645 			int events = local_inc_return(&rb->events);
4646 
4647 			if (events >= wakeup_events) {
4648 				local_sub(wakeup_events, &rb->events);
4649 				local_inc(&rb->wakeup);
4650 			}
4651 		}
4652 	}
4653 }
4654 
4655 void perf_prepare_sample(struct perf_event_header *header,
4656 			 struct perf_sample_data *data,
4657 			 struct perf_event *event,
4658 			 struct pt_regs *regs)
4659 {
4660 	u64 sample_type = event->attr.sample_type;
4661 
4662 	header->type = PERF_RECORD_SAMPLE;
4663 	header->size = sizeof(*header) + event->header_size;
4664 
4665 	header->misc = 0;
4666 	header->misc |= perf_misc_flags(regs);
4667 
4668 	__perf_event_header__init_id(header, data, event);
4669 
4670 	if (sample_type & PERF_SAMPLE_IP)
4671 		data->ip = perf_instruction_pointer(regs);
4672 
4673 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4674 		int size = 1;
4675 
4676 		data->callchain = perf_callchain(event, regs);
4677 
4678 		if (data->callchain)
4679 			size += data->callchain->nr;
4680 
4681 		header->size += size * sizeof(u64);
4682 	}
4683 
4684 	if (sample_type & PERF_SAMPLE_RAW) {
4685 		int size = sizeof(u32);
4686 
4687 		if (data->raw)
4688 			size += data->raw->size;
4689 		else
4690 			size += sizeof(u32);
4691 
4692 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4693 		header->size += size;
4694 	}
4695 
4696 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4697 		int size = sizeof(u64); /* nr */
4698 		if (data->br_stack) {
4699 			size += data->br_stack->nr
4700 			      * sizeof(struct perf_branch_entry);
4701 		}
4702 		header->size += size;
4703 	}
4704 
4705 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4706 		/* regs dump ABI info */
4707 		int size = sizeof(u64);
4708 
4709 		perf_sample_regs_user(&data->regs_user, regs);
4710 
4711 		if (data->regs_user.regs) {
4712 			u64 mask = event->attr.sample_regs_user;
4713 			size += hweight64(mask) * sizeof(u64);
4714 		}
4715 
4716 		header->size += size;
4717 	}
4718 
4719 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4720 		/*
4721 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4722 		 * processed as the last one or have additional check added
4723 		 * in case new sample type is added, because we could eat
4724 		 * up the rest of the sample size.
4725 		 */
4726 		struct perf_regs_user *uregs = &data->regs_user;
4727 		u16 stack_size = event->attr.sample_stack_user;
4728 		u16 size = sizeof(u64);
4729 
4730 		if (!uregs->abi)
4731 			perf_sample_regs_user(uregs, regs);
4732 
4733 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4734 						     uregs->regs);
4735 
4736 		/*
4737 		 * If there is something to dump, add space for the dump
4738 		 * itself and for the field that tells the dynamic size,
4739 		 * which is how many have been actually dumped.
4740 		 */
4741 		if (stack_size)
4742 			size += sizeof(u64) + stack_size;
4743 
4744 		data->stack_user_size = stack_size;
4745 		header->size += size;
4746 	}
4747 }
4748 
4749 static void perf_event_output(struct perf_event *event,
4750 				struct perf_sample_data *data,
4751 				struct pt_regs *regs)
4752 {
4753 	struct perf_output_handle handle;
4754 	struct perf_event_header header;
4755 
4756 	/* protect the callchain buffers */
4757 	rcu_read_lock();
4758 
4759 	perf_prepare_sample(&header, data, event, regs);
4760 
4761 	if (perf_output_begin(&handle, event, header.size))
4762 		goto exit;
4763 
4764 	perf_output_sample(&handle, &header, data, event);
4765 
4766 	perf_output_end(&handle);
4767 
4768 exit:
4769 	rcu_read_unlock();
4770 }
4771 
4772 /*
4773  * read event_id
4774  */
4775 
4776 struct perf_read_event {
4777 	struct perf_event_header	header;
4778 
4779 	u32				pid;
4780 	u32				tid;
4781 };
4782 
4783 static void
4784 perf_event_read_event(struct perf_event *event,
4785 			struct task_struct *task)
4786 {
4787 	struct perf_output_handle handle;
4788 	struct perf_sample_data sample;
4789 	struct perf_read_event read_event = {
4790 		.header = {
4791 			.type = PERF_RECORD_READ,
4792 			.misc = 0,
4793 			.size = sizeof(read_event) + event->read_size,
4794 		},
4795 		.pid = perf_event_pid(event, task),
4796 		.tid = perf_event_tid(event, task),
4797 	};
4798 	int ret;
4799 
4800 	perf_event_header__init_id(&read_event.header, &sample, event);
4801 	ret = perf_output_begin(&handle, event, read_event.header.size);
4802 	if (ret)
4803 		return;
4804 
4805 	perf_output_put(&handle, read_event);
4806 	perf_output_read(&handle, event);
4807 	perf_event__output_id_sample(event, &handle, &sample);
4808 
4809 	perf_output_end(&handle);
4810 }
4811 
4812 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4813 
4814 static void
4815 perf_event_aux_ctx(struct perf_event_context *ctx,
4816 		   perf_event_aux_output_cb output,
4817 		   void *data)
4818 {
4819 	struct perf_event *event;
4820 
4821 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4822 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4823 			continue;
4824 		if (!event_filter_match(event))
4825 			continue;
4826 		output(event, data);
4827 	}
4828 }
4829 
4830 static void
4831 perf_event_aux(perf_event_aux_output_cb output, void *data,
4832 	       struct perf_event_context *task_ctx)
4833 {
4834 	struct perf_cpu_context *cpuctx;
4835 	struct perf_event_context *ctx;
4836 	struct pmu *pmu;
4837 	int ctxn;
4838 
4839 	rcu_read_lock();
4840 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4841 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4842 		if (cpuctx->unique_pmu != pmu)
4843 			goto next;
4844 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4845 		if (task_ctx)
4846 			goto next;
4847 		ctxn = pmu->task_ctx_nr;
4848 		if (ctxn < 0)
4849 			goto next;
4850 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4851 		if (ctx)
4852 			perf_event_aux_ctx(ctx, output, data);
4853 next:
4854 		put_cpu_ptr(pmu->pmu_cpu_context);
4855 	}
4856 
4857 	if (task_ctx) {
4858 		preempt_disable();
4859 		perf_event_aux_ctx(task_ctx, output, data);
4860 		preempt_enable();
4861 	}
4862 	rcu_read_unlock();
4863 }
4864 
4865 /*
4866  * task tracking -- fork/exit
4867  *
4868  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4869  */
4870 
4871 struct perf_task_event {
4872 	struct task_struct		*task;
4873 	struct perf_event_context	*task_ctx;
4874 
4875 	struct {
4876 		struct perf_event_header	header;
4877 
4878 		u32				pid;
4879 		u32				ppid;
4880 		u32				tid;
4881 		u32				ptid;
4882 		u64				time;
4883 	} event_id;
4884 };
4885 
4886 static int perf_event_task_match(struct perf_event *event)
4887 {
4888 	return event->attr.comm  || event->attr.mmap ||
4889 	       event->attr.mmap2 || event->attr.mmap_data ||
4890 	       event->attr.task;
4891 }
4892 
4893 static void perf_event_task_output(struct perf_event *event,
4894 				   void *data)
4895 {
4896 	struct perf_task_event *task_event = data;
4897 	struct perf_output_handle handle;
4898 	struct perf_sample_data	sample;
4899 	struct task_struct *task = task_event->task;
4900 	int ret, size = task_event->event_id.header.size;
4901 
4902 	if (!perf_event_task_match(event))
4903 		return;
4904 
4905 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4906 
4907 	ret = perf_output_begin(&handle, event,
4908 				task_event->event_id.header.size);
4909 	if (ret)
4910 		goto out;
4911 
4912 	task_event->event_id.pid = perf_event_pid(event, task);
4913 	task_event->event_id.ppid = perf_event_pid(event, current);
4914 
4915 	task_event->event_id.tid = perf_event_tid(event, task);
4916 	task_event->event_id.ptid = perf_event_tid(event, current);
4917 
4918 	perf_output_put(&handle, task_event->event_id);
4919 
4920 	perf_event__output_id_sample(event, &handle, &sample);
4921 
4922 	perf_output_end(&handle);
4923 out:
4924 	task_event->event_id.header.size = size;
4925 }
4926 
4927 static void perf_event_task(struct task_struct *task,
4928 			      struct perf_event_context *task_ctx,
4929 			      int new)
4930 {
4931 	struct perf_task_event task_event;
4932 
4933 	if (!atomic_read(&nr_comm_events) &&
4934 	    !atomic_read(&nr_mmap_events) &&
4935 	    !atomic_read(&nr_task_events))
4936 		return;
4937 
4938 	task_event = (struct perf_task_event){
4939 		.task	  = task,
4940 		.task_ctx = task_ctx,
4941 		.event_id    = {
4942 			.header = {
4943 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4944 				.misc = 0,
4945 				.size = sizeof(task_event.event_id),
4946 			},
4947 			/* .pid  */
4948 			/* .ppid */
4949 			/* .tid  */
4950 			/* .ptid */
4951 			.time = perf_clock(),
4952 		},
4953 	};
4954 
4955 	perf_event_aux(perf_event_task_output,
4956 		       &task_event,
4957 		       task_ctx);
4958 }
4959 
4960 void perf_event_fork(struct task_struct *task)
4961 {
4962 	perf_event_task(task, NULL, 1);
4963 }
4964 
4965 /*
4966  * comm tracking
4967  */
4968 
4969 struct perf_comm_event {
4970 	struct task_struct	*task;
4971 	char			*comm;
4972 	int			comm_size;
4973 
4974 	struct {
4975 		struct perf_event_header	header;
4976 
4977 		u32				pid;
4978 		u32				tid;
4979 	} event_id;
4980 };
4981 
4982 static int perf_event_comm_match(struct perf_event *event)
4983 {
4984 	return event->attr.comm;
4985 }
4986 
4987 static void perf_event_comm_output(struct perf_event *event,
4988 				   void *data)
4989 {
4990 	struct perf_comm_event *comm_event = data;
4991 	struct perf_output_handle handle;
4992 	struct perf_sample_data sample;
4993 	int size = comm_event->event_id.header.size;
4994 	int ret;
4995 
4996 	if (!perf_event_comm_match(event))
4997 		return;
4998 
4999 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5000 	ret = perf_output_begin(&handle, event,
5001 				comm_event->event_id.header.size);
5002 
5003 	if (ret)
5004 		goto out;
5005 
5006 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5007 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5008 
5009 	perf_output_put(&handle, comm_event->event_id);
5010 	__output_copy(&handle, comm_event->comm,
5011 				   comm_event->comm_size);
5012 
5013 	perf_event__output_id_sample(event, &handle, &sample);
5014 
5015 	perf_output_end(&handle);
5016 out:
5017 	comm_event->event_id.header.size = size;
5018 }
5019 
5020 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5021 {
5022 	char comm[TASK_COMM_LEN];
5023 	unsigned int size;
5024 
5025 	memset(comm, 0, sizeof(comm));
5026 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5027 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5028 
5029 	comm_event->comm = comm;
5030 	comm_event->comm_size = size;
5031 
5032 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5033 
5034 	perf_event_aux(perf_event_comm_output,
5035 		       comm_event,
5036 		       NULL);
5037 }
5038 
5039 void perf_event_comm(struct task_struct *task)
5040 {
5041 	struct perf_comm_event comm_event;
5042 	struct perf_event_context *ctx;
5043 	int ctxn;
5044 
5045 	rcu_read_lock();
5046 	for_each_task_context_nr(ctxn) {
5047 		ctx = task->perf_event_ctxp[ctxn];
5048 		if (!ctx)
5049 			continue;
5050 
5051 		perf_event_enable_on_exec(ctx);
5052 	}
5053 	rcu_read_unlock();
5054 
5055 	if (!atomic_read(&nr_comm_events))
5056 		return;
5057 
5058 	comm_event = (struct perf_comm_event){
5059 		.task	= task,
5060 		/* .comm      */
5061 		/* .comm_size */
5062 		.event_id  = {
5063 			.header = {
5064 				.type = PERF_RECORD_COMM,
5065 				.misc = 0,
5066 				/* .size */
5067 			},
5068 			/* .pid */
5069 			/* .tid */
5070 		},
5071 	};
5072 
5073 	perf_event_comm_event(&comm_event);
5074 }
5075 
5076 /*
5077  * mmap tracking
5078  */
5079 
5080 struct perf_mmap_event {
5081 	struct vm_area_struct	*vma;
5082 
5083 	const char		*file_name;
5084 	int			file_size;
5085 	int			maj, min;
5086 	u64			ino;
5087 	u64			ino_generation;
5088 
5089 	struct {
5090 		struct perf_event_header	header;
5091 
5092 		u32				pid;
5093 		u32				tid;
5094 		u64				start;
5095 		u64				len;
5096 		u64				pgoff;
5097 	} event_id;
5098 };
5099 
5100 static int perf_event_mmap_match(struct perf_event *event,
5101 				 void *data)
5102 {
5103 	struct perf_mmap_event *mmap_event = data;
5104 	struct vm_area_struct *vma = mmap_event->vma;
5105 	int executable = vma->vm_flags & VM_EXEC;
5106 
5107 	return (!executable && event->attr.mmap_data) ||
5108 	       (executable && (event->attr.mmap || event->attr.mmap2));
5109 }
5110 
5111 static void perf_event_mmap_output(struct perf_event *event,
5112 				   void *data)
5113 {
5114 	struct perf_mmap_event *mmap_event = data;
5115 	struct perf_output_handle handle;
5116 	struct perf_sample_data sample;
5117 	int size = mmap_event->event_id.header.size;
5118 	int ret;
5119 
5120 	if (!perf_event_mmap_match(event, data))
5121 		return;
5122 
5123 	if (event->attr.mmap2) {
5124 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5125 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5126 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5127 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5128 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5129 	}
5130 
5131 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5132 	ret = perf_output_begin(&handle, event,
5133 				mmap_event->event_id.header.size);
5134 	if (ret)
5135 		goto out;
5136 
5137 	mmap_event->event_id.pid = perf_event_pid(event, current);
5138 	mmap_event->event_id.tid = perf_event_tid(event, current);
5139 
5140 	perf_output_put(&handle, mmap_event->event_id);
5141 
5142 	if (event->attr.mmap2) {
5143 		perf_output_put(&handle, mmap_event->maj);
5144 		perf_output_put(&handle, mmap_event->min);
5145 		perf_output_put(&handle, mmap_event->ino);
5146 		perf_output_put(&handle, mmap_event->ino_generation);
5147 	}
5148 
5149 	__output_copy(&handle, mmap_event->file_name,
5150 				   mmap_event->file_size);
5151 
5152 	perf_event__output_id_sample(event, &handle, &sample);
5153 
5154 	perf_output_end(&handle);
5155 out:
5156 	mmap_event->event_id.header.size = size;
5157 }
5158 
5159 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5160 {
5161 	struct vm_area_struct *vma = mmap_event->vma;
5162 	struct file *file = vma->vm_file;
5163 	int maj = 0, min = 0;
5164 	u64 ino = 0, gen = 0;
5165 	unsigned int size;
5166 	char tmp[16];
5167 	char *buf = NULL;
5168 	char *name;
5169 
5170 	if (file) {
5171 		struct inode *inode;
5172 		dev_t dev;
5173 
5174 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5175 		if (!buf) {
5176 			name = "//enomem";
5177 			goto cpy_name;
5178 		}
5179 		/*
5180 		 * d_path() works from the end of the rb backwards, so we
5181 		 * need to add enough zero bytes after the string to handle
5182 		 * the 64bit alignment we do later.
5183 		 */
5184 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5185 		if (IS_ERR(name)) {
5186 			name = "//toolong";
5187 			goto cpy_name;
5188 		}
5189 		inode = file_inode(vma->vm_file);
5190 		dev = inode->i_sb->s_dev;
5191 		ino = inode->i_ino;
5192 		gen = inode->i_generation;
5193 		maj = MAJOR(dev);
5194 		min = MINOR(dev);
5195 		goto got_name;
5196 	} else {
5197 		name = (char *)arch_vma_name(vma);
5198 		if (name)
5199 			goto cpy_name;
5200 
5201 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5202 				vma->vm_end >= vma->vm_mm->brk) {
5203 			name = "[heap]";
5204 			goto cpy_name;
5205 		}
5206 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5207 				vma->vm_end >= vma->vm_mm->start_stack) {
5208 			name = "[stack]";
5209 			goto cpy_name;
5210 		}
5211 
5212 		name = "//anon";
5213 		goto cpy_name;
5214 	}
5215 
5216 cpy_name:
5217 	strlcpy(tmp, name, sizeof(tmp));
5218 	name = tmp;
5219 got_name:
5220 	/*
5221 	 * Since our buffer works in 8 byte units we need to align our string
5222 	 * size to a multiple of 8. However, we must guarantee the tail end is
5223 	 * zero'd out to avoid leaking random bits to userspace.
5224 	 */
5225 	size = strlen(name)+1;
5226 	while (!IS_ALIGNED(size, sizeof(u64)))
5227 		name[size++] = '\0';
5228 
5229 	mmap_event->file_name = name;
5230 	mmap_event->file_size = size;
5231 	mmap_event->maj = maj;
5232 	mmap_event->min = min;
5233 	mmap_event->ino = ino;
5234 	mmap_event->ino_generation = gen;
5235 
5236 	if (!(vma->vm_flags & VM_EXEC))
5237 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5238 
5239 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5240 
5241 	perf_event_aux(perf_event_mmap_output,
5242 		       mmap_event,
5243 		       NULL);
5244 
5245 	kfree(buf);
5246 }
5247 
5248 void perf_event_mmap(struct vm_area_struct *vma)
5249 {
5250 	struct perf_mmap_event mmap_event;
5251 
5252 	if (!atomic_read(&nr_mmap_events))
5253 		return;
5254 
5255 	mmap_event = (struct perf_mmap_event){
5256 		.vma	= vma,
5257 		/* .file_name */
5258 		/* .file_size */
5259 		.event_id  = {
5260 			.header = {
5261 				.type = PERF_RECORD_MMAP,
5262 				.misc = PERF_RECORD_MISC_USER,
5263 				/* .size */
5264 			},
5265 			/* .pid */
5266 			/* .tid */
5267 			.start  = vma->vm_start,
5268 			.len    = vma->vm_end - vma->vm_start,
5269 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5270 		},
5271 		/* .maj (attr_mmap2 only) */
5272 		/* .min (attr_mmap2 only) */
5273 		/* .ino (attr_mmap2 only) */
5274 		/* .ino_generation (attr_mmap2 only) */
5275 	};
5276 
5277 	perf_event_mmap_event(&mmap_event);
5278 }
5279 
5280 /*
5281  * IRQ throttle logging
5282  */
5283 
5284 static void perf_log_throttle(struct perf_event *event, int enable)
5285 {
5286 	struct perf_output_handle handle;
5287 	struct perf_sample_data sample;
5288 	int ret;
5289 
5290 	struct {
5291 		struct perf_event_header	header;
5292 		u64				time;
5293 		u64				id;
5294 		u64				stream_id;
5295 	} throttle_event = {
5296 		.header = {
5297 			.type = PERF_RECORD_THROTTLE,
5298 			.misc = 0,
5299 			.size = sizeof(throttle_event),
5300 		},
5301 		.time		= perf_clock(),
5302 		.id		= primary_event_id(event),
5303 		.stream_id	= event->id,
5304 	};
5305 
5306 	if (enable)
5307 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5308 
5309 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5310 
5311 	ret = perf_output_begin(&handle, event,
5312 				throttle_event.header.size);
5313 	if (ret)
5314 		return;
5315 
5316 	perf_output_put(&handle, throttle_event);
5317 	perf_event__output_id_sample(event, &handle, &sample);
5318 	perf_output_end(&handle);
5319 }
5320 
5321 /*
5322  * Generic event overflow handling, sampling.
5323  */
5324 
5325 static int __perf_event_overflow(struct perf_event *event,
5326 				   int throttle, struct perf_sample_data *data,
5327 				   struct pt_regs *regs)
5328 {
5329 	int events = atomic_read(&event->event_limit);
5330 	struct hw_perf_event *hwc = &event->hw;
5331 	u64 seq;
5332 	int ret = 0;
5333 
5334 	/*
5335 	 * Non-sampling counters might still use the PMI to fold short
5336 	 * hardware counters, ignore those.
5337 	 */
5338 	if (unlikely(!is_sampling_event(event)))
5339 		return 0;
5340 
5341 	seq = __this_cpu_read(perf_throttled_seq);
5342 	if (seq != hwc->interrupts_seq) {
5343 		hwc->interrupts_seq = seq;
5344 		hwc->interrupts = 1;
5345 	} else {
5346 		hwc->interrupts++;
5347 		if (unlikely(throttle
5348 			     && hwc->interrupts >= max_samples_per_tick)) {
5349 			__this_cpu_inc(perf_throttled_count);
5350 			hwc->interrupts = MAX_INTERRUPTS;
5351 			perf_log_throttle(event, 0);
5352 			tick_nohz_full_kick();
5353 			ret = 1;
5354 		}
5355 	}
5356 
5357 	if (event->attr.freq) {
5358 		u64 now = perf_clock();
5359 		s64 delta = now - hwc->freq_time_stamp;
5360 
5361 		hwc->freq_time_stamp = now;
5362 
5363 		if (delta > 0 && delta < 2*TICK_NSEC)
5364 			perf_adjust_period(event, delta, hwc->last_period, true);
5365 	}
5366 
5367 	/*
5368 	 * XXX event_limit might not quite work as expected on inherited
5369 	 * events
5370 	 */
5371 
5372 	event->pending_kill = POLL_IN;
5373 	if (events && atomic_dec_and_test(&event->event_limit)) {
5374 		ret = 1;
5375 		event->pending_kill = POLL_HUP;
5376 		event->pending_disable = 1;
5377 		irq_work_queue(&event->pending);
5378 	}
5379 
5380 	if (event->overflow_handler)
5381 		event->overflow_handler(event, data, regs);
5382 	else
5383 		perf_event_output(event, data, regs);
5384 
5385 	if (event->fasync && event->pending_kill) {
5386 		event->pending_wakeup = 1;
5387 		irq_work_queue(&event->pending);
5388 	}
5389 
5390 	return ret;
5391 }
5392 
5393 int perf_event_overflow(struct perf_event *event,
5394 			  struct perf_sample_data *data,
5395 			  struct pt_regs *regs)
5396 {
5397 	return __perf_event_overflow(event, 1, data, regs);
5398 }
5399 
5400 /*
5401  * Generic software event infrastructure
5402  */
5403 
5404 struct swevent_htable {
5405 	struct swevent_hlist		*swevent_hlist;
5406 	struct mutex			hlist_mutex;
5407 	int				hlist_refcount;
5408 
5409 	/* Recursion avoidance in each contexts */
5410 	int				recursion[PERF_NR_CONTEXTS];
5411 };
5412 
5413 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5414 
5415 /*
5416  * We directly increment event->count and keep a second value in
5417  * event->hw.period_left to count intervals. This period event
5418  * is kept in the range [-sample_period, 0] so that we can use the
5419  * sign as trigger.
5420  */
5421 
5422 u64 perf_swevent_set_period(struct perf_event *event)
5423 {
5424 	struct hw_perf_event *hwc = &event->hw;
5425 	u64 period = hwc->last_period;
5426 	u64 nr, offset;
5427 	s64 old, val;
5428 
5429 	hwc->last_period = hwc->sample_period;
5430 
5431 again:
5432 	old = val = local64_read(&hwc->period_left);
5433 	if (val < 0)
5434 		return 0;
5435 
5436 	nr = div64_u64(period + val, period);
5437 	offset = nr * period;
5438 	val -= offset;
5439 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5440 		goto again;
5441 
5442 	return nr;
5443 }
5444 
5445 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5446 				    struct perf_sample_data *data,
5447 				    struct pt_regs *regs)
5448 {
5449 	struct hw_perf_event *hwc = &event->hw;
5450 	int throttle = 0;
5451 
5452 	if (!overflow)
5453 		overflow = perf_swevent_set_period(event);
5454 
5455 	if (hwc->interrupts == MAX_INTERRUPTS)
5456 		return;
5457 
5458 	for (; overflow; overflow--) {
5459 		if (__perf_event_overflow(event, throttle,
5460 					    data, regs)) {
5461 			/*
5462 			 * We inhibit the overflow from happening when
5463 			 * hwc->interrupts == MAX_INTERRUPTS.
5464 			 */
5465 			break;
5466 		}
5467 		throttle = 1;
5468 	}
5469 }
5470 
5471 static void perf_swevent_event(struct perf_event *event, u64 nr,
5472 			       struct perf_sample_data *data,
5473 			       struct pt_regs *regs)
5474 {
5475 	struct hw_perf_event *hwc = &event->hw;
5476 
5477 	local64_add(nr, &event->count);
5478 
5479 	if (!regs)
5480 		return;
5481 
5482 	if (!is_sampling_event(event))
5483 		return;
5484 
5485 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5486 		data->period = nr;
5487 		return perf_swevent_overflow(event, 1, data, regs);
5488 	} else
5489 		data->period = event->hw.last_period;
5490 
5491 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5492 		return perf_swevent_overflow(event, 1, data, regs);
5493 
5494 	if (local64_add_negative(nr, &hwc->period_left))
5495 		return;
5496 
5497 	perf_swevent_overflow(event, 0, data, regs);
5498 }
5499 
5500 static int perf_exclude_event(struct perf_event *event,
5501 			      struct pt_regs *regs)
5502 {
5503 	if (event->hw.state & PERF_HES_STOPPED)
5504 		return 1;
5505 
5506 	if (regs) {
5507 		if (event->attr.exclude_user && user_mode(regs))
5508 			return 1;
5509 
5510 		if (event->attr.exclude_kernel && !user_mode(regs))
5511 			return 1;
5512 	}
5513 
5514 	return 0;
5515 }
5516 
5517 static int perf_swevent_match(struct perf_event *event,
5518 				enum perf_type_id type,
5519 				u32 event_id,
5520 				struct perf_sample_data *data,
5521 				struct pt_regs *regs)
5522 {
5523 	if (event->attr.type != type)
5524 		return 0;
5525 
5526 	if (event->attr.config != event_id)
5527 		return 0;
5528 
5529 	if (perf_exclude_event(event, regs))
5530 		return 0;
5531 
5532 	return 1;
5533 }
5534 
5535 static inline u64 swevent_hash(u64 type, u32 event_id)
5536 {
5537 	u64 val = event_id | (type << 32);
5538 
5539 	return hash_64(val, SWEVENT_HLIST_BITS);
5540 }
5541 
5542 static inline struct hlist_head *
5543 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5544 {
5545 	u64 hash = swevent_hash(type, event_id);
5546 
5547 	return &hlist->heads[hash];
5548 }
5549 
5550 /* For the read side: events when they trigger */
5551 static inline struct hlist_head *
5552 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5553 {
5554 	struct swevent_hlist *hlist;
5555 
5556 	hlist = rcu_dereference(swhash->swevent_hlist);
5557 	if (!hlist)
5558 		return NULL;
5559 
5560 	return __find_swevent_head(hlist, type, event_id);
5561 }
5562 
5563 /* For the event head insertion and removal in the hlist */
5564 static inline struct hlist_head *
5565 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5566 {
5567 	struct swevent_hlist *hlist;
5568 	u32 event_id = event->attr.config;
5569 	u64 type = event->attr.type;
5570 
5571 	/*
5572 	 * Event scheduling is always serialized against hlist allocation
5573 	 * and release. Which makes the protected version suitable here.
5574 	 * The context lock guarantees that.
5575 	 */
5576 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5577 					  lockdep_is_held(&event->ctx->lock));
5578 	if (!hlist)
5579 		return NULL;
5580 
5581 	return __find_swevent_head(hlist, type, event_id);
5582 }
5583 
5584 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5585 				    u64 nr,
5586 				    struct perf_sample_data *data,
5587 				    struct pt_regs *regs)
5588 {
5589 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5590 	struct perf_event *event;
5591 	struct hlist_head *head;
5592 
5593 	rcu_read_lock();
5594 	head = find_swevent_head_rcu(swhash, type, event_id);
5595 	if (!head)
5596 		goto end;
5597 
5598 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5599 		if (perf_swevent_match(event, type, event_id, data, regs))
5600 			perf_swevent_event(event, nr, data, regs);
5601 	}
5602 end:
5603 	rcu_read_unlock();
5604 }
5605 
5606 int perf_swevent_get_recursion_context(void)
5607 {
5608 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5609 
5610 	return get_recursion_context(swhash->recursion);
5611 }
5612 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5613 
5614 inline void perf_swevent_put_recursion_context(int rctx)
5615 {
5616 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5617 
5618 	put_recursion_context(swhash->recursion, rctx);
5619 }
5620 
5621 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5622 {
5623 	struct perf_sample_data data;
5624 	int rctx;
5625 
5626 	preempt_disable_notrace();
5627 	rctx = perf_swevent_get_recursion_context();
5628 	if (rctx < 0)
5629 		return;
5630 
5631 	perf_sample_data_init(&data, addr, 0);
5632 
5633 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5634 
5635 	perf_swevent_put_recursion_context(rctx);
5636 	preempt_enable_notrace();
5637 }
5638 
5639 static void perf_swevent_read(struct perf_event *event)
5640 {
5641 }
5642 
5643 static int perf_swevent_add(struct perf_event *event, int flags)
5644 {
5645 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5646 	struct hw_perf_event *hwc = &event->hw;
5647 	struct hlist_head *head;
5648 
5649 	if (is_sampling_event(event)) {
5650 		hwc->last_period = hwc->sample_period;
5651 		perf_swevent_set_period(event);
5652 	}
5653 
5654 	hwc->state = !(flags & PERF_EF_START);
5655 
5656 	head = find_swevent_head(swhash, event);
5657 	if (WARN_ON_ONCE(!head))
5658 		return -EINVAL;
5659 
5660 	hlist_add_head_rcu(&event->hlist_entry, head);
5661 
5662 	return 0;
5663 }
5664 
5665 static void perf_swevent_del(struct perf_event *event, int flags)
5666 {
5667 	hlist_del_rcu(&event->hlist_entry);
5668 }
5669 
5670 static void perf_swevent_start(struct perf_event *event, int flags)
5671 {
5672 	event->hw.state = 0;
5673 }
5674 
5675 static void perf_swevent_stop(struct perf_event *event, int flags)
5676 {
5677 	event->hw.state = PERF_HES_STOPPED;
5678 }
5679 
5680 /* Deref the hlist from the update side */
5681 static inline struct swevent_hlist *
5682 swevent_hlist_deref(struct swevent_htable *swhash)
5683 {
5684 	return rcu_dereference_protected(swhash->swevent_hlist,
5685 					 lockdep_is_held(&swhash->hlist_mutex));
5686 }
5687 
5688 static void swevent_hlist_release(struct swevent_htable *swhash)
5689 {
5690 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5691 
5692 	if (!hlist)
5693 		return;
5694 
5695 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5696 	kfree_rcu(hlist, rcu_head);
5697 }
5698 
5699 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5700 {
5701 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5702 
5703 	mutex_lock(&swhash->hlist_mutex);
5704 
5705 	if (!--swhash->hlist_refcount)
5706 		swevent_hlist_release(swhash);
5707 
5708 	mutex_unlock(&swhash->hlist_mutex);
5709 }
5710 
5711 static void swevent_hlist_put(struct perf_event *event)
5712 {
5713 	int cpu;
5714 
5715 	for_each_possible_cpu(cpu)
5716 		swevent_hlist_put_cpu(event, cpu);
5717 }
5718 
5719 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5720 {
5721 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5722 	int err = 0;
5723 
5724 	mutex_lock(&swhash->hlist_mutex);
5725 
5726 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5727 		struct swevent_hlist *hlist;
5728 
5729 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5730 		if (!hlist) {
5731 			err = -ENOMEM;
5732 			goto exit;
5733 		}
5734 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5735 	}
5736 	swhash->hlist_refcount++;
5737 exit:
5738 	mutex_unlock(&swhash->hlist_mutex);
5739 
5740 	return err;
5741 }
5742 
5743 static int swevent_hlist_get(struct perf_event *event)
5744 {
5745 	int err;
5746 	int cpu, failed_cpu;
5747 
5748 	get_online_cpus();
5749 	for_each_possible_cpu(cpu) {
5750 		err = swevent_hlist_get_cpu(event, cpu);
5751 		if (err) {
5752 			failed_cpu = cpu;
5753 			goto fail;
5754 		}
5755 	}
5756 	put_online_cpus();
5757 
5758 	return 0;
5759 fail:
5760 	for_each_possible_cpu(cpu) {
5761 		if (cpu == failed_cpu)
5762 			break;
5763 		swevent_hlist_put_cpu(event, cpu);
5764 	}
5765 
5766 	put_online_cpus();
5767 	return err;
5768 }
5769 
5770 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5771 
5772 static void sw_perf_event_destroy(struct perf_event *event)
5773 {
5774 	u64 event_id = event->attr.config;
5775 
5776 	WARN_ON(event->parent);
5777 
5778 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5779 	swevent_hlist_put(event);
5780 }
5781 
5782 static int perf_swevent_init(struct perf_event *event)
5783 {
5784 	u64 event_id = event->attr.config;
5785 
5786 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5787 		return -ENOENT;
5788 
5789 	/*
5790 	 * no branch sampling for software events
5791 	 */
5792 	if (has_branch_stack(event))
5793 		return -EOPNOTSUPP;
5794 
5795 	switch (event_id) {
5796 	case PERF_COUNT_SW_CPU_CLOCK:
5797 	case PERF_COUNT_SW_TASK_CLOCK:
5798 		return -ENOENT;
5799 
5800 	default:
5801 		break;
5802 	}
5803 
5804 	if (event_id >= PERF_COUNT_SW_MAX)
5805 		return -ENOENT;
5806 
5807 	if (!event->parent) {
5808 		int err;
5809 
5810 		err = swevent_hlist_get(event);
5811 		if (err)
5812 			return err;
5813 
5814 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5815 		event->destroy = sw_perf_event_destroy;
5816 	}
5817 
5818 	return 0;
5819 }
5820 
5821 static int perf_swevent_event_idx(struct perf_event *event)
5822 {
5823 	return 0;
5824 }
5825 
5826 static struct pmu perf_swevent = {
5827 	.task_ctx_nr	= perf_sw_context,
5828 
5829 	.event_init	= perf_swevent_init,
5830 	.add		= perf_swevent_add,
5831 	.del		= perf_swevent_del,
5832 	.start		= perf_swevent_start,
5833 	.stop		= perf_swevent_stop,
5834 	.read		= perf_swevent_read,
5835 
5836 	.event_idx	= perf_swevent_event_idx,
5837 };
5838 
5839 #ifdef CONFIG_EVENT_TRACING
5840 
5841 static int perf_tp_filter_match(struct perf_event *event,
5842 				struct perf_sample_data *data)
5843 {
5844 	void *record = data->raw->data;
5845 
5846 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5847 		return 1;
5848 	return 0;
5849 }
5850 
5851 static int perf_tp_event_match(struct perf_event *event,
5852 				struct perf_sample_data *data,
5853 				struct pt_regs *regs)
5854 {
5855 	if (event->hw.state & PERF_HES_STOPPED)
5856 		return 0;
5857 	/*
5858 	 * All tracepoints are from kernel-space.
5859 	 */
5860 	if (event->attr.exclude_kernel)
5861 		return 0;
5862 
5863 	if (!perf_tp_filter_match(event, data))
5864 		return 0;
5865 
5866 	return 1;
5867 }
5868 
5869 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5870 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5871 		   struct task_struct *task)
5872 {
5873 	struct perf_sample_data data;
5874 	struct perf_event *event;
5875 
5876 	struct perf_raw_record raw = {
5877 		.size = entry_size,
5878 		.data = record,
5879 	};
5880 
5881 	perf_sample_data_init(&data, addr, 0);
5882 	data.raw = &raw;
5883 
5884 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5885 		if (perf_tp_event_match(event, &data, regs))
5886 			perf_swevent_event(event, count, &data, regs);
5887 	}
5888 
5889 	/*
5890 	 * If we got specified a target task, also iterate its context and
5891 	 * deliver this event there too.
5892 	 */
5893 	if (task && task != current) {
5894 		struct perf_event_context *ctx;
5895 		struct trace_entry *entry = record;
5896 
5897 		rcu_read_lock();
5898 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5899 		if (!ctx)
5900 			goto unlock;
5901 
5902 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5903 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5904 				continue;
5905 			if (event->attr.config != entry->type)
5906 				continue;
5907 			if (perf_tp_event_match(event, &data, regs))
5908 				perf_swevent_event(event, count, &data, regs);
5909 		}
5910 unlock:
5911 		rcu_read_unlock();
5912 	}
5913 
5914 	perf_swevent_put_recursion_context(rctx);
5915 }
5916 EXPORT_SYMBOL_GPL(perf_tp_event);
5917 
5918 static void tp_perf_event_destroy(struct perf_event *event)
5919 {
5920 	perf_trace_destroy(event);
5921 }
5922 
5923 static int perf_tp_event_init(struct perf_event *event)
5924 {
5925 	int err;
5926 
5927 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5928 		return -ENOENT;
5929 
5930 	/*
5931 	 * no branch sampling for tracepoint events
5932 	 */
5933 	if (has_branch_stack(event))
5934 		return -EOPNOTSUPP;
5935 
5936 	err = perf_trace_init(event);
5937 	if (err)
5938 		return err;
5939 
5940 	event->destroy = tp_perf_event_destroy;
5941 
5942 	return 0;
5943 }
5944 
5945 static struct pmu perf_tracepoint = {
5946 	.task_ctx_nr	= perf_sw_context,
5947 
5948 	.event_init	= perf_tp_event_init,
5949 	.add		= perf_trace_add,
5950 	.del		= perf_trace_del,
5951 	.start		= perf_swevent_start,
5952 	.stop		= perf_swevent_stop,
5953 	.read		= perf_swevent_read,
5954 
5955 	.event_idx	= perf_swevent_event_idx,
5956 };
5957 
5958 static inline void perf_tp_register(void)
5959 {
5960 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5961 }
5962 
5963 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5964 {
5965 	char *filter_str;
5966 	int ret;
5967 
5968 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5969 		return -EINVAL;
5970 
5971 	filter_str = strndup_user(arg, PAGE_SIZE);
5972 	if (IS_ERR(filter_str))
5973 		return PTR_ERR(filter_str);
5974 
5975 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5976 
5977 	kfree(filter_str);
5978 	return ret;
5979 }
5980 
5981 static void perf_event_free_filter(struct perf_event *event)
5982 {
5983 	ftrace_profile_free_filter(event);
5984 }
5985 
5986 #else
5987 
5988 static inline void perf_tp_register(void)
5989 {
5990 }
5991 
5992 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5993 {
5994 	return -ENOENT;
5995 }
5996 
5997 static void perf_event_free_filter(struct perf_event *event)
5998 {
5999 }
6000 
6001 #endif /* CONFIG_EVENT_TRACING */
6002 
6003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6004 void perf_bp_event(struct perf_event *bp, void *data)
6005 {
6006 	struct perf_sample_data sample;
6007 	struct pt_regs *regs = data;
6008 
6009 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6010 
6011 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6012 		perf_swevent_event(bp, 1, &sample, regs);
6013 }
6014 #endif
6015 
6016 /*
6017  * hrtimer based swevent callback
6018  */
6019 
6020 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6021 {
6022 	enum hrtimer_restart ret = HRTIMER_RESTART;
6023 	struct perf_sample_data data;
6024 	struct pt_regs *regs;
6025 	struct perf_event *event;
6026 	u64 period;
6027 
6028 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6029 
6030 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6031 		return HRTIMER_NORESTART;
6032 
6033 	event->pmu->read(event);
6034 
6035 	perf_sample_data_init(&data, 0, event->hw.last_period);
6036 	regs = get_irq_regs();
6037 
6038 	if (regs && !perf_exclude_event(event, regs)) {
6039 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6040 			if (__perf_event_overflow(event, 1, &data, regs))
6041 				ret = HRTIMER_NORESTART;
6042 	}
6043 
6044 	period = max_t(u64, 10000, event->hw.sample_period);
6045 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6046 
6047 	return ret;
6048 }
6049 
6050 static void perf_swevent_start_hrtimer(struct perf_event *event)
6051 {
6052 	struct hw_perf_event *hwc = &event->hw;
6053 	s64 period;
6054 
6055 	if (!is_sampling_event(event))
6056 		return;
6057 
6058 	period = local64_read(&hwc->period_left);
6059 	if (period) {
6060 		if (period < 0)
6061 			period = 10000;
6062 
6063 		local64_set(&hwc->period_left, 0);
6064 	} else {
6065 		period = max_t(u64, 10000, hwc->sample_period);
6066 	}
6067 	__hrtimer_start_range_ns(&hwc->hrtimer,
6068 				ns_to_ktime(period), 0,
6069 				HRTIMER_MODE_REL_PINNED, 0);
6070 }
6071 
6072 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6073 {
6074 	struct hw_perf_event *hwc = &event->hw;
6075 
6076 	if (is_sampling_event(event)) {
6077 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6078 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6079 
6080 		hrtimer_cancel(&hwc->hrtimer);
6081 	}
6082 }
6083 
6084 static void perf_swevent_init_hrtimer(struct perf_event *event)
6085 {
6086 	struct hw_perf_event *hwc = &event->hw;
6087 
6088 	if (!is_sampling_event(event))
6089 		return;
6090 
6091 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6092 	hwc->hrtimer.function = perf_swevent_hrtimer;
6093 
6094 	/*
6095 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6096 	 * mapping and avoid the whole period adjust feedback stuff.
6097 	 */
6098 	if (event->attr.freq) {
6099 		long freq = event->attr.sample_freq;
6100 
6101 		event->attr.sample_period = NSEC_PER_SEC / freq;
6102 		hwc->sample_period = event->attr.sample_period;
6103 		local64_set(&hwc->period_left, hwc->sample_period);
6104 		hwc->last_period = hwc->sample_period;
6105 		event->attr.freq = 0;
6106 	}
6107 }
6108 
6109 /*
6110  * Software event: cpu wall time clock
6111  */
6112 
6113 static void cpu_clock_event_update(struct perf_event *event)
6114 {
6115 	s64 prev;
6116 	u64 now;
6117 
6118 	now = local_clock();
6119 	prev = local64_xchg(&event->hw.prev_count, now);
6120 	local64_add(now - prev, &event->count);
6121 }
6122 
6123 static void cpu_clock_event_start(struct perf_event *event, int flags)
6124 {
6125 	local64_set(&event->hw.prev_count, local_clock());
6126 	perf_swevent_start_hrtimer(event);
6127 }
6128 
6129 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6130 {
6131 	perf_swevent_cancel_hrtimer(event);
6132 	cpu_clock_event_update(event);
6133 }
6134 
6135 static int cpu_clock_event_add(struct perf_event *event, int flags)
6136 {
6137 	if (flags & PERF_EF_START)
6138 		cpu_clock_event_start(event, flags);
6139 
6140 	return 0;
6141 }
6142 
6143 static void cpu_clock_event_del(struct perf_event *event, int flags)
6144 {
6145 	cpu_clock_event_stop(event, flags);
6146 }
6147 
6148 static void cpu_clock_event_read(struct perf_event *event)
6149 {
6150 	cpu_clock_event_update(event);
6151 }
6152 
6153 static int cpu_clock_event_init(struct perf_event *event)
6154 {
6155 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6156 		return -ENOENT;
6157 
6158 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6159 		return -ENOENT;
6160 
6161 	/*
6162 	 * no branch sampling for software events
6163 	 */
6164 	if (has_branch_stack(event))
6165 		return -EOPNOTSUPP;
6166 
6167 	perf_swevent_init_hrtimer(event);
6168 
6169 	return 0;
6170 }
6171 
6172 static struct pmu perf_cpu_clock = {
6173 	.task_ctx_nr	= perf_sw_context,
6174 
6175 	.event_init	= cpu_clock_event_init,
6176 	.add		= cpu_clock_event_add,
6177 	.del		= cpu_clock_event_del,
6178 	.start		= cpu_clock_event_start,
6179 	.stop		= cpu_clock_event_stop,
6180 	.read		= cpu_clock_event_read,
6181 
6182 	.event_idx	= perf_swevent_event_idx,
6183 };
6184 
6185 /*
6186  * Software event: task time clock
6187  */
6188 
6189 static void task_clock_event_update(struct perf_event *event, u64 now)
6190 {
6191 	u64 prev;
6192 	s64 delta;
6193 
6194 	prev = local64_xchg(&event->hw.prev_count, now);
6195 	delta = now - prev;
6196 	local64_add(delta, &event->count);
6197 }
6198 
6199 static void task_clock_event_start(struct perf_event *event, int flags)
6200 {
6201 	local64_set(&event->hw.prev_count, event->ctx->time);
6202 	perf_swevent_start_hrtimer(event);
6203 }
6204 
6205 static void task_clock_event_stop(struct perf_event *event, int flags)
6206 {
6207 	perf_swevent_cancel_hrtimer(event);
6208 	task_clock_event_update(event, event->ctx->time);
6209 }
6210 
6211 static int task_clock_event_add(struct perf_event *event, int flags)
6212 {
6213 	if (flags & PERF_EF_START)
6214 		task_clock_event_start(event, flags);
6215 
6216 	return 0;
6217 }
6218 
6219 static void task_clock_event_del(struct perf_event *event, int flags)
6220 {
6221 	task_clock_event_stop(event, PERF_EF_UPDATE);
6222 }
6223 
6224 static void task_clock_event_read(struct perf_event *event)
6225 {
6226 	u64 now = perf_clock();
6227 	u64 delta = now - event->ctx->timestamp;
6228 	u64 time = event->ctx->time + delta;
6229 
6230 	task_clock_event_update(event, time);
6231 }
6232 
6233 static int task_clock_event_init(struct perf_event *event)
6234 {
6235 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6236 		return -ENOENT;
6237 
6238 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6239 		return -ENOENT;
6240 
6241 	/*
6242 	 * no branch sampling for software events
6243 	 */
6244 	if (has_branch_stack(event))
6245 		return -EOPNOTSUPP;
6246 
6247 	perf_swevent_init_hrtimer(event);
6248 
6249 	return 0;
6250 }
6251 
6252 static struct pmu perf_task_clock = {
6253 	.task_ctx_nr	= perf_sw_context,
6254 
6255 	.event_init	= task_clock_event_init,
6256 	.add		= task_clock_event_add,
6257 	.del		= task_clock_event_del,
6258 	.start		= task_clock_event_start,
6259 	.stop		= task_clock_event_stop,
6260 	.read		= task_clock_event_read,
6261 
6262 	.event_idx	= perf_swevent_event_idx,
6263 };
6264 
6265 static void perf_pmu_nop_void(struct pmu *pmu)
6266 {
6267 }
6268 
6269 static int perf_pmu_nop_int(struct pmu *pmu)
6270 {
6271 	return 0;
6272 }
6273 
6274 static void perf_pmu_start_txn(struct pmu *pmu)
6275 {
6276 	perf_pmu_disable(pmu);
6277 }
6278 
6279 static int perf_pmu_commit_txn(struct pmu *pmu)
6280 {
6281 	perf_pmu_enable(pmu);
6282 	return 0;
6283 }
6284 
6285 static void perf_pmu_cancel_txn(struct pmu *pmu)
6286 {
6287 	perf_pmu_enable(pmu);
6288 }
6289 
6290 static int perf_event_idx_default(struct perf_event *event)
6291 {
6292 	return event->hw.idx + 1;
6293 }
6294 
6295 /*
6296  * Ensures all contexts with the same task_ctx_nr have the same
6297  * pmu_cpu_context too.
6298  */
6299 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6300 {
6301 	struct pmu *pmu;
6302 
6303 	if (ctxn < 0)
6304 		return NULL;
6305 
6306 	list_for_each_entry(pmu, &pmus, entry) {
6307 		if (pmu->task_ctx_nr == ctxn)
6308 			return pmu->pmu_cpu_context;
6309 	}
6310 
6311 	return NULL;
6312 }
6313 
6314 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6315 {
6316 	int cpu;
6317 
6318 	for_each_possible_cpu(cpu) {
6319 		struct perf_cpu_context *cpuctx;
6320 
6321 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6322 
6323 		if (cpuctx->unique_pmu == old_pmu)
6324 			cpuctx->unique_pmu = pmu;
6325 	}
6326 }
6327 
6328 static void free_pmu_context(struct pmu *pmu)
6329 {
6330 	struct pmu *i;
6331 
6332 	mutex_lock(&pmus_lock);
6333 	/*
6334 	 * Like a real lame refcount.
6335 	 */
6336 	list_for_each_entry(i, &pmus, entry) {
6337 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6338 			update_pmu_context(i, pmu);
6339 			goto out;
6340 		}
6341 	}
6342 
6343 	free_percpu(pmu->pmu_cpu_context);
6344 out:
6345 	mutex_unlock(&pmus_lock);
6346 }
6347 static struct idr pmu_idr;
6348 
6349 static ssize_t
6350 type_show(struct device *dev, struct device_attribute *attr, char *page)
6351 {
6352 	struct pmu *pmu = dev_get_drvdata(dev);
6353 
6354 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6355 }
6356 static DEVICE_ATTR_RO(type);
6357 
6358 static ssize_t
6359 perf_event_mux_interval_ms_show(struct device *dev,
6360 				struct device_attribute *attr,
6361 				char *page)
6362 {
6363 	struct pmu *pmu = dev_get_drvdata(dev);
6364 
6365 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6366 }
6367 
6368 static ssize_t
6369 perf_event_mux_interval_ms_store(struct device *dev,
6370 				 struct device_attribute *attr,
6371 				 const char *buf, size_t count)
6372 {
6373 	struct pmu *pmu = dev_get_drvdata(dev);
6374 	int timer, cpu, ret;
6375 
6376 	ret = kstrtoint(buf, 0, &timer);
6377 	if (ret)
6378 		return ret;
6379 
6380 	if (timer < 1)
6381 		return -EINVAL;
6382 
6383 	/* same value, noting to do */
6384 	if (timer == pmu->hrtimer_interval_ms)
6385 		return count;
6386 
6387 	pmu->hrtimer_interval_ms = timer;
6388 
6389 	/* update all cpuctx for this PMU */
6390 	for_each_possible_cpu(cpu) {
6391 		struct perf_cpu_context *cpuctx;
6392 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6393 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6394 
6395 		if (hrtimer_active(&cpuctx->hrtimer))
6396 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6397 	}
6398 
6399 	return count;
6400 }
6401 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6402 
6403 static struct attribute *pmu_dev_attrs[] = {
6404 	&dev_attr_type.attr,
6405 	&dev_attr_perf_event_mux_interval_ms.attr,
6406 	NULL,
6407 };
6408 ATTRIBUTE_GROUPS(pmu_dev);
6409 
6410 static int pmu_bus_running;
6411 static struct bus_type pmu_bus = {
6412 	.name		= "event_source",
6413 	.dev_groups	= pmu_dev_groups,
6414 };
6415 
6416 static void pmu_dev_release(struct device *dev)
6417 {
6418 	kfree(dev);
6419 }
6420 
6421 static int pmu_dev_alloc(struct pmu *pmu)
6422 {
6423 	int ret = -ENOMEM;
6424 
6425 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6426 	if (!pmu->dev)
6427 		goto out;
6428 
6429 	pmu->dev->groups = pmu->attr_groups;
6430 	device_initialize(pmu->dev);
6431 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6432 	if (ret)
6433 		goto free_dev;
6434 
6435 	dev_set_drvdata(pmu->dev, pmu);
6436 	pmu->dev->bus = &pmu_bus;
6437 	pmu->dev->release = pmu_dev_release;
6438 	ret = device_add(pmu->dev);
6439 	if (ret)
6440 		goto free_dev;
6441 
6442 out:
6443 	return ret;
6444 
6445 free_dev:
6446 	put_device(pmu->dev);
6447 	goto out;
6448 }
6449 
6450 static struct lock_class_key cpuctx_mutex;
6451 static struct lock_class_key cpuctx_lock;
6452 
6453 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6454 {
6455 	int cpu, ret;
6456 
6457 	mutex_lock(&pmus_lock);
6458 	ret = -ENOMEM;
6459 	pmu->pmu_disable_count = alloc_percpu(int);
6460 	if (!pmu->pmu_disable_count)
6461 		goto unlock;
6462 
6463 	pmu->type = -1;
6464 	if (!name)
6465 		goto skip_type;
6466 	pmu->name = name;
6467 
6468 	if (type < 0) {
6469 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6470 		if (type < 0) {
6471 			ret = type;
6472 			goto free_pdc;
6473 		}
6474 	}
6475 	pmu->type = type;
6476 
6477 	if (pmu_bus_running) {
6478 		ret = pmu_dev_alloc(pmu);
6479 		if (ret)
6480 			goto free_idr;
6481 	}
6482 
6483 skip_type:
6484 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6485 	if (pmu->pmu_cpu_context)
6486 		goto got_cpu_context;
6487 
6488 	ret = -ENOMEM;
6489 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6490 	if (!pmu->pmu_cpu_context)
6491 		goto free_dev;
6492 
6493 	for_each_possible_cpu(cpu) {
6494 		struct perf_cpu_context *cpuctx;
6495 
6496 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6497 		__perf_event_init_context(&cpuctx->ctx);
6498 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6499 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6500 		cpuctx->ctx.type = cpu_context;
6501 		cpuctx->ctx.pmu = pmu;
6502 
6503 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6504 
6505 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6506 		cpuctx->unique_pmu = pmu;
6507 	}
6508 
6509 got_cpu_context:
6510 	if (!pmu->start_txn) {
6511 		if (pmu->pmu_enable) {
6512 			/*
6513 			 * If we have pmu_enable/pmu_disable calls, install
6514 			 * transaction stubs that use that to try and batch
6515 			 * hardware accesses.
6516 			 */
6517 			pmu->start_txn  = perf_pmu_start_txn;
6518 			pmu->commit_txn = perf_pmu_commit_txn;
6519 			pmu->cancel_txn = perf_pmu_cancel_txn;
6520 		} else {
6521 			pmu->start_txn  = perf_pmu_nop_void;
6522 			pmu->commit_txn = perf_pmu_nop_int;
6523 			pmu->cancel_txn = perf_pmu_nop_void;
6524 		}
6525 	}
6526 
6527 	if (!pmu->pmu_enable) {
6528 		pmu->pmu_enable  = perf_pmu_nop_void;
6529 		pmu->pmu_disable = perf_pmu_nop_void;
6530 	}
6531 
6532 	if (!pmu->event_idx)
6533 		pmu->event_idx = perf_event_idx_default;
6534 
6535 	list_add_rcu(&pmu->entry, &pmus);
6536 	ret = 0;
6537 unlock:
6538 	mutex_unlock(&pmus_lock);
6539 
6540 	return ret;
6541 
6542 free_dev:
6543 	device_del(pmu->dev);
6544 	put_device(pmu->dev);
6545 
6546 free_idr:
6547 	if (pmu->type >= PERF_TYPE_MAX)
6548 		idr_remove(&pmu_idr, pmu->type);
6549 
6550 free_pdc:
6551 	free_percpu(pmu->pmu_disable_count);
6552 	goto unlock;
6553 }
6554 
6555 void perf_pmu_unregister(struct pmu *pmu)
6556 {
6557 	mutex_lock(&pmus_lock);
6558 	list_del_rcu(&pmu->entry);
6559 	mutex_unlock(&pmus_lock);
6560 
6561 	/*
6562 	 * We dereference the pmu list under both SRCU and regular RCU, so
6563 	 * synchronize against both of those.
6564 	 */
6565 	synchronize_srcu(&pmus_srcu);
6566 	synchronize_rcu();
6567 
6568 	free_percpu(pmu->pmu_disable_count);
6569 	if (pmu->type >= PERF_TYPE_MAX)
6570 		idr_remove(&pmu_idr, pmu->type);
6571 	device_del(pmu->dev);
6572 	put_device(pmu->dev);
6573 	free_pmu_context(pmu);
6574 }
6575 
6576 struct pmu *perf_init_event(struct perf_event *event)
6577 {
6578 	struct pmu *pmu = NULL;
6579 	int idx;
6580 	int ret;
6581 
6582 	idx = srcu_read_lock(&pmus_srcu);
6583 
6584 	rcu_read_lock();
6585 	pmu = idr_find(&pmu_idr, event->attr.type);
6586 	rcu_read_unlock();
6587 	if (pmu) {
6588 		event->pmu = pmu;
6589 		ret = pmu->event_init(event);
6590 		if (ret)
6591 			pmu = ERR_PTR(ret);
6592 		goto unlock;
6593 	}
6594 
6595 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6596 		event->pmu = pmu;
6597 		ret = pmu->event_init(event);
6598 		if (!ret)
6599 			goto unlock;
6600 
6601 		if (ret != -ENOENT) {
6602 			pmu = ERR_PTR(ret);
6603 			goto unlock;
6604 		}
6605 	}
6606 	pmu = ERR_PTR(-ENOENT);
6607 unlock:
6608 	srcu_read_unlock(&pmus_srcu, idx);
6609 
6610 	return pmu;
6611 }
6612 
6613 static void account_event_cpu(struct perf_event *event, int cpu)
6614 {
6615 	if (event->parent)
6616 		return;
6617 
6618 	if (has_branch_stack(event)) {
6619 		if (!(event->attach_state & PERF_ATTACH_TASK))
6620 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6621 	}
6622 	if (is_cgroup_event(event))
6623 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6624 }
6625 
6626 static void account_event(struct perf_event *event)
6627 {
6628 	if (event->parent)
6629 		return;
6630 
6631 	if (event->attach_state & PERF_ATTACH_TASK)
6632 		static_key_slow_inc(&perf_sched_events.key);
6633 	if (event->attr.mmap || event->attr.mmap_data)
6634 		atomic_inc(&nr_mmap_events);
6635 	if (event->attr.comm)
6636 		atomic_inc(&nr_comm_events);
6637 	if (event->attr.task)
6638 		atomic_inc(&nr_task_events);
6639 	if (event->attr.freq) {
6640 		if (atomic_inc_return(&nr_freq_events) == 1)
6641 			tick_nohz_full_kick_all();
6642 	}
6643 	if (has_branch_stack(event))
6644 		static_key_slow_inc(&perf_sched_events.key);
6645 	if (is_cgroup_event(event))
6646 		static_key_slow_inc(&perf_sched_events.key);
6647 
6648 	account_event_cpu(event, event->cpu);
6649 }
6650 
6651 /*
6652  * Allocate and initialize a event structure
6653  */
6654 static struct perf_event *
6655 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6656 		 struct task_struct *task,
6657 		 struct perf_event *group_leader,
6658 		 struct perf_event *parent_event,
6659 		 perf_overflow_handler_t overflow_handler,
6660 		 void *context)
6661 {
6662 	struct pmu *pmu;
6663 	struct perf_event *event;
6664 	struct hw_perf_event *hwc;
6665 	long err = -EINVAL;
6666 
6667 	if ((unsigned)cpu >= nr_cpu_ids) {
6668 		if (!task || cpu != -1)
6669 			return ERR_PTR(-EINVAL);
6670 	}
6671 
6672 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6673 	if (!event)
6674 		return ERR_PTR(-ENOMEM);
6675 
6676 	/*
6677 	 * Single events are their own group leaders, with an
6678 	 * empty sibling list:
6679 	 */
6680 	if (!group_leader)
6681 		group_leader = event;
6682 
6683 	mutex_init(&event->child_mutex);
6684 	INIT_LIST_HEAD(&event->child_list);
6685 
6686 	INIT_LIST_HEAD(&event->group_entry);
6687 	INIT_LIST_HEAD(&event->event_entry);
6688 	INIT_LIST_HEAD(&event->sibling_list);
6689 	INIT_LIST_HEAD(&event->rb_entry);
6690 	INIT_LIST_HEAD(&event->active_entry);
6691 	INIT_HLIST_NODE(&event->hlist_entry);
6692 
6693 
6694 	init_waitqueue_head(&event->waitq);
6695 	init_irq_work(&event->pending, perf_pending_event);
6696 
6697 	mutex_init(&event->mmap_mutex);
6698 
6699 	atomic_long_set(&event->refcount, 1);
6700 	event->cpu		= cpu;
6701 	event->attr		= *attr;
6702 	event->group_leader	= group_leader;
6703 	event->pmu		= NULL;
6704 	event->oncpu		= -1;
6705 
6706 	event->parent		= parent_event;
6707 
6708 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6709 	event->id		= atomic64_inc_return(&perf_event_id);
6710 
6711 	event->state		= PERF_EVENT_STATE_INACTIVE;
6712 
6713 	if (task) {
6714 		event->attach_state = PERF_ATTACH_TASK;
6715 
6716 		if (attr->type == PERF_TYPE_TRACEPOINT)
6717 			event->hw.tp_target = task;
6718 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6719 		/*
6720 		 * hw_breakpoint is a bit difficult here..
6721 		 */
6722 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6723 			event->hw.bp_target = task;
6724 #endif
6725 	}
6726 
6727 	if (!overflow_handler && parent_event) {
6728 		overflow_handler = parent_event->overflow_handler;
6729 		context = parent_event->overflow_handler_context;
6730 	}
6731 
6732 	event->overflow_handler	= overflow_handler;
6733 	event->overflow_handler_context = context;
6734 
6735 	perf_event__state_init(event);
6736 
6737 	pmu = NULL;
6738 
6739 	hwc = &event->hw;
6740 	hwc->sample_period = attr->sample_period;
6741 	if (attr->freq && attr->sample_freq)
6742 		hwc->sample_period = 1;
6743 	hwc->last_period = hwc->sample_period;
6744 
6745 	local64_set(&hwc->period_left, hwc->sample_period);
6746 
6747 	/*
6748 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6749 	 */
6750 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6751 		goto err_ns;
6752 
6753 	pmu = perf_init_event(event);
6754 	if (!pmu)
6755 		goto err_ns;
6756 	else if (IS_ERR(pmu)) {
6757 		err = PTR_ERR(pmu);
6758 		goto err_ns;
6759 	}
6760 
6761 	if (!event->parent) {
6762 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6763 			err = get_callchain_buffers();
6764 			if (err)
6765 				goto err_pmu;
6766 		}
6767 	}
6768 
6769 	return event;
6770 
6771 err_pmu:
6772 	if (event->destroy)
6773 		event->destroy(event);
6774 err_ns:
6775 	if (event->ns)
6776 		put_pid_ns(event->ns);
6777 	kfree(event);
6778 
6779 	return ERR_PTR(err);
6780 }
6781 
6782 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6783 			  struct perf_event_attr *attr)
6784 {
6785 	u32 size;
6786 	int ret;
6787 
6788 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6789 		return -EFAULT;
6790 
6791 	/*
6792 	 * zero the full structure, so that a short copy will be nice.
6793 	 */
6794 	memset(attr, 0, sizeof(*attr));
6795 
6796 	ret = get_user(size, &uattr->size);
6797 	if (ret)
6798 		return ret;
6799 
6800 	if (size > PAGE_SIZE)	/* silly large */
6801 		goto err_size;
6802 
6803 	if (!size)		/* abi compat */
6804 		size = PERF_ATTR_SIZE_VER0;
6805 
6806 	if (size < PERF_ATTR_SIZE_VER0)
6807 		goto err_size;
6808 
6809 	/*
6810 	 * If we're handed a bigger struct than we know of,
6811 	 * ensure all the unknown bits are 0 - i.e. new
6812 	 * user-space does not rely on any kernel feature
6813 	 * extensions we dont know about yet.
6814 	 */
6815 	if (size > sizeof(*attr)) {
6816 		unsigned char __user *addr;
6817 		unsigned char __user *end;
6818 		unsigned char val;
6819 
6820 		addr = (void __user *)uattr + sizeof(*attr);
6821 		end  = (void __user *)uattr + size;
6822 
6823 		for (; addr < end; addr++) {
6824 			ret = get_user(val, addr);
6825 			if (ret)
6826 				return ret;
6827 			if (val)
6828 				goto err_size;
6829 		}
6830 		size = sizeof(*attr);
6831 	}
6832 
6833 	ret = copy_from_user(attr, uattr, size);
6834 	if (ret)
6835 		return -EFAULT;
6836 
6837 	/* disabled for now */
6838 	if (attr->mmap2)
6839 		return -EINVAL;
6840 
6841 	if (attr->__reserved_1)
6842 		return -EINVAL;
6843 
6844 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6845 		return -EINVAL;
6846 
6847 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6848 		return -EINVAL;
6849 
6850 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6851 		u64 mask = attr->branch_sample_type;
6852 
6853 		/* only using defined bits */
6854 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6855 			return -EINVAL;
6856 
6857 		/* at least one branch bit must be set */
6858 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6859 			return -EINVAL;
6860 
6861 		/* propagate priv level, when not set for branch */
6862 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6863 
6864 			/* exclude_kernel checked on syscall entry */
6865 			if (!attr->exclude_kernel)
6866 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6867 
6868 			if (!attr->exclude_user)
6869 				mask |= PERF_SAMPLE_BRANCH_USER;
6870 
6871 			if (!attr->exclude_hv)
6872 				mask |= PERF_SAMPLE_BRANCH_HV;
6873 			/*
6874 			 * adjust user setting (for HW filter setup)
6875 			 */
6876 			attr->branch_sample_type = mask;
6877 		}
6878 		/* privileged levels capture (kernel, hv): check permissions */
6879 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6880 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6881 			return -EACCES;
6882 	}
6883 
6884 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6885 		ret = perf_reg_validate(attr->sample_regs_user);
6886 		if (ret)
6887 			return ret;
6888 	}
6889 
6890 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6891 		if (!arch_perf_have_user_stack_dump())
6892 			return -ENOSYS;
6893 
6894 		/*
6895 		 * We have __u32 type for the size, but so far
6896 		 * we can only use __u16 as maximum due to the
6897 		 * __u16 sample size limit.
6898 		 */
6899 		if (attr->sample_stack_user >= USHRT_MAX)
6900 			ret = -EINVAL;
6901 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6902 			ret = -EINVAL;
6903 	}
6904 
6905 out:
6906 	return ret;
6907 
6908 err_size:
6909 	put_user(sizeof(*attr), &uattr->size);
6910 	ret = -E2BIG;
6911 	goto out;
6912 }
6913 
6914 static int
6915 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6916 {
6917 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6918 	int ret = -EINVAL;
6919 
6920 	if (!output_event)
6921 		goto set;
6922 
6923 	/* don't allow circular references */
6924 	if (event == output_event)
6925 		goto out;
6926 
6927 	/*
6928 	 * Don't allow cross-cpu buffers
6929 	 */
6930 	if (output_event->cpu != event->cpu)
6931 		goto out;
6932 
6933 	/*
6934 	 * If its not a per-cpu rb, it must be the same task.
6935 	 */
6936 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6937 		goto out;
6938 
6939 set:
6940 	mutex_lock(&event->mmap_mutex);
6941 	/* Can't redirect output if we've got an active mmap() */
6942 	if (atomic_read(&event->mmap_count))
6943 		goto unlock;
6944 
6945 	old_rb = event->rb;
6946 
6947 	if (output_event) {
6948 		/* get the rb we want to redirect to */
6949 		rb = ring_buffer_get(output_event);
6950 		if (!rb)
6951 			goto unlock;
6952 	}
6953 
6954 	if (old_rb)
6955 		ring_buffer_detach(event, old_rb);
6956 
6957 	if (rb)
6958 		ring_buffer_attach(event, rb);
6959 
6960 	rcu_assign_pointer(event->rb, rb);
6961 
6962 	if (old_rb) {
6963 		ring_buffer_put(old_rb);
6964 		/*
6965 		 * Since we detached before setting the new rb, so that we
6966 		 * could attach the new rb, we could have missed a wakeup.
6967 		 * Provide it now.
6968 		 */
6969 		wake_up_all(&event->waitq);
6970 	}
6971 
6972 	ret = 0;
6973 unlock:
6974 	mutex_unlock(&event->mmap_mutex);
6975 
6976 out:
6977 	return ret;
6978 }
6979 
6980 /**
6981  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6982  *
6983  * @attr_uptr:	event_id type attributes for monitoring/sampling
6984  * @pid:		target pid
6985  * @cpu:		target cpu
6986  * @group_fd:		group leader event fd
6987  */
6988 SYSCALL_DEFINE5(perf_event_open,
6989 		struct perf_event_attr __user *, attr_uptr,
6990 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6991 {
6992 	struct perf_event *group_leader = NULL, *output_event = NULL;
6993 	struct perf_event *event, *sibling;
6994 	struct perf_event_attr attr;
6995 	struct perf_event_context *ctx;
6996 	struct file *event_file = NULL;
6997 	struct fd group = {NULL, 0};
6998 	struct task_struct *task = NULL;
6999 	struct pmu *pmu;
7000 	int event_fd;
7001 	int move_group = 0;
7002 	int err;
7003 	int f_flags = O_RDWR;
7004 
7005 	/* for future expandability... */
7006 	if (flags & ~PERF_FLAG_ALL)
7007 		return -EINVAL;
7008 
7009 	err = perf_copy_attr(attr_uptr, &attr);
7010 	if (err)
7011 		return err;
7012 
7013 	if (!attr.exclude_kernel) {
7014 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7015 			return -EACCES;
7016 	}
7017 
7018 	if (attr.freq) {
7019 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7020 			return -EINVAL;
7021 	}
7022 
7023 	/*
7024 	 * In cgroup mode, the pid argument is used to pass the fd
7025 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7026 	 * designates the cpu on which to monitor threads from that
7027 	 * cgroup.
7028 	 */
7029 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7030 		return -EINVAL;
7031 
7032 	if (flags & PERF_FLAG_FD_CLOEXEC)
7033 		f_flags |= O_CLOEXEC;
7034 
7035 	event_fd = get_unused_fd_flags(f_flags);
7036 	if (event_fd < 0)
7037 		return event_fd;
7038 
7039 	if (group_fd != -1) {
7040 		err = perf_fget_light(group_fd, &group);
7041 		if (err)
7042 			goto err_fd;
7043 		group_leader = group.file->private_data;
7044 		if (flags & PERF_FLAG_FD_OUTPUT)
7045 			output_event = group_leader;
7046 		if (flags & PERF_FLAG_FD_NO_GROUP)
7047 			group_leader = NULL;
7048 	}
7049 
7050 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7051 		task = find_lively_task_by_vpid(pid);
7052 		if (IS_ERR(task)) {
7053 			err = PTR_ERR(task);
7054 			goto err_group_fd;
7055 		}
7056 	}
7057 
7058 	get_online_cpus();
7059 
7060 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7061 				 NULL, NULL);
7062 	if (IS_ERR(event)) {
7063 		err = PTR_ERR(event);
7064 		goto err_task;
7065 	}
7066 
7067 	if (flags & PERF_FLAG_PID_CGROUP) {
7068 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7069 		if (err) {
7070 			__free_event(event);
7071 			goto err_task;
7072 		}
7073 	}
7074 
7075 	account_event(event);
7076 
7077 	/*
7078 	 * Special case software events and allow them to be part of
7079 	 * any hardware group.
7080 	 */
7081 	pmu = event->pmu;
7082 
7083 	if (group_leader &&
7084 	    (is_software_event(event) != is_software_event(group_leader))) {
7085 		if (is_software_event(event)) {
7086 			/*
7087 			 * If event and group_leader are not both a software
7088 			 * event, and event is, then group leader is not.
7089 			 *
7090 			 * Allow the addition of software events to !software
7091 			 * groups, this is safe because software events never
7092 			 * fail to schedule.
7093 			 */
7094 			pmu = group_leader->pmu;
7095 		} else if (is_software_event(group_leader) &&
7096 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7097 			/*
7098 			 * In case the group is a pure software group, and we
7099 			 * try to add a hardware event, move the whole group to
7100 			 * the hardware context.
7101 			 */
7102 			move_group = 1;
7103 		}
7104 	}
7105 
7106 	/*
7107 	 * Get the target context (task or percpu):
7108 	 */
7109 	ctx = find_get_context(pmu, task, event->cpu);
7110 	if (IS_ERR(ctx)) {
7111 		err = PTR_ERR(ctx);
7112 		goto err_alloc;
7113 	}
7114 
7115 	if (task) {
7116 		put_task_struct(task);
7117 		task = NULL;
7118 	}
7119 
7120 	/*
7121 	 * Look up the group leader (we will attach this event to it):
7122 	 */
7123 	if (group_leader) {
7124 		err = -EINVAL;
7125 
7126 		/*
7127 		 * Do not allow a recursive hierarchy (this new sibling
7128 		 * becoming part of another group-sibling):
7129 		 */
7130 		if (group_leader->group_leader != group_leader)
7131 			goto err_context;
7132 		/*
7133 		 * Do not allow to attach to a group in a different
7134 		 * task or CPU context:
7135 		 */
7136 		if (move_group) {
7137 			if (group_leader->ctx->type != ctx->type)
7138 				goto err_context;
7139 		} else {
7140 			if (group_leader->ctx != ctx)
7141 				goto err_context;
7142 		}
7143 
7144 		/*
7145 		 * Only a group leader can be exclusive or pinned
7146 		 */
7147 		if (attr.exclusive || attr.pinned)
7148 			goto err_context;
7149 	}
7150 
7151 	if (output_event) {
7152 		err = perf_event_set_output(event, output_event);
7153 		if (err)
7154 			goto err_context;
7155 	}
7156 
7157 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7158 					f_flags);
7159 	if (IS_ERR(event_file)) {
7160 		err = PTR_ERR(event_file);
7161 		goto err_context;
7162 	}
7163 
7164 	if (move_group) {
7165 		struct perf_event_context *gctx = group_leader->ctx;
7166 
7167 		mutex_lock(&gctx->mutex);
7168 		perf_remove_from_context(group_leader);
7169 
7170 		/*
7171 		 * Removing from the context ends up with disabled
7172 		 * event. What we want here is event in the initial
7173 		 * startup state, ready to be add into new context.
7174 		 */
7175 		perf_event__state_init(group_leader);
7176 		list_for_each_entry(sibling, &group_leader->sibling_list,
7177 				    group_entry) {
7178 			perf_remove_from_context(sibling);
7179 			perf_event__state_init(sibling);
7180 			put_ctx(gctx);
7181 		}
7182 		mutex_unlock(&gctx->mutex);
7183 		put_ctx(gctx);
7184 	}
7185 
7186 	WARN_ON_ONCE(ctx->parent_ctx);
7187 	mutex_lock(&ctx->mutex);
7188 
7189 	if (move_group) {
7190 		synchronize_rcu();
7191 		perf_install_in_context(ctx, group_leader, event->cpu);
7192 		get_ctx(ctx);
7193 		list_for_each_entry(sibling, &group_leader->sibling_list,
7194 				    group_entry) {
7195 			perf_install_in_context(ctx, sibling, event->cpu);
7196 			get_ctx(ctx);
7197 		}
7198 	}
7199 
7200 	perf_install_in_context(ctx, event, event->cpu);
7201 	perf_unpin_context(ctx);
7202 	mutex_unlock(&ctx->mutex);
7203 
7204 	put_online_cpus();
7205 
7206 	event->owner = current;
7207 
7208 	mutex_lock(&current->perf_event_mutex);
7209 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7210 	mutex_unlock(&current->perf_event_mutex);
7211 
7212 	/*
7213 	 * Precalculate sample_data sizes
7214 	 */
7215 	perf_event__header_size(event);
7216 	perf_event__id_header_size(event);
7217 
7218 	/*
7219 	 * Drop the reference on the group_event after placing the
7220 	 * new event on the sibling_list. This ensures destruction
7221 	 * of the group leader will find the pointer to itself in
7222 	 * perf_group_detach().
7223 	 */
7224 	fdput(group);
7225 	fd_install(event_fd, event_file);
7226 	return event_fd;
7227 
7228 err_context:
7229 	perf_unpin_context(ctx);
7230 	put_ctx(ctx);
7231 err_alloc:
7232 	free_event(event);
7233 err_task:
7234 	put_online_cpus();
7235 	if (task)
7236 		put_task_struct(task);
7237 err_group_fd:
7238 	fdput(group);
7239 err_fd:
7240 	put_unused_fd(event_fd);
7241 	return err;
7242 }
7243 
7244 /**
7245  * perf_event_create_kernel_counter
7246  *
7247  * @attr: attributes of the counter to create
7248  * @cpu: cpu in which the counter is bound
7249  * @task: task to profile (NULL for percpu)
7250  */
7251 struct perf_event *
7252 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7253 				 struct task_struct *task,
7254 				 perf_overflow_handler_t overflow_handler,
7255 				 void *context)
7256 {
7257 	struct perf_event_context *ctx;
7258 	struct perf_event *event;
7259 	int err;
7260 
7261 	/*
7262 	 * Get the target context (task or percpu):
7263 	 */
7264 
7265 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7266 				 overflow_handler, context);
7267 	if (IS_ERR(event)) {
7268 		err = PTR_ERR(event);
7269 		goto err;
7270 	}
7271 
7272 	account_event(event);
7273 
7274 	ctx = find_get_context(event->pmu, task, cpu);
7275 	if (IS_ERR(ctx)) {
7276 		err = PTR_ERR(ctx);
7277 		goto err_free;
7278 	}
7279 
7280 	WARN_ON_ONCE(ctx->parent_ctx);
7281 	mutex_lock(&ctx->mutex);
7282 	perf_install_in_context(ctx, event, cpu);
7283 	perf_unpin_context(ctx);
7284 	mutex_unlock(&ctx->mutex);
7285 
7286 	return event;
7287 
7288 err_free:
7289 	free_event(event);
7290 err:
7291 	return ERR_PTR(err);
7292 }
7293 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7294 
7295 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7296 {
7297 	struct perf_event_context *src_ctx;
7298 	struct perf_event_context *dst_ctx;
7299 	struct perf_event *event, *tmp;
7300 	LIST_HEAD(events);
7301 
7302 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7303 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7304 
7305 	mutex_lock(&src_ctx->mutex);
7306 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7307 				 event_entry) {
7308 		perf_remove_from_context(event);
7309 		unaccount_event_cpu(event, src_cpu);
7310 		put_ctx(src_ctx);
7311 		list_add(&event->migrate_entry, &events);
7312 	}
7313 	mutex_unlock(&src_ctx->mutex);
7314 
7315 	synchronize_rcu();
7316 
7317 	mutex_lock(&dst_ctx->mutex);
7318 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7319 		list_del(&event->migrate_entry);
7320 		if (event->state >= PERF_EVENT_STATE_OFF)
7321 			event->state = PERF_EVENT_STATE_INACTIVE;
7322 		account_event_cpu(event, dst_cpu);
7323 		perf_install_in_context(dst_ctx, event, dst_cpu);
7324 		get_ctx(dst_ctx);
7325 	}
7326 	mutex_unlock(&dst_ctx->mutex);
7327 }
7328 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7329 
7330 static void sync_child_event(struct perf_event *child_event,
7331 			       struct task_struct *child)
7332 {
7333 	struct perf_event *parent_event = child_event->parent;
7334 	u64 child_val;
7335 
7336 	if (child_event->attr.inherit_stat)
7337 		perf_event_read_event(child_event, child);
7338 
7339 	child_val = perf_event_count(child_event);
7340 
7341 	/*
7342 	 * Add back the child's count to the parent's count:
7343 	 */
7344 	atomic64_add(child_val, &parent_event->child_count);
7345 	atomic64_add(child_event->total_time_enabled,
7346 		     &parent_event->child_total_time_enabled);
7347 	atomic64_add(child_event->total_time_running,
7348 		     &parent_event->child_total_time_running);
7349 
7350 	/*
7351 	 * Remove this event from the parent's list
7352 	 */
7353 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7354 	mutex_lock(&parent_event->child_mutex);
7355 	list_del_init(&child_event->child_list);
7356 	mutex_unlock(&parent_event->child_mutex);
7357 
7358 	/*
7359 	 * Release the parent event, if this was the last
7360 	 * reference to it.
7361 	 */
7362 	put_event(parent_event);
7363 }
7364 
7365 static void
7366 __perf_event_exit_task(struct perf_event *child_event,
7367 			 struct perf_event_context *child_ctx,
7368 			 struct task_struct *child)
7369 {
7370 	if (child_event->parent) {
7371 		raw_spin_lock_irq(&child_ctx->lock);
7372 		perf_group_detach(child_event);
7373 		raw_spin_unlock_irq(&child_ctx->lock);
7374 	}
7375 
7376 	perf_remove_from_context(child_event);
7377 
7378 	/*
7379 	 * It can happen that the parent exits first, and has events
7380 	 * that are still around due to the child reference. These
7381 	 * events need to be zapped.
7382 	 */
7383 	if (child_event->parent) {
7384 		sync_child_event(child_event, child);
7385 		free_event(child_event);
7386 	}
7387 }
7388 
7389 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7390 {
7391 	struct perf_event *child_event, *tmp;
7392 	struct perf_event_context *child_ctx;
7393 	unsigned long flags;
7394 
7395 	if (likely(!child->perf_event_ctxp[ctxn])) {
7396 		perf_event_task(child, NULL, 0);
7397 		return;
7398 	}
7399 
7400 	local_irq_save(flags);
7401 	/*
7402 	 * We can't reschedule here because interrupts are disabled,
7403 	 * and either child is current or it is a task that can't be
7404 	 * scheduled, so we are now safe from rescheduling changing
7405 	 * our context.
7406 	 */
7407 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7408 
7409 	/*
7410 	 * Take the context lock here so that if find_get_context is
7411 	 * reading child->perf_event_ctxp, we wait until it has
7412 	 * incremented the context's refcount before we do put_ctx below.
7413 	 */
7414 	raw_spin_lock(&child_ctx->lock);
7415 	task_ctx_sched_out(child_ctx);
7416 	child->perf_event_ctxp[ctxn] = NULL;
7417 	/*
7418 	 * If this context is a clone; unclone it so it can't get
7419 	 * swapped to another process while we're removing all
7420 	 * the events from it.
7421 	 */
7422 	unclone_ctx(child_ctx);
7423 	update_context_time(child_ctx);
7424 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7425 
7426 	/*
7427 	 * Report the task dead after unscheduling the events so that we
7428 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7429 	 * get a few PERF_RECORD_READ events.
7430 	 */
7431 	perf_event_task(child, child_ctx, 0);
7432 
7433 	/*
7434 	 * We can recurse on the same lock type through:
7435 	 *
7436 	 *   __perf_event_exit_task()
7437 	 *     sync_child_event()
7438 	 *       put_event()
7439 	 *         mutex_lock(&ctx->mutex)
7440 	 *
7441 	 * But since its the parent context it won't be the same instance.
7442 	 */
7443 	mutex_lock(&child_ctx->mutex);
7444 
7445 again:
7446 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7447 				 group_entry)
7448 		__perf_event_exit_task(child_event, child_ctx, child);
7449 
7450 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7451 				 group_entry)
7452 		__perf_event_exit_task(child_event, child_ctx, child);
7453 
7454 	/*
7455 	 * If the last event was a group event, it will have appended all
7456 	 * its siblings to the list, but we obtained 'tmp' before that which
7457 	 * will still point to the list head terminating the iteration.
7458 	 */
7459 	if (!list_empty(&child_ctx->pinned_groups) ||
7460 	    !list_empty(&child_ctx->flexible_groups))
7461 		goto again;
7462 
7463 	mutex_unlock(&child_ctx->mutex);
7464 
7465 	put_ctx(child_ctx);
7466 }
7467 
7468 /*
7469  * When a child task exits, feed back event values to parent events.
7470  */
7471 void perf_event_exit_task(struct task_struct *child)
7472 {
7473 	struct perf_event *event, *tmp;
7474 	int ctxn;
7475 
7476 	mutex_lock(&child->perf_event_mutex);
7477 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7478 				 owner_entry) {
7479 		list_del_init(&event->owner_entry);
7480 
7481 		/*
7482 		 * Ensure the list deletion is visible before we clear
7483 		 * the owner, closes a race against perf_release() where
7484 		 * we need to serialize on the owner->perf_event_mutex.
7485 		 */
7486 		smp_wmb();
7487 		event->owner = NULL;
7488 	}
7489 	mutex_unlock(&child->perf_event_mutex);
7490 
7491 	for_each_task_context_nr(ctxn)
7492 		perf_event_exit_task_context(child, ctxn);
7493 }
7494 
7495 static void perf_free_event(struct perf_event *event,
7496 			    struct perf_event_context *ctx)
7497 {
7498 	struct perf_event *parent = event->parent;
7499 
7500 	if (WARN_ON_ONCE(!parent))
7501 		return;
7502 
7503 	mutex_lock(&parent->child_mutex);
7504 	list_del_init(&event->child_list);
7505 	mutex_unlock(&parent->child_mutex);
7506 
7507 	put_event(parent);
7508 
7509 	perf_group_detach(event);
7510 	list_del_event(event, ctx);
7511 	free_event(event);
7512 }
7513 
7514 /*
7515  * free an unexposed, unused context as created by inheritance by
7516  * perf_event_init_task below, used by fork() in case of fail.
7517  */
7518 void perf_event_free_task(struct task_struct *task)
7519 {
7520 	struct perf_event_context *ctx;
7521 	struct perf_event *event, *tmp;
7522 	int ctxn;
7523 
7524 	for_each_task_context_nr(ctxn) {
7525 		ctx = task->perf_event_ctxp[ctxn];
7526 		if (!ctx)
7527 			continue;
7528 
7529 		mutex_lock(&ctx->mutex);
7530 again:
7531 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7532 				group_entry)
7533 			perf_free_event(event, ctx);
7534 
7535 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7536 				group_entry)
7537 			perf_free_event(event, ctx);
7538 
7539 		if (!list_empty(&ctx->pinned_groups) ||
7540 				!list_empty(&ctx->flexible_groups))
7541 			goto again;
7542 
7543 		mutex_unlock(&ctx->mutex);
7544 
7545 		put_ctx(ctx);
7546 	}
7547 }
7548 
7549 void perf_event_delayed_put(struct task_struct *task)
7550 {
7551 	int ctxn;
7552 
7553 	for_each_task_context_nr(ctxn)
7554 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7555 }
7556 
7557 /*
7558  * inherit a event from parent task to child task:
7559  */
7560 static struct perf_event *
7561 inherit_event(struct perf_event *parent_event,
7562 	      struct task_struct *parent,
7563 	      struct perf_event_context *parent_ctx,
7564 	      struct task_struct *child,
7565 	      struct perf_event *group_leader,
7566 	      struct perf_event_context *child_ctx)
7567 {
7568 	struct perf_event *child_event;
7569 	unsigned long flags;
7570 
7571 	/*
7572 	 * Instead of creating recursive hierarchies of events,
7573 	 * we link inherited events back to the original parent,
7574 	 * which has a filp for sure, which we use as the reference
7575 	 * count:
7576 	 */
7577 	if (parent_event->parent)
7578 		parent_event = parent_event->parent;
7579 
7580 	child_event = perf_event_alloc(&parent_event->attr,
7581 					   parent_event->cpu,
7582 					   child,
7583 					   group_leader, parent_event,
7584 				           NULL, NULL);
7585 	if (IS_ERR(child_event))
7586 		return child_event;
7587 
7588 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7589 		free_event(child_event);
7590 		return NULL;
7591 	}
7592 
7593 	get_ctx(child_ctx);
7594 
7595 	/*
7596 	 * Make the child state follow the state of the parent event,
7597 	 * not its attr.disabled bit.  We hold the parent's mutex,
7598 	 * so we won't race with perf_event_{en, dis}able_family.
7599 	 */
7600 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7601 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7602 	else
7603 		child_event->state = PERF_EVENT_STATE_OFF;
7604 
7605 	if (parent_event->attr.freq) {
7606 		u64 sample_period = parent_event->hw.sample_period;
7607 		struct hw_perf_event *hwc = &child_event->hw;
7608 
7609 		hwc->sample_period = sample_period;
7610 		hwc->last_period   = sample_period;
7611 
7612 		local64_set(&hwc->period_left, sample_period);
7613 	}
7614 
7615 	child_event->ctx = child_ctx;
7616 	child_event->overflow_handler = parent_event->overflow_handler;
7617 	child_event->overflow_handler_context
7618 		= parent_event->overflow_handler_context;
7619 
7620 	/*
7621 	 * Precalculate sample_data sizes
7622 	 */
7623 	perf_event__header_size(child_event);
7624 	perf_event__id_header_size(child_event);
7625 
7626 	/*
7627 	 * Link it up in the child's context:
7628 	 */
7629 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7630 	add_event_to_ctx(child_event, child_ctx);
7631 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7632 
7633 	/*
7634 	 * Link this into the parent event's child list
7635 	 */
7636 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7637 	mutex_lock(&parent_event->child_mutex);
7638 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7639 	mutex_unlock(&parent_event->child_mutex);
7640 
7641 	return child_event;
7642 }
7643 
7644 static int inherit_group(struct perf_event *parent_event,
7645 	      struct task_struct *parent,
7646 	      struct perf_event_context *parent_ctx,
7647 	      struct task_struct *child,
7648 	      struct perf_event_context *child_ctx)
7649 {
7650 	struct perf_event *leader;
7651 	struct perf_event *sub;
7652 	struct perf_event *child_ctr;
7653 
7654 	leader = inherit_event(parent_event, parent, parent_ctx,
7655 				 child, NULL, child_ctx);
7656 	if (IS_ERR(leader))
7657 		return PTR_ERR(leader);
7658 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7659 		child_ctr = inherit_event(sub, parent, parent_ctx,
7660 					    child, leader, child_ctx);
7661 		if (IS_ERR(child_ctr))
7662 			return PTR_ERR(child_ctr);
7663 	}
7664 	return 0;
7665 }
7666 
7667 static int
7668 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7669 		   struct perf_event_context *parent_ctx,
7670 		   struct task_struct *child, int ctxn,
7671 		   int *inherited_all)
7672 {
7673 	int ret;
7674 	struct perf_event_context *child_ctx;
7675 
7676 	if (!event->attr.inherit) {
7677 		*inherited_all = 0;
7678 		return 0;
7679 	}
7680 
7681 	child_ctx = child->perf_event_ctxp[ctxn];
7682 	if (!child_ctx) {
7683 		/*
7684 		 * This is executed from the parent task context, so
7685 		 * inherit events that have been marked for cloning.
7686 		 * First allocate and initialize a context for the
7687 		 * child.
7688 		 */
7689 
7690 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7691 		if (!child_ctx)
7692 			return -ENOMEM;
7693 
7694 		child->perf_event_ctxp[ctxn] = child_ctx;
7695 	}
7696 
7697 	ret = inherit_group(event, parent, parent_ctx,
7698 			    child, child_ctx);
7699 
7700 	if (ret)
7701 		*inherited_all = 0;
7702 
7703 	return ret;
7704 }
7705 
7706 /*
7707  * Initialize the perf_event context in task_struct
7708  */
7709 int perf_event_init_context(struct task_struct *child, int ctxn)
7710 {
7711 	struct perf_event_context *child_ctx, *parent_ctx;
7712 	struct perf_event_context *cloned_ctx;
7713 	struct perf_event *event;
7714 	struct task_struct *parent = current;
7715 	int inherited_all = 1;
7716 	unsigned long flags;
7717 	int ret = 0;
7718 
7719 	if (likely(!parent->perf_event_ctxp[ctxn]))
7720 		return 0;
7721 
7722 	/*
7723 	 * If the parent's context is a clone, pin it so it won't get
7724 	 * swapped under us.
7725 	 */
7726 	parent_ctx = perf_pin_task_context(parent, ctxn);
7727 
7728 	/*
7729 	 * No need to check if parent_ctx != NULL here; since we saw
7730 	 * it non-NULL earlier, the only reason for it to become NULL
7731 	 * is if we exit, and since we're currently in the middle of
7732 	 * a fork we can't be exiting at the same time.
7733 	 */
7734 
7735 	/*
7736 	 * Lock the parent list. No need to lock the child - not PID
7737 	 * hashed yet and not running, so nobody can access it.
7738 	 */
7739 	mutex_lock(&parent_ctx->mutex);
7740 
7741 	/*
7742 	 * We dont have to disable NMIs - we are only looking at
7743 	 * the list, not manipulating it:
7744 	 */
7745 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7746 		ret = inherit_task_group(event, parent, parent_ctx,
7747 					 child, ctxn, &inherited_all);
7748 		if (ret)
7749 			break;
7750 	}
7751 
7752 	/*
7753 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7754 	 * to allocations, but we need to prevent rotation because
7755 	 * rotate_ctx() will change the list from interrupt context.
7756 	 */
7757 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7758 	parent_ctx->rotate_disable = 1;
7759 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7760 
7761 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7762 		ret = inherit_task_group(event, parent, parent_ctx,
7763 					 child, ctxn, &inherited_all);
7764 		if (ret)
7765 			break;
7766 	}
7767 
7768 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7769 	parent_ctx->rotate_disable = 0;
7770 
7771 	child_ctx = child->perf_event_ctxp[ctxn];
7772 
7773 	if (child_ctx && inherited_all) {
7774 		/*
7775 		 * Mark the child context as a clone of the parent
7776 		 * context, or of whatever the parent is a clone of.
7777 		 *
7778 		 * Note that if the parent is a clone, the holding of
7779 		 * parent_ctx->lock avoids it from being uncloned.
7780 		 */
7781 		cloned_ctx = parent_ctx->parent_ctx;
7782 		if (cloned_ctx) {
7783 			child_ctx->parent_ctx = cloned_ctx;
7784 			child_ctx->parent_gen = parent_ctx->parent_gen;
7785 		} else {
7786 			child_ctx->parent_ctx = parent_ctx;
7787 			child_ctx->parent_gen = parent_ctx->generation;
7788 		}
7789 		get_ctx(child_ctx->parent_ctx);
7790 	}
7791 
7792 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7793 	mutex_unlock(&parent_ctx->mutex);
7794 
7795 	perf_unpin_context(parent_ctx);
7796 	put_ctx(parent_ctx);
7797 
7798 	return ret;
7799 }
7800 
7801 /*
7802  * Initialize the perf_event context in task_struct
7803  */
7804 int perf_event_init_task(struct task_struct *child)
7805 {
7806 	int ctxn, ret;
7807 
7808 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7809 	mutex_init(&child->perf_event_mutex);
7810 	INIT_LIST_HEAD(&child->perf_event_list);
7811 
7812 	for_each_task_context_nr(ctxn) {
7813 		ret = perf_event_init_context(child, ctxn);
7814 		if (ret)
7815 			return ret;
7816 	}
7817 
7818 	return 0;
7819 }
7820 
7821 static void __init perf_event_init_all_cpus(void)
7822 {
7823 	struct swevent_htable *swhash;
7824 	int cpu;
7825 
7826 	for_each_possible_cpu(cpu) {
7827 		swhash = &per_cpu(swevent_htable, cpu);
7828 		mutex_init(&swhash->hlist_mutex);
7829 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7830 	}
7831 }
7832 
7833 static void perf_event_init_cpu(int cpu)
7834 {
7835 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7836 
7837 	mutex_lock(&swhash->hlist_mutex);
7838 	if (swhash->hlist_refcount > 0) {
7839 		struct swevent_hlist *hlist;
7840 
7841 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7842 		WARN_ON(!hlist);
7843 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7844 	}
7845 	mutex_unlock(&swhash->hlist_mutex);
7846 }
7847 
7848 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7849 static void perf_pmu_rotate_stop(struct pmu *pmu)
7850 {
7851 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7852 
7853 	WARN_ON(!irqs_disabled());
7854 
7855 	list_del_init(&cpuctx->rotation_list);
7856 }
7857 
7858 static void __perf_event_exit_context(void *__info)
7859 {
7860 	struct perf_event_context *ctx = __info;
7861 	struct perf_event *event;
7862 
7863 	perf_pmu_rotate_stop(ctx->pmu);
7864 
7865 	rcu_read_lock();
7866 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
7867 		__perf_remove_from_context(event);
7868 	rcu_read_unlock();
7869 }
7870 
7871 static void perf_event_exit_cpu_context(int cpu)
7872 {
7873 	struct perf_event_context *ctx;
7874 	struct pmu *pmu;
7875 	int idx;
7876 
7877 	idx = srcu_read_lock(&pmus_srcu);
7878 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7879 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7880 
7881 		mutex_lock(&ctx->mutex);
7882 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7883 		mutex_unlock(&ctx->mutex);
7884 	}
7885 	srcu_read_unlock(&pmus_srcu, idx);
7886 }
7887 
7888 static void perf_event_exit_cpu(int cpu)
7889 {
7890 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7891 
7892 	perf_event_exit_cpu_context(cpu);
7893 
7894 	mutex_lock(&swhash->hlist_mutex);
7895 	swevent_hlist_release(swhash);
7896 	mutex_unlock(&swhash->hlist_mutex);
7897 }
7898 #else
7899 static inline void perf_event_exit_cpu(int cpu) { }
7900 #endif
7901 
7902 static int
7903 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7904 {
7905 	int cpu;
7906 
7907 	for_each_online_cpu(cpu)
7908 		perf_event_exit_cpu(cpu);
7909 
7910 	return NOTIFY_OK;
7911 }
7912 
7913 /*
7914  * Run the perf reboot notifier at the very last possible moment so that
7915  * the generic watchdog code runs as long as possible.
7916  */
7917 static struct notifier_block perf_reboot_notifier = {
7918 	.notifier_call = perf_reboot,
7919 	.priority = INT_MIN,
7920 };
7921 
7922 static int
7923 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7924 {
7925 	unsigned int cpu = (long)hcpu;
7926 
7927 	switch (action & ~CPU_TASKS_FROZEN) {
7928 
7929 	case CPU_UP_PREPARE:
7930 	case CPU_DOWN_FAILED:
7931 		perf_event_init_cpu(cpu);
7932 		break;
7933 
7934 	case CPU_UP_CANCELED:
7935 	case CPU_DOWN_PREPARE:
7936 		perf_event_exit_cpu(cpu);
7937 		break;
7938 	default:
7939 		break;
7940 	}
7941 
7942 	return NOTIFY_OK;
7943 }
7944 
7945 void __init perf_event_init(void)
7946 {
7947 	int ret;
7948 
7949 	idr_init(&pmu_idr);
7950 
7951 	perf_event_init_all_cpus();
7952 	init_srcu_struct(&pmus_srcu);
7953 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7954 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7955 	perf_pmu_register(&perf_task_clock, NULL, -1);
7956 	perf_tp_register();
7957 	perf_cpu_notifier(perf_cpu_notify);
7958 	register_reboot_notifier(&perf_reboot_notifier);
7959 
7960 	ret = init_hw_breakpoint();
7961 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7962 
7963 	/* do not patch jump label more than once per second */
7964 	jump_label_rate_limit(&perf_sched_events, HZ);
7965 
7966 	/*
7967 	 * Build time assertion that we keep the data_head at the intended
7968 	 * location.  IOW, validation we got the __reserved[] size right.
7969 	 */
7970 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7971 		     != 1024);
7972 }
7973 
7974 static int __init perf_event_sysfs_init(void)
7975 {
7976 	struct pmu *pmu;
7977 	int ret;
7978 
7979 	mutex_lock(&pmus_lock);
7980 
7981 	ret = bus_register(&pmu_bus);
7982 	if (ret)
7983 		goto unlock;
7984 
7985 	list_for_each_entry(pmu, &pmus, entry) {
7986 		if (!pmu->name || pmu->type < 0)
7987 			continue;
7988 
7989 		ret = pmu_dev_alloc(pmu);
7990 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7991 	}
7992 	pmu_bus_running = 1;
7993 	ret = 0;
7994 
7995 unlock:
7996 	mutex_unlock(&pmus_lock);
7997 
7998 	return ret;
7999 }
8000 device_initcall(perf_event_sysfs_init);
8001 
8002 #ifdef CONFIG_CGROUP_PERF
8003 static struct cgroup_subsys_state *
8004 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8005 {
8006 	struct perf_cgroup *jc;
8007 
8008 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8009 	if (!jc)
8010 		return ERR_PTR(-ENOMEM);
8011 
8012 	jc->info = alloc_percpu(struct perf_cgroup_info);
8013 	if (!jc->info) {
8014 		kfree(jc);
8015 		return ERR_PTR(-ENOMEM);
8016 	}
8017 
8018 	return &jc->css;
8019 }
8020 
8021 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8022 {
8023 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8024 
8025 	free_percpu(jc->info);
8026 	kfree(jc);
8027 }
8028 
8029 static int __perf_cgroup_move(void *info)
8030 {
8031 	struct task_struct *task = info;
8032 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8033 	return 0;
8034 }
8035 
8036 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8037 			       struct cgroup_taskset *tset)
8038 {
8039 	struct task_struct *task;
8040 
8041 	cgroup_taskset_for_each(task, tset)
8042 		task_function_call(task, __perf_cgroup_move, task);
8043 }
8044 
8045 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8046 			     struct cgroup_subsys_state *old_css,
8047 			     struct task_struct *task)
8048 {
8049 	/*
8050 	 * cgroup_exit() is called in the copy_process() failure path.
8051 	 * Ignore this case since the task hasn't ran yet, this avoids
8052 	 * trying to poke a half freed task state from generic code.
8053 	 */
8054 	if (!(task->flags & PF_EXITING))
8055 		return;
8056 
8057 	task_function_call(task, __perf_cgroup_move, task);
8058 }
8059 
8060 struct cgroup_subsys perf_event_cgrp_subsys = {
8061 	.css_alloc	= perf_cgroup_css_alloc,
8062 	.css_free	= perf_cgroup_css_free,
8063 	.exit		= perf_cgroup_exit,
8064 	.attach		= perf_cgroup_attach,
8065 };
8066 #endif /* CONFIG_CGROUP_PERF */
8067