xref: /openbmc/linux/kernel/events/core.c (revision 6a613ac6)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 static void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current, event->ctx);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task, ctx);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 
493 	list_for_each_entry_rcu(pmu, &pmus, entry) {
494 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 		if (cpuctx->unique_pmu != pmu)
496 			continue; /* ensure we process each cpuctx once */
497 
498 		/*
499 		 * perf_cgroup_events says at least one
500 		 * context on this CPU has cgroup events.
501 		 *
502 		 * ctx->nr_cgroups reports the number of cgroup
503 		 * events for a context.
504 		 */
505 		if (cpuctx->ctx.nr_cgroups > 0) {
506 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 			perf_pmu_disable(cpuctx->ctx.pmu);
508 
509 			if (mode & PERF_CGROUP_SWOUT) {
510 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 				/*
512 				 * must not be done before ctxswout due
513 				 * to event_filter_match() in event_sched_out()
514 				 */
515 				cpuctx->cgrp = NULL;
516 			}
517 
518 			if (mode & PERF_CGROUP_SWIN) {
519 				WARN_ON_ONCE(cpuctx->cgrp);
520 				/*
521 				 * set cgrp before ctxsw in to allow
522 				 * event_filter_match() to not have to pass
523 				 * task around
524 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
525 				 * because cgorup events are only per-cpu
526 				 */
527 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
528 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
529 			}
530 			perf_pmu_enable(cpuctx->ctx.pmu);
531 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
532 		}
533 	}
534 
535 	local_irq_restore(flags);
536 }
537 
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 					 struct task_struct *next)
540 {
541 	struct perf_cgroup *cgrp1;
542 	struct perf_cgroup *cgrp2 = NULL;
543 
544 	rcu_read_lock();
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 * we do not need to pass the ctx here because we know
548 	 * we are holding the rcu lock
549 	 */
550 	cgrp1 = perf_cgroup_from_task(task, NULL);
551 
552 	/*
553 	 * next is NULL when called from perf_event_enable_on_exec()
554 	 * that will systematically cause a cgroup_switch()
555 	 */
556 	if (next)
557 		cgrp2 = perf_cgroup_from_task(next, NULL);
558 
559 	/*
560 	 * only schedule out current cgroup events if we know
561 	 * that we are switching to a different cgroup. Otherwise,
562 	 * do no touch the cgroup events.
563 	 */
564 	if (cgrp1 != cgrp2)
565 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566 
567 	rcu_read_unlock();
568 }
569 
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 					struct task_struct *task)
572 {
573 	struct perf_cgroup *cgrp1;
574 	struct perf_cgroup *cgrp2 = NULL;
575 
576 	rcu_read_lock();
577 	/*
578 	 * we come here when we know perf_cgroup_events > 0
579 	 * we do not need to pass the ctx here because we know
580 	 * we are holding the rcu lock
581 	 */
582 	cgrp1 = perf_cgroup_from_task(task, NULL);
583 
584 	/* prev can never be NULL */
585 	cgrp2 = perf_cgroup_from_task(prev, NULL);
586 
587 	/*
588 	 * only need to schedule in cgroup events if we are changing
589 	 * cgroup during ctxsw. Cgroup events were not scheduled
590 	 * out of ctxsw out if that was not the case.
591 	 */
592 	if (cgrp1 != cgrp2)
593 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594 
595 	rcu_read_unlock();
596 }
597 
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 				      struct perf_event_attr *attr,
600 				      struct perf_event *group_leader)
601 {
602 	struct perf_cgroup *cgrp;
603 	struct cgroup_subsys_state *css;
604 	struct fd f = fdget(fd);
605 	int ret = 0;
606 
607 	if (!f.file)
608 		return -EBADF;
609 
610 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
611 					 &perf_event_cgrp_subsys);
612 	if (IS_ERR(css)) {
613 		ret = PTR_ERR(css);
614 		goto out;
615 	}
616 
617 	cgrp = container_of(css, struct perf_cgroup, css);
618 	event->cgrp = cgrp;
619 
620 	/*
621 	 * all events in a group must monitor
622 	 * the same cgroup because a task belongs
623 	 * to only one perf cgroup at a time
624 	 */
625 	if (group_leader && group_leader->cgrp != cgrp) {
626 		perf_detach_cgroup(event);
627 		ret = -EINVAL;
628 	}
629 out:
630 	fdput(f);
631 	return ret;
632 }
633 
634 static inline void
635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636 {
637 	struct perf_cgroup_info *t;
638 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 	event->shadow_ctx_time = now - t->timestamp;
640 }
641 
642 static inline void
643 perf_cgroup_defer_enabled(struct perf_event *event)
644 {
645 	/*
646 	 * when the current task's perf cgroup does not match
647 	 * the event's, we need to remember to call the
648 	 * perf_mark_enable() function the first time a task with
649 	 * a matching perf cgroup is scheduled in.
650 	 */
651 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 		event->cgrp_defer_enabled = 1;
653 }
654 
655 static inline void
656 perf_cgroup_mark_enabled(struct perf_event *event,
657 			 struct perf_event_context *ctx)
658 {
659 	struct perf_event *sub;
660 	u64 tstamp = perf_event_time(event);
661 
662 	if (!event->cgrp_defer_enabled)
663 		return;
664 
665 	event->cgrp_defer_enabled = 0;
666 
667 	event->tstamp_enabled = tstamp - event->total_time_enabled;
668 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 			sub->cgrp_defer_enabled = 0;
672 		}
673 	}
674 }
675 #else /* !CONFIG_CGROUP_PERF */
676 
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 	return true;
681 }
682 
683 static inline void perf_detach_cgroup(struct perf_event *event)
684 {}
685 
686 static inline int is_cgroup_event(struct perf_event *event)
687 {
688 	return 0;
689 }
690 
691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692 {
693 	return 0;
694 }
695 
696 static inline void update_cgrp_time_from_event(struct perf_event *event)
697 {
698 }
699 
700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701 {
702 }
703 
704 static inline void perf_cgroup_sched_out(struct task_struct *task,
705 					 struct task_struct *next)
706 {
707 }
708 
709 static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 					struct task_struct *task)
711 {
712 }
713 
714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 				      struct perf_event_attr *attr,
716 				      struct perf_event *group_leader)
717 {
718 	return -EINVAL;
719 }
720 
721 static inline void
722 perf_cgroup_set_timestamp(struct task_struct *task,
723 			  struct perf_event_context *ctx)
724 {
725 }
726 
727 void
728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729 {
730 }
731 
732 static inline void
733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734 {
735 }
736 
737 static inline u64 perf_cgroup_event_time(struct perf_event *event)
738 {
739 	return 0;
740 }
741 
742 static inline void
743 perf_cgroup_defer_enabled(struct perf_event *event)
744 {
745 }
746 
747 static inline void
748 perf_cgroup_mark_enabled(struct perf_event *event,
749 			 struct perf_event_context *ctx)
750 {
751 }
752 #endif
753 
754 /*
755  * set default to be dependent on timer tick just
756  * like original code
757  */
758 #define PERF_CPU_HRTIMER (1000 / HZ)
759 /*
760  * function must be called with interrupts disbled
761  */
762 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 {
764 	struct perf_cpu_context *cpuctx;
765 	int rotations = 0;
766 
767 	WARN_ON(!irqs_disabled());
768 
769 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770 	rotations = perf_rotate_context(cpuctx);
771 
772 	raw_spin_lock(&cpuctx->hrtimer_lock);
773 	if (rotations)
774 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
775 	else
776 		cpuctx->hrtimer_active = 0;
777 	raw_spin_unlock(&cpuctx->hrtimer_lock);
778 
779 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 }
781 
782 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783 {
784 	struct hrtimer *timer = &cpuctx->hrtimer;
785 	struct pmu *pmu = cpuctx->ctx.pmu;
786 	u64 interval;
787 
788 	/* no multiplexing needed for SW PMU */
789 	if (pmu->task_ctx_nr == perf_sw_context)
790 		return;
791 
792 	/*
793 	 * check default is sane, if not set then force to
794 	 * default interval (1/tick)
795 	 */
796 	interval = pmu->hrtimer_interval_ms;
797 	if (interval < 1)
798 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799 
800 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801 
802 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
803 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804 	timer->function = perf_mux_hrtimer_handler;
805 }
806 
807 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808 {
809 	struct hrtimer *timer = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	unsigned long flags;
812 
813 	/* not for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return 0;
816 
817 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
818 	if (!cpuctx->hrtimer_active) {
819 		cpuctx->hrtimer_active = 1;
820 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
821 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
822 	}
823 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824 
825 	return 0;
826 }
827 
828 void perf_pmu_disable(struct pmu *pmu)
829 {
830 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
831 	if (!(*count)++)
832 		pmu->pmu_disable(pmu);
833 }
834 
835 void perf_pmu_enable(struct pmu *pmu)
836 {
837 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 	if (!--(*count))
839 		pmu->pmu_enable(pmu);
840 }
841 
842 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843 
844 /*
845  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
846  * perf_event_task_tick() are fully serialized because they're strictly cpu
847  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
848  * disabled, while perf_event_task_tick is called from IRQ context.
849  */
850 static void perf_event_ctx_activate(struct perf_event_context *ctx)
851 {
852 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
853 
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(!list_empty(&ctx->active_ctx_list));
857 
858 	list_add(&ctx->active_ctx_list, head);
859 }
860 
861 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!irqs_disabled());
864 
865 	WARN_ON(list_empty(&ctx->active_ctx_list));
866 
867 	list_del_init(&ctx->active_ctx_list);
868 }
869 
870 static void get_ctx(struct perf_event_context *ctx)
871 {
872 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 }
874 
875 static void free_ctx(struct rcu_head *head)
876 {
877 	struct perf_event_context *ctx;
878 
879 	ctx = container_of(head, struct perf_event_context, rcu_head);
880 	kfree(ctx->task_ctx_data);
881 	kfree(ctx);
882 }
883 
884 static void put_ctx(struct perf_event_context *ctx)
885 {
886 	if (atomic_dec_and_test(&ctx->refcount)) {
887 		if (ctx->parent_ctx)
888 			put_ctx(ctx->parent_ctx);
889 		if (ctx->task)
890 			put_task_struct(ctx->task);
891 		call_rcu(&ctx->rcu_head, free_ctx);
892 	}
893 }
894 
895 /*
896  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
897  * perf_pmu_migrate_context() we need some magic.
898  *
899  * Those places that change perf_event::ctx will hold both
900  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
901  *
902  * Lock ordering is by mutex address. There are two other sites where
903  * perf_event_context::mutex nests and those are:
904  *
905  *  - perf_event_exit_task_context()	[ child , 0 ]
906  *      __perf_event_exit_task()
907  *        sync_child_event()
908  *          put_event()			[ parent, 1 ]
909  *
910  *  - perf_event_init_context()		[ parent, 0 ]
911  *      inherit_task_group()
912  *        inherit_group()
913  *          inherit_event()
914  *            perf_event_alloc()
915  *              perf_init_event()
916  *                perf_try_init_event()	[ child , 1 ]
917  *
918  * While it appears there is an obvious deadlock here -- the parent and child
919  * nesting levels are inverted between the two. This is in fact safe because
920  * life-time rules separate them. That is an exiting task cannot fork, and a
921  * spawning task cannot (yet) exit.
922  *
923  * But remember that that these are parent<->child context relations, and
924  * migration does not affect children, therefore these two orderings should not
925  * interact.
926  *
927  * The change in perf_event::ctx does not affect children (as claimed above)
928  * because the sys_perf_event_open() case will install a new event and break
929  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
930  * concerned with cpuctx and that doesn't have children.
931  *
932  * The places that change perf_event::ctx will issue:
933  *
934  *   perf_remove_from_context();
935  *   synchronize_rcu();
936  *   perf_install_in_context();
937  *
938  * to affect the change. The remove_from_context() + synchronize_rcu() should
939  * quiesce the event, after which we can install it in the new location. This
940  * means that only external vectors (perf_fops, prctl) can perturb the event
941  * while in transit. Therefore all such accessors should also acquire
942  * perf_event_context::mutex to serialize against this.
943  *
944  * However; because event->ctx can change while we're waiting to acquire
945  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
946  * function.
947  *
948  * Lock order:
949  *	task_struct::perf_event_mutex
950  *	  perf_event_context::mutex
951  *	    perf_event_context::lock
952  *	    perf_event::child_mutex;
953  *	    perf_event::mmap_mutex
954  *	    mmap_sem
955  */
956 static struct perf_event_context *
957 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
958 {
959 	struct perf_event_context *ctx;
960 
961 again:
962 	rcu_read_lock();
963 	ctx = ACCESS_ONCE(event->ctx);
964 	if (!atomic_inc_not_zero(&ctx->refcount)) {
965 		rcu_read_unlock();
966 		goto again;
967 	}
968 	rcu_read_unlock();
969 
970 	mutex_lock_nested(&ctx->mutex, nesting);
971 	if (event->ctx != ctx) {
972 		mutex_unlock(&ctx->mutex);
973 		put_ctx(ctx);
974 		goto again;
975 	}
976 
977 	return ctx;
978 }
979 
980 static inline struct perf_event_context *
981 perf_event_ctx_lock(struct perf_event *event)
982 {
983 	return perf_event_ctx_lock_nested(event, 0);
984 }
985 
986 static void perf_event_ctx_unlock(struct perf_event *event,
987 				  struct perf_event_context *ctx)
988 {
989 	mutex_unlock(&ctx->mutex);
990 	put_ctx(ctx);
991 }
992 
993 /*
994  * This must be done under the ctx->lock, such as to serialize against
995  * context_equiv(), therefore we cannot call put_ctx() since that might end up
996  * calling scheduler related locks and ctx->lock nests inside those.
997  */
998 static __must_check struct perf_event_context *
999 unclone_ctx(struct perf_event_context *ctx)
1000 {
1001 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1002 
1003 	lockdep_assert_held(&ctx->lock);
1004 
1005 	if (parent_ctx)
1006 		ctx->parent_ctx = NULL;
1007 	ctx->generation++;
1008 
1009 	return parent_ctx;
1010 }
1011 
1012 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1013 {
1014 	/*
1015 	 * only top level events have the pid namespace they were created in
1016 	 */
1017 	if (event->parent)
1018 		event = event->parent;
1019 
1020 	return task_tgid_nr_ns(p, event->ns);
1021 }
1022 
1023 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1024 {
1025 	/*
1026 	 * only top level events have the pid namespace they were created in
1027 	 */
1028 	if (event->parent)
1029 		event = event->parent;
1030 
1031 	return task_pid_nr_ns(p, event->ns);
1032 }
1033 
1034 /*
1035  * If we inherit events we want to return the parent event id
1036  * to userspace.
1037  */
1038 static u64 primary_event_id(struct perf_event *event)
1039 {
1040 	u64 id = event->id;
1041 
1042 	if (event->parent)
1043 		id = event->parent->id;
1044 
1045 	return id;
1046 }
1047 
1048 /*
1049  * Get the perf_event_context for a task and lock it.
1050  * This has to cope with with the fact that until it is locked,
1051  * the context could get moved to another task.
1052  */
1053 static struct perf_event_context *
1054 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055 {
1056 	struct perf_event_context *ctx;
1057 
1058 retry:
1059 	/*
1060 	 * One of the few rules of preemptible RCU is that one cannot do
1061 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062 	 * part of the read side critical section was irqs-enabled -- see
1063 	 * rcu_read_unlock_special().
1064 	 *
1065 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066 	 * side critical section has interrupts disabled.
1067 	 */
1068 	local_irq_save(*flags);
1069 	rcu_read_lock();
1070 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 	if (ctx) {
1072 		/*
1073 		 * If this context is a clone of another, it might
1074 		 * get swapped for another underneath us by
1075 		 * perf_event_task_sched_out, though the
1076 		 * rcu_read_lock() protects us from any context
1077 		 * getting freed.  Lock the context and check if it
1078 		 * got swapped before we could get the lock, and retry
1079 		 * if so.  If we locked the right context, then it
1080 		 * can't get swapped on us any more.
1081 		 */
1082 		raw_spin_lock(&ctx->lock);
1083 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084 			raw_spin_unlock(&ctx->lock);
1085 			rcu_read_unlock();
1086 			local_irq_restore(*flags);
1087 			goto retry;
1088 		}
1089 
1090 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1091 			raw_spin_unlock(&ctx->lock);
1092 			ctx = NULL;
1093 		}
1094 	}
1095 	rcu_read_unlock();
1096 	if (!ctx)
1097 		local_irq_restore(*flags);
1098 	return ctx;
1099 }
1100 
1101 /*
1102  * Get the context for a task and increment its pin_count so it
1103  * can't get swapped to another task.  This also increments its
1104  * reference count so that the context can't get freed.
1105  */
1106 static struct perf_event_context *
1107 perf_pin_task_context(struct task_struct *task, int ctxn)
1108 {
1109 	struct perf_event_context *ctx;
1110 	unsigned long flags;
1111 
1112 	ctx = perf_lock_task_context(task, ctxn, &flags);
1113 	if (ctx) {
1114 		++ctx->pin_count;
1115 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 	}
1117 	return ctx;
1118 }
1119 
1120 static void perf_unpin_context(struct perf_event_context *ctx)
1121 {
1122 	unsigned long flags;
1123 
1124 	raw_spin_lock_irqsave(&ctx->lock, flags);
1125 	--ctx->pin_count;
1126 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 }
1128 
1129 /*
1130  * Update the record of the current time in a context.
1131  */
1132 static void update_context_time(struct perf_event_context *ctx)
1133 {
1134 	u64 now = perf_clock();
1135 
1136 	ctx->time += now - ctx->timestamp;
1137 	ctx->timestamp = now;
1138 }
1139 
1140 static u64 perf_event_time(struct perf_event *event)
1141 {
1142 	struct perf_event_context *ctx = event->ctx;
1143 
1144 	if (is_cgroup_event(event))
1145 		return perf_cgroup_event_time(event);
1146 
1147 	return ctx ? ctx->time : 0;
1148 }
1149 
1150 /*
1151  * Update the total_time_enabled and total_time_running fields for a event.
1152  * The caller of this function needs to hold the ctx->lock.
1153  */
1154 static void update_event_times(struct perf_event *event)
1155 {
1156 	struct perf_event_context *ctx = event->ctx;
1157 	u64 run_end;
1158 
1159 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1160 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1161 		return;
1162 	/*
1163 	 * in cgroup mode, time_enabled represents
1164 	 * the time the event was enabled AND active
1165 	 * tasks were in the monitored cgroup. This is
1166 	 * independent of the activity of the context as
1167 	 * there may be a mix of cgroup and non-cgroup events.
1168 	 *
1169 	 * That is why we treat cgroup events differently
1170 	 * here.
1171 	 */
1172 	if (is_cgroup_event(event))
1173 		run_end = perf_cgroup_event_time(event);
1174 	else if (ctx->is_active)
1175 		run_end = ctx->time;
1176 	else
1177 		run_end = event->tstamp_stopped;
1178 
1179 	event->total_time_enabled = run_end - event->tstamp_enabled;
1180 
1181 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1182 		run_end = event->tstamp_stopped;
1183 	else
1184 		run_end = perf_event_time(event);
1185 
1186 	event->total_time_running = run_end - event->tstamp_running;
1187 
1188 }
1189 
1190 /*
1191  * Update total_time_enabled and total_time_running for all events in a group.
1192  */
1193 static void update_group_times(struct perf_event *leader)
1194 {
1195 	struct perf_event *event;
1196 
1197 	update_event_times(leader);
1198 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1199 		update_event_times(event);
1200 }
1201 
1202 static struct list_head *
1203 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1204 {
1205 	if (event->attr.pinned)
1206 		return &ctx->pinned_groups;
1207 	else
1208 		return &ctx->flexible_groups;
1209 }
1210 
1211 /*
1212  * Add a event from the lists for its context.
1213  * Must be called with ctx->mutex and ctx->lock held.
1214  */
1215 static void
1216 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1219 	event->attach_state |= PERF_ATTACH_CONTEXT;
1220 
1221 	/*
1222 	 * If we're a stand alone event or group leader, we go to the context
1223 	 * list, group events are kept attached to the group so that
1224 	 * perf_group_detach can, at all times, locate all siblings.
1225 	 */
1226 	if (event->group_leader == event) {
1227 		struct list_head *list;
1228 
1229 		if (is_software_event(event))
1230 			event->group_flags |= PERF_GROUP_SOFTWARE;
1231 
1232 		list = ctx_group_list(event, ctx);
1233 		list_add_tail(&event->group_entry, list);
1234 	}
1235 
1236 	if (is_cgroup_event(event))
1237 		ctx->nr_cgroups++;
1238 
1239 	list_add_rcu(&event->event_entry, &ctx->event_list);
1240 	ctx->nr_events++;
1241 	if (event->attr.inherit_stat)
1242 		ctx->nr_stat++;
1243 
1244 	ctx->generation++;
1245 }
1246 
1247 /*
1248  * Initialize event state based on the perf_event_attr::disabled.
1249  */
1250 static inline void perf_event__state_init(struct perf_event *event)
1251 {
1252 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1253 					      PERF_EVENT_STATE_INACTIVE;
1254 }
1255 
1256 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 {
1258 	int entry = sizeof(u64); /* value */
1259 	int size = 0;
1260 	int nr = 1;
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 		size += sizeof(u64);
1264 
1265 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 		size += sizeof(u64);
1267 
1268 	if (event->attr.read_format & PERF_FORMAT_ID)
1269 		entry += sizeof(u64);
1270 
1271 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1272 		nr += nr_siblings;
1273 		size += sizeof(u64);
1274 	}
1275 
1276 	size += entry * nr;
1277 	event->read_size = size;
1278 }
1279 
1280 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 {
1282 	struct perf_sample_data *data;
1283 	u16 size = 0;
1284 
1285 	if (sample_type & PERF_SAMPLE_IP)
1286 		size += sizeof(data->ip);
1287 
1288 	if (sample_type & PERF_SAMPLE_ADDR)
1289 		size += sizeof(data->addr);
1290 
1291 	if (sample_type & PERF_SAMPLE_PERIOD)
1292 		size += sizeof(data->period);
1293 
1294 	if (sample_type & PERF_SAMPLE_WEIGHT)
1295 		size += sizeof(data->weight);
1296 
1297 	if (sample_type & PERF_SAMPLE_READ)
1298 		size += event->read_size;
1299 
1300 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 		size += sizeof(data->data_src.val);
1302 
1303 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 		size += sizeof(data->txn);
1305 
1306 	event->header_size = size;
1307 }
1308 
1309 /*
1310  * Called at perf_event creation and when events are attached/detached from a
1311  * group.
1312  */
1313 static void perf_event__header_size(struct perf_event *event)
1314 {
1315 	__perf_event_read_size(event,
1316 			       event->group_leader->nr_siblings);
1317 	__perf_event_header_size(event, event->attr.sample_type);
1318 }
1319 
1320 static void perf_event__id_header_size(struct perf_event *event)
1321 {
1322 	struct perf_sample_data *data;
1323 	u64 sample_type = event->attr.sample_type;
1324 	u16 size = 0;
1325 
1326 	if (sample_type & PERF_SAMPLE_TID)
1327 		size += sizeof(data->tid_entry);
1328 
1329 	if (sample_type & PERF_SAMPLE_TIME)
1330 		size += sizeof(data->time);
1331 
1332 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1333 		size += sizeof(data->id);
1334 
1335 	if (sample_type & PERF_SAMPLE_ID)
1336 		size += sizeof(data->id);
1337 
1338 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1339 		size += sizeof(data->stream_id);
1340 
1341 	if (sample_type & PERF_SAMPLE_CPU)
1342 		size += sizeof(data->cpu_entry);
1343 
1344 	event->id_header_size = size;
1345 }
1346 
1347 static bool perf_event_validate_size(struct perf_event *event)
1348 {
1349 	/*
1350 	 * The values computed here will be over-written when we actually
1351 	 * attach the event.
1352 	 */
1353 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1354 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1355 	perf_event__id_header_size(event);
1356 
1357 	/*
1358 	 * Sum the lot; should not exceed the 64k limit we have on records.
1359 	 * Conservative limit to allow for callchains and other variable fields.
1360 	 */
1361 	if (event->read_size + event->header_size +
1362 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1363 		return false;
1364 
1365 	return true;
1366 }
1367 
1368 static void perf_group_attach(struct perf_event *event)
1369 {
1370 	struct perf_event *group_leader = event->group_leader, *pos;
1371 
1372 	/*
1373 	 * We can have double attach due to group movement in perf_event_open.
1374 	 */
1375 	if (event->attach_state & PERF_ATTACH_GROUP)
1376 		return;
1377 
1378 	event->attach_state |= PERF_ATTACH_GROUP;
1379 
1380 	if (group_leader == event)
1381 		return;
1382 
1383 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1384 
1385 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1386 			!is_software_event(event))
1387 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1388 
1389 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1390 	group_leader->nr_siblings++;
1391 
1392 	perf_event__header_size(group_leader);
1393 
1394 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1395 		perf_event__header_size(pos);
1396 }
1397 
1398 /*
1399  * Remove a event from the lists for its context.
1400  * Must be called with ctx->mutex and ctx->lock held.
1401  */
1402 static void
1403 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404 {
1405 	struct perf_cpu_context *cpuctx;
1406 
1407 	WARN_ON_ONCE(event->ctx != ctx);
1408 	lockdep_assert_held(&ctx->lock);
1409 
1410 	/*
1411 	 * We can have double detach due to exit/hot-unplug + close.
1412 	 */
1413 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414 		return;
1415 
1416 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1417 
1418 	if (is_cgroup_event(event)) {
1419 		ctx->nr_cgroups--;
1420 		cpuctx = __get_cpu_context(ctx);
1421 		/*
1422 		 * if there are no more cgroup events
1423 		 * then cler cgrp to avoid stale pointer
1424 		 * in update_cgrp_time_from_cpuctx()
1425 		 */
1426 		if (!ctx->nr_cgroups)
1427 			cpuctx->cgrp = NULL;
1428 	}
1429 
1430 	ctx->nr_events--;
1431 	if (event->attr.inherit_stat)
1432 		ctx->nr_stat--;
1433 
1434 	list_del_rcu(&event->event_entry);
1435 
1436 	if (event->group_leader == event)
1437 		list_del_init(&event->group_entry);
1438 
1439 	update_group_times(event);
1440 
1441 	/*
1442 	 * If event was in error state, then keep it
1443 	 * that way, otherwise bogus counts will be
1444 	 * returned on read(). The only way to get out
1445 	 * of error state is by explicit re-enabling
1446 	 * of the event
1447 	 */
1448 	if (event->state > PERF_EVENT_STATE_OFF)
1449 		event->state = PERF_EVENT_STATE_OFF;
1450 
1451 	ctx->generation++;
1452 }
1453 
1454 static void perf_group_detach(struct perf_event *event)
1455 {
1456 	struct perf_event *sibling, *tmp;
1457 	struct list_head *list = NULL;
1458 
1459 	/*
1460 	 * We can have double detach due to exit/hot-unplug + close.
1461 	 */
1462 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1463 		return;
1464 
1465 	event->attach_state &= ~PERF_ATTACH_GROUP;
1466 
1467 	/*
1468 	 * If this is a sibling, remove it from its group.
1469 	 */
1470 	if (event->group_leader != event) {
1471 		list_del_init(&event->group_entry);
1472 		event->group_leader->nr_siblings--;
1473 		goto out;
1474 	}
1475 
1476 	if (!list_empty(&event->group_entry))
1477 		list = &event->group_entry;
1478 
1479 	/*
1480 	 * If this was a group event with sibling events then
1481 	 * upgrade the siblings to singleton events by adding them
1482 	 * to whatever list we are on.
1483 	 */
1484 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 		if (list)
1486 			list_move_tail(&sibling->group_entry, list);
1487 		sibling->group_leader = sibling;
1488 
1489 		/* Inherit group flags from the previous leader */
1490 		sibling->group_flags = event->group_flags;
1491 
1492 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1493 	}
1494 
1495 out:
1496 	perf_event__header_size(event->group_leader);
1497 
1498 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1499 		perf_event__header_size(tmp);
1500 }
1501 
1502 /*
1503  * User event without the task.
1504  */
1505 static bool is_orphaned_event(struct perf_event *event)
1506 {
1507 	return event && !is_kernel_event(event) && !event->owner;
1508 }
1509 
1510 /*
1511  * Event has a parent but parent's task finished and it's
1512  * alive only because of children holding refference.
1513  */
1514 static bool is_orphaned_child(struct perf_event *event)
1515 {
1516 	return is_orphaned_event(event->parent);
1517 }
1518 
1519 static void orphans_remove_work(struct work_struct *work);
1520 
1521 static void schedule_orphans_remove(struct perf_event_context *ctx)
1522 {
1523 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1524 		return;
1525 
1526 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1527 		get_ctx(ctx);
1528 		ctx->orphans_remove_sched = true;
1529 	}
1530 }
1531 
1532 static int __init perf_workqueue_init(void)
1533 {
1534 	perf_wq = create_singlethread_workqueue("perf");
1535 	WARN(!perf_wq, "failed to create perf workqueue\n");
1536 	return perf_wq ? 0 : -1;
1537 }
1538 
1539 core_initcall(perf_workqueue_init);
1540 
1541 static inline int pmu_filter_match(struct perf_event *event)
1542 {
1543 	struct pmu *pmu = event->pmu;
1544 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1545 }
1546 
1547 static inline int
1548 event_filter_match(struct perf_event *event)
1549 {
1550 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1551 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1552 }
1553 
1554 static void
1555 event_sched_out(struct perf_event *event,
1556 		  struct perf_cpu_context *cpuctx,
1557 		  struct perf_event_context *ctx)
1558 {
1559 	u64 tstamp = perf_event_time(event);
1560 	u64 delta;
1561 
1562 	WARN_ON_ONCE(event->ctx != ctx);
1563 	lockdep_assert_held(&ctx->lock);
1564 
1565 	/*
1566 	 * An event which could not be activated because of
1567 	 * filter mismatch still needs to have its timings
1568 	 * maintained, otherwise bogus information is return
1569 	 * via read() for time_enabled, time_running:
1570 	 */
1571 	if (event->state == PERF_EVENT_STATE_INACTIVE
1572 	    && !event_filter_match(event)) {
1573 		delta = tstamp - event->tstamp_stopped;
1574 		event->tstamp_running += delta;
1575 		event->tstamp_stopped = tstamp;
1576 	}
1577 
1578 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1579 		return;
1580 
1581 	perf_pmu_disable(event->pmu);
1582 
1583 	event->state = PERF_EVENT_STATE_INACTIVE;
1584 	if (event->pending_disable) {
1585 		event->pending_disable = 0;
1586 		event->state = PERF_EVENT_STATE_OFF;
1587 	}
1588 	event->tstamp_stopped = tstamp;
1589 	event->pmu->del(event, 0);
1590 	event->oncpu = -1;
1591 
1592 	if (!is_software_event(event))
1593 		cpuctx->active_oncpu--;
1594 	if (!--ctx->nr_active)
1595 		perf_event_ctx_deactivate(ctx);
1596 	if (event->attr.freq && event->attr.sample_freq)
1597 		ctx->nr_freq--;
1598 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1599 		cpuctx->exclusive = 0;
1600 
1601 	if (is_orphaned_child(event))
1602 		schedule_orphans_remove(ctx);
1603 
1604 	perf_pmu_enable(event->pmu);
1605 }
1606 
1607 static void
1608 group_sched_out(struct perf_event *group_event,
1609 		struct perf_cpu_context *cpuctx,
1610 		struct perf_event_context *ctx)
1611 {
1612 	struct perf_event *event;
1613 	int state = group_event->state;
1614 
1615 	event_sched_out(group_event, cpuctx, ctx);
1616 
1617 	/*
1618 	 * Schedule out siblings (if any):
1619 	 */
1620 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1621 		event_sched_out(event, cpuctx, ctx);
1622 
1623 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 		cpuctx->exclusive = 0;
1625 }
1626 
1627 struct remove_event {
1628 	struct perf_event *event;
1629 	bool detach_group;
1630 };
1631 
1632 /*
1633  * Cross CPU call to remove a performance event
1634  *
1635  * We disable the event on the hardware level first. After that we
1636  * remove it from the context list.
1637  */
1638 static int __perf_remove_from_context(void *info)
1639 {
1640 	struct remove_event *re = info;
1641 	struct perf_event *event = re->event;
1642 	struct perf_event_context *ctx = event->ctx;
1643 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1644 
1645 	raw_spin_lock(&ctx->lock);
1646 	event_sched_out(event, cpuctx, ctx);
1647 	if (re->detach_group)
1648 		perf_group_detach(event);
1649 	list_del_event(event, ctx);
1650 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1651 		ctx->is_active = 0;
1652 		cpuctx->task_ctx = NULL;
1653 	}
1654 	raw_spin_unlock(&ctx->lock);
1655 
1656 	return 0;
1657 }
1658 
1659 
1660 /*
1661  * Remove the event from a task's (or a CPU's) list of events.
1662  *
1663  * CPU events are removed with a smp call. For task events we only
1664  * call when the task is on a CPU.
1665  *
1666  * If event->ctx is a cloned context, callers must make sure that
1667  * every task struct that event->ctx->task could possibly point to
1668  * remains valid.  This is OK when called from perf_release since
1669  * that only calls us on the top-level context, which can't be a clone.
1670  * When called from perf_event_exit_task, it's OK because the
1671  * context has been detached from its task.
1672  */
1673 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1674 {
1675 	struct perf_event_context *ctx = event->ctx;
1676 	struct task_struct *task = ctx->task;
1677 	struct remove_event re = {
1678 		.event = event,
1679 		.detach_group = detach_group,
1680 	};
1681 
1682 	lockdep_assert_held(&ctx->mutex);
1683 
1684 	if (!task) {
1685 		/*
1686 		 * Per cpu events are removed via an smp call. The removal can
1687 		 * fail if the CPU is currently offline, but in that case we
1688 		 * already called __perf_remove_from_context from
1689 		 * perf_event_exit_cpu.
1690 		 */
1691 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1692 		return;
1693 	}
1694 
1695 retry:
1696 	if (!task_function_call(task, __perf_remove_from_context, &re))
1697 		return;
1698 
1699 	raw_spin_lock_irq(&ctx->lock);
1700 	/*
1701 	 * If we failed to find a running task, but find the context active now
1702 	 * that we've acquired the ctx->lock, retry.
1703 	 */
1704 	if (ctx->is_active) {
1705 		raw_spin_unlock_irq(&ctx->lock);
1706 		/*
1707 		 * Reload the task pointer, it might have been changed by
1708 		 * a concurrent perf_event_context_sched_out().
1709 		 */
1710 		task = ctx->task;
1711 		goto retry;
1712 	}
1713 
1714 	/*
1715 	 * Since the task isn't running, its safe to remove the event, us
1716 	 * holding the ctx->lock ensures the task won't get scheduled in.
1717 	 */
1718 	if (detach_group)
1719 		perf_group_detach(event);
1720 	list_del_event(event, ctx);
1721 	raw_spin_unlock_irq(&ctx->lock);
1722 }
1723 
1724 /*
1725  * Cross CPU call to disable a performance event
1726  */
1727 int __perf_event_disable(void *info)
1728 {
1729 	struct perf_event *event = info;
1730 	struct perf_event_context *ctx = event->ctx;
1731 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732 
1733 	/*
1734 	 * If this is a per-task event, need to check whether this
1735 	 * event's task is the current task on this cpu.
1736 	 *
1737 	 * Can trigger due to concurrent perf_event_context_sched_out()
1738 	 * flipping contexts around.
1739 	 */
1740 	if (ctx->task && cpuctx->task_ctx != ctx)
1741 		return -EINVAL;
1742 
1743 	raw_spin_lock(&ctx->lock);
1744 
1745 	/*
1746 	 * If the event is on, turn it off.
1747 	 * If it is in error state, leave it in error state.
1748 	 */
1749 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750 		update_context_time(ctx);
1751 		update_cgrp_time_from_event(event);
1752 		update_group_times(event);
1753 		if (event == event->group_leader)
1754 			group_sched_out(event, cpuctx, ctx);
1755 		else
1756 			event_sched_out(event, cpuctx, ctx);
1757 		event->state = PERF_EVENT_STATE_OFF;
1758 	}
1759 
1760 	raw_spin_unlock(&ctx->lock);
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Disable a event.
1767  *
1768  * If event->ctx is a cloned context, callers must make sure that
1769  * every task struct that event->ctx->task could possibly point to
1770  * remains valid.  This condition is satisifed when called through
1771  * perf_event_for_each_child or perf_event_for_each because they
1772  * hold the top-level event's child_mutex, so any descendant that
1773  * goes to exit will block in sync_child_event.
1774  * When called from perf_pending_event it's OK because event->ctx
1775  * is the current context on this CPU and preemption is disabled,
1776  * hence we can't get into perf_event_task_sched_out for this context.
1777  */
1778 static void _perf_event_disable(struct perf_event *event)
1779 {
1780 	struct perf_event_context *ctx = event->ctx;
1781 	struct task_struct *task = ctx->task;
1782 
1783 	if (!task) {
1784 		/*
1785 		 * Disable the event on the cpu that it's on
1786 		 */
1787 		cpu_function_call(event->cpu, __perf_event_disable, event);
1788 		return;
1789 	}
1790 
1791 retry:
1792 	if (!task_function_call(task, __perf_event_disable, event))
1793 		return;
1794 
1795 	raw_spin_lock_irq(&ctx->lock);
1796 	/*
1797 	 * If the event is still active, we need to retry the cross-call.
1798 	 */
1799 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800 		raw_spin_unlock_irq(&ctx->lock);
1801 		/*
1802 		 * Reload the task pointer, it might have been changed by
1803 		 * a concurrent perf_event_context_sched_out().
1804 		 */
1805 		task = ctx->task;
1806 		goto retry;
1807 	}
1808 
1809 	/*
1810 	 * Since we have the lock this context can't be scheduled
1811 	 * in, so we can change the state safely.
1812 	 */
1813 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1814 		update_group_times(event);
1815 		event->state = PERF_EVENT_STATE_OFF;
1816 	}
1817 	raw_spin_unlock_irq(&ctx->lock);
1818 }
1819 
1820 /*
1821  * Strictly speaking kernel users cannot create groups and therefore this
1822  * interface does not need the perf_event_ctx_lock() magic.
1823  */
1824 void perf_event_disable(struct perf_event *event)
1825 {
1826 	struct perf_event_context *ctx;
1827 
1828 	ctx = perf_event_ctx_lock(event);
1829 	_perf_event_disable(event);
1830 	perf_event_ctx_unlock(event, ctx);
1831 }
1832 EXPORT_SYMBOL_GPL(perf_event_disable);
1833 
1834 static void perf_set_shadow_time(struct perf_event *event,
1835 				 struct perf_event_context *ctx,
1836 				 u64 tstamp)
1837 {
1838 	/*
1839 	 * use the correct time source for the time snapshot
1840 	 *
1841 	 * We could get by without this by leveraging the
1842 	 * fact that to get to this function, the caller
1843 	 * has most likely already called update_context_time()
1844 	 * and update_cgrp_time_xx() and thus both timestamp
1845 	 * are identical (or very close). Given that tstamp is,
1846 	 * already adjusted for cgroup, we could say that:
1847 	 *    tstamp - ctx->timestamp
1848 	 * is equivalent to
1849 	 *    tstamp - cgrp->timestamp.
1850 	 *
1851 	 * Then, in perf_output_read(), the calculation would
1852 	 * work with no changes because:
1853 	 * - event is guaranteed scheduled in
1854 	 * - no scheduled out in between
1855 	 * - thus the timestamp would be the same
1856 	 *
1857 	 * But this is a bit hairy.
1858 	 *
1859 	 * So instead, we have an explicit cgroup call to remain
1860 	 * within the time time source all along. We believe it
1861 	 * is cleaner and simpler to understand.
1862 	 */
1863 	if (is_cgroup_event(event))
1864 		perf_cgroup_set_shadow_time(event, tstamp);
1865 	else
1866 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1867 }
1868 
1869 #define MAX_INTERRUPTS (~0ULL)
1870 
1871 static void perf_log_throttle(struct perf_event *event, int enable);
1872 static void perf_log_itrace_start(struct perf_event *event);
1873 
1874 static int
1875 event_sched_in(struct perf_event *event,
1876 		 struct perf_cpu_context *cpuctx,
1877 		 struct perf_event_context *ctx)
1878 {
1879 	u64 tstamp = perf_event_time(event);
1880 	int ret = 0;
1881 
1882 	lockdep_assert_held(&ctx->lock);
1883 
1884 	if (event->state <= PERF_EVENT_STATE_OFF)
1885 		return 0;
1886 
1887 	event->state = PERF_EVENT_STATE_ACTIVE;
1888 	event->oncpu = smp_processor_id();
1889 
1890 	/*
1891 	 * Unthrottle events, since we scheduled we might have missed several
1892 	 * ticks already, also for a heavily scheduling task there is little
1893 	 * guarantee it'll get a tick in a timely manner.
1894 	 */
1895 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1896 		perf_log_throttle(event, 1);
1897 		event->hw.interrupts = 0;
1898 	}
1899 
1900 	/*
1901 	 * The new state must be visible before we turn it on in the hardware:
1902 	 */
1903 	smp_wmb();
1904 
1905 	perf_pmu_disable(event->pmu);
1906 
1907 	perf_set_shadow_time(event, ctx, tstamp);
1908 
1909 	perf_log_itrace_start(event);
1910 
1911 	if (event->pmu->add(event, PERF_EF_START)) {
1912 		event->state = PERF_EVENT_STATE_INACTIVE;
1913 		event->oncpu = -1;
1914 		ret = -EAGAIN;
1915 		goto out;
1916 	}
1917 
1918 	event->tstamp_running += tstamp - event->tstamp_stopped;
1919 
1920 	if (!is_software_event(event))
1921 		cpuctx->active_oncpu++;
1922 	if (!ctx->nr_active++)
1923 		perf_event_ctx_activate(ctx);
1924 	if (event->attr.freq && event->attr.sample_freq)
1925 		ctx->nr_freq++;
1926 
1927 	if (event->attr.exclusive)
1928 		cpuctx->exclusive = 1;
1929 
1930 	if (is_orphaned_child(event))
1931 		schedule_orphans_remove(ctx);
1932 
1933 out:
1934 	perf_pmu_enable(event->pmu);
1935 
1936 	return ret;
1937 }
1938 
1939 static int
1940 group_sched_in(struct perf_event *group_event,
1941 	       struct perf_cpu_context *cpuctx,
1942 	       struct perf_event_context *ctx)
1943 {
1944 	struct perf_event *event, *partial_group = NULL;
1945 	struct pmu *pmu = ctx->pmu;
1946 	u64 now = ctx->time;
1947 	bool simulate = false;
1948 
1949 	if (group_event->state == PERF_EVENT_STATE_OFF)
1950 		return 0;
1951 
1952 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953 
1954 	if (event_sched_in(group_event, cpuctx, ctx)) {
1955 		pmu->cancel_txn(pmu);
1956 		perf_mux_hrtimer_restart(cpuctx);
1957 		return -EAGAIN;
1958 	}
1959 
1960 	/*
1961 	 * Schedule in siblings as one group (if any):
1962 	 */
1963 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 		if (event_sched_in(event, cpuctx, ctx)) {
1965 			partial_group = event;
1966 			goto group_error;
1967 		}
1968 	}
1969 
1970 	if (!pmu->commit_txn(pmu))
1971 		return 0;
1972 
1973 group_error:
1974 	/*
1975 	 * Groups can be scheduled in as one unit only, so undo any
1976 	 * partial group before returning:
1977 	 * The events up to the failed event are scheduled out normally,
1978 	 * tstamp_stopped will be updated.
1979 	 *
1980 	 * The failed events and the remaining siblings need to have
1981 	 * their timings updated as if they had gone thru event_sched_in()
1982 	 * and event_sched_out(). This is required to get consistent timings
1983 	 * across the group. This also takes care of the case where the group
1984 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1985 	 * the time the event was actually stopped, such that time delta
1986 	 * calculation in update_event_times() is correct.
1987 	 */
1988 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1989 		if (event == partial_group)
1990 			simulate = true;
1991 
1992 		if (simulate) {
1993 			event->tstamp_running += now - event->tstamp_stopped;
1994 			event->tstamp_stopped = now;
1995 		} else {
1996 			event_sched_out(event, cpuctx, ctx);
1997 		}
1998 	}
1999 	event_sched_out(group_event, cpuctx, ctx);
2000 
2001 	pmu->cancel_txn(pmu);
2002 
2003 	perf_mux_hrtimer_restart(cpuctx);
2004 
2005 	return -EAGAIN;
2006 }
2007 
2008 /*
2009  * Work out whether we can put this event group on the CPU now.
2010  */
2011 static int group_can_go_on(struct perf_event *event,
2012 			   struct perf_cpu_context *cpuctx,
2013 			   int can_add_hw)
2014 {
2015 	/*
2016 	 * Groups consisting entirely of software events can always go on.
2017 	 */
2018 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 		return 1;
2020 	/*
2021 	 * If an exclusive group is already on, no other hardware
2022 	 * events can go on.
2023 	 */
2024 	if (cpuctx->exclusive)
2025 		return 0;
2026 	/*
2027 	 * If this group is exclusive and there are already
2028 	 * events on the CPU, it can't go on.
2029 	 */
2030 	if (event->attr.exclusive && cpuctx->active_oncpu)
2031 		return 0;
2032 	/*
2033 	 * Otherwise, try to add it if all previous groups were able
2034 	 * to go on.
2035 	 */
2036 	return can_add_hw;
2037 }
2038 
2039 static void add_event_to_ctx(struct perf_event *event,
2040 			       struct perf_event_context *ctx)
2041 {
2042 	u64 tstamp = perf_event_time(event);
2043 
2044 	list_add_event(event, ctx);
2045 	perf_group_attach(event);
2046 	event->tstamp_enabled = tstamp;
2047 	event->tstamp_running = tstamp;
2048 	event->tstamp_stopped = tstamp;
2049 }
2050 
2051 static void task_ctx_sched_out(struct perf_event_context *ctx);
2052 static void
2053 ctx_sched_in(struct perf_event_context *ctx,
2054 	     struct perf_cpu_context *cpuctx,
2055 	     enum event_type_t event_type,
2056 	     struct task_struct *task);
2057 
2058 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2059 				struct perf_event_context *ctx,
2060 				struct task_struct *task)
2061 {
2062 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2063 	if (ctx)
2064 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2065 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2066 	if (ctx)
2067 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2068 }
2069 
2070 /*
2071  * Cross CPU call to install and enable a performance event
2072  *
2073  * Must be called with ctx->mutex held
2074  */
2075 static int  __perf_install_in_context(void *info)
2076 {
2077 	struct perf_event *event = info;
2078 	struct perf_event_context *ctx = event->ctx;
2079 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 	struct task_struct *task = current;
2082 
2083 	perf_ctx_lock(cpuctx, task_ctx);
2084 	perf_pmu_disable(cpuctx->ctx.pmu);
2085 
2086 	/*
2087 	 * If there was an active task_ctx schedule it out.
2088 	 */
2089 	if (task_ctx)
2090 		task_ctx_sched_out(task_ctx);
2091 
2092 	/*
2093 	 * If the context we're installing events in is not the
2094 	 * active task_ctx, flip them.
2095 	 */
2096 	if (ctx->task && task_ctx != ctx) {
2097 		if (task_ctx)
2098 			raw_spin_unlock(&task_ctx->lock);
2099 		raw_spin_lock(&ctx->lock);
2100 		task_ctx = ctx;
2101 	}
2102 
2103 	if (task_ctx) {
2104 		cpuctx->task_ctx = task_ctx;
2105 		task = task_ctx->task;
2106 	}
2107 
2108 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2109 
2110 	update_context_time(ctx);
2111 	/*
2112 	 * update cgrp time only if current cgrp
2113 	 * matches event->cgrp. Must be done before
2114 	 * calling add_event_to_ctx()
2115 	 */
2116 	update_cgrp_time_from_event(event);
2117 
2118 	add_event_to_ctx(event, ctx);
2119 
2120 	/*
2121 	 * Schedule everything back in
2122 	 */
2123 	perf_event_sched_in(cpuctx, task_ctx, task);
2124 
2125 	perf_pmu_enable(cpuctx->ctx.pmu);
2126 	perf_ctx_unlock(cpuctx, task_ctx);
2127 
2128 	return 0;
2129 }
2130 
2131 /*
2132  * Attach a performance event to a context
2133  *
2134  * First we add the event to the list with the hardware enable bit
2135  * in event->hw_config cleared.
2136  *
2137  * If the event is attached to a task which is on a CPU we use a smp
2138  * call to enable it in the task context. The task might have been
2139  * scheduled away, but we check this in the smp call again.
2140  */
2141 static void
2142 perf_install_in_context(struct perf_event_context *ctx,
2143 			struct perf_event *event,
2144 			int cpu)
2145 {
2146 	struct task_struct *task = ctx->task;
2147 
2148 	lockdep_assert_held(&ctx->mutex);
2149 
2150 	event->ctx = ctx;
2151 	if (event->cpu != -1)
2152 		event->cpu = cpu;
2153 
2154 	if (!task) {
2155 		/*
2156 		 * Per cpu events are installed via an smp call and
2157 		 * the install is always successful.
2158 		 */
2159 		cpu_function_call(cpu, __perf_install_in_context, event);
2160 		return;
2161 	}
2162 
2163 retry:
2164 	if (!task_function_call(task, __perf_install_in_context, event))
2165 		return;
2166 
2167 	raw_spin_lock_irq(&ctx->lock);
2168 	/*
2169 	 * If we failed to find a running task, but find the context active now
2170 	 * that we've acquired the ctx->lock, retry.
2171 	 */
2172 	if (ctx->is_active) {
2173 		raw_spin_unlock_irq(&ctx->lock);
2174 		/*
2175 		 * Reload the task pointer, it might have been changed by
2176 		 * a concurrent perf_event_context_sched_out().
2177 		 */
2178 		task = ctx->task;
2179 		goto retry;
2180 	}
2181 
2182 	/*
2183 	 * Since the task isn't running, its safe to add the event, us holding
2184 	 * the ctx->lock ensures the task won't get scheduled in.
2185 	 */
2186 	add_event_to_ctx(event, ctx);
2187 	raw_spin_unlock_irq(&ctx->lock);
2188 }
2189 
2190 /*
2191  * Put a event into inactive state and update time fields.
2192  * Enabling the leader of a group effectively enables all
2193  * the group members that aren't explicitly disabled, so we
2194  * have to update their ->tstamp_enabled also.
2195  * Note: this works for group members as well as group leaders
2196  * since the non-leader members' sibling_lists will be empty.
2197  */
2198 static void __perf_event_mark_enabled(struct perf_event *event)
2199 {
2200 	struct perf_event *sub;
2201 	u64 tstamp = perf_event_time(event);
2202 
2203 	event->state = PERF_EVENT_STATE_INACTIVE;
2204 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2205 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2207 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2208 	}
2209 }
2210 
2211 /*
2212  * Cross CPU call to enable a performance event
2213  */
2214 static int __perf_event_enable(void *info)
2215 {
2216 	struct perf_event *event = info;
2217 	struct perf_event_context *ctx = event->ctx;
2218 	struct perf_event *leader = event->group_leader;
2219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220 	int err;
2221 
2222 	/*
2223 	 * There's a time window between 'ctx->is_active' check
2224 	 * in perf_event_enable function and this place having:
2225 	 *   - IRQs on
2226 	 *   - ctx->lock unlocked
2227 	 *
2228 	 * where the task could be killed and 'ctx' deactivated
2229 	 * by perf_event_exit_task.
2230 	 */
2231 	if (!ctx->is_active)
2232 		return -EINVAL;
2233 
2234 	raw_spin_lock(&ctx->lock);
2235 	update_context_time(ctx);
2236 
2237 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238 		goto unlock;
2239 
2240 	/*
2241 	 * set current task's cgroup time reference point
2242 	 */
2243 	perf_cgroup_set_timestamp(current, ctx);
2244 
2245 	__perf_event_mark_enabled(event);
2246 
2247 	if (!event_filter_match(event)) {
2248 		if (is_cgroup_event(event))
2249 			perf_cgroup_defer_enabled(event);
2250 		goto unlock;
2251 	}
2252 
2253 	/*
2254 	 * If the event is in a group and isn't the group leader,
2255 	 * then don't put it on unless the group is on.
2256 	 */
2257 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258 		goto unlock;
2259 
2260 	if (!group_can_go_on(event, cpuctx, 1)) {
2261 		err = -EEXIST;
2262 	} else {
2263 		if (event == leader)
2264 			err = group_sched_in(event, cpuctx, ctx);
2265 		else
2266 			err = event_sched_in(event, cpuctx, ctx);
2267 	}
2268 
2269 	if (err) {
2270 		/*
2271 		 * If this event can't go on and it's part of a
2272 		 * group, then the whole group has to come off.
2273 		 */
2274 		if (leader != event) {
2275 			group_sched_out(leader, cpuctx, ctx);
2276 			perf_mux_hrtimer_restart(cpuctx);
2277 		}
2278 		if (leader->attr.pinned) {
2279 			update_group_times(leader);
2280 			leader->state = PERF_EVENT_STATE_ERROR;
2281 		}
2282 	}
2283 
2284 unlock:
2285 	raw_spin_unlock(&ctx->lock);
2286 
2287 	return 0;
2288 }
2289 
2290 /*
2291  * Enable a event.
2292  *
2293  * If event->ctx is a cloned context, callers must make sure that
2294  * every task struct that event->ctx->task could possibly point to
2295  * remains valid.  This condition is satisfied when called through
2296  * perf_event_for_each_child or perf_event_for_each as described
2297  * for perf_event_disable.
2298  */
2299 static void _perf_event_enable(struct perf_event *event)
2300 {
2301 	struct perf_event_context *ctx = event->ctx;
2302 	struct task_struct *task = ctx->task;
2303 
2304 	if (!task) {
2305 		/*
2306 		 * Enable the event on the cpu that it's on
2307 		 */
2308 		cpu_function_call(event->cpu, __perf_event_enable, event);
2309 		return;
2310 	}
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 		goto out;
2315 
2316 	/*
2317 	 * If the event is in error state, clear that first.
2318 	 * That way, if we see the event in error state below, we
2319 	 * know that it has gone back into error state, as distinct
2320 	 * from the task having been scheduled away before the
2321 	 * cross-call arrived.
2322 	 */
2323 	if (event->state == PERF_EVENT_STATE_ERROR)
2324 		event->state = PERF_EVENT_STATE_OFF;
2325 
2326 retry:
2327 	if (!ctx->is_active) {
2328 		__perf_event_mark_enabled(event);
2329 		goto out;
2330 	}
2331 
2332 	raw_spin_unlock_irq(&ctx->lock);
2333 
2334 	if (!task_function_call(task, __perf_event_enable, event))
2335 		return;
2336 
2337 	raw_spin_lock_irq(&ctx->lock);
2338 
2339 	/*
2340 	 * If the context is active and the event is still off,
2341 	 * we need to retry the cross-call.
2342 	 */
2343 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2344 		/*
2345 		 * task could have been flipped by a concurrent
2346 		 * perf_event_context_sched_out()
2347 		 */
2348 		task = ctx->task;
2349 		goto retry;
2350 	}
2351 
2352 out:
2353 	raw_spin_unlock_irq(&ctx->lock);
2354 }
2355 
2356 /*
2357  * See perf_event_disable();
2358  */
2359 void perf_event_enable(struct perf_event *event)
2360 {
2361 	struct perf_event_context *ctx;
2362 
2363 	ctx = perf_event_ctx_lock(event);
2364 	_perf_event_enable(event);
2365 	perf_event_ctx_unlock(event, ctx);
2366 }
2367 EXPORT_SYMBOL_GPL(perf_event_enable);
2368 
2369 static int _perf_event_refresh(struct perf_event *event, int refresh)
2370 {
2371 	/*
2372 	 * not supported on inherited events
2373 	 */
2374 	if (event->attr.inherit || !is_sampling_event(event))
2375 		return -EINVAL;
2376 
2377 	atomic_add(refresh, &event->event_limit);
2378 	_perf_event_enable(event);
2379 
2380 	return 0;
2381 }
2382 
2383 /*
2384  * See perf_event_disable()
2385  */
2386 int perf_event_refresh(struct perf_event *event, int refresh)
2387 {
2388 	struct perf_event_context *ctx;
2389 	int ret;
2390 
2391 	ctx = perf_event_ctx_lock(event);
2392 	ret = _perf_event_refresh(event, refresh);
2393 	perf_event_ctx_unlock(event, ctx);
2394 
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(perf_event_refresh);
2398 
2399 static void ctx_sched_out(struct perf_event_context *ctx,
2400 			  struct perf_cpu_context *cpuctx,
2401 			  enum event_type_t event_type)
2402 {
2403 	struct perf_event *event;
2404 	int is_active = ctx->is_active;
2405 
2406 	ctx->is_active &= ~event_type;
2407 	if (likely(!ctx->nr_events))
2408 		return;
2409 
2410 	update_context_time(ctx);
2411 	update_cgrp_time_from_cpuctx(cpuctx);
2412 	if (!ctx->nr_active)
2413 		return;
2414 
2415 	perf_pmu_disable(ctx->pmu);
2416 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2418 			group_sched_out(event, cpuctx, ctx);
2419 	}
2420 
2421 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423 			group_sched_out(event, cpuctx, ctx);
2424 	}
2425 	perf_pmu_enable(ctx->pmu);
2426 }
2427 
2428 /*
2429  * Test whether two contexts are equivalent, i.e. whether they have both been
2430  * cloned from the same version of the same context.
2431  *
2432  * Equivalence is measured using a generation number in the context that is
2433  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2434  * and list_del_event().
2435  */
2436 static int context_equiv(struct perf_event_context *ctx1,
2437 			 struct perf_event_context *ctx2)
2438 {
2439 	lockdep_assert_held(&ctx1->lock);
2440 	lockdep_assert_held(&ctx2->lock);
2441 
2442 	/* Pinning disables the swap optimization */
2443 	if (ctx1->pin_count || ctx2->pin_count)
2444 		return 0;
2445 
2446 	/* If ctx1 is the parent of ctx2 */
2447 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2448 		return 1;
2449 
2450 	/* If ctx2 is the parent of ctx1 */
2451 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2452 		return 1;
2453 
2454 	/*
2455 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2456 	 * hierarchy, see perf_event_init_context().
2457 	 */
2458 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2459 			ctx1->parent_gen == ctx2->parent_gen)
2460 		return 1;
2461 
2462 	/* Unmatched */
2463 	return 0;
2464 }
2465 
2466 static void __perf_event_sync_stat(struct perf_event *event,
2467 				     struct perf_event *next_event)
2468 {
2469 	u64 value;
2470 
2471 	if (!event->attr.inherit_stat)
2472 		return;
2473 
2474 	/*
2475 	 * Update the event value, we cannot use perf_event_read()
2476 	 * because we're in the middle of a context switch and have IRQs
2477 	 * disabled, which upsets smp_call_function_single(), however
2478 	 * we know the event must be on the current CPU, therefore we
2479 	 * don't need to use it.
2480 	 */
2481 	switch (event->state) {
2482 	case PERF_EVENT_STATE_ACTIVE:
2483 		event->pmu->read(event);
2484 		/* fall-through */
2485 
2486 	case PERF_EVENT_STATE_INACTIVE:
2487 		update_event_times(event);
2488 		break;
2489 
2490 	default:
2491 		break;
2492 	}
2493 
2494 	/*
2495 	 * In order to keep per-task stats reliable we need to flip the event
2496 	 * values when we flip the contexts.
2497 	 */
2498 	value = local64_read(&next_event->count);
2499 	value = local64_xchg(&event->count, value);
2500 	local64_set(&next_event->count, value);
2501 
2502 	swap(event->total_time_enabled, next_event->total_time_enabled);
2503 	swap(event->total_time_running, next_event->total_time_running);
2504 
2505 	/*
2506 	 * Since we swizzled the values, update the user visible data too.
2507 	 */
2508 	perf_event_update_userpage(event);
2509 	perf_event_update_userpage(next_event);
2510 }
2511 
2512 static void perf_event_sync_stat(struct perf_event_context *ctx,
2513 				   struct perf_event_context *next_ctx)
2514 {
2515 	struct perf_event *event, *next_event;
2516 
2517 	if (!ctx->nr_stat)
2518 		return;
2519 
2520 	update_context_time(ctx);
2521 
2522 	event = list_first_entry(&ctx->event_list,
2523 				   struct perf_event, event_entry);
2524 
2525 	next_event = list_first_entry(&next_ctx->event_list,
2526 					struct perf_event, event_entry);
2527 
2528 	while (&event->event_entry != &ctx->event_list &&
2529 	       &next_event->event_entry != &next_ctx->event_list) {
2530 
2531 		__perf_event_sync_stat(event, next_event);
2532 
2533 		event = list_next_entry(event, event_entry);
2534 		next_event = list_next_entry(next_event, event_entry);
2535 	}
2536 }
2537 
2538 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2539 					 struct task_struct *next)
2540 {
2541 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542 	struct perf_event_context *next_ctx;
2543 	struct perf_event_context *parent, *next_parent;
2544 	struct perf_cpu_context *cpuctx;
2545 	int do_switch = 1;
2546 
2547 	if (likely(!ctx))
2548 		return;
2549 
2550 	cpuctx = __get_cpu_context(ctx);
2551 	if (!cpuctx->task_ctx)
2552 		return;
2553 
2554 	rcu_read_lock();
2555 	next_ctx = next->perf_event_ctxp[ctxn];
2556 	if (!next_ctx)
2557 		goto unlock;
2558 
2559 	parent = rcu_dereference(ctx->parent_ctx);
2560 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2561 
2562 	/* If neither context have a parent context; they cannot be clones. */
2563 	if (!parent && !next_parent)
2564 		goto unlock;
2565 
2566 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 		/*
2568 		 * Looks like the two contexts are clones, so we might be
2569 		 * able to optimize the context switch.  We lock both
2570 		 * contexts and check that they are clones under the
2571 		 * lock (including re-checking that neither has been
2572 		 * uncloned in the meantime).  It doesn't matter which
2573 		 * order we take the locks because no other cpu could
2574 		 * be trying to lock both of these tasks.
2575 		 */
2576 		raw_spin_lock(&ctx->lock);
2577 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578 		if (context_equiv(ctx, next_ctx)) {
2579 			/*
2580 			 * XXX do we need a memory barrier of sorts
2581 			 * wrt to rcu_dereference() of perf_event_ctxp
2582 			 */
2583 			task->perf_event_ctxp[ctxn] = next_ctx;
2584 			next->perf_event_ctxp[ctxn] = ctx;
2585 			ctx->task = next;
2586 			next_ctx->task = task;
2587 
2588 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2589 
2590 			do_switch = 0;
2591 
2592 			perf_event_sync_stat(ctx, next_ctx);
2593 		}
2594 		raw_spin_unlock(&next_ctx->lock);
2595 		raw_spin_unlock(&ctx->lock);
2596 	}
2597 unlock:
2598 	rcu_read_unlock();
2599 
2600 	if (do_switch) {
2601 		raw_spin_lock(&ctx->lock);
2602 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603 		cpuctx->task_ctx = NULL;
2604 		raw_spin_unlock(&ctx->lock);
2605 	}
2606 }
2607 
2608 void perf_sched_cb_dec(struct pmu *pmu)
2609 {
2610 	this_cpu_dec(perf_sched_cb_usages);
2611 }
2612 
2613 void perf_sched_cb_inc(struct pmu *pmu)
2614 {
2615 	this_cpu_inc(perf_sched_cb_usages);
2616 }
2617 
2618 /*
2619  * This function provides the context switch callback to the lower code
2620  * layer. It is invoked ONLY when the context switch callback is enabled.
2621  */
2622 static void perf_pmu_sched_task(struct task_struct *prev,
2623 				struct task_struct *next,
2624 				bool sched_in)
2625 {
2626 	struct perf_cpu_context *cpuctx;
2627 	struct pmu *pmu;
2628 	unsigned long flags;
2629 
2630 	if (prev == next)
2631 		return;
2632 
2633 	local_irq_save(flags);
2634 
2635 	rcu_read_lock();
2636 
2637 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2638 		if (pmu->sched_task) {
2639 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2640 
2641 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2642 
2643 			perf_pmu_disable(pmu);
2644 
2645 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2646 
2647 			perf_pmu_enable(pmu);
2648 
2649 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2650 		}
2651 	}
2652 
2653 	rcu_read_unlock();
2654 
2655 	local_irq_restore(flags);
2656 }
2657 
2658 static void perf_event_switch(struct task_struct *task,
2659 			      struct task_struct *next_prev, bool sched_in);
2660 
2661 #define for_each_task_context_nr(ctxn)					\
2662 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2663 
2664 /*
2665  * Called from scheduler to remove the events of the current task,
2666  * with interrupts disabled.
2667  *
2668  * We stop each event and update the event value in event->count.
2669  *
2670  * This does not protect us against NMI, but disable()
2671  * sets the disabled bit in the control field of event _before_
2672  * accessing the event control register. If a NMI hits, then it will
2673  * not restart the event.
2674  */
2675 void __perf_event_task_sched_out(struct task_struct *task,
2676 				 struct task_struct *next)
2677 {
2678 	int ctxn;
2679 
2680 	if (__this_cpu_read(perf_sched_cb_usages))
2681 		perf_pmu_sched_task(task, next, false);
2682 
2683 	if (atomic_read(&nr_switch_events))
2684 		perf_event_switch(task, next, false);
2685 
2686 	for_each_task_context_nr(ctxn)
2687 		perf_event_context_sched_out(task, ctxn, next);
2688 
2689 	/*
2690 	 * if cgroup events exist on this CPU, then we need
2691 	 * to check if we have to switch out PMU state.
2692 	 * cgroup event are system-wide mode only
2693 	 */
2694 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695 		perf_cgroup_sched_out(task, next);
2696 }
2697 
2698 static void task_ctx_sched_out(struct perf_event_context *ctx)
2699 {
2700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701 
2702 	if (!cpuctx->task_ctx)
2703 		return;
2704 
2705 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 		return;
2707 
2708 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 	cpuctx->task_ctx = NULL;
2710 }
2711 
2712 /*
2713  * Called with IRQs disabled
2714  */
2715 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 			      enum event_type_t event_type)
2717 {
2718 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 }
2720 
2721 static void
2722 ctx_pinned_sched_in(struct perf_event_context *ctx,
2723 		    struct perf_cpu_context *cpuctx)
2724 {
2725 	struct perf_event *event;
2726 
2727 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2728 		if (event->state <= PERF_EVENT_STATE_OFF)
2729 			continue;
2730 		if (!event_filter_match(event))
2731 			continue;
2732 
2733 		/* may need to reset tstamp_enabled */
2734 		if (is_cgroup_event(event))
2735 			perf_cgroup_mark_enabled(event, ctx);
2736 
2737 		if (group_can_go_on(event, cpuctx, 1))
2738 			group_sched_in(event, cpuctx, ctx);
2739 
2740 		/*
2741 		 * If this pinned group hasn't been scheduled,
2742 		 * put it in error state.
2743 		 */
2744 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2745 			update_group_times(event);
2746 			event->state = PERF_EVENT_STATE_ERROR;
2747 		}
2748 	}
2749 }
2750 
2751 static void
2752 ctx_flexible_sched_in(struct perf_event_context *ctx,
2753 		      struct perf_cpu_context *cpuctx)
2754 {
2755 	struct perf_event *event;
2756 	int can_add_hw = 1;
2757 
2758 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2759 		/* Ignore events in OFF or ERROR state */
2760 		if (event->state <= PERF_EVENT_STATE_OFF)
2761 			continue;
2762 		/*
2763 		 * Listen to the 'cpu' scheduling filter constraint
2764 		 * of events:
2765 		 */
2766 		if (!event_filter_match(event))
2767 			continue;
2768 
2769 		/* may need to reset tstamp_enabled */
2770 		if (is_cgroup_event(event))
2771 			perf_cgroup_mark_enabled(event, ctx);
2772 
2773 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774 			if (group_sched_in(event, cpuctx, ctx))
2775 				can_add_hw = 0;
2776 		}
2777 	}
2778 }
2779 
2780 static void
2781 ctx_sched_in(struct perf_event_context *ctx,
2782 	     struct perf_cpu_context *cpuctx,
2783 	     enum event_type_t event_type,
2784 	     struct task_struct *task)
2785 {
2786 	u64 now;
2787 	int is_active = ctx->is_active;
2788 
2789 	ctx->is_active |= event_type;
2790 	if (likely(!ctx->nr_events))
2791 		return;
2792 
2793 	now = perf_clock();
2794 	ctx->timestamp = now;
2795 	perf_cgroup_set_timestamp(task, ctx);
2796 	/*
2797 	 * First go through the list and put on any pinned groups
2798 	 * in order to give them the best chance of going on.
2799 	 */
2800 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801 		ctx_pinned_sched_in(ctx, cpuctx);
2802 
2803 	/* Then walk through the lower prio flexible groups */
2804 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805 		ctx_flexible_sched_in(ctx, cpuctx);
2806 }
2807 
2808 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2809 			     enum event_type_t event_type,
2810 			     struct task_struct *task)
2811 {
2812 	struct perf_event_context *ctx = &cpuctx->ctx;
2813 
2814 	ctx_sched_in(ctx, cpuctx, event_type, task);
2815 }
2816 
2817 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2818 					struct task_struct *task)
2819 {
2820 	struct perf_cpu_context *cpuctx;
2821 
2822 	cpuctx = __get_cpu_context(ctx);
2823 	if (cpuctx->task_ctx == ctx)
2824 		return;
2825 
2826 	perf_ctx_lock(cpuctx, ctx);
2827 	perf_pmu_disable(ctx->pmu);
2828 	/*
2829 	 * We want to keep the following priority order:
2830 	 * cpu pinned (that don't need to move), task pinned,
2831 	 * cpu flexible, task flexible.
2832 	 */
2833 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2834 
2835 	if (ctx->nr_events)
2836 		cpuctx->task_ctx = ctx;
2837 
2838 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2839 
2840 	perf_pmu_enable(ctx->pmu);
2841 	perf_ctx_unlock(cpuctx, ctx);
2842 }
2843 
2844 /*
2845  * Called from scheduler to add the events of the current task
2846  * with interrupts disabled.
2847  *
2848  * We restore the event value and then enable it.
2849  *
2850  * This does not protect us against NMI, but enable()
2851  * sets the enabled bit in the control field of event _before_
2852  * accessing the event control register. If a NMI hits, then it will
2853  * keep the event running.
2854  */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 				struct task_struct *task)
2857 {
2858 	struct perf_event_context *ctx;
2859 	int ctxn;
2860 
2861 	for_each_task_context_nr(ctxn) {
2862 		ctx = task->perf_event_ctxp[ctxn];
2863 		if (likely(!ctx))
2864 			continue;
2865 
2866 		perf_event_context_sched_in(ctx, task);
2867 	}
2868 	/*
2869 	 * if cgroup events exist on this CPU, then we need
2870 	 * to check if we have to switch in PMU state.
2871 	 * cgroup event are system-wide mode only
2872 	 */
2873 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874 		perf_cgroup_sched_in(prev, task);
2875 
2876 	if (atomic_read(&nr_switch_events))
2877 		perf_event_switch(task, prev, true);
2878 
2879 	if (__this_cpu_read(perf_sched_cb_usages))
2880 		perf_pmu_sched_task(prev, task, true);
2881 }
2882 
2883 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2884 {
2885 	u64 frequency = event->attr.sample_freq;
2886 	u64 sec = NSEC_PER_SEC;
2887 	u64 divisor, dividend;
2888 
2889 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2890 
2891 	count_fls = fls64(count);
2892 	nsec_fls = fls64(nsec);
2893 	frequency_fls = fls64(frequency);
2894 	sec_fls = 30;
2895 
2896 	/*
2897 	 * We got @count in @nsec, with a target of sample_freq HZ
2898 	 * the target period becomes:
2899 	 *
2900 	 *             @count * 10^9
2901 	 * period = -------------------
2902 	 *          @nsec * sample_freq
2903 	 *
2904 	 */
2905 
2906 	/*
2907 	 * Reduce accuracy by one bit such that @a and @b converge
2908 	 * to a similar magnitude.
2909 	 */
2910 #define REDUCE_FLS(a, b)		\
2911 do {					\
2912 	if (a##_fls > b##_fls) {	\
2913 		a >>= 1;		\
2914 		a##_fls--;		\
2915 	} else {			\
2916 		b >>= 1;		\
2917 		b##_fls--;		\
2918 	}				\
2919 } while (0)
2920 
2921 	/*
2922 	 * Reduce accuracy until either term fits in a u64, then proceed with
2923 	 * the other, so that finally we can do a u64/u64 division.
2924 	 */
2925 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2926 		REDUCE_FLS(nsec, frequency);
2927 		REDUCE_FLS(sec, count);
2928 	}
2929 
2930 	if (count_fls + sec_fls > 64) {
2931 		divisor = nsec * frequency;
2932 
2933 		while (count_fls + sec_fls > 64) {
2934 			REDUCE_FLS(count, sec);
2935 			divisor >>= 1;
2936 		}
2937 
2938 		dividend = count * sec;
2939 	} else {
2940 		dividend = count * sec;
2941 
2942 		while (nsec_fls + frequency_fls > 64) {
2943 			REDUCE_FLS(nsec, frequency);
2944 			dividend >>= 1;
2945 		}
2946 
2947 		divisor = nsec * frequency;
2948 	}
2949 
2950 	if (!divisor)
2951 		return dividend;
2952 
2953 	return div64_u64(dividend, divisor);
2954 }
2955 
2956 static DEFINE_PER_CPU(int, perf_throttled_count);
2957 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2958 
2959 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960 {
2961 	struct hw_perf_event *hwc = &event->hw;
2962 	s64 period, sample_period;
2963 	s64 delta;
2964 
2965 	period = perf_calculate_period(event, nsec, count);
2966 
2967 	delta = (s64)(period - hwc->sample_period);
2968 	delta = (delta + 7) / 8; /* low pass filter */
2969 
2970 	sample_period = hwc->sample_period + delta;
2971 
2972 	if (!sample_period)
2973 		sample_period = 1;
2974 
2975 	hwc->sample_period = sample_period;
2976 
2977 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 		if (disable)
2979 			event->pmu->stop(event, PERF_EF_UPDATE);
2980 
2981 		local64_set(&hwc->period_left, 0);
2982 
2983 		if (disable)
2984 			event->pmu->start(event, PERF_EF_RELOAD);
2985 	}
2986 }
2987 
2988 /*
2989  * combine freq adjustment with unthrottling to avoid two passes over the
2990  * events. At the same time, make sure, having freq events does not change
2991  * the rate of unthrottling as that would introduce bias.
2992  */
2993 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2994 					   int needs_unthr)
2995 {
2996 	struct perf_event *event;
2997 	struct hw_perf_event *hwc;
2998 	u64 now, period = TICK_NSEC;
2999 	s64 delta;
3000 
3001 	/*
3002 	 * only need to iterate over all events iff:
3003 	 * - context have events in frequency mode (needs freq adjust)
3004 	 * - there are events to unthrottle on this cpu
3005 	 */
3006 	if (!(ctx->nr_freq || needs_unthr))
3007 		return;
3008 
3009 	raw_spin_lock(&ctx->lock);
3010 	perf_pmu_disable(ctx->pmu);
3011 
3012 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 			continue;
3015 
3016 		if (!event_filter_match(event))
3017 			continue;
3018 
3019 		perf_pmu_disable(event->pmu);
3020 
3021 		hwc = &event->hw;
3022 
3023 		if (hwc->interrupts == MAX_INTERRUPTS) {
3024 			hwc->interrupts = 0;
3025 			perf_log_throttle(event, 1);
3026 			event->pmu->start(event, 0);
3027 		}
3028 
3029 		if (!event->attr.freq || !event->attr.sample_freq)
3030 			goto next;
3031 
3032 		/*
3033 		 * stop the event and update event->count
3034 		 */
3035 		event->pmu->stop(event, PERF_EF_UPDATE);
3036 
3037 		now = local64_read(&event->count);
3038 		delta = now - hwc->freq_count_stamp;
3039 		hwc->freq_count_stamp = now;
3040 
3041 		/*
3042 		 * restart the event
3043 		 * reload only if value has changed
3044 		 * we have stopped the event so tell that
3045 		 * to perf_adjust_period() to avoid stopping it
3046 		 * twice.
3047 		 */
3048 		if (delta > 0)
3049 			perf_adjust_period(event, period, delta, false);
3050 
3051 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 	next:
3053 		perf_pmu_enable(event->pmu);
3054 	}
3055 
3056 	perf_pmu_enable(ctx->pmu);
3057 	raw_spin_unlock(&ctx->lock);
3058 }
3059 
3060 /*
3061  * Round-robin a context's events:
3062  */
3063 static void rotate_ctx(struct perf_event_context *ctx)
3064 {
3065 	/*
3066 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3067 	 * disabled by the inheritance code.
3068 	 */
3069 	if (!ctx->rotate_disable)
3070 		list_rotate_left(&ctx->flexible_groups);
3071 }
3072 
3073 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074 {
3075 	struct perf_event_context *ctx = NULL;
3076 	int rotate = 0;
3077 
3078 	if (cpuctx->ctx.nr_events) {
3079 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3080 			rotate = 1;
3081 	}
3082 
3083 	ctx = cpuctx->task_ctx;
3084 	if (ctx && ctx->nr_events) {
3085 		if (ctx->nr_events != ctx->nr_active)
3086 			rotate = 1;
3087 	}
3088 
3089 	if (!rotate)
3090 		goto done;
3091 
3092 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3093 	perf_pmu_disable(cpuctx->ctx.pmu);
3094 
3095 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3096 	if (ctx)
3097 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3098 
3099 	rotate_ctx(&cpuctx->ctx);
3100 	if (ctx)
3101 		rotate_ctx(ctx);
3102 
3103 	perf_event_sched_in(cpuctx, ctx, current);
3104 
3105 	perf_pmu_enable(cpuctx->ctx.pmu);
3106 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107 done:
3108 
3109 	return rotate;
3110 }
3111 
3112 #ifdef CONFIG_NO_HZ_FULL
3113 bool perf_event_can_stop_tick(void)
3114 {
3115 	if (atomic_read(&nr_freq_events) ||
3116 	    __this_cpu_read(perf_throttled_count))
3117 		return false;
3118 	else
3119 		return true;
3120 }
3121 #endif
3122 
3123 void perf_event_task_tick(void)
3124 {
3125 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3126 	struct perf_event_context *ctx, *tmp;
3127 	int throttled;
3128 
3129 	WARN_ON(!irqs_disabled());
3130 
3131 	__this_cpu_inc(perf_throttled_seq);
3132 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3133 
3134 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135 		perf_adjust_freq_unthr_context(ctx, throttled);
3136 }
3137 
3138 static int event_enable_on_exec(struct perf_event *event,
3139 				struct perf_event_context *ctx)
3140 {
3141 	if (!event->attr.enable_on_exec)
3142 		return 0;
3143 
3144 	event->attr.enable_on_exec = 0;
3145 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3146 		return 0;
3147 
3148 	__perf_event_mark_enabled(event);
3149 
3150 	return 1;
3151 }
3152 
3153 /*
3154  * Enable all of a task's events that have been marked enable-on-exec.
3155  * This expects task == current.
3156  */
3157 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3158 {
3159 	struct perf_event_context *clone_ctx = NULL;
3160 	struct perf_event *event;
3161 	unsigned long flags;
3162 	int enabled = 0;
3163 	int ret;
3164 
3165 	local_irq_save(flags);
3166 	if (!ctx || !ctx->nr_events)
3167 		goto out;
3168 
3169 	/*
3170 	 * We must ctxsw out cgroup events to avoid conflict
3171 	 * when invoking perf_task_event_sched_in() later on
3172 	 * in this function. Otherwise we end up trying to
3173 	 * ctxswin cgroup events which are already scheduled
3174 	 * in.
3175 	 */
3176 	perf_cgroup_sched_out(current, NULL);
3177 
3178 	raw_spin_lock(&ctx->lock);
3179 	task_ctx_sched_out(ctx);
3180 
3181 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3182 		ret = event_enable_on_exec(event, ctx);
3183 		if (ret)
3184 			enabled = 1;
3185 	}
3186 
3187 	/*
3188 	 * Unclone this context if we enabled any event.
3189 	 */
3190 	if (enabled)
3191 		clone_ctx = unclone_ctx(ctx);
3192 
3193 	raw_spin_unlock(&ctx->lock);
3194 
3195 	/*
3196 	 * Also calls ctxswin for cgroup events, if any:
3197 	 */
3198 	perf_event_context_sched_in(ctx, ctx->task);
3199 out:
3200 	local_irq_restore(flags);
3201 
3202 	if (clone_ctx)
3203 		put_ctx(clone_ctx);
3204 }
3205 
3206 void perf_event_exec(void)
3207 {
3208 	struct perf_event_context *ctx;
3209 	int ctxn;
3210 
3211 	rcu_read_lock();
3212 	for_each_task_context_nr(ctxn) {
3213 		ctx = current->perf_event_ctxp[ctxn];
3214 		if (!ctx)
3215 			continue;
3216 
3217 		perf_event_enable_on_exec(ctx);
3218 	}
3219 	rcu_read_unlock();
3220 }
3221 
3222 struct perf_read_data {
3223 	struct perf_event *event;
3224 	bool group;
3225 	int ret;
3226 };
3227 
3228 /*
3229  * Cross CPU call to read the hardware event
3230  */
3231 static void __perf_event_read(void *info)
3232 {
3233 	struct perf_read_data *data = info;
3234 	struct perf_event *sub, *event = data->event;
3235 	struct perf_event_context *ctx = event->ctx;
3236 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237 	struct pmu *pmu = event->pmu;
3238 
3239 	/*
3240 	 * If this is a task context, we need to check whether it is
3241 	 * the current task context of this cpu.  If not it has been
3242 	 * scheduled out before the smp call arrived.  In that case
3243 	 * event->count would have been updated to a recent sample
3244 	 * when the event was scheduled out.
3245 	 */
3246 	if (ctx->task && cpuctx->task_ctx != ctx)
3247 		return;
3248 
3249 	raw_spin_lock(&ctx->lock);
3250 	if (ctx->is_active) {
3251 		update_context_time(ctx);
3252 		update_cgrp_time_from_event(event);
3253 	}
3254 
3255 	update_event_times(event);
3256 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3257 		goto unlock;
3258 
3259 	if (!data->group) {
3260 		pmu->read(event);
3261 		data->ret = 0;
3262 		goto unlock;
3263 	}
3264 
3265 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266 
3267 	pmu->read(event);
3268 
3269 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270 		update_event_times(sub);
3271 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272 			/*
3273 			 * Use sibling's PMU rather than @event's since
3274 			 * sibling could be on different (eg: software) PMU.
3275 			 */
3276 			sub->pmu->read(sub);
3277 		}
3278 	}
3279 
3280 	data->ret = pmu->commit_txn(pmu);
3281 
3282 unlock:
3283 	raw_spin_unlock(&ctx->lock);
3284 }
3285 
3286 static inline u64 perf_event_count(struct perf_event *event)
3287 {
3288 	if (event->pmu->count)
3289 		return event->pmu->count(event);
3290 
3291 	return __perf_event_count(event);
3292 }
3293 
3294 /*
3295  * NMI-safe method to read a local event, that is an event that
3296  * is:
3297  *   - either for the current task, or for this CPU
3298  *   - does not have inherit set, for inherited task events
3299  *     will not be local and we cannot read them atomically
3300  *   - must not have a pmu::count method
3301  */
3302 u64 perf_event_read_local(struct perf_event *event)
3303 {
3304 	unsigned long flags;
3305 	u64 val;
3306 
3307 	/*
3308 	 * Disabling interrupts avoids all counter scheduling (context
3309 	 * switches, timer based rotation and IPIs).
3310 	 */
3311 	local_irq_save(flags);
3312 
3313 	/* If this is a per-task event, it must be for current */
3314 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315 		     event->hw.target != current);
3316 
3317 	/* If this is a per-CPU event, it must be for this CPU */
3318 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319 		     event->cpu != smp_processor_id());
3320 
3321 	/*
3322 	 * It must not be an event with inherit set, we cannot read
3323 	 * all child counters from atomic context.
3324 	 */
3325 	WARN_ON_ONCE(event->attr.inherit);
3326 
3327 	/*
3328 	 * It must not have a pmu::count method, those are not
3329 	 * NMI safe.
3330 	 */
3331 	WARN_ON_ONCE(event->pmu->count);
3332 
3333 	/*
3334 	 * If the event is currently on this CPU, its either a per-task event,
3335 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336 	 * oncpu == -1).
3337 	 */
3338 	if (event->oncpu == smp_processor_id())
3339 		event->pmu->read(event);
3340 
3341 	val = local64_read(&event->count);
3342 	local_irq_restore(flags);
3343 
3344 	return val;
3345 }
3346 
3347 static int perf_event_read(struct perf_event *event, bool group)
3348 {
3349 	int ret = 0;
3350 
3351 	/*
3352 	 * If event is enabled and currently active on a CPU, update the
3353 	 * value in the event structure:
3354 	 */
3355 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 		struct perf_read_data data = {
3357 			.event = event,
3358 			.group = group,
3359 			.ret = 0,
3360 		};
3361 		smp_call_function_single(event->oncpu,
3362 					 __perf_event_read, &data, 1);
3363 		ret = data.ret;
3364 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365 		struct perf_event_context *ctx = event->ctx;
3366 		unsigned long flags;
3367 
3368 		raw_spin_lock_irqsave(&ctx->lock, flags);
3369 		/*
3370 		 * may read while context is not active
3371 		 * (e.g., thread is blocked), in that case
3372 		 * we cannot update context time
3373 		 */
3374 		if (ctx->is_active) {
3375 			update_context_time(ctx);
3376 			update_cgrp_time_from_event(event);
3377 		}
3378 		if (group)
3379 			update_group_times(event);
3380 		else
3381 			update_event_times(event);
3382 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 	}
3384 
3385 	return ret;
3386 }
3387 
3388 /*
3389  * Initialize the perf_event context in a task_struct:
3390  */
3391 static void __perf_event_init_context(struct perf_event_context *ctx)
3392 {
3393 	raw_spin_lock_init(&ctx->lock);
3394 	mutex_init(&ctx->mutex);
3395 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 	INIT_LIST_HEAD(&ctx->pinned_groups);
3397 	INIT_LIST_HEAD(&ctx->flexible_groups);
3398 	INIT_LIST_HEAD(&ctx->event_list);
3399 	atomic_set(&ctx->refcount, 1);
3400 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3401 }
3402 
3403 static struct perf_event_context *
3404 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3405 {
3406 	struct perf_event_context *ctx;
3407 
3408 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3409 	if (!ctx)
3410 		return NULL;
3411 
3412 	__perf_event_init_context(ctx);
3413 	if (task) {
3414 		ctx->task = task;
3415 		get_task_struct(task);
3416 	}
3417 	ctx->pmu = pmu;
3418 
3419 	return ctx;
3420 }
3421 
3422 static struct task_struct *
3423 find_lively_task_by_vpid(pid_t vpid)
3424 {
3425 	struct task_struct *task;
3426 	int err;
3427 
3428 	rcu_read_lock();
3429 	if (!vpid)
3430 		task = current;
3431 	else
3432 		task = find_task_by_vpid(vpid);
3433 	if (task)
3434 		get_task_struct(task);
3435 	rcu_read_unlock();
3436 
3437 	if (!task)
3438 		return ERR_PTR(-ESRCH);
3439 
3440 	/* Reuse ptrace permission checks for now. */
3441 	err = -EACCES;
3442 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3443 		goto errout;
3444 
3445 	return task;
3446 errout:
3447 	put_task_struct(task);
3448 	return ERR_PTR(err);
3449 
3450 }
3451 
3452 /*
3453  * Returns a matching context with refcount and pincount.
3454  */
3455 static struct perf_event_context *
3456 find_get_context(struct pmu *pmu, struct task_struct *task,
3457 		struct perf_event *event)
3458 {
3459 	struct perf_event_context *ctx, *clone_ctx = NULL;
3460 	struct perf_cpu_context *cpuctx;
3461 	void *task_ctx_data = NULL;
3462 	unsigned long flags;
3463 	int ctxn, err;
3464 	int cpu = event->cpu;
3465 
3466 	if (!task) {
3467 		/* Must be root to operate on a CPU event: */
3468 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3469 			return ERR_PTR(-EACCES);
3470 
3471 		/*
3472 		 * We could be clever and allow to attach a event to an
3473 		 * offline CPU and activate it when the CPU comes up, but
3474 		 * that's for later.
3475 		 */
3476 		if (!cpu_online(cpu))
3477 			return ERR_PTR(-ENODEV);
3478 
3479 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3480 		ctx = &cpuctx->ctx;
3481 		get_ctx(ctx);
3482 		++ctx->pin_count;
3483 
3484 		return ctx;
3485 	}
3486 
3487 	err = -EINVAL;
3488 	ctxn = pmu->task_ctx_nr;
3489 	if (ctxn < 0)
3490 		goto errout;
3491 
3492 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3493 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3494 		if (!task_ctx_data) {
3495 			err = -ENOMEM;
3496 			goto errout;
3497 		}
3498 	}
3499 
3500 retry:
3501 	ctx = perf_lock_task_context(task, ctxn, &flags);
3502 	if (ctx) {
3503 		clone_ctx = unclone_ctx(ctx);
3504 		++ctx->pin_count;
3505 
3506 		if (task_ctx_data && !ctx->task_ctx_data) {
3507 			ctx->task_ctx_data = task_ctx_data;
3508 			task_ctx_data = NULL;
3509 		}
3510 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3511 
3512 		if (clone_ctx)
3513 			put_ctx(clone_ctx);
3514 	} else {
3515 		ctx = alloc_perf_context(pmu, task);
3516 		err = -ENOMEM;
3517 		if (!ctx)
3518 			goto errout;
3519 
3520 		if (task_ctx_data) {
3521 			ctx->task_ctx_data = task_ctx_data;
3522 			task_ctx_data = NULL;
3523 		}
3524 
3525 		err = 0;
3526 		mutex_lock(&task->perf_event_mutex);
3527 		/*
3528 		 * If it has already passed perf_event_exit_task().
3529 		 * we must see PF_EXITING, it takes this mutex too.
3530 		 */
3531 		if (task->flags & PF_EXITING)
3532 			err = -ESRCH;
3533 		else if (task->perf_event_ctxp[ctxn])
3534 			err = -EAGAIN;
3535 		else {
3536 			get_ctx(ctx);
3537 			++ctx->pin_count;
3538 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3539 		}
3540 		mutex_unlock(&task->perf_event_mutex);
3541 
3542 		if (unlikely(err)) {
3543 			put_ctx(ctx);
3544 
3545 			if (err == -EAGAIN)
3546 				goto retry;
3547 			goto errout;
3548 		}
3549 	}
3550 
3551 	kfree(task_ctx_data);
3552 	return ctx;
3553 
3554 errout:
3555 	kfree(task_ctx_data);
3556 	return ERR_PTR(err);
3557 }
3558 
3559 static void perf_event_free_filter(struct perf_event *event);
3560 static void perf_event_free_bpf_prog(struct perf_event *event);
3561 
3562 static void free_event_rcu(struct rcu_head *head)
3563 {
3564 	struct perf_event *event;
3565 
3566 	event = container_of(head, struct perf_event, rcu_head);
3567 	if (event->ns)
3568 		put_pid_ns(event->ns);
3569 	perf_event_free_filter(event);
3570 	kfree(event);
3571 }
3572 
3573 static void ring_buffer_attach(struct perf_event *event,
3574 			       struct ring_buffer *rb);
3575 
3576 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3577 {
3578 	if (event->parent)
3579 		return;
3580 
3581 	if (is_cgroup_event(event))
3582 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3583 }
3584 
3585 static void unaccount_event(struct perf_event *event)
3586 {
3587 	if (event->parent)
3588 		return;
3589 
3590 	if (event->attach_state & PERF_ATTACH_TASK)
3591 		static_key_slow_dec_deferred(&perf_sched_events);
3592 	if (event->attr.mmap || event->attr.mmap_data)
3593 		atomic_dec(&nr_mmap_events);
3594 	if (event->attr.comm)
3595 		atomic_dec(&nr_comm_events);
3596 	if (event->attr.task)
3597 		atomic_dec(&nr_task_events);
3598 	if (event->attr.freq)
3599 		atomic_dec(&nr_freq_events);
3600 	if (event->attr.context_switch) {
3601 		static_key_slow_dec_deferred(&perf_sched_events);
3602 		atomic_dec(&nr_switch_events);
3603 	}
3604 	if (is_cgroup_event(event))
3605 		static_key_slow_dec_deferred(&perf_sched_events);
3606 	if (has_branch_stack(event))
3607 		static_key_slow_dec_deferred(&perf_sched_events);
3608 
3609 	unaccount_event_cpu(event, event->cpu);
3610 }
3611 
3612 /*
3613  * The following implement mutual exclusion of events on "exclusive" pmus
3614  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3615  * at a time, so we disallow creating events that might conflict, namely:
3616  *
3617  *  1) cpu-wide events in the presence of per-task events,
3618  *  2) per-task events in the presence of cpu-wide events,
3619  *  3) two matching events on the same context.
3620  *
3621  * The former two cases are handled in the allocation path (perf_event_alloc(),
3622  * __free_event()), the latter -- before the first perf_install_in_context().
3623  */
3624 static int exclusive_event_init(struct perf_event *event)
3625 {
3626 	struct pmu *pmu = event->pmu;
3627 
3628 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3629 		return 0;
3630 
3631 	/*
3632 	 * Prevent co-existence of per-task and cpu-wide events on the
3633 	 * same exclusive pmu.
3634 	 *
3635 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3636 	 * events on this "exclusive" pmu, positive means there are
3637 	 * per-task events.
3638 	 *
3639 	 * Since this is called in perf_event_alloc() path, event::ctx
3640 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3641 	 * to mean "per-task event", because unlike other attach states it
3642 	 * never gets cleared.
3643 	 */
3644 	if (event->attach_state & PERF_ATTACH_TASK) {
3645 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3646 			return -EBUSY;
3647 	} else {
3648 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3649 			return -EBUSY;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static void exclusive_event_destroy(struct perf_event *event)
3656 {
3657 	struct pmu *pmu = event->pmu;
3658 
3659 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3660 		return;
3661 
3662 	/* see comment in exclusive_event_init() */
3663 	if (event->attach_state & PERF_ATTACH_TASK)
3664 		atomic_dec(&pmu->exclusive_cnt);
3665 	else
3666 		atomic_inc(&pmu->exclusive_cnt);
3667 }
3668 
3669 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3670 {
3671 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3672 	    (e1->cpu == e2->cpu ||
3673 	     e1->cpu == -1 ||
3674 	     e2->cpu == -1))
3675 		return true;
3676 	return false;
3677 }
3678 
3679 /* Called under the same ctx::mutex as perf_install_in_context() */
3680 static bool exclusive_event_installable(struct perf_event *event,
3681 					struct perf_event_context *ctx)
3682 {
3683 	struct perf_event *iter_event;
3684 	struct pmu *pmu = event->pmu;
3685 
3686 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3687 		return true;
3688 
3689 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3690 		if (exclusive_event_match(iter_event, event))
3691 			return false;
3692 	}
3693 
3694 	return true;
3695 }
3696 
3697 static void __free_event(struct perf_event *event)
3698 {
3699 	if (!event->parent) {
3700 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3701 			put_callchain_buffers();
3702 	}
3703 
3704 	perf_event_free_bpf_prog(event);
3705 
3706 	if (event->destroy)
3707 		event->destroy(event);
3708 
3709 	if (event->ctx)
3710 		put_ctx(event->ctx);
3711 
3712 	if (event->pmu) {
3713 		exclusive_event_destroy(event);
3714 		module_put(event->pmu->module);
3715 	}
3716 
3717 	call_rcu(&event->rcu_head, free_event_rcu);
3718 }
3719 
3720 static void _free_event(struct perf_event *event)
3721 {
3722 	irq_work_sync(&event->pending);
3723 
3724 	unaccount_event(event);
3725 
3726 	if (event->rb) {
3727 		/*
3728 		 * Can happen when we close an event with re-directed output.
3729 		 *
3730 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3731 		 * over us; possibly making our ring_buffer_put() the last.
3732 		 */
3733 		mutex_lock(&event->mmap_mutex);
3734 		ring_buffer_attach(event, NULL);
3735 		mutex_unlock(&event->mmap_mutex);
3736 	}
3737 
3738 	if (is_cgroup_event(event))
3739 		perf_detach_cgroup(event);
3740 
3741 	__free_event(event);
3742 }
3743 
3744 /*
3745  * Used to free events which have a known refcount of 1, such as in error paths
3746  * where the event isn't exposed yet and inherited events.
3747  */
3748 static void free_event(struct perf_event *event)
3749 {
3750 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3751 				"unexpected event refcount: %ld; ptr=%p\n",
3752 				atomic_long_read(&event->refcount), event)) {
3753 		/* leak to avoid use-after-free */
3754 		return;
3755 	}
3756 
3757 	_free_event(event);
3758 }
3759 
3760 /*
3761  * Remove user event from the owner task.
3762  */
3763 static void perf_remove_from_owner(struct perf_event *event)
3764 {
3765 	struct task_struct *owner;
3766 
3767 	rcu_read_lock();
3768 	owner = ACCESS_ONCE(event->owner);
3769 	/*
3770 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3771 	 * !owner it means the list deletion is complete and we can indeed
3772 	 * free this event, otherwise we need to serialize on
3773 	 * owner->perf_event_mutex.
3774 	 */
3775 	smp_read_barrier_depends();
3776 	if (owner) {
3777 		/*
3778 		 * Since delayed_put_task_struct() also drops the last
3779 		 * task reference we can safely take a new reference
3780 		 * while holding the rcu_read_lock().
3781 		 */
3782 		get_task_struct(owner);
3783 	}
3784 	rcu_read_unlock();
3785 
3786 	if (owner) {
3787 		/*
3788 		 * If we're here through perf_event_exit_task() we're already
3789 		 * holding ctx->mutex which would be an inversion wrt. the
3790 		 * normal lock order.
3791 		 *
3792 		 * However we can safely take this lock because its the child
3793 		 * ctx->mutex.
3794 		 */
3795 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3796 
3797 		/*
3798 		 * We have to re-check the event->owner field, if it is cleared
3799 		 * we raced with perf_event_exit_task(), acquiring the mutex
3800 		 * ensured they're done, and we can proceed with freeing the
3801 		 * event.
3802 		 */
3803 		if (event->owner)
3804 			list_del_init(&event->owner_entry);
3805 		mutex_unlock(&owner->perf_event_mutex);
3806 		put_task_struct(owner);
3807 	}
3808 }
3809 
3810 static void put_event(struct perf_event *event)
3811 {
3812 	struct perf_event_context *ctx;
3813 
3814 	if (!atomic_long_dec_and_test(&event->refcount))
3815 		return;
3816 
3817 	if (!is_kernel_event(event))
3818 		perf_remove_from_owner(event);
3819 
3820 	/*
3821 	 * There are two ways this annotation is useful:
3822 	 *
3823 	 *  1) there is a lock recursion from perf_event_exit_task
3824 	 *     see the comment there.
3825 	 *
3826 	 *  2) there is a lock-inversion with mmap_sem through
3827 	 *     perf_read_group(), which takes faults while
3828 	 *     holding ctx->mutex, however this is called after
3829 	 *     the last filedesc died, so there is no possibility
3830 	 *     to trigger the AB-BA case.
3831 	 */
3832 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3833 	WARN_ON_ONCE(ctx->parent_ctx);
3834 	perf_remove_from_context(event, true);
3835 	perf_event_ctx_unlock(event, ctx);
3836 
3837 	_free_event(event);
3838 }
3839 
3840 int perf_event_release_kernel(struct perf_event *event)
3841 {
3842 	put_event(event);
3843 	return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3846 
3847 /*
3848  * Called when the last reference to the file is gone.
3849  */
3850 static int perf_release(struct inode *inode, struct file *file)
3851 {
3852 	put_event(file->private_data);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * Remove all orphanes events from the context.
3858  */
3859 static void orphans_remove_work(struct work_struct *work)
3860 {
3861 	struct perf_event_context *ctx;
3862 	struct perf_event *event, *tmp;
3863 
3864 	ctx = container_of(work, struct perf_event_context,
3865 			   orphans_remove.work);
3866 
3867 	mutex_lock(&ctx->mutex);
3868 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3869 		struct perf_event *parent_event = event->parent;
3870 
3871 		if (!is_orphaned_child(event))
3872 			continue;
3873 
3874 		perf_remove_from_context(event, true);
3875 
3876 		mutex_lock(&parent_event->child_mutex);
3877 		list_del_init(&event->child_list);
3878 		mutex_unlock(&parent_event->child_mutex);
3879 
3880 		free_event(event);
3881 		put_event(parent_event);
3882 	}
3883 
3884 	raw_spin_lock_irq(&ctx->lock);
3885 	ctx->orphans_remove_sched = false;
3886 	raw_spin_unlock_irq(&ctx->lock);
3887 	mutex_unlock(&ctx->mutex);
3888 
3889 	put_ctx(ctx);
3890 }
3891 
3892 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3893 {
3894 	struct perf_event *child;
3895 	u64 total = 0;
3896 
3897 	*enabled = 0;
3898 	*running = 0;
3899 
3900 	mutex_lock(&event->child_mutex);
3901 
3902 	(void)perf_event_read(event, false);
3903 	total += perf_event_count(event);
3904 
3905 	*enabled += event->total_time_enabled +
3906 			atomic64_read(&event->child_total_time_enabled);
3907 	*running += event->total_time_running +
3908 			atomic64_read(&event->child_total_time_running);
3909 
3910 	list_for_each_entry(child, &event->child_list, child_list) {
3911 		(void)perf_event_read(child, false);
3912 		total += perf_event_count(child);
3913 		*enabled += child->total_time_enabled;
3914 		*running += child->total_time_running;
3915 	}
3916 	mutex_unlock(&event->child_mutex);
3917 
3918 	return total;
3919 }
3920 EXPORT_SYMBOL_GPL(perf_event_read_value);
3921 
3922 static int __perf_read_group_add(struct perf_event *leader,
3923 					u64 read_format, u64 *values)
3924 {
3925 	struct perf_event *sub;
3926 	int n = 1; /* skip @nr */
3927 	int ret;
3928 
3929 	ret = perf_event_read(leader, true);
3930 	if (ret)
3931 		return ret;
3932 
3933 	/*
3934 	 * Since we co-schedule groups, {enabled,running} times of siblings
3935 	 * will be identical to those of the leader, so we only publish one
3936 	 * set.
3937 	 */
3938 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3939 		values[n++] += leader->total_time_enabled +
3940 			atomic64_read(&leader->child_total_time_enabled);
3941 	}
3942 
3943 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3944 		values[n++] += leader->total_time_running +
3945 			atomic64_read(&leader->child_total_time_running);
3946 	}
3947 
3948 	/*
3949 	 * Write {count,id} tuples for every sibling.
3950 	 */
3951 	values[n++] += perf_event_count(leader);
3952 	if (read_format & PERF_FORMAT_ID)
3953 		values[n++] = primary_event_id(leader);
3954 
3955 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3956 		values[n++] += perf_event_count(sub);
3957 		if (read_format & PERF_FORMAT_ID)
3958 			values[n++] = primary_event_id(sub);
3959 	}
3960 
3961 	return 0;
3962 }
3963 
3964 static int perf_read_group(struct perf_event *event,
3965 				   u64 read_format, char __user *buf)
3966 {
3967 	struct perf_event *leader = event->group_leader, *child;
3968 	struct perf_event_context *ctx = leader->ctx;
3969 	int ret;
3970 	u64 *values;
3971 
3972 	lockdep_assert_held(&ctx->mutex);
3973 
3974 	values = kzalloc(event->read_size, GFP_KERNEL);
3975 	if (!values)
3976 		return -ENOMEM;
3977 
3978 	values[0] = 1 + leader->nr_siblings;
3979 
3980 	/*
3981 	 * By locking the child_mutex of the leader we effectively
3982 	 * lock the child list of all siblings.. XXX explain how.
3983 	 */
3984 	mutex_lock(&leader->child_mutex);
3985 
3986 	ret = __perf_read_group_add(leader, read_format, values);
3987 	if (ret)
3988 		goto unlock;
3989 
3990 	list_for_each_entry(child, &leader->child_list, child_list) {
3991 		ret = __perf_read_group_add(child, read_format, values);
3992 		if (ret)
3993 			goto unlock;
3994 	}
3995 
3996 	mutex_unlock(&leader->child_mutex);
3997 
3998 	ret = event->read_size;
3999 	if (copy_to_user(buf, values, event->read_size))
4000 		ret = -EFAULT;
4001 	goto out;
4002 
4003 unlock:
4004 	mutex_unlock(&leader->child_mutex);
4005 out:
4006 	kfree(values);
4007 	return ret;
4008 }
4009 
4010 static int perf_read_one(struct perf_event *event,
4011 				 u64 read_format, char __user *buf)
4012 {
4013 	u64 enabled, running;
4014 	u64 values[4];
4015 	int n = 0;
4016 
4017 	values[n++] = perf_event_read_value(event, &enabled, &running);
4018 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4019 		values[n++] = enabled;
4020 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4021 		values[n++] = running;
4022 	if (read_format & PERF_FORMAT_ID)
4023 		values[n++] = primary_event_id(event);
4024 
4025 	if (copy_to_user(buf, values, n * sizeof(u64)))
4026 		return -EFAULT;
4027 
4028 	return n * sizeof(u64);
4029 }
4030 
4031 static bool is_event_hup(struct perf_event *event)
4032 {
4033 	bool no_children;
4034 
4035 	if (event->state != PERF_EVENT_STATE_EXIT)
4036 		return false;
4037 
4038 	mutex_lock(&event->child_mutex);
4039 	no_children = list_empty(&event->child_list);
4040 	mutex_unlock(&event->child_mutex);
4041 	return no_children;
4042 }
4043 
4044 /*
4045  * Read the performance event - simple non blocking version for now
4046  */
4047 static ssize_t
4048 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4049 {
4050 	u64 read_format = event->attr.read_format;
4051 	int ret;
4052 
4053 	/*
4054 	 * Return end-of-file for a read on a event that is in
4055 	 * error state (i.e. because it was pinned but it couldn't be
4056 	 * scheduled on to the CPU at some point).
4057 	 */
4058 	if (event->state == PERF_EVENT_STATE_ERROR)
4059 		return 0;
4060 
4061 	if (count < event->read_size)
4062 		return -ENOSPC;
4063 
4064 	WARN_ON_ONCE(event->ctx->parent_ctx);
4065 	if (read_format & PERF_FORMAT_GROUP)
4066 		ret = perf_read_group(event, read_format, buf);
4067 	else
4068 		ret = perf_read_one(event, read_format, buf);
4069 
4070 	return ret;
4071 }
4072 
4073 static ssize_t
4074 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4075 {
4076 	struct perf_event *event = file->private_data;
4077 	struct perf_event_context *ctx;
4078 	int ret;
4079 
4080 	ctx = perf_event_ctx_lock(event);
4081 	ret = __perf_read(event, buf, count);
4082 	perf_event_ctx_unlock(event, ctx);
4083 
4084 	return ret;
4085 }
4086 
4087 static unsigned int perf_poll(struct file *file, poll_table *wait)
4088 {
4089 	struct perf_event *event = file->private_data;
4090 	struct ring_buffer *rb;
4091 	unsigned int events = POLLHUP;
4092 
4093 	poll_wait(file, &event->waitq, wait);
4094 
4095 	if (is_event_hup(event))
4096 		return events;
4097 
4098 	/*
4099 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4100 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4101 	 */
4102 	mutex_lock(&event->mmap_mutex);
4103 	rb = event->rb;
4104 	if (rb)
4105 		events = atomic_xchg(&rb->poll, 0);
4106 	mutex_unlock(&event->mmap_mutex);
4107 	return events;
4108 }
4109 
4110 static void _perf_event_reset(struct perf_event *event)
4111 {
4112 	(void)perf_event_read(event, false);
4113 	local64_set(&event->count, 0);
4114 	perf_event_update_userpage(event);
4115 }
4116 
4117 /*
4118  * Holding the top-level event's child_mutex means that any
4119  * descendant process that has inherited this event will block
4120  * in sync_child_event if it goes to exit, thus satisfying the
4121  * task existence requirements of perf_event_enable/disable.
4122  */
4123 static void perf_event_for_each_child(struct perf_event *event,
4124 					void (*func)(struct perf_event *))
4125 {
4126 	struct perf_event *child;
4127 
4128 	WARN_ON_ONCE(event->ctx->parent_ctx);
4129 
4130 	mutex_lock(&event->child_mutex);
4131 	func(event);
4132 	list_for_each_entry(child, &event->child_list, child_list)
4133 		func(child);
4134 	mutex_unlock(&event->child_mutex);
4135 }
4136 
4137 static void perf_event_for_each(struct perf_event *event,
4138 				  void (*func)(struct perf_event *))
4139 {
4140 	struct perf_event_context *ctx = event->ctx;
4141 	struct perf_event *sibling;
4142 
4143 	lockdep_assert_held(&ctx->mutex);
4144 
4145 	event = event->group_leader;
4146 
4147 	perf_event_for_each_child(event, func);
4148 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4149 		perf_event_for_each_child(sibling, func);
4150 }
4151 
4152 struct period_event {
4153 	struct perf_event *event;
4154 	u64 value;
4155 };
4156 
4157 static int __perf_event_period(void *info)
4158 {
4159 	struct period_event *pe = info;
4160 	struct perf_event *event = pe->event;
4161 	struct perf_event_context *ctx = event->ctx;
4162 	u64 value = pe->value;
4163 	bool active;
4164 
4165 	raw_spin_lock(&ctx->lock);
4166 	if (event->attr.freq) {
4167 		event->attr.sample_freq = value;
4168 	} else {
4169 		event->attr.sample_period = value;
4170 		event->hw.sample_period = value;
4171 	}
4172 
4173 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4174 	if (active) {
4175 		perf_pmu_disable(ctx->pmu);
4176 		event->pmu->stop(event, PERF_EF_UPDATE);
4177 	}
4178 
4179 	local64_set(&event->hw.period_left, 0);
4180 
4181 	if (active) {
4182 		event->pmu->start(event, PERF_EF_RELOAD);
4183 		perf_pmu_enable(ctx->pmu);
4184 	}
4185 	raw_spin_unlock(&ctx->lock);
4186 
4187 	return 0;
4188 }
4189 
4190 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4191 {
4192 	struct period_event pe = { .event = event, };
4193 	struct perf_event_context *ctx = event->ctx;
4194 	struct task_struct *task;
4195 	u64 value;
4196 
4197 	if (!is_sampling_event(event))
4198 		return -EINVAL;
4199 
4200 	if (copy_from_user(&value, arg, sizeof(value)))
4201 		return -EFAULT;
4202 
4203 	if (!value)
4204 		return -EINVAL;
4205 
4206 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4207 		return -EINVAL;
4208 
4209 	task = ctx->task;
4210 	pe.value = value;
4211 
4212 	if (!task) {
4213 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4214 		return 0;
4215 	}
4216 
4217 retry:
4218 	if (!task_function_call(task, __perf_event_period, &pe))
4219 		return 0;
4220 
4221 	raw_spin_lock_irq(&ctx->lock);
4222 	if (ctx->is_active) {
4223 		raw_spin_unlock_irq(&ctx->lock);
4224 		task = ctx->task;
4225 		goto retry;
4226 	}
4227 
4228 	if (event->attr.freq) {
4229 		event->attr.sample_freq = value;
4230 	} else {
4231 		event->attr.sample_period = value;
4232 		event->hw.sample_period = value;
4233 	}
4234 
4235 	local64_set(&event->hw.period_left, 0);
4236 	raw_spin_unlock_irq(&ctx->lock);
4237 
4238 	return 0;
4239 }
4240 
4241 static const struct file_operations perf_fops;
4242 
4243 static inline int perf_fget_light(int fd, struct fd *p)
4244 {
4245 	struct fd f = fdget(fd);
4246 	if (!f.file)
4247 		return -EBADF;
4248 
4249 	if (f.file->f_op != &perf_fops) {
4250 		fdput(f);
4251 		return -EBADF;
4252 	}
4253 	*p = f;
4254 	return 0;
4255 }
4256 
4257 static int perf_event_set_output(struct perf_event *event,
4258 				 struct perf_event *output_event);
4259 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4260 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4261 
4262 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4263 {
4264 	void (*func)(struct perf_event *);
4265 	u32 flags = arg;
4266 
4267 	switch (cmd) {
4268 	case PERF_EVENT_IOC_ENABLE:
4269 		func = _perf_event_enable;
4270 		break;
4271 	case PERF_EVENT_IOC_DISABLE:
4272 		func = _perf_event_disable;
4273 		break;
4274 	case PERF_EVENT_IOC_RESET:
4275 		func = _perf_event_reset;
4276 		break;
4277 
4278 	case PERF_EVENT_IOC_REFRESH:
4279 		return _perf_event_refresh(event, arg);
4280 
4281 	case PERF_EVENT_IOC_PERIOD:
4282 		return perf_event_period(event, (u64 __user *)arg);
4283 
4284 	case PERF_EVENT_IOC_ID:
4285 	{
4286 		u64 id = primary_event_id(event);
4287 
4288 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4289 			return -EFAULT;
4290 		return 0;
4291 	}
4292 
4293 	case PERF_EVENT_IOC_SET_OUTPUT:
4294 	{
4295 		int ret;
4296 		if (arg != -1) {
4297 			struct perf_event *output_event;
4298 			struct fd output;
4299 			ret = perf_fget_light(arg, &output);
4300 			if (ret)
4301 				return ret;
4302 			output_event = output.file->private_data;
4303 			ret = perf_event_set_output(event, output_event);
4304 			fdput(output);
4305 		} else {
4306 			ret = perf_event_set_output(event, NULL);
4307 		}
4308 		return ret;
4309 	}
4310 
4311 	case PERF_EVENT_IOC_SET_FILTER:
4312 		return perf_event_set_filter(event, (void __user *)arg);
4313 
4314 	case PERF_EVENT_IOC_SET_BPF:
4315 		return perf_event_set_bpf_prog(event, arg);
4316 
4317 	default:
4318 		return -ENOTTY;
4319 	}
4320 
4321 	if (flags & PERF_IOC_FLAG_GROUP)
4322 		perf_event_for_each(event, func);
4323 	else
4324 		perf_event_for_each_child(event, func);
4325 
4326 	return 0;
4327 }
4328 
4329 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4330 {
4331 	struct perf_event *event = file->private_data;
4332 	struct perf_event_context *ctx;
4333 	long ret;
4334 
4335 	ctx = perf_event_ctx_lock(event);
4336 	ret = _perf_ioctl(event, cmd, arg);
4337 	perf_event_ctx_unlock(event, ctx);
4338 
4339 	return ret;
4340 }
4341 
4342 #ifdef CONFIG_COMPAT
4343 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4344 				unsigned long arg)
4345 {
4346 	switch (_IOC_NR(cmd)) {
4347 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4348 	case _IOC_NR(PERF_EVENT_IOC_ID):
4349 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4350 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4351 			cmd &= ~IOCSIZE_MASK;
4352 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4353 		}
4354 		break;
4355 	}
4356 	return perf_ioctl(file, cmd, arg);
4357 }
4358 #else
4359 # define perf_compat_ioctl NULL
4360 #endif
4361 
4362 int perf_event_task_enable(void)
4363 {
4364 	struct perf_event_context *ctx;
4365 	struct perf_event *event;
4366 
4367 	mutex_lock(&current->perf_event_mutex);
4368 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4369 		ctx = perf_event_ctx_lock(event);
4370 		perf_event_for_each_child(event, _perf_event_enable);
4371 		perf_event_ctx_unlock(event, ctx);
4372 	}
4373 	mutex_unlock(&current->perf_event_mutex);
4374 
4375 	return 0;
4376 }
4377 
4378 int perf_event_task_disable(void)
4379 {
4380 	struct perf_event_context *ctx;
4381 	struct perf_event *event;
4382 
4383 	mutex_lock(&current->perf_event_mutex);
4384 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4385 		ctx = perf_event_ctx_lock(event);
4386 		perf_event_for_each_child(event, _perf_event_disable);
4387 		perf_event_ctx_unlock(event, ctx);
4388 	}
4389 	mutex_unlock(&current->perf_event_mutex);
4390 
4391 	return 0;
4392 }
4393 
4394 static int perf_event_index(struct perf_event *event)
4395 {
4396 	if (event->hw.state & PERF_HES_STOPPED)
4397 		return 0;
4398 
4399 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4400 		return 0;
4401 
4402 	return event->pmu->event_idx(event);
4403 }
4404 
4405 static void calc_timer_values(struct perf_event *event,
4406 				u64 *now,
4407 				u64 *enabled,
4408 				u64 *running)
4409 {
4410 	u64 ctx_time;
4411 
4412 	*now = perf_clock();
4413 	ctx_time = event->shadow_ctx_time + *now;
4414 	*enabled = ctx_time - event->tstamp_enabled;
4415 	*running = ctx_time - event->tstamp_running;
4416 }
4417 
4418 static void perf_event_init_userpage(struct perf_event *event)
4419 {
4420 	struct perf_event_mmap_page *userpg;
4421 	struct ring_buffer *rb;
4422 
4423 	rcu_read_lock();
4424 	rb = rcu_dereference(event->rb);
4425 	if (!rb)
4426 		goto unlock;
4427 
4428 	userpg = rb->user_page;
4429 
4430 	/* Allow new userspace to detect that bit 0 is deprecated */
4431 	userpg->cap_bit0_is_deprecated = 1;
4432 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4433 	userpg->data_offset = PAGE_SIZE;
4434 	userpg->data_size = perf_data_size(rb);
4435 
4436 unlock:
4437 	rcu_read_unlock();
4438 }
4439 
4440 void __weak arch_perf_update_userpage(
4441 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4442 {
4443 }
4444 
4445 /*
4446  * Callers need to ensure there can be no nesting of this function, otherwise
4447  * the seqlock logic goes bad. We can not serialize this because the arch
4448  * code calls this from NMI context.
4449  */
4450 void perf_event_update_userpage(struct perf_event *event)
4451 {
4452 	struct perf_event_mmap_page *userpg;
4453 	struct ring_buffer *rb;
4454 	u64 enabled, running, now;
4455 
4456 	rcu_read_lock();
4457 	rb = rcu_dereference(event->rb);
4458 	if (!rb)
4459 		goto unlock;
4460 
4461 	/*
4462 	 * compute total_time_enabled, total_time_running
4463 	 * based on snapshot values taken when the event
4464 	 * was last scheduled in.
4465 	 *
4466 	 * we cannot simply called update_context_time()
4467 	 * because of locking issue as we can be called in
4468 	 * NMI context
4469 	 */
4470 	calc_timer_values(event, &now, &enabled, &running);
4471 
4472 	userpg = rb->user_page;
4473 	/*
4474 	 * Disable preemption so as to not let the corresponding user-space
4475 	 * spin too long if we get preempted.
4476 	 */
4477 	preempt_disable();
4478 	++userpg->lock;
4479 	barrier();
4480 	userpg->index = perf_event_index(event);
4481 	userpg->offset = perf_event_count(event);
4482 	if (userpg->index)
4483 		userpg->offset -= local64_read(&event->hw.prev_count);
4484 
4485 	userpg->time_enabled = enabled +
4486 			atomic64_read(&event->child_total_time_enabled);
4487 
4488 	userpg->time_running = running +
4489 			atomic64_read(&event->child_total_time_running);
4490 
4491 	arch_perf_update_userpage(event, userpg, now);
4492 
4493 	barrier();
4494 	++userpg->lock;
4495 	preempt_enable();
4496 unlock:
4497 	rcu_read_unlock();
4498 }
4499 
4500 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4501 {
4502 	struct perf_event *event = vma->vm_file->private_data;
4503 	struct ring_buffer *rb;
4504 	int ret = VM_FAULT_SIGBUS;
4505 
4506 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4507 		if (vmf->pgoff == 0)
4508 			ret = 0;
4509 		return ret;
4510 	}
4511 
4512 	rcu_read_lock();
4513 	rb = rcu_dereference(event->rb);
4514 	if (!rb)
4515 		goto unlock;
4516 
4517 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4518 		goto unlock;
4519 
4520 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4521 	if (!vmf->page)
4522 		goto unlock;
4523 
4524 	get_page(vmf->page);
4525 	vmf->page->mapping = vma->vm_file->f_mapping;
4526 	vmf->page->index   = vmf->pgoff;
4527 
4528 	ret = 0;
4529 unlock:
4530 	rcu_read_unlock();
4531 
4532 	return ret;
4533 }
4534 
4535 static void ring_buffer_attach(struct perf_event *event,
4536 			       struct ring_buffer *rb)
4537 {
4538 	struct ring_buffer *old_rb = NULL;
4539 	unsigned long flags;
4540 
4541 	if (event->rb) {
4542 		/*
4543 		 * Should be impossible, we set this when removing
4544 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4545 		 */
4546 		WARN_ON_ONCE(event->rcu_pending);
4547 
4548 		old_rb = event->rb;
4549 		spin_lock_irqsave(&old_rb->event_lock, flags);
4550 		list_del_rcu(&event->rb_entry);
4551 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4552 
4553 		event->rcu_batches = get_state_synchronize_rcu();
4554 		event->rcu_pending = 1;
4555 	}
4556 
4557 	if (rb) {
4558 		if (event->rcu_pending) {
4559 			cond_synchronize_rcu(event->rcu_batches);
4560 			event->rcu_pending = 0;
4561 		}
4562 
4563 		spin_lock_irqsave(&rb->event_lock, flags);
4564 		list_add_rcu(&event->rb_entry, &rb->event_list);
4565 		spin_unlock_irqrestore(&rb->event_lock, flags);
4566 	}
4567 
4568 	rcu_assign_pointer(event->rb, rb);
4569 
4570 	if (old_rb) {
4571 		ring_buffer_put(old_rb);
4572 		/*
4573 		 * Since we detached before setting the new rb, so that we
4574 		 * could attach the new rb, we could have missed a wakeup.
4575 		 * Provide it now.
4576 		 */
4577 		wake_up_all(&event->waitq);
4578 	}
4579 }
4580 
4581 static void ring_buffer_wakeup(struct perf_event *event)
4582 {
4583 	struct ring_buffer *rb;
4584 
4585 	rcu_read_lock();
4586 	rb = rcu_dereference(event->rb);
4587 	if (rb) {
4588 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4589 			wake_up_all(&event->waitq);
4590 	}
4591 	rcu_read_unlock();
4592 }
4593 
4594 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4595 {
4596 	struct ring_buffer *rb;
4597 
4598 	rcu_read_lock();
4599 	rb = rcu_dereference(event->rb);
4600 	if (rb) {
4601 		if (!atomic_inc_not_zero(&rb->refcount))
4602 			rb = NULL;
4603 	}
4604 	rcu_read_unlock();
4605 
4606 	return rb;
4607 }
4608 
4609 void ring_buffer_put(struct ring_buffer *rb)
4610 {
4611 	if (!atomic_dec_and_test(&rb->refcount))
4612 		return;
4613 
4614 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4615 
4616 	call_rcu(&rb->rcu_head, rb_free_rcu);
4617 }
4618 
4619 static void perf_mmap_open(struct vm_area_struct *vma)
4620 {
4621 	struct perf_event *event = vma->vm_file->private_data;
4622 
4623 	atomic_inc(&event->mmap_count);
4624 	atomic_inc(&event->rb->mmap_count);
4625 
4626 	if (vma->vm_pgoff)
4627 		atomic_inc(&event->rb->aux_mmap_count);
4628 
4629 	if (event->pmu->event_mapped)
4630 		event->pmu->event_mapped(event);
4631 }
4632 
4633 /*
4634  * A buffer can be mmap()ed multiple times; either directly through the same
4635  * event, or through other events by use of perf_event_set_output().
4636  *
4637  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4638  * the buffer here, where we still have a VM context. This means we need
4639  * to detach all events redirecting to us.
4640  */
4641 static void perf_mmap_close(struct vm_area_struct *vma)
4642 {
4643 	struct perf_event *event = vma->vm_file->private_data;
4644 
4645 	struct ring_buffer *rb = ring_buffer_get(event);
4646 	struct user_struct *mmap_user = rb->mmap_user;
4647 	int mmap_locked = rb->mmap_locked;
4648 	unsigned long size = perf_data_size(rb);
4649 
4650 	if (event->pmu->event_unmapped)
4651 		event->pmu->event_unmapped(event);
4652 
4653 	/*
4654 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4655 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4656 	 * serialize with perf_mmap here.
4657 	 */
4658 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4659 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4660 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4661 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4662 
4663 		rb_free_aux(rb);
4664 		mutex_unlock(&event->mmap_mutex);
4665 	}
4666 
4667 	atomic_dec(&rb->mmap_count);
4668 
4669 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4670 		goto out_put;
4671 
4672 	ring_buffer_attach(event, NULL);
4673 	mutex_unlock(&event->mmap_mutex);
4674 
4675 	/* If there's still other mmap()s of this buffer, we're done. */
4676 	if (atomic_read(&rb->mmap_count))
4677 		goto out_put;
4678 
4679 	/*
4680 	 * No other mmap()s, detach from all other events that might redirect
4681 	 * into the now unreachable buffer. Somewhat complicated by the
4682 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4683 	 */
4684 again:
4685 	rcu_read_lock();
4686 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4687 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4688 			/*
4689 			 * This event is en-route to free_event() which will
4690 			 * detach it and remove it from the list.
4691 			 */
4692 			continue;
4693 		}
4694 		rcu_read_unlock();
4695 
4696 		mutex_lock(&event->mmap_mutex);
4697 		/*
4698 		 * Check we didn't race with perf_event_set_output() which can
4699 		 * swizzle the rb from under us while we were waiting to
4700 		 * acquire mmap_mutex.
4701 		 *
4702 		 * If we find a different rb; ignore this event, a next
4703 		 * iteration will no longer find it on the list. We have to
4704 		 * still restart the iteration to make sure we're not now
4705 		 * iterating the wrong list.
4706 		 */
4707 		if (event->rb == rb)
4708 			ring_buffer_attach(event, NULL);
4709 
4710 		mutex_unlock(&event->mmap_mutex);
4711 		put_event(event);
4712 
4713 		/*
4714 		 * Restart the iteration; either we're on the wrong list or
4715 		 * destroyed its integrity by doing a deletion.
4716 		 */
4717 		goto again;
4718 	}
4719 	rcu_read_unlock();
4720 
4721 	/*
4722 	 * It could be there's still a few 0-ref events on the list; they'll
4723 	 * get cleaned up by free_event() -- they'll also still have their
4724 	 * ref on the rb and will free it whenever they are done with it.
4725 	 *
4726 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4727 	 * undo the VM accounting.
4728 	 */
4729 
4730 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4731 	vma->vm_mm->pinned_vm -= mmap_locked;
4732 	free_uid(mmap_user);
4733 
4734 out_put:
4735 	ring_buffer_put(rb); /* could be last */
4736 }
4737 
4738 static const struct vm_operations_struct perf_mmap_vmops = {
4739 	.open		= perf_mmap_open,
4740 	.close		= perf_mmap_close, /* non mergable */
4741 	.fault		= perf_mmap_fault,
4742 	.page_mkwrite	= perf_mmap_fault,
4743 };
4744 
4745 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4746 {
4747 	struct perf_event *event = file->private_data;
4748 	unsigned long user_locked, user_lock_limit;
4749 	struct user_struct *user = current_user();
4750 	unsigned long locked, lock_limit;
4751 	struct ring_buffer *rb = NULL;
4752 	unsigned long vma_size;
4753 	unsigned long nr_pages;
4754 	long user_extra = 0, extra = 0;
4755 	int ret = 0, flags = 0;
4756 
4757 	/*
4758 	 * Don't allow mmap() of inherited per-task counters. This would
4759 	 * create a performance issue due to all children writing to the
4760 	 * same rb.
4761 	 */
4762 	if (event->cpu == -1 && event->attr.inherit)
4763 		return -EINVAL;
4764 
4765 	if (!(vma->vm_flags & VM_SHARED))
4766 		return -EINVAL;
4767 
4768 	vma_size = vma->vm_end - vma->vm_start;
4769 
4770 	if (vma->vm_pgoff == 0) {
4771 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4772 	} else {
4773 		/*
4774 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4775 		 * mapped, all subsequent mappings should have the same size
4776 		 * and offset. Must be above the normal perf buffer.
4777 		 */
4778 		u64 aux_offset, aux_size;
4779 
4780 		if (!event->rb)
4781 			return -EINVAL;
4782 
4783 		nr_pages = vma_size / PAGE_SIZE;
4784 
4785 		mutex_lock(&event->mmap_mutex);
4786 		ret = -EINVAL;
4787 
4788 		rb = event->rb;
4789 		if (!rb)
4790 			goto aux_unlock;
4791 
4792 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4793 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4794 
4795 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4796 			goto aux_unlock;
4797 
4798 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4799 			goto aux_unlock;
4800 
4801 		/* already mapped with a different offset */
4802 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4803 			goto aux_unlock;
4804 
4805 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4806 			goto aux_unlock;
4807 
4808 		/* already mapped with a different size */
4809 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4810 			goto aux_unlock;
4811 
4812 		if (!is_power_of_2(nr_pages))
4813 			goto aux_unlock;
4814 
4815 		if (!atomic_inc_not_zero(&rb->mmap_count))
4816 			goto aux_unlock;
4817 
4818 		if (rb_has_aux(rb)) {
4819 			atomic_inc(&rb->aux_mmap_count);
4820 			ret = 0;
4821 			goto unlock;
4822 		}
4823 
4824 		atomic_set(&rb->aux_mmap_count, 1);
4825 		user_extra = nr_pages;
4826 
4827 		goto accounting;
4828 	}
4829 
4830 	/*
4831 	 * If we have rb pages ensure they're a power-of-two number, so we
4832 	 * can do bitmasks instead of modulo.
4833 	 */
4834 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4835 		return -EINVAL;
4836 
4837 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4838 		return -EINVAL;
4839 
4840 	WARN_ON_ONCE(event->ctx->parent_ctx);
4841 again:
4842 	mutex_lock(&event->mmap_mutex);
4843 	if (event->rb) {
4844 		if (event->rb->nr_pages != nr_pages) {
4845 			ret = -EINVAL;
4846 			goto unlock;
4847 		}
4848 
4849 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4850 			/*
4851 			 * Raced against perf_mmap_close() through
4852 			 * perf_event_set_output(). Try again, hope for better
4853 			 * luck.
4854 			 */
4855 			mutex_unlock(&event->mmap_mutex);
4856 			goto again;
4857 		}
4858 
4859 		goto unlock;
4860 	}
4861 
4862 	user_extra = nr_pages + 1;
4863 
4864 accounting:
4865 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4866 
4867 	/*
4868 	 * Increase the limit linearly with more CPUs:
4869 	 */
4870 	user_lock_limit *= num_online_cpus();
4871 
4872 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4873 
4874 	if (user_locked > user_lock_limit)
4875 		extra = user_locked - user_lock_limit;
4876 
4877 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4878 	lock_limit >>= PAGE_SHIFT;
4879 	locked = vma->vm_mm->pinned_vm + extra;
4880 
4881 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4882 		!capable(CAP_IPC_LOCK)) {
4883 		ret = -EPERM;
4884 		goto unlock;
4885 	}
4886 
4887 	WARN_ON(!rb && event->rb);
4888 
4889 	if (vma->vm_flags & VM_WRITE)
4890 		flags |= RING_BUFFER_WRITABLE;
4891 
4892 	if (!rb) {
4893 		rb = rb_alloc(nr_pages,
4894 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4895 			      event->cpu, flags);
4896 
4897 		if (!rb) {
4898 			ret = -ENOMEM;
4899 			goto unlock;
4900 		}
4901 
4902 		atomic_set(&rb->mmap_count, 1);
4903 		rb->mmap_user = get_current_user();
4904 		rb->mmap_locked = extra;
4905 
4906 		ring_buffer_attach(event, rb);
4907 
4908 		perf_event_init_userpage(event);
4909 		perf_event_update_userpage(event);
4910 	} else {
4911 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4912 				   event->attr.aux_watermark, flags);
4913 		if (!ret)
4914 			rb->aux_mmap_locked = extra;
4915 	}
4916 
4917 unlock:
4918 	if (!ret) {
4919 		atomic_long_add(user_extra, &user->locked_vm);
4920 		vma->vm_mm->pinned_vm += extra;
4921 
4922 		atomic_inc(&event->mmap_count);
4923 	} else if (rb) {
4924 		atomic_dec(&rb->mmap_count);
4925 	}
4926 aux_unlock:
4927 	mutex_unlock(&event->mmap_mutex);
4928 
4929 	/*
4930 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4931 	 * vma.
4932 	 */
4933 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4934 	vma->vm_ops = &perf_mmap_vmops;
4935 
4936 	if (event->pmu->event_mapped)
4937 		event->pmu->event_mapped(event);
4938 
4939 	return ret;
4940 }
4941 
4942 static int perf_fasync(int fd, struct file *filp, int on)
4943 {
4944 	struct inode *inode = file_inode(filp);
4945 	struct perf_event *event = filp->private_data;
4946 	int retval;
4947 
4948 	mutex_lock(&inode->i_mutex);
4949 	retval = fasync_helper(fd, filp, on, &event->fasync);
4950 	mutex_unlock(&inode->i_mutex);
4951 
4952 	if (retval < 0)
4953 		return retval;
4954 
4955 	return 0;
4956 }
4957 
4958 static const struct file_operations perf_fops = {
4959 	.llseek			= no_llseek,
4960 	.release		= perf_release,
4961 	.read			= perf_read,
4962 	.poll			= perf_poll,
4963 	.unlocked_ioctl		= perf_ioctl,
4964 	.compat_ioctl		= perf_compat_ioctl,
4965 	.mmap			= perf_mmap,
4966 	.fasync			= perf_fasync,
4967 };
4968 
4969 /*
4970  * Perf event wakeup
4971  *
4972  * If there's data, ensure we set the poll() state and publish everything
4973  * to user-space before waking everybody up.
4974  */
4975 
4976 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4977 {
4978 	/* only the parent has fasync state */
4979 	if (event->parent)
4980 		event = event->parent;
4981 	return &event->fasync;
4982 }
4983 
4984 void perf_event_wakeup(struct perf_event *event)
4985 {
4986 	ring_buffer_wakeup(event);
4987 
4988 	if (event->pending_kill) {
4989 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4990 		event->pending_kill = 0;
4991 	}
4992 }
4993 
4994 static void perf_pending_event(struct irq_work *entry)
4995 {
4996 	struct perf_event *event = container_of(entry,
4997 			struct perf_event, pending);
4998 	int rctx;
4999 
5000 	rctx = perf_swevent_get_recursion_context();
5001 	/*
5002 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5003 	 * and we won't recurse 'further'.
5004 	 */
5005 
5006 	if (event->pending_disable) {
5007 		event->pending_disable = 0;
5008 		__perf_event_disable(event);
5009 	}
5010 
5011 	if (event->pending_wakeup) {
5012 		event->pending_wakeup = 0;
5013 		perf_event_wakeup(event);
5014 	}
5015 
5016 	if (rctx >= 0)
5017 		perf_swevent_put_recursion_context(rctx);
5018 }
5019 
5020 /*
5021  * We assume there is only KVM supporting the callbacks.
5022  * Later on, we might change it to a list if there is
5023  * another virtualization implementation supporting the callbacks.
5024  */
5025 struct perf_guest_info_callbacks *perf_guest_cbs;
5026 
5027 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5028 {
5029 	perf_guest_cbs = cbs;
5030 	return 0;
5031 }
5032 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5033 
5034 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5035 {
5036 	perf_guest_cbs = NULL;
5037 	return 0;
5038 }
5039 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5040 
5041 static void
5042 perf_output_sample_regs(struct perf_output_handle *handle,
5043 			struct pt_regs *regs, u64 mask)
5044 {
5045 	int bit;
5046 
5047 	for_each_set_bit(bit, (const unsigned long *) &mask,
5048 			 sizeof(mask) * BITS_PER_BYTE) {
5049 		u64 val;
5050 
5051 		val = perf_reg_value(regs, bit);
5052 		perf_output_put(handle, val);
5053 	}
5054 }
5055 
5056 static void perf_sample_regs_user(struct perf_regs *regs_user,
5057 				  struct pt_regs *regs,
5058 				  struct pt_regs *regs_user_copy)
5059 {
5060 	if (user_mode(regs)) {
5061 		regs_user->abi = perf_reg_abi(current);
5062 		regs_user->regs = regs;
5063 	} else if (current->mm) {
5064 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5065 	} else {
5066 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5067 		regs_user->regs = NULL;
5068 	}
5069 }
5070 
5071 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5072 				  struct pt_regs *regs)
5073 {
5074 	regs_intr->regs = regs;
5075 	regs_intr->abi  = perf_reg_abi(current);
5076 }
5077 
5078 
5079 /*
5080  * Get remaining task size from user stack pointer.
5081  *
5082  * It'd be better to take stack vma map and limit this more
5083  * precisly, but there's no way to get it safely under interrupt,
5084  * so using TASK_SIZE as limit.
5085  */
5086 static u64 perf_ustack_task_size(struct pt_regs *regs)
5087 {
5088 	unsigned long addr = perf_user_stack_pointer(regs);
5089 
5090 	if (!addr || addr >= TASK_SIZE)
5091 		return 0;
5092 
5093 	return TASK_SIZE - addr;
5094 }
5095 
5096 static u16
5097 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5098 			struct pt_regs *regs)
5099 {
5100 	u64 task_size;
5101 
5102 	/* No regs, no stack pointer, no dump. */
5103 	if (!regs)
5104 		return 0;
5105 
5106 	/*
5107 	 * Check if we fit in with the requested stack size into the:
5108 	 * - TASK_SIZE
5109 	 *   If we don't, we limit the size to the TASK_SIZE.
5110 	 *
5111 	 * - remaining sample size
5112 	 *   If we don't, we customize the stack size to
5113 	 *   fit in to the remaining sample size.
5114 	 */
5115 
5116 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5117 	stack_size = min(stack_size, (u16) task_size);
5118 
5119 	/* Current header size plus static size and dynamic size. */
5120 	header_size += 2 * sizeof(u64);
5121 
5122 	/* Do we fit in with the current stack dump size? */
5123 	if ((u16) (header_size + stack_size) < header_size) {
5124 		/*
5125 		 * If we overflow the maximum size for the sample,
5126 		 * we customize the stack dump size to fit in.
5127 		 */
5128 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5129 		stack_size = round_up(stack_size, sizeof(u64));
5130 	}
5131 
5132 	return stack_size;
5133 }
5134 
5135 static void
5136 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5137 			  struct pt_regs *regs)
5138 {
5139 	/* Case of a kernel thread, nothing to dump */
5140 	if (!regs) {
5141 		u64 size = 0;
5142 		perf_output_put(handle, size);
5143 	} else {
5144 		unsigned long sp;
5145 		unsigned int rem;
5146 		u64 dyn_size;
5147 
5148 		/*
5149 		 * We dump:
5150 		 * static size
5151 		 *   - the size requested by user or the best one we can fit
5152 		 *     in to the sample max size
5153 		 * data
5154 		 *   - user stack dump data
5155 		 * dynamic size
5156 		 *   - the actual dumped size
5157 		 */
5158 
5159 		/* Static size. */
5160 		perf_output_put(handle, dump_size);
5161 
5162 		/* Data. */
5163 		sp = perf_user_stack_pointer(regs);
5164 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5165 		dyn_size = dump_size - rem;
5166 
5167 		perf_output_skip(handle, rem);
5168 
5169 		/* Dynamic size. */
5170 		perf_output_put(handle, dyn_size);
5171 	}
5172 }
5173 
5174 static void __perf_event_header__init_id(struct perf_event_header *header,
5175 					 struct perf_sample_data *data,
5176 					 struct perf_event *event)
5177 {
5178 	u64 sample_type = event->attr.sample_type;
5179 
5180 	data->type = sample_type;
5181 	header->size += event->id_header_size;
5182 
5183 	if (sample_type & PERF_SAMPLE_TID) {
5184 		/* namespace issues */
5185 		data->tid_entry.pid = perf_event_pid(event, current);
5186 		data->tid_entry.tid = perf_event_tid(event, current);
5187 	}
5188 
5189 	if (sample_type & PERF_SAMPLE_TIME)
5190 		data->time = perf_event_clock(event);
5191 
5192 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5193 		data->id = primary_event_id(event);
5194 
5195 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5196 		data->stream_id = event->id;
5197 
5198 	if (sample_type & PERF_SAMPLE_CPU) {
5199 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5200 		data->cpu_entry.reserved = 0;
5201 	}
5202 }
5203 
5204 void perf_event_header__init_id(struct perf_event_header *header,
5205 				struct perf_sample_data *data,
5206 				struct perf_event *event)
5207 {
5208 	if (event->attr.sample_id_all)
5209 		__perf_event_header__init_id(header, data, event);
5210 }
5211 
5212 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5213 					   struct perf_sample_data *data)
5214 {
5215 	u64 sample_type = data->type;
5216 
5217 	if (sample_type & PERF_SAMPLE_TID)
5218 		perf_output_put(handle, data->tid_entry);
5219 
5220 	if (sample_type & PERF_SAMPLE_TIME)
5221 		perf_output_put(handle, data->time);
5222 
5223 	if (sample_type & PERF_SAMPLE_ID)
5224 		perf_output_put(handle, data->id);
5225 
5226 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5227 		perf_output_put(handle, data->stream_id);
5228 
5229 	if (sample_type & PERF_SAMPLE_CPU)
5230 		perf_output_put(handle, data->cpu_entry);
5231 
5232 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5233 		perf_output_put(handle, data->id);
5234 }
5235 
5236 void perf_event__output_id_sample(struct perf_event *event,
5237 				  struct perf_output_handle *handle,
5238 				  struct perf_sample_data *sample)
5239 {
5240 	if (event->attr.sample_id_all)
5241 		__perf_event__output_id_sample(handle, sample);
5242 }
5243 
5244 static void perf_output_read_one(struct perf_output_handle *handle,
5245 				 struct perf_event *event,
5246 				 u64 enabled, u64 running)
5247 {
5248 	u64 read_format = event->attr.read_format;
5249 	u64 values[4];
5250 	int n = 0;
5251 
5252 	values[n++] = perf_event_count(event);
5253 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5254 		values[n++] = enabled +
5255 			atomic64_read(&event->child_total_time_enabled);
5256 	}
5257 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5258 		values[n++] = running +
5259 			atomic64_read(&event->child_total_time_running);
5260 	}
5261 	if (read_format & PERF_FORMAT_ID)
5262 		values[n++] = primary_event_id(event);
5263 
5264 	__output_copy(handle, values, n * sizeof(u64));
5265 }
5266 
5267 /*
5268  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5269  */
5270 static void perf_output_read_group(struct perf_output_handle *handle,
5271 			    struct perf_event *event,
5272 			    u64 enabled, u64 running)
5273 {
5274 	struct perf_event *leader = event->group_leader, *sub;
5275 	u64 read_format = event->attr.read_format;
5276 	u64 values[5];
5277 	int n = 0;
5278 
5279 	values[n++] = 1 + leader->nr_siblings;
5280 
5281 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5282 		values[n++] = enabled;
5283 
5284 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5285 		values[n++] = running;
5286 
5287 	if (leader != event)
5288 		leader->pmu->read(leader);
5289 
5290 	values[n++] = perf_event_count(leader);
5291 	if (read_format & PERF_FORMAT_ID)
5292 		values[n++] = primary_event_id(leader);
5293 
5294 	__output_copy(handle, values, n * sizeof(u64));
5295 
5296 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5297 		n = 0;
5298 
5299 		if ((sub != event) &&
5300 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5301 			sub->pmu->read(sub);
5302 
5303 		values[n++] = perf_event_count(sub);
5304 		if (read_format & PERF_FORMAT_ID)
5305 			values[n++] = primary_event_id(sub);
5306 
5307 		__output_copy(handle, values, n * sizeof(u64));
5308 	}
5309 }
5310 
5311 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5312 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5313 
5314 static void perf_output_read(struct perf_output_handle *handle,
5315 			     struct perf_event *event)
5316 {
5317 	u64 enabled = 0, running = 0, now;
5318 	u64 read_format = event->attr.read_format;
5319 
5320 	/*
5321 	 * compute total_time_enabled, total_time_running
5322 	 * based on snapshot values taken when the event
5323 	 * was last scheduled in.
5324 	 *
5325 	 * we cannot simply called update_context_time()
5326 	 * because of locking issue as we are called in
5327 	 * NMI context
5328 	 */
5329 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5330 		calc_timer_values(event, &now, &enabled, &running);
5331 
5332 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5333 		perf_output_read_group(handle, event, enabled, running);
5334 	else
5335 		perf_output_read_one(handle, event, enabled, running);
5336 }
5337 
5338 void perf_output_sample(struct perf_output_handle *handle,
5339 			struct perf_event_header *header,
5340 			struct perf_sample_data *data,
5341 			struct perf_event *event)
5342 {
5343 	u64 sample_type = data->type;
5344 
5345 	perf_output_put(handle, *header);
5346 
5347 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5348 		perf_output_put(handle, data->id);
5349 
5350 	if (sample_type & PERF_SAMPLE_IP)
5351 		perf_output_put(handle, data->ip);
5352 
5353 	if (sample_type & PERF_SAMPLE_TID)
5354 		perf_output_put(handle, data->tid_entry);
5355 
5356 	if (sample_type & PERF_SAMPLE_TIME)
5357 		perf_output_put(handle, data->time);
5358 
5359 	if (sample_type & PERF_SAMPLE_ADDR)
5360 		perf_output_put(handle, data->addr);
5361 
5362 	if (sample_type & PERF_SAMPLE_ID)
5363 		perf_output_put(handle, data->id);
5364 
5365 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5366 		perf_output_put(handle, data->stream_id);
5367 
5368 	if (sample_type & PERF_SAMPLE_CPU)
5369 		perf_output_put(handle, data->cpu_entry);
5370 
5371 	if (sample_type & PERF_SAMPLE_PERIOD)
5372 		perf_output_put(handle, data->period);
5373 
5374 	if (sample_type & PERF_SAMPLE_READ)
5375 		perf_output_read(handle, event);
5376 
5377 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5378 		if (data->callchain) {
5379 			int size = 1;
5380 
5381 			if (data->callchain)
5382 				size += data->callchain->nr;
5383 
5384 			size *= sizeof(u64);
5385 
5386 			__output_copy(handle, data->callchain, size);
5387 		} else {
5388 			u64 nr = 0;
5389 			perf_output_put(handle, nr);
5390 		}
5391 	}
5392 
5393 	if (sample_type & PERF_SAMPLE_RAW) {
5394 		if (data->raw) {
5395 			u32 raw_size = data->raw->size;
5396 			u32 real_size = round_up(raw_size + sizeof(u32),
5397 						 sizeof(u64)) - sizeof(u32);
5398 			u64 zero = 0;
5399 
5400 			perf_output_put(handle, real_size);
5401 			__output_copy(handle, data->raw->data, raw_size);
5402 			if (real_size - raw_size)
5403 				__output_copy(handle, &zero, real_size - raw_size);
5404 		} else {
5405 			struct {
5406 				u32	size;
5407 				u32	data;
5408 			} raw = {
5409 				.size = sizeof(u32),
5410 				.data = 0,
5411 			};
5412 			perf_output_put(handle, raw);
5413 		}
5414 	}
5415 
5416 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5417 		if (data->br_stack) {
5418 			size_t size;
5419 
5420 			size = data->br_stack->nr
5421 			     * sizeof(struct perf_branch_entry);
5422 
5423 			perf_output_put(handle, data->br_stack->nr);
5424 			perf_output_copy(handle, data->br_stack->entries, size);
5425 		} else {
5426 			/*
5427 			 * we always store at least the value of nr
5428 			 */
5429 			u64 nr = 0;
5430 			perf_output_put(handle, nr);
5431 		}
5432 	}
5433 
5434 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5435 		u64 abi = data->regs_user.abi;
5436 
5437 		/*
5438 		 * If there are no regs to dump, notice it through
5439 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5440 		 */
5441 		perf_output_put(handle, abi);
5442 
5443 		if (abi) {
5444 			u64 mask = event->attr.sample_regs_user;
5445 			perf_output_sample_regs(handle,
5446 						data->regs_user.regs,
5447 						mask);
5448 		}
5449 	}
5450 
5451 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5452 		perf_output_sample_ustack(handle,
5453 					  data->stack_user_size,
5454 					  data->regs_user.regs);
5455 	}
5456 
5457 	if (sample_type & PERF_SAMPLE_WEIGHT)
5458 		perf_output_put(handle, data->weight);
5459 
5460 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5461 		perf_output_put(handle, data->data_src.val);
5462 
5463 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5464 		perf_output_put(handle, data->txn);
5465 
5466 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5467 		u64 abi = data->regs_intr.abi;
5468 		/*
5469 		 * If there are no regs to dump, notice it through
5470 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5471 		 */
5472 		perf_output_put(handle, abi);
5473 
5474 		if (abi) {
5475 			u64 mask = event->attr.sample_regs_intr;
5476 
5477 			perf_output_sample_regs(handle,
5478 						data->regs_intr.regs,
5479 						mask);
5480 		}
5481 	}
5482 
5483 	if (!event->attr.watermark) {
5484 		int wakeup_events = event->attr.wakeup_events;
5485 
5486 		if (wakeup_events) {
5487 			struct ring_buffer *rb = handle->rb;
5488 			int events = local_inc_return(&rb->events);
5489 
5490 			if (events >= wakeup_events) {
5491 				local_sub(wakeup_events, &rb->events);
5492 				local_inc(&rb->wakeup);
5493 			}
5494 		}
5495 	}
5496 }
5497 
5498 void perf_prepare_sample(struct perf_event_header *header,
5499 			 struct perf_sample_data *data,
5500 			 struct perf_event *event,
5501 			 struct pt_regs *regs)
5502 {
5503 	u64 sample_type = event->attr.sample_type;
5504 
5505 	header->type = PERF_RECORD_SAMPLE;
5506 	header->size = sizeof(*header) + event->header_size;
5507 
5508 	header->misc = 0;
5509 	header->misc |= perf_misc_flags(regs);
5510 
5511 	__perf_event_header__init_id(header, data, event);
5512 
5513 	if (sample_type & PERF_SAMPLE_IP)
5514 		data->ip = perf_instruction_pointer(regs);
5515 
5516 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5517 		int size = 1;
5518 
5519 		data->callchain = perf_callchain(event, regs);
5520 
5521 		if (data->callchain)
5522 			size += data->callchain->nr;
5523 
5524 		header->size += size * sizeof(u64);
5525 	}
5526 
5527 	if (sample_type & PERF_SAMPLE_RAW) {
5528 		int size = sizeof(u32);
5529 
5530 		if (data->raw)
5531 			size += data->raw->size;
5532 		else
5533 			size += sizeof(u32);
5534 
5535 		header->size += round_up(size, sizeof(u64));
5536 	}
5537 
5538 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5539 		int size = sizeof(u64); /* nr */
5540 		if (data->br_stack) {
5541 			size += data->br_stack->nr
5542 			      * sizeof(struct perf_branch_entry);
5543 		}
5544 		header->size += size;
5545 	}
5546 
5547 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5548 		perf_sample_regs_user(&data->regs_user, regs,
5549 				      &data->regs_user_copy);
5550 
5551 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5552 		/* regs dump ABI info */
5553 		int size = sizeof(u64);
5554 
5555 		if (data->regs_user.regs) {
5556 			u64 mask = event->attr.sample_regs_user;
5557 			size += hweight64(mask) * sizeof(u64);
5558 		}
5559 
5560 		header->size += size;
5561 	}
5562 
5563 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5564 		/*
5565 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5566 		 * processed as the last one or have additional check added
5567 		 * in case new sample type is added, because we could eat
5568 		 * up the rest of the sample size.
5569 		 */
5570 		u16 stack_size = event->attr.sample_stack_user;
5571 		u16 size = sizeof(u64);
5572 
5573 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5574 						     data->regs_user.regs);
5575 
5576 		/*
5577 		 * If there is something to dump, add space for the dump
5578 		 * itself and for the field that tells the dynamic size,
5579 		 * which is how many have been actually dumped.
5580 		 */
5581 		if (stack_size)
5582 			size += sizeof(u64) + stack_size;
5583 
5584 		data->stack_user_size = stack_size;
5585 		header->size += size;
5586 	}
5587 
5588 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5589 		/* regs dump ABI info */
5590 		int size = sizeof(u64);
5591 
5592 		perf_sample_regs_intr(&data->regs_intr, regs);
5593 
5594 		if (data->regs_intr.regs) {
5595 			u64 mask = event->attr.sample_regs_intr;
5596 
5597 			size += hweight64(mask) * sizeof(u64);
5598 		}
5599 
5600 		header->size += size;
5601 	}
5602 }
5603 
5604 void perf_event_output(struct perf_event *event,
5605 			struct perf_sample_data *data,
5606 			struct pt_regs *regs)
5607 {
5608 	struct perf_output_handle handle;
5609 	struct perf_event_header header;
5610 
5611 	/* protect the callchain buffers */
5612 	rcu_read_lock();
5613 
5614 	perf_prepare_sample(&header, data, event, regs);
5615 
5616 	if (perf_output_begin(&handle, event, header.size))
5617 		goto exit;
5618 
5619 	perf_output_sample(&handle, &header, data, event);
5620 
5621 	perf_output_end(&handle);
5622 
5623 exit:
5624 	rcu_read_unlock();
5625 }
5626 
5627 /*
5628  * read event_id
5629  */
5630 
5631 struct perf_read_event {
5632 	struct perf_event_header	header;
5633 
5634 	u32				pid;
5635 	u32				tid;
5636 };
5637 
5638 static void
5639 perf_event_read_event(struct perf_event *event,
5640 			struct task_struct *task)
5641 {
5642 	struct perf_output_handle handle;
5643 	struct perf_sample_data sample;
5644 	struct perf_read_event read_event = {
5645 		.header = {
5646 			.type = PERF_RECORD_READ,
5647 			.misc = 0,
5648 			.size = sizeof(read_event) + event->read_size,
5649 		},
5650 		.pid = perf_event_pid(event, task),
5651 		.tid = perf_event_tid(event, task),
5652 	};
5653 	int ret;
5654 
5655 	perf_event_header__init_id(&read_event.header, &sample, event);
5656 	ret = perf_output_begin(&handle, event, read_event.header.size);
5657 	if (ret)
5658 		return;
5659 
5660 	perf_output_put(&handle, read_event);
5661 	perf_output_read(&handle, event);
5662 	perf_event__output_id_sample(event, &handle, &sample);
5663 
5664 	perf_output_end(&handle);
5665 }
5666 
5667 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5668 
5669 static void
5670 perf_event_aux_ctx(struct perf_event_context *ctx,
5671 		   perf_event_aux_output_cb output,
5672 		   void *data)
5673 {
5674 	struct perf_event *event;
5675 
5676 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5677 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5678 			continue;
5679 		if (!event_filter_match(event))
5680 			continue;
5681 		output(event, data);
5682 	}
5683 }
5684 
5685 static void
5686 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5687 			struct perf_event_context *task_ctx)
5688 {
5689 	rcu_read_lock();
5690 	preempt_disable();
5691 	perf_event_aux_ctx(task_ctx, output, data);
5692 	preempt_enable();
5693 	rcu_read_unlock();
5694 }
5695 
5696 static void
5697 perf_event_aux(perf_event_aux_output_cb output, void *data,
5698 	       struct perf_event_context *task_ctx)
5699 {
5700 	struct perf_cpu_context *cpuctx;
5701 	struct perf_event_context *ctx;
5702 	struct pmu *pmu;
5703 	int ctxn;
5704 
5705 	/*
5706 	 * If we have task_ctx != NULL we only notify
5707 	 * the task context itself. The task_ctx is set
5708 	 * only for EXIT events before releasing task
5709 	 * context.
5710 	 */
5711 	if (task_ctx) {
5712 		perf_event_aux_task_ctx(output, data, task_ctx);
5713 		return;
5714 	}
5715 
5716 	rcu_read_lock();
5717 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5718 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5719 		if (cpuctx->unique_pmu != pmu)
5720 			goto next;
5721 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5722 		ctxn = pmu->task_ctx_nr;
5723 		if (ctxn < 0)
5724 			goto next;
5725 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5726 		if (ctx)
5727 			perf_event_aux_ctx(ctx, output, data);
5728 next:
5729 		put_cpu_ptr(pmu->pmu_cpu_context);
5730 	}
5731 	rcu_read_unlock();
5732 }
5733 
5734 /*
5735  * task tracking -- fork/exit
5736  *
5737  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5738  */
5739 
5740 struct perf_task_event {
5741 	struct task_struct		*task;
5742 	struct perf_event_context	*task_ctx;
5743 
5744 	struct {
5745 		struct perf_event_header	header;
5746 
5747 		u32				pid;
5748 		u32				ppid;
5749 		u32				tid;
5750 		u32				ptid;
5751 		u64				time;
5752 	} event_id;
5753 };
5754 
5755 static int perf_event_task_match(struct perf_event *event)
5756 {
5757 	return event->attr.comm  || event->attr.mmap ||
5758 	       event->attr.mmap2 || event->attr.mmap_data ||
5759 	       event->attr.task;
5760 }
5761 
5762 static void perf_event_task_output(struct perf_event *event,
5763 				   void *data)
5764 {
5765 	struct perf_task_event *task_event = data;
5766 	struct perf_output_handle handle;
5767 	struct perf_sample_data	sample;
5768 	struct task_struct *task = task_event->task;
5769 	int ret, size = task_event->event_id.header.size;
5770 
5771 	if (!perf_event_task_match(event))
5772 		return;
5773 
5774 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5775 
5776 	ret = perf_output_begin(&handle, event,
5777 				task_event->event_id.header.size);
5778 	if (ret)
5779 		goto out;
5780 
5781 	task_event->event_id.pid = perf_event_pid(event, task);
5782 	task_event->event_id.ppid = perf_event_pid(event, current);
5783 
5784 	task_event->event_id.tid = perf_event_tid(event, task);
5785 	task_event->event_id.ptid = perf_event_tid(event, current);
5786 
5787 	task_event->event_id.time = perf_event_clock(event);
5788 
5789 	perf_output_put(&handle, task_event->event_id);
5790 
5791 	perf_event__output_id_sample(event, &handle, &sample);
5792 
5793 	perf_output_end(&handle);
5794 out:
5795 	task_event->event_id.header.size = size;
5796 }
5797 
5798 static void perf_event_task(struct task_struct *task,
5799 			      struct perf_event_context *task_ctx,
5800 			      int new)
5801 {
5802 	struct perf_task_event task_event;
5803 
5804 	if (!atomic_read(&nr_comm_events) &&
5805 	    !atomic_read(&nr_mmap_events) &&
5806 	    !atomic_read(&nr_task_events))
5807 		return;
5808 
5809 	task_event = (struct perf_task_event){
5810 		.task	  = task,
5811 		.task_ctx = task_ctx,
5812 		.event_id    = {
5813 			.header = {
5814 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5815 				.misc = 0,
5816 				.size = sizeof(task_event.event_id),
5817 			},
5818 			/* .pid  */
5819 			/* .ppid */
5820 			/* .tid  */
5821 			/* .ptid */
5822 			/* .time */
5823 		},
5824 	};
5825 
5826 	perf_event_aux(perf_event_task_output,
5827 		       &task_event,
5828 		       task_ctx);
5829 }
5830 
5831 void perf_event_fork(struct task_struct *task)
5832 {
5833 	perf_event_task(task, NULL, 1);
5834 }
5835 
5836 /*
5837  * comm tracking
5838  */
5839 
5840 struct perf_comm_event {
5841 	struct task_struct	*task;
5842 	char			*comm;
5843 	int			comm_size;
5844 
5845 	struct {
5846 		struct perf_event_header	header;
5847 
5848 		u32				pid;
5849 		u32				tid;
5850 	} event_id;
5851 };
5852 
5853 static int perf_event_comm_match(struct perf_event *event)
5854 {
5855 	return event->attr.comm;
5856 }
5857 
5858 static void perf_event_comm_output(struct perf_event *event,
5859 				   void *data)
5860 {
5861 	struct perf_comm_event *comm_event = data;
5862 	struct perf_output_handle handle;
5863 	struct perf_sample_data sample;
5864 	int size = comm_event->event_id.header.size;
5865 	int ret;
5866 
5867 	if (!perf_event_comm_match(event))
5868 		return;
5869 
5870 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5871 	ret = perf_output_begin(&handle, event,
5872 				comm_event->event_id.header.size);
5873 
5874 	if (ret)
5875 		goto out;
5876 
5877 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5878 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5879 
5880 	perf_output_put(&handle, comm_event->event_id);
5881 	__output_copy(&handle, comm_event->comm,
5882 				   comm_event->comm_size);
5883 
5884 	perf_event__output_id_sample(event, &handle, &sample);
5885 
5886 	perf_output_end(&handle);
5887 out:
5888 	comm_event->event_id.header.size = size;
5889 }
5890 
5891 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5892 {
5893 	char comm[TASK_COMM_LEN];
5894 	unsigned int size;
5895 
5896 	memset(comm, 0, sizeof(comm));
5897 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5898 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5899 
5900 	comm_event->comm = comm;
5901 	comm_event->comm_size = size;
5902 
5903 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5904 
5905 	perf_event_aux(perf_event_comm_output,
5906 		       comm_event,
5907 		       NULL);
5908 }
5909 
5910 void perf_event_comm(struct task_struct *task, bool exec)
5911 {
5912 	struct perf_comm_event comm_event;
5913 
5914 	if (!atomic_read(&nr_comm_events))
5915 		return;
5916 
5917 	comm_event = (struct perf_comm_event){
5918 		.task	= task,
5919 		/* .comm      */
5920 		/* .comm_size */
5921 		.event_id  = {
5922 			.header = {
5923 				.type = PERF_RECORD_COMM,
5924 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5925 				/* .size */
5926 			},
5927 			/* .pid */
5928 			/* .tid */
5929 		},
5930 	};
5931 
5932 	perf_event_comm_event(&comm_event);
5933 }
5934 
5935 /*
5936  * mmap tracking
5937  */
5938 
5939 struct perf_mmap_event {
5940 	struct vm_area_struct	*vma;
5941 
5942 	const char		*file_name;
5943 	int			file_size;
5944 	int			maj, min;
5945 	u64			ino;
5946 	u64			ino_generation;
5947 	u32			prot, flags;
5948 
5949 	struct {
5950 		struct perf_event_header	header;
5951 
5952 		u32				pid;
5953 		u32				tid;
5954 		u64				start;
5955 		u64				len;
5956 		u64				pgoff;
5957 	} event_id;
5958 };
5959 
5960 static int perf_event_mmap_match(struct perf_event *event,
5961 				 void *data)
5962 {
5963 	struct perf_mmap_event *mmap_event = data;
5964 	struct vm_area_struct *vma = mmap_event->vma;
5965 	int executable = vma->vm_flags & VM_EXEC;
5966 
5967 	return (!executable && event->attr.mmap_data) ||
5968 	       (executable && (event->attr.mmap || event->attr.mmap2));
5969 }
5970 
5971 static void perf_event_mmap_output(struct perf_event *event,
5972 				   void *data)
5973 {
5974 	struct perf_mmap_event *mmap_event = data;
5975 	struct perf_output_handle handle;
5976 	struct perf_sample_data sample;
5977 	int size = mmap_event->event_id.header.size;
5978 	int ret;
5979 
5980 	if (!perf_event_mmap_match(event, data))
5981 		return;
5982 
5983 	if (event->attr.mmap2) {
5984 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5985 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5986 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5987 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5988 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5989 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5990 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5991 	}
5992 
5993 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5994 	ret = perf_output_begin(&handle, event,
5995 				mmap_event->event_id.header.size);
5996 	if (ret)
5997 		goto out;
5998 
5999 	mmap_event->event_id.pid = perf_event_pid(event, current);
6000 	mmap_event->event_id.tid = perf_event_tid(event, current);
6001 
6002 	perf_output_put(&handle, mmap_event->event_id);
6003 
6004 	if (event->attr.mmap2) {
6005 		perf_output_put(&handle, mmap_event->maj);
6006 		perf_output_put(&handle, mmap_event->min);
6007 		perf_output_put(&handle, mmap_event->ino);
6008 		perf_output_put(&handle, mmap_event->ino_generation);
6009 		perf_output_put(&handle, mmap_event->prot);
6010 		perf_output_put(&handle, mmap_event->flags);
6011 	}
6012 
6013 	__output_copy(&handle, mmap_event->file_name,
6014 				   mmap_event->file_size);
6015 
6016 	perf_event__output_id_sample(event, &handle, &sample);
6017 
6018 	perf_output_end(&handle);
6019 out:
6020 	mmap_event->event_id.header.size = size;
6021 }
6022 
6023 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6024 {
6025 	struct vm_area_struct *vma = mmap_event->vma;
6026 	struct file *file = vma->vm_file;
6027 	int maj = 0, min = 0;
6028 	u64 ino = 0, gen = 0;
6029 	u32 prot = 0, flags = 0;
6030 	unsigned int size;
6031 	char tmp[16];
6032 	char *buf = NULL;
6033 	char *name;
6034 
6035 	if (file) {
6036 		struct inode *inode;
6037 		dev_t dev;
6038 
6039 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6040 		if (!buf) {
6041 			name = "//enomem";
6042 			goto cpy_name;
6043 		}
6044 		/*
6045 		 * d_path() works from the end of the rb backwards, so we
6046 		 * need to add enough zero bytes after the string to handle
6047 		 * the 64bit alignment we do later.
6048 		 */
6049 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6050 		if (IS_ERR(name)) {
6051 			name = "//toolong";
6052 			goto cpy_name;
6053 		}
6054 		inode = file_inode(vma->vm_file);
6055 		dev = inode->i_sb->s_dev;
6056 		ino = inode->i_ino;
6057 		gen = inode->i_generation;
6058 		maj = MAJOR(dev);
6059 		min = MINOR(dev);
6060 
6061 		if (vma->vm_flags & VM_READ)
6062 			prot |= PROT_READ;
6063 		if (vma->vm_flags & VM_WRITE)
6064 			prot |= PROT_WRITE;
6065 		if (vma->vm_flags & VM_EXEC)
6066 			prot |= PROT_EXEC;
6067 
6068 		if (vma->vm_flags & VM_MAYSHARE)
6069 			flags = MAP_SHARED;
6070 		else
6071 			flags = MAP_PRIVATE;
6072 
6073 		if (vma->vm_flags & VM_DENYWRITE)
6074 			flags |= MAP_DENYWRITE;
6075 		if (vma->vm_flags & VM_MAYEXEC)
6076 			flags |= MAP_EXECUTABLE;
6077 		if (vma->vm_flags & VM_LOCKED)
6078 			flags |= MAP_LOCKED;
6079 		if (vma->vm_flags & VM_HUGETLB)
6080 			flags |= MAP_HUGETLB;
6081 
6082 		goto got_name;
6083 	} else {
6084 		if (vma->vm_ops && vma->vm_ops->name) {
6085 			name = (char *) vma->vm_ops->name(vma);
6086 			if (name)
6087 				goto cpy_name;
6088 		}
6089 
6090 		name = (char *)arch_vma_name(vma);
6091 		if (name)
6092 			goto cpy_name;
6093 
6094 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6095 				vma->vm_end >= vma->vm_mm->brk) {
6096 			name = "[heap]";
6097 			goto cpy_name;
6098 		}
6099 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6100 				vma->vm_end >= vma->vm_mm->start_stack) {
6101 			name = "[stack]";
6102 			goto cpy_name;
6103 		}
6104 
6105 		name = "//anon";
6106 		goto cpy_name;
6107 	}
6108 
6109 cpy_name:
6110 	strlcpy(tmp, name, sizeof(tmp));
6111 	name = tmp;
6112 got_name:
6113 	/*
6114 	 * Since our buffer works in 8 byte units we need to align our string
6115 	 * size to a multiple of 8. However, we must guarantee the tail end is
6116 	 * zero'd out to avoid leaking random bits to userspace.
6117 	 */
6118 	size = strlen(name)+1;
6119 	while (!IS_ALIGNED(size, sizeof(u64)))
6120 		name[size++] = '\0';
6121 
6122 	mmap_event->file_name = name;
6123 	mmap_event->file_size = size;
6124 	mmap_event->maj = maj;
6125 	mmap_event->min = min;
6126 	mmap_event->ino = ino;
6127 	mmap_event->ino_generation = gen;
6128 	mmap_event->prot = prot;
6129 	mmap_event->flags = flags;
6130 
6131 	if (!(vma->vm_flags & VM_EXEC))
6132 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6133 
6134 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6135 
6136 	perf_event_aux(perf_event_mmap_output,
6137 		       mmap_event,
6138 		       NULL);
6139 
6140 	kfree(buf);
6141 }
6142 
6143 void perf_event_mmap(struct vm_area_struct *vma)
6144 {
6145 	struct perf_mmap_event mmap_event;
6146 
6147 	if (!atomic_read(&nr_mmap_events))
6148 		return;
6149 
6150 	mmap_event = (struct perf_mmap_event){
6151 		.vma	= vma,
6152 		/* .file_name */
6153 		/* .file_size */
6154 		.event_id  = {
6155 			.header = {
6156 				.type = PERF_RECORD_MMAP,
6157 				.misc = PERF_RECORD_MISC_USER,
6158 				/* .size */
6159 			},
6160 			/* .pid */
6161 			/* .tid */
6162 			.start  = vma->vm_start,
6163 			.len    = vma->vm_end - vma->vm_start,
6164 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6165 		},
6166 		/* .maj (attr_mmap2 only) */
6167 		/* .min (attr_mmap2 only) */
6168 		/* .ino (attr_mmap2 only) */
6169 		/* .ino_generation (attr_mmap2 only) */
6170 		/* .prot (attr_mmap2 only) */
6171 		/* .flags (attr_mmap2 only) */
6172 	};
6173 
6174 	perf_event_mmap_event(&mmap_event);
6175 }
6176 
6177 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6178 			  unsigned long size, u64 flags)
6179 {
6180 	struct perf_output_handle handle;
6181 	struct perf_sample_data sample;
6182 	struct perf_aux_event {
6183 		struct perf_event_header	header;
6184 		u64				offset;
6185 		u64				size;
6186 		u64				flags;
6187 	} rec = {
6188 		.header = {
6189 			.type = PERF_RECORD_AUX,
6190 			.misc = 0,
6191 			.size = sizeof(rec),
6192 		},
6193 		.offset		= head,
6194 		.size		= size,
6195 		.flags		= flags,
6196 	};
6197 	int ret;
6198 
6199 	perf_event_header__init_id(&rec.header, &sample, event);
6200 	ret = perf_output_begin(&handle, event, rec.header.size);
6201 
6202 	if (ret)
6203 		return;
6204 
6205 	perf_output_put(&handle, rec);
6206 	perf_event__output_id_sample(event, &handle, &sample);
6207 
6208 	perf_output_end(&handle);
6209 }
6210 
6211 /*
6212  * Lost/dropped samples logging
6213  */
6214 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6215 {
6216 	struct perf_output_handle handle;
6217 	struct perf_sample_data sample;
6218 	int ret;
6219 
6220 	struct {
6221 		struct perf_event_header	header;
6222 		u64				lost;
6223 	} lost_samples_event = {
6224 		.header = {
6225 			.type = PERF_RECORD_LOST_SAMPLES,
6226 			.misc = 0,
6227 			.size = sizeof(lost_samples_event),
6228 		},
6229 		.lost		= lost,
6230 	};
6231 
6232 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6233 
6234 	ret = perf_output_begin(&handle, event,
6235 				lost_samples_event.header.size);
6236 	if (ret)
6237 		return;
6238 
6239 	perf_output_put(&handle, lost_samples_event);
6240 	perf_event__output_id_sample(event, &handle, &sample);
6241 	perf_output_end(&handle);
6242 }
6243 
6244 /*
6245  * context_switch tracking
6246  */
6247 
6248 struct perf_switch_event {
6249 	struct task_struct	*task;
6250 	struct task_struct	*next_prev;
6251 
6252 	struct {
6253 		struct perf_event_header	header;
6254 		u32				next_prev_pid;
6255 		u32				next_prev_tid;
6256 	} event_id;
6257 };
6258 
6259 static int perf_event_switch_match(struct perf_event *event)
6260 {
6261 	return event->attr.context_switch;
6262 }
6263 
6264 static void perf_event_switch_output(struct perf_event *event, void *data)
6265 {
6266 	struct perf_switch_event *se = data;
6267 	struct perf_output_handle handle;
6268 	struct perf_sample_data sample;
6269 	int ret;
6270 
6271 	if (!perf_event_switch_match(event))
6272 		return;
6273 
6274 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6275 	if (event->ctx->task) {
6276 		se->event_id.header.type = PERF_RECORD_SWITCH;
6277 		se->event_id.header.size = sizeof(se->event_id.header);
6278 	} else {
6279 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6280 		se->event_id.header.size = sizeof(se->event_id);
6281 		se->event_id.next_prev_pid =
6282 					perf_event_pid(event, se->next_prev);
6283 		se->event_id.next_prev_tid =
6284 					perf_event_tid(event, se->next_prev);
6285 	}
6286 
6287 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6288 
6289 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6290 	if (ret)
6291 		return;
6292 
6293 	if (event->ctx->task)
6294 		perf_output_put(&handle, se->event_id.header);
6295 	else
6296 		perf_output_put(&handle, se->event_id);
6297 
6298 	perf_event__output_id_sample(event, &handle, &sample);
6299 
6300 	perf_output_end(&handle);
6301 }
6302 
6303 static void perf_event_switch(struct task_struct *task,
6304 			      struct task_struct *next_prev, bool sched_in)
6305 {
6306 	struct perf_switch_event switch_event;
6307 
6308 	/* N.B. caller checks nr_switch_events != 0 */
6309 
6310 	switch_event = (struct perf_switch_event){
6311 		.task		= task,
6312 		.next_prev	= next_prev,
6313 		.event_id	= {
6314 			.header = {
6315 				/* .type */
6316 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6317 				/* .size */
6318 			},
6319 			/* .next_prev_pid */
6320 			/* .next_prev_tid */
6321 		},
6322 	};
6323 
6324 	perf_event_aux(perf_event_switch_output,
6325 		       &switch_event,
6326 		       NULL);
6327 }
6328 
6329 /*
6330  * IRQ throttle logging
6331  */
6332 
6333 static void perf_log_throttle(struct perf_event *event, int enable)
6334 {
6335 	struct perf_output_handle handle;
6336 	struct perf_sample_data sample;
6337 	int ret;
6338 
6339 	struct {
6340 		struct perf_event_header	header;
6341 		u64				time;
6342 		u64				id;
6343 		u64				stream_id;
6344 	} throttle_event = {
6345 		.header = {
6346 			.type = PERF_RECORD_THROTTLE,
6347 			.misc = 0,
6348 			.size = sizeof(throttle_event),
6349 		},
6350 		.time		= perf_event_clock(event),
6351 		.id		= primary_event_id(event),
6352 		.stream_id	= event->id,
6353 	};
6354 
6355 	if (enable)
6356 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6357 
6358 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6359 
6360 	ret = perf_output_begin(&handle, event,
6361 				throttle_event.header.size);
6362 	if (ret)
6363 		return;
6364 
6365 	perf_output_put(&handle, throttle_event);
6366 	perf_event__output_id_sample(event, &handle, &sample);
6367 	perf_output_end(&handle);
6368 }
6369 
6370 static void perf_log_itrace_start(struct perf_event *event)
6371 {
6372 	struct perf_output_handle handle;
6373 	struct perf_sample_data sample;
6374 	struct perf_aux_event {
6375 		struct perf_event_header        header;
6376 		u32				pid;
6377 		u32				tid;
6378 	} rec;
6379 	int ret;
6380 
6381 	if (event->parent)
6382 		event = event->parent;
6383 
6384 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6385 	    event->hw.itrace_started)
6386 		return;
6387 
6388 	rec.header.type	= PERF_RECORD_ITRACE_START;
6389 	rec.header.misc	= 0;
6390 	rec.header.size	= sizeof(rec);
6391 	rec.pid	= perf_event_pid(event, current);
6392 	rec.tid	= perf_event_tid(event, current);
6393 
6394 	perf_event_header__init_id(&rec.header, &sample, event);
6395 	ret = perf_output_begin(&handle, event, rec.header.size);
6396 
6397 	if (ret)
6398 		return;
6399 
6400 	perf_output_put(&handle, rec);
6401 	perf_event__output_id_sample(event, &handle, &sample);
6402 
6403 	perf_output_end(&handle);
6404 }
6405 
6406 /*
6407  * Generic event overflow handling, sampling.
6408  */
6409 
6410 static int __perf_event_overflow(struct perf_event *event,
6411 				   int throttle, struct perf_sample_data *data,
6412 				   struct pt_regs *regs)
6413 {
6414 	int events = atomic_read(&event->event_limit);
6415 	struct hw_perf_event *hwc = &event->hw;
6416 	u64 seq;
6417 	int ret = 0;
6418 
6419 	/*
6420 	 * Non-sampling counters might still use the PMI to fold short
6421 	 * hardware counters, ignore those.
6422 	 */
6423 	if (unlikely(!is_sampling_event(event)))
6424 		return 0;
6425 
6426 	seq = __this_cpu_read(perf_throttled_seq);
6427 	if (seq != hwc->interrupts_seq) {
6428 		hwc->interrupts_seq = seq;
6429 		hwc->interrupts = 1;
6430 	} else {
6431 		hwc->interrupts++;
6432 		if (unlikely(throttle
6433 			     && hwc->interrupts >= max_samples_per_tick)) {
6434 			__this_cpu_inc(perf_throttled_count);
6435 			hwc->interrupts = MAX_INTERRUPTS;
6436 			perf_log_throttle(event, 0);
6437 			tick_nohz_full_kick();
6438 			ret = 1;
6439 		}
6440 	}
6441 
6442 	if (event->attr.freq) {
6443 		u64 now = perf_clock();
6444 		s64 delta = now - hwc->freq_time_stamp;
6445 
6446 		hwc->freq_time_stamp = now;
6447 
6448 		if (delta > 0 && delta < 2*TICK_NSEC)
6449 			perf_adjust_period(event, delta, hwc->last_period, true);
6450 	}
6451 
6452 	/*
6453 	 * XXX event_limit might not quite work as expected on inherited
6454 	 * events
6455 	 */
6456 
6457 	event->pending_kill = POLL_IN;
6458 	if (events && atomic_dec_and_test(&event->event_limit)) {
6459 		ret = 1;
6460 		event->pending_kill = POLL_HUP;
6461 		event->pending_disable = 1;
6462 		irq_work_queue(&event->pending);
6463 	}
6464 
6465 	if (event->overflow_handler)
6466 		event->overflow_handler(event, data, regs);
6467 	else
6468 		perf_event_output(event, data, regs);
6469 
6470 	if (*perf_event_fasync(event) && event->pending_kill) {
6471 		event->pending_wakeup = 1;
6472 		irq_work_queue(&event->pending);
6473 	}
6474 
6475 	return ret;
6476 }
6477 
6478 int perf_event_overflow(struct perf_event *event,
6479 			  struct perf_sample_data *data,
6480 			  struct pt_regs *regs)
6481 {
6482 	return __perf_event_overflow(event, 1, data, regs);
6483 }
6484 
6485 /*
6486  * Generic software event infrastructure
6487  */
6488 
6489 struct swevent_htable {
6490 	struct swevent_hlist		*swevent_hlist;
6491 	struct mutex			hlist_mutex;
6492 	int				hlist_refcount;
6493 
6494 	/* Recursion avoidance in each contexts */
6495 	int				recursion[PERF_NR_CONTEXTS];
6496 
6497 	/* Keeps track of cpu being initialized/exited */
6498 	bool				online;
6499 };
6500 
6501 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6502 
6503 /*
6504  * We directly increment event->count and keep a second value in
6505  * event->hw.period_left to count intervals. This period event
6506  * is kept in the range [-sample_period, 0] so that we can use the
6507  * sign as trigger.
6508  */
6509 
6510 u64 perf_swevent_set_period(struct perf_event *event)
6511 {
6512 	struct hw_perf_event *hwc = &event->hw;
6513 	u64 period = hwc->last_period;
6514 	u64 nr, offset;
6515 	s64 old, val;
6516 
6517 	hwc->last_period = hwc->sample_period;
6518 
6519 again:
6520 	old = val = local64_read(&hwc->period_left);
6521 	if (val < 0)
6522 		return 0;
6523 
6524 	nr = div64_u64(period + val, period);
6525 	offset = nr * period;
6526 	val -= offset;
6527 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6528 		goto again;
6529 
6530 	return nr;
6531 }
6532 
6533 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6534 				    struct perf_sample_data *data,
6535 				    struct pt_regs *regs)
6536 {
6537 	struct hw_perf_event *hwc = &event->hw;
6538 	int throttle = 0;
6539 
6540 	if (!overflow)
6541 		overflow = perf_swevent_set_period(event);
6542 
6543 	if (hwc->interrupts == MAX_INTERRUPTS)
6544 		return;
6545 
6546 	for (; overflow; overflow--) {
6547 		if (__perf_event_overflow(event, throttle,
6548 					    data, regs)) {
6549 			/*
6550 			 * We inhibit the overflow from happening when
6551 			 * hwc->interrupts == MAX_INTERRUPTS.
6552 			 */
6553 			break;
6554 		}
6555 		throttle = 1;
6556 	}
6557 }
6558 
6559 static void perf_swevent_event(struct perf_event *event, u64 nr,
6560 			       struct perf_sample_data *data,
6561 			       struct pt_regs *regs)
6562 {
6563 	struct hw_perf_event *hwc = &event->hw;
6564 
6565 	local64_add(nr, &event->count);
6566 
6567 	if (!regs)
6568 		return;
6569 
6570 	if (!is_sampling_event(event))
6571 		return;
6572 
6573 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6574 		data->period = nr;
6575 		return perf_swevent_overflow(event, 1, data, regs);
6576 	} else
6577 		data->period = event->hw.last_period;
6578 
6579 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6580 		return perf_swevent_overflow(event, 1, data, regs);
6581 
6582 	if (local64_add_negative(nr, &hwc->period_left))
6583 		return;
6584 
6585 	perf_swevent_overflow(event, 0, data, regs);
6586 }
6587 
6588 static int perf_exclude_event(struct perf_event *event,
6589 			      struct pt_regs *regs)
6590 {
6591 	if (event->hw.state & PERF_HES_STOPPED)
6592 		return 1;
6593 
6594 	if (regs) {
6595 		if (event->attr.exclude_user && user_mode(regs))
6596 			return 1;
6597 
6598 		if (event->attr.exclude_kernel && !user_mode(regs))
6599 			return 1;
6600 	}
6601 
6602 	return 0;
6603 }
6604 
6605 static int perf_swevent_match(struct perf_event *event,
6606 				enum perf_type_id type,
6607 				u32 event_id,
6608 				struct perf_sample_data *data,
6609 				struct pt_regs *regs)
6610 {
6611 	if (event->attr.type != type)
6612 		return 0;
6613 
6614 	if (event->attr.config != event_id)
6615 		return 0;
6616 
6617 	if (perf_exclude_event(event, regs))
6618 		return 0;
6619 
6620 	return 1;
6621 }
6622 
6623 static inline u64 swevent_hash(u64 type, u32 event_id)
6624 {
6625 	u64 val = event_id | (type << 32);
6626 
6627 	return hash_64(val, SWEVENT_HLIST_BITS);
6628 }
6629 
6630 static inline struct hlist_head *
6631 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6632 {
6633 	u64 hash = swevent_hash(type, event_id);
6634 
6635 	return &hlist->heads[hash];
6636 }
6637 
6638 /* For the read side: events when they trigger */
6639 static inline struct hlist_head *
6640 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6641 {
6642 	struct swevent_hlist *hlist;
6643 
6644 	hlist = rcu_dereference(swhash->swevent_hlist);
6645 	if (!hlist)
6646 		return NULL;
6647 
6648 	return __find_swevent_head(hlist, type, event_id);
6649 }
6650 
6651 /* For the event head insertion and removal in the hlist */
6652 static inline struct hlist_head *
6653 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6654 {
6655 	struct swevent_hlist *hlist;
6656 	u32 event_id = event->attr.config;
6657 	u64 type = event->attr.type;
6658 
6659 	/*
6660 	 * Event scheduling is always serialized against hlist allocation
6661 	 * and release. Which makes the protected version suitable here.
6662 	 * The context lock guarantees that.
6663 	 */
6664 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6665 					  lockdep_is_held(&event->ctx->lock));
6666 	if (!hlist)
6667 		return NULL;
6668 
6669 	return __find_swevent_head(hlist, type, event_id);
6670 }
6671 
6672 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6673 				    u64 nr,
6674 				    struct perf_sample_data *data,
6675 				    struct pt_regs *regs)
6676 {
6677 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678 	struct perf_event *event;
6679 	struct hlist_head *head;
6680 
6681 	rcu_read_lock();
6682 	head = find_swevent_head_rcu(swhash, type, event_id);
6683 	if (!head)
6684 		goto end;
6685 
6686 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6687 		if (perf_swevent_match(event, type, event_id, data, regs))
6688 			perf_swevent_event(event, nr, data, regs);
6689 	}
6690 end:
6691 	rcu_read_unlock();
6692 }
6693 
6694 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6695 
6696 int perf_swevent_get_recursion_context(void)
6697 {
6698 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6699 
6700 	return get_recursion_context(swhash->recursion);
6701 }
6702 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6703 
6704 inline void perf_swevent_put_recursion_context(int rctx)
6705 {
6706 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6707 
6708 	put_recursion_context(swhash->recursion, rctx);
6709 }
6710 
6711 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6712 {
6713 	struct perf_sample_data data;
6714 
6715 	if (WARN_ON_ONCE(!regs))
6716 		return;
6717 
6718 	perf_sample_data_init(&data, addr, 0);
6719 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6720 }
6721 
6722 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6723 {
6724 	int rctx;
6725 
6726 	preempt_disable_notrace();
6727 	rctx = perf_swevent_get_recursion_context();
6728 	if (unlikely(rctx < 0))
6729 		goto fail;
6730 
6731 	___perf_sw_event(event_id, nr, regs, addr);
6732 
6733 	perf_swevent_put_recursion_context(rctx);
6734 fail:
6735 	preempt_enable_notrace();
6736 }
6737 
6738 static void perf_swevent_read(struct perf_event *event)
6739 {
6740 }
6741 
6742 static int perf_swevent_add(struct perf_event *event, int flags)
6743 {
6744 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6745 	struct hw_perf_event *hwc = &event->hw;
6746 	struct hlist_head *head;
6747 
6748 	if (is_sampling_event(event)) {
6749 		hwc->last_period = hwc->sample_period;
6750 		perf_swevent_set_period(event);
6751 	}
6752 
6753 	hwc->state = !(flags & PERF_EF_START);
6754 
6755 	head = find_swevent_head(swhash, event);
6756 	if (!head) {
6757 		/*
6758 		 * We can race with cpu hotplug code. Do not
6759 		 * WARN if the cpu just got unplugged.
6760 		 */
6761 		WARN_ON_ONCE(swhash->online);
6762 		return -EINVAL;
6763 	}
6764 
6765 	hlist_add_head_rcu(&event->hlist_entry, head);
6766 	perf_event_update_userpage(event);
6767 
6768 	return 0;
6769 }
6770 
6771 static void perf_swevent_del(struct perf_event *event, int flags)
6772 {
6773 	hlist_del_rcu(&event->hlist_entry);
6774 }
6775 
6776 static void perf_swevent_start(struct perf_event *event, int flags)
6777 {
6778 	event->hw.state = 0;
6779 }
6780 
6781 static void perf_swevent_stop(struct perf_event *event, int flags)
6782 {
6783 	event->hw.state = PERF_HES_STOPPED;
6784 }
6785 
6786 /* Deref the hlist from the update side */
6787 static inline struct swevent_hlist *
6788 swevent_hlist_deref(struct swevent_htable *swhash)
6789 {
6790 	return rcu_dereference_protected(swhash->swevent_hlist,
6791 					 lockdep_is_held(&swhash->hlist_mutex));
6792 }
6793 
6794 static void swevent_hlist_release(struct swevent_htable *swhash)
6795 {
6796 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6797 
6798 	if (!hlist)
6799 		return;
6800 
6801 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6802 	kfree_rcu(hlist, rcu_head);
6803 }
6804 
6805 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6806 {
6807 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6808 
6809 	mutex_lock(&swhash->hlist_mutex);
6810 
6811 	if (!--swhash->hlist_refcount)
6812 		swevent_hlist_release(swhash);
6813 
6814 	mutex_unlock(&swhash->hlist_mutex);
6815 }
6816 
6817 static void swevent_hlist_put(struct perf_event *event)
6818 {
6819 	int cpu;
6820 
6821 	for_each_possible_cpu(cpu)
6822 		swevent_hlist_put_cpu(event, cpu);
6823 }
6824 
6825 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6826 {
6827 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6828 	int err = 0;
6829 
6830 	mutex_lock(&swhash->hlist_mutex);
6831 
6832 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6833 		struct swevent_hlist *hlist;
6834 
6835 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6836 		if (!hlist) {
6837 			err = -ENOMEM;
6838 			goto exit;
6839 		}
6840 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6841 	}
6842 	swhash->hlist_refcount++;
6843 exit:
6844 	mutex_unlock(&swhash->hlist_mutex);
6845 
6846 	return err;
6847 }
6848 
6849 static int swevent_hlist_get(struct perf_event *event)
6850 {
6851 	int err;
6852 	int cpu, failed_cpu;
6853 
6854 	get_online_cpus();
6855 	for_each_possible_cpu(cpu) {
6856 		err = swevent_hlist_get_cpu(event, cpu);
6857 		if (err) {
6858 			failed_cpu = cpu;
6859 			goto fail;
6860 		}
6861 	}
6862 	put_online_cpus();
6863 
6864 	return 0;
6865 fail:
6866 	for_each_possible_cpu(cpu) {
6867 		if (cpu == failed_cpu)
6868 			break;
6869 		swevent_hlist_put_cpu(event, cpu);
6870 	}
6871 
6872 	put_online_cpus();
6873 	return err;
6874 }
6875 
6876 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6877 
6878 static void sw_perf_event_destroy(struct perf_event *event)
6879 {
6880 	u64 event_id = event->attr.config;
6881 
6882 	WARN_ON(event->parent);
6883 
6884 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6885 	swevent_hlist_put(event);
6886 }
6887 
6888 static int perf_swevent_init(struct perf_event *event)
6889 {
6890 	u64 event_id = event->attr.config;
6891 
6892 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6893 		return -ENOENT;
6894 
6895 	/*
6896 	 * no branch sampling for software events
6897 	 */
6898 	if (has_branch_stack(event))
6899 		return -EOPNOTSUPP;
6900 
6901 	switch (event_id) {
6902 	case PERF_COUNT_SW_CPU_CLOCK:
6903 	case PERF_COUNT_SW_TASK_CLOCK:
6904 		return -ENOENT;
6905 
6906 	default:
6907 		break;
6908 	}
6909 
6910 	if (event_id >= PERF_COUNT_SW_MAX)
6911 		return -ENOENT;
6912 
6913 	if (!event->parent) {
6914 		int err;
6915 
6916 		err = swevent_hlist_get(event);
6917 		if (err)
6918 			return err;
6919 
6920 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6921 		event->destroy = sw_perf_event_destroy;
6922 	}
6923 
6924 	return 0;
6925 }
6926 
6927 static struct pmu perf_swevent = {
6928 	.task_ctx_nr	= perf_sw_context,
6929 
6930 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6931 
6932 	.event_init	= perf_swevent_init,
6933 	.add		= perf_swevent_add,
6934 	.del		= perf_swevent_del,
6935 	.start		= perf_swevent_start,
6936 	.stop		= perf_swevent_stop,
6937 	.read		= perf_swevent_read,
6938 };
6939 
6940 #ifdef CONFIG_EVENT_TRACING
6941 
6942 static int perf_tp_filter_match(struct perf_event *event,
6943 				struct perf_sample_data *data)
6944 {
6945 	void *record = data->raw->data;
6946 
6947 	/* only top level events have filters set */
6948 	if (event->parent)
6949 		event = event->parent;
6950 
6951 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6952 		return 1;
6953 	return 0;
6954 }
6955 
6956 static int perf_tp_event_match(struct perf_event *event,
6957 				struct perf_sample_data *data,
6958 				struct pt_regs *regs)
6959 {
6960 	if (event->hw.state & PERF_HES_STOPPED)
6961 		return 0;
6962 	/*
6963 	 * All tracepoints are from kernel-space.
6964 	 */
6965 	if (event->attr.exclude_kernel)
6966 		return 0;
6967 
6968 	if (!perf_tp_filter_match(event, data))
6969 		return 0;
6970 
6971 	return 1;
6972 }
6973 
6974 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6975 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6976 		   struct task_struct *task)
6977 {
6978 	struct perf_sample_data data;
6979 	struct perf_event *event;
6980 
6981 	struct perf_raw_record raw = {
6982 		.size = entry_size,
6983 		.data = record,
6984 	};
6985 
6986 	perf_sample_data_init(&data, addr, 0);
6987 	data.raw = &raw;
6988 
6989 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6990 		if (perf_tp_event_match(event, &data, regs))
6991 			perf_swevent_event(event, count, &data, regs);
6992 	}
6993 
6994 	/*
6995 	 * If we got specified a target task, also iterate its context and
6996 	 * deliver this event there too.
6997 	 */
6998 	if (task && task != current) {
6999 		struct perf_event_context *ctx;
7000 		struct trace_entry *entry = record;
7001 
7002 		rcu_read_lock();
7003 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7004 		if (!ctx)
7005 			goto unlock;
7006 
7007 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7008 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7009 				continue;
7010 			if (event->attr.config != entry->type)
7011 				continue;
7012 			if (perf_tp_event_match(event, &data, regs))
7013 				perf_swevent_event(event, count, &data, regs);
7014 		}
7015 unlock:
7016 		rcu_read_unlock();
7017 	}
7018 
7019 	perf_swevent_put_recursion_context(rctx);
7020 }
7021 EXPORT_SYMBOL_GPL(perf_tp_event);
7022 
7023 static void tp_perf_event_destroy(struct perf_event *event)
7024 {
7025 	perf_trace_destroy(event);
7026 }
7027 
7028 static int perf_tp_event_init(struct perf_event *event)
7029 {
7030 	int err;
7031 
7032 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7033 		return -ENOENT;
7034 
7035 	/*
7036 	 * no branch sampling for tracepoint events
7037 	 */
7038 	if (has_branch_stack(event))
7039 		return -EOPNOTSUPP;
7040 
7041 	err = perf_trace_init(event);
7042 	if (err)
7043 		return err;
7044 
7045 	event->destroy = tp_perf_event_destroy;
7046 
7047 	return 0;
7048 }
7049 
7050 static struct pmu perf_tracepoint = {
7051 	.task_ctx_nr	= perf_sw_context,
7052 
7053 	.event_init	= perf_tp_event_init,
7054 	.add		= perf_trace_add,
7055 	.del		= perf_trace_del,
7056 	.start		= perf_swevent_start,
7057 	.stop		= perf_swevent_stop,
7058 	.read		= perf_swevent_read,
7059 };
7060 
7061 static inline void perf_tp_register(void)
7062 {
7063 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7064 }
7065 
7066 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7067 {
7068 	char *filter_str;
7069 	int ret;
7070 
7071 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7072 		return -EINVAL;
7073 
7074 	filter_str = strndup_user(arg, PAGE_SIZE);
7075 	if (IS_ERR(filter_str))
7076 		return PTR_ERR(filter_str);
7077 
7078 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7079 
7080 	kfree(filter_str);
7081 	return ret;
7082 }
7083 
7084 static void perf_event_free_filter(struct perf_event *event)
7085 {
7086 	ftrace_profile_free_filter(event);
7087 }
7088 
7089 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7090 {
7091 	struct bpf_prog *prog;
7092 
7093 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7094 		return -EINVAL;
7095 
7096 	if (event->tp_event->prog)
7097 		return -EEXIST;
7098 
7099 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7100 		/* bpf programs can only be attached to u/kprobes */
7101 		return -EINVAL;
7102 
7103 	prog = bpf_prog_get(prog_fd);
7104 	if (IS_ERR(prog))
7105 		return PTR_ERR(prog);
7106 
7107 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7108 		/* valid fd, but invalid bpf program type */
7109 		bpf_prog_put(prog);
7110 		return -EINVAL;
7111 	}
7112 
7113 	event->tp_event->prog = prog;
7114 
7115 	return 0;
7116 }
7117 
7118 static void perf_event_free_bpf_prog(struct perf_event *event)
7119 {
7120 	struct bpf_prog *prog;
7121 
7122 	if (!event->tp_event)
7123 		return;
7124 
7125 	prog = event->tp_event->prog;
7126 	if (prog) {
7127 		event->tp_event->prog = NULL;
7128 		bpf_prog_put(prog);
7129 	}
7130 }
7131 
7132 #else
7133 
7134 static inline void perf_tp_register(void)
7135 {
7136 }
7137 
7138 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7139 {
7140 	return -ENOENT;
7141 }
7142 
7143 static void perf_event_free_filter(struct perf_event *event)
7144 {
7145 }
7146 
7147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7148 {
7149 	return -ENOENT;
7150 }
7151 
7152 static void perf_event_free_bpf_prog(struct perf_event *event)
7153 {
7154 }
7155 #endif /* CONFIG_EVENT_TRACING */
7156 
7157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7158 void perf_bp_event(struct perf_event *bp, void *data)
7159 {
7160 	struct perf_sample_data sample;
7161 	struct pt_regs *regs = data;
7162 
7163 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7164 
7165 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7166 		perf_swevent_event(bp, 1, &sample, regs);
7167 }
7168 #endif
7169 
7170 /*
7171  * hrtimer based swevent callback
7172  */
7173 
7174 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7175 {
7176 	enum hrtimer_restart ret = HRTIMER_RESTART;
7177 	struct perf_sample_data data;
7178 	struct pt_regs *regs;
7179 	struct perf_event *event;
7180 	u64 period;
7181 
7182 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7183 
7184 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7185 		return HRTIMER_NORESTART;
7186 
7187 	event->pmu->read(event);
7188 
7189 	perf_sample_data_init(&data, 0, event->hw.last_period);
7190 	regs = get_irq_regs();
7191 
7192 	if (regs && !perf_exclude_event(event, regs)) {
7193 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7194 			if (__perf_event_overflow(event, 1, &data, regs))
7195 				ret = HRTIMER_NORESTART;
7196 	}
7197 
7198 	period = max_t(u64, 10000, event->hw.sample_period);
7199 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7200 
7201 	return ret;
7202 }
7203 
7204 static void perf_swevent_start_hrtimer(struct perf_event *event)
7205 {
7206 	struct hw_perf_event *hwc = &event->hw;
7207 	s64 period;
7208 
7209 	if (!is_sampling_event(event))
7210 		return;
7211 
7212 	period = local64_read(&hwc->period_left);
7213 	if (period) {
7214 		if (period < 0)
7215 			period = 10000;
7216 
7217 		local64_set(&hwc->period_left, 0);
7218 	} else {
7219 		period = max_t(u64, 10000, hwc->sample_period);
7220 	}
7221 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7222 		      HRTIMER_MODE_REL_PINNED);
7223 }
7224 
7225 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7226 {
7227 	struct hw_perf_event *hwc = &event->hw;
7228 
7229 	if (is_sampling_event(event)) {
7230 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7231 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7232 
7233 		hrtimer_cancel(&hwc->hrtimer);
7234 	}
7235 }
7236 
7237 static void perf_swevent_init_hrtimer(struct perf_event *event)
7238 {
7239 	struct hw_perf_event *hwc = &event->hw;
7240 
7241 	if (!is_sampling_event(event))
7242 		return;
7243 
7244 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7245 	hwc->hrtimer.function = perf_swevent_hrtimer;
7246 
7247 	/*
7248 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7249 	 * mapping and avoid the whole period adjust feedback stuff.
7250 	 */
7251 	if (event->attr.freq) {
7252 		long freq = event->attr.sample_freq;
7253 
7254 		event->attr.sample_period = NSEC_PER_SEC / freq;
7255 		hwc->sample_period = event->attr.sample_period;
7256 		local64_set(&hwc->period_left, hwc->sample_period);
7257 		hwc->last_period = hwc->sample_period;
7258 		event->attr.freq = 0;
7259 	}
7260 }
7261 
7262 /*
7263  * Software event: cpu wall time clock
7264  */
7265 
7266 static void cpu_clock_event_update(struct perf_event *event)
7267 {
7268 	s64 prev;
7269 	u64 now;
7270 
7271 	now = local_clock();
7272 	prev = local64_xchg(&event->hw.prev_count, now);
7273 	local64_add(now - prev, &event->count);
7274 }
7275 
7276 static void cpu_clock_event_start(struct perf_event *event, int flags)
7277 {
7278 	local64_set(&event->hw.prev_count, local_clock());
7279 	perf_swevent_start_hrtimer(event);
7280 }
7281 
7282 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7283 {
7284 	perf_swevent_cancel_hrtimer(event);
7285 	cpu_clock_event_update(event);
7286 }
7287 
7288 static int cpu_clock_event_add(struct perf_event *event, int flags)
7289 {
7290 	if (flags & PERF_EF_START)
7291 		cpu_clock_event_start(event, flags);
7292 	perf_event_update_userpage(event);
7293 
7294 	return 0;
7295 }
7296 
7297 static void cpu_clock_event_del(struct perf_event *event, int flags)
7298 {
7299 	cpu_clock_event_stop(event, flags);
7300 }
7301 
7302 static void cpu_clock_event_read(struct perf_event *event)
7303 {
7304 	cpu_clock_event_update(event);
7305 }
7306 
7307 static int cpu_clock_event_init(struct perf_event *event)
7308 {
7309 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7310 		return -ENOENT;
7311 
7312 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7313 		return -ENOENT;
7314 
7315 	/*
7316 	 * no branch sampling for software events
7317 	 */
7318 	if (has_branch_stack(event))
7319 		return -EOPNOTSUPP;
7320 
7321 	perf_swevent_init_hrtimer(event);
7322 
7323 	return 0;
7324 }
7325 
7326 static struct pmu perf_cpu_clock = {
7327 	.task_ctx_nr	= perf_sw_context,
7328 
7329 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7330 
7331 	.event_init	= cpu_clock_event_init,
7332 	.add		= cpu_clock_event_add,
7333 	.del		= cpu_clock_event_del,
7334 	.start		= cpu_clock_event_start,
7335 	.stop		= cpu_clock_event_stop,
7336 	.read		= cpu_clock_event_read,
7337 };
7338 
7339 /*
7340  * Software event: task time clock
7341  */
7342 
7343 static void task_clock_event_update(struct perf_event *event, u64 now)
7344 {
7345 	u64 prev;
7346 	s64 delta;
7347 
7348 	prev = local64_xchg(&event->hw.prev_count, now);
7349 	delta = now - prev;
7350 	local64_add(delta, &event->count);
7351 }
7352 
7353 static void task_clock_event_start(struct perf_event *event, int flags)
7354 {
7355 	local64_set(&event->hw.prev_count, event->ctx->time);
7356 	perf_swevent_start_hrtimer(event);
7357 }
7358 
7359 static void task_clock_event_stop(struct perf_event *event, int flags)
7360 {
7361 	perf_swevent_cancel_hrtimer(event);
7362 	task_clock_event_update(event, event->ctx->time);
7363 }
7364 
7365 static int task_clock_event_add(struct perf_event *event, int flags)
7366 {
7367 	if (flags & PERF_EF_START)
7368 		task_clock_event_start(event, flags);
7369 	perf_event_update_userpage(event);
7370 
7371 	return 0;
7372 }
7373 
7374 static void task_clock_event_del(struct perf_event *event, int flags)
7375 {
7376 	task_clock_event_stop(event, PERF_EF_UPDATE);
7377 }
7378 
7379 static void task_clock_event_read(struct perf_event *event)
7380 {
7381 	u64 now = perf_clock();
7382 	u64 delta = now - event->ctx->timestamp;
7383 	u64 time = event->ctx->time + delta;
7384 
7385 	task_clock_event_update(event, time);
7386 }
7387 
7388 static int task_clock_event_init(struct perf_event *event)
7389 {
7390 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7391 		return -ENOENT;
7392 
7393 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7394 		return -ENOENT;
7395 
7396 	/*
7397 	 * no branch sampling for software events
7398 	 */
7399 	if (has_branch_stack(event))
7400 		return -EOPNOTSUPP;
7401 
7402 	perf_swevent_init_hrtimer(event);
7403 
7404 	return 0;
7405 }
7406 
7407 static struct pmu perf_task_clock = {
7408 	.task_ctx_nr	= perf_sw_context,
7409 
7410 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7411 
7412 	.event_init	= task_clock_event_init,
7413 	.add		= task_clock_event_add,
7414 	.del		= task_clock_event_del,
7415 	.start		= task_clock_event_start,
7416 	.stop		= task_clock_event_stop,
7417 	.read		= task_clock_event_read,
7418 };
7419 
7420 static void perf_pmu_nop_void(struct pmu *pmu)
7421 {
7422 }
7423 
7424 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7425 {
7426 }
7427 
7428 static int perf_pmu_nop_int(struct pmu *pmu)
7429 {
7430 	return 0;
7431 }
7432 
7433 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7434 
7435 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7436 {
7437 	__this_cpu_write(nop_txn_flags, flags);
7438 
7439 	if (flags & ~PERF_PMU_TXN_ADD)
7440 		return;
7441 
7442 	perf_pmu_disable(pmu);
7443 }
7444 
7445 static int perf_pmu_commit_txn(struct pmu *pmu)
7446 {
7447 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7448 
7449 	__this_cpu_write(nop_txn_flags, 0);
7450 
7451 	if (flags & ~PERF_PMU_TXN_ADD)
7452 		return 0;
7453 
7454 	perf_pmu_enable(pmu);
7455 	return 0;
7456 }
7457 
7458 static void perf_pmu_cancel_txn(struct pmu *pmu)
7459 {
7460 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7461 
7462 	__this_cpu_write(nop_txn_flags, 0);
7463 
7464 	if (flags & ~PERF_PMU_TXN_ADD)
7465 		return;
7466 
7467 	perf_pmu_enable(pmu);
7468 }
7469 
7470 static int perf_event_idx_default(struct perf_event *event)
7471 {
7472 	return 0;
7473 }
7474 
7475 /*
7476  * Ensures all contexts with the same task_ctx_nr have the same
7477  * pmu_cpu_context too.
7478  */
7479 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7480 {
7481 	struct pmu *pmu;
7482 
7483 	if (ctxn < 0)
7484 		return NULL;
7485 
7486 	list_for_each_entry(pmu, &pmus, entry) {
7487 		if (pmu->task_ctx_nr == ctxn)
7488 			return pmu->pmu_cpu_context;
7489 	}
7490 
7491 	return NULL;
7492 }
7493 
7494 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7495 {
7496 	int cpu;
7497 
7498 	for_each_possible_cpu(cpu) {
7499 		struct perf_cpu_context *cpuctx;
7500 
7501 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7502 
7503 		if (cpuctx->unique_pmu == old_pmu)
7504 			cpuctx->unique_pmu = pmu;
7505 	}
7506 }
7507 
7508 static void free_pmu_context(struct pmu *pmu)
7509 {
7510 	struct pmu *i;
7511 
7512 	mutex_lock(&pmus_lock);
7513 	/*
7514 	 * Like a real lame refcount.
7515 	 */
7516 	list_for_each_entry(i, &pmus, entry) {
7517 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7518 			update_pmu_context(i, pmu);
7519 			goto out;
7520 		}
7521 	}
7522 
7523 	free_percpu(pmu->pmu_cpu_context);
7524 out:
7525 	mutex_unlock(&pmus_lock);
7526 }
7527 static struct idr pmu_idr;
7528 
7529 static ssize_t
7530 type_show(struct device *dev, struct device_attribute *attr, char *page)
7531 {
7532 	struct pmu *pmu = dev_get_drvdata(dev);
7533 
7534 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7535 }
7536 static DEVICE_ATTR_RO(type);
7537 
7538 static ssize_t
7539 perf_event_mux_interval_ms_show(struct device *dev,
7540 				struct device_attribute *attr,
7541 				char *page)
7542 {
7543 	struct pmu *pmu = dev_get_drvdata(dev);
7544 
7545 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7546 }
7547 
7548 static DEFINE_MUTEX(mux_interval_mutex);
7549 
7550 static ssize_t
7551 perf_event_mux_interval_ms_store(struct device *dev,
7552 				 struct device_attribute *attr,
7553 				 const char *buf, size_t count)
7554 {
7555 	struct pmu *pmu = dev_get_drvdata(dev);
7556 	int timer, cpu, ret;
7557 
7558 	ret = kstrtoint(buf, 0, &timer);
7559 	if (ret)
7560 		return ret;
7561 
7562 	if (timer < 1)
7563 		return -EINVAL;
7564 
7565 	/* same value, noting to do */
7566 	if (timer == pmu->hrtimer_interval_ms)
7567 		return count;
7568 
7569 	mutex_lock(&mux_interval_mutex);
7570 	pmu->hrtimer_interval_ms = timer;
7571 
7572 	/* update all cpuctx for this PMU */
7573 	get_online_cpus();
7574 	for_each_online_cpu(cpu) {
7575 		struct perf_cpu_context *cpuctx;
7576 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7577 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7578 
7579 		cpu_function_call(cpu,
7580 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7581 	}
7582 	put_online_cpus();
7583 	mutex_unlock(&mux_interval_mutex);
7584 
7585 	return count;
7586 }
7587 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7588 
7589 static struct attribute *pmu_dev_attrs[] = {
7590 	&dev_attr_type.attr,
7591 	&dev_attr_perf_event_mux_interval_ms.attr,
7592 	NULL,
7593 };
7594 ATTRIBUTE_GROUPS(pmu_dev);
7595 
7596 static int pmu_bus_running;
7597 static struct bus_type pmu_bus = {
7598 	.name		= "event_source",
7599 	.dev_groups	= pmu_dev_groups,
7600 };
7601 
7602 static void pmu_dev_release(struct device *dev)
7603 {
7604 	kfree(dev);
7605 }
7606 
7607 static int pmu_dev_alloc(struct pmu *pmu)
7608 {
7609 	int ret = -ENOMEM;
7610 
7611 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7612 	if (!pmu->dev)
7613 		goto out;
7614 
7615 	pmu->dev->groups = pmu->attr_groups;
7616 	device_initialize(pmu->dev);
7617 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7618 	if (ret)
7619 		goto free_dev;
7620 
7621 	dev_set_drvdata(pmu->dev, pmu);
7622 	pmu->dev->bus = &pmu_bus;
7623 	pmu->dev->release = pmu_dev_release;
7624 	ret = device_add(pmu->dev);
7625 	if (ret)
7626 		goto free_dev;
7627 
7628 out:
7629 	return ret;
7630 
7631 free_dev:
7632 	put_device(pmu->dev);
7633 	goto out;
7634 }
7635 
7636 static struct lock_class_key cpuctx_mutex;
7637 static struct lock_class_key cpuctx_lock;
7638 
7639 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7640 {
7641 	int cpu, ret;
7642 
7643 	mutex_lock(&pmus_lock);
7644 	ret = -ENOMEM;
7645 	pmu->pmu_disable_count = alloc_percpu(int);
7646 	if (!pmu->pmu_disable_count)
7647 		goto unlock;
7648 
7649 	pmu->type = -1;
7650 	if (!name)
7651 		goto skip_type;
7652 	pmu->name = name;
7653 
7654 	if (type < 0) {
7655 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7656 		if (type < 0) {
7657 			ret = type;
7658 			goto free_pdc;
7659 		}
7660 	}
7661 	pmu->type = type;
7662 
7663 	if (pmu_bus_running) {
7664 		ret = pmu_dev_alloc(pmu);
7665 		if (ret)
7666 			goto free_idr;
7667 	}
7668 
7669 skip_type:
7670 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7671 	if (pmu->pmu_cpu_context)
7672 		goto got_cpu_context;
7673 
7674 	ret = -ENOMEM;
7675 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7676 	if (!pmu->pmu_cpu_context)
7677 		goto free_dev;
7678 
7679 	for_each_possible_cpu(cpu) {
7680 		struct perf_cpu_context *cpuctx;
7681 
7682 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7683 		__perf_event_init_context(&cpuctx->ctx);
7684 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7685 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7686 		cpuctx->ctx.pmu = pmu;
7687 
7688 		__perf_mux_hrtimer_init(cpuctx, cpu);
7689 
7690 		cpuctx->unique_pmu = pmu;
7691 	}
7692 
7693 got_cpu_context:
7694 	if (!pmu->start_txn) {
7695 		if (pmu->pmu_enable) {
7696 			/*
7697 			 * If we have pmu_enable/pmu_disable calls, install
7698 			 * transaction stubs that use that to try and batch
7699 			 * hardware accesses.
7700 			 */
7701 			pmu->start_txn  = perf_pmu_start_txn;
7702 			pmu->commit_txn = perf_pmu_commit_txn;
7703 			pmu->cancel_txn = perf_pmu_cancel_txn;
7704 		} else {
7705 			pmu->start_txn  = perf_pmu_nop_txn;
7706 			pmu->commit_txn = perf_pmu_nop_int;
7707 			pmu->cancel_txn = perf_pmu_nop_void;
7708 		}
7709 	}
7710 
7711 	if (!pmu->pmu_enable) {
7712 		pmu->pmu_enable  = perf_pmu_nop_void;
7713 		pmu->pmu_disable = perf_pmu_nop_void;
7714 	}
7715 
7716 	if (!pmu->event_idx)
7717 		pmu->event_idx = perf_event_idx_default;
7718 
7719 	list_add_rcu(&pmu->entry, &pmus);
7720 	atomic_set(&pmu->exclusive_cnt, 0);
7721 	ret = 0;
7722 unlock:
7723 	mutex_unlock(&pmus_lock);
7724 
7725 	return ret;
7726 
7727 free_dev:
7728 	device_del(pmu->dev);
7729 	put_device(pmu->dev);
7730 
7731 free_idr:
7732 	if (pmu->type >= PERF_TYPE_MAX)
7733 		idr_remove(&pmu_idr, pmu->type);
7734 
7735 free_pdc:
7736 	free_percpu(pmu->pmu_disable_count);
7737 	goto unlock;
7738 }
7739 EXPORT_SYMBOL_GPL(perf_pmu_register);
7740 
7741 void perf_pmu_unregister(struct pmu *pmu)
7742 {
7743 	mutex_lock(&pmus_lock);
7744 	list_del_rcu(&pmu->entry);
7745 	mutex_unlock(&pmus_lock);
7746 
7747 	/*
7748 	 * We dereference the pmu list under both SRCU and regular RCU, so
7749 	 * synchronize against both of those.
7750 	 */
7751 	synchronize_srcu(&pmus_srcu);
7752 	synchronize_rcu();
7753 
7754 	free_percpu(pmu->pmu_disable_count);
7755 	if (pmu->type >= PERF_TYPE_MAX)
7756 		idr_remove(&pmu_idr, pmu->type);
7757 	device_del(pmu->dev);
7758 	put_device(pmu->dev);
7759 	free_pmu_context(pmu);
7760 }
7761 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7762 
7763 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7764 {
7765 	struct perf_event_context *ctx = NULL;
7766 	int ret;
7767 
7768 	if (!try_module_get(pmu->module))
7769 		return -ENODEV;
7770 
7771 	if (event->group_leader != event) {
7772 		/*
7773 		 * This ctx->mutex can nest when we're called through
7774 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7775 		 */
7776 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7777 						 SINGLE_DEPTH_NESTING);
7778 		BUG_ON(!ctx);
7779 	}
7780 
7781 	event->pmu = pmu;
7782 	ret = pmu->event_init(event);
7783 
7784 	if (ctx)
7785 		perf_event_ctx_unlock(event->group_leader, ctx);
7786 
7787 	if (ret)
7788 		module_put(pmu->module);
7789 
7790 	return ret;
7791 }
7792 
7793 static struct pmu *perf_init_event(struct perf_event *event)
7794 {
7795 	struct pmu *pmu = NULL;
7796 	int idx;
7797 	int ret;
7798 
7799 	idx = srcu_read_lock(&pmus_srcu);
7800 
7801 	rcu_read_lock();
7802 	pmu = idr_find(&pmu_idr, event->attr.type);
7803 	rcu_read_unlock();
7804 	if (pmu) {
7805 		ret = perf_try_init_event(pmu, event);
7806 		if (ret)
7807 			pmu = ERR_PTR(ret);
7808 		goto unlock;
7809 	}
7810 
7811 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7812 		ret = perf_try_init_event(pmu, event);
7813 		if (!ret)
7814 			goto unlock;
7815 
7816 		if (ret != -ENOENT) {
7817 			pmu = ERR_PTR(ret);
7818 			goto unlock;
7819 		}
7820 	}
7821 	pmu = ERR_PTR(-ENOENT);
7822 unlock:
7823 	srcu_read_unlock(&pmus_srcu, idx);
7824 
7825 	return pmu;
7826 }
7827 
7828 static void account_event_cpu(struct perf_event *event, int cpu)
7829 {
7830 	if (event->parent)
7831 		return;
7832 
7833 	if (is_cgroup_event(event))
7834 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7835 }
7836 
7837 static void account_event(struct perf_event *event)
7838 {
7839 	if (event->parent)
7840 		return;
7841 
7842 	if (event->attach_state & PERF_ATTACH_TASK)
7843 		static_key_slow_inc(&perf_sched_events.key);
7844 	if (event->attr.mmap || event->attr.mmap_data)
7845 		atomic_inc(&nr_mmap_events);
7846 	if (event->attr.comm)
7847 		atomic_inc(&nr_comm_events);
7848 	if (event->attr.task)
7849 		atomic_inc(&nr_task_events);
7850 	if (event->attr.freq) {
7851 		if (atomic_inc_return(&nr_freq_events) == 1)
7852 			tick_nohz_full_kick_all();
7853 	}
7854 	if (event->attr.context_switch) {
7855 		atomic_inc(&nr_switch_events);
7856 		static_key_slow_inc(&perf_sched_events.key);
7857 	}
7858 	if (has_branch_stack(event))
7859 		static_key_slow_inc(&perf_sched_events.key);
7860 	if (is_cgroup_event(event))
7861 		static_key_slow_inc(&perf_sched_events.key);
7862 
7863 	account_event_cpu(event, event->cpu);
7864 }
7865 
7866 /*
7867  * Allocate and initialize a event structure
7868  */
7869 static struct perf_event *
7870 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7871 		 struct task_struct *task,
7872 		 struct perf_event *group_leader,
7873 		 struct perf_event *parent_event,
7874 		 perf_overflow_handler_t overflow_handler,
7875 		 void *context, int cgroup_fd)
7876 {
7877 	struct pmu *pmu;
7878 	struct perf_event *event;
7879 	struct hw_perf_event *hwc;
7880 	long err = -EINVAL;
7881 
7882 	if ((unsigned)cpu >= nr_cpu_ids) {
7883 		if (!task || cpu != -1)
7884 			return ERR_PTR(-EINVAL);
7885 	}
7886 
7887 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7888 	if (!event)
7889 		return ERR_PTR(-ENOMEM);
7890 
7891 	/*
7892 	 * Single events are their own group leaders, with an
7893 	 * empty sibling list:
7894 	 */
7895 	if (!group_leader)
7896 		group_leader = event;
7897 
7898 	mutex_init(&event->child_mutex);
7899 	INIT_LIST_HEAD(&event->child_list);
7900 
7901 	INIT_LIST_HEAD(&event->group_entry);
7902 	INIT_LIST_HEAD(&event->event_entry);
7903 	INIT_LIST_HEAD(&event->sibling_list);
7904 	INIT_LIST_HEAD(&event->rb_entry);
7905 	INIT_LIST_HEAD(&event->active_entry);
7906 	INIT_HLIST_NODE(&event->hlist_entry);
7907 
7908 
7909 	init_waitqueue_head(&event->waitq);
7910 	init_irq_work(&event->pending, perf_pending_event);
7911 
7912 	mutex_init(&event->mmap_mutex);
7913 
7914 	atomic_long_set(&event->refcount, 1);
7915 	event->cpu		= cpu;
7916 	event->attr		= *attr;
7917 	event->group_leader	= group_leader;
7918 	event->pmu		= NULL;
7919 	event->oncpu		= -1;
7920 
7921 	event->parent		= parent_event;
7922 
7923 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7924 	event->id		= atomic64_inc_return(&perf_event_id);
7925 
7926 	event->state		= PERF_EVENT_STATE_INACTIVE;
7927 
7928 	if (task) {
7929 		event->attach_state = PERF_ATTACH_TASK;
7930 		/*
7931 		 * XXX pmu::event_init needs to know what task to account to
7932 		 * and we cannot use the ctx information because we need the
7933 		 * pmu before we get a ctx.
7934 		 */
7935 		event->hw.target = task;
7936 	}
7937 
7938 	event->clock = &local_clock;
7939 	if (parent_event)
7940 		event->clock = parent_event->clock;
7941 
7942 	if (!overflow_handler && parent_event) {
7943 		overflow_handler = parent_event->overflow_handler;
7944 		context = parent_event->overflow_handler_context;
7945 	}
7946 
7947 	event->overflow_handler	= overflow_handler;
7948 	event->overflow_handler_context = context;
7949 
7950 	perf_event__state_init(event);
7951 
7952 	pmu = NULL;
7953 
7954 	hwc = &event->hw;
7955 	hwc->sample_period = attr->sample_period;
7956 	if (attr->freq && attr->sample_freq)
7957 		hwc->sample_period = 1;
7958 	hwc->last_period = hwc->sample_period;
7959 
7960 	local64_set(&hwc->period_left, hwc->sample_period);
7961 
7962 	/*
7963 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7964 	 */
7965 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7966 		goto err_ns;
7967 
7968 	if (!has_branch_stack(event))
7969 		event->attr.branch_sample_type = 0;
7970 
7971 	if (cgroup_fd != -1) {
7972 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7973 		if (err)
7974 			goto err_ns;
7975 	}
7976 
7977 	pmu = perf_init_event(event);
7978 	if (!pmu)
7979 		goto err_ns;
7980 	else if (IS_ERR(pmu)) {
7981 		err = PTR_ERR(pmu);
7982 		goto err_ns;
7983 	}
7984 
7985 	err = exclusive_event_init(event);
7986 	if (err)
7987 		goto err_pmu;
7988 
7989 	if (!event->parent) {
7990 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7991 			err = get_callchain_buffers();
7992 			if (err)
7993 				goto err_per_task;
7994 		}
7995 	}
7996 
7997 	return event;
7998 
7999 err_per_task:
8000 	exclusive_event_destroy(event);
8001 
8002 err_pmu:
8003 	if (event->destroy)
8004 		event->destroy(event);
8005 	module_put(pmu->module);
8006 err_ns:
8007 	if (is_cgroup_event(event))
8008 		perf_detach_cgroup(event);
8009 	if (event->ns)
8010 		put_pid_ns(event->ns);
8011 	kfree(event);
8012 
8013 	return ERR_PTR(err);
8014 }
8015 
8016 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8017 			  struct perf_event_attr *attr)
8018 {
8019 	u32 size;
8020 	int ret;
8021 
8022 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8023 		return -EFAULT;
8024 
8025 	/*
8026 	 * zero the full structure, so that a short copy will be nice.
8027 	 */
8028 	memset(attr, 0, sizeof(*attr));
8029 
8030 	ret = get_user(size, &uattr->size);
8031 	if (ret)
8032 		return ret;
8033 
8034 	if (size > PAGE_SIZE)	/* silly large */
8035 		goto err_size;
8036 
8037 	if (!size)		/* abi compat */
8038 		size = PERF_ATTR_SIZE_VER0;
8039 
8040 	if (size < PERF_ATTR_SIZE_VER0)
8041 		goto err_size;
8042 
8043 	/*
8044 	 * If we're handed a bigger struct than we know of,
8045 	 * ensure all the unknown bits are 0 - i.e. new
8046 	 * user-space does not rely on any kernel feature
8047 	 * extensions we dont know about yet.
8048 	 */
8049 	if (size > sizeof(*attr)) {
8050 		unsigned char __user *addr;
8051 		unsigned char __user *end;
8052 		unsigned char val;
8053 
8054 		addr = (void __user *)uattr + sizeof(*attr);
8055 		end  = (void __user *)uattr + size;
8056 
8057 		for (; addr < end; addr++) {
8058 			ret = get_user(val, addr);
8059 			if (ret)
8060 				return ret;
8061 			if (val)
8062 				goto err_size;
8063 		}
8064 		size = sizeof(*attr);
8065 	}
8066 
8067 	ret = copy_from_user(attr, uattr, size);
8068 	if (ret)
8069 		return -EFAULT;
8070 
8071 	if (attr->__reserved_1)
8072 		return -EINVAL;
8073 
8074 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8075 		return -EINVAL;
8076 
8077 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8078 		return -EINVAL;
8079 
8080 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8081 		u64 mask = attr->branch_sample_type;
8082 
8083 		/* only using defined bits */
8084 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8085 			return -EINVAL;
8086 
8087 		/* at least one branch bit must be set */
8088 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8089 			return -EINVAL;
8090 
8091 		/* propagate priv level, when not set for branch */
8092 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8093 
8094 			/* exclude_kernel checked on syscall entry */
8095 			if (!attr->exclude_kernel)
8096 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8097 
8098 			if (!attr->exclude_user)
8099 				mask |= PERF_SAMPLE_BRANCH_USER;
8100 
8101 			if (!attr->exclude_hv)
8102 				mask |= PERF_SAMPLE_BRANCH_HV;
8103 			/*
8104 			 * adjust user setting (for HW filter setup)
8105 			 */
8106 			attr->branch_sample_type = mask;
8107 		}
8108 		/* privileged levels capture (kernel, hv): check permissions */
8109 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8110 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8111 			return -EACCES;
8112 	}
8113 
8114 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8115 		ret = perf_reg_validate(attr->sample_regs_user);
8116 		if (ret)
8117 			return ret;
8118 	}
8119 
8120 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8121 		if (!arch_perf_have_user_stack_dump())
8122 			return -ENOSYS;
8123 
8124 		/*
8125 		 * We have __u32 type for the size, but so far
8126 		 * we can only use __u16 as maximum due to the
8127 		 * __u16 sample size limit.
8128 		 */
8129 		if (attr->sample_stack_user >= USHRT_MAX)
8130 			ret = -EINVAL;
8131 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8132 			ret = -EINVAL;
8133 	}
8134 
8135 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8136 		ret = perf_reg_validate(attr->sample_regs_intr);
8137 out:
8138 	return ret;
8139 
8140 err_size:
8141 	put_user(sizeof(*attr), &uattr->size);
8142 	ret = -E2BIG;
8143 	goto out;
8144 }
8145 
8146 static int
8147 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8148 {
8149 	struct ring_buffer *rb = NULL;
8150 	int ret = -EINVAL;
8151 
8152 	if (!output_event)
8153 		goto set;
8154 
8155 	/* don't allow circular references */
8156 	if (event == output_event)
8157 		goto out;
8158 
8159 	/*
8160 	 * Don't allow cross-cpu buffers
8161 	 */
8162 	if (output_event->cpu != event->cpu)
8163 		goto out;
8164 
8165 	/*
8166 	 * If its not a per-cpu rb, it must be the same task.
8167 	 */
8168 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8169 		goto out;
8170 
8171 	/*
8172 	 * Mixing clocks in the same buffer is trouble you don't need.
8173 	 */
8174 	if (output_event->clock != event->clock)
8175 		goto out;
8176 
8177 	/*
8178 	 * If both events generate aux data, they must be on the same PMU
8179 	 */
8180 	if (has_aux(event) && has_aux(output_event) &&
8181 	    event->pmu != output_event->pmu)
8182 		goto out;
8183 
8184 set:
8185 	mutex_lock(&event->mmap_mutex);
8186 	/* Can't redirect output if we've got an active mmap() */
8187 	if (atomic_read(&event->mmap_count))
8188 		goto unlock;
8189 
8190 	if (output_event) {
8191 		/* get the rb we want to redirect to */
8192 		rb = ring_buffer_get(output_event);
8193 		if (!rb)
8194 			goto unlock;
8195 	}
8196 
8197 	ring_buffer_attach(event, rb);
8198 
8199 	ret = 0;
8200 unlock:
8201 	mutex_unlock(&event->mmap_mutex);
8202 
8203 out:
8204 	return ret;
8205 }
8206 
8207 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8208 {
8209 	if (b < a)
8210 		swap(a, b);
8211 
8212 	mutex_lock(a);
8213 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8214 }
8215 
8216 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8217 {
8218 	bool nmi_safe = false;
8219 
8220 	switch (clk_id) {
8221 	case CLOCK_MONOTONIC:
8222 		event->clock = &ktime_get_mono_fast_ns;
8223 		nmi_safe = true;
8224 		break;
8225 
8226 	case CLOCK_MONOTONIC_RAW:
8227 		event->clock = &ktime_get_raw_fast_ns;
8228 		nmi_safe = true;
8229 		break;
8230 
8231 	case CLOCK_REALTIME:
8232 		event->clock = &ktime_get_real_ns;
8233 		break;
8234 
8235 	case CLOCK_BOOTTIME:
8236 		event->clock = &ktime_get_boot_ns;
8237 		break;
8238 
8239 	case CLOCK_TAI:
8240 		event->clock = &ktime_get_tai_ns;
8241 		break;
8242 
8243 	default:
8244 		return -EINVAL;
8245 	}
8246 
8247 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8248 		return -EINVAL;
8249 
8250 	return 0;
8251 }
8252 
8253 /**
8254  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8255  *
8256  * @attr_uptr:	event_id type attributes for monitoring/sampling
8257  * @pid:		target pid
8258  * @cpu:		target cpu
8259  * @group_fd:		group leader event fd
8260  */
8261 SYSCALL_DEFINE5(perf_event_open,
8262 		struct perf_event_attr __user *, attr_uptr,
8263 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8264 {
8265 	struct perf_event *group_leader = NULL, *output_event = NULL;
8266 	struct perf_event *event, *sibling;
8267 	struct perf_event_attr attr;
8268 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8269 	struct file *event_file = NULL;
8270 	struct fd group = {NULL, 0};
8271 	struct task_struct *task = NULL;
8272 	struct pmu *pmu;
8273 	int event_fd;
8274 	int move_group = 0;
8275 	int err;
8276 	int f_flags = O_RDWR;
8277 	int cgroup_fd = -1;
8278 
8279 	/* for future expandability... */
8280 	if (flags & ~PERF_FLAG_ALL)
8281 		return -EINVAL;
8282 
8283 	err = perf_copy_attr(attr_uptr, &attr);
8284 	if (err)
8285 		return err;
8286 
8287 	if (!attr.exclude_kernel) {
8288 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8289 			return -EACCES;
8290 	}
8291 
8292 	if (attr.freq) {
8293 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8294 			return -EINVAL;
8295 	} else {
8296 		if (attr.sample_period & (1ULL << 63))
8297 			return -EINVAL;
8298 	}
8299 
8300 	/*
8301 	 * In cgroup mode, the pid argument is used to pass the fd
8302 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8303 	 * designates the cpu on which to monitor threads from that
8304 	 * cgroup.
8305 	 */
8306 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8307 		return -EINVAL;
8308 
8309 	if (flags & PERF_FLAG_FD_CLOEXEC)
8310 		f_flags |= O_CLOEXEC;
8311 
8312 	event_fd = get_unused_fd_flags(f_flags);
8313 	if (event_fd < 0)
8314 		return event_fd;
8315 
8316 	if (group_fd != -1) {
8317 		err = perf_fget_light(group_fd, &group);
8318 		if (err)
8319 			goto err_fd;
8320 		group_leader = group.file->private_data;
8321 		if (flags & PERF_FLAG_FD_OUTPUT)
8322 			output_event = group_leader;
8323 		if (flags & PERF_FLAG_FD_NO_GROUP)
8324 			group_leader = NULL;
8325 	}
8326 
8327 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8328 		task = find_lively_task_by_vpid(pid);
8329 		if (IS_ERR(task)) {
8330 			err = PTR_ERR(task);
8331 			goto err_group_fd;
8332 		}
8333 	}
8334 
8335 	if (task && group_leader &&
8336 	    group_leader->attr.inherit != attr.inherit) {
8337 		err = -EINVAL;
8338 		goto err_task;
8339 	}
8340 
8341 	get_online_cpus();
8342 
8343 	if (flags & PERF_FLAG_PID_CGROUP)
8344 		cgroup_fd = pid;
8345 
8346 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8347 				 NULL, NULL, cgroup_fd);
8348 	if (IS_ERR(event)) {
8349 		err = PTR_ERR(event);
8350 		goto err_cpus;
8351 	}
8352 
8353 	if (is_sampling_event(event)) {
8354 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8355 			err = -ENOTSUPP;
8356 			goto err_alloc;
8357 		}
8358 	}
8359 
8360 	account_event(event);
8361 
8362 	/*
8363 	 * Special case software events and allow them to be part of
8364 	 * any hardware group.
8365 	 */
8366 	pmu = event->pmu;
8367 
8368 	if (attr.use_clockid) {
8369 		err = perf_event_set_clock(event, attr.clockid);
8370 		if (err)
8371 			goto err_alloc;
8372 	}
8373 
8374 	if (group_leader &&
8375 	    (is_software_event(event) != is_software_event(group_leader))) {
8376 		if (is_software_event(event)) {
8377 			/*
8378 			 * If event and group_leader are not both a software
8379 			 * event, and event is, then group leader is not.
8380 			 *
8381 			 * Allow the addition of software events to !software
8382 			 * groups, this is safe because software events never
8383 			 * fail to schedule.
8384 			 */
8385 			pmu = group_leader->pmu;
8386 		} else if (is_software_event(group_leader) &&
8387 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8388 			/*
8389 			 * In case the group is a pure software group, and we
8390 			 * try to add a hardware event, move the whole group to
8391 			 * the hardware context.
8392 			 */
8393 			move_group = 1;
8394 		}
8395 	}
8396 
8397 	/*
8398 	 * Get the target context (task or percpu):
8399 	 */
8400 	ctx = find_get_context(pmu, task, event);
8401 	if (IS_ERR(ctx)) {
8402 		err = PTR_ERR(ctx);
8403 		goto err_alloc;
8404 	}
8405 
8406 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8407 		err = -EBUSY;
8408 		goto err_context;
8409 	}
8410 
8411 	if (task) {
8412 		put_task_struct(task);
8413 		task = NULL;
8414 	}
8415 
8416 	/*
8417 	 * Look up the group leader (we will attach this event to it):
8418 	 */
8419 	if (group_leader) {
8420 		err = -EINVAL;
8421 
8422 		/*
8423 		 * Do not allow a recursive hierarchy (this new sibling
8424 		 * becoming part of another group-sibling):
8425 		 */
8426 		if (group_leader->group_leader != group_leader)
8427 			goto err_context;
8428 
8429 		/* All events in a group should have the same clock */
8430 		if (group_leader->clock != event->clock)
8431 			goto err_context;
8432 
8433 		/*
8434 		 * Do not allow to attach to a group in a different
8435 		 * task or CPU context:
8436 		 */
8437 		if (move_group) {
8438 			/*
8439 			 * Make sure we're both on the same task, or both
8440 			 * per-cpu events.
8441 			 */
8442 			if (group_leader->ctx->task != ctx->task)
8443 				goto err_context;
8444 
8445 			/*
8446 			 * Make sure we're both events for the same CPU;
8447 			 * grouping events for different CPUs is broken; since
8448 			 * you can never concurrently schedule them anyhow.
8449 			 */
8450 			if (group_leader->cpu != event->cpu)
8451 				goto err_context;
8452 		} else {
8453 			if (group_leader->ctx != ctx)
8454 				goto err_context;
8455 		}
8456 
8457 		/*
8458 		 * Only a group leader can be exclusive or pinned
8459 		 */
8460 		if (attr.exclusive || attr.pinned)
8461 			goto err_context;
8462 	}
8463 
8464 	if (output_event) {
8465 		err = perf_event_set_output(event, output_event);
8466 		if (err)
8467 			goto err_context;
8468 	}
8469 
8470 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8471 					f_flags);
8472 	if (IS_ERR(event_file)) {
8473 		err = PTR_ERR(event_file);
8474 		goto err_context;
8475 	}
8476 
8477 	if (move_group) {
8478 		gctx = group_leader->ctx;
8479 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8480 	} else {
8481 		mutex_lock(&ctx->mutex);
8482 	}
8483 
8484 	if (!perf_event_validate_size(event)) {
8485 		err = -E2BIG;
8486 		goto err_locked;
8487 	}
8488 
8489 	/*
8490 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8491 	 * because we need to serialize with concurrent event creation.
8492 	 */
8493 	if (!exclusive_event_installable(event, ctx)) {
8494 		/* exclusive and group stuff are assumed mutually exclusive */
8495 		WARN_ON_ONCE(move_group);
8496 
8497 		err = -EBUSY;
8498 		goto err_locked;
8499 	}
8500 
8501 	WARN_ON_ONCE(ctx->parent_ctx);
8502 
8503 	if (move_group) {
8504 		/*
8505 		 * See perf_event_ctx_lock() for comments on the details
8506 		 * of swizzling perf_event::ctx.
8507 		 */
8508 		perf_remove_from_context(group_leader, false);
8509 
8510 		list_for_each_entry(sibling, &group_leader->sibling_list,
8511 				    group_entry) {
8512 			perf_remove_from_context(sibling, false);
8513 			put_ctx(gctx);
8514 		}
8515 
8516 		/*
8517 		 * Wait for everybody to stop referencing the events through
8518 		 * the old lists, before installing it on new lists.
8519 		 */
8520 		synchronize_rcu();
8521 
8522 		/*
8523 		 * Install the group siblings before the group leader.
8524 		 *
8525 		 * Because a group leader will try and install the entire group
8526 		 * (through the sibling list, which is still in-tact), we can
8527 		 * end up with siblings installed in the wrong context.
8528 		 *
8529 		 * By installing siblings first we NO-OP because they're not
8530 		 * reachable through the group lists.
8531 		 */
8532 		list_for_each_entry(sibling, &group_leader->sibling_list,
8533 				    group_entry) {
8534 			perf_event__state_init(sibling);
8535 			perf_install_in_context(ctx, sibling, sibling->cpu);
8536 			get_ctx(ctx);
8537 		}
8538 
8539 		/*
8540 		 * Removing from the context ends up with disabled
8541 		 * event. What we want here is event in the initial
8542 		 * startup state, ready to be add into new context.
8543 		 */
8544 		perf_event__state_init(group_leader);
8545 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8546 		get_ctx(ctx);
8547 
8548 		/*
8549 		 * Now that all events are installed in @ctx, nothing
8550 		 * references @gctx anymore, so drop the last reference we have
8551 		 * on it.
8552 		 */
8553 		put_ctx(gctx);
8554 	}
8555 
8556 	/*
8557 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8558 	 * that we're serialized against further additions and before
8559 	 * perf_install_in_context() which is the point the event is active and
8560 	 * can use these values.
8561 	 */
8562 	perf_event__header_size(event);
8563 	perf_event__id_header_size(event);
8564 
8565 	perf_install_in_context(ctx, event, event->cpu);
8566 	perf_unpin_context(ctx);
8567 
8568 	if (move_group)
8569 		mutex_unlock(&gctx->mutex);
8570 	mutex_unlock(&ctx->mutex);
8571 
8572 	put_online_cpus();
8573 
8574 	event->owner = current;
8575 
8576 	mutex_lock(&current->perf_event_mutex);
8577 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8578 	mutex_unlock(&current->perf_event_mutex);
8579 
8580 	/*
8581 	 * Drop the reference on the group_event after placing the
8582 	 * new event on the sibling_list. This ensures destruction
8583 	 * of the group leader will find the pointer to itself in
8584 	 * perf_group_detach().
8585 	 */
8586 	fdput(group);
8587 	fd_install(event_fd, event_file);
8588 	return event_fd;
8589 
8590 err_locked:
8591 	if (move_group)
8592 		mutex_unlock(&gctx->mutex);
8593 	mutex_unlock(&ctx->mutex);
8594 /* err_file: */
8595 	fput(event_file);
8596 err_context:
8597 	perf_unpin_context(ctx);
8598 	put_ctx(ctx);
8599 err_alloc:
8600 	free_event(event);
8601 err_cpus:
8602 	put_online_cpus();
8603 err_task:
8604 	if (task)
8605 		put_task_struct(task);
8606 err_group_fd:
8607 	fdput(group);
8608 err_fd:
8609 	put_unused_fd(event_fd);
8610 	return err;
8611 }
8612 
8613 /**
8614  * perf_event_create_kernel_counter
8615  *
8616  * @attr: attributes of the counter to create
8617  * @cpu: cpu in which the counter is bound
8618  * @task: task to profile (NULL for percpu)
8619  */
8620 struct perf_event *
8621 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8622 				 struct task_struct *task,
8623 				 perf_overflow_handler_t overflow_handler,
8624 				 void *context)
8625 {
8626 	struct perf_event_context *ctx;
8627 	struct perf_event *event;
8628 	int err;
8629 
8630 	/*
8631 	 * Get the target context (task or percpu):
8632 	 */
8633 
8634 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8635 				 overflow_handler, context, -1);
8636 	if (IS_ERR(event)) {
8637 		err = PTR_ERR(event);
8638 		goto err;
8639 	}
8640 
8641 	/* Mark owner so we could distinguish it from user events. */
8642 	event->owner = EVENT_OWNER_KERNEL;
8643 
8644 	account_event(event);
8645 
8646 	ctx = find_get_context(event->pmu, task, event);
8647 	if (IS_ERR(ctx)) {
8648 		err = PTR_ERR(ctx);
8649 		goto err_free;
8650 	}
8651 
8652 	WARN_ON_ONCE(ctx->parent_ctx);
8653 	mutex_lock(&ctx->mutex);
8654 	if (!exclusive_event_installable(event, ctx)) {
8655 		mutex_unlock(&ctx->mutex);
8656 		perf_unpin_context(ctx);
8657 		put_ctx(ctx);
8658 		err = -EBUSY;
8659 		goto err_free;
8660 	}
8661 
8662 	perf_install_in_context(ctx, event, cpu);
8663 	perf_unpin_context(ctx);
8664 	mutex_unlock(&ctx->mutex);
8665 
8666 	return event;
8667 
8668 err_free:
8669 	free_event(event);
8670 err:
8671 	return ERR_PTR(err);
8672 }
8673 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8674 
8675 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8676 {
8677 	struct perf_event_context *src_ctx;
8678 	struct perf_event_context *dst_ctx;
8679 	struct perf_event *event, *tmp;
8680 	LIST_HEAD(events);
8681 
8682 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8683 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8684 
8685 	/*
8686 	 * See perf_event_ctx_lock() for comments on the details
8687 	 * of swizzling perf_event::ctx.
8688 	 */
8689 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8690 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8691 				 event_entry) {
8692 		perf_remove_from_context(event, false);
8693 		unaccount_event_cpu(event, src_cpu);
8694 		put_ctx(src_ctx);
8695 		list_add(&event->migrate_entry, &events);
8696 	}
8697 
8698 	/*
8699 	 * Wait for the events to quiesce before re-instating them.
8700 	 */
8701 	synchronize_rcu();
8702 
8703 	/*
8704 	 * Re-instate events in 2 passes.
8705 	 *
8706 	 * Skip over group leaders and only install siblings on this first
8707 	 * pass, siblings will not get enabled without a leader, however a
8708 	 * leader will enable its siblings, even if those are still on the old
8709 	 * context.
8710 	 */
8711 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8712 		if (event->group_leader == event)
8713 			continue;
8714 
8715 		list_del(&event->migrate_entry);
8716 		if (event->state >= PERF_EVENT_STATE_OFF)
8717 			event->state = PERF_EVENT_STATE_INACTIVE;
8718 		account_event_cpu(event, dst_cpu);
8719 		perf_install_in_context(dst_ctx, event, dst_cpu);
8720 		get_ctx(dst_ctx);
8721 	}
8722 
8723 	/*
8724 	 * Once all the siblings are setup properly, install the group leaders
8725 	 * to make it go.
8726 	 */
8727 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8728 		list_del(&event->migrate_entry);
8729 		if (event->state >= PERF_EVENT_STATE_OFF)
8730 			event->state = PERF_EVENT_STATE_INACTIVE;
8731 		account_event_cpu(event, dst_cpu);
8732 		perf_install_in_context(dst_ctx, event, dst_cpu);
8733 		get_ctx(dst_ctx);
8734 	}
8735 	mutex_unlock(&dst_ctx->mutex);
8736 	mutex_unlock(&src_ctx->mutex);
8737 }
8738 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8739 
8740 static void sync_child_event(struct perf_event *child_event,
8741 			       struct task_struct *child)
8742 {
8743 	struct perf_event *parent_event = child_event->parent;
8744 	u64 child_val;
8745 
8746 	if (child_event->attr.inherit_stat)
8747 		perf_event_read_event(child_event, child);
8748 
8749 	child_val = perf_event_count(child_event);
8750 
8751 	/*
8752 	 * Add back the child's count to the parent's count:
8753 	 */
8754 	atomic64_add(child_val, &parent_event->child_count);
8755 	atomic64_add(child_event->total_time_enabled,
8756 		     &parent_event->child_total_time_enabled);
8757 	atomic64_add(child_event->total_time_running,
8758 		     &parent_event->child_total_time_running);
8759 
8760 	/*
8761 	 * Remove this event from the parent's list
8762 	 */
8763 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8764 	mutex_lock(&parent_event->child_mutex);
8765 	list_del_init(&child_event->child_list);
8766 	mutex_unlock(&parent_event->child_mutex);
8767 
8768 	/*
8769 	 * Make sure user/parent get notified, that we just
8770 	 * lost one event.
8771 	 */
8772 	perf_event_wakeup(parent_event);
8773 
8774 	/*
8775 	 * Release the parent event, if this was the last
8776 	 * reference to it.
8777 	 */
8778 	put_event(parent_event);
8779 }
8780 
8781 static void
8782 __perf_event_exit_task(struct perf_event *child_event,
8783 			 struct perf_event_context *child_ctx,
8784 			 struct task_struct *child)
8785 {
8786 	/*
8787 	 * Do not destroy the 'original' grouping; because of the context
8788 	 * switch optimization the original events could've ended up in a
8789 	 * random child task.
8790 	 *
8791 	 * If we were to destroy the original group, all group related
8792 	 * operations would cease to function properly after this random
8793 	 * child dies.
8794 	 *
8795 	 * Do destroy all inherited groups, we don't care about those
8796 	 * and being thorough is better.
8797 	 */
8798 	perf_remove_from_context(child_event, !!child_event->parent);
8799 
8800 	/*
8801 	 * It can happen that the parent exits first, and has events
8802 	 * that are still around due to the child reference. These
8803 	 * events need to be zapped.
8804 	 */
8805 	if (child_event->parent) {
8806 		sync_child_event(child_event, child);
8807 		free_event(child_event);
8808 	} else {
8809 		child_event->state = PERF_EVENT_STATE_EXIT;
8810 		perf_event_wakeup(child_event);
8811 	}
8812 }
8813 
8814 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8815 {
8816 	struct perf_event *child_event, *next;
8817 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8818 	unsigned long flags;
8819 
8820 	if (likely(!child->perf_event_ctxp[ctxn]))
8821 		return;
8822 
8823 	local_irq_save(flags);
8824 	/*
8825 	 * We can't reschedule here because interrupts are disabled,
8826 	 * and either child is current or it is a task that can't be
8827 	 * scheduled, so we are now safe from rescheduling changing
8828 	 * our context.
8829 	 */
8830 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8831 
8832 	/*
8833 	 * Take the context lock here so that if find_get_context is
8834 	 * reading child->perf_event_ctxp, we wait until it has
8835 	 * incremented the context's refcount before we do put_ctx below.
8836 	 */
8837 	raw_spin_lock(&child_ctx->lock);
8838 	task_ctx_sched_out(child_ctx);
8839 	child->perf_event_ctxp[ctxn] = NULL;
8840 
8841 	/*
8842 	 * If this context is a clone; unclone it so it can't get
8843 	 * swapped to another process while we're removing all
8844 	 * the events from it.
8845 	 */
8846 	clone_ctx = unclone_ctx(child_ctx);
8847 	update_context_time(child_ctx);
8848 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8849 
8850 	if (clone_ctx)
8851 		put_ctx(clone_ctx);
8852 
8853 	/*
8854 	 * Report the task dead after unscheduling the events so that we
8855 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8856 	 * get a few PERF_RECORD_READ events.
8857 	 */
8858 	perf_event_task(child, child_ctx, 0);
8859 
8860 	/*
8861 	 * We can recurse on the same lock type through:
8862 	 *
8863 	 *   __perf_event_exit_task()
8864 	 *     sync_child_event()
8865 	 *       put_event()
8866 	 *         mutex_lock(&ctx->mutex)
8867 	 *
8868 	 * But since its the parent context it won't be the same instance.
8869 	 */
8870 	mutex_lock(&child_ctx->mutex);
8871 
8872 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8873 		__perf_event_exit_task(child_event, child_ctx, child);
8874 
8875 	mutex_unlock(&child_ctx->mutex);
8876 
8877 	put_ctx(child_ctx);
8878 }
8879 
8880 /*
8881  * When a child task exits, feed back event values to parent events.
8882  */
8883 void perf_event_exit_task(struct task_struct *child)
8884 {
8885 	struct perf_event *event, *tmp;
8886 	int ctxn;
8887 
8888 	mutex_lock(&child->perf_event_mutex);
8889 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8890 				 owner_entry) {
8891 		list_del_init(&event->owner_entry);
8892 
8893 		/*
8894 		 * Ensure the list deletion is visible before we clear
8895 		 * the owner, closes a race against perf_release() where
8896 		 * we need to serialize on the owner->perf_event_mutex.
8897 		 */
8898 		smp_wmb();
8899 		event->owner = NULL;
8900 	}
8901 	mutex_unlock(&child->perf_event_mutex);
8902 
8903 	for_each_task_context_nr(ctxn)
8904 		perf_event_exit_task_context(child, ctxn);
8905 
8906 	/*
8907 	 * The perf_event_exit_task_context calls perf_event_task
8908 	 * with child's task_ctx, which generates EXIT events for
8909 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8910 	 * At this point we need to send EXIT events to cpu contexts.
8911 	 */
8912 	perf_event_task(child, NULL, 0);
8913 }
8914 
8915 static void perf_free_event(struct perf_event *event,
8916 			    struct perf_event_context *ctx)
8917 {
8918 	struct perf_event *parent = event->parent;
8919 
8920 	if (WARN_ON_ONCE(!parent))
8921 		return;
8922 
8923 	mutex_lock(&parent->child_mutex);
8924 	list_del_init(&event->child_list);
8925 	mutex_unlock(&parent->child_mutex);
8926 
8927 	put_event(parent);
8928 
8929 	raw_spin_lock_irq(&ctx->lock);
8930 	perf_group_detach(event);
8931 	list_del_event(event, ctx);
8932 	raw_spin_unlock_irq(&ctx->lock);
8933 	free_event(event);
8934 }
8935 
8936 /*
8937  * Free an unexposed, unused context as created by inheritance by
8938  * perf_event_init_task below, used by fork() in case of fail.
8939  *
8940  * Not all locks are strictly required, but take them anyway to be nice and
8941  * help out with the lockdep assertions.
8942  */
8943 void perf_event_free_task(struct task_struct *task)
8944 {
8945 	struct perf_event_context *ctx;
8946 	struct perf_event *event, *tmp;
8947 	int ctxn;
8948 
8949 	for_each_task_context_nr(ctxn) {
8950 		ctx = task->perf_event_ctxp[ctxn];
8951 		if (!ctx)
8952 			continue;
8953 
8954 		mutex_lock(&ctx->mutex);
8955 again:
8956 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8957 				group_entry)
8958 			perf_free_event(event, ctx);
8959 
8960 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8961 				group_entry)
8962 			perf_free_event(event, ctx);
8963 
8964 		if (!list_empty(&ctx->pinned_groups) ||
8965 				!list_empty(&ctx->flexible_groups))
8966 			goto again;
8967 
8968 		mutex_unlock(&ctx->mutex);
8969 
8970 		put_ctx(ctx);
8971 	}
8972 }
8973 
8974 void perf_event_delayed_put(struct task_struct *task)
8975 {
8976 	int ctxn;
8977 
8978 	for_each_task_context_nr(ctxn)
8979 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8980 }
8981 
8982 struct perf_event *perf_event_get(unsigned int fd)
8983 {
8984 	int err;
8985 	struct fd f;
8986 	struct perf_event *event;
8987 
8988 	err = perf_fget_light(fd, &f);
8989 	if (err)
8990 		return ERR_PTR(err);
8991 
8992 	event = f.file->private_data;
8993 	atomic_long_inc(&event->refcount);
8994 	fdput(f);
8995 
8996 	return event;
8997 }
8998 
8999 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9000 {
9001 	if (!event)
9002 		return ERR_PTR(-EINVAL);
9003 
9004 	return &event->attr;
9005 }
9006 
9007 /*
9008  * inherit a event from parent task to child task:
9009  */
9010 static struct perf_event *
9011 inherit_event(struct perf_event *parent_event,
9012 	      struct task_struct *parent,
9013 	      struct perf_event_context *parent_ctx,
9014 	      struct task_struct *child,
9015 	      struct perf_event *group_leader,
9016 	      struct perf_event_context *child_ctx)
9017 {
9018 	enum perf_event_active_state parent_state = parent_event->state;
9019 	struct perf_event *child_event;
9020 	unsigned long flags;
9021 
9022 	/*
9023 	 * Instead of creating recursive hierarchies of events,
9024 	 * we link inherited events back to the original parent,
9025 	 * which has a filp for sure, which we use as the reference
9026 	 * count:
9027 	 */
9028 	if (parent_event->parent)
9029 		parent_event = parent_event->parent;
9030 
9031 	child_event = perf_event_alloc(&parent_event->attr,
9032 					   parent_event->cpu,
9033 					   child,
9034 					   group_leader, parent_event,
9035 					   NULL, NULL, -1);
9036 	if (IS_ERR(child_event))
9037 		return child_event;
9038 
9039 	if (is_orphaned_event(parent_event) ||
9040 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9041 		free_event(child_event);
9042 		return NULL;
9043 	}
9044 
9045 	get_ctx(child_ctx);
9046 
9047 	/*
9048 	 * Make the child state follow the state of the parent event,
9049 	 * not its attr.disabled bit.  We hold the parent's mutex,
9050 	 * so we won't race with perf_event_{en, dis}able_family.
9051 	 */
9052 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9053 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9054 	else
9055 		child_event->state = PERF_EVENT_STATE_OFF;
9056 
9057 	if (parent_event->attr.freq) {
9058 		u64 sample_period = parent_event->hw.sample_period;
9059 		struct hw_perf_event *hwc = &child_event->hw;
9060 
9061 		hwc->sample_period = sample_period;
9062 		hwc->last_period   = sample_period;
9063 
9064 		local64_set(&hwc->period_left, sample_period);
9065 	}
9066 
9067 	child_event->ctx = child_ctx;
9068 	child_event->overflow_handler = parent_event->overflow_handler;
9069 	child_event->overflow_handler_context
9070 		= parent_event->overflow_handler_context;
9071 
9072 	/*
9073 	 * Precalculate sample_data sizes
9074 	 */
9075 	perf_event__header_size(child_event);
9076 	perf_event__id_header_size(child_event);
9077 
9078 	/*
9079 	 * Link it up in the child's context:
9080 	 */
9081 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9082 	add_event_to_ctx(child_event, child_ctx);
9083 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9084 
9085 	/*
9086 	 * Link this into the parent event's child list
9087 	 */
9088 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9089 	mutex_lock(&parent_event->child_mutex);
9090 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9091 	mutex_unlock(&parent_event->child_mutex);
9092 
9093 	return child_event;
9094 }
9095 
9096 static int inherit_group(struct perf_event *parent_event,
9097 	      struct task_struct *parent,
9098 	      struct perf_event_context *parent_ctx,
9099 	      struct task_struct *child,
9100 	      struct perf_event_context *child_ctx)
9101 {
9102 	struct perf_event *leader;
9103 	struct perf_event *sub;
9104 	struct perf_event *child_ctr;
9105 
9106 	leader = inherit_event(parent_event, parent, parent_ctx,
9107 				 child, NULL, child_ctx);
9108 	if (IS_ERR(leader))
9109 		return PTR_ERR(leader);
9110 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9111 		child_ctr = inherit_event(sub, parent, parent_ctx,
9112 					    child, leader, child_ctx);
9113 		if (IS_ERR(child_ctr))
9114 			return PTR_ERR(child_ctr);
9115 	}
9116 	return 0;
9117 }
9118 
9119 static int
9120 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9121 		   struct perf_event_context *parent_ctx,
9122 		   struct task_struct *child, int ctxn,
9123 		   int *inherited_all)
9124 {
9125 	int ret;
9126 	struct perf_event_context *child_ctx;
9127 
9128 	if (!event->attr.inherit) {
9129 		*inherited_all = 0;
9130 		return 0;
9131 	}
9132 
9133 	child_ctx = child->perf_event_ctxp[ctxn];
9134 	if (!child_ctx) {
9135 		/*
9136 		 * This is executed from the parent task context, so
9137 		 * inherit events that have been marked for cloning.
9138 		 * First allocate and initialize a context for the
9139 		 * child.
9140 		 */
9141 
9142 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9143 		if (!child_ctx)
9144 			return -ENOMEM;
9145 
9146 		child->perf_event_ctxp[ctxn] = child_ctx;
9147 	}
9148 
9149 	ret = inherit_group(event, parent, parent_ctx,
9150 			    child, child_ctx);
9151 
9152 	if (ret)
9153 		*inherited_all = 0;
9154 
9155 	return ret;
9156 }
9157 
9158 /*
9159  * Initialize the perf_event context in task_struct
9160  */
9161 static int perf_event_init_context(struct task_struct *child, int ctxn)
9162 {
9163 	struct perf_event_context *child_ctx, *parent_ctx;
9164 	struct perf_event_context *cloned_ctx;
9165 	struct perf_event *event;
9166 	struct task_struct *parent = current;
9167 	int inherited_all = 1;
9168 	unsigned long flags;
9169 	int ret = 0;
9170 
9171 	if (likely(!parent->perf_event_ctxp[ctxn]))
9172 		return 0;
9173 
9174 	/*
9175 	 * If the parent's context is a clone, pin it so it won't get
9176 	 * swapped under us.
9177 	 */
9178 	parent_ctx = perf_pin_task_context(parent, ctxn);
9179 	if (!parent_ctx)
9180 		return 0;
9181 
9182 	/*
9183 	 * No need to check if parent_ctx != NULL here; since we saw
9184 	 * it non-NULL earlier, the only reason for it to become NULL
9185 	 * is if we exit, and since we're currently in the middle of
9186 	 * a fork we can't be exiting at the same time.
9187 	 */
9188 
9189 	/*
9190 	 * Lock the parent list. No need to lock the child - not PID
9191 	 * hashed yet and not running, so nobody can access it.
9192 	 */
9193 	mutex_lock(&parent_ctx->mutex);
9194 
9195 	/*
9196 	 * We dont have to disable NMIs - we are only looking at
9197 	 * the list, not manipulating it:
9198 	 */
9199 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9200 		ret = inherit_task_group(event, parent, parent_ctx,
9201 					 child, ctxn, &inherited_all);
9202 		if (ret)
9203 			break;
9204 	}
9205 
9206 	/*
9207 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9208 	 * to allocations, but we need to prevent rotation because
9209 	 * rotate_ctx() will change the list from interrupt context.
9210 	 */
9211 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9212 	parent_ctx->rotate_disable = 1;
9213 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9214 
9215 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9216 		ret = inherit_task_group(event, parent, parent_ctx,
9217 					 child, ctxn, &inherited_all);
9218 		if (ret)
9219 			break;
9220 	}
9221 
9222 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9223 	parent_ctx->rotate_disable = 0;
9224 
9225 	child_ctx = child->perf_event_ctxp[ctxn];
9226 
9227 	if (child_ctx && inherited_all) {
9228 		/*
9229 		 * Mark the child context as a clone of the parent
9230 		 * context, or of whatever the parent is a clone of.
9231 		 *
9232 		 * Note that if the parent is a clone, the holding of
9233 		 * parent_ctx->lock avoids it from being uncloned.
9234 		 */
9235 		cloned_ctx = parent_ctx->parent_ctx;
9236 		if (cloned_ctx) {
9237 			child_ctx->parent_ctx = cloned_ctx;
9238 			child_ctx->parent_gen = parent_ctx->parent_gen;
9239 		} else {
9240 			child_ctx->parent_ctx = parent_ctx;
9241 			child_ctx->parent_gen = parent_ctx->generation;
9242 		}
9243 		get_ctx(child_ctx->parent_ctx);
9244 	}
9245 
9246 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9247 	mutex_unlock(&parent_ctx->mutex);
9248 
9249 	perf_unpin_context(parent_ctx);
9250 	put_ctx(parent_ctx);
9251 
9252 	return ret;
9253 }
9254 
9255 /*
9256  * Initialize the perf_event context in task_struct
9257  */
9258 int perf_event_init_task(struct task_struct *child)
9259 {
9260 	int ctxn, ret;
9261 
9262 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9263 	mutex_init(&child->perf_event_mutex);
9264 	INIT_LIST_HEAD(&child->perf_event_list);
9265 
9266 	for_each_task_context_nr(ctxn) {
9267 		ret = perf_event_init_context(child, ctxn);
9268 		if (ret) {
9269 			perf_event_free_task(child);
9270 			return ret;
9271 		}
9272 	}
9273 
9274 	return 0;
9275 }
9276 
9277 static void __init perf_event_init_all_cpus(void)
9278 {
9279 	struct swevent_htable *swhash;
9280 	int cpu;
9281 
9282 	for_each_possible_cpu(cpu) {
9283 		swhash = &per_cpu(swevent_htable, cpu);
9284 		mutex_init(&swhash->hlist_mutex);
9285 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9286 	}
9287 }
9288 
9289 static void perf_event_init_cpu(int cpu)
9290 {
9291 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9292 
9293 	mutex_lock(&swhash->hlist_mutex);
9294 	swhash->online = true;
9295 	if (swhash->hlist_refcount > 0) {
9296 		struct swevent_hlist *hlist;
9297 
9298 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9299 		WARN_ON(!hlist);
9300 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9301 	}
9302 	mutex_unlock(&swhash->hlist_mutex);
9303 }
9304 
9305 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9306 static void __perf_event_exit_context(void *__info)
9307 {
9308 	struct remove_event re = { .detach_group = true };
9309 	struct perf_event_context *ctx = __info;
9310 
9311 	rcu_read_lock();
9312 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9313 		__perf_remove_from_context(&re);
9314 	rcu_read_unlock();
9315 }
9316 
9317 static void perf_event_exit_cpu_context(int cpu)
9318 {
9319 	struct perf_event_context *ctx;
9320 	struct pmu *pmu;
9321 	int idx;
9322 
9323 	idx = srcu_read_lock(&pmus_srcu);
9324 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9325 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9326 
9327 		mutex_lock(&ctx->mutex);
9328 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9329 		mutex_unlock(&ctx->mutex);
9330 	}
9331 	srcu_read_unlock(&pmus_srcu, idx);
9332 }
9333 
9334 static void perf_event_exit_cpu(int cpu)
9335 {
9336 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9337 
9338 	perf_event_exit_cpu_context(cpu);
9339 
9340 	mutex_lock(&swhash->hlist_mutex);
9341 	swhash->online = false;
9342 	swevent_hlist_release(swhash);
9343 	mutex_unlock(&swhash->hlist_mutex);
9344 }
9345 #else
9346 static inline void perf_event_exit_cpu(int cpu) { }
9347 #endif
9348 
9349 static int
9350 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9351 {
9352 	int cpu;
9353 
9354 	for_each_online_cpu(cpu)
9355 		perf_event_exit_cpu(cpu);
9356 
9357 	return NOTIFY_OK;
9358 }
9359 
9360 /*
9361  * Run the perf reboot notifier at the very last possible moment so that
9362  * the generic watchdog code runs as long as possible.
9363  */
9364 static struct notifier_block perf_reboot_notifier = {
9365 	.notifier_call = perf_reboot,
9366 	.priority = INT_MIN,
9367 };
9368 
9369 static int
9370 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9371 {
9372 	unsigned int cpu = (long)hcpu;
9373 
9374 	switch (action & ~CPU_TASKS_FROZEN) {
9375 
9376 	case CPU_UP_PREPARE:
9377 	case CPU_DOWN_FAILED:
9378 		perf_event_init_cpu(cpu);
9379 		break;
9380 
9381 	case CPU_UP_CANCELED:
9382 	case CPU_DOWN_PREPARE:
9383 		perf_event_exit_cpu(cpu);
9384 		break;
9385 	default:
9386 		break;
9387 	}
9388 
9389 	return NOTIFY_OK;
9390 }
9391 
9392 void __init perf_event_init(void)
9393 {
9394 	int ret;
9395 
9396 	idr_init(&pmu_idr);
9397 
9398 	perf_event_init_all_cpus();
9399 	init_srcu_struct(&pmus_srcu);
9400 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9401 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9402 	perf_pmu_register(&perf_task_clock, NULL, -1);
9403 	perf_tp_register();
9404 	perf_cpu_notifier(perf_cpu_notify);
9405 	register_reboot_notifier(&perf_reboot_notifier);
9406 
9407 	ret = init_hw_breakpoint();
9408 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9409 
9410 	/* do not patch jump label more than once per second */
9411 	jump_label_rate_limit(&perf_sched_events, HZ);
9412 
9413 	/*
9414 	 * Build time assertion that we keep the data_head at the intended
9415 	 * location.  IOW, validation we got the __reserved[] size right.
9416 	 */
9417 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9418 		     != 1024);
9419 }
9420 
9421 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9422 			      char *page)
9423 {
9424 	struct perf_pmu_events_attr *pmu_attr =
9425 		container_of(attr, struct perf_pmu_events_attr, attr);
9426 
9427 	if (pmu_attr->event_str)
9428 		return sprintf(page, "%s\n", pmu_attr->event_str);
9429 
9430 	return 0;
9431 }
9432 
9433 static int __init perf_event_sysfs_init(void)
9434 {
9435 	struct pmu *pmu;
9436 	int ret;
9437 
9438 	mutex_lock(&pmus_lock);
9439 
9440 	ret = bus_register(&pmu_bus);
9441 	if (ret)
9442 		goto unlock;
9443 
9444 	list_for_each_entry(pmu, &pmus, entry) {
9445 		if (!pmu->name || pmu->type < 0)
9446 			continue;
9447 
9448 		ret = pmu_dev_alloc(pmu);
9449 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9450 	}
9451 	pmu_bus_running = 1;
9452 	ret = 0;
9453 
9454 unlock:
9455 	mutex_unlock(&pmus_lock);
9456 
9457 	return ret;
9458 }
9459 device_initcall(perf_event_sysfs_init);
9460 
9461 #ifdef CONFIG_CGROUP_PERF
9462 static struct cgroup_subsys_state *
9463 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9464 {
9465 	struct perf_cgroup *jc;
9466 
9467 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9468 	if (!jc)
9469 		return ERR_PTR(-ENOMEM);
9470 
9471 	jc->info = alloc_percpu(struct perf_cgroup_info);
9472 	if (!jc->info) {
9473 		kfree(jc);
9474 		return ERR_PTR(-ENOMEM);
9475 	}
9476 
9477 	return &jc->css;
9478 }
9479 
9480 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9481 {
9482 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9483 
9484 	free_percpu(jc->info);
9485 	kfree(jc);
9486 }
9487 
9488 static int __perf_cgroup_move(void *info)
9489 {
9490 	struct task_struct *task = info;
9491 	rcu_read_lock();
9492 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9493 	rcu_read_unlock();
9494 	return 0;
9495 }
9496 
9497 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9498 {
9499 	struct task_struct *task;
9500 	struct cgroup_subsys_state *css;
9501 
9502 	cgroup_taskset_for_each(task, css, tset)
9503 		task_function_call(task, __perf_cgroup_move, task);
9504 }
9505 
9506 struct cgroup_subsys perf_event_cgrp_subsys = {
9507 	.css_alloc	= perf_cgroup_css_alloc,
9508 	.css_free	= perf_cgroup_css_free,
9509 	.attach		= perf_cgroup_attach,
9510 };
9511 #endif /* CONFIG_CGROUP_PERF */
9512