1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 46 #include "internal.h" 47 48 #include <asm/irq_regs.h> 49 50 static struct workqueue_struct *perf_wq; 51 52 struct remote_function_call { 53 struct task_struct *p; 54 int (*func)(void *info); 55 void *info; 56 int ret; 57 }; 58 59 static void remote_function(void *data) 60 { 61 struct remote_function_call *tfc = data; 62 struct task_struct *p = tfc->p; 63 64 if (p) { 65 tfc->ret = -EAGAIN; 66 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 67 return; 68 } 69 70 tfc->ret = tfc->func(tfc->info); 71 } 72 73 /** 74 * task_function_call - call a function on the cpu on which a task runs 75 * @p: the task to evaluate 76 * @func: the function to be called 77 * @info: the function call argument 78 * 79 * Calls the function @func when the task is currently running. This might 80 * be on the current CPU, which just calls the function directly 81 * 82 * returns: @func return value, or 83 * -ESRCH - when the process isn't running 84 * -EAGAIN - when the process moved away 85 */ 86 static int 87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 88 { 89 struct remote_function_call data = { 90 .p = p, 91 .func = func, 92 .info = info, 93 .ret = -ESRCH, /* No such (running) process */ 94 }; 95 96 if (task_curr(p)) 97 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 98 99 return data.ret; 100 } 101 102 /** 103 * cpu_function_call - call a function on the cpu 104 * @func: the function to be called 105 * @info: the function call argument 106 * 107 * Calls the function @func on the remote cpu. 108 * 109 * returns: @func return value or -ENXIO when the cpu is offline 110 */ 111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 112 { 113 struct remote_function_call data = { 114 .p = NULL, 115 .func = func, 116 .info = info, 117 .ret = -ENXIO, /* No such CPU */ 118 }; 119 120 smp_call_function_single(cpu, remote_function, &data, 1); 121 122 return data.ret; 123 } 124 125 #define EVENT_OWNER_KERNEL ((void *) -1) 126 127 static bool is_kernel_event(struct perf_event *event) 128 { 129 return event->owner == EVENT_OWNER_KERNEL; 130 } 131 132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 133 PERF_FLAG_FD_OUTPUT |\ 134 PERF_FLAG_PID_CGROUP |\ 135 PERF_FLAG_FD_CLOEXEC) 136 137 /* 138 * branch priv levels that need permission checks 139 */ 140 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 141 (PERF_SAMPLE_BRANCH_KERNEL |\ 142 PERF_SAMPLE_BRANCH_HV) 143 144 enum event_type_t { 145 EVENT_FLEXIBLE = 0x1, 146 EVENT_PINNED = 0x2, 147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 148 }; 149 150 /* 151 * perf_sched_events : >0 events exist 152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 153 */ 154 struct static_key_deferred perf_sched_events __read_mostly; 155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 157 158 static atomic_t nr_mmap_events __read_mostly; 159 static atomic_t nr_comm_events __read_mostly; 160 static atomic_t nr_task_events __read_mostly; 161 static atomic_t nr_freq_events __read_mostly; 162 163 static LIST_HEAD(pmus); 164 static DEFINE_MUTEX(pmus_lock); 165 static struct srcu_struct pmus_srcu; 166 167 /* 168 * perf event paranoia level: 169 * -1 - not paranoid at all 170 * 0 - disallow raw tracepoint access for unpriv 171 * 1 - disallow cpu events for unpriv 172 * 2 - disallow kernel profiling for unpriv 173 */ 174 int sysctl_perf_event_paranoid __read_mostly = 1; 175 176 /* Minimum for 512 kiB + 1 user control page */ 177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 178 179 /* 180 * max perf event sample rate 181 */ 182 #define DEFAULT_MAX_SAMPLE_RATE 100000 183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 185 186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 187 188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 190 191 static int perf_sample_allowed_ns __read_mostly = 192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 193 194 void update_perf_cpu_limits(void) 195 { 196 u64 tmp = perf_sample_period_ns; 197 198 tmp *= sysctl_perf_cpu_time_max_percent; 199 do_div(tmp, 100); 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 201 } 202 203 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 204 205 int perf_proc_update_handler(struct ctl_table *table, int write, 206 void __user *buffer, size_t *lenp, 207 loff_t *ppos) 208 { 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 210 211 if (ret || !write) 212 return ret; 213 214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 216 update_perf_cpu_limits(); 217 218 return 0; 219 } 220 221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 222 223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 224 void __user *buffer, size_t *lenp, 225 loff_t *ppos) 226 { 227 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 228 229 if (ret || !write) 230 return ret; 231 232 update_perf_cpu_limits(); 233 234 return 0; 235 } 236 237 /* 238 * perf samples are done in some very critical code paths (NMIs). 239 * If they take too much CPU time, the system can lock up and not 240 * get any real work done. This will drop the sample rate when 241 * we detect that events are taking too long. 242 */ 243 #define NR_ACCUMULATED_SAMPLES 128 244 static DEFINE_PER_CPU(u64, running_sample_length); 245 246 static void perf_duration_warn(struct irq_work *w) 247 { 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 249 u64 avg_local_sample_len; 250 u64 local_samples_len; 251 252 local_samples_len = __this_cpu_read(running_sample_length); 253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 254 255 printk_ratelimited(KERN_WARNING 256 "perf interrupt took too long (%lld > %lld), lowering " 257 "kernel.perf_event_max_sample_rate to %d\n", 258 avg_local_sample_len, allowed_ns >> 1, 259 sysctl_perf_event_sample_rate); 260 } 261 262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 263 264 void perf_sample_event_took(u64 sample_len_ns) 265 { 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 267 u64 avg_local_sample_len; 268 u64 local_samples_len; 269 270 if (allowed_ns == 0) 271 return; 272 273 /* decay the counter by 1 average sample */ 274 local_samples_len = __this_cpu_read(running_sample_length); 275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 276 local_samples_len += sample_len_ns; 277 __this_cpu_write(running_sample_length, local_samples_len); 278 279 /* 280 * note: this will be biased artifically low until we have 281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 282 * from having to maintain a count. 283 */ 284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 285 286 if (avg_local_sample_len <= allowed_ns) 287 return; 288 289 if (max_samples_per_tick <= 1) 290 return; 291 292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 295 296 update_perf_cpu_limits(); 297 298 if (!irq_work_queue(&perf_duration_work)) { 299 early_printk("perf interrupt took too long (%lld > %lld), lowering " 300 "kernel.perf_event_max_sample_rate to %d\n", 301 avg_local_sample_len, allowed_ns >> 1, 302 sysctl_perf_event_sample_rate); 303 } 304 } 305 306 static atomic64_t perf_event_id; 307 308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 309 enum event_type_t event_type); 310 311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 312 enum event_type_t event_type, 313 struct task_struct *task); 314 315 static void update_context_time(struct perf_event_context *ctx); 316 static u64 perf_event_time(struct perf_event *event); 317 318 void __weak perf_event_print_debug(void) { } 319 320 extern __weak const char *perf_pmu_name(void) 321 { 322 return "pmu"; 323 } 324 325 static inline u64 perf_clock(void) 326 { 327 return local_clock(); 328 } 329 330 static inline struct perf_cpu_context * 331 __get_cpu_context(struct perf_event_context *ctx) 332 { 333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 334 } 335 336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 337 struct perf_event_context *ctx) 338 { 339 raw_spin_lock(&cpuctx->ctx.lock); 340 if (ctx) 341 raw_spin_lock(&ctx->lock); 342 } 343 344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 345 struct perf_event_context *ctx) 346 { 347 if (ctx) 348 raw_spin_unlock(&ctx->lock); 349 raw_spin_unlock(&cpuctx->ctx.lock); 350 } 351 352 #ifdef CONFIG_CGROUP_PERF 353 354 /* 355 * perf_cgroup_info keeps track of time_enabled for a cgroup. 356 * This is a per-cpu dynamically allocated data structure. 357 */ 358 struct perf_cgroup_info { 359 u64 time; 360 u64 timestamp; 361 }; 362 363 struct perf_cgroup { 364 struct cgroup_subsys_state css; 365 struct perf_cgroup_info __percpu *info; 366 }; 367 368 /* 369 * Must ensure cgroup is pinned (css_get) before calling 370 * this function. In other words, we cannot call this function 371 * if there is no cgroup event for the current CPU context. 372 */ 373 static inline struct perf_cgroup * 374 perf_cgroup_from_task(struct task_struct *task) 375 { 376 return container_of(task_css(task, perf_event_cgrp_id), 377 struct perf_cgroup, css); 378 } 379 380 static inline bool 381 perf_cgroup_match(struct perf_event *event) 382 { 383 struct perf_event_context *ctx = event->ctx; 384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 385 386 /* @event doesn't care about cgroup */ 387 if (!event->cgrp) 388 return true; 389 390 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 391 if (!cpuctx->cgrp) 392 return false; 393 394 /* 395 * Cgroup scoping is recursive. An event enabled for a cgroup is 396 * also enabled for all its descendant cgroups. If @cpuctx's 397 * cgroup is a descendant of @event's (the test covers identity 398 * case), it's a match. 399 */ 400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 401 event->cgrp->css.cgroup); 402 } 403 404 static inline void perf_detach_cgroup(struct perf_event *event) 405 { 406 css_put(&event->cgrp->css); 407 event->cgrp = NULL; 408 } 409 410 static inline int is_cgroup_event(struct perf_event *event) 411 { 412 return event->cgrp != NULL; 413 } 414 415 static inline u64 perf_cgroup_event_time(struct perf_event *event) 416 { 417 struct perf_cgroup_info *t; 418 419 t = per_cpu_ptr(event->cgrp->info, event->cpu); 420 return t->time; 421 } 422 423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 424 { 425 struct perf_cgroup_info *info; 426 u64 now; 427 428 now = perf_clock(); 429 430 info = this_cpu_ptr(cgrp->info); 431 432 info->time += now - info->timestamp; 433 info->timestamp = now; 434 } 435 436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 437 { 438 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 439 if (cgrp_out) 440 __update_cgrp_time(cgrp_out); 441 } 442 443 static inline void update_cgrp_time_from_event(struct perf_event *event) 444 { 445 struct perf_cgroup *cgrp; 446 447 /* 448 * ensure we access cgroup data only when needed and 449 * when we know the cgroup is pinned (css_get) 450 */ 451 if (!is_cgroup_event(event)) 452 return; 453 454 cgrp = perf_cgroup_from_task(current); 455 /* 456 * Do not update time when cgroup is not active 457 */ 458 if (cgrp == event->cgrp) 459 __update_cgrp_time(event->cgrp); 460 } 461 462 static inline void 463 perf_cgroup_set_timestamp(struct task_struct *task, 464 struct perf_event_context *ctx) 465 { 466 struct perf_cgroup *cgrp; 467 struct perf_cgroup_info *info; 468 469 /* 470 * ctx->lock held by caller 471 * ensure we do not access cgroup data 472 * unless we have the cgroup pinned (css_get) 473 */ 474 if (!task || !ctx->nr_cgroups) 475 return; 476 477 cgrp = perf_cgroup_from_task(task); 478 info = this_cpu_ptr(cgrp->info); 479 info->timestamp = ctx->timestamp; 480 } 481 482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 484 485 /* 486 * reschedule events based on the cgroup constraint of task. 487 * 488 * mode SWOUT : schedule out everything 489 * mode SWIN : schedule in based on cgroup for next 490 */ 491 void perf_cgroup_switch(struct task_struct *task, int mode) 492 { 493 struct perf_cpu_context *cpuctx; 494 struct pmu *pmu; 495 unsigned long flags; 496 497 /* 498 * disable interrupts to avoid geting nr_cgroup 499 * changes via __perf_event_disable(). Also 500 * avoids preemption. 501 */ 502 local_irq_save(flags); 503 504 /* 505 * we reschedule only in the presence of cgroup 506 * constrained events. 507 */ 508 rcu_read_lock(); 509 510 list_for_each_entry_rcu(pmu, &pmus, entry) { 511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 512 if (cpuctx->unique_pmu != pmu) 513 continue; /* ensure we process each cpuctx once */ 514 515 /* 516 * perf_cgroup_events says at least one 517 * context on this CPU has cgroup events. 518 * 519 * ctx->nr_cgroups reports the number of cgroup 520 * events for a context. 521 */ 522 if (cpuctx->ctx.nr_cgroups > 0) { 523 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 524 perf_pmu_disable(cpuctx->ctx.pmu); 525 526 if (mode & PERF_CGROUP_SWOUT) { 527 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 528 /* 529 * must not be done before ctxswout due 530 * to event_filter_match() in event_sched_out() 531 */ 532 cpuctx->cgrp = NULL; 533 } 534 535 if (mode & PERF_CGROUP_SWIN) { 536 WARN_ON_ONCE(cpuctx->cgrp); 537 /* 538 * set cgrp before ctxsw in to allow 539 * event_filter_match() to not have to pass 540 * task around 541 */ 542 cpuctx->cgrp = perf_cgroup_from_task(task); 543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 544 } 545 perf_pmu_enable(cpuctx->ctx.pmu); 546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 547 } 548 } 549 550 rcu_read_unlock(); 551 552 local_irq_restore(flags); 553 } 554 555 static inline void perf_cgroup_sched_out(struct task_struct *task, 556 struct task_struct *next) 557 { 558 struct perf_cgroup *cgrp1; 559 struct perf_cgroup *cgrp2 = NULL; 560 561 /* 562 * we come here when we know perf_cgroup_events > 0 563 */ 564 cgrp1 = perf_cgroup_from_task(task); 565 566 /* 567 * next is NULL when called from perf_event_enable_on_exec() 568 * that will systematically cause a cgroup_switch() 569 */ 570 if (next) 571 cgrp2 = perf_cgroup_from_task(next); 572 573 /* 574 * only schedule out current cgroup events if we know 575 * that we are switching to a different cgroup. Otherwise, 576 * do no touch the cgroup events. 577 */ 578 if (cgrp1 != cgrp2) 579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 580 } 581 582 static inline void perf_cgroup_sched_in(struct task_struct *prev, 583 struct task_struct *task) 584 { 585 struct perf_cgroup *cgrp1; 586 struct perf_cgroup *cgrp2 = NULL; 587 588 /* 589 * we come here when we know perf_cgroup_events > 0 590 */ 591 cgrp1 = perf_cgroup_from_task(task); 592 593 /* prev can never be NULL */ 594 cgrp2 = perf_cgroup_from_task(prev); 595 596 /* 597 * only need to schedule in cgroup events if we are changing 598 * cgroup during ctxsw. Cgroup events were not scheduled 599 * out of ctxsw out if that was not the case. 600 */ 601 if (cgrp1 != cgrp2) 602 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 603 } 604 605 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 606 struct perf_event_attr *attr, 607 struct perf_event *group_leader) 608 { 609 struct perf_cgroup *cgrp; 610 struct cgroup_subsys_state *css; 611 struct fd f = fdget(fd); 612 int ret = 0; 613 614 if (!f.file) 615 return -EBADF; 616 617 css = css_tryget_online_from_dir(f.file->f_dentry, 618 &perf_event_cgrp_subsys); 619 if (IS_ERR(css)) { 620 ret = PTR_ERR(css); 621 goto out; 622 } 623 624 cgrp = container_of(css, struct perf_cgroup, css); 625 event->cgrp = cgrp; 626 627 /* 628 * all events in a group must monitor 629 * the same cgroup because a task belongs 630 * to only one perf cgroup at a time 631 */ 632 if (group_leader && group_leader->cgrp != cgrp) { 633 perf_detach_cgroup(event); 634 ret = -EINVAL; 635 } 636 out: 637 fdput(f); 638 return ret; 639 } 640 641 static inline void 642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 643 { 644 struct perf_cgroup_info *t; 645 t = per_cpu_ptr(event->cgrp->info, event->cpu); 646 event->shadow_ctx_time = now - t->timestamp; 647 } 648 649 static inline void 650 perf_cgroup_defer_enabled(struct perf_event *event) 651 { 652 /* 653 * when the current task's perf cgroup does not match 654 * the event's, we need to remember to call the 655 * perf_mark_enable() function the first time a task with 656 * a matching perf cgroup is scheduled in. 657 */ 658 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 659 event->cgrp_defer_enabled = 1; 660 } 661 662 static inline void 663 perf_cgroup_mark_enabled(struct perf_event *event, 664 struct perf_event_context *ctx) 665 { 666 struct perf_event *sub; 667 u64 tstamp = perf_event_time(event); 668 669 if (!event->cgrp_defer_enabled) 670 return; 671 672 event->cgrp_defer_enabled = 0; 673 674 event->tstamp_enabled = tstamp - event->total_time_enabled; 675 list_for_each_entry(sub, &event->sibling_list, group_entry) { 676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 677 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 678 sub->cgrp_defer_enabled = 0; 679 } 680 } 681 } 682 #else /* !CONFIG_CGROUP_PERF */ 683 684 static inline bool 685 perf_cgroup_match(struct perf_event *event) 686 { 687 return true; 688 } 689 690 static inline void perf_detach_cgroup(struct perf_event *event) 691 {} 692 693 static inline int is_cgroup_event(struct perf_event *event) 694 { 695 return 0; 696 } 697 698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 699 { 700 return 0; 701 } 702 703 static inline void update_cgrp_time_from_event(struct perf_event *event) 704 { 705 } 706 707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 708 { 709 } 710 711 static inline void perf_cgroup_sched_out(struct task_struct *task, 712 struct task_struct *next) 713 { 714 } 715 716 static inline void perf_cgroup_sched_in(struct task_struct *prev, 717 struct task_struct *task) 718 { 719 } 720 721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 722 struct perf_event_attr *attr, 723 struct perf_event *group_leader) 724 { 725 return -EINVAL; 726 } 727 728 static inline void 729 perf_cgroup_set_timestamp(struct task_struct *task, 730 struct perf_event_context *ctx) 731 { 732 } 733 734 void 735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 736 { 737 } 738 739 static inline void 740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 741 { 742 } 743 744 static inline u64 perf_cgroup_event_time(struct perf_event *event) 745 { 746 return 0; 747 } 748 749 static inline void 750 perf_cgroup_defer_enabled(struct perf_event *event) 751 { 752 } 753 754 static inline void 755 perf_cgroup_mark_enabled(struct perf_event *event, 756 struct perf_event_context *ctx) 757 { 758 } 759 #endif 760 761 /* 762 * set default to be dependent on timer tick just 763 * like original code 764 */ 765 #define PERF_CPU_HRTIMER (1000 / HZ) 766 /* 767 * function must be called with interrupts disbled 768 */ 769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 770 { 771 struct perf_cpu_context *cpuctx; 772 enum hrtimer_restart ret = HRTIMER_NORESTART; 773 int rotations = 0; 774 775 WARN_ON(!irqs_disabled()); 776 777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 778 779 rotations = perf_rotate_context(cpuctx); 780 781 /* 782 * arm timer if needed 783 */ 784 if (rotations) { 785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 786 ret = HRTIMER_RESTART; 787 } 788 789 return ret; 790 } 791 792 /* CPU is going down */ 793 void perf_cpu_hrtimer_cancel(int cpu) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct pmu *pmu; 797 unsigned long flags; 798 799 if (WARN_ON(cpu != smp_processor_id())) 800 return; 801 802 local_irq_save(flags); 803 804 rcu_read_lock(); 805 806 list_for_each_entry_rcu(pmu, &pmus, entry) { 807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 808 809 if (pmu->task_ctx_nr == perf_sw_context) 810 continue; 811 812 hrtimer_cancel(&cpuctx->hrtimer); 813 } 814 815 rcu_read_unlock(); 816 817 local_irq_restore(flags); 818 } 819 820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 821 { 822 struct hrtimer *hr = &cpuctx->hrtimer; 823 struct pmu *pmu = cpuctx->ctx.pmu; 824 int timer; 825 826 /* no multiplexing needed for SW PMU */ 827 if (pmu->task_ctx_nr == perf_sw_context) 828 return; 829 830 /* 831 * check default is sane, if not set then force to 832 * default interval (1/tick) 833 */ 834 timer = pmu->hrtimer_interval_ms; 835 if (timer < 1) 836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 837 838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 839 840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 841 hr->function = perf_cpu_hrtimer_handler; 842 } 843 844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 845 { 846 struct hrtimer *hr = &cpuctx->hrtimer; 847 struct pmu *pmu = cpuctx->ctx.pmu; 848 849 /* not for SW PMU */ 850 if (pmu->task_ctx_nr == perf_sw_context) 851 return; 852 853 if (hrtimer_active(hr)) 854 return; 855 856 if (!hrtimer_callback_running(hr)) 857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 858 0, HRTIMER_MODE_REL_PINNED, 0); 859 } 860 861 void perf_pmu_disable(struct pmu *pmu) 862 { 863 int *count = this_cpu_ptr(pmu->pmu_disable_count); 864 if (!(*count)++) 865 pmu->pmu_disable(pmu); 866 } 867 868 void perf_pmu_enable(struct pmu *pmu) 869 { 870 int *count = this_cpu_ptr(pmu->pmu_disable_count); 871 if (!--(*count)) 872 pmu->pmu_enable(pmu); 873 } 874 875 static DEFINE_PER_CPU(struct list_head, rotation_list); 876 877 /* 878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 879 * because they're strictly cpu affine and rotate_start is called with IRQs 880 * disabled, while rotate_context is called from IRQ context. 881 */ 882 static void perf_pmu_rotate_start(struct pmu *pmu) 883 { 884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 885 struct list_head *head = this_cpu_ptr(&rotation_list); 886 887 WARN_ON(!irqs_disabled()); 888 889 if (list_empty(&cpuctx->rotation_list)) 890 list_add(&cpuctx->rotation_list, head); 891 } 892 893 static void get_ctx(struct perf_event_context *ctx) 894 { 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 896 } 897 898 static void put_ctx(struct perf_event_context *ctx) 899 { 900 if (atomic_dec_and_test(&ctx->refcount)) { 901 if (ctx->parent_ctx) 902 put_ctx(ctx->parent_ctx); 903 if (ctx->task) 904 put_task_struct(ctx->task); 905 kfree_rcu(ctx, rcu_head); 906 } 907 } 908 909 /* 910 * This must be done under the ctx->lock, such as to serialize against 911 * context_equiv(), therefore we cannot call put_ctx() since that might end up 912 * calling scheduler related locks and ctx->lock nests inside those. 913 */ 914 static __must_check struct perf_event_context * 915 unclone_ctx(struct perf_event_context *ctx) 916 { 917 struct perf_event_context *parent_ctx = ctx->parent_ctx; 918 919 lockdep_assert_held(&ctx->lock); 920 921 if (parent_ctx) 922 ctx->parent_ctx = NULL; 923 ctx->generation++; 924 925 return parent_ctx; 926 } 927 928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 929 { 930 /* 931 * only top level events have the pid namespace they were created in 932 */ 933 if (event->parent) 934 event = event->parent; 935 936 return task_tgid_nr_ns(p, event->ns); 937 } 938 939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 940 { 941 /* 942 * only top level events have the pid namespace they were created in 943 */ 944 if (event->parent) 945 event = event->parent; 946 947 return task_pid_nr_ns(p, event->ns); 948 } 949 950 /* 951 * If we inherit events we want to return the parent event id 952 * to userspace. 953 */ 954 static u64 primary_event_id(struct perf_event *event) 955 { 956 u64 id = event->id; 957 958 if (event->parent) 959 id = event->parent->id; 960 961 return id; 962 } 963 964 /* 965 * Get the perf_event_context for a task and lock it. 966 * This has to cope with with the fact that until it is locked, 967 * the context could get moved to another task. 968 */ 969 static struct perf_event_context * 970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 971 { 972 struct perf_event_context *ctx; 973 974 retry: 975 /* 976 * One of the few rules of preemptible RCU is that one cannot do 977 * rcu_read_unlock() while holding a scheduler (or nested) lock when 978 * part of the read side critical section was preemptible -- see 979 * rcu_read_unlock_special(). 980 * 981 * Since ctx->lock nests under rq->lock we must ensure the entire read 982 * side critical section is non-preemptible. 983 */ 984 preempt_disable(); 985 rcu_read_lock(); 986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 987 if (ctx) { 988 /* 989 * If this context is a clone of another, it might 990 * get swapped for another underneath us by 991 * perf_event_task_sched_out, though the 992 * rcu_read_lock() protects us from any context 993 * getting freed. Lock the context and check if it 994 * got swapped before we could get the lock, and retry 995 * if so. If we locked the right context, then it 996 * can't get swapped on us any more. 997 */ 998 raw_spin_lock_irqsave(&ctx->lock, *flags); 999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1001 rcu_read_unlock(); 1002 preempt_enable(); 1003 goto retry; 1004 } 1005 1006 if (!atomic_inc_not_zero(&ctx->refcount)) { 1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1008 ctx = NULL; 1009 } 1010 } 1011 rcu_read_unlock(); 1012 preempt_enable(); 1013 return ctx; 1014 } 1015 1016 /* 1017 * Get the context for a task and increment its pin_count so it 1018 * can't get swapped to another task. This also increments its 1019 * reference count so that the context can't get freed. 1020 */ 1021 static struct perf_event_context * 1022 perf_pin_task_context(struct task_struct *task, int ctxn) 1023 { 1024 struct perf_event_context *ctx; 1025 unsigned long flags; 1026 1027 ctx = perf_lock_task_context(task, ctxn, &flags); 1028 if (ctx) { 1029 ++ctx->pin_count; 1030 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1031 } 1032 return ctx; 1033 } 1034 1035 static void perf_unpin_context(struct perf_event_context *ctx) 1036 { 1037 unsigned long flags; 1038 1039 raw_spin_lock_irqsave(&ctx->lock, flags); 1040 --ctx->pin_count; 1041 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1042 } 1043 1044 /* 1045 * Update the record of the current time in a context. 1046 */ 1047 static void update_context_time(struct perf_event_context *ctx) 1048 { 1049 u64 now = perf_clock(); 1050 1051 ctx->time += now - ctx->timestamp; 1052 ctx->timestamp = now; 1053 } 1054 1055 static u64 perf_event_time(struct perf_event *event) 1056 { 1057 struct perf_event_context *ctx = event->ctx; 1058 1059 if (is_cgroup_event(event)) 1060 return perf_cgroup_event_time(event); 1061 1062 return ctx ? ctx->time : 0; 1063 } 1064 1065 /* 1066 * Update the total_time_enabled and total_time_running fields for a event. 1067 * The caller of this function needs to hold the ctx->lock. 1068 */ 1069 static void update_event_times(struct perf_event *event) 1070 { 1071 struct perf_event_context *ctx = event->ctx; 1072 u64 run_end; 1073 1074 if (event->state < PERF_EVENT_STATE_INACTIVE || 1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1076 return; 1077 /* 1078 * in cgroup mode, time_enabled represents 1079 * the time the event was enabled AND active 1080 * tasks were in the monitored cgroup. This is 1081 * independent of the activity of the context as 1082 * there may be a mix of cgroup and non-cgroup events. 1083 * 1084 * That is why we treat cgroup events differently 1085 * here. 1086 */ 1087 if (is_cgroup_event(event)) 1088 run_end = perf_cgroup_event_time(event); 1089 else if (ctx->is_active) 1090 run_end = ctx->time; 1091 else 1092 run_end = event->tstamp_stopped; 1093 1094 event->total_time_enabled = run_end - event->tstamp_enabled; 1095 1096 if (event->state == PERF_EVENT_STATE_INACTIVE) 1097 run_end = event->tstamp_stopped; 1098 else 1099 run_end = perf_event_time(event); 1100 1101 event->total_time_running = run_end - event->tstamp_running; 1102 1103 } 1104 1105 /* 1106 * Update total_time_enabled and total_time_running for all events in a group. 1107 */ 1108 static void update_group_times(struct perf_event *leader) 1109 { 1110 struct perf_event *event; 1111 1112 update_event_times(leader); 1113 list_for_each_entry(event, &leader->sibling_list, group_entry) 1114 update_event_times(event); 1115 } 1116 1117 static struct list_head * 1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1119 { 1120 if (event->attr.pinned) 1121 return &ctx->pinned_groups; 1122 else 1123 return &ctx->flexible_groups; 1124 } 1125 1126 /* 1127 * Add a event from the lists for its context. 1128 * Must be called with ctx->mutex and ctx->lock held. 1129 */ 1130 static void 1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1132 { 1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1134 event->attach_state |= PERF_ATTACH_CONTEXT; 1135 1136 /* 1137 * If we're a stand alone event or group leader, we go to the context 1138 * list, group events are kept attached to the group so that 1139 * perf_group_detach can, at all times, locate all siblings. 1140 */ 1141 if (event->group_leader == event) { 1142 struct list_head *list; 1143 1144 if (is_software_event(event)) 1145 event->group_flags |= PERF_GROUP_SOFTWARE; 1146 1147 list = ctx_group_list(event, ctx); 1148 list_add_tail(&event->group_entry, list); 1149 } 1150 1151 if (is_cgroup_event(event)) 1152 ctx->nr_cgroups++; 1153 1154 if (has_branch_stack(event)) 1155 ctx->nr_branch_stack++; 1156 1157 list_add_rcu(&event->event_entry, &ctx->event_list); 1158 if (!ctx->nr_events) 1159 perf_pmu_rotate_start(ctx->pmu); 1160 ctx->nr_events++; 1161 if (event->attr.inherit_stat) 1162 ctx->nr_stat++; 1163 1164 ctx->generation++; 1165 } 1166 1167 /* 1168 * Initialize event state based on the perf_event_attr::disabled. 1169 */ 1170 static inline void perf_event__state_init(struct perf_event *event) 1171 { 1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1173 PERF_EVENT_STATE_INACTIVE; 1174 } 1175 1176 /* 1177 * Called at perf_event creation and when events are attached/detached from a 1178 * group. 1179 */ 1180 static void perf_event__read_size(struct perf_event *event) 1181 { 1182 int entry = sizeof(u64); /* value */ 1183 int size = 0; 1184 int nr = 1; 1185 1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1187 size += sizeof(u64); 1188 1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1190 size += sizeof(u64); 1191 1192 if (event->attr.read_format & PERF_FORMAT_ID) 1193 entry += sizeof(u64); 1194 1195 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1196 nr += event->group_leader->nr_siblings; 1197 size += sizeof(u64); 1198 } 1199 1200 size += entry * nr; 1201 event->read_size = size; 1202 } 1203 1204 static void perf_event__header_size(struct perf_event *event) 1205 { 1206 struct perf_sample_data *data; 1207 u64 sample_type = event->attr.sample_type; 1208 u16 size = 0; 1209 1210 perf_event__read_size(event); 1211 1212 if (sample_type & PERF_SAMPLE_IP) 1213 size += sizeof(data->ip); 1214 1215 if (sample_type & PERF_SAMPLE_ADDR) 1216 size += sizeof(data->addr); 1217 1218 if (sample_type & PERF_SAMPLE_PERIOD) 1219 size += sizeof(data->period); 1220 1221 if (sample_type & PERF_SAMPLE_WEIGHT) 1222 size += sizeof(data->weight); 1223 1224 if (sample_type & PERF_SAMPLE_READ) 1225 size += event->read_size; 1226 1227 if (sample_type & PERF_SAMPLE_DATA_SRC) 1228 size += sizeof(data->data_src.val); 1229 1230 if (sample_type & PERF_SAMPLE_TRANSACTION) 1231 size += sizeof(data->txn); 1232 1233 event->header_size = size; 1234 } 1235 1236 static void perf_event__id_header_size(struct perf_event *event) 1237 { 1238 struct perf_sample_data *data; 1239 u64 sample_type = event->attr.sample_type; 1240 u16 size = 0; 1241 1242 if (sample_type & PERF_SAMPLE_TID) 1243 size += sizeof(data->tid_entry); 1244 1245 if (sample_type & PERF_SAMPLE_TIME) 1246 size += sizeof(data->time); 1247 1248 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1249 size += sizeof(data->id); 1250 1251 if (sample_type & PERF_SAMPLE_ID) 1252 size += sizeof(data->id); 1253 1254 if (sample_type & PERF_SAMPLE_STREAM_ID) 1255 size += sizeof(data->stream_id); 1256 1257 if (sample_type & PERF_SAMPLE_CPU) 1258 size += sizeof(data->cpu_entry); 1259 1260 event->id_header_size = size; 1261 } 1262 1263 static void perf_group_attach(struct perf_event *event) 1264 { 1265 struct perf_event *group_leader = event->group_leader, *pos; 1266 1267 /* 1268 * We can have double attach due to group movement in perf_event_open. 1269 */ 1270 if (event->attach_state & PERF_ATTACH_GROUP) 1271 return; 1272 1273 event->attach_state |= PERF_ATTACH_GROUP; 1274 1275 if (group_leader == event) 1276 return; 1277 1278 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1279 !is_software_event(event)) 1280 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1281 1282 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1283 group_leader->nr_siblings++; 1284 1285 perf_event__header_size(group_leader); 1286 1287 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1288 perf_event__header_size(pos); 1289 } 1290 1291 /* 1292 * Remove a event from the lists for its context. 1293 * Must be called with ctx->mutex and ctx->lock held. 1294 */ 1295 static void 1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1297 { 1298 struct perf_cpu_context *cpuctx; 1299 /* 1300 * We can have double detach due to exit/hot-unplug + close. 1301 */ 1302 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1303 return; 1304 1305 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1306 1307 if (is_cgroup_event(event)) { 1308 ctx->nr_cgroups--; 1309 cpuctx = __get_cpu_context(ctx); 1310 /* 1311 * if there are no more cgroup events 1312 * then cler cgrp to avoid stale pointer 1313 * in update_cgrp_time_from_cpuctx() 1314 */ 1315 if (!ctx->nr_cgroups) 1316 cpuctx->cgrp = NULL; 1317 } 1318 1319 if (has_branch_stack(event)) 1320 ctx->nr_branch_stack--; 1321 1322 ctx->nr_events--; 1323 if (event->attr.inherit_stat) 1324 ctx->nr_stat--; 1325 1326 list_del_rcu(&event->event_entry); 1327 1328 if (event->group_leader == event) 1329 list_del_init(&event->group_entry); 1330 1331 update_group_times(event); 1332 1333 /* 1334 * If event was in error state, then keep it 1335 * that way, otherwise bogus counts will be 1336 * returned on read(). The only way to get out 1337 * of error state is by explicit re-enabling 1338 * of the event 1339 */ 1340 if (event->state > PERF_EVENT_STATE_OFF) 1341 event->state = PERF_EVENT_STATE_OFF; 1342 1343 ctx->generation++; 1344 } 1345 1346 static void perf_group_detach(struct perf_event *event) 1347 { 1348 struct perf_event *sibling, *tmp; 1349 struct list_head *list = NULL; 1350 1351 /* 1352 * We can have double detach due to exit/hot-unplug + close. 1353 */ 1354 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1355 return; 1356 1357 event->attach_state &= ~PERF_ATTACH_GROUP; 1358 1359 /* 1360 * If this is a sibling, remove it from its group. 1361 */ 1362 if (event->group_leader != event) { 1363 list_del_init(&event->group_entry); 1364 event->group_leader->nr_siblings--; 1365 goto out; 1366 } 1367 1368 if (!list_empty(&event->group_entry)) 1369 list = &event->group_entry; 1370 1371 /* 1372 * If this was a group event with sibling events then 1373 * upgrade the siblings to singleton events by adding them 1374 * to whatever list we are on. 1375 */ 1376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1377 if (list) 1378 list_move_tail(&sibling->group_entry, list); 1379 sibling->group_leader = sibling; 1380 1381 /* Inherit group flags from the previous leader */ 1382 sibling->group_flags = event->group_flags; 1383 } 1384 1385 out: 1386 perf_event__header_size(event->group_leader); 1387 1388 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1389 perf_event__header_size(tmp); 1390 } 1391 1392 /* 1393 * User event without the task. 1394 */ 1395 static bool is_orphaned_event(struct perf_event *event) 1396 { 1397 return event && !is_kernel_event(event) && !event->owner; 1398 } 1399 1400 /* 1401 * Event has a parent but parent's task finished and it's 1402 * alive only because of children holding refference. 1403 */ 1404 static bool is_orphaned_child(struct perf_event *event) 1405 { 1406 return is_orphaned_event(event->parent); 1407 } 1408 1409 static void orphans_remove_work(struct work_struct *work); 1410 1411 static void schedule_orphans_remove(struct perf_event_context *ctx) 1412 { 1413 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1414 return; 1415 1416 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1417 get_ctx(ctx); 1418 ctx->orphans_remove_sched = true; 1419 } 1420 } 1421 1422 static int __init perf_workqueue_init(void) 1423 { 1424 perf_wq = create_singlethread_workqueue("perf"); 1425 WARN(!perf_wq, "failed to create perf workqueue\n"); 1426 return perf_wq ? 0 : -1; 1427 } 1428 1429 core_initcall(perf_workqueue_init); 1430 1431 static inline int 1432 event_filter_match(struct perf_event *event) 1433 { 1434 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1435 && perf_cgroup_match(event); 1436 } 1437 1438 static void 1439 event_sched_out(struct perf_event *event, 1440 struct perf_cpu_context *cpuctx, 1441 struct perf_event_context *ctx) 1442 { 1443 u64 tstamp = perf_event_time(event); 1444 u64 delta; 1445 /* 1446 * An event which could not be activated because of 1447 * filter mismatch still needs to have its timings 1448 * maintained, otherwise bogus information is return 1449 * via read() for time_enabled, time_running: 1450 */ 1451 if (event->state == PERF_EVENT_STATE_INACTIVE 1452 && !event_filter_match(event)) { 1453 delta = tstamp - event->tstamp_stopped; 1454 event->tstamp_running += delta; 1455 event->tstamp_stopped = tstamp; 1456 } 1457 1458 if (event->state != PERF_EVENT_STATE_ACTIVE) 1459 return; 1460 1461 perf_pmu_disable(event->pmu); 1462 1463 event->state = PERF_EVENT_STATE_INACTIVE; 1464 if (event->pending_disable) { 1465 event->pending_disable = 0; 1466 event->state = PERF_EVENT_STATE_OFF; 1467 } 1468 event->tstamp_stopped = tstamp; 1469 event->pmu->del(event, 0); 1470 event->oncpu = -1; 1471 1472 if (!is_software_event(event)) 1473 cpuctx->active_oncpu--; 1474 ctx->nr_active--; 1475 if (event->attr.freq && event->attr.sample_freq) 1476 ctx->nr_freq--; 1477 if (event->attr.exclusive || !cpuctx->active_oncpu) 1478 cpuctx->exclusive = 0; 1479 1480 if (is_orphaned_child(event)) 1481 schedule_orphans_remove(ctx); 1482 1483 perf_pmu_enable(event->pmu); 1484 } 1485 1486 static void 1487 group_sched_out(struct perf_event *group_event, 1488 struct perf_cpu_context *cpuctx, 1489 struct perf_event_context *ctx) 1490 { 1491 struct perf_event *event; 1492 int state = group_event->state; 1493 1494 event_sched_out(group_event, cpuctx, ctx); 1495 1496 /* 1497 * Schedule out siblings (if any): 1498 */ 1499 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1500 event_sched_out(event, cpuctx, ctx); 1501 1502 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1503 cpuctx->exclusive = 0; 1504 } 1505 1506 struct remove_event { 1507 struct perf_event *event; 1508 bool detach_group; 1509 }; 1510 1511 /* 1512 * Cross CPU call to remove a performance event 1513 * 1514 * We disable the event on the hardware level first. After that we 1515 * remove it from the context list. 1516 */ 1517 static int __perf_remove_from_context(void *info) 1518 { 1519 struct remove_event *re = info; 1520 struct perf_event *event = re->event; 1521 struct perf_event_context *ctx = event->ctx; 1522 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1523 1524 raw_spin_lock(&ctx->lock); 1525 event_sched_out(event, cpuctx, ctx); 1526 if (re->detach_group) 1527 perf_group_detach(event); 1528 list_del_event(event, ctx); 1529 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1530 ctx->is_active = 0; 1531 cpuctx->task_ctx = NULL; 1532 } 1533 raw_spin_unlock(&ctx->lock); 1534 1535 return 0; 1536 } 1537 1538 1539 /* 1540 * Remove the event from a task's (or a CPU's) list of events. 1541 * 1542 * CPU events are removed with a smp call. For task events we only 1543 * call when the task is on a CPU. 1544 * 1545 * If event->ctx is a cloned context, callers must make sure that 1546 * every task struct that event->ctx->task could possibly point to 1547 * remains valid. This is OK when called from perf_release since 1548 * that only calls us on the top-level context, which can't be a clone. 1549 * When called from perf_event_exit_task, it's OK because the 1550 * context has been detached from its task. 1551 */ 1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1553 { 1554 struct perf_event_context *ctx = event->ctx; 1555 struct task_struct *task = ctx->task; 1556 struct remove_event re = { 1557 .event = event, 1558 .detach_group = detach_group, 1559 }; 1560 1561 lockdep_assert_held(&ctx->mutex); 1562 1563 if (!task) { 1564 /* 1565 * Per cpu events are removed via an smp call and 1566 * the removal is always successful. 1567 */ 1568 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1569 return; 1570 } 1571 1572 retry: 1573 if (!task_function_call(task, __perf_remove_from_context, &re)) 1574 return; 1575 1576 raw_spin_lock_irq(&ctx->lock); 1577 /* 1578 * If we failed to find a running task, but find the context active now 1579 * that we've acquired the ctx->lock, retry. 1580 */ 1581 if (ctx->is_active) { 1582 raw_spin_unlock_irq(&ctx->lock); 1583 /* 1584 * Reload the task pointer, it might have been changed by 1585 * a concurrent perf_event_context_sched_out(). 1586 */ 1587 task = ctx->task; 1588 goto retry; 1589 } 1590 1591 /* 1592 * Since the task isn't running, its safe to remove the event, us 1593 * holding the ctx->lock ensures the task won't get scheduled in. 1594 */ 1595 if (detach_group) 1596 perf_group_detach(event); 1597 list_del_event(event, ctx); 1598 raw_spin_unlock_irq(&ctx->lock); 1599 } 1600 1601 /* 1602 * Cross CPU call to disable a performance event 1603 */ 1604 int __perf_event_disable(void *info) 1605 { 1606 struct perf_event *event = info; 1607 struct perf_event_context *ctx = event->ctx; 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1609 1610 /* 1611 * If this is a per-task event, need to check whether this 1612 * event's task is the current task on this cpu. 1613 * 1614 * Can trigger due to concurrent perf_event_context_sched_out() 1615 * flipping contexts around. 1616 */ 1617 if (ctx->task && cpuctx->task_ctx != ctx) 1618 return -EINVAL; 1619 1620 raw_spin_lock(&ctx->lock); 1621 1622 /* 1623 * If the event is on, turn it off. 1624 * If it is in error state, leave it in error state. 1625 */ 1626 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1627 update_context_time(ctx); 1628 update_cgrp_time_from_event(event); 1629 update_group_times(event); 1630 if (event == event->group_leader) 1631 group_sched_out(event, cpuctx, ctx); 1632 else 1633 event_sched_out(event, cpuctx, ctx); 1634 event->state = PERF_EVENT_STATE_OFF; 1635 } 1636 1637 raw_spin_unlock(&ctx->lock); 1638 1639 return 0; 1640 } 1641 1642 /* 1643 * Disable a event. 1644 * 1645 * If event->ctx is a cloned context, callers must make sure that 1646 * every task struct that event->ctx->task could possibly point to 1647 * remains valid. This condition is satisifed when called through 1648 * perf_event_for_each_child or perf_event_for_each because they 1649 * hold the top-level event's child_mutex, so any descendant that 1650 * goes to exit will block in sync_child_event. 1651 * When called from perf_pending_event it's OK because event->ctx 1652 * is the current context on this CPU and preemption is disabled, 1653 * hence we can't get into perf_event_task_sched_out for this context. 1654 */ 1655 void perf_event_disable(struct perf_event *event) 1656 { 1657 struct perf_event_context *ctx = event->ctx; 1658 struct task_struct *task = ctx->task; 1659 1660 if (!task) { 1661 /* 1662 * Disable the event on the cpu that it's on 1663 */ 1664 cpu_function_call(event->cpu, __perf_event_disable, event); 1665 return; 1666 } 1667 1668 retry: 1669 if (!task_function_call(task, __perf_event_disable, event)) 1670 return; 1671 1672 raw_spin_lock_irq(&ctx->lock); 1673 /* 1674 * If the event is still active, we need to retry the cross-call. 1675 */ 1676 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1677 raw_spin_unlock_irq(&ctx->lock); 1678 /* 1679 * Reload the task pointer, it might have been changed by 1680 * a concurrent perf_event_context_sched_out(). 1681 */ 1682 task = ctx->task; 1683 goto retry; 1684 } 1685 1686 /* 1687 * Since we have the lock this context can't be scheduled 1688 * in, so we can change the state safely. 1689 */ 1690 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1691 update_group_times(event); 1692 event->state = PERF_EVENT_STATE_OFF; 1693 } 1694 raw_spin_unlock_irq(&ctx->lock); 1695 } 1696 EXPORT_SYMBOL_GPL(perf_event_disable); 1697 1698 static void perf_set_shadow_time(struct perf_event *event, 1699 struct perf_event_context *ctx, 1700 u64 tstamp) 1701 { 1702 /* 1703 * use the correct time source for the time snapshot 1704 * 1705 * We could get by without this by leveraging the 1706 * fact that to get to this function, the caller 1707 * has most likely already called update_context_time() 1708 * and update_cgrp_time_xx() and thus both timestamp 1709 * are identical (or very close). Given that tstamp is, 1710 * already adjusted for cgroup, we could say that: 1711 * tstamp - ctx->timestamp 1712 * is equivalent to 1713 * tstamp - cgrp->timestamp. 1714 * 1715 * Then, in perf_output_read(), the calculation would 1716 * work with no changes because: 1717 * - event is guaranteed scheduled in 1718 * - no scheduled out in between 1719 * - thus the timestamp would be the same 1720 * 1721 * But this is a bit hairy. 1722 * 1723 * So instead, we have an explicit cgroup call to remain 1724 * within the time time source all along. We believe it 1725 * is cleaner and simpler to understand. 1726 */ 1727 if (is_cgroup_event(event)) 1728 perf_cgroup_set_shadow_time(event, tstamp); 1729 else 1730 event->shadow_ctx_time = tstamp - ctx->timestamp; 1731 } 1732 1733 #define MAX_INTERRUPTS (~0ULL) 1734 1735 static void perf_log_throttle(struct perf_event *event, int enable); 1736 1737 static int 1738 event_sched_in(struct perf_event *event, 1739 struct perf_cpu_context *cpuctx, 1740 struct perf_event_context *ctx) 1741 { 1742 u64 tstamp = perf_event_time(event); 1743 int ret = 0; 1744 1745 lockdep_assert_held(&ctx->lock); 1746 1747 if (event->state <= PERF_EVENT_STATE_OFF) 1748 return 0; 1749 1750 event->state = PERF_EVENT_STATE_ACTIVE; 1751 event->oncpu = smp_processor_id(); 1752 1753 /* 1754 * Unthrottle events, since we scheduled we might have missed several 1755 * ticks already, also for a heavily scheduling task there is little 1756 * guarantee it'll get a tick in a timely manner. 1757 */ 1758 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1759 perf_log_throttle(event, 1); 1760 event->hw.interrupts = 0; 1761 } 1762 1763 /* 1764 * The new state must be visible before we turn it on in the hardware: 1765 */ 1766 smp_wmb(); 1767 1768 perf_pmu_disable(event->pmu); 1769 1770 if (event->pmu->add(event, PERF_EF_START)) { 1771 event->state = PERF_EVENT_STATE_INACTIVE; 1772 event->oncpu = -1; 1773 ret = -EAGAIN; 1774 goto out; 1775 } 1776 1777 event->tstamp_running += tstamp - event->tstamp_stopped; 1778 1779 perf_set_shadow_time(event, ctx, tstamp); 1780 1781 if (!is_software_event(event)) 1782 cpuctx->active_oncpu++; 1783 ctx->nr_active++; 1784 if (event->attr.freq && event->attr.sample_freq) 1785 ctx->nr_freq++; 1786 1787 if (event->attr.exclusive) 1788 cpuctx->exclusive = 1; 1789 1790 if (is_orphaned_child(event)) 1791 schedule_orphans_remove(ctx); 1792 1793 out: 1794 perf_pmu_enable(event->pmu); 1795 1796 return ret; 1797 } 1798 1799 static int 1800 group_sched_in(struct perf_event *group_event, 1801 struct perf_cpu_context *cpuctx, 1802 struct perf_event_context *ctx) 1803 { 1804 struct perf_event *event, *partial_group = NULL; 1805 struct pmu *pmu = ctx->pmu; 1806 u64 now = ctx->time; 1807 bool simulate = false; 1808 1809 if (group_event->state == PERF_EVENT_STATE_OFF) 1810 return 0; 1811 1812 pmu->start_txn(pmu); 1813 1814 if (event_sched_in(group_event, cpuctx, ctx)) { 1815 pmu->cancel_txn(pmu); 1816 perf_cpu_hrtimer_restart(cpuctx); 1817 return -EAGAIN; 1818 } 1819 1820 /* 1821 * Schedule in siblings as one group (if any): 1822 */ 1823 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1824 if (event_sched_in(event, cpuctx, ctx)) { 1825 partial_group = event; 1826 goto group_error; 1827 } 1828 } 1829 1830 if (!pmu->commit_txn(pmu)) 1831 return 0; 1832 1833 group_error: 1834 /* 1835 * Groups can be scheduled in as one unit only, so undo any 1836 * partial group before returning: 1837 * The events up to the failed event are scheduled out normally, 1838 * tstamp_stopped will be updated. 1839 * 1840 * The failed events and the remaining siblings need to have 1841 * their timings updated as if they had gone thru event_sched_in() 1842 * and event_sched_out(). This is required to get consistent timings 1843 * across the group. This also takes care of the case where the group 1844 * could never be scheduled by ensuring tstamp_stopped is set to mark 1845 * the time the event was actually stopped, such that time delta 1846 * calculation in update_event_times() is correct. 1847 */ 1848 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1849 if (event == partial_group) 1850 simulate = true; 1851 1852 if (simulate) { 1853 event->tstamp_running += now - event->tstamp_stopped; 1854 event->tstamp_stopped = now; 1855 } else { 1856 event_sched_out(event, cpuctx, ctx); 1857 } 1858 } 1859 event_sched_out(group_event, cpuctx, ctx); 1860 1861 pmu->cancel_txn(pmu); 1862 1863 perf_cpu_hrtimer_restart(cpuctx); 1864 1865 return -EAGAIN; 1866 } 1867 1868 /* 1869 * Work out whether we can put this event group on the CPU now. 1870 */ 1871 static int group_can_go_on(struct perf_event *event, 1872 struct perf_cpu_context *cpuctx, 1873 int can_add_hw) 1874 { 1875 /* 1876 * Groups consisting entirely of software events can always go on. 1877 */ 1878 if (event->group_flags & PERF_GROUP_SOFTWARE) 1879 return 1; 1880 /* 1881 * If an exclusive group is already on, no other hardware 1882 * events can go on. 1883 */ 1884 if (cpuctx->exclusive) 1885 return 0; 1886 /* 1887 * If this group is exclusive and there are already 1888 * events on the CPU, it can't go on. 1889 */ 1890 if (event->attr.exclusive && cpuctx->active_oncpu) 1891 return 0; 1892 /* 1893 * Otherwise, try to add it if all previous groups were able 1894 * to go on. 1895 */ 1896 return can_add_hw; 1897 } 1898 1899 static void add_event_to_ctx(struct perf_event *event, 1900 struct perf_event_context *ctx) 1901 { 1902 u64 tstamp = perf_event_time(event); 1903 1904 list_add_event(event, ctx); 1905 perf_group_attach(event); 1906 event->tstamp_enabled = tstamp; 1907 event->tstamp_running = tstamp; 1908 event->tstamp_stopped = tstamp; 1909 } 1910 1911 static void task_ctx_sched_out(struct perf_event_context *ctx); 1912 static void 1913 ctx_sched_in(struct perf_event_context *ctx, 1914 struct perf_cpu_context *cpuctx, 1915 enum event_type_t event_type, 1916 struct task_struct *task); 1917 1918 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1919 struct perf_event_context *ctx, 1920 struct task_struct *task) 1921 { 1922 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1923 if (ctx) 1924 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1925 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1926 if (ctx) 1927 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1928 } 1929 1930 /* 1931 * Cross CPU call to install and enable a performance event 1932 * 1933 * Must be called with ctx->mutex held 1934 */ 1935 static int __perf_install_in_context(void *info) 1936 { 1937 struct perf_event *event = info; 1938 struct perf_event_context *ctx = event->ctx; 1939 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1940 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1941 struct task_struct *task = current; 1942 1943 perf_ctx_lock(cpuctx, task_ctx); 1944 perf_pmu_disable(cpuctx->ctx.pmu); 1945 1946 /* 1947 * If there was an active task_ctx schedule it out. 1948 */ 1949 if (task_ctx) 1950 task_ctx_sched_out(task_ctx); 1951 1952 /* 1953 * If the context we're installing events in is not the 1954 * active task_ctx, flip them. 1955 */ 1956 if (ctx->task && task_ctx != ctx) { 1957 if (task_ctx) 1958 raw_spin_unlock(&task_ctx->lock); 1959 raw_spin_lock(&ctx->lock); 1960 task_ctx = ctx; 1961 } 1962 1963 if (task_ctx) { 1964 cpuctx->task_ctx = task_ctx; 1965 task = task_ctx->task; 1966 } 1967 1968 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1969 1970 update_context_time(ctx); 1971 /* 1972 * update cgrp time only if current cgrp 1973 * matches event->cgrp. Must be done before 1974 * calling add_event_to_ctx() 1975 */ 1976 update_cgrp_time_from_event(event); 1977 1978 add_event_to_ctx(event, ctx); 1979 1980 /* 1981 * Schedule everything back in 1982 */ 1983 perf_event_sched_in(cpuctx, task_ctx, task); 1984 1985 perf_pmu_enable(cpuctx->ctx.pmu); 1986 perf_ctx_unlock(cpuctx, task_ctx); 1987 1988 return 0; 1989 } 1990 1991 /* 1992 * Attach a performance event to a context 1993 * 1994 * First we add the event to the list with the hardware enable bit 1995 * in event->hw_config cleared. 1996 * 1997 * If the event is attached to a task which is on a CPU we use a smp 1998 * call to enable it in the task context. The task might have been 1999 * scheduled away, but we check this in the smp call again. 2000 */ 2001 static void 2002 perf_install_in_context(struct perf_event_context *ctx, 2003 struct perf_event *event, 2004 int cpu) 2005 { 2006 struct task_struct *task = ctx->task; 2007 2008 lockdep_assert_held(&ctx->mutex); 2009 2010 event->ctx = ctx; 2011 if (event->cpu != -1) 2012 event->cpu = cpu; 2013 2014 if (!task) { 2015 /* 2016 * Per cpu events are installed via an smp call and 2017 * the install is always successful. 2018 */ 2019 cpu_function_call(cpu, __perf_install_in_context, event); 2020 return; 2021 } 2022 2023 retry: 2024 if (!task_function_call(task, __perf_install_in_context, event)) 2025 return; 2026 2027 raw_spin_lock_irq(&ctx->lock); 2028 /* 2029 * If we failed to find a running task, but find the context active now 2030 * that we've acquired the ctx->lock, retry. 2031 */ 2032 if (ctx->is_active) { 2033 raw_spin_unlock_irq(&ctx->lock); 2034 /* 2035 * Reload the task pointer, it might have been changed by 2036 * a concurrent perf_event_context_sched_out(). 2037 */ 2038 task = ctx->task; 2039 goto retry; 2040 } 2041 2042 /* 2043 * Since the task isn't running, its safe to add the event, us holding 2044 * the ctx->lock ensures the task won't get scheduled in. 2045 */ 2046 add_event_to_ctx(event, ctx); 2047 raw_spin_unlock_irq(&ctx->lock); 2048 } 2049 2050 /* 2051 * Put a event into inactive state and update time fields. 2052 * Enabling the leader of a group effectively enables all 2053 * the group members that aren't explicitly disabled, so we 2054 * have to update their ->tstamp_enabled also. 2055 * Note: this works for group members as well as group leaders 2056 * since the non-leader members' sibling_lists will be empty. 2057 */ 2058 static void __perf_event_mark_enabled(struct perf_event *event) 2059 { 2060 struct perf_event *sub; 2061 u64 tstamp = perf_event_time(event); 2062 2063 event->state = PERF_EVENT_STATE_INACTIVE; 2064 event->tstamp_enabled = tstamp - event->total_time_enabled; 2065 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2066 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2067 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2068 } 2069 } 2070 2071 /* 2072 * Cross CPU call to enable a performance event 2073 */ 2074 static int __perf_event_enable(void *info) 2075 { 2076 struct perf_event *event = info; 2077 struct perf_event_context *ctx = event->ctx; 2078 struct perf_event *leader = event->group_leader; 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2080 int err; 2081 2082 /* 2083 * There's a time window between 'ctx->is_active' check 2084 * in perf_event_enable function and this place having: 2085 * - IRQs on 2086 * - ctx->lock unlocked 2087 * 2088 * where the task could be killed and 'ctx' deactivated 2089 * by perf_event_exit_task. 2090 */ 2091 if (!ctx->is_active) 2092 return -EINVAL; 2093 2094 raw_spin_lock(&ctx->lock); 2095 update_context_time(ctx); 2096 2097 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2098 goto unlock; 2099 2100 /* 2101 * set current task's cgroup time reference point 2102 */ 2103 perf_cgroup_set_timestamp(current, ctx); 2104 2105 __perf_event_mark_enabled(event); 2106 2107 if (!event_filter_match(event)) { 2108 if (is_cgroup_event(event)) 2109 perf_cgroup_defer_enabled(event); 2110 goto unlock; 2111 } 2112 2113 /* 2114 * If the event is in a group and isn't the group leader, 2115 * then don't put it on unless the group is on. 2116 */ 2117 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2118 goto unlock; 2119 2120 if (!group_can_go_on(event, cpuctx, 1)) { 2121 err = -EEXIST; 2122 } else { 2123 if (event == leader) 2124 err = group_sched_in(event, cpuctx, ctx); 2125 else 2126 err = event_sched_in(event, cpuctx, ctx); 2127 } 2128 2129 if (err) { 2130 /* 2131 * If this event can't go on and it's part of a 2132 * group, then the whole group has to come off. 2133 */ 2134 if (leader != event) { 2135 group_sched_out(leader, cpuctx, ctx); 2136 perf_cpu_hrtimer_restart(cpuctx); 2137 } 2138 if (leader->attr.pinned) { 2139 update_group_times(leader); 2140 leader->state = PERF_EVENT_STATE_ERROR; 2141 } 2142 } 2143 2144 unlock: 2145 raw_spin_unlock(&ctx->lock); 2146 2147 return 0; 2148 } 2149 2150 /* 2151 * Enable a event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisfied when called through 2156 * perf_event_for_each_child or perf_event_for_each as described 2157 * for perf_event_disable. 2158 */ 2159 void perf_event_enable(struct perf_event *event) 2160 { 2161 struct perf_event_context *ctx = event->ctx; 2162 struct task_struct *task = ctx->task; 2163 2164 if (!task) { 2165 /* 2166 * Enable the event on the cpu that it's on 2167 */ 2168 cpu_function_call(event->cpu, __perf_event_enable, event); 2169 return; 2170 } 2171 2172 raw_spin_lock_irq(&ctx->lock); 2173 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2174 goto out; 2175 2176 /* 2177 * If the event is in error state, clear that first. 2178 * That way, if we see the event in error state below, we 2179 * know that it has gone back into error state, as distinct 2180 * from the task having been scheduled away before the 2181 * cross-call arrived. 2182 */ 2183 if (event->state == PERF_EVENT_STATE_ERROR) 2184 event->state = PERF_EVENT_STATE_OFF; 2185 2186 retry: 2187 if (!ctx->is_active) { 2188 __perf_event_mark_enabled(event); 2189 goto out; 2190 } 2191 2192 raw_spin_unlock_irq(&ctx->lock); 2193 2194 if (!task_function_call(task, __perf_event_enable, event)) 2195 return; 2196 2197 raw_spin_lock_irq(&ctx->lock); 2198 2199 /* 2200 * If the context is active and the event is still off, 2201 * we need to retry the cross-call. 2202 */ 2203 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2204 /* 2205 * task could have been flipped by a concurrent 2206 * perf_event_context_sched_out() 2207 */ 2208 task = ctx->task; 2209 goto retry; 2210 } 2211 2212 out: 2213 raw_spin_unlock_irq(&ctx->lock); 2214 } 2215 EXPORT_SYMBOL_GPL(perf_event_enable); 2216 2217 int perf_event_refresh(struct perf_event *event, int refresh) 2218 { 2219 /* 2220 * not supported on inherited events 2221 */ 2222 if (event->attr.inherit || !is_sampling_event(event)) 2223 return -EINVAL; 2224 2225 atomic_add(refresh, &event->event_limit); 2226 perf_event_enable(event); 2227 2228 return 0; 2229 } 2230 EXPORT_SYMBOL_GPL(perf_event_refresh); 2231 2232 static void ctx_sched_out(struct perf_event_context *ctx, 2233 struct perf_cpu_context *cpuctx, 2234 enum event_type_t event_type) 2235 { 2236 struct perf_event *event; 2237 int is_active = ctx->is_active; 2238 2239 ctx->is_active &= ~event_type; 2240 if (likely(!ctx->nr_events)) 2241 return; 2242 2243 update_context_time(ctx); 2244 update_cgrp_time_from_cpuctx(cpuctx); 2245 if (!ctx->nr_active) 2246 return; 2247 2248 perf_pmu_disable(ctx->pmu); 2249 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2250 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2251 group_sched_out(event, cpuctx, ctx); 2252 } 2253 2254 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2255 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2256 group_sched_out(event, cpuctx, ctx); 2257 } 2258 perf_pmu_enable(ctx->pmu); 2259 } 2260 2261 /* 2262 * Test whether two contexts are equivalent, i.e. whether they have both been 2263 * cloned from the same version of the same context. 2264 * 2265 * Equivalence is measured using a generation number in the context that is 2266 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2267 * and list_del_event(). 2268 */ 2269 static int context_equiv(struct perf_event_context *ctx1, 2270 struct perf_event_context *ctx2) 2271 { 2272 lockdep_assert_held(&ctx1->lock); 2273 lockdep_assert_held(&ctx2->lock); 2274 2275 /* Pinning disables the swap optimization */ 2276 if (ctx1->pin_count || ctx2->pin_count) 2277 return 0; 2278 2279 /* If ctx1 is the parent of ctx2 */ 2280 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2281 return 1; 2282 2283 /* If ctx2 is the parent of ctx1 */ 2284 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2285 return 1; 2286 2287 /* 2288 * If ctx1 and ctx2 have the same parent; we flatten the parent 2289 * hierarchy, see perf_event_init_context(). 2290 */ 2291 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2292 ctx1->parent_gen == ctx2->parent_gen) 2293 return 1; 2294 2295 /* Unmatched */ 2296 return 0; 2297 } 2298 2299 static void __perf_event_sync_stat(struct perf_event *event, 2300 struct perf_event *next_event) 2301 { 2302 u64 value; 2303 2304 if (!event->attr.inherit_stat) 2305 return; 2306 2307 /* 2308 * Update the event value, we cannot use perf_event_read() 2309 * because we're in the middle of a context switch and have IRQs 2310 * disabled, which upsets smp_call_function_single(), however 2311 * we know the event must be on the current CPU, therefore we 2312 * don't need to use it. 2313 */ 2314 switch (event->state) { 2315 case PERF_EVENT_STATE_ACTIVE: 2316 event->pmu->read(event); 2317 /* fall-through */ 2318 2319 case PERF_EVENT_STATE_INACTIVE: 2320 update_event_times(event); 2321 break; 2322 2323 default: 2324 break; 2325 } 2326 2327 /* 2328 * In order to keep per-task stats reliable we need to flip the event 2329 * values when we flip the contexts. 2330 */ 2331 value = local64_read(&next_event->count); 2332 value = local64_xchg(&event->count, value); 2333 local64_set(&next_event->count, value); 2334 2335 swap(event->total_time_enabled, next_event->total_time_enabled); 2336 swap(event->total_time_running, next_event->total_time_running); 2337 2338 /* 2339 * Since we swizzled the values, update the user visible data too. 2340 */ 2341 perf_event_update_userpage(event); 2342 perf_event_update_userpage(next_event); 2343 } 2344 2345 static void perf_event_sync_stat(struct perf_event_context *ctx, 2346 struct perf_event_context *next_ctx) 2347 { 2348 struct perf_event *event, *next_event; 2349 2350 if (!ctx->nr_stat) 2351 return; 2352 2353 update_context_time(ctx); 2354 2355 event = list_first_entry(&ctx->event_list, 2356 struct perf_event, event_entry); 2357 2358 next_event = list_first_entry(&next_ctx->event_list, 2359 struct perf_event, event_entry); 2360 2361 while (&event->event_entry != &ctx->event_list && 2362 &next_event->event_entry != &next_ctx->event_list) { 2363 2364 __perf_event_sync_stat(event, next_event); 2365 2366 event = list_next_entry(event, event_entry); 2367 next_event = list_next_entry(next_event, event_entry); 2368 } 2369 } 2370 2371 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2372 struct task_struct *next) 2373 { 2374 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2375 struct perf_event_context *next_ctx; 2376 struct perf_event_context *parent, *next_parent; 2377 struct perf_cpu_context *cpuctx; 2378 int do_switch = 1; 2379 2380 if (likely(!ctx)) 2381 return; 2382 2383 cpuctx = __get_cpu_context(ctx); 2384 if (!cpuctx->task_ctx) 2385 return; 2386 2387 rcu_read_lock(); 2388 next_ctx = next->perf_event_ctxp[ctxn]; 2389 if (!next_ctx) 2390 goto unlock; 2391 2392 parent = rcu_dereference(ctx->parent_ctx); 2393 next_parent = rcu_dereference(next_ctx->parent_ctx); 2394 2395 /* If neither context have a parent context; they cannot be clones. */ 2396 if (!parent && !next_parent) 2397 goto unlock; 2398 2399 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2400 /* 2401 * Looks like the two contexts are clones, so we might be 2402 * able to optimize the context switch. We lock both 2403 * contexts and check that they are clones under the 2404 * lock (including re-checking that neither has been 2405 * uncloned in the meantime). It doesn't matter which 2406 * order we take the locks because no other cpu could 2407 * be trying to lock both of these tasks. 2408 */ 2409 raw_spin_lock(&ctx->lock); 2410 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2411 if (context_equiv(ctx, next_ctx)) { 2412 /* 2413 * XXX do we need a memory barrier of sorts 2414 * wrt to rcu_dereference() of perf_event_ctxp 2415 */ 2416 task->perf_event_ctxp[ctxn] = next_ctx; 2417 next->perf_event_ctxp[ctxn] = ctx; 2418 ctx->task = next; 2419 next_ctx->task = task; 2420 do_switch = 0; 2421 2422 perf_event_sync_stat(ctx, next_ctx); 2423 } 2424 raw_spin_unlock(&next_ctx->lock); 2425 raw_spin_unlock(&ctx->lock); 2426 } 2427 unlock: 2428 rcu_read_unlock(); 2429 2430 if (do_switch) { 2431 raw_spin_lock(&ctx->lock); 2432 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2433 cpuctx->task_ctx = NULL; 2434 raw_spin_unlock(&ctx->lock); 2435 } 2436 } 2437 2438 #define for_each_task_context_nr(ctxn) \ 2439 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2440 2441 /* 2442 * Called from scheduler to remove the events of the current task, 2443 * with interrupts disabled. 2444 * 2445 * We stop each event and update the event value in event->count. 2446 * 2447 * This does not protect us against NMI, but disable() 2448 * sets the disabled bit in the control field of event _before_ 2449 * accessing the event control register. If a NMI hits, then it will 2450 * not restart the event. 2451 */ 2452 void __perf_event_task_sched_out(struct task_struct *task, 2453 struct task_struct *next) 2454 { 2455 int ctxn; 2456 2457 for_each_task_context_nr(ctxn) 2458 perf_event_context_sched_out(task, ctxn, next); 2459 2460 /* 2461 * if cgroup events exist on this CPU, then we need 2462 * to check if we have to switch out PMU state. 2463 * cgroup event are system-wide mode only 2464 */ 2465 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2466 perf_cgroup_sched_out(task, next); 2467 } 2468 2469 static void task_ctx_sched_out(struct perf_event_context *ctx) 2470 { 2471 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2472 2473 if (!cpuctx->task_ctx) 2474 return; 2475 2476 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2477 return; 2478 2479 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2480 cpuctx->task_ctx = NULL; 2481 } 2482 2483 /* 2484 * Called with IRQs disabled 2485 */ 2486 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2487 enum event_type_t event_type) 2488 { 2489 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2490 } 2491 2492 static void 2493 ctx_pinned_sched_in(struct perf_event_context *ctx, 2494 struct perf_cpu_context *cpuctx) 2495 { 2496 struct perf_event *event; 2497 2498 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2499 if (event->state <= PERF_EVENT_STATE_OFF) 2500 continue; 2501 if (!event_filter_match(event)) 2502 continue; 2503 2504 /* may need to reset tstamp_enabled */ 2505 if (is_cgroup_event(event)) 2506 perf_cgroup_mark_enabled(event, ctx); 2507 2508 if (group_can_go_on(event, cpuctx, 1)) 2509 group_sched_in(event, cpuctx, ctx); 2510 2511 /* 2512 * If this pinned group hasn't been scheduled, 2513 * put it in error state. 2514 */ 2515 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2516 update_group_times(event); 2517 event->state = PERF_EVENT_STATE_ERROR; 2518 } 2519 } 2520 } 2521 2522 static void 2523 ctx_flexible_sched_in(struct perf_event_context *ctx, 2524 struct perf_cpu_context *cpuctx) 2525 { 2526 struct perf_event *event; 2527 int can_add_hw = 1; 2528 2529 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2530 /* Ignore events in OFF or ERROR state */ 2531 if (event->state <= PERF_EVENT_STATE_OFF) 2532 continue; 2533 /* 2534 * Listen to the 'cpu' scheduling filter constraint 2535 * of events: 2536 */ 2537 if (!event_filter_match(event)) 2538 continue; 2539 2540 /* may need to reset tstamp_enabled */ 2541 if (is_cgroup_event(event)) 2542 perf_cgroup_mark_enabled(event, ctx); 2543 2544 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2545 if (group_sched_in(event, cpuctx, ctx)) 2546 can_add_hw = 0; 2547 } 2548 } 2549 } 2550 2551 static void 2552 ctx_sched_in(struct perf_event_context *ctx, 2553 struct perf_cpu_context *cpuctx, 2554 enum event_type_t event_type, 2555 struct task_struct *task) 2556 { 2557 u64 now; 2558 int is_active = ctx->is_active; 2559 2560 ctx->is_active |= event_type; 2561 if (likely(!ctx->nr_events)) 2562 return; 2563 2564 now = perf_clock(); 2565 ctx->timestamp = now; 2566 perf_cgroup_set_timestamp(task, ctx); 2567 /* 2568 * First go through the list and put on any pinned groups 2569 * in order to give them the best chance of going on. 2570 */ 2571 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2572 ctx_pinned_sched_in(ctx, cpuctx); 2573 2574 /* Then walk through the lower prio flexible groups */ 2575 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2576 ctx_flexible_sched_in(ctx, cpuctx); 2577 } 2578 2579 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2580 enum event_type_t event_type, 2581 struct task_struct *task) 2582 { 2583 struct perf_event_context *ctx = &cpuctx->ctx; 2584 2585 ctx_sched_in(ctx, cpuctx, event_type, task); 2586 } 2587 2588 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2589 struct task_struct *task) 2590 { 2591 struct perf_cpu_context *cpuctx; 2592 2593 cpuctx = __get_cpu_context(ctx); 2594 if (cpuctx->task_ctx == ctx) 2595 return; 2596 2597 perf_ctx_lock(cpuctx, ctx); 2598 perf_pmu_disable(ctx->pmu); 2599 /* 2600 * We want to keep the following priority order: 2601 * cpu pinned (that don't need to move), task pinned, 2602 * cpu flexible, task flexible. 2603 */ 2604 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2605 2606 if (ctx->nr_events) 2607 cpuctx->task_ctx = ctx; 2608 2609 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2610 2611 perf_pmu_enable(ctx->pmu); 2612 perf_ctx_unlock(cpuctx, ctx); 2613 2614 /* 2615 * Since these rotations are per-cpu, we need to ensure the 2616 * cpu-context we got scheduled on is actually rotating. 2617 */ 2618 perf_pmu_rotate_start(ctx->pmu); 2619 } 2620 2621 /* 2622 * When sampling the branck stack in system-wide, it may be necessary 2623 * to flush the stack on context switch. This happens when the branch 2624 * stack does not tag its entries with the pid of the current task. 2625 * Otherwise it becomes impossible to associate a branch entry with a 2626 * task. This ambiguity is more likely to appear when the branch stack 2627 * supports priv level filtering and the user sets it to monitor only 2628 * at the user level (which could be a useful measurement in system-wide 2629 * mode). In that case, the risk is high of having a branch stack with 2630 * branch from multiple tasks. Flushing may mean dropping the existing 2631 * entries or stashing them somewhere in the PMU specific code layer. 2632 * 2633 * This function provides the context switch callback to the lower code 2634 * layer. It is invoked ONLY when there is at least one system-wide context 2635 * with at least one active event using taken branch sampling. 2636 */ 2637 static void perf_branch_stack_sched_in(struct task_struct *prev, 2638 struct task_struct *task) 2639 { 2640 struct perf_cpu_context *cpuctx; 2641 struct pmu *pmu; 2642 unsigned long flags; 2643 2644 /* no need to flush branch stack if not changing task */ 2645 if (prev == task) 2646 return; 2647 2648 local_irq_save(flags); 2649 2650 rcu_read_lock(); 2651 2652 list_for_each_entry_rcu(pmu, &pmus, entry) { 2653 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2654 2655 /* 2656 * check if the context has at least one 2657 * event using PERF_SAMPLE_BRANCH_STACK 2658 */ 2659 if (cpuctx->ctx.nr_branch_stack > 0 2660 && pmu->flush_branch_stack) { 2661 2662 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2663 2664 perf_pmu_disable(pmu); 2665 2666 pmu->flush_branch_stack(); 2667 2668 perf_pmu_enable(pmu); 2669 2670 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2671 } 2672 } 2673 2674 rcu_read_unlock(); 2675 2676 local_irq_restore(flags); 2677 } 2678 2679 /* 2680 * Called from scheduler to add the events of the current task 2681 * with interrupts disabled. 2682 * 2683 * We restore the event value and then enable it. 2684 * 2685 * This does not protect us against NMI, but enable() 2686 * sets the enabled bit in the control field of event _before_ 2687 * accessing the event control register. If a NMI hits, then it will 2688 * keep the event running. 2689 */ 2690 void __perf_event_task_sched_in(struct task_struct *prev, 2691 struct task_struct *task) 2692 { 2693 struct perf_event_context *ctx; 2694 int ctxn; 2695 2696 for_each_task_context_nr(ctxn) { 2697 ctx = task->perf_event_ctxp[ctxn]; 2698 if (likely(!ctx)) 2699 continue; 2700 2701 perf_event_context_sched_in(ctx, task); 2702 } 2703 /* 2704 * if cgroup events exist on this CPU, then we need 2705 * to check if we have to switch in PMU state. 2706 * cgroup event are system-wide mode only 2707 */ 2708 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2709 perf_cgroup_sched_in(prev, task); 2710 2711 /* check for system-wide branch_stack events */ 2712 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events))) 2713 perf_branch_stack_sched_in(prev, task); 2714 } 2715 2716 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2717 { 2718 u64 frequency = event->attr.sample_freq; 2719 u64 sec = NSEC_PER_SEC; 2720 u64 divisor, dividend; 2721 2722 int count_fls, nsec_fls, frequency_fls, sec_fls; 2723 2724 count_fls = fls64(count); 2725 nsec_fls = fls64(nsec); 2726 frequency_fls = fls64(frequency); 2727 sec_fls = 30; 2728 2729 /* 2730 * We got @count in @nsec, with a target of sample_freq HZ 2731 * the target period becomes: 2732 * 2733 * @count * 10^9 2734 * period = ------------------- 2735 * @nsec * sample_freq 2736 * 2737 */ 2738 2739 /* 2740 * Reduce accuracy by one bit such that @a and @b converge 2741 * to a similar magnitude. 2742 */ 2743 #define REDUCE_FLS(a, b) \ 2744 do { \ 2745 if (a##_fls > b##_fls) { \ 2746 a >>= 1; \ 2747 a##_fls--; \ 2748 } else { \ 2749 b >>= 1; \ 2750 b##_fls--; \ 2751 } \ 2752 } while (0) 2753 2754 /* 2755 * Reduce accuracy until either term fits in a u64, then proceed with 2756 * the other, so that finally we can do a u64/u64 division. 2757 */ 2758 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2759 REDUCE_FLS(nsec, frequency); 2760 REDUCE_FLS(sec, count); 2761 } 2762 2763 if (count_fls + sec_fls > 64) { 2764 divisor = nsec * frequency; 2765 2766 while (count_fls + sec_fls > 64) { 2767 REDUCE_FLS(count, sec); 2768 divisor >>= 1; 2769 } 2770 2771 dividend = count * sec; 2772 } else { 2773 dividend = count * sec; 2774 2775 while (nsec_fls + frequency_fls > 64) { 2776 REDUCE_FLS(nsec, frequency); 2777 dividend >>= 1; 2778 } 2779 2780 divisor = nsec * frequency; 2781 } 2782 2783 if (!divisor) 2784 return dividend; 2785 2786 return div64_u64(dividend, divisor); 2787 } 2788 2789 static DEFINE_PER_CPU(int, perf_throttled_count); 2790 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2791 2792 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2793 { 2794 struct hw_perf_event *hwc = &event->hw; 2795 s64 period, sample_period; 2796 s64 delta; 2797 2798 period = perf_calculate_period(event, nsec, count); 2799 2800 delta = (s64)(period - hwc->sample_period); 2801 delta = (delta + 7) / 8; /* low pass filter */ 2802 2803 sample_period = hwc->sample_period + delta; 2804 2805 if (!sample_period) 2806 sample_period = 1; 2807 2808 hwc->sample_period = sample_period; 2809 2810 if (local64_read(&hwc->period_left) > 8*sample_period) { 2811 if (disable) 2812 event->pmu->stop(event, PERF_EF_UPDATE); 2813 2814 local64_set(&hwc->period_left, 0); 2815 2816 if (disable) 2817 event->pmu->start(event, PERF_EF_RELOAD); 2818 } 2819 } 2820 2821 /* 2822 * combine freq adjustment with unthrottling to avoid two passes over the 2823 * events. At the same time, make sure, having freq events does not change 2824 * the rate of unthrottling as that would introduce bias. 2825 */ 2826 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2827 int needs_unthr) 2828 { 2829 struct perf_event *event; 2830 struct hw_perf_event *hwc; 2831 u64 now, period = TICK_NSEC; 2832 s64 delta; 2833 2834 /* 2835 * only need to iterate over all events iff: 2836 * - context have events in frequency mode (needs freq adjust) 2837 * - there are events to unthrottle on this cpu 2838 */ 2839 if (!(ctx->nr_freq || needs_unthr)) 2840 return; 2841 2842 raw_spin_lock(&ctx->lock); 2843 perf_pmu_disable(ctx->pmu); 2844 2845 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2846 if (event->state != PERF_EVENT_STATE_ACTIVE) 2847 continue; 2848 2849 if (!event_filter_match(event)) 2850 continue; 2851 2852 perf_pmu_disable(event->pmu); 2853 2854 hwc = &event->hw; 2855 2856 if (hwc->interrupts == MAX_INTERRUPTS) { 2857 hwc->interrupts = 0; 2858 perf_log_throttle(event, 1); 2859 event->pmu->start(event, 0); 2860 } 2861 2862 if (!event->attr.freq || !event->attr.sample_freq) 2863 goto next; 2864 2865 /* 2866 * stop the event and update event->count 2867 */ 2868 event->pmu->stop(event, PERF_EF_UPDATE); 2869 2870 now = local64_read(&event->count); 2871 delta = now - hwc->freq_count_stamp; 2872 hwc->freq_count_stamp = now; 2873 2874 /* 2875 * restart the event 2876 * reload only if value has changed 2877 * we have stopped the event so tell that 2878 * to perf_adjust_period() to avoid stopping it 2879 * twice. 2880 */ 2881 if (delta > 0) 2882 perf_adjust_period(event, period, delta, false); 2883 2884 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2885 next: 2886 perf_pmu_enable(event->pmu); 2887 } 2888 2889 perf_pmu_enable(ctx->pmu); 2890 raw_spin_unlock(&ctx->lock); 2891 } 2892 2893 /* 2894 * Round-robin a context's events: 2895 */ 2896 static void rotate_ctx(struct perf_event_context *ctx) 2897 { 2898 /* 2899 * Rotate the first entry last of non-pinned groups. Rotation might be 2900 * disabled by the inheritance code. 2901 */ 2902 if (!ctx->rotate_disable) 2903 list_rotate_left(&ctx->flexible_groups); 2904 } 2905 2906 /* 2907 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2908 * because they're strictly cpu affine and rotate_start is called with IRQs 2909 * disabled, while rotate_context is called from IRQ context. 2910 */ 2911 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2912 { 2913 struct perf_event_context *ctx = NULL; 2914 int rotate = 0, remove = 1; 2915 2916 if (cpuctx->ctx.nr_events) { 2917 remove = 0; 2918 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2919 rotate = 1; 2920 } 2921 2922 ctx = cpuctx->task_ctx; 2923 if (ctx && ctx->nr_events) { 2924 remove = 0; 2925 if (ctx->nr_events != ctx->nr_active) 2926 rotate = 1; 2927 } 2928 2929 if (!rotate) 2930 goto done; 2931 2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2933 perf_pmu_disable(cpuctx->ctx.pmu); 2934 2935 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2936 if (ctx) 2937 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2938 2939 rotate_ctx(&cpuctx->ctx); 2940 if (ctx) 2941 rotate_ctx(ctx); 2942 2943 perf_event_sched_in(cpuctx, ctx, current); 2944 2945 perf_pmu_enable(cpuctx->ctx.pmu); 2946 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2947 done: 2948 if (remove) 2949 list_del_init(&cpuctx->rotation_list); 2950 2951 return rotate; 2952 } 2953 2954 #ifdef CONFIG_NO_HZ_FULL 2955 bool perf_event_can_stop_tick(void) 2956 { 2957 if (atomic_read(&nr_freq_events) || 2958 __this_cpu_read(perf_throttled_count)) 2959 return false; 2960 else 2961 return true; 2962 } 2963 #endif 2964 2965 void perf_event_task_tick(void) 2966 { 2967 struct list_head *head = this_cpu_ptr(&rotation_list); 2968 struct perf_cpu_context *cpuctx, *tmp; 2969 struct perf_event_context *ctx; 2970 int throttled; 2971 2972 WARN_ON(!irqs_disabled()); 2973 2974 __this_cpu_inc(perf_throttled_seq); 2975 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2976 2977 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2978 ctx = &cpuctx->ctx; 2979 perf_adjust_freq_unthr_context(ctx, throttled); 2980 2981 ctx = cpuctx->task_ctx; 2982 if (ctx) 2983 perf_adjust_freq_unthr_context(ctx, throttled); 2984 } 2985 } 2986 2987 static int event_enable_on_exec(struct perf_event *event, 2988 struct perf_event_context *ctx) 2989 { 2990 if (!event->attr.enable_on_exec) 2991 return 0; 2992 2993 event->attr.enable_on_exec = 0; 2994 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2995 return 0; 2996 2997 __perf_event_mark_enabled(event); 2998 2999 return 1; 3000 } 3001 3002 /* 3003 * Enable all of a task's events that have been marked enable-on-exec. 3004 * This expects task == current. 3005 */ 3006 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3007 { 3008 struct perf_event_context *clone_ctx = NULL; 3009 struct perf_event *event; 3010 unsigned long flags; 3011 int enabled = 0; 3012 int ret; 3013 3014 local_irq_save(flags); 3015 if (!ctx || !ctx->nr_events) 3016 goto out; 3017 3018 /* 3019 * We must ctxsw out cgroup events to avoid conflict 3020 * when invoking perf_task_event_sched_in() later on 3021 * in this function. Otherwise we end up trying to 3022 * ctxswin cgroup events which are already scheduled 3023 * in. 3024 */ 3025 perf_cgroup_sched_out(current, NULL); 3026 3027 raw_spin_lock(&ctx->lock); 3028 task_ctx_sched_out(ctx); 3029 3030 list_for_each_entry(event, &ctx->event_list, event_entry) { 3031 ret = event_enable_on_exec(event, ctx); 3032 if (ret) 3033 enabled = 1; 3034 } 3035 3036 /* 3037 * Unclone this context if we enabled any event. 3038 */ 3039 if (enabled) 3040 clone_ctx = unclone_ctx(ctx); 3041 3042 raw_spin_unlock(&ctx->lock); 3043 3044 /* 3045 * Also calls ctxswin for cgroup events, if any: 3046 */ 3047 perf_event_context_sched_in(ctx, ctx->task); 3048 out: 3049 local_irq_restore(flags); 3050 3051 if (clone_ctx) 3052 put_ctx(clone_ctx); 3053 } 3054 3055 void perf_event_exec(void) 3056 { 3057 struct perf_event_context *ctx; 3058 int ctxn; 3059 3060 rcu_read_lock(); 3061 for_each_task_context_nr(ctxn) { 3062 ctx = current->perf_event_ctxp[ctxn]; 3063 if (!ctx) 3064 continue; 3065 3066 perf_event_enable_on_exec(ctx); 3067 } 3068 rcu_read_unlock(); 3069 } 3070 3071 /* 3072 * Cross CPU call to read the hardware event 3073 */ 3074 static void __perf_event_read(void *info) 3075 { 3076 struct perf_event *event = info; 3077 struct perf_event_context *ctx = event->ctx; 3078 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3079 3080 /* 3081 * If this is a task context, we need to check whether it is 3082 * the current task context of this cpu. If not it has been 3083 * scheduled out before the smp call arrived. In that case 3084 * event->count would have been updated to a recent sample 3085 * when the event was scheduled out. 3086 */ 3087 if (ctx->task && cpuctx->task_ctx != ctx) 3088 return; 3089 3090 raw_spin_lock(&ctx->lock); 3091 if (ctx->is_active) { 3092 update_context_time(ctx); 3093 update_cgrp_time_from_event(event); 3094 } 3095 update_event_times(event); 3096 if (event->state == PERF_EVENT_STATE_ACTIVE) 3097 event->pmu->read(event); 3098 raw_spin_unlock(&ctx->lock); 3099 } 3100 3101 static inline u64 perf_event_count(struct perf_event *event) 3102 { 3103 return local64_read(&event->count) + atomic64_read(&event->child_count); 3104 } 3105 3106 static u64 perf_event_read(struct perf_event *event) 3107 { 3108 /* 3109 * If event is enabled and currently active on a CPU, update the 3110 * value in the event structure: 3111 */ 3112 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3113 smp_call_function_single(event->oncpu, 3114 __perf_event_read, event, 1); 3115 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3116 struct perf_event_context *ctx = event->ctx; 3117 unsigned long flags; 3118 3119 raw_spin_lock_irqsave(&ctx->lock, flags); 3120 /* 3121 * may read while context is not active 3122 * (e.g., thread is blocked), in that case 3123 * we cannot update context time 3124 */ 3125 if (ctx->is_active) { 3126 update_context_time(ctx); 3127 update_cgrp_time_from_event(event); 3128 } 3129 update_event_times(event); 3130 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3131 } 3132 3133 return perf_event_count(event); 3134 } 3135 3136 /* 3137 * Initialize the perf_event context in a task_struct: 3138 */ 3139 static void __perf_event_init_context(struct perf_event_context *ctx) 3140 { 3141 raw_spin_lock_init(&ctx->lock); 3142 mutex_init(&ctx->mutex); 3143 INIT_LIST_HEAD(&ctx->pinned_groups); 3144 INIT_LIST_HEAD(&ctx->flexible_groups); 3145 INIT_LIST_HEAD(&ctx->event_list); 3146 atomic_set(&ctx->refcount, 1); 3147 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3148 } 3149 3150 static struct perf_event_context * 3151 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3152 { 3153 struct perf_event_context *ctx; 3154 3155 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3156 if (!ctx) 3157 return NULL; 3158 3159 __perf_event_init_context(ctx); 3160 if (task) { 3161 ctx->task = task; 3162 get_task_struct(task); 3163 } 3164 ctx->pmu = pmu; 3165 3166 return ctx; 3167 } 3168 3169 static struct task_struct * 3170 find_lively_task_by_vpid(pid_t vpid) 3171 { 3172 struct task_struct *task; 3173 int err; 3174 3175 rcu_read_lock(); 3176 if (!vpid) 3177 task = current; 3178 else 3179 task = find_task_by_vpid(vpid); 3180 if (task) 3181 get_task_struct(task); 3182 rcu_read_unlock(); 3183 3184 if (!task) 3185 return ERR_PTR(-ESRCH); 3186 3187 /* Reuse ptrace permission checks for now. */ 3188 err = -EACCES; 3189 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3190 goto errout; 3191 3192 return task; 3193 errout: 3194 put_task_struct(task); 3195 return ERR_PTR(err); 3196 3197 } 3198 3199 /* 3200 * Returns a matching context with refcount and pincount. 3201 */ 3202 static struct perf_event_context * 3203 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3204 { 3205 struct perf_event_context *ctx, *clone_ctx = NULL; 3206 struct perf_cpu_context *cpuctx; 3207 unsigned long flags; 3208 int ctxn, err; 3209 3210 if (!task) { 3211 /* Must be root to operate on a CPU event: */ 3212 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3213 return ERR_PTR(-EACCES); 3214 3215 /* 3216 * We could be clever and allow to attach a event to an 3217 * offline CPU and activate it when the CPU comes up, but 3218 * that's for later. 3219 */ 3220 if (!cpu_online(cpu)) 3221 return ERR_PTR(-ENODEV); 3222 3223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3224 ctx = &cpuctx->ctx; 3225 get_ctx(ctx); 3226 ++ctx->pin_count; 3227 3228 return ctx; 3229 } 3230 3231 err = -EINVAL; 3232 ctxn = pmu->task_ctx_nr; 3233 if (ctxn < 0) 3234 goto errout; 3235 3236 retry: 3237 ctx = perf_lock_task_context(task, ctxn, &flags); 3238 if (ctx) { 3239 clone_ctx = unclone_ctx(ctx); 3240 ++ctx->pin_count; 3241 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3242 3243 if (clone_ctx) 3244 put_ctx(clone_ctx); 3245 } else { 3246 ctx = alloc_perf_context(pmu, task); 3247 err = -ENOMEM; 3248 if (!ctx) 3249 goto errout; 3250 3251 err = 0; 3252 mutex_lock(&task->perf_event_mutex); 3253 /* 3254 * If it has already passed perf_event_exit_task(). 3255 * we must see PF_EXITING, it takes this mutex too. 3256 */ 3257 if (task->flags & PF_EXITING) 3258 err = -ESRCH; 3259 else if (task->perf_event_ctxp[ctxn]) 3260 err = -EAGAIN; 3261 else { 3262 get_ctx(ctx); 3263 ++ctx->pin_count; 3264 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3265 } 3266 mutex_unlock(&task->perf_event_mutex); 3267 3268 if (unlikely(err)) { 3269 put_ctx(ctx); 3270 3271 if (err == -EAGAIN) 3272 goto retry; 3273 goto errout; 3274 } 3275 } 3276 3277 return ctx; 3278 3279 errout: 3280 return ERR_PTR(err); 3281 } 3282 3283 static void perf_event_free_filter(struct perf_event *event); 3284 3285 static void free_event_rcu(struct rcu_head *head) 3286 { 3287 struct perf_event *event; 3288 3289 event = container_of(head, struct perf_event, rcu_head); 3290 if (event->ns) 3291 put_pid_ns(event->ns); 3292 perf_event_free_filter(event); 3293 kfree(event); 3294 } 3295 3296 static void ring_buffer_put(struct ring_buffer *rb); 3297 static void ring_buffer_attach(struct perf_event *event, 3298 struct ring_buffer *rb); 3299 3300 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3301 { 3302 if (event->parent) 3303 return; 3304 3305 if (has_branch_stack(event)) { 3306 if (!(event->attach_state & PERF_ATTACH_TASK)) 3307 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3308 } 3309 if (is_cgroup_event(event)) 3310 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3311 } 3312 3313 static void unaccount_event(struct perf_event *event) 3314 { 3315 if (event->parent) 3316 return; 3317 3318 if (event->attach_state & PERF_ATTACH_TASK) 3319 static_key_slow_dec_deferred(&perf_sched_events); 3320 if (event->attr.mmap || event->attr.mmap_data) 3321 atomic_dec(&nr_mmap_events); 3322 if (event->attr.comm) 3323 atomic_dec(&nr_comm_events); 3324 if (event->attr.task) 3325 atomic_dec(&nr_task_events); 3326 if (event->attr.freq) 3327 atomic_dec(&nr_freq_events); 3328 if (is_cgroup_event(event)) 3329 static_key_slow_dec_deferred(&perf_sched_events); 3330 if (has_branch_stack(event)) 3331 static_key_slow_dec_deferred(&perf_sched_events); 3332 3333 unaccount_event_cpu(event, event->cpu); 3334 } 3335 3336 static void __free_event(struct perf_event *event) 3337 { 3338 if (!event->parent) { 3339 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3340 put_callchain_buffers(); 3341 } 3342 3343 if (event->destroy) 3344 event->destroy(event); 3345 3346 if (event->ctx) 3347 put_ctx(event->ctx); 3348 3349 if (event->pmu) 3350 module_put(event->pmu->module); 3351 3352 call_rcu(&event->rcu_head, free_event_rcu); 3353 } 3354 3355 static void _free_event(struct perf_event *event) 3356 { 3357 irq_work_sync(&event->pending); 3358 3359 unaccount_event(event); 3360 3361 if (event->rb) { 3362 /* 3363 * Can happen when we close an event with re-directed output. 3364 * 3365 * Since we have a 0 refcount, perf_mmap_close() will skip 3366 * over us; possibly making our ring_buffer_put() the last. 3367 */ 3368 mutex_lock(&event->mmap_mutex); 3369 ring_buffer_attach(event, NULL); 3370 mutex_unlock(&event->mmap_mutex); 3371 } 3372 3373 if (is_cgroup_event(event)) 3374 perf_detach_cgroup(event); 3375 3376 __free_event(event); 3377 } 3378 3379 /* 3380 * Used to free events which have a known refcount of 1, such as in error paths 3381 * where the event isn't exposed yet and inherited events. 3382 */ 3383 static void free_event(struct perf_event *event) 3384 { 3385 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3386 "unexpected event refcount: %ld; ptr=%p\n", 3387 atomic_long_read(&event->refcount), event)) { 3388 /* leak to avoid use-after-free */ 3389 return; 3390 } 3391 3392 _free_event(event); 3393 } 3394 3395 /* 3396 * Remove user event from the owner task. 3397 */ 3398 static void perf_remove_from_owner(struct perf_event *event) 3399 { 3400 struct task_struct *owner; 3401 3402 rcu_read_lock(); 3403 owner = ACCESS_ONCE(event->owner); 3404 /* 3405 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3406 * !owner it means the list deletion is complete and we can indeed 3407 * free this event, otherwise we need to serialize on 3408 * owner->perf_event_mutex. 3409 */ 3410 smp_read_barrier_depends(); 3411 if (owner) { 3412 /* 3413 * Since delayed_put_task_struct() also drops the last 3414 * task reference we can safely take a new reference 3415 * while holding the rcu_read_lock(). 3416 */ 3417 get_task_struct(owner); 3418 } 3419 rcu_read_unlock(); 3420 3421 if (owner) { 3422 mutex_lock(&owner->perf_event_mutex); 3423 /* 3424 * We have to re-check the event->owner field, if it is cleared 3425 * we raced with perf_event_exit_task(), acquiring the mutex 3426 * ensured they're done, and we can proceed with freeing the 3427 * event. 3428 */ 3429 if (event->owner) 3430 list_del_init(&event->owner_entry); 3431 mutex_unlock(&owner->perf_event_mutex); 3432 put_task_struct(owner); 3433 } 3434 } 3435 3436 /* 3437 * Called when the last reference to the file is gone. 3438 */ 3439 static void put_event(struct perf_event *event) 3440 { 3441 struct perf_event_context *ctx = event->ctx; 3442 3443 if (!atomic_long_dec_and_test(&event->refcount)) 3444 return; 3445 3446 if (!is_kernel_event(event)) 3447 perf_remove_from_owner(event); 3448 3449 WARN_ON_ONCE(ctx->parent_ctx); 3450 /* 3451 * There are two ways this annotation is useful: 3452 * 3453 * 1) there is a lock recursion from perf_event_exit_task 3454 * see the comment there. 3455 * 3456 * 2) there is a lock-inversion with mmap_sem through 3457 * perf_event_read_group(), which takes faults while 3458 * holding ctx->mutex, however this is called after 3459 * the last filedesc died, so there is no possibility 3460 * to trigger the AB-BA case. 3461 */ 3462 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3463 perf_remove_from_context(event, true); 3464 mutex_unlock(&ctx->mutex); 3465 3466 _free_event(event); 3467 } 3468 3469 int perf_event_release_kernel(struct perf_event *event) 3470 { 3471 put_event(event); 3472 return 0; 3473 } 3474 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3475 3476 static int perf_release(struct inode *inode, struct file *file) 3477 { 3478 put_event(file->private_data); 3479 return 0; 3480 } 3481 3482 /* 3483 * Remove all orphanes events from the context. 3484 */ 3485 static void orphans_remove_work(struct work_struct *work) 3486 { 3487 struct perf_event_context *ctx; 3488 struct perf_event *event, *tmp; 3489 3490 ctx = container_of(work, struct perf_event_context, 3491 orphans_remove.work); 3492 3493 mutex_lock(&ctx->mutex); 3494 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3495 struct perf_event *parent_event = event->parent; 3496 3497 if (!is_orphaned_child(event)) 3498 continue; 3499 3500 perf_remove_from_context(event, true); 3501 3502 mutex_lock(&parent_event->child_mutex); 3503 list_del_init(&event->child_list); 3504 mutex_unlock(&parent_event->child_mutex); 3505 3506 free_event(event); 3507 put_event(parent_event); 3508 } 3509 3510 raw_spin_lock_irq(&ctx->lock); 3511 ctx->orphans_remove_sched = false; 3512 raw_spin_unlock_irq(&ctx->lock); 3513 mutex_unlock(&ctx->mutex); 3514 3515 put_ctx(ctx); 3516 } 3517 3518 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3519 { 3520 struct perf_event *child; 3521 u64 total = 0; 3522 3523 *enabled = 0; 3524 *running = 0; 3525 3526 mutex_lock(&event->child_mutex); 3527 total += perf_event_read(event); 3528 *enabled += event->total_time_enabled + 3529 atomic64_read(&event->child_total_time_enabled); 3530 *running += event->total_time_running + 3531 atomic64_read(&event->child_total_time_running); 3532 3533 list_for_each_entry(child, &event->child_list, child_list) { 3534 total += perf_event_read(child); 3535 *enabled += child->total_time_enabled; 3536 *running += child->total_time_running; 3537 } 3538 mutex_unlock(&event->child_mutex); 3539 3540 return total; 3541 } 3542 EXPORT_SYMBOL_GPL(perf_event_read_value); 3543 3544 static int perf_event_read_group(struct perf_event *event, 3545 u64 read_format, char __user *buf) 3546 { 3547 struct perf_event *leader = event->group_leader, *sub; 3548 int n = 0, size = 0, ret = -EFAULT; 3549 struct perf_event_context *ctx = leader->ctx; 3550 u64 values[5]; 3551 u64 count, enabled, running; 3552 3553 mutex_lock(&ctx->mutex); 3554 count = perf_event_read_value(leader, &enabled, &running); 3555 3556 values[n++] = 1 + leader->nr_siblings; 3557 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3558 values[n++] = enabled; 3559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3560 values[n++] = running; 3561 values[n++] = count; 3562 if (read_format & PERF_FORMAT_ID) 3563 values[n++] = primary_event_id(leader); 3564 3565 size = n * sizeof(u64); 3566 3567 if (copy_to_user(buf, values, size)) 3568 goto unlock; 3569 3570 ret = size; 3571 3572 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3573 n = 0; 3574 3575 values[n++] = perf_event_read_value(sub, &enabled, &running); 3576 if (read_format & PERF_FORMAT_ID) 3577 values[n++] = primary_event_id(sub); 3578 3579 size = n * sizeof(u64); 3580 3581 if (copy_to_user(buf + ret, values, size)) { 3582 ret = -EFAULT; 3583 goto unlock; 3584 } 3585 3586 ret += size; 3587 } 3588 unlock: 3589 mutex_unlock(&ctx->mutex); 3590 3591 return ret; 3592 } 3593 3594 static int perf_event_read_one(struct perf_event *event, 3595 u64 read_format, char __user *buf) 3596 { 3597 u64 enabled, running; 3598 u64 values[4]; 3599 int n = 0; 3600 3601 values[n++] = perf_event_read_value(event, &enabled, &running); 3602 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3603 values[n++] = enabled; 3604 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3605 values[n++] = running; 3606 if (read_format & PERF_FORMAT_ID) 3607 values[n++] = primary_event_id(event); 3608 3609 if (copy_to_user(buf, values, n * sizeof(u64))) 3610 return -EFAULT; 3611 3612 return n * sizeof(u64); 3613 } 3614 3615 static bool is_event_hup(struct perf_event *event) 3616 { 3617 bool no_children; 3618 3619 if (event->state != PERF_EVENT_STATE_EXIT) 3620 return false; 3621 3622 mutex_lock(&event->child_mutex); 3623 no_children = list_empty(&event->child_list); 3624 mutex_unlock(&event->child_mutex); 3625 return no_children; 3626 } 3627 3628 /* 3629 * Read the performance event - simple non blocking version for now 3630 */ 3631 static ssize_t 3632 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3633 { 3634 u64 read_format = event->attr.read_format; 3635 int ret; 3636 3637 /* 3638 * Return end-of-file for a read on a event that is in 3639 * error state (i.e. because it was pinned but it couldn't be 3640 * scheduled on to the CPU at some point). 3641 */ 3642 if (event->state == PERF_EVENT_STATE_ERROR) 3643 return 0; 3644 3645 if (count < event->read_size) 3646 return -ENOSPC; 3647 3648 WARN_ON_ONCE(event->ctx->parent_ctx); 3649 if (read_format & PERF_FORMAT_GROUP) 3650 ret = perf_event_read_group(event, read_format, buf); 3651 else 3652 ret = perf_event_read_one(event, read_format, buf); 3653 3654 return ret; 3655 } 3656 3657 static ssize_t 3658 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3659 { 3660 struct perf_event *event = file->private_data; 3661 3662 return perf_read_hw(event, buf, count); 3663 } 3664 3665 static unsigned int perf_poll(struct file *file, poll_table *wait) 3666 { 3667 struct perf_event *event = file->private_data; 3668 struct ring_buffer *rb; 3669 unsigned int events = POLLHUP; 3670 3671 poll_wait(file, &event->waitq, wait); 3672 3673 if (is_event_hup(event)) 3674 return events; 3675 3676 /* 3677 * Pin the event->rb by taking event->mmap_mutex; otherwise 3678 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3679 */ 3680 mutex_lock(&event->mmap_mutex); 3681 rb = event->rb; 3682 if (rb) 3683 events = atomic_xchg(&rb->poll, 0); 3684 mutex_unlock(&event->mmap_mutex); 3685 return events; 3686 } 3687 3688 static void perf_event_reset(struct perf_event *event) 3689 { 3690 (void)perf_event_read(event); 3691 local64_set(&event->count, 0); 3692 perf_event_update_userpage(event); 3693 } 3694 3695 /* 3696 * Holding the top-level event's child_mutex means that any 3697 * descendant process that has inherited this event will block 3698 * in sync_child_event if it goes to exit, thus satisfying the 3699 * task existence requirements of perf_event_enable/disable. 3700 */ 3701 static void perf_event_for_each_child(struct perf_event *event, 3702 void (*func)(struct perf_event *)) 3703 { 3704 struct perf_event *child; 3705 3706 WARN_ON_ONCE(event->ctx->parent_ctx); 3707 mutex_lock(&event->child_mutex); 3708 func(event); 3709 list_for_each_entry(child, &event->child_list, child_list) 3710 func(child); 3711 mutex_unlock(&event->child_mutex); 3712 } 3713 3714 static void perf_event_for_each(struct perf_event *event, 3715 void (*func)(struct perf_event *)) 3716 { 3717 struct perf_event_context *ctx = event->ctx; 3718 struct perf_event *sibling; 3719 3720 WARN_ON_ONCE(ctx->parent_ctx); 3721 mutex_lock(&ctx->mutex); 3722 event = event->group_leader; 3723 3724 perf_event_for_each_child(event, func); 3725 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3726 perf_event_for_each_child(sibling, func); 3727 mutex_unlock(&ctx->mutex); 3728 } 3729 3730 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3731 { 3732 struct perf_event_context *ctx = event->ctx; 3733 int ret = 0, active; 3734 u64 value; 3735 3736 if (!is_sampling_event(event)) 3737 return -EINVAL; 3738 3739 if (copy_from_user(&value, arg, sizeof(value))) 3740 return -EFAULT; 3741 3742 if (!value) 3743 return -EINVAL; 3744 3745 raw_spin_lock_irq(&ctx->lock); 3746 if (event->attr.freq) { 3747 if (value > sysctl_perf_event_sample_rate) { 3748 ret = -EINVAL; 3749 goto unlock; 3750 } 3751 3752 event->attr.sample_freq = value; 3753 } else { 3754 event->attr.sample_period = value; 3755 event->hw.sample_period = value; 3756 } 3757 3758 active = (event->state == PERF_EVENT_STATE_ACTIVE); 3759 if (active) { 3760 perf_pmu_disable(ctx->pmu); 3761 event->pmu->stop(event, PERF_EF_UPDATE); 3762 } 3763 3764 local64_set(&event->hw.period_left, 0); 3765 3766 if (active) { 3767 event->pmu->start(event, PERF_EF_RELOAD); 3768 perf_pmu_enable(ctx->pmu); 3769 } 3770 3771 unlock: 3772 raw_spin_unlock_irq(&ctx->lock); 3773 3774 return ret; 3775 } 3776 3777 static const struct file_operations perf_fops; 3778 3779 static inline int perf_fget_light(int fd, struct fd *p) 3780 { 3781 struct fd f = fdget(fd); 3782 if (!f.file) 3783 return -EBADF; 3784 3785 if (f.file->f_op != &perf_fops) { 3786 fdput(f); 3787 return -EBADF; 3788 } 3789 *p = f; 3790 return 0; 3791 } 3792 3793 static int perf_event_set_output(struct perf_event *event, 3794 struct perf_event *output_event); 3795 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3796 3797 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3798 { 3799 struct perf_event *event = file->private_data; 3800 void (*func)(struct perf_event *); 3801 u32 flags = arg; 3802 3803 switch (cmd) { 3804 case PERF_EVENT_IOC_ENABLE: 3805 func = perf_event_enable; 3806 break; 3807 case PERF_EVENT_IOC_DISABLE: 3808 func = perf_event_disable; 3809 break; 3810 case PERF_EVENT_IOC_RESET: 3811 func = perf_event_reset; 3812 break; 3813 3814 case PERF_EVENT_IOC_REFRESH: 3815 return perf_event_refresh(event, arg); 3816 3817 case PERF_EVENT_IOC_PERIOD: 3818 return perf_event_period(event, (u64 __user *)arg); 3819 3820 case PERF_EVENT_IOC_ID: 3821 { 3822 u64 id = primary_event_id(event); 3823 3824 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3825 return -EFAULT; 3826 return 0; 3827 } 3828 3829 case PERF_EVENT_IOC_SET_OUTPUT: 3830 { 3831 int ret; 3832 if (arg != -1) { 3833 struct perf_event *output_event; 3834 struct fd output; 3835 ret = perf_fget_light(arg, &output); 3836 if (ret) 3837 return ret; 3838 output_event = output.file->private_data; 3839 ret = perf_event_set_output(event, output_event); 3840 fdput(output); 3841 } else { 3842 ret = perf_event_set_output(event, NULL); 3843 } 3844 return ret; 3845 } 3846 3847 case PERF_EVENT_IOC_SET_FILTER: 3848 return perf_event_set_filter(event, (void __user *)arg); 3849 3850 default: 3851 return -ENOTTY; 3852 } 3853 3854 if (flags & PERF_IOC_FLAG_GROUP) 3855 perf_event_for_each(event, func); 3856 else 3857 perf_event_for_each_child(event, func); 3858 3859 return 0; 3860 } 3861 3862 #ifdef CONFIG_COMPAT 3863 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 3864 unsigned long arg) 3865 { 3866 switch (_IOC_NR(cmd)) { 3867 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 3868 case _IOC_NR(PERF_EVENT_IOC_ID): 3869 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 3870 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 3871 cmd &= ~IOCSIZE_MASK; 3872 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 3873 } 3874 break; 3875 } 3876 return perf_ioctl(file, cmd, arg); 3877 } 3878 #else 3879 # define perf_compat_ioctl NULL 3880 #endif 3881 3882 int perf_event_task_enable(void) 3883 { 3884 struct perf_event *event; 3885 3886 mutex_lock(¤t->perf_event_mutex); 3887 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3888 perf_event_for_each_child(event, perf_event_enable); 3889 mutex_unlock(¤t->perf_event_mutex); 3890 3891 return 0; 3892 } 3893 3894 int perf_event_task_disable(void) 3895 { 3896 struct perf_event *event; 3897 3898 mutex_lock(¤t->perf_event_mutex); 3899 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3900 perf_event_for_each_child(event, perf_event_disable); 3901 mutex_unlock(¤t->perf_event_mutex); 3902 3903 return 0; 3904 } 3905 3906 static int perf_event_index(struct perf_event *event) 3907 { 3908 if (event->hw.state & PERF_HES_STOPPED) 3909 return 0; 3910 3911 if (event->state != PERF_EVENT_STATE_ACTIVE) 3912 return 0; 3913 3914 return event->pmu->event_idx(event); 3915 } 3916 3917 static void calc_timer_values(struct perf_event *event, 3918 u64 *now, 3919 u64 *enabled, 3920 u64 *running) 3921 { 3922 u64 ctx_time; 3923 3924 *now = perf_clock(); 3925 ctx_time = event->shadow_ctx_time + *now; 3926 *enabled = ctx_time - event->tstamp_enabled; 3927 *running = ctx_time - event->tstamp_running; 3928 } 3929 3930 static void perf_event_init_userpage(struct perf_event *event) 3931 { 3932 struct perf_event_mmap_page *userpg; 3933 struct ring_buffer *rb; 3934 3935 rcu_read_lock(); 3936 rb = rcu_dereference(event->rb); 3937 if (!rb) 3938 goto unlock; 3939 3940 userpg = rb->user_page; 3941 3942 /* Allow new userspace to detect that bit 0 is deprecated */ 3943 userpg->cap_bit0_is_deprecated = 1; 3944 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3945 3946 unlock: 3947 rcu_read_unlock(); 3948 } 3949 3950 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3951 { 3952 } 3953 3954 /* 3955 * Callers need to ensure there can be no nesting of this function, otherwise 3956 * the seqlock logic goes bad. We can not serialize this because the arch 3957 * code calls this from NMI context. 3958 */ 3959 void perf_event_update_userpage(struct perf_event *event) 3960 { 3961 struct perf_event_mmap_page *userpg; 3962 struct ring_buffer *rb; 3963 u64 enabled, running, now; 3964 3965 rcu_read_lock(); 3966 rb = rcu_dereference(event->rb); 3967 if (!rb) 3968 goto unlock; 3969 3970 /* 3971 * compute total_time_enabled, total_time_running 3972 * based on snapshot values taken when the event 3973 * was last scheduled in. 3974 * 3975 * we cannot simply called update_context_time() 3976 * because of locking issue as we can be called in 3977 * NMI context 3978 */ 3979 calc_timer_values(event, &now, &enabled, &running); 3980 3981 userpg = rb->user_page; 3982 /* 3983 * Disable preemption so as to not let the corresponding user-space 3984 * spin too long if we get preempted. 3985 */ 3986 preempt_disable(); 3987 ++userpg->lock; 3988 barrier(); 3989 userpg->index = perf_event_index(event); 3990 userpg->offset = perf_event_count(event); 3991 if (userpg->index) 3992 userpg->offset -= local64_read(&event->hw.prev_count); 3993 3994 userpg->time_enabled = enabled + 3995 atomic64_read(&event->child_total_time_enabled); 3996 3997 userpg->time_running = running + 3998 atomic64_read(&event->child_total_time_running); 3999 4000 arch_perf_update_userpage(userpg, now); 4001 4002 barrier(); 4003 ++userpg->lock; 4004 preempt_enable(); 4005 unlock: 4006 rcu_read_unlock(); 4007 } 4008 4009 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4010 { 4011 struct perf_event *event = vma->vm_file->private_data; 4012 struct ring_buffer *rb; 4013 int ret = VM_FAULT_SIGBUS; 4014 4015 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4016 if (vmf->pgoff == 0) 4017 ret = 0; 4018 return ret; 4019 } 4020 4021 rcu_read_lock(); 4022 rb = rcu_dereference(event->rb); 4023 if (!rb) 4024 goto unlock; 4025 4026 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4027 goto unlock; 4028 4029 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4030 if (!vmf->page) 4031 goto unlock; 4032 4033 get_page(vmf->page); 4034 vmf->page->mapping = vma->vm_file->f_mapping; 4035 vmf->page->index = vmf->pgoff; 4036 4037 ret = 0; 4038 unlock: 4039 rcu_read_unlock(); 4040 4041 return ret; 4042 } 4043 4044 static void ring_buffer_attach(struct perf_event *event, 4045 struct ring_buffer *rb) 4046 { 4047 struct ring_buffer *old_rb = NULL; 4048 unsigned long flags; 4049 4050 if (event->rb) { 4051 /* 4052 * Should be impossible, we set this when removing 4053 * event->rb_entry and wait/clear when adding event->rb_entry. 4054 */ 4055 WARN_ON_ONCE(event->rcu_pending); 4056 4057 old_rb = event->rb; 4058 event->rcu_batches = get_state_synchronize_rcu(); 4059 event->rcu_pending = 1; 4060 4061 spin_lock_irqsave(&old_rb->event_lock, flags); 4062 list_del_rcu(&event->rb_entry); 4063 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4064 } 4065 4066 if (event->rcu_pending && rb) { 4067 cond_synchronize_rcu(event->rcu_batches); 4068 event->rcu_pending = 0; 4069 } 4070 4071 if (rb) { 4072 spin_lock_irqsave(&rb->event_lock, flags); 4073 list_add_rcu(&event->rb_entry, &rb->event_list); 4074 spin_unlock_irqrestore(&rb->event_lock, flags); 4075 } 4076 4077 rcu_assign_pointer(event->rb, rb); 4078 4079 if (old_rb) { 4080 ring_buffer_put(old_rb); 4081 /* 4082 * Since we detached before setting the new rb, so that we 4083 * could attach the new rb, we could have missed a wakeup. 4084 * Provide it now. 4085 */ 4086 wake_up_all(&event->waitq); 4087 } 4088 } 4089 4090 static void ring_buffer_wakeup(struct perf_event *event) 4091 { 4092 struct ring_buffer *rb; 4093 4094 rcu_read_lock(); 4095 rb = rcu_dereference(event->rb); 4096 if (rb) { 4097 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4098 wake_up_all(&event->waitq); 4099 } 4100 rcu_read_unlock(); 4101 } 4102 4103 static void rb_free_rcu(struct rcu_head *rcu_head) 4104 { 4105 struct ring_buffer *rb; 4106 4107 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 4108 rb_free(rb); 4109 } 4110 4111 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 4112 { 4113 struct ring_buffer *rb; 4114 4115 rcu_read_lock(); 4116 rb = rcu_dereference(event->rb); 4117 if (rb) { 4118 if (!atomic_inc_not_zero(&rb->refcount)) 4119 rb = NULL; 4120 } 4121 rcu_read_unlock(); 4122 4123 return rb; 4124 } 4125 4126 static void ring_buffer_put(struct ring_buffer *rb) 4127 { 4128 if (!atomic_dec_and_test(&rb->refcount)) 4129 return; 4130 4131 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4132 4133 call_rcu(&rb->rcu_head, rb_free_rcu); 4134 } 4135 4136 static void perf_mmap_open(struct vm_area_struct *vma) 4137 { 4138 struct perf_event *event = vma->vm_file->private_data; 4139 4140 atomic_inc(&event->mmap_count); 4141 atomic_inc(&event->rb->mmap_count); 4142 } 4143 4144 /* 4145 * A buffer can be mmap()ed multiple times; either directly through the same 4146 * event, or through other events by use of perf_event_set_output(). 4147 * 4148 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4149 * the buffer here, where we still have a VM context. This means we need 4150 * to detach all events redirecting to us. 4151 */ 4152 static void perf_mmap_close(struct vm_area_struct *vma) 4153 { 4154 struct perf_event *event = vma->vm_file->private_data; 4155 4156 struct ring_buffer *rb = ring_buffer_get(event); 4157 struct user_struct *mmap_user = rb->mmap_user; 4158 int mmap_locked = rb->mmap_locked; 4159 unsigned long size = perf_data_size(rb); 4160 4161 atomic_dec(&rb->mmap_count); 4162 4163 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4164 goto out_put; 4165 4166 ring_buffer_attach(event, NULL); 4167 mutex_unlock(&event->mmap_mutex); 4168 4169 /* If there's still other mmap()s of this buffer, we're done. */ 4170 if (atomic_read(&rb->mmap_count)) 4171 goto out_put; 4172 4173 /* 4174 * No other mmap()s, detach from all other events that might redirect 4175 * into the now unreachable buffer. Somewhat complicated by the 4176 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4177 */ 4178 again: 4179 rcu_read_lock(); 4180 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4181 if (!atomic_long_inc_not_zero(&event->refcount)) { 4182 /* 4183 * This event is en-route to free_event() which will 4184 * detach it and remove it from the list. 4185 */ 4186 continue; 4187 } 4188 rcu_read_unlock(); 4189 4190 mutex_lock(&event->mmap_mutex); 4191 /* 4192 * Check we didn't race with perf_event_set_output() which can 4193 * swizzle the rb from under us while we were waiting to 4194 * acquire mmap_mutex. 4195 * 4196 * If we find a different rb; ignore this event, a next 4197 * iteration will no longer find it on the list. We have to 4198 * still restart the iteration to make sure we're not now 4199 * iterating the wrong list. 4200 */ 4201 if (event->rb == rb) 4202 ring_buffer_attach(event, NULL); 4203 4204 mutex_unlock(&event->mmap_mutex); 4205 put_event(event); 4206 4207 /* 4208 * Restart the iteration; either we're on the wrong list or 4209 * destroyed its integrity by doing a deletion. 4210 */ 4211 goto again; 4212 } 4213 rcu_read_unlock(); 4214 4215 /* 4216 * It could be there's still a few 0-ref events on the list; they'll 4217 * get cleaned up by free_event() -- they'll also still have their 4218 * ref on the rb and will free it whenever they are done with it. 4219 * 4220 * Aside from that, this buffer is 'fully' detached and unmapped, 4221 * undo the VM accounting. 4222 */ 4223 4224 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4225 vma->vm_mm->pinned_vm -= mmap_locked; 4226 free_uid(mmap_user); 4227 4228 out_put: 4229 ring_buffer_put(rb); /* could be last */ 4230 } 4231 4232 static const struct vm_operations_struct perf_mmap_vmops = { 4233 .open = perf_mmap_open, 4234 .close = perf_mmap_close, 4235 .fault = perf_mmap_fault, 4236 .page_mkwrite = perf_mmap_fault, 4237 }; 4238 4239 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4240 { 4241 struct perf_event *event = file->private_data; 4242 unsigned long user_locked, user_lock_limit; 4243 struct user_struct *user = current_user(); 4244 unsigned long locked, lock_limit; 4245 struct ring_buffer *rb; 4246 unsigned long vma_size; 4247 unsigned long nr_pages; 4248 long user_extra, extra; 4249 int ret = 0, flags = 0; 4250 4251 /* 4252 * Don't allow mmap() of inherited per-task counters. This would 4253 * create a performance issue due to all children writing to the 4254 * same rb. 4255 */ 4256 if (event->cpu == -1 && event->attr.inherit) 4257 return -EINVAL; 4258 4259 if (!(vma->vm_flags & VM_SHARED)) 4260 return -EINVAL; 4261 4262 vma_size = vma->vm_end - vma->vm_start; 4263 nr_pages = (vma_size / PAGE_SIZE) - 1; 4264 4265 /* 4266 * If we have rb pages ensure they're a power-of-two number, so we 4267 * can do bitmasks instead of modulo. 4268 */ 4269 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4270 return -EINVAL; 4271 4272 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4273 return -EINVAL; 4274 4275 if (vma->vm_pgoff != 0) 4276 return -EINVAL; 4277 4278 WARN_ON_ONCE(event->ctx->parent_ctx); 4279 again: 4280 mutex_lock(&event->mmap_mutex); 4281 if (event->rb) { 4282 if (event->rb->nr_pages != nr_pages) { 4283 ret = -EINVAL; 4284 goto unlock; 4285 } 4286 4287 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4288 /* 4289 * Raced against perf_mmap_close() through 4290 * perf_event_set_output(). Try again, hope for better 4291 * luck. 4292 */ 4293 mutex_unlock(&event->mmap_mutex); 4294 goto again; 4295 } 4296 4297 goto unlock; 4298 } 4299 4300 user_extra = nr_pages + 1; 4301 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4302 4303 /* 4304 * Increase the limit linearly with more CPUs: 4305 */ 4306 user_lock_limit *= num_online_cpus(); 4307 4308 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4309 4310 extra = 0; 4311 if (user_locked > user_lock_limit) 4312 extra = user_locked - user_lock_limit; 4313 4314 lock_limit = rlimit(RLIMIT_MEMLOCK); 4315 lock_limit >>= PAGE_SHIFT; 4316 locked = vma->vm_mm->pinned_vm + extra; 4317 4318 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4319 !capable(CAP_IPC_LOCK)) { 4320 ret = -EPERM; 4321 goto unlock; 4322 } 4323 4324 WARN_ON(event->rb); 4325 4326 if (vma->vm_flags & VM_WRITE) 4327 flags |= RING_BUFFER_WRITABLE; 4328 4329 rb = rb_alloc(nr_pages, 4330 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4331 event->cpu, flags); 4332 4333 if (!rb) { 4334 ret = -ENOMEM; 4335 goto unlock; 4336 } 4337 4338 atomic_set(&rb->mmap_count, 1); 4339 rb->mmap_locked = extra; 4340 rb->mmap_user = get_current_user(); 4341 4342 atomic_long_add(user_extra, &user->locked_vm); 4343 vma->vm_mm->pinned_vm += extra; 4344 4345 ring_buffer_attach(event, rb); 4346 4347 perf_event_init_userpage(event); 4348 perf_event_update_userpage(event); 4349 4350 unlock: 4351 if (!ret) 4352 atomic_inc(&event->mmap_count); 4353 mutex_unlock(&event->mmap_mutex); 4354 4355 /* 4356 * Since pinned accounting is per vm we cannot allow fork() to copy our 4357 * vma. 4358 */ 4359 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4360 vma->vm_ops = &perf_mmap_vmops; 4361 4362 return ret; 4363 } 4364 4365 static int perf_fasync(int fd, struct file *filp, int on) 4366 { 4367 struct inode *inode = file_inode(filp); 4368 struct perf_event *event = filp->private_data; 4369 int retval; 4370 4371 mutex_lock(&inode->i_mutex); 4372 retval = fasync_helper(fd, filp, on, &event->fasync); 4373 mutex_unlock(&inode->i_mutex); 4374 4375 if (retval < 0) 4376 return retval; 4377 4378 return 0; 4379 } 4380 4381 static const struct file_operations perf_fops = { 4382 .llseek = no_llseek, 4383 .release = perf_release, 4384 .read = perf_read, 4385 .poll = perf_poll, 4386 .unlocked_ioctl = perf_ioctl, 4387 .compat_ioctl = perf_compat_ioctl, 4388 .mmap = perf_mmap, 4389 .fasync = perf_fasync, 4390 }; 4391 4392 /* 4393 * Perf event wakeup 4394 * 4395 * If there's data, ensure we set the poll() state and publish everything 4396 * to user-space before waking everybody up. 4397 */ 4398 4399 void perf_event_wakeup(struct perf_event *event) 4400 { 4401 ring_buffer_wakeup(event); 4402 4403 if (event->pending_kill) { 4404 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4405 event->pending_kill = 0; 4406 } 4407 } 4408 4409 static void perf_pending_event(struct irq_work *entry) 4410 { 4411 struct perf_event *event = container_of(entry, 4412 struct perf_event, pending); 4413 4414 if (event->pending_disable) { 4415 event->pending_disable = 0; 4416 __perf_event_disable(event); 4417 } 4418 4419 if (event->pending_wakeup) { 4420 event->pending_wakeup = 0; 4421 perf_event_wakeup(event); 4422 } 4423 } 4424 4425 /* 4426 * We assume there is only KVM supporting the callbacks. 4427 * Later on, we might change it to a list if there is 4428 * another virtualization implementation supporting the callbacks. 4429 */ 4430 struct perf_guest_info_callbacks *perf_guest_cbs; 4431 4432 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4433 { 4434 perf_guest_cbs = cbs; 4435 return 0; 4436 } 4437 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4438 4439 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4440 { 4441 perf_guest_cbs = NULL; 4442 return 0; 4443 } 4444 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4445 4446 static void 4447 perf_output_sample_regs(struct perf_output_handle *handle, 4448 struct pt_regs *regs, u64 mask) 4449 { 4450 int bit; 4451 4452 for_each_set_bit(bit, (const unsigned long *) &mask, 4453 sizeof(mask) * BITS_PER_BYTE) { 4454 u64 val; 4455 4456 val = perf_reg_value(regs, bit); 4457 perf_output_put(handle, val); 4458 } 4459 } 4460 4461 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4462 struct pt_regs *regs) 4463 { 4464 if (!user_mode(regs)) { 4465 if (current->mm) 4466 regs = task_pt_regs(current); 4467 else 4468 regs = NULL; 4469 } 4470 4471 if (regs) { 4472 regs_user->regs = regs; 4473 regs_user->abi = perf_reg_abi(current); 4474 } 4475 } 4476 4477 /* 4478 * Get remaining task size from user stack pointer. 4479 * 4480 * It'd be better to take stack vma map and limit this more 4481 * precisly, but there's no way to get it safely under interrupt, 4482 * so using TASK_SIZE as limit. 4483 */ 4484 static u64 perf_ustack_task_size(struct pt_regs *regs) 4485 { 4486 unsigned long addr = perf_user_stack_pointer(regs); 4487 4488 if (!addr || addr >= TASK_SIZE) 4489 return 0; 4490 4491 return TASK_SIZE - addr; 4492 } 4493 4494 static u16 4495 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4496 struct pt_regs *regs) 4497 { 4498 u64 task_size; 4499 4500 /* No regs, no stack pointer, no dump. */ 4501 if (!regs) 4502 return 0; 4503 4504 /* 4505 * Check if we fit in with the requested stack size into the: 4506 * - TASK_SIZE 4507 * If we don't, we limit the size to the TASK_SIZE. 4508 * 4509 * - remaining sample size 4510 * If we don't, we customize the stack size to 4511 * fit in to the remaining sample size. 4512 */ 4513 4514 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4515 stack_size = min(stack_size, (u16) task_size); 4516 4517 /* Current header size plus static size and dynamic size. */ 4518 header_size += 2 * sizeof(u64); 4519 4520 /* Do we fit in with the current stack dump size? */ 4521 if ((u16) (header_size + stack_size) < header_size) { 4522 /* 4523 * If we overflow the maximum size for the sample, 4524 * we customize the stack dump size to fit in. 4525 */ 4526 stack_size = USHRT_MAX - header_size - sizeof(u64); 4527 stack_size = round_up(stack_size, sizeof(u64)); 4528 } 4529 4530 return stack_size; 4531 } 4532 4533 static void 4534 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4535 struct pt_regs *regs) 4536 { 4537 /* Case of a kernel thread, nothing to dump */ 4538 if (!regs) { 4539 u64 size = 0; 4540 perf_output_put(handle, size); 4541 } else { 4542 unsigned long sp; 4543 unsigned int rem; 4544 u64 dyn_size; 4545 4546 /* 4547 * We dump: 4548 * static size 4549 * - the size requested by user or the best one we can fit 4550 * in to the sample max size 4551 * data 4552 * - user stack dump data 4553 * dynamic size 4554 * - the actual dumped size 4555 */ 4556 4557 /* Static size. */ 4558 perf_output_put(handle, dump_size); 4559 4560 /* Data. */ 4561 sp = perf_user_stack_pointer(regs); 4562 rem = __output_copy_user(handle, (void *) sp, dump_size); 4563 dyn_size = dump_size - rem; 4564 4565 perf_output_skip(handle, rem); 4566 4567 /* Dynamic size. */ 4568 perf_output_put(handle, dyn_size); 4569 } 4570 } 4571 4572 static void __perf_event_header__init_id(struct perf_event_header *header, 4573 struct perf_sample_data *data, 4574 struct perf_event *event) 4575 { 4576 u64 sample_type = event->attr.sample_type; 4577 4578 data->type = sample_type; 4579 header->size += event->id_header_size; 4580 4581 if (sample_type & PERF_SAMPLE_TID) { 4582 /* namespace issues */ 4583 data->tid_entry.pid = perf_event_pid(event, current); 4584 data->tid_entry.tid = perf_event_tid(event, current); 4585 } 4586 4587 if (sample_type & PERF_SAMPLE_TIME) 4588 data->time = perf_clock(); 4589 4590 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4591 data->id = primary_event_id(event); 4592 4593 if (sample_type & PERF_SAMPLE_STREAM_ID) 4594 data->stream_id = event->id; 4595 4596 if (sample_type & PERF_SAMPLE_CPU) { 4597 data->cpu_entry.cpu = raw_smp_processor_id(); 4598 data->cpu_entry.reserved = 0; 4599 } 4600 } 4601 4602 void perf_event_header__init_id(struct perf_event_header *header, 4603 struct perf_sample_data *data, 4604 struct perf_event *event) 4605 { 4606 if (event->attr.sample_id_all) 4607 __perf_event_header__init_id(header, data, event); 4608 } 4609 4610 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4611 struct perf_sample_data *data) 4612 { 4613 u64 sample_type = data->type; 4614 4615 if (sample_type & PERF_SAMPLE_TID) 4616 perf_output_put(handle, data->tid_entry); 4617 4618 if (sample_type & PERF_SAMPLE_TIME) 4619 perf_output_put(handle, data->time); 4620 4621 if (sample_type & PERF_SAMPLE_ID) 4622 perf_output_put(handle, data->id); 4623 4624 if (sample_type & PERF_SAMPLE_STREAM_ID) 4625 perf_output_put(handle, data->stream_id); 4626 4627 if (sample_type & PERF_SAMPLE_CPU) 4628 perf_output_put(handle, data->cpu_entry); 4629 4630 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4631 perf_output_put(handle, data->id); 4632 } 4633 4634 void perf_event__output_id_sample(struct perf_event *event, 4635 struct perf_output_handle *handle, 4636 struct perf_sample_data *sample) 4637 { 4638 if (event->attr.sample_id_all) 4639 __perf_event__output_id_sample(handle, sample); 4640 } 4641 4642 static void perf_output_read_one(struct perf_output_handle *handle, 4643 struct perf_event *event, 4644 u64 enabled, u64 running) 4645 { 4646 u64 read_format = event->attr.read_format; 4647 u64 values[4]; 4648 int n = 0; 4649 4650 values[n++] = perf_event_count(event); 4651 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4652 values[n++] = enabled + 4653 atomic64_read(&event->child_total_time_enabled); 4654 } 4655 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4656 values[n++] = running + 4657 atomic64_read(&event->child_total_time_running); 4658 } 4659 if (read_format & PERF_FORMAT_ID) 4660 values[n++] = primary_event_id(event); 4661 4662 __output_copy(handle, values, n * sizeof(u64)); 4663 } 4664 4665 /* 4666 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4667 */ 4668 static void perf_output_read_group(struct perf_output_handle *handle, 4669 struct perf_event *event, 4670 u64 enabled, u64 running) 4671 { 4672 struct perf_event *leader = event->group_leader, *sub; 4673 u64 read_format = event->attr.read_format; 4674 u64 values[5]; 4675 int n = 0; 4676 4677 values[n++] = 1 + leader->nr_siblings; 4678 4679 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4680 values[n++] = enabled; 4681 4682 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4683 values[n++] = running; 4684 4685 if (leader != event) 4686 leader->pmu->read(leader); 4687 4688 values[n++] = perf_event_count(leader); 4689 if (read_format & PERF_FORMAT_ID) 4690 values[n++] = primary_event_id(leader); 4691 4692 __output_copy(handle, values, n * sizeof(u64)); 4693 4694 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4695 n = 0; 4696 4697 if ((sub != event) && 4698 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4699 sub->pmu->read(sub); 4700 4701 values[n++] = perf_event_count(sub); 4702 if (read_format & PERF_FORMAT_ID) 4703 values[n++] = primary_event_id(sub); 4704 4705 __output_copy(handle, values, n * sizeof(u64)); 4706 } 4707 } 4708 4709 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4710 PERF_FORMAT_TOTAL_TIME_RUNNING) 4711 4712 static void perf_output_read(struct perf_output_handle *handle, 4713 struct perf_event *event) 4714 { 4715 u64 enabled = 0, running = 0, now; 4716 u64 read_format = event->attr.read_format; 4717 4718 /* 4719 * compute total_time_enabled, total_time_running 4720 * based on snapshot values taken when the event 4721 * was last scheduled in. 4722 * 4723 * we cannot simply called update_context_time() 4724 * because of locking issue as we are called in 4725 * NMI context 4726 */ 4727 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4728 calc_timer_values(event, &now, &enabled, &running); 4729 4730 if (event->attr.read_format & PERF_FORMAT_GROUP) 4731 perf_output_read_group(handle, event, enabled, running); 4732 else 4733 perf_output_read_one(handle, event, enabled, running); 4734 } 4735 4736 void perf_output_sample(struct perf_output_handle *handle, 4737 struct perf_event_header *header, 4738 struct perf_sample_data *data, 4739 struct perf_event *event) 4740 { 4741 u64 sample_type = data->type; 4742 4743 perf_output_put(handle, *header); 4744 4745 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4746 perf_output_put(handle, data->id); 4747 4748 if (sample_type & PERF_SAMPLE_IP) 4749 perf_output_put(handle, data->ip); 4750 4751 if (sample_type & PERF_SAMPLE_TID) 4752 perf_output_put(handle, data->tid_entry); 4753 4754 if (sample_type & PERF_SAMPLE_TIME) 4755 perf_output_put(handle, data->time); 4756 4757 if (sample_type & PERF_SAMPLE_ADDR) 4758 perf_output_put(handle, data->addr); 4759 4760 if (sample_type & PERF_SAMPLE_ID) 4761 perf_output_put(handle, data->id); 4762 4763 if (sample_type & PERF_SAMPLE_STREAM_ID) 4764 perf_output_put(handle, data->stream_id); 4765 4766 if (sample_type & PERF_SAMPLE_CPU) 4767 perf_output_put(handle, data->cpu_entry); 4768 4769 if (sample_type & PERF_SAMPLE_PERIOD) 4770 perf_output_put(handle, data->period); 4771 4772 if (sample_type & PERF_SAMPLE_READ) 4773 perf_output_read(handle, event); 4774 4775 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4776 if (data->callchain) { 4777 int size = 1; 4778 4779 if (data->callchain) 4780 size += data->callchain->nr; 4781 4782 size *= sizeof(u64); 4783 4784 __output_copy(handle, data->callchain, size); 4785 } else { 4786 u64 nr = 0; 4787 perf_output_put(handle, nr); 4788 } 4789 } 4790 4791 if (sample_type & PERF_SAMPLE_RAW) { 4792 if (data->raw) { 4793 perf_output_put(handle, data->raw->size); 4794 __output_copy(handle, data->raw->data, 4795 data->raw->size); 4796 } else { 4797 struct { 4798 u32 size; 4799 u32 data; 4800 } raw = { 4801 .size = sizeof(u32), 4802 .data = 0, 4803 }; 4804 perf_output_put(handle, raw); 4805 } 4806 } 4807 4808 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4809 if (data->br_stack) { 4810 size_t size; 4811 4812 size = data->br_stack->nr 4813 * sizeof(struct perf_branch_entry); 4814 4815 perf_output_put(handle, data->br_stack->nr); 4816 perf_output_copy(handle, data->br_stack->entries, size); 4817 } else { 4818 /* 4819 * we always store at least the value of nr 4820 */ 4821 u64 nr = 0; 4822 perf_output_put(handle, nr); 4823 } 4824 } 4825 4826 if (sample_type & PERF_SAMPLE_REGS_USER) { 4827 u64 abi = data->regs_user.abi; 4828 4829 /* 4830 * If there are no regs to dump, notice it through 4831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4832 */ 4833 perf_output_put(handle, abi); 4834 4835 if (abi) { 4836 u64 mask = event->attr.sample_regs_user; 4837 perf_output_sample_regs(handle, 4838 data->regs_user.regs, 4839 mask); 4840 } 4841 } 4842 4843 if (sample_type & PERF_SAMPLE_STACK_USER) { 4844 perf_output_sample_ustack(handle, 4845 data->stack_user_size, 4846 data->regs_user.regs); 4847 } 4848 4849 if (sample_type & PERF_SAMPLE_WEIGHT) 4850 perf_output_put(handle, data->weight); 4851 4852 if (sample_type & PERF_SAMPLE_DATA_SRC) 4853 perf_output_put(handle, data->data_src.val); 4854 4855 if (sample_type & PERF_SAMPLE_TRANSACTION) 4856 perf_output_put(handle, data->txn); 4857 4858 if (!event->attr.watermark) { 4859 int wakeup_events = event->attr.wakeup_events; 4860 4861 if (wakeup_events) { 4862 struct ring_buffer *rb = handle->rb; 4863 int events = local_inc_return(&rb->events); 4864 4865 if (events >= wakeup_events) { 4866 local_sub(wakeup_events, &rb->events); 4867 local_inc(&rb->wakeup); 4868 } 4869 } 4870 } 4871 } 4872 4873 void perf_prepare_sample(struct perf_event_header *header, 4874 struct perf_sample_data *data, 4875 struct perf_event *event, 4876 struct pt_regs *regs) 4877 { 4878 u64 sample_type = event->attr.sample_type; 4879 4880 header->type = PERF_RECORD_SAMPLE; 4881 header->size = sizeof(*header) + event->header_size; 4882 4883 header->misc = 0; 4884 header->misc |= perf_misc_flags(regs); 4885 4886 __perf_event_header__init_id(header, data, event); 4887 4888 if (sample_type & PERF_SAMPLE_IP) 4889 data->ip = perf_instruction_pointer(regs); 4890 4891 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4892 int size = 1; 4893 4894 data->callchain = perf_callchain(event, regs); 4895 4896 if (data->callchain) 4897 size += data->callchain->nr; 4898 4899 header->size += size * sizeof(u64); 4900 } 4901 4902 if (sample_type & PERF_SAMPLE_RAW) { 4903 int size = sizeof(u32); 4904 4905 if (data->raw) 4906 size += data->raw->size; 4907 else 4908 size += sizeof(u32); 4909 4910 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4911 header->size += size; 4912 } 4913 4914 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4915 int size = sizeof(u64); /* nr */ 4916 if (data->br_stack) { 4917 size += data->br_stack->nr 4918 * sizeof(struct perf_branch_entry); 4919 } 4920 header->size += size; 4921 } 4922 4923 if (sample_type & PERF_SAMPLE_REGS_USER) { 4924 /* regs dump ABI info */ 4925 int size = sizeof(u64); 4926 4927 perf_sample_regs_user(&data->regs_user, regs); 4928 4929 if (data->regs_user.regs) { 4930 u64 mask = event->attr.sample_regs_user; 4931 size += hweight64(mask) * sizeof(u64); 4932 } 4933 4934 header->size += size; 4935 } 4936 4937 if (sample_type & PERF_SAMPLE_STACK_USER) { 4938 /* 4939 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4940 * processed as the last one or have additional check added 4941 * in case new sample type is added, because we could eat 4942 * up the rest of the sample size. 4943 */ 4944 struct perf_regs_user *uregs = &data->regs_user; 4945 u16 stack_size = event->attr.sample_stack_user; 4946 u16 size = sizeof(u64); 4947 4948 if (!uregs->abi) 4949 perf_sample_regs_user(uregs, regs); 4950 4951 stack_size = perf_sample_ustack_size(stack_size, header->size, 4952 uregs->regs); 4953 4954 /* 4955 * If there is something to dump, add space for the dump 4956 * itself and for the field that tells the dynamic size, 4957 * which is how many have been actually dumped. 4958 */ 4959 if (stack_size) 4960 size += sizeof(u64) + stack_size; 4961 4962 data->stack_user_size = stack_size; 4963 header->size += size; 4964 } 4965 } 4966 4967 static void perf_event_output(struct perf_event *event, 4968 struct perf_sample_data *data, 4969 struct pt_regs *regs) 4970 { 4971 struct perf_output_handle handle; 4972 struct perf_event_header header; 4973 4974 /* protect the callchain buffers */ 4975 rcu_read_lock(); 4976 4977 perf_prepare_sample(&header, data, event, regs); 4978 4979 if (perf_output_begin(&handle, event, header.size)) 4980 goto exit; 4981 4982 perf_output_sample(&handle, &header, data, event); 4983 4984 perf_output_end(&handle); 4985 4986 exit: 4987 rcu_read_unlock(); 4988 } 4989 4990 /* 4991 * read event_id 4992 */ 4993 4994 struct perf_read_event { 4995 struct perf_event_header header; 4996 4997 u32 pid; 4998 u32 tid; 4999 }; 5000 5001 static void 5002 perf_event_read_event(struct perf_event *event, 5003 struct task_struct *task) 5004 { 5005 struct perf_output_handle handle; 5006 struct perf_sample_data sample; 5007 struct perf_read_event read_event = { 5008 .header = { 5009 .type = PERF_RECORD_READ, 5010 .misc = 0, 5011 .size = sizeof(read_event) + event->read_size, 5012 }, 5013 .pid = perf_event_pid(event, task), 5014 .tid = perf_event_tid(event, task), 5015 }; 5016 int ret; 5017 5018 perf_event_header__init_id(&read_event.header, &sample, event); 5019 ret = perf_output_begin(&handle, event, read_event.header.size); 5020 if (ret) 5021 return; 5022 5023 perf_output_put(&handle, read_event); 5024 perf_output_read(&handle, event); 5025 perf_event__output_id_sample(event, &handle, &sample); 5026 5027 perf_output_end(&handle); 5028 } 5029 5030 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5031 5032 static void 5033 perf_event_aux_ctx(struct perf_event_context *ctx, 5034 perf_event_aux_output_cb output, 5035 void *data) 5036 { 5037 struct perf_event *event; 5038 5039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5040 if (event->state < PERF_EVENT_STATE_INACTIVE) 5041 continue; 5042 if (!event_filter_match(event)) 5043 continue; 5044 output(event, data); 5045 } 5046 } 5047 5048 static void 5049 perf_event_aux(perf_event_aux_output_cb output, void *data, 5050 struct perf_event_context *task_ctx) 5051 { 5052 struct perf_cpu_context *cpuctx; 5053 struct perf_event_context *ctx; 5054 struct pmu *pmu; 5055 int ctxn; 5056 5057 rcu_read_lock(); 5058 list_for_each_entry_rcu(pmu, &pmus, entry) { 5059 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5060 if (cpuctx->unique_pmu != pmu) 5061 goto next; 5062 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5063 if (task_ctx) 5064 goto next; 5065 ctxn = pmu->task_ctx_nr; 5066 if (ctxn < 0) 5067 goto next; 5068 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5069 if (ctx) 5070 perf_event_aux_ctx(ctx, output, data); 5071 next: 5072 put_cpu_ptr(pmu->pmu_cpu_context); 5073 } 5074 5075 if (task_ctx) { 5076 preempt_disable(); 5077 perf_event_aux_ctx(task_ctx, output, data); 5078 preempt_enable(); 5079 } 5080 rcu_read_unlock(); 5081 } 5082 5083 /* 5084 * task tracking -- fork/exit 5085 * 5086 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5087 */ 5088 5089 struct perf_task_event { 5090 struct task_struct *task; 5091 struct perf_event_context *task_ctx; 5092 5093 struct { 5094 struct perf_event_header header; 5095 5096 u32 pid; 5097 u32 ppid; 5098 u32 tid; 5099 u32 ptid; 5100 u64 time; 5101 } event_id; 5102 }; 5103 5104 static int perf_event_task_match(struct perf_event *event) 5105 { 5106 return event->attr.comm || event->attr.mmap || 5107 event->attr.mmap2 || event->attr.mmap_data || 5108 event->attr.task; 5109 } 5110 5111 static void perf_event_task_output(struct perf_event *event, 5112 void *data) 5113 { 5114 struct perf_task_event *task_event = data; 5115 struct perf_output_handle handle; 5116 struct perf_sample_data sample; 5117 struct task_struct *task = task_event->task; 5118 int ret, size = task_event->event_id.header.size; 5119 5120 if (!perf_event_task_match(event)) 5121 return; 5122 5123 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5124 5125 ret = perf_output_begin(&handle, event, 5126 task_event->event_id.header.size); 5127 if (ret) 5128 goto out; 5129 5130 task_event->event_id.pid = perf_event_pid(event, task); 5131 task_event->event_id.ppid = perf_event_pid(event, current); 5132 5133 task_event->event_id.tid = perf_event_tid(event, task); 5134 task_event->event_id.ptid = perf_event_tid(event, current); 5135 5136 perf_output_put(&handle, task_event->event_id); 5137 5138 perf_event__output_id_sample(event, &handle, &sample); 5139 5140 perf_output_end(&handle); 5141 out: 5142 task_event->event_id.header.size = size; 5143 } 5144 5145 static void perf_event_task(struct task_struct *task, 5146 struct perf_event_context *task_ctx, 5147 int new) 5148 { 5149 struct perf_task_event task_event; 5150 5151 if (!atomic_read(&nr_comm_events) && 5152 !atomic_read(&nr_mmap_events) && 5153 !atomic_read(&nr_task_events)) 5154 return; 5155 5156 task_event = (struct perf_task_event){ 5157 .task = task, 5158 .task_ctx = task_ctx, 5159 .event_id = { 5160 .header = { 5161 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5162 .misc = 0, 5163 .size = sizeof(task_event.event_id), 5164 }, 5165 /* .pid */ 5166 /* .ppid */ 5167 /* .tid */ 5168 /* .ptid */ 5169 .time = perf_clock(), 5170 }, 5171 }; 5172 5173 perf_event_aux(perf_event_task_output, 5174 &task_event, 5175 task_ctx); 5176 } 5177 5178 void perf_event_fork(struct task_struct *task) 5179 { 5180 perf_event_task(task, NULL, 1); 5181 } 5182 5183 /* 5184 * comm tracking 5185 */ 5186 5187 struct perf_comm_event { 5188 struct task_struct *task; 5189 char *comm; 5190 int comm_size; 5191 5192 struct { 5193 struct perf_event_header header; 5194 5195 u32 pid; 5196 u32 tid; 5197 } event_id; 5198 }; 5199 5200 static int perf_event_comm_match(struct perf_event *event) 5201 { 5202 return event->attr.comm; 5203 } 5204 5205 static void perf_event_comm_output(struct perf_event *event, 5206 void *data) 5207 { 5208 struct perf_comm_event *comm_event = data; 5209 struct perf_output_handle handle; 5210 struct perf_sample_data sample; 5211 int size = comm_event->event_id.header.size; 5212 int ret; 5213 5214 if (!perf_event_comm_match(event)) 5215 return; 5216 5217 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5218 ret = perf_output_begin(&handle, event, 5219 comm_event->event_id.header.size); 5220 5221 if (ret) 5222 goto out; 5223 5224 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5225 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5226 5227 perf_output_put(&handle, comm_event->event_id); 5228 __output_copy(&handle, comm_event->comm, 5229 comm_event->comm_size); 5230 5231 perf_event__output_id_sample(event, &handle, &sample); 5232 5233 perf_output_end(&handle); 5234 out: 5235 comm_event->event_id.header.size = size; 5236 } 5237 5238 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5239 { 5240 char comm[TASK_COMM_LEN]; 5241 unsigned int size; 5242 5243 memset(comm, 0, sizeof(comm)); 5244 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5245 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5246 5247 comm_event->comm = comm; 5248 comm_event->comm_size = size; 5249 5250 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5251 5252 perf_event_aux(perf_event_comm_output, 5253 comm_event, 5254 NULL); 5255 } 5256 5257 void perf_event_comm(struct task_struct *task, bool exec) 5258 { 5259 struct perf_comm_event comm_event; 5260 5261 if (!atomic_read(&nr_comm_events)) 5262 return; 5263 5264 comm_event = (struct perf_comm_event){ 5265 .task = task, 5266 /* .comm */ 5267 /* .comm_size */ 5268 .event_id = { 5269 .header = { 5270 .type = PERF_RECORD_COMM, 5271 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5272 /* .size */ 5273 }, 5274 /* .pid */ 5275 /* .tid */ 5276 }, 5277 }; 5278 5279 perf_event_comm_event(&comm_event); 5280 } 5281 5282 /* 5283 * mmap tracking 5284 */ 5285 5286 struct perf_mmap_event { 5287 struct vm_area_struct *vma; 5288 5289 const char *file_name; 5290 int file_size; 5291 int maj, min; 5292 u64 ino; 5293 u64 ino_generation; 5294 u32 prot, flags; 5295 5296 struct { 5297 struct perf_event_header header; 5298 5299 u32 pid; 5300 u32 tid; 5301 u64 start; 5302 u64 len; 5303 u64 pgoff; 5304 } event_id; 5305 }; 5306 5307 static int perf_event_mmap_match(struct perf_event *event, 5308 void *data) 5309 { 5310 struct perf_mmap_event *mmap_event = data; 5311 struct vm_area_struct *vma = mmap_event->vma; 5312 int executable = vma->vm_flags & VM_EXEC; 5313 5314 return (!executable && event->attr.mmap_data) || 5315 (executable && (event->attr.mmap || event->attr.mmap2)); 5316 } 5317 5318 static void perf_event_mmap_output(struct perf_event *event, 5319 void *data) 5320 { 5321 struct perf_mmap_event *mmap_event = data; 5322 struct perf_output_handle handle; 5323 struct perf_sample_data sample; 5324 int size = mmap_event->event_id.header.size; 5325 int ret; 5326 5327 if (!perf_event_mmap_match(event, data)) 5328 return; 5329 5330 if (event->attr.mmap2) { 5331 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5332 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5333 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5334 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5335 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5336 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5337 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5338 } 5339 5340 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5341 ret = perf_output_begin(&handle, event, 5342 mmap_event->event_id.header.size); 5343 if (ret) 5344 goto out; 5345 5346 mmap_event->event_id.pid = perf_event_pid(event, current); 5347 mmap_event->event_id.tid = perf_event_tid(event, current); 5348 5349 perf_output_put(&handle, mmap_event->event_id); 5350 5351 if (event->attr.mmap2) { 5352 perf_output_put(&handle, mmap_event->maj); 5353 perf_output_put(&handle, mmap_event->min); 5354 perf_output_put(&handle, mmap_event->ino); 5355 perf_output_put(&handle, mmap_event->ino_generation); 5356 perf_output_put(&handle, mmap_event->prot); 5357 perf_output_put(&handle, mmap_event->flags); 5358 } 5359 5360 __output_copy(&handle, mmap_event->file_name, 5361 mmap_event->file_size); 5362 5363 perf_event__output_id_sample(event, &handle, &sample); 5364 5365 perf_output_end(&handle); 5366 out: 5367 mmap_event->event_id.header.size = size; 5368 } 5369 5370 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5371 { 5372 struct vm_area_struct *vma = mmap_event->vma; 5373 struct file *file = vma->vm_file; 5374 int maj = 0, min = 0; 5375 u64 ino = 0, gen = 0; 5376 u32 prot = 0, flags = 0; 5377 unsigned int size; 5378 char tmp[16]; 5379 char *buf = NULL; 5380 char *name; 5381 5382 if (file) { 5383 struct inode *inode; 5384 dev_t dev; 5385 5386 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5387 if (!buf) { 5388 name = "//enomem"; 5389 goto cpy_name; 5390 } 5391 /* 5392 * d_path() works from the end of the rb backwards, so we 5393 * need to add enough zero bytes after the string to handle 5394 * the 64bit alignment we do later. 5395 */ 5396 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5397 if (IS_ERR(name)) { 5398 name = "//toolong"; 5399 goto cpy_name; 5400 } 5401 inode = file_inode(vma->vm_file); 5402 dev = inode->i_sb->s_dev; 5403 ino = inode->i_ino; 5404 gen = inode->i_generation; 5405 maj = MAJOR(dev); 5406 min = MINOR(dev); 5407 5408 if (vma->vm_flags & VM_READ) 5409 prot |= PROT_READ; 5410 if (vma->vm_flags & VM_WRITE) 5411 prot |= PROT_WRITE; 5412 if (vma->vm_flags & VM_EXEC) 5413 prot |= PROT_EXEC; 5414 5415 if (vma->vm_flags & VM_MAYSHARE) 5416 flags = MAP_SHARED; 5417 else 5418 flags = MAP_PRIVATE; 5419 5420 if (vma->vm_flags & VM_DENYWRITE) 5421 flags |= MAP_DENYWRITE; 5422 if (vma->vm_flags & VM_MAYEXEC) 5423 flags |= MAP_EXECUTABLE; 5424 if (vma->vm_flags & VM_LOCKED) 5425 flags |= MAP_LOCKED; 5426 if (vma->vm_flags & VM_HUGETLB) 5427 flags |= MAP_HUGETLB; 5428 5429 goto got_name; 5430 } else { 5431 if (vma->vm_ops && vma->vm_ops->name) { 5432 name = (char *) vma->vm_ops->name(vma); 5433 if (name) 5434 goto cpy_name; 5435 } 5436 5437 name = (char *)arch_vma_name(vma); 5438 if (name) 5439 goto cpy_name; 5440 5441 if (vma->vm_start <= vma->vm_mm->start_brk && 5442 vma->vm_end >= vma->vm_mm->brk) { 5443 name = "[heap]"; 5444 goto cpy_name; 5445 } 5446 if (vma->vm_start <= vma->vm_mm->start_stack && 5447 vma->vm_end >= vma->vm_mm->start_stack) { 5448 name = "[stack]"; 5449 goto cpy_name; 5450 } 5451 5452 name = "//anon"; 5453 goto cpy_name; 5454 } 5455 5456 cpy_name: 5457 strlcpy(tmp, name, sizeof(tmp)); 5458 name = tmp; 5459 got_name: 5460 /* 5461 * Since our buffer works in 8 byte units we need to align our string 5462 * size to a multiple of 8. However, we must guarantee the tail end is 5463 * zero'd out to avoid leaking random bits to userspace. 5464 */ 5465 size = strlen(name)+1; 5466 while (!IS_ALIGNED(size, sizeof(u64))) 5467 name[size++] = '\0'; 5468 5469 mmap_event->file_name = name; 5470 mmap_event->file_size = size; 5471 mmap_event->maj = maj; 5472 mmap_event->min = min; 5473 mmap_event->ino = ino; 5474 mmap_event->ino_generation = gen; 5475 mmap_event->prot = prot; 5476 mmap_event->flags = flags; 5477 5478 if (!(vma->vm_flags & VM_EXEC)) 5479 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5480 5481 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5482 5483 perf_event_aux(perf_event_mmap_output, 5484 mmap_event, 5485 NULL); 5486 5487 kfree(buf); 5488 } 5489 5490 void perf_event_mmap(struct vm_area_struct *vma) 5491 { 5492 struct perf_mmap_event mmap_event; 5493 5494 if (!atomic_read(&nr_mmap_events)) 5495 return; 5496 5497 mmap_event = (struct perf_mmap_event){ 5498 .vma = vma, 5499 /* .file_name */ 5500 /* .file_size */ 5501 .event_id = { 5502 .header = { 5503 .type = PERF_RECORD_MMAP, 5504 .misc = PERF_RECORD_MISC_USER, 5505 /* .size */ 5506 }, 5507 /* .pid */ 5508 /* .tid */ 5509 .start = vma->vm_start, 5510 .len = vma->vm_end - vma->vm_start, 5511 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5512 }, 5513 /* .maj (attr_mmap2 only) */ 5514 /* .min (attr_mmap2 only) */ 5515 /* .ino (attr_mmap2 only) */ 5516 /* .ino_generation (attr_mmap2 only) */ 5517 /* .prot (attr_mmap2 only) */ 5518 /* .flags (attr_mmap2 only) */ 5519 }; 5520 5521 perf_event_mmap_event(&mmap_event); 5522 } 5523 5524 /* 5525 * IRQ throttle logging 5526 */ 5527 5528 static void perf_log_throttle(struct perf_event *event, int enable) 5529 { 5530 struct perf_output_handle handle; 5531 struct perf_sample_data sample; 5532 int ret; 5533 5534 struct { 5535 struct perf_event_header header; 5536 u64 time; 5537 u64 id; 5538 u64 stream_id; 5539 } throttle_event = { 5540 .header = { 5541 .type = PERF_RECORD_THROTTLE, 5542 .misc = 0, 5543 .size = sizeof(throttle_event), 5544 }, 5545 .time = perf_clock(), 5546 .id = primary_event_id(event), 5547 .stream_id = event->id, 5548 }; 5549 5550 if (enable) 5551 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5552 5553 perf_event_header__init_id(&throttle_event.header, &sample, event); 5554 5555 ret = perf_output_begin(&handle, event, 5556 throttle_event.header.size); 5557 if (ret) 5558 return; 5559 5560 perf_output_put(&handle, throttle_event); 5561 perf_event__output_id_sample(event, &handle, &sample); 5562 perf_output_end(&handle); 5563 } 5564 5565 /* 5566 * Generic event overflow handling, sampling. 5567 */ 5568 5569 static int __perf_event_overflow(struct perf_event *event, 5570 int throttle, struct perf_sample_data *data, 5571 struct pt_regs *regs) 5572 { 5573 int events = atomic_read(&event->event_limit); 5574 struct hw_perf_event *hwc = &event->hw; 5575 u64 seq; 5576 int ret = 0; 5577 5578 /* 5579 * Non-sampling counters might still use the PMI to fold short 5580 * hardware counters, ignore those. 5581 */ 5582 if (unlikely(!is_sampling_event(event))) 5583 return 0; 5584 5585 seq = __this_cpu_read(perf_throttled_seq); 5586 if (seq != hwc->interrupts_seq) { 5587 hwc->interrupts_seq = seq; 5588 hwc->interrupts = 1; 5589 } else { 5590 hwc->interrupts++; 5591 if (unlikely(throttle 5592 && hwc->interrupts >= max_samples_per_tick)) { 5593 __this_cpu_inc(perf_throttled_count); 5594 hwc->interrupts = MAX_INTERRUPTS; 5595 perf_log_throttle(event, 0); 5596 tick_nohz_full_kick(); 5597 ret = 1; 5598 } 5599 } 5600 5601 if (event->attr.freq) { 5602 u64 now = perf_clock(); 5603 s64 delta = now - hwc->freq_time_stamp; 5604 5605 hwc->freq_time_stamp = now; 5606 5607 if (delta > 0 && delta < 2*TICK_NSEC) 5608 perf_adjust_period(event, delta, hwc->last_period, true); 5609 } 5610 5611 /* 5612 * XXX event_limit might not quite work as expected on inherited 5613 * events 5614 */ 5615 5616 event->pending_kill = POLL_IN; 5617 if (events && atomic_dec_and_test(&event->event_limit)) { 5618 ret = 1; 5619 event->pending_kill = POLL_HUP; 5620 event->pending_disable = 1; 5621 irq_work_queue(&event->pending); 5622 } 5623 5624 if (event->overflow_handler) 5625 event->overflow_handler(event, data, regs); 5626 else 5627 perf_event_output(event, data, regs); 5628 5629 if (event->fasync && event->pending_kill) { 5630 event->pending_wakeup = 1; 5631 irq_work_queue(&event->pending); 5632 } 5633 5634 return ret; 5635 } 5636 5637 int perf_event_overflow(struct perf_event *event, 5638 struct perf_sample_data *data, 5639 struct pt_regs *regs) 5640 { 5641 return __perf_event_overflow(event, 1, data, regs); 5642 } 5643 5644 /* 5645 * Generic software event infrastructure 5646 */ 5647 5648 struct swevent_htable { 5649 struct swevent_hlist *swevent_hlist; 5650 struct mutex hlist_mutex; 5651 int hlist_refcount; 5652 5653 /* Recursion avoidance in each contexts */ 5654 int recursion[PERF_NR_CONTEXTS]; 5655 5656 /* Keeps track of cpu being initialized/exited */ 5657 bool online; 5658 }; 5659 5660 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5661 5662 /* 5663 * We directly increment event->count and keep a second value in 5664 * event->hw.period_left to count intervals. This period event 5665 * is kept in the range [-sample_period, 0] so that we can use the 5666 * sign as trigger. 5667 */ 5668 5669 u64 perf_swevent_set_period(struct perf_event *event) 5670 { 5671 struct hw_perf_event *hwc = &event->hw; 5672 u64 period = hwc->last_period; 5673 u64 nr, offset; 5674 s64 old, val; 5675 5676 hwc->last_period = hwc->sample_period; 5677 5678 again: 5679 old = val = local64_read(&hwc->period_left); 5680 if (val < 0) 5681 return 0; 5682 5683 nr = div64_u64(period + val, period); 5684 offset = nr * period; 5685 val -= offset; 5686 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5687 goto again; 5688 5689 return nr; 5690 } 5691 5692 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5693 struct perf_sample_data *data, 5694 struct pt_regs *regs) 5695 { 5696 struct hw_perf_event *hwc = &event->hw; 5697 int throttle = 0; 5698 5699 if (!overflow) 5700 overflow = perf_swevent_set_period(event); 5701 5702 if (hwc->interrupts == MAX_INTERRUPTS) 5703 return; 5704 5705 for (; overflow; overflow--) { 5706 if (__perf_event_overflow(event, throttle, 5707 data, regs)) { 5708 /* 5709 * We inhibit the overflow from happening when 5710 * hwc->interrupts == MAX_INTERRUPTS. 5711 */ 5712 break; 5713 } 5714 throttle = 1; 5715 } 5716 } 5717 5718 static void perf_swevent_event(struct perf_event *event, u64 nr, 5719 struct perf_sample_data *data, 5720 struct pt_regs *regs) 5721 { 5722 struct hw_perf_event *hwc = &event->hw; 5723 5724 local64_add(nr, &event->count); 5725 5726 if (!regs) 5727 return; 5728 5729 if (!is_sampling_event(event)) 5730 return; 5731 5732 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5733 data->period = nr; 5734 return perf_swevent_overflow(event, 1, data, regs); 5735 } else 5736 data->period = event->hw.last_period; 5737 5738 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5739 return perf_swevent_overflow(event, 1, data, regs); 5740 5741 if (local64_add_negative(nr, &hwc->period_left)) 5742 return; 5743 5744 perf_swevent_overflow(event, 0, data, regs); 5745 } 5746 5747 static int perf_exclude_event(struct perf_event *event, 5748 struct pt_regs *regs) 5749 { 5750 if (event->hw.state & PERF_HES_STOPPED) 5751 return 1; 5752 5753 if (regs) { 5754 if (event->attr.exclude_user && user_mode(regs)) 5755 return 1; 5756 5757 if (event->attr.exclude_kernel && !user_mode(regs)) 5758 return 1; 5759 } 5760 5761 return 0; 5762 } 5763 5764 static int perf_swevent_match(struct perf_event *event, 5765 enum perf_type_id type, 5766 u32 event_id, 5767 struct perf_sample_data *data, 5768 struct pt_regs *regs) 5769 { 5770 if (event->attr.type != type) 5771 return 0; 5772 5773 if (event->attr.config != event_id) 5774 return 0; 5775 5776 if (perf_exclude_event(event, regs)) 5777 return 0; 5778 5779 return 1; 5780 } 5781 5782 static inline u64 swevent_hash(u64 type, u32 event_id) 5783 { 5784 u64 val = event_id | (type << 32); 5785 5786 return hash_64(val, SWEVENT_HLIST_BITS); 5787 } 5788 5789 static inline struct hlist_head * 5790 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5791 { 5792 u64 hash = swevent_hash(type, event_id); 5793 5794 return &hlist->heads[hash]; 5795 } 5796 5797 /* For the read side: events when they trigger */ 5798 static inline struct hlist_head * 5799 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5800 { 5801 struct swevent_hlist *hlist; 5802 5803 hlist = rcu_dereference(swhash->swevent_hlist); 5804 if (!hlist) 5805 return NULL; 5806 5807 return __find_swevent_head(hlist, type, event_id); 5808 } 5809 5810 /* For the event head insertion and removal in the hlist */ 5811 static inline struct hlist_head * 5812 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5813 { 5814 struct swevent_hlist *hlist; 5815 u32 event_id = event->attr.config; 5816 u64 type = event->attr.type; 5817 5818 /* 5819 * Event scheduling is always serialized against hlist allocation 5820 * and release. Which makes the protected version suitable here. 5821 * The context lock guarantees that. 5822 */ 5823 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5824 lockdep_is_held(&event->ctx->lock)); 5825 if (!hlist) 5826 return NULL; 5827 5828 return __find_swevent_head(hlist, type, event_id); 5829 } 5830 5831 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5832 u64 nr, 5833 struct perf_sample_data *data, 5834 struct pt_regs *regs) 5835 { 5836 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 5837 struct perf_event *event; 5838 struct hlist_head *head; 5839 5840 rcu_read_lock(); 5841 head = find_swevent_head_rcu(swhash, type, event_id); 5842 if (!head) 5843 goto end; 5844 5845 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5846 if (perf_swevent_match(event, type, event_id, data, regs)) 5847 perf_swevent_event(event, nr, data, regs); 5848 } 5849 end: 5850 rcu_read_unlock(); 5851 } 5852 5853 int perf_swevent_get_recursion_context(void) 5854 { 5855 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 5856 5857 return get_recursion_context(swhash->recursion); 5858 } 5859 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5860 5861 inline void perf_swevent_put_recursion_context(int rctx) 5862 { 5863 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 5864 5865 put_recursion_context(swhash->recursion, rctx); 5866 } 5867 5868 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5869 { 5870 struct perf_sample_data data; 5871 int rctx; 5872 5873 preempt_disable_notrace(); 5874 rctx = perf_swevent_get_recursion_context(); 5875 if (rctx < 0) 5876 return; 5877 5878 perf_sample_data_init(&data, addr, 0); 5879 5880 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5881 5882 perf_swevent_put_recursion_context(rctx); 5883 preempt_enable_notrace(); 5884 } 5885 5886 static void perf_swevent_read(struct perf_event *event) 5887 { 5888 } 5889 5890 static int perf_swevent_add(struct perf_event *event, int flags) 5891 { 5892 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 5893 struct hw_perf_event *hwc = &event->hw; 5894 struct hlist_head *head; 5895 5896 if (is_sampling_event(event)) { 5897 hwc->last_period = hwc->sample_period; 5898 perf_swevent_set_period(event); 5899 } 5900 5901 hwc->state = !(flags & PERF_EF_START); 5902 5903 head = find_swevent_head(swhash, event); 5904 if (!head) { 5905 /* 5906 * We can race with cpu hotplug code. Do not 5907 * WARN if the cpu just got unplugged. 5908 */ 5909 WARN_ON_ONCE(swhash->online); 5910 return -EINVAL; 5911 } 5912 5913 hlist_add_head_rcu(&event->hlist_entry, head); 5914 5915 return 0; 5916 } 5917 5918 static void perf_swevent_del(struct perf_event *event, int flags) 5919 { 5920 hlist_del_rcu(&event->hlist_entry); 5921 } 5922 5923 static void perf_swevent_start(struct perf_event *event, int flags) 5924 { 5925 event->hw.state = 0; 5926 } 5927 5928 static void perf_swevent_stop(struct perf_event *event, int flags) 5929 { 5930 event->hw.state = PERF_HES_STOPPED; 5931 } 5932 5933 /* Deref the hlist from the update side */ 5934 static inline struct swevent_hlist * 5935 swevent_hlist_deref(struct swevent_htable *swhash) 5936 { 5937 return rcu_dereference_protected(swhash->swevent_hlist, 5938 lockdep_is_held(&swhash->hlist_mutex)); 5939 } 5940 5941 static void swevent_hlist_release(struct swevent_htable *swhash) 5942 { 5943 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5944 5945 if (!hlist) 5946 return; 5947 5948 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 5949 kfree_rcu(hlist, rcu_head); 5950 } 5951 5952 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5953 { 5954 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5955 5956 mutex_lock(&swhash->hlist_mutex); 5957 5958 if (!--swhash->hlist_refcount) 5959 swevent_hlist_release(swhash); 5960 5961 mutex_unlock(&swhash->hlist_mutex); 5962 } 5963 5964 static void swevent_hlist_put(struct perf_event *event) 5965 { 5966 int cpu; 5967 5968 for_each_possible_cpu(cpu) 5969 swevent_hlist_put_cpu(event, cpu); 5970 } 5971 5972 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5973 { 5974 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5975 int err = 0; 5976 5977 mutex_lock(&swhash->hlist_mutex); 5978 5979 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5980 struct swevent_hlist *hlist; 5981 5982 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5983 if (!hlist) { 5984 err = -ENOMEM; 5985 goto exit; 5986 } 5987 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5988 } 5989 swhash->hlist_refcount++; 5990 exit: 5991 mutex_unlock(&swhash->hlist_mutex); 5992 5993 return err; 5994 } 5995 5996 static int swevent_hlist_get(struct perf_event *event) 5997 { 5998 int err; 5999 int cpu, failed_cpu; 6000 6001 get_online_cpus(); 6002 for_each_possible_cpu(cpu) { 6003 err = swevent_hlist_get_cpu(event, cpu); 6004 if (err) { 6005 failed_cpu = cpu; 6006 goto fail; 6007 } 6008 } 6009 put_online_cpus(); 6010 6011 return 0; 6012 fail: 6013 for_each_possible_cpu(cpu) { 6014 if (cpu == failed_cpu) 6015 break; 6016 swevent_hlist_put_cpu(event, cpu); 6017 } 6018 6019 put_online_cpus(); 6020 return err; 6021 } 6022 6023 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6024 6025 static void sw_perf_event_destroy(struct perf_event *event) 6026 { 6027 u64 event_id = event->attr.config; 6028 6029 WARN_ON(event->parent); 6030 6031 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6032 swevent_hlist_put(event); 6033 } 6034 6035 static int perf_swevent_init(struct perf_event *event) 6036 { 6037 u64 event_id = event->attr.config; 6038 6039 if (event->attr.type != PERF_TYPE_SOFTWARE) 6040 return -ENOENT; 6041 6042 /* 6043 * no branch sampling for software events 6044 */ 6045 if (has_branch_stack(event)) 6046 return -EOPNOTSUPP; 6047 6048 switch (event_id) { 6049 case PERF_COUNT_SW_CPU_CLOCK: 6050 case PERF_COUNT_SW_TASK_CLOCK: 6051 return -ENOENT; 6052 6053 default: 6054 break; 6055 } 6056 6057 if (event_id >= PERF_COUNT_SW_MAX) 6058 return -ENOENT; 6059 6060 if (!event->parent) { 6061 int err; 6062 6063 err = swevent_hlist_get(event); 6064 if (err) 6065 return err; 6066 6067 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6068 event->destroy = sw_perf_event_destroy; 6069 } 6070 6071 return 0; 6072 } 6073 6074 static struct pmu perf_swevent = { 6075 .task_ctx_nr = perf_sw_context, 6076 6077 .event_init = perf_swevent_init, 6078 .add = perf_swevent_add, 6079 .del = perf_swevent_del, 6080 .start = perf_swevent_start, 6081 .stop = perf_swevent_stop, 6082 .read = perf_swevent_read, 6083 }; 6084 6085 #ifdef CONFIG_EVENT_TRACING 6086 6087 static int perf_tp_filter_match(struct perf_event *event, 6088 struct perf_sample_data *data) 6089 { 6090 void *record = data->raw->data; 6091 6092 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6093 return 1; 6094 return 0; 6095 } 6096 6097 static int perf_tp_event_match(struct perf_event *event, 6098 struct perf_sample_data *data, 6099 struct pt_regs *regs) 6100 { 6101 if (event->hw.state & PERF_HES_STOPPED) 6102 return 0; 6103 /* 6104 * All tracepoints are from kernel-space. 6105 */ 6106 if (event->attr.exclude_kernel) 6107 return 0; 6108 6109 if (!perf_tp_filter_match(event, data)) 6110 return 0; 6111 6112 return 1; 6113 } 6114 6115 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6116 struct pt_regs *regs, struct hlist_head *head, int rctx, 6117 struct task_struct *task) 6118 { 6119 struct perf_sample_data data; 6120 struct perf_event *event; 6121 6122 struct perf_raw_record raw = { 6123 .size = entry_size, 6124 .data = record, 6125 }; 6126 6127 perf_sample_data_init(&data, addr, 0); 6128 data.raw = &raw; 6129 6130 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6131 if (perf_tp_event_match(event, &data, regs)) 6132 perf_swevent_event(event, count, &data, regs); 6133 } 6134 6135 /* 6136 * If we got specified a target task, also iterate its context and 6137 * deliver this event there too. 6138 */ 6139 if (task && task != current) { 6140 struct perf_event_context *ctx; 6141 struct trace_entry *entry = record; 6142 6143 rcu_read_lock(); 6144 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6145 if (!ctx) 6146 goto unlock; 6147 6148 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6149 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6150 continue; 6151 if (event->attr.config != entry->type) 6152 continue; 6153 if (perf_tp_event_match(event, &data, regs)) 6154 perf_swevent_event(event, count, &data, regs); 6155 } 6156 unlock: 6157 rcu_read_unlock(); 6158 } 6159 6160 perf_swevent_put_recursion_context(rctx); 6161 } 6162 EXPORT_SYMBOL_GPL(perf_tp_event); 6163 6164 static void tp_perf_event_destroy(struct perf_event *event) 6165 { 6166 perf_trace_destroy(event); 6167 } 6168 6169 static int perf_tp_event_init(struct perf_event *event) 6170 { 6171 int err; 6172 6173 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6174 return -ENOENT; 6175 6176 /* 6177 * no branch sampling for tracepoint events 6178 */ 6179 if (has_branch_stack(event)) 6180 return -EOPNOTSUPP; 6181 6182 err = perf_trace_init(event); 6183 if (err) 6184 return err; 6185 6186 event->destroy = tp_perf_event_destroy; 6187 6188 return 0; 6189 } 6190 6191 static struct pmu perf_tracepoint = { 6192 .task_ctx_nr = perf_sw_context, 6193 6194 .event_init = perf_tp_event_init, 6195 .add = perf_trace_add, 6196 .del = perf_trace_del, 6197 .start = perf_swevent_start, 6198 .stop = perf_swevent_stop, 6199 .read = perf_swevent_read, 6200 }; 6201 6202 static inline void perf_tp_register(void) 6203 { 6204 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6205 } 6206 6207 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6208 { 6209 char *filter_str; 6210 int ret; 6211 6212 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6213 return -EINVAL; 6214 6215 filter_str = strndup_user(arg, PAGE_SIZE); 6216 if (IS_ERR(filter_str)) 6217 return PTR_ERR(filter_str); 6218 6219 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6220 6221 kfree(filter_str); 6222 return ret; 6223 } 6224 6225 static void perf_event_free_filter(struct perf_event *event) 6226 { 6227 ftrace_profile_free_filter(event); 6228 } 6229 6230 #else 6231 6232 static inline void perf_tp_register(void) 6233 { 6234 } 6235 6236 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6237 { 6238 return -ENOENT; 6239 } 6240 6241 static void perf_event_free_filter(struct perf_event *event) 6242 { 6243 } 6244 6245 #endif /* CONFIG_EVENT_TRACING */ 6246 6247 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6248 void perf_bp_event(struct perf_event *bp, void *data) 6249 { 6250 struct perf_sample_data sample; 6251 struct pt_regs *regs = data; 6252 6253 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6254 6255 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6256 perf_swevent_event(bp, 1, &sample, regs); 6257 } 6258 #endif 6259 6260 /* 6261 * hrtimer based swevent callback 6262 */ 6263 6264 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6265 { 6266 enum hrtimer_restart ret = HRTIMER_RESTART; 6267 struct perf_sample_data data; 6268 struct pt_regs *regs; 6269 struct perf_event *event; 6270 u64 period; 6271 6272 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6273 6274 if (event->state != PERF_EVENT_STATE_ACTIVE) 6275 return HRTIMER_NORESTART; 6276 6277 event->pmu->read(event); 6278 6279 perf_sample_data_init(&data, 0, event->hw.last_period); 6280 regs = get_irq_regs(); 6281 6282 if (regs && !perf_exclude_event(event, regs)) { 6283 if (!(event->attr.exclude_idle && is_idle_task(current))) 6284 if (__perf_event_overflow(event, 1, &data, regs)) 6285 ret = HRTIMER_NORESTART; 6286 } 6287 6288 period = max_t(u64, 10000, event->hw.sample_period); 6289 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6290 6291 return ret; 6292 } 6293 6294 static void perf_swevent_start_hrtimer(struct perf_event *event) 6295 { 6296 struct hw_perf_event *hwc = &event->hw; 6297 s64 period; 6298 6299 if (!is_sampling_event(event)) 6300 return; 6301 6302 period = local64_read(&hwc->period_left); 6303 if (period) { 6304 if (period < 0) 6305 period = 10000; 6306 6307 local64_set(&hwc->period_left, 0); 6308 } else { 6309 period = max_t(u64, 10000, hwc->sample_period); 6310 } 6311 __hrtimer_start_range_ns(&hwc->hrtimer, 6312 ns_to_ktime(period), 0, 6313 HRTIMER_MODE_REL_PINNED, 0); 6314 } 6315 6316 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6317 { 6318 struct hw_perf_event *hwc = &event->hw; 6319 6320 if (is_sampling_event(event)) { 6321 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6322 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6323 6324 hrtimer_cancel(&hwc->hrtimer); 6325 } 6326 } 6327 6328 static void perf_swevent_init_hrtimer(struct perf_event *event) 6329 { 6330 struct hw_perf_event *hwc = &event->hw; 6331 6332 if (!is_sampling_event(event)) 6333 return; 6334 6335 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6336 hwc->hrtimer.function = perf_swevent_hrtimer; 6337 6338 /* 6339 * Since hrtimers have a fixed rate, we can do a static freq->period 6340 * mapping and avoid the whole period adjust feedback stuff. 6341 */ 6342 if (event->attr.freq) { 6343 long freq = event->attr.sample_freq; 6344 6345 event->attr.sample_period = NSEC_PER_SEC / freq; 6346 hwc->sample_period = event->attr.sample_period; 6347 local64_set(&hwc->period_left, hwc->sample_period); 6348 hwc->last_period = hwc->sample_period; 6349 event->attr.freq = 0; 6350 } 6351 } 6352 6353 /* 6354 * Software event: cpu wall time clock 6355 */ 6356 6357 static void cpu_clock_event_update(struct perf_event *event) 6358 { 6359 s64 prev; 6360 u64 now; 6361 6362 now = local_clock(); 6363 prev = local64_xchg(&event->hw.prev_count, now); 6364 local64_add(now - prev, &event->count); 6365 } 6366 6367 static void cpu_clock_event_start(struct perf_event *event, int flags) 6368 { 6369 local64_set(&event->hw.prev_count, local_clock()); 6370 perf_swevent_start_hrtimer(event); 6371 } 6372 6373 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6374 { 6375 perf_swevent_cancel_hrtimer(event); 6376 cpu_clock_event_update(event); 6377 } 6378 6379 static int cpu_clock_event_add(struct perf_event *event, int flags) 6380 { 6381 if (flags & PERF_EF_START) 6382 cpu_clock_event_start(event, flags); 6383 6384 return 0; 6385 } 6386 6387 static void cpu_clock_event_del(struct perf_event *event, int flags) 6388 { 6389 cpu_clock_event_stop(event, flags); 6390 } 6391 6392 static void cpu_clock_event_read(struct perf_event *event) 6393 { 6394 cpu_clock_event_update(event); 6395 } 6396 6397 static int cpu_clock_event_init(struct perf_event *event) 6398 { 6399 if (event->attr.type != PERF_TYPE_SOFTWARE) 6400 return -ENOENT; 6401 6402 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6403 return -ENOENT; 6404 6405 /* 6406 * no branch sampling for software events 6407 */ 6408 if (has_branch_stack(event)) 6409 return -EOPNOTSUPP; 6410 6411 perf_swevent_init_hrtimer(event); 6412 6413 return 0; 6414 } 6415 6416 static struct pmu perf_cpu_clock = { 6417 .task_ctx_nr = perf_sw_context, 6418 6419 .event_init = cpu_clock_event_init, 6420 .add = cpu_clock_event_add, 6421 .del = cpu_clock_event_del, 6422 .start = cpu_clock_event_start, 6423 .stop = cpu_clock_event_stop, 6424 .read = cpu_clock_event_read, 6425 }; 6426 6427 /* 6428 * Software event: task time clock 6429 */ 6430 6431 static void task_clock_event_update(struct perf_event *event, u64 now) 6432 { 6433 u64 prev; 6434 s64 delta; 6435 6436 prev = local64_xchg(&event->hw.prev_count, now); 6437 delta = now - prev; 6438 local64_add(delta, &event->count); 6439 } 6440 6441 static void task_clock_event_start(struct perf_event *event, int flags) 6442 { 6443 local64_set(&event->hw.prev_count, event->ctx->time); 6444 perf_swevent_start_hrtimer(event); 6445 } 6446 6447 static void task_clock_event_stop(struct perf_event *event, int flags) 6448 { 6449 perf_swevent_cancel_hrtimer(event); 6450 task_clock_event_update(event, event->ctx->time); 6451 } 6452 6453 static int task_clock_event_add(struct perf_event *event, int flags) 6454 { 6455 if (flags & PERF_EF_START) 6456 task_clock_event_start(event, flags); 6457 6458 return 0; 6459 } 6460 6461 static void task_clock_event_del(struct perf_event *event, int flags) 6462 { 6463 task_clock_event_stop(event, PERF_EF_UPDATE); 6464 } 6465 6466 static void task_clock_event_read(struct perf_event *event) 6467 { 6468 u64 now = perf_clock(); 6469 u64 delta = now - event->ctx->timestamp; 6470 u64 time = event->ctx->time + delta; 6471 6472 task_clock_event_update(event, time); 6473 } 6474 6475 static int task_clock_event_init(struct perf_event *event) 6476 { 6477 if (event->attr.type != PERF_TYPE_SOFTWARE) 6478 return -ENOENT; 6479 6480 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6481 return -ENOENT; 6482 6483 /* 6484 * no branch sampling for software events 6485 */ 6486 if (has_branch_stack(event)) 6487 return -EOPNOTSUPP; 6488 6489 perf_swevent_init_hrtimer(event); 6490 6491 return 0; 6492 } 6493 6494 static struct pmu perf_task_clock = { 6495 .task_ctx_nr = perf_sw_context, 6496 6497 .event_init = task_clock_event_init, 6498 .add = task_clock_event_add, 6499 .del = task_clock_event_del, 6500 .start = task_clock_event_start, 6501 .stop = task_clock_event_stop, 6502 .read = task_clock_event_read, 6503 }; 6504 6505 static void perf_pmu_nop_void(struct pmu *pmu) 6506 { 6507 } 6508 6509 static int perf_pmu_nop_int(struct pmu *pmu) 6510 { 6511 return 0; 6512 } 6513 6514 static void perf_pmu_start_txn(struct pmu *pmu) 6515 { 6516 perf_pmu_disable(pmu); 6517 } 6518 6519 static int perf_pmu_commit_txn(struct pmu *pmu) 6520 { 6521 perf_pmu_enable(pmu); 6522 return 0; 6523 } 6524 6525 static void perf_pmu_cancel_txn(struct pmu *pmu) 6526 { 6527 perf_pmu_enable(pmu); 6528 } 6529 6530 static int perf_event_idx_default(struct perf_event *event) 6531 { 6532 return 0; 6533 } 6534 6535 /* 6536 * Ensures all contexts with the same task_ctx_nr have the same 6537 * pmu_cpu_context too. 6538 */ 6539 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 6540 { 6541 struct pmu *pmu; 6542 6543 if (ctxn < 0) 6544 return NULL; 6545 6546 list_for_each_entry(pmu, &pmus, entry) { 6547 if (pmu->task_ctx_nr == ctxn) 6548 return pmu->pmu_cpu_context; 6549 } 6550 6551 return NULL; 6552 } 6553 6554 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6555 { 6556 int cpu; 6557 6558 for_each_possible_cpu(cpu) { 6559 struct perf_cpu_context *cpuctx; 6560 6561 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6562 6563 if (cpuctx->unique_pmu == old_pmu) 6564 cpuctx->unique_pmu = pmu; 6565 } 6566 } 6567 6568 static void free_pmu_context(struct pmu *pmu) 6569 { 6570 struct pmu *i; 6571 6572 mutex_lock(&pmus_lock); 6573 /* 6574 * Like a real lame refcount. 6575 */ 6576 list_for_each_entry(i, &pmus, entry) { 6577 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6578 update_pmu_context(i, pmu); 6579 goto out; 6580 } 6581 } 6582 6583 free_percpu(pmu->pmu_cpu_context); 6584 out: 6585 mutex_unlock(&pmus_lock); 6586 } 6587 static struct idr pmu_idr; 6588 6589 static ssize_t 6590 type_show(struct device *dev, struct device_attribute *attr, char *page) 6591 { 6592 struct pmu *pmu = dev_get_drvdata(dev); 6593 6594 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6595 } 6596 static DEVICE_ATTR_RO(type); 6597 6598 static ssize_t 6599 perf_event_mux_interval_ms_show(struct device *dev, 6600 struct device_attribute *attr, 6601 char *page) 6602 { 6603 struct pmu *pmu = dev_get_drvdata(dev); 6604 6605 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6606 } 6607 6608 static ssize_t 6609 perf_event_mux_interval_ms_store(struct device *dev, 6610 struct device_attribute *attr, 6611 const char *buf, size_t count) 6612 { 6613 struct pmu *pmu = dev_get_drvdata(dev); 6614 int timer, cpu, ret; 6615 6616 ret = kstrtoint(buf, 0, &timer); 6617 if (ret) 6618 return ret; 6619 6620 if (timer < 1) 6621 return -EINVAL; 6622 6623 /* same value, noting to do */ 6624 if (timer == pmu->hrtimer_interval_ms) 6625 return count; 6626 6627 pmu->hrtimer_interval_ms = timer; 6628 6629 /* update all cpuctx for this PMU */ 6630 for_each_possible_cpu(cpu) { 6631 struct perf_cpu_context *cpuctx; 6632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6633 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6634 6635 if (hrtimer_active(&cpuctx->hrtimer)) 6636 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6637 } 6638 6639 return count; 6640 } 6641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6642 6643 static struct attribute *pmu_dev_attrs[] = { 6644 &dev_attr_type.attr, 6645 &dev_attr_perf_event_mux_interval_ms.attr, 6646 NULL, 6647 }; 6648 ATTRIBUTE_GROUPS(pmu_dev); 6649 6650 static int pmu_bus_running; 6651 static struct bus_type pmu_bus = { 6652 .name = "event_source", 6653 .dev_groups = pmu_dev_groups, 6654 }; 6655 6656 static void pmu_dev_release(struct device *dev) 6657 { 6658 kfree(dev); 6659 } 6660 6661 static int pmu_dev_alloc(struct pmu *pmu) 6662 { 6663 int ret = -ENOMEM; 6664 6665 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6666 if (!pmu->dev) 6667 goto out; 6668 6669 pmu->dev->groups = pmu->attr_groups; 6670 device_initialize(pmu->dev); 6671 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6672 if (ret) 6673 goto free_dev; 6674 6675 dev_set_drvdata(pmu->dev, pmu); 6676 pmu->dev->bus = &pmu_bus; 6677 pmu->dev->release = pmu_dev_release; 6678 ret = device_add(pmu->dev); 6679 if (ret) 6680 goto free_dev; 6681 6682 out: 6683 return ret; 6684 6685 free_dev: 6686 put_device(pmu->dev); 6687 goto out; 6688 } 6689 6690 static struct lock_class_key cpuctx_mutex; 6691 static struct lock_class_key cpuctx_lock; 6692 6693 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6694 { 6695 int cpu, ret; 6696 6697 mutex_lock(&pmus_lock); 6698 ret = -ENOMEM; 6699 pmu->pmu_disable_count = alloc_percpu(int); 6700 if (!pmu->pmu_disable_count) 6701 goto unlock; 6702 6703 pmu->type = -1; 6704 if (!name) 6705 goto skip_type; 6706 pmu->name = name; 6707 6708 if (type < 0) { 6709 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6710 if (type < 0) { 6711 ret = type; 6712 goto free_pdc; 6713 } 6714 } 6715 pmu->type = type; 6716 6717 if (pmu_bus_running) { 6718 ret = pmu_dev_alloc(pmu); 6719 if (ret) 6720 goto free_idr; 6721 } 6722 6723 skip_type: 6724 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6725 if (pmu->pmu_cpu_context) 6726 goto got_cpu_context; 6727 6728 ret = -ENOMEM; 6729 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6730 if (!pmu->pmu_cpu_context) 6731 goto free_dev; 6732 6733 for_each_possible_cpu(cpu) { 6734 struct perf_cpu_context *cpuctx; 6735 6736 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6737 __perf_event_init_context(&cpuctx->ctx); 6738 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6739 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6740 cpuctx->ctx.type = cpu_context; 6741 cpuctx->ctx.pmu = pmu; 6742 6743 __perf_cpu_hrtimer_init(cpuctx, cpu); 6744 6745 INIT_LIST_HEAD(&cpuctx->rotation_list); 6746 cpuctx->unique_pmu = pmu; 6747 } 6748 6749 got_cpu_context: 6750 if (!pmu->start_txn) { 6751 if (pmu->pmu_enable) { 6752 /* 6753 * If we have pmu_enable/pmu_disable calls, install 6754 * transaction stubs that use that to try and batch 6755 * hardware accesses. 6756 */ 6757 pmu->start_txn = perf_pmu_start_txn; 6758 pmu->commit_txn = perf_pmu_commit_txn; 6759 pmu->cancel_txn = perf_pmu_cancel_txn; 6760 } else { 6761 pmu->start_txn = perf_pmu_nop_void; 6762 pmu->commit_txn = perf_pmu_nop_int; 6763 pmu->cancel_txn = perf_pmu_nop_void; 6764 } 6765 } 6766 6767 if (!pmu->pmu_enable) { 6768 pmu->pmu_enable = perf_pmu_nop_void; 6769 pmu->pmu_disable = perf_pmu_nop_void; 6770 } 6771 6772 if (!pmu->event_idx) 6773 pmu->event_idx = perf_event_idx_default; 6774 6775 list_add_rcu(&pmu->entry, &pmus); 6776 ret = 0; 6777 unlock: 6778 mutex_unlock(&pmus_lock); 6779 6780 return ret; 6781 6782 free_dev: 6783 device_del(pmu->dev); 6784 put_device(pmu->dev); 6785 6786 free_idr: 6787 if (pmu->type >= PERF_TYPE_MAX) 6788 idr_remove(&pmu_idr, pmu->type); 6789 6790 free_pdc: 6791 free_percpu(pmu->pmu_disable_count); 6792 goto unlock; 6793 } 6794 EXPORT_SYMBOL_GPL(perf_pmu_register); 6795 6796 void perf_pmu_unregister(struct pmu *pmu) 6797 { 6798 mutex_lock(&pmus_lock); 6799 list_del_rcu(&pmu->entry); 6800 mutex_unlock(&pmus_lock); 6801 6802 /* 6803 * We dereference the pmu list under both SRCU and regular RCU, so 6804 * synchronize against both of those. 6805 */ 6806 synchronize_srcu(&pmus_srcu); 6807 synchronize_rcu(); 6808 6809 free_percpu(pmu->pmu_disable_count); 6810 if (pmu->type >= PERF_TYPE_MAX) 6811 idr_remove(&pmu_idr, pmu->type); 6812 device_del(pmu->dev); 6813 put_device(pmu->dev); 6814 free_pmu_context(pmu); 6815 } 6816 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 6817 6818 struct pmu *perf_init_event(struct perf_event *event) 6819 { 6820 struct pmu *pmu = NULL; 6821 int idx; 6822 int ret; 6823 6824 idx = srcu_read_lock(&pmus_srcu); 6825 6826 rcu_read_lock(); 6827 pmu = idr_find(&pmu_idr, event->attr.type); 6828 rcu_read_unlock(); 6829 if (pmu) { 6830 if (!try_module_get(pmu->module)) { 6831 pmu = ERR_PTR(-ENODEV); 6832 goto unlock; 6833 } 6834 event->pmu = pmu; 6835 ret = pmu->event_init(event); 6836 if (ret) 6837 pmu = ERR_PTR(ret); 6838 goto unlock; 6839 } 6840 6841 list_for_each_entry_rcu(pmu, &pmus, entry) { 6842 if (!try_module_get(pmu->module)) { 6843 pmu = ERR_PTR(-ENODEV); 6844 goto unlock; 6845 } 6846 event->pmu = pmu; 6847 ret = pmu->event_init(event); 6848 if (!ret) 6849 goto unlock; 6850 6851 if (ret != -ENOENT) { 6852 pmu = ERR_PTR(ret); 6853 goto unlock; 6854 } 6855 } 6856 pmu = ERR_PTR(-ENOENT); 6857 unlock: 6858 srcu_read_unlock(&pmus_srcu, idx); 6859 6860 return pmu; 6861 } 6862 6863 static void account_event_cpu(struct perf_event *event, int cpu) 6864 { 6865 if (event->parent) 6866 return; 6867 6868 if (has_branch_stack(event)) { 6869 if (!(event->attach_state & PERF_ATTACH_TASK)) 6870 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6871 } 6872 if (is_cgroup_event(event)) 6873 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6874 } 6875 6876 static void account_event(struct perf_event *event) 6877 { 6878 if (event->parent) 6879 return; 6880 6881 if (event->attach_state & PERF_ATTACH_TASK) 6882 static_key_slow_inc(&perf_sched_events.key); 6883 if (event->attr.mmap || event->attr.mmap_data) 6884 atomic_inc(&nr_mmap_events); 6885 if (event->attr.comm) 6886 atomic_inc(&nr_comm_events); 6887 if (event->attr.task) 6888 atomic_inc(&nr_task_events); 6889 if (event->attr.freq) { 6890 if (atomic_inc_return(&nr_freq_events) == 1) 6891 tick_nohz_full_kick_all(); 6892 } 6893 if (has_branch_stack(event)) 6894 static_key_slow_inc(&perf_sched_events.key); 6895 if (is_cgroup_event(event)) 6896 static_key_slow_inc(&perf_sched_events.key); 6897 6898 account_event_cpu(event, event->cpu); 6899 } 6900 6901 /* 6902 * Allocate and initialize a event structure 6903 */ 6904 static struct perf_event * 6905 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6906 struct task_struct *task, 6907 struct perf_event *group_leader, 6908 struct perf_event *parent_event, 6909 perf_overflow_handler_t overflow_handler, 6910 void *context) 6911 { 6912 struct pmu *pmu; 6913 struct perf_event *event; 6914 struct hw_perf_event *hwc; 6915 long err = -EINVAL; 6916 6917 if ((unsigned)cpu >= nr_cpu_ids) { 6918 if (!task || cpu != -1) 6919 return ERR_PTR(-EINVAL); 6920 } 6921 6922 event = kzalloc(sizeof(*event), GFP_KERNEL); 6923 if (!event) 6924 return ERR_PTR(-ENOMEM); 6925 6926 /* 6927 * Single events are their own group leaders, with an 6928 * empty sibling list: 6929 */ 6930 if (!group_leader) 6931 group_leader = event; 6932 6933 mutex_init(&event->child_mutex); 6934 INIT_LIST_HEAD(&event->child_list); 6935 6936 INIT_LIST_HEAD(&event->group_entry); 6937 INIT_LIST_HEAD(&event->event_entry); 6938 INIT_LIST_HEAD(&event->sibling_list); 6939 INIT_LIST_HEAD(&event->rb_entry); 6940 INIT_LIST_HEAD(&event->active_entry); 6941 INIT_HLIST_NODE(&event->hlist_entry); 6942 6943 6944 init_waitqueue_head(&event->waitq); 6945 init_irq_work(&event->pending, perf_pending_event); 6946 6947 mutex_init(&event->mmap_mutex); 6948 6949 atomic_long_set(&event->refcount, 1); 6950 event->cpu = cpu; 6951 event->attr = *attr; 6952 event->group_leader = group_leader; 6953 event->pmu = NULL; 6954 event->oncpu = -1; 6955 6956 event->parent = parent_event; 6957 6958 event->ns = get_pid_ns(task_active_pid_ns(current)); 6959 event->id = atomic64_inc_return(&perf_event_id); 6960 6961 event->state = PERF_EVENT_STATE_INACTIVE; 6962 6963 if (task) { 6964 event->attach_state = PERF_ATTACH_TASK; 6965 6966 if (attr->type == PERF_TYPE_TRACEPOINT) 6967 event->hw.tp_target = task; 6968 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6969 /* 6970 * hw_breakpoint is a bit difficult here.. 6971 */ 6972 else if (attr->type == PERF_TYPE_BREAKPOINT) 6973 event->hw.bp_target = task; 6974 #endif 6975 } 6976 6977 if (!overflow_handler && parent_event) { 6978 overflow_handler = parent_event->overflow_handler; 6979 context = parent_event->overflow_handler_context; 6980 } 6981 6982 event->overflow_handler = overflow_handler; 6983 event->overflow_handler_context = context; 6984 6985 perf_event__state_init(event); 6986 6987 pmu = NULL; 6988 6989 hwc = &event->hw; 6990 hwc->sample_period = attr->sample_period; 6991 if (attr->freq && attr->sample_freq) 6992 hwc->sample_period = 1; 6993 hwc->last_period = hwc->sample_period; 6994 6995 local64_set(&hwc->period_left, hwc->sample_period); 6996 6997 /* 6998 * we currently do not support PERF_FORMAT_GROUP on inherited events 6999 */ 7000 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7001 goto err_ns; 7002 7003 pmu = perf_init_event(event); 7004 if (!pmu) 7005 goto err_ns; 7006 else if (IS_ERR(pmu)) { 7007 err = PTR_ERR(pmu); 7008 goto err_ns; 7009 } 7010 7011 if (!event->parent) { 7012 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7013 err = get_callchain_buffers(); 7014 if (err) 7015 goto err_pmu; 7016 } 7017 } 7018 7019 return event; 7020 7021 err_pmu: 7022 if (event->destroy) 7023 event->destroy(event); 7024 module_put(pmu->module); 7025 err_ns: 7026 if (event->ns) 7027 put_pid_ns(event->ns); 7028 kfree(event); 7029 7030 return ERR_PTR(err); 7031 } 7032 7033 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7034 struct perf_event_attr *attr) 7035 { 7036 u32 size; 7037 int ret; 7038 7039 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7040 return -EFAULT; 7041 7042 /* 7043 * zero the full structure, so that a short copy will be nice. 7044 */ 7045 memset(attr, 0, sizeof(*attr)); 7046 7047 ret = get_user(size, &uattr->size); 7048 if (ret) 7049 return ret; 7050 7051 if (size > PAGE_SIZE) /* silly large */ 7052 goto err_size; 7053 7054 if (!size) /* abi compat */ 7055 size = PERF_ATTR_SIZE_VER0; 7056 7057 if (size < PERF_ATTR_SIZE_VER0) 7058 goto err_size; 7059 7060 /* 7061 * If we're handed a bigger struct than we know of, 7062 * ensure all the unknown bits are 0 - i.e. new 7063 * user-space does not rely on any kernel feature 7064 * extensions we dont know about yet. 7065 */ 7066 if (size > sizeof(*attr)) { 7067 unsigned char __user *addr; 7068 unsigned char __user *end; 7069 unsigned char val; 7070 7071 addr = (void __user *)uattr + sizeof(*attr); 7072 end = (void __user *)uattr + size; 7073 7074 for (; addr < end; addr++) { 7075 ret = get_user(val, addr); 7076 if (ret) 7077 return ret; 7078 if (val) 7079 goto err_size; 7080 } 7081 size = sizeof(*attr); 7082 } 7083 7084 ret = copy_from_user(attr, uattr, size); 7085 if (ret) 7086 return -EFAULT; 7087 7088 if (attr->__reserved_1) 7089 return -EINVAL; 7090 7091 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7092 return -EINVAL; 7093 7094 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7095 return -EINVAL; 7096 7097 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7098 u64 mask = attr->branch_sample_type; 7099 7100 /* only using defined bits */ 7101 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7102 return -EINVAL; 7103 7104 /* at least one branch bit must be set */ 7105 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7106 return -EINVAL; 7107 7108 /* propagate priv level, when not set for branch */ 7109 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7110 7111 /* exclude_kernel checked on syscall entry */ 7112 if (!attr->exclude_kernel) 7113 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7114 7115 if (!attr->exclude_user) 7116 mask |= PERF_SAMPLE_BRANCH_USER; 7117 7118 if (!attr->exclude_hv) 7119 mask |= PERF_SAMPLE_BRANCH_HV; 7120 /* 7121 * adjust user setting (for HW filter setup) 7122 */ 7123 attr->branch_sample_type = mask; 7124 } 7125 /* privileged levels capture (kernel, hv): check permissions */ 7126 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7127 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7128 return -EACCES; 7129 } 7130 7131 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7132 ret = perf_reg_validate(attr->sample_regs_user); 7133 if (ret) 7134 return ret; 7135 } 7136 7137 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7138 if (!arch_perf_have_user_stack_dump()) 7139 return -ENOSYS; 7140 7141 /* 7142 * We have __u32 type for the size, but so far 7143 * we can only use __u16 as maximum due to the 7144 * __u16 sample size limit. 7145 */ 7146 if (attr->sample_stack_user >= USHRT_MAX) 7147 ret = -EINVAL; 7148 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7149 ret = -EINVAL; 7150 } 7151 7152 out: 7153 return ret; 7154 7155 err_size: 7156 put_user(sizeof(*attr), &uattr->size); 7157 ret = -E2BIG; 7158 goto out; 7159 } 7160 7161 static int 7162 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7163 { 7164 struct ring_buffer *rb = NULL; 7165 int ret = -EINVAL; 7166 7167 if (!output_event) 7168 goto set; 7169 7170 /* don't allow circular references */ 7171 if (event == output_event) 7172 goto out; 7173 7174 /* 7175 * Don't allow cross-cpu buffers 7176 */ 7177 if (output_event->cpu != event->cpu) 7178 goto out; 7179 7180 /* 7181 * If its not a per-cpu rb, it must be the same task. 7182 */ 7183 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7184 goto out; 7185 7186 set: 7187 mutex_lock(&event->mmap_mutex); 7188 /* Can't redirect output if we've got an active mmap() */ 7189 if (atomic_read(&event->mmap_count)) 7190 goto unlock; 7191 7192 if (output_event) { 7193 /* get the rb we want to redirect to */ 7194 rb = ring_buffer_get(output_event); 7195 if (!rb) 7196 goto unlock; 7197 } 7198 7199 ring_buffer_attach(event, rb); 7200 7201 ret = 0; 7202 unlock: 7203 mutex_unlock(&event->mmap_mutex); 7204 7205 out: 7206 return ret; 7207 } 7208 7209 /** 7210 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7211 * 7212 * @attr_uptr: event_id type attributes for monitoring/sampling 7213 * @pid: target pid 7214 * @cpu: target cpu 7215 * @group_fd: group leader event fd 7216 */ 7217 SYSCALL_DEFINE5(perf_event_open, 7218 struct perf_event_attr __user *, attr_uptr, 7219 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7220 { 7221 struct perf_event *group_leader = NULL, *output_event = NULL; 7222 struct perf_event *event, *sibling; 7223 struct perf_event_attr attr; 7224 struct perf_event_context *ctx; 7225 struct file *event_file = NULL; 7226 struct fd group = {NULL, 0}; 7227 struct task_struct *task = NULL; 7228 struct pmu *pmu; 7229 int event_fd; 7230 int move_group = 0; 7231 int err; 7232 int f_flags = O_RDWR; 7233 7234 /* for future expandability... */ 7235 if (flags & ~PERF_FLAG_ALL) 7236 return -EINVAL; 7237 7238 err = perf_copy_attr(attr_uptr, &attr); 7239 if (err) 7240 return err; 7241 7242 if (!attr.exclude_kernel) { 7243 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7244 return -EACCES; 7245 } 7246 7247 if (attr.freq) { 7248 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7249 return -EINVAL; 7250 } else { 7251 if (attr.sample_period & (1ULL << 63)) 7252 return -EINVAL; 7253 } 7254 7255 /* 7256 * In cgroup mode, the pid argument is used to pass the fd 7257 * opened to the cgroup directory in cgroupfs. The cpu argument 7258 * designates the cpu on which to monitor threads from that 7259 * cgroup. 7260 */ 7261 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7262 return -EINVAL; 7263 7264 if (flags & PERF_FLAG_FD_CLOEXEC) 7265 f_flags |= O_CLOEXEC; 7266 7267 event_fd = get_unused_fd_flags(f_flags); 7268 if (event_fd < 0) 7269 return event_fd; 7270 7271 if (group_fd != -1) { 7272 err = perf_fget_light(group_fd, &group); 7273 if (err) 7274 goto err_fd; 7275 group_leader = group.file->private_data; 7276 if (flags & PERF_FLAG_FD_OUTPUT) 7277 output_event = group_leader; 7278 if (flags & PERF_FLAG_FD_NO_GROUP) 7279 group_leader = NULL; 7280 } 7281 7282 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7283 task = find_lively_task_by_vpid(pid); 7284 if (IS_ERR(task)) { 7285 err = PTR_ERR(task); 7286 goto err_group_fd; 7287 } 7288 } 7289 7290 if (task && group_leader && 7291 group_leader->attr.inherit != attr.inherit) { 7292 err = -EINVAL; 7293 goto err_task; 7294 } 7295 7296 get_online_cpus(); 7297 7298 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7299 NULL, NULL); 7300 if (IS_ERR(event)) { 7301 err = PTR_ERR(event); 7302 goto err_cpus; 7303 } 7304 7305 if (flags & PERF_FLAG_PID_CGROUP) { 7306 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7307 if (err) { 7308 __free_event(event); 7309 goto err_cpus; 7310 } 7311 } 7312 7313 if (is_sampling_event(event)) { 7314 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7315 err = -ENOTSUPP; 7316 goto err_alloc; 7317 } 7318 } 7319 7320 account_event(event); 7321 7322 /* 7323 * Special case software events and allow them to be part of 7324 * any hardware group. 7325 */ 7326 pmu = event->pmu; 7327 7328 if (group_leader && 7329 (is_software_event(event) != is_software_event(group_leader))) { 7330 if (is_software_event(event)) { 7331 /* 7332 * If event and group_leader are not both a software 7333 * event, and event is, then group leader is not. 7334 * 7335 * Allow the addition of software events to !software 7336 * groups, this is safe because software events never 7337 * fail to schedule. 7338 */ 7339 pmu = group_leader->pmu; 7340 } else if (is_software_event(group_leader) && 7341 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7342 /* 7343 * In case the group is a pure software group, and we 7344 * try to add a hardware event, move the whole group to 7345 * the hardware context. 7346 */ 7347 move_group = 1; 7348 } 7349 } 7350 7351 /* 7352 * Get the target context (task or percpu): 7353 */ 7354 ctx = find_get_context(pmu, task, event->cpu); 7355 if (IS_ERR(ctx)) { 7356 err = PTR_ERR(ctx); 7357 goto err_alloc; 7358 } 7359 7360 if (task) { 7361 put_task_struct(task); 7362 task = NULL; 7363 } 7364 7365 /* 7366 * Look up the group leader (we will attach this event to it): 7367 */ 7368 if (group_leader) { 7369 err = -EINVAL; 7370 7371 /* 7372 * Do not allow a recursive hierarchy (this new sibling 7373 * becoming part of another group-sibling): 7374 */ 7375 if (group_leader->group_leader != group_leader) 7376 goto err_context; 7377 /* 7378 * Do not allow to attach to a group in a different 7379 * task or CPU context: 7380 */ 7381 if (move_group) { 7382 if (group_leader->ctx->type != ctx->type) 7383 goto err_context; 7384 } else { 7385 if (group_leader->ctx != ctx) 7386 goto err_context; 7387 } 7388 7389 /* 7390 * Only a group leader can be exclusive or pinned 7391 */ 7392 if (attr.exclusive || attr.pinned) 7393 goto err_context; 7394 } 7395 7396 if (output_event) { 7397 err = perf_event_set_output(event, output_event); 7398 if (err) 7399 goto err_context; 7400 } 7401 7402 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 7403 f_flags); 7404 if (IS_ERR(event_file)) { 7405 err = PTR_ERR(event_file); 7406 goto err_context; 7407 } 7408 7409 if (move_group) { 7410 struct perf_event_context *gctx = group_leader->ctx; 7411 7412 mutex_lock(&gctx->mutex); 7413 perf_remove_from_context(group_leader, false); 7414 7415 /* 7416 * Removing from the context ends up with disabled 7417 * event. What we want here is event in the initial 7418 * startup state, ready to be add into new context. 7419 */ 7420 perf_event__state_init(group_leader); 7421 list_for_each_entry(sibling, &group_leader->sibling_list, 7422 group_entry) { 7423 perf_remove_from_context(sibling, false); 7424 perf_event__state_init(sibling); 7425 put_ctx(gctx); 7426 } 7427 mutex_unlock(&gctx->mutex); 7428 put_ctx(gctx); 7429 } 7430 7431 WARN_ON_ONCE(ctx->parent_ctx); 7432 mutex_lock(&ctx->mutex); 7433 7434 if (move_group) { 7435 synchronize_rcu(); 7436 perf_install_in_context(ctx, group_leader, event->cpu); 7437 get_ctx(ctx); 7438 list_for_each_entry(sibling, &group_leader->sibling_list, 7439 group_entry) { 7440 perf_install_in_context(ctx, sibling, event->cpu); 7441 get_ctx(ctx); 7442 } 7443 } 7444 7445 perf_install_in_context(ctx, event, event->cpu); 7446 perf_unpin_context(ctx); 7447 mutex_unlock(&ctx->mutex); 7448 7449 put_online_cpus(); 7450 7451 event->owner = current; 7452 7453 mutex_lock(¤t->perf_event_mutex); 7454 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7455 mutex_unlock(¤t->perf_event_mutex); 7456 7457 /* 7458 * Precalculate sample_data sizes 7459 */ 7460 perf_event__header_size(event); 7461 perf_event__id_header_size(event); 7462 7463 /* 7464 * Drop the reference on the group_event after placing the 7465 * new event on the sibling_list. This ensures destruction 7466 * of the group leader will find the pointer to itself in 7467 * perf_group_detach(). 7468 */ 7469 fdput(group); 7470 fd_install(event_fd, event_file); 7471 return event_fd; 7472 7473 err_context: 7474 perf_unpin_context(ctx); 7475 put_ctx(ctx); 7476 err_alloc: 7477 free_event(event); 7478 err_cpus: 7479 put_online_cpus(); 7480 err_task: 7481 if (task) 7482 put_task_struct(task); 7483 err_group_fd: 7484 fdput(group); 7485 err_fd: 7486 put_unused_fd(event_fd); 7487 return err; 7488 } 7489 7490 /** 7491 * perf_event_create_kernel_counter 7492 * 7493 * @attr: attributes of the counter to create 7494 * @cpu: cpu in which the counter is bound 7495 * @task: task to profile (NULL for percpu) 7496 */ 7497 struct perf_event * 7498 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7499 struct task_struct *task, 7500 perf_overflow_handler_t overflow_handler, 7501 void *context) 7502 { 7503 struct perf_event_context *ctx; 7504 struct perf_event *event; 7505 int err; 7506 7507 /* 7508 * Get the target context (task or percpu): 7509 */ 7510 7511 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7512 overflow_handler, context); 7513 if (IS_ERR(event)) { 7514 err = PTR_ERR(event); 7515 goto err; 7516 } 7517 7518 /* Mark owner so we could distinguish it from user events. */ 7519 event->owner = EVENT_OWNER_KERNEL; 7520 7521 account_event(event); 7522 7523 ctx = find_get_context(event->pmu, task, cpu); 7524 if (IS_ERR(ctx)) { 7525 err = PTR_ERR(ctx); 7526 goto err_free; 7527 } 7528 7529 WARN_ON_ONCE(ctx->parent_ctx); 7530 mutex_lock(&ctx->mutex); 7531 perf_install_in_context(ctx, event, cpu); 7532 perf_unpin_context(ctx); 7533 mutex_unlock(&ctx->mutex); 7534 7535 return event; 7536 7537 err_free: 7538 free_event(event); 7539 err: 7540 return ERR_PTR(err); 7541 } 7542 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7543 7544 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7545 { 7546 struct perf_event_context *src_ctx; 7547 struct perf_event_context *dst_ctx; 7548 struct perf_event *event, *tmp; 7549 LIST_HEAD(events); 7550 7551 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7552 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7553 7554 mutex_lock(&src_ctx->mutex); 7555 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7556 event_entry) { 7557 perf_remove_from_context(event, false); 7558 unaccount_event_cpu(event, src_cpu); 7559 put_ctx(src_ctx); 7560 list_add(&event->migrate_entry, &events); 7561 } 7562 mutex_unlock(&src_ctx->mutex); 7563 7564 synchronize_rcu(); 7565 7566 mutex_lock(&dst_ctx->mutex); 7567 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7568 list_del(&event->migrate_entry); 7569 if (event->state >= PERF_EVENT_STATE_OFF) 7570 event->state = PERF_EVENT_STATE_INACTIVE; 7571 account_event_cpu(event, dst_cpu); 7572 perf_install_in_context(dst_ctx, event, dst_cpu); 7573 get_ctx(dst_ctx); 7574 } 7575 mutex_unlock(&dst_ctx->mutex); 7576 } 7577 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7578 7579 static void sync_child_event(struct perf_event *child_event, 7580 struct task_struct *child) 7581 { 7582 struct perf_event *parent_event = child_event->parent; 7583 u64 child_val; 7584 7585 if (child_event->attr.inherit_stat) 7586 perf_event_read_event(child_event, child); 7587 7588 child_val = perf_event_count(child_event); 7589 7590 /* 7591 * Add back the child's count to the parent's count: 7592 */ 7593 atomic64_add(child_val, &parent_event->child_count); 7594 atomic64_add(child_event->total_time_enabled, 7595 &parent_event->child_total_time_enabled); 7596 atomic64_add(child_event->total_time_running, 7597 &parent_event->child_total_time_running); 7598 7599 /* 7600 * Remove this event from the parent's list 7601 */ 7602 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7603 mutex_lock(&parent_event->child_mutex); 7604 list_del_init(&child_event->child_list); 7605 mutex_unlock(&parent_event->child_mutex); 7606 7607 /* 7608 * Make sure user/parent get notified, that we just 7609 * lost one event. 7610 */ 7611 perf_event_wakeup(parent_event); 7612 7613 /* 7614 * Release the parent event, if this was the last 7615 * reference to it. 7616 */ 7617 put_event(parent_event); 7618 } 7619 7620 static void 7621 __perf_event_exit_task(struct perf_event *child_event, 7622 struct perf_event_context *child_ctx, 7623 struct task_struct *child) 7624 { 7625 /* 7626 * Do not destroy the 'original' grouping; because of the context 7627 * switch optimization the original events could've ended up in a 7628 * random child task. 7629 * 7630 * If we were to destroy the original group, all group related 7631 * operations would cease to function properly after this random 7632 * child dies. 7633 * 7634 * Do destroy all inherited groups, we don't care about those 7635 * and being thorough is better. 7636 */ 7637 perf_remove_from_context(child_event, !!child_event->parent); 7638 7639 /* 7640 * It can happen that the parent exits first, and has events 7641 * that are still around due to the child reference. These 7642 * events need to be zapped. 7643 */ 7644 if (child_event->parent) { 7645 sync_child_event(child_event, child); 7646 free_event(child_event); 7647 } else { 7648 child_event->state = PERF_EVENT_STATE_EXIT; 7649 perf_event_wakeup(child_event); 7650 } 7651 } 7652 7653 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7654 { 7655 struct perf_event *child_event, *next; 7656 struct perf_event_context *child_ctx, *clone_ctx = NULL; 7657 unsigned long flags; 7658 7659 if (likely(!child->perf_event_ctxp[ctxn])) { 7660 perf_event_task(child, NULL, 0); 7661 return; 7662 } 7663 7664 local_irq_save(flags); 7665 /* 7666 * We can't reschedule here because interrupts are disabled, 7667 * and either child is current or it is a task that can't be 7668 * scheduled, so we are now safe from rescheduling changing 7669 * our context. 7670 */ 7671 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7672 7673 /* 7674 * Take the context lock here so that if find_get_context is 7675 * reading child->perf_event_ctxp, we wait until it has 7676 * incremented the context's refcount before we do put_ctx below. 7677 */ 7678 raw_spin_lock(&child_ctx->lock); 7679 task_ctx_sched_out(child_ctx); 7680 child->perf_event_ctxp[ctxn] = NULL; 7681 7682 /* 7683 * If this context is a clone; unclone it so it can't get 7684 * swapped to another process while we're removing all 7685 * the events from it. 7686 */ 7687 clone_ctx = unclone_ctx(child_ctx); 7688 update_context_time(child_ctx); 7689 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7690 7691 if (clone_ctx) 7692 put_ctx(clone_ctx); 7693 7694 /* 7695 * Report the task dead after unscheduling the events so that we 7696 * won't get any samples after PERF_RECORD_EXIT. We can however still 7697 * get a few PERF_RECORD_READ events. 7698 */ 7699 perf_event_task(child, child_ctx, 0); 7700 7701 /* 7702 * We can recurse on the same lock type through: 7703 * 7704 * __perf_event_exit_task() 7705 * sync_child_event() 7706 * put_event() 7707 * mutex_lock(&ctx->mutex) 7708 * 7709 * But since its the parent context it won't be the same instance. 7710 */ 7711 mutex_lock(&child_ctx->mutex); 7712 7713 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 7714 __perf_event_exit_task(child_event, child_ctx, child); 7715 7716 mutex_unlock(&child_ctx->mutex); 7717 7718 put_ctx(child_ctx); 7719 } 7720 7721 /* 7722 * When a child task exits, feed back event values to parent events. 7723 */ 7724 void perf_event_exit_task(struct task_struct *child) 7725 { 7726 struct perf_event *event, *tmp; 7727 int ctxn; 7728 7729 mutex_lock(&child->perf_event_mutex); 7730 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7731 owner_entry) { 7732 list_del_init(&event->owner_entry); 7733 7734 /* 7735 * Ensure the list deletion is visible before we clear 7736 * the owner, closes a race against perf_release() where 7737 * we need to serialize on the owner->perf_event_mutex. 7738 */ 7739 smp_wmb(); 7740 event->owner = NULL; 7741 } 7742 mutex_unlock(&child->perf_event_mutex); 7743 7744 for_each_task_context_nr(ctxn) 7745 perf_event_exit_task_context(child, ctxn); 7746 } 7747 7748 static void perf_free_event(struct perf_event *event, 7749 struct perf_event_context *ctx) 7750 { 7751 struct perf_event *parent = event->parent; 7752 7753 if (WARN_ON_ONCE(!parent)) 7754 return; 7755 7756 mutex_lock(&parent->child_mutex); 7757 list_del_init(&event->child_list); 7758 mutex_unlock(&parent->child_mutex); 7759 7760 put_event(parent); 7761 7762 perf_group_detach(event); 7763 list_del_event(event, ctx); 7764 free_event(event); 7765 } 7766 7767 /* 7768 * free an unexposed, unused context as created by inheritance by 7769 * perf_event_init_task below, used by fork() in case of fail. 7770 */ 7771 void perf_event_free_task(struct task_struct *task) 7772 { 7773 struct perf_event_context *ctx; 7774 struct perf_event *event, *tmp; 7775 int ctxn; 7776 7777 for_each_task_context_nr(ctxn) { 7778 ctx = task->perf_event_ctxp[ctxn]; 7779 if (!ctx) 7780 continue; 7781 7782 mutex_lock(&ctx->mutex); 7783 again: 7784 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7785 group_entry) 7786 perf_free_event(event, ctx); 7787 7788 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7789 group_entry) 7790 perf_free_event(event, ctx); 7791 7792 if (!list_empty(&ctx->pinned_groups) || 7793 !list_empty(&ctx->flexible_groups)) 7794 goto again; 7795 7796 mutex_unlock(&ctx->mutex); 7797 7798 put_ctx(ctx); 7799 } 7800 } 7801 7802 void perf_event_delayed_put(struct task_struct *task) 7803 { 7804 int ctxn; 7805 7806 for_each_task_context_nr(ctxn) 7807 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7808 } 7809 7810 /* 7811 * inherit a event from parent task to child task: 7812 */ 7813 static struct perf_event * 7814 inherit_event(struct perf_event *parent_event, 7815 struct task_struct *parent, 7816 struct perf_event_context *parent_ctx, 7817 struct task_struct *child, 7818 struct perf_event *group_leader, 7819 struct perf_event_context *child_ctx) 7820 { 7821 enum perf_event_active_state parent_state = parent_event->state; 7822 struct perf_event *child_event; 7823 unsigned long flags; 7824 7825 /* 7826 * Instead of creating recursive hierarchies of events, 7827 * we link inherited events back to the original parent, 7828 * which has a filp for sure, which we use as the reference 7829 * count: 7830 */ 7831 if (parent_event->parent) 7832 parent_event = parent_event->parent; 7833 7834 child_event = perf_event_alloc(&parent_event->attr, 7835 parent_event->cpu, 7836 child, 7837 group_leader, parent_event, 7838 NULL, NULL); 7839 if (IS_ERR(child_event)) 7840 return child_event; 7841 7842 if (is_orphaned_event(parent_event) || 7843 !atomic_long_inc_not_zero(&parent_event->refcount)) { 7844 free_event(child_event); 7845 return NULL; 7846 } 7847 7848 get_ctx(child_ctx); 7849 7850 /* 7851 * Make the child state follow the state of the parent event, 7852 * not its attr.disabled bit. We hold the parent's mutex, 7853 * so we won't race with perf_event_{en, dis}able_family. 7854 */ 7855 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 7856 child_event->state = PERF_EVENT_STATE_INACTIVE; 7857 else 7858 child_event->state = PERF_EVENT_STATE_OFF; 7859 7860 if (parent_event->attr.freq) { 7861 u64 sample_period = parent_event->hw.sample_period; 7862 struct hw_perf_event *hwc = &child_event->hw; 7863 7864 hwc->sample_period = sample_period; 7865 hwc->last_period = sample_period; 7866 7867 local64_set(&hwc->period_left, sample_period); 7868 } 7869 7870 child_event->ctx = child_ctx; 7871 child_event->overflow_handler = parent_event->overflow_handler; 7872 child_event->overflow_handler_context 7873 = parent_event->overflow_handler_context; 7874 7875 /* 7876 * Precalculate sample_data sizes 7877 */ 7878 perf_event__header_size(child_event); 7879 perf_event__id_header_size(child_event); 7880 7881 /* 7882 * Link it up in the child's context: 7883 */ 7884 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7885 add_event_to_ctx(child_event, child_ctx); 7886 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7887 7888 /* 7889 * Link this into the parent event's child list 7890 */ 7891 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7892 mutex_lock(&parent_event->child_mutex); 7893 list_add_tail(&child_event->child_list, &parent_event->child_list); 7894 mutex_unlock(&parent_event->child_mutex); 7895 7896 return child_event; 7897 } 7898 7899 static int inherit_group(struct perf_event *parent_event, 7900 struct task_struct *parent, 7901 struct perf_event_context *parent_ctx, 7902 struct task_struct *child, 7903 struct perf_event_context *child_ctx) 7904 { 7905 struct perf_event *leader; 7906 struct perf_event *sub; 7907 struct perf_event *child_ctr; 7908 7909 leader = inherit_event(parent_event, parent, parent_ctx, 7910 child, NULL, child_ctx); 7911 if (IS_ERR(leader)) 7912 return PTR_ERR(leader); 7913 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7914 child_ctr = inherit_event(sub, parent, parent_ctx, 7915 child, leader, child_ctx); 7916 if (IS_ERR(child_ctr)) 7917 return PTR_ERR(child_ctr); 7918 } 7919 return 0; 7920 } 7921 7922 static int 7923 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7924 struct perf_event_context *parent_ctx, 7925 struct task_struct *child, int ctxn, 7926 int *inherited_all) 7927 { 7928 int ret; 7929 struct perf_event_context *child_ctx; 7930 7931 if (!event->attr.inherit) { 7932 *inherited_all = 0; 7933 return 0; 7934 } 7935 7936 child_ctx = child->perf_event_ctxp[ctxn]; 7937 if (!child_ctx) { 7938 /* 7939 * This is executed from the parent task context, so 7940 * inherit events that have been marked for cloning. 7941 * First allocate and initialize a context for the 7942 * child. 7943 */ 7944 7945 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7946 if (!child_ctx) 7947 return -ENOMEM; 7948 7949 child->perf_event_ctxp[ctxn] = child_ctx; 7950 } 7951 7952 ret = inherit_group(event, parent, parent_ctx, 7953 child, child_ctx); 7954 7955 if (ret) 7956 *inherited_all = 0; 7957 7958 return ret; 7959 } 7960 7961 /* 7962 * Initialize the perf_event context in task_struct 7963 */ 7964 static int perf_event_init_context(struct task_struct *child, int ctxn) 7965 { 7966 struct perf_event_context *child_ctx, *parent_ctx; 7967 struct perf_event_context *cloned_ctx; 7968 struct perf_event *event; 7969 struct task_struct *parent = current; 7970 int inherited_all = 1; 7971 unsigned long flags; 7972 int ret = 0; 7973 7974 if (likely(!parent->perf_event_ctxp[ctxn])) 7975 return 0; 7976 7977 /* 7978 * If the parent's context is a clone, pin it so it won't get 7979 * swapped under us. 7980 */ 7981 parent_ctx = perf_pin_task_context(parent, ctxn); 7982 if (!parent_ctx) 7983 return 0; 7984 7985 /* 7986 * No need to check if parent_ctx != NULL here; since we saw 7987 * it non-NULL earlier, the only reason for it to become NULL 7988 * is if we exit, and since we're currently in the middle of 7989 * a fork we can't be exiting at the same time. 7990 */ 7991 7992 /* 7993 * Lock the parent list. No need to lock the child - not PID 7994 * hashed yet and not running, so nobody can access it. 7995 */ 7996 mutex_lock(&parent_ctx->mutex); 7997 7998 /* 7999 * We dont have to disable NMIs - we are only looking at 8000 * the list, not manipulating it: 8001 */ 8002 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8003 ret = inherit_task_group(event, parent, parent_ctx, 8004 child, ctxn, &inherited_all); 8005 if (ret) 8006 break; 8007 } 8008 8009 /* 8010 * We can't hold ctx->lock when iterating the ->flexible_group list due 8011 * to allocations, but we need to prevent rotation because 8012 * rotate_ctx() will change the list from interrupt context. 8013 */ 8014 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8015 parent_ctx->rotate_disable = 1; 8016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8017 8018 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8019 ret = inherit_task_group(event, parent, parent_ctx, 8020 child, ctxn, &inherited_all); 8021 if (ret) 8022 break; 8023 } 8024 8025 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8026 parent_ctx->rotate_disable = 0; 8027 8028 child_ctx = child->perf_event_ctxp[ctxn]; 8029 8030 if (child_ctx && inherited_all) { 8031 /* 8032 * Mark the child context as a clone of the parent 8033 * context, or of whatever the parent is a clone of. 8034 * 8035 * Note that if the parent is a clone, the holding of 8036 * parent_ctx->lock avoids it from being uncloned. 8037 */ 8038 cloned_ctx = parent_ctx->parent_ctx; 8039 if (cloned_ctx) { 8040 child_ctx->parent_ctx = cloned_ctx; 8041 child_ctx->parent_gen = parent_ctx->parent_gen; 8042 } else { 8043 child_ctx->parent_ctx = parent_ctx; 8044 child_ctx->parent_gen = parent_ctx->generation; 8045 } 8046 get_ctx(child_ctx->parent_ctx); 8047 } 8048 8049 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8050 mutex_unlock(&parent_ctx->mutex); 8051 8052 perf_unpin_context(parent_ctx); 8053 put_ctx(parent_ctx); 8054 8055 return ret; 8056 } 8057 8058 /* 8059 * Initialize the perf_event context in task_struct 8060 */ 8061 int perf_event_init_task(struct task_struct *child) 8062 { 8063 int ctxn, ret; 8064 8065 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8066 mutex_init(&child->perf_event_mutex); 8067 INIT_LIST_HEAD(&child->perf_event_list); 8068 8069 for_each_task_context_nr(ctxn) { 8070 ret = perf_event_init_context(child, ctxn); 8071 if (ret) { 8072 perf_event_free_task(child); 8073 return ret; 8074 } 8075 } 8076 8077 return 0; 8078 } 8079 8080 static void __init perf_event_init_all_cpus(void) 8081 { 8082 struct swevent_htable *swhash; 8083 int cpu; 8084 8085 for_each_possible_cpu(cpu) { 8086 swhash = &per_cpu(swevent_htable, cpu); 8087 mutex_init(&swhash->hlist_mutex); 8088 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 8089 } 8090 } 8091 8092 static void perf_event_init_cpu(int cpu) 8093 { 8094 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8095 8096 mutex_lock(&swhash->hlist_mutex); 8097 swhash->online = true; 8098 if (swhash->hlist_refcount > 0) { 8099 struct swevent_hlist *hlist; 8100 8101 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8102 WARN_ON(!hlist); 8103 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8104 } 8105 mutex_unlock(&swhash->hlist_mutex); 8106 } 8107 8108 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8109 static void perf_pmu_rotate_stop(struct pmu *pmu) 8110 { 8111 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 8112 8113 WARN_ON(!irqs_disabled()); 8114 8115 list_del_init(&cpuctx->rotation_list); 8116 } 8117 8118 static void __perf_event_exit_context(void *__info) 8119 { 8120 struct remove_event re = { .detach_group = false }; 8121 struct perf_event_context *ctx = __info; 8122 8123 perf_pmu_rotate_stop(ctx->pmu); 8124 8125 rcu_read_lock(); 8126 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8127 __perf_remove_from_context(&re); 8128 rcu_read_unlock(); 8129 } 8130 8131 static void perf_event_exit_cpu_context(int cpu) 8132 { 8133 struct perf_event_context *ctx; 8134 struct pmu *pmu; 8135 int idx; 8136 8137 idx = srcu_read_lock(&pmus_srcu); 8138 list_for_each_entry_rcu(pmu, &pmus, entry) { 8139 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8140 8141 mutex_lock(&ctx->mutex); 8142 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8143 mutex_unlock(&ctx->mutex); 8144 } 8145 srcu_read_unlock(&pmus_srcu, idx); 8146 } 8147 8148 static void perf_event_exit_cpu(int cpu) 8149 { 8150 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8151 8152 perf_event_exit_cpu_context(cpu); 8153 8154 mutex_lock(&swhash->hlist_mutex); 8155 swhash->online = false; 8156 swevent_hlist_release(swhash); 8157 mutex_unlock(&swhash->hlist_mutex); 8158 } 8159 #else 8160 static inline void perf_event_exit_cpu(int cpu) { } 8161 #endif 8162 8163 static int 8164 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8165 { 8166 int cpu; 8167 8168 for_each_online_cpu(cpu) 8169 perf_event_exit_cpu(cpu); 8170 8171 return NOTIFY_OK; 8172 } 8173 8174 /* 8175 * Run the perf reboot notifier at the very last possible moment so that 8176 * the generic watchdog code runs as long as possible. 8177 */ 8178 static struct notifier_block perf_reboot_notifier = { 8179 .notifier_call = perf_reboot, 8180 .priority = INT_MIN, 8181 }; 8182 8183 static int 8184 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 8185 { 8186 unsigned int cpu = (long)hcpu; 8187 8188 switch (action & ~CPU_TASKS_FROZEN) { 8189 8190 case CPU_UP_PREPARE: 8191 case CPU_DOWN_FAILED: 8192 perf_event_init_cpu(cpu); 8193 break; 8194 8195 case CPU_UP_CANCELED: 8196 case CPU_DOWN_PREPARE: 8197 perf_event_exit_cpu(cpu); 8198 break; 8199 default: 8200 break; 8201 } 8202 8203 return NOTIFY_OK; 8204 } 8205 8206 void __init perf_event_init(void) 8207 { 8208 int ret; 8209 8210 idr_init(&pmu_idr); 8211 8212 perf_event_init_all_cpus(); 8213 init_srcu_struct(&pmus_srcu); 8214 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8215 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8216 perf_pmu_register(&perf_task_clock, NULL, -1); 8217 perf_tp_register(); 8218 perf_cpu_notifier(perf_cpu_notify); 8219 register_reboot_notifier(&perf_reboot_notifier); 8220 8221 ret = init_hw_breakpoint(); 8222 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8223 8224 /* do not patch jump label more than once per second */ 8225 jump_label_rate_limit(&perf_sched_events, HZ); 8226 8227 /* 8228 * Build time assertion that we keep the data_head at the intended 8229 * location. IOW, validation we got the __reserved[] size right. 8230 */ 8231 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8232 != 1024); 8233 } 8234 8235 static int __init perf_event_sysfs_init(void) 8236 { 8237 struct pmu *pmu; 8238 int ret; 8239 8240 mutex_lock(&pmus_lock); 8241 8242 ret = bus_register(&pmu_bus); 8243 if (ret) 8244 goto unlock; 8245 8246 list_for_each_entry(pmu, &pmus, entry) { 8247 if (!pmu->name || pmu->type < 0) 8248 continue; 8249 8250 ret = pmu_dev_alloc(pmu); 8251 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 8252 } 8253 pmu_bus_running = 1; 8254 ret = 0; 8255 8256 unlock: 8257 mutex_unlock(&pmus_lock); 8258 8259 return ret; 8260 } 8261 device_initcall(perf_event_sysfs_init); 8262 8263 #ifdef CONFIG_CGROUP_PERF 8264 static struct cgroup_subsys_state * 8265 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8266 { 8267 struct perf_cgroup *jc; 8268 8269 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 8270 if (!jc) 8271 return ERR_PTR(-ENOMEM); 8272 8273 jc->info = alloc_percpu(struct perf_cgroup_info); 8274 if (!jc->info) { 8275 kfree(jc); 8276 return ERR_PTR(-ENOMEM); 8277 } 8278 8279 return &jc->css; 8280 } 8281 8282 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 8283 { 8284 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 8285 8286 free_percpu(jc->info); 8287 kfree(jc); 8288 } 8289 8290 static int __perf_cgroup_move(void *info) 8291 { 8292 struct task_struct *task = info; 8293 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8294 return 0; 8295 } 8296 8297 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8298 struct cgroup_taskset *tset) 8299 { 8300 struct task_struct *task; 8301 8302 cgroup_taskset_for_each(task, tset) 8303 task_function_call(task, __perf_cgroup_move, task); 8304 } 8305 8306 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8307 struct cgroup_subsys_state *old_css, 8308 struct task_struct *task) 8309 { 8310 /* 8311 * cgroup_exit() is called in the copy_process() failure path. 8312 * Ignore this case since the task hasn't ran yet, this avoids 8313 * trying to poke a half freed task state from generic code. 8314 */ 8315 if (!(task->flags & PF_EXITING)) 8316 return; 8317 8318 task_function_call(task, __perf_cgroup_move, task); 8319 } 8320 8321 struct cgroup_subsys perf_event_cgrp_subsys = { 8322 .css_alloc = perf_cgroup_css_alloc, 8323 .css_free = perf_cgroup_css_free, 8324 .exit = perf_cgroup_exit, 8325 .attach = perf_cgroup_attach, 8326 }; 8327 #endif /* CONFIG_CGROUP_PERF */ 8328