xref: /openbmc/linux/kernel/events/core.c (revision 6562c9ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type);
578 
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581 
582 void __weak perf_event_print_debug(void)	{ }
583 
584 static inline u64 perf_clock(void)
585 {
586 	return local_clock();
587 }
588 
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591 	return event->clock();
592 }
593 
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615 
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619 	struct perf_event *leader = event->group_leader;
620 
621 	if (leader->state <= PERF_EVENT_STATE_OFF)
622 		return leader->state;
623 
624 	return event->state;
625 }
626 
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630 	enum perf_event_state state = __perf_effective_state(event);
631 	u64 delta = now - event->tstamp;
632 
633 	*enabled = event->total_time_enabled;
634 	if (state >= PERF_EVENT_STATE_INACTIVE)
635 		*enabled += delta;
636 
637 	*running = event->total_time_running;
638 	if (state >= PERF_EVENT_STATE_ACTIVE)
639 		*running += delta;
640 }
641 
642 static void perf_event_update_time(struct perf_event *event)
643 {
644 	u64 now = perf_event_time(event);
645 
646 	__perf_update_times(event, now, &event->total_time_enabled,
647 					&event->total_time_running);
648 	event->tstamp = now;
649 }
650 
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653 	struct perf_event *sibling;
654 
655 	for_each_sibling_event(sibling, leader)
656 		perf_event_update_time(sibling);
657 }
658 
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662 	if (event->state == state)
663 		return;
664 
665 	perf_event_update_time(event);
666 	/*
667 	 * If a group leader gets enabled/disabled all its siblings
668 	 * are affected too.
669 	 */
670 	if ((event->state < 0) ^ (state < 0))
671 		perf_event_update_sibling_time(event);
672 
673 	WRITE_ONCE(event->state, state);
674 }
675 
676 /*
677  * UP store-release, load-acquire
678  */
679 
680 #define __store_release(ptr, val)					\
681 do {									\
682 	barrier();							\
683 	WRITE_ONCE(*(ptr), (val));					\
684 } while (0)
685 
686 #define __load_acquire(ptr)						\
687 ({									\
688 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
689 	barrier();							\
690 	___p;								\
691 })
692 
693 #ifdef CONFIG_CGROUP_PERF
694 
695 static inline bool
696 perf_cgroup_match(struct perf_event *event)
697 {
698 	struct perf_event_context *ctx = event->ctx;
699 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
700 
701 	/* @event doesn't care about cgroup */
702 	if (!event->cgrp)
703 		return true;
704 
705 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
706 	if (!cpuctx->cgrp)
707 		return false;
708 
709 	/*
710 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
711 	 * also enabled for all its descendant cgroups.  If @cpuctx's
712 	 * cgroup is a descendant of @event's (the test covers identity
713 	 * case), it's a match.
714 	 */
715 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
716 				    event->cgrp->css.cgroup);
717 }
718 
719 static inline void perf_detach_cgroup(struct perf_event *event)
720 {
721 	css_put(&event->cgrp->css);
722 	event->cgrp = NULL;
723 }
724 
725 static inline int is_cgroup_event(struct perf_event *event)
726 {
727 	return event->cgrp != NULL;
728 }
729 
730 static inline u64 perf_cgroup_event_time(struct perf_event *event)
731 {
732 	struct perf_cgroup_info *t;
733 
734 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
735 	return t->time;
736 }
737 
738 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
739 {
740 	struct perf_cgroup_info *t;
741 
742 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
743 	if (!__load_acquire(&t->active))
744 		return t->time;
745 	now += READ_ONCE(t->timeoffset);
746 	return now;
747 }
748 
749 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
750 {
751 	if (adv)
752 		info->time += now - info->timestamp;
753 	info->timestamp = now;
754 	/*
755 	 * see update_context_time()
756 	 */
757 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
758 }
759 
760 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
761 {
762 	struct perf_cgroup *cgrp = cpuctx->cgrp;
763 	struct cgroup_subsys_state *css;
764 	struct perf_cgroup_info *info;
765 
766 	if (cgrp) {
767 		u64 now = perf_clock();
768 
769 		for (css = &cgrp->css; css; css = css->parent) {
770 			cgrp = container_of(css, struct perf_cgroup, css);
771 			info = this_cpu_ptr(cgrp->info);
772 
773 			__update_cgrp_time(info, now, true);
774 			if (final)
775 				__store_release(&info->active, 0);
776 		}
777 	}
778 }
779 
780 static inline void update_cgrp_time_from_event(struct perf_event *event)
781 {
782 	struct perf_cgroup_info *info;
783 
784 	/*
785 	 * ensure we access cgroup data only when needed and
786 	 * when we know the cgroup is pinned (css_get)
787 	 */
788 	if (!is_cgroup_event(event))
789 		return;
790 
791 	info = this_cpu_ptr(event->cgrp->info);
792 	/*
793 	 * Do not update time when cgroup is not active
794 	 */
795 	if (info->active)
796 		__update_cgrp_time(info, perf_clock(), true);
797 }
798 
799 static inline void
800 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
801 {
802 	struct perf_event_context *ctx = &cpuctx->ctx;
803 	struct perf_cgroup *cgrp = cpuctx->cgrp;
804 	struct perf_cgroup_info *info;
805 	struct cgroup_subsys_state *css;
806 
807 	/*
808 	 * ctx->lock held by caller
809 	 * ensure we do not access cgroup data
810 	 * unless we have the cgroup pinned (css_get)
811 	 */
812 	if (!cgrp)
813 		return;
814 
815 	WARN_ON_ONCE(!ctx->nr_cgroups);
816 
817 	for (css = &cgrp->css; css; css = css->parent) {
818 		cgrp = container_of(css, struct perf_cgroup, css);
819 		info = this_cpu_ptr(cgrp->info);
820 		__update_cgrp_time(info, ctx->timestamp, false);
821 		__store_release(&info->active, 1);
822 	}
823 }
824 
825 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
826 
827 /*
828  * reschedule events based on the cgroup constraint of task.
829  */
830 static void perf_cgroup_switch(struct task_struct *task)
831 {
832 	struct perf_cgroup *cgrp;
833 	struct perf_cpu_context *cpuctx, *tmp;
834 	struct list_head *list;
835 	unsigned long flags;
836 
837 	/*
838 	 * Disable interrupts and preemption to avoid this CPU's
839 	 * cgrp_cpuctx_entry to change under us.
840 	 */
841 	local_irq_save(flags);
842 
843 	cgrp = perf_cgroup_from_task(task, NULL);
844 
845 	list = this_cpu_ptr(&cgrp_cpuctx_list);
846 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
847 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
848 		if (READ_ONCE(cpuctx->cgrp) == cgrp)
849 			continue;
850 
851 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
852 		perf_pmu_disable(cpuctx->ctx.pmu);
853 
854 		cpu_ctx_sched_out(cpuctx, EVENT_ALL);
855 		/*
856 		 * must not be done before ctxswout due
857 		 * to update_cgrp_time_from_cpuctx() in
858 		 * ctx_sched_out()
859 		 */
860 		cpuctx->cgrp = cgrp;
861 		/*
862 		 * set cgrp before ctxsw in to allow
863 		 * perf_cgroup_set_timestamp() in ctx_sched_in()
864 		 * to not have to pass task around
865 		 */
866 		cpu_ctx_sched_in(cpuctx, EVENT_ALL);
867 
868 		perf_pmu_enable(cpuctx->ctx.pmu);
869 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
870 	}
871 
872 	local_irq_restore(flags);
873 }
874 
875 static int perf_cgroup_ensure_storage(struct perf_event *event,
876 				struct cgroup_subsys_state *css)
877 {
878 	struct perf_cpu_context *cpuctx;
879 	struct perf_event **storage;
880 	int cpu, heap_size, ret = 0;
881 
882 	/*
883 	 * Allow storage to have sufficent space for an iterator for each
884 	 * possibly nested cgroup plus an iterator for events with no cgroup.
885 	 */
886 	for (heap_size = 1; css; css = css->parent)
887 		heap_size++;
888 
889 	for_each_possible_cpu(cpu) {
890 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
891 		if (heap_size <= cpuctx->heap_size)
892 			continue;
893 
894 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
895 				       GFP_KERNEL, cpu_to_node(cpu));
896 		if (!storage) {
897 			ret = -ENOMEM;
898 			break;
899 		}
900 
901 		raw_spin_lock_irq(&cpuctx->ctx.lock);
902 		if (cpuctx->heap_size < heap_size) {
903 			swap(cpuctx->heap, storage);
904 			if (storage == cpuctx->heap_default)
905 				storage = NULL;
906 			cpuctx->heap_size = heap_size;
907 		}
908 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
909 
910 		kfree(storage);
911 	}
912 
913 	return ret;
914 }
915 
916 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
917 				      struct perf_event_attr *attr,
918 				      struct perf_event *group_leader)
919 {
920 	struct perf_cgroup *cgrp;
921 	struct cgroup_subsys_state *css;
922 	struct fd f = fdget(fd);
923 	int ret = 0;
924 
925 	if (!f.file)
926 		return -EBADF;
927 
928 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
929 					 &perf_event_cgrp_subsys);
930 	if (IS_ERR(css)) {
931 		ret = PTR_ERR(css);
932 		goto out;
933 	}
934 
935 	ret = perf_cgroup_ensure_storage(event, css);
936 	if (ret)
937 		goto out;
938 
939 	cgrp = container_of(css, struct perf_cgroup, css);
940 	event->cgrp = cgrp;
941 
942 	/*
943 	 * all events in a group must monitor
944 	 * the same cgroup because a task belongs
945 	 * to only one perf cgroup at a time
946 	 */
947 	if (group_leader && group_leader->cgrp != cgrp) {
948 		perf_detach_cgroup(event);
949 		ret = -EINVAL;
950 	}
951 out:
952 	fdput(f);
953 	return ret;
954 }
955 
956 static inline void
957 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
958 {
959 	struct perf_cpu_context *cpuctx;
960 
961 	if (!is_cgroup_event(event))
962 		return;
963 
964 	/*
965 	 * Because cgroup events are always per-cpu events,
966 	 * @ctx == &cpuctx->ctx.
967 	 */
968 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
969 
970 	if (ctx->nr_cgroups++)
971 		return;
972 
973 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
974 	list_add(&cpuctx->cgrp_cpuctx_entry,
975 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
976 }
977 
978 static inline void
979 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
980 {
981 	struct perf_cpu_context *cpuctx;
982 
983 	if (!is_cgroup_event(event))
984 		return;
985 
986 	/*
987 	 * Because cgroup events are always per-cpu events,
988 	 * @ctx == &cpuctx->ctx.
989 	 */
990 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
991 
992 	if (--ctx->nr_cgroups)
993 		return;
994 
995 	cpuctx->cgrp = NULL;
996 	list_del(&cpuctx->cgrp_cpuctx_entry);
997 }
998 
999 #else /* !CONFIG_CGROUP_PERF */
1000 
1001 static inline bool
1002 perf_cgroup_match(struct perf_event *event)
1003 {
1004 	return true;
1005 }
1006 
1007 static inline void perf_detach_cgroup(struct perf_event *event)
1008 {}
1009 
1010 static inline int is_cgroup_event(struct perf_event *event)
1011 {
1012 	return 0;
1013 }
1014 
1015 static inline void update_cgrp_time_from_event(struct perf_event *event)
1016 {
1017 }
1018 
1019 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1020 						bool final)
1021 {
1022 }
1023 
1024 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1025 				      struct perf_event_attr *attr,
1026 				      struct perf_event *group_leader)
1027 {
1028 	return -EINVAL;
1029 }
1030 
1031 static inline void
1032 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1033 {
1034 }
1035 
1036 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1037 {
1038 	return 0;
1039 }
1040 
1041 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1042 {
1043 	return 0;
1044 }
1045 
1046 static inline void
1047 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1048 {
1049 }
1050 
1051 static inline void
1052 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1053 {
1054 }
1055 
1056 static void perf_cgroup_switch(struct task_struct *task)
1057 {
1058 }
1059 #endif
1060 
1061 /*
1062  * set default to be dependent on timer tick just
1063  * like original code
1064  */
1065 #define PERF_CPU_HRTIMER (1000 / HZ)
1066 /*
1067  * function must be called with interrupts disabled
1068  */
1069 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1070 {
1071 	struct perf_cpu_context *cpuctx;
1072 	bool rotations;
1073 
1074 	lockdep_assert_irqs_disabled();
1075 
1076 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1077 	rotations = perf_rotate_context(cpuctx);
1078 
1079 	raw_spin_lock(&cpuctx->hrtimer_lock);
1080 	if (rotations)
1081 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1082 	else
1083 		cpuctx->hrtimer_active = 0;
1084 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1085 
1086 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1087 }
1088 
1089 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1090 {
1091 	struct hrtimer *timer = &cpuctx->hrtimer;
1092 	struct pmu *pmu = cpuctx->ctx.pmu;
1093 	u64 interval;
1094 
1095 	/* no multiplexing needed for SW PMU */
1096 	if (pmu->task_ctx_nr == perf_sw_context)
1097 		return;
1098 
1099 	/*
1100 	 * check default is sane, if not set then force to
1101 	 * default interval (1/tick)
1102 	 */
1103 	interval = pmu->hrtimer_interval_ms;
1104 	if (interval < 1)
1105 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1106 
1107 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1108 
1109 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1110 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1111 	timer->function = perf_mux_hrtimer_handler;
1112 }
1113 
1114 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1115 {
1116 	struct hrtimer *timer = &cpuctx->hrtimer;
1117 	struct pmu *pmu = cpuctx->ctx.pmu;
1118 	unsigned long flags;
1119 
1120 	/* not for SW PMU */
1121 	if (pmu->task_ctx_nr == perf_sw_context)
1122 		return 0;
1123 
1124 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1125 	if (!cpuctx->hrtimer_active) {
1126 		cpuctx->hrtimer_active = 1;
1127 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1128 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1129 	}
1130 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1131 
1132 	return 0;
1133 }
1134 
1135 void perf_pmu_disable(struct pmu *pmu)
1136 {
1137 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1138 	if (!(*count)++)
1139 		pmu->pmu_disable(pmu);
1140 }
1141 
1142 void perf_pmu_enable(struct pmu *pmu)
1143 {
1144 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 	if (!--(*count))
1146 		pmu->pmu_enable(pmu);
1147 }
1148 
1149 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1150 
1151 /*
1152  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1153  * perf_event_task_tick() are fully serialized because they're strictly cpu
1154  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1155  * disabled, while perf_event_task_tick is called from IRQ context.
1156  */
1157 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1158 {
1159 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1160 
1161 	lockdep_assert_irqs_disabled();
1162 
1163 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1164 
1165 	list_add(&ctx->active_ctx_list, head);
1166 }
1167 
1168 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1169 {
1170 	lockdep_assert_irqs_disabled();
1171 
1172 	WARN_ON(list_empty(&ctx->active_ctx_list));
1173 
1174 	list_del_init(&ctx->active_ctx_list);
1175 }
1176 
1177 static void get_ctx(struct perf_event_context *ctx)
1178 {
1179 	refcount_inc(&ctx->refcount);
1180 }
1181 
1182 static void *alloc_task_ctx_data(struct pmu *pmu)
1183 {
1184 	if (pmu->task_ctx_cache)
1185 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1186 
1187 	return NULL;
1188 }
1189 
1190 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1191 {
1192 	if (pmu->task_ctx_cache && task_ctx_data)
1193 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1194 }
1195 
1196 static void free_ctx(struct rcu_head *head)
1197 {
1198 	struct perf_event_context *ctx;
1199 
1200 	ctx = container_of(head, struct perf_event_context, rcu_head);
1201 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1202 	kfree(ctx);
1203 }
1204 
1205 static void put_ctx(struct perf_event_context *ctx)
1206 {
1207 	if (refcount_dec_and_test(&ctx->refcount)) {
1208 		if (ctx->parent_ctx)
1209 			put_ctx(ctx->parent_ctx);
1210 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1211 			put_task_struct(ctx->task);
1212 		call_rcu(&ctx->rcu_head, free_ctx);
1213 	}
1214 }
1215 
1216 /*
1217  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1218  * perf_pmu_migrate_context() we need some magic.
1219  *
1220  * Those places that change perf_event::ctx will hold both
1221  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1222  *
1223  * Lock ordering is by mutex address. There are two other sites where
1224  * perf_event_context::mutex nests and those are:
1225  *
1226  *  - perf_event_exit_task_context()	[ child , 0 ]
1227  *      perf_event_exit_event()
1228  *        put_event()			[ parent, 1 ]
1229  *
1230  *  - perf_event_init_context()		[ parent, 0 ]
1231  *      inherit_task_group()
1232  *        inherit_group()
1233  *          inherit_event()
1234  *            perf_event_alloc()
1235  *              perf_init_event()
1236  *                perf_try_init_event()	[ child , 1 ]
1237  *
1238  * While it appears there is an obvious deadlock here -- the parent and child
1239  * nesting levels are inverted between the two. This is in fact safe because
1240  * life-time rules separate them. That is an exiting task cannot fork, and a
1241  * spawning task cannot (yet) exit.
1242  *
1243  * But remember that these are parent<->child context relations, and
1244  * migration does not affect children, therefore these two orderings should not
1245  * interact.
1246  *
1247  * The change in perf_event::ctx does not affect children (as claimed above)
1248  * because the sys_perf_event_open() case will install a new event and break
1249  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1250  * concerned with cpuctx and that doesn't have children.
1251  *
1252  * The places that change perf_event::ctx will issue:
1253  *
1254  *   perf_remove_from_context();
1255  *   synchronize_rcu();
1256  *   perf_install_in_context();
1257  *
1258  * to affect the change. The remove_from_context() + synchronize_rcu() should
1259  * quiesce the event, after which we can install it in the new location. This
1260  * means that only external vectors (perf_fops, prctl) can perturb the event
1261  * while in transit. Therefore all such accessors should also acquire
1262  * perf_event_context::mutex to serialize against this.
1263  *
1264  * However; because event->ctx can change while we're waiting to acquire
1265  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1266  * function.
1267  *
1268  * Lock order:
1269  *    exec_update_lock
1270  *	task_struct::perf_event_mutex
1271  *	  perf_event_context::mutex
1272  *	    perf_event::child_mutex;
1273  *	      perf_event_context::lock
1274  *	    perf_event::mmap_mutex
1275  *	    mmap_lock
1276  *	      perf_addr_filters_head::lock
1277  *
1278  *    cpu_hotplug_lock
1279  *      pmus_lock
1280  *	  cpuctx->mutex / perf_event_context::mutex
1281  */
1282 static struct perf_event_context *
1283 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1284 {
1285 	struct perf_event_context *ctx;
1286 
1287 again:
1288 	rcu_read_lock();
1289 	ctx = READ_ONCE(event->ctx);
1290 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1291 		rcu_read_unlock();
1292 		goto again;
1293 	}
1294 	rcu_read_unlock();
1295 
1296 	mutex_lock_nested(&ctx->mutex, nesting);
1297 	if (event->ctx != ctx) {
1298 		mutex_unlock(&ctx->mutex);
1299 		put_ctx(ctx);
1300 		goto again;
1301 	}
1302 
1303 	return ctx;
1304 }
1305 
1306 static inline struct perf_event_context *
1307 perf_event_ctx_lock(struct perf_event *event)
1308 {
1309 	return perf_event_ctx_lock_nested(event, 0);
1310 }
1311 
1312 static void perf_event_ctx_unlock(struct perf_event *event,
1313 				  struct perf_event_context *ctx)
1314 {
1315 	mutex_unlock(&ctx->mutex);
1316 	put_ctx(ctx);
1317 }
1318 
1319 /*
1320  * This must be done under the ctx->lock, such as to serialize against
1321  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1322  * calling scheduler related locks and ctx->lock nests inside those.
1323  */
1324 static __must_check struct perf_event_context *
1325 unclone_ctx(struct perf_event_context *ctx)
1326 {
1327 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1328 
1329 	lockdep_assert_held(&ctx->lock);
1330 
1331 	if (parent_ctx)
1332 		ctx->parent_ctx = NULL;
1333 	ctx->generation++;
1334 
1335 	return parent_ctx;
1336 }
1337 
1338 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1339 				enum pid_type type)
1340 {
1341 	u32 nr;
1342 	/*
1343 	 * only top level events have the pid namespace they were created in
1344 	 */
1345 	if (event->parent)
1346 		event = event->parent;
1347 
1348 	nr = __task_pid_nr_ns(p, type, event->ns);
1349 	/* avoid -1 if it is idle thread or runs in another ns */
1350 	if (!nr && !pid_alive(p))
1351 		nr = -1;
1352 	return nr;
1353 }
1354 
1355 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1356 {
1357 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1358 }
1359 
1360 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1361 {
1362 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1363 }
1364 
1365 /*
1366  * If we inherit events we want to return the parent event id
1367  * to userspace.
1368  */
1369 static u64 primary_event_id(struct perf_event *event)
1370 {
1371 	u64 id = event->id;
1372 
1373 	if (event->parent)
1374 		id = event->parent->id;
1375 
1376 	return id;
1377 }
1378 
1379 /*
1380  * Get the perf_event_context for a task and lock it.
1381  *
1382  * This has to cope with the fact that until it is locked,
1383  * the context could get moved to another task.
1384  */
1385 static struct perf_event_context *
1386 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1387 {
1388 	struct perf_event_context *ctx;
1389 
1390 retry:
1391 	/*
1392 	 * One of the few rules of preemptible RCU is that one cannot do
1393 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1394 	 * part of the read side critical section was irqs-enabled -- see
1395 	 * rcu_read_unlock_special().
1396 	 *
1397 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1398 	 * side critical section has interrupts disabled.
1399 	 */
1400 	local_irq_save(*flags);
1401 	rcu_read_lock();
1402 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1403 	if (ctx) {
1404 		/*
1405 		 * If this context is a clone of another, it might
1406 		 * get swapped for another underneath us by
1407 		 * perf_event_task_sched_out, though the
1408 		 * rcu_read_lock() protects us from any context
1409 		 * getting freed.  Lock the context and check if it
1410 		 * got swapped before we could get the lock, and retry
1411 		 * if so.  If we locked the right context, then it
1412 		 * can't get swapped on us any more.
1413 		 */
1414 		raw_spin_lock(&ctx->lock);
1415 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1416 			raw_spin_unlock(&ctx->lock);
1417 			rcu_read_unlock();
1418 			local_irq_restore(*flags);
1419 			goto retry;
1420 		}
1421 
1422 		if (ctx->task == TASK_TOMBSTONE ||
1423 		    !refcount_inc_not_zero(&ctx->refcount)) {
1424 			raw_spin_unlock(&ctx->lock);
1425 			ctx = NULL;
1426 		} else {
1427 			WARN_ON_ONCE(ctx->task != task);
1428 		}
1429 	}
1430 	rcu_read_unlock();
1431 	if (!ctx)
1432 		local_irq_restore(*flags);
1433 	return ctx;
1434 }
1435 
1436 /*
1437  * Get the context for a task and increment its pin_count so it
1438  * can't get swapped to another task.  This also increments its
1439  * reference count so that the context can't get freed.
1440  */
1441 static struct perf_event_context *
1442 perf_pin_task_context(struct task_struct *task, int ctxn)
1443 {
1444 	struct perf_event_context *ctx;
1445 	unsigned long flags;
1446 
1447 	ctx = perf_lock_task_context(task, ctxn, &flags);
1448 	if (ctx) {
1449 		++ctx->pin_count;
1450 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 	}
1452 	return ctx;
1453 }
1454 
1455 static void perf_unpin_context(struct perf_event_context *ctx)
1456 {
1457 	unsigned long flags;
1458 
1459 	raw_spin_lock_irqsave(&ctx->lock, flags);
1460 	--ctx->pin_count;
1461 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1462 }
1463 
1464 /*
1465  * Update the record of the current time in a context.
1466  */
1467 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1468 {
1469 	u64 now = perf_clock();
1470 
1471 	if (adv)
1472 		ctx->time += now - ctx->timestamp;
1473 	ctx->timestamp = now;
1474 
1475 	/*
1476 	 * The above: time' = time + (now - timestamp), can be re-arranged
1477 	 * into: time` = now + (time - timestamp), which gives a single value
1478 	 * offset to compute future time without locks on.
1479 	 *
1480 	 * See perf_event_time_now(), which can be used from NMI context where
1481 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1482 	 * both the above values in a consistent manner.
1483 	 */
1484 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1485 }
1486 
1487 static void update_context_time(struct perf_event_context *ctx)
1488 {
1489 	__update_context_time(ctx, true);
1490 }
1491 
1492 static u64 perf_event_time(struct perf_event *event)
1493 {
1494 	struct perf_event_context *ctx = event->ctx;
1495 
1496 	if (unlikely(!ctx))
1497 		return 0;
1498 
1499 	if (is_cgroup_event(event))
1500 		return perf_cgroup_event_time(event);
1501 
1502 	return ctx->time;
1503 }
1504 
1505 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1506 {
1507 	struct perf_event_context *ctx = event->ctx;
1508 
1509 	if (unlikely(!ctx))
1510 		return 0;
1511 
1512 	if (is_cgroup_event(event))
1513 		return perf_cgroup_event_time_now(event, now);
1514 
1515 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1516 		return ctx->time;
1517 
1518 	now += READ_ONCE(ctx->timeoffset);
1519 	return now;
1520 }
1521 
1522 static enum event_type_t get_event_type(struct perf_event *event)
1523 {
1524 	struct perf_event_context *ctx = event->ctx;
1525 	enum event_type_t event_type;
1526 
1527 	lockdep_assert_held(&ctx->lock);
1528 
1529 	/*
1530 	 * It's 'group type', really, because if our group leader is
1531 	 * pinned, so are we.
1532 	 */
1533 	if (event->group_leader != event)
1534 		event = event->group_leader;
1535 
1536 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1537 	if (!ctx->task)
1538 		event_type |= EVENT_CPU;
1539 
1540 	return event_type;
1541 }
1542 
1543 /*
1544  * Helper function to initialize event group nodes.
1545  */
1546 static void init_event_group(struct perf_event *event)
1547 {
1548 	RB_CLEAR_NODE(&event->group_node);
1549 	event->group_index = 0;
1550 }
1551 
1552 /*
1553  * Extract pinned or flexible groups from the context
1554  * based on event attrs bits.
1555  */
1556 static struct perf_event_groups *
1557 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1558 {
1559 	if (event->attr.pinned)
1560 		return &ctx->pinned_groups;
1561 	else
1562 		return &ctx->flexible_groups;
1563 }
1564 
1565 /*
1566  * Helper function to initializes perf_event_group trees.
1567  */
1568 static void perf_event_groups_init(struct perf_event_groups *groups)
1569 {
1570 	groups->tree = RB_ROOT;
1571 	groups->index = 0;
1572 }
1573 
1574 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1575 {
1576 	struct cgroup *cgroup = NULL;
1577 
1578 #ifdef CONFIG_CGROUP_PERF
1579 	if (event->cgrp)
1580 		cgroup = event->cgrp->css.cgroup;
1581 #endif
1582 
1583 	return cgroup;
1584 }
1585 
1586 /*
1587  * Compare function for event groups;
1588  *
1589  * Implements complex key that first sorts by CPU and then by virtual index
1590  * which provides ordering when rotating groups for the same CPU.
1591  */
1592 static __always_inline int
1593 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1594 		      const u64 left_group_index, const struct perf_event *right)
1595 {
1596 	if (left_cpu < right->cpu)
1597 		return -1;
1598 	if (left_cpu > right->cpu)
1599 		return 1;
1600 
1601 #ifdef CONFIG_CGROUP_PERF
1602 	{
1603 		const struct cgroup *right_cgroup = event_cgroup(right);
1604 
1605 		if (left_cgroup != right_cgroup) {
1606 			if (!left_cgroup) {
1607 				/*
1608 				 * Left has no cgroup but right does, no
1609 				 * cgroups come first.
1610 				 */
1611 				return -1;
1612 			}
1613 			if (!right_cgroup) {
1614 				/*
1615 				 * Right has no cgroup but left does, no
1616 				 * cgroups come first.
1617 				 */
1618 				return 1;
1619 			}
1620 			/* Two dissimilar cgroups, order by id. */
1621 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1622 				return -1;
1623 
1624 			return 1;
1625 		}
1626 	}
1627 #endif
1628 
1629 	if (left_group_index < right->group_index)
1630 		return -1;
1631 	if (left_group_index > right->group_index)
1632 		return 1;
1633 
1634 	return 0;
1635 }
1636 
1637 #define __node_2_pe(node) \
1638 	rb_entry((node), struct perf_event, group_node)
1639 
1640 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1641 {
1642 	struct perf_event *e = __node_2_pe(a);
1643 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1644 				     __node_2_pe(b)) < 0;
1645 }
1646 
1647 struct __group_key {
1648 	int cpu;
1649 	struct cgroup *cgroup;
1650 };
1651 
1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 	const struct __group_key *a = key;
1655 	const struct perf_event *b = __node_2_pe(node);
1656 
1657 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1658 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1659 }
1660 
1661 /*
1662  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1663  * key (see perf_event_groups_less). This places it last inside the CPU
1664  * subtree.
1665  */
1666 static void
1667 perf_event_groups_insert(struct perf_event_groups *groups,
1668 			 struct perf_event *event)
1669 {
1670 	event->group_index = ++groups->index;
1671 
1672 	rb_add(&event->group_node, &groups->tree, __group_less);
1673 }
1674 
1675 /*
1676  * Helper function to insert event into the pinned or flexible groups.
1677  */
1678 static void
1679 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1680 {
1681 	struct perf_event_groups *groups;
1682 
1683 	groups = get_event_groups(event, ctx);
1684 	perf_event_groups_insert(groups, event);
1685 }
1686 
1687 /*
1688  * Delete a group from a tree.
1689  */
1690 static void
1691 perf_event_groups_delete(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1695 		     RB_EMPTY_ROOT(&groups->tree));
1696 
1697 	rb_erase(&event->group_node, &groups->tree);
1698 	init_event_group(event);
1699 }
1700 
1701 /*
1702  * Helper function to delete event from its groups.
1703  */
1704 static void
1705 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1706 {
1707 	struct perf_event_groups *groups;
1708 
1709 	groups = get_event_groups(event, ctx);
1710 	perf_event_groups_delete(groups, event);
1711 }
1712 
1713 /*
1714  * Get the leftmost event in the cpu/cgroup subtree.
1715  */
1716 static struct perf_event *
1717 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1718 			struct cgroup *cgrp)
1719 {
1720 	struct __group_key key = {
1721 		.cpu = cpu,
1722 		.cgroup = cgrp,
1723 	};
1724 	struct rb_node *node;
1725 
1726 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1727 	if (node)
1728 		return __node_2_pe(node);
1729 
1730 	return NULL;
1731 }
1732 
1733 /*
1734  * Like rb_entry_next_safe() for the @cpu subtree.
1735  */
1736 static struct perf_event *
1737 perf_event_groups_next(struct perf_event *event)
1738 {
1739 	struct __group_key key = {
1740 		.cpu = event->cpu,
1741 		.cgroup = event_cgroup(event),
1742 	};
1743 	struct rb_node *next;
1744 
1745 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1746 	if (next)
1747 		return __node_2_pe(next);
1748 
1749 	return NULL;
1750 }
1751 
1752 /*
1753  * Iterate through the whole groups tree.
1754  */
1755 #define perf_event_groups_for_each(event, groups)			\
1756 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1757 				typeof(*event), group_node); event;	\
1758 		event = rb_entry_safe(rb_next(&event->group_node),	\
1759 				typeof(*event), group_node))
1760 
1761 /*
1762  * Add an event from the lists for its context.
1763  * Must be called with ctx->mutex and ctx->lock held.
1764  */
1765 static void
1766 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1767 {
1768 	lockdep_assert_held(&ctx->lock);
1769 
1770 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1771 	event->attach_state |= PERF_ATTACH_CONTEXT;
1772 
1773 	event->tstamp = perf_event_time(event);
1774 
1775 	/*
1776 	 * If we're a stand alone event or group leader, we go to the context
1777 	 * list, group events are kept attached to the group so that
1778 	 * perf_group_detach can, at all times, locate all siblings.
1779 	 */
1780 	if (event->group_leader == event) {
1781 		event->group_caps = event->event_caps;
1782 		add_event_to_groups(event, ctx);
1783 	}
1784 
1785 	list_add_rcu(&event->event_entry, &ctx->event_list);
1786 	ctx->nr_events++;
1787 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1788 		ctx->nr_user++;
1789 	if (event->attr.inherit_stat)
1790 		ctx->nr_stat++;
1791 
1792 	if (event->state > PERF_EVENT_STATE_OFF)
1793 		perf_cgroup_event_enable(event, ctx);
1794 
1795 	ctx->generation++;
1796 }
1797 
1798 /*
1799  * Initialize event state based on the perf_event_attr::disabled.
1800  */
1801 static inline void perf_event__state_init(struct perf_event *event)
1802 {
1803 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1804 					      PERF_EVENT_STATE_INACTIVE;
1805 }
1806 
1807 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1808 {
1809 	int entry = sizeof(u64); /* value */
1810 	int size = 0;
1811 	int nr = 1;
1812 
1813 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1814 		size += sizeof(u64);
1815 
1816 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1817 		size += sizeof(u64);
1818 
1819 	if (event->attr.read_format & PERF_FORMAT_ID)
1820 		entry += sizeof(u64);
1821 
1822 	if (event->attr.read_format & PERF_FORMAT_LOST)
1823 		entry += sizeof(u64);
1824 
1825 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1826 		nr += nr_siblings;
1827 		size += sizeof(u64);
1828 	}
1829 
1830 	size += entry * nr;
1831 	event->read_size = size;
1832 }
1833 
1834 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1835 {
1836 	struct perf_sample_data *data;
1837 	u16 size = 0;
1838 
1839 	if (sample_type & PERF_SAMPLE_IP)
1840 		size += sizeof(data->ip);
1841 
1842 	if (sample_type & PERF_SAMPLE_ADDR)
1843 		size += sizeof(data->addr);
1844 
1845 	if (sample_type & PERF_SAMPLE_PERIOD)
1846 		size += sizeof(data->period);
1847 
1848 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1849 		size += sizeof(data->weight.full);
1850 
1851 	if (sample_type & PERF_SAMPLE_READ)
1852 		size += event->read_size;
1853 
1854 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1855 		size += sizeof(data->data_src.val);
1856 
1857 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1858 		size += sizeof(data->txn);
1859 
1860 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1861 		size += sizeof(data->phys_addr);
1862 
1863 	if (sample_type & PERF_SAMPLE_CGROUP)
1864 		size += sizeof(data->cgroup);
1865 
1866 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1867 		size += sizeof(data->data_page_size);
1868 
1869 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1870 		size += sizeof(data->code_page_size);
1871 
1872 	event->header_size = size;
1873 }
1874 
1875 /*
1876  * Called at perf_event creation and when events are attached/detached from a
1877  * group.
1878  */
1879 static void perf_event__header_size(struct perf_event *event)
1880 {
1881 	__perf_event_read_size(event,
1882 			       event->group_leader->nr_siblings);
1883 	__perf_event_header_size(event, event->attr.sample_type);
1884 }
1885 
1886 static void perf_event__id_header_size(struct perf_event *event)
1887 {
1888 	struct perf_sample_data *data;
1889 	u64 sample_type = event->attr.sample_type;
1890 	u16 size = 0;
1891 
1892 	if (sample_type & PERF_SAMPLE_TID)
1893 		size += sizeof(data->tid_entry);
1894 
1895 	if (sample_type & PERF_SAMPLE_TIME)
1896 		size += sizeof(data->time);
1897 
1898 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1899 		size += sizeof(data->id);
1900 
1901 	if (sample_type & PERF_SAMPLE_ID)
1902 		size += sizeof(data->id);
1903 
1904 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1905 		size += sizeof(data->stream_id);
1906 
1907 	if (sample_type & PERF_SAMPLE_CPU)
1908 		size += sizeof(data->cpu_entry);
1909 
1910 	event->id_header_size = size;
1911 }
1912 
1913 static bool perf_event_validate_size(struct perf_event *event)
1914 {
1915 	/*
1916 	 * The values computed here will be over-written when we actually
1917 	 * attach the event.
1918 	 */
1919 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1920 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1921 	perf_event__id_header_size(event);
1922 
1923 	/*
1924 	 * Sum the lot; should not exceed the 64k limit we have on records.
1925 	 * Conservative limit to allow for callchains and other variable fields.
1926 	 */
1927 	if (event->read_size + event->header_size +
1928 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1929 		return false;
1930 
1931 	return true;
1932 }
1933 
1934 static void perf_group_attach(struct perf_event *event)
1935 {
1936 	struct perf_event *group_leader = event->group_leader, *pos;
1937 
1938 	lockdep_assert_held(&event->ctx->lock);
1939 
1940 	/*
1941 	 * We can have double attach due to group movement in perf_event_open.
1942 	 */
1943 	if (event->attach_state & PERF_ATTACH_GROUP)
1944 		return;
1945 
1946 	event->attach_state |= PERF_ATTACH_GROUP;
1947 
1948 	if (group_leader == event)
1949 		return;
1950 
1951 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1952 
1953 	group_leader->group_caps &= event->event_caps;
1954 
1955 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1956 	group_leader->nr_siblings++;
1957 
1958 	perf_event__header_size(group_leader);
1959 
1960 	for_each_sibling_event(pos, group_leader)
1961 		perf_event__header_size(pos);
1962 }
1963 
1964 /*
1965  * Remove an event from the lists for its context.
1966  * Must be called with ctx->mutex and ctx->lock held.
1967  */
1968 static void
1969 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1970 {
1971 	WARN_ON_ONCE(event->ctx != ctx);
1972 	lockdep_assert_held(&ctx->lock);
1973 
1974 	/*
1975 	 * We can have double detach due to exit/hot-unplug + close.
1976 	 */
1977 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1978 		return;
1979 
1980 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1981 
1982 	ctx->nr_events--;
1983 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1984 		ctx->nr_user--;
1985 	if (event->attr.inherit_stat)
1986 		ctx->nr_stat--;
1987 
1988 	list_del_rcu(&event->event_entry);
1989 
1990 	if (event->group_leader == event)
1991 		del_event_from_groups(event, ctx);
1992 
1993 	/*
1994 	 * If event was in error state, then keep it
1995 	 * that way, otherwise bogus counts will be
1996 	 * returned on read(). The only way to get out
1997 	 * of error state is by explicit re-enabling
1998 	 * of the event
1999 	 */
2000 	if (event->state > PERF_EVENT_STATE_OFF) {
2001 		perf_cgroup_event_disable(event, ctx);
2002 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2003 	}
2004 
2005 	ctx->generation++;
2006 }
2007 
2008 static int
2009 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2010 {
2011 	if (!has_aux(aux_event))
2012 		return 0;
2013 
2014 	if (!event->pmu->aux_output_match)
2015 		return 0;
2016 
2017 	return event->pmu->aux_output_match(aux_event);
2018 }
2019 
2020 static void put_event(struct perf_event *event);
2021 static void event_sched_out(struct perf_event *event,
2022 			    struct perf_cpu_context *cpuctx,
2023 			    struct perf_event_context *ctx);
2024 
2025 static void perf_put_aux_event(struct perf_event *event)
2026 {
2027 	struct perf_event_context *ctx = event->ctx;
2028 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2029 	struct perf_event *iter;
2030 
2031 	/*
2032 	 * If event uses aux_event tear down the link
2033 	 */
2034 	if (event->aux_event) {
2035 		iter = event->aux_event;
2036 		event->aux_event = NULL;
2037 		put_event(iter);
2038 		return;
2039 	}
2040 
2041 	/*
2042 	 * If the event is an aux_event, tear down all links to
2043 	 * it from other events.
2044 	 */
2045 	for_each_sibling_event(iter, event->group_leader) {
2046 		if (iter->aux_event != event)
2047 			continue;
2048 
2049 		iter->aux_event = NULL;
2050 		put_event(event);
2051 
2052 		/*
2053 		 * If it's ACTIVE, schedule it out and put it into ERROR
2054 		 * state so that we don't try to schedule it again. Note
2055 		 * that perf_event_enable() will clear the ERROR status.
2056 		 */
2057 		event_sched_out(iter, cpuctx, ctx);
2058 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2059 	}
2060 }
2061 
2062 static bool perf_need_aux_event(struct perf_event *event)
2063 {
2064 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2065 }
2066 
2067 static int perf_get_aux_event(struct perf_event *event,
2068 			      struct perf_event *group_leader)
2069 {
2070 	/*
2071 	 * Our group leader must be an aux event if we want to be
2072 	 * an aux_output. This way, the aux event will precede its
2073 	 * aux_output events in the group, and therefore will always
2074 	 * schedule first.
2075 	 */
2076 	if (!group_leader)
2077 		return 0;
2078 
2079 	/*
2080 	 * aux_output and aux_sample_size are mutually exclusive.
2081 	 */
2082 	if (event->attr.aux_output && event->attr.aux_sample_size)
2083 		return 0;
2084 
2085 	if (event->attr.aux_output &&
2086 	    !perf_aux_output_match(event, group_leader))
2087 		return 0;
2088 
2089 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2090 		return 0;
2091 
2092 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2093 		return 0;
2094 
2095 	/*
2096 	 * Link aux_outputs to their aux event; this is undone in
2097 	 * perf_group_detach() by perf_put_aux_event(). When the
2098 	 * group in torn down, the aux_output events loose their
2099 	 * link to the aux_event and can't schedule any more.
2100 	 */
2101 	event->aux_event = group_leader;
2102 
2103 	return 1;
2104 }
2105 
2106 static inline struct list_head *get_event_list(struct perf_event *event)
2107 {
2108 	struct perf_event_context *ctx = event->ctx;
2109 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2110 }
2111 
2112 /*
2113  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2114  * cannot exist on their own, schedule them out and move them into the ERROR
2115  * state. Also see _perf_event_enable(), it will not be able to recover
2116  * this ERROR state.
2117  */
2118 static inline void perf_remove_sibling_event(struct perf_event *event)
2119 {
2120 	struct perf_event_context *ctx = event->ctx;
2121 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2122 
2123 	event_sched_out(event, cpuctx, ctx);
2124 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2125 }
2126 
2127 static void perf_group_detach(struct perf_event *event)
2128 {
2129 	struct perf_event *leader = event->group_leader;
2130 	struct perf_event *sibling, *tmp;
2131 	struct perf_event_context *ctx = event->ctx;
2132 
2133 	lockdep_assert_held(&ctx->lock);
2134 
2135 	/*
2136 	 * We can have double detach due to exit/hot-unplug + close.
2137 	 */
2138 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2139 		return;
2140 
2141 	event->attach_state &= ~PERF_ATTACH_GROUP;
2142 
2143 	perf_put_aux_event(event);
2144 
2145 	/*
2146 	 * If this is a sibling, remove it from its group.
2147 	 */
2148 	if (leader != event) {
2149 		list_del_init(&event->sibling_list);
2150 		event->group_leader->nr_siblings--;
2151 		goto out;
2152 	}
2153 
2154 	/*
2155 	 * If this was a group event with sibling events then
2156 	 * upgrade the siblings to singleton events by adding them
2157 	 * to whatever list we are on.
2158 	 */
2159 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2160 
2161 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2162 			perf_remove_sibling_event(sibling);
2163 
2164 		sibling->group_leader = sibling;
2165 		list_del_init(&sibling->sibling_list);
2166 
2167 		/* Inherit group flags from the previous leader */
2168 		sibling->group_caps = event->group_caps;
2169 
2170 		if (!RB_EMPTY_NODE(&event->group_node)) {
2171 			add_event_to_groups(sibling, event->ctx);
2172 
2173 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2174 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2175 		}
2176 
2177 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2178 	}
2179 
2180 out:
2181 	for_each_sibling_event(tmp, leader)
2182 		perf_event__header_size(tmp);
2183 
2184 	perf_event__header_size(leader);
2185 }
2186 
2187 static void sync_child_event(struct perf_event *child_event);
2188 
2189 static void perf_child_detach(struct perf_event *event)
2190 {
2191 	struct perf_event *parent_event = event->parent;
2192 
2193 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2194 		return;
2195 
2196 	event->attach_state &= ~PERF_ATTACH_CHILD;
2197 
2198 	if (WARN_ON_ONCE(!parent_event))
2199 		return;
2200 
2201 	lockdep_assert_held(&parent_event->child_mutex);
2202 
2203 	sync_child_event(event);
2204 	list_del_init(&event->child_list);
2205 }
2206 
2207 static bool is_orphaned_event(struct perf_event *event)
2208 {
2209 	return event->state == PERF_EVENT_STATE_DEAD;
2210 }
2211 
2212 static inline int __pmu_filter_match(struct perf_event *event)
2213 {
2214 	struct pmu *pmu = event->pmu;
2215 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2216 }
2217 
2218 /*
2219  * Check whether we should attempt to schedule an event group based on
2220  * PMU-specific filtering. An event group can consist of HW and SW events,
2221  * potentially with a SW leader, so we must check all the filters, to
2222  * determine whether a group is schedulable:
2223  */
2224 static inline int pmu_filter_match(struct perf_event *event)
2225 {
2226 	struct perf_event *sibling;
2227 
2228 	if (!__pmu_filter_match(event))
2229 		return 0;
2230 
2231 	for_each_sibling_event(sibling, event) {
2232 		if (!__pmu_filter_match(sibling))
2233 			return 0;
2234 	}
2235 
2236 	return 1;
2237 }
2238 
2239 static inline int
2240 event_filter_match(struct perf_event *event)
2241 {
2242 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2243 	       perf_cgroup_match(event) && pmu_filter_match(event);
2244 }
2245 
2246 static void
2247 event_sched_out(struct perf_event *event,
2248 		  struct perf_cpu_context *cpuctx,
2249 		  struct perf_event_context *ctx)
2250 {
2251 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2252 
2253 	WARN_ON_ONCE(event->ctx != ctx);
2254 	lockdep_assert_held(&ctx->lock);
2255 
2256 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2257 		return;
2258 
2259 	/*
2260 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2261 	 * we can schedule events _OUT_ individually through things like
2262 	 * __perf_remove_from_context().
2263 	 */
2264 	list_del_init(&event->active_list);
2265 
2266 	perf_pmu_disable(event->pmu);
2267 
2268 	event->pmu->del(event, 0);
2269 	event->oncpu = -1;
2270 
2271 	if (READ_ONCE(event->pending_disable) >= 0) {
2272 		WRITE_ONCE(event->pending_disable, -1);
2273 		perf_cgroup_event_disable(event, ctx);
2274 		state = PERF_EVENT_STATE_OFF;
2275 	}
2276 	perf_event_set_state(event, state);
2277 
2278 	if (!is_software_event(event))
2279 		cpuctx->active_oncpu--;
2280 	if (!--ctx->nr_active)
2281 		perf_event_ctx_deactivate(ctx);
2282 	if (event->attr.freq && event->attr.sample_freq)
2283 		ctx->nr_freq--;
2284 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2285 		cpuctx->exclusive = 0;
2286 
2287 	perf_pmu_enable(event->pmu);
2288 }
2289 
2290 static void
2291 group_sched_out(struct perf_event *group_event,
2292 		struct perf_cpu_context *cpuctx,
2293 		struct perf_event_context *ctx)
2294 {
2295 	struct perf_event *event;
2296 
2297 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2298 		return;
2299 
2300 	perf_pmu_disable(ctx->pmu);
2301 
2302 	event_sched_out(group_event, cpuctx, ctx);
2303 
2304 	/*
2305 	 * Schedule out siblings (if any):
2306 	 */
2307 	for_each_sibling_event(event, group_event)
2308 		event_sched_out(event, cpuctx, ctx);
2309 
2310 	perf_pmu_enable(ctx->pmu);
2311 }
2312 
2313 #define DETACH_GROUP	0x01UL
2314 #define DETACH_CHILD	0x02UL
2315 
2316 /*
2317  * Cross CPU call to remove a performance event
2318  *
2319  * We disable the event on the hardware level first. After that we
2320  * remove it from the context list.
2321  */
2322 static void
2323 __perf_remove_from_context(struct perf_event *event,
2324 			   struct perf_cpu_context *cpuctx,
2325 			   struct perf_event_context *ctx,
2326 			   void *info)
2327 {
2328 	unsigned long flags = (unsigned long)info;
2329 
2330 	if (ctx->is_active & EVENT_TIME) {
2331 		update_context_time(ctx);
2332 		update_cgrp_time_from_cpuctx(cpuctx, false);
2333 	}
2334 
2335 	event_sched_out(event, cpuctx, ctx);
2336 	if (flags & DETACH_GROUP)
2337 		perf_group_detach(event);
2338 	if (flags & DETACH_CHILD)
2339 		perf_child_detach(event);
2340 	list_del_event(event, ctx);
2341 
2342 	if (!ctx->nr_events && ctx->is_active) {
2343 		if (ctx == &cpuctx->ctx)
2344 			update_cgrp_time_from_cpuctx(cpuctx, true);
2345 
2346 		ctx->is_active = 0;
2347 		ctx->rotate_necessary = 0;
2348 		if (ctx->task) {
2349 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2350 			cpuctx->task_ctx = NULL;
2351 		}
2352 	}
2353 }
2354 
2355 /*
2356  * Remove the event from a task's (or a CPU's) list of events.
2357  *
2358  * If event->ctx is a cloned context, callers must make sure that
2359  * every task struct that event->ctx->task could possibly point to
2360  * remains valid.  This is OK when called from perf_release since
2361  * that only calls us on the top-level context, which can't be a clone.
2362  * When called from perf_event_exit_task, it's OK because the
2363  * context has been detached from its task.
2364  */
2365 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2366 {
2367 	struct perf_event_context *ctx = event->ctx;
2368 
2369 	lockdep_assert_held(&ctx->mutex);
2370 
2371 	/*
2372 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2373 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2374 	 * event_function_call() user.
2375 	 */
2376 	raw_spin_lock_irq(&ctx->lock);
2377 	/*
2378 	 * Cgroup events are per-cpu events, and must IPI because of
2379 	 * cgrp_cpuctx_list.
2380 	 */
2381 	if (!ctx->is_active && !is_cgroup_event(event)) {
2382 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2383 					   ctx, (void *)flags);
2384 		raw_spin_unlock_irq(&ctx->lock);
2385 		return;
2386 	}
2387 	raw_spin_unlock_irq(&ctx->lock);
2388 
2389 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2390 }
2391 
2392 /*
2393  * Cross CPU call to disable a performance event
2394  */
2395 static void __perf_event_disable(struct perf_event *event,
2396 				 struct perf_cpu_context *cpuctx,
2397 				 struct perf_event_context *ctx,
2398 				 void *info)
2399 {
2400 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2401 		return;
2402 
2403 	if (ctx->is_active & EVENT_TIME) {
2404 		update_context_time(ctx);
2405 		update_cgrp_time_from_event(event);
2406 	}
2407 
2408 	if (event == event->group_leader)
2409 		group_sched_out(event, cpuctx, ctx);
2410 	else
2411 		event_sched_out(event, cpuctx, ctx);
2412 
2413 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2414 	perf_cgroup_event_disable(event, ctx);
2415 }
2416 
2417 /*
2418  * Disable an event.
2419  *
2420  * If event->ctx is a cloned context, callers must make sure that
2421  * every task struct that event->ctx->task could possibly point to
2422  * remains valid.  This condition is satisfied when called through
2423  * perf_event_for_each_child or perf_event_for_each because they
2424  * hold the top-level event's child_mutex, so any descendant that
2425  * goes to exit will block in perf_event_exit_event().
2426  *
2427  * When called from perf_pending_event it's OK because event->ctx
2428  * is the current context on this CPU and preemption is disabled,
2429  * hence we can't get into perf_event_task_sched_out for this context.
2430  */
2431 static void _perf_event_disable(struct perf_event *event)
2432 {
2433 	struct perf_event_context *ctx = event->ctx;
2434 
2435 	raw_spin_lock_irq(&ctx->lock);
2436 	if (event->state <= PERF_EVENT_STATE_OFF) {
2437 		raw_spin_unlock_irq(&ctx->lock);
2438 		return;
2439 	}
2440 	raw_spin_unlock_irq(&ctx->lock);
2441 
2442 	event_function_call(event, __perf_event_disable, NULL);
2443 }
2444 
2445 void perf_event_disable_local(struct perf_event *event)
2446 {
2447 	event_function_local(event, __perf_event_disable, NULL);
2448 }
2449 
2450 /*
2451  * Strictly speaking kernel users cannot create groups and therefore this
2452  * interface does not need the perf_event_ctx_lock() magic.
2453  */
2454 void perf_event_disable(struct perf_event *event)
2455 {
2456 	struct perf_event_context *ctx;
2457 
2458 	ctx = perf_event_ctx_lock(event);
2459 	_perf_event_disable(event);
2460 	perf_event_ctx_unlock(event, ctx);
2461 }
2462 EXPORT_SYMBOL_GPL(perf_event_disable);
2463 
2464 void perf_event_disable_inatomic(struct perf_event *event)
2465 {
2466 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2467 	/* can fail, see perf_pending_event_disable() */
2468 	irq_work_queue(&event->pending);
2469 }
2470 
2471 #define MAX_INTERRUPTS (~0ULL)
2472 
2473 static void perf_log_throttle(struct perf_event *event, int enable);
2474 static void perf_log_itrace_start(struct perf_event *event);
2475 
2476 static int
2477 event_sched_in(struct perf_event *event,
2478 		 struct perf_cpu_context *cpuctx,
2479 		 struct perf_event_context *ctx)
2480 {
2481 	int ret = 0;
2482 
2483 	WARN_ON_ONCE(event->ctx != ctx);
2484 
2485 	lockdep_assert_held(&ctx->lock);
2486 
2487 	if (event->state <= PERF_EVENT_STATE_OFF)
2488 		return 0;
2489 
2490 	WRITE_ONCE(event->oncpu, smp_processor_id());
2491 	/*
2492 	 * Order event::oncpu write to happen before the ACTIVE state is
2493 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2494 	 * ->oncpu if it sees ACTIVE.
2495 	 */
2496 	smp_wmb();
2497 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2498 
2499 	/*
2500 	 * Unthrottle events, since we scheduled we might have missed several
2501 	 * ticks already, also for a heavily scheduling task there is little
2502 	 * guarantee it'll get a tick in a timely manner.
2503 	 */
2504 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2505 		perf_log_throttle(event, 1);
2506 		event->hw.interrupts = 0;
2507 	}
2508 
2509 	perf_pmu_disable(event->pmu);
2510 
2511 	perf_log_itrace_start(event);
2512 
2513 	if (event->pmu->add(event, PERF_EF_START)) {
2514 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2515 		event->oncpu = -1;
2516 		ret = -EAGAIN;
2517 		goto out;
2518 	}
2519 
2520 	if (!is_software_event(event))
2521 		cpuctx->active_oncpu++;
2522 	if (!ctx->nr_active++)
2523 		perf_event_ctx_activate(ctx);
2524 	if (event->attr.freq && event->attr.sample_freq)
2525 		ctx->nr_freq++;
2526 
2527 	if (event->attr.exclusive)
2528 		cpuctx->exclusive = 1;
2529 
2530 out:
2531 	perf_pmu_enable(event->pmu);
2532 
2533 	return ret;
2534 }
2535 
2536 static int
2537 group_sched_in(struct perf_event *group_event,
2538 	       struct perf_cpu_context *cpuctx,
2539 	       struct perf_event_context *ctx)
2540 {
2541 	struct perf_event *event, *partial_group = NULL;
2542 	struct pmu *pmu = ctx->pmu;
2543 
2544 	if (group_event->state == PERF_EVENT_STATE_OFF)
2545 		return 0;
2546 
2547 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2548 
2549 	if (event_sched_in(group_event, cpuctx, ctx))
2550 		goto error;
2551 
2552 	/*
2553 	 * Schedule in siblings as one group (if any):
2554 	 */
2555 	for_each_sibling_event(event, group_event) {
2556 		if (event_sched_in(event, cpuctx, ctx)) {
2557 			partial_group = event;
2558 			goto group_error;
2559 		}
2560 	}
2561 
2562 	if (!pmu->commit_txn(pmu))
2563 		return 0;
2564 
2565 group_error:
2566 	/*
2567 	 * Groups can be scheduled in as one unit only, so undo any
2568 	 * partial group before returning:
2569 	 * The events up to the failed event are scheduled out normally.
2570 	 */
2571 	for_each_sibling_event(event, group_event) {
2572 		if (event == partial_group)
2573 			break;
2574 
2575 		event_sched_out(event, cpuctx, ctx);
2576 	}
2577 	event_sched_out(group_event, cpuctx, ctx);
2578 
2579 error:
2580 	pmu->cancel_txn(pmu);
2581 	return -EAGAIN;
2582 }
2583 
2584 /*
2585  * Work out whether we can put this event group on the CPU now.
2586  */
2587 static int group_can_go_on(struct perf_event *event,
2588 			   struct perf_cpu_context *cpuctx,
2589 			   int can_add_hw)
2590 {
2591 	/*
2592 	 * Groups consisting entirely of software events can always go on.
2593 	 */
2594 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2595 		return 1;
2596 	/*
2597 	 * If an exclusive group is already on, no other hardware
2598 	 * events can go on.
2599 	 */
2600 	if (cpuctx->exclusive)
2601 		return 0;
2602 	/*
2603 	 * If this group is exclusive and there are already
2604 	 * events on the CPU, it can't go on.
2605 	 */
2606 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2607 		return 0;
2608 	/*
2609 	 * Otherwise, try to add it if all previous groups were able
2610 	 * to go on.
2611 	 */
2612 	return can_add_hw;
2613 }
2614 
2615 static void add_event_to_ctx(struct perf_event *event,
2616 			       struct perf_event_context *ctx)
2617 {
2618 	list_add_event(event, ctx);
2619 	perf_group_attach(event);
2620 }
2621 
2622 static void ctx_sched_out(struct perf_event_context *ctx,
2623 			  struct perf_cpu_context *cpuctx,
2624 			  enum event_type_t event_type);
2625 static void
2626 ctx_sched_in(struct perf_event_context *ctx,
2627 	     struct perf_cpu_context *cpuctx,
2628 	     enum event_type_t event_type);
2629 
2630 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2631 			       struct perf_event_context *ctx,
2632 			       enum event_type_t event_type)
2633 {
2634 	if (!cpuctx->task_ctx)
2635 		return;
2636 
2637 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2638 		return;
2639 
2640 	ctx_sched_out(ctx, cpuctx, event_type);
2641 }
2642 
2643 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2644 				struct perf_event_context *ctx)
2645 {
2646 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2647 	if (ctx)
2648 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2649 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2650 	if (ctx)
2651 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2652 }
2653 
2654 /*
2655  * We want to maintain the following priority of scheduling:
2656  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2657  *  - task pinned (EVENT_PINNED)
2658  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2659  *  - task flexible (EVENT_FLEXIBLE).
2660  *
2661  * In order to avoid unscheduling and scheduling back in everything every
2662  * time an event is added, only do it for the groups of equal priority and
2663  * below.
2664  *
2665  * This can be called after a batch operation on task events, in which case
2666  * event_type is a bit mask of the types of events involved. For CPU events,
2667  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2668  */
2669 static void ctx_resched(struct perf_cpu_context *cpuctx,
2670 			struct perf_event_context *task_ctx,
2671 			enum event_type_t event_type)
2672 {
2673 	enum event_type_t ctx_event_type;
2674 	bool cpu_event = !!(event_type & EVENT_CPU);
2675 
2676 	/*
2677 	 * If pinned groups are involved, flexible groups also need to be
2678 	 * scheduled out.
2679 	 */
2680 	if (event_type & EVENT_PINNED)
2681 		event_type |= EVENT_FLEXIBLE;
2682 
2683 	ctx_event_type = event_type & EVENT_ALL;
2684 
2685 	perf_pmu_disable(cpuctx->ctx.pmu);
2686 	if (task_ctx)
2687 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2688 
2689 	/*
2690 	 * Decide which cpu ctx groups to schedule out based on the types
2691 	 * of events that caused rescheduling:
2692 	 *  - EVENT_CPU: schedule out corresponding groups;
2693 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2694 	 *  - otherwise, do nothing more.
2695 	 */
2696 	if (cpu_event)
2697 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2698 	else if (ctx_event_type & EVENT_PINNED)
2699 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2700 
2701 	perf_event_sched_in(cpuctx, task_ctx);
2702 	perf_pmu_enable(cpuctx->ctx.pmu);
2703 }
2704 
2705 void perf_pmu_resched(struct pmu *pmu)
2706 {
2707 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2708 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2709 
2710 	perf_ctx_lock(cpuctx, task_ctx);
2711 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2712 	perf_ctx_unlock(cpuctx, task_ctx);
2713 }
2714 
2715 /*
2716  * Cross CPU call to install and enable a performance event
2717  *
2718  * Very similar to remote_function() + event_function() but cannot assume that
2719  * things like ctx->is_active and cpuctx->task_ctx are set.
2720  */
2721 static int  __perf_install_in_context(void *info)
2722 {
2723 	struct perf_event *event = info;
2724 	struct perf_event_context *ctx = event->ctx;
2725 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2726 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2727 	bool reprogram = true;
2728 	int ret = 0;
2729 
2730 	raw_spin_lock(&cpuctx->ctx.lock);
2731 	if (ctx->task) {
2732 		raw_spin_lock(&ctx->lock);
2733 		task_ctx = ctx;
2734 
2735 		reprogram = (ctx->task == current);
2736 
2737 		/*
2738 		 * If the task is running, it must be running on this CPU,
2739 		 * otherwise we cannot reprogram things.
2740 		 *
2741 		 * If its not running, we don't care, ctx->lock will
2742 		 * serialize against it becoming runnable.
2743 		 */
2744 		if (task_curr(ctx->task) && !reprogram) {
2745 			ret = -ESRCH;
2746 			goto unlock;
2747 		}
2748 
2749 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2750 	} else if (task_ctx) {
2751 		raw_spin_lock(&task_ctx->lock);
2752 	}
2753 
2754 #ifdef CONFIG_CGROUP_PERF
2755 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2756 		/*
2757 		 * If the current cgroup doesn't match the event's
2758 		 * cgroup, we should not try to schedule it.
2759 		 */
2760 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2761 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2762 					event->cgrp->css.cgroup);
2763 	}
2764 #endif
2765 
2766 	if (reprogram) {
2767 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2768 		add_event_to_ctx(event, ctx);
2769 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2770 	} else {
2771 		add_event_to_ctx(event, ctx);
2772 	}
2773 
2774 unlock:
2775 	perf_ctx_unlock(cpuctx, task_ctx);
2776 
2777 	return ret;
2778 }
2779 
2780 static bool exclusive_event_installable(struct perf_event *event,
2781 					struct perf_event_context *ctx);
2782 
2783 /*
2784  * Attach a performance event to a context.
2785  *
2786  * Very similar to event_function_call, see comment there.
2787  */
2788 static void
2789 perf_install_in_context(struct perf_event_context *ctx,
2790 			struct perf_event *event,
2791 			int cpu)
2792 {
2793 	struct task_struct *task = READ_ONCE(ctx->task);
2794 
2795 	lockdep_assert_held(&ctx->mutex);
2796 
2797 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2798 
2799 	if (event->cpu != -1)
2800 		event->cpu = cpu;
2801 
2802 	/*
2803 	 * Ensures that if we can observe event->ctx, both the event and ctx
2804 	 * will be 'complete'. See perf_iterate_sb_cpu().
2805 	 */
2806 	smp_store_release(&event->ctx, ctx);
2807 
2808 	/*
2809 	 * perf_event_attr::disabled events will not run and can be initialized
2810 	 * without IPI. Except when this is the first event for the context, in
2811 	 * that case we need the magic of the IPI to set ctx->is_active.
2812 	 * Similarly, cgroup events for the context also needs the IPI to
2813 	 * manipulate the cgrp_cpuctx_list.
2814 	 *
2815 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2816 	 * event will issue the IPI and reprogram the hardware.
2817 	 */
2818 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2819 	    ctx->nr_events && !is_cgroup_event(event)) {
2820 		raw_spin_lock_irq(&ctx->lock);
2821 		if (ctx->task == TASK_TOMBSTONE) {
2822 			raw_spin_unlock_irq(&ctx->lock);
2823 			return;
2824 		}
2825 		add_event_to_ctx(event, ctx);
2826 		raw_spin_unlock_irq(&ctx->lock);
2827 		return;
2828 	}
2829 
2830 	if (!task) {
2831 		cpu_function_call(cpu, __perf_install_in_context, event);
2832 		return;
2833 	}
2834 
2835 	/*
2836 	 * Should not happen, we validate the ctx is still alive before calling.
2837 	 */
2838 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2839 		return;
2840 
2841 	/*
2842 	 * Installing events is tricky because we cannot rely on ctx->is_active
2843 	 * to be set in case this is the nr_events 0 -> 1 transition.
2844 	 *
2845 	 * Instead we use task_curr(), which tells us if the task is running.
2846 	 * However, since we use task_curr() outside of rq::lock, we can race
2847 	 * against the actual state. This means the result can be wrong.
2848 	 *
2849 	 * If we get a false positive, we retry, this is harmless.
2850 	 *
2851 	 * If we get a false negative, things are complicated. If we are after
2852 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2853 	 * value must be correct. If we're before, it doesn't matter since
2854 	 * perf_event_context_sched_in() will program the counter.
2855 	 *
2856 	 * However, this hinges on the remote context switch having observed
2857 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2858 	 * ctx::lock in perf_event_context_sched_in().
2859 	 *
2860 	 * We do this by task_function_call(), if the IPI fails to hit the task
2861 	 * we know any future context switch of task must see the
2862 	 * perf_event_ctpx[] store.
2863 	 */
2864 
2865 	/*
2866 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2867 	 * task_cpu() load, such that if the IPI then does not find the task
2868 	 * running, a future context switch of that task must observe the
2869 	 * store.
2870 	 */
2871 	smp_mb();
2872 again:
2873 	if (!task_function_call(task, __perf_install_in_context, event))
2874 		return;
2875 
2876 	raw_spin_lock_irq(&ctx->lock);
2877 	task = ctx->task;
2878 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2879 		/*
2880 		 * Cannot happen because we already checked above (which also
2881 		 * cannot happen), and we hold ctx->mutex, which serializes us
2882 		 * against perf_event_exit_task_context().
2883 		 */
2884 		raw_spin_unlock_irq(&ctx->lock);
2885 		return;
2886 	}
2887 	/*
2888 	 * If the task is not running, ctx->lock will avoid it becoming so,
2889 	 * thus we can safely install the event.
2890 	 */
2891 	if (task_curr(task)) {
2892 		raw_spin_unlock_irq(&ctx->lock);
2893 		goto again;
2894 	}
2895 	add_event_to_ctx(event, ctx);
2896 	raw_spin_unlock_irq(&ctx->lock);
2897 }
2898 
2899 /*
2900  * Cross CPU call to enable a performance event
2901  */
2902 static void __perf_event_enable(struct perf_event *event,
2903 				struct perf_cpu_context *cpuctx,
2904 				struct perf_event_context *ctx,
2905 				void *info)
2906 {
2907 	struct perf_event *leader = event->group_leader;
2908 	struct perf_event_context *task_ctx;
2909 
2910 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2911 	    event->state <= PERF_EVENT_STATE_ERROR)
2912 		return;
2913 
2914 	if (ctx->is_active)
2915 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2916 
2917 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2918 	perf_cgroup_event_enable(event, ctx);
2919 
2920 	if (!ctx->is_active)
2921 		return;
2922 
2923 	if (!event_filter_match(event)) {
2924 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2925 		return;
2926 	}
2927 
2928 	/*
2929 	 * If the event is in a group and isn't the group leader,
2930 	 * then don't put it on unless the group is on.
2931 	 */
2932 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2933 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2934 		return;
2935 	}
2936 
2937 	task_ctx = cpuctx->task_ctx;
2938 	if (ctx->task)
2939 		WARN_ON_ONCE(task_ctx != ctx);
2940 
2941 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2942 }
2943 
2944 /*
2945  * Enable an event.
2946  *
2947  * If event->ctx is a cloned context, callers must make sure that
2948  * every task struct that event->ctx->task could possibly point to
2949  * remains valid.  This condition is satisfied when called through
2950  * perf_event_for_each_child or perf_event_for_each as described
2951  * for perf_event_disable.
2952  */
2953 static void _perf_event_enable(struct perf_event *event)
2954 {
2955 	struct perf_event_context *ctx = event->ctx;
2956 
2957 	raw_spin_lock_irq(&ctx->lock);
2958 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2959 	    event->state <  PERF_EVENT_STATE_ERROR) {
2960 out:
2961 		raw_spin_unlock_irq(&ctx->lock);
2962 		return;
2963 	}
2964 
2965 	/*
2966 	 * If the event is in error state, clear that first.
2967 	 *
2968 	 * That way, if we see the event in error state below, we know that it
2969 	 * has gone back into error state, as distinct from the task having
2970 	 * been scheduled away before the cross-call arrived.
2971 	 */
2972 	if (event->state == PERF_EVENT_STATE_ERROR) {
2973 		/*
2974 		 * Detached SIBLING events cannot leave ERROR state.
2975 		 */
2976 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2977 		    event->group_leader == event)
2978 			goto out;
2979 
2980 		event->state = PERF_EVENT_STATE_OFF;
2981 	}
2982 	raw_spin_unlock_irq(&ctx->lock);
2983 
2984 	event_function_call(event, __perf_event_enable, NULL);
2985 }
2986 
2987 /*
2988  * See perf_event_disable();
2989  */
2990 void perf_event_enable(struct perf_event *event)
2991 {
2992 	struct perf_event_context *ctx;
2993 
2994 	ctx = perf_event_ctx_lock(event);
2995 	_perf_event_enable(event);
2996 	perf_event_ctx_unlock(event, ctx);
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_enable);
2999 
3000 struct stop_event_data {
3001 	struct perf_event	*event;
3002 	unsigned int		restart;
3003 };
3004 
3005 static int __perf_event_stop(void *info)
3006 {
3007 	struct stop_event_data *sd = info;
3008 	struct perf_event *event = sd->event;
3009 
3010 	/* if it's already INACTIVE, do nothing */
3011 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012 		return 0;
3013 
3014 	/* matches smp_wmb() in event_sched_in() */
3015 	smp_rmb();
3016 
3017 	/*
3018 	 * There is a window with interrupts enabled before we get here,
3019 	 * so we need to check again lest we try to stop another CPU's event.
3020 	 */
3021 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3022 		return -EAGAIN;
3023 
3024 	event->pmu->stop(event, PERF_EF_UPDATE);
3025 
3026 	/*
3027 	 * May race with the actual stop (through perf_pmu_output_stop()),
3028 	 * but it is only used for events with AUX ring buffer, and such
3029 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3030 	 * see comments in perf_aux_output_begin().
3031 	 *
3032 	 * Since this is happening on an event-local CPU, no trace is lost
3033 	 * while restarting.
3034 	 */
3035 	if (sd->restart)
3036 		event->pmu->start(event, 0);
3037 
3038 	return 0;
3039 }
3040 
3041 static int perf_event_stop(struct perf_event *event, int restart)
3042 {
3043 	struct stop_event_data sd = {
3044 		.event		= event,
3045 		.restart	= restart,
3046 	};
3047 	int ret = 0;
3048 
3049 	do {
3050 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051 			return 0;
3052 
3053 		/* matches smp_wmb() in event_sched_in() */
3054 		smp_rmb();
3055 
3056 		/*
3057 		 * We only want to restart ACTIVE events, so if the event goes
3058 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3059 		 * fall through with ret==-ENXIO.
3060 		 */
3061 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3062 					__perf_event_stop, &sd);
3063 	} while (ret == -EAGAIN);
3064 
3065 	return ret;
3066 }
3067 
3068 /*
3069  * In order to contain the amount of racy and tricky in the address filter
3070  * configuration management, it is a two part process:
3071  *
3072  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3073  *      we update the addresses of corresponding vmas in
3074  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3075  * (p2) when an event is scheduled in (pmu::add), it calls
3076  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3077  *      if the generation has changed since the previous call.
3078  *
3079  * If (p1) happens while the event is active, we restart it to force (p2).
3080  *
3081  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3082  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3083  *     ioctl;
3084  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3085  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3086  *     for reading;
3087  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088  *     of exec.
3089  */
3090 void perf_event_addr_filters_sync(struct perf_event *event)
3091 {
3092 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3093 
3094 	if (!has_addr_filter(event))
3095 		return;
3096 
3097 	raw_spin_lock(&ifh->lock);
3098 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3099 		event->pmu->addr_filters_sync(event);
3100 		event->hw.addr_filters_gen = event->addr_filters_gen;
3101 	}
3102 	raw_spin_unlock(&ifh->lock);
3103 }
3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3105 
3106 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 {
3108 	/*
3109 	 * not supported on inherited events
3110 	 */
3111 	if (event->attr.inherit || !is_sampling_event(event))
3112 		return -EINVAL;
3113 
3114 	atomic_add(refresh, &event->event_limit);
3115 	_perf_event_enable(event);
3116 
3117 	return 0;
3118 }
3119 
3120 /*
3121  * See perf_event_disable()
3122  */
3123 int perf_event_refresh(struct perf_event *event, int refresh)
3124 {
3125 	struct perf_event_context *ctx;
3126 	int ret;
3127 
3128 	ctx = perf_event_ctx_lock(event);
3129 	ret = _perf_event_refresh(event, refresh);
3130 	perf_event_ctx_unlock(event, ctx);
3131 
3132 	return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_refresh);
3135 
3136 static int perf_event_modify_breakpoint(struct perf_event *bp,
3137 					 struct perf_event_attr *attr)
3138 {
3139 	int err;
3140 
3141 	_perf_event_disable(bp);
3142 
3143 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3144 
3145 	if (!bp->attr.disabled)
3146 		_perf_event_enable(bp);
3147 
3148 	return err;
3149 }
3150 
3151 /*
3152  * Copy event-type-independent attributes that may be modified.
3153  */
3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3155 					const struct perf_event_attr *from)
3156 {
3157 	to->sig_data = from->sig_data;
3158 }
3159 
3160 static int perf_event_modify_attr(struct perf_event *event,
3161 				  struct perf_event_attr *attr)
3162 {
3163 	int (*func)(struct perf_event *, struct perf_event_attr *);
3164 	struct perf_event *child;
3165 	int err;
3166 
3167 	if (event->attr.type != attr->type)
3168 		return -EINVAL;
3169 
3170 	switch (event->attr.type) {
3171 	case PERF_TYPE_BREAKPOINT:
3172 		func = perf_event_modify_breakpoint;
3173 		break;
3174 	default:
3175 		/* Place holder for future additions. */
3176 		return -EOPNOTSUPP;
3177 	}
3178 
3179 	WARN_ON_ONCE(event->ctx->parent_ctx);
3180 
3181 	mutex_lock(&event->child_mutex);
3182 	/*
3183 	 * Event-type-independent attributes must be copied before event-type
3184 	 * modification, which will validate that final attributes match the
3185 	 * source attributes after all relevant attributes have been copied.
3186 	 */
3187 	perf_event_modify_copy_attr(&event->attr, attr);
3188 	err = func(event, attr);
3189 	if (err)
3190 		goto out;
3191 	list_for_each_entry(child, &event->child_list, child_list) {
3192 		perf_event_modify_copy_attr(&child->attr, attr);
3193 		err = func(child, attr);
3194 		if (err)
3195 			goto out;
3196 	}
3197 out:
3198 	mutex_unlock(&event->child_mutex);
3199 	return err;
3200 }
3201 
3202 static void ctx_sched_out(struct perf_event_context *ctx,
3203 			  struct perf_cpu_context *cpuctx,
3204 			  enum event_type_t event_type)
3205 {
3206 	struct perf_event *event, *tmp;
3207 	int is_active = ctx->is_active;
3208 
3209 	lockdep_assert_held(&ctx->lock);
3210 
3211 	if (likely(!ctx->nr_events)) {
3212 		/*
3213 		 * See __perf_remove_from_context().
3214 		 */
3215 		WARN_ON_ONCE(ctx->is_active);
3216 		if (ctx->task)
3217 			WARN_ON_ONCE(cpuctx->task_ctx);
3218 		return;
3219 	}
3220 
3221 	/*
3222 	 * Always update time if it was set; not only when it changes.
3223 	 * Otherwise we can 'forget' to update time for any but the last
3224 	 * context we sched out. For example:
3225 	 *
3226 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3227 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3228 	 *
3229 	 * would only update time for the pinned events.
3230 	 */
3231 	if (is_active & EVENT_TIME) {
3232 		/* update (and stop) ctx time */
3233 		update_context_time(ctx);
3234 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3235 		/*
3236 		 * CPU-release for the below ->is_active store,
3237 		 * see __load_acquire() in perf_event_time_now()
3238 		 */
3239 		barrier();
3240 	}
3241 
3242 	ctx->is_active &= ~event_type;
3243 	if (!(ctx->is_active & EVENT_ALL))
3244 		ctx->is_active = 0;
3245 
3246 	if (ctx->task) {
3247 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3248 		if (!ctx->is_active)
3249 			cpuctx->task_ctx = NULL;
3250 	}
3251 
3252 	is_active ^= ctx->is_active; /* changed bits */
3253 
3254 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3255 		return;
3256 
3257 	perf_pmu_disable(ctx->pmu);
3258 	if (is_active & EVENT_PINNED) {
3259 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3260 			group_sched_out(event, cpuctx, ctx);
3261 	}
3262 
3263 	if (is_active & EVENT_FLEXIBLE) {
3264 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3265 			group_sched_out(event, cpuctx, ctx);
3266 
3267 		/*
3268 		 * Since we cleared EVENT_FLEXIBLE, also clear
3269 		 * rotate_necessary, is will be reset by
3270 		 * ctx_flexible_sched_in() when needed.
3271 		 */
3272 		ctx->rotate_necessary = 0;
3273 	}
3274 	perf_pmu_enable(ctx->pmu);
3275 }
3276 
3277 /*
3278  * Test whether two contexts are equivalent, i.e. whether they have both been
3279  * cloned from the same version of the same context.
3280  *
3281  * Equivalence is measured using a generation number in the context that is
3282  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3283  * and list_del_event().
3284  */
3285 static int context_equiv(struct perf_event_context *ctx1,
3286 			 struct perf_event_context *ctx2)
3287 {
3288 	lockdep_assert_held(&ctx1->lock);
3289 	lockdep_assert_held(&ctx2->lock);
3290 
3291 	/* Pinning disables the swap optimization */
3292 	if (ctx1->pin_count || ctx2->pin_count)
3293 		return 0;
3294 
3295 	/* If ctx1 is the parent of ctx2 */
3296 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3297 		return 1;
3298 
3299 	/* If ctx2 is the parent of ctx1 */
3300 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3301 		return 1;
3302 
3303 	/*
3304 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3305 	 * hierarchy, see perf_event_init_context().
3306 	 */
3307 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3308 			ctx1->parent_gen == ctx2->parent_gen)
3309 		return 1;
3310 
3311 	/* Unmatched */
3312 	return 0;
3313 }
3314 
3315 static void __perf_event_sync_stat(struct perf_event *event,
3316 				     struct perf_event *next_event)
3317 {
3318 	u64 value;
3319 
3320 	if (!event->attr.inherit_stat)
3321 		return;
3322 
3323 	/*
3324 	 * Update the event value, we cannot use perf_event_read()
3325 	 * because we're in the middle of a context switch and have IRQs
3326 	 * disabled, which upsets smp_call_function_single(), however
3327 	 * we know the event must be on the current CPU, therefore we
3328 	 * don't need to use it.
3329 	 */
3330 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3331 		event->pmu->read(event);
3332 
3333 	perf_event_update_time(event);
3334 
3335 	/*
3336 	 * In order to keep per-task stats reliable we need to flip the event
3337 	 * values when we flip the contexts.
3338 	 */
3339 	value = local64_read(&next_event->count);
3340 	value = local64_xchg(&event->count, value);
3341 	local64_set(&next_event->count, value);
3342 
3343 	swap(event->total_time_enabled, next_event->total_time_enabled);
3344 	swap(event->total_time_running, next_event->total_time_running);
3345 
3346 	/*
3347 	 * Since we swizzled the values, update the user visible data too.
3348 	 */
3349 	perf_event_update_userpage(event);
3350 	perf_event_update_userpage(next_event);
3351 }
3352 
3353 static void perf_event_sync_stat(struct perf_event_context *ctx,
3354 				   struct perf_event_context *next_ctx)
3355 {
3356 	struct perf_event *event, *next_event;
3357 
3358 	if (!ctx->nr_stat)
3359 		return;
3360 
3361 	update_context_time(ctx);
3362 
3363 	event = list_first_entry(&ctx->event_list,
3364 				   struct perf_event, event_entry);
3365 
3366 	next_event = list_first_entry(&next_ctx->event_list,
3367 					struct perf_event, event_entry);
3368 
3369 	while (&event->event_entry != &ctx->event_list &&
3370 	       &next_event->event_entry != &next_ctx->event_list) {
3371 
3372 		__perf_event_sync_stat(event, next_event);
3373 
3374 		event = list_next_entry(event, event_entry);
3375 		next_event = list_next_entry(next_event, event_entry);
3376 	}
3377 }
3378 
3379 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3380 					 struct task_struct *next)
3381 {
3382 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3383 	struct perf_event_context *next_ctx;
3384 	struct perf_event_context *parent, *next_parent;
3385 	struct perf_cpu_context *cpuctx;
3386 	int do_switch = 1;
3387 	struct pmu *pmu;
3388 
3389 	if (likely(!ctx))
3390 		return;
3391 
3392 	pmu = ctx->pmu;
3393 	cpuctx = __get_cpu_context(ctx);
3394 	if (!cpuctx->task_ctx)
3395 		return;
3396 
3397 	rcu_read_lock();
3398 	next_ctx = next->perf_event_ctxp[ctxn];
3399 	if (!next_ctx)
3400 		goto unlock;
3401 
3402 	parent = rcu_dereference(ctx->parent_ctx);
3403 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3404 
3405 	/* If neither context have a parent context; they cannot be clones. */
3406 	if (!parent && !next_parent)
3407 		goto unlock;
3408 
3409 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3410 		/*
3411 		 * Looks like the two contexts are clones, so we might be
3412 		 * able to optimize the context switch.  We lock both
3413 		 * contexts and check that they are clones under the
3414 		 * lock (including re-checking that neither has been
3415 		 * uncloned in the meantime).  It doesn't matter which
3416 		 * order we take the locks because no other cpu could
3417 		 * be trying to lock both of these tasks.
3418 		 */
3419 		raw_spin_lock(&ctx->lock);
3420 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3421 		if (context_equiv(ctx, next_ctx)) {
3422 
3423 			WRITE_ONCE(ctx->task, next);
3424 			WRITE_ONCE(next_ctx->task, task);
3425 
3426 			perf_pmu_disable(pmu);
3427 
3428 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3429 				pmu->sched_task(ctx, false);
3430 
3431 			/*
3432 			 * PMU specific parts of task perf context can require
3433 			 * additional synchronization. As an example of such
3434 			 * synchronization see implementation details of Intel
3435 			 * LBR call stack data profiling;
3436 			 */
3437 			if (pmu->swap_task_ctx)
3438 				pmu->swap_task_ctx(ctx, next_ctx);
3439 			else
3440 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3441 
3442 			perf_pmu_enable(pmu);
3443 
3444 			/*
3445 			 * RCU_INIT_POINTER here is safe because we've not
3446 			 * modified the ctx and the above modification of
3447 			 * ctx->task and ctx->task_ctx_data are immaterial
3448 			 * since those values are always verified under
3449 			 * ctx->lock which we're now holding.
3450 			 */
3451 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3452 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3453 
3454 			do_switch = 0;
3455 
3456 			perf_event_sync_stat(ctx, next_ctx);
3457 		}
3458 		raw_spin_unlock(&next_ctx->lock);
3459 		raw_spin_unlock(&ctx->lock);
3460 	}
3461 unlock:
3462 	rcu_read_unlock();
3463 
3464 	if (do_switch) {
3465 		raw_spin_lock(&ctx->lock);
3466 		perf_pmu_disable(pmu);
3467 
3468 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3469 			pmu->sched_task(ctx, false);
3470 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3471 
3472 		perf_pmu_enable(pmu);
3473 		raw_spin_unlock(&ctx->lock);
3474 	}
3475 }
3476 
3477 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3478 
3479 void perf_sched_cb_dec(struct pmu *pmu)
3480 {
3481 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3482 
3483 	this_cpu_dec(perf_sched_cb_usages);
3484 
3485 	if (!--cpuctx->sched_cb_usage)
3486 		list_del(&cpuctx->sched_cb_entry);
3487 }
3488 
3489 
3490 void perf_sched_cb_inc(struct pmu *pmu)
3491 {
3492 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3493 
3494 	if (!cpuctx->sched_cb_usage++)
3495 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3496 
3497 	this_cpu_inc(perf_sched_cb_usages);
3498 }
3499 
3500 /*
3501  * This function provides the context switch callback to the lower code
3502  * layer. It is invoked ONLY when the context switch callback is enabled.
3503  *
3504  * This callback is relevant even to per-cpu events; for example multi event
3505  * PEBS requires this to provide PID/TID information. This requires we flush
3506  * all queued PEBS records before we context switch to a new task.
3507  */
3508 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3509 {
3510 	struct pmu *pmu;
3511 
3512 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3513 
3514 	if (WARN_ON_ONCE(!pmu->sched_task))
3515 		return;
3516 
3517 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3518 	perf_pmu_disable(pmu);
3519 
3520 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3521 
3522 	perf_pmu_enable(pmu);
3523 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3524 }
3525 
3526 static void perf_pmu_sched_task(struct task_struct *prev,
3527 				struct task_struct *next,
3528 				bool sched_in)
3529 {
3530 	struct perf_cpu_context *cpuctx;
3531 
3532 	if (prev == next)
3533 		return;
3534 
3535 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3536 		/* will be handled in perf_event_context_sched_in/out */
3537 		if (cpuctx->task_ctx)
3538 			continue;
3539 
3540 		__perf_pmu_sched_task(cpuctx, sched_in);
3541 	}
3542 }
3543 
3544 static void perf_event_switch(struct task_struct *task,
3545 			      struct task_struct *next_prev, bool sched_in);
3546 
3547 #define for_each_task_context_nr(ctxn)					\
3548 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3549 
3550 /*
3551  * Called from scheduler to remove the events of the current task,
3552  * with interrupts disabled.
3553  *
3554  * We stop each event and update the event value in event->count.
3555  *
3556  * This does not protect us against NMI, but disable()
3557  * sets the disabled bit in the control field of event _before_
3558  * accessing the event control register. If a NMI hits, then it will
3559  * not restart the event.
3560  */
3561 void __perf_event_task_sched_out(struct task_struct *task,
3562 				 struct task_struct *next)
3563 {
3564 	int ctxn;
3565 
3566 	if (__this_cpu_read(perf_sched_cb_usages))
3567 		perf_pmu_sched_task(task, next, false);
3568 
3569 	if (atomic_read(&nr_switch_events))
3570 		perf_event_switch(task, next, false);
3571 
3572 	for_each_task_context_nr(ctxn)
3573 		perf_event_context_sched_out(task, ctxn, next);
3574 
3575 	/*
3576 	 * if cgroup events exist on this CPU, then we need
3577 	 * to check if we have to switch out PMU state.
3578 	 * cgroup event are system-wide mode only
3579 	 */
3580 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3581 		perf_cgroup_switch(next);
3582 }
3583 
3584 /*
3585  * Called with IRQs disabled
3586  */
3587 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3588 			      enum event_type_t event_type)
3589 {
3590 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3591 }
3592 
3593 static bool perf_less_group_idx(const void *l, const void *r)
3594 {
3595 	const struct perf_event *le = *(const struct perf_event **)l;
3596 	const struct perf_event *re = *(const struct perf_event **)r;
3597 
3598 	return le->group_index < re->group_index;
3599 }
3600 
3601 static void swap_ptr(void *l, void *r)
3602 {
3603 	void **lp = l, **rp = r;
3604 
3605 	swap(*lp, *rp);
3606 }
3607 
3608 static const struct min_heap_callbacks perf_min_heap = {
3609 	.elem_size = sizeof(struct perf_event *),
3610 	.less = perf_less_group_idx,
3611 	.swp = swap_ptr,
3612 };
3613 
3614 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3615 {
3616 	struct perf_event **itrs = heap->data;
3617 
3618 	if (event) {
3619 		itrs[heap->nr] = event;
3620 		heap->nr++;
3621 	}
3622 }
3623 
3624 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3625 				struct perf_event_groups *groups, int cpu,
3626 				int (*func)(struct perf_event *, void *),
3627 				void *data)
3628 {
3629 #ifdef CONFIG_CGROUP_PERF
3630 	struct cgroup_subsys_state *css = NULL;
3631 #endif
3632 	/* Space for per CPU and/or any CPU event iterators. */
3633 	struct perf_event *itrs[2];
3634 	struct min_heap event_heap;
3635 	struct perf_event **evt;
3636 	int ret;
3637 
3638 	if (cpuctx) {
3639 		event_heap = (struct min_heap){
3640 			.data = cpuctx->heap,
3641 			.nr = 0,
3642 			.size = cpuctx->heap_size,
3643 		};
3644 
3645 		lockdep_assert_held(&cpuctx->ctx.lock);
3646 
3647 #ifdef CONFIG_CGROUP_PERF
3648 		if (cpuctx->cgrp)
3649 			css = &cpuctx->cgrp->css;
3650 #endif
3651 	} else {
3652 		event_heap = (struct min_heap){
3653 			.data = itrs,
3654 			.nr = 0,
3655 			.size = ARRAY_SIZE(itrs),
3656 		};
3657 		/* Events not within a CPU context may be on any CPU. */
3658 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3659 	}
3660 	evt = event_heap.data;
3661 
3662 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3663 
3664 #ifdef CONFIG_CGROUP_PERF
3665 	for (; css; css = css->parent)
3666 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3667 #endif
3668 
3669 	min_heapify_all(&event_heap, &perf_min_heap);
3670 
3671 	while (event_heap.nr) {
3672 		ret = func(*evt, data);
3673 		if (ret)
3674 			return ret;
3675 
3676 		*evt = perf_event_groups_next(*evt);
3677 		if (*evt)
3678 			min_heapify(&event_heap, 0, &perf_min_heap);
3679 		else
3680 			min_heap_pop(&event_heap, &perf_min_heap);
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 /*
3687  * Because the userpage is strictly per-event (there is no concept of context,
3688  * so there cannot be a context indirection), every userpage must be updated
3689  * when context time starts :-(
3690  *
3691  * IOW, we must not miss EVENT_TIME edges.
3692  */
3693 static inline bool event_update_userpage(struct perf_event *event)
3694 {
3695 	if (likely(!atomic_read(&event->mmap_count)))
3696 		return false;
3697 
3698 	perf_event_update_time(event);
3699 	perf_event_update_userpage(event);
3700 
3701 	return true;
3702 }
3703 
3704 static inline void group_update_userpage(struct perf_event *group_event)
3705 {
3706 	struct perf_event *event;
3707 
3708 	if (!event_update_userpage(group_event))
3709 		return;
3710 
3711 	for_each_sibling_event(event, group_event)
3712 		event_update_userpage(event);
3713 }
3714 
3715 static int merge_sched_in(struct perf_event *event, void *data)
3716 {
3717 	struct perf_event_context *ctx = event->ctx;
3718 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3719 	int *can_add_hw = data;
3720 
3721 	if (event->state <= PERF_EVENT_STATE_OFF)
3722 		return 0;
3723 
3724 	if (!event_filter_match(event))
3725 		return 0;
3726 
3727 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3728 		if (!group_sched_in(event, cpuctx, ctx))
3729 			list_add_tail(&event->active_list, get_event_list(event));
3730 	}
3731 
3732 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3733 		*can_add_hw = 0;
3734 		if (event->attr.pinned) {
3735 			perf_cgroup_event_disable(event, ctx);
3736 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3737 		} else {
3738 			ctx->rotate_necessary = 1;
3739 			perf_mux_hrtimer_restart(cpuctx);
3740 			group_update_userpage(event);
3741 		}
3742 	}
3743 
3744 	return 0;
3745 }
3746 
3747 static void
3748 ctx_pinned_sched_in(struct perf_event_context *ctx,
3749 		    struct perf_cpu_context *cpuctx)
3750 {
3751 	int can_add_hw = 1;
3752 
3753 	if (ctx != &cpuctx->ctx)
3754 		cpuctx = NULL;
3755 
3756 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3757 			   smp_processor_id(),
3758 			   merge_sched_in, &can_add_hw);
3759 }
3760 
3761 static void
3762 ctx_flexible_sched_in(struct perf_event_context *ctx,
3763 		      struct perf_cpu_context *cpuctx)
3764 {
3765 	int can_add_hw = 1;
3766 
3767 	if (ctx != &cpuctx->ctx)
3768 		cpuctx = NULL;
3769 
3770 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3771 			   smp_processor_id(),
3772 			   merge_sched_in, &can_add_hw);
3773 }
3774 
3775 static void
3776 ctx_sched_in(struct perf_event_context *ctx,
3777 	     struct perf_cpu_context *cpuctx,
3778 	     enum event_type_t event_type)
3779 {
3780 	int is_active = ctx->is_active;
3781 
3782 	lockdep_assert_held(&ctx->lock);
3783 
3784 	if (likely(!ctx->nr_events))
3785 		return;
3786 
3787 	if (is_active ^ EVENT_TIME) {
3788 		/* start ctx time */
3789 		__update_context_time(ctx, false);
3790 		perf_cgroup_set_timestamp(cpuctx);
3791 		/*
3792 		 * CPU-release for the below ->is_active store,
3793 		 * see __load_acquire() in perf_event_time_now()
3794 		 */
3795 		barrier();
3796 	}
3797 
3798 	ctx->is_active |= (event_type | EVENT_TIME);
3799 	if (ctx->task) {
3800 		if (!is_active)
3801 			cpuctx->task_ctx = ctx;
3802 		else
3803 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3804 	}
3805 
3806 	is_active ^= ctx->is_active; /* changed bits */
3807 
3808 	/*
3809 	 * First go through the list and put on any pinned groups
3810 	 * in order to give them the best chance of going on.
3811 	 */
3812 	if (is_active & EVENT_PINNED)
3813 		ctx_pinned_sched_in(ctx, cpuctx);
3814 
3815 	/* Then walk through the lower prio flexible groups */
3816 	if (is_active & EVENT_FLEXIBLE)
3817 		ctx_flexible_sched_in(ctx, cpuctx);
3818 }
3819 
3820 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3821 			     enum event_type_t event_type)
3822 {
3823 	struct perf_event_context *ctx = &cpuctx->ctx;
3824 
3825 	ctx_sched_in(ctx, cpuctx, event_type);
3826 }
3827 
3828 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3829 					struct task_struct *task)
3830 {
3831 	struct perf_cpu_context *cpuctx;
3832 	struct pmu *pmu;
3833 
3834 	cpuctx = __get_cpu_context(ctx);
3835 
3836 	/*
3837 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3838 	 * different PMU, force (re)set the context,
3839 	 */
3840 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3841 
3842 	if (cpuctx->task_ctx == ctx) {
3843 		if (cpuctx->sched_cb_usage)
3844 			__perf_pmu_sched_task(cpuctx, true);
3845 		return;
3846 	}
3847 
3848 	perf_ctx_lock(cpuctx, ctx);
3849 	/*
3850 	 * We must check ctx->nr_events while holding ctx->lock, such
3851 	 * that we serialize against perf_install_in_context().
3852 	 */
3853 	if (!ctx->nr_events)
3854 		goto unlock;
3855 
3856 	perf_pmu_disable(pmu);
3857 	/*
3858 	 * We want to keep the following priority order:
3859 	 * cpu pinned (that don't need to move), task pinned,
3860 	 * cpu flexible, task flexible.
3861 	 *
3862 	 * However, if task's ctx is not carrying any pinned
3863 	 * events, no need to flip the cpuctx's events around.
3864 	 */
3865 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3866 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3867 	perf_event_sched_in(cpuctx, ctx);
3868 
3869 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3870 		pmu->sched_task(cpuctx->task_ctx, true);
3871 
3872 	perf_pmu_enable(pmu);
3873 
3874 unlock:
3875 	perf_ctx_unlock(cpuctx, ctx);
3876 }
3877 
3878 /*
3879  * Called from scheduler to add the events of the current task
3880  * with interrupts disabled.
3881  *
3882  * We restore the event value and then enable it.
3883  *
3884  * This does not protect us against NMI, but enable()
3885  * sets the enabled bit in the control field of event _before_
3886  * accessing the event control register. If a NMI hits, then it will
3887  * keep the event running.
3888  */
3889 void __perf_event_task_sched_in(struct task_struct *prev,
3890 				struct task_struct *task)
3891 {
3892 	struct perf_event_context *ctx;
3893 	int ctxn;
3894 
3895 	for_each_task_context_nr(ctxn) {
3896 		ctx = task->perf_event_ctxp[ctxn];
3897 		if (likely(!ctx))
3898 			continue;
3899 
3900 		perf_event_context_sched_in(ctx, task);
3901 	}
3902 
3903 	if (atomic_read(&nr_switch_events))
3904 		perf_event_switch(task, prev, true);
3905 
3906 	if (__this_cpu_read(perf_sched_cb_usages))
3907 		perf_pmu_sched_task(prev, task, true);
3908 }
3909 
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911 {
3912 	u64 frequency = event->attr.sample_freq;
3913 	u64 sec = NSEC_PER_SEC;
3914 	u64 divisor, dividend;
3915 
3916 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3917 
3918 	count_fls = fls64(count);
3919 	nsec_fls = fls64(nsec);
3920 	frequency_fls = fls64(frequency);
3921 	sec_fls = 30;
3922 
3923 	/*
3924 	 * We got @count in @nsec, with a target of sample_freq HZ
3925 	 * the target period becomes:
3926 	 *
3927 	 *             @count * 10^9
3928 	 * period = -------------------
3929 	 *          @nsec * sample_freq
3930 	 *
3931 	 */
3932 
3933 	/*
3934 	 * Reduce accuracy by one bit such that @a and @b converge
3935 	 * to a similar magnitude.
3936 	 */
3937 #define REDUCE_FLS(a, b)		\
3938 do {					\
3939 	if (a##_fls > b##_fls) {	\
3940 		a >>= 1;		\
3941 		a##_fls--;		\
3942 	} else {			\
3943 		b >>= 1;		\
3944 		b##_fls--;		\
3945 	}				\
3946 } while (0)
3947 
3948 	/*
3949 	 * Reduce accuracy until either term fits in a u64, then proceed with
3950 	 * the other, so that finally we can do a u64/u64 division.
3951 	 */
3952 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953 		REDUCE_FLS(nsec, frequency);
3954 		REDUCE_FLS(sec, count);
3955 	}
3956 
3957 	if (count_fls + sec_fls > 64) {
3958 		divisor = nsec * frequency;
3959 
3960 		while (count_fls + sec_fls > 64) {
3961 			REDUCE_FLS(count, sec);
3962 			divisor >>= 1;
3963 		}
3964 
3965 		dividend = count * sec;
3966 	} else {
3967 		dividend = count * sec;
3968 
3969 		while (nsec_fls + frequency_fls > 64) {
3970 			REDUCE_FLS(nsec, frequency);
3971 			dividend >>= 1;
3972 		}
3973 
3974 		divisor = nsec * frequency;
3975 	}
3976 
3977 	if (!divisor)
3978 		return dividend;
3979 
3980 	return div64_u64(dividend, divisor);
3981 }
3982 
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985 
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3987 {
3988 	struct hw_perf_event *hwc = &event->hw;
3989 	s64 period, sample_period;
3990 	s64 delta;
3991 
3992 	period = perf_calculate_period(event, nsec, count);
3993 
3994 	delta = (s64)(period - hwc->sample_period);
3995 	delta = (delta + 7) / 8; /* low pass filter */
3996 
3997 	sample_period = hwc->sample_period + delta;
3998 
3999 	if (!sample_period)
4000 		sample_period = 1;
4001 
4002 	hwc->sample_period = sample_period;
4003 
4004 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4005 		if (disable)
4006 			event->pmu->stop(event, PERF_EF_UPDATE);
4007 
4008 		local64_set(&hwc->period_left, 0);
4009 
4010 		if (disable)
4011 			event->pmu->start(event, PERF_EF_RELOAD);
4012 	}
4013 }
4014 
4015 /*
4016  * combine freq adjustment with unthrottling to avoid two passes over the
4017  * events. At the same time, make sure, having freq events does not change
4018  * the rate of unthrottling as that would introduce bias.
4019  */
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021 					   int needs_unthr)
4022 {
4023 	struct perf_event *event;
4024 	struct hw_perf_event *hwc;
4025 	u64 now, period = TICK_NSEC;
4026 	s64 delta;
4027 
4028 	/*
4029 	 * only need to iterate over all events iff:
4030 	 * - context have events in frequency mode (needs freq adjust)
4031 	 * - there are events to unthrottle on this cpu
4032 	 */
4033 	if (!(ctx->nr_freq || needs_unthr))
4034 		return;
4035 
4036 	raw_spin_lock(&ctx->lock);
4037 	perf_pmu_disable(ctx->pmu);
4038 
4039 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4041 			continue;
4042 
4043 		if (!event_filter_match(event))
4044 			continue;
4045 
4046 		perf_pmu_disable(event->pmu);
4047 
4048 		hwc = &event->hw;
4049 
4050 		if (hwc->interrupts == MAX_INTERRUPTS) {
4051 			hwc->interrupts = 0;
4052 			perf_log_throttle(event, 1);
4053 			event->pmu->start(event, 0);
4054 		}
4055 
4056 		if (!event->attr.freq || !event->attr.sample_freq)
4057 			goto next;
4058 
4059 		/*
4060 		 * stop the event and update event->count
4061 		 */
4062 		event->pmu->stop(event, PERF_EF_UPDATE);
4063 
4064 		now = local64_read(&event->count);
4065 		delta = now - hwc->freq_count_stamp;
4066 		hwc->freq_count_stamp = now;
4067 
4068 		/*
4069 		 * restart the event
4070 		 * reload only if value has changed
4071 		 * we have stopped the event so tell that
4072 		 * to perf_adjust_period() to avoid stopping it
4073 		 * twice.
4074 		 */
4075 		if (delta > 0)
4076 			perf_adjust_period(event, period, delta, false);
4077 
4078 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4079 	next:
4080 		perf_pmu_enable(event->pmu);
4081 	}
4082 
4083 	perf_pmu_enable(ctx->pmu);
4084 	raw_spin_unlock(&ctx->lock);
4085 }
4086 
4087 /*
4088  * Move @event to the tail of the @ctx's elegible events.
4089  */
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4091 {
4092 	/*
4093 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4094 	 * disabled by the inheritance code.
4095 	 */
4096 	if (ctx->rotate_disable)
4097 		return;
4098 
4099 	perf_event_groups_delete(&ctx->flexible_groups, event);
4100 	perf_event_groups_insert(&ctx->flexible_groups, event);
4101 }
4102 
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4106 {
4107 	struct perf_event *event;
4108 
4109 	/* pick the first active flexible event */
4110 	event = list_first_entry_or_null(&ctx->flexible_active,
4111 					 struct perf_event, active_list);
4112 
4113 	/* if no active flexible event, pick the first event */
4114 	if (!event) {
4115 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116 				      typeof(*event), group_node);
4117 	}
4118 
4119 	/*
4120 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121 	 * finds there are unschedulable events, it will set it again.
4122 	 */
4123 	ctx->rotate_necessary = 0;
4124 
4125 	return event;
4126 }
4127 
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129 {
4130 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4131 	struct perf_event_context *task_ctx = NULL;
4132 	int cpu_rotate, task_rotate;
4133 
4134 	/*
4135 	 * Since we run this from IRQ context, nobody can install new
4136 	 * events, thus the event count values are stable.
4137 	 */
4138 
4139 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4140 	task_ctx = cpuctx->task_ctx;
4141 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4142 
4143 	if (!(cpu_rotate || task_rotate))
4144 		return false;
4145 
4146 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147 	perf_pmu_disable(cpuctx->ctx.pmu);
4148 
4149 	if (task_rotate)
4150 		task_event = ctx_event_to_rotate(task_ctx);
4151 	if (cpu_rotate)
4152 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4153 
4154 	/*
4155 	 * As per the order given at ctx_resched() first 'pop' task flexible
4156 	 * and then, if needed CPU flexible.
4157 	 */
4158 	if (task_event || (task_ctx && cpu_event))
4159 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4160 	if (cpu_event)
4161 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4162 
4163 	if (task_event)
4164 		rotate_ctx(task_ctx, task_event);
4165 	if (cpu_event)
4166 		rotate_ctx(&cpuctx->ctx, cpu_event);
4167 
4168 	perf_event_sched_in(cpuctx, task_ctx);
4169 
4170 	perf_pmu_enable(cpuctx->ctx.pmu);
4171 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4172 
4173 	return true;
4174 }
4175 
4176 void perf_event_task_tick(void)
4177 {
4178 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179 	struct perf_event_context *ctx, *tmp;
4180 	int throttled;
4181 
4182 	lockdep_assert_irqs_disabled();
4183 
4184 	__this_cpu_inc(perf_throttled_seq);
4185 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4187 
4188 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189 		perf_adjust_freq_unthr_context(ctx, throttled);
4190 }
4191 
4192 static int event_enable_on_exec(struct perf_event *event,
4193 				struct perf_event_context *ctx)
4194 {
4195 	if (!event->attr.enable_on_exec)
4196 		return 0;
4197 
4198 	event->attr.enable_on_exec = 0;
4199 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200 		return 0;
4201 
4202 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4203 
4204 	return 1;
4205 }
4206 
4207 /*
4208  * Enable all of a task's events that have been marked enable-on-exec.
4209  * This expects task == current.
4210  */
4211 static void perf_event_enable_on_exec(int ctxn)
4212 {
4213 	struct perf_event_context *ctx, *clone_ctx = NULL;
4214 	enum event_type_t event_type = 0;
4215 	struct perf_cpu_context *cpuctx;
4216 	struct perf_event *event;
4217 	unsigned long flags;
4218 	int enabled = 0;
4219 
4220 	local_irq_save(flags);
4221 	ctx = current->perf_event_ctxp[ctxn];
4222 	if (!ctx || !ctx->nr_events)
4223 		goto out;
4224 
4225 	cpuctx = __get_cpu_context(ctx);
4226 	perf_ctx_lock(cpuctx, ctx);
4227 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4229 		enabled |= event_enable_on_exec(event, ctx);
4230 		event_type |= get_event_type(event);
4231 	}
4232 
4233 	/*
4234 	 * Unclone and reschedule this context if we enabled any event.
4235 	 */
4236 	if (enabled) {
4237 		clone_ctx = unclone_ctx(ctx);
4238 		ctx_resched(cpuctx, ctx, event_type);
4239 	} else {
4240 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4241 	}
4242 	perf_ctx_unlock(cpuctx, ctx);
4243 
4244 out:
4245 	local_irq_restore(flags);
4246 
4247 	if (clone_ctx)
4248 		put_ctx(clone_ctx);
4249 }
4250 
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253 				  struct perf_event_context *ctx);
4254 
4255 /*
4256  * Removes all events from the current task that have been marked
4257  * remove-on-exec, and feeds their values back to parent events.
4258  */
4259 static void perf_event_remove_on_exec(int ctxn)
4260 {
4261 	struct perf_event_context *ctx, *clone_ctx = NULL;
4262 	struct perf_event *event, *next;
4263 	unsigned long flags;
4264 	bool modified = false;
4265 
4266 	ctx = perf_pin_task_context(current, ctxn);
4267 	if (!ctx)
4268 		return;
4269 
4270 	mutex_lock(&ctx->mutex);
4271 
4272 	if (WARN_ON_ONCE(ctx->task != current))
4273 		goto unlock;
4274 
4275 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4276 		if (!event->attr.remove_on_exec)
4277 			continue;
4278 
4279 		if (!is_kernel_event(event))
4280 			perf_remove_from_owner(event);
4281 
4282 		modified = true;
4283 
4284 		perf_event_exit_event(event, ctx);
4285 	}
4286 
4287 	raw_spin_lock_irqsave(&ctx->lock, flags);
4288 	if (modified)
4289 		clone_ctx = unclone_ctx(ctx);
4290 	--ctx->pin_count;
4291 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4292 
4293 unlock:
4294 	mutex_unlock(&ctx->mutex);
4295 
4296 	put_ctx(ctx);
4297 	if (clone_ctx)
4298 		put_ctx(clone_ctx);
4299 }
4300 
4301 struct perf_read_data {
4302 	struct perf_event *event;
4303 	bool group;
4304 	int ret;
4305 };
4306 
4307 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4308 {
4309 	u16 local_pkg, event_pkg;
4310 
4311 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4312 		int local_cpu = smp_processor_id();
4313 
4314 		event_pkg = topology_physical_package_id(event_cpu);
4315 		local_pkg = topology_physical_package_id(local_cpu);
4316 
4317 		if (event_pkg == local_pkg)
4318 			return local_cpu;
4319 	}
4320 
4321 	return event_cpu;
4322 }
4323 
4324 /*
4325  * Cross CPU call to read the hardware event
4326  */
4327 static void __perf_event_read(void *info)
4328 {
4329 	struct perf_read_data *data = info;
4330 	struct perf_event *sub, *event = data->event;
4331 	struct perf_event_context *ctx = event->ctx;
4332 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4333 	struct pmu *pmu = event->pmu;
4334 
4335 	/*
4336 	 * If this is a task context, we need to check whether it is
4337 	 * the current task context of this cpu.  If not it has been
4338 	 * scheduled out before the smp call arrived.  In that case
4339 	 * event->count would have been updated to a recent sample
4340 	 * when the event was scheduled out.
4341 	 */
4342 	if (ctx->task && cpuctx->task_ctx != ctx)
4343 		return;
4344 
4345 	raw_spin_lock(&ctx->lock);
4346 	if (ctx->is_active & EVENT_TIME) {
4347 		update_context_time(ctx);
4348 		update_cgrp_time_from_event(event);
4349 	}
4350 
4351 	perf_event_update_time(event);
4352 	if (data->group)
4353 		perf_event_update_sibling_time(event);
4354 
4355 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4356 		goto unlock;
4357 
4358 	if (!data->group) {
4359 		pmu->read(event);
4360 		data->ret = 0;
4361 		goto unlock;
4362 	}
4363 
4364 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4365 
4366 	pmu->read(event);
4367 
4368 	for_each_sibling_event(sub, event) {
4369 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4370 			/*
4371 			 * Use sibling's PMU rather than @event's since
4372 			 * sibling could be on different (eg: software) PMU.
4373 			 */
4374 			sub->pmu->read(sub);
4375 		}
4376 	}
4377 
4378 	data->ret = pmu->commit_txn(pmu);
4379 
4380 unlock:
4381 	raw_spin_unlock(&ctx->lock);
4382 }
4383 
4384 static inline u64 perf_event_count(struct perf_event *event)
4385 {
4386 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4387 }
4388 
4389 static void calc_timer_values(struct perf_event *event,
4390 				u64 *now,
4391 				u64 *enabled,
4392 				u64 *running)
4393 {
4394 	u64 ctx_time;
4395 
4396 	*now = perf_clock();
4397 	ctx_time = perf_event_time_now(event, *now);
4398 	__perf_update_times(event, ctx_time, enabled, running);
4399 }
4400 
4401 /*
4402  * NMI-safe method to read a local event, that is an event that
4403  * is:
4404  *   - either for the current task, or for this CPU
4405  *   - does not have inherit set, for inherited task events
4406  *     will not be local and we cannot read them atomically
4407  *   - must not have a pmu::count method
4408  */
4409 int perf_event_read_local(struct perf_event *event, u64 *value,
4410 			  u64 *enabled, u64 *running)
4411 {
4412 	unsigned long flags;
4413 	int ret = 0;
4414 
4415 	/*
4416 	 * Disabling interrupts avoids all counter scheduling (context
4417 	 * switches, timer based rotation and IPIs).
4418 	 */
4419 	local_irq_save(flags);
4420 
4421 	/*
4422 	 * It must not be an event with inherit set, we cannot read
4423 	 * all child counters from atomic context.
4424 	 */
4425 	if (event->attr.inherit) {
4426 		ret = -EOPNOTSUPP;
4427 		goto out;
4428 	}
4429 
4430 	/* If this is a per-task event, it must be for current */
4431 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4432 	    event->hw.target != current) {
4433 		ret = -EINVAL;
4434 		goto out;
4435 	}
4436 
4437 	/* If this is a per-CPU event, it must be for this CPU */
4438 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4439 	    event->cpu != smp_processor_id()) {
4440 		ret = -EINVAL;
4441 		goto out;
4442 	}
4443 
4444 	/* If this is a pinned event it must be running on this CPU */
4445 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4446 		ret = -EBUSY;
4447 		goto out;
4448 	}
4449 
4450 	/*
4451 	 * If the event is currently on this CPU, its either a per-task event,
4452 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4453 	 * oncpu == -1).
4454 	 */
4455 	if (event->oncpu == smp_processor_id())
4456 		event->pmu->read(event);
4457 
4458 	*value = local64_read(&event->count);
4459 	if (enabled || running) {
4460 		u64 __enabled, __running, __now;
4461 
4462 		calc_timer_values(event, &__now, &__enabled, &__running);
4463 		if (enabled)
4464 			*enabled = __enabled;
4465 		if (running)
4466 			*running = __running;
4467 	}
4468 out:
4469 	local_irq_restore(flags);
4470 
4471 	return ret;
4472 }
4473 
4474 static int perf_event_read(struct perf_event *event, bool group)
4475 {
4476 	enum perf_event_state state = READ_ONCE(event->state);
4477 	int event_cpu, ret = 0;
4478 
4479 	/*
4480 	 * If event is enabled and currently active on a CPU, update the
4481 	 * value in the event structure:
4482 	 */
4483 again:
4484 	if (state == PERF_EVENT_STATE_ACTIVE) {
4485 		struct perf_read_data data;
4486 
4487 		/*
4488 		 * Orders the ->state and ->oncpu loads such that if we see
4489 		 * ACTIVE we must also see the right ->oncpu.
4490 		 *
4491 		 * Matches the smp_wmb() from event_sched_in().
4492 		 */
4493 		smp_rmb();
4494 
4495 		event_cpu = READ_ONCE(event->oncpu);
4496 		if ((unsigned)event_cpu >= nr_cpu_ids)
4497 			return 0;
4498 
4499 		data = (struct perf_read_data){
4500 			.event = event,
4501 			.group = group,
4502 			.ret = 0,
4503 		};
4504 
4505 		preempt_disable();
4506 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4507 
4508 		/*
4509 		 * Purposely ignore the smp_call_function_single() return
4510 		 * value.
4511 		 *
4512 		 * If event_cpu isn't a valid CPU it means the event got
4513 		 * scheduled out and that will have updated the event count.
4514 		 *
4515 		 * Therefore, either way, we'll have an up-to-date event count
4516 		 * after this.
4517 		 */
4518 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4519 		preempt_enable();
4520 		ret = data.ret;
4521 
4522 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4523 		struct perf_event_context *ctx = event->ctx;
4524 		unsigned long flags;
4525 
4526 		raw_spin_lock_irqsave(&ctx->lock, flags);
4527 		state = event->state;
4528 		if (state != PERF_EVENT_STATE_INACTIVE) {
4529 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4530 			goto again;
4531 		}
4532 
4533 		/*
4534 		 * May read while context is not active (e.g., thread is
4535 		 * blocked), in that case we cannot update context time
4536 		 */
4537 		if (ctx->is_active & EVENT_TIME) {
4538 			update_context_time(ctx);
4539 			update_cgrp_time_from_event(event);
4540 		}
4541 
4542 		perf_event_update_time(event);
4543 		if (group)
4544 			perf_event_update_sibling_time(event);
4545 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4546 	}
4547 
4548 	return ret;
4549 }
4550 
4551 /*
4552  * Initialize the perf_event context in a task_struct:
4553  */
4554 static void __perf_event_init_context(struct perf_event_context *ctx)
4555 {
4556 	raw_spin_lock_init(&ctx->lock);
4557 	mutex_init(&ctx->mutex);
4558 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4559 	perf_event_groups_init(&ctx->pinned_groups);
4560 	perf_event_groups_init(&ctx->flexible_groups);
4561 	INIT_LIST_HEAD(&ctx->event_list);
4562 	INIT_LIST_HEAD(&ctx->pinned_active);
4563 	INIT_LIST_HEAD(&ctx->flexible_active);
4564 	refcount_set(&ctx->refcount, 1);
4565 }
4566 
4567 static struct perf_event_context *
4568 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4569 {
4570 	struct perf_event_context *ctx;
4571 
4572 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4573 	if (!ctx)
4574 		return NULL;
4575 
4576 	__perf_event_init_context(ctx);
4577 	if (task)
4578 		ctx->task = get_task_struct(task);
4579 	ctx->pmu = pmu;
4580 
4581 	return ctx;
4582 }
4583 
4584 static struct task_struct *
4585 find_lively_task_by_vpid(pid_t vpid)
4586 {
4587 	struct task_struct *task;
4588 
4589 	rcu_read_lock();
4590 	if (!vpid)
4591 		task = current;
4592 	else
4593 		task = find_task_by_vpid(vpid);
4594 	if (task)
4595 		get_task_struct(task);
4596 	rcu_read_unlock();
4597 
4598 	if (!task)
4599 		return ERR_PTR(-ESRCH);
4600 
4601 	return task;
4602 }
4603 
4604 /*
4605  * Returns a matching context with refcount and pincount.
4606  */
4607 static struct perf_event_context *
4608 find_get_context(struct pmu *pmu, struct task_struct *task,
4609 		struct perf_event *event)
4610 {
4611 	struct perf_event_context *ctx, *clone_ctx = NULL;
4612 	struct perf_cpu_context *cpuctx;
4613 	void *task_ctx_data = NULL;
4614 	unsigned long flags;
4615 	int ctxn, err;
4616 	int cpu = event->cpu;
4617 
4618 	if (!task) {
4619 		/* Must be root to operate on a CPU event: */
4620 		err = perf_allow_cpu(&event->attr);
4621 		if (err)
4622 			return ERR_PTR(err);
4623 
4624 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4625 		ctx = &cpuctx->ctx;
4626 		get_ctx(ctx);
4627 		raw_spin_lock_irqsave(&ctx->lock, flags);
4628 		++ctx->pin_count;
4629 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4630 
4631 		return ctx;
4632 	}
4633 
4634 	err = -EINVAL;
4635 	ctxn = pmu->task_ctx_nr;
4636 	if (ctxn < 0)
4637 		goto errout;
4638 
4639 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4640 		task_ctx_data = alloc_task_ctx_data(pmu);
4641 		if (!task_ctx_data) {
4642 			err = -ENOMEM;
4643 			goto errout;
4644 		}
4645 	}
4646 
4647 retry:
4648 	ctx = perf_lock_task_context(task, ctxn, &flags);
4649 	if (ctx) {
4650 		clone_ctx = unclone_ctx(ctx);
4651 		++ctx->pin_count;
4652 
4653 		if (task_ctx_data && !ctx->task_ctx_data) {
4654 			ctx->task_ctx_data = task_ctx_data;
4655 			task_ctx_data = NULL;
4656 		}
4657 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4658 
4659 		if (clone_ctx)
4660 			put_ctx(clone_ctx);
4661 	} else {
4662 		ctx = alloc_perf_context(pmu, task);
4663 		err = -ENOMEM;
4664 		if (!ctx)
4665 			goto errout;
4666 
4667 		if (task_ctx_data) {
4668 			ctx->task_ctx_data = task_ctx_data;
4669 			task_ctx_data = NULL;
4670 		}
4671 
4672 		err = 0;
4673 		mutex_lock(&task->perf_event_mutex);
4674 		/*
4675 		 * If it has already passed perf_event_exit_task().
4676 		 * we must see PF_EXITING, it takes this mutex too.
4677 		 */
4678 		if (task->flags & PF_EXITING)
4679 			err = -ESRCH;
4680 		else if (task->perf_event_ctxp[ctxn])
4681 			err = -EAGAIN;
4682 		else {
4683 			get_ctx(ctx);
4684 			++ctx->pin_count;
4685 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4686 		}
4687 		mutex_unlock(&task->perf_event_mutex);
4688 
4689 		if (unlikely(err)) {
4690 			put_ctx(ctx);
4691 
4692 			if (err == -EAGAIN)
4693 				goto retry;
4694 			goto errout;
4695 		}
4696 	}
4697 
4698 	free_task_ctx_data(pmu, task_ctx_data);
4699 	return ctx;
4700 
4701 errout:
4702 	free_task_ctx_data(pmu, task_ctx_data);
4703 	return ERR_PTR(err);
4704 }
4705 
4706 static void perf_event_free_filter(struct perf_event *event);
4707 
4708 static void free_event_rcu(struct rcu_head *head)
4709 {
4710 	struct perf_event *event;
4711 
4712 	event = container_of(head, struct perf_event, rcu_head);
4713 	if (event->ns)
4714 		put_pid_ns(event->ns);
4715 	perf_event_free_filter(event);
4716 	kmem_cache_free(perf_event_cache, event);
4717 }
4718 
4719 static void ring_buffer_attach(struct perf_event *event,
4720 			       struct perf_buffer *rb);
4721 
4722 static void detach_sb_event(struct perf_event *event)
4723 {
4724 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4725 
4726 	raw_spin_lock(&pel->lock);
4727 	list_del_rcu(&event->sb_list);
4728 	raw_spin_unlock(&pel->lock);
4729 }
4730 
4731 static bool is_sb_event(struct perf_event *event)
4732 {
4733 	struct perf_event_attr *attr = &event->attr;
4734 
4735 	if (event->parent)
4736 		return false;
4737 
4738 	if (event->attach_state & PERF_ATTACH_TASK)
4739 		return false;
4740 
4741 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4742 	    attr->comm || attr->comm_exec ||
4743 	    attr->task || attr->ksymbol ||
4744 	    attr->context_switch || attr->text_poke ||
4745 	    attr->bpf_event)
4746 		return true;
4747 	return false;
4748 }
4749 
4750 static void unaccount_pmu_sb_event(struct perf_event *event)
4751 {
4752 	if (is_sb_event(event))
4753 		detach_sb_event(event);
4754 }
4755 
4756 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4757 {
4758 	if (event->parent)
4759 		return;
4760 
4761 	if (is_cgroup_event(event))
4762 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4763 }
4764 
4765 #ifdef CONFIG_NO_HZ_FULL
4766 static DEFINE_SPINLOCK(nr_freq_lock);
4767 #endif
4768 
4769 static void unaccount_freq_event_nohz(void)
4770 {
4771 #ifdef CONFIG_NO_HZ_FULL
4772 	spin_lock(&nr_freq_lock);
4773 	if (atomic_dec_and_test(&nr_freq_events))
4774 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4775 	spin_unlock(&nr_freq_lock);
4776 #endif
4777 }
4778 
4779 static void unaccount_freq_event(void)
4780 {
4781 	if (tick_nohz_full_enabled())
4782 		unaccount_freq_event_nohz();
4783 	else
4784 		atomic_dec(&nr_freq_events);
4785 }
4786 
4787 static void unaccount_event(struct perf_event *event)
4788 {
4789 	bool dec = false;
4790 
4791 	if (event->parent)
4792 		return;
4793 
4794 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4795 		dec = true;
4796 	if (event->attr.mmap || event->attr.mmap_data)
4797 		atomic_dec(&nr_mmap_events);
4798 	if (event->attr.build_id)
4799 		atomic_dec(&nr_build_id_events);
4800 	if (event->attr.comm)
4801 		atomic_dec(&nr_comm_events);
4802 	if (event->attr.namespaces)
4803 		atomic_dec(&nr_namespaces_events);
4804 	if (event->attr.cgroup)
4805 		atomic_dec(&nr_cgroup_events);
4806 	if (event->attr.task)
4807 		atomic_dec(&nr_task_events);
4808 	if (event->attr.freq)
4809 		unaccount_freq_event();
4810 	if (event->attr.context_switch) {
4811 		dec = true;
4812 		atomic_dec(&nr_switch_events);
4813 	}
4814 	if (is_cgroup_event(event))
4815 		dec = true;
4816 	if (has_branch_stack(event))
4817 		dec = true;
4818 	if (event->attr.ksymbol)
4819 		atomic_dec(&nr_ksymbol_events);
4820 	if (event->attr.bpf_event)
4821 		atomic_dec(&nr_bpf_events);
4822 	if (event->attr.text_poke)
4823 		atomic_dec(&nr_text_poke_events);
4824 
4825 	if (dec) {
4826 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4827 			schedule_delayed_work(&perf_sched_work, HZ);
4828 	}
4829 
4830 	unaccount_event_cpu(event, event->cpu);
4831 
4832 	unaccount_pmu_sb_event(event);
4833 }
4834 
4835 static void perf_sched_delayed(struct work_struct *work)
4836 {
4837 	mutex_lock(&perf_sched_mutex);
4838 	if (atomic_dec_and_test(&perf_sched_count))
4839 		static_branch_disable(&perf_sched_events);
4840 	mutex_unlock(&perf_sched_mutex);
4841 }
4842 
4843 /*
4844  * The following implement mutual exclusion of events on "exclusive" pmus
4845  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4846  * at a time, so we disallow creating events that might conflict, namely:
4847  *
4848  *  1) cpu-wide events in the presence of per-task events,
4849  *  2) per-task events in the presence of cpu-wide events,
4850  *  3) two matching events on the same context.
4851  *
4852  * The former two cases are handled in the allocation path (perf_event_alloc(),
4853  * _free_event()), the latter -- before the first perf_install_in_context().
4854  */
4855 static int exclusive_event_init(struct perf_event *event)
4856 {
4857 	struct pmu *pmu = event->pmu;
4858 
4859 	if (!is_exclusive_pmu(pmu))
4860 		return 0;
4861 
4862 	/*
4863 	 * Prevent co-existence of per-task and cpu-wide events on the
4864 	 * same exclusive pmu.
4865 	 *
4866 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4867 	 * events on this "exclusive" pmu, positive means there are
4868 	 * per-task events.
4869 	 *
4870 	 * Since this is called in perf_event_alloc() path, event::ctx
4871 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4872 	 * to mean "per-task event", because unlike other attach states it
4873 	 * never gets cleared.
4874 	 */
4875 	if (event->attach_state & PERF_ATTACH_TASK) {
4876 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4877 			return -EBUSY;
4878 	} else {
4879 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4880 			return -EBUSY;
4881 	}
4882 
4883 	return 0;
4884 }
4885 
4886 static void exclusive_event_destroy(struct perf_event *event)
4887 {
4888 	struct pmu *pmu = event->pmu;
4889 
4890 	if (!is_exclusive_pmu(pmu))
4891 		return;
4892 
4893 	/* see comment in exclusive_event_init() */
4894 	if (event->attach_state & PERF_ATTACH_TASK)
4895 		atomic_dec(&pmu->exclusive_cnt);
4896 	else
4897 		atomic_inc(&pmu->exclusive_cnt);
4898 }
4899 
4900 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4901 {
4902 	if ((e1->pmu == e2->pmu) &&
4903 	    (e1->cpu == e2->cpu ||
4904 	     e1->cpu == -1 ||
4905 	     e2->cpu == -1))
4906 		return true;
4907 	return false;
4908 }
4909 
4910 static bool exclusive_event_installable(struct perf_event *event,
4911 					struct perf_event_context *ctx)
4912 {
4913 	struct perf_event *iter_event;
4914 	struct pmu *pmu = event->pmu;
4915 
4916 	lockdep_assert_held(&ctx->mutex);
4917 
4918 	if (!is_exclusive_pmu(pmu))
4919 		return true;
4920 
4921 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4922 		if (exclusive_event_match(iter_event, event))
4923 			return false;
4924 	}
4925 
4926 	return true;
4927 }
4928 
4929 static void perf_addr_filters_splice(struct perf_event *event,
4930 				       struct list_head *head);
4931 
4932 static void _free_event(struct perf_event *event)
4933 {
4934 	irq_work_sync(&event->pending);
4935 
4936 	unaccount_event(event);
4937 
4938 	security_perf_event_free(event);
4939 
4940 	if (event->rb) {
4941 		/*
4942 		 * Can happen when we close an event with re-directed output.
4943 		 *
4944 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4945 		 * over us; possibly making our ring_buffer_put() the last.
4946 		 */
4947 		mutex_lock(&event->mmap_mutex);
4948 		ring_buffer_attach(event, NULL);
4949 		mutex_unlock(&event->mmap_mutex);
4950 	}
4951 
4952 	if (is_cgroup_event(event))
4953 		perf_detach_cgroup(event);
4954 
4955 	if (!event->parent) {
4956 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4957 			put_callchain_buffers();
4958 	}
4959 
4960 	perf_event_free_bpf_prog(event);
4961 	perf_addr_filters_splice(event, NULL);
4962 	kfree(event->addr_filter_ranges);
4963 
4964 	if (event->destroy)
4965 		event->destroy(event);
4966 
4967 	/*
4968 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4969 	 * hw.target.
4970 	 */
4971 	if (event->hw.target)
4972 		put_task_struct(event->hw.target);
4973 
4974 	/*
4975 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4976 	 * all task references must be cleaned up.
4977 	 */
4978 	if (event->ctx)
4979 		put_ctx(event->ctx);
4980 
4981 	exclusive_event_destroy(event);
4982 	module_put(event->pmu->module);
4983 
4984 	call_rcu(&event->rcu_head, free_event_rcu);
4985 }
4986 
4987 /*
4988  * Used to free events which have a known refcount of 1, such as in error paths
4989  * where the event isn't exposed yet and inherited events.
4990  */
4991 static void free_event(struct perf_event *event)
4992 {
4993 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4994 				"unexpected event refcount: %ld; ptr=%p\n",
4995 				atomic_long_read(&event->refcount), event)) {
4996 		/* leak to avoid use-after-free */
4997 		return;
4998 	}
4999 
5000 	_free_event(event);
5001 }
5002 
5003 /*
5004  * Remove user event from the owner task.
5005  */
5006 static void perf_remove_from_owner(struct perf_event *event)
5007 {
5008 	struct task_struct *owner;
5009 
5010 	rcu_read_lock();
5011 	/*
5012 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5013 	 * observe !owner it means the list deletion is complete and we can
5014 	 * indeed free this event, otherwise we need to serialize on
5015 	 * owner->perf_event_mutex.
5016 	 */
5017 	owner = READ_ONCE(event->owner);
5018 	if (owner) {
5019 		/*
5020 		 * Since delayed_put_task_struct() also drops the last
5021 		 * task reference we can safely take a new reference
5022 		 * while holding the rcu_read_lock().
5023 		 */
5024 		get_task_struct(owner);
5025 	}
5026 	rcu_read_unlock();
5027 
5028 	if (owner) {
5029 		/*
5030 		 * If we're here through perf_event_exit_task() we're already
5031 		 * holding ctx->mutex which would be an inversion wrt. the
5032 		 * normal lock order.
5033 		 *
5034 		 * However we can safely take this lock because its the child
5035 		 * ctx->mutex.
5036 		 */
5037 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5038 
5039 		/*
5040 		 * We have to re-check the event->owner field, if it is cleared
5041 		 * we raced with perf_event_exit_task(), acquiring the mutex
5042 		 * ensured they're done, and we can proceed with freeing the
5043 		 * event.
5044 		 */
5045 		if (event->owner) {
5046 			list_del_init(&event->owner_entry);
5047 			smp_store_release(&event->owner, NULL);
5048 		}
5049 		mutex_unlock(&owner->perf_event_mutex);
5050 		put_task_struct(owner);
5051 	}
5052 }
5053 
5054 static void put_event(struct perf_event *event)
5055 {
5056 	if (!atomic_long_dec_and_test(&event->refcount))
5057 		return;
5058 
5059 	_free_event(event);
5060 }
5061 
5062 /*
5063  * Kill an event dead; while event:refcount will preserve the event
5064  * object, it will not preserve its functionality. Once the last 'user'
5065  * gives up the object, we'll destroy the thing.
5066  */
5067 int perf_event_release_kernel(struct perf_event *event)
5068 {
5069 	struct perf_event_context *ctx = event->ctx;
5070 	struct perf_event *child, *tmp;
5071 	LIST_HEAD(free_list);
5072 
5073 	/*
5074 	 * If we got here through err_file: fput(event_file); we will not have
5075 	 * attached to a context yet.
5076 	 */
5077 	if (!ctx) {
5078 		WARN_ON_ONCE(event->attach_state &
5079 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5080 		goto no_ctx;
5081 	}
5082 
5083 	if (!is_kernel_event(event))
5084 		perf_remove_from_owner(event);
5085 
5086 	ctx = perf_event_ctx_lock(event);
5087 	WARN_ON_ONCE(ctx->parent_ctx);
5088 	perf_remove_from_context(event, DETACH_GROUP);
5089 
5090 	raw_spin_lock_irq(&ctx->lock);
5091 	/*
5092 	 * Mark this event as STATE_DEAD, there is no external reference to it
5093 	 * anymore.
5094 	 *
5095 	 * Anybody acquiring event->child_mutex after the below loop _must_
5096 	 * also see this, most importantly inherit_event() which will avoid
5097 	 * placing more children on the list.
5098 	 *
5099 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5100 	 * child events.
5101 	 */
5102 	event->state = PERF_EVENT_STATE_DEAD;
5103 	raw_spin_unlock_irq(&ctx->lock);
5104 
5105 	perf_event_ctx_unlock(event, ctx);
5106 
5107 again:
5108 	mutex_lock(&event->child_mutex);
5109 	list_for_each_entry(child, &event->child_list, child_list) {
5110 
5111 		/*
5112 		 * Cannot change, child events are not migrated, see the
5113 		 * comment with perf_event_ctx_lock_nested().
5114 		 */
5115 		ctx = READ_ONCE(child->ctx);
5116 		/*
5117 		 * Since child_mutex nests inside ctx::mutex, we must jump
5118 		 * through hoops. We start by grabbing a reference on the ctx.
5119 		 *
5120 		 * Since the event cannot get freed while we hold the
5121 		 * child_mutex, the context must also exist and have a !0
5122 		 * reference count.
5123 		 */
5124 		get_ctx(ctx);
5125 
5126 		/*
5127 		 * Now that we have a ctx ref, we can drop child_mutex, and
5128 		 * acquire ctx::mutex without fear of it going away. Then we
5129 		 * can re-acquire child_mutex.
5130 		 */
5131 		mutex_unlock(&event->child_mutex);
5132 		mutex_lock(&ctx->mutex);
5133 		mutex_lock(&event->child_mutex);
5134 
5135 		/*
5136 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5137 		 * state, if child is still the first entry, it didn't get freed
5138 		 * and we can continue doing so.
5139 		 */
5140 		tmp = list_first_entry_or_null(&event->child_list,
5141 					       struct perf_event, child_list);
5142 		if (tmp == child) {
5143 			perf_remove_from_context(child, DETACH_GROUP);
5144 			list_move(&child->child_list, &free_list);
5145 			/*
5146 			 * This matches the refcount bump in inherit_event();
5147 			 * this can't be the last reference.
5148 			 */
5149 			put_event(event);
5150 		}
5151 
5152 		mutex_unlock(&event->child_mutex);
5153 		mutex_unlock(&ctx->mutex);
5154 		put_ctx(ctx);
5155 		goto again;
5156 	}
5157 	mutex_unlock(&event->child_mutex);
5158 
5159 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5160 		void *var = &child->ctx->refcount;
5161 
5162 		list_del(&child->child_list);
5163 		free_event(child);
5164 
5165 		/*
5166 		 * Wake any perf_event_free_task() waiting for this event to be
5167 		 * freed.
5168 		 */
5169 		smp_mb(); /* pairs with wait_var_event() */
5170 		wake_up_var(var);
5171 	}
5172 
5173 no_ctx:
5174 	put_event(event); /* Must be the 'last' reference */
5175 	return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5178 
5179 /*
5180  * Called when the last reference to the file is gone.
5181  */
5182 static int perf_release(struct inode *inode, struct file *file)
5183 {
5184 	perf_event_release_kernel(file->private_data);
5185 	return 0;
5186 }
5187 
5188 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5189 {
5190 	struct perf_event *child;
5191 	u64 total = 0;
5192 
5193 	*enabled = 0;
5194 	*running = 0;
5195 
5196 	mutex_lock(&event->child_mutex);
5197 
5198 	(void)perf_event_read(event, false);
5199 	total += perf_event_count(event);
5200 
5201 	*enabled += event->total_time_enabled +
5202 			atomic64_read(&event->child_total_time_enabled);
5203 	*running += event->total_time_running +
5204 			atomic64_read(&event->child_total_time_running);
5205 
5206 	list_for_each_entry(child, &event->child_list, child_list) {
5207 		(void)perf_event_read(child, false);
5208 		total += perf_event_count(child);
5209 		*enabled += child->total_time_enabled;
5210 		*running += child->total_time_running;
5211 	}
5212 	mutex_unlock(&event->child_mutex);
5213 
5214 	return total;
5215 }
5216 
5217 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5218 {
5219 	struct perf_event_context *ctx;
5220 	u64 count;
5221 
5222 	ctx = perf_event_ctx_lock(event);
5223 	count = __perf_event_read_value(event, enabled, running);
5224 	perf_event_ctx_unlock(event, ctx);
5225 
5226 	return count;
5227 }
5228 EXPORT_SYMBOL_GPL(perf_event_read_value);
5229 
5230 static int __perf_read_group_add(struct perf_event *leader,
5231 					u64 read_format, u64 *values)
5232 {
5233 	struct perf_event_context *ctx = leader->ctx;
5234 	struct perf_event *sub;
5235 	unsigned long flags;
5236 	int n = 1; /* skip @nr */
5237 	int ret;
5238 
5239 	ret = perf_event_read(leader, true);
5240 	if (ret)
5241 		return ret;
5242 
5243 	raw_spin_lock_irqsave(&ctx->lock, flags);
5244 
5245 	/*
5246 	 * Since we co-schedule groups, {enabled,running} times of siblings
5247 	 * will be identical to those of the leader, so we only publish one
5248 	 * set.
5249 	 */
5250 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5251 		values[n++] += leader->total_time_enabled +
5252 			atomic64_read(&leader->child_total_time_enabled);
5253 	}
5254 
5255 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5256 		values[n++] += leader->total_time_running +
5257 			atomic64_read(&leader->child_total_time_running);
5258 	}
5259 
5260 	/*
5261 	 * Write {count,id} tuples for every sibling.
5262 	 */
5263 	values[n++] += perf_event_count(leader);
5264 	if (read_format & PERF_FORMAT_ID)
5265 		values[n++] = primary_event_id(leader);
5266 	if (read_format & PERF_FORMAT_LOST)
5267 		values[n++] = atomic64_read(&leader->lost_samples);
5268 
5269 	for_each_sibling_event(sub, leader) {
5270 		values[n++] += perf_event_count(sub);
5271 		if (read_format & PERF_FORMAT_ID)
5272 			values[n++] = primary_event_id(sub);
5273 		if (read_format & PERF_FORMAT_LOST)
5274 			values[n++] = atomic64_read(&sub->lost_samples);
5275 	}
5276 
5277 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5278 	return 0;
5279 }
5280 
5281 static int perf_read_group(struct perf_event *event,
5282 				   u64 read_format, char __user *buf)
5283 {
5284 	struct perf_event *leader = event->group_leader, *child;
5285 	struct perf_event_context *ctx = leader->ctx;
5286 	int ret;
5287 	u64 *values;
5288 
5289 	lockdep_assert_held(&ctx->mutex);
5290 
5291 	values = kzalloc(event->read_size, GFP_KERNEL);
5292 	if (!values)
5293 		return -ENOMEM;
5294 
5295 	values[0] = 1 + leader->nr_siblings;
5296 
5297 	/*
5298 	 * By locking the child_mutex of the leader we effectively
5299 	 * lock the child list of all siblings.. XXX explain how.
5300 	 */
5301 	mutex_lock(&leader->child_mutex);
5302 
5303 	ret = __perf_read_group_add(leader, read_format, values);
5304 	if (ret)
5305 		goto unlock;
5306 
5307 	list_for_each_entry(child, &leader->child_list, child_list) {
5308 		ret = __perf_read_group_add(child, read_format, values);
5309 		if (ret)
5310 			goto unlock;
5311 	}
5312 
5313 	mutex_unlock(&leader->child_mutex);
5314 
5315 	ret = event->read_size;
5316 	if (copy_to_user(buf, values, event->read_size))
5317 		ret = -EFAULT;
5318 	goto out;
5319 
5320 unlock:
5321 	mutex_unlock(&leader->child_mutex);
5322 out:
5323 	kfree(values);
5324 	return ret;
5325 }
5326 
5327 static int perf_read_one(struct perf_event *event,
5328 				 u64 read_format, char __user *buf)
5329 {
5330 	u64 enabled, running;
5331 	u64 values[5];
5332 	int n = 0;
5333 
5334 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5335 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5336 		values[n++] = enabled;
5337 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5338 		values[n++] = running;
5339 	if (read_format & PERF_FORMAT_ID)
5340 		values[n++] = primary_event_id(event);
5341 	if (read_format & PERF_FORMAT_LOST)
5342 		values[n++] = atomic64_read(&event->lost_samples);
5343 
5344 	if (copy_to_user(buf, values, n * sizeof(u64)))
5345 		return -EFAULT;
5346 
5347 	return n * sizeof(u64);
5348 }
5349 
5350 static bool is_event_hup(struct perf_event *event)
5351 {
5352 	bool no_children;
5353 
5354 	if (event->state > PERF_EVENT_STATE_EXIT)
5355 		return false;
5356 
5357 	mutex_lock(&event->child_mutex);
5358 	no_children = list_empty(&event->child_list);
5359 	mutex_unlock(&event->child_mutex);
5360 	return no_children;
5361 }
5362 
5363 /*
5364  * Read the performance event - simple non blocking version for now
5365  */
5366 static ssize_t
5367 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5368 {
5369 	u64 read_format = event->attr.read_format;
5370 	int ret;
5371 
5372 	/*
5373 	 * Return end-of-file for a read on an event that is in
5374 	 * error state (i.e. because it was pinned but it couldn't be
5375 	 * scheduled on to the CPU at some point).
5376 	 */
5377 	if (event->state == PERF_EVENT_STATE_ERROR)
5378 		return 0;
5379 
5380 	if (count < event->read_size)
5381 		return -ENOSPC;
5382 
5383 	WARN_ON_ONCE(event->ctx->parent_ctx);
5384 	if (read_format & PERF_FORMAT_GROUP)
5385 		ret = perf_read_group(event, read_format, buf);
5386 	else
5387 		ret = perf_read_one(event, read_format, buf);
5388 
5389 	return ret;
5390 }
5391 
5392 static ssize_t
5393 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5394 {
5395 	struct perf_event *event = file->private_data;
5396 	struct perf_event_context *ctx;
5397 	int ret;
5398 
5399 	ret = security_perf_event_read(event);
5400 	if (ret)
5401 		return ret;
5402 
5403 	ctx = perf_event_ctx_lock(event);
5404 	ret = __perf_read(event, buf, count);
5405 	perf_event_ctx_unlock(event, ctx);
5406 
5407 	return ret;
5408 }
5409 
5410 static __poll_t perf_poll(struct file *file, poll_table *wait)
5411 {
5412 	struct perf_event *event = file->private_data;
5413 	struct perf_buffer *rb;
5414 	__poll_t events = EPOLLHUP;
5415 
5416 	poll_wait(file, &event->waitq, wait);
5417 
5418 	if (is_event_hup(event))
5419 		return events;
5420 
5421 	/*
5422 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5423 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5424 	 */
5425 	mutex_lock(&event->mmap_mutex);
5426 	rb = event->rb;
5427 	if (rb)
5428 		events = atomic_xchg(&rb->poll, 0);
5429 	mutex_unlock(&event->mmap_mutex);
5430 	return events;
5431 }
5432 
5433 static void _perf_event_reset(struct perf_event *event)
5434 {
5435 	(void)perf_event_read(event, false);
5436 	local64_set(&event->count, 0);
5437 	perf_event_update_userpage(event);
5438 }
5439 
5440 /* Assume it's not an event with inherit set. */
5441 u64 perf_event_pause(struct perf_event *event, bool reset)
5442 {
5443 	struct perf_event_context *ctx;
5444 	u64 count;
5445 
5446 	ctx = perf_event_ctx_lock(event);
5447 	WARN_ON_ONCE(event->attr.inherit);
5448 	_perf_event_disable(event);
5449 	count = local64_read(&event->count);
5450 	if (reset)
5451 		local64_set(&event->count, 0);
5452 	perf_event_ctx_unlock(event, ctx);
5453 
5454 	return count;
5455 }
5456 EXPORT_SYMBOL_GPL(perf_event_pause);
5457 
5458 /*
5459  * Holding the top-level event's child_mutex means that any
5460  * descendant process that has inherited this event will block
5461  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5462  * task existence requirements of perf_event_enable/disable.
5463  */
5464 static void perf_event_for_each_child(struct perf_event *event,
5465 					void (*func)(struct perf_event *))
5466 {
5467 	struct perf_event *child;
5468 
5469 	WARN_ON_ONCE(event->ctx->parent_ctx);
5470 
5471 	mutex_lock(&event->child_mutex);
5472 	func(event);
5473 	list_for_each_entry(child, &event->child_list, child_list)
5474 		func(child);
5475 	mutex_unlock(&event->child_mutex);
5476 }
5477 
5478 static void perf_event_for_each(struct perf_event *event,
5479 				  void (*func)(struct perf_event *))
5480 {
5481 	struct perf_event_context *ctx = event->ctx;
5482 	struct perf_event *sibling;
5483 
5484 	lockdep_assert_held(&ctx->mutex);
5485 
5486 	event = event->group_leader;
5487 
5488 	perf_event_for_each_child(event, func);
5489 	for_each_sibling_event(sibling, event)
5490 		perf_event_for_each_child(sibling, func);
5491 }
5492 
5493 static void __perf_event_period(struct perf_event *event,
5494 				struct perf_cpu_context *cpuctx,
5495 				struct perf_event_context *ctx,
5496 				void *info)
5497 {
5498 	u64 value = *((u64 *)info);
5499 	bool active;
5500 
5501 	if (event->attr.freq) {
5502 		event->attr.sample_freq = value;
5503 	} else {
5504 		event->attr.sample_period = value;
5505 		event->hw.sample_period = value;
5506 	}
5507 
5508 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5509 	if (active) {
5510 		perf_pmu_disable(ctx->pmu);
5511 		/*
5512 		 * We could be throttled; unthrottle now to avoid the tick
5513 		 * trying to unthrottle while we already re-started the event.
5514 		 */
5515 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5516 			event->hw.interrupts = 0;
5517 			perf_log_throttle(event, 1);
5518 		}
5519 		event->pmu->stop(event, PERF_EF_UPDATE);
5520 	}
5521 
5522 	local64_set(&event->hw.period_left, 0);
5523 
5524 	if (active) {
5525 		event->pmu->start(event, PERF_EF_RELOAD);
5526 		perf_pmu_enable(ctx->pmu);
5527 	}
5528 }
5529 
5530 static int perf_event_check_period(struct perf_event *event, u64 value)
5531 {
5532 	return event->pmu->check_period(event, value);
5533 }
5534 
5535 static int _perf_event_period(struct perf_event *event, u64 value)
5536 {
5537 	if (!is_sampling_event(event))
5538 		return -EINVAL;
5539 
5540 	if (!value)
5541 		return -EINVAL;
5542 
5543 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5544 		return -EINVAL;
5545 
5546 	if (perf_event_check_period(event, value))
5547 		return -EINVAL;
5548 
5549 	if (!event->attr.freq && (value & (1ULL << 63)))
5550 		return -EINVAL;
5551 
5552 	event_function_call(event, __perf_event_period, &value);
5553 
5554 	return 0;
5555 }
5556 
5557 int perf_event_period(struct perf_event *event, u64 value)
5558 {
5559 	struct perf_event_context *ctx;
5560 	int ret;
5561 
5562 	ctx = perf_event_ctx_lock(event);
5563 	ret = _perf_event_period(event, value);
5564 	perf_event_ctx_unlock(event, ctx);
5565 
5566 	return ret;
5567 }
5568 EXPORT_SYMBOL_GPL(perf_event_period);
5569 
5570 static const struct file_operations perf_fops;
5571 
5572 static inline int perf_fget_light(int fd, struct fd *p)
5573 {
5574 	struct fd f = fdget(fd);
5575 	if (!f.file)
5576 		return -EBADF;
5577 
5578 	if (f.file->f_op != &perf_fops) {
5579 		fdput(f);
5580 		return -EBADF;
5581 	}
5582 	*p = f;
5583 	return 0;
5584 }
5585 
5586 static int perf_event_set_output(struct perf_event *event,
5587 				 struct perf_event *output_event);
5588 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5589 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5590 			  struct perf_event_attr *attr);
5591 
5592 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5593 {
5594 	void (*func)(struct perf_event *);
5595 	u32 flags = arg;
5596 
5597 	switch (cmd) {
5598 	case PERF_EVENT_IOC_ENABLE:
5599 		func = _perf_event_enable;
5600 		break;
5601 	case PERF_EVENT_IOC_DISABLE:
5602 		func = _perf_event_disable;
5603 		break;
5604 	case PERF_EVENT_IOC_RESET:
5605 		func = _perf_event_reset;
5606 		break;
5607 
5608 	case PERF_EVENT_IOC_REFRESH:
5609 		return _perf_event_refresh(event, arg);
5610 
5611 	case PERF_EVENT_IOC_PERIOD:
5612 	{
5613 		u64 value;
5614 
5615 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5616 			return -EFAULT;
5617 
5618 		return _perf_event_period(event, value);
5619 	}
5620 	case PERF_EVENT_IOC_ID:
5621 	{
5622 		u64 id = primary_event_id(event);
5623 
5624 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5625 			return -EFAULT;
5626 		return 0;
5627 	}
5628 
5629 	case PERF_EVENT_IOC_SET_OUTPUT:
5630 	{
5631 		int ret;
5632 		if (arg != -1) {
5633 			struct perf_event *output_event;
5634 			struct fd output;
5635 			ret = perf_fget_light(arg, &output);
5636 			if (ret)
5637 				return ret;
5638 			output_event = output.file->private_data;
5639 			ret = perf_event_set_output(event, output_event);
5640 			fdput(output);
5641 		} else {
5642 			ret = perf_event_set_output(event, NULL);
5643 		}
5644 		return ret;
5645 	}
5646 
5647 	case PERF_EVENT_IOC_SET_FILTER:
5648 		return perf_event_set_filter(event, (void __user *)arg);
5649 
5650 	case PERF_EVENT_IOC_SET_BPF:
5651 	{
5652 		struct bpf_prog *prog;
5653 		int err;
5654 
5655 		prog = bpf_prog_get(arg);
5656 		if (IS_ERR(prog))
5657 			return PTR_ERR(prog);
5658 
5659 		err = perf_event_set_bpf_prog(event, prog, 0);
5660 		if (err) {
5661 			bpf_prog_put(prog);
5662 			return err;
5663 		}
5664 
5665 		return 0;
5666 	}
5667 
5668 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5669 		struct perf_buffer *rb;
5670 
5671 		rcu_read_lock();
5672 		rb = rcu_dereference(event->rb);
5673 		if (!rb || !rb->nr_pages) {
5674 			rcu_read_unlock();
5675 			return -EINVAL;
5676 		}
5677 		rb_toggle_paused(rb, !!arg);
5678 		rcu_read_unlock();
5679 		return 0;
5680 	}
5681 
5682 	case PERF_EVENT_IOC_QUERY_BPF:
5683 		return perf_event_query_prog_array(event, (void __user *)arg);
5684 
5685 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5686 		struct perf_event_attr new_attr;
5687 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5688 					 &new_attr);
5689 
5690 		if (err)
5691 			return err;
5692 
5693 		return perf_event_modify_attr(event,  &new_attr);
5694 	}
5695 	default:
5696 		return -ENOTTY;
5697 	}
5698 
5699 	if (flags & PERF_IOC_FLAG_GROUP)
5700 		perf_event_for_each(event, func);
5701 	else
5702 		perf_event_for_each_child(event, func);
5703 
5704 	return 0;
5705 }
5706 
5707 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5708 {
5709 	struct perf_event *event = file->private_data;
5710 	struct perf_event_context *ctx;
5711 	long ret;
5712 
5713 	/* Treat ioctl like writes as it is likely a mutating operation. */
5714 	ret = security_perf_event_write(event);
5715 	if (ret)
5716 		return ret;
5717 
5718 	ctx = perf_event_ctx_lock(event);
5719 	ret = _perf_ioctl(event, cmd, arg);
5720 	perf_event_ctx_unlock(event, ctx);
5721 
5722 	return ret;
5723 }
5724 
5725 #ifdef CONFIG_COMPAT
5726 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5727 				unsigned long arg)
5728 {
5729 	switch (_IOC_NR(cmd)) {
5730 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5731 	case _IOC_NR(PERF_EVENT_IOC_ID):
5732 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5733 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5734 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5735 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5736 			cmd &= ~IOCSIZE_MASK;
5737 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5738 		}
5739 		break;
5740 	}
5741 	return perf_ioctl(file, cmd, arg);
5742 }
5743 #else
5744 # define perf_compat_ioctl NULL
5745 #endif
5746 
5747 int perf_event_task_enable(void)
5748 {
5749 	struct perf_event_context *ctx;
5750 	struct perf_event *event;
5751 
5752 	mutex_lock(&current->perf_event_mutex);
5753 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5754 		ctx = perf_event_ctx_lock(event);
5755 		perf_event_for_each_child(event, _perf_event_enable);
5756 		perf_event_ctx_unlock(event, ctx);
5757 	}
5758 	mutex_unlock(&current->perf_event_mutex);
5759 
5760 	return 0;
5761 }
5762 
5763 int perf_event_task_disable(void)
5764 {
5765 	struct perf_event_context *ctx;
5766 	struct perf_event *event;
5767 
5768 	mutex_lock(&current->perf_event_mutex);
5769 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5770 		ctx = perf_event_ctx_lock(event);
5771 		perf_event_for_each_child(event, _perf_event_disable);
5772 		perf_event_ctx_unlock(event, ctx);
5773 	}
5774 	mutex_unlock(&current->perf_event_mutex);
5775 
5776 	return 0;
5777 }
5778 
5779 static int perf_event_index(struct perf_event *event)
5780 {
5781 	if (event->hw.state & PERF_HES_STOPPED)
5782 		return 0;
5783 
5784 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5785 		return 0;
5786 
5787 	return event->pmu->event_idx(event);
5788 }
5789 
5790 static void perf_event_init_userpage(struct perf_event *event)
5791 {
5792 	struct perf_event_mmap_page *userpg;
5793 	struct perf_buffer *rb;
5794 
5795 	rcu_read_lock();
5796 	rb = rcu_dereference(event->rb);
5797 	if (!rb)
5798 		goto unlock;
5799 
5800 	userpg = rb->user_page;
5801 
5802 	/* Allow new userspace to detect that bit 0 is deprecated */
5803 	userpg->cap_bit0_is_deprecated = 1;
5804 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5805 	userpg->data_offset = PAGE_SIZE;
5806 	userpg->data_size = perf_data_size(rb);
5807 
5808 unlock:
5809 	rcu_read_unlock();
5810 }
5811 
5812 void __weak arch_perf_update_userpage(
5813 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5814 {
5815 }
5816 
5817 /*
5818  * Callers need to ensure there can be no nesting of this function, otherwise
5819  * the seqlock logic goes bad. We can not serialize this because the arch
5820  * code calls this from NMI context.
5821  */
5822 void perf_event_update_userpage(struct perf_event *event)
5823 {
5824 	struct perf_event_mmap_page *userpg;
5825 	struct perf_buffer *rb;
5826 	u64 enabled, running, now;
5827 
5828 	rcu_read_lock();
5829 	rb = rcu_dereference(event->rb);
5830 	if (!rb)
5831 		goto unlock;
5832 
5833 	/*
5834 	 * compute total_time_enabled, total_time_running
5835 	 * based on snapshot values taken when the event
5836 	 * was last scheduled in.
5837 	 *
5838 	 * we cannot simply called update_context_time()
5839 	 * because of locking issue as we can be called in
5840 	 * NMI context
5841 	 */
5842 	calc_timer_values(event, &now, &enabled, &running);
5843 
5844 	userpg = rb->user_page;
5845 	/*
5846 	 * Disable preemption to guarantee consistent time stamps are stored to
5847 	 * the user page.
5848 	 */
5849 	preempt_disable();
5850 	++userpg->lock;
5851 	barrier();
5852 	userpg->index = perf_event_index(event);
5853 	userpg->offset = perf_event_count(event);
5854 	if (userpg->index)
5855 		userpg->offset -= local64_read(&event->hw.prev_count);
5856 
5857 	userpg->time_enabled = enabled +
5858 			atomic64_read(&event->child_total_time_enabled);
5859 
5860 	userpg->time_running = running +
5861 			atomic64_read(&event->child_total_time_running);
5862 
5863 	arch_perf_update_userpage(event, userpg, now);
5864 
5865 	barrier();
5866 	++userpg->lock;
5867 	preempt_enable();
5868 unlock:
5869 	rcu_read_unlock();
5870 }
5871 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5872 
5873 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5874 {
5875 	struct perf_event *event = vmf->vma->vm_file->private_data;
5876 	struct perf_buffer *rb;
5877 	vm_fault_t ret = VM_FAULT_SIGBUS;
5878 
5879 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5880 		if (vmf->pgoff == 0)
5881 			ret = 0;
5882 		return ret;
5883 	}
5884 
5885 	rcu_read_lock();
5886 	rb = rcu_dereference(event->rb);
5887 	if (!rb)
5888 		goto unlock;
5889 
5890 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5891 		goto unlock;
5892 
5893 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5894 	if (!vmf->page)
5895 		goto unlock;
5896 
5897 	get_page(vmf->page);
5898 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5899 	vmf->page->index   = vmf->pgoff;
5900 
5901 	ret = 0;
5902 unlock:
5903 	rcu_read_unlock();
5904 
5905 	return ret;
5906 }
5907 
5908 static void ring_buffer_attach(struct perf_event *event,
5909 			       struct perf_buffer *rb)
5910 {
5911 	struct perf_buffer *old_rb = NULL;
5912 	unsigned long flags;
5913 
5914 	WARN_ON_ONCE(event->parent);
5915 
5916 	if (event->rb) {
5917 		/*
5918 		 * Should be impossible, we set this when removing
5919 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5920 		 */
5921 		WARN_ON_ONCE(event->rcu_pending);
5922 
5923 		old_rb = event->rb;
5924 		spin_lock_irqsave(&old_rb->event_lock, flags);
5925 		list_del_rcu(&event->rb_entry);
5926 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5927 
5928 		event->rcu_batches = get_state_synchronize_rcu();
5929 		event->rcu_pending = 1;
5930 	}
5931 
5932 	if (rb) {
5933 		if (event->rcu_pending) {
5934 			cond_synchronize_rcu(event->rcu_batches);
5935 			event->rcu_pending = 0;
5936 		}
5937 
5938 		spin_lock_irqsave(&rb->event_lock, flags);
5939 		list_add_rcu(&event->rb_entry, &rb->event_list);
5940 		spin_unlock_irqrestore(&rb->event_lock, flags);
5941 	}
5942 
5943 	/*
5944 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5945 	 * before swizzling the event::rb pointer; if it's getting
5946 	 * unmapped, its aux_mmap_count will be 0 and it won't
5947 	 * restart. See the comment in __perf_pmu_output_stop().
5948 	 *
5949 	 * Data will inevitably be lost when set_output is done in
5950 	 * mid-air, but then again, whoever does it like this is
5951 	 * not in for the data anyway.
5952 	 */
5953 	if (has_aux(event))
5954 		perf_event_stop(event, 0);
5955 
5956 	rcu_assign_pointer(event->rb, rb);
5957 
5958 	if (old_rb) {
5959 		ring_buffer_put(old_rb);
5960 		/*
5961 		 * Since we detached before setting the new rb, so that we
5962 		 * could attach the new rb, we could have missed a wakeup.
5963 		 * Provide it now.
5964 		 */
5965 		wake_up_all(&event->waitq);
5966 	}
5967 }
5968 
5969 static void ring_buffer_wakeup(struct perf_event *event)
5970 {
5971 	struct perf_buffer *rb;
5972 
5973 	if (event->parent)
5974 		event = event->parent;
5975 
5976 	rcu_read_lock();
5977 	rb = rcu_dereference(event->rb);
5978 	if (rb) {
5979 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5980 			wake_up_all(&event->waitq);
5981 	}
5982 	rcu_read_unlock();
5983 }
5984 
5985 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5986 {
5987 	struct perf_buffer *rb;
5988 
5989 	if (event->parent)
5990 		event = event->parent;
5991 
5992 	rcu_read_lock();
5993 	rb = rcu_dereference(event->rb);
5994 	if (rb) {
5995 		if (!refcount_inc_not_zero(&rb->refcount))
5996 			rb = NULL;
5997 	}
5998 	rcu_read_unlock();
5999 
6000 	return rb;
6001 }
6002 
6003 void ring_buffer_put(struct perf_buffer *rb)
6004 {
6005 	if (!refcount_dec_and_test(&rb->refcount))
6006 		return;
6007 
6008 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6009 
6010 	call_rcu(&rb->rcu_head, rb_free_rcu);
6011 }
6012 
6013 static void perf_mmap_open(struct vm_area_struct *vma)
6014 {
6015 	struct perf_event *event = vma->vm_file->private_data;
6016 
6017 	atomic_inc(&event->mmap_count);
6018 	atomic_inc(&event->rb->mmap_count);
6019 
6020 	if (vma->vm_pgoff)
6021 		atomic_inc(&event->rb->aux_mmap_count);
6022 
6023 	if (event->pmu->event_mapped)
6024 		event->pmu->event_mapped(event, vma->vm_mm);
6025 }
6026 
6027 static void perf_pmu_output_stop(struct perf_event *event);
6028 
6029 /*
6030  * A buffer can be mmap()ed multiple times; either directly through the same
6031  * event, or through other events by use of perf_event_set_output().
6032  *
6033  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6034  * the buffer here, where we still have a VM context. This means we need
6035  * to detach all events redirecting to us.
6036  */
6037 static void perf_mmap_close(struct vm_area_struct *vma)
6038 {
6039 	struct perf_event *event = vma->vm_file->private_data;
6040 	struct perf_buffer *rb = ring_buffer_get(event);
6041 	struct user_struct *mmap_user = rb->mmap_user;
6042 	int mmap_locked = rb->mmap_locked;
6043 	unsigned long size = perf_data_size(rb);
6044 	bool detach_rest = false;
6045 
6046 	if (event->pmu->event_unmapped)
6047 		event->pmu->event_unmapped(event, vma->vm_mm);
6048 
6049 	/*
6050 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6051 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6052 	 * serialize with perf_mmap here.
6053 	 */
6054 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6055 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6056 		/*
6057 		 * Stop all AUX events that are writing to this buffer,
6058 		 * so that we can free its AUX pages and corresponding PMU
6059 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6060 		 * they won't start any more (see perf_aux_output_begin()).
6061 		 */
6062 		perf_pmu_output_stop(event);
6063 
6064 		/* now it's safe to free the pages */
6065 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6066 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6067 
6068 		/* this has to be the last one */
6069 		rb_free_aux(rb);
6070 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6071 
6072 		mutex_unlock(&event->mmap_mutex);
6073 	}
6074 
6075 	if (atomic_dec_and_test(&rb->mmap_count))
6076 		detach_rest = true;
6077 
6078 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6079 		goto out_put;
6080 
6081 	ring_buffer_attach(event, NULL);
6082 	mutex_unlock(&event->mmap_mutex);
6083 
6084 	/* If there's still other mmap()s of this buffer, we're done. */
6085 	if (!detach_rest)
6086 		goto out_put;
6087 
6088 	/*
6089 	 * No other mmap()s, detach from all other events that might redirect
6090 	 * into the now unreachable buffer. Somewhat complicated by the
6091 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6092 	 */
6093 again:
6094 	rcu_read_lock();
6095 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6096 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6097 			/*
6098 			 * This event is en-route to free_event() which will
6099 			 * detach it and remove it from the list.
6100 			 */
6101 			continue;
6102 		}
6103 		rcu_read_unlock();
6104 
6105 		mutex_lock(&event->mmap_mutex);
6106 		/*
6107 		 * Check we didn't race with perf_event_set_output() which can
6108 		 * swizzle the rb from under us while we were waiting to
6109 		 * acquire mmap_mutex.
6110 		 *
6111 		 * If we find a different rb; ignore this event, a next
6112 		 * iteration will no longer find it on the list. We have to
6113 		 * still restart the iteration to make sure we're not now
6114 		 * iterating the wrong list.
6115 		 */
6116 		if (event->rb == rb)
6117 			ring_buffer_attach(event, NULL);
6118 
6119 		mutex_unlock(&event->mmap_mutex);
6120 		put_event(event);
6121 
6122 		/*
6123 		 * Restart the iteration; either we're on the wrong list or
6124 		 * destroyed its integrity by doing a deletion.
6125 		 */
6126 		goto again;
6127 	}
6128 	rcu_read_unlock();
6129 
6130 	/*
6131 	 * It could be there's still a few 0-ref events on the list; they'll
6132 	 * get cleaned up by free_event() -- they'll also still have their
6133 	 * ref on the rb and will free it whenever they are done with it.
6134 	 *
6135 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6136 	 * undo the VM accounting.
6137 	 */
6138 
6139 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6140 			&mmap_user->locked_vm);
6141 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6142 	free_uid(mmap_user);
6143 
6144 out_put:
6145 	ring_buffer_put(rb); /* could be last */
6146 }
6147 
6148 static const struct vm_operations_struct perf_mmap_vmops = {
6149 	.open		= perf_mmap_open,
6150 	.close		= perf_mmap_close, /* non mergeable */
6151 	.fault		= perf_mmap_fault,
6152 	.page_mkwrite	= perf_mmap_fault,
6153 };
6154 
6155 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6156 {
6157 	struct perf_event *event = file->private_data;
6158 	unsigned long user_locked, user_lock_limit;
6159 	struct user_struct *user = current_user();
6160 	struct perf_buffer *rb = NULL;
6161 	unsigned long locked, lock_limit;
6162 	unsigned long vma_size;
6163 	unsigned long nr_pages;
6164 	long user_extra = 0, extra = 0;
6165 	int ret = 0, flags = 0;
6166 
6167 	/*
6168 	 * Don't allow mmap() of inherited per-task counters. This would
6169 	 * create a performance issue due to all children writing to the
6170 	 * same rb.
6171 	 */
6172 	if (event->cpu == -1 && event->attr.inherit)
6173 		return -EINVAL;
6174 
6175 	if (!(vma->vm_flags & VM_SHARED))
6176 		return -EINVAL;
6177 
6178 	ret = security_perf_event_read(event);
6179 	if (ret)
6180 		return ret;
6181 
6182 	vma_size = vma->vm_end - vma->vm_start;
6183 
6184 	if (vma->vm_pgoff == 0) {
6185 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6186 	} else {
6187 		/*
6188 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6189 		 * mapped, all subsequent mappings should have the same size
6190 		 * and offset. Must be above the normal perf buffer.
6191 		 */
6192 		u64 aux_offset, aux_size;
6193 
6194 		if (!event->rb)
6195 			return -EINVAL;
6196 
6197 		nr_pages = vma_size / PAGE_SIZE;
6198 
6199 		mutex_lock(&event->mmap_mutex);
6200 		ret = -EINVAL;
6201 
6202 		rb = event->rb;
6203 		if (!rb)
6204 			goto aux_unlock;
6205 
6206 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6207 		aux_size = READ_ONCE(rb->user_page->aux_size);
6208 
6209 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6210 			goto aux_unlock;
6211 
6212 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6213 			goto aux_unlock;
6214 
6215 		/* already mapped with a different offset */
6216 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6217 			goto aux_unlock;
6218 
6219 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6220 			goto aux_unlock;
6221 
6222 		/* already mapped with a different size */
6223 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6224 			goto aux_unlock;
6225 
6226 		if (!is_power_of_2(nr_pages))
6227 			goto aux_unlock;
6228 
6229 		if (!atomic_inc_not_zero(&rb->mmap_count))
6230 			goto aux_unlock;
6231 
6232 		if (rb_has_aux(rb)) {
6233 			atomic_inc(&rb->aux_mmap_count);
6234 			ret = 0;
6235 			goto unlock;
6236 		}
6237 
6238 		atomic_set(&rb->aux_mmap_count, 1);
6239 		user_extra = nr_pages;
6240 
6241 		goto accounting;
6242 	}
6243 
6244 	/*
6245 	 * If we have rb pages ensure they're a power-of-two number, so we
6246 	 * can do bitmasks instead of modulo.
6247 	 */
6248 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6249 		return -EINVAL;
6250 
6251 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6252 		return -EINVAL;
6253 
6254 	WARN_ON_ONCE(event->ctx->parent_ctx);
6255 again:
6256 	mutex_lock(&event->mmap_mutex);
6257 	if (event->rb) {
6258 		if (data_page_nr(event->rb) != nr_pages) {
6259 			ret = -EINVAL;
6260 			goto unlock;
6261 		}
6262 
6263 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6264 			/*
6265 			 * Raced against perf_mmap_close(); remove the
6266 			 * event and try again.
6267 			 */
6268 			ring_buffer_attach(event, NULL);
6269 			mutex_unlock(&event->mmap_mutex);
6270 			goto again;
6271 		}
6272 
6273 		goto unlock;
6274 	}
6275 
6276 	user_extra = nr_pages + 1;
6277 
6278 accounting:
6279 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6280 
6281 	/*
6282 	 * Increase the limit linearly with more CPUs:
6283 	 */
6284 	user_lock_limit *= num_online_cpus();
6285 
6286 	user_locked = atomic_long_read(&user->locked_vm);
6287 
6288 	/*
6289 	 * sysctl_perf_event_mlock may have changed, so that
6290 	 *     user->locked_vm > user_lock_limit
6291 	 */
6292 	if (user_locked > user_lock_limit)
6293 		user_locked = user_lock_limit;
6294 	user_locked += user_extra;
6295 
6296 	if (user_locked > user_lock_limit) {
6297 		/*
6298 		 * charge locked_vm until it hits user_lock_limit;
6299 		 * charge the rest from pinned_vm
6300 		 */
6301 		extra = user_locked - user_lock_limit;
6302 		user_extra -= extra;
6303 	}
6304 
6305 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6306 	lock_limit >>= PAGE_SHIFT;
6307 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6308 
6309 	if ((locked > lock_limit) && perf_is_paranoid() &&
6310 		!capable(CAP_IPC_LOCK)) {
6311 		ret = -EPERM;
6312 		goto unlock;
6313 	}
6314 
6315 	WARN_ON(!rb && event->rb);
6316 
6317 	if (vma->vm_flags & VM_WRITE)
6318 		flags |= RING_BUFFER_WRITABLE;
6319 
6320 	if (!rb) {
6321 		rb = rb_alloc(nr_pages,
6322 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6323 			      event->cpu, flags);
6324 
6325 		if (!rb) {
6326 			ret = -ENOMEM;
6327 			goto unlock;
6328 		}
6329 
6330 		atomic_set(&rb->mmap_count, 1);
6331 		rb->mmap_user = get_current_user();
6332 		rb->mmap_locked = extra;
6333 
6334 		ring_buffer_attach(event, rb);
6335 
6336 		perf_event_update_time(event);
6337 		perf_event_init_userpage(event);
6338 		perf_event_update_userpage(event);
6339 	} else {
6340 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6341 				   event->attr.aux_watermark, flags);
6342 		if (!ret)
6343 			rb->aux_mmap_locked = extra;
6344 	}
6345 
6346 unlock:
6347 	if (!ret) {
6348 		atomic_long_add(user_extra, &user->locked_vm);
6349 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6350 
6351 		atomic_inc(&event->mmap_count);
6352 	} else if (rb) {
6353 		atomic_dec(&rb->mmap_count);
6354 	}
6355 aux_unlock:
6356 	mutex_unlock(&event->mmap_mutex);
6357 
6358 	/*
6359 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6360 	 * vma.
6361 	 */
6362 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6363 	vma->vm_ops = &perf_mmap_vmops;
6364 
6365 	if (event->pmu->event_mapped)
6366 		event->pmu->event_mapped(event, vma->vm_mm);
6367 
6368 	return ret;
6369 }
6370 
6371 static int perf_fasync(int fd, struct file *filp, int on)
6372 {
6373 	struct inode *inode = file_inode(filp);
6374 	struct perf_event *event = filp->private_data;
6375 	int retval;
6376 
6377 	inode_lock(inode);
6378 	retval = fasync_helper(fd, filp, on, &event->fasync);
6379 	inode_unlock(inode);
6380 
6381 	if (retval < 0)
6382 		return retval;
6383 
6384 	return 0;
6385 }
6386 
6387 static const struct file_operations perf_fops = {
6388 	.llseek			= no_llseek,
6389 	.release		= perf_release,
6390 	.read			= perf_read,
6391 	.poll			= perf_poll,
6392 	.unlocked_ioctl		= perf_ioctl,
6393 	.compat_ioctl		= perf_compat_ioctl,
6394 	.mmap			= perf_mmap,
6395 	.fasync			= perf_fasync,
6396 };
6397 
6398 /*
6399  * Perf event wakeup
6400  *
6401  * If there's data, ensure we set the poll() state and publish everything
6402  * to user-space before waking everybody up.
6403  */
6404 
6405 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6406 {
6407 	/* only the parent has fasync state */
6408 	if (event->parent)
6409 		event = event->parent;
6410 	return &event->fasync;
6411 }
6412 
6413 void perf_event_wakeup(struct perf_event *event)
6414 {
6415 	ring_buffer_wakeup(event);
6416 
6417 	if (event->pending_kill) {
6418 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6419 		event->pending_kill = 0;
6420 	}
6421 }
6422 
6423 static void perf_sigtrap(struct perf_event *event)
6424 {
6425 	/*
6426 	 * We'd expect this to only occur if the irq_work is delayed and either
6427 	 * ctx->task or current has changed in the meantime. This can be the
6428 	 * case on architectures that do not implement arch_irq_work_raise().
6429 	 */
6430 	if (WARN_ON_ONCE(event->ctx->task != current))
6431 		return;
6432 
6433 	/*
6434 	 * perf_pending_event() can race with the task exiting.
6435 	 */
6436 	if (current->flags & PF_EXITING)
6437 		return;
6438 
6439 	send_sig_perf((void __user *)event->pending_addr,
6440 		      event->attr.type, event->attr.sig_data);
6441 }
6442 
6443 static void perf_pending_event_disable(struct perf_event *event)
6444 {
6445 	int cpu = READ_ONCE(event->pending_disable);
6446 
6447 	if (cpu < 0)
6448 		return;
6449 
6450 	if (cpu == smp_processor_id()) {
6451 		WRITE_ONCE(event->pending_disable, -1);
6452 
6453 		if (event->attr.sigtrap) {
6454 			perf_sigtrap(event);
6455 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6456 			return;
6457 		}
6458 
6459 		perf_event_disable_local(event);
6460 		return;
6461 	}
6462 
6463 	/*
6464 	 *  CPU-A			CPU-B
6465 	 *
6466 	 *  perf_event_disable_inatomic()
6467 	 *    @pending_disable = CPU-A;
6468 	 *    irq_work_queue();
6469 	 *
6470 	 *  sched-out
6471 	 *    @pending_disable = -1;
6472 	 *
6473 	 *				sched-in
6474 	 *				perf_event_disable_inatomic()
6475 	 *				  @pending_disable = CPU-B;
6476 	 *				  irq_work_queue(); // FAILS
6477 	 *
6478 	 *  irq_work_run()
6479 	 *    perf_pending_event()
6480 	 *
6481 	 * But the event runs on CPU-B and wants disabling there.
6482 	 */
6483 	irq_work_queue_on(&event->pending, cpu);
6484 }
6485 
6486 static void perf_pending_event(struct irq_work *entry)
6487 {
6488 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6489 	int rctx;
6490 
6491 	rctx = perf_swevent_get_recursion_context();
6492 	/*
6493 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6494 	 * and we won't recurse 'further'.
6495 	 */
6496 
6497 	perf_pending_event_disable(event);
6498 
6499 	if (event->pending_wakeup) {
6500 		event->pending_wakeup = 0;
6501 		perf_event_wakeup(event);
6502 	}
6503 
6504 	if (rctx >= 0)
6505 		perf_swevent_put_recursion_context(rctx);
6506 }
6507 
6508 #ifdef CONFIG_GUEST_PERF_EVENTS
6509 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6510 
6511 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6512 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6513 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6514 
6515 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6516 {
6517 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6518 		return;
6519 
6520 	rcu_assign_pointer(perf_guest_cbs, cbs);
6521 	static_call_update(__perf_guest_state, cbs->state);
6522 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6523 
6524 	/* Implementing ->handle_intel_pt_intr is optional. */
6525 	if (cbs->handle_intel_pt_intr)
6526 		static_call_update(__perf_guest_handle_intel_pt_intr,
6527 				   cbs->handle_intel_pt_intr);
6528 }
6529 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6530 
6531 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6534 		return;
6535 
6536 	rcu_assign_pointer(perf_guest_cbs, NULL);
6537 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6538 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6539 	static_call_update(__perf_guest_handle_intel_pt_intr,
6540 			   (void *)&__static_call_return0);
6541 	synchronize_rcu();
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544 #endif
6545 
6546 static void
6547 perf_output_sample_regs(struct perf_output_handle *handle,
6548 			struct pt_regs *regs, u64 mask)
6549 {
6550 	int bit;
6551 	DECLARE_BITMAP(_mask, 64);
6552 
6553 	bitmap_from_u64(_mask, mask);
6554 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6555 		u64 val;
6556 
6557 		val = perf_reg_value(regs, bit);
6558 		perf_output_put(handle, val);
6559 	}
6560 }
6561 
6562 static void perf_sample_regs_user(struct perf_regs *regs_user,
6563 				  struct pt_regs *regs)
6564 {
6565 	if (user_mode(regs)) {
6566 		regs_user->abi = perf_reg_abi(current);
6567 		regs_user->regs = regs;
6568 	} else if (!(current->flags & PF_KTHREAD)) {
6569 		perf_get_regs_user(regs_user, regs);
6570 	} else {
6571 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6572 		regs_user->regs = NULL;
6573 	}
6574 }
6575 
6576 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6577 				  struct pt_regs *regs)
6578 {
6579 	regs_intr->regs = regs;
6580 	regs_intr->abi  = perf_reg_abi(current);
6581 }
6582 
6583 
6584 /*
6585  * Get remaining task size from user stack pointer.
6586  *
6587  * It'd be better to take stack vma map and limit this more
6588  * precisely, but there's no way to get it safely under interrupt,
6589  * so using TASK_SIZE as limit.
6590  */
6591 static u64 perf_ustack_task_size(struct pt_regs *regs)
6592 {
6593 	unsigned long addr = perf_user_stack_pointer(regs);
6594 
6595 	if (!addr || addr >= TASK_SIZE)
6596 		return 0;
6597 
6598 	return TASK_SIZE - addr;
6599 }
6600 
6601 static u16
6602 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6603 			struct pt_regs *regs)
6604 {
6605 	u64 task_size;
6606 
6607 	/* No regs, no stack pointer, no dump. */
6608 	if (!regs)
6609 		return 0;
6610 
6611 	/*
6612 	 * Check if we fit in with the requested stack size into the:
6613 	 * - TASK_SIZE
6614 	 *   If we don't, we limit the size to the TASK_SIZE.
6615 	 *
6616 	 * - remaining sample size
6617 	 *   If we don't, we customize the stack size to
6618 	 *   fit in to the remaining sample size.
6619 	 */
6620 
6621 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6622 	stack_size = min(stack_size, (u16) task_size);
6623 
6624 	/* Current header size plus static size and dynamic size. */
6625 	header_size += 2 * sizeof(u64);
6626 
6627 	/* Do we fit in with the current stack dump size? */
6628 	if ((u16) (header_size + stack_size) < header_size) {
6629 		/*
6630 		 * If we overflow the maximum size for the sample,
6631 		 * we customize the stack dump size to fit in.
6632 		 */
6633 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6634 		stack_size = round_up(stack_size, sizeof(u64));
6635 	}
6636 
6637 	return stack_size;
6638 }
6639 
6640 static void
6641 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6642 			  struct pt_regs *regs)
6643 {
6644 	/* Case of a kernel thread, nothing to dump */
6645 	if (!regs) {
6646 		u64 size = 0;
6647 		perf_output_put(handle, size);
6648 	} else {
6649 		unsigned long sp;
6650 		unsigned int rem;
6651 		u64 dyn_size;
6652 
6653 		/*
6654 		 * We dump:
6655 		 * static size
6656 		 *   - the size requested by user or the best one we can fit
6657 		 *     in to the sample max size
6658 		 * data
6659 		 *   - user stack dump data
6660 		 * dynamic size
6661 		 *   - the actual dumped size
6662 		 */
6663 
6664 		/* Static size. */
6665 		perf_output_put(handle, dump_size);
6666 
6667 		/* Data. */
6668 		sp = perf_user_stack_pointer(regs);
6669 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6670 		dyn_size = dump_size - rem;
6671 
6672 		perf_output_skip(handle, rem);
6673 
6674 		/* Dynamic size. */
6675 		perf_output_put(handle, dyn_size);
6676 	}
6677 }
6678 
6679 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6680 					  struct perf_sample_data *data,
6681 					  size_t size)
6682 {
6683 	struct perf_event *sampler = event->aux_event;
6684 	struct perf_buffer *rb;
6685 
6686 	data->aux_size = 0;
6687 
6688 	if (!sampler)
6689 		goto out;
6690 
6691 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6692 		goto out;
6693 
6694 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6695 		goto out;
6696 
6697 	rb = ring_buffer_get(sampler);
6698 	if (!rb)
6699 		goto out;
6700 
6701 	/*
6702 	 * If this is an NMI hit inside sampling code, don't take
6703 	 * the sample. See also perf_aux_sample_output().
6704 	 */
6705 	if (READ_ONCE(rb->aux_in_sampling)) {
6706 		data->aux_size = 0;
6707 	} else {
6708 		size = min_t(size_t, size, perf_aux_size(rb));
6709 		data->aux_size = ALIGN(size, sizeof(u64));
6710 	}
6711 	ring_buffer_put(rb);
6712 
6713 out:
6714 	return data->aux_size;
6715 }
6716 
6717 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6718                                  struct perf_event *event,
6719                                  struct perf_output_handle *handle,
6720                                  unsigned long size)
6721 {
6722 	unsigned long flags;
6723 	long ret;
6724 
6725 	/*
6726 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6727 	 * paths. If we start calling them in NMI context, they may race with
6728 	 * the IRQ ones, that is, for example, re-starting an event that's just
6729 	 * been stopped, which is why we're using a separate callback that
6730 	 * doesn't change the event state.
6731 	 *
6732 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6733 	 */
6734 	local_irq_save(flags);
6735 	/*
6736 	 * Guard against NMI hits inside the critical section;
6737 	 * see also perf_prepare_sample_aux().
6738 	 */
6739 	WRITE_ONCE(rb->aux_in_sampling, 1);
6740 	barrier();
6741 
6742 	ret = event->pmu->snapshot_aux(event, handle, size);
6743 
6744 	barrier();
6745 	WRITE_ONCE(rb->aux_in_sampling, 0);
6746 	local_irq_restore(flags);
6747 
6748 	return ret;
6749 }
6750 
6751 static void perf_aux_sample_output(struct perf_event *event,
6752 				   struct perf_output_handle *handle,
6753 				   struct perf_sample_data *data)
6754 {
6755 	struct perf_event *sampler = event->aux_event;
6756 	struct perf_buffer *rb;
6757 	unsigned long pad;
6758 	long size;
6759 
6760 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6761 		return;
6762 
6763 	rb = ring_buffer_get(sampler);
6764 	if (!rb)
6765 		return;
6766 
6767 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6768 
6769 	/*
6770 	 * An error here means that perf_output_copy() failed (returned a
6771 	 * non-zero surplus that it didn't copy), which in its current
6772 	 * enlightened implementation is not possible. If that changes, we'd
6773 	 * like to know.
6774 	 */
6775 	if (WARN_ON_ONCE(size < 0))
6776 		goto out_put;
6777 
6778 	/*
6779 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6780 	 * perf_prepare_sample_aux(), so should not be more than that.
6781 	 */
6782 	pad = data->aux_size - size;
6783 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6784 		pad = 8;
6785 
6786 	if (pad) {
6787 		u64 zero = 0;
6788 		perf_output_copy(handle, &zero, pad);
6789 	}
6790 
6791 out_put:
6792 	ring_buffer_put(rb);
6793 }
6794 
6795 static void __perf_event_header__init_id(struct perf_event_header *header,
6796 					 struct perf_sample_data *data,
6797 					 struct perf_event *event)
6798 {
6799 	u64 sample_type = event->attr.sample_type;
6800 
6801 	data->type = sample_type;
6802 	header->size += event->id_header_size;
6803 
6804 	if (sample_type & PERF_SAMPLE_TID) {
6805 		/* namespace issues */
6806 		data->tid_entry.pid = perf_event_pid(event, current);
6807 		data->tid_entry.tid = perf_event_tid(event, current);
6808 	}
6809 
6810 	if (sample_type & PERF_SAMPLE_TIME)
6811 		data->time = perf_event_clock(event);
6812 
6813 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6814 		data->id = primary_event_id(event);
6815 
6816 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6817 		data->stream_id = event->id;
6818 
6819 	if (sample_type & PERF_SAMPLE_CPU) {
6820 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6821 		data->cpu_entry.reserved = 0;
6822 	}
6823 }
6824 
6825 void perf_event_header__init_id(struct perf_event_header *header,
6826 				struct perf_sample_data *data,
6827 				struct perf_event *event)
6828 {
6829 	if (event->attr.sample_id_all)
6830 		__perf_event_header__init_id(header, data, event);
6831 }
6832 
6833 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6834 					   struct perf_sample_data *data)
6835 {
6836 	u64 sample_type = data->type;
6837 
6838 	if (sample_type & PERF_SAMPLE_TID)
6839 		perf_output_put(handle, data->tid_entry);
6840 
6841 	if (sample_type & PERF_SAMPLE_TIME)
6842 		perf_output_put(handle, data->time);
6843 
6844 	if (sample_type & PERF_SAMPLE_ID)
6845 		perf_output_put(handle, data->id);
6846 
6847 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6848 		perf_output_put(handle, data->stream_id);
6849 
6850 	if (sample_type & PERF_SAMPLE_CPU)
6851 		perf_output_put(handle, data->cpu_entry);
6852 
6853 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6854 		perf_output_put(handle, data->id);
6855 }
6856 
6857 void perf_event__output_id_sample(struct perf_event *event,
6858 				  struct perf_output_handle *handle,
6859 				  struct perf_sample_data *sample)
6860 {
6861 	if (event->attr.sample_id_all)
6862 		__perf_event__output_id_sample(handle, sample);
6863 }
6864 
6865 static void perf_output_read_one(struct perf_output_handle *handle,
6866 				 struct perf_event *event,
6867 				 u64 enabled, u64 running)
6868 {
6869 	u64 read_format = event->attr.read_format;
6870 	u64 values[5];
6871 	int n = 0;
6872 
6873 	values[n++] = perf_event_count(event);
6874 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6875 		values[n++] = enabled +
6876 			atomic64_read(&event->child_total_time_enabled);
6877 	}
6878 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6879 		values[n++] = running +
6880 			atomic64_read(&event->child_total_time_running);
6881 	}
6882 	if (read_format & PERF_FORMAT_ID)
6883 		values[n++] = primary_event_id(event);
6884 	if (read_format & PERF_FORMAT_LOST)
6885 		values[n++] = atomic64_read(&event->lost_samples);
6886 
6887 	__output_copy(handle, values, n * sizeof(u64));
6888 }
6889 
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891 			    struct perf_event *event,
6892 			    u64 enabled, u64 running)
6893 {
6894 	struct perf_event *leader = event->group_leader, *sub;
6895 	u64 read_format = event->attr.read_format;
6896 	unsigned long flags;
6897 	u64 values[6];
6898 	int n = 0;
6899 
6900 	/*
6901 	 * Disabling interrupts avoids all counter scheduling
6902 	 * (context switches, timer based rotation and IPIs).
6903 	 */
6904 	local_irq_save(flags);
6905 
6906 	values[n++] = 1 + leader->nr_siblings;
6907 
6908 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6909 		values[n++] = enabled;
6910 
6911 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6912 		values[n++] = running;
6913 
6914 	if ((leader != event) &&
6915 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6916 		leader->pmu->read(leader);
6917 
6918 	values[n++] = perf_event_count(leader);
6919 	if (read_format & PERF_FORMAT_ID)
6920 		values[n++] = primary_event_id(leader);
6921 	if (read_format & PERF_FORMAT_LOST)
6922 		values[n++] = atomic64_read(&leader->lost_samples);
6923 
6924 	__output_copy(handle, values, n * sizeof(u64));
6925 
6926 	for_each_sibling_event(sub, leader) {
6927 		n = 0;
6928 
6929 		if ((sub != event) &&
6930 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6931 			sub->pmu->read(sub);
6932 
6933 		values[n++] = perf_event_count(sub);
6934 		if (read_format & PERF_FORMAT_ID)
6935 			values[n++] = primary_event_id(sub);
6936 		if (read_format & PERF_FORMAT_LOST)
6937 			values[n++] = atomic64_read(&sub->lost_samples);
6938 
6939 		__output_copy(handle, values, n * sizeof(u64));
6940 	}
6941 
6942 	local_irq_restore(flags);
6943 }
6944 
6945 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6946 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6947 
6948 /*
6949  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6950  *
6951  * The problem is that its both hard and excessively expensive to iterate the
6952  * child list, not to mention that its impossible to IPI the children running
6953  * on another CPU, from interrupt/NMI context.
6954  */
6955 static void perf_output_read(struct perf_output_handle *handle,
6956 			     struct perf_event *event)
6957 {
6958 	u64 enabled = 0, running = 0, now;
6959 	u64 read_format = event->attr.read_format;
6960 
6961 	/*
6962 	 * compute total_time_enabled, total_time_running
6963 	 * based on snapshot values taken when the event
6964 	 * was last scheduled in.
6965 	 *
6966 	 * we cannot simply called update_context_time()
6967 	 * because of locking issue as we are called in
6968 	 * NMI context
6969 	 */
6970 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6971 		calc_timer_values(event, &now, &enabled, &running);
6972 
6973 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6974 		perf_output_read_group(handle, event, enabled, running);
6975 	else
6976 		perf_output_read_one(handle, event, enabled, running);
6977 }
6978 
6979 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6980 {
6981 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6982 }
6983 
6984 void perf_output_sample(struct perf_output_handle *handle,
6985 			struct perf_event_header *header,
6986 			struct perf_sample_data *data,
6987 			struct perf_event *event)
6988 {
6989 	u64 sample_type = data->type;
6990 
6991 	perf_output_put(handle, *header);
6992 
6993 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6994 		perf_output_put(handle, data->id);
6995 
6996 	if (sample_type & PERF_SAMPLE_IP)
6997 		perf_output_put(handle, data->ip);
6998 
6999 	if (sample_type & PERF_SAMPLE_TID)
7000 		perf_output_put(handle, data->tid_entry);
7001 
7002 	if (sample_type & PERF_SAMPLE_TIME)
7003 		perf_output_put(handle, data->time);
7004 
7005 	if (sample_type & PERF_SAMPLE_ADDR)
7006 		perf_output_put(handle, data->addr);
7007 
7008 	if (sample_type & PERF_SAMPLE_ID)
7009 		perf_output_put(handle, data->id);
7010 
7011 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7012 		perf_output_put(handle, data->stream_id);
7013 
7014 	if (sample_type & PERF_SAMPLE_CPU)
7015 		perf_output_put(handle, data->cpu_entry);
7016 
7017 	if (sample_type & PERF_SAMPLE_PERIOD)
7018 		perf_output_put(handle, data->period);
7019 
7020 	if (sample_type & PERF_SAMPLE_READ)
7021 		perf_output_read(handle, event);
7022 
7023 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7024 		int size = 1;
7025 
7026 		size += data->callchain->nr;
7027 		size *= sizeof(u64);
7028 		__output_copy(handle, data->callchain, size);
7029 	}
7030 
7031 	if (sample_type & PERF_SAMPLE_RAW) {
7032 		struct perf_raw_record *raw = data->raw;
7033 
7034 		if (raw) {
7035 			struct perf_raw_frag *frag = &raw->frag;
7036 
7037 			perf_output_put(handle, raw->size);
7038 			do {
7039 				if (frag->copy) {
7040 					__output_custom(handle, frag->copy,
7041 							frag->data, frag->size);
7042 				} else {
7043 					__output_copy(handle, frag->data,
7044 						      frag->size);
7045 				}
7046 				if (perf_raw_frag_last(frag))
7047 					break;
7048 				frag = frag->next;
7049 			} while (1);
7050 			if (frag->pad)
7051 				__output_skip(handle, NULL, frag->pad);
7052 		} else {
7053 			struct {
7054 				u32	size;
7055 				u32	data;
7056 			} raw = {
7057 				.size = sizeof(u32),
7058 				.data = 0,
7059 			};
7060 			perf_output_put(handle, raw);
7061 		}
7062 	}
7063 
7064 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7065 		if (data->br_stack) {
7066 			size_t size;
7067 
7068 			size = data->br_stack->nr
7069 			     * sizeof(struct perf_branch_entry);
7070 
7071 			perf_output_put(handle, data->br_stack->nr);
7072 			if (perf_sample_save_hw_index(event))
7073 				perf_output_put(handle, data->br_stack->hw_idx);
7074 			perf_output_copy(handle, data->br_stack->entries, size);
7075 		} else {
7076 			/*
7077 			 * we always store at least the value of nr
7078 			 */
7079 			u64 nr = 0;
7080 			perf_output_put(handle, nr);
7081 		}
7082 	}
7083 
7084 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7085 		u64 abi = data->regs_user.abi;
7086 
7087 		/*
7088 		 * If there are no regs to dump, notice it through
7089 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7090 		 */
7091 		perf_output_put(handle, abi);
7092 
7093 		if (abi) {
7094 			u64 mask = event->attr.sample_regs_user;
7095 			perf_output_sample_regs(handle,
7096 						data->regs_user.regs,
7097 						mask);
7098 		}
7099 	}
7100 
7101 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7102 		perf_output_sample_ustack(handle,
7103 					  data->stack_user_size,
7104 					  data->regs_user.regs);
7105 	}
7106 
7107 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7108 		perf_output_put(handle, data->weight.full);
7109 
7110 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7111 		perf_output_put(handle, data->data_src.val);
7112 
7113 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7114 		perf_output_put(handle, data->txn);
7115 
7116 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7117 		u64 abi = data->regs_intr.abi;
7118 		/*
7119 		 * If there are no regs to dump, notice it through
7120 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7121 		 */
7122 		perf_output_put(handle, abi);
7123 
7124 		if (abi) {
7125 			u64 mask = event->attr.sample_regs_intr;
7126 
7127 			perf_output_sample_regs(handle,
7128 						data->regs_intr.regs,
7129 						mask);
7130 		}
7131 	}
7132 
7133 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7134 		perf_output_put(handle, data->phys_addr);
7135 
7136 	if (sample_type & PERF_SAMPLE_CGROUP)
7137 		perf_output_put(handle, data->cgroup);
7138 
7139 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7140 		perf_output_put(handle, data->data_page_size);
7141 
7142 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7143 		perf_output_put(handle, data->code_page_size);
7144 
7145 	if (sample_type & PERF_SAMPLE_AUX) {
7146 		perf_output_put(handle, data->aux_size);
7147 
7148 		if (data->aux_size)
7149 			perf_aux_sample_output(event, handle, data);
7150 	}
7151 
7152 	if (!event->attr.watermark) {
7153 		int wakeup_events = event->attr.wakeup_events;
7154 
7155 		if (wakeup_events) {
7156 			struct perf_buffer *rb = handle->rb;
7157 			int events = local_inc_return(&rb->events);
7158 
7159 			if (events >= wakeup_events) {
7160 				local_sub(wakeup_events, &rb->events);
7161 				local_inc(&rb->wakeup);
7162 			}
7163 		}
7164 	}
7165 }
7166 
7167 static u64 perf_virt_to_phys(u64 virt)
7168 {
7169 	u64 phys_addr = 0;
7170 
7171 	if (!virt)
7172 		return 0;
7173 
7174 	if (virt >= TASK_SIZE) {
7175 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7176 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7177 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7178 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7179 	} else {
7180 		/*
7181 		 * Walking the pages tables for user address.
7182 		 * Interrupts are disabled, so it prevents any tear down
7183 		 * of the page tables.
7184 		 * Try IRQ-safe get_user_page_fast_only first.
7185 		 * If failed, leave phys_addr as 0.
7186 		 */
7187 		if (current->mm != NULL) {
7188 			struct page *p;
7189 
7190 			pagefault_disable();
7191 			if (get_user_page_fast_only(virt, 0, &p)) {
7192 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7193 				put_page(p);
7194 			}
7195 			pagefault_enable();
7196 		}
7197 	}
7198 
7199 	return phys_addr;
7200 }
7201 
7202 /*
7203  * Return the pagetable size of a given virtual address.
7204  */
7205 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7206 {
7207 	u64 size = 0;
7208 
7209 #ifdef CONFIG_HAVE_FAST_GUP
7210 	pgd_t *pgdp, pgd;
7211 	p4d_t *p4dp, p4d;
7212 	pud_t *pudp, pud;
7213 	pmd_t *pmdp, pmd;
7214 	pte_t *ptep, pte;
7215 
7216 	pgdp = pgd_offset(mm, addr);
7217 	pgd = READ_ONCE(*pgdp);
7218 	if (pgd_none(pgd))
7219 		return 0;
7220 
7221 	if (pgd_leaf(pgd))
7222 		return pgd_leaf_size(pgd);
7223 
7224 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7225 	p4d = READ_ONCE(*p4dp);
7226 	if (!p4d_present(p4d))
7227 		return 0;
7228 
7229 	if (p4d_leaf(p4d))
7230 		return p4d_leaf_size(p4d);
7231 
7232 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7233 	pud = READ_ONCE(*pudp);
7234 	if (!pud_present(pud))
7235 		return 0;
7236 
7237 	if (pud_leaf(pud))
7238 		return pud_leaf_size(pud);
7239 
7240 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7241 	pmd = READ_ONCE(*pmdp);
7242 	if (!pmd_present(pmd))
7243 		return 0;
7244 
7245 	if (pmd_leaf(pmd))
7246 		return pmd_leaf_size(pmd);
7247 
7248 	ptep = pte_offset_map(&pmd, addr);
7249 	pte = ptep_get_lockless(ptep);
7250 	if (pte_present(pte))
7251 		size = pte_leaf_size(pte);
7252 	pte_unmap(ptep);
7253 #endif /* CONFIG_HAVE_FAST_GUP */
7254 
7255 	return size;
7256 }
7257 
7258 static u64 perf_get_page_size(unsigned long addr)
7259 {
7260 	struct mm_struct *mm;
7261 	unsigned long flags;
7262 	u64 size;
7263 
7264 	if (!addr)
7265 		return 0;
7266 
7267 	/*
7268 	 * Software page-table walkers must disable IRQs,
7269 	 * which prevents any tear down of the page tables.
7270 	 */
7271 	local_irq_save(flags);
7272 
7273 	mm = current->mm;
7274 	if (!mm) {
7275 		/*
7276 		 * For kernel threads and the like, use init_mm so that
7277 		 * we can find kernel memory.
7278 		 */
7279 		mm = &init_mm;
7280 	}
7281 
7282 	size = perf_get_pgtable_size(mm, addr);
7283 
7284 	local_irq_restore(flags);
7285 
7286 	return size;
7287 }
7288 
7289 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7290 
7291 struct perf_callchain_entry *
7292 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7293 {
7294 	bool kernel = !event->attr.exclude_callchain_kernel;
7295 	bool user   = !event->attr.exclude_callchain_user;
7296 	/* Disallow cross-task user callchains. */
7297 	bool crosstask = event->ctx->task && event->ctx->task != current;
7298 	const u32 max_stack = event->attr.sample_max_stack;
7299 	struct perf_callchain_entry *callchain;
7300 
7301 	if (!kernel && !user)
7302 		return &__empty_callchain;
7303 
7304 	callchain = get_perf_callchain(regs, 0, kernel, user,
7305 				       max_stack, crosstask, true);
7306 	return callchain ?: &__empty_callchain;
7307 }
7308 
7309 void perf_prepare_sample(struct perf_event_header *header,
7310 			 struct perf_sample_data *data,
7311 			 struct perf_event *event,
7312 			 struct pt_regs *regs)
7313 {
7314 	u64 sample_type = event->attr.sample_type;
7315 
7316 	header->type = PERF_RECORD_SAMPLE;
7317 	header->size = sizeof(*header) + event->header_size;
7318 
7319 	header->misc = 0;
7320 	header->misc |= perf_misc_flags(regs);
7321 
7322 	__perf_event_header__init_id(header, data, event);
7323 
7324 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7325 		data->ip = perf_instruction_pointer(regs);
7326 
7327 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7328 		int size = 1;
7329 
7330 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7331 			data->callchain = perf_callchain(event, regs);
7332 
7333 		size += data->callchain->nr;
7334 
7335 		header->size += size * sizeof(u64);
7336 	}
7337 
7338 	if (sample_type & PERF_SAMPLE_RAW) {
7339 		struct perf_raw_record *raw = data->raw;
7340 		int size;
7341 
7342 		if (raw) {
7343 			struct perf_raw_frag *frag = &raw->frag;
7344 			u32 sum = 0;
7345 
7346 			do {
7347 				sum += frag->size;
7348 				if (perf_raw_frag_last(frag))
7349 					break;
7350 				frag = frag->next;
7351 			} while (1);
7352 
7353 			size = round_up(sum + sizeof(u32), sizeof(u64));
7354 			raw->size = size - sizeof(u32);
7355 			frag->pad = raw->size - sum;
7356 		} else {
7357 			size = sizeof(u64);
7358 		}
7359 
7360 		header->size += size;
7361 	}
7362 
7363 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7364 		int size = sizeof(u64); /* nr */
7365 		if (data->br_stack) {
7366 			if (perf_sample_save_hw_index(event))
7367 				size += sizeof(u64);
7368 
7369 			size += data->br_stack->nr
7370 			      * sizeof(struct perf_branch_entry);
7371 		}
7372 		header->size += size;
7373 	}
7374 
7375 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7376 		perf_sample_regs_user(&data->regs_user, regs);
7377 
7378 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7379 		/* regs dump ABI info */
7380 		int size = sizeof(u64);
7381 
7382 		if (data->regs_user.regs) {
7383 			u64 mask = event->attr.sample_regs_user;
7384 			size += hweight64(mask) * sizeof(u64);
7385 		}
7386 
7387 		header->size += size;
7388 	}
7389 
7390 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7391 		/*
7392 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7393 		 * processed as the last one or have additional check added
7394 		 * in case new sample type is added, because we could eat
7395 		 * up the rest of the sample size.
7396 		 */
7397 		u16 stack_size = event->attr.sample_stack_user;
7398 		u16 size = sizeof(u64);
7399 
7400 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7401 						     data->regs_user.regs);
7402 
7403 		/*
7404 		 * If there is something to dump, add space for the dump
7405 		 * itself and for the field that tells the dynamic size,
7406 		 * which is how many have been actually dumped.
7407 		 */
7408 		if (stack_size)
7409 			size += sizeof(u64) + stack_size;
7410 
7411 		data->stack_user_size = stack_size;
7412 		header->size += size;
7413 	}
7414 
7415 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7416 		/* regs dump ABI info */
7417 		int size = sizeof(u64);
7418 
7419 		perf_sample_regs_intr(&data->regs_intr, regs);
7420 
7421 		if (data->regs_intr.regs) {
7422 			u64 mask = event->attr.sample_regs_intr;
7423 
7424 			size += hweight64(mask) * sizeof(u64);
7425 		}
7426 
7427 		header->size += size;
7428 	}
7429 
7430 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7431 		data->phys_addr = perf_virt_to_phys(data->addr);
7432 
7433 #ifdef CONFIG_CGROUP_PERF
7434 	if (sample_type & PERF_SAMPLE_CGROUP) {
7435 		struct cgroup *cgrp;
7436 
7437 		/* protected by RCU */
7438 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7439 		data->cgroup = cgroup_id(cgrp);
7440 	}
7441 #endif
7442 
7443 	/*
7444 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7445 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7446 	 * but the value will not dump to the userspace.
7447 	 */
7448 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7449 		data->data_page_size = perf_get_page_size(data->addr);
7450 
7451 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7452 		data->code_page_size = perf_get_page_size(data->ip);
7453 
7454 	if (sample_type & PERF_SAMPLE_AUX) {
7455 		u64 size;
7456 
7457 		header->size += sizeof(u64); /* size */
7458 
7459 		/*
7460 		 * Given the 16bit nature of header::size, an AUX sample can
7461 		 * easily overflow it, what with all the preceding sample bits.
7462 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7463 		 * per sample in total (rounded down to 8 byte boundary).
7464 		 */
7465 		size = min_t(size_t, U16_MAX - header->size,
7466 			     event->attr.aux_sample_size);
7467 		size = rounddown(size, 8);
7468 		size = perf_prepare_sample_aux(event, data, size);
7469 
7470 		WARN_ON_ONCE(size + header->size > U16_MAX);
7471 		header->size += size;
7472 	}
7473 	/*
7474 	 * If you're adding more sample types here, you likely need to do
7475 	 * something about the overflowing header::size, like repurpose the
7476 	 * lowest 3 bits of size, which should be always zero at the moment.
7477 	 * This raises a more important question, do we really need 512k sized
7478 	 * samples and why, so good argumentation is in order for whatever you
7479 	 * do here next.
7480 	 */
7481 	WARN_ON_ONCE(header->size & 7);
7482 }
7483 
7484 static __always_inline int
7485 __perf_event_output(struct perf_event *event,
7486 		    struct perf_sample_data *data,
7487 		    struct pt_regs *regs,
7488 		    int (*output_begin)(struct perf_output_handle *,
7489 					struct perf_sample_data *,
7490 					struct perf_event *,
7491 					unsigned int))
7492 {
7493 	struct perf_output_handle handle;
7494 	struct perf_event_header header;
7495 	int err;
7496 
7497 	/* protect the callchain buffers */
7498 	rcu_read_lock();
7499 
7500 	perf_prepare_sample(&header, data, event, regs);
7501 
7502 	err = output_begin(&handle, data, event, header.size);
7503 	if (err)
7504 		goto exit;
7505 
7506 	perf_output_sample(&handle, &header, data, event);
7507 
7508 	perf_output_end(&handle);
7509 
7510 exit:
7511 	rcu_read_unlock();
7512 	return err;
7513 }
7514 
7515 void
7516 perf_event_output_forward(struct perf_event *event,
7517 			 struct perf_sample_data *data,
7518 			 struct pt_regs *regs)
7519 {
7520 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7521 }
7522 
7523 void
7524 perf_event_output_backward(struct perf_event *event,
7525 			   struct perf_sample_data *data,
7526 			   struct pt_regs *regs)
7527 {
7528 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7529 }
7530 
7531 int
7532 perf_event_output(struct perf_event *event,
7533 		  struct perf_sample_data *data,
7534 		  struct pt_regs *regs)
7535 {
7536 	return __perf_event_output(event, data, regs, perf_output_begin);
7537 }
7538 
7539 /*
7540  * read event_id
7541  */
7542 
7543 struct perf_read_event {
7544 	struct perf_event_header	header;
7545 
7546 	u32				pid;
7547 	u32				tid;
7548 };
7549 
7550 static void
7551 perf_event_read_event(struct perf_event *event,
7552 			struct task_struct *task)
7553 {
7554 	struct perf_output_handle handle;
7555 	struct perf_sample_data sample;
7556 	struct perf_read_event read_event = {
7557 		.header = {
7558 			.type = PERF_RECORD_READ,
7559 			.misc = 0,
7560 			.size = sizeof(read_event) + event->read_size,
7561 		},
7562 		.pid = perf_event_pid(event, task),
7563 		.tid = perf_event_tid(event, task),
7564 	};
7565 	int ret;
7566 
7567 	perf_event_header__init_id(&read_event.header, &sample, event);
7568 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7569 	if (ret)
7570 		return;
7571 
7572 	perf_output_put(&handle, read_event);
7573 	perf_output_read(&handle, event);
7574 	perf_event__output_id_sample(event, &handle, &sample);
7575 
7576 	perf_output_end(&handle);
7577 }
7578 
7579 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7580 
7581 static void
7582 perf_iterate_ctx(struct perf_event_context *ctx,
7583 		   perf_iterate_f output,
7584 		   void *data, bool all)
7585 {
7586 	struct perf_event *event;
7587 
7588 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7589 		if (!all) {
7590 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7591 				continue;
7592 			if (!event_filter_match(event))
7593 				continue;
7594 		}
7595 
7596 		output(event, data);
7597 	}
7598 }
7599 
7600 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7601 {
7602 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7603 	struct perf_event *event;
7604 
7605 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7606 		/*
7607 		 * Skip events that are not fully formed yet; ensure that
7608 		 * if we observe event->ctx, both event and ctx will be
7609 		 * complete enough. See perf_install_in_context().
7610 		 */
7611 		if (!smp_load_acquire(&event->ctx))
7612 			continue;
7613 
7614 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7615 			continue;
7616 		if (!event_filter_match(event))
7617 			continue;
7618 		output(event, data);
7619 	}
7620 }
7621 
7622 /*
7623  * Iterate all events that need to receive side-band events.
7624  *
7625  * For new callers; ensure that account_pmu_sb_event() includes
7626  * your event, otherwise it might not get delivered.
7627  */
7628 static void
7629 perf_iterate_sb(perf_iterate_f output, void *data,
7630 	       struct perf_event_context *task_ctx)
7631 {
7632 	struct perf_event_context *ctx;
7633 	int ctxn;
7634 
7635 	rcu_read_lock();
7636 	preempt_disable();
7637 
7638 	/*
7639 	 * If we have task_ctx != NULL we only notify the task context itself.
7640 	 * The task_ctx is set only for EXIT events before releasing task
7641 	 * context.
7642 	 */
7643 	if (task_ctx) {
7644 		perf_iterate_ctx(task_ctx, output, data, false);
7645 		goto done;
7646 	}
7647 
7648 	perf_iterate_sb_cpu(output, data);
7649 
7650 	for_each_task_context_nr(ctxn) {
7651 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7652 		if (ctx)
7653 			perf_iterate_ctx(ctx, output, data, false);
7654 	}
7655 done:
7656 	preempt_enable();
7657 	rcu_read_unlock();
7658 }
7659 
7660 /*
7661  * Clear all file-based filters at exec, they'll have to be
7662  * re-instated when/if these objects are mmapped again.
7663  */
7664 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7665 {
7666 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7667 	struct perf_addr_filter *filter;
7668 	unsigned int restart = 0, count = 0;
7669 	unsigned long flags;
7670 
7671 	if (!has_addr_filter(event))
7672 		return;
7673 
7674 	raw_spin_lock_irqsave(&ifh->lock, flags);
7675 	list_for_each_entry(filter, &ifh->list, entry) {
7676 		if (filter->path.dentry) {
7677 			event->addr_filter_ranges[count].start = 0;
7678 			event->addr_filter_ranges[count].size = 0;
7679 			restart++;
7680 		}
7681 
7682 		count++;
7683 	}
7684 
7685 	if (restart)
7686 		event->addr_filters_gen++;
7687 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7688 
7689 	if (restart)
7690 		perf_event_stop(event, 1);
7691 }
7692 
7693 void perf_event_exec(void)
7694 {
7695 	struct perf_event_context *ctx;
7696 	int ctxn;
7697 
7698 	for_each_task_context_nr(ctxn) {
7699 		perf_event_enable_on_exec(ctxn);
7700 		perf_event_remove_on_exec(ctxn);
7701 
7702 		rcu_read_lock();
7703 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7704 		if (ctx) {
7705 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7706 					 NULL, true);
7707 		}
7708 		rcu_read_unlock();
7709 	}
7710 }
7711 
7712 struct remote_output {
7713 	struct perf_buffer	*rb;
7714 	int			err;
7715 };
7716 
7717 static void __perf_event_output_stop(struct perf_event *event, void *data)
7718 {
7719 	struct perf_event *parent = event->parent;
7720 	struct remote_output *ro = data;
7721 	struct perf_buffer *rb = ro->rb;
7722 	struct stop_event_data sd = {
7723 		.event	= event,
7724 	};
7725 
7726 	if (!has_aux(event))
7727 		return;
7728 
7729 	if (!parent)
7730 		parent = event;
7731 
7732 	/*
7733 	 * In case of inheritance, it will be the parent that links to the
7734 	 * ring-buffer, but it will be the child that's actually using it.
7735 	 *
7736 	 * We are using event::rb to determine if the event should be stopped,
7737 	 * however this may race with ring_buffer_attach() (through set_output),
7738 	 * which will make us skip the event that actually needs to be stopped.
7739 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7740 	 * its rb pointer.
7741 	 */
7742 	if (rcu_dereference(parent->rb) == rb)
7743 		ro->err = __perf_event_stop(&sd);
7744 }
7745 
7746 static int __perf_pmu_output_stop(void *info)
7747 {
7748 	struct perf_event *event = info;
7749 	struct pmu *pmu = event->ctx->pmu;
7750 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7751 	struct remote_output ro = {
7752 		.rb	= event->rb,
7753 	};
7754 
7755 	rcu_read_lock();
7756 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7757 	if (cpuctx->task_ctx)
7758 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7759 				   &ro, false);
7760 	rcu_read_unlock();
7761 
7762 	return ro.err;
7763 }
7764 
7765 static void perf_pmu_output_stop(struct perf_event *event)
7766 {
7767 	struct perf_event *iter;
7768 	int err, cpu;
7769 
7770 restart:
7771 	rcu_read_lock();
7772 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7773 		/*
7774 		 * For per-CPU events, we need to make sure that neither they
7775 		 * nor their children are running; for cpu==-1 events it's
7776 		 * sufficient to stop the event itself if it's active, since
7777 		 * it can't have children.
7778 		 */
7779 		cpu = iter->cpu;
7780 		if (cpu == -1)
7781 			cpu = READ_ONCE(iter->oncpu);
7782 
7783 		if (cpu == -1)
7784 			continue;
7785 
7786 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7787 		if (err == -EAGAIN) {
7788 			rcu_read_unlock();
7789 			goto restart;
7790 		}
7791 	}
7792 	rcu_read_unlock();
7793 }
7794 
7795 /*
7796  * task tracking -- fork/exit
7797  *
7798  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7799  */
7800 
7801 struct perf_task_event {
7802 	struct task_struct		*task;
7803 	struct perf_event_context	*task_ctx;
7804 
7805 	struct {
7806 		struct perf_event_header	header;
7807 
7808 		u32				pid;
7809 		u32				ppid;
7810 		u32				tid;
7811 		u32				ptid;
7812 		u64				time;
7813 	} event_id;
7814 };
7815 
7816 static int perf_event_task_match(struct perf_event *event)
7817 {
7818 	return event->attr.comm  || event->attr.mmap ||
7819 	       event->attr.mmap2 || event->attr.mmap_data ||
7820 	       event->attr.task;
7821 }
7822 
7823 static void perf_event_task_output(struct perf_event *event,
7824 				   void *data)
7825 {
7826 	struct perf_task_event *task_event = data;
7827 	struct perf_output_handle handle;
7828 	struct perf_sample_data	sample;
7829 	struct task_struct *task = task_event->task;
7830 	int ret, size = task_event->event_id.header.size;
7831 
7832 	if (!perf_event_task_match(event))
7833 		return;
7834 
7835 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7836 
7837 	ret = perf_output_begin(&handle, &sample, event,
7838 				task_event->event_id.header.size);
7839 	if (ret)
7840 		goto out;
7841 
7842 	task_event->event_id.pid = perf_event_pid(event, task);
7843 	task_event->event_id.tid = perf_event_tid(event, task);
7844 
7845 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7846 		task_event->event_id.ppid = perf_event_pid(event,
7847 							task->real_parent);
7848 		task_event->event_id.ptid = perf_event_pid(event,
7849 							task->real_parent);
7850 	} else {  /* PERF_RECORD_FORK */
7851 		task_event->event_id.ppid = perf_event_pid(event, current);
7852 		task_event->event_id.ptid = perf_event_tid(event, current);
7853 	}
7854 
7855 	task_event->event_id.time = perf_event_clock(event);
7856 
7857 	perf_output_put(&handle, task_event->event_id);
7858 
7859 	perf_event__output_id_sample(event, &handle, &sample);
7860 
7861 	perf_output_end(&handle);
7862 out:
7863 	task_event->event_id.header.size = size;
7864 }
7865 
7866 static void perf_event_task(struct task_struct *task,
7867 			      struct perf_event_context *task_ctx,
7868 			      int new)
7869 {
7870 	struct perf_task_event task_event;
7871 
7872 	if (!atomic_read(&nr_comm_events) &&
7873 	    !atomic_read(&nr_mmap_events) &&
7874 	    !atomic_read(&nr_task_events))
7875 		return;
7876 
7877 	task_event = (struct perf_task_event){
7878 		.task	  = task,
7879 		.task_ctx = task_ctx,
7880 		.event_id    = {
7881 			.header = {
7882 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7883 				.misc = 0,
7884 				.size = sizeof(task_event.event_id),
7885 			},
7886 			/* .pid  */
7887 			/* .ppid */
7888 			/* .tid  */
7889 			/* .ptid */
7890 			/* .time */
7891 		},
7892 	};
7893 
7894 	perf_iterate_sb(perf_event_task_output,
7895 		       &task_event,
7896 		       task_ctx);
7897 }
7898 
7899 void perf_event_fork(struct task_struct *task)
7900 {
7901 	perf_event_task(task, NULL, 1);
7902 	perf_event_namespaces(task);
7903 }
7904 
7905 /*
7906  * comm tracking
7907  */
7908 
7909 struct perf_comm_event {
7910 	struct task_struct	*task;
7911 	char			*comm;
7912 	int			comm_size;
7913 
7914 	struct {
7915 		struct perf_event_header	header;
7916 
7917 		u32				pid;
7918 		u32				tid;
7919 	} event_id;
7920 };
7921 
7922 static int perf_event_comm_match(struct perf_event *event)
7923 {
7924 	return event->attr.comm;
7925 }
7926 
7927 static void perf_event_comm_output(struct perf_event *event,
7928 				   void *data)
7929 {
7930 	struct perf_comm_event *comm_event = data;
7931 	struct perf_output_handle handle;
7932 	struct perf_sample_data sample;
7933 	int size = comm_event->event_id.header.size;
7934 	int ret;
7935 
7936 	if (!perf_event_comm_match(event))
7937 		return;
7938 
7939 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7940 	ret = perf_output_begin(&handle, &sample, event,
7941 				comm_event->event_id.header.size);
7942 
7943 	if (ret)
7944 		goto out;
7945 
7946 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7947 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7948 
7949 	perf_output_put(&handle, comm_event->event_id);
7950 	__output_copy(&handle, comm_event->comm,
7951 				   comm_event->comm_size);
7952 
7953 	perf_event__output_id_sample(event, &handle, &sample);
7954 
7955 	perf_output_end(&handle);
7956 out:
7957 	comm_event->event_id.header.size = size;
7958 }
7959 
7960 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7961 {
7962 	char comm[TASK_COMM_LEN];
7963 	unsigned int size;
7964 
7965 	memset(comm, 0, sizeof(comm));
7966 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7967 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7968 
7969 	comm_event->comm = comm;
7970 	comm_event->comm_size = size;
7971 
7972 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7973 
7974 	perf_iterate_sb(perf_event_comm_output,
7975 		       comm_event,
7976 		       NULL);
7977 }
7978 
7979 void perf_event_comm(struct task_struct *task, bool exec)
7980 {
7981 	struct perf_comm_event comm_event;
7982 
7983 	if (!atomic_read(&nr_comm_events))
7984 		return;
7985 
7986 	comm_event = (struct perf_comm_event){
7987 		.task	= task,
7988 		/* .comm      */
7989 		/* .comm_size */
7990 		.event_id  = {
7991 			.header = {
7992 				.type = PERF_RECORD_COMM,
7993 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7994 				/* .size */
7995 			},
7996 			/* .pid */
7997 			/* .tid */
7998 		},
7999 	};
8000 
8001 	perf_event_comm_event(&comm_event);
8002 }
8003 
8004 /*
8005  * namespaces tracking
8006  */
8007 
8008 struct perf_namespaces_event {
8009 	struct task_struct		*task;
8010 
8011 	struct {
8012 		struct perf_event_header	header;
8013 
8014 		u32				pid;
8015 		u32				tid;
8016 		u64				nr_namespaces;
8017 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8018 	} event_id;
8019 };
8020 
8021 static int perf_event_namespaces_match(struct perf_event *event)
8022 {
8023 	return event->attr.namespaces;
8024 }
8025 
8026 static void perf_event_namespaces_output(struct perf_event *event,
8027 					 void *data)
8028 {
8029 	struct perf_namespaces_event *namespaces_event = data;
8030 	struct perf_output_handle handle;
8031 	struct perf_sample_data sample;
8032 	u16 header_size = namespaces_event->event_id.header.size;
8033 	int ret;
8034 
8035 	if (!perf_event_namespaces_match(event))
8036 		return;
8037 
8038 	perf_event_header__init_id(&namespaces_event->event_id.header,
8039 				   &sample, event);
8040 	ret = perf_output_begin(&handle, &sample, event,
8041 				namespaces_event->event_id.header.size);
8042 	if (ret)
8043 		goto out;
8044 
8045 	namespaces_event->event_id.pid = perf_event_pid(event,
8046 							namespaces_event->task);
8047 	namespaces_event->event_id.tid = perf_event_tid(event,
8048 							namespaces_event->task);
8049 
8050 	perf_output_put(&handle, namespaces_event->event_id);
8051 
8052 	perf_event__output_id_sample(event, &handle, &sample);
8053 
8054 	perf_output_end(&handle);
8055 out:
8056 	namespaces_event->event_id.header.size = header_size;
8057 }
8058 
8059 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8060 				   struct task_struct *task,
8061 				   const struct proc_ns_operations *ns_ops)
8062 {
8063 	struct path ns_path;
8064 	struct inode *ns_inode;
8065 	int error;
8066 
8067 	error = ns_get_path(&ns_path, task, ns_ops);
8068 	if (!error) {
8069 		ns_inode = ns_path.dentry->d_inode;
8070 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8071 		ns_link_info->ino = ns_inode->i_ino;
8072 		path_put(&ns_path);
8073 	}
8074 }
8075 
8076 void perf_event_namespaces(struct task_struct *task)
8077 {
8078 	struct perf_namespaces_event namespaces_event;
8079 	struct perf_ns_link_info *ns_link_info;
8080 
8081 	if (!atomic_read(&nr_namespaces_events))
8082 		return;
8083 
8084 	namespaces_event = (struct perf_namespaces_event){
8085 		.task	= task,
8086 		.event_id  = {
8087 			.header = {
8088 				.type = PERF_RECORD_NAMESPACES,
8089 				.misc = 0,
8090 				.size = sizeof(namespaces_event.event_id),
8091 			},
8092 			/* .pid */
8093 			/* .tid */
8094 			.nr_namespaces = NR_NAMESPACES,
8095 			/* .link_info[NR_NAMESPACES] */
8096 		},
8097 	};
8098 
8099 	ns_link_info = namespaces_event.event_id.link_info;
8100 
8101 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8102 			       task, &mntns_operations);
8103 
8104 #ifdef CONFIG_USER_NS
8105 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8106 			       task, &userns_operations);
8107 #endif
8108 #ifdef CONFIG_NET_NS
8109 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8110 			       task, &netns_operations);
8111 #endif
8112 #ifdef CONFIG_UTS_NS
8113 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8114 			       task, &utsns_operations);
8115 #endif
8116 #ifdef CONFIG_IPC_NS
8117 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8118 			       task, &ipcns_operations);
8119 #endif
8120 #ifdef CONFIG_PID_NS
8121 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8122 			       task, &pidns_operations);
8123 #endif
8124 #ifdef CONFIG_CGROUPS
8125 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8126 			       task, &cgroupns_operations);
8127 #endif
8128 
8129 	perf_iterate_sb(perf_event_namespaces_output,
8130 			&namespaces_event,
8131 			NULL);
8132 }
8133 
8134 /*
8135  * cgroup tracking
8136  */
8137 #ifdef CONFIG_CGROUP_PERF
8138 
8139 struct perf_cgroup_event {
8140 	char				*path;
8141 	int				path_size;
8142 	struct {
8143 		struct perf_event_header	header;
8144 		u64				id;
8145 		char				path[];
8146 	} event_id;
8147 };
8148 
8149 static int perf_event_cgroup_match(struct perf_event *event)
8150 {
8151 	return event->attr.cgroup;
8152 }
8153 
8154 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8155 {
8156 	struct perf_cgroup_event *cgroup_event = data;
8157 	struct perf_output_handle handle;
8158 	struct perf_sample_data sample;
8159 	u16 header_size = cgroup_event->event_id.header.size;
8160 	int ret;
8161 
8162 	if (!perf_event_cgroup_match(event))
8163 		return;
8164 
8165 	perf_event_header__init_id(&cgroup_event->event_id.header,
8166 				   &sample, event);
8167 	ret = perf_output_begin(&handle, &sample, event,
8168 				cgroup_event->event_id.header.size);
8169 	if (ret)
8170 		goto out;
8171 
8172 	perf_output_put(&handle, cgroup_event->event_id);
8173 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8174 
8175 	perf_event__output_id_sample(event, &handle, &sample);
8176 
8177 	perf_output_end(&handle);
8178 out:
8179 	cgroup_event->event_id.header.size = header_size;
8180 }
8181 
8182 static void perf_event_cgroup(struct cgroup *cgrp)
8183 {
8184 	struct perf_cgroup_event cgroup_event;
8185 	char path_enomem[16] = "//enomem";
8186 	char *pathname;
8187 	size_t size;
8188 
8189 	if (!atomic_read(&nr_cgroup_events))
8190 		return;
8191 
8192 	cgroup_event = (struct perf_cgroup_event){
8193 		.event_id  = {
8194 			.header = {
8195 				.type = PERF_RECORD_CGROUP,
8196 				.misc = 0,
8197 				.size = sizeof(cgroup_event.event_id),
8198 			},
8199 			.id = cgroup_id(cgrp),
8200 		},
8201 	};
8202 
8203 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8204 	if (pathname == NULL) {
8205 		cgroup_event.path = path_enomem;
8206 	} else {
8207 		/* just to be sure to have enough space for alignment */
8208 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8209 		cgroup_event.path = pathname;
8210 	}
8211 
8212 	/*
8213 	 * Since our buffer works in 8 byte units we need to align our string
8214 	 * size to a multiple of 8. However, we must guarantee the tail end is
8215 	 * zero'd out to avoid leaking random bits to userspace.
8216 	 */
8217 	size = strlen(cgroup_event.path) + 1;
8218 	while (!IS_ALIGNED(size, sizeof(u64)))
8219 		cgroup_event.path[size++] = '\0';
8220 
8221 	cgroup_event.event_id.header.size += size;
8222 	cgroup_event.path_size = size;
8223 
8224 	perf_iterate_sb(perf_event_cgroup_output,
8225 			&cgroup_event,
8226 			NULL);
8227 
8228 	kfree(pathname);
8229 }
8230 
8231 #endif
8232 
8233 /*
8234  * mmap tracking
8235  */
8236 
8237 struct perf_mmap_event {
8238 	struct vm_area_struct	*vma;
8239 
8240 	const char		*file_name;
8241 	int			file_size;
8242 	int			maj, min;
8243 	u64			ino;
8244 	u64			ino_generation;
8245 	u32			prot, flags;
8246 	u8			build_id[BUILD_ID_SIZE_MAX];
8247 	u32			build_id_size;
8248 
8249 	struct {
8250 		struct perf_event_header	header;
8251 
8252 		u32				pid;
8253 		u32				tid;
8254 		u64				start;
8255 		u64				len;
8256 		u64				pgoff;
8257 	} event_id;
8258 };
8259 
8260 static int perf_event_mmap_match(struct perf_event *event,
8261 				 void *data)
8262 {
8263 	struct perf_mmap_event *mmap_event = data;
8264 	struct vm_area_struct *vma = mmap_event->vma;
8265 	int executable = vma->vm_flags & VM_EXEC;
8266 
8267 	return (!executable && event->attr.mmap_data) ||
8268 	       (executable && (event->attr.mmap || event->attr.mmap2));
8269 }
8270 
8271 static void perf_event_mmap_output(struct perf_event *event,
8272 				   void *data)
8273 {
8274 	struct perf_mmap_event *mmap_event = data;
8275 	struct perf_output_handle handle;
8276 	struct perf_sample_data sample;
8277 	int size = mmap_event->event_id.header.size;
8278 	u32 type = mmap_event->event_id.header.type;
8279 	bool use_build_id;
8280 	int ret;
8281 
8282 	if (!perf_event_mmap_match(event, data))
8283 		return;
8284 
8285 	if (event->attr.mmap2) {
8286 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8287 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8288 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8289 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8290 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8291 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8292 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8293 	}
8294 
8295 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8296 	ret = perf_output_begin(&handle, &sample, event,
8297 				mmap_event->event_id.header.size);
8298 	if (ret)
8299 		goto out;
8300 
8301 	mmap_event->event_id.pid = perf_event_pid(event, current);
8302 	mmap_event->event_id.tid = perf_event_tid(event, current);
8303 
8304 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8305 
8306 	if (event->attr.mmap2 && use_build_id)
8307 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8308 
8309 	perf_output_put(&handle, mmap_event->event_id);
8310 
8311 	if (event->attr.mmap2) {
8312 		if (use_build_id) {
8313 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8314 
8315 			__output_copy(&handle, size, 4);
8316 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8317 		} else {
8318 			perf_output_put(&handle, mmap_event->maj);
8319 			perf_output_put(&handle, mmap_event->min);
8320 			perf_output_put(&handle, mmap_event->ino);
8321 			perf_output_put(&handle, mmap_event->ino_generation);
8322 		}
8323 		perf_output_put(&handle, mmap_event->prot);
8324 		perf_output_put(&handle, mmap_event->flags);
8325 	}
8326 
8327 	__output_copy(&handle, mmap_event->file_name,
8328 				   mmap_event->file_size);
8329 
8330 	perf_event__output_id_sample(event, &handle, &sample);
8331 
8332 	perf_output_end(&handle);
8333 out:
8334 	mmap_event->event_id.header.size = size;
8335 	mmap_event->event_id.header.type = type;
8336 }
8337 
8338 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8339 {
8340 	struct vm_area_struct *vma = mmap_event->vma;
8341 	struct file *file = vma->vm_file;
8342 	int maj = 0, min = 0;
8343 	u64 ino = 0, gen = 0;
8344 	u32 prot = 0, flags = 0;
8345 	unsigned int size;
8346 	char tmp[16];
8347 	char *buf = NULL;
8348 	char *name;
8349 
8350 	if (vma->vm_flags & VM_READ)
8351 		prot |= PROT_READ;
8352 	if (vma->vm_flags & VM_WRITE)
8353 		prot |= PROT_WRITE;
8354 	if (vma->vm_flags & VM_EXEC)
8355 		prot |= PROT_EXEC;
8356 
8357 	if (vma->vm_flags & VM_MAYSHARE)
8358 		flags = MAP_SHARED;
8359 	else
8360 		flags = MAP_PRIVATE;
8361 
8362 	if (vma->vm_flags & VM_LOCKED)
8363 		flags |= MAP_LOCKED;
8364 	if (is_vm_hugetlb_page(vma))
8365 		flags |= MAP_HUGETLB;
8366 
8367 	if (file) {
8368 		struct inode *inode;
8369 		dev_t dev;
8370 
8371 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8372 		if (!buf) {
8373 			name = "//enomem";
8374 			goto cpy_name;
8375 		}
8376 		/*
8377 		 * d_path() works from the end of the rb backwards, so we
8378 		 * need to add enough zero bytes after the string to handle
8379 		 * the 64bit alignment we do later.
8380 		 */
8381 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8382 		if (IS_ERR(name)) {
8383 			name = "//toolong";
8384 			goto cpy_name;
8385 		}
8386 		inode = file_inode(vma->vm_file);
8387 		dev = inode->i_sb->s_dev;
8388 		ino = inode->i_ino;
8389 		gen = inode->i_generation;
8390 		maj = MAJOR(dev);
8391 		min = MINOR(dev);
8392 
8393 		goto got_name;
8394 	} else {
8395 		if (vma->vm_ops && vma->vm_ops->name) {
8396 			name = (char *) vma->vm_ops->name(vma);
8397 			if (name)
8398 				goto cpy_name;
8399 		}
8400 
8401 		name = (char *)arch_vma_name(vma);
8402 		if (name)
8403 			goto cpy_name;
8404 
8405 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8406 				vma->vm_end >= vma->vm_mm->brk) {
8407 			name = "[heap]";
8408 			goto cpy_name;
8409 		}
8410 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8411 				vma->vm_end >= vma->vm_mm->start_stack) {
8412 			name = "[stack]";
8413 			goto cpy_name;
8414 		}
8415 
8416 		name = "//anon";
8417 		goto cpy_name;
8418 	}
8419 
8420 cpy_name:
8421 	strlcpy(tmp, name, sizeof(tmp));
8422 	name = tmp;
8423 got_name:
8424 	/*
8425 	 * Since our buffer works in 8 byte units we need to align our string
8426 	 * size to a multiple of 8. However, we must guarantee the tail end is
8427 	 * zero'd out to avoid leaking random bits to userspace.
8428 	 */
8429 	size = strlen(name)+1;
8430 	while (!IS_ALIGNED(size, sizeof(u64)))
8431 		name[size++] = '\0';
8432 
8433 	mmap_event->file_name = name;
8434 	mmap_event->file_size = size;
8435 	mmap_event->maj = maj;
8436 	mmap_event->min = min;
8437 	mmap_event->ino = ino;
8438 	mmap_event->ino_generation = gen;
8439 	mmap_event->prot = prot;
8440 	mmap_event->flags = flags;
8441 
8442 	if (!(vma->vm_flags & VM_EXEC))
8443 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8444 
8445 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8446 
8447 	if (atomic_read(&nr_build_id_events))
8448 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8449 
8450 	perf_iterate_sb(perf_event_mmap_output,
8451 		       mmap_event,
8452 		       NULL);
8453 
8454 	kfree(buf);
8455 }
8456 
8457 /*
8458  * Check whether inode and address range match filter criteria.
8459  */
8460 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8461 				     struct file *file, unsigned long offset,
8462 				     unsigned long size)
8463 {
8464 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8465 	if (!filter->path.dentry)
8466 		return false;
8467 
8468 	if (d_inode(filter->path.dentry) != file_inode(file))
8469 		return false;
8470 
8471 	if (filter->offset > offset + size)
8472 		return false;
8473 
8474 	if (filter->offset + filter->size < offset)
8475 		return false;
8476 
8477 	return true;
8478 }
8479 
8480 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8481 					struct vm_area_struct *vma,
8482 					struct perf_addr_filter_range *fr)
8483 {
8484 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8485 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8486 	struct file *file = vma->vm_file;
8487 
8488 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8489 		return false;
8490 
8491 	if (filter->offset < off) {
8492 		fr->start = vma->vm_start;
8493 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8494 	} else {
8495 		fr->start = vma->vm_start + filter->offset - off;
8496 		fr->size = min(vma->vm_end - fr->start, filter->size);
8497 	}
8498 
8499 	return true;
8500 }
8501 
8502 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8503 {
8504 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8505 	struct vm_area_struct *vma = data;
8506 	struct perf_addr_filter *filter;
8507 	unsigned int restart = 0, count = 0;
8508 	unsigned long flags;
8509 
8510 	if (!has_addr_filter(event))
8511 		return;
8512 
8513 	if (!vma->vm_file)
8514 		return;
8515 
8516 	raw_spin_lock_irqsave(&ifh->lock, flags);
8517 	list_for_each_entry(filter, &ifh->list, entry) {
8518 		if (perf_addr_filter_vma_adjust(filter, vma,
8519 						&event->addr_filter_ranges[count]))
8520 			restart++;
8521 
8522 		count++;
8523 	}
8524 
8525 	if (restart)
8526 		event->addr_filters_gen++;
8527 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8528 
8529 	if (restart)
8530 		perf_event_stop(event, 1);
8531 }
8532 
8533 /*
8534  * Adjust all task's events' filters to the new vma
8535  */
8536 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8537 {
8538 	struct perf_event_context *ctx;
8539 	int ctxn;
8540 
8541 	/*
8542 	 * Data tracing isn't supported yet and as such there is no need
8543 	 * to keep track of anything that isn't related to executable code:
8544 	 */
8545 	if (!(vma->vm_flags & VM_EXEC))
8546 		return;
8547 
8548 	rcu_read_lock();
8549 	for_each_task_context_nr(ctxn) {
8550 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8551 		if (!ctx)
8552 			continue;
8553 
8554 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8555 	}
8556 	rcu_read_unlock();
8557 }
8558 
8559 void perf_event_mmap(struct vm_area_struct *vma)
8560 {
8561 	struct perf_mmap_event mmap_event;
8562 
8563 	if (!atomic_read(&nr_mmap_events))
8564 		return;
8565 
8566 	mmap_event = (struct perf_mmap_event){
8567 		.vma	= vma,
8568 		/* .file_name */
8569 		/* .file_size */
8570 		.event_id  = {
8571 			.header = {
8572 				.type = PERF_RECORD_MMAP,
8573 				.misc = PERF_RECORD_MISC_USER,
8574 				/* .size */
8575 			},
8576 			/* .pid */
8577 			/* .tid */
8578 			.start  = vma->vm_start,
8579 			.len    = vma->vm_end - vma->vm_start,
8580 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8581 		},
8582 		/* .maj (attr_mmap2 only) */
8583 		/* .min (attr_mmap2 only) */
8584 		/* .ino (attr_mmap2 only) */
8585 		/* .ino_generation (attr_mmap2 only) */
8586 		/* .prot (attr_mmap2 only) */
8587 		/* .flags (attr_mmap2 only) */
8588 	};
8589 
8590 	perf_addr_filters_adjust(vma);
8591 	perf_event_mmap_event(&mmap_event);
8592 }
8593 
8594 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8595 			  unsigned long size, u64 flags)
8596 {
8597 	struct perf_output_handle handle;
8598 	struct perf_sample_data sample;
8599 	struct perf_aux_event {
8600 		struct perf_event_header	header;
8601 		u64				offset;
8602 		u64				size;
8603 		u64				flags;
8604 	} rec = {
8605 		.header = {
8606 			.type = PERF_RECORD_AUX,
8607 			.misc = 0,
8608 			.size = sizeof(rec),
8609 		},
8610 		.offset		= head,
8611 		.size		= size,
8612 		.flags		= flags,
8613 	};
8614 	int ret;
8615 
8616 	perf_event_header__init_id(&rec.header, &sample, event);
8617 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8618 
8619 	if (ret)
8620 		return;
8621 
8622 	perf_output_put(&handle, rec);
8623 	perf_event__output_id_sample(event, &handle, &sample);
8624 
8625 	perf_output_end(&handle);
8626 }
8627 
8628 /*
8629  * Lost/dropped samples logging
8630  */
8631 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8632 {
8633 	struct perf_output_handle handle;
8634 	struct perf_sample_data sample;
8635 	int ret;
8636 
8637 	struct {
8638 		struct perf_event_header	header;
8639 		u64				lost;
8640 	} lost_samples_event = {
8641 		.header = {
8642 			.type = PERF_RECORD_LOST_SAMPLES,
8643 			.misc = 0,
8644 			.size = sizeof(lost_samples_event),
8645 		},
8646 		.lost		= lost,
8647 	};
8648 
8649 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8650 
8651 	ret = perf_output_begin(&handle, &sample, event,
8652 				lost_samples_event.header.size);
8653 	if (ret)
8654 		return;
8655 
8656 	perf_output_put(&handle, lost_samples_event);
8657 	perf_event__output_id_sample(event, &handle, &sample);
8658 	perf_output_end(&handle);
8659 }
8660 
8661 /*
8662  * context_switch tracking
8663  */
8664 
8665 struct perf_switch_event {
8666 	struct task_struct	*task;
8667 	struct task_struct	*next_prev;
8668 
8669 	struct {
8670 		struct perf_event_header	header;
8671 		u32				next_prev_pid;
8672 		u32				next_prev_tid;
8673 	} event_id;
8674 };
8675 
8676 static int perf_event_switch_match(struct perf_event *event)
8677 {
8678 	return event->attr.context_switch;
8679 }
8680 
8681 static void perf_event_switch_output(struct perf_event *event, void *data)
8682 {
8683 	struct perf_switch_event *se = data;
8684 	struct perf_output_handle handle;
8685 	struct perf_sample_data sample;
8686 	int ret;
8687 
8688 	if (!perf_event_switch_match(event))
8689 		return;
8690 
8691 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8692 	if (event->ctx->task) {
8693 		se->event_id.header.type = PERF_RECORD_SWITCH;
8694 		se->event_id.header.size = sizeof(se->event_id.header);
8695 	} else {
8696 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8697 		se->event_id.header.size = sizeof(se->event_id);
8698 		se->event_id.next_prev_pid =
8699 					perf_event_pid(event, se->next_prev);
8700 		se->event_id.next_prev_tid =
8701 					perf_event_tid(event, se->next_prev);
8702 	}
8703 
8704 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8705 
8706 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8707 	if (ret)
8708 		return;
8709 
8710 	if (event->ctx->task)
8711 		perf_output_put(&handle, se->event_id.header);
8712 	else
8713 		perf_output_put(&handle, se->event_id);
8714 
8715 	perf_event__output_id_sample(event, &handle, &sample);
8716 
8717 	perf_output_end(&handle);
8718 }
8719 
8720 static void perf_event_switch(struct task_struct *task,
8721 			      struct task_struct *next_prev, bool sched_in)
8722 {
8723 	struct perf_switch_event switch_event;
8724 
8725 	/* N.B. caller checks nr_switch_events != 0 */
8726 
8727 	switch_event = (struct perf_switch_event){
8728 		.task		= task,
8729 		.next_prev	= next_prev,
8730 		.event_id	= {
8731 			.header = {
8732 				/* .type */
8733 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8734 				/* .size */
8735 			},
8736 			/* .next_prev_pid */
8737 			/* .next_prev_tid */
8738 		},
8739 	};
8740 
8741 	if (!sched_in && task->on_rq) {
8742 		switch_event.event_id.header.misc |=
8743 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8744 	}
8745 
8746 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8747 }
8748 
8749 /*
8750  * IRQ throttle logging
8751  */
8752 
8753 static void perf_log_throttle(struct perf_event *event, int enable)
8754 {
8755 	struct perf_output_handle handle;
8756 	struct perf_sample_data sample;
8757 	int ret;
8758 
8759 	struct {
8760 		struct perf_event_header	header;
8761 		u64				time;
8762 		u64				id;
8763 		u64				stream_id;
8764 	} throttle_event = {
8765 		.header = {
8766 			.type = PERF_RECORD_THROTTLE,
8767 			.misc = 0,
8768 			.size = sizeof(throttle_event),
8769 		},
8770 		.time		= perf_event_clock(event),
8771 		.id		= primary_event_id(event),
8772 		.stream_id	= event->id,
8773 	};
8774 
8775 	if (enable)
8776 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8777 
8778 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8779 
8780 	ret = perf_output_begin(&handle, &sample, event,
8781 				throttle_event.header.size);
8782 	if (ret)
8783 		return;
8784 
8785 	perf_output_put(&handle, throttle_event);
8786 	perf_event__output_id_sample(event, &handle, &sample);
8787 	perf_output_end(&handle);
8788 }
8789 
8790 /*
8791  * ksymbol register/unregister tracking
8792  */
8793 
8794 struct perf_ksymbol_event {
8795 	const char	*name;
8796 	int		name_len;
8797 	struct {
8798 		struct perf_event_header        header;
8799 		u64				addr;
8800 		u32				len;
8801 		u16				ksym_type;
8802 		u16				flags;
8803 	} event_id;
8804 };
8805 
8806 static int perf_event_ksymbol_match(struct perf_event *event)
8807 {
8808 	return event->attr.ksymbol;
8809 }
8810 
8811 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8812 {
8813 	struct perf_ksymbol_event *ksymbol_event = data;
8814 	struct perf_output_handle handle;
8815 	struct perf_sample_data sample;
8816 	int ret;
8817 
8818 	if (!perf_event_ksymbol_match(event))
8819 		return;
8820 
8821 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8822 				   &sample, event);
8823 	ret = perf_output_begin(&handle, &sample, event,
8824 				ksymbol_event->event_id.header.size);
8825 	if (ret)
8826 		return;
8827 
8828 	perf_output_put(&handle, ksymbol_event->event_id);
8829 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8830 	perf_event__output_id_sample(event, &handle, &sample);
8831 
8832 	perf_output_end(&handle);
8833 }
8834 
8835 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8836 			const char *sym)
8837 {
8838 	struct perf_ksymbol_event ksymbol_event;
8839 	char name[KSYM_NAME_LEN];
8840 	u16 flags = 0;
8841 	int name_len;
8842 
8843 	if (!atomic_read(&nr_ksymbol_events))
8844 		return;
8845 
8846 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8847 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8848 		goto err;
8849 
8850 	strlcpy(name, sym, KSYM_NAME_LEN);
8851 	name_len = strlen(name) + 1;
8852 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8853 		name[name_len++] = '\0';
8854 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8855 
8856 	if (unregister)
8857 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8858 
8859 	ksymbol_event = (struct perf_ksymbol_event){
8860 		.name = name,
8861 		.name_len = name_len,
8862 		.event_id = {
8863 			.header = {
8864 				.type = PERF_RECORD_KSYMBOL,
8865 				.size = sizeof(ksymbol_event.event_id) +
8866 					name_len,
8867 			},
8868 			.addr = addr,
8869 			.len = len,
8870 			.ksym_type = ksym_type,
8871 			.flags = flags,
8872 		},
8873 	};
8874 
8875 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8876 	return;
8877 err:
8878 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8879 }
8880 
8881 /*
8882  * bpf program load/unload tracking
8883  */
8884 
8885 struct perf_bpf_event {
8886 	struct bpf_prog	*prog;
8887 	struct {
8888 		struct perf_event_header        header;
8889 		u16				type;
8890 		u16				flags;
8891 		u32				id;
8892 		u8				tag[BPF_TAG_SIZE];
8893 	} event_id;
8894 };
8895 
8896 static int perf_event_bpf_match(struct perf_event *event)
8897 {
8898 	return event->attr.bpf_event;
8899 }
8900 
8901 static void perf_event_bpf_output(struct perf_event *event, void *data)
8902 {
8903 	struct perf_bpf_event *bpf_event = data;
8904 	struct perf_output_handle handle;
8905 	struct perf_sample_data sample;
8906 	int ret;
8907 
8908 	if (!perf_event_bpf_match(event))
8909 		return;
8910 
8911 	perf_event_header__init_id(&bpf_event->event_id.header,
8912 				   &sample, event);
8913 	ret = perf_output_begin(&handle, data, event,
8914 				bpf_event->event_id.header.size);
8915 	if (ret)
8916 		return;
8917 
8918 	perf_output_put(&handle, bpf_event->event_id);
8919 	perf_event__output_id_sample(event, &handle, &sample);
8920 
8921 	perf_output_end(&handle);
8922 }
8923 
8924 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8925 					 enum perf_bpf_event_type type)
8926 {
8927 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8928 	int i;
8929 
8930 	if (prog->aux->func_cnt == 0) {
8931 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8932 				   (u64)(unsigned long)prog->bpf_func,
8933 				   prog->jited_len, unregister,
8934 				   prog->aux->ksym.name);
8935 	} else {
8936 		for (i = 0; i < prog->aux->func_cnt; i++) {
8937 			struct bpf_prog *subprog = prog->aux->func[i];
8938 
8939 			perf_event_ksymbol(
8940 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8941 				(u64)(unsigned long)subprog->bpf_func,
8942 				subprog->jited_len, unregister,
8943 				prog->aux->ksym.name);
8944 		}
8945 	}
8946 }
8947 
8948 void perf_event_bpf_event(struct bpf_prog *prog,
8949 			  enum perf_bpf_event_type type,
8950 			  u16 flags)
8951 {
8952 	struct perf_bpf_event bpf_event;
8953 
8954 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8955 	    type >= PERF_BPF_EVENT_MAX)
8956 		return;
8957 
8958 	switch (type) {
8959 	case PERF_BPF_EVENT_PROG_LOAD:
8960 	case PERF_BPF_EVENT_PROG_UNLOAD:
8961 		if (atomic_read(&nr_ksymbol_events))
8962 			perf_event_bpf_emit_ksymbols(prog, type);
8963 		break;
8964 	default:
8965 		break;
8966 	}
8967 
8968 	if (!atomic_read(&nr_bpf_events))
8969 		return;
8970 
8971 	bpf_event = (struct perf_bpf_event){
8972 		.prog = prog,
8973 		.event_id = {
8974 			.header = {
8975 				.type = PERF_RECORD_BPF_EVENT,
8976 				.size = sizeof(bpf_event.event_id),
8977 			},
8978 			.type = type,
8979 			.flags = flags,
8980 			.id = prog->aux->id,
8981 		},
8982 	};
8983 
8984 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8985 
8986 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8987 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8988 }
8989 
8990 struct perf_text_poke_event {
8991 	const void		*old_bytes;
8992 	const void		*new_bytes;
8993 	size_t			pad;
8994 	u16			old_len;
8995 	u16			new_len;
8996 
8997 	struct {
8998 		struct perf_event_header	header;
8999 
9000 		u64				addr;
9001 	} event_id;
9002 };
9003 
9004 static int perf_event_text_poke_match(struct perf_event *event)
9005 {
9006 	return event->attr.text_poke;
9007 }
9008 
9009 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9010 {
9011 	struct perf_text_poke_event *text_poke_event = data;
9012 	struct perf_output_handle handle;
9013 	struct perf_sample_data sample;
9014 	u64 padding = 0;
9015 	int ret;
9016 
9017 	if (!perf_event_text_poke_match(event))
9018 		return;
9019 
9020 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9021 
9022 	ret = perf_output_begin(&handle, &sample, event,
9023 				text_poke_event->event_id.header.size);
9024 	if (ret)
9025 		return;
9026 
9027 	perf_output_put(&handle, text_poke_event->event_id);
9028 	perf_output_put(&handle, text_poke_event->old_len);
9029 	perf_output_put(&handle, text_poke_event->new_len);
9030 
9031 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9032 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9033 
9034 	if (text_poke_event->pad)
9035 		__output_copy(&handle, &padding, text_poke_event->pad);
9036 
9037 	perf_event__output_id_sample(event, &handle, &sample);
9038 
9039 	perf_output_end(&handle);
9040 }
9041 
9042 void perf_event_text_poke(const void *addr, const void *old_bytes,
9043 			  size_t old_len, const void *new_bytes, size_t new_len)
9044 {
9045 	struct perf_text_poke_event text_poke_event;
9046 	size_t tot, pad;
9047 
9048 	if (!atomic_read(&nr_text_poke_events))
9049 		return;
9050 
9051 	tot  = sizeof(text_poke_event.old_len) + old_len;
9052 	tot += sizeof(text_poke_event.new_len) + new_len;
9053 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9054 
9055 	text_poke_event = (struct perf_text_poke_event){
9056 		.old_bytes    = old_bytes,
9057 		.new_bytes    = new_bytes,
9058 		.pad          = pad,
9059 		.old_len      = old_len,
9060 		.new_len      = new_len,
9061 		.event_id  = {
9062 			.header = {
9063 				.type = PERF_RECORD_TEXT_POKE,
9064 				.misc = PERF_RECORD_MISC_KERNEL,
9065 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9066 			},
9067 			.addr = (unsigned long)addr,
9068 		},
9069 	};
9070 
9071 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9072 }
9073 
9074 void perf_event_itrace_started(struct perf_event *event)
9075 {
9076 	event->attach_state |= PERF_ATTACH_ITRACE;
9077 }
9078 
9079 static void perf_log_itrace_start(struct perf_event *event)
9080 {
9081 	struct perf_output_handle handle;
9082 	struct perf_sample_data sample;
9083 	struct perf_aux_event {
9084 		struct perf_event_header        header;
9085 		u32				pid;
9086 		u32				tid;
9087 	} rec;
9088 	int ret;
9089 
9090 	if (event->parent)
9091 		event = event->parent;
9092 
9093 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9094 	    event->attach_state & PERF_ATTACH_ITRACE)
9095 		return;
9096 
9097 	rec.header.type	= PERF_RECORD_ITRACE_START;
9098 	rec.header.misc	= 0;
9099 	rec.header.size	= sizeof(rec);
9100 	rec.pid	= perf_event_pid(event, current);
9101 	rec.tid	= perf_event_tid(event, current);
9102 
9103 	perf_event_header__init_id(&rec.header, &sample, event);
9104 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9105 
9106 	if (ret)
9107 		return;
9108 
9109 	perf_output_put(&handle, rec);
9110 	perf_event__output_id_sample(event, &handle, &sample);
9111 
9112 	perf_output_end(&handle);
9113 }
9114 
9115 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9116 {
9117 	struct perf_output_handle handle;
9118 	struct perf_sample_data sample;
9119 	struct perf_aux_event {
9120 		struct perf_event_header        header;
9121 		u64				hw_id;
9122 	} rec;
9123 	int ret;
9124 
9125 	if (event->parent)
9126 		event = event->parent;
9127 
9128 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9129 	rec.header.misc	= 0;
9130 	rec.header.size	= sizeof(rec);
9131 	rec.hw_id	= hw_id;
9132 
9133 	perf_event_header__init_id(&rec.header, &sample, event);
9134 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9135 
9136 	if (ret)
9137 		return;
9138 
9139 	perf_output_put(&handle, rec);
9140 	perf_event__output_id_sample(event, &handle, &sample);
9141 
9142 	perf_output_end(&handle);
9143 }
9144 
9145 static int
9146 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9147 {
9148 	struct hw_perf_event *hwc = &event->hw;
9149 	int ret = 0;
9150 	u64 seq;
9151 
9152 	seq = __this_cpu_read(perf_throttled_seq);
9153 	if (seq != hwc->interrupts_seq) {
9154 		hwc->interrupts_seq = seq;
9155 		hwc->interrupts = 1;
9156 	} else {
9157 		hwc->interrupts++;
9158 		if (unlikely(throttle
9159 			     && hwc->interrupts >= max_samples_per_tick)) {
9160 			__this_cpu_inc(perf_throttled_count);
9161 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9162 			hwc->interrupts = MAX_INTERRUPTS;
9163 			perf_log_throttle(event, 0);
9164 			ret = 1;
9165 		}
9166 	}
9167 
9168 	if (event->attr.freq) {
9169 		u64 now = perf_clock();
9170 		s64 delta = now - hwc->freq_time_stamp;
9171 
9172 		hwc->freq_time_stamp = now;
9173 
9174 		if (delta > 0 && delta < 2*TICK_NSEC)
9175 			perf_adjust_period(event, delta, hwc->last_period, true);
9176 	}
9177 
9178 	return ret;
9179 }
9180 
9181 int perf_event_account_interrupt(struct perf_event *event)
9182 {
9183 	return __perf_event_account_interrupt(event, 1);
9184 }
9185 
9186 /*
9187  * Generic event overflow handling, sampling.
9188  */
9189 
9190 static int __perf_event_overflow(struct perf_event *event,
9191 				   int throttle, struct perf_sample_data *data,
9192 				   struct pt_regs *regs)
9193 {
9194 	int events = atomic_read(&event->event_limit);
9195 	int ret = 0;
9196 
9197 	/*
9198 	 * Non-sampling counters might still use the PMI to fold short
9199 	 * hardware counters, ignore those.
9200 	 */
9201 	if (unlikely(!is_sampling_event(event)))
9202 		return 0;
9203 
9204 	ret = __perf_event_account_interrupt(event, throttle);
9205 
9206 	/*
9207 	 * XXX event_limit might not quite work as expected on inherited
9208 	 * events
9209 	 */
9210 
9211 	event->pending_kill = POLL_IN;
9212 	if (events && atomic_dec_and_test(&event->event_limit)) {
9213 		ret = 1;
9214 		event->pending_kill = POLL_HUP;
9215 		event->pending_addr = data->addr;
9216 
9217 		perf_event_disable_inatomic(event);
9218 	}
9219 
9220 	READ_ONCE(event->overflow_handler)(event, data, regs);
9221 
9222 	if (*perf_event_fasync(event) && event->pending_kill) {
9223 		event->pending_wakeup = 1;
9224 		irq_work_queue(&event->pending);
9225 	}
9226 
9227 	return ret;
9228 }
9229 
9230 int perf_event_overflow(struct perf_event *event,
9231 			  struct perf_sample_data *data,
9232 			  struct pt_regs *regs)
9233 {
9234 	return __perf_event_overflow(event, 1, data, regs);
9235 }
9236 
9237 /*
9238  * Generic software event infrastructure
9239  */
9240 
9241 struct swevent_htable {
9242 	struct swevent_hlist		*swevent_hlist;
9243 	struct mutex			hlist_mutex;
9244 	int				hlist_refcount;
9245 
9246 	/* Recursion avoidance in each contexts */
9247 	int				recursion[PERF_NR_CONTEXTS];
9248 };
9249 
9250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9251 
9252 /*
9253  * We directly increment event->count and keep a second value in
9254  * event->hw.period_left to count intervals. This period event
9255  * is kept in the range [-sample_period, 0] so that we can use the
9256  * sign as trigger.
9257  */
9258 
9259 u64 perf_swevent_set_period(struct perf_event *event)
9260 {
9261 	struct hw_perf_event *hwc = &event->hw;
9262 	u64 period = hwc->last_period;
9263 	u64 nr, offset;
9264 	s64 old, val;
9265 
9266 	hwc->last_period = hwc->sample_period;
9267 
9268 again:
9269 	old = val = local64_read(&hwc->period_left);
9270 	if (val < 0)
9271 		return 0;
9272 
9273 	nr = div64_u64(period + val, period);
9274 	offset = nr * period;
9275 	val -= offset;
9276 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9277 		goto again;
9278 
9279 	return nr;
9280 }
9281 
9282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9283 				    struct perf_sample_data *data,
9284 				    struct pt_regs *regs)
9285 {
9286 	struct hw_perf_event *hwc = &event->hw;
9287 	int throttle = 0;
9288 
9289 	if (!overflow)
9290 		overflow = perf_swevent_set_period(event);
9291 
9292 	if (hwc->interrupts == MAX_INTERRUPTS)
9293 		return;
9294 
9295 	for (; overflow; overflow--) {
9296 		if (__perf_event_overflow(event, throttle,
9297 					    data, regs)) {
9298 			/*
9299 			 * We inhibit the overflow from happening when
9300 			 * hwc->interrupts == MAX_INTERRUPTS.
9301 			 */
9302 			break;
9303 		}
9304 		throttle = 1;
9305 	}
9306 }
9307 
9308 static void perf_swevent_event(struct perf_event *event, u64 nr,
9309 			       struct perf_sample_data *data,
9310 			       struct pt_regs *regs)
9311 {
9312 	struct hw_perf_event *hwc = &event->hw;
9313 
9314 	local64_add(nr, &event->count);
9315 
9316 	if (!regs)
9317 		return;
9318 
9319 	if (!is_sampling_event(event))
9320 		return;
9321 
9322 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9323 		data->period = nr;
9324 		return perf_swevent_overflow(event, 1, data, regs);
9325 	} else
9326 		data->period = event->hw.last_period;
9327 
9328 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9329 		return perf_swevent_overflow(event, 1, data, regs);
9330 
9331 	if (local64_add_negative(nr, &hwc->period_left))
9332 		return;
9333 
9334 	perf_swevent_overflow(event, 0, data, regs);
9335 }
9336 
9337 static int perf_exclude_event(struct perf_event *event,
9338 			      struct pt_regs *regs)
9339 {
9340 	if (event->hw.state & PERF_HES_STOPPED)
9341 		return 1;
9342 
9343 	if (regs) {
9344 		if (event->attr.exclude_user && user_mode(regs))
9345 			return 1;
9346 
9347 		if (event->attr.exclude_kernel && !user_mode(regs))
9348 			return 1;
9349 	}
9350 
9351 	return 0;
9352 }
9353 
9354 static int perf_swevent_match(struct perf_event *event,
9355 				enum perf_type_id type,
9356 				u32 event_id,
9357 				struct perf_sample_data *data,
9358 				struct pt_regs *regs)
9359 {
9360 	if (event->attr.type != type)
9361 		return 0;
9362 
9363 	if (event->attr.config != event_id)
9364 		return 0;
9365 
9366 	if (perf_exclude_event(event, regs))
9367 		return 0;
9368 
9369 	return 1;
9370 }
9371 
9372 static inline u64 swevent_hash(u64 type, u32 event_id)
9373 {
9374 	u64 val = event_id | (type << 32);
9375 
9376 	return hash_64(val, SWEVENT_HLIST_BITS);
9377 }
9378 
9379 static inline struct hlist_head *
9380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9381 {
9382 	u64 hash = swevent_hash(type, event_id);
9383 
9384 	return &hlist->heads[hash];
9385 }
9386 
9387 /* For the read side: events when they trigger */
9388 static inline struct hlist_head *
9389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9390 {
9391 	struct swevent_hlist *hlist;
9392 
9393 	hlist = rcu_dereference(swhash->swevent_hlist);
9394 	if (!hlist)
9395 		return NULL;
9396 
9397 	return __find_swevent_head(hlist, type, event_id);
9398 }
9399 
9400 /* For the event head insertion and removal in the hlist */
9401 static inline struct hlist_head *
9402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9403 {
9404 	struct swevent_hlist *hlist;
9405 	u32 event_id = event->attr.config;
9406 	u64 type = event->attr.type;
9407 
9408 	/*
9409 	 * Event scheduling is always serialized against hlist allocation
9410 	 * and release. Which makes the protected version suitable here.
9411 	 * The context lock guarantees that.
9412 	 */
9413 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9414 					  lockdep_is_held(&event->ctx->lock));
9415 	if (!hlist)
9416 		return NULL;
9417 
9418 	return __find_swevent_head(hlist, type, event_id);
9419 }
9420 
9421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9422 				    u64 nr,
9423 				    struct perf_sample_data *data,
9424 				    struct pt_regs *regs)
9425 {
9426 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9427 	struct perf_event *event;
9428 	struct hlist_head *head;
9429 
9430 	rcu_read_lock();
9431 	head = find_swevent_head_rcu(swhash, type, event_id);
9432 	if (!head)
9433 		goto end;
9434 
9435 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9436 		if (perf_swevent_match(event, type, event_id, data, regs))
9437 			perf_swevent_event(event, nr, data, regs);
9438 	}
9439 end:
9440 	rcu_read_unlock();
9441 }
9442 
9443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9444 
9445 int perf_swevent_get_recursion_context(void)
9446 {
9447 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9448 
9449 	return get_recursion_context(swhash->recursion);
9450 }
9451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9452 
9453 void perf_swevent_put_recursion_context(int rctx)
9454 {
9455 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9456 
9457 	put_recursion_context(swhash->recursion, rctx);
9458 }
9459 
9460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9461 {
9462 	struct perf_sample_data data;
9463 
9464 	if (WARN_ON_ONCE(!regs))
9465 		return;
9466 
9467 	perf_sample_data_init(&data, addr, 0);
9468 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9469 }
9470 
9471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9472 {
9473 	int rctx;
9474 
9475 	preempt_disable_notrace();
9476 	rctx = perf_swevent_get_recursion_context();
9477 	if (unlikely(rctx < 0))
9478 		goto fail;
9479 
9480 	___perf_sw_event(event_id, nr, regs, addr);
9481 
9482 	perf_swevent_put_recursion_context(rctx);
9483 fail:
9484 	preempt_enable_notrace();
9485 }
9486 
9487 static void perf_swevent_read(struct perf_event *event)
9488 {
9489 }
9490 
9491 static int perf_swevent_add(struct perf_event *event, int flags)
9492 {
9493 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9494 	struct hw_perf_event *hwc = &event->hw;
9495 	struct hlist_head *head;
9496 
9497 	if (is_sampling_event(event)) {
9498 		hwc->last_period = hwc->sample_period;
9499 		perf_swevent_set_period(event);
9500 	}
9501 
9502 	hwc->state = !(flags & PERF_EF_START);
9503 
9504 	head = find_swevent_head(swhash, event);
9505 	if (WARN_ON_ONCE(!head))
9506 		return -EINVAL;
9507 
9508 	hlist_add_head_rcu(&event->hlist_entry, head);
9509 	perf_event_update_userpage(event);
9510 
9511 	return 0;
9512 }
9513 
9514 static void perf_swevent_del(struct perf_event *event, int flags)
9515 {
9516 	hlist_del_rcu(&event->hlist_entry);
9517 }
9518 
9519 static void perf_swevent_start(struct perf_event *event, int flags)
9520 {
9521 	event->hw.state = 0;
9522 }
9523 
9524 static void perf_swevent_stop(struct perf_event *event, int flags)
9525 {
9526 	event->hw.state = PERF_HES_STOPPED;
9527 }
9528 
9529 /* Deref the hlist from the update side */
9530 static inline struct swevent_hlist *
9531 swevent_hlist_deref(struct swevent_htable *swhash)
9532 {
9533 	return rcu_dereference_protected(swhash->swevent_hlist,
9534 					 lockdep_is_held(&swhash->hlist_mutex));
9535 }
9536 
9537 static void swevent_hlist_release(struct swevent_htable *swhash)
9538 {
9539 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9540 
9541 	if (!hlist)
9542 		return;
9543 
9544 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9545 	kfree_rcu(hlist, rcu_head);
9546 }
9547 
9548 static void swevent_hlist_put_cpu(int cpu)
9549 {
9550 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9551 
9552 	mutex_lock(&swhash->hlist_mutex);
9553 
9554 	if (!--swhash->hlist_refcount)
9555 		swevent_hlist_release(swhash);
9556 
9557 	mutex_unlock(&swhash->hlist_mutex);
9558 }
9559 
9560 static void swevent_hlist_put(void)
9561 {
9562 	int cpu;
9563 
9564 	for_each_possible_cpu(cpu)
9565 		swevent_hlist_put_cpu(cpu);
9566 }
9567 
9568 static int swevent_hlist_get_cpu(int cpu)
9569 {
9570 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9571 	int err = 0;
9572 
9573 	mutex_lock(&swhash->hlist_mutex);
9574 	if (!swevent_hlist_deref(swhash) &&
9575 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9576 		struct swevent_hlist *hlist;
9577 
9578 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9579 		if (!hlist) {
9580 			err = -ENOMEM;
9581 			goto exit;
9582 		}
9583 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9584 	}
9585 	swhash->hlist_refcount++;
9586 exit:
9587 	mutex_unlock(&swhash->hlist_mutex);
9588 
9589 	return err;
9590 }
9591 
9592 static int swevent_hlist_get(void)
9593 {
9594 	int err, cpu, failed_cpu;
9595 
9596 	mutex_lock(&pmus_lock);
9597 	for_each_possible_cpu(cpu) {
9598 		err = swevent_hlist_get_cpu(cpu);
9599 		if (err) {
9600 			failed_cpu = cpu;
9601 			goto fail;
9602 		}
9603 	}
9604 	mutex_unlock(&pmus_lock);
9605 	return 0;
9606 fail:
9607 	for_each_possible_cpu(cpu) {
9608 		if (cpu == failed_cpu)
9609 			break;
9610 		swevent_hlist_put_cpu(cpu);
9611 	}
9612 	mutex_unlock(&pmus_lock);
9613 	return err;
9614 }
9615 
9616 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9617 
9618 static void sw_perf_event_destroy(struct perf_event *event)
9619 {
9620 	u64 event_id = event->attr.config;
9621 
9622 	WARN_ON(event->parent);
9623 
9624 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9625 	swevent_hlist_put();
9626 }
9627 
9628 static int perf_swevent_init(struct perf_event *event)
9629 {
9630 	u64 event_id = event->attr.config;
9631 
9632 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9633 		return -ENOENT;
9634 
9635 	/*
9636 	 * no branch sampling for software events
9637 	 */
9638 	if (has_branch_stack(event))
9639 		return -EOPNOTSUPP;
9640 
9641 	switch (event_id) {
9642 	case PERF_COUNT_SW_CPU_CLOCK:
9643 	case PERF_COUNT_SW_TASK_CLOCK:
9644 		return -ENOENT;
9645 
9646 	default:
9647 		break;
9648 	}
9649 
9650 	if (event_id >= PERF_COUNT_SW_MAX)
9651 		return -ENOENT;
9652 
9653 	if (!event->parent) {
9654 		int err;
9655 
9656 		err = swevent_hlist_get();
9657 		if (err)
9658 			return err;
9659 
9660 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9661 		event->destroy = sw_perf_event_destroy;
9662 	}
9663 
9664 	return 0;
9665 }
9666 
9667 static struct pmu perf_swevent = {
9668 	.task_ctx_nr	= perf_sw_context,
9669 
9670 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9671 
9672 	.event_init	= perf_swevent_init,
9673 	.add		= perf_swevent_add,
9674 	.del		= perf_swevent_del,
9675 	.start		= perf_swevent_start,
9676 	.stop		= perf_swevent_stop,
9677 	.read		= perf_swevent_read,
9678 };
9679 
9680 #ifdef CONFIG_EVENT_TRACING
9681 
9682 static int perf_tp_filter_match(struct perf_event *event,
9683 				struct perf_sample_data *data)
9684 {
9685 	void *record = data->raw->frag.data;
9686 
9687 	/* only top level events have filters set */
9688 	if (event->parent)
9689 		event = event->parent;
9690 
9691 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9692 		return 1;
9693 	return 0;
9694 }
9695 
9696 static int perf_tp_event_match(struct perf_event *event,
9697 				struct perf_sample_data *data,
9698 				struct pt_regs *regs)
9699 {
9700 	if (event->hw.state & PERF_HES_STOPPED)
9701 		return 0;
9702 	/*
9703 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9704 	 */
9705 	if (event->attr.exclude_kernel && !user_mode(regs))
9706 		return 0;
9707 
9708 	if (!perf_tp_filter_match(event, data))
9709 		return 0;
9710 
9711 	return 1;
9712 }
9713 
9714 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9715 			       struct trace_event_call *call, u64 count,
9716 			       struct pt_regs *regs, struct hlist_head *head,
9717 			       struct task_struct *task)
9718 {
9719 	if (bpf_prog_array_valid(call)) {
9720 		*(struct pt_regs **)raw_data = regs;
9721 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9722 			perf_swevent_put_recursion_context(rctx);
9723 			return;
9724 		}
9725 	}
9726 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9727 		      rctx, task);
9728 }
9729 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9730 
9731 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9732 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9733 		   struct task_struct *task)
9734 {
9735 	struct perf_sample_data data;
9736 	struct perf_event *event;
9737 
9738 	struct perf_raw_record raw = {
9739 		.frag = {
9740 			.size = entry_size,
9741 			.data = record,
9742 		},
9743 	};
9744 
9745 	perf_sample_data_init(&data, 0, 0);
9746 	data.raw = &raw;
9747 
9748 	perf_trace_buf_update(record, event_type);
9749 
9750 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9751 		if (perf_tp_event_match(event, &data, regs))
9752 			perf_swevent_event(event, count, &data, regs);
9753 	}
9754 
9755 	/*
9756 	 * If we got specified a target task, also iterate its context and
9757 	 * deliver this event there too.
9758 	 */
9759 	if (task && task != current) {
9760 		struct perf_event_context *ctx;
9761 		struct trace_entry *entry = record;
9762 
9763 		rcu_read_lock();
9764 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9765 		if (!ctx)
9766 			goto unlock;
9767 
9768 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9769 			if (event->cpu != smp_processor_id())
9770 				continue;
9771 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9772 				continue;
9773 			if (event->attr.config != entry->type)
9774 				continue;
9775 			/* Cannot deliver synchronous signal to other task. */
9776 			if (event->attr.sigtrap)
9777 				continue;
9778 			if (perf_tp_event_match(event, &data, regs))
9779 				perf_swevent_event(event, count, &data, regs);
9780 		}
9781 unlock:
9782 		rcu_read_unlock();
9783 	}
9784 
9785 	perf_swevent_put_recursion_context(rctx);
9786 }
9787 EXPORT_SYMBOL_GPL(perf_tp_event);
9788 
9789 static void tp_perf_event_destroy(struct perf_event *event)
9790 {
9791 	perf_trace_destroy(event);
9792 }
9793 
9794 static int perf_tp_event_init(struct perf_event *event)
9795 {
9796 	int err;
9797 
9798 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9799 		return -ENOENT;
9800 
9801 	/*
9802 	 * no branch sampling for tracepoint events
9803 	 */
9804 	if (has_branch_stack(event))
9805 		return -EOPNOTSUPP;
9806 
9807 	err = perf_trace_init(event);
9808 	if (err)
9809 		return err;
9810 
9811 	event->destroy = tp_perf_event_destroy;
9812 
9813 	return 0;
9814 }
9815 
9816 static struct pmu perf_tracepoint = {
9817 	.task_ctx_nr	= perf_sw_context,
9818 
9819 	.event_init	= perf_tp_event_init,
9820 	.add		= perf_trace_add,
9821 	.del		= perf_trace_del,
9822 	.start		= perf_swevent_start,
9823 	.stop		= perf_swevent_stop,
9824 	.read		= perf_swevent_read,
9825 };
9826 
9827 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9828 /*
9829  * Flags in config, used by dynamic PMU kprobe and uprobe
9830  * The flags should match following PMU_FORMAT_ATTR().
9831  *
9832  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9833  *                               if not set, create kprobe/uprobe
9834  *
9835  * The following values specify a reference counter (or semaphore in the
9836  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9837  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9838  *
9839  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9840  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9841  */
9842 enum perf_probe_config {
9843 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9844 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9845 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9846 };
9847 
9848 PMU_FORMAT_ATTR(retprobe, "config:0");
9849 #endif
9850 
9851 #ifdef CONFIG_KPROBE_EVENTS
9852 static struct attribute *kprobe_attrs[] = {
9853 	&format_attr_retprobe.attr,
9854 	NULL,
9855 };
9856 
9857 static struct attribute_group kprobe_format_group = {
9858 	.name = "format",
9859 	.attrs = kprobe_attrs,
9860 };
9861 
9862 static const struct attribute_group *kprobe_attr_groups[] = {
9863 	&kprobe_format_group,
9864 	NULL,
9865 };
9866 
9867 static int perf_kprobe_event_init(struct perf_event *event);
9868 static struct pmu perf_kprobe = {
9869 	.task_ctx_nr	= perf_sw_context,
9870 	.event_init	= perf_kprobe_event_init,
9871 	.add		= perf_trace_add,
9872 	.del		= perf_trace_del,
9873 	.start		= perf_swevent_start,
9874 	.stop		= perf_swevent_stop,
9875 	.read		= perf_swevent_read,
9876 	.attr_groups	= kprobe_attr_groups,
9877 };
9878 
9879 static int perf_kprobe_event_init(struct perf_event *event)
9880 {
9881 	int err;
9882 	bool is_retprobe;
9883 
9884 	if (event->attr.type != perf_kprobe.type)
9885 		return -ENOENT;
9886 
9887 	if (!perfmon_capable())
9888 		return -EACCES;
9889 
9890 	/*
9891 	 * no branch sampling for probe events
9892 	 */
9893 	if (has_branch_stack(event))
9894 		return -EOPNOTSUPP;
9895 
9896 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9897 	err = perf_kprobe_init(event, is_retprobe);
9898 	if (err)
9899 		return err;
9900 
9901 	event->destroy = perf_kprobe_destroy;
9902 
9903 	return 0;
9904 }
9905 #endif /* CONFIG_KPROBE_EVENTS */
9906 
9907 #ifdef CONFIG_UPROBE_EVENTS
9908 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9909 
9910 static struct attribute *uprobe_attrs[] = {
9911 	&format_attr_retprobe.attr,
9912 	&format_attr_ref_ctr_offset.attr,
9913 	NULL,
9914 };
9915 
9916 static struct attribute_group uprobe_format_group = {
9917 	.name = "format",
9918 	.attrs = uprobe_attrs,
9919 };
9920 
9921 static const struct attribute_group *uprobe_attr_groups[] = {
9922 	&uprobe_format_group,
9923 	NULL,
9924 };
9925 
9926 static int perf_uprobe_event_init(struct perf_event *event);
9927 static struct pmu perf_uprobe = {
9928 	.task_ctx_nr	= perf_sw_context,
9929 	.event_init	= perf_uprobe_event_init,
9930 	.add		= perf_trace_add,
9931 	.del		= perf_trace_del,
9932 	.start		= perf_swevent_start,
9933 	.stop		= perf_swevent_stop,
9934 	.read		= perf_swevent_read,
9935 	.attr_groups	= uprobe_attr_groups,
9936 };
9937 
9938 static int perf_uprobe_event_init(struct perf_event *event)
9939 {
9940 	int err;
9941 	unsigned long ref_ctr_offset;
9942 	bool is_retprobe;
9943 
9944 	if (event->attr.type != perf_uprobe.type)
9945 		return -ENOENT;
9946 
9947 	if (!perfmon_capable())
9948 		return -EACCES;
9949 
9950 	/*
9951 	 * no branch sampling for probe events
9952 	 */
9953 	if (has_branch_stack(event))
9954 		return -EOPNOTSUPP;
9955 
9956 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9957 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9958 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9959 	if (err)
9960 		return err;
9961 
9962 	event->destroy = perf_uprobe_destroy;
9963 
9964 	return 0;
9965 }
9966 #endif /* CONFIG_UPROBE_EVENTS */
9967 
9968 static inline void perf_tp_register(void)
9969 {
9970 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9971 #ifdef CONFIG_KPROBE_EVENTS
9972 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9973 #endif
9974 #ifdef CONFIG_UPROBE_EVENTS
9975 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9976 #endif
9977 }
9978 
9979 static void perf_event_free_filter(struct perf_event *event)
9980 {
9981 	ftrace_profile_free_filter(event);
9982 }
9983 
9984 #ifdef CONFIG_BPF_SYSCALL
9985 static void bpf_overflow_handler(struct perf_event *event,
9986 				 struct perf_sample_data *data,
9987 				 struct pt_regs *regs)
9988 {
9989 	struct bpf_perf_event_data_kern ctx = {
9990 		.data = data,
9991 		.event = event,
9992 	};
9993 	struct bpf_prog *prog;
9994 	int ret = 0;
9995 
9996 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9997 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9998 		goto out;
9999 	rcu_read_lock();
10000 	prog = READ_ONCE(event->prog);
10001 	if (prog)
10002 		ret = bpf_prog_run(prog, &ctx);
10003 	rcu_read_unlock();
10004 out:
10005 	__this_cpu_dec(bpf_prog_active);
10006 	if (!ret)
10007 		return;
10008 
10009 	event->orig_overflow_handler(event, data, regs);
10010 }
10011 
10012 static int perf_event_set_bpf_handler(struct perf_event *event,
10013 				      struct bpf_prog *prog,
10014 				      u64 bpf_cookie)
10015 {
10016 	if (event->overflow_handler_context)
10017 		/* hw breakpoint or kernel counter */
10018 		return -EINVAL;
10019 
10020 	if (event->prog)
10021 		return -EEXIST;
10022 
10023 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10024 		return -EINVAL;
10025 
10026 	if (event->attr.precise_ip &&
10027 	    prog->call_get_stack &&
10028 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10029 	     event->attr.exclude_callchain_kernel ||
10030 	     event->attr.exclude_callchain_user)) {
10031 		/*
10032 		 * On perf_event with precise_ip, calling bpf_get_stack()
10033 		 * may trigger unwinder warnings and occasional crashes.
10034 		 * bpf_get_[stack|stackid] works around this issue by using
10035 		 * callchain attached to perf_sample_data. If the
10036 		 * perf_event does not full (kernel and user) callchain
10037 		 * attached to perf_sample_data, do not allow attaching BPF
10038 		 * program that calls bpf_get_[stack|stackid].
10039 		 */
10040 		return -EPROTO;
10041 	}
10042 
10043 	event->prog = prog;
10044 	event->bpf_cookie = bpf_cookie;
10045 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10046 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10047 	return 0;
10048 }
10049 
10050 static void perf_event_free_bpf_handler(struct perf_event *event)
10051 {
10052 	struct bpf_prog *prog = event->prog;
10053 
10054 	if (!prog)
10055 		return;
10056 
10057 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10058 	event->prog = NULL;
10059 	bpf_prog_put(prog);
10060 }
10061 #else
10062 static int perf_event_set_bpf_handler(struct perf_event *event,
10063 				      struct bpf_prog *prog,
10064 				      u64 bpf_cookie)
10065 {
10066 	return -EOPNOTSUPP;
10067 }
10068 static void perf_event_free_bpf_handler(struct perf_event *event)
10069 {
10070 }
10071 #endif
10072 
10073 /*
10074  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10075  * with perf_event_open()
10076  */
10077 static inline bool perf_event_is_tracing(struct perf_event *event)
10078 {
10079 	if (event->pmu == &perf_tracepoint)
10080 		return true;
10081 #ifdef CONFIG_KPROBE_EVENTS
10082 	if (event->pmu == &perf_kprobe)
10083 		return true;
10084 #endif
10085 #ifdef CONFIG_UPROBE_EVENTS
10086 	if (event->pmu == &perf_uprobe)
10087 		return true;
10088 #endif
10089 	return false;
10090 }
10091 
10092 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10093 			    u64 bpf_cookie)
10094 {
10095 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10096 
10097 	if (!perf_event_is_tracing(event))
10098 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10099 
10100 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10101 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10102 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10103 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10104 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10105 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10106 		return -EINVAL;
10107 
10108 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10109 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10110 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10111 		return -EINVAL;
10112 
10113 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10114 		/* only uprobe programs are allowed to be sleepable */
10115 		return -EINVAL;
10116 
10117 	/* Kprobe override only works for kprobes, not uprobes. */
10118 	if (prog->kprobe_override && !is_kprobe)
10119 		return -EINVAL;
10120 
10121 	if (is_tracepoint || is_syscall_tp) {
10122 		int off = trace_event_get_offsets(event->tp_event);
10123 
10124 		if (prog->aux->max_ctx_offset > off)
10125 			return -EACCES;
10126 	}
10127 
10128 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10129 }
10130 
10131 void perf_event_free_bpf_prog(struct perf_event *event)
10132 {
10133 	if (!perf_event_is_tracing(event)) {
10134 		perf_event_free_bpf_handler(event);
10135 		return;
10136 	}
10137 	perf_event_detach_bpf_prog(event);
10138 }
10139 
10140 #else
10141 
10142 static inline void perf_tp_register(void)
10143 {
10144 }
10145 
10146 static void perf_event_free_filter(struct perf_event *event)
10147 {
10148 }
10149 
10150 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10151 			    u64 bpf_cookie)
10152 {
10153 	return -ENOENT;
10154 }
10155 
10156 void perf_event_free_bpf_prog(struct perf_event *event)
10157 {
10158 }
10159 #endif /* CONFIG_EVENT_TRACING */
10160 
10161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10162 void perf_bp_event(struct perf_event *bp, void *data)
10163 {
10164 	struct perf_sample_data sample;
10165 	struct pt_regs *regs = data;
10166 
10167 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10168 
10169 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10170 		perf_swevent_event(bp, 1, &sample, regs);
10171 }
10172 #endif
10173 
10174 /*
10175  * Allocate a new address filter
10176  */
10177 static struct perf_addr_filter *
10178 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10179 {
10180 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10181 	struct perf_addr_filter *filter;
10182 
10183 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10184 	if (!filter)
10185 		return NULL;
10186 
10187 	INIT_LIST_HEAD(&filter->entry);
10188 	list_add_tail(&filter->entry, filters);
10189 
10190 	return filter;
10191 }
10192 
10193 static void free_filters_list(struct list_head *filters)
10194 {
10195 	struct perf_addr_filter *filter, *iter;
10196 
10197 	list_for_each_entry_safe(filter, iter, filters, entry) {
10198 		path_put(&filter->path);
10199 		list_del(&filter->entry);
10200 		kfree(filter);
10201 	}
10202 }
10203 
10204 /*
10205  * Free existing address filters and optionally install new ones
10206  */
10207 static void perf_addr_filters_splice(struct perf_event *event,
10208 				     struct list_head *head)
10209 {
10210 	unsigned long flags;
10211 	LIST_HEAD(list);
10212 
10213 	if (!has_addr_filter(event))
10214 		return;
10215 
10216 	/* don't bother with children, they don't have their own filters */
10217 	if (event->parent)
10218 		return;
10219 
10220 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10221 
10222 	list_splice_init(&event->addr_filters.list, &list);
10223 	if (head)
10224 		list_splice(head, &event->addr_filters.list);
10225 
10226 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10227 
10228 	free_filters_list(&list);
10229 }
10230 
10231 /*
10232  * Scan through mm's vmas and see if one of them matches the
10233  * @filter; if so, adjust filter's address range.
10234  * Called with mm::mmap_lock down for reading.
10235  */
10236 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10237 				   struct mm_struct *mm,
10238 				   struct perf_addr_filter_range *fr)
10239 {
10240 	struct vm_area_struct *vma;
10241 
10242 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10243 		if (!vma->vm_file)
10244 			continue;
10245 
10246 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10247 			return;
10248 	}
10249 }
10250 
10251 /*
10252  * Update event's address range filters based on the
10253  * task's existing mappings, if any.
10254  */
10255 static void perf_event_addr_filters_apply(struct perf_event *event)
10256 {
10257 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10258 	struct task_struct *task = READ_ONCE(event->ctx->task);
10259 	struct perf_addr_filter *filter;
10260 	struct mm_struct *mm = NULL;
10261 	unsigned int count = 0;
10262 	unsigned long flags;
10263 
10264 	/*
10265 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10266 	 * will stop on the parent's child_mutex that our caller is also holding
10267 	 */
10268 	if (task == TASK_TOMBSTONE)
10269 		return;
10270 
10271 	if (ifh->nr_file_filters) {
10272 		mm = get_task_mm(task);
10273 		if (!mm)
10274 			goto restart;
10275 
10276 		mmap_read_lock(mm);
10277 	}
10278 
10279 	raw_spin_lock_irqsave(&ifh->lock, flags);
10280 	list_for_each_entry(filter, &ifh->list, entry) {
10281 		if (filter->path.dentry) {
10282 			/*
10283 			 * Adjust base offset if the filter is associated to a
10284 			 * binary that needs to be mapped:
10285 			 */
10286 			event->addr_filter_ranges[count].start = 0;
10287 			event->addr_filter_ranges[count].size = 0;
10288 
10289 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10290 		} else {
10291 			event->addr_filter_ranges[count].start = filter->offset;
10292 			event->addr_filter_ranges[count].size  = filter->size;
10293 		}
10294 
10295 		count++;
10296 	}
10297 
10298 	event->addr_filters_gen++;
10299 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10300 
10301 	if (ifh->nr_file_filters) {
10302 		mmap_read_unlock(mm);
10303 
10304 		mmput(mm);
10305 	}
10306 
10307 restart:
10308 	perf_event_stop(event, 1);
10309 }
10310 
10311 /*
10312  * Address range filtering: limiting the data to certain
10313  * instruction address ranges. Filters are ioctl()ed to us from
10314  * userspace as ascii strings.
10315  *
10316  * Filter string format:
10317  *
10318  * ACTION RANGE_SPEC
10319  * where ACTION is one of the
10320  *  * "filter": limit the trace to this region
10321  *  * "start": start tracing from this address
10322  *  * "stop": stop tracing at this address/region;
10323  * RANGE_SPEC is
10324  *  * for kernel addresses: <start address>[/<size>]
10325  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10326  *
10327  * if <size> is not specified or is zero, the range is treated as a single
10328  * address; not valid for ACTION=="filter".
10329  */
10330 enum {
10331 	IF_ACT_NONE = -1,
10332 	IF_ACT_FILTER,
10333 	IF_ACT_START,
10334 	IF_ACT_STOP,
10335 	IF_SRC_FILE,
10336 	IF_SRC_KERNEL,
10337 	IF_SRC_FILEADDR,
10338 	IF_SRC_KERNELADDR,
10339 };
10340 
10341 enum {
10342 	IF_STATE_ACTION = 0,
10343 	IF_STATE_SOURCE,
10344 	IF_STATE_END,
10345 };
10346 
10347 static const match_table_t if_tokens = {
10348 	{ IF_ACT_FILTER,	"filter" },
10349 	{ IF_ACT_START,		"start" },
10350 	{ IF_ACT_STOP,		"stop" },
10351 	{ IF_SRC_FILE,		"%u/%u@%s" },
10352 	{ IF_SRC_KERNEL,	"%u/%u" },
10353 	{ IF_SRC_FILEADDR,	"%u@%s" },
10354 	{ IF_SRC_KERNELADDR,	"%u" },
10355 	{ IF_ACT_NONE,		NULL },
10356 };
10357 
10358 /*
10359  * Address filter string parser
10360  */
10361 static int
10362 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10363 			     struct list_head *filters)
10364 {
10365 	struct perf_addr_filter *filter = NULL;
10366 	char *start, *orig, *filename = NULL;
10367 	substring_t args[MAX_OPT_ARGS];
10368 	int state = IF_STATE_ACTION, token;
10369 	unsigned int kernel = 0;
10370 	int ret = -EINVAL;
10371 
10372 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10373 	if (!fstr)
10374 		return -ENOMEM;
10375 
10376 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10377 		static const enum perf_addr_filter_action_t actions[] = {
10378 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10379 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10380 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10381 		};
10382 		ret = -EINVAL;
10383 
10384 		if (!*start)
10385 			continue;
10386 
10387 		/* filter definition begins */
10388 		if (state == IF_STATE_ACTION) {
10389 			filter = perf_addr_filter_new(event, filters);
10390 			if (!filter)
10391 				goto fail;
10392 		}
10393 
10394 		token = match_token(start, if_tokens, args);
10395 		switch (token) {
10396 		case IF_ACT_FILTER:
10397 		case IF_ACT_START:
10398 		case IF_ACT_STOP:
10399 			if (state != IF_STATE_ACTION)
10400 				goto fail;
10401 
10402 			filter->action = actions[token];
10403 			state = IF_STATE_SOURCE;
10404 			break;
10405 
10406 		case IF_SRC_KERNELADDR:
10407 		case IF_SRC_KERNEL:
10408 			kernel = 1;
10409 			fallthrough;
10410 
10411 		case IF_SRC_FILEADDR:
10412 		case IF_SRC_FILE:
10413 			if (state != IF_STATE_SOURCE)
10414 				goto fail;
10415 
10416 			*args[0].to = 0;
10417 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10418 			if (ret)
10419 				goto fail;
10420 
10421 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10422 				*args[1].to = 0;
10423 				ret = kstrtoul(args[1].from, 0, &filter->size);
10424 				if (ret)
10425 					goto fail;
10426 			}
10427 
10428 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10429 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10430 
10431 				kfree(filename);
10432 				filename = match_strdup(&args[fpos]);
10433 				if (!filename) {
10434 					ret = -ENOMEM;
10435 					goto fail;
10436 				}
10437 			}
10438 
10439 			state = IF_STATE_END;
10440 			break;
10441 
10442 		default:
10443 			goto fail;
10444 		}
10445 
10446 		/*
10447 		 * Filter definition is fully parsed, validate and install it.
10448 		 * Make sure that it doesn't contradict itself or the event's
10449 		 * attribute.
10450 		 */
10451 		if (state == IF_STATE_END) {
10452 			ret = -EINVAL;
10453 
10454 			/*
10455 			 * ACTION "filter" must have a non-zero length region
10456 			 * specified.
10457 			 */
10458 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10459 			    !filter->size)
10460 				goto fail;
10461 
10462 			if (!kernel) {
10463 				if (!filename)
10464 					goto fail;
10465 
10466 				/*
10467 				 * For now, we only support file-based filters
10468 				 * in per-task events; doing so for CPU-wide
10469 				 * events requires additional context switching
10470 				 * trickery, since same object code will be
10471 				 * mapped at different virtual addresses in
10472 				 * different processes.
10473 				 */
10474 				ret = -EOPNOTSUPP;
10475 				if (!event->ctx->task)
10476 					goto fail;
10477 
10478 				/* look up the path and grab its inode */
10479 				ret = kern_path(filename, LOOKUP_FOLLOW,
10480 						&filter->path);
10481 				if (ret)
10482 					goto fail;
10483 
10484 				ret = -EINVAL;
10485 				if (!filter->path.dentry ||
10486 				    !S_ISREG(d_inode(filter->path.dentry)
10487 					     ->i_mode))
10488 					goto fail;
10489 
10490 				event->addr_filters.nr_file_filters++;
10491 			}
10492 
10493 			/* ready to consume more filters */
10494 			kfree(filename);
10495 			filename = NULL;
10496 			state = IF_STATE_ACTION;
10497 			filter = NULL;
10498 			kernel = 0;
10499 		}
10500 	}
10501 
10502 	if (state != IF_STATE_ACTION)
10503 		goto fail;
10504 
10505 	kfree(filename);
10506 	kfree(orig);
10507 
10508 	return 0;
10509 
10510 fail:
10511 	kfree(filename);
10512 	free_filters_list(filters);
10513 	kfree(orig);
10514 
10515 	return ret;
10516 }
10517 
10518 static int
10519 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10520 {
10521 	LIST_HEAD(filters);
10522 	int ret;
10523 
10524 	/*
10525 	 * Since this is called in perf_ioctl() path, we're already holding
10526 	 * ctx::mutex.
10527 	 */
10528 	lockdep_assert_held(&event->ctx->mutex);
10529 
10530 	if (WARN_ON_ONCE(event->parent))
10531 		return -EINVAL;
10532 
10533 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10534 	if (ret)
10535 		goto fail_clear_files;
10536 
10537 	ret = event->pmu->addr_filters_validate(&filters);
10538 	if (ret)
10539 		goto fail_free_filters;
10540 
10541 	/* remove existing filters, if any */
10542 	perf_addr_filters_splice(event, &filters);
10543 
10544 	/* install new filters */
10545 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10546 
10547 	return ret;
10548 
10549 fail_free_filters:
10550 	free_filters_list(&filters);
10551 
10552 fail_clear_files:
10553 	event->addr_filters.nr_file_filters = 0;
10554 
10555 	return ret;
10556 }
10557 
10558 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10559 {
10560 	int ret = -EINVAL;
10561 	char *filter_str;
10562 
10563 	filter_str = strndup_user(arg, PAGE_SIZE);
10564 	if (IS_ERR(filter_str))
10565 		return PTR_ERR(filter_str);
10566 
10567 #ifdef CONFIG_EVENT_TRACING
10568 	if (perf_event_is_tracing(event)) {
10569 		struct perf_event_context *ctx = event->ctx;
10570 
10571 		/*
10572 		 * Beware, here be dragons!!
10573 		 *
10574 		 * the tracepoint muck will deadlock against ctx->mutex, but
10575 		 * the tracepoint stuff does not actually need it. So
10576 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10577 		 * already have a reference on ctx.
10578 		 *
10579 		 * This can result in event getting moved to a different ctx,
10580 		 * but that does not affect the tracepoint state.
10581 		 */
10582 		mutex_unlock(&ctx->mutex);
10583 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10584 		mutex_lock(&ctx->mutex);
10585 	} else
10586 #endif
10587 	if (has_addr_filter(event))
10588 		ret = perf_event_set_addr_filter(event, filter_str);
10589 
10590 	kfree(filter_str);
10591 	return ret;
10592 }
10593 
10594 /*
10595  * hrtimer based swevent callback
10596  */
10597 
10598 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10599 {
10600 	enum hrtimer_restart ret = HRTIMER_RESTART;
10601 	struct perf_sample_data data;
10602 	struct pt_regs *regs;
10603 	struct perf_event *event;
10604 	u64 period;
10605 
10606 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10607 
10608 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10609 		return HRTIMER_NORESTART;
10610 
10611 	event->pmu->read(event);
10612 
10613 	perf_sample_data_init(&data, 0, event->hw.last_period);
10614 	regs = get_irq_regs();
10615 
10616 	if (regs && !perf_exclude_event(event, regs)) {
10617 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10618 			if (__perf_event_overflow(event, 1, &data, regs))
10619 				ret = HRTIMER_NORESTART;
10620 	}
10621 
10622 	period = max_t(u64, 10000, event->hw.sample_period);
10623 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10624 
10625 	return ret;
10626 }
10627 
10628 static void perf_swevent_start_hrtimer(struct perf_event *event)
10629 {
10630 	struct hw_perf_event *hwc = &event->hw;
10631 	s64 period;
10632 
10633 	if (!is_sampling_event(event))
10634 		return;
10635 
10636 	period = local64_read(&hwc->period_left);
10637 	if (period) {
10638 		if (period < 0)
10639 			period = 10000;
10640 
10641 		local64_set(&hwc->period_left, 0);
10642 	} else {
10643 		period = max_t(u64, 10000, hwc->sample_period);
10644 	}
10645 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10646 		      HRTIMER_MODE_REL_PINNED_HARD);
10647 }
10648 
10649 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10650 {
10651 	struct hw_perf_event *hwc = &event->hw;
10652 
10653 	if (is_sampling_event(event)) {
10654 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10655 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10656 
10657 		hrtimer_cancel(&hwc->hrtimer);
10658 	}
10659 }
10660 
10661 static void perf_swevent_init_hrtimer(struct perf_event *event)
10662 {
10663 	struct hw_perf_event *hwc = &event->hw;
10664 
10665 	if (!is_sampling_event(event))
10666 		return;
10667 
10668 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10669 	hwc->hrtimer.function = perf_swevent_hrtimer;
10670 
10671 	/*
10672 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10673 	 * mapping and avoid the whole period adjust feedback stuff.
10674 	 */
10675 	if (event->attr.freq) {
10676 		long freq = event->attr.sample_freq;
10677 
10678 		event->attr.sample_period = NSEC_PER_SEC / freq;
10679 		hwc->sample_period = event->attr.sample_period;
10680 		local64_set(&hwc->period_left, hwc->sample_period);
10681 		hwc->last_period = hwc->sample_period;
10682 		event->attr.freq = 0;
10683 	}
10684 }
10685 
10686 /*
10687  * Software event: cpu wall time clock
10688  */
10689 
10690 static void cpu_clock_event_update(struct perf_event *event)
10691 {
10692 	s64 prev;
10693 	u64 now;
10694 
10695 	now = local_clock();
10696 	prev = local64_xchg(&event->hw.prev_count, now);
10697 	local64_add(now - prev, &event->count);
10698 }
10699 
10700 static void cpu_clock_event_start(struct perf_event *event, int flags)
10701 {
10702 	local64_set(&event->hw.prev_count, local_clock());
10703 	perf_swevent_start_hrtimer(event);
10704 }
10705 
10706 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10707 {
10708 	perf_swevent_cancel_hrtimer(event);
10709 	cpu_clock_event_update(event);
10710 }
10711 
10712 static int cpu_clock_event_add(struct perf_event *event, int flags)
10713 {
10714 	if (flags & PERF_EF_START)
10715 		cpu_clock_event_start(event, flags);
10716 	perf_event_update_userpage(event);
10717 
10718 	return 0;
10719 }
10720 
10721 static void cpu_clock_event_del(struct perf_event *event, int flags)
10722 {
10723 	cpu_clock_event_stop(event, flags);
10724 }
10725 
10726 static void cpu_clock_event_read(struct perf_event *event)
10727 {
10728 	cpu_clock_event_update(event);
10729 }
10730 
10731 static int cpu_clock_event_init(struct perf_event *event)
10732 {
10733 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10734 		return -ENOENT;
10735 
10736 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10737 		return -ENOENT;
10738 
10739 	/*
10740 	 * no branch sampling for software events
10741 	 */
10742 	if (has_branch_stack(event))
10743 		return -EOPNOTSUPP;
10744 
10745 	perf_swevent_init_hrtimer(event);
10746 
10747 	return 0;
10748 }
10749 
10750 static struct pmu perf_cpu_clock = {
10751 	.task_ctx_nr	= perf_sw_context,
10752 
10753 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10754 
10755 	.event_init	= cpu_clock_event_init,
10756 	.add		= cpu_clock_event_add,
10757 	.del		= cpu_clock_event_del,
10758 	.start		= cpu_clock_event_start,
10759 	.stop		= cpu_clock_event_stop,
10760 	.read		= cpu_clock_event_read,
10761 };
10762 
10763 /*
10764  * Software event: task time clock
10765  */
10766 
10767 static void task_clock_event_update(struct perf_event *event, u64 now)
10768 {
10769 	u64 prev;
10770 	s64 delta;
10771 
10772 	prev = local64_xchg(&event->hw.prev_count, now);
10773 	delta = now - prev;
10774 	local64_add(delta, &event->count);
10775 }
10776 
10777 static void task_clock_event_start(struct perf_event *event, int flags)
10778 {
10779 	local64_set(&event->hw.prev_count, event->ctx->time);
10780 	perf_swevent_start_hrtimer(event);
10781 }
10782 
10783 static void task_clock_event_stop(struct perf_event *event, int flags)
10784 {
10785 	perf_swevent_cancel_hrtimer(event);
10786 	task_clock_event_update(event, event->ctx->time);
10787 }
10788 
10789 static int task_clock_event_add(struct perf_event *event, int flags)
10790 {
10791 	if (flags & PERF_EF_START)
10792 		task_clock_event_start(event, flags);
10793 	perf_event_update_userpage(event);
10794 
10795 	return 0;
10796 }
10797 
10798 static void task_clock_event_del(struct perf_event *event, int flags)
10799 {
10800 	task_clock_event_stop(event, PERF_EF_UPDATE);
10801 }
10802 
10803 static void task_clock_event_read(struct perf_event *event)
10804 {
10805 	u64 now = perf_clock();
10806 	u64 delta = now - event->ctx->timestamp;
10807 	u64 time = event->ctx->time + delta;
10808 
10809 	task_clock_event_update(event, time);
10810 }
10811 
10812 static int task_clock_event_init(struct perf_event *event)
10813 {
10814 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10815 		return -ENOENT;
10816 
10817 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10818 		return -ENOENT;
10819 
10820 	/*
10821 	 * no branch sampling for software events
10822 	 */
10823 	if (has_branch_stack(event))
10824 		return -EOPNOTSUPP;
10825 
10826 	perf_swevent_init_hrtimer(event);
10827 
10828 	return 0;
10829 }
10830 
10831 static struct pmu perf_task_clock = {
10832 	.task_ctx_nr	= perf_sw_context,
10833 
10834 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10835 
10836 	.event_init	= task_clock_event_init,
10837 	.add		= task_clock_event_add,
10838 	.del		= task_clock_event_del,
10839 	.start		= task_clock_event_start,
10840 	.stop		= task_clock_event_stop,
10841 	.read		= task_clock_event_read,
10842 };
10843 
10844 static void perf_pmu_nop_void(struct pmu *pmu)
10845 {
10846 }
10847 
10848 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10849 {
10850 }
10851 
10852 static int perf_pmu_nop_int(struct pmu *pmu)
10853 {
10854 	return 0;
10855 }
10856 
10857 static int perf_event_nop_int(struct perf_event *event, u64 value)
10858 {
10859 	return 0;
10860 }
10861 
10862 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10863 
10864 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10865 {
10866 	__this_cpu_write(nop_txn_flags, flags);
10867 
10868 	if (flags & ~PERF_PMU_TXN_ADD)
10869 		return;
10870 
10871 	perf_pmu_disable(pmu);
10872 }
10873 
10874 static int perf_pmu_commit_txn(struct pmu *pmu)
10875 {
10876 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10877 
10878 	__this_cpu_write(nop_txn_flags, 0);
10879 
10880 	if (flags & ~PERF_PMU_TXN_ADD)
10881 		return 0;
10882 
10883 	perf_pmu_enable(pmu);
10884 	return 0;
10885 }
10886 
10887 static void perf_pmu_cancel_txn(struct pmu *pmu)
10888 {
10889 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10890 
10891 	__this_cpu_write(nop_txn_flags, 0);
10892 
10893 	if (flags & ~PERF_PMU_TXN_ADD)
10894 		return;
10895 
10896 	perf_pmu_enable(pmu);
10897 }
10898 
10899 static int perf_event_idx_default(struct perf_event *event)
10900 {
10901 	return 0;
10902 }
10903 
10904 /*
10905  * Ensures all contexts with the same task_ctx_nr have the same
10906  * pmu_cpu_context too.
10907  */
10908 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10909 {
10910 	struct pmu *pmu;
10911 
10912 	if (ctxn < 0)
10913 		return NULL;
10914 
10915 	list_for_each_entry(pmu, &pmus, entry) {
10916 		if (pmu->task_ctx_nr == ctxn)
10917 			return pmu->pmu_cpu_context;
10918 	}
10919 
10920 	return NULL;
10921 }
10922 
10923 static void free_pmu_context(struct pmu *pmu)
10924 {
10925 	/*
10926 	 * Static contexts such as perf_sw_context have a global lifetime
10927 	 * and may be shared between different PMUs. Avoid freeing them
10928 	 * when a single PMU is going away.
10929 	 */
10930 	if (pmu->task_ctx_nr > perf_invalid_context)
10931 		return;
10932 
10933 	free_percpu(pmu->pmu_cpu_context);
10934 }
10935 
10936 /*
10937  * Let userspace know that this PMU supports address range filtering:
10938  */
10939 static ssize_t nr_addr_filters_show(struct device *dev,
10940 				    struct device_attribute *attr,
10941 				    char *page)
10942 {
10943 	struct pmu *pmu = dev_get_drvdata(dev);
10944 
10945 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10946 }
10947 DEVICE_ATTR_RO(nr_addr_filters);
10948 
10949 static struct idr pmu_idr;
10950 
10951 static ssize_t
10952 type_show(struct device *dev, struct device_attribute *attr, char *page)
10953 {
10954 	struct pmu *pmu = dev_get_drvdata(dev);
10955 
10956 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10957 }
10958 static DEVICE_ATTR_RO(type);
10959 
10960 static ssize_t
10961 perf_event_mux_interval_ms_show(struct device *dev,
10962 				struct device_attribute *attr,
10963 				char *page)
10964 {
10965 	struct pmu *pmu = dev_get_drvdata(dev);
10966 
10967 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10968 }
10969 
10970 static DEFINE_MUTEX(mux_interval_mutex);
10971 
10972 static ssize_t
10973 perf_event_mux_interval_ms_store(struct device *dev,
10974 				 struct device_attribute *attr,
10975 				 const char *buf, size_t count)
10976 {
10977 	struct pmu *pmu = dev_get_drvdata(dev);
10978 	int timer, cpu, ret;
10979 
10980 	ret = kstrtoint(buf, 0, &timer);
10981 	if (ret)
10982 		return ret;
10983 
10984 	if (timer < 1)
10985 		return -EINVAL;
10986 
10987 	/* same value, noting to do */
10988 	if (timer == pmu->hrtimer_interval_ms)
10989 		return count;
10990 
10991 	mutex_lock(&mux_interval_mutex);
10992 	pmu->hrtimer_interval_ms = timer;
10993 
10994 	/* update all cpuctx for this PMU */
10995 	cpus_read_lock();
10996 	for_each_online_cpu(cpu) {
10997 		struct perf_cpu_context *cpuctx;
10998 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10999 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11000 
11001 		cpu_function_call(cpu,
11002 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11003 	}
11004 	cpus_read_unlock();
11005 	mutex_unlock(&mux_interval_mutex);
11006 
11007 	return count;
11008 }
11009 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11010 
11011 static struct attribute *pmu_dev_attrs[] = {
11012 	&dev_attr_type.attr,
11013 	&dev_attr_perf_event_mux_interval_ms.attr,
11014 	NULL,
11015 };
11016 ATTRIBUTE_GROUPS(pmu_dev);
11017 
11018 static int pmu_bus_running;
11019 static struct bus_type pmu_bus = {
11020 	.name		= "event_source",
11021 	.dev_groups	= pmu_dev_groups,
11022 };
11023 
11024 static void pmu_dev_release(struct device *dev)
11025 {
11026 	kfree(dev);
11027 }
11028 
11029 static int pmu_dev_alloc(struct pmu *pmu)
11030 {
11031 	int ret = -ENOMEM;
11032 
11033 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11034 	if (!pmu->dev)
11035 		goto out;
11036 
11037 	pmu->dev->groups = pmu->attr_groups;
11038 	device_initialize(pmu->dev);
11039 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11040 	if (ret)
11041 		goto free_dev;
11042 
11043 	dev_set_drvdata(pmu->dev, pmu);
11044 	pmu->dev->bus = &pmu_bus;
11045 	pmu->dev->release = pmu_dev_release;
11046 	ret = device_add(pmu->dev);
11047 	if (ret)
11048 		goto free_dev;
11049 
11050 	/* For PMUs with address filters, throw in an extra attribute: */
11051 	if (pmu->nr_addr_filters)
11052 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11053 
11054 	if (ret)
11055 		goto del_dev;
11056 
11057 	if (pmu->attr_update)
11058 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11059 
11060 	if (ret)
11061 		goto del_dev;
11062 
11063 out:
11064 	return ret;
11065 
11066 del_dev:
11067 	device_del(pmu->dev);
11068 
11069 free_dev:
11070 	put_device(pmu->dev);
11071 	goto out;
11072 }
11073 
11074 static struct lock_class_key cpuctx_mutex;
11075 static struct lock_class_key cpuctx_lock;
11076 
11077 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11078 {
11079 	int cpu, ret, max = PERF_TYPE_MAX;
11080 
11081 	mutex_lock(&pmus_lock);
11082 	ret = -ENOMEM;
11083 	pmu->pmu_disable_count = alloc_percpu(int);
11084 	if (!pmu->pmu_disable_count)
11085 		goto unlock;
11086 
11087 	pmu->type = -1;
11088 	if (!name)
11089 		goto skip_type;
11090 	pmu->name = name;
11091 
11092 	if (type != PERF_TYPE_SOFTWARE) {
11093 		if (type >= 0)
11094 			max = type;
11095 
11096 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11097 		if (ret < 0)
11098 			goto free_pdc;
11099 
11100 		WARN_ON(type >= 0 && ret != type);
11101 
11102 		type = ret;
11103 	}
11104 	pmu->type = type;
11105 
11106 	if (pmu_bus_running) {
11107 		ret = pmu_dev_alloc(pmu);
11108 		if (ret)
11109 			goto free_idr;
11110 	}
11111 
11112 skip_type:
11113 	if (pmu->task_ctx_nr == perf_hw_context) {
11114 		static int hw_context_taken = 0;
11115 
11116 		/*
11117 		 * Other than systems with heterogeneous CPUs, it never makes
11118 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11119 		 * uncore must use perf_invalid_context.
11120 		 */
11121 		if (WARN_ON_ONCE(hw_context_taken &&
11122 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11123 			pmu->task_ctx_nr = perf_invalid_context;
11124 
11125 		hw_context_taken = 1;
11126 	}
11127 
11128 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11129 	if (pmu->pmu_cpu_context)
11130 		goto got_cpu_context;
11131 
11132 	ret = -ENOMEM;
11133 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11134 	if (!pmu->pmu_cpu_context)
11135 		goto free_dev;
11136 
11137 	for_each_possible_cpu(cpu) {
11138 		struct perf_cpu_context *cpuctx;
11139 
11140 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11141 		__perf_event_init_context(&cpuctx->ctx);
11142 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11143 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11144 		cpuctx->ctx.pmu = pmu;
11145 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11146 
11147 		__perf_mux_hrtimer_init(cpuctx, cpu);
11148 
11149 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11150 		cpuctx->heap = cpuctx->heap_default;
11151 	}
11152 
11153 got_cpu_context:
11154 	if (!pmu->start_txn) {
11155 		if (pmu->pmu_enable) {
11156 			/*
11157 			 * If we have pmu_enable/pmu_disable calls, install
11158 			 * transaction stubs that use that to try and batch
11159 			 * hardware accesses.
11160 			 */
11161 			pmu->start_txn  = perf_pmu_start_txn;
11162 			pmu->commit_txn = perf_pmu_commit_txn;
11163 			pmu->cancel_txn = perf_pmu_cancel_txn;
11164 		} else {
11165 			pmu->start_txn  = perf_pmu_nop_txn;
11166 			pmu->commit_txn = perf_pmu_nop_int;
11167 			pmu->cancel_txn = perf_pmu_nop_void;
11168 		}
11169 	}
11170 
11171 	if (!pmu->pmu_enable) {
11172 		pmu->pmu_enable  = perf_pmu_nop_void;
11173 		pmu->pmu_disable = perf_pmu_nop_void;
11174 	}
11175 
11176 	if (!pmu->check_period)
11177 		pmu->check_period = perf_event_nop_int;
11178 
11179 	if (!pmu->event_idx)
11180 		pmu->event_idx = perf_event_idx_default;
11181 
11182 	/*
11183 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11184 	 * since these cannot be in the IDR. This way the linear search
11185 	 * is fast, provided a valid software event is provided.
11186 	 */
11187 	if (type == PERF_TYPE_SOFTWARE || !name)
11188 		list_add_rcu(&pmu->entry, &pmus);
11189 	else
11190 		list_add_tail_rcu(&pmu->entry, &pmus);
11191 
11192 	atomic_set(&pmu->exclusive_cnt, 0);
11193 	ret = 0;
11194 unlock:
11195 	mutex_unlock(&pmus_lock);
11196 
11197 	return ret;
11198 
11199 free_dev:
11200 	device_del(pmu->dev);
11201 	put_device(pmu->dev);
11202 
11203 free_idr:
11204 	if (pmu->type != PERF_TYPE_SOFTWARE)
11205 		idr_remove(&pmu_idr, pmu->type);
11206 
11207 free_pdc:
11208 	free_percpu(pmu->pmu_disable_count);
11209 	goto unlock;
11210 }
11211 EXPORT_SYMBOL_GPL(perf_pmu_register);
11212 
11213 void perf_pmu_unregister(struct pmu *pmu)
11214 {
11215 	mutex_lock(&pmus_lock);
11216 	list_del_rcu(&pmu->entry);
11217 
11218 	/*
11219 	 * We dereference the pmu list under both SRCU and regular RCU, so
11220 	 * synchronize against both of those.
11221 	 */
11222 	synchronize_srcu(&pmus_srcu);
11223 	synchronize_rcu();
11224 
11225 	free_percpu(pmu->pmu_disable_count);
11226 	if (pmu->type != PERF_TYPE_SOFTWARE)
11227 		idr_remove(&pmu_idr, pmu->type);
11228 	if (pmu_bus_running) {
11229 		if (pmu->nr_addr_filters)
11230 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11231 		device_del(pmu->dev);
11232 		put_device(pmu->dev);
11233 	}
11234 	free_pmu_context(pmu);
11235 	mutex_unlock(&pmus_lock);
11236 }
11237 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11238 
11239 static inline bool has_extended_regs(struct perf_event *event)
11240 {
11241 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11242 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11243 }
11244 
11245 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11246 {
11247 	struct perf_event_context *ctx = NULL;
11248 	int ret;
11249 
11250 	if (!try_module_get(pmu->module))
11251 		return -ENODEV;
11252 
11253 	/*
11254 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11255 	 * for example, validate if the group fits on the PMU. Therefore,
11256 	 * if this is a sibling event, acquire the ctx->mutex to protect
11257 	 * the sibling_list.
11258 	 */
11259 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11260 		/*
11261 		 * This ctx->mutex can nest when we're called through
11262 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11263 		 */
11264 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11265 						 SINGLE_DEPTH_NESTING);
11266 		BUG_ON(!ctx);
11267 	}
11268 
11269 	event->pmu = pmu;
11270 	ret = pmu->event_init(event);
11271 
11272 	if (ctx)
11273 		perf_event_ctx_unlock(event->group_leader, ctx);
11274 
11275 	if (!ret) {
11276 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11277 		    has_extended_regs(event))
11278 			ret = -EOPNOTSUPP;
11279 
11280 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11281 		    event_has_any_exclude_flag(event))
11282 			ret = -EINVAL;
11283 
11284 		if (ret && event->destroy)
11285 			event->destroy(event);
11286 	}
11287 
11288 	if (ret)
11289 		module_put(pmu->module);
11290 
11291 	return ret;
11292 }
11293 
11294 static struct pmu *perf_init_event(struct perf_event *event)
11295 {
11296 	bool extended_type = false;
11297 	int idx, type, ret;
11298 	struct pmu *pmu;
11299 
11300 	idx = srcu_read_lock(&pmus_srcu);
11301 
11302 	/* Try parent's PMU first: */
11303 	if (event->parent && event->parent->pmu) {
11304 		pmu = event->parent->pmu;
11305 		ret = perf_try_init_event(pmu, event);
11306 		if (!ret)
11307 			goto unlock;
11308 	}
11309 
11310 	/*
11311 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11312 	 * are often aliases for PERF_TYPE_RAW.
11313 	 */
11314 	type = event->attr.type;
11315 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11316 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11317 		if (!type) {
11318 			type = PERF_TYPE_RAW;
11319 		} else {
11320 			extended_type = true;
11321 			event->attr.config &= PERF_HW_EVENT_MASK;
11322 		}
11323 	}
11324 
11325 again:
11326 	rcu_read_lock();
11327 	pmu = idr_find(&pmu_idr, type);
11328 	rcu_read_unlock();
11329 	if (pmu) {
11330 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11331 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11332 			goto fail;
11333 
11334 		ret = perf_try_init_event(pmu, event);
11335 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11336 			type = event->attr.type;
11337 			goto again;
11338 		}
11339 
11340 		if (ret)
11341 			pmu = ERR_PTR(ret);
11342 
11343 		goto unlock;
11344 	}
11345 
11346 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11347 		ret = perf_try_init_event(pmu, event);
11348 		if (!ret)
11349 			goto unlock;
11350 
11351 		if (ret != -ENOENT) {
11352 			pmu = ERR_PTR(ret);
11353 			goto unlock;
11354 		}
11355 	}
11356 fail:
11357 	pmu = ERR_PTR(-ENOENT);
11358 unlock:
11359 	srcu_read_unlock(&pmus_srcu, idx);
11360 
11361 	return pmu;
11362 }
11363 
11364 static void attach_sb_event(struct perf_event *event)
11365 {
11366 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11367 
11368 	raw_spin_lock(&pel->lock);
11369 	list_add_rcu(&event->sb_list, &pel->list);
11370 	raw_spin_unlock(&pel->lock);
11371 }
11372 
11373 /*
11374  * We keep a list of all !task (and therefore per-cpu) events
11375  * that need to receive side-band records.
11376  *
11377  * This avoids having to scan all the various PMU per-cpu contexts
11378  * looking for them.
11379  */
11380 static void account_pmu_sb_event(struct perf_event *event)
11381 {
11382 	if (is_sb_event(event))
11383 		attach_sb_event(event);
11384 }
11385 
11386 static void account_event_cpu(struct perf_event *event, int cpu)
11387 {
11388 	if (event->parent)
11389 		return;
11390 
11391 	if (is_cgroup_event(event))
11392 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11393 }
11394 
11395 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11396 static void account_freq_event_nohz(void)
11397 {
11398 #ifdef CONFIG_NO_HZ_FULL
11399 	/* Lock so we don't race with concurrent unaccount */
11400 	spin_lock(&nr_freq_lock);
11401 	if (atomic_inc_return(&nr_freq_events) == 1)
11402 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11403 	spin_unlock(&nr_freq_lock);
11404 #endif
11405 }
11406 
11407 static void account_freq_event(void)
11408 {
11409 	if (tick_nohz_full_enabled())
11410 		account_freq_event_nohz();
11411 	else
11412 		atomic_inc(&nr_freq_events);
11413 }
11414 
11415 
11416 static void account_event(struct perf_event *event)
11417 {
11418 	bool inc = false;
11419 
11420 	if (event->parent)
11421 		return;
11422 
11423 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11424 		inc = true;
11425 	if (event->attr.mmap || event->attr.mmap_data)
11426 		atomic_inc(&nr_mmap_events);
11427 	if (event->attr.build_id)
11428 		atomic_inc(&nr_build_id_events);
11429 	if (event->attr.comm)
11430 		atomic_inc(&nr_comm_events);
11431 	if (event->attr.namespaces)
11432 		atomic_inc(&nr_namespaces_events);
11433 	if (event->attr.cgroup)
11434 		atomic_inc(&nr_cgroup_events);
11435 	if (event->attr.task)
11436 		atomic_inc(&nr_task_events);
11437 	if (event->attr.freq)
11438 		account_freq_event();
11439 	if (event->attr.context_switch) {
11440 		atomic_inc(&nr_switch_events);
11441 		inc = true;
11442 	}
11443 	if (has_branch_stack(event))
11444 		inc = true;
11445 	if (is_cgroup_event(event))
11446 		inc = true;
11447 	if (event->attr.ksymbol)
11448 		atomic_inc(&nr_ksymbol_events);
11449 	if (event->attr.bpf_event)
11450 		atomic_inc(&nr_bpf_events);
11451 	if (event->attr.text_poke)
11452 		atomic_inc(&nr_text_poke_events);
11453 
11454 	if (inc) {
11455 		/*
11456 		 * We need the mutex here because static_branch_enable()
11457 		 * must complete *before* the perf_sched_count increment
11458 		 * becomes visible.
11459 		 */
11460 		if (atomic_inc_not_zero(&perf_sched_count))
11461 			goto enabled;
11462 
11463 		mutex_lock(&perf_sched_mutex);
11464 		if (!atomic_read(&perf_sched_count)) {
11465 			static_branch_enable(&perf_sched_events);
11466 			/*
11467 			 * Guarantee that all CPUs observe they key change and
11468 			 * call the perf scheduling hooks before proceeding to
11469 			 * install events that need them.
11470 			 */
11471 			synchronize_rcu();
11472 		}
11473 		/*
11474 		 * Now that we have waited for the sync_sched(), allow further
11475 		 * increments to by-pass the mutex.
11476 		 */
11477 		atomic_inc(&perf_sched_count);
11478 		mutex_unlock(&perf_sched_mutex);
11479 	}
11480 enabled:
11481 
11482 	account_event_cpu(event, event->cpu);
11483 
11484 	account_pmu_sb_event(event);
11485 }
11486 
11487 /*
11488  * Allocate and initialize an event structure
11489  */
11490 static struct perf_event *
11491 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11492 		 struct task_struct *task,
11493 		 struct perf_event *group_leader,
11494 		 struct perf_event *parent_event,
11495 		 perf_overflow_handler_t overflow_handler,
11496 		 void *context, int cgroup_fd)
11497 {
11498 	struct pmu *pmu;
11499 	struct perf_event *event;
11500 	struct hw_perf_event *hwc;
11501 	long err = -EINVAL;
11502 	int node;
11503 
11504 	if ((unsigned)cpu >= nr_cpu_ids) {
11505 		if (!task || cpu != -1)
11506 			return ERR_PTR(-EINVAL);
11507 	}
11508 	if (attr->sigtrap && !task) {
11509 		/* Requires a task: avoid signalling random tasks. */
11510 		return ERR_PTR(-EINVAL);
11511 	}
11512 
11513 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11514 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11515 				      node);
11516 	if (!event)
11517 		return ERR_PTR(-ENOMEM);
11518 
11519 	/*
11520 	 * Single events are their own group leaders, with an
11521 	 * empty sibling list:
11522 	 */
11523 	if (!group_leader)
11524 		group_leader = event;
11525 
11526 	mutex_init(&event->child_mutex);
11527 	INIT_LIST_HEAD(&event->child_list);
11528 
11529 	INIT_LIST_HEAD(&event->event_entry);
11530 	INIT_LIST_HEAD(&event->sibling_list);
11531 	INIT_LIST_HEAD(&event->active_list);
11532 	init_event_group(event);
11533 	INIT_LIST_HEAD(&event->rb_entry);
11534 	INIT_LIST_HEAD(&event->active_entry);
11535 	INIT_LIST_HEAD(&event->addr_filters.list);
11536 	INIT_HLIST_NODE(&event->hlist_entry);
11537 
11538 
11539 	init_waitqueue_head(&event->waitq);
11540 	event->pending_disable = -1;
11541 	init_irq_work(&event->pending, perf_pending_event);
11542 
11543 	mutex_init(&event->mmap_mutex);
11544 	raw_spin_lock_init(&event->addr_filters.lock);
11545 
11546 	atomic_long_set(&event->refcount, 1);
11547 	event->cpu		= cpu;
11548 	event->attr		= *attr;
11549 	event->group_leader	= group_leader;
11550 	event->pmu		= NULL;
11551 	event->oncpu		= -1;
11552 
11553 	event->parent		= parent_event;
11554 
11555 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11556 	event->id		= atomic64_inc_return(&perf_event_id);
11557 
11558 	event->state		= PERF_EVENT_STATE_INACTIVE;
11559 
11560 	if (parent_event)
11561 		event->event_caps = parent_event->event_caps;
11562 
11563 	if (event->attr.sigtrap)
11564 		atomic_set(&event->event_limit, 1);
11565 
11566 	if (task) {
11567 		event->attach_state = PERF_ATTACH_TASK;
11568 		/*
11569 		 * XXX pmu::event_init needs to know what task to account to
11570 		 * and we cannot use the ctx information because we need the
11571 		 * pmu before we get a ctx.
11572 		 */
11573 		event->hw.target = get_task_struct(task);
11574 	}
11575 
11576 	event->clock = &local_clock;
11577 	if (parent_event)
11578 		event->clock = parent_event->clock;
11579 
11580 	if (!overflow_handler && parent_event) {
11581 		overflow_handler = parent_event->overflow_handler;
11582 		context = parent_event->overflow_handler_context;
11583 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11584 		if (overflow_handler == bpf_overflow_handler) {
11585 			struct bpf_prog *prog = parent_event->prog;
11586 
11587 			bpf_prog_inc(prog);
11588 			event->prog = prog;
11589 			event->orig_overflow_handler =
11590 				parent_event->orig_overflow_handler;
11591 		}
11592 #endif
11593 	}
11594 
11595 	if (overflow_handler) {
11596 		event->overflow_handler	= overflow_handler;
11597 		event->overflow_handler_context = context;
11598 	} else if (is_write_backward(event)){
11599 		event->overflow_handler = perf_event_output_backward;
11600 		event->overflow_handler_context = NULL;
11601 	} else {
11602 		event->overflow_handler = perf_event_output_forward;
11603 		event->overflow_handler_context = NULL;
11604 	}
11605 
11606 	perf_event__state_init(event);
11607 
11608 	pmu = NULL;
11609 
11610 	hwc = &event->hw;
11611 	hwc->sample_period = attr->sample_period;
11612 	if (attr->freq && attr->sample_freq)
11613 		hwc->sample_period = 1;
11614 	hwc->last_period = hwc->sample_period;
11615 
11616 	local64_set(&hwc->period_left, hwc->sample_period);
11617 
11618 	/*
11619 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11620 	 * See perf_output_read().
11621 	 */
11622 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11623 		goto err_ns;
11624 
11625 	if (!has_branch_stack(event))
11626 		event->attr.branch_sample_type = 0;
11627 
11628 	pmu = perf_init_event(event);
11629 	if (IS_ERR(pmu)) {
11630 		err = PTR_ERR(pmu);
11631 		goto err_ns;
11632 	}
11633 
11634 	/*
11635 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11636 	 * be different on other CPUs in the uncore mask.
11637 	 */
11638 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11639 		err = -EINVAL;
11640 		goto err_pmu;
11641 	}
11642 
11643 	if (event->attr.aux_output &&
11644 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11645 		err = -EOPNOTSUPP;
11646 		goto err_pmu;
11647 	}
11648 
11649 	if (cgroup_fd != -1) {
11650 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11651 		if (err)
11652 			goto err_pmu;
11653 	}
11654 
11655 	err = exclusive_event_init(event);
11656 	if (err)
11657 		goto err_pmu;
11658 
11659 	if (has_addr_filter(event)) {
11660 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11661 						    sizeof(struct perf_addr_filter_range),
11662 						    GFP_KERNEL);
11663 		if (!event->addr_filter_ranges) {
11664 			err = -ENOMEM;
11665 			goto err_per_task;
11666 		}
11667 
11668 		/*
11669 		 * Clone the parent's vma offsets: they are valid until exec()
11670 		 * even if the mm is not shared with the parent.
11671 		 */
11672 		if (event->parent) {
11673 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11674 
11675 			raw_spin_lock_irq(&ifh->lock);
11676 			memcpy(event->addr_filter_ranges,
11677 			       event->parent->addr_filter_ranges,
11678 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11679 			raw_spin_unlock_irq(&ifh->lock);
11680 		}
11681 
11682 		/* force hw sync on the address filters */
11683 		event->addr_filters_gen = 1;
11684 	}
11685 
11686 	if (!event->parent) {
11687 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11688 			err = get_callchain_buffers(attr->sample_max_stack);
11689 			if (err)
11690 				goto err_addr_filters;
11691 		}
11692 	}
11693 
11694 	err = security_perf_event_alloc(event);
11695 	if (err)
11696 		goto err_callchain_buffer;
11697 
11698 	/* symmetric to unaccount_event() in _free_event() */
11699 	account_event(event);
11700 
11701 	return event;
11702 
11703 err_callchain_buffer:
11704 	if (!event->parent) {
11705 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11706 			put_callchain_buffers();
11707 	}
11708 err_addr_filters:
11709 	kfree(event->addr_filter_ranges);
11710 
11711 err_per_task:
11712 	exclusive_event_destroy(event);
11713 
11714 err_pmu:
11715 	if (is_cgroup_event(event))
11716 		perf_detach_cgroup(event);
11717 	if (event->destroy)
11718 		event->destroy(event);
11719 	module_put(pmu->module);
11720 err_ns:
11721 	if (event->ns)
11722 		put_pid_ns(event->ns);
11723 	if (event->hw.target)
11724 		put_task_struct(event->hw.target);
11725 	kmem_cache_free(perf_event_cache, event);
11726 
11727 	return ERR_PTR(err);
11728 }
11729 
11730 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11731 			  struct perf_event_attr *attr)
11732 {
11733 	u32 size;
11734 	int ret;
11735 
11736 	/* Zero the full structure, so that a short copy will be nice. */
11737 	memset(attr, 0, sizeof(*attr));
11738 
11739 	ret = get_user(size, &uattr->size);
11740 	if (ret)
11741 		return ret;
11742 
11743 	/* ABI compatibility quirk: */
11744 	if (!size)
11745 		size = PERF_ATTR_SIZE_VER0;
11746 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11747 		goto err_size;
11748 
11749 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11750 	if (ret) {
11751 		if (ret == -E2BIG)
11752 			goto err_size;
11753 		return ret;
11754 	}
11755 
11756 	attr->size = size;
11757 
11758 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11759 		return -EINVAL;
11760 
11761 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11762 		return -EINVAL;
11763 
11764 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11765 		return -EINVAL;
11766 
11767 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11768 		u64 mask = attr->branch_sample_type;
11769 
11770 		/* only using defined bits */
11771 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11772 			return -EINVAL;
11773 
11774 		/* at least one branch bit must be set */
11775 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11776 			return -EINVAL;
11777 
11778 		/* propagate priv level, when not set for branch */
11779 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11780 
11781 			/* exclude_kernel checked on syscall entry */
11782 			if (!attr->exclude_kernel)
11783 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11784 
11785 			if (!attr->exclude_user)
11786 				mask |= PERF_SAMPLE_BRANCH_USER;
11787 
11788 			if (!attr->exclude_hv)
11789 				mask |= PERF_SAMPLE_BRANCH_HV;
11790 			/*
11791 			 * adjust user setting (for HW filter setup)
11792 			 */
11793 			attr->branch_sample_type = mask;
11794 		}
11795 		/* privileged levels capture (kernel, hv): check permissions */
11796 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11797 			ret = perf_allow_kernel(attr);
11798 			if (ret)
11799 				return ret;
11800 		}
11801 	}
11802 
11803 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11804 		ret = perf_reg_validate(attr->sample_regs_user);
11805 		if (ret)
11806 			return ret;
11807 	}
11808 
11809 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11810 		if (!arch_perf_have_user_stack_dump())
11811 			return -ENOSYS;
11812 
11813 		/*
11814 		 * We have __u32 type for the size, but so far
11815 		 * we can only use __u16 as maximum due to the
11816 		 * __u16 sample size limit.
11817 		 */
11818 		if (attr->sample_stack_user >= USHRT_MAX)
11819 			return -EINVAL;
11820 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11821 			return -EINVAL;
11822 	}
11823 
11824 	if (!attr->sample_max_stack)
11825 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11826 
11827 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11828 		ret = perf_reg_validate(attr->sample_regs_intr);
11829 
11830 #ifndef CONFIG_CGROUP_PERF
11831 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11832 		return -EINVAL;
11833 #endif
11834 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11835 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11836 		return -EINVAL;
11837 
11838 	if (!attr->inherit && attr->inherit_thread)
11839 		return -EINVAL;
11840 
11841 	if (attr->remove_on_exec && attr->enable_on_exec)
11842 		return -EINVAL;
11843 
11844 	if (attr->sigtrap && !attr->remove_on_exec)
11845 		return -EINVAL;
11846 
11847 out:
11848 	return ret;
11849 
11850 err_size:
11851 	put_user(sizeof(*attr), &uattr->size);
11852 	ret = -E2BIG;
11853 	goto out;
11854 }
11855 
11856 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11857 {
11858 	if (b < a)
11859 		swap(a, b);
11860 
11861 	mutex_lock(a);
11862 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11863 }
11864 
11865 static int
11866 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11867 {
11868 	struct perf_buffer *rb = NULL;
11869 	int ret = -EINVAL;
11870 
11871 	if (!output_event) {
11872 		mutex_lock(&event->mmap_mutex);
11873 		goto set;
11874 	}
11875 
11876 	/* don't allow circular references */
11877 	if (event == output_event)
11878 		goto out;
11879 
11880 	/*
11881 	 * Don't allow cross-cpu buffers
11882 	 */
11883 	if (output_event->cpu != event->cpu)
11884 		goto out;
11885 
11886 	/*
11887 	 * If its not a per-cpu rb, it must be the same task.
11888 	 */
11889 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11890 		goto out;
11891 
11892 	/*
11893 	 * Mixing clocks in the same buffer is trouble you don't need.
11894 	 */
11895 	if (output_event->clock != event->clock)
11896 		goto out;
11897 
11898 	/*
11899 	 * Either writing ring buffer from beginning or from end.
11900 	 * Mixing is not allowed.
11901 	 */
11902 	if (is_write_backward(output_event) != is_write_backward(event))
11903 		goto out;
11904 
11905 	/*
11906 	 * If both events generate aux data, they must be on the same PMU
11907 	 */
11908 	if (has_aux(event) && has_aux(output_event) &&
11909 	    event->pmu != output_event->pmu)
11910 		goto out;
11911 
11912 	/*
11913 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
11914 	 * output_event is already on rb->event_list, and the list iteration
11915 	 * restarts after every removal, it is guaranteed this new event is
11916 	 * observed *OR* if output_event is already removed, it's guaranteed we
11917 	 * observe !rb->mmap_count.
11918 	 */
11919 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
11920 set:
11921 	/* Can't redirect output if we've got an active mmap() */
11922 	if (atomic_read(&event->mmap_count))
11923 		goto unlock;
11924 
11925 	if (output_event) {
11926 		/* get the rb we want to redirect to */
11927 		rb = ring_buffer_get(output_event);
11928 		if (!rb)
11929 			goto unlock;
11930 
11931 		/* did we race against perf_mmap_close() */
11932 		if (!atomic_read(&rb->mmap_count)) {
11933 			ring_buffer_put(rb);
11934 			goto unlock;
11935 		}
11936 	}
11937 
11938 	ring_buffer_attach(event, rb);
11939 
11940 	ret = 0;
11941 unlock:
11942 	mutex_unlock(&event->mmap_mutex);
11943 	if (output_event)
11944 		mutex_unlock(&output_event->mmap_mutex);
11945 
11946 out:
11947 	return ret;
11948 }
11949 
11950 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11951 {
11952 	bool nmi_safe = false;
11953 
11954 	switch (clk_id) {
11955 	case CLOCK_MONOTONIC:
11956 		event->clock = &ktime_get_mono_fast_ns;
11957 		nmi_safe = true;
11958 		break;
11959 
11960 	case CLOCK_MONOTONIC_RAW:
11961 		event->clock = &ktime_get_raw_fast_ns;
11962 		nmi_safe = true;
11963 		break;
11964 
11965 	case CLOCK_REALTIME:
11966 		event->clock = &ktime_get_real_ns;
11967 		break;
11968 
11969 	case CLOCK_BOOTTIME:
11970 		event->clock = &ktime_get_boottime_ns;
11971 		break;
11972 
11973 	case CLOCK_TAI:
11974 		event->clock = &ktime_get_clocktai_ns;
11975 		break;
11976 
11977 	default:
11978 		return -EINVAL;
11979 	}
11980 
11981 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11982 		return -EINVAL;
11983 
11984 	return 0;
11985 }
11986 
11987 /*
11988  * Variation on perf_event_ctx_lock_nested(), except we take two context
11989  * mutexes.
11990  */
11991 static struct perf_event_context *
11992 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11993 			     struct perf_event_context *ctx)
11994 {
11995 	struct perf_event_context *gctx;
11996 
11997 again:
11998 	rcu_read_lock();
11999 	gctx = READ_ONCE(group_leader->ctx);
12000 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12001 		rcu_read_unlock();
12002 		goto again;
12003 	}
12004 	rcu_read_unlock();
12005 
12006 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12007 
12008 	if (group_leader->ctx != gctx) {
12009 		mutex_unlock(&ctx->mutex);
12010 		mutex_unlock(&gctx->mutex);
12011 		put_ctx(gctx);
12012 		goto again;
12013 	}
12014 
12015 	return gctx;
12016 }
12017 
12018 static bool
12019 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12020 {
12021 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12022 	bool is_capable = perfmon_capable();
12023 
12024 	if (attr->sigtrap) {
12025 		/*
12026 		 * perf_event_attr::sigtrap sends signals to the other task.
12027 		 * Require the current task to also have CAP_KILL.
12028 		 */
12029 		rcu_read_lock();
12030 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12031 		rcu_read_unlock();
12032 
12033 		/*
12034 		 * If the required capabilities aren't available, checks for
12035 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12036 		 * can effectively change the target task.
12037 		 */
12038 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12039 	}
12040 
12041 	/*
12042 	 * Preserve ptrace permission check for backwards compatibility. The
12043 	 * ptrace check also includes checks that the current task and other
12044 	 * task have matching uids, and is therefore not done here explicitly.
12045 	 */
12046 	return is_capable || ptrace_may_access(task, ptrace_mode);
12047 }
12048 
12049 /**
12050  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12051  *
12052  * @attr_uptr:	event_id type attributes for monitoring/sampling
12053  * @pid:		target pid
12054  * @cpu:		target cpu
12055  * @group_fd:		group leader event fd
12056  * @flags:		perf event open flags
12057  */
12058 SYSCALL_DEFINE5(perf_event_open,
12059 		struct perf_event_attr __user *, attr_uptr,
12060 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12061 {
12062 	struct perf_event *group_leader = NULL, *output_event = NULL;
12063 	struct perf_event *event, *sibling;
12064 	struct perf_event_attr attr;
12065 	struct perf_event_context *ctx, *gctx;
12066 	struct file *event_file = NULL;
12067 	struct fd group = {NULL, 0};
12068 	struct task_struct *task = NULL;
12069 	struct pmu *pmu;
12070 	int event_fd;
12071 	int move_group = 0;
12072 	int err;
12073 	int f_flags = O_RDWR;
12074 	int cgroup_fd = -1;
12075 
12076 	/* for future expandability... */
12077 	if (flags & ~PERF_FLAG_ALL)
12078 		return -EINVAL;
12079 
12080 	/* Do we allow access to perf_event_open(2) ? */
12081 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12082 	if (err)
12083 		return err;
12084 
12085 	err = perf_copy_attr(attr_uptr, &attr);
12086 	if (err)
12087 		return err;
12088 
12089 	if (!attr.exclude_kernel) {
12090 		err = perf_allow_kernel(&attr);
12091 		if (err)
12092 			return err;
12093 	}
12094 
12095 	if (attr.namespaces) {
12096 		if (!perfmon_capable())
12097 			return -EACCES;
12098 	}
12099 
12100 	if (attr.freq) {
12101 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12102 			return -EINVAL;
12103 	} else {
12104 		if (attr.sample_period & (1ULL << 63))
12105 			return -EINVAL;
12106 	}
12107 
12108 	/* Only privileged users can get physical addresses */
12109 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12110 		err = perf_allow_kernel(&attr);
12111 		if (err)
12112 			return err;
12113 	}
12114 
12115 	/* REGS_INTR can leak data, lockdown must prevent this */
12116 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12117 		err = security_locked_down(LOCKDOWN_PERF);
12118 		if (err)
12119 			return err;
12120 	}
12121 
12122 	/*
12123 	 * In cgroup mode, the pid argument is used to pass the fd
12124 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12125 	 * designates the cpu on which to monitor threads from that
12126 	 * cgroup.
12127 	 */
12128 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12129 		return -EINVAL;
12130 
12131 	if (flags & PERF_FLAG_FD_CLOEXEC)
12132 		f_flags |= O_CLOEXEC;
12133 
12134 	event_fd = get_unused_fd_flags(f_flags);
12135 	if (event_fd < 0)
12136 		return event_fd;
12137 
12138 	if (group_fd != -1) {
12139 		err = perf_fget_light(group_fd, &group);
12140 		if (err)
12141 			goto err_fd;
12142 		group_leader = group.file->private_data;
12143 		if (flags & PERF_FLAG_FD_OUTPUT)
12144 			output_event = group_leader;
12145 		if (flags & PERF_FLAG_FD_NO_GROUP)
12146 			group_leader = NULL;
12147 	}
12148 
12149 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12150 		task = find_lively_task_by_vpid(pid);
12151 		if (IS_ERR(task)) {
12152 			err = PTR_ERR(task);
12153 			goto err_group_fd;
12154 		}
12155 	}
12156 
12157 	if (task && group_leader &&
12158 	    group_leader->attr.inherit != attr.inherit) {
12159 		err = -EINVAL;
12160 		goto err_task;
12161 	}
12162 
12163 	if (flags & PERF_FLAG_PID_CGROUP)
12164 		cgroup_fd = pid;
12165 
12166 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12167 				 NULL, NULL, cgroup_fd);
12168 	if (IS_ERR(event)) {
12169 		err = PTR_ERR(event);
12170 		goto err_task;
12171 	}
12172 
12173 	if (is_sampling_event(event)) {
12174 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12175 			err = -EOPNOTSUPP;
12176 			goto err_alloc;
12177 		}
12178 	}
12179 
12180 	/*
12181 	 * Special case software events and allow them to be part of
12182 	 * any hardware group.
12183 	 */
12184 	pmu = event->pmu;
12185 
12186 	if (attr.use_clockid) {
12187 		err = perf_event_set_clock(event, attr.clockid);
12188 		if (err)
12189 			goto err_alloc;
12190 	}
12191 
12192 	if (pmu->task_ctx_nr == perf_sw_context)
12193 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12194 
12195 	if (group_leader) {
12196 		if (is_software_event(event) &&
12197 		    !in_software_context(group_leader)) {
12198 			/*
12199 			 * If the event is a sw event, but the group_leader
12200 			 * is on hw context.
12201 			 *
12202 			 * Allow the addition of software events to hw
12203 			 * groups, this is safe because software events
12204 			 * never fail to schedule.
12205 			 */
12206 			pmu = group_leader->ctx->pmu;
12207 		} else if (!is_software_event(event) &&
12208 			   is_software_event(group_leader) &&
12209 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12210 			/*
12211 			 * In case the group is a pure software group, and we
12212 			 * try to add a hardware event, move the whole group to
12213 			 * the hardware context.
12214 			 */
12215 			move_group = 1;
12216 		}
12217 	}
12218 
12219 	/*
12220 	 * Get the target context (task or percpu):
12221 	 */
12222 	ctx = find_get_context(pmu, task, event);
12223 	if (IS_ERR(ctx)) {
12224 		err = PTR_ERR(ctx);
12225 		goto err_alloc;
12226 	}
12227 
12228 	/*
12229 	 * Look up the group leader (we will attach this event to it):
12230 	 */
12231 	if (group_leader) {
12232 		err = -EINVAL;
12233 
12234 		/*
12235 		 * Do not allow a recursive hierarchy (this new sibling
12236 		 * becoming part of another group-sibling):
12237 		 */
12238 		if (group_leader->group_leader != group_leader)
12239 			goto err_context;
12240 
12241 		/* All events in a group should have the same clock */
12242 		if (group_leader->clock != event->clock)
12243 			goto err_context;
12244 
12245 		/*
12246 		 * Make sure we're both events for the same CPU;
12247 		 * grouping events for different CPUs is broken; since
12248 		 * you can never concurrently schedule them anyhow.
12249 		 */
12250 		if (group_leader->cpu != event->cpu)
12251 			goto err_context;
12252 
12253 		/*
12254 		 * Make sure we're both on the same task, or both
12255 		 * per-CPU events.
12256 		 */
12257 		if (group_leader->ctx->task != ctx->task)
12258 			goto err_context;
12259 
12260 		/*
12261 		 * Do not allow to attach to a group in a different task
12262 		 * or CPU context. If we're moving SW events, we'll fix
12263 		 * this up later, so allow that.
12264 		 *
12265 		 * Racy, not holding group_leader->ctx->mutex, see comment with
12266 		 * perf_event_ctx_lock().
12267 		 */
12268 		if (!move_group && group_leader->ctx != ctx)
12269 			goto err_context;
12270 
12271 		/*
12272 		 * Only a group leader can be exclusive or pinned
12273 		 */
12274 		if (attr.exclusive || attr.pinned)
12275 			goto err_context;
12276 	}
12277 
12278 	if (output_event) {
12279 		err = perf_event_set_output(event, output_event);
12280 		if (err)
12281 			goto err_context;
12282 	}
12283 
12284 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12285 					f_flags);
12286 	if (IS_ERR(event_file)) {
12287 		err = PTR_ERR(event_file);
12288 		event_file = NULL;
12289 		goto err_context;
12290 	}
12291 
12292 	if (task) {
12293 		err = down_read_interruptible(&task->signal->exec_update_lock);
12294 		if (err)
12295 			goto err_file;
12296 
12297 		/*
12298 		 * We must hold exec_update_lock across this and any potential
12299 		 * perf_install_in_context() call for this new event to
12300 		 * serialize against exec() altering our credentials (and the
12301 		 * perf_event_exit_task() that could imply).
12302 		 */
12303 		err = -EACCES;
12304 		if (!perf_check_permission(&attr, task))
12305 			goto err_cred;
12306 	}
12307 
12308 	if (move_group) {
12309 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12310 
12311 		if (gctx->task == TASK_TOMBSTONE) {
12312 			err = -ESRCH;
12313 			goto err_locked;
12314 		}
12315 
12316 		/*
12317 		 * Check if we raced against another sys_perf_event_open() call
12318 		 * moving the software group underneath us.
12319 		 */
12320 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12321 			/*
12322 			 * If someone moved the group out from under us, check
12323 			 * if this new event wound up on the same ctx, if so
12324 			 * its the regular !move_group case, otherwise fail.
12325 			 */
12326 			if (gctx != ctx) {
12327 				err = -EINVAL;
12328 				goto err_locked;
12329 			} else {
12330 				perf_event_ctx_unlock(group_leader, gctx);
12331 				move_group = 0;
12332 				goto not_move_group;
12333 			}
12334 		}
12335 
12336 		/*
12337 		 * Failure to create exclusive events returns -EBUSY.
12338 		 */
12339 		err = -EBUSY;
12340 		if (!exclusive_event_installable(group_leader, ctx))
12341 			goto err_locked;
12342 
12343 		for_each_sibling_event(sibling, group_leader) {
12344 			if (!exclusive_event_installable(sibling, ctx))
12345 				goto err_locked;
12346 		}
12347 	} else {
12348 		mutex_lock(&ctx->mutex);
12349 
12350 		/*
12351 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12352 		 * see the group_leader && !move_group test earlier.
12353 		 */
12354 		if (group_leader && group_leader->ctx != ctx) {
12355 			err = -EINVAL;
12356 			goto err_locked;
12357 		}
12358 	}
12359 not_move_group:
12360 
12361 	if (ctx->task == TASK_TOMBSTONE) {
12362 		err = -ESRCH;
12363 		goto err_locked;
12364 	}
12365 
12366 	if (!perf_event_validate_size(event)) {
12367 		err = -E2BIG;
12368 		goto err_locked;
12369 	}
12370 
12371 	if (!task) {
12372 		/*
12373 		 * Check if the @cpu we're creating an event for is online.
12374 		 *
12375 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12376 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12377 		 */
12378 		struct perf_cpu_context *cpuctx =
12379 			container_of(ctx, struct perf_cpu_context, ctx);
12380 
12381 		if (!cpuctx->online) {
12382 			err = -ENODEV;
12383 			goto err_locked;
12384 		}
12385 	}
12386 
12387 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12388 		err = -EINVAL;
12389 		goto err_locked;
12390 	}
12391 
12392 	/*
12393 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12394 	 * because we need to serialize with concurrent event creation.
12395 	 */
12396 	if (!exclusive_event_installable(event, ctx)) {
12397 		err = -EBUSY;
12398 		goto err_locked;
12399 	}
12400 
12401 	WARN_ON_ONCE(ctx->parent_ctx);
12402 
12403 	/*
12404 	 * This is the point on no return; we cannot fail hereafter. This is
12405 	 * where we start modifying current state.
12406 	 */
12407 
12408 	if (move_group) {
12409 		/*
12410 		 * See perf_event_ctx_lock() for comments on the details
12411 		 * of swizzling perf_event::ctx.
12412 		 */
12413 		perf_remove_from_context(group_leader, 0);
12414 		put_ctx(gctx);
12415 
12416 		for_each_sibling_event(sibling, group_leader) {
12417 			perf_remove_from_context(sibling, 0);
12418 			put_ctx(gctx);
12419 		}
12420 
12421 		/*
12422 		 * Wait for everybody to stop referencing the events through
12423 		 * the old lists, before installing it on new lists.
12424 		 */
12425 		synchronize_rcu();
12426 
12427 		/*
12428 		 * Install the group siblings before the group leader.
12429 		 *
12430 		 * Because a group leader will try and install the entire group
12431 		 * (through the sibling list, which is still in-tact), we can
12432 		 * end up with siblings installed in the wrong context.
12433 		 *
12434 		 * By installing siblings first we NO-OP because they're not
12435 		 * reachable through the group lists.
12436 		 */
12437 		for_each_sibling_event(sibling, group_leader) {
12438 			perf_event__state_init(sibling);
12439 			perf_install_in_context(ctx, sibling, sibling->cpu);
12440 			get_ctx(ctx);
12441 		}
12442 
12443 		/*
12444 		 * Removing from the context ends up with disabled
12445 		 * event. What we want here is event in the initial
12446 		 * startup state, ready to be add into new context.
12447 		 */
12448 		perf_event__state_init(group_leader);
12449 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12450 		get_ctx(ctx);
12451 	}
12452 
12453 	/*
12454 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12455 	 * that we're serialized against further additions and before
12456 	 * perf_install_in_context() which is the point the event is active and
12457 	 * can use these values.
12458 	 */
12459 	perf_event__header_size(event);
12460 	perf_event__id_header_size(event);
12461 
12462 	event->owner = current;
12463 
12464 	perf_install_in_context(ctx, event, event->cpu);
12465 	perf_unpin_context(ctx);
12466 
12467 	if (move_group)
12468 		perf_event_ctx_unlock(group_leader, gctx);
12469 	mutex_unlock(&ctx->mutex);
12470 
12471 	if (task) {
12472 		up_read(&task->signal->exec_update_lock);
12473 		put_task_struct(task);
12474 	}
12475 
12476 	mutex_lock(&current->perf_event_mutex);
12477 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12478 	mutex_unlock(&current->perf_event_mutex);
12479 
12480 	/*
12481 	 * Drop the reference on the group_event after placing the
12482 	 * new event on the sibling_list. This ensures destruction
12483 	 * of the group leader will find the pointer to itself in
12484 	 * perf_group_detach().
12485 	 */
12486 	fdput(group);
12487 	fd_install(event_fd, event_file);
12488 	return event_fd;
12489 
12490 err_locked:
12491 	if (move_group)
12492 		perf_event_ctx_unlock(group_leader, gctx);
12493 	mutex_unlock(&ctx->mutex);
12494 err_cred:
12495 	if (task)
12496 		up_read(&task->signal->exec_update_lock);
12497 err_file:
12498 	fput(event_file);
12499 err_context:
12500 	perf_unpin_context(ctx);
12501 	put_ctx(ctx);
12502 err_alloc:
12503 	/*
12504 	 * If event_file is set, the fput() above will have called ->release()
12505 	 * and that will take care of freeing the event.
12506 	 */
12507 	if (!event_file)
12508 		free_event(event);
12509 err_task:
12510 	if (task)
12511 		put_task_struct(task);
12512 err_group_fd:
12513 	fdput(group);
12514 err_fd:
12515 	put_unused_fd(event_fd);
12516 	return err;
12517 }
12518 
12519 /**
12520  * perf_event_create_kernel_counter
12521  *
12522  * @attr: attributes of the counter to create
12523  * @cpu: cpu in which the counter is bound
12524  * @task: task to profile (NULL for percpu)
12525  * @overflow_handler: callback to trigger when we hit the event
12526  * @context: context data could be used in overflow_handler callback
12527  */
12528 struct perf_event *
12529 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12530 				 struct task_struct *task,
12531 				 perf_overflow_handler_t overflow_handler,
12532 				 void *context)
12533 {
12534 	struct perf_event_context *ctx;
12535 	struct perf_event *event;
12536 	int err;
12537 
12538 	/*
12539 	 * Grouping is not supported for kernel events, neither is 'AUX',
12540 	 * make sure the caller's intentions are adjusted.
12541 	 */
12542 	if (attr->aux_output)
12543 		return ERR_PTR(-EINVAL);
12544 
12545 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12546 				 overflow_handler, context, -1);
12547 	if (IS_ERR(event)) {
12548 		err = PTR_ERR(event);
12549 		goto err;
12550 	}
12551 
12552 	/* Mark owner so we could distinguish it from user events. */
12553 	event->owner = TASK_TOMBSTONE;
12554 
12555 	/*
12556 	 * Get the target context (task or percpu):
12557 	 */
12558 	ctx = find_get_context(event->pmu, task, event);
12559 	if (IS_ERR(ctx)) {
12560 		err = PTR_ERR(ctx);
12561 		goto err_free;
12562 	}
12563 
12564 	WARN_ON_ONCE(ctx->parent_ctx);
12565 	mutex_lock(&ctx->mutex);
12566 	if (ctx->task == TASK_TOMBSTONE) {
12567 		err = -ESRCH;
12568 		goto err_unlock;
12569 	}
12570 
12571 	if (!task) {
12572 		/*
12573 		 * Check if the @cpu we're creating an event for is online.
12574 		 *
12575 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12576 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12577 		 */
12578 		struct perf_cpu_context *cpuctx =
12579 			container_of(ctx, struct perf_cpu_context, ctx);
12580 		if (!cpuctx->online) {
12581 			err = -ENODEV;
12582 			goto err_unlock;
12583 		}
12584 	}
12585 
12586 	if (!exclusive_event_installable(event, ctx)) {
12587 		err = -EBUSY;
12588 		goto err_unlock;
12589 	}
12590 
12591 	perf_install_in_context(ctx, event, event->cpu);
12592 	perf_unpin_context(ctx);
12593 	mutex_unlock(&ctx->mutex);
12594 
12595 	return event;
12596 
12597 err_unlock:
12598 	mutex_unlock(&ctx->mutex);
12599 	perf_unpin_context(ctx);
12600 	put_ctx(ctx);
12601 err_free:
12602 	free_event(event);
12603 err:
12604 	return ERR_PTR(err);
12605 }
12606 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12607 
12608 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12609 {
12610 	struct perf_event_context *src_ctx;
12611 	struct perf_event_context *dst_ctx;
12612 	struct perf_event *event, *tmp;
12613 	LIST_HEAD(events);
12614 
12615 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12616 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12617 
12618 	/*
12619 	 * See perf_event_ctx_lock() for comments on the details
12620 	 * of swizzling perf_event::ctx.
12621 	 */
12622 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12623 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12624 				 event_entry) {
12625 		perf_remove_from_context(event, 0);
12626 		unaccount_event_cpu(event, src_cpu);
12627 		put_ctx(src_ctx);
12628 		list_add(&event->migrate_entry, &events);
12629 	}
12630 
12631 	/*
12632 	 * Wait for the events to quiesce before re-instating them.
12633 	 */
12634 	synchronize_rcu();
12635 
12636 	/*
12637 	 * Re-instate events in 2 passes.
12638 	 *
12639 	 * Skip over group leaders and only install siblings on this first
12640 	 * pass, siblings will not get enabled without a leader, however a
12641 	 * leader will enable its siblings, even if those are still on the old
12642 	 * context.
12643 	 */
12644 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12645 		if (event->group_leader == event)
12646 			continue;
12647 
12648 		list_del(&event->migrate_entry);
12649 		if (event->state >= PERF_EVENT_STATE_OFF)
12650 			event->state = PERF_EVENT_STATE_INACTIVE;
12651 		account_event_cpu(event, dst_cpu);
12652 		perf_install_in_context(dst_ctx, event, dst_cpu);
12653 		get_ctx(dst_ctx);
12654 	}
12655 
12656 	/*
12657 	 * Once all the siblings are setup properly, install the group leaders
12658 	 * to make it go.
12659 	 */
12660 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12661 		list_del(&event->migrate_entry);
12662 		if (event->state >= PERF_EVENT_STATE_OFF)
12663 			event->state = PERF_EVENT_STATE_INACTIVE;
12664 		account_event_cpu(event, dst_cpu);
12665 		perf_install_in_context(dst_ctx, event, dst_cpu);
12666 		get_ctx(dst_ctx);
12667 	}
12668 	mutex_unlock(&dst_ctx->mutex);
12669 	mutex_unlock(&src_ctx->mutex);
12670 }
12671 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12672 
12673 static void sync_child_event(struct perf_event *child_event)
12674 {
12675 	struct perf_event *parent_event = child_event->parent;
12676 	u64 child_val;
12677 
12678 	if (child_event->attr.inherit_stat) {
12679 		struct task_struct *task = child_event->ctx->task;
12680 
12681 		if (task && task != TASK_TOMBSTONE)
12682 			perf_event_read_event(child_event, task);
12683 	}
12684 
12685 	child_val = perf_event_count(child_event);
12686 
12687 	/*
12688 	 * Add back the child's count to the parent's count:
12689 	 */
12690 	atomic64_add(child_val, &parent_event->child_count);
12691 	atomic64_add(child_event->total_time_enabled,
12692 		     &parent_event->child_total_time_enabled);
12693 	atomic64_add(child_event->total_time_running,
12694 		     &parent_event->child_total_time_running);
12695 }
12696 
12697 static void
12698 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12699 {
12700 	struct perf_event *parent_event = event->parent;
12701 	unsigned long detach_flags = 0;
12702 
12703 	if (parent_event) {
12704 		/*
12705 		 * Do not destroy the 'original' grouping; because of the
12706 		 * context switch optimization the original events could've
12707 		 * ended up in a random child task.
12708 		 *
12709 		 * If we were to destroy the original group, all group related
12710 		 * operations would cease to function properly after this
12711 		 * random child dies.
12712 		 *
12713 		 * Do destroy all inherited groups, we don't care about those
12714 		 * and being thorough is better.
12715 		 */
12716 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12717 		mutex_lock(&parent_event->child_mutex);
12718 	}
12719 
12720 	perf_remove_from_context(event, detach_flags);
12721 
12722 	raw_spin_lock_irq(&ctx->lock);
12723 	if (event->state > PERF_EVENT_STATE_EXIT)
12724 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12725 	raw_spin_unlock_irq(&ctx->lock);
12726 
12727 	/*
12728 	 * Child events can be freed.
12729 	 */
12730 	if (parent_event) {
12731 		mutex_unlock(&parent_event->child_mutex);
12732 		/*
12733 		 * Kick perf_poll() for is_event_hup();
12734 		 */
12735 		perf_event_wakeup(parent_event);
12736 		free_event(event);
12737 		put_event(parent_event);
12738 		return;
12739 	}
12740 
12741 	/*
12742 	 * Parent events are governed by their filedesc, retain them.
12743 	 */
12744 	perf_event_wakeup(event);
12745 }
12746 
12747 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12748 {
12749 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12750 	struct perf_event *child_event, *next;
12751 
12752 	WARN_ON_ONCE(child != current);
12753 
12754 	child_ctx = perf_pin_task_context(child, ctxn);
12755 	if (!child_ctx)
12756 		return;
12757 
12758 	/*
12759 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12760 	 * ctx::mutex over the entire thing. This serializes against almost
12761 	 * everything that wants to access the ctx.
12762 	 *
12763 	 * The exception is sys_perf_event_open() /
12764 	 * perf_event_create_kernel_count() which does find_get_context()
12765 	 * without ctx::mutex (it cannot because of the move_group double mutex
12766 	 * lock thing). See the comments in perf_install_in_context().
12767 	 */
12768 	mutex_lock(&child_ctx->mutex);
12769 
12770 	/*
12771 	 * In a single ctx::lock section, de-schedule the events and detach the
12772 	 * context from the task such that we cannot ever get it scheduled back
12773 	 * in.
12774 	 */
12775 	raw_spin_lock_irq(&child_ctx->lock);
12776 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12777 
12778 	/*
12779 	 * Now that the context is inactive, destroy the task <-> ctx relation
12780 	 * and mark the context dead.
12781 	 */
12782 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12783 	put_ctx(child_ctx); /* cannot be last */
12784 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12785 	put_task_struct(current); /* cannot be last */
12786 
12787 	clone_ctx = unclone_ctx(child_ctx);
12788 	raw_spin_unlock_irq(&child_ctx->lock);
12789 
12790 	if (clone_ctx)
12791 		put_ctx(clone_ctx);
12792 
12793 	/*
12794 	 * Report the task dead after unscheduling the events so that we
12795 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12796 	 * get a few PERF_RECORD_READ events.
12797 	 */
12798 	perf_event_task(child, child_ctx, 0);
12799 
12800 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12801 		perf_event_exit_event(child_event, child_ctx);
12802 
12803 	mutex_unlock(&child_ctx->mutex);
12804 
12805 	put_ctx(child_ctx);
12806 }
12807 
12808 /*
12809  * When a child task exits, feed back event values to parent events.
12810  *
12811  * Can be called with exec_update_lock held when called from
12812  * setup_new_exec().
12813  */
12814 void perf_event_exit_task(struct task_struct *child)
12815 {
12816 	struct perf_event *event, *tmp;
12817 	int ctxn;
12818 
12819 	mutex_lock(&child->perf_event_mutex);
12820 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12821 				 owner_entry) {
12822 		list_del_init(&event->owner_entry);
12823 
12824 		/*
12825 		 * Ensure the list deletion is visible before we clear
12826 		 * the owner, closes a race against perf_release() where
12827 		 * we need to serialize on the owner->perf_event_mutex.
12828 		 */
12829 		smp_store_release(&event->owner, NULL);
12830 	}
12831 	mutex_unlock(&child->perf_event_mutex);
12832 
12833 	for_each_task_context_nr(ctxn)
12834 		perf_event_exit_task_context(child, ctxn);
12835 
12836 	/*
12837 	 * The perf_event_exit_task_context calls perf_event_task
12838 	 * with child's task_ctx, which generates EXIT events for
12839 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12840 	 * At this point we need to send EXIT events to cpu contexts.
12841 	 */
12842 	perf_event_task(child, NULL, 0);
12843 }
12844 
12845 static void perf_free_event(struct perf_event *event,
12846 			    struct perf_event_context *ctx)
12847 {
12848 	struct perf_event *parent = event->parent;
12849 
12850 	if (WARN_ON_ONCE(!parent))
12851 		return;
12852 
12853 	mutex_lock(&parent->child_mutex);
12854 	list_del_init(&event->child_list);
12855 	mutex_unlock(&parent->child_mutex);
12856 
12857 	put_event(parent);
12858 
12859 	raw_spin_lock_irq(&ctx->lock);
12860 	perf_group_detach(event);
12861 	list_del_event(event, ctx);
12862 	raw_spin_unlock_irq(&ctx->lock);
12863 	free_event(event);
12864 }
12865 
12866 /*
12867  * Free a context as created by inheritance by perf_event_init_task() below,
12868  * used by fork() in case of fail.
12869  *
12870  * Even though the task has never lived, the context and events have been
12871  * exposed through the child_list, so we must take care tearing it all down.
12872  */
12873 void perf_event_free_task(struct task_struct *task)
12874 {
12875 	struct perf_event_context *ctx;
12876 	struct perf_event *event, *tmp;
12877 	int ctxn;
12878 
12879 	for_each_task_context_nr(ctxn) {
12880 		ctx = task->perf_event_ctxp[ctxn];
12881 		if (!ctx)
12882 			continue;
12883 
12884 		mutex_lock(&ctx->mutex);
12885 		raw_spin_lock_irq(&ctx->lock);
12886 		/*
12887 		 * Destroy the task <-> ctx relation and mark the context dead.
12888 		 *
12889 		 * This is important because even though the task hasn't been
12890 		 * exposed yet the context has been (through child_list).
12891 		 */
12892 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12893 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12894 		put_task_struct(task); /* cannot be last */
12895 		raw_spin_unlock_irq(&ctx->lock);
12896 
12897 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12898 			perf_free_event(event, ctx);
12899 
12900 		mutex_unlock(&ctx->mutex);
12901 
12902 		/*
12903 		 * perf_event_release_kernel() could've stolen some of our
12904 		 * child events and still have them on its free_list. In that
12905 		 * case we must wait for these events to have been freed (in
12906 		 * particular all their references to this task must've been
12907 		 * dropped).
12908 		 *
12909 		 * Without this copy_process() will unconditionally free this
12910 		 * task (irrespective of its reference count) and
12911 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12912 		 * use-after-free.
12913 		 *
12914 		 * Wait for all events to drop their context reference.
12915 		 */
12916 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12917 		put_ctx(ctx); /* must be last */
12918 	}
12919 }
12920 
12921 void perf_event_delayed_put(struct task_struct *task)
12922 {
12923 	int ctxn;
12924 
12925 	for_each_task_context_nr(ctxn)
12926 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12927 }
12928 
12929 struct file *perf_event_get(unsigned int fd)
12930 {
12931 	struct file *file = fget(fd);
12932 	if (!file)
12933 		return ERR_PTR(-EBADF);
12934 
12935 	if (file->f_op != &perf_fops) {
12936 		fput(file);
12937 		return ERR_PTR(-EBADF);
12938 	}
12939 
12940 	return file;
12941 }
12942 
12943 const struct perf_event *perf_get_event(struct file *file)
12944 {
12945 	if (file->f_op != &perf_fops)
12946 		return ERR_PTR(-EINVAL);
12947 
12948 	return file->private_data;
12949 }
12950 
12951 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12952 {
12953 	if (!event)
12954 		return ERR_PTR(-EINVAL);
12955 
12956 	return &event->attr;
12957 }
12958 
12959 /*
12960  * Inherit an event from parent task to child task.
12961  *
12962  * Returns:
12963  *  - valid pointer on success
12964  *  - NULL for orphaned events
12965  *  - IS_ERR() on error
12966  */
12967 static struct perf_event *
12968 inherit_event(struct perf_event *parent_event,
12969 	      struct task_struct *parent,
12970 	      struct perf_event_context *parent_ctx,
12971 	      struct task_struct *child,
12972 	      struct perf_event *group_leader,
12973 	      struct perf_event_context *child_ctx)
12974 {
12975 	enum perf_event_state parent_state = parent_event->state;
12976 	struct perf_event *child_event;
12977 	unsigned long flags;
12978 
12979 	/*
12980 	 * Instead of creating recursive hierarchies of events,
12981 	 * we link inherited events back to the original parent,
12982 	 * which has a filp for sure, which we use as the reference
12983 	 * count:
12984 	 */
12985 	if (parent_event->parent)
12986 		parent_event = parent_event->parent;
12987 
12988 	child_event = perf_event_alloc(&parent_event->attr,
12989 					   parent_event->cpu,
12990 					   child,
12991 					   group_leader, parent_event,
12992 					   NULL, NULL, -1);
12993 	if (IS_ERR(child_event))
12994 		return child_event;
12995 
12996 
12997 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12998 	    !child_ctx->task_ctx_data) {
12999 		struct pmu *pmu = child_event->pmu;
13000 
13001 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13002 		if (!child_ctx->task_ctx_data) {
13003 			free_event(child_event);
13004 			return ERR_PTR(-ENOMEM);
13005 		}
13006 	}
13007 
13008 	/*
13009 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13010 	 * must be under the same lock in order to serialize against
13011 	 * perf_event_release_kernel(), such that either we must observe
13012 	 * is_orphaned_event() or they will observe us on the child_list.
13013 	 */
13014 	mutex_lock(&parent_event->child_mutex);
13015 	if (is_orphaned_event(parent_event) ||
13016 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13017 		mutex_unlock(&parent_event->child_mutex);
13018 		/* task_ctx_data is freed with child_ctx */
13019 		free_event(child_event);
13020 		return NULL;
13021 	}
13022 
13023 	get_ctx(child_ctx);
13024 
13025 	/*
13026 	 * Make the child state follow the state of the parent event,
13027 	 * not its attr.disabled bit.  We hold the parent's mutex,
13028 	 * so we won't race with perf_event_{en, dis}able_family.
13029 	 */
13030 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13031 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13032 	else
13033 		child_event->state = PERF_EVENT_STATE_OFF;
13034 
13035 	if (parent_event->attr.freq) {
13036 		u64 sample_period = parent_event->hw.sample_period;
13037 		struct hw_perf_event *hwc = &child_event->hw;
13038 
13039 		hwc->sample_period = sample_period;
13040 		hwc->last_period   = sample_period;
13041 
13042 		local64_set(&hwc->period_left, sample_period);
13043 	}
13044 
13045 	child_event->ctx = child_ctx;
13046 	child_event->overflow_handler = parent_event->overflow_handler;
13047 	child_event->overflow_handler_context
13048 		= parent_event->overflow_handler_context;
13049 
13050 	/*
13051 	 * Precalculate sample_data sizes
13052 	 */
13053 	perf_event__header_size(child_event);
13054 	perf_event__id_header_size(child_event);
13055 
13056 	/*
13057 	 * Link it up in the child's context:
13058 	 */
13059 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13060 	add_event_to_ctx(child_event, child_ctx);
13061 	child_event->attach_state |= PERF_ATTACH_CHILD;
13062 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13063 
13064 	/*
13065 	 * Link this into the parent event's child list
13066 	 */
13067 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13068 	mutex_unlock(&parent_event->child_mutex);
13069 
13070 	return child_event;
13071 }
13072 
13073 /*
13074  * Inherits an event group.
13075  *
13076  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13077  * This matches with perf_event_release_kernel() removing all child events.
13078  *
13079  * Returns:
13080  *  - 0 on success
13081  *  - <0 on error
13082  */
13083 static int inherit_group(struct perf_event *parent_event,
13084 	      struct task_struct *parent,
13085 	      struct perf_event_context *parent_ctx,
13086 	      struct task_struct *child,
13087 	      struct perf_event_context *child_ctx)
13088 {
13089 	struct perf_event *leader;
13090 	struct perf_event *sub;
13091 	struct perf_event *child_ctr;
13092 
13093 	leader = inherit_event(parent_event, parent, parent_ctx,
13094 				 child, NULL, child_ctx);
13095 	if (IS_ERR(leader))
13096 		return PTR_ERR(leader);
13097 	/*
13098 	 * @leader can be NULL here because of is_orphaned_event(). In this
13099 	 * case inherit_event() will create individual events, similar to what
13100 	 * perf_group_detach() would do anyway.
13101 	 */
13102 	for_each_sibling_event(sub, parent_event) {
13103 		child_ctr = inherit_event(sub, parent, parent_ctx,
13104 					    child, leader, child_ctx);
13105 		if (IS_ERR(child_ctr))
13106 			return PTR_ERR(child_ctr);
13107 
13108 		if (sub->aux_event == parent_event && child_ctr &&
13109 		    !perf_get_aux_event(child_ctr, leader))
13110 			return -EINVAL;
13111 	}
13112 	return 0;
13113 }
13114 
13115 /*
13116  * Creates the child task context and tries to inherit the event-group.
13117  *
13118  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13119  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13120  * consistent with perf_event_release_kernel() removing all child events.
13121  *
13122  * Returns:
13123  *  - 0 on success
13124  *  - <0 on error
13125  */
13126 static int
13127 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13128 		   struct perf_event_context *parent_ctx,
13129 		   struct task_struct *child, int ctxn,
13130 		   u64 clone_flags, int *inherited_all)
13131 {
13132 	int ret;
13133 	struct perf_event_context *child_ctx;
13134 
13135 	if (!event->attr.inherit ||
13136 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13137 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13138 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13139 		*inherited_all = 0;
13140 		return 0;
13141 	}
13142 
13143 	child_ctx = child->perf_event_ctxp[ctxn];
13144 	if (!child_ctx) {
13145 		/*
13146 		 * This is executed from the parent task context, so
13147 		 * inherit events that have been marked for cloning.
13148 		 * First allocate and initialize a context for the
13149 		 * child.
13150 		 */
13151 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13152 		if (!child_ctx)
13153 			return -ENOMEM;
13154 
13155 		child->perf_event_ctxp[ctxn] = child_ctx;
13156 	}
13157 
13158 	ret = inherit_group(event, parent, parent_ctx,
13159 			    child, child_ctx);
13160 
13161 	if (ret)
13162 		*inherited_all = 0;
13163 
13164 	return ret;
13165 }
13166 
13167 /*
13168  * Initialize the perf_event context in task_struct
13169  */
13170 static int perf_event_init_context(struct task_struct *child, int ctxn,
13171 				   u64 clone_flags)
13172 {
13173 	struct perf_event_context *child_ctx, *parent_ctx;
13174 	struct perf_event_context *cloned_ctx;
13175 	struct perf_event *event;
13176 	struct task_struct *parent = current;
13177 	int inherited_all = 1;
13178 	unsigned long flags;
13179 	int ret = 0;
13180 
13181 	if (likely(!parent->perf_event_ctxp[ctxn]))
13182 		return 0;
13183 
13184 	/*
13185 	 * If the parent's context is a clone, pin it so it won't get
13186 	 * swapped under us.
13187 	 */
13188 	parent_ctx = perf_pin_task_context(parent, ctxn);
13189 	if (!parent_ctx)
13190 		return 0;
13191 
13192 	/*
13193 	 * No need to check if parent_ctx != NULL here; since we saw
13194 	 * it non-NULL earlier, the only reason for it to become NULL
13195 	 * is if we exit, and since we're currently in the middle of
13196 	 * a fork we can't be exiting at the same time.
13197 	 */
13198 
13199 	/*
13200 	 * Lock the parent list. No need to lock the child - not PID
13201 	 * hashed yet and not running, so nobody can access it.
13202 	 */
13203 	mutex_lock(&parent_ctx->mutex);
13204 
13205 	/*
13206 	 * We dont have to disable NMIs - we are only looking at
13207 	 * the list, not manipulating it:
13208 	 */
13209 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13210 		ret = inherit_task_group(event, parent, parent_ctx,
13211 					 child, ctxn, clone_flags,
13212 					 &inherited_all);
13213 		if (ret)
13214 			goto out_unlock;
13215 	}
13216 
13217 	/*
13218 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13219 	 * to allocations, but we need to prevent rotation because
13220 	 * rotate_ctx() will change the list from interrupt context.
13221 	 */
13222 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13223 	parent_ctx->rotate_disable = 1;
13224 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13225 
13226 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13227 		ret = inherit_task_group(event, parent, parent_ctx,
13228 					 child, ctxn, clone_flags,
13229 					 &inherited_all);
13230 		if (ret)
13231 			goto out_unlock;
13232 	}
13233 
13234 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13235 	parent_ctx->rotate_disable = 0;
13236 
13237 	child_ctx = child->perf_event_ctxp[ctxn];
13238 
13239 	if (child_ctx && inherited_all) {
13240 		/*
13241 		 * Mark the child context as a clone of the parent
13242 		 * context, or of whatever the parent is a clone of.
13243 		 *
13244 		 * Note that if the parent is a clone, the holding of
13245 		 * parent_ctx->lock avoids it from being uncloned.
13246 		 */
13247 		cloned_ctx = parent_ctx->parent_ctx;
13248 		if (cloned_ctx) {
13249 			child_ctx->parent_ctx = cloned_ctx;
13250 			child_ctx->parent_gen = parent_ctx->parent_gen;
13251 		} else {
13252 			child_ctx->parent_ctx = parent_ctx;
13253 			child_ctx->parent_gen = parent_ctx->generation;
13254 		}
13255 		get_ctx(child_ctx->parent_ctx);
13256 	}
13257 
13258 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13259 out_unlock:
13260 	mutex_unlock(&parent_ctx->mutex);
13261 
13262 	perf_unpin_context(parent_ctx);
13263 	put_ctx(parent_ctx);
13264 
13265 	return ret;
13266 }
13267 
13268 /*
13269  * Initialize the perf_event context in task_struct
13270  */
13271 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13272 {
13273 	int ctxn, ret;
13274 
13275 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13276 	mutex_init(&child->perf_event_mutex);
13277 	INIT_LIST_HEAD(&child->perf_event_list);
13278 
13279 	for_each_task_context_nr(ctxn) {
13280 		ret = perf_event_init_context(child, ctxn, clone_flags);
13281 		if (ret) {
13282 			perf_event_free_task(child);
13283 			return ret;
13284 		}
13285 	}
13286 
13287 	return 0;
13288 }
13289 
13290 static void __init perf_event_init_all_cpus(void)
13291 {
13292 	struct swevent_htable *swhash;
13293 	int cpu;
13294 
13295 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13296 
13297 	for_each_possible_cpu(cpu) {
13298 		swhash = &per_cpu(swevent_htable, cpu);
13299 		mutex_init(&swhash->hlist_mutex);
13300 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13301 
13302 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13303 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13304 
13305 #ifdef CONFIG_CGROUP_PERF
13306 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13307 #endif
13308 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13309 	}
13310 }
13311 
13312 static void perf_swevent_init_cpu(unsigned int cpu)
13313 {
13314 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13315 
13316 	mutex_lock(&swhash->hlist_mutex);
13317 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13318 		struct swevent_hlist *hlist;
13319 
13320 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13321 		WARN_ON(!hlist);
13322 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13323 	}
13324 	mutex_unlock(&swhash->hlist_mutex);
13325 }
13326 
13327 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13328 static void __perf_event_exit_context(void *__info)
13329 {
13330 	struct perf_event_context *ctx = __info;
13331 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13332 	struct perf_event *event;
13333 
13334 	raw_spin_lock(&ctx->lock);
13335 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13336 	list_for_each_entry(event, &ctx->event_list, event_entry)
13337 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13338 	raw_spin_unlock(&ctx->lock);
13339 }
13340 
13341 static void perf_event_exit_cpu_context(int cpu)
13342 {
13343 	struct perf_cpu_context *cpuctx;
13344 	struct perf_event_context *ctx;
13345 	struct pmu *pmu;
13346 
13347 	mutex_lock(&pmus_lock);
13348 	list_for_each_entry(pmu, &pmus, entry) {
13349 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13350 		ctx = &cpuctx->ctx;
13351 
13352 		mutex_lock(&ctx->mutex);
13353 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13354 		cpuctx->online = 0;
13355 		mutex_unlock(&ctx->mutex);
13356 	}
13357 	cpumask_clear_cpu(cpu, perf_online_mask);
13358 	mutex_unlock(&pmus_lock);
13359 }
13360 #else
13361 
13362 static void perf_event_exit_cpu_context(int cpu) { }
13363 
13364 #endif
13365 
13366 int perf_event_init_cpu(unsigned int cpu)
13367 {
13368 	struct perf_cpu_context *cpuctx;
13369 	struct perf_event_context *ctx;
13370 	struct pmu *pmu;
13371 
13372 	perf_swevent_init_cpu(cpu);
13373 
13374 	mutex_lock(&pmus_lock);
13375 	cpumask_set_cpu(cpu, perf_online_mask);
13376 	list_for_each_entry(pmu, &pmus, entry) {
13377 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13378 		ctx = &cpuctx->ctx;
13379 
13380 		mutex_lock(&ctx->mutex);
13381 		cpuctx->online = 1;
13382 		mutex_unlock(&ctx->mutex);
13383 	}
13384 	mutex_unlock(&pmus_lock);
13385 
13386 	return 0;
13387 }
13388 
13389 int perf_event_exit_cpu(unsigned int cpu)
13390 {
13391 	perf_event_exit_cpu_context(cpu);
13392 	return 0;
13393 }
13394 
13395 static int
13396 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13397 {
13398 	int cpu;
13399 
13400 	for_each_online_cpu(cpu)
13401 		perf_event_exit_cpu(cpu);
13402 
13403 	return NOTIFY_OK;
13404 }
13405 
13406 /*
13407  * Run the perf reboot notifier at the very last possible moment so that
13408  * the generic watchdog code runs as long as possible.
13409  */
13410 static struct notifier_block perf_reboot_notifier = {
13411 	.notifier_call = perf_reboot,
13412 	.priority = INT_MIN,
13413 };
13414 
13415 void __init perf_event_init(void)
13416 {
13417 	int ret;
13418 
13419 	idr_init(&pmu_idr);
13420 
13421 	perf_event_init_all_cpus();
13422 	init_srcu_struct(&pmus_srcu);
13423 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13424 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13425 	perf_pmu_register(&perf_task_clock, NULL, -1);
13426 	perf_tp_register();
13427 	perf_event_init_cpu(smp_processor_id());
13428 	register_reboot_notifier(&perf_reboot_notifier);
13429 
13430 	ret = init_hw_breakpoint();
13431 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13432 
13433 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13434 
13435 	/*
13436 	 * Build time assertion that we keep the data_head at the intended
13437 	 * location.  IOW, validation we got the __reserved[] size right.
13438 	 */
13439 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13440 		     != 1024);
13441 }
13442 
13443 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13444 			      char *page)
13445 {
13446 	struct perf_pmu_events_attr *pmu_attr =
13447 		container_of(attr, struct perf_pmu_events_attr, attr);
13448 
13449 	if (pmu_attr->event_str)
13450 		return sprintf(page, "%s\n", pmu_attr->event_str);
13451 
13452 	return 0;
13453 }
13454 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13455 
13456 static int __init perf_event_sysfs_init(void)
13457 {
13458 	struct pmu *pmu;
13459 	int ret;
13460 
13461 	mutex_lock(&pmus_lock);
13462 
13463 	ret = bus_register(&pmu_bus);
13464 	if (ret)
13465 		goto unlock;
13466 
13467 	list_for_each_entry(pmu, &pmus, entry) {
13468 		if (!pmu->name || pmu->type < 0)
13469 			continue;
13470 
13471 		ret = pmu_dev_alloc(pmu);
13472 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13473 	}
13474 	pmu_bus_running = 1;
13475 	ret = 0;
13476 
13477 unlock:
13478 	mutex_unlock(&pmus_lock);
13479 
13480 	return ret;
13481 }
13482 device_initcall(perf_event_sysfs_init);
13483 
13484 #ifdef CONFIG_CGROUP_PERF
13485 static struct cgroup_subsys_state *
13486 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13487 {
13488 	struct perf_cgroup *jc;
13489 
13490 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13491 	if (!jc)
13492 		return ERR_PTR(-ENOMEM);
13493 
13494 	jc->info = alloc_percpu(struct perf_cgroup_info);
13495 	if (!jc->info) {
13496 		kfree(jc);
13497 		return ERR_PTR(-ENOMEM);
13498 	}
13499 
13500 	return &jc->css;
13501 }
13502 
13503 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13504 {
13505 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13506 
13507 	free_percpu(jc->info);
13508 	kfree(jc);
13509 }
13510 
13511 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13512 {
13513 	perf_event_cgroup(css->cgroup);
13514 	return 0;
13515 }
13516 
13517 static int __perf_cgroup_move(void *info)
13518 {
13519 	struct task_struct *task = info;
13520 	rcu_read_lock();
13521 	perf_cgroup_switch(task);
13522 	rcu_read_unlock();
13523 	return 0;
13524 }
13525 
13526 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13527 {
13528 	struct task_struct *task;
13529 	struct cgroup_subsys_state *css;
13530 
13531 	cgroup_taskset_for_each(task, css, tset)
13532 		task_function_call(task, __perf_cgroup_move, task);
13533 }
13534 
13535 struct cgroup_subsys perf_event_cgrp_subsys = {
13536 	.css_alloc	= perf_cgroup_css_alloc,
13537 	.css_free	= perf_cgroup_css_free,
13538 	.css_online	= perf_cgroup_css_online,
13539 	.attach		= perf_cgroup_attach,
13540 	/*
13541 	 * Implicitly enable on dfl hierarchy so that perf events can
13542 	 * always be filtered by cgroup2 path as long as perf_event
13543 	 * controller is not mounted on a legacy hierarchy.
13544 	 */
13545 	.implicit_on_dfl = true,
13546 	.threaded	= true,
13547 };
13548 #endif /* CONFIG_CGROUP_PERF */
13549 
13550 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13551