1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 40 #include "internal.h" 41 42 #include <asm/irq_regs.h> 43 44 struct remote_function_call { 45 struct task_struct *p; 46 int (*func)(void *info); 47 void *info; 48 int ret; 49 }; 50 51 static void remote_function(void *data) 52 { 53 struct remote_function_call *tfc = data; 54 struct task_struct *p = tfc->p; 55 56 if (p) { 57 tfc->ret = -EAGAIN; 58 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 59 return; 60 } 61 62 tfc->ret = tfc->func(tfc->info); 63 } 64 65 /** 66 * task_function_call - call a function on the cpu on which a task runs 67 * @p: the task to evaluate 68 * @func: the function to be called 69 * @info: the function call argument 70 * 71 * Calls the function @func when the task is currently running. This might 72 * be on the current CPU, which just calls the function directly 73 * 74 * returns: @func return value, or 75 * -ESRCH - when the process isn't running 76 * -EAGAIN - when the process moved away 77 */ 78 static int 79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 80 { 81 struct remote_function_call data = { 82 .p = p, 83 .func = func, 84 .info = info, 85 .ret = -ESRCH, /* No such (running) process */ 86 }; 87 88 if (task_curr(p)) 89 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 90 91 return data.ret; 92 } 93 94 /** 95 * cpu_function_call - call a function on the cpu 96 * @func: the function to be called 97 * @info: the function call argument 98 * 99 * Calls the function @func on the remote cpu. 100 * 101 * returns: @func return value or -ENXIO when the cpu is offline 102 */ 103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 104 { 105 struct remote_function_call data = { 106 .p = NULL, 107 .func = func, 108 .info = info, 109 .ret = -ENXIO, /* No such CPU */ 110 }; 111 112 smp_call_function_single(cpu, remote_function, &data, 1); 113 114 return data.ret; 115 } 116 117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 118 PERF_FLAG_FD_OUTPUT |\ 119 PERF_FLAG_PID_CGROUP) 120 121 /* 122 * branch priv levels that need permission checks 123 */ 124 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 125 (PERF_SAMPLE_BRANCH_KERNEL |\ 126 PERF_SAMPLE_BRANCH_HV) 127 128 enum event_type_t { 129 EVENT_FLEXIBLE = 0x1, 130 EVENT_PINNED = 0x2, 131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 132 }; 133 134 /* 135 * perf_sched_events : >0 events exist 136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 137 */ 138 struct static_key_deferred perf_sched_events __read_mostly; 139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 141 142 static atomic_t nr_mmap_events __read_mostly; 143 static atomic_t nr_comm_events __read_mostly; 144 static atomic_t nr_task_events __read_mostly; 145 146 static LIST_HEAD(pmus); 147 static DEFINE_MUTEX(pmus_lock); 148 static struct srcu_struct pmus_srcu; 149 150 /* 151 * perf event paranoia level: 152 * -1 - not paranoid at all 153 * 0 - disallow raw tracepoint access for unpriv 154 * 1 - disallow cpu events for unpriv 155 * 2 - disallow kernel profiling for unpriv 156 */ 157 int sysctl_perf_event_paranoid __read_mostly = 1; 158 159 /* Minimum for 512 kiB + 1 user control page */ 160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 161 162 /* 163 * max perf event sample rate 164 */ 165 #define DEFAULT_MAX_SAMPLE_RATE 100000 166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 167 static int max_samples_per_tick __read_mostly = 168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 169 170 int perf_proc_update_handler(struct ctl_table *table, int write, 171 void __user *buffer, size_t *lenp, 172 loff_t *ppos) 173 { 174 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 175 176 if (ret || !write) 177 return ret; 178 179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 180 181 return 0; 182 } 183 184 static atomic64_t perf_event_id; 185 186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 187 enum event_type_t event_type); 188 189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 190 enum event_type_t event_type, 191 struct task_struct *task); 192 193 static void update_context_time(struct perf_event_context *ctx); 194 static u64 perf_event_time(struct perf_event *event); 195 196 static void ring_buffer_attach(struct perf_event *event, 197 struct ring_buffer *rb); 198 199 void __weak perf_event_print_debug(void) { } 200 201 extern __weak const char *perf_pmu_name(void) 202 { 203 return "pmu"; 204 } 205 206 static inline u64 perf_clock(void) 207 { 208 return local_clock(); 209 } 210 211 static inline struct perf_cpu_context * 212 __get_cpu_context(struct perf_event_context *ctx) 213 { 214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 215 } 216 217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 218 struct perf_event_context *ctx) 219 { 220 raw_spin_lock(&cpuctx->ctx.lock); 221 if (ctx) 222 raw_spin_lock(&ctx->lock); 223 } 224 225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 226 struct perf_event_context *ctx) 227 { 228 if (ctx) 229 raw_spin_unlock(&ctx->lock); 230 raw_spin_unlock(&cpuctx->ctx.lock); 231 } 232 233 #ifdef CONFIG_CGROUP_PERF 234 235 /* 236 * Must ensure cgroup is pinned (css_get) before calling 237 * this function. In other words, we cannot call this function 238 * if there is no cgroup event for the current CPU context. 239 */ 240 static inline struct perf_cgroup * 241 perf_cgroup_from_task(struct task_struct *task) 242 { 243 return container_of(task_subsys_state(task, perf_subsys_id), 244 struct perf_cgroup, css); 245 } 246 247 static inline bool 248 perf_cgroup_match(struct perf_event *event) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 252 253 return !event->cgrp || event->cgrp == cpuctx->cgrp; 254 } 255 256 static inline void perf_get_cgroup(struct perf_event *event) 257 { 258 css_get(&event->cgrp->css); 259 } 260 261 static inline void perf_put_cgroup(struct perf_event *event) 262 { 263 css_put(&event->cgrp->css); 264 } 265 266 static inline void perf_detach_cgroup(struct perf_event *event) 267 { 268 perf_put_cgroup(event); 269 event->cgrp = NULL; 270 } 271 272 static inline int is_cgroup_event(struct perf_event *event) 273 { 274 return event->cgrp != NULL; 275 } 276 277 static inline u64 perf_cgroup_event_time(struct perf_event *event) 278 { 279 struct perf_cgroup_info *t; 280 281 t = per_cpu_ptr(event->cgrp->info, event->cpu); 282 return t->time; 283 } 284 285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 286 { 287 struct perf_cgroup_info *info; 288 u64 now; 289 290 now = perf_clock(); 291 292 info = this_cpu_ptr(cgrp->info); 293 294 info->time += now - info->timestamp; 295 info->timestamp = now; 296 } 297 298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 299 { 300 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 301 if (cgrp_out) 302 __update_cgrp_time(cgrp_out); 303 } 304 305 static inline void update_cgrp_time_from_event(struct perf_event *event) 306 { 307 struct perf_cgroup *cgrp; 308 309 /* 310 * ensure we access cgroup data only when needed and 311 * when we know the cgroup is pinned (css_get) 312 */ 313 if (!is_cgroup_event(event)) 314 return; 315 316 cgrp = perf_cgroup_from_task(current); 317 /* 318 * Do not update time when cgroup is not active 319 */ 320 if (cgrp == event->cgrp) 321 __update_cgrp_time(event->cgrp); 322 } 323 324 static inline void 325 perf_cgroup_set_timestamp(struct task_struct *task, 326 struct perf_event_context *ctx) 327 { 328 struct perf_cgroup *cgrp; 329 struct perf_cgroup_info *info; 330 331 /* 332 * ctx->lock held by caller 333 * ensure we do not access cgroup data 334 * unless we have the cgroup pinned (css_get) 335 */ 336 if (!task || !ctx->nr_cgroups) 337 return; 338 339 cgrp = perf_cgroup_from_task(task); 340 info = this_cpu_ptr(cgrp->info); 341 info->timestamp = ctx->timestamp; 342 } 343 344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 346 347 /* 348 * reschedule events based on the cgroup constraint of task. 349 * 350 * mode SWOUT : schedule out everything 351 * mode SWIN : schedule in based on cgroup for next 352 */ 353 void perf_cgroup_switch(struct task_struct *task, int mode) 354 { 355 struct perf_cpu_context *cpuctx; 356 struct pmu *pmu; 357 unsigned long flags; 358 359 /* 360 * disable interrupts to avoid geting nr_cgroup 361 * changes via __perf_event_disable(). Also 362 * avoids preemption. 363 */ 364 local_irq_save(flags); 365 366 /* 367 * we reschedule only in the presence of cgroup 368 * constrained events. 369 */ 370 rcu_read_lock(); 371 372 list_for_each_entry_rcu(pmu, &pmus, entry) { 373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 374 375 /* 376 * perf_cgroup_events says at least one 377 * context on this CPU has cgroup events. 378 * 379 * ctx->nr_cgroups reports the number of cgroup 380 * events for a context. 381 */ 382 if (cpuctx->ctx.nr_cgroups > 0) { 383 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 384 perf_pmu_disable(cpuctx->ctx.pmu); 385 386 if (mode & PERF_CGROUP_SWOUT) { 387 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 388 /* 389 * must not be done before ctxswout due 390 * to event_filter_match() in event_sched_out() 391 */ 392 cpuctx->cgrp = NULL; 393 } 394 395 if (mode & PERF_CGROUP_SWIN) { 396 WARN_ON_ONCE(cpuctx->cgrp); 397 /* set cgrp before ctxsw in to 398 * allow event_filter_match() to not 399 * have to pass task around 400 */ 401 cpuctx->cgrp = perf_cgroup_from_task(task); 402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 403 } 404 perf_pmu_enable(cpuctx->ctx.pmu); 405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 406 } 407 } 408 409 rcu_read_unlock(); 410 411 local_irq_restore(flags); 412 } 413 414 static inline void perf_cgroup_sched_out(struct task_struct *task, 415 struct task_struct *next) 416 { 417 struct perf_cgroup *cgrp1; 418 struct perf_cgroup *cgrp2 = NULL; 419 420 /* 421 * we come here when we know perf_cgroup_events > 0 422 */ 423 cgrp1 = perf_cgroup_from_task(task); 424 425 /* 426 * next is NULL when called from perf_event_enable_on_exec() 427 * that will systematically cause a cgroup_switch() 428 */ 429 if (next) 430 cgrp2 = perf_cgroup_from_task(next); 431 432 /* 433 * only schedule out current cgroup events if we know 434 * that we are switching to a different cgroup. Otherwise, 435 * do no touch the cgroup events. 436 */ 437 if (cgrp1 != cgrp2) 438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 439 } 440 441 static inline void perf_cgroup_sched_in(struct task_struct *prev, 442 struct task_struct *task) 443 { 444 struct perf_cgroup *cgrp1; 445 struct perf_cgroup *cgrp2 = NULL; 446 447 /* 448 * we come here when we know perf_cgroup_events > 0 449 */ 450 cgrp1 = perf_cgroup_from_task(task); 451 452 /* prev can never be NULL */ 453 cgrp2 = perf_cgroup_from_task(prev); 454 455 /* 456 * only need to schedule in cgroup events if we are changing 457 * cgroup during ctxsw. Cgroup events were not scheduled 458 * out of ctxsw out if that was not the case. 459 */ 460 if (cgrp1 != cgrp2) 461 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 462 } 463 464 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 465 struct perf_event_attr *attr, 466 struct perf_event *group_leader) 467 { 468 struct perf_cgroup *cgrp; 469 struct cgroup_subsys_state *css; 470 struct file *file; 471 int ret = 0, fput_needed; 472 473 file = fget_light(fd, &fput_needed); 474 if (!file) 475 return -EBADF; 476 477 css = cgroup_css_from_dir(file, perf_subsys_id); 478 if (IS_ERR(css)) { 479 ret = PTR_ERR(css); 480 goto out; 481 } 482 483 cgrp = container_of(css, struct perf_cgroup, css); 484 event->cgrp = cgrp; 485 486 /* must be done before we fput() the file */ 487 perf_get_cgroup(event); 488 489 /* 490 * all events in a group must monitor 491 * the same cgroup because a task belongs 492 * to only one perf cgroup at a time 493 */ 494 if (group_leader && group_leader->cgrp != cgrp) { 495 perf_detach_cgroup(event); 496 ret = -EINVAL; 497 } 498 out: 499 fput_light(file, fput_needed); 500 return ret; 501 } 502 503 static inline void 504 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 505 { 506 struct perf_cgroup_info *t; 507 t = per_cpu_ptr(event->cgrp->info, event->cpu); 508 event->shadow_ctx_time = now - t->timestamp; 509 } 510 511 static inline void 512 perf_cgroup_defer_enabled(struct perf_event *event) 513 { 514 /* 515 * when the current task's perf cgroup does not match 516 * the event's, we need to remember to call the 517 * perf_mark_enable() function the first time a task with 518 * a matching perf cgroup is scheduled in. 519 */ 520 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 521 event->cgrp_defer_enabled = 1; 522 } 523 524 static inline void 525 perf_cgroup_mark_enabled(struct perf_event *event, 526 struct perf_event_context *ctx) 527 { 528 struct perf_event *sub; 529 u64 tstamp = perf_event_time(event); 530 531 if (!event->cgrp_defer_enabled) 532 return; 533 534 event->cgrp_defer_enabled = 0; 535 536 event->tstamp_enabled = tstamp - event->total_time_enabled; 537 list_for_each_entry(sub, &event->sibling_list, group_entry) { 538 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 539 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 540 sub->cgrp_defer_enabled = 0; 541 } 542 } 543 } 544 #else /* !CONFIG_CGROUP_PERF */ 545 546 static inline bool 547 perf_cgroup_match(struct perf_event *event) 548 { 549 return true; 550 } 551 552 static inline void perf_detach_cgroup(struct perf_event *event) 553 {} 554 555 static inline int is_cgroup_event(struct perf_event *event) 556 { 557 return 0; 558 } 559 560 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 561 { 562 return 0; 563 } 564 565 static inline void update_cgrp_time_from_event(struct perf_event *event) 566 { 567 } 568 569 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 570 { 571 } 572 573 static inline void perf_cgroup_sched_out(struct task_struct *task, 574 struct task_struct *next) 575 { 576 } 577 578 static inline void perf_cgroup_sched_in(struct task_struct *prev, 579 struct task_struct *task) 580 { 581 } 582 583 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 584 struct perf_event_attr *attr, 585 struct perf_event *group_leader) 586 { 587 return -EINVAL; 588 } 589 590 static inline void 591 perf_cgroup_set_timestamp(struct task_struct *task, 592 struct perf_event_context *ctx) 593 { 594 } 595 596 void 597 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 598 { 599 } 600 601 static inline void 602 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 603 { 604 } 605 606 static inline u64 perf_cgroup_event_time(struct perf_event *event) 607 { 608 return 0; 609 } 610 611 static inline void 612 perf_cgroup_defer_enabled(struct perf_event *event) 613 { 614 } 615 616 static inline void 617 perf_cgroup_mark_enabled(struct perf_event *event, 618 struct perf_event_context *ctx) 619 { 620 } 621 #endif 622 623 void perf_pmu_disable(struct pmu *pmu) 624 { 625 int *count = this_cpu_ptr(pmu->pmu_disable_count); 626 if (!(*count)++) 627 pmu->pmu_disable(pmu); 628 } 629 630 void perf_pmu_enable(struct pmu *pmu) 631 { 632 int *count = this_cpu_ptr(pmu->pmu_disable_count); 633 if (!--(*count)) 634 pmu->pmu_enable(pmu); 635 } 636 637 static DEFINE_PER_CPU(struct list_head, rotation_list); 638 639 /* 640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 641 * because they're strictly cpu affine and rotate_start is called with IRQs 642 * disabled, while rotate_context is called from IRQ context. 643 */ 644 static void perf_pmu_rotate_start(struct pmu *pmu) 645 { 646 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 647 struct list_head *head = &__get_cpu_var(rotation_list); 648 649 WARN_ON(!irqs_disabled()); 650 651 if (list_empty(&cpuctx->rotation_list)) 652 list_add(&cpuctx->rotation_list, head); 653 } 654 655 static void get_ctx(struct perf_event_context *ctx) 656 { 657 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 658 } 659 660 static void put_ctx(struct perf_event_context *ctx) 661 { 662 if (atomic_dec_and_test(&ctx->refcount)) { 663 if (ctx->parent_ctx) 664 put_ctx(ctx->parent_ctx); 665 if (ctx->task) 666 put_task_struct(ctx->task); 667 kfree_rcu(ctx, rcu_head); 668 } 669 } 670 671 static void unclone_ctx(struct perf_event_context *ctx) 672 { 673 if (ctx->parent_ctx) { 674 put_ctx(ctx->parent_ctx); 675 ctx->parent_ctx = NULL; 676 } 677 } 678 679 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 680 { 681 /* 682 * only top level events have the pid namespace they were created in 683 */ 684 if (event->parent) 685 event = event->parent; 686 687 return task_tgid_nr_ns(p, event->ns); 688 } 689 690 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 691 { 692 /* 693 * only top level events have the pid namespace they were created in 694 */ 695 if (event->parent) 696 event = event->parent; 697 698 return task_pid_nr_ns(p, event->ns); 699 } 700 701 /* 702 * If we inherit events we want to return the parent event id 703 * to userspace. 704 */ 705 static u64 primary_event_id(struct perf_event *event) 706 { 707 u64 id = event->id; 708 709 if (event->parent) 710 id = event->parent->id; 711 712 return id; 713 } 714 715 /* 716 * Get the perf_event_context for a task and lock it. 717 * This has to cope with with the fact that until it is locked, 718 * the context could get moved to another task. 719 */ 720 static struct perf_event_context * 721 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 722 { 723 struct perf_event_context *ctx; 724 725 rcu_read_lock(); 726 retry: 727 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 728 if (ctx) { 729 /* 730 * If this context is a clone of another, it might 731 * get swapped for another underneath us by 732 * perf_event_task_sched_out, though the 733 * rcu_read_lock() protects us from any context 734 * getting freed. Lock the context and check if it 735 * got swapped before we could get the lock, and retry 736 * if so. If we locked the right context, then it 737 * can't get swapped on us any more. 738 */ 739 raw_spin_lock_irqsave(&ctx->lock, *flags); 740 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 741 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 742 goto retry; 743 } 744 745 if (!atomic_inc_not_zero(&ctx->refcount)) { 746 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 747 ctx = NULL; 748 } 749 } 750 rcu_read_unlock(); 751 return ctx; 752 } 753 754 /* 755 * Get the context for a task and increment its pin_count so it 756 * can't get swapped to another task. This also increments its 757 * reference count so that the context can't get freed. 758 */ 759 static struct perf_event_context * 760 perf_pin_task_context(struct task_struct *task, int ctxn) 761 { 762 struct perf_event_context *ctx; 763 unsigned long flags; 764 765 ctx = perf_lock_task_context(task, ctxn, &flags); 766 if (ctx) { 767 ++ctx->pin_count; 768 raw_spin_unlock_irqrestore(&ctx->lock, flags); 769 } 770 return ctx; 771 } 772 773 static void perf_unpin_context(struct perf_event_context *ctx) 774 { 775 unsigned long flags; 776 777 raw_spin_lock_irqsave(&ctx->lock, flags); 778 --ctx->pin_count; 779 raw_spin_unlock_irqrestore(&ctx->lock, flags); 780 } 781 782 /* 783 * Update the record of the current time in a context. 784 */ 785 static void update_context_time(struct perf_event_context *ctx) 786 { 787 u64 now = perf_clock(); 788 789 ctx->time += now - ctx->timestamp; 790 ctx->timestamp = now; 791 } 792 793 static u64 perf_event_time(struct perf_event *event) 794 { 795 struct perf_event_context *ctx = event->ctx; 796 797 if (is_cgroup_event(event)) 798 return perf_cgroup_event_time(event); 799 800 return ctx ? ctx->time : 0; 801 } 802 803 /* 804 * Update the total_time_enabled and total_time_running fields for a event. 805 * The caller of this function needs to hold the ctx->lock. 806 */ 807 static void update_event_times(struct perf_event *event) 808 { 809 struct perf_event_context *ctx = event->ctx; 810 u64 run_end; 811 812 if (event->state < PERF_EVENT_STATE_INACTIVE || 813 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 814 return; 815 /* 816 * in cgroup mode, time_enabled represents 817 * the time the event was enabled AND active 818 * tasks were in the monitored cgroup. This is 819 * independent of the activity of the context as 820 * there may be a mix of cgroup and non-cgroup events. 821 * 822 * That is why we treat cgroup events differently 823 * here. 824 */ 825 if (is_cgroup_event(event)) 826 run_end = perf_cgroup_event_time(event); 827 else if (ctx->is_active) 828 run_end = ctx->time; 829 else 830 run_end = event->tstamp_stopped; 831 832 event->total_time_enabled = run_end - event->tstamp_enabled; 833 834 if (event->state == PERF_EVENT_STATE_INACTIVE) 835 run_end = event->tstamp_stopped; 836 else 837 run_end = perf_event_time(event); 838 839 event->total_time_running = run_end - event->tstamp_running; 840 841 } 842 843 /* 844 * Update total_time_enabled and total_time_running for all events in a group. 845 */ 846 static void update_group_times(struct perf_event *leader) 847 { 848 struct perf_event *event; 849 850 update_event_times(leader); 851 list_for_each_entry(event, &leader->sibling_list, group_entry) 852 update_event_times(event); 853 } 854 855 static struct list_head * 856 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 857 { 858 if (event->attr.pinned) 859 return &ctx->pinned_groups; 860 else 861 return &ctx->flexible_groups; 862 } 863 864 /* 865 * Add a event from the lists for its context. 866 * Must be called with ctx->mutex and ctx->lock held. 867 */ 868 static void 869 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 870 { 871 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 872 event->attach_state |= PERF_ATTACH_CONTEXT; 873 874 /* 875 * If we're a stand alone event or group leader, we go to the context 876 * list, group events are kept attached to the group so that 877 * perf_group_detach can, at all times, locate all siblings. 878 */ 879 if (event->group_leader == event) { 880 struct list_head *list; 881 882 if (is_software_event(event)) 883 event->group_flags |= PERF_GROUP_SOFTWARE; 884 885 list = ctx_group_list(event, ctx); 886 list_add_tail(&event->group_entry, list); 887 } 888 889 if (is_cgroup_event(event)) 890 ctx->nr_cgroups++; 891 892 if (has_branch_stack(event)) 893 ctx->nr_branch_stack++; 894 895 list_add_rcu(&event->event_entry, &ctx->event_list); 896 if (!ctx->nr_events) 897 perf_pmu_rotate_start(ctx->pmu); 898 ctx->nr_events++; 899 if (event->attr.inherit_stat) 900 ctx->nr_stat++; 901 } 902 903 /* 904 * Called at perf_event creation and when events are attached/detached from a 905 * group. 906 */ 907 static void perf_event__read_size(struct perf_event *event) 908 { 909 int entry = sizeof(u64); /* value */ 910 int size = 0; 911 int nr = 1; 912 913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 914 size += sizeof(u64); 915 916 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 917 size += sizeof(u64); 918 919 if (event->attr.read_format & PERF_FORMAT_ID) 920 entry += sizeof(u64); 921 922 if (event->attr.read_format & PERF_FORMAT_GROUP) { 923 nr += event->group_leader->nr_siblings; 924 size += sizeof(u64); 925 } 926 927 size += entry * nr; 928 event->read_size = size; 929 } 930 931 static void perf_event__header_size(struct perf_event *event) 932 { 933 struct perf_sample_data *data; 934 u64 sample_type = event->attr.sample_type; 935 u16 size = 0; 936 937 perf_event__read_size(event); 938 939 if (sample_type & PERF_SAMPLE_IP) 940 size += sizeof(data->ip); 941 942 if (sample_type & PERF_SAMPLE_ADDR) 943 size += sizeof(data->addr); 944 945 if (sample_type & PERF_SAMPLE_PERIOD) 946 size += sizeof(data->period); 947 948 if (sample_type & PERF_SAMPLE_READ) 949 size += event->read_size; 950 951 event->header_size = size; 952 } 953 954 static void perf_event__id_header_size(struct perf_event *event) 955 { 956 struct perf_sample_data *data; 957 u64 sample_type = event->attr.sample_type; 958 u16 size = 0; 959 960 if (sample_type & PERF_SAMPLE_TID) 961 size += sizeof(data->tid_entry); 962 963 if (sample_type & PERF_SAMPLE_TIME) 964 size += sizeof(data->time); 965 966 if (sample_type & PERF_SAMPLE_ID) 967 size += sizeof(data->id); 968 969 if (sample_type & PERF_SAMPLE_STREAM_ID) 970 size += sizeof(data->stream_id); 971 972 if (sample_type & PERF_SAMPLE_CPU) 973 size += sizeof(data->cpu_entry); 974 975 event->id_header_size = size; 976 } 977 978 static void perf_group_attach(struct perf_event *event) 979 { 980 struct perf_event *group_leader = event->group_leader, *pos; 981 982 /* 983 * We can have double attach due to group movement in perf_event_open. 984 */ 985 if (event->attach_state & PERF_ATTACH_GROUP) 986 return; 987 988 event->attach_state |= PERF_ATTACH_GROUP; 989 990 if (group_leader == event) 991 return; 992 993 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 994 !is_software_event(event)) 995 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 996 997 list_add_tail(&event->group_entry, &group_leader->sibling_list); 998 group_leader->nr_siblings++; 999 1000 perf_event__header_size(group_leader); 1001 1002 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1003 perf_event__header_size(pos); 1004 } 1005 1006 /* 1007 * Remove a event from the lists for its context. 1008 * Must be called with ctx->mutex and ctx->lock held. 1009 */ 1010 static void 1011 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1012 { 1013 struct perf_cpu_context *cpuctx; 1014 /* 1015 * We can have double detach due to exit/hot-unplug + close. 1016 */ 1017 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1018 return; 1019 1020 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1021 1022 if (is_cgroup_event(event)) { 1023 ctx->nr_cgroups--; 1024 cpuctx = __get_cpu_context(ctx); 1025 /* 1026 * if there are no more cgroup events 1027 * then cler cgrp to avoid stale pointer 1028 * in update_cgrp_time_from_cpuctx() 1029 */ 1030 if (!ctx->nr_cgroups) 1031 cpuctx->cgrp = NULL; 1032 } 1033 1034 if (has_branch_stack(event)) 1035 ctx->nr_branch_stack--; 1036 1037 ctx->nr_events--; 1038 if (event->attr.inherit_stat) 1039 ctx->nr_stat--; 1040 1041 list_del_rcu(&event->event_entry); 1042 1043 if (event->group_leader == event) 1044 list_del_init(&event->group_entry); 1045 1046 update_group_times(event); 1047 1048 /* 1049 * If event was in error state, then keep it 1050 * that way, otherwise bogus counts will be 1051 * returned on read(). The only way to get out 1052 * of error state is by explicit re-enabling 1053 * of the event 1054 */ 1055 if (event->state > PERF_EVENT_STATE_OFF) 1056 event->state = PERF_EVENT_STATE_OFF; 1057 } 1058 1059 static void perf_group_detach(struct perf_event *event) 1060 { 1061 struct perf_event *sibling, *tmp; 1062 struct list_head *list = NULL; 1063 1064 /* 1065 * We can have double detach due to exit/hot-unplug + close. 1066 */ 1067 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1068 return; 1069 1070 event->attach_state &= ~PERF_ATTACH_GROUP; 1071 1072 /* 1073 * If this is a sibling, remove it from its group. 1074 */ 1075 if (event->group_leader != event) { 1076 list_del_init(&event->group_entry); 1077 event->group_leader->nr_siblings--; 1078 goto out; 1079 } 1080 1081 if (!list_empty(&event->group_entry)) 1082 list = &event->group_entry; 1083 1084 /* 1085 * If this was a group event with sibling events then 1086 * upgrade the siblings to singleton events by adding them 1087 * to whatever list we are on. 1088 */ 1089 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1090 if (list) 1091 list_move_tail(&sibling->group_entry, list); 1092 sibling->group_leader = sibling; 1093 1094 /* Inherit group flags from the previous leader */ 1095 sibling->group_flags = event->group_flags; 1096 } 1097 1098 out: 1099 perf_event__header_size(event->group_leader); 1100 1101 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1102 perf_event__header_size(tmp); 1103 } 1104 1105 static inline int 1106 event_filter_match(struct perf_event *event) 1107 { 1108 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1109 && perf_cgroup_match(event); 1110 } 1111 1112 static void 1113 event_sched_out(struct perf_event *event, 1114 struct perf_cpu_context *cpuctx, 1115 struct perf_event_context *ctx) 1116 { 1117 u64 tstamp = perf_event_time(event); 1118 u64 delta; 1119 /* 1120 * An event which could not be activated because of 1121 * filter mismatch still needs to have its timings 1122 * maintained, otherwise bogus information is return 1123 * via read() for time_enabled, time_running: 1124 */ 1125 if (event->state == PERF_EVENT_STATE_INACTIVE 1126 && !event_filter_match(event)) { 1127 delta = tstamp - event->tstamp_stopped; 1128 event->tstamp_running += delta; 1129 event->tstamp_stopped = tstamp; 1130 } 1131 1132 if (event->state != PERF_EVENT_STATE_ACTIVE) 1133 return; 1134 1135 event->state = PERF_EVENT_STATE_INACTIVE; 1136 if (event->pending_disable) { 1137 event->pending_disable = 0; 1138 event->state = PERF_EVENT_STATE_OFF; 1139 } 1140 event->tstamp_stopped = tstamp; 1141 event->pmu->del(event, 0); 1142 event->oncpu = -1; 1143 1144 if (!is_software_event(event)) 1145 cpuctx->active_oncpu--; 1146 ctx->nr_active--; 1147 if (event->attr.freq && event->attr.sample_freq) 1148 ctx->nr_freq--; 1149 if (event->attr.exclusive || !cpuctx->active_oncpu) 1150 cpuctx->exclusive = 0; 1151 } 1152 1153 static void 1154 group_sched_out(struct perf_event *group_event, 1155 struct perf_cpu_context *cpuctx, 1156 struct perf_event_context *ctx) 1157 { 1158 struct perf_event *event; 1159 int state = group_event->state; 1160 1161 event_sched_out(group_event, cpuctx, ctx); 1162 1163 /* 1164 * Schedule out siblings (if any): 1165 */ 1166 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1167 event_sched_out(event, cpuctx, ctx); 1168 1169 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1170 cpuctx->exclusive = 0; 1171 } 1172 1173 /* 1174 * Cross CPU call to remove a performance event 1175 * 1176 * We disable the event on the hardware level first. After that we 1177 * remove it from the context list. 1178 */ 1179 static int __perf_remove_from_context(void *info) 1180 { 1181 struct perf_event *event = info; 1182 struct perf_event_context *ctx = event->ctx; 1183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1184 1185 raw_spin_lock(&ctx->lock); 1186 event_sched_out(event, cpuctx, ctx); 1187 list_del_event(event, ctx); 1188 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1189 ctx->is_active = 0; 1190 cpuctx->task_ctx = NULL; 1191 } 1192 raw_spin_unlock(&ctx->lock); 1193 1194 return 0; 1195 } 1196 1197 1198 /* 1199 * Remove the event from a task's (or a CPU's) list of events. 1200 * 1201 * CPU events are removed with a smp call. For task events we only 1202 * call when the task is on a CPU. 1203 * 1204 * If event->ctx is a cloned context, callers must make sure that 1205 * every task struct that event->ctx->task could possibly point to 1206 * remains valid. This is OK when called from perf_release since 1207 * that only calls us on the top-level context, which can't be a clone. 1208 * When called from perf_event_exit_task, it's OK because the 1209 * context has been detached from its task. 1210 */ 1211 static void perf_remove_from_context(struct perf_event *event) 1212 { 1213 struct perf_event_context *ctx = event->ctx; 1214 struct task_struct *task = ctx->task; 1215 1216 lockdep_assert_held(&ctx->mutex); 1217 1218 if (!task) { 1219 /* 1220 * Per cpu events are removed via an smp call and 1221 * the removal is always successful. 1222 */ 1223 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1224 return; 1225 } 1226 1227 retry: 1228 if (!task_function_call(task, __perf_remove_from_context, event)) 1229 return; 1230 1231 raw_spin_lock_irq(&ctx->lock); 1232 /* 1233 * If we failed to find a running task, but find the context active now 1234 * that we've acquired the ctx->lock, retry. 1235 */ 1236 if (ctx->is_active) { 1237 raw_spin_unlock_irq(&ctx->lock); 1238 goto retry; 1239 } 1240 1241 /* 1242 * Since the task isn't running, its safe to remove the event, us 1243 * holding the ctx->lock ensures the task won't get scheduled in. 1244 */ 1245 list_del_event(event, ctx); 1246 raw_spin_unlock_irq(&ctx->lock); 1247 } 1248 1249 /* 1250 * Cross CPU call to disable a performance event 1251 */ 1252 static int __perf_event_disable(void *info) 1253 { 1254 struct perf_event *event = info; 1255 struct perf_event_context *ctx = event->ctx; 1256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1257 1258 /* 1259 * If this is a per-task event, need to check whether this 1260 * event's task is the current task on this cpu. 1261 * 1262 * Can trigger due to concurrent perf_event_context_sched_out() 1263 * flipping contexts around. 1264 */ 1265 if (ctx->task && cpuctx->task_ctx != ctx) 1266 return -EINVAL; 1267 1268 raw_spin_lock(&ctx->lock); 1269 1270 /* 1271 * If the event is on, turn it off. 1272 * If it is in error state, leave it in error state. 1273 */ 1274 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1275 update_context_time(ctx); 1276 update_cgrp_time_from_event(event); 1277 update_group_times(event); 1278 if (event == event->group_leader) 1279 group_sched_out(event, cpuctx, ctx); 1280 else 1281 event_sched_out(event, cpuctx, ctx); 1282 event->state = PERF_EVENT_STATE_OFF; 1283 } 1284 1285 raw_spin_unlock(&ctx->lock); 1286 1287 return 0; 1288 } 1289 1290 /* 1291 * Disable a event. 1292 * 1293 * If event->ctx is a cloned context, callers must make sure that 1294 * every task struct that event->ctx->task could possibly point to 1295 * remains valid. This condition is satisifed when called through 1296 * perf_event_for_each_child or perf_event_for_each because they 1297 * hold the top-level event's child_mutex, so any descendant that 1298 * goes to exit will block in sync_child_event. 1299 * When called from perf_pending_event it's OK because event->ctx 1300 * is the current context on this CPU and preemption is disabled, 1301 * hence we can't get into perf_event_task_sched_out for this context. 1302 */ 1303 void perf_event_disable(struct perf_event *event) 1304 { 1305 struct perf_event_context *ctx = event->ctx; 1306 struct task_struct *task = ctx->task; 1307 1308 if (!task) { 1309 /* 1310 * Disable the event on the cpu that it's on 1311 */ 1312 cpu_function_call(event->cpu, __perf_event_disable, event); 1313 return; 1314 } 1315 1316 retry: 1317 if (!task_function_call(task, __perf_event_disable, event)) 1318 return; 1319 1320 raw_spin_lock_irq(&ctx->lock); 1321 /* 1322 * If the event is still active, we need to retry the cross-call. 1323 */ 1324 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1325 raw_spin_unlock_irq(&ctx->lock); 1326 /* 1327 * Reload the task pointer, it might have been changed by 1328 * a concurrent perf_event_context_sched_out(). 1329 */ 1330 task = ctx->task; 1331 goto retry; 1332 } 1333 1334 /* 1335 * Since we have the lock this context can't be scheduled 1336 * in, so we can change the state safely. 1337 */ 1338 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1339 update_group_times(event); 1340 event->state = PERF_EVENT_STATE_OFF; 1341 } 1342 raw_spin_unlock_irq(&ctx->lock); 1343 } 1344 EXPORT_SYMBOL_GPL(perf_event_disable); 1345 1346 static void perf_set_shadow_time(struct perf_event *event, 1347 struct perf_event_context *ctx, 1348 u64 tstamp) 1349 { 1350 /* 1351 * use the correct time source for the time snapshot 1352 * 1353 * We could get by without this by leveraging the 1354 * fact that to get to this function, the caller 1355 * has most likely already called update_context_time() 1356 * and update_cgrp_time_xx() and thus both timestamp 1357 * are identical (or very close). Given that tstamp is, 1358 * already adjusted for cgroup, we could say that: 1359 * tstamp - ctx->timestamp 1360 * is equivalent to 1361 * tstamp - cgrp->timestamp. 1362 * 1363 * Then, in perf_output_read(), the calculation would 1364 * work with no changes because: 1365 * - event is guaranteed scheduled in 1366 * - no scheduled out in between 1367 * - thus the timestamp would be the same 1368 * 1369 * But this is a bit hairy. 1370 * 1371 * So instead, we have an explicit cgroup call to remain 1372 * within the time time source all along. We believe it 1373 * is cleaner and simpler to understand. 1374 */ 1375 if (is_cgroup_event(event)) 1376 perf_cgroup_set_shadow_time(event, tstamp); 1377 else 1378 event->shadow_ctx_time = tstamp - ctx->timestamp; 1379 } 1380 1381 #define MAX_INTERRUPTS (~0ULL) 1382 1383 static void perf_log_throttle(struct perf_event *event, int enable); 1384 1385 static int 1386 event_sched_in(struct perf_event *event, 1387 struct perf_cpu_context *cpuctx, 1388 struct perf_event_context *ctx) 1389 { 1390 u64 tstamp = perf_event_time(event); 1391 1392 if (event->state <= PERF_EVENT_STATE_OFF) 1393 return 0; 1394 1395 event->state = PERF_EVENT_STATE_ACTIVE; 1396 event->oncpu = smp_processor_id(); 1397 1398 /* 1399 * Unthrottle events, since we scheduled we might have missed several 1400 * ticks already, also for a heavily scheduling task there is little 1401 * guarantee it'll get a tick in a timely manner. 1402 */ 1403 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1404 perf_log_throttle(event, 1); 1405 event->hw.interrupts = 0; 1406 } 1407 1408 /* 1409 * The new state must be visible before we turn it on in the hardware: 1410 */ 1411 smp_wmb(); 1412 1413 if (event->pmu->add(event, PERF_EF_START)) { 1414 event->state = PERF_EVENT_STATE_INACTIVE; 1415 event->oncpu = -1; 1416 return -EAGAIN; 1417 } 1418 1419 event->tstamp_running += tstamp - event->tstamp_stopped; 1420 1421 perf_set_shadow_time(event, ctx, tstamp); 1422 1423 if (!is_software_event(event)) 1424 cpuctx->active_oncpu++; 1425 ctx->nr_active++; 1426 if (event->attr.freq && event->attr.sample_freq) 1427 ctx->nr_freq++; 1428 1429 if (event->attr.exclusive) 1430 cpuctx->exclusive = 1; 1431 1432 return 0; 1433 } 1434 1435 static int 1436 group_sched_in(struct perf_event *group_event, 1437 struct perf_cpu_context *cpuctx, 1438 struct perf_event_context *ctx) 1439 { 1440 struct perf_event *event, *partial_group = NULL; 1441 struct pmu *pmu = group_event->pmu; 1442 u64 now = ctx->time; 1443 bool simulate = false; 1444 1445 if (group_event->state == PERF_EVENT_STATE_OFF) 1446 return 0; 1447 1448 pmu->start_txn(pmu); 1449 1450 if (event_sched_in(group_event, cpuctx, ctx)) { 1451 pmu->cancel_txn(pmu); 1452 return -EAGAIN; 1453 } 1454 1455 /* 1456 * Schedule in siblings as one group (if any): 1457 */ 1458 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1459 if (event_sched_in(event, cpuctx, ctx)) { 1460 partial_group = event; 1461 goto group_error; 1462 } 1463 } 1464 1465 if (!pmu->commit_txn(pmu)) 1466 return 0; 1467 1468 group_error: 1469 /* 1470 * Groups can be scheduled in as one unit only, so undo any 1471 * partial group before returning: 1472 * The events up to the failed event are scheduled out normally, 1473 * tstamp_stopped will be updated. 1474 * 1475 * The failed events and the remaining siblings need to have 1476 * their timings updated as if they had gone thru event_sched_in() 1477 * and event_sched_out(). This is required to get consistent timings 1478 * across the group. This also takes care of the case where the group 1479 * could never be scheduled by ensuring tstamp_stopped is set to mark 1480 * the time the event was actually stopped, such that time delta 1481 * calculation in update_event_times() is correct. 1482 */ 1483 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1484 if (event == partial_group) 1485 simulate = true; 1486 1487 if (simulate) { 1488 event->tstamp_running += now - event->tstamp_stopped; 1489 event->tstamp_stopped = now; 1490 } else { 1491 event_sched_out(event, cpuctx, ctx); 1492 } 1493 } 1494 event_sched_out(group_event, cpuctx, ctx); 1495 1496 pmu->cancel_txn(pmu); 1497 1498 return -EAGAIN; 1499 } 1500 1501 /* 1502 * Work out whether we can put this event group on the CPU now. 1503 */ 1504 static int group_can_go_on(struct perf_event *event, 1505 struct perf_cpu_context *cpuctx, 1506 int can_add_hw) 1507 { 1508 /* 1509 * Groups consisting entirely of software events can always go on. 1510 */ 1511 if (event->group_flags & PERF_GROUP_SOFTWARE) 1512 return 1; 1513 /* 1514 * If an exclusive group is already on, no other hardware 1515 * events can go on. 1516 */ 1517 if (cpuctx->exclusive) 1518 return 0; 1519 /* 1520 * If this group is exclusive and there are already 1521 * events on the CPU, it can't go on. 1522 */ 1523 if (event->attr.exclusive && cpuctx->active_oncpu) 1524 return 0; 1525 /* 1526 * Otherwise, try to add it if all previous groups were able 1527 * to go on. 1528 */ 1529 return can_add_hw; 1530 } 1531 1532 static void add_event_to_ctx(struct perf_event *event, 1533 struct perf_event_context *ctx) 1534 { 1535 u64 tstamp = perf_event_time(event); 1536 1537 list_add_event(event, ctx); 1538 perf_group_attach(event); 1539 event->tstamp_enabled = tstamp; 1540 event->tstamp_running = tstamp; 1541 event->tstamp_stopped = tstamp; 1542 } 1543 1544 static void task_ctx_sched_out(struct perf_event_context *ctx); 1545 static void 1546 ctx_sched_in(struct perf_event_context *ctx, 1547 struct perf_cpu_context *cpuctx, 1548 enum event_type_t event_type, 1549 struct task_struct *task); 1550 1551 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1552 struct perf_event_context *ctx, 1553 struct task_struct *task) 1554 { 1555 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1556 if (ctx) 1557 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1558 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1559 if (ctx) 1560 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1561 } 1562 1563 /* 1564 * Cross CPU call to install and enable a performance event 1565 * 1566 * Must be called with ctx->mutex held 1567 */ 1568 static int __perf_install_in_context(void *info) 1569 { 1570 struct perf_event *event = info; 1571 struct perf_event_context *ctx = event->ctx; 1572 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1573 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1574 struct task_struct *task = current; 1575 1576 perf_ctx_lock(cpuctx, task_ctx); 1577 perf_pmu_disable(cpuctx->ctx.pmu); 1578 1579 /* 1580 * If there was an active task_ctx schedule it out. 1581 */ 1582 if (task_ctx) 1583 task_ctx_sched_out(task_ctx); 1584 1585 /* 1586 * If the context we're installing events in is not the 1587 * active task_ctx, flip them. 1588 */ 1589 if (ctx->task && task_ctx != ctx) { 1590 if (task_ctx) 1591 raw_spin_unlock(&task_ctx->lock); 1592 raw_spin_lock(&ctx->lock); 1593 task_ctx = ctx; 1594 } 1595 1596 if (task_ctx) { 1597 cpuctx->task_ctx = task_ctx; 1598 task = task_ctx->task; 1599 } 1600 1601 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1602 1603 update_context_time(ctx); 1604 /* 1605 * update cgrp time only if current cgrp 1606 * matches event->cgrp. Must be done before 1607 * calling add_event_to_ctx() 1608 */ 1609 update_cgrp_time_from_event(event); 1610 1611 add_event_to_ctx(event, ctx); 1612 1613 /* 1614 * Schedule everything back in 1615 */ 1616 perf_event_sched_in(cpuctx, task_ctx, task); 1617 1618 perf_pmu_enable(cpuctx->ctx.pmu); 1619 perf_ctx_unlock(cpuctx, task_ctx); 1620 1621 return 0; 1622 } 1623 1624 /* 1625 * Attach a performance event to a context 1626 * 1627 * First we add the event to the list with the hardware enable bit 1628 * in event->hw_config cleared. 1629 * 1630 * If the event is attached to a task which is on a CPU we use a smp 1631 * call to enable it in the task context. The task might have been 1632 * scheduled away, but we check this in the smp call again. 1633 */ 1634 static void 1635 perf_install_in_context(struct perf_event_context *ctx, 1636 struct perf_event *event, 1637 int cpu) 1638 { 1639 struct task_struct *task = ctx->task; 1640 1641 lockdep_assert_held(&ctx->mutex); 1642 1643 event->ctx = ctx; 1644 1645 if (!task) { 1646 /* 1647 * Per cpu events are installed via an smp call and 1648 * the install is always successful. 1649 */ 1650 cpu_function_call(cpu, __perf_install_in_context, event); 1651 return; 1652 } 1653 1654 retry: 1655 if (!task_function_call(task, __perf_install_in_context, event)) 1656 return; 1657 1658 raw_spin_lock_irq(&ctx->lock); 1659 /* 1660 * If we failed to find a running task, but find the context active now 1661 * that we've acquired the ctx->lock, retry. 1662 */ 1663 if (ctx->is_active) { 1664 raw_spin_unlock_irq(&ctx->lock); 1665 goto retry; 1666 } 1667 1668 /* 1669 * Since the task isn't running, its safe to add the event, us holding 1670 * the ctx->lock ensures the task won't get scheduled in. 1671 */ 1672 add_event_to_ctx(event, ctx); 1673 raw_spin_unlock_irq(&ctx->lock); 1674 } 1675 1676 /* 1677 * Put a event into inactive state and update time fields. 1678 * Enabling the leader of a group effectively enables all 1679 * the group members that aren't explicitly disabled, so we 1680 * have to update their ->tstamp_enabled also. 1681 * Note: this works for group members as well as group leaders 1682 * since the non-leader members' sibling_lists will be empty. 1683 */ 1684 static void __perf_event_mark_enabled(struct perf_event *event) 1685 { 1686 struct perf_event *sub; 1687 u64 tstamp = perf_event_time(event); 1688 1689 event->state = PERF_EVENT_STATE_INACTIVE; 1690 event->tstamp_enabled = tstamp - event->total_time_enabled; 1691 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1692 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1693 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1694 } 1695 } 1696 1697 /* 1698 * Cross CPU call to enable a performance event 1699 */ 1700 static int __perf_event_enable(void *info) 1701 { 1702 struct perf_event *event = info; 1703 struct perf_event_context *ctx = event->ctx; 1704 struct perf_event *leader = event->group_leader; 1705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1706 int err; 1707 1708 if (WARN_ON_ONCE(!ctx->is_active)) 1709 return -EINVAL; 1710 1711 raw_spin_lock(&ctx->lock); 1712 update_context_time(ctx); 1713 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1715 goto unlock; 1716 1717 /* 1718 * set current task's cgroup time reference point 1719 */ 1720 perf_cgroup_set_timestamp(current, ctx); 1721 1722 __perf_event_mark_enabled(event); 1723 1724 if (!event_filter_match(event)) { 1725 if (is_cgroup_event(event)) 1726 perf_cgroup_defer_enabled(event); 1727 goto unlock; 1728 } 1729 1730 /* 1731 * If the event is in a group and isn't the group leader, 1732 * then don't put it on unless the group is on. 1733 */ 1734 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1735 goto unlock; 1736 1737 if (!group_can_go_on(event, cpuctx, 1)) { 1738 err = -EEXIST; 1739 } else { 1740 if (event == leader) 1741 err = group_sched_in(event, cpuctx, ctx); 1742 else 1743 err = event_sched_in(event, cpuctx, ctx); 1744 } 1745 1746 if (err) { 1747 /* 1748 * If this event can't go on and it's part of a 1749 * group, then the whole group has to come off. 1750 */ 1751 if (leader != event) 1752 group_sched_out(leader, cpuctx, ctx); 1753 if (leader->attr.pinned) { 1754 update_group_times(leader); 1755 leader->state = PERF_EVENT_STATE_ERROR; 1756 } 1757 } 1758 1759 unlock: 1760 raw_spin_unlock(&ctx->lock); 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Enable a event. 1767 * 1768 * If event->ctx is a cloned context, callers must make sure that 1769 * every task struct that event->ctx->task could possibly point to 1770 * remains valid. This condition is satisfied when called through 1771 * perf_event_for_each_child or perf_event_for_each as described 1772 * for perf_event_disable. 1773 */ 1774 void perf_event_enable(struct perf_event *event) 1775 { 1776 struct perf_event_context *ctx = event->ctx; 1777 struct task_struct *task = ctx->task; 1778 1779 if (!task) { 1780 /* 1781 * Enable the event on the cpu that it's on 1782 */ 1783 cpu_function_call(event->cpu, __perf_event_enable, event); 1784 return; 1785 } 1786 1787 raw_spin_lock_irq(&ctx->lock); 1788 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1789 goto out; 1790 1791 /* 1792 * If the event is in error state, clear that first. 1793 * That way, if we see the event in error state below, we 1794 * know that it has gone back into error state, as distinct 1795 * from the task having been scheduled away before the 1796 * cross-call arrived. 1797 */ 1798 if (event->state == PERF_EVENT_STATE_ERROR) 1799 event->state = PERF_EVENT_STATE_OFF; 1800 1801 retry: 1802 if (!ctx->is_active) { 1803 __perf_event_mark_enabled(event); 1804 goto out; 1805 } 1806 1807 raw_spin_unlock_irq(&ctx->lock); 1808 1809 if (!task_function_call(task, __perf_event_enable, event)) 1810 return; 1811 1812 raw_spin_lock_irq(&ctx->lock); 1813 1814 /* 1815 * If the context is active and the event is still off, 1816 * we need to retry the cross-call. 1817 */ 1818 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1819 /* 1820 * task could have been flipped by a concurrent 1821 * perf_event_context_sched_out() 1822 */ 1823 task = ctx->task; 1824 goto retry; 1825 } 1826 1827 out: 1828 raw_spin_unlock_irq(&ctx->lock); 1829 } 1830 EXPORT_SYMBOL_GPL(perf_event_enable); 1831 1832 int perf_event_refresh(struct perf_event *event, int refresh) 1833 { 1834 /* 1835 * not supported on inherited events 1836 */ 1837 if (event->attr.inherit || !is_sampling_event(event)) 1838 return -EINVAL; 1839 1840 atomic_add(refresh, &event->event_limit); 1841 perf_event_enable(event); 1842 1843 return 0; 1844 } 1845 EXPORT_SYMBOL_GPL(perf_event_refresh); 1846 1847 static void ctx_sched_out(struct perf_event_context *ctx, 1848 struct perf_cpu_context *cpuctx, 1849 enum event_type_t event_type) 1850 { 1851 struct perf_event *event; 1852 int is_active = ctx->is_active; 1853 1854 ctx->is_active &= ~event_type; 1855 if (likely(!ctx->nr_events)) 1856 return; 1857 1858 update_context_time(ctx); 1859 update_cgrp_time_from_cpuctx(cpuctx); 1860 if (!ctx->nr_active) 1861 return; 1862 1863 perf_pmu_disable(ctx->pmu); 1864 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1865 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1866 group_sched_out(event, cpuctx, ctx); 1867 } 1868 1869 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1870 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1871 group_sched_out(event, cpuctx, ctx); 1872 } 1873 perf_pmu_enable(ctx->pmu); 1874 } 1875 1876 /* 1877 * Test whether two contexts are equivalent, i.e. whether they 1878 * have both been cloned from the same version of the same context 1879 * and they both have the same number of enabled events. 1880 * If the number of enabled events is the same, then the set 1881 * of enabled events should be the same, because these are both 1882 * inherited contexts, therefore we can't access individual events 1883 * in them directly with an fd; we can only enable/disable all 1884 * events via prctl, or enable/disable all events in a family 1885 * via ioctl, which will have the same effect on both contexts. 1886 */ 1887 static int context_equiv(struct perf_event_context *ctx1, 1888 struct perf_event_context *ctx2) 1889 { 1890 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1891 && ctx1->parent_gen == ctx2->parent_gen 1892 && !ctx1->pin_count && !ctx2->pin_count; 1893 } 1894 1895 static void __perf_event_sync_stat(struct perf_event *event, 1896 struct perf_event *next_event) 1897 { 1898 u64 value; 1899 1900 if (!event->attr.inherit_stat) 1901 return; 1902 1903 /* 1904 * Update the event value, we cannot use perf_event_read() 1905 * because we're in the middle of a context switch and have IRQs 1906 * disabled, which upsets smp_call_function_single(), however 1907 * we know the event must be on the current CPU, therefore we 1908 * don't need to use it. 1909 */ 1910 switch (event->state) { 1911 case PERF_EVENT_STATE_ACTIVE: 1912 event->pmu->read(event); 1913 /* fall-through */ 1914 1915 case PERF_EVENT_STATE_INACTIVE: 1916 update_event_times(event); 1917 break; 1918 1919 default: 1920 break; 1921 } 1922 1923 /* 1924 * In order to keep per-task stats reliable we need to flip the event 1925 * values when we flip the contexts. 1926 */ 1927 value = local64_read(&next_event->count); 1928 value = local64_xchg(&event->count, value); 1929 local64_set(&next_event->count, value); 1930 1931 swap(event->total_time_enabled, next_event->total_time_enabled); 1932 swap(event->total_time_running, next_event->total_time_running); 1933 1934 /* 1935 * Since we swizzled the values, update the user visible data too. 1936 */ 1937 perf_event_update_userpage(event); 1938 perf_event_update_userpage(next_event); 1939 } 1940 1941 #define list_next_entry(pos, member) \ 1942 list_entry(pos->member.next, typeof(*pos), member) 1943 1944 static void perf_event_sync_stat(struct perf_event_context *ctx, 1945 struct perf_event_context *next_ctx) 1946 { 1947 struct perf_event *event, *next_event; 1948 1949 if (!ctx->nr_stat) 1950 return; 1951 1952 update_context_time(ctx); 1953 1954 event = list_first_entry(&ctx->event_list, 1955 struct perf_event, event_entry); 1956 1957 next_event = list_first_entry(&next_ctx->event_list, 1958 struct perf_event, event_entry); 1959 1960 while (&event->event_entry != &ctx->event_list && 1961 &next_event->event_entry != &next_ctx->event_list) { 1962 1963 __perf_event_sync_stat(event, next_event); 1964 1965 event = list_next_entry(event, event_entry); 1966 next_event = list_next_entry(next_event, event_entry); 1967 } 1968 } 1969 1970 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1971 struct task_struct *next) 1972 { 1973 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1974 struct perf_event_context *next_ctx; 1975 struct perf_event_context *parent; 1976 struct perf_cpu_context *cpuctx; 1977 int do_switch = 1; 1978 1979 if (likely(!ctx)) 1980 return; 1981 1982 cpuctx = __get_cpu_context(ctx); 1983 if (!cpuctx->task_ctx) 1984 return; 1985 1986 rcu_read_lock(); 1987 parent = rcu_dereference(ctx->parent_ctx); 1988 next_ctx = next->perf_event_ctxp[ctxn]; 1989 if (parent && next_ctx && 1990 rcu_dereference(next_ctx->parent_ctx) == parent) { 1991 /* 1992 * Looks like the two contexts are clones, so we might be 1993 * able to optimize the context switch. We lock both 1994 * contexts and check that they are clones under the 1995 * lock (including re-checking that neither has been 1996 * uncloned in the meantime). It doesn't matter which 1997 * order we take the locks because no other cpu could 1998 * be trying to lock both of these tasks. 1999 */ 2000 raw_spin_lock(&ctx->lock); 2001 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2002 if (context_equiv(ctx, next_ctx)) { 2003 /* 2004 * XXX do we need a memory barrier of sorts 2005 * wrt to rcu_dereference() of perf_event_ctxp 2006 */ 2007 task->perf_event_ctxp[ctxn] = next_ctx; 2008 next->perf_event_ctxp[ctxn] = ctx; 2009 ctx->task = next; 2010 next_ctx->task = task; 2011 do_switch = 0; 2012 2013 perf_event_sync_stat(ctx, next_ctx); 2014 } 2015 raw_spin_unlock(&next_ctx->lock); 2016 raw_spin_unlock(&ctx->lock); 2017 } 2018 rcu_read_unlock(); 2019 2020 if (do_switch) { 2021 raw_spin_lock(&ctx->lock); 2022 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2023 cpuctx->task_ctx = NULL; 2024 raw_spin_unlock(&ctx->lock); 2025 } 2026 } 2027 2028 #define for_each_task_context_nr(ctxn) \ 2029 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2030 2031 /* 2032 * Called from scheduler to remove the events of the current task, 2033 * with interrupts disabled. 2034 * 2035 * We stop each event and update the event value in event->count. 2036 * 2037 * This does not protect us against NMI, but disable() 2038 * sets the disabled bit in the control field of event _before_ 2039 * accessing the event control register. If a NMI hits, then it will 2040 * not restart the event. 2041 */ 2042 void __perf_event_task_sched_out(struct task_struct *task, 2043 struct task_struct *next) 2044 { 2045 int ctxn; 2046 2047 for_each_task_context_nr(ctxn) 2048 perf_event_context_sched_out(task, ctxn, next); 2049 2050 /* 2051 * if cgroup events exist on this CPU, then we need 2052 * to check if we have to switch out PMU state. 2053 * cgroup event are system-wide mode only 2054 */ 2055 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2056 perf_cgroup_sched_out(task, next); 2057 } 2058 2059 static void task_ctx_sched_out(struct perf_event_context *ctx) 2060 { 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2062 2063 if (!cpuctx->task_ctx) 2064 return; 2065 2066 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2067 return; 2068 2069 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2070 cpuctx->task_ctx = NULL; 2071 } 2072 2073 /* 2074 * Called with IRQs disabled 2075 */ 2076 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2077 enum event_type_t event_type) 2078 { 2079 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2080 } 2081 2082 static void 2083 ctx_pinned_sched_in(struct perf_event_context *ctx, 2084 struct perf_cpu_context *cpuctx) 2085 { 2086 struct perf_event *event; 2087 2088 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2089 if (event->state <= PERF_EVENT_STATE_OFF) 2090 continue; 2091 if (!event_filter_match(event)) 2092 continue; 2093 2094 /* may need to reset tstamp_enabled */ 2095 if (is_cgroup_event(event)) 2096 perf_cgroup_mark_enabled(event, ctx); 2097 2098 if (group_can_go_on(event, cpuctx, 1)) 2099 group_sched_in(event, cpuctx, ctx); 2100 2101 /* 2102 * If this pinned group hasn't been scheduled, 2103 * put it in error state. 2104 */ 2105 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2106 update_group_times(event); 2107 event->state = PERF_EVENT_STATE_ERROR; 2108 } 2109 } 2110 } 2111 2112 static void 2113 ctx_flexible_sched_in(struct perf_event_context *ctx, 2114 struct perf_cpu_context *cpuctx) 2115 { 2116 struct perf_event *event; 2117 int can_add_hw = 1; 2118 2119 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2120 /* Ignore events in OFF or ERROR state */ 2121 if (event->state <= PERF_EVENT_STATE_OFF) 2122 continue; 2123 /* 2124 * Listen to the 'cpu' scheduling filter constraint 2125 * of events: 2126 */ 2127 if (!event_filter_match(event)) 2128 continue; 2129 2130 /* may need to reset tstamp_enabled */ 2131 if (is_cgroup_event(event)) 2132 perf_cgroup_mark_enabled(event, ctx); 2133 2134 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2135 if (group_sched_in(event, cpuctx, ctx)) 2136 can_add_hw = 0; 2137 } 2138 } 2139 } 2140 2141 static void 2142 ctx_sched_in(struct perf_event_context *ctx, 2143 struct perf_cpu_context *cpuctx, 2144 enum event_type_t event_type, 2145 struct task_struct *task) 2146 { 2147 u64 now; 2148 int is_active = ctx->is_active; 2149 2150 ctx->is_active |= event_type; 2151 if (likely(!ctx->nr_events)) 2152 return; 2153 2154 now = perf_clock(); 2155 ctx->timestamp = now; 2156 perf_cgroup_set_timestamp(task, ctx); 2157 /* 2158 * First go through the list and put on any pinned groups 2159 * in order to give them the best chance of going on. 2160 */ 2161 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2162 ctx_pinned_sched_in(ctx, cpuctx); 2163 2164 /* Then walk through the lower prio flexible groups */ 2165 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2166 ctx_flexible_sched_in(ctx, cpuctx); 2167 } 2168 2169 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2170 enum event_type_t event_type, 2171 struct task_struct *task) 2172 { 2173 struct perf_event_context *ctx = &cpuctx->ctx; 2174 2175 ctx_sched_in(ctx, cpuctx, event_type, task); 2176 } 2177 2178 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2179 struct task_struct *task) 2180 { 2181 struct perf_cpu_context *cpuctx; 2182 2183 cpuctx = __get_cpu_context(ctx); 2184 if (cpuctx->task_ctx == ctx) 2185 return; 2186 2187 perf_ctx_lock(cpuctx, ctx); 2188 perf_pmu_disable(ctx->pmu); 2189 /* 2190 * We want to keep the following priority order: 2191 * cpu pinned (that don't need to move), task pinned, 2192 * cpu flexible, task flexible. 2193 */ 2194 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2195 2196 if (ctx->nr_events) 2197 cpuctx->task_ctx = ctx; 2198 2199 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2200 2201 perf_pmu_enable(ctx->pmu); 2202 perf_ctx_unlock(cpuctx, ctx); 2203 2204 /* 2205 * Since these rotations are per-cpu, we need to ensure the 2206 * cpu-context we got scheduled on is actually rotating. 2207 */ 2208 perf_pmu_rotate_start(ctx->pmu); 2209 } 2210 2211 /* 2212 * When sampling the branck stack in system-wide, it may be necessary 2213 * to flush the stack on context switch. This happens when the branch 2214 * stack does not tag its entries with the pid of the current task. 2215 * Otherwise it becomes impossible to associate a branch entry with a 2216 * task. This ambiguity is more likely to appear when the branch stack 2217 * supports priv level filtering and the user sets it to monitor only 2218 * at the user level (which could be a useful measurement in system-wide 2219 * mode). In that case, the risk is high of having a branch stack with 2220 * branch from multiple tasks. Flushing may mean dropping the existing 2221 * entries or stashing them somewhere in the PMU specific code layer. 2222 * 2223 * This function provides the context switch callback to the lower code 2224 * layer. It is invoked ONLY when there is at least one system-wide context 2225 * with at least one active event using taken branch sampling. 2226 */ 2227 static void perf_branch_stack_sched_in(struct task_struct *prev, 2228 struct task_struct *task) 2229 { 2230 struct perf_cpu_context *cpuctx; 2231 struct pmu *pmu; 2232 unsigned long flags; 2233 2234 /* no need to flush branch stack if not changing task */ 2235 if (prev == task) 2236 return; 2237 2238 local_irq_save(flags); 2239 2240 rcu_read_lock(); 2241 2242 list_for_each_entry_rcu(pmu, &pmus, entry) { 2243 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2244 2245 /* 2246 * check if the context has at least one 2247 * event using PERF_SAMPLE_BRANCH_STACK 2248 */ 2249 if (cpuctx->ctx.nr_branch_stack > 0 2250 && pmu->flush_branch_stack) { 2251 2252 pmu = cpuctx->ctx.pmu; 2253 2254 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2255 2256 perf_pmu_disable(pmu); 2257 2258 pmu->flush_branch_stack(); 2259 2260 perf_pmu_enable(pmu); 2261 2262 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2263 } 2264 } 2265 2266 rcu_read_unlock(); 2267 2268 local_irq_restore(flags); 2269 } 2270 2271 /* 2272 * Called from scheduler to add the events of the current task 2273 * with interrupts disabled. 2274 * 2275 * We restore the event value and then enable it. 2276 * 2277 * This does not protect us against NMI, but enable() 2278 * sets the enabled bit in the control field of event _before_ 2279 * accessing the event control register. If a NMI hits, then it will 2280 * keep the event running. 2281 */ 2282 void __perf_event_task_sched_in(struct task_struct *prev, 2283 struct task_struct *task) 2284 { 2285 struct perf_event_context *ctx; 2286 int ctxn; 2287 2288 for_each_task_context_nr(ctxn) { 2289 ctx = task->perf_event_ctxp[ctxn]; 2290 if (likely(!ctx)) 2291 continue; 2292 2293 perf_event_context_sched_in(ctx, task); 2294 } 2295 /* 2296 * if cgroup events exist on this CPU, then we need 2297 * to check if we have to switch in PMU state. 2298 * cgroup event are system-wide mode only 2299 */ 2300 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2301 perf_cgroup_sched_in(prev, task); 2302 2303 /* check for system-wide branch_stack events */ 2304 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2305 perf_branch_stack_sched_in(prev, task); 2306 } 2307 2308 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2309 { 2310 u64 frequency = event->attr.sample_freq; 2311 u64 sec = NSEC_PER_SEC; 2312 u64 divisor, dividend; 2313 2314 int count_fls, nsec_fls, frequency_fls, sec_fls; 2315 2316 count_fls = fls64(count); 2317 nsec_fls = fls64(nsec); 2318 frequency_fls = fls64(frequency); 2319 sec_fls = 30; 2320 2321 /* 2322 * We got @count in @nsec, with a target of sample_freq HZ 2323 * the target period becomes: 2324 * 2325 * @count * 10^9 2326 * period = ------------------- 2327 * @nsec * sample_freq 2328 * 2329 */ 2330 2331 /* 2332 * Reduce accuracy by one bit such that @a and @b converge 2333 * to a similar magnitude. 2334 */ 2335 #define REDUCE_FLS(a, b) \ 2336 do { \ 2337 if (a##_fls > b##_fls) { \ 2338 a >>= 1; \ 2339 a##_fls--; \ 2340 } else { \ 2341 b >>= 1; \ 2342 b##_fls--; \ 2343 } \ 2344 } while (0) 2345 2346 /* 2347 * Reduce accuracy until either term fits in a u64, then proceed with 2348 * the other, so that finally we can do a u64/u64 division. 2349 */ 2350 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2351 REDUCE_FLS(nsec, frequency); 2352 REDUCE_FLS(sec, count); 2353 } 2354 2355 if (count_fls + sec_fls > 64) { 2356 divisor = nsec * frequency; 2357 2358 while (count_fls + sec_fls > 64) { 2359 REDUCE_FLS(count, sec); 2360 divisor >>= 1; 2361 } 2362 2363 dividend = count * sec; 2364 } else { 2365 dividend = count * sec; 2366 2367 while (nsec_fls + frequency_fls > 64) { 2368 REDUCE_FLS(nsec, frequency); 2369 dividend >>= 1; 2370 } 2371 2372 divisor = nsec * frequency; 2373 } 2374 2375 if (!divisor) 2376 return dividend; 2377 2378 return div64_u64(dividend, divisor); 2379 } 2380 2381 static DEFINE_PER_CPU(int, perf_throttled_count); 2382 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2383 2384 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2385 { 2386 struct hw_perf_event *hwc = &event->hw; 2387 s64 period, sample_period; 2388 s64 delta; 2389 2390 period = perf_calculate_period(event, nsec, count); 2391 2392 delta = (s64)(period - hwc->sample_period); 2393 delta = (delta + 7) / 8; /* low pass filter */ 2394 2395 sample_period = hwc->sample_period + delta; 2396 2397 if (!sample_period) 2398 sample_period = 1; 2399 2400 hwc->sample_period = sample_period; 2401 2402 if (local64_read(&hwc->period_left) > 8*sample_period) { 2403 if (disable) 2404 event->pmu->stop(event, PERF_EF_UPDATE); 2405 2406 local64_set(&hwc->period_left, 0); 2407 2408 if (disable) 2409 event->pmu->start(event, PERF_EF_RELOAD); 2410 } 2411 } 2412 2413 /* 2414 * combine freq adjustment with unthrottling to avoid two passes over the 2415 * events. At the same time, make sure, having freq events does not change 2416 * the rate of unthrottling as that would introduce bias. 2417 */ 2418 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2419 int needs_unthr) 2420 { 2421 struct perf_event *event; 2422 struct hw_perf_event *hwc; 2423 u64 now, period = TICK_NSEC; 2424 s64 delta; 2425 2426 /* 2427 * only need to iterate over all events iff: 2428 * - context have events in frequency mode (needs freq adjust) 2429 * - there are events to unthrottle on this cpu 2430 */ 2431 if (!(ctx->nr_freq || needs_unthr)) 2432 return; 2433 2434 raw_spin_lock(&ctx->lock); 2435 perf_pmu_disable(ctx->pmu); 2436 2437 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2438 if (event->state != PERF_EVENT_STATE_ACTIVE) 2439 continue; 2440 2441 if (!event_filter_match(event)) 2442 continue; 2443 2444 hwc = &event->hw; 2445 2446 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2447 hwc->interrupts = 0; 2448 perf_log_throttle(event, 1); 2449 event->pmu->start(event, 0); 2450 } 2451 2452 if (!event->attr.freq || !event->attr.sample_freq) 2453 continue; 2454 2455 /* 2456 * stop the event and update event->count 2457 */ 2458 event->pmu->stop(event, PERF_EF_UPDATE); 2459 2460 now = local64_read(&event->count); 2461 delta = now - hwc->freq_count_stamp; 2462 hwc->freq_count_stamp = now; 2463 2464 /* 2465 * restart the event 2466 * reload only if value has changed 2467 * we have stopped the event so tell that 2468 * to perf_adjust_period() to avoid stopping it 2469 * twice. 2470 */ 2471 if (delta > 0) 2472 perf_adjust_period(event, period, delta, false); 2473 2474 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2475 } 2476 2477 perf_pmu_enable(ctx->pmu); 2478 raw_spin_unlock(&ctx->lock); 2479 } 2480 2481 /* 2482 * Round-robin a context's events: 2483 */ 2484 static void rotate_ctx(struct perf_event_context *ctx) 2485 { 2486 /* 2487 * Rotate the first entry last of non-pinned groups. Rotation might be 2488 * disabled by the inheritance code. 2489 */ 2490 if (!ctx->rotate_disable) 2491 list_rotate_left(&ctx->flexible_groups); 2492 } 2493 2494 /* 2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2496 * because they're strictly cpu affine and rotate_start is called with IRQs 2497 * disabled, while rotate_context is called from IRQ context. 2498 */ 2499 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2500 { 2501 struct perf_event_context *ctx = NULL; 2502 int rotate = 0, remove = 1; 2503 2504 if (cpuctx->ctx.nr_events) { 2505 remove = 0; 2506 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2507 rotate = 1; 2508 } 2509 2510 ctx = cpuctx->task_ctx; 2511 if (ctx && ctx->nr_events) { 2512 remove = 0; 2513 if (ctx->nr_events != ctx->nr_active) 2514 rotate = 1; 2515 } 2516 2517 if (!rotate) 2518 goto done; 2519 2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2521 perf_pmu_disable(cpuctx->ctx.pmu); 2522 2523 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2524 if (ctx) 2525 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2526 2527 rotate_ctx(&cpuctx->ctx); 2528 if (ctx) 2529 rotate_ctx(ctx); 2530 2531 perf_event_sched_in(cpuctx, ctx, current); 2532 2533 perf_pmu_enable(cpuctx->ctx.pmu); 2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2535 done: 2536 if (remove) 2537 list_del_init(&cpuctx->rotation_list); 2538 } 2539 2540 void perf_event_task_tick(void) 2541 { 2542 struct list_head *head = &__get_cpu_var(rotation_list); 2543 struct perf_cpu_context *cpuctx, *tmp; 2544 struct perf_event_context *ctx; 2545 int throttled; 2546 2547 WARN_ON(!irqs_disabled()); 2548 2549 __this_cpu_inc(perf_throttled_seq); 2550 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2551 2552 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2553 ctx = &cpuctx->ctx; 2554 perf_adjust_freq_unthr_context(ctx, throttled); 2555 2556 ctx = cpuctx->task_ctx; 2557 if (ctx) 2558 perf_adjust_freq_unthr_context(ctx, throttled); 2559 2560 if (cpuctx->jiffies_interval == 1 || 2561 !(jiffies % cpuctx->jiffies_interval)) 2562 perf_rotate_context(cpuctx); 2563 } 2564 } 2565 2566 static int event_enable_on_exec(struct perf_event *event, 2567 struct perf_event_context *ctx) 2568 { 2569 if (!event->attr.enable_on_exec) 2570 return 0; 2571 2572 event->attr.enable_on_exec = 0; 2573 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2574 return 0; 2575 2576 __perf_event_mark_enabled(event); 2577 2578 return 1; 2579 } 2580 2581 /* 2582 * Enable all of a task's events that have been marked enable-on-exec. 2583 * This expects task == current. 2584 */ 2585 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2586 { 2587 struct perf_event *event; 2588 unsigned long flags; 2589 int enabled = 0; 2590 int ret; 2591 2592 local_irq_save(flags); 2593 if (!ctx || !ctx->nr_events) 2594 goto out; 2595 2596 /* 2597 * We must ctxsw out cgroup events to avoid conflict 2598 * when invoking perf_task_event_sched_in() later on 2599 * in this function. Otherwise we end up trying to 2600 * ctxswin cgroup events which are already scheduled 2601 * in. 2602 */ 2603 perf_cgroup_sched_out(current, NULL); 2604 2605 raw_spin_lock(&ctx->lock); 2606 task_ctx_sched_out(ctx); 2607 2608 list_for_each_entry(event, &ctx->event_list, event_entry) { 2609 ret = event_enable_on_exec(event, ctx); 2610 if (ret) 2611 enabled = 1; 2612 } 2613 2614 /* 2615 * Unclone this context if we enabled any event. 2616 */ 2617 if (enabled) 2618 unclone_ctx(ctx); 2619 2620 raw_spin_unlock(&ctx->lock); 2621 2622 /* 2623 * Also calls ctxswin for cgroup events, if any: 2624 */ 2625 perf_event_context_sched_in(ctx, ctx->task); 2626 out: 2627 local_irq_restore(flags); 2628 } 2629 2630 /* 2631 * Cross CPU call to read the hardware event 2632 */ 2633 static void __perf_event_read(void *info) 2634 { 2635 struct perf_event *event = info; 2636 struct perf_event_context *ctx = event->ctx; 2637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2638 2639 /* 2640 * If this is a task context, we need to check whether it is 2641 * the current task context of this cpu. If not it has been 2642 * scheduled out before the smp call arrived. In that case 2643 * event->count would have been updated to a recent sample 2644 * when the event was scheduled out. 2645 */ 2646 if (ctx->task && cpuctx->task_ctx != ctx) 2647 return; 2648 2649 raw_spin_lock(&ctx->lock); 2650 if (ctx->is_active) { 2651 update_context_time(ctx); 2652 update_cgrp_time_from_event(event); 2653 } 2654 update_event_times(event); 2655 if (event->state == PERF_EVENT_STATE_ACTIVE) 2656 event->pmu->read(event); 2657 raw_spin_unlock(&ctx->lock); 2658 } 2659 2660 static inline u64 perf_event_count(struct perf_event *event) 2661 { 2662 return local64_read(&event->count) + atomic64_read(&event->child_count); 2663 } 2664 2665 static u64 perf_event_read(struct perf_event *event) 2666 { 2667 /* 2668 * If event is enabled and currently active on a CPU, update the 2669 * value in the event structure: 2670 */ 2671 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2672 smp_call_function_single(event->oncpu, 2673 __perf_event_read, event, 1); 2674 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2675 struct perf_event_context *ctx = event->ctx; 2676 unsigned long flags; 2677 2678 raw_spin_lock_irqsave(&ctx->lock, flags); 2679 /* 2680 * may read while context is not active 2681 * (e.g., thread is blocked), in that case 2682 * we cannot update context time 2683 */ 2684 if (ctx->is_active) { 2685 update_context_time(ctx); 2686 update_cgrp_time_from_event(event); 2687 } 2688 update_event_times(event); 2689 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2690 } 2691 2692 return perf_event_count(event); 2693 } 2694 2695 /* 2696 * Initialize the perf_event context in a task_struct: 2697 */ 2698 static void __perf_event_init_context(struct perf_event_context *ctx) 2699 { 2700 raw_spin_lock_init(&ctx->lock); 2701 mutex_init(&ctx->mutex); 2702 INIT_LIST_HEAD(&ctx->pinned_groups); 2703 INIT_LIST_HEAD(&ctx->flexible_groups); 2704 INIT_LIST_HEAD(&ctx->event_list); 2705 atomic_set(&ctx->refcount, 1); 2706 } 2707 2708 static struct perf_event_context * 2709 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2710 { 2711 struct perf_event_context *ctx; 2712 2713 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2714 if (!ctx) 2715 return NULL; 2716 2717 __perf_event_init_context(ctx); 2718 if (task) { 2719 ctx->task = task; 2720 get_task_struct(task); 2721 } 2722 ctx->pmu = pmu; 2723 2724 return ctx; 2725 } 2726 2727 static struct task_struct * 2728 find_lively_task_by_vpid(pid_t vpid) 2729 { 2730 struct task_struct *task; 2731 int err; 2732 2733 rcu_read_lock(); 2734 if (!vpid) 2735 task = current; 2736 else 2737 task = find_task_by_vpid(vpid); 2738 if (task) 2739 get_task_struct(task); 2740 rcu_read_unlock(); 2741 2742 if (!task) 2743 return ERR_PTR(-ESRCH); 2744 2745 /* Reuse ptrace permission checks for now. */ 2746 err = -EACCES; 2747 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2748 goto errout; 2749 2750 return task; 2751 errout: 2752 put_task_struct(task); 2753 return ERR_PTR(err); 2754 2755 } 2756 2757 /* 2758 * Returns a matching context with refcount and pincount. 2759 */ 2760 static struct perf_event_context * 2761 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2762 { 2763 struct perf_event_context *ctx; 2764 struct perf_cpu_context *cpuctx; 2765 unsigned long flags; 2766 int ctxn, err; 2767 2768 if (!task) { 2769 /* Must be root to operate on a CPU event: */ 2770 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2771 return ERR_PTR(-EACCES); 2772 2773 /* 2774 * We could be clever and allow to attach a event to an 2775 * offline CPU and activate it when the CPU comes up, but 2776 * that's for later. 2777 */ 2778 if (!cpu_online(cpu)) 2779 return ERR_PTR(-ENODEV); 2780 2781 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2782 ctx = &cpuctx->ctx; 2783 get_ctx(ctx); 2784 ++ctx->pin_count; 2785 2786 return ctx; 2787 } 2788 2789 err = -EINVAL; 2790 ctxn = pmu->task_ctx_nr; 2791 if (ctxn < 0) 2792 goto errout; 2793 2794 retry: 2795 ctx = perf_lock_task_context(task, ctxn, &flags); 2796 if (ctx) { 2797 unclone_ctx(ctx); 2798 ++ctx->pin_count; 2799 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2800 } else { 2801 ctx = alloc_perf_context(pmu, task); 2802 err = -ENOMEM; 2803 if (!ctx) 2804 goto errout; 2805 2806 err = 0; 2807 mutex_lock(&task->perf_event_mutex); 2808 /* 2809 * If it has already passed perf_event_exit_task(). 2810 * we must see PF_EXITING, it takes this mutex too. 2811 */ 2812 if (task->flags & PF_EXITING) 2813 err = -ESRCH; 2814 else if (task->perf_event_ctxp[ctxn]) 2815 err = -EAGAIN; 2816 else { 2817 get_ctx(ctx); 2818 ++ctx->pin_count; 2819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2820 } 2821 mutex_unlock(&task->perf_event_mutex); 2822 2823 if (unlikely(err)) { 2824 put_ctx(ctx); 2825 2826 if (err == -EAGAIN) 2827 goto retry; 2828 goto errout; 2829 } 2830 } 2831 2832 return ctx; 2833 2834 errout: 2835 return ERR_PTR(err); 2836 } 2837 2838 static void perf_event_free_filter(struct perf_event *event); 2839 2840 static void free_event_rcu(struct rcu_head *head) 2841 { 2842 struct perf_event *event; 2843 2844 event = container_of(head, struct perf_event, rcu_head); 2845 if (event->ns) 2846 put_pid_ns(event->ns); 2847 perf_event_free_filter(event); 2848 kfree(event); 2849 } 2850 2851 static void ring_buffer_put(struct ring_buffer *rb); 2852 2853 static void free_event(struct perf_event *event) 2854 { 2855 irq_work_sync(&event->pending); 2856 2857 if (!event->parent) { 2858 if (event->attach_state & PERF_ATTACH_TASK) 2859 static_key_slow_dec_deferred(&perf_sched_events); 2860 if (event->attr.mmap || event->attr.mmap_data) 2861 atomic_dec(&nr_mmap_events); 2862 if (event->attr.comm) 2863 atomic_dec(&nr_comm_events); 2864 if (event->attr.task) 2865 atomic_dec(&nr_task_events); 2866 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2867 put_callchain_buffers(); 2868 if (is_cgroup_event(event)) { 2869 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2870 static_key_slow_dec_deferred(&perf_sched_events); 2871 } 2872 2873 if (has_branch_stack(event)) { 2874 static_key_slow_dec_deferred(&perf_sched_events); 2875 /* is system-wide event */ 2876 if (!(event->attach_state & PERF_ATTACH_TASK)) 2877 atomic_dec(&per_cpu(perf_branch_stack_events, 2878 event->cpu)); 2879 } 2880 } 2881 2882 if (event->rb) { 2883 ring_buffer_put(event->rb); 2884 event->rb = NULL; 2885 } 2886 2887 if (is_cgroup_event(event)) 2888 perf_detach_cgroup(event); 2889 2890 if (event->destroy) 2891 event->destroy(event); 2892 2893 if (event->ctx) 2894 put_ctx(event->ctx); 2895 2896 call_rcu(&event->rcu_head, free_event_rcu); 2897 } 2898 2899 int perf_event_release_kernel(struct perf_event *event) 2900 { 2901 struct perf_event_context *ctx = event->ctx; 2902 2903 WARN_ON_ONCE(ctx->parent_ctx); 2904 /* 2905 * There are two ways this annotation is useful: 2906 * 2907 * 1) there is a lock recursion from perf_event_exit_task 2908 * see the comment there. 2909 * 2910 * 2) there is a lock-inversion with mmap_sem through 2911 * perf_event_read_group(), which takes faults while 2912 * holding ctx->mutex, however this is called after 2913 * the last filedesc died, so there is no possibility 2914 * to trigger the AB-BA case. 2915 */ 2916 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2917 raw_spin_lock_irq(&ctx->lock); 2918 perf_group_detach(event); 2919 raw_spin_unlock_irq(&ctx->lock); 2920 perf_remove_from_context(event); 2921 mutex_unlock(&ctx->mutex); 2922 2923 free_event(event); 2924 2925 return 0; 2926 } 2927 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2928 2929 /* 2930 * Called when the last reference to the file is gone. 2931 */ 2932 static int perf_release(struct inode *inode, struct file *file) 2933 { 2934 struct perf_event *event = file->private_data; 2935 struct task_struct *owner; 2936 2937 file->private_data = NULL; 2938 2939 rcu_read_lock(); 2940 owner = ACCESS_ONCE(event->owner); 2941 /* 2942 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2943 * !owner it means the list deletion is complete and we can indeed 2944 * free this event, otherwise we need to serialize on 2945 * owner->perf_event_mutex. 2946 */ 2947 smp_read_barrier_depends(); 2948 if (owner) { 2949 /* 2950 * Since delayed_put_task_struct() also drops the last 2951 * task reference we can safely take a new reference 2952 * while holding the rcu_read_lock(). 2953 */ 2954 get_task_struct(owner); 2955 } 2956 rcu_read_unlock(); 2957 2958 if (owner) { 2959 mutex_lock(&owner->perf_event_mutex); 2960 /* 2961 * We have to re-check the event->owner field, if it is cleared 2962 * we raced with perf_event_exit_task(), acquiring the mutex 2963 * ensured they're done, and we can proceed with freeing the 2964 * event. 2965 */ 2966 if (event->owner) 2967 list_del_init(&event->owner_entry); 2968 mutex_unlock(&owner->perf_event_mutex); 2969 put_task_struct(owner); 2970 } 2971 2972 return perf_event_release_kernel(event); 2973 } 2974 2975 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2976 { 2977 struct perf_event *child; 2978 u64 total = 0; 2979 2980 *enabled = 0; 2981 *running = 0; 2982 2983 mutex_lock(&event->child_mutex); 2984 total += perf_event_read(event); 2985 *enabled += event->total_time_enabled + 2986 atomic64_read(&event->child_total_time_enabled); 2987 *running += event->total_time_running + 2988 atomic64_read(&event->child_total_time_running); 2989 2990 list_for_each_entry(child, &event->child_list, child_list) { 2991 total += perf_event_read(child); 2992 *enabled += child->total_time_enabled; 2993 *running += child->total_time_running; 2994 } 2995 mutex_unlock(&event->child_mutex); 2996 2997 return total; 2998 } 2999 EXPORT_SYMBOL_GPL(perf_event_read_value); 3000 3001 static int perf_event_read_group(struct perf_event *event, 3002 u64 read_format, char __user *buf) 3003 { 3004 struct perf_event *leader = event->group_leader, *sub; 3005 int n = 0, size = 0, ret = -EFAULT; 3006 struct perf_event_context *ctx = leader->ctx; 3007 u64 values[5]; 3008 u64 count, enabled, running; 3009 3010 mutex_lock(&ctx->mutex); 3011 count = perf_event_read_value(leader, &enabled, &running); 3012 3013 values[n++] = 1 + leader->nr_siblings; 3014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3015 values[n++] = enabled; 3016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3017 values[n++] = running; 3018 values[n++] = count; 3019 if (read_format & PERF_FORMAT_ID) 3020 values[n++] = primary_event_id(leader); 3021 3022 size = n * sizeof(u64); 3023 3024 if (copy_to_user(buf, values, size)) 3025 goto unlock; 3026 3027 ret = size; 3028 3029 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3030 n = 0; 3031 3032 values[n++] = perf_event_read_value(sub, &enabled, &running); 3033 if (read_format & PERF_FORMAT_ID) 3034 values[n++] = primary_event_id(sub); 3035 3036 size = n * sizeof(u64); 3037 3038 if (copy_to_user(buf + ret, values, size)) { 3039 ret = -EFAULT; 3040 goto unlock; 3041 } 3042 3043 ret += size; 3044 } 3045 unlock: 3046 mutex_unlock(&ctx->mutex); 3047 3048 return ret; 3049 } 3050 3051 static int perf_event_read_one(struct perf_event *event, 3052 u64 read_format, char __user *buf) 3053 { 3054 u64 enabled, running; 3055 u64 values[4]; 3056 int n = 0; 3057 3058 values[n++] = perf_event_read_value(event, &enabled, &running); 3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3060 values[n++] = enabled; 3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3062 values[n++] = running; 3063 if (read_format & PERF_FORMAT_ID) 3064 values[n++] = primary_event_id(event); 3065 3066 if (copy_to_user(buf, values, n * sizeof(u64))) 3067 return -EFAULT; 3068 3069 return n * sizeof(u64); 3070 } 3071 3072 /* 3073 * Read the performance event - simple non blocking version for now 3074 */ 3075 static ssize_t 3076 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3077 { 3078 u64 read_format = event->attr.read_format; 3079 int ret; 3080 3081 /* 3082 * Return end-of-file for a read on a event that is in 3083 * error state (i.e. because it was pinned but it couldn't be 3084 * scheduled on to the CPU at some point). 3085 */ 3086 if (event->state == PERF_EVENT_STATE_ERROR) 3087 return 0; 3088 3089 if (count < event->read_size) 3090 return -ENOSPC; 3091 3092 WARN_ON_ONCE(event->ctx->parent_ctx); 3093 if (read_format & PERF_FORMAT_GROUP) 3094 ret = perf_event_read_group(event, read_format, buf); 3095 else 3096 ret = perf_event_read_one(event, read_format, buf); 3097 3098 return ret; 3099 } 3100 3101 static ssize_t 3102 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3103 { 3104 struct perf_event *event = file->private_data; 3105 3106 return perf_read_hw(event, buf, count); 3107 } 3108 3109 static unsigned int perf_poll(struct file *file, poll_table *wait) 3110 { 3111 struct perf_event *event = file->private_data; 3112 struct ring_buffer *rb; 3113 unsigned int events = POLL_HUP; 3114 3115 /* 3116 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3117 * grabs the rb reference but perf_event_set_output() overrides it. 3118 * Here is the timeline for two threads T1, T2: 3119 * t0: T1, rb = rcu_dereference(event->rb) 3120 * t1: T2, old_rb = event->rb 3121 * t2: T2, event->rb = new rb 3122 * t3: T2, ring_buffer_detach(old_rb) 3123 * t4: T1, ring_buffer_attach(rb1) 3124 * t5: T1, poll_wait(event->waitq) 3125 * 3126 * To avoid this problem, we grab mmap_mutex in perf_poll() 3127 * thereby ensuring that the assignment of the new ring buffer 3128 * and the detachment of the old buffer appear atomic to perf_poll() 3129 */ 3130 mutex_lock(&event->mmap_mutex); 3131 3132 rcu_read_lock(); 3133 rb = rcu_dereference(event->rb); 3134 if (rb) { 3135 ring_buffer_attach(event, rb); 3136 events = atomic_xchg(&rb->poll, 0); 3137 } 3138 rcu_read_unlock(); 3139 3140 mutex_unlock(&event->mmap_mutex); 3141 3142 poll_wait(file, &event->waitq, wait); 3143 3144 return events; 3145 } 3146 3147 static void perf_event_reset(struct perf_event *event) 3148 { 3149 (void)perf_event_read(event); 3150 local64_set(&event->count, 0); 3151 perf_event_update_userpage(event); 3152 } 3153 3154 /* 3155 * Holding the top-level event's child_mutex means that any 3156 * descendant process that has inherited this event will block 3157 * in sync_child_event if it goes to exit, thus satisfying the 3158 * task existence requirements of perf_event_enable/disable. 3159 */ 3160 static void perf_event_for_each_child(struct perf_event *event, 3161 void (*func)(struct perf_event *)) 3162 { 3163 struct perf_event *child; 3164 3165 WARN_ON_ONCE(event->ctx->parent_ctx); 3166 mutex_lock(&event->child_mutex); 3167 func(event); 3168 list_for_each_entry(child, &event->child_list, child_list) 3169 func(child); 3170 mutex_unlock(&event->child_mutex); 3171 } 3172 3173 static void perf_event_for_each(struct perf_event *event, 3174 void (*func)(struct perf_event *)) 3175 { 3176 struct perf_event_context *ctx = event->ctx; 3177 struct perf_event *sibling; 3178 3179 WARN_ON_ONCE(ctx->parent_ctx); 3180 mutex_lock(&ctx->mutex); 3181 event = event->group_leader; 3182 3183 perf_event_for_each_child(event, func); 3184 func(event); 3185 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3186 perf_event_for_each_child(sibling, func); 3187 mutex_unlock(&ctx->mutex); 3188 } 3189 3190 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3191 { 3192 struct perf_event_context *ctx = event->ctx; 3193 int ret = 0; 3194 u64 value; 3195 3196 if (!is_sampling_event(event)) 3197 return -EINVAL; 3198 3199 if (copy_from_user(&value, arg, sizeof(value))) 3200 return -EFAULT; 3201 3202 if (!value) 3203 return -EINVAL; 3204 3205 raw_spin_lock_irq(&ctx->lock); 3206 if (event->attr.freq) { 3207 if (value > sysctl_perf_event_sample_rate) { 3208 ret = -EINVAL; 3209 goto unlock; 3210 } 3211 3212 event->attr.sample_freq = value; 3213 } else { 3214 event->attr.sample_period = value; 3215 event->hw.sample_period = value; 3216 } 3217 unlock: 3218 raw_spin_unlock_irq(&ctx->lock); 3219 3220 return ret; 3221 } 3222 3223 static const struct file_operations perf_fops; 3224 3225 static struct perf_event *perf_fget_light(int fd, int *fput_needed) 3226 { 3227 struct file *file; 3228 3229 file = fget_light(fd, fput_needed); 3230 if (!file) 3231 return ERR_PTR(-EBADF); 3232 3233 if (file->f_op != &perf_fops) { 3234 fput_light(file, *fput_needed); 3235 *fput_needed = 0; 3236 return ERR_PTR(-EBADF); 3237 } 3238 3239 return file->private_data; 3240 } 3241 3242 static int perf_event_set_output(struct perf_event *event, 3243 struct perf_event *output_event); 3244 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3245 3246 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3247 { 3248 struct perf_event *event = file->private_data; 3249 void (*func)(struct perf_event *); 3250 u32 flags = arg; 3251 3252 switch (cmd) { 3253 case PERF_EVENT_IOC_ENABLE: 3254 func = perf_event_enable; 3255 break; 3256 case PERF_EVENT_IOC_DISABLE: 3257 func = perf_event_disable; 3258 break; 3259 case PERF_EVENT_IOC_RESET: 3260 func = perf_event_reset; 3261 break; 3262 3263 case PERF_EVENT_IOC_REFRESH: 3264 return perf_event_refresh(event, arg); 3265 3266 case PERF_EVENT_IOC_PERIOD: 3267 return perf_event_period(event, (u64 __user *)arg); 3268 3269 case PERF_EVENT_IOC_SET_OUTPUT: 3270 { 3271 struct perf_event *output_event = NULL; 3272 int fput_needed = 0; 3273 int ret; 3274 3275 if (arg != -1) { 3276 output_event = perf_fget_light(arg, &fput_needed); 3277 if (IS_ERR(output_event)) 3278 return PTR_ERR(output_event); 3279 } 3280 3281 ret = perf_event_set_output(event, output_event); 3282 if (output_event) 3283 fput_light(output_event->filp, fput_needed); 3284 3285 return ret; 3286 } 3287 3288 case PERF_EVENT_IOC_SET_FILTER: 3289 return perf_event_set_filter(event, (void __user *)arg); 3290 3291 default: 3292 return -ENOTTY; 3293 } 3294 3295 if (flags & PERF_IOC_FLAG_GROUP) 3296 perf_event_for_each(event, func); 3297 else 3298 perf_event_for_each_child(event, func); 3299 3300 return 0; 3301 } 3302 3303 int perf_event_task_enable(void) 3304 { 3305 struct perf_event *event; 3306 3307 mutex_lock(¤t->perf_event_mutex); 3308 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3309 perf_event_for_each_child(event, perf_event_enable); 3310 mutex_unlock(¤t->perf_event_mutex); 3311 3312 return 0; 3313 } 3314 3315 int perf_event_task_disable(void) 3316 { 3317 struct perf_event *event; 3318 3319 mutex_lock(¤t->perf_event_mutex); 3320 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3321 perf_event_for_each_child(event, perf_event_disable); 3322 mutex_unlock(¤t->perf_event_mutex); 3323 3324 return 0; 3325 } 3326 3327 static int perf_event_index(struct perf_event *event) 3328 { 3329 if (event->hw.state & PERF_HES_STOPPED) 3330 return 0; 3331 3332 if (event->state != PERF_EVENT_STATE_ACTIVE) 3333 return 0; 3334 3335 return event->pmu->event_idx(event); 3336 } 3337 3338 static void calc_timer_values(struct perf_event *event, 3339 u64 *now, 3340 u64 *enabled, 3341 u64 *running) 3342 { 3343 u64 ctx_time; 3344 3345 *now = perf_clock(); 3346 ctx_time = event->shadow_ctx_time + *now; 3347 *enabled = ctx_time - event->tstamp_enabled; 3348 *running = ctx_time - event->tstamp_running; 3349 } 3350 3351 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3352 { 3353 } 3354 3355 /* 3356 * Callers need to ensure there can be no nesting of this function, otherwise 3357 * the seqlock logic goes bad. We can not serialize this because the arch 3358 * code calls this from NMI context. 3359 */ 3360 void perf_event_update_userpage(struct perf_event *event) 3361 { 3362 struct perf_event_mmap_page *userpg; 3363 struct ring_buffer *rb; 3364 u64 enabled, running, now; 3365 3366 rcu_read_lock(); 3367 /* 3368 * compute total_time_enabled, total_time_running 3369 * based on snapshot values taken when the event 3370 * was last scheduled in. 3371 * 3372 * we cannot simply called update_context_time() 3373 * because of locking issue as we can be called in 3374 * NMI context 3375 */ 3376 calc_timer_values(event, &now, &enabled, &running); 3377 rb = rcu_dereference(event->rb); 3378 if (!rb) 3379 goto unlock; 3380 3381 userpg = rb->user_page; 3382 3383 /* 3384 * Disable preemption so as to not let the corresponding user-space 3385 * spin too long if we get preempted. 3386 */ 3387 preempt_disable(); 3388 ++userpg->lock; 3389 barrier(); 3390 userpg->index = perf_event_index(event); 3391 userpg->offset = perf_event_count(event); 3392 if (userpg->index) 3393 userpg->offset -= local64_read(&event->hw.prev_count); 3394 3395 userpg->time_enabled = enabled + 3396 atomic64_read(&event->child_total_time_enabled); 3397 3398 userpg->time_running = running + 3399 atomic64_read(&event->child_total_time_running); 3400 3401 arch_perf_update_userpage(userpg, now); 3402 3403 barrier(); 3404 ++userpg->lock; 3405 preempt_enable(); 3406 unlock: 3407 rcu_read_unlock(); 3408 } 3409 3410 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3411 { 3412 struct perf_event *event = vma->vm_file->private_data; 3413 struct ring_buffer *rb; 3414 int ret = VM_FAULT_SIGBUS; 3415 3416 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3417 if (vmf->pgoff == 0) 3418 ret = 0; 3419 return ret; 3420 } 3421 3422 rcu_read_lock(); 3423 rb = rcu_dereference(event->rb); 3424 if (!rb) 3425 goto unlock; 3426 3427 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3428 goto unlock; 3429 3430 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3431 if (!vmf->page) 3432 goto unlock; 3433 3434 get_page(vmf->page); 3435 vmf->page->mapping = vma->vm_file->f_mapping; 3436 vmf->page->index = vmf->pgoff; 3437 3438 ret = 0; 3439 unlock: 3440 rcu_read_unlock(); 3441 3442 return ret; 3443 } 3444 3445 static void ring_buffer_attach(struct perf_event *event, 3446 struct ring_buffer *rb) 3447 { 3448 unsigned long flags; 3449 3450 if (!list_empty(&event->rb_entry)) 3451 return; 3452 3453 spin_lock_irqsave(&rb->event_lock, flags); 3454 if (!list_empty(&event->rb_entry)) 3455 goto unlock; 3456 3457 list_add(&event->rb_entry, &rb->event_list); 3458 unlock: 3459 spin_unlock_irqrestore(&rb->event_lock, flags); 3460 } 3461 3462 static void ring_buffer_detach(struct perf_event *event, 3463 struct ring_buffer *rb) 3464 { 3465 unsigned long flags; 3466 3467 if (list_empty(&event->rb_entry)) 3468 return; 3469 3470 spin_lock_irqsave(&rb->event_lock, flags); 3471 list_del_init(&event->rb_entry); 3472 wake_up_all(&event->waitq); 3473 spin_unlock_irqrestore(&rb->event_lock, flags); 3474 } 3475 3476 static void ring_buffer_wakeup(struct perf_event *event) 3477 { 3478 struct ring_buffer *rb; 3479 3480 rcu_read_lock(); 3481 rb = rcu_dereference(event->rb); 3482 if (!rb) 3483 goto unlock; 3484 3485 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3486 wake_up_all(&event->waitq); 3487 3488 unlock: 3489 rcu_read_unlock(); 3490 } 3491 3492 static void rb_free_rcu(struct rcu_head *rcu_head) 3493 { 3494 struct ring_buffer *rb; 3495 3496 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3497 rb_free(rb); 3498 } 3499 3500 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3501 { 3502 struct ring_buffer *rb; 3503 3504 rcu_read_lock(); 3505 rb = rcu_dereference(event->rb); 3506 if (rb) { 3507 if (!atomic_inc_not_zero(&rb->refcount)) 3508 rb = NULL; 3509 } 3510 rcu_read_unlock(); 3511 3512 return rb; 3513 } 3514 3515 static void ring_buffer_put(struct ring_buffer *rb) 3516 { 3517 struct perf_event *event, *n; 3518 unsigned long flags; 3519 3520 if (!atomic_dec_and_test(&rb->refcount)) 3521 return; 3522 3523 spin_lock_irqsave(&rb->event_lock, flags); 3524 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3525 list_del_init(&event->rb_entry); 3526 wake_up_all(&event->waitq); 3527 } 3528 spin_unlock_irqrestore(&rb->event_lock, flags); 3529 3530 call_rcu(&rb->rcu_head, rb_free_rcu); 3531 } 3532 3533 static void perf_mmap_open(struct vm_area_struct *vma) 3534 { 3535 struct perf_event *event = vma->vm_file->private_data; 3536 3537 atomic_inc(&event->mmap_count); 3538 } 3539 3540 static void perf_mmap_close(struct vm_area_struct *vma) 3541 { 3542 struct perf_event *event = vma->vm_file->private_data; 3543 3544 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3545 unsigned long size = perf_data_size(event->rb); 3546 struct user_struct *user = event->mmap_user; 3547 struct ring_buffer *rb = event->rb; 3548 3549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3550 vma->vm_mm->pinned_vm -= event->mmap_locked; 3551 rcu_assign_pointer(event->rb, NULL); 3552 ring_buffer_detach(event, rb); 3553 mutex_unlock(&event->mmap_mutex); 3554 3555 ring_buffer_put(rb); 3556 free_uid(user); 3557 } 3558 } 3559 3560 static const struct vm_operations_struct perf_mmap_vmops = { 3561 .open = perf_mmap_open, 3562 .close = perf_mmap_close, 3563 .fault = perf_mmap_fault, 3564 .page_mkwrite = perf_mmap_fault, 3565 }; 3566 3567 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3568 { 3569 struct perf_event *event = file->private_data; 3570 unsigned long user_locked, user_lock_limit; 3571 struct user_struct *user = current_user(); 3572 unsigned long locked, lock_limit; 3573 struct ring_buffer *rb; 3574 unsigned long vma_size; 3575 unsigned long nr_pages; 3576 long user_extra, extra; 3577 int ret = 0, flags = 0; 3578 3579 /* 3580 * Don't allow mmap() of inherited per-task counters. This would 3581 * create a performance issue due to all children writing to the 3582 * same rb. 3583 */ 3584 if (event->cpu == -1 && event->attr.inherit) 3585 return -EINVAL; 3586 3587 if (!(vma->vm_flags & VM_SHARED)) 3588 return -EINVAL; 3589 3590 vma_size = vma->vm_end - vma->vm_start; 3591 nr_pages = (vma_size / PAGE_SIZE) - 1; 3592 3593 /* 3594 * If we have rb pages ensure they're a power-of-two number, so we 3595 * can do bitmasks instead of modulo. 3596 */ 3597 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3598 return -EINVAL; 3599 3600 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3601 return -EINVAL; 3602 3603 if (vma->vm_pgoff != 0) 3604 return -EINVAL; 3605 3606 WARN_ON_ONCE(event->ctx->parent_ctx); 3607 mutex_lock(&event->mmap_mutex); 3608 if (event->rb) { 3609 if (event->rb->nr_pages == nr_pages) 3610 atomic_inc(&event->rb->refcount); 3611 else 3612 ret = -EINVAL; 3613 goto unlock; 3614 } 3615 3616 user_extra = nr_pages + 1; 3617 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3618 3619 /* 3620 * Increase the limit linearly with more CPUs: 3621 */ 3622 user_lock_limit *= num_online_cpus(); 3623 3624 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3625 3626 extra = 0; 3627 if (user_locked > user_lock_limit) 3628 extra = user_locked - user_lock_limit; 3629 3630 lock_limit = rlimit(RLIMIT_MEMLOCK); 3631 lock_limit >>= PAGE_SHIFT; 3632 locked = vma->vm_mm->pinned_vm + extra; 3633 3634 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3635 !capable(CAP_IPC_LOCK)) { 3636 ret = -EPERM; 3637 goto unlock; 3638 } 3639 3640 WARN_ON(event->rb); 3641 3642 if (vma->vm_flags & VM_WRITE) 3643 flags |= RING_BUFFER_WRITABLE; 3644 3645 rb = rb_alloc(nr_pages, 3646 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3647 event->cpu, flags); 3648 3649 if (!rb) { 3650 ret = -ENOMEM; 3651 goto unlock; 3652 } 3653 rcu_assign_pointer(event->rb, rb); 3654 3655 atomic_long_add(user_extra, &user->locked_vm); 3656 event->mmap_locked = extra; 3657 event->mmap_user = get_current_user(); 3658 vma->vm_mm->pinned_vm += event->mmap_locked; 3659 3660 perf_event_update_userpage(event); 3661 3662 unlock: 3663 if (!ret) 3664 atomic_inc(&event->mmap_count); 3665 mutex_unlock(&event->mmap_mutex); 3666 3667 vma->vm_flags |= VM_RESERVED; 3668 vma->vm_ops = &perf_mmap_vmops; 3669 3670 return ret; 3671 } 3672 3673 static int perf_fasync(int fd, struct file *filp, int on) 3674 { 3675 struct inode *inode = filp->f_path.dentry->d_inode; 3676 struct perf_event *event = filp->private_data; 3677 int retval; 3678 3679 mutex_lock(&inode->i_mutex); 3680 retval = fasync_helper(fd, filp, on, &event->fasync); 3681 mutex_unlock(&inode->i_mutex); 3682 3683 if (retval < 0) 3684 return retval; 3685 3686 return 0; 3687 } 3688 3689 static const struct file_operations perf_fops = { 3690 .llseek = no_llseek, 3691 .release = perf_release, 3692 .read = perf_read, 3693 .poll = perf_poll, 3694 .unlocked_ioctl = perf_ioctl, 3695 .compat_ioctl = perf_ioctl, 3696 .mmap = perf_mmap, 3697 .fasync = perf_fasync, 3698 }; 3699 3700 /* 3701 * Perf event wakeup 3702 * 3703 * If there's data, ensure we set the poll() state and publish everything 3704 * to user-space before waking everybody up. 3705 */ 3706 3707 void perf_event_wakeup(struct perf_event *event) 3708 { 3709 ring_buffer_wakeup(event); 3710 3711 if (event->pending_kill) { 3712 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3713 event->pending_kill = 0; 3714 } 3715 } 3716 3717 static void perf_pending_event(struct irq_work *entry) 3718 { 3719 struct perf_event *event = container_of(entry, 3720 struct perf_event, pending); 3721 3722 if (event->pending_disable) { 3723 event->pending_disable = 0; 3724 __perf_event_disable(event); 3725 } 3726 3727 if (event->pending_wakeup) { 3728 event->pending_wakeup = 0; 3729 perf_event_wakeup(event); 3730 } 3731 } 3732 3733 /* 3734 * We assume there is only KVM supporting the callbacks. 3735 * Later on, we might change it to a list if there is 3736 * another virtualization implementation supporting the callbacks. 3737 */ 3738 struct perf_guest_info_callbacks *perf_guest_cbs; 3739 3740 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3741 { 3742 perf_guest_cbs = cbs; 3743 return 0; 3744 } 3745 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3746 3747 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3748 { 3749 perf_guest_cbs = NULL; 3750 return 0; 3751 } 3752 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3753 3754 static void __perf_event_header__init_id(struct perf_event_header *header, 3755 struct perf_sample_data *data, 3756 struct perf_event *event) 3757 { 3758 u64 sample_type = event->attr.sample_type; 3759 3760 data->type = sample_type; 3761 header->size += event->id_header_size; 3762 3763 if (sample_type & PERF_SAMPLE_TID) { 3764 /* namespace issues */ 3765 data->tid_entry.pid = perf_event_pid(event, current); 3766 data->tid_entry.tid = perf_event_tid(event, current); 3767 } 3768 3769 if (sample_type & PERF_SAMPLE_TIME) 3770 data->time = perf_clock(); 3771 3772 if (sample_type & PERF_SAMPLE_ID) 3773 data->id = primary_event_id(event); 3774 3775 if (sample_type & PERF_SAMPLE_STREAM_ID) 3776 data->stream_id = event->id; 3777 3778 if (sample_type & PERF_SAMPLE_CPU) { 3779 data->cpu_entry.cpu = raw_smp_processor_id(); 3780 data->cpu_entry.reserved = 0; 3781 } 3782 } 3783 3784 void perf_event_header__init_id(struct perf_event_header *header, 3785 struct perf_sample_data *data, 3786 struct perf_event *event) 3787 { 3788 if (event->attr.sample_id_all) 3789 __perf_event_header__init_id(header, data, event); 3790 } 3791 3792 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3793 struct perf_sample_data *data) 3794 { 3795 u64 sample_type = data->type; 3796 3797 if (sample_type & PERF_SAMPLE_TID) 3798 perf_output_put(handle, data->tid_entry); 3799 3800 if (sample_type & PERF_SAMPLE_TIME) 3801 perf_output_put(handle, data->time); 3802 3803 if (sample_type & PERF_SAMPLE_ID) 3804 perf_output_put(handle, data->id); 3805 3806 if (sample_type & PERF_SAMPLE_STREAM_ID) 3807 perf_output_put(handle, data->stream_id); 3808 3809 if (sample_type & PERF_SAMPLE_CPU) 3810 perf_output_put(handle, data->cpu_entry); 3811 } 3812 3813 void perf_event__output_id_sample(struct perf_event *event, 3814 struct perf_output_handle *handle, 3815 struct perf_sample_data *sample) 3816 { 3817 if (event->attr.sample_id_all) 3818 __perf_event__output_id_sample(handle, sample); 3819 } 3820 3821 static void perf_output_read_one(struct perf_output_handle *handle, 3822 struct perf_event *event, 3823 u64 enabled, u64 running) 3824 { 3825 u64 read_format = event->attr.read_format; 3826 u64 values[4]; 3827 int n = 0; 3828 3829 values[n++] = perf_event_count(event); 3830 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3831 values[n++] = enabled + 3832 atomic64_read(&event->child_total_time_enabled); 3833 } 3834 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3835 values[n++] = running + 3836 atomic64_read(&event->child_total_time_running); 3837 } 3838 if (read_format & PERF_FORMAT_ID) 3839 values[n++] = primary_event_id(event); 3840 3841 __output_copy(handle, values, n * sizeof(u64)); 3842 } 3843 3844 /* 3845 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3846 */ 3847 static void perf_output_read_group(struct perf_output_handle *handle, 3848 struct perf_event *event, 3849 u64 enabled, u64 running) 3850 { 3851 struct perf_event *leader = event->group_leader, *sub; 3852 u64 read_format = event->attr.read_format; 3853 u64 values[5]; 3854 int n = 0; 3855 3856 values[n++] = 1 + leader->nr_siblings; 3857 3858 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3859 values[n++] = enabled; 3860 3861 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3862 values[n++] = running; 3863 3864 if (leader != event) 3865 leader->pmu->read(leader); 3866 3867 values[n++] = perf_event_count(leader); 3868 if (read_format & PERF_FORMAT_ID) 3869 values[n++] = primary_event_id(leader); 3870 3871 __output_copy(handle, values, n * sizeof(u64)); 3872 3873 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3874 n = 0; 3875 3876 if (sub != event) 3877 sub->pmu->read(sub); 3878 3879 values[n++] = perf_event_count(sub); 3880 if (read_format & PERF_FORMAT_ID) 3881 values[n++] = primary_event_id(sub); 3882 3883 __output_copy(handle, values, n * sizeof(u64)); 3884 } 3885 } 3886 3887 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 3888 PERF_FORMAT_TOTAL_TIME_RUNNING) 3889 3890 static void perf_output_read(struct perf_output_handle *handle, 3891 struct perf_event *event) 3892 { 3893 u64 enabled = 0, running = 0, now; 3894 u64 read_format = event->attr.read_format; 3895 3896 /* 3897 * compute total_time_enabled, total_time_running 3898 * based on snapshot values taken when the event 3899 * was last scheduled in. 3900 * 3901 * we cannot simply called update_context_time() 3902 * because of locking issue as we are called in 3903 * NMI context 3904 */ 3905 if (read_format & PERF_FORMAT_TOTAL_TIMES) 3906 calc_timer_values(event, &now, &enabled, &running); 3907 3908 if (event->attr.read_format & PERF_FORMAT_GROUP) 3909 perf_output_read_group(handle, event, enabled, running); 3910 else 3911 perf_output_read_one(handle, event, enabled, running); 3912 } 3913 3914 void perf_output_sample(struct perf_output_handle *handle, 3915 struct perf_event_header *header, 3916 struct perf_sample_data *data, 3917 struct perf_event *event) 3918 { 3919 u64 sample_type = data->type; 3920 3921 perf_output_put(handle, *header); 3922 3923 if (sample_type & PERF_SAMPLE_IP) 3924 perf_output_put(handle, data->ip); 3925 3926 if (sample_type & PERF_SAMPLE_TID) 3927 perf_output_put(handle, data->tid_entry); 3928 3929 if (sample_type & PERF_SAMPLE_TIME) 3930 perf_output_put(handle, data->time); 3931 3932 if (sample_type & PERF_SAMPLE_ADDR) 3933 perf_output_put(handle, data->addr); 3934 3935 if (sample_type & PERF_SAMPLE_ID) 3936 perf_output_put(handle, data->id); 3937 3938 if (sample_type & PERF_SAMPLE_STREAM_ID) 3939 perf_output_put(handle, data->stream_id); 3940 3941 if (sample_type & PERF_SAMPLE_CPU) 3942 perf_output_put(handle, data->cpu_entry); 3943 3944 if (sample_type & PERF_SAMPLE_PERIOD) 3945 perf_output_put(handle, data->period); 3946 3947 if (sample_type & PERF_SAMPLE_READ) 3948 perf_output_read(handle, event); 3949 3950 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 3951 if (data->callchain) { 3952 int size = 1; 3953 3954 if (data->callchain) 3955 size += data->callchain->nr; 3956 3957 size *= sizeof(u64); 3958 3959 __output_copy(handle, data->callchain, size); 3960 } else { 3961 u64 nr = 0; 3962 perf_output_put(handle, nr); 3963 } 3964 } 3965 3966 if (sample_type & PERF_SAMPLE_RAW) { 3967 if (data->raw) { 3968 perf_output_put(handle, data->raw->size); 3969 __output_copy(handle, data->raw->data, 3970 data->raw->size); 3971 } else { 3972 struct { 3973 u32 size; 3974 u32 data; 3975 } raw = { 3976 .size = sizeof(u32), 3977 .data = 0, 3978 }; 3979 perf_output_put(handle, raw); 3980 } 3981 } 3982 3983 if (!event->attr.watermark) { 3984 int wakeup_events = event->attr.wakeup_events; 3985 3986 if (wakeup_events) { 3987 struct ring_buffer *rb = handle->rb; 3988 int events = local_inc_return(&rb->events); 3989 3990 if (events >= wakeup_events) { 3991 local_sub(wakeup_events, &rb->events); 3992 local_inc(&rb->wakeup); 3993 } 3994 } 3995 } 3996 3997 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 3998 if (data->br_stack) { 3999 size_t size; 4000 4001 size = data->br_stack->nr 4002 * sizeof(struct perf_branch_entry); 4003 4004 perf_output_put(handle, data->br_stack->nr); 4005 perf_output_copy(handle, data->br_stack->entries, size); 4006 } else { 4007 /* 4008 * we always store at least the value of nr 4009 */ 4010 u64 nr = 0; 4011 perf_output_put(handle, nr); 4012 } 4013 } 4014 } 4015 4016 void perf_prepare_sample(struct perf_event_header *header, 4017 struct perf_sample_data *data, 4018 struct perf_event *event, 4019 struct pt_regs *regs) 4020 { 4021 u64 sample_type = event->attr.sample_type; 4022 4023 header->type = PERF_RECORD_SAMPLE; 4024 header->size = sizeof(*header) + event->header_size; 4025 4026 header->misc = 0; 4027 header->misc |= perf_misc_flags(regs); 4028 4029 __perf_event_header__init_id(header, data, event); 4030 4031 if (sample_type & PERF_SAMPLE_IP) 4032 data->ip = perf_instruction_pointer(regs); 4033 4034 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4035 int size = 1; 4036 4037 data->callchain = perf_callchain(regs); 4038 4039 if (data->callchain) 4040 size += data->callchain->nr; 4041 4042 header->size += size * sizeof(u64); 4043 } 4044 4045 if (sample_type & PERF_SAMPLE_RAW) { 4046 int size = sizeof(u32); 4047 4048 if (data->raw) 4049 size += data->raw->size; 4050 else 4051 size += sizeof(u32); 4052 4053 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4054 header->size += size; 4055 } 4056 4057 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4058 int size = sizeof(u64); /* nr */ 4059 if (data->br_stack) { 4060 size += data->br_stack->nr 4061 * sizeof(struct perf_branch_entry); 4062 } 4063 header->size += size; 4064 } 4065 } 4066 4067 static void perf_event_output(struct perf_event *event, 4068 struct perf_sample_data *data, 4069 struct pt_regs *regs) 4070 { 4071 struct perf_output_handle handle; 4072 struct perf_event_header header; 4073 4074 /* protect the callchain buffers */ 4075 rcu_read_lock(); 4076 4077 perf_prepare_sample(&header, data, event, regs); 4078 4079 if (perf_output_begin(&handle, event, header.size)) 4080 goto exit; 4081 4082 perf_output_sample(&handle, &header, data, event); 4083 4084 perf_output_end(&handle); 4085 4086 exit: 4087 rcu_read_unlock(); 4088 } 4089 4090 /* 4091 * read event_id 4092 */ 4093 4094 struct perf_read_event { 4095 struct perf_event_header header; 4096 4097 u32 pid; 4098 u32 tid; 4099 }; 4100 4101 static void 4102 perf_event_read_event(struct perf_event *event, 4103 struct task_struct *task) 4104 { 4105 struct perf_output_handle handle; 4106 struct perf_sample_data sample; 4107 struct perf_read_event read_event = { 4108 .header = { 4109 .type = PERF_RECORD_READ, 4110 .misc = 0, 4111 .size = sizeof(read_event) + event->read_size, 4112 }, 4113 .pid = perf_event_pid(event, task), 4114 .tid = perf_event_tid(event, task), 4115 }; 4116 int ret; 4117 4118 perf_event_header__init_id(&read_event.header, &sample, event); 4119 ret = perf_output_begin(&handle, event, read_event.header.size); 4120 if (ret) 4121 return; 4122 4123 perf_output_put(&handle, read_event); 4124 perf_output_read(&handle, event); 4125 perf_event__output_id_sample(event, &handle, &sample); 4126 4127 perf_output_end(&handle); 4128 } 4129 4130 /* 4131 * task tracking -- fork/exit 4132 * 4133 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4134 */ 4135 4136 struct perf_task_event { 4137 struct task_struct *task; 4138 struct perf_event_context *task_ctx; 4139 4140 struct { 4141 struct perf_event_header header; 4142 4143 u32 pid; 4144 u32 ppid; 4145 u32 tid; 4146 u32 ptid; 4147 u64 time; 4148 } event_id; 4149 }; 4150 4151 static void perf_event_task_output(struct perf_event *event, 4152 struct perf_task_event *task_event) 4153 { 4154 struct perf_output_handle handle; 4155 struct perf_sample_data sample; 4156 struct task_struct *task = task_event->task; 4157 int ret, size = task_event->event_id.header.size; 4158 4159 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4160 4161 ret = perf_output_begin(&handle, event, 4162 task_event->event_id.header.size); 4163 if (ret) 4164 goto out; 4165 4166 task_event->event_id.pid = perf_event_pid(event, task); 4167 task_event->event_id.ppid = perf_event_pid(event, current); 4168 4169 task_event->event_id.tid = perf_event_tid(event, task); 4170 task_event->event_id.ptid = perf_event_tid(event, current); 4171 4172 perf_output_put(&handle, task_event->event_id); 4173 4174 perf_event__output_id_sample(event, &handle, &sample); 4175 4176 perf_output_end(&handle); 4177 out: 4178 task_event->event_id.header.size = size; 4179 } 4180 4181 static int perf_event_task_match(struct perf_event *event) 4182 { 4183 if (event->state < PERF_EVENT_STATE_INACTIVE) 4184 return 0; 4185 4186 if (!event_filter_match(event)) 4187 return 0; 4188 4189 if (event->attr.comm || event->attr.mmap || 4190 event->attr.mmap_data || event->attr.task) 4191 return 1; 4192 4193 return 0; 4194 } 4195 4196 static void perf_event_task_ctx(struct perf_event_context *ctx, 4197 struct perf_task_event *task_event) 4198 { 4199 struct perf_event *event; 4200 4201 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4202 if (perf_event_task_match(event)) 4203 perf_event_task_output(event, task_event); 4204 } 4205 } 4206 4207 static void perf_event_task_event(struct perf_task_event *task_event) 4208 { 4209 struct perf_cpu_context *cpuctx; 4210 struct perf_event_context *ctx; 4211 struct pmu *pmu; 4212 int ctxn; 4213 4214 rcu_read_lock(); 4215 list_for_each_entry_rcu(pmu, &pmus, entry) { 4216 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4217 if (cpuctx->active_pmu != pmu) 4218 goto next; 4219 perf_event_task_ctx(&cpuctx->ctx, task_event); 4220 4221 ctx = task_event->task_ctx; 4222 if (!ctx) { 4223 ctxn = pmu->task_ctx_nr; 4224 if (ctxn < 0) 4225 goto next; 4226 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4227 } 4228 if (ctx) 4229 perf_event_task_ctx(ctx, task_event); 4230 next: 4231 put_cpu_ptr(pmu->pmu_cpu_context); 4232 } 4233 rcu_read_unlock(); 4234 } 4235 4236 static void perf_event_task(struct task_struct *task, 4237 struct perf_event_context *task_ctx, 4238 int new) 4239 { 4240 struct perf_task_event task_event; 4241 4242 if (!atomic_read(&nr_comm_events) && 4243 !atomic_read(&nr_mmap_events) && 4244 !atomic_read(&nr_task_events)) 4245 return; 4246 4247 task_event = (struct perf_task_event){ 4248 .task = task, 4249 .task_ctx = task_ctx, 4250 .event_id = { 4251 .header = { 4252 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4253 .misc = 0, 4254 .size = sizeof(task_event.event_id), 4255 }, 4256 /* .pid */ 4257 /* .ppid */ 4258 /* .tid */ 4259 /* .ptid */ 4260 .time = perf_clock(), 4261 }, 4262 }; 4263 4264 perf_event_task_event(&task_event); 4265 } 4266 4267 void perf_event_fork(struct task_struct *task) 4268 { 4269 perf_event_task(task, NULL, 1); 4270 } 4271 4272 /* 4273 * comm tracking 4274 */ 4275 4276 struct perf_comm_event { 4277 struct task_struct *task; 4278 char *comm; 4279 int comm_size; 4280 4281 struct { 4282 struct perf_event_header header; 4283 4284 u32 pid; 4285 u32 tid; 4286 } event_id; 4287 }; 4288 4289 static void perf_event_comm_output(struct perf_event *event, 4290 struct perf_comm_event *comm_event) 4291 { 4292 struct perf_output_handle handle; 4293 struct perf_sample_data sample; 4294 int size = comm_event->event_id.header.size; 4295 int ret; 4296 4297 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4298 ret = perf_output_begin(&handle, event, 4299 comm_event->event_id.header.size); 4300 4301 if (ret) 4302 goto out; 4303 4304 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4305 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4306 4307 perf_output_put(&handle, comm_event->event_id); 4308 __output_copy(&handle, comm_event->comm, 4309 comm_event->comm_size); 4310 4311 perf_event__output_id_sample(event, &handle, &sample); 4312 4313 perf_output_end(&handle); 4314 out: 4315 comm_event->event_id.header.size = size; 4316 } 4317 4318 static int perf_event_comm_match(struct perf_event *event) 4319 { 4320 if (event->state < PERF_EVENT_STATE_INACTIVE) 4321 return 0; 4322 4323 if (!event_filter_match(event)) 4324 return 0; 4325 4326 if (event->attr.comm) 4327 return 1; 4328 4329 return 0; 4330 } 4331 4332 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4333 struct perf_comm_event *comm_event) 4334 { 4335 struct perf_event *event; 4336 4337 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4338 if (perf_event_comm_match(event)) 4339 perf_event_comm_output(event, comm_event); 4340 } 4341 } 4342 4343 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4344 { 4345 struct perf_cpu_context *cpuctx; 4346 struct perf_event_context *ctx; 4347 char comm[TASK_COMM_LEN]; 4348 unsigned int size; 4349 struct pmu *pmu; 4350 int ctxn; 4351 4352 memset(comm, 0, sizeof(comm)); 4353 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4354 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4355 4356 comm_event->comm = comm; 4357 comm_event->comm_size = size; 4358 4359 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4360 rcu_read_lock(); 4361 list_for_each_entry_rcu(pmu, &pmus, entry) { 4362 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4363 if (cpuctx->active_pmu != pmu) 4364 goto next; 4365 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4366 4367 ctxn = pmu->task_ctx_nr; 4368 if (ctxn < 0) 4369 goto next; 4370 4371 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4372 if (ctx) 4373 perf_event_comm_ctx(ctx, comm_event); 4374 next: 4375 put_cpu_ptr(pmu->pmu_cpu_context); 4376 } 4377 rcu_read_unlock(); 4378 } 4379 4380 void perf_event_comm(struct task_struct *task) 4381 { 4382 struct perf_comm_event comm_event; 4383 struct perf_event_context *ctx; 4384 int ctxn; 4385 4386 for_each_task_context_nr(ctxn) { 4387 ctx = task->perf_event_ctxp[ctxn]; 4388 if (!ctx) 4389 continue; 4390 4391 perf_event_enable_on_exec(ctx); 4392 } 4393 4394 if (!atomic_read(&nr_comm_events)) 4395 return; 4396 4397 comm_event = (struct perf_comm_event){ 4398 .task = task, 4399 /* .comm */ 4400 /* .comm_size */ 4401 .event_id = { 4402 .header = { 4403 .type = PERF_RECORD_COMM, 4404 .misc = 0, 4405 /* .size */ 4406 }, 4407 /* .pid */ 4408 /* .tid */ 4409 }, 4410 }; 4411 4412 perf_event_comm_event(&comm_event); 4413 } 4414 4415 /* 4416 * mmap tracking 4417 */ 4418 4419 struct perf_mmap_event { 4420 struct vm_area_struct *vma; 4421 4422 const char *file_name; 4423 int file_size; 4424 4425 struct { 4426 struct perf_event_header header; 4427 4428 u32 pid; 4429 u32 tid; 4430 u64 start; 4431 u64 len; 4432 u64 pgoff; 4433 } event_id; 4434 }; 4435 4436 static void perf_event_mmap_output(struct perf_event *event, 4437 struct perf_mmap_event *mmap_event) 4438 { 4439 struct perf_output_handle handle; 4440 struct perf_sample_data sample; 4441 int size = mmap_event->event_id.header.size; 4442 int ret; 4443 4444 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4445 ret = perf_output_begin(&handle, event, 4446 mmap_event->event_id.header.size); 4447 if (ret) 4448 goto out; 4449 4450 mmap_event->event_id.pid = perf_event_pid(event, current); 4451 mmap_event->event_id.tid = perf_event_tid(event, current); 4452 4453 perf_output_put(&handle, mmap_event->event_id); 4454 __output_copy(&handle, mmap_event->file_name, 4455 mmap_event->file_size); 4456 4457 perf_event__output_id_sample(event, &handle, &sample); 4458 4459 perf_output_end(&handle); 4460 out: 4461 mmap_event->event_id.header.size = size; 4462 } 4463 4464 static int perf_event_mmap_match(struct perf_event *event, 4465 struct perf_mmap_event *mmap_event, 4466 int executable) 4467 { 4468 if (event->state < PERF_EVENT_STATE_INACTIVE) 4469 return 0; 4470 4471 if (!event_filter_match(event)) 4472 return 0; 4473 4474 if ((!executable && event->attr.mmap_data) || 4475 (executable && event->attr.mmap)) 4476 return 1; 4477 4478 return 0; 4479 } 4480 4481 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4482 struct perf_mmap_event *mmap_event, 4483 int executable) 4484 { 4485 struct perf_event *event; 4486 4487 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4488 if (perf_event_mmap_match(event, mmap_event, executable)) 4489 perf_event_mmap_output(event, mmap_event); 4490 } 4491 } 4492 4493 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4494 { 4495 struct perf_cpu_context *cpuctx; 4496 struct perf_event_context *ctx; 4497 struct vm_area_struct *vma = mmap_event->vma; 4498 struct file *file = vma->vm_file; 4499 unsigned int size; 4500 char tmp[16]; 4501 char *buf = NULL; 4502 const char *name; 4503 struct pmu *pmu; 4504 int ctxn; 4505 4506 memset(tmp, 0, sizeof(tmp)); 4507 4508 if (file) { 4509 /* 4510 * d_path works from the end of the rb backwards, so we 4511 * need to add enough zero bytes after the string to handle 4512 * the 64bit alignment we do later. 4513 */ 4514 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4515 if (!buf) { 4516 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4517 goto got_name; 4518 } 4519 name = d_path(&file->f_path, buf, PATH_MAX); 4520 if (IS_ERR(name)) { 4521 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4522 goto got_name; 4523 } 4524 } else { 4525 if (arch_vma_name(mmap_event->vma)) { 4526 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4527 sizeof(tmp)); 4528 goto got_name; 4529 } 4530 4531 if (!vma->vm_mm) { 4532 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4533 goto got_name; 4534 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4535 vma->vm_end >= vma->vm_mm->brk) { 4536 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4537 goto got_name; 4538 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4539 vma->vm_end >= vma->vm_mm->start_stack) { 4540 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4541 goto got_name; 4542 } 4543 4544 name = strncpy(tmp, "//anon", sizeof(tmp)); 4545 goto got_name; 4546 } 4547 4548 got_name: 4549 size = ALIGN(strlen(name)+1, sizeof(u64)); 4550 4551 mmap_event->file_name = name; 4552 mmap_event->file_size = size; 4553 4554 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4555 4556 rcu_read_lock(); 4557 list_for_each_entry_rcu(pmu, &pmus, entry) { 4558 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4559 if (cpuctx->active_pmu != pmu) 4560 goto next; 4561 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4562 vma->vm_flags & VM_EXEC); 4563 4564 ctxn = pmu->task_ctx_nr; 4565 if (ctxn < 0) 4566 goto next; 4567 4568 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4569 if (ctx) { 4570 perf_event_mmap_ctx(ctx, mmap_event, 4571 vma->vm_flags & VM_EXEC); 4572 } 4573 next: 4574 put_cpu_ptr(pmu->pmu_cpu_context); 4575 } 4576 rcu_read_unlock(); 4577 4578 kfree(buf); 4579 } 4580 4581 void perf_event_mmap(struct vm_area_struct *vma) 4582 { 4583 struct perf_mmap_event mmap_event; 4584 4585 if (!atomic_read(&nr_mmap_events)) 4586 return; 4587 4588 mmap_event = (struct perf_mmap_event){ 4589 .vma = vma, 4590 /* .file_name */ 4591 /* .file_size */ 4592 .event_id = { 4593 .header = { 4594 .type = PERF_RECORD_MMAP, 4595 .misc = PERF_RECORD_MISC_USER, 4596 /* .size */ 4597 }, 4598 /* .pid */ 4599 /* .tid */ 4600 .start = vma->vm_start, 4601 .len = vma->vm_end - vma->vm_start, 4602 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4603 }, 4604 }; 4605 4606 perf_event_mmap_event(&mmap_event); 4607 } 4608 4609 /* 4610 * IRQ throttle logging 4611 */ 4612 4613 static void perf_log_throttle(struct perf_event *event, int enable) 4614 { 4615 struct perf_output_handle handle; 4616 struct perf_sample_data sample; 4617 int ret; 4618 4619 struct { 4620 struct perf_event_header header; 4621 u64 time; 4622 u64 id; 4623 u64 stream_id; 4624 } throttle_event = { 4625 .header = { 4626 .type = PERF_RECORD_THROTTLE, 4627 .misc = 0, 4628 .size = sizeof(throttle_event), 4629 }, 4630 .time = perf_clock(), 4631 .id = primary_event_id(event), 4632 .stream_id = event->id, 4633 }; 4634 4635 if (enable) 4636 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4637 4638 perf_event_header__init_id(&throttle_event.header, &sample, event); 4639 4640 ret = perf_output_begin(&handle, event, 4641 throttle_event.header.size); 4642 if (ret) 4643 return; 4644 4645 perf_output_put(&handle, throttle_event); 4646 perf_event__output_id_sample(event, &handle, &sample); 4647 perf_output_end(&handle); 4648 } 4649 4650 /* 4651 * Generic event overflow handling, sampling. 4652 */ 4653 4654 static int __perf_event_overflow(struct perf_event *event, 4655 int throttle, struct perf_sample_data *data, 4656 struct pt_regs *regs) 4657 { 4658 int events = atomic_read(&event->event_limit); 4659 struct hw_perf_event *hwc = &event->hw; 4660 u64 seq; 4661 int ret = 0; 4662 4663 /* 4664 * Non-sampling counters might still use the PMI to fold short 4665 * hardware counters, ignore those. 4666 */ 4667 if (unlikely(!is_sampling_event(event))) 4668 return 0; 4669 4670 seq = __this_cpu_read(perf_throttled_seq); 4671 if (seq != hwc->interrupts_seq) { 4672 hwc->interrupts_seq = seq; 4673 hwc->interrupts = 1; 4674 } else { 4675 hwc->interrupts++; 4676 if (unlikely(throttle 4677 && hwc->interrupts >= max_samples_per_tick)) { 4678 __this_cpu_inc(perf_throttled_count); 4679 hwc->interrupts = MAX_INTERRUPTS; 4680 perf_log_throttle(event, 0); 4681 ret = 1; 4682 } 4683 } 4684 4685 if (event->attr.freq) { 4686 u64 now = perf_clock(); 4687 s64 delta = now - hwc->freq_time_stamp; 4688 4689 hwc->freq_time_stamp = now; 4690 4691 if (delta > 0 && delta < 2*TICK_NSEC) 4692 perf_adjust_period(event, delta, hwc->last_period, true); 4693 } 4694 4695 /* 4696 * XXX event_limit might not quite work as expected on inherited 4697 * events 4698 */ 4699 4700 event->pending_kill = POLL_IN; 4701 if (events && atomic_dec_and_test(&event->event_limit)) { 4702 ret = 1; 4703 event->pending_kill = POLL_HUP; 4704 event->pending_disable = 1; 4705 irq_work_queue(&event->pending); 4706 } 4707 4708 if (event->overflow_handler) 4709 event->overflow_handler(event, data, regs); 4710 else 4711 perf_event_output(event, data, regs); 4712 4713 if (event->fasync && event->pending_kill) { 4714 event->pending_wakeup = 1; 4715 irq_work_queue(&event->pending); 4716 } 4717 4718 return ret; 4719 } 4720 4721 int perf_event_overflow(struct perf_event *event, 4722 struct perf_sample_data *data, 4723 struct pt_regs *regs) 4724 { 4725 return __perf_event_overflow(event, 1, data, regs); 4726 } 4727 4728 /* 4729 * Generic software event infrastructure 4730 */ 4731 4732 struct swevent_htable { 4733 struct swevent_hlist *swevent_hlist; 4734 struct mutex hlist_mutex; 4735 int hlist_refcount; 4736 4737 /* Recursion avoidance in each contexts */ 4738 int recursion[PERF_NR_CONTEXTS]; 4739 }; 4740 4741 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4742 4743 /* 4744 * We directly increment event->count and keep a second value in 4745 * event->hw.period_left to count intervals. This period event 4746 * is kept in the range [-sample_period, 0] so that we can use the 4747 * sign as trigger. 4748 */ 4749 4750 static u64 perf_swevent_set_period(struct perf_event *event) 4751 { 4752 struct hw_perf_event *hwc = &event->hw; 4753 u64 period = hwc->last_period; 4754 u64 nr, offset; 4755 s64 old, val; 4756 4757 hwc->last_period = hwc->sample_period; 4758 4759 again: 4760 old = val = local64_read(&hwc->period_left); 4761 if (val < 0) 4762 return 0; 4763 4764 nr = div64_u64(period + val, period); 4765 offset = nr * period; 4766 val -= offset; 4767 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4768 goto again; 4769 4770 return nr; 4771 } 4772 4773 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4774 struct perf_sample_data *data, 4775 struct pt_regs *regs) 4776 { 4777 struct hw_perf_event *hwc = &event->hw; 4778 int throttle = 0; 4779 4780 if (!overflow) 4781 overflow = perf_swevent_set_period(event); 4782 4783 if (hwc->interrupts == MAX_INTERRUPTS) 4784 return; 4785 4786 for (; overflow; overflow--) { 4787 if (__perf_event_overflow(event, throttle, 4788 data, regs)) { 4789 /* 4790 * We inhibit the overflow from happening when 4791 * hwc->interrupts == MAX_INTERRUPTS. 4792 */ 4793 break; 4794 } 4795 throttle = 1; 4796 } 4797 } 4798 4799 static void perf_swevent_event(struct perf_event *event, u64 nr, 4800 struct perf_sample_data *data, 4801 struct pt_regs *regs) 4802 { 4803 struct hw_perf_event *hwc = &event->hw; 4804 4805 local64_add(nr, &event->count); 4806 4807 if (!regs) 4808 return; 4809 4810 if (!is_sampling_event(event)) 4811 return; 4812 4813 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 4814 data->period = nr; 4815 return perf_swevent_overflow(event, 1, data, regs); 4816 } else 4817 data->period = event->hw.last_period; 4818 4819 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 4820 return perf_swevent_overflow(event, 1, data, regs); 4821 4822 if (local64_add_negative(nr, &hwc->period_left)) 4823 return; 4824 4825 perf_swevent_overflow(event, 0, data, regs); 4826 } 4827 4828 static int perf_exclude_event(struct perf_event *event, 4829 struct pt_regs *regs) 4830 { 4831 if (event->hw.state & PERF_HES_STOPPED) 4832 return 1; 4833 4834 if (regs) { 4835 if (event->attr.exclude_user && user_mode(regs)) 4836 return 1; 4837 4838 if (event->attr.exclude_kernel && !user_mode(regs)) 4839 return 1; 4840 } 4841 4842 return 0; 4843 } 4844 4845 static int perf_swevent_match(struct perf_event *event, 4846 enum perf_type_id type, 4847 u32 event_id, 4848 struct perf_sample_data *data, 4849 struct pt_regs *regs) 4850 { 4851 if (event->attr.type != type) 4852 return 0; 4853 4854 if (event->attr.config != event_id) 4855 return 0; 4856 4857 if (perf_exclude_event(event, regs)) 4858 return 0; 4859 4860 return 1; 4861 } 4862 4863 static inline u64 swevent_hash(u64 type, u32 event_id) 4864 { 4865 u64 val = event_id | (type << 32); 4866 4867 return hash_64(val, SWEVENT_HLIST_BITS); 4868 } 4869 4870 static inline struct hlist_head * 4871 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 4872 { 4873 u64 hash = swevent_hash(type, event_id); 4874 4875 return &hlist->heads[hash]; 4876 } 4877 4878 /* For the read side: events when they trigger */ 4879 static inline struct hlist_head * 4880 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 4881 { 4882 struct swevent_hlist *hlist; 4883 4884 hlist = rcu_dereference(swhash->swevent_hlist); 4885 if (!hlist) 4886 return NULL; 4887 4888 return __find_swevent_head(hlist, type, event_id); 4889 } 4890 4891 /* For the event head insertion and removal in the hlist */ 4892 static inline struct hlist_head * 4893 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 4894 { 4895 struct swevent_hlist *hlist; 4896 u32 event_id = event->attr.config; 4897 u64 type = event->attr.type; 4898 4899 /* 4900 * Event scheduling is always serialized against hlist allocation 4901 * and release. Which makes the protected version suitable here. 4902 * The context lock guarantees that. 4903 */ 4904 hlist = rcu_dereference_protected(swhash->swevent_hlist, 4905 lockdep_is_held(&event->ctx->lock)); 4906 if (!hlist) 4907 return NULL; 4908 4909 return __find_swevent_head(hlist, type, event_id); 4910 } 4911 4912 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 4913 u64 nr, 4914 struct perf_sample_data *data, 4915 struct pt_regs *regs) 4916 { 4917 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4918 struct perf_event *event; 4919 struct hlist_node *node; 4920 struct hlist_head *head; 4921 4922 rcu_read_lock(); 4923 head = find_swevent_head_rcu(swhash, type, event_id); 4924 if (!head) 4925 goto end; 4926 4927 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 4928 if (perf_swevent_match(event, type, event_id, data, regs)) 4929 perf_swevent_event(event, nr, data, regs); 4930 } 4931 end: 4932 rcu_read_unlock(); 4933 } 4934 4935 int perf_swevent_get_recursion_context(void) 4936 { 4937 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4938 4939 return get_recursion_context(swhash->recursion); 4940 } 4941 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 4942 4943 inline void perf_swevent_put_recursion_context(int rctx) 4944 { 4945 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4946 4947 put_recursion_context(swhash->recursion, rctx); 4948 } 4949 4950 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 4951 { 4952 struct perf_sample_data data; 4953 int rctx; 4954 4955 preempt_disable_notrace(); 4956 rctx = perf_swevent_get_recursion_context(); 4957 if (rctx < 0) 4958 return; 4959 4960 perf_sample_data_init(&data, addr); 4961 4962 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 4963 4964 perf_swevent_put_recursion_context(rctx); 4965 preempt_enable_notrace(); 4966 } 4967 4968 static void perf_swevent_read(struct perf_event *event) 4969 { 4970 } 4971 4972 static int perf_swevent_add(struct perf_event *event, int flags) 4973 { 4974 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 4975 struct hw_perf_event *hwc = &event->hw; 4976 struct hlist_head *head; 4977 4978 if (is_sampling_event(event)) { 4979 hwc->last_period = hwc->sample_period; 4980 perf_swevent_set_period(event); 4981 } 4982 4983 hwc->state = !(flags & PERF_EF_START); 4984 4985 head = find_swevent_head(swhash, event); 4986 if (WARN_ON_ONCE(!head)) 4987 return -EINVAL; 4988 4989 hlist_add_head_rcu(&event->hlist_entry, head); 4990 4991 return 0; 4992 } 4993 4994 static void perf_swevent_del(struct perf_event *event, int flags) 4995 { 4996 hlist_del_rcu(&event->hlist_entry); 4997 } 4998 4999 static void perf_swevent_start(struct perf_event *event, int flags) 5000 { 5001 event->hw.state = 0; 5002 } 5003 5004 static void perf_swevent_stop(struct perf_event *event, int flags) 5005 { 5006 event->hw.state = PERF_HES_STOPPED; 5007 } 5008 5009 /* Deref the hlist from the update side */ 5010 static inline struct swevent_hlist * 5011 swevent_hlist_deref(struct swevent_htable *swhash) 5012 { 5013 return rcu_dereference_protected(swhash->swevent_hlist, 5014 lockdep_is_held(&swhash->hlist_mutex)); 5015 } 5016 5017 static void swevent_hlist_release(struct swevent_htable *swhash) 5018 { 5019 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5020 5021 if (!hlist) 5022 return; 5023 5024 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5025 kfree_rcu(hlist, rcu_head); 5026 } 5027 5028 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5029 { 5030 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5031 5032 mutex_lock(&swhash->hlist_mutex); 5033 5034 if (!--swhash->hlist_refcount) 5035 swevent_hlist_release(swhash); 5036 5037 mutex_unlock(&swhash->hlist_mutex); 5038 } 5039 5040 static void swevent_hlist_put(struct perf_event *event) 5041 { 5042 int cpu; 5043 5044 if (event->cpu != -1) { 5045 swevent_hlist_put_cpu(event, event->cpu); 5046 return; 5047 } 5048 5049 for_each_possible_cpu(cpu) 5050 swevent_hlist_put_cpu(event, cpu); 5051 } 5052 5053 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5054 { 5055 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5056 int err = 0; 5057 5058 mutex_lock(&swhash->hlist_mutex); 5059 5060 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5061 struct swevent_hlist *hlist; 5062 5063 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5064 if (!hlist) { 5065 err = -ENOMEM; 5066 goto exit; 5067 } 5068 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5069 } 5070 swhash->hlist_refcount++; 5071 exit: 5072 mutex_unlock(&swhash->hlist_mutex); 5073 5074 return err; 5075 } 5076 5077 static int swevent_hlist_get(struct perf_event *event) 5078 { 5079 int err; 5080 int cpu, failed_cpu; 5081 5082 if (event->cpu != -1) 5083 return swevent_hlist_get_cpu(event, event->cpu); 5084 5085 get_online_cpus(); 5086 for_each_possible_cpu(cpu) { 5087 err = swevent_hlist_get_cpu(event, cpu); 5088 if (err) { 5089 failed_cpu = cpu; 5090 goto fail; 5091 } 5092 } 5093 put_online_cpus(); 5094 5095 return 0; 5096 fail: 5097 for_each_possible_cpu(cpu) { 5098 if (cpu == failed_cpu) 5099 break; 5100 swevent_hlist_put_cpu(event, cpu); 5101 } 5102 5103 put_online_cpus(); 5104 return err; 5105 } 5106 5107 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5108 5109 static void sw_perf_event_destroy(struct perf_event *event) 5110 { 5111 u64 event_id = event->attr.config; 5112 5113 WARN_ON(event->parent); 5114 5115 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5116 swevent_hlist_put(event); 5117 } 5118 5119 static int perf_swevent_init(struct perf_event *event) 5120 { 5121 int event_id = event->attr.config; 5122 5123 if (event->attr.type != PERF_TYPE_SOFTWARE) 5124 return -ENOENT; 5125 5126 /* 5127 * no branch sampling for software events 5128 */ 5129 if (has_branch_stack(event)) 5130 return -EOPNOTSUPP; 5131 5132 switch (event_id) { 5133 case PERF_COUNT_SW_CPU_CLOCK: 5134 case PERF_COUNT_SW_TASK_CLOCK: 5135 return -ENOENT; 5136 5137 default: 5138 break; 5139 } 5140 5141 if (event_id >= PERF_COUNT_SW_MAX) 5142 return -ENOENT; 5143 5144 if (!event->parent) { 5145 int err; 5146 5147 err = swevent_hlist_get(event); 5148 if (err) 5149 return err; 5150 5151 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5152 event->destroy = sw_perf_event_destroy; 5153 } 5154 5155 return 0; 5156 } 5157 5158 static int perf_swevent_event_idx(struct perf_event *event) 5159 { 5160 return 0; 5161 } 5162 5163 static struct pmu perf_swevent = { 5164 .task_ctx_nr = perf_sw_context, 5165 5166 .event_init = perf_swevent_init, 5167 .add = perf_swevent_add, 5168 .del = perf_swevent_del, 5169 .start = perf_swevent_start, 5170 .stop = perf_swevent_stop, 5171 .read = perf_swevent_read, 5172 5173 .event_idx = perf_swevent_event_idx, 5174 }; 5175 5176 #ifdef CONFIG_EVENT_TRACING 5177 5178 static int perf_tp_filter_match(struct perf_event *event, 5179 struct perf_sample_data *data) 5180 { 5181 void *record = data->raw->data; 5182 5183 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5184 return 1; 5185 return 0; 5186 } 5187 5188 static int perf_tp_event_match(struct perf_event *event, 5189 struct perf_sample_data *data, 5190 struct pt_regs *regs) 5191 { 5192 if (event->hw.state & PERF_HES_STOPPED) 5193 return 0; 5194 /* 5195 * All tracepoints are from kernel-space. 5196 */ 5197 if (event->attr.exclude_kernel) 5198 return 0; 5199 5200 if (!perf_tp_filter_match(event, data)) 5201 return 0; 5202 5203 return 1; 5204 } 5205 5206 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5207 struct pt_regs *regs, struct hlist_head *head, int rctx) 5208 { 5209 struct perf_sample_data data; 5210 struct perf_event *event; 5211 struct hlist_node *node; 5212 5213 struct perf_raw_record raw = { 5214 .size = entry_size, 5215 .data = record, 5216 }; 5217 5218 perf_sample_data_init(&data, addr); 5219 data.raw = &raw; 5220 5221 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5222 if (perf_tp_event_match(event, &data, regs)) 5223 perf_swevent_event(event, count, &data, regs); 5224 } 5225 5226 perf_swevent_put_recursion_context(rctx); 5227 } 5228 EXPORT_SYMBOL_GPL(perf_tp_event); 5229 5230 static void tp_perf_event_destroy(struct perf_event *event) 5231 { 5232 perf_trace_destroy(event); 5233 } 5234 5235 static int perf_tp_event_init(struct perf_event *event) 5236 { 5237 int err; 5238 5239 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5240 return -ENOENT; 5241 5242 /* 5243 * no branch sampling for tracepoint events 5244 */ 5245 if (has_branch_stack(event)) 5246 return -EOPNOTSUPP; 5247 5248 err = perf_trace_init(event); 5249 if (err) 5250 return err; 5251 5252 event->destroy = tp_perf_event_destroy; 5253 5254 return 0; 5255 } 5256 5257 static struct pmu perf_tracepoint = { 5258 .task_ctx_nr = perf_sw_context, 5259 5260 .event_init = perf_tp_event_init, 5261 .add = perf_trace_add, 5262 .del = perf_trace_del, 5263 .start = perf_swevent_start, 5264 .stop = perf_swevent_stop, 5265 .read = perf_swevent_read, 5266 5267 .event_idx = perf_swevent_event_idx, 5268 }; 5269 5270 static inline void perf_tp_register(void) 5271 { 5272 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5273 } 5274 5275 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5276 { 5277 char *filter_str; 5278 int ret; 5279 5280 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5281 return -EINVAL; 5282 5283 filter_str = strndup_user(arg, PAGE_SIZE); 5284 if (IS_ERR(filter_str)) 5285 return PTR_ERR(filter_str); 5286 5287 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5288 5289 kfree(filter_str); 5290 return ret; 5291 } 5292 5293 static void perf_event_free_filter(struct perf_event *event) 5294 { 5295 ftrace_profile_free_filter(event); 5296 } 5297 5298 #else 5299 5300 static inline void perf_tp_register(void) 5301 { 5302 } 5303 5304 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5305 { 5306 return -ENOENT; 5307 } 5308 5309 static void perf_event_free_filter(struct perf_event *event) 5310 { 5311 } 5312 5313 #endif /* CONFIG_EVENT_TRACING */ 5314 5315 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5316 void perf_bp_event(struct perf_event *bp, void *data) 5317 { 5318 struct perf_sample_data sample; 5319 struct pt_regs *regs = data; 5320 5321 perf_sample_data_init(&sample, bp->attr.bp_addr); 5322 5323 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5324 perf_swevent_event(bp, 1, &sample, regs); 5325 } 5326 #endif 5327 5328 /* 5329 * hrtimer based swevent callback 5330 */ 5331 5332 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5333 { 5334 enum hrtimer_restart ret = HRTIMER_RESTART; 5335 struct perf_sample_data data; 5336 struct pt_regs *regs; 5337 struct perf_event *event; 5338 u64 period; 5339 5340 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5341 5342 if (event->state != PERF_EVENT_STATE_ACTIVE) 5343 return HRTIMER_NORESTART; 5344 5345 event->pmu->read(event); 5346 5347 perf_sample_data_init(&data, 0); 5348 data.period = event->hw.last_period; 5349 regs = get_irq_regs(); 5350 5351 if (regs && !perf_exclude_event(event, regs)) { 5352 if (!(event->attr.exclude_idle && is_idle_task(current))) 5353 if (perf_event_overflow(event, &data, regs)) 5354 ret = HRTIMER_NORESTART; 5355 } 5356 5357 period = max_t(u64, 10000, event->hw.sample_period); 5358 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5359 5360 return ret; 5361 } 5362 5363 static void perf_swevent_start_hrtimer(struct perf_event *event) 5364 { 5365 struct hw_perf_event *hwc = &event->hw; 5366 s64 period; 5367 5368 if (!is_sampling_event(event)) 5369 return; 5370 5371 period = local64_read(&hwc->period_left); 5372 if (period) { 5373 if (period < 0) 5374 period = 10000; 5375 5376 local64_set(&hwc->period_left, 0); 5377 } else { 5378 period = max_t(u64, 10000, hwc->sample_period); 5379 } 5380 __hrtimer_start_range_ns(&hwc->hrtimer, 5381 ns_to_ktime(period), 0, 5382 HRTIMER_MODE_REL_PINNED, 0); 5383 } 5384 5385 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5386 { 5387 struct hw_perf_event *hwc = &event->hw; 5388 5389 if (is_sampling_event(event)) { 5390 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5391 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5392 5393 hrtimer_cancel(&hwc->hrtimer); 5394 } 5395 } 5396 5397 static void perf_swevent_init_hrtimer(struct perf_event *event) 5398 { 5399 struct hw_perf_event *hwc = &event->hw; 5400 5401 if (!is_sampling_event(event)) 5402 return; 5403 5404 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5405 hwc->hrtimer.function = perf_swevent_hrtimer; 5406 5407 /* 5408 * Since hrtimers have a fixed rate, we can do a static freq->period 5409 * mapping and avoid the whole period adjust feedback stuff. 5410 */ 5411 if (event->attr.freq) { 5412 long freq = event->attr.sample_freq; 5413 5414 event->attr.sample_period = NSEC_PER_SEC / freq; 5415 hwc->sample_period = event->attr.sample_period; 5416 local64_set(&hwc->period_left, hwc->sample_period); 5417 event->attr.freq = 0; 5418 } 5419 } 5420 5421 /* 5422 * Software event: cpu wall time clock 5423 */ 5424 5425 static void cpu_clock_event_update(struct perf_event *event) 5426 { 5427 s64 prev; 5428 u64 now; 5429 5430 now = local_clock(); 5431 prev = local64_xchg(&event->hw.prev_count, now); 5432 local64_add(now - prev, &event->count); 5433 } 5434 5435 static void cpu_clock_event_start(struct perf_event *event, int flags) 5436 { 5437 local64_set(&event->hw.prev_count, local_clock()); 5438 perf_swevent_start_hrtimer(event); 5439 } 5440 5441 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5442 { 5443 perf_swevent_cancel_hrtimer(event); 5444 cpu_clock_event_update(event); 5445 } 5446 5447 static int cpu_clock_event_add(struct perf_event *event, int flags) 5448 { 5449 if (flags & PERF_EF_START) 5450 cpu_clock_event_start(event, flags); 5451 5452 return 0; 5453 } 5454 5455 static void cpu_clock_event_del(struct perf_event *event, int flags) 5456 { 5457 cpu_clock_event_stop(event, flags); 5458 } 5459 5460 static void cpu_clock_event_read(struct perf_event *event) 5461 { 5462 cpu_clock_event_update(event); 5463 } 5464 5465 static int cpu_clock_event_init(struct perf_event *event) 5466 { 5467 if (event->attr.type != PERF_TYPE_SOFTWARE) 5468 return -ENOENT; 5469 5470 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5471 return -ENOENT; 5472 5473 /* 5474 * no branch sampling for software events 5475 */ 5476 if (has_branch_stack(event)) 5477 return -EOPNOTSUPP; 5478 5479 perf_swevent_init_hrtimer(event); 5480 5481 return 0; 5482 } 5483 5484 static struct pmu perf_cpu_clock = { 5485 .task_ctx_nr = perf_sw_context, 5486 5487 .event_init = cpu_clock_event_init, 5488 .add = cpu_clock_event_add, 5489 .del = cpu_clock_event_del, 5490 .start = cpu_clock_event_start, 5491 .stop = cpu_clock_event_stop, 5492 .read = cpu_clock_event_read, 5493 5494 .event_idx = perf_swevent_event_idx, 5495 }; 5496 5497 /* 5498 * Software event: task time clock 5499 */ 5500 5501 static void task_clock_event_update(struct perf_event *event, u64 now) 5502 { 5503 u64 prev; 5504 s64 delta; 5505 5506 prev = local64_xchg(&event->hw.prev_count, now); 5507 delta = now - prev; 5508 local64_add(delta, &event->count); 5509 } 5510 5511 static void task_clock_event_start(struct perf_event *event, int flags) 5512 { 5513 local64_set(&event->hw.prev_count, event->ctx->time); 5514 perf_swevent_start_hrtimer(event); 5515 } 5516 5517 static void task_clock_event_stop(struct perf_event *event, int flags) 5518 { 5519 perf_swevent_cancel_hrtimer(event); 5520 task_clock_event_update(event, event->ctx->time); 5521 } 5522 5523 static int task_clock_event_add(struct perf_event *event, int flags) 5524 { 5525 if (flags & PERF_EF_START) 5526 task_clock_event_start(event, flags); 5527 5528 return 0; 5529 } 5530 5531 static void task_clock_event_del(struct perf_event *event, int flags) 5532 { 5533 task_clock_event_stop(event, PERF_EF_UPDATE); 5534 } 5535 5536 static void task_clock_event_read(struct perf_event *event) 5537 { 5538 u64 now = perf_clock(); 5539 u64 delta = now - event->ctx->timestamp; 5540 u64 time = event->ctx->time + delta; 5541 5542 task_clock_event_update(event, time); 5543 } 5544 5545 static int task_clock_event_init(struct perf_event *event) 5546 { 5547 if (event->attr.type != PERF_TYPE_SOFTWARE) 5548 return -ENOENT; 5549 5550 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5551 return -ENOENT; 5552 5553 /* 5554 * no branch sampling for software events 5555 */ 5556 if (has_branch_stack(event)) 5557 return -EOPNOTSUPP; 5558 5559 perf_swevent_init_hrtimer(event); 5560 5561 return 0; 5562 } 5563 5564 static struct pmu perf_task_clock = { 5565 .task_ctx_nr = perf_sw_context, 5566 5567 .event_init = task_clock_event_init, 5568 .add = task_clock_event_add, 5569 .del = task_clock_event_del, 5570 .start = task_clock_event_start, 5571 .stop = task_clock_event_stop, 5572 .read = task_clock_event_read, 5573 5574 .event_idx = perf_swevent_event_idx, 5575 }; 5576 5577 static void perf_pmu_nop_void(struct pmu *pmu) 5578 { 5579 } 5580 5581 static int perf_pmu_nop_int(struct pmu *pmu) 5582 { 5583 return 0; 5584 } 5585 5586 static void perf_pmu_start_txn(struct pmu *pmu) 5587 { 5588 perf_pmu_disable(pmu); 5589 } 5590 5591 static int perf_pmu_commit_txn(struct pmu *pmu) 5592 { 5593 perf_pmu_enable(pmu); 5594 return 0; 5595 } 5596 5597 static void perf_pmu_cancel_txn(struct pmu *pmu) 5598 { 5599 perf_pmu_enable(pmu); 5600 } 5601 5602 static int perf_event_idx_default(struct perf_event *event) 5603 { 5604 return event->hw.idx + 1; 5605 } 5606 5607 /* 5608 * Ensures all contexts with the same task_ctx_nr have the same 5609 * pmu_cpu_context too. 5610 */ 5611 static void *find_pmu_context(int ctxn) 5612 { 5613 struct pmu *pmu; 5614 5615 if (ctxn < 0) 5616 return NULL; 5617 5618 list_for_each_entry(pmu, &pmus, entry) { 5619 if (pmu->task_ctx_nr == ctxn) 5620 return pmu->pmu_cpu_context; 5621 } 5622 5623 return NULL; 5624 } 5625 5626 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5627 { 5628 int cpu; 5629 5630 for_each_possible_cpu(cpu) { 5631 struct perf_cpu_context *cpuctx; 5632 5633 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5634 5635 if (cpuctx->active_pmu == old_pmu) 5636 cpuctx->active_pmu = pmu; 5637 } 5638 } 5639 5640 static void free_pmu_context(struct pmu *pmu) 5641 { 5642 struct pmu *i; 5643 5644 mutex_lock(&pmus_lock); 5645 /* 5646 * Like a real lame refcount. 5647 */ 5648 list_for_each_entry(i, &pmus, entry) { 5649 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5650 update_pmu_context(i, pmu); 5651 goto out; 5652 } 5653 } 5654 5655 free_percpu(pmu->pmu_cpu_context); 5656 out: 5657 mutex_unlock(&pmus_lock); 5658 } 5659 static struct idr pmu_idr; 5660 5661 static ssize_t 5662 type_show(struct device *dev, struct device_attribute *attr, char *page) 5663 { 5664 struct pmu *pmu = dev_get_drvdata(dev); 5665 5666 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5667 } 5668 5669 static struct device_attribute pmu_dev_attrs[] = { 5670 __ATTR_RO(type), 5671 __ATTR_NULL, 5672 }; 5673 5674 static int pmu_bus_running; 5675 static struct bus_type pmu_bus = { 5676 .name = "event_source", 5677 .dev_attrs = pmu_dev_attrs, 5678 }; 5679 5680 static void pmu_dev_release(struct device *dev) 5681 { 5682 kfree(dev); 5683 } 5684 5685 static int pmu_dev_alloc(struct pmu *pmu) 5686 { 5687 int ret = -ENOMEM; 5688 5689 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5690 if (!pmu->dev) 5691 goto out; 5692 5693 pmu->dev->groups = pmu->attr_groups; 5694 device_initialize(pmu->dev); 5695 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5696 if (ret) 5697 goto free_dev; 5698 5699 dev_set_drvdata(pmu->dev, pmu); 5700 pmu->dev->bus = &pmu_bus; 5701 pmu->dev->release = pmu_dev_release; 5702 ret = device_add(pmu->dev); 5703 if (ret) 5704 goto free_dev; 5705 5706 out: 5707 return ret; 5708 5709 free_dev: 5710 put_device(pmu->dev); 5711 goto out; 5712 } 5713 5714 static struct lock_class_key cpuctx_mutex; 5715 static struct lock_class_key cpuctx_lock; 5716 5717 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5718 { 5719 int cpu, ret; 5720 5721 mutex_lock(&pmus_lock); 5722 ret = -ENOMEM; 5723 pmu->pmu_disable_count = alloc_percpu(int); 5724 if (!pmu->pmu_disable_count) 5725 goto unlock; 5726 5727 pmu->type = -1; 5728 if (!name) 5729 goto skip_type; 5730 pmu->name = name; 5731 5732 if (type < 0) { 5733 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5734 if (!err) 5735 goto free_pdc; 5736 5737 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5738 if (err) { 5739 ret = err; 5740 goto free_pdc; 5741 } 5742 } 5743 pmu->type = type; 5744 5745 if (pmu_bus_running) { 5746 ret = pmu_dev_alloc(pmu); 5747 if (ret) 5748 goto free_idr; 5749 } 5750 5751 skip_type: 5752 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5753 if (pmu->pmu_cpu_context) 5754 goto got_cpu_context; 5755 5756 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5757 if (!pmu->pmu_cpu_context) 5758 goto free_dev; 5759 5760 for_each_possible_cpu(cpu) { 5761 struct perf_cpu_context *cpuctx; 5762 5763 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5764 __perf_event_init_context(&cpuctx->ctx); 5765 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5766 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5767 cpuctx->ctx.type = cpu_context; 5768 cpuctx->ctx.pmu = pmu; 5769 cpuctx->jiffies_interval = 1; 5770 INIT_LIST_HEAD(&cpuctx->rotation_list); 5771 cpuctx->active_pmu = pmu; 5772 } 5773 5774 got_cpu_context: 5775 if (!pmu->start_txn) { 5776 if (pmu->pmu_enable) { 5777 /* 5778 * If we have pmu_enable/pmu_disable calls, install 5779 * transaction stubs that use that to try and batch 5780 * hardware accesses. 5781 */ 5782 pmu->start_txn = perf_pmu_start_txn; 5783 pmu->commit_txn = perf_pmu_commit_txn; 5784 pmu->cancel_txn = perf_pmu_cancel_txn; 5785 } else { 5786 pmu->start_txn = perf_pmu_nop_void; 5787 pmu->commit_txn = perf_pmu_nop_int; 5788 pmu->cancel_txn = perf_pmu_nop_void; 5789 } 5790 } 5791 5792 if (!pmu->pmu_enable) { 5793 pmu->pmu_enable = perf_pmu_nop_void; 5794 pmu->pmu_disable = perf_pmu_nop_void; 5795 } 5796 5797 if (!pmu->event_idx) 5798 pmu->event_idx = perf_event_idx_default; 5799 5800 list_add_rcu(&pmu->entry, &pmus); 5801 ret = 0; 5802 unlock: 5803 mutex_unlock(&pmus_lock); 5804 5805 return ret; 5806 5807 free_dev: 5808 device_del(pmu->dev); 5809 put_device(pmu->dev); 5810 5811 free_idr: 5812 if (pmu->type >= PERF_TYPE_MAX) 5813 idr_remove(&pmu_idr, pmu->type); 5814 5815 free_pdc: 5816 free_percpu(pmu->pmu_disable_count); 5817 goto unlock; 5818 } 5819 5820 void perf_pmu_unregister(struct pmu *pmu) 5821 { 5822 mutex_lock(&pmus_lock); 5823 list_del_rcu(&pmu->entry); 5824 mutex_unlock(&pmus_lock); 5825 5826 /* 5827 * We dereference the pmu list under both SRCU and regular RCU, so 5828 * synchronize against both of those. 5829 */ 5830 synchronize_srcu(&pmus_srcu); 5831 synchronize_rcu(); 5832 5833 free_percpu(pmu->pmu_disable_count); 5834 if (pmu->type >= PERF_TYPE_MAX) 5835 idr_remove(&pmu_idr, pmu->type); 5836 device_del(pmu->dev); 5837 put_device(pmu->dev); 5838 free_pmu_context(pmu); 5839 } 5840 5841 struct pmu *perf_init_event(struct perf_event *event) 5842 { 5843 struct pmu *pmu = NULL; 5844 int idx; 5845 int ret; 5846 5847 idx = srcu_read_lock(&pmus_srcu); 5848 5849 rcu_read_lock(); 5850 pmu = idr_find(&pmu_idr, event->attr.type); 5851 rcu_read_unlock(); 5852 if (pmu) { 5853 event->pmu = pmu; 5854 ret = pmu->event_init(event); 5855 if (ret) 5856 pmu = ERR_PTR(ret); 5857 goto unlock; 5858 } 5859 5860 list_for_each_entry_rcu(pmu, &pmus, entry) { 5861 event->pmu = pmu; 5862 ret = pmu->event_init(event); 5863 if (!ret) 5864 goto unlock; 5865 5866 if (ret != -ENOENT) { 5867 pmu = ERR_PTR(ret); 5868 goto unlock; 5869 } 5870 } 5871 pmu = ERR_PTR(-ENOENT); 5872 unlock: 5873 srcu_read_unlock(&pmus_srcu, idx); 5874 5875 return pmu; 5876 } 5877 5878 /* 5879 * Allocate and initialize a event structure 5880 */ 5881 static struct perf_event * 5882 perf_event_alloc(struct perf_event_attr *attr, int cpu, 5883 struct task_struct *task, 5884 struct perf_event *group_leader, 5885 struct perf_event *parent_event, 5886 perf_overflow_handler_t overflow_handler, 5887 void *context) 5888 { 5889 struct pmu *pmu; 5890 struct perf_event *event; 5891 struct hw_perf_event *hwc; 5892 long err; 5893 5894 if ((unsigned)cpu >= nr_cpu_ids) { 5895 if (!task || cpu != -1) 5896 return ERR_PTR(-EINVAL); 5897 } 5898 5899 event = kzalloc(sizeof(*event), GFP_KERNEL); 5900 if (!event) 5901 return ERR_PTR(-ENOMEM); 5902 5903 /* 5904 * Single events are their own group leaders, with an 5905 * empty sibling list: 5906 */ 5907 if (!group_leader) 5908 group_leader = event; 5909 5910 mutex_init(&event->child_mutex); 5911 INIT_LIST_HEAD(&event->child_list); 5912 5913 INIT_LIST_HEAD(&event->group_entry); 5914 INIT_LIST_HEAD(&event->event_entry); 5915 INIT_LIST_HEAD(&event->sibling_list); 5916 INIT_LIST_HEAD(&event->rb_entry); 5917 5918 init_waitqueue_head(&event->waitq); 5919 init_irq_work(&event->pending, perf_pending_event); 5920 5921 mutex_init(&event->mmap_mutex); 5922 5923 event->cpu = cpu; 5924 event->attr = *attr; 5925 event->group_leader = group_leader; 5926 event->pmu = NULL; 5927 event->oncpu = -1; 5928 5929 event->parent = parent_event; 5930 5931 event->ns = get_pid_ns(current->nsproxy->pid_ns); 5932 event->id = atomic64_inc_return(&perf_event_id); 5933 5934 event->state = PERF_EVENT_STATE_INACTIVE; 5935 5936 if (task) { 5937 event->attach_state = PERF_ATTACH_TASK; 5938 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5939 /* 5940 * hw_breakpoint is a bit difficult here.. 5941 */ 5942 if (attr->type == PERF_TYPE_BREAKPOINT) 5943 event->hw.bp_target = task; 5944 #endif 5945 } 5946 5947 if (!overflow_handler && parent_event) { 5948 overflow_handler = parent_event->overflow_handler; 5949 context = parent_event->overflow_handler_context; 5950 } 5951 5952 event->overflow_handler = overflow_handler; 5953 event->overflow_handler_context = context; 5954 5955 if (attr->disabled) 5956 event->state = PERF_EVENT_STATE_OFF; 5957 5958 pmu = NULL; 5959 5960 hwc = &event->hw; 5961 hwc->sample_period = attr->sample_period; 5962 if (attr->freq && attr->sample_freq) 5963 hwc->sample_period = 1; 5964 hwc->last_period = hwc->sample_period; 5965 5966 local64_set(&hwc->period_left, hwc->sample_period); 5967 5968 /* 5969 * we currently do not support PERF_FORMAT_GROUP on inherited events 5970 */ 5971 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 5972 goto done; 5973 5974 pmu = perf_init_event(event); 5975 5976 done: 5977 err = 0; 5978 if (!pmu) 5979 err = -EINVAL; 5980 else if (IS_ERR(pmu)) 5981 err = PTR_ERR(pmu); 5982 5983 if (err) { 5984 if (event->ns) 5985 put_pid_ns(event->ns); 5986 kfree(event); 5987 return ERR_PTR(err); 5988 } 5989 5990 if (!event->parent) { 5991 if (event->attach_state & PERF_ATTACH_TASK) 5992 static_key_slow_inc(&perf_sched_events.key); 5993 if (event->attr.mmap || event->attr.mmap_data) 5994 atomic_inc(&nr_mmap_events); 5995 if (event->attr.comm) 5996 atomic_inc(&nr_comm_events); 5997 if (event->attr.task) 5998 atomic_inc(&nr_task_events); 5999 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6000 err = get_callchain_buffers(); 6001 if (err) { 6002 free_event(event); 6003 return ERR_PTR(err); 6004 } 6005 } 6006 if (has_branch_stack(event)) { 6007 static_key_slow_inc(&perf_sched_events.key); 6008 if (!(event->attach_state & PERF_ATTACH_TASK)) 6009 atomic_inc(&per_cpu(perf_branch_stack_events, 6010 event->cpu)); 6011 } 6012 } 6013 6014 return event; 6015 } 6016 6017 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6018 struct perf_event_attr *attr) 6019 { 6020 u32 size; 6021 int ret; 6022 6023 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6024 return -EFAULT; 6025 6026 /* 6027 * zero the full structure, so that a short copy will be nice. 6028 */ 6029 memset(attr, 0, sizeof(*attr)); 6030 6031 ret = get_user(size, &uattr->size); 6032 if (ret) 6033 return ret; 6034 6035 if (size > PAGE_SIZE) /* silly large */ 6036 goto err_size; 6037 6038 if (!size) /* abi compat */ 6039 size = PERF_ATTR_SIZE_VER0; 6040 6041 if (size < PERF_ATTR_SIZE_VER0) 6042 goto err_size; 6043 6044 /* 6045 * If we're handed a bigger struct than we know of, 6046 * ensure all the unknown bits are 0 - i.e. new 6047 * user-space does not rely on any kernel feature 6048 * extensions we dont know about yet. 6049 */ 6050 if (size > sizeof(*attr)) { 6051 unsigned char __user *addr; 6052 unsigned char __user *end; 6053 unsigned char val; 6054 6055 addr = (void __user *)uattr + sizeof(*attr); 6056 end = (void __user *)uattr + size; 6057 6058 for (; addr < end; addr++) { 6059 ret = get_user(val, addr); 6060 if (ret) 6061 return ret; 6062 if (val) 6063 goto err_size; 6064 } 6065 size = sizeof(*attr); 6066 } 6067 6068 ret = copy_from_user(attr, uattr, size); 6069 if (ret) 6070 return -EFAULT; 6071 6072 if (attr->__reserved_1) 6073 return -EINVAL; 6074 6075 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6076 return -EINVAL; 6077 6078 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6079 return -EINVAL; 6080 6081 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6082 u64 mask = attr->branch_sample_type; 6083 6084 /* only using defined bits */ 6085 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6086 return -EINVAL; 6087 6088 /* at least one branch bit must be set */ 6089 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6090 return -EINVAL; 6091 6092 /* kernel level capture: check permissions */ 6093 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6094 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6095 return -EACCES; 6096 6097 /* propagate priv level, when not set for branch */ 6098 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6099 6100 /* exclude_kernel checked on syscall entry */ 6101 if (!attr->exclude_kernel) 6102 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6103 6104 if (!attr->exclude_user) 6105 mask |= PERF_SAMPLE_BRANCH_USER; 6106 6107 if (!attr->exclude_hv) 6108 mask |= PERF_SAMPLE_BRANCH_HV; 6109 /* 6110 * adjust user setting (for HW filter setup) 6111 */ 6112 attr->branch_sample_type = mask; 6113 } 6114 } 6115 out: 6116 return ret; 6117 6118 err_size: 6119 put_user(sizeof(*attr), &uattr->size); 6120 ret = -E2BIG; 6121 goto out; 6122 } 6123 6124 static int 6125 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6126 { 6127 struct ring_buffer *rb = NULL, *old_rb = NULL; 6128 int ret = -EINVAL; 6129 6130 if (!output_event) 6131 goto set; 6132 6133 /* don't allow circular references */ 6134 if (event == output_event) 6135 goto out; 6136 6137 /* 6138 * Don't allow cross-cpu buffers 6139 */ 6140 if (output_event->cpu != event->cpu) 6141 goto out; 6142 6143 /* 6144 * If its not a per-cpu rb, it must be the same task. 6145 */ 6146 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6147 goto out; 6148 6149 set: 6150 mutex_lock(&event->mmap_mutex); 6151 /* Can't redirect output if we've got an active mmap() */ 6152 if (atomic_read(&event->mmap_count)) 6153 goto unlock; 6154 6155 if (output_event) { 6156 /* get the rb we want to redirect to */ 6157 rb = ring_buffer_get(output_event); 6158 if (!rb) 6159 goto unlock; 6160 } 6161 6162 old_rb = event->rb; 6163 rcu_assign_pointer(event->rb, rb); 6164 if (old_rb) 6165 ring_buffer_detach(event, old_rb); 6166 ret = 0; 6167 unlock: 6168 mutex_unlock(&event->mmap_mutex); 6169 6170 if (old_rb) 6171 ring_buffer_put(old_rb); 6172 out: 6173 return ret; 6174 } 6175 6176 /** 6177 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6178 * 6179 * @attr_uptr: event_id type attributes for monitoring/sampling 6180 * @pid: target pid 6181 * @cpu: target cpu 6182 * @group_fd: group leader event fd 6183 */ 6184 SYSCALL_DEFINE5(perf_event_open, 6185 struct perf_event_attr __user *, attr_uptr, 6186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6187 { 6188 struct perf_event *group_leader = NULL, *output_event = NULL; 6189 struct perf_event *event, *sibling; 6190 struct perf_event_attr attr; 6191 struct perf_event_context *ctx; 6192 struct file *event_file = NULL; 6193 struct file *group_file = NULL; 6194 struct task_struct *task = NULL; 6195 struct pmu *pmu; 6196 int event_fd; 6197 int move_group = 0; 6198 int fput_needed = 0; 6199 int err; 6200 6201 /* for future expandability... */ 6202 if (flags & ~PERF_FLAG_ALL) 6203 return -EINVAL; 6204 6205 err = perf_copy_attr(attr_uptr, &attr); 6206 if (err) 6207 return err; 6208 6209 if (!attr.exclude_kernel) { 6210 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6211 return -EACCES; 6212 } 6213 6214 if (attr.freq) { 6215 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6216 return -EINVAL; 6217 } 6218 6219 /* 6220 * In cgroup mode, the pid argument is used to pass the fd 6221 * opened to the cgroup directory in cgroupfs. The cpu argument 6222 * designates the cpu on which to monitor threads from that 6223 * cgroup. 6224 */ 6225 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6226 return -EINVAL; 6227 6228 event_fd = get_unused_fd_flags(O_RDWR); 6229 if (event_fd < 0) 6230 return event_fd; 6231 6232 if (group_fd != -1) { 6233 group_leader = perf_fget_light(group_fd, &fput_needed); 6234 if (IS_ERR(group_leader)) { 6235 err = PTR_ERR(group_leader); 6236 goto err_fd; 6237 } 6238 group_file = group_leader->filp; 6239 if (flags & PERF_FLAG_FD_OUTPUT) 6240 output_event = group_leader; 6241 if (flags & PERF_FLAG_FD_NO_GROUP) 6242 group_leader = NULL; 6243 } 6244 6245 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6246 task = find_lively_task_by_vpid(pid); 6247 if (IS_ERR(task)) { 6248 err = PTR_ERR(task); 6249 goto err_group_fd; 6250 } 6251 } 6252 6253 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6254 NULL, NULL); 6255 if (IS_ERR(event)) { 6256 err = PTR_ERR(event); 6257 goto err_task; 6258 } 6259 6260 if (flags & PERF_FLAG_PID_CGROUP) { 6261 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6262 if (err) 6263 goto err_alloc; 6264 /* 6265 * one more event: 6266 * - that has cgroup constraint on event->cpu 6267 * - that may need work on context switch 6268 */ 6269 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6270 static_key_slow_inc(&perf_sched_events.key); 6271 } 6272 6273 /* 6274 * Special case software events and allow them to be part of 6275 * any hardware group. 6276 */ 6277 pmu = event->pmu; 6278 6279 if (group_leader && 6280 (is_software_event(event) != is_software_event(group_leader))) { 6281 if (is_software_event(event)) { 6282 /* 6283 * If event and group_leader are not both a software 6284 * event, and event is, then group leader is not. 6285 * 6286 * Allow the addition of software events to !software 6287 * groups, this is safe because software events never 6288 * fail to schedule. 6289 */ 6290 pmu = group_leader->pmu; 6291 } else if (is_software_event(group_leader) && 6292 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6293 /* 6294 * In case the group is a pure software group, and we 6295 * try to add a hardware event, move the whole group to 6296 * the hardware context. 6297 */ 6298 move_group = 1; 6299 } 6300 } 6301 6302 /* 6303 * Get the target context (task or percpu): 6304 */ 6305 ctx = find_get_context(pmu, task, cpu); 6306 if (IS_ERR(ctx)) { 6307 err = PTR_ERR(ctx); 6308 goto err_alloc; 6309 } 6310 6311 if (task) { 6312 put_task_struct(task); 6313 task = NULL; 6314 } 6315 6316 /* 6317 * Look up the group leader (we will attach this event to it): 6318 */ 6319 if (group_leader) { 6320 err = -EINVAL; 6321 6322 /* 6323 * Do not allow a recursive hierarchy (this new sibling 6324 * becoming part of another group-sibling): 6325 */ 6326 if (group_leader->group_leader != group_leader) 6327 goto err_context; 6328 /* 6329 * Do not allow to attach to a group in a different 6330 * task or CPU context: 6331 */ 6332 if (move_group) { 6333 if (group_leader->ctx->type != ctx->type) 6334 goto err_context; 6335 } else { 6336 if (group_leader->ctx != ctx) 6337 goto err_context; 6338 } 6339 6340 /* 6341 * Only a group leader can be exclusive or pinned 6342 */ 6343 if (attr.exclusive || attr.pinned) 6344 goto err_context; 6345 } 6346 6347 if (output_event) { 6348 err = perf_event_set_output(event, output_event); 6349 if (err) 6350 goto err_context; 6351 } 6352 6353 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6354 if (IS_ERR(event_file)) { 6355 err = PTR_ERR(event_file); 6356 goto err_context; 6357 } 6358 6359 if (move_group) { 6360 struct perf_event_context *gctx = group_leader->ctx; 6361 6362 mutex_lock(&gctx->mutex); 6363 perf_remove_from_context(group_leader); 6364 list_for_each_entry(sibling, &group_leader->sibling_list, 6365 group_entry) { 6366 perf_remove_from_context(sibling); 6367 put_ctx(gctx); 6368 } 6369 mutex_unlock(&gctx->mutex); 6370 put_ctx(gctx); 6371 } 6372 6373 event->filp = event_file; 6374 WARN_ON_ONCE(ctx->parent_ctx); 6375 mutex_lock(&ctx->mutex); 6376 6377 if (move_group) { 6378 perf_install_in_context(ctx, group_leader, cpu); 6379 get_ctx(ctx); 6380 list_for_each_entry(sibling, &group_leader->sibling_list, 6381 group_entry) { 6382 perf_install_in_context(ctx, sibling, cpu); 6383 get_ctx(ctx); 6384 } 6385 } 6386 6387 perf_install_in_context(ctx, event, cpu); 6388 ++ctx->generation; 6389 perf_unpin_context(ctx); 6390 mutex_unlock(&ctx->mutex); 6391 6392 event->owner = current; 6393 6394 mutex_lock(¤t->perf_event_mutex); 6395 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6396 mutex_unlock(¤t->perf_event_mutex); 6397 6398 /* 6399 * Precalculate sample_data sizes 6400 */ 6401 perf_event__header_size(event); 6402 perf_event__id_header_size(event); 6403 6404 /* 6405 * Drop the reference on the group_event after placing the 6406 * new event on the sibling_list. This ensures destruction 6407 * of the group leader will find the pointer to itself in 6408 * perf_group_detach(). 6409 */ 6410 fput_light(group_file, fput_needed); 6411 fd_install(event_fd, event_file); 6412 return event_fd; 6413 6414 err_context: 6415 perf_unpin_context(ctx); 6416 put_ctx(ctx); 6417 err_alloc: 6418 free_event(event); 6419 err_task: 6420 if (task) 6421 put_task_struct(task); 6422 err_group_fd: 6423 fput_light(group_file, fput_needed); 6424 err_fd: 6425 put_unused_fd(event_fd); 6426 return err; 6427 } 6428 6429 /** 6430 * perf_event_create_kernel_counter 6431 * 6432 * @attr: attributes of the counter to create 6433 * @cpu: cpu in which the counter is bound 6434 * @task: task to profile (NULL for percpu) 6435 */ 6436 struct perf_event * 6437 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6438 struct task_struct *task, 6439 perf_overflow_handler_t overflow_handler, 6440 void *context) 6441 { 6442 struct perf_event_context *ctx; 6443 struct perf_event *event; 6444 int err; 6445 6446 /* 6447 * Get the target context (task or percpu): 6448 */ 6449 6450 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6451 overflow_handler, context); 6452 if (IS_ERR(event)) { 6453 err = PTR_ERR(event); 6454 goto err; 6455 } 6456 6457 ctx = find_get_context(event->pmu, task, cpu); 6458 if (IS_ERR(ctx)) { 6459 err = PTR_ERR(ctx); 6460 goto err_free; 6461 } 6462 6463 event->filp = NULL; 6464 WARN_ON_ONCE(ctx->parent_ctx); 6465 mutex_lock(&ctx->mutex); 6466 perf_install_in_context(ctx, event, cpu); 6467 ++ctx->generation; 6468 perf_unpin_context(ctx); 6469 mutex_unlock(&ctx->mutex); 6470 6471 return event; 6472 6473 err_free: 6474 free_event(event); 6475 err: 6476 return ERR_PTR(err); 6477 } 6478 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6479 6480 static void sync_child_event(struct perf_event *child_event, 6481 struct task_struct *child) 6482 { 6483 struct perf_event *parent_event = child_event->parent; 6484 u64 child_val; 6485 6486 if (child_event->attr.inherit_stat) 6487 perf_event_read_event(child_event, child); 6488 6489 child_val = perf_event_count(child_event); 6490 6491 /* 6492 * Add back the child's count to the parent's count: 6493 */ 6494 atomic64_add(child_val, &parent_event->child_count); 6495 atomic64_add(child_event->total_time_enabled, 6496 &parent_event->child_total_time_enabled); 6497 atomic64_add(child_event->total_time_running, 6498 &parent_event->child_total_time_running); 6499 6500 /* 6501 * Remove this event from the parent's list 6502 */ 6503 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6504 mutex_lock(&parent_event->child_mutex); 6505 list_del_init(&child_event->child_list); 6506 mutex_unlock(&parent_event->child_mutex); 6507 6508 /* 6509 * Release the parent event, if this was the last 6510 * reference to it. 6511 */ 6512 fput(parent_event->filp); 6513 } 6514 6515 static void 6516 __perf_event_exit_task(struct perf_event *child_event, 6517 struct perf_event_context *child_ctx, 6518 struct task_struct *child) 6519 { 6520 if (child_event->parent) { 6521 raw_spin_lock_irq(&child_ctx->lock); 6522 perf_group_detach(child_event); 6523 raw_spin_unlock_irq(&child_ctx->lock); 6524 } 6525 6526 perf_remove_from_context(child_event); 6527 6528 /* 6529 * It can happen that the parent exits first, and has events 6530 * that are still around due to the child reference. These 6531 * events need to be zapped. 6532 */ 6533 if (child_event->parent) { 6534 sync_child_event(child_event, child); 6535 free_event(child_event); 6536 } 6537 } 6538 6539 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6540 { 6541 struct perf_event *child_event, *tmp; 6542 struct perf_event_context *child_ctx; 6543 unsigned long flags; 6544 6545 if (likely(!child->perf_event_ctxp[ctxn])) { 6546 perf_event_task(child, NULL, 0); 6547 return; 6548 } 6549 6550 local_irq_save(flags); 6551 /* 6552 * We can't reschedule here because interrupts are disabled, 6553 * and either child is current or it is a task that can't be 6554 * scheduled, so we are now safe from rescheduling changing 6555 * our context. 6556 */ 6557 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6558 6559 /* 6560 * Take the context lock here so that if find_get_context is 6561 * reading child->perf_event_ctxp, we wait until it has 6562 * incremented the context's refcount before we do put_ctx below. 6563 */ 6564 raw_spin_lock(&child_ctx->lock); 6565 task_ctx_sched_out(child_ctx); 6566 child->perf_event_ctxp[ctxn] = NULL; 6567 /* 6568 * If this context is a clone; unclone it so it can't get 6569 * swapped to another process while we're removing all 6570 * the events from it. 6571 */ 6572 unclone_ctx(child_ctx); 6573 update_context_time(child_ctx); 6574 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6575 6576 /* 6577 * Report the task dead after unscheduling the events so that we 6578 * won't get any samples after PERF_RECORD_EXIT. We can however still 6579 * get a few PERF_RECORD_READ events. 6580 */ 6581 perf_event_task(child, child_ctx, 0); 6582 6583 /* 6584 * We can recurse on the same lock type through: 6585 * 6586 * __perf_event_exit_task() 6587 * sync_child_event() 6588 * fput(parent_event->filp) 6589 * perf_release() 6590 * mutex_lock(&ctx->mutex) 6591 * 6592 * But since its the parent context it won't be the same instance. 6593 */ 6594 mutex_lock(&child_ctx->mutex); 6595 6596 again: 6597 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6598 group_entry) 6599 __perf_event_exit_task(child_event, child_ctx, child); 6600 6601 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6602 group_entry) 6603 __perf_event_exit_task(child_event, child_ctx, child); 6604 6605 /* 6606 * If the last event was a group event, it will have appended all 6607 * its siblings to the list, but we obtained 'tmp' before that which 6608 * will still point to the list head terminating the iteration. 6609 */ 6610 if (!list_empty(&child_ctx->pinned_groups) || 6611 !list_empty(&child_ctx->flexible_groups)) 6612 goto again; 6613 6614 mutex_unlock(&child_ctx->mutex); 6615 6616 put_ctx(child_ctx); 6617 } 6618 6619 /* 6620 * When a child task exits, feed back event values to parent events. 6621 */ 6622 void perf_event_exit_task(struct task_struct *child) 6623 { 6624 struct perf_event *event, *tmp; 6625 int ctxn; 6626 6627 mutex_lock(&child->perf_event_mutex); 6628 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6629 owner_entry) { 6630 list_del_init(&event->owner_entry); 6631 6632 /* 6633 * Ensure the list deletion is visible before we clear 6634 * the owner, closes a race against perf_release() where 6635 * we need to serialize on the owner->perf_event_mutex. 6636 */ 6637 smp_wmb(); 6638 event->owner = NULL; 6639 } 6640 mutex_unlock(&child->perf_event_mutex); 6641 6642 for_each_task_context_nr(ctxn) 6643 perf_event_exit_task_context(child, ctxn); 6644 } 6645 6646 static void perf_free_event(struct perf_event *event, 6647 struct perf_event_context *ctx) 6648 { 6649 struct perf_event *parent = event->parent; 6650 6651 if (WARN_ON_ONCE(!parent)) 6652 return; 6653 6654 mutex_lock(&parent->child_mutex); 6655 list_del_init(&event->child_list); 6656 mutex_unlock(&parent->child_mutex); 6657 6658 fput(parent->filp); 6659 6660 perf_group_detach(event); 6661 list_del_event(event, ctx); 6662 free_event(event); 6663 } 6664 6665 /* 6666 * free an unexposed, unused context as created by inheritance by 6667 * perf_event_init_task below, used by fork() in case of fail. 6668 */ 6669 void perf_event_free_task(struct task_struct *task) 6670 { 6671 struct perf_event_context *ctx; 6672 struct perf_event *event, *tmp; 6673 int ctxn; 6674 6675 for_each_task_context_nr(ctxn) { 6676 ctx = task->perf_event_ctxp[ctxn]; 6677 if (!ctx) 6678 continue; 6679 6680 mutex_lock(&ctx->mutex); 6681 again: 6682 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6683 group_entry) 6684 perf_free_event(event, ctx); 6685 6686 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6687 group_entry) 6688 perf_free_event(event, ctx); 6689 6690 if (!list_empty(&ctx->pinned_groups) || 6691 !list_empty(&ctx->flexible_groups)) 6692 goto again; 6693 6694 mutex_unlock(&ctx->mutex); 6695 6696 put_ctx(ctx); 6697 } 6698 } 6699 6700 void perf_event_delayed_put(struct task_struct *task) 6701 { 6702 int ctxn; 6703 6704 for_each_task_context_nr(ctxn) 6705 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6706 } 6707 6708 /* 6709 * inherit a event from parent task to child task: 6710 */ 6711 static struct perf_event * 6712 inherit_event(struct perf_event *parent_event, 6713 struct task_struct *parent, 6714 struct perf_event_context *parent_ctx, 6715 struct task_struct *child, 6716 struct perf_event *group_leader, 6717 struct perf_event_context *child_ctx) 6718 { 6719 struct perf_event *child_event; 6720 unsigned long flags; 6721 6722 /* 6723 * Instead of creating recursive hierarchies of events, 6724 * we link inherited events back to the original parent, 6725 * which has a filp for sure, which we use as the reference 6726 * count: 6727 */ 6728 if (parent_event->parent) 6729 parent_event = parent_event->parent; 6730 6731 child_event = perf_event_alloc(&parent_event->attr, 6732 parent_event->cpu, 6733 child, 6734 group_leader, parent_event, 6735 NULL, NULL); 6736 if (IS_ERR(child_event)) 6737 return child_event; 6738 get_ctx(child_ctx); 6739 6740 /* 6741 * Make the child state follow the state of the parent event, 6742 * not its attr.disabled bit. We hold the parent's mutex, 6743 * so we won't race with perf_event_{en, dis}able_family. 6744 */ 6745 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 6746 child_event->state = PERF_EVENT_STATE_INACTIVE; 6747 else 6748 child_event->state = PERF_EVENT_STATE_OFF; 6749 6750 if (parent_event->attr.freq) { 6751 u64 sample_period = parent_event->hw.sample_period; 6752 struct hw_perf_event *hwc = &child_event->hw; 6753 6754 hwc->sample_period = sample_period; 6755 hwc->last_period = sample_period; 6756 6757 local64_set(&hwc->period_left, sample_period); 6758 } 6759 6760 child_event->ctx = child_ctx; 6761 child_event->overflow_handler = parent_event->overflow_handler; 6762 child_event->overflow_handler_context 6763 = parent_event->overflow_handler_context; 6764 6765 /* 6766 * Precalculate sample_data sizes 6767 */ 6768 perf_event__header_size(child_event); 6769 perf_event__id_header_size(child_event); 6770 6771 /* 6772 * Link it up in the child's context: 6773 */ 6774 raw_spin_lock_irqsave(&child_ctx->lock, flags); 6775 add_event_to_ctx(child_event, child_ctx); 6776 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6777 6778 /* 6779 * Get a reference to the parent filp - we will fput it 6780 * when the child event exits. This is safe to do because 6781 * we are in the parent and we know that the filp still 6782 * exists and has a nonzero count: 6783 */ 6784 atomic_long_inc(&parent_event->filp->f_count); 6785 6786 /* 6787 * Link this into the parent event's child list 6788 */ 6789 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6790 mutex_lock(&parent_event->child_mutex); 6791 list_add_tail(&child_event->child_list, &parent_event->child_list); 6792 mutex_unlock(&parent_event->child_mutex); 6793 6794 return child_event; 6795 } 6796 6797 static int inherit_group(struct perf_event *parent_event, 6798 struct task_struct *parent, 6799 struct perf_event_context *parent_ctx, 6800 struct task_struct *child, 6801 struct perf_event_context *child_ctx) 6802 { 6803 struct perf_event *leader; 6804 struct perf_event *sub; 6805 struct perf_event *child_ctr; 6806 6807 leader = inherit_event(parent_event, parent, parent_ctx, 6808 child, NULL, child_ctx); 6809 if (IS_ERR(leader)) 6810 return PTR_ERR(leader); 6811 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 6812 child_ctr = inherit_event(sub, parent, parent_ctx, 6813 child, leader, child_ctx); 6814 if (IS_ERR(child_ctr)) 6815 return PTR_ERR(child_ctr); 6816 } 6817 return 0; 6818 } 6819 6820 static int 6821 inherit_task_group(struct perf_event *event, struct task_struct *parent, 6822 struct perf_event_context *parent_ctx, 6823 struct task_struct *child, int ctxn, 6824 int *inherited_all) 6825 { 6826 int ret; 6827 struct perf_event_context *child_ctx; 6828 6829 if (!event->attr.inherit) { 6830 *inherited_all = 0; 6831 return 0; 6832 } 6833 6834 child_ctx = child->perf_event_ctxp[ctxn]; 6835 if (!child_ctx) { 6836 /* 6837 * This is executed from the parent task context, so 6838 * inherit events that have been marked for cloning. 6839 * First allocate and initialize a context for the 6840 * child. 6841 */ 6842 6843 child_ctx = alloc_perf_context(event->pmu, child); 6844 if (!child_ctx) 6845 return -ENOMEM; 6846 6847 child->perf_event_ctxp[ctxn] = child_ctx; 6848 } 6849 6850 ret = inherit_group(event, parent, parent_ctx, 6851 child, child_ctx); 6852 6853 if (ret) 6854 *inherited_all = 0; 6855 6856 return ret; 6857 } 6858 6859 /* 6860 * Initialize the perf_event context in task_struct 6861 */ 6862 int perf_event_init_context(struct task_struct *child, int ctxn) 6863 { 6864 struct perf_event_context *child_ctx, *parent_ctx; 6865 struct perf_event_context *cloned_ctx; 6866 struct perf_event *event; 6867 struct task_struct *parent = current; 6868 int inherited_all = 1; 6869 unsigned long flags; 6870 int ret = 0; 6871 6872 if (likely(!parent->perf_event_ctxp[ctxn])) 6873 return 0; 6874 6875 /* 6876 * If the parent's context is a clone, pin it so it won't get 6877 * swapped under us. 6878 */ 6879 parent_ctx = perf_pin_task_context(parent, ctxn); 6880 6881 /* 6882 * No need to check if parent_ctx != NULL here; since we saw 6883 * it non-NULL earlier, the only reason for it to become NULL 6884 * is if we exit, and since we're currently in the middle of 6885 * a fork we can't be exiting at the same time. 6886 */ 6887 6888 /* 6889 * Lock the parent list. No need to lock the child - not PID 6890 * hashed yet and not running, so nobody can access it. 6891 */ 6892 mutex_lock(&parent_ctx->mutex); 6893 6894 /* 6895 * We dont have to disable NMIs - we are only looking at 6896 * the list, not manipulating it: 6897 */ 6898 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 6899 ret = inherit_task_group(event, parent, parent_ctx, 6900 child, ctxn, &inherited_all); 6901 if (ret) 6902 break; 6903 } 6904 6905 /* 6906 * We can't hold ctx->lock when iterating the ->flexible_group list due 6907 * to allocations, but we need to prevent rotation because 6908 * rotate_ctx() will change the list from interrupt context. 6909 */ 6910 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6911 parent_ctx->rotate_disable = 1; 6912 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6913 6914 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 6915 ret = inherit_task_group(event, parent, parent_ctx, 6916 child, ctxn, &inherited_all); 6917 if (ret) 6918 break; 6919 } 6920 6921 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 6922 parent_ctx->rotate_disable = 0; 6923 6924 child_ctx = child->perf_event_ctxp[ctxn]; 6925 6926 if (child_ctx && inherited_all) { 6927 /* 6928 * Mark the child context as a clone of the parent 6929 * context, or of whatever the parent is a clone of. 6930 * 6931 * Note that if the parent is a clone, the holding of 6932 * parent_ctx->lock avoids it from being uncloned. 6933 */ 6934 cloned_ctx = parent_ctx->parent_ctx; 6935 if (cloned_ctx) { 6936 child_ctx->parent_ctx = cloned_ctx; 6937 child_ctx->parent_gen = parent_ctx->parent_gen; 6938 } else { 6939 child_ctx->parent_ctx = parent_ctx; 6940 child_ctx->parent_gen = parent_ctx->generation; 6941 } 6942 get_ctx(child_ctx->parent_ctx); 6943 } 6944 6945 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 6946 mutex_unlock(&parent_ctx->mutex); 6947 6948 perf_unpin_context(parent_ctx); 6949 put_ctx(parent_ctx); 6950 6951 return ret; 6952 } 6953 6954 /* 6955 * Initialize the perf_event context in task_struct 6956 */ 6957 int perf_event_init_task(struct task_struct *child) 6958 { 6959 int ctxn, ret; 6960 6961 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 6962 mutex_init(&child->perf_event_mutex); 6963 INIT_LIST_HEAD(&child->perf_event_list); 6964 6965 for_each_task_context_nr(ctxn) { 6966 ret = perf_event_init_context(child, ctxn); 6967 if (ret) 6968 return ret; 6969 } 6970 6971 return 0; 6972 } 6973 6974 static void __init perf_event_init_all_cpus(void) 6975 { 6976 struct swevent_htable *swhash; 6977 int cpu; 6978 6979 for_each_possible_cpu(cpu) { 6980 swhash = &per_cpu(swevent_htable, cpu); 6981 mutex_init(&swhash->hlist_mutex); 6982 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 6983 } 6984 } 6985 6986 static void __cpuinit perf_event_init_cpu(int cpu) 6987 { 6988 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6989 6990 mutex_lock(&swhash->hlist_mutex); 6991 if (swhash->hlist_refcount > 0) { 6992 struct swevent_hlist *hlist; 6993 6994 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 6995 WARN_ON(!hlist); 6996 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6997 } 6998 mutex_unlock(&swhash->hlist_mutex); 6999 } 7000 7001 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7002 static void perf_pmu_rotate_stop(struct pmu *pmu) 7003 { 7004 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7005 7006 WARN_ON(!irqs_disabled()); 7007 7008 list_del_init(&cpuctx->rotation_list); 7009 } 7010 7011 static void __perf_event_exit_context(void *__info) 7012 { 7013 struct perf_event_context *ctx = __info; 7014 struct perf_event *event, *tmp; 7015 7016 perf_pmu_rotate_stop(ctx->pmu); 7017 7018 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7019 __perf_remove_from_context(event); 7020 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7021 __perf_remove_from_context(event); 7022 } 7023 7024 static void perf_event_exit_cpu_context(int cpu) 7025 { 7026 struct perf_event_context *ctx; 7027 struct pmu *pmu; 7028 int idx; 7029 7030 idx = srcu_read_lock(&pmus_srcu); 7031 list_for_each_entry_rcu(pmu, &pmus, entry) { 7032 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7033 7034 mutex_lock(&ctx->mutex); 7035 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7036 mutex_unlock(&ctx->mutex); 7037 } 7038 srcu_read_unlock(&pmus_srcu, idx); 7039 } 7040 7041 static void perf_event_exit_cpu(int cpu) 7042 { 7043 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7044 7045 mutex_lock(&swhash->hlist_mutex); 7046 swevent_hlist_release(swhash); 7047 mutex_unlock(&swhash->hlist_mutex); 7048 7049 perf_event_exit_cpu_context(cpu); 7050 } 7051 #else 7052 static inline void perf_event_exit_cpu(int cpu) { } 7053 #endif 7054 7055 static int 7056 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7057 { 7058 int cpu; 7059 7060 for_each_online_cpu(cpu) 7061 perf_event_exit_cpu(cpu); 7062 7063 return NOTIFY_OK; 7064 } 7065 7066 /* 7067 * Run the perf reboot notifier at the very last possible moment so that 7068 * the generic watchdog code runs as long as possible. 7069 */ 7070 static struct notifier_block perf_reboot_notifier = { 7071 .notifier_call = perf_reboot, 7072 .priority = INT_MIN, 7073 }; 7074 7075 static int __cpuinit 7076 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7077 { 7078 unsigned int cpu = (long)hcpu; 7079 7080 switch (action & ~CPU_TASKS_FROZEN) { 7081 7082 case CPU_UP_PREPARE: 7083 case CPU_DOWN_FAILED: 7084 perf_event_init_cpu(cpu); 7085 break; 7086 7087 case CPU_UP_CANCELED: 7088 case CPU_DOWN_PREPARE: 7089 perf_event_exit_cpu(cpu); 7090 break; 7091 7092 default: 7093 break; 7094 } 7095 7096 return NOTIFY_OK; 7097 } 7098 7099 void __init perf_event_init(void) 7100 { 7101 int ret; 7102 7103 idr_init(&pmu_idr); 7104 7105 perf_event_init_all_cpus(); 7106 init_srcu_struct(&pmus_srcu); 7107 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7108 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7109 perf_pmu_register(&perf_task_clock, NULL, -1); 7110 perf_tp_register(); 7111 perf_cpu_notifier(perf_cpu_notify); 7112 register_reboot_notifier(&perf_reboot_notifier); 7113 7114 ret = init_hw_breakpoint(); 7115 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7116 7117 /* do not patch jump label more than once per second */ 7118 jump_label_rate_limit(&perf_sched_events, HZ); 7119 7120 /* 7121 * Build time assertion that we keep the data_head at the intended 7122 * location. IOW, validation we got the __reserved[] size right. 7123 */ 7124 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7125 != 1024); 7126 } 7127 7128 static int __init perf_event_sysfs_init(void) 7129 { 7130 struct pmu *pmu; 7131 int ret; 7132 7133 mutex_lock(&pmus_lock); 7134 7135 ret = bus_register(&pmu_bus); 7136 if (ret) 7137 goto unlock; 7138 7139 list_for_each_entry(pmu, &pmus, entry) { 7140 if (!pmu->name || pmu->type < 0) 7141 continue; 7142 7143 ret = pmu_dev_alloc(pmu); 7144 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7145 } 7146 pmu_bus_running = 1; 7147 ret = 0; 7148 7149 unlock: 7150 mutex_unlock(&pmus_lock); 7151 7152 return ret; 7153 } 7154 device_initcall(perf_event_sysfs_init); 7155 7156 #ifdef CONFIG_CGROUP_PERF 7157 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7158 { 7159 struct perf_cgroup *jc; 7160 7161 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7162 if (!jc) 7163 return ERR_PTR(-ENOMEM); 7164 7165 jc->info = alloc_percpu(struct perf_cgroup_info); 7166 if (!jc->info) { 7167 kfree(jc); 7168 return ERR_PTR(-ENOMEM); 7169 } 7170 7171 return &jc->css; 7172 } 7173 7174 static void perf_cgroup_destroy(struct cgroup *cont) 7175 { 7176 struct perf_cgroup *jc; 7177 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7178 struct perf_cgroup, css); 7179 free_percpu(jc->info); 7180 kfree(jc); 7181 } 7182 7183 static int __perf_cgroup_move(void *info) 7184 { 7185 struct task_struct *task = info; 7186 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7187 return 0; 7188 } 7189 7190 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7191 { 7192 struct task_struct *task; 7193 7194 cgroup_taskset_for_each(task, cgrp, tset) 7195 task_function_call(task, __perf_cgroup_move, task); 7196 } 7197 7198 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7199 struct task_struct *task) 7200 { 7201 /* 7202 * cgroup_exit() is called in the copy_process() failure path. 7203 * Ignore this case since the task hasn't ran yet, this avoids 7204 * trying to poke a half freed task state from generic code. 7205 */ 7206 if (!(task->flags & PF_EXITING)) 7207 return; 7208 7209 task_function_call(task, __perf_cgroup_move, task); 7210 } 7211 7212 struct cgroup_subsys perf_subsys = { 7213 .name = "perf_event", 7214 .subsys_id = perf_subsys_id, 7215 .create = perf_cgroup_create, 7216 .destroy = perf_cgroup_destroy, 7217 .exit = perf_cgroup_exit, 7218 .attach = perf_cgroup_attach, 7219 }; 7220 #endif /* CONFIG_CGROUP_PERF */ 7221