1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 /* 1841 * Since perf_event_validate_size() limits this to 16k and inhibits 1842 * adding more siblings, this will never overflow. 1843 */ 1844 return size + nr * entry; 1845 } 1846 1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1848 { 1849 struct perf_sample_data *data; 1850 u16 size = 0; 1851 1852 if (sample_type & PERF_SAMPLE_IP) 1853 size += sizeof(data->ip); 1854 1855 if (sample_type & PERF_SAMPLE_ADDR) 1856 size += sizeof(data->addr); 1857 1858 if (sample_type & PERF_SAMPLE_PERIOD) 1859 size += sizeof(data->period); 1860 1861 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1862 size += sizeof(data->weight.full); 1863 1864 if (sample_type & PERF_SAMPLE_READ) 1865 size += event->read_size; 1866 1867 if (sample_type & PERF_SAMPLE_DATA_SRC) 1868 size += sizeof(data->data_src.val); 1869 1870 if (sample_type & PERF_SAMPLE_TRANSACTION) 1871 size += sizeof(data->txn); 1872 1873 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1874 size += sizeof(data->phys_addr); 1875 1876 if (sample_type & PERF_SAMPLE_CGROUP) 1877 size += sizeof(data->cgroup); 1878 1879 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1880 size += sizeof(data->data_page_size); 1881 1882 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1883 size += sizeof(data->code_page_size); 1884 1885 event->header_size = size; 1886 } 1887 1888 /* 1889 * Called at perf_event creation and when events are attached/detached from a 1890 * group. 1891 */ 1892 static void perf_event__header_size(struct perf_event *event) 1893 { 1894 event->read_size = 1895 __perf_event_read_size(event->attr.read_format, 1896 event->group_leader->nr_siblings); 1897 __perf_event_header_size(event, event->attr.sample_type); 1898 } 1899 1900 static void perf_event__id_header_size(struct perf_event *event) 1901 { 1902 struct perf_sample_data *data; 1903 u64 sample_type = event->attr.sample_type; 1904 u16 size = 0; 1905 1906 if (sample_type & PERF_SAMPLE_TID) 1907 size += sizeof(data->tid_entry); 1908 1909 if (sample_type & PERF_SAMPLE_TIME) 1910 size += sizeof(data->time); 1911 1912 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1913 size += sizeof(data->id); 1914 1915 if (sample_type & PERF_SAMPLE_ID) 1916 size += sizeof(data->id); 1917 1918 if (sample_type & PERF_SAMPLE_STREAM_ID) 1919 size += sizeof(data->stream_id); 1920 1921 if (sample_type & PERF_SAMPLE_CPU) 1922 size += sizeof(data->cpu_entry); 1923 1924 event->id_header_size = size; 1925 } 1926 1927 /* 1928 * Check that adding an event to the group does not result in anybody 1929 * overflowing the 64k event limit imposed by the output buffer. 1930 * 1931 * Specifically, check that the read_size for the event does not exceed 16k, 1932 * read_size being the one term that grows with groups size. Since read_size 1933 * depends on per-event read_format, also (re)check the existing events. 1934 * 1935 * This leaves 48k for the constant size fields and things like callchains, 1936 * branch stacks and register sets. 1937 */ 1938 static bool perf_event_validate_size(struct perf_event *event) 1939 { 1940 struct perf_event *sibling, *group_leader = event->group_leader; 1941 1942 if (__perf_event_read_size(event->attr.read_format, 1943 group_leader->nr_siblings + 1) > 16*1024) 1944 return false; 1945 1946 if (__perf_event_read_size(group_leader->attr.read_format, 1947 group_leader->nr_siblings + 1) > 16*1024) 1948 return false; 1949 1950 /* 1951 * When creating a new group leader, group_leader->ctx is initialized 1952 * after the size has been validated, but we cannot safely use 1953 * for_each_sibling_event() until group_leader->ctx is set. A new group 1954 * leader cannot have any siblings yet, so we can safely skip checking 1955 * the non-existent siblings. 1956 */ 1957 if (event == group_leader) 1958 return true; 1959 1960 for_each_sibling_event(sibling, group_leader) { 1961 if (__perf_event_read_size(sibling->attr.read_format, 1962 group_leader->nr_siblings + 1) > 16*1024) 1963 return false; 1964 } 1965 1966 return true; 1967 } 1968 1969 static void perf_group_attach(struct perf_event *event) 1970 { 1971 struct perf_event *group_leader = event->group_leader, *pos; 1972 1973 lockdep_assert_held(&event->ctx->lock); 1974 1975 /* 1976 * We can have double attach due to group movement (move_group) in 1977 * perf_event_open(). 1978 */ 1979 if (event->attach_state & PERF_ATTACH_GROUP) 1980 return; 1981 1982 event->attach_state |= PERF_ATTACH_GROUP; 1983 1984 if (group_leader == event) 1985 return; 1986 1987 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1988 1989 group_leader->group_caps &= event->event_caps; 1990 1991 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1992 group_leader->nr_siblings++; 1993 group_leader->group_generation++; 1994 1995 perf_event__header_size(group_leader); 1996 1997 for_each_sibling_event(pos, group_leader) 1998 perf_event__header_size(pos); 1999 } 2000 2001 /* 2002 * Remove an event from the lists for its context. 2003 * Must be called with ctx->mutex and ctx->lock held. 2004 */ 2005 static void 2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2007 { 2008 WARN_ON_ONCE(event->ctx != ctx); 2009 lockdep_assert_held(&ctx->lock); 2010 2011 /* 2012 * We can have double detach due to exit/hot-unplug + close. 2013 */ 2014 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2015 return; 2016 2017 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2018 2019 ctx->nr_events--; 2020 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2021 ctx->nr_user--; 2022 if (event->attr.inherit_stat) 2023 ctx->nr_stat--; 2024 2025 list_del_rcu(&event->event_entry); 2026 2027 if (event->group_leader == event) 2028 del_event_from_groups(event, ctx); 2029 2030 /* 2031 * If event was in error state, then keep it 2032 * that way, otherwise bogus counts will be 2033 * returned on read(). The only way to get out 2034 * of error state is by explicit re-enabling 2035 * of the event 2036 */ 2037 if (event->state > PERF_EVENT_STATE_OFF) { 2038 perf_cgroup_event_disable(event, ctx); 2039 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2040 } 2041 2042 ctx->generation++; 2043 event->pmu_ctx->nr_events--; 2044 } 2045 2046 static int 2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2048 { 2049 if (!has_aux(aux_event)) 2050 return 0; 2051 2052 if (!event->pmu->aux_output_match) 2053 return 0; 2054 2055 return event->pmu->aux_output_match(aux_event); 2056 } 2057 2058 static void put_event(struct perf_event *event); 2059 static void event_sched_out(struct perf_event *event, 2060 struct perf_event_context *ctx); 2061 2062 static void perf_put_aux_event(struct perf_event *event) 2063 { 2064 struct perf_event_context *ctx = event->ctx; 2065 struct perf_event *iter; 2066 2067 /* 2068 * If event uses aux_event tear down the link 2069 */ 2070 if (event->aux_event) { 2071 iter = event->aux_event; 2072 event->aux_event = NULL; 2073 put_event(iter); 2074 return; 2075 } 2076 2077 /* 2078 * If the event is an aux_event, tear down all links to 2079 * it from other events. 2080 */ 2081 for_each_sibling_event(iter, event->group_leader) { 2082 if (iter->aux_event != event) 2083 continue; 2084 2085 iter->aux_event = NULL; 2086 put_event(event); 2087 2088 /* 2089 * If it's ACTIVE, schedule it out and put it into ERROR 2090 * state so that we don't try to schedule it again. Note 2091 * that perf_event_enable() will clear the ERROR status. 2092 */ 2093 event_sched_out(iter, ctx); 2094 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2095 } 2096 } 2097 2098 static bool perf_need_aux_event(struct perf_event *event) 2099 { 2100 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2101 } 2102 2103 static int perf_get_aux_event(struct perf_event *event, 2104 struct perf_event *group_leader) 2105 { 2106 /* 2107 * Our group leader must be an aux event if we want to be 2108 * an aux_output. This way, the aux event will precede its 2109 * aux_output events in the group, and therefore will always 2110 * schedule first. 2111 */ 2112 if (!group_leader) 2113 return 0; 2114 2115 /* 2116 * aux_output and aux_sample_size are mutually exclusive. 2117 */ 2118 if (event->attr.aux_output && event->attr.aux_sample_size) 2119 return 0; 2120 2121 if (event->attr.aux_output && 2122 !perf_aux_output_match(event, group_leader)) 2123 return 0; 2124 2125 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2126 return 0; 2127 2128 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2129 return 0; 2130 2131 /* 2132 * Link aux_outputs to their aux event; this is undone in 2133 * perf_group_detach() by perf_put_aux_event(). When the 2134 * group in torn down, the aux_output events loose their 2135 * link to the aux_event and can't schedule any more. 2136 */ 2137 event->aux_event = group_leader; 2138 2139 return 1; 2140 } 2141 2142 static inline struct list_head *get_event_list(struct perf_event *event) 2143 { 2144 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2145 &event->pmu_ctx->flexible_active; 2146 } 2147 2148 /* 2149 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2150 * cannot exist on their own, schedule them out and move them into the ERROR 2151 * state. Also see _perf_event_enable(), it will not be able to recover 2152 * this ERROR state. 2153 */ 2154 static inline void perf_remove_sibling_event(struct perf_event *event) 2155 { 2156 event_sched_out(event, event->ctx); 2157 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2158 } 2159 2160 static void perf_group_detach(struct perf_event *event) 2161 { 2162 struct perf_event *leader = event->group_leader; 2163 struct perf_event *sibling, *tmp; 2164 struct perf_event_context *ctx = event->ctx; 2165 2166 lockdep_assert_held(&ctx->lock); 2167 2168 /* 2169 * We can have double detach due to exit/hot-unplug + close. 2170 */ 2171 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2172 return; 2173 2174 event->attach_state &= ~PERF_ATTACH_GROUP; 2175 2176 perf_put_aux_event(event); 2177 2178 /* 2179 * If this is a sibling, remove it from its group. 2180 */ 2181 if (leader != event) { 2182 list_del_init(&event->sibling_list); 2183 event->group_leader->nr_siblings--; 2184 event->group_leader->group_generation++; 2185 goto out; 2186 } 2187 2188 /* 2189 * If this was a group event with sibling events then 2190 * upgrade the siblings to singleton events by adding them 2191 * to whatever list we are on. 2192 */ 2193 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2194 2195 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2196 perf_remove_sibling_event(sibling); 2197 2198 sibling->group_leader = sibling; 2199 list_del_init(&sibling->sibling_list); 2200 2201 /* Inherit group flags from the previous leader */ 2202 sibling->group_caps = event->group_caps; 2203 2204 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2205 add_event_to_groups(sibling, event->ctx); 2206 2207 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2208 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2209 } 2210 2211 WARN_ON_ONCE(sibling->ctx != event->ctx); 2212 } 2213 2214 out: 2215 for_each_sibling_event(tmp, leader) 2216 perf_event__header_size(tmp); 2217 2218 perf_event__header_size(leader); 2219 } 2220 2221 static void sync_child_event(struct perf_event *child_event); 2222 2223 static void perf_child_detach(struct perf_event *event) 2224 { 2225 struct perf_event *parent_event = event->parent; 2226 2227 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2228 return; 2229 2230 event->attach_state &= ~PERF_ATTACH_CHILD; 2231 2232 if (WARN_ON_ONCE(!parent_event)) 2233 return; 2234 2235 lockdep_assert_held(&parent_event->child_mutex); 2236 2237 sync_child_event(event); 2238 list_del_init(&event->child_list); 2239 } 2240 2241 static bool is_orphaned_event(struct perf_event *event) 2242 { 2243 return event->state == PERF_EVENT_STATE_DEAD; 2244 } 2245 2246 static inline int 2247 event_filter_match(struct perf_event *event) 2248 { 2249 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2250 perf_cgroup_match(event); 2251 } 2252 2253 static void 2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2255 { 2256 struct perf_event_pmu_context *epc = event->pmu_ctx; 2257 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2258 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2259 2260 // XXX cpc serialization, probably per-cpu IRQ disabled 2261 2262 WARN_ON_ONCE(event->ctx != ctx); 2263 lockdep_assert_held(&ctx->lock); 2264 2265 if (event->state != PERF_EVENT_STATE_ACTIVE) 2266 return; 2267 2268 /* 2269 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2270 * we can schedule events _OUT_ individually through things like 2271 * __perf_remove_from_context(). 2272 */ 2273 list_del_init(&event->active_list); 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 event->pmu->del(event, 0); 2278 event->oncpu = -1; 2279 2280 if (event->pending_disable) { 2281 event->pending_disable = 0; 2282 perf_cgroup_event_disable(event, ctx); 2283 state = PERF_EVENT_STATE_OFF; 2284 } 2285 2286 if (event->pending_sigtrap) { 2287 bool dec = true; 2288 2289 event->pending_sigtrap = 0; 2290 if (state != PERF_EVENT_STATE_OFF && 2291 !event->pending_work) { 2292 event->pending_work = 1; 2293 dec = false; 2294 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2295 task_work_add(current, &event->pending_task, TWA_RESUME); 2296 } 2297 if (dec) 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 2301 perf_event_set_state(event, state); 2302 2303 if (!is_software_event(event)) 2304 cpc->active_oncpu--; 2305 if (event->attr.freq && event->attr.sample_freq) 2306 ctx->nr_freq--; 2307 if (event->attr.exclusive || !cpc->active_oncpu) 2308 cpc->exclusive = 0; 2309 2310 perf_pmu_enable(event->pmu); 2311 } 2312 2313 static void 2314 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2315 { 2316 struct perf_event *event; 2317 2318 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2319 return; 2320 2321 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2322 2323 event_sched_out(group_event, ctx); 2324 2325 /* 2326 * Schedule out siblings (if any): 2327 */ 2328 for_each_sibling_event(event, group_event) 2329 event_sched_out(event, ctx); 2330 } 2331 2332 #define DETACH_GROUP 0x01UL 2333 #define DETACH_CHILD 0x02UL 2334 #define DETACH_DEAD 0x04UL 2335 2336 /* 2337 * Cross CPU call to remove a performance event 2338 * 2339 * We disable the event on the hardware level first. After that we 2340 * remove it from the context list. 2341 */ 2342 static void 2343 __perf_remove_from_context(struct perf_event *event, 2344 struct perf_cpu_context *cpuctx, 2345 struct perf_event_context *ctx, 2346 void *info) 2347 { 2348 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2349 unsigned long flags = (unsigned long)info; 2350 2351 if (ctx->is_active & EVENT_TIME) { 2352 update_context_time(ctx); 2353 update_cgrp_time_from_cpuctx(cpuctx, false); 2354 } 2355 2356 /* 2357 * Ensure event_sched_out() switches to OFF, at the very least 2358 * this avoids raising perf_pending_task() at this time. 2359 */ 2360 if (flags & DETACH_DEAD) 2361 event->pending_disable = 1; 2362 event_sched_out(event, ctx); 2363 if (flags & DETACH_GROUP) 2364 perf_group_detach(event); 2365 if (flags & DETACH_CHILD) 2366 perf_child_detach(event); 2367 list_del_event(event, ctx); 2368 if (flags & DETACH_DEAD) 2369 event->state = PERF_EVENT_STATE_DEAD; 2370 2371 if (!pmu_ctx->nr_events) { 2372 pmu_ctx->rotate_necessary = 0; 2373 2374 if (ctx->task && ctx->is_active) { 2375 struct perf_cpu_pmu_context *cpc; 2376 2377 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2378 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2379 cpc->task_epc = NULL; 2380 } 2381 } 2382 2383 if (!ctx->nr_events && ctx->is_active) { 2384 if (ctx == &cpuctx->ctx) 2385 update_cgrp_time_from_cpuctx(cpuctx, true); 2386 2387 ctx->is_active = 0; 2388 if (ctx->task) { 2389 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2390 cpuctx->task_ctx = NULL; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * Remove the event from a task's (or a CPU's) list of events. 2397 * 2398 * If event->ctx is a cloned context, callers must make sure that 2399 * every task struct that event->ctx->task could possibly point to 2400 * remains valid. This is OK when called from perf_release since 2401 * that only calls us on the top-level context, which can't be a clone. 2402 * When called from perf_event_exit_task, it's OK because the 2403 * context has been detached from its task. 2404 */ 2405 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2406 { 2407 struct perf_event_context *ctx = event->ctx; 2408 2409 lockdep_assert_held(&ctx->mutex); 2410 2411 /* 2412 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2413 * to work in the face of TASK_TOMBSTONE, unlike every other 2414 * event_function_call() user. 2415 */ 2416 raw_spin_lock_irq(&ctx->lock); 2417 if (!ctx->is_active) { 2418 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2419 ctx, (void *)flags); 2420 raw_spin_unlock_irq(&ctx->lock); 2421 return; 2422 } 2423 raw_spin_unlock_irq(&ctx->lock); 2424 2425 event_function_call(event, __perf_remove_from_context, (void *)flags); 2426 } 2427 2428 /* 2429 * Cross CPU call to disable a performance event 2430 */ 2431 static void __perf_event_disable(struct perf_event *event, 2432 struct perf_cpu_context *cpuctx, 2433 struct perf_event_context *ctx, 2434 void *info) 2435 { 2436 if (event->state < PERF_EVENT_STATE_INACTIVE) 2437 return; 2438 2439 if (ctx->is_active & EVENT_TIME) { 2440 update_context_time(ctx); 2441 update_cgrp_time_from_event(event); 2442 } 2443 2444 perf_pmu_disable(event->pmu_ctx->pmu); 2445 2446 if (event == event->group_leader) 2447 group_sched_out(event, ctx); 2448 else 2449 event_sched_out(event, ctx); 2450 2451 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2452 perf_cgroup_event_disable(event, ctx); 2453 2454 perf_pmu_enable(event->pmu_ctx->pmu); 2455 } 2456 2457 /* 2458 * Disable an event. 2459 * 2460 * If event->ctx is a cloned context, callers must make sure that 2461 * every task struct that event->ctx->task could possibly point to 2462 * remains valid. This condition is satisfied when called through 2463 * perf_event_for_each_child or perf_event_for_each because they 2464 * hold the top-level event's child_mutex, so any descendant that 2465 * goes to exit will block in perf_event_exit_event(). 2466 * 2467 * When called from perf_pending_irq it's OK because event->ctx 2468 * is the current context on this CPU and preemption is disabled, 2469 * hence we can't get into perf_event_task_sched_out for this context. 2470 */ 2471 static void _perf_event_disable(struct perf_event *event) 2472 { 2473 struct perf_event_context *ctx = event->ctx; 2474 2475 raw_spin_lock_irq(&ctx->lock); 2476 if (event->state <= PERF_EVENT_STATE_OFF) { 2477 raw_spin_unlock_irq(&ctx->lock); 2478 return; 2479 } 2480 raw_spin_unlock_irq(&ctx->lock); 2481 2482 event_function_call(event, __perf_event_disable, NULL); 2483 } 2484 2485 void perf_event_disable_local(struct perf_event *event) 2486 { 2487 event_function_local(event, __perf_event_disable, NULL); 2488 } 2489 2490 /* 2491 * Strictly speaking kernel users cannot create groups and therefore this 2492 * interface does not need the perf_event_ctx_lock() magic. 2493 */ 2494 void perf_event_disable(struct perf_event *event) 2495 { 2496 struct perf_event_context *ctx; 2497 2498 ctx = perf_event_ctx_lock(event); 2499 _perf_event_disable(event); 2500 perf_event_ctx_unlock(event, ctx); 2501 } 2502 EXPORT_SYMBOL_GPL(perf_event_disable); 2503 2504 void perf_event_disable_inatomic(struct perf_event *event) 2505 { 2506 event->pending_disable = 1; 2507 irq_work_queue(&event->pending_irq); 2508 } 2509 2510 #define MAX_INTERRUPTS (~0ULL) 2511 2512 static void perf_log_throttle(struct perf_event *event, int enable); 2513 static void perf_log_itrace_start(struct perf_event *event); 2514 2515 static int 2516 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2517 { 2518 struct perf_event_pmu_context *epc = event->pmu_ctx; 2519 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2520 int ret = 0; 2521 2522 WARN_ON_ONCE(event->ctx != ctx); 2523 2524 lockdep_assert_held(&ctx->lock); 2525 2526 if (event->state <= PERF_EVENT_STATE_OFF) 2527 return 0; 2528 2529 WRITE_ONCE(event->oncpu, smp_processor_id()); 2530 /* 2531 * Order event::oncpu write to happen before the ACTIVE state is 2532 * visible. This allows perf_event_{stop,read}() to observe the correct 2533 * ->oncpu if it sees ACTIVE. 2534 */ 2535 smp_wmb(); 2536 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2537 2538 /* 2539 * Unthrottle events, since we scheduled we might have missed several 2540 * ticks already, also for a heavily scheduling task there is little 2541 * guarantee it'll get a tick in a timely manner. 2542 */ 2543 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2544 perf_log_throttle(event, 1); 2545 event->hw.interrupts = 0; 2546 } 2547 2548 perf_pmu_disable(event->pmu); 2549 2550 perf_log_itrace_start(event); 2551 2552 if (event->pmu->add(event, PERF_EF_START)) { 2553 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2554 event->oncpu = -1; 2555 ret = -EAGAIN; 2556 goto out; 2557 } 2558 2559 if (!is_software_event(event)) 2560 cpc->active_oncpu++; 2561 if (event->attr.freq && event->attr.sample_freq) 2562 ctx->nr_freq++; 2563 2564 if (event->attr.exclusive) 2565 cpc->exclusive = 1; 2566 2567 out: 2568 perf_pmu_enable(event->pmu); 2569 2570 return ret; 2571 } 2572 2573 static int 2574 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2575 { 2576 struct perf_event *event, *partial_group = NULL; 2577 struct pmu *pmu = group_event->pmu_ctx->pmu; 2578 2579 if (group_event->state == PERF_EVENT_STATE_OFF) 2580 return 0; 2581 2582 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2583 2584 if (event_sched_in(group_event, ctx)) 2585 goto error; 2586 2587 /* 2588 * Schedule in siblings as one group (if any): 2589 */ 2590 for_each_sibling_event(event, group_event) { 2591 if (event_sched_in(event, ctx)) { 2592 partial_group = event; 2593 goto group_error; 2594 } 2595 } 2596 2597 if (!pmu->commit_txn(pmu)) 2598 return 0; 2599 2600 group_error: 2601 /* 2602 * Groups can be scheduled in as one unit only, so undo any 2603 * partial group before returning: 2604 * The events up to the failed event are scheduled out normally. 2605 */ 2606 for_each_sibling_event(event, group_event) { 2607 if (event == partial_group) 2608 break; 2609 2610 event_sched_out(event, ctx); 2611 } 2612 event_sched_out(group_event, ctx); 2613 2614 error: 2615 pmu->cancel_txn(pmu); 2616 return -EAGAIN; 2617 } 2618 2619 /* 2620 * Work out whether we can put this event group on the CPU now. 2621 */ 2622 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2623 { 2624 struct perf_event_pmu_context *epc = event->pmu_ctx; 2625 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2626 2627 /* 2628 * Groups consisting entirely of software events can always go on. 2629 */ 2630 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2631 return 1; 2632 /* 2633 * If an exclusive group is already on, no other hardware 2634 * events can go on. 2635 */ 2636 if (cpc->exclusive) 2637 return 0; 2638 /* 2639 * If this group is exclusive and there are already 2640 * events on the CPU, it can't go on. 2641 */ 2642 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2643 return 0; 2644 /* 2645 * Otherwise, try to add it if all previous groups were able 2646 * to go on. 2647 */ 2648 return can_add_hw; 2649 } 2650 2651 static void add_event_to_ctx(struct perf_event *event, 2652 struct perf_event_context *ctx) 2653 { 2654 list_add_event(event, ctx); 2655 perf_group_attach(event); 2656 } 2657 2658 static void task_ctx_sched_out(struct perf_event_context *ctx, 2659 enum event_type_t event_type) 2660 { 2661 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2662 2663 if (!cpuctx->task_ctx) 2664 return; 2665 2666 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2667 return; 2668 2669 ctx_sched_out(ctx, event_type); 2670 } 2671 2672 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2673 struct perf_event_context *ctx) 2674 { 2675 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2676 if (ctx) 2677 ctx_sched_in(ctx, EVENT_PINNED); 2678 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2679 if (ctx) 2680 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2681 } 2682 2683 /* 2684 * We want to maintain the following priority of scheduling: 2685 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2686 * - task pinned (EVENT_PINNED) 2687 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2688 * - task flexible (EVENT_FLEXIBLE). 2689 * 2690 * In order to avoid unscheduling and scheduling back in everything every 2691 * time an event is added, only do it for the groups of equal priority and 2692 * below. 2693 * 2694 * This can be called after a batch operation on task events, in which case 2695 * event_type is a bit mask of the types of events involved. For CPU events, 2696 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2697 */ 2698 /* 2699 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2700 * event to the context or enabling existing event in the context. We can 2701 * probably optimize it by rescheduling only affected pmu_ctx. 2702 */ 2703 static void ctx_resched(struct perf_cpu_context *cpuctx, 2704 struct perf_event_context *task_ctx, 2705 enum event_type_t event_type) 2706 { 2707 bool cpu_event = !!(event_type & EVENT_CPU); 2708 2709 /* 2710 * If pinned groups are involved, flexible groups also need to be 2711 * scheduled out. 2712 */ 2713 if (event_type & EVENT_PINNED) 2714 event_type |= EVENT_FLEXIBLE; 2715 2716 event_type &= EVENT_ALL; 2717 2718 perf_ctx_disable(&cpuctx->ctx, false); 2719 if (task_ctx) { 2720 perf_ctx_disable(task_ctx, false); 2721 task_ctx_sched_out(task_ctx, event_type); 2722 } 2723 2724 /* 2725 * Decide which cpu ctx groups to schedule out based on the types 2726 * of events that caused rescheduling: 2727 * - EVENT_CPU: schedule out corresponding groups; 2728 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2729 * - otherwise, do nothing more. 2730 */ 2731 if (cpu_event) 2732 ctx_sched_out(&cpuctx->ctx, event_type); 2733 else if (event_type & EVENT_PINNED) 2734 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2735 2736 perf_event_sched_in(cpuctx, task_ctx); 2737 2738 perf_ctx_enable(&cpuctx->ctx, false); 2739 if (task_ctx) 2740 perf_ctx_enable(task_ctx, false); 2741 } 2742 2743 void perf_pmu_resched(struct pmu *pmu) 2744 { 2745 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2746 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2747 2748 perf_ctx_lock(cpuctx, task_ctx); 2749 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2750 perf_ctx_unlock(cpuctx, task_ctx); 2751 } 2752 2753 /* 2754 * Cross CPU call to install and enable a performance event 2755 * 2756 * Very similar to remote_function() + event_function() but cannot assume that 2757 * things like ctx->is_active and cpuctx->task_ctx are set. 2758 */ 2759 static int __perf_install_in_context(void *info) 2760 { 2761 struct perf_event *event = info; 2762 struct perf_event_context *ctx = event->ctx; 2763 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2764 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2765 bool reprogram = true; 2766 int ret = 0; 2767 2768 raw_spin_lock(&cpuctx->ctx.lock); 2769 if (ctx->task) { 2770 raw_spin_lock(&ctx->lock); 2771 task_ctx = ctx; 2772 2773 reprogram = (ctx->task == current); 2774 2775 /* 2776 * If the task is running, it must be running on this CPU, 2777 * otherwise we cannot reprogram things. 2778 * 2779 * If its not running, we don't care, ctx->lock will 2780 * serialize against it becoming runnable. 2781 */ 2782 if (task_curr(ctx->task) && !reprogram) { 2783 ret = -ESRCH; 2784 goto unlock; 2785 } 2786 2787 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2788 } else if (task_ctx) { 2789 raw_spin_lock(&task_ctx->lock); 2790 } 2791 2792 #ifdef CONFIG_CGROUP_PERF 2793 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2794 /* 2795 * If the current cgroup doesn't match the event's 2796 * cgroup, we should not try to schedule it. 2797 */ 2798 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2799 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2800 event->cgrp->css.cgroup); 2801 } 2802 #endif 2803 2804 if (reprogram) { 2805 ctx_sched_out(ctx, EVENT_TIME); 2806 add_event_to_ctx(event, ctx); 2807 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2808 } else { 2809 add_event_to_ctx(event, ctx); 2810 } 2811 2812 unlock: 2813 perf_ctx_unlock(cpuctx, task_ctx); 2814 2815 return ret; 2816 } 2817 2818 static bool exclusive_event_installable(struct perf_event *event, 2819 struct perf_event_context *ctx); 2820 2821 /* 2822 * Attach a performance event to a context. 2823 * 2824 * Very similar to event_function_call, see comment there. 2825 */ 2826 static void 2827 perf_install_in_context(struct perf_event_context *ctx, 2828 struct perf_event *event, 2829 int cpu) 2830 { 2831 struct task_struct *task = READ_ONCE(ctx->task); 2832 2833 lockdep_assert_held(&ctx->mutex); 2834 2835 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2836 2837 if (event->cpu != -1) 2838 WARN_ON_ONCE(event->cpu != cpu); 2839 2840 /* 2841 * Ensures that if we can observe event->ctx, both the event and ctx 2842 * will be 'complete'. See perf_iterate_sb_cpu(). 2843 */ 2844 smp_store_release(&event->ctx, ctx); 2845 2846 /* 2847 * perf_event_attr::disabled events will not run and can be initialized 2848 * without IPI. Except when this is the first event for the context, in 2849 * that case we need the magic of the IPI to set ctx->is_active. 2850 * 2851 * The IOC_ENABLE that is sure to follow the creation of a disabled 2852 * event will issue the IPI and reprogram the hardware. 2853 */ 2854 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2855 ctx->nr_events && !is_cgroup_event(event)) { 2856 raw_spin_lock_irq(&ctx->lock); 2857 if (ctx->task == TASK_TOMBSTONE) { 2858 raw_spin_unlock_irq(&ctx->lock); 2859 return; 2860 } 2861 add_event_to_ctx(event, ctx); 2862 raw_spin_unlock_irq(&ctx->lock); 2863 return; 2864 } 2865 2866 if (!task) { 2867 cpu_function_call(cpu, __perf_install_in_context, event); 2868 return; 2869 } 2870 2871 /* 2872 * Should not happen, we validate the ctx is still alive before calling. 2873 */ 2874 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2875 return; 2876 2877 /* 2878 * Installing events is tricky because we cannot rely on ctx->is_active 2879 * to be set in case this is the nr_events 0 -> 1 transition. 2880 * 2881 * Instead we use task_curr(), which tells us if the task is running. 2882 * However, since we use task_curr() outside of rq::lock, we can race 2883 * against the actual state. This means the result can be wrong. 2884 * 2885 * If we get a false positive, we retry, this is harmless. 2886 * 2887 * If we get a false negative, things are complicated. If we are after 2888 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2889 * value must be correct. If we're before, it doesn't matter since 2890 * perf_event_context_sched_in() will program the counter. 2891 * 2892 * However, this hinges on the remote context switch having observed 2893 * our task->perf_event_ctxp[] store, such that it will in fact take 2894 * ctx::lock in perf_event_context_sched_in(). 2895 * 2896 * We do this by task_function_call(), if the IPI fails to hit the task 2897 * we know any future context switch of task must see the 2898 * perf_event_ctpx[] store. 2899 */ 2900 2901 /* 2902 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2903 * task_cpu() load, such that if the IPI then does not find the task 2904 * running, a future context switch of that task must observe the 2905 * store. 2906 */ 2907 smp_mb(); 2908 again: 2909 if (!task_function_call(task, __perf_install_in_context, event)) 2910 return; 2911 2912 raw_spin_lock_irq(&ctx->lock); 2913 task = ctx->task; 2914 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2915 /* 2916 * Cannot happen because we already checked above (which also 2917 * cannot happen), and we hold ctx->mutex, which serializes us 2918 * against perf_event_exit_task_context(). 2919 */ 2920 raw_spin_unlock_irq(&ctx->lock); 2921 return; 2922 } 2923 /* 2924 * If the task is not running, ctx->lock will avoid it becoming so, 2925 * thus we can safely install the event. 2926 */ 2927 if (task_curr(task)) { 2928 raw_spin_unlock_irq(&ctx->lock); 2929 goto again; 2930 } 2931 add_event_to_ctx(event, ctx); 2932 raw_spin_unlock_irq(&ctx->lock); 2933 } 2934 2935 /* 2936 * Cross CPU call to enable a performance event 2937 */ 2938 static void __perf_event_enable(struct perf_event *event, 2939 struct perf_cpu_context *cpuctx, 2940 struct perf_event_context *ctx, 2941 void *info) 2942 { 2943 struct perf_event *leader = event->group_leader; 2944 struct perf_event_context *task_ctx; 2945 2946 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2947 event->state <= PERF_EVENT_STATE_ERROR) 2948 return; 2949 2950 if (ctx->is_active) 2951 ctx_sched_out(ctx, EVENT_TIME); 2952 2953 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2954 perf_cgroup_event_enable(event, ctx); 2955 2956 if (!ctx->is_active) 2957 return; 2958 2959 if (!event_filter_match(event)) { 2960 ctx_sched_in(ctx, EVENT_TIME); 2961 return; 2962 } 2963 2964 /* 2965 * If the event is in a group and isn't the group leader, 2966 * then don't put it on unless the group is on. 2967 */ 2968 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2969 ctx_sched_in(ctx, EVENT_TIME); 2970 return; 2971 } 2972 2973 task_ctx = cpuctx->task_ctx; 2974 if (ctx->task) 2975 WARN_ON_ONCE(task_ctx != ctx); 2976 2977 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2978 } 2979 2980 /* 2981 * Enable an event. 2982 * 2983 * If event->ctx is a cloned context, callers must make sure that 2984 * every task struct that event->ctx->task could possibly point to 2985 * remains valid. This condition is satisfied when called through 2986 * perf_event_for_each_child or perf_event_for_each as described 2987 * for perf_event_disable. 2988 */ 2989 static void _perf_event_enable(struct perf_event *event) 2990 { 2991 struct perf_event_context *ctx = event->ctx; 2992 2993 raw_spin_lock_irq(&ctx->lock); 2994 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2995 event->state < PERF_EVENT_STATE_ERROR) { 2996 out: 2997 raw_spin_unlock_irq(&ctx->lock); 2998 return; 2999 } 3000 3001 /* 3002 * If the event is in error state, clear that first. 3003 * 3004 * That way, if we see the event in error state below, we know that it 3005 * has gone back into error state, as distinct from the task having 3006 * been scheduled away before the cross-call arrived. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ERROR) { 3009 /* 3010 * Detached SIBLING events cannot leave ERROR state. 3011 */ 3012 if (event->event_caps & PERF_EV_CAP_SIBLING && 3013 event->group_leader == event) 3014 goto out; 3015 3016 event->state = PERF_EVENT_STATE_OFF; 3017 } 3018 raw_spin_unlock_irq(&ctx->lock); 3019 3020 event_function_call(event, __perf_event_enable, NULL); 3021 } 3022 3023 /* 3024 * See perf_event_disable(); 3025 */ 3026 void perf_event_enable(struct perf_event *event) 3027 { 3028 struct perf_event_context *ctx; 3029 3030 ctx = perf_event_ctx_lock(event); 3031 _perf_event_enable(event); 3032 perf_event_ctx_unlock(event, ctx); 3033 } 3034 EXPORT_SYMBOL_GPL(perf_event_enable); 3035 3036 struct stop_event_data { 3037 struct perf_event *event; 3038 unsigned int restart; 3039 }; 3040 3041 static int __perf_event_stop(void *info) 3042 { 3043 struct stop_event_data *sd = info; 3044 struct perf_event *event = sd->event; 3045 3046 /* if it's already INACTIVE, do nothing */ 3047 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3048 return 0; 3049 3050 /* matches smp_wmb() in event_sched_in() */ 3051 smp_rmb(); 3052 3053 /* 3054 * There is a window with interrupts enabled before we get here, 3055 * so we need to check again lest we try to stop another CPU's event. 3056 */ 3057 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3058 return -EAGAIN; 3059 3060 event->pmu->stop(event, PERF_EF_UPDATE); 3061 3062 /* 3063 * May race with the actual stop (through perf_pmu_output_stop()), 3064 * but it is only used for events with AUX ring buffer, and such 3065 * events will refuse to restart because of rb::aux_mmap_count==0, 3066 * see comments in perf_aux_output_begin(). 3067 * 3068 * Since this is happening on an event-local CPU, no trace is lost 3069 * while restarting. 3070 */ 3071 if (sd->restart) 3072 event->pmu->start(event, 0); 3073 3074 return 0; 3075 } 3076 3077 static int perf_event_stop(struct perf_event *event, int restart) 3078 { 3079 struct stop_event_data sd = { 3080 .event = event, 3081 .restart = restart, 3082 }; 3083 int ret = 0; 3084 3085 do { 3086 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3087 return 0; 3088 3089 /* matches smp_wmb() in event_sched_in() */ 3090 smp_rmb(); 3091 3092 /* 3093 * We only want to restart ACTIVE events, so if the event goes 3094 * inactive here (event->oncpu==-1), there's nothing more to do; 3095 * fall through with ret==-ENXIO. 3096 */ 3097 ret = cpu_function_call(READ_ONCE(event->oncpu), 3098 __perf_event_stop, &sd); 3099 } while (ret == -EAGAIN); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * In order to contain the amount of racy and tricky in the address filter 3106 * configuration management, it is a two part process: 3107 * 3108 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3109 * we update the addresses of corresponding vmas in 3110 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3111 * (p2) when an event is scheduled in (pmu::add), it calls 3112 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3113 * if the generation has changed since the previous call. 3114 * 3115 * If (p1) happens while the event is active, we restart it to force (p2). 3116 * 3117 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3118 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3119 * ioctl; 3120 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3121 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3122 * for reading; 3123 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3124 * of exec. 3125 */ 3126 void perf_event_addr_filters_sync(struct perf_event *event) 3127 { 3128 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3129 3130 if (!has_addr_filter(event)) 3131 return; 3132 3133 raw_spin_lock(&ifh->lock); 3134 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3135 event->pmu->addr_filters_sync(event); 3136 event->hw.addr_filters_gen = event->addr_filters_gen; 3137 } 3138 raw_spin_unlock(&ifh->lock); 3139 } 3140 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3141 3142 static int _perf_event_refresh(struct perf_event *event, int refresh) 3143 { 3144 /* 3145 * not supported on inherited events 3146 */ 3147 if (event->attr.inherit || !is_sampling_event(event)) 3148 return -EINVAL; 3149 3150 atomic_add(refresh, &event->event_limit); 3151 _perf_event_enable(event); 3152 3153 return 0; 3154 } 3155 3156 /* 3157 * See perf_event_disable() 3158 */ 3159 int perf_event_refresh(struct perf_event *event, int refresh) 3160 { 3161 struct perf_event_context *ctx; 3162 int ret; 3163 3164 ctx = perf_event_ctx_lock(event); 3165 ret = _perf_event_refresh(event, refresh); 3166 perf_event_ctx_unlock(event, ctx); 3167 3168 return ret; 3169 } 3170 EXPORT_SYMBOL_GPL(perf_event_refresh); 3171 3172 static int perf_event_modify_breakpoint(struct perf_event *bp, 3173 struct perf_event_attr *attr) 3174 { 3175 int err; 3176 3177 _perf_event_disable(bp); 3178 3179 err = modify_user_hw_breakpoint_check(bp, attr, true); 3180 3181 if (!bp->attr.disabled) 3182 _perf_event_enable(bp); 3183 3184 return err; 3185 } 3186 3187 /* 3188 * Copy event-type-independent attributes that may be modified. 3189 */ 3190 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3191 const struct perf_event_attr *from) 3192 { 3193 to->sig_data = from->sig_data; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 /* 3219 * Event-type-independent attributes must be copied before event-type 3220 * modification, which will validate that final attributes match the 3221 * source attributes after all relevant attributes have been copied. 3222 */ 3223 perf_event_modify_copy_attr(&event->attr, attr); 3224 err = func(event, attr); 3225 if (err) 3226 goto out; 3227 list_for_each_entry(child, &event->child_list, child_list) { 3228 perf_event_modify_copy_attr(&child->attr, attr); 3229 err = func(child, attr); 3230 if (err) 3231 goto out; 3232 } 3233 out: 3234 mutex_unlock(&event->child_mutex); 3235 return err; 3236 } 3237 3238 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3239 enum event_type_t event_type) 3240 { 3241 struct perf_event_context *ctx = pmu_ctx->ctx; 3242 struct perf_event *event, *tmp; 3243 struct pmu *pmu = pmu_ctx->pmu; 3244 3245 if (ctx->task && !ctx->is_active) { 3246 struct perf_cpu_pmu_context *cpc; 3247 3248 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3249 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3250 cpc->task_epc = NULL; 3251 } 3252 3253 if (!event_type) 3254 return; 3255 3256 perf_pmu_disable(pmu); 3257 if (event_type & EVENT_PINNED) { 3258 list_for_each_entry_safe(event, tmp, 3259 &pmu_ctx->pinned_active, 3260 active_list) 3261 group_sched_out(event, ctx); 3262 } 3263 3264 if (event_type & EVENT_FLEXIBLE) { 3265 list_for_each_entry_safe(event, tmp, 3266 &pmu_ctx->flexible_active, 3267 active_list) 3268 group_sched_out(event, ctx); 3269 /* 3270 * Since we cleared EVENT_FLEXIBLE, also clear 3271 * rotate_necessary, is will be reset by 3272 * ctx_flexible_sched_in() when needed. 3273 */ 3274 pmu_ctx->rotate_necessary = 0; 3275 } 3276 perf_pmu_enable(pmu); 3277 } 3278 3279 static void 3280 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3281 { 3282 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3283 struct perf_event_pmu_context *pmu_ctx; 3284 int is_active = ctx->is_active; 3285 bool cgroup = event_type & EVENT_CGROUP; 3286 3287 event_type &= ~EVENT_CGROUP; 3288 3289 lockdep_assert_held(&ctx->lock); 3290 3291 if (likely(!ctx->nr_events)) { 3292 /* 3293 * See __perf_remove_from_context(). 3294 */ 3295 WARN_ON_ONCE(ctx->is_active); 3296 if (ctx->task) 3297 WARN_ON_ONCE(cpuctx->task_ctx); 3298 return; 3299 } 3300 3301 /* 3302 * Always update time if it was set; not only when it changes. 3303 * Otherwise we can 'forget' to update time for any but the last 3304 * context we sched out. For example: 3305 * 3306 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3307 * ctx_sched_out(.event_type = EVENT_PINNED) 3308 * 3309 * would only update time for the pinned events. 3310 */ 3311 if (is_active & EVENT_TIME) { 3312 /* update (and stop) ctx time */ 3313 update_context_time(ctx); 3314 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3315 /* 3316 * CPU-release for the below ->is_active store, 3317 * see __load_acquire() in perf_event_time_now() 3318 */ 3319 barrier(); 3320 } 3321 3322 ctx->is_active &= ~event_type; 3323 if (!(ctx->is_active & EVENT_ALL)) 3324 ctx->is_active = 0; 3325 3326 if (ctx->task) { 3327 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3328 if (!ctx->is_active) 3329 cpuctx->task_ctx = NULL; 3330 } 3331 3332 is_active ^= ctx->is_active; /* changed bits */ 3333 3334 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3335 if (cgroup && !pmu_ctx->nr_cgroups) 3336 continue; 3337 __pmu_ctx_sched_out(pmu_ctx, is_active); 3338 } 3339 } 3340 3341 /* 3342 * Test whether two contexts are equivalent, i.e. whether they have both been 3343 * cloned from the same version of the same context. 3344 * 3345 * Equivalence is measured using a generation number in the context that is 3346 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3347 * and list_del_event(). 3348 */ 3349 static int context_equiv(struct perf_event_context *ctx1, 3350 struct perf_event_context *ctx2) 3351 { 3352 lockdep_assert_held(&ctx1->lock); 3353 lockdep_assert_held(&ctx2->lock); 3354 3355 /* Pinning disables the swap optimization */ 3356 if (ctx1->pin_count || ctx2->pin_count) 3357 return 0; 3358 3359 /* If ctx1 is the parent of ctx2 */ 3360 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3361 return 1; 3362 3363 /* If ctx2 is the parent of ctx1 */ 3364 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3365 return 1; 3366 3367 /* 3368 * If ctx1 and ctx2 have the same parent; we flatten the parent 3369 * hierarchy, see perf_event_init_context(). 3370 */ 3371 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3372 ctx1->parent_gen == ctx2->parent_gen) 3373 return 1; 3374 3375 /* Unmatched */ 3376 return 0; 3377 } 3378 3379 static void __perf_event_sync_stat(struct perf_event *event, 3380 struct perf_event *next_event) 3381 { 3382 u64 value; 3383 3384 if (!event->attr.inherit_stat) 3385 return; 3386 3387 /* 3388 * Update the event value, we cannot use perf_event_read() 3389 * because we're in the middle of a context switch and have IRQs 3390 * disabled, which upsets smp_call_function_single(), however 3391 * we know the event must be on the current CPU, therefore we 3392 * don't need to use it. 3393 */ 3394 if (event->state == PERF_EVENT_STATE_ACTIVE) 3395 event->pmu->read(event); 3396 3397 perf_event_update_time(event); 3398 3399 /* 3400 * In order to keep per-task stats reliable we need to flip the event 3401 * values when we flip the contexts. 3402 */ 3403 value = local64_read(&next_event->count); 3404 value = local64_xchg(&event->count, value); 3405 local64_set(&next_event->count, value); 3406 3407 swap(event->total_time_enabled, next_event->total_time_enabled); 3408 swap(event->total_time_running, next_event->total_time_running); 3409 3410 /* 3411 * Since we swizzled the values, update the user visible data too. 3412 */ 3413 perf_event_update_userpage(event); 3414 perf_event_update_userpage(next_event); 3415 } 3416 3417 static void perf_event_sync_stat(struct perf_event_context *ctx, 3418 struct perf_event_context *next_ctx) 3419 { 3420 struct perf_event *event, *next_event; 3421 3422 if (!ctx->nr_stat) 3423 return; 3424 3425 update_context_time(ctx); 3426 3427 event = list_first_entry(&ctx->event_list, 3428 struct perf_event, event_entry); 3429 3430 next_event = list_first_entry(&next_ctx->event_list, 3431 struct perf_event, event_entry); 3432 3433 while (&event->event_entry != &ctx->event_list && 3434 &next_event->event_entry != &next_ctx->event_list) { 3435 3436 __perf_event_sync_stat(event, next_event); 3437 3438 event = list_next_entry(event, event_entry); 3439 next_event = list_next_entry(next_event, event_entry); 3440 } 3441 } 3442 3443 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3444 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3445 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3446 !list_entry_is_head(pos1, head1, member) && \ 3447 !list_entry_is_head(pos2, head2, member); \ 3448 pos1 = list_next_entry(pos1, member), \ 3449 pos2 = list_next_entry(pos2, member)) 3450 3451 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3452 struct perf_event_context *next_ctx) 3453 { 3454 struct perf_event_pmu_context *prev_epc, *next_epc; 3455 3456 if (!prev_ctx->nr_task_data) 3457 return; 3458 3459 double_list_for_each_entry(prev_epc, next_epc, 3460 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3461 pmu_ctx_entry) { 3462 3463 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3464 continue; 3465 3466 /* 3467 * PMU specific parts of task perf context can require 3468 * additional synchronization. As an example of such 3469 * synchronization see implementation details of Intel 3470 * LBR call stack data profiling; 3471 */ 3472 if (prev_epc->pmu->swap_task_ctx) 3473 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3474 else 3475 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3476 } 3477 } 3478 3479 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3480 { 3481 struct perf_event_pmu_context *pmu_ctx; 3482 struct perf_cpu_pmu_context *cpc; 3483 3484 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3485 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3486 3487 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3488 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3489 } 3490 } 3491 3492 static void 3493 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3494 { 3495 struct perf_event_context *ctx = task->perf_event_ctxp; 3496 struct perf_event_context *next_ctx; 3497 struct perf_event_context *parent, *next_parent; 3498 int do_switch = 1; 3499 3500 if (likely(!ctx)) 3501 return; 3502 3503 rcu_read_lock(); 3504 next_ctx = rcu_dereference(next->perf_event_ctxp); 3505 if (!next_ctx) 3506 goto unlock; 3507 3508 parent = rcu_dereference(ctx->parent_ctx); 3509 next_parent = rcu_dereference(next_ctx->parent_ctx); 3510 3511 /* If neither context have a parent context; they cannot be clones. */ 3512 if (!parent && !next_parent) 3513 goto unlock; 3514 3515 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3516 /* 3517 * Looks like the two contexts are clones, so we might be 3518 * able to optimize the context switch. We lock both 3519 * contexts and check that they are clones under the 3520 * lock (including re-checking that neither has been 3521 * uncloned in the meantime). It doesn't matter which 3522 * order we take the locks because no other cpu could 3523 * be trying to lock both of these tasks. 3524 */ 3525 raw_spin_lock(&ctx->lock); 3526 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3527 if (context_equiv(ctx, next_ctx)) { 3528 3529 perf_ctx_disable(ctx, false); 3530 3531 /* PMIs are disabled; ctx->nr_pending is stable. */ 3532 if (local_read(&ctx->nr_pending) || 3533 local_read(&next_ctx->nr_pending)) { 3534 /* 3535 * Must not swap out ctx when there's pending 3536 * events that rely on the ctx->task relation. 3537 */ 3538 raw_spin_unlock(&next_ctx->lock); 3539 rcu_read_unlock(); 3540 goto inside_switch; 3541 } 3542 3543 WRITE_ONCE(ctx->task, next); 3544 WRITE_ONCE(next_ctx->task, task); 3545 3546 perf_ctx_sched_task_cb(ctx, false); 3547 perf_event_swap_task_ctx_data(ctx, next_ctx); 3548 3549 perf_ctx_enable(ctx, false); 3550 3551 /* 3552 * RCU_INIT_POINTER here is safe because we've not 3553 * modified the ctx and the above modification of 3554 * ctx->task and ctx->task_ctx_data are immaterial 3555 * since those values are always verified under 3556 * ctx->lock which we're now holding. 3557 */ 3558 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3559 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3560 3561 do_switch = 0; 3562 3563 perf_event_sync_stat(ctx, next_ctx); 3564 } 3565 raw_spin_unlock(&next_ctx->lock); 3566 raw_spin_unlock(&ctx->lock); 3567 } 3568 unlock: 3569 rcu_read_unlock(); 3570 3571 if (do_switch) { 3572 raw_spin_lock(&ctx->lock); 3573 perf_ctx_disable(ctx, false); 3574 3575 inside_switch: 3576 perf_ctx_sched_task_cb(ctx, false); 3577 task_ctx_sched_out(ctx, EVENT_ALL); 3578 3579 perf_ctx_enable(ctx, false); 3580 raw_spin_unlock(&ctx->lock); 3581 } 3582 } 3583 3584 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3585 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3586 3587 void perf_sched_cb_dec(struct pmu *pmu) 3588 { 3589 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3590 3591 this_cpu_dec(perf_sched_cb_usages); 3592 barrier(); 3593 3594 if (!--cpc->sched_cb_usage) 3595 list_del(&cpc->sched_cb_entry); 3596 } 3597 3598 3599 void perf_sched_cb_inc(struct pmu *pmu) 3600 { 3601 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3602 3603 if (!cpc->sched_cb_usage++) 3604 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3605 3606 barrier(); 3607 this_cpu_inc(perf_sched_cb_usages); 3608 } 3609 3610 /* 3611 * This function provides the context switch callback to the lower code 3612 * layer. It is invoked ONLY when the context switch callback is enabled. 3613 * 3614 * This callback is relevant even to per-cpu events; for example multi event 3615 * PEBS requires this to provide PID/TID information. This requires we flush 3616 * all queued PEBS records before we context switch to a new task. 3617 */ 3618 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3619 { 3620 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3621 struct pmu *pmu; 3622 3623 pmu = cpc->epc.pmu; 3624 3625 /* software PMUs will not have sched_task */ 3626 if (WARN_ON_ONCE(!pmu->sched_task)) 3627 return; 3628 3629 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3630 perf_pmu_disable(pmu); 3631 3632 pmu->sched_task(cpc->task_epc, sched_in); 3633 3634 perf_pmu_enable(pmu); 3635 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3636 } 3637 3638 static void perf_pmu_sched_task(struct task_struct *prev, 3639 struct task_struct *next, 3640 bool sched_in) 3641 { 3642 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3643 struct perf_cpu_pmu_context *cpc; 3644 3645 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3646 if (prev == next || cpuctx->task_ctx) 3647 return; 3648 3649 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3650 __perf_pmu_sched_task(cpc, sched_in); 3651 } 3652 3653 static void perf_event_switch(struct task_struct *task, 3654 struct task_struct *next_prev, bool sched_in); 3655 3656 /* 3657 * Called from scheduler to remove the events of the current task, 3658 * with interrupts disabled. 3659 * 3660 * We stop each event and update the event value in event->count. 3661 * 3662 * This does not protect us against NMI, but disable() 3663 * sets the disabled bit in the control field of event _before_ 3664 * accessing the event control register. If a NMI hits, then it will 3665 * not restart the event. 3666 */ 3667 void __perf_event_task_sched_out(struct task_struct *task, 3668 struct task_struct *next) 3669 { 3670 if (__this_cpu_read(perf_sched_cb_usages)) 3671 perf_pmu_sched_task(task, next, false); 3672 3673 if (atomic_read(&nr_switch_events)) 3674 perf_event_switch(task, next, false); 3675 3676 perf_event_context_sched_out(task, next); 3677 3678 /* 3679 * if cgroup events exist on this CPU, then we need 3680 * to check if we have to switch out PMU state. 3681 * cgroup event are system-wide mode only 3682 */ 3683 perf_cgroup_switch(next); 3684 } 3685 3686 static bool perf_less_group_idx(const void *l, const void *r) 3687 { 3688 const struct perf_event *le = *(const struct perf_event **)l; 3689 const struct perf_event *re = *(const struct perf_event **)r; 3690 3691 return le->group_index < re->group_index; 3692 } 3693 3694 static void swap_ptr(void *l, void *r) 3695 { 3696 void **lp = l, **rp = r; 3697 3698 swap(*lp, *rp); 3699 } 3700 3701 static const struct min_heap_callbacks perf_min_heap = { 3702 .elem_size = sizeof(struct perf_event *), 3703 .less = perf_less_group_idx, 3704 .swp = swap_ptr, 3705 }; 3706 3707 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3708 { 3709 struct perf_event **itrs = heap->data; 3710 3711 if (event) { 3712 itrs[heap->nr] = event; 3713 heap->nr++; 3714 } 3715 } 3716 3717 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3718 { 3719 struct perf_cpu_pmu_context *cpc; 3720 3721 if (!pmu_ctx->ctx->task) 3722 return; 3723 3724 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3725 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3726 cpc->task_epc = pmu_ctx; 3727 } 3728 3729 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3730 struct perf_event_groups *groups, int cpu, 3731 struct pmu *pmu, 3732 int (*func)(struct perf_event *, void *), 3733 void *data) 3734 { 3735 #ifdef CONFIG_CGROUP_PERF 3736 struct cgroup_subsys_state *css = NULL; 3737 #endif 3738 struct perf_cpu_context *cpuctx = NULL; 3739 /* Space for per CPU and/or any CPU event iterators. */ 3740 struct perf_event *itrs[2]; 3741 struct min_heap event_heap; 3742 struct perf_event **evt; 3743 int ret; 3744 3745 if (pmu->filter && pmu->filter(pmu, cpu)) 3746 return 0; 3747 3748 if (!ctx->task) { 3749 cpuctx = this_cpu_ptr(&perf_cpu_context); 3750 event_heap = (struct min_heap){ 3751 .data = cpuctx->heap, 3752 .nr = 0, 3753 .size = cpuctx->heap_size, 3754 }; 3755 3756 lockdep_assert_held(&cpuctx->ctx.lock); 3757 3758 #ifdef CONFIG_CGROUP_PERF 3759 if (cpuctx->cgrp) 3760 css = &cpuctx->cgrp->css; 3761 #endif 3762 } else { 3763 event_heap = (struct min_heap){ 3764 .data = itrs, 3765 .nr = 0, 3766 .size = ARRAY_SIZE(itrs), 3767 }; 3768 /* Events not within a CPU context may be on any CPU. */ 3769 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3770 } 3771 evt = event_heap.data; 3772 3773 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3774 3775 #ifdef CONFIG_CGROUP_PERF 3776 for (; css; css = css->parent) 3777 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3778 #endif 3779 3780 if (event_heap.nr) { 3781 __link_epc((*evt)->pmu_ctx); 3782 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3783 } 3784 3785 min_heapify_all(&event_heap, &perf_min_heap); 3786 3787 while (event_heap.nr) { 3788 ret = func(*evt, data); 3789 if (ret) 3790 return ret; 3791 3792 *evt = perf_event_groups_next(*evt, pmu); 3793 if (*evt) 3794 min_heapify(&event_heap, 0, &perf_min_heap); 3795 else 3796 min_heap_pop(&event_heap, &perf_min_heap); 3797 } 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Because the userpage is strictly per-event (there is no concept of context, 3804 * so there cannot be a context indirection), every userpage must be updated 3805 * when context time starts :-( 3806 * 3807 * IOW, we must not miss EVENT_TIME edges. 3808 */ 3809 static inline bool event_update_userpage(struct perf_event *event) 3810 { 3811 if (likely(!atomic_read(&event->mmap_count))) 3812 return false; 3813 3814 perf_event_update_time(event); 3815 perf_event_update_userpage(event); 3816 3817 return true; 3818 } 3819 3820 static inline void group_update_userpage(struct perf_event *group_event) 3821 { 3822 struct perf_event *event; 3823 3824 if (!event_update_userpage(group_event)) 3825 return; 3826 3827 for_each_sibling_event(event, group_event) 3828 event_update_userpage(event); 3829 } 3830 3831 static int merge_sched_in(struct perf_event *event, void *data) 3832 { 3833 struct perf_event_context *ctx = event->ctx; 3834 int *can_add_hw = data; 3835 3836 if (event->state <= PERF_EVENT_STATE_OFF) 3837 return 0; 3838 3839 if (!event_filter_match(event)) 3840 return 0; 3841 3842 if (group_can_go_on(event, *can_add_hw)) { 3843 if (!group_sched_in(event, ctx)) 3844 list_add_tail(&event->active_list, get_event_list(event)); 3845 } 3846 3847 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3848 *can_add_hw = 0; 3849 if (event->attr.pinned) { 3850 perf_cgroup_event_disable(event, ctx); 3851 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3852 } else { 3853 struct perf_cpu_pmu_context *cpc; 3854 3855 event->pmu_ctx->rotate_necessary = 1; 3856 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3857 perf_mux_hrtimer_restart(cpc); 3858 group_update_userpage(event); 3859 } 3860 } 3861 3862 return 0; 3863 } 3864 3865 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3866 struct perf_event_groups *groups, 3867 struct pmu *pmu) 3868 { 3869 int can_add_hw = 1; 3870 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3871 merge_sched_in, &can_add_hw); 3872 } 3873 3874 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3875 struct perf_event_groups *groups, 3876 bool cgroup) 3877 { 3878 struct perf_event_pmu_context *pmu_ctx; 3879 3880 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3881 if (cgroup && !pmu_ctx->nr_cgroups) 3882 continue; 3883 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3884 } 3885 } 3886 3887 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3888 struct pmu *pmu) 3889 { 3890 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3891 } 3892 3893 static void 3894 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3895 { 3896 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3897 int is_active = ctx->is_active; 3898 bool cgroup = event_type & EVENT_CGROUP; 3899 3900 event_type &= ~EVENT_CGROUP; 3901 3902 lockdep_assert_held(&ctx->lock); 3903 3904 if (likely(!ctx->nr_events)) 3905 return; 3906 3907 if (!(is_active & EVENT_TIME)) { 3908 /* start ctx time */ 3909 __update_context_time(ctx, false); 3910 perf_cgroup_set_timestamp(cpuctx); 3911 /* 3912 * CPU-release for the below ->is_active store, 3913 * see __load_acquire() in perf_event_time_now() 3914 */ 3915 barrier(); 3916 } 3917 3918 ctx->is_active |= (event_type | EVENT_TIME); 3919 if (ctx->task) { 3920 if (!is_active) 3921 cpuctx->task_ctx = ctx; 3922 else 3923 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3924 } 3925 3926 is_active ^= ctx->is_active; /* changed bits */ 3927 3928 /* 3929 * First go through the list and put on any pinned groups 3930 * in order to give them the best chance of going on. 3931 */ 3932 if (is_active & EVENT_PINNED) 3933 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3934 3935 /* Then walk through the lower prio flexible groups */ 3936 if (is_active & EVENT_FLEXIBLE) 3937 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3938 } 3939 3940 static void perf_event_context_sched_in(struct task_struct *task) 3941 { 3942 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3943 struct perf_event_context *ctx; 3944 3945 rcu_read_lock(); 3946 ctx = rcu_dereference(task->perf_event_ctxp); 3947 if (!ctx) 3948 goto rcu_unlock; 3949 3950 if (cpuctx->task_ctx == ctx) { 3951 perf_ctx_lock(cpuctx, ctx); 3952 perf_ctx_disable(ctx, false); 3953 3954 perf_ctx_sched_task_cb(ctx, true); 3955 3956 perf_ctx_enable(ctx, false); 3957 perf_ctx_unlock(cpuctx, ctx); 3958 goto rcu_unlock; 3959 } 3960 3961 perf_ctx_lock(cpuctx, ctx); 3962 /* 3963 * We must check ctx->nr_events while holding ctx->lock, such 3964 * that we serialize against perf_install_in_context(). 3965 */ 3966 if (!ctx->nr_events) 3967 goto unlock; 3968 3969 perf_ctx_disable(ctx, false); 3970 /* 3971 * We want to keep the following priority order: 3972 * cpu pinned (that don't need to move), task pinned, 3973 * cpu flexible, task flexible. 3974 * 3975 * However, if task's ctx is not carrying any pinned 3976 * events, no need to flip the cpuctx's events around. 3977 */ 3978 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3979 perf_ctx_disable(&cpuctx->ctx, false); 3980 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3981 } 3982 3983 perf_event_sched_in(cpuctx, ctx); 3984 3985 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3986 3987 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3988 perf_ctx_enable(&cpuctx->ctx, false); 3989 3990 perf_ctx_enable(ctx, false); 3991 3992 unlock: 3993 perf_ctx_unlock(cpuctx, ctx); 3994 rcu_unlock: 3995 rcu_read_unlock(); 3996 } 3997 3998 /* 3999 * Called from scheduler to add the events of the current task 4000 * with interrupts disabled. 4001 * 4002 * We restore the event value and then enable it. 4003 * 4004 * This does not protect us against NMI, but enable() 4005 * sets the enabled bit in the control field of event _before_ 4006 * accessing the event control register. If a NMI hits, then it will 4007 * keep the event running. 4008 */ 4009 void __perf_event_task_sched_in(struct task_struct *prev, 4010 struct task_struct *task) 4011 { 4012 perf_event_context_sched_in(task); 4013 4014 if (atomic_read(&nr_switch_events)) 4015 perf_event_switch(task, prev, true); 4016 4017 if (__this_cpu_read(perf_sched_cb_usages)) 4018 perf_pmu_sched_task(prev, task, true); 4019 } 4020 4021 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4022 { 4023 u64 frequency = event->attr.sample_freq; 4024 u64 sec = NSEC_PER_SEC; 4025 u64 divisor, dividend; 4026 4027 int count_fls, nsec_fls, frequency_fls, sec_fls; 4028 4029 count_fls = fls64(count); 4030 nsec_fls = fls64(nsec); 4031 frequency_fls = fls64(frequency); 4032 sec_fls = 30; 4033 4034 /* 4035 * We got @count in @nsec, with a target of sample_freq HZ 4036 * the target period becomes: 4037 * 4038 * @count * 10^9 4039 * period = ------------------- 4040 * @nsec * sample_freq 4041 * 4042 */ 4043 4044 /* 4045 * Reduce accuracy by one bit such that @a and @b converge 4046 * to a similar magnitude. 4047 */ 4048 #define REDUCE_FLS(a, b) \ 4049 do { \ 4050 if (a##_fls > b##_fls) { \ 4051 a >>= 1; \ 4052 a##_fls--; \ 4053 } else { \ 4054 b >>= 1; \ 4055 b##_fls--; \ 4056 } \ 4057 } while (0) 4058 4059 /* 4060 * Reduce accuracy until either term fits in a u64, then proceed with 4061 * the other, so that finally we can do a u64/u64 division. 4062 */ 4063 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4064 REDUCE_FLS(nsec, frequency); 4065 REDUCE_FLS(sec, count); 4066 } 4067 4068 if (count_fls + sec_fls > 64) { 4069 divisor = nsec * frequency; 4070 4071 while (count_fls + sec_fls > 64) { 4072 REDUCE_FLS(count, sec); 4073 divisor >>= 1; 4074 } 4075 4076 dividend = count * sec; 4077 } else { 4078 dividend = count * sec; 4079 4080 while (nsec_fls + frequency_fls > 64) { 4081 REDUCE_FLS(nsec, frequency); 4082 dividend >>= 1; 4083 } 4084 4085 divisor = nsec * frequency; 4086 } 4087 4088 if (!divisor) 4089 return dividend; 4090 4091 return div64_u64(dividend, divisor); 4092 } 4093 4094 static DEFINE_PER_CPU(int, perf_throttled_count); 4095 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4096 4097 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4098 { 4099 struct hw_perf_event *hwc = &event->hw; 4100 s64 period, sample_period; 4101 s64 delta; 4102 4103 period = perf_calculate_period(event, nsec, count); 4104 4105 delta = (s64)(period - hwc->sample_period); 4106 delta = (delta + 7) / 8; /* low pass filter */ 4107 4108 sample_period = hwc->sample_period + delta; 4109 4110 if (!sample_period) 4111 sample_period = 1; 4112 4113 hwc->sample_period = sample_period; 4114 4115 if (local64_read(&hwc->period_left) > 8*sample_period) { 4116 if (disable) 4117 event->pmu->stop(event, PERF_EF_UPDATE); 4118 4119 local64_set(&hwc->period_left, 0); 4120 4121 if (disable) 4122 event->pmu->start(event, PERF_EF_RELOAD); 4123 } 4124 } 4125 4126 /* 4127 * combine freq adjustment with unthrottling to avoid two passes over the 4128 * events. At the same time, make sure, having freq events does not change 4129 * the rate of unthrottling as that would introduce bias. 4130 */ 4131 static void 4132 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4133 { 4134 struct perf_event *event; 4135 struct hw_perf_event *hwc; 4136 u64 now, period = TICK_NSEC; 4137 s64 delta; 4138 4139 /* 4140 * only need to iterate over all events iff: 4141 * - context have events in frequency mode (needs freq adjust) 4142 * - there are events to unthrottle on this cpu 4143 */ 4144 if (!(ctx->nr_freq || unthrottle)) 4145 return; 4146 4147 raw_spin_lock(&ctx->lock); 4148 4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4150 if (event->state != PERF_EVENT_STATE_ACTIVE) 4151 continue; 4152 4153 // XXX use visit thingy to avoid the -1,cpu match 4154 if (!event_filter_match(event)) 4155 continue; 4156 4157 perf_pmu_disable(event->pmu); 4158 4159 hwc = &event->hw; 4160 4161 if (hwc->interrupts == MAX_INTERRUPTS) { 4162 hwc->interrupts = 0; 4163 perf_log_throttle(event, 1); 4164 event->pmu->start(event, 0); 4165 } 4166 4167 if (!event->attr.freq || !event->attr.sample_freq) 4168 goto next; 4169 4170 /* 4171 * stop the event and update event->count 4172 */ 4173 event->pmu->stop(event, PERF_EF_UPDATE); 4174 4175 now = local64_read(&event->count); 4176 delta = now - hwc->freq_count_stamp; 4177 hwc->freq_count_stamp = now; 4178 4179 /* 4180 * restart the event 4181 * reload only if value has changed 4182 * we have stopped the event so tell that 4183 * to perf_adjust_period() to avoid stopping it 4184 * twice. 4185 */ 4186 if (delta > 0) 4187 perf_adjust_period(event, period, delta, false); 4188 4189 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4190 next: 4191 perf_pmu_enable(event->pmu); 4192 } 4193 4194 raw_spin_unlock(&ctx->lock); 4195 } 4196 4197 /* 4198 * Move @event to the tail of the @ctx's elegible events. 4199 */ 4200 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4201 { 4202 /* 4203 * Rotate the first entry last of non-pinned groups. Rotation might be 4204 * disabled by the inheritance code. 4205 */ 4206 if (ctx->rotate_disable) 4207 return; 4208 4209 perf_event_groups_delete(&ctx->flexible_groups, event); 4210 perf_event_groups_insert(&ctx->flexible_groups, event); 4211 } 4212 4213 /* pick an event from the flexible_groups to rotate */ 4214 static inline struct perf_event * 4215 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4216 { 4217 struct perf_event *event; 4218 struct rb_node *node; 4219 struct rb_root *tree; 4220 struct __group_key key = { 4221 .pmu = pmu_ctx->pmu, 4222 }; 4223 4224 /* pick the first active flexible event */ 4225 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4226 struct perf_event, active_list); 4227 if (event) 4228 goto out; 4229 4230 /* if no active flexible event, pick the first event */ 4231 tree = &pmu_ctx->ctx->flexible_groups.tree; 4232 4233 if (!pmu_ctx->ctx->task) { 4234 key.cpu = smp_processor_id(); 4235 4236 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4237 if (node) 4238 event = __node_2_pe(node); 4239 goto out; 4240 } 4241 4242 key.cpu = -1; 4243 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4244 if (node) { 4245 event = __node_2_pe(node); 4246 goto out; 4247 } 4248 4249 key.cpu = smp_processor_id(); 4250 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4251 if (node) 4252 event = __node_2_pe(node); 4253 4254 out: 4255 /* 4256 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4257 * finds there are unschedulable events, it will set it again. 4258 */ 4259 pmu_ctx->rotate_necessary = 0; 4260 4261 return event; 4262 } 4263 4264 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4265 { 4266 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4267 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4268 struct perf_event *cpu_event = NULL, *task_event = NULL; 4269 int cpu_rotate, task_rotate; 4270 struct pmu *pmu; 4271 4272 /* 4273 * Since we run this from IRQ context, nobody can install new 4274 * events, thus the event count values are stable. 4275 */ 4276 4277 cpu_epc = &cpc->epc; 4278 pmu = cpu_epc->pmu; 4279 task_epc = cpc->task_epc; 4280 4281 cpu_rotate = cpu_epc->rotate_necessary; 4282 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4283 4284 if (!(cpu_rotate || task_rotate)) 4285 return false; 4286 4287 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4288 perf_pmu_disable(pmu); 4289 4290 if (task_rotate) 4291 task_event = ctx_event_to_rotate(task_epc); 4292 if (cpu_rotate) 4293 cpu_event = ctx_event_to_rotate(cpu_epc); 4294 4295 /* 4296 * As per the order given at ctx_resched() first 'pop' task flexible 4297 * and then, if needed CPU flexible. 4298 */ 4299 if (task_event || (task_epc && cpu_event)) { 4300 update_context_time(task_epc->ctx); 4301 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4302 } 4303 4304 if (cpu_event) { 4305 update_context_time(&cpuctx->ctx); 4306 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4307 rotate_ctx(&cpuctx->ctx, cpu_event); 4308 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4309 } 4310 4311 if (task_event) 4312 rotate_ctx(task_epc->ctx, task_event); 4313 4314 if (task_event || (task_epc && cpu_event)) 4315 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4316 4317 perf_pmu_enable(pmu); 4318 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4319 4320 return true; 4321 } 4322 4323 void perf_event_task_tick(void) 4324 { 4325 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4326 struct perf_event_context *ctx; 4327 int throttled; 4328 4329 lockdep_assert_irqs_disabled(); 4330 4331 __this_cpu_inc(perf_throttled_seq); 4332 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4333 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4334 4335 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4336 4337 rcu_read_lock(); 4338 ctx = rcu_dereference(current->perf_event_ctxp); 4339 if (ctx) 4340 perf_adjust_freq_unthr_context(ctx, !!throttled); 4341 rcu_read_unlock(); 4342 } 4343 4344 static int event_enable_on_exec(struct perf_event *event, 4345 struct perf_event_context *ctx) 4346 { 4347 if (!event->attr.enable_on_exec) 4348 return 0; 4349 4350 event->attr.enable_on_exec = 0; 4351 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4352 return 0; 4353 4354 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4355 4356 return 1; 4357 } 4358 4359 /* 4360 * Enable all of a task's events that have been marked enable-on-exec. 4361 * This expects task == current. 4362 */ 4363 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4364 { 4365 struct perf_event_context *clone_ctx = NULL; 4366 enum event_type_t event_type = 0; 4367 struct perf_cpu_context *cpuctx; 4368 struct perf_event *event; 4369 unsigned long flags; 4370 int enabled = 0; 4371 4372 local_irq_save(flags); 4373 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4374 goto out; 4375 4376 if (!ctx->nr_events) 4377 goto out; 4378 4379 cpuctx = this_cpu_ptr(&perf_cpu_context); 4380 perf_ctx_lock(cpuctx, ctx); 4381 ctx_sched_out(ctx, EVENT_TIME); 4382 4383 list_for_each_entry(event, &ctx->event_list, event_entry) { 4384 enabled |= event_enable_on_exec(event, ctx); 4385 event_type |= get_event_type(event); 4386 } 4387 4388 /* 4389 * Unclone and reschedule this context if we enabled any event. 4390 */ 4391 if (enabled) { 4392 clone_ctx = unclone_ctx(ctx); 4393 ctx_resched(cpuctx, ctx, event_type); 4394 } else { 4395 ctx_sched_in(ctx, EVENT_TIME); 4396 } 4397 perf_ctx_unlock(cpuctx, ctx); 4398 4399 out: 4400 local_irq_restore(flags); 4401 4402 if (clone_ctx) 4403 put_ctx(clone_ctx); 4404 } 4405 4406 static void perf_remove_from_owner(struct perf_event *event); 4407 static void perf_event_exit_event(struct perf_event *event, 4408 struct perf_event_context *ctx); 4409 4410 /* 4411 * Removes all events from the current task that have been marked 4412 * remove-on-exec, and feeds their values back to parent events. 4413 */ 4414 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4415 { 4416 struct perf_event_context *clone_ctx = NULL; 4417 struct perf_event *event, *next; 4418 unsigned long flags; 4419 bool modified = false; 4420 4421 mutex_lock(&ctx->mutex); 4422 4423 if (WARN_ON_ONCE(ctx->task != current)) 4424 goto unlock; 4425 4426 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4427 if (!event->attr.remove_on_exec) 4428 continue; 4429 4430 if (!is_kernel_event(event)) 4431 perf_remove_from_owner(event); 4432 4433 modified = true; 4434 4435 perf_event_exit_event(event, ctx); 4436 } 4437 4438 raw_spin_lock_irqsave(&ctx->lock, flags); 4439 if (modified) 4440 clone_ctx = unclone_ctx(ctx); 4441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4442 4443 unlock: 4444 mutex_unlock(&ctx->mutex); 4445 4446 if (clone_ctx) 4447 put_ctx(clone_ctx); 4448 } 4449 4450 struct perf_read_data { 4451 struct perf_event *event; 4452 bool group; 4453 int ret; 4454 }; 4455 4456 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4457 { 4458 u16 local_pkg, event_pkg; 4459 4460 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4461 int local_cpu = smp_processor_id(); 4462 4463 event_pkg = topology_physical_package_id(event_cpu); 4464 local_pkg = topology_physical_package_id(local_cpu); 4465 4466 if (event_pkg == local_pkg) 4467 return local_cpu; 4468 } 4469 4470 return event_cpu; 4471 } 4472 4473 /* 4474 * Cross CPU call to read the hardware event 4475 */ 4476 static void __perf_event_read(void *info) 4477 { 4478 struct perf_read_data *data = info; 4479 struct perf_event *sub, *event = data->event; 4480 struct perf_event_context *ctx = event->ctx; 4481 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4482 struct pmu *pmu = event->pmu; 4483 4484 /* 4485 * If this is a task context, we need to check whether it is 4486 * the current task context of this cpu. If not it has been 4487 * scheduled out before the smp call arrived. In that case 4488 * event->count would have been updated to a recent sample 4489 * when the event was scheduled out. 4490 */ 4491 if (ctx->task && cpuctx->task_ctx != ctx) 4492 return; 4493 4494 raw_spin_lock(&ctx->lock); 4495 if (ctx->is_active & EVENT_TIME) { 4496 update_context_time(ctx); 4497 update_cgrp_time_from_event(event); 4498 } 4499 4500 perf_event_update_time(event); 4501 if (data->group) 4502 perf_event_update_sibling_time(event); 4503 4504 if (event->state != PERF_EVENT_STATE_ACTIVE) 4505 goto unlock; 4506 4507 if (!data->group) { 4508 pmu->read(event); 4509 data->ret = 0; 4510 goto unlock; 4511 } 4512 4513 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4514 4515 pmu->read(event); 4516 4517 for_each_sibling_event(sub, event) { 4518 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4519 /* 4520 * Use sibling's PMU rather than @event's since 4521 * sibling could be on different (eg: software) PMU. 4522 */ 4523 sub->pmu->read(sub); 4524 } 4525 } 4526 4527 data->ret = pmu->commit_txn(pmu); 4528 4529 unlock: 4530 raw_spin_unlock(&ctx->lock); 4531 } 4532 4533 static inline u64 perf_event_count(struct perf_event *event) 4534 { 4535 return local64_read(&event->count) + atomic64_read(&event->child_count); 4536 } 4537 4538 static void calc_timer_values(struct perf_event *event, 4539 u64 *now, 4540 u64 *enabled, 4541 u64 *running) 4542 { 4543 u64 ctx_time; 4544 4545 *now = perf_clock(); 4546 ctx_time = perf_event_time_now(event, *now); 4547 __perf_update_times(event, ctx_time, enabled, running); 4548 } 4549 4550 /* 4551 * NMI-safe method to read a local event, that is an event that 4552 * is: 4553 * - either for the current task, or for this CPU 4554 * - does not have inherit set, for inherited task events 4555 * will not be local and we cannot read them atomically 4556 * - must not have a pmu::count method 4557 */ 4558 int perf_event_read_local(struct perf_event *event, u64 *value, 4559 u64 *enabled, u64 *running) 4560 { 4561 unsigned long flags; 4562 int ret = 0; 4563 4564 /* 4565 * Disabling interrupts avoids all counter scheduling (context 4566 * switches, timer based rotation and IPIs). 4567 */ 4568 local_irq_save(flags); 4569 4570 /* 4571 * It must not be an event with inherit set, we cannot read 4572 * all child counters from atomic context. 4573 */ 4574 if (event->attr.inherit) { 4575 ret = -EOPNOTSUPP; 4576 goto out; 4577 } 4578 4579 /* If this is a per-task event, it must be for current */ 4580 if ((event->attach_state & PERF_ATTACH_TASK) && 4581 event->hw.target != current) { 4582 ret = -EINVAL; 4583 goto out; 4584 } 4585 4586 /* If this is a per-CPU event, it must be for this CPU */ 4587 if (!(event->attach_state & PERF_ATTACH_TASK) && 4588 event->cpu != smp_processor_id()) { 4589 ret = -EINVAL; 4590 goto out; 4591 } 4592 4593 /* If this is a pinned event it must be running on this CPU */ 4594 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4595 ret = -EBUSY; 4596 goto out; 4597 } 4598 4599 /* 4600 * If the event is currently on this CPU, its either a per-task event, 4601 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4602 * oncpu == -1). 4603 */ 4604 if (event->oncpu == smp_processor_id()) 4605 event->pmu->read(event); 4606 4607 *value = local64_read(&event->count); 4608 if (enabled || running) { 4609 u64 __enabled, __running, __now; 4610 4611 calc_timer_values(event, &__now, &__enabled, &__running); 4612 if (enabled) 4613 *enabled = __enabled; 4614 if (running) 4615 *running = __running; 4616 } 4617 out: 4618 local_irq_restore(flags); 4619 4620 return ret; 4621 } 4622 4623 static int perf_event_read(struct perf_event *event, bool group) 4624 { 4625 enum perf_event_state state = READ_ONCE(event->state); 4626 int event_cpu, ret = 0; 4627 4628 /* 4629 * If event is enabled and currently active on a CPU, update the 4630 * value in the event structure: 4631 */ 4632 again: 4633 if (state == PERF_EVENT_STATE_ACTIVE) { 4634 struct perf_read_data data; 4635 4636 /* 4637 * Orders the ->state and ->oncpu loads such that if we see 4638 * ACTIVE we must also see the right ->oncpu. 4639 * 4640 * Matches the smp_wmb() from event_sched_in(). 4641 */ 4642 smp_rmb(); 4643 4644 event_cpu = READ_ONCE(event->oncpu); 4645 if ((unsigned)event_cpu >= nr_cpu_ids) 4646 return 0; 4647 4648 data = (struct perf_read_data){ 4649 .event = event, 4650 .group = group, 4651 .ret = 0, 4652 }; 4653 4654 preempt_disable(); 4655 event_cpu = __perf_event_read_cpu(event, event_cpu); 4656 4657 /* 4658 * Purposely ignore the smp_call_function_single() return 4659 * value. 4660 * 4661 * If event_cpu isn't a valid CPU it means the event got 4662 * scheduled out and that will have updated the event count. 4663 * 4664 * Therefore, either way, we'll have an up-to-date event count 4665 * after this. 4666 */ 4667 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4668 preempt_enable(); 4669 ret = data.ret; 4670 4671 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4672 struct perf_event_context *ctx = event->ctx; 4673 unsigned long flags; 4674 4675 raw_spin_lock_irqsave(&ctx->lock, flags); 4676 state = event->state; 4677 if (state != PERF_EVENT_STATE_INACTIVE) { 4678 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4679 goto again; 4680 } 4681 4682 /* 4683 * May read while context is not active (e.g., thread is 4684 * blocked), in that case we cannot update context time 4685 */ 4686 if (ctx->is_active & EVENT_TIME) { 4687 update_context_time(ctx); 4688 update_cgrp_time_from_event(event); 4689 } 4690 4691 perf_event_update_time(event); 4692 if (group) 4693 perf_event_update_sibling_time(event); 4694 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4695 } 4696 4697 return ret; 4698 } 4699 4700 /* 4701 * Initialize the perf_event context in a task_struct: 4702 */ 4703 static void __perf_event_init_context(struct perf_event_context *ctx) 4704 { 4705 raw_spin_lock_init(&ctx->lock); 4706 mutex_init(&ctx->mutex); 4707 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4708 perf_event_groups_init(&ctx->pinned_groups); 4709 perf_event_groups_init(&ctx->flexible_groups); 4710 INIT_LIST_HEAD(&ctx->event_list); 4711 refcount_set(&ctx->refcount, 1); 4712 } 4713 4714 static void 4715 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4716 { 4717 epc->pmu = pmu; 4718 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4719 INIT_LIST_HEAD(&epc->pinned_active); 4720 INIT_LIST_HEAD(&epc->flexible_active); 4721 atomic_set(&epc->refcount, 1); 4722 } 4723 4724 static struct perf_event_context * 4725 alloc_perf_context(struct task_struct *task) 4726 { 4727 struct perf_event_context *ctx; 4728 4729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4730 if (!ctx) 4731 return NULL; 4732 4733 __perf_event_init_context(ctx); 4734 if (task) 4735 ctx->task = get_task_struct(task); 4736 4737 return ctx; 4738 } 4739 4740 static struct task_struct * 4741 find_lively_task_by_vpid(pid_t vpid) 4742 { 4743 struct task_struct *task; 4744 4745 rcu_read_lock(); 4746 if (!vpid) 4747 task = current; 4748 else 4749 task = find_task_by_vpid(vpid); 4750 if (task) 4751 get_task_struct(task); 4752 rcu_read_unlock(); 4753 4754 if (!task) 4755 return ERR_PTR(-ESRCH); 4756 4757 return task; 4758 } 4759 4760 /* 4761 * Returns a matching context with refcount and pincount. 4762 */ 4763 static struct perf_event_context * 4764 find_get_context(struct task_struct *task, struct perf_event *event) 4765 { 4766 struct perf_event_context *ctx, *clone_ctx = NULL; 4767 struct perf_cpu_context *cpuctx; 4768 unsigned long flags; 4769 int err; 4770 4771 if (!task) { 4772 /* Must be root to operate on a CPU event: */ 4773 err = perf_allow_cpu(&event->attr); 4774 if (err) 4775 return ERR_PTR(err); 4776 4777 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4778 ctx = &cpuctx->ctx; 4779 get_ctx(ctx); 4780 raw_spin_lock_irqsave(&ctx->lock, flags); 4781 ++ctx->pin_count; 4782 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4783 4784 return ctx; 4785 } 4786 4787 err = -EINVAL; 4788 retry: 4789 ctx = perf_lock_task_context(task, &flags); 4790 if (ctx) { 4791 clone_ctx = unclone_ctx(ctx); 4792 ++ctx->pin_count; 4793 4794 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4795 4796 if (clone_ctx) 4797 put_ctx(clone_ctx); 4798 } else { 4799 ctx = alloc_perf_context(task); 4800 err = -ENOMEM; 4801 if (!ctx) 4802 goto errout; 4803 4804 err = 0; 4805 mutex_lock(&task->perf_event_mutex); 4806 /* 4807 * If it has already passed perf_event_exit_task(). 4808 * we must see PF_EXITING, it takes this mutex too. 4809 */ 4810 if (task->flags & PF_EXITING) 4811 err = -ESRCH; 4812 else if (task->perf_event_ctxp) 4813 err = -EAGAIN; 4814 else { 4815 get_ctx(ctx); 4816 ++ctx->pin_count; 4817 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4818 } 4819 mutex_unlock(&task->perf_event_mutex); 4820 4821 if (unlikely(err)) { 4822 put_ctx(ctx); 4823 4824 if (err == -EAGAIN) 4825 goto retry; 4826 goto errout; 4827 } 4828 } 4829 4830 return ctx; 4831 4832 errout: 4833 return ERR_PTR(err); 4834 } 4835 4836 static struct perf_event_pmu_context * 4837 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4838 struct perf_event *event) 4839 { 4840 struct perf_event_pmu_context *new = NULL, *epc; 4841 void *task_ctx_data = NULL; 4842 4843 if (!ctx->task) { 4844 /* 4845 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4846 * relies on the fact that find_get_pmu_context() cannot fail 4847 * for CPU contexts. 4848 */ 4849 struct perf_cpu_pmu_context *cpc; 4850 4851 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4852 epc = &cpc->epc; 4853 raw_spin_lock_irq(&ctx->lock); 4854 if (!epc->ctx) { 4855 atomic_set(&epc->refcount, 1); 4856 epc->embedded = 1; 4857 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4858 epc->ctx = ctx; 4859 } else { 4860 WARN_ON_ONCE(epc->ctx != ctx); 4861 atomic_inc(&epc->refcount); 4862 } 4863 raw_spin_unlock_irq(&ctx->lock); 4864 return epc; 4865 } 4866 4867 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4868 if (!new) 4869 return ERR_PTR(-ENOMEM); 4870 4871 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4872 task_ctx_data = alloc_task_ctx_data(pmu); 4873 if (!task_ctx_data) { 4874 kfree(new); 4875 return ERR_PTR(-ENOMEM); 4876 } 4877 } 4878 4879 __perf_init_event_pmu_context(new, pmu); 4880 4881 /* 4882 * XXX 4883 * 4884 * lockdep_assert_held(&ctx->mutex); 4885 * 4886 * can't because perf_event_init_task() doesn't actually hold the 4887 * child_ctx->mutex. 4888 */ 4889 4890 raw_spin_lock_irq(&ctx->lock); 4891 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4892 if (epc->pmu == pmu) { 4893 WARN_ON_ONCE(epc->ctx != ctx); 4894 atomic_inc(&epc->refcount); 4895 goto found_epc; 4896 } 4897 } 4898 4899 epc = new; 4900 new = NULL; 4901 4902 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4903 epc->ctx = ctx; 4904 4905 found_epc: 4906 if (task_ctx_data && !epc->task_ctx_data) { 4907 epc->task_ctx_data = task_ctx_data; 4908 task_ctx_data = NULL; 4909 ctx->nr_task_data++; 4910 } 4911 raw_spin_unlock_irq(&ctx->lock); 4912 4913 free_task_ctx_data(pmu, task_ctx_data); 4914 kfree(new); 4915 4916 return epc; 4917 } 4918 4919 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4920 { 4921 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4922 } 4923 4924 static void free_epc_rcu(struct rcu_head *head) 4925 { 4926 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4927 4928 kfree(epc->task_ctx_data); 4929 kfree(epc); 4930 } 4931 4932 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4933 { 4934 struct perf_event_context *ctx = epc->ctx; 4935 unsigned long flags; 4936 4937 /* 4938 * XXX 4939 * 4940 * lockdep_assert_held(&ctx->mutex); 4941 * 4942 * can't because of the call-site in _free_event()/put_event() 4943 * which isn't always called under ctx->mutex. 4944 */ 4945 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4946 return; 4947 4948 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4949 4950 list_del_init(&epc->pmu_ctx_entry); 4951 epc->ctx = NULL; 4952 4953 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4954 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4955 4956 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4957 4958 if (epc->embedded) 4959 return; 4960 4961 call_rcu(&epc->rcu_head, free_epc_rcu); 4962 } 4963 4964 static void perf_event_free_filter(struct perf_event *event); 4965 4966 static void free_event_rcu(struct rcu_head *head) 4967 { 4968 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4969 4970 if (event->ns) 4971 put_pid_ns(event->ns); 4972 perf_event_free_filter(event); 4973 kmem_cache_free(perf_event_cache, event); 4974 } 4975 4976 static void ring_buffer_attach(struct perf_event *event, 4977 struct perf_buffer *rb); 4978 4979 static void detach_sb_event(struct perf_event *event) 4980 { 4981 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4982 4983 raw_spin_lock(&pel->lock); 4984 list_del_rcu(&event->sb_list); 4985 raw_spin_unlock(&pel->lock); 4986 } 4987 4988 static bool is_sb_event(struct perf_event *event) 4989 { 4990 struct perf_event_attr *attr = &event->attr; 4991 4992 if (event->parent) 4993 return false; 4994 4995 if (event->attach_state & PERF_ATTACH_TASK) 4996 return false; 4997 4998 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4999 attr->comm || attr->comm_exec || 5000 attr->task || attr->ksymbol || 5001 attr->context_switch || attr->text_poke || 5002 attr->bpf_event) 5003 return true; 5004 return false; 5005 } 5006 5007 static void unaccount_pmu_sb_event(struct perf_event *event) 5008 { 5009 if (is_sb_event(event)) 5010 detach_sb_event(event); 5011 } 5012 5013 #ifdef CONFIG_NO_HZ_FULL 5014 static DEFINE_SPINLOCK(nr_freq_lock); 5015 #endif 5016 5017 static void unaccount_freq_event_nohz(void) 5018 { 5019 #ifdef CONFIG_NO_HZ_FULL 5020 spin_lock(&nr_freq_lock); 5021 if (atomic_dec_and_test(&nr_freq_events)) 5022 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5023 spin_unlock(&nr_freq_lock); 5024 #endif 5025 } 5026 5027 static void unaccount_freq_event(void) 5028 { 5029 if (tick_nohz_full_enabled()) 5030 unaccount_freq_event_nohz(); 5031 else 5032 atomic_dec(&nr_freq_events); 5033 } 5034 5035 static void unaccount_event(struct perf_event *event) 5036 { 5037 bool dec = false; 5038 5039 if (event->parent) 5040 return; 5041 5042 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5043 dec = true; 5044 if (event->attr.mmap || event->attr.mmap_data) 5045 atomic_dec(&nr_mmap_events); 5046 if (event->attr.build_id) 5047 atomic_dec(&nr_build_id_events); 5048 if (event->attr.comm) 5049 atomic_dec(&nr_comm_events); 5050 if (event->attr.namespaces) 5051 atomic_dec(&nr_namespaces_events); 5052 if (event->attr.cgroup) 5053 atomic_dec(&nr_cgroup_events); 5054 if (event->attr.task) 5055 atomic_dec(&nr_task_events); 5056 if (event->attr.freq) 5057 unaccount_freq_event(); 5058 if (event->attr.context_switch) { 5059 dec = true; 5060 atomic_dec(&nr_switch_events); 5061 } 5062 if (is_cgroup_event(event)) 5063 dec = true; 5064 if (has_branch_stack(event)) 5065 dec = true; 5066 if (event->attr.ksymbol) 5067 atomic_dec(&nr_ksymbol_events); 5068 if (event->attr.bpf_event) 5069 atomic_dec(&nr_bpf_events); 5070 if (event->attr.text_poke) 5071 atomic_dec(&nr_text_poke_events); 5072 5073 if (dec) { 5074 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5075 schedule_delayed_work(&perf_sched_work, HZ); 5076 } 5077 5078 unaccount_pmu_sb_event(event); 5079 } 5080 5081 static void perf_sched_delayed(struct work_struct *work) 5082 { 5083 mutex_lock(&perf_sched_mutex); 5084 if (atomic_dec_and_test(&perf_sched_count)) 5085 static_branch_disable(&perf_sched_events); 5086 mutex_unlock(&perf_sched_mutex); 5087 } 5088 5089 /* 5090 * The following implement mutual exclusion of events on "exclusive" pmus 5091 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5092 * at a time, so we disallow creating events that might conflict, namely: 5093 * 5094 * 1) cpu-wide events in the presence of per-task events, 5095 * 2) per-task events in the presence of cpu-wide events, 5096 * 3) two matching events on the same perf_event_context. 5097 * 5098 * The former two cases are handled in the allocation path (perf_event_alloc(), 5099 * _free_event()), the latter -- before the first perf_install_in_context(). 5100 */ 5101 static int exclusive_event_init(struct perf_event *event) 5102 { 5103 struct pmu *pmu = event->pmu; 5104 5105 if (!is_exclusive_pmu(pmu)) 5106 return 0; 5107 5108 /* 5109 * Prevent co-existence of per-task and cpu-wide events on the 5110 * same exclusive pmu. 5111 * 5112 * Negative pmu::exclusive_cnt means there are cpu-wide 5113 * events on this "exclusive" pmu, positive means there are 5114 * per-task events. 5115 * 5116 * Since this is called in perf_event_alloc() path, event::ctx 5117 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5118 * to mean "per-task event", because unlike other attach states it 5119 * never gets cleared. 5120 */ 5121 if (event->attach_state & PERF_ATTACH_TASK) { 5122 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5123 return -EBUSY; 5124 } else { 5125 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5126 return -EBUSY; 5127 } 5128 5129 return 0; 5130 } 5131 5132 static void exclusive_event_destroy(struct perf_event *event) 5133 { 5134 struct pmu *pmu = event->pmu; 5135 5136 if (!is_exclusive_pmu(pmu)) 5137 return; 5138 5139 /* see comment in exclusive_event_init() */ 5140 if (event->attach_state & PERF_ATTACH_TASK) 5141 atomic_dec(&pmu->exclusive_cnt); 5142 else 5143 atomic_inc(&pmu->exclusive_cnt); 5144 } 5145 5146 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5147 { 5148 if ((e1->pmu == e2->pmu) && 5149 (e1->cpu == e2->cpu || 5150 e1->cpu == -1 || 5151 e2->cpu == -1)) 5152 return true; 5153 return false; 5154 } 5155 5156 static bool exclusive_event_installable(struct perf_event *event, 5157 struct perf_event_context *ctx) 5158 { 5159 struct perf_event *iter_event; 5160 struct pmu *pmu = event->pmu; 5161 5162 lockdep_assert_held(&ctx->mutex); 5163 5164 if (!is_exclusive_pmu(pmu)) 5165 return true; 5166 5167 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5168 if (exclusive_event_match(iter_event, event)) 5169 return false; 5170 } 5171 5172 return true; 5173 } 5174 5175 static void perf_addr_filters_splice(struct perf_event *event, 5176 struct list_head *head); 5177 5178 static void _free_event(struct perf_event *event) 5179 { 5180 irq_work_sync(&event->pending_irq); 5181 5182 unaccount_event(event); 5183 5184 security_perf_event_free(event); 5185 5186 if (event->rb) { 5187 /* 5188 * Can happen when we close an event with re-directed output. 5189 * 5190 * Since we have a 0 refcount, perf_mmap_close() will skip 5191 * over us; possibly making our ring_buffer_put() the last. 5192 */ 5193 mutex_lock(&event->mmap_mutex); 5194 ring_buffer_attach(event, NULL); 5195 mutex_unlock(&event->mmap_mutex); 5196 } 5197 5198 if (is_cgroup_event(event)) 5199 perf_detach_cgroup(event); 5200 5201 if (!event->parent) { 5202 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5203 put_callchain_buffers(); 5204 } 5205 5206 perf_event_free_bpf_prog(event); 5207 perf_addr_filters_splice(event, NULL); 5208 kfree(event->addr_filter_ranges); 5209 5210 if (event->destroy) 5211 event->destroy(event); 5212 5213 /* 5214 * Must be after ->destroy(), due to uprobe_perf_close() using 5215 * hw.target. 5216 */ 5217 if (event->hw.target) 5218 put_task_struct(event->hw.target); 5219 5220 if (event->pmu_ctx) 5221 put_pmu_ctx(event->pmu_ctx); 5222 5223 /* 5224 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5225 * all task references must be cleaned up. 5226 */ 5227 if (event->ctx) 5228 put_ctx(event->ctx); 5229 5230 exclusive_event_destroy(event); 5231 module_put(event->pmu->module); 5232 5233 call_rcu(&event->rcu_head, free_event_rcu); 5234 } 5235 5236 /* 5237 * Used to free events which have a known refcount of 1, such as in error paths 5238 * where the event isn't exposed yet and inherited events. 5239 */ 5240 static void free_event(struct perf_event *event) 5241 { 5242 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5243 "unexpected event refcount: %ld; ptr=%p\n", 5244 atomic_long_read(&event->refcount), event)) { 5245 /* leak to avoid use-after-free */ 5246 return; 5247 } 5248 5249 _free_event(event); 5250 } 5251 5252 /* 5253 * Remove user event from the owner task. 5254 */ 5255 static void perf_remove_from_owner(struct perf_event *event) 5256 { 5257 struct task_struct *owner; 5258 5259 rcu_read_lock(); 5260 /* 5261 * Matches the smp_store_release() in perf_event_exit_task(). If we 5262 * observe !owner it means the list deletion is complete and we can 5263 * indeed free this event, otherwise we need to serialize on 5264 * owner->perf_event_mutex. 5265 */ 5266 owner = READ_ONCE(event->owner); 5267 if (owner) { 5268 /* 5269 * Since delayed_put_task_struct() also drops the last 5270 * task reference we can safely take a new reference 5271 * while holding the rcu_read_lock(). 5272 */ 5273 get_task_struct(owner); 5274 } 5275 rcu_read_unlock(); 5276 5277 if (owner) { 5278 /* 5279 * If we're here through perf_event_exit_task() we're already 5280 * holding ctx->mutex which would be an inversion wrt. the 5281 * normal lock order. 5282 * 5283 * However we can safely take this lock because its the child 5284 * ctx->mutex. 5285 */ 5286 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5287 5288 /* 5289 * We have to re-check the event->owner field, if it is cleared 5290 * we raced with perf_event_exit_task(), acquiring the mutex 5291 * ensured they're done, and we can proceed with freeing the 5292 * event. 5293 */ 5294 if (event->owner) { 5295 list_del_init(&event->owner_entry); 5296 smp_store_release(&event->owner, NULL); 5297 } 5298 mutex_unlock(&owner->perf_event_mutex); 5299 put_task_struct(owner); 5300 } 5301 } 5302 5303 static void put_event(struct perf_event *event) 5304 { 5305 if (!atomic_long_dec_and_test(&event->refcount)) 5306 return; 5307 5308 _free_event(event); 5309 } 5310 5311 /* 5312 * Kill an event dead; while event:refcount will preserve the event 5313 * object, it will not preserve its functionality. Once the last 'user' 5314 * gives up the object, we'll destroy the thing. 5315 */ 5316 int perf_event_release_kernel(struct perf_event *event) 5317 { 5318 struct perf_event_context *ctx = event->ctx; 5319 struct perf_event *child, *tmp; 5320 LIST_HEAD(free_list); 5321 5322 /* 5323 * If we got here through err_alloc: free_event(event); we will not 5324 * have attached to a context yet. 5325 */ 5326 if (!ctx) { 5327 WARN_ON_ONCE(event->attach_state & 5328 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5329 goto no_ctx; 5330 } 5331 5332 if (!is_kernel_event(event)) 5333 perf_remove_from_owner(event); 5334 5335 ctx = perf_event_ctx_lock(event); 5336 WARN_ON_ONCE(ctx->parent_ctx); 5337 5338 /* 5339 * Mark this event as STATE_DEAD, there is no external reference to it 5340 * anymore. 5341 * 5342 * Anybody acquiring event->child_mutex after the below loop _must_ 5343 * also see this, most importantly inherit_event() which will avoid 5344 * placing more children on the list. 5345 * 5346 * Thus this guarantees that we will in fact observe and kill _ALL_ 5347 * child events. 5348 */ 5349 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5350 5351 perf_event_ctx_unlock(event, ctx); 5352 5353 again: 5354 mutex_lock(&event->child_mutex); 5355 list_for_each_entry(child, &event->child_list, child_list) { 5356 void *var = NULL; 5357 5358 /* 5359 * Cannot change, child events are not migrated, see the 5360 * comment with perf_event_ctx_lock_nested(). 5361 */ 5362 ctx = READ_ONCE(child->ctx); 5363 /* 5364 * Since child_mutex nests inside ctx::mutex, we must jump 5365 * through hoops. We start by grabbing a reference on the ctx. 5366 * 5367 * Since the event cannot get freed while we hold the 5368 * child_mutex, the context must also exist and have a !0 5369 * reference count. 5370 */ 5371 get_ctx(ctx); 5372 5373 /* 5374 * Now that we have a ctx ref, we can drop child_mutex, and 5375 * acquire ctx::mutex without fear of it going away. Then we 5376 * can re-acquire child_mutex. 5377 */ 5378 mutex_unlock(&event->child_mutex); 5379 mutex_lock(&ctx->mutex); 5380 mutex_lock(&event->child_mutex); 5381 5382 /* 5383 * Now that we hold ctx::mutex and child_mutex, revalidate our 5384 * state, if child is still the first entry, it didn't get freed 5385 * and we can continue doing so. 5386 */ 5387 tmp = list_first_entry_or_null(&event->child_list, 5388 struct perf_event, child_list); 5389 if (tmp == child) { 5390 perf_remove_from_context(child, DETACH_GROUP); 5391 list_move(&child->child_list, &free_list); 5392 /* 5393 * This matches the refcount bump in inherit_event(); 5394 * this can't be the last reference. 5395 */ 5396 put_event(event); 5397 } else { 5398 var = &ctx->refcount; 5399 } 5400 5401 mutex_unlock(&event->child_mutex); 5402 mutex_unlock(&ctx->mutex); 5403 put_ctx(ctx); 5404 5405 if (var) { 5406 /* 5407 * If perf_event_free_task() has deleted all events from the 5408 * ctx while the child_mutex got released above, make sure to 5409 * notify about the preceding put_ctx(). 5410 */ 5411 smp_mb(); /* pairs with wait_var_event() */ 5412 wake_up_var(var); 5413 } 5414 goto again; 5415 } 5416 mutex_unlock(&event->child_mutex); 5417 5418 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5419 void *var = &child->ctx->refcount; 5420 5421 list_del(&child->child_list); 5422 free_event(child); 5423 5424 /* 5425 * Wake any perf_event_free_task() waiting for this event to be 5426 * freed. 5427 */ 5428 smp_mb(); /* pairs with wait_var_event() */ 5429 wake_up_var(var); 5430 } 5431 5432 no_ctx: 5433 put_event(event); /* Must be the 'last' reference */ 5434 return 0; 5435 } 5436 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5437 5438 /* 5439 * Called when the last reference to the file is gone. 5440 */ 5441 static int perf_release(struct inode *inode, struct file *file) 5442 { 5443 perf_event_release_kernel(file->private_data); 5444 return 0; 5445 } 5446 5447 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5448 { 5449 struct perf_event *child; 5450 u64 total = 0; 5451 5452 *enabled = 0; 5453 *running = 0; 5454 5455 mutex_lock(&event->child_mutex); 5456 5457 (void)perf_event_read(event, false); 5458 total += perf_event_count(event); 5459 5460 *enabled += event->total_time_enabled + 5461 atomic64_read(&event->child_total_time_enabled); 5462 *running += event->total_time_running + 5463 atomic64_read(&event->child_total_time_running); 5464 5465 list_for_each_entry(child, &event->child_list, child_list) { 5466 (void)perf_event_read(child, false); 5467 total += perf_event_count(child); 5468 *enabled += child->total_time_enabled; 5469 *running += child->total_time_running; 5470 } 5471 mutex_unlock(&event->child_mutex); 5472 5473 return total; 5474 } 5475 5476 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5477 { 5478 struct perf_event_context *ctx; 5479 u64 count; 5480 5481 ctx = perf_event_ctx_lock(event); 5482 count = __perf_event_read_value(event, enabled, running); 5483 perf_event_ctx_unlock(event, ctx); 5484 5485 return count; 5486 } 5487 EXPORT_SYMBOL_GPL(perf_event_read_value); 5488 5489 static int __perf_read_group_add(struct perf_event *leader, 5490 u64 read_format, u64 *values) 5491 { 5492 struct perf_event_context *ctx = leader->ctx; 5493 struct perf_event *sub, *parent; 5494 unsigned long flags; 5495 int n = 1; /* skip @nr */ 5496 int ret; 5497 5498 ret = perf_event_read(leader, true); 5499 if (ret) 5500 return ret; 5501 5502 raw_spin_lock_irqsave(&ctx->lock, flags); 5503 /* 5504 * Verify the grouping between the parent and child (inherited) 5505 * events is still in tact. 5506 * 5507 * Specifically: 5508 * - leader->ctx->lock pins leader->sibling_list 5509 * - parent->child_mutex pins parent->child_list 5510 * - parent->ctx->mutex pins parent->sibling_list 5511 * 5512 * Because parent->ctx != leader->ctx (and child_list nests inside 5513 * ctx->mutex), group destruction is not atomic between children, also 5514 * see perf_event_release_kernel(). Additionally, parent can grow the 5515 * group. 5516 * 5517 * Therefore it is possible to have parent and child groups in a 5518 * different configuration and summing over such a beast makes no sense 5519 * what so ever. 5520 * 5521 * Reject this. 5522 */ 5523 parent = leader->parent; 5524 if (parent && 5525 (parent->group_generation != leader->group_generation || 5526 parent->nr_siblings != leader->nr_siblings)) { 5527 ret = -ECHILD; 5528 goto unlock; 5529 } 5530 5531 /* 5532 * Since we co-schedule groups, {enabled,running} times of siblings 5533 * will be identical to those of the leader, so we only publish one 5534 * set. 5535 */ 5536 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5537 values[n++] += leader->total_time_enabled + 5538 atomic64_read(&leader->child_total_time_enabled); 5539 } 5540 5541 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5542 values[n++] += leader->total_time_running + 5543 atomic64_read(&leader->child_total_time_running); 5544 } 5545 5546 /* 5547 * Write {count,id} tuples for every sibling. 5548 */ 5549 values[n++] += perf_event_count(leader); 5550 if (read_format & PERF_FORMAT_ID) 5551 values[n++] = primary_event_id(leader); 5552 if (read_format & PERF_FORMAT_LOST) 5553 values[n++] = atomic64_read(&leader->lost_samples); 5554 5555 for_each_sibling_event(sub, leader) { 5556 values[n++] += perf_event_count(sub); 5557 if (read_format & PERF_FORMAT_ID) 5558 values[n++] = primary_event_id(sub); 5559 if (read_format & PERF_FORMAT_LOST) 5560 values[n++] = atomic64_read(&sub->lost_samples); 5561 } 5562 5563 unlock: 5564 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5565 return ret; 5566 } 5567 5568 static int perf_read_group(struct perf_event *event, 5569 u64 read_format, char __user *buf) 5570 { 5571 struct perf_event *leader = event->group_leader, *child; 5572 struct perf_event_context *ctx = leader->ctx; 5573 int ret; 5574 u64 *values; 5575 5576 lockdep_assert_held(&ctx->mutex); 5577 5578 values = kzalloc(event->read_size, GFP_KERNEL); 5579 if (!values) 5580 return -ENOMEM; 5581 5582 values[0] = 1 + leader->nr_siblings; 5583 5584 mutex_lock(&leader->child_mutex); 5585 5586 ret = __perf_read_group_add(leader, read_format, values); 5587 if (ret) 5588 goto unlock; 5589 5590 list_for_each_entry(child, &leader->child_list, child_list) { 5591 ret = __perf_read_group_add(child, read_format, values); 5592 if (ret) 5593 goto unlock; 5594 } 5595 5596 mutex_unlock(&leader->child_mutex); 5597 5598 ret = event->read_size; 5599 if (copy_to_user(buf, values, event->read_size)) 5600 ret = -EFAULT; 5601 goto out; 5602 5603 unlock: 5604 mutex_unlock(&leader->child_mutex); 5605 out: 5606 kfree(values); 5607 return ret; 5608 } 5609 5610 static int perf_read_one(struct perf_event *event, 5611 u64 read_format, char __user *buf) 5612 { 5613 u64 enabled, running; 5614 u64 values[5]; 5615 int n = 0; 5616 5617 values[n++] = __perf_event_read_value(event, &enabled, &running); 5618 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5619 values[n++] = enabled; 5620 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5621 values[n++] = running; 5622 if (read_format & PERF_FORMAT_ID) 5623 values[n++] = primary_event_id(event); 5624 if (read_format & PERF_FORMAT_LOST) 5625 values[n++] = atomic64_read(&event->lost_samples); 5626 5627 if (copy_to_user(buf, values, n * sizeof(u64))) 5628 return -EFAULT; 5629 5630 return n * sizeof(u64); 5631 } 5632 5633 static bool is_event_hup(struct perf_event *event) 5634 { 5635 bool no_children; 5636 5637 if (event->state > PERF_EVENT_STATE_EXIT) 5638 return false; 5639 5640 mutex_lock(&event->child_mutex); 5641 no_children = list_empty(&event->child_list); 5642 mutex_unlock(&event->child_mutex); 5643 return no_children; 5644 } 5645 5646 /* 5647 * Read the performance event - simple non blocking version for now 5648 */ 5649 static ssize_t 5650 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5651 { 5652 u64 read_format = event->attr.read_format; 5653 int ret; 5654 5655 /* 5656 * Return end-of-file for a read on an event that is in 5657 * error state (i.e. because it was pinned but it couldn't be 5658 * scheduled on to the CPU at some point). 5659 */ 5660 if (event->state == PERF_EVENT_STATE_ERROR) 5661 return 0; 5662 5663 if (count < event->read_size) 5664 return -ENOSPC; 5665 5666 WARN_ON_ONCE(event->ctx->parent_ctx); 5667 if (read_format & PERF_FORMAT_GROUP) 5668 ret = perf_read_group(event, read_format, buf); 5669 else 5670 ret = perf_read_one(event, read_format, buf); 5671 5672 return ret; 5673 } 5674 5675 static ssize_t 5676 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5677 { 5678 struct perf_event *event = file->private_data; 5679 struct perf_event_context *ctx; 5680 int ret; 5681 5682 ret = security_perf_event_read(event); 5683 if (ret) 5684 return ret; 5685 5686 ctx = perf_event_ctx_lock(event); 5687 ret = __perf_read(event, buf, count); 5688 perf_event_ctx_unlock(event, ctx); 5689 5690 return ret; 5691 } 5692 5693 static __poll_t perf_poll(struct file *file, poll_table *wait) 5694 { 5695 struct perf_event *event = file->private_data; 5696 struct perf_buffer *rb; 5697 __poll_t events = EPOLLHUP; 5698 5699 poll_wait(file, &event->waitq, wait); 5700 5701 if (is_event_hup(event)) 5702 return events; 5703 5704 /* 5705 * Pin the event->rb by taking event->mmap_mutex; otherwise 5706 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5707 */ 5708 mutex_lock(&event->mmap_mutex); 5709 rb = event->rb; 5710 if (rb) 5711 events = atomic_xchg(&rb->poll, 0); 5712 mutex_unlock(&event->mmap_mutex); 5713 return events; 5714 } 5715 5716 static void _perf_event_reset(struct perf_event *event) 5717 { 5718 (void)perf_event_read(event, false); 5719 local64_set(&event->count, 0); 5720 perf_event_update_userpage(event); 5721 } 5722 5723 /* Assume it's not an event with inherit set. */ 5724 u64 perf_event_pause(struct perf_event *event, bool reset) 5725 { 5726 struct perf_event_context *ctx; 5727 u64 count; 5728 5729 ctx = perf_event_ctx_lock(event); 5730 WARN_ON_ONCE(event->attr.inherit); 5731 _perf_event_disable(event); 5732 count = local64_read(&event->count); 5733 if (reset) 5734 local64_set(&event->count, 0); 5735 perf_event_ctx_unlock(event, ctx); 5736 5737 return count; 5738 } 5739 EXPORT_SYMBOL_GPL(perf_event_pause); 5740 5741 /* 5742 * Holding the top-level event's child_mutex means that any 5743 * descendant process that has inherited this event will block 5744 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5745 * task existence requirements of perf_event_enable/disable. 5746 */ 5747 static void perf_event_for_each_child(struct perf_event *event, 5748 void (*func)(struct perf_event *)) 5749 { 5750 struct perf_event *child; 5751 5752 WARN_ON_ONCE(event->ctx->parent_ctx); 5753 5754 mutex_lock(&event->child_mutex); 5755 func(event); 5756 list_for_each_entry(child, &event->child_list, child_list) 5757 func(child); 5758 mutex_unlock(&event->child_mutex); 5759 } 5760 5761 static void perf_event_for_each(struct perf_event *event, 5762 void (*func)(struct perf_event *)) 5763 { 5764 struct perf_event_context *ctx = event->ctx; 5765 struct perf_event *sibling; 5766 5767 lockdep_assert_held(&ctx->mutex); 5768 5769 event = event->group_leader; 5770 5771 perf_event_for_each_child(event, func); 5772 for_each_sibling_event(sibling, event) 5773 perf_event_for_each_child(sibling, func); 5774 } 5775 5776 static void __perf_event_period(struct perf_event *event, 5777 struct perf_cpu_context *cpuctx, 5778 struct perf_event_context *ctx, 5779 void *info) 5780 { 5781 u64 value = *((u64 *)info); 5782 bool active; 5783 5784 if (event->attr.freq) { 5785 event->attr.sample_freq = value; 5786 } else { 5787 event->attr.sample_period = value; 5788 event->hw.sample_period = value; 5789 } 5790 5791 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5792 if (active) { 5793 perf_pmu_disable(event->pmu); 5794 /* 5795 * We could be throttled; unthrottle now to avoid the tick 5796 * trying to unthrottle while we already re-started the event. 5797 */ 5798 if (event->hw.interrupts == MAX_INTERRUPTS) { 5799 event->hw.interrupts = 0; 5800 perf_log_throttle(event, 1); 5801 } 5802 event->pmu->stop(event, PERF_EF_UPDATE); 5803 } 5804 5805 local64_set(&event->hw.period_left, 0); 5806 5807 if (active) { 5808 event->pmu->start(event, PERF_EF_RELOAD); 5809 perf_pmu_enable(event->pmu); 5810 } 5811 } 5812 5813 static int perf_event_check_period(struct perf_event *event, u64 value) 5814 { 5815 return event->pmu->check_period(event, value); 5816 } 5817 5818 static int _perf_event_period(struct perf_event *event, u64 value) 5819 { 5820 if (!is_sampling_event(event)) 5821 return -EINVAL; 5822 5823 if (!value) 5824 return -EINVAL; 5825 5826 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5827 return -EINVAL; 5828 5829 if (perf_event_check_period(event, value)) 5830 return -EINVAL; 5831 5832 if (!event->attr.freq && (value & (1ULL << 63))) 5833 return -EINVAL; 5834 5835 event_function_call(event, __perf_event_period, &value); 5836 5837 return 0; 5838 } 5839 5840 int perf_event_period(struct perf_event *event, u64 value) 5841 { 5842 struct perf_event_context *ctx; 5843 int ret; 5844 5845 ctx = perf_event_ctx_lock(event); 5846 ret = _perf_event_period(event, value); 5847 perf_event_ctx_unlock(event, ctx); 5848 5849 return ret; 5850 } 5851 EXPORT_SYMBOL_GPL(perf_event_period); 5852 5853 static const struct file_operations perf_fops; 5854 5855 static inline int perf_fget_light(int fd, struct fd *p) 5856 { 5857 struct fd f = fdget(fd); 5858 if (!f.file) 5859 return -EBADF; 5860 5861 if (f.file->f_op != &perf_fops) { 5862 fdput(f); 5863 return -EBADF; 5864 } 5865 *p = f; 5866 return 0; 5867 } 5868 5869 static int perf_event_set_output(struct perf_event *event, 5870 struct perf_event *output_event); 5871 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5872 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5873 struct perf_event_attr *attr); 5874 5875 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5876 { 5877 void (*func)(struct perf_event *); 5878 u32 flags = arg; 5879 5880 switch (cmd) { 5881 case PERF_EVENT_IOC_ENABLE: 5882 func = _perf_event_enable; 5883 break; 5884 case PERF_EVENT_IOC_DISABLE: 5885 func = _perf_event_disable; 5886 break; 5887 case PERF_EVENT_IOC_RESET: 5888 func = _perf_event_reset; 5889 break; 5890 5891 case PERF_EVENT_IOC_REFRESH: 5892 return _perf_event_refresh(event, arg); 5893 5894 case PERF_EVENT_IOC_PERIOD: 5895 { 5896 u64 value; 5897 5898 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5899 return -EFAULT; 5900 5901 return _perf_event_period(event, value); 5902 } 5903 case PERF_EVENT_IOC_ID: 5904 { 5905 u64 id = primary_event_id(event); 5906 5907 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5908 return -EFAULT; 5909 return 0; 5910 } 5911 5912 case PERF_EVENT_IOC_SET_OUTPUT: 5913 { 5914 int ret; 5915 if (arg != -1) { 5916 struct perf_event *output_event; 5917 struct fd output; 5918 ret = perf_fget_light(arg, &output); 5919 if (ret) 5920 return ret; 5921 output_event = output.file->private_data; 5922 ret = perf_event_set_output(event, output_event); 5923 fdput(output); 5924 } else { 5925 ret = perf_event_set_output(event, NULL); 5926 } 5927 return ret; 5928 } 5929 5930 case PERF_EVENT_IOC_SET_FILTER: 5931 return perf_event_set_filter(event, (void __user *)arg); 5932 5933 case PERF_EVENT_IOC_SET_BPF: 5934 { 5935 struct bpf_prog *prog; 5936 int err; 5937 5938 prog = bpf_prog_get(arg); 5939 if (IS_ERR(prog)) 5940 return PTR_ERR(prog); 5941 5942 err = perf_event_set_bpf_prog(event, prog, 0); 5943 if (err) { 5944 bpf_prog_put(prog); 5945 return err; 5946 } 5947 5948 return 0; 5949 } 5950 5951 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5952 struct perf_buffer *rb; 5953 5954 rcu_read_lock(); 5955 rb = rcu_dereference(event->rb); 5956 if (!rb || !rb->nr_pages) { 5957 rcu_read_unlock(); 5958 return -EINVAL; 5959 } 5960 rb_toggle_paused(rb, !!arg); 5961 rcu_read_unlock(); 5962 return 0; 5963 } 5964 5965 case PERF_EVENT_IOC_QUERY_BPF: 5966 return perf_event_query_prog_array(event, (void __user *)arg); 5967 5968 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5969 struct perf_event_attr new_attr; 5970 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5971 &new_attr); 5972 5973 if (err) 5974 return err; 5975 5976 return perf_event_modify_attr(event, &new_attr); 5977 } 5978 default: 5979 return -ENOTTY; 5980 } 5981 5982 if (flags & PERF_IOC_FLAG_GROUP) 5983 perf_event_for_each(event, func); 5984 else 5985 perf_event_for_each_child(event, func); 5986 5987 return 0; 5988 } 5989 5990 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5991 { 5992 struct perf_event *event = file->private_data; 5993 struct perf_event_context *ctx; 5994 long ret; 5995 5996 /* Treat ioctl like writes as it is likely a mutating operation. */ 5997 ret = security_perf_event_write(event); 5998 if (ret) 5999 return ret; 6000 6001 ctx = perf_event_ctx_lock(event); 6002 ret = _perf_ioctl(event, cmd, arg); 6003 perf_event_ctx_unlock(event, ctx); 6004 6005 return ret; 6006 } 6007 6008 #ifdef CONFIG_COMPAT 6009 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6010 unsigned long arg) 6011 { 6012 switch (_IOC_NR(cmd)) { 6013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6014 case _IOC_NR(PERF_EVENT_IOC_ID): 6015 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6016 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6017 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6018 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6019 cmd &= ~IOCSIZE_MASK; 6020 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6021 } 6022 break; 6023 } 6024 return perf_ioctl(file, cmd, arg); 6025 } 6026 #else 6027 # define perf_compat_ioctl NULL 6028 #endif 6029 6030 int perf_event_task_enable(void) 6031 { 6032 struct perf_event_context *ctx; 6033 struct perf_event *event; 6034 6035 mutex_lock(¤t->perf_event_mutex); 6036 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6037 ctx = perf_event_ctx_lock(event); 6038 perf_event_for_each_child(event, _perf_event_enable); 6039 perf_event_ctx_unlock(event, ctx); 6040 } 6041 mutex_unlock(¤t->perf_event_mutex); 6042 6043 return 0; 6044 } 6045 6046 int perf_event_task_disable(void) 6047 { 6048 struct perf_event_context *ctx; 6049 struct perf_event *event; 6050 6051 mutex_lock(¤t->perf_event_mutex); 6052 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6053 ctx = perf_event_ctx_lock(event); 6054 perf_event_for_each_child(event, _perf_event_disable); 6055 perf_event_ctx_unlock(event, ctx); 6056 } 6057 mutex_unlock(¤t->perf_event_mutex); 6058 6059 return 0; 6060 } 6061 6062 static int perf_event_index(struct perf_event *event) 6063 { 6064 if (event->hw.state & PERF_HES_STOPPED) 6065 return 0; 6066 6067 if (event->state != PERF_EVENT_STATE_ACTIVE) 6068 return 0; 6069 6070 return event->pmu->event_idx(event); 6071 } 6072 6073 static void perf_event_init_userpage(struct perf_event *event) 6074 { 6075 struct perf_event_mmap_page *userpg; 6076 struct perf_buffer *rb; 6077 6078 rcu_read_lock(); 6079 rb = rcu_dereference(event->rb); 6080 if (!rb) 6081 goto unlock; 6082 6083 userpg = rb->user_page; 6084 6085 /* Allow new userspace to detect that bit 0 is deprecated */ 6086 userpg->cap_bit0_is_deprecated = 1; 6087 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6088 userpg->data_offset = PAGE_SIZE; 6089 userpg->data_size = perf_data_size(rb); 6090 6091 unlock: 6092 rcu_read_unlock(); 6093 } 6094 6095 void __weak arch_perf_update_userpage( 6096 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6097 { 6098 } 6099 6100 /* 6101 * Callers need to ensure there can be no nesting of this function, otherwise 6102 * the seqlock logic goes bad. We can not serialize this because the arch 6103 * code calls this from NMI context. 6104 */ 6105 void perf_event_update_userpage(struct perf_event *event) 6106 { 6107 struct perf_event_mmap_page *userpg; 6108 struct perf_buffer *rb; 6109 u64 enabled, running, now; 6110 6111 rcu_read_lock(); 6112 rb = rcu_dereference(event->rb); 6113 if (!rb) 6114 goto unlock; 6115 6116 /* 6117 * compute total_time_enabled, total_time_running 6118 * based on snapshot values taken when the event 6119 * was last scheduled in. 6120 * 6121 * we cannot simply called update_context_time() 6122 * because of locking issue as we can be called in 6123 * NMI context 6124 */ 6125 calc_timer_values(event, &now, &enabled, &running); 6126 6127 userpg = rb->user_page; 6128 /* 6129 * Disable preemption to guarantee consistent time stamps are stored to 6130 * the user page. 6131 */ 6132 preempt_disable(); 6133 ++userpg->lock; 6134 barrier(); 6135 userpg->index = perf_event_index(event); 6136 userpg->offset = perf_event_count(event); 6137 if (userpg->index) 6138 userpg->offset -= local64_read(&event->hw.prev_count); 6139 6140 userpg->time_enabled = enabled + 6141 atomic64_read(&event->child_total_time_enabled); 6142 6143 userpg->time_running = running + 6144 atomic64_read(&event->child_total_time_running); 6145 6146 arch_perf_update_userpage(event, userpg, now); 6147 6148 barrier(); 6149 ++userpg->lock; 6150 preempt_enable(); 6151 unlock: 6152 rcu_read_unlock(); 6153 } 6154 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6155 6156 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6157 { 6158 struct perf_event *event = vmf->vma->vm_file->private_data; 6159 struct perf_buffer *rb; 6160 vm_fault_t ret = VM_FAULT_SIGBUS; 6161 6162 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6163 if (vmf->pgoff == 0) 6164 ret = 0; 6165 return ret; 6166 } 6167 6168 rcu_read_lock(); 6169 rb = rcu_dereference(event->rb); 6170 if (!rb) 6171 goto unlock; 6172 6173 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6174 goto unlock; 6175 6176 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6177 if (!vmf->page) 6178 goto unlock; 6179 6180 get_page(vmf->page); 6181 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6182 vmf->page->index = vmf->pgoff; 6183 6184 ret = 0; 6185 unlock: 6186 rcu_read_unlock(); 6187 6188 return ret; 6189 } 6190 6191 static void ring_buffer_attach(struct perf_event *event, 6192 struct perf_buffer *rb) 6193 { 6194 struct perf_buffer *old_rb = NULL; 6195 unsigned long flags; 6196 6197 WARN_ON_ONCE(event->parent); 6198 6199 if (event->rb) { 6200 /* 6201 * Should be impossible, we set this when removing 6202 * event->rb_entry and wait/clear when adding event->rb_entry. 6203 */ 6204 WARN_ON_ONCE(event->rcu_pending); 6205 6206 old_rb = event->rb; 6207 spin_lock_irqsave(&old_rb->event_lock, flags); 6208 list_del_rcu(&event->rb_entry); 6209 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6210 6211 event->rcu_batches = get_state_synchronize_rcu(); 6212 event->rcu_pending = 1; 6213 } 6214 6215 if (rb) { 6216 if (event->rcu_pending) { 6217 cond_synchronize_rcu(event->rcu_batches); 6218 event->rcu_pending = 0; 6219 } 6220 6221 spin_lock_irqsave(&rb->event_lock, flags); 6222 list_add_rcu(&event->rb_entry, &rb->event_list); 6223 spin_unlock_irqrestore(&rb->event_lock, flags); 6224 } 6225 6226 /* 6227 * Avoid racing with perf_mmap_close(AUX): stop the event 6228 * before swizzling the event::rb pointer; if it's getting 6229 * unmapped, its aux_mmap_count will be 0 and it won't 6230 * restart. See the comment in __perf_pmu_output_stop(). 6231 * 6232 * Data will inevitably be lost when set_output is done in 6233 * mid-air, but then again, whoever does it like this is 6234 * not in for the data anyway. 6235 */ 6236 if (has_aux(event)) 6237 perf_event_stop(event, 0); 6238 6239 rcu_assign_pointer(event->rb, rb); 6240 6241 if (old_rb) { 6242 ring_buffer_put(old_rb); 6243 /* 6244 * Since we detached before setting the new rb, so that we 6245 * could attach the new rb, we could have missed a wakeup. 6246 * Provide it now. 6247 */ 6248 wake_up_all(&event->waitq); 6249 } 6250 } 6251 6252 static void ring_buffer_wakeup(struct perf_event *event) 6253 { 6254 struct perf_buffer *rb; 6255 6256 if (event->parent) 6257 event = event->parent; 6258 6259 rcu_read_lock(); 6260 rb = rcu_dereference(event->rb); 6261 if (rb) { 6262 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6263 wake_up_all(&event->waitq); 6264 } 6265 rcu_read_unlock(); 6266 } 6267 6268 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6269 { 6270 struct perf_buffer *rb; 6271 6272 if (event->parent) 6273 event = event->parent; 6274 6275 rcu_read_lock(); 6276 rb = rcu_dereference(event->rb); 6277 if (rb) { 6278 if (!refcount_inc_not_zero(&rb->refcount)) 6279 rb = NULL; 6280 } 6281 rcu_read_unlock(); 6282 6283 return rb; 6284 } 6285 6286 void ring_buffer_put(struct perf_buffer *rb) 6287 { 6288 if (!refcount_dec_and_test(&rb->refcount)) 6289 return; 6290 6291 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6292 6293 call_rcu(&rb->rcu_head, rb_free_rcu); 6294 } 6295 6296 static void perf_mmap_open(struct vm_area_struct *vma) 6297 { 6298 struct perf_event *event = vma->vm_file->private_data; 6299 6300 atomic_inc(&event->mmap_count); 6301 atomic_inc(&event->rb->mmap_count); 6302 6303 if (vma->vm_pgoff) 6304 atomic_inc(&event->rb->aux_mmap_count); 6305 6306 if (event->pmu->event_mapped) 6307 event->pmu->event_mapped(event, vma->vm_mm); 6308 } 6309 6310 static void perf_pmu_output_stop(struct perf_event *event); 6311 6312 /* 6313 * A buffer can be mmap()ed multiple times; either directly through the same 6314 * event, or through other events by use of perf_event_set_output(). 6315 * 6316 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6317 * the buffer here, where we still have a VM context. This means we need 6318 * to detach all events redirecting to us. 6319 */ 6320 static void perf_mmap_close(struct vm_area_struct *vma) 6321 { 6322 struct perf_event *event = vma->vm_file->private_data; 6323 struct perf_buffer *rb = ring_buffer_get(event); 6324 struct user_struct *mmap_user = rb->mmap_user; 6325 int mmap_locked = rb->mmap_locked; 6326 unsigned long size = perf_data_size(rb); 6327 bool detach_rest = false; 6328 6329 if (event->pmu->event_unmapped) 6330 event->pmu->event_unmapped(event, vma->vm_mm); 6331 6332 /* 6333 * rb->aux_mmap_count will always drop before rb->mmap_count and 6334 * event->mmap_count, so it is ok to use event->mmap_mutex to 6335 * serialize with perf_mmap here. 6336 */ 6337 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6338 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6339 /* 6340 * Stop all AUX events that are writing to this buffer, 6341 * so that we can free its AUX pages and corresponding PMU 6342 * data. Note that after rb::aux_mmap_count dropped to zero, 6343 * they won't start any more (see perf_aux_output_begin()). 6344 */ 6345 perf_pmu_output_stop(event); 6346 6347 /* now it's safe to free the pages */ 6348 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6349 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6350 6351 /* this has to be the last one */ 6352 rb_free_aux(rb); 6353 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6354 6355 mutex_unlock(&event->mmap_mutex); 6356 } 6357 6358 if (atomic_dec_and_test(&rb->mmap_count)) 6359 detach_rest = true; 6360 6361 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6362 goto out_put; 6363 6364 ring_buffer_attach(event, NULL); 6365 mutex_unlock(&event->mmap_mutex); 6366 6367 /* If there's still other mmap()s of this buffer, we're done. */ 6368 if (!detach_rest) 6369 goto out_put; 6370 6371 /* 6372 * No other mmap()s, detach from all other events that might redirect 6373 * into the now unreachable buffer. Somewhat complicated by the 6374 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6375 */ 6376 again: 6377 rcu_read_lock(); 6378 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6379 if (!atomic_long_inc_not_zero(&event->refcount)) { 6380 /* 6381 * This event is en-route to free_event() which will 6382 * detach it and remove it from the list. 6383 */ 6384 continue; 6385 } 6386 rcu_read_unlock(); 6387 6388 mutex_lock(&event->mmap_mutex); 6389 /* 6390 * Check we didn't race with perf_event_set_output() which can 6391 * swizzle the rb from under us while we were waiting to 6392 * acquire mmap_mutex. 6393 * 6394 * If we find a different rb; ignore this event, a next 6395 * iteration will no longer find it on the list. We have to 6396 * still restart the iteration to make sure we're not now 6397 * iterating the wrong list. 6398 */ 6399 if (event->rb == rb) 6400 ring_buffer_attach(event, NULL); 6401 6402 mutex_unlock(&event->mmap_mutex); 6403 put_event(event); 6404 6405 /* 6406 * Restart the iteration; either we're on the wrong list or 6407 * destroyed its integrity by doing a deletion. 6408 */ 6409 goto again; 6410 } 6411 rcu_read_unlock(); 6412 6413 /* 6414 * It could be there's still a few 0-ref events on the list; they'll 6415 * get cleaned up by free_event() -- they'll also still have their 6416 * ref on the rb and will free it whenever they are done with it. 6417 * 6418 * Aside from that, this buffer is 'fully' detached and unmapped, 6419 * undo the VM accounting. 6420 */ 6421 6422 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6423 &mmap_user->locked_vm); 6424 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6425 free_uid(mmap_user); 6426 6427 out_put: 6428 ring_buffer_put(rb); /* could be last */ 6429 } 6430 6431 static const struct vm_operations_struct perf_mmap_vmops = { 6432 .open = perf_mmap_open, 6433 .close = perf_mmap_close, /* non mergeable */ 6434 .fault = perf_mmap_fault, 6435 .page_mkwrite = perf_mmap_fault, 6436 }; 6437 6438 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6439 { 6440 struct perf_event *event = file->private_data; 6441 unsigned long user_locked, user_lock_limit; 6442 struct user_struct *user = current_user(); 6443 struct perf_buffer *rb = NULL; 6444 unsigned long locked, lock_limit; 6445 unsigned long vma_size; 6446 unsigned long nr_pages; 6447 long user_extra = 0, extra = 0; 6448 int ret = 0, flags = 0; 6449 6450 /* 6451 * Don't allow mmap() of inherited per-task counters. This would 6452 * create a performance issue due to all children writing to the 6453 * same rb. 6454 */ 6455 if (event->cpu == -1 && event->attr.inherit) 6456 return -EINVAL; 6457 6458 if (!(vma->vm_flags & VM_SHARED)) 6459 return -EINVAL; 6460 6461 ret = security_perf_event_read(event); 6462 if (ret) 6463 return ret; 6464 6465 vma_size = vma->vm_end - vma->vm_start; 6466 6467 if (vma->vm_pgoff == 0) { 6468 nr_pages = (vma_size / PAGE_SIZE) - 1; 6469 } else { 6470 /* 6471 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6472 * mapped, all subsequent mappings should have the same size 6473 * and offset. Must be above the normal perf buffer. 6474 */ 6475 u64 aux_offset, aux_size; 6476 6477 if (!event->rb) 6478 return -EINVAL; 6479 6480 nr_pages = vma_size / PAGE_SIZE; 6481 6482 mutex_lock(&event->mmap_mutex); 6483 ret = -EINVAL; 6484 6485 rb = event->rb; 6486 if (!rb) 6487 goto aux_unlock; 6488 6489 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6490 aux_size = READ_ONCE(rb->user_page->aux_size); 6491 6492 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6493 goto aux_unlock; 6494 6495 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6496 goto aux_unlock; 6497 6498 /* already mapped with a different offset */ 6499 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6500 goto aux_unlock; 6501 6502 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6503 goto aux_unlock; 6504 6505 /* already mapped with a different size */ 6506 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6507 goto aux_unlock; 6508 6509 if (!is_power_of_2(nr_pages)) 6510 goto aux_unlock; 6511 6512 if (!atomic_inc_not_zero(&rb->mmap_count)) 6513 goto aux_unlock; 6514 6515 if (rb_has_aux(rb)) { 6516 atomic_inc(&rb->aux_mmap_count); 6517 ret = 0; 6518 goto unlock; 6519 } 6520 6521 atomic_set(&rb->aux_mmap_count, 1); 6522 user_extra = nr_pages; 6523 6524 goto accounting; 6525 } 6526 6527 /* 6528 * If we have rb pages ensure they're a power-of-two number, so we 6529 * can do bitmasks instead of modulo. 6530 */ 6531 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6532 return -EINVAL; 6533 6534 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6535 return -EINVAL; 6536 6537 WARN_ON_ONCE(event->ctx->parent_ctx); 6538 again: 6539 mutex_lock(&event->mmap_mutex); 6540 if (event->rb) { 6541 if (data_page_nr(event->rb) != nr_pages) { 6542 ret = -EINVAL; 6543 goto unlock; 6544 } 6545 6546 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6547 /* 6548 * Raced against perf_mmap_close(); remove the 6549 * event and try again. 6550 */ 6551 ring_buffer_attach(event, NULL); 6552 mutex_unlock(&event->mmap_mutex); 6553 goto again; 6554 } 6555 6556 goto unlock; 6557 } 6558 6559 user_extra = nr_pages + 1; 6560 6561 accounting: 6562 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6563 6564 /* 6565 * Increase the limit linearly with more CPUs: 6566 */ 6567 user_lock_limit *= num_online_cpus(); 6568 6569 user_locked = atomic_long_read(&user->locked_vm); 6570 6571 /* 6572 * sysctl_perf_event_mlock may have changed, so that 6573 * user->locked_vm > user_lock_limit 6574 */ 6575 if (user_locked > user_lock_limit) 6576 user_locked = user_lock_limit; 6577 user_locked += user_extra; 6578 6579 if (user_locked > user_lock_limit) { 6580 /* 6581 * charge locked_vm until it hits user_lock_limit; 6582 * charge the rest from pinned_vm 6583 */ 6584 extra = user_locked - user_lock_limit; 6585 user_extra -= extra; 6586 } 6587 6588 lock_limit = rlimit(RLIMIT_MEMLOCK); 6589 lock_limit >>= PAGE_SHIFT; 6590 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6591 6592 if ((locked > lock_limit) && perf_is_paranoid() && 6593 !capable(CAP_IPC_LOCK)) { 6594 ret = -EPERM; 6595 goto unlock; 6596 } 6597 6598 WARN_ON(!rb && event->rb); 6599 6600 if (vma->vm_flags & VM_WRITE) 6601 flags |= RING_BUFFER_WRITABLE; 6602 6603 if (!rb) { 6604 rb = rb_alloc(nr_pages, 6605 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6606 event->cpu, flags); 6607 6608 if (!rb) { 6609 ret = -ENOMEM; 6610 goto unlock; 6611 } 6612 6613 atomic_set(&rb->mmap_count, 1); 6614 rb->mmap_user = get_current_user(); 6615 rb->mmap_locked = extra; 6616 6617 ring_buffer_attach(event, rb); 6618 6619 perf_event_update_time(event); 6620 perf_event_init_userpage(event); 6621 perf_event_update_userpage(event); 6622 } else { 6623 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6624 event->attr.aux_watermark, flags); 6625 if (!ret) 6626 rb->aux_mmap_locked = extra; 6627 } 6628 6629 unlock: 6630 if (!ret) { 6631 atomic_long_add(user_extra, &user->locked_vm); 6632 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6633 6634 atomic_inc(&event->mmap_count); 6635 } else if (rb) { 6636 atomic_dec(&rb->mmap_count); 6637 } 6638 aux_unlock: 6639 mutex_unlock(&event->mmap_mutex); 6640 6641 /* 6642 * Since pinned accounting is per vm we cannot allow fork() to copy our 6643 * vma. 6644 */ 6645 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6646 vma->vm_ops = &perf_mmap_vmops; 6647 6648 if (event->pmu->event_mapped) 6649 event->pmu->event_mapped(event, vma->vm_mm); 6650 6651 return ret; 6652 } 6653 6654 static int perf_fasync(int fd, struct file *filp, int on) 6655 { 6656 struct inode *inode = file_inode(filp); 6657 struct perf_event *event = filp->private_data; 6658 int retval; 6659 6660 inode_lock(inode); 6661 retval = fasync_helper(fd, filp, on, &event->fasync); 6662 inode_unlock(inode); 6663 6664 if (retval < 0) 6665 return retval; 6666 6667 return 0; 6668 } 6669 6670 static const struct file_operations perf_fops = { 6671 .llseek = no_llseek, 6672 .release = perf_release, 6673 .read = perf_read, 6674 .poll = perf_poll, 6675 .unlocked_ioctl = perf_ioctl, 6676 .compat_ioctl = perf_compat_ioctl, 6677 .mmap = perf_mmap, 6678 .fasync = perf_fasync, 6679 }; 6680 6681 /* 6682 * Perf event wakeup 6683 * 6684 * If there's data, ensure we set the poll() state and publish everything 6685 * to user-space before waking everybody up. 6686 */ 6687 6688 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6689 { 6690 /* only the parent has fasync state */ 6691 if (event->parent) 6692 event = event->parent; 6693 return &event->fasync; 6694 } 6695 6696 void perf_event_wakeup(struct perf_event *event) 6697 { 6698 ring_buffer_wakeup(event); 6699 6700 if (event->pending_kill) { 6701 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6702 event->pending_kill = 0; 6703 } 6704 } 6705 6706 static void perf_sigtrap(struct perf_event *event) 6707 { 6708 /* 6709 * We'd expect this to only occur if the irq_work is delayed and either 6710 * ctx->task or current has changed in the meantime. This can be the 6711 * case on architectures that do not implement arch_irq_work_raise(). 6712 */ 6713 if (WARN_ON_ONCE(event->ctx->task != current)) 6714 return; 6715 6716 /* 6717 * Both perf_pending_task() and perf_pending_irq() can race with the 6718 * task exiting. 6719 */ 6720 if (current->flags & PF_EXITING) 6721 return; 6722 6723 send_sig_perf((void __user *)event->pending_addr, 6724 event->orig_type, event->attr.sig_data); 6725 } 6726 6727 /* 6728 * Deliver the pending work in-event-context or follow the context. 6729 */ 6730 static void __perf_pending_irq(struct perf_event *event) 6731 { 6732 int cpu = READ_ONCE(event->oncpu); 6733 6734 /* 6735 * If the event isn't running; we done. event_sched_out() will have 6736 * taken care of things. 6737 */ 6738 if (cpu < 0) 6739 return; 6740 6741 /* 6742 * Yay, we hit home and are in the context of the event. 6743 */ 6744 if (cpu == smp_processor_id()) { 6745 if (event->pending_sigtrap) { 6746 event->pending_sigtrap = 0; 6747 perf_sigtrap(event); 6748 local_dec(&event->ctx->nr_pending); 6749 } 6750 if (event->pending_disable) { 6751 event->pending_disable = 0; 6752 perf_event_disable_local(event); 6753 } 6754 return; 6755 } 6756 6757 /* 6758 * CPU-A CPU-B 6759 * 6760 * perf_event_disable_inatomic() 6761 * @pending_disable = CPU-A; 6762 * irq_work_queue(); 6763 * 6764 * sched-out 6765 * @pending_disable = -1; 6766 * 6767 * sched-in 6768 * perf_event_disable_inatomic() 6769 * @pending_disable = CPU-B; 6770 * irq_work_queue(); // FAILS 6771 * 6772 * irq_work_run() 6773 * perf_pending_irq() 6774 * 6775 * But the event runs on CPU-B and wants disabling there. 6776 */ 6777 irq_work_queue_on(&event->pending_irq, cpu); 6778 } 6779 6780 static void perf_pending_irq(struct irq_work *entry) 6781 { 6782 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6783 int rctx; 6784 6785 /* 6786 * If we 'fail' here, that's OK, it means recursion is already disabled 6787 * and we won't recurse 'further'. 6788 */ 6789 rctx = perf_swevent_get_recursion_context(); 6790 6791 /* 6792 * The wakeup isn't bound to the context of the event -- it can happen 6793 * irrespective of where the event is. 6794 */ 6795 if (event->pending_wakeup) { 6796 event->pending_wakeup = 0; 6797 perf_event_wakeup(event); 6798 } 6799 6800 __perf_pending_irq(event); 6801 6802 if (rctx >= 0) 6803 perf_swevent_put_recursion_context(rctx); 6804 } 6805 6806 static void perf_pending_task(struct callback_head *head) 6807 { 6808 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6809 int rctx; 6810 6811 /* 6812 * If we 'fail' here, that's OK, it means recursion is already disabled 6813 * and we won't recurse 'further'. 6814 */ 6815 preempt_disable_notrace(); 6816 rctx = perf_swevent_get_recursion_context(); 6817 6818 if (event->pending_work) { 6819 event->pending_work = 0; 6820 perf_sigtrap(event); 6821 local_dec(&event->ctx->nr_pending); 6822 } 6823 6824 if (rctx >= 0) 6825 perf_swevent_put_recursion_context(rctx); 6826 preempt_enable_notrace(); 6827 6828 put_event(event); 6829 } 6830 6831 #ifdef CONFIG_GUEST_PERF_EVENTS 6832 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6833 6834 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6835 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6836 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6837 6838 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6839 { 6840 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6841 return; 6842 6843 rcu_assign_pointer(perf_guest_cbs, cbs); 6844 static_call_update(__perf_guest_state, cbs->state); 6845 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6846 6847 /* Implementing ->handle_intel_pt_intr is optional. */ 6848 if (cbs->handle_intel_pt_intr) 6849 static_call_update(__perf_guest_handle_intel_pt_intr, 6850 cbs->handle_intel_pt_intr); 6851 } 6852 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6853 6854 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6855 { 6856 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6857 return; 6858 6859 rcu_assign_pointer(perf_guest_cbs, NULL); 6860 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6861 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6862 static_call_update(__perf_guest_handle_intel_pt_intr, 6863 (void *)&__static_call_return0); 6864 synchronize_rcu(); 6865 } 6866 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6867 #endif 6868 6869 static void 6870 perf_output_sample_regs(struct perf_output_handle *handle, 6871 struct pt_regs *regs, u64 mask) 6872 { 6873 int bit; 6874 DECLARE_BITMAP(_mask, 64); 6875 6876 bitmap_from_u64(_mask, mask); 6877 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6878 u64 val; 6879 6880 val = perf_reg_value(regs, bit); 6881 perf_output_put(handle, val); 6882 } 6883 } 6884 6885 static void perf_sample_regs_user(struct perf_regs *regs_user, 6886 struct pt_regs *regs) 6887 { 6888 if (user_mode(regs)) { 6889 regs_user->abi = perf_reg_abi(current); 6890 regs_user->regs = regs; 6891 } else if (!(current->flags & PF_KTHREAD)) { 6892 perf_get_regs_user(regs_user, regs); 6893 } else { 6894 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6895 regs_user->regs = NULL; 6896 } 6897 } 6898 6899 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6900 struct pt_regs *regs) 6901 { 6902 regs_intr->regs = regs; 6903 regs_intr->abi = perf_reg_abi(current); 6904 } 6905 6906 6907 /* 6908 * Get remaining task size from user stack pointer. 6909 * 6910 * It'd be better to take stack vma map and limit this more 6911 * precisely, but there's no way to get it safely under interrupt, 6912 * so using TASK_SIZE as limit. 6913 */ 6914 static u64 perf_ustack_task_size(struct pt_regs *regs) 6915 { 6916 unsigned long addr = perf_user_stack_pointer(regs); 6917 6918 if (!addr || addr >= TASK_SIZE) 6919 return 0; 6920 6921 return TASK_SIZE - addr; 6922 } 6923 6924 static u16 6925 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6926 struct pt_regs *regs) 6927 { 6928 u64 task_size; 6929 6930 /* No regs, no stack pointer, no dump. */ 6931 if (!regs) 6932 return 0; 6933 6934 /* 6935 * Check if we fit in with the requested stack size into the: 6936 * - TASK_SIZE 6937 * If we don't, we limit the size to the TASK_SIZE. 6938 * 6939 * - remaining sample size 6940 * If we don't, we customize the stack size to 6941 * fit in to the remaining sample size. 6942 */ 6943 6944 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6945 stack_size = min(stack_size, (u16) task_size); 6946 6947 /* Current header size plus static size and dynamic size. */ 6948 header_size += 2 * sizeof(u64); 6949 6950 /* Do we fit in with the current stack dump size? */ 6951 if ((u16) (header_size + stack_size) < header_size) { 6952 /* 6953 * If we overflow the maximum size for the sample, 6954 * we customize the stack dump size to fit in. 6955 */ 6956 stack_size = USHRT_MAX - header_size - sizeof(u64); 6957 stack_size = round_up(stack_size, sizeof(u64)); 6958 } 6959 6960 return stack_size; 6961 } 6962 6963 static void 6964 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6965 struct pt_regs *regs) 6966 { 6967 /* Case of a kernel thread, nothing to dump */ 6968 if (!regs) { 6969 u64 size = 0; 6970 perf_output_put(handle, size); 6971 } else { 6972 unsigned long sp; 6973 unsigned int rem; 6974 u64 dyn_size; 6975 6976 /* 6977 * We dump: 6978 * static size 6979 * - the size requested by user or the best one we can fit 6980 * in to the sample max size 6981 * data 6982 * - user stack dump data 6983 * dynamic size 6984 * - the actual dumped size 6985 */ 6986 6987 /* Static size. */ 6988 perf_output_put(handle, dump_size); 6989 6990 /* Data. */ 6991 sp = perf_user_stack_pointer(regs); 6992 rem = __output_copy_user(handle, (void *) sp, dump_size); 6993 dyn_size = dump_size - rem; 6994 6995 perf_output_skip(handle, rem); 6996 6997 /* Dynamic size. */ 6998 perf_output_put(handle, dyn_size); 6999 } 7000 } 7001 7002 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7003 struct perf_sample_data *data, 7004 size_t size) 7005 { 7006 struct perf_event *sampler = event->aux_event; 7007 struct perf_buffer *rb; 7008 7009 data->aux_size = 0; 7010 7011 if (!sampler) 7012 goto out; 7013 7014 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7015 goto out; 7016 7017 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7018 goto out; 7019 7020 rb = ring_buffer_get(sampler); 7021 if (!rb) 7022 goto out; 7023 7024 /* 7025 * If this is an NMI hit inside sampling code, don't take 7026 * the sample. See also perf_aux_sample_output(). 7027 */ 7028 if (READ_ONCE(rb->aux_in_sampling)) { 7029 data->aux_size = 0; 7030 } else { 7031 size = min_t(size_t, size, perf_aux_size(rb)); 7032 data->aux_size = ALIGN(size, sizeof(u64)); 7033 } 7034 ring_buffer_put(rb); 7035 7036 out: 7037 return data->aux_size; 7038 } 7039 7040 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7041 struct perf_event *event, 7042 struct perf_output_handle *handle, 7043 unsigned long size) 7044 { 7045 unsigned long flags; 7046 long ret; 7047 7048 /* 7049 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7050 * paths. If we start calling them in NMI context, they may race with 7051 * the IRQ ones, that is, for example, re-starting an event that's just 7052 * been stopped, which is why we're using a separate callback that 7053 * doesn't change the event state. 7054 * 7055 * IRQs need to be disabled to prevent IPIs from racing with us. 7056 */ 7057 local_irq_save(flags); 7058 /* 7059 * Guard against NMI hits inside the critical section; 7060 * see also perf_prepare_sample_aux(). 7061 */ 7062 WRITE_ONCE(rb->aux_in_sampling, 1); 7063 barrier(); 7064 7065 ret = event->pmu->snapshot_aux(event, handle, size); 7066 7067 barrier(); 7068 WRITE_ONCE(rb->aux_in_sampling, 0); 7069 local_irq_restore(flags); 7070 7071 return ret; 7072 } 7073 7074 static void perf_aux_sample_output(struct perf_event *event, 7075 struct perf_output_handle *handle, 7076 struct perf_sample_data *data) 7077 { 7078 struct perf_event *sampler = event->aux_event; 7079 struct perf_buffer *rb; 7080 unsigned long pad; 7081 long size; 7082 7083 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7084 return; 7085 7086 rb = ring_buffer_get(sampler); 7087 if (!rb) 7088 return; 7089 7090 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7091 7092 /* 7093 * An error here means that perf_output_copy() failed (returned a 7094 * non-zero surplus that it didn't copy), which in its current 7095 * enlightened implementation is not possible. If that changes, we'd 7096 * like to know. 7097 */ 7098 if (WARN_ON_ONCE(size < 0)) 7099 goto out_put; 7100 7101 /* 7102 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7103 * perf_prepare_sample_aux(), so should not be more than that. 7104 */ 7105 pad = data->aux_size - size; 7106 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7107 pad = 8; 7108 7109 if (pad) { 7110 u64 zero = 0; 7111 perf_output_copy(handle, &zero, pad); 7112 } 7113 7114 out_put: 7115 ring_buffer_put(rb); 7116 } 7117 7118 /* 7119 * A set of common sample data types saved even for non-sample records 7120 * when event->attr.sample_id_all is set. 7121 */ 7122 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7123 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7124 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7125 7126 static void __perf_event_header__init_id(struct perf_sample_data *data, 7127 struct perf_event *event, 7128 u64 sample_type) 7129 { 7130 data->type = event->attr.sample_type; 7131 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7132 7133 if (sample_type & PERF_SAMPLE_TID) { 7134 /* namespace issues */ 7135 data->tid_entry.pid = perf_event_pid(event, current); 7136 data->tid_entry.tid = perf_event_tid(event, current); 7137 } 7138 7139 if (sample_type & PERF_SAMPLE_TIME) 7140 data->time = perf_event_clock(event); 7141 7142 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7143 data->id = primary_event_id(event); 7144 7145 if (sample_type & PERF_SAMPLE_STREAM_ID) 7146 data->stream_id = event->id; 7147 7148 if (sample_type & PERF_SAMPLE_CPU) { 7149 data->cpu_entry.cpu = raw_smp_processor_id(); 7150 data->cpu_entry.reserved = 0; 7151 } 7152 } 7153 7154 void perf_event_header__init_id(struct perf_event_header *header, 7155 struct perf_sample_data *data, 7156 struct perf_event *event) 7157 { 7158 if (event->attr.sample_id_all) { 7159 header->size += event->id_header_size; 7160 __perf_event_header__init_id(data, event, event->attr.sample_type); 7161 } 7162 } 7163 7164 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7165 struct perf_sample_data *data) 7166 { 7167 u64 sample_type = data->type; 7168 7169 if (sample_type & PERF_SAMPLE_TID) 7170 perf_output_put(handle, data->tid_entry); 7171 7172 if (sample_type & PERF_SAMPLE_TIME) 7173 perf_output_put(handle, data->time); 7174 7175 if (sample_type & PERF_SAMPLE_ID) 7176 perf_output_put(handle, data->id); 7177 7178 if (sample_type & PERF_SAMPLE_STREAM_ID) 7179 perf_output_put(handle, data->stream_id); 7180 7181 if (sample_type & PERF_SAMPLE_CPU) 7182 perf_output_put(handle, data->cpu_entry); 7183 7184 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7185 perf_output_put(handle, data->id); 7186 } 7187 7188 void perf_event__output_id_sample(struct perf_event *event, 7189 struct perf_output_handle *handle, 7190 struct perf_sample_data *sample) 7191 { 7192 if (event->attr.sample_id_all) 7193 __perf_event__output_id_sample(handle, sample); 7194 } 7195 7196 static void perf_output_read_one(struct perf_output_handle *handle, 7197 struct perf_event *event, 7198 u64 enabled, u64 running) 7199 { 7200 u64 read_format = event->attr.read_format; 7201 u64 values[5]; 7202 int n = 0; 7203 7204 values[n++] = perf_event_count(event); 7205 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7206 values[n++] = enabled + 7207 atomic64_read(&event->child_total_time_enabled); 7208 } 7209 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7210 values[n++] = running + 7211 atomic64_read(&event->child_total_time_running); 7212 } 7213 if (read_format & PERF_FORMAT_ID) 7214 values[n++] = primary_event_id(event); 7215 if (read_format & PERF_FORMAT_LOST) 7216 values[n++] = atomic64_read(&event->lost_samples); 7217 7218 __output_copy(handle, values, n * sizeof(u64)); 7219 } 7220 7221 static void perf_output_read_group(struct perf_output_handle *handle, 7222 struct perf_event *event, 7223 u64 enabled, u64 running) 7224 { 7225 struct perf_event *leader = event->group_leader, *sub; 7226 u64 read_format = event->attr.read_format; 7227 unsigned long flags; 7228 u64 values[6]; 7229 int n = 0; 7230 7231 /* 7232 * Disabling interrupts avoids all counter scheduling 7233 * (context switches, timer based rotation and IPIs). 7234 */ 7235 local_irq_save(flags); 7236 7237 values[n++] = 1 + leader->nr_siblings; 7238 7239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7240 values[n++] = enabled; 7241 7242 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7243 values[n++] = running; 7244 7245 if ((leader != event) && 7246 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7247 leader->pmu->read(leader); 7248 7249 values[n++] = perf_event_count(leader); 7250 if (read_format & PERF_FORMAT_ID) 7251 values[n++] = primary_event_id(leader); 7252 if (read_format & PERF_FORMAT_LOST) 7253 values[n++] = atomic64_read(&leader->lost_samples); 7254 7255 __output_copy(handle, values, n * sizeof(u64)); 7256 7257 for_each_sibling_event(sub, leader) { 7258 n = 0; 7259 7260 if ((sub != event) && 7261 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7262 sub->pmu->read(sub); 7263 7264 values[n++] = perf_event_count(sub); 7265 if (read_format & PERF_FORMAT_ID) 7266 values[n++] = primary_event_id(sub); 7267 if (read_format & PERF_FORMAT_LOST) 7268 values[n++] = atomic64_read(&sub->lost_samples); 7269 7270 __output_copy(handle, values, n * sizeof(u64)); 7271 } 7272 7273 local_irq_restore(flags); 7274 } 7275 7276 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7277 PERF_FORMAT_TOTAL_TIME_RUNNING) 7278 7279 /* 7280 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7281 * 7282 * The problem is that its both hard and excessively expensive to iterate the 7283 * child list, not to mention that its impossible to IPI the children running 7284 * on another CPU, from interrupt/NMI context. 7285 */ 7286 static void perf_output_read(struct perf_output_handle *handle, 7287 struct perf_event *event) 7288 { 7289 u64 enabled = 0, running = 0, now; 7290 u64 read_format = event->attr.read_format; 7291 7292 /* 7293 * compute total_time_enabled, total_time_running 7294 * based on snapshot values taken when the event 7295 * was last scheduled in. 7296 * 7297 * we cannot simply called update_context_time() 7298 * because of locking issue as we are called in 7299 * NMI context 7300 */ 7301 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7302 calc_timer_values(event, &now, &enabled, &running); 7303 7304 if (event->attr.read_format & PERF_FORMAT_GROUP) 7305 perf_output_read_group(handle, event, enabled, running); 7306 else 7307 perf_output_read_one(handle, event, enabled, running); 7308 } 7309 7310 void perf_output_sample(struct perf_output_handle *handle, 7311 struct perf_event_header *header, 7312 struct perf_sample_data *data, 7313 struct perf_event *event) 7314 { 7315 u64 sample_type = data->type; 7316 7317 perf_output_put(handle, *header); 7318 7319 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7320 perf_output_put(handle, data->id); 7321 7322 if (sample_type & PERF_SAMPLE_IP) 7323 perf_output_put(handle, data->ip); 7324 7325 if (sample_type & PERF_SAMPLE_TID) 7326 perf_output_put(handle, data->tid_entry); 7327 7328 if (sample_type & PERF_SAMPLE_TIME) 7329 perf_output_put(handle, data->time); 7330 7331 if (sample_type & PERF_SAMPLE_ADDR) 7332 perf_output_put(handle, data->addr); 7333 7334 if (sample_type & PERF_SAMPLE_ID) 7335 perf_output_put(handle, data->id); 7336 7337 if (sample_type & PERF_SAMPLE_STREAM_ID) 7338 perf_output_put(handle, data->stream_id); 7339 7340 if (sample_type & PERF_SAMPLE_CPU) 7341 perf_output_put(handle, data->cpu_entry); 7342 7343 if (sample_type & PERF_SAMPLE_PERIOD) 7344 perf_output_put(handle, data->period); 7345 7346 if (sample_type & PERF_SAMPLE_READ) 7347 perf_output_read(handle, event); 7348 7349 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7350 int size = 1; 7351 7352 size += data->callchain->nr; 7353 size *= sizeof(u64); 7354 __output_copy(handle, data->callchain, size); 7355 } 7356 7357 if (sample_type & PERF_SAMPLE_RAW) { 7358 struct perf_raw_record *raw = data->raw; 7359 7360 if (raw) { 7361 struct perf_raw_frag *frag = &raw->frag; 7362 7363 perf_output_put(handle, raw->size); 7364 do { 7365 if (frag->copy) { 7366 __output_custom(handle, frag->copy, 7367 frag->data, frag->size); 7368 } else { 7369 __output_copy(handle, frag->data, 7370 frag->size); 7371 } 7372 if (perf_raw_frag_last(frag)) 7373 break; 7374 frag = frag->next; 7375 } while (1); 7376 if (frag->pad) 7377 __output_skip(handle, NULL, frag->pad); 7378 } else { 7379 struct { 7380 u32 size; 7381 u32 data; 7382 } raw = { 7383 .size = sizeof(u32), 7384 .data = 0, 7385 }; 7386 perf_output_put(handle, raw); 7387 } 7388 } 7389 7390 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7391 if (data->br_stack) { 7392 size_t size; 7393 7394 size = data->br_stack->nr 7395 * sizeof(struct perf_branch_entry); 7396 7397 perf_output_put(handle, data->br_stack->nr); 7398 if (branch_sample_hw_index(event)) 7399 perf_output_put(handle, data->br_stack->hw_idx); 7400 perf_output_copy(handle, data->br_stack->entries, size); 7401 } else { 7402 /* 7403 * we always store at least the value of nr 7404 */ 7405 u64 nr = 0; 7406 perf_output_put(handle, nr); 7407 } 7408 } 7409 7410 if (sample_type & PERF_SAMPLE_REGS_USER) { 7411 u64 abi = data->regs_user.abi; 7412 7413 /* 7414 * If there are no regs to dump, notice it through 7415 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7416 */ 7417 perf_output_put(handle, abi); 7418 7419 if (abi) { 7420 u64 mask = event->attr.sample_regs_user; 7421 perf_output_sample_regs(handle, 7422 data->regs_user.regs, 7423 mask); 7424 } 7425 } 7426 7427 if (sample_type & PERF_SAMPLE_STACK_USER) { 7428 perf_output_sample_ustack(handle, 7429 data->stack_user_size, 7430 data->regs_user.regs); 7431 } 7432 7433 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7434 perf_output_put(handle, data->weight.full); 7435 7436 if (sample_type & PERF_SAMPLE_DATA_SRC) 7437 perf_output_put(handle, data->data_src.val); 7438 7439 if (sample_type & PERF_SAMPLE_TRANSACTION) 7440 perf_output_put(handle, data->txn); 7441 7442 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7443 u64 abi = data->regs_intr.abi; 7444 /* 7445 * If there are no regs to dump, notice it through 7446 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7447 */ 7448 perf_output_put(handle, abi); 7449 7450 if (abi) { 7451 u64 mask = event->attr.sample_regs_intr; 7452 7453 perf_output_sample_regs(handle, 7454 data->regs_intr.regs, 7455 mask); 7456 } 7457 } 7458 7459 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7460 perf_output_put(handle, data->phys_addr); 7461 7462 if (sample_type & PERF_SAMPLE_CGROUP) 7463 perf_output_put(handle, data->cgroup); 7464 7465 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7466 perf_output_put(handle, data->data_page_size); 7467 7468 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7469 perf_output_put(handle, data->code_page_size); 7470 7471 if (sample_type & PERF_SAMPLE_AUX) { 7472 perf_output_put(handle, data->aux_size); 7473 7474 if (data->aux_size) 7475 perf_aux_sample_output(event, handle, data); 7476 } 7477 7478 if (!event->attr.watermark) { 7479 int wakeup_events = event->attr.wakeup_events; 7480 7481 if (wakeup_events) { 7482 struct perf_buffer *rb = handle->rb; 7483 int events = local_inc_return(&rb->events); 7484 7485 if (events >= wakeup_events) { 7486 local_sub(wakeup_events, &rb->events); 7487 local_inc(&rb->wakeup); 7488 } 7489 } 7490 } 7491 } 7492 7493 static u64 perf_virt_to_phys(u64 virt) 7494 { 7495 u64 phys_addr = 0; 7496 7497 if (!virt) 7498 return 0; 7499 7500 if (virt >= TASK_SIZE) { 7501 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7502 if (virt_addr_valid((void *)(uintptr_t)virt) && 7503 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7504 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7505 } else { 7506 /* 7507 * Walking the pages tables for user address. 7508 * Interrupts are disabled, so it prevents any tear down 7509 * of the page tables. 7510 * Try IRQ-safe get_user_page_fast_only first. 7511 * If failed, leave phys_addr as 0. 7512 */ 7513 if (current->mm != NULL) { 7514 struct page *p; 7515 7516 pagefault_disable(); 7517 if (get_user_page_fast_only(virt, 0, &p)) { 7518 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7519 put_page(p); 7520 } 7521 pagefault_enable(); 7522 } 7523 } 7524 7525 return phys_addr; 7526 } 7527 7528 /* 7529 * Return the pagetable size of a given virtual address. 7530 */ 7531 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7532 { 7533 u64 size = 0; 7534 7535 #ifdef CONFIG_HAVE_FAST_GUP 7536 pgd_t *pgdp, pgd; 7537 p4d_t *p4dp, p4d; 7538 pud_t *pudp, pud; 7539 pmd_t *pmdp, pmd; 7540 pte_t *ptep, pte; 7541 7542 pgdp = pgd_offset(mm, addr); 7543 pgd = READ_ONCE(*pgdp); 7544 if (pgd_none(pgd)) 7545 return 0; 7546 7547 if (pgd_leaf(pgd)) 7548 return pgd_leaf_size(pgd); 7549 7550 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7551 p4d = READ_ONCE(*p4dp); 7552 if (!p4d_present(p4d)) 7553 return 0; 7554 7555 if (p4d_leaf(p4d)) 7556 return p4d_leaf_size(p4d); 7557 7558 pudp = pud_offset_lockless(p4dp, p4d, addr); 7559 pud = READ_ONCE(*pudp); 7560 if (!pud_present(pud)) 7561 return 0; 7562 7563 if (pud_leaf(pud)) 7564 return pud_leaf_size(pud); 7565 7566 pmdp = pmd_offset_lockless(pudp, pud, addr); 7567 again: 7568 pmd = pmdp_get_lockless(pmdp); 7569 if (!pmd_present(pmd)) 7570 return 0; 7571 7572 if (pmd_leaf(pmd)) 7573 return pmd_leaf_size(pmd); 7574 7575 ptep = pte_offset_map(&pmd, addr); 7576 if (!ptep) 7577 goto again; 7578 7579 pte = ptep_get_lockless(ptep); 7580 if (pte_present(pte)) 7581 size = pte_leaf_size(pte); 7582 pte_unmap(ptep); 7583 #endif /* CONFIG_HAVE_FAST_GUP */ 7584 7585 return size; 7586 } 7587 7588 static u64 perf_get_page_size(unsigned long addr) 7589 { 7590 struct mm_struct *mm; 7591 unsigned long flags; 7592 u64 size; 7593 7594 if (!addr) 7595 return 0; 7596 7597 /* 7598 * Software page-table walkers must disable IRQs, 7599 * which prevents any tear down of the page tables. 7600 */ 7601 local_irq_save(flags); 7602 7603 mm = current->mm; 7604 if (!mm) { 7605 /* 7606 * For kernel threads and the like, use init_mm so that 7607 * we can find kernel memory. 7608 */ 7609 mm = &init_mm; 7610 } 7611 7612 size = perf_get_pgtable_size(mm, addr); 7613 7614 local_irq_restore(flags); 7615 7616 return size; 7617 } 7618 7619 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7620 7621 struct perf_callchain_entry * 7622 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7623 { 7624 bool kernel = !event->attr.exclude_callchain_kernel; 7625 bool user = !event->attr.exclude_callchain_user; 7626 /* Disallow cross-task user callchains. */ 7627 bool crosstask = event->ctx->task && event->ctx->task != current; 7628 const u32 max_stack = event->attr.sample_max_stack; 7629 struct perf_callchain_entry *callchain; 7630 7631 if (!kernel && !user) 7632 return &__empty_callchain; 7633 7634 callchain = get_perf_callchain(regs, 0, kernel, user, 7635 max_stack, crosstask, true); 7636 return callchain ?: &__empty_callchain; 7637 } 7638 7639 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7640 { 7641 return d * !!(flags & s); 7642 } 7643 7644 void perf_prepare_sample(struct perf_sample_data *data, 7645 struct perf_event *event, 7646 struct pt_regs *regs) 7647 { 7648 u64 sample_type = event->attr.sample_type; 7649 u64 filtered_sample_type; 7650 7651 /* 7652 * Add the sample flags that are dependent to others. And clear the 7653 * sample flags that have already been done by the PMU driver. 7654 */ 7655 filtered_sample_type = sample_type; 7656 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7657 PERF_SAMPLE_IP); 7658 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7659 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7660 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7661 PERF_SAMPLE_REGS_USER); 7662 filtered_sample_type &= ~data->sample_flags; 7663 7664 if (filtered_sample_type == 0) { 7665 /* Make sure it has the correct data->type for output */ 7666 data->type = event->attr.sample_type; 7667 return; 7668 } 7669 7670 __perf_event_header__init_id(data, event, filtered_sample_type); 7671 7672 if (filtered_sample_type & PERF_SAMPLE_IP) { 7673 data->ip = perf_instruction_pointer(regs); 7674 data->sample_flags |= PERF_SAMPLE_IP; 7675 } 7676 7677 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7678 perf_sample_save_callchain(data, event, regs); 7679 7680 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7681 data->raw = NULL; 7682 data->dyn_size += sizeof(u64); 7683 data->sample_flags |= PERF_SAMPLE_RAW; 7684 } 7685 7686 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7687 data->br_stack = NULL; 7688 data->dyn_size += sizeof(u64); 7689 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7690 } 7691 7692 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7693 perf_sample_regs_user(&data->regs_user, regs); 7694 7695 /* 7696 * It cannot use the filtered_sample_type here as REGS_USER can be set 7697 * by STACK_USER (using __cond_set() above) and we don't want to update 7698 * the dyn_size if it's not requested by users. 7699 */ 7700 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7701 /* regs dump ABI info */ 7702 int size = sizeof(u64); 7703 7704 if (data->regs_user.regs) { 7705 u64 mask = event->attr.sample_regs_user; 7706 size += hweight64(mask) * sizeof(u64); 7707 } 7708 7709 data->dyn_size += size; 7710 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7711 } 7712 7713 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7714 /* 7715 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7716 * processed as the last one or have additional check added 7717 * in case new sample type is added, because we could eat 7718 * up the rest of the sample size. 7719 */ 7720 u16 stack_size = event->attr.sample_stack_user; 7721 u16 header_size = perf_sample_data_size(data, event); 7722 u16 size = sizeof(u64); 7723 7724 stack_size = perf_sample_ustack_size(stack_size, header_size, 7725 data->regs_user.regs); 7726 7727 /* 7728 * If there is something to dump, add space for the dump 7729 * itself and for the field that tells the dynamic size, 7730 * which is how many have been actually dumped. 7731 */ 7732 if (stack_size) 7733 size += sizeof(u64) + stack_size; 7734 7735 data->stack_user_size = stack_size; 7736 data->dyn_size += size; 7737 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7738 } 7739 7740 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7741 data->weight.full = 0; 7742 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7743 } 7744 7745 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7746 data->data_src.val = PERF_MEM_NA; 7747 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7748 } 7749 7750 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7751 data->txn = 0; 7752 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7753 } 7754 7755 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7756 data->addr = 0; 7757 data->sample_flags |= PERF_SAMPLE_ADDR; 7758 } 7759 7760 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7761 /* regs dump ABI info */ 7762 int size = sizeof(u64); 7763 7764 perf_sample_regs_intr(&data->regs_intr, regs); 7765 7766 if (data->regs_intr.regs) { 7767 u64 mask = event->attr.sample_regs_intr; 7768 7769 size += hweight64(mask) * sizeof(u64); 7770 } 7771 7772 data->dyn_size += size; 7773 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7774 } 7775 7776 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7777 data->phys_addr = perf_virt_to_phys(data->addr); 7778 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7779 } 7780 7781 #ifdef CONFIG_CGROUP_PERF 7782 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7783 struct cgroup *cgrp; 7784 7785 /* protected by RCU */ 7786 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7787 data->cgroup = cgroup_id(cgrp); 7788 data->sample_flags |= PERF_SAMPLE_CGROUP; 7789 } 7790 #endif 7791 7792 /* 7793 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7794 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7795 * but the value will not dump to the userspace. 7796 */ 7797 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7798 data->data_page_size = perf_get_page_size(data->addr); 7799 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7800 } 7801 7802 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7803 data->code_page_size = perf_get_page_size(data->ip); 7804 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7805 } 7806 7807 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7808 u64 size; 7809 u16 header_size = perf_sample_data_size(data, event); 7810 7811 header_size += sizeof(u64); /* size */ 7812 7813 /* 7814 * Given the 16bit nature of header::size, an AUX sample can 7815 * easily overflow it, what with all the preceding sample bits. 7816 * Make sure this doesn't happen by using up to U16_MAX bytes 7817 * per sample in total (rounded down to 8 byte boundary). 7818 */ 7819 size = min_t(size_t, U16_MAX - header_size, 7820 event->attr.aux_sample_size); 7821 size = rounddown(size, 8); 7822 size = perf_prepare_sample_aux(event, data, size); 7823 7824 WARN_ON_ONCE(size + header_size > U16_MAX); 7825 data->dyn_size += size + sizeof(u64); /* size above */ 7826 data->sample_flags |= PERF_SAMPLE_AUX; 7827 } 7828 } 7829 7830 void perf_prepare_header(struct perf_event_header *header, 7831 struct perf_sample_data *data, 7832 struct perf_event *event, 7833 struct pt_regs *regs) 7834 { 7835 header->type = PERF_RECORD_SAMPLE; 7836 header->size = perf_sample_data_size(data, event); 7837 header->misc = perf_misc_flags(regs); 7838 7839 /* 7840 * If you're adding more sample types here, you likely need to do 7841 * something about the overflowing header::size, like repurpose the 7842 * lowest 3 bits of size, which should be always zero at the moment. 7843 * This raises a more important question, do we really need 512k sized 7844 * samples and why, so good argumentation is in order for whatever you 7845 * do here next. 7846 */ 7847 WARN_ON_ONCE(header->size & 7); 7848 } 7849 7850 static __always_inline int 7851 __perf_event_output(struct perf_event *event, 7852 struct perf_sample_data *data, 7853 struct pt_regs *regs, 7854 int (*output_begin)(struct perf_output_handle *, 7855 struct perf_sample_data *, 7856 struct perf_event *, 7857 unsigned int)) 7858 { 7859 struct perf_output_handle handle; 7860 struct perf_event_header header; 7861 int err; 7862 7863 /* protect the callchain buffers */ 7864 rcu_read_lock(); 7865 7866 perf_prepare_sample(data, event, regs); 7867 perf_prepare_header(&header, data, event, regs); 7868 7869 err = output_begin(&handle, data, event, header.size); 7870 if (err) 7871 goto exit; 7872 7873 perf_output_sample(&handle, &header, data, event); 7874 7875 perf_output_end(&handle); 7876 7877 exit: 7878 rcu_read_unlock(); 7879 return err; 7880 } 7881 7882 void 7883 perf_event_output_forward(struct perf_event *event, 7884 struct perf_sample_data *data, 7885 struct pt_regs *regs) 7886 { 7887 __perf_event_output(event, data, regs, perf_output_begin_forward); 7888 } 7889 7890 void 7891 perf_event_output_backward(struct perf_event *event, 7892 struct perf_sample_data *data, 7893 struct pt_regs *regs) 7894 { 7895 __perf_event_output(event, data, regs, perf_output_begin_backward); 7896 } 7897 7898 int 7899 perf_event_output(struct perf_event *event, 7900 struct perf_sample_data *data, 7901 struct pt_regs *regs) 7902 { 7903 return __perf_event_output(event, data, regs, perf_output_begin); 7904 } 7905 7906 /* 7907 * read event_id 7908 */ 7909 7910 struct perf_read_event { 7911 struct perf_event_header header; 7912 7913 u32 pid; 7914 u32 tid; 7915 }; 7916 7917 static void 7918 perf_event_read_event(struct perf_event *event, 7919 struct task_struct *task) 7920 { 7921 struct perf_output_handle handle; 7922 struct perf_sample_data sample; 7923 struct perf_read_event read_event = { 7924 .header = { 7925 .type = PERF_RECORD_READ, 7926 .misc = 0, 7927 .size = sizeof(read_event) + event->read_size, 7928 }, 7929 .pid = perf_event_pid(event, task), 7930 .tid = perf_event_tid(event, task), 7931 }; 7932 int ret; 7933 7934 perf_event_header__init_id(&read_event.header, &sample, event); 7935 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7936 if (ret) 7937 return; 7938 7939 perf_output_put(&handle, read_event); 7940 perf_output_read(&handle, event); 7941 perf_event__output_id_sample(event, &handle, &sample); 7942 7943 perf_output_end(&handle); 7944 } 7945 7946 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7947 7948 static void 7949 perf_iterate_ctx(struct perf_event_context *ctx, 7950 perf_iterate_f output, 7951 void *data, bool all) 7952 { 7953 struct perf_event *event; 7954 7955 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7956 if (!all) { 7957 if (event->state < PERF_EVENT_STATE_INACTIVE) 7958 continue; 7959 if (!event_filter_match(event)) 7960 continue; 7961 } 7962 7963 output(event, data); 7964 } 7965 } 7966 7967 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7968 { 7969 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7970 struct perf_event *event; 7971 7972 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7973 /* 7974 * Skip events that are not fully formed yet; ensure that 7975 * if we observe event->ctx, both event and ctx will be 7976 * complete enough. See perf_install_in_context(). 7977 */ 7978 if (!smp_load_acquire(&event->ctx)) 7979 continue; 7980 7981 if (event->state < PERF_EVENT_STATE_INACTIVE) 7982 continue; 7983 if (!event_filter_match(event)) 7984 continue; 7985 output(event, data); 7986 } 7987 } 7988 7989 /* 7990 * Iterate all events that need to receive side-band events. 7991 * 7992 * For new callers; ensure that account_pmu_sb_event() includes 7993 * your event, otherwise it might not get delivered. 7994 */ 7995 static void 7996 perf_iterate_sb(perf_iterate_f output, void *data, 7997 struct perf_event_context *task_ctx) 7998 { 7999 struct perf_event_context *ctx; 8000 8001 rcu_read_lock(); 8002 preempt_disable(); 8003 8004 /* 8005 * If we have task_ctx != NULL we only notify the task context itself. 8006 * The task_ctx is set only for EXIT events before releasing task 8007 * context. 8008 */ 8009 if (task_ctx) { 8010 perf_iterate_ctx(task_ctx, output, data, false); 8011 goto done; 8012 } 8013 8014 perf_iterate_sb_cpu(output, data); 8015 8016 ctx = rcu_dereference(current->perf_event_ctxp); 8017 if (ctx) 8018 perf_iterate_ctx(ctx, output, data, false); 8019 done: 8020 preempt_enable(); 8021 rcu_read_unlock(); 8022 } 8023 8024 /* 8025 * Clear all file-based filters at exec, they'll have to be 8026 * re-instated when/if these objects are mmapped again. 8027 */ 8028 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8029 { 8030 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8031 struct perf_addr_filter *filter; 8032 unsigned int restart = 0, count = 0; 8033 unsigned long flags; 8034 8035 if (!has_addr_filter(event)) 8036 return; 8037 8038 raw_spin_lock_irqsave(&ifh->lock, flags); 8039 list_for_each_entry(filter, &ifh->list, entry) { 8040 if (filter->path.dentry) { 8041 event->addr_filter_ranges[count].start = 0; 8042 event->addr_filter_ranges[count].size = 0; 8043 restart++; 8044 } 8045 8046 count++; 8047 } 8048 8049 if (restart) 8050 event->addr_filters_gen++; 8051 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8052 8053 if (restart) 8054 perf_event_stop(event, 1); 8055 } 8056 8057 void perf_event_exec(void) 8058 { 8059 struct perf_event_context *ctx; 8060 8061 ctx = perf_pin_task_context(current); 8062 if (!ctx) 8063 return; 8064 8065 perf_event_enable_on_exec(ctx); 8066 perf_event_remove_on_exec(ctx); 8067 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8068 8069 perf_unpin_context(ctx); 8070 put_ctx(ctx); 8071 } 8072 8073 struct remote_output { 8074 struct perf_buffer *rb; 8075 int err; 8076 }; 8077 8078 static void __perf_event_output_stop(struct perf_event *event, void *data) 8079 { 8080 struct perf_event *parent = event->parent; 8081 struct remote_output *ro = data; 8082 struct perf_buffer *rb = ro->rb; 8083 struct stop_event_data sd = { 8084 .event = event, 8085 }; 8086 8087 if (!has_aux(event)) 8088 return; 8089 8090 if (!parent) 8091 parent = event; 8092 8093 /* 8094 * In case of inheritance, it will be the parent that links to the 8095 * ring-buffer, but it will be the child that's actually using it. 8096 * 8097 * We are using event::rb to determine if the event should be stopped, 8098 * however this may race with ring_buffer_attach() (through set_output), 8099 * which will make us skip the event that actually needs to be stopped. 8100 * So ring_buffer_attach() has to stop an aux event before re-assigning 8101 * its rb pointer. 8102 */ 8103 if (rcu_dereference(parent->rb) == rb) 8104 ro->err = __perf_event_stop(&sd); 8105 } 8106 8107 static int __perf_pmu_output_stop(void *info) 8108 { 8109 struct perf_event *event = info; 8110 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8111 struct remote_output ro = { 8112 .rb = event->rb, 8113 }; 8114 8115 rcu_read_lock(); 8116 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8117 if (cpuctx->task_ctx) 8118 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8119 &ro, false); 8120 rcu_read_unlock(); 8121 8122 return ro.err; 8123 } 8124 8125 static void perf_pmu_output_stop(struct perf_event *event) 8126 { 8127 struct perf_event *iter; 8128 int err, cpu; 8129 8130 restart: 8131 rcu_read_lock(); 8132 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8133 /* 8134 * For per-CPU events, we need to make sure that neither they 8135 * nor their children are running; for cpu==-1 events it's 8136 * sufficient to stop the event itself if it's active, since 8137 * it can't have children. 8138 */ 8139 cpu = iter->cpu; 8140 if (cpu == -1) 8141 cpu = READ_ONCE(iter->oncpu); 8142 8143 if (cpu == -1) 8144 continue; 8145 8146 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8147 if (err == -EAGAIN) { 8148 rcu_read_unlock(); 8149 goto restart; 8150 } 8151 } 8152 rcu_read_unlock(); 8153 } 8154 8155 /* 8156 * task tracking -- fork/exit 8157 * 8158 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8159 */ 8160 8161 struct perf_task_event { 8162 struct task_struct *task; 8163 struct perf_event_context *task_ctx; 8164 8165 struct { 8166 struct perf_event_header header; 8167 8168 u32 pid; 8169 u32 ppid; 8170 u32 tid; 8171 u32 ptid; 8172 u64 time; 8173 } event_id; 8174 }; 8175 8176 static int perf_event_task_match(struct perf_event *event) 8177 { 8178 return event->attr.comm || event->attr.mmap || 8179 event->attr.mmap2 || event->attr.mmap_data || 8180 event->attr.task; 8181 } 8182 8183 static void perf_event_task_output(struct perf_event *event, 8184 void *data) 8185 { 8186 struct perf_task_event *task_event = data; 8187 struct perf_output_handle handle; 8188 struct perf_sample_data sample; 8189 struct task_struct *task = task_event->task; 8190 int ret, size = task_event->event_id.header.size; 8191 8192 if (!perf_event_task_match(event)) 8193 return; 8194 8195 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8196 8197 ret = perf_output_begin(&handle, &sample, event, 8198 task_event->event_id.header.size); 8199 if (ret) 8200 goto out; 8201 8202 task_event->event_id.pid = perf_event_pid(event, task); 8203 task_event->event_id.tid = perf_event_tid(event, task); 8204 8205 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8206 task_event->event_id.ppid = perf_event_pid(event, 8207 task->real_parent); 8208 task_event->event_id.ptid = perf_event_pid(event, 8209 task->real_parent); 8210 } else { /* PERF_RECORD_FORK */ 8211 task_event->event_id.ppid = perf_event_pid(event, current); 8212 task_event->event_id.ptid = perf_event_tid(event, current); 8213 } 8214 8215 task_event->event_id.time = perf_event_clock(event); 8216 8217 perf_output_put(&handle, task_event->event_id); 8218 8219 perf_event__output_id_sample(event, &handle, &sample); 8220 8221 perf_output_end(&handle); 8222 out: 8223 task_event->event_id.header.size = size; 8224 } 8225 8226 static void perf_event_task(struct task_struct *task, 8227 struct perf_event_context *task_ctx, 8228 int new) 8229 { 8230 struct perf_task_event task_event; 8231 8232 if (!atomic_read(&nr_comm_events) && 8233 !atomic_read(&nr_mmap_events) && 8234 !atomic_read(&nr_task_events)) 8235 return; 8236 8237 task_event = (struct perf_task_event){ 8238 .task = task, 8239 .task_ctx = task_ctx, 8240 .event_id = { 8241 .header = { 8242 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8243 .misc = 0, 8244 .size = sizeof(task_event.event_id), 8245 }, 8246 /* .pid */ 8247 /* .ppid */ 8248 /* .tid */ 8249 /* .ptid */ 8250 /* .time */ 8251 }, 8252 }; 8253 8254 perf_iterate_sb(perf_event_task_output, 8255 &task_event, 8256 task_ctx); 8257 } 8258 8259 void perf_event_fork(struct task_struct *task) 8260 { 8261 perf_event_task(task, NULL, 1); 8262 perf_event_namespaces(task); 8263 } 8264 8265 /* 8266 * comm tracking 8267 */ 8268 8269 struct perf_comm_event { 8270 struct task_struct *task; 8271 char *comm; 8272 int comm_size; 8273 8274 struct { 8275 struct perf_event_header header; 8276 8277 u32 pid; 8278 u32 tid; 8279 } event_id; 8280 }; 8281 8282 static int perf_event_comm_match(struct perf_event *event) 8283 { 8284 return event->attr.comm; 8285 } 8286 8287 static void perf_event_comm_output(struct perf_event *event, 8288 void *data) 8289 { 8290 struct perf_comm_event *comm_event = data; 8291 struct perf_output_handle handle; 8292 struct perf_sample_data sample; 8293 int size = comm_event->event_id.header.size; 8294 int ret; 8295 8296 if (!perf_event_comm_match(event)) 8297 return; 8298 8299 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8300 ret = perf_output_begin(&handle, &sample, event, 8301 comm_event->event_id.header.size); 8302 8303 if (ret) 8304 goto out; 8305 8306 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8307 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8308 8309 perf_output_put(&handle, comm_event->event_id); 8310 __output_copy(&handle, comm_event->comm, 8311 comm_event->comm_size); 8312 8313 perf_event__output_id_sample(event, &handle, &sample); 8314 8315 perf_output_end(&handle); 8316 out: 8317 comm_event->event_id.header.size = size; 8318 } 8319 8320 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8321 { 8322 char comm[TASK_COMM_LEN]; 8323 unsigned int size; 8324 8325 memset(comm, 0, sizeof(comm)); 8326 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8327 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8328 8329 comm_event->comm = comm; 8330 comm_event->comm_size = size; 8331 8332 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8333 8334 perf_iterate_sb(perf_event_comm_output, 8335 comm_event, 8336 NULL); 8337 } 8338 8339 void perf_event_comm(struct task_struct *task, bool exec) 8340 { 8341 struct perf_comm_event comm_event; 8342 8343 if (!atomic_read(&nr_comm_events)) 8344 return; 8345 8346 comm_event = (struct perf_comm_event){ 8347 .task = task, 8348 /* .comm */ 8349 /* .comm_size */ 8350 .event_id = { 8351 .header = { 8352 .type = PERF_RECORD_COMM, 8353 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8354 /* .size */ 8355 }, 8356 /* .pid */ 8357 /* .tid */ 8358 }, 8359 }; 8360 8361 perf_event_comm_event(&comm_event); 8362 } 8363 8364 /* 8365 * namespaces tracking 8366 */ 8367 8368 struct perf_namespaces_event { 8369 struct task_struct *task; 8370 8371 struct { 8372 struct perf_event_header header; 8373 8374 u32 pid; 8375 u32 tid; 8376 u64 nr_namespaces; 8377 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8378 } event_id; 8379 }; 8380 8381 static int perf_event_namespaces_match(struct perf_event *event) 8382 { 8383 return event->attr.namespaces; 8384 } 8385 8386 static void perf_event_namespaces_output(struct perf_event *event, 8387 void *data) 8388 { 8389 struct perf_namespaces_event *namespaces_event = data; 8390 struct perf_output_handle handle; 8391 struct perf_sample_data sample; 8392 u16 header_size = namespaces_event->event_id.header.size; 8393 int ret; 8394 8395 if (!perf_event_namespaces_match(event)) 8396 return; 8397 8398 perf_event_header__init_id(&namespaces_event->event_id.header, 8399 &sample, event); 8400 ret = perf_output_begin(&handle, &sample, event, 8401 namespaces_event->event_id.header.size); 8402 if (ret) 8403 goto out; 8404 8405 namespaces_event->event_id.pid = perf_event_pid(event, 8406 namespaces_event->task); 8407 namespaces_event->event_id.tid = perf_event_tid(event, 8408 namespaces_event->task); 8409 8410 perf_output_put(&handle, namespaces_event->event_id); 8411 8412 perf_event__output_id_sample(event, &handle, &sample); 8413 8414 perf_output_end(&handle); 8415 out: 8416 namespaces_event->event_id.header.size = header_size; 8417 } 8418 8419 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8420 struct task_struct *task, 8421 const struct proc_ns_operations *ns_ops) 8422 { 8423 struct path ns_path; 8424 struct inode *ns_inode; 8425 int error; 8426 8427 error = ns_get_path(&ns_path, task, ns_ops); 8428 if (!error) { 8429 ns_inode = ns_path.dentry->d_inode; 8430 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8431 ns_link_info->ino = ns_inode->i_ino; 8432 path_put(&ns_path); 8433 } 8434 } 8435 8436 void perf_event_namespaces(struct task_struct *task) 8437 { 8438 struct perf_namespaces_event namespaces_event; 8439 struct perf_ns_link_info *ns_link_info; 8440 8441 if (!atomic_read(&nr_namespaces_events)) 8442 return; 8443 8444 namespaces_event = (struct perf_namespaces_event){ 8445 .task = task, 8446 .event_id = { 8447 .header = { 8448 .type = PERF_RECORD_NAMESPACES, 8449 .misc = 0, 8450 .size = sizeof(namespaces_event.event_id), 8451 }, 8452 /* .pid */ 8453 /* .tid */ 8454 .nr_namespaces = NR_NAMESPACES, 8455 /* .link_info[NR_NAMESPACES] */ 8456 }, 8457 }; 8458 8459 ns_link_info = namespaces_event.event_id.link_info; 8460 8461 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8462 task, &mntns_operations); 8463 8464 #ifdef CONFIG_USER_NS 8465 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8466 task, &userns_operations); 8467 #endif 8468 #ifdef CONFIG_NET_NS 8469 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8470 task, &netns_operations); 8471 #endif 8472 #ifdef CONFIG_UTS_NS 8473 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8474 task, &utsns_operations); 8475 #endif 8476 #ifdef CONFIG_IPC_NS 8477 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8478 task, &ipcns_operations); 8479 #endif 8480 #ifdef CONFIG_PID_NS 8481 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8482 task, &pidns_operations); 8483 #endif 8484 #ifdef CONFIG_CGROUPS 8485 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8486 task, &cgroupns_operations); 8487 #endif 8488 8489 perf_iterate_sb(perf_event_namespaces_output, 8490 &namespaces_event, 8491 NULL); 8492 } 8493 8494 /* 8495 * cgroup tracking 8496 */ 8497 #ifdef CONFIG_CGROUP_PERF 8498 8499 struct perf_cgroup_event { 8500 char *path; 8501 int path_size; 8502 struct { 8503 struct perf_event_header header; 8504 u64 id; 8505 char path[]; 8506 } event_id; 8507 }; 8508 8509 static int perf_event_cgroup_match(struct perf_event *event) 8510 { 8511 return event->attr.cgroup; 8512 } 8513 8514 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8515 { 8516 struct perf_cgroup_event *cgroup_event = data; 8517 struct perf_output_handle handle; 8518 struct perf_sample_data sample; 8519 u16 header_size = cgroup_event->event_id.header.size; 8520 int ret; 8521 8522 if (!perf_event_cgroup_match(event)) 8523 return; 8524 8525 perf_event_header__init_id(&cgroup_event->event_id.header, 8526 &sample, event); 8527 ret = perf_output_begin(&handle, &sample, event, 8528 cgroup_event->event_id.header.size); 8529 if (ret) 8530 goto out; 8531 8532 perf_output_put(&handle, cgroup_event->event_id); 8533 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8534 8535 perf_event__output_id_sample(event, &handle, &sample); 8536 8537 perf_output_end(&handle); 8538 out: 8539 cgroup_event->event_id.header.size = header_size; 8540 } 8541 8542 static void perf_event_cgroup(struct cgroup *cgrp) 8543 { 8544 struct perf_cgroup_event cgroup_event; 8545 char path_enomem[16] = "//enomem"; 8546 char *pathname; 8547 size_t size; 8548 8549 if (!atomic_read(&nr_cgroup_events)) 8550 return; 8551 8552 cgroup_event = (struct perf_cgroup_event){ 8553 .event_id = { 8554 .header = { 8555 .type = PERF_RECORD_CGROUP, 8556 .misc = 0, 8557 .size = sizeof(cgroup_event.event_id), 8558 }, 8559 .id = cgroup_id(cgrp), 8560 }, 8561 }; 8562 8563 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8564 if (pathname == NULL) { 8565 cgroup_event.path = path_enomem; 8566 } else { 8567 /* just to be sure to have enough space for alignment */ 8568 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8569 cgroup_event.path = pathname; 8570 } 8571 8572 /* 8573 * Since our buffer works in 8 byte units we need to align our string 8574 * size to a multiple of 8. However, we must guarantee the tail end is 8575 * zero'd out to avoid leaking random bits to userspace. 8576 */ 8577 size = strlen(cgroup_event.path) + 1; 8578 while (!IS_ALIGNED(size, sizeof(u64))) 8579 cgroup_event.path[size++] = '\0'; 8580 8581 cgroup_event.event_id.header.size += size; 8582 cgroup_event.path_size = size; 8583 8584 perf_iterate_sb(perf_event_cgroup_output, 8585 &cgroup_event, 8586 NULL); 8587 8588 kfree(pathname); 8589 } 8590 8591 #endif 8592 8593 /* 8594 * mmap tracking 8595 */ 8596 8597 struct perf_mmap_event { 8598 struct vm_area_struct *vma; 8599 8600 const char *file_name; 8601 int file_size; 8602 int maj, min; 8603 u64 ino; 8604 u64 ino_generation; 8605 u32 prot, flags; 8606 u8 build_id[BUILD_ID_SIZE_MAX]; 8607 u32 build_id_size; 8608 8609 struct { 8610 struct perf_event_header header; 8611 8612 u32 pid; 8613 u32 tid; 8614 u64 start; 8615 u64 len; 8616 u64 pgoff; 8617 } event_id; 8618 }; 8619 8620 static int perf_event_mmap_match(struct perf_event *event, 8621 void *data) 8622 { 8623 struct perf_mmap_event *mmap_event = data; 8624 struct vm_area_struct *vma = mmap_event->vma; 8625 int executable = vma->vm_flags & VM_EXEC; 8626 8627 return (!executable && event->attr.mmap_data) || 8628 (executable && (event->attr.mmap || event->attr.mmap2)); 8629 } 8630 8631 static void perf_event_mmap_output(struct perf_event *event, 8632 void *data) 8633 { 8634 struct perf_mmap_event *mmap_event = data; 8635 struct perf_output_handle handle; 8636 struct perf_sample_data sample; 8637 int size = mmap_event->event_id.header.size; 8638 u32 type = mmap_event->event_id.header.type; 8639 bool use_build_id; 8640 int ret; 8641 8642 if (!perf_event_mmap_match(event, data)) 8643 return; 8644 8645 if (event->attr.mmap2) { 8646 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8647 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8648 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8649 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8650 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8651 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8652 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8653 } 8654 8655 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8656 ret = perf_output_begin(&handle, &sample, event, 8657 mmap_event->event_id.header.size); 8658 if (ret) 8659 goto out; 8660 8661 mmap_event->event_id.pid = perf_event_pid(event, current); 8662 mmap_event->event_id.tid = perf_event_tid(event, current); 8663 8664 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8665 8666 if (event->attr.mmap2 && use_build_id) 8667 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8668 8669 perf_output_put(&handle, mmap_event->event_id); 8670 8671 if (event->attr.mmap2) { 8672 if (use_build_id) { 8673 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8674 8675 __output_copy(&handle, size, 4); 8676 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8677 } else { 8678 perf_output_put(&handle, mmap_event->maj); 8679 perf_output_put(&handle, mmap_event->min); 8680 perf_output_put(&handle, mmap_event->ino); 8681 perf_output_put(&handle, mmap_event->ino_generation); 8682 } 8683 perf_output_put(&handle, mmap_event->prot); 8684 perf_output_put(&handle, mmap_event->flags); 8685 } 8686 8687 __output_copy(&handle, mmap_event->file_name, 8688 mmap_event->file_size); 8689 8690 perf_event__output_id_sample(event, &handle, &sample); 8691 8692 perf_output_end(&handle); 8693 out: 8694 mmap_event->event_id.header.size = size; 8695 mmap_event->event_id.header.type = type; 8696 } 8697 8698 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8699 { 8700 struct vm_area_struct *vma = mmap_event->vma; 8701 struct file *file = vma->vm_file; 8702 int maj = 0, min = 0; 8703 u64 ino = 0, gen = 0; 8704 u32 prot = 0, flags = 0; 8705 unsigned int size; 8706 char tmp[16]; 8707 char *buf = NULL; 8708 char *name = NULL; 8709 8710 if (vma->vm_flags & VM_READ) 8711 prot |= PROT_READ; 8712 if (vma->vm_flags & VM_WRITE) 8713 prot |= PROT_WRITE; 8714 if (vma->vm_flags & VM_EXEC) 8715 prot |= PROT_EXEC; 8716 8717 if (vma->vm_flags & VM_MAYSHARE) 8718 flags = MAP_SHARED; 8719 else 8720 flags = MAP_PRIVATE; 8721 8722 if (vma->vm_flags & VM_LOCKED) 8723 flags |= MAP_LOCKED; 8724 if (is_vm_hugetlb_page(vma)) 8725 flags |= MAP_HUGETLB; 8726 8727 if (file) { 8728 struct inode *inode; 8729 dev_t dev; 8730 8731 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8732 if (!buf) { 8733 name = "//enomem"; 8734 goto cpy_name; 8735 } 8736 /* 8737 * d_path() works from the end of the rb backwards, so we 8738 * need to add enough zero bytes after the string to handle 8739 * the 64bit alignment we do later. 8740 */ 8741 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8742 if (IS_ERR(name)) { 8743 name = "//toolong"; 8744 goto cpy_name; 8745 } 8746 inode = file_inode(vma->vm_file); 8747 dev = inode->i_sb->s_dev; 8748 ino = inode->i_ino; 8749 gen = inode->i_generation; 8750 maj = MAJOR(dev); 8751 min = MINOR(dev); 8752 8753 goto got_name; 8754 } else { 8755 if (vma->vm_ops && vma->vm_ops->name) 8756 name = (char *) vma->vm_ops->name(vma); 8757 if (!name) 8758 name = (char *)arch_vma_name(vma); 8759 if (!name) { 8760 if (vma_is_initial_heap(vma)) 8761 name = "[heap]"; 8762 else if (vma_is_initial_stack(vma)) 8763 name = "[stack]"; 8764 else 8765 name = "//anon"; 8766 } 8767 } 8768 8769 cpy_name: 8770 strscpy(tmp, name, sizeof(tmp)); 8771 name = tmp; 8772 got_name: 8773 /* 8774 * Since our buffer works in 8 byte units we need to align our string 8775 * size to a multiple of 8. However, we must guarantee the tail end is 8776 * zero'd out to avoid leaking random bits to userspace. 8777 */ 8778 size = strlen(name)+1; 8779 while (!IS_ALIGNED(size, sizeof(u64))) 8780 name[size++] = '\0'; 8781 8782 mmap_event->file_name = name; 8783 mmap_event->file_size = size; 8784 mmap_event->maj = maj; 8785 mmap_event->min = min; 8786 mmap_event->ino = ino; 8787 mmap_event->ino_generation = gen; 8788 mmap_event->prot = prot; 8789 mmap_event->flags = flags; 8790 8791 if (!(vma->vm_flags & VM_EXEC)) 8792 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8793 8794 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8795 8796 if (atomic_read(&nr_build_id_events)) 8797 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8798 8799 perf_iterate_sb(perf_event_mmap_output, 8800 mmap_event, 8801 NULL); 8802 8803 kfree(buf); 8804 } 8805 8806 /* 8807 * Check whether inode and address range match filter criteria. 8808 */ 8809 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8810 struct file *file, unsigned long offset, 8811 unsigned long size) 8812 { 8813 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8814 if (!filter->path.dentry) 8815 return false; 8816 8817 if (d_inode(filter->path.dentry) != file_inode(file)) 8818 return false; 8819 8820 if (filter->offset > offset + size) 8821 return false; 8822 8823 if (filter->offset + filter->size < offset) 8824 return false; 8825 8826 return true; 8827 } 8828 8829 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8830 struct vm_area_struct *vma, 8831 struct perf_addr_filter_range *fr) 8832 { 8833 unsigned long vma_size = vma->vm_end - vma->vm_start; 8834 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8835 struct file *file = vma->vm_file; 8836 8837 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8838 return false; 8839 8840 if (filter->offset < off) { 8841 fr->start = vma->vm_start; 8842 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8843 } else { 8844 fr->start = vma->vm_start + filter->offset - off; 8845 fr->size = min(vma->vm_end - fr->start, filter->size); 8846 } 8847 8848 return true; 8849 } 8850 8851 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8852 { 8853 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8854 struct vm_area_struct *vma = data; 8855 struct perf_addr_filter *filter; 8856 unsigned int restart = 0, count = 0; 8857 unsigned long flags; 8858 8859 if (!has_addr_filter(event)) 8860 return; 8861 8862 if (!vma->vm_file) 8863 return; 8864 8865 raw_spin_lock_irqsave(&ifh->lock, flags); 8866 list_for_each_entry(filter, &ifh->list, entry) { 8867 if (perf_addr_filter_vma_adjust(filter, vma, 8868 &event->addr_filter_ranges[count])) 8869 restart++; 8870 8871 count++; 8872 } 8873 8874 if (restart) 8875 event->addr_filters_gen++; 8876 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8877 8878 if (restart) 8879 perf_event_stop(event, 1); 8880 } 8881 8882 /* 8883 * Adjust all task's events' filters to the new vma 8884 */ 8885 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8886 { 8887 struct perf_event_context *ctx; 8888 8889 /* 8890 * Data tracing isn't supported yet and as such there is no need 8891 * to keep track of anything that isn't related to executable code: 8892 */ 8893 if (!(vma->vm_flags & VM_EXEC)) 8894 return; 8895 8896 rcu_read_lock(); 8897 ctx = rcu_dereference(current->perf_event_ctxp); 8898 if (ctx) 8899 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8900 rcu_read_unlock(); 8901 } 8902 8903 void perf_event_mmap(struct vm_area_struct *vma) 8904 { 8905 struct perf_mmap_event mmap_event; 8906 8907 if (!atomic_read(&nr_mmap_events)) 8908 return; 8909 8910 mmap_event = (struct perf_mmap_event){ 8911 .vma = vma, 8912 /* .file_name */ 8913 /* .file_size */ 8914 .event_id = { 8915 .header = { 8916 .type = PERF_RECORD_MMAP, 8917 .misc = PERF_RECORD_MISC_USER, 8918 /* .size */ 8919 }, 8920 /* .pid */ 8921 /* .tid */ 8922 .start = vma->vm_start, 8923 .len = vma->vm_end - vma->vm_start, 8924 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8925 }, 8926 /* .maj (attr_mmap2 only) */ 8927 /* .min (attr_mmap2 only) */ 8928 /* .ino (attr_mmap2 only) */ 8929 /* .ino_generation (attr_mmap2 only) */ 8930 /* .prot (attr_mmap2 only) */ 8931 /* .flags (attr_mmap2 only) */ 8932 }; 8933 8934 perf_addr_filters_adjust(vma); 8935 perf_event_mmap_event(&mmap_event); 8936 } 8937 8938 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8939 unsigned long size, u64 flags) 8940 { 8941 struct perf_output_handle handle; 8942 struct perf_sample_data sample; 8943 struct perf_aux_event { 8944 struct perf_event_header header; 8945 u64 offset; 8946 u64 size; 8947 u64 flags; 8948 } rec = { 8949 .header = { 8950 .type = PERF_RECORD_AUX, 8951 .misc = 0, 8952 .size = sizeof(rec), 8953 }, 8954 .offset = head, 8955 .size = size, 8956 .flags = flags, 8957 }; 8958 int ret; 8959 8960 perf_event_header__init_id(&rec.header, &sample, event); 8961 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8962 8963 if (ret) 8964 return; 8965 8966 perf_output_put(&handle, rec); 8967 perf_event__output_id_sample(event, &handle, &sample); 8968 8969 perf_output_end(&handle); 8970 } 8971 8972 /* 8973 * Lost/dropped samples logging 8974 */ 8975 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8976 { 8977 struct perf_output_handle handle; 8978 struct perf_sample_data sample; 8979 int ret; 8980 8981 struct { 8982 struct perf_event_header header; 8983 u64 lost; 8984 } lost_samples_event = { 8985 .header = { 8986 .type = PERF_RECORD_LOST_SAMPLES, 8987 .misc = 0, 8988 .size = sizeof(lost_samples_event), 8989 }, 8990 .lost = lost, 8991 }; 8992 8993 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8994 8995 ret = perf_output_begin(&handle, &sample, event, 8996 lost_samples_event.header.size); 8997 if (ret) 8998 return; 8999 9000 perf_output_put(&handle, lost_samples_event); 9001 perf_event__output_id_sample(event, &handle, &sample); 9002 perf_output_end(&handle); 9003 } 9004 9005 /* 9006 * context_switch tracking 9007 */ 9008 9009 struct perf_switch_event { 9010 struct task_struct *task; 9011 struct task_struct *next_prev; 9012 9013 struct { 9014 struct perf_event_header header; 9015 u32 next_prev_pid; 9016 u32 next_prev_tid; 9017 } event_id; 9018 }; 9019 9020 static int perf_event_switch_match(struct perf_event *event) 9021 { 9022 return event->attr.context_switch; 9023 } 9024 9025 static void perf_event_switch_output(struct perf_event *event, void *data) 9026 { 9027 struct perf_switch_event *se = data; 9028 struct perf_output_handle handle; 9029 struct perf_sample_data sample; 9030 int ret; 9031 9032 if (!perf_event_switch_match(event)) 9033 return; 9034 9035 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9036 if (event->ctx->task) { 9037 se->event_id.header.type = PERF_RECORD_SWITCH; 9038 se->event_id.header.size = sizeof(se->event_id.header); 9039 } else { 9040 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9041 se->event_id.header.size = sizeof(se->event_id); 9042 se->event_id.next_prev_pid = 9043 perf_event_pid(event, se->next_prev); 9044 se->event_id.next_prev_tid = 9045 perf_event_tid(event, se->next_prev); 9046 } 9047 9048 perf_event_header__init_id(&se->event_id.header, &sample, event); 9049 9050 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9051 if (ret) 9052 return; 9053 9054 if (event->ctx->task) 9055 perf_output_put(&handle, se->event_id.header); 9056 else 9057 perf_output_put(&handle, se->event_id); 9058 9059 perf_event__output_id_sample(event, &handle, &sample); 9060 9061 perf_output_end(&handle); 9062 } 9063 9064 static void perf_event_switch(struct task_struct *task, 9065 struct task_struct *next_prev, bool sched_in) 9066 { 9067 struct perf_switch_event switch_event; 9068 9069 /* N.B. caller checks nr_switch_events != 0 */ 9070 9071 switch_event = (struct perf_switch_event){ 9072 .task = task, 9073 .next_prev = next_prev, 9074 .event_id = { 9075 .header = { 9076 /* .type */ 9077 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9078 /* .size */ 9079 }, 9080 /* .next_prev_pid */ 9081 /* .next_prev_tid */ 9082 }, 9083 }; 9084 9085 if (!sched_in && task->on_rq) { 9086 switch_event.event_id.header.misc |= 9087 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9088 } 9089 9090 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9091 } 9092 9093 /* 9094 * IRQ throttle logging 9095 */ 9096 9097 static void perf_log_throttle(struct perf_event *event, int enable) 9098 { 9099 struct perf_output_handle handle; 9100 struct perf_sample_data sample; 9101 int ret; 9102 9103 struct { 9104 struct perf_event_header header; 9105 u64 time; 9106 u64 id; 9107 u64 stream_id; 9108 } throttle_event = { 9109 .header = { 9110 .type = PERF_RECORD_THROTTLE, 9111 .misc = 0, 9112 .size = sizeof(throttle_event), 9113 }, 9114 .time = perf_event_clock(event), 9115 .id = primary_event_id(event), 9116 .stream_id = event->id, 9117 }; 9118 9119 if (enable) 9120 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9121 9122 perf_event_header__init_id(&throttle_event.header, &sample, event); 9123 9124 ret = perf_output_begin(&handle, &sample, event, 9125 throttle_event.header.size); 9126 if (ret) 9127 return; 9128 9129 perf_output_put(&handle, throttle_event); 9130 perf_event__output_id_sample(event, &handle, &sample); 9131 perf_output_end(&handle); 9132 } 9133 9134 /* 9135 * ksymbol register/unregister tracking 9136 */ 9137 9138 struct perf_ksymbol_event { 9139 const char *name; 9140 int name_len; 9141 struct { 9142 struct perf_event_header header; 9143 u64 addr; 9144 u32 len; 9145 u16 ksym_type; 9146 u16 flags; 9147 } event_id; 9148 }; 9149 9150 static int perf_event_ksymbol_match(struct perf_event *event) 9151 { 9152 return event->attr.ksymbol; 9153 } 9154 9155 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9156 { 9157 struct perf_ksymbol_event *ksymbol_event = data; 9158 struct perf_output_handle handle; 9159 struct perf_sample_data sample; 9160 int ret; 9161 9162 if (!perf_event_ksymbol_match(event)) 9163 return; 9164 9165 perf_event_header__init_id(&ksymbol_event->event_id.header, 9166 &sample, event); 9167 ret = perf_output_begin(&handle, &sample, event, 9168 ksymbol_event->event_id.header.size); 9169 if (ret) 9170 return; 9171 9172 perf_output_put(&handle, ksymbol_event->event_id); 9173 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9174 perf_event__output_id_sample(event, &handle, &sample); 9175 9176 perf_output_end(&handle); 9177 } 9178 9179 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9180 const char *sym) 9181 { 9182 struct perf_ksymbol_event ksymbol_event; 9183 char name[KSYM_NAME_LEN]; 9184 u16 flags = 0; 9185 int name_len; 9186 9187 if (!atomic_read(&nr_ksymbol_events)) 9188 return; 9189 9190 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9191 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9192 goto err; 9193 9194 strscpy(name, sym, KSYM_NAME_LEN); 9195 name_len = strlen(name) + 1; 9196 while (!IS_ALIGNED(name_len, sizeof(u64))) 9197 name[name_len++] = '\0'; 9198 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9199 9200 if (unregister) 9201 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9202 9203 ksymbol_event = (struct perf_ksymbol_event){ 9204 .name = name, 9205 .name_len = name_len, 9206 .event_id = { 9207 .header = { 9208 .type = PERF_RECORD_KSYMBOL, 9209 .size = sizeof(ksymbol_event.event_id) + 9210 name_len, 9211 }, 9212 .addr = addr, 9213 .len = len, 9214 .ksym_type = ksym_type, 9215 .flags = flags, 9216 }, 9217 }; 9218 9219 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9220 return; 9221 err: 9222 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9223 } 9224 9225 /* 9226 * bpf program load/unload tracking 9227 */ 9228 9229 struct perf_bpf_event { 9230 struct bpf_prog *prog; 9231 struct { 9232 struct perf_event_header header; 9233 u16 type; 9234 u16 flags; 9235 u32 id; 9236 u8 tag[BPF_TAG_SIZE]; 9237 } event_id; 9238 }; 9239 9240 static int perf_event_bpf_match(struct perf_event *event) 9241 { 9242 return event->attr.bpf_event; 9243 } 9244 9245 static void perf_event_bpf_output(struct perf_event *event, void *data) 9246 { 9247 struct perf_bpf_event *bpf_event = data; 9248 struct perf_output_handle handle; 9249 struct perf_sample_data sample; 9250 int ret; 9251 9252 if (!perf_event_bpf_match(event)) 9253 return; 9254 9255 perf_event_header__init_id(&bpf_event->event_id.header, 9256 &sample, event); 9257 ret = perf_output_begin(&handle, &sample, event, 9258 bpf_event->event_id.header.size); 9259 if (ret) 9260 return; 9261 9262 perf_output_put(&handle, bpf_event->event_id); 9263 perf_event__output_id_sample(event, &handle, &sample); 9264 9265 perf_output_end(&handle); 9266 } 9267 9268 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9269 enum perf_bpf_event_type type) 9270 { 9271 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9272 int i; 9273 9274 if (prog->aux->func_cnt == 0) { 9275 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9276 (u64)(unsigned long)prog->bpf_func, 9277 prog->jited_len, unregister, 9278 prog->aux->ksym.name); 9279 } else { 9280 for (i = 0; i < prog->aux->func_cnt; i++) { 9281 struct bpf_prog *subprog = prog->aux->func[i]; 9282 9283 perf_event_ksymbol( 9284 PERF_RECORD_KSYMBOL_TYPE_BPF, 9285 (u64)(unsigned long)subprog->bpf_func, 9286 subprog->jited_len, unregister, 9287 subprog->aux->ksym.name); 9288 } 9289 } 9290 } 9291 9292 void perf_event_bpf_event(struct bpf_prog *prog, 9293 enum perf_bpf_event_type type, 9294 u16 flags) 9295 { 9296 struct perf_bpf_event bpf_event; 9297 9298 if (type <= PERF_BPF_EVENT_UNKNOWN || 9299 type >= PERF_BPF_EVENT_MAX) 9300 return; 9301 9302 switch (type) { 9303 case PERF_BPF_EVENT_PROG_LOAD: 9304 case PERF_BPF_EVENT_PROG_UNLOAD: 9305 if (atomic_read(&nr_ksymbol_events)) 9306 perf_event_bpf_emit_ksymbols(prog, type); 9307 break; 9308 default: 9309 break; 9310 } 9311 9312 if (!atomic_read(&nr_bpf_events)) 9313 return; 9314 9315 bpf_event = (struct perf_bpf_event){ 9316 .prog = prog, 9317 .event_id = { 9318 .header = { 9319 .type = PERF_RECORD_BPF_EVENT, 9320 .size = sizeof(bpf_event.event_id), 9321 }, 9322 .type = type, 9323 .flags = flags, 9324 .id = prog->aux->id, 9325 }, 9326 }; 9327 9328 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9329 9330 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9331 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9332 } 9333 9334 struct perf_text_poke_event { 9335 const void *old_bytes; 9336 const void *new_bytes; 9337 size_t pad; 9338 u16 old_len; 9339 u16 new_len; 9340 9341 struct { 9342 struct perf_event_header header; 9343 9344 u64 addr; 9345 } event_id; 9346 }; 9347 9348 static int perf_event_text_poke_match(struct perf_event *event) 9349 { 9350 return event->attr.text_poke; 9351 } 9352 9353 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9354 { 9355 struct perf_text_poke_event *text_poke_event = data; 9356 struct perf_output_handle handle; 9357 struct perf_sample_data sample; 9358 u64 padding = 0; 9359 int ret; 9360 9361 if (!perf_event_text_poke_match(event)) 9362 return; 9363 9364 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9365 9366 ret = perf_output_begin(&handle, &sample, event, 9367 text_poke_event->event_id.header.size); 9368 if (ret) 9369 return; 9370 9371 perf_output_put(&handle, text_poke_event->event_id); 9372 perf_output_put(&handle, text_poke_event->old_len); 9373 perf_output_put(&handle, text_poke_event->new_len); 9374 9375 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9376 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9377 9378 if (text_poke_event->pad) 9379 __output_copy(&handle, &padding, text_poke_event->pad); 9380 9381 perf_event__output_id_sample(event, &handle, &sample); 9382 9383 perf_output_end(&handle); 9384 } 9385 9386 void perf_event_text_poke(const void *addr, const void *old_bytes, 9387 size_t old_len, const void *new_bytes, size_t new_len) 9388 { 9389 struct perf_text_poke_event text_poke_event; 9390 size_t tot, pad; 9391 9392 if (!atomic_read(&nr_text_poke_events)) 9393 return; 9394 9395 tot = sizeof(text_poke_event.old_len) + old_len; 9396 tot += sizeof(text_poke_event.new_len) + new_len; 9397 pad = ALIGN(tot, sizeof(u64)) - tot; 9398 9399 text_poke_event = (struct perf_text_poke_event){ 9400 .old_bytes = old_bytes, 9401 .new_bytes = new_bytes, 9402 .pad = pad, 9403 .old_len = old_len, 9404 .new_len = new_len, 9405 .event_id = { 9406 .header = { 9407 .type = PERF_RECORD_TEXT_POKE, 9408 .misc = PERF_RECORD_MISC_KERNEL, 9409 .size = sizeof(text_poke_event.event_id) + tot + pad, 9410 }, 9411 .addr = (unsigned long)addr, 9412 }, 9413 }; 9414 9415 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9416 } 9417 9418 void perf_event_itrace_started(struct perf_event *event) 9419 { 9420 event->attach_state |= PERF_ATTACH_ITRACE; 9421 } 9422 9423 static void perf_log_itrace_start(struct perf_event *event) 9424 { 9425 struct perf_output_handle handle; 9426 struct perf_sample_data sample; 9427 struct perf_aux_event { 9428 struct perf_event_header header; 9429 u32 pid; 9430 u32 tid; 9431 } rec; 9432 int ret; 9433 9434 if (event->parent) 9435 event = event->parent; 9436 9437 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9438 event->attach_state & PERF_ATTACH_ITRACE) 9439 return; 9440 9441 rec.header.type = PERF_RECORD_ITRACE_START; 9442 rec.header.misc = 0; 9443 rec.header.size = sizeof(rec); 9444 rec.pid = perf_event_pid(event, current); 9445 rec.tid = perf_event_tid(event, current); 9446 9447 perf_event_header__init_id(&rec.header, &sample, event); 9448 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9449 9450 if (ret) 9451 return; 9452 9453 perf_output_put(&handle, rec); 9454 perf_event__output_id_sample(event, &handle, &sample); 9455 9456 perf_output_end(&handle); 9457 } 9458 9459 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9460 { 9461 struct perf_output_handle handle; 9462 struct perf_sample_data sample; 9463 struct perf_aux_event { 9464 struct perf_event_header header; 9465 u64 hw_id; 9466 } rec; 9467 int ret; 9468 9469 if (event->parent) 9470 event = event->parent; 9471 9472 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9473 rec.header.misc = 0; 9474 rec.header.size = sizeof(rec); 9475 rec.hw_id = hw_id; 9476 9477 perf_event_header__init_id(&rec.header, &sample, event); 9478 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9479 9480 if (ret) 9481 return; 9482 9483 perf_output_put(&handle, rec); 9484 perf_event__output_id_sample(event, &handle, &sample); 9485 9486 perf_output_end(&handle); 9487 } 9488 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9489 9490 static int 9491 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9492 { 9493 struct hw_perf_event *hwc = &event->hw; 9494 int ret = 0; 9495 u64 seq; 9496 9497 seq = __this_cpu_read(perf_throttled_seq); 9498 if (seq != hwc->interrupts_seq) { 9499 hwc->interrupts_seq = seq; 9500 hwc->interrupts = 1; 9501 } else { 9502 hwc->interrupts++; 9503 if (unlikely(throttle && 9504 hwc->interrupts > max_samples_per_tick)) { 9505 __this_cpu_inc(perf_throttled_count); 9506 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9507 hwc->interrupts = MAX_INTERRUPTS; 9508 perf_log_throttle(event, 0); 9509 ret = 1; 9510 } 9511 } 9512 9513 if (event->attr.freq) { 9514 u64 now = perf_clock(); 9515 s64 delta = now - hwc->freq_time_stamp; 9516 9517 hwc->freq_time_stamp = now; 9518 9519 if (delta > 0 && delta < 2*TICK_NSEC) 9520 perf_adjust_period(event, delta, hwc->last_period, true); 9521 } 9522 9523 return ret; 9524 } 9525 9526 int perf_event_account_interrupt(struct perf_event *event) 9527 { 9528 return __perf_event_account_interrupt(event, 1); 9529 } 9530 9531 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9532 { 9533 /* 9534 * Due to interrupt latency (AKA "skid"), we may enter the 9535 * kernel before taking an overflow, even if the PMU is only 9536 * counting user events. 9537 */ 9538 if (event->attr.exclude_kernel && !user_mode(regs)) 9539 return false; 9540 9541 return true; 9542 } 9543 9544 /* 9545 * Generic event overflow handling, sampling. 9546 */ 9547 9548 static int __perf_event_overflow(struct perf_event *event, 9549 int throttle, struct perf_sample_data *data, 9550 struct pt_regs *regs) 9551 { 9552 int events = atomic_read(&event->event_limit); 9553 int ret = 0; 9554 9555 /* 9556 * Non-sampling counters might still use the PMI to fold short 9557 * hardware counters, ignore those. 9558 */ 9559 if (unlikely(!is_sampling_event(event))) 9560 return 0; 9561 9562 ret = __perf_event_account_interrupt(event, throttle); 9563 9564 /* 9565 * XXX event_limit might not quite work as expected on inherited 9566 * events 9567 */ 9568 9569 event->pending_kill = POLL_IN; 9570 if (events && atomic_dec_and_test(&event->event_limit)) { 9571 ret = 1; 9572 event->pending_kill = POLL_HUP; 9573 perf_event_disable_inatomic(event); 9574 } 9575 9576 if (event->attr.sigtrap) { 9577 /* 9578 * The desired behaviour of sigtrap vs invalid samples is a bit 9579 * tricky; on the one hand, one should not loose the SIGTRAP if 9580 * it is the first event, on the other hand, we should also not 9581 * trigger the WARN or override the data address. 9582 */ 9583 bool valid_sample = sample_is_allowed(event, regs); 9584 unsigned int pending_id = 1; 9585 9586 if (regs) 9587 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9588 if (!event->pending_sigtrap) { 9589 event->pending_sigtrap = pending_id; 9590 local_inc(&event->ctx->nr_pending); 9591 } else if (event->attr.exclude_kernel && valid_sample) { 9592 /* 9593 * Should not be able to return to user space without 9594 * consuming pending_sigtrap; with exceptions: 9595 * 9596 * 1. Where !exclude_kernel, events can overflow again 9597 * in the kernel without returning to user space. 9598 * 9599 * 2. Events that can overflow again before the IRQ- 9600 * work without user space progress (e.g. hrtimer). 9601 * To approximate progress (with false negatives), 9602 * check 32-bit hash of the current IP. 9603 */ 9604 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9605 } 9606 9607 event->pending_addr = 0; 9608 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9609 event->pending_addr = data->addr; 9610 irq_work_queue(&event->pending_irq); 9611 } 9612 9613 READ_ONCE(event->overflow_handler)(event, data, regs); 9614 9615 if (*perf_event_fasync(event) && event->pending_kill) { 9616 event->pending_wakeup = 1; 9617 irq_work_queue(&event->pending_irq); 9618 } 9619 9620 return ret; 9621 } 9622 9623 int perf_event_overflow(struct perf_event *event, 9624 struct perf_sample_data *data, 9625 struct pt_regs *regs) 9626 { 9627 return __perf_event_overflow(event, 1, data, regs); 9628 } 9629 9630 /* 9631 * Generic software event infrastructure 9632 */ 9633 9634 struct swevent_htable { 9635 struct swevent_hlist *swevent_hlist; 9636 struct mutex hlist_mutex; 9637 int hlist_refcount; 9638 9639 /* Recursion avoidance in each contexts */ 9640 int recursion[PERF_NR_CONTEXTS]; 9641 }; 9642 9643 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9644 9645 /* 9646 * We directly increment event->count and keep a second value in 9647 * event->hw.period_left to count intervals. This period event 9648 * is kept in the range [-sample_period, 0] so that we can use the 9649 * sign as trigger. 9650 */ 9651 9652 u64 perf_swevent_set_period(struct perf_event *event) 9653 { 9654 struct hw_perf_event *hwc = &event->hw; 9655 u64 period = hwc->last_period; 9656 u64 nr, offset; 9657 s64 old, val; 9658 9659 hwc->last_period = hwc->sample_period; 9660 9661 old = local64_read(&hwc->period_left); 9662 do { 9663 val = old; 9664 if (val < 0) 9665 return 0; 9666 9667 nr = div64_u64(period + val, period); 9668 offset = nr * period; 9669 val -= offset; 9670 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9671 9672 return nr; 9673 } 9674 9675 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9676 struct perf_sample_data *data, 9677 struct pt_regs *regs) 9678 { 9679 struct hw_perf_event *hwc = &event->hw; 9680 int throttle = 0; 9681 9682 if (!overflow) 9683 overflow = perf_swevent_set_period(event); 9684 9685 if (hwc->interrupts == MAX_INTERRUPTS) 9686 return; 9687 9688 for (; overflow; overflow--) { 9689 if (__perf_event_overflow(event, throttle, 9690 data, regs)) { 9691 /* 9692 * We inhibit the overflow from happening when 9693 * hwc->interrupts == MAX_INTERRUPTS. 9694 */ 9695 break; 9696 } 9697 throttle = 1; 9698 } 9699 } 9700 9701 static void perf_swevent_event(struct perf_event *event, u64 nr, 9702 struct perf_sample_data *data, 9703 struct pt_regs *regs) 9704 { 9705 struct hw_perf_event *hwc = &event->hw; 9706 9707 local64_add(nr, &event->count); 9708 9709 if (!regs) 9710 return; 9711 9712 if (!is_sampling_event(event)) 9713 return; 9714 9715 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9716 data->period = nr; 9717 return perf_swevent_overflow(event, 1, data, regs); 9718 } else 9719 data->period = event->hw.last_period; 9720 9721 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9722 return perf_swevent_overflow(event, 1, data, regs); 9723 9724 if (local64_add_negative(nr, &hwc->period_left)) 9725 return; 9726 9727 perf_swevent_overflow(event, 0, data, regs); 9728 } 9729 9730 static int perf_exclude_event(struct perf_event *event, 9731 struct pt_regs *regs) 9732 { 9733 if (event->hw.state & PERF_HES_STOPPED) 9734 return 1; 9735 9736 if (regs) { 9737 if (event->attr.exclude_user && user_mode(regs)) 9738 return 1; 9739 9740 if (event->attr.exclude_kernel && !user_mode(regs)) 9741 return 1; 9742 } 9743 9744 return 0; 9745 } 9746 9747 static int perf_swevent_match(struct perf_event *event, 9748 enum perf_type_id type, 9749 u32 event_id, 9750 struct perf_sample_data *data, 9751 struct pt_regs *regs) 9752 { 9753 if (event->attr.type != type) 9754 return 0; 9755 9756 if (event->attr.config != event_id) 9757 return 0; 9758 9759 if (perf_exclude_event(event, regs)) 9760 return 0; 9761 9762 return 1; 9763 } 9764 9765 static inline u64 swevent_hash(u64 type, u32 event_id) 9766 { 9767 u64 val = event_id | (type << 32); 9768 9769 return hash_64(val, SWEVENT_HLIST_BITS); 9770 } 9771 9772 static inline struct hlist_head * 9773 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9774 { 9775 u64 hash = swevent_hash(type, event_id); 9776 9777 return &hlist->heads[hash]; 9778 } 9779 9780 /* For the read side: events when they trigger */ 9781 static inline struct hlist_head * 9782 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9783 { 9784 struct swevent_hlist *hlist; 9785 9786 hlist = rcu_dereference(swhash->swevent_hlist); 9787 if (!hlist) 9788 return NULL; 9789 9790 return __find_swevent_head(hlist, type, event_id); 9791 } 9792 9793 /* For the event head insertion and removal in the hlist */ 9794 static inline struct hlist_head * 9795 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9796 { 9797 struct swevent_hlist *hlist; 9798 u32 event_id = event->attr.config; 9799 u64 type = event->attr.type; 9800 9801 /* 9802 * Event scheduling is always serialized against hlist allocation 9803 * and release. Which makes the protected version suitable here. 9804 * The context lock guarantees that. 9805 */ 9806 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9807 lockdep_is_held(&event->ctx->lock)); 9808 if (!hlist) 9809 return NULL; 9810 9811 return __find_swevent_head(hlist, type, event_id); 9812 } 9813 9814 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9815 u64 nr, 9816 struct perf_sample_data *data, 9817 struct pt_regs *regs) 9818 { 9819 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9820 struct perf_event *event; 9821 struct hlist_head *head; 9822 9823 rcu_read_lock(); 9824 head = find_swevent_head_rcu(swhash, type, event_id); 9825 if (!head) 9826 goto end; 9827 9828 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9829 if (perf_swevent_match(event, type, event_id, data, regs)) 9830 perf_swevent_event(event, nr, data, regs); 9831 } 9832 end: 9833 rcu_read_unlock(); 9834 } 9835 9836 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9837 9838 int perf_swevent_get_recursion_context(void) 9839 { 9840 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9841 9842 return get_recursion_context(swhash->recursion); 9843 } 9844 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9845 9846 void perf_swevent_put_recursion_context(int rctx) 9847 { 9848 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9849 9850 put_recursion_context(swhash->recursion, rctx); 9851 } 9852 9853 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9854 { 9855 struct perf_sample_data data; 9856 9857 if (WARN_ON_ONCE(!regs)) 9858 return; 9859 9860 perf_sample_data_init(&data, addr, 0); 9861 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9862 } 9863 9864 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9865 { 9866 int rctx; 9867 9868 preempt_disable_notrace(); 9869 rctx = perf_swevent_get_recursion_context(); 9870 if (unlikely(rctx < 0)) 9871 goto fail; 9872 9873 ___perf_sw_event(event_id, nr, regs, addr); 9874 9875 perf_swevent_put_recursion_context(rctx); 9876 fail: 9877 preempt_enable_notrace(); 9878 } 9879 9880 static void perf_swevent_read(struct perf_event *event) 9881 { 9882 } 9883 9884 static int perf_swevent_add(struct perf_event *event, int flags) 9885 { 9886 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9887 struct hw_perf_event *hwc = &event->hw; 9888 struct hlist_head *head; 9889 9890 if (is_sampling_event(event)) { 9891 hwc->last_period = hwc->sample_period; 9892 perf_swevent_set_period(event); 9893 } 9894 9895 hwc->state = !(flags & PERF_EF_START); 9896 9897 head = find_swevent_head(swhash, event); 9898 if (WARN_ON_ONCE(!head)) 9899 return -EINVAL; 9900 9901 hlist_add_head_rcu(&event->hlist_entry, head); 9902 perf_event_update_userpage(event); 9903 9904 return 0; 9905 } 9906 9907 static void perf_swevent_del(struct perf_event *event, int flags) 9908 { 9909 hlist_del_rcu(&event->hlist_entry); 9910 } 9911 9912 static void perf_swevent_start(struct perf_event *event, int flags) 9913 { 9914 event->hw.state = 0; 9915 } 9916 9917 static void perf_swevent_stop(struct perf_event *event, int flags) 9918 { 9919 event->hw.state = PERF_HES_STOPPED; 9920 } 9921 9922 /* Deref the hlist from the update side */ 9923 static inline struct swevent_hlist * 9924 swevent_hlist_deref(struct swevent_htable *swhash) 9925 { 9926 return rcu_dereference_protected(swhash->swevent_hlist, 9927 lockdep_is_held(&swhash->hlist_mutex)); 9928 } 9929 9930 static void swevent_hlist_release(struct swevent_htable *swhash) 9931 { 9932 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9933 9934 if (!hlist) 9935 return; 9936 9937 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9938 kfree_rcu(hlist, rcu_head); 9939 } 9940 9941 static void swevent_hlist_put_cpu(int cpu) 9942 { 9943 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9944 9945 mutex_lock(&swhash->hlist_mutex); 9946 9947 if (!--swhash->hlist_refcount) 9948 swevent_hlist_release(swhash); 9949 9950 mutex_unlock(&swhash->hlist_mutex); 9951 } 9952 9953 static void swevent_hlist_put(void) 9954 { 9955 int cpu; 9956 9957 for_each_possible_cpu(cpu) 9958 swevent_hlist_put_cpu(cpu); 9959 } 9960 9961 static int swevent_hlist_get_cpu(int cpu) 9962 { 9963 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9964 int err = 0; 9965 9966 mutex_lock(&swhash->hlist_mutex); 9967 if (!swevent_hlist_deref(swhash) && 9968 cpumask_test_cpu(cpu, perf_online_mask)) { 9969 struct swevent_hlist *hlist; 9970 9971 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9972 if (!hlist) { 9973 err = -ENOMEM; 9974 goto exit; 9975 } 9976 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9977 } 9978 swhash->hlist_refcount++; 9979 exit: 9980 mutex_unlock(&swhash->hlist_mutex); 9981 9982 return err; 9983 } 9984 9985 static int swevent_hlist_get(void) 9986 { 9987 int err, cpu, failed_cpu; 9988 9989 mutex_lock(&pmus_lock); 9990 for_each_possible_cpu(cpu) { 9991 err = swevent_hlist_get_cpu(cpu); 9992 if (err) { 9993 failed_cpu = cpu; 9994 goto fail; 9995 } 9996 } 9997 mutex_unlock(&pmus_lock); 9998 return 0; 9999 fail: 10000 for_each_possible_cpu(cpu) { 10001 if (cpu == failed_cpu) 10002 break; 10003 swevent_hlist_put_cpu(cpu); 10004 } 10005 mutex_unlock(&pmus_lock); 10006 return err; 10007 } 10008 10009 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10010 10011 static void sw_perf_event_destroy(struct perf_event *event) 10012 { 10013 u64 event_id = event->attr.config; 10014 10015 WARN_ON(event->parent); 10016 10017 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10018 swevent_hlist_put(); 10019 } 10020 10021 static struct pmu perf_cpu_clock; /* fwd declaration */ 10022 static struct pmu perf_task_clock; 10023 10024 static int perf_swevent_init(struct perf_event *event) 10025 { 10026 u64 event_id = event->attr.config; 10027 10028 if (event->attr.type != PERF_TYPE_SOFTWARE) 10029 return -ENOENT; 10030 10031 /* 10032 * no branch sampling for software events 10033 */ 10034 if (has_branch_stack(event)) 10035 return -EOPNOTSUPP; 10036 10037 switch (event_id) { 10038 case PERF_COUNT_SW_CPU_CLOCK: 10039 event->attr.type = perf_cpu_clock.type; 10040 return -ENOENT; 10041 case PERF_COUNT_SW_TASK_CLOCK: 10042 event->attr.type = perf_task_clock.type; 10043 return -ENOENT; 10044 10045 default: 10046 break; 10047 } 10048 10049 if (event_id >= PERF_COUNT_SW_MAX) 10050 return -ENOENT; 10051 10052 if (!event->parent) { 10053 int err; 10054 10055 err = swevent_hlist_get(); 10056 if (err) 10057 return err; 10058 10059 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10060 event->destroy = sw_perf_event_destroy; 10061 } 10062 10063 return 0; 10064 } 10065 10066 static struct pmu perf_swevent = { 10067 .task_ctx_nr = perf_sw_context, 10068 10069 .capabilities = PERF_PMU_CAP_NO_NMI, 10070 10071 .event_init = perf_swevent_init, 10072 .add = perf_swevent_add, 10073 .del = perf_swevent_del, 10074 .start = perf_swevent_start, 10075 .stop = perf_swevent_stop, 10076 .read = perf_swevent_read, 10077 }; 10078 10079 #ifdef CONFIG_EVENT_TRACING 10080 10081 static void tp_perf_event_destroy(struct perf_event *event) 10082 { 10083 perf_trace_destroy(event); 10084 } 10085 10086 static int perf_tp_event_init(struct perf_event *event) 10087 { 10088 int err; 10089 10090 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10091 return -ENOENT; 10092 10093 /* 10094 * no branch sampling for tracepoint events 10095 */ 10096 if (has_branch_stack(event)) 10097 return -EOPNOTSUPP; 10098 10099 err = perf_trace_init(event); 10100 if (err) 10101 return err; 10102 10103 event->destroy = tp_perf_event_destroy; 10104 10105 return 0; 10106 } 10107 10108 static struct pmu perf_tracepoint = { 10109 .task_ctx_nr = perf_sw_context, 10110 10111 .event_init = perf_tp_event_init, 10112 .add = perf_trace_add, 10113 .del = perf_trace_del, 10114 .start = perf_swevent_start, 10115 .stop = perf_swevent_stop, 10116 .read = perf_swevent_read, 10117 }; 10118 10119 static int perf_tp_filter_match(struct perf_event *event, 10120 struct perf_sample_data *data) 10121 { 10122 void *record = data->raw->frag.data; 10123 10124 /* only top level events have filters set */ 10125 if (event->parent) 10126 event = event->parent; 10127 10128 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10129 return 1; 10130 return 0; 10131 } 10132 10133 static int perf_tp_event_match(struct perf_event *event, 10134 struct perf_sample_data *data, 10135 struct pt_regs *regs) 10136 { 10137 if (event->hw.state & PERF_HES_STOPPED) 10138 return 0; 10139 /* 10140 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10141 */ 10142 if (event->attr.exclude_kernel && !user_mode(regs)) 10143 return 0; 10144 10145 if (!perf_tp_filter_match(event, data)) 10146 return 0; 10147 10148 return 1; 10149 } 10150 10151 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10152 struct trace_event_call *call, u64 count, 10153 struct pt_regs *regs, struct hlist_head *head, 10154 struct task_struct *task) 10155 { 10156 if (bpf_prog_array_valid(call)) { 10157 *(struct pt_regs **)raw_data = regs; 10158 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10159 perf_swevent_put_recursion_context(rctx); 10160 return; 10161 } 10162 } 10163 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10164 rctx, task); 10165 } 10166 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10167 10168 static void __perf_tp_event_target_task(u64 count, void *record, 10169 struct pt_regs *regs, 10170 struct perf_sample_data *data, 10171 struct perf_event *event) 10172 { 10173 struct trace_entry *entry = record; 10174 10175 if (event->attr.config != entry->type) 10176 return; 10177 /* Cannot deliver synchronous signal to other task. */ 10178 if (event->attr.sigtrap) 10179 return; 10180 if (perf_tp_event_match(event, data, regs)) 10181 perf_swevent_event(event, count, data, regs); 10182 } 10183 10184 static void perf_tp_event_target_task(u64 count, void *record, 10185 struct pt_regs *regs, 10186 struct perf_sample_data *data, 10187 struct perf_event_context *ctx) 10188 { 10189 unsigned int cpu = smp_processor_id(); 10190 struct pmu *pmu = &perf_tracepoint; 10191 struct perf_event *event, *sibling; 10192 10193 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10194 __perf_tp_event_target_task(count, record, regs, data, event); 10195 for_each_sibling_event(sibling, event) 10196 __perf_tp_event_target_task(count, record, regs, data, sibling); 10197 } 10198 10199 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10200 __perf_tp_event_target_task(count, record, regs, data, event); 10201 for_each_sibling_event(sibling, event) 10202 __perf_tp_event_target_task(count, record, regs, data, sibling); 10203 } 10204 } 10205 10206 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10207 struct pt_regs *regs, struct hlist_head *head, int rctx, 10208 struct task_struct *task) 10209 { 10210 struct perf_sample_data data; 10211 struct perf_event *event; 10212 10213 struct perf_raw_record raw = { 10214 .frag = { 10215 .size = entry_size, 10216 .data = record, 10217 }, 10218 }; 10219 10220 perf_sample_data_init(&data, 0, 0); 10221 perf_sample_save_raw_data(&data, &raw); 10222 10223 perf_trace_buf_update(record, event_type); 10224 10225 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10226 if (perf_tp_event_match(event, &data, regs)) { 10227 perf_swevent_event(event, count, &data, regs); 10228 10229 /* 10230 * Here use the same on-stack perf_sample_data, 10231 * some members in data are event-specific and 10232 * need to be re-computed for different sweveents. 10233 * Re-initialize data->sample_flags safely to avoid 10234 * the problem that next event skips preparing data 10235 * because data->sample_flags is set. 10236 */ 10237 perf_sample_data_init(&data, 0, 0); 10238 perf_sample_save_raw_data(&data, &raw); 10239 } 10240 } 10241 10242 /* 10243 * If we got specified a target task, also iterate its context and 10244 * deliver this event there too. 10245 */ 10246 if (task && task != current) { 10247 struct perf_event_context *ctx; 10248 10249 rcu_read_lock(); 10250 ctx = rcu_dereference(task->perf_event_ctxp); 10251 if (!ctx) 10252 goto unlock; 10253 10254 raw_spin_lock(&ctx->lock); 10255 perf_tp_event_target_task(count, record, regs, &data, ctx); 10256 raw_spin_unlock(&ctx->lock); 10257 unlock: 10258 rcu_read_unlock(); 10259 } 10260 10261 perf_swevent_put_recursion_context(rctx); 10262 } 10263 EXPORT_SYMBOL_GPL(perf_tp_event); 10264 10265 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10266 /* 10267 * Flags in config, used by dynamic PMU kprobe and uprobe 10268 * The flags should match following PMU_FORMAT_ATTR(). 10269 * 10270 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10271 * if not set, create kprobe/uprobe 10272 * 10273 * The following values specify a reference counter (or semaphore in the 10274 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10275 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10276 * 10277 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10278 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10279 */ 10280 enum perf_probe_config { 10281 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10282 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10283 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10284 }; 10285 10286 PMU_FORMAT_ATTR(retprobe, "config:0"); 10287 #endif 10288 10289 #ifdef CONFIG_KPROBE_EVENTS 10290 static struct attribute *kprobe_attrs[] = { 10291 &format_attr_retprobe.attr, 10292 NULL, 10293 }; 10294 10295 static struct attribute_group kprobe_format_group = { 10296 .name = "format", 10297 .attrs = kprobe_attrs, 10298 }; 10299 10300 static const struct attribute_group *kprobe_attr_groups[] = { 10301 &kprobe_format_group, 10302 NULL, 10303 }; 10304 10305 static int perf_kprobe_event_init(struct perf_event *event); 10306 static struct pmu perf_kprobe = { 10307 .task_ctx_nr = perf_sw_context, 10308 .event_init = perf_kprobe_event_init, 10309 .add = perf_trace_add, 10310 .del = perf_trace_del, 10311 .start = perf_swevent_start, 10312 .stop = perf_swevent_stop, 10313 .read = perf_swevent_read, 10314 .attr_groups = kprobe_attr_groups, 10315 }; 10316 10317 static int perf_kprobe_event_init(struct perf_event *event) 10318 { 10319 int err; 10320 bool is_retprobe; 10321 10322 if (event->attr.type != perf_kprobe.type) 10323 return -ENOENT; 10324 10325 if (!perfmon_capable()) 10326 return -EACCES; 10327 10328 /* 10329 * no branch sampling for probe events 10330 */ 10331 if (has_branch_stack(event)) 10332 return -EOPNOTSUPP; 10333 10334 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10335 err = perf_kprobe_init(event, is_retprobe); 10336 if (err) 10337 return err; 10338 10339 event->destroy = perf_kprobe_destroy; 10340 10341 return 0; 10342 } 10343 #endif /* CONFIG_KPROBE_EVENTS */ 10344 10345 #ifdef CONFIG_UPROBE_EVENTS 10346 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10347 10348 static struct attribute *uprobe_attrs[] = { 10349 &format_attr_retprobe.attr, 10350 &format_attr_ref_ctr_offset.attr, 10351 NULL, 10352 }; 10353 10354 static struct attribute_group uprobe_format_group = { 10355 .name = "format", 10356 .attrs = uprobe_attrs, 10357 }; 10358 10359 static const struct attribute_group *uprobe_attr_groups[] = { 10360 &uprobe_format_group, 10361 NULL, 10362 }; 10363 10364 static int perf_uprobe_event_init(struct perf_event *event); 10365 static struct pmu perf_uprobe = { 10366 .task_ctx_nr = perf_sw_context, 10367 .event_init = perf_uprobe_event_init, 10368 .add = perf_trace_add, 10369 .del = perf_trace_del, 10370 .start = perf_swevent_start, 10371 .stop = perf_swevent_stop, 10372 .read = perf_swevent_read, 10373 .attr_groups = uprobe_attr_groups, 10374 }; 10375 10376 static int perf_uprobe_event_init(struct perf_event *event) 10377 { 10378 int err; 10379 unsigned long ref_ctr_offset; 10380 bool is_retprobe; 10381 10382 if (event->attr.type != perf_uprobe.type) 10383 return -ENOENT; 10384 10385 if (!perfmon_capable()) 10386 return -EACCES; 10387 10388 /* 10389 * no branch sampling for probe events 10390 */ 10391 if (has_branch_stack(event)) 10392 return -EOPNOTSUPP; 10393 10394 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10395 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10396 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10397 if (err) 10398 return err; 10399 10400 event->destroy = perf_uprobe_destroy; 10401 10402 return 0; 10403 } 10404 #endif /* CONFIG_UPROBE_EVENTS */ 10405 10406 static inline void perf_tp_register(void) 10407 { 10408 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10409 #ifdef CONFIG_KPROBE_EVENTS 10410 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10411 #endif 10412 #ifdef CONFIG_UPROBE_EVENTS 10413 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10414 #endif 10415 } 10416 10417 static void perf_event_free_filter(struct perf_event *event) 10418 { 10419 ftrace_profile_free_filter(event); 10420 } 10421 10422 #ifdef CONFIG_BPF_SYSCALL 10423 static void bpf_overflow_handler(struct perf_event *event, 10424 struct perf_sample_data *data, 10425 struct pt_regs *regs) 10426 { 10427 struct bpf_perf_event_data_kern ctx = { 10428 .data = data, 10429 .event = event, 10430 }; 10431 struct bpf_prog *prog; 10432 int ret = 0; 10433 10434 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10435 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10436 goto out; 10437 rcu_read_lock(); 10438 prog = READ_ONCE(event->prog); 10439 if (prog) { 10440 perf_prepare_sample(data, event, regs); 10441 ret = bpf_prog_run(prog, &ctx); 10442 } 10443 rcu_read_unlock(); 10444 out: 10445 __this_cpu_dec(bpf_prog_active); 10446 if (!ret) 10447 return; 10448 10449 event->orig_overflow_handler(event, data, regs); 10450 } 10451 10452 static int perf_event_set_bpf_handler(struct perf_event *event, 10453 struct bpf_prog *prog, 10454 u64 bpf_cookie) 10455 { 10456 if (event->overflow_handler_context) 10457 /* hw breakpoint or kernel counter */ 10458 return -EINVAL; 10459 10460 if (event->prog) 10461 return -EEXIST; 10462 10463 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10464 return -EINVAL; 10465 10466 if (event->attr.precise_ip && 10467 prog->call_get_stack && 10468 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10469 event->attr.exclude_callchain_kernel || 10470 event->attr.exclude_callchain_user)) { 10471 /* 10472 * On perf_event with precise_ip, calling bpf_get_stack() 10473 * may trigger unwinder warnings and occasional crashes. 10474 * bpf_get_[stack|stackid] works around this issue by using 10475 * callchain attached to perf_sample_data. If the 10476 * perf_event does not full (kernel and user) callchain 10477 * attached to perf_sample_data, do not allow attaching BPF 10478 * program that calls bpf_get_[stack|stackid]. 10479 */ 10480 return -EPROTO; 10481 } 10482 10483 event->prog = prog; 10484 event->bpf_cookie = bpf_cookie; 10485 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10486 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10487 return 0; 10488 } 10489 10490 static void perf_event_free_bpf_handler(struct perf_event *event) 10491 { 10492 struct bpf_prog *prog = event->prog; 10493 10494 if (!prog) 10495 return; 10496 10497 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10498 event->prog = NULL; 10499 bpf_prog_put(prog); 10500 } 10501 #else 10502 static int perf_event_set_bpf_handler(struct perf_event *event, 10503 struct bpf_prog *prog, 10504 u64 bpf_cookie) 10505 { 10506 return -EOPNOTSUPP; 10507 } 10508 static void perf_event_free_bpf_handler(struct perf_event *event) 10509 { 10510 } 10511 #endif 10512 10513 /* 10514 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10515 * with perf_event_open() 10516 */ 10517 static inline bool perf_event_is_tracing(struct perf_event *event) 10518 { 10519 if (event->pmu == &perf_tracepoint) 10520 return true; 10521 #ifdef CONFIG_KPROBE_EVENTS 10522 if (event->pmu == &perf_kprobe) 10523 return true; 10524 #endif 10525 #ifdef CONFIG_UPROBE_EVENTS 10526 if (event->pmu == &perf_uprobe) 10527 return true; 10528 #endif 10529 return false; 10530 } 10531 10532 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10533 u64 bpf_cookie) 10534 { 10535 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10536 10537 if (!perf_event_is_tracing(event)) 10538 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10539 10540 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10541 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10542 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10543 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10544 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10545 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10546 return -EINVAL; 10547 10548 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10549 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10550 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10551 return -EINVAL; 10552 10553 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10554 /* only uprobe programs are allowed to be sleepable */ 10555 return -EINVAL; 10556 10557 /* Kprobe override only works for kprobes, not uprobes. */ 10558 if (prog->kprobe_override && !is_kprobe) 10559 return -EINVAL; 10560 10561 if (is_tracepoint || is_syscall_tp) { 10562 int off = trace_event_get_offsets(event->tp_event); 10563 10564 if (prog->aux->max_ctx_offset > off) 10565 return -EACCES; 10566 } 10567 10568 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10569 } 10570 10571 void perf_event_free_bpf_prog(struct perf_event *event) 10572 { 10573 if (!perf_event_is_tracing(event)) { 10574 perf_event_free_bpf_handler(event); 10575 return; 10576 } 10577 perf_event_detach_bpf_prog(event); 10578 } 10579 10580 #else 10581 10582 static inline void perf_tp_register(void) 10583 { 10584 } 10585 10586 static void perf_event_free_filter(struct perf_event *event) 10587 { 10588 } 10589 10590 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10591 u64 bpf_cookie) 10592 { 10593 return -ENOENT; 10594 } 10595 10596 void perf_event_free_bpf_prog(struct perf_event *event) 10597 { 10598 } 10599 #endif /* CONFIG_EVENT_TRACING */ 10600 10601 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10602 void perf_bp_event(struct perf_event *bp, void *data) 10603 { 10604 struct perf_sample_data sample; 10605 struct pt_regs *regs = data; 10606 10607 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10608 10609 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10610 perf_swevent_event(bp, 1, &sample, regs); 10611 } 10612 #endif 10613 10614 /* 10615 * Allocate a new address filter 10616 */ 10617 static struct perf_addr_filter * 10618 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10619 { 10620 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10621 struct perf_addr_filter *filter; 10622 10623 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10624 if (!filter) 10625 return NULL; 10626 10627 INIT_LIST_HEAD(&filter->entry); 10628 list_add_tail(&filter->entry, filters); 10629 10630 return filter; 10631 } 10632 10633 static void free_filters_list(struct list_head *filters) 10634 { 10635 struct perf_addr_filter *filter, *iter; 10636 10637 list_for_each_entry_safe(filter, iter, filters, entry) { 10638 path_put(&filter->path); 10639 list_del(&filter->entry); 10640 kfree(filter); 10641 } 10642 } 10643 10644 /* 10645 * Free existing address filters and optionally install new ones 10646 */ 10647 static void perf_addr_filters_splice(struct perf_event *event, 10648 struct list_head *head) 10649 { 10650 unsigned long flags; 10651 LIST_HEAD(list); 10652 10653 if (!has_addr_filter(event)) 10654 return; 10655 10656 /* don't bother with children, they don't have their own filters */ 10657 if (event->parent) 10658 return; 10659 10660 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10661 10662 list_splice_init(&event->addr_filters.list, &list); 10663 if (head) 10664 list_splice(head, &event->addr_filters.list); 10665 10666 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10667 10668 free_filters_list(&list); 10669 } 10670 10671 /* 10672 * Scan through mm's vmas and see if one of them matches the 10673 * @filter; if so, adjust filter's address range. 10674 * Called with mm::mmap_lock down for reading. 10675 */ 10676 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10677 struct mm_struct *mm, 10678 struct perf_addr_filter_range *fr) 10679 { 10680 struct vm_area_struct *vma; 10681 VMA_ITERATOR(vmi, mm, 0); 10682 10683 for_each_vma(vmi, vma) { 10684 if (!vma->vm_file) 10685 continue; 10686 10687 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10688 return; 10689 } 10690 } 10691 10692 /* 10693 * Update event's address range filters based on the 10694 * task's existing mappings, if any. 10695 */ 10696 static void perf_event_addr_filters_apply(struct perf_event *event) 10697 { 10698 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10699 struct task_struct *task = READ_ONCE(event->ctx->task); 10700 struct perf_addr_filter *filter; 10701 struct mm_struct *mm = NULL; 10702 unsigned int count = 0; 10703 unsigned long flags; 10704 10705 /* 10706 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10707 * will stop on the parent's child_mutex that our caller is also holding 10708 */ 10709 if (task == TASK_TOMBSTONE) 10710 return; 10711 10712 if (ifh->nr_file_filters) { 10713 mm = get_task_mm(task); 10714 if (!mm) 10715 goto restart; 10716 10717 mmap_read_lock(mm); 10718 } 10719 10720 raw_spin_lock_irqsave(&ifh->lock, flags); 10721 list_for_each_entry(filter, &ifh->list, entry) { 10722 if (filter->path.dentry) { 10723 /* 10724 * Adjust base offset if the filter is associated to a 10725 * binary that needs to be mapped: 10726 */ 10727 event->addr_filter_ranges[count].start = 0; 10728 event->addr_filter_ranges[count].size = 0; 10729 10730 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10731 } else { 10732 event->addr_filter_ranges[count].start = filter->offset; 10733 event->addr_filter_ranges[count].size = filter->size; 10734 } 10735 10736 count++; 10737 } 10738 10739 event->addr_filters_gen++; 10740 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10741 10742 if (ifh->nr_file_filters) { 10743 mmap_read_unlock(mm); 10744 10745 mmput(mm); 10746 } 10747 10748 restart: 10749 perf_event_stop(event, 1); 10750 } 10751 10752 /* 10753 * Address range filtering: limiting the data to certain 10754 * instruction address ranges. Filters are ioctl()ed to us from 10755 * userspace as ascii strings. 10756 * 10757 * Filter string format: 10758 * 10759 * ACTION RANGE_SPEC 10760 * where ACTION is one of the 10761 * * "filter": limit the trace to this region 10762 * * "start": start tracing from this address 10763 * * "stop": stop tracing at this address/region; 10764 * RANGE_SPEC is 10765 * * for kernel addresses: <start address>[/<size>] 10766 * * for object files: <start address>[/<size>]@</path/to/object/file> 10767 * 10768 * if <size> is not specified or is zero, the range is treated as a single 10769 * address; not valid for ACTION=="filter". 10770 */ 10771 enum { 10772 IF_ACT_NONE = -1, 10773 IF_ACT_FILTER, 10774 IF_ACT_START, 10775 IF_ACT_STOP, 10776 IF_SRC_FILE, 10777 IF_SRC_KERNEL, 10778 IF_SRC_FILEADDR, 10779 IF_SRC_KERNELADDR, 10780 }; 10781 10782 enum { 10783 IF_STATE_ACTION = 0, 10784 IF_STATE_SOURCE, 10785 IF_STATE_END, 10786 }; 10787 10788 static const match_table_t if_tokens = { 10789 { IF_ACT_FILTER, "filter" }, 10790 { IF_ACT_START, "start" }, 10791 { IF_ACT_STOP, "stop" }, 10792 { IF_SRC_FILE, "%u/%u@%s" }, 10793 { IF_SRC_KERNEL, "%u/%u" }, 10794 { IF_SRC_FILEADDR, "%u@%s" }, 10795 { IF_SRC_KERNELADDR, "%u" }, 10796 { IF_ACT_NONE, NULL }, 10797 }; 10798 10799 /* 10800 * Address filter string parser 10801 */ 10802 static int 10803 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10804 struct list_head *filters) 10805 { 10806 struct perf_addr_filter *filter = NULL; 10807 char *start, *orig, *filename = NULL; 10808 substring_t args[MAX_OPT_ARGS]; 10809 int state = IF_STATE_ACTION, token; 10810 unsigned int kernel = 0; 10811 int ret = -EINVAL; 10812 10813 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10814 if (!fstr) 10815 return -ENOMEM; 10816 10817 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10818 static const enum perf_addr_filter_action_t actions[] = { 10819 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10820 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10821 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10822 }; 10823 ret = -EINVAL; 10824 10825 if (!*start) 10826 continue; 10827 10828 /* filter definition begins */ 10829 if (state == IF_STATE_ACTION) { 10830 filter = perf_addr_filter_new(event, filters); 10831 if (!filter) 10832 goto fail; 10833 } 10834 10835 token = match_token(start, if_tokens, args); 10836 switch (token) { 10837 case IF_ACT_FILTER: 10838 case IF_ACT_START: 10839 case IF_ACT_STOP: 10840 if (state != IF_STATE_ACTION) 10841 goto fail; 10842 10843 filter->action = actions[token]; 10844 state = IF_STATE_SOURCE; 10845 break; 10846 10847 case IF_SRC_KERNELADDR: 10848 case IF_SRC_KERNEL: 10849 kernel = 1; 10850 fallthrough; 10851 10852 case IF_SRC_FILEADDR: 10853 case IF_SRC_FILE: 10854 if (state != IF_STATE_SOURCE) 10855 goto fail; 10856 10857 *args[0].to = 0; 10858 ret = kstrtoul(args[0].from, 0, &filter->offset); 10859 if (ret) 10860 goto fail; 10861 10862 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10863 *args[1].to = 0; 10864 ret = kstrtoul(args[1].from, 0, &filter->size); 10865 if (ret) 10866 goto fail; 10867 } 10868 10869 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10870 int fpos = token == IF_SRC_FILE ? 2 : 1; 10871 10872 kfree(filename); 10873 filename = match_strdup(&args[fpos]); 10874 if (!filename) { 10875 ret = -ENOMEM; 10876 goto fail; 10877 } 10878 } 10879 10880 state = IF_STATE_END; 10881 break; 10882 10883 default: 10884 goto fail; 10885 } 10886 10887 /* 10888 * Filter definition is fully parsed, validate and install it. 10889 * Make sure that it doesn't contradict itself or the event's 10890 * attribute. 10891 */ 10892 if (state == IF_STATE_END) { 10893 ret = -EINVAL; 10894 10895 /* 10896 * ACTION "filter" must have a non-zero length region 10897 * specified. 10898 */ 10899 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10900 !filter->size) 10901 goto fail; 10902 10903 if (!kernel) { 10904 if (!filename) 10905 goto fail; 10906 10907 /* 10908 * For now, we only support file-based filters 10909 * in per-task events; doing so for CPU-wide 10910 * events requires additional context switching 10911 * trickery, since same object code will be 10912 * mapped at different virtual addresses in 10913 * different processes. 10914 */ 10915 ret = -EOPNOTSUPP; 10916 if (!event->ctx->task) 10917 goto fail; 10918 10919 /* look up the path and grab its inode */ 10920 ret = kern_path(filename, LOOKUP_FOLLOW, 10921 &filter->path); 10922 if (ret) 10923 goto fail; 10924 10925 ret = -EINVAL; 10926 if (!filter->path.dentry || 10927 !S_ISREG(d_inode(filter->path.dentry) 10928 ->i_mode)) 10929 goto fail; 10930 10931 event->addr_filters.nr_file_filters++; 10932 } 10933 10934 /* ready to consume more filters */ 10935 kfree(filename); 10936 filename = NULL; 10937 state = IF_STATE_ACTION; 10938 filter = NULL; 10939 kernel = 0; 10940 } 10941 } 10942 10943 if (state != IF_STATE_ACTION) 10944 goto fail; 10945 10946 kfree(filename); 10947 kfree(orig); 10948 10949 return 0; 10950 10951 fail: 10952 kfree(filename); 10953 free_filters_list(filters); 10954 kfree(orig); 10955 10956 return ret; 10957 } 10958 10959 static int 10960 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10961 { 10962 LIST_HEAD(filters); 10963 int ret; 10964 10965 /* 10966 * Since this is called in perf_ioctl() path, we're already holding 10967 * ctx::mutex. 10968 */ 10969 lockdep_assert_held(&event->ctx->mutex); 10970 10971 if (WARN_ON_ONCE(event->parent)) 10972 return -EINVAL; 10973 10974 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10975 if (ret) 10976 goto fail_clear_files; 10977 10978 ret = event->pmu->addr_filters_validate(&filters); 10979 if (ret) 10980 goto fail_free_filters; 10981 10982 /* remove existing filters, if any */ 10983 perf_addr_filters_splice(event, &filters); 10984 10985 /* install new filters */ 10986 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10987 10988 return ret; 10989 10990 fail_free_filters: 10991 free_filters_list(&filters); 10992 10993 fail_clear_files: 10994 event->addr_filters.nr_file_filters = 0; 10995 10996 return ret; 10997 } 10998 10999 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11000 { 11001 int ret = -EINVAL; 11002 char *filter_str; 11003 11004 filter_str = strndup_user(arg, PAGE_SIZE); 11005 if (IS_ERR(filter_str)) 11006 return PTR_ERR(filter_str); 11007 11008 #ifdef CONFIG_EVENT_TRACING 11009 if (perf_event_is_tracing(event)) { 11010 struct perf_event_context *ctx = event->ctx; 11011 11012 /* 11013 * Beware, here be dragons!! 11014 * 11015 * the tracepoint muck will deadlock against ctx->mutex, but 11016 * the tracepoint stuff does not actually need it. So 11017 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11018 * already have a reference on ctx. 11019 * 11020 * This can result in event getting moved to a different ctx, 11021 * but that does not affect the tracepoint state. 11022 */ 11023 mutex_unlock(&ctx->mutex); 11024 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11025 mutex_lock(&ctx->mutex); 11026 } else 11027 #endif 11028 if (has_addr_filter(event)) 11029 ret = perf_event_set_addr_filter(event, filter_str); 11030 11031 kfree(filter_str); 11032 return ret; 11033 } 11034 11035 /* 11036 * hrtimer based swevent callback 11037 */ 11038 11039 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11040 { 11041 enum hrtimer_restart ret = HRTIMER_RESTART; 11042 struct perf_sample_data data; 11043 struct pt_regs *regs; 11044 struct perf_event *event; 11045 u64 period; 11046 11047 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11048 11049 if (event->state != PERF_EVENT_STATE_ACTIVE) 11050 return HRTIMER_NORESTART; 11051 11052 event->pmu->read(event); 11053 11054 perf_sample_data_init(&data, 0, event->hw.last_period); 11055 regs = get_irq_regs(); 11056 11057 if (regs && !perf_exclude_event(event, regs)) { 11058 if (!(event->attr.exclude_idle && is_idle_task(current))) 11059 if (__perf_event_overflow(event, 1, &data, regs)) 11060 ret = HRTIMER_NORESTART; 11061 } 11062 11063 period = max_t(u64, 10000, event->hw.sample_period); 11064 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11065 11066 return ret; 11067 } 11068 11069 static void perf_swevent_start_hrtimer(struct perf_event *event) 11070 { 11071 struct hw_perf_event *hwc = &event->hw; 11072 s64 period; 11073 11074 if (!is_sampling_event(event)) 11075 return; 11076 11077 period = local64_read(&hwc->period_left); 11078 if (period) { 11079 if (period < 0) 11080 period = 10000; 11081 11082 local64_set(&hwc->period_left, 0); 11083 } else { 11084 period = max_t(u64, 10000, hwc->sample_period); 11085 } 11086 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11087 HRTIMER_MODE_REL_PINNED_HARD); 11088 } 11089 11090 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11091 { 11092 struct hw_perf_event *hwc = &event->hw; 11093 11094 if (is_sampling_event(event)) { 11095 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11096 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11097 11098 hrtimer_cancel(&hwc->hrtimer); 11099 } 11100 } 11101 11102 static void perf_swevent_init_hrtimer(struct perf_event *event) 11103 { 11104 struct hw_perf_event *hwc = &event->hw; 11105 11106 if (!is_sampling_event(event)) 11107 return; 11108 11109 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11110 hwc->hrtimer.function = perf_swevent_hrtimer; 11111 11112 /* 11113 * Since hrtimers have a fixed rate, we can do a static freq->period 11114 * mapping and avoid the whole period adjust feedback stuff. 11115 */ 11116 if (event->attr.freq) { 11117 long freq = event->attr.sample_freq; 11118 11119 event->attr.sample_period = NSEC_PER_SEC / freq; 11120 hwc->sample_period = event->attr.sample_period; 11121 local64_set(&hwc->period_left, hwc->sample_period); 11122 hwc->last_period = hwc->sample_period; 11123 event->attr.freq = 0; 11124 } 11125 } 11126 11127 /* 11128 * Software event: cpu wall time clock 11129 */ 11130 11131 static void cpu_clock_event_update(struct perf_event *event) 11132 { 11133 s64 prev; 11134 u64 now; 11135 11136 now = local_clock(); 11137 prev = local64_xchg(&event->hw.prev_count, now); 11138 local64_add(now - prev, &event->count); 11139 } 11140 11141 static void cpu_clock_event_start(struct perf_event *event, int flags) 11142 { 11143 local64_set(&event->hw.prev_count, local_clock()); 11144 perf_swevent_start_hrtimer(event); 11145 } 11146 11147 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11148 { 11149 perf_swevent_cancel_hrtimer(event); 11150 cpu_clock_event_update(event); 11151 } 11152 11153 static int cpu_clock_event_add(struct perf_event *event, int flags) 11154 { 11155 if (flags & PERF_EF_START) 11156 cpu_clock_event_start(event, flags); 11157 perf_event_update_userpage(event); 11158 11159 return 0; 11160 } 11161 11162 static void cpu_clock_event_del(struct perf_event *event, int flags) 11163 { 11164 cpu_clock_event_stop(event, flags); 11165 } 11166 11167 static void cpu_clock_event_read(struct perf_event *event) 11168 { 11169 cpu_clock_event_update(event); 11170 } 11171 11172 static int cpu_clock_event_init(struct perf_event *event) 11173 { 11174 if (event->attr.type != perf_cpu_clock.type) 11175 return -ENOENT; 11176 11177 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11178 return -ENOENT; 11179 11180 /* 11181 * no branch sampling for software events 11182 */ 11183 if (has_branch_stack(event)) 11184 return -EOPNOTSUPP; 11185 11186 perf_swevent_init_hrtimer(event); 11187 11188 return 0; 11189 } 11190 11191 static struct pmu perf_cpu_clock = { 11192 .task_ctx_nr = perf_sw_context, 11193 11194 .capabilities = PERF_PMU_CAP_NO_NMI, 11195 .dev = PMU_NULL_DEV, 11196 11197 .event_init = cpu_clock_event_init, 11198 .add = cpu_clock_event_add, 11199 .del = cpu_clock_event_del, 11200 .start = cpu_clock_event_start, 11201 .stop = cpu_clock_event_stop, 11202 .read = cpu_clock_event_read, 11203 }; 11204 11205 /* 11206 * Software event: task time clock 11207 */ 11208 11209 static void task_clock_event_update(struct perf_event *event, u64 now) 11210 { 11211 u64 prev; 11212 s64 delta; 11213 11214 prev = local64_xchg(&event->hw.prev_count, now); 11215 delta = now - prev; 11216 local64_add(delta, &event->count); 11217 } 11218 11219 static void task_clock_event_start(struct perf_event *event, int flags) 11220 { 11221 local64_set(&event->hw.prev_count, event->ctx->time); 11222 perf_swevent_start_hrtimer(event); 11223 } 11224 11225 static void task_clock_event_stop(struct perf_event *event, int flags) 11226 { 11227 perf_swevent_cancel_hrtimer(event); 11228 task_clock_event_update(event, event->ctx->time); 11229 } 11230 11231 static int task_clock_event_add(struct perf_event *event, int flags) 11232 { 11233 if (flags & PERF_EF_START) 11234 task_clock_event_start(event, flags); 11235 perf_event_update_userpage(event); 11236 11237 return 0; 11238 } 11239 11240 static void task_clock_event_del(struct perf_event *event, int flags) 11241 { 11242 task_clock_event_stop(event, PERF_EF_UPDATE); 11243 } 11244 11245 static void task_clock_event_read(struct perf_event *event) 11246 { 11247 u64 now = perf_clock(); 11248 u64 delta = now - event->ctx->timestamp; 11249 u64 time = event->ctx->time + delta; 11250 11251 task_clock_event_update(event, time); 11252 } 11253 11254 static int task_clock_event_init(struct perf_event *event) 11255 { 11256 if (event->attr.type != perf_task_clock.type) 11257 return -ENOENT; 11258 11259 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11260 return -ENOENT; 11261 11262 /* 11263 * no branch sampling for software events 11264 */ 11265 if (has_branch_stack(event)) 11266 return -EOPNOTSUPP; 11267 11268 perf_swevent_init_hrtimer(event); 11269 11270 return 0; 11271 } 11272 11273 static struct pmu perf_task_clock = { 11274 .task_ctx_nr = perf_sw_context, 11275 11276 .capabilities = PERF_PMU_CAP_NO_NMI, 11277 .dev = PMU_NULL_DEV, 11278 11279 .event_init = task_clock_event_init, 11280 .add = task_clock_event_add, 11281 .del = task_clock_event_del, 11282 .start = task_clock_event_start, 11283 .stop = task_clock_event_stop, 11284 .read = task_clock_event_read, 11285 }; 11286 11287 static void perf_pmu_nop_void(struct pmu *pmu) 11288 { 11289 } 11290 11291 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11292 { 11293 } 11294 11295 static int perf_pmu_nop_int(struct pmu *pmu) 11296 { 11297 return 0; 11298 } 11299 11300 static int perf_event_nop_int(struct perf_event *event, u64 value) 11301 { 11302 return 0; 11303 } 11304 11305 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11306 11307 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11308 { 11309 __this_cpu_write(nop_txn_flags, flags); 11310 11311 if (flags & ~PERF_PMU_TXN_ADD) 11312 return; 11313 11314 perf_pmu_disable(pmu); 11315 } 11316 11317 static int perf_pmu_commit_txn(struct pmu *pmu) 11318 { 11319 unsigned int flags = __this_cpu_read(nop_txn_flags); 11320 11321 __this_cpu_write(nop_txn_flags, 0); 11322 11323 if (flags & ~PERF_PMU_TXN_ADD) 11324 return 0; 11325 11326 perf_pmu_enable(pmu); 11327 return 0; 11328 } 11329 11330 static void perf_pmu_cancel_txn(struct pmu *pmu) 11331 { 11332 unsigned int flags = __this_cpu_read(nop_txn_flags); 11333 11334 __this_cpu_write(nop_txn_flags, 0); 11335 11336 if (flags & ~PERF_PMU_TXN_ADD) 11337 return; 11338 11339 perf_pmu_enable(pmu); 11340 } 11341 11342 static int perf_event_idx_default(struct perf_event *event) 11343 { 11344 return 0; 11345 } 11346 11347 static void free_pmu_context(struct pmu *pmu) 11348 { 11349 free_percpu(pmu->cpu_pmu_context); 11350 } 11351 11352 /* 11353 * Let userspace know that this PMU supports address range filtering: 11354 */ 11355 static ssize_t nr_addr_filters_show(struct device *dev, 11356 struct device_attribute *attr, 11357 char *page) 11358 { 11359 struct pmu *pmu = dev_get_drvdata(dev); 11360 11361 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11362 } 11363 DEVICE_ATTR_RO(nr_addr_filters); 11364 11365 static struct idr pmu_idr; 11366 11367 static ssize_t 11368 type_show(struct device *dev, struct device_attribute *attr, char *page) 11369 { 11370 struct pmu *pmu = dev_get_drvdata(dev); 11371 11372 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11373 } 11374 static DEVICE_ATTR_RO(type); 11375 11376 static ssize_t 11377 perf_event_mux_interval_ms_show(struct device *dev, 11378 struct device_attribute *attr, 11379 char *page) 11380 { 11381 struct pmu *pmu = dev_get_drvdata(dev); 11382 11383 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11384 } 11385 11386 static DEFINE_MUTEX(mux_interval_mutex); 11387 11388 static ssize_t 11389 perf_event_mux_interval_ms_store(struct device *dev, 11390 struct device_attribute *attr, 11391 const char *buf, size_t count) 11392 { 11393 struct pmu *pmu = dev_get_drvdata(dev); 11394 int timer, cpu, ret; 11395 11396 ret = kstrtoint(buf, 0, &timer); 11397 if (ret) 11398 return ret; 11399 11400 if (timer < 1) 11401 return -EINVAL; 11402 11403 /* same value, noting to do */ 11404 if (timer == pmu->hrtimer_interval_ms) 11405 return count; 11406 11407 mutex_lock(&mux_interval_mutex); 11408 pmu->hrtimer_interval_ms = timer; 11409 11410 /* update all cpuctx for this PMU */ 11411 cpus_read_lock(); 11412 for_each_online_cpu(cpu) { 11413 struct perf_cpu_pmu_context *cpc; 11414 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11415 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11416 11417 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11418 } 11419 cpus_read_unlock(); 11420 mutex_unlock(&mux_interval_mutex); 11421 11422 return count; 11423 } 11424 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11425 11426 static struct attribute *pmu_dev_attrs[] = { 11427 &dev_attr_type.attr, 11428 &dev_attr_perf_event_mux_interval_ms.attr, 11429 &dev_attr_nr_addr_filters.attr, 11430 NULL, 11431 }; 11432 11433 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11434 { 11435 struct device *dev = kobj_to_dev(kobj); 11436 struct pmu *pmu = dev_get_drvdata(dev); 11437 11438 if (n == 2 && !pmu->nr_addr_filters) 11439 return 0; 11440 11441 return a->mode; 11442 } 11443 11444 static struct attribute_group pmu_dev_attr_group = { 11445 .is_visible = pmu_dev_is_visible, 11446 .attrs = pmu_dev_attrs, 11447 }; 11448 11449 static const struct attribute_group *pmu_dev_groups[] = { 11450 &pmu_dev_attr_group, 11451 NULL, 11452 }; 11453 11454 static int pmu_bus_running; 11455 static struct bus_type pmu_bus = { 11456 .name = "event_source", 11457 .dev_groups = pmu_dev_groups, 11458 }; 11459 11460 static void pmu_dev_release(struct device *dev) 11461 { 11462 kfree(dev); 11463 } 11464 11465 static int pmu_dev_alloc(struct pmu *pmu) 11466 { 11467 int ret = -ENOMEM; 11468 11469 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11470 if (!pmu->dev) 11471 goto out; 11472 11473 pmu->dev->groups = pmu->attr_groups; 11474 device_initialize(pmu->dev); 11475 11476 dev_set_drvdata(pmu->dev, pmu); 11477 pmu->dev->bus = &pmu_bus; 11478 pmu->dev->parent = pmu->parent; 11479 pmu->dev->release = pmu_dev_release; 11480 11481 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11482 if (ret) 11483 goto free_dev; 11484 11485 ret = device_add(pmu->dev); 11486 if (ret) 11487 goto free_dev; 11488 11489 if (pmu->attr_update) { 11490 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11491 if (ret) 11492 goto del_dev; 11493 } 11494 11495 out: 11496 return ret; 11497 11498 del_dev: 11499 device_del(pmu->dev); 11500 11501 free_dev: 11502 put_device(pmu->dev); 11503 goto out; 11504 } 11505 11506 static struct lock_class_key cpuctx_mutex; 11507 static struct lock_class_key cpuctx_lock; 11508 11509 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11510 { 11511 int cpu, ret, max = PERF_TYPE_MAX; 11512 11513 mutex_lock(&pmus_lock); 11514 ret = -ENOMEM; 11515 pmu->pmu_disable_count = alloc_percpu(int); 11516 if (!pmu->pmu_disable_count) 11517 goto unlock; 11518 11519 pmu->type = -1; 11520 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11521 ret = -EINVAL; 11522 goto free_pdc; 11523 } 11524 11525 pmu->name = name; 11526 11527 if (type >= 0) 11528 max = type; 11529 11530 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11531 if (ret < 0) 11532 goto free_pdc; 11533 11534 WARN_ON(type >= 0 && ret != type); 11535 11536 type = ret; 11537 pmu->type = type; 11538 11539 if (pmu_bus_running && !pmu->dev) { 11540 ret = pmu_dev_alloc(pmu); 11541 if (ret) 11542 goto free_idr; 11543 } 11544 11545 ret = -ENOMEM; 11546 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11547 if (!pmu->cpu_pmu_context) 11548 goto free_dev; 11549 11550 for_each_possible_cpu(cpu) { 11551 struct perf_cpu_pmu_context *cpc; 11552 11553 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11554 __perf_init_event_pmu_context(&cpc->epc, pmu); 11555 __perf_mux_hrtimer_init(cpc, cpu); 11556 } 11557 11558 if (!pmu->start_txn) { 11559 if (pmu->pmu_enable) { 11560 /* 11561 * If we have pmu_enable/pmu_disable calls, install 11562 * transaction stubs that use that to try and batch 11563 * hardware accesses. 11564 */ 11565 pmu->start_txn = perf_pmu_start_txn; 11566 pmu->commit_txn = perf_pmu_commit_txn; 11567 pmu->cancel_txn = perf_pmu_cancel_txn; 11568 } else { 11569 pmu->start_txn = perf_pmu_nop_txn; 11570 pmu->commit_txn = perf_pmu_nop_int; 11571 pmu->cancel_txn = perf_pmu_nop_void; 11572 } 11573 } 11574 11575 if (!pmu->pmu_enable) { 11576 pmu->pmu_enable = perf_pmu_nop_void; 11577 pmu->pmu_disable = perf_pmu_nop_void; 11578 } 11579 11580 if (!pmu->check_period) 11581 pmu->check_period = perf_event_nop_int; 11582 11583 if (!pmu->event_idx) 11584 pmu->event_idx = perf_event_idx_default; 11585 11586 list_add_rcu(&pmu->entry, &pmus); 11587 atomic_set(&pmu->exclusive_cnt, 0); 11588 ret = 0; 11589 unlock: 11590 mutex_unlock(&pmus_lock); 11591 11592 return ret; 11593 11594 free_dev: 11595 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11596 device_del(pmu->dev); 11597 put_device(pmu->dev); 11598 } 11599 11600 free_idr: 11601 idr_remove(&pmu_idr, pmu->type); 11602 11603 free_pdc: 11604 free_percpu(pmu->pmu_disable_count); 11605 goto unlock; 11606 } 11607 EXPORT_SYMBOL_GPL(perf_pmu_register); 11608 11609 void perf_pmu_unregister(struct pmu *pmu) 11610 { 11611 mutex_lock(&pmus_lock); 11612 list_del_rcu(&pmu->entry); 11613 11614 /* 11615 * We dereference the pmu list under both SRCU and regular RCU, so 11616 * synchronize against both of those. 11617 */ 11618 synchronize_srcu(&pmus_srcu); 11619 synchronize_rcu(); 11620 11621 free_percpu(pmu->pmu_disable_count); 11622 idr_remove(&pmu_idr, pmu->type); 11623 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11624 if (pmu->nr_addr_filters) 11625 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11626 device_del(pmu->dev); 11627 put_device(pmu->dev); 11628 } 11629 free_pmu_context(pmu); 11630 mutex_unlock(&pmus_lock); 11631 } 11632 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11633 11634 static inline bool has_extended_regs(struct perf_event *event) 11635 { 11636 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11637 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11638 } 11639 11640 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11641 { 11642 struct perf_event_context *ctx = NULL; 11643 int ret; 11644 11645 if (!try_module_get(pmu->module)) 11646 return -ENODEV; 11647 11648 /* 11649 * A number of pmu->event_init() methods iterate the sibling_list to, 11650 * for example, validate if the group fits on the PMU. Therefore, 11651 * if this is a sibling event, acquire the ctx->mutex to protect 11652 * the sibling_list. 11653 */ 11654 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11655 /* 11656 * This ctx->mutex can nest when we're called through 11657 * inheritance. See the perf_event_ctx_lock_nested() comment. 11658 */ 11659 ctx = perf_event_ctx_lock_nested(event->group_leader, 11660 SINGLE_DEPTH_NESTING); 11661 BUG_ON(!ctx); 11662 } 11663 11664 event->pmu = pmu; 11665 ret = pmu->event_init(event); 11666 11667 if (ctx) 11668 perf_event_ctx_unlock(event->group_leader, ctx); 11669 11670 if (!ret) { 11671 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11672 has_extended_regs(event)) 11673 ret = -EOPNOTSUPP; 11674 11675 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11676 event_has_any_exclude_flag(event)) 11677 ret = -EINVAL; 11678 11679 if (ret && event->destroy) 11680 event->destroy(event); 11681 } 11682 11683 if (ret) 11684 module_put(pmu->module); 11685 11686 return ret; 11687 } 11688 11689 static struct pmu *perf_init_event(struct perf_event *event) 11690 { 11691 bool extended_type = false; 11692 int idx, type, ret; 11693 struct pmu *pmu; 11694 11695 idx = srcu_read_lock(&pmus_srcu); 11696 11697 /* 11698 * Save original type before calling pmu->event_init() since certain 11699 * pmus overwrites event->attr.type to forward event to another pmu. 11700 */ 11701 event->orig_type = event->attr.type; 11702 11703 /* Try parent's PMU first: */ 11704 if (event->parent && event->parent->pmu) { 11705 pmu = event->parent->pmu; 11706 ret = perf_try_init_event(pmu, event); 11707 if (!ret) 11708 goto unlock; 11709 } 11710 11711 /* 11712 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11713 * are often aliases for PERF_TYPE_RAW. 11714 */ 11715 type = event->attr.type; 11716 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11717 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11718 if (!type) { 11719 type = PERF_TYPE_RAW; 11720 } else { 11721 extended_type = true; 11722 event->attr.config &= PERF_HW_EVENT_MASK; 11723 } 11724 } 11725 11726 again: 11727 rcu_read_lock(); 11728 pmu = idr_find(&pmu_idr, type); 11729 rcu_read_unlock(); 11730 if (pmu) { 11731 if (event->attr.type != type && type != PERF_TYPE_RAW && 11732 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11733 goto fail; 11734 11735 ret = perf_try_init_event(pmu, event); 11736 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11737 type = event->attr.type; 11738 goto again; 11739 } 11740 11741 if (ret) 11742 pmu = ERR_PTR(ret); 11743 11744 goto unlock; 11745 } 11746 11747 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11748 ret = perf_try_init_event(pmu, event); 11749 if (!ret) 11750 goto unlock; 11751 11752 if (ret != -ENOENT) { 11753 pmu = ERR_PTR(ret); 11754 goto unlock; 11755 } 11756 } 11757 fail: 11758 pmu = ERR_PTR(-ENOENT); 11759 unlock: 11760 srcu_read_unlock(&pmus_srcu, idx); 11761 11762 return pmu; 11763 } 11764 11765 static void attach_sb_event(struct perf_event *event) 11766 { 11767 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11768 11769 raw_spin_lock(&pel->lock); 11770 list_add_rcu(&event->sb_list, &pel->list); 11771 raw_spin_unlock(&pel->lock); 11772 } 11773 11774 /* 11775 * We keep a list of all !task (and therefore per-cpu) events 11776 * that need to receive side-band records. 11777 * 11778 * This avoids having to scan all the various PMU per-cpu contexts 11779 * looking for them. 11780 */ 11781 static void account_pmu_sb_event(struct perf_event *event) 11782 { 11783 if (is_sb_event(event)) 11784 attach_sb_event(event); 11785 } 11786 11787 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11788 static void account_freq_event_nohz(void) 11789 { 11790 #ifdef CONFIG_NO_HZ_FULL 11791 /* Lock so we don't race with concurrent unaccount */ 11792 spin_lock(&nr_freq_lock); 11793 if (atomic_inc_return(&nr_freq_events) == 1) 11794 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11795 spin_unlock(&nr_freq_lock); 11796 #endif 11797 } 11798 11799 static void account_freq_event(void) 11800 { 11801 if (tick_nohz_full_enabled()) 11802 account_freq_event_nohz(); 11803 else 11804 atomic_inc(&nr_freq_events); 11805 } 11806 11807 11808 static void account_event(struct perf_event *event) 11809 { 11810 bool inc = false; 11811 11812 if (event->parent) 11813 return; 11814 11815 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11816 inc = true; 11817 if (event->attr.mmap || event->attr.mmap_data) 11818 atomic_inc(&nr_mmap_events); 11819 if (event->attr.build_id) 11820 atomic_inc(&nr_build_id_events); 11821 if (event->attr.comm) 11822 atomic_inc(&nr_comm_events); 11823 if (event->attr.namespaces) 11824 atomic_inc(&nr_namespaces_events); 11825 if (event->attr.cgroup) 11826 atomic_inc(&nr_cgroup_events); 11827 if (event->attr.task) 11828 atomic_inc(&nr_task_events); 11829 if (event->attr.freq) 11830 account_freq_event(); 11831 if (event->attr.context_switch) { 11832 atomic_inc(&nr_switch_events); 11833 inc = true; 11834 } 11835 if (has_branch_stack(event)) 11836 inc = true; 11837 if (is_cgroup_event(event)) 11838 inc = true; 11839 if (event->attr.ksymbol) 11840 atomic_inc(&nr_ksymbol_events); 11841 if (event->attr.bpf_event) 11842 atomic_inc(&nr_bpf_events); 11843 if (event->attr.text_poke) 11844 atomic_inc(&nr_text_poke_events); 11845 11846 if (inc) { 11847 /* 11848 * We need the mutex here because static_branch_enable() 11849 * must complete *before* the perf_sched_count increment 11850 * becomes visible. 11851 */ 11852 if (atomic_inc_not_zero(&perf_sched_count)) 11853 goto enabled; 11854 11855 mutex_lock(&perf_sched_mutex); 11856 if (!atomic_read(&perf_sched_count)) { 11857 static_branch_enable(&perf_sched_events); 11858 /* 11859 * Guarantee that all CPUs observe they key change and 11860 * call the perf scheduling hooks before proceeding to 11861 * install events that need them. 11862 */ 11863 synchronize_rcu(); 11864 } 11865 /* 11866 * Now that we have waited for the sync_sched(), allow further 11867 * increments to by-pass the mutex. 11868 */ 11869 atomic_inc(&perf_sched_count); 11870 mutex_unlock(&perf_sched_mutex); 11871 } 11872 enabled: 11873 11874 account_pmu_sb_event(event); 11875 } 11876 11877 /* 11878 * Allocate and initialize an event structure 11879 */ 11880 static struct perf_event * 11881 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11882 struct task_struct *task, 11883 struct perf_event *group_leader, 11884 struct perf_event *parent_event, 11885 perf_overflow_handler_t overflow_handler, 11886 void *context, int cgroup_fd) 11887 { 11888 struct pmu *pmu; 11889 struct perf_event *event; 11890 struct hw_perf_event *hwc; 11891 long err = -EINVAL; 11892 int node; 11893 11894 if ((unsigned)cpu >= nr_cpu_ids) { 11895 if (!task || cpu != -1) 11896 return ERR_PTR(-EINVAL); 11897 } 11898 if (attr->sigtrap && !task) { 11899 /* Requires a task: avoid signalling random tasks. */ 11900 return ERR_PTR(-EINVAL); 11901 } 11902 11903 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11904 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11905 node); 11906 if (!event) 11907 return ERR_PTR(-ENOMEM); 11908 11909 /* 11910 * Single events are their own group leaders, with an 11911 * empty sibling list: 11912 */ 11913 if (!group_leader) 11914 group_leader = event; 11915 11916 mutex_init(&event->child_mutex); 11917 INIT_LIST_HEAD(&event->child_list); 11918 11919 INIT_LIST_HEAD(&event->event_entry); 11920 INIT_LIST_HEAD(&event->sibling_list); 11921 INIT_LIST_HEAD(&event->active_list); 11922 init_event_group(event); 11923 INIT_LIST_HEAD(&event->rb_entry); 11924 INIT_LIST_HEAD(&event->active_entry); 11925 INIT_LIST_HEAD(&event->addr_filters.list); 11926 INIT_HLIST_NODE(&event->hlist_entry); 11927 11928 11929 init_waitqueue_head(&event->waitq); 11930 init_irq_work(&event->pending_irq, perf_pending_irq); 11931 init_task_work(&event->pending_task, perf_pending_task); 11932 11933 mutex_init(&event->mmap_mutex); 11934 raw_spin_lock_init(&event->addr_filters.lock); 11935 11936 atomic_long_set(&event->refcount, 1); 11937 event->cpu = cpu; 11938 event->attr = *attr; 11939 event->group_leader = group_leader; 11940 event->pmu = NULL; 11941 event->oncpu = -1; 11942 11943 event->parent = parent_event; 11944 11945 event->ns = get_pid_ns(task_active_pid_ns(current)); 11946 event->id = atomic64_inc_return(&perf_event_id); 11947 11948 event->state = PERF_EVENT_STATE_INACTIVE; 11949 11950 if (parent_event) 11951 event->event_caps = parent_event->event_caps; 11952 11953 if (task) { 11954 event->attach_state = PERF_ATTACH_TASK; 11955 /* 11956 * XXX pmu::event_init needs to know what task to account to 11957 * and we cannot use the ctx information because we need the 11958 * pmu before we get a ctx. 11959 */ 11960 event->hw.target = get_task_struct(task); 11961 } 11962 11963 event->clock = &local_clock; 11964 if (parent_event) 11965 event->clock = parent_event->clock; 11966 11967 if (!overflow_handler && parent_event) { 11968 overflow_handler = parent_event->overflow_handler; 11969 context = parent_event->overflow_handler_context; 11970 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11971 if (overflow_handler == bpf_overflow_handler) { 11972 struct bpf_prog *prog = parent_event->prog; 11973 11974 bpf_prog_inc(prog); 11975 event->prog = prog; 11976 event->orig_overflow_handler = 11977 parent_event->orig_overflow_handler; 11978 } 11979 #endif 11980 } 11981 11982 if (overflow_handler) { 11983 event->overflow_handler = overflow_handler; 11984 event->overflow_handler_context = context; 11985 } else if (is_write_backward(event)){ 11986 event->overflow_handler = perf_event_output_backward; 11987 event->overflow_handler_context = NULL; 11988 } else { 11989 event->overflow_handler = perf_event_output_forward; 11990 event->overflow_handler_context = NULL; 11991 } 11992 11993 perf_event__state_init(event); 11994 11995 pmu = NULL; 11996 11997 hwc = &event->hw; 11998 hwc->sample_period = attr->sample_period; 11999 if (attr->freq && attr->sample_freq) 12000 hwc->sample_period = 1; 12001 hwc->last_period = hwc->sample_period; 12002 12003 local64_set(&hwc->period_left, hwc->sample_period); 12004 12005 /* 12006 * We currently do not support PERF_SAMPLE_READ on inherited events. 12007 * See perf_output_read(). 12008 */ 12009 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12010 goto err_ns; 12011 12012 if (!has_branch_stack(event)) 12013 event->attr.branch_sample_type = 0; 12014 12015 pmu = perf_init_event(event); 12016 if (IS_ERR(pmu)) { 12017 err = PTR_ERR(pmu); 12018 goto err_ns; 12019 } 12020 12021 /* 12022 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12023 * events (they don't make sense as the cgroup will be different 12024 * on other CPUs in the uncore mask). 12025 */ 12026 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12027 err = -EINVAL; 12028 goto err_pmu; 12029 } 12030 12031 if (event->attr.aux_output && 12032 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12033 err = -EOPNOTSUPP; 12034 goto err_pmu; 12035 } 12036 12037 if (cgroup_fd != -1) { 12038 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12039 if (err) 12040 goto err_pmu; 12041 } 12042 12043 err = exclusive_event_init(event); 12044 if (err) 12045 goto err_pmu; 12046 12047 if (has_addr_filter(event)) { 12048 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12049 sizeof(struct perf_addr_filter_range), 12050 GFP_KERNEL); 12051 if (!event->addr_filter_ranges) { 12052 err = -ENOMEM; 12053 goto err_per_task; 12054 } 12055 12056 /* 12057 * Clone the parent's vma offsets: they are valid until exec() 12058 * even if the mm is not shared with the parent. 12059 */ 12060 if (event->parent) { 12061 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12062 12063 raw_spin_lock_irq(&ifh->lock); 12064 memcpy(event->addr_filter_ranges, 12065 event->parent->addr_filter_ranges, 12066 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12067 raw_spin_unlock_irq(&ifh->lock); 12068 } 12069 12070 /* force hw sync on the address filters */ 12071 event->addr_filters_gen = 1; 12072 } 12073 12074 if (!event->parent) { 12075 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12076 err = get_callchain_buffers(attr->sample_max_stack); 12077 if (err) 12078 goto err_addr_filters; 12079 } 12080 } 12081 12082 err = security_perf_event_alloc(event); 12083 if (err) 12084 goto err_callchain_buffer; 12085 12086 /* symmetric to unaccount_event() in _free_event() */ 12087 account_event(event); 12088 12089 return event; 12090 12091 err_callchain_buffer: 12092 if (!event->parent) { 12093 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12094 put_callchain_buffers(); 12095 } 12096 err_addr_filters: 12097 kfree(event->addr_filter_ranges); 12098 12099 err_per_task: 12100 exclusive_event_destroy(event); 12101 12102 err_pmu: 12103 if (is_cgroup_event(event)) 12104 perf_detach_cgroup(event); 12105 if (event->destroy) 12106 event->destroy(event); 12107 module_put(pmu->module); 12108 err_ns: 12109 if (event->hw.target) 12110 put_task_struct(event->hw.target); 12111 call_rcu(&event->rcu_head, free_event_rcu); 12112 12113 return ERR_PTR(err); 12114 } 12115 12116 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12117 struct perf_event_attr *attr) 12118 { 12119 u32 size; 12120 int ret; 12121 12122 /* Zero the full structure, so that a short copy will be nice. */ 12123 memset(attr, 0, sizeof(*attr)); 12124 12125 ret = get_user(size, &uattr->size); 12126 if (ret) 12127 return ret; 12128 12129 /* ABI compatibility quirk: */ 12130 if (!size) 12131 size = PERF_ATTR_SIZE_VER0; 12132 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12133 goto err_size; 12134 12135 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12136 if (ret) { 12137 if (ret == -E2BIG) 12138 goto err_size; 12139 return ret; 12140 } 12141 12142 attr->size = size; 12143 12144 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12145 return -EINVAL; 12146 12147 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12148 return -EINVAL; 12149 12150 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12151 return -EINVAL; 12152 12153 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12154 u64 mask = attr->branch_sample_type; 12155 12156 /* only using defined bits */ 12157 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12158 return -EINVAL; 12159 12160 /* at least one branch bit must be set */ 12161 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12162 return -EINVAL; 12163 12164 /* propagate priv level, when not set for branch */ 12165 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12166 12167 /* exclude_kernel checked on syscall entry */ 12168 if (!attr->exclude_kernel) 12169 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12170 12171 if (!attr->exclude_user) 12172 mask |= PERF_SAMPLE_BRANCH_USER; 12173 12174 if (!attr->exclude_hv) 12175 mask |= PERF_SAMPLE_BRANCH_HV; 12176 /* 12177 * adjust user setting (for HW filter setup) 12178 */ 12179 attr->branch_sample_type = mask; 12180 } 12181 /* privileged levels capture (kernel, hv): check permissions */ 12182 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12183 ret = perf_allow_kernel(attr); 12184 if (ret) 12185 return ret; 12186 } 12187 } 12188 12189 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12190 ret = perf_reg_validate(attr->sample_regs_user); 12191 if (ret) 12192 return ret; 12193 } 12194 12195 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12196 if (!arch_perf_have_user_stack_dump()) 12197 return -ENOSYS; 12198 12199 /* 12200 * We have __u32 type for the size, but so far 12201 * we can only use __u16 as maximum due to the 12202 * __u16 sample size limit. 12203 */ 12204 if (attr->sample_stack_user >= USHRT_MAX) 12205 return -EINVAL; 12206 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12207 return -EINVAL; 12208 } 12209 12210 if (!attr->sample_max_stack) 12211 attr->sample_max_stack = sysctl_perf_event_max_stack; 12212 12213 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12214 ret = perf_reg_validate(attr->sample_regs_intr); 12215 12216 #ifndef CONFIG_CGROUP_PERF 12217 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12218 return -EINVAL; 12219 #endif 12220 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12221 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12222 return -EINVAL; 12223 12224 if (!attr->inherit && attr->inherit_thread) 12225 return -EINVAL; 12226 12227 if (attr->remove_on_exec && attr->enable_on_exec) 12228 return -EINVAL; 12229 12230 if (attr->sigtrap && !attr->remove_on_exec) 12231 return -EINVAL; 12232 12233 out: 12234 return ret; 12235 12236 err_size: 12237 put_user(sizeof(*attr), &uattr->size); 12238 ret = -E2BIG; 12239 goto out; 12240 } 12241 12242 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12243 { 12244 if (b < a) 12245 swap(a, b); 12246 12247 mutex_lock(a); 12248 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12249 } 12250 12251 static int 12252 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12253 { 12254 struct perf_buffer *rb = NULL; 12255 int ret = -EINVAL; 12256 12257 if (!output_event) { 12258 mutex_lock(&event->mmap_mutex); 12259 goto set; 12260 } 12261 12262 /* don't allow circular references */ 12263 if (event == output_event) 12264 goto out; 12265 12266 /* 12267 * Don't allow cross-cpu buffers 12268 */ 12269 if (output_event->cpu != event->cpu) 12270 goto out; 12271 12272 /* 12273 * If its not a per-cpu rb, it must be the same task. 12274 */ 12275 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12276 goto out; 12277 12278 /* 12279 * Mixing clocks in the same buffer is trouble you don't need. 12280 */ 12281 if (output_event->clock != event->clock) 12282 goto out; 12283 12284 /* 12285 * Either writing ring buffer from beginning or from end. 12286 * Mixing is not allowed. 12287 */ 12288 if (is_write_backward(output_event) != is_write_backward(event)) 12289 goto out; 12290 12291 /* 12292 * If both events generate aux data, they must be on the same PMU 12293 */ 12294 if (has_aux(event) && has_aux(output_event) && 12295 event->pmu != output_event->pmu) 12296 goto out; 12297 12298 /* 12299 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12300 * output_event is already on rb->event_list, and the list iteration 12301 * restarts after every removal, it is guaranteed this new event is 12302 * observed *OR* if output_event is already removed, it's guaranteed we 12303 * observe !rb->mmap_count. 12304 */ 12305 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12306 set: 12307 /* Can't redirect output if we've got an active mmap() */ 12308 if (atomic_read(&event->mmap_count)) 12309 goto unlock; 12310 12311 if (output_event) { 12312 /* get the rb we want to redirect to */ 12313 rb = ring_buffer_get(output_event); 12314 if (!rb) 12315 goto unlock; 12316 12317 /* did we race against perf_mmap_close() */ 12318 if (!atomic_read(&rb->mmap_count)) { 12319 ring_buffer_put(rb); 12320 goto unlock; 12321 } 12322 } 12323 12324 ring_buffer_attach(event, rb); 12325 12326 ret = 0; 12327 unlock: 12328 mutex_unlock(&event->mmap_mutex); 12329 if (output_event) 12330 mutex_unlock(&output_event->mmap_mutex); 12331 12332 out: 12333 return ret; 12334 } 12335 12336 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12337 { 12338 bool nmi_safe = false; 12339 12340 switch (clk_id) { 12341 case CLOCK_MONOTONIC: 12342 event->clock = &ktime_get_mono_fast_ns; 12343 nmi_safe = true; 12344 break; 12345 12346 case CLOCK_MONOTONIC_RAW: 12347 event->clock = &ktime_get_raw_fast_ns; 12348 nmi_safe = true; 12349 break; 12350 12351 case CLOCK_REALTIME: 12352 event->clock = &ktime_get_real_ns; 12353 break; 12354 12355 case CLOCK_BOOTTIME: 12356 event->clock = &ktime_get_boottime_ns; 12357 break; 12358 12359 case CLOCK_TAI: 12360 event->clock = &ktime_get_clocktai_ns; 12361 break; 12362 12363 default: 12364 return -EINVAL; 12365 } 12366 12367 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12368 return -EINVAL; 12369 12370 return 0; 12371 } 12372 12373 static bool 12374 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12375 { 12376 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12377 bool is_capable = perfmon_capable(); 12378 12379 if (attr->sigtrap) { 12380 /* 12381 * perf_event_attr::sigtrap sends signals to the other task. 12382 * Require the current task to also have CAP_KILL. 12383 */ 12384 rcu_read_lock(); 12385 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12386 rcu_read_unlock(); 12387 12388 /* 12389 * If the required capabilities aren't available, checks for 12390 * ptrace permissions: upgrade to ATTACH, since sending signals 12391 * can effectively change the target task. 12392 */ 12393 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12394 } 12395 12396 /* 12397 * Preserve ptrace permission check for backwards compatibility. The 12398 * ptrace check also includes checks that the current task and other 12399 * task have matching uids, and is therefore not done here explicitly. 12400 */ 12401 return is_capable || ptrace_may_access(task, ptrace_mode); 12402 } 12403 12404 /** 12405 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12406 * 12407 * @attr_uptr: event_id type attributes for monitoring/sampling 12408 * @pid: target pid 12409 * @cpu: target cpu 12410 * @group_fd: group leader event fd 12411 * @flags: perf event open flags 12412 */ 12413 SYSCALL_DEFINE5(perf_event_open, 12414 struct perf_event_attr __user *, attr_uptr, 12415 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12416 { 12417 struct perf_event *group_leader = NULL, *output_event = NULL; 12418 struct perf_event_pmu_context *pmu_ctx; 12419 struct perf_event *event, *sibling; 12420 struct perf_event_attr attr; 12421 struct perf_event_context *ctx; 12422 struct file *event_file = NULL; 12423 struct fd group = {NULL, 0}; 12424 struct task_struct *task = NULL; 12425 struct pmu *pmu; 12426 int event_fd; 12427 int move_group = 0; 12428 int err; 12429 int f_flags = O_RDWR; 12430 int cgroup_fd = -1; 12431 12432 /* for future expandability... */ 12433 if (flags & ~PERF_FLAG_ALL) 12434 return -EINVAL; 12435 12436 err = perf_copy_attr(attr_uptr, &attr); 12437 if (err) 12438 return err; 12439 12440 /* Do we allow access to perf_event_open(2) ? */ 12441 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12442 if (err) 12443 return err; 12444 12445 if (!attr.exclude_kernel) { 12446 err = perf_allow_kernel(&attr); 12447 if (err) 12448 return err; 12449 } 12450 12451 if (attr.namespaces) { 12452 if (!perfmon_capable()) 12453 return -EACCES; 12454 } 12455 12456 if (attr.freq) { 12457 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12458 return -EINVAL; 12459 } else { 12460 if (attr.sample_period & (1ULL << 63)) 12461 return -EINVAL; 12462 } 12463 12464 /* Only privileged users can get physical addresses */ 12465 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12466 err = perf_allow_kernel(&attr); 12467 if (err) 12468 return err; 12469 } 12470 12471 /* REGS_INTR can leak data, lockdown must prevent this */ 12472 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12473 err = security_locked_down(LOCKDOWN_PERF); 12474 if (err) 12475 return err; 12476 } 12477 12478 /* 12479 * In cgroup mode, the pid argument is used to pass the fd 12480 * opened to the cgroup directory in cgroupfs. The cpu argument 12481 * designates the cpu on which to monitor threads from that 12482 * cgroup. 12483 */ 12484 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12485 return -EINVAL; 12486 12487 if (flags & PERF_FLAG_FD_CLOEXEC) 12488 f_flags |= O_CLOEXEC; 12489 12490 event_fd = get_unused_fd_flags(f_flags); 12491 if (event_fd < 0) 12492 return event_fd; 12493 12494 if (group_fd != -1) { 12495 err = perf_fget_light(group_fd, &group); 12496 if (err) 12497 goto err_fd; 12498 group_leader = group.file->private_data; 12499 if (flags & PERF_FLAG_FD_OUTPUT) 12500 output_event = group_leader; 12501 if (flags & PERF_FLAG_FD_NO_GROUP) 12502 group_leader = NULL; 12503 } 12504 12505 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12506 task = find_lively_task_by_vpid(pid); 12507 if (IS_ERR(task)) { 12508 err = PTR_ERR(task); 12509 goto err_group_fd; 12510 } 12511 } 12512 12513 if (task && group_leader && 12514 group_leader->attr.inherit != attr.inherit) { 12515 err = -EINVAL; 12516 goto err_task; 12517 } 12518 12519 if (flags & PERF_FLAG_PID_CGROUP) 12520 cgroup_fd = pid; 12521 12522 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12523 NULL, NULL, cgroup_fd); 12524 if (IS_ERR(event)) { 12525 err = PTR_ERR(event); 12526 goto err_task; 12527 } 12528 12529 if (is_sampling_event(event)) { 12530 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12531 err = -EOPNOTSUPP; 12532 goto err_alloc; 12533 } 12534 } 12535 12536 /* 12537 * Special case software events and allow them to be part of 12538 * any hardware group. 12539 */ 12540 pmu = event->pmu; 12541 12542 if (attr.use_clockid) { 12543 err = perf_event_set_clock(event, attr.clockid); 12544 if (err) 12545 goto err_alloc; 12546 } 12547 12548 if (pmu->task_ctx_nr == perf_sw_context) 12549 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12550 12551 if (task) { 12552 err = down_read_interruptible(&task->signal->exec_update_lock); 12553 if (err) 12554 goto err_alloc; 12555 12556 /* 12557 * We must hold exec_update_lock across this and any potential 12558 * perf_install_in_context() call for this new event to 12559 * serialize against exec() altering our credentials (and the 12560 * perf_event_exit_task() that could imply). 12561 */ 12562 err = -EACCES; 12563 if (!perf_check_permission(&attr, task)) 12564 goto err_cred; 12565 } 12566 12567 /* 12568 * Get the target context (task or percpu): 12569 */ 12570 ctx = find_get_context(task, event); 12571 if (IS_ERR(ctx)) { 12572 err = PTR_ERR(ctx); 12573 goto err_cred; 12574 } 12575 12576 mutex_lock(&ctx->mutex); 12577 12578 if (ctx->task == TASK_TOMBSTONE) { 12579 err = -ESRCH; 12580 goto err_locked; 12581 } 12582 12583 if (!task) { 12584 /* 12585 * Check if the @cpu we're creating an event for is online. 12586 * 12587 * We use the perf_cpu_context::ctx::mutex to serialize against 12588 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12589 */ 12590 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12591 12592 if (!cpuctx->online) { 12593 err = -ENODEV; 12594 goto err_locked; 12595 } 12596 } 12597 12598 if (group_leader) { 12599 err = -EINVAL; 12600 12601 /* 12602 * Do not allow a recursive hierarchy (this new sibling 12603 * becoming part of another group-sibling): 12604 */ 12605 if (group_leader->group_leader != group_leader) 12606 goto err_locked; 12607 12608 /* All events in a group should have the same clock */ 12609 if (group_leader->clock != event->clock) 12610 goto err_locked; 12611 12612 /* 12613 * Make sure we're both events for the same CPU; 12614 * grouping events for different CPUs is broken; since 12615 * you can never concurrently schedule them anyhow. 12616 */ 12617 if (group_leader->cpu != event->cpu) 12618 goto err_locked; 12619 12620 /* 12621 * Make sure we're both on the same context; either task or cpu. 12622 */ 12623 if (group_leader->ctx != ctx) 12624 goto err_locked; 12625 12626 /* 12627 * Only a group leader can be exclusive or pinned 12628 */ 12629 if (attr.exclusive || attr.pinned) 12630 goto err_locked; 12631 12632 if (is_software_event(event) && 12633 !in_software_context(group_leader)) { 12634 /* 12635 * If the event is a sw event, but the group_leader 12636 * is on hw context. 12637 * 12638 * Allow the addition of software events to hw 12639 * groups, this is safe because software events 12640 * never fail to schedule. 12641 * 12642 * Note the comment that goes with struct 12643 * perf_event_pmu_context. 12644 */ 12645 pmu = group_leader->pmu_ctx->pmu; 12646 } else if (!is_software_event(event)) { 12647 if (is_software_event(group_leader) && 12648 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12649 /* 12650 * In case the group is a pure software group, and we 12651 * try to add a hardware event, move the whole group to 12652 * the hardware context. 12653 */ 12654 move_group = 1; 12655 } 12656 12657 /* Don't allow group of multiple hw events from different pmus */ 12658 if (!in_software_context(group_leader) && 12659 group_leader->pmu_ctx->pmu != pmu) 12660 goto err_locked; 12661 } 12662 } 12663 12664 /* 12665 * Now that we're certain of the pmu; find the pmu_ctx. 12666 */ 12667 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12668 if (IS_ERR(pmu_ctx)) { 12669 err = PTR_ERR(pmu_ctx); 12670 goto err_locked; 12671 } 12672 event->pmu_ctx = pmu_ctx; 12673 12674 if (output_event) { 12675 err = perf_event_set_output(event, output_event); 12676 if (err) 12677 goto err_context; 12678 } 12679 12680 if (!perf_event_validate_size(event)) { 12681 err = -E2BIG; 12682 goto err_context; 12683 } 12684 12685 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12686 err = -EINVAL; 12687 goto err_context; 12688 } 12689 12690 /* 12691 * Must be under the same ctx::mutex as perf_install_in_context(), 12692 * because we need to serialize with concurrent event creation. 12693 */ 12694 if (!exclusive_event_installable(event, ctx)) { 12695 err = -EBUSY; 12696 goto err_context; 12697 } 12698 12699 WARN_ON_ONCE(ctx->parent_ctx); 12700 12701 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12702 if (IS_ERR(event_file)) { 12703 err = PTR_ERR(event_file); 12704 event_file = NULL; 12705 goto err_context; 12706 } 12707 12708 /* 12709 * This is the point on no return; we cannot fail hereafter. This is 12710 * where we start modifying current state. 12711 */ 12712 12713 if (move_group) { 12714 perf_remove_from_context(group_leader, 0); 12715 put_pmu_ctx(group_leader->pmu_ctx); 12716 12717 for_each_sibling_event(sibling, group_leader) { 12718 perf_remove_from_context(sibling, 0); 12719 put_pmu_ctx(sibling->pmu_ctx); 12720 } 12721 12722 /* 12723 * Install the group siblings before the group leader. 12724 * 12725 * Because a group leader will try and install the entire group 12726 * (through the sibling list, which is still in-tact), we can 12727 * end up with siblings installed in the wrong context. 12728 * 12729 * By installing siblings first we NO-OP because they're not 12730 * reachable through the group lists. 12731 */ 12732 for_each_sibling_event(sibling, group_leader) { 12733 sibling->pmu_ctx = pmu_ctx; 12734 get_pmu_ctx(pmu_ctx); 12735 perf_event__state_init(sibling); 12736 perf_install_in_context(ctx, sibling, sibling->cpu); 12737 } 12738 12739 /* 12740 * Removing from the context ends up with disabled 12741 * event. What we want here is event in the initial 12742 * startup state, ready to be add into new context. 12743 */ 12744 group_leader->pmu_ctx = pmu_ctx; 12745 get_pmu_ctx(pmu_ctx); 12746 perf_event__state_init(group_leader); 12747 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12748 } 12749 12750 /* 12751 * Precalculate sample_data sizes; do while holding ctx::mutex such 12752 * that we're serialized against further additions and before 12753 * perf_install_in_context() which is the point the event is active and 12754 * can use these values. 12755 */ 12756 perf_event__header_size(event); 12757 perf_event__id_header_size(event); 12758 12759 event->owner = current; 12760 12761 perf_install_in_context(ctx, event, event->cpu); 12762 perf_unpin_context(ctx); 12763 12764 mutex_unlock(&ctx->mutex); 12765 12766 if (task) { 12767 up_read(&task->signal->exec_update_lock); 12768 put_task_struct(task); 12769 } 12770 12771 mutex_lock(¤t->perf_event_mutex); 12772 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12773 mutex_unlock(¤t->perf_event_mutex); 12774 12775 /* 12776 * Drop the reference on the group_event after placing the 12777 * new event on the sibling_list. This ensures destruction 12778 * of the group leader will find the pointer to itself in 12779 * perf_group_detach(). 12780 */ 12781 fdput(group); 12782 fd_install(event_fd, event_file); 12783 return event_fd; 12784 12785 err_context: 12786 put_pmu_ctx(event->pmu_ctx); 12787 event->pmu_ctx = NULL; /* _free_event() */ 12788 err_locked: 12789 mutex_unlock(&ctx->mutex); 12790 perf_unpin_context(ctx); 12791 put_ctx(ctx); 12792 err_cred: 12793 if (task) 12794 up_read(&task->signal->exec_update_lock); 12795 err_alloc: 12796 free_event(event); 12797 err_task: 12798 if (task) 12799 put_task_struct(task); 12800 err_group_fd: 12801 fdput(group); 12802 err_fd: 12803 put_unused_fd(event_fd); 12804 return err; 12805 } 12806 12807 /** 12808 * perf_event_create_kernel_counter 12809 * 12810 * @attr: attributes of the counter to create 12811 * @cpu: cpu in which the counter is bound 12812 * @task: task to profile (NULL for percpu) 12813 * @overflow_handler: callback to trigger when we hit the event 12814 * @context: context data could be used in overflow_handler callback 12815 */ 12816 struct perf_event * 12817 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12818 struct task_struct *task, 12819 perf_overflow_handler_t overflow_handler, 12820 void *context) 12821 { 12822 struct perf_event_pmu_context *pmu_ctx; 12823 struct perf_event_context *ctx; 12824 struct perf_event *event; 12825 struct pmu *pmu; 12826 int err; 12827 12828 /* 12829 * Grouping is not supported for kernel events, neither is 'AUX', 12830 * make sure the caller's intentions are adjusted. 12831 */ 12832 if (attr->aux_output) 12833 return ERR_PTR(-EINVAL); 12834 12835 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12836 overflow_handler, context, -1); 12837 if (IS_ERR(event)) { 12838 err = PTR_ERR(event); 12839 goto err; 12840 } 12841 12842 /* Mark owner so we could distinguish it from user events. */ 12843 event->owner = TASK_TOMBSTONE; 12844 pmu = event->pmu; 12845 12846 if (pmu->task_ctx_nr == perf_sw_context) 12847 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12848 12849 /* 12850 * Get the target context (task or percpu): 12851 */ 12852 ctx = find_get_context(task, event); 12853 if (IS_ERR(ctx)) { 12854 err = PTR_ERR(ctx); 12855 goto err_alloc; 12856 } 12857 12858 WARN_ON_ONCE(ctx->parent_ctx); 12859 mutex_lock(&ctx->mutex); 12860 if (ctx->task == TASK_TOMBSTONE) { 12861 err = -ESRCH; 12862 goto err_unlock; 12863 } 12864 12865 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12866 if (IS_ERR(pmu_ctx)) { 12867 err = PTR_ERR(pmu_ctx); 12868 goto err_unlock; 12869 } 12870 event->pmu_ctx = pmu_ctx; 12871 12872 if (!task) { 12873 /* 12874 * Check if the @cpu we're creating an event for is online. 12875 * 12876 * We use the perf_cpu_context::ctx::mutex to serialize against 12877 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12878 */ 12879 struct perf_cpu_context *cpuctx = 12880 container_of(ctx, struct perf_cpu_context, ctx); 12881 if (!cpuctx->online) { 12882 err = -ENODEV; 12883 goto err_pmu_ctx; 12884 } 12885 } 12886 12887 if (!exclusive_event_installable(event, ctx)) { 12888 err = -EBUSY; 12889 goto err_pmu_ctx; 12890 } 12891 12892 perf_install_in_context(ctx, event, event->cpu); 12893 perf_unpin_context(ctx); 12894 mutex_unlock(&ctx->mutex); 12895 12896 return event; 12897 12898 err_pmu_ctx: 12899 put_pmu_ctx(pmu_ctx); 12900 event->pmu_ctx = NULL; /* _free_event() */ 12901 err_unlock: 12902 mutex_unlock(&ctx->mutex); 12903 perf_unpin_context(ctx); 12904 put_ctx(ctx); 12905 err_alloc: 12906 free_event(event); 12907 err: 12908 return ERR_PTR(err); 12909 } 12910 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12911 12912 static void __perf_pmu_remove(struct perf_event_context *ctx, 12913 int cpu, struct pmu *pmu, 12914 struct perf_event_groups *groups, 12915 struct list_head *events) 12916 { 12917 struct perf_event *event, *sibling; 12918 12919 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12920 perf_remove_from_context(event, 0); 12921 put_pmu_ctx(event->pmu_ctx); 12922 list_add(&event->migrate_entry, events); 12923 12924 for_each_sibling_event(sibling, event) { 12925 perf_remove_from_context(sibling, 0); 12926 put_pmu_ctx(sibling->pmu_ctx); 12927 list_add(&sibling->migrate_entry, events); 12928 } 12929 } 12930 } 12931 12932 static void __perf_pmu_install_event(struct pmu *pmu, 12933 struct perf_event_context *ctx, 12934 int cpu, struct perf_event *event) 12935 { 12936 struct perf_event_pmu_context *epc; 12937 struct perf_event_context *old_ctx = event->ctx; 12938 12939 get_ctx(ctx); /* normally find_get_context() */ 12940 12941 event->cpu = cpu; 12942 epc = find_get_pmu_context(pmu, ctx, event); 12943 event->pmu_ctx = epc; 12944 12945 if (event->state >= PERF_EVENT_STATE_OFF) 12946 event->state = PERF_EVENT_STATE_INACTIVE; 12947 perf_install_in_context(ctx, event, cpu); 12948 12949 /* 12950 * Now that event->ctx is updated and visible, put the old ctx. 12951 */ 12952 put_ctx(old_ctx); 12953 } 12954 12955 static void __perf_pmu_install(struct perf_event_context *ctx, 12956 int cpu, struct pmu *pmu, struct list_head *events) 12957 { 12958 struct perf_event *event, *tmp; 12959 12960 /* 12961 * Re-instate events in 2 passes. 12962 * 12963 * Skip over group leaders and only install siblings on this first 12964 * pass, siblings will not get enabled without a leader, however a 12965 * leader will enable its siblings, even if those are still on the old 12966 * context. 12967 */ 12968 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12969 if (event->group_leader == event) 12970 continue; 12971 12972 list_del(&event->migrate_entry); 12973 __perf_pmu_install_event(pmu, ctx, cpu, event); 12974 } 12975 12976 /* 12977 * Once all the siblings are setup properly, install the group leaders 12978 * to make it go. 12979 */ 12980 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12981 list_del(&event->migrate_entry); 12982 __perf_pmu_install_event(pmu, ctx, cpu, event); 12983 } 12984 } 12985 12986 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12987 { 12988 struct perf_event_context *src_ctx, *dst_ctx; 12989 LIST_HEAD(events); 12990 12991 /* 12992 * Since per-cpu context is persistent, no need to grab an extra 12993 * reference. 12994 */ 12995 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12996 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12997 12998 /* 12999 * See perf_event_ctx_lock() for comments on the details 13000 * of swizzling perf_event::ctx. 13001 */ 13002 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13003 13004 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13005 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13006 13007 if (!list_empty(&events)) { 13008 /* 13009 * Wait for the events to quiesce before re-instating them. 13010 */ 13011 synchronize_rcu(); 13012 13013 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13014 } 13015 13016 mutex_unlock(&dst_ctx->mutex); 13017 mutex_unlock(&src_ctx->mutex); 13018 } 13019 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13020 13021 static void sync_child_event(struct perf_event *child_event) 13022 { 13023 struct perf_event *parent_event = child_event->parent; 13024 u64 child_val; 13025 13026 if (child_event->attr.inherit_stat) { 13027 struct task_struct *task = child_event->ctx->task; 13028 13029 if (task && task != TASK_TOMBSTONE) 13030 perf_event_read_event(child_event, task); 13031 } 13032 13033 child_val = perf_event_count(child_event); 13034 13035 /* 13036 * Add back the child's count to the parent's count: 13037 */ 13038 atomic64_add(child_val, &parent_event->child_count); 13039 atomic64_add(child_event->total_time_enabled, 13040 &parent_event->child_total_time_enabled); 13041 atomic64_add(child_event->total_time_running, 13042 &parent_event->child_total_time_running); 13043 } 13044 13045 static void 13046 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13047 { 13048 struct perf_event *parent_event = event->parent; 13049 unsigned long detach_flags = 0; 13050 13051 if (parent_event) { 13052 /* 13053 * Do not destroy the 'original' grouping; because of the 13054 * context switch optimization the original events could've 13055 * ended up in a random child task. 13056 * 13057 * If we were to destroy the original group, all group related 13058 * operations would cease to function properly after this 13059 * random child dies. 13060 * 13061 * Do destroy all inherited groups, we don't care about those 13062 * and being thorough is better. 13063 */ 13064 detach_flags = DETACH_GROUP | DETACH_CHILD; 13065 mutex_lock(&parent_event->child_mutex); 13066 } 13067 13068 perf_remove_from_context(event, detach_flags); 13069 13070 raw_spin_lock_irq(&ctx->lock); 13071 if (event->state > PERF_EVENT_STATE_EXIT) 13072 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13073 raw_spin_unlock_irq(&ctx->lock); 13074 13075 /* 13076 * Child events can be freed. 13077 */ 13078 if (parent_event) { 13079 mutex_unlock(&parent_event->child_mutex); 13080 /* 13081 * Kick perf_poll() for is_event_hup(); 13082 */ 13083 perf_event_wakeup(parent_event); 13084 free_event(event); 13085 put_event(parent_event); 13086 return; 13087 } 13088 13089 /* 13090 * Parent events are governed by their filedesc, retain them. 13091 */ 13092 perf_event_wakeup(event); 13093 } 13094 13095 static void perf_event_exit_task_context(struct task_struct *child) 13096 { 13097 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13098 struct perf_event *child_event, *next; 13099 13100 WARN_ON_ONCE(child != current); 13101 13102 child_ctx = perf_pin_task_context(child); 13103 if (!child_ctx) 13104 return; 13105 13106 /* 13107 * In order to reduce the amount of tricky in ctx tear-down, we hold 13108 * ctx::mutex over the entire thing. This serializes against almost 13109 * everything that wants to access the ctx. 13110 * 13111 * The exception is sys_perf_event_open() / 13112 * perf_event_create_kernel_count() which does find_get_context() 13113 * without ctx::mutex (it cannot because of the move_group double mutex 13114 * lock thing). See the comments in perf_install_in_context(). 13115 */ 13116 mutex_lock(&child_ctx->mutex); 13117 13118 /* 13119 * In a single ctx::lock section, de-schedule the events and detach the 13120 * context from the task such that we cannot ever get it scheduled back 13121 * in. 13122 */ 13123 raw_spin_lock_irq(&child_ctx->lock); 13124 task_ctx_sched_out(child_ctx, EVENT_ALL); 13125 13126 /* 13127 * Now that the context is inactive, destroy the task <-> ctx relation 13128 * and mark the context dead. 13129 */ 13130 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13131 put_ctx(child_ctx); /* cannot be last */ 13132 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13133 put_task_struct(current); /* cannot be last */ 13134 13135 clone_ctx = unclone_ctx(child_ctx); 13136 raw_spin_unlock_irq(&child_ctx->lock); 13137 13138 if (clone_ctx) 13139 put_ctx(clone_ctx); 13140 13141 /* 13142 * Report the task dead after unscheduling the events so that we 13143 * won't get any samples after PERF_RECORD_EXIT. We can however still 13144 * get a few PERF_RECORD_READ events. 13145 */ 13146 perf_event_task(child, child_ctx, 0); 13147 13148 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13149 perf_event_exit_event(child_event, child_ctx); 13150 13151 mutex_unlock(&child_ctx->mutex); 13152 13153 put_ctx(child_ctx); 13154 } 13155 13156 /* 13157 * When a child task exits, feed back event values to parent events. 13158 * 13159 * Can be called with exec_update_lock held when called from 13160 * setup_new_exec(). 13161 */ 13162 void perf_event_exit_task(struct task_struct *child) 13163 { 13164 struct perf_event *event, *tmp; 13165 13166 mutex_lock(&child->perf_event_mutex); 13167 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13168 owner_entry) { 13169 list_del_init(&event->owner_entry); 13170 13171 /* 13172 * Ensure the list deletion is visible before we clear 13173 * the owner, closes a race against perf_release() where 13174 * we need to serialize on the owner->perf_event_mutex. 13175 */ 13176 smp_store_release(&event->owner, NULL); 13177 } 13178 mutex_unlock(&child->perf_event_mutex); 13179 13180 perf_event_exit_task_context(child); 13181 13182 /* 13183 * The perf_event_exit_task_context calls perf_event_task 13184 * with child's task_ctx, which generates EXIT events for 13185 * child contexts and sets child->perf_event_ctxp[] to NULL. 13186 * At this point we need to send EXIT events to cpu contexts. 13187 */ 13188 perf_event_task(child, NULL, 0); 13189 } 13190 13191 static void perf_free_event(struct perf_event *event, 13192 struct perf_event_context *ctx) 13193 { 13194 struct perf_event *parent = event->parent; 13195 13196 if (WARN_ON_ONCE(!parent)) 13197 return; 13198 13199 mutex_lock(&parent->child_mutex); 13200 list_del_init(&event->child_list); 13201 mutex_unlock(&parent->child_mutex); 13202 13203 put_event(parent); 13204 13205 raw_spin_lock_irq(&ctx->lock); 13206 perf_group_detach(event); 13207 list_del_event(event, ctx); 13208 raw_spin_unlock_irq(&ctx->lock); 13209 free_event(event); 13210 } 13211 13212 /* 13213 * Free a context as created by inheritance by perf_event_init_task() below, 13214 * used by fork() in case of fail. 13215 * 13216 * Even though the task has never lived, the context and events have been 13217 * exposed through the child_list, so we must take care tearing it all down. 13218 */ 13219 void perf_event_free_task(struct task_struct *task) 13220 { 13221 struct perf_event_context *ctx; 13222 struct perf_event *event, *tmp; 13223 13224 ctx = rcu_access_pointer(task->perf_event_ctxp); 13225 if (!ctx) 13226 return; 13227 13228 mutex_lock(&ctx->mutex); 13229 raw_spin_lock_irq(&ctx->lock); 13230 /* 13231 * Destroy the task <-> ctx relation and mark the context dead. 13232 * 13233 * This is important because even though the task hasn't been 13234 * exposed yet the context has been (through child_list). 13235 */ 13236 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13237 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13238 put_task_struct(task); /* cannot be last */ 13239 raw_spin_unlock_irq(&ctx->lock); 13240 13241 13242 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13243 perf_free_event(event, ctx); 13244 13245 mutex_unlock(&ctx->mutex); 13246 13247 /* 13248 * perf_event_release_kernel() could've stolen some of our 13249 * child events and still have them on its free_list. In that 13250 * case we must wait for these events to have been freed (in 13251 * particular all their references to this task must've been 13252 * dropped). 13253 * 13254 * Without this copy_process() will unconditionally free this 13255 * task (irrespective of its reference count) and 13256 * _free_event()'s put_task_struct(event->hw.target) will be a 13257 * use-after-free. 13258 * 13259 * Wait for all events to drop their context reference. 13260 */ 13261 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13262 put_ctx(ctx); /* must be last */ 13263 } 13264 13265 void perf_event_delayed_put(struct task_struct *task) 13266 { 13267 WARN_ON_ONCE(task->perf_event_ctxp); 13268 } 13269 13270 struct file *perf_event_get(unsigned int fd) 13271 { 13272 struct file *file = fget(fd); 13273 if (!file) 13274 return ERR_PTR(-EBADF); 13275 13276 if (file->f_op != &perf_fops) { 13277 fput(file); 13278 return ERR_PTR(-EBADF); 13279 } 13280 13281 return file; 13282 } 13283 13284 const struct perf_event *perf_get_event(struct file *file) 13285 { 13286 if (file->f_op != &perf_fops) 13287 return ERR_PTR(-EINVAL); 13288 13289 return file->private_data; 13290 } 13291 13292 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13293 { 13294 if (!event) 13295 return ERR_PTR(-EINVAL); 13296 13297 return &event->attr; 13298 } 13299 13300 /* 13301 * Inherit an event from parent task to child task. 13302 * 13303 * Returns: 13304 * - valid pointer on success 13305 * - NULL for orphaned events 13306 * - IS_ERR() on error 13307 */ 13308 static struct perf_event * 13309 inherit_event(struct perf_event *parent_event, 13310 struct task_struct *parent, 13311 struct perf_event_context *parent_ctx, 13312 struct task_struct *child, 13313 struct perf_event *group_leader, 13314 struct perf_event_context *child_ctx) 13315 { 13316 enum perf_event_state parent_state = parent_event->state; 13317 struct perf_event_pmu_context *pmu_ctx; 13318 struct perf_event *child_event; 13319 unsigned long flags; 13320 13321 /* 13322 * Instead of creating recursive hierarchies of events, 13323 * we link inherited events back to the original parent, 13324 * which has a filp for sure, which we use as the reference 13325 * count: 13326 */ 13327 if (parent_event->parent) 13328 parent_event = parent_event->parent; 13329 13330 child_event = perf_event_alloc(&parent_event->attr, 13331 parent_event->cpu, 13332 child, 13333 group_leader, parent_event, 13334 NULL, NULL, -1); 13335 if (IS_ERR(child_event)) 13336 return child_event; 13337 13338 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13339 if (IS_ERR(pmu_ctx)) { 13340 free_event(child_event); 13341 return ERR_CAST(pmu_ctx); 13342 } 13343 child_event->pmu_ctx = pmu_ctx; 13344 13345 /* 13346 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13347 * must be under the same lock in order to serialize against 13348 * perf_event_release_kernel(), such that either we must observe 13349 * is_orphaned_event() or they will observe us on the child_list. 13350 */ 13351 mutex_lock(&parent_event->child_mutex); 13352 if (is_orphaned_event(parent_event) || 13353 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13354 mutex_unlock(&parent_event->child_mutex); 13355 /* task_ctx_data is freed with child_ctx */ 13356 free_event(child_event); 13357 return NULL; 13358 } 13359 13360 get_ctx(child_ctx); 13361 13362 /* 13363 * Make the child state follow the state of the parent event, 13364 * not its attr.disabled bit. We hold the parent's mutex, 13365 * so we won't race with perf_event_{en, dis}able_family. 13366 */ 13367 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13368 child_event->state = PERF_EVENT_STATE_INACTIVE; 13369 else 13370 child_event->state = PERF_EVENT_STATE_OFF; 13371 13372 if (parent_event->attr.freq) { 13373 u64 sample_period = parent_event->hw.sample_period; 13374 struct hw_perf_event *hwc = &child_event->hw; 13375 13376 hwc->sample_period = sample_period; 13377 hwc->last_period = sample_period; 13378 13379 local64_set(&hwc->period_left, sample_period); 13380 } 13381 13382 child_event->ctx = child_ctx; 13383 child_event->overflow_handler = parent_event->overflow_handler; 13384 child_event->overflow_handler_context 13385 = parent_event->overflow_handler_context; 13386 13387 /* 13388 * Precalculate sample_data sizes 13389 */ 13390 perf_event__header_size(child_event); 13391 perf_event__id_header_size(child_event); 13392 13393 /* 13394 * Link it up in the child's context: 13395 */ 13396 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13397 add_event_to_ctx(child_event, child_ctx); 13398 child_event->attach_state |= PERF_ATTACH_CHILD; 13399 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13400 13401 /* 13402 * Link this into the parent event's child list 13403 */ 13404 list_add_tail(&child_event->child_list, &parent_event->child_list); 13405 mutex_unlock(&parent_event->child_mutex); 13406 13407 return child_event; 13408 } 13409 13410 /* 13411 * Inherits an event group. 13412 * 13413 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13414 * This matches with perf_event_release_kernel() removing all child events. 13415 * 13416 * Returns: 13417 * - 0 on success 13418 * - <0 on error 13419 */ 13420 static int inherit_group(struct perf_event *parent_event, 13421 struct task_struct *parent, 13422 struct perf_event_context *parent_ctx, 13423 struct task_struct *child, 13424 struct perf_event_context *child_ctx) 13425 { 13426 struct perf_event *leader; 13427 struct perf_event *sub; 13428 struct perf_event *child_ctr; 13429 13430 leader = inherit_event(parent_event, parent, parent_ctx, 13431 child, NULL, child_ctx); 13432 if (IS_ERR(leader)) 13433 return PTR_ERR(leader); 13434 /* 13435 * @leader can be NULL here because of is_orphaned_event(). In this 13436 * case inherit_event() will create individual events, similar to what 13437 * perf_group_detach() would do anyway. 13438 */ 13439 for_each_sibling_event(sub, parent_event) { 13440 child_ctr = inherit_event(sub, parent, parent_ctx, 13441 child, leader, child_ctx); 13442 if (IS_ERR(child_ctr)) 13443 return PTR_ERR(child_ctr); 13444 13445 if (sub->aux_event == parent_event && child_ctr && 13446 !perf_get_aux_event(child_ctr, leader)) 13447 return -EINVAL; 13448 } 13449 if (leader) 13450 leader->group_generation = parent_event->group_generation; 13451 return 0; 13452 } 13453 13454 /* 13455 * Creates the child task context and tries to inherit the event-group. 13456 * 13457 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13458 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13459 * consistent with perf_event_release_kernel() removing all child events. 13460 * 13461 * Returns: 13462 * - 0 on success 13463 * - <0 on error 13464 */ 13465 static int 13466 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13467 struct perf_event_context *parent_ctx, 13468 struct task_struct *child, 13469 u64 clone_flags, int *inherited_all) 13470 { 13471 struct perf_event_context *child_ctx; 13472 int ret; 13473 13474 if (!event->attr.inherit || 13475 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13476 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13477 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13478 *inherited_all = 0; 13479 return 0; 13480 } 13481 13482 child_ctx = child->perf_event_ctxp; 13483 if (!child_ctx) { 13484 /* 13485 * This is executed from the parent task context, so 13486 * inherit events that have been marked for cloning. 13487 * First allocate and initialize a context for the 13488 * child. 13489 */ 13490 child_ctx = alloc_perf_context(child); 13491 if (!child_ctx) 13492 return -ENOMEM; 13493 13494 child->perf_event_ctxp = child_ctx; 13495 } 13496 13497 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13498 if (ret) 13499 *inherited_all = 0; 13500 13501 return ret; 13502 } 13503 13504 /* 13505 * Initialize the perf_event context in task_struct 13506 */ 13507 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13508 { 13509 struct perf_event_context *child_ctx, *parent_ctx; 13510 struct perf_event_context *cloned_ctx; 13511 struct perf_event *event; 13512 struct task_struct *parent = current; 13513 int inherited_all = 1; 13514 unsigned long flags; 13515 int ret = 0; 13516 13517 if (likely(!parent->perf_event_ctxp)) 13518 return 0; 13519 13520 /* 13521 * If the parent's context is a clone, pin it so it won't get 13522 * swapped under us. 13523 */ 13524 parent_ctx = perf_pin_task_context(parent); 13525 if (!parent_ctx) 13526 return 0; 13527 13528 /* 13529 * No need to check if parent_ctx != NULL here; since we saw 13530 * it non-NULL earlier, the only reason for it to become NULL 13531 * is if we exit, and since we're currently in the middle of 13532 * a fork we can't be exiting at the same time. 13533 */ 13534 13535 /* 13536 * Lock the parent list. No need to lock the child - not PID 13537 * hashed yet and not running, so nobody can access it. 13538 */ 13539 mutex_lock(&parent_ctx->mutex); 13540 13541 /* 13542 * We dont have to disable NMIs - we are only looking at 13543 * the list, not manipulating it: 13544 */ 13545 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13546 ret = inherit_task_group(event, parent, parent_ctx, 13547 child, clone_flags, &inherited_all); 13548 if (ret) 13549 goto out_unlock; 13550 } 13551 13552 /* 13553 * We can't hold ctx->lock when iterating the ->flexible_group list due 13554 * to allocations, but we need to prevent rotation because 13555 * rotate_ctx() will change the list from interrupt context. 13556 */ 13557 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13558 parent_ctx->rotate_disable = 1; 13559 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13560 13561 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13562 ret = inherit_task_group(event, parent, parent_ctx, 13563 child, clone_flags, &inherited_all); 13564 if (ret) 13565 goto out_unlock; 13566 } 13567 13568 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13569 parent_ctx->rotate_disable = 0; 13570 13571 child_ctx = child->perf_event_ctxp; 13572 13573 if (child_ctx && inherited_all) { 13574 /* 13575 * Mark the child context as a clone of the parent 13576 * context, or of whatever the parent is a clone of. 13577 * 13578 * Note that if the parent is a clone, the holding of 13579 * parent_ctx->lock avoids it from being uncloned. 13580 */ 13581 cloned_ctx = parent_ctx->parent_ctx; 13582 if (cloned_ctx) { 13583 child_ctx->parent_ctx = cloned_ctx; 13584 child_ctx->parent_gen = parent_ctx->parent_gen; 13585 } else { 13586 child_ctx->parent_ctx = parent_ctx; 13587 child_ctx->parent_gen = parent_ctx->generation; 13588 } 13589 get_ctx(child_ctx->parent_ctx); 13590 } 13591 13592 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13593 out_unlock: 13594 mutex_unlock(&parent_ctx->mutex); 13595 13596 perf_unpin_context(parent_ctx); 13597 put_ctx(parent_ctx); 13598 13599 return ret; 13600 } 13601 13602 /* 13603 * Initialize the perf_event context in task_struct 13604 */ 13605 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13606 { 13607 int ret; 13608 13609 child->perf_event_ctxp = NULL; 13610 mutex_init(&child->perf_event_mutex); 13611 INIT_LIST_HEAD(&child->perf_event_list); 13612 13613 ret = perf_event_init_context(child, clone_flags); 13614 if (ret) { 13615 perf_event_free_task(child); 13616 return ret; 13617 } 13618 13619 return 0; 13620 } 13621 13622 static void __init perf_event_init_all_cpus(void) 13623 { 13624 struct swevent_htable *swhash; 13625 struct perf_cpu_context *cpuctx; 13626 int cpu; 13627 13628 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13629 13630 for_each_possible_cpu(cpu) { 13631 swhash = &per_cpu(swevent_htable, cpu); 13632 mutex_init(&swhash->hlist_mutex); 13633 13634 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13635 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13636 13637 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13638 13639 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13640 __perf_event_init_context(&cpuctx->ctx); 13641 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13642 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13643 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13644 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13645 cpuctx->heap = cpuctx->heap_default; 13646 } 13647 } 13648 13649 static void perf_swevent_init_cpu(unsigned int cpu) 13650 { 13651 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13652 13653 mutex_lock(&swhash->hlist_mutex); 13654 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13655 struct swevent_hlist *hlist; 13656 13657 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13658 WARN_ON(!hlist); 13659 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13660 } 13661 mutex_unlock(&swhash->hlist_mutex); 13662 } 13663 13664 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13665 static void __perf_event_exit_context(void *__info) 13666 { 13667 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13668 struct perf_event_context *ctx = __info; 13669 struct perf_event *event; 13670 13671 raw_spin_lock(&ctx->lock); 13672 ctx_sched_out(ctx, EVENT_TIME); 13673 list_for_each_entry(event, &ctx->event_list, event_entry) 13674 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13675 raw_spin_unlock(&ctx->lock); 13676 } 13677 13678 static void perf_event_exit_cpu_context(int cpu) 13679 { 13680 struct perf_cpu_context *cpuctx; 13681 struct perf_event_context *ctx; 13682 13683 // XXX simplify cpuctx->online 13684 mutex_lock(&pmus_lock); 13685 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13686 ctx = &cpuctx->ctx; 13687 13688 mutex_lock(&ctx->mutex); 13689 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13690 cpuctx->online = 0; 13691 mutex_unlock(&ctx->mutex); 13692 cpumask_clear_cpu(cpu, perf_online_mask); 13693 mutex_unlock(&pmus_lock); 13694 } 13695 #else 13696 13697 static void perf_event_exit_cpu_context(int cpu) { } 13698 13699 #endif 13700 13701 int perf_event_init_cpu(unsigned int cpu) 13702 { 13703 struct perf_cpu_context *cpuctx; 13704 struct perf_event_context *ctx; 13705 13706 perf_swevent_init_cpu(cpu); 13707 13708 mutex_lock(&pmus_lock); 13709 cpumask_set_cpu(cpu, perf_online_mask); 13710 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13711 ctx = &cpuctx->ctx; 13712 13713 mutex_lock(&ctx->mutex); 13714 cpuctx->online = 1; 13715 mutex_unlock(&ctx->mutex); 13716 mutex_unlock(&pmus_lock); 13717 13718 return 0; 13719 } 13720 13721 int perf_event_exit_cpu(unsigned int cpu) 13722 { 13723 perf_event_exit_cpu_context(cpu); 13724 return 0; 13725 } 13726 13727 static int 13728 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13729 { 13730 int cpu; 13731 13732 for_each_online_cpu(cpu) 13733 perf_event_exit_cpu(cpu); 13734 13735 return NOTIFY_OK; 13736 } 13737 13738 /* 13739 * Run the perf reboot notifier at the very last possible moment so that 13740 * the generic watchdog code runs as long as possible. 13741 */ 13742 static struct notifier_block perf_reboot_notifier = { 13743 .notifier_call = perf_reboot, 13744 .priority = INT_MIN, 13745 }; 13746 13747 void __init perf_event_init(void) 13748 { 13749 int ret; 13750 13751 idr_init(&pmu_idr); 13752 13753 perf_event_init_all_cpus(); 13754 init_srcu_struct(&pmus_srcu); 13755 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13756 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13757 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13758 perf_tp_register(); 13759 perf_event_init_cpu(smp_processor_id()); 13760 register_reboot_notifier(&perf_reboot_notifier); 13761 13762 ret = init_hw_breakpoint(); 13763 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13764 13765 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13766 13767 /* 13768 * Build time assertion that we keep the data_head at the intended 13769 * location. IOW, validation we got the __reserved[] size right. 13770 */ 13771 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13772 != 1024); 13773 } 13774 13775 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13776 char *page) 13777 { 13778 struct perf_pmu_events_attr *pmu_attr = 13779 container_of(attr, struct perf_pmu_events_attr, attr); 13780 13781 if (pmu_attr->event_str) 13782 return sprintf(page, "%s\n", pmu_attr->event_str); 13783 13784 return 0; 13785 } 13786 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13787 13788 static int __init perf_event_sysfs_init(void) 13789 { 13790 struct pmu *pmu; 13791 int ret; 13792 13793 mutex_lock(&pmus_lock); 13794 13795 ret = bus_register(&pmu_bus); 13796 if (ret) 13797 goto unlock; 13798 13799 list_for_each_entry(pmu, &pmus, entry) { 13800 if (pmu->dev) 13801 continue; 13802 13803 ret = pmu_dev_alloc(pmu); 13804 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13805 } 13806 pmu_bus_running = 1; 13807 ret = 0; 13808 13809 unlock: 13810 mutex_unlock(&pmus_lock); 13811 13812 return ret; 13813 } 13814 device_initcall(perf_event_sysfs_init); 13815 13816 #ifdef CONFIG_CGROUP_PERF 13817 static struct cgroup_subsys_state * 13818 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13819 { 13820 struct perf_cgroup *jc; 13821 13822 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13823 if (!jc) 13824 return ERR_PTR(-ENOMEM); 13825 13826 jc->info = alloc_percpu(struct perf_cgroup_info); 13827 if (!jc->info) { 13828 kfree(jc); 13829 return ERR_PTR(-ENOMEM); 13830 } 13831 13832 return &jc->css; 13833 } 13834 13835 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13836 { 13837 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13838 13839 free_percpu(jc->info); 13840 kfree(jc); 13841 } 13842 13843 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13844 { 13845 perf_event_cgroup(css->cgroup); 13846 return 0; 13847 } 13848 13849 static int __perf_cgroup_move(void *info) 13850 { 13851 struct task_struct *task = info; 13852 13853 preempt_disable(); 13854 perf_cgroup_switch(task); 13855 preempt_enable(); 13856 13857 return 0; 13858 } 13859 13860 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13861 { 13862 struct task_struct *task; 13863 struct cgroup_subsys_state *css; 13864 13865 cgroup_taskset_for_each(task, css, tset) 13866 task_function_call(task, __perf_cgroup_move, task); 13867 } 13868 13869 struct cgroup_subsys perf_event_cgrp_subsys = { 13870 .css_alloc = perf_cgroup_css_alloc, 13871 .css_free = perf_cgroup_css_free, 13872 .css_online = perf_cgroup_css_online, 13873 .attach = perf_cgroup_attach, 13874 /* 13875 * Implicitly enable on dfl hierarchy so that perf events can 13876 * always be filtered by cgroup2 path as long as perf_event 13877 * controller is not mounted on a legacy hierarchy. 13878 */ 13879 .implicit_on_dfl = true, 13880 .threaded = true, 13881 }; 13882 #endif /* CONFIG_CGROUP_PERF */ 13883 13884 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13885