xref: /openbmc/linux/kernel/events/core.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	/*
1841 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1842 	 * adding more siblings, this will never overflow.
1843 	 */
1844 	return size + nr * entry;
1845 }
1846 
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849 	struct perf_sample_data *data;
1850 	u16 size = 0;
1851 
1852 	if (sample_type & PERF_SAMPLE_IP)
1853 		size += sizeof(data->ip);
1854 
1855 	if (sample_type & PERF_SAMPLE_ADDR)
1856 		size += sizeof(data->addr);
1857 
1858 	if (sample_type & PERF_SAMPLE_PERIOD)
1859 		size += sizeof(data->period);
1860 
1861 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862 		size += sizeof(data->weight.full);
1863 
1864 	if (sample_type & PERF_SAMPLE_READ)
1865 		size += event->read_size;
1866 
1867 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1868 		size += sizeof(data->data_src.val);
1869 
1870 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1871 		size += sizeof(data->txn);
1872 
1873 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874 		size += sizeof(data->phys_addr);
1875 
1876 	if (sample_type & PERF_SAMPLE_CGROUP)
1877 		size += sizeof(data->cgroup);
1878 
1879 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880 		size += sizeof(data->data_page_size);
1881 
1882 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883 		size += sizeof(data->code_page_size);
1884 
1885 	event->header_size = size;
1886 }
1887 
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894 	event->read_size =
1895 		__perf_event_read_size(event->attr.read_format,
1896 				       event->group_leader->nr_siblings);
1897 	__perf_event_header_size(event, event->attr.sample_type);
1898 }
1899 
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902 	struct perf_sample_data *data;
1903 	u64 sample_type = event->attr.sample_type;
1904 	u16 size = 0;
1905 
1906 	if (sample_type & PERF_SAMPLE_TID)
1907 		size += sizeof(data->tid_entry);
1908 
1909 	if (sample_type & PERF_SAMPLE_TIME)
1910 		size += sizeof(data->time);
1911 
1912 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913 		size += sizeof(data->id);
1914 
1915 	if (sample_type & PERF_SAMPLE_ID)
1916 		size += sizeof(data->id);
1917 
1918 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1919 		size += sizeof(data->stream_id);
1920 
1921 	if (sample_type & PERF_SAMPLE_CPU)
1922 		size += sizeof(data->cpu_entry);
1923 
1924 	event->id_header_size = size;
1925 }
1926 
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940 	struct perf_event *sibling, *group_leader = event->group_leader;
1941 
1942 	if (__perf_event_read_size(event->attr.read_format,
1943 				   group_leader->nr_siblings + 1) > 16*1024)
1944 		return false;
1945 
1946 	if (__perf_event_read_size(group_leader->attr.read_format,
1947 				   group_leader->nr_siblings + 1) > 16*1024)
1948 		return false;
1949 
1950 	for_each_sibling_event(sibling, group_leader) {
1951 		if (__perf_event_read_size(sibling->attr.read_format,
1952 					   group_leader->nr_siblings + 1) > 16*1024)
1953 			return false;
1954 	}
1955 
1956 	return true;
1957 }
1958 
1959 static void perf_group_attach(struct perf_event *event)
1960 {
1961 	struct perf_event *group_leader = event->group_leader, *pos;
1962 
1963 	lockdep_assert_held(&event->ctx->lock);
1964 
1965 	/*
1966 	 * We can have double attach due to group movement (move_group) in
1967 	 * perf_event_open().
1968 	 */
1969 	if (event->attach_state & PERF_ATTACH_GROUP)
1970 		return;
1971 
1972 	event->attach_state |= PERF_ATTACH_GROUP;
1973 
1974 	if (group_leader == event)
1975 		return;
1976 
1977 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978 
1979 	group_leader->group_caps &= event->event_caps;
1980 
1981 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982 	group_leader->nr_siblings++;
1983 	group_leader->group_generation++;
1984 
1985 	perf_event__header_size(group_leader);
1986 
1987 	for_each_sibling_event(pos, group_leader)
1988 		perf_event__header_size(pos);
1989 }
1990 
1991 /*
1992  * Remove an event from the lists for its context.
1993  * Must be called with ctx->mutex and ctx->lock held.
1994  */
1995 static void
1996 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1997 {
1998 	WARN_ON_ONCE(event->ctx != ctx);
1999 	lockdep_assert_held(&ctx->lock);
2000 
2001 	/*
2002 	 * We can have double detach due to exit/hot-unplug + close.
2003 	 */
2004 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2005 		return;
2006 
2007 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2008 
2009 	ctx->nr_events--;
2010 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2011 		ctx->nr_user--;
2012 	if (event->attr.inherit_stat)
2013 		ctx->nr_stat--;
2014 
2015 	list_del_rcu(&event->event_entry);
2016 
2017 	if (event->group_leader == event)
2018 		del_event_from_groups(event, ctx);
2019 
2020 	/*
2021 	 * If event was in error state, then keep it
2022 	 * that way, otherwise bogus counts will be
2023 	 * returned on read(). The only way to get out
2024 	 * of error state is by explicit re-enabling
2025 	 * of the event
2026 	 */
2027 	if (event->state > PERF_EVENT_STATE_OFF) {
2028 		perf_cgroup_event_disable(event, ctx);
2029 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2030 	}
2031 
2032 	ctx->generation++;
2033 	event->pmu_ctx->nr_events--;
2034 }
2035 
2036 static int
2037 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2038 {
2039 	if (!has_aux(aux_event))
2040 		return 0;
2041 
2042 	if (!event->pmu->aux_output_match)
2043 		return 0;
2044 
2045 	return event->pmu->aux_output_match(aux_event);
2046 }
2047 
2048 static void put_event(struct perf_event *event);
2049 static void event_sched_out(struct perf_event *event,
2050 			    struct perf_event_context *ctx);
2051 
2052 static void perf_put_aux_event(struct perf_event *event)
2053 {
2054 	struct perf_event_context *ctx = event->ctx;
2055 	struct perf_event *iter;
2056 
2057 	/*
2058 	 * If event uses aux_event tear down the link
2059 	 */
2060 	if (event->aux_event) {
2061 		iter = event->aux_event;
2062 		event->aux_event = NULL;
2063 		put_event(iter);
2064 		return;
2065 	}
2066 
2067 	/*
2068 	 * If the event is an aux_event, tear down all links to
2069 	 * it from other events.
2070 	 */
2071 	for_each_sibling_event(iter, event->group_leader) {
2072 		if (iter->aux_event != event)
2073 			continue;
2074 
2075 		iter->aux_event = NULL;
2076 		put_event(event);
2077 
2078 		/*
2079 		 * If it's ACTIVE, schedule it out and put it into ERROR
2080 		 * state so that we don't try to schedule it again. Note
2081 		 * that perf_event_enable() will clear the ERROR status.
2082 		 */
2083 		event_sched_out(iter, ctx);
2084 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2085 	}
2086 }
2087 
2088 static bool perf_need_aux_event(struct perf_event *event)
2089 {
2090 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2091 }
2092 
2093 static int perf_get_aux_event(struct perf_event *event,
2094 			      struct perf_event *group_leader)
2095 {
2096 	/*
2097 	 * Our group leader must be an aux event if we want to be
2098 	 * an aux_output. This way, the aux event will precede its
2099 	 * aux_output events in the group, and therefore will always
2100 	 * schedule first.
2101 	 */
2102 	if (!group_leader)
2103 		return 0;
2104 
2105 	/*
2106 	 * aux_output and aux_sample_size are mutually exclusive.
2107 	 */
2108 	if (event->attr.aux_output && event->attr.aux_sample_size)
2109 		return 0;
2110 
2111 	if (event->attr.aux_output &&
2112 	    !perf_aux_output_match(event, group_leader))
2113 		return 0;
2114 
2115 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2116 		return 0;
2117 
2118 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2119 		return 0;
2120 
2121 	/*
2122 	 * Link aux_outputs to their aux event; this is undone in
2123 	 * perf_group_detach() by perf_put_aux_event(). When the
2124 	 * group in torn down, the aux_output events loose their
2125 	 * link to the aux_event and can't schedule any more.
2126 	 */
2127 	event->aux_event = group_leader;
2128 
2129 	return 1;
2130 }
2131 
2132 static inline struct list_head *get_event_list(struct perf_event *event)
2133 {
2134 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2135 				    &event->pmu_ctx->flexible_active;
2136 }
2137 
2138 /*
2139  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2140  * cannot exist on their own, schedule them out and move them into the ERROR
2141  * state. Also see _perf_event_enable(), it will not be able to recover
2142  * this ERROR state.
2143  */
2144 static inline void perf_remove_sibling_event(struct perf_event *event)
2145 {
2146 	event_sched_out(event, event->ctx);
2147 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2148 }
2149 
2150 static void perf_group_detach(struct perf_event *event)
2151 {
2152 	struct perf_event *leader = event->group_leader;
2153 	struct perf_event *sibling, *tmp;
2154 	struct perf_event_context *ctx = event->ctx;
2155 
2156 	lockdep_assert_held(&ctx->lock);
2157 
2158 	/*
2159 	 * We can have double detach due to exit/hot-unplug + close.
2160 	 */
2161 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2162 		return;
2163 
2164 	event->attach_state &= ~PERF_ATTACH_GROUP;
2165 
2166 	perf_put_aux_event(event);
2167 
2168 	/*
2169 	 * If this is a sibling, remove it from its group.
2170 	 */
2171 	if (leader != event) {
2172 		list_del_init(&event->sibling_list);
2173 		event->group_leader->nr_siblings--;
2174 		event->group_leader->group_generation++;
2175 		goto out;
2176 	}
2177 
2178 	/*
2179 	 * If this was a group event with sibling events then
2180 	 * upgrade the siblings to singleton events by adding them
2181 	 * to whatever list we are on.
2182 	 */
2183 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184 
2185 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186 			perf_remove_sibling_event(sibling);
2187 
2188 		sibling->group_leader = sibling;
2189 		list_del_init(&sibling->sibling_list);
2190 
2191 		/* Inherit group flags from the previous leader */
2192 		sibling->group_caps = event->group_caps;
2193 
2194 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2195 			add_event_to_groups(sibling, event->ctx);
2196 
2197 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2199 		}
2200 
2201 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2202 	}
2203 
2204 out:
2205 	for_each_sibling_event(tmp, leader)
2206 		perf_event__header_size(tmp);
2207 
2208 	perf_event__header_size(leader);
2209 }
2210 
2211 static void sync_child_event(struct perf_event *child_event);
2212 
2213 static void perf_child_detach(struct perf_event *event)
2214 {
2215 	struct perf_event *parent_event = event->parent;
2216 
2217 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2218 		return;
2219 
2220 	event->attach_state &= ~PERF_ATTACH_CHILD;
2221 
2222 	if (WARN_ON_ONCE(!parent_event))
2223 		return;
2224 
2225 	lockdep_assert_held(&parent_event->child_mutex);
2226 
2227 	sync_child_event(event);
2228 	list_del_init(&event->child_list);
2229 }
2230 
2231 static bool is_orphaned_event(struct perf_event *event)
2232 {
2233 	return event->state == PERF_EVENT_STATE_DEAD;
2234 }
2235 
2236 static inline int
2237 event_filter_match(struct perf_event *event)
2238 {
2239 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2240 	       perf_cgroup_match(event);
2241 }
2242 
2243 static void
2244 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2245 {
2246 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2247 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2248 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2249 
2250 	// XXX cpc serialization, probably per-cpu IRQ disabled
2251 
2252 	WARN_ON_ONCE(event->ctx != ctx);
2253 	lockdep_assert_held(&ctx->lock);
2254 
2255 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2256 		return;
2257 
2258 	/*
2259 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2260 	 * we can schedule events _OUT_ individually through things like
2261 	 * __perf_remove_from_context().
2262 	 */
2263 	list_del_init(&event->active_list);
2264 
2265 	perf_pmu_disable(event->pmu);
2266 
2267 	event->pmu->del(event, 0);
2268 	event->oncpu = -1;
2269 
2270 	if (event->pending_disable) {
2271 		event->pending_disable = 0;
2272 		perf_cgroup_event_disable(event, ctx);
2273 		state = PERF_EVENT_STATE_OFF;
2274 	}
2275 
2276 	if (event->pending_sigtrap) {
2277 		bool dec = true;
2278 
2279 		event->pending_sigtrap = 0;
2280 		if (state != PERF_EVENT_STATE_OFF &&
2281 		    !event->pending_work) {
2282 			event->pending_work = 1;
2283 			dec = false;
2284 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2285 			task_work_add(current, &event->pending_task, TWA_RESUME);
2286 		}
2287 		if (dec)
2288 			local_dec(&event->ctx->nr_pending);
2289 	}
2290 
2291 	perf_event_set_state(event, state);
2292 
2293 	if (!is_software_event(event))
2294 		cpc->active_oncpu--;
2295 	if (event->attr.freq && event->attr.sample_freq)
2296 		ctx->nr_freq--;
2297 	if (event->attr.exclusive || !cpc->active_oncpu)
2298 		cpc->exclusive = 0;
2299 
2300 	perf_pmu_enable(event->pmu);
2301 }
2302 
2303 static void
2304 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2305 {
2306 	struct perf_event *event;
2307 
2308 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2309 		return;
2310 
2311 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2312 
2313 	event_sched_out(group_event, ctx);
2314 
2315 	/*
2316 	 * Schedule out siblings (if any):
2317 	 */
2318 	for_each_sibling_event(event, group_event)
2319 		event_sched_out(event, ctx);
2320 }
2321 
2322 #define DETACH_GROUP	0x01UL
2323 #define DETACH_CHILD	0x02UL
2324 #define DETACH_DEAD	0x04UL
2325 
2326 /*
2327  * Cross CPU call to remove a performance event
2328  *
2329  * We disable the event on the hardware level first. After that we
2330  * remove it from the context list.
2331  */
2332 static void
2333 __perf_remove_from_context(struct perf_event *event,
2334 			   struct perf_cpu_context *cpuctx,
2335 			   struct perf_event_context *ctx,
2336 			   void *info)
2337 {
2338 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2339 	unsigned long flags = (unsigned long)info;
2340 
2341 	if (ctx->is_active & EVENT_TIME) {
2342 		update_context_time(ctx);
2343 		update_cgrp_time_from_cpuctx(cpuctx, false);
2344 	}
2345 
2346 	/*
2347 	 * Ensure event_sched_out() switches to OFF, at the very least
2348 	 * this avoids raising perf_pending_task() at this time.
2349 	 */
2350 	if (flags & DETACH_DEAD)
2351 		event->pending_disable = 1;
2352 	event_sched_out(event, ctx);
2353 	if (flags & DETACH_GROUP)
2354 		perf_group_detach(event);
2355 	if (flags & DETACH_CHILD)
2356 		perf_child_detach(event);
2357 	list_del_event(event, ctx);
2358 	if (flags & DETACH_DEAD)
2359 		event->state = PERF_EVENT_STATE_DEAD;
2360 
2361 	if (!pmu_ctx->nr_events) {
2362 		pmu_ctx->rotate_necessary = 0;
2363 
2364 		if (ctx->task && ctx->is_active) {
2365 			struct perf_cpu_pmu_context *cpc;
2366 
2367 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2368 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2369 			cpc->task_epc = NULL;
2370 		}
2371 	}
2372 
2373 	if (!ctx->nr_events && ctx->is_active) {
2374 		if (ctx == &cpuctx->ctx)
2375 			update_cgrp_time_from_cpuctx(cpuctx, true);
2376 
2377 		ctx->is_active = 0;
2378 		if (ctx->task) {
2379 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2380 			cpuctx->task_ctx = NULL;
2381 		}
2382 	}
2383 }
2384 
2385 /*
2386  * Remove the event from a task's (or a CPU's) list of events.
2387  *
2388  * If event->ctx is a cloned context, callers must make sure that
2389  * every task struct that event->ctx->task could possibly point to
2390  * remains valid.  This is OK when called from perf_release since
2391  * that only calls us on the top-level context, which can't be a clone.
2392  * When called from perf_event_exit_task, it's OK because the
2393  * context has been detached from its task.
2394  */
2395 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2396 {
2397 	struct perf_event_context *ctx = event->ctx;
2398 
2399 	lockdep_assert_held(&ctx->mutex);
2400 
2401 	/*
2402 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2403 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2404 	 * event_function_call() user.
2405 	 */
2406 	raw_spin_lock_irq(&ctx->lock);
2407 	if (!ctx->is_active) {
2408 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2409 					   ctx, (void *)flags);
2410 		raw_spin_unlock_irq(&ctx->lock);
2411 		return;
2412 	}
2413 	raw_spin_unlock_irq(&ctx->lock);
2414 
2415 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2416 }
2417 
2418 /*
2419  * Cross CPU call to disable a performance event
2420  */
2421 static void __perf_event_disable(struct perf_event *event,
2422 				 struct perf_cpu_context *cpuctx,
2423 				 struct perf_event_context *ctx,
2424 				 void *info)
2425 {
2426 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2427 		return;
2428 
2429 	if (ctx->is_active & EVENT_TIME) {
2430 		update_context_time(ctx);
2431 		update_cgrp_time_from_event(event);
2432 	}
2433 
2434 	perf_pmu_disable(event->pmu_ctx->pmu);
2435 
2436 	if (event == event->group_leader)
2437 		group_sched_out(event, ctx);
2438 	else
2439 		event_sched_out(event, ctx);
2440 
2441 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2442 	perf_cgroup_event_disable(event, ctx);
2443 
2444 	perf_pmu_enable(event->pmu_ctx->pmu);
2445 }
2446 
2447 /*
2448  * Disable an event.
2449  *
2450  * If event->ctx is a cloned context, callers must make sure that
2451  * every task struct that event->ctx->task could possibly point to
2452  * remains valid.  This condition is satisfied when called through
2453  * perf_event_for_each_child or perf_event_for_each because they
2454  * hold the top-level event's child_mutex, so any descendant that
2455  * goes to exit will block in perf_event_exit_event().
2456  *
2457  * When called from perf_pending_irq it's OK because event->ctx
2458  * is the current context on this CPU and preemption is disabled,
2459  * hence we can't get into perf_event_task_sched_out for this context.
2460  */
2461 static void _perf_event_disable(struct perf_event *event)
2462 {
2463 	struct perf_event_context *ctx = event->ctx;
2464 
2465 	raw_spin_lock_irq(&ctx->lock);
2466 	if (event->state <= PERF_EVENT_STATE_OFF) {
2467 		raw_spin_unlock_irq(&ctx->lock);
2468 		return;
2469 	}
2470 	raw_spin_unlock_irq(&ctx->lock);
2471 
2472 	event_function_call(event, __perf_event_disable, NULL);
2473 }
2474 
2475 void perf_event_disable_local(struct perf_event *event)
2476 {
2477 	event_function_local(event, __perf_event_disable, NULL);
2478 }
2479 
2480 /*
2481  * Strictly speaking kernel users cannot create groups and therefore this
2482  * interface does not need the perf_event_ctx_lock() magic.
2483  */
2484 void perf_event_disable(struct perf_event *event)
2485 {
2486 	struct perf_event_context *ctx;
2487 
2488 	ctx = perf_event_ctx_lock(event);
2489 	_perf_event_disable(event);
2490 	perf_event_ctx_unlock(event, ctx);
2491 }
2492 EXPORT_SYMBOL_GPL(perf_event_disable);
2493 
2494 void perf_event_disable_inatomic(struct perf_event *event)
2495 {
2496 	event->pending_disable = 1;
2497 	irq_work_queue(&event->pending_irq);
2498 }
2499 
2500 #define MAX_INTERRUPTS (~0ULL)
2501 
2502 static void perf_log_throttle(struct perf_event *event, int enable);
2503 static void perf_log_itrace_start(struct perf_event *event);
2504 
2505 static int
2506 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2507 {
2508 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2509 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2510 	int ret = 0;
2511 
2512 	WARN_ON_ONCE(event->ctx != ctx);
2513 
2514 	lockdep_assert_held(&ctx->lock);
2515 
2516 	if (event->state <= PERF_EVENT_STATE_OFF)
2517 		return 0;
2518 
2519 	WRITE_ONCE(event->oncpu, smp_processor_id());
2520 	/*
2521 	 * Order event::oncpu write to happen before the ACTIVE state is
2522 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2523 	 * ->oncpu if it sees ACTIVE.
2524 	 */
2525 	smp_wmb();
2526 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2527 
2528 	/*
2529 	 * Unthrottle events, since we scheduled we might have missed several
2530 	 * ticks already, also for a heavily scheduling task there is little
2531 	 * guarantee it'll get a tick in a timely manner.
2532 	 */
2533 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2534 		perf_log_throttle(event, 1);
2535 		event->hw.interrupts = 0;
2536 	}
2537 
2538 	perf_pmu_disable(event->pmu);
2539 
2540 	perf_log_itrace_start(event);
2541 
2542 	if (event->pmu->add(event, PERF_EF_START)) {
2543 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2544 		event->oncpu = -1;
2545 		ret = -EAGAIN;
2546 		goto out;
2547 	}
2548 
2549 	if (!is_software_event(event))
2550 		cpc->active_oncpu++;
2551 	if (event->attr.freq && event->attr.sample_freq)
2552 		ctx->nr_freq++;
2553 
2554 	if (event->attr.exclusive)
2555 		cpc->exclusive = 1;
2556 
2557 out:
2558 	perf_pmu_enable(event->pmu);
2559 
2560 	return ret;
2561 }
2562 
2563 static int
2564 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2565 {
2566 	struct perf_event *event, *partial_group = NULL;
2567 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2568 
2569 	if (group_event->state == PERF_EVENT_STATE_OFF)
2570 		return 0;
2571 
2572 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2573 
2574 	if (event_sched_in(group_event, ctx))
2575 		goto error;
2576 
2577 	/*
2578 	 * Schedule in siblings as one group (if any):
2579 	 */
2580 	for_each_sibling_event(event, group_event) {
2581 		if (event_sched_in(event, ctx)) {
2582 			partial_group = event;
2583 			goto group_error;
2584 		}
2585 	}
2586 
2587 	if (!pmu->commit_txn(pmu))
2588 		return 0;
2589 
2590 group_error:
2591 	/*
2592 	 * Groups can be scheduled in as one unit only, so undo any
2593 	 * partial group before returning:
2594 	 * The events up to the failed event are scheduled out normally.
2595 	 */
2596 	for_each_sibling_event(event, group_event) {
2597 		if (event == partial_group)
2598 			break;
2599 
2600 		event_sched_out(event, ctx);
2601 	}
2602 	event_sched_out(group_event, ctx);
2603 
2604 error:
2605 	pmu->cancel_txn(pmu);
2606 	return -EAGAIN;
2607 }
2608 
2609 /*
2610  * Work out whether we can put this event group on the CPU now.
2611  */
2612 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2613 {
2614 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2615 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2616 
2617 	/*
2618 	 * Groups consisting entirely of software events can always go on.
2619 	 */
2620 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2621 		return 1;
2622 	/*
2623 	 * If an exclusive group is already on, no other hardware
2624 	 * events can go on.
2625 	 */
2626 	if (cpc->exclusive)
2627 		return 0;
2628 	/*
2629 	 * If this group is exclusive and there are already
2630 	 * events on the CPU, it can't go on.
2631 	 */
2632 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2633 		return 0;
2634 	/*
2635 	 * Otherwise, try to add it if all previous groups were able
2636 	 * to go on.
2637 	 */
2638 	return can_add_hw;
2639 }
2640 
2641 static void add_event_to_ctx(struct perf_event *event,
2642 			       struct perf_event_context *ctx)
2643 {
2644 	list_add_event(event, ctx);
2645 	perf_group_attach(event);
2646 }
2647 
2648 static void task_ctx_sched_out(struct perf_event_context *ctx,
2649 				enum event_type_t event_type)
2650 {
2651 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2652 
2653 	if (!cpuctx->task_ctx)
2654 		return;
2655 
2656 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2657 		return;
2658 
2659 	ctx_sched_out(ctx, event_type);
2660 }
2661 
2662 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2663 				struct perf_event_context *ctx)
2664 {
2665 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2666 	if (ctx)
2667 		 ctx_sched_in(ctx, EVENT_PINNED);
2668 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2669 	if (ctx)
2670 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2671 }
2672 
2673 /*
2674  * We want to maintain the following priority of scheduling:
2675  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2676  *  - task pinned (EVENT_PINNED)
2677  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2678  *  - task flexible (EVENT_FLEXIBLE).
2679  *
2680  * In order to avoid unscheduling and scheduling back in everything every
2681  * time an event is added, only do it for the groups of equal priority and
2682  * below.
2683  *
2684  * This can be called after a batch operation on task events, in which case
2685  * event_type is a bit mask of the types of events involved. For CPU events,
2686  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2687  */
2688 /*
2689  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2690  * event to the context or enabling existing event in the context. We can
2691  * probably optimize it by rescheduling only affected pmu_ctx.
2692  */
2693 static void ctx_resched(struct perf_cpu_context *cpuctx,
2694 			struct perf_event_context *task_ctx,
2695 			enum event_type_t event_type)
2696 {
2697 	bool cpu_event = !!(event_type & EVENT_CPU);
2698 
2699 	/*
2700 	 * If pinned groups are involved, flexible groups also need to be
2701 	 * scheduled out.
2702 	 */
2703 	if (event_type & EVENT_PINNED)
2704 		event_type |= EVENT_FLEXIBLE;
2705 
2706 	event_type &= EVENT_ALL;
2707 
2708 	perf_ctx_disable(&cpuctx->ctx, false);
2709 	if (task_ctx) {
2710 		perf_ctx_disable(task_ctx, false);
2711 		task_ctx_sched_out(task_ctx, event_type);
2712 	}
2713 
2714 	/*
2715 	 * Decide which cpu ctx groups to schedule out based on the types
2716 	 * of events that caused rescheduling:
2717 	 *  - EVENT_CPU: schedule out corresponding groups;
2718 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2719 	 *  - otherwise, do nothing more.
2720 	 */
2721 	if (cpu_event)
2722 		ctx_sched_out(&cpuctx->ctx, event_type);
2723 	else if (event_type & EVENT_PINNED)
2724 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2725 
2726 	perf_event_sched_in(cpuctx, task_ctx);
2727 
2728 	perf_ctx_enable(&cpuctx->ctx, false);
2729 	if (task_ctx)
2730 		perf_ctx_enable(task_ctx, false);
2731 }
2732 
2733 void perf_pmu_resched(struct pmu *pmu)
2734 {
2735 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2736 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2737 
2738 	perf_ctx_lock(cpuctx, task_ctx);
2739 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2740 	perf_ctx_unlock(cpuctx, task_ctx);
2741 }
2742 
2743 /*
2744  * Cross CPU call to install and enable a performance event
2745  *
2746  * Very similar to remote_function() + event_function() but cannot assume that
2747  * things like ctx->is_active and cpuctx->task_ctx are set.
2748  */
2749 static int  __perf_install_in_context(void *info)
2750 {
2751 	struct perf_event *event = info;
2752 	struct perf_event_context *ctx = event->ctx;
2753 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2754 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2755 	bool reprogram = true;
2756 	int ret = 0;
2757 
2758 	raw_spin_lock(&cpuctx->ctx.lock);
2759 	if (ctx->task) {
2760 		raw_spin_lock(&ctx->lock);
2761 		task_ctx = ctx;
2762 
2763 		reprogram = (ctx->task == current);
2764 
2765 		/*
2766 		 * If the task is running, it must be running on this CPU,
2767 		 * otherwise we cannot reprogram things.
2768 		 *
2769 		 * If its not running, we don't care, ctx->lock will
2770 		 * serialize against it becoming runnable.
2771 		 */
2772 		if (task_curr(ctx->task) && !reprogram) {
2773 			ret = -ESRCH;
2774 			goto unlock;
2775 		}
2776 
2777 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2778 	} else if (task_ctx) {
2779 		raw_spin_lock(&task_ctx->lock);
2780 	}
2781 
2782 #ifdef CONFIG_CGROUP_PERF
2783 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2784 		/*
2785 		 * If the current cgroup doesn't match the event's
2786 		 * cgroup, we should not try to schedule it.
2787 		 */
2788 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2789 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2790 					event->cgrp->css.cgroup);
2791 	}
2792 #endif
2793 
2794 	if (reprogram) {
2795 		ctx_sched_out(ctx, EVENT_TIME);
2796 		add_event_to_ctx(event, ctx);
2797 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2798 	} else {
2799 		add_event_to_ctx(event, ctx);
2800 	}
2801 
2802 unlock:
2803 	perf_ctx_unlock(cpuctx, task_ctx);
2804 
2805 	return ret;
2806 }
2807 
2808 static bool exclusive_event_installable(struct perf_event *event,
2809 					struct perf_event_context *ctx);
2810 
2811 /*
2812  * Attach a performance event to a context.
2813  *
2814  * Very similar to event_function_call, see comment there.
2815  */
2816 static void
2817 perf_install_in_context(struct perf_event_context *ctx,
2818 			struct perf_event *event,
2819 			int cpu)
2820 {
2821 	struct task_struct *task = READ_ONCE(ctx->task);
2822 
2823 	lockdep_assert_held(&ctx->mutex);
2824 
2825 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2826 
2827 	if (event->cpu != -1)
2828 		WARN_ON_ONCE(event->cpu != cpu);
2829 
2830 	/*
2831 	 * Ensures that if we can observe event->ctx, both the event and ctx
2832 	 * will be 'complete'. See perf_iterate_sb_cpu().
2833 	 */
2834 	smp_store_release(&event->ctx, ctx);
2835 
2836 	/*
2837 	 * perf_event_attr::disabled events will not run and can be initialized
2838 	 * without IPI. Except when this is the first event for the context, in
2839 	 * that case we need the magic of the IPI to set ctx->is_active.
2840 	 *
2841 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2842 	 * event will issue the IPI and reprogram the hardware.
2843 	 */
2844 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2845 	    ctx->nr_events && !is_cgroup_event(event)) {
2846 		raw_spin_lock_irq(&ctx->lock);
2847 		if (ctx->task == TASK_TOMBSTONE) {
2848 			raw_spin_unlock_irq(&ctx->lock);
2849 			return;
2850 		}
2851 		add_event_to_ctx(event, ctx);
2852 		raw_spin_unlock_irq(&ctx->lock);
2853 		return;
2854 	}
2855 
2856 	if (!task) {
2857 		cpu_function_call(cpu, __perf_install_in_context, event);
2858 		return;
2859 	}
2860 
2861 	/*
2862 	 * Should not happen, we validate the ctx is still alive before calling.
2863 	 */
2864 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2865 		return;
2866 
2867 	/*
2868 	 * Installing events is tricky because we cannot rely on ctx->is_active
2869 	 * to be set in case this is the nr_events 0 -> 1 transition.
2870 	 *
2871 	 * Instead we use task_curr(), which tells us if the task is running.
2872 	 * However, since we use task_curr() outside of rq::lock, we can race
2873 	 * against the actual state. This means the result can be wrong.
2874 	 *
2875 	 * If we get a false positive, we retry, this is harmless.
2876 	 *
2877 	 * If we get a false negative, things are complicated. If we are after
2878 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2879 	 * value must be correct. If we're before, it doesn't matter since
2880 	 * perf_event_context_sched_in() will program the counter.
2881 	 *
2882 	 * However, this hinges on the remote context switch having observed
2883 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2884 	 * ctx::lock in perf_event_context_sched_in().
2885 	 *
2886 	 * We do this by task_function_call(), if the IPI fails to hit the task
2887 	 * we know any future context switch of task must see the
2888 	 * perf_event_ctpx[] store.
2889 	 */
2890 
2891 	/*
2892 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2893 	 * task_cpu() load, such that if the IPI then does not find the task
2894 	 * running, a future context switch of that task must observe the
2895 	 * store.
2896 	 */
2897 	smp_mb();
2898 again:
2899 	if (!task_function_call(task, __perf_install_in_context, event))
2900 		return;
2901 
2902 	raw_spin_lock_irq(&ctx->lock);
2903 	task = ctx->task;
2904 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2905 		/*
2906 		 * Cannot happen because we already checked above (which also
2907 		 * cannot happen), and we hold ctx->mutex, which serializes us
2908 		 * against perf_event_exit_task_context().
2909 		 */
2910 		raw_spin_unlock_irq(&ctx->lock);
2911 		return;
2912 	}
2913 	/*
2914 	 * If the task is not running, ctx->lock will avoid it becoming so,
2915 	 * thus we can safely install the event.
2916 	 */
2917 	if (task_curr(task)) {
2918 		raw_spin_unlock_irq(&ctx->lock);
2919 		goto again;
2920 	}
2921 	add_event_to_ctx(event, ctx);
2922 	raw_spin_unlock_irq(&ctx->lock);
2923 }
2924 
2925 /*
2926  * Cross CPU call to enable a performance event
2927  */
2928 static void __perf_event_enable(struct perf_event *event,
2929 				struct perf_cpu_context *cpuctx,
2930 				struct perf_event_context *ctx,
2931 				void *info)
2932 {
2933 	struct perf_event *leader = event->group_leader;
2934 	struct perf_event_context *task_ctx;
2935 
2936 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2937 	    event->state <= PERF_EVENT_STATE_ERROR)
2938 		return;
2939 
2940 	if (ctx->is_active)
2941 		ctx_sched_out(ctx, EVENT_TIME);
2942 
2943 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2944 	perf_cgroup_event_enable(event, ctx);
2945 
2946 	if (!ctx->is_active)
2947 		return;
2948 
2949 	if (!event_filter_match(event)) {
2950 		ctx_sched_in(ctx, EVENT_TIME);
2951 		return;
2952 	}
2953 
2954 	/*
2955 	 * If the event is in a group and isn't the group leader,
2956 	 * then don't put it on unless the group is on.
2957 	 */
2958 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2959 		ctx_sched_in(ctx, EVENT_TIME);
2960 		return;
2961 	}
2962 
2963 	task_ctx = cpuctx->task_ctx;
2964 	if (ctx->task)
2965 		WARN_ON_ONCE(task_ctx != ctx);
2966 
2967 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2968 }
2969 
2970 /*
2971  * Enable an event.
2972  *
2973  * If event->ctx is a cloned context, callers must make sure that
2974  * every task struct that event->ctx->task could possibly point to
2975  * remains valid.  This condition is satisfied when called through
2976  * perf_event_for_each_child or perf_event_for_each as described
2977  * for perf_event_disable.
2978  */
2979 static void _perf_event_enable(struct perf_event *event)
2980 {
2981 	struct perf_event_context *ctx = event->ctx;
2982 
2983 	raw_spin_lock_irq(&ctx->lock);
2984 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2985 	    event->state <  PERF_EVENT_STATE_ERROR) {
2986 out:
2987 		raw_spin_unlock_irq(&ctx->lock);
2988 		return;
2989 	}
2990 
2991 	/*
2992 	 * If the event is in error state, clear that first.
2993 	 *
2994 	 * That way, if we see the event in error state below, we know that it
2995 	 * has gone back into error state, as distinct from the task having
2996 	 * been scheduled away before the cross-call arrived.
2997 	 */
2998 	if (event->state == PERF_EVENT_STATE_ERROR) {
2999 		/*
3000 		 * Detached SIBLING events cannot leave ERROR state.
3001 		 */
3002 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3003 		    event->group_leader == event)
3004 			goto out;
3005 
3006 		event->state = PERF_EVENT_STATE_OFF;
3007 	}
3008 	raw_spin_unlock_irq(&ctx->lock);
3009 
3010 	event_function_call(event, __perf_event_enable, NULL);
3011 }
3012 
3013 /*
3014  * See perf_event_disable();
3015  */
3016 void perf_event_enable(struct perf_event *event)
3017 {
3018 	struct perf_event_context *ctx;
3019 
3020 	ctx = perf_event_ctx_lock(event);
3021 	_perf_event_enable(event);
3022 	perf_event_ctx_unlock(event, ctx);
3023 }
3024 EXPORT_SYMBOL_GPL(perf_event_enable);
3025 
3026 struct stop_event_data {
3027 	struct perf_event	*event;
3028 	unsigned int		restart;
3029 };
3030 
3031 static int __perf_event_stop(void *info)
3032 {
3033 	struct stop_event_data *sd = info;
3034 	struct perf_event *event = sd->event;
3035 
3036 	/* if it's already INACTIVE, do nothing */
3037 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3038 		return 0;
3039 
3040 	/* matches smp_wmb() in event_sched_in() */
3041 	smp_rmb();
3042 
3043 	/*
3044 	 * There is a window with interrupts enabled before we get here,
3045 	 * so we need to check again lest we try to stop another CPU's event.
3046 	 */
3047 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3048 		return -EAGAIN;
3049 
3050 	event->pmu->stop(event, PERF_EF_UPDATE);
3051 
3052 	/*
3053 	 * May race with the actual stop (through perf_pmu_output_stop()),
3054 	 * but it is only used for events with AUX ring buffer, and such
3055 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3056 	 * see comments in perf_aux_output_begin().
3057 	 *
3058 	 * Since this is happening on an event-local CPU, no trace is lost
3059 	 * while restarting.
3060 	 */
3061 	if (sd->restart)
3062 		event->pmu->start(event, 0);
3063 
3064 	return 0;
3065 }
3066 
3067 static int perf_event_stop(struct perf_event *event, int restart)
3068 {
3069 	struct stop_event_data sd = {
3070 		.event		= event,
3071 		.restart	= restart,
3072 	};
3073 	int ret = 0;
3074 
3075 	do {
3076 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3077 			return 0;
3078 
3079 		/* matches smp_wmb() in event_sched_in() */
3080 		smp_rmb();
3081 
3082 		/*
3083 		 * We only want to restart ACTIVE events, so if the event goes
3084 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3085 		 * fall through with ret==-ENXIO.
3086 		 */
3087 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3088 					__perf_event_stop, &sd);
3089 	} while (ret == -EAGAIN);
3090 
3091 	return ret;
3092 }
3093 
3094 /*
3095  * In order to contain the amount of racy and tricky in the address filter
3096  * configuration management, it is a two part process:
3097  *
3098  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3099  *      we update the addresses of corresponding vmas in
3100  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3101  * (p2) when an event is scheduled in (pmu::add), it calls
3102  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3103  *      if the generation has changed since the previous call.
3104  *
3105  * If (p1) happens while the event is active, we restart it to force (p2).
3106  *
3107  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3108  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3109  *     ioctl;
3110  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3111  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3112  *     for reading;
3113  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3114  *     of exec.
3115  */
3116 void perf_event_addr_filters_sync(struct perf_event *event)
3117 {
3118 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3119 
3120 	if (!has_addr_filter(event))
3121 		return;
3122 
3123 	raw_spin_lock(&ifh->lock);
3124 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3125 		event->pmu->addr_filters_sync(event);
3126 		event->hw.addr_filters_gen = event->addr_filters_gen;
3127 	}
3128 	raw_spin_unlock(&ifh->lock);
3129 }
3130 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3131 
3132 static int _perf_event_refresh(struct perf_event *event, int refresh)
3133 {
3134 	/*
3135 	 * not supported on inherited events
3136 	 */
3137 	if (event->attr.inherit || !is_sampling_event(event))
3138 		return -EINVAL;
3139 
3140 	atomic_add(refresh, &event->event_limit);
3141 	_perf_event_enable(event);
3142 
3143 	return 0;
3144 }
3145 
3146 /*
3147  * See perf_event_disable()
3148  */
3149 int perf_event_refresh(struct perf_event *event, int refresh)
3150 {
3151 	struct perf_event_context *ctx;
3152 	int ret;
3153 
3154 	ctx = perf_event_ctx_lock(event);
3155 	ret = _perf_event_refresh(event, refresh);
3156 	perf_event_ctx_unlock(event, ctx);
3157 
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL_GPL(perf_event_refresh);
3161 
3162 static int perf_event_modify_breakpoint(struct perf_event *bp,
3163 					 struct perf_event_attr *attr)
3164 {
3165 	int err;
3166 
3167 	_perf_event_disable(bp);
3168 
3169 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3170 
3171 	if (!bp->attr.disabled)
3172 		_perf_event_enable(bp);
3173 
3174 	return err;
3175 }
3176 
3177 /*
3178  * Copy event-type-independent attributes that may be modified.
3179  */
3180 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3181 					const struct perf_event_attr *from)
3182 {
3183 	to->sig_data = from->sig_data;
3184 }
3185 
3186 static int perf_event_modify_attr(struct perf_event *event,
3187 				  struct perf_event_attr *attr)
3188 {
3189 	int (*func)(struct perf_event *, struct perf_event_attr *);
3190 	struct perf_event *child;
3191 	int err;
3192 
3193 	if (event->attr.type != attr->type)
3194 		return -EINVAL;
3195 
3196 	switch (event->attr.type) {
3197 	case PERF_TYPE_BREAKPOINT:
3198 		func = perf_event_modify_breakpoint;
3199 		break;
3200 	default:
3201 		/* Place holder for future additions. */
3202 		return -EOPNOTSUPP;
3203 	}
3204 
3205 	WARN_ON_ONCE(event->ctx->parent_ctx);
3206 
3207 	mutex_lock(&event->child_mutex);
3208 	/*
3209 	 * Event-type-independent attributes must be copied before event-type
3210 	 * modification, which will validate that final attributes match the
3211 	 * source attributes after all relevant attributes have been copied.
3212 	 */
3213 	perf_event_modify_copy_attr(&event->attr, attr);
3214 	err = func(event, attr);
3215 	if (err)
3216 		goto out;
3217 	list_for_each_entry(child, &event->child_list, child_list) {
3218 		perf_event_modify_copy_attr(&child->attr, attr);
3219 		err = func(child, attr);
3220 		if (err)
3221 			goto out;
3222 	}
3223 out:
3224 	mutex_unlock(&event->child_mutex);
3225 	return err;
3226 }
3227 
3228 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3229 				enum event_type_t event_type)
3230 {
3231 	struct perf_event_context *ctx = pmu_ctx->ctx;
3232 	struct perf_event *event, *tmp;
3233 	struct pmu *pmu = pmu_ctx->pmu;
3234 
3235 	if (ctx->task && !ctx->is_active) {
3236 		struct perf_cpu_pmu_context *cpc;
3237 
3238 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3239 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3240 		cpc->task_epc = NULL;
3241 	}
3242 
3243 	if (!event_type)
3244 		return;
3245 
3246 	perf_pmu_disable(pmu);
3247 	if (event_type & EVENT_PINNED) {
3248 		list_for_each_entry_safe(event, tmp,
3249 					 &pmu_ctx->pinned_active,
3250 					 active_list)
3251 			group_sched_out(event, ctx);
3252 	}
3253 
3254 	if (event_type & EVENT_FLEXIBLE) {
3255 		list_for_each_entry_safe(event, tmp,
3256 					 &pmu_ctx->flexible_active,
3257 					 active_list)
3258 			group_sched_out(event, ctx);
3259 		/*
3260 		 * Since we cleared EVENT_FLEXIBLE, also clear
3261 		 * rotate_necessary, is will be reset by
3262 		 * ctx_flexible_sched_in() when needed.
3263 		 */
3264 		pmu_ctx->rotate_necessary = 0;
3265 	}
3266 	perf_pmu_enable(pmu);
3267 }
3268 
3269 static void
3270 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3271 {
3272 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3273 	struct perf_event_pmu_context *pmu_ctx;
3274 	int is_active = ctx->is_active;
3275 	bool cgroup = event_type & EVENT_CGROUP;
3276 
3277 	event_type &= ~EVENT_CGROUP;
3278 
3279 	lockdep_assert_held(&ctx->lock);
3280 
3281 	if (likely(!ctx->nr_events)) {
3282 		/*
3283 		 * See __perf_remove_from_context().
3284 		 */
3285 		WARN_ON_ONCE(ctx->is_active);
3286 		if (ctx->task)
3287 			WARN_ON_ONCE(cpuctx->task_ctx);
3288 		return;
3289 	}
3290 
3291 	/*
3292 	 * Always update time if it was set; not only when it changes.
3293 	 * Otherwise we can 'forget' to update time for any but the last
3294 	 * context we sched out. For example:
3295 	 *
3296 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3297 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3298 	 *
3299 	 * would only update time for the pinned events.
3300 	 */
3301 	if (is_active & EVENT_TIME) {
3302 		/* update (and stop) ctx time */
3303 		update_context_time(ctx);
3304 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3305 		/*
3306 		 * CPU-release for the below ->is_active store,
3307 		 * see __load_acquire() in perf_event_time_now()
3308 		 */
3309 		barrier();
3310 	}
3311 
3312 	ctx->is_active &= ~event_type;
3313 	if (!(ctx->is_active & EVENT_ALL))
3314 		ctx->is_active = 0;
3315 
3316 	if (ctx->task) {
3317 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3318 		if (!ctx->is_active)
3319 			cpuctx->task_ctx = NULL;
3320 	}
3321 
3322 	is_active ^= ctx->is_active; /* changed bits */
3323 
3324 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3325 		if (cgroup && !pmu_ctx->nr_cgroups)
3326 			continue;
3327 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3328 	}
3329 }
3330 
3331 /*
3332  * Test whether two contexts are equivalent, i.e. whether they have both been
3333  * cloned from the same version of the same context.
3334  *
3335  * Equivalence is measured using a generation number in the context that is
3336  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3337  * and list_del_event().
3338  */
3339 static int context_equiv(struct perf_event_context *ctx1,
3340 			 struct perf_event_context *ctx2)
3341 {
3342 	lockdep_assert_held(&ctx1->lock);
3343 	lockdep_assert_held(&ctx2->lock);
3344 
3345 	/* Pinning disables the swap optimization */
3346 	if (ctx1->pin_count || ctx2->pin_count)
3347 		return 0;
3348 
3349 	/* If ctx1 is the parent of ctx2 */
3350 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3351 		return 1;
3352 
3353 	/* If ctx2 is the parent of ctx1 */
3354 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3355 		return 1;
3356 
3357 	/*
3358 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3359 	 * hierarchy, see perf_event_init_context().
3360 	 */
3361 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3362 			ctx1->parent_gen == ctx2->parent_gen)
3363 		return 1;
3364 
3365 	/* Unmatched */
3366 	return 0;
3367 }
3368 
3369 static void __perf_event_sync_stat(struct perf_event *event,
3370 				     struct perf_event *next_event)
3371 {
3372 	u64 value;
3373 
3374 	if (!event->attr.inherit_stat)
3375 		return;
3376 
3377 	/*
3378 	 * Update the event value, we cannot use perf_event_read()
3379 	 * because we're in the middle of a context switch and have IRQs
3380 	 * disabled, which upsets smp_call_function_single(), however
3381 	 * we know the event must be on the current CPU, therefore we
3382 	 * don't need to use it.
3383 	 */
3384 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3385 		event->pmu->read(event);
3386 
3387 	perf_event_update_time(event);
3388 
3389 	/*
3390 	 * In order to keep per-task stats reliable we need to flip the event
3391 	 * values when we flip the contexts.
3392 	 */
3393 	value = local64_read(&next_event->count);
3394 	value = local64_xchg(&event->count, value);
3395 	local64_set(&next_event->count, value);
3396 
3397 	swap(event->total_time_enabled, next_event->total_time_enabled);
3398 	swap(event->total_time_running, next_event->total_time_running);
3399 
3400 	/*
3401 	 * Since we swizzled the values, update the user visible data too.
3402 	 */
3403 	perf_event_update_userpage(event);
3404 	perf_event_update_userpage(next_event);
3405 }
3406 
3407 static void perf_event_sync_stat(struct perf_event_context *ctx,
3408 				   struct perf_event_context *next_ctx)
3409 {
3410 	struct perf_event *event, *next_event;
3411 
3412 	if (!ctx->nr_stat)
3413 		return;
3414 
3415 	update_context_time(ctx);
3416 
3417 	event = list_first_entry(&ctx->event_list,
3418 				   struct perf_event, event_entry);
3419 
3420 	next_event = list_first_entry(&next_ctx->event_list,
3421 					struct perf_event, event_entry);
3422 
3423 	while (&event->event_entry != &ctx->event_list &&
3424 	       &next_event->event_entry != &next_ctx->event_list) {
3425 
3426 		__perf_event_sync_stat(event, next_event);
3427 
3428 		event = list_next_entry(event, event_entry);
3429 		next_event = list_next_entry(next_event, event_entry);
3430 	}
3431 }
3432 
3433 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3434 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3435 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3436 	     !list_entry_is_head(pos1, head1, member) &&		\
3437 	     !list_entry_is_head(pos2, head2, member);			\
3438 	     pos1 = list_next_entry(pos1, member),			\
3439 	     pos2 = list_next_entry(pos2, member))
3440 
3441 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3442 					  struct perf_event_context *next_ctx)
3443 {
3444 	struct perf_event_pmu_context *prev_epc, *next_epc;
3445 
3446 	if (!prev_ctx->nr_task_data)
3447 		return;
3448 
3449 	double_list_for_each_entry(prev_epc, next_epc,
3450 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3451 				   pmu_ctx_entry) {
3452 
3453 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3454 			continue;
3455 
3456 		/*
3457 		 * PMU specific parts of task perf context can require
3458 		 * additional synchronization. As an example of such
3459 		 * synchronization see implementation details of Intel
3460 		 * LBR call stack data profiling;
3461 		 */
3462 		if (prev_epc->pmu->swap_task_ctx)
3463 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3464 		else
3465 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3466 	}
3467 }
3468 
3469 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3470 {
3471 	struct perf_event_pmu_context *pmu_ctx;
3472 	struct perf_cpu_pmu_context *cpc;
3473 
3474 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3475 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3476 
3477 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3478 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3479 	}
3480 }
3481 
3482 static void
3483 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3484 {
3485 	struct perf_event_context *ctx = task->perf_event_ctxp;
3486 	struct perf_event_context *next_ctx;
3487 	struct perf_event_context *parent, *next_parent;
3488 	int do_switch = 1;
3489 
3490 	if (likely(!ctx))
3491 		return;
3492 
3493 	rcu_read_lock();
3494 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3495 	if (!next_ctx)
3496 		goto unlock;
3497 
3498 	parent = rcu_dereference(ctx->parent_ctx);
3499 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3500 
3501 	/* If neither context have a parent context; they cannot be clones. */
3502 	if (!parent && !next_parent)
3503 		goto unlock;
3504 
3505 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3506 		/*
3507 		 * Looks like the two contexts are clones, so we might be
3508 		 * able to optimize the context switch.  We lock both
3509 		 * contexts and check that they are clones under the
3510 		 * lock (including re-checking that neither has been
3511 		 * uncloned in the meantime).  It doesn't matter which
3512 		 * order we take the locks because no other cpu could
3513 		 * be trying to lock both of these tasks.
3514 		 */
3515 		raw_spin_lock(&ctx->lock);
3516 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3517 		if (context_equiv(ctx, next_ctx)) {
3518 
3519 			perf_ctx_disable(ctx, false);
3520 
3521 			/* PMIs are disabled; ctx->nr_pending is stable. */
3522 			if (local_read(&ctx->nr_pending) ||
3523 			    local_read(&next_ctx->nr_pending)) {
3524 				/*
3525 				 * Must not swap out ctx when there's pending
3526 				 * events that rely on the ctx->task relation.
3527 				 */
3528 				raw_spin_unlock(&next_ctx->lock);
3529 				rcu_read_unlock();
3530 				goto inside_switch;
3531 			}
3532 
3533 			WRITE_ONCE(ctx->task, next);
3534 			WRITE_ONCE(next_ctx->task, task);
3535 
3536 			perf_ctx_sched_task_cb(ctx, false);
3537 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3538 
3539 			perf_ctx_enable(ctx, false);
3540 
3541 			/*
3542 			 * RCU_INIT_POINTER here is safe because we've not
3543 			 * modified the ctx and the above modification of
3544 			 * ctx->task and ctx->task_ctx_data are immaterial
3545 			 * since those values are always verified under
3546 			 * ctx->lock which we're now holding.
3547 			 */
3548 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3549 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3550 
3551 			do_switch = 0;
3552 
3553 			perf_event_sync_stat(ctx, next_ctx);
3554 		}
3555 		raw_spin_unlock(&next_ctx->lock);
3556 		raw_spin_unlock(&ctx->lock);
3557 	}
3558 unlock:
3559 	rcu_read_unlock();
3560 
3561 	if (do_switch) {
3562 		raw_spin_lock(&ctx->lock);
3563 		perf_ctx_disable(ctx, false);
3564 
3565 inside_switch:
3566 		perf_ctx_sched_task_cb(ctx, false);
3567 		task_ctx_sched_out(ctx, EVENT_ALL);
3568 
3569 		perf_ctx_enable(ctx, false);
3570 		raw_spin_unlock(&ctx->lock);
3571 	}
3572 }
3573 
3574 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3575 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3576 
3577 void perf_sched_cb_dec(struct pmu *pmu)
3578 {
3579 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3580 
3581 	this_cpu_dec(perf_sched_cb_usages);
3582 	barrier();
3583 
3584 	if (!--cpc->sched_cb_usage)
3585 		list_del(&cpc->sched_cb_entry);
3586 }
3587 
3588 
3589 void perf_sched_cb_inc(struct pmu *pmu)
3590 {
3591 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3592 
3593 	if (!cpc->sched_cb_usage++)
3594 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3595 
3596 	barrier();
3597 	this_cpu_inc(perf_sched_cb_usages);
3598 }
3599 
3600 /*
3601  * This function provides the context switch callback to the lower code
3602  * layer. It is invoked ONLY when the context switch callback is enabled.
3603  *
3604  * This callback is relevant even to per-cpu events; for example multi event
3605  * PEBS requires this to provide PID/TID information. This requires we flush
3606  * all queued PEBS records before we context switch to a new task.
3607  */
3608 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3609 {
3610 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3611 	struct pmu *pmu;
3612 
3613 	pmu = cpc->epc.pmu;
3614 
3615 	/* software PMUs will not have sched_task */
3616 	if (WARN_ON_ONCE(!pmu->sched_task))
3617 		return;
3618 
3619 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3620 	perf_pmu_disable(pmu);
3621 
3622 	pmu->sched_task(cpc->task_epc, sched_in);
3623 
3624 	perf_pmu_enable(pmu);
3625 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3626 }
3627 
3628 static void perf_pmu_sched_task(struct task_struct *prev,
3629 				struct task_struct *next,
3630 				bool sched_in)
3631 {
3632 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3633 	struct perf_cpu_pmu_context *cpc;
3634 
3635 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3636 	if (prev == next || cpuctx->task_ctx)
3637 		return;
3638 
3639 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3640 		__perf_pmu_sched_task(cpc, sched_in);
3641 }
3642 
3643 static void perf_event_switch(struct task_struct *task,
3644 			      struct task_struct *next_prev, bool sched_in);
3645 
3646 /*
3647  * Called from scheduler to remove the events of the current task,
3648  * with interrupts disabled.
3649  *
3650  * We stop each event and update the event value in event->count.
3651  *
3652  * This does not protect us against NMI, but disable()
3653  * sets the disabled bit in the control field of event _before_
3654  * accessing the event control register. If a NMI hits, then it will
3655  * not restart the event.
3656  */
3657 void __perf_event_task_sched_out(struct task_struct *task,
3658 				 struct task_struct *next)
3659 {
3660 	if (__this_cpu_read(perf_sched_cb_usages))
3661 		perf_pmu_sched_task(task, next, false);
3662 
3663 	if (atomic_read(&nr_switch_events))
3664 		perf_event_switch(task, next, false);
3665 
3666 	perf_event_context_sched_out(task, next);
3667 
3668 	/*
3669 	 * if cgroup events exist on this CPU, then we need
3670 	 * to check if we have to switch out PMU state.
3671 	 * cgroup event are system-wide mode only
3672 	 */
3673 	perf_cgroup_switch(next);
3674 }
3675 
3676 static bool perf_less_group_idx(const void *l, const void *r)
3677 {
3678 	const struct perf_event *le = *(const struct perf_event **)l;
3679 	const struct perf_event *re = *(const struct perf_event **)r;
3680 
3681 	return le->group_index < re->group_index;
3682 }
3683 
3684 static void swap_ptr(void *l, void *r)
3685 {
3686 	void **lp = l, **rp = r;
3687 
3688 	swap(*lp, *rp);
3689 }
3690 
3691 static const struct min_heap_callbacks perf_min_heap = {
3692 	.elem_size = sizeof(struct perf_event *),
3693 	.less = perf_less_group_idx,
3694 	.swp = swap_ptr,
3695 };
3696 
3697 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3698 {
3699 	struct perf_event **itrs = heap->data;
3700 
3701 	if (event) {
3702 		itrs[heap->nr] = event;
3703 		heap->nr++;
3704 	}
3705 }
3706 
3707 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3708 {
3709 	struct perf_cpu_pmu_context *cpc;
3710 
3711 	if (!pmu_ctx->ctx->task)
3712 		return;
3713 
3714 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3715 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3716 	cpc->task_epc = pmu_ctx;
3717 }
3718 
3719 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3720 				struct perf_event_groups *groups, int cpu,
3721 				struct pmu *pmu,
3722 				int (*func)(struct perf_event *, void *),
3723 				void *data)
3724 {
3725 #ifdef CONFIG_CGROUP_PERF
3726 	struct cgroup_subsys_state *css = NULL;
3727 #endif
3728 	struct perf_cpu_context *cpuctx = NULL;
3729 	/* Space for per CPU and/or any CPU event iterators. */
3730 	struct perf_event *itrs[2];
3731 	struct min_heap event_heap;
3732 	struct perf_event **evt;
3733 	int ret;
3734 
3735 	if (pmu->filter && pmu->filter(pmu, cpu))
3736 		return 0;
3737 
3738 	if (!ctx->task) {
3739 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3740 		event_heap = (struct min_heap){
3741 			.data = cpuctx->heap,
3742 			.nr = 0,
3743 			.size = cpuctx->heap_size,
3744 		};
3745 
3746 		lockdep_assert_held(&cpuctx->ctx.lock);
3747 
3748 #ifdef CONFIG_CGROUP_PERF
3749 		if (cpuctx->cgrp)
3750 			css = &cpuctx->cgrp->css;
3751 #endif
3752 	} else {
3753 		event_heap = (struct min_heap){
3754 			.data = itrs,
3755 			.nr = 0,
3756 			.size = ARRAY_SIZE(itrs),
3757 		};
3758 		/* Events not within a CPU context may be on any CPU. */
3759 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3760 	}
3761 	evt = event_heap.data;
3762 
3763 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3764 
3765 #ifdef CONFIG_CGROUP_PERF
3766 	for (; css; css = css->parent)
3767 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3768 #endif
3769 
3770 	if (event_heap.nr) {
3771 		__link_epc((*evt)->pmu_ctx);
3772 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3773 	}
3774 
3775 	min_heapify_all(&event_heap, &perf_min_heap);
3776 
3777 	while (event_heap.nr) {
3778 		ret = func(*evt, data);
3779 		if (ret)
3780 			return ret;
3781 
3782 		*evt = perf_event_groups_next(*evt, pmu);
3783 		if (*evt)
3784 			min_heapify(&event_heap, 0, &perf_min_heap);
3785 		else
3786 			min_heap_pop(&event_heap, &perf_min_heap);
3787 	}
3788 
3789 	return 0;
3790 }
3791 
3792 /*
3793  * Because the userpage is strictly per-event (there is no concept of context,
3794  * so there cannot be a context indirection), every userpage must be updated
3795  * when context time starts :-(
3796  *
3797  * IOW, we must not miss EVENT_TIME edges.
3798  */
3799 static inline bool event_update_userpage(struct perf_event *event)
3800 {
3801 	if (likely(!atomic_read(&event->mmap_count)))
3802 		return false;
3803 
3804 	perf_event_update_time(event);
3805 	perf_event_update_userpage(event);
3806 
3807 	return true;
3808 }
3809 
3810 static inline void group_update_userpage(struct perf_event *group_event)
3811 {
3812 	struct perf_event *event;
3813 
3814 	if (!event_update_userpage(group_event))
3815 		return;
3816 
3817 	for_each_sibling_event(event, group_event)
3818 		event_update_userpage(event);
3819 }
3820 
3821 static int merge_sched_in(struct perf_event *event, void *data)
3822 {
3823 	struct perf_event_context *ctx = event->ctx;
3824 	int *can_add_hw = data;
3825 
3826 	if (event->state <= PERF_EVENT_STATE_OFF)
3827 		return 0;
3828 
3829 	if (!event_filter_match(event))
3830 		return 0;
3831 
3832 	if (group_can_go_on(event, *can_add_hw)) {
3833 		if (!group_sched_in(event, ctx))
3834 			list_add_tail(&event->active_list, get_event_list(event));
3835 	}
3836 
3837 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3838 		*can_add_hw = 0;
3839 		if (event->attr.pinned) {
3840 			perf_cgroup_event_disable(event, ctx);
3841 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3842 		} else {
3843 			struct perf_cpu_pmu_context *cpc;
3844 
3845 			event->pmu_ctx->rotate_necessary = 1;
3846 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3847 			perf_mux_hrtimer_restart(cpc);
3848 			group_update_userpage(event);
3849 		}
3850 	}
3851 
3852 	return 0;
3853 }
3854 
3855 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3856 				struct perf_event_groups *groups,
3857 				struct pmu *pmu)
3858 {
3859 	int can_add_hw = 1;
3860 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3861 			   merge_sched_in, &can_add_hw);
3862 }
3863 
3864 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3865 				struct perf_event_groups *groups,
3866 				bool cgroup)
3867 {
3868 	struct perf_event_pmu_context *pmu_ctx;
3869 
3870 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3871 		if (cgroup && !pmu_ctx->nr_cgroups)
3872 			continue;
3873 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3874 	}
3875 }
3876 
3877 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3878 			       struct pmu *pmu)
3879 {
3880 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3881 }
3882 
3883 static void
3884 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3885 {
3886 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3887 	int is_active = ctx->is_active;
3888 	bool cgroup = event_type & EVENT_CGROUP;
3889 
3890 	event_type &= ~EVENT_CGROUP;
3891 
3892 	lockdep_assert_held(&ctx->lock);
3893 
3894 	if (likely(!ctx->nr_events))
3895 		return;
3896 
3897 	if (!(is_active & EVENT_TIME)) {
3898 		/* start ctx time */
3899 		__update_context_time(ctx, false);
3900 		perf_cgroup_set_timestamp(cpuctx);
3901 		/*
3902 		 * CPU-release for the below ->is_active store,
3903 		 * see __load_acquire() in perf_event_time_now()
3904 		 */
3905 		barrier();
3906 	}
3907 
3908 	ctx->is_active |= (event_type | EVENT_TIME);
3909 	if (ctx->task) {
3910 		if (!is_active)
3911 			cpuctx->task_ctx = ctx;
3912 		else
3913 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3914 	}
3915 
3916 	is_active ^= ctx->is_active; /* changed bits */
3917 
3918 	/*
3919 	 * First go through the list and put on any pinned groups
3920 	 * in order to give them the best chance of going on.
3921 	 */
3922 	if (is_active & EVENT_PINNED)
3923 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3924 
3925 	/* Then walk through the lower prio flexible groups */
3926 	if (is_active & EVENT_FLEXIBLE)
3927 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3928 }
3929 
3930 static void perf_event_context_sched_in(struct task_struct *task)
3931 {
3932 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3933 	struct perf_event_context *ctx;
3934 
3935 	rcu_read_lock();
3936 	ctx = rcu_dereference(task->perf_event_ctxp);
3937 	if (!ctx)
3938 		goto rcu_unlock;
3939 
3940 	if (cpuctx->task_ctx == ctx) {
3941 		perf_ctx_lock(cpuctx, ctx);
3942 		perf_ctx_disable(ctx, false);
3943 
3944 		perf_ctx_sched_task_cb(ctx, true);
3945 
3946 		perf_ctx_enable(ctx, false);
3947 		perf_ctx_unlock(cpuctx, ctx);
3948 		goto rcu_unlock;
3949 	}
3950 
3951 	perf_ctx_lock(cpuctx, ctx);
3952 	/*
3953 	 * We must check ctx->nr_events while holding ctx->lock, such
3954 	 * that we serialize against perf_install_in_context().
3955 	 */
3956 	if (!ctx->nr_events)
3957 		goto unlock;
3958 
3959 	perf_ctx_disable(ctx, false);
3960 	/*
3961 	 * We want to keep the following priority order:
3962 	 * cpu pinned (that don't need to move), task pinned,
3963 	 * cpu flexible, task flexible.
3964 	 *
3965 	 * However, if task's ctx is not carrying any pinned
3966 	 * events, no need to flip the cpuctx's events around.
3967 	 */
3968 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3969 		perf_ctx_disable(&cpuctx->ctx, false);
3970 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3971 	}
3972 
3973 	perf_event_sched_in(cpuctx, ctx);
3974 
3975 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3976 
3977 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3978 		perf_ctx_enable(&cpuctx->ctx, false);
3979 
3980 	perf_ctx_enable(ctx, false);
3981 
3982 unlock:
3983 	perf_ctx_unlock(cpuctx, ctx);
3984 rcu_unlock:
3985 	rcu_read_unlock();
3986 }
3987 
3988 /*
3989  * Called from scheduler to add the events of the current task
3990  * with interrupts disabled.
3991  *
3992  * We restore the event value and then enable it.
3993  *
3994  * This does not protect us against NMI, but enable()
3995  * sets the enabled bit in the control field of event _before_
3996  * accessing the event control register. If a NMI hits, then it will
3997  * keep the event running.
3998  */
3999 void __perf_event_task_sched_in(struct task_struct *prev,
4000 				struct task_struct *task)
4001 {
4002 	perf_event_context_sched_in(task);
4003 
4004 	if (atomic_read(&nr_switch_events))
4005 		perf_event_switch(task, prev, true);
4006 
4007 	if (__this_cpu_read(perf_sched_cb_usages))
4008 		perf_pmu_sched_task(prev, task, true);
4009 }
4010 
4011 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4012 {
4013 	u64 frequency = event->attr.sample_freq;
4014 	u64 sec = NSEC_PER_SEC;
4015 	u64 divisor, dividend;
4016 
4017 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4018 
4019 	count_fls = fls64(count);
4020 	nsec_fls = fls64(nsec);
4021 	frequency_fls = fls64(frequency);
4022 	sec_fls = 30;
4023 
4024 	/*
4025 	 * We got @count in @nsec, with a target of sample_freq HZ
4026 	 * the target period becomes:
4027 	 *
4028 	 *             @count * 10^9
4029 	 * period = -------------------
4030 	 *          @nsec * sample_freq
4031 	 *
4032 	 */
4033 
4034 	/*
4035 	 * Reduce accuracy by one bit such that @a and @b converge
4036 	 * to a similar magnitude.
4037 	 */
4038 #define REDUCE_FLS(a, b)		\
4039 do {					\
4040 	if (a##_fls > b##_fls) {	\
4041 		a >>= 1;		\
4042 		a##_fls--;		\
4043 	} else {			\
4044 		b >>= 1;		\
4045 		b##_fls--;		\
4046 	}				\
4047 } while (0)
4048 
4049 	/*
4050 	 * Reduce accuracy until either term fits in a u64, then proceed with
4051 	 * the other, so that finally we can do a u64/u64 division.
4052 	 */
4053 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4054 		REDUCE_FLS(nsec, frequency);
4055 		REDUCE_FLS(sec, count);
4056 	}
4057 
4058 	if (count_fls + sec_fls > 64) {
4059 		divisor = nsec * frequency;
4060 
4061 		while (count_fls + sec_fls > 64) {
4062 			REDUCE_FLS(count, sec);
4063 			divisor >>= 1;
4064 		}
4065 
4066 		dividend = count * sec;
4067 	} else {
4068 		dividend = count * sec;
4069 
4070 		while (nsec_fls + frequency_fls > 64) {
4071 			REDUCE_FLS(nsec, frequency);
4072 			dividend >>= 1;
4073 		}
4074 
4075 		divisor = nsec * frequency;
4076 	}
4077 
4078 	if (!divisor)
4079 		return dividend;
4080 
4081 	return div64_u64(dividend, divisor);
4082 }
4083 
4084 static DEFINE_PER_CPU(int, perf_throttled_count);
4085 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4086 
4087 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4088 {
4089 	struct hw_perf_event *hwc = &event->hw;
4090 	s64 period, sample_period;
4091 	s64 delta;
4092 
4093 	period = perf_calculate_period(event, nsec, count);
4094 
4095 	delta = (s64)(period - hwc->sample_period);
4096 	delta = (delta + 7) / 8; /* low pass filter */
4097 
4098 	sample_period = hwc->sample_period + delta;
4099 
4100 	if (!sample_period)
4101 		sample_period = 1;
4102 
4103 	hwc->sample_period = sample_period;
4104 
4105 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4106 		if (disable)
4107 			event->pmu->stop(event, PERF_EF_UPDATE);
4108 
4109 		local64_set(&hwc->period_left, 0);
4110 
4111 		if (disable)
4112 			event->pmu->start(event, PERF_EF_RELOAD);
4113 	}
4114 }
4115 
4116 /*
4117  * combine freq adjustment with unthrottling to avoid two passes over the
4118  * events. At the same time, make sure, having freq events does not change
4119  * the rate of unthrottling as that would introduce bias.
4120  */
4121 static void
4122 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4123 {
4124 	struct perf_event *event;
4125 	struct hw_perf_event *hwc;
4126 	u64 now, period = TICK_NSEC;
4127 	s64 delta;
4128 
4129 	/*
4130 	 * only need to iterate over all events iff:
4131 	 * - context have events in frequency mode (needs freq adjust)
4132 	 * - there are events to unthrottle on this cpu
4133 	 */
4134 	if (!(ctx->nr_freq || unthrottle))
4135 		return;
4136 
4137 	raw_spin_lock(&ctx->lock);
4138 
4139 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4140 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4141 			continue;
4142 
4143 		// XXX use visit thingy to avoid the -1,cpu match
4144 		if (!event_filter_match(event))
4145 			continue;
4146 
4147 		perf_pmu_disable(event->pmu);
4148 
4149 		hwc = &event->hw;
4150 
4151 		if (hwc->interrupts == MAX_INTERRUPTS) {
4152 			hwc->interrupts = 0;
4153 			perf_log_throttle(event, 1);
4154 			event->pmu->start(event, 0);
4155 		}
4156 
4157 		if (!event->attr.freq || !event->attr.sample_freq)
4158 			goto next;
4159 
4160 		/*
4161 		 * stop the event and update event->count
4162 		 */
4163 		event->pmu->stop(event, PERF_EF_UPDATE);
4164 
4165 		now = local64_read(&event->count);
4166 		delta = now - hwc->freq_count_stamp;
4167 		hwc->freq_count_stamp = now;
4168 
4169 		/*
4170 		 * restart the event
4171 		 * reload only if value has changed
4172 		 * we have stopped the event so tell that
4173 		 * to perf_adjust_period() to avoid stopping it
4174 		 * twice.
4175 		 */
4176 		if (delta > 0)
4177 			perf_adjust_period(event, period, delta, false);
4178 
4179 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4180 	next:
4181 		perf_pmu_enable(event->pmu);
4182 	}
4183 
4184 	raw_spin_unlock(&ctx->lock);
4185 }
4186 
4187 /*
4188  * Move @event to the tail of the @ctx's elegible events.
4189  */
4190 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4191 {
4192 	/*
4193 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4194 	 * disabled by the inheritance code.
4195 	 */
4196 	if (ctx->rotate_disable)
4197 		return;
4198 
4199 	perf_event_groups_delete(&ctx->flexible_groups, event);
4200 	perf_event_groups_insert(&ctx->flexible_groups, event);
4201 }
4202 
4203 /* pick an event from the flexible_groups to rotate */
4204 static inline struct perf_event *
4205 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4206 {
4207 	struct perf_event *event;
4208 	struct rb_node *node;
4209 	struct rb_root *tree;
4210 	struct __group_key key = {
4211 		.pmu = pmu_ctx->pmu,
4212 	};
4213 
4214 	/* pick the first active flexible event */
4215 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4216 					 struct perf_event, active_list);
4217 	if (event)
4218 		goto out;
4219 
4220 	/* if no active flexible event, pick the first event */
4221 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4222 
4223 	if (!pmu_ctx->ctx->task) {
4224 		key.cpu = smp_processor_id();
4225 
4226 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4227 		if (node)
4228 			event = __node_2_pe(node);
4229 		goto out;
4230 	}
4231 
4232 	key.cpu = -1;
4233 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234 	if (node) {
4235 		event = __node_2_pe(node);
4236 		goto out;
4237 	}
4238 
4239 	key.cpu = smp_processor_id();
4240 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 	if (node)
4242 		event = __node_2_pe(node);
4243 
4244 out:
4245 	/*
4246 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4247 	 * finds there are unschedulable events, it will set it again.
4248 	 */
4249 	pmu_ctx->rotate_necessary = 0;
4250 
4251 	return event;
4252 }
4253 
4254 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4255 {
4256 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4257 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4258 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4259 	int cpu_rotate, task_rotate;
4260 	struct pmu *pmu;
4261 
4262 	/*
4263 	 * Since we run this from IRQ context, nobody can install new
4264 	 * events, thus the event count values are stable.
4265 	 */
4266 
4267 	cpu_epc = &cpc->epc;
4268 	pmu = cpu_epc->pmu;
4269 	task_epc = cpc->task_epc;
4270 
4271 	cpu_rotate = cpu_epc->rotate_necessary;
4272 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4273 
4274 	if (!(cpu_rotate || task_rotate))
4275 		return false;
4276 
4277 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4278 	perf_pmu_disable(pmu);
4279 
4280 	if (task_rotate)
4281 		task_event = ctx_event_to_rotate(task_epc);
4282 	if (cpu_rotate)
4283 		cpu_event = ctx_event_to_rotate(cpu_epc);
4284 
4285 	/*
4286 	 * As per the order given at ctx_resched() first 'pop' task flexible
4287 	 * and then, if needed CPU flexible.
4288 	 */
4289 	if (task_event || (task_epc && cpu_event)) {
4290 		update_context_time(task_epc->ctx);
4291 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4292 	}
4293 
4294 	if (cpu_event) {
4295 		update_context_time(&cpuctx->ctx);
4296 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4297 		rotate_ctx(&cpuctx->ctx, cpu_event);
4298 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4299 	}
4300 
4301 	if (task_event)
4302 		rotate_ctx(task_epc->ctx, task_event);
4303 
4304 	if (task_event || (task_epc && cpu_event))
4305 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4306 
4307 	perf_pmu_enable(pmu);
4308 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4309 
4310 	return true;
4311 }
4312 
4313 void perf_event_task_tick(void)
4314 {
4315 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4316 	struct perf_event_context *ctx;
4317 	int throttled;
4318 
4319 	lockdep_assert_irqs_disabled();
4320 
4321 	__this_cpu_inc(perf_throttled_seq);
4322 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4323 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4324 
4325 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4326 
4327 	rcu_read_lock();
4328 	ctx = rcu_dereference(current->perf_event_ctxp);
4329 	if (ctx)
4330 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4331 	rcu_read_unlock();
4332 }
4333 
4334 static int event_enable_on_exec(struct perf_event *event,
4335 				struct perf_event_context *ctx)
4336 {
4337 	if (!event->attr.enable_on_exec)
4338 		return 0;
4339 
4340 	event->attr.enable_on_exec = 0;
4341 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4342 		return 0;
4343 
4344 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4345 
4346 	return 1;
4347 }
4348 
4349 /*
4350  * Enable all of a task's events that have been marked enable-on-exec.
4351  * This expects task == current.
4352  */
4353 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4354 {
4355 	struct perf_event_context *clone_ctx = NULL;
4356 	enum event_type_t event_type = 0;
4357 	struct perf_cpu_context *cpuctx;
4358 	struct perf_event *event;
4359 	unsigned long flags;
4360 	int enabled = 0;
4361 
4362 	local_irq_save(flags);
4363 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4364 		goto out;
4365 
4366 	if (!ctx->nr_events)
4367 		goto out;
4368 
4369 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4370 	perf_ctx_lock(cpuctx, ctx);
4371 	ctx_sched_out(ctx, EVENT_TIME);
4372 
4373 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4374 		enabled |= event_enable_on_exec(event, ctx);
4375 		event_type |= get_event_type(event);
4376 	}
4377 
4378 	/*
4379 	 * Unclone and reschedule this context if we enabled any event.
4380 	 */
4381 	if (enabled) {
4382 		clone_ctx = unclone_ctx(ctx);
4383 		ctx_resched(cpuctx, ctx, event_type);
4384 	} else {
4385 		ctx_sched_in(ctx, EVENT_TIME);
4386 	}
4387 	perf_ctx_unlock(cpuctx, ctx);
4388 
4389 out:
4390 	local_irq_restore(flags);
4391 
4392 	if (clone_ctx)
4393 		put_ctx(clone_ctx);
4394 }
4395 
4396 static void perf_remove_from_owner(struct perf_event *event);
4397 static void perf_event_exit_event(struct perf_event *event,
4398 				  struct perf_event_context *ctx);
4399 
4400 /*
4401  * Removes all events from the current task that have been marked
4402  * remove-on-exec, and feeds their values back to parent events.
4403  */
4404 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4405 {
4406 	struct perf_event_context *clone_ctx = NULL;
4407 	struct perf_event *event, *next;
4408 	unsigned long flags;
4409 	bool modified = false;
4410 
4411 	mutex_lock(&ctx->mutex);
4412 
4413 	if (WARN_ON_ONCE(ctx->task != current))
4414 		goto unlock;
4415 
4416 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4417 		if (!event->attr.remove_on_exec)
4418 			continue;
4419 
4420 		if (!is_kernel_event(event))
4421 			perf_remove_from_owner(event);
4422 
4423 		modified = true;
4424 
4425 		perf_event_exit_event(event, ctx);
4426 	}
4427 
4428 	raw_spin_lock_irqsave(&ctx->lock, flags);
4429 	if (modified)
4430 		clone_ctx = unclone_ctx(ctx);
4431 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4432 
4433 unlock:
4434 	mutex_unlock(&ctx->mutex);
4435 
4436 	if (clone_ctx)
4437 		put_ctx(clone_ctx);
4438 }
4439 
4440 struct perf_read_data {
4441 	struct perf_event *event;
4442 	bool group;
4443 	int ret;
4444 };
4445 
4446 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4447 {
4448 	u16 local_pkg, event_pkg;
4449 
4450 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4451 		int local_cpu = smp_processor_id();
4452 
4453 		event_pkg = topology_physical_package_id(event_cpu);
4454 		local_pkg = topology_physical_package_id(local_cpu);
4455 
4456 		if (event_pkg == local_pkg)
4457 			return local_cpu;
4458 	}
4459 
4460 	return event_cpu;
4461 }
4462 
4463 /*
4464  * Cross CPU call to read the hardware event
4465  */
4466 static void __perf_event_read(void *info)
4467 {
4468 	struct perf_read_data *data = info;
4469 	struct perf_event *sub, *event = data->event;
4470 	struct perf_event_context *ctx = event->ctx;
4471 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4472 	struct pmu *pmu = event->pmu;
4473 
4474 	/*
4475 	 * If this is a task context, we need to check whether it is
4476 	 * the current task context of this cpu.  If not it has been
4477 	 * scheduled out before the smp call arrived.  In that case
4478 	 * event->count would have been updated to a recent sample
4479 	 * when the event was scheduled out.
4480 	 */
4481 	if (ctx->task && cpuctx->task_ctx != ctx)
4482 		return;
4483 
4484 	raw_spin_lock(&ctx->lock);
4485 	if (ctx->is_active & EVENT_TIME) {
4486 		update_context_time(ctx);
4487 		update_cgrp_time_from_event(event);
4488 	}
4489 
4490 	perf_event_update_time(event);
4491 	if (data->group)
4492 		perf_event_update_sibling_time(event);
4493 
4494 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4495 		goto unlock;
4496 
4497 	if (!data->group) {
4498 		pmu->read(event);
4499 		data->ret = 0;
4500 		goto unlock;
4501 	}
4502 
4503 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4504 
4505 	pmu->read(event);
4506 
4507 	for_each_sibling_event(sub, event) {
4508 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4509 			/*
4510 			 * Use sibling's PMU rather than @event's since
4511 			 * sibling could be on different (eg: software) PMU.
4512 			 */
4513 			sub->pmu->read(sub);
4514 		}
4515 	}
4516 
4517 	data->ret = pmu->commit_txn(pmu);
4518 
4519 unlock:
4520 	raw_spin_unlock(&ctx->lock);
4521 }
4522 
4523 static inline u64 perf_event_count(struct perf_event *event)
4524 {
4525 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4526 }
4527 
4528 static void calc_timer_values(struct perf_event *event,
4529 				u64 *now,
4530 				u64 *enabled,
4531 				u64 *running)
4532 {
4533 	u64 ctx_time;
4534 
4535 	*now = perf_clock();
4536 	ctx_time = perf_event_time_now(event, *now);
4537 	__perf_update_times(event, ctx_time, enabled, running);
4538 }
4539 
4540 /*
4541  * NMI-safe method to read a local event, that is an event that
4542  * is:
4543  *   - either for the current task, or for this CPU
4544  *   - does not have inherit set, for inherited task events
4545  *     will not be local and we cannot read them atomically
4546  *   - must not have a pmu::count method
4547  */
4548 int perf_event_read_local(struct perf_event *event, u64 *value,
4549 			  u64 *enabled, u64 *running)
4550 {
4551 	unsigned long flags;
4552 	int ret = 0;
4553 
4554 	/*
4555 	 * Disabling interrupts avoids all counter scheduling (context
4556 	 * switches, timer based rotation and IPIs).
4557 	 */
4558 	local_irq_save(flags);
4559 
4560 	/*
4561 	 * It must not be an event with inherit set, we cannot read
4562 	 * all child counters from atomic context.
4563 	 */
4564 	if (event->attr.inherit) {
4565 		ret = -EOPNOTSUPP;
4566 		goto out;
4567 	}
4568 
4569 	/* If this is a per-task event, it must be for current */
4570 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4571 	    event->hw.target != current) {
4572 		ret = -EINVAL;
4573 		goto out;
4574 	}
4575 
4576 	/* If this is a per-CPU event, it must be for this CPU */
4577 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4578 	    event->cpu != smp_processor_id()) {
4579 		ret = -EINVAL;
4580 		goto out;
4581 	}
4582 
4583 	/* If this is a pinned event it must be running on this CPU */
4584 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4585 		ret = -EBUSY;
4586 		goto out;
4587 	}
4588 
4589 	/*
4590 	 * If the event is currently on this CPU, its either a per-task event,
4591 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4592 	 * oncpu == -1).
4593 	 */
4594 	if (event->oncpu == smp_processor_id())
4595 		event->pmu->read(event);
4596 
4597 	*value = local64_read(&event->count);
4598 	if (enabled || running) {
4599 		u64 __enabled, __running, __now;
4600 
4601 		calc_timer_values(event, &__now, &__enabled, &__running);
4602 		if (enabled)
4603 			*enabled = __enabled;
4604 		if (running)
4605 			*running = __running;
4606 	}
4607 out:
4608 	local_irq_restore(flags);
4609 
4610 	return ret;
4611 }
4612 
4613 static int perf_event_read(struct perf_event *event, bool group)
4614 {
4615 	enum perf_event_state state = READ_ONCE(event->state);
4616 	int event_cpu, ret = 0;
4617 
4618 	/*
4619 	 * If event is enabled and currently active on a CPU, update the
4620 	 * value in the event structure:
4621 	 */
4622 again:
4623 	if (state == PERF_EVENT_STATE_ACTIVE) {
4624 		struct perf_read_data data;
4625 
4626 		/*
4627 		 * Orders the ->state and ->oncpu loads such that if we see
4628 		 * ACTIVE we must also see the right ->oncpu.
4629 		 *
4630 		 * Matches the smp_wmb() from event_sched_in().
4631 		 */
4632 		smp_rmb();
4633 
4634 		event_cpu = READ_ONCE(event->oncpu);
4635 		if ((unsigned)event_cpu >= nr_cpu_ids)
4636 			return 0;
4637 
4638 		data = (struct perf_read_data){
4639 			.event = event,
4640 			.group = group,
4641 			.ret = 0,
4642 		};
4643 
4644 		preempt_disable();
4645 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4646 
4647 		/*
4648 		 * Purposely ignore the smp_call_function_single() return
4649 		 * value.
4650 		 *
4651 		 * If event_cpu isn't a valid CPU it means the event got
4652 		 * scheduled out and that will have updated the event count.
4653 		 *
4654 		 * Therefore, either way, we'll have an up-to-date event count
4655 		 * after this.
4656 		 */
4657 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4658 		preempt_enable();
4659 		ret = data.ret;
4660 
4661 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4662 		struct perf_event_context *ctx = event->ctx;
4663 		unsigned long flags;
4664 
4665 		raw_spin_lock_irqsave(&ctx->lock, flags);
4666 		state = event->state;
4667 		if (state != PERF_EVENT_STATE_INACTIVE) {
4668 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4669 			goto again;
4670 		}
4671 
4672 		/*
4673 		 * May read while context is not active (e.g., thread is
4674 		 * blocked), in that case we cannot update context time
4675 		 */
4676 		if (ctx->is_active & EVENT_TIME) {
4677 			update_context_time(ctx);
4678 			update_cgrp_time_from_event(event);
4679 		}
4680 
4681 		perf_event_update_time(event);
4682 		if (group)
4683 			perf_event_update_sibling_time(event);
4684 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4685 	}
4686 
4687 	return ret;
4688 }
4689 
4690 /*
4691  * Initialize the perf_event context in a task_struct:
4692  */
4693 static void __perf_event_init_context(struct perf_event_context *ctx)
4694 {
4695 	raw_spin_lock_init(&ctx->lock);
4696 	mutex_init(&ctx->mutex);
4697 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4698 	perf_event_groups_init(&ctx->pinned_groups);
4699 	perf_event_groups_init(&ctx->flexible_groups);
4700 	INIT_LIST_HEAD(&ctx->event_list);
4701 	refcount_set(&ctx->refcount, 1);
4702 }
4703 
4704 static void
4705 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4706 {
4707 	epc->pmu = pmu;
4708 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4709 	INIT_LIST_HEAD(&epc->pinned_active);
4710 	INIT_LIST_HEAD(&epc->flexible_active);
4711 	atomic_set(&epc->refcount, 1);
4712 }
4713 
4714 static struct perf_event_context *
4715 alloc_perf_context(struct task_struct *task)
4716 {
4717 	struct perf_event_context *ctx;
4718 
4719 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4720 	if (!ctx)
4721 		return NULL;
4722 
4723 	__perf_event_init_context(ctx);
4724 	if (task)
4725 		ctx->task = get_task_struct(task);
4726 
4727 	return ctx;
4728 }
4729 
4730 static struct task_struct *
4731 find_lively_task_by_vpid(pid_t vpid)
4732 {
4733 	struct task_struct *task;
4734 
4735 	rcu_read_lock();
4736 	if (!vpid)
4737 		task = current;
4738 	else
4739 		task = find_task_by_vpid(vpid);
4740 	if (task)
4741 		get_task_struct(task);
4742 	rcu_read_unlock();
4743 
4744 	if (!task)
4745 		return ERR_PTR(-ESRCH);
4746 
4747 	return task;
4748 }
4749 
4750 /*
4751  * Returns a matching context with refcount and pincount.
4752  */
4753 static struct perf_event_context *
4754 find_get_context(struct task_struct *task, struct perf_event *event)
4755 {
4756 	struct perf_event_context *ctx, *clone_ctx = NULL;
4757 	struct perf_cpu_context *cpuctx;
4758 	unsigned long flags;
4759 	int err;
4760 
4761 	if (!task) {
4762 		/* Must be root to operate on a CPU event: */
4763 		err = perf_allow_cpu(&event->attr);
4764 		if (err)
4765 			return ERR_PTR(err);
4766 
4767 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4768 		ctx = &cpuctx->ctx;
4769 		get_ctx(ctx);
4770 		raw_spin_lock_irqsave(&ctx->lock, flags);
4771 		++ctx->pin_count;
4772 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4773 
4774 		return ctx;
4775 	}
4776 
4777 	err = -EINVAL;
4778 retry:
4779 	ctx = perf_lock_task_context(task, &flags);
4780 	if (ctx) {
4781 		clone_ctx = unclone_ctx(ctx);
4782 		++ctx->pin_count;
4783 
4784 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4785 
4786 		if (clone_ctx)
4787 			put_ctx(clone_ctx);
4788 	} else {
4789 		ctx = alloc_perf_context(task);
4790 		err = -ENOMEM;
4791 		if (!ctx)
4792 			goto errout;
4793 
4794 		err = 0;
4795 		mutex_lock(&task->perf_event_mutex);
4796 		/*
4797 		 * If it has already passed perf_event_exit_task().
4798 		 * we must see PF_EXITING, it takes this mutex too.
4799 		 */
4800 		if (task->flags & PF_EXITING)
4801 			err = -ESRCH;
4802 		else if (task->perf_event_ctxp)
4803 			err = -EAGAIN;
4804 		else {
4805 			get_ctx(ctx);
4806 			++ctx->pin_count;
4807 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4808 		}
4809 		mutex_unlock(&task->perf_event_mutex);
4810 
4811 		if (unlikely(err)) {
4812 			put_ctx(ctx);
4813 
4814 			if (err == -EAGAIN)
4815 				goto retry;
4816 			goto errout;
4817 		}
4818 	}
4819 
4820 	return ctx;
4821 
4822 errout:
4823 	return ERR_PTR(err);
4824 }
4825 
4826 static struct perf_event_pmu_context *
4827 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4828 		     struct perf_event *event)
4829 {
4830 	struct perf_event_pmu_context *new = NULL, *epc;
4831 	void *task_ctx_data = NULL;
4832 
4833 	if (!ctx->task) {
4834 		/*
4835 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4836 		 * relies on the fact that find_get_pmu_context() cannot fail
4837 		 * for CPU contexts.
4838 		 */
4839 		struct perf_cpu_pmu_context *cpc;
4840 
4841 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4842 		epc = &cpc->epc;
4843 		raw_spin_lock_irq(&ctx->lock);
4844 		if (!epc->ctx) {
4845 			atomic_set(&epc->refcount, 1);
4846 			epc->embedded = 1;
4847 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4848 			epc->ctx = ctx;
4849 		} else {
4850 			WARN_ON_ONCE(epc->ctx != ctx);
4851 			atomic_inc(&epc->refcount);
4852 		}
4853 		raw_spin_unlock_irq(&ctx->lock);
4854 		return epc;
4855 	}
4856 
4857 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4858 	if (!new)
4859 		return ERR_PTR(-ENOMEM);
4860 
4861 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4862 		task_ctx_data = alloc_task_ctx_data(pmu);
4863 		if (!task_ctx_data) {
4864 			kfree(new);
4865 			return ERR_PTR(-ENOMEM);
4866 		}
4867 	}
4868 
4869 	__perf_init_event_pmu_context(new, pmu);
4870 
4871 	/*
4872 	 * XXX
4873 	 *
4874 	 * lockdep_assert_held(&ctx->mutex);
4875 	 *
4876 	 * can't because perf_event_init_task() doesn't actually hold the
4877 	 * child_ctx->mutex.
4878 	 */
4879 
4880 	raw_spin_lock_irq(&ctx->lock);
4881 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4882 		if (epc->pmu == pmu) {
4883 			WARN_ON_ONCE(epc->ctx != ctx);
4884 			atomic_inc(&epc->refcount);
4885 			goto found_epc;
4886 		}
4887 	}
4888 
4889 	epc = new;
4890 	new = NULL;
4891 
4892 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4893 	epc->ctx = ctx;
4894 
4895 found_epc:
4896 	if (task_ctx_data && !epc->task_ctx_data) {
4897 		epc->task_ctx_data = task_ctx_data;
4898 		task_ctx_data = NULL;
4899 		ctx->nr_task_data++;
4900 	}
4901 	raw_spin_unlock_irq(&ctx->lock);
4902 
4903 	free_task_ctx_data(pmu, task_ctx_data);
4904 	kfree(new);
4905 
4906 	return epc;
4907 }
4908 
4909 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4910 {
4911 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4912 }
4913 
4914 static void free_epc_rcu(struct rcu_head *head)
4915 {
4916 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4917 
4918 	kfree(epc->task_ctx_data);
4919 	kfree(epc);
4920 }
4921 
4922 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4923 {
4924 	struct perf_event_context *ctx = epc->ctx;
4925 	unsigned long flags;
4926 
4927 	/*
4928 	 * XXX
4929 	 *
4930 	 * lockdep_assert_held(&ctx->mutex);
4931 	 *
4932 	 * can't because of the call-site in _free_event()/put_event()
4933 	 * which isn't always called under ctx->mutex.
4934 	 */
4935 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4936 		return;
4937 
4938 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4939 
4940 	list_del_init(&epc->pmu_ctx_entry);
4941 	epc->ctx = NULL;
4942 
4943 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4944 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4945 
4946 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4947 
4948 	if (epc->embedded)
4949 		return;
4950 
4951 	call_rcu(&epc->rcu_head, free_epc_rcu);
4952 }
4953 
4954 static void perf_event_free_filter(struct perf_event *event);
4955 
4956 static void free_event_rcu(struct rcu_head *head)
4957 {
4958 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4959 
4960 	if (event->ns)
4961 		put_pid_ns(event->ns);
4962 	perf_event_free_filter(event);
4963 	kmem_cache_free(perf_event_cache, event);
4964 }
4965 
4966 static void ring_buffer_attach(struct perf_event *event,
4967 			       struct perf_buffer *rb);
4968 
4969 static void detach_sb_event(struct perf_event *event)
4970 {
4971 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4972 
4973 	raw_spin_lock(&pel->lock);
4974 	list_del_rcu(&event->sb_list);
4975 	raw_spin_unlock(&pel->lock);
4976 }
4977 
4978 static bool is_sb_event(struct perf_event *event)
4979 {
4980 	struct perf_event_attr *attr = &event->attr;
4981 
4982 	if (event->parent)
4983 		return false;
4984 
4985 	if (event->attach_state & PERF_ATTACH_TASK)
4986 		return false;
4987 
4988 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4989 	    attr->comm || attr->comm_exec ||
4990 	    attr->task || attr->ksymbol ||
4991 	    attr->context_switch || attr->text_poke ||
4992 	    attr->bpf_event)
4993 		return true;
4994 	return false;
4995 }
4996 
4997 static void unaccount_pmu_sb_event(struct perf_event *event)
4998 {
4999 	if (is_sb_event(event))
5000 		detach_sb_event(event);
5001 }
5002 
5003 #ifdef CONFIG_NO_HZ_FULL
5004 static DEFINE_SPINLOCK(nr_freq_lock);
5005 #endif
5006 
5007 static void unaccount_freq_event_nohz(void)
5008 {
5009 #ifdef CONFIG_NO_HZ_FULL
5010 	spin_lock(&nr_freq_lock);
5011 	if (atomic_dec_and_test(&nr_freq_events))
5012 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5013 	spin_unlock(&nr_freq_lock);
5014 #endif
5015 }
5016 
5017 static void unaccount_freq_event(void)
5018 {
5019 	if (tick_nohz_full_enabled())
5020 		unaccount_freq_event_nohz();
5021 	else
5022 		atomic_dec(&nr_freq_events);
5023 }
5024 
5025 static void unaccount_event(struct perf_event *event)
5026 {
5027 	bool dec = false;
5028 
5029 	if (event->parent)
5030 		return;
5031 
5032 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5033 		dec = true;
5034 	if (event->attr.mmap || event->attr.mmap_data)
5035 		atomic_dec(&nr_mmap_events);
5036 	if (event->attr.build_id)
5037 		atomic_dec(&nr_build_id_events);
5038 	if (event->attr.comm)
5039 		atomic_dec(&nr_comm_events);
5040 	if (event->attr.namespaces)
5041 		atomic_dec(&nr_namespaces_events);
5042 	if (event->attr.cgroup)
5043 		atomic_dec(&nr_cgroup_events);
5044 	if (event->attr.task)
5045 		atomic_dec(&nr_task_events);
5046 	if (event->attr.freq)
5047 		unaccount_freq_event();
5048 	if (event->attr.context_switch) {
5049 		dec = true;
5050 		atomic_dec(&nr_switch_events);
5051 	}
5052 	if (is_cgroup_event(event))
5053 		dec = true;
5054 	if (has_branch_stack(event))
5055 		dec = true;
5056 	if (event->attr.ksymbol)
5057 		atomic_dec(&nr_ksymbol_events);
5058 	if (event->attr.bpf_event)
5059 		atomic_dec(&nr_bpf_events);
5060 	if (event->attr.text_poke)
5061 		atomic_dec(&nr_text_poke_events);
5062 
5063 	if (dec) {
5064 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5065 			schedule_delayed_work(&perf_sched_work, HZ);
5066 	}
5067 
5068 	unaccount_pmu_sb_event(event);
5069 }
5070 
5071 static void perf_sched_delayed(struct work_struct *work)
5072 {
5073 	mutex_lock(&perf_sched_mutex);
5074 	if (atomic_dec_and_test(&perf_sched_count))
5075 		static_branch_disable(&perf_sched_events);
5076 	mutex_unlock(&perf_sched_mutex);
5077 }
5078 
5079 /*
5080  * The following implement mutual exclusion of events on "exclusive" pmus
5081  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5082  * at a time, so we disallow creating events that might conflict, namely:
5083  *
5084  *  1) cpu-wide events in the presence of per-task events,
5085  *  2) per-task events in the presence of cpu-wide events,
5086  *  3) two matching events on the same perf_event_context.
5087  *
5088  * The former two cases are handled in the allocation path (perf_event_alloc(),
5089  * _free_event()), the latter -- before the first perf_install_in_context().
5090  */
5091 static int exclusive_event_init(struct perf_event *event)
5092 {
5093 	struct pmu *pmu = event->pmu;
5094 
5095 	if (!is_exclusive_pmu(pmu))
5096 		return 0;
5097 
5098 	/*
5099 	 * Prevent co-existence of per-task and cpu-wide events on the
5100 	 * same exclusive pmu.
5101 	 *
5102 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5103 	 * events on this "exclusive" pmu, positive means there are
5104 	 * per-task events.
5105 	 *
5106 	 * Since this is called in perf_event_alloc() path, event::ctx
5107 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5108 	 * to mean "per-task event", because unlike other attach states it
5109 	 * never gets cleared.
5110 	 */
5111 	if (event->attach_state & PERF_ATTACH_TASK) {
5112 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5113 			return -EBUSY;
5114 	} else {
5115 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5116 			return -EBUSY;
5117 	}
5118 
5119 	return 0;
5120 }
5121 
5122 static void exclusive_event_destroy(struct perf_event *event)
5123 {
5124 	struct pmu *pmu = event->pmu;
5125 
5126 	if (!is_exclusive_pmu(pmu))
5127 		return;
5128 
5129 	/* see comment in exclusive_event_init() */
5130 	if (event->attach_state & PERF_ATTACH_TASK)
5131 		atomic_dec(&pmu->exclusive_cnt);
5132 	else
5133 		atomic_inc(&pmu->exclusive_cnt);
5134 }
5135 
5136 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5137 {
5138 	if ((e1->pmu == e2->pmu) &&
5139 	    (e1->cpu == e2->cpu ||
5140 	     e1->cpu == -1 ||
5141 	     e2->cpu == -1))
5142 		return true;
5143 	return false;
5144 }
5145 
5146 static bool exclusive_event_installable(struct perf_event *event,
5147 					struct perf_event_context *ctx)
5148 {
5149 	struct perf_event *iter_event;
5150 	struct pmu *pmu = event->pmu;
5151 
5152 	lockdep_assert_held(&ctx->mutex);
5153 
5154 	if (!is_exclusive_pmu(pmu))
5155 		return true;
5156 
5157 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5158 		if (exclusive_event_match(iter_event, event))
5159 			return false;
5160 	}
5161 
5162 	return true;
5163 }
5164 
5165 static void perf_addr_filters_splice(struct perf_event *event,
5166 				       struct list_head *head);
5167 
5168 static void _free_event(struct perf_event *event)
5169 {
5170 	irq_work_sync(&event->pending_irq);
5171 
5172 	unaccount_event(event);
5173 
5174 	security_perf_event_free(event);
5175 
5176 	if (event->rb) {
5177 		/*
5178 		 * Can happen when we close an event with re-directed output.
5179 		 *
5180 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5181 		 * over us; possibly making our ring_buffer_put() the last.
5182 		 */
5183 		mutex_lock(&event->mmap_mutex);
5184 		ring_buffer_attach(event, NULL);
5185 		mutex_unlock(&event->mmap_mutex);
5186 	}
5187 
5188 	if (is_cgroup_event(event))
5189 		perf_detach_cgroup(event);
5190 
5191 	if (!event->parent) {
5192 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5193 			put_callchain_buffers();
5194 	}
5195 
5196 	perf_event_free_bpf_prog(event);
5197 	perf_addr_filters_splice(event, NULL);
5198 	kfree(event->addr_filter_ranges);
5199 
5200 	if (event->destroy)
5201 		event->destroy(event);
5202 
5203 	/*
5204 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5205 	 * hw.target.
5206 	 */
5207 	if (event->hw.target)
5208 		put_task_struct(event->hw.target);
5209 
5210 	if (event->pmu_ctx)
5211 		put_pmu_ctx(event->pmu_ctx);
5212 
5213 	/*
5214 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5215 	 * all task references must be cleaned up.
5216 	 */
5217 	if (event->ctx)
5218 		put_ctx(event->ctx);
5219 
5220 	exclusive_event_destroy(event);
5221 	module_put(event->pmu->module);
5222 
5223 	call_rcu(&event->rcu_head, free_event_rcu);
5224 }
5225 
5226 /*
5227  * Used to free events which have a known refcount of 1, such as in error paths
5228  * where the event isn't exposed yet and inherited events.
5229  */
5230 static void free_event(struct perf_event *event)
5231 {
5232 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5233 				"unexpected event refcount: %ld; ptr=%p\n",
5234 				atomic_long_read(&event->refcount), event)) {
5235 		/* leak to avoid use-after-free */
5236 		return;
5237 	}
5238 
5239 	_free_event(event);
5240 }
5241 
5242 /*
5243  * Remove user event from the owner task.
5244  */
5245 static void perf_remove_from_owner(struct perf_event *event)
5246 {
5247 	struct task_struct *owner;
5248 
5249 	rcu_read_lock();
5250 	/*
5251 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5252 	 * observe !owner it means the list deletion is complete and we can
5253 	 * indeed free this event, otherwise we need to serialize on
5254 	 * owner->perf_event_mutex.
5255 	 */
5256 	owner = READ_ONCE(event->owner);
5257 	if (owner) {
5258 		/*
5259 		 * Since delayed_put_task_struct() also drops the last
5260 		 * task reference we can safely take a new reference
5261 		 * while holding the rcu_read_lock().
5262 		 */
5263 		get_task_struct(owner);
5264 	}
5265 	rcu_read_unlock();
5266 
5267 	if (owner) {
5268 		/*
5269 		 * If we're here through perf_event_exit_task() we're already
5270 		 * holding ctx->mutex which would be an inversion wrt. the
5271 		 * normal lock order.
5272 		 *
5273 		 * However we can safely take this lock because its the child
5274 		 * ctx->mutex.
5275 		 */
5276 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5277 
5278 		/*
5279 		 * We have to re-check the event->owner field, if it is cleared
5280 		 * we raced with perf_event_exit_task(), acquiring the mutex
5281 		 * ensured they're done, and we can proceed with freeing the
5282 		 * event.
5283 		 */
5284 		if (event->owner) {
5285 			list_del_init(&event->owner_entry);
5286 			smp_store_release(&event->owner, NULL);
5287 		}
5288 		mutex_unlock(&owner->perf_event_mutex);
5289 		put_task_struct(owner);
5290 	}
5291 }
5292 
5293 static void put_event(struct perf_event *event)
5294 {
5295 	if (!atomic_long_dec_and_test(&event->refcount))
5296 		return;
5297 
5298 	_free_event(event);
5299 }
5300 
5301 /*
5302  * Kill an event dead; while event:refcount will preserve the event
5303  * object, it will not preserve its functionality. Once the last 'user'
5304  * gives up the object, we'll destroy the thing.
5305  */
5306 int perf_event_release_kernel(struct perf_event *event)
5307 {
5308 	struct perf_event_context *ctx = event->ctx;
5309 	struct perf_event *child, *tmp;
5310 	LIST_HEAD(free_list);
5311 
5312 	/*
5313 	 * If we got here through err_alloc: free_event(event); we will not
5314 	 * have attached to a context yet.
5315 	 */
5316 	if (!ctx) {
5317 		WARN_ON_ONCE(event->attach_state &
5318 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5319 		goto no_ctx;
5320 	}
5321 
5322 	if (!is_kernel_event(event))
5323 		perf_remove_from_owner(event);
5324 
5325 	ctx = perf_event_ctx_lock(event);
5326 	WARN_ON_ONCE(ctx->parent_ctx);
5327 
5328 	/*
5329 	 * Mark this event as STATE_DEAD, there is no external reference to it
5330 	 * anymore.
5331 	 *
5332 	 * Anybody acquiring event->child_mutex after the below loop _must_
5333 	 * also see this, most importantly inherit_event() which will avoid
5334 	 * placing more children on the list.
5335 	 *
5336 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5337 	 * child events.
5338 	 */
5339 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5340 
5341 	perf_event_ctx_unlock(event, ctx);
5342 
5343 again:
5344 	mutex_lock(&event->child_mutex);
5345 	list_for_each_entry(child, &event->child_list, child_list) {
5346 
5347 		/*
5348 		 * Cannot change, child events are not migrated, see the
5349 		 * comment with perf_event_ctx_lock_nested().
5350 		 */
5351 		ctx = READ_ONCE(child->ctx);
5352 		/*
5353 		 * Since child_mutex nests inside ctx::mutex, we must jump
5354 		 * through hoops. We start by grabbing a reference on the ctx.
5355 		 *
5356 		 * Since the event cannot get freed while we hold the
5357 		 * child_mutex, the context must also exist and have a !0
5358 		 * reference count.
5359 		 */
5360 		get_ctx(ctx);
5361 
5362 		/*
5363 		 * Now that we have a ctx ref, we can drop child_mutex, and
5364 		 * acquire ctx::mutex without fear of it going away. Then we
5365 		 * can re-acquire child_mutex.
5366 		 */
5367 		mutex_unlock(&event->child_mutex);
5368 		mutex_lock(&ctx->mutex);
5369 		mutex_lock(&event->child_mutex);
5370 
5371 		/*
5372 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5373 		 * state, if child is still the first entry, it didn't get freed
5374 		 * and we can continue doing so.
5375 		 */
5376 		tmp = list_first_entry_or_null(&event->child_list,
5377 					       struct perf_event, child_list);
5378 		if (tmp == child) {
5379 			perf_remove_from_context(child, DETACH_GROUP);
5380 			list_move(&child->child_list, &free_list);
5381 			/*
5382 			 * This matches the refcount bump in inherit_event();
5383 			 * this can't be the last reference.
5384 			 */
5385 			put_event(event);
5386 		}
5387 
5388 		mutex_unlock(&event->child_mutex);
5389 		mutex_unlock(&ctx->mutex);
5390 		put_ctx(ctx);
5391 		goto again;
5392 	}
5393 	mutex_unlock(&event->child_mutex);
5394 
5395 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5396 		void *var = &child->ctx->refcount;
5397 
5398 		list_del(&child->child_list);
5399 		free_event(child);
5400 
5401 		/*
5402 		 * Wake any perf_event_free_task() waiting for this event to be
5403 		 * freed.
5404 		 */
5405 		smp_mb(); /* pairs with wait_var_event() */
5406 		wake_up_var(var);
5407 	}
5408 
5409 no_ctx:
5410 	put_event(event); /* Must be the 'last' reference */
5411 	return 0;
5412 }
5413 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5414 
5415 /*
5416  * Called when the last reference to the file is gone.
5417  */
5418 static int perf_release(struct inode *inode, struct file *file)
5419 {
5420 	perf_event_release_kernel(file->private_data);
5421 	return 0;
5422 }
5423 
5424 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5425 {
5426 	struct perf_event *child;
5427 	u64 total = 0;
5428 
5429 	*enabled = 0;
5430 	*running = 0;
5431 
5432 	mutex_lock(&event->child_mutex);
5433 
5434 	(void)perf_event_read(event, false);
5435 	total += perf_event_count(event);
5436 
5437 	*enabled += event->total_time_enabled +
5438 			atomic64_read(&event->child_total_time_enabled);
5439 	*running += event->total_time_running +
5440 			atomic64_read(&event->child_total_time_running);
5441 
5442 	list_for_each_entry(child, &event->child_list, child_list) {
5443 		(void)perf_event_read(child, false);
5444 		total += perf_event_count(child);
5445 		*enabled += child->total_time_enabled;
5446 		*running += child->total_time_running;
5447 	}
5448 	mutex_unlock(&event->child_mutex);
5449 
5450 	return total;
5451 }
5452 
5453 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5454 {
5455 	struct perf_event_context *ctx;
5456 	u64 count;
5457 
5458 	ctx = perf_event_ctx_lock(event);
5459 	count = __perf_event_read_value(event, enabled, running);
5460 	perf_event_ctx_unlock(event, ctx);
5461 
5462 	return count;
5463 }
5464 EXPORT_SYMBOL_GPL(perf_event_read_value);
5465 
5466 static int __perf_read_group_add(struct perf_event *leader,
5467 					u64 read_format, u64 *values)
5468 {
5469 	struct perf_event_context *ctx = leader->ctx;
5470 	struct perf_event *sub, *parent;
5471 	unsigned long flags;
5472 	int n = 1; /* skip @nr */
5473 	int ret;
5474 
5475 	ret = perf_event_read(leader, true);
5476 	if (ret)
5477 		return ret;
5478 
5479 	raw_spin_lock_irqsave(&ctx->lock, flags);
5480 	/*
5481 	 * Verify the grouping between the parent and child (inherited)
5482 	 * events is still in tact.
5483 	 *
5484 	 * Specifically:
5485 	 *  - leader->ctx->lock pins leader->sibling_list
5486 	 *  - parent->child_mutex pins parent->child_list
5487 	 *  - parent->ctx->mutex pins parent->sibling_list
5488 	 *
5489 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5490 	 * ctx->mutex), group destruction is not atomic between children, also
5491 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5492 	 * group.
5493 	 *
5494 	 * Therefore it is possible to have parent and child groups in a
5495 	 * different configuration and summing over such a beast makes no sense
5496 	 * what so ever.
5497 	 *
5498 	 * Reject this.
5499 	 */
5500 	parent = leader->parent;
5501 	if (parent &&
5502 	    (parent->group_generation != leader->group_generation ||
5503 	     parent->nr_siblings != leader->nr_siblings)) {
5504 		ret = -ECHILD;
5505 		goto unlock;
5506 	}
5507 
5508 	/*
5509 	 * Since we co-schedule groups, {enabled,running} times of siblings
5510 	 * will be identical to those of the leader, so we only publish one
5511 	 * set.
5512 	 */
5513 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5514 		values[n++] += leader->total_time_enabled +
5515 			atomic64_read(&leader->child_total_time_enabled);
5516 	}
5517 
5518 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5519 		values[n++] += leader->total_time_running +
5520 			atomic64_read(&leader->child_total_time_running);
5521 	}
5522 
5523 	/*
5524 	 * Write {count,id} tuples for every sibling.
5525 	 */
5526 	values[n++] += perf_event_count(leader);
5527 	if (read_format & PERF_FORMAT_ID)
5528 		values[n++] = primary_event_id(leader);
5529 	if (read_format & PERF_FORMAT_LOST)
5530 		values[n++] = atomic64_read(&leader->lost_samples);
5531 
5532 	for_each_sibling_event(sub, leader) {
5533 		values[n++] += perf_event_count(sub);
5534 		if (read_format & PERF_FORMAT_ID)
5535 			values[n++] = primary_event_id(sub);
5536 		if (read_format & PERF_FORMAT_LOST)
5537 			values[n++] = atomic64_read(&sub->lost_samples);
5538 	}
5539 
5540 unlock:
5541 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5542 	return ret;
5543 }
5544 
5545 static int perf_read_group(struct perf_event *event,
5546 				   u64 read_format, char __user *buf)
5547 {
5548 	struct perf_event *leader = event->group_leader, *child;
5549 	struct perf_event_context *ctx = leader->ctx;
5550 	int ret;
5551 	u64 *values;
5552 
5553 	lockdep_assert_held(&ctx->mutex);
5554 
5555 	values = kzalloc(event->read_size, GFP_KERNEL);
5556 	if (!values)
5557 		return -ENOMEM;
5558 
5559 	values[0] = 1 + leader->nr_siblings;
5560 
5561 	mutex_lock(&leader->child_mutex);
5562 
5563 	ret = __perf_read_group_add(leader, read_format, values);
5564 	if (ret)
5565 		goto unlock;
5566 
5567 	list_for_each_entry(child, &leader->child_list, child_list) {
5568 		ret = __perf_read_group_add(child, read_format, values);
5569 		if (ret)
5570 			goto unlock;
5571 	}
5572 
5573 	mutex_unlock(&leader->child_mutex);
5574 
5575 	ret = event->read_size;
5576 	if (copy_to_user(buf, values, event->read_size))
5577 		ret = -EFAULT;
5578 	goto out;
5579 
5580 unlock:
5581 	mutex_unlock(&leader->child_mutex);
5582 out:
5583 	kfree(values);
5584 	return ret;
5585 }
5586 
5587 static int perf_read_one(struct perf_event *event,
5588 				 u64 read_format, char __user *buf)
5589 {
5590 	u64 enabled, running;
5591 	u64 values[5];
5592 	int n = 0;
5593 
5594 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5595 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5596 		values[n++] = enabled;
5597 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5598 		values[n++] = running;
5599 	if (read_format & PERF_FORMAT_ID)
5600 		values[n++] = primary_event_id(event);
5601 	if (read_format & PERF_FORMAT_LOST)
5602 		values[n++] = atomic64_read(&event->lost_samples);
5603 
5604 	if (copy_to_user(buf, values, n * sizeof(u64)))
5605 		return -EFAULT;
5606 
5607 	return n * sizeof(u64);
5608 }
5609 
5610 static bool is_event_hup(struct perf_event *event)
5611 {
5612 	bool no_children;
5613 
5614 	if (event->state > PERF_EVENT_STATE_EXIT)
5615 		return false;
5616 
5617 	mutex_lock(&event->child_mutex);
5618 	no_children = list_empty(&event->child_list);
5619 	mutex_unlock(&event->child_mutex);
5620 	return no_children;
5621 }
5622 
5623 /*
5624  * Read the performance event - simple non blocking version for now
5625  */
5626 static ssize_t
5627 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5628 {
5629 	u64 read_format = event->attr.read_format;
5630 	int ret;
5631 
5632 	/*
5633 	 * Return end-of-file for a read on an event that is in
5634 	 * error state (i.e. because it was pinned but it couldn't be
5635 	 * scheduled on to the CPU at some point).
5636 	 */
5637 	if (event->state == PERF_EVENT_STATE_ERROR)
5638 		return 0;
5639 
5640 	if (count < event->read_size)
5641 		return -ENOSPC;
5642 
5643 	WARN_ON_ONCE(event->ctx->parent_ctx);
5644 	if (read_format & PERF_FORMAT_GROUP)
5645 		ret = perf_read_group(event, read_format, buf);
5646 	else
5647 		ret = perf_read_one(event, read_format, buf);
5648 
5649 	return ret;
5650 }
5651 
5652 static ssize_t
5653 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5654 {
5655 	struct perf_event *event = file->private_data;
5656 	struct perf_event_context *ctx;
5657 	int ret;
5658 
5659 	ret = security_perf_event_read(event);
5660 	if (ret)
5661 		return ret;
5662 
5663 	ctx = perf_event_ctx_lock(event);
5664 	ret = __perf_read(event, buf, count);
5665 	perf_event_ctx_unlock(event, ctx);
5666 
5667 	return ret;
5668 }
5669 
5670 static __poll_t perf_poll(struct file *file, poll_table *wait)
5671 {
5672 	struct perf_event *event = file->private_data;
5673 	struct perf_buffer *rb;
5674 	__poll_t events = EPOLLHUP;
5675 
5676 	poll_wait(file, &event->waitq, wait);
5677 
5678 	if (is_event_hup(event))
5679 		return events;
5680 
5681 	/*
5682 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5683 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5684 	 */
5685 	mutex_lock(&event->mmap_mutex);
5686 	rb = event->rb;
5687 	if (rb)
5688 		events = atomic_xchg(&rb->poll, 0);
5689 	mutex_unlock(&event->mmap_mutex);
5690 	return events;
5691 }
5692 
5693 static void _perf_event_reset(struct perf_event *event)
5694 {
5695 	(void)perf_event_read(event, false);
5696 	local64_set(&event->count, 0);
5697 	perf_event_update_userpage(event);
5698 }
5699 
5700 /* Assume it's not an event with inherit set. */
5701 u64 perf_event_pause(struct perf_event *event, bool reset)
5702 {
5703 	struct perf_event_context *ctx;
5704 	u64 count;
5705 
5706 	ctx = perf_event_ctx_lock(event);
5707 	WARN_ON_ONCE(event->attr.inherit);
5708 	_perf_event_disable(event);
5709 	count = local64_read(&event->count);
5710 	if (reset)
5711 		local64_set(&event->count, 0);
5712 	perf_event_ctx_unlock(event, ctx);
5713 
5714 	return count;
5715 }
5716 EXPORT_SYMBOL_GPL(perf_event_pause);
5717 
5718 /*
5719  * Holding the top-level event's child_mutex means that any
5720  * descendant process that has inherited this event will block
5721  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5722  * task existence requirements of perf_event_enable/disable.
5723  */
5724 static void perf_event_for_each_child(struct perf_event *event,
5725 					void (*func)(struct perf_event *))
5726 {
5727 	struct perf_event *child;
5728 
5729 	WARN_ON_ONCE(event->ctx->parent_ctx);
5730 
5731 	mutex_lock(&event->child_mutex);
5732 	func(event);
5733 	list_for_each_entry(child, &event->child_list, child_list)
5734 		func(child);
5735 	mutex_unlock(&event->child_mutex);
5736 }
5737 
5738 static void perf_event_for_each(struct perf_event *event,
5739 				  void (*func)(struct perf_event *))
5740 {
5741 	struct perf_event_context *ctx = event->ctx;
5742 	struct perf_event *sibling;
5743 
5744 	lockdep_assert_held(&ctx->mutex);
5745 
5746 	event = event->group_leader;
5747 
5748 	perf_event_for_each_child(event, func);
5749 	for_each_sibling_event(sibling, event)
5750 		perf_event_for_each_child(sibling, func);
5751 }
5752 
5753 static void __perf_event_period(struct perf_event *event,
5754 				struct perf_cpu_context *cpuctx,
5755 				struct perf_event_context *ctx,
5756 				void *info)
5757 {
5758 	u64 value = *((u64 *)info);
5759 	bool active;
5760 
5761 	if (event->attr.freq) {
5762 		event->attr.sample_freq = value;
5763 	} else {
5764 		event->attr.sample_period = value;
5765 		event->hw.sample_period = value;
5766 	}
5767 
5768 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5769 	if (active) {
5770 		perf_pmu_disable(event->pmu);
5771 		/*
5772 		 * We could be throttled; unthrottle now to avoid the tick
5773 		 * trying to unthrottle while we already re-started the event.
5774 		 */
5775 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5776 			event->hw.interrupts = 0;
5777 			perf_log_throttle(event, 1);
5778 		}
5779 		event->pmu->stop(event, PERF_EF_UPDATE);
5780 	}
5781 
5782 	local64_set(&event->hw.period_left, 0);
5783 
5784 	if (active) {
5785 		event->pmu->start(event, PERF_EF_RELOAD);
5786 		perf_pmu_enable(event->pmu);
5787 	}
5788 }
5789 
5790 static int perf_event_check_period(struct perf_event *event, u64 value)
5791 {
5792 	return event->pmu->check_period(event, value);
5793 }
5794 
5795 static int _perf_event_period(struct perf_event *event, u64 value)
5796 {
5797 	if (!is_sampling_event(event))
5798 		return -EINVAL;
5799 
5800 	if (!value)
5801 		return -EINVAL;
5802 
5803 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5804 		return -EINVAL;
5805 
5806 	if (perf_event_check_period(event, value))
5807 		return -EINVAL;
5808 
5809 	if (!event->attr.freq && (value & (1ULL << 63)))
5810 		return -EINVAL;
5811 
5812 	event_function_call(event, __perf_event_period, &value);
5813 
5814 	return 0;
5815 }
5816 
5817 int perf_event_period(struct perf_event *event, u64 value)
5818 {
5819 	struct perf_event_context *ctx;
5820 	int ret;
5821 
5822 	ctx = perf_event_ctx_lock(event);
5823 	ret = _perf_event_period(event, value);
5824 	perf_event_ctx_unlock(event, ctx);
5825 
5826 	return ret;
5827 }
5828 EXPORT_SYMBOL_GPL(perf_event_period);
5829 
5830 static const struct file_operations perf_fops;
5831 
5832 static inline int perf_fget_light(int fd, struct fd *p)
5833 {
5834 	struct fd f = fdget(fd);
5835 	if (!f.file)
5836 		return -EBADF;
5837 
5838 	if (f.file->f_op != &perf_fops) {
5839 		fdput(f);
5840 		return -EBADF;
5841 	}
5842 	*p = f;
5843 	return 0;
5844 }
5845 
5846 static int perf_event_set_output(struct perf_event *event,
5847 				 struct perf_event *output_event);
5848 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5849 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5850 			  struct perf_event_attr *attr);
5851 
5852 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5853 {
5854 	void (*func)(struct perf_event *);
5855 	u32 flags = arg;
5856 
5857 	switch (cmd) {
5858 	case PERF_EVENT_IOC_ENABLE:
5859 		func = _perf_event_enable;
5860 		break;
5861 	case PERF_EVENT_IOC_DISABLE:
5862 		func = _perf_event_disable;
5863 		break;
5864 	case PERF_EVENT_IOC_RESET:
5865 		func = _perf_event_reset;
5866 		break;
5867 
5868 	case PERF_EVENT_IOC_REFRESH:
5869 		return _perf_event_refresh(event, arg);
5870 
5871 	case PERF_EVENT_IOC_PERIOD:
5872 	{
5873 		u64 value;
5874 
5875 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5876 			return -EFAULT;
5877 
5878 		return _perf_event_period(event, value);
5879 	}
5880 	case PERF_EVENT_IOC_ID:
5881 	{
5882 		u64 id = primary_event_id(event);
5883 
5884 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5885 			return -EFAULT;
5886 		return 0;
5887 	}
5888 
5889 	case PERF_EVENT_IOC_SET_OUTPUT:
5890 	{
5891 		int ret;
5892 		if (arg != -1) {
5893 			struct perf_event *output_event;
5894 			struct fd output;
5895 			ret = perf_fget_light(arg, &output);
5896 			if (ret)
5897 				return ret;
5898 			output_event = output.file->private_data;
5899 			ret = perf_event_set_output(event, output_event);
5900 			fdput(output);
5901 		} else {
5902 			ret = perf_event_set_output(event, NULL);
5903 		}
5904 		return ret;
5905 	}
5906 
5907 	case PERF_EVENT_IOC_SET_FILTER:
5908 		return perf_event_set_filter(event, (void __user *)arg);
5909 
5910 	case PERF_EVENT_IOC_SET_BPF:
5911 	{
5912 		struct bpf_prog *prog;
5913 		int err;
5914 
5915 		prog = bpf_prog_get(arg);
5916 		if (IS_ERR(prog))
5917 			return PTR_ERR(prog);
5918 
5919 		err = perf_event_set_bpf_prog(event, prog, 0);
5920 		if (err) {
5921 			bpf_prog_put(prog);
5922 			return err;
5923 		}
5924 
5925 		return 0;
5926 	}
5927 
5928 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5929 		struct perf_buffer *rb;
5930 
5931 		rcu_read_lock();
5932 		rb = rcu_dereference(event->rb);
5933 		if (!rb || !rb->nr_pages) {
5934 			rcu_read_unlock();
5935 			return -EINVAL;
5936 		}
5937 		rb_toggle_paused(rb, !!arg);
5938 		rcu_read_unlock();
5939 		return 0;
5940 	}
5941 
5942 	case PERF_EVENT_IOC_QUERY_BPF:
5943 		return perf_event_query_prog_array(event, (void __user *)arg);
5944 
5945 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5946 		struct perf_event_attr new_attr;
5947 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5948 					 &new_attr);
5949 
5950 		if (err)
5951 			return err;
5952 
5953 		return perf_event_modify_attr(event,  &new_attr);
5954 	}
5955 	default:
5956 		return -ENOTTY;
5957 	}
5958 
5959 	if (flags & PERF_IOC_FLAG_GROUP)
5960 		perf_event_for_each(event, func);
5961 	else
5962 		perf_event_for_each_child(event, func);
5963 
5964 	return 0;
5965 }
5966 
5967 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5968 {
5969 	struct perf_event *event = file->private_data;
5970 	struct perf_event_context *ctx;
5971 	long ret;
5972 
5973 	/* Treat ioctl like writes as it is likely a mutating operation. */
5974 	ret = security_perf_event_write(event);
5975 	if (ret)
5976 		return ret;
5977 
5978 	ctx = perf_event_ctx_lock(event);
5979 	ret = _perf_ioctl(event, cmd, arg);
5980 	perf_event_ctx_unlock(event, ctx);
5981 
5982 	return ret;
5983 }
5984 
5985 #ifdef CONFIG_COMPAT
5986 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5987 				unsigned long arg)
5988 {
5989 	switch (_IOC_NR(cmd)) {
5990 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5991 	case _IOC_NR(PERF_EVENT_IOC_ID):
5992 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5993 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5994 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5995 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5996 			cmd &= ~IOCSIZE_MASK;
5997 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5998 		}
5999 		break;
6000 	}
6001 	return perf_ioctl(file, cmd, arg);
6002 }
6003 #else
6004 # define perf_compat_ioctl NULL
6005 #endif
6006 
6007 int perf_event_task_enable(void)
6008 {
6009 	struct perf_event_context *ctx;
6010 	struct perf_event *event;
6011 
6012 	mutex_lock(&current->perf_event_mutex);
6013 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6014 		ctx = perf_event_ctx_lock(event);
6015 		perf_event_for_each_child(event, _perf_event_enable);
6016 		perf_event_ctx_unlock(event, ctx);
6017 	}
6018 	mutex_unlock(&current->perf_event_mutex);
6019 
6020 	return 0;
6021 }
6022 
6023 int perf_event_task_disable(void)
6024 {
6025 	struct perf_event_context *ctx;
6026 	struct perf_event *event;
6027 
6028 	mutex_lock(&current->perf_event_mutex);
6029 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6030 		ctx = perf_event_ctx_lock(event);
6031 		perf_event_for_each_child(event, _perf_event_disable);
6032 		perf_event_ctx_unlock(event, ctx);
6033 	}
6034 	mutex_unlock(&current->perf_event_mutex);
6035 
6036 	return 0;
6037 }
6038 
6039 static int perf_event_index(struct perf_event *event)
6040 {
6041 	if (event->hw.state & PERF_HES_STOPPED)
6042 		return 0;
6043 
6044 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6045 		return 0;
6046 
6047 	return event->pmu->event_idx(event);
6048 }
6049 
6050 static void perf_event_init_userpage(struct perf_event *event)
6051 {
6052 	struct perf_event_mmap_page *userpg;
6053 	struct perf_buffer *rb;
6054 
6055 	rcu_read_lock();
6056 	rb = rcu_dereference(event->rb);
6057 	if (!rb)
6058 		goto unlock;
6059 
6060 	userpg = rb->user_page;
6061 
6062 	/* Allow new userspace to detect that bit 0 is deprecated */
6063 	userpg->cap_bit0_is_deprecated = 1;
6064 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6065 	userpg->data_offset = PAGE_SIZE;
6066 	userpg->data_size = perf_data_size(rb);
6067 
6068 unlock:
6069 	rcu_read_unlock();
6070 }
6071 
6072 void __weak arch_perf_update_userpage(
6073 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6074 {
6075 }
6076 
6077 /*
6078  * Callers need to ensure there can be no nesting of this function, otherwise
6079  * the seqlock logic goes bad. We can not serialize this because the arch
6080  * code calls this from NMI context.
6081  */
6082 void perf_event_update_userpage(struct perf_event *event)
6083 {
6084 	struct perf_event_mmap_page *userpg;
6085 	struct perf_buffer *rb;
6086 	u64 enabled, running, now;
6087 
6088 	rcu_read_lock();
6089 	rb = rcu_dereference(event->rb);
6090 	if (!rb)
6091 		goto unlock;
6092 
6093 	/*
6094 	 * compute total_time_enabled, total_time_running
6095 	 * based on snapshot values taken when the event
6096 	 * was last scheduled in.
6097 	 *
6098 	 * we cannot simply called update_context_time()
6099 	 * because of locking issue as we can be called in
6100 	 * NMI context
6101 	 */
6102 	calc_timer_values(event, &now, &enabled, &running);
6103 
6104 	userpg = rb->user_page;
6105 	/*
6106 	 * Disable preemption to guarantee consistent time stamps are stored to
6107 	 * the user page.
6108 	 */
6109 	preempt_disable();
6110 	++userpg->lock;
6111 	barrier();
6112 	userpg->index = perf_event_index(event);
6113 	userpg->offset = perf_event_count(event);
6114 	if (userpg->index)
6115 		userpg->offset -= local64_read(&event->hw.prev_count);
6116 
6117 	userpg->time_enabled = enabled +
6118 			atomic64_read(&event->child_total_time_enabled);
6119 
6120 	userpg->time_running = running +
6121 			atomic64_read(&event->child_total_time_running);
6122 
6123 	arch_perf_update_userpage(event, userpg, now);
6124 
6125 	barrier();
6126 	++userpg->lock;
6127 	preempt_enable();
6128 unlock:
6129 	rcu_read_unlock();
6130 }
6131 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6132 
6133 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6134 {
6135 	struct perf_event *event = vmf->vma->vm_file->private_data;
6136 	struct perf_buffer *rb;
6137 	vm_fault_t ret = VM_FAULT_SIGBUS;
6138 
6139 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6140 		if (vmf->pgoff == 0)
6141 			ret = 0;
6142 		return ret;
6143 	}
6144 
6145 	rcu_read_lock();
6146 	rb = rcu_dereference(event->rb);
6147 	if (!rb)
6148 		goto unlock;
6149 
6150 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6151 		goto unlock;
6152 
6153 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6154 	if (!vmf->page)
6155 		goto unlock;
6156 
6157 	get_page(vmf->page);
6158 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6159 	vmf->page->index   = vmf->pgoff;
6160 
6161 	ret = 0;
6162 unlock:
6163 	rcu_read_unlock();
6164 
6165 	return ret;
6166 }
6167 
6168 static void ring_buffer_attach(struct perf_event *event,
6169 			       struct perf_buffer *rb)
6170 {
6171 	struct perf_buffer *old_rb = NULL;
6172 	unsigned long flags;
6173 
6174 	WARN_ON_ONCE(event->parent);
6175 
6176 	if (event->rb) {
6177 		/*
6178 		 * Should be impossible, we set this when removing
6179 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6180 		 */
6181 		WARN_ON_ONCE(event->rcu_pending);
6182 
6183 		old_rb = event->rb;
6184 		spin_lock_irqsave(&old_rb->event_lock, flags);
6185 		list_del_rcu(&event->rb_entry);
6186 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6187 
6188 		event->rcu_batches = get_state_synchronize_rcu();
6189 		event->rcu_pending = 1;
6190 	}
6191 
6192 	if (rb) {
6193 		if (event->rcu_pending) {
6194 			cond_synchronize_rcu(event->rcu_batches);
6195 			event->rcu_pending = 0;
6196 		}
6197 
6198 		spin_lock_irqsave(&rb->event_lock, flags);
6199 		list_add_rcu(&event->rb_entry, &rb->event_list);
6200 		spin_unlock_irqrestore(&rb->event_lock, flags);
6201 	}
6202 
6203 	/*
6204 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6205 	 * before swizzling the event::rb pointer; if it's getting
6206 	 * unmapped, its aux_mmap_count will be 0 and it won't
6207 	 * restart. See the comment in __perf_pmu_output_stop().
6208 	 *
6209 	 * Data will inevitably be lost when set_output is done in
6210 	 * mid-air, but then again, whoever does it like this is
6211 	 * not in for the data anyway.
6212 	 */
6213 	if (has_aux(event))
6214 		perf_event_stop(event, 0);
6215 
6216 	rcu_assign_pointer(event->rb, rb);
6217 
6218 	if (old_rb) {
6219 		ring_buffer_put(old_rb);
6220 		/*
6221 		 * Since we detached before setting the new rb, so that we
6222 		 * could attach the new rb, we could have missed a wakeup.
6223 		 * Provide it now.
6224 		 */
6225 		wake_up_all(&event->waitq);
6226 	}
6227 }
6228 
6229 static void ring_buffer_wakeup(struct perf_event *event)
6230 {
6231 	struct perf_buffer *rb;
6232 
6233 	if (event->parent)
6234 		event = event->parent;
6235 
6236 	rcu_read_lock();
6237 	rb = rcu_dereference(event->rb);
6238 	if (rb) {
6239 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6240 			wake_up_all(&event->waitq);
6241 	}
6242 	rcu_read_unlock();
6243 }
6244 
6245 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6246 {
6247 	struct perf_buffer *rb;
6248 
6249 	if (event->parent)
6250 		event = event->parent;
6251 
6252 	rcu_read_lock();
6253 	rb = rcu_dereference(event->rb);
6254 	if (rb) {
6255 		if (!refcount_inc_not_zero(&rb->refcount))
6256 			rb = NULL;
6257 	}
6258 	rcu_read_unlock();
6259 
6260 	return rb;
6261 }
6262 
6263 void ring_buffer_put(struct perf_buffer *rb)
6264 {
6265 	if (!refcount_dec_and_test(&rb->refcount))
6266 		return;
6267 
6268 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6269 
6270 	call_rcu(&rb->rcu_head, rb_free_rcu);
6271 }
6272 
6273 static void perf_mmap_open(struct vm_area_struct *vma)
6274 {
6275 	struct perf_event *event = vma->vm_file->private_data;
6276 
6277 	atomic_inc(&event->mmap_count);
6278 	atomic_inc(&event->rb->mmap_count);
6279 
6280 	if (vma->vm_pgoff)
6281 		atomic_inc(&event->rb->aux_mmap_count);
6282 
6283 	if (event->pmu->event_mapped)
6284 		event->pmu->event_mapped(event, vma->vm_mm);
6285 }
6286 
6287 static void perf_pmu_output_stop(struct perf_event *event);
6288 
6289 /*
6290  * A buffer can be mmap()ed multiple times; either directly through the same
6291  * event, or through other events by use of perf_event_set_output().
6292  *
6293  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6294  * the buffer here, where we still have a VM context. This means we need
6295  * to detach all events redirecting to us.
6296  */
6297 static void perf_mmap_close(struct vm_area_struct *vma)
6298 {
6299 	struct perf_event *event = vma->vm_file->private_data;
6300 	struct perf_buffer *rb = ring_buffer_get(event);
6301 	struct user_struct *mmap_user = rb->mmap_user;
6302 	int mmap_locked = rb->mmap_locked;
6303 	unsigned long size = perf_data_size(rb);
6304 	bool detach_rest = false;
6305 
6306 	if (event->pmu->event_unmapped)
6307 		event->pmu->event_unmapped(event, vma->vm_mm);
6308 
6309 	/*
6310 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6311 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6312 	 * serialize with perf_mmap here.
6313 	 */
6314 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6315 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6316 		/*
6317 		 * Stop all AUX events that are writing to this buffer,
6318 		 * so that we can free its AUX pages and corresponding PMU
6319 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6320 		 * they won't start any more (see perf_aux_output_begin()).
6321 		 */
6322 		perf_pmu_output_stop(event);
6323 
6324 		/* now it's safe to free the pages */
6325 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6326 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6327 
6328 		/* this has to be the last one */
6329 		rb_free_aux(rb);
6330 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6331 
6332 		mutex_unlock(&event->mmap_mutex);
6333 	}
6334 
6335 	if (atomic_dec_and_test(&rb->mmap_count))
6336 		detach_rest = true;
6337 
6338 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6339 		goto out_put;
6340 
6341 	ring_buffer_attach(event, NULL);
6342 	mutex_unlock(&event->mmap_mutex);
6343 
6344 	/* If there's still other mmap()s of this buffer, we're done. */
6345 	if (!detach_rest)
6346 		goto out_put;
6347 
6348 	/*
6349 	 * No other mmap()s, detach from all other events that might redirect
6350 	 * into the now unreachable buffer. Somewhat complicated by the
6351 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6352 	 */
6353 again:
6354 	rcu_read_lock();
6355 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6356 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6357 			/*
6358 			 * This event is en-route to free_event() which will
6359 			 * detach it and remove it from the list.
6360 			 */
6361 			continue;
6362 		}
6363 		rcu_read_unlock();
6364 
6365 		mutex_lock(&event->mmap_mutex);
6366 		/*
6367 		 * Check we didn't race with perf_event_set_output() which can
6368 		 * swizzle the rb from under us while we were waiting to
6369 		 * acquire mmap_mutex.
6370 		 *
6371 		 * If we find a different rb; ignore this event, a next
6372 		 * iteration will no longer find it on the list. We have to
6373 		 * still restart the iteration to make sure we're not now
6374 		 * iterating the wrong list.
6375 		 */
6376 		if (event->rb == rb)
6377 			ring_buffer_attach(event, NULL);
6378 
6379 		mutex_unlock(&event->mmap_mutex);
6380 		put_event(event);
6381 
6382 		/*
6383 		 * Restart the iteration; either we're on the wrong list or
6384 		 * destroyed its integrity by doing a deletion.
6385 		 */
6386 		goto again;
6387 	}
6388 	rcu_read_unlock();
6389 
6390 	/*
6391 	 * It could be there's still a few 0-ref events on the list; they'll
6392 	 * get cleaned up by free_event() -- they'll also still have their
6393 	 * ref on the rb and will free it whenever they are done with it.
6394 	 *
6395 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6396 	 * undo the VM accounting.
6397 	 */
6398 
6399 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6400 			&mmap_user->locked_vm);
6401 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6402 	free_uid(mmap_user);
6403 
6404 out_put:
6405 	ring_buffer_put(rb); /* could be last */
6406 }
6407 
6408 static const struct vm_operations_struct perf_mmap_vmops = {
6409 	.open		= perf_mmap_open,
6410 	.close		= perf_mmap_close, /* non mergeable */
6411 	.fault		= perf_mmap_fault,
6412 	.page_mkwrite	= perf_mmap_fault,
6413 };
6414 
6415 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6416 {
6417 	struct perf_event *event = file->private_data;
6418 	unsigned long user_locked, user_lock_limit;
6419 	struct user_struct *user = current_user();
6420 	struct perf_buffer *rb = NULL;
6421 	unsigned long locked, lock_limit;
6422 	unsigned long vma_size;
6423 	unsigned long nr_pages;
6424 	long user_extra = 0, extra = 0;
6425 	int ret = 0, flags = 0;
6426 
6427 	/*
6428 	 * Don't allow mmap() of inherited per-task counters. This would
6429 	 * create a performance issue due to all children writing to the
6430 	 * same rb.
6431 	 */
6432 	if (event->cpu == -1 && event->attr.inherit)
6433 		return -EINVAL;
6434 
6435 	if (!(vma->vm_flags & VM_SHARED))
6436 		return -EINVAL;
6437 
6438 	ret = security_perf_event_read(event);
6439 	if (ret)
6440 		return ret;
6441 
6442 	vma_size = vma->vm_end - vma->vm_start;
6443 
6444 	if (vma->vm_pgoff == 0) {
6445 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6446 	} else {
6447 		/*
6448 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6449 		 * mapped, all subsequent mappings should have the same size
6450 		 * and offset. Must be above the normal perf buffer.
6451 		 */
6452 		u64 aux_offset, aux_size;
6453 
6454 		if (!event->rb)
6455 			return -EINVAL;
6456 
6457 		nr_pages = vma_size / PAGE_SIZE;
6458 
6459 		mutex_lock(&event->mmap_mutex);
6460 		ret = -EINVAL;
6461 
6462 		rb = event->rb;
6463 		if (!rb)
6464 			goto aux_unlock;
6465 
6466 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6467 		aux_size = READ_ONCE(rb->user_page->aux_size);
6468 
6469 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6470 			goto aux_unlock;
6471 
6472 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6473 			goto aux_unlock;
6474 
6475 		/* already mapped with a different offset */
6476 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6477 			goto aux_unlock;
6478 
6479 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6480 			goto aux_unlock;
6481 
6482 		/* already mapped with a different size */
6483 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6484 			goto aux_unlock;
6485 
6486 		if (!is_power_of_2(nr_pages))
6487 			goto aux_unlock;
6488 
6489 		if (!atomic_inc_not_zero(&rb->mmap_count))
6490 			goto aux_unlock;
6491 
6492 		if (rb_has_aux(rb)) {
6493 			atomic_inc(&rb->aux_mmap_count);
6494 			ret = 0;
6495 			goto unlock;
6496 		}
6497 
6498 		atomic_set(&rb->aux_mmap_count, 1);
6499 		user_extra = nr_pages;
6500 
6501 		goto accounting;
6502 	}
6503 
6504 	/*
6505 	 * If we have rb pages ensure they're a power-of-two number, so we
6506 	 * can do bitmasks instead of modulo.
6507 	 */
6508 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6509 		return -EINVAL;
6510 
6511 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6512 		return -EINVAL;
6513 
6514 	WARN_ON_ONCE(event->ctx->parent_ctx);
6515 again:
6516 	mutex_lock(&event->mmap_mutex);
6517 	if (event->rb) {
6518 		if (data_page_nr(event->rb) != nr_pages) {
6519 			ret = -EINVAL;
6520 			goto unlock;
6521 		}
6522 
6523 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6524 			/*
6525 			 * Raced against perf_mmap_close(); remove the
6526 			 * event and try again.
6527 			 */
6528 			ring_buffer_attach(event, NULL);
6529 			mutex_unlock(&event->mmap_mutex);
6530 			goto again;
6531 		}
6532 
6533 		goto unlock;
6534 	}
6535 
6536 	user_extra = nr_pages + 1;
6537 
6538 accounting:
6539 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6540 
6541 	/*
6542 	 * Increase the limit linearly with more CPUs:
6543 	 */
6544 	user_lock_limit *= num_online_cpus();
6545 
6546 	user_locked = atomic_long_read(&user->locked_vm);
6547 
6548 	/*
6549 	 * sysctl_perf_event_mlock may have changed, so that
6550 	 *     user->locked_vm > user_lock_limit
6551 	 */
6552 	if (user_locked > user_lock_limit)
6553 		user_locked = user_lock_limit;
6554 	user_locked += user_extra;
6555 
6556 	if (user_locked > user_lock_limit) {
6557 		/*
6558 		 * charge locked_vm until it hits user_lock_limit;
6559 		 * charge the rest from pinned_vm
6560 		 */
6561 		extra = user_locked - user_lock_limit;
6562 		user_extra -= extra;
6563 	}
6564 
6565 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6566 	lock_limit >>= PAGE_SHIFT;
6567 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6568 
6569 	if ((locked > lock_limit) && perf_is_paranoid() &&
6570 		!capable(CAP_IPC_LOCK)) {
6571 		ret = -EPERM;
6572 		goto unlock;
6573 	}
6574 
6575 	WARN_ON(!rb && event->rb);
6576 
6577 	if (vma->vm_flags & VM_WRITE)
6578 		flags |= RING_BUFFER_WRITABLE;
6579 
6580 	if (!rb) {
6581 		rb = rb_alloc(nr_pages,
6582 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6583 			      event->cpu, flags);
6584 
6585 		if (!rb) {
6586 			ret = -ENOMEM;
6587 			goto unlock;
6588 		}
6589 
6590 		atomic_set(&rb->mmap_count, 1);
6591 		rb->mmap_user = get_current_user();
6592 		rb->mmap_locked = extra;
6593 
6594 		ring_buffer_attach(event, rb);
6595 
6596 		perf_event_update_time(event);
6597 		perf_event_init_userpage(event);
6598 		perf_event_update_userpage(event);
6599 	} else {
6600 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6601 				   event->attr.aux_watermark, flags);
6602 		if (!ret)
6603 			rb->aux_mmap_locked = extra;
6604 	}
6605 
6606 unlock:
6607 	if (!ret) {
6608 		atomic_long_add(user_extra, &user->locked_vm);
6609 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6610 
6611 		atomic_inc(&event->mmap_count);
6612 	} else if (rb) {
6613 		atomic_dec(&rb->mmap_count);
6614 	}
6615 aux_unlock:
6616 	mutex_unlock(&event->mmap_mutex);
6617 
6618 	/*
6619 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6620 	 * vma.
6621 	 */
6622 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6623 	vma->vm_ops = &perf_mmap_vmops;
6624 
6625 	if (event->pmu->event_mapped)
6626 		event->pmu->event_mapped(event, vma->vm_mm);
6627 
6628 	return ret;
6629 }
6630 
6631 static int perf_fasync(int fd, struct file *filp, int on)
6632 {
6633 	struct inode *inode = file_inode(filp);
6634 	struct perf_event *event = filp->private_data;
6635 	int retval;
6636 
6637 	inode_lock(inode);
6638 	retval = fasync_helper(fd, filp, on, &event->fasync);
6639 	inode_unlock(inode);
6640 
6641 	if (retval < 0)
6642 		return retval;
6643 
6644 	return 0;
6645 }
6646 
6647 static const struct file_operations perf_fops = {
6648 	.llseek			= no_llseek,
6649 	.release		= perf_release,
6650 	.read			= perf_read,
6651 	.poll			= perf_poll,
6652 	.unlocked_ioctl		= perf_ioctl,
6653 	.compat_ioctl		= perf_compat_ioctl,
6654 	.mmap			= perf_mmap,
6655 	.fasync			= perf_fasync,
6656 };
6657 
6658 /*
6659  * Perf event wakeup
6660  *
6661  * If there's data, ensure we set the poll() state and publish everything
6662  * to user-space before waking everybody up.
6663  */
6664 
6665 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6666 {
6667 	/* only the parent has fasync state */
6668 	if (event->parent)
6669 		event = event->parent;
6670 	return &event->fasync;
6671 }
6672 
6673 void perf_event_wakeup(struct perf_event *event)
6674 {
6675 	ring_buffer_wakeup(event);
6676 
6677 	if (event->pending_kill) {
6678 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6679 		event->pending_kill = 0;
6680 	}
6681 }
6682 
6683 static void perf_sigtrap(struct perf_event *event)
6684 {
6685 	/*
6686 	 * We'd expect this to only occur if the irq_work is delayed and either
6687 	 * ctx->task or current has changed in the meantime. This can be the
6688 	 * case on architectures that do not implement arch_irq_work_raise().
6689 	 */
6690 	if (WARN_ON_ONCE(event->ctx->task != current))
6691 		return;
6692 
6693 	/*
6694 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6695 	 * task exiting.
6696 	 */
6697 	if (current->flags & PF_EXITING)
6698 		return;
6699 
6700 	send_sig_perf((void __user *)event->pending_addr,
6701 		      event->orig_type, event->attr.sig_data);
6702 }
6703 
6704 /*
6705  * Deliver the pending work in-event-context or follow the context.
6706  */
6707 static void __perf_pending_irq(struct perf_event *event)
6708 {
6709 	int cpu = READ_ONCE(event->oncpu);
6710 
6711 	/*
6712 	 * If the event isn't running; we done. event_sched_out() will have
6713 	 * taken care of things.
6714 	 */
6715 	if (cpu < 0)
6716 		return;
6717 
6718 	/*
6719 	 * Yay, we hit home and are in the context of the event.
6720 	 */
6721 	if (cpu == smp_processor_id()) {
6722 		if (event->pending_sigtrap) {
6723 			event->pending_sigtrap = 0;
6724 			perf_sigtrap(event);
6725 			local_dec(&event->ctx->nr_pending);
6726 		}
6727 		if (event->pending_disable) {
6728 			event->pending_disable = 0;
6729 			perf_event_disable_local(event);
6730 		}
6731 		return;
6732 	}
6733 
6734 	/*
6735 	 *  CPU-A			CPU-B
6736 	 *
6737 	 *  perf_event_disable_inatomic()
6738 	 *    @pending_disable = CPU-A;
6739 	 *    irq_work_queue();
6740 	 *
6741 	 *  sched-out
6742 	 *    @pending_disable = -1;
6743 	 *
6744 	 *				sched-in
6745 	 *				perf_event_disable_inatomic()
6746 	 *				  @pending_disable = CPU-B;
6747 	 *				  irq_work_queue(); // FAILS
6748 	 *
6749 	 *  irq_work_run()
6750 	 *    perf_pending_irq()
6751 	 *
6752 	 * But the event runs on CPU-B and wants disabling there.
6753 	 */
6754 	irq_work_queue_on(&event->pending_irq, cpu);
6755 }
6756 
6757 static void perf_pending_irq(struct irq_work *entry)
6758 {
6759 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6760 	int rctx;
6761 
6762 	/*
6763 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6764 	 * and we won't recurse 'further'.
6765 	 */
6766 	rctx = perf_swevent_get_recursion_context();
6767 
6768 	/*
6769 	 * The wakeup isn't bound to the context of the event -- it can happen
6770 	 * irrespective of where the event is.
6771 	 */
6772 	if (event->pending_wakeup) {
6773 		event->pending_wakeup = 0;
6774 		perf_event_wakeup(event);
6775 	}
6776 
6777 	__perf_pending_irq(event);
6778 
6779 	if (rctx >= 0)
6780 		perf_swevent_put_recursion_context(rctx);
6781 }
6782 
6783 static void perf_pending_task(struct callback_head *head)
6784 {
6785 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6786 	int rctx;
6787 
6788 	/*
6789 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6790 	 * and we won't recurse 'further'.
6791 	 */
6792 	preempt_disable_notrace();
6793 	rctx = perf_swevent_get_recursion_context();
6794 
6795 	if (event->pending_work) {
6796 		event->pending_work = 0;
6797 		perf_sigtrap(event);
6798 		local_dec(&event->ctx->nr_pending);
6799 	}
6800 
6801 	if (rctx >= 0)
6802 		perf_swevent_put_recursion_context(rctx);
6803 	preempt_enable_notrace();
6804 
6805 	put_event(event);
6806 }
6807 
6808 #ifdef CONFIG_GUEST_PERF_EVENTS
6809 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6810 
6811 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6812 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6813 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6814 
6815 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6816 {
6817 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6818 		return;
6819 
6820 	rcu_assign_pointer(perf_guest_cbs, cbs);
6821 	static_call_update(__perf_guest_state, cbs->state);
6822 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6823 
6824 	/* Implementing ->handle_intel_pt_intr is optional. */
6825 	if (cbs->handle_intel_pt_intr)
6826 		static_call_update(__perf_guest_handle_intel_pt_intr,
6827 				   cbs->handle_intel_pt_intr);
6828 }
6829 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6830 
6831 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6832 {
6833 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6834 		return;
6835 
6836 	rcu_assign_pointer(perf_guest_cbs, NULL);
6837 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6838 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6839 	static_call_update(__perf_guest_handle_intel_pt_intr,
6840 			   (void *)&__static_call_return0);
6841 	synchronize_rcu();
6842 }
6843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6844 #endif
6845 
6846 static void
6847 perf_output_sample_regs(struct perf_output_handle *handle,
6848 			struct pt_regs *regs, u64 mask)
6849 {
6850 	int bit;
6851 	DECLARE_BITMAP(_mask, 64);
6852 
6853 	bitmap_from_u64(_mask, mask);
6854 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6855 		u64 val;
6856 
6857 		val = perf_reg_value(regs, bit);
6858 		perf_output_put(handle, val);
6859 	}
6860 }
6861 
6862 static void perf_sample_regs_user(struct perf_regs *regs_user,
6863 				  struct pt_regs *regs)
6864 {
6865 	if (user_mode(regs)) {
6866 		regs_user->abi = perf_reg_abi(current);
6867 		regs_user->regs = regs;
6868 	} else if (!(current->flags & PF_KTHREAD)) {
6869 		perf_get_regs_user(regs_user, regs);
6870 	} else {
6871 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6872 		regs_user->regs = NULL;
6873 	}
6874 }
6875 
6876 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6877 				  struct pt_regs *regs)
6878 {
6879 	regs_intr->regs = regs;
6880 	regs_intr->abi  = perf_reg_abi(current);
6881 }
6882 
6883 
6884 /*
6885  * Get remaining task size from user stack pointer.
6886  *
6887  * It'd be better to take stack vma map and limit this more
6888  * precisely, but there's no way to get it safely under interrupt,
6889  * so using TASK_SIZE as limit.
6890  */
6891 static u64 perf_ustack_task_size(struct pt_regs *regs)
6892 {
6893 	unsigned long addr = perf_user_stack_pointer(regs);
6894 
6895 	if (!addr || addr >= TASK_SIZE)
6896 		return 0;
6897 
6898 	return TASK_SIZE - addr;
6899 }
6900 
6901 static u16
6902 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6903 			struct pt_regs *regs)
6904 {
6905 	u64 task_size;
6906 
6907 	/* No regs, no stack pointer, no dump. */
6908 	if (!regs)
6909 		return 0;
6910 
6911 	/*
6912 	 * Check if we fit in with the requested stack size into the:
6913 	 * - TASK_SIZE
6914 	 *   If we don't, we limit the size to the TASK_SIZE.
6915 	 *
6916 	 * - remaining sample size
6917 	 *   If we don't, we customize the stack size to
6918 	 *   fit in to the remaining sample size.
6919 	 */
6920 
6921 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6922 	stack_size = min(stack_size, (u16) task_size);
6923 
6924 	/* Current header size plus static size and dynamic size. */
6925 	header_size += 2 * sizeof(u64);
6926 
6927 	/* Do we fit in with the current stack dump size? */
6928 	if ((u16) (header_size + stack_size) < header_size) {
6929 		/*
6930 		 * If we overflow the maximum size for the sample,
6931 		 * we customize the stack dump size to fit in.
6932 		 */
6933 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6934 		stack_size = round_up(stack_size, sizeof(u64));
6935 	}
6936 
6937 	return stack_size;
6938 }
6939 
6940 static void
6941 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6942 			  struct pt_regs *regs)
6943 {
6944 	/* Case of a kernel thread, nothing to dump */
6945 	if (!regs) {
6946 		u64 size = 0;
6947 		perf_output_put(handle, size);
6948 	} else {
6949 		unsigned long sp;
6950 		unsigned int rem;
6951 		u64 dyn_size;
6952 
6953 		/*
6954 		 * We dump:
6955 		 * static size
6956 		 *   - the size requested by user or the best one we can fit
6957 		 *     in to the sample max size
6958 		 * data
6959 		 *   - user stack dump data
6960 		 * dynamic size
6961 		 *   - the actual dumped size
6962 		 */
6963 
6964 		/* Static size. */
6965 		perf_output_put(handle, dump_size);
6966 
6967 		/* Data. */
6968 		sp = perf_user_stack_pointer(regs);
6969 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6970 		dyn_size = dump_size - rem;
6971 
6972 		perf_output_skip(handle, rem);
6973 
6974 		/* Dynamic size. */
6975 		perf_output_put(handle, dyn_size);
6976 	}
6977 }
6978 
6979 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6980 					  struct perf_sample_data *data,
6981 					  size_t size)
6982 {
6983 	struct perf_event *sampler = event->aux_event;
6984 	struct perf_buffer *rb;
6985 
6986 	data->aux_size = 0;
6987 
6988 	if (!sampler)
6989 		goto out;
6990 
6991 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6992 		goto out;
6993 
6994 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6995 		goto out;
6996 
6997 	rb = ring_buffer_get(sampler);
6998 	if (!rb)
6999 		goto out;
7000 
7001 	/*
7002 	 * If this is an NMI hit inside sampling code, don't take
7003 	 * the sample. See also perf_aux_sample_output().
7004 	 */
7005 	if (READ_ONCE(rb->aux_in_sampling)) {
7006 		data->aux_size = 0;
7007 	} else {
7008 		size = min_t(size_t, size, perf_aux_size(rb));
7009 		data->aux_size = ALIGN(size, sizeof(u64));
7010 	}
7011 	ring_buffer_put(rb);
7012 
7013 out:
7014 	return data->aux_size;
7015 }
7016 
7017 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7018                                  struct perf_event *event,
7019                                  struct perf_output_handle *handle,
7020                                  unsigned long size)
7021 {
7022 	unsigned long flags;
7023 	long ret;
7024 
7025 	/*
7026 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7027 	 * paths. If we start calling them in NMI context, they may race with
7028 	 * the IRQ ones, that is, for example, re-starting an event that's just
7029 	 * been stopped, which is why we're using a separate callback that
7030 	 * doesn't change the event state.
7031 	 *
7032 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7033 	 */
7034 	local_irq_save(flags);
7035 	/*
7036 	 * Guard against NMI hits inside the critical section;
7037 	 * see also perf_prepare_sample_aux().
7038 	 */
7039 	WRITE_ONCE(rb->aux_in_sampling, 1);
7040 	barrier();
7041 
7042 	ret = event->pmu->snapshot_aux(event, handle, size);
7043 
7044 	barrier();
7045 	WRITE_ONCE(rb->aux_in_sampling, 0);
7046 	local_irq_restore(flags);
7047 
7048 	return ret;
7049 }
7050 
7051 static void perf_aux_sample_output(struct perf_event *event,
7052 				   struct perf_output_handle *handle,
7053 				   struct perf_sample_data *data)
7054 {
7055 	struct perf_event *sampler = event->aux_event;
7056 	struct perf_buffer *rb;
7057 	unsigned long pad;
7058 	long size;
7059 
7060 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7061 		return;
7062 
7063 	rb = ring_buffer_get(sampler);
7064 	if (!rb)
7065 		return;
7066 
7067 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7068 
7069 	/*
7070 	 * An error here means that perf_output_copy() failed (returned a
7071 	 * non-zero surplus that it didn't copy), which in its current
7072 	 * enlightened implementation is not possible. If that changes, we'd
7073 	 * like to know.
7074 	 */
7075 	if (WARN_ON_ONCE(size < 0))
7076 		goto out_put;
7077 
7078 	/*
7079 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7080 	 * perf_prepare_sample_aux(), so should not be more than that.
7081 	 */
7082 	pad = data->aux_size - size;
7083 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7084 		pad = 8;
7085 
7086 	if (pad) {
7087 		u64 zero = 0;
7088 		perf_output_copy(handle, &zero, pad);
7089 	}
7090 
7091 out_put:
7092 	ring_buffer_put(rb);
7093 }
7094 
7095 /*
7096  * A set of common sample data types saved even for non-sample records
7097  * when event->attr.sample_id_all is set.
7098  */
7099 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7100 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7101 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7102 
7103 static void __perf_event_header__init_id(struct perf_sample_data *data,
7104 					 struct perf_event *event,
7105 					 u64 sample_type)
7106 {
7107 	data->type = event->attr.sample_type;
7108 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7109 
7110 	if (sample_type & PERF_SAMPLE_TID) {
7111 		/* namespace issues */
7112 		data->tid_entry.pid = perf_event_pid(event, current);
7113 		data->tid_entry.tid = perf_event_tid(event, current);
7114 	}
7115 
7116 	if (sample_type & PERF_SAMPLE_TIME)
7117 		data->time = perf_event_clock(event);
7118 
7119 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7120 		data->id = primary_event_id(event);
7121 
7122 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7123 		data->stream_id = event->id;
7124 
7125 	if (sample_type & PERF_SAMPLE_CPU) {
7126 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7127 		data->cpu_entry.reserved = 0;
7128 	}
7129 }
7130 
7131 void perf_event_header__init_id(struct perf_event_header *header,
7132 				struct perf_sample_data *data,
7133 				struct perf_event *event)
7134 {
7135 	if (event->attr.sample_id_all) {
7136 		header->size += event->id_header_size;
7137 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7138 	}
7139 }
7140 
7141 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7142 					   struct perf_sample_data *data)
7143 {
7144 	u64 sample_type = data->type;
7145 
7146 	if (sample_type & PERF_SAMPLE_TID)
7147 		perf_output_put(handle, data->tid_entry);
7148 
7149 	if (sample_type & PERF_SAMPLE_TIME)
7150 		perf_output_put(handle, data->time);
7151 
7152 	if (sample_type & PERF_SAMPLE_ID)
7153 		perf_output_put(handle, data->id);
7154 
7155 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7156 		perf_output_put(handle, data->stream_id);
7157 
7158 	if (sample_type & PERF_SAMPLE_CPU)
7159 		perf_output_put(handle, data->cpu_entry);
7160 
7161 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7162 		perf_output_put(handle, data->id);
7163 }
7164 
7165 void perf_event__output_id_sample(struct perf_event *event,
7166 				  struct perf_output_handle *handle,
7167 				  struct perf_sample_data *sample)
7168 {
7169 	if (event->attr.sample_id_all)
7170 		__perf_event__output_id_sample(handle, sample);
7171 }
7172 
7173 static void perf_output_read_one(struct perf_output_handle *handle,
7174 				 struct perf_event *event,
7175 				 u64 enabled, u64 running)
7176 {
7177 	u64 read_format = event->attr.read_format;
7178 	u64 values[5];
7179 	int n = 0;
7180 
7181 	values[n++] = perf_event_count(event);
7182 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7183 		values[n++] = enabled +
7184 			atomic64_read(&event->child_total_time_enabled);
7185 	}
7186 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7187 		values[n++] = running +
7188 			atomic64_read(&event->child_total_time_running);
7189 	}
7190 	if (read_format & PERF_FORMAT_ID)
7191 		values[n++] = primary_event_id(event);
7192 	if (read_format & PERF_FORMAT_LOST)
7193 		values[n++] = atomic64_read(&event->lost_samples);
7194 
7195 	__output_copy(handle, values, n * sizeof(u64));
7196 }
7197 
7198 static void perf_output_read_group(struct perf_output_handle *handle,
7199 			    struct perf_event *event,
7200 			    u64 enabled, u64 running)
7201 {
7202 	struct perf_event *leader = event->group_leader, *sub;
7203 	u64 read_format = event->attr.read_format;
7204 	unsigned long flags;
7205 	u64 values[6];
7206 	int n = 0;
7207 
7208 	/*
7209 	 * Disabling interrupts avoids all counter scheduling
7210 	 * (context switches, timer based rotation and IPIs).
7211 	 */
7212 	local_irq_save(flags);
7213 
7214 	values[n++] = 1 + leader->nr_siblings;
7215 
7216 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7217 		values[n++] = enabled;
7218 
7219 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7220 		values[n++] = running;
7221 
7222 	if ((leader != event) &&
7223 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7224 		leader->pmu->read(leader);
7225 
7226 	values[n++] = perf_event_count(leader);
7227 	if (read_format & PERF_FORMAT_ID)
7228 		values[n++] = primary_event_id(leader);
7229 	if (read_format & PERF_FORMAT_LOST)
7230 		values[n++] = atomic64_read(&leader->lost_samples);
7231 
7232 	__output_copy(handle, values, n * sizeof(u64));
7233 
7234 	for_each_sibling_event(sub, leader) {
7235 		n = 0;
7236 
7237 		if ((sub != event) &&
7238 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7239 			sub->pmu->read(sub);
7240 
7241 		values[n++] = perf_event_count(sub);
7242 		if (read_format & PERF_FORMAT_ID)
7243 			values[n++] = primary_event_id(sub);
7244 		if (read_format & PERF_FORMAT_LOST)
7245 			values[n++] = atomic64_read(&sub->lost_samples);
7246 
7247 		__output_copy(handle, values, n * sizeof(u64));
7248 	}
7249 
7250 	local_irq_restore(flags);
7251 }
7252 
7253 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7254 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7255 
7256 /*
7257  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7258  *
7259  * The problem is that its both hard and excessively expensive to iterate the
7260  * child list, not to mention that its impossible to IPI the children running
7261  * on another CPU, from interrupt/NMI context.
7262  */
7263 static void perf_output_read(struct perf_output_handle *handle,
7264 			     struct perf_event *event)
7265 {
7266 	u64 enabled = 0, running = 0, now;
7267 	u64 read_format = event->attr.read_format;
7268 
7269 	/*
7270 	 * compute total_time_enabled, total_time_running
7271 	 * based on snapshot values taken when the event
7272 	 * was last scheduled in.
7273 	 *
7274 	 * we cannot simply called update_context_time()
7275 	 * because of locking issue as we are called in
7276 	 * NMI context
7277 	 */
7278 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7279 		calc_timer_values(event, &now, &enabled, &running);
7280 
7281 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7282 		perf_output_read_group(handle, event, enabled, running);
7283 	else
7284 		perf_output_read_one(handle, event, enabled, running);
7285 }
7286 
7287 void perf_output_sample(struct perf_output_handle *handle,
7288 			struct perf_event_header *header,
7289 			struct perf_sample_data *data,
7290 			struct perf_event *event)
7291 {
7292 	u64 sample_type = data->type;
7293 
7294 	perf_output_put(handle, *header);
7295 
7296 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7297 		perf_output_put(handle, data->id);
7298 
7299 	if (sample_type & PERF_SAMPLE_IP)
7300 		perf_output_put(handle, data->ip);
7301 
7302 	if (sample_type & PERF_SAMPLE_TID)
7303 		perf_output_put(handle, data->tid_entry);
7304 
7305 	if (sample_type & PERF_SAMPLE_TIME)
7306 		perf_output_put(handle, data->time);
7307 
7308 	if (sample_type & PERF_SAMPLE_ADDR)
7309 		perf_output_put(handle, data->addr);
7310 
7311 	if (sample_type & PERF_SAMPLE_ID)
7312 		perf_output_put(handle, data->id);
7313 
7314 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7315 		perf_output_put(handle, data->stream_id);
7316 
7317 	if (sample_type & PERF_SAMPLE_CPU)
7318 		perf_output_put(handle, data->cpu_entry);
7319 
7320 	if (sample_type & PERF_SAMPLE_PERIOD)
7321 		perf_output_put(handle, data->period);
7322 
7323 	if (sample_type & PERF_SAMPLE_READ)
7324 		perf_output_read(handle, event);
7325 
7326 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7327 		int size = 1;
7328 
7329 		size += data->callchain->nr;
7330 		size *= sizeof(u64);
7331 		__output_copy(handle, data->callchain, size);
7332 	}
7333 
7334 	if (sample_type & PERF_SAMPLE_RAW) {
7335 		struct perf_raw_record *raw = data->raw;
7336 
7337 		if (raw) {
7338 			struct perf_raw_frag *frag = &raw->frag;
7339 
7340 			perf_output_put(handle, raw->size);
7341 			do {
7342 				if (frag->copy) {
7343 					__output_custom(handle, frag->copy,
7344 							frag->data, frag->size);
7345 				} else {
7346 					__output_copy(handle, frag->data,
7347 						      frag->size);
7348 				}
7349 				if (perf_raw_frag_last(frag))
7350 					break;
7351 				frag = frag->next;
7352 			} while (1);
7353 			if (frag->pad)
7354 				__output_skip(handle, NULL, frag->pad);
7355 		} else {
7356 			struct {
7357 				u32	size;
7358 				u32	data;
7359 			} raw = {
7360 				.size = sizeof(u32),
7361 				.data = 0,
7362 			};
7363 			perf_output_put(handle, raw);
7364 		}
7365 	}
7366 
7367 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7368 		if (data->br_stack) {
7369 			size_t size;
7370 
7371 			size = data->br_stack->nr
7372 			     * sizeof(struct perf_branch_entry);
7373 
7374 			perf_output_put(handle, data->br_stack->nr);
7375 			if (branch_sample_hw_index(event))
7376 				perf_output_put(handle, data->br_stack->hw_idx);
7377 			perf_output_copy(handle, data->br_stack->entries, size);
7378 		} else {
7379 			/*
7380 			 * we always store at least the value of nr
7381 			 */
7382 			u64 nr = 0;
7383 			perf_output_put(handle, nr);
7384 		}
7385 	}
7386 
7387 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7388 		u64 abi = data->regs_user.abi;
7389 
7390 		/*
7391 		 * If there are no regs to dump, notice it through
7392 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7393 		 */
7394 		perf_output_put(handle, abi);
7395 
7396 		if (abi) {
7397 			u64 mask = event->attr.sample_regs_user;
7398 			perf_output_sample_regs(handle,
7399 						data->regs_user.regs,
7400 						mask);
7401 		}
7402 	}
7403 
7404 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7405 		perf_output_sample_ustack(handle,
7406 					  data->stack_user_size,
7407 					  data->regs_user.regs);
7408 	}
7409 
7410 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7411 		perf_output_put(handle, data->weight.full);
7412 
7413 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7414 		perf_output_put(handle, data->data_src.val);
7415 
7416 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7417 		perf_output_put(handle, data->txn);
7418 
7419 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7420 		u64 abi = data->regs_intr.abi;
7421 		/*
7422 		 * If there are no regs to dump, notice it through
7423 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7424 		 */
7425 		perf_output_put(handle, abi);
7426 
7427 		if (abi) {
7428 			u64 mask = event->attr.sample_regs_intr;
7429 
7430 			perf_output_sample_regs(handle,
7431 						data->regs_intr.regs,
7432 						mask);
7433 		}
7434 	}
7435 
7436 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7437 		perf_output_put(handle, data->phys_addr);
7438 
7439 	if (sample_type & PERF_SAMPLE_CGROUP)
7440 		perf_output_put(handle, data->cgroup);
7441 
7442 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7443 		perf_output_put(handle, data->data_page_size);
7444 
7445 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7446 		perf_output_put(handle, data->code_page_size);
7447 
7448 	if (sample_type & PERF_SAMPLE_AUX) {
7449 		perf_output_put(handle, data->aux_size);
7450 
7451 		if (data->aux_size)
7452 			perf_aux_sample_output(event, handle, data);
7453 	}
7454 
7455 	if (!event->attr.watermark) {
7456 		int wakeup_events = event->attr.wakeup_events;
7457 
7458 		if (wakeup_events) {
7459 			struct perf_buffer *rb = handle->rb;
7460 			int events = local_inc_return(&rb->events);
7461 
7462 			if (events >= wakeup_events) {
7463 				local_sub(wakeup_events, &rb->events);
7464 				local_inc(&rb->wakeup);
7465 			}
7466 		}
7467 	}
7468 }
7469 
7470 static u64 perf_virt_to_phys(u64 virt)
7471 {
7472 	u64 phys_addr = 0;
7473 
7474 	if (!virt)
7475 		return 0;
7476 
7477 	if (virt >= TASK_SIZE) {
7478 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7479 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7480 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7481 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7482 	} else {
7483 		/*
7484 		 * Walking the pages tables for user address.
7485 		 * Interrupts are disabled, so it prevents any tear down
7486 		 * of the page tables.
7487 		 * Try IRQ-safe get_user_page_fast_only first.
7488 		 * If failed, leave phys_addr as 0.
7489 		 */
7490 		if (current->mm != NULL) {
7491 			struct page *p;
7492 
7493 			pagefault_disable();
7494 			if (get_user_page_fast_only(virt, 0, &p)) {
7495 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7496 				put_page(p);
7497 			}
7498 			pagefault_enable();
7499 		}
7500 	}
7501 
7502 	return phys_addr;
7503 }
7504 
7505 /*
7506  * Return the pagetable size of a given virtual address.
7507  */
7508 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7509 {
7510 	u64 size = 0;
7511 
7512 #ifdef CONFIG_HAVE_FAST_GUP
7513 	pgd_t *pgdp, pgd;
7514 	p4d_t *p4dp, p4d;
7515 	pud_t *pudp, pud;
7516 	pmd_t *pmdp, pmd;
7517 	pte_t *ptep, pte;
7518 
7519 	pgdp = pgd_offset(mm, addr);
7520 	pgd = READ_ONCE(*pgdp);
7521 	if (pgd_none(pgd))
7522 		return 0;
7523 
7524 	if (pgd_leaf(pgd))
7525 		return pgd_leaf_size(pgd);
7526 
7527 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7528 	p4d = READ_ONCE(*p4dp);
7529 	if (!p4d_present(p4d))
7530 		return 0;
7531 
7532 	if (p4d_leaf(p4d))
7533 		return p4d_leaf_size(p4d);
7534 
7535 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7536 	pud = READ_ONCE(*pudp);
7537 	if (!pud_present(pud))
7538 		return 0;
7539 
7540 	if (pud_leaf(pud))
7541 		return pud_leaf_size(pud);
7542 
7543 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7544 again:
7545 	pmd = pmdp_get_lockless(pmdp);
7546 	if (!pmd_present(pmd))
7547 		return 0;
7548 
7549 	if (pmd_leaf(pmd))
7550 		return pmd_leaf_size(pmd);
7551 
7552 	ptep = pte_offset_map(&pmd, addr);
7553 	if (!ptep)
7554 		goto again;
7555 
7556 	pte = ptep_get_lockless(ptep);
7557 	if (pte_present(pte))
7558 		size = pte_leaf_size(pte);
7559 	pte_unmap(ptep);
7560 #endif /* CONFIG_HAVE_FAST_GUP */
7561 
7562 	return size;
7563 }
7564 
7565 static u64 perf_get_page_size(unsigned long addr)
7566 {
7567 	struct mm_struct *mm;
7568 	unsigned long flags;
7569 	u64 size;
7570 
7571 	if (!addr)
7572 		return 0;
7573 
7574 	/*
7575 	 * Software page-table walkers must disable IRQs,
7576 	 * which prevents any tear down of the page tables.
7577 	 */
7578 	local_irq_save(flags);
7579 
7580 	mm = current->mm;
7581 	if (!mm) {
7582 		/*
7583 		 * For kernel threads and the like, use init_mm so that
7584 		 * we can find kernel memory.
7585 		 */
7586 		mm = &init_mm;
7587 	}
7588 
7589 	size = perf_get_pgtable_size(mm, addr);
7590 
7591 	local_irq_restore(flags);
7592 
7593 	return size;
7594 }
7595 
7596 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7597 
7598 struct perf_callchain_entry *
7599 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7600 {
7601 	bool kernel = !event->attr.exclude_callchain_kernel;
7602 	bool user   = !event->attr.exclude_callchain_user;
7603 	/* Disallow cross-task user callchains. */
7604 	bool crosstask = event->ctx->task && event->ctx->task != current;
7605 	const u32 max_stack = event->attr.sample_max_stack;
7606 	struct perf_callchain_entry *callchain;
7607 
7608 	if (!kernel && !user)
7609 		return &__empty_callchain;
7610 
7611 	callchain = get_perf_callchain(regs, 0, kernel, user,
7612 				       max_stack, crosstask, true);
7613 	return callchain ?: &__empty_callchain;
7614 }
7615 
7616 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7617 {
7618 	return d * !!(flags & s);
7619 }
7620 
7621 void perf_prepare_sample(struct perf_sample_data *data,
7622 			 struct perf_event *event,
7623 			 struct pt_regs *regs)
7624 {
7625 	u64 sample_type = event->attr.sample_type;
7626 	u64 filtered_sample_type;
7627 
7628 	/*
7629 	 * Add the sample flags that are dependent to others.  And clear the
7630 	 * sample flags that have already been done by the PMU driver.
7631 	 */
7632 	filtered_sample_type = sample_type;
7633 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7634 					   PERF_SAMPLE_IP);
7635 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7636 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7637 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7638 					   PERF_SAMPLE_REGS_USER);
7639 	filtered_sample_type &= ~data->sample_flags;
7640 
7641 	if (filtered_sample_type == 0) {
7642 		/* Make sure it has the correct data->type for output */
7643 		data->type = event->attr.sample_type;
7644 		return;
7645 	}
7646 
7647 	__perf_event_header__init_id(data, event, filtered_sample_type);
7648 
7649 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7650 		data->ip = perf_instruction_pointer(regs);
7651 		data->sample_flags |= PERF_SAMPLE_IP;
7652 	}
7653 
7654 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7655 		perf_sample_save_callchain(data, event, regs);
7656 
7657 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7658 		data->raw = NULL;
7659 		data->dyn_size += sizeof(u64);
7660 		data->sample_flags |= PERF_SAMPLE_RAW;
7661 	}
7662 
7663 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7664 		data->br_stack = NULL;
7665 		data->dyn_size += sizeof(u64);
7666 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7667 	}
7668 
7669 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7670 		perf_sample_regs_user(&data->regs_user, regs);
7671 
7672 	/*
7673 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7674 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7675 	 * the dyn_size if it's not requested by users.
7676 	 */
7677 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7678 		/* regs dump ABI info */
7679 		int size = sizeof(u64);
7680 
7681 		if (data->regs_user.regs) {
7682 			u64 mask = event->attr.sample_regs_user;
7683 			size += hweight64(mask) * sizeof(u64);
7684 		}
7685 
7686 		data->dyn_size += size;
7687 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7688 	}
7689 
7690 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7691 		/*
7692 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7693 		 * processed as the last one or have additional check added
7694 		 * in case new sample type is added, because we could eat
7695 		 * up the rest of the sample size.
7696 		 */
7697 		u16 stack_size = event->attr.sample_stack_user;
7698 		u16 header_size = perf_sample_data_size(data, event);
7699 		u16 size = sizeof(u64);
7700 
7701 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7702 						     data->regs_user.regs);
7703 
7704 		/*
7705 		 * If there is something to dump, add space for the dump
7706 		 * itself and for the field that tells the dynamic size,
7707 		 * which is how many have been actually dumped.
7708 		 */
7709 		if (stack_size)
7710 			size += sizeof(u64) + stack_size;
7711 
7712 		data->stack_user_size = stack_size;
7713 		data->dyn_size += size;
7714 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7715 	}
7716 
7717 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7718 		data->weight.full = 0;
7719 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7720 	}
7721 
7722 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7723 		data->data_src.val = PERF_MEM_NA;
7724 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7725 	}
7726 
7727 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7728 		data->txn = 0;
7729 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7730 	}
7731 
7732 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7733 		data->addr = 0;
7734 		data->sample_flags |= PERF_SAMPLE_ADDR;
7735 	}
7736 
7737 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7738 		/* regs dump ABI info */
7739 		int size = sizeof(u64);
7740 
7741 		perf_sample_regs_intr(&data->regs_intr, regs);
7742 
7743 		if (data->regs_intr.regs) {
7744 			u64 mask = event->attr.sample_regs_intr;
7745 
7746 			size += hweight64(mask) * sizeof(u64);
7747 		}
7748 
7749 		data->dyn_size += size;
7750 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7751 	}
7752 
7753 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7754 		data->phys_addr = perf_virt_to_phys(data->addr);
7755 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7756 	}
7757 
7758 #ifdef CONFIG_CGROUP_PERF
7759 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7760 		struct cgroup *cgrp;
7761 
7762 		/* protected by RCU */
7763 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7764 		data->cgroup = cgroup_id(cgrp);
7765 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7766 	}
7767 #endif
7768 
7769 	/*
7770 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7771 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7772 	 * but the value will not dump to the userspace.
7773 	 */
7774 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7775 		data->data_page_size = perf_get_page_size(data->addr);
7776 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7777 	}
7778 
7779 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7780 		data->code_page_size = perf_get_page_size(data->ip);
7781 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7782 	}
7783 
7784 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7785 		u64 size;
7786 		u16 header_size = perf_sample_data_size(data, event);
7787 
7788 		header_size += sizeof(u64); /* size */
7789 
7790 		/*
7791 		 * Given the 16bit nature of header::size, an AUX sample can
7792 		 * easily overflow it, what with all the preceding sample bits.
7793 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7794 		 * per sample in total (rounded down to 8 byte boundary).
7795 		 */
7796 		size = min_t(size_t, U16_MAX - header_size,
7797 			     event->attr.aux_sample_size);
7798 		size = rounddown(size, 8);
7799 		size = perf_prepare_sample_aux(event, data, size);
7800 
7801 		WARN_ON_ONCE(size + header_size > U16_MAX);
7802 		data->dyn_size += size + sizeof(u64); /* size above */
7803 		data->sample_flags |= PERF_SAMPLE_AUX;
7804 	}
7805 }
7806 
7807 void perf_prepare_header(struct perf_event_header *header,
7808 			 struct perf_sample_data *data,
7809 			 struct perf_event *event,
7810 			 struct pt_regs *regs)
7811 {
7812 	header->type = PERF_RECORD_SAMPLE;
7813 	header->size = perf_sample_data_size(data, event);
7814 	header->misc = perf_misc_flags(regs);
7815 
7816 	/*
7817 	 * If you're adding more sample types here, you likely need to do
7818 	 * something about the overflowing header::size, like repurpose the
7819 	 * lowest 3 bits of size, which should be always zero at the moment.
7820 	 * This raises a more important question, do we really need 512k sized
7821 	 * samples and why, so good argumentation is in order for whatever you
7822 	 * do here next.
7823 	 */
7824 	WARN_ON_ONCE(header->size & 7);
7825 }
7826 
7827 static __always_inline int
7828 __perf_event_output(struct perf_event *event,
7829 		    struct perf_sample_data *data,
7830 		    struct pt_regs *regs,
7831 		    int (*output_begin)(struct perf_output_handle *,
7832 					struct perf_sample_data *,
7833 					struct perf_event *,
7834 					unsigned int))
7835 {
7836 	struct perf_output_handle handle;
7837 	struct perf_event_header header;
7838 	int err;
7839 
7840 	/* protect the callchain buffers */
7841 	rcu_read_lock();
7842 
7843 	perf_prepare_sample(data, event, regs);
7844 	perf_prepare_header(&header, data, event, regs);
7845 
7846 	err = output_begin(&handle, data, event, header.size);
7847 	if (err)
7848 		goto exit;
7849 
7850 	perf_output_sample(&handle, &header, data, event);
7851 
7852 	perf_output_end(&handle);
7853 
7854 exit:
7855 	rcu_read_unlock();
7856 	return err;
7857 }
7858 
7859 void
7860 perf_event_output_forward(struct perf_event *event,
7861 			 struct perf_sample_data *data,
7862 			 struct pt_regs *regs)
7863 {
7864 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7865 }
7866 
7867 void
7868 perf_event_output_backward(struct perf_event *event,
7869 			   struct perf_sample_data *data,
7870 			   struct pt_regs *regs)
7871 {
7872 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7873 }
7874 
7875 int
7876 perf_event_output(struct perf_event *event,
7877 		  struct perf_sample_data *data,
7878 		  struct pt_regs *regs)
7879 {
7880 	return __perf_event_output(event, data, regs, perf_output_begin);
7881 }
7882 
7883 /*
7884  * read event_id
7885  */
7886 
7887 struct perf_read_event {
7888 	struct perf_event_header	header;
7889 
7890 	u32				pid;
7891 	u32				tid;
7892 };
7893 
7894 static void
7895 perf_event_read_event(struct perf_event *event,
7896 			struct task_struct *task)
7897 {
7898 	struct perf_output_handle handle;
7899 	struct perf_sample_data sample;
7900 	struct perf_read_event read_event = {
7901 		.header = {
7902 			.type = PERF_RECORD_READ,
7903 			.misc = 0,
7904 			.size = sizeof(read_event) + event->read_size,
7905 		},
7906 		.pid = perf_event_pid(event, task),
7907 		.tid = perf_event_tid(event, task),
7908 	};
7909 	int ret;
7910 
7911 	perf_event_header__init_id(&read_event.header, &sample, event);
7912 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7913 	if (ret)
7914 		return;
7915 
7916 	perf_output_put(&handle, read_event);
7917 	perf_output_read(&handle, event);
7918 	perf_event__output_id_sample(event, &handle, &sample);
7919 
7920 	perf_output_end(&handle);
7921 }
7922 
7923 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7924 
7925 static void
7926 perf_iterate_ctx(struct perf_event_context *ctx,
7927 		   perf_iterate_f output,
7928 		   void *data, bool all)
7929 {
7930 	struct perf_event *event;
7931 
7932 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7933 		if (!all) {
7934 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7935 				continue;
7936 			if (!event_filter_match(event))
7937 				continue;
7938 		}
7939 
7940 		output(event, data);
7941 	}
7942 }
7943 
7944 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7945 {
7946 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7947 	struct perf_event *event;
7948 
7949 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7950 		/*
7951 		 * Skip events that are not fully formed yet; ensure that
7952 		 * if we observe event->ctx, both event and ctx will be
7953 		 * complete enough. See perf_install_in_context().
7954 		 */
7955 		if (!smp_load_acquire(&event->ctx))
7956 			continue;
7957 
7958 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7959 			continue;
7960 		if (!event_filter_match(event))
7961 			continue;
7962 		output(event, data);
7963 	}
7964 }
7965 
7966 /*
7967  * Iterate all events that need to receive side-band events.
7968  *
7969  * For new callers; ensure that account_pmu_sb_event() includes
7970  * your event, otherwise it might not get delivered.
7971  */
7972 static void
7973 perf_iterate_sb(perf_iterate_f output, void *data,
7974 	       struct perf_event_context *task_ctx)
7975 {
7976 	struct perf_event_context *ctx;
7977 
7978 	rcu_read_lock();
7979 	preempt_disable();
7980 
7981 	/*
7982 	 * If we have task_ctx != NULL we only notify the task context itself.
7983 	 * The task_ctx is set only for EXIT events before releasing task
7984 	 * context.
7985 	 */
7986 	if (task_ctx) {
7987 		perf_iterate_ctx(task_ctx, output, data, false);
7988 		goto done;
7989 	}
7990 
7991 	perf_iterate_sb_cpu(output, data);
7992 
7993 	ctx = rcu_dereference(current->perf_event_ctxp);
7994 	if (ctx)
7995 		perf_iterate_ctx(ctx, output, data, false);
7996 done:
7997 	preempt_enable();
7998 	rcu_read_unlock();
7999 }
8000 
8001 /*
8002  * Clear all file-based filters at exec, they'll have to be
8003  * re-instated when/if these objects are mmapped again.
8004  */
8005 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8006 {
8007 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8008 	struct perf_addr_filter *filter;
8009 	unsigned int restart = 0, count = 0;
8010 	unsigned long flags;
8011 
8012 	if (!has_addr_filter(event))
8013 		return;
8014 
8015 	raw_spin_lock_irqsave(&ifh->lock, flags);
8016 	list_for_each_entry(filter, &ifh->list, entry) {
8017 		if (filter->path.dentry) {
8018 			event->addr_filter_ranges[count].start = 0;
8019 			event->addr_filter_ranges[count].size = 0;
8020 			restart++;
8021 		}
8022 
8023 		count++;
8024 	}
8025 
8026 	if (restart)
8027 		event->addr_filters_gen++;
8028 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8029 
8030 	if (restart)
8031 		perf_event_stop(event, 1);
8032 }
8033 
8034 void perf_event_exec(void)
8035 {
8036 	struct perf_event_context *ctx;
8037 
8038 	ctx = perf_pin_task_context(current);
8039 	if (!ctx)
8040 		return;
8041 
8042 	perf_event_enable_on_exec(ctx);
8043 	perf_event_remove_on_exec(ctx);
8044 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8045 
8046 	perf_unpin_context(ctx);
8047 	put_ctx(ctx);
8048 }
8049 
8050 struct remote_output {
8051 	struct perf_buffer	*rb;
8052 	int			err;
8053 };
8054 
8055 static void __perf_event_output_stop(struct perf_event *event, void *data)
8056 {
8057 	struct perf_event *parent = event->parent;
8058 	struct remote_output *ro = data;
8059 	struct perf_buffer *rb = ro->rb;
8060 	struct stop_event_data sd = {
8061 		.event	= event,
8062 	};
8063 
8064 	if (!has_aux(event))
8065 		return;
8066 
8067 	if (!parent)
8068 		parent = event;
8069 
8070 	/*
8071 	 * In case of inheritance, it will be the parent that links to the
8072 	 * ring-buffer, but it will be the child that's actually using it.
8073 	 *
8074 	 * We are using event::rb to determine if the event should be stopped,
8075 	 * however this may race with ring_buffer_attach() (through set_output),
8076 	 * which will make us skip the event that actually needs to be stopped.
8077 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8078 	 * its rb pointer.
8079 	 */
8080 	if (rcu_dereference(parent->rb) == rb)
8081 		ro->err = __perf_event_stop(&sd);
8082 }
8083 
8084 static int __perf_pmu_output_stop(void *info)
8085 {
8086 	struct perf_event *event = info;
8087 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8088 	struct remote_output ro = {
8089 		.rb	= event->rb,
8090 	};
8091 
8092 	rcu_read_lock();
8093 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8094 	if (cpuctx->task_ctx)
8095 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8096 				   &ro, false);
8097 	rcu_read_unlock();
8098 
8099 	return ro.err;
8100 }
8101 
8102 static void perf_pmu_output_stop(struct perf_event *event)
8103 {
8104 	struct perf_event *iter;
8105 	int err, cpu;
8106 
8107 restart:
8108 	rcu_read_lock();
8109 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8110 		/*
8111 		 * For per-CPU events, we need to make sure that neither they
8112 		 * nor their children are running; for cpu==-1 events it's
8113 		 * sufficient to stop the event itself if it's active, since
8114 		 * it can't have children.
8115 		 */
8116 		cpu = iter->cpu;
8117 		if (cpu == -1)
8118 			cpu = READ_ONCE(iter->oncpu);
8119 
8120 		if (cpu == -1)
8121 			continue;
8122 
8123 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8124 		if (err == -EAGAIN) {
8125 			rcu_read_unlock();
8126 			goto restart;
8127 		}
8128 	}
8129 	rcu_read_unlock();
8130 }
8131 
8132 /*
8133  * task tracking -- fork/exit
8134  *
8135  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8136  */
8137 
8138 struct perf_task_event {
8139 	struct task_struct		*task;
8140 	struct perf_event_context	*task_ctx;
8141 
8142 	struct {
8143 		struct perf_event_header	header;
8144 
8145 		u32				pid;
8146 		u32				ppid;
8147 		u32				tid;
8148 		u32				ptid;
8149 		u64				time;
8150 	} event_id;
8151 };
8152 
8153 static int perf_event_task_match(struct perf_event *event)
8154 {
8155 	return event->attr.comm  || event->attr.mmap ||
8156 	       event->attr.mmap2 || event->attr.mmap_data ||
8157 	       event->attr.task;
8158 }
8159 
8160 static void perf_event_task_output(struct perf_event *event,
8161 				   void *data)
8162 {
8163 	struct perf_task_event *task_event = data;
8164 	struct perf_output_handle handle;
8165 	struct perf_sample_data	sample;
8166 	struct task_struct *task = task_event->task;
8167 	int ret, size = task_event->event_id.header.size;
8168 
8169 	if (!perf_event_task_match(event))
8170 		return;
8171 
8172 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8173 
8174 	ret = perf_output_begin(&handle, &sample, event,
8175 				task_event->event_id.header.size);
8176 	if (ret)
8177 		goto out;
8178 
8179 	task_event->event_id.pid = perf_event_pid(event, task);
8180 	task_event->event_id.tid = perf_event_tid(event, task);
8181 
8182 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8183 		task_event->event_id.ppid = perf_event_pid(event,
8184 							task->real_parent);
8185 		task_event->event_id.ptid = perf_event_pid(event,
8186 							task->real_parent);
8187 	} else {  /* PERF_RECORD_FORK */
8188 		task_event->event_id.ppid = perf_event_pid(event, current);
8189 		task_event->event_id.ptid = perf_event_tid(event, current);
8190 	}
8191 
8192 	task_event->event_id.time = perf_event_clock(event);
8193 
8194 	perf_output_put(&handle, task_event->event_id);
8195 
8196 	perf_event__output_id_sample(event, &handle, &sample);
8197 
8198 	perf_output_end(&handle);
8199 out:
8200 	task_event->event_id.header.size = size;
8201 }
8202 
8203 static void perf_event_task(struct task_struct *task,
8204 			      struct perf_event_context *task_ctx,
8205 			      int new)
8206 {
8207 	struct perf_task_event task_event;
8208 
8209 	if (!atomic_read(&nr_comm_events) &&
8210 	    !atomic_read(&nr_mmap_events) &&
8211 	    !atomic_read(&nr_task_events))
8212 		return;
8213 
8214 	task_event = (struct perf_task_event){
8215 		.task	  = task,
8216 		.task_ctx = task_ctx,
8217 		.event_id    = {
8218 			.header = {
8219 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8220 				.misc = 0,
8221 				.size = sizeof(task_event.event_id),
8222 			},
8223 			/* .pid  */
8224 			/* .ppid */
8225 			/* .tid  */
8226 			/* .ptid */
8227 			/* .time */
8228 		},
8229 	};
8230 
8231 	perf_iterate_sb(perf_event_task_output,
8232 		       &task_event,
8233 		       task_ctx);
8234 }
8235 
8236 void perf_event_fork(struct task_struct *task)
8237 {
8238 	perf_event_task(task, NULL, 1);
8239 	perf_event_namespaces(task);
8240 }
8241 
8242 /*
8243  * comm tracking
8244  */
8245 
8246 struct perf_comm_event {
8247 	struct task_struct	*task;
8248 	char			*comm;
8249 	int			comm_size;
8250 
8251 	struct {
8252 		struct perf_event_header	header;
8253 
8254 		u32				pid;
8255 		u32				tid;
8256 	} event_id;
8257 };
8258 
8259 static int perf_event_comm_match(struct perf_event *event)
8260 {
8261 	return event->attr.comm;
8262 }
8263 
8264 static void perf_event_comm_output(struct perf_event *event,
8265 				   void *data)
8266 {
8267 	struct perf_comm_event *comm_event = data;
8268 	struct perf_output_handle handle;
8269 	struct perf_sample_data sample;
8270 	int size = comm_event->event_id.header.size;
8271 	int ret;
8272 
8273 	if (!perf_event_comm_match(event))
8274 		return;
8275 
8276 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8277 	ret = perf_output_begin(&handle, &sample, event,
8278 				comm_event->event_id.header.size);
8279 
8280 	if (ret)
8281 		goto out;
8282 
8283 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8284 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8285 
8286 	perf_output_put(&handle, comm_event->event_id);
8287 	__output_copy(&handle, comm_event->comm,
8288 				   comm_event->comm_size);
8289 
8290 	perf_event__output_id_sample(event, &handle, &sample);
8291 
8292 	perf_output_end(&handle);
8293 out:
8294 	comm_event->event_id.header.size = size;
8295 }
8296 
8297 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8298 {
8299 	char comm[TASK_COMM_LEN];
8300 	unsigned int size;
8301 
8302 	memset(comm, 0, sizeof(comm));
8303 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8304 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8305 
8306 	comm_event->comm = comm;
8307 	comm_event->comm_size = size;
8308 
8309 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8310 
8311 	perf_iterate_sb(perf_event_comm_output,
8312 		       comm_event,
8313 		       NULL);
8314 }
8315 
8316 void perf_event_comm(struct task_struct *task, bool exec)
8317 {
8318 	struct perf_comm_event comm_event;
8319 
8320 	if (!atomic_read(&nr_comm_events))
8321 		return;
8322 
8323 	comm_event = (struct perf_comm_event){
8324 		.task	= task,
8325 		/* .comm      */
8326 		/* .comm_size */
8327 		.event_id  = {
8328 			.header = {
8329 				.type = PERF_RECORD_COMM,
8330 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8331 				/* .size */
8332 			},
8333 			/* .pid */
8334 			/* .tid */
8335 		},
8336 	};
8337 
8338 	perf_event_comm_event(&comm_event);
8339 }
8340 
8341 /*
8342  * namespaces tracking
8343  */
8344 
8345 struct perf_namespaces_event {
8346 	struct task_struct		*task;
8347 
8348 	struct {
8349 		struct perf_event_header	header;
8350 
8351 		u32				pid;
8352 		u32				tid;
8353 		u64				nr_namespaces;
8354 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8355 	} event_id;
8356 };
8357 
8358 static int perf_event_namespaces_match(struct perf_event *event)
8359 {
8360 	return event->attr.namespaces;
8361 }
8362 
8363 static void perf_event_namespaces_output(struct perf_event *event,
8364 					 void *data)
8365 {
8366 	struct perf_namespaces_event *namespaces_event = data;
8367 	struct perf_output_handle handle;
8368 	struct perf_sample_data sample;
8369 	u16 header_size = namespaces_event->event_id.header.size;
8370 	int ret;
8371 
8372 	if (!perf_event_namespaces_match(event))
8373 		return;
8374 
8375 	perf_event_header__init_id(&namespaces_event->event_id.header,
8376 				   &sample, event);
8377 	ret = perf_output_begin(&handle, &sample, event,
8378 				namespaces_event->event_id.header.size);
8379 	if (ret)
8380 		goto out;
8381 
8382 	namespaces_event->event_id.pid = perf_event_pid(event,
8383 							namespaces_event->task);
8384 	namespaces_event->event_id.tid = perf_event_tid(event,
8385 							namespaces_event->task);
8386 
8387 	perf_output_put(&handle, namespaces_event->event_id);
8388 
8389 	perf_event__output_id_sample(event, &handle, &sample);
8390 
8391 	perf_output_end(&handle);
8392 out:
8393 	namespaces_event->event_id.header.size = header_size;
8394 }
8395 
8396 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8397 				   struct task_struct *task,
8398 				   const struct proc_ns_operations *ns_ops)
8399 {
8400 	struct path ns_path;
8401 	struct inode *ns_inode;
8402 	int error;
8403 
8404 	error = ns_get_path(&ns_path, task, ns_ops);
8405 	if (!error) {
8406 		ns_inode = ns_path.dentry->d_inode;
8407 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8408 		ns_link_info->ino = ns_inode->i_ino;
8409 		path_put(&ns_path);
8410 	}
8411 }
8412 
8413 void perf_event_namespaces(struct task_struct *task)
8414 {
8415 	struct perf_namespaces_event namespaces_event;
8416 	struct perf_ns_link_info *ns_link_info;
8417 
8418 	if (!atomic_read(&nr_namespaces_events))
8419 		return;
8420 
8421 	namespaces_event = (struct perf_namespaces_event){
8422 		.task	= task,
8423 		.event_id  = {
8424 			.header = {
8425 				.type = PERF_RECORD_NAMESPACES,
8426 				.misc = 0,
8427 				.size = sizeof(namespaces_event.event_id),
8428 			},
8429 			/* .pid */
8430 			/* .tid */
8431 			.nr_namespaces = NR_NAMESPACES,
8432 			/* .link_info[NR_NAMESPACES] */
8433 		},
8434 	};
8435 
8436 	ns_link_info = namespaces_event.event_id.link_info;
8437 
8438 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8439 			       task, &mntns_operations);
8440 
8441 #ifdef CONFIG_USER_NS
8442 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8443 			       task, &userns_operations);
8444 #endif
8445 #ifdef CONFIG_NET_NS
8446 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8447 			       task, &netns_operations);
8448 #endif
8449 #ifdef CONFIG_UTS_NS
8450 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8451 			       task, &utsns_operations);
8452 #endif
8453 #ifdef CONFIG_IPC_NS
8454 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8455 			       task, &ipcns_operations);
8456 #endif
8457 #ifdef CONFIG_PID_NS
8458 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8459 			       task, &pidns_operations);
8460 #endif
8461 #ifdef CONFIG_CGROUPS
8462 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8463 			       task, &cgroupns_operations);
8464 #endif
8465 
8466 	perf_iterate_sb(perf_event_namespaces_output,
8467 			&namespaces_event,
8468 			NULL);
8469 }
8470 
8471 /*
8472  * cgroup tracking
8473  */
8474 #ifdef CONFIG_CGROUP_PERF
8475 
8476 struct perf_cgroup_event {
8477 	char				*path;
8478 	int				path_size;
8479 	struct {
8480 		struct perf_event_header	header;
8481 		u64				id;
8482 		char				path[];
8483 	} event_id;
8484 };
8485 
8486 static int perf_event_cgroup_match(struct perf_event *event)
8487 {
8488 	return event->attr.cgroup;
8489 }
8490 
8491 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8492 {
8493 	struct perf_cgroup_event *cgroup_event = data;
8494 	struct perf_output_handle handle;
8495 	struct perf_sample_data sample;
8496 	u16 header_size = cgroup_event->event_id.header.size;
8497 	int ret;
8498 
8499 	if (!perf_event_cgroup_match(event))
8500 		return;
8501 
8502 	perf_event_header__init_id(&cgroup_event->event_id.header,
8503 				   &sample, event);
8504 	ret = perf_output_begin(&handle, &sample, event,
8505 				cgroup_event->event_id.header.size);
8506 	if (ret)
8507 		goto out;
8508 
8509 	perf_output_put(&handle, cgroup_event->event_id);
8510 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8511 
8512 	perf_event__output_id_sample(event, &handle, &sample);
8513 
8514 	perf_output_end(&handle);
8515 out:
8516 	cgroup_event->event_id.header.size = header_size;
8517 }
8518 
8519 static void perf_event_cgroup(struct cgroup *cgrp)
8520 {
8521 	struct perf_cgroup_event cgroup_event;
8522 	char path_enomem[16] = "//enomem";
8523 	char *pathname;
8524 	size_t size;
8525 
8526 	if (!atomic_read(&nr_cgroup_events))
8527 		return;
8528 
8529 	cgroup_event = (struct perf_cgroup_event){
8530 		.event_id  = {
8531 			.header = {
8532 				.type = PERF_RECORD_CGROUP,
8533 				.misc = 0,
8534 				.size = sizeof(cgroup_event.event_id),
8535 			},
8536 			.id = cgroup_id(cgrp),
8537 		},
8538 	};
8539 
8540 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8541 	if (pathname == NULL) {
8542 		cgroup_event.path = path_enomem;
8543 	} else {
8544 		/* just to be sure to have enough space for alignment */
8545 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8546 		cgroup_event.path = pathname;
8547 	}
8548 
8549 	/*
8550 	 * Since our buffer works in 8 byte units we need to align our string
8551 	 * size to a multiple of 8. However, we must guarantee the tail end is
8552 	 * zero'd out to avoid leaking random bits to userspace.
8553 	 */
8554 	size = strlen(cgroup_event.path) + 1;
8555 	while (!IS_ALIGNED(size, sizeof(u64)))
8556 		cgroup_event.path[size++] = '\0';
8557 
8558 	cgroup_event.event_id.header.size += size;
8559 	cgroup_event.path_size = size;
8560 
8561 	perf_iterate_sb(perf_event_cgroup_output,
8562 			&cgroup_event,
8563 			NULL);
8564 
8565 	kfree(pathname);
8566 }
8567 
8568 #endif
8569 
8570 /*
8571  * mmap tracking
8572  */
8573 
8574 struct perf_mmap_event {
8575 	struct vm_area_struct	*vma;
8576 
8577 	const char		*file_name;
8578 	int			file_size;
8579 	int			maj, min;
8580 	u64			ino;
8581 	u64			ino_generation;
8582 	u32			prot, flags;
8583 	u8			build_id[BUILD_ID_SIZE_MAX];
8584 	u32			build_id_size;
8585 
8586 	struct {
8587 		struct perf_event_header	header;
8588 
8589 		u32				pid;
8590 		u32				tid;
8591 		u64				start;
8592 		u64				len;
8593 		u64				pgoff;
8594 	} event_id;
8595 };
8596 
8597 static int perf_event_mmap_match(struct perf_event *event,
8598 				 void *data)
8599 {
8600 	struct perf_mmap_event *mmap_event = data;
8601 	struct vm_area_struct *vma = mmap_event->vma;
8602 	int executable = vma->vm_flags & VM_EXEC;
8603 
8604 	return (!executable && event->attr.mmap_data) ||
8605 	       (executable && (event->attr.mmap || event->attr.mmap2));
8606 }
8607 
8608 static void perf_event_mmap_output(struct perf_event *event,
8609 				   void *data)
8610 {
8611 	struct perf_mmap_event *mmap_event = data;
8612 	struct perf_output_handle handle;
8613 	struct perf_sample_data sample;
8614 	int size = mmap_event->event_id.header.size;
8615 	u32 type = mmap_event->event_id.header.type;
8616 	bool use_build_id;
8617 	int ret;
8618 
8619 	if (!perf_event_mmap_match(event, data))
8620 		return;
8621 
8622 	if (event->attr.mmap2) {
8623 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8624 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8625 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8626 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8627 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8628 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8629 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8630 	}
8631 
8632 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8633 	ret = perf_output_begin(&handle, &sample, event,
8634 				mmap_event->event_id.header.size);
8635 	if (ret)
8636 		goto out;
8637 
8638 	mmap_event->event_id.pid = perf_event_pid(event, current);
8639 	mmap_event->event_id.tid = perf_event_tid(event, current);
8640 
8641 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8642 
8643 	if (event->attr.mmap2 && use_build_id)
8644 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8645 
8646 	perf_output_put(&handle, mmap_event->event_id);
8647 
8648 	if (event->attr.mmap2) {
8649 		if (use_build_id) {
8650 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8651 
8652 			__output_copy(&handle, size, 4);
8653 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8654 		} else {
8655 			perf_output_put(&handle, mmap_event->maj);
8656 			perf_output_put(&handle, mmap_event->min);
8657 			perf_output_put(&handle, mmap_event->ino);
8658 			perf_output_put(&handle, mmap_event->ino_generation);
8659 		}
8660 		perf_output_put(&handle, mmap_event->prot);
8661 		perf_output_put(&handle, mmap_event->flags);
8662 	}
8663 
8664 	__output_copy(&handle, mmap_event->file_name,
8665 				   mmap_event->file_size);
8666 
8667 	perf_event__output_id_sample(event, &handle, &sample);
8668 
8669 	perf_output_end(&handle);
8670 out:
8671 	mmap_event->event_id.header.size = size;
8672 	mmap_event->event_id.header.type = type;
8673 }
8674 
8675 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8676 {
8677 	struct vm_area_struct *vma = mmap_event->vma;
8678 	struct file *file = vma->vm_file;
8679 	int maj = 0, min = 0;
8680 	u64 ino = 0, gen = 0;
8681 	u32 prot = 0, flags = 0;
8682 	unsigned int size;
8683 	char tmp[16];
8684 	char *buf = NULL;
8685 	char *name = NULL;
8686 
8687 	if (vma->vm_flags & VM_READ)
8688 		prot |= PROT_READ;
8689 	if (vma->vm_flags & VM_WRITE)
8690 		prot |= PROT_WRITE;
8691 	if (vma->vm_flags & VM_EXEC)
8692 		prot |= PROT_EXEC;
8693 
8694 	if (vma->vm_flags & VM_MAYSHARE)
8695 		flags = MAP_SHARED;
8696 	else
8697 		flags = MAP_PRIVATE;
8698 
8699 	if (vma->vm_flags & VM_LOCKED)
8700 		flags |= MAP_LOCKED;
8701 	if (is_vm_hugetlb_page(vma))
8702 		flags |= MAP_HUGETLB;
8703 
8704 	if (file) {
8705 		struct inode *inode;
8706 		dev_t dev;
8707 
8708 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8709 		if (!buf) {
8710 			name = "//enomem";
8711 			goto cpy_name;
8712 		}
8713 		/*
8714 		 * d_path() works from the end of the rb backwards, so we
8715 		 * need to add enough zero bytes after the string to handle
8716 		 * the 64bit alignment we do later.
8717 		 */
8718 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8719 		if (IS_ERR(name)) {
8720 			name = "//toolong";
8721 			goto cpy_name;
8722 		}
8723 		inode = file_inode(vma->vm_file);
8724 		dev = inode->i_sb->s_dev;
8725 		ino = inode->i_ino;
8726 		gen = inode->i_generation;
8727 		maj = MAJOR(dev);
8728 		min = MINOR(dev);
8729 
8730 		goto got_name;
8731 	} else {
8732 		if (vma->vm_ops && vma->vm_ops->name)
8733 			name = (char *) vma->vm_ops->name(vma);
8734 		if (!name)
8735 			name = (char *)arch_vma_name(vma);
8736 		if (!name) {
8737 			if (vma_is_initial_heap(vma))
8738 				name = "[heap]";
8739 			else if (vma_is_initial_stack(vma))
8740 				name = "[stack]";
8741 			else
8742 				name = "//anon";
8743 		}
8744 	}
8745 
8746 cpy_name:
8747 	strscpy(tmp, name, sizeof(tmp));
8748 	name = tmp;
8749 got_name:
8750 	/*
8751 	 * Since our buffer works in 8 byte units we need to align our string
8752 	 * size to a multiple of 8. However, we must guarantee the tail end is
8753 	 * zero'd out to avoid leaking random bits to userspace.
8754 	 */
8755 	size = strlen(name)+1;
8756 	while (!IS_ALIGNED(size, sizeof(u64)))
8757 		name[size++] = '\0';
8758 
8759 	mmap_event->file_name = name;
8760 	mmap_event->file_size = size;
8761 	mmap_event->maj = maj;
8762 	mmap_event->min = min;
8763 	mmap_event->ino = ino;
8764 	mmap_event->ino_generation = gen;
8765 	mmap_event->prot = prot;
8766 	mmap_event->flags = flags;
8767 
8768 	if (!(vma->vm_flags & VM_EXEC))
8769 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8770 
8771 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8772 
8773 	if (atomic_read(&nr_build_id_events))
8774 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8775 
8776 	perf_iterate_sb(perf_event_mmap_output,
8777 		       mmap_event,
8778 		       NULL);
8779 
8780 	kfree(buf);
8781 }
8782 
8783 /*
8784  * Check whether inode and address range match filter criteria.
8785  */
8786 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8787 				     struct file *file, unsigned long offset,
8788 				     unsigned long size)
8789 {
8790 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8791 	if (!filter->path.dentry)
8792 		return false;
8793 
8794 	if (d_inode(filter->path.dentry) != file_inode(file))
8795 		return false;
8796 
8797 	if (filter->offset > offset + size)
8798 		return false;
8799 
8800 	if (filter->offset + filter->size < offset)
8801 		return false;
8802 
8803 	return true;
8804 }
8805 
8806 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8807 					struct vm_area_struct *vma,
8808 					struct perf_addr_filter_range *fr)
8809 {
8810 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8811 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8812 	struct file *file = vma->vm_file;
8813 
8814 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8815 		return false;
8816 
8817 	if (filter->offset < off) {
8818 		fr->start = vma->vm_start;
8819 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8820 	} else {
8821 		fr->start = vma->vm_start + filter->offset - off;
8822 		fr->size = min(vma->vm_end - fr->start, filter->size);
8823 	}
8824 
8825 	return true;
8826 }
8827 
8828 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8829 {
8830 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8831 	struct vm_area_struct *vma = data;
8832 	struct perf_addr_filter *filter;
8833 	unsigned int restart = 0, count = 0;
8834 	unsigned long flags;
8835 
8836 	if (!has_addr_filter(event))
8837 		return;
8838 
8839 	if (!vma->vm_file)
8840 		return;
8841 
8842 	raw_spin_lock_irqsave(&ifh->lock, flags);
8843 	list_for_each_entry(filter, &ifh->list, entry) {
8844 		if (perf_addr_filter_vma_adjust(filter, vma,
8845 						&event->addr_filter_ranges[count]))
8846 			restart++;
8847 
8848 		count++;
8849 	}
8850 
8851 	if (restart)
8852 		event->addr_filters_gen++;
8853 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8854 
8855 	if (restart)
8856 		perf_event_stop(event, 1);
8857 }
8858 
8859 /*
8860  * Adjust all task's events' filters to the new vma
8861  */
8862 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8863 {
8864 	struct perf_event_context *ctx;
8865 
8866 	/*
8867 	 * Data tracing isn't supported yet and as such there is no need
8868 	 * to keep track of anything that isn't related to executable code:
8869 	 */
8870 	if (!(vma->vm_flags & VM_EXEC))
8871 		return;
8872 
8873 	rcu_read_lock();
8874 	ctx = rcu_dereference(current->perf_event_ctxp);
8875 	if (ctx)
8876 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8877 	rcu_read_unlock();
8878 }
8879 
8880 void perf_event_mmap(struct vm_area_struct *vma)
8881 {
8882 	struct perf_mmap_event mmap_event;
8883 
8884 	if (!atomic_read(&nr_mmap_events))
8885 		return;
8886 
8887 	mmap_event = (struct perf_mmap_event){
8888 		.vma	= vma,
8889 		/* .file_name */
8890 		/* .file_size */
8891 		.event_id  = {
8892 			.header = {
8893 				.type = PERF_RECORD_MMAP,
8894 				.misc = PERF_RECORD_MISC_USER,
8895 				/* .size */
8896 			},
8897 			/* .pid */
8898 			/* .tid */
8899 			.start  = vma->vm_start,
8900 			.len    = vma->vm_end - vma->vm_start,
8901 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8902 		},
8903 		/* .maj (attr_mmap2 only) */
8904 		/* .min (attr_mmap2 only) */
8905 		/* .ino (attr_mmap2 only) */
8906 		/* .ino_generation (attr_mmap2 only) */
8907 		/* .prot (attr_mmap2 only) */
8908 		/* .flags (attr_mmap2 only) */
8909 	};
8910 
8911 	perf_addr_filters_adjust(vma);
8912 	perf_event_mmap_event(&mmap_event);
8913 }
8914 
8915 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8916 			  unsigned long size, u64 flags)
8917 {
8918 	struct perf_output_handle handle;
8919 	struct perf_sample_data sample;
8920 	struct perf_aux_event {
8921 		struct perf_event_header	header;
8922 		u64				offset;
8923 		u64				size;
8924 		u64				flags;
8925 	} rec = {
8926 		.header = {
8927 			.type = PERF_RECORD_AUX,
8928 			.misc = 0,
8929 			.size = sizeof(rec),
8930 		},
8931 		.offset		= head,
8932 		.size		= size,
8933 		.flags		= flags,
8934 	};
8935 	int ret;
8936 
8937 	perf_event_header__init_id(&rec.header, &sample, event);
8938 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8939 
8940 	if (ret)
8941 		return;
8942 
8943 	perf_output_put(&handle, rec);
8944 	perf_event__output_id_sample(event, &handle, &sample);
8945 
8946 	perf_output_end(&handle);
8947 }
8948 
8949 /*
8950  * Lost/dropped samples logging
8951  */
8952 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8953 {
8954 	struct perf_output_handle handle;
8955 	struct perf_sample_data sample;
8956 	int ret;
8957 
8958 	struct {
8959 		struct perf_event_header	header;
8960 		u64				lost;
8961 	} lost_samples_event = {
8962 		.header = {
8963 			.type = PERF_RECORD_LOST_SAMPLES,
8964 			.misc = 0,
8965 			.size = sizeof(lost_samples_event),
8966 		},
8967 		.lost		= lost,
8968 	};
8969 
8970 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8971 
8972 	ret = perf_output_begin(&handle, &sample, event,
8973 				lost_samples_event.header.size);
8974 	if (ret)
8975 		return;
8976 
8977 	perf_output_put(&handle, lost_samples_event);
8978 	perf_event__output_id_sample(event, &handle, &sample);
8979 	perf_output_end(&handle);
8980 }
8981 
8982 /*
8983  * context_switch tracking
8984  */
8985 
8986 struct perf_switch_event {
8987 	struct task_struct	*task;
8988 	struct task_struct	*next_prev;
8989 
8990 	struct {
8991 		struct perf_event_header	header;
8992 		u32				next_prev_pid;
8993 		u32				next_prev_tid;
8994 	} event_id;
8995 };
8996 
8997 static int perf_event_switch_match(struct perf_event *event)
8998 {
8999 	return event->attr.context_switch;
9000 }
9001 
9002 static void perf_event_switch_output(struct perf_event *event, void *data)
9003 {
9004 	struct perf_switch_event *se = data;
9005 	struct perf_output_handle handle;
9006 	struct perf_sample_data sample;
9007 	int ret;
9008 
9009 	if (!perf_event_switch_match(event))
9010 		return;
9011 
9012 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9013 	if (event->ctx->task) {
9014 		se->event_id.header.type = PERF_RECORD_SWITCH;
9015 		se->event_id.header.size = sizeof(se->event_id.header);
9016 	} else {
9017 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9018 		se->event_id.header.size = sizeof(se->event_id);
9019 		se->event_id.next_prev_pid =
9020 					perf_event_pid(event, se->next_prev);
9021 		se->event_id.next_prev_tid =
9022 					perf_event_tid(event, se->next_prev);
9023 	}
9024 
9025 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9026 
9027 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9028 	if (ret)
9029 		return;
9030 
9031 	if (event->ctx->task)
9032 		perf_output_put(&handle, se->event_id.header);
9033 	else
9034 		perf_output_put(&handle, se->event_id);
9035 
9036 	perf_event__output_id_sample(event, &handle, &sample);
9037 
9038 	perf_output_end(&handle);
9039 }
9040 
9041 static void perf_event_switch(struct task_struct *task,
9042 			      struct task_struct *next_prev, bool sched_in)
9043 {
9044 	struct perf_switch_event switch_event;
9045 
9046 	/* N.B. caller checks nr_switch_events != 0 */
9047 
9048 	switch_event = (struct perf_switch_event){
9049 		.task		= task,
9050 		.next_prev	= next_prev,
9051 		.event_id	= {
9052 			.header = {
9053 				/* .type */
9054 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9055 				/* .size */
9056 			},
9057 			/* .next_prev_pid */
9058 			/* .next_prev_tid */
9059 		},
9060 	};
9061 
9062 	if (!sched_in && task->on_rq) {
9063 		switch_event.event_id.header.misc |=
9064 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9065 	}
9066 
9067 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9068 }
9069 
9070 /*
9071  * IRQ throttle logging
9072  */
9073 
9074 static void perf_log_throttle(struct perf_event *event, int enable)
9075 {
9076 	struct perf_output_handle handle;
9077 	struct perf_sample_data sample;
9078 	int ret;
9079 
9080 	struct {
9081 		struct perf_event_header	header;
9082 		u64				time;
9083 		u64				id;
9084 		u64				stream_id;
9085 	} throttle_event = {
9086 		.header = {
9087 			.type = PERF_RECORD_THROTTLE,
9088 			.misc = 0,
9089 			.size = sizeof(throttle_event),
9090 		},
9091 		.time		= perf_event_clock(event),
9092 		.id		= primary_event_id(event),
9093 		.stream_id	= event->id,
9094 	};
9095 
9096 	if (enable)
9097 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9098 
9099 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9100 
9101 	ret = perf_output_begin(&handle, &sample, event,
9102 				throttle_event.header.size);
9103 	if (ret)
9104 		return;
9105 
9106 	perf_output_put(&handle, throttle_event);
9107 	perf_event__output_id_sample(event, &handle, &sample);
9108 	perf_output_end(&handle);
9109 }
9110 
9111 /*
9112  * ksymbol register/unregister tracking
9113  */
9114 
9115 struct perf_ksymbol_event {
9116 	const char	*name;
9117 	int		name_len;
9118 	struct {
9119 		struct perf_event_header        header;
9120 		u64				addr;
9121 		u32				len;
9122 		u16				ksym_type;
9123 		u16				flags;
9124 	} event_id;
9125 };
9126 
9127 static int perf_event_ksymbol_match(struct perf_event *event)
9128 {
9129 	return event->attr.ksymbol;
9130 }
9131 
9132 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9133 {
9134 	struct perf_ksymbol_event *ksymbol_event = data;
9135 	struct perf_output_handle handle;
9136 	struct perf_sample_data sample;
9137 	int ret;
9138 
9139 	if (!perf_event_ksymbol_match(event))
9140 		return;
9141 
9142 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9143 				   &sample, event);
9144 	ret = perf_output_begin(&handle, &sample, event,
9145 				ksymbol_event->event_id.header.size);
9146 	if (ret)
9147 		return;
9148 
9149 	perf_output_put(&handle, ksymbol_event->event_id);
9150 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9151 	perf_event__output_id_sample(event, &handle, &sample);
9152 
9153 	perf_output_end(&handle);
9154 }
9155 
9156 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9157 			const char *sym)
9158 {
9159 	struct perf_ksymbol_event ksymbol_event;
9160 	char name[KSYM_NAME_LEN];
9161 	u16 flags = 0;
9162 	int name_len;
9163 
9164 	if (!atomic_read(&nr_ksymbol_events))
9165 		return;
9166 
9167 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9168 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9169 		goto err;
9170 
9171 	strscpy(name, sym, KSYM_NAME_LEN);
9172 	name_len = strlen(name) + 1;
9173 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9174 		name[name_len++] = '\0';
9175 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9176 
9177 	if (unregister)
9178 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9179 
9180 	ksymbol_event = (struct perf_ksymbol_event){
9181 		.name = name,
9182 		.name_len = name_len,
9183 		.event_id = {
9184 			.header = {
9185 				.type = PERF_RECORD_KSYMBOL,
9186 				.size = sizeof(ksymbol_event.event_id) +
9187 					name_len,
9188 			},
9189 			.addr = addr,
9190 			.len = len,
9191 			.ksym_type = ksym_type,
9192 			.flags = flags,
9193 		},
9194 	};
9195 
9196 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9197 	return;
9198 err:
9199 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9200 }
9201 
9202 /*
9203  * bpf program load/unload tracking
9204  */
9205 
9206 struct perf_bpf_event {
9207 	struct bpf_prog	*prog;
9208 	struct {
9209 		struct perf_event_header        header;
9210 		u16				type;
9211 		u16				flags;
9212 		u32				id;
9213 		u8				tag[BPF_TAG_SIZE];
9214 	} event_id;
9215 };
9216 
9217 static int perf_event_bpf_match(struct perf_event *event)
9218 {
9219 	return event->attr.bpf_event;
9220 }
9221 
9222 static void perf_event_bpf_output(struct perf_event *event, void *data)
9223 {
9224 	struct perf_bpf_event *bpf_event = data;
9225 	struct perf_output_handle handle;
9226 	struct perf_sample_data sample;
9227 	int ret;
9228 
9229 	if (!perf_event_bpf_match(event))
9230 		return;
9231 
9232 	perf_event_header__init_id(&bpf_event->event_id.header,
9233 				   &sample, event);
9234 	ret = perf_output_begin(&handle, &sample, event,
9235 				bpf_event->event_id.header.size);
9236 	if (ret)
9237 		return;
9238 
9239 	perf_output_put(&handle, bpf_event->event_id);
9240 	perf_event__output_id_sample(event, &handle, &sample);
9241 
9242 	perf_output_end(&handle);
9243 }
9244 
9245 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9246 					 enum perf_bpf_event_type type)
9247 {
9248 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9249 	int i;
9250 
9251 	if (prog->aux->func_cnt == 0) {
9252 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9253 				   (u64)(unsigned long)prog->bpf_func,
9254 				   prog->jited_len, unregister,
9255 				   prog->aux->ksym.name);
9256 	} else {
9257 		for (i = 0; i < prog->aux->func_cnt; i++) {
9258 			struct bpf_prog *subprog = prog->aux->func[i];
9259 
9260 			perf_event_ksymbol(
9261 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9262 				(u64)(unsigned long)subprog->bpf_func,
9263 				subprog->jited_len, unregister,
9264 				subprog->aux->ksym.name);
9265 		}
9266 	}
9267 }
9268 
9269 void perf_event_bpf_event(struct bpf_prog *prog,
9270 			  enum perf_bpf_event_type type,
9271 			  u16 flags)
9272 {
9273 	struct perf_bpf_event bpf_event;
9274 
9275 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9276 	    type >= PERF_BPF_EVENT_MAX)
9277 		return;
9278 
9279 	switch (type) {
9280 	case PERF_BPF_EVENT_PROG_LOAD:
9281 	case PERF_BPF_EVENT_PROG_UNLOAD:
9282 		if (atomic_read(&nr_ksymbol_events))
9283 			perf_event_bpf_emit_ksymbols(prog, type);
9284 		break;
9285 	default:
9286 		break;
9287 	}
9288 
9289 	if (!atomic_read(&nr_bpf_events))
9290 		return;
9291 
9292 	bpf_event = (struct perf_bpf_event){
9293 		.prog = prog,
9294 		.event_id = {
9295 			.header = {
9296 				.type = PERF_RECORD_BPF_EVENT,
9297 				.size = sizeof(bpf_event.event_id),
9298 			},
9299 			.type = type,
9300 			.flags = flags,
9301 			.id = prog->aux->id,
9302 		},
9303 	};
9304 
9305 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9306 
9307 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9308 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9309 }
9310 
9311 struct perf_text_poke_event {
9312 	const void		*old_bytes;
9313 	const void		*new_bytes;
9314 	size_t			pad;
9315 	u16			old_len;
9316 	u16			new_len;
9317 
9318 	struct {
9319 		struct perf_event_header	header;
9320 
9321 		u64				addr;
9322 	} event_id;
9323 };
9324 
9325 static int perf_event_text_poke_match(struct perf_event *event)
9326 {
9327 	return event->attr.text_poke;
9328 }
9329 
9330 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9331 {
9332 	struct perf_text_poke_event *text_poke_event = data;
9333 	struct perf_output_handle handle;
9334 	struct perf_sample_data sample;
9335 	u64 padding = 0;
9336 	int ret;
9337 
9338 	if (!perf_event_text_poke_match(event))
9339 		return;
9340 
9341 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9342 
9343 	ret = perf_output_begin(&handle, &sample, event,
9344 				text_poke_event->event_id.header.size);
9345 	if (ret)
9346 		return;
9347 
9348 	perf_output_put(&handle, text_poke_event->event_id);
9349 	perf_output_put(&handle, text_poke_event->old_len);
9350 	perf_output_put(&handle, text_poke_event->new_len);
9351 
9352 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9353 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9354 
9355 	if (text_poke_event->pad)
9356 		__output_copy(&handle, &padding, text_poke_event->pad);
9357 
9358 	perf_event__output_id_sample(event, &handle, &sample);
9359 
9360 	perf_output_end(&handle);
9361 }
9362 
9363 void perf_event_text_poke(const void *addr, const void *old_bytes,
9364 			  size_t old_len, const void *new_bytes, size_t new_len)
9365 {
9366 	struct perf_text_poke_event text_poke_event;
9367 	size_t tot, pad;
9368 
9369 	if (!atomic_read(&nr_text_poke_events))
9370 		return;
9371 
9372 	tot  = sizeof(text_poke_event.old_len) + old_len;
9373 	tot += sizeof(text_poke_event.new_len) + new_len;
9374 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9375 
9376 	text_poke_event = (struct perf_text_poke_event){
9377 		.old_bytes    = old_bytes,
9378 		.new_bytes    = new_bytes,
9379 		.pad          = pad,
9380 		.old_len      = old_len,
9381 		.new_len      = new_len,
9382 		.event_id  = {
9383 			.header = {
9384 				.type = PERF_RECORD_TEXT_POKE,
9385 				.misc = PERF_RECORD_MISC_KERNEL,
9386 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9387 			},
9388 			.addr = (unsigned long)addr,
9389 		},
9390 	};
9391 
9392 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9393 }
9394 
9395 void perf_event_itrace_started(struct perf_event *event)
9396 {
9397 	event->attach_state |= PERF_ATTACH_ITRACE;
9398 }
9399 
9400 static void perf_log_itrace_start(struct perf_event *event)
9401 {
9402 	struct perf_output_handle handle;
9403 	struct perf_sample_data sample;
9404 	struct perf_aux_event {
9405 		struct perf_event_header        header;
9406 		u32				pid;
9407 		u32				tid;
9408 	} rec;
9409 	int ret;
9410 
9411 	if (event->parent)
9412 		event = event->parent;
9413 
9414 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9415 	    event->attach_state & PERF_ATTACH_ITRACE)
9416 		return;
9417 
9418 	rec.header.type	= PERF_RECORD_ITRACE_START;
9419 	rec.header.misc	= 0;
9420 	rec.header.size	= sizeof(rec);
9421 	rec.pid	= perf_event_pid(event, current);
9422 	rec.tid	= perf_event_tid(event, current);
9423 
9424 	perf_event_header__init_id(&rec.header, &sample, event);
9425 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9426 
9427 	if (ret)
9428 		return;
9429 
9430 	perf_output_put(&handle, rec);
9431 	perf_event__output_id_sample(event, &handle, &sample);
9432 
9433 	perf_output_end(&handle);
9434 }
9435 
9436 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9437 {
9438 	struct perf_output_handle handle;
9439 	struct perf_sample_data sample;
9440 	struct perf_aux_event {
9441 		struct perf_event_header        header;
9442 		u64				hw_id;
9443 	} rec;
9444 	int ret;
9445 
9446 	if (event->parent)
9447 		event = event->parent;
9448 
9449 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9450 	rec.header.misc	= 0;
9451 	rec.header.size	= sizeof(rec);
9452 	rec.hw_id	= hw_id;
9453 
9454 	perf_event_header__init_id(&rec.header, &sample, event);
9455 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9456 
9457 	if (ret)
9458 		return;
9459 
9460 	perf_output_put(&handle, rec);
9461 	perf_event__output_id_sample(event, &handle, &sample);
9462 
9463 	perf_output_end(&handle);
9464 }
9465 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9466 
9467 static int
9468 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9469 {
9470 	struct hw_perf_event *hwc = &event->hw;
9471 	int ret = 0;
9472 	u64 seq;
9473 
9474 	seq = __this_cpu_read(perf_throttled_seq);
9475 	if (seq != hwc->interrupts_seq) {
9476 		hwc->interrupts_seq = seq;
9477 		hwc->interrupts = 1;
9478 	} else {
9479 		hwc->interrupts++;
9480 		if (unlikely(throttle &&
9481 			     hwc->interrupts > max_samples_per_tick)) {
9482 			__this_cpu_inc(perf_throttled_count);
9483 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9484 			hwc->interrupts = MAX_INTERRUPTS;
9485 			perf_log_throttle(event, 0);
9486 			ret = 1;
9487 		}
9488 	}
9489 
9490 	if (event->attr.freq) {
9491 		u64 now = perf_clock();
9492 		s64 delta = now - hwc->freq_time_stamp;
9493 
9494 		hwc->freq_time_stamp = now;
9495 
9496 		if (delta > 0 && delta < 2*TICK_NSEC)
9497 			perf_adjust_period(event, delta, hwc->last_period, true);
9498 	}
9499 
9500 	return ret;
9501 }
9502 
9503 int perf_event_account_interrupt(struct perf_event *event)
9504 {
9505 	return __perf_event_account_interrupt(event, 1);
9506 }
9507 
9508 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9509 {
9510 	/*
9511 	 * Due to interrupt latency (AKA "skid"), we may enter the
9512 	 * kernel before taking an overflow, even if the PMU is only
9513 	 * counting user events.
9514 	 */
9515 	if (event->attr.exclude_kernel && !user_mode(regs))
9516 		return false;
9517 
9518 	return true;
9519 }
9520 
9521 /*
9522  * Generic event overflow handling, sampling.
9523  */
9524 
9525 static int __perf_event_overflow(struct perf_event *event,
9526 				 int throttle, struct perf_sample_data *data,
9527 				 struct pt_regs *regs)
9528 {
9529 	int events = atomic_read(&event->event_limit);
9530 	int ret = 0;
9531 
9532 	/*
9533 	 * Non-sampling counters might still use the PMI to fold short
9534 	 * hardware counters, ignore those.
9535 	 */
9536 	if (unlikely(!is_sampling_event(event)))
9537 		return 0;
9538 
9539 	ret = __perf_event_account_interrupt(event, throttle);
9540 
9541 	/*
9542 	 * XXX event_limit might not quite work as expected on inherited
9543 	 * events
9544 	 */
9545 
9546 	event->pending_kill = POLL_IN;
9547 	if (events && atomic_dec_and_test(&event->event_limit)) {
9548 		ret = 1;
9549 		event->pending_kill = POLL_HUP;
9550 		perf_event_disable_inatomic(event);
9551 	}
9552 
9553 	if (event->attr.sigtrap) {
9554 		/*
9555 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9556 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9557 		 * it is the first event, on the other hand, we should also not
9558 		 * trigger the WARN or override the data address.
9559 		 */
9560 		bool valid_sample = sample_is_allowed(event, regs);
9561 		unsigned int pending_id = 1;
9562 
9563 		if (regs)
9564 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9565 		if (!event->pending_sigtrap) {
9566 			event->pending_sigtrap = pending_id;
9567 			local_inc(&event->ctx->nr_pending);
9568 		} else if (event->attr.exclude_kernel && valid_sample) {
9569 			/*
9570 			 * Should not be able to return to user space without
9571 			 * consuming pending_sigtrap; with exceptions:
9572 			 *
9573 			 *  1. Where !exclude_kernel, events can overflow again
9574 			 *     in the kernel without returning to user space.
9575 			 *
9576 			 *  2. Events that can overflow again before the IRQ-
9577 			 *     work without user space progress (e.g. hrtimer).
9578 			 *     To approximate progress (with false negatives),
9579 			 *     check 32-bit hash of the current IP.
9580 			 */
9581 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9582 		}
9583 
9584 		event->pending_addr = 0;
9585 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9586 			event->pending_addr = data->addr;
9587 		irq_work_queue(&event->pending_irq);
9588 	}
9589 
9590 	READ_ONCE(event->overflow_handler)(event, data, regs);
9591 
9592 	if (*perf_event_fasync(event) && event->pending_kill) {
9593 		event->pending_wakeup = 1;
9594 		irq_work_queue(&event->pending_irq);
9595 	}
9596 
9597 	return ret;
9598 }
9599 
9600 int perf_event_overflow(struct perf_event *event,
9601 			struct perf_sample_data *data,
9602 			struct pt_regs *regs)
9603 {
9604 	return __perf_event_overflow(event, 1, data, regs);
9605 }
9606 
9607 /*
9608  * Generic software event infrastructure
9609  */
9610 
9611 struct swevent_htable {
9612 	struct swevent_hlist		*swevent_hlist;
9613 	struct mutex			hlist_mutex;
9614 	int				hlist_refcount;
9615 
9616 	/* Recursion avoidance in each contexts */
9617 	int				recursion[PERF_NR_CONTEXTS];
9618 };
9619 
9620 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9621 
9622 /*
9623  * We directly increment event->count and keep a second value in
9624  * event->hw.period_left to count intervals. This period event
9625  * is kept in the range [-sample_period, 0] so that we can use the
9626  * sign as trigger.
9627  */
9628 
9629 u64 perf_swevent_set_period(struct perf_event *event)
9630 {
9631 	struct hw_perf_event *hwc = &event->hw;
9632 	u64 period = hwc->last_period;
9633 	u64 nr, offset;
9634 	s64 old, val;
9635 
9636 	hwc->last_period = hwc->sample_period;
9637 
9638 	old = local64_read(&hwc->period_left);
9639 	do {
9640 		val = old;
9641 		if (val < 0)
9642 			return 0;
9643 
9644 		nr = div64_u64(period + val, period);
9645 		offset = nr * period;
9646 		val -= offset;
9647 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9648 
9649 	return nr;
9650 }
9651 
9652 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9653 				    struct perf_sample_data *data,
9654 				    struct pt_regs *regs)
9655 {
9656 	struct hw_perf_event *hwc = &event->hw;
9657 	int throttle = 0;
9658 
9659 	if (!overflow)
9660 		overflow = perf_swevent_set_period(event);
9661 
9662 	if (hwc->interrupts == MAX_INTERRUPTS)
9663 		return;
9664 
9665 	for (; overflow; overflow--) {
9666 		if (__perf_event_overflow(event, throttle,
9667 					    data, regs)) {
9668 			/*
9669 			 * We inhibit the overflow from happening when
9670 			 * hwc->interrupts == MAX_INTERRUPTS.
9671 			 */
9672 			break;
9673 		}
9674 		throttle = 1;
9675 	}
9676 }
9677 
9678 static void perf_swevent_event(struct perf_event *event, u64 nr,
9679 			       struct perf_sample_data *data,
9680 			       struct pt_regs *regs)
9681 {
9682 	struct hw_perf_event *hwc = &event->hw;
9683 
9684 	local64_add(nr, &event->count);
9685 
9686 	if (!regs)
9687 		return;
9688 
9689 	if (!is_sampling_event(event))
9690 		return;
9691 
9692 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9693 		data->period = nr;
9694 		return perf_swevent_overflow(event, 1, data, regs);
9695 	} else
9696 		data->period = event->hw.last_period;
9697 
9698 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9699 		return perf_swevent_overflow(event, 1, data, regs);
9700 
9701 	if (local64_add_negative(nr, &hwc->period_left))
9702 		return;
9703 
9704 	perf_swevent_overflow(event, 0, data, regs);
9705 }
9706 
9707 static int perf_exclude_event(struct perf_event *event,
9708 			      struct pt_regs *regs)
9709 {
9710 	if (event->hw.state & PERF_HES_STOPPED)
9711 		return 1;
9712 
9713 	if (regs) {
9714 		if (event->attr.exclude_user && user_mode(regs))
9715 			return 1;
9716 
9717 		if (event->attr.exclude_kernel && !user_mode(regs))
9718 			return 1;
9719 	}
9720 
9721 	return 0;
9722 }
9723 
9724 static int perf_swevent_match(struct perf_event *event,
9725 				enum perf_type_id type,
9726 				u32 event_id,
9727 				struct perf_sample_data *data,
9728 				struct pt_regs *regs)
9729 {
9730 	if (event->attr.type != type)
9731 		return 0;
9732 
9733 	if (event->attr.config != event_id)
9734 		return 0;
9735 
9736 	if (perf_exclude_event(event, regs))
9737 		return 0;
9738 
9739 	return 1;
9740 }
9741 
9742 static inline u64 swevent_hash(u64 type, u32 event_id)
9743 {
9744 	u64 val = event_id | (type << 32);
9745 
9746 	return hash_64(val, SWEVENT_HLIST_BITS);
9747 }
9748 
9749 static inline struct hlist_head *
9750 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9751 {
9752 	u64 hash = swevent_hash(type, event_id);
9753 
9754 	return &hlist->heads[hash];
9755 }
9756 
9757 /* For the read side: events when they trigger */
9758 static inline struct hlist_head *
9759 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9760 {
9761 	struct swevent_hlist *hlist;
9762 
9763 	hlist = rcu_dereference(swhash->swevent_hlist);
9764 	if (!hlist)
9765 		return NULL;
9766 
9767 	return __find_swevent_head(hlist, type, event_id);
9768 }
9769 
9770 /* For the event head insertion and removal in the hlist */
9771 static inline struct hlist_head *
9772 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9773 {
9774 	struct swevent_hlist *hlist;
9775 	u32 event_id = event->attr.config;
9776 	u64 type = event->attr.type;
9777 
9778 	/*
9779 	 * Event scheduling is always serialized against hlist allocation
9780 	 * and release. Which makes the protected version suitable here.
9781 	 * The context lock guarantees that.
9782 	 */
9783 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9784 					  lockdep_is_held(&event->ctx->lock));
9785 	if (!hlist)
9786 		return NULL;
9787 
9788 	return __find_swevent_head(hlist, type, event_id);
9789 }
9790 
9791 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9792 				    u64 nr,
9793 				    struct perf_sample_data *data,
9794 				    struct pt_regs *regs)
9795 {
9796 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9797 	struct perf_event *event;
9798 	struct hlist_head *head;
9799 
9800 	rcu_read_lock();
9801 	head = find_swevent_head_rcu(swhash, type, event_id);
9802 	if (!head)
9803 		goto end;
9804 
9805 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9806 		if (perf_swevent_match(event, type, event_id, data, regs))
9807 			perf_swevent_event(event, nr, data, regs);
9808 	}
9809 end:
9810 	rcu_read_unlock();
9811 }
9812 
9813 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9814 
9815 int perf_swevent_get_recursion_context(void)
9816 {
9817 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9818 
9819 	return get_recursion_context(swhash->recursion);
9820 }
9821 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9822 
9823 void perf_swevent_put_recursion_context(int rctx)
9824 {
9825 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9826 
9827 	put_recursion_context(swhash->recursion, rctx);
9828 }
9829 
9830 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9831 {
9832 	struct perf_sample_data data;
9833 
9834 	if (WARN_ON_ONCE(!regs))
9835 		return;
9836 
9837 	perf_sample_data_init(&data, addr, 0);
9838 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9839 }
9840 
9841 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9842 {
9843 	int rctx;
9844 
9845 	preempt_disable_notrace();
9846 	rctx = perf_swevent_get_recursion_context();
9847 	if (unlikely(rctx < 0))
9848 		goto fail;
9849 
9850 	___perf_sw_event(event_id, nr, regs, addr);
9851 
9852 	perf_swevent_put_recursion_context(rctx);
9853 fail:
9854 	preempt_enable_notrace();
9855 }
9856 
9857 static void perf_swevent_read(struct perf_event *event)
9858 {
9859 }
9860 
9861 static int perf_swevent_add(struct perf_event *event, int flags)
9862 {
9863 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9864 	struct hw_perf_event *hwc = &event->hw;
9865 	struct hlist_head *head;
9866 
9867 	if (is_sampling_event(event)) {
9868 		hwc->last_period = hwc->sample_period;
9869 		perf_swevent_set_period(event);
9870 	}
9871 
9872 	hwc->state = !(flags & PERF_EF_START);
9873 
9874 	head = find_swevent_head(swhash, event);
9875 	if (WARN_ON_ONCE(!head))
9876 		return -EINVAL;
9877 
9878 	hlist_add_head_rcu(&event->hlist_entry, head);
9879 	perf_event_update_userpage(event);
9880 
9881 	return 0;
9882 }
9883 
9884 static void perf_swevent_del(struct perf_event *event, int flags)
9885 {
9886 	hlist_del_rcu(&event->hlist_entry);
9887 }
9888 
9889 static void perf_swevent_start(struct perf_event *event, int flags)
9890 {
9891 	event->hw.state = 0;
9892 }
9893 
9894 static void perf_swevent_stop(struct perf_event *event, int flags)
9895 {
9896 	event->hw.state = PERF_HES_STOPPED;
9897 }
9898 
9899 /* Deref the hlist from the update side */
9900 static inline struct swevent_hlist *
9901 swevent_hlist_deref(struct swevent_htable *swhash)
9902 {
9903 	return rcu_dereference_protected(swhash->swevent_hlist,
9904 					 lockdep_is_held(&swhash->hlist_mutex));
9905 }
9906 
9907 static void swevent_hlist_release(struct swevent_htable *swhash)
9908 {
9909 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9910 
9911 	if (!hlist)
9912 		return;
9913 
9914 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9915 	kfree_rcu(hlist, rcu_head);
9916 }
9917 
9918 static void swevent_hlist_put_cpu(int cpu)
9919 {
9920 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9921 
9922 	mutex_lock(&swhash->hlist_mutex);
9923 
9924 	if (!--swhash->hlist_refcount)
9925 		swevent_hlist_release(swhash);
9926 
9927 	mutex_unlock(&swhash->hlist_mutex);
9928 }
9929 
9930 static void swevent_hlist_put(void)
9931 {
9932 	int cpu;
9933 
9934 	for_each_possible_cpu(cpu)
9935 		swevent_hlist_put_cpu(cpu);
9936 }
9937 
9938 static int swevent_hlist_get_cpu(int cpu)
9939 {
9940 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9941 	int err = 0;
9942 
9943 	mutex_lock(&swhash->hlist_mutex);
9944 	if (!swevent_hlist_deref(swhash) &&
9945 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9946 		struct swevent_hlist *hlist;
9947 
9948 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9949 		if (!hlist) {
9950 			err = -ENOMEM;
9951 			goto exit;
9952 		}
9953 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9954 	}
9955 	swhash->hlist_refcount++;
9956 exit:
9957 	mutex_unlock(&swhash->hlist_mutex);
9958 
9959 	return err;
9960 }
9961 
9962 static int swevent_hlist_get(void)
9963 {
9964 	int err, cpu, failed_cpu;
9965 
9966 	mutex_lock(&pmus_lock);
9967 	for_each_possible_cpu(cpu) {
9968 		err = swevent_hlist_get_cpu(cpu);
9969 		if (err) {
9970 			failed_cpu = cpu;
9971 			goto fail;
9972 		}
9973 	}
9974 	mutex_unlock(&pmus_lock);
9975 	return 0;
9976 fail:
9977 	for_each_possible_cpu(cpu) {
9978 		if (cpu == failed_cpu)
9979 			break;
9980 		swevent_hlist_put_cpu(cpu);
9981 	}
9982 	mutex_unlock(&pmus_lock);
9983 	return err;
9984 }
9985 
9986 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9987 
9988 static void sw_perf_event_destroy(struct perf_event *event)
9989 {
9990 	u64 event_id = event->attr.config;
9991 
9992 	WARN_ON(event->parent);
9993 
9994 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9995 	swevent_hlist_put();
9996 }
9997 
9998 static struct pmu perf_cpu_clock; /* fwd declaration */
9999 static struct pmu perf_task_clock;
10000 
10001 static int perf_swevent_init(struct perf_event *event)
10002 {
10003 	u64 event_id = event->attr.config;
10004 
10005 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10006 		return -ENOENT;
10007 
10008 	/*
10009 	 * no branch sampling for software events
10010 	 */
10011 	if (has_branch_stack(event))
10012 		return -EOPNOTSUPP;
10013 
10014 	switch (event_id) {
10015 	case PERF_COUNT_SW_CPU_CLOCK:
10016 		event->attr.type = perf_cpu_clock.type;
10017 		return -ENOENT;
10018 	case PERF_COUNT_SW_TASK_CLOCK:
10019 		event->attr.type = perf_task_clock.type;
10020 		return -ENOENT;
10021 
10022 	default:
10023 		break;
10024 	}
10025 
10026 	if (event_id >= PERF_COUNT_SW_MAX)
10027 		return -ENOENT;
10028 
10029 	if (!event->parent) {
10030 		int err;
10031 
10032 		err = swevent_hlist_get();
10033 		if (err)
10034 			return err;
10035 
10036 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10037 		event->destroy = sw_perf_event_destroy;
10038 	}
10039 
10040 	return 0;
10041 }
10042 
10043 static struct pmu perf_swevent = {
10044 	.task_ctx_nr	= perf_sw_context,
10045 
10046 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10047 
10048 	.event_init	= perf_swevent_init,
10049 	.add		= perf_swevent_add,
10050 	.del		= perf_swevent_del,
10051 	.start		= perf_swevent_start,
10052 	.stop		= perf_swevent_stop,
10053 	.read		= perf_swevent_read,
10054 };
10055 
10056 #ifdef CONFIG_EVENT_TRACING
10057 
10058 static void tp_perf_event_destroy(struct perf_event *event)
10059 {
10060 	perf_trace_destroy(event);
10061 }
10062 
10063 static int perf_tp_event_init(struct perf_event *event)
10064 {
10065 	int err;
10066 
10067 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10068 		return -ENOENT;
10069 
10070 	/*
10071 	 * no branch sampling for tracepoint events
10072 	 */
10073 	if (has_branch_stack(event))
10074 		return -EOPNOTSUPP;
10075 
10076 	err = perf_trace_init(event);
10077 	if (err)
10078 		return err;
10079 
10080 	event->destroy = tp_perf_event_destroy;
10081 
10082 	return 0;
10083 }
10084 
10085 static struct pmu perf_tracepoint = {
10086 	.task_ctx_nr	= perf_sw_context,
10087 
10088 	.event_init	= perf_tp_event_init,
10089 	.add		= perf_trace_add,
10090 	.del		= perf_trace_del,
10091 	.start		= perf_swevent_start,
10092 	.stop		= perf_swevent_stop,
10093 	.read		= perf_swevent_read,
10094 };
10095 
10096 static int perf_tp_filter_match(struct perf_event *event,
10097 				struct perf_sample_data *data)
10098 {
10099 	void *record = data->raw->frag.data;
10100 
10101 	/* only top level events have filters set */
10102 	if (event->parent)
10103 		event = event->parent;
10104 
10105 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10106 		return 1;
10107 	return 0;
10108 }
10109 
10110 static int perf_tp_event_match(struct perf_event *event,
10111 				struct perf_sample_data *data,
10112 				struct pt_regs *regs)
10113 {
10114 	if (event->hw.state & PERF_HES_STOPPED)
10115 		return 0;
10116 	/*
10117 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10118 	 */
10119 	if (event->attr.exclude_kernel && !user_mode(regs))
10120 		return 0;
10121 
10122 	if (!perf_tp_filter_match(event, data))
10123 		return 0;
10124 
10125 	return 1;
10126 }
10127 
10128 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10129 			       struct trace_event_call *call, u64 count,
10130 			       struct pt_regs *regs, struct hlist_head *head,
10131 			       struct task_struct *task)
10132 {
10133 	if (bpf_prog_array_valid(call)) {
10134 		*(struct pt_regs **)raw_data = regs;
10135 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10136 			perf_swevent_put_recursion_context(rctx);
10137 			return;
10138 		}
10139 	}
10140 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10141 		      rctx, task);
10142 }
10143 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10144 
10145 static void __perf_tp_event_target_task(u64 count, void *record,
10146 					struct pt_regs *regs,
10147 					struct perf_sample_data *data,
10148 					struct perf_event *event)
10149 {
10150 	struct trace_entry *entry = record;
10151 
10152 	if (event->attr.config != entry->type)
10153 		return;
10154 	/* Cannot deliver synchronous signal to other task. */
10155 	if (event->attr.sigtrap)
10156 		return;
10157 	if (perf_tp_event_match(event, data, regs))
10158 		perf_swevent_event(event, count, data, regs);
10159 }
10160 
10161 static void perf_tp_event_target_task(u64 count, void *record,
10162 				      struct pt_regs *regs,
10163 				      struct perf_sample_data *data,
10164 				      struct perf_event_context *ctx)
10165 {
10166 	unsigned int cpu = smp_processor_id();
10167 	struct pmu *pmu = &perf_tracepoint;
10168 	struct perf_event *event, *sibling;
10169 
10170 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10171 		__perf_tp_event_target_task(count, record, regs, data, event);
10172 		for_each_sibling_event(sibling, event)
10173 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10174 	}
10175 
10176 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10177 		__perf_tp_event_target_task(count, record, regs, data, event);
10178 		for_each_sibling_event(sibling, event)
10179 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10180 	}
10181 }
10182 
10183 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10184 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10185 		   struct task_struct *task)
10186 {
10187 	struct perf_sample_data data;
10188 	struct perf_event *event;
10189 
10190 	struct perf_raw_record raw = {
10191 		.frag = {
10192 			.size = entry_size,
10193 			.data = record,
10194 		},
10195 	};
10196 
10197 	perf_sample_data_init(&data, 0, 0);
10198 	perf_sample_save_raw_data(&data, &raw);
10199 
10200 	perf_trace_buf_update(record, event_type);
10201 
10202 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10203 		if (perf_tp_event_match(event, &data, regs)) {
10204 			perf_swevent_event(event, count, &data, regs);
10205 
10206 			/*
10207 			 * Here use the same on-stack perf_sample_data,
10208 			 * some members in data are event-specific and
10209 			 * need to be re-computed for different sweveents.
10210 			 * Re-initialize data->sample_flags safely to avoid
10211 			 * the problem that next event skips preparing data
10212 			 * because data->sample_flags is set.
10213 			 */
10214 			perf_sample_data_init(&data, 0, 0);
10215 			perf_sample_save_raw_data(&data, &raw);
10216 		}
10217 	}
10218 
10219 	/*
10220 	 * If we got specified a target task, also iterate its context and
10221 	 * deliver this event there too.
10222 	 */
10223 	if (task && task != current) {
10224 		struct perf_event_context *ctx;
10225 
10226 		rcu_read_lock();
10227 		ctx = rcu_dereference(task->perf_event_ctxp);
10228 		if (!ctx)
10229 			goto unlock;
10230 
10231 		raw_spin_lock(&ctx->lock);
10232 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10233 		raw_spin_unlock(&ctx->lock);
10234 unlock:
10235 		rcu_read_unlock();
10236 	}
10237 
10238 	perf_swevent_put_recursion_context(rctx);
10239 }
10240 EXPORT_SYMBOL_GPL(perf_tp_event);
10241 
10242 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10243 /*
10244  * Flags in config, used by dynamic PMU kprobe and uprobe
10245  * The flags should match following PMU_FORMAT_ATTR().
10246  *
10247  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10248  *                               if not set, create kprobe/uprobe
10249  *
10250  * The following values specify a reference counter (or semaphore in the
10251  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10252  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10253  *
10254  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10255  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10256  */
10257 enum perf_probe_config {
10258 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10259 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10260 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10261 };
10262 
10263 PMU_FORMAT_ATTR(retprobe, "config:0");
10264 #endif
10265 
10266 #ifdef CONFIG_KPROBE_EVENTS
10267 static struct attribute *kprobe_attrs[] = {
10268 	&format_attr_retprobe.attr,
10269 	NULL,
10270 };
10271 
10272 static struct attribute_group kprobe_format_group = {
10273 	.name = "format",
10274 	.attrs = kprobe_attrs,
10275 };
10276 
10277 static const struct attribute_group *kprobe_attr_groups[] = {
10278 	&kprobe_format_group,
10279 	NULL,
10280 };
10281 
10282 static int perf_kprobe_event_init(struct perf_event *event);
10283 static struct pmu perf_kprobe = {
10284 	.task_ctx_nr	= perf_sw_context,
10285 	.event_init	= perf_kprobe_event_init,
10286 	.add		= perf_trace_add,
10287 	.del		= perf_trace_del,
10288 	.start		= perf_swevent_start,
10289 	.stop		= perf_swevent_stop,
10290 	.read		= perf_swevent_read,
10291 	.attr_groups	= kprobe_attr_groups,
10292 };
10293 
10294 static int perf_kprobe_event_init(struct perf_event *event)
10295 {
10296 	int err;
10297 	bool is_retprobe;
10298 
10299 	if (event->attr.type != perf_kprobe.type)
10300 		return -ENOENT;
10301 
10302 	if (!perfmon_capable())
10303 		return -EACCES;
10304 
10305 	/*
10306 	 * no branch sampling for probe events
10307 	 */
10308 	if (has_branch_stack(event))
10309 		return -EOPNOTSUPP;
10310 
10311 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10312 	err = perf_kprobe_init(event, is_retprobe);
10313 	if (err)
10314 		return err;
10315 
10316 	event->destroy = perf_kprobe_destroy;
10317 
10318 	return 0;
10319 }
10320 #endif /* CONFIG_KPROBE_EVENTS */
10321 
10322 #ifdef CONFIG_UPROBE_EVENTS
10323 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10324 
10325 static struct attribute *uprobe_attrs[] = {
10326 	&format_attr_retprobe.attr,
10327 	&format_attr_ref_ctr_offset.attr,
10328 	NULL,
10329 };
10330 
10331 static struct attribute_group uprobe_format_group = {
10332 	.name = "format",
10333 	.attrs = uprobe_attrs,
10334 };
10335 
10336 static const struct attribute_group *uprobe_attr_groups[] = {
10337 	&uprobe_format_group,
10338 	NULL,
10339 };
10340 
10341 static int perf_uprobe_event_init(struct perf_event *event);
10342 static struct pmu perf_uprobe = {
10343 	.task_ctx_nr	= perf_sw_context,
10344 	.event_init	= perf_uprobe_event_init,
10345 	.add		= perf_trace_add,
10346 	.del		= perf_trace_del,
10347 	.start		= perf_swevent_start,
10348 	.stop		= perf_swevent_stop,
10349 	.read		= perf_swevent_read,
10350 	.attr_groups	= uprobe_attr_groups,
10351 };
10352 
10353 static int perf_uprobe_event_init(struct perf_event *event)
10354 {
10355 	int err;
10356 	unsigned long ref_ctr_offset;
10357 	bool is_retprobe;
10358 
10359 	if (event->attr.type != perf_uprobe.type)
10360 		return -ENOENT;
10361 
10362 	if (!perfmon_capable())
10363 		return -EACCES;
10364 
10365 	/*
10366 	 * no branch sampling for probe events
10367 	 */
10368 	if (has_branch_stack(event))
10369 		return -EOPNOTSUPP;
10370 
10371 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10372 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10373 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10374 	if (err)
10375 		return err;
10376 
10377 	event->destroy = perf_uprobe_destroy;
10378 
10379 	return 0;
10380 }
10381 #endif /* CONFIG_UPROBE_EVENTS */
10382 
10383 static inline void perf_tp_register(void)
10384 {
10385 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10386 #ifdef CONFIG_KPROBE_EVENTS
10387 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10388 #endif
10389 #ifdef CONFIG_UPROBE_EVENTS
10390 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10391 #endif
10392 }
10393 
10394 static void perf_event_free_filter(struct perf_event *event)
10395 {
10396 	ftrace_profile_free_filter(event);
10397 }
10398 
10399 #ifdef CONFIG_BPF_SYSCALL
10400 static void bpf_overflow_handler(struct perf_event *event,
10401 				 struct perf_sample_data *data,
10402 				 struct pt_regs *regs)
10403 {
10404 	struct bpf_perf_event_data_kern ctx = {
10405 		.data = data,
10406 		.event = event,
10407 	};
10408 	struct bpf_prog *prog;
10409 	int ret = 0;
10410 
10411 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10412 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10413 		goto out;
10414 	rcu_read_lock();
10415 	prog = READ_ONCE(event->prog);
10416 	if (prog) {
10417 		perf_prepare_sample(data, event, regs);
10418 		ret = bpf_prog_run(prog, &ctx);
10419 	}
10420 	rcu_read_unlock();
10421 out:
10422 	__this_cpu_dec(bpf_prog_active);
10423 	if (!ret)
10424 		return;
10425 
10426 	event->orig_overflow_handler(event, data, regs);
10427 }
10428 
10429 static int perf_event_set_bpf_handler(struct perf_event *event,
10430 				      struct bpf_prog *prog,
10431 				      u64 bpf_cookie)
10432 {
10433 	if (event->overflow_handler_context)
10434 		/* hw breakpoint or kernel counter */
10435 		return -EINVAL;
10436 
10437 	if (event->prog)
10438 		return -EEXIST;
10439 
10440 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10441 		return -EINVAL;
10442 
10443 	if (event->attr.precise_ip &&
10444 	    prog->call_get_stack &&
10445 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10446 	     event->attr.exclude_callchain_kernel ||
10447 	     event->attr.exclude_callchain_user)) {
10448 		/*
10449 		 * On perf_event with precise_ip, calling bpf_get_stack()
10450 		 * may trigger unwinder warnings and occasional crashes.
10451 		 * bpf_get_[stack|stackid] works around this issue by using
10452 		 * callchain attached to perf_sample_data. If the
10453 		 * perf_event does not full (kernel and user) callchain
10454 		 * attached to perf_sample_data, do not allow attaching BPF
10455 		 * program that calls bpf_get_[stack|stackid].
10456 		 */
10457 		return -EPROTO;
10458 	}
10459 
10460 	event->prog = prog;
10461 	event->bpf_cookie = bpf_cookie;
10462 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10463 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10464 	return 0;
10465 }
10466 
10467 static void perf_event_free_bpf_handler(struct perf_event *event)
10468 {
10469 	struct bpf_prog *prog = event->prog;
10470 
10471 	if (!prog)
10472 		return;
10473 
10474 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10475 	event->prog = NULL;
10476 	bpf_prog_put(prog);
10477 }
10478 #else
10479 static int perf_event_set_bpf_handler(struct perf_event *event,
10480 				      struct bpf_prog *prog,
10481 				      u64 bpf_cookie)
10482 {
10483 	return -EOPNOTSUPP;
10484 }
10485 static void perf_event_free_bpf_handler(struct perf_event *event)
10486 {
10487 }
10488 #endif
10489 
10490 /*
10491  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10492  * with perf_event_open()
10493  */
10494 static inline bool perf_event_is_tracing(struct perf_event *event)
10495 {
10496 	if (event->pmu == &perf_tracepoint)
10497 		return true;
10498 #ifdef CONFIG_KPROBE_EVENTS
10499 	if (event->pmu == &perf_kprobe)
10500 		return true;
10501 #endif
10502 #ifdef CONFIG_UPROBE_EVENTS
10503 	if (event->pmu == &perf_uprobe)
10504 		return true;
10505 #endif
10506 	return false;
10507 }
10508 
10509 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10510 			    u64 bpf_cookie)
10511 {
10512 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10513 
10514 	if (!perf_event_is_tracing(event))
10515 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10516 
10517 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10518 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10519 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10520 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10521 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10522 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10523 		return -EINVAL;
10524 
10525 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10526 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10527 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10528 		return -EINVAL;
10529 
10530 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10531 		/* only uprobe programs are allowed to be sleepable */
10532 		return -EINVAL;
10533 
10534 	/* Kprobe override only works for kprobes, not uprobes. */
10535 	if (prog->kprobe_override && !is_kprobe)
10536 		return -EINVAL;
10537 
10538 	if (is_tracepoint || is_syscall_tp) {
10539 		int off = trace_event_get_offsets(event->tp_event);
10540 
10541 		if (prog->aux->max_ctx_offset > off)
10542 			return -EACCES;
10543 	}
10544 
10545 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10546 }
10547 
10548 void perf_event_free_bpf_prog(struct perf_event *event)
10549 {
10550 	if (!perf_event_is_tracing(event)) {
10551 		perf_event_free_bpf_handler(event);
10552 		return;
10553 	}
10554 	perf_event_detach_bpf_prog(event);
10555 }
10556 
10557 #else
10558 
10559 static inline void perf_tp_register(void)
10560 {
10561 }
10562 
10563 static void perf_event_free_filter(struct perf_event *event)
10564 {
10565 }
10566 
10567 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10568 			    u64 bpf_cookie)
10569 {
10570 	return -ENOENT;
10571 }
10572 
10573 void perf_event_free_bpf_prog(struct perf_event *event)
10574 {
10575 }
10576 #endif /* CONFIG_EVENT_TRACING */
10577 
10578 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10579 void perf_bp_event(struct perf_event *bp, void *data)
10580 {
10581 	struct perf_sample_data sample;
10582 	struct pt_regs *regs = data;
10583 
10584 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10585 
10586 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10587 		perf_swevent_event(bp, 1, &sample, regs);
10588 }
10589 #endif
10590 
10591 /*
10592  * Allocate a new address filter
10593  */
10594 static struct perf_addr_filter *
10595 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10596 {
10597 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10598 	struct perf_addr_filter *filter;
10599 
10600 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10601 	if (!filter)
10602 		return NULL;
10603 
10604 	INIT_LIST_HEAD(&filter->entry);
10605 	list_add_tail(&filter->entry, filters);
10606 
10607 	return filter;
10608 }
10609 
10610 static void free_filters_list(struct list_head *filters)
10611 {
10612 	struct perf_addr_filter *filter, *iter;
10613 
10614 	list_for_each_entry_safe(filter, iter, filters, entry) {
10615 		path_put(&filter->path);
10616 		list_del(&filter->entry);
10617 		kfree(filter);
10618 	}
10619 }
10620 
10621 /*
10622  * Free existing address filters and optionally install new ones
10623  */
10624 static void perf_addr_filters_splice(struct perf_event *event,
10625 				     struct list_head *head)
10626 {
10627 	unsigned long flags;
10628 	LIST_HEAD(list);
10629 
10630 	if (!has_addr_filter(event))
10631 		return;
10632 
10633 	/* don't bother with children, they don't have their own filters */
10634 	if (event->parent)
10635 		return;
10636 
10637 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10638 
10639 	list_splice_init(&event->addr_filters.list, &list);
10640 	if (head)
10641 		list_splice(head, &event->addr_filters.list);
10642 
10643 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10644 
10645 	free_filters_list(&list);
10646 }
10647 
10648 /*
10649  * Scan through mm's vmas and see if one of them matches the
10650  * @filter; if so, adjust filter's address range.
10651  * Called with mm::mmap_lock down for reading.
10652  */
10653 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10654 				   struct mm_struct *mm,
10655 				   struct perf_addr_filter_range *fr)
10656 {
10657 	struct vm_area_struct *vma;
10658 	VMA_ITERATOR(vmi, mm, 0);
10659 
10660 	for_each_vma(vmi, vma) {
10661 		if (!vma->vm_file)
10662 			continue;
10663 
10664 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10665 			return;
10666 	}
10667 }
10668 
10669 /*
10670  * Update event's address range filters based on the
10671  * task's existing mappings, if any.
10672  */
10673 static void perf_event_addr_filters_apply(struct perf_event *event)
10674 {
10675 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10676 	struct task_struct *task = READ_ONCE(event->ctx->task);
10677 	struct perf_addr_filter *filter;
10678 	struct mm_struct *mm = NULL;
10679 	unsigned int count = 0;
10680 	unsigned long flags;
10681 
10682 	/*
10683 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10684 	 * will stop on the parent's child_mutex that our caller is also holding
10685 	 */
10686 	if (task == TASK_TOMBSTONE)
10687 		return;
10688 
10689 	if (ifh->nr_file_filters) {
10690 		mm = get_task_mm(task);
10691 		if (!mm)
10692 			goto restart;
10693 
10694 		mmap_read_lock(mm);
10695 	}
10696 
10697 	raw_spin_lock_irqsave(&ifh->lock, flags);
10698 	list_for_each_entry(filter, &ifh->list, entry) {
10699 		if (filter->path.dentry) {
10700 			/*
10701 			 * Adjust base offset if the filter is associated to a
10702 			 * binary that needs to be mapped:
10703 			 */
10704 			event->addr_filter_ranges[count].start = 0;
10705 			event->addr_filter_ranges[count].size = 0;
10706 
10707 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10708 		} else {
10709 			event->addr_filter_ranges[count].start = filter->offset;
10710 			event->addr_filter_ranges[count].size  = filter->size;
10711 		}
10712 
10713 		count++;
10714 	}
10715 
10716 	event->addr_filters_gen++;
10717 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10718 
10719 	if (ifh->nr_file_filters) {
10720 		mmap_read_unlock(mm);
10721 
10722 		mmput(mm);
10723 	}
10724 
10725 restart:
10726 	perf_event_stop(event, 1);
10727 }
10728 
10729 /*
10730  * Address range filtering: limiting the data to certain
10731  * instruction address ranges. Filters are ioctl()ed to us from
10732  * userspace as ascii strings.
10733  *
10734  * Filter string format:
10735  *
10736  * ACTION RANGE_SPEC
10737  * where ACTION is one of the
10738  *  * "filter": limit the trace to this region
10739  *  * "start": start tracing from this address
10740  *  * "stop": stop tracing at this address/region;
10741  * RANGE_SPEC is
10742  *  * for kernel addresses: <start address>[/<size>]
10743  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10744  *
10745  * if <size> is not specified or is zero, the range is treated as a single
10746  * address; not valid for ACTION=="filter".
10747  */
10748 enum {
10749 	IF_ACT_NONE = -1,
10750 	IF_ACT_FILTER,
10751 	IF_ACT_START,
10752 	IF_ACT_STOP,
10753 	IF_SRC_FILE,
10754 	IF_SRC_KERNEL,
10755 	IF_SRC_FILEADDR,
10756 	IF_SRC_KERNELADDR,
10757 };
10758 
10759 enum {
10760 	IF_STATE_ACTION = 0,
10761 	IF_STATE_SOURCE,
10762 	IF_STATE_END,
10763 };
10764 
10765 static const match_table_t if_tokens = {
10766 	{ IF_ACT_FILTER,	"filter" },
10767 	{ IF_ACT_START,		"start" },
10768 	{ IF_ACT_STOP,		"stop" },
10769 	{ IF_SRC_FILE,		"%u/%u@%s" },
10770 	{ IF_SRC_KERNEL,	"%u/%u" },
10771 	{ IF_SRC_FILEADDR,	"%u@%s" },
10772 	{ IF_SRC_KERNELADDR,	"%u" },
10773 	{ IF_ACT_NONE,		NULL },
10774 };
10775 
10776 /*
10777  * Address filter string parser
10778  */
10779 static int
10780 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10781 			     struct list_head *filters)
10782 {
10783 	struct perf_addr_filter *filter = NULL;
10784 	char *start, *orig, *filename = NULL;
10785 	substring_t args[MAX_OPT_ARGS];
10786 	int state = IF_STATE_ACTION, token;
10787 	unsigned int kernel = 0;
10788 	int ret = -EINVAL;
10789 
10790 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10791 	if (!fstr)
10792 		return -ENOMEM;
10793 
10794 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10795 		static const enum perf_addr_filter_action_t actions[] = {
10796 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10797 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10798 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10799 		};
10800 		ret = -EINVAL;
10801 
10802 		if (!*start)
10803 			continue;
10804 
10805 		/* filter definition begins */
10806 		if (state == IF_STATE_ACTION) {
10807 			filter = perf_addr_filter_new(event, filters);
10808 			if (!filter)
10809 				goto fail;
10810 		}
10811 
10812 		token = match_token(start, if_tokens, args);
10813 		switch (token) {
10814 		case IF_ACT_FILTER:
10815 		case IF_ACT_START:
10816 		case IF_ACT_STOP:
10817 			if (state != IF_STATE_ACTION)
10818 				goto fail;
10819 
10820 			filter->action = actions[token];
10821 			state = IF_STATE_SOURCE;
10822 			break;
10823 
10824 		case IF_SRC_KERNELADDR:
10825 		case IF_SRC_KERNEL:
10826 			kernel = 1;
10827 			fallthrough;
10828 
10829 		case IF_SRC_FILEADDR:
10830 		case IF_SRC_FILE:
10831 			if (state != IF_STATE_SOURCE)
10832 				goto fail;
10833 
10834 			*args[0].to = 0;
10835 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10836 			if (ret)
10837 				goto fail;
10838 
10839 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10840 				*args[1].to = 0;
10841 				ret = kstrtoul(args[1].from, 0, &filter->size);
10842 				if (ret)
10843 					goto fail;
10844 			}
10845 
10846 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10847 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10848 
10849 				kfree(filename);
10850 				filename = match_strdup(&args[fpos]);
10851 				if (!filename) {
10852 					ret = -ENOMEM;
10853 					goto fail;
10854 				}
10855 			}
10856 
10857 			state = IF_STATE_END;
10858 			break;
10859 
10860 		default:
10861 			goto fail;
10862 		}
10863 
10864 		/*
10865 		 * Filter definition is fully parsed, validate and install it.
10866 		 * Make sure that it doesn't contradict itself or the event's
10867 		 * attribute.
10868 		 */
10869 		if (state == IF_STATE_END) {
10870 			ret = -EINVAL;
10871 
10872 			/*
10873 			 * ACTION "filter" must have a non-zero length region
10874 			 * specified.
10875 			 */
10876 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10877 			    !filter->size)
10878 				goto fail;
10879 
10880 			if (!kernel) {
10881 				if (!filename)
10882 					goto fail;
10883 
10884 				/*
10885 				 * For now, we only support file-based filters
10886 				 * in per-task events; doing so for CPU-wide
10887 				 * events requires additional context switching
10888 				 * trickery, since same object code will be
10889 				 * mapped at different virtual addresses in
10890 				 * different processes.
10891 				 */
10892 				ret = -EOPNOTSUPP;
10893 				if (!event->ctx->task)
10894 					goto fail;
10895 
10896 				/* look up the path and grab its inode */
10897 				ret = kern_path(filename, LOOKUP_FOLLOW,
10898 						&filter->path);
10899 				if (ret)
10900 					goto fail;
10901 
10902 				ret = -EINVAL;
10903 				if (!filter->path.dentry ||
10904 				    !S_ISREG(d_inode(filter->path.dentry)
10905 					     ->i_mode))
10906 					goto fail;
10907 
10908 				event->addr_filters.nr_file_filters++;
10909 			}
10910 
10911 			/* ready to consume more filters */
10912 			kfree(filename);
10913 			filename = NULL;
10914 			state = IF_STATE_ACTION;
10915 			filter = NULL;
10916 			kernel = 0;
10917 		}
10918 	}
10919 
10920 	if (state != IF_STATE_ACTION)
10921 		goto fail;
10922 
10923 	kfree(filename);
10924 	kfree(orig);
10925 
10926 	return 0;
10927 
10928 fail:
10929 	kfree(filename);
10930 	free_filters_list(filters);
10931 	kfree(orig);
10932 
10933 	return ret;
10934 }
10935 
10936 static int
10937 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10938 {
10939 	LIST_HEAD(filters);
10940 	int ret;
10941 
10942 	/*
10943 	 * Since this is called in perf_ioctl() path, we're already holding
10944 	 * ctx::mutex.
10945 	 */
10946 	lockdep_assert_held(&event->ctx->mutex);
10947 
10948 	if (WARN_ON_ONCE(event->parent))
10949 		return -EINVAL;
10950 
10951 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10952 	if (ret)
10953 		goto fail_clear_files;
10954 
10955 	ret = event->pmu->addr_filters_validate(&filters);
10956 	if (ret)
10957 		goto fail_free_filters;
10958 
10959 	/* remove existing filters, if any */
10960 	perf_addr_filters_splice(event, &filters);
10961 
10962 	/* install new filters */
10963 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10964 
10965 	return ret;
10966 
10967 fail_free_filters:
10968 	free_filters_list(&filters);
10969 
10970 fail_clear_files:
10971 	event->addr_filters.nr_file_filters = 0;
10972 
10973 	return ret;
10974 }
10975 
10976 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10977 {
10978 	int ret = -EINVAL;
10979 	char *filter_str;
10980 
10981 	filter_str = strndup_user(arg, PAGE_SIZE);
10982 	if (IS_ERR(filter_str))
10983 		return PTR_ERR(filter_str);
10984 
10985 #ifdef CONFIG_EVENT_TRACING
10986 	if (perf_event_is_tracing(event)) {
10987 		struct perf_event_context *ctx = event->ctx;
10988 
10989 		/*
10990 		 * Beware, here be dragons!!
10991 		 *
10992 		 * the tracepoint muck will deadlock against ctx->mutex, but
10993 		 * the tracepoint stuff does not actually need it. So
10994 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10995 		 * already have a reference on ctx.
10996 		 *
10997 		 * This can result in event getting moved to a different ctx,
10998 		 * but that does not affect the tracepoint state.
10999 		 */
11000 		mutex_unlock(&ctx->mutex);
11001 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11002 		mutex_lock(&ctx->mutex);
11003 	} else
11004 #endif
11005 	if (has_addr_filter(event))
11006 		ret = perf_event_set_addr_filter(event, filter_str);
11007 
11008 	kfree(filter_str);
11009 	return ret;
11010 }
11011 
11012 /*
11013  * hrtimer based swevent callback
11014  */
11015 
11016 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11017 {
11018 	enum hrtimer_restart ret = HRTIMER_RESTART;
11019 	struct perf_sample_data data;
11020 	struct pt_regs *regs;
11021 	struct perf_event *event;
11022 	u64 period;
11023 
11024 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11025 
11026 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11027 		return HRTIMER_NORESTART;
11028 
11029 	event->pmu->read(event);
11030 
11031 	perf_sample_data_init(&data, 0, event->hw.last_period);
11032 	regs = get_irq_regs();
11033 
11034 	if (regs && !perf_exclude_event(event, regs)) {
11035 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11036 			if (__perf_event_overflow(event, 1, &data, regs))
11037 				ret = HRTIMER_NORESTART;
11038 	}
11039 
11040 	period = max_t(u64, 10000, event->hw.sample_period);
11041 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11042 
11043 	return ret;
11044 }
11045 
11046 static void perf_swevent_start_hrtimer(struct perf_event *event)
11047 {
11048 	struct hw_perf_event *hwc = &event->hw;
11049 	s64 period;
11050 
11051 	if (!is_sampling_event(event))
11052 		return;
11053 
11054 	period = local64_read(&hwc->period_left);
11055 	if (period) {
11056 		if (period < 0)
11057 			period = 10000;
11058 
11059 		local64_set(&hwc->period_left, 0);
11060 	} else {
11061 		period = max_t(u64, 10000, hwc->sample_period);
11062 	}
11063 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11064 		      HRTIMER_MODE_REL_PINNED_HARD);
11065 }
11066 
11067 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11068 {
11069 	struct hw_perf_event *hwc = &event->hw;
11070 
11071 	if (is_sampling_event(event)) {
11072 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11073 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11074 
11075 		hrtimer_cancel(&hwc->hrtimer);
11076 	}
11077 }
11078 
11079 static void perf_swevent_init_hrtimer(struct perf_event *event)
11080 {
11081 	struct hw_perf_event *hwc = &event->hw;
11082 
11083 	if (!is_sampling_event(event))
11084 		return;
11085 
11086 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11087 	hwc->hrtimer.function = perf_swevent_hrtimer;
11088 
11089 	/*
11090 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11091 	 * mapping and avoid the whole period adjust feedback stuff.
11092 	 */
11093 	if (event->attr.freq) {
11094 		long freq = event->attr.sample_freq;
11095 
11096 		event->attr.sample_period = NSEC_PER_SEC / freq;
11097 		hwc->sample_period = event->attr.sample_period;
11098 		local64_set(&hwc->period_left, hwc->sample_period);
11099 		hwc->last_period = hwc->sample_period;
11100 		event->attr.freq = 0;
11101 	}
11102 }
11103 
11104 /*
11105  * Software event: cpu wall time clock
11106  */
11107 
11108 static void cpu_clock_event_update(struct perf_event *event)
11109 {
11110 	s64 prev;
11111 	u64 now;
11112 
11113 	now = local_clock();
11114 	prev = local64_xchg(&event->hw.prev_count, now);
11115 	local64_add(now - prev, &event->count);
11116 }
11117 
11118 static void cpu_clock_event_start(struct perf_event *event, int flags)
11119 {
11120 	local64_set(&event->hw.prev_count, local_clock());
11121 	perf_swevent_start_hrtimer(event);
11122 }
11123 
11124 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11125 {
11126 	perf_swevent_cancel_hrtimer(event);
11127 	cpu_clock_event_update(event);
11128 }
11129 
11130 static int cpu_clock_event_add(struct perf_event *event, int flags)
11131 {
11132 	if (flags & PERF_EF_START)
11133 		cpu_clock_event_start(event, flags);
11134 	perf_event_update_userpage(event);
11135 
11136 	return 0;
11137 }
11138 
11139 static void cpu_clock_event_del(struct perf_event *event, int flags)
11140 {
11141 	cpu_clock_event_stop(event, flags);
11142 }
11143 
11144 static void cpu_clock_event_read(struct perf_event *event)
11145 {
11146 	cpu_clock_event_update(event);
11147 }
11148 
11149 static int cpu_clock_event_init(struct perf_event *event)
11150 {
11151 	if (event->attr.type != perf_cpu_clock.type)
11152 		return -ENOENT;
11153 
11154 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11155 		return -ENOENT;
11156 
11157 	/*
11158 	 * no branch sampling for software events
11159 	 */
11160 	if (has_branch_stack(event))
11161 		return -EOPNOTSUPP;
11162 
11163 	perf_swevent_init_hrtimer(event);
11164 
11165 	return 0;
11166 }
11167 
11168 static struct pmu perf_cpu_clock = {
11169 	.task_ctx_nr	= perf_sw_context,
11170 
11171 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11172 	.dev		= PMU_NULL_DEV,
11173 
11174 	.event_init	= cpu_clock_event_init,
11175 	.add		= cpu_clock_event_add,
11176 	.del		= cpu_clock_event_del,
11177 	.start		= cpu_clock_event_start,
11178 	.stop		= cpu_clock_event_stop,
11179 	.read		= cpu_clock_event_read,
11180 };
11181 
11182 /*
11183  * Software event: task time clock
11184  */
11185 
11186 static void task_clock_event_update(struct perf_event *event, u64 now)
11187 {
11188 	u64 prev;
11189 	s64 delta;
11190 
11191 	prev = local64_xchg(&event->hw.prev_count, now);
11192 	delta = now - prev;
11193 	local64_add(delta, &event->count);
11194 }
11195 
11196 static void task_clock_event_start(struct perf_event *event, int flags)
11197 {
11198 	local64_set(&event->hw.prev_count, event->ctx->time);
11199 	perf_swevent_start_hrtimer(event);
11200 }
11201 
11202 static void task_clock_event_stop(struct perf_event *event, int flags)
11203 {
11204 	perf_swevent_cancel_hrtimer(event);
11205 	task_clock_event_update(event, event->ctx->time);
11206 }
11207 
11208 static int task_clock_event_add(struct perf_event *event, int flags)
11209 {
11210 	if (flags & PERF_EF_START)
11211 		task_clock_event_start(event, flags);
11212 	perf_event_update_userpage(event);
11213 
11214 	return 0;
11215 }
11216 
11217 static void task_clock_event_del(struct perf_event *event, int flags)
11218 {
11219 	task_clock_event_stop(event, PERF_EF_UPDATE);
11220 }
11221 
11222 static void task_clock_event_read(struct perf_event *event)
11223 {
11224 	u64 now = perf_clock();
11225 	u64 delta = now - event->ctx->timestamp;
11226 	u64 time = event->ctx->time + delta;
11227 
11228 	task_clock_event_update(event, time);
11229 }
11230 
11231 static int task_clock_event_init(struct perf_event *event)
11232 {
11233 	if (event->attr.type != perf_task_clock.type)
11234 		return -ENOENT;
11235 
11236 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11237 		return -ENOENT;
11238 
11239 	/*
11240 	 * no branch sampling for software events
11241 	 */
11242 	if (has_branch_stack(event))
11243 		return -EOPNOTSUPP;
11244 
11245 	perf_swevent_init_hrtimer(event);
11246 
11247 	return 0;
11248 }
11249 
11250 static struct pmu perf_task_clock = {
11251 	.task_ctx_nr	= perf_sw_context,
11252 
11253 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11254 	.dev		= PMU_NULL_DEV,
11255 
11256 	.event_init	= task_clock_event_init,
11257 	.add		= task_clock_event_add,
11258 	.del		= task_clock_event_del,
11259 	.start		= task_clock_event_start,
11260 	.stop		= task_clock_event_stop,
11261 	.read		= task_clock_event_read,
11262 };
11263 
11264 static void perf_pmu_nop_void(struct pmu *pmu)
11265 {
11266 }
11267 
11268 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11269 {
11270 }
11271 
11272 static int perf_pmu_nop_int(struct pmu *pmu)
11273 {
11274 	return 0;
11275 }
11276 
11277 static int perf_event_nop_int(struct perf_event *event, u64 value)
11278 {
11279 	return 0;
11280 }
11281 
11282 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11283 
11284 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11285 {
11286 	__this_cpu_write(nop_txn_flags, flags);
11287 
11288 	if (flags & ~PERF_PMU_TXN_ADD)
11289 		return;
11290 
11291 	perf_pmu_disable(pmu);
11292 }
11293 
11294 static int perf_pmu_commit_txn(struct pmu *pmu)
11295 {
11296 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11297 
11298 	__this_cpu_write(nop_txn_flags, 0);
11299 
11300 	if (flags & ~PERF_PMU_TXN_ADD)
11301 		return 0;
11302 
11303 	perf_pmu_enable(pmu);
11304 	return 0;
11305 }
11306 
11307 static void perf_pmu_cancel_txn(struct pmu *pmu)
11308 {
11309 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11310 
11311 	__this_cpu_write(nop_txn_flags, 0);
11312 
11313 	if (flags & ~PERF_PMU_TXN_ADD)
11314 		return;
11315 
11316 	perf_pmu_enable(pmu);
11317 }
11318 
11319 static int perf_event_idx_default(struct perf_event *event)
11320 {
11321 	return 0;
11322 }
11323 
11324 static void free_pmu_context(struct pmu *pmu)
11325 {
11326 	free_percpu(pmu->cpu_pmu_context);
11327 }
11328 
11329 /*
11330  * Let userspace know that this PMU supports address range filtering:
11331  */
11332 static ssize_t nr_addr_filters_show(struct device *dev,
11333 				    struct device_attribute *attr,
11334 				    char *page)
11335 {
11336 	struct pmu *pmu = dev_get_drvdata(dev);
11337 
11338 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11339 }
11340 DEVICE_ATTR_RO(nr_addr_filters);
11341 
11342 static struct idr pmu_idr;
11343 
11344 static ssize_t
11345 type_show(struct device *dev, struct device_attribute *attr, char *page)
11346 {
11347 	struct pmu *pmu = dev_get_drvdata(dev);
11348 
11349 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11350 }
11351 static DEVICE_ATTR_RO(type);
11352 
11353 static ssize_t
11354 perf_event_mux_interval_ms_show(struct device *dev,
11355 				struct device_attribute *attr,
11356 				char *page)
11357 {
11358 	struct pmu *pmu = dev_get_drvdata(dev);
11359 
11360 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11361 }
11362 
11363 static DEFINE_MUTEX(mux_interval_mutex);
11364 
11365 static ssize_t
11366 perf_event_mux_interval_ms_store(struct device *dev,
11367 				 struct device_attribute *attr,
11368 				 const char *buf, size_t count)
11369 {
11370 	struct pmu *pmu = dev_get_drvdata(dev);
11371 	int timer, cpu, ret;
11372 
11373 	ret = kstrtoint(buf, 0, &timer);
11374 	if (ret)
11375 		return ret;
11376 
11377 	if (timer < 1)
11378 		return -EINVAL;
11379 
11380 	/* same value, noting to do */
11381 	if (timer == pmu->hrtimer_interval_ms)
11382 		return count;
11383 
11384 	mutex_lock(&mux_interval_mutex);
11385 	pmu->hrtimer_interval_ms = timer;
11386 
11387 	/* update all cpuctx for this PMU */
11388 	cpus_read_lock();
11389 	for_each_online_cpu(cpu) {
11390 		struct perf_cpu_pmu_context *cpc;
11391 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11392 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11393 
11394 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11395 	}
11396 	cpus_read_unlock();
11397 	mutex_unlock(&mux_interval_mutex);
11398 
11399 	return count;
11400 }
11401 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11402 
11403 static struct attribute *pmu_dev_attrs[] = {
11404 	&dev_attr_type.attr,
11405 	&dev_attr_perf_event_mux_interval_ms.attr,
11406 	NULL,
11407 };
11408 ATTRIBUTE_GROUPS(pmu_dev);
11409 
11410 static int pmu_bus_running;
11411 static struct bus_type pmu_bus = {
11412 	.name		= "event_source",
11413 	.dev_groups	= pmu_dev_groups,
11414 };
11415 
11416 static void pmu_dev_release(struct device *dev)
11417 {
11418 	kfree(dev);
11419 }
11420 
11421 static int pmu_dev_alloc(struct pmu *pmu)
11422 {
11423 	int ret = -ENOMEM;
11424 
11425 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11426 	if (!pmu->dev)
11427 		goto out;
11428 
11429 	pmu->dev->groups = pmu->attr_groups;
11430 	device_initialize(pmu->dev);
11431 
11432 	dev_set_drvdata(pmu->dev, pmu);
11433 	pmu->dev->bus = &pmu_bus;
11434 	pmu->dev->parent = pmu->parent;
11435 	pmu->dev->release = pmu_dev_release;
11436 
11437 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11438 	if (ret)
11439 		goto free_dev;
11440 
11441 	ret = device_add(pmu->dev);
11442 	if (ret)
11443 		goto free_dev;
11444 
11445 	/* For PMUs with address filters, throw in an extra attribute: */
11446 	if (pmu->nr_addr_filters)
11447 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11448 
11449 	if (ret)
11450 		goto del_dev;
11451 
11452 	if (pmu->attr_update)
11453 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11454 
11455 	if (ret)
11456 		goto del_dev;
11457 
11458 out:
11459 	return ret;
11460 
11461 del_dev:
11462 	device_del(pmu->dev);
11463 
11464 free_dev:
11465 	put_device(pmu->dev);
11466 	goto out;
11467 }
11468 
11469 static struct lock_class_key cpuctx_mutex;
11470 static struct lock_class_key cpuctx_lock;
11471 
11472 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11473 {
11474 	int cpu, ret, max = PERF_TYPE_MAX;
11475 
11476 	mutex_lock(&pmus_lock);
11477 	ret = -ENOMEM;
11478 	pmu->pmu_disable_count = alloc_percpu(int);
11479 	if (!pmu->pmu_disable_count)
11480 		goto unlock;
11481 
11482 	pmu->type = -1;
11483 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11484 		ret = -EINVAL;
11485 		goto free_pdc;
11486 	}
11487 
11488 	pmu->name = name;
11489 
11490 	if (type >= 0)
11491 		max = type;
11492 
11493 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11494 	if (ret < 0)
11495 		goto free_pdc;
11496 
11497 	WARN_ON(type >= 0 && ret != type);
11498 
11499 	type = ret;
11500 	pmu->type = type;
11501 
11502 	if (pmu_bus_running && !pmu->dev) {
11503 		ret = pmu_dev_alloc(pmu);
11504 		if (ret)
11505 			goto free_idr;
11506 	}
11507 
11508 	ret = -ENOMEM;
11509 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11510 	if (!pmu->cpu_pmu_context)
11511 		goto free_dev;
11512 
11513 	for_each_possible_cpu(cpu) {
11514 		struct perf_cpu_pmu_context *cpc;
11515 
11516 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11517 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11518 		__perf_mux_hrtimer_init(cpc, cpu);
11519 	}
11520 
11521 	if (!pmu->start_txn) {
11522 		if (pmu->pmu_enable) {
11523 			/*
11524 			 * If we have pmu_enable/pmu_disable calls, install
11525 			 * transaction stubs that use that to try and batch
11526 			 * hardware accesses.
11527 			 */
11528 			pmu->start_txn  = perf_pmu_start_txn;
11529 			pmu->commit_txn = perf_pmu_commit_txn;
11530 			pmu->cancel_txn = perf_pmu_cancel_txn;
11531 		} else {
11532 			pmu->start_txn  = perf_pmu_nop_txn;
11533 			pmu->commit_txn = perf_pmu_nop_int;
11534 			pmu->cancel_txn = perf_pmu_nop_void;
11535 		}
11536 	}
11537 
11538 	if (!pmu->pmu_enable) {
11539 		pmu->pmu_enable  = perf_pmu_nop_void;
11540 		pmu->pmu_disable = perf_pmu_nop_void;
11541 	}
11542 
11543 	if (!pmu->check_period)
11544 		pmu->check_period = perf_event_nop_int;
11545 
11546 	if (!pmu->event_idx)
11547 		pmu->event_idx = perf_event_idx_default;
11548 
11549 	list_add_rcu(&pmu->entry, &pmus);
11550 	atomic_set(&pmu->exclusive_cnt, 0);
11551 	ret = 0;
11552 unlock:
11553 	mutex_unlock(&pmus_lock);
11554 
11555 	return ret;
11556 
11557 free_dev:
11558 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11559 		device_del(pmu->dev);
11560 		put_device(pmu->dev);
11561 	}
11562 
11563 free_idr:
11564 	idr_remove(&pmu_idr, pmu->type);
11565 
11566 free_pdc:
11567 	free_percpu(pmu->pmu_disable_count);
11568 	goto unlock;
11569 }
11570 EXPORT_SYMBOL_GPL(perf_pmu_register);
11571 
11572 void perf_pmu_unregister(struct pmu *pmu)
11573 {
11574 	mutex_lock(&pmus_lock);
11575 	list_del_rcu(&pmu->entry);
11576 
11577 	/*
11578 	 * We dereference the pmu list under both SRCU and regular RCU, so
11579 	 * synchronize against both of those.
11580 	 */
11581 	synchronize_srcu(&pmus_srcu);
11582 	synchronize_rcu();
11583 
11584 	free_percpu(pmu->pmu_disable_count);
11585 	idr_remove(&pmu_idr, pmu->type);
11586 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11587 		if (pmu->nr_addr_filters)
11588 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11589 		device_del(pmu->dev);
11590 		put_device(pmu->dev);
11591 	}
11592 	free_pmu_context(pmu);
11593 	mutex_unlock(&pmus_lock);
11594 }
11595 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11596 
11597 static inline bool has_extended_regs(struct perf_event *event)
11598 {
11599 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11600 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11601 }
11602 
11603 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11604 {
11605 	struct perf_event_context *ctx = NULL;
11606 	int ret;
11607 
11608 	if (!try_module_get(pmu->module))
11609 		return -ENODEV;
11610 
11611 	/*
11612 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11613 	 * for example, validate if the group fits on the PMU. Therefore,
11614 	 * if this is a sibling event, acquire the ctx->mutex to protect
11615 	 * the sibling_list.
11616 	 */
11617 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11618 		/*
11619 		 * This ctx->mutex can nest when we're called through
11620 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11621 		 */
11622 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11623 						 SINGLE_DEPTH_NESTING);
11624 		BUG_ON(!ctx);
11625 	}
11626 
11627 	event->pmu = pmu;
11628 	ret = pmu->event_init(event);
11629 
11630 	if (ctx)
11631 		perf_event_ctx_unlock(event->group_leader, ctx);
11632 
11633 	if (!ret) {
11634 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11635 		    has_extended_regs(event))
11636 			ret = -EOPNOTSUPP;
11637 
11638 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11639 		    event_has_any_exclude_flag(event))
11640 			ret = -EINVAL;
11641 
11642 		if (ret && event->destroy)
11643 			event->destroy(event);
11644 	}
11645 
11646 	if (ret)
11647 		module_put(pmu->module);
11648 
11649 	return ret;
11650 }
11651 
11652 static struct pmu *perf_init_event(struct perf_event *event)
11653 {
11654 	bool extended_type = false;
11655 	int idx, type, ret;
11656 	struct pmu *pmu;
11657 
11658 	idx = srcu_read_lock(&pmus_srcu);
11659 
11660 	/*
11661 	 * Save original type before calling pmu->event_init() since certain
11662 	 * pmus overwrites event->attr.type to forward event to another pmu.
11663 	 */
11664 	event->orig_type = event->attr.type;
11665 
11666 	/* Try parent's PMU first: */
11667 	if (event->parent && event->parent->pmu) {
11668 		pmu = event->parent->pmu;
11669 		ret = perf_try_init_event(pmu, event);
11670 		if (!ret)
11671 			goto unlock;
11672 	}
11673 
11674 	/*
11675 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11676 	 * are often aliases for PERF_TYPE_RAW.
11677 	 */
11678 	type = event->attr.type;
11679 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11680 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11681 		if (!type) {
11682 			type = PERF_TYPE_RAW;
11683 		} else {
11684 			extended_type = true;
11685 			event->attr.config &= PERF_HW_EVENT_MASK;
11686 		}
11687 	}
11688 
11689 again:
11690 	rcu_read_lock();
11691 	pmu = idr_find(&pmu_idr, type);
11692 	rcu_read_unlock();
11693 	if (pmu) {
11694 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11695 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11696 			goto fail;
11697 
11698 		ret = perf_try_init_event(pmu, event);
11699 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11700 			type = event->attr.type;
11701 			goto again;
11702 		}
11703 
11704 		if (ret)
11705 			pmu = ERR_PTR(ret);
11706 
11707 		goto unlock;
11708 	}
11709 
11710 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11711 		ret = perf_try_init_event(pmu, event);
11712 		if (!ret)
11713 			goto unlock;
11714 
11715 		if (ret != -ENOENT) {
11716 			pmu = ERR_PTR(ret);
11717 			goto unlock;
11718 		}
11719 	}
11720 fail:
11721 	pmu = ERR_PTR(-ENOENT);
11722 unlock:
11723 	srcu_read_unlock(&pmus_srcu, idx);
11724 
11725 	return pmu;
11726 }
11727 
11728 static void attach_sb_event(struct perf_event *event)
11729 {
11730 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11731 
11732 	raw_spin_lock(&pel->lock);
11733 	list_add_rcu(&event->sb_list, &pel->list);
11734 	raw_spin_unlock(&pel->lock);
11735 }
11736 
11737 /*
11738  * We keep a list of all !task (and therefore per-cpu) events
11739  * that need to receive side-band records.
11740  *
11741  * This avoids having to scan all the various PMU per-cpu contexts
11742  * looking for them.
11743  */
11744 static void account_pmu_sb_event(struct perf_event *event)
11745 {
11746 	if (is_sb_event(event))
11747 		attach_sb_event(event);
11748 }
11749 
11750 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11751 static void account_freq_event_nohz(void)
11752 {
11753 #ifdef CONFIG_NO_HZ_FULL
11754 	/* Lock so we don't race with concurrent unaccount */
11755 	spin_lock(&nr_freq_lock);
11756 	if (atomic_inc_return(&nr_freq_events) == 1)
11757 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11758 	spin_unlock(&nr_freq_lock);
11759 #endif
11760 }
11761 
11762 static void account_freq_event(void)
11763 {
11764 	if (tick_nohz_full_enabled())
11765 		account_freq_event_nohz();
11766 	else
11767 		atomic_inc(&nr_freq_events);
11768 }
11769 
11770 
11771 static void account_event(struct perf_event *event)
11772 {
11773 	bool inc = false;
11774 
11775 	if (event->parent)
11776 		return;
11777 
11778 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11779 		inc = true;
11780 	if (event->attr.mmap || event->attr.mmap_data)
11781 		atomic_inc(&nr_mmap_events);
11782 	if (event->attr.build_id)
11783 		atomic_inc(&nr_build_id_events);
11784 	if (event->attr.comm)
11785 		atomic_inc(&nr_comm_events);
11786 	if (event->attr.namespaces)
11787 		atomic_inc(&nr_namespaces_events);
11788 	if (event->attr.cgroup)
11789 		atomic_inc(&nr_cgroup_events);
11790 	if (event->attr.task)
11791 		atomic_inc(&nr_task_events);
11792 	if (event->attr.freq)
11793 		account_freq_event();
11794 	if (event->attr.context_switch) {
11795 		atomic_inc(&nr_switch_events);
11796 		inc = true;
11797 	}
11798 	if (has_branch_stack(event))
11799 		inc = true;
11800 	if (is_cgroup_event(event))
11801 		inc = true;
11802 	if (event->attr.ksymbol)
11803 		atomic_inc(&nr_ksymbol_events);
11804 	if (event->attr.bpf_event)
11805 		atomic_inc(&nr_bpf_events);
11806 	if (event->attr.text_poke)
11807 		atomic_inc(&nr_text_poke_events);
11808 
11809 	if (inc) {
11810 		/*
11811 		 * We need the mutex here because static_branch_enable()
11812 		 * must complete *before* the perf_sched_count increment
11813 		 * becomes visible.
11814 		 */
11815 		if (atomic_inc_not_zero(&perf_sched_count))
11816 			goto enabled;
11817 
11818 		mutex_lock(&perf_sched_mutex);
11819 		if (!atomic_read(&perf_sched_count)) {
11820 			static_branch_enable(&perf_sched_events);
11821 			/*
11822 			 * Guarantee that all CPUs observe they key change and
11823 			 * call the perf scheduling hooks before proceeding to
11824 			 * install events that need them.
11825 			 */
11826 			synchronize_rcu();
11827 		}
11828 		/*
11829 		 * Now that we have waited for the sync_sched(), allow further
11830 		 * increments to by-pass the mutex.
11831 		 */
11832 		atomic_inc(&perf_sched_count);
11833 		mutex_unlock(&perf_sched_mutex);
11834 	}
11835 enabled:
11836 
11837 	account_pmu_sb_event(event);
11838 }
11839 
11840 /*
11841  * Allocate and initialize an event structure
11842  */
11843 static struct perf_event *
11844 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11845 		 struct task_struct *task,
11846 		 struct perf_event *group_leader,
11847 		 struct perf_event *parent_event,
11848 		 perf_overflow_handler_t overflow_handler,
11849 		 void *context, int cgroup_fd)
11850 {
11851 	struct pmu *pmu;
11852 	struct perf_event *event;
11853 	struct hw_perf_event *hwc;
11854 	long err = -EINVAL;
11855 	int node;
11856 
11857 	if ((unsigned)cpu >= nr_cpu_ids) {
11858 		if (!task || cpu != -1)
11859 			return ERR_PTR(-EINVAL);
11860 	}
11861 	if (attr->sigtrap && !task) {
11862 		/* Requires a task: avoid signalling random tasks. */
11863 		return ERR_PTR(-EINVAL);
11864 	}
11865 
11866 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11867 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11868 				      node);
11869 	if (!event)
11870 		return ERR_PTR(-ENOMEM);
11871 
11872 	/*
11873 	 * Single events are their own group leaders, with an
11874 	 * empty sibling list:
11875 	 */
11876 	if (!group_leader)
11877 		group_leader = event;
11878 
11879 	mutex_init(&event->child_mutex);
11880 	INIT_LIST_HEAD(&event->child_list);
11881 
11882 	INIT_LIST_HEAD(&event->event_entry);
11883 	INIT_LIST_HEAD(&event->sibling_list);
11884 	INIT_LIST_HEAD(&event->active_list);
11885 	init_event_group(event);
11886 	INIT_LIST_HEAD(&event->rb_entry);
11887 	INIT_LIST_HEAD(&event->active_entry);
11888 	INIT_LIST_HEAD(&event->addr_filters.list);
11889 	INIT_HLIST_NODE(&event->hlist_entry);
11890 
11891 
11892 	init_waitqueue_head(&event->waitq);
11893 	init_irq_work(&event->pending_irq, perf_pending_irq);
11894 	init_task_work(&event->pending_task, perf_pending_task);
11895 
11896 	mutex_init(&event->mmap_mutex);
11897 	raw_spin_lock_init(&event->addr_filters.lock);
11898 
11899 	atomic_long_set(&event->refcount, 1);
11900 	event->cpu		= cpu;
11901 	event->attr		= *attr;
11902 	event->group_leader	= group_leader;
11903 	event->pmu		= NULL;
11904 	event->oncpu		= -1;
11905 
11906 	event->parent		= parent_event;
11907 
11908 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11909 	event->id		= atomic64_inc_return(&perf_event_id);
11910 
11911 	event->state		= PERF_EVENT_STATE_INACTIVE;
11912 
11913 	if (parent_event)
11914 		event->event_caps = parent_event->event_caps;
11915 
11916 	if (task) {
11917 		event->attach_state = PERF_ATTACH_TASK;
11918 		/*
11919 		 * XXX pmu::event_init needs to know what task to account to
11920 		 * and we cannot use the ctx information because we need the
11921 		 * pmu before we get a ctx.
11922 		 */
11923 		event->hw.target = get_task_struct(task);
11924 	}
11925 
11926 	event->clock = &local_clock;
11927 	if (parent_event)
11928 		event->clock = parent_event->clock;
11929 
11930 	if (!overflow_handler && parent_event) {
11931 		overflow_handler = parent_event->overflow_handler;
11932 		context = parent_event->overflow_handler_context;
11933 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11934 		if (overflow_handler == bpf_overflow_handler) {
11935 			struct bpf_prog *prog = parent_event->prog;
11936 
11937 			bpf_prog_inc(prog);
11938 			event->prog = prog;
11939 			event->orig_overflow_handler =
11940 				parent_event->orig_overflow_handler;
11941 		}
11942 #endif
11943 	}
11944 
11945 	if (overflow_handler) {
11946 		event->overflow_handler	= overflow_handler;
11947 		event->overflow_handler_context = context;
11948 	} else if (is_write_backward(event)){
11949 		event->overflow_handler = perf_event_output_backward;
11950 		event->overflow_handler_context = NULL;
11951 	} else {
11952 		event->overflow_handler = perf_event_output_forward;
11953 		event->overflow_handler_context = NULL;
11954 	}
11955 
11956 	perf_event__state_init(event);
11957 
11958 	pmu = NULL;
11959 
11960 	hwc = &event->hw;
11961 	hwc->sample_period = attr->sample_period;
11962 	if (attr->freq && attr->sample_freq)
11963 		hwc->sample_period = 1;
11964 	hwc->last_period = hwc->sample_period;
11965 
11966 	local64_set(&hwc->period_left, hwc->sample_period);
11967 
11968 	/*
11969 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11970 	 * See perf_output_read().
11971 	 */
11972 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11973 		goto err_ns;
11974 
11975 	if (!has_branch_stack(event))
11976 		event->attr.branch_sample_type = 0;
11977 
11978 	pmu = perf_init_event(event);
11979 	if (IS_ERR(pmu)) {
11980 		err = PTR_ERR(pmu);
11981 		goto err_ns;
11982 	}
11983 
11984 	/*
11985 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11986 	 * events (they don't make sense as the cgroup will be different
11987 	 * on other CPUs in the uncore mask).
11988 	 */
11989 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11990 		err = -EINVAL;
11991 		goto err_pmu;
11992 	}
11993 
11994 	if (event->attr.aux_output &&
11995 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11996 		err = -EOPNOTSUPP;
11997 		goto err_pmu;
11998 	}
11999 
12000 	if (cgroup_fd != -1) {
12001 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12002 		if (err)
12003 			goto err_pmu;
12004 	}
12005 
12006 	err = exclusive_event_init(event);
12007 	if (err)
12008 		goto err_pmu;
12009 
12010 	if (has_addr_filter(event)) {
12011 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12012 						    sizeof(struct perf_addr_filter_range),
12013 						    GFP_KERNEL);
12014 		if (!event->addr_filter_ranges) {
12015 			err = -ENOMEM;
12016 			goto err_per_task;
12017 		}
12018 
12019 		/*
12020 		 * Clone the parent's vma offsets: they are valid until exec()
12021 		 * even if the mm is not shared with the parent.
12022 		 */
12023 		if (event->parent) {
12024 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12025 
12026 			raw_spin_lock_irq(&ifh->lock);
12027 			memcpy(event->addr_filter_ranges,
12028 			       event->parent->addr_filter_ranges,
12029 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12030 			raw_spin_unlock_irq(&ifh->lock);
12031 		}
12032 
12033 		/* force hw sync on the address filters */
12034 		event->addr_filters_gen = 1;
12035 	}
12036 
12037 	if (!event->parent) {
12038 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12039 			err = get_callchain_buffers(attr->sample_max_stack);
12040 			if (err)
12041 				goto err_addr_filters;
12042 		}
12043 	}
12044 
12045 	err = security_perf_event_alloc(event);
12046 	if (err)
12047 		goto err_callchain_buffer;
12048 
12049 	/* symmetric to unaccount_event() in _free_event() */
12050 	account_event(event);
12051 
12052 	return event;
12053 
12054 err_callchain_buffer:
12055 	if (!event->parent) {
12056 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12057 			put_callchain_buffers();
12058 	}
12059 err_addr_filters:
12060 	kfree(event->addr_filter_ranges);
12061 
12062 err_per_task:
12063 	exclusive_event_destroy(event);
12064 
12065 err_pmu:
12066 	if (is_cgroup_event(event))
12067 		perf_detach_cgroup(event);
12068 	if (event->destroy)
12069 		event->destroy(event);
12070 	module_put(pmu->module);
12071 err_ns:
12072 	if (event->hw.target)
12073 		put_task_struct(event->hw.target);
12074 	call_rcu(&event->rcu_head, free_event_rcu);
12075 
12076 	return ERR_PTR(err);
12077 }
12078 
12079 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12080 			  struct perf_event_attr *attr)
12081 {
12082 	u32 size;
12083 	int ret;
12084 
12085 	/* Zero the full structure, so that a short copy will be nice. */
12086 	memset(attr, 0, sizeof(*attr));
12087 
12088 	ret = get_user(size, &uattr->size);
12089 	if (ret)
12090 		return ret;
12091 
12092 	/* ABI compatibility quirk: */
12093 	if (!size)
12094 		size = PERF_ATTR_SIZE_VER0;
12095 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12096 		goto err_size;
12097 
12098 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12099 	if (ret) {
12100 		if (ret == -E2BIG)
12101 			goto err_size;
12102 		return ret;
12103 	}
12104 
12105 	attr->size = size;
12106 
12107 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12108 		return -EINVAL;
12109 
12110 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12111 		return -EINVAL;
12112 
12113 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12114 		return -EINVAL;
12115 
12116 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12117 		u64 mask = attr->branch_sample_type;
12118 
12119 		/* only using defined bits */
12120 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12121 			return -EINVAL;
12122 
12123 		/* at least one branch bit must be set */
12124 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12125 			return -EINVAL;
12126 
12127 		/* propagate priv level, when not set for branch */
12128 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12129 
12130 			/* exclude_kernel checked on syscall entry */
12131 			if (!attr->exclude_kernel)
12132 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12133 
12134 			if (!attr->exclude_user)
12135 				mask |= PERF_SAMPLE_BRANCH_USER;
12136 
12137 			if (!attr->exclude_hv)
12138 				mask |= PERF_SAMPLE_BRANCH_HV;
12139 			/*
12140 			 * adjust user setting (for HW filter setup)
12141 			 */
12142 			attr->branch_sample_type = mask;
12143 		}
12144 		/* privileged levels capture (kernel, hv): check permissions */
12145 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12146 			ret = perf_allow_kernel(attr);
12147 			if (ret)
12148 				return ret;
12149 		}
12150 	}
12151 
12152 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12153 		ret = perf_reg_validate(attr->sample_regs_user);
12154 		if (ret)
12155 			return ret;
12156 	}
12157 
12158 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12159 		if (!arch_perf_have_user_stack_dump())
12160 			return -ENOSYS;
12161 
12162 		/*
12163 		 * We have __u32 type for the size, but so far
12164 		 * we can only use __u16 as maximum due to the
12165 		 * __u16 sample size limit.
12166 		 */
12167 		if (attr->sample_stack_user >= USHRT_MAX)
12168 			return -EINVAL;
12169 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12170 			return -EINVAL;
12171 	}
12172 
12173 	if (!attr->sample_max_stack)
12174 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12175 
12176 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12177 		ret = perf_reg_validate(attr->sample_regs_intr);
12178 
12179 #ifndef CONFIG_CGROUP_PERF
12180 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12181 		return -EINVAL;
12182 #endif
12183 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12184 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12185 		return -EINVAL;
12186 
12187 	if (!attr->inherit && attr->inherit_thread)
12188 		return -EINVAL;
12189 
12190 	if (attr->remove_on_exec && attr->enable_on_exec)
12191 		return -EINVAL;
12192 
12193 	if (attr->sigtrap && !attr->remove_on_exec)
12194 		return -EINVAL;
12195 
12196 out:
12197 	return ret;
12198 
12199 err_size:
12200 	put_user(sizeof(*attr), &uattr->size);
12201 	ret = -E2BIG;
12202 	goto out;
12203 }
12204 
12205 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12206 {
12207 	if (b < a)
12208 		swap(a, b);
12209 
12210 	mutex_lock(a);
12211 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12212 }
12213 
12214 static int
12215 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12216 {
12217 	struct perf_buffer *rb = NULL;
12218 	int ret = -EINVAL;
12219 
12220 	if (!output_event) {
12221 		mutex_lock(&event->mmap_mutex);
12222 		goto set;
12223 	}
12224 
12225 	/* don't allow circular references */
12226 	if (event == output_event)
12227 		goto out;
12228 
12229 	/*
12230 	 * Don't allow cross-cpu buffers
12231 	 */
12232 	if (output_event->cpu != event->cpu)
12233 		goto out;
12234 
12235 	/*
12236 	 * If its not a per-cpu rb, it must be the same task.
12237 	 */
12238 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12239 		goto out;
12240 
12241 	/*
12242 	 * Mixing clocks in the same buffer is trouble you don't need.
12243 	 */
12244 	if (output_event->clock != event->clock)
12245 		goto out;
12246 
12247 	/*
12248 	 * Either writing ring buffer from beginning or from end.
12249 	 * Mixing is not allowed.
12250 	 */
12251 	if (is_write_backward(output_event) != is_write_backward(event))
12252 		goto out;
12253 
12254 	/*
12255 	 * If both events generate aux data, they must be on the same PMU
12256 	 */
12257 	if (has_aux(event) && has_aux(output_event) &&
12258 	    event->pmu != output_event->pmu)
12259 		goto out;
12260 
12261 	/*
12262 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12263 	 * output_event is already on rb->event_list, and the list iteration
12264 	 * restarts after every removal, it is guaranteed this new event is
12265 	 * observed *OR* if output_event is already removed, it's guaranteed we
12266 	 * observe !rb->mmap_count.
12267 	 */
12268 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12269 set:
12270 	/* Can't redirect output if we've got an active mmap() */
12271 	if (atomic_read(&event->mmap_count))
12272 		goto unlock;
12273 
12274 	if (output_event) {
12275 		/* get the rb we want to redirect to */
12276 		rb = ring_buffer_get(output_event);
12277 		if (!rb)
12278 			goto unlock;
12279 
12280 		/* did we race against perf_mmap_close() */
12281 		if (!atomic_read(&rb->mmap_count)) {
12282 			ring_buffer_put(rb);
12283 			goto unlock;
12284 		}
12285 	}
12286 
12287 	ring_buffer_attach(event, rb);
12288 
12289 	ret = 0;
12290 unlock:
12291 	mutex_unlock(&event->mmap_mutex);
12292 	if (output_event)
12293 		mutex_unlock(&output_event->mmap_mutex);
12294 
12295 out:
12296 	return ret;
12297 }
12298 
12299 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12300 {
12301 	bool nmi_safe = false;
12302 
12303 	switch (clk_id) {
12304 	case CLOCK_MONOTONIC:
12305 		event->clock = &ktime_get_mono_fast_ns;
12306 		nmi_safe = true;
12307 		break;
12308 
12309 	case CLOCK_MONOTONIC_RAW:
12310 		event->clock = &ktime_get_raw_fast_ns;
12311 		nmi_safe = true;
12312 		break;
12313 
12314 	case CLOCK_REALTIME:
12315 		event->clock = &ktime_get_real_ns;
12316 		break;
12317 
12318 	case CLOCK_BOOTTIME:
12319 		event->clock = &ktime_get_boottime_ns;
12320 		break;
12321 
12322 	case CLOCK_TAI:
12323 		event->clock = &ktime_get_clocktai_ns;
12324 		break;
12325 
12326 	default:
12327 		return -EINVAL;
12328 	}
12329 
12330 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12331 		return -EINVAL;
12332 
12333 	return 0;
12334 }
12335 
12336 static bool
12337 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12338 {
12339 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12340 	bool is_capable = perfmon_capable();
12341 
12342 	if (attr->sigtrap) {
12343 		/*
12344 		 * perf_event_attr::sigtrap sends signals to the other task.
12345 		 * Require the current task to also have CAP_KILL.
12346 		 */
12347 		rcu_read_lock();
12348 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12349 		rcu_read_unlock();
12350 
12351 		/*
12352 		 * If the required capabilities aren't available, checks for
12353 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12354 		 * can effectively change the target task.
12355 		 */
12356 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12357 	}
12358 
12359 	/*
12360 	 * Preserve ptrace permission check for backwards compatibility. The
12361 	 * ptrace check also includes checks that the current task and other
12362 	 * task have matching uids, and is therefore not done here explicitly.
12363 	 */
12364 	return is_capable || ptrace_may_access(task, ptrace_mode);
12365 }
12366 
12367 /**
12368  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12369  *
12370  * @attr_uptr:	event_id type attributes for monitoring/sampling
12371  * @pid:		target pid
12372  * @cpu:		target cpu
12373  * @group_fd:		group leader event fd
12374  * @flags:		perf event open flags
12375  */
12376 SYSCALL_DEFINE5(perf_event_open,
12377 		struct perf_event_attr __user *, attr_uptr,
12378 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12379 {
12380 	struct perf_event *group_leader = NULL, *output_event = NULL;
12381 	struct perf_event_pmu_context *pmu_ctx;
12382 	struct perf_event *event, *sibling;
12383 	struct perf_event_attr attr;
12384 	struct perf_event_context *ctx;
12385 	struct file *event_file = NULL;
12386 	struct fd group = {NULL, 0};
12387 	struct task_struct *task = NULL;
12388 	struct pmu *pmu;
12389 	int event_fd;
12390 	int move_group = 0;
12391 	int err;
12392 	int f_flags = O_RDWR;
12393 	int cgroup_fd = -1;
12394 
12395 	/* for future expandability... */
12396 	if (flags & ~PERF_FLAG_ALL)
12397 		return -EINVAL;
12398 
12399 	err = perf_copy_attr(attr_uptr, &attr);
12400 	if (err)
12401 		return err;
12402 
12403 	/* Do we allow access to perf_event_open(2) ? */
12404 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12405 	if (err)
12406 		return err;
12407 
12408 	if (!attr.exclude_kernel) {
12409 		err = perf_allow_kernel(&attr);
12410 		if (err)
12411 			return err;
12412 	}
12413 
12414 	if (attr.namespaces) {
12415 		if (!perfmon_capable())
12416 			return -EACCES;
12417 	}
12418 
12419 	if (attr.freq) {
12420 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12421 			return -EINVAL;
12422 	} else {
12423 		if (attr.sample_period & (1ULL << 63))
12424 			return -EINVAL;
12425 	}
12426 
12427 	/* Only privileged users can get physical addresses */
12428 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12429 		err = perf_allow_kernel(&attr);
12430 		if (err)
12431 			return err;
12432 	}
12433 
12434 	/* REGS_INTR can leak data, lockdown must prevent this */
12435 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12436 		err = security_locked_down(LOCKDOWN_PERF);
12437 		if (err)
12438 			return err;
12439 	}
12440 
12441 	/*
12442 	 * In cgroup mode, the pid argument is used to pass the fd
12443 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12444 	 * designates the cpu on which to monitor threads from that
12445 	 * cgroup.
12446 	 */
12447 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12448 		return -EINVAL;
12449 
12450 	if (flags & PERF_FLAG_FD_CLOEXEC)
12451 		f_flags |= O_CLOEXEC;
12452 
12453 	event_fd = get_unused_fd_flags(f_flags);
12454 	if (event_fd < 0)
12455 		return event_fd;
12456 
12457 	if (group_fd != -1) {
12458 		err = perf_fget_light(group_fd, &group);
12459 		if (err)
12460 			goto err_fd;
12461 		group_leader = group.file->private_data;
12462 		if (flags & PERF_FLAG_FD_OUTPUT)
12463 			output_event = group_leader;
12464 		if (flags & PERF_FLAG_FD_NO_GROUP)
12465 			group_leader = NULL;
12466 	}
12467 
12468 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12469 		task = find_lively_task_by_vpid(pid);
12470 		if (IS_ERR(task)) {
12471 			err = PTR_ERR(task);
12472 			goto err_group_fd;
12473 		}
12474 	}
12475 
12476 	if (task && group_leader &&
12477 	    group_leader->attr.inherit != attr.inherit) {
12478 		err = -EINVAL;
12479 		goto err_task;
12480 	}
12481 
12482 	if (flags & PERF_FLAG_PID_CGROUP)
12483 		cgroup_fd = pid;
12484 
12485 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12486 				 NULL, NULL, cgroup_fd);
12487 	if (IS_ERR(event)) {
12488 		err = PTR_ERR(event);
12489 		goto err_task;
12490 	}
12491 
12492 	if (is_sampling_event(event)) {
12493 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12494 			err = -EOPNOTSUPP;
12495 			goto err_alloc;
12496 		}
12497 	}
12498 
12499 	/*
12500 	 * Special case software events and allow them to be part of
12501 	 * any hardware group.
12502 	 */
12503 	pmu = event->pmu;
12504 
12505 	if (attr.use_clockid) {
12506 		err = perf_event_set_clock(event, attr.clockid);
12507 		if (err)
12508 			goto err_alloc;
12509 	}
12510 
12511 	if (pmu->task_ctx_nr == perf_sw_context)
12512 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12513 
12514 	if (task) {
12515 		err = down_read_interruptible(&task->signal->exec_update_lock);
12516 		if (err)
12517 			goto err_alloc;
12518 
12519 		/*
12520 		 * We must hold exec_update_lock across this and any potential
12521 		 * perf_install_in_context() call for this new event to
12522 		 * serialize against exec() altering our credentials (and the
12523 		 * perf_event_exit_task() that could imply).
12524 		 */
12525 		err = -EACCES;
12526 		if (!perf_check_permission(&attr, task))
12527 			goto err_cred;
12528 	}
12529 
12530 	/*
12531 	 * Get the target context (task or percpu):
12532 	 */
12533 	ctx = find_get_context(task, event);
12534 	if (IS_ERR(ctx)) {
12535 		err = PTR_ERR(ctx);
12536 		goto err_cred;
12537 	}
12538 
12539 	mutex_lock(&ctx->mutex);
12540 
12541 	if (ctx->task == TASK_TOMBSTONE) {
12542 		err = -ESRCH;
12543 		goto err_locked;
12544 	}
12545 
12546 	if (!task) {
12547 		/*
12548 		 * Check if the @cpu we're creating an event for is online.
12549 		 *
12550 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12551 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12552 		 */
12553 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12554 
12555 		if (!cpuctx->online) {
12556 			err = -ENODEV;
12557 			goto err_locked;
12558 		}
12559 	}
12560 
12561 	if (group_leader) {
12562 		err = -EINVAL;
12563 
12564 		/*
12565 		 * Do not allow a recursive hierarchy (this new sibling
12566 		 * becoming part of another group-sibling):
12567 		 */
12568 		if (group_leader->group_leader != group_leader)
12569 			goto err_locked;
12570 
12571 		/* All events in a group should have the same clock */
12572 		if (group_leader->clock != event->clock)
12573 			goto err_locked;
12574 
12575 		/*
12576 		 * Make sure we're both events for the same CPU;
12577 		 * grouping events for different CPUs is broken; since
12578 		 * you can never concurrently schedule them anyhow.
12579 		 */
12580 		if (group_leader->cpu != event->cpu)
12581 			goto err_locked;
12582 
12583 		/*
12584 		 * Make sure we're both on the same context; either task or cpu.
12585 		 */
12586 		if (group_leader->ctx != ctx)
12587 			goto err_locked;
12588 
12589 		/*
12590 		 * Only a group leader can be exclusive or pinned
12591 		 */
12592 		if (attr.exclusive || attr.pinned)
12593 			goto err_locked;
12594 
12595 		if (is_software_event(event) &&
12596 		    !in_software_context(group_leader)) {
12597 			/*
12598 			 * If the event is a sw event, but the group_leader
12599 			 * is on hw context.
12600 			 *
12601 			 * Allow the addition of software events to hw
12602 			 * groups, this is safe because software events
12603 			 * never fail to schedule.
12604 			 *
12605 			 * Note the comment that goes with struct
12606 			 * perf_event_pmu_context.
12607 			 */
12608 			pmu = group_leader->pmu_ctx->pmu;
12609 		} else if (!is_software_event(event)) {
12610 			if (is_software_event(group_leader) &&
12611 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12612 				/*
12613 				 * In case the group is a pure software group, and we
12614 				 * try to add a hardware event, move the whole group to
12615 				 * the hardware context.
12616 				 */
12617 				move_group = 1;
12618 			}
12619 
12620 			/* Don't allow group of multiple hw events from different pmus */
12621 			if (!in_software_context(group_leader) &&
12622 			    group_leader->pmu_ctx->pmu != pmu)
12623 				goto err_locked;
12624 		}
12625 	}
12626 
12627 	/*
12628 	 * Now that we're certain of the pmu; find the pmu_ctx.
12629 	 */
12630 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12631 	if (IS_ERR(pmu_ctx)) {
12632 		err = PTR_ERR(pmu_ctx);
12633 		goto err_locked;
12634 	}
12635 	event->pmu_ctx = pmu_ctx;
12636 
12637 	if (output_event) {
12638 		err = perf_event_set_output(event, output_event);
12639 		if (err)
12640 			goto err_context;
12641 	}
12642 
12643 	if (!perf_event_validate_size(event)) {
12644 		err = -E2BIG;
12645 		goto err_context;
12646 	}
12647 
12648 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12649 		err = -EINVAL;
12650 		goto err_context;
12651 	}
12652 
12653 	/*
12654 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12655 	 * because we need to serialize with concurrent event creation.
12656 	 */
12657 	if (!exclusive_event_installable(event, ctx)) {
12658 		err = -EBUSY;
12659 		goto err_context;
12660 	}
12661 
12662 	WARN_ON_ONCE(ctx->parent_ctx);
12663 
12664 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12665 	if (IS_ERR(event_file)) {
12666 		err = PTR_ERR(event_file);
12667 		event_file = NULL;
12668 		goto err_context;
12669 	}
12670 
12671 	/*
12672 	 * This is the point on no return; we cannot fail hereafter. This is
12673 	 * where we start modifying current state.
12674 	 */
12675 
12676 	if (move_group) {
12677 		perf_remove_from_context(group_leader, 0);
12678 		put_pmu_ctx(group_leader->pmu_ctx);
12679 
12680 		for_each_sibling_event(sibling, group_leader) {
12681 			perf_remove_from_context(sibling, 0);
12682 			put_pmu_ctx(sibling->pmu_ctx);
12683 		}
12684 
12685 		/*
12686 		 * Install the group siblings before the group leader.
12687 		 *
12688 		 * Because a group leader will try and install the entire group
12689 		 * (through the sibling list, which is still in-tact), we can
12690 		 * end up with siblings installed in the wrong context.
12691 		 *
12692 		 * By installing siblings first we NO-OP because they're not
12693 		 * reachable through the group lists.
12694 		 */
12695 		for_each_sibling_event(sibling, group_leader) {
12696 			sibling->pmu_ctx = pmu_ctx;
12697 			get_pmu_ctx(pmu_ctx);
12698 			perf_event__state_init(sibling);
12699 			perf_install_in_context(ctx, sibling, sibling->cpu);
12700 		}
12701 
12702 		/*
12703 		 * Removing from the context ends up with disabled
12704 		 * event. What we want here is event in the initial
12705 		 * startup state, ready to be add into new context.
12706 		 */
12707 		group_leader->pmu_ctx = pmu_ctx;
12708 		get_pmu_ctx(pmu_ctx);
12709 		perf_event__state_init(group_leader);
12710 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12711 	}
12712 
12713 	/*
12714 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12715 	 * that we're serialized against further additions and before
12716 	 * perf_install_in_context() which is the point the event is active and
12717 	 * can use these values.
12718 	 */
12719 	perf_event__header_size(event);
12720 	perf_event__id_header_size(event);
12721 
12722 	event->owner = current;
12723 
12724 	perf_install_in_context(ctx, event, event->cpu);
12725 	perf_unpin_context(ctx);
12726 
12727 	mutex_unlock(&ctx->mutex);
12728 
12729 	if (task) {
12730 		up_read(&task->signal->exec_update_lock);
12731 		put_task_struct(task);
12732 	}
12733 
12734 	mutex_lock(&current->perf_event_mutex);
12735 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12736 	mutex_unlock(&current->perf_event_mutex);
12737 
12738 	/*
12739 	 * Drop the reference on the group_event after placing the
12740 	 * new event on the sibling_list. This ensures destruction
12741 	 * of the group leader will find the pointer to itself in
12742 	 * perf_group_detach().
12743 	 */
12744 	fdput(group);
12745 	fd_install(event_fd, event_file);
12746 	return event_fd;
12747 
12748 err_context:
12749 	put_pmu_ctx(event->pmu_ctx);
12750 	event->pmu_ctx = NULL; /* _free_event() */
12751 err_locked:
12752 	mutex_unlock(&ctx->mutex);
12753 	perf_unpin_context(ctx);
12754 	put_ctx(ctx);
12755 err_cred:
12756 	if (task)
12757 		up_read(&task->signal->exec_update_lock);
12758 err_alloc:
12759 	free_event(event);
12760 err_task:
12761 	if (task)
12762 		put_task_struct(task);
12763 err_group_fd:
12764 	fdput(group);
12765 err_fd:
12766 	put_unused_fd(event_fd);
12767 	return err;
12768 }
12769 
12770 /**
12771  * perf_event_create_kernel_counter
12772  *
12773  * @attr: attributes of the counter to create
12774  * @cpu: cpu in which the counter is bound
12775  * @task: task to profile (NULL for percpu)
12776  * @overflow_handler: callback to trigger when we hit the event
12777  * @context: context data could be used in overflow_handler callback
12778  */
12779 struct perf_event *
12780 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12781 				 struct task_struct *task,
12782 				 perf_overflow_handler_t overflow_handler,
12783 				 void *context)
12784 {
12785 	struct perf_event_pmu_context *pmu_ctx;
12786 	struct perf_event_context *ctx;
12787 	struct perf_event *event;
12788 	struct pmu *pmu;
12789 	int err;
12790 
12791 	/*
12792 	 * Grouping is not supported for kernel events, neither is 'AUX',
12793 	 * make sure the caller's intentions are adjusted.
12794 	 */
12795 	if (attr->aux_output)
12796 		return ERR_PTR(-EINVAL);
12797 
12798 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12799 				 overflow_handler, context, -1);
12800 	if (IS_ERR(event)) {
12801 		err = PTR_ERR(event);
12802 		goto err;
12803 	}
12804 
12805 	/* Mark owner so we could distinguish it from user events. */
12806 	event->owner = TASK_TOMBSTONE;
12807 	pmu = event->pmu;
12808 
12809 	if (pmu->task_ctx_nr == perf_sw_context)
12810 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12811 
12812 	/*
12813 	 * Get the target context (task or percpu):
12814 	 */
12815 	ctx = find_get_context(task, event);
12816 	if (IS_ERR(ctx)) {
12817 		err = PTR_ERR(ctx);
12818 		goto err_alloc;
12819 	}
12820 
12821 	WARN_ON_ONCE(ctx->parent_ctx);
12822 	mutex_lock(&ctx->mutex);
12823 	if (ctx->task == TASK_TOMBSTONE) {
12824 		err = -ESRCH;
12825 		goto err_unlock;
12826 	}
12827 
12828 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12829 	if (IS_ERR(pmu_ctx)) {
12830 		err = PTR_ERR(pmu_ctx);
12831 		goto err_unlock;
12832 	}
12833 	event->pmu_ctx = pmu_ctx;
12834 
12835 	if (!task) {
12836 		/*
12837 		 * Check if the @cpu we're creating an event for is online.
12838 		 *
12839 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12840 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12841 		 */
12842 		struct perf_cpu_context *cpuctx =
12843 			container_of(ctx, struct perf_cpu_context, ctx);
12844 		if (!cpuctx->online) {
12845 			err = -ENODEV;
12846 			goto err_pmu_ctx;
12847 		}
12848 	}
12849 
12850 	if (!exclusive_event_installable(event, ctx)) {
12851 		err = -EBUSY;
12852 		goto err_pmu_ctx;
12853 	}
12854 
12855 	perf_install_in_context(ctx, event, event->cpu);
12856 	perf_unpin_context(ctx);
12857 	mutex_unlock(&ctx->mutex);
12858 
12859 	return event;
12860 
12861 err_pmu_ctx:
12862 	put_pmu_ctx(pmu_ctx);
12863 	event->pmu_ctx = NULL; /* _free_event() */
12864 err_unlock:
12865 	mutex_unlock(&ctx->mutex);
12866 	perf_unpin_context(ctx);
12867 	put_ctx(ctx);
12868 err_alloc:
12869 	free_event(event);
12870 err:
12871 	return ERR_PTR(err);
12872 }
12873 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12874 
12875 static void __perf_pmu_remove(struct perf_event_context *ctx,
12876 			      int cpu, struct pmu *pmu,
12877 			      struct perf_event_groups *groups,
12878 			      struct list_head *events)
12879 {
12880 	struct perf_event *event, *sibling;
12881 
12882 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12883 		perf_remove_from_context(event, 0);
12884 		put_pmu_ctx(event->pmu_ctx);
12885 		list_add(&event->migrate_entry, events);
12886 
12887 		for_each_sibling_event(sibling, event) {
12888 			perf_remove_from_context(sibling, 0);
12889 			put_pmu_ctx(sibling->pmu_ctx);
12890 			list_add(&sibling->migrate_entry, events);
12891 		}
12892 	}
12893 }
12894 
12895 static void __perf_pmu_install_event(struct pmu *pmu,
12896 				     struct perf_event_context *ctx,
12897 				     int cpu, struct perf_event *event)
12898 {
12899 	struct perf_event_pmu_context *epc;
12900 	struct perf_event_context *old_ctx = event->ctx;
12901 
12902 	get_ctx(ctx); /* normally find_get_context() */
12903 
12904 	event->cpu = cpu;
12905 	epc = find_get_pmu_context(pmu, ctx, event);
12906 	event->pmu_ctx = epc;
12907 
12908 	if (event->state >= PERF_EVENT_STATE_OFF)
12909 		event->state = PERF_EVENT_STATE_INACTIVE;
12910 	perf_install_in_context(ctx, event, cpu);
12911 
12912 	/*
12913 	 * Now that event->ctx is updated and visible, put the old ctx.
12914 	 */
12915 	put_ctx(old_ctx);
12916 }
12917 
12918 static void __perf_pmu_install(struct perf_event_context *ctx,
12919 			       int cpu, struct pmu *pmu, struct list_head *events)
12920 {
12921 	struct perf_event *event, *tmp;
12922 
12923 	/*
12924 	 * Re-instate events in 2 passes.
12925 	 *
12926 	 * Skip over group leaders and only install siblings on this first
12927 	 * pass, siblings will not get enabled without a leader, however a
12928 	 * leader will enable its siblings, even if those are still on the old
12929 	 * context.
12930 	 */
12931 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12932 		if (event->group_leader == event)
12933 			continue;
12934 
12935 		list_del(&event->migrate_entry);
12936 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12937 	}
12938 
12939 	/*
12940 	 * Once all the siblings are setup properly, install the group leaders
12941 	 * to make it go.
12942 	 */
12943 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12944 		list_del(&event->migrate_entry);
12945 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12946 	}
12947 }
12948 
12949 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12950 {
12951 	struct perf_event_context *src_ctx, *dst_ctx;
12952 	LIST_HEAD(events);
12953 
12954 	/*
12955 	 * Since per-cpu context is persistent, no need to grab an extra
12956 	 * reference.
12957 	 */
12958 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12959 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12960 
12961 	/*
12962 	 * See perf_event_ctx_lock() for comments on the details
12963 	 * of swizzling perf_event::ctx.
12964 	 */
12965 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12966 
12967 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12968 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12969 
12970 	if (!list_empty(&events)) {
12971 		/*
12972 		 * Wait for the events to quiesce before re-instating them.
12973 		 */
12974 		synchronize_rcu();
12975 
12976 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12977 	}
12978 
12979 	mutex_unlock(&dst_ctx->mutex);
12980 	mutex_unlock(&src_ctx->mutex);
12981 }
12982 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12983 
12984 static void sync_child_event(struct perf_event *child_event)
12985 {
12986 	struct perf_event *parent_event = child_event->parent;
12987 	u64 child_val;
12988 
12989 	if (child_event->attr.inherit_stat) {
12990 		struct task_struct *task = child_event->ctx->task;
12991 
12992 		if (task && task != TASK_TOMBSTONE)
12993 			perf_event_read_event(child_event, task);
12994 	}
12995 
12996 	child_val = perf_event_count(child_event);
12997 
12998 	/*
12999 	 * Add back the child's count to the parent's count:
13000 	 */
13001 	atomic64_add(child_val, &parent_event->child_count);
13002 	atomic64_add(child_event->total_time_enabled,
13003 		     &parent_event->child_total_time_enabled);
13004 	atomic64_add(child_event->total_time_running,
13005 		     &parent_event->child_total_time_running);
13006 }
13007 
13008 static void
13009 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13010 {
13011 	struct perf_event *parent_event = event->parent;
13012 	unsigned long detach_flags = 0;
13013 
13014 	if (parent_event) {
13015 		/*
13016 		 * Do not destroy the 'original' grouping; because of the
13017 		 * context switch optimization the original events could've
13018 		 * ended up in a random child task.
13019 		 *
13020 		 * If we were to destroy the original group, all group related
13021 		 * operations would cease to function properly after this
13022 		 * random child dies.
13023 		 *
13024 		 * Do destroy all inherited groups, we don't care about those
13025 		 * and being thorough is better.
13026 		 */
13027 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13028 		mutex_lock(&parent_event->child_mutex);
13029 	}
13030 
13031 	perf_remove_from_context(event, detach_flags);
13032 
13033 	raw_spin_lock_irq(&ctx->lock);
13034 	if (event->state > PERF_EVENT_STATE_EXIT)
13035 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13036 	raw_spin_unlock_irq(&ctx->lock);
13037 
13038 	/*
13039 	 * Child events can be freed.
13040 	 */
13041 	if (parent_event) {
13042 		mutex_unlock(&parent_event->child_mutex);
13043 		/*
13044 		 * Kick perf_poll() for is_event_hup();
13045 		 */
13046 		perf_event_wakeup(parent_event);
13047 		free_event(event);
13048 		put_event(parent_event);
13049 		return;
13050 	}
13051 
13052 	/*
13053 	 * Parent events are governed by their filedesc, retain them.
13054 	 */
13055 	perf_event_wakeup(event);
13056 }
13057 
13058 static void perf_event_exit_task_context(struct task_struct *child)
13059 {
13060 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13061 	struct perf_event *child_event, *next;
13062 
13063 	WARN_ON_ONCE(child != current);
13064 
13065 	child_ctx = perf_pin_task_context(child);
13066 	if (!child_ctx)
13067 		return;
13068 
13069 	/*
13070 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13071 	 * ctx::mutex over the entire thing. This serializes against almost
13072 	 * everything that wants to access the ctx.
13073 	 *
13074 	 * The exception is sys_perf_event_open() /
13075 	 * perf_event_create_kernel_count() which does find_get_context()
13076 	 * without ctx::mutex (it cannot because of the move_group double mutex
13077 	 * lock thing). See the comments in perf_install_in_context().
13078 	 */
13079 	mutex_lock(&child_ctx->mutex);
13080 
13081 	/*
13082 	 * In a single ctx::lock section, de-schedule the events and detach the
13083 	 * context from the task such that we cannot ever get it scheduled back
13084 	 * in.
13085 	 */
13086 	raw_spin_lock_irq(&child_ctx->lock);
13087 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13088 
13089 	/*
13090 	 * Now that the context is inactive, destroy the task <-> ctx relation
13091 	 * and mark the context dead.
13092 	 */
13093 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13094 	put_ctx(child_ctx); /* cannot be last */
13095 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13096 	put_task_struct(current); /* cannot be last */
13097 
13098 	clone_ctx = unclone_ctx(child_ctx);
13099 	raw_spin_unlock_irq(&child_ctx->lock);
13100 
13101 	if (clone_ctx)
13102 		put_ctx(clone_ctx);
13103 
13104 	/*
13105 	 * Report the task dead after unscheduling the events so that we
13106 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13107 	 * get a few PERF_RECORD_READ events.
13108 	 */
13109 	perf_event_task(child, child_ctx, 0);
13110 
13111 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13112 		perf_event_exit_event(child_event, child_ctx);
13113 
13114 	mutex_unlock(&child_ctx->mutex);
13115 
13116 	put_ctx(child_ctx);
13117 }
13118 
13119 /*
13120  * When a child task exits, feed back event values to parent events.
13121  *
13122  * Can be called with exec_update_lock held when called from
13123  * setup_new_exec().
13124  */
13125 void perf_event_exit_task(struct task_struct *child)
13126 {
13127 	struct perf_event *event, *tmp;
13128 
13129 	mutex_lock(&child->perf_event_mutex);
13130 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13131 				 owner_entry) {
13132 		list_del_init(&event->owner_entry);
13133 
13134 		/*
13135 		 * Ensure the list deletion is visible before we clear
13136 		 * the owner, closes a race against perf_release() where
13137 		 * we need to serialize on the owner->perf_event_mutex.
13138 		 */
13139 		smp_store_release(&event->owner, NULL);
13140 	}
13141 	mutex_unlock(&child->perf_event_mutex);
13142 
13143 	perf_event_exit_task_context(child);
13144 
13145 	/*
13146 	 * The perf_event_exit_task_context calls perf_event_task
13147 	 * with child's task_ctx, which generates EXIT events for
13148 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13149 	 * At this point we need to send EXIT events to cpu contexts.
13150 	 */
13151 	perf_event_task(child, NULL, 0);
13152 }
13153 
13154 static void perf_free_event(struct perf_event *event,
13155 			    struct perf_event_context *ctx)
13156 {
13157 	struct perf_event *parent = event->parent;
13158 
13159 	if (WARN_ON_ONCE(!parent))
13160 		return;
13161 
13162 	mutex_lock(&parent->child_mutex);
13163 	list_del_init(&event->child_list);
13164 	mutex_unlock(&parent->child_mutex);
13165 
13166 	put_event(parent);
13167 
13168 	raw_spin_lock_irq(&ctx->lock);
13169 	perf_group_detach(event);
13170 	list_del_event(event, ctx);
13171 	raw_spin_unlock_irq(&ctx->lock);
13172 	free_event(event);
13173 }
13174 
13175 /*
13176  * Free a context as created by inheritance by perf_event_init_task() below,
13177  * used by fork() in case of fail.
13178  *
13179  * Even though the task has never lived, the context and events have been
13180  * exposed through the child_list, so we must take care tearing it all down.
13181  */
13182 void perf_event_free_task(struct task_struct *task)
13183 {
13184 	struct perf_event_context *ctx;
13185 	struct perf_event *event, *tmp;
13186 
13187 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13188 	if (!ctx)
13189 		return;
13190 
13191 	mutex_lock(&ctx->mutex);
13192 	raw_spin_lock_irq(&ctx->lock);
13193 	/*
13194 	 * Destroy the task <-> ctx relation and mark the context dead.
13195 	 *
13196 	 * This is important because even though the task hasn't been
13197 	 * exposed yet the context has been (through child_list).
13198 	 */
13199 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13200 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13201 	put_task_struct(task); /* cannot be last */
13202 	raw_spin_unlock_irq(&ctx->lock);
13203 
13204 
13205 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13206 		perf_free_event(event, ctx);
13207 
13208 	mutex_unlock(&ctx->mutex);
13209 
13210 	/*
13211 	 * perf_event_release_kernel() could've stolen some of our
13212 	 * child events and still have them on its free_list. In that
13213 	 * case we must wait for these events to have been freed (in
13214 	 * particular all their references to this task must've been
13215 	 * dropped).
13216 	 *
13217 	 * Without this copy_process() will unconditionally free this
13218 	 * task (irrespective of its reference count) and
13219 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13220 	 * use-after-free.
13221 	 *
13222 	 * Wait for all events to drop their context reference.
13223 	 */
13224 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13225 	put_ctx(ctx); /* must be last */
13226 }
13227 
13228 void perf_event_delayed_put(struct task_struct *task)
13229 {
13230 	WARN_ON_ONCE(task->perf_event_ctxp);
13231 }
13232 
13233 struct file *perf_event_get(unsigned int fd)
13234 {
13235 	struct file *file = fget(fd);
13236 	if (!file)
13237 		return ERR_PTR(-EBADF);
13238 
13239 	if (file->f_op != &perf_fops) {
13240 		fput(file);
13241 		return ERR_PTR(-EBADF);
13242 	}
13243 
13244 	return file;
13245 }
13246 
13247 const struct perf_event *perf_get_event(struct file *file)
13248 {
13249 	if (file->f_op != &perf_fops)
13250 		return ERR_PTR(-EINVAL);
13251 
13252 	return file->private_data;
13253 }
13254 
13255 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13256 {
13257 	if (!event)
13258 		return ERR_PTR(-EINVAL);
13259 
13260 	return &event->attr;
13261 }
13262 
13263 /*
13264  * Inherit an event from parent task to child task.
13265  *
13266  * Returns:
13267  *  - valid pointer on success
13268  *  - NULL for orphaned events
13269  *  - IS_ERR() on error
13270  */
13271 static struct perf_event *
13272 inherit_event(struct perf_event *parent_event,
13273 	      struct task_struct *parent,
13274 	      struct perf_event_context *parent_ctx,
13275 	      struct task_struct *child,
13276 	      struct perf_event *group_leader,
13277 	      struct perf_event_context *child_ctx)
13278 {
13279 	enum perf_event_state parent_state = parent_event->state;
13280 	struct perf_event_pmu_context *pmu_ctx;
13281 	struct perf_event *child_event;
13282 	unsigned long flags;
13283 
13284 	/*
13285 	 * Instead of creating recursive hierarchies of events,
13286 	 * we link inherited events back to the original parent,
13287 	 * which has a filp for sure, which we use as the reference
13288 	 * count:
13289 	 */
13290 	if (parent_event->parent)
13291 		parent_event = parent_event->parent;
13292 
13293 	child_event = perf_event_alloc(&parent_event->attr,
13294 					   parent_event->cpu,
13295 					   child,
13296 					   group_leader, parent_event,
13297 					   NULL, NULL, -1);
13298 	if (IS_ERR(child_event))
13299 		return child_event;
13300 
13301 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13302 	if (IS_ERR(pmu_ctx)) {
13303 		free_event(child_event);
13304 		return ERR_CAST(pmu_ctx);
13305 	}
13306 	child_event->pmu_ctx = pmu_ctx;
13307 
13308 	/*
13309 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13310 	 * must be under the same lock in order to serialize against
13311 	 * perf_event_release_kernel(), such that either we must observe
13312 	 * is_orphaned_event() or they will observe us on the child_list.
13313 	 */
13314 	mutex_lock(&parent_event->child_mutex);
13315 	if (is_orphaned_event(parent_event) ||
13316 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13317 		mutex_unlock(&parent_event->child_mutex);
13318 		/* task_ctx_data is freed with child_ctx */
13319 		free_event(child_event);
13320 		return NULL;
13321 	}
13322 
13323 	get_ctx(child_ctx);
13324 
13325 	/*
13326 	 * Make the child state follow the state of the parent event,
13327 	 * not its attr.disabled bit.  We hold the parent's mutex,
13328 	 * so we won't race with perf_event_{en, dis}able_family.
13329 	 */
13330 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13331 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13332 	else
13333 		child_event->state = PERF_EVENT_STATE_OFF;
13334 
13335 	if (parent_event->attr.freq) {
13336 		u64 sample_period = parent_event->hw.sample_period;
13337 		struct hw_perf_event *hwc = &child_event->hw;
13338 
13339 		hwc->sample_period = sample_period;
13340 		hwc->last_period   = sample_period;
13341 
13342 		local64_set(&hwc->period_left, sample_period);
13343 	}
13344 
13345 	child_event->ctx = child_ctx;
13346 	child_event->overflow_handler = parent_event->overflow_handler;
13347 	child_event->overflow_handler_context
13348 		= parent_event->overflow_handler_context;
13349 
13350 	/*
13351 	 * Precalculate sample_data sizes
13352 	 */
13353 	perf_event__header_size(child_event);
13354 	perf_event__id_header_size(child_event);
13355 
13356 	/*
13357 	 * Link it up in the child's context:
13358 	 */
13359 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13360 	add_event_to_ctx(child_event, child_ctx);
13361 	child_event->attach_state |= PERF_ATTACH_CHILD;
13362 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13363 
13364 	/*
13365 	 * Link this into the parent event's child list
13366 	 */
13367 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13368 	mutex_unlock(&parent_event->child_mutex);
13369 
13370 	return child_event;
13371 }
13372 
13373 /*
13374  * Inherits an event group.
13375  *
13376  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13377  * This matches with perf_event_release_kernel() removing all child events.
13378  *
13379  * Returns:
13380  *  - 0 on success
13381  *  - <0 on error
13382  */
13383 static int inherit_group(struct perf_event *parent_event,
13384 	      struct task_struct *parent,
13385 	      struct perf_event_context *parent_ctx,
13386 	      struct task_struct *child,
13387 	      struct perf_event_context *child_ctx)
13388 {
13389 	struct perf_event *leader;
13390 	struct perf_event *sub;
13391 	struct perf_event *child_ctr;
13392 
13393 	leader = inherit_event(parent_event, parent, parent_ctx,
13394 				 child, NULL, child_ctx);
13395 	if (IS_ERR(leader))
13396 		return PTR_ERR(leader);
13397 	/*
13398 	 * @leader can be NULL here because of is_orphaned_event(). In this
13399 	 * case inherit_event() will create individual events, similar to what
13400 	 * perf_group_detach() would do anyway.
13401 	 */
13402 	for_each_sibling_event(sub, parent_event) {
13403 		child_ctr = inherit_event(sub, parent, parent_ctx,
13404 					    child, leader, child_ctx);
13405 		if (IS_ERR(child_ctr))
13406 			return PTR_ERR(child_ctr);
13407 
13408 		if (sub->aux_event == parent_event && child_ctr &&
13409 		    !perf_get_aux_event(child_ctr, leader))
13410 			return -EINVAL;
13411 	}
13412 	if (leader)
13413 		leader->group_generation = parent_event->group_generation;
13414 	return 0;
13415 }
13416 
13417 /*
13418  * Creates the child task context and tries to inherit the event-group.
13419  *
13420  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13421  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13422  * consistent with perf_event_release_kernel() removing all child events.
13423  *
13424  * Returns:
13425  *  - 0 on success
13426  *  - <0 on error
13427  */
13428 static int
13429 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13430 		   struct perf_event_context *parent_ctx,
13431 		   struct task_struct *child,
13432 		   u64 clone_flags, int *inherited_all)
13433 {
13434 	struct perf_event_context *child_ctx;
13435 	int ret;
13436 
13437 	if (!event->attr.inherit ||
13438 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13439 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13440 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13441 		*inherited_all = 0;
13442 		return 0;
13443 	}
13444 
13445 	child_ctx = child->perf_event_ctxp;
13446 	if (!child_ctx) {
13447 		/*
13448 		 * This is executed from the parent task context, so
13449 		 * inherit events that have been marked for cloning.
13450 		 * First allocate and initialize a context for the
13451 		 * child.
13452 		 */
13453 		child_ctx = alloc_perf_context(child);
13454 		if (!child_ctx)
13455 			return -ENOMEM;
13456 
13457 		child->perf_event_ctxp = child_ctx;
13458 	}
13459 
13460 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13461 	if (ret)
13462 		*inherited_all = 0;
13463 
13464 	return ret;
13465 }
13466 
13467 /*
13468  * Initialize the perf_event context in task_struct
13469  */
13470 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13471 {
13472 	struct perf_event_context *child_ctx, *parent_ctx;
13473 	struct perf_event_context *cloned_ctx;
13474 	struct perf_event *event;
13475 	struct task_struct *parent = current;
13476 	int inherited_all = 1;
13477 	unsigned long flags;
13478 	int ret = 0;
13479 
13480 	if (likely(!parent->perf_event_ctxp))
13481 		return 0;
13482 
13483 	/*
13484 	 * If the parent's context is a clone, pin it so it won't get
13485 	 * swapped under us.
13486 	 */
13487 	parent_ctx = perf_pin_task_context(parent);
13488 	if (!parent_ctx)
13489 		return 0;
13490 
13491 	/*
13492 	 * No need to check if parent_ctx != NULL here; since we saw
13493 	 * it non-NULL earlier, the only reason for it to become NULL
13494 	 * is if we exit, and since we're currently in the middle of
13495 	 * a fork we can't be exiting at the same time.
13496 	 */
13497 
13498 	/*
13499 	 * Lock the parent list. No need to lock the child - not PID
13500 	 * hashed yet and not running, so nobody can access it.
13501 	 */
13502 	mutex_lock(&parent_ctx->mutex);
13503 
13504 	/*
13505 	 * We dont have to disable NMIs - we are only looking at
13506 	 * the list, not manipulating it:
13507 	 */
13508 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13509 		ret = inherit_task_group(event, parent, parent_ctx,
13510 					 child, clone_flags, &inherited_all);
13511 		if (ret)
13512 			goto out_unlock;
13513 	}
13514 
13515 	/*
13516 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13517 	 * to allocations, but we need to prevent rotation because
13518 	 * rotate_ctx() will change the list from interrupt context.
13519 	 */
13520 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13521 	parent_ctx->rotate_disable = 1;
13522 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13523 
13524 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13525 		ret = inherit_task_group(event, parent, parent_ctx,
13526 					 child, clone_flags, &inherited_all);
13527 		if (ret)
13528 			goto out_unlock;
13529 	}
13530 
13531 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13532 	parent_ctx->rotate_disable = 0;
13533 
13534 	child_ctx = child->perf_event_ctxp;
13535 
13536 	if (child_ctx && inherited_all) {
13537 		/*
13538 		 * Mark the child context as a clone of the parent
13539 		 * context, or of whatever the parent is a clone of.
13540 		 *
13541 		 * Note that if the parent is a clone, the holding of
13542 		 * parent_ctx->lock avoids it from being uncloned.
13543 		 */
13544 		cloned_ctx = parent_ctx->parent_ctx;
13545 		if (cloned_ctx) {
13546 			child_ctx->parent_ctx = cloned_ctx;
13547 			child_ctx->parent_gen = parent_ctx->parent_gen;
13548 		} else {
13549 			child_ctx->parent_ctx = parent_ctx;
13550 			child_ctx->parent_gen = parent_ctx->generation;
13551 		}
13552 		get_ctx(child_ctx->parent_ctx);
13553 	}
13554 
13555 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13556 out_unlock:
13557 	mutex_unlock(&parent_ctx->mutex);
13558 
13559 	perf_unpin_context(parent_ctx);
13560 	put_ctx(parent_ctx);
13561 
13562 	return ret;
13563 }
13564 
13565 /*
13566  * Initialize the perf_event context in task_struct
13567  */
13568 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13569 {
13570 	int ret;
13571 
13572 	child->perf_event_ctxp = NULL;
13573 	mutex_init(&child->perf_event_mutex);
13574 	INIT_LIST_HEAD(&child->perf_event_list);
13575 
13576 	ret = perf_event_init_context(child, clone_flags);
13577 	if (ret) {
13578 		perf_event_free_task(child);
13579 		return ret;
13580 	}
13581 
13582 	return 0;
13583 }
13584 
13585 static void __init perf_event_init_all_cpus(void)
13586 {
13587 	struct swevent_htable *swhash;
13588 	struct perf_cpu_context *cpuctx;
13589 	int cpu;
13590 
13591 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13592 
13593 	for_each_possible_cpu(cpu) {
13594 		swhash = &per_cpu(swevent_htable, cpu);
13595 		mutex_init(&swhash->hlist_mutex);
13596 
13597 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13598 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13599 
13600 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13601 
13602 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13603 		__perf_event_init_context(&cpuctx->ctx);
13604 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13605 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13606 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13607 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13608 		cpuctx->heap = cpuctx->heap_default;
13609 	}
13610 }
13611 
13612 static void perf_swevent_init_cpu(unsigned int cpu)
13613 {
13614 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13615 
13616 	mutex_lock(&swhash->hlist_mutex);
13617 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13618 		struct swevent_hlist *hlist;
13619 
13620 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13621 		WARN_ON(!hlist);
13622 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13623 	}
13624 	mutex_unlock(&swhash->hlist_mutex);
13625 }
13626 
13627 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13628 static void __perf_event_exit_context(void *__info)
13629 {
13630 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13631 	struct perf_event_context *ctx = __info;
13632 	struct perf_event *event;
13633 
13634 	raw_spin_lock(&ctx->lock);
13635 	ctx_sched_out(ctx, EVENT_TIME);
13636 	list_for_each_entry(event, &ctx->event_list, event_entry)
13637 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13638 	raw_spin_unlock(&ctx->lock);
13639 }
13640 
13641 static void perf_event_exit_cpu_context(int cpu)
13642 {
13643 	struct perf_cpu_context *cpuctx;
13644 	struct perf_event_context *ctx;
13645 
13646 	// XXX simplify cpuctx->online
13647 	mutex_lock(&pmus_lock);
13648 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13649 	ctx = &cpuctx->ctx;
13650 
13651 	mutex_lock(&ctx->mutex);
13652 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13653 	cpuctx->online = 0;
13654 	mutex_unlock(&ctx->mutex);
13655 	cpumask_clear_cpu(cpu, perf_online_mask);
13656 	mutex_unlock(&pmus_lock);
13657 }
13658 #else
13659 
13660 static void perf_event_exit_cpu_context(int cpu) { }
13661 
13662 #endif
13663 
13664 int perf_event_init_cpu(unsigned int cpu)
13665 {
13666 	struct perf_cpu_context *cpuctx;
13667 	struct perf_event_context *ctx;
13668 
13669 	perf_swevent_init_cpu(cpu);
13670 
13671 	mutex_lock(&pmus_lock);
13672 	cpumask_set_cpu(cpu, perf_online_mask);
13673 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13674 	ctx = &cpuctx->ctx;
13675 
13676 	mutex_lock(&ctx->mutex);
13677 	cpuctx->online = 1;
13678 	mutex_unlock(&ctx->mutex);
13679 	mutex_unlock(&pmus_lock);
13680 
13681 	return 0;
13682 }
13683 
13684 int perf_event_exit_cpu(unsigned int cpu)
13685 {
13686 	perf_event_exit_cpu_context(cpu);
13687 	return 0;
13688 }
13689 
13690 static int
13691 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13692 {
13693 	int cpu;
13694 
13695 	for_each_online_cpu(cpu)
13696 		perf_event_exit_cpu(cpu);
13697 
13698 	return NOTIFY_OK;
13699 }
13700 
13701 /*
13702  * Run the perf reboot notifier at the very last possible moment so that
13703  * the generic watchdog code runs as long as possible.
13704  */
13705 static struct notifier_block perf_reboot_notifier = {
13706 	.notifier_call = perf_reboot,
13707 	.priority = INT_MIN,
13708 };
13709 
13710 void __init perf_event_init(void)
13711 {
13712 	int ret;
13713 
13714 	idr_init(&pmu_idr);
13715 
13716 	perf_event_init_all_cpus();
13717 	init_srcu_struct(&pmus_srcu);
13718 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13719 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13720 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13721 	perf_tp_register();
13722 	perf_event_init_cpu(smp_processor_id());
13723 	register_reboot_notifier(&perf_reboot_notifier);
13724 
13725 	ret = init_hw_breakpoint();
13726 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13727 
13728 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13729 
13730 	/*
13731 	 * Build time assertion that we keep the data_head at the intended
13732 	 * location.  IOW, validation we got the __reserved[] size right.
13733 	 */
13734 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13735 		     != 1024);
13736 }
13737 
13738 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13739 			      char *page)
13740 {
13741 	struct perf_pmu_events_attr *pmu_attr =
13742 		container_of(attr, struct perf_pmu_events_attr, attr);
13743 
13744 	if (pmu_attr->event_str)
13745 		return sprintf(page, "%s\n", pmu_attr->event_str);
13746 
13747 	return 0;
13748 }
13749 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13750 
13751 static int __init perf_event_sysfs_init(void)
13752 {
13753 	struct pmu *pmu;
13754 	int ret;
13755 
13756 	mutex_lock(&pmus_lock);
13757 
13758 	ret = bus_register(&pmu_bus);
13759 	if (ret)
13760 		goto unlock;
13761 
13762 	list_for_each_entry(pmu, &pmus, entry) {
13763 		if (pmu->dev)
13764 			continue;
13765 
13766 		ret = pmu_dev_alloc(pmu);
13767 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13768 	}
13769 	pmu_bus_running = 1;
13770 	ret = 0;
13771 
13772 unlock:
13773 	mutex_unlock(&pmus_lock);
13774 
13775 	return ret;
13776 }
13777 device_initcall(perf_event_sysfs_init);
13778 
13779 #ifdef CONFIG_CGROUP_PERF
13780 static struct cgroup_subsys_state *
13781 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13782 {
13783 	struct perf_cgroup *jc;
13784 
13785 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13786 	if (!jc)
13787 		return ERR_PTR(-ENOMEM);
13788 
13789 	jc->info = alloc_percpu(struct perf_cgroup_info);
13790 	if (!jc->info) {
13791 		kfree(jc);
13792 		return ERR_PTR(-ENOMEM);
13793 	}
13794 
13795 	return &jc->css;
13796 }
13797 
13798 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13799 {
13800 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13801 
13802 	free_percpu(jc->info);
13803 	kfree(jc);
13804 }
13805 
13806 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13807 {
13808 	perf_event_cgroup(css->cgroup);
13809 	return 0;
13810 }
13811 
13812 static int __perf_cgroup_move(void *info)
13813 {
13814 	struct task_struct *task = info;
13815 
13816 	preempt_disable();
13817 	perf_cgroup_switch(task);
13818 	preempt_enable();
13819 
13820 	return 0;
13821 }
13822 
13823 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13824 {
13825 	struct task_struct *task;
13826 	struct cgroup_subsys_state *css;
13827 
13828 	cgroup_taskset_for_each(task, css, tset)
13829 		task_function_call(task, __perf_cgroup_move, task);
13830 }
13831 
13832 struct cgroup_subsys perf_event_cgrp_subsys = {
13833 	.css_alloc	= perf_cgroup_css_alloc,
13834 	.css_free	= perf_cgroup_css_free,
13835 	.css_online	= perf_cgroup_css_online,
13836 	.attach		= perf_cgroup_attach,
13837 	/*
13838 	 * Implicitly enable on dfl hierarchy so that perf events can
13839 	 * always be filtered by cgroup2 path as long as perf_event
13840 	 * controller is not mounted on a legacy hierarchy.
13841 	 */
13842 	.implicit_on_dfl = true,
13843 	.threaded	= true,
13844 };
13845 #endif /* CONFIG_CGROUP_PERF */
13846 
13847 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13848