xref: /openbmc/linux/kernel/events/core.c (revision 5303b8d3)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 #ifdef CONFIG_CGROUP_PERF
586 
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 	struct perf_event_context *ctx = event->ctx;
591 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592 
593 	/* @event doesn't care about cgroup */
594 	if (!event->cgrp)
595 		return true;
596 
597 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
598 	if (!cpuctx->cgrp)
599 		return false;
600 
601 	/*
602 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
603 	 * also enabled for all its descendant cgroups.  If @cpuctx's
604 	 * cgroup is a descendant of @event's (the test covers identity
605 	 * case), it's a match.
606 	 */
607 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 				    event->cgrp->css.cgroup);
609 }
610 
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 	css_put(&event->cgrp->css);
614 	event->cgrp = NULL;
615 }
616 
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 	return event->cgrp != NULL;
620 }
621 
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 	struct perf_cgroup_info *t;
625 
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	return t->time;
628 }
629 
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 	struct perf_cgroup_info *info;
633 	u64 now;
634 
635 	now = perf_clock();
636 
637 	info = this_cpu_ptr(cgrp->info);
638 
639 	info->time += now - info->timestamp;
640 	info->timestamp = now;
641 }
642 
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 	if (cgrp_out)
647 		__update_cgrp_time(cgrp_out);
648 }
649 
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 	struct perf_cgroup *cgrp;
653 
654 	/*
655 	 * ensure we access cgroup data only when needed and
656 	 * when we know the cgroup is pinned (css_get)
657 	 */
658 	if (!is_cgroup_event(event))
659 		return;
660 
661 	cgrp = perf_cgroup_from_task(current, event->ctx);
662 	/*
663 	 * Do not update time when cgroup is not active
664 	 */
665 	if (cgrp == event->cgrp)
666 		__update_cgrp_time(event->cgrp);
667 }
668 
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 			  struct perf_event_context *ctx)
672 {
673 	struct perf_cgroup *cgrp;
674 	struct perf_cgroup_info *info;
675 
676 	/*
677 	 * ctx->lock held by caller
678 	 * ensure we do not access cgroup data
679 	 * unless we have the cgroup pinned (css_get)
680 	 */
681 	if (!task || !ctx->nr_cgroups)
682 		return;
683 
684 	cgrp = perf_cgroup_from_task(task, ctx);
685 	info = this_cpu_ptr(cgrp->info);
686 	info->timestamp = ctx->timestamp;
687 }
688 
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690 
691 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
693 
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 	struct perf_cpu_context *cpuctx;
703 	struct list_head *list;
704 	unsigned long flags;
705 
706 	/*
707 	 * Disable interrupts and preemption to avoid this CPU's
708 	 * cgrp_cpuctx_entry to change under us.
709 	 */
710 	local_irq_save(flags);
711 
712 	list = this_cpu_ptr(&cgrp_cpuctx_list);
713 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715 
716 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 		perf_pmu_disable(cpuctx->ctx.pmu);
718 
719 		if (mode & PERF_CGROUP_SWOUT) {
720 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 			/*
722 			 * must not be done before ctxswout due
723 			 * to event_filter_match() in event_sched_out()
724 			 */
725 			cpuctx->cgrp = NULL;
726 		}
727 
728 		if (mode & PERF_CGROUP_SWIN) {
729 			WARN_ON_ONCE(cpuctx->cgrp);
730 			/*
731 			 * set cgrp before ctxsw in to allow
732 			 * event_filter_match() to not have to pass
733 			 * task around
734 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 			 * because cgorup events are only per-cpu
736 			 */
737 			cpuctx->cgrp = perf_cgroup_from_task(task,
738 							     &cpuctx->ctx);
739 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 		}
741 		perf_pmu_enable(cpuctx->ctx.pmu);
742 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 	}
744 
745 	local_irq_restore(flags);
746 }
747 
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 					 struct task_struct *next)
750 {
751 	struct perf_cgroup *cgrp1;
752 	struct perf_cgroup *cgrp2 = NULL;
753 
754 	rcu_read_lock();
755 	/*
756 	 * we come here when we know perf_cgroup_events > 0
757 	 * we do not need to pass the ctx here because we know
758 	 * we are holding the rcu lock
759 	 */
760 	cgrp1 = perf_cgroup_from_task(task, NULL);
761 	cgrp2 = perf_cgroup_from_task(next, NULL);
762 
763 	/*
764 	 * only schedule out current cgroup events if we know
765 	 * that we are switching to a different cgroup. Otherwise,
766 	 * do no touch the cgroup events.
767 	 */
768 	if (cgrp1 != cgrp2)
769 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 
771 	rcu_read_unlock();
772 }
773 
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 					struct task_struct *task)
776 {
777 	struct perf_cgroup *cgrp1;
778 	struct perf_cgroup *cgrp2 = NULL;
779 
780 	rcu_read_lock();
781 	/*
782 	 * we come here when we know perf_cgroup_events > 0
783 	 * we do not need to pass the ctx here because we know
784 	 * we are holding the rcu lock
785 	 */
786 	cgrp1 = perf_cgroup_from_task(task, NULL);
787 	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 
789 	/*
790 	 * only need to schedule in cgroup events if we are changing
791 	 * cgroup during ctxsw. Cgroup events were not scheduled
792 	 * out of ctxsw out if that was not the case.
793 	 */
794 	if (cgrp1 != cgrp2)
795 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 
797 	rcu_read_unlock();
798 }
799 
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 				      struct perf_event_attr *attr,
802 				      struct perf_event *group_leader)
803 {
804 	struct perf_cgroup *cgrp;
805 	struct cgroup_subsys_state *css;
806 	struct fd f = fdget(fd);
807 	int ret = 0;
808 
809 	if (!f.file)
810 		return -EBADF;
811 
812 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 					 &perf_event_cgrp_subsys);
814 	if (IS_ERR(css)) {
815 		ret = PTR_ERR(css);
816 		goto out;
817 	}
818 
819 	cgrp = container_of(css, struct perf_cgroup, css);
820 	event->cgrp = cgrp;
821 
822 	/*
823 	 * all events in a group must monitor
824 	 * the same cgroup because a task belongs
825 	 * to only one perf cgroup at a time
826 	 */
827 	if (group_leader && group_leader->cgrp != cgrp) {
828 		perf_detach_cgroup(event);
829 		ret = -EINVAL;
830 	}
831 out:
832 	fdput(f);
833 	return ret;
834 }
835 
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 	struct perf_cgroup_info *t;
840 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 	event->shadow_ctx_time = now - t->timestamp;
842 }
843 
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 	/*
848 	 * when the current task's perf cgroup does not match
849 	 * the event's, we need to remember to call the
850 	 * perf_mark_enable() function the first time a task with
851 	 * a matching perf cgroup is scheduled in.
852 	 */
853 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 		event->cgrp_defer_enabled = 1;
855 }
856 
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 			 struct perf_event_context *ctx)
860 {
861 	struct perf_event *sub;
862 	u64 tstamp = perf_event_time(event);
863 
864 	if (!event->cgrp_defer_enabled)
865 		return;
866 
867 	event->cgrp_defer_enabled = 0;
868 
869 	event->tstamp_enabled = tstamp - event->total_time_enabled;
870 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 			sub->cgrp_defer_enabled = 0;
874 		}
875 	}
876 }
877 
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 			 struct perf_event_context *ctx, bool add)
885 {
886 	struct perf_cpu_context *cpuctx;
887 	struct list_head *cpuctx_entry;
888 
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	if (add && ctx->nr_cgroups++)
893 		return;
894 	else if (!add && --ctx->nr_cgroups)
895 		return;
896 	/*
897 	 * Because cgroup events are always per-cpu events,
898 	 * this will always be called from the right CPU.
899 	 */
900 	cpuctx = __get_cpu_context(ctx);
901 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 	if (add) {
904 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 			cpuctx->cgrp = event->cgrp;
907 	} else {
908 		list_del(cpuctx_entry);
909 		cpuctx->cgrp = NULL;
910 	}
911 }
912 
913 #else /* !CONFIG_CGROUP_PERF */
914 
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 	return true;
919 }
920 
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923 
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 	/*
1255 	 * only top level events have the pid namespace they were created in
1256 	 */
1257 	if (event->parent)
1258 		event = event->parent;
1259 
1260 	return task_tgid_nr_ns(p, event->ns);
1261 }
1262 
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 	/*
1266 	 * only top level events have the pid namespace they were created in
1267 	 */
1268 	if (event->parent)
1269 		event = event->parent;
1270 
1271 	return task_pid_nr_ns(p, event->ns);
1272 }
1273 
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 	u64 id = event->id;
1281 
1282 	if (event->parent)
1283 		id = event->parent->id;
1284 
1285 	return id;
1286 }
1287 
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 	struct perf_event_context *ctx;
1298 
1299 retry:
1300 	/*
1301 	 * One of the few rules of preemptible RCU is that one cannot do
1302 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 	 * part of the read side critical section was irqs-enabled -- see
1304 	 * rcu_read_unlock_special().
1305 	 *
1306 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 	 * side critical section has interrupts disabled.
1308 	 */
1309 	local_irq_save(*flags);
1310 	rcu_read_lock();
1311 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 	if (ctx) {
1313 		/*
1314 		 * If this context is a clone of another, it might
1315 		 * get swapped for another underneath us by
1316 		 * perf_event_task_sched_out, though the
1317 		 * rcu_read_lock() protects us from any context
1318 		 * getting freed.  Lock the context and check if it
1319 		 * got swapped before we could get the lock, and retry
1320 		 * if so.  If we locked the right context, then it
1321 		 * can't get swapped on us any more.
1322 		 */
1323 		raw_spin_lock(&ctx->lock);
1324 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 			raw_spin_unlock(&ctx->lock);
1326 			rcu_read_unlock();
1327 			local_irq_restore(*flags);
1328 			goto retry;
1329 		}
1330 
1331 		if (ctx->task == TASK_TOMBSTONE ||
1332 		    !atomic_inc_not_zero(&ctx->refcount)) {
1333 			raw_spin_unlock(&ctx->lock);
1334 			ctx = NULL;
1335 		} else {
1336 			WARN_ON_ONCE(ctx->task != task);
1337 		}
1338 	}
1339 	rcu_read_unlock();
1340 	if (!ctx)
1341 		local_irq_restore(*flags);
1342 	return ctx;
1343 }
1344 
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 	struct perf_event_context *ctx;
1354 	unsigned long flags;
1355 
1356 	ctx = perf_lock_task_context(task, ctxn, &flags);
1357 	if (ctx) {
1358 		++ctx->pin_count;
1359 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 	}
1361 	return ctx;
1362 }
1363 
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 	unsigned long flags;
1367 
1368 	raw_spin_lock_irqsave(&ctx->lock, flags);
1369 	--ctx->pin_count;
1370 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372 
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 	u64 now = perf_clock();
1379 
1380 	ctx->time += now - ctx->timestamp;
1381 	ctx->timestamp = now;
1382 }
1383 
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 	struct perf_event_context *ctx = event->ctx;
1387 
1388 	if (is_cgroup_event(event))
1389 		return perf_cgroup_event_time(event);
1390 
1391 	return ctx ? ctx->time : 0;
1392 }
1393 
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 	u64 run_end;
1401 
1402 	lockdep_assert_held(&ctx->lock);
1403 
1404 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 		return;
1407 
1408 	/*
1409 	 * in cgroup mode, time_enabled represents
1410 	 * the time the event was enabled AND active
1411 	 * tasks were in the monitored cgroup. This is
1412 	 * independent of the activity of the context as
1413 	 * there may be a mix of cgroup and non-cgroup events.
1414 	 *
1415 	 * That is why we treat cgroup events differently
1416 	 * here.
1417 	 */
1418 	if (is_cgroup_event(event))
1419 		run_end = perf_cgroup_event_time(event);
1420 	else if (ctx->is_active)
1421 		run_end = ctx->time;
1422 	else
1423 		run_end = event->tstamp_stopped;
1424 
1425 	event->total_time_enabled = run_end - event->tstamp_enabled;
1426 
1427 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 		run_end = event->tstamp_stopped;
1429 	else
1430 		run_end = perf_event_time(event);
1431 
1432 	event->total_time_running = run_end - event->tstamp_running;
1433 
1434 }
1435 
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 	struct perf_event *event;
1442 
1443 	update_event_times(leader);
1444 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 		update_event_times(event);
1446 }
1447 
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450 	struct perf_event_context *ctx = event->ctx;
1451 	enum event_type_t event_type;
1452 
1453 	lockdep_assert_held(&ctx->lock);
1454 
1455 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456 	if (!ctx->task)
1457 		event_type |= EVENT_CPU;
1458 
1459 	return event_type;
1460 }
1461 
1462 static struct list_head *
1463 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464 {
1465 	if (event->attr.pinned)
1466 		return &ctx->pinned_groups;
1467 	else
1468 		return &ctx->flexible_groups;
1469 }
1470 
1471 /*
1472  * Add a event from the lists for its context.
1473  * Must be called with ctx->mutex and ctx->lock held.
1474  */
1475 static void
1476 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1477 {
1478 	lockdep_assert_held(&ctx->lock);
1479 
1480 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481 	event->attach_state |= PERF_ATTACH_CONTEXT;
1482 
1483 	/*
1484 	 * If we're a stand alone event or group leader, we go to the context
1485 	 * list, group events are kept attached to the group so that
1486 	 * perf_group_detach can, at all times, locate all siblings.
1487 	 */
1488 	if (event->group_leader == event) {
1489 		struct list_head *list;
1490 
1491 		event->group_caps = event->event_caps;
1492 
1493 		list = ctx_group_list(event, ctx);
1494 		list_add_tail(&event->group_entry, list);
1495 	}
1496 
1497 	list_update_cgroup_event(event, ctx, true);
1498 
1499 	list_add_rcu(&event->event_entry, &ctx->event_list);
1500 	ctx->nr_events++;
1501 	if (event->attr.inherit_stat)
1502 		ctx->nr_stat++;
1503 
1504 	ctx->generation++;
1505 }
1506 
1507 /*
1508  * Initialize event state based on the perf_event_attr::disabled.
1509  */
1510 static inline void perf_event__state_init(struct perf_event *event)
1511 {
1512 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513 					      PERF_EVENT_STATE_INACTIVE;
1514 }
1515 
1516 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1517 {
1518 	int entry = sizeof(u64); /* value */
1519 	int size = 0;
1520 	int nr = 1;
1521 
1522 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523 		size += sizeof(u64);
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526 		size += sizeof(u64);
1527 
1528 	if (event->attr.read_format & PERF_FORMAT_ID)
1529 		entry += sizeof(u64);
1530 
1531 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1532 		nr += nr_siblings;
1533 		size += sizeof(u64);
1534 	}
1535 
1536 	size += entry * nr;
1537 	event->read_size = size;
1538 }
1539 
1540 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1541 {
1542 	struct perf_sample_data *data;
1543 	u16 size = 0;
1544 
1545 	if (sample_type & PERF_SAMPLE_IP)
1546 		size += sizeof(data->ip);
1547 
1548 	if (sample_type & PERF_SAMPLE_ADDR)
1549 		size += sizeof(data->addr);
1550 
1551 	if (sample_type & PERF_SAMPLE_PERIOD)
1552 		size += sizeof(data->period);
1553 
1554 	if (sample_type & PERF_SAMPLE_WEIGHT)
1555 		size += sizeof(data->weight);
1556 
1557 	if (sample_type & PERF_SAMPLE_READ)
1558 		size += event->read_size;
1559 
1560 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1561 		size += sizeof(data->data_src.val);
1562 
1563 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1564 		size += sizeof(data->txn);
1565 
1566 	event->header_size = size;
1567 }
1568 
1569 /*
1570  * Called at perf_event creation and when events are attached/detached from a
1571  * group.
1572  */
1573 static void perf_event__header_size(struct perf_event *event)
1574 {
1575 	__perf_event_read_size(event,
1576 			       event->group_leader->nr_siblings);
1577 	__perf_event_header_size(event, event->attr.sample_type);
1578 }
1579 
1580 static void perf_event__id_header_size(struct perf_event *event)
1581 {
1582 	struct perf_sample_data *data;
1583 	u64 sample_type = event->attr.sample_type;
1584 	u16 size = 0;
1585 
1586 	if (sample_type & PERF_SAMPLE_TID)
1587 		size += sizeof(data->tid_entry);
1588 
1589 	if (sample_type & PERF_SAMPLE_TIME)
1590 		size += sizeof(data->time);
1591 
1592 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593 		size += sizeof(data->id);
1594 
1595 	if (sample_type & PERF_SAMPLE_ID)
1596 		size += sizeof(data->id);
1597 
1598 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1599 		size += sizeof(data->stream_id);
1600 
1601 	if (sample_type & PERF_SAMPLE_CPU)
1602 		size += sizeof(data->cpu_entry);
1603 
1604 	event->id_header_size = size;
1605 }
1606 
1607 static bool perf_event_validate_size(struct perf_event *event)
1608 {
1609 	/*
1610 	 * The values computed here will be over-written when we actually
1611 	 * attach the event.
1612 	 */
1613 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615 	perf_event__id_header_size(event);
1616 
1617 	/*
1618 	 * Sum the lot; should not exceed the 64k limit we have on records.
1619 	 * Conservative limit to allow for callchains and other variable fields.
1620 	 */
1621 	if (event->read_size + event->header_size +
1622 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623 		return false;
1624 
1625 	return true;
1626 }
1627 
1628 static void perf_group_attach(struct perf_event *event)
1629 {
1630 	struct perf_event *group_leader = event->group_leader, *pos;
1631 
1632 	lockdep_assert_held(&event->ctx->lock);
1633 
1634 	/*
1635 	 * We can have double attach due to group movement in perf_event_open.
1636 	 */
1637 	if (event->attach_state & PERF_ATTACH_GROUP)
1638 		return;
1639 
1640 	event->attach_state |= PERF_ATTACH_GROUP;
1641 
1642 	if (group_leader == event)
1643 		return;
1644 
1645 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646 
1647 	group_leader->group_caps &= event->event_caps;
1648 
1649 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650 	group_leader->nr_siblings++;
1651 
1652 	perf_event__header_size(group_leader);
1653 
1654 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655 		perf_event__header_size(pos);
1656 }
1657 
1658 /*
1659  * Remove a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	WARN_ON_ONCE(event->ctx != ctx);
1666 	lockdep_assert_held(&ctx->lock);
1667 
1668 	/*
1669 	 * We can have double detach due to exit/hot-unplug + close.
1670 	 */
1671 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1672 		return;
1673 
1674 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675 
1676 	list_update_cgroup_event(event, ctx, false);
1677 
1678 	ctx->nr_events--;
1679 	if (event->attr.inherit_stat)
1680 		ctx->nr_stat--;
1681 
1682 	list_del_rcu(&event->event_entry);
1683 
1684 	if (event->group_leader == event)
1685 		list_del_init(&event->group_entry);
1686 
1687 	update_group_times(event);
1688 
1689 	/*
1690 	 * If event was in error state, then keep it
1691 	 * that way, otherwise bogus counts will be
1692 	 * returned on read(). The only way to get out
1693 	 * of error state is by explicit re-enabling
1694 	 * of the event
1695 	 */
1696 	if (event->state > PERF_EVENT_STATE_OFF)
1697 		event->state = PERF_EVENT_STATE_OFF;
1698 
1699 	ctx->generation++;
1700 }
1701 
1702 static void perf_group_detach(struct perf_event *event)
1703 {
1704 	struct perf_event *sibling, *tmp;
1705 	struct list_head *list = NULL;
1706 
1707 	lockdep_assert_held(&event->ctx->lock);
1708 
1709 	/*
1710 	 * We can have double detach due to exit/hot-unplug + close.
1711 	 */
1712 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 		return;
1714 
1715 	event->attach_state &= ~PERF_ATTACH_GROUP;
1716 
1717 	/*
1718 	 * If this is a sibling, remove it from its group.
1719 	 */
1720 	if (event->group_leader != event) {
1721 		list_del_init(&event->group_entry);
1722 		event->group_leader->nr_siblings--;
1723 		goto out;
1724 	}
1725 
1726 	if (!list_empty(&event->group_entry))
1727 		list = &event->group_entry;
1728 
1729 	/*
1730 	 * If this was a group event with sibling events then
1731 	 * upgrade the siblings to singleton events by adding them
1732 	 * to whatever list we are on.
1733 	 */
1734 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1735 		if (list)
1736 			list_move_tail(&sibling->group_entry, list);
1737 		sibling->group_leader = sibling;
1738 
1739 		/* Inherit group flags from the previous leader */
1740 		sibling->group_caps = event->group_caps;
1741 
1742 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1743 	}
1744 
1745 out:
1746 	perf_event__header_size(event->group_leader);
1747 
1748 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 		perf_event__header_size(tmp);
1750 }
1751 
1752 static bool is_orphaned_event(struct perf_event *event)
1753 {
1754 	return event->state == PERF_EVENT_STATE_DEAD;
1755 }
1756 
1757 static inline int __pmu_filter_match(struct perf_event *event)
1758 {
1759 	struct pmu *pmu = event->pmu;
1760 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1761 }
1762 
1763 /*
1764  * Check whether we should attempt to schedule an event group based on
1765  * PMU-specific filtering. An event group can consist of HW and SW events,
1766  * potentially with a SW leader, so we must check all the filters, to
1767  * determine whether a group is schedulable:
1768  */
1769 static inline int pmu_filter_match(struct perf_event *event)
1770 {
1771 	struct perf_event *child;
1772 
1773 	if (!__pmu_filter_match(event))
1774 		return 0;
1775 
1776 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 		if (!__pmu_filter_match(child))
1778 			return 0;
1779 	}
1780 
1781 	return 1;
1782 }
1783 
1784 static inline int
1785 event_filter_match(struct perf_event *event)
1786 {
1787 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 	       perf_cgroup_match(event) && pmu_filter_match(event);
1789 }
1790 
1791 static void
1792 event_sched_out(struct perf_event *event,
1793 		  struct perf_cpu_context *cpuctx,
1794 		  struct perf_event_context *ctx)
1795 {
1796 	u64 tstamp = perf_event_time(event);
1797 	u64 delta;
1798 
1799 	WARN_ON_ONCE(event->ctx != ctx);
1800 	lockdep_assert_held(&ctx->lock);
1801 
1802 	/*
1803 	 * An event which could not be activated because of
1804 	 * filter mismatch still needs to have its timings
1805 	 * maintained, otherwise bogus information is return
1806 	 * via read() for time_enabled, time_running:
1807 	 */
1808 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809 	    !event_filter_match(event)) {
1810 		delta = tstamp - event->tstamp_stopped;
1811 		event->tstamp_running += delta;
1812 		event->tstamp_stopped = tstamp;
1813 	}
1814 
1815 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1816 		return;
1817 
1818 	perf_pmu_disable(event->pmu);
1819 
1820 	event->tstamp_stopped = tstamp;
1821 	event->pmu->del(event, 0);
1822 	event->oncpu = -1;
1823 	event->state = PERF_EVENT_STATE_INACTIVE;
1824 	if (event->pending_disable) {
1825 		event->pending_disable = 0;
1826 		event->state = PERF_EVENT_STATE_OFF;
1827 	}
1828 
1829 	if (!is_software_event(event))
1830 		cpuctx->active_oncpu--;
1831 	if (!--ctx->nr_active)
1832 		perf_event_ctx_deactivate(ctx);
1833 	if (event->attr.freq && event->attr.sample_freq)
1834 		ctx->nr_freq--;
1835 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1836 		cpuctx->exclusive = 0;
1837 
1838 	perf_pmu_enable(event->pmu);
1839 }
1840 
1841 static void
1842 group_sched_out(struct perf_event *group_event,
1843 		struct perf_cpu_context *cpuctx,
1844 		struct perf_event_context *ctx)
1845 {
1846 	struct perf_event *event;
1847 	int state = group_event->state;
1848 
1849 	perf_pmu_disable(ctx->pmu);
1850 
1851 	event_sched_out(group_event, cpuctx, ctx);
1852 
1853 	/*
1854 	 * Schedule out siblings (if any):
1855 	 */
1856 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857 		event_sched_out(event, cpuctx, ctx);
1858 
1859 	perf_pmu_enable(ctx->pmu);
1860 
1861 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1862 		cpuctx->exclusive = 0;
1863 }
1864 
1865 #define DETACH_GROUP	0x01UL
1866 
1867 /*
1868  * Cross CPU call to remove a performance event
1869  *
1870  * We disable the event on the hardware level first. After that we
1871  * remove it from the context list.
1872  */
1873 static void
1874 __perf_remove_from_context(struct perf_event *event,
1875 			   struct perf_cpu_context *cpuctx,
1876 			   struct perf_event_context *ctx,
1877 			   void *info)
1878 {
1879 	unsigned long flags = (unsigned long)info;
1880 
1881 	event_sched_out(event, cpuctx, ctx);
1882 	if (flags & DETACH_GROUP)
1883 		perf_group_detach(event);
1884 	list_del_event(event, ctx);
1885 
1886 	if (!ctx->nr_events && ctx->is_active) {
1887 		ctx->is_active = 0;
1888 		if (ctx->task) {
1889 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890 			cpuctx->task_ctx = NULL;
1891 		}
1892 	}
1893 }
1894 
1895 /*
1896  * Remove the event from a task's (or a CPU's) list of events.
1897  *
1898  * If event->ctx is a cloned context, callers must make sure that
1899  * every task struct that event->ctx->task could possibly point to
1900  * remains valid.  This is OK when called from perf_release since
1901  * that only calls us on the top-level context, which can't be a clone.
1902  * When called from perf_event_exit_task, it's OK because the
1903  * context has been detached from its task.
1904  */
1905 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1906 {
1907 	struct perf_event_context *ctx = event->ctx;
1908 
1909 	lockdep_assert_held(&ctx->mutex);
1910 
1911 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1912 
1913 	/*
1914 	 * The above event_function_call() can NO-OP when it hits
1915 	 * TASK_TOMBSTONE. In that case we must already have been detached
1916 	 * from the context (by perf_event_exit_event()) but the grouping
1917 	 * might still be in-tact.
1918 	 */
1919 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920 	if ((flags & DETACH_GROUP) &&
1921 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1922 		/*
1923 		 * Since in that case we cannot possibly be scheduled, simply
1924 		 * detach now.
1925 		 */
1926 		raw_spin_lock_irq(&ctx->lock);
1927 		perf_group_detach(event);
1928 		raw_spin_unlock_irq(&ctx->lock);
1929 	}
1930 }
1931 
1932 /*
1933  * Cross CPU call to disable a performance event
1934  */
1935 static void __perf_event_disable(struct perf_event *event,
1936 				 struct perf_cpu_context *cpuctx,
1937 				 struct perf_event_context *ctx,
1938 				 void *info)
1939 {
1940 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1941 		return;
1942 
1943 	update_context_time(ctx);
1944 	update_cgrp_time_from_event(event);
1945 	update_group_times(event);
1946 	if (event == event->group_leader)
1947 		group_sched_out(event, cpuctx, ctx);
1948 	else
1949 		event_sched_out(event, cpuctx, ctx);
1950 	event->state = PERF_EVENT_STATE_OFF;
1951 }
1952 
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 	struct perf_event_context *ctx = event->ctx;
1970 
1971 	raw_spin_lock_irq(&ctx->lock);
1972 	if (event->state <= PERF_EVENT_STATE_OFF) {
1973 		raw_spin_unlock_irq(&ctx->lock);
1974 		return;
1975 	}
1976 	raw_spin_unlock_irq(&ctx->lock);
1977 
1978 	event_function_call(event, __perf_event_disable, NULL);
1979 }
1980 
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 	event_function_local(event, __perf_event_disable, NULL);
1984 }
1985 
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 	struct perf_event_context *ctx;
1993 
1994 	ctx = perf_event_ctx_lock(event);
1995 	_perf_event_disable(event);
1996 	perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999 
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 	event->pending_disable = 1;
2003 	irq_work_queue(&event->pending);
2004 }
2005 
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 				 struct perf_event_context *ctx,
2008 				 u64 tstamp)
2009 {
2010 	/*
2011 	 * use the correct time source for the time snapshot
2012 	 *
2013 	 * We could get by without this by leveraging the
2014 	 * fact that to get to this function, the caller
2015 	 * has most likely already called update_context_time()
2016 	 * and update_cgrp_time_xx() and thus both timestamp
2017 	 * are identical (or very close). Given that tstamp is,
2018 	 * already adjusted for cgroup, we could say that:
2019 	 *    tstamp - ctx->timestamp
2020 	 * is equivalent to
2021 	 *    tstamp - cgrp->timestamp.
2022 	 *
2023 	 * Then, in perf_output_read(), the calculation would
2024 	 * work with no changes because:
2025 	 * - event is guaranteed scheduled in
2026 	 * - no scheduled out in between
2027 	 * - thus the timestamp would be the same
2028 	 *
2029 	 * But this is a bit hairy.
2030 	 *
2031 	 * So instead, we have an explicit cgroup call to remain
2032 	 * within the time time source all along. We believe it
2033 	 * is cleaner and simpler to understand.
2034 	 */
2035 	if (is_cgroup_event(event))
2036 		perf_cgroup_set_shadow_time(event, tstamp);
2037 	else
2038 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2039 }
2040 
2041 #define MAX_INTERRUPTS (~0ULL)
2042 
2043 static void perf_log_throttle(struct perf_event *event, int enable);
2044 static void perf_log_itrace_start(struct perf_event *event);
2045 
2046 static int
2047 event_sched_in(struct perf_event *event,
2048 		 struct perf_cpu_context *cpuctx,
2049 		 struct perf_event_context *ctx)
2050 {
2051 	u64 tstamp = perf_event_time(event);
2052 	int ret = 0;
2053 
2054 	lockdep_assert_held(&ctx->lock);
2055 
2056 	if (event->state <= PERF_EVENT_STATE_OFF)
2057 		return 0;
2058 
2059 	WRITE_ONCE(event->oncpu, smp_processor_id());
2060 	/*
2061 	 * Order event::oncpu write to happen before the ACTIVE state
2062 	 * is visible.
2063 	 */
2064 	smp_wmb();
2065 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2066 
2067 	/*
2068 	 * Unthrottle events, since we scheduled we might have missed several
2069 	 * ticks already, also for a heavily scheduling task there is little
2070 	 * guarantee it'll get a tick in a timely manner.
2071 	 */
2072 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073 		perf_log_throttle(event, 1);
2074 		event->hw.interrupts = 0;
2075 	}
2076 
2077 	/*
2078 	 * The new state must be visible before we turn it on in the hardware:
2079 	 */
2080 	smp_wmb();
2081 
2082 	perf_pmu_disable(event->pmu);
2083 
2084 	perf_set_shadow_time(event, ctx, tstamp);
2085 
2086 	perf_log_itrace_start(event);
2087 
2088 	if (event->pmu->add(event, PERF_EF_START)) {
2089 		event->state = PERF_EVENT_STATE_INACTIVE;
2090 		event->oncpu = -1;
2091 		ret = -EAGAIN;
2092 		goto out;
2093 	}
2094 
2095 	event->tstamp_running += tstamp - event->tstamp_stopped;
2096 
2097 	if (!is_software_event(event))
2098 		cpuctx->active_oncpu++;
2099 	if (!ctx->nr_active++)
2100 		perf_event_ctx_activate(ctx);
2101 	if (event->attr.freq && event->attr.sample_freq)
2102 		ctx->nr_freq++;
2103 
2104 	if (event->attr.exclusive)
2105 		cpuctx->exclusive = 1;
2106 
2107 out:
2108 	perf_pmu_enable(event->pmu);
2109 
2110 	return ret;
2111 }
2112 
2113 static int
2114 group_sched_in(struct perf_event *group_event,
2115 	       struct perf_cpu_context *cpuctx,
2116 	       struct perf_event_context *ctx)
2117 {
2118 	struct perf_event *event, *partial_group = NULL;
2119 	struct pmu *pmu = ctx->pmu;
2120 	u64 now = ctx->time;
2121 	bool simulate = false;
2122 
2123 	if (group_event->state == PERF_EVENT_STATE_OFF)
2124 		return 0;
2125 
2126 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2127 
2128 	if (event_sched_in(group_event, cpuctx, ctx)) {
2129 		pmu->cancel_txn(pmu);
2130 		perf_mux_hrtimer_restart(cpuctx);
2131 		return -EAGAIN;
2132 	}
2133 
2134 	/*
2135 	 * Schedule in siblings as one group (if any):
2136 	 */
2137 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2138 		if (event_sched_in(event, cpuctx, ctx)) {
2139 			partial_group = event;
2140 			goto group_error;
2141 		}
2142 	}
2143 
2144 	if (!pmu->commit_txn(pmu))
2145 		return 0;
2146 
2147 group_error:
2148 	/*
2149 	 * Groups can be scheduled in as one unit only, so undo any
2150 	 * partial group before returning:
2151 	 * The events up to the failed event are scheduled out normally,
2152 	 * tstamp_stopped will be updated.
2153 	 *
2154 	 * The failed events and the remaining siblings need to have
2155 	 * their timings updated as if they had gone thru event_sched_in()
2156 	 * and event_sched_out(). This is required to get consistent timings
2157 	 * across the group. This also takes care of the case where the group
2158 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2159 	 * the time the event was actually stopped, such that time delta
2160 	 * calculation in update_event_times() is correct.
2161 	 */
2162 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163 		if (event == partial_group)
2164 			simulate = true;
2165 
2166 		if (simulate) {
2167 			event->tstamp_running += now - event->tstamp_stopped;
2168 			event->tstamp_stopped = now;
2169 		} else {
2170 			event_sched_out(event, cpuctx, ctx);
2171 		}
2172 	}
2173 	event_sched_out(group_event, cpuctx, ctx);
2174 
2175 	pmu->cancel_txn(pmu);
2176 
2177 	perf_mux_hrtimer_restart(cpuctx);
2178 
2179 	return -EAGAIN;
2180 }
2181 
2182 /*
2183  * Work out whether we can put this event group on the CPU now.
2184  */
2185 static int group_can_go_on(struct perf_event *event,
2186 			   struct perf_cpu_context *cpuctx,
2187 			   int can_add_hw)
2188 {
2189 	/*
2190 	 * Groups consisting entirely of software events can always go on.
2191 	 */
2192 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2193 		return 1;
2194 	/*
2195 	 * If an exclusive group is already on, no other hardware
2196 	 * events can go on.
2197 	 */
2198 	if (cpuctx->exclusive)
2199 		return 0;
2200 	/*
2201 	 * If this group is exclusive and there are already
2202 	 * events on the CPU, it can't go on.
2203 	 */
2204 	if (event->attr.exclusive && cpuctx->active_oncpu)
2205 		return 0;
2206 	/*
2207 	 * Otherwise, try to add it if all previous groups were able
2208 	 * to go on.
2209 	 */
2210 	return can_add_hw;
2211 }
2212 
2213 static void add_event_to_ctx(struct perf_event *event,
2214 			       struct perf_event_context *ctx)
2215 {
2216 	u64 tstamp = perf_event_time(event);
2217 
2218 	list_add_event(event, ctx);
2219 	perf_group_attach(event);
2220 	event->tstamp_enabled = tstamp;
2221 	event->tstamp_running = tstamp;
2222 	event->tstamp_stopped = tstamp;
2223 }
2224 
2225 static void ctx_sched_out(struct perf_event_context *ctx,
2226 			  struct perf_cpu_context *cpuctx,
2227 			  enum event_type_t event_type);
2228 static void
2229 ctx_sched_in(struct perf_event_context *ctx,
2230 	     struct perf_cpu_context *cpuctx,
2231 	     enum event_type_t event_type,
2232 	     struct task_struct *task);
2233 
2234 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235 			       struct perf_event_context *ctx,
2236 			       enum event_type_t event_type)
2237 {
2238 	if (!cpuctx->task_ctx)
2239 		return;
2240 
2241 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242 		return;
2243 
2244 	ctx_sched_out(ctx, cpuctx, event_type);
2245 }
2246 
2247 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248 				struct perf_event_context *ctx,
2249 				struct task_struct *task)
2250 {
2251 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252 	if (ctx)
2253 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255 	if (ctx)
2256 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257 }
2258 
2259 /*
2260  * We want to maintain the following priority of scheduling:
2261  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262  *  - task pinned (EVENT_PINNED)
2263  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264  *  - task flexible (EVENT_FLEXIBLE).
2265  *
2266  * In order to avoid unscheduling and scheduling back in everything every
2267  * time an event is added, only do it for the groups of equal priority and
2268  * below.
2269  *
2270  * This can be called after a batch operation on task events, in which case
2271  * event_type is a bit mask of the types of events involved. For CPU events,
2272  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273  */
2274 static void ctx_resched(struct perf_cpu_context *cpuctx,
2275 			struct perf_event_context *task_ctx,
2276 			enum event_type_t event_type)
2277 {
2278 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279 	bool cpu_event = !!(event_type & EVENT_CPU);
2280 
2281 	/*
2282 	 * If pinned groups are involved, flexible groups also need to be
2283 	 * scheduled out.
2284 	 */
2285 	if (event_type & EVENT_PINNED)
2286 		event_type |= EVENT_FLEXIBLE;
2287 
2288 	perf_pmu_disable(cpuctx->ctx.pmu);
2289 	if (task_ctx)
2290 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291 
2292 	/*
2293 	 * Decide which cpu ctx groups to schedule out based on the types
2294 	 * of events that caused rescheduling:
2295 	 *  - EVENT_CPU: schedule out corresponding groups;
2296 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297 	 *  - otherwise, do nothing more.
2298 	 */
2299 	if (cpu_event)
2300 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301 	else if (ctx_event_type & EVENT_PINNED)
2302 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303 
2304 	perf_event_sched_in(cpuctx, task_ctx, current);
2305 	perf_pmu_enable(cpuctx->ctx.pmu);
2306 }
2307 
2308 /*
2309  * Cross CPU call to install and enable a performance event
2310  *
2311  * Very similar to remote_function() + event_function() but cannot assume that
2312  * things like ctx->is_active and cpuctx->task_ctx are set.
2313  */
2314 static int  __perf_install_in_context(void *info)
2315 {
2316 	struct perf_event *event = info;
2317 	struct perf_event_context *ctx = event->ctx;
2318 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2319 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2320 	bool reprogram = true;
2321 	int ret = 0;
2322 
2323 	raw_spin_lock(&cpuctx->ctx.lock);
2324 	if (ctx->task) {
2325 		raw_spin_lock(&ctx->lock);
2326 		task_ctx = ctx;
2327 
2328 		reprogram = (ctx->task == current);
2329 
2330 		/*
2331 		 * If the task is running, it must be running on this CPU,
2332 		 * otherwise we cannot reprogram things.
2333 		 *
2334 		 * If its not running, we don't care, ctx->lock will
2335 		 * serialize against it becoming runnable.
2336 		 */
2337 		if (task_curr(ctx->task) && !reprogram) {
2338 			ret = -ESRCH;
2339 			goto unlock;
2340 		}
2341 
2342 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2343 	} else if (task_ctx) {
2344 		raw_spin_lock(&task_ctx->lock);
2345 	}
2346 
2347 	if (reprogram) {
2348 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349 		add_event_to_ctx(event, ctx);
2350 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2351 	} else {
2352 		add_event_to_ctx(event, ctx);
2353 	}
2354 
2355 unlock:
2356 	perf_ctx_unlock(cpuctx, task_ctx);
2357 
2358 	return ret;
2359 }
2360 
2361 /*
2362  * Attach a performance event to a context.
2363  *
2364  * Very similar to event_function_call, see comment there.
2365  */
2366 static void
2367 perf_install_in_context(struct perf_event_context *ctx,
2368 			struct perf_event *event,
2369 			int cpu)
2370 {
2371 	struct task_struct *task = READ_ONCE(ctx->task);
2372 
2373 	lockdep_assert_held(&ctx->mutex);
2374 
2375 	if (event->cpu != -1)
2376 		event->cpu = cpu;
2377 
2378 	/*
2379 	 * Ensures that if we can observe event->ctx, both the event and ctx
2380 	 * will be 'complete'. See perf_iterate_sb_cpu().
2381 	 */
2382 	smp_store_release(&event->ctx, ctx);
2383 
2384 	if (!task) {
2385 		cpu_function_call(cpu, __perf_install_in_context, event);
2386 		return;
2387 	}
2388 
2389 	/*
2390 	 * Should not happen, we validate the ctx is still alive before calling.
2391 	 */
2392 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393 		return;
2394 
2395 	/*
2396 	 * Installing events is tricky because we cannot rely on ctx->is_active
2397 	 * to be set in case this is the nr_events 0 -> 1 transition.
2398 	 *
2399 	 * Instead we use task_curr(), which tells us if the task is running.
2400 	 * However, since we use task_curr() outside of rq::lock, we can race
2401 	 * against the actual state. This means the result can be wrong.
2402 	 *
2403 	 * If we get a false positive, we retry, this is harmless.
2404 	 *
2405 	 * If we get a false negative, things are complicated. If we are after
2406 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407 	 * value must be correct. If we're before, it doesn't matter since
2408 	 * perf_event_context_sched_in() will program the counter.
2409 	 *
2410 	 * However, this hinges on the remote context switch having observed
2411 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2412 	 * ctx::lock in perf_event_context_sched_in().
2413 	 *
2414 	 * We do this by task_function_call(), if the IPI fails to hit the task
2415 	 * we know any future context switch of task must see the
2416 	 * perf_event_ctpx[] store.
2417 	 */
2418 
2419 	/*
2420 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421 	 * task_cpu() load, such that if the IPI then does not find the task
2422 	 * running, a future context switch of that task must observe the
2423 	 * store.
2424 	 */
2425 	smp_mb();
2426 again:
2427 	if (!task_function_call(task, __perf_install_in_context, event))
2428 		return;
2429 
2430 	raw_spin_lock_irq(&ctx->lock);
2431 	task = ctx->task;
2432 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2433 		/*
2434 		 * Cannot happen because we already checked above (which also
2435 		 * cannot happen), and we hold ctx->mutex, which serializes us
2436 		 * against perf_event_exit_task_context().
2437 		 */
2438 		raw_spin_unlock_irq(&ctx->lock);
2439 		return;
2440 	}
2441 	/*
2442 	 * If the task is not running, ctx->lock will avoid it becoming so,
2443 	 * thus we can safely install the event.
2444 	 */
2445 	if (task_curr(task)) {
2446 		raw_spin_unlock_irq(&ctx->lock);
2447 		goto again;
2448 	}
2449 	add_event_to_ctx(event, ctx);
2450 	raw_spin_unlock_irq(&ctx->lock);
2451 }
2452 
2453 /*
2454  * Put a event into inactive state and update time fields.
2455  * Enabling the leader of a group effectively enables all
2456  * the group members that aren't explicitly disabled, so we
2457  * have to update their ->tstamp_enabled also.
2458  * Note: this works for group members as well as group leaders
2459  * since the non-leader members' sibling_lists will be empty.
2460  */
2461 static void __perf_event_mark_enabled(struct perf_event *event)
2462 {
2463 	struct perf_event *sub;
2464 	u64 tstamp = perf_event_time(event);
2465 
2466 	event->state = PERF_EVENT_STATE_INACTIVE;
2467 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2468 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2469 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2471 	}
2472 }
2473 
2474 /*
2475  * Cross CPU call to enable a performance event
2476  */
2477 static void __perf_event_enable(struct perf_event *event,
2478 				struct perf_cpu_context *cpuctx,
2479 				struct perf_event_context *ctx,
2480 				void *info)
2481 {
2482 	struct perf_event *leader = event->group_leader;
2483 	struct perf_event_context *task_ctx;
2484 
2485 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486 	    event->state <= PERF_EVENT_STATE_ERROR)
2487 		return;
2488 
2489 	if (ctx->is_active)
2490 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491 
2492 	__perf_event_mark_enabled(event);
2493 
2494 	if (!ctx->is_active)
2495 		return;
2496 
2497 	if (!event_filter_match(event)) {
2498 		if (is_cgroup_event(event))
2499 			perf_cgroup_defer_enabled(event);
2500 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2501 		return;
2502 	}
2503 
2504 	/*
2505 	 * If the event is in a group and isn't the group leader,
2506 	 * then don't put it on unless the group is on.
2507 	 */
2508 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2510 		return;
2511 	}
2512 
2513 	task_ctx = cpuctx->task_ctx;
2514 	if (ctx->task)
2515 		WARN_ON_ONCE(task_ctx != ctx);
2516 
2517 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2518 }
2519 
2520 /*
2521  * Enable a event.
2522  *
2523  * If event->ctx is a cloned context, callers must make sure that
2524  * every task struct that event->ctx->task could possibly point to
2525  * remains valid.  This condition is satisfied when called through
2526  * perf_event_for_each_child or perf_event_for_each as described
2527  * for perf_event_disable.
2528  */
2529 static void _perf_event_enable(struct perf_event *event)
2530 {
2531 	struct perf_event_context *ctx = event->ctx;
2532 
2533 	raw_spin_lock_irq(&ctx->lock);
2534 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535 	    event->state <  PERF_EVENT_STATE_ERROR) {
2536 		raw_spin_unlock_irq(&ctx->lock);
2537 		return;
2538 	}
2539 
2540 	/*
2541 	 * If the event is in error state, clear that first.
2542 	 *
2543 	 * That way, if we see the event in error state below, we know that it
2544 	 * has gone back into error state, as distinct from the task having
2545 	 * been scheduled away before the cross-call arrived.
2546 	 */
2547 	if (event->state == PERF_EVENT_STATE_ERROR)
2548 		event->state = PERF_EVENT_STATE_OFF;
2549 	raw_spin_unlock_irq(&ctx->lock);
2550 
2551 	event_function_call(event, __perf_event_enable, NULL);
2552 }
2553 
2554 /*
2555  * See perf_event_disable();
2556  */
2557 void perf_event_enable(struct perf_event *event)
2558 {
2559 	struct perf_event_context *ctx;
2560 
2561 	ctx = perf_event_ctx_lock(event);
2562 	_perf_event_enable(event);
2563 	perf_event_ctx_unlock(event, ctx);
2564 }
2565 EXPORT_SYMBOL_GPL(perf_event_enable);
2566 
2567 struct stop_event_data {
2568 	struct perf_event	*event;
2569 	unsigned int		restart;
2570 };
2571 
2572 static int __perf_event_stop(void *info)
2573 {
2574 	struct stop_event_data *sd = info;
2575 	struct perf_event *event = sd->event;
2576 
2577 	/* if it's already INACTIVE, do nothing */
2578 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579 		return 0;
2580 
2581 	/* matches smp_wmb() in event_sched_in() */
2582 	smp_rmb();
2583 
2584 	/*
2585 	 * There is a window with interrupts enabled before we get here,
2586 	 * so we need to check again lest we try to stop another CPU's event.
2587 	 */
2588 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2589 		return -EAGAIN;
2590 
2591 	event->pmu->stop(event, PERF_EF_UPDATE);
2592 
2593 	/*
2594 	 * May race with the actual stop (through perf_pmu_output_stop()),
2595 	 * but it is only used for events with AUX ring buffer, and such
2596 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2597 	 * see comments in perf_aux_output_begin().
2598 	 *
2599 	 * Since this is happening on a event-local CPU, no trace is lost
2600 	 * while restarting.
2601 	 */
2602 	if (sd->restart)
2603 		event->pmu->start(event, 0);
2604 
2605 	return 0;
2606 }
2607 
2608 static int perf_event_stop(struct perf_event *event, int restart)
2609 {
2610 	struct stop_event_data sd = {
2611 		.event		= event,
2612 		.restart	= restart,
2613 	};
2614 	int ret = 0;
2615 
2616 	do {
2617 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618 			return 0;
2619 
2620 		/* matches smp_wmb() in event_sched_in() */
2621 		smp_rmb();
2622 
2623 		/*
2624 		 * We only want to restart ACTIVE events, so if the event goes
2625 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2626 		 * fall through with ret==-ENXIO.
2627 		 */
2628 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2629 					__perf_event_stop, &sd);
2630 	} while (ret == -EAGAIN);
2631 
2632 	return ret;
2633 }
2634 
2635 /*
2636  * In order to contain the amount of racy and tricky in the address filter
2637  * configuration management, it is a two part process:
2638  *
2639  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640  *      we update the addresses of corresponding vmas in
2641  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2642  * (p2) when an event is scheduled in (pmu::add), it calls
2643  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644  *      if the generation has changed since the previous call.
2645  *
2646  * If (p1) happens while the event is active, we restart it to force (p2).
2647  *
2648  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2650  *     ioctl;
2651  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2653  *     for reading;
2654  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655  *     of exec.
2656  */
2657 void perf_event_addr_filters_sync(struct perf_event *event)
2658 {
2659 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660 
2661 	if (!has_addr_filter(event))
2662 		return;
2663 
2664 	raw_spin_lock(&ifh->lock);
2665 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666 		event->pmu->addr_filters_sync(event);
2667 		event->hw.addr_filters_gen = event->addr_filters_gen;
2668 	}
2669 	raw_spin_unlock(&ifh->lock);
2670 }
2671 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672 
2673 static int _perf_event_refresh(struct perf_event *event, int refresh)
2674 {
2675 	/*
2676 	 * not supported on inherited events
2677 	 */
2678 	if (event->attr.inherit || !is_sampling_event(event))
2679 		return -EINVAL;
2680 
2681 	atomic_add(refresh, &event->event_limit);
2682 	_perf_event_enable(event);
2683 
2684 	return 0;
2685 }
2686 
2687 /*
2688  * See perf_event_disable()
2689  */
2690 int perf_event_refresh(struct perf_event *event, int refresh)
2691 {
2692 	struct perf_event_context *ctx;
2693 	int ret;
2694 
2695 	ctx = perf_event_ctx_lock(event);
2696 	ret = _perf_event_refresh(event, refresh);
2697 	perf_event_ctx_unlock(event, ctx);
2698 
2699 	return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(perf_event_refresh);
2702 
2703 static void ctx_sched_out(struct perf_event_context *ctx,
2704 			  struct perf_cpu_context *cpuctx,
2705 			  enum event_type_t event_type)
2706 {
2707 	int is_active = ctx->is_active;
2708 	struct perf_event *event;
2709 
2710 	lockdep_assert_held(&ctx->lock);
2711 
2712 	if (likely(!ctx->nr_events)) {
2713 		/*
2714 		 * See __perf_remove_from_context().
2715 		 */
2716 		WARN_ON_ONCE(ctx->is_active);
2717 		if (ctx->task)
2718 			WARN_ON_ONCE(cpuctx->task_ctx);
2719 		return;
2720 	}
2721 
2722 	ctx->is_active &= ~event_type;
2723 	if (!(ctx->is_active & EVENT_ALL))
2724 		ctx->is_active = 0;
2725 
2726 	if (ctx->task) {
2727 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728 		if (!ctx->is_active)
2729 			cpuctx->task_ctx = NULL;
2730 	}
2731 
2732 	/*
2733 	 * Always update time if it was set; not only when it changes.
2734 	 * Otherwise we can 'forget' to update time for any but the last
2735 	 * context we sched out. For example:
2736 	 *
2737 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2739 	 *
2740 	 * would only update time for the pinned events.
2741 	 */
2742 	if (is_active & EVENT_TIME) {
2743 		/* update (and stop) ctx time */
2744 		update_context_time(ctx);
2745 		update_cgrp_time_from_cpuctx(cpuctx);
2746 	}
2747 
2748 	is_active ^= ctx->is_active; /* changed bits */
2749 
2750 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2751 		return;
2752 
2753 	perf_pmu_disable(ctx->pmu);
2754 	if (is_active & EVENT_PINNED) {
2755 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756 			group_sched_out(event, cpuctx, ctx);
2757 	}
2758 
2759 	if (is_active & EVENT_FLEXIBLE) {
2760 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2761 			group_sched_out(event, cpuctx, ctx);
2762 	}
2763 	perf_pmu_enable(ctx->pmu);
2764 }
2765 
2766 /*
2767  * Test whether two contexts are equivalent, i.e. whether they have both been
2768  * cloned from the same version of the same context.
2769  *
2770  * Equivalence is measured using a generation number in the context that is
2771  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772  * and list_del_event().
2773  */
2774 static int context_equiv(struct perf_event_context *ctx1,
2775 			 struct perf_event_context *ctx2)
2776 {
2777 	lockdep_assert_held(&ctx1->lock);
2778 	lockdep_assert_held(&ctx2->lock);
2779 
2780 	/* Pinning disables the swap optimization */
2781 	if (ctx1->pin_count || ctx2->pin_count)
2782 		return 0;
2783 
2784 	/* If ctx1 is the parent of ctx2 */
2785 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786 		return 1;
2787 
2788 	/* If ctx2 is the parent of ctx1 */
2789 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790 		return 1;
2791 
2792 	/*
2793 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2794 	 * hierarchy, see perf_event_init_context().
2795 	 */
2796 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797 			ctx1->parent_gen == ctx2->parent_gen)
2798 		return 1;
2799 
2800 	/* Unmatched */
2801 	return 0;
2802 }
2803 
2804 static void __perf_event_sync_stat(struct perf_event *event,
2805 				     struct perf_event *next_event)
2806 {
2807 	u64 value;
2808 
2809 	if (!event->attr.inherit_stat)
2810 		return;
2811 
2812 	/*
2813 	 * Update the event value, we cannot use perf_event_read()
2814 	 * because we're in the middle of a context switch and have IRQs
2815 	 * disabled, which upsets smp_call_function_single(), however
2816 	 * we know the event must be on the current CPU, therefore we
2817 	 * don't need to use it.
2818 	 */
2819 	switch (event->state) {
2820 	case PERF_EVENT_STATE_ACTIVE:
2821 		event->pmu->read(event);
2822 		/* fall-through */
2823 
2824 	case PERF_EVENT_STATE_INACTIVE:
2825 		update_event_times(event);
2826 		break;
2827 
2828 	default:
2829 		break;
2830 	}
2831 
2832 	/*
2833 	 * In order to keep per-task stats reliable we need to flip the event
2834 	 * values when we flip the contexts.
2835 	 */
2836 	value = local64_read(&next_event->count);
2837 	value = local64_xchg(&event->count, value);
2838 	local64_set(&next_event->count, value);
2839 
2840 	swap(event->total_time_enabled, next_event->total_time_enabled);
2841 	swap(event->total_time_running, next_event->total_time_running);
2842 
2843 	/*
2844 	 * Since we swizzled the values, update the user visible data too.
2845 	 */
2846 	perf_event_update_userpage(event);
2847 	perf_event_update_userpage(next_event);
2848 }
2849 
2850 static void perf_event_sync_stat(struct perf_event_context *ctx,
2851 				   struct perf_event_context *next_ctx)
2852 {
2853 	struct perf_event *event, *next_event;
2854 
2855 	if (!ctx->nr_stat)
2856 		return;
2857 
2858 	update_context_time(ctx);
2859 
2860 	event = list_first_entry(&ctx->event_list,
2861 				   struct perf_event, event_entry);
2862 
2863 	next_event = list_first_entry(&next_ctx->event_list,
2864 					struct perf_event, event_entry);
2865 
2866 	while (&event->event_entry != &ctx->event_list &&
2867 	       &next_event->event_entry != &next_ctx->event_list) {
2868 
2869 		__perf_event_sync_stat(event, next_event);
2870 
2871 		event = list_next_entry(event, event_entry);
2872 		next_event = list_next_entry(next_event, event_entry);
2873 	}
2874 }
2875 
2876 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877 					 struct task_struct *next)
2878 {
2879 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2880 	struct perf_event_context *next_ctx;
2881 	struct perf_event_context *parent, *next_parent;
2882 	struct perf_cpu_context *cpuctx;
2883 	int do_switch = 1;
2884 
2885 	if (likely(!ctx))
2886 		return;
2887 
2888 	cpuctx = __get_cpu_context(ctx);
2889 	if (!cpuctx->task_ctx)
2890 		return;
2891 
2892 	rcu_read_lock();
2893 	next_ctx = next->perf_event_ctxp[ctxn];
2894 	if (!next_ctx)
2895 		goto unlock;
2896 
2897 	parent = rcu_dereference(ctx->parent_ctx);
2898 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2899 
2900 	/* If neither context have a parent context; they cannot be clones. */
2901 	if (!parent && !next_parent)
2902 		goto unlock;
2903 
2904 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2905 		/*
2906 		 * Looks like the two contexts are clones, so we might be
2907 		 * able to optimize the context switch.  We lock both
2908 		 * contexts and check that they are clones under the
2909 		 * lock (including re-checking that neither has been
2910 		 * uncloned in the meantime).  It doesn't matter which
2911 		 * order we take the locks because no other cpu could
2912 		 * be trying to lock both of these tasks.
2913 		 */
2914 		raw_spin_lock(&ctx->lock);
2915 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2916 		if (context_equiv(ctx, next_ctx)) {
2917 			WRITE_ONCE(ctx->task, next);
2918 			WRITE_ONCE(next_ctx->task, task);
2919 
2920 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921 
2922 			/*
2923 			 * RCU_INIT_POINTER here is safe because we've not
2924 			 * modified the ctx and the above modification of
2925 			 * ctx->task and ctx->task_ctx_data are immaterial
2926 			 * since those values are always verified under
2927 			 * ctx->lock which we're now holding.
2928 			 */
2929 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931 
2932 			do_switch = 0;
2933 
2934 			perf_event_sync_stat(ctx, next_ctx);
2935 		}
2936 		raw_spin_unlock(&next_ctx->lock);
2937 		raw_spin_unlock(&ctx->lock);
2938 	}
2939 unlock:
2940 	rcu_read_unlock();
2941 
2942 	if (do_switch) {
2943 		raw_spin_lock(&ctx->lock);
2944 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2945 		raw_spin_unlock(&ctx->lock);
2946 	}
2947 }
2948 
2949 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950 
2951 void perf_sched_cb_dec(struct pmu *pmu)
2952 {
2953 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954 
2955 	this_cpu_dec(perf_sched_cb_usages);
2956 
2957 	if (!--cpuctx->sched_cb_usage)
2958 		list_del(&cpuctx->sched_cb_entry);
2959 }
2960 
2961 
2962 void perf_sched_cb_inc(struct pmu *pmu)
2963 {
2964 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965 
2966 	if (!cpuctx->sched_cb_usage++)
2967 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968 
2969 	this_cpu_inc(perf_sched_cb_usages);
2970 }
2971 
2972 /*
2973  * This function provides the context switch callback to the lower code
2974  * layer. It is invoked ONLY when the context switch callback is enabled.
2975  *
2976  * This callback is relevant even to per-cpu events; for example multi event
2977  * PEBS requires this to provide PID/TID information. This requires we flush
2978  * all queued PEBS records before we context switch to a new task.
2979  */
2980 static void perf_pmu_sched_task(struct task_struct *prev,
2981 				struct task_struct *next,
2982 				bool sched_in)
2983 {
2984 	struct perf_cpu_context *cpuctx;
2985 	struct pmu *pmu;
2986 
2987 	if (prev == next)
2988 		return;
2989 
2990 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2991 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2992 
2993 		if (WARN_ON_ONCE(!pmu->sched_task))
2994 			continue;
2995 
2996 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997 		perf_pmu_disable(pmu);
2998 
2999 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3000 
3001 		perf_pmu_enable(pmu);
3002 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3003 	}
3004 }
3005 
3006 static void perf_event_switch(struct task_struct *task,
3007 			      struct task_struct *next_prev, bool sched_in);
3008 
3009 #define for_each_task_context_nr(ctxn)					\
3010 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011 
3012 /*
3013  * Called from scheduler to remove the events of the current task,
3014  * with interrupts disabled.
3015  *
3016  * We stop each event and update the event value in event->count.
3017  *
3018  * This does not protect us against NMI, but disable()
3019  * sets the disabled bit in the control field of event _before_
3020  * accessing the event control register. If a NMI hits, then it will
3021  * not restart the event.
3022  */
3023 void __perf_event_task_sched_out(struct task_struct *task,
3024 				 struct task_struct *next)
3025 {
3026 	int ctxn;
3027 
3028 	if (__this_cpu_read(perf_sched_cb_usages))
3029 		perf_pmu_sched_task(task, next, false);
3030 
3031 	if (atomic_read(&nr_switch_events))
3032 		perf_event_switch(task, next, false);
3033 
3034 	for_each_task_context_nr(ctxn)
3035 		perf_event_context_sched_out(task, ctxn, next);
3036 
3037 	/*
3038 	 * if cgroup events exist on this CPU, then we need
3039 	 * to check if we have to switch out PMU state.
3040 	 * cgroup event are system-wide mode only
3041 	 */
3042 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3043 		perf_cgroup_sched_out(task, next);
3044 }
3045 
3046 /*
3047  * Called with IRQs disabled
3048  */
3049 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050 			      enum event_type_t event_type)
3051 {
3052 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3053 }
3054 
3055 static void
3056 ctx_pinned_sched_in(struct perf_event_context *ctx,
3057 		    struct perf_cpu_context *cpuctx)
3058 {
3059 	struct perf_event *event;
3060 
3061 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062 		if (event->state <= PERF_EVENT_STATE_OFF)
3063 			continue;
3064 		if (!event_filter_match(event))
3065 			continue;
3066 
3067 		/* may need to reset tstamp_enabled */
3068 		if (is_cgroup_event(event))
3069 			perf_cgroup_mark_enabled(event, ctx);
3070 
3071 		if (group_can_go_on(event, cpuctx, 1))
3072 			group_sched_in(event, cpuctx, ctx);
3073 
3074 		/*
3075 		 * If this pinned group hasn't been scheduled,
3076 		 * put it in error state.
3077 		 */
3078 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079 			update_group_times(event);
3080 			event->state = PERF_EVENT_STATE_ERROR;
3081 		}
3082 	}
3083 }
3084 
3085 static void
3086 ctx_flexible_sched_in(struct perf_event_context *ctx,
3087 		      struct perf_cpu_context *cpuctx)
3088 {
3089 	struct perf_event *event;
3090 	int can_add_hw = 1;
3091 
3092 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093 		/* Ignore events in OFF or ERROR state */
3094 		if (event->state <= PERF_EVENT_STATE_OFF)
3095 			continue;
3096 		/*
3097 		 * Listen to the 'cpu' scheduling filter constraint
3098 		 * of events:
3099 		 */
3100 		if (!event_filter_match(event))
3101 			continue;
3102 
3103 		/* may need to reset tstamp_enabled */
3104 		if (is_cgroup_event(event))
3105 			perf_cgroup_mark_enabled(event, ctx);
3106 
3107 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3108 			if (group_sched_in(event, cpuctx, ctx))
3109 				can_add_hw = 0;
3110 		}
3111 	}
3112 }
3113 
3114 static void
3115 ctx_sched_in(struct perf_event_context *ctx,
3116 	     struct perf_cpu_context *cpuctx,
3117 	     enum event_type_t event_type,
3118 	     struct task_struct *task)
3119 {
3120 	int is_active = ctx->is_active;
3121 	u64 now;
3122 
3123 	lockdep_assert_held(&ctx->lock);
3124 
3125 	if (likely(!ctx->nr_events))
3126 		return;
3127 
3128 	ctx->is_active |= (event_type | EVENT_TIME);
3129 	if (ctx->task) {
3130 		if (!is_active)
3131 			cpuctx->task_ctx = ctx;
3132 		else
3133 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134 	}
3135 
3136 	is_active ^= ctx->is_active; /* changed bits */
3137 
3138 	if (is_active & EVENT_TIME) {
3139 		/* start ctx time */
3140 		now = perf_clock();
3141 		ctx->timestamp = now;
3142 		perf_cgroup_set_timestamp(task, ctx);
3143 	}
3144 
3145 	/*
3146 	 * First go through the list and put on any pinned groups
3147 	 * in order to give them the best chance of going on.
3148 	 */
3149 	if (is_active & EVENT_PINNED)
3150 		ctx_pinned_sched_in(ctx, cpuctx);
3151 
3152 	/* Then walk through the lower prio flexible groups */
3153 	if (is_active & EVENT_FLEXIBLE)
3154 		ctx_flexible_sched_in(ctx, cpuctx);
3155 }
3156 
3157 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3158 			     enum event_type_t event_type,
3159 			     struct task_struct *task)
3160 {
3161 	struct perf_event_context *ctx = &cpuctx->ctx;
3162 
3163 	ctx_sched_in(ctx, cpuctx, event_type, task);
3164 }
3165 
3166 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167 					struct task_struct *task)
3168 {
3169 	struct perf_cpu_context *cpuctx;
3170 
3171 	cpuctx = __get_cpu_context(ctx);
3172 	if (cpuctx->task_ctx == ctx)
3173 		return;
3174 
3175 	perf_ctx_lock(cpuctx, ctx);
3176 	perf_pmu_disable(ctx->pmu);
3177 	/*
3178 	 * We want to keep the following priority order:
3179 	 * cpu pinned (that don't need to move), task pinned,
3180 	 * cpu flexible, task flexible.
3181 	 *
3182 	 * However, if task's ctx is not carrying any pinned
3183 	 * events, no need to flip the cpuctx's events around.
3184 	 */
3185 	if (!list_empty(&ctx->pinned_groups))
3186 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3187 	perf_event_sched_in(cpuctx, ctx, task);
3188 	perf_pmu_enable(ctx->pmu);
3189 	perf_ctx_unlock(cpuctx, ctx);
3190 }
3191 
3192 /*
3193  * Called from scheduler to add the events of the current task
3194  * with interrupts disabled.
3195  *
3196  * We restore the event value and then enable it.
3197  *
3198  * This does not protect us against NMI, but enable()
3199  * sets the enabled bit in the control field of event _before_
3200  * accessing the event control register. If a NMI hits, then it will
3201  * keep the event running.
3202  */
3203 void __perf_event_task_sched_in(struct task_struct *prev,
3204 				struct task_struct *task)
3205 {
3206 	struct perf_event_context *ctx;
3207 	int ctxn;
3208 
3209 	/*
3210 	 * If cgroup events exist on this CPU, then we need to check if we have
3211 	 * to switch in PMU state; cgroup event are system-wide mode only.
3212 	 *
3213 	 * Since cgroup events are CPU events, we must schedule these in before
3214 	 * we schedule in the task events.
3215 	 */
3216 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217 		perf_cgroup_sched_in(prev, task);
3218 
3219 	for_each_task_context_nr(ctxn) {
3220 		ctx = task->perf_event_ctxp[ctxn];
3221 		if (likely(!ctx))
3222 			continue;
3223 
3224 		perf_event_context_sched_in(ctx, task);
3225 	}
3226 
3227 	if (atomic_read(&nr_switch_events))
3228 		perf_event_switch(task, prev, true);
3229 
3230 	if (__this_cpu_read(perf_sched_cb_usages))
3231 		perf_pmu_sched_task(prev, task, true);
3232 }
3233 
3234 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235 {
3236 	u64 frequency = event->attr.sample_freq;
3237 	u64 sec = NSEC_PER_SEC;
3238 	u64 divisor, dividend;
3239 
3240 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3241 
3242 	count_fls = fls64(count);
3243 	nsec_fls = fls64(nsec);
3244 	frequency_fls = fls64(frequency);
3245 	sec_fls = 30;
3246 
3247 	/*
3248 	 * We got @count in @nsec, with a target of sample_freq HZ
3249 	 * the target period becomes:
3250 	 *
3251 	 *             @count * 10^9
3252 	 * period = -------------------
3253 	 *          @nsec * sample_freq
3254 	 *
3255 	 */
3256 
3257 	/*
3258 	 * Reduce accuracy by one bit such that @a and @b converge
3259 	 * to a similar magnitude.
3260 	 */
3261 #define REDUCE_FLS(a, b)		\
3262 do {					\
3263 	if (a##_fls > b##_fls) {	\
3264 		a >>= 1;		\
3265 		a##_fls--;		\
3266 	} else {			\
3267 		b >>= 1;		\
3268 		b##_fls--;		\
3269 	}				\
3270 } while (0)
3271 
3272 	/*
3273 	 * Reduce accuracy until either term fits in a u64, then proceed with
3274 	 * the other, so that finally we can do a u64/u64 division.
3275 	 */
3276 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277 		REDUCE_FLS(nsec, frequency);
3278 		REDUCE_FLS(sec, count);
3279 	}
3280 
3281 	if (count_fls + sec_fls > 64) {
3282 		divisor = nsec * frequency;
3283 
3284 		while (count_fls + sec_fls > 64) {
3285 			REDUCE_FLS(count, sec);
3286 			divisor >>= 1;
3287 		}
3288 
3289 		dividend = count * sec;
3290 	} else {
3291 		dividend = count * sec;
3292 
3293 		while (nsec_fls + frequency_fls > 64) {
3294 			REDUCE_FLS(nsec, frequency);
3295 			dividend >>= 1;
3296 		}
3297 
3298 		divisor = nsec * frequency;
3299 	}
3300 
3301 	if (!divisor)
3302 		return dividend;
3303 
3304 	return div64_u64(dividend, divisor);
3305 }
3306 
3307 static DEFINE_PER_CPU(int, perf_throttled_count);
3308 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309 
3310 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3311 {
3312 	struct hw_perf_event *hwc = &event->hw;
3313 	s64 period, sample_period;
3314 	s64 delta;
3315 
3316 	period = perf_calculate_period(event, nsec, count);
3317 
3318 	delta = (s64)(period - hwc->sample_period);
3319 	delta = (delta + 7) / 8; /* low pass filter */
3320 
3321 	sample_period = hwc->sample_period + delta;
3322 
3323 	if (!sample_period)
3324 		sample_period = 1;
3325 
3326 	hwc->sample_period = sample_period;
3327 
3328 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3329 		if (disable)
3330 			event->pmu->stop(event, PERF_EF_UPDATE);
3331 
3332 		local64_set(&hwc->period_left, 0);
3333 
3334 		if (disable)
3335 			event->pmu->start(event, PERF_EF_RELOAD);
3336 	}
3337 }
3338 
3339 /*
3340  * combine freq adjustment with unthrottling to avoid two passes over the
3341  * events. At the same time, make sure, having freq events does not change
3342  * the rate of unthrottling as that would introduce bias.
3343  */
3344 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345 					   int needs_unthr)
3346 {
3347 	struct perf_event *event;
3348 	struct hw_perf_event *hwc;
3349 	u64 now, period = TICK_NSEC;
3350 	s64 delta;
3351 
3352 	/*
3353 	 * only need to iterate over all events iff:
3354 	 * - context have events in frequency mode (needs freq adjust)
3355 	 * - there are events to unthrottle on this cpu
3356 	 */
3357 	if (!(ctx->nr_freq || needs_unthr))
3358 		return;
3359 
3360 	raw_spin_lock(&ctx->lock);
3361 	perf_pmu_disable(ctx->pmu);
3362 
3363 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3364 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3365 			continue;
3366 
3367 		if (!event_filter_match(event))
3368 			continue;
3369 
3370 		perf_pmu_disable(event->pmu);
3371 
3372 		hwc = &event->hw;
3373 
3374 		if (hwc->interrupts == MAX_INTERRUPTS) {
3375 			hwc->interrupts = 0;
3376 			perf_log_throttle(event, 1);
3377 			event->pmu->start(event, 0);
3378 		}
3379 
3380 		if (!event->attr.freq || !event->attr.sample_freq)
3381 			goto next;
3382 
3383 		/*
3384 		 * stop the event and update event->count
3385 		 */
3386 		event->pmu->stop(event, PERF_EF_UPDATE);
3387 
3388 		now = local64_read(&event->count);
3389 		delta = now - hwc->freq_count_stamp;
3390 		hwc->freq_count_stamp = now;
3391 
3392 		/*
3393 		 * restart the event
3394 		 * reload only if value has changed
3395 		 * we have stopped the event so tell that
3396 		 * to perf_adjust_period() to avoid stopping it
3397 		 * twice.
3398 		 */
3399 		if (delta > 0)
3400 			perf_adjust_period(event, period, delta, false);
3401 
3402 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3403 	next:
3404 		perf_pmu_enable(event->pmu);
3405 	}
3406 
3407 	perf_pmu_enable(ctx->pmu);
3408 	raw_spin_unlock(&ctx->lock);
3409 }
3410 
3411 /*
3412  * Round-robin a context's events:
3413  */
3414 static void rotate_ctx(struct perf_event_context *ctx)
3415 {
3416 	/*
3417 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3418 	 * disabled by the inheritance code.
3419 	 */
3420 	if (!ctx->rotate_disable)
3421 		list_rotate_left(&ctx->flexible_groups);
3422 }
3423 
3424 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3425 {
3426 	struct perf_event_context *ctx = NULL;
3427 	int rotate = 0;
3428 
3429 	if (cpuctx->ctx.nr_events) {
3430 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431 			rotate = 1;
3432 	}
3433 
3434 	ctx = cpuctx->task_ctx;
3435 	if (ctx && ctx->nr_events) {
3436 		if (ctx->nr_events != ctx->nr_active)
3437 			rotate = 1;
3438 	}
3439 
3440 	if (!rotate)
3441 		goto done;
3442 
3443 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3444 	perf_pmu_disable(cpuctx->ctx.pmu);
3445 
3446 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447 	if (ctx)
3448 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3449 
3450 	rotate_ctx(&cpuctx->ctx);
3451 	if (ctx)
3452 		rotate_ctx(ctx);
3453 
3454 	perf_event_sched_in(cpuctx, ctx, current);
3455 
3456 	perf_pmu_enable(cpuctx->ctx.pmu);
3457 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3458 done:
3459 
3460 	return rotate;
3461 }
3462 
3463 void perf_event_task_tick(void)
3464 {
3465 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466 	struct perf_event_context *ctx, *tmp;
3467 	int throttled;
3468 
3469 	WARN_ON(!irqs_disabled());
3470 
3471 	__this_cpu_inc(perf_throttled_seq);
3472 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3473 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3474 
3475 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3476 		perf_adjust_freq_unthr_context(ctx, throttled);
3477 }
3478 
3479 static int event_enable_on_exec(struct perf_event *event,
3480 				struct perf_event_context *ctx)
3481 {
3482 	if (!event->attr.enable_on_exec)
3483 		return 0;
3484 
3485 	event->attr.enable_on_exec = 0;
3486 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487 		return 0;
3488 
3489 	__perf_event_mark_enabled(event);
3490 
3491 	return 1;
3492 }
3493 
3494 /*
3495  * Enable all of a task's events that have been marked enable-on-exec.
3496  * This expects task == current.
3497  */
3498 static void perf_event_enable_on_exec(int ctxn)
3499 {
3500 	struct perf_event_context *ctx, *clone_ctx = NULL;
3501 	enum event_type_t event_type = 0;
3502 	struct perf_cpu_context *cpuctx;
3503 	struct perf_event *event;
3504 	unsigned long flags;
3505 	int enabled = 0;
3506 
3507 	local_irq_save(flags);
3508 	ctx = current->perf_event_ctxp[ctxn];
3509 	if (!ctx || !ctx->nr_events)
3510 		goto out;
3511 
3512 	cpuctx = __get_cpu_context(ctx);
3513 	perf_ctx_lock(cpuctx, ctx);
3514 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3515 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3516 		enabled |= event_enable_on_exec(event, ctx);
3517 		event_type |= get_event_type(event);
3518 	}
3519 
3520 	/*
3521 	 * Unclone and reschedule this context if we enabled any event.
3522 	 */
3523 	if (enabled) {
3524 		clone_ctx = unclone_ctx(ctx);
3525 		ctx_resched(cpuctx, ctx, event_type);
3526 	} else {
3527 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3528 	}
3529 	perf_ctx_unlock(cpuctx, ctx);
3530 
3531 out:
3532 	local_irq_restore(flags);
3533 
3534 	if (clone_ctx)
3535 		put_ctx(clone_ctx);
3536 }
3537 
3538 struct perf_read_data {
3539 	struct perf_event *event;
3540 	bool group;
3541 	int ret;
3542 };
3543 
3544 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3545 {
3546 	u16 local_pkg, event_pkg;
3547 
3548 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3549 		int local_cpu = smp_processor_id();
3550 
3551 		event_pkg = topology_physical_package_id(event_cpu);
3552 		local_pkg = topology_physical_package_id(local_cpu);
3553 
3554 		if (event_pkg == local_pkg)
3555 			return local_cpu;
3556 	}
3557 
3558 	return event_cpu;
3559 }
3560 
3561 /*
3562  * Cross CPU call to read the hardware event
3563  */
3564 static void __perf_event_read(void *info)
3565 {
3566 	struct perf_read_data *data = info;
3567 	struct perf_event *sub, *event = data->event;
3568 	struct perf_event_context *ctx = event->ctx;
3569 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3570 	struct pmu *pmu = event->pmu;
3571 
3572 	/*
3573 	 * If this is a task context, we need to check whether it is
3574 	 * the current task context of this cpu.  If not it has been
3575 	 * scheduled out before the smp call arrived.  In that case
3576 	 * event->count would have been updated to a recent sample
3577 	 * when the event was scheduled out.
3578 	 */
3579 	if (ctx->task && cpuctx->task_ctx != ctx)
3580 		return;
3581 
3582 	raw_spin_lock(&ctx->lock);
3583 	if (ctx->is_active) {
3584 		update_context_time(ctx);
3585 		update_cgrp_time_from_event(event);
3586 	}
3587 
3588 	update_event_times(event);
3589 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3590 		goto unlock;
3591 
3592 	if (!data->group) {
3593 		pmu->read(event);
3594 		data->ret = 0;
3595 		goto unlock;
3596 	}
3597 
3598 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599 
3600 	pmu->read(event);
3601 
3602 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603 		update_event_times(sub);
3604 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605 			/*
3606 			 * Use sibling's PMU rather than @event's since
3607 			 * sibling could be on different (eg: software) PMU.
3608 			 */
3609 			sub->pmu->read(sub);
3610 		}
3611 	}
3612 
3613 	data->ret = pmu->commit_txn(pmu);
3614 
3615 unlock:
3616 	raw_spin_unlock(&ctx->lock);
3617 }
3618 
3619 static inline u64 perf_event_count(struct perf_event *event)
3620 {
3621 	if (event->pmu->count)
3622 		return event->pmu->count(event);
3623 
3624 	return __perf_event_count(event);
3625 }
3626 
3627 /*
3628  * NMI-safe method to read a local event, that is an event that
3629  * is:
3630  *   - either for the current task, or for this CPU
3631  *   - does not have inherit set, for inherited task events
3632  *     will not be local and we cannot read them atomically
3633  *   - must not have a pmu::count method
3634  */
3635 int perf_event_read_local(struct perf_event *event, u64 *value)
3636 {
3637 	unsigned long flags;
3638 	int ret = 0;
3639 
3640 	/*
3641 	 * Disabling interrupts avoids all counter scheduling (context
3642 	 * switches, timer based rotation and IPIs).
3643 	 */
3644 	local_irq_save(flags);
3645 
3646 	/*
3647 	 * It must not be an event with inherit set, we cannot read
3648 	 * all child counters from atomic context.
3649 	 */
3650 	if (event->attr.inherit) {
3651 		ret = -EOPNOTSUPP;
3652 		goto out;
3653 	}
3654 
3655 	/*
3656 	 * It must not have a pmu::count method, those are not
3657 	 * NMI safe.
3658 	 */
3659 	if (event->pmu->count) {
3660 		ret = -EOPNOTSUPP;
3661 		goto out;
3662 	}
3663 
3664 	/* If this is a per-task event, it must be for current */
3665 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3666 	    event->hw.target != current) {
3667 		ret = -EINVAL;
3668 		goto out;
3669 	}
3670 
3671 	/* If this is a per-CPU event, it must be for this CPU */
3672 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3673 	    event->cpu != smp_processor_id()) {
3674 		ret = -EINVAL;
3675 		goto out;
3676 	}
3677 
3678 	/*
3679 	 * If the event is currently on this CPU, its either a per-task event,
3680 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3681 	 * oncpu == -1).
3682 	 */
3683 	if (event->oncpu == smp_processor_id())
3684 		event->pmu->read(event);
3685 
3686 	*value = local64_read(&event->count);
3687 out:
3688 	local_irq_restore(flags);
3689 
3690 	return ret;
3691 }
3692 
3693 static int perf_event_read(struct perf_event *event, bool group)
3694 {
3695 	int event_cpu, ret = 0;
3696 
3697 	/*
3698 	 * If event is enabled and currently active on a CPU, update the
3699 	 * value in the event structure:
3700 	 */
3701 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3702 		struct perf_read_data data = {
3703 			.event = event,
3704 			.group = group,
3705 			.ret = 0,
3706 		};
3707 
3708 		event_cpu = READ_ONCE(event->oncpu);
3709 		if ((unsigned)event_cpu >= nr_cpu_ids)
3710 			return 0;
3711 
3712 		preempt_disable();
3713 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3714 
3715 		/*
3716 		 * Purposely ignore the smp_call_function_single() return
3717 		 * value.
3718 		 *
3719 		 * If event_cpu isn't a valid CPU it means the event got
3720 		 * scheduled out and that will have updated the event count.
3721 		 *
3722 		 * Therefore, either way, we'll have an up-to-date event count
3723 		 * after this.
3724 		 */
3725 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3726 		preempt_enable();
3727 		ret = data.ret;
3728 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3729 		struct perf_event_context *ctx = event->ctx;
3730 		unsigned long flags;
3731 
3732 		raw_spin_lock_irqsave(&ctx->lock, flags);
3733 		/*
3734 		 * may read while context is not active
3735 		 * (e.g., thread is blocked), in that case
3736 		 * we cannot update context time
3737 		 */
3738 		if (ctx->is_active) {
3739 			update_context_time(ctx);
3740 			update_cgrp_time_from_event(event);
3741 		}
3742 		if (group)
3743 			update_group_times(event);
3744 		else
3745 			update_event_times(event);
3746 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3747 	}
3748 
3749 	return ret;
3750 }
3751 
3752 /*
3753  * Initialize the perf_event context in a task_struct:
3754  */
3755 static void __perf_event_init_context(struct perf_event_context *ctx)
3756 {
3757 	raw_spin_lock_init(&ctx->lock);
3758 	mutex_init(&ctx->mutex);
3759 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3760 	INIT_LIST_HEAD(&ctx->pinned_groups);
3761 	INIT_LIST_HEAD(&ctx->flexible_groups);
3762 	INIT_LIST_HEAD(&ctx->event_list);
3763 	atomic_set(&ctx->refcount, 1);
3764 }
3765 
3766 static struct perf_event_context *
3767 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3768 {
3769 	struct perf_event_context *ctx;
3770 
3771 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3772 	if (!ctx)
3773 		return NULL;
3774 
3775 	__perf_event_init_context(ctx);
3776 	if (task) {
3777 		ctx->task = task;
3778 		get_task_struct(task);
3779 	}
3780 	ctx->pmu = pmu;
3781 
3782 	return ctx;
3783 }
3784 
3785 static struct task_struct *
3786 find_lively_task_by_vpid(pid_t vpid)
3787 {
3788 	struct task_struct *task;
3789 
3790 	rcu_read_lock();
3791 	if (!vpid)
3792 		task = current;
3793 	else
3794 		task = find_task_by_vpid(vpid);
3795 	if (task)
3796 		get_task_struct(task);
3797 	rcu_read_unlock();
3798 
3799 	if (!task)
3800 		return ERR_PTR(-ESRCH);
3801 
3802 	return task;
3803 }
3804 
3805 /*
3806  * Returns a matching context with refcount and pincount.
3807  */
3808 static struct perf_event_context *
3809 find_get_context(struct pmu *pmu, struct task_struct *task,
3810 		struct perf_event *event)
3811 {
3812 	struct perf_event_context *ctx, *clone_ctx = NULL;
3813 	struct perf_cpu_context *cpuctx;
3814 	void *task_ctx_data = NULL;
3815 	unsigned long flags;
3816 	int ctxn, err;
3817 	int cpu = event->cpu;
3818 
3819 	if (!task) {
3820 		/* Must be root to operate on a CPU event: */
3821 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3822 			return ERR_PTR(-EACCES);
3823 
3824 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3825 		ctx = &cpuctx->ctx;
3826 		get_ctx(ctx);
3827 		++ctx->pin_count;
3828 
3829 		return ctx;
3830 	}
3831 
3832 	err = -EINVAL;
3833 	ctxn = pmu->task_ctx_nr;
3834 	if (ctxn < 0)
3835 		goto errout;
3836 
3837 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3838 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3839 		if (!task_ctx_data) {
3840 			err = -ENOMEM;
3841 			goto errout;
3842 		}
3843 	}
3844 
3845 retry:
3846 	ctx = perf_lock_task_context(task, ctxn, &flags);
3847 	if (ctx) {
3848 		clone_ctx = unclone_ctx(ctx);
3849 		++ctx->pin_count;
3850 
3851 		if (task_ctx_data && !ctx->task_ctx_data) {
3852 			ctx->task_ctx_data = task_ctx_data;
3853 			task_ctx_data = NULL;
3854 		}
3855 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3856 
3857 		if (clone_ctx)
3858 			put_ctx(clone_ctx);
3859 	} else {
3860 		ctx = alloc_perf_context(pmu, task);
3861 		err = -ENOMEM;
3862 		if (!ctx)
3863 			goto errout;
3864 
3865 		if (task_ctx_data) {
3866 			ctx->task_ctx_data = task_ctx_data;
3867 			task_ctx_data = NULL;
3868 		}
3869 
3870 		err = 0;
3871 		mutex_lock(&task->perf_event_mutex);
3872 		/*
3873 		 * If it has already passed perf_event_exit_task().
3874 		 * we must see PF_EXITING, it takes this mutex too.
3875 		 */
3876 		if (task->flags & PF_EXITING)
3877 			err = -ESRCH;
3878 		else if (task->perf_event_ctxp[ctxn])
3879 			err = -EAGAIN;
3880 		else {
3881 			get_ctx(ctx);
3882 			++ctx->pin_count;
3883 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3884 		}
3885 		mutex_unlock(&task->perf_event_mutex);
3886 
3887 		if (unlikely(err)) {
3888 			put_ctx(ctx);
3889 
3890 			if (err == -EAGAIN)
3891 				goto retry;
3892 			goto errout;
3893 		}
3894 	}
3895 
3896 	kfree(task_ctx_data);
3897 	return ctx;
3898 
3899 errout:
3900 	kfree(task_ctx_data);
3901 	return ERR_PTR(err);
3902 }
3903 
3904 static void perf_event_free_filter(struct perf_event *event);
3905 static void perf_event_free_bpf_prog(struct perf_event *event);
3906 
3907 static void free_event_rcu(struct rcu_head *head)
3908 {
3909 	struct perf_event *event;
3910 
3911 	event = container_of(head, struct perf_event, rcu_head);
3912 	if (event->ns)
3913 		put_pid_ns(event->ns);
3914 	perf_event_free_filter(event);
3915 	kfree(event);
3916 }
3917 
3918 static void ring_buffer_attach(struct perf_event *event,
3919 			       struct ring_buffer *rb);
3920 
3921 static void detach_sb_event(struct perf_event *event)
3922 {
3923 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3924 
3925 	raw_spin_lock(&pel->lock);
3926 	list_del_rcu(&event->sb_list);
3927 	raw_spin_unlock(&pel->lock);
3928 }
3929 
3930 static bool is_sb_event(struct perf_event *event)
3931 {
3932 	struct perf_event_attr *attr = &event->attr;
3933 
3934 	if (event->parent)
3935 		return false;
3936 
3937 	if (event->attach_state & PERF_ATTACH_TASK)
3938 		return false;
3939 
3940 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3941 	    attr->comm || attr->comm_exec ||
3942 	    attr->task ||
3943 	    attr->context_switch)
3944 		return true;
3945 	return false;
3946 }
3947 
3948 static void unaccount_pmu_sb_event(struct perf_event *event)
3949 {
3950 	if (is_sb_event(event))
3951 		detach_sb_event(event);
3952 }
3953 
3954 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3955 {
3956 	if (event->parent)
3957 		return;
3958 
3959 	if (is_cgroup_event(event))
3960 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3961 }
3962 
3963 #ifdef CONFIG_NO_HZ_FULL
3964 static DEFINE_SPINLOCK(nr_freq_lock);
3965 #endif
3966 
3967 static void unaccount_freq_event_nohz(void)
3968 {
3969 #ifdef CONFIG_NO_HZ_FULL
3970 	spin_lock(&nr_freq_lock);
3971 	if (atomic_dec_and_test(&nr_freq_events))
3972 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3973 	spin_unlock(&nr_freq_lock);
3974 #endif
3975 }
3976 
3977 static void unaccount_freq_event(void)
3978 {
3979 	if (tick_nohz_full_enabled())
3980 		unaccount_freq_event_nohz();
3981 	else
3982 		atomic_dec(&nr_freq_events);
3983 }
3984 
3985 static void unaccount_event(struct perf_event *event)
3986 {
3987 	bool dec = false;
3988 
3989 	if (event->parent)
3990 		return;
3991 
3992 	if (event->attach_state & PERF_ATTACH_TASK)
3993 		dec = true;
3994 	if (event->attr.mmap || event->attr.mmap_data)
3995 		atomic_dec(&nr_mmap_events);
3996 	if (event->attr.comm)
3997 		atomic_dec(&nr_comm_events);
3998 	if (event->attr.namespaces)
3999 		atomic_dec(&nr_namespaces_events);
4000 	if (event->attr.task)
4001 		atomic_dec(&nr_task_events);
4002 	if (event->attr.freq)
4003 		unaccount_freq_event();
4004 	if (event->attr.context_switch) {
4005 		dec = true;
4006 		atomic_dec(&nr_switch_events);
4007 	}
4008 	if (is_cgroup_event(event))
4009 		dec = true;
4010 	if (has_branch_stack(event))
4011 		dec = true;
4012 
4013 	if (dec) {
4014 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4015 			schedule_delayed_work(&perf_sched_work, HZ);
4016 	}
4017 
4018 	unaccount_event_cpu(event, event->cpu);
4019 
4020 	unaccount_pmu_sb_event(event);
4021 }
4022 
4023 static void perf_sched_delayed(struct work_struct *work)
4024 {
4025 	mutex_lock(&perf_sched_mutex);
4026 	if (atomic_dec_and_test(&perf_sched_count))
4027 		static_branch_disable(&perf_sched_events);
4028 	mutex_unlock(&perf_sched_mutex);
4029 }
4030 
4031 /*
4032  * The following implement mutual exclusion of events on "exclusive" pmus
4033  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4034  * at a time, so we disallow creating events that might conflict, namely:
4035  *
4036  *  1) cpu-wide events in the presence of per-task events,
4037  *  2) per-task events in the presence of cpu-wide events,
4038  *  3) two matching events on the same context.
4039  *
4040  * The former two cases are handled in the allocation path (perf_event_alloc(),
4041  * _free_event()), the latter -- before the first perf_install_in_context().
4042  */
4043 static int exclusive_event_init(struct perf_event *event)
4044 {
4045 	struct pmu *pmu = event->pmu;
4046 
4047 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4048 		return 0;
4049 
4050 	/*
4051 	 * Prevent co-existence of per-task and cpu-wide events on the
4052 	 * same exclusive pmu.
4053 	 *
4054 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4055 	 * events on this "exclusive" pmu, positive means there are
4056 	 * per-task events.
4057 	 *
4058 	 * Since this is called in perf_event_alloc() path, event::ctx
4059 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4060 	 * to mean "per-task event", because unlike other attach states it
4061 	 * never gets cleared.
4062 	 */
4063 	if (event->attach_state & PERF_ATTACH_TASK) {
4064 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4065 			return -EBUSY;
4066 	} else {
4067 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4068 			return -EBUSY;
4069 	}
4070 
4071 	return 0;
4072 }
4073 
4074 static void exclusive_event_destroy(struct perf_event *event)
4075 {
4076 	struct pmu *pmu = event->pmu;
4077 
4078 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4079 		return;
4080 
4081 	/* see comment in exclusive_event_init() */
4082 	if (event->attach_state & PERF_ATTACH_TASK)
4083 		atomic_dec(&pmu->exclusive_cnt);
4084 	else
4085 		atomic_inc(&pmu->exclusive_cnt);
4086 }
4087 
4088 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4089 {
4090 	if ((e1->pmu == e2->pmu) &&
4091 	    (e1->cpu == e2->cpu ||
4092 	     e1->cpu == -1 ||
4093 	     e2->cpu == -1))
4094 		return true;
4095 	return false;
4096 }
4097 
4098 /* Called under the same ctx::mutex as perf_install_in_context() */
4099 static bool exclusive_event_installable(struct perf_event *event,
4100 					struct perf_event_context *ctx)
4101 {
4102 	struct perf_event *iter_event;
4103 	struct pmu *pmu = event->pmu;
4104 
4105 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4106 		return true;
4107 
4108 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4109 		if (exclusive_event_match(iter_event, event))
4110 			return false;
4111 	}
4112 
4113 	return true;
4114 }
4115 
4116 static void perf_addr_filters_splice(struct perf_event *event,
4117 				       struct list_head *head);
4118 
4119 static void _free_event(struct perf_event *event)
4120 {
4121 	irq_work_sync(&event->pending);
4122 
4123 	unaccount_event(event);
4124 
4125 	if (event->rb) {
4126 		/*
4127 		 * Can happen when we close an event with re-directed output.
4128 		 *
4129 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4130 		 * over us; possibly making our ring_buffer_put() the last.
4131 		 */
4132 		mutex_lock(&event->mmap_mutex);
4133 		ring_buffer_attach(event, NULL);
4134 		mutex_unlock(&event->mmap_mutex);
4135 	}
4136 
4137 	if (is_cgroup_event(event))
4138 		perf_detach_cgroup(event);
4139 
4140 	if (!event->parent) {
4141 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4142 			put_callchain_buffers();
4143 	}
4144 
4145 	perf_event_free_bpf_prog(event);
4146 	perf_addr_filters_splice(event, NULL);
4147 	kfree(event->addr_filters_offs);
4148 
4149 	if (event->destroy)
4150 		event->destroy(event);
4151 
4152 	if (event->ctx)
4153 		put_ctx(event->ctx);
4154 
4155 	exclusive_event_destroy(event);
4156 	module_put(event->pmu->module);
4157 
4158 	call_rcu(&event->rcu_head, free_event_rcu);
4159 }
4160 
4161 /*
4162  * Used to free events which have a known refcount of 1, such as in error paths
4163  * where the event isn't exposed yet and inherited events.
4164  */
4165 static void free_event(struct perf_event *event)
4166 {
4167 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4168 				"unexpected event refcount: %ld; ptr=%p\n",
4169 				atomic_long_read(&event->refcount), event)) {
4170 		/* leak to avoid use-after-free */
4171 		return;
4172 	}
4173 
4174 	_free_event(event);
4175 }
4176 
4177 /*
4178  * Remove user event from the owner task.
4179  */
4180 static void perf_remove_from_owner(struct perf_event *event)
4181 {
4182 	struct task_struct *owner;
4183 
4184 	rcu_read_lock();
4185 	/*
4186 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4187 	 * observe !owner it means the list deletion is complete and we can
4188 	 * indeed free this event, otherwise we need to serialize on
4189 	 * owner->perf_event_mutex.
4190 	 */
4191 	owner = lockless_dereference(event->owner);
4192 	if (owner) {
4193 		/*
4194 		 * Since delayed_put_task_struct() also drops the last
4195 		 * task reference we can safely take a new reference
4196 		 * while holding the rcu_read_lock().
4197 		 */
4198 		get_task_struct(owner);
4199 	}
4200 	rcu_read_unlock();
4201 
4202 	if (owner) {
4203 		/*
4204 		 * If we're here through perf_event_exit_task() we're already
4205 		 * holding ctx->mutex which would be an inversion wrt. the
4206 		 * normal lock order.
4207 		 *
4208 		 * However we can safely take this lock because its the child
4209 		 * ctx->mutex.
4210 		 */
4211 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4212 
4213 		/*
4214 		 * We have to re-check the event->owner field, if it is cleared
4215 		 * we raced with perf_event_exit_task(), acquiring the mutex
4216 		 * ensured they're done, and we can proceed with freeing the
4217 		 * event.
4218 		 */
4219 		if (event->owner) {
4220 			list_del_init(&event->owner_entry);
4221 			smp_store_release(&event->owner, NULL);
4222 		}
4223 		mutex_unlock(&owner->perf_event_mutex);
4224 		put_task_struct(owner);
4225 	}
4226 }
4227 
4228 static void put_event(struct perf_event *event)
4229 {
4230 	if (!atomic_long_dec_and_test(&event->refcount))
4231 		return;
4232 
4233 	_free_event(event);
4234 }
4235 
4236 /*
4237  * Kill an event dead; while event:refcount will preserve the event
4238  * object, it will not preserve its functionality. Once the last 'user'
4239  * gives up the object, we'll destroy the thing.
4240  */
4241 int perf_event_release_kernel(struct perf_event *event)
4242 {
4243 	struct perf_event_context *ctx = event->ctx;
4244 	struct perf_event *child, *tmp;
4245 
4246 	/*
4247 	 * If we got here through err_file: fput(event_file); we will not have
4248 	 * attached to a context yet.
4249 	 */
4250 	if (!ctx) {
4251 		WARN_ON_ONCE(event->attach_state &
4252 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4253 		goto no_ctx;
4254 	}
4255 
4256 	if (!is_kernel_event(event))
4257 		perf_remove_from_owner(event);
4258 
4259 	ctx = perf_event_ctx_lock(event);
4260 	WARN_ON_ONCE(ctx->parent_ctx);
4261 	perf_remove_from_context(event, DETACH_GROUP);
4262 
4263 	raw_spin_lock_irq(&ctx->lock);
4264 	/*
4265 	 * Mark this event as STATE_DEAD, there is no external reference to it
4266 	 * anymore.
4267 	 *
4268 	 * Anybody acquiring event->child_mutex after the below loop _must_
4269 	 * also see this, most importantly inherit_event() which will avoid
4270 	 * placing more children on the list.
4271 	 *
4272 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4273 	 * child events.
4274 	 */
4275 	event->state = PERF_EVENT_STATE_DEAD;
4276 	raw_spin_unlock_irq(&ctx->lock);
4277 
4278 	perf_event_ctx_unlock(event, ctx);
4279 
4280 again:
4281 	mutex_lock(&event->child_mutex);
4282 	list_for_each_entry(child, &event->child_list, child_list) {
4283 
4284 		/*
4285 		 * Cannot change, child events are not migrated, see the
4286 		 * comment with perf_event_ctx_lock_nested().
4287 		 */
4288 		ctx = lockless_dereference(child->ctx);
4289 		/*
4290 		 * Since child_mutex nests inside ctx::mutex, we must jump
4291 		 * through hoops. We start by grabbing a reference on the ctx.
4292 		 *
4293 		 * Since the event cannot get freed while we hold the
4294 		 * child_mutex, the context must also exist and have a !0
4295 		 * reference count.
4296 		 */
4297 		get_ctx(ctx);
4298 
4299 		/*
4300 		 * Now that we have a ctx ref, we can drop child_mutex, and
4301 		 * acquire ctx::mutex without fear of it going away. Then we
4302 		 * can re-acquire child_mutex.
4303 		 */
4304 		mutex_unlock(&event->child_mutex);
4305 		mutex_lock(&ctx->mutex);
4306 		mutex_lock(&event->child_mutex);
4307 
4308 		/*
4309 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4310 		 * state, if child is still the first entry, it didn't get freed
4311 		 * and we can continue doing so.
4312 		 */
4313 		tmp = list_first_entry_or_null(&event->child_list,
4314 					       struct perf_event, child_list);
4315 		if (tmp == child) {
4316 			perf_remove_from_context(child, DETACH_GROUP);
4317 			list_del(&child->child_list);
4318 			free_event(child);
4319 			/*
4320 			 * This matches the refcount bump in inherit_event();
4321 			 * this can't be the last reference.
4322 			 */
4323 			put_event(event);
4324 		}
4325 
4326 		mutex_unlock(&event->child_mutex);
4327 		mutex_unlock(&ctx->mutex);
4328 		put_ctx(ctx);
4329 		goto again;
4330 	}
4331 	mutex_unlock(&event->child_mutex);
4332 
4333 no_ctx:
4334 	put_event(event); /* Must be the 'last' reference */
4335 	return 0;
4336 }
4337 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4338 
4339 /*
4340  * Called when the last reference to the file is gone.
4341  */
4342 static int perf_release(struct inode *inode, struct file *file)
4343 {
4344 	perf_event_release_kernel(file->private_data);
4345 	return 0;
4346 }
4347 
4348 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4349 {
4350 	struct perf_event *child;
4351 	u64 total = 0;
4352 
4353 	*enabled = 0;
4354 	*running = 0;
4355 
4356 	mutex_lock(&event->child_mutex);
4357 
4358 	(void)perf_event_read(event, false);
4359 	total += perf_event_count(event);
4360 
4361 	*enabled += event->total_time_enabled +
4362 			atomic64_read(&event->child_total_time_enabled);
4363 	*running += event->total_time_running +
4364 			atomic64_read(&event->child_total_time_running);
4365 
4366 	list_for_each_entry(child, &event->child_list, child_list) {
4367 		(void)perf_event_read(child, false);
4368 		total += perf_event_count(child);
4369 		*enabled += child->total_time_enabled;
4370 		*running += child->total_time_running;
4371 	}
4372 	mutex_unlock(&event->child_mutex);
4373 
4374 	return total;
4375 }
4376 EXPORT_SYMBOL_GPL(perf_event_read_value);
4377 
4378 static int __perf_read_group_add(struct perf_event *leader,
4379 					u64 read_format, u64 *values)
4380 {
4381 	struct perf_event *sub;
4382 	int n = 1; /* skip @nr */
4383 	int ret;
4384 
4385 	ret = perf_event_read(leader, true);
4386 	if (ret)
4387 		return ret;
4388 
4389 	/*
4390 	 * Since we co-schedule groups, {enabled,running} times of siblings
4391 	 * will be identical to those of the leader, so we only publish one
4392 	 * set.
4393 	 */
4394 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4395 		values[n++] += leader->total_time_enabled +
4396 			atomic64_read(&leader->child_total_time_enabled);
4397 	}
4398 
4399 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4400 		values[n++] += leader->total_time_running +
4401 			atomic64_read(&leader->child_total_time_running);
4402 	}
4403 
4404 	/*
4405 	 * Write {count,id} tuples for every sibling.
4406 	 */
4407 	values[n++] += perf_event_count(leader);
4408 	if (read_format & PERF_FORMAT_ID)
4409 		values[n++] = primary_event_id(leader);
4410 
4411 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4412 		values[n++] += perf_event_count(sub);
4413 		if (read_format & PERF_FORMAT_ID)
4414 			values[n++] = primary_event_id(sub);
4415 	}
4416 
4417 	return 0;
4418 }
4419 
4420 static int perf_read_group(struct perf_event *event,
4421 				   u64 read_format, char __user *buf)
4422 {
4423 	struct perf_event *leader = event->group_leader, *child;
4424 	struct perf_event_context *ctx = leader->ctx;
4425 	int ret;
4426 	u64 *values;
4427 
4428 	lockdep_assert_held(&ctx->mutex);
4429 
4430 	values = kzalloc(event->read_size, GFP_KERNEL);
4431 	if (!values)
4432 		return -ENOMEM;
4433 
4434 	values[0] = 1 + leader->nr_siblings;
4435 
4436 	/*
4437 	 * By locking the child_mutex of the leader we effectively
4438 	 * lock the child list of all siblings.. XXX explain how.
4439 	 */
4440 	mutex_lock(&leader->child_mutex);
4441 
4442 	ret = __perf_read_group_add(leader, read_format, values);
4443 	if (ret)
4444 		goto unlock;
4445 
4446 	list_for_each_entry(child, &leader->child_list, child_list) {
4447 		ret = __perf_read_group_add(child, read_format, values);
4448 		if (ret)
4449 			goto unlock;
4450 	}
4451 
4452 	mutex_unlock(&leader->child_mutex);
4453 
4454 	ret = event->read_size;
4455 	if (copy_to_user(buf, values, event->read_size))
4456 		ret = -EFAULT;
4457 	goto out;
4458 
4459 unlock:
4460 	mutex_unlock(&leader->child_mutex);
4461 out:
4462 	kfree(values);
4463 	return ret;
4464 }
4465 
4466 static int perf_read_one(struct perf_event *event,
4467 				 u64 read_format, char __user *buf)
4468 {
4469 	u64 enabled, running;
4470 	u64 values[4];
4471 	int n = 0;
4472 
4473 	values[n++] = perf_event_read_value(event, &enabled, &running);
4474 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4475 		values[n++] = enabled;
4476 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477 		values[n++] = running;
4478 	if (read_format & PERF_FORMAT_ID)
4479 		values[n++] = primary_event_id(event);
4480 
4481 	if (copy_to_user(buf, values, n * sizeof(u64)))
4482 		return -EFAULT;
4483 
4484 	return n * sizeof(u64);
4485 }
4486 
4487 static bool is_event_hup(struct perf_event *event)
4488 {
4489 	bool no_children;
4490 
4491 	if (event->state > PERF_EVENT_STATE_EXIT)
4492 		return false;
4493 
4494 	mutex_lock(&event->child_mutex);
4495 	no_children = list_empty(&event->child_list);
4496 	mutex_unlock(&event->child_mutex);
4497 	return no_children;
4498 }
4499 
4500 /*
4501  * Read the performance event - simple non blocking version for now
4502  */
4503 static ssize_t
4504 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4505 {
4506 	u64 read_format = event->attr.read_format;
4507 	int ret;
4508 
4509 	/*
4510 	 * Return end-of-file for a read on a event that is in
4511 	 * error state (i.e. because it was pinned but it couldn't be
4512 	 * scheduled on to the CPU at some point).
4513 	 */
4514 	if (event->state == PERF_EVENT_STATE_ERROR)
4515 		return 0;
4516 
4517 	if (count < event->read_size)
4518 		return -ENOSPC;
4519 
4520 	WARN_ON_ONCE(event->ctx->parent_ctx);
4521 	if (read_format & PERF_FORMAT_GROUP)
4522 		ret = perf_read_group(event, read_format, buf);
4523 	else
4524 		ret = perf_read_one(event, read_format, buf);
4525 
4526 	return ret;
4527 }
4528 
4529 static ssize_t
4530 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4531 {
4532 	struct perf_event *event = file->private_data;
4533 	struct perf_event_context *ctx;
4534 	int ret;
4535 
4536 	ctx = perf_event_ctx_lock(event);
4537 	ret = __perf_read(event, buf, count);
4538 	perf_event_ctx_unlock(event, ctx);
4539 
4540 	return ret;
4541 }
4542 
4543 static unsigned int perf_poll(struct file *file, poll_table *wait)
4544 {
4545 	struct perf_event *event = file->private_data;
4546 	struct ring_buffer *rb;
4547 	unsigned int events = POLLHUP;
4548 
4549 	poll_wait(file, &event->waitq, wait);
4550 
4551 	if (is_event_hup(event))
4552 		return events;
4553 
4554 	/*
4555 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4556 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4557 	 */
4558 	mutex_lock(&event->mmap_mutex);
4559 	rb = event->rb;
4560 	if (rb)
4561 		events = atomic_xchg(&rb->poll, 0);
4562 	mutex_unlock(&event->mmap_mutex);
4563 	return events;
4564 }
4565 
4566 static void _perf_event_reset(struct perf_event *event)
4567 {
4568 	(void)perf_event_read(event, false);
4569 	local64_set(&event->count, 0);
4570 	perf_event_update_userpage(event);
4571 }
4572 
4573 /*
4574  * Holding the top-level event's child_mutex means that any
4575  * descendant process that has inherited this event will block
4576  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4577  * task existence requirements of perf_event_enable/disable.
4578  */
4579 static void perf_event_for_each_child(struct perf_event *event,
4580 					void (*func)(struct perf_event *))
4581 {
4582 	struct perf_event *child;
4583 
4584 	WARN_ON_ONCE(event->ctx->parent_ctx);
4585 
4586 	mutex_lock(&event->child_mutex);
4587 	func(event);
4588 	list_for_each_entry(child, &event->child_list, child_list)
4589 		func(child);
4590 	mutex_unlock(&event->child_mutex);
4591 }
4592 
4593 static void perf_event_for_each(struct perf_event *event,
4594 				  void (*func)(struct perf_event *))
4595 {
4596 	struct perf_event_context *ctx = event->ctx;
4597 	struct perf_event *sibling;
4598 
4599 	lockdep_assert_held(&ctx->mutex);
4600 
4601 	event = event->group_leader;
4602 
4603 	perf_event_for_each_child(event, func);
4604 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4605 		perf_event_for_each_child(sibling, func);
4606 }
4607 
4608 static void __perf_event_period(struct perf_event *event,
4609 				struct perf_cpu_context *cpuctx,
4610 				struct perf_event_context *ctx,
4611 				void *info)
4612 {
4613 	u64 value = *((u64 *)info);
4614 	bool active;
4615 
4616 	if (event->attr.freq) {
4617 		event->attr.sample_freq = value;
4618 	} else {
4619 		event->attr.sample_period = value;
4620 		event->hw.sample_period = value;
4621 	}
4622 
4623 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4624 	if (active) {
4625 		perf_pmu_disable(ctx->pmu);
4626 		/*
4627 		 * We could be throttled; unthrottle now to avoid the tick
4628 		 * trying to unthrottle while we already re-started the event.
4629 		 */
4630 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4631 			event->hw.interrupts = 0;
4632 			perf_log_throttle(event, 1);
4633 		}
4634 		event->pmu->stop(event, PERF_EF_UPDATE);
4635 	}
4636 
4637 	local64_set(&event->hw.period_left, 0);
4638 
4639 	if (active) {
4640 		event->pmu->start(event, PERF_EF_RELOAD);
4641 		perf_pmu_enable(ctx->pmu);
4642 	}
4643 }
4644 
4645 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4646 {
4647 	u64 value;
4648 
4649 	if (!is_sampling_event(event))
4650 		return -EINVAL;
4651 
4652 	if (copy_from_user(&value, arg, sizeof(value)))
4653 		return -EFAULT;
4654 
4655 	if (!value)
4656 		return -EINVAL;
4657 
4658 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4659 		return -EINVAL;
4660 
4661 	event_function_call(event, __perf_event_period, &value);
4662 
4663 	return 0;
4664 }
4665 
4666 static const struct file_operations perf_fops;
4667 
4668 static inline int perf_fget_light(int fd, struct fd *p)
4669 {
4670 	struct fd f = fdget(fd);
4671 	if (!f.file)
4672 		return -EBADF;
4673 
4674 	if (f.file->f_op != &perf_fops) {
4675 		fdput(f);
4676 		return -EBADF;
4677 	}
4678 	*p = f;
4679 	return 0;
4680 }
4681 
4682 static int perf_event_set_output(struct perf_event *event,
4683 				 struct perf_event *output_event);
4684 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4685 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4686 
4687 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4688 {
4689 	void (*func)(struct perf_event *);
4690 	u32 flags = arg;
4691 
4692 	switch (cmd) {
4693 	case PERF_EVENT_IOC_ENABLE:
4694 		func = _perf_event_enable;
4695 		break;
4696 	case PERF_EVENT_IOC_DISABLE:
4697 		func = _perf_event_disable;
4698 		break;
4699 	case PERF_EVENT_IOC_RESET:
4700 		func = _perf_event_reset;
4701 		break;
4702 
4703 	case PERF_EVENT_IOC_REFRESH:
4704 		return _perf_event_refresh(event, arg);
4705 
4706 	case PERF_EVENT_IOC_PERIOD:
4707 		return perf_event_period(event, (u64 __user *)arg);
4708 
4709 	case PERF_EVENT_IOC_ID:
4710 	{
4711 		u64 id = primary_event_id(event);
4712 
4713 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4714 			return -EFAULT;
4715 		return 0;
4716 	}
4717 
4718 	case PERF_EVENT_IOC_SET_OUTPUT:
4719 	{
4720 		int ret;
4721 		if (arg != -1) {
4722 			struct perf_event *output_event;
4723 			struct fd output;
4724 			ret = perf_fget_light(arg, &output);
4725 			if (ret)
4726 				return ret;
4727 			output_event = output.file->private_data;
4728 			ret = perf_event_set_output(event, output_event);
4729 			fdput(output);
4730 		} else {
4731 			ret = perf_event_set_output(event, NULL);
4732 		}
4733 		return ret;
4734 	}
4735 
4736 	case PERF_EVENT_IOC_SET_FILTER:
4737 		return perf_event_set_filter(event, (void __user *)arg);
4738 
4739 	case PERF_EVENT_IOC_SET_BPF:
4740 		return perf_event_set_bpf_prog(event, arg);
4741 
4742 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4743 		struct ring_buffer *rb;
4744 
4745 		rcu_read_lock();
4746 		rb = rcu_dereference(event->rb);
4747 		if (!rb || !rb->nr_pages) {
4748 			rcu_read_unlock();
4749 			return -EINVAL;
4750 		}
4751 		rb_toggle_paused(rb, !!arg);
4752 		rcu_read_unlock();
4753 		return 0;
4754 	}
4755 	default:
4756 		return -ENOTTY;
4757 	}
4758 
4759 	if (flags & PERF_IOC_FLAG_GROUP)
4760 		perf_event_for_each(event, func);
4761 	else
4762 		perf_event_for_each_child(event, func);
4763 
4764 	return 0;
4765 }
4766 
4767 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4768 {
4769 	struct perf_event *event = file->private_data;
4770 	struct perf_event_context *ctx;
4771 	long ret;
4772 
4773 	ctx = perf_event_ctx_lock(event);
4774 	ret = _perf_ioctl(event, cmd, arg);
4775 	perf_event_ctx_unlock(event, ctx);
4776 
4777 	return ret;
4778 }
4779 
4780 #ifdef CONFIG_COMPAT
4781 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4782 				unsigned long arg)
4783 {
4784 	switch (_IOC_NR(cmd)) {
4785 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4786 	case _IOC_NR(PERF_EVENT_IOC_ID):
4787 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4788 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4789 			cmd &= ~IOCSIZE_MASK;
4790 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4791 		}
4792 		break;
4793 	}
4794 	return perf_ioctl(file, cmd, arg);
4795 }
4796 #else
4797 # define perf_compat_ioctl NULL
4798 #endif
4799 
4800 int perf_event_task_enable(void)
4801 {
4802 	struct perf_event_context *ctx;
4803 	struct perf_event *event;
4804 
4805 	mutex_lock(&current->perf_event_mutex);
4806 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4807 		ctx = perf_event_ctx_lock(event);
4808 		perf_event_for_each_child(event, _perf_event_enable);
4809 		perf_event_ctx_unlock(event, ctx);
4810 	}
4811 	mutex_unlock(&current->perf_event_mutex);
4812 
4813 	return 0;
4814 }
4815 
4816 int perf_event_task_disable(void)
4817 {
4818 	struct perf_event_context *ctx;
4819 	struct perf_event *event;
4820 
4821 	mutex_lock(&current->perf_event_mutex);
4822 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4823 		ctx = perf_event_ctx_lock(event);
4824 		perf_event_for_each_child(event, _perf_event_disable);
4825 		perf_event_ctx_unlock(event, ctx);
4826 	}
4827 	mutex_unlock(&current->perf_event_mutex);
4828 
4829 	return 0;
4830 }
4831 
4832 static int perf_event_index(struct perf_event *event)
4833 {
4834 	if (event->hw.state & PERF_HES_STOPPED)
4835 		return 0;
4836 
4837 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4838 		return 0;
4839 
4840 	return event->pmu->event_idx(event);
4841 }
4842 
4843 static void calc_timer_values(struct perf_event *event,
4844 				u64 *now,
4845 				u64 *enabled,
4846 				u64 *running)
4847 {
4848 	u64 ctx_time;
4849 
4850 	*now = perf_clock();
4851 	ctx_time = event->shadow_ctx_time + *now;
4852 	*enabled = ctx_time - event->tstamp_enabled;
4853 	*running = ctx_time - event->tstamp_running;
4854 }
4855 
4856 static void perf_event_init_userpage(struct perf_event *event)
4857 {
4858 	struct perf_event_mmap_page *userpg;
4859 	struct ring_buffer *rb;
4860 
4861 	rcu_read_lock();
4862 	rb = rcu_dereference(event->rb);
4863 	if (!rb)
4864 		goto unlock;
4865 
4866 	userpg = rb->user_page;
4867 
4868 	/* Allow new userspace to detect that bit 0 is deprecated */
4869 	userpg->cap_bit0_is_deprecated = 1;
4870 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4871 	userpg->data_offset = PAGE_SIZE;
4872 	userpg->data_size = perf_data_size(rb);
4873 
4874 unlock:
4875 	rcu_read_unlock();
4876 }
4877 
4878 void __weak arch_perf_update_userpage(
4879 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4880 {
4881 }
4882 
4883 /*
4884  * Callers need to ensure there can be no nesting of this function, otherwise
4885  * the seqlock logic goes bad. We can not serialize this because the arch
4886  * code calls this from NMI context.
4887  */
4888 void perf_event_update_userpage(struct perf_event *event)
4889 {
4890 	struct perf_event_mmap_page *userpg;
4891 	struct ring_buffer *rb;
4892 	u64 enabled, running, now;
4893 
4894 	rcu_read_lock();
4895 	rb = rcu_dereference(event->rb);
4896 	if (!rb)
4897 		goto unlock;
4898 
4899 	/*
4900 	 * compute total_time_enabled, total_time_running
4901 	 * based on snapshot values taken when the event
4902 	 * was last scheduled in.
4903 	 *
4904 	 * we cannot simply called update_context_time()
4905 	 * because of locking issue as we can be called in
4906 	 * NMI context
4907 	 */
4908 	calc_timer_values(event, &now, &enabled, &running);
4909 
4910 	userpg = rb->user_page;
4911 	/*
4912 	 * Disable preemption so as to not let the corresponding user-space
4913 	 * spin too long if we get preempted.
4914 	 */
4915 	preempt_disable();
4916 	++userpg->lock;
4917 	barrier();
4918 	userpg->index = perf_event_index(event);
4919 	userpg->offset = perf_event_count(event);
4920 	if (userpg->index)
4921 		userpg->offset -= local64_read(&event->hw.prev_count);
4922 
4923 	userpg->time_enabled = enabled +
4924 			atomic64_read(&event->child_total_time_enabled);
4925 
4926 	userpg->time_running = running +
4927 			atomic64_read(&event->child_total_time_running);
4928 
4929 	arch_perf_update_userpage(event, userpg, now);
4930 
4931 	barrier();
4932 	++userpg->lock;
4933 	preempt_enable();
4934 unlock:
4935 	rcu_read_unlock();
4936 }
4937 
4938 static int perf_mmap_fault(struct vm_fault *vmf)
4939 {
4940 	struct perf_event *event = vmf->vma->vm_file->private_data;
4941 	struct ring_buffer *rb;
4942 	int ret = VM_FAULT_SIGBUS;
4943 
4944 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4945 		if (vmf->pgoff == 0)
4946 			ret = 0;
4947 		return ret;
4948 	}
4949 
4950 	rcu_read_lock();
4951 	rb = rcu_dereference(event->rb);
4952 	if (!rb)
4953 		goto unlock;
4954 
4955 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4956 		goto unlock;
4957 
4958 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4959 	if (!vmf->page)
4960 		goto unlock;
4961 
4962 	get_page(vmf->page);
4963 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4964 	vmf->page->index   = vmf->pgoff;
4965 
4966 	ret = 0;
4967 unlock:
4968 	rcu_read_unlock();
4969 
4970 	return ret;
4971 }
4972 
4973 static void ring_buffer_attach(struct perf_event *event,
4974 			       struct ring_buffer *rb)
4975 {
4976 	struct ring_buffer *old_rb = NULL;
4977 	unsigned long flags;
4978 
4979 	if (event->rb) {
4980 		/*
4981 		 * Should be impossible, we set this when removing
4982 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4983 		 */
4984 		WARN_ON_ONCE(event->rcu_pending);
4985 
4986 		old_rb = event->rb;
4987 		spin_lock_irqsave(&old_rb->event_lock, flags);
4988 		list_del_rcu(&event->rb_entry);
4989 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4990 
4991 		event->rcu_batches = get_state_synchronize_rcu();
4992 		event->rcu_pending = 1;
4993 	}
4994 
4995 	if (rb) {
4996 		if (event->rcu_pending) {
4997 			cond_synchronize_rcu(event->rcu_batches);
4998 			event->rcu_pending = 0;
4999 		}
5000 
5001 		spin_lock_irqsave(&rb->event_lock, flags);
5002 		list_add_rcu(&event->rb_entry, &rb->event_list);
5003 		spin_unlock_irqrestore(&rb->event_lock, flags);
5004 	}
5005 
5006 	/*
5007 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5008 	 * before swizzling the event::rb pointer; if it's getting
5009 	 * unmapped, its aux_mmap_count will be 0 and it won't
5010 	 * restart. See the comment in __perf_pmu_output_stop().
5011 	 *
5012 	 * Data will inevitably be lost when set_output is done in
5013 	 * mid-air, but then again, whoever does it like this is
5014 	 * not in for the data anyway.
5015 	 */
5016 	if (has_aux(event))
5017 		perf_event_stop(event, 0);
5018 
5019 	rcu_assign_pointer(event->rb, rb);
5020 
5021 	if (old_rb) {
5022 		ring_buffer_put(old_rb);
5023 		/*
5024 		 * Since we detached before setting the new rb, so that we
5025 		 * could attach the new rb, we could have missed a wakeup.
5026 		 * Provide it now.
5027 		 */
5028 		wake_up_all(&event->waitq);
5029 	}
5030 }
5031 
5032 static void ring_buffer_wakeup(struct perf_event *event)
5033 {
5034 	struct ring_buffer *rb;
5035 
5036 	rcu_read_lock();
5037 	rb = rcu_dereference(event->rb);
5038 	if (rb) {
5039 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5040 			wake_up_all(&event->waitq);
5041 	}
5042 	rcu_read_unlock();
5043 }
5044 
5045 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5046 {
5047 	struct ring_buffer *rb;
5048 
5049 	rcu_read_lock();
5050 	rb = rcu_dereference(event->rb);
5051 	if (rb) {
5052 		if (!atomic_inc_not_zero(&rb->refcount))
5053 			rb = NULL;
5054 	}
5055 	rcu_read_unlock();
5056 
5057 	return rb;
5058 }
5059 
5060 void ring_buffer_put(struct ring_buffer *rb)
5061 {
5062 	if (!atomic_dec_and_test(&rb->refcount))
5063 		return;
5064 
5065 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5066 
5067 	call_rcu(&rb->rcu_head, rb_free_rcu);
5068 }
5069 
5070 static void perf_mmap_open(struct vm_area_struct *vma)
5071 {
5072 	struct perf_event *event = vma->vm_file->private_data;
5073 
5074 	atomic_inc(&event->mmap_count);
5075 	atomic_inc(&event->rb->mmap_count);
5076 
5077 	if (vma->vm_pgoff)
5078 		atomic_inc(&event->rb->aux_mmap_count);
5079 
5080 	if (event->pmu->event_mapped)
5081 		event->pmu->event_mapped(event);
5082 }
5083 
5084 static void perf_pmu_output_stop(struct perf_event *event);
5085 
5086 /*
5087  * A buffer can be mmap()ed multiple times; either directly through the same
5088  * event, or through other events by use of perf_event_set_output().
5089  *
5090  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5091  * the buffer here, where we still have a VM context. This means we need
5092  * to detach all events redirecting to us.
5093  */
5094 static void perf_mmap_close(struct vm_area_struct *vma)
5095 {
5096 	struct perf_event *event = vma->vm_file->private_data;
5097 
5098 	struct ring_buffer *rb = ring_buffer_get(event);
5099 	struct user_struct *mmap_user = rb->mmap_user;
5100 	int mmap_locked = rb->mmap_locked;
5101 	unsigned long size = perf_data_size(rb);
5102 
5103 	if (event->pmu->event_unmapped)
5104 		event->pmu->event_unmapped(event);
5105 
5106 	/*
5107 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5108 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5109 	 * serialize with perf_mmap here.
5110 	 */
5111 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5112 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5113 		/*
5114 		 * Stop all AUX events that are writing to this buffer,
5115 		 * so that we can free its AUX pages and corresponding PMU
5116 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5117 		 * they won't start any more (see perf_aux_output_begin()).
5118 		 */
5119 		perf_pmu_output_stop(event);
5120 
5121 		/* now it's safe to free the pages */
5122 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5123 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5124 
5125 		/* this has to be the last one */
5126 		rb_free_aux(rb);
5127 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5128 
5129 		mutex_unlock(&event->mmap_mutex);
5130 	}
5131 
5132 	atomic_dec(&rb->mmap_count);
5133 
5134 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5135 		goto out_put;
5136 
5137 	ring_buffer_attach(event, NULL);
5138 	mutex_unlock(&event->mmap_mutex);
5139 
5140 	/* If there's still other mmap()s of this buffer, we're done. */
5141 	if (atomic_read(&rb->mmap_count))
5142 		goto out_put;
5143 
5144 	/*
5145 	 * No other mmap()s, detach from all other events that might redirect
5146 	 * into the now unreachable buffer. Somewhat complicated by the
5147 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5148 	 */
5149 again:
5150 	rcu_read_lock();
5151 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5152 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5153 			/*
5154 			 * This event is en-route to free_event() which will
5155 			 * detach it and remove it from the list.
5156 			 */
5157 			continue;
5158 		}
5159 		rcu_read_unlock();
5160 
5161 		mutex_lock(&event->mmap_mutex);
5162 		/*
5163 		 * Check we didn't race with perf_event_set_output() which can
5164 		 * swizzle the rb from under us while we were waiting to
5165 		 * acquire mmap_mutex.
5166 		 *
5167 		 * If we find a different rb; ignore this event, a next
5168 		 * iteration will no longer find it on the list. We have to
5169 		 * still restart the iteration to make sure we're not now
5170 		 * iterating the wrong list.
5171 		 */
5172 		if (event->rb == rb)
5173 			ring_buffer_attach(event, NULL);
5174 
5175 		mutex_unlock(&event->mmap_mutex);
5176 		put_event(event);
5177 
5178 		/*
5179 		 * Restart the iteration; either we're on the wrong list or
5180 		 * destroyed its integrity by doing a deletion.
5181 		 */
5182 		goto again;
5183 	}
5184 	rcu_read_unlock();
5185 
5186 	/*
5187 	 * It could be there's still a few 0-ref events on the list; they'll
5188 	 * get cleaned up by free_event() -- they'll also still have their
5189 	 * ref on the rb and will free it whenever they are done with it.
5190 	 *
5191 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5192 	 * undo the VM accounting.
5193 	 */
5194 
5195 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5196 	vma->vm_mm->pinned_vm -= mmap_locked;
5197 	free_uid(mmap_user);
5198 
5199 out_put:
5200 	ring_buffer_put(rb); /* could be last */
5201 }
5202 
5203 static const struct vm_operations_struct perf_mmap_vmops = {
5204 	.open		= perf_mmap_open,
5205 	.close		= perf_mmap_close, /* non mergable */
5206 	.fault		= perf_mmap_fault,
5207 	.page_mkwrite	= perf_mmap_fault,
5208 };
5209 
5210 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5211 {
5212 	struct perf_event *event = file->private_data;
5213 	unsigned long user_locked, user_lock_limit;
5214 	struct user_struct *user = current_user();
5215 	unsigned long locked, lock_limit;
5216 	struct ring_buffer *rb = NULL;
5217 	unsigned long vma_size;
5218 	unsigned long nr_pages;
5219 	long user_extra = 0, extra = 0;
5220 	int ret = 0, flags = 0;
5221 
5222 	/*
5223 	 * Don't allow mmap() of inherited per-task counters. This would
5224 	 * create a performance issue due to all children writing to the
5225 	 * same rb.
5226 	 */
5227 	if (event->cpu == -1 && event->attr.inherit)
5228 		return -EINVAL;
5229 
5230 	if (!(vma->vm_flags & VM_SHARED))
5231 		return -EINVAL;
5232 
5233 	vma_size = vma->vm_end - vma->vm_start;
5234 
5235 	if (vma->vm_pgoff == 0) {
5236 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5237 	} else {
5238 		/*
5239 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5240 		 * mapped, all subsequent mappings should have the same size
5241 		 * and offset. Must be above the normal perf buffer.
5242 		 */
5243 		u64 aux_offset, aux_size;
5244 
5245 		if (!event->rb)
5246 			return -EINVAL;
5247 
5248 		nr_pages = vma_size / PAGE_SIZE;
5249 
5250 		mutex_lock(&event->mmap_mutex);
5251 		ret = -EINVAL;
5252 
5253 		rb = event->rb;
5254 		if (!rb)
5255 			goto aux_unlock;
5256 
5257 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5258 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5259 
5260 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5261 			goto aux_unlock;
5262 
5263 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5264 			goto aux_unlock;
5265 
5266 		/* already mapped with a different offset */
5267 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5268 			goto aux_unlock;
5269 
5270 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5271 			goto aux_unlock;
5272 
5273 		/* already mapped with a different size */
5274 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5275 			goto aux_unlock;
5276 
5277 		if (!is_power_of_2(nr_pages))
5278 			goto aux_unlock;
5279 
5280 		if (!atomic_inc_not_zero(&rb->mmap_count))
5281 			goto aux_unlock;
5282 
5283 		if (rb_has_aux(rb)) {
5284 			atomic_inc(&rb->aux_mmap_count);
5285 			ret = 0;
5286 			goto unlock;
5287 		}
5288 
5289 		atomic_set(&rb->aux_mmap_count, 1);
5290 		user_extra = nr_pages;
5291 
5292 		goto accounting;
5293 	}
5294 
5295 	/*
5296 	 * If we have rb pages ensure they're a power-of-two number, so we
5297 	 * can do bitmasks instead of modulo.
5298 	 */
5299 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5300 		return -EINVAL;
5301 
5302 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5303 		return -EINVAL;
5304 
5305 	WARN_ON_ONCE(event->ctx->parent_ctx);
5306 again:
5307 	mutex_lock(&event->mmap_mutex);
5308 	if (event->rb) {
5309 		if (event->rb->nr_pages != nr_pages) {
5310 			ret = -EINVAL;
5311 			goto unlock;
5312 		}
5313 
5314 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5315 			/*
5316 			 * Raced against perf_mmap_close() through
5317 			 * perf_event_set_output(). Try again, hope for better
5318 			 * luck.
5319 			 */
5320 			mutex_unlock(&event->mmap_mutex);
5321 			goto again;
5322 		}
5323 
5324 		goto unlock;
5325 	}
5326 
5327 	user_extra = nr_pages + 1;
5328 
5329 accounting:
5330 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5331 
5332 	/*
5333 	 * Increase the limit linearly with more CPUs:
5334 	 */
5335 	user_lock_limit *= num_online_cpus();
5336 
5337 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5338 
5339 	if (user_locked > user_lock_limit)
5340 		extra = user_locked - user_lock_limit;
5341 
5342 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5343 	lock_limit >>= PAGE_SHIFT;
5344 	locked = vma->vm_mm->pinned_vm + extra;
5345 
5346 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5347 		!capable(CAP_IPC_LOCK)) {
5348 		ret = -EPERM;
5349 		goto unlock;
5350 	}
5351 
5352 	WARN_ON(!rb && event->rb);
5353 
5354 	if (vma->vm_flags & VM_WRITE)
5355 		flags |= RING_BUFFER_WRITABLE;
5356 
5357 	if (!rb) {
5358 		rb = rb_alloc(nr_pages,
5359 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5360 			      event->cpu, flags);
5361 
5362 		if (!rb) {
5363 			ret = -ENOMEM;
5364 			goto unlock;
5365 		}
5366 
5367 		atomic_set(&rb->mmap_count, 1);
5368 		rb->mmap_user = get_current_user();
5369 		rb->mmap_locked = extra;
5370 
5371 		ring_buffer_attach(event, rb);
5372 
5373 		perf_event_init_userpage(event);
5374 		perf_event_update_userpage(event);
5375 	} else {
5376 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5377 				   event->attr.aux_watermark, flags);
5378 		if (!ret)
5379 			rb->aux_mmap_locked = extra;
5380 	}
5381 
5382 unlock:
5383 	if (!ret) {
5384 		atomic_long_add(user_extra, &user->locked_vm);
5385 		vma->vm_mm->pinned_vm += extra;
5386 
5387 		atomic_inc(&event->mmap_count);
5388 	} else if (rb) {
5389 		atomic_dec(&rb->mmap_count);
5390 	}
5391 aux_unlock:
5392 	mutex_unlock(&event->mmap_mutex);
5393 
5394 	/*
5395 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5396 	 * vma.
5397 	 */
5398 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5399 	vma->vm_ops = &perf_mmap_vmops;
5400 
5401 	if (event->pmu->event_mapped)
5402 		event->pmu->event_mapped(event);
5403 
5404 	return ret;
5405 }
5406 
5407 static int perf_fasync(int fd, struct file *filp, int on)
5408 {
5409 	struct inode *inode = file_inode(filp);
5410 	struct perf_event *event = filp->private_data;
5411 	int retval;
5412 
5413 	inode_lock(inode);
5414 	retval = fasync_helper(fd, filp, on, &event->fasync);
5415 	inode_unlock(inode);
5416 
5417 	if (retval < 0)
5418 		return retval;
5419 
5420 	return 0;
5421 }
5422 
5423 static const struct file_operations perf_fops = {
5424 	.llseek			= no_llseek,
5425 	.release		= perf_release,
5426 	.read			= perf_read,
5427 	.poll			= perf_poll,
5428 	.unlocked_ioctl		= perf_ioctl,
5429 	.compat_ioctl		= perf_compat_ioctl,
5430 	.mmap			= perf_mmap,
5431 	.fasync			= perf_fasync,
5432 };
5433 
5434 /*
5435  * Perf event wakeup
5436  *
5437  * If there's data, ensure we set the poll() state and publish everything
5438  * to user-space before waking everybody up.
5439  */
5440 
5441 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5442 {
5443 	/* only the parent has fasync state */
5444 	if (event->parent)
5445 		event = event->parent;
5446 	return &event->fasync;
5447 }
5448 
5449 void perf_event_wakeup(struct perf_event *event)
5450 {
5451 	ring_buffer_wakeup(event);
5452 
5453 	if (event->pending_kill) {
5454 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5455 		event->pending_kill = 0;
5456 	}
5457 }
5458 
5459 static void perf_pending_event(struct irq_work *entry)
5460 {
5461 	struct perf_event *event = container_of(entry,
5462 			struct perf_event, pending);
5463 	int rctx;
5464 
5465 	rctx = perf_swevent_get_recursion_context();
5466 	/*
5467 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5468 	 * and we won't recurse 'further'.
5469 	 */
5470 
5471 	if (event->pending_disable) {
5472 		event->pending_disable = 0;
5473 		perf_event_disable_local(event);
5474 	}
5475 
5476 	if (event->pending_wakeup) {
5477 		event->pending_wakeup = 0;
5478 		perf_event_wakeup(event);
5479 	}
5480 
5481 	if (rctx >= 0)
5482 		perf_swevent_put_recursion_context(rctx);
5483 }
5484 
5485 /*
5486  * We assume there is only KVM supporting the callbacks.
5487  * Later on, we might change it to a list if there is
5488  * another virtualization implementation supporting the callbacks.
5489  */
5490 struct perf_guest_info_callbacks *perf_guest_cbs;
5491 
5492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5493 {
5494 	perf_guest_cbs = cbs;
5495 	return 0;
5496 }
5497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5498 
5499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5500 {
5501 	perf_guest_cbs = NULL;
5502 	return 0;
5503 }
5504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5505 
5506 static void
5507 perf_output_sample_regs(struct perf_output_handle *handle,
5508 			struct pt_regs *regs, u64 mask)
5509 {
5510 	int bit;
5511 	DECLARE_BITMAP(_mask, 64);
5512 
5513 	bitmap_from_u64(_mask, mask);
5514 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5515 		u64 val;
5516 
5517 		val = perf_reg_value(regs, bit);
5518 		perf_output_put(handle, val);
5519 	}
5520 }
5521 
5522 static void perf_sample_regs_user(struct perf_regs *regs_user,
5523 				  struct pt_regs *regs,
5524 				  struct pt_regs *regs_user_copy)
5525 {
5526 	if (user_mode(regs)) {
5527 		regs_user->abi = perf_reg_abi(current);
5528 		regs_user->regs = regs;
5529 	} else if (current->mm) {
5530 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5531 	} else {
5532 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5533 		regs_user->regs = NULL;
5534 	}
5535 }
5536 
5537 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5538 				  struct pt_regs *regs)
5539 {
5540 	regs_intr->regs = regs;
5541 	regs_intr->abi  = perf_reg_abi(current);
5542 }
5543 
5544 
5545 /*
5546  * Get remaining task size from user stack pointer.
5547  *
5548  * It'd be better to take stack vma map and limit this more
5549  * precisly, but there's no way to get it safely under interrupt,
5550  * so using TASK_SIZE as limit.
5551  */
5552 static u64 perf_ustack_task_size(struct pt_regs *regs)
5553 {
5554 	unsigned long addr = perf_user_stack_pointer(regs);
5555 
5556 	if (!addr || addr >= TASK_SIZE)
5557 		return 0;
5558 
5559 	return TASK_SIZE - addr;
5560 }
5561 
5562 static u16
5563 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5564 			struct pt_regs *regs)
5565 {
5566 	u64 task_size;
5567 
5568 	/* No regs, no stack pointer, no dump. */
5569 	if (!regs)
5570 		return 0;
5571 
5572 	/*
5573 	 * Check if we fit in with the requested stack size into the:
5574 	 * - TASK_SIZE
5575 	 *   If we don't, we limit the size to the TASK_SIZE.
5576 	 *
5577 	 * - remaining sample size
5578 	 *   If we don't, we customize the stack size to
5579 	 *   fit in to the remaining sample size.
5580 	 */
5581 
5582 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5583 	stack_size = min(stack_size, (u16) task_size);
5584 
5585 	/* Current header size plus static size and dynamic size. */
5586 	header_size += 2 * sizeof(u64);
5587 
5588 	/* Do we fit in with the current stack dump size? */
5589 	if ((u16) (header_size + stack_size) < header_size) {
5590 		/*
5591 		 * If we overflow the maximum size for the sample,
5592 		 * we customize the stack dump size to fit in.
5593 		 */
5594 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5595 		stack_size = round_up(stack_size, sizeof(u64));
5596 	}
5597 
5598 	return stack_size;
5599 }
5600 
5601 static void
5602 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5603 			  struct pt_regs *regs)
5604 {
5605 	/* Case of a kernel thread, nothing to dump */
5606 	if (!regs) {
5607 		u64 size = 0;
5608 		perf_output_put(handle, size);
5609 	} else {
5610 		unsigned long sp;
5611 		unsigned int rem;
5612 		u64 dyn_size;
5613 
5614 		/*
5615 		 * We dump:
5616 		 * static size
5617 		 *   - the size requested by user or the best one we can fit
5618 		 *     in to the sample max size
5619 		 * data
5620 		 *   - user stack dump data
5621 		 * dynamic size
5622 		 *   - the actual dumped size
5623 		 */
5624 
5625 		/* Static size. */
5626 		perf_output_put(handle, dump_size);
5627 
5628 		/* Data. */
5629 		sp = perf_user_stack_pointer(regs);
5630 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5631 		dyn_size = dump_size - rem;
5632 
5633 		perf_output_skip(handle, rem);
5634 
5635 		/* Dynamic size. */
5636 		perf_output_put(handle, dyn_size);
5637 	}
5638 }
5639 
5640 static void __perf_event_header__init_id(struct perf_event_header *header,
5641 					 struct perf_sample_data *data,
5642 					 struct perf_event *event)
5643 {
5644 	u64 sample_type = event->attr.sample_type;
5645 
5646 	data->type = sample_type;
5647 	header->size += event->id_header_size;
5648 
5649 	if (sample_type & PERF_SAMPLE_TID) {
5650 		/* namespace issues */
5651 		data->tid_entry.pid = perf_event_pid(event, current);
5652 		data->tid_entry.tid = perf_event_tid(event, current);
5653 	}
5654 
5655 	if (sample_type & PERF_SAMPLE_TIME)
5656 		data->time = perf_event_clock(event);
5657 
5658 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5659 		data->id = primary_event_id(event);
5660 
5661 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5662 		data->stream_id = event->id;
5663 
5664 	if (sample_type & PERF_SAMPLE_CPU) {
5665 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5666 		data->cpu_entry.reserved = 0;
5667 	}
5668 }
5669 
5670 void perf_event_header__init_id(struct perf_event_header *header,
5671 				struct perf_sample_data *data,
5672 				struct perf_event *event)
5673 {
5674 	if (event->attr.sample_id_all)
5675 		__perf_event_header__init_id(header, data, event);
5676 }
5677 
5678 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5679 					   struct perf_sample_data *data)
5680 {
5681 	u64 sample_type = data->type;
5682 
5683 	if (sample_type & PERF_SAMPLE_TID)
5684 		perf_output_put(handle, data->tid_entry);
5685 
5686 	if (sample_type & PERF_SAMPLE_TIME)
5687 		perf_output_put(handle, data->time);
5688 
5689 	if (sample_type & PERF_SAMPLE_ID)
5690 		perf_output_put(handle, data->id);
5691 
5692 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5693 		perf_output_put(handle, data->stream_id);
5694 
5695 	if (sample_type & PERF_SAMPLE_CPU)
5696 		perf_output_put(handle, data->cpu_entry);
5697 
5698 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699 		perf_output_put(handle, data->id);
5700 }
5701 
5702 void perf_event__output_id_sample(struct perf_event *event,
5703 				  struct perf_output_handle *handle,
5704 				  struct perf_sample_data *sample)
5705 {
5706 	if (event->attr.sample_id_all)
5707 		__perf_event__output_id_sample(handle, sample);
5708 }
5709 
5710 static void perf_output_read_one(struct perf_output_handle *handle,
5711 				 struct perf_event *event,
5712 				 u64 enabled, u64 running)
5713 {
5714 	u64 read_format = event->attr.read_format;
5715 	u64 values[4];
5716 	int n = 0;
5717 
5718 	values[n++] = perf_event_count(event);
5719 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5720 		values[n++] = enabled +
5721 			atomic64_read(&event->child_total_time_enabled);
5722 	}
5723 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5724 		values[n++] = running +
5725 			atomic64_read(&event->child_total_time_running);
5726 	}
5727 	if (read_format & PERF_FORMAT_ID)
5728 		values[n++] = primary_event_id(event);
5729 
5730 	__output_copy(handle, values, n * sizeof(u64));
5731 }
5732 
5733 static void perf_output_read_group(struct perf_output_handle *handle,
5734 			    struct perf_event *event,
5735 			    u64 enabled, u64 running)
5736 {
5737 	struct perf_event *leader = event->group_leader, *sub;
5738 	u64 read_format = event->attr.read_format;
5739 	u64 values[5];
5740 	int n = 0;
5741 
5742 	values[n++] = 1 + leader->nr_siblings;
5743 
5744 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5745 		values[n++] = enabled;
5746 
5747 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5748 		values[n++] = running;
5749 
5750 	if (leader != event)
5751 		leader->pmu->read(leader);
5752 
5753 	values[n++] = perf_event_count(leader);
5754 	if (read_format & PERF_FORMAT_ID)
5755 		values[n++] = primary_event_id(leader);
5756 
5757 	__output_copy(handle, values, n * sizeof(u64));
5758 
5759 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5760 		n = 0;
5761 
5762 		if ((sub != event) &&
5763 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5764 			sub->pmu->read(sub);
5765 
5766 		values[n++] = perf_event_count(sub);
5767 		if (read_format & PERF_FORMAT_ID)
5768 			values[n++] = primary_event_id(sub);
5769 
5770 		__output_copy(handle, values, n * sizeof(u64));
5771 	}
5772 }
5773 
5774 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5775 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5776 
5777 /*
5778  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5779  *
5780  * The problem is that its both hard and excessively expensive to iterate the
5781  * child list, not to mention that its impossible to IPI the children running
5782  * on another CPU, from interrupt/NMI context.
5783  */
5784 static void perf_output_read(struct perf_output_handle *handle,
5785 			     struct perf_event *event)
5786 {
5787 	u64 enabled = 0, running = 0, now;
5788 	u64 read_format = event->attr.read_format;
5789 
5790 	/*
5791 	 * compute total_time_enabled, total_time_running
5792 	 * based on snapshot values taken when the event
5793 	 * was last scheduled in.
5794 	 *
5795 	 * we cannot simply called update_context_time()
5796 	 * because of locking issue as we are called in
5797 	 * NMI context
5798 	 */
5799 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5800 		calc_timer_values(event, &now, &enabled, &running);
5801 
5802 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5803 		perf_output_read_group(handle, event, enabled, running);
5804 	else
5805 		perf_output_read_one(handle, event, enabled, running);
5806 }
5807 
5808 void perf_output_sample(struct perf_output_handle *handle,
5809 			struct perf_event_header *header,
5810 			struct perf_sample_data *data,
5811 			struct perf_event *event)
5812 {
5813 	u64 sample_type = data->type;
5814 
5815 	perf_output_put(handle, *header);
5816 
5817 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5818 		perf_output_put(handle, data->id);
5819 
5820 	if (sample_type & PERF_SAMPLE_IP)
5821 		perf_output_put(handle, data->ip);
5822 
5823 	if (sample_type & PERF_SAMPLE_TID)
5824 		perf_output_put(handle, data->tid_entry);
5825 
5826 	if (sample_type & PERF_SAMPLE_TIME)
5827 		perf_output_put(handle, data->time);
5828 
5829 	if (sample_type & PERF_SAMPLE_ADDR)
5830 		perf_output_put(handle, data->addr);
5831 
5832 	if (sample_type & PERF_SAMPLE_ID)
5833 		perf_output_put(handle, data->id);
5834 
5835 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5836 		perf_output_put(handle, data->stream_id);
5837 
5838 	if (sample_type & PERF_SAMPLE_CPU)
5839 		perf_output_put(handle, data->cpu_entry);
5840 
5841 	if (sample_type & PERF_SAMPLE_PERIOD)
5842 		perf_output_put(handle, data->period);
5843 
5844 	if (sample_type & PERF_SAMPLE_READ)
5845 		perf_output_read(handle, event);
5846 
5847 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5848 		if (data->callchain) {
5849 			int size = 1;
5850 
5851 			if (data->callchain)
5852 				size += data->callchain->nr;
5853 
5854 			size *= sizeof(u64);
5855 
5856 			__output_copy(handle, data->callchain, size);
5857 		} else {
5858 			u64 nr = 0;
5859 			perf_output_put(handle, nr);
5860 		}
5861 	}
5862 
5863 	if (sample_type & PERF_SAMPLE_RAW) {
5864 		struct perf_raw_record *raw = data->raw;
5865 
5866 		if (raw) {
5867 			struct perf_raw_frag *frag = &raw->frag;
5868 
5869 			perf_output_put(handle, raw->size);
5870 			do {
5871 				if (frag->copy) {
5872 					__output_custom(handle, frag->copy,
5873 							frag->data, frag->size);
5874 				} else {
5875 					__output_copy(handle, frag->data,
5876 						      frag->size);
5877 				}
5878 				if (perf_raw_frag_last(frag))
5879 					break;
5880 				frag = frag->next;
5881 			} while (1);
5882 			if (frag->pad)
5883 				__output_skip(handle, NULL, frag->pad);
5884 		} else {
5885 			struct {
5886 				u32	size;
5887 				u32	data;
5888 			} raw = {
5889 				.size = sizeof(u32),
5890 				.data = 0,
5891 			};
5892 			perf_output_put(handle, raw);
5893 		}
5894 	}
5895 
5896 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5897 		if (data->br_stack) {
5898 			size_t size;
5899 
5900 			size = data->br_stack->nr
5901 			     * sizeof(struct perf_branch_entry);
5902 
5903 			perf_output_put(handle, data->br_stack->nr);
5904 			perf_output_copy(handle, data->br_stack->entries, size);
5905 		} else {
5906 			/*
5907 			 * we always store at least the value of nr
5908 			 */
5909 			u64 nr = 0;
5910 			perf_output_put(handle, nr);
5911 		}
5912 	}
5913 
5914 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5915 		u64 abi = data->regs_user.abi;
5916 
5917 		/*
5918 		 * If there are no regs to dump, notice it through
5919 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5920 		 */
5921 		perf_output_put(handle, abi);
5922 
5923 		if (abi) {
5924 			u64 mask = event->attr.sample_regs_user;
5925 			perf_output_sample_regs(handle,
5926 						data->regs_user.regs,
5927 						mask);
5928 		}
5929 	}
5930 
5931 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5932 		perf_output_sample_ustack(handle,
5933 					  data->stack_user_size,
5934 					  data->regs_user.regs);
5935 	}
5936 
5937 	if (sample_type & PERF_SAMPLE_WEIGHT)
5938 		perf_output_put(handle, data->weight);
5939 
5940 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5941 		perf_output_put(handle, data->data_src.val);
5942 
5943 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5944 		perf_output_put(handle, data->txn);
5945 
5946 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5947 		u64 abi = data->regs_intr.abi;
5948 		/*
5949 		 * If there are no regs to dump, notice it through
5950 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5951 		 */
5952 		perf_output_put(handle, abi);
5953 
5954 		if (abi) {
5955 			u64 mask = event->attr.sample_regs_intr;
5956 
5957 			perf_output_sample_regs(handle,
5958 						data->regs_intr.regs,
5959 						mask);
5960 		}
5961 	}
5962 
5963 	if (!event->attr.watermark) {
5964 		int wakeup_events = event->attr.wakeup_events;
5965 
5966 		if (wakeup_events) {
5967 			struct ring_buffer *rb = handle->rb;
5968 			int events = local_inc_return(&rb->events);
5969 
5970 			if (events >= wakeup_events) {
5971 				local_sub(wakeup_events, &rb->events);
5972 				local_inc(&rb->wakeup);
5973 			}
5974 		}
5975 	}
5976 }
5977 
5978 void perf_prepare_sample(struct perf_event_header *header,
5979 			 struct perf_sample_data *data,
5980 			 struct perf_event *event,
5981 			 struct pt_regs *regs)
5982 {
5983 	u64 sample_type = event->attr.sample_type;
5984 
5985 	header->type = PERF_RECORD_SAMPLE;
5986 	header->size = sizeof(*header) + event->header_size;
5987 
5988 	header->misc = 0;
5989 	header->misc |= perf_misc_flags(regs);
5990 
5991 	__perf_event_header__init_id(header, data, event);
5992 
5993 	if (sample_type & PERF_SAMPLE_IP)
5994 		data->ip = perf_instruction_pointer(regs);
5995 
5996 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5997 		int size = 1;
5998 
5999 		data->callchain = perf_callchain(event, regs);
6000 
6001 		if (data->callchain)
6002 			size += data->callchain->nr;
6003 
6004 		header->size += size * sizeof(u64);
6005 	}
6006 
6007 	if (sample_type & PERF_SAMPLE_RAW) {
6008 		struct perf_raw_record *raw = data->raw;
6009 		int size;
6010 
6011 		if (raw) {
6012 			struct perf_raw_frag *frag = &raw->frag;
6013 			u32 sum = 0;
6014 
6015 			do {
6016 				sum += frag->size;
6017 				if (perf_raw_frag_last(frag))
6018 					break;
6019 				frag = frag->next;
6020 			} while (1);
6021 
6022 			size = round_up(sum + sizeof(u32), sizeof(u64));
6023 			raw->size = size - sizeof(u32);
6024 			frag->pad = raw->size - sum;
6025 		} else {
6026 			size = sizeof(u64);
6027 		}
6028 
6029 		header->size += size;
6030 	}
6031 
6032 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6033 		int size = sizeof(u64); /* nr */
6034 		if (data->br_stack) {
6035 			size += data->br_stack->nr
6036 			      * sizeof(struct perf_branch_entry);
6037 		}
6038 		header->size += size;
6039 	}
6040 
6041 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6042 		perf_sample_regs_user(&data->regs_user, regs,
6043 				      &data->regs_user_copy);
6044 
6045 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6046 		/* regs dump ABI info */
6047 		int size = sizeof(u64);
6048 
6049 		if (data->regs_user.regs) {
6050 			u64 mask = event->attr.sample_regs_user;
6051 			size += hweight64(mask) * sizeof(u64);
6052 		}
6053 
6054 		header->size += size;
6055 	}
6056 
6057 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6058 		/*
6059 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6060 		 * processed as the last one or have additional check added
6061 		 * in case new sample type is added, because we could eat
6062 		 * up the rest of the sample size.
6063 		 */
6064 		u16 stack_size = event->attr.sample_stack_user;
6065 		u16 size = sizeof(u64);
6066 
6067 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6068 						     data->regs_user.regs);
6069 
6070 		/*
6071 		 * If there is something to dump, add space for the dump
6072 		 * itself and for the field that tells the dynamic size,
6073 		 * which is how many have been actually dumped.
6074 		 */
6075 		if (stack_size)
6076 			size += sizeof(u64) + stack_size;
6077 
6078 		data->stack_user_size = stack_size;
6079 		header->size += size;
6080 	}
6081 
6082 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6083 		/* regs dump ABI info */
6084 		int size = sizeof(u64);
6085 
6086 		perf_sample_regs_intr(&data->regs_intr, regs);
6087 
6088 		if (data->regs_intr.regs) {
6089 			u64 mask = event->attr.sample_regs_intr;
6090 
6091 			size += hweight64(mask) * sizeof(u64);
6092 		}
6093 
6094 		header->size += size;
6095 	}
6096 }
6097 
6098 static void __always_inline
6099 __perf_event_output(struct perf_event *event,
6100 		    struct perf_sample_data *data,
6101 		    struct pt_regs *regs,
6102 		    int (*output_begin)(struct perf_output_handle *,
6103 					struct perf_event *,
6104 					unsigned int))
6105 {
6106 	struct perf_output_handle handle;
6107 	struct perf_event_header header;
6108 
6109 	/* protect the callchain buffers */
6110 	rcu_read_lock();
6111 
6112 	perf_prepare_sample(&header, data, event, regs);
6113 
6114 	if (output_begin(&handle, event, header.size))
6115 		goto exit;
6116 
6117 	perf_output_sample(&handle, &header, data, event);
6118 
6119 	perf_output_end(&handle);
6120 
6121 exit:
6122 	rcu_read_unlock();
6123 }
6124 
6125 void
6126 perf_event_output_forward(struct perf_event *event,
6127 			 struct perf_sample_data *data,
6128 			 struct pt_regs *regs)
6129 {
6130 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6131 }
6132 
6133 void
6134 perf_event_output_backward(struct perf_event *event,
6135 			   struct perf_sample_data *data,
6136 			   struct pt_regs *regs)
6137 {
6138 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6139 }
6140 
6141 void
6142 perf_event_output(struct perf_event *event,
6143 		  struct perf_sample_data *data,
6144 		  struct pt_regs *regs)
6145 {
6146 	__perf_event_output(event, data, regs, perf_output_begin);
6147 }
6148 
6149 /*
6150  * read event_id
6151  */
6152 
6153 struct perf_read_event {
6154 	struct perf_event_header	header;
6155 
6156 	u32				pid;
6157 	u32				tid;
6158 };
6159 
6160 static void
6161 perf_event_read_event(struct perf_event *event,
6162 			struct task_struct *task)
6163 {
6164 	struct perf_output_handle handle;
6165 	struct perf_sample_data sample;
6166 	struct perf_read_event read_event = {
6167 		.header = {
6168 			.type = PERF_RECORD_READ,
6169 			.misc = 0,
6170 			.size = sizeof(read_event) + event->read_size,
6171 		},
6172 		.pid = perf_event_pid(event, task),
6173 		.tid = perf_event_tid(event, task),
6174 	};
6175 	int ret;
6176 
6177 	perf_event_header__init_id(&read_event.header, &sample, event);
6178 	ret = perf_output_begin(&handle, event, read_event.header.size);
6179 	if (ret)
6180 		return;
6181 
6182 	perf_output_put(&handle, read_event);
6183 	perf_output_read(&handle, event);
6184 	perf_event__output_id_sample(event, &handle, &sample);
6185 
6186 	perf_output_end(&handle);
6187 }
6188 
6189 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6190 
6191 static void
6192 perf_iterate_ctx(struct perf_event_context *ctx,
6193 		   perf_iterate_f output,
6194 		   void *data, bool all)
6195 {
6196 	struct perf_event *event;
6197 
6198 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6199 		if (!all) {
6200 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6201 				continue;
6202 			if (!event_filter_match(event))
6203 				continue;
6204 		}
6205 
6206 		output(event, data);
6207 	}
6208 }
6209 
6210 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6211 {
6212 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6213 	struct perf_event *event;
6214 
6215 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6216 		/*
6217 		 * Skip events that are not fully formed yet; ensure that
6218 		 * if we observe event->ctx, both event and ctx will be
6219 		 * complete enough. See perf_install_in_context().
6220 		 */
6221 		if (!smp_load_acquire(&event->ctx))
6222 			continue;
6223 
6224 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6225 			continue;
6226 		if (!event_filter_match(event))
6227 			continue;
6228 		output(event, data);
6229 	}
6230 }
6231 
6232 /*
6233  * Iterate all events that need to receive side-band events.
6234  *
6235  * For new callers; ensure that account_pmu_sb_event() includes
6236  * your event, otherwise it might not get delivered.
6237  */
6238 static void
6239 perf_iterate_sb(perf_iterate_f output, void *data,
6240 	       struct perf_event_context *task_ctx)
6241 {
6242 	struct perf_event_context *ctx;
6243 	int ctxn;
6244 
6245 	rcu_read_lock();
6246 	preempt_disable();
6247 
6248 	/*
6249 	 * If we have task_ctx != NULL we only notify the task context itself.
6250 	 * The task_ctx is set only for EXIT events before releasing task
6251 	 * context.
6252 	 */
6253 	if (task_ctx) {
6254 		perf_iterate_ctx(task_ctx, output, data, false);
6255 		goto done;
6256 	}
6257 
6258 	perf_iterate_sb_cpu(output, data);
6259 
6260 	for_each_task_context_nr(ctxn) {
6261 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6262 		if (ctx)
6263 			perf_iterate_ctx(ctx, output, data, false);
6264 	}
6265 done:
6266 	preempt_enable();
6267 	rcu_read_unlock();
6268 }
6269 
6270 /*
6271  * Clear all file-based filters at exec, they'll have to be
6272  * re-instated when/if these objects are mmapped again.
6273  */
6274 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6275 {
6276 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6277 	struct perf_addr_filter *filter;
6278 	unsigned int restart = 0, count = 0;
6279 	unsigned long flags;
6280 
6281 	if (!has_addr_filter(event))
6282 		return;
6283 
6284 	raw_spin_lock_irqsave(&ifh->lock, flags);
6285 	list_for_each_entry(filter, &ifh->list, entry) {
6286 		if (filter->inode) {
6287 			event->addr_filters_offs[count] = 0;
6288 			restart++;
6289 		}
6290 
6291 		count++;
6292 	}
6293 
6294 	if (restart)
6295 		event->addr_filters_gen++;
6296 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6297 
6298 	if (restart)
6299 		perf_event_stop(event, 1);
6300 }
6301 
6302 void perf_event_exec(void)
6303 {
6304 	struct perf_event_context *ctx;
6305 	int ctxn;
6306 
6307 	rcu_read_lock();
6308 	for_each_task_context_nr(ctxn) {
6309 		ctx = current->perf_event_ctxp[ctxn];
6310 		if (!ctx)
6311 			continue;
6312 
6313 		perf_event_enable_on_exec(ctxn);
6314 
6315 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6316 				   true);
6317 	}
6318 	rcu_read_unlock();
6319 }
6320 
6321 struct remote_output {
6322 	struct ring_buffer	*rb;
6323 	int			err;
6324 };
6325 
6326 static void __perf_event_output_stop(struct perf_event *event, void *data)
6327 {
6328 	struct perf_event *parent = event->parent;
6329 	struct remote_output *ro = data;
6330 	struct ring_buffer *rb = ro->rb;
6331 	struct stop_event_data sd = {
6332 		.event	= event,
6333 	};
6334 
6335 	if (!has_aux(event))
6336 		return;
6337 
6338 	if (!parent)
6339 		parent = event;
6340 
6341 	/*
6342 	 * In case of inheritance, it will be the parent that links to the
6343 	 * ring-buffer, but it will be the child that's actually using it.
6344 	 *
6345 	 * We are using event::rb to determine if the event should be stopped,
6346 	 * however this may race with ring_buffer_attach() (through set_output),
6347 	 * which will make us skip the event that actually needs to be stopped.
6348 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6349 	 * its rb pointer.
6350 	 */
6351 	if (rcu_dereference(parent->rb) == rb)
6352 		ro->err = __perf_event_stop(&sd);
6353 }
6354 
6355 static int __perf_pmu_output_stop(void *info)
6356 {
6357 	struct perf_event *event = info;
6358 	struct pmu *pmu = event->pmu;
6359 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6360 	struct remote_output ro = {
6361 		.rb	= event->rb,
6362 	};
6363 
6364 	rcu_read_lock();
6365 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6366 	if (cpuctx->task_ctx)
6367 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6368 				   &ro, false);
6369 	rcu_read_unlock();
6370 
6371 	return ro.err;
6372 }
6373 
6374 static void perf_pmu_output_stop(struct perf_event *event)
6375 {
6376 	struct perf_event *iter;
6377 	int err, cpu;
6378 
6379 restart:
6380 	rcu_read_lock();
6381 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6382 		/*
6383 		 * For per-CPU events, we need to make sure that neither they
6384 		 * nor their children are running; for cpu==-1 events it's
6385 		 * sufficient to stop the event itself if it's active, since
6386 		 * it can't have children.
6387 		 */
6388 		cpu = iter->cpu;
6389 		if (cpu == -1)
6390 			cpu = READ_ONCE(iter->oncpu);
6391 
6392 		if (cpu == -1)
6393 			continue;
6394 
6395 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6396 		if (err == -EAGAIN) {
6397 			rcu_read_unlock();
6398 			goto restart;
6399 		}
6400 	}
6401 	rcu_read_unlock();
6402 }
6403 
6404 /*
6405  * task tracking -- fork/exit
6406  *
6407  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6408  */
6409 
6410 struct perf_task_event {
6411 	struct task_struct		*task;
6412 	struct perf_event_context	*task_ctx;
6413 
6414 	struct {
6415 		struct perf_event_header	header;
6416 
6417 		u32				pid;
6418 		u32				ppid;
6419 		u32				tid;
6420 		u32				ptid;
6421 		u64				time;
6422 	} event_id;
6423 };
6424 
6425 static int perf_event_task_match(struct perf_event *event)
6426 {
6427 	return event->attr.comm  || event->attr.mmap ||
6428 	       event->attr.mmap2 || event->attr.mmap_data ||
6429 	       event->attr.task;
6430 }
6431 
6432 static void perf_event_task_output(struct perf_event *event,
6433 				   void *data)
6434 {
6435 	struct perf_task_event *task_event = data;
6436 	struct perf_output_handle handle;
6437 	struct perf_sample_data	sample;
6438 	struct task_struct *task = task_event->task;
6439 	int ret, size = task_event->event_id.header.size;
6440 
6441 	if (!perf_event_task_match(event))
6442 		return;
6443 
6444 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6445 
6446 	ret = perf_output_begin(&handle, event,
6447 				task_event->event_id.header.size);
6448 	if (ret)
6449 		goto out;
6450 
6451 	task_event->event_id.pid = perf_event_pid(event, task);
6452 	task_event->event_id.ppid = perf_event_pid(event, current);
6453 
6454 	task_event->event_id.tid = perf_event_tid(event, task);
6455 	task_event->event_id.ptid = perf_event_tid(event, current);
6456 
6457 	task_event->event_id.time = perf_event_clock(event);
6458 
6459 	perf_output_put(&handle, task_event->event_id);
6460 
6461 	perf_event__output_id_sample(event, &handle, &sample);
6462 
6463 	perf_output_end(&handle);
6464 out:
6465 	task_event->event_id.header.size = size;
6466 }
6467 
6468 static void perf_event_task(struct task_struct *task,
6469 			      struct perf_event_context *task_ctx,
6470 			      int new)
6471 {
6472 	struct perf_task_event task_event;
6473 
6474 	if (!atomic_read(&nr_comm_events) &&
6475 	    !atomic_read(&nr_mmap_events) &&
6476 	    !atomic_read(&nr_task_events))
6477 		return;
6478 
6479 	task_event = (struct perf_task_event){
6480 		.task	  = task,
6481 		.task_ctx = task_ctx,
6482 		.event_id    = {
6483 			.header = {
6484 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6485 				.misc = 0,
6486 				.size = sizeof(task_event.event_id),
6487 			},
6488 			/* .pid  */
6489 			/* .ppid */
6490 			/* .tid  */
6491 			/* .ptid */
6492 			/* .time */
6493 		},
6494 	};
6495 
6496 	perf_iterate_sb(perf_event_task_output,
6497 		       &task_event,
6498 		       task_ctx);
6499 }
6500 
6501 void perf_event_fork(struct task_struct *task)
6502 {
6503 	perf_event_task(task, NULL, 1);
6504 	perf_event_namespaces(task);
6505 }
6506 
6507 /*
6508  * comm tracking
6509  */
6510 
6511 struct perf_comm_event {
6512 	struct task_struct	*task;
6513 	char			*comm;
6514 	int			comm_size;
6515 
6516 	struct {
6517 		struct perf_event_header	header;
6518 
6519 		u32				pid;
6520 		u32				tid;
6521 	} event_id;
6522 };
6523 
6524 static int perf_event_comm_match(struct perf_event *event)
6525 {
6526 	return event->attr.comm;
6527 }
6528 
6529 static void perf_event_comm_output(struct perf_event *event,
6530 				   void *data)
6531 {
6532 	struct perf_comm_event *comm_event = data;
6533 	struct perf_output_handle handle;
6534 	struct perf_sample_data sample;
6535 	int size = comm_event->event_id.header.size;
6536 	int ret;
6537 
6538 	if (!perf_event_comm_match(event))
6539 		return;
6540 
6541 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6542 	ret = perf_output_begin(&handle, event,
6543 				comm_event->event_id.header.size);
6544 
6545 	if (ret)
6546 		goto out;
6547 
6548 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6549 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6550 
6551 	perf_output_put(&handle, comm_event->event_id);
6552 	__output_copy(&handle, comm_event->comm,
6553 				   comm_event->comm_size);
6554 
6555 	perf_event__output_id_sample(event, &handle, &sample);
6556 
6557 	perf_output_end(&handle);
6558 out:
6559 	comm_event->event_id.header.size = size;
6560 }
6561 
6562 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6563 {
6564 	char comm[TASK_COMM_LEN];
6565 	unsigned int size;
6566 
6567 	memset(comm, 0, sizeof(comm));
6568 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6569 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6570 
6571 	comm_event->comm = comm;
6572 	comm_event->comm_size = size;
6573 
6574 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6575 
6576 	perf_iterate_sb(perf_event_comm_output,
6577 		       comm_event,
6578 		       NULL);
6579 }
6580 
6581 void perf_event_comm(struct task_struct *task, bool exec)
6582 {
6583 	struct perf_comm_event comm_event;
6584 
6585 	if (!atomic_read(&nr_comm_events))
6586 		return;
6587 
6588 	comm_event = (struct perf_comm_event){
6589 		.task	= task,
6590 		/* .comm      */
6591 		/* .comm_size */
6592 		.event_id  = {
6593 			.header = {
6594 				.type = PERF_RECORD_COMM,
6595 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6596 				/* .size */
6597 			},
6598 			/* .pid */
6599 			/* .tid */
6600 		},
6601 	};
6602 
6603 	perf_event_comm_event(&comm_event);
6604 }
6605 
6606 /*
6607  * namespaces tracking
6608  */
6609 
6610 struct perf_namespaces_event {
6611 	struct task_struct		*task;
6612 
6613 	struct {
6614 		struct perf_event_header	header;
6615 
6616 		u32				pid;
6617 		u32				tid;
6618 		u64				nr_namespaces;
6619 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6620 	} event_id;
6621 };
6622 
6623 static int perf_event_namespaces_match(struct perf_event *event)
6624 {
6625 	return event->attr.namespaces;
6626 }
6627 
6628 static void perf_event_namespaces_output(struct perf_event *event,
6629 					 void *data)
6630 {
6631 	struct perf_namespaces_event *namespaces_event = data;
6632 	struct perf_output_handle handle;
6633 	struct perf_sample_data sample;
6634 	int ret;
6635 
6636 	if (!perf_event_namespaces_match(event))
6637 		return;
6638 
6639 	perf_event_header__init_id(&namespaces_event->event_id.header,
6640 				   &sample, event);
6641 	ret = perf_output_begin(&handle, event,
6642 				namespaces_event->event_id.header.size);
6643 	if (ret)
6644 		return;
6645 
6646 	namespaces_event->event_id.pid = perf_event_pid(event,
6647 							namespaces_event->task);
6648 	namespaces_event->event_id.tid = perf_event_tid(event,
6649 							namespaces_event->task);
6650 
6651 	perf_output_put(&handle, namespaces_event->event_id);
6652 
6653 	perf_event__output_id_sample(event, &handle, &sample);
6654 
6655 	perf_output_end(&handle);
6656 }
6657 
6658 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6659 				   struct task_struct *task,
6660 				   const struct proc_ns_operations *ns_ops)
6661 {
6662 	struct path ns_path;
6663 	struct inode *ns_inode;
6664 	void *error;
6665 
6666 	error = ns_get_path(&ns_path, task, ns_ops);
6667 	if (!error) {
6668 		ns_inode = ns_path.dentry->d_inode;
6669 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6670 		ns_link_info->ino = ns_inode->i_ino;
6671 	}
6672 }
6673 
6674 void perf_event_namespaces(struct task_struct *task)
6675 {
6676 	struct perf_namespaces_event namespaces_event;
6677 	struct perf_ns_link_info *ns_link_info;
6678 
6679 	if (!atomic_read(&nr_namespaces_events))
6680 		return;
6681 
6682 	namespaces_event = (struct perf_namespaces_event){
6683 		.task	= task,
6684 		.event_id  = {
6685 			.header = {
6686 				.type = PERF_RECORD_NAMESPACES,
6687 				.misc = 0,
6688 				.size = sizeof(namespaces_event.event_id),
6689 			},
6690 			/* .pid */
6691 			/* .tid */
6692 			.nr_namespaces = NR_NAMESPACES,
6693 			/* .link_info[NR_NAMESPACES] */
6694 		},
6695 	};
6696 
6697 	ns_link_info = namespaces_event.event_id.link_info;
6698 
6699 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6700 			       task, &mntns_operations);
6701 
6702 #ifdef CONFIG_USER_NS
6703 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6704 			       task, &userns_operations);
6705 #endif
6706 #ifdef CONFIG_NET_NS
6707 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6708 			       task, &netns_operations);
6709 #endif
6710 #ifdef CONFIG_UTS_NS
6711 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6712 			       task, &utsns_operations);
6713 #endif
6714 #ifdef CONFIG_IPC_NS
6715 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6716 			       task, &ipcns_operations);
6717 #endif
6718 #ifdef CONFIG_PID_NS
6719 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6720 			       task, &pidns_operations);
6721 #endif
6722 #ifdef CONFIG_CGROUPS
6723 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6724 			       task, &cgroupns_operations);
6725 #endif
6726 
6727 	perf_iterate_sb(perf_event_namespaces_output,
6728 			&namespaces_event,
6729 			NULL);
6730 }
6731 
6732 /*
6733  * mmap tracking
6734  */
6735 
6736 struct perf_mmap_event {
6737 	struct vm_area_struct	*vma;
6738 
6739 	const char		*file_name;
6740 	int			file_size;
6741 	int			maj, min;
6742 	u64			ino;
6743 	u64			ino_generation;
6744 	u32			prot, flags;
6745 
6746 	struct {
6747 		struct perf_event_header	header;
6748 
6749 		u32				pid;
6750 		u32				tid;
6751 		u64				start;
6752 		u64				len;
6753 		u64				pgoff;
6754 	} event_id;
6755 };
6756 
6757 static int perf_event_mmap_match(struct perf_event *event,
6758 				 void *data)
6759 {
6760 	struct perf_mmap_event *mmap_event = data;
6761 	struct vm_area_struct *vma = mmap_event->vma;
6762 	int executable = vma->vm_flags & VM_EXEC;
6763 
6764 	return (!executable && event->attr.mmap_data) ||
6765 	       (executable && (event->attr.mmap || event->attr.mmap2));
6766 }
6767 
6768 static void perf_event_mmap_output(struct perf_event *event,
6769 				   void *data)
6770 {
6771 	struct perf_mmap_event *mmap_event = data;
6772 	struct perf_output_handle handle;
6773 	struct perf_sample_data sample;
6774 	int size = mmap_event->event_id.header.size;
6775 	int ret;
6776 
6777 	if (!perf_event_mmap_match(event, data))
6778 		return;
6779 
6780 	if (event->attr.mmap2) {
6781 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6782 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6783 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6784 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6785 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6786 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6787 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6788 	}
6789 
6790 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6791 	ret = perf_output_begin(&handle, event,
6792 				mmap_event->event_id.header.size);
6793 	if (ret)
6794 		goto out;
6795 
6796 	mmap_event->event_id.pid = perf_event_pid(event, current);
6797 	mmap_event->event_id.tid = perf_event_tid(event, current);
6798 
6799 	perf_output_put(&handle, mmap_event->event_id);
6800 
6801 	if (event->attr.mmap2) {
6802 		perf_output_put(&handle, mmap_event->maj);
6803 		perf_output_put(&handle, mmap_event->min);
6804 		perf_output_put(&handle, mmap_event->ino);
6805 		perf_output_put(&handle, mmap_event->ino_generation);
6806 		perf_output_put(&handle, mmap_event->prot);
6807 		perf_output_put(&handle, mmap_event->flags);
6808 	}
6809 
6810 	__output_copy(&handle, mmap_event->file_name,
6811 				   mmap_event->file_size);
6812 
6813 	perf_event__output_id_sample(event, &handle, &sample);
6814 
6815 	perf_output_end(&handle);
6816 out:
6817 	mmap_event->event_id.header.size = size;
6818 }
6819 
6820 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6821 {
6822 	struct vm_area_struct *vma = mmap_event->vma;
6823 	struct file *file = vma->vm_file;
6824 	int maj = 0, min = 0;
6825 	u64 ino = 0, gen = 0;
6826 	u32 prot = 0, flags = 0;
6827 	unsigned int size;
6828 	char tmp[16];
6829 	char *buf = NULL;
6830 	char *name;
6831 
6832 	if (vma->vm_flags & VM_READ)
6833 		prot |= PROT_READ;
6834 	if (vma->vm_flags & VM_WRITE)
6835 		prot |= PROT_WRITE;
6836 	if (vma->vm_flags & VM_EXEC)
6837 		prot |= PROT_EXEC;
6838 
6839 	if (vma->vm_flags & VM_MAYSHARE)
6840 		flags = MAP_SHARED;
6841 	else
6842 		flags = MAP_PRIVATE;
6843 
6844 	if (vma->vm_flags & VM_DENYWRITE)
6845 		flags |= MAP_DENYWRITE;
6846 	if (vma->vm_flags & VM_MAYEXEC)
6847 		flags |= MAP_EXECUTABLE;
6848 	if (vma->vm_flags & VM_LOCKED)
6849 		flags |= MAP_LOCKED;
6850 	if (vma->vm_flags & VM_HUGETLB)
6851 		flags |= MAP_HUGETLB;
6852 
6853 	if (file) {
6854 		struct inode *inode;
6855 		dev_t dev;
6856 
6857 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6858 		if (!buf) {
6859 			name = "//enomem";
6860 			goto cpy_name;
6861 		}
6862 		/*
6863 		 * d_path() works from the end of the rb backwards, so we
6864 		 * need to add enough zero bytes after the string to handle
6865 		 * the 64bit alignment we do later.
6866 		 */
6867 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6868 		if (IS_ERR(name)) {
6869 			name = "//toolong";
6870 			goto cpy_name;
6871 		}
6872 		inode = file_inode(vma->vm_file);
6873 		dev = inode->i_sb->s_dev;
6874 		ino = inode->i_ino;
6875 		gen = inode->i_generation;
6876 		maj = MAJOR(dev);
6877 		min = MINOR(dev);
6878 
6879 		goto got_name;
6880 	} else {
6881 		if (vma->vm_ops && vma->vm_ops->name) {
6882 			name = (char *) vma->vm_ops->name(vma);
6883 			if (name)
6884 				goto cpy_name;
6885 		}
6886 
6887 		name = (char *)arch_vma_name(vma);
6888 		if (name)
6889 			goto cpy_name;
6890 
6891 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6892 				vma->vm_end >= vma->vm_mm->brk) {
6893 			name = "[heap]";
6894 			goto cpy_name;
6895 		}
6896 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6897 				vma->vm_end >= vma->vm_mm->start_stack) {
6898 			name = "[stack]";
6899 			goto cpy_name;
6900 		}
6901 
6902 		name = "//anon";
6903 		goto cpy_name;
6904 	}
6905 
6906 cpy_name:
6907 	strlcpy(tmp, name, sizeof(tmp));
6908 	name = tmp;
6909 got_name:
6910 	/*
6911 	 * Since our buffer works in 8 byte units we need to align our string
6912 	 * size to a multiple of 8. However, we must guarantee the tail end is
6913 	 * zero'd out to avoid leaking random bits to userspace.
6914 	 */
6915 	size = strlen(name)+1;
6916 	while (!IS_ALIGNED(size, sizeof(u64)))
6917 		name[size++] = '\0';
6918 
6919 	mmap_event->file_name = name;
6920 	mmap_event->file_size = size;
6921 	mmap_event->maj = maj;
6922 	mmap_event->min = min;
6923 	mmap_event->ino = ino;
6924 	mmap_event->ino_generation = gen;
6925 	mmap_event->prot = prot;
6926 	mmap_event->flags = flags;
6927 
6928 	if (!(vma->vm_flags & VM_EXEC))
6929 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6930 
6931 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6932 
6933 	perf_iterate_sb(perf_event_mmap_output,
6934 		       mmap_event,
6935 		       NULL);
6936 
6937 	kfree(buf);
6938 }
6939 
6940 /*
6941  * Check whether inode and address range match filter criteria.
6942  */
6943 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6944 				     struct file *file, unsigned long offset,
6945 				     unsigned long size)
6946 {
6947 	if (filter->inode != file_inode(file))
6948 		return false;
6949 
6950 	if (filter->offset > offset + size)
6951 		return false;
6952 
6953 	if (filter->offset + filter->size < offset)
6954 		return false;
6955 
6956 	return true;
6957 }
6958 
6959 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6960 {
6961 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6962 	struct vm_area_struct *vma = data;
6963 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6964 	struct file *file = vma->vm_file;
6965 	struct perf_addr_filter *filter;
6966 	unsigned int restart = 0, count = 0;
6967 
6968 	if (!has_addr_filter(event))
6969 		return;
6970 
6971 	if (!file)
6972 		return;
6973 
6974 	raw_spin_lock_irqsave(&ifh->lock, flags);
6975 	list_for_each_entry(filter, &ifh->list, entry) {
6976 		if (perf_addr_filter_match(filter, file, off,
6977 					     vma->vm_end - vma->vm_start)) {
6978 			event->addr_filters_offs[count] = vma->vm_start;
6979 			restart++;
6980 		}
6981 
6982 		count++;
6983 	}
6984 
6985 	if (restart)
6986 		event->addr_filters_gen++;
6987 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6988 
6989 	if (restart)
6990 		perf_event_stop(event, 1);
6991 }
6992 
6993 /*
6994  * Adjust all task's events' filters to the new vma
6995  */
6996 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6997 {
6998 	struct perf_event_context *ctx;
6999 	int ctxn;
7000 
7001 	/*
7002 	 * Data tracing isn't supported yet and as such there is no need
7003 	 * to keep track of anything that isn't related to executable code:
7004 	 */
7005 	if (!(vma->vm_flags & VM_EXEC))
7006 		return;
7007 
7008 	rcu_read_lock();
7009 	for_each_task_context_nr(ctxn) {
7010 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7011 		if (!ctx)
7012 			continue;
7013 
7014 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7015 	}
7016 	rcu_read_unlock();
7017 }
7018 
7019 void perf_event_mmap(struct vm_area_struct *vma)
7020 {
7021 	struct perf_mmap_event mmap_event;
7022 
7023 	if (!atomic_read(&nr_mmap_events))
7024 		return;
7025 
7026 	mmap_event = (struct perf_mmap_event){
7027 		.vma	= vma,
7028 		/* .file_name */
7029 		/* .file_size */
7030 		.event_id  = {
7031 			.header = {
7032 				.type = PERF_RECORD_MMAP,
7033 				.misc = PERF_RECORD_MISC_USER,
7034 				/* .size */
7035 			},
7036 			/* .pid */
7037 			/* .tid */
7038 			.start  = vma->vm_start,
7039 			.len    = vma->vm_end - vma->vm_start,
7040 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7041 		},
7042 		/* .maj (attr_mmap2 only) */
7043 		/* .min (attr_mmap2 only) */
7044 		/* .ino (attr_mmap2 only) */
7045 		/* .ino_generation (attr_mmap2 only) */
7046 		/* .prot (attr_mmap2 only) */
7047 		/* .flags (attr_mmap2 only) */
7048 	};
7049 
7050 	perf_addr_filters_adjust(vma);
7051 	perf_event_mmap_event(&mmap_event);
7052 }
7053 
7054 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7055 			  unsigned long size, u64 flags)
7056 {
7057 	struct perf_output_handle handle;
7058 	struct perf_sample_data sample;
7059 	struct perf_aux_event {
7060 		struct perf_event_header	header;
7061 		u64				offset;
7062 		u64				size;
7063 		u64				flags;
7064 	} rec = {
7065 		.header = {
7066 			.type = PERF_RECORD_AUX,
7067 			.misc = 0,
7068 			.size = sizeof(rec),
7069 		},
7070 		.offset		= head,
7071 		.size		= size,
7072 		.flags		= flags,
7073 	};
7074 	int ret;
7075 
7076 	perf_event_header__init_id(&rec.header, &sample, event);
7077 	ret = perf_output_begin(&handle, event, rec.header.size);
7078 
7079 	if (ret)
7080 		return;
7081 
7082 	perf_output_put(&handle, rec);
7083 	perf_event__output_id_sample(event, &handle, &sample);
7084 
7085 	perf_output_end(&handle);
7086 }
7087 
7088 /*
7089  * Lost/dropped samples logging
7090  */
7091 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7092 {
7093 	struct perf_output_handle handle;
7094 	struct perf_sample_data sample;
7095 	int ret;
7096 
7097 	struct {
7098 		struct perf_event_header	header;
7099 		u64				lost;
7100 	} lost_samples_event = {
7101 		.header = {
7102 			.type = PERF_RECORD_LOST_SAMPLES,
7103 			.misc = 0,
7104 			.size = sizeof(lost_samples_event),
7105 		},
7106 		.lost		= lost,
7107 	};
7108 
7109 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7110 
7111 	ret = perf_output_begin(&handle, event,
7112 				lost_samples_event.header.size);
7113 	if (ret)
7114 		return;
7115 
7116 	perf_output_put(&handle, lost_samples_event);
7117 	perf_event__output_id_sample(event, &handle, &sample);
7118 	perf_output_end(&handle);
7119 }
7120 
7121 /*
7122  * context_switch tracking
7123  */
7124 
7125 struct perf_switch_event {
7126 	struct task_struct	*task;
7127 	struct task_struct	*next_prev;
7128 
7129 	struct {
7130 		struct perf_event_header	header;
7131 		u32				next_prev_pid;
7132 		u32				next_prev_tid;
7133 	} event_id;
7134 };
7135 
7136 static int perf_event_switch_match(struct perf_event *event)
7137 {
7138 	return event->attr.context_switch;
7139 }
7140 
7141 static void perf_event_switch_output(struct perf_event *event, void *data)
7142 {
7143 	struct perf_switch_event *se = data;
7144 	struct perf_output_handle handle;
7145 	struct perf_sample_data sample;
7146 	int ret;
7147 
7148 	if (!perf_event_switch_match(event))
7149 		return;
7150 
7151 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7152 	if (event->ctx->task) {
7153 		se->event_id.header.type = PERF_RECORD_SWITCH;
7154 		se->event_id.header.size = sizeof(se->event_id.header);
7155 	} else {
7156 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7157 		se->event_id.header.size = sizeof(se->event_id);
7158 		se->event_id.next_prev_pid =
7159 					perf_event_pid(event, se->next_prev);
7160 		se->event_id.next_prev_tid =
7161 					perf_event_tid(event, se->next_prev);
7162 	}
7163 
7164 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7165 
7166 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7167 	if (ret)
7168 		return;
7169 
7170 	if (event->ctx->task)
7171 		perf_output_put(&handle, se->event_id.header);
7172 	else
7173 		perf_output_put(&handle, se->event_id);
7174 
7175 	perf_event__output_id_sample(event, &handle, &sample);
7176 
7177 	perf_output_end(&handle);
7178 }
7179 
7180 static void perf_event_switch(struct task_struct *task,
7181 			      struct task_struct *next_prev, bool sched_in)
7182 {
7183 	struct perf_switch_event switch_event;
7184 
7185 	/* N.B. caller checks nr_switch_events != 0 */
7186 
7187 	switch_event = (struct perf_switch_event){
7188 		.task		= task,
7189 		.next_prev	= next_prev,
7190 		.event_id	= {
7191 			.header = {
7192 				/* .type */
7193 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7194 				/* .size */
7195 			},
7196 			/* .next_prev_pid */
7197 			/* .next_prev_tid */
7198 		},
7199 	};
7200 
7201 	perf_iterate_sb(perf_event_switch_output,
7202 		       &switch_event,
7203 		       NULL);
7204 }
7205 
7206 /*
7207  * IRQ throttle logging
7208  */
7209 
7210 static void perf_log_throttle(struct perf_event *event, int enable)
7211 {
7212 	struct perf_output_handle handle;
7213 	struct perf_sample_data sample;
7214 	int ret;
7215 
7216 	struct {
7217 		struct perf_event_header	header;
7218 		u64				time;
7219 		u64				id;
7220 		u64				stream_id;
7221 	} throttle_event = {
7222 		.header = {
7223 			.type = PERF_RECORD_THROTTLE,
7224 			.misc = 0,
7225 			.size = sizeof(throttle_event),
7226 		},
7227 		.time		= perf_event_clock(event),
7228 		.id		= primary_event_id(event),
7229 		.stream_id	= event->id,
7230 	};
7231 
7232 	if (enable)
7233 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7234 
7235 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7236 
7237 	ret = perf_output_begin(&handle, event,
7238 				throttle_event.header.size);
7239 	if (ret)
7240 		return;
7241 
7242 	perf_output_put(&handle, throttle_event);
7243 	perf_event__output_id_sample(event, &handle, &sample);
7244 	perf_output_end(&handle);
7245 }
7246 
7247 static void perf_log_itrace_start(struct perf_event *event)
7248 {
7249 	struct perf_output_handle handle;
7250 	struct perf_sample_data sample;
7251 	struct perf_aux_event {
7252 		struct perf_event_header        header;
7253 		u32				pid;
7254 		u32				tid;
7255 	} rec;
7256 	int ret;
7257 
7258 	if (event->parent)
7259 		event = event->parent;
7260 
7261 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7262 	    event->hw.itrace_started)
7263 		return;
7264 
7265 	rec.header.type	= PERF_RECORD_ITRACE_START;
7266 	rec.header.misc	= 0;
7267 	rec.header.size	= sizeof(rec);
7268 	rec.pid	= perf_event_pid(event, current);
7269 	rec.tid	= perf_event_tid(event, current);
7270 
7271 	perf_event_header__init_id(&rec.header, &sample, event);
7272 	ret = perf_output_begin(&handle, event, rec.header.size);
7273 
7274 	if (ret)
7275 		return;
7276 
7277 	perf_output_put(&handle, rec);
7278 	perf_event__output_id_sample(event, &handle, &sample);
7279 
7280 	perf_output_end(&handle);
7281 }
7282 
7283 static int
7284 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7285 {
7286 	struct hw_perf_event *hwc = &event->hw;
7287 	int ret = 0;
7288 	u64 seq;
7289 
7290 	seq = __this_cpu_read(perf_throttled_seq);
7291 	if (seq != hwc->interrupts_seq) {
7292 		hwc->interrupts_seq = seq;
7293 		hwc->interrupts = 1;
7294 	} else {
7295 		hwc->interrupts++;
7296 		if (unlikely(throttle
7297 			     && hwc->interrupts >= max_samples_per_tick)) {
7298 			__this_cpu_inc(perf_throttled_count);
7299 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7300 			hwc->interrupts = MAX_INTERRUPTS;
7301 			perf_log_throttle(event, 0);
7302 			ret = 1;
7303 		}
7304 	}
7305 
7306 	if (event->attr.freq) {
7307 		u64 now = perf_clock();
7308 		s64 delta = now - hwc->freq_time_stamp;
7309 
7310 		hwc->freq_time_stamp = now;
7311 
7312 		if (delta > 0 && delta < 2*TICK_NSEC)
7313 			perf_adjust_period(event, delta, hwc->last_period, true);
7314 	}
7315 
7316 	return ret;
7317 }
7318 
7319 int perf_event_account_interrupt(struct perf_event *event)
7320 {
7321 	return __perf_event_account_interrupt(event, 1);
7322 }
7323 
7324 static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7325 {
7326 	/*
7327 	 * Due to interrupt latency (AKA "skid"), we may enter the
7328 	 * kernel before taking an overflow, even if the PMU is only
7329 	 * counting user events.
7330 	 * To avoid leaking information to userspace, we must always
7331 	 * reject kernel samples when exclude_kernel is set.
7332 	 */
7333 	if (event->attr.exclude_kernel && !user_mode(regs))
7334 		return false;
7335 
7336 	return true;
7337 }
7338 
7339 /*
7340  * Generic event overflow handling, sampling.
7341  */
7342 
7343 static int __perf_event_overflow(struct perf_event *event,
7344 				   int throttle, struct perf_sample_data *data,
7345 				   struct pt_regs *regs)
7346 {
7347 	int events = atomic_read(&event->event_limit);
7348 	int ret = 0;
7349 
7350 	/*
7351 	 * Non-sampling counters might still use the PMI to fold short
7352 	 * hardware counters, ignore those.
7353 	 */
7354 	if (unlikely(!is_sampling_event(event)))
7355 		return 0;
7356 
7357 	ret = __perf_event_account_interrupt(event, throttle);
7358 
7359 	/*
7360 	 * For security, drop the skid kernel samples if necessary.
7361 	 */
7362 	if (!sample_is_allowed(event, regs))
7363 		return ret;
7364 
7365 	/*
7366 	 * XXX event_limit might not quite work as expected on inherited
7367 	 * events
7368 	 */
7369 
7370 	event->pending_kill = POLL_IN;
7371 	if (events && atomic_dec_and_test(&event->event_limit)) {
7372 		ret = 1;
7373 		event->pending_kill = POLL_HUP;
7374 
7375 		perf_event_disable_inatomic(event);
7376 	}
7377 
7378 	READ_ONCE(event->overflow_handler)(event, data, regs);
7379 
7380 	if (*perf_event_fasync(event) && event->pending_kill) {
7381 		event->pending_wakeup = 1;
7382 		irq_work_queue(&event->pending);
7383 	}
7384 
7385 	return ret;
7386 }
7387 
7388 int perf_event_overflow(struct perf_event *event,
7389 			  struct perf_sample_data *data,
7390 			  struct pt_regs *regs)
7391 {
7392 	return __perf_event_overflow(event, 1, data, regs);
7393 }
7394 
7395 /*
7396  * Generic software event infrastructure
7397  */
7398 
7399 struct swevent_htable {
7400 	struct swevent_hlist		*swevent_hlist;
7401 	struct mutex			hlist_mutex;
7402 	int				hlist_refcount;
7403 
7404 	/* Recursion avoidance in each contexts */
7405 	int				recursion[PERF_NR_CONTEXTS];
7406 };
7407 
7408 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7409 
7410 /*
7411  * We directly increment event->count and keep a second value in
7412  * event->hw.period_left to count intervals. This period event
7413  * is kept in the range [-sample_period, 0] so that we can use the
7414  * sign as trigger.
7415  */
7416 
7417 u64 perf_swevent_set_period(struct perf_event *event)
7418 {
7419 	struct hw_perf_event *hwc = &event->hw;
7420 	u64 period = hwc->last_period;
7421 	u64 nr, offset;
7422 	s64 old, val;
7423 
7424 	hwc->last_period = hwc->sample_period;
7425 
7426 again:
7427 	old = val = local64_read(&hwc->period_left);
7428 	if (val < 0)
7429 		return 0;
7430 
7431 	nr = div64_u64(period + val, period);
7432 	offset = nr * period;
7433 	val -= offset;
7434 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7435 		goto again;
7436 
7437 	return nr;
7438 }
7439 
7440 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7441 				    struct perf_sample_data *data,
7442 				    struct pt_regs *regs)
7443 {
7444 	struct hw_perf_event *hwc = &event->hw;
7445 	int throttle = 0;
7446 
7447 	if (!overflow)
7448 		overflow = perf_swevent_set_period(event);
7449 
7450 	if (hwc->interrupts == MAX_INTERRUPTS)
7451 		return;
7452 
7453 	for (; overflow; overflow--) {
7454 		if (__perf_event_overflow(event, throttle,
7455 					    data, regs)) {
7456 			/*
7457 			 * We inhibit the overflow from happening when
7458 			 * hwc->interrupts == MAX_INTERRUPTS.
7459 			 */
7460 			break;
7461 		}
7462 		throttle = 1;
7463 	}
7464 }
7465 
7466 static void perf_swevent_event(struct perf_event *event, u64 nr,
7467 			       struct perf_sample_data *data,
7468 			       struct pt_regs *regs)
7469 {
7470 	struct hw_perf_event *hwc = &event->hw;
7471 
7472 	local64_add(nr, &event->count);
7473 
7474 	if (!regs)
7475 		return;
7476 
7477 	if (!is_sampling_event(event))
7478 		return;
7479 
7480 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7481 		data->period = nr;
7482 		return perf_swevent_overflow(event, 1, data, regs);
7483 	} else
7484 		data->period = event->hw.last_period;
7485 
7486 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7487 		return perf_swevent_overflow(event, 1, data, regs);
7488 
7489 	if (local64_add_negative(nr, &hwc->period_left))
7490 		return;
7491 
7492 	perf_swevent_overflow(event, 0, data, regs);
7493 }
7494 
7495 static int perf_exclude_event(struct perf_event *event,
7496 			      struct pt_regs *regs)
7497 {
7498 	if (event->hw.state & PERF_HES_STOPPED)
7499 		return 1;
7500 
7501 	if (regs) {
7502 		if (event->attr.exclude_user && user_mode(regs))
7503 			return 1;
7504 
7505 		if (event->attr.exclude_kernel && !user_mode(regs))
7506 			return 1;
7507 	}
7508 
7509 	return 0;
7510 }
7511 
7512 static int perf_swevent_match(struct perf_event *event,
7513 				enum perf_type_id type,
7514 				u32 event_id,
7515 				struct perf_sample_data *data,
7516 				struct pt_regs *regs)
7517 {
7518 	if (event->attr.type != type)
7519 		return 0;
7520 
7521 	if (event->attr.config != event_id)
7522 		return 0;
7523 
7524 	if (perf_exclude_event(event, regs))
7525 		return 0;
7526 
7527 	return 1;
7528 }
7529 
7530 static inline u64 swevent_hash(u64 type, u32 event_id)
7531 {
7532 	u64 val = event_id | (type << 32);
7533 
7534 	return hash_64(val, SWEVENT_HLIST_BITS);
7535 }
7536 
7537 static inline struct hlist_head *
7538 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7539 {
7540 	u64 hash = swevent_hash(type, event_id);
7541 
7542 	return &hlist->heads[hash];
7543 }
7544 
7545 /* For the read side: events when they trigger */
7546 static inline struct hlist_head *
7547 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7548 {
7549 	struct swevent_hlist *hlist;
7550 
7551 	hlist = rcu_dereference(swhash->swevent_hlist);
7552 	if (!hlist)
7553 		return NULL;
7554 
7555 	return __find_swevent_head(hlist, type, event_id);
7556 }
7557 
7558 /* For the event head insertion and removal in the hlist */
7559 static inline struct hlist_head *
7560 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7561 {
7562 	struct swevent_hlist *hlist;
7563 	u32 event_id = event->attr.config;
7564 	u64 type = event->attr.type;
7565 
7566 	/*
7567 	 * Event scheduling is always serialized against hlist allocation
7568 	 * and release. Which makes the protected version suitable here.
7569 	 * The context lock guarantees that.
7570 	 */
7571 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7572 					  lockdep_is_held(&event->ctx->lock));
7573 	if (!hlist)
7574 		return NULL;
7575 
7576 	return __find_swevent_head(hlist, type, event_id);
7577 }
7578 
7579 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7580 				    u64 nr,
7581 				    struct perf_sample_data *data,
7582 				    struct pt_regs *regs)
7583 {
7584 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7585 	struct perf_event *event;
7586 	struct hlist_head *head;
7587 
7588 	rcu_read_lock();
7589 	head = find_swevent_head_rcu(swhash, type, event_id);
7590 	if (!head)
7591 		goto end;
7592 
7593 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7594 		if (perf_swevent_match(event, type, event_id, data, regs))
7595 			perf_swevent_event(event, nr, data, regs);
7596 	}
7597 end:
7598 	rcu_read_unlock();
7599 }
7600 
7601 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7602 
7603 int perf_swevent_get_recursion_context(void)
7604 {
7605 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7606 
7607 	return get_recursion_context(swhash->recursion);
7608 }
7609 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7610 
7611 void perf_swevent_put_recursion_context(int rctx)
7612 {
7613 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7614 
7615 	put_recursion_context(swhash->recursion, rctx);
7616 }
7617 
7618 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7619 {
7620 	struct perf_sample_data data;
7621 
7622 	if (WARN_ON_ONCE(!regs))
7623 		return;
7624 
7625 	perf_sample_data_init(&data, addr, 0);
7626 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7627 }
7628 
7629 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7630 {
7631 	int rctx;
7632 
7633 	preempt_disable_notrace();
7634 	rctx = perf_swevent_get_recursion_context();
7635 	if (unlikely(rctx < 0))
7636 		goto fail;
7637 
7638 	___perf_sw_event(event_id, nr, regs, addr);
7639 
7640 	perf_swevent_put_recursion_context(rctx);
7641 fail:
7642 	preempt_enable_notrace();
7643 }
7644 
7645 static void perf_swevent_read(struct perf_event *event)
7646 {
7647 }
7648 
7649 static int perf_swevent_add(struct perf_event *event, int flags)
7650 {
7651 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7652 	struct hw_perf_event *hwc = &event->hw;
7653 	struct hlist_head *head;
7654 
7655 	if (is_sampling_event(event)) {
7656 		hwc->last_period = hwc->sample_period;
7657 		perf_swevent_set_period(event);
7658 	}
7659 
7660 	hwc->state = !(flags & PERF_EF_START);
7661 
7662 	head = find_swevent_head(swhash, event);
7663 	if (WARN_ON_ONCE(!head))
7664 		return -EINVAL;
7665 
7666 	hlist_add_head_rcu(&event->hlist_entry, head);
7667 	perf_event_update_userpage(event);
7668 
7669 	return 0;
7670 }
7671 
7672 static void perf_swevent_del(struct perf_event *event, int flags)
7673 {
7674 	hlist_del_rcu(&event->hlist_entry);
7675 }
7676 
7677 static void perf_swevent_start(struct perf_event *event, int flags)
7678 {
7679 	event->hw.state = 0;
7680 }
7681 
7682 static void perf_swevent_stop(struct perf_event *event, int flags)
7683 {
7684 	event->hw.state = PERF_HES_STOPPED;
7685 }
7686 
7687 /* Deref the hlist from the update side */
7688 static inline struct swevent_hlist *
7689 swevent_hlist_deref(struct swevent_htable *swhash)
7690 {
7691 	return rcu_dereference_protected(swhash->swevent_hlist,
7692 					 lockdep_is_held(&swhash->hlist_mutex));
7693 }
7694 
7695 static void swevent_hlist_release(struct swevent_htable *swhash)
7696 {
7697 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7698 
7699 	if (!hlist)
7700 		return;
7701 
7702 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7703 	kfree_rcu(hlist, rcu_head);
7704 }
7705 
7706 static void swevent_hlist_put_cpu(int cpu)
7707 {
7708 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7709 
7710 	mutex_lock(&swhash->hlist_mutex);
7711 
7712 	if (!--swhash->hlist_refcount)
7713 		swevent_hlist_release(swhash);
7714 
7715 	mutex_unlock(&swhash->hlist_mutex);
7716 }
7717 
7718 static void swevent_hlist_put(void)
7719 {
7720 	int cpu;
7721 
7722 	for_each_possible_cpu(cpu)
7723 		swevent_hlist_put_cpu(cpu);
7724 }
7725 
7726 static int swevent_hlist_get_cpu(int cpu)
7727 {
7728 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7729 	int err = 0;
7730 
7731 	mutex_lock(&swhash->hlist_mutex);
7732 	if (!swevent_hlist_deref(swhash) &&
7733 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7734 		struct swevent_hlist *hlist;
7735 
7736 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7737 		if (!hlist) {
7738 			err = -ENOMEM;
7739 			goto exit;
7740 		}
7741 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7742 	}
7743 	swhash->hlist_refcount++;
7744 exit:
7745 	mutex_unlock(&swhash->hlist_mutex);
7746 
7747 	return err;
7748 }
7749 
7750 static int swevent_hlist_get(void)
7751 {
7752 	int err, cpu, failed_cpu;
7753 
7754 	mutex_lock(&pmus_lock);
7755 	for_each_possible_cpu(cpu) {
7756 		err = swevent_hlist_get_cpu(cpu);
7757 		if (err) {
7758 			failed_cpu = cpu;
7759 			goto fail;
7760 		}
7761 	}
7762 	mutex_unlock(&pmus_lock);
7763 	return 0;
7764 fail:
7765 	for_each_possible_cpu(cpu) {
7766 		if (cpu == failed_cpu)
7767 			break;
7768 		swevent_hlist_put_cpu(cpu);
7769 	}
7770 	mutex_unlock(&pmus_lock);
7771 	return err;
7772 }
7773 
7774 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7775 
7776 static void sw_perf_event_destroy(struct perf_event *event)
7777 {
7778 	u64 event_id = event->attr.config;
7779 
7780 	WARN_ON(event->parent);
7781 
7782 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7783 	swevent_hlist_put();
7784 }
7785 
7786 static int perf_swevent_init(struct perf_event *event)
7787 {
7788 	u64 event_id = event->attr.config;
7789 
7790 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7791 		return -ENOENT;
7792 
7793 	/*
7794 	 * no branch sampling for software events
7795 	 */
7796 	if (has_branch_stack(event))
7797 		return -EOPNOTSUPP;
7798 
7799 	switch (event_id) {
7800 	case PERF_COUNT_SW_CPU_CLOCK:
7801 	case PERF_COUNT_SW_TASK_CLOCK:
7802 		return -ENOENT;
7803 
7804 	default:
7805 		break;
7806 	}
7807 
7808 	if (event_id >= PERF_COUNT_SW_MAX)
7809 		return -ENOENT;
7810 
7811 	if (!event->parent) {
7812 		int err;
7813 
7814 		err = swevent_hlist_get();
7815 		if (err)
7816 			return err;
7817 
7818 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7819 		event->destroy = sw_perf_event_destroy;
7820 	}
7821 
7822 	return 0;
7823 }
7824 
7825 static struct pmu perf_swevent = {
7826 	.task_ctx_nr	= perf_sw_context,
7827 
7828 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7829 
7830 	.event_init	= perf_swevent_init,
7831 	.add		= perf_swevent_add,
7832 	.del		= perf_swevent_del,
7833 	.start		= perf_swevent_start,
7834 	.stop		= perf_swevent_stop,
7835 	.read		= perf_swevent_read,
7836 };
7837 
7838 #ifdef CONFIG_EVENT_TRACING
7839 
7840 static int perf_tp_filter_match(struct perf_event *event,
7841 				struct perf_sample_data *data)
7842 {
7843 	void *record = data->raw->frag.data;
7844 
7845 	/* only top level events have filters set */
7846 	if (event->parent)
7847 		event = event->parent;
7848 
7849 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7850 		return 1;
7851 	return 0;
7852 }
7853 
7854 static int perf_tp_event_match(struct perf_event *event,
7855 				struct perf_sample_data *data,
7856 				struct pt_regs *regs)
7857 {
7858 	if (event->hw.state & PERF_HES_STOPPED)
7859 		return 0;
7860 	/*
7861 	 * All tracepoints are from kernel-space.
7862 	 */
7863 	if (event->attr.exclude_kernel)
7864 		return 0;
7865 
7866 	if (!perf_tp_filter_match(event, data))
7867 		return 0;
7868 
7869 	return 1;
7870 }
7871 
7872 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7873 			       struct trace_event_call *call, u64 count,
7874 			       struct pt_regs *regs, struct hlist_head *head,
7875 			       struct task_struct *task)
7876 {
7877 	struct bpf_prog *prog = call->prog;
7878 
7879 	if (prog) {
7880 		*(struct pt_regs **)raw_data = regs;
7881 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7882 			perf_swevent_put_recursion_context(rctx);
7883 			return;
7884 		}
7885 	}
7886 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7887 		      rctx, task);
7888 }
7889 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7890 
7891 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7892 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7893 		   struct task_struct *task)
7894 {
7895 	struct perf_sample_data data;
7896 	struct perf_event *event;
7897 
7898 	struct perf_raw_record raw = {
7899 		.frag = {
7900 			.size = entry_size,
7901 			.data = record,
7902 		},
7903 	};
7904 
7905 	perf_sample_data_init(&data, 0, 0);
7906 	data.raw = &raw;
7907 
7908 	perf_trace_buf_update(record, event_type);
7909 
7910 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7911 		if (perf_tp_event_match(event, &data, regs))
7912 			perf_swevent_event(event, count, &data, regs);
7913 	}
7914 
7915 	/*
7916 	 * If we got specified a target task, also iterate its context and
7917 	 * deliver this event there too.
7918 	 */
7919 	if (task && task != current) {
7920 		struct perf_event_context *ctx;
7921 		struct trace_entry *entry = record;
7922 
7923 		rcu_read_lock();
7924 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7925 		if (!ctx)
7926 			goto unlock;
7927 
7928 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7929 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7930 				continue;
7931 			if (event->attr.config != entry->type)
7932 				continue;
7933 			if (perf_tp_event_match(event, &data, regs))
7934 				perf_swevent_event(event, count, &data, regs);
7935 		}
7936 unlock:
7937 		rcu_read_unlock();
7938 	}
7939 
7940 	perf_swevent_put_recursion_context(rctx);
7941 }
7942 EXPORT_SYMBOL_GPL(perf_tp_event);
7943 
7944 static void tp_perf_event_destroy(struct perf_event *event)
7945 {
7946 	perf_trace_destroy(event);
7947 }
7948 
7949 static int perf_tp_event_init(struct perf_event *event)
7950 {
7951 	int err;
7952 
7953 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7954 		return -ENOENT;
7955 
7956 	/*
7957 	 * no branch sampling for tracepoint events
7958 	 */
7959 	if (has_branch_stack(event))
7960 		return -EOPNOTSUPP;
7961 
7962 	err = perf_trace_init(event);
7963 	if (err)
7964 		return err;
7965 
7966 	event->destroy = tp_perf_event_destroy;
7967 
7968 	return 0;
7969 }
7970 
7971 static struct pmu perf_tracepoint = {
7972 	.task_ctx_nr	= perf_sw_context,
7973 
7974 	.event_init	= perf_tp_event_init,
7975 	.add		= perf_trace_add,
7976 	.del		= perf_trace_del,
7977 	.start		= perf_swevent_start,
7978 	.stop		= perf_swevent_stop,
7979 	.read		= perf_swevent_read,
7980 };
7981 
7982 static inline void perf_tp_register(void)
7983 {
7984 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7985 }
7986 
7987 static void perf_event_free_filter(struct perf_event *event)
7988 {
7989 	ftrace_profile_free_filter(event);
7990 }
7991 
7992 #ifdef CONFIG_BPF_SYSCALL
7993 static void bpf_overflow_handler(struct perf_event *event,
7994 				 struct perf_sample_data *data,
7995 				 struct pt_regs *regs)
7996 {
7997 	struct bpf_perf_event_data_kern ctx = {
7998 		.data = data,
7999 		.regs = regs,
8000 	};
8001 	int ret = 0;
8002 
8003 	preempt_disable();
8004 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8005 		goto out;
8006 	rcu_read_lock();
8007 	ret = BPF_PROG_RUN(event->prog, &ctx);
8008 	rcu_read_unlock();
8009 out:
8010 	__this_cpu_dec(bpf_prog_active);
8011 	preempt_enable();
8012 	if (!ret)
8013 		return;
8014 
8015 	event->orig_overflow_handler(event, data, regs);
8016 }
8017 
8018 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019 {
8020 	struct bpf_prog *prog;
8021 
8022 	if (event->overflow_handler_context)
8023 		/* hw breakpoint or kernel counter */
8024 		return -EINVAL;
8025 
8026 	if (event->prog)
8027 		return -EEXIST;
8028 
8029 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8030 	if (IS_ERR(prog))
8031 		return PTR_ERR(prog);
8032 
8033 	event->prog = prog;
8034 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8035 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8036 	return 0;
8037 }
8038 
8039 static void perf_event_free_bpf_handler(struct perf_event *event)
8040 {
8041 	struct bpf_prog *prog = event->prog;
8042 
8043 	if (!prog)
8044 		return;
8045 
8046 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8047 	event->prog = NULL;
8048 	bpf_prog_put(prog);
8049 }
8050 #else
8051 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8052 {
8053 	return -EOPNOTSUPP;
8054 }
8055 static void perf_event_free_bpf_handler(struct perf_event *event)
8056 {
8057 }
8058 #endif
8059 
8060 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8061 {
8062 	bool is_kprobe, is_tracepoint;
8063 	struct bpf_prog *prog;
8064 
8065 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8066 		return perf_event_set_bpf_handler(event, prog_fd);
8067 
8068 	if (event->tp_event->prog)
8069 		return -EEXIST;
8070 
8071 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073 	if (!is_kprobe && !is_tracepoint)
8074 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8075 		return -EINVAL;
8076 
8077 	prog = bpf_prog_get(prog_fd);
8078 	if (IS_ERR(prog))
8079 		return PTR_ERR(prog);
8080 
8081 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8083 		/* valid fd, but invalid bpf program type */
8084 		bpf_prog_put(prog);
8085 		return -EINVAL;
8086 	}
8087 
8088 	if (is_tracepoint) {
8089 		int off = trace_event_get_offsets(event->tp_event);
8090 
8091 		if (prog->aux->max_ctx_offset > off) {
8092 			bpf_prog_put(prog);
8093 			return -EACCES;
8094 		}
8095 	}
8096 	event->tp_event->prog = prog;
8097 
8098 	return 0;
8099 }
8100 
8101 static void perf_event_free_bpf_prog(struct perf_event *event)
8102 {
8103 	struct bpf_prog *prog;
8104 
8105 	perf_event_free_bpf_handler(event);
8106 
8107 	if (!event->tp_event)
8108 		return;
8109 
8110 	prog = event->tp_event->prog;
8111 	if (prog) {
8112 		event->tp_event->prog = NULL;
8113 		bpf_prog_put(prog);
8114 	}
8115 }
8116 
8117 #else
8118 
8119 static inline void perf_tp_register(void)
8120 {
8121 }
8122 
8123 static void perf_event_free_filter(struct perf_event *event)
8124 {
8125 }
8126 
8127 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128 {
8129 	return -ENOENT;
8130 }
8131 
8132 static void perf_event_free_bpf_prog(struct perf_event *event)
8133 {
8134 }
8135 #endif /* CONFIG_EVENT_TRACING */
8136 
8137 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8138 void perf_bp_event(struct perf_event *bp, void *data)
8139 {
8140 	struct perf_sample_data sample;
8141 	struct pt_regs *regs = data;
8142 
8143 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8144 
8145 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8146 		perf_swevent_event(bp, 1, &sample, regs);
8147 }
8148 #endif
8149 
8150 /*
8151  * Allocate a new address filter
8152  */
8153 static struct perf_addr_filter *
8154 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155 {
8156 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157 	struct perf_addr_filter *filter;
8158 
8159 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160 	if (!filter)
8161 		return NULL;
8162 
8163 	INIT_LIST_HEAD(&filter->entry);
8164 	list_add_tail(&filter->entry, filters);
8165 
8166 	return filter;
8167 }
8168 
8169 static void free_filters_list(struct list_head *filters)
8170 {
8171 	struct perf_addr_filter *filter, *iter;
8172 
8173 	list_for_each_entry_safe(filter, iter, filters, entry) {
8174 		if (filter->inode)
8175 			iput(filter->inode);
8176 		list_del(&filter->entry);
8177 		kfree(filter);
8178 	}
8179 }
8180 
8181 /*
8182  * Free existing address filters and optionally install new ones
8183  */
8184 static void perf_addr_filters_splice(struct perf_event *event,
8185 				     struct list_head *head)
8186 {
8187 	unsigned long flags;
8188 	LIST_HEAD(list);
8189 
8190 	if (!has_addr_filter(event))
8191 		return;
8192 
8193 	/* don't bother with children, they don't have their own filters */
8194 	if (event->parent)
8195 		return;
8196 
8197 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198 
8199 	list_splice_init(&event->addr_filters.list, &list);
8200 	if (head)
8201 		list_splice(head, &event->addr_filters.list);
8202 
8203 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204 
8205 	free_filters_list(&list);
8206 }
8207 
8208 /*
8209  * Scan through mm's vmas and see if one of them matches the
8210  * @filter; if so, adjust filter's address range.
8211  * Called with mm::mmap_sem down for reading.
8212  */
8213 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214 					    struct mm_struct *mm)
8215 {
8216 	struct vm_area_struct *vma;
8217 
8218 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219 		struct file *file = vma->vm_file;
8220 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8222 
8223 		if (!file)
8224 			continue;
8225 
8226 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8227 			continue;
8228 
8229 		return vma->vm_start;
8230 	}
8231 
8232 	return 0;
8233 }
8234 
8235 /*
8236  * Update event's address range filters based on the
8237  * task's existing mappings, if any.
8238  */
8239 static void perf_event_addr_filters_apply(struct perf_event *event)
8240 {
8241 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242 	struct task_struct *task = READ_ONCE(event->ctx->task);
8243 	struct perf_addr_filter *filter;
8244 	struct mm_struct *mm = NULL;
8245 	unsigned int count = 0;
8246 	unsigned long flags;
8247 
8248 	/*
8249 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250 	 * will stop on the parent's child_mutex that our caller is also holding
8251 	 */
8252 	if (task == TASK_TOMBSTONE)
8253 		return;
8254 
8255 	if (!ifh->nr_file_filters)
8256 		return;
8257 
8258 	mm = get_task_mm(event->ctx->task);
8259 	if (!mm)
8260 		goto restart;
8261 
8262 	down_read(&mm->mmap_sem);
8263 
8264 	raw_spin_lock_irqsave(&ifh->lock, flags);
8265 	list_for_each_entry(filter, &ifh->list, entry) {
8266 		event->addr_filters_offs[count] = 0;
8267 
8268 		/*
8269 		 * Adjust base offset if the filter is associated to a binary
8270 		 * that needs to be mapped:
8271 		 */
8272 		if (filter->inode)
8273 			event->addr_filters_offs[count] =
8274 				perf_addr_filter_apply(filter, mm);
8275 
8276 		count++;
8277 	}
8278 
8279 	event->addr_filters_gen++;
8280 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281 
8282 	up_read(&mm->mmap_sem);
8283 
8284 	mmput(mm);
8285 
8286 restart:
8287 	perf_event_stop(event, 1);
8288 }
8289 
8290 /*
8291  * Address range filtering: limiting the data to certain
8292  * instruction address ranges. Filters are ioctl()ed to us from
8293  * userspace as ascii strings.
8294  *
8295  * Filter string format:
8296  *
8297  * ACTION RANGE_SPEC
8298  * where ACTION is one of the
8299  *  * "filter": limit the trace to this region
8300  *  * "start": start tracing from this address
8301  *  * "stop": stop tracing at this address/region;
8302  * RANGE_SPEC is
8303  *  * for kernel addresses: <start address>[/<size>]
8304  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8305  *
8306  * if <size> is not specified, the range is treated as a single address.
8307  */
8308 enum {
8309 	IF_ACT_NONE = -1,
8310 	IF_ACT_FILTER,
8311 	IF_ACT_START,
8312 	IF_ACT_STOP,
8313 	IF_SRC_FILE,
8314 	IF_SRC_KERNEL,
8315 	IF_SRC_FILEADDR,
8316 	IF_SRC_KERNELADDR,
8317 };
8318 
8319 enum {
8320 	IF_STATE_ACTION = 0,
8321 	IF_STATE_SOURCE,
8322 	IF_STATE_END,
8323 };
8324 
8325 static const match_table_t if_tokens = {
8326 	{ IF_ACT_FILTER,	"filter" },
8327 	{ IF_ACT_START,		"start" },
8328 	{ IF_ACT_STOP,		"stop" },
8329 	{ IF_SRC_FILE,		"%u/%u@%s" },
8330 	{ IF_SRC_KERNEL,	"%u/%u" },
8331 	{ IF_SRC_FILEADDR,	"%u@%s" },
8332 	{ IF_SRC_KERNELADDR,	"%u" },
8333 	{ IF_ACT_NONE,		NULL },
8334 };
8335 
8336 /*
8337  * Address filter string parser
8338  */
8339 static int
8340 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341 			     struct list_head *filters)
8342 {
8343 	struct perf_addr_filter *filter = NULL;
8344 	char *start, *orig, *filename = NULL;
8345 	struct path path;
8346 	substring_t args[MAX_OPT_ARGS];
8347 	int state = IF_STATE_ACTION, token;
8348 	unsigned int kernel = 0;
8349 	int ret = -EINVAL;
8350 
8351 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352 	if (!fstr)
8353 		return -ENOMEM;
8354 
8355 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356 		ret = -EINVAL;
8357 
8358 		if (!*start)
8359 			continue;
8360 
8361 		/* filter definition begins */
8362 		if (state == IF_STATE_ACTION) {
8363 			filter = perf_addr_filter_new(event, filters);
8364 			if (!filter)
8365 				goto fail;
8366 		}
8367 
8368 		token = match_token(start, if_tokens, args);
8369 		switch (token) {
8370 		case IF_ACT_FILTER:
8371 		case IF_ACT_START:
8372 			filter->filter = 1;
8373 
8374 		case IF_ACT_STOP:
8375 			if (state != IF_STATE_ACTION)
8376 				goto fail;
8377 
8378 			state = IF_STATE_SOURCE;
8379 			break;
8380 
8381 		case IF_SRC_KERNELADDR:
8382 		case IF_SRC_KERNEL:
8383 			kernel = 1;
8384 
8385 		case IF_SRC_FILEADDR:
8386 		case IF_SRC_FILE:
8387 			if (state != IF_STATE_SOURCE)
8388 				goto fail;
8389 
8390 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391 				filter->range = 1;
8392 
8393 			*args[0].to = 0;
8394 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8395 			if (ret)
8396 				goto fail;
8397 
8398 			if (filter->range) {
8399 				*args[1].to = 0;
8400 				ret = kstrtoul(args[1].from, 0, &filter->size);
8401 				if (ret)
8402 					goto fail;
8403 			}
8404 
8405 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406 				int fpos = filter->range ? 2 : 1;
8407 
8408 				filename = match_strdup(&args[fpos]);
8409 				if (!filename) {
8410 					ret = -ENOMEM;
8411 					goto fail;
8412 				}
8413 			}
8414 
8415 			state = IF_STATE_END;
8416 			break;
8417 
8418 		default:
8419 			goto fail;
8420 		}
8421 
8422 		/*
8423 		 * Filter definition is fully parsed, validate and install it.
8424 		 * Make sure that it doesn't contradict itself or the event's
8425 		 * attribute.
8426 		 */
8427 		if (state == IF_STATE_END) {
8428 			ret = -EINVAL;
8429 			if (kernel && event->attr.exclude_kernel)
8430 				goto fail;
8431 
8432 			if (!kernel) {
8433 				if (!filename)
8434 					goto fail;
8435 
8436 				/*
8437 				 * For now, we only support file-based filters
8438 				 * in per-task events; doing so for CPU-wide
8439 				 * events requires additional context switching
8440 				 * trickery, since same object code will be
8441 				 * mapped at different virtual addresses in
8442 				 * different processes.
8443 				 */
8444 				ret = -EOPNOTSUPP;
8445 				if (!event->ctx->task)
8446 					goto fail_free_name;
8447 
8448 				/* look up the path and grab its inode */
8449 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450 				if (ret)
8451 					goto fail_free_name;
8452 
8453 				filter->inode = igrab(d_inode(path.dentry));
8454 				path_put(&path);
8455 				kfree(filename);
8456 				filename = NULL;
8457 
8458 				ret = -EINVAL;
8459 				if (!filter->inode ||
8460 				    !S_ISREG(filter->inode->i_mode))
8461 					/* free_filters_list() will iput() */
8462 					goto fail;
8463 
8464 				event->addr_filters.nr_file_filters++;
8465 			}
8466 
8467 			/* ready to consume more filters */
8468 			state = IF_STATE_ACTION;
8469 			filter = NULL;
8470 		}
8471 	}
8472 
8473 	if (state != IF_STATE_ACTION)
8474 		goto fail;
8475 
8476 	kfree(orig);
8477 
8478 	return 0;
8479 
8480 fail_free_name:
8481 	kfree(filename);
8482 fail:
8483 	free_filters_list(filters);
8484 	kfree(orig);
8485 
8486 	return ret;
8487 }
8488 
8489 static int
8490 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491 {
8492 	LIST_HEAD(filters);
8493 	int ret;
8494 
8495 	/*
8496 	 * Since this is called in perf_ioctl() path, we're already holding
8497 	 * ctx::mutex.
8498 	 */
8499 	lockdep_assert_held(&event->ctx->mutex);
8500 
8501 	if (WARN_ON_ONCE(event->parent))
8502 		return -EINVAL;
8503 
8504 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505 	if (ret)
8506 		goto fail_clear_files;
8507 
8508 	ret = event->pmu->addr_filters_validate(&filters);
8509 	if (ret)
8510 		goto fail_free_filters;
8511 
8512 	/* remove existing filters, if any */
8513 	perf_addr_filters_splice(event, &filters);
8514 
8515 	/* install new filters */
8516 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517 
8518 	return ret;
8519 
8520 fail_free_filters:
8521 	free_filters_list(&filters);
8522 
8523 fail_clear_files:
8524 	event->addr_filters.nr_file_filters = 0;
8525 
8526 	return ret;
8527 }
8528 
8529 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530 {
8531 	char *filter_str;
8532 	int ret = -EINVAL;
8533 
8534 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536 	    !has_addr_filter(event))
8537 		return -EINVAL;
8538 
8539 	filter_str = strndup_user(arg, PAGE_SIZE);
8540 	if (IS_ERR(filter_str))
8541 		return PTR_ERR(filter_str);
8542 
8543 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8545 		ret = ftrace_profile_set_filter(event, event->attr.config,
8546 						filter_str);
8547 	else if (has_addr_filter(event))
8548 		ret = perf_event_set_addr_filter(event, filter_str);
8549 
8550 	kfree(filter_str);
8551 	return ret;
8552 }
8553 
8554 /*
8555  * hrtimer based swevent callback
8556  */
8557 
8558 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8559 {
8560 	enum hrtimer_restart ret = HRTIMER_RESTART;
8561 	struct perf_sample_data data;
8562 	struct pt_regs *regs;
8563 	struct perf_event *event;
8564 	u64 period;
8565 
8566 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8567 
8568 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8569 		return HRTIMER_NORESTART;
8570 
8571 	event->pmu->read(event);
8572 
8573 	perf_sample_data_init(&data, 0, event->hw.last_period);
8574 	regs = get_irq_regs();
8575 
8576 	if (regs && !perf_exclude_event(event, regs)) {
8577 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8578 			if (__perf_event_overflow(event, 1, &data, regs))
8579 				ret = HRTIMER_NORESTART;
8580 	}
8581 
8582 	period = max_t(u64, 10000, event->hw.sample_period);
8583 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8584 
8585 	return ret;
8586 }
8587 
8588 static void perf_swevent_start_hrtimer(struct perf_event *event)
8589 {
8590 	struct hw_perf_event *hwc = &event->hw;
8591 	s64 period;
8592 
8593 	if (!is_sampling_event(event))
8594 		return;
8595 
8596 	period = local64_read(&hwc->period_left);
8597 	if (period) {
8598 		if (period < 0)
8599 			period = 10000;
8600 
8601 		local64_set(&hwc->period_left, 0);
8602 	} else {
8603 		period = max_t(u64, 10000, hwc->sample_period);
8604 	}
8605 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606 		      HRTIMER_MODE_REL_PINNED);
8607 }
8608 
8609 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8610 {
8611 	struct hw_perf_event *hwc = &event->hw;
8612 
8613 	if (is_sampling_event(event)) {
8614 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8615 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8616 
8617 		hrtimer_cancel(&hwc->hrtimer);
8618 	}
8619 }
8620 
8621 static void perf_swevent_init_hrtimer(struct perf_event *event)
8622 {
8623 	struct hw_perf_event *hwc = &event->hw;
8624 
8625 	if (!is_sampling_event(event))
8626 		return;
8627 
8628 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629 	hwc->hrtimer.function = perf_swevent_hrtimer;
8630 
8631 	/*
8632 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8633 	 * mapping and avoid the whole period adjust feedback stuff.
8634 	 */
8635 	if (event->attr.freq) {
8636 		long freq = event->attr.sample_freq;
8637 
8638 		event->attr.sample_period = NSEC_PER_SEC / freq;
8639 		hwc->sample_period = event->attr.sample_period;
8640 		local64_set(&hwc->period_left, hwc->sample_period);
8641 		hwc->last_period = hwc->sample_period;
8642 		event->attr.freq = 0;
8643 	}
8644 }
8645 
8646 /*
8647  * Software event: cpu wall time clock
8648  */
8649 
8650 static void cpu_clock_event_update(struct perf_event *event)
8651 {
8652 	s64 prev;
8653 	u64 now;
8654 
8655 	now = local_clock();
8656 	prev = local64_xchg(&event->hw.prev_count, now);
8657 	local64_add(now - prev, &event->count);
8658 }
8659 
8660 static void cpu_clock_event_start(struct perf_event *event, int flags)
8661 {
8662 	local64_set(&event->hw.prev_count, local_clock());
8663 	perf_swevent_start_hrtimer(event);
8664 }
8665 
8666 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8667 {
8668 	perf_swevent_cancel_hrtimer(event);
8669 	cpu_clock_event_update(event);
8670 }
8671 
8672 static int cpu_clock_event_add(struct perf_event *event, int flags)
8673 {
8674 	if (flags & PERF_EF_START)
8675 		cpu_clock_event_start(event, flags);
8676 	perf_event_update_userpage(event);
8677 
8678 	return 0;
8679 }
8680 
8681 static void cpu_clock_event_del(struct perf_event *event, int flags)
8682 {
8683 	cpu_clock_event_stop(event, flags);
8684 }
8685 
8686 static void cpu_clock_event_read(struct perf_event *event)
8687 {
8688 	cpu_clock_event_update(event);
8689 }
8690 
8691 static int cpu_clock_event_init(struct perf_event *event)
8692 {
8693 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8694 		return -ENOENT;
8695 
8696 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697 		return -ENOENT;
8698 
8699 	/*
8700 	 * no branch sampling for software events
8701 	 */
8702 	if (has_branch_stack(event))
8703 		return -EOPNOTSUPP;
8704 
8705 	perf_swevent_init_hrtimer(event);
8706 
8707 	return 0;
8708 }
8709 
8710 static struct pmu perf_cpu_clock = {
8711 	.task_ctx_nr	= perf_sw_context,
8712 
8713 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8714 
8715 	.event_init	= cpu_clock_event_init,
8716 	.add		= cpu_clock_event_add,
8717 	.del		= cpu_clock_event_del,
8718 	.start		= cpu_clock_event_start,
8719 	.stop		= cpu_clock_event_stop,
8720 	.read		= cpu_clock_event_read,
8721 };
8722 
8723 /*
8724  * Software event: task time clock
8725  */
8726 
8727 static void task_clock_event_update(struct perf_event *event, u64 now)
8728 {
8729 	u64 prev;
8730 	s64 delta;
8731 
8732 	prev = local64_xchg(&event->hw.prev_count, now);
8733 	delta = now - prev;
8734 	local64_add(delta, &event->count);
8735 }
8736 
8737 static void task_clock_event_start(struct perf_event *event, int flags)
8738 {
8739 	local64_set(&event->hw.prev_count, event->ctx->time);
8740 	perf_swevent_start_hrtimer(event);
8741 }
8742 
8743 static void task_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745 	perf_swevent_cancel_hrtimer(event);
8746 	task_clock_event_update(event, event->ctx->time);
8747 }
8748 
8749 static int task_clock_event_add(struct perf_event *event, int flags)
8750 {
8751 	if (flags & PERF_EF_START)
8752 		task_clock_event_start(event, flags);
8753 	perf_event_update_userpage(event);
8754 
8755 	return 0;
8756 }
8757 
8758 static void task_clock_event_del(struct perf_event *event, int flags)
8759 {
8760 	task_clock_event_stop(event, PERF_EF_UPDATE);
8761 }
8762 
8763 static void task_clock_event_read(struct perf_event *event)
8764 {
8765 	u64 now = perf_clock();
8766 	u64 delta = now - event->ctx->timestamp;
8767 	u64 time = event->ctx->time + delta;
8768 
8769 	task_clock_event_update(event, time);
8770 }
8771 
8772 static int task_clock_event_init(struct perf_event *event)
8773 {
8774 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8775 		return -ENOENT;
8776 
8777 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778 		return -ENOENT;
8779 
8780 	/*
8781 	 * no branch sampling for software events
8782 	 */
8783 	if (has_branch_stack(event))
8784 		return -EOPNOTSUPP;
8785 
8786 	perf_swevent_init_hrtimer(event);
8787 
8788 	return 0;
8789 }
8790 
8791 static struct pmu perf_task_clock = {
8792 	.task_ctx_nr	= perf_sw_context,
8793 
8794 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8795 
8796 	.event_init	= task_clock_event_init,
8797 	.add		= task_clock_event_add,
8798 	.del		= task_clock_event_del,
8799 	.start		= task_clock_event_start,
8800 	.stop		= task_clock_event_stop,
8801 	.read		= task_clock_event_read,
8802 };
8803 
8804 static void perf_pmu_nop_void(struct pmu *pmu)
8805 {
8806 }
8807 
8808 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809 {
8810 }
8811 
8812 static int perf_pmu_nop_int(struct pmu *pmu)
8813 {
8814 	return 0;
8815 }
8816 
8817 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8818 
8819 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8820 {
8821 	__this_cpu_write(nop_txn_flags, flags);
8822 
8823 	if (flags & ~PERF_PMU_TXN_ADD)
8824 		return;
8825 
8826 	perf_pmu_disable(pmu);
8827 }
8828 
8829 static int perf_pmu_commit_txn(struct pmu *pmu)
8830 {
8831 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8832 
8833 	__this_cpu_write(nop_txn_flags, 0);
8834 
8835 	if (flags & ~PERF_PMU_TXN_ADD)
8836 		return 0;
8837 
8838 	perf_pmu_enable(pmu);
8839 	return 0;
8840 }
8841 
8842 static void perf_pmu_cancel_txn(struct pmu *pmu)
8843 {
8844 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8845 
8846 	__this_cpu_write(nop_txn_flags, 0);
8847 
8848 	if (flags & ~PERF_PMU_TXN_ADD)
8849 		return;
8850 
8851 	perf_pmu_enable(pmu);
8852 }
8853 
8854 static int perf_event_idx_default(struct perf_event *event)
8855 {
8856 	return 0;
8857 }
8858 
8859 /*
8860  * Ensures all contexts with the same task_ctx_nr have the same
8861  * pmu_cpu_context too.
8862  */
8863 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8864 {
8865 	struct pmu *pmu;
8866 
8867 	if (ctxn < 0)
8868 		return NULL;
8869 
8870 	list_for_each_entry(pmu, &pmus, entry) {
8871 		if (pmu->task_ctx_nr == ctxn)
8872 			return pmu->pmu_cpu_context;
8873 	}
8874 
8875 	return NULL;
8876 }
8877 
8878 static void free_pmu_context(struct pmu *pmu)
8879 {
8880 	mutex_lock(&pmus_lock);
8881 	free_percpu(pmu->pmu_cpu_context);
8882 	mutex_unlock(&pmus_lock);
8883 }
8884 
8885 /*
8886  * Let userspace know that this PMU supports address range filtering:
8887  */
8888 static ssize_t nr_addr_filters_show(struct device *dev,
8889 				    struct device_attribute *attr,
8890 				    char *page)
8891 {
8892 	struct pmu *pmu = dev_get_drvdata(dev);
8893 
8894 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895 }
8896 DEVICE_ATTR_RO(nr_addr_filters);
8897 
8898 static struct idr pmu_idr;
8899 
8900 static ssize_t
8901 type_show(struct device *dev, struct device_attribute *attr, char *page)
8902 {
8903 	struct pmu *pmu = dev_get_drvdata(dev);
8904 
8905 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906 }
8907 static DEVICE_ATTR_RO(type);
8908 
8909 static ssize_t
8910 perf_event_mux_interval_ms_show(struct device *dev,
8911 				struct device_attribute *attr,
8912 				char *page)
8913 {
8914 	struct pmu *pmu = dev_get_drvdata(dev);
8915 
8916 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917 }
8918 
8919 static DEFINE_MUTEX(mux_interval_mutex);
8920 
8921 static ssize_t
8922 perf_event_mux_interval_ms_store(struct device *dev,
8923 				 struct device_attribute *attr,
8924 				 const char *buf, size_t count)
8925 {
8926 	struct pmu *pmu = dev_get_drvdata(dev);
8927 	int timer, cpu, ret;
8928 
8929 	ret = kstrtoint(buf, 0, &timer);
8930 	if (ret)
8931 		return ret;
8932 
8933 	if (timer < 1)
8934 		return -EINVAL;
8935 
8936 	/* same value, noting to do */
8937 	if (timer == pmu->hrtimer_interval_ms)
8938 		return count;
8939 
8940 	mutex_lock(&mux_interval_mutex);
8941 	pmu->hrtimer_interval_ms = timer;
8942 
8943 	/* update all cpuctx for this PMU */
8944 	cpus_read_lock();
8945 	for_each_online_cpu(cpu) {
8946 		struct perf_cpu_context *cpuctx;
8947 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949 
8950 		cpu_function_call(cpu,
8951 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8952 	}
8953 	cpus_read_unlock();
8954 	mutex_unlock(&mux_interval_mutex);
8955 
8956 	return count;
8957 }
8958 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8959 
8960 static struct attribute *pmu_dev_attrs[] = {
8961 	&dev_attr_type.attr,
8962 	&dev_attr_perf_event_mux_interval_ms.attr,
8963 	NULL,
8964 };
8965 ATTRIBUTE_GROUPS(pmu_dev);
8966 
8967 static int pmu_bus_running;
8968 static struct bus_type pmu_bus = {
8969 	.name		= "event_source",
8970 	.dev_groups	= pmu_dev_groups,
8971 };
8972 
8973 static void pmu_dev_release(struct device *dev)
8974 {
8975 	kfree(dev);
8976 }
8977 
8978 static int pmu_dev_alloc(struct pmu *pmu)
8979 {
8980 	int ret = -ENOMEM;
8981 
8982 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983 	if (!pmu->dev)
8984 		goto out;
8985 
8986 	pmu->dev->groups = pmu->attr_groups;
8987 	device_initialize(pmu->dev);
8988 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989 	if (ret)
8990 		goto free_dev;
8991 
8992 	dev_set_drvdata(pmu->dev, pmu);
8993 	pmu->dev->bus = &pmu_bus;
8994 	pmu->dev->release = pmu_dev_release;
8995 	ret = device_add(pmu->dev);
8996 	if (ret)
8997 		goto free_dev;
8998 
8999 	/* For PMUs with address filters, throw in an extra attribute: */
9000 	if (pmu->nr_addr_filters)
9001 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002 
9003 	if (ret)
9004 		goto del_dev;
9005 
9006 out:
9007 	return ret;
9008 
9009 del_dev:
9010 	device_del(pmu->dev);
9011 
9012 free_dev:
9013 	put_device(pmu->dev);
9014 	goto out;
9015 }
9016 
9017 static struct lock_class_key cpuctx_mutex;
9018 static struct lock_class_key cpuctx_lock;
9019 
9020 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9021 {
9022 	int cpu, ret;
9023 
9024 	mutex_lock(&pmus_lock);
9025 	ret = -ENOMEM;
9026 	pmu->pmu_disable_count = alloc_percpu(int);
9027 	if (!pmu->pmu_disable_count)
9028 		goto unlock;
9029 
9030 	pmu->type = -1;
9031 	if (!name)
9032 		goto skip_type;
9033 	pmu->name = name;
9034 
9035 	if (type < 0) {
9036 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037 		if (type < 0) {
9038 			ret = type;
9039 			goto free_pdc;
9040 		}
9041 	}
9042 	pmu->type = type;
9043 
9044 	if (pmu_bus_running) {
9045 		ret = pmu_dev_alloc(pmu);
9046 		if (ret)
9047 			goto free_idr;
9048 	}
9049 
9050 skip_type:
9051 	if (pmu->task_ctx_nr == perf_hw_context) {
9052 		static int hw_context_taken = 0;
9053 
9054 		/*
9055 		 * Other than systems with heterogeneous CPUs, it never makes
9056 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9057 		 * uncore must use perf_invalid_context.
9058 		 */
9059 		if (WARN_ON_ONCE(hw_context_taken &&
9060 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9061 			pmu->task_ctx_nr = perf_invalid_context;
9062 
9063 		hw_context_taken = 1;
9064 	}
9065 
9066 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067 	if (pmu->pmu_cpu_context)
9068 		goto got_cpu_context;
9069 
9070 	ret = -ENOMEM;
9071 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072 	if (!pmu->pmu_cpu_context)
9073 		goto free_dev;
9074 
9075 	for_each_possible_cpu(cpu) {
9076 		struct perf_cpu_context *cpuctx;
9077 
9078 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9079 		__perf_event_init_context(&cpuctx->ctx);
9080 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9081 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9082 		cpuctx->ctx.pmu = pmu;
9083 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9084 
9085 		__perf_mux_hrtimer_init(cpuctx, cpu);
9086 	}
9087 
9088 got_cpu_context:
9089 	if (!pmu->start_txn) {
9090 		if (pmu->pmu_enable) {
9091 			/*
9092 			 * If we have pmu_enable/pmu_disable calls, install
9093 			 * transaction stubs that use that to try and batch
9094 			 * hardware accesses.
9095 			 */
9096 			pmu->start_txn  = perf_pmu_start_txn;
9097 			pmu->commit_txn = perf_pmu_commit_txn;
9098 			pmu->cancel_txn = perf_pmu_cancel_txn;
9099 		} else {
9100 			pmu->start_txn  = perf_pmu_nop_txn;
9101 			pmu->commit_txn = perf_pmu_nop_int;
9102 			pmu->cancel_txn = perf_pmu_nop_void;
9103 		}
9104 	}
9105 
9106 	if (!pmu->pmu_enable) {
9107 		pmu->pmu_enable  = perf_pmu_nop_void;
9108 		pmu->pmu_disable = perf_pmu_nop_void;
9109 	}
9110 
9111 	if (!pmu->event_idx)
9112 		pmu->event_idx = perf_event_idx_default;
9113 
9114 	list_add_rcu(&pmu->entry, &pmus);
9115 	atomic_set(&pmu->exclusive_cnt, 0);
9116 	ret = 0;
9117 unlock:
9118 	mutex_unlock(&pmus_lock);
9119 
9120 	return ret;
9121 
9122 free_dev:
9123 	device_del(pmu->dev);
9124 	put_device(pmu->dev);
9125 
9126 free_idr:
9127 	if (pmu->type >= PERF_TYPE_MAX)
9128 		idr_remove(&pmu_idr, pmu->type);
9129 
9130 free_pdc:
9131 	free_percpu(pmu->pmu_disable_count);
9132 	goto unlock;
9133 }
9134 EXPORT_SYMBOL_GPL(perf_pmu_register);
9135 
9136 void perf_pmu_unregister(struct pmu *pmu)
9137 {
9138 	int remove_device;
9139 
9140 	mutex_lock(&pmus_lock);
9141 	remove_device = pmu_bus_running;
9142 	list_del_rcu(&pmu->entry);
9143 	mutex_unlock(&pmus_lock);
9144 
9145 	/*
9146 	 * We dereference the pmu list under both SRCU and regular RCU, so
9147 	 * synchronize against both of those.
9148 	 */
9149 	synchronize_srcu(&pmus_srcu);
9150 	synchronize_rcu();
9151 
9152 	free_percpu(pmu->pmu_disable_count);
9153 	if (pmu->type >= PERF_TYPE_MAX)
9154 		idr_remove(&pmu_idr, pmu->type);
9155 	if (remove_device) {
9156 		if (pmu->nr_addr_filters)
9157 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9158 		device_del(pmu->dev);
9159 		put_device(pmu->dev);
9160 	}
9161 	free_pmu_context(pmu);
9162 }
9163 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9164 
9165 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9166 {
9167 	struct perf_event_context *ctx = NULL;
9168 	int ret;
9169 
9170 	if (!try_module_get(pmu->module))
9171 		return -ENODEV;
9172 
9173 	if (event->group_leader != event) {
9174 		/*
9175 		 * This ctx->mutex can nest when we're called through
9176 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9177 		 */
9178 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9179 						 SINGLE_DEPTH_NESTING);
9180 		BUG_ON(!ctx);
9181 	}
9182 
9183 	event->pmu = pmu;
9184 	ret = pmu->event_init(event);
9185 
9186 	if (ctx)
9187 		perf_event_ctx_unlock(event->group_leader, ctx);
9188 
9189 	if (ret)
9190 		module_put(pmu->module);
9191 
9192 	return ret;
9193 }
9194 
9195 static struct pmu *perf_init_event(struct perf_event *event)
9196 {
9197 	struct pmu *pmu;
9198 	int idx;
9199 	int ret;
9200 
9201 	idx = srcu_read_lock(&pmus_srcu);
9202 
9203 	/* Try parent's PMU first: */
9204 	if (event->parent && event->parent->pmu) {
9205 		pmu = event->parent->pmu;
9206 		ret = perf_try_init_event(pmu, event);
9207 		if (!ret)
9208 			goto unlock;
9209 	}
9210 
9211 	rcu_read_lock();
9212 	pmu = idr_find(&pmu_idr, event->attr.type);
9213 	rcu_read_unlock();
9214 	if (pmu) {
9215 		ret = perf_try_init_event(pmu, event);
9216 		if (ret)
9217 			pmu = ERR_PTR(ret);
9218 		goto unlock;
9219 	}
9220 
9221 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9222 		ret = perf_try_init_event(pmu, event);
9223 		if (!ret)
9224 			goto unlock;
9225 
9226 		if (ret != -ENOENT) {
9227 			pmu = ERR_PTR(ret);
9228 			goto unlock;
9229 		}
9230 	}
9231 	pmu = ERR_PTR(-ENOENT);
9232 unlock:
9233 	srcu_read_unlock(&pmus_srcu, idx);
9234 
9235 	return pmu;
9236 }
9237 
9238 static void attach_sb_event(struct perf_event *event)
9239 {
9240 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9241 
9242 	raw_spin_lock(&pel->lock);
9243 	list_add_rcu(&event->sb_list, &pel->list);
9244 	raw_spin_unlock(&pel->lock);
9245 }
9246 
9247 /*
9248  * We keep a list of all !task (and therefore per-cpu) events
9249  * that need to receive side-band records.
9250  *
9251  * This avoids having to scan all the various PMU per-cpu contexts
9252  * looking for them.
9253  */
9254 static void account_pmu_sb_event(struct perf_event *event)
9255 {
9256 	if (is_sb_event(event))
9257 		attach_sb_event(event);
9258 }
9259 
9260 static void account_event_cpu(struct perf_event *event, int cpu)
9261 {
9262 	if (event->parent)
9263 		return;
9264 
9265 	if (is_cgroup_event(event))
9266 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9267 }
9268 
9269 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9270 static void account_freq_event_nohz(void)
9271 {
9272 #ifdef CONFIG_NO_HZ_FULL
9273 	/* Lock so we don't race with concurrent unaccount */
9274 	spin_lock(&nr_freq_lock);
9275 	if (atomic_inc_return(&nr_freq_events) == 1)
9276 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9277 	spin_unlock(&nr_freq_lock);
9278 #endif
9279 }
9280 
9281 static void account_freq_event(void)
9282 {
9283 	if (tick_nohz_full_enabled())
9284 		account_freq_event_nohz();
9285 	else
9286 		atomic_inc(&nr_freq_events);
9287 }
9288 
9289 
9290 static void account_event(struct perf_event *event)
9291 {
9292 	bool inc = false;
9293 
9294 	if (event->parent)
9295 		return;
9296 
9297 	if (event->attach_state & PERF_ATTACH_TASK)
9298 		inc = true;
9299 	if (event->attr.mmap || event->attr.mmap_data)
9300 		atomic_inc(&nr_mmap_events);
9301 	if (event->attr.comm)
9302 		atomic_inc(&nr_comm_events);
9303 	if (event->attr.namespaces)
9304 		atomic_inc(&nr_namespaces_events);
9305 	if (event->attr.task)
9306 		atomic_inc(&nr_task_events);
9307 	if (event->attr.freq)
9308 		account_freq_event();
9309 	if (event->attr.context_switch) {
9310 		atomic_inc(&nr_switch_events);
9311 		inc = true;
9312 	}
9313 	if (has_branch_stack(event))
9314 		inc = true;
9315 	if (is_cgroup_event(event))
9316 		inc = true;
9317 
9318 	if (inc) {
9319 		if (atomic_inc_not_zero(&perf_sched_count))
9320 			goto enabled;
9321 
9322 		mutex_lock(&perf_sched_mutex);
9323 		if (!atomic_read(&perf_sched_count)) {
9324 			static_branch_enable(&perf_sched_events);
9325 			/*
9326 			 * Guarantee that all CPUs observe they key change and
9327 			 * call the perf scheduling hooks before proceeding to
9328 			 * install events that need them.
9329 			 */
9330 			synchronize_sched();
9331 		}
9332 		/*
9333 		 * Now that we have waited for the sync_sched(), allow further
9334 		 * increments to by-pass the mutex.
9335 		 */
9336 		atomic_inc(&perf_sched_count);
9337 		mutex_unlock(&perf_sched_mutex);
9338 	}
9339 enabled:
9340 
9341 	account_event_cpu(event, event->cpu);
9342 
9343 	account_pmu_sb_event(event);
9344 }
9345 
9346 /*
9347  * Allocate and initialize a event structure
9348  */
9349 static struct perf_event *
9350 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9351 		 struct task_struct *task,
9352 		 struct perf_event *group_leader,
9353 		 struct perf_event *parent_event,
9354 		 perf_overflow_handler_t overflow_handler,
9355 		 void *context, int cgroup_fd)
9356 {
9357 	struct pmu *pmu;
9358 	struct perf_event *event;
9359 	struct hw_perf_event *hwc;
9360 	long err = -EINVAL;
9361 
9362 	if ((unsigned)cpu >= nr_cpu_ids) {
9363 		if (!task || cpu != -1)
9364 			return ERR_PTR(-EINVAL);
9365 	}
9366 
9367 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9368 	if (!event)
9369 		return ERR_PTR(-ENOMEM);
9370 
9371 	/*
9372 	 * Single events are their own group leaders, with an
9373 	 * empty sibling list:
9374 	 */
9375 	if (!group_leader)
9376 		group_leader = event;
9377 
9378 	mutex_init(&event->child_mutex);
9379 	INIT_LIST_HEAD(&event->child_list);
9380 
9381 	INIT_LIST_HEAD(&event->group_entry);
9382 	INIT_LIST_HEAD(&event->event_entry);
9383 	INIT_LIST_HEAD(&event->sibling_list);
9384 	INIT_LIST_HEAD(&event->rb_entry);
9385 	INIT_LIST_HEAD(&event->active_entry);
9386 	INIT_LIST_HEAD(&event->addr_filters.list);
9387 	INIT_HLIST_NODE(&event->hlist_entry);
9388 
9389 
9390 	init_waitqueue_head(&event->waitq);
9391 	init_irq_work(&event->pending, perf_pending_event);
9392 
9393 	mutex_init(&event->mmap_mutex);
9394 	raw_spin_lock_init(&event->addr_filters.lock);
9395 
9396 	atomic_long_set(&event->refcount, 1);
9397 	event->cpu		= cpu;
9398 	event->attr		= *attr;
9399 	event->group_leader	= group_leader;
9400 	event->pmu		= NULL;
9401 	event->oncpu		= -1;
9402 
9403 	event->parent		= parent_event;
9404 
9405 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9406 	event->id		= atomic64_inc_return(&perf_event_id);
9407 
9408 	event->state		= PERF_EVENT_STATE_INACTIVE;
9409 
9410 	if (task) {
9411 		event->attach_state = PERF_ATTACH_TASK;
9412 		/*
9413 		 * XXX pmu::event_init needs to know what task to account to
9414 		 * and we cannot use the ctx information because we need the
9415 		 * pmu before we get a ctx.
9416 		 */
9417 		event->hw.target = task;
9418 	}
9419 
9420 	event->clock = &local_clock;
9421 	if (parent_event)
9422 		event->clock = parent_event->clock;
9423 
9424 	if (!overflow_handler && parent_event) {
9425 		overflow_handler = parent_event->overflow_handler;
9426 		context = parent_event->overflow_handler_context;
9427 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9428 		if (overflow_handler == bpf_overflow_handler) {
9429 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430 
9431 			if (IS_ERR(prog)) {
9432 				err = PTR_ERR(prog);
9433 				goto err_ns;
9434 			}
9435 			event->prog = prog;
9436 			event->orig_overflow_handler =
9437 				parent_event->orig_overflow_handler;
9438 		}
9439 #endif
9440 	}
9441 
9442 	if (overflow_handler) {
9443 		event->overflow_handler	= overflow_handler;
9444 		event->overflow_handler_context = context;
9445 	} else if (is_write_backward(event)){
9446 		event->overflow_handler = perf_event_output_backward;
9447 		event->overflow_handler_context = NULL;
9448 	} else {
9449 		event->overflow_handler = perf_event_output_forward;
9450 		event->overflow_handler_context = NULL;
9451 	}
9452 
9453 	perf_event__state_init(event);
9454 
9455 	pmu = NULL;
9456 
9457 	hwc = &event->hw;
9458 	hwc->sample_period = attr->sample_period;
9459 	if (attr->freq && attr->sample_freq)
9460 		hwc->sample_period = 1;
9461 	hwc->last_period = hwc->sample_period;
9462 
9463 	local64_set(&hwc->period_left, hwc->sample_period);
9464 
9465 	/*
9466 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9467 	 * See perf_output_read().
9468 	 */
9469 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9470 		goto err_ns;
9471 
9472 	if (!has_branch_stack(event))
9473 		event->attr.branch_sample_type = 0;
9474 
9475 	if (cgroup_fd != -1) {
9476 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477 		if (err)
9478 			goto err_ns;
9479 	}
9480 
9481 	pmu = perf_init_event(event);
9482 	if (IS_ERR(pmu)) {
9483 		err = PTR_ERR(pmu);
9484 		goto err_ns;
9485 	}
9486 
9487 	err = exclusive_event_init(event);
9488 	if (err)
9489 		goto err_pmu;
9490 
9491 	if (has_addr_filter(event)) {
9492 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 						   sizeof(unsigned long),
9494 						   GFP_KERNEL);
9495 		if (!event->addr_filters_offs) {
9496 			err = -ENOMEM;
9497 			goto err_per_task;
9498 		}
9499 
9500 		/* force hw sync on the address filters */
9501 		event->addr_filters_gen = 1;
9502 	}
9503 
9504 	if (!event->parent) {
9505 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9506 			err = get_callchain_buffers(attr->sample_max_stack);
9507 			if (err)
9508 				goto err_addr_filters;
9509 		}
9510 	}
9511 
9512 	/* symmetric to unaccount_event() in _free_event() */
9513 	account_event(event);
9514 
9515 	return event;
9516 
9517 err_addr_filters:
9518 	kfree(event->addr_filters_offs);
9519 
9520 err_per_task:
9521 	exclusive_event_destroy(event);
9522 
9523 err_pmu:
9524 	if (event->destroy)
9525 		event->destroy(event);
9526 	module_put(pmu->module);
9527 err_ns:
9528 	if (is_cgroup_event(event))
9529 		perf_detach_cgroup(event);
9530 	if (event->ns)
9531 		put_pid_ns(event->ns);
9532 	kfree(event);
9533 
9534 	return ERR_PTR(err);
9535 }
9536 
9537 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538 			  struct perf_event_attr *attr)
9539 {
9540 	u32 size;
9541 	int ret;
9542 
9543 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544 		return -EFAULT;
9545 
9546 	/*
9547 	 * zero the full structure, so that a short copy will be nice.
9548 	 */
9549 	memset(attr, 0, sizeof(*attr));
9550 
9551 	ret = get_user(size, &uattr->size);
9552 	if (ret)
9553 		return ret;
9554 
9555 	if (size > PAGE_SIZE)	/* silly large */
9556 		goto err_size;
9557 
9558 	if (!size)		/* abi compat */
9559 		size = PERF_ATTR_SIZE_VER0;
9560 
9561 	if (size < PERF_ATTR_SIZE_VER0)
9562 		goto err_size;
9563 
9564 	/*
9565 	 * If we're handed a bigger struct than we know of,
9566 	 * ensure all the unknown bits are 0 - i.e. new
9567 	 * user-space does not rely on any kernel feature
9568 	 * extensions we dont know about yet.
9569 	 */
9570 	if (size > sizeof(*attr)) {
9571 		unsigned char __user *addr;
9572 		unsigned char __user *end;
9573 		unsigned char val;
9574 
9575 		addr = (void __user *)uattr + sizeof(*attr);
9576 		end  = (void __user *)uattr + size;
9577 
9578 		for (; addr < end; addr++) {
9579 			ret = get_user(val, addr);
9580 			if (ret)
9581 				return ret;
9582 			if (val)
9583 				goto err_size;
9584 		}
9585 		size = sizeof(*attr);
9586 	}
9587 
9588 	ret = copy_from_user(attr, uattr, size);
9589 	if (ret)
9590 		return -EFAULT;
9591 
9592 	if (attr->__reserved_1)
9593 		return -EINVAL;
9594 
9595 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9596 		return -EINVAL;
9597 
9598 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9599 		return -EINVAL;
9600 
9601 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9602 		u64 mask = attr->branch_sample_type;
9603 
9604 		/* only using defined bits */
9605 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9606 			return -EINVAL;
9607 
9608 		/* at least one branch bit must be set */
9609 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9610 			return -EINVAL;
9611 
9612 		/* propagate priv level, when not set for branch */
9613 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9614 
9615 			/* exclude_kernel checked on syscall entry */
9616 			if (!attr->exclude_kernel)
9617 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9618 
9619 			if (!attr->exclude_user)
9620 				mask |= PERF_SAMPLE_BRANCH_USER;
9621 
9622 			if (!attr->exclude_hv)
9623 				mask |= PERF_SAMPLE_BRANCH_HV;
9624 			/*
9625 			 * adjust user setting (for HW filter setup)
9626 			 */
9627 			attr->branch_sample_type = mask;
9628 		}
9629 		/* privileged levels capture (kernel, hv): check permissions */
9630 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9631 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9632 			return -EACCES;
9633 	}
9634 
9635 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9636 		ret = perf_reg_validate(attr->sample_regs_user);
9637 		if (ret)
9638 			return ret;
9639 	}
9640 
9641 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9642 		if (!arch_perf_have_user_stack_dump())
9643 			return -ENOSYS;
9644 
9645 		/*
9646 		 * We have __u32 type for the size, but so far
9647 		 * we can only use __u16 as maximum due to the
9648 		 * __u16 sample size limit.
9649 		 */
9650 		if (attr->sample_stack_user >= USHRT_MAX)
9651 			ret = -EINVAL;
9652 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9653 			ret = -EINVAL;
9654 	}
9655 
9656 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9657 		ret = perf_reg_validate(attr->sample_regs_intr);
9658 out:
9659 	return ret;
9660 
9661 err_size:
9662 	put_user(sizeof(*attr), &uattr->size);
9663 	ret = -E2BIG;
9664 	goto out;
9665 }
9666 
9667 static int
9668 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9669 {
9670 	struct ring_buffer *rb = NULL;
9671 	int ret = -EINVAL;
9672 
9673 	if (!output_event)
9674 		goto set;
9675 
9676 	/* don't allow circular references */
9677 	if (event == output_event)
9678 		goto out;
9679 
9680 	/*
9681 	 * Don't allow cross-cpu buffers
9682 	 */
9683 	if (output_event->cpu != event->cpu)
9684 		goto out;
9685 
9686 	/*
9687 	 * If its not a per-cpu rb, it must be the same task.
9688 	 */
9689 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9690 		goto out;
9691 
9692 	/*
9693 	 * Mixing clocks in the same buffer is trouble you don't need.
9694 	 */
9695 	if (output_event->clock != event->clock)
9696 		goto out;
9697 
9698 	/*
9699 	 * Either writing ring buffer from beginning or from end.
9700 	 * Mixing is not allowed.
9701 	 */
9702 	if (is_write_backward(output_event) != is_write_backward(event))
9703 		goto out;
9704 
9705 	/*
9706 	 * If both events generate aux data, they must be on the same PMU
9707 	 */
9708 	if (has_aux(event) && has_aux(output_event) &&
9709 	    event->pmu != output_event->pmu)
9710 		goto out;
9711 
9712 set:
9713 	mutex_lock(&event->mmap_mutex);
9714 	/* Can't redirect output if we've got an active mmap() */
9715 	if (atomic_read(&event->mmap_count))
9716 		goto unlock;
9717 
9718 	if (output_event) {
9719 		/* get the rb we want to redirect to */
9720 		rb = ring_buffer_get(output_event);
9721 		if (!rb)
9722 			goto unlock;
9723 	}
9724 
9725 	ring_buffer_attach(event, rb);
9726 
9727 	ret = 0;
9728 unlock:
9729 	mutex_unlock(&event->mmap_mutex);
9730 
9731 out:
9732 	return ret;
9733 }
9734 
9735 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9736 {
9737 	if (b < a)
9738 		swap(a, b);
9739 
9740 	mutex_lock(a);
9741 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9742 }
9743 
9744 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9745 {
9746 	bool nmi_safe = false;
9747 
9748 	switch (clk_id) {
9749 	case CLOCK_MONOTONIC:
9750 		event->clock = &ktime_get_mono_fast_ns;
9751 		nmi_safe = true;
9752 		break;
9753 
9754 	case CLOCK_MONOTONIC_RAW:
9755 		event->clock = &ktime_get_raw_fast_ns;
9756 		nmi_safe = true;
9757 		break;
9758 
9759 	case CLOCK_REALTIME:
9760 		event->clock = &ktime_get_real_ns;
9761 		break;
9762 
9763 	case CLOCK_BOOTTIME:
9764 		event->clock = &ktime_get_boot_ns;
9765 		break;
9766 
9767 	case CLOCK_TAI:
9768 		event->clock = &ktime_get_tai_ns;
9769 		break;
9770 
9771 	default:
9772 		return -EINVAL;
9773 	}
9774 
9775 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9776 		return -EINVAL;
9777 
9778 	return 0;
9779 }
9780 
9781 /*
9782  * Variation on perf_event_ctx_lock_nested(), except we take two context
9783  * mutexes.
9784  */
9785 static struct perf_event_context *
9786 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9787 			     struct perf_event_context *ctx)
9788 {
9789 	struct perf_event_context *gctx;
9790 
9791 again:
9792 	rcu_read_lock();
9793 	gctx = READ_ONCE(group_leader->ctx);
9794 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9795 		rcu_read_unlock();
9796 		goto again;
9797 	}
9798 	rcu_read_unlock();
9799 
9800 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9801 
9802 	if (group_leader->ctx != gctx) {
9803 		mutex_unlock(&ctx->mutex);
9804 		mutex_unlock(&gctx->mutex);
9805 		put_ctx(gctx);
9806 		goto again;
9807 	}
9808 
9809 	return gctx;
9810 }
9811 
9812 /**
9813  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9814  *
9815  * @attr_uptr:	event_id type attributes for monitoring/sampling
9816  * @pid:		target pid
9817  * @cpu:		target cpu
9818  * @group_fd:		group leader event fd
9819  */
9820 SYSCALL_DEFINE5(perf_event_open,
9821 		struct perf_event_attr __user *, attr_uptr,
9822 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9823 {
9824 	struct perf_event *group_leader = NULL, *output_event = NULL;
9825 	struct perf_event *event, *sibling;
9826 	struct perf_event_attr attr;
9827 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9828 	struct file *event_file = NULL;
9829 	struct fd group = {NULL, 0};
9830 	struct task_struct *task = NULL;
9831 	struct pmu *pmu;
9832 	int event_fd;
9833 	int move_group = 0;
9834 	int err;
9835 	int f_flags = O_RDWR;
9836 	int cgroup_fd = -1;
9837 
9838 	/* for future expandability... */
9839 	if (flags & ~PERF_FLAG_ALL)
9840 		return -EINVAL;
9841 
9842 	err = perf_copy_attr(attr_uptr, &attr);
9843 	if (err)
9844 		return err;
9845 
9846 	if (!attr.exclude_kernel) {
9847 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9848 			return -EACCES;
9849 	}
9850 
9851 	if (attr.namespaces) {
9852 		if (!capable(CAP_SYS_ADMIN))
9853 			return -EACCES;
9854 	}
9855 
9856 	if (attr.freq) {
9857 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9858 			return -EINVAL;
9859 	} else {
9860 		if (attr.sample_period & (1ULL << 63))
9861 			return -EINVAL;
9862 	}
9863 
9864 	if (!attr.sample_max_stack)
9865 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9866 
9867 	/*
9868 	 * In cgroup mode, the pid argument is used to pass the fd
9869 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9870 	 * designates the cpu on which to monitor threads from that
9871 	 * cgroup.
9872 	 */
9873 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9874 		return -EINVAL;
9875 
9876 	if (flags & PERF_FLAG_FD_CLOEXEC)
9877 		f_flags |= O_CLOEXEC;
9878 
9879 	event_fd = get_unused_fd_flags(f_flags);
9880 	if (event_fd < 0)
9881 		return event_fd;
9882 
9883 	if (group_fd != -1) {
9884 		err = perf_fget_light(group_fd, &group);
9885 		if (err)
9886 			goto err_fd;
9887 		group_leader = group.file->private_data;
9888 		if (flags & PERF_FLAG_FD_OUTPUT)
9889 			output_event = group_leader;
9890 		if (flags & PERF_FLAG_FD_NO_GROUP)
9891 			group_leader = NULL;
9892 	}
9893 
9894 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9895 		task = find_lively_task_by_vpid(pid);
9896 		if (IS_ERR(task)) {
9897 			err = PTR_ERR(task);
9898 			goto err_group_fd;
9899 		}
9900 	}
9901 
9902 	if (task && group_leader &&
9903 	    group_leader->attr.inherit != attr.inherit) {
9904 		err = -EINVAL;
9905 		goto err_task;
9906 	}
9907 
9908 	if (task) {
9909 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 		if (err)
9911 			goto err_task;
9912 
9913 		/*
9914 		 * Reuse ptrace permission checks for now.
9915 		 *
9916 		 * We must hold cred_guard_mutex across this and any potential
9917 		 * perf_install_in_context() call for this new event to
9918 		 * serialize against exec() altering our credentials (and the
9919 		 * perf_event_exit_task() that could imply).
9920 		 */
9921 		err = -EACCES;
9922 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 			goto err_cred;
9924 	}
9925 
9926 	if (flags & PERF_FLAG_PID_CGROUP)
9927 		cgroup_fd = pid;
9928 
9929 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9930 				 NULL, NULL, cgroup_fd);
9931 	if (IS_ERR(event)) {
9932 		err = PTR_ERR(event);
9933 		goto err_cred;
9934 	}
9935 
9936 	if (is_sampling_event(event)) {
9937 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9938 			err = -EOPNOTSUPP;
9939 			goto err_alloc;
9940 		}
9941 	}
9942 
9943 	/*
9944 	 * Special case software events and allow them to be part of
9945 	 * any hardware group.
9946 	 */
9947 	pmu = event->pmu;
9948 
9949 	if (attr.use_clockid) {
9950 		err = perf_event_set_clock(event, attr.clockid);
9951 		if (err)
9952 			goto err_alloc;
9953 	}
9954 
9955 	if (pmu->task_ctx_nr == perf_sw_context)
9956 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957 
9958 	if (group_leader &&
9959 	    (is_software_event(event) != is_software_event(group_leader))) {
9960 		if (is_software_event(event)) {
9961 			/*
9962 			 * If event and group_leader are not both a software
9963 			 * event, and event is, then group leader is not.
9964 			 *
9965 			 * Allow the addition of software events to !software
9966 			 * groups, this is safe because software events never
9967 			 * fail to schedule.
9968 			 */
9969 			pmu = group_leader->pmu;
9970 		} else if (is_software_event(group_leader) &&
9971 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9972 			/*
9973 			 * In case the group is a pure software group, and we
9974 			 * try to add a hardware event, move the whole group to
9975 			 * the hardware context.
9976 			 */
9977 			move_group = 1;
9978 		}
9979 	}
9980 
9981 	/*
9982 	 * Get the target context (task or percpu):
9983 	 */
9984 	ctx = find_get_context(pmu, task, event);
9985 	if (IS_ERR(ctx)) {
9986 		err = PTR_ERR(ctx);
9987 		goto err_alloc;
9988 	}
9989 
9990 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 		err = -EBUSY;
9992 		goto err_context;
9993 	}
9994 
9995 	/*
9996 	 * Look up the group leader (we will attach this event to it):
9997 	 */
9998 	if (group_leader) {
9999 		err = -EINVAL;
10000 
10001 		/*
10002 		 * Do not allow a recursive hierarchy (this new sibling
10003 		 * becoming part of another group-sibling):
10004 		 */
10005 		if (group_leader->group_leader != group_leader)
10006 			goto err_context;
10007 
10008 		/* All events in a group should have the same clock */
10009 		if (group_leader->clock != event->clock)
10010 			goto err_context;
10011 
10012 		/*
10013 		 * Do not allow to attach to a group in a different
10014 		 * task or CPU context:
10015 		 */
10016 		if (move_group) {
10017 			/*
10018 			 * Make sure we're both on the same task, or both
10019 			 * per-cpu events.
10020 			 */
10021 			if (group_leader->ctx->task != ctx->task)
10022 				goto err_context;
10023 
10024 			/*
10025 			 * Make sure we're both events for the same CPU;
10026 			 * grouping events for different CPUs is broken; since
10027 			 * you can never concurrently schedule them anyhow.
10028 			 */
10029 			if (group_leader->cpu != event->cpu)
10030 				goto err_context;
10031 		} else {
10032 			if (group_leader->ctx != ctx)
10033 				goto err_context;
10034 		}
10035 
10036 		/*
10037 		 * Only a group leader can be exclusive or pinned
10038 		 */
10039 		if (attr.exclusive || attr.pinned)
10040 			goto err_context;
10041 	}
10042 
10043 	if (output_event) {
10044 		err = perf_event_set_output(event, output_event);
10045 		if (err)
10046 			goto err_context;
10047 	}
10048 
10049 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 					f_flags);
10051 	if (IS_ERR(event_file)) {
10052 		err = PTR_ERR(event_file);
10053 		event_file = NULL;
10054 		goto err_context;
10055 	}
10056 
10057 	if (move_group) {
10058 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059 
10060 		if (gctx->task == TASK_TOMBSTONE) {
10061 			err = -ESRCH;
10062 			goto err_locked;
10063 		}
10064 
10065 		/*
10066 		 * Check if we raced against another sys_perf_event_open() call
10067 		 * moving the software group underneath us.
10068 		 */
10069 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 			/*
10071 			 * If someone moved the group out from under us, check
10072 			 * if this new event wound up on the same ctx, if so
10073 			 * its the regular !move_group case, otherwise fail.
10074 			 */
10075 			if (gctx != ctx) {
10076 				err = -EINVAL;
10077 				goto err_locked;
10078 			} else {
10079 				perf_event_ctx_unlock(group_leader, gctx);
10080 				move_group = 0;
10081 			}
10082 		}
10083 	} else {
10084 		mutex_lock(&ctx->mutex);
10085 	}
10086 
10087 	if (ctx->task == TASK_TOMBSTONE) {
10088 		err = -ESRCH;
10089 		goto err_locked;
10090 	}
10091 
10092 	if (!perf_event_validate_size(event)) {
10093 		err = -E2BIG;
10094 		goto err_locked;
10095 	}
10096 
10097 	if (!task) {
10098 		/*
10099 		 * Check if the @cpu we're creating an event for is online.
10100 		 *
10101 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10102 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10103 		 */
10104 		struct perf_cpu_context *cpuctx =
10105 			container_of(ctx, struct perf_cpu_context, ctx);
10106 
10107 		if (!cpuctx->online) {
10108 			err = -ENODEV;
10109 			goto err_locked;
10110 		}
10111 	}
10112 
10113 
10114 	/*
10115 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10116 	 * because we need to serialize with concurrent event creation.
10117 	 */
10118 	if (!exclusive_event_installable(event, ctx)) {
10119 		/* exclusive and group stuff are assumed mutually exclusive */
10120 		WARN_ON_ONCE(move_group);
10121 
10122 		err = -EBUSY;
10123 		goto err_locked;
10124 	}
10125 
10126 	WARN_ON_ONCE(ctx->parent_ctx);
10127 
10128 	/*
10129 	 * This is the point on no return; we cannot fail hereafter. This is
10130 	 * where we start modifying current state.
10131 	 */
10132 
10133 	if (move_group) {
10134 		/*
10135 		 * See perf_event_ctx_lock() for comments on the details
10136 		 * of swizzling perf_event::ctx.
10137 		 */
10138 		perf_remove_from_context(group_leader, 0);
10139 		put_ctx(gctx);
10140 
10141 		list_for_each_entry(sibling, &group_leader->sibling_list,
10142 				    group_entry) {
10143 			perf_remove_from_context(sibling, 0);
10144 			put_ctx(gctx);
10145 		}
10146 
10147 		/*
10148 		 * Wait for everybody to stop referencing the events through
10149 		 * the old lists, before installing it on new lists.
10150 		 */
10151 		synchronize_rcu();
10152 
10153 		/*
10154 		 * Install the group siblings before the group leader.
10155 		 *
10156 		 * Because a group leader will try and install the entire group
10157 		 * (through the sibling list, which is still in-tact), we can
10158 		 * end up with siblings installed in the wrong context.
10159 		 *
10160 		 * By installing siblings first we NO-OP because they're not
10161 		 * reachable through the group lists.
10162 		 */
10163 		list_for_each_entry(sibling, &group_leader->sibling_list,
10164 				    group_entry) {
10165 			perf_event__state_init(sibling);
10166 			perf_install_in_context(ctx, sibling, sibling->cpu);
10167 			get_ctx(ctx);
10168 		}
10169 
10170 		/*
10171 		 * Removing from the context ends up with disabled
10172 		 * event. What we want here is event in the initial
10173 		 * startup state, ready to be add into new context.
10174 		 */
10175 		perf_event__state_init(group_leader);
10176 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10177 		get_ctx(ctx);
10178 	}
10179 
10180 	/*
10181 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10182 	 * that we're serialized against further additions and before
10183 	 * perf_install_in_context() which is the point the event is active and
10184 	 * can use these values.
10185 	 */
10186 	perf_event__header_size(event);
10187 	perf_event__id_header_size(event);
10188 
10189 	event->owner = current;
10190 
10191 	perf_install_in_context(ctx, event, event->cpu);
10192 	perf_unpin_context(ctx);
10193 
10194 	if (move_group)
10195 		perf_event_ctx_unlock(group_leader, gctx);
10196 	mutex_unlock(&ctx->mutex);
10197 
10198 	if (task) {
10199 		mutex_unlock(&task->signal->cred_guard_mutex);
10200 		put_task_struct(task);
10201 	}
10202 
10203 	mutex_lock(&current->perf_event_mutex);
10204 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10205 	mutex_unlock(&current->perf_event_mutex);
10206 
10207 	/*
10208 	 * Drop the reference on the group_event after placing the
10209 	 * new event on the sibling_list. This ensures destruction
10210 	 * of the group leader will find the pointer to itself in
10211 	 * perf_group_detach().
10212 	 */
10213 	fdput(group);
10214 	fd_install(event_fd, event_file);
10215 	return event_fd;
10216 
10217 err_locked:
10218 	if (move_group)
10219 		perf_event_ctx_unlock(group_leader, gctx);
10220 	mutex_unlock(&ctx->mutex);
10221 /* err_file: */
10222 	fput(event_file);
10223 err_context:
10224 	perf_unpin_context(ctx);
10225 	put_ctx(ctx);
10226 err_alloc:
10227 	/*
10228 	 * If event_file is set, the fput() above will have called ->release()
10229 	 * and that will take care of freeing the event.
10230 	 */
10231 	if (!event_file)
10232 		free_event(event);
10233 err_cred:
10234 	if (task)
10235 		mutex_unlock(&task->signal->cred_guard_mutex);
10236 err_task:
10237 	if (task)
10238 		put_task_struct(task);
10239 err_group_fd:
10240 	fdput(group);
10241 err_fd:
10242 	put_unused_fd(event_fd);
10243 	return err;
10244 }
10245 
10246 /**
10247  * perf_event_create_kernel_counter
10248  *
10249  * @attr: attributes of the counter to create
10250  * @cpu: cpu in which the counter is bound
10251  * @task: task to profile (NULL for percpu)
10252  */
10253 struct perf_event *
10254 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10255 				 struct task_struct *task,
10256 				 perf_overflow_handler_t overflow_handler,
10257 				 void *context)
10258 {
10259 	struct perf_event_context *ctx;
10260 	struct perf_event *event;
10261 	int err;
10262 
10263 	/*
10264 	 * Get the target context (task or percpu):
10265 	 */
10266 
10267 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10268 				 overflow_handler, context, -1);
10269 	if (IS_ERR(event)) {
10270 		err = PTR_ERR(event);
10271 		goto err;
10272 	}
10273 
10274 	/* Mark owner so we could distinguish it from user events. */
10275 	event->owner = TASK_TOMBSTONE;
10276 
10277 	ctx = find_get_context(event->pmu, task, event);
10278 	if (IS_ERR(ctx)) {
10279 		err = PTR_ERR(ctx);
10280 		goto err_free;
10281 	}
10282 
10283 	WARN_ON_ONCE(ctx->parent_ctx);
10284 	mutex_lock(&ctx->mutex);
10285 	if (ctx->task == TASK_TOMBSTONE) {
10286 		err = -ESRCH;
10287 		goto err_unlock;
10288 	}
10289 
10290 	if (!task) {
10291 		/*
10292 		 * Check if the @cpu we're creating an event for is online.
10293 		 *
10294 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10295 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10296 		 */
10297 		struct perf_cpu_context *cpuctx =
10298 			container_of(ctx, struct perf_cpu_context, ctx);
10299 		if (!cpuctx->online) {
10300 			err = -ENODEV;
10301 			goto err_unlock;
10302 		}
10303 	}
10304 
10305 	if (!exclusive_event_installable(event, ctx)) {
10306 		err = -EBUSY;
10307 		goto err_unlock;
10308 	}
10309 
10310 	perf_install_in_context(ctx, event, cpu);
10311 	perf_unpin_context(ctx);
10312 	mutex_unlock(&ctx->mutex);
10313 
10314 	return event;
10315 
10316 err_unlock:
10317 	mutex_unlock(&ctx->mutex);
10318 	perf_unpin_context(ctx);
10319 	put_ctx(ctx);
10320 err_free:
10321 	free_event(event);
10322 err:
10323 	return ERR_PTR(err);
10324 }
10325 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10326 
10327 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10328 {
10329 	struct perf_event_context *src_ctx;
10330 	struct perf_event_context *dst_ctx;
10331 	struct perf_event *event, *tmp;
10332 	LIST_HEAD(events);
10333 
10334 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10335 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10336 
10337 	/*
10338 	 * See perf_event_ctx_lock() for comments on the details
10339 	 * of swizzling perf_event::ctx.
10340 	 */
10341 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10342 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10343 				 event_entry) {
10344 		perf_remove_from_context(event, 0);
10345 		unaccount_event_cpu(event, src_cpu);
10346 		put_ctx(src_ctx);
10347 		list_add(&event->migrate_entry, &events);
10348 	}
10349 
10350 	/*
10351 	 * Wait for the events to quiesce before re-instating them.
10352 	 */
10353 	synchronize_rcu();
10354 
10355 	/*
10356 	 * Re-instate events in 2 passes.
10357 	 *
10358 	 * Skip over group leaders and only install siblings on this first
10359 	 * pass, siblings will not get enabled without a leader, however a
10360 	 * leader will enable its siblings, even if those are still on the old
10361 	 * context.
10362 	 */
10363 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10364 		if (event->group_leader == event)
10365 			continue;
10366 
10367 		list_del(&event->migrate_entry);
10368 		if (event->state >= PERF_EVENT_STATE_OFF)
10369 			event->state = PERF_EVENT_STATE_INACTIVE;
10370 		account_event_cpu(event, dst_cpu);
10371 		perf_install_in_context(dst_ctx, event, dst_cpu);
10372 		get_ctx(dst_ctx);
10373 	}
10374 
10375 	/*
10376 	 * Once all the siblings are setup properly, install the group leaders
10377 	 * to make it go.
10378 	 */
10379 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10380 		list_del(&event->migrate_entry);
10381 		if (event->state >= PERF_EVENT_STATE_OFF)
10382 			event->state = PERF_EVENT_STATE_INACTIVE;
10383 		account_event_cpu(event, dst_cpu);
10384 		perf_install_in_context(dst_ctx, event, dst_cpu);
10385 		get_ctx(dst_ctx);
10386 	}
10387 	mutex_unlock(&dst_ctx->mutex);
10388 	mutex_unlock(&src_ctx->mutex);
10389 }
10390 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10391 
10392 static void sync_child_event(struct perf_event *child_event,
10393 			       struct task_struct *child)
10394 {
10395 	struct perf_event *parent_event = child_event->parent;
10396 	u64 child_val;
10397 
10398 	if (child_event->attr.inherit_stat)
10399 		perf_event_read_event(child_event, child);
10400 
10401 	child_val = perf_event_count(child_event);
10402 
10403 	/*
10404 	 * Add back the child's count to the parent's count:
10405 	 */
10406 	atomic64_add(child_val, &parent_event->child_count);
10407 	atomic64_add(child_event->total_time_enabled,
10408 		     &parent_event->child_total_time_enabled);
10409 	atomic64_add(child_event->total_time_running,
10410 		     &parent_event->child_total_time_running);
10411 }
10412 
10413 static void
10414 perf_event_exit_event(struct perf_event *child_event,
10415 		      struct perf_event_context *child_ctx,
10416 		      struct task_struct *child)
10417 {
10418 	struct perf_event *parent_event = child_event->parent;
10419 
10420 	/*
10421 	 * Do not destroy the 'original' grouping; because of the context
10422 	 * switch optimization the original events could've ended up in a
10423 	 * random child task.
10424 	 *
10425 	 * If we were to destroy the original group, all group related
10426 	 * operations would cease to function properly after this random
10427 	 * child dies.
10428 	 *
10429 	 * Do destroy all inherited groups, we don't care about those
10430 	 * and being thorough is better.
10431 	 */
10432 	raw_spin_lock_irq(&child_ctx->lock);
10433 	WARN_ON_ONCE(child_ctx->is_active);
10434 
10435 	if (parent_event)
10436 		perf_group_detach(child_event);
10437 	list_del_event(child_event, child_ctx);
10438 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10439 	raw_spin_unlock_irq(&child_ctx->lock);
10440 
10441 	/*
10442 	 * Parent events are governed by their filedesc, retain them.
10443 	 */
10444 	if (!parent_event) {
10445 		perf_event_wakeup(child_event);
10446 		return;
10447 	}
10448 	/*
10449 	 * Child events can be cleaned up.
10450 	 */
10451 
10452 	sync_child_event(child_event, child);
10453 
10454 	/*
10455 	 * Remove this event from the parent's list
10456 	 */
10457 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10458 	mutex_lock(&parent_event->child_mutex);
10459 	list_del_init(&child_event->child_list);
10460 	mutex_unlock(&parent_event->child_mutex);
10461 
10462 	/*
10463 	 * Kick perf_poll() for is_event_hup().
10464 	 */
10465 	perf_event_wakeup(parent_event);
10466 	free_event(child_event);
10467 	put_event(parent_event);
10468 }
10469 
10470 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10471 {
10472 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10473 	struct perf_event *child_event, *next;
10474 
10475 	WARN_ON_ONCE(child != current);
10476 
10477 	child_ctx = perf_pin_task_context(child, ctxn);
10478 	if (!child_ctx)
10479 		return;
10480 
10481 	/*
10482 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10483 	 * ctx::mutex over the entire thing. This serializes against almost
10484 	 * everything that wants to access the ctx.
10485 	 *
10486 	 * The exception is sys_perf_event_open() /
10487 	 * perf_event_create_kernel_count() which does find_get_context()
10488 	 * without ctx::mutex (it cannot because of the move_group double mutex
10489 	 * lock thing). See the comments in perf_install_in_context().
10490 	 */
10491 	mutex_lock(&child_ctx->mutex);
10492 
10493 	/*
10494 	 * In a single ctx::lock section, de-schedule the events and detach the
10495 	 * context from the task such that we cannot ever get it scheduled back
10496 	 * in.
10497 	 */
10498 	raw_spin_lock_irq(&child_ctx->lock);
10499 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10500 
10501 	/*
10502 	 * Now that the context is inactive, destroy the task <-> ctx relation
10503 	 * and mark the context dead.
10504 	 */
10505 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10506 	put_ctx(child_ctx); /* cannot be last */
10507 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10508 	put_task_struct(current); /* cannot be last */
10509 
10510 	clone_ctx = unclone_ctx(child_ctx);
10511 	raw_spin_unlock_irq(&child_ctx->lock);
10512 
10513 	if (clone_ctx)
10514 		put_ctx(clone_ctx);
10515 
10516 	/*
10517 	 * Report the task dead after unscheduling the events so that we
10518 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10519 	 * get a few PERF_RECORD_READ events.
10520 	 */
10521 	perf_event_task(child, child_ctx, 0);
10522 
10523 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10524 		perf_event_exit_event(child_event, child_ctx, child);
10525 
10526 	mutex_unlock(&child_ctx->mutex);
10527 
10528 	put_ctx(child_ctx);
10529 }
10530 
10531 /*
10532  * When a child task exits, feed back event values to parent events.
10533  *
10534  * Can be called with cred_guard_mutex held when called from
10535  * install_exec_creds().
10536  */
10537 void perf_event_exit_task(struct task_struct *child)
10538 {
10539 	struct perf_event *event, *tmp;
10540 	int ctxn;
10541 
10542 	mutex_lock(&child->perf_event_mutex);
10543 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10544 				 owner_entry) {
10545 		list_del_init(&event->owner_entry);
10546 
10547 		/*
10548 		 * Ensure the list deletion is visible before we clear
10549 		 * the owner, closes a race against perf_release() where
10550 		 * we need to serialize on the owner->perf_event_mutex.
10551 		 */
10552 		smp_store_release(&event->owner, NULL);
10553 	}
10554 	mutex_unlock(&child->perf_event_mutex);
10555 
10556 	for_each_task_context_nr(ctxn)
10557 		perf_event_exit_task_context(child, ctxn);
10558 
10559 	/*
10560 	 * The perf_event_exit_task_context calls perf_event_task
10561 	 * with child's task_ctx, which generates EXIT events for
10562 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10563 	 * At this point we need to send EXIT events to cpu contexts.
10564 	 */
10565 	perf_event_task(child, NULL, 0);
10566 }
10567 
10568 static void perf_free_event(struct perf_event *event,
10569 			    struct perf_event_context *ctx)
10570 {
10571 	struct perf_event *parent = event->parent;
10572 
10573 	if (WARN_ON_ONCE(!parent))
10574 		return;
10575 
10576 	mutex_lock(&parent->child_mutex);
10577 	list_del_init(&event->child_list);
10578 	mutex_unlock(&parent->child_mutex);
10579 
10580 	put_event(parent);
10581 
10582 	raw_spin_lock_irq(&ctx->lock);
10583 	perf_group_detach(event);
10584 	list_del_event(event, ctx);
10585 	raw_spin_unlock_irq(&ctx->lock);
10586 	free_event(event);
10587 }
10588 
10589 /*
10590  * Free an unexposed, unused context as created by inheritance by
10591  * perf_event_init_task below, used by fork() in case of fail.
10592  *
10593  * Not all locks are strictly required, but take them anyway to be nice and
10594  * help out with the lockdep assertions.
10595  */
10596 void perf_event_free_task(struct task_struct *task)
10597 {
10598 	struct perf_event_context *ctx;
10599 	struct perf_event *event, *tmp;
10600 	int ctxn;
10601 
10602 	for_each_task_context_nr(ctxn) {
10603 		ctx = task->perf_event_ctxp[ctxn];
10604 		if (!ctx)
10605 			continue;
10606 
10607 		mutex_lock(&ctx->mutex);
10608 		raw_spin_lock_irq(&ctx->lock);
10609 		/*
10610 		 * Destroy the task <-> ctx relation and mark the context dead.
10611 		 *
10612 		 * This is important because even though the task hasn't been
10613 		 * exposed yet the context has been (through child_list).
10614 		 */
10615 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10616 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10617 		put_task_struct(task); /* cannot be last */
10618 		raw_spin_unlock_irq(&ctx->lock);
10619 
10620 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10621 			perf_free_event(event, ctx);
10622 
10623 		mutex_unlock(&ctx->mutex);
10624 		put_ctx(ctx);
10625 	}
10626 }
10627 
10628 void perf_event_delayed_put(struct task_struct *task)
10629 {
10630 	int ctxn;
10631 
10632 	for_each_task_context_nr(ctxn)
10633 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10634 }
10635 
10636 struct file *perf_event_get(unsigned int fd)
10637 {
10638 	struct file *file;
10639 
10640 	file = fget_raw(fd);
10641 	if (!file)
10642 		return ERR_PTR(-EBADF);
10643 
10644 	if (file->f_op != &perf_fops) {
10645 		fput(file);
10646 		return ERR_PTR(-EBADF);
10647 	}
10648 
10649 	return file;
10650 }
10651 
10652 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10653 {
10654 	if (!event)
10655 		return ERR_PTR(-EINVAL);
10656 
10657 	return &event->attr;
10658 }
10659 
10660 /*
10661  * Inherit a event from parent task to child task.
10662  *
10663  * Returns:
10664  *  - valid pointer on success
10665  *  - NULL for orphaned events
10666  *  - IS_ERR() on error
10667  */
10668 static struct perf_event *
10669 inherit_event(struct perf_event *parent_event,
10670 	      struct task_struct *parent,
10671 	      struct perf_event_context *parent_ctx,
10672 	      struct task_struct *child,
10673 	      struct perf_event *group_leader,
10674 	      struct perf_event_context *child_ctx)
10675 {
10676 	enum perf_event_active_state parent_state = parent_event->state;
10677 	struct perf_event *child_event;
10678 	unsigned long flags;
10679 
10680 	/*
10681 	 * Instead of creating recursive hierarchies of events,
10682 	 * we link inherited events back to the original parent,
10683 	 * which has a filp for sure, which we use as the reference
10684 	 * count:
10685 	 */
10686 	if (parent_event->parent)
10687 		parent_event = parent_event->parent;
10688 
10689 	child_event = perf_event_alloc(&parent_event->attr,
10690 					   parent_event->cpu,
10691 					   child,
10692 					   group_leader, parent_event,
10693 					   NULL, NULL, -1);
10694 	if (IS_ERR(child_event))
10695 		return child_event;
10696 
10697 	/*
10698 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10699 	 * must be under the same lock in order to serialize against
10700 	 * perf_event_release_kernel(), such that either we must observe
10701 	 * is_orphaned_event() or they will observe us on the child_list.
10702 	 */
10703 	mutex_lock(&parent_event->child_mutex);
10704 	if (is_orphaned_event(parent_event) ||
10705 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10706 		mutex_unlock(&parent_event->child_mutex);
10707 		free_event(child_event);
10708 		return NULL;
10709 	}
10710 
10711 	get_ctx(child_ctx);
10712 
10713 	/*
10714 	 * Make the child state follow the state of the parent event,
10715 	 * not its attr.disabled bit.  We hold the parent's mutex,
10716 	 * so we won't race with perf_event_{en, dis}able_family.
10717 	 */
10718 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10719 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10720 	else
10721 		child_event->state = PERF_EVENT_STATE_OFF;
10722 
10723 	if (parent_event->attr.freq) {
10724 		u64 sample_period = parent_event->hw.sample_period;
10725 		struct hw_perf_event *hwc = &child_event->hw;
10726 
10727 		hwc->sample_period = sample_period;
10728 		hwc->last_period   = sample_period;
10729 
10730 		local64_set(&hwc->period_left, sample_period);
10731 	}
10732 
10733 	child_event->ctx = child_ctx;
10734 	child_event->overflow_handler = parent_event->overflow_handler;
10735 	child_event->overflow_handler_context
10736 		= parent_event->overflow_handler_context;
10737 
10738 	/*
10739 	 * Precalculate sample_data sizes
10740 	 */
10741 	perf_event__header_size(child_event);
10742 	perf_event__id_header_size(child_event);
10743 
10744 	/*
10745 	 * Link it up in the child's context:
10746 	 */
10747 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10748 	add_event_to_ctx(child_event, child_ctx);
10749 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10750 
10751 	/*
10752 	 * Link this into the parent event's child list
10753 	 */
10754 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10755 	mutex_unlock(&parent_event->child_mutex);
10756 
10757 	return child_event;
10758 }
10759 
10760 /*
10761  * Inherits an event group.
10762  *
10763  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10764  * This matches with perf_event_release_kernel() removing all child events.
10765  *
10766  * Returns:
10767  *  - 0 on success
10768  *  - <0 on error
10769  */
10770 static int inherit_group(struct perf_event *parent_event,
10771 	      struct task_struct *parent,
10772 	      struct perf_event_context *parent_ctx,
10773 	      struct task_struct *child,
10774 	      struct perf_event_context *child_ctx)
10775 {
10776 	struct perf_event *leader;
10777 	struct perf_event *sub;
10778 	struct perf_event *child_ctr;
10779 
10780 	leader = inherit_event(parent_event, parent, parent_ctx,
10781 				 child, NULL, child_ctx);
10782 	if (IS_ERR(leader))
10783 		return PTR_ERR(leader);
10784 	/*
10785 	 * @leader can be NULL here because of is_orphaned_event(). In this
10786 	 * case inherit_event() will create individual events, similar to what
10787 	 * perf_group_detach() would do anyway.
10788 	 */
10789 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10790 		child_ctr = inherit_event(sub, parent, parent_ctx,
10791 					    child, leader, child_ctx);
10792 		if (IS_ERR(child_ctr))
10793 			return PTR_ERR(child_ctr);
10794 	}
10795 	return 0;
10796 }
10797 
10798 /*
10799  * Creates the child task context and tries to inherit the event-group.
10800  *
10801  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10802  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10803  * consistent with perf_event_release_kernel() removing all child events.
10804  *
10805  * Returns:
10806  *  - 0 on success
10807  *  - <0 on error
10808  */
10809 static int
10810 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10811 		   struct perf_event_context *parent_ctx,
10812 		   struct task_struct *child, int ctxn,
10813 		   int *inherited_all)
10814 {
10815 	int ret;
10816 	struct perf_event_context *child_ctx;
10817 
10818 	if (!event->attr.inherit) {
10819 		*inherited_all = 0;
10820 		return 0;
10821 	}
10822 
10823 	child_ctx = child->perf_event_ctxp[ctxn];
10824 	if (!child_ctx) {
10825 		/*
10826 		 * This is executed from the parent task context, so
10827 		 * inherit events that have been marked for cloning.
10828 		 * First allocate and initialize a context for the
10829 		 * child.
10830 		 */
10831 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10832 		if (!child_ctx)
10833 			return -ENOMEM;
10834 
10835 		child->perf_event_ctxp[ctxn] = child_ctx;
10836 	}
10837 
10838 	ret = inherit_group(event, parent, parent_ctx,
10839 			    child, child_ctx);
10840 
10841 	if (ret)
10842 		*inherited_all = 0;
10843 
10844 	return ret;
10845 }
10846 
10847 /*
10848  * Initialize the perf_event context in task_struct
10849  */
10850 static int perf_event_init_context(struct task_struct *child, int ctxn)
10851 {
10852 	struct perf_event_context *child_ctx, *parent_ctx;
10853 	struct perf_event_context *cloned_ctx;
10854 	struct perf_event *event;
10855 	struct task_struct *parent = current;
10856 	int inherited_all = 1;
10857 	unsigned long flags;
10858 	int ret = 0;
10859 
10860 	if (likely(!parent->perf_event_ctxp[ctxn]))
10861 		return 0;
10862 
10863 	/*
10864 	 * If the parent's context is a clone, pin it so it won't get
10865 	 * swapped under us.
10866 	 */
10867 	parent_ctx = perf_pin_task_context(parent, ctxn);
10868 	if (!parent_ctx)
10869 		return 0;
10870 
10871 	/*
10872 	 * No need to check if parent_ctx != NULL here; since we saw
10873 	 * it non-NULL earlier, the only reason for it to become NULL
10874 	 * is if we exit, and since we're currently in the middle of
10875 	 * a fork we can't be exiting at the same time.
10876 	 */
10877 
10878 	/*
10879 	 * Lock the parent list. No need to lock the child - not PID
10880 	 * hashed yet and not running, so nobody can access it.
10881 	 */
10882 	mutex_lock(&parent_ctx->mutex);
10883 
10884 	/*
10885 	 * We dont have to disable NMIs - we are only looking at
10886 	 * the list, not manipulating it:
10887 	 */
10888 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10889 		ret = inherit_task_group(event, parent, parent_ctx,
10890 					 child, ctxn, &inherited_all);
10891 		if (ret)
10892 			goto out_unlock;
10893 	}
10894 
10895 	/*
10896 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10897 	 * to allocations, but we need to prevent rotation because
10898 	 * rotate_ctx() will change the list from interrupt context.
10899 	 */
10900 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10901 	parent_ctx->rotate_disable = 1;
10902 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10903 
10904 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10905 		ret = inherit_task_group(event, parent, parent_ctx,
10906 					 child, ctxn, &inherited_all);
10907 		if (ret)
10908 			goto out_unlock;
10909 	}
10910 
10911 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10912 	parent_ctx->rotate_disable = 0;
10913 
10914 	child_ctx = child->perf_event_ctxp[ctxn];
10915 
10916 	if (child_ctx && inherited_all) {
10917 		/*
10918 		 * Mark the child context as a clone of the parent
10919 		 * context, or of whatever the parent is a clone of.
10920 		 *
10921 		 * Note that if the parent is a clone, the holding of
10922 		 * parent_ctx->lock avoids it from being uncloned.
10923 		 */
10924 		cloned_ctx = parent_ctx->parent_ctx;
10925 		if (cloned_ctx) {
10926 			child_ctx->parent_ctx = cloned_ctx;
10927 			child_ctx->parent_gen = parent_ctx->parent_gen;
10928 		} else {
10929 			child_ctx->parent_ctx = parent_ctx;
10930 			child_ctx->parent_gen = parent_ctx->generation;
10931 		}
10932 		get_ctx(child_ctx->parent_ctx);
10933 	}
10934 
10935 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10936 out_unlock:
10937 	mutex_unlock(&parent_ctx->mutex);
10938 
10939 	perf_unpin_context(parent_ctx);
10940 	put_ctx(parent_ctx);
10941 
10942 	return ret;
10943 }
10944 
10945 /*
10946  * Initialize the perf_event context in task_struct
10947  */
10948 int perf_event_init_task(struct task_struct *child)
10949 {
10950 	int ctxn, ret;
10951 
10952 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10953 	mutex_init(&child->perf_event_mutex);
10954 	INIT_LIST_HEAD(&child->perf_event_list);
10955 
10956 	for_each_task_context_nr(ctxn) {
10957 		ret = perf_event_init_context(child, ctxn);
10958 		if (ret) {
10959 			perf_event_free_task(child);
10960 			return ret;
10961 		}
10962 	}
10963 
10964 	return 0;
10965 }
10966 
10967 static void __init perf_event_init_all_cpus(void)
10968 {
10969 	struct swevent_htable *swhash;
10970 	int cpu;
10971 
10972 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10973 
10974 	for_each_possible_cpu(cpu) {
10975 		swhash = &per_cpu(swevent_htable, cpu);
10976 		mutex_init(&swhash->hlist_mutex);
10977 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10978 
10979 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10980 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10981 
10982 #ifdef CONFIG_CGROUP_PERF
10983 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10984 #endif
10985 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10986 	}
10987 }
10988 
10989 void perf_swevent_init_cpu(unsigned int cpu)
10990 {
10991 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10992 
10993 	mutex_lock(&swhash->hlist_mutex);
10994 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10995 		struct swevent_hlist *hlist;
10996 
10997 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10998 		WARN_ON(!hlist);
10999 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11000 	}
11001 	mutex_unlock(&swhash->hlist_mutex);
11002 }
11003 
11004 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11005 static void __perf_event_exit_context(void *__info)
11006 {
11007 	struct perf_event_context *ctx = __info;
11008 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11009 	struct perf_event *event;
11010 
11011 	raw_spin_lock(&ctx->lock);
11012 	list_for_each_entry(event, &ctx->event_list, event_entry)
11013 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11014 	raw_spin_unlock(&ctx->lock);
11015 }
11016 
11017 static void perf_event_exit_cpu_context(int cpu)
11018 {
11019 	struct perf_cpu_context *cpuctx;
11020 	struct perf_event_context *ctx;
11021 	struct pmu *pmu;
11022 
11023 	mutex_lock(&pmus_lock);
11024 	list_for_each_entry(pmu, &pmus, entry) {
11025 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11026 		ctx = &cpuctx->ctx;
11027 
11028 		mutex_lock(&ctx->mutex);
11029 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11030 		cpuctx->online = 0;
11031 		mutex_unlock(&ctx->mutex);
11032 	}
11033 	cpumask_clear_cpu(cpu, perf_online_mask);
11034 	mutex_unlock(&pmus_lock);
11035 }
11036 #else
11037 
11038 static void perf_event_exit_cpu_context(int cpu) { }
11039 
11040 #endif
11041 
11042 int perf_event_init_cpu(unsigned int cpu)
11043 {
11044 	struct perf_cpu_context *cpuctx;
11045 	struct perf_event_context *ctx;
11046 	struct pmu *pmu;
11047 
11048 	perf_swevent_init_cpu(cpu);
11049 
11050 	mutex_lock(&pmus_lock);
11051 	cpumask_set_cpu(cpu, perf_online_mask);
11052 	list_for_each_entry(pmu, &pmus, entry) {
11053 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054 		ctx = &cpuctx->ctx;
11055 
11056 		mutex_lock(&ctx->mutex);
11057 		cpuctx->online = 1;
11058 		mutex_unlock(&ctx->mutex);
11059 	}
11060 	mutex_unlock(&pmus_lock);
11061 
11062 	return 0;
11063 }
11064 
11065 int perf_event_exit_cpu(unsigned int cpu)
11066 {
11067 	perf_event_exit_cpu_context(cpu);
11068 	return 0;
11069 }
11070 
11071 static int
11072 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11073 {
11074 	int cpu;
11075 
11076 	for_each_online_cpu(cpu)
11077 		perf_event_exit_cpu(cpu);
11078 
11079 	return NOTIFY_OK;
11080 }
11081 
11082 /*
11083  * Run the perf reboot notifier at the very last possible moment so that
11084  * the generic watchdog code runs as long as possible.
11085  */
11086 static struct notifier_block perf_reboot_notifier = {
11087 	.notifier_call = perf_reboot,
11088 	.priority = INT_MIN,
11089 };
11090 
11091 void __init perf_event_init(void)
11092 {
11093 	int ret;
11094 
11095 	idr_init(&pmu_idr);
11096 
11097 	perf_event_init_all_cpus();
11098 	init_srcu_struct(&pmus_srcu);
11099 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11100 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11101 	perf_pmu_register(&perf_task_clock, NULL, -1);
11102 	perf_tp_register();
11103 	perf_event_init_cpu(smp_processor_id());
11104 	register_reboot_notifier(&perf_reboot_notifier);
11105 
11106 	ret = init_hw_breakpoint();
11107 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11108 
11109 	/*
11110 	 * Build time assertion that we keep the data_head at the intended
11111 	 * location.  IOW, validation we got the __reserved[] size right.
11112 	 */
11113 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11114 		     != 1024);
11115 }
11116 
11117 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11118 			      char *page)
11119 {
11120 	struct perf_pmu_events_attr *pmu_attr =
11121 		container_of(attr, struct perf_pmu_events_attr, attr);
11122 
11123 	if (pmu_attr->event_str)
11124 		return sprintf(page, "%s\n", pmu_attr->event_str);
11125 
11126 	return 0;
11127 }
11128 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11129 
11130 static int __init perf_event_sysfs_init(void)
11131 {
11132 	struct pmu *pmu;
11133 	int ret;
11134 
11135 	mutex_lock(&pmus_lock);
11136 
11137 	ret = bus_register(&pmu_bus);
11138 	if (ret)
11139 		goto unlock;
11140 
11141 	list_for_each_entry(pmu, &pmus, entry) {
11142 		if (!pmu->name || pmu->type < 0)
11143 			continue;
11144 
11145 		ret = pmu_dev_alloc(pmu);
11146 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11147 	}
11148 	pmu_bus_running = 1;
11149 	ret = 0;
11150 
11151 unlock:
11152 	mutex_unlock(&pmus_lock);
11153 
11154 	return ret;
11155 }
11156 device_initcall(perf_event_sysfs_init);
11157 
11158 #ifdef CONFIG_CGROUP_PERF
11159 static struct cgroup_subsys_state *
11160 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11161 {
11162 	struct perf_cgroup *jc;
11163 
11164 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11165 	if (!jc)
11166 		return ERR_PTR(-ENOMEM);
11167 
11168 	jc->info = alloc_percpu(struct perf_cgroup_info);
11169 	if (!jc->info) {
11170 		kfree(jc);
11171 		return ERR_PTR(-ENOMEM);
11172 	}
11173 
11174 	return &jc->css;
11175 }
11176 
11177 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11178 {
11179 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11180 
11181 	free_percpu(jc->info);
11182 	kfree(jc);
11183 }
11184 
11185 static int __perf_cgroup_move(void *info)
11186 {
11187 	struct task_struct *task = info;
11188 	rcu_read_lock();
11189 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11190 	rcu_read_unlock();
11191 	return 0;
11192 }
11193 
11194 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11195 {
11196 	struct task_struct *task;
11197 	struct cgroup_subsys_state *css;
11198 
11199 	cgroup_taskset_for_each(task, css, tset)
11200 		task_function_call(task, __perf_cgroup_move, task);
11201 }
11202 
11203 struct cgroup_subsys perf_event_cgrp_subsys = {
11204 	.css_alloc	= perf_cgroup_css_alloc,
11205 	.css_free	= perf_cgroup_css_free,
11206 	.attach		= perf_cgroup_attach,
11207 	/*
11208 	 * Implicitly enable on dfl hierarchy so that perf events can
11209 	 * always be filtered by cgroup2 path as long as perf_event
11210 	 * controller is not mounted on a legacy hierarchy.
11211 	 */
11212 	.implicit_on_dfl = true,
11213 };
11214 #endif /* CONFIG_CGROUP_PERF */
11215