1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/ftrace_event.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 static struct workqueue_struct *perf_wq; 53 54 struct remote_function_call { 55 struct task_struct *p; 56 int (*func)(void *info); 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 tfc->ret = -EAGAIN; 68 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 69 return; 70 } 71 72 tfc->ret = tfc->func(tfc->info); 73 } 74 75 /** 76 * task_function_call - call a function on the cpu on which a task runs 77 * @p: the task to evaluate 78 * @func: the function to be called 79 * @info: the function call argument 80 * 81 * Calls the function @func when the task is currently running. This might 82 * be on the current CPU, which just calls the function directly 83 * 84 * returns: @func return value, or 85 * -ESRCH - when the process isn't running 86 * -EAGAIN - when the process moved away 87 */ 88 static int 89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 90 { 91 struct remote_function_call data = { 92 .p = p, 93 .func = func, 94 .info = info, 95 .ret = -ESRCH, /* No such (running) process */ 96 }; 97 98 if (task_curr(p)) 99 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 100 101 return data.ret; 102 } 103 104 /** 105 * cpu_function_call - call a function on the cpu 106 * @func: the function to be called 107 * @info: the function call argument 108 * 109 * Calls the function @func on the remote cpu. 110 * 111 * returns: @func return value or -ENXIO when the cpu is offline 112 */ 113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 114 { 115 struct remote_function_call data = { 116 .p = NULL, 117 .func = func, 118 .info = info, 119 .ret = -ENXIO, /* No such CPU */ 120 }; 121 122 smp_call_function_single(cpu, remote_function, &data, 1); 123 124 return data.ret; 125 } 126 127 #define EVENT_OWNER_KERNEL ((void *) -1) 128 129 static bool is_kernel_event(struct perf_event *event) 130 { 131 return event->owner == EVENT_OWNER_KERNEL; 132 } 133 134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 135 PERF_FLAG_FD_OUTPUT |\ 136 PERF_FLAG_PID_CGROUP |\ 137 PERF_FLAG_FD_CLOEXEC) 138 139 /* 140 * branch priv levels that need permission checks 141 */ 142 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 143 (PERF_SAMPLE_BRANCH_KERNEL |\ 144 PERF_SAMPLE_BRANCH_HV) 145 146 enum event_type_t { 147 EVENT_FLEXIBLE = 0x1, 148 EVENT_PINNED = 0x2, 149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 150 }; 151 152 /* 153 * perf_sched_events : >0 events exist 154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 155 */ 156 struct static_key_deferred perf_sched_events __read_mostly; 157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 158 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 159 160 static atomic_t nr_mmap_events __read_mostly; 161 static atomic_t nr_comm_events __read_mostly; 162 static atomic_t nr_task_events __read_mostly; 163 static atomic_t nr_freq_events __read_mostly; 164 165 static LIST_HEAD(pmus); 166 static DEFINE_MUTEX(pmus_lock); 167 static struct srcu_struct pmus_srcu; 168 169 /* 170 * perf event paranoia level: 171 * -1 - not paranoid at all 172 * 0 - disallow raw tracepoint access for unpriv 173 * 1 - disallow cpu events for unpriv 174 * 2 - disallow kernel profiling for unpriv 175 */ 176 int sysctl_perf_event_paranoid __read_mostly = 1; 177 178 /* Minimum for 512 kiB + 1 user control page */ 179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 180 181 /* 182 * max perf event sample rate 183 */ 184 #define DEFAULT_MAX_SAMPLE_RATE 100000 185 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 186 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 187 188 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 189 190 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 191 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 192 193 static int perf_sample_allowed_ns __read_mostly = 194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 195 196 void update_perf_cpu_limits(void) 197 { 198 u64 tmp = perf_sample_period_ns; 199 200 tmp *= sysctl_perf_cpu_time_max_percent; 201 do_div(tmp, 100); 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 203 } 204 205 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 206 207 int perf_proc_update_handler(struct ctl_table *table, int write, 208 void __user *buffer, size_t *lenp, 209 loff_t *ppos) 210 { 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 212 213 if (ret || !write) 214 return ret; 215 216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 218 update_perf_cpu_limits(); 219 220 return 0; 221 } 222 223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 224 225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 226 void __user *buffer, size_t *lenp, 227 loff_t *ppos) 228 { 229 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 230 231 if (ret || !write) 232 return ret; 233 234 update_perf_cpu_limits(); 235 236 return 0; 237 } 238 239 /* 240 * perf samples are done in some very critical code paths (NMIs). 241 * If they take too much CPU time, the system can lock up and not 242 * get any real work done. This will drop the sample rate when 243 * we detect that events are taking too long. 244 */ 245 #define NR_ACCUMULATED_SAMPLES 128 246 static DEFINE_PER_CPU(u64, running_sample_length); 247 248 static void perf_duration_warn(struct irq_work *w) 249 { 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 251 u64 avg_local_sample_len; 252 u64 local_samples_len; 253 254 local_samples_len = __this_cpu_read(running_sample_length); 255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 256 257 printk_ratelimited(KERN_WARNING 258 "perf interrupt took too long (%lld > %lld), lowering " 259 "kernel.perf_event_max_sample_rate to %d\n", 260 avg_local_sample_len, allowed_ns >> 1, 261 sysctl_perf_event_sample_rate); 262 } 263 264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 265 266 void perf_sample_event_took(u64 sample_len_ns) 267 { 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 269 u64 avg_local_sample_len; 270 u64 local_samples_len; 271 272 if (allowed_ns == 0) 273 return; 274 275 /* decay the counter by 1 average sample */ 276 local_samples_len = __this_cpu_read(running_sample_length); 277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 278 local_samples_len += sample_len_ns; 279 __this_cpu_write(running_sample_length, local_samples_len); 280 281 /* 282 * note: this will be biased artifically low until we have 283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 284 * from having to maintain a count. 285 */ 286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 287 288 if (avg_local_sample_len <= allowed_ns) 289 return; 290 291 if (max_samples_per_tick <= 1) 292 return; 293 294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 297 298 update_perf_cpu_limits(); 299 300 if (!irq_work_queue(&perf_duration_work)) { 301 early_printk("perf interrupt took too long (%lld > %lld), lowering " 302 "kernel.perf_event_max_sample_rate to %d\n", 303 avg_local_sample_len, allowed_ns >> 1, 304 sysctl_perf_event_sample_rate); 305 } 306 } 307 308 static atomic64_t perf_event_id; 309 310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 311 enum event_type_t event_type); 312 313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 314 enum event_type_t event_type, 315 struct task_struct *task); 316 317 static void update_context_time(struct perf_event_context *ctx); 318 static u64 perf_event_time(struct perf_event *event); 319 320 void __weak perf_event_print_debug(void) { } 321 322 extern __weak const char *perf_pmu_name(void) 323 { 324 return "pmu"; 325 } 326 327 static inline u64 perf_clock(void) 328 { 329 return local_clock(); 330 } 331 332 static inline u64 perf_event_clock(struct perf_event *event) 333 { 334 return event->clock(); 335 } 336 337 static inline struct perf_cpu_context * 338 __get_cpu_context(struct perf_event_context *ctx) 339 { 340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 341 } 342 343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 344 struct perf_event_context *ctx) 345 { 346 raw_spin_lock(&cpuctx->ctx.lock); 347 if (ctx) 348 raw_spin_lock(&ctx->lock); 349 } 350 351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 352 struct perf_event_context *ctx) 353 { 354 if (ctx) 355 raw_spin_unlock(&ctx->lock); 356 raw_spin_unlock(&cpuctx->ctx.lock); 357 } 358 359 #ifdef CONFIG_CGROUP_PERF 360 361 static inline bool 362 perf_cgroup_match(struct perf_event *event) 363 { 364 struct perf_event_context *ctx = event->ctx; 365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 366 367 /* @event doesn't care about cgroup */ 368 if (!event->cgrp) 369 return true; 370 371 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 372 if (!cpuctx->cgrp) 373 return false; 374 375 /* 376 * Cgroup scoping is recursive. An event enabled for a cgroup is 377 * also enabled for all its descendant cgroups. If @cpuctx's 378 * cgroup is a descendant of @event's (the test covers identity 379 * case), it's a match. 380 */ 381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 382 event->cgrp->css.cgroup); 383 } 384 385 static inline void perf_detach_cgroup(struct perf_event *event) 386 { 387 css_put(&event->cgrp->css); 388 event->cgrp = NULL; 389 } 390 391 static inline int is_cgroup_event(struct perf_event *event) 392 { 393 return event->cgrp != NULL; 394 } 395 396 static inline u64 perf_cgroup_event_time(struct perf_event *event) 397 { 398 struct perf_cgroup_info *t; 399 400 t = per_cpu_ptr(event->cgrp->info, event->cpu); 401 return t->time; 402 } 403 404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 405 { 406 struct perf_cgroup_info *info; 407 u64 now; 408 409 now = perf_clock(); 410 411 info = this_cpu_ptr(cgrp->info); 412 413 info->time += now - info->timestamp; 414 info->timestamp = now; 415 } 416 417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 418 { 419 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 420 if (cgrp_out) 421 __update_cgrp_time(cgrp_out); 422 } 423 424 static inline void update_cgrp_time_from_event(struct perf_event *event) 425 { 426 struct perf_cgroup *cgrp; 427 428 /* 429 * ensure we access cgroup data only when needed and 430 * when we know the cgroup is pinned (css_get) 431 */ 432 if (!is_cgroup_event(event)) 433 return; 434 435 cgrp = perf_cgroup_from_task(current); 436 /* 437 * Do not update time when cgroup is not active 438 */ 439 if (cgrp == event->cgrp) 440 __update_cgrp_time(event->cgrp); 441 } 442 443 static inline void 444 perf_cgroup_set_timestamp(struct task_struct *task, 445 struct perf_event_context *ctx) 446 { 447 struct perf_cgroup *cgrp; 448 struct perf_cgroup_info *info; 449 450 /* 451 * ctx->lock held by caller 452 * ensure we do not access cgroup data 453 * unless we have the cgroup pinned (css_get) 454 */ 455 if (!task || !ctx->nr_cgroups) 456 return; 457 458 cgrp = perf_cgroup_from_task(task); 459 info = this_cpu_ptr(cgrp->info); 460 info->timestamp = ctx->timestamp; 461 } 462 463 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 464 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 465 466 /* 467 * reschedule events based on the cgroup constraint of task. 468 * 469 * mode SWOUT : schedule out everything 470 * mode SWIN : schedule in based on cgroup for next 471 */ 472 void perf_cgroup_switch(struct task_struct *task, int mode) 473 { 474 struct perf_cpu_context *cpuctx; 475 struct pmu *pmu; 476 unsigned long flags; 477 478 /* 479 * disable interrupts to avoid geting nr_cgroup 480 * changes via __perf_event_disable(). Also 481 * avoids preemption. 482 */ 483 local_irq_save(flags); 484 485 /* 486 * we reschedule only in the presence of cgroup 487 * constrained events. 488 */ 489 rcu_read_lock(); 490 491 list_for_each_entry_rcu(pmu, &pmus, entry) { 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 493 if (cpuctx->unique_pmu != pmu) 494 continue; /* ensure we process each cpuctx once */ 495 496 /* 497 * perf_cgroup_events says at least one 498 * context on this CPU has cgroup events. 499 * 500 * ctx->nr_cgroups reports the number of cgroup 501 * events for a context. 502 */ 503 if (cpuctx->ctx.nr_cgroups > 0) { 504 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 505 perf_pmu_disable(cpuctx->ctx.pmu); 506 507 if (mode & PERF_CGROUP_SWOUT) { 508 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 509 /* 510 * must not be done before ctxswout due 511 * to event_filter_match() in event_sched_out() 512 */ 513 cpuctx->cgrp = NULL; 514 } 515 516 if (mode & PERF_CGROUP_SWIN) { 517 WARN_ON_ONCE(cpuctx->cgrp); 518 /* 519 * set cgrp before ctxsw in to allow 520 * event_filter_match() to not have to pass 521 * task around 522 */ 523 cpuctx->cgrp = perf_cgroup_from_task(task); 524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 525 } 526 perf_pmu_enable(cpuctx->ctx.pmu); 527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 528 } 529 } 530 531 rcu_read_unlock(); 532 533 local_irq_restore(flags); 534 } 535 536 static inline void perf_cgroup_sched_out(struct task_struct *task, 537 struct task_struct *next) 538 { 539 struct perf_cgroup *cgrp1; 540 struct perf_cgroup *cgrp2 = NULL; 541 542 /* 543 * we come here when we know perf_cgroup_events > 0 544 */ 545 cgrp1 = perf_cgroup_from_task(task); 546 547 /* 548 * next is NULL when called from perf_event_enable_on_exec() 549 * that will systematically cause a cgroup_switch() 550 */ 551 if (next) 552 cgrp2 = perf_cgroup_from_task(next); 553 554 /* 555 * only schedule out current cgroup events if we know 556 * that we are switching to a different cgroup. Otherwise, 557 * do no touch the cgroup events. 558 */ 559 if (cgrp1 != cgrp2) 560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 561 } 562 563 static inline void perf_cgroup_sched_in(struct task_struct *prev, 564 struct task_struct *task) 565 { 566 struct perf_cgroup *cgrp1; 567 struct perf_cgroup *cgrp2 = NULL; 568 569 /* 570 * we come here when we know perf_cgroup_events > 0 571 */ 572 cgrp1 = perf_cgroup_from_task(task); 573 574 /* prev can never be NULL */ 575 cgrp2 = perf_cgroup_from_task(prev); 576 577 /* 578 * only need to schedule in cgroup events if we are changing 579 * cgroup during ctxsw. Cgroup events were not scheduled 580 * out of ctxsw out if that was not the case. 581 */ 582 if (cgrp1 != cgrp2) 583 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 584 } 585 586 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 587 struct perf_event_attr *attr, 588 struct perf_event *group_leader) 589 { 590 struct perf_cgroup *cgrp; 591 struct cgroup_subsys_state *css; 592 struct fd f = fdget(fd); 593 int ret = 0; 594 595 if (!f.file) 596 return -EBADF; 597 598 css = css_tryget_online_from_dir(f.file->f_path.dentry, 599 &perf_event_cgrp_subsys); 600 if (IS_ERR(css)) { 601 ret = PTR_ERR(css); 602 goto out; 603 } 604 605 cgrp = container_of(css, struct perf_cgroup, css); 606 event->cgrp = cgrp; 607 608 /* 609 * all events in a group must monitor 610 * the same cgroup because a task belongs 611 * to only one perf cgroup at a time 612 */ 613 if (group_leader && group_leader->cgrp != cgrp) { 614 perf_detach_cgroup(event); 615 ret = -EINVAL; 616 } 617 out: 618 fdput(f); 619 return ret; 620 } 621 622 static inline void 623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 624 { 625 struct perf_cgroup_info *t; 626 t = per_cpu_ptr(event->cgrp->info, event->cpu); 627 event->shadow_ctx_time = now - t->timestamp; 628 } 629 630 static inline void 631 perf_cgroup_defer_enabled(struct perf_event *event) 632 { 633 /* 634 * when the current task's perf cgroup does not match 635 * the event's, we need to remember to call the 636 * perf_mark_enable() function the first time a task with 637 * a matching perf cgroup is scheduled in. 638 */ 639 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 640 event->cgrp_defer_enabled = 1; 641 } 642 643 static inline void 644 perf_cgroup_mark_enabled(struct perf_event *event, 645 struct perf_event_context *ctx) 646 { 647 struct perf_event *sub; 648 u64 tstamp = perf_event_time(event); 649 650 if (!event->cgrp_defer_enabled) 651 return; 652 653 event->cgrp_defer_enabled = 0; 654 655 event->tstamp_enabled = tstamp - event->total_time_enabled; 656 list_for_each_entry(sub, &event->sibling_list, group_entry) { 657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 658 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 659 sub->cgrp_defer_enabled = 0; 660 } 661 } 662 } 663 #else /* !CONFIG_CGROUP_PERF */ 664 665 static inline bool 666 perf_cgroup_match(struct perf_event *event) 667 { 668 return true; 669 } 670 671 static inline void perf_detach_cgroup(struct perf_event *event) 672 {} 673 674 static inline int is_cgroup_event(struct perf_event *event) 675 { 676 return 0; 677 } 678 679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 680 { 681 return 0; 682 } 683 684 static inline void update_cgrp_time_from_event(struct perf_event *event) 685 { 686 } 687 688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 689 { 690 } 691 692 static inline void perf_cgroup_sched_out(struct task_struct *task, 693 struct task_struct *next) 694 { 695 } 696 697 static inline void perf_cgroup_sched_in(struct task_struct *prev, 698 struct task_struct *task) 699 { 700 } 701 702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 703 struct perf_event_attr *attr, 704 struct perf_event *group_leader) 705 { 706 return -EINVAL; 707 } 708 709 static inline void 710 perf_cgroup_set_timestamp(struct task_struct *task, 711 struct perf_event_context *ctx) 712 { 713 } 714 715 void 716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 717 { 718 } 719 720 static inline void 721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 722 { 723 } 724 725 static inline u64 perf_cgroup_event_time(struct perf_event *event) 726 { 727 return 0; 728 } 729 730 static inline void 731 perf_cgroup_defer_enabled(struct perf_event *event) 732 { 733 } 734 735 static inline void 736 perf_cgroup_mark_enabled(struct perf_event *event, 737 struct perf_event_context *ctx) 738 { 739 } 740 #endif 741 742 /* 743 * set default to be dependent on timer tick just 744 * like original code 745 */ 746 #define PERF_CPU_HRTIMER (1000 / HZ) 747 /* 748 * function must be called with interrupts disbled 749 */ 750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 751 { 752 struct perf_cpu_context *cpuctx; 753 enum hrtimer_restart ret = HRTIMER_NORESTART; 754 int rotations = 0; 755 756 WARN_ON(!irqs_disabled()); 757 758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 759 760 rotations = perf_rotate_context(cpuctx); 761 762 /* 763 * arm timer if needed 764 */ 765 if (rotations) { 766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 767 ret = HRTIMER_RESTART; 768 } 769 770 return ret; 771 } 772 773 /* CPU is going down */ 774 void perf_cpu_hrtimer_cancel(int cpu) 775 { 776 struct perf_cpu_context *cpuctx; 777 struct pmu *pmu; 778 unsigned long flags; 779 780 if (WARN_ON(cpu != smp_processor_id())) 781 return; 782 783 local_irq_save(flags); 784 785 rcu_read_lock(); 786 787 list_for_each_entry_rcu(pmu, &pmus, entry) { 788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 789 790 if (pmu->task_ctx_nr == perf_sw_context) 791 continue; 792 793 hrtimer_cancel(&cpuctx->hrtimer); 794 } 795 796 rcu_read_unlock(); 797 798 local_irq_restore(flags); 799 } 800 801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 802 { 803 struct hrtimer *hr = &cpuctx->hrtimer; 804 struct pmu *pmu = cpuctx->ctx.pmu; 805 int timer; 806 807 /* no multiplexing needed for SW PMU */ 808 if (pmu->task_ctx_nr == perf_sw_context) 809 return; 810 811 /* 812 * check default is sane, if not set then force to 813 * default interval (1/tick) 814 */ 815 timer = pmu->hrtimer_interval_ms; 816 if (timer < 1) 817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 818 819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 820 821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 822 hr->function = perf_cpu_hrtimer_handler; 823 } 824 825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 826 { 827 struct hrtimer *hr = &cpuctx->hrtimer; 828 struct pmu *pmu = cpuctx->ctx.pmu; 829 830 /* not for SW PMU */ 831 if (pmu->task_ctx_nr == perf_sw_context) 832 return; 833 834 if (hrtimer_active(hr)) 835 return; 836 837 if (!hrtimer_callback_running(hr)) 838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 839 0, HRTIMER_MODE_REL_PINNED, 0); 840 } 841 842 void perf_pmu_disable(struct pmu *pmu) 843 { 844 int *count = this_cpu_ptr(pmu->pmu_disable_count); 845 if (!(*count)++) 846 pmu->pmu_disable(pmu); 847 } 848 849 void perf_pmu_enable(struct pmu *pmu) 850 { 851 int *count = this_cpu_ptr(pmu->pmu_disable_count); 852 if (!--(*count)) 853 pmu->pmu_enable(pmu); 854 } 855 856 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 857 858 /* 859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 860 * perf_event_task_tick() are fully serialized because they're strictly cpu 861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 862 * disabled, while perf_event_task_tick is called from IRQ context. 863 */ 864 static void perf_event_ctx_activate(struct perf_event_context *ctx) 865 { 866 struct list_head *head = this_cpu_ptr(&active_ctx_list); 867 868 WARN_ON(!irqs_disabled()); 869 870 WARN_ON(!list_empty(&ctx->active_ctx_list)); 871 872 list_add(&ctx->active_ctx_list, head); 873 } 874 875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 876 { 877 WARN_ON(!irqs_disabled()); 878 879 WARN_ON(list_empty(&ctx->active_ctx_list)); 880 881 list_del_init(&ctx->active_ctx_list); 882 } 883 884 static void get_ctx(struct perf_event_context *ctx) 885 { 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 887 } 888 889 static void free_ctx(struct rcu_head *head) 890 { 891 struct perf_event_context *ctx; 892 893 ctx = container_of(head, struct perf_event_context, rcu_head); 894 kfree(ctx->task_ctx_data); 895 kfree(ctx); 896 } 897 898 static void put_ctx(struct perf_event_context *ctx) 899 { 900 if (atomic_dec_and_test(&ctx->refcount)) { 901 if (ctx->parent_ctx) 902 put_ctx(ctx->parent_ctx); 903 if (ctx->task) 904 put_task_struct(ctx->task); 905 call_rcu(&ctx->rcu_head, free_ctx); 906 } 907 } 908 909 /* 910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 911 * perf_pmu_migrate_context() we need some magic. 912 * 913 * Those places that change perf_event::ctx will hold both 914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 915 * 916 * Lock ordering is by mutex address. There are two other sites where 917 * perf_event_context::mutex nests and those are: 918 * 919 * - perf_event_exit_task_context() [ child , 0 ] 920 * __perf_event_exit_task() 921 * sync_child_event() 922 * put_event() [ parent, 1 ] 923 * 924 * - perf_event_init_context() [ parent, 0 ] 925 * inherit_task_group() 926 * inherit_group() 927 * inherit_event() 928 * perf_event_alloc() 929 * perf_init_event() 930 * perf_try_init_event() [ child , 1 ] 931 * 932 * While it appears there is an obvious deadlock here -- the parent and child 933 * nesting levels are inverted between the two. This is in fact safe because 934 * life-time rules separate them. That is an exiting task cannot fork, and a 935 * spawning task cannot (yet) exit. 936 * 937 * But remember that that these are parent<->child context relations, and 938 * migration does not affect children, therefore these two orderings should not 939 * interact. 940 * 941 * The change in perf_event::ctx does not affect children (as claimed above) 942 * because the sys_perf_event_open() case will install a new event and break 943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 944 * concerned with cpuctx and that doesn't have children. 945 * 946 * The places that change perf_event::ctx will issue: 947 * 948 * perf_remove_from_context(); 949 * synchronize_rcu(); 950 * perf_install_in_context(); 951 * 952 * to affect the change. The remove_from_context() + synchronize_rcu() should 953 * quiesce the event, after which we can install it in the new location. This 954 * means that only external vectors (perf_fops, prctl) can perturb the event 955 * while in transit. Therefore all such accessors should also acquire 956 * perf_event_context::mutex to serialize against this. 957 * 958 * However; because event->ctx can change while we're waiting to acquire 959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 960 * function. 961 * 962 * Lock order: 963 * task_struct::perf_event_mutex 964 * perf_event_context::mutex 965 * perf_event_context::lock 966 * perf_event::child_mutex; 967 * perf_event::mmap_mutex 968 * mmap_sem 969 */ 970 static struct perf_event_context * 971 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 972 { 973 struct perf_event_context *ctx; 974 975 again: 976 rcu_read_lock(); 977 ctx = ACCESS_ONCE(event->ctx); 978 if (!atomic_inc_not_zero(&ctx->refcount)) { 979 rcu_read_unlock(); 980 goto again; 981 } 982 rcu_read_unlock(); 983 984 mutex_lock_nested(&ctx->mutex, nesting); 985 if (event->ctx != ctx) { 986 mutex_unlock(&ctx->mutex); 987 put_ctx(ctx); 988 goto again; 989 } 990 991 return ctx; 992 } 993 994 static inline struct perf_event_context * 995 perf_event_ctx_lock(struct perf_event *event) 996 { 997 return perf_event_ctx_lock_nested(event, 0); 998 } 999 1000 static void perf_event_ctx_unlock(struct perf_event *event, 1001 struct perf_event_context *ctx) 1002 { 1003 mutex_unlock(&ctx->mutex); 1004 put_ctx(ctx); 1005 } 1006 1007 /* 1008 * This must be done under the ctx->lock, such as to serialize against 1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1010 * calling scheduler related locks and ctx->lock nests inside those. 1011 */ 1012 static __must_check struct perf_event_context * 1013 unclone_ctx(struct perf_event_context *ctx) 1014 { 1015 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1016 1017 lockdep_assert_held(&ctx->lock); 1018 1019 if (parent_ctx) 1020 ctx->parent_ctx = NULL; 1021 ctx->generation++; 1022 1023 return parent_ctx; 1024 } 1025 1026 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1027 { 1028 /* 1029 * only top level events have the pid namespace they were created in 1030 */ 1031 if (event->parent) 1032 event = event->parent; 1033 1034 return task_tgid_nr_ns(p, event->ns); 1035 } 1036 1037 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1038 { 1039 /* 1040 * only top level events have the pid namespace they were created in 1041 */ 1042 if (event->parent) 1043 event = event->parent; 1044 1045 return task_pid_nr_ns(p, event->ns); 1046 } 1047 1048 /* 1049 * If we inherit events we want to return the parent event id 1050 * to userspace. 1051 */ 1052 static u64 primary_event_id(struct perf_event *event) 1053 { 1054 u64 id = event->id; 1055 1056 if (event->parent) 1057 id = event->parent->id; 1058 1059 return id; 1060 } 1061 1062 /* 1063 * Get the perf_event_context for a task and lock it. 1064 * This has to cope with with the fact that until it is locked, 1065 * the context could get moved to another task. 1066 */ 1067 static struct perf_event_context * 1068 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1069 { 1070 struct perf_event_context *ctx; 1071 1072 retry: 1073 /* 1074 * One of the few rules of preemptible RCU is that one cannot do 1075 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1076 * part of the read side critical section was preemptible -- see 1077 * rcu_read_unlock_special(). 1078 * 1079 * Since ctx->lock nests under rq->lock we must ensure the entire read 1080 * side critical section is non-preemptible. 1081 */ 1082 preempt_disable(); 1083 rcu_read_lock(); 1084 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1085 if (ctx) { 1086 /* 1087 * If this context is a clone of another, it might 1088 * get swapped for another underneath us by 1089 * perf_event_task_sched_out, though the 1090 * rcu_read_lock() protects us from any context 1091 * getting freed. Lock the context and check if it 1092 * got swapped before we could get the lock, and retry 1093 * if so. If we locked the right context, then it 1094 * can't get swapped on us any more. 1095 */ 1096 raw_spin_lock_irqsave(&ctx->lock, *flags); 1097 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1098 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1099 rcu_read_unlock(); 1100 preempt_enable(); 1101 goto retry; 1102 } 1103 1104 if (!atomic_inc_not_zero(&ctx->refcount)) { 1105 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 1106 ctx = NULL; 1107 } 1108 } 1109 rcu_read_unlock(); 1110 preempt_enable(); 1111 return ctx; 1112 } 1113 1114 /* 1115 * Get the context for a task and increment its pin_count so it 1116 * can't get swapped to another task. This also increments its 1117 * reference count so that the context can't get freed. 1118 */ 1119 static struct perf_event_context * 1120 perf_pin_task_context(struct task_struct *task, int ctxn) 1121 { 1122 struct perf_event_context *ctx; 1123 unsigned long flags; 1124 1125 ctx = perf_lock_task_context(task, ctxn, &flags); 1126 if (ctx) { 1127 ++ctx->pin_count; 1128 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1129 } 1130 return ctx; 1131 } 1132 1133 static void perf_unpin_context(struct perf_event_context *ctx) 1134 { 1135 unsigned long flags; 1136 1137 raw_spin_lock_irqsave(&ctx->lock, flags); 1138 --ctx->pin_count; 1139 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1140 } 1141 1142 /* 1143 * Update the record of the current time in a context. 1144 */ 1145 static void update_context_time(struct perf_event_context *ctx) 1146 { 1147 u64 now = perf_clock(); 1148 1149 ctx->time += now - ctx->timestamp; 1150 ctx->timestamp = now; 1151 } 1152 1153 static u64 perf_event_time(struct perf_event *event) 1154 { 1155 struct perf_event_context *ctx = event->ctx; 1156 1157 if (is_cgroup_event(event)) 1158 return perf_cgroup_event_time(event); 1159 1160 return ctx ? ctx->time : 0; 1161 } 1162 1163 /* 1164 * Update the total_time_enabled and total_time_running fields for a event. 1165 * The caller of this function needs to hold the ctx->lock. 1166 */ 1167 static void update_event_times(struct perf_event *event) 1168 { 1169 struct perf_event_context *ctx = event->ctx; 1170 u64 run_end; 1171 1172 if (event->state < PERF_EVENT_STATE_INACTIVE || 1173 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1174 return; 1175 /* 1176 * in cgroup mode, time_enabled represents 1177 * the time the event was enabled AND active 1178 * tasks were in the monitored cgroup. This is 1179 * independent of the activity of the context as 1180 * there may be a mix of cgroup and non-cgroup events. 1181 * 1182 * That is why we treat cgroup events differently 1183 * here. 1184 */ 1185 if (is_cgroup_event(event)) 1186 run_end = perf_cgroup_event_time(event); 1187 else if (ctx->is_active) 1188 run_end = ctx->time; 1189 else 1190 run_end = event->tstamp_stopped; 1191 1192 event->total_time_enabled = run_end - event->tstamp_enabled; 1193 1194 if (event->state == PERF_EVENT_STATE_INACTIVE) 1195 run_end = event->tstamp_stopped; 1196 else 1197 run_end = perf_event_time(event); 1198 1199 event->total_time_running = run_end - event->tstamp_running; 1200 1201 } 1202 1203 /* 1204 * Update total_time_enabled and total_time_running for all events in a group. 1205 */ 1206 static void update_group_times(struct perf_event *leader) 1207 { 1208 struct perf_event *event; 1209 1210 update_event_times(leader); 1211 list_for_each_entry(event, &leader->sibling_list, group_entry) 1212 update_event_times(event); 1213 } 1214 1215 static struct list_head * 1216 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1217 { 1218 if (event->attr.pinned) 1219 return &ctx->pinned_groups; 1220 else 1221 return &ctx->flexible_groups; 1222 } 1223 1224 /* 1225 * Add a event from the lists for its context. 1226 * Must be called with ctx->mutex and ctx->lock held. 1227 */ 1228 static void 1229 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1230 { 1231 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1232 event->attach_state |= PERF_ATTACH_CONTEXT; 1233 1234 /* 1235 * If we're a stand alone event or group leader, we go to the context 1236 * list, group events are kept attached to the group so that 1237 * perf_group_detach can, at all times, locate all siblings. 1238 */ 1239 if (event->group_leader == event) { 1240 struct list_head *list; 1241 1242 if (is_software_event(event)) 1243 event->group_flags |= PERF_GROUP_SOFTWARE; 1244 1245 list = ctx_group_list(event, ctx); 1246 list_add_tail(&event->group_entry, list); 1247 } 1248 1249 if (is_cgroup_event(event)) 1250 ctx->nr_cgroups++; 1251 1252 list_add_rcu(&event->event_entry, &ctx->event_list); 1253 ctx->nr_events++; 1254 if (event->attr.inherit_stat) 1255 ctx->nr_stat++; 1256 1257 ctx->generation++; 1258 } 1259 1260 /* 1261 * Initialize event state based on the perf_event_attr::disabled. 1262 */ 1263 static inline void perf_event__state_init(struct perf_event *event) 1264 { 1265 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1266 PERF_EVENT_STATE_INACTIVE; 1267 } 1268 1269 /* 1270 * Called at perf_event creation and when events are attached/detached from a 1271 * group. 1272 */ 1273 static void perf_event__read_size(struct perf_event *event) 1274 { 1275 int entry = sizeof(u64); /* value */ 1276 int size = 0; 1277 int nr = 1; 1278 1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1280 size += sizeof(u64); 1281 1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1283 size += sizeof(u64); 1284 1285 if (event->attr.read_format & PERF_FORMAT_ID) 1286 entry += sizeof(u64); 1287 1288 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1289 nr += event->group_leader->nr_siblings; 1290 size += sizeof(u64); 1291 } 1292 1293 size += entry * nr; 1294 event->read_size = size; 1295 } 1296 1297 static void perf_event__header_size(struct perf_event *event) 1298 { 1299 struct perf_sample_data *data; 1300 u64 sample_type = event->attr.sample_type; 1301 u16 size = 0; 1302 1303 perf_event__read_size(event); 1304 1305 if (sample_type & PERF_SAMPLE_IP) 1306 size += sizeof(data->ip); 1307 1308 if (sample_type & PERF_SAMPLE_ADDR) 1309 size += sizeof(data->addr); 1310 1311 if (sample_type & PERF_SAMPLE_PERIOD) 1312 size += sizeof(data->period); 1313 1314 if (sample_type & PERF_SAMPLE_WEIGHT) 1315 size += sizeof(data->weight); 1316 1317 if (sample_type & PERF_SAMPLE_READ) 1318 size += event->read_size; 1319 1320 if (sample_type & PERF_SAMPLE_DATA_SRC) 1321 size += sizeof(data->data_src.val); 1322 1323 if (sample_type & PERF_SAMPLE_TRANSACTION) 1324 size += sizeof(data->txn); 1325 1326 event->header_size = size; 1327 } 1328 1329 static void perf_event__id_header_size(struct perf_event *event) 1330 { 1331 struct perf_sample_data *data; 1332 u64 sample_type = event->attr.sample_type; 1333 u16 size = 0; 1334 1335 if (sample_type & PERF_SAMPLE_TID) 1336 size += sizeof(data->tid_entry); 1337 1338 if (sample_type & PERF_SAMPLE_TIME) 1339 size += sizeof(data->time); 1340 1341 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1342 size += sizeof(data->id); 1343 1344 if (sample_type & PERF_SAMPLE_ID) 1345 size += sizeof(data->id); 1346 1347 if (sample_type & PERF_SAMPLE_STREAM_ID) 1348 size += sizeof(data->stream_id); 1349 1350 if (sample_type & PERF_SAMPLE_CPU) 1351 size += sizeof(data->cpu_entry); 1352 1353 event->id_header_size = size; 1354 } 1355 1356 static void perf_group_attach(struct perf_event *event) 1357 { 1358 struct perf_event *group_leader = event->group_leader, *pos; 1359 1360 /* 1361 * We can have double attach due to group movement in perf_event_open. 1362 */ 1363 if (event->attach_state & PERF_ATTACH_GROUP) 1364 return; 1365 1366 event->attach_state |= PERF_ATTACH_GROUP; 1367 1368 if (group_leader == event) 1369 return; 1370 1371 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1372 1373 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1374 !is_software_event(event)) 1375 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1376 1377 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1378 group_leader->nr_siblings++; 1379 1380 perf_event__header_size(group_leader); 1381 1382 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1383 perf_event__header_size(pos); 1384 } 1385 1386 /* 1387 * Remove a event from the lists for its context. 1388 * Must be called with ctx->mutex and ctx->lock held. 1389 */ 1390 static void 1391 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1392 { 1393 struct perf_cpu_context *cpuctx; 1394 1395 WARN_ON_ONCE(event->ctx != ctx); 1396 lockdep_assert_held(&ctx->lock); 1397 1398 /* 1399 * We can have double detach due to exit/hot-unplug + close. 1400 */ 1401 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1402 return; 1403 1404 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1405 1406 if (is_cgroup_event(event)) { 1407 ctx->nr_cgroups--; 1408 cpuctx = __get_cpu_context(ctx); 1409 /* 1410 * if there are no more cgroup events 1411 * then cler cgrp to avoid stale pointer 1412 * in update_cgrp_time_from_cpuctx() 1413 */ 1414 if (!ctx->nr_cgroups) 1415 cpuctx->cgrp = NULL; 1416 } 1417 1418 ctx->nr_events--; 1419 if (event->attr.inherit_stat) 1420 ctx->nr_stat--; 1421 1422 list_del_rcu(&event->event_entry); 1423 1424 if (event->group_leader == event) 1425 list_del_init(&event->group_entry); 1426 1427 update_group_times(event); 1428 1429 /* 1430 * If event was in error state, then keep it 1431 * that way, otherwise bogus counts will be 1432 * returned on read(). The only way to get out 1433 * of error state is by explicit re-enabling 1434 * of the event 1435 */ 1436 if (event->state > PERF_EVENT_STATE_OFF) 1437 event->state = PERF_EVENT_STATE_OFF; 1438 1439 ctx->generation++; 1440 } 1441 1442 static void perf_group_detach(struct perf_event *event) 1443 { 1444 struct perf_event *sibling, *tmp; 1445 struct list_head *list = NULL; 1446 1447 /* 1448 * We can have double detach due to exit/hot-unplug + close. 1449 */ 1450 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1451 return; 1452 1453 event->attach_state &= ~PERF_ATTACH_GROUP; 1454 1455 /* 1456 * If this is a sibling, remove it from its group. 1457 */ 1458 if (event->group_leader != event) { 1459 list_del_init(&event->group_entry); 1460 event->group_leader->nr_siblings--; 1461 goto out; 1462 } 1463 1464 if (!list_empty(&event->group_entry)) 1465 list = &event->group_entry; 1466 1467 /* 1468 * If this was a group event with sibling events then 1469 * upgrade the siblings to singleton events by adding them 1470 * to whatever list we are on. 1471 */ 1472 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1473 if (list) 1474 list_move_tail(&sibling->group_entry, list); 1475 sibling->group_leader = sibling; 1476 1477 /* Inherit group flags from the previous leader */ 1478 sibling->group_flags = event->group_flags; 1479 1480 WARN_ON_ONCE(sibling->ctx != event->ctx); 1481 } 1482 1483 out: 1484 perf_event__header_size(event->group_leader); 1485 1486 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1487 perf_event__header_size(tmp); 1488 } 1489 1490 /* 1491 * User event without the task. 1492 */ 1493 static bool is_orphaned_event(struct perf_event *event) 1494 { 1495 return event && !is_kernel_event(event) && !event->owner; 1496 } 1497 1498 /* 1499 * Event has a parent but parent's task finished and it's 1500 * alive only because of children holding refference. 1501 */ 1502 static bool is_orphaned_child(struct perf_event *event) 1503 { 1504 return is_orphaned_event(event->parent); 1505 } 1506 1507 static void orphans_remove_work(struct work_struct *work); 1508 1509 static void schedule_orphans_remove(struct perf_event_context *ctx) 1510 { 1511 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq) 1512 return; 1513 1514 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) { 1515 get_ctx(ctx); 1516 ctx->orphans_remove_sched = true; 1517 } 1518 } 1519 1520 static int __init perf_workqueue_init(void) 1521 { 1522 perf_wq = create_singlethread_workqueue("perf"); 1523 WARN(!perf_wq, "failed to create perf workqueue\n"); 1524 return perf_wq ? 0 : -1; 1525 } 1526 1527 core_initcall(perf_workqueue_init); 1528 1529 static inline int 1530 event_filter_match(struct perf_event *event) 1531 { 1532 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1533 && perf_cgroup_match(event); 1534 } 1535 1536 static void 1537 event_sched_out(struct perf_event *event, 1538 struct perf_cpu_context *cpuctx, 1539 struct perf_event_context *ctx) 1540 { 1541 u64 tstamp = perf_event_time(event); 1542 u64 delta; 1543 1544 WARN_ON_ONCE(event->ctx != ctx); 1545 lockdep_assert_held(&ctx->lock); 1546 1547 /* 1548 * An event which could not be activated because of 1549 * filter mismatch still needs to have its timings 1550 * maintained, otherwise bogus information is return 1551 * via read() for time_enabled, time_running: 1552 */ 1553 if (event->state == PERF_EVENT_STATE_INACTIVE 1554 && !event_filter_match(event)) { 1555 delta = tstamp - event->tstamp_stopped; 1556 event->tstamp_running += delta; 1557 event->tstamp_stopped = tstamp; 1558 } 1559 1560 if (event->state != PERF_EVENT_STATE_ACTIVE) 1561 return; 1562 1563 perf_pmu_disable(event->pmu); 1564 1565 event->state = PERF_EVENT_STATE_INACTIVE; 1566 if (event->pending_disable) { 1567 event->pending_disable = 0; 1568 event->state = PERF_EVENT_STATE_OFF; 1569 } 1570 event->tstamp_stopped = tstamp; 1571 event->pmu->del(event, 0); 1572 event->oncpu = -1; 1573 1574 if (!is_software_event(event)) 1575 cpuctx->active_oncpu--; 1576 if (!--ctx->nr_active) 1577 perf_event_ctx_deactivate(ctx); 1578 if (event->attr.freq && event->attr.sample_freq) 1579 ctx->nr_freq--; 1580 if (event->attr.exclusive || !cpuctx->active_oncpu) 1581 cpuctx->exclusive = 0; 1582 1583 if (is_orphaned_child(event)) 1584 schedule_orphans_remove(ctx); 1585 1586 perf_pmu_enable(event->pmu); 1587 } 1588 1589 static void 1590 group_sched_out(struct perf_event *group_event, 1591 struct perf_cpu_context *cpuctx, 1592 struct perf_event_context *ctx) 1593 { 1594 struct perf_event *event; 1595 int state = group_event->state; 1596 1597 event_sched_out(group_event, cpuctx, ctx); 1598 1599 /* 1600 * Schedule out siblings (if any): 1601 */ 1602 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1603 event_sched_out(event, cpuctx, ctx); 1604 1605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1606 cpuctx->exclusive = 0; 1607 } 1608 1609 struct remove_event { 1610 struct perf_event *event; 1611 bool detach_group; 1612 }; 1613 1614 /* 1615 * Cross CPU call to remove a performance event 1616 * 1617 * We disable the event on the hardware level first. After that we 1618 * remove it from the context list. 1619 */ 1620 static int __perf_remove_from_context(void *info) 1621 { 1622 struct remove_event *re = info; 1623 struct perf_event *event = re->event; 1624 struct perf_event_context *ctx = event->ctx; 1625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1626 1627 raw_spin_lock(&ctx->lock); 1628 event_sched_out(event, cpuctx, ctx); 1629 if (re->detach_group) 1630 perf_group_detach(event); 1631 list_del_event(event, ctx); 1632 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1633 ctx->is_active = 0; 1634 cpuctx->task_ctx = NULL; 1635 } 1636 raw_spin_unlock(&ctx->lock); 1637 1638 return 0; 1639 } 1640 1641 1642 /* 1643 * Remove the event from a task's (or a CPU's) list of events. 1644 * 1645 * CPU events are removed with a smp call. For task events we only 1646 * call when the task is on a CPU. 1647 * 1648 * If event->ctx is a cloned context, callers must make sure that 1649 * every task struct that event->ctx->task could possibly point to 1650 * remains valid. This is OK when called from perf_release since 1651 * that only calls us on the top-level context, which can't be a clone. 1652 * When called from perf_event_exit_task, it's OK because the 1653 * context has been detached from its task. 1654 */ 1655 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1656 { 1657 struct perf_event_context *ctx = event->ctx; 1658 struct task_struct *task = ctx->task; 1659 struct remove_event re = { 1660 .event = event, 1661 .detach_group = detach_group, 1662 }; 1663 1664 lockdep_assert_held(&ctx->mutex); 1665 1666 if (!task) { 1667 /* 1668 * Per cpu events are removed via an smp call. The removal can 1669 * fail if the CPU is currently offline, but in that case we 1670 * already called __perf_remove_from_context from 1671 * perf_event_exit_cpu. 1672 */ 1673 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1674 return; 1675 } 1676 1677 retry: 1678 if (!task_function_call(task, __perf_remove_from_context, &re)) 1679 return; 1680 1681 raw_spin_lock_irq(&ctx->lock); 1682 /* 1683 * If we failed to find a running task, but find the context active now 1684 * that we've acquired the ctx->lock, retry. 1685 */ 1686 if (ctx->is_active) { 1687 raw_spin_unlock_irq(&ctx->lock); 1688 /* 1689 * Reload the task pointer, it might have been changed by 1690 * a concurrent perf_event_context_sched_out(). 1691 */ 1692 task = ctx->task; 1693 goto retry; 1694 } 1695 1696 /* 1697 * Since the task isn't running, its safe to remove the event, us 1698 * holding the ctx->lock ensures the task won't get scheduled in. 1699 */ 1700 if (detach_group) 1701 perf_group_detach(event); 1702 list_del_event(event, ctx); 1703 raw_spin_unlock_irq(&ctx->lock); 1704 } 1705 1706 /* 1707 * Cross CPU call to disable a performance event 1708 */ 1709 int __perf_event_disable(void *info) 1710 { 1711 struct perf_event *event = info; 1712 struct perf_event_context *ctx = event->ctx; 1713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1714 1715 /* 1716 * If this is a per-task event, need to check whether this 1717 * event's task is the current task on this cpu. 1718 * 1719 * Can trigger due to concurrent perf_event_context_sched_out() 1720 * flipping contexts around. 1721 */ 1722 if (ctx->task && cpuctx->task_ctx != ctx) 1723 return -EINVAL; 1724 1725 raw_spin_lock(&ctx->lock); 1726 1727 /* 1728 * If the event is on, turn it off. 1729 * If it is in error state, leave it in error state. 1730 */ 1731 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1732 update_context_time(ctx); 1733 update_cgrp_time_from_event(event); 1734 update_group_times(event); 1735 if (event == event->group_leader) 1736 group_sched_out(event, cpuctx, ctx); 1737 else 1738 event_sched_out(event, cpuctx, ctx); 1739 event->state = PERF_EVENT_STATE_OFF; 1740 } 1741 1742 raw_spin_unlock(&ctx->lock); 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * Disable a event. 1749 * 1750 * If event->ctx is a cloned context, callers must make sure that 1751 * every task struct that event->ctx->task could possibly point to 1752 * remains valid. This condition is satisifed when called through 1753 * perf_event_for_each_child or perf_event_for_each because they 1754 * hold the top-level event's child_mutex, so any descendant that 1755 * goes to exit will block in sync_child_event. 1756 * When called from perf_pending_event it's OK because event->ctx 1757 * is the current context on this CPU and preemption is disabled, 1758 * hence we can't get into perf_event_task_sched_out for this context. 1759 */ 1760 static void _perf_event_disable(struct perf_event *event) 1761 { 1762 struct perf_event_context *ctx = event->ctx; 1763 struct task_struct *task = ctx->task; 1764 1765 if (!task) { 1766 /* 1767 * Disable the event on the cpu that it's on 1768 */ 1769 cpu_function_call(event->cpu, __perf_event_disable, event); 1770 return; 1771 } 1772 1773 retry: 1774 if (!task_function_call(task, __perf_event_disable, event)) 1775 return; 1776 1777 raw_spin_lock_irq(&ctx->lock); 1778 /* 1779 * If the event is still active, we need to retry the cross-call. 1780 */ 1781 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1782 raw_spin_unlock_irq(&ctx->lock); 1783 /* 1784 * Reload the task pointer, it might have been changed by 1785 * a concurrent perf_event_context_sched_out(). 1786 */ 1787 task = ctx->task; 1788 goto retry; 1789 } 1790 1791 /* 1792 * Since we have the lock this context can't be scheduled 1793 * in, so we can change the state safely. 1794 */ 1795 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1796 update_group_times(event); 1797 event->state = PERF_EVENT_STATE_OFF; 1798 } 1799 raw_spin_unlock_irq(&ctx->lock); 1800 } 1801 1802 /* 1803 * Strictly speaking kernel users cannot create groups and therefore this 1804 * interface does not need the perf_event_ctx_lock() magic. 1805 */ 1806 void perf_event_disable(struct perf_event *event) 1807 { 1808 struct perf_event_context *ctx; 1809 1810 ctx = perf_event_ctx_lock(event); 1811 _perf_event_disable(event); 1812 perf_event_ctx_unlock(event, ctx); 1813 } 1814 EXPORT_SYMBOL_GPL(perf_event_disable); 1815 1816 static void perf_set_shadow_time(struct perf_event *event, 1817 struct perf_event_context *ctx, 1818 u64 tstamp) 1819 { 1820 /* 1821 * use the correct time source for the time snapshot 1822 * 1823 * We could get by without this by leveraging the 1824 * fact that to get to this function, the caller 1825 * has most likely already called update_context_time() 1826 * and update_cgrp_time_xx() and thus both timestamp 1827 * are identical (or very close). Given that tstamp is, 1828 * already adjusted for cgroup, we could say that: 1829 * tstamp - ctx->timestamp 1830 * is equivalent to 1831 * tstamp - cgrp->timestamp. 1832 * 1833 * Then, in perf_output_read(), the calculation would 1834 * work with no changes because: 1835 * - event is guaranteed scheduled in 1836 * - no scheduled out in between 1837 * - thus the timestamp would be the same 1838 * 1839 * But this is a bit hairy. 1840 * 1841 * So instead, we have an explicit cgroup call to remain 1842 * within the time time source all along. We believe it 1843 * is cleaner and simpler to understand. 1844 */ 1845 if (is_cgroup_event(event)) 1846 perf_cgroup_set_shadow_time(event, tstamp); 1847 else 1848 event->shadow_ctx_time = tstamp - ctx->timestamp; 1849 } 1850 1851 #define MAX_INTERRUPTS (~0ULL) 1852 1853 static void perf_log_throttle(struct perf_event *event, int enable); 1854 static void perf_log_itrace_start(struct perf_event *event); 1855 1856 static int 1857 event_sched_in(struct perf_event *event, 1858 struct perf_cpu_context *cpuctx, 1859 struct perf_event_context *ctx) 1860 { 1861 u64 tstamp = perf_event_time(event); 1862 int ret = 0; 1863 1864 lockdep_assert_held(&ctx->lock); 1865 1866 if (event->state <= PERF_EVENT_STATE_OFF) 1867 return 0; 1868 1869 event->state = PERF_EVENT_STATE_ACTIVE; 1870 event->oncpu = smp_processor_id(); 1871 1872 /* 1873 * Unthrottle events, since we scheduled we might have missed several 1874 * ticks already, also for a heavily scheduling task there is little 1875 * guarantee it'll get a tick in a timely manner. 1876 */ 1877 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1878 perf_log_throttle(event, 1); 1879 event->hw.interrupts = 0; 1880 } 1881 1882 /* 1883 * The new state must be visible before we turn it on in the hardware: 1884 */ 1885 smp_wmb(); 1886 1887 perf_pmu_disable(event->pmu); 1888 1889 event->tstamp_running += tstamp - event->tstamp_stopped; 1890 1891 perf_set_shadow_time(event, ctx, tstamp); 1892 1893 perf_log_itrace_start(event); 1894 1895 if (event->pmu->add(event, PERF_EF_START)) { 1896 event->state = PERF_EVENT_STATE_INACTIVE; 1897 event->oncpu = -1; 1898 ret = -EAGAIN; 1899 goto out; 1900 } 1901 1902 if (!is_software_event(event)) 1903 cpuctx->active_oncpu++; 1904 if (!ctx->nr_active++) 1905 perf_event_ctx_activate(ctx); 1906 if (event->attr.freq && event->attr.sample_freq) 1907 ctx->nr_freq++; 1908 1909 if (event->attr.exclusive) 1910 cpuctx->exclusive = 1; 1911 1912 if (is_orphaned_child(event)) 1913 schedule_orphans_remove(ctx); 1914 1915 out: 1916 perf_pmu_enable(event->pmu); 1917 1918 return ret; 1919 } 1920 1921 static int 1922 group_sched_in(struct perf_event *group_event, 1923 struct perf_cpu_context *cpuctx, 1924 struct perf_event_context *ctx) 1925 { 1926 struct perf_event *event, *partial_group = NULL; 1927 struct pmu *pmu = ctx->pmu; 1928 u64 now = ctx->time; 1929 bool simulate = false; 1930 1931 if (group_event->state == PERF_EVENT_STATE_OFF) 1932 return 0; 1933 1934 pmu->start_txn(pmu); 1935 1936 if (event_sched_in(group_event, cpuctx, ctx)) { 1937 pmu->cancel_txn(pmu); 1938 perf_cpu_hrtimer_restart(cpuctx); 1939 return -EAGAIN; 1940 } 1941 1942 /* 1943 * Schedule in siblings as one group (if any): 1944 */ 1945 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1946 if (event_sched_in(event, cpuctx, ctx)) { 1947 partial_group = event; 1948 goto group_error; 1949 } 1950 } 1951 1952 if (!pmu->commit_txn(pmu)) 1953 return 0; 1954 1955 group_error: 1956 /* 1957 * Groups can be scheduled in as one unit only, so undo any 1958 * partial group before returning: 1959 * The events up to the failed event are scheduled out normally, 1960 * tstamp_stopped will be updated. 1961 * 1962 * The failed events and the remaining siblings need to have 1963 * their timings updated as if they had gone thru event_sched_in() 1964 * and event_sched_out(). This is required to get consistent timings 1965 * across the group. This also takes care of the case where the group 1966 * could never be scheduled by ensuring tstamp_stopped is set to mark 1967 * the time the event was actually stopped, such that time delta 1968 * calculation in update_event_times() is correct. 1969 */ 1970 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1971 if (event == partial_group) 1972 simulate = true; 1973 1974 if (simulate) { 1975 event->tstamp_running += now - event->tstamp_stopped; 1976 event->tstamp_stopped = now; 1977 } else { 1978 event_sched_out(event, cpuctx, ctx); 1979 } 1980 } 1981 event_sched_out(group_event, cpuctx, ctx); 1982 1983 pmu->cancel_txn(pmu); 1984 1985 perf_cpu_hrtimer_restart(cpuctx); 1986 1987 return -EAGAIN; 1988 } 1989 1990 /* 1991 * Work out whether we can put this event group on the CPU now. 1992 */ 1993 static int group_can_go_on(struct perf_event *event, 1994 struct perf_cpu_context *cpuctx, 1995 int can_add_hw) 1996 { 1997 /* 1998 * Groups consisting entirely of software events can always go on. 1999 */ 2000 if (event->group_flags & PERF_GROUP_SOFTWARE) 2001 return 1; 2002 /* 2003 * If an exclusive group is already on, no other hardware 2004 * events can go on. 2005 */ 2006 if (cpuctx->exclusive) 2007 return 0; 2008 /* 2009 * If this group is exclusive and there are already 2010 * events on the CPU, it can't go on. 2011 */ 2012 if (event->attr.exclusive && cpuctx->active_oncpu) 2013 return 0; 2014 /* 2015 * Otherwise, try to add it if all previous groups were able 2016 * to go on. 2017 */ 2018 return can_add_hw; 2019 } 2020 2021 static void add_event_to_ctx(struct perf_event *event, 2022 struct perf_event_context *ctx) 2023 { 2024 u64 tstamp = perf_event_time(event); 2025 2026 list_add_event(event, ctx); 2027 perf_group_attach(event); 2028 event->tstamp_enabled = tstamp; 2029 event->tstamp_running = tstamp; 2030 event->tstamp_stopped = tstamp; 2031 } 2032 2033 static void task_ctx_sched_out(struct perf_event_context *ctx); 2034 static void 2035 ctx_sched_in(struct perf_event_context *ctx, 2036 struct perf_cpu_context *cpuctx, 2037 enum event_type_t event_type, 2038 struct task_struct *task); 2039 2040 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2041 struct perf_event_context *ctx, 2042 struct task_struct *task) 2043 { 2044 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2045 if (ctx) 2046 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2047 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2048 if (ctx) 2049 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2050 } 2051 2052 /* 2053 * Cross CPU call to install and enable a performance event 2054 * 2055 * Must be called with ctx->mutex held 2056 */ 2057 static int __perf_install_in_context(void *info) 2058 { 2059 struct perf_event *event = info; 2060 struct perf_event_context *ctx = event->ctx; 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2062 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2063 struct task_struct *task = current; 2064 2065 perf_ctx_lock(cpuctx, task_ctx); 2066 perf_pmu_disable(cpuctx->ctx.pmu); 2067 2068 /* 2069 * If there was an active task_ctx schedule it out. 2070 */ 2071 if (task_ctx) 2072 task_ctx_sched_out(task_ctx); 2073 2074 /* 2075 * If the context we're installing events in is not the 2076 * active task_ctx, flip them. 2077 */ 2078 if (ctx->task && task_ctx != ctx) { 2079 if (task_ctx) 2080 raw_spin_unlock(&task_ctx->lock); 2081 raw_spin_lock(&ctx->lock); 2082 task_ctx = ctx; 2083 } 2084 2085 if (task_ctx) { 2086 cpuctx->task_ctx = task_ctx; 2087 task = task_ctx->task; 2088 } 2089 2090 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2091 2092 update_context_time(ctx); 2093 /* 2094 * update cgrp time only if current cgrp 2095 * matches event->cgrp. Must be done before 2096 * calling add_event_to_ctx() 2097 */ 2098 update_cgrp_time_from_event(event); 2099 2100 add_event_to_ctx(event, ctx); 2101 2102 /* 2103 * Schedule everything back in 2104 */ 2105 perf_event_sched_in(cpuctx, task_ctx, task); 2106 2107 perf_pmu_enable(cpuctx->ctx.pmu); 2108 perf_ctx_unlock(cpuctx, task_ctx); 2109 2110 return 0; 2111 } 2112 2113 /* 2114 * Attach a performance event to a context 2115 * 2116 * First we add the event to the list with the hardware enable bit 2117 * in event->hw_config cleared. 2118 * 2119 * If the event is attached to a task which is on a CPU we use a smp 2120 * call to enable it in the task context. The task might have been 2121 * scheduled away, but we check this in the smp call again. 2122 */ 2123 static void 2124 perf_install_in_context(struct perf_event_context *ctx, 2125 struct perf_event *event, 2126 int cpu) 2127 { 2128 struct task_struct *task = ctx->task; 2129 2130 lockdep_assert_held(&ctx->mutex); 2131 2132 event->ctx = ctx; 2133 if (event->cpu != -1) 2134 event->cpu = cpu; 2135 2136 if (!task) { 2137 /* 2138 * Per cpu events are installed via an smp call and 2139 * the install is always successful. 2140 */ 2141 cpu_function_call(cpu, __perf_install_in_context, event); 2142 return; 2143 } 2144 2145 retry: 2146 if (!task_function_call(task, __perf_install_in_context, event)) 2147 return; 2148 2149 raw_spin_lock_irq(&ctx->lock); 2150 /* 2151 * If we failed to find a running task, but find the context active now 2152 * that we've acquired the ctx->lock, retry. 2153 */ 2154 if (ctx->is_active) { 2155 raw_spin_unlock_irq(&ctx->lock); 2156 /* 2157 * Reload the task pointer, it might have been changed by 2158 * a concurrent perf_event_context_sched_out(). 2159 */ 2160 task = ctx->task; 2161 goto retry; 2162 } 2163 2164 /* 2165 * Since the task isn't running, its safe to add the event, us holding 2166 * the ctx->lock ensures the task won't get scheduled in. 2167 */ 2168 add_event_to_ctx(event, ctx); 2169 raw_spin_unlock_irq(&ctx->lock); 2170 } 2171 2172 /* 2173 * Put a event into inactive state and update time fields. 2174 * Enabling the leader of a group effectively enables all 2175 * the group members that aren't explicitly disabled, so we 2176 * have to update their ->tstamp_enabled also. 2177 * Note: this works for group members as well as group leaders 2178 * since the non-leader members' sibling_lists will be empty. 2179 */ 2180 static void __perf_event_mark_enabled(struct perf_event *event) 2181 { 2182 struct perf_event *sub; 2183 u64 tstamp = perf_event_time(event); 2184 2185 event->state = PERF_EVENT_STATE_INACTIVE; 2186 event->tstamp_enabled = tstamp - event->total_time_enabled; 2187 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2188 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2189 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2190 } 2191 } 2192 2193 /* 2194 * Cross CPU call to enable a performance event 2195 */ 2196 static int __perf_event_enable(void *info) 2197 { 2198 struct perf_event *event = info; 2199 struct perf_event_context *ctx = event->ctx; 2200 struct perf_event *leader = event->group_leader; 2201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2202 int err; 2203 2204 /* 2205 * There's a time window between 'ctx->is_active' check 2206 * in perf_event_enable function and this place having: 2207 * - IRQs on 2208 * - ctx->lock unlocked 2209 * 2210 * where the task could be killed and 'ctx' deactivated 2211 * by perf_event_exit_task. 2212 */ 2213 if (!ctx->is_active) 2214 return -EINVAL; 2215 2216 raw_spin_lock(&ctx->lock); 2217 update_context_time(ctx); 2218 2219 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2220 goto unlock; 2221 2222 /* 2223 * set current task's cgroup time reference point 2224 */ 2225 perf_cgroup_set_timestamp(current, ctx); 2226 2227 __perf_event_mark_enabled(event); 2228 2229 if (!event_filter_match(event)) { 2230 if (is_cgroup_event(event)) 2231 perf_cgroup_defer_enabled(event); 2232 goto unlock; 2233 } 2234 2235 /* 2236 * If the event is in a group and isn't the group leader, 2237 * then don't put it on unless the group is on. 2238 */ 2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2240 goto unlock; 2241 2242 if (!group_can_go_on(event, cpuctx, 1)) { 2243 err = -EEXIST; 2244 } else { 2245 if (event == leader) 2246 err = group_sched_in(event, cpuctx, ctx); 2247 else 2248 err = event_sched_in(event, cpuctx, ctx); 2249 } 2250 2251 if (err) { 2252 /* 2253 * If this event can't go on and it's part of a 2254 * group, then the whole group has to come off. 2255 */ 2256 if (leader != event) { 2257 group_sched_out(leader, cpuctx, ctx); 2258 perf_cpu_hrtimer_restart(cpuctx); 2259 } 2260 if (leader->attr.pinned) { 2261 update_group_times(leader); 2262 leader->state = PERF_EVENT_STATE_ERROR; 2263 } 2264 } 2265 2266 unlock: 2267 raw_spin_unlock(&ctx->lock); 2268 2269 return 0; 2270 } 2271 2272 /* 2273 * Enable a event. 2274 * 2275 * If event->ctx is a cloned context, callers must make sure that 2276 * every task struct that event->ctx->task could possibly point to 2277 * remains valid. This condition is satisfied when called through 2278 * perf_event_for_each_child or perf_event_for_each as described 2279 * for perf_event_disable. 2280 */ 2281 static void _perf_event_enable(struct perf_event *event) 2282 { 2283 struct perf_event_context *ctx = event->ctx; 2284 struct task_struct *task = ctx->task; 2285 2286 if (!task) { 2287 /* 2288 * Enable the event on the cpu that it's on 2289 */ 2290 cpu_function_call(event->cpu, __perf_event_enable, event); 2291 return; 2292 } 2293 2294 raw_spin_lock_irq(&ctx->lock); 2295 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2296 goto out; 2297 2298 /* 2299 * If the event is in error state, clear that first. 2300 * That way, if we see the event in error state below, we 2301 * know that it has gone back into error state, as distinct 2302 * from the task having been scheduled away before the 2303 * cross-call arrived. 2304 */ 2305 if (event->state == PERF_EVENT_STATE_ERROR) 2306 event->state = PERF_EVENT_STATE_OFF; 2307 2308 retry: 2309 if (!ctx->is_active) { 2310 __perf_event_mark_enabled(event); 2311 goto out; 2312 } 2313 2314 raw_spin_unlock_irq(&ctx->lock); 2315 2316 if (!task_function_call(task, __perf_event_enable, event)) 2317 return; 2318 2319 raw_spin_lock_irq(&ctx->lock); 2320 2321 /* 2322 * If the context is active and the event is still off, 2323 * we need to retry the cross-call. 2324 */ 2325 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2326 /* 2327 * task could have been flipped by a concurrent 2328 * perf_event_context_sched_out() 2329 */ 2330 task = ctx->task; 2331 goto retry; 2332 } 2333 2334 out: 2335 raw_spin_unlock_irq(&ctx->lock); 2336 } 2337 2338 /* 2339 * See perf_event_disable(); 2340 */ 2341 void perf_event_enable(struct perf_event *event) 2342 { 2343 struct perf_event_context *ctx; 2344 2345 ctx = perf_event_ctx_lock(event); 2346 _perf_event_enable(event); 2347 perf_event_ctx_unlock(event, ctx); 2348 } 2349 EXPORT_SYMBOL_GPL(perf_event_enable); 2350 2351 static int _perf_event_refresh(struct perf_event *event, int refresh) 2352 { 2353 /* 2354 * not supported on inherited events 2355 */ 2356 if (event->attr.inherit || !is_sampling_event(event)) 2357 return -EINVAL; 2358 2359 atomic_add(refresh, &event->event_limit); 2360 _perf_event_enable(event); 2361 2362 return 0; 2363 } 2364 2365 /* 2366 * See perf_event_disable() 2367 */ 2368 int perf_event_refresh(struct perf_event *event, int refresh) 2369 { 2370 struct perf_event_context *ctx; 2371 int ret; 2372 2373 ctx = perf_event_ctx_lock(event); 2374 ret = _perf_event_refresh(event, refresh); 2375 perf_event_ctx_unlock(event, ctx); 2376 2377 return ret; 2378 } 2379 EXPORT_SYMBOL_GPL(perf_event_refresh); 2380 2381 static void ctx_sched_out(struct perf_event_context *ctx, 2382 struct perf_cpu_context *cpuctx, 2383 enum event_type_t event_type) 2384 { 2385 struct perf_event *event; 2386 int is_active = ctx->is_active; 2387 2388 ctx->is_active &= ~event_type; 2389 if (likely(!ctx->nr_events)) 2390 return; 2391 2392 update_context_time(ctx); 2393 update_cgrp_time_from_cpuctx(cpuctx); 2394 if (!ctx->nr_active) 2395 return; 2396 2397 perf_pmu_disable(ctx->pmu); 2398 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2399 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2400 group_sched_out(event, cpuctx, ctx); 2401 } 2402 2403 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2404 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2405 group_sched_out(event, cpuctx, ctx); 2406 } 2407 perf_pmu_enable(ctx->pmu); 2408 } 2409 2410 /* 2411 * Test whether two contexts are equivalent, i.e. whether they have both been 2412 * cloned from the same version of the same context. 2413 * 2414 * Equivalence is measured using a generation number in the context that is 2415 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2416 * and list_del_event(). 2417 */ 2418 static int context_equiv(struct perf_event_context *ctx1, 2419 struct perf_event_context *ctx2) 2420 { 2421 lockdep_assert_held(&ctx1->lock); 2422 lockdep_assert_held(&ctx2->lock); 2423 2424 /* Pinning disables the swap optimization */ 2425 if (ctx1->pin_count || ctx2->pin_count) 2426 return 0; 2427 2428 /* If ctx1 is the parent of ctx2 */ 2429 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2430 return 1; 2431 2432 /* If ctx2 is the parent of ctx1 */ 2433 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2434 return 1; 2435 2436 /* 2437 * If ctx1 and ctx2 have the same parent; we flatten the parent 2438 * hierarchy, see perf_event_init_context(). 2439 */ 2440 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2441 ctx1->parent_gen == ctx2->parent_gen) 2442 return 1; 2443 2444 /* Unmatched */ 2445 return 0; 2446 } 2447 2448 static void __perf_event_sync_stat(struct perf_event *event, 2449 struct perf_event *next_event) 2450 { 2451 u64 value; 2452 2453 if (!event->attr.inherit_stat) 2454 return; 2455 2456 /* 2457 * Update the event value, we cannot use perf_event_read() 2458 * because we're in the middle of a context switch and have IRQs 2459 * disabled, which upsets smp_call_function_single(), however 2460 * we know the event must be on the current CPU, therefore we 2461 * don't need to use it. 2462 */ 2463 switch (event->state) { 2464 case PERF_EVENT_STATE_ACTIVE: 2465 event->pmu->read(event); 2466 /* fall-through */ 2467 2468 case PERF_EVENT_STATE_INACTIVE: 2469 update_event_times(event); 2470 break; 2471 2472 default: 2473 break; 2474 } 2475 2476 /* 2477 * In order to keep per-task stats reliable we need to flip the event 2478 * values when we flip the contexts. 2479 */ 2480 value = local64_read(&next_event->count); 2481 value = local64_xchg(&event->count, value); 2482 local64_set(&next_event->count, value); 2483 2484 swap(event->total_time_enabled, next_event->total_time_enabled); 2485 swap(event->total_time_running, next_event->total_time_running); 2486 2487 /* 2488 * Since we swizzled the values, update the user visible data too. 2489 */ 2490 perf_event_update_userpage(event); 2491 perf_event_update_userpage(next_event); 2492 } 2493 2494 static void perf_event_sync_stat(struct perf_event_context *ctx, 2495 struct perf_event_context *next_ctx) 2496 { 2497 struct perf_event *event, *next_event; 2498 2499 if (!ctx->nr_stat) 2500 return; 2501 2502 update_context_time(ctx); 2503 2504 event = list_first_entry(&ctx->event_list, 2505 struct perf_event, event_entry); 2506 2507 next_event = list_first_entry(&next_ctx->event_list, 2508 struct perf_event, event_entry); 2509 2510 while (&event->event_entry != &ctx->event_list && 2511 &next_event->event_entry != &next_ctx->event_list) { 2512 2513 __perf_event_sync_stat(event, next_event); 2514 2515 event = list_next_entry(event, event_entry); 2516 next_event = list_next_entry(next_event, event_entry); 2517 } 2518 } 2519 2520 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2521 struct task_struct *next) 2522 { 2523 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2524 struct perf_event_context *next_ctx; 2525 struct perf_event_context *parent, *next_parent; 2526 struct perf_cpu_context *cpuctx; 2527 int do_switch = 1; 2528 2529 if (likely(!ctx)) 2530 return; 2531 2532 cpuctx = __get_cpu_context(ctx); 2533 if (!cpuctx->task_ctx) 2534 return; 2535 2536 rcu_read_lock(); 2537 next_ctx = next->perf_event_ctxp[ctxn]; 2538 if (!next_ctx) 2539 goto unlock; 2540 2541 parent = rcu_dereference(ctx->parent_ctx); 2542 next_parent = rcu_dereference(next_ctx->parent_ctx); 2543 2544 /* If neither context have a parent context; they cannot be clones. */ 2545 if (!parent && !next_parent) 2546 goto unlock; 2547 2548 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2549 /* 2550 * Looks like the two contexts are clones, so we might be 2551 * able to optimize the context switch. We lock both 2552 * contexts and check that they are clones under the 2553 * lock (including re-checking that neither has been 2554 * uncloned in the meantime). It doesn't matter which 2555 * order we take the locks because no other cpu could 2556 * be trying to lock both of these tasks. 2557 */ 2558 raw_spin_lock(&ctx->lock); 2559 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2560 if (context_equiv(ctx, next_ctx)) { 2561 /* 2562 * XXX do we need a memory barrier of sorts 2563 * wrt to rcu_dereference() of perf_event_ctxp 2564 */ 2565 task->perf_event_ctxp[ctxn] = next_ctx; 2566 next->perf_event_ctxp[ctxn] = ctx; 2567 ctx->task = next; 2568 next_ctx->task = task; 2569 2570 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2571 2572 do_switch = 0; 2573 2574 perf_event_sync_stat(ctx, next_ctx); 2575 } 2576 raw_spin_unlock(&next_ctx->lock); 2577 raw_spin_unlock(&ctx->lock); 2578 } 2579 unlock: 2580 rcu_read_unlock(); 2581 2582 if (do_switch) { 2583 raw_spin_lock(&ctx->lock); 2584 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2585 cpuctx->task_ctx = NULL; 2586 raw_spin_unlock(&ctx->lock); 2587 } 2588 } 2589 2590 void perf_sched_cb_dec(struct pmu *pmu) 2591 { 2592 this_cpu_dec(perf_sched_cb_usages); 2593 } 2594 2595 void perf_sched_cb_inc(struct pmu *pmu) 2596 { 2597 this_cpu_inc(perf_sched_cb_usages); 2598 } 2599 2600 /* 2601 * This function provides the context switch callback to the lower code 2602 * layer. It is invoked ONLY when the context switch callback is enabled. 2603 */ 2604 static void perf_pmu_sched_task(struct task_struct *prev, 2605 struct task_struct *next, 2606 bool sched_in) 2607 { 2608 struct perf_cpu_context *cpuctx; 2609 struct pmu *pmu; 2610 unsigned long flags; 2611 2612 if (prev == next) 2613 return; 2614 2615 local_irq_save(flags); 2616 2617 rcu_read_lock(); 2618 2619 list_for_each_entry_rcu(pmu, &pmus, entry) { 2620 if (pmu->sched_task) { 2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2622 2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2624 2625 perf_pmu_disable(pmu); 2626 2627 pmu->sched_task(cpuctx->task_ctx, sched_in); 2628 2629 perf_pmu_enable(pmu); 2630 2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2632 } 2633 } 2634 2635 rcu_read_unlock(); 2636 2637 local_irq_restore(flags); 2638 } 2639 2640 #define for_each_task_context_nr(ctxn) \ 2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2642 2643 /* 2644 * Called from scheduler to remove the events of the current task, 2645 * with interrupts disabled. 2646 * 2647 * We stop each event and update the event value in event->count. 2648 * 2649 * This does not protect us against NMI, but disable() 2650 * sets the disabled bit in the control field of event _before_ 2651 * accessing the event control register. If a NMI hits, then it will 2652 * not restart the event. 2653 */ 2654 void __perf_event_task_sched_out(struct task_struct *task, 2655 struct task_struct *next) 2656 { 2657 int ctxn; 2658 2659 if (__this_cpu_read(perf_sched_cb_usages)) 2660 perf_pmu_sched_task(task, next, false); 2661 2662 for_each_task_context_nr(ctxn) 2663 perf_event_context_sched_out(task, ctxn, next); 2664 2665 /* 2666 * if cgroup events exist on this CPU, then we need 2667 * to check if we have to switch out PMU state. 2668 * cgroup event are system-wide mode only 2669 */ 2670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2671 perf_cgroup_sched_out(task, next); 2672 } 2673 2674 static void task_ctx_sched_out(struct perf_event_context *ctx) 2675 { 2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2677 2678 if (!cpuctx->task_ctx) 2679 return; 2680 2681 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2682 return; 2683 2684 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2685 cpuctx->task_ctx = NULL; 2686 } 2687 2688 /* 2689 * Called with IRQs disabled 2690 */ 2691 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2692 enum event_type_t event_type) 2693 { 2694 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2695 } 2696 2697 static void 2698 ctx_pinned_sched_in(struct perf_event_context *ctx, 2699 struct perf_cpu_context *cpuctx) 2700 { 2701 struct perf_event *event; 2702 2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2704 if (event->state <= PERF_EVENT_STATE_OFF) 2705 continue; 2706 if (!event_filter_match(event)) 2707 continue; 2708 2709 /* may need to reset tstamp_enabled */ 2710 if (is_cgroup_event(event)) 2711 perf_cgroup_mark_enabled(event, ctx); 2712 2713 if (group_can_go_on(event, cpuctx, 1)) 2714 group_sched_in(event, cpuctx, ctx); 2715 2716 /* 2717 * If this pinned group hasn't been scheduled, 2718 * put it in error state. 2719 */ 2720 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2721 update_group_times(event); 2722 event->state = PERF_EVENT_STATE_ERROR; 2723 } 2724 } 2725 } 2726 2727 static void 2728 ctx_flexible_sched_in(struct perf_event_context *ctx, 2729 struct perf_cpu_context *cpuctx) 2730 { 2731 struct perf_event *event; 2732 int can_add_hw = 1; 2733 2734 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2735 /* Ignore events in OFF or ERROR state */ 2736 if (event->state <= PERF_EVENT_STATE_OFF) 2737 continue; 2738 /* 2739 * Listen to the 'cpu' scheduling filter constraint 2740 * of events: 2741 */ 2742 if (!event_filter_match(event)) 2743 continue; 2744 2745 /* may need to reset tstamp_enabled */ 2746 if (is_cgroup_event(event)) 2747 perf_cgroup_mark_enabled(event, ctx); 2748 2749 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2750 if (group_sched_in(event, cpuctx, ctx)) 2751 can_add_hw = 0; 2752 } 2753 } 2754 } 2755 2756 static void 2757 ctx_sched_in(struct perf_event_context *ctx, 2758 struct perf_cpu_context *cpuctx, 2759 enum event_type_t event_type, 2760 struct task_struct *task) 2761 { 2762 u64 now; 2763 int is_active = ctx->is_active; 2764 2765 ctx->is_active |= event_type; 2766 if (likely(!ctx->nr_events)) 2767 return; 2768 2769 now = perf_clock(); 2770 ctx->timestamp = now; 2771 perf_cgroup_set_timestamp(task, ctx); 2772 /* 2773 * First go through the list and put on any pinned groups 2774 * in order to give them the best chance of going on. 2775 */ 2776 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2777 ctx_pinned_sched_in(ctx, cpuctx); 2778 2779 /* Then walk through the lower prio flexible groups */ 2780 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2781 ctx_flexible_sched_in(ctx, cpuctx); 2782 } 2783 2784 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2785 enum event_type_t event_type, 2786 struct task_struct *task) 2787 { 2788 struct perf_event_context *ctx = &cpuctx->ctx; 2789 2790 ctx_sched_in(ctx, cpuctx, event_type, task); 2791 } 2792 2793 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2794 struct task_struct *task) 2795 { 2796 struct perf_cpu_context *cpuctx; 2797 2798 cpuctx = __get_cpu_context(ctx); 2799 if (cpuctx->task_ctx == ctx) 2800 return; 2801 2802 perf_ctx_lock(cpuctx, ctx); 2803 perf_pmu_disable(ctx->pmu); 2804 /* 2805 * We want to keep the following priority order: 2806 * cpu pinned (that don't need to move), task pinned, 2807 * cpu flexible, task flexible. 2808 */ 2809 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2810 2811 if (ctx->nr_events) 2812 cpuctx->task_ctx = ctx; 2813 2814 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2815 2816 perf_pmu_enable(ctx->pmu); 2817 perf_ctx_unlock(cpuctx, ctx); 2818 } 2819 2820 /* 2821 * Called from scheduler to add the events of the current task 2822 * with interrupts disabled. 2823 * 2824 * We restore the event value and then enable it. 2825 * 2826 * This does not protect us against NMI, but enable() 2827 * sets the enabled bit in the control field of event _before_ 2828 * accessing the event control register. If a NMI hits, then it will 2829 * keep the event running. 2830 */ 2831 void __perf_event_task_sched_in(struct task_struct *prev, 2832 struct task_struct *task) 2833 { 2834 struct perf_event_context *ctx; 2835 int ctxn; 2836 2837 for_each_task_context_nr(ctxn) { 2838 ctx = task->perf_event_ctxp[ctxn]; 2839 if (likely(!ctx)) 2840 continue; 2841 2842 perf_event_context_sched_in(ctx, task); 2843 } 2844 /* 2845 * if cgroup events exist on this CPU, then we need 2846 * to check if we have to switch in PMU state. 2847 * cgroup event are system-wide mode only 2848 */ 2849 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2850 perf_cgroup_sched_in(prev, task); 2851 2852 if (__this_cpu_read(perf_sched_cb_usages)) 2853 perf_pmu_sched_task(prev, task, true); 2854 } 2855 2856 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2857 { 2858 u64 frequency = event->attr.sample_freq; 2859 u64 sec = NSEC_PER_SEC; 2860 u64 divisor, dividend; 2861 2862 int count_fls, nsec_fls, frequency_fls, sec_fls; 2863 2864 count_fls = fls64(count); 2865 nsec_fls = fls64(nsec); 2866 frequency_fls = fls64(frequency); 2867 sec_fls = 30; 2868 2869 /* 2870 * We got @count in @nsec, with a target of sample_freq HZ 2871 * the target period becomes: 2872 * 2873 * @count * 10^9 2874 * period = ------------------- 2875 * @nsec * sample_freq 2876 * 2877 */ 2878 2879 /* 2880 * Reduce accuracy by one bit such that @a and @b converge 2881 * to a similar magnitude. 2882 */ 2883 #define REDUCE_FLS(a, b) \ 2884 do { \ 2885 if (a##_fls > b##_fls) { \ 2886 a >>= 1; \ 2887 a##_fls--; \ 2888 } else { \ 2889 b >>= 1; \ 2890 b##_fls--; \ 2891 } \ 2892 } while (0) 2893 2894 /* 2895 * Reduce accuracy until either term fits in a u64, then proceed with 2896 * the other, so that finally we can do a u64/u64 division. 2897 */ 2898 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2899 REDUCE_FLS(nsec, frequency); 2900 REDUCE_FLS(sec, count); 2901 } 2902 2903 if (count_fls + sec_fls > 64) { 2904 divisor = nsec * frequency; 2905 2906 while (count_fls + sec_fls > 64) { 2907 REDUCE_FLS(count, sec); 2908 divisor >>= 1; 2909 } 2910 2911 dividend = count * sec; 2912 } else { 2913 dividend = count * sec; 2914 2915 while (nsec_fls + frequency_fls > 64) { 2916 REDUCE_FLS(nsec, frequency); 2917 dividend >>= 1; 2918 } 2919 2920 divisor = nsec * frequency; 2921 } 2922 2923 if (!divisor) 2924 return dividend; 2925 2926 return div64_u64(dividend, divisor); 2927 } 2928 2929 static DEFINE_PER_CPU(int, perf_throttled_count); 2930 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2931 2932 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2933 { 2934 struct hw_perf_event *hwc = &event->hw; 2935 s64 period, sample_period; 2936 s64 delta; 2937 2938 period = perf_calculate_period(event, nsec, count); 2939 2940 delta = (s64)(period - hwc->sample_period); 2941 delta = (delta + 7) / 8; /* low pass filter */ 2942 2943 sample_period = hwc->sample_period + delta; 2944 2945 if (!sample_period) 2946 sample_period = 1; 2947 2948 hwc->sample_period = sample_period; 2949 2950 if (local64_read(&hwc->period_left) > 8*sample_period) { 2951 if (disable) 2952 event->pmu->stop(event, PERF_EF_UPDATE); 2953 2954 local64_set(&hwc->period_left, 0); 2955 2956 if (disable) 2957 event->pmu->start(event, PERF_EF_RELOAD); 2958 } 2959 } 2960 2961 /* 2962 * combine freq adjustment with unthrottling to avoid two passes over the 2963 * events. At the same time, make sure, having freq events does not change 2964 * the rate of unthrottling as that would introduce bias. 2965 */ 2966 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2967 int needs_unthr) 2968 { 2969 struct perf_event *event; 2970 struct hw_perf_event *hwc; 2971 u64 now, period = TICK_NSEC; 2972 s64 delta; 2973 2974 /* 2975 * only need to iterate over all events iff: 2976 * - context have events in frequency mode (needs freq adjust) 2977 * - there are events to unthrottle on this cpu 2978 */ 2979 if (!(ctx->nr_freq || needs_unthr)) 2980 return; 2981 2982 raw_spin_lock(&ctx->lock); 2983 perf_pmu_disable(ctx->pmu); 2984 2985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2986 if (event->state != PERF_EVENT_STATE_ACTIVE) 2987 continue; 2988 2989 if (!event_filter_match(event)) 2990 continue; 2991 2992 perf_pmu_disable(event->pmu); 2993 2994 hwc = &event->hw; 2995 2996 if (hwc->interrupts == MAX_INTERRUPTS) { 2997 hwc->interrupts = 0; 2998 perf_log_throttle(event, 1); 2999 event->pmu->start(event, 0); 3000 } 3001 3002 if (!event->attr.freq || !event->attr.sample_freq) 3003 goto next; 3004 3005 /* 3006 * stop the event and update event->count 3007 */ 3008 event->pmu->stop(event, PERF_EF_UPDATE); 3009 3010 now = local64_read(&event->count); 3011 delta = now - hwc->freq_count_stamp; 3012 hwc->freq_count_stamp = now; 3013 3014 /* 3015 * restart the event 3016 * reload only if value has changed 3017 * we have stopped the event so tell that 3018 * to perf_adjust_period() to avoid stopping it 3019 * twice. 3020 */ 3021 if (delta > 0) 3022 perf_adjust_period(event, period, delta, false); 3023 3024 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3025 next: 3026 perf_pmu_enable(event->pmu); 3027 } 3028 3029 perf_pmu_enable(ctx->pmu); 3030 raw_spin_unlock(&ctx->lock); 3031 } 3032 3033 /* 3034 * Round-robin a context's events: 3035 */ 3036 static void rotate_ctx(struct perf_event_context *ctx) 3037 { 3038 /* 3039 * Rotate the first entry last of non-pinned groups. Rotation might be 3040 * disabled by the inheritance code. 3041 */ 3042 if (!ctx->rotate_disable) 3043 list_rotate_left(&ctx->flexible_groups); 3044 } 3045 3046 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3047 { 3048 struct perf_event_context *ctx = NULL; 3049 int rotate = 0; 3050 3051 if (cpuctx->ctx.nr_events) { 3052 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3053 rotate = 1; 3054 } 3055 3056 ctx = cpuctx->task_ctx; 3057 if (ctx && ctx->nr_events) { 3058 if (ctx->nr_events != ctx->nr_active) 3059 rotate = 1; 3060 } 3061 3062 if (!rotate) 3063 goto done; 3064 3065 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3066 perf_pmu_disable(cpuctx->ctx.pmu); 3067 3068 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3069 if (ctx) 3070 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3071 3072 rotate_ctx(&cpuctx->ctx); 3073 if (ctx) 3074 rotate_ctx(ctx); 3075 3076 perf_event_sched_in(cpuctx, ctx, current); 3077 3078 perf_pmu_enable(cpuctx->ctx.pmu); 3079 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3080 done: 3081 3082 return rotate; 3083 } 3084 3085 #ifdef CONFIG_NO_HZ_FULL 3086 bool perf_event_can_stop_tick(void) 3087 { 3088 if (atomic_read(&nr_freq_events) || 3089 __this_cpu_read(perf_throttled_count)) 3090 return false; 3091 else 3092 return true; 3093 } 3094 #endif 3095 3096 void perf_event_task_tick(void) 3097 { 3098 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3099 struct perf_event_context *ctx, *tmp; 3100 int throttled; 3101 3102 WARN_ON(!irqs_disabled()); 3103 3104 __this_cpu_inc(perf_throttled_seq); 3105 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3106 3107 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3108 perf_adjust_freq_unthr_context(ctx, throttled); 3109 } 3110 3111 static int event_enable_on_exec(struct perf_event *event, 3112 struct perf_event_context *ctx) 3113 { 3114 if (!event->attr.enable_on_exec) 3115 return 0; 3116 3117 event->attr.enable_on_exec = 0; 3118 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3119 return 0; 3120 3121 __perf_event_mark_enabled(event); 3122 3123 return 1; 3124 } 3125 3126 /* 3127 * Enable all of a task's events that have been marked enable-on-exec. 3128 * This expects task == current. 3129 */ 3130 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 3131 { 3132 struct perf_event_context *clone_ctx = NULL; 3133 struct perf_event *event; 3134 unsigned long flags; 3135 int enabled = 0; 3136 int ret; 3137 3138 local_irq_save(flags); 3139 if (!ctx || !ctx->nr_events) 3140 goto out; 3141 3142 /* 3143 * We must ctxsw out cgroup events to avoid conflict 3144 * when invoking perf_task_event_sched_in() later on 3145 * in this function. Otherwise we end up trying to 3146 * ctxswin cgroup events which are already scheduled 3147 * in. 3148 */ 3149 perf_cgroup_sched_out(current, NULL); 3150 3151 raw_spin_lock(&ctx->lock); 3152 task_ctx_sched_out(ctx); 3153 3154 list_for_each_entry(event, &ctx->event_list, event_entry) { 3155 ret = event_enable_on_exec(event, ctx); 3156 if (ret) 3157 enabled = 1; 3158 } 3159 3160 /* 3161 * Unclone this context if we enabled any event. 3162 */ 3163 if (enabled) 3164 clone_ctx = unclone_ctx(ctx); 3165 3166 raw_spin_unlock(&ctx->lock); 3167 3168 /* 3169 * Also calls ctxswin for cgroup events, if any: 3170 */ 3171 perf_event_context_sched_in(ctx, ctx->task); 3172 out: 3173 local_irq_restore(flags); 3174 3175 if (clone_ctx) 3176 put_ctx(clone_ctx); 3177 } 3178 3179 void perf_event_exec(void) 3180 { 3181 struct perf_event_context *ctx; 3182 int ctxn; 3183 3184 rcu_read_lock(); 3185 for_each_task_context_nr(ctxn) { 3186 ctx = current->perf_event_ctxp[ctxn]; 3187 if (!ctx) 3188 continue; 3189 3190 perf_event_enable_on_exec(ctx); 3191 } 3192 rcu_read_unlock(); 3193 } 3194 3195 /* 3196 * Cross CPU call to read the hardware event 3197 */ 3198 static void __perf_event_read(void *info) 3199 { 3200 struct perf_event *event = info; 3201 struct perf_event_context *ctx = event->ctx; 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3203 3204 /* 3205 * If this is a task context, we need to check whether it is 3206 * the current task context of this cpu. If not it has been 3207 * scheduled out before the smp call arrived. In that case 3208 * event->count would have been updated to a recent sample 3209 * when the event was scheduled out. 3210 */ 3211 if (ctx->task && cpuctx->task_ctx != ctx) 3212 return; 3213 3214 raw_spin_lock(&ctx->lock); 3215 if (ctx->is_active) { 3216 update_context_time(ctx); 3217 update_cgrp_time_from_event(event); 3218 } 3219 update_event_times(event); 3220 if (event->state == PERF_EVENT_STATE_ACTIVE) 3221 event->pmu->read(event); 3222 raw_spin_unlock(&ctx->lock); 3223 } 3224 3225 static inline u64 perf_event_count(struct perf_event *event) 3226 { 3227 if (event->pmu->count) 3228 return event->pmu->count(event); 3229 3230 return __perf_event_count(event); 3231 } 3232 3233 static u64 perf_event_read(struct perf_event *event) 3234 { 3235 /* 3236 * If event is enabled and currently active on a CPU, update the 3237 * value in the event structure: 3238 */ 3239 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3240 smp_call_function_single(event->oncpu, 3241 __perf_event_read, event, 1); 3242 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3243 struct perf_event_context *ctx = event->ctx; 3244 unsigned long flags; 3245 3246 raw_spin_lock_irqsave(&ctx->lock, flags); 3247 /* 3248 * may read while context is not active 3249 * (e.g., thread is blocked), in that case 3250 * we cannot update context time 3251 */ 3252 if (ctx->is_active) { 3253 update_context_time(ctx); 3254 update_cgrp_time_from_event(event); 3255 } 3256 update_event_times(event); 3257 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3258 } 3259 3260 return perf_event_count(event); 3261 } 3262 3263 /* 3264 * Initialize the perf_event context in a task_struct: 3265 */ 3266 static void __perf_event_init_context(struct perf_event_context *ctx) 3267 { 3268 raw_spin_lock_init(&ctx->lock); 3269 mutex_init(&ctx->mutex); 3270 INIT_LIST_HEAD(&ctx->active_ctx_list); 3271 INIT_LIST_HEAD(&ctx->pinned_groups); 3272 INIT_LIST_HEAD(&ctx->flexible_groups); 3273 INIT_LIST_HEAD(&ctx->event_list); 3274 atomic_set(&ctx->refcount, 1); 3275 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work); 3276 } 3277 3278 static struct perf_event_context * 3279 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3280 { 3281 struct perf_event_context *ctx; 3282 3283 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3284 if (!ctx) 3285 return NULL; 3286 3287 __perf_event_init_context(ctx); 3288 if (task) { 3289 ctx->task = task; 3290 get_task_struct(task); 3291 } 3292 ctx->pmu = pmu; 3293 3294 return ctx; 3295 } 3296 3297 static struct task_struct * 3298 find_lively_task_by_vpid(pid_t vpid) 3299 { 3300 struct task_struct *task; 3301 int err; 3302 3303 rcu_read_lock(); 3304 if (!vpid) 3305 task = current; 3306 else 3307 task = find_task_by_vpid(vpid); 3308 if (task) 3309 get_task_struct(task); 3310 rcu_read_unlock(); 3311 3312 if (!task) 3313 return ERR_PTR(-ESRCH); 3314 3315 /* Reuse ptrace permission checks for now. */ 3316 err = -EACCES; 3317 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3318 goto errout; 3319 3320 return task; 3321 errout: 3322 put_task_struct(task); 3323 return ERR_PTR(err); 3324 3325 } 3326 3327 /* 3328 * Returns a matching context with refcount and pincount. 3329 */ 3330 static struct perf_event_context * 3331 find_get_context(struct pmu *pmu, struct task_struct *task, 3332 struct perf_event *event) 3333 { 3334 struct perf_event_context *ctx, *clone_ctx = NULL; 3335 struct perf_cpu_context *cpuctx; 3336 void *task_ctx_data = NULL; 3337 unsigned long flags; 3338 int ctxn, err; 3339 int cpu = event->cpu; 3340 3341 if (!task) { 3342 /* Must be root to operate on a CPU event: */ 3343 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3344 return ERR_PTR(-EACCES); 3345 3346 /* 3347 * We could be clever and allow to attach a event to an 3348 * offline CPU and activate it when the CPU comes up, but 3349 * that's for later. 3350 */ 3351 if (!cpu_online(cpu)) 3352 return ERR_PTR(-ENODEV); 3353 3354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3355 ctx = &cpuctx->ctx; 3356 get_ctx(ctx); 3357 ++ctx->pin_count; 3358 3359 return ctx; 3360 } 3361 3362 err = -EINVAL; 3363 ctxn = pmu->task_ctx_nr; 3364 if (ctxn < 0) 3365 goto errout; 3366 3367 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3368 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3369 if (!task_ctx_data) { 3370 err = -ENOMEM; 3371 goto errout; 3372 } 3373 } 3374 3375 retry: 3376 ctx = perf_lock_task_context(task, ctxn, &flags); 3377 if (ctx) { 3378 clone_ctx = unclone_ctx(ctx); 3379 ++ctx->pin_count; 3380 3381 if (task_ctx_data && !ctx->task_ctx_data) { 3382 ctx->task_ctx_data = task_ctx_data; 3383 task_ctx_data = NULL; 3384 } 3385 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3386 3387 if (clone_ctx) 3388 put_ctx(clone_ctx); 3389 } else { 3390 ctx = alloc_perf_context(pmu, task); 3391 err = -ENOMEM; 3392 if (!ctx) 3393 goto errout; 3394 3395 if (task_ctx_data) { 3396 ctx->task_ctx_data = task_ctx_data; 3397 task_ctx_data = NULL; 3398 } 3399 3400 err = 0; 3401 mutex_lock(&task->perf_event_mutex); 3402 /* 3403 * If it has already passed perf_event_exit_task(). 3404 * we must see PF_EXITING, it takes this mutex too. 3405 */ 3406 if (task->flags & PF_EXITING) 3407 err = -ESRCH; 3408 else if (task->perf_event_ctxp[ctxn]) 3409 err = -EAGAIN; 3410 else { 3411 get_ctx(ctx); 3412 ++ctx->pin_count; 3413 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3414 } 3415 mutex_unlock(&task->perf_event_mutex); 3416 3417 if (unlikely(err)) { 3418 put_ctx(ctx); 3419 3420 if (err == -EAGAIN) 3421 goto retry; 3422 goto errout; 3423 } 3424 } 3425 3426 kfree(task_ctx_data); 3427 return ctx; 3428 3429 errout: 3430 kfree(task_ctx_data); 3431 return ERR_PTR(err); 3432 } 3433 3434 static void perf_event_free_filter(struct perf_event *event); 3435 static void perf_event_free_bpf_prog(struct perf_event *event); 3436 3437 static void free_event_rcu(struct rcu_head *head) 3438 { 3439 struct perf_event *event; 3440 3441 event = container_of(head, struct perf_event, rcu_head); 3442 if (event->ns) 3443 put_pid_ns(event->ns); 3444 perf_event_free_filter(event); 3445 perf_event_free_bpf_prog(event); 3446 kfree(event); 3447 } 3448 3449 static void ring_buffer_attach(struct perf_event *event, 3450 struct ring_buffer *rb); 3451 3452 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3453 { 3454 if (event->parent) 3455 return; 3456 3457 if (is_cgroup_event(event)) 3458 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3459 } 3460 3461 static void unaccount_event(struct perf_event *event) 3462 { 3463 if (event->parent) 3464 return; 3465 3466 if (event->attach_state & PERF_ATTACH_TASK) 3467 static_key_slow_dec_deferred(&perf_sched_events); 3468 if (event->attr.mmap || event->attr.mmap_data) 3469 atomic_dec(&nr_mmap_events); 3470 if (event->attr.comm) 3471 atomic_dec(&nr_comm_events); 3472 if (event->attr.task) 3473 atomic_dec(&nr_task_events); 3474 if (event->attr.freq) 3475 atomic_dec(&nr_freq_events); 3476 if (is_cgroup_event(event)) 3477 static_key_slow_dec_deferred(&perf_sched_events); 3478 if (has_branch_stack(event)) 3479 static_key_slow_dec_deferred(&perf_sched_events); 3480 3481 unaccount_event_cpu(event, event->cpu); 3482 } 3483 3484 /* 3485 * The following implement mutual exclusion of events on "exclusive" pmus 3486 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3487 * at a time, so we disallow creating events that might conflict, namely: 3488 * 3489 * 1) cpu-wide events in the presence of per-task events, 3490 * 2) per-task events in the presence of cpu-wide events, 3491 * 3) two matching events on the same context. 3492 * 3493 * The former two cases are handled in the allocation path (perf_event_alloc(), 3494 * __free_event()), the latter -- before the first perf_install_in_context(). 3495 */ 3496 static int exclusive_event_init(struct perf_event *event) 3497 { 3498 struct pmu *pmu = event->pmu; 3499 3500 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3501 return 0; 3502 3503 /* 3504 * Prevent co-existence of per-task and cpu-wide events on the 3505 * same exclusive pmu. 3506 * 3507 * Negative pmu::exclusive_cnt means there are cpu-wide 3508 * events on this "exclusive" pmu, positive means there are 3509 * per-task events. 3510 * 3511 * Since this is called in perf_event_alloc() path, event::ctx 3512 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3513 * to mean "per-task event", because unlike other attach states it 3514 * never gets cleared. 3515 */ 3516 if (event->attach_state & PERF_ATTACH_TASK) { 3517 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3518 return -EBUSY; 3519 } else { 3520 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3521 return -EBUSY; 3522 } 3523 3524 return 0; 3525 } 3526 3527 static void exclusive_event_destroy(struct perf_event *event) 3528 { 3529 struct pmu *pmu = event->pmu; 3530 3531 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3532 return; 3533 3534 /* see comment in exclusive_event_init() */ 3535 if (event->attach_state & PERF_ATTACH_TASK) 3536 atomic_dec(&pmu->exclusive_cnt); 3537 else 3538 atomic_inc(&pmu->exclusive_cnt); 3539 } 3540 3541 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3542 { 3543 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3544 (e1->cpu == e2->cpu || 3545 e1->cpu == -1 || 3546 e2->cpu == -1)) 3547 return true; 3548 return false; 3549 } 3550 3551 /* Called under the same ctx::mutex as perf_install_in_context() */ 3552 static bool exclusive_event_installable(struct perf_event *event, 3553 struct perf_event_context *ctx) 3554 { 3555 struct perf_event *iter_event; 3556 struct pmu *pmu = event->pmu; 3557 3558 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3559 return true; 3560 3561 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3562 if (exclusive_event_match(iter_event, event)) 3563 return false; 3564 } 3565 3566 return true; 3567 } 3568 3569 static void __free_event(struct perf_event *event) 3570 { 3571 if (!event->parent) { 3572 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3573 put_callchain_buffers(); 3574 } 3575 3576 if (event->destroy) 3577 event->destroy(event); 3578 3579 if (event->ctx) 3580 put_ctx(event->ctx); 3581 3582 if (event->pmu) { 3583 exclusive_event_destroy(event); 3584 module_put(event->pmu->module); 3585 } 3586 3587 call_rcu(&event->rcu_head, free_event_rcu); 3588 } 3589 3590 static void _free_event(struct perf_event *event) 3591 { 3592 irq_work_sync(&event->pending); 3593 3594 unaccount_event(event); 3595 3596 if (event->rb) { 3597 /* 3598 * Can happen when we close an event with re-directed output. 3599 * 3600 * Since we have a 0 refcount, perf_mmap_close() will skip 3601 * over us; possibly making our ring_buffer_put() the last. 3602 */ 3603 mutex_lock(&event->mmap_mutex); 3604 ring_buffer_attach(event, NULL); 3605 mutex_unlock(&event->mmap_mutex); 3606 } 3607 3608 if (is_cgroup_event(event)) 3609 perf_detach_cgroup(event); 3610 3611 __free_event(event); 3612 } 3613 3614 /* 3615 * Used to free events which have a known refcount of 1, such as in error paths 3616 * where the event isn't exposed yet and inherited events. 3617 */ 3618 static void free_event(struct perf_event *event) 3619 { 3620 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3621 "unexpected event refcount: %ld; ptr=%p\n", 3622 atomic_long_read(&event->refcount), event)) { 3623 /* leak to avoid use-after-free */ 3624 return; 3625 } 3626 3627 _free_event(event); 3628 } 3629 3630 /* 3631 * Remove user event from the owner task. 3632 */ 3633 static void perf_remove_from_owner(struct perf_event *event) 3634 { 3635 struct task_struct *owner; 3636 3637 rcu_read_lock(); 3638 owner = ACCESS_ONCE(event->owner); 3639 /* 3640 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3641 * !owner it means the list deletion is complete and we can indeed 3642 * free this event, otherwise we need to serialize on 3643 * owner->perf_event_mutex. 3644 */ 3645 smp_read_barrier_depends(); 3646 if (owner) { 3647 /* 3648 * Since delayed_put_task_struct() also drops the last 3649 * task reference we can safely take a new reference 3650 * while holding the rcu_read_lock(). 3651 */ 3652 get_task_struct(owner); 3653 } 3654 rcu_read_unlock(); 3655 3656 if (owner) { 3657 /* 3658 * If we're here through perf_event_exit_task() we're already 3659 * holding ctx->mutex which would be an inversion wrt. the 3660 * normal lock order. 3661 * 3662 * However we can safely take this lock because its the child 3663 * ctx->mutex. 3664 */ 3665 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3666 3667 /* 3668 * We have to re-check the event->owner field, if it is cleared 3669 * we raced with perf_event_exit_task(), acquiring the mutex 3670 * ensured they're done, and we can proceed with freeing the 3671 * event. 3672 */ 3673 if (event->owner) 3674 list_del_init(&event->owner_entry); 3675 mutex_unlock(&owner->perf_event_mutex); 3676 put_task_struct(owner); 3677 } 3678 } 3679 3680 static void put_event(struct perf_event *event) 3681 { 3682 struct perf_event_context *ctx; 3683 3684 if (!atomic_long_dec_and_test(&event->refcount)) 3685 return; 3686 3687 if (!is_kernel_event(event)) 3688 perf_remove_from_owner(event); 3689 3690 /* 3691 * There are two ways this annotation is useful: 3692 * 3693 * 1) there is a lock recursion from perf_event_exit_task 3694 * see the comment there. 3695 * 3696 * 2) there is a lock-inversion with mmap_sem through 3697 * perf_event_read_group(), which takes faults while 3698 * holding ctx->mutex, however this is called after 3699 * the last filedesc died, so there is no possibility 3700 * to trigger the AB-BA case. 3701 */ 3702 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING); 3703 WARN_ON_ONCE(ctx->parent_ctx); 3704 perf_remove_from_context(event, true); 3705 perf_event_ctx_unlock(event, ctx); 3706 3707 _free_event(event); 3708 } 3709 3710 int perf_event_release_kernel(struct perf_event *event) 3711 { 3712 put_event(event); 3713 return 0; 3714 } 3715 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3716 3717 /* 3718 * Called when the last reference to the file is gone. 3719 */ 3720 static int perf_release(struct inode *inode, struct file *file) 3721 { 3722 put_event(file->private_data); 3723 return 0; 3724 } 3725 3726 /* 3727 * Remove all orphanes events from the context. 3728 */ 3729 static void orphans_remove_work(struct work_struct *work) 3730 { 3731 struct perf_event_context *ctx; 3732 struct perf_event *event, *tmp; 3733 3734 ctx = container_of(work, struct perf_event_context, 3735 orphans_remove.work); 3736 3737 mutex_lock(&ctx->mutex); 3738 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) { 3739 struct perf_event *parent_event = event->parent; 3740 3741 if (!is_orphaned_child(event)) 3742 continue; 3743 3744 perf_remove_from_context(event, true); 3745 3746 mutex_lock(&parent_event->child_mutex); 3747 list_del_init(&event->child_list); 3748 mutex_unlock(&parent_event->child_mutex); 3749 3750 free_event(event); 3751 put_event(parent_event); 3752 } 3753 3754 raw_spin_lock_irq(&ctx->lock); 3755 ctx->orphans_remove_sched = false; 3756 raw_spin_unlock_irq(&ctx->lock); 3757 mutex_unlock(&ctx->mutex); 3758 3759 put_ctx(ctx); 3760 } 3761 3762 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3763 { 3764 struct perf_event *child; 3765 u64 total = 0; 3766 3767 *enabled = 0; 3768 *running = 0; 3769 3770 mutex_lock(&event->child_mutex); 3771 total += perf_event_read(event); 3772 *enabled += event->total_time_enabled + 3773 atomic64_read(&event->child_total_time_enabled); 3774 *running += event->total_time_running + 3775 atomic64_read(&event->child_total_time_running); 3776 3777 list_for_each_entry(child, &event->child_list, child_list) { 3778 total += perf_event_read(child); 3779 *enabled += child->total_time_enabled; 3780 *running += child->total_time_running; 3781 } 3782 mutex_unlock(&event->child_mutex); 3783 3784 return total; 3785 } 3786 EXPORT_SYMBOL_GPL(perf_event_read_value); 3787 3788 static int perf_event_read_group(struct perf_event *event, 3789 u64 read_format, char __user *buf) 3790 { 3791 struct perf_event *leader = event->group_leader, *sub; 3792 struct perf_event_context *ctx = leader->ctx; 3793 int n = 0, size = 0, ret; 3794 u64 count, enabled, running; 3795 u64 values[5]; 3796 3797 lockdep_assert_held(&ctx->mutex); 3798 3799 count = perf_event_read_value(leader, &enabled, &running); 3800 3801 values[n++] = 1 + leader->nr_siblings; 3802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3803 values[n++] = enabled; 3804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3805 values[n++] = running; 3806 values[n++] = count; 3807 if (read_format & PERF_FORMAT_ID) 3808 values[n++] = primary_event_id(leader); 3809 3810 size = n * sizeof(u64); 3811 3812 if (copy_to_user(buf, values, size)) 3813 return -EFAULT; 3814 3815 ret = size; 3816 3817 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3818 n = 0; 3819 3820 values[n++] = perf_event_read_value(sub, &enabled, &running); 3821 if (read_format & PERF_FORMAT_ID) 3822 values[n++] = primary_event_id(sub); 3823 3824 size = n * sizeof(u64); 3825 3826 if (copy_to_user(buf + ret, values, size)) { 3827 return -EFAULT; 3828 } 3829 3830 ret += size; 3831 } 3832 3833 return ret; 3834 } 3835 3836 static int perf_event_read_one(struct perf_event *event, 3837 u64 read_format, char __user *buf) 3838 { 3839 u64 enabled, running; 3840 u64 values[4]; 3841 int n = 0; 3842 3843 values[n++] = perf_event_read_value(event, &enabled, &running); 3844 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3845 values[n++] = enabled; 3846 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3847 values[n++] = running; 3848 if (read_format & PERF_FORMAT_ID) 3849 values[n++] = primary_event_id(event); 3850 3851 if (copy_to_user(buf, values, n * sizeof(u64))) 3852 return -EFAULT; 3853 3854 return n * sizeof(u64); 3855 } 3856 3857 static bool is_event_hup(struct perf_event *event) 3858 { 3859 bool no_children; 3860 3861 if (event->state != PERF_EVENT_STATE_EXIT) 3862 return false; 3863 3864 mutex_lock(&event->child_mutex); 3865 no_children = list_empty(&event->child_list); 3866 mutex_unlock(&event->child_mutex); 3867 return no_children; 3868 } 3869 3870 /* 3871 * Read the performance event - simple non blocking version for now 3872 */ 3873 static ssize_t 3874 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3875 { 3876 u64 read_format = event->attr.read_format; 3877 int ret; 3878 3879 /* 3880 * Return end-of-file for a read on a event that is in 3881 * error state (i.e. because it was pinned but it couldn't be 3882 * scheduled on to the CPU at some point). 3883 */ 3884 if (event->state == PERF_EVENT_STATE_ERROR) 3885 return 0; 3886 3887 if (count < event->read_size) 3888 return -ENOSPC; 3889 3890 WARN_ON_ONCE(event->ctx->parent_ctx); 3891 if (read_format & PERF_FORMAT_GROUP) 3892 ret = perf_event_read_group(event, read_format, buf); 3893 else 3894 ret = perf_event_read_one(event, read_format, buf); 3895 3896 return ret; 3897 } 3898 3899 static ssize_t 3900 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3901 { 3902 struct perf_event *event = file->private_data; 3903 struct perf_event_context *ctx; 3904 int ret; 3905 3906 ctx = perf_event_ctx_lock(event); 3907 ret = perf_read_hw(event, buf, count); 3908 perf_event_ctx_unlock(event, ctx); 3909 3910 return ret; 3911 } 3912 3913 static unsigned int perf_poll(struct file *file, poll_table *wait) 3914 { 3915 struct perf_event *event = file->private_data; 3916 struct ring_buffer *rb; 3917 unsigned int events = POLLHUP; 3918 3919 poll_wait(file, &event->waitq, wait); 3920 3921 if (is_event_hup(event)) 3922 return events; 3923 3924 /* 3925 * Pin the event->rb by taking event->mmap_mutex; otherwise 3926 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3927 */ 3928 mutex_lock(&event->mmap_mutex); 3929 rb = event->rb; 3930 if (rb) 3931 events = atomic_xchg(&rb->poll, 0); 3932 mutex_unlock(&event->mmap_mutex); 3933 return events; 3934 } 3935 3936 static void _perf_event_reset(struct perf_event *event) 3937 { 3938 (void)perf_event_read(event); 3939 local64_set(&event->count, 0); 3940 perf_event_update_userpage(event); 3941 } 3942 3943 /* 3944 * Holding the top-level event's child_mutex means that any 3945 * descendant process that has inherited this event will block 3946 * in sync_child_event if it goes to exit, thus satisfying the 3947 * task existence requirements of perf_event_enable/disable. 3948 */ 3949 static void perf_event_for_each_child(struct perf_event *event, 3950 void (*func)(struct perf_event *)) 3951 { 3952 struct perf_event *child; 3953 3954 WARN_ON_ONCE(event->ctx->parent_ctx); 3955 3956 mutex_lock(&event->child_mutex); 3957 func(event); 3958 list_for_each_entry(child, &event->child_list, child_list) 3959 func(child); 3960 mutex_unlock(&event->child_mutex); 3961 } 3962 3963 static void perf_event_for_each(struct perf_event *event, 3964 void (*func)(struct perf_event *)) 3965 { 3966 struct perf_event_context *ctx = event->ctx; 3967 struct perf_event *sibling; 3968 3969 lockdep_assert_held(&ctx->mutex); 3970 3971 event = event->group_leader; 3972 3973 perf_event_for_each_child(event, func); 3974 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3975 perf_event_for_each_child(sibling, func); 3976 } 3977 3978 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3979 { 3980 struct perf_event_context *ctx = event->ctx; 3981 int ret = 0, active; 3982 u64 value; 3983 3984 if (!is_sampling_event(event)) 3985 return -EINVAL; 3986 3987 if (copy_from_user(&value, arg, sizeof(value))) 3988 return -EFAULT; 3989 3990 if (!value) 3991 return -EINVAL; 3992 3993 raw_spin_lock_irq(&ctx->lock); 3994 if (event->attr.freq) { 3995 if (value > sysctl_perf_event_sample_rate) { 3996 ret = -EINVAL; 3997 goto unlock; 3998 } 3999 4000 event->attr.sample_freq = value; 4001 } else { 4002 event->attr.sample_period = value; 4003 event->hw.sample_period = value; 4004 } 4005 4006 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4007 if (active) { 4008 perf_pmu_disable(ctx->pmu); 4009 event->pmu->stop(event, PERF_EF_UPDATE); 4010 } 4011 4012 local64_set(&event->hw.period_left, 0); 4013 4014 if (active) { 4015 event->pmu->start(event, PERF_EF_RELOAD); 4016 perf_pmu_enable(ctx->pmu); 4017 } 4018 4019 unlock: 4020 raw_spin_unlock_irq(&ctx->lock); 4021 4022 return ret; 4023 } 4024 4025 static const struct file_operations perf_fops; 4026 4027 static inline int perf_fget_light(int fd, struct fd *p) 4028 { 4029 struct fd f = fdget(fd); 4030 if (!f.file) 4031 return -EBADF; 4032 4033 if (f.file->f_op != &perf_fops) { 4034 fdput(f); 4035 return -EBADF; 4036 } 4037 *p = f; 4038 return 0; 4039 } 4040 4041 static int perf_event_set_output(struct perf_event *event, 4042 struct perf_event *output_event); 4043 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4044 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4045 4046 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4047 { 4048 void (*func)(struct perf_event *); 4049 u32 flags = arg; 4050 4051 switch (cmd) { 4052 case PERF_EVENT_IOC_ENABLE: 4053 func = _perf_event_enable; 4054 break; 4055 case PERF_EVENT_IOC_DISABLE: 4056 func = _perf_event_disable; 4057 break; 4058 case PERF_EVENT_IOC_RESET: 4059 func = _perf_event_reset; 4060 break; 4061 4062 case PERF_EVENT_IOC_REFRESH: 4063 return _perf_event_refresh(event, arg); 4064 4065 case PERF_EVENT_IOC_PERIOD: 4066 return perf_event_period(event, (u64 __user *)arg); 4067 4068 case PERF_EVENT_IOC_ID: 4069 { 4070 u64 id = primary_event_id(event); 4071 4072 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4073 return -EFAULT; 4074 return 0; 4075 } 4076 4077 case PERF_EVENT_IOC_SET_OUTPUT: 4078 { 4079 int ret; 4080 if (arg != -1) { 4081 struct perf_event *output_event; 4082 struct fd output; 4083 ret = perf_fget_light(arg, &output); 4084 if (ret) 4085 return ret; 4086 output_event = output.file->private_data; 4087 ret = perf_event_set_output(event, output_event); 4088 fdput(output); 4089 } else { 4090 ret = perf_event_set_output(event, NULL); 4091 } 4092 return ret; 4093 } 4094 4095 case PERF_EVENT_IOC_SET_FILTER: 4096 return perf_event_set_filter(event, (void __user *)arg); 4097 4098 case PERF_EVENT_IOC_SET_BPF: 4099 return perf_event_set_bpf_prog(event, arg); 4100 4101 default: 4102 return -ENOTTY; 4103 } 4104 4105 if (flags & PERF_IOC_FLAG_GROUP) 4106 perf_event_for_each(event, func); 4107 else 4108 perf_event_for_each_child(event, func); 4109 4110 return 0; 4111 } 4112 4113 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4114 { 4115 struct perf_event *event = file->private_data; 4116 struct perf_event_context *ctx; 4117 long ret; 4118 4119 ctx = perf_event_ctx_lock(event); 4120 ret = _perf_ioctl(event, cmd, arg); 4121 perf_event_ctx_unlock(event, ctx); 4122 4123 return ret; 4124 } 4125 4126 #ifdef CONFIG_COMPAT 4127 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4128 unsigned long arg) 4129 { 4130 switch (_IOC_NR(cmd)) { 4131 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4132 case _IOC_NR(PERF_EVENT_IOC_ID): 4133 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4134 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4135 cmd &= ~IOCSIZE_MASK; 4136 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4137 } 4138 break; 4139 } 4140 return perf_ioctl(file, cmd, arg); 4141 } 4142 #else 4143 # define perf_compat_ioctl NULL 4144 #endif 4145 4146 int perf_event_task_enable(void) 4147 { 4148 struct perf_event_context *ctx; 4149 struct perf_event *event; 4150 4151 mutex_lock(¤t->perf_event_mutex); 4152 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4153 ctx = perf_event_ctx_lock(event); 4154 perf_event_for_each_child(event, _perf_event_enable); 4155 perf_event_ctx_unlock(event, ctx); 4156 } 4157 mutex_unlock(¤t->perf_event_mutex); 4158 4159 return 0; 4160 } 4161 4162 int perf_event_task_disable(void) 4163 { 4164 struct perf_event_context *ctx; 4165 struct perf_event *event; 4166 4167 mutex_lock(¤t->perf_event_mutex); 4168 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4169 ctx = perf_event_ctx_lock(event); 4170 perf_event_for_each_child(event, _perf_event_disable); 4171 perf_event_ctx_unlock(event, ctx); 4172 } 4173 mutex_unlock(¤t->perf_event_mutex); 4174 4175 return 0; 4176 } 4177 4178 static int perf_event_index(struct perf_event *event) 4179 { 4180 if (event->hw.state & PERF_HES_STOPPED) 4181 return 0; 4182 4183 if (event->state != PERF_EVENT_STATE_ACTIVE) 4184 return 0; 4185 4186 return event->pmu->event_idx(event); 4187 } 4188 4189 static void calc_timer_values(struct perf_event *event, 4190 u64 *now, 4191 u64 *enabled, 4192 u64 *running) 4193 { 4194 u64 ctx_time; 4195 4196 *now = perf_clock(); 4197 ctx_time = event->shadow_ctx_time + *now; 4198 *enabled = ctx_time - event->tstamp_enabled; 4199 *running = ctx_time - event->tstamp_running; 4200 } 4201 4202 static void perf_event_init_userpage(struct perf_event *event) 4203 { 4204 struct perf_event_mmap_page *userpg; 4205 struct ring_buffer *rb; 4206 4207 rcu_read_lock(); 4208 rb = rcu_dereference(event->rb); 4209 if (!rb) 4210 goto unlock; 4211 4212 userpg = rb->user_page; 4213 4214 /* Allow new userspace to detect that bit 0 is deprecated */ 4215 userpg->cap_bit0_is_deprecated = 1; 4216 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4217 userpg->data_offset = PAGE_SIZE; 4218 userpg->data_size = perf_data_size(rb); 4219 4220 unlock: 4221 rcu_read_unlock(); 4222 } 4223 4224 void __weak arch_perf_update_userpage( 4225 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4226 { 4227 } 4228 4229 /* 4230 * Callers need to ensure there can be no nesting of this function, otherwise 4231 * the seqlock logic goes bad. We can not serialize this because the arch 4232 * code calls this from NMI context. 4233 */ 4234 void perf_event_update_userpage(struct perf_event *event) 4235 { 4236 struct perf_event_mmap_page *userpg; 4237 struct ring_buffer *rb; 4238 u64 enabled, running, now; 4239 4240 rcu_read_lock(); 4241 rb = rcu_dereference(event->rb); 4242 if (!rb) 4243 goto unlock; 4244 4245 /* 4246 * compute total_time_enabled, total_time_running 4247 * based on snapshot values taken when the event 4248 * was last scheduled in. 4249 * 4250 * we cannot simply called update_context_time() 4251 * because of locking issue as we can be called in 4252 * NMI context 4253 */ 4254 calc_timer_values(event, &now, &enabled, &running); 4255 4256 userpg = rb->user_page; 4257 /* 4258 * Disable preemption so as to not let the corresponding user-space 4259 * spin too long if we get preempted. 4260 */ 4261 preempt_disable(); 4262 ++userpg->lock; 4263 barrier(); 4264 userpg->index = perf_event_index(event); 4265 userpg->offset = perf_event_count(event); 4266 if (userpg->index) 4267 userpg->offset -= local64_read(&event->hw.prev_count); 4268 4269 userpg->time_enabled = enabled + 4270 atomic64_read(&event->child_total_time_enabled); 4271 4272 userpg->time_running = running + 4273 atomic64_read(&event->child_total_time_running); 4274 4275 arch_perf_update_userpage(event, userpg, now); 4276 4277 barrier(); 4278 ++userpg->lock; 4279 preempt_enable(); 4280 unlock: 4281 rcu_read_unlock(); 4282 } 4283 4284 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4285 { 4286 struct perf_event *event = vma->vm_file->private_data; 4287 struct ring_buffer *rb; 4288 int ret = VM_FAULT_SIGBUS; 4289 4290 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4291 if (vmf->pgoff == 0) 4292 ret = 0; 4293 return ret; 4294 } 4295 4296 rcu_read_lock(); 4297 rb = rcu_dereference(event->rb); 4298 if (!rb) 4299 goto unlock; 4300 4301 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4302 goto unlock; 4303 4304 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4305 if (!vmf->page) 4306 goto unlock; 4307 4308 get_page(vmf->page); 4309 vmf->page->mapping = vma->vm_file->f_mapping; 4310 vmf->page->index = vmf->pgoff; 4311 4312 ret = 0; 4313 unlock: 4314 rcu_read_unlock(); 4315 4316 return ret; 4317 } 4318 4319 static void ring_buffer_attach(struct perf_event *event, 4320 struct ring_buffer *rb) 4321 { 4322 struct ring_buffer *old_rb = NULL; 4323 unsigned long flags; 4324 4325 if (event->rb) { 4326 /* 4327 * Should be impossible, we set this when removing 4328 * event->rb_entry and wait/clear when adding event->rb_entry. 4329 */ 4330 WARN_ON_ONCE(event->rcu_pending); 4331 4332 old_rb = event->rb; 4333 event->rcu_batches = get_state_synchronize_rcu(); 4334 event->rcu_pending = 1; 4335 4336 spin_lock_irqsave(&old_rb->event_lock, flags); 4337 list_del_rcu(&event->rb_entry); 4338 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4339 } 4340 4341 if (event->rcu_pending && rb) { 4342 cond_synchronize_rcu(event->rcu_batches); 4343 event->rcu_pending = 0; 4344 } 4345 4346 if (rb) { 4347 spin_lock_irqsave(&rb->event_lock, flags); 4348 list_add_rcu(&event->rb_entry, &rb->event_list); 4349 spin_unlock_irqrestore(&rb->event_lock, flags); 4350 } 4351 4352 rcu_assign_pointer(event->rb, rb); 4353 4354 if (old_rb) { 4355 ring_buffer_put(old_rb); 4356 /* 4357 * Since we detached before setting the new rb, so that we 4358 * could attach the new rb, we could have missed a wakeup. 4359 * Provide it now. 4360 */ 4361 wake_up_all(&event->waitq); 4362 } 4363 } 4364 4365 static void ring_buffer_wakeup(struct perf_event *event) 4366 { 4367 struct ring_buffer *rb; 4368 4369 rcu_read_lock(); 4370 rb = rcu_dereference(event->rb); 4371 if (rb) { 4372 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4373 wake_up_all(&event->waitq); 4374 } 4375 rcu_read_unlock(); 4376 } 4377 4378 static void rb_free_rcu(struct rcu_head *rcu_head) 4379 { 4380 struct ring_buffer *rb; 4381 4382 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 4383 rb_free(rb); 4384 } 4385 4386 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4387 { 4388 struct ring_buffer *rb; 4389 4390 rcu_read_lock(); 4391 rb = rcu_dereference(event->rb); 4392 if (rb) { 4393 if (!atomic_inc_not_zero(&rb->refcount)) 4394 rb = NULL; 4395 } 4396 rcu_read_unlock(); 4397 4398 return rb; 4399 } 4400 4401 void ring_buffer_put(struct ring_buffer *rb) 4402 { 4403 if (!atomic_dec_and_test(&rb->refcount)) 4404 return; 4405 4406 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4407 4408 call_rcu(&rb->rcu_head, rb_free_rcu); 4409 } 4410 4411 static void perf_mmap_open(struct vm_area_struct *vma) 4412 { 4413 struct perf_event *event = vma->vm_file->private_data; 4414 4415 atomic_inc(&event->mmap_count); 4416 atomic_inc(&event->rb->mmap_count); 4417 4418 if (vma->vm_pgoff) 4419 atomic_inc(&event->rb->aux_mmap_count); 4420 4421 if (event->pmu->event_mapped) 4422 event->pmu->event_mapped(event); 4423 } 4424 4425 /* 4426 * A buffer can be mmap()ed multiple times; either directly through the same 4427 * event, or through other events by use of perf_event_set_output(). 4428 * 4429 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4430 * the buffer here, where we still have a VM context. This means we need 4431 * to detach all events redirecting to us. 4432 */ 4433 static void perf_mmap_close(struct vm_area_struct *vma) 4434 { 4435 struct perf_event *event = vma->vm_file->private_data; 4436 4437 struct ring_buffer *rb = ring_buffer_get(event); 4438 struct user_struct *mmap_user = rb->mmap_user; 4439 int mmap_locked = rb->mmap_locked; 4440 unsigned long size = perf_data_size(rb); 4441 4442 if (event->pmu->event_unmapped) 4443 event->pmu->event_unmapped(event); 4444 4445 /* 4446 * rb->aux_mmap_count will always drop before rb->mmap_count and 4447 * event->mmap_count, so it is ok to use event->mmap_mutex to 4448 * serialize with perf_mmap here. 4449 */ 4450 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4451 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4452 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4453 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4454 4455 rb_free_aux(rb); 4456 mutex_unlock(&event->mmap_mutex); 4457 } 4458 4459 atomic_dec(&rb->mmap_count); 4460 4461 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4462 goto out_put; 4463 4464 ring_buffer_attach(event, NULL); 4465 mutex_unlock(&event->mmap_mutex); 4466 4467 /* If there's still other mmap()s of this buffer, we're done. */ 4468 if (atomic_read(&rb->mmap_count)) 4469 goto out_put; 4470 4471 /* 4472 * No other mmap()s, detach from all other events that might redirect 4473 * into the now unreachable buffer. Somewhat complicated by the 4474 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4475 */ 4476 again: 4477 rcu_read_lock(); 4478 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4479 if (!atomic_long_inc_not_zero(&event->refcount)) { 4480 /* 4481 * This event is en-route to free_event() which will 4482 * detach it and remove it from the list. 4483 */ 4484 continue; 4485 } 4486 rcu_read_unlock(); 4487 4488 mutex_lock(&event->mmap_mutex); 4489 /* 4490 * Check we didn't race with perf_event_set_output() which can 4491 * swizzle the rb from under us while we were waiting to 4492 * acquire mmap_mutex. 4493 * 4494 * If we find a different rb; ignore this event, a next 4495 * iteration will no longer find it on the list. We have to 4496 * still restart the iteration to make sure we're not now 4497 * iterating the wrong list. 4498 */ 4499 if (event->rb == rb) 4500 ring_buffer_attach(event, NULL); 4501 4502 mutex_unlock(&event->mmap_mutex); 4503 put_event(event); 4504 4505 /* 4506 * Restart the iteration; either we're on the wrong list or 4507 * destroyed its integrity by doing a deletion. 4508 */ 4509 goto again; 4510 } 4511 rcu_read_unlock(); 4512 4513 /* 4514 * It could be there's still a few 0-ref events on the list; they'll 4515 * get cleaned up by free_event() -- they'll also still have their 4516 * ref on the rb and will free it whenever they are done with it. 4517 * 4518 * Aside from that, this buffer is 'fully' detached and unmapped, 4519 * undo the VM accounting. 4520 */ 4521 4522 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4523 vma->vm_mm->pinned_vm -= mmap_locked; 4524 free_uid(mmap_user); 4525 4526 out_put: 4527 ring_buffer_put(rb); /* could be last */ 4528 } 4529 4530 static const struct vm_operations_struct perf_mmap_vmops = { 4531 .open = perf_mmap_open, 4532 .close = perf_mmap_close, /* non mergable */ 4533 .fault = perf_mmap_fault, 4534 .page_mkwrite = perf_mmap_fault, 4535 }; 4536 4537 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4538 { 4539 struct perf_event *event = file->private_data; 4540 unsigned long user_locked, user_lock_limit; 4541 struct user_struct *user = current_user(); 4542 unsigned long locked, lock_limit; 4543 struct ring_buffer *rb = NULL; 4544 unsigned long vma_size; 4545 unsigned long nr_pages; 4546 long user_extra = 0, extra = 0; 4547 int ret = 0, flags = 0; 4548 4549 /* 4550 * Don't allow mmap() of inherited per-task counters. This would 4551 * create a performance issue due to all children writing to the 4552 * same rb. 4553 */ 4554 if (event->cpu == -1 && event->attr.inherit) 4555 return -EINVAL; 4556 4557 if (!(vma->vm_flags & VM_SHARED)) 4558 return -EINVAL; 4559 4560 vma_size = vma->vm_end - vma->vm_start; 4561 4562 if (vma->vm_pgoff == 0) { 4563 nr_pages = (vma_size / PAGE_SIZE) - 1; 4564 } else { 4565 /* 4566 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4567 * mapped, all subsequent mappings should have the same size 4568 * and offset. Must be above the normal perf buffer. 4569 */ 4570 u64 aux_offset, aux_size; 4571 4572 if (!event->rb) 4573 return -EINVAL; 4574 4575 nr_pages = vma_size / PAGE_SIZE; 4576 4577 mutex_lock(&event->mmap_mutex); 4578 ret = -EINVAL; 4579 4580 rb = event->rb; 4581 if (!rb) 4582 goto aux_unlock; 4583 4584 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4585 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4586 4587 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4588 goto aux_unlock; 4589 4590 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4591 goto aux_unlock; 4592 4593 /* already mapped with a different offset */ 4594 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4595 goto aux_unlock; 4596 4597 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4598 goto aux_unlock; 4599 4600 /* already mapped with a different size */ 4601 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4602 goto aux_unlock; 4603 4604 if (!is_power_of_2(nr_pages)) 4605 goto aux_unlock; 4606 4607 if (!atomic_inc_not_zero(&rb->mmap_count)) 4608 goto aux_unlock; 4609 4610 if (rb_has_aux(rb)) { 4611 atomic_inc(&rb->aux_mmap_count); 4612 ret = 0; 4613 goto unlock; 4614 } 4615 4616 atomic_set(&rb->aux_mmap_count, 1); 4617 user_extra = nr_pages; 4618 4619 goto accounting; 4620 } 4621 4622 /* 4623 * If we have rb pages ensure they're a power-of-two number, so we 4624 * can do bitmasks instead of modulo. 4625 */ 4626 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4627 return -EINVAL; 4628 4629 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4630 return -EINVAL; 4631 4632 WARN_ON_ONCE(event->ctx->parent_ctx); 4633 again: 4634 mutex_lock(&event->mmap_mutex); 4635 if (event->rb) { 4636 if (event->rb->nr_pages != nr_pages) { 4637 ret = -EINVAL; 4638 goto unlock; 4639 } 4640 4641 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4642 /* 4643 * Raced against perf_mmap_close() through 4644 * perf_event_set_output(). Try again, hope for better 4645 * luck. 4646 */ 4647 mutex_unlock(&event->mmap_mutex); 4648 goto again; 4649 } 4650 4651 goto unlock; 4652 } 4653 4654 user_extra = nr_pages + 1; 4655 4656 accounting: 4657 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4658 4659 /* 4660 * Increase the limit linearly with more CPUs: 4661 */ 4662 user_lock_limit *= num_online_cpus(); 4663 4664 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4665 4666 if (user_locked > user_lock_limit) 4667 extra = user_locked - user_lock_limit; 4668 4669 lock_limit = rlimit(RLIMIT_MEMLOCK); 4670 lock_limit >>= PAGE_SHIFT; 4671 locked = vma->vm_mm->pinned_vm + extra; 4672 4673 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4674 !capable(CAP_IPC_LOCK)) { 4675 ret = -EPERM; 4676 goto unlock; 4677 } 4678 4679 WARN_ON(!rb && event->rb); 4680 4681 if (vma->vm_flags & VM_WRITE) 4682 flags |= RING_BUFFER_WRITABLE; 4683 4684 if (!rb) { 4685 rb = rb_alloc(nr_pages, 4686 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4687 event->cpu, flags); 4688 4689 if (!rb) { 4690 ret = -ENOMEM; 4691 goto unlock; 4692 } 4693 4694 atomic_set(&rb->mmap_count, 1); 4695 rb->mmap_user = get_current_user(); 4696 rb->mmap_locked = extra; 4697 4698 ring_buffer_attach(event, rb); 4699 4700 perf_event_init_userpage(event); 4701 perf_event_update_userpage(event); 4702 } else { 4703 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4704 event->attr.aux_watermark, flags); 4705 if (!ret) 4706 rb->aux_mmap_locked = extra; 4707 } 4708 4709 unlock: 4710 if (!ret) { 4711 atomic_long_add(user_extra, &user->locked_vm); 4712 vma->vm_mm->pinned_vm += extra; 4713 4714 atomic_inc(&event->mmap_count); 4715 } else if (rb) { 4716 atomic_dec(&rb->mmap_count); 4717 } 4718 aux_unlock: 4719 mutex_unlock(&event->mmap_mutex); 4720 4721 /* 4722 * Since pinned accounting is per vm we cannot allow fork() to copy our 4723 * vma. 4724 */ 4725 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4726 vma->vm_ops = &perf_mmap_vmops; 4727 4728 if (event->pmu->event_mapped) 4729 event->pmu->event_mapped(event); 4730 4731 return ret; 4732 } 4733 4734 static int perf_fasync(int fd, struct file *filp, int on) 4735 { 4736 struct inode *inode = file_inode(filp); 4737 struct perf_event *event = filp->private_data; 4738 int retval; 4739 4740 mutex_lock(&inode->i_mutex); 4741 retval = fasync_helper(fd, filp, on, &event->fasync); 4742 mutex_unlock(&inode->i_mutex); 4743 4744 if (retval < 0) 4745 return retval; 4746 4747 return 0; 4748 } 4749 4750 static const struct file_operations perf_fops = { 4751 .llseek = no_llseek, 4752 .release = perf_release, 4753 .read = perf_read, 4754 .poll = perf_poll, 4755 .unlocked_ioctl = perf_ioctl, 4756 .compat_ioctl = perf_compat_ioctl, 4757 .mmap = perf_mmap, 4758 .fasync = perf_fasync, 4759 }; 4760 4761 /* 4762 * Perf event wakeup 4763 * 4764 * If there's data, ensure we set the poll() state and publish everything 4765 * to user-space before waking everybody up. 4766 */ 4767 4768 void perf_event_wakeup(struct perf_event *event) 4769 { 4770 ring_buffer_wakeup(event); 4771 4772 if (event->pending_kill) { 4773 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4774 event->pending_kill = 0; 4775 } 4776 } 4777 4778 static void perf_pending_event(struct irq_work *entry) 4779 { 4780 struct perf_event *event = container_of(entry, 4781 struct perf_event, pending); 4782 int rctx; 4783 4784 rctx = perf_swevent_get_recursion_context(); 4785 /* 4786 * If we 'fail' here, that's OK, it means recursion is already disabled 4787 * and we won't recurse 'further'. 4788 */ 4789 4790 if (event->pending_disable) { 4791 event->pending_disable = 0; 4792 __perf_event_disable(event); 4793 } 4794 4795 if (event->pending_wakeup) { 4796 event->pending_wakeup = 0; 4797 perf_event_wakeup(event); 4798 } 4799 4800 if (rctx >= 0) 4801 perf_swevent_put_recursion_context(rctx); 4802 } 4803 4804 /* 4805 * We assume there is only KVM supporting the callbacks. 4806 * Later on, we might change it to a list if there is 4807 * another virtualization implementation supporting the callbacks. 4808 */ 4809 struct perf_guest_info_callbacks *perf_guest_cbs; 4810 4811 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4812 { 4813 perf_guest_cbs = cbs; 4814 return 0; 4815 } 4816 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4817 4818 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4819 { 4820 perf_guest_cbs = NULL; 4821 return 0; 4822 } 4823 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4824 4825 static void 4826 perf_output_sample_regs(struct perf_output_handle *handle, 4827 struct pt_regs *regs, u64 mask) 4828 { 4829 int bit; 4830 4831 for_each_set_bit(bit, (const unsigned long *) &mask, 4832 sizeof(mask) * BITS_PER_BYTE) { 4833 u64 val; 4834 4835 val = perf_reg_value(regs, bit); 4836 perf_output_put(handle, val); 4837 } 4838 } 4839 4840 static void perf_sample_regs_user(struct perf_regs *regs_user, 4841 struct pt_regs *regs, 4842 struct pt_regs *regs_user_copy) 4843 { 4844 if (user_mode(regs)) { 4845 regs_user->abi = perf_reg_abi(current); 4846 regs_user->regs = regs; 4847 } else if (current->mm) { 4848 perf_get_regs_user(regs_user, regs, regs_user_copy); 4849 } else { 4850 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 4851 regs_user->regs = NULL; 4852 } 4853 } 4854 4855 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 4856 struct pt_regs *regs) 4857 { 4858 regs_intr->regs = regs; 4859 regs_intr->abi = perf_reg_abi(current); 4860 } 4861 4862 4863 /* 4864 * Get remaining task size from user stack pointer. 4865 * 4866 * It'd be better to take stack vma map and limit this more 4867 * precisly, but there's no way to get it safely under interrupt, 4868 * so using TASK_SIZE as limit. 4869 */ 4870 static u64 perf_ustack_task_size(struct pt_regs *regs) 4871 { 4872 unsigned long addr = perf_user_stack_pointer(regs); 4873 4874 if (!addr || addr >= TASK_SIZE) 4875 return 0; 4876 4877 return TASK_SIZE - addr; 4878 } 4879 4880 static u16 4881 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4882 struct pt_regs *regs) 4883 { 4884 u64 task_size; 4885 4886 /* No regs, no stack pointer, no dump. */ 4887 if (!regs) 4888 return 0; 4889 4890 /* 4891 * Check if we fit in with the requested stack size into the: 4892 * - TASK_SIZE 4893 * If we don't, we limit the size to the TASK_SIZE. 4894 * 4895 * - remaining sample size 4896 * If we don't, we customize the stack size to 4897 * fit in to the remaining sample size. 4898 */ 4899 4900 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4901 stack_size = min(stack_size, (u16) task_size); 4902 4903 /* Current header size plus static size and dynamic size. */ 4904 header_size += 2 * sizeof(u64); 4905 4906 /* Do we fit in with the current stack dump size? */ 4907 if ((u16) (header_size + stack_size) < header_size) { 4908 /* 4909 * If we overflow the maximum size for the sample, 4910 * we customize the stack dump size to fit in. 4911 */ 4912 stack_size = USHRT_MAX - header_size - sizeof(u64); 4913 stack_size = round_up(stack_size, sizeof(u64)); 4914 } 4915 4916 return stack_size; 4917 } 4918 4919 static void 4920 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4921 struct pt_regs *regs) 4922 { 4923 /* Case of a kernel thread, nothing to dump */ 4924 if (!regs) { 4925 u64 size = 0; 4926 perf_output_put(handle, size); 4927 } else { 4928 unsigned long sp; 4929 unsigned int rem; 4930 u64 dyn_size; 4931 4932 /* 4933 * We dump: 4934 * static size 4935 * - the size requested by user or the best one we can fit 4936 * in to the sample max size 4937 * data 4938 * - user stack dump data 4939 * dynamic size 4940 * - the actual dumped size 4941 */ 4942 4943 /* Static size. */ 4944 perf_output_put(handle, dump_size); 4945 4946 /* Data. */ 4947 sp = perf_user_stack_pointer(regs); 4948 rem = __output_copy_user(handle, (void *) sp, dump_size); 4949 dyn_size = dump_size - rem; 4950 4951 perf_output_skip(handle, rem); 4952 4953 /* Dynamic size. */ 4954 perf_output_put(handle, dyn_size); 4955 } 4956 } 4957 4958 static void __perf_event_header__init_id(struct perf_event_header *header, 4959 struct perf_sample_data *data, 4960 struct perf_event *event) 4961 { 4962 u64 sample_type = event->attr.sample_type; 4963 4964 data->type = sample_type; 4965 header->size += event->id_header_size; 4966 4967 if (sample_type & PERF_SAMPLE_TID) { 4968 /* namespace issues */ 4969 data->tid_entry.pid = perf_event_pid(event, current); 4970 data->tid_entry.tid = perf_event_tid(event, current); 4971 } 4972 4973 if (sample_type & PERF_SAMPLE_TIME) 4974 data->time = perf_event_clock(event); 4975 4976 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4977 data->id = primary_event_id(event); 4978 4979 if (sample_type & PERF_SAMPLE_STREAM_ID) 4980 data->stream_id = event->id; 4981 4982 if (sample_type & PERF_SAMPLE_CPU) { 4983 data->cpu_entry.cpu = raw_smp_processor_id(); 4984 data->cpu_entry.reserved = 0; 4985 } 4986 } 4987 4988 void perf_event_header__init_id(struct perf_event_header *header, 4989 struct perf_sample_data *data, 4990 struct perf_event *event) 4991 { 4992 if (event->attr.sample_id_all) 4993 __perf_event_header__init_id(header, data, event); 4994 } 4995 4996 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4997 struct perf_sample_data *data) 4998 { 4999 u64 sample_type = data->type; 5000 5001 if (sample_type & PERF_SAMPLE_TID) 5002 perf_output_put(handle, data->tid_entry); 5003 5004 if (sample_type & PERF_SAMPLE_TIME) 5005 perf_output_put(handle, data->time); 5006 5007 if (sample_type & PERF_SAMPLE_ID) 5008 perf_output_put(handle, data->id); 5009 5010 if (sample_type & PERF_SAMPLE_STREAM_ID) 5011 perf_output_put(handle, data->stream_id); 5012 5013 if (sample_type & PERF_SAMPLE_CPU) 5014 perf_output_put(handle, data->cpu_entry); 5015 5016 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5017 perf_output_put(handle, data->id); 5018 } 5019 5020 void perf_event__output_id_sample(struct perf_event *event, 5021 struct perf_output_handle *handle, 5022 struct perf_sample_data *sample) 5023 { 5024 if (event->attr.sample_id_all) 5025 __perf_event__output_id_sample(handle, sample); 5026 } 5027 5028 static void perf_output_read_one(struct perf_output_handle *handle, 5029 struct perf_event *event, 5030 u64 enabled, u64 running) 5031 { 5032 u64 read_format = event->attr.read_format; 5033 u64 values[4]; 5034 int n = 0; 5035 5036 values[n++] = perf_event_count(event); 5037 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5038 values[n++] = enabled + 5039 atomic64_read(&event->child_total_time_enabled); 5040 } 5041 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5042 values[n++] = running + 5043 atomic64_read(&event->child_total_time_running); 5044 } 5045 if (read_format & PERF_FORMAT_ID) 5046 values[n++] = primary_event_id(event); 5047 5048 __output_copy(handle, values, n * sizeof(u64)); 5049 } 5050 5051 /* 5052 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5053 */ 5054 static void perf_output_read_group(struct perf_output_handle *handle, 5055 struct perf_event *event, 5056 u64 enabled, u64 running) 5057 { 5058 struct perf_event *leader = event->group_leader, *sub; 5059 u64 read_format = event->attr.read_format; 5060 u64 values[5]; 5061 int n = 0; 5062 5063 values[n++] = 1 + leader->nr_siblings; 5064 5065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5066 values[n++] = enabled; 5067 5068 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5069 values[n++] = running; 5070 5071 if (leader != event) 5072 leader->pmu->read(leader); 5073 5074 values[n++] = perf_event_count(leader); 5075 if (read_format & PERF_FORMAT_ID) 5076 values[n++] = primary_event_id(leader); 5077 5078 __output_copy(handle, values, n * sizeof(u64)); 5079 5080 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5081 n = 0; 5082 5083 if ((sub != event) && 5084 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5085 sub->pmu->read(sub); 5086 5087 values[n++] = perf_event_count(sub); 5088 if (read_format & PERF_FORMAT_ID) 5089 values[n++] = primary_event_id(sub); 5090 5091 __output_copy(handle, values, n * sizeof(u64)); 5092 } 5093 } 5094 5095 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5096 PERF_FORMAT_TOTAL_TIME_RUNNING) 5097 5098 static void perf_output_read(struct perf_output_handle *handle, 5099 struct perf_event *event) 5100 { 5101 u64 enabled = 0, running = 0, now; 5102 u64 read_format = event->attr.read_format; 5103 5104 /* 5105 * compute total_time_enabled, total_time_running 5106 * based on snapshot values taken when the event 5107 * was last scheduled in. 5108 * 5109 * we cannot simply called update_context_time() 5110 * because of locking issue as we are called in 5111 * NMI context 5112 */ 5113 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5114 calc_timer_values(event, &now, &enabled, &running); 5115 5116 if (event->attr.read_format & PERF_FORMAT_GROUP) 5117 perf_output_read_group(handle, event, enabled, running); 5118 else 5119 perf_output_read_one(handle, event, enabled, running); 5120 } 5121 5122 void perf_output_sample(struct perf_output_handle *handle, 5123 struct perf_event_header *header, 5124 struct perf_sample_data *data, 5125 struct perf_event *event) 5126 { 5127 u64 sample_type = data->type; 5128 5129 perf_output_put(handle, *header); 5130 5131 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5132 perf_output_put(handle, data->id); 5133 5134 if (sample_type & PERF_SAMPLE_IP) 5135 perf_output_put(handle, data->ip); 5136 5137 if (sample_type & PERF_SAMPLE_TID) 5138 perf_output_put(handle, data->tid_entry); 5139 5140 if (sample_type & PERF_SAMPLE_TIME) 5141 perf_output_put(handle, data->time); 5142 5143 if (sample_type & PERF_SAMPLE_ADDR) 5144 perf_output_put(handle, data->addr); 5145 5146 if (sample_type & PERF_SAMPLE_ID) 5147 perf_output_put(handle, data->id); 5148 5149 if (sample_type & PERF_SAMPLE_STREAM_ID) 5150 perf_output_put(handle, data->stream_id); 5151 5152 if (sample_type & PERF_SAMPLE_CPU) 5153 perf_output_put(handle, data->cpu_entry); 5154 5155 if (sample_type & PERF_SAMPLE_PERIOD) 5156 perf_output_put(handle, data->period); 5157 5158 if (sample_type & PERF_SAMPLE_READ) 5159 perf_output_read(handle, event); 5160 5161 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5162 if (data->callchain) { 5163 int size = 1; 5164 5165 if (data->callchain) 5166 size += data->callchain->nr; 5167 5168 size *= sizeof(u64); 5169 5170 __output_copy(handle, data->callchain, size); 5171 } else { 5172 u64 nr = 0; 5173 perf_output_put(handle, nr); 5174 } 5175 } 5176 5177 if (sample_type & PERF_SAMPLE_RAW) { 5178 if (data->raw) { 5179 perf_output_put(handle, data->raw->size); 5180 __output_copy(handle, data->raw->data, 5181 data->raw->size); 5182 } else { 5183 struct { 5184 u32 size; 5185 u32 data; 5186 } raw = { 5187 .size = sizeof(u32), 5188 .data = 0, 5189 }; 5190 perf_output_put(handle, raw); 5191 } 5192 } 5193 5194 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5195 if (data->br_stack) { 5196 size_t size; 5197 5198 size = data->br_stack->nr 5199 * sizeof(struct perf_branch_entry); 5200 5201 perf_output_put(handle, data->br_stack->nr); 5202 perf_output_copy(handle, data->br_stack->entries, size); 5203 } else { 5204 /* 5205 * we always store at least the value of nr 5206 */ 5207 u64 nr = 0; 5208 perf_output_put(handle, nr); 5209 } 5210 } 5211 5212 if (sample_type & PERF_SAMPLE_REGS_USER) { 5213 u64 abi = data->regs_user.abi; 5214 5215 /* 5216 * If there are no regs to dump, notice it through 5217 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5218 */ 5219 perf_output_put(handle, abi); 5220 5221 if (abi) { 5222 u64 mask = event->attr.sample_regs_user; 5223 perf_output_sample_regs(handle, 5224 data->regs_user.regs, 5225 mask); 5226 } 5227 } 5228 5229 if (sample_type & PERF_SAMPLE_STACK_USER) { 5230 perf_output_sample_ustack(handle, 5231 data->stack_user_size, 5232 data->regs_user.regs); 5233 } 5234 5235 if (sample_type & PERF_SAMPLE_WEIGHT) 5236 perf_output_put(handle, data->weight); 5237 5238 if (sample_type & PERF_SAMPLE_DATA_SRC) 5239 perf_output_put(handle, data->data_src.val); 5240 5241 if (sample_type & PERF_SAMPLE_TRANSACTION) 5242 perf_output_put(handle, data->txn); 5243 5244 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5245 u64 abi = data->regs_intr.abi; 5246 /* 5247 * If there are no regs to dump, notice it through 5248 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5249 */ 5250 perf_output_put(handle, abi); 5251 5252 if (abi) { 5253 u64 mask = event->attr.sample_regs_intr; 5254 5255 perf_output_sample_regs(handle, 5256 data->regs_intr.regs, 5257 mask); 5258 } 5259 } 5260 5261 if (!event->attr.watermark) { 5262 int wakeup_events = event->attr.wakeup_events; 5263 5264 if (wakeup_events) { 5265 struct ring_buffer *rb = handle->rb; 5266 int events = local_inc_return(&rb->events); 5267 5268 if (events >= wakeup_events) { 5269 local_sub(wakeup_events, &rb->events); 5270 local_inc(&rb->wakeup); 5271 } 5272 } 5273 } 5274 } 5275 5276 void perf_prepare_sample(struct perf_event_header *header, 5277 struct perf_sample_data *data, 5278 struct perf_event *event, 5279 struct pt_regs *regs) 5280 { 5281 u64 sample_type = event->attr.sample_type; 5282 5283 header->type = PERF_RECORD_SAMPLE; 5284 header->size = sizeof(*header) + event->header_size; 5285 5286 header->misc = 0; 5287 header->misc |= perf_misc_flags(regs); 5288 5289 __perf_event_header__init_id(header, data, event); 5290 5291 if (sample_type & PERF_SAMPLE_IP) 5292 data->ip = perf_instruction_pointer(regs); 5293 5294 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5295 int size = 1; 5296 5297 data->callchain = perf_callchain(event, regs); 5298 5299 if (data->callchain) 5300 size += data->callchain->nr; 5301 5302 header->size += size * sizeof(u64); 5303 } 5304 5305 if (sample_type & PERF_SAMPLE_RAW) { 5306 int size = sizeof(u32); 5307 5308 if (data->raw) 5309 size += data->raw->size; 5310 else 5311 size += sizeof(u32); 5312 5313 WARN_ON_ONCE(size & (sizeof(u64)-1)); 5314 header->size += size; 5315 } 5316 5317 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5318 int size = sizeof(u64); /* nr */ 5319 if (data->br_stack) { 5320 size += data->br_stack->nr 5321 * sizeof(struct perf_branch_entry); 5322 } 5323 header->size += size; 5324 } 5325 5326 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5327 perf_sample_regs_user(&data->regs_user, regs, 5328 &data->regs_user_copy); 5329 5330 if (sample_type & PERF_SAMPLE_REGS_USER) { 5331 /* regs dump ABI info */ 5332 int size = sizeof(u64); 5333 5334 if (data->regs_user.regs) { 5335 u64 mask = event->attr.sample_regs_user; 5336 size += hweight64(mask) * sizeof(u64); 5337 } 5338 5339 header->size += size; 5340 } 5341 5342 if (sample_type & PERF_SAMPLE_STACK_USER) { 5343 /* 5344 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5345 * processed as the last one or have additional check added 5346 * in case new sample type is added, because we could eat 5347 * up the rest of the sample size. 5348 */ 5349 u16 stack_size = event->attr.sample_stack_user; 5350 u16 size = sizeof(u64); 5351 5352 stack_size = perf_sample_ustack_size(stack_size, header->size, 5353 data->regs_user.regs); 5354 5355 /* 5356 * If there is something to dump, add space for the dump 5357 * itself and for the field that tells the dynamic size, 5358 * which is how many have been actually dumped. 5359 */ 5360 if (stack_size) 5361 size += sizeof(u64) + stack_size; 5362 5363 data->stack_user_size = stack_size; 5364 header->size += size; 5365 } 5366 5367 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5368 /* regs dump ABI info */ 5369 int size = sizeof(u64); 5370 5371 perf_sample_regs_intr(&data->regs_intr, regs); 5372 5373 if (data->regs_intr.regs) { 5374 u64 mask = event->attr.sample_regs_intr; 5375 5376 size += hweight64(mask) * sizeof(u64); 5377 } 5378 5379 header->size += size; 5380 } 5381 } 5382 5383 static void perf_event_output(struct perf_event *event, 5384 struct perf_sample_data *data, 5385 struct pt_regs *regs) 5386 { 5387 struct perf_output_handle handle; 5388 struct perf_event_header header; 5389 5390 /* protect the callchain buffers */ 5391 rcu_read_lock(); 5392 5393 perf_prepare_sample(&header, data, event, regs); 5394 5395 if (perf_output_begin(&handle, event, header.size)) 5396 goto exit; 5397 5398 perf_output_sample(&handle, &header, data, event); 5399 5400 perf_output_end(&handle); 5401 5402 exit: 5403 rcu_read_unlock(); 5404 } 5405 5406 /* 5407 * read event_id 5408 */ 5409 5410 struct perf_read_event { 5411 struct perf_event_header header; 5412 5413 u32 pid; 5414 u32 tid; 5415 }; 5416 5417 static void 5418 perf_event_read_event(struct perf_event *event, 5419 struct task_struct *task) 5420 { 5421 struct perf_output_handle handle; 5422 struct perf_sample_data sample; 5423 struct perf_read_event read_event = { 5424 .header = { 5425 .type = PERF_RECORD_READ, 5426 .misc = 0, 5427 .size = sizeof(read_event) + event->read_size, 5428 }, 5429 .pid = perf_event_pid(event, task), 5430 .tid = perf_event_tid(event, task), 5431 }; 5432 int ret; 5433 5434 perf_event_header__init_id(&read_event.header, &sample, event); 5435 ret = perf_output_begin(&handle, event, read_event.header.size); 5436 if (ret) 5437 return; 5438 5439 perf_output_put(&handle, read_event); 5440 perf_output_read(&handle, event); 5441 perf_event__output_id_sample(event, &handle, &sample); 5442 5443 perf_output_end(&handle); 5444 } 5445 5446 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5447 5448 static void 5449 perf_event_aux_ctx(struct perf_event_context *ctx, 5450 perf_event_aux_output_cb output, 5451 void *data) 5452 { 5453 struct perf_event *event; 5454 5455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5456 if (event->state < PERF_EVENT_STATE_INACTIVE) 5457 continue; 5458 if (!event_filter_match(event)) 5459 continue; 5460 output(event, data); 5461 } 5462 } 5463 5464 static void 5465 perf_event_aux(perf_event_aux_output_cb output, void *data, 5466 struct perf_event_context *task_ctx) 5467 { 5468 struct perf_cpu_context *cpuctx; 5469 struct perf_event_context *ctx; 5470 struct pmu *pmu; 5471 int ctxn; 5472 5473 rcu_read_lock(); 5474 list_for_each_entry_rcu(pmu, &pmus, entry) { 5475 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5476 if (cpuctx->unique_pmu != pmu) 5477 goto next; 5478 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5479 if (task_ctx) 5480 goto next; 5481 ctxn = pmu->task_ctx_nr; 5482 if (ctxn < 0) 5483 goto next; 5484 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5485 if (ctx) 5486 perf_event_aux_ctx(ctx, output, data); 5487 next: 5488 put_cpu_ptr(pmu->pmu_cpu_context); 5489 } 5490 5491 if (task_ctx) { 5492 preempt_disable(); 5493 perf_event_aux_ctx(task_ctx, output, data); 5494 preempt_enable(); 5495 } 5496 rcu_read_unlock(); 5497 } 5498 5499 /* 5500 * task tracking -- fork/exit 5501 * 5502 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5503 */ 5504 5505 struct perf_task_event { 5506 struct task_struct *task; 5507 struct perf_event_context *task_ctx; 5508 5509 struct { 5510 struct perf_event_header header; 5511 5512 u32 pid; 5513 u32 ppid; 5514 u32 tid; 5515 u32 ptid; 5516 u64 time; 5517 } event_id; 5518 }; 5519 5520 static int perf_event_task_match(struct perf_event *event) 5521 { 5522 return event->attr.comm || event->attr.mmap || 5523 event->attr.mmap2 || event->attr.mmap_data || 5524 event->attr.task; 5525 } 5526 5527 static void perf_event_task_output(struct perf_event *event, 5528 void *data) 5529 { 5530 struct perf_task_event *task_event = data; 5531 struct perf_output_handle handle; 5532 struct perf_sample_data sample; 5533 struct task_struct *task = task_event->task; 5534 int ret, size = task_event->event_id.header.size; 5535 5536 if (!perf_event_task_match(event)) 5537 return; 5538 5539 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5540 5541 ret = perf_output_begin(&handle, event, 5542 task_event->event_id.header.size); 5543 if (ret) 5544 goto out; 5545 5546 task_event->event_id.pid = perf_event_pid(event, task); 5547 task_event->event_id.ppid = perf_event_pid(event, current); 5548 5549 task_event->event_id.tid = perf_event_tid(event, task); 5550 task_event->event_id.ptid = perf_event_tid(event, current); 5551 5552 task_event->event_id.time = perf_event_clock(event); 5553 5554 perf_output_put(&handle, task_event->event_id); 5555 5556 perf_event__output_id_sample(event, &handle, &sample); 5557 5558 perf_output_end(&handle); 5559 out: 5560 task_event->event_id.header.size = size; 5561 } 5562 5563 static void perf_event_task(struct task_struct *task, 5564 struct perf_event_context *task_ctx, 5565 int new) 5566 { 5567 struct perf_task_event task_event; 5568 5569 if (!atomic_read(&nr_comm_events) && 5570 !atomic_read(&nr_mmap_events) && 5571 !atomic_read(&nr_task_events)) 5572 return; 5573 5574 task_event = (struct perf_task_event){ 5575 .task = task, 5576 .task_ctx = task_ctx, 5577 .event_id = { 5578 .header = { 5579 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5580 .misc = 0, 5581 .size = sizeof(task_event.event_id), 5582 }, 5583 /* .pid */ 5584 /* .ppid */ 5585 /* .tid */ 5586 /* .ptid */ 5587 /* .time */ 5588 }, 5589 }; 5590 5591 perf_event_aux(perf_event_task_output, 5592 &task_event, 5593 task_ctx); 5594 } 5595 5596 void perf_event_fork(struct task_struct *task) 5597 { 5598 perf_event_task(task, NULL, 1); 5599 } 5600 5601 /* 5602 * comm tracking 5603 */ 5604 5605 struct perf_comm_event { 5606 struct task_struct *task; 5607 char *comm; 5608 int comm_size; 5609 5610 struct { 5611 struct perf_event_header header; 5612 5613 u32 pid; 5614 u32 tid; 5615 } event_id; 5616 }; 5617 5618 static int perf_event_comm_match(struct perf_event *event) 5619 { 5620 return event->attr.comm; 5621 } 5622 5623 static void perf_event_comm_output(struct perf_event *event, 5624 void *data) 5625 { 5626 struct perf_comm_event *comm_event = data; 5627 struct perf_output_handle handle; 5628 struct perf_sample_data sample; 5629 int size = comm_event->event_id.header.size; 5630 int ret; 5631 5632 if (!perf_event_comm_match(event)) 5633 return; 5634 5635 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5636 ret = perf_output_begin(&handle, event, 5637 comm_event->event_id.header.size); 5638 5639 if (ret) 5640 goto out; 5641 5642 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5643 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5644 5645 perf_output_put(&handle, comm_event->event_id); 5646 __output_copy(&handle, comm_event->comm, 5647 comm_event->comm_size); 5648 5649 perf_event__output_id_sample(event, &handle, &sample); 5650 5651 perf_output_end(&handle); 5652 out: 5653 comm_event->event_id.header.size = size; 5654 } 5655 5656 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5657 { 5658 char comm[TASK_COMM_LEN]; 5659 unsigned int size; 5660 5661 memset(comm, 0, sizeof(comm)); 5662 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5663 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5664 5665 comm_event->comm = comm; 5666 comm_event->comm_size = size; 5667 5668 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5669 5670 perf_event_aux(perf_event_comm_output, 5671 comm_event, 5672 NULL); 5673 } 5674 5675 void perf_event_comm(struct task_struct *task, bool exec) 5676 { 5677 struct perf_comm_event comm_event; 5678 5679 if (!atomic_read(&nr_comm_events)) 5680 return; 5681 5682 comm_event = (struct perf_comm_event){ 5683 .task = task, 5684 /* .comm */ 5685 /* .comm_size */ 5686 .event_id = { 5687 .header = { 5688 .type = PERF_RECORD_COMM, 5689 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5690 /* .size */ 5691 }, 5692 /* .pid */ 5693 /* .tid */ 5694 }, 5695 }; 5696 5697 perf_event_comm_event(&comm_event); 5698 } 5699 5700 /* 5701 * mmap tracking 5702 */ 5703 5704 struct perf_mmap_event { 5705 struct vm_area_struct *vma; 5706 5707 const char *file_name; 5708 int file_size; 5709 int maj, min; 5710 u64 ino; 5711 u64 ino_generation; 5712 u32 prot, flags; 5713 5714 struct { 5715 struct perf_event_header header; 5716 5717 u32 pid; 5718 u32 tid; 5719 u64 start; 5720 u64 len; 5721 u64 pgoff; 5722 } event_id; 5723 }; 5724 5725 static int perf_event_mmap_match(struct perf_event *event, 5726 void *data) 5727 { 5728 struct perf_mmap_event *mmap_event = data; 5729 struct vm_area_struct *vma = mmap_event->vma; 5730 int executable = vma->vm_flags & VM_EXEC; 5731 5732 return (!executable && event->attr.mmap_data) || 5733 (executable && (event->attr.mmap || event->attr.mmap2)); 5734 } 5735 5736 static void perf_event_mmap_output(struct perf_event *event, 5737 void *data) 5738 { 5739 struct perf_mmap_event *mmap_event = data; 5740 struct perf_output_handle handle; 5741 struct perf_sample_data sample; 5742 int size = mmap_event->event_id.header.size; 5743 int ret; 5744 5745 if (!perf_event_mmap_match(event, data)) 5746 return; 5747 5748 if (event->attr.mmap2) { 5749 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5750 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5751 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5752 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5753 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5754 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5755 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5756 } 5757 5758 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5759 ret = perf_output_begin(&handle, event, 5760 mmap_event->event_id.header.size); 5761 if (ret) 5762 goto out; 5763 5764 mmap_event->event_id.pid = perf_event_pid(event, current); 5765 mmap_event->event_id.tid = perf_event_tid(event, current); 5766 5767 perf_output_put(&handle, mmap_event->event_id); 5768 5769 if (event->attr.mmap2) { 5770 perf_output_put(&handle, mmap_event->maj); 5771 perf_output_put(&handle, mmap_event->min); 5772 perf_output_put(&handle, mmap_event->ino); 5773 perf_output_put(&handle, mmap_event->ino_generation); 5774 perf_output_put(&handle, mmap_event->prot); 5775 perf_output_put(&handle, mmap_event->flags); 5776 } 5777 5778 __output_copy(&handle, mmap_event->file_name, 5779 mmap_event->file_size); 5780 5781 perf_event__output_id_sample(event, &handle, &sample); 5782 5783 perf_output_end(&handle); 5784 out: 5785 mmap_event->event_id.header.size = size; 5786 } 5787 5788 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5789 { 5790 struct vm_area_struct *vma = mmap_event->vma; 5791 struct file *file = vma->vm_file; 5792 int maj = 0, min = 0; 5793 u64 ino = 0, gen = 0; 5794 u32 prot = 0, flags = 0; 5795 unsigned int size; 5796 char tmp[16]; 5797 char *buf = NULL; 5798 char *name; 5799 5800 if (file) { 5801 struct inode *inode; 5802 dev_t dev; 5803 5804 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5805 if (!buf) { 5806 name = "//enomem"; 5807 goto cpy_name; 5808 } 5809 /* 5810 * d_path() works from the end of the rb backwards, so we 5811 * need to add enough zero bytes after the string to handle 5812 * the 64bit alignment we do later. 5813 */ 5814 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5815 if (IS_ERR(name)) { 5816 name = "//toolong"; 5817 goto cpy_name; 5818 } 5819 inode = file_inode(vma->vm_file); 5820 dev = inode->i_sb->s_dev; 5821 ino = inode->i_ino; 5822 gen = inode->i_generation; 5823 maj = MAJOR(dev); 5824 min = MINOR(dev); 5825 5826 if (vma->vm_flags & VM_READ) 5827 prot |= PROT_READ; 5828 if (vma->vm_flags & VM_WRITE) 5829 prot |= PROT_WRITE; 5830 if (vma->vm_flags & VM_EXEC) 5831 prot |= PROT_EXEC; 5832 5833 if (vma->vm_flags & VM_MAYSHARE) 5834 flags = MAP_SHARED; 5835 else 5836 flags = MAP_PRIVATE; 5837 5838 if (vma->vm_flags & VM_DENYWRITE) 5839 flags |= MAP_DENYWRITE; 5840 if (vma->vm_flags & VM_MAYEXEC) 5841 flags |= MAP_EXECUTABLE; 5842 if (vma->vm_flags & VM_LOCKED) 5843 flags |= MAP_LOCKED; 5844 if (vma->vm_flags & VM_HUGETLB) 5845 flags |= MAP_HUGETLB; 5846 5847 goto got_name; 5848 } else { 5849 if (vma->vm_ops && vma->vm_ops->name) { 5850 name = (char *) vma->vm_ops->name(vma); 5851 if (name) 5852 goto cpy_name; 5853 } 5854 5855 name = (char *)arch_vma_name(vma); 5856 if (name) 5857 goto cpy_name; 5858 5859 if (vma->vm_start <= vma->vm_mm->start_brk && 5860 vma->vm_end >= vma->vm_mm->brk) { 5861 name = "[heap]"; 5862 goto cpy_name; 5863 } 5864 if (vma->vm_start <= vma->vm_mm->start_stack && 5865 vma->vm_end >= vma->vm_mm->start_stack) { 5866 name = "[stack]"; 5867 goto cpy_name; 5868 } 5869 5870 name = "//anon"; 5871 goto cpy_name; 5872 } 5873 5874 cpy_name: 5875 strlcpy(tmp, name, sizeof(tmp)); 5876 name = tmp; 5877 got_name: 5878 /* 5879 * Since our buffer works in 8 byte units we need to align our string 5880 * size to a multiple of 8. However, we must guarantee the tail end is 5881 * zero'd out to avoid leaking random bits to userspace. 5882 */ 5883 size = strlen(name)+1; 5884 while (!IS_ALIGNED(size, sizeof(u64))) 5885 name[size++] = '\0'; 5886 5887 mmap_event->file_name = name; 5888 mmap_event->file_size = size; 5889 mmap_event->maj = maj; 5890 mmap_event->min = min; 5891 mmap_event->ino = ino; 5892 mmap_event->ino_generation = gen; 5893 mmap_event->prot = prot; 5894 mmap_event->flags = flags; 5895 5896 if (!(vma->vm_flags & VM_EXEC)) 5897 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5898 5899 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5900 5901 perf_event_aux(perf_event_mmap_output, 5902 mmap_event, 5903 NULL); 5904 5905 kfree(buf); 5906 } 5907 5908 void perf_event_mmap(struct vm_area_struct *vma) 5909 { 5910 struct perf_mmap_event mmap_event; 5911 5912 if (!atomic_read(&nr_mmap_events)) 5913 return; 5914 5915 mmap_event = (struct perf_mmap_event){ 5916 .vma = vma, 5917 /* .file_name */ 5918 /* .file_size */ 5919 .event_id = { 5920 .header = { 5921 .type = PERF_RECORD_MMAP, 5922 .misc = PERF_RECORD_MISC_USER, 5923 /* .size */ 5924 }, 5925 /* .pid */ 5926 /* .tid */ 5927 .start = vma->vm_start, 5928 .len = vma->vm_end - vma->vm_start, 5929 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5930 }, 5931 /* .maj (attr_mmap2 only) */ 5932 /* .min (attr_mmap2 only) */ 5933 /* .ino (attr_mmap2 only) */ 5934 /* .ino_generation (attr_mmap2 only) */ 5935 /* .prot (attr_mmap2 only) */ 5936 /* .flags (attr_mmap2 only) */ 5937 }; 5938 5939 perf_event_mmap_event(&mmap_event); 5940 } 5941 5942 void perf_event_aux_event(struct perf_event *event, unsigned long head, 5943 unsigned long size, u64 flags) 5944 { 5945 struct perf_output_handle handle; 5946 struct perf_sample_data sample; 5947 struct perf_aux_event { 5948 struct perf_event_header header; 5949 u64 offset; 5950 u64 size; 5951 u64 flags; 5952 } rec = { 5953 .header = { 5954 .type = PERF_RECORD_AUX, 5955 .misc = 0, 5956 .size = sizeof(rec), 5957 }, 5958 .offset = head, 5959 .size = size, 5960 .flags = flags, 5961 }; 5962 int ret; 5963 5964 perf_event_header__init_id(&rec.header, &sample, event); 5965 ret = perf_output_begin(&handle, event, rec.header.size); 5966 5967 if (ret) 5968 return; 5969 5970 perf_output_put(&handle, rec); 5971 perf_event__output_id_sample(event, &handle, &sample); 5972 5973 perf_output_end(&handle); 5974 } 5975 5976 /* 5977 * IRQ throttle logging 5978 */ 5979 5980 static void perf_log_throttle(struct perf_event *event, int enable) 5981 { 5982 struct perf_output_handle handle; 5983 struct perf_sample_data sample; 5984 int ret; 5985 5986 struct { 5987 struct perf_event_header header; 5988 u64 time; 5989 u64 id; 5990 u64 stream_id; 5991 } throttle_event = { 5992 .header = { 5993 .type = PERF_RECORD_THROTTLE, 5994 .misc = 0, 5995 .size = sizeof(throttle_event), 5996 }, 5997 .time = perf_event_clock(event), 5998 .id = primary_event_id(event), 5999 .stream_id = event->id, 6000 }; 6001 6002 if (enable) 6003 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6004 6005 perf_event_header__init_id(&throttle_event.header, &sample, event); 6006 6007 ret = perf_output_begin(&handle, event, 6008 throttle_event.header.size); 6009 if (ret) 6010 return; 6011 6012 perf_output_put(&handle, throttle_event); 6013 perf_event__output_id_sample(event, &handle, &sample); 6014 perf_output_end(&handle); 6015 } 6016 6017 static void perf_log_itrace_start(struct perf_event *event) 6018 { 6019 struct perf_output_handle handle; 6020 struct perf_sample_data sample; 6021 struct perf_aux_event { 6022 struct perf_event_header header; 6023 u32 pid; 6024 u32 tid; 6025 } rec; 6026 int ret; 6027 6028 if (event->parent) 6029 event = event->parent; 6030 6031 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6032 event->hw.itrace_started) 6033 return; 6034 6035 event->hw.itrace_started = 1; 6036 6037 rec.header.type = PERF_RECORD_ITRACE_START; 6038 rec.header.misc = 0; 6039 rec.header.size = sizeof(rec); 6040 rec.pid = perf_event_pid(event, current); 6041 rec.tid = perf_event_tid(event, current); 6042 6043 perf_event_header__init_id(&rec.header, &sample, event); 6044 ret = perf_output_begin(&handle, event, rec.header.size); 6045 6046 if (ret) 6047 return; 6048 6049 perf_output_put(&handle, rec); 6050 perf_event__output_id_sample(event, &handle, &sample); 6051 6052 perf_output_end(&handle); 6053 } 6054 6055 /* 6056 * Generic event overflow handling, sampling. 6057 */ 6058 6059 static int __perf_event_overflow(struct perf_event *event, 6060 int throttle, struct perf_sample_data *data, 6061 struct pt_regs *regs) 6062 { 6063 int events = atomic_read(&event->event_limit); 6064 struct hw_perf_event *hwc = &event->hw; 6065 u64 seq; 6066 int ret = 0; 6067 6068 /* 6069 * Non-sampling counters might still use the PMI to fold short 6070 * hardware counters, ignore those. 6071 */ 6072 if (unlikely(!is_sampling_event(event))) 6073 return 0; 6074 6075 seq = __this_cpu_read(perf_throttled_seq); 6076 if (seq != hwc->interrupts_seq) { 6077 hwc->interrupts_seq = seq; 6078 hwc->interrupts = 1; 6079 } else { 6080 hwc->interrupts++; 6081 if (unlikely(throttle 6082 && hwc->interrupts >= max_samples_per_tick)) { 6083 __this_cpu_inc(perf_throttled_count); 6084 hwc->interrupts = MAX_INTERRUPTS; 6085 perf_log_throttle(event, 0); 6086 tick_nohz_full_kick(); 6087 ret = 1; 6088 } 6089 } 6090 6091 if (event->attr.freq) { 6092 u64 now = perf_clock(); 6093 s64 delta = now - hwc->freq_time_stamp; 6094 6095 hwc->freq_time_stamp = now; 6096 6097 if (delta > 0 && delta < 2*TICK_NSEC) 6098 perf_adjust_period(event, delta, hwc->last_period, true); 6099 } 6100 6101 /* 6102 * XXX event_limit might not quite work as expected on inherited 6103 * events 6104 */ 6105 6106 event->pending_kill = POLL_IN; 6107 if (events && atomic_dec_and_test(&event->event_limit)) { 6108 ret = 1; 6109 event->pending_kill = POLL_HUP; 6110 event->pending_disable = 1; 6111 irq_work_queue(&event->pending); 6112 } 6113 6114 if (event->overflow_handler) 6115 event->overflow_handler(event, data, regs); 6116 else 6117 perf_event_output(event, data, regs); 6118 6119 if (event->fasync && event->pending_kill) { 6120 event->pending_wakeup = 1; 6121 irq_work_queue(&event->pending); 6122 } 6123 6124 return ret; 6125 } 6126 6127 int perf_event_overflow(struct perf_event *event, 6128 struct perf_sample_data *data, 6129 struct pt_regs *regs) 6130 { 6131 return __perf_event_overflow(event, 1, data, regs); 6132 } 6133 6134 /* 6135 * Generic software event infrastructure 6136 */ 6137 6138 struct swevent_htable { 6139 struct swevent_hlist *swevent_hlist; 6140 struct mutex hlist_mutex; 6141 int hlist_refcount; 6142 6143 /* Recursion avoidance in each contexts */ 6144 int recursion[PERF_NR_CONTEXTS]; 6145 6146 /* Keeps track of cpu being initialized/exited */ 6147 bool online; 6148 }; 6149 6150 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6151 6152 /* 6153 * We directly increment event->count and keep a second value in 6154 * event->hw.period_left to count intervals. This period event 6155 * is kept in the range [-sample_period, 0] so that we can use the 6156 * sign as trigger. 6157 */ 6158 6159 u64 perf_swevent_set_period(struct perf_event *event) 6160 { 6161 struct hw_perf_event *hwc = &event->hw; 6162 u64 period = hwc->last_period; 6163 u64 nr, offset; 6164 s64 old, val; 6165 6166 hwc->last_period = hwc->sample_period; 6167 6168 again: 6169 old = val = local64_read(&hwc->period_left); 6170 if (val < 0) 6171 return 0; 6172 6173 nr = div64_u64(period + val, period); 6174 offset = nr * period; 6175 val -= offset; 6176 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6177 goto again; 6178 6179 return nr; 6180 } 6181 6182 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6183 struct perf_sample_data *data, 6184 struct pt_regs *regs) 6185 { 6186 struct hw_perf_event *hwc = &event->hw; 6187 int throttle = 0; 6188 6189 if (!overflow) 6190 overflow = perf_swevent_set_period(event); 6191 6192 if (hwc->interrupts == MAX_INTERRUPTS) 6193 return; 6194 6195 for (; overflow; overflow--) { 6196 if (__perf_event_overflow(event, throttle, 6197 data, regs)) { 6198 /* 6199 * We inhibit the overflow from happening when 6200 * hwc->interrupts == MAX_INTERRUPTS. 6201 */ 6202 break; 6203 } 6204 throttle = 1; 6205 } 6206 } 6207 6208 static void perf_swevent_event(struct perf_event *event, u64 nr, 6209 struct perf_sample_data *data, 6210 struct pt_regs *regs) 6211 { 6212 struct hw_perf_event *hwc = &event->hw; 6213 6214 local64_add(nr, &event->count); 6215 6216 if (!regs) 6217 return; 6218 6219 if (!is_sampling_event(event)) 6220 return; 6221 6222 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6223 data->period = nr; 6224 return perf_swevent_overflow(event, 1, data, regs); 6225 } else 6226 data->period = event->hw.last_period; 6227 6228 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6229 return perf_swevent_overflow(event, 1, data, regs); 6230 6231 if (local64_add_negative(nr, &hwc->period_left)) 6232 return; 6233 6234 perf_swevent_overflow(event, 0, data, regs); 6235 } 6236 6237 static int perf_exclude_event(struct perf_event *event, 6238 struct pt_regs *regs) 6239 { 6240 if (event->hw.state & PERF_HES_STOPPED) 6241 return 1; 6242 6243 if (regs) { 6244 if (event->attr.exclude_user && user_mode(regs)) 6245 return 1; 6246 6247 if (event->attr.exclude_kernel && !user_mode(regs)) 6248 return 1; 6249 } 6250 6251 return 0; 6252 } 6253 6254 static int perf_swevent_match(struct perf_event *event, 6255 enum perf_type_id type, 6256 u32 event_id, 6257 struct perf_sample_data *data, 6258 struct pt_regs *regs) 6259 { 6260 if (event->attr.type != type) 6261 return 0; 6262 6263 if (event->attr.config != event_id) 6264 return 0; 6265 6266 if (perf_exclude_event(event, regs)) 6267 return 0; 6268 6269 return 1; 6270 } 6271 6272 static inline u64 swevent_hash(u64 type, u32 event_id) 6273 { 6274 u64 val = event_id | (type << 32); 6275 6276 return hash_64(val, SWEVENT_HLIST_BITS); 6277 } 6278 6279 static inline struct hlist_head * 6280 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6281 { 6282 u64 hash = swevent_hash(type, event_id); 6283 6284 return &hlist->heads[hash]; 6285 } 6286 6287 /* For the read side: events when they trigger */ 6288 static inline struct hlist_head * 6289 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6290 { 6291 struct swevent_hlist *hlist; 6292 6293 hlist = rcu_dereference(swhash->swevent_hlist); 6294 if (!hlist) 6295 return NULL; 6296 6297 return __find_swevent_head(hlist, type, event_id); 6298 } 6299 6300 /* For the event head insertion and removal in the hlist */ 6301 static inline struct hlist_head * 6302 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6303 { 6304 struct swevent_hlist *hlist; 6305 u32 event_id = event->attr.config; 6306 u64 type = event->attr.type; 6307 6308 /* 6309 * Event scheduling is always serialized against hlist allocation 6310 * and release. Which makes the protected version suitable here. 6311 * The context lock guarantees that. 6312 */ 6313 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6314 lockdep_is_held(&event->ctx->lock)); 6315 if (!hlist) 6316 return NULL; 6317 6318 return __find_swevent_head(hlist, type, event_id); 6319 } 6320 6321 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6322 u64 nr, 6323 struct perf_sample_data *data, 6324 struct pt_regs *regs) 6325 { 6326 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6327 struct perf_event *event; 6328 struct hlist_head *head; 6329 6330 rcu_read_lock(); 6331 head = find_swevent_head_rcu(swhash, type, event_id); 6332 if (!head) 6333 goto end; 6334 6335 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6336 if (perf_swevent_match(event, type, event_id, data, regs)) 6337 perf_swevent_event(event, nr, data, regs); 6338 } 6339 end: 6340 rcu_read_unlock(); 6341 } 6342 6343 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6344 6345 int perf_swevent_get_recursion_context(void) 6346 { 6347 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6348 6349 return get_recursion_context(swhash->recursion); 6350 } 6351 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6352 6353 inline void perf_swevent_put_recursion_context(int rctx) 6354 { 6355 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6356 6357 put_recursion_context(swhash->recursion, rctx); 6358 } 6359 6360 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6361 { 6362 struct perf_sample_data data; 6363 6364 if (WARN_ON_ONCE(!regs)) 6365 return; 6366 6367 perf_sample_data_init(&data, addr, 0); 6368 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6369 } 6370 6371 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6372 { 6373 int rctx; 6374 6375 preempt_disable_notrace(); 6376 rctx = perf_swevent_get_recursion_context(); 6377 if (unlikely(rctx < 0)) 6378 goto fail; 6379 6380 ___perf_sw_event(event_id, nr, regs, addr); 6381 6382 perf_swevent_put_recursion_context(rctx); 6383 fail: 6384 preempt_enable_notrace(); 6385 } 6386 6387 static void perf_swevent_read(struct perf_event *event) 6388 { 6389 } 6390 6391 static int perf_swevent_add(struct perf_event *event, int flags) 6392 { 6393 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6394 struct hw_perf_event *hwc = &event->hw; 6395 struct hlist_head *head; 6396 6397 if (is_sampling_event(event)) { 6398 hwc->last_period = hwc->sample_period; 6399 perf_swevent_set_period(event); 6400 } 6401 6402 hwc->state = !(flags & PERF_EF_START); 6403 6404 head = find_swevent_head(swhash, event); 6405 if (!head) { 6406 /* 6407 * We can race with cpu hotplug code. Do not 6408 * WARN if the cpu just got unplugged. 6409 */ 6410 WARN_ON_ONCE(swhash->online); 6411 return -EINVAL; 6412 } 6413 6414 hlist_add_head_rcu(&event->hlist_entry, head); 6415 perf_event_update_userpage(event); 6416 6417 return 0; 6418 } 6419 6420 static void perf_swevent_del(struct perf_event *event, int flags) 6421 { 6422 hlist_del_rcu(&event->hlist_entry); 6423 } 6424 6425 static void perf_swevent_start(struct perf_event *event, int flags) 6426 { 6427 event->hw.state = 0; 6428 } 6429 6430 static void perf_swevent_stop(struct perf_event *event, int flags) 6431 { 6432 event->hw.state = PERF_HES_STOPPED; 6433 } 6434 6435 /* Deref the hlist from the update side */ 6436 static inline struct swevent_hlist * 6437 swevent_hlist_deref(struct swevent_htable *swhash) 6438 { 6439 return rcu_dereference_protected(swhash->swevent_hlist, 6440 lockdep_is_held(&swhash->hlist_mutex)); 6441 } 6442 6443 static void swevent_hlist_release(struct swevent_htable *swhash) 6444 { 6445 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6446 6447 if (!hlist) 6448 return; 6449 6450 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6451 kfree_rcu(hlist, rcu_head); 6452 } 6453 6454 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6455 { 6456 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6457 6458 mutex_lock(&swhash->hlist_mutex); 6459 6460 if (!--swhash->hlist_refcount) 6461 swevent_hlist_release(swhash); 6462 6463 mutex_unlock(&swhash->hlist_mutex); 6464 } 6465 6466 static void swevent_hlist_put(struct perf_event *event) 6467 { 6468 int cpu; 6469 6470 for_each_possible_cpu(cpu) 6471 swevent_hlist_put_cpu(event, cpu); 6472 } 6473 6474 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6475 { 6476 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6477 int err = 0; 6478 6479 mutex_lock(&swhash->hlist_mutex); 6480 6481 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6482 struct swevent_hlist *hlist; 6483 6484 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6485 if (!hlist) { 6486 err = -ENOMEM; 6487 goto exit; 6488 } 6489 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6490 } 6491 swhash->hlist_refcount++; 6492 exit: 6493 mutex_unlock(&swhash->hlist_mutex); 6494 6495 return err; 6496 } 6497 6498 static int swevent_hlist_get(struct perf_event *event) 6499 { 6500 int err; 6501 int cpu, failed_cpu; 6502 6503 get_online_cpus(); 6504 for_each_possible_cpu(cpu) { 6505 err = swevent_hlist_get_cpu(event, cpu); 6506 if (err) { 6507 failed_cpu = cpu; 6508 goto fail; 6509 } 6510 } 6511 put_online_cpus(); 6512 6513 return 0; 6514 fail: 6515 for_each_possible_cpu(cpu) { 6516 if (cpu == failed_cpu) 6517 break; 6518 swevent_hlist_put_cpu(event, cpu); 6519 } 6520 6521 put_online_cpus(); 6522 return err; 6523 } 6524 6525 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6526 6527 static void sw_perf_event_destroy(struct perf_event *event) 6528 { 6529 u64 event_id = event->attr.config; 6530 6531 WARN_ON(event->parent); 6532 6533 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6534 swevent_hlist_put(event); 6535 } 6536 6537 static int perf_swevent_init(struct perf_event *event) 6538 { 6539 u64 event_id = event->attr.config; 6540 6541 if (event->attr.type != PERF_TYPE_SOFTWARE) 6542 return -ENOENT; 6543 6544 /* 6545 * no branch sampling for software events 6546 */ 6547 if (has_branch_stack(event)) 6548 return -EOPNOTSUPP; 6549 6550 switch (event_id) { 6551 case PERF_COUNT_SW_CPU_CLOCK: 6552 case PERF_COUNT_SW_TASK_CLOCK: 6553 return -ENOENT; 6554 6555 default: 6556 break; 6557 } 6558 6559 if (event_id >= PERF_COUNT_SW_MAX) 6560 return -ENOENT; 6561 6562 if (!event->parent) { 6563 int err; 6564 6565 err = swevent_hlist_get(event); 6566 if (err) 6567 return err; 6568 6569 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6570 event->destroy = sw_perf_event_destroy; 6571 } 6572 6573 return 0; 6574 } 6575 6576 static struct pmu perf_swevent = { 6577 .task_ctx_nr = perf_sw_context, 6578 6579 .capabilities = PERF_PMU_CAP_NO_NMI, 6580 6581 .event_init = perf_swevent_init, 6582 .add = perf_swevent_add, 6583 .del = perf_swevent_del, 6584 .start = perf_swevent_start, 6585 .stop = perf_swevent_stop, 6586 .read = perf_swevent_read, 6587 }; 6588 6589 #ifdef CONFIG_EVENT_TRACING 6590 6591 static int perf_tp_filter_match(struct perf_event *event, 6592 struct perf_sample_data *data) 6593 { 6594 void *record = data->raw->data; 6595 6596 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6597 return 1; 6598 return 0; 6599 } 6600 6601 static int perf_tp_event_match(struct perf_event *event, 6602 struct perf_sample_data *data, 6603 struct pt_regs *regs) 6604 { 6605 if (event->hw.state & PERF_HES_STOPPED) 6606 return 0; 6607 /* 6608 * All tracepoints are from kernel-space. 6609 */ 6610 if (event->attr.exclude_kernel) 6611 return 0; 6612 6613 if (!perf_tp_filter_match(event, data)) 6614 return 0; 6615 6616 return 1; 6617 } 6618 6619 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6620 struct pt_regs *regs, struct hlist_head *head, int rctx, 6621 struct task_struct *task) 6622 { 6623 struct perf_sample_data data; 6624 struct perf_event *event; 6625 6626 struct perf_raw_record raw = { 6627 .size = entry_size, 6628 .data = record, 6629 }; 6630 6631 perf_sample_data_init(&data, addr, 0); 6632 data.raw = &raw; 6633 6634 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6635 if (perf_tp_event_match(event, &data, regs)) 6636 perf_swevent_event(event, count, &data, regs); 6637 } 6638 6639 /* 6640 * If we got specified a target task, also iterate its context and 6641 * deliver this event there too. 6642 */ 6643 if (task && task != current) { 6644 struct perf_event_context *ctx; 6645 struct trace_entry *entry = record; 6646 6647 rcu_read_lock(); 6648 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6649 if (!ctx) 6650 goto unlock; 6651 6652 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6653 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6654 continue; 6655 if (event->attr.config != entry->type) 6656 continue; 6657 if (perf_tp_event_match(event, &data, regs)) 6658 perf_swevent_event(event, count, &data, regs); 6659 } 6660 unlock: 6661 rcu_read_unlock(); 6662 } 6663 6664 perf_swevent_put_recursion_context(rctx); 6665 } 6666 EXPORT_SYMBOL_GPL(perf_tp_event); 6667 6668 static void tp_perf_event_destroy(struct perf_event *event) 6669 { 6670 perf_trace_destroy(event); 6671 } 6672 6673 static int perf_tp_event_init(struct perf_event *event) 6674 { 6675 int err; 6676 6677 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6678 return -ENOENT; 6679 6680 /* 6681 * no branch sampling for tracepoint events 6682 */ 6683 if (has_branch_stack(event)) 6684 return -EOPNOTSUPP; 6685 6686 err = perf_trace_init(event); 6687 if (err) 6688 return err; 6689 6690 event->destroy = tp_perf_event_destroy; 6691 6692 return 0; 6693 } 6694 6695 static struct pmu perf_tracepoint = { 6696 .task_ctx_nr = perf_sw_context, 6697 6698 .event_init = perf_tp_event_init, 6699 .add = perf_trace_add, 6700 .del = perf_trace_del, 6701 .start = perf_swevent_start, 6702 .stop = perf_swevent_stop, 6703 .read = perf_swevent_read, 6704 }; 6705 6706 static inline void perf_tp_register(void) 6707 { 6708 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6709 } 6710 6711 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6712 { 6713 char *filter_str; 6714 int ret; 6715 6716 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6717 return -EINVAL; 6718 6719 filter_str = strndup_user(arg, PAGE_SIZE); 6720 if (IS_ERR(filter_str)) 6721 return PTR_ERR(filter_str); 6722 6723 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6724 6725 kfree(filter_str); 6726 return ret; 6727 } 6728 6729 static void perf_event_free_filter(struct perf_event *event) 6730 { 6731 ftrace_profile_free_filter(event); 6732 } 6733 6734 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6735 { 6736 struct bpf_prog *prog; 6737 6738 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6739 return -EINVAL; 6740 6741 if (event->tp_event->prog) 6742 return -EEXIST; 6743 6744 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 6745 /* bpf programs can only be attached to kprobes */ 6746 return -EINVAL; 6747 6748 prog = bpf_prog_get(prog_fd); 6749 if (IS_ERR(prog)) 6750 return PTR_ERR(prog); 6751 6752 if (prog->type != BPF_PROG_TYPE_KPROBE) { 6753 /* valid fd, but invalid bpf program type */ 6754 bpf_prog_put(prog); 6755 return -EINVAL; 6756 } 6757 6758 event->tp_event->prog = prog; 6759 6760 return 0; 6761 } 6762 6763 static void perf_event_free_bpf_prog(struct perf_event *event) 6764 { 6765 struct bpf_prog *prog; 6766 6767 if (!event->tp_event) 6768 return; 6769 6770 prog = event->tp_event->prog; 6771 if (prog) { 6772 event->tp_event->prog = NULL; 6773 bpf_prog_put(prog); 6774 } 6775 } 6776 6777 #else 6778 6779 static inline void perf_tp_register(void) 6780 { 6781 } 6782 6783 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6784 { 6785 return -ENOENT; 6786 } 6787 6788 static void perf_event_free_filter(struct perf_event *event) 6789 { 6790 } 6791 6792 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 6793 { 6794 return -ENOENT; 6795 } 6796 6797 static void perf_event_free_bpf_prog(struct perf_event *event) 6798 { 6799 } 6800 #endif /* CONFIG_EVENT_TRACING */ 6801 6802 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6803 void perf_bp_event(struct perf_event *bp, void *data) 6804 { 6805 struct perf_sample_data sample; 6806 struct pt_regs *regs = data; 6807 6808 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6809 6810 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6811 perf_swevent_event(bp, 1, &sample, regs); 6812 } 6813 #endif 6814 6815 /* 6816 * hrtimer based swevent callback 6817 */ 6818 6819 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6820 { 6821 enum hrtimer_restart ret = HRTIMER_RESTART; 6822 struct perf_sample_data data; 6823 struct pt_regs *regs; 6824 struct perf_event *event; 6825 u64 period; 6826 6827 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6828 6829 if (event->state != PERF_EVENT_STATE_ACTIVE) 6830 return HRTIMER_NORESTART; 6831 6832 event->pmu->read(event); 6833 6834 perf_sample_data_init(&data, 0, event->hw.last_period); 6835 regs = get_irq_regs(); 6836 6837 if (regs && !perf_exclude_event(event, regs)) { 6838 if (!(event->attr.exclude_idle && is_idle_task(current))) 6839 if (__perf_event_overflow(event, 1, &data, regs)) 6840 ret = HRTIMER_NORESTART; 6841 } 6842 6843 period = max_t(u64, 10000, event->hw.sample_period); 6844 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6845 6846 return ret; 6847 } 6848 6849 static void perf_swevent_start_hrtimer(struct perf_event *event) 6850 { 6851 struct hw_perf_event *hwc = &event->hw; 6852 s64 period; 6853 6854 if (!is_sampling_event(event)) 6855 return; 6856 6857 period = local64_read(&hwc->period_left); 6858 if (period) { 6859 if (period < 0) 6860 period = 10000; 6861 6862 local64_set(&hwc->period_left, 0); 6863 } else { 6864 period = max_t(u64, 10000, hwc->sample_period); 6865 } 6866 __hrtimer_start_range_ns(&hwc->hrtimer, 6867 ns_to_ktime(period), 0, 6868 HRTIMER_MODE_REL_PINNED, 0); 6869 } 6870 6871 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6872 { 6873 struct hw_perf_event *hwc = &event->hw; 6874 6875 if (is_sampling_event(event)) { 6876 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6877 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6878 6879 hrtimer_cancel(&hwc->hrtimer); 6880 } 6881 } 6882 6883 static void perf_swevent_init_hrtimer(struct perf_event *event) 6884 { 6885 struct hw_perf_event *hwc = &event->hw; 6886 6887 if (!is_sampling_event(event)) 6888 return; 6889 6890 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6891 hwc->hrtimer.function = perf_swevent_hrtimer; 6892 6893 /* 6894 * Since hrtimers have a fixed rate, we can do a static freq->period 6895 * mapping and avoid the whole period adjust feedback stuff. 6896 */ 6897 if (event->attr.freq) { 6898 long freq = event->attr.sample_freq; 6899 6900 event->attr.sample_period = NSEC_PER_SEC / freq; 6901 hwc->sample_period = event->attr.sample_period; 6902 local64_set(&hwc->period_left, hwc->sample_period); 6903 hwc->last_period = hwc->sample_period; 6904 event->attr.freq = 0; 6905 } 6906 } 6907 6908 /* 6909 * Software event: cpu wall time clock 6910 */ 6911 6912 static void cpu_clock_event_update(struct perf_event *event) 6913 { 6914 s64 prev; 6915 u64 now; 6916 6917 now = local_clock(); 6918 prev = local64_xchg(&event->hw.prev_count, now); 6919 local64_add(now - prev, &event->count); 6920 } 6921 6922 static void cpu_clock_event_start(struct perf_event *event, int flags) 6923 { 6924 local64_set(&event->hw.prev_count, local_clock()); 6925 perf_swevent_start_hrtimer(event); 6926 } 6927 6928 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6929 { 6930 perf_swevent_cancel_hrtimer(event); 6931 cpu_clock_event_update(event); 6932 } 6933 6934 static int cpu_clock_event_add(struct perf_event *event, int flags) 6935 { 6936 if (flags & PERF_EF_START) 6937 cpu_clock_event_start(event, flags); 6938 perf_event_update_userpage(event); 6939 6940 return 0; 6941 } 6942 6943 static void cpu_clock_event_del(struct perf_event *event, int flags) 6944 { 6945 cpu_clock_event_stop(event, flags); 6946 } 6947 6948 static void cpu_clock_event_read(struct perf_event *event) 6949 { 6950 cpu_clock_event_update(event); 6951 } 6952 6953 static int cpu_clock_event_init(struct perf_event *event) 6954 { 6955 if (event->attr.type != PERF_TYPE_SOFTWARE) 6956 return -ENOENT; 6957 6958 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6959 return -ENOENT; 6960 6961 /* 6962 * no branch sampling for software events 6963 */ 6964 if (has_branch_stack(event)) 6965 return -EOPNOTSUPP; 6966 6967 perf_swevent_init_hrtimer(event); 6968 6969 return 0; 6970 } 6971 6972 static struct pmu perf_cpu_clock = { 6973 .task_ctx_nr = perf_sw_context, 6974 6975 .capabilities = PERF_PMU_CAP_NO_NMI, 6976 6977 .event_init = cpu_clock_event_init, 6978 .add = cpu_clock_event_add, 6979 .del = cpu_clock_event_del, 6980 .start = cpu_clock_event_start, 6981 .stop = cpu_clock_event_stop, 6982 .read = cpu_clock_event_read, 6983 }; 6984 6985 /* 6986 * Software event: task time clock 6987 */ 6988 6989 static void task_clock_event_update(struct perf_event *event, u64 now) 6990 { 6991 u64 prev; 6992 s64 delta; 6993 6994 prev = local64_xchg(&event->hw.prev_count, now); 6995 delta = now - prev; 6996 local64_add(delta, &event->count); 6997 } 6998 6999 static void task_clock_event_start(struct perf_event *event, int flags) 7000 { 7001 local64_set(&event->hw.prev_count, event->ctx->time); 7002 perf_swevent_start_hrtimer(event); 7003 } 7004 7005 static void task_clock_event_stop(struct perf_event *event, int flags) 7006 { 7007 perf_swevent_cancel_hrtimer(event); 7008 task_clock_event_update(event, event->ctx->time); 7009 } 7010 7011 static int task_clock_event_add(struct perf_event *event, int flags) 7012 { 7013 if (flags & PERF_EF_START) 7014 task_clock_event_start(event, flags); 7015 perf_event_update_userpage(event); 7016 7017 return 0; 7018 } 7019 7020 static void task_clock_event_del(struct perf_event *event, int flags) 7021 { 7022 task_clock_event_stop(event, PERF_EF_UPDATE); 7023 } 7024 7025 static void task_clock_event_read(struct perf_event *event) 7026 { 7027 u64 now = perf_clock(); 7028 u64 delta = now - event->ctx->timestamp; 7029 u64 time = event->ctx->time + delta; 7030 7031 task_clock_event_update(event, time); 7032 } 7033 7034 static int task_clock_event_init(struct perf_event *event) 7035 { 7036 if (event->attr.type != PERF_TYPE_SOFTWARE) 7037 return -ENOENT; 7038 7039 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7040 return -ENOENT; 7041 7042 /* 7043 * no branch sampling for software events 7044 */ 7045 if (has_branch_stack(event)) 7046 return -EOPNOTSUPP; 7047 7048 perf_swevent_init_hrtimer(event); 7049 7050 return 0; 7051 } 7052 7053 static struct pmu perf_task_clock = { 7054 .task_ctx_nr = perf_sw_context, 7055 7056 .capabilities = PERF_PMU_CAP_NO_NMI, 7057 7058 .event_init = task_clock_event_init, 7059 .add = task_clock_event_add, 7060 .del = task_clock_event_del, 7061 .start = task_clock_event_start, 7062 .stop = task_clock_event_stop, 7063 .read = task_clock_event_read, 7064 }; 7065 7066 static void perf_pmu_nop_void(struct pmu *pmu) 7067 { 7068 } 7069 7070 static int perf_pmu_nop_int(struct pmu *pmu) 7071 { 7072 return 0; 7073 } 7074 7075 static void perf_pmu_start_txn(struct pmu *pmu) 7076 { 7077 perf_pmu_disable(pmu); 7078 } 7079 7080 static int perf_pmu_commit_txn(struct pmu *pmu) 7081 { 7082 perf_pmu_enable(pmu); 7083 return 0; 7084 } 7085 7086 static void perf_pmu_cancel_txn(struct pmu *pmu) 7087 { 7088 perf_pmu_enable(pmu); 7089 } 7090 7091 static int perf_event_idx_default(struct perf_event *event) 7092 { 7093 return 0; 7094 } 7095 7096 /* 7097 * Ensures all contexts with the same task_ctx_nr have the same 7098 * pmu_cpu_context too. 7099 */ 7100 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7101 { 7102 struct pmu *pmu; 7103 7104 if (ctxn < 0) 7105 return NULL; 7106 7107 list_for_each_entry(pmu, &pmus, entry) { 7108 if (pmu->task_ctx_nr == ctxn) 7109 return pmu->pmu_cpu_context; 7110 } 7111 7112 return NULL; 7113 } 7114 7115 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7116 { 7117 int cpu; 7118 7119 for_each_possible_cpu(cpu) { 7120 struct perf_cpu_context *cpuctx; 7121 7122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7123 7124 if (cpuctx->unique_pmu == old_pmu) 7125 cpuctx->unique_pmu = pmu; 7126 } 7127 } 7128 7129 static void free_pmu_context(struct pmu *pmu) 7130 { 7131 struct pmu *i; 7132 7133 mutex_lock(&pmus_lock); 7134 /* 7135 * Like a real lame refcount. 7136 */ 7137 list_for_each_entry(i, &pmus, entry) { 7138 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7139 update_pmu_context(i, pmu); 7140 goto out; 7141 } 7142 } 7143 7144 free_percpu(pmu->pmu_cpu_context); 7145 out: 7146 mutex_unlock(&pmus_lock); 7147 } 7148 static struct idr pmu_idr; 7149 7150 static ssize_t 7151 type_show(struct device *dev, struct device_attribute *attr, char *page) 7152 { 7153 struct pmu *pmu = dev_get_drvdata(dev); 7154 7155 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7156 } 7157 static DEVICE_ATTR_RO(type); 7158 7159 static ssize_t 7160 perf_event_mux_interval_ms_show(struct device *dev, 7161 struct device_attribute *attr, 7162 char *page) 7163 { 7164 struct pmu *pmu = dev_get_drvdata(dev); 7165 7166 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7167 } 7168 7169 static ssize_t 7170 perf_event_mux_interval_ms_store(struct device *dev, 7171 struct device_attribute *attr, 7172 const char *buf, size_t count) 7173 { 7174 struct pmu *pmu = dev_get_drvdata(dev); 7175 int timer, cpu, ret; 7176 7177 ret = kstrtoint(buf, 0, &timer); 7178 if (ret) 7179 return ret; 7180 7181 if (timer < 1) 7182 return -EINVAL; 7183 7184 /* same value, noting to do */ 7185 if (timer == pmu->hrtimer_interval_ms) 7186 return count; 7187 7188 pmu->hrtimer_interval_ms = timer; 7189 7190 /* update all cpuctx for this PMU */ 7191 for_each_possible_cpu(cpu) { 7192 struct perf_cpu_context *cpuctx; 7193 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7194 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7195 7196 if (hrtimer_active(&cpuctx->hrtimer)) 7197 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 7198 } 7199 7200 return count; 7201 } 7202 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7203 7204 static struct attribute *pmu_dev_attrs[] = { 7205 &dev_attr_type.attr, 7206 &dev_attr_perf_event_mux_interval_ms.attr, 7207 NULL, 7208 }; 7209 ATTRIBUTE_GROUPS(pmu_dev); 7210 7211 static int pmu_bus_running; 7212 static struct bus_type pmu_bus = { 7213 .name = "event_source", 7214 .dev_groups = pmu_dev_groups, 7215 }; 7216 7217 static void pmu_dev_release(struct device *dev) 7218 { 7219 kfree(dev); 7220 } 7221 7222 static int pmu_dev_alloc(struct pmu *pmu) 7223 { 7224 int ret = -ENOMEM; 7225 7226 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7227 if (!pmu->dev) 7228 goto out; 7229 7230 pmu->dev->groups = pmu->attr_groups; 7231 device_initialize(pmu->dev); 7232 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7233 if (ret) 7234 goto free_dev; 7235 7236 dev_set_drvdata(pmu->dev, pmu); 7237 pmu->dev->bus = &pmu_bus; 7238 pmu->dev->release = pmu_dev_release; 7239 ret = device_add(pmu->dev); 7240 if (ret) 7241 goto free_dev; 7242 7243 out: 7244 return ret; 7245 7246 free_dev: 7247 put_device(pmu->dev); 7248 goto out; 7249 } 7250 7251 static struct lock_class_key cpuctx_mutex; 7252 static struct lock_class_key cpuctx_lock; 7253 7254 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7255 { 7256 int cpu, ret; 7257 7258 mutex_lock(&pmus_lock); 7259 ret = -ENOMEM; 7260 pmu->pmu_disable_count = alloc_percpu(int); 7261 if (!pmu->pmu_disable_count) 7262 goto unlock; 7263 7264 pmu->type = -1; 7265 if (!name) 7266 goto skip_type; 7267 pmu->name = name; 7268 7269 if (type < 0) { 7270 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7271 if (type < 0) { 7272 ret = type; 7273 goto free_pdc; 7274 } 7275 } 7276 pmu->type = type; 7277 7278 if (pmu_bus_running) { 7279 ret = pmu_dev_alloc(pmu); 7280 if (ret) 7281 goto free_idr; 7282 } 7283 7284 skip_type: 7285 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7286 if (pmu->pmu_cpu_context) 7287 goto got_cpu_context; 7288 7289 ret = -ENOMEM; 7290 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7291 if (!pmu->pmu_cpu_context) 7292 goto free_dev; 7293 7294 for_each_possible_cpu(cpu) { 7295 struct perf_cpu_context *cpuctx; 7296 7297 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7298 __perf_event_init_context(&cpuctx->ctx); 7299 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7300 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7301 cpuctx->ctx.pmu = pmu; 7302 7303 __perf_cpu_hrtimer_init(cpuctx, cpu); 7304 7305 cpuctx->unique_pmu = pmu; 7306 } 7307 7308 got_cpu_context: 7309 if (!pmu->start_txn) { 7310 if (pmu->pmu_enable) { 7311 /* 7312 * If we have pmu_enable/pmu_disable calls, install 7313 * transaction stubs that use that to try and batch 7314 * hardware accesses. 7315 */ 7316 pmu->start_txn = perf_pmu_start_txn; 7317 pmu->commit_txn = perf_pmu_commit_txn; 7318 pmu->cancel_txn = perf_pmu_cancel_txn; 7319 } else { 7320 pmu->start_txn = perf_pmu_nop_void; 7321 pmu->commit_txn = perf_pmu_nop_int; 7322 pmu->cancel_txn = perf_pmu_nop_void; 7323 } 7324 } 7325 7326 if (!pmu->pmu_enable) { 7327 pmu->pmu_enable = perf_pmu_nop_void; 7328 pmu->pmu_disable = perf_pmu_nop_void; 7329 } 7330 7331 if (!pmu->event_idx) 7332 pmu->event_idx = perf_event_idx_default; 7333 7334 list_add_rcu(&pmu->entry, &pmus); 7335 atomic_set(&pmu->exclusive_cnt, 0); 7336 ret = 0; 7337 unlock: 7338 mutex_unlock(&pmus_lock); 7339 7340 return ret; 7341 7342 free_dev: 7343 device_del(pmu->dev); 7344 put_device(pmu->dev); 7345 7346 free_idr: 7347 if (pmu->type >= PERF_TYPE_MAX) 7348 idr_remove(&pmu_idr, pmu->type); 7349 7350 free_pdc: 7351 free_percpu(pmu->pmu_disable_count); 7352 goto unlock; 7353 } 7354 EXPORT_SYMBOL_GPL(perf_pmu_register); 7355 7356 void perf_pmu_unregister(struct pmu *pmu) 7357 { 7358 mutex_lock(&pmus_lock); 7359 list_del_rcu(&pmu->entry); 7360 mutex_unlock(&pmus_lock); 7361 7362 /* 7363 * We dereference the pmu list under both SRCU and regular RCU, so 7364 * synchronize against both of those. 7365 */ 7366 synchronize_srcu(&pmus_srcu); 7367 synchronize_rcu(); 7368 7369 free_percpu(pmu->pmu_disable_count); 7370 if (pmu->type >= PERF_TYPE_MAX) 7371 idr_remove(&pmu_idr, pmu->type); 7372 device_del(pmu->dev); 7373 put_device(pmu->dev); 7374 free_pmu_context(pmu); 7375 } 7376 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7377 7378 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7379 { 7380 struct perf_event_context *ctx = NULL; 7381 int ret; 7382 7383 if (!try_module_get(pmu->module)) 7384 return -ENODEV; 7385 7386 if (event->group_leader != event) { 7387 /* 7388 * This ctx->mutex can nest when we're called through 7389 * inheritance. See the perf_event_ctx_lock_nested() comment. 7390 */ 7391 ctx = perf_event_ctx_lock_nested(event->group_leader, 7392 SINGLE_DEPTH_NESTING); 7393 BUG_ON(!ctx); 7394 } 7395 7396 event->pmu = pmu; 7397 ret = pmu->event_init(event); 7398 7399 if (ctx) 7400 perf_event_ctx_unlock(event->group_leader, ctx); 7401 7402 if (ret) 7403 module_put(pmu->module); 7404 7405 return ret; 7406 } 7407 7408 struct pmu *perf_init_event(struct perf_event *event) 7409 { 7410 struct pmu *pmu = NULL; 7411 int idx; 7412 int ret; 7413 7414 idx = srcu_read_lock(&pmus_srcu); 7415 7416 rcu_read_lock(); 7417 pmu = idr_find(&pmu_idr, event->attr.type); 7418 rcu_read_unlock(); 7419 if (pmu) { 7420 ret = perf_try_init_event(pmu, event); 7421 if (ret) 7422 pmu = ERR_PTR(ret); 7423 goto unlock; 7424 } 7425 7426 list_for_each_entry_rcu(pmu, &pmus, entry) { 7427 ret = perf_try_init_event(pmu, event); 7428 if (!ret) 7429 goto unlock; 7430 7431 if (ret != -ENOENT) { 7432 pmu = ERR_PTR(ret); 7433 goto unlock; 7434 } 7435 } 7436 pmu = ERR_PTR(-ENOENT); 7437 unlock: 7438 srcu_read_unlock(&pmus_srcu, idx); 7439 7440 return pmu; 7441 } 7442 7443 static void account_event_cpu(struct perf_event *event, int cpu) 7444 { 7445 if (event->parent) 7446 return; 7447 7448 if (is_cgroup_event(event)) 7449 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7450 } 7451 7452 static void account_event(struct perf_event *event) 7453 { 7454 if (event->parent) 7455 return; 7456 7457 if (event->attach_state & PERF_ATTACH_TASK) 7458 static_key_slow_inc(&perf_sched_events.key); 7459 if (event->attr.mmap || event->attr.mmap_data) 7460 atomic_inc(&nr_mmap_events); 7461 if (event->attr.comm) 7462 atomic_inc(&nr_comm_events); 7463 if (event->attr.task) 7464 atomic_inc(&nr_task_events); 7465 if (event->attr.freq) { 7466 if (atomic_inc_return(&nr_freq_events) == 1) 7467 tick_nohz_full_kick_all(); 7468 } 7469 if (has_branch_stack(event)) 7470 static_key_slow_inc(&perf_sched_events.key); 7471 if (is_cgroup_event(event)) 7472 static_key_slow_inc(&perf_sched_events.key); 7473 7474 account_event_cpu(event, event->cpu); 7475 } 7476 7477 /* 7478 * Allocate and initialize a event structure 7479 */ 7480 static struct perf_event * 7481 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7482 struct task_struct *task, 7483 struct perf_event *group_leader, 7484 struct perf_event *parent_event, 7485 perf_overflow_handler_t overflow_handler, 7486 void *context, int cgroup_fd) 7487 { 7488 struct pmu *pmu; 7489 struct perf_event *event; 7490 struct hw_perf_event *hwc; 7491 long err = -EINVAL; 7492 7493 if ((unsigned)cpu >= nr_cpu_ids) { 7494 if (!task || cpu != -1) 7495 return ERR_PTR(-EINVAL); 7496 } 7497 7498 event = kzalloc(sizeof(*event), GFP_KERNEL); 7499 if (!event) 7500 return ERR_PTR(-ENOMEM); 7501 7502 /* 7503 * Single events are their own group leaders, with an 7504 * empty sibling list: 7505 */ 7506 if (!group_leader) 7507 group_leader = event; 7508 7509 mutex_init(&event->child_mutex); 7510 INIT_LIST_HEAD(&event->child_list); 7511 7512 INIT_LIST_HEAD(&event->group_entry); 7513 INIT_LIST_HEAD(&event->event_entry); 7514 INIT_LIST_HEAD(&event->sibling_list); 7515 INIT_LIST_HEAD(&event->rb_entry); 7516 INIT_LIST_HEAD(&event->active_entry); 7517 INIT_HLIST_NODE(&event->hlist_entry); 7518 7519 7520 init_waitqueue_head(&event->waitq); 7521 init_irq_work(&event->pending, perf_pending_event); 7522 7523 mutex_init(&event->mmap_mutex); 7524 7525 atomic_long_set(&event->refcount, 1); 7526 event->cpu = cpu; 7527 event->attr = *attr; 7528 event->group_leader = group_leader; 7529 event->pmu = NULL; 7530 event->oncpu = -1; 7531 7532 event->parent = parent_event; 7533 7534 event->ns = get_pid_ns(task_active_pid_ns(current)); 7535 event->id = atomic64_inc_return(&perf_event_id); 7536 7537 event->state = PERF_EVENT_STATE_INACTIVE; 7538 7539 if (task) { 7540 event->attach_state = PERF_ATTACH_TASK; 7541 /* 7542 * XXX pmu::event_init needs to know what task to account to 7543 * and we cannot use the ctx information because we need the 7544 * pmu before we get a ctx. 7545 */ 7546 event->hw.target = task; 7547 } 7548 7549 event->clock = &local_clock; 7550 if (parent_event) 7551 event->clock = parent_event->clock; 7552 7553 if (!overflow_handler && parent_event) { 7554 overflow_handler = parent_event->overflow_handler; 7555 context = parent_event->overflow_handler_context; 7556 } 7557 7558 event->overflow_handler = overflow_handler; 7559 event->overflow_handler_context = context; 7560 7561 perf_event__state_init(event); 7562 7563 pmu = NULL; 7564 7565 hwc = &event->hw; 7566 hwc->sample_period = attr->sample_period; 7567 if (attr->freq && attr->sample_freq) 7568 hwc->sample_period = 1; 7569 hwc->last_period = hwc->sample_period; 7570 7571 local64_set(&hwc->period_left, hwc->sample_period); 7572 7573 /* 7574 * we currently do not support PERF_FORMAT_GROUP on inherited events 7575 */ 7576 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7577 goto err_ns; 7578 7579 if (!has_branch_stack(event)) 7580 event->attr.branch_sample_type = 0; 7581 7582 if (cgroup_fd != -1) { 7583 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7584 if (err) 7585 goto err_ns; 7586 } 7587 7588 pmu = perf_init_event(event); 7589 if (!pmu) 7590 goto err_ns; 7591 else if (IS_ERR(pmu)) { 7592 err = PTR_ERR(pmu); 7593 goto err_ns; 7594 } 7595 7596 err = exclusive_event_init(event); 7597 if (err) 7598 goto err_pmu; 7599 7600 if (!event->parent) { 7601 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7602 err = get_callchain_buffers(); 7603 if (err) 7604 goto err_per_task; 7605 } 7606 } 7607 7608 return event; 7609 7610 err_per_task: 7611 exclusive_event_destroy(event); 7612 7613 err_pmu: 7614 if (event->destroy) 7615 event->destroy(event); 7616 module_put(pmu->module); 7617 err_ns: 7618 if (is_cgroup_event(event)) 7619 perf_detach_cgroup(event); 7620 if (event->ns) 7621 put_pid_ns(event->ns); 7622 kfree(event); 7623 7624 return ERR_PTR(err); 7625 } 7626 7627 static int perf_copy_attr(struct perf_event_attr __user *uattr, 7628 struct perf_event_attr *attr) 7629 { 7630 u32 size; 7631 int ret; 7632 7633 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 7634 return -EFAULT; 7635 7636 /* 7637 * zero the full structure, so that a short copy will be nice. 7638 */ 7639 memset(attr, 0, sizeof(*attr)); 7640 7641 ret = get_user(size, &uattr->size); 7642 if (ret) 7643 return ret; 7644 7645 if (size > PAGE_SIZE) /* silly large */ 7646 goto err_size; 7647 7648 if (!size) /* abi compat */ 7649 size = PERF_ATTR_SIZE_VER0; 7650 7651 if (size < PERF_ATTR_SIZE_VER0) 7652 goto err_size; 7653 7654 /* 7655 * If we're handed a bigger struct than we know of, 7656 * ensure all the unknown bits are 0 - i.e. new 7657 * user-space does not rely on any kernel feature 7658 * extensions we dont know about yet. 7659 */ 7660 if (size > sizeof(*attr)) { 7661 unsigned char __user *addr; 7662 unsigned char __user *end; 7663 unsigned char val; 7664 7665 addr = (void __user *)uattr + sizeof(*attr); 7666 end = (void __user *)uattr + size; 7667 7668 for (; addr < end; addr++) { 7669 ret = get_user(val, addr); 7670 if (ret) 7671 return ret; 7672 if (val) 7673 goto err_size; 7674 } 7675 size = sizeof(*attr); 7676 } 7677 7678 ret = copy_from_user(attr, uattr, size); 7679 if (ret) 7680 return -EFAULT; 7681 7682 if (attr->__reserved_1) 7683 return -EINVAL; 7684 7685 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 7686 return -EINVAL; 7687 7688 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 7689 return -EINVAL; 7690 7691 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 7692 u64 mask = attr->branch_sample_type; 7693 7694 /* only using defined bits */ 7695 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 7696 return -EINVAL; 7697 7698 /* at least one branch bit must be set */ 7699 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 7700 return -EINVAL; 7701 7702 /* propagate priv level, when not set for branch */ 7703 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 7704 7705 /* exclude_kernel checked on syscall entry */ 7706 if (!attr->exclude_kernel) 7707 mask |= PERF_SAMPLE_BRANCH_KERNEL; 7708 7709 if (!attr->exclude_user) 7710 mask |= PERF_SAMPLE_BRANCH_USER; 7711 7712 if (!attr->exclude_hv) 7713 mask |= PERF_SAMPLE_BRANCH_HV; 7714 /* 7715 * adjust user setting (for HW filter setup) 7716 */ 7717 attr->branch_sample_type = mask; 7718 } 7719 /* privileged levels capture (kernel, hv): check permissions */ 7720 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 7721 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7722 return -EACCES; 7723 } 7724 7725 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 7726 ret = perf_reg_validate(attr->sample_regs_user); 7727 if (ret) 7728 return ret; 7729 } 7730 7731 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 7732 if (!arch_perf_have_user_stack_dump()) 7733 return -ENOSYS; 7734 7735 /* 7736 * We have __u32 type for the size, but so far 7737 * we can only use __u16 as maximum due to the 7738 * __u16 sample size limit. 7739 */ 7740 if (attr->sample_stack_user >= USHRT_MAX) 7741 ret = -EINVAL; 7742 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 7743 ret = -EINVAL; 7744 } 7745 7746 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 7747 ret = perf_reg_validate(attr->sample_regs_intr); 7748 out: 7749 return ret; 7750 7751 err_size: 7752 put_user(sizeof(*attr), &uattr->size); 7753 ret = -E2BIG; 7754 goto out; 7755 } 7756 7757 static int 7758 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 7759 { 7760 struct ring_buffer *rb = NULL; 7761 int ret = -EINVAL; 7762 7763 if (!output_event) 7764 goto set; 7765 7766 /* don't allow circular references */ 7767 if (event == output_event) 7768 goto out; 7769 7770 /* 7771 * Don't allow cross-cpu buffers 7772 */ 7773 if (output_event->cpu != event->cpu) 7774 goto out; 7775 7776 /* 7777 * If its not a per-cpu rb, it must be the same task. 7778 */ 7779 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7780 goto out; 7781 7782 /* 7783 * Mixing clocks in the same buffer is trouble you don't need. 7784 */ 7785 if (output_event->clock != event->clock) 7786 goto out; 7787 7788 /* 7789 * If both events generate aux data, they must be on the same PMU 7790 */ 7791 if (has_aux(event) && has_aux(output_event) && 7792 event->pmu != output_event->pmu) 7793 goto out; 7794 7795 set: 7796 mutex_lock(&event->mmap_mutex); 7797 /* Can't redirect output if we've got an active mmap() */ 7798 if (atomic_read(&event->mmap_count)) 7799 goto unlock; 7800 7801 if (output_event) { 7802 /* get the rb we want to redirect to */ 7803 rb = ring_buffer_get(output_event); 7804 if (!rb) 7805 goto unlock; 7806 } 7807 7808 ring_buffer_attach(event, rb); 7809 7810 ret = 0; 7811 unlock: 7812 mutex_unlock(&event->mmap_mutex); 7813 7814 out: 7815 return ret; 7816 } 7817 7818 static void mutex_lock_double(struct mutex *a, struct mutex *b) 7819 { 7820 if (b < a) 7821 swap(a, b); 7822 7823 mutex_lock(a); 7824 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 7825 } 7826 7827 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 7828 { 7829 bool nmi_safe = false; 7830 7831 switch (clk_id) { 7832 case CLOCK_MONOTONIC: 7833 event->clock = &ktime_get_mono_fast_ns; 7834 nmi_safe = true; 7835 break; 7836 7837 case CLOCK_MONOTONIC_RAW: 7838 event->clock = &ktime_get_raw_fast_ns; 7839 nmi_safe = true; 7840 break; 7841 7842 case CLOCK_REALTIME: 7843 event->clock = &ktime_get_real_ns; 7844 break; 7845 7846 case CLOCK_BOOTTIME: 7847 event->clock = &ktime_get_boot_ns; 7848 break; 7849 7850 case CLOCK_TAI: 7851 event->clock = &ktime_get_tai_ns; 7852 break; 7853 7854 default: 7855 return -EINVAL; 7856 } 7857 7858 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 7859 return -EINVAL; 7860 7861 return 0; 7862 } 7863 7864 /** 7865 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7866 * 7867 * @attr_uptr: event_id type attributes for monitoring/sampling 7868 * @pid: target pid 7869 * @cpu: target cpu 7870 * @group_fd: group leader event fd 7871 */ 7872 SYSCALL_DEFINE5(perf_event_open, 7873 struct perf_event_attr __user *, attr_uptr, 7874 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7875 { 7876 struct perf_event *group_leader = NULL, *output_event = NULL; 7877 struct perf_event *event, *sibling; 7878 struct perf_event_attr attr; 7879 struct perf_event_context *ctx, *uninitialized_var(gctx); 7880 struct file *event_file = NULL; 7881 struct fd group = {NULL, 0}; 7882 struct task_struct *task = NULL; 7883 struct pmu *pmu; 7884 int event_fd; 7885 int move_group = 0; 7886 int err; 7887 int f_flags = O_RDWR; 7888 int cgroup_fd = -1; 7889 7890 /* for future expandability... */ 7891 if (flags & ~PERF_FLAG_ALL) 7892 return -EINVAL; 7893 7894 err = perf_copy_attr(attr_uptr, &attr); 7895 if (err) 7896 return err; 7897 7898 if (!attr.exclude_kernel) { 7899 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7900 return -EACCES; 7901 } 7902 7903 if (attr.freq) { 7904 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7905 return -EINVAL; 7906 } else { 7907 if (attr.sample_period & (1ULL << 63)) 7908 return -EINVAL; 7909 } 7910 7911 /* 7912 * In cgroup mode, the pid argument is used to pass the fd 7913 * opened to the cgroup directory in cgroupfs. The cpu argument 7914 * designates the cpu on which to monitor threads from that 7915 * cgroup. 7916 */ 7917 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7918 return -EINVAL; 7919 7920 if (flags & PERF_FLAG_FD_CLOEXEC) 7921 f_flags |= O_CLOEXEC; 7922 7923 event_fd = get_unused_fd_flags(f_flags); 7924 if (event_fd < 0) 7925 return event_fd; 7926 7927 if (group_fd != -1) { 7928 err = perf_fget_light(group_fd, &group); 7929 if (err) 7930 goto err_fd; 7931 group_leader = group.file->private_data; 7932 if (flags & PERF_FLAG_FD_OUTPUT) 7933 output_event = group_leader; 7934 if (flags & PERF_FLAG_FD_NO_GROUP) 7935 group_leader = NULL; 7936 } 7937 7938 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7939 task = find_lively_task_by_vpid(pid); 7940 if (IS_ERR(task)) { 7941 err = PTR_ERR(task); 7942 goto err_group_fd; 7943 } 7944 } 7945 7946 if (task && group_leader && 7947 group_leader->attr.inherit != attr.inherit) { 7948 err = -EINVAL; 7949 goto err_task; 7950 } 7951 7952 get_online_cpus(); 7953 7954 if (flags & PERF_FLAG_PID_CGROUP) 7955 cgroup_fd = pid; 7956 7957 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7958 NULL, NULL, cgroup_fd); 7959 if (IS_ERR(event)) { 7960 err = PTR_ERR(event); 7961 goto err_cpus; 7962 } 7963 7964 if (is_sampling_event(event)) { 7965 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7966 err = -ENOTSUPP; 7967 goto err_alloc; 7968 } 7969 } 7970 7971 account_event(event); 7972 7973 /* 7974 * Special case software events and allow them to be part of 7975 * any hardware group. 7976 */ 7977 pmu = event->pmu; 7978 7979 if (attr.use_clockid) { 7980 err = perf_event_set_clock(event, attr.clockid); 7981 if (err) 7982 goto err_alloc; 7983 } 7984 7985 if (group_leader && 7986 (is_software_event(event) != is_software_event(group_leader))) { 7987 if (is_software_event(event)) { 7988 /* 7989 * If event and group_leader are not both a software 7990 * event, and event is, then group leader is not. 7991 * 7992 * Allow the addition of software events to !software 7993 * groups, this is safe because software events never 7994 * fail to schedule. 7995 */ 7996 pmu = group_leader->pmu; 7997 } else if (is_software_event(group_leader) && 7998 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7999 /* 8000 * In case the group is a pure software group, and we 8001 * try to add a hardware event, move the whole group to 8002 * the hardware context. 8003 */ 8004 move_group = 1; 8005 } 8006 } 8007 8008 /* 8009 * Get the target context (task or percpu): 8010 */ 8011 ctx = find_get_context(pmu, task, event); 8012 if (IS_ERR(ctx)) { 8013 err = PTR_ERR(ctx); 8014 goto err_alloc; 8015 } 8016 8017 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8018 err = -EBUSY; 8019 goto err_context; 8020 } 8021 8022 if (task) { 8023 put_task_struct(task); 8024 task = NULL; 8025 } 8026 8027 /* 8028 * Look up the group leader (we will attach this event to it): 8029 */ 8030 if (group_leader) { 8031 err = -EINVAL; 8032 8033 /* 8034 * Do not allow a recursive hierarchy (this new sibling 8035 * becoming part of another group-sibling): 8036 */ 8037 if (group_leader->group_leader != group_leader) 8038 goto err_context; 8039 8040 /* All events in a group should have the same clock */ 8041 if (group_leader->clock != event->clock) 8042 goto err_context; 8043 8044 /* 8045 * Do not allow to attach to a group in a different 8046 * task or CPU context: 8047 */ 8048 if (move_group) { 8049 /* 8050 * Make sure we're both on the same task, or both 8051 * per-cpu events. 8052 */ 8053 if (group_leader->ctx->task != ctx->task) 8054 goto err_context; 8055 8056 /* 8057 * Make sure we're both events for the same CPU; 8058 * grouping events for different CPUs is broken; since 8059 * you can never concurrently schedule them anyhow. 8060 */ 8061 if (group_leader->cpu != event->cpu) 8062 goto err_context; 8063 } else { 8064 if (group_leader->ctx != ctx) 8065 goto err_context; 8066 } 8067 8068 /* 8069 * Only a group leader can be exclusive or pinned 8070 */ 8071 if (attr.exclusive || attr.pinned) 8072 goto err_context; 8073 } 8074 8075 if (output_event) { 8076 err = perf_event_set_output(event, output_event); 8077 if (err) 8078 goto err_context; 8079 } 8080 8081 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8082 f_flags); 8083 if (IS_ERR(event_file)) { 8084 err = PTR_ERR(event_file); 8085 goto err_context; 8086 } 8087 8088 if (move_group) { 8089 gctx = group_leader->ctx; 8090 8091 /* 8092 * See perf_event_ctx_lock() for comments on the details 8093 * of swizzling perf_event::ctx. 8094 */ 8095 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8096 8097 perf_remove_from_context(group_leader, false); 8098 8099 list_for_each_entry(sibling, &group_leader->sibling_list, 8100 group_entry) { 8101 perf_remove_from_context(sibling, false); 8102 put_ctx(gctx); 8103 } 8104 } else { 8105 mutex_lock(&ctx->mutex); 8106 } 8107 8108 WARN_ON_ONCE(ctx->parent_ctx); 8109 8110 if (move_group) { 8111 /* 8112 * Wait for everybody to stop referencing the events through 8113 * the old lists, before installing it on new lists. 8114 */ 8115 synchronize_rcu(); 8116 8117 /* 8118 * Install the group siblings before the group leader. 8119 * 8120 * Because a group leader will try and install the entire group 8121 * (through the sibling list, which is still in-tact), we can 8122 * end up with siblings installed in the wrong context. 8123 * 8124 * By installing siblings first we NO-OP because they're not 8125 * reachable through the group lists. 8126 */ 8127 list_for_each_entry(sibling, &group_leader->sibling_list, 8128 group_entry) { 8129 perf_event__state_init(sibling); 8130 perf_install_in_context(ctx, sibling, sibling->cpu); 8131 get_ctx(ctx); 8132 } 8133 8134 /* 8135 * Removing from the context ends up with disabled 8136 * event. What we want here is event in the initial 8137 * startup state, ready to be add into new context. 8138 */ 8139 perf_event__state_init(group_leader); 8140 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8141 get_ctx(ctx); 8142 } 8143 8144 if (!exclusive_event_installable(event, ctx)) { 8145 err = -EBUSY; 8146 mutex_unlock(&ctx->mutex); 8147 fput(event_file); 8148 goto err_context; 8149 } 8150 8151 perf_install_in_context(ctx, event, event->cpu); 8152 perf_unpin_context(ctx); 8153 8154 if (move_group) { 8155 mutex_unlock(&gctx->mutex); 8156 put_ctx(gctx); 8157 } 8158 mutex_unlock(&ctx->mutex); 8159 8160 put_online_cpus(); 8161 8162 event->owner = current; 8163 8164 mutex_lock(¤t->perf_event_mutex); 8165 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8166 mutex_unlock(¤t->perf_event_mutex); 8167 8168 /* 8169 * Precalculate sample_data sizes 8170 */ 8171 perf_event__header_size(event); 8172 perf_event__id_header_size(event); 8173 8174 /* 8175 * Drop the reference on the group_event after placing the 8176 * new event on the sibling_list. This ensures destruction 8177 * of the group leader will find the pointer to itself in 8178 * perf_group_detach(). 8179 */ 8180 fdput(group); 8181 fd_install(event_fd, event_file); 8182 return event_fd; 8183 8184 err_context: 8185 perf_unpin_context(ctx); 8186 put_ctx(ctx); 8187 err_alloc: 8188 free_event(event); 8189 err_cpus: 8190 put_online_cpus(); 8191 err_task: 8192 if (task) 8193 put_task_struct(task); 8194 err_group_fd: 8195 fdput(group); 8196 err_fd: 8197 put_unused_fd(event_fd); 8198 return err; 8199 } 8200 8201 /** 8202 * perf_event_create_kernel_counter 8203 * 8204 * @attr: attributes of the counter to create 8205 * @cpu: cpu in which the counter is bound 8206 * @task: task to profile (NULL for percpu) 8207 */ 8208 struct perf_event * 8209 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8210 struct task_struct *task, 8211 perf_overflow_handler_t overflow_handler, 8212 void *context) 8213 { 8214 struct perf_event_context *ctx; 8215 struct perf_event *event; 8216 int err; 8217 8218 /* 8219 * Get the target context (task or percpu): 8220 */ 8221 8222 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8223 overflow_handler, context, -1); 8224 if (IS_ERR(event)) { 8225 err = PTR_ERR(event); 8226 goto err; 8227 } 8228 8229 /* Mark owner so we could distinguish it from user events. */ 8230 event->owner = EVENT_OWNER_KERNEL; 8231 8232 account_event(event); 8233 8234 ctx = find_get_context(event->pmu, task, event); 8235 if (IS_ERR(ctx)) { 8236 err = PTR_ERR(ctx); 8237 goto err_free; 8238 } 8239 8240 WARN_ON_ONCE(ctx->parent_ctx); 8241 mutex_lock(&ctx->mutex); 8242 if (!exclusive_event_installable(event, ctx)) { 8243 mutex_unlock(&ctx->mutex); 8244 perf_unpin_context(ctx); 8245 put_ctx(ctx); 8246 err = -EBUSY; 8247 goto err_free; 8248 } 8249 8250 perf_install_in_context(ctx, event, cpu); 8251 perf_unpin_context(ctx); 8252 mutex_unlock(&ctx->mutex); 8253 8254 return event; 8255 8256 err_free: 8257 free_event(event); 8258 err: 8259 return ERR_PTR(err); 8260 } 8261 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8262 8263 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8264 { 8265 struct perf_event_context *src_ctx; 8266 struct perf_event_context *dst_ctx; 8267 struct perf_event *event, *tmp; 8268 LIST_HEAD(events); 8269 8270 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8271 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8272 8273 /* 8274 * See perf_event_ctx_lock() for comments on the details 8275 * of swizzling perf_event::ctx. 8276 */ 8277 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8278 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8279 event_entry) { 8280 perf_remove_from_context(event, false); 8281 unaccount_event_cpu(event, src_cpu); 8282 put_ctx(src_ctx); 8283 list_add(&event->migrate_entry, &events); 8284 } 8285 8286 /* 8287 * Wait for the events to quiesce before re-instating them. 8288 */ 8289 synchronize_rcu(); 8290 8291 /* 8292 * Re-instate events in 2 passes. 8293 * 8294 * Skip over group leaders and only install siblings on this first 8295 * pass, siblings will not get enabled without a leader, however a 8296 * leader will enable its siblings, even if those are still on the old 8297 * context. 8298 */ 8299 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8300 if (event->group_leader == event) 8301 continue; 8302 8303 list_del(&event->migrate_entry); 8304 if (event->state >= PERF_EVENT_STATE_OFF) 8305 event->state = PERF_EVENT_STATE_INACTIVE; 8306 account_event_cpu(event, dst_cpu); 8307 perf_install_in_context(dst_ctx, event, dst_cpu); 8308 get_ctx(dst_ctx); 8309 } 8310 8311 /* 8312 * Once all the siblings are setup properly, install the group leaders 8313 * to make it go. 8314 */ 8315 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8316 list_del(&event->migrate_entry); 8317 if (event->state >= PERF_EVENT_STATE_OFF) 8318 event->state = PERF_EVENT_STATE_INACTIVE; 8319 account_event_cpu(event, dst_cpu); 8320 perf_install_in_context(dst_ctx, event, dst_cpu); 8321 get_ctx(dst_ctx); 8322 } 8323 mutex_unlock(&dst_ctx->mutex); 8324 mutex_unlock(&src_ctx->mutex); 8325 } 8326 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8327 8328 static void sync_child_event(struct perf_event *child_event, 8329 struct task_struct *child) 8330 { 8331 struct perf_event *parent_event = child_event->parent; 8332 u64 child_val; 8333 8334 if (child_event->attr.inherit_stat) 8335 perf_event_read_event(child_event, child); 8336 8337 child_val = perf_event_count(child_event); 8338 8339 /* 8340 * Add back the child's count to the parent's count: 8341 */ 8342 atomic64_add(child_val, &parent_event->child_count); 8343 atomic64_add(child_event->total_time_enabled, 8344 &parent_event->child_total_time_enabled); 8345 atomic64_add(child_event->total_time_running, 8346 &parent_event->child_total_time_running); 8347 8348 /* 8349 * Remove this event from the parent's list 8350 */ 8351 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8352 mutex_lock(&parent_event->child_mutex); 8353 list_del_init(&child_event->child_list); 8354 mutex_unlock(&parent_event->child_mutex); 8355 8356 /* 8357 * Make sure user/parent get notified, that we just 8358 * lost one event. 8359 */ 8360 perf_event_wakeup(parent_event); 8361 8362 /* 8363 * Release the parent event, if this was the last 8364 * reference to it. 8365 */ 8366 put_event(parent_event); 8367 } 8368 8369 static void 8370 __perf_event_exit_task(struct perf_event *child_event, 8371 struct perf_event_context *child_ctx, 8372 struct task_struct *child) 8373 { 8374 /* 8375 * Do not destroy the 'original' grouping; because of the context 8376 * switch optimization the original events could've ended up in a 8377 * random child task. 8378 * 8379 * If we were to destroy the original group, all group related 8380 * operations would cease to function properly after this random 8381 * child dies. 8382 * 8383 * Do destroy all inherited groups, we don't care about those 8384 * and being thorough is better. 8385 */ 8386 perf_remove_from_context(child_event, !!child_event->parent); 8387 8388 /* 8389 * It can happen that the parent exits first, and has events 8390 * that are still around due to the child reference. These 8391 * events need to be zapped. 8392 */ 8393 if (child_event->parent) { 8394 sync_child_event(child_event, child); 8395 free_event(child_event); 8396 } else { 8397 child_event->state = PERF_EVENT_STATE_EXIT; 8398 perf_event_wakeup(child_event); 8399 } 8400 } 8401 8402 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8403 { 8404 struct perf_event *child_event, *next; 8405 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8406 unsigned long flags; 8407 8408 if (likely(!child->perf_event_ctxp[ctxn])) { 8409 perf_event_task(child, NULL, 0); 8410 return; 8411 } 8412 8413 local_irq_save(flags); 8414 /* 8415 * We can't reschedule here because interrupts are disabled, 8416 * and either child is current or it is a task that can't be 8417 * scheduled, so we are now safe from rescheduling changing 8418 * our context. 8419 */ 8420 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 8421 8422 /* 8423 * Take the context lock here so that if find_get_context is 8424 * reading child->perf_event_ctxp, we wait until it has 8425 * incremented the context's refcount before we do put_ctx below. 8426 */ 8427 raw_spin_lock(&child_ctx->lock); 8428 task_ctx_sched_out(child_ctx); 8429 child->perf_event_ctxp[ctxn] = NULL; 8430 8431 /* 8432 * If this context is a clone; unclone it so it can't get 8433 * swapped to another process while we're removing all 8434 * the events from it. 8435 */ 8436 clone_ctx = unclone_ctx(child_ctx); 8437 update_context_time(child_ctx); 8438 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8439 8440 if (clone_ctx) 8441 put_ctx(clone_ctx); 8442 8443 /* 8444 * Report the task dead after unscheduling the events so that we 8445 * won't get any samples after PERF_RECORD_EXIT. We can however still 8446 * get a few PERF_RECORD_READ events. 8447 */ 8448 perf_event_task(child, child_ctx, 0); 8449 8450 /* 8451 * We can recurse on the same lock type through: 8452 * 8453 * __perf_event_exit_task() 8454 * sync_child_event() 8455 * put_event() 8456 * mutex_lock(&ctx->mutex) 8457 * 8458 * But since its the parent context it won't be the same instance. 8459 */ 8460 mutex_lock(&child_ctx->mutex); 8461 8462 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8463 __perf_event_exit_task(child_event, child_ctx, child); 8464 8465 mutex_unlock(&child_ctx->mutex); 8466 8467 put_ctx(child_ctx); 8468 } 8469 8470 /* 8471 * When a child task exits, feed back event values to parent events. 8472 */ 8473 void perf_event_exit_task(struct task_struct *child) 8474 { 8475 struct perf_event *event, *tmp; 8476 int ctxn; 8477 8478 mutex_lock(&child->perf_event_mutex); 8479 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8480 owner_entry) { 8481 list_del_init(&event->owner_entry); 8482 8483 /* 8484 * Ensure the list deletion is visible before we clear 8485 * the owner, closes a race against perf_release() where 8486 * we need to serialize on the owner->perf_event_mutex. 8487 */ 8488 smp_wmb(); 8489 event->owner = NULL; 8490 } 8491 mutex_unlock(&child->perf_event_mutex); 8492 8493 for_each_task_context_nr(ctxn) 8494 perf_event_exit_task_context(child, ctxn); 8495 } 8496 8497 static void perf_free_event(struct perf_event *event, 8498 struct perf_event_context *ctx) 8499 { 8500 struct perf_event *parent = event->parent; 8501 8502 if (WARN_ON_ONCE(!parent)) 8503 return; 8504 8505 mutex_lock(&parent->child_mutex); 8506 list_del_init(&event->child_list); 8507 mutex_unlock(&parent->child_mutex); 8508 8509 put_event(parent); 8510 8511 raw_spin_lock_irq(&ctx->lock); 8512 perf_group_detach(event); 8513 list_del_event(event, ctx); 8514 raw_spin_unlock_irq(&ctx->lock); 8515 free_event(event); 8516 } 8517 8518 /* 8519 * Free an unexposed, unused context as created by inheritance by 8520 * perf_event_init_task below, used by fork() in case of fail. 8521 * 8522 * Not all locks are strictly required, but take them anyway to be nice and 8523 * help out with the lockdep assertions. 8524 */ 8525 void perf_event_free_task(struct task_struct *task) 8526 { 8527 struct perf_event_context *ctx; 8528 struct perf_event *event, *tmp; 8529 int ctxn; 8530 8531 for_each_task_context_nr(ctxn) { 8532 ctx = task->perf_event_ctxp[ctxn]; 8533 if (!ctx) 8534 continue; 8535 8536 mutex_lock(&ctx->mutex); 8537 again: 8538 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8539 group_entry) 8540 perf_free_event(event, ctx); 8541 8542 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8543 group_entry) 8544 perf_free_event(event, ctx); 8545 8546 if (!list_empty(&ctx->pinned_groups) || 8547 !list_empty(&ctx->flexible_groups)) 8548 goto again; 8549 8550 mutex_unlock(&ctx->mutex); 8551 8552 put_ctx(ctx); 8553 } 8554 } 8555 8556 void perf_event_delayed_put(struct task_struct *task) 8557 { 8558 int ctxn; 8559 8560 for_each_task_context_nr(ctxn) 8561 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 8562 } 8563 8564 /* 8565 * inherit a event from parent task to child task: 8566 */ 8567 static struct perf_event * 8568 inherit_event(struct perf_event *parent_event, 8569 struct task_struct *parent, 8570 struct perf_event_context *parent_ctx, 8571 struct task_struct *child, 8572 struct perf_event *group_leader, 8573 struct perf_event_context *child_ctx) 8574 { 8575 enum perf_event_active_state parent_state = parent_event->state; 8576 struct perf_event *child_event; 8577 unsigned long flags; 8578 8579 /* 8580 * Instead of creating recursive hierarchies of events, 8581 * we link inherited events back to the original parent, 8582 * which has a filp for sure, which we use as the reference 8583 * count: 8584 */ 8585 if (parent_event->parent) 8586 parent_event = parent_event->parent; 8587 8588 child_event = perf_event_alloc(&parent_event->attr, 8589 parent_event->cpu, 8590 child, 8591 group_leader, parent_event, 8592 NULL, NULL, -1); 8593 if (IS_ERR(child_event)) 8594 return child_event; 8595 8596 if (is_orphaned_event(parent_event) || 8597 !atomic_long_inc_not_zero(&parent_event->refcount)) { 8598 free_event(child_event); 8599 return NULL; 8600 } 8601 8602 get_ctx(child_ctx); 8603 8604 /* 8605 * Make the child state follow the state of the parent event, 8606 * not its attr.disabled bit. We hold the parent's mutex, 8607 * so we won't race with perf_event_{en, dis}able_family. 8608 */ 8609 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 8610 child_event->state = PERF_EVENT_STATE_INACTIVE; 8611 else 8612 child_event->state = PERF_EVENT_STATE_OFF; 8613 8614 if (parent_event->attr.freq) { 8615 u64 sample_period = parent_event->hw.sample_period; 8616 struct hw_perf_event *hwc = &child_event->hw; 8617 8618 hwc->sample_period = sample_period; 8619 hwc->last_period = sample_period; 8620 8621 local64_set(&hwc->period_left, sample_period); 8622 } 8623 8624 child_event->ctx = child_ctx; 8625 child_event->overflow_handler = parent_event->overflow_handler; 8626 child_event->overflow_handler_context 8627 = parent_event->overflow_handler_context; 8628 8629 /* 8630 * Precalculate sample_data sizes 8631 */ 8632 perf_event__header_size(child_event); 8633 perf_event__id_header_size(child_event); 8634 8635 /* 8636 * Link it up in the child's context: 8637 */ 8638 raw_spin_lock_irqsave(&child_ctx->lock, flags); 8639 add_event_to_ctx(child_event, child_ctx); 8640 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 8641 8642 /* 8643 * Link this into the parent event's child list 8644 */ 8645 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8646 mutex_lock(&parent_event->child_mutex); 8647 list_add_tail(&child_event->child_list, &parent_event->child_list); 8648 mutex_unlock(&parent_event->child_mutex); 8649 8650 return child_event; 8651 } 8652 8653 static int inherit_group(struct perf_event *parent_event, 8654 struct task_struct *parent, 8655 struct perf_event_context *parent_ctx, 8656 struct task_struct *child, 8657 struct perf_event_context *child_ctx) 8658 { 8659 struct perf_event *leader; 8660 struct perf_event *sub; 8661 struct perf_event *child_ctr; 8662 8663 leader = inherit_event(parent_event, parent, parent_ctx, 8664 child, NULL, child_ctx); 8665 if (IS_ERR(leader)) 8666 return PTR_ERR(leader); 8667 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 8668 child_ctr = inherit_event(sub, parent, parent_ctx, 8669 child, leader, child_ctx); 8670 if (IS_ERR(child_ctr)) 8671 return PTR_ERR(child_ctr); 8672 } 8673 return 0; 8674 } 8675 8676 static int 8677 inherit_task_group(struct perf_event *event, struct task_struct *parent, 8678 struct perf_event_context *parent_ctx, 8679 struct task_struct *child, int ctxn, 8680 int *inherited_all) 8681 { 8682 int ret; 8683 struct perf_event_context *child_ctx; 8684 8685 if (!event->attr.inherit) { 8686 *inherited_all = 0; 8687 return 0; 8688 } 8689 8690 child_ctx = child->perf_event_ctxp[ctxn]; 8691 if (!child_ctx) { 8692 /* 8693 * This is executed from the parent task context, so 8694 * inherit events that have been marked for cloning. 8695 * First allocate and initialize a context for the 8696 * child. 8697 */ 8698 8699 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 8700 if (!child_ctx) 8701 return -ENOMEM; 8702 8703 child->perf_event_ctxp[ctxn] = child_ctx; 8704 } 8705 8706 ret = inherit_group(event, parent, parent_ctx, 8707 child, child_ctx); 8708 8709 if (ret) 8710 *inherited_all = 0; 8711 8712 return ret; 8713 } 8714 8715 /* 8716 * Initialize the perf_event context in task_struct 8717 */ 8718 static int perf_event_init_context(struct task_struct *child, int ctxn) 8719 { 8720 struct perf_event_context *child_ctx, *parent_ctx; 8721 struct perf_event_context *cloned_ctx; 8722 struct perf_event *event; 8723 struct task_struct *parent = current; 8724 int inherited_all = 1; 8725 unsigned long flags; 8726 int ret = 0; 8727 8728 if (likely(!parent->perf_event_ctxp[ctxn])) 8729 return 0; 8730 8731 /* 8732 * If the parent's context is a clone, pin it so it won't get 8733 * swapped under us. 8734 */ 8735 parent_ctx = perf_pin_task_context(parent, ctxn); 8736 if (!parent_ctx) 8737 return 0; 8738 8739 /* 8740 * No need to check if parent_ctx != NULL here; since we saw 8741 * it non-NULL earlier, the only reason for it to become NULL 8742 * is if we exit, and since we're currently in the middle of 8743 * a fork we can't be exiting at the same time. 8744 */ 8745 8746 /* 8747 * Lock the parent list. No need to lock the child - not PID 8748 * hashed yet and not running, so nobody can access it. 8749 */ 8750 mutex_lock(&parent_ctx->mutex); 8751 8752 /* 8753 * We dont have to disable NMIs - we are only looking at 8754 * the list, not manipulating it: 8755 */ 8756 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 8757 ret = inherit_task_group(event, parent, parent_ctx, 8758 child, ctxn, &inherited_all); 8759 if (ret) 8760 break; 8761 } 8762 8763 /* 8764 * We can't hold ctx->lock when iterating the ->flexible_group list due 8765 * to allocations, but we need to prevent rotation because 8766 * rotate_ctx() will change the list from interrupt context. 8767 */ 8768 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8769 parent_ctx->rotate_disable = 1; 8770 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8771 8772 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 8773 ret = inherit_task_group(event, parent, parent_ctx, 8774 child, ctxn, &inherited_all); 8775 if (ret) 8776 break; 8777 } 8778 8779 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 8780 parent_ctx->rotate_disable = 0; 8781 8782 child_ctx = child->perf_event_ctxp[ctxn]; 8783 8784 if (child_ctx && inherited_all) { 8785 /* 8786 * Mark the child context as a clone of the parent 8787 * context, or of whatever the parent is a clone of. 8788 * 8789 * Note that if the parent is a clone, the holding of 8790 * parent_ctx->lock avoids it from being uncloned. 8791 */ 8792 cloned_ctx = parent_ctx->parent_ctx; 8793 if (cloned_ctx) { 8794 child_ctx->parent_ctx = cloned_ctx; 8795 child_ctx->parent_gen = parent_ctx->parent_gen; 8796 } else { 8797 child_ctx->parent_ctx = parent_ctx; 8798 child_ctx->parent_gen = parent_ctx->generation; 8799 } 8800 get_ctx(child_ctx->parent_ctx); 8801 } 8802 8803 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 8804 mutex_unlock(&parent_ctx->mutex); 8805 8806 perf_unpin_context(parent_ctx); 8807 put_ctx(parent_ctx); 8808 8809 return ret; 8810 } 8811 8812 /* 8813 * Initialize the perf_event context in task_struct 8814 */ 8815 int perf_event_init_task(struct task_struct *child) 8816 { 8817 int ctxn, ret; 8818 8819 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 8820 mutex_init(&child->perf_event_mutex); 8821 INIT_LIST_HEAD(&child->perf_event_list); 8822 8823 for_each_task_context_nr(ctxn) { 8824 ret = perf_event_init_context(child, ctxn); 8825 if (ret) { 8826 perf_event_free_task(child); 8827 return ret; 8828 } 8829 } 8830 8831 return 0; 8832 } 8833 8834 static void __init perf_event_init_all_cpus(void) 8835 { 8836 struct swevent_htable *swhash; 8837 int cpu; 8838 8839 for_each_possible_cpu(cpu) { 8840 swhash = &per_cpu(swevent_htable, cpu); 8841 mutex_init(&swhash->hlist_mutex); 8842 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 8843 } 8844 } 8845 8846 static void perf_event_init_cpu(int cpu) 8847 { 8848 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8849 8850 mutex_lock(&swhash->hlist_mutex); 8851 swhash->online = true; 8852 if (swhash->hlist_refcount > 0) { 8853 struct swevent_hlist *hlist; 8854 8855 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 8856 WARN_ON(!hlist); 8857 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8858 } 8859 mutex_unlock(&swhash->hlist_mutex); 8860 } 8861 8862 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 8863 static void __perf_event_exit_context(void *__info) 8864 { 8865 struct remove_event re = { .detach_group = true }; 8866 struct perf_event_context *ctx = __info; 8867 8868 rcu_read_lock(); 8869 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 8870 __perf_remove_from_context(&re); 8871 rcu_read_unlock(); 8872 } 8873 8874 static void perf_event_exit_cpu_context(int cpu) 8875 { 8876 struct perf_event_context *ctx; 8877 struct pmu *pmu; 8878 int idx; 8879 8880 idx = srcu_read_lock(&pmus_srcu); 8881 list_for_each_entry_rcu(pmu, &pmus, entry) { 8882 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 8883 8884 mutex_lock(&ctx->mutex); 8885 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 8886 mutex_unlock(&ctx->mutex); 8887 } 8888 srcu_read_unlock(&pmus_srcu, idx); 8889 } 8890 8891 static void perf_event_exit_cpu(int cpu) 8892 { 8893 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8894 8895 perf_event_exit_cpu_context(cpu); 8896 8897 mutex_lock(&swhash->hlist_mutex); 8898 swhash->online = false; 8899 swevent_hlist_release(swhash); 8900 mutex_unlock(&swhash->hlist_mutex); 8901 } 8902 #else 8903 static inline void perf_event_exit_cpu(int cpu) { } 8904 #endif 8905 8906 static int 8907 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 8908 { 8909 int cpu; 8910 8911 for_each_online_cpu(cpu) 8912 perf_event_exit_cpu(cpu); 8913 8914 return NOTIFY_OK; 8915 } 8916 8917 /* 8918 * Run the perf reboot notifier at the very last possible moment so that 8919 * the generic watchdog code runs as long as possible. 8920 */ 8921 static struct notifier_block perf_reboot_notifier = { 8922 .notifier_call = perf_reboot, 8923 .priority = INT_MIN, 8924 }; 8925 8926 static int 8927 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 8928 { 8929 unsigned int cpu = (long)hcpu; 8930 8931 switch (action & ~CPU_TASKS_FROZEN) { 8932 8933 case CPU_UP_PREPARE: 8934 case CPU_DOWN_FAILED: 8935 perf_event_init_cpu(cpu); 8936 break; 8937 8938 case CPU_UP_CANCELED: 8939 case CPU_DOWN_PREPARE: 8940 perf_event_exit_cpu(cpu); 8941 break; 8942 default: 8943 break; 8944 } 8945 8946 return NOTIFY_OK; 8947 } 8948 8949 void __init perf_event_init(void) 8950 { 8951 int ret; 8952 8953 idr_init(&pmu_idr); 8954 8955 perf_event_init_all_cpus(); 8956 init_srcu_struct(&pmus_srcu); 8957 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 8958 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8959 perf_pmu_register(&perf_task_clock, NULL, -1); 8960 perf_tp_register(); 8961 perf_cpu_notifier(perf_cpu_notify); 8962 register_reboot_notifier(&perf_reboot_notifier); 8963 8964 ret = init_hw_breakpoint(); 8965 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8966 8967 /* do not patch jump label more than once per second */ 8968 jump_label_rate_limit(&perf_sched_events, HZ); 8969 8970 /* 8971 * Build time assertion that we keep the data_head at the intended 8972 * location. IOW, validation we got the __reserved[] size right. 8973 */ 8974 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8975 != 1024); 8976 } 8977 8978 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 8979 char *page) 8980 { 8981 struct perf_pmu_events_attr *pmu_attr = 8982 container_of(attr, struct perf_pmu_events_attr, attr); 8983 8984 if (pmu_attr->event_str) 8985 return sprintf(page, "%s\n", pmu_attr->event_str); 8986 8987 return 0; 8988 } 8989 8990 static int __init perf_event_sysfs_init(void) 8991 { 8992 struct pmu *pmu; 8993 int ret; 8994 8995 mutex_lock(&pmus_lock); 8996 8997 ret = bus_register(&pmu_bus); 8998 if (ret) 8999 goto unlock; 9000 9001 list_for_each_entry(pmu, &pmus, entry) { 9002 if (!pmu->name || pmu->type < 0) 9003 continue; 9004 9005 ret = pmu_dev_alloc(pmu); 9006 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9007 } 9008 pmu_bus_running = 1; 9009 ret = 0; 9010 9011 unlock: 9012 mutex_unlock(&pmus_lock); 9013 9014 return ret; 9015 } 9016 device_initcall(perf_event_sysfs_init); 9017 9018 #ifdef CONFIG_CGROUP_PERF 9019 static struct cgroup_subsys_state * 9020 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9021 { 9022 struct perf_cgroup *jc; 9023 9024 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9025 if (!jc) 9026 return ERR_PTR(-ENOMEM); 9027 9028 jc->info = alloc_percpu(struct perf_cgroup_info); 9029 if (!jc->info) { 9030 kfree(jc); 9031 return ERR_PTR(-ENOMEM); 9032 } 9033 9034 return &jc->css; 9035 } 9036 9037 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9038 { 9039 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9040 9041 free_percpu(jc->info); 9042 kfree(jc); 9043 } 9044 9045 static int __perf_cgroup_move(void *info) 9046 { 9047 struct task_struct *task = info; 9048 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9049 return 0; 9050 } 9051 9052 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 9053 struct cgroup_taskset *tset) 9054 { 9055 struct task_struct *task; 9056 9057 cgroup_taskset_for_each(task, tset) 9058 task_function_call(task, __perf_cgroup_move, task); 9059 } 9060 9061 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 9062 struct cgroup_subsys_state *old_css, 9063 struct task_struct *task) 9064 { 9065 /* 9066 * cgroup_exit() is called in the copy_process() failure path. 9067 * Ignore this case since the task hasn't ran yet, this avoids 9068 * trying to poke a half freed task state from generic code. 9069 */ 9070 if (!(task->flags & PF_EXITING)) 9071 return; 9072 9073 task_function_call(task, __perf_cgroup_move, task); 9074 } 9075 9076 struct cgroup_subsys perf_event_cgrp_subsys = { 9077 .css_alloc = perf_cgroup_css_alloc, 9078 .css_free = perf_cgroup_css_free, 9079 .exit = perf_cgroup_exit, 9080 .attach = perf_cgroup_attach, 9081 }; 9082 #endif /* CONFIG_CGROUP_PERF */ 9083