xref: /openbmc/linux/kernel/events/core.c (revision 5104d265)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152 
153 /*
154  * perf event paranoia level:
155  *  -1 - not paranoid at all
156  *   0 - disallow raw tracepoint access for unpriv
157  *   1 - disallow cpu events for unpriv
158  *   2 - disallow kernel profiling for unpriv
159  */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161 
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 
165 /*
166  * max perf event sample rate
167  */
168 #define DEFAULT_MAX_SAMPLE_RATE		100000
169 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
171 
172 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
173 
174 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
176 
177 static atomic_t perf_sample_allowed_ns __read_mostly =
178 	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179 
180 void update_perf_cpu_limits(void)
181 {
182 	u64 tmp = perf_sample_period_ns;
183 
184 	tmp *= sysctl_perf_cpu_time_max_percent;
185 	do_div(tmp, 100);
186 	atomic_set(&perf_sample_allowed_ns, tmp);
187 }
188 
189 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190 
191 int perf_proc_update_handler(struct ctl_table *table, int write,
192 		void __user *buffer, size_t *lenp,
193 		loff_t *ppos)
194 {
195 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196 
197 	if (ret || !write)
198 		return ret;
199 
200 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 	update_perf_cpu_limits();
203 
204 	return 0;
205 }
206 
207 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208 
209 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 				void __user *buffer, size_t *lenp,
211 				loff_t *ppos)
212 {
213 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214 
215 	if (ret || !write)
216 		return ret;
217 
218 	update_perf_cpu_limits();
219 
220 	return 0;
221 }
222 
223 /*
224  * perf samples are done in some very critical code paths (NMIs).
225  * If they take too much CPU time, the system can lock up and not
226  * get any real work done.  This will drop the sample rate when
227  * we detect that events are taking too long.
228  */
229 #define NR_ACCUMULATED_SAMPLES 128
230 DEFINE_PER_CPU(u64, running_sample_length);
231 
232 void perf_sample_event_took(u64 sample_len_ns)
233 {
234 	u64 avg_local_sample_len;
235 	u64 local_samples_len;
236 
237 	if (atomic_read(&perf_sample_allowed_ns) == 0)
238 		return;
239 
240 	/* decay the counter by 1 average sample */
241 	local_samples_len = __get_cpu_var(running_sample_length);
242 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 	local_samples_len += sample_len_ns;
244 	__get_cpu_var(running_sample_length) = local_samples_len;
245 
246 	/*
247 	 * note: this will be biased artifically low until we have
248 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
249 	 * from having to maintain a count.
250 	 */
251 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252 
253 	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 		return;
255 
256 	if (max_samples_per_tick <= 1)
257 		return;
258 
259 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262 
263 	printk_ratelimited(KERN_WARNING
264 			"perf samples too long (%lld > %d), lowering "
265 			"kernel.perf_event_max_sample_rate to %d\n",
266 			avg_local_sample_len,
267 			atomic_read(&perf_sample_allowed_ns),
268 			sysctl_perf_event_sample_rate);
269 
270 	update_perf_cpu_limits();
271 }
272 
273 static atomic64_t perf_event_id;
274 
275 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 			      enum event_type_t event_type);
277 
278 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
279 			     enum event_type_t event_type,
280 			     struct task_struct *task);
281 
282 static void update_context_time(struct perf_event_context *ctx);
283 static u64 perf_event_time(struct perf_event *event);
284 
285 void __weak perf_event_print_debug(void)	{ }
286 
287 extern __weak const char *perf_pmu_name(void)
288 {
289 	return "pmu";
290 }
291 
292 static inline u64 perf_clock(void)
293 {
294 	return local_clock();
295 }
296 
297 static inline struct perf_cpu_context *
298 __get_cpu_context(struct perf_event_context *ctx)
299 {
300 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301 }
302 
303 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 			  struct perf_event_context *ctx)
305 {
306 	raw_spin_lock(&cpuctx->ctx.lock);
307 	if (ctx)
308 		raw_spin_lock(&ctx->lock);
309 }
310 
311 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 			    struct perf_event_context *ctx)
313 {
314 	if (ctx)
315 		raw_spin_unlock(&ctx->lock);
316 	raw_spin_unlock(&cpuctx->ctx.lock);
317 }
318 
319 #ifdef CONFIG_CGROUP_PERF
320 
321 /*
322  * perf_cgroup_info keeps track of time_enabled for a cgroup.
323  * This is a per-cpu dynamically allocated data structure.
324  */
325 struct perf_cgroup_info {
326 	u64				time;
327 	u64				timestamp;
328 };
329 
330 struct perf_cgroup {
331 	struct cgroup_subsys_state	css;
332 	struct perf_cgroup_info	__percpu *info;
333 };
334 
335 /*
336  * Must ensure cgroup is pinned (css_get) before calling
337  * this function. In other words, we cannot call this function
338  * if there is no cgroup event for the current CPU context.
339  */
340 static inline struct perf_cgroup *
341 perf_cgroup_from_task(struct task_struct *task)
342 {
343 	return container_of(task_subsys_state(task, perf_subsys_id),
344 			struct perf_cgroup, css);
345 }
346 
347 static inline bool
348 perf_cgroup_match(struct perf_event *event)
349 {
350 	struct perf_event_context *ctx = event->ctx;
351 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352 
353 	/* @event doesn't care about cgroup */
354 	if (!event->cgrp)
355 		return true;
356 
357 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
358 	if (!cpuctx->cgrp)
359 		return false;
360 
361 	/*
362 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
363 	 * also enabled for all its descendant cgroups.  If @cpuctx's
364 	 * cgroup is a descendant of @event's (the test covers identity
365 	 * case), it's a match.
366 	 */
367 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 				    event->cgrp->css.cgroup);
369 }
370 
371 static inline bool perf_tryget_cgroup(struct perf_event *event)
372 {
373 	return css_tryget(&event->cgrp->css);
374 }
375 
376 static inline void perf_put_cgroup(struct perf_event *event)
377 {
378 	css_put(&event->cgrp->css);
379 }
380 
381 static inline void perf_detach_cgroup(struct perf_event *event)
382 {
383 	perf_put_cgroup(event);
384 	event->cgrp = NULL;
385 }
386 
387 static inline int is_cgroup_event(struct perf_event *event)
388 {
389 	return event->cgrp != NULL;
390 }
391 
392 static inline u64 perf_cgroup_event_time(struct perf_event *event)
393 {
394 	struct perf_cgroup_info *t;
395 
396 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 	return t->time;
398 }
399 
400 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401 {
402 	struct perf_cgroup_info *info;
403 	u64 now;
404 
405 	now = perf_clock();
406 
407 	info = this_cpu_ptr(cgrp->info);
408 
409 	info->time += now - info->timestamp;
410 	info->timestamp = now;
411 }
412 
413 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414 {
415 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 	if (cgrp_out)
417 		__update_cgrp_time(cgrp_out);
418 }
419 
420 static inline void update_cgrp_time_from_event(struct perf_event *event)
421 {
422 	struct perf_cgroup *cgrp;
423 
424 	/*
425 	 * ensure we access cgroup data only when needed and
426 	 * when we know the cgroup is pinned (css_get)
427 	 */
428 	if (!is_cgroup_event(event))
429 		return;
430 
431 	cgrp = perf_cgroup_from_task(current);
432 	/*
433 	 * Do not update time when cgroup is not active
434 	 */
435 	if (cgrp == event->cgrp)
436 		__update_cgrp_time(event->cgrp);
437 }
438 
439 static inline void
440 perf_cgroup_set_timestamp(struct task_struct *task,
441 			  struct perf_event_context *ctx)
442 {
443 	struct perf_cgroup *cgrp;
444 	struct perf_cgroup_info *info;
445 
446 	/*
447 	 * ctx->lock held by caller
448 	 * ensure we do not access cgroup data
449 	 * unless we have the cgroup pinned (css_get)
450 	 */
451 	if (!task || !ctx->nr_cgroups)
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(task);
455 	info = this_cpu_ptr(cgrp->info);
456 	info->timestamp = ctx->timestamp;
457 }
458 
459 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
460 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
461 
462 /*
463  * reschedule events based on the cgroup constraint of task.
464  *
465  * mode SWOUT : schedule out everything
466  * mode SWIN : schedule in based on cgroup for next
467  */
468 void perf_cgroup_switch(struct task_struct *task, int mode)
469 {
470 	struct perf_cpu_context *cpuctx;
471 	struct pmu *pmu;
472 	unsigned long flags;
473 
474 	/*
475 	 * disable interrupts to avoid geting nr_cgroup
476 	 * changes via __perf_event_disable(). Also
477 	 * avoids preemption.
478 	 */
479 	local_irq_save(flags);
480 
481 	/*
482 	 * we reschedule only in the presence of cgroup
483 	 * constrained events.
484 	 */
485 	rcu_read_lock();
486 
487 	list_for_each_entry_rcu(pmu, &pmus, entry) {
488 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 		if (cpuctx->unique_pmu != pmu)
490 			continue; /* ensure we process each cpuctx once */
491 
492 		/*
493 		 * perf_cgroup_events says at least one
494 		 * context on this CPU has cgroup events.
495 		 *
496 		 * ctx->nr_cgroups reports the number of cgroup
497 		 * events for a context.
498 		 */
499 		if (cpuctx->ctx.nr_cgroups > 0) {
500 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 			perf_pmu_disable(cpuctx->ctx.pmu);
502 
503 			if (mode & PERF_CGROUP_SWOUT) {
504 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 				/*
506 				 * must not be done before ctxswout due
507 				 * to event_filter_match() in event_sched_out()
508 				 */
509 				cpuctx->cgrp = NULL;
510 			}
511 
512 			if (mode & PERF_CGROUP_SWIN) {
513 				WARN_ON_ONCE(cpuctx->cgrp);
514 				/*
515 				 * set cgrp before ctxsw in to allow
516 				 * event_filter_match() to not have to pass
517 				 * task around
518 				 */
519 				cpuctx->cgrp = perf_cgroup_from_task(task);
520 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 			}
522 			perf_pmu_enable(cpuctx->ctx.pmu);
523 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
524 		}
525 	}
526 
527 	rcu_read_unlock();
528 
529 	local_irq_restore(flags);
530 }
531 
532 static inline void perf_cgroup_sched_out(struct task_struct *task,
533 					 struct task_struct *next)
534 {
535 	struct perf_cgroup *cgrp1;
536 	struct perf_cgroup *cgrp2 = NULL;
537 
538 	/*
539 	 * we come here when we know perf_cgroup_events > 0
540 	 */
541 	cgrp1 = perf_cgroup_from_task(task);
542 
543 	/*
544 	 * next is NULL when called from perf_event_enable_on_exec()
545 	 * that will systematically cause a cgroup_switch()
546 	 */
547 	if (next)
548 		cgrp2 = perf_cgroup_from_task(next);
549 
550 	/*
551 	 * only schedule out current cgroup events if we know
552 	 * that we are switching to a different cgroup. Otherwise,
553 	 * do no touch the cgroup events.
554 	 */
555 	if (cgrp1 != cgrp2)
556 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
557 }
558 
559 static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 					struct task_struct *task)
561 {
562 	struct perf_cgroup *cgrp1;
563 	struct perf_cgroup *cgrp2 = NULL;
564 
565 	/*
566 	 * we come here when we know perf_cgroup_events > 0
567 	 */
568 	cgrp1 = perf_cgroup_from_task(task);
569 
570 	/* prev can never be NULL */
571 	cgrp2 = perf_cgroup_from_task(prev);
572 
573 	/*
574 	 * only need to schedule in cgroup events if we are changing
575 	 * cgroup during ctxsw. Cgroup events were not scheduled
576 	 * out of ctxsw out if that was not the case.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
580 }
581 
582 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 				      struct perf_event_attr *attr,
584 				      struct perf_event *group_leader)
585 {
586 	struct perf_cgroup *cgrp;
587 	struct cgroup_subsys_state *css;
588 	struct fd f = fdget(fd);
589 	int ret = 0;
590 
591 	if (!f.file)
592 		return -EBADF;
593 
594 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 	if (IS_ERR(css)) {
596 		ret = PTR_ERR(css);
597 		goto out;
598 	}
599 
600 	cgrp = container_of(css, struct perf_cgroup, css);
601 	event->cgrp = cgrp;
602 
603 	/* must be done before we fput() the file */
604 	if (!perf_tryget_cgroup(event)) {
605 		event->cgrp = NULL;
606 		ret = -ENOENT;
607 		goto out;
608 	}
609 
610 	/*
611 	 * all events in a group must monitor
612 	 * the same cgroup because a task belongs
613 	 * to only one perf cgroup at a time
614 	 */
615 	if (group_leader && group_leader->cgrp != cgrp) {
616 		perf_detach_cgroup(event);
617 		ret = -EINVAL;
618 	}
619 out:
620 	fdput(f);
621 	return ret;
622 }
623 
624 static inline void
625 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626 {
627 	struct perf_cgroup_info *t;
628 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 	event->shadow_ctx_time = now - t->timestamp;
630 }
631 
632 static inline void
633 perf_cgroup_defer_enabled(struct perf_event *event)
634 {
635 	/*
636 	 * when the current task's perf cgroup does not match
637 	 * the event's, we need to remember to call the
638 	 * perf_mark_enable() function the first time a task with
639 	 * a matching perf cgroup is scheduled in.
640 	 */
641 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 		event->cgrp_defer_enabled = 1;
643 }
644 
645 static inline void
646 perf_cgroup_mark_enabled(struct perf_event *event,
647 			 struct perf_event_context *ctx)
648 {
649 	struct perf_event *sub;
650 	u64 tstamp = perf_event_time(event);
651 
652 	if (!event->cgrp_defer_enabled)
653 		return;
654 
655 	event->cgrp_defer_enabled = 0;
656 
657 	event->tstamp_enabled = tstamp - event->total_time_enabled;
658 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 			sub->cgrp_defer_enabled = 0;
662 		}
663 	}
664 }
665 #else /* !CONFIG_CGROUP_PERF */
666 
667 static inline bool
668 perf_cgroup_match(struct perf_event *event)
669 {
670 	return true;
671 }
672 
673 static inline void perf_detach_cgroup(struct perf_event *event)
674 {}
675 
676 static inline int is_cgroup_event(struct perf_event *event)
677 {
678 	return 0;
679 }
680 
681 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682 {
683 	return 0;
684 }
685 
686 static inline void update_cgrp_time_from_event(struct perf_event *event)
687 {
688 }
689 
690 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691 {
692 }
693 
694 static inline void perf_cgroup_sched_out(struct task_struct *task,
695 					 struct task_struct *next)
696 {
697 }
698 
699 static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 					struct task_struct *task)
701 {
702 }
703 
704 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 				      struct perf_event_attr *attr,
706 				      struct perf_event *group_leader)
707 {
708 	return -EINVAL;
709 }
710 
711 static inline void
712 perf_cgroup_set_timestamp(struct task_struct *task,
713 			  struct perf_event_context *ctx)
714 {
715 }
716 
717 void
718 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719 {
720 }
721 
722 static inline void
723 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724 {
725 }
726 
727 static inline u64 perf_cgroup_event_time(struct perf_event *event)
728 {
729 	return 0;
730 }
731 
732 static inline void
733 perf_cgroup_defer_enabled(struct perf_event *event)
734 {
735 }
736 
737 static inline void
738 perf_cgroup_mark_enabled(struct perf_event *event,
739 			 struct perf_event_context *ctx)
740 {
741 }
742 #endif
743 
744 /*
745  * set default to be dependent on timer tick just
746  * like original code
747  */
748 #define PERF_CPU_HRTIMER (1000 / HZ)
749 /*
750  * function must be called with interrupts disbled
751  */
752 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753 {
754 	struct perf_cpu_context *cpuctx;
755 	enum hrtimer_restart ret = HRTIMER_NORESTART;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 
762 	rotations = perf_rotate_context(cpuctx);
763 
764 	/*
765 	 * arm timer if needed
766 	 */
767 	if (rotations) {
768 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 		ret = HRTIMER_RESTART;
770 	}
771 
772 	return ret;
773 }
774 
775 /* CPU is going down */
776 void perf_cpu_hrtimer_cancel(int cpu)
777 {
778 	struct perf_cpu_context *cpuctx;
779 	struct pmu *pmu;
780 	unsigned long flags;
781 
782 	if (WARN_ON(cpu != smp_processor_id()))
783 		return;
784 
785 	local_irq_save(flags);
786 
787 	rcu_read_lock();
788 
789 	list_for_each_entry_rcu(pmu, &pmus, entry) {
790 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791 
792 		if (pmu->task_ctx_nr == perf_sw_context)
793 			continue;
794 
795 		hrtimer_cancel(&cpuctx->hrtimer);
796 	}
797 
798 	rcu_read_unlock();
799 
800 	local_irq_restore(flags);
801 }
802 
803 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804 {
805 	struct hrtimer *hr = &cpuctx->hrtimer;
806 	struct pmu *pmu = cpuctx->ctx.pmu;
807 	int timer;
808 
809 	/* no multiplexing needed for SW PMU */
810 	if (pmu->task_ctx_nr == perf_sw_context)
811 		return;
812 
813 	/*
814 	 * check default is sane, if not set then force to
815 	 * default interval (1/tick)
816 	 */
817 	timer = pmu->hrtimer_interval_ms;
818 	if (timer < 1)
819 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820 
821 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822 
823 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 	hr->function = perf_cpu_hrtimer_handler;
825 }
826 
827 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828 {
829 	struct hrtimer *hr = &cpuctx->hrtimer;
830 	struct pmu *pmu = cpuctx->ctx.pmu;
831 
832 	/* not for SW PMU */
833 	if (pmu->task_ctx_nr == perf_sw_context)
834 		return;
835 
836 	if (hrtimer_active(hr))
837 		return;
838 
839 	if (!hrtimer_callback_running(hr))
840 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 					 0, HRTIMER_MODE_REL_PINNED, 0);
842 }
843 
844 void perf_pmu_disable(struct pmu *pmu)
845 {
846 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 	if (!(*count)++)
848 		pmu->pmu_disable(pmu);
849 }
850 
851 void perf_pmu_enable(struct pmu *pmu)
852 {
853 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 	if (!--(*count))
855 		pmu->pmu_enable(pmu);
856 }
857 
858 static DEFINE_PER_CPU(struct list_head, rotation_list);
859 
860 /*
861  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862  * because they're strictly cpu affine and rotate_start is called with IRQs
863  * disabled, while rotate_context is called from IRQ context.
864  */
865 static void perf_pmu_rotate_start(struct pmu *pmu)
866 {
867 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868 	struct list_head *head = &__get_cpu_var(rotation_list);
869 
870 	WARN_ON(!irqs_disabled());
871 
872 	if (list_empty(&cpuctx->rotation_list)) {
873 		int was_empty = list_empty(head);
874 		list_add(&cpuctx->rotation_list, head);
875 		if (was_empty)
876 			tick_nohz_full_kick();
877 	}
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 }
903 
904 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905 {
906 	/*
907 	 * only top level events have the pid namespace they were created in
908 	 */
909 	if (event->parent)
910 		event = event->parent;
911 
912 	return task_tgid_nr_ns(p, event->ns);
913 }
914 
915 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916 {
917 	/*
918 	 * only top level events have the pid namespace they were created in
919 	 */
920 	if (event->parent)
921 		event = event->parent;
922 
923 	return task_pid_nr_ns(p, event->ns);
924 }
925 
926 /*
927  * If we inherit events we want to return the parent event id
928  * to userspace.
929  */
930 static u64 primary_event_id(struct perf_event *event)
931 {
932 	u64 id = event->id;
933 
934 	if (event->parent)
935 		id = event->parent->id;
936 
937 	return id;
938 }
939 
940 /*
941  * Get the perf_event_context for a task and lock it.
942  * This has to cope with with the fact that until it is locked,
943  * the context could get moved to another task.
944  */
945 static struct perf_event_context *
946 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947 {
948 	struct perf_event_context *ctx;
949 
950 retry:
951 	/*
952 	 * One of the few rules of preemptible RCU is that one cannot do
953 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 	 * part of the read side critical section was preemptible -- see
955 	 * rcu_read_unlock_special().
956 	 *
957 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 	 * side critical section is non-preemptible.
959 	 */
960 	preempt_disable();
961 	rcu_read_lock();
962 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 	if (ctx) {
964 		/*
965 		 * If this context is a clone of another, it might
966 		 * get swapped for another underneath us by
967 		 * perf_event_task_sched_out, though the
968 		 * rcu_read_lock() protects us from any context
969 		 * getting freed.  Lock the context and check if it
970 		 * got swapped before we could get the lock, and retry
971 		 * if so.  If we locked the right context, then it
972 		 * can't get swapped on us any more.
973 		 */
974 		raw_spin_lock_irqsave(&ctx->lock, *flags);
975 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 			rcu_read_unlock();
978 			preempt_enable();
979 			goto retry;
980 		}
981 
982 		if (!atomic_inc_not_zero(&ctx->refcount)) {
983 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 			ctx = NULL;
985 		}
986 	}
987 	rcu_read_unlock();
988 	preempt_enable();
989 	return ctx;
990 }
991 
992 /*
993  * Get the context for a task and increment its pin_count so it
994  * can't get swapped to another task.  This also increments its
995  * reference count so that the context can't get freed.
996  */
997 static struct perf_event_context *
998 perf_pin_task_context(struct task_struct *task, int ctxn)
999 {
1000 	struct perf_event_context *ctx;
1001 	unsigned long flags;
1002 
1003 	ctx = perf_lock_task_context(task, ctxn, &flags);
1004 	if (ctx) {
1005 		++ctx->pin_count;
1006 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 	}
1008 	return ctx;
1009 }
1010 
1011 static void perf_unpin_context(struct perf_event_context *ctx)
1012 {
1013 	unsigned long flags;
1014 
1015 	raw_spin_lock_irqsave(&ctx->lock, flags);
1016 	--ctx->pin_count;
1017 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 }
1019 
1020 /*
1021  * Update the record of the current time in a context.
1022  */
1023 static void update_context_time(struct perf_event_context *ctx)
1024 {
1025 	u64 now = perf_clock();
1026 
1027 	ctx->time += now - ctx->timestamp;
1028 	ctx->timestamp = now;
1029 }
1030 
1031 static u64 perf_event_time(struct perf_event *event)
1032 {
1033 	struct perf_event_context *ctx = event->ctx;
1034 
1035 	if (is_cgroup_event(event))
1036 		return perf_cgroup_event_time(event);
1037 
1038 	return ctx ? ctx->time : 0;
1039 }
1040 
1041 /*
1042  * Update the total_time_enabled and total_time_running fields for a event.
1043  * The caller of this function needs to hold the ctx->lock.
1044  */
1045 static void update_event_times(struct perf_event *event)
1046 {
1047 	struct perf_event_context *ctx = event->ctx;
1048 	u64 run_end;
1049 
1050 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 		return;
1053 	/*
1054 	 * in cgroup mode, time_enabled represents
1055 	 * the time the event was enabled AND active
1056 	 * tasks were in the monitored cgroup. This is
1057 	 * independent of the activity of the context as
1058 	 * there may be a mix of cgroup and non-cgroup events.
1059 	 *
1060 	 * That is why we treat cgroup events differently
1061 	 * here.
1062 	 */
1063 	if (is_cgroup_event(event))
1064 		run_end = perf_cgroup_event_time(event);
1065 	else if (ctx->is_active)
1066 		run_end = ctx->time;
1067 	else
1068 		run_end = event->tstamp_stopped;
1069 
1070 	event->total_time_enabled = run_end - event->tstamp_enabled;
1071 
1072 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 		run_end = event->tstamp_stopped;
1074 	else
1075 		run_end = perf_event_time(event);
1076 
1077 	event->total_time_running = run_end - event->tstamp_running;
1078 
1079 }
1080 
1081 /*
1082  * Update total_time_enabled and total_time_running for all events in a group.
1083  */
1084 static void update_group_times(struct perf_event *leader)
1085 {
1086 	struct perf_event *event;
1087 
1088 	update_event_times(leader);
1089 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 		update_event_times(event);
1091 }
1092 
1093 static struct list_head *
1094 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095 {
1096 	if (event->attr.pinned)
1097 		return &ctx->pinned_groups;
1098 	else
1099 		return &ctx->flexible_groups;
1100 }
1101 
1102 /*
1103  * Add a event from the lists for its context.
1104  * Must be called with ctx->mutex and ctx->lock held.
1105  */
1106 static void
1107 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108 {
1109 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 	event->attach_state |= PERF_ATTACH_CONTEXT;
1111 
1112 	/*
1113 	 * If we're a stand alone event or group leader, we go to the context
1114 	 * list, group events are kept attached to the group so that
1115 	 * perf_group_detach can, at all times, locate all siblings.
1116 	 */
1117 	if (event->group_leader == event) {
1118 		struct list_head *list;
1119 
1120 		if (is_software_event(event))
1121 			event->group_flags |= PERF_GROUP_SOFTWARE;
1122 
1123 		list = ctx_group_list(event, ctx);
1124 		list_add_tail(&event->group_entry, list);
1125 	}
1126 
1127 	if (is_cgroup_event(event))
1128 		ctx->nr_cgroups++;
1129 
1130 	if (has_branch_stack(event))
1131 		ctx->nr_branch_stack++;
1132 
1133 	list_add_rcu(&event->event_entry, &ctx->event_list);
1134 	if (!ctx->nr_events)
1135 		perf_pmu_rotate_start(ctx->pmu);
1136 	ctx->nr_events++;
1137 	if (event->attr.inherit_stat)
1138 		ctx->nr_stat++;
1139 }
1140 
1141 /*
1142  * Initialize event state based on the perf_event_attr::disabled.
1143  */
1144 static inline void perf_event__state_init(struct perf_event *event)
1145 {
1146 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 					      PERF_EVENT_STATE_INACTIVE;
1148 }
1149 
1150 /*
1151  * Called at perf_event creation and when events are attached/detached from a
1152  * group.
1153  */
1154 static void perf_event__read_size(struct perf_event *event)
1155 {
1156 	int entry = sizeof(u64); /* value */
1157 	int size = 0;
1158 	int nr = 1;
1159 
1160 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 		size += sizeof(u64);
1162 
1163 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 		size += sizeof(u64);
1165 
1166 	if (event->attr.read_format & PERF_FORMAT_ID)
1167 		entry += sizeof(u64);
1168 
1169 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 		nr += event->group_leader->nr_siblings;
1171 		size += sizeof(u64);
1172 	}
1173 
1174 	size += entry * nr;
1175 	event->read_size = size;
1176 }
1177 
1178 static void perf_event__header_size(struct perf_event *event)
1179 {
1180 	struct perf_sample_data *data;
1181 	u64 sample_type = event->attr.sample_type;
1182 	u16 size = 0;
1183 
1184 	perf_event__read_size(event);
1185 
1186 	if (sample_type & PERF_SAMPLE_IP)
1187 		size += sizeof(data->ip);
1188 
1189 	if (sample_type & PERF_SAMPLE_ADDR)
1190 		size += sizeof(data->addr);
1191 
1192 	if (sample_type & PERF_SAMPLE_PERIOD)
1193 		size += sizeof(data->period);
1194 
1195 	if (sample_type & PERF_SAMPLE_WEIGHT)
1196 		size += sizeof(data->weight);
1197 
1198 	if (sample_type & PERF_SAMPLE_READ)
1199 		size += event->read_size;
1200 
1201 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 		size += sizeof(data->data_src.val);
1203 
1204 	event->header_size = size;
1205 }
1206 
1207 static void perf_event__id_header_size(struct perf_event *event)
1208 {
1209 	struct perf_sample_data *data;
1210 	u64 sample_type = event->attr.sample_type;
1211 	u16 size = 0;
1212 
1213 	if (sample_type & PERF_SAMPLE_TID)
1214 		size += sizeof(data->tid_entry);
1215 
1216 	if (sample_type & PERF_SAMPLE_TIME)
1217 		size += sizeof(data->time);
1218 
1219 	if (sample_type & PERF_SAMPLE_ID)
1220 		size += sizeof(data->id);
1221 
1222 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1223 		size += sizeof(data->stream_id);
1224 
1225 	if (sample_type & PERF_SAMPLE_CPU)
1226 		size += sizeof(data->cpu_entry);
1227 
1228 	event->id_header_size = size;
1229 }
1230 
1231 static void perf_group_attach(struct perf_event *event)
1232 {
1233 	struct perf_event *group_leader = event->group_leader, *pos;
1234 
1235 	/*
1236 	 * We can have double attach due to group movement in perf_event_open.
1237 	 */
1238 	if (event->attach_state & PERF_ATTACH_GROUP)
1239 		return;
1240 
1241 	event->attach_state |= PERF_ATTACH_GROUP;
1242 
1243 	if (group_leader == event)
1244 		return;
1245 
1246 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247 			!is_software_event(event))
1248 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249 
1250 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251 	group_leader->nr_siblings++;
1252 
1253 	perf_event__header_size(group_leader);
1254 
1255 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256 		perf_event__header_size(pos);
1257 }
1258 
1259 /*
1260  * Remove a event from the lists for its context.
1261  * Must be called with ctx->mutex and ctx->lock held.
1262  */
1263 static void
1264 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265 {
1266 	struct perf_cpu_context *cpuctx;
1267 	/*
1268 	 * We can have double detach due to exit/hot-unplug + close.
1269 	 */
1270 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271 		return;
1272 
1273 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274 
1275 	if (is_cgroup_event(event)) {
1276 		ctx->nr_cgroups--;
1277 		cpuctx = __get_cpu_context(ctx);
1278 		/*
1279 		 * if there are no more cgroup events
1280 		 * then cler cgrp to avoid stale pointer
1281 		 * in update_cgrp_time_from_cpuctx()
1282 		 */
1283 		if (!ctx->nr_cgroups)
1284 			cpuctx->cgrp = NULL;
1285 	}
1286 
1287 	if (has_branch_stack(event))
1288 		ctx->nr_branch_stack--;
1289 
1290 	ctx->nr_events--;
1291 	if (event->attr.inherit_stat)
1292 		ctx->nr_stat--;
1293 
1294 	list_del_rcu(&event->event_entry);
1295 
1296 	if (event->group_leader == event)
1297 		list_del_init(&event->group_entry);
1298 
1299 	update_group_times(event);
1300 
1301 	/*
1302 	 * If event was in error state, then keep it
1303 	 * that way, otherwise bogus counts will be
1304 	 * returned on read(). The only way to get out
1305 	 * of error state is by explicit re-enabling
1306 	 * of the event
1307 	 */
1308 	if (event->state > PERF_EVENT_STATE_OFF)
1309 		event->state = PERF_EVENT_STATE_OFF;
1310 }
1311 
1312 static void perf_group_detach(struct perf_event *event)
1313 {
1314 	struct perf_event *sibling, *tmp;
1315 	struct list_head *list = NULL;
1316 
1317 	/*
1318 	 * We can have double detach due to exit/hot-unplug + close.
1319 	 */
1320 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1321 		return;
1322 
1323 	event->attach_state &= ~PERF_ATTACH_GROUP;
1324 
1325 	/*
1326 	 * If this is a sibling, remove it from its group.
1327 	 */
1328 	if (event->group_leader != event) {
1329 		list_del_init(&event->group_entry);
1330 		event->group_leader->nr_siblings--;
1331 		goto out;
1332 	}
1333 
1334 	if (!list_empty(&event->group_entry))
1335 		list = &event->group_entry;
1336 
1337 	/*
1338 	 * If this was a group event with sibling events then
1339 	 * upgrade the siblings to singleton events by adding them
1340 	 * to whatever list we are on.
1341 	 */
1342 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 		if (list)
1344 			list_move_tail(&sibling->group_entry, list);
1345 		sibling->group_leader = sibling;
1346 
1347 		/* Inherit group flags from the previous leader */
1348 		sibling->group_flags = event->group_flags;
1349 	}
1350 
1351 out:
1352 	perf_event__header_size(event->group_leader);
1353 
1354 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355 		perf_event__header_size(tmp);
1356 }
1357 
1358 static inline int
1359 event_filter_match(struct perf_event *event)
1360 {
1361 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1362 	    && perf_cgroup_match(event);
1363 }
1364 
1365 static void
1366 event_sched_out(struct perf_event *event,
1367 		  struct perf_cpu_context *cpuctx,
1368 		  struct perf_event_context *ctx)
1369 {
1370 	u64 tstamp = perf_event_time(event);
1371 	u64 delta;
1372 	/*
1373 	 * An event which could not be activated because of
1374 	 * filter mismatch still needs to have its timings
1375 	 * maintained, otherwise bogus information is return
1376 	 * via read() for time_enabled, time_running:
1377 	 */
1378 	if (event->state == PERF_EVENT_STATE_INACTIVE
1379 	    && !event_filter_match(event)) {
1380 		delta = tstamp - event->tstamp_stopped;
1381 		event->tstamp_running += delta;
1382 		event->tstamp_stopped = tstamp;
1383 	}
1384 
1385 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1386 		return;
1387 
1388 	event->state = PERF_EVENT_STATE_INACTIVE;
1389 	if (event->pending_disable) {
1390 		event->pending_disable = 0;
1391 		event->state = PERF_EVENT_STATE_OFF;
1392 	}
1393 	event->tstamp_stopped = tstamp;
1394 	event->pmu->del(event, 0);
1395 	event->oncpu = -1;
1396 
1397 	if (!is_software_event(event))
1398 		cpuctx->active_oncpu--;
1399 	ctx->nr_active--;
1400 	if (event->attr.freq && event->attr.sample_freq)
1401 		ctx->nr_freq--;
1402 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 		cpuctx->exclusive = 0;
1404 }
1405 
1406 static void
1407 group_sched_out(struct perf_event *group_event,
1408 		struct perf_cpu_context *cpuctx,
1409 		struct perf_event_context *ctx)
1410 {
1411 	struct perf_event *event;
1412 	int state = group_event->state;
1413 
1414 	event_sched_out(group_event, cpuctx, ctx);
1415 
1416 	/*
1417 	 * Schedule out siblings (if any):
1418 	 */
1419 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420 		event_sched_out(event, cpuctx, ctx);
1421 
1422 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 		cpuctx->exclusive = 0;
1424 }
1425 
1426 /*
1427  * Cross CPU call to remove a performance event
1428  *
1429  * We disable the event on the hardware level first. After that we
1430  * remove it from the context list.
1431  */
1432 static int __perf_remove_from_context(void *info)
1433 {
1434 	struct perf_event *event = info;
1435 	struct perf_event_context *ctx = event->ctx;
1436 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1437 
1438 	raw_spin_lock(&ctx->lock);
1439 	event_sched_out(event, cpuctx, ctx);
1440 	list_del_event(event, ctx);
1441 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442 		ctx->is_active = 0;
1443 		cpuctx->task_ctx = NULL;
1444 	}
1445 	raw_spin_unlock(&ctx->lock);
1446 
1447 	return 0;
1448 }
1449 
1450 
1451 /*
1452  * Remove the event from a task's (or a CPU's) list of events.
1453  *
1454  * CPU events are removed with a smp call. For task events we only
1455  * call when the task is on a CPU.
1456  *
1457  * If event->ctx is a cloned context, callers must make sure that
1458  * every task struct that event->ctx->task could possibly point to
1459  * remains valid.  This is OK when called from perf_release since
1460  * that only calls us on the top-level context, which can't be a clone.
1461  * When called from perf_event_exit_task, it's OK because the
1462  * context has been detached from its task.
1463  */
1464 static void perf_remove_from_context(struct perf_event *event)
1465 {
1466 	struct perf_event_context *ctx = event->ctx;
1467 	struct task_struct *task = ctx->task;
1468 
1469 	lockdep_assert_held(&ctx->mutex);
1470 
1471 	if (!task) {
1472 		/*
1473 		 * Per cpu events are removed via an smp call and
1474 		 * the removal is always successful.
1475 		 */
1476 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1477 		return;
1478 	}
1479 
1480 retry:
1481 	if (!task_function_call(task, __perf_remove_from_context, event))
1482 		return;
1483 
1484 	raw_spin_lock_irq(&ctx->lock);
1485 	/*
1486 	 * If we failed to find a running task, but find the context active now
1487 	 * that we've acquired the ctx->lock, retry.
1488 	 */
1489 	if (ctx->is_active) {
1490 		raw_spin_unlock_irq(&ctx->lock);
1491 		goto retry;
1492 	}
1493 
1494 	/*
1495 	 * Since the task isn't running, its safe to remove the event, us
1496 	 * holding the ctx->lock ensures the task won't get scheduled in.
1497 	 */
1498 	list_del_event(event, ctx);
1499 	raw_spin_unlock_irq(&ctx->lock);
1500 }
1501 
1502 /*
1503  * Cross CPU call to disable a performance event
1504  */
1505 int __perf_event_disable(void *info)
1506 {
1507 	struct perf_event *event = info;
1508 	struct perf_event_context *ctx = event->ctx;
1509 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510 
1511 	/*
1512 	 * If this is a per-task event, need to check whether this
1513 	 * event's task is the current task on this cpu.
1514 	 *
1515 	 * Can trigger due to concurrent perf_event_context_sched_out()
1516 	 * flipping contexts around.
1517 	 */
1518 	if (ctx->task && cpuctx->task_ctx != ctx)
1519 		return -EINVAL;
1520 
1521 	raw_spin_lock(&ctx->lock);
1522 
1523 	/*
1524 	 * If the event is on, turn it off.
1525 	 * If it is in error state, leave it in error state.
1526 	 */
1527 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528 		update_context_time(ctx);
1529 		update_cgrp_time_from_event(event);
1530 		update_group_times(event);
1531 		if (event == event->group_leader)
1532 			group_sched_out(event, cpuctx, ctx);
1533 		else
1534 			event_sched_out(event, cpuctx, ctx);
1535 		event->state = PERF_EVENT_STATE_OFF;
1536 	}
1537 
1538 	raw_spin_unlock(&ctx->lock);
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Disable a event.
1545  *
1546  * If event->ctx is a cloned context, callers must make sure that
1547  * every task struct that event->ctx->task could possibly point to
1548  * remains valid.  This condition is satisifed when called through
1549  * perf_event_for_each_child or perf_event_for_each because they
1550  * hold the top-level event's child_mutex, so any descendant that
1551  * goes to exit will block in sync_child_event.
1552  * When called from perf_pending_event it's OK because event->ctx
1553  * is the current context on this CPU and preemption is disabled,
1554  * hence we can't get into perf_event_task_sched_out for this context.
1555  */
1556 void perf_event_disable(struct perf_event *event)
1557 {
1558 	struct perf_event_context *ctx = event->ctx;
1559 	struct task_struct *task = ctx->task;
1560 
1561 	if (!task) {
1562 		/*
1563 		 * Disable the event on the cpu that it's on
1564 		 */
1565 		cpu_function_call(event->cpu, __perf_event_disable, event);
1566 		return;
1567 	}
1568 
1569 retry:
1570 	if (!task_function_call(task, __perf_event_disable, event))
1571 		return;
1572 
1573 	raw_spin_lock_irq(&ctx->lock);
1574 	/*
1575 	 * If the event is still active, we need to retry the cross-call.
1576 	 */
1577 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578 		raw_spin_unlock_irq(&ctx->lock);
1579 		/*
1580 		 * Reload the task pointer, it might have been changed by
1581 		 * a concurrent perf_event_context_sched_out().
1582 		 */
1583 		task = ctx->task;
1584 		goto retry;
1585 	}
1586 
1587 	/*
1588 	 * Since we have the lock this context can't be scheduled
1589 	 * in, so we can change the state safely.
1590 	 */
1591 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592 		update_group_times(event);
1593 		event->state = PERF_EVENT_STATE_OFF;
1594 	}
1595 	raw_spin_unlock_irq(&ctx->lock);
1596 }
1597 EXPORT_SYMBOL_GPL(perf_event_disable);
1598 
1599 static void perf_set_shadow_time(struct perf_event *event,
1600 				 struct perf_event_context *ctx,
1601 				 u64 tstamp)
1602 {
1603 	/*
1604 	 * use the correct time source for the time snapshot
1605 	 *
1606 	 * We could get by without this by leveraging the
1607 	 * fact that to get to this function, the caller
1608 	 * has most likely already called update_context_time()
1609 	 * and update_cgrp_time_xx() and thus both timestamp
1610 	 * are identical (or very close). Given that tstamp is,
1611 	 * already adjusted for cgroup, we could say that:
1612 	 *    tstamp - ctx->timestamp
1613 	 * is equivalent to
1614 	 *    tstamp - cgrp->timestamp.
1615 	 *
1616 	 * Then, in perf_output_read(), the calculation would
1617 	 * work with no changes because:
1618 	 * - event is guaranteed scheduled in
1619 	 * - no scheduled out in between
1620 	 * - thus the timestamp would be the same
1621 	 *
1622 	 * But this is a bit hairy.
1623 	 *
1624 	 * So instead, we have an explicit cgroup call to remain
1625 	 * within the time time source all along. We believe it
1626 	 * is cleaner and simpler to understand.
1627 	 */
1628 	if (is_cgroup_event(event))
1629 		perf_cgroup_set_shadow_time(event, tstamp);
1630 	else
1631 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1632 }
1633 
1634 #define MAX_INTERRUPTS (~0ULL)
1635 
1636 static void perf_log_throttle(struct perf_event *event, int enable);
1637 
1638 static int
1639 event_sched_in(struct perf_event *event,
1640 		 struct perf_cpu_context *cpuctx,
1641 		 struct perf_event_context *ctx)
1642 {
1643 	u64 tstamp = perf_event_time(event);
1644 
1645 	if (event->state <= PERF_EVENT_STATE_OFF)
1646 		return 0;
1647 
1648 	event->state = PERF_EVENT_STATE_ACTIVE;
1649 	event->oncpu = smp_processor_id();
1650 
1651 	/*
1652 	 * Unthrottle events, since we scheduled we might have missed several
1653 	 * ticks already, also for a heavily scheduling task there is little
1654 	 * guarantee it'll get a tick in a timely manner.
1655 	 */
1656 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657 		perf_log_throttle(event, 1);
1658 		event->hw.interrupts = 0;
1659 	}
1660 
1661 	/*
1662 	 * The new state must be visible before we turn it on in the hardware:
1663 	 */
1664 	smp_wmb();
1665 
1666 	if (event->pmu->add(event, PERF_EF_START)) {
1667 		event->state = PERF_EVENT_STATE_INACTIVE;
1668 		event->oncpu = -1;
1669 		return -EAGAIN;
1670 	}
1671 
1672 	event->tstamp_running += tstamp - event->tstamp_stopped;
1673 
1674 	perf_set_shadow_time(event, ctx, tstamp);
1675 
1676 	if (!is_software_event(event))
1677 		cpuctx->active_oncpu++;
1678 	ctx->nr_active++;
1679 	if (event->attr.freq && event->attr.sample_freq)
1680 		ctx->nr_freq++;
1681 
1682 	if (event->attr.exclusive)
1683 		cpuctx->exclusive = 1;
1684 
1685 	return 0;
1686 }
1687 
1688 static int
1689 group_sched_in(struct perf_event *group_event,
1690 	       struct perf_cpu_context *cpuctx,
1691 	       struct perf_event_context *ctx)
1692 {
1693 	struct perf_event *event, *partial_group = NULL;
1694 	struct pmu *pmu = group_event->pmu;
1695 	u64 now = ctx->time;
1696 	bool simulate = false;
1697 
1698 	if (group_event->state == PERF_EVENT_STATE_OFF)
1699 		return 0;
1700 
1701 	pmu->start_txn(pmu);
1702 
1703 	if (event_sched_in(group_event, cpuctx, ctx)) {
1704 		pmu->cancel_txn(pmu);
1705 		perf_cpu_hrtimer_restart(cpuctx);
1706 		return -EAGAIN;
1707 	}
1708 
1709 	/*
1710 	 * Schedule in siblings as one group (if any):
1711 	 */
1712 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713 		if (event_sched_in(event, cpuctx, ctx)) {
1714 			partial_group = event;
1715 			goto group_error;
1716 		}
1717 	}
1718 
1719 	if (!pmu->commit_txn(pmu))
1720 		return 0;
1721 
1722 group_error:
1723 	/*
1724 	 * Groups can be scheduled in as one unit only, so undo any
1725 	 * partial group before returning:
1726 	 * The events up to the failed event are scheduled out normally,
1727 	 * tstamp_stopped will be updated.
1728 	 *
1729 	 * The failed events and the remaining siblings need to have
1730 	 * their timings updated as if they had gone thru event_sched_in()
1731 	 * and event_sched_out(). This is required to get consistent timings
1732 	 * across the group. This also takes care of the case where the group
1733 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1734 	 * the time the event was actually stopped, such that time delta
1735 	 * calculation in update_event_times() is correct.
1736 	 */
1737 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738 		if (event == partial_group)
1739 			simulate = true;
1740 
1741 		if (simulate) {
1742 			event->tstamp_running += now - event->tstamp_stopped;
1743 			event->tstamp_stopped = now;
1744 		} else {
1745 			event_sched_out(event, cpuctx, ctx);
1746 		}
1747 	}
1748 	event_sched_out(group_event, cpuctx, ctx);
1749 
1750 	pmu->cancel_txn(pmu);
1751 
1752 	perf_cpu_hrtimer_restart(cpuctx);
1753 
1754 	return -EAGAIN;
1755 }
1756 
1757 /*
1758  * Work out whether we can put this event group on the CPU now.
1759  */
1760 static int group_can_go_on(struct perf_event *event,
1761 			   struct perf_cpu_context *cpuctx,
1762 			   int can_add_hw)
1763 {
1764 	/*
1765 	 * Groups consisting entirely of software events can always go on.
1766 	 */
1767 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 		return 1;
1769 	/*
1770 	 * If an exclusive group is already on, no other hardware
1771 	 * events can go on.
1772 	 */
1773 	if (cpuctx->exclusive)
1774 		return 0;
1775 	/*
1776 	 * If this group is exclusive and there are already
1777 	 * events on the CPU, it can't go on.
1778 	 */
1779 	if (event->attr.exclusive && cpuctx->active_oncpu)
1780 		return 0;
1781 	/*
1782 	 * Otherwise, try to add it if all previous groups were able
1783 	 * to go on.
1784 	 */
1785 	return can_add_hw;
1786 }
1787 
1788 static void add_event_to_ctx(struct perf_event *event,
1789 			       struct perf_event_context *ctx)
1790 {
1791 	u64 tstamp = perf_event_time(event);
1792 
1793 	list_add_event(event, ctx);
1794 	perf_group_attach(event);
1795 	event->tstamp_enabled = tstamp;
1796 	event->tstamp_running = tstamp;
1797 	event->tstamp_stopped = tstamp;
1798 }
1799 
1800 static void task_ctx_sched_out(struct perf_event_context *ctx);
1801 static void
1802 ctx_sched_in(struct perf_event_context *ctx,
1803 	     struct perf_cpu_context *cpuctx,
1804 	     enum event_type_t event_type,
1805 	     struct task_struct *task);
1806 
1807 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808 				struct perf_event_context *ctx,
1809 				struct task_struct *task)
1810 {
1811 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812 	if (ctx)
1813 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815 	if (ctx)
1816 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817 }
1818 
1819 /*
1820  * Cross CPU call to install and enable a performance event
1821  *
1822  * Must be called with ctx->mutex held
1823  */
1824 static int  __perf_install_in_context(void *info)
1825 {
1826 	struct perf_event *event = info;
1827 	struct perf_event_context *ctx = event->ctx;
1828 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830 	struct task_struct *task = current;
1831 
1832 	perf_ctx_lock(cpuctx, task_ctx);
1833 	perf_pmu_disable(cpuctx->ctx.pmu);
1834 
1835 	/*
1836 	 * If there was an active task_ctx schedule it out.
1837 	 */
1838 	if (task_ctx)
1839 		task_ctx_sched_out(task_ctx);
1840 
1841 	/*
1842 	 * If the context we're installing events in is not the
1843 	 * active task_ctx, flip them.
1844 	 */
1845 	if (ctx->task && task_ctx != ctx) {
1846 		if (task_ctx)
1847 			raw_spin_unlock(&task_ctx->lock);
1848 		raw_spin_lock(&ctx->lock);
1849 		task_ctx = ctx;
1850 	}
1851 
1852 	if (task_ctx) {
1853 		cpuctx->task_ctx = task_ctx;
1854 		task = task_ctx->task;
1855 	}
1856 
1857 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1858 
1859 	update_context_time(ctx);
1860 	/*
1861 	 * update cgrp time only if current cgrp
1862 	 * matches event->cgrp. Must be done before
1863 	 * calling add_event_to_ctx()
1864 	 */
1865 	update_cgrp_time_from_event(event);
1866 
1867 	add_event_to_ctx(event, ctx);
1868 
1869 	/*
1870 	 * Schedule everything back in
1871 	 */
1872 	perf_event_sched_in(cpuctx, task_ctx, task);
1873 
1874 	perf_pmu_enable(cpuctx->ctx.pmu);
1875 	perf_ctx_unlock(cpuctx, task_ctx);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * Attach a performance event to a context
1882  *
1883  * First we add the event to the list with the hardware enable bit
1884  * in event->hw_config cleared.
1885  *
1886  * If the event is attached to a task which is on a CPU we use a smp
1887  * call to enable it in the task context. The task might have been
1888  * scheduled away, but we check this in the smp call again.
1889  */
1890 static void
1891 perf_install_in_context(struct perf_event_context *ctx,
1892 			struct perf_event *event,
1893 			int cpu)
1894 {
1895 	struct task_struct *task = ctx->task;
1896 
1897 	lockdep_assert_held(&ctx->mutex);
1898 
1899 	event->ctx = ctx;
1900 	if (event->cpu != -1)
1901 		event->cpu = cpu;
1902 
1903 	if (!task) {
1904 		/*
1905 		 * Per cpu events are installed via an smp call and
1906 		 * the install is always successful.
1907 		 */
1908 		cpu_function_call(cpu, __perf_install_in_context, event);
1909 		return;
1910 	}
1911 
1912 retry:
1913 	if (!task_function_call(task, __perf_install_in_context, event))
1914 		return;
1915 
1916 	raw_spin_lock_irq(&ctx->lock);
1917 	/*
1918 	 * If we failed to find a running task, but find the context active now
1919 	 * that we've acquired the ctx->lock, retry.
1920 	 */
1921 	if (ctx->is_active) {
1922 		raw_spin_unlock_irq(&ctx->lock);
1923 		goto retry;
1924 	}
1925 
1926 	/*
1927 	 * Since the task isn't running, its safe to add the event, us holding
1928 	 * the ctx->lock ensures the task won't get scheduled in.
1929 	 */
1930 	add_event_to_ctx(event, ctx);
1931 	raw_spin_unlock_irq(&ctx->lock);
1932 }
1933 
1934 /*
1935  * Put a event into inactive state and update time fields.
1936  * Enabling the leader of a group effectively enables all
1937  * the group members that aren't explicitly disabled, so we
1938  * have to update their ->tstamp_enabled also.
1939  * Note: this works for group members as well as group leaders
1940  * since the non-leader members' sibling_lists will be empty.
1941  */
1942 static void __perf_event_mark_enabled(struct perf_event *event)
1943 {
1944 	struct perf_event *sub;
1945 	u64 tstamp = perf_event_time(event);
1946 
1947 	event->state = PERF_EVENT_STATE_INACTIVE;
1948 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1949 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1952 	}
1953 }
1954 
1955 /*
1956  * Cross CPU call to enable a performance event
1957  */
1958 static int __perf_event_enable(void *info)
1959 {
1960 	struct perf_event *event = info;
1961 	struct perf_event_context *ctx = event->ctx;
1962 	struct perf_event *leader = event->group_leader;
1963 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964 	int err;
1965 
1966 	/*
1967 	 * There's a time window between 'ctx->is_active' check
1968 	 * in perf_event_enable function and this place having:
1969 	 *   - IRQs on
1970 	 *   - ctx->lock unlocked
1971 	 *
1972 	 * where the task could be killed and 'ctx' deactivated
1973 	 * by perf_event_exit_task.
1974 	 */
1975 	if (!ctx->is_active)
1976 		return -EINVAL;
1977 
1978 	raw_spin_lock(&ctx->lock);
1979 	update_context_time(ctx);
1980 
1981 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982 		goto unlock;
1983 
1984 	/*
1985 	 * set current task's cgroup time reference point
1986 	 */
1987 	perf_cgroup_set_timestamp(current, ctx);
1988 
1989 	__perf_event_mark_enabled(event);
1990 
1991 	if (!event_filter_match(event)) {
1992 		if (is_cgroup_event(event))
1993 			perf_cgroup_defer_enabled(event);
1994 		goto unlock;
1995 	}
1996 
1997 	/*
1998 	 * If the event is in a group and isn't the group leader,
1999 	 * then don't put it on unless the group is on.
2000 	 */
2001 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002 		goto unlock;
2003 
2004 	if (!group_can_go_on(event, cpuctx, 1)) {
2005 		err = -EEXIST;
2006 	} else {
2007 		if (event == leader)
2008 			err = group_sched_in(event, cpuctx, ctx);
2009 		else
2010 			err = event_sched_in(event, cpuctx, ctx);
2011 	}
2012 
2013 	if (err) {
2014 		/*
2015 		 * If this event can't go on and it's part of a
2016 		 * group, then the whole group has to come off.
2017 		 */
2018 		if (leader != event) {
2019 			group_sched_out(leader, cpuctx, ctx);
2020 			perf_cpu_hrtimer_restart(cpuctx);
2021 		}
2022 		if (leader->attr.pinned) {
2023 			update_group_times(leader);
2024 			leader->state = PERF_EVENT_STATE_ERROR;
2025 		}
2026 	}
2027 
2028 unlock:
2029 	raw_spin_unlock(&ctx->lock);
2030 
2031 	return 0;
2032 }
2033 
2034 /*
2035  * Enable a event.
2036  *
2037  * If event->ctx is a cloned context, callers must make sure that
2038  * every task struct that event->ctx->task could possibly point to
2039  * remains valid.  This condition is satisfied when called through
2040  * perf_event_for_each_child or perf_event_for_each as described
2041  * for perf_event_disable.
2042  */
2043 void perf_event_enable(struct perf_event *event)
2044 {
2045 	struct perf_event_context *ctx = event->ctx;
2046 	struct task_struct *task = ctx->task;
2047 
2048 	if (!task) {
2049 		/*
2050 		 * Enable the event on the cpu that it's on
2051 		 */
2052 		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 		return;
2054 	}
2055 
2056 	raw_spin_lock_irq(&ctx->lock);
2057 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 		goto out;
2059 
2060 	/*
2061 	 * If the event is in error state, clear that first.
2062 	 * That way, if we see the event in error state below, we
2063 	 * know that it has gone back into error state, as distinct
2064 	 * from the task having been scheduled away before the
2065 	 * cross-call arrived.
2066 	 */
2067 	if (event->state == PERF_EVENT_STATE_ERROR)
2068 		event->state = PERF_EVENT_STATE_OFF;
2069 
2070 retry:
2071 	if (!ctx->is_active) {
2072 		__perf_event_mark_enabled(event);
2073 		goto out;
2074 	}
2075 
2076 	raw_spin_unlock_irq(&ctx->lock);
2077 
2078 	if (!task_function_call(task, __perf_event_enable, event))
2079 		return;
2080 
2081 	raw_spin_lock_irq(&ctx->lock);
2082 
2083 	/*
2084 	 * If the context is active and the event is still off,
2085 	 * we need to retry the cross-call.
2086 	 */
2087 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 		/*
2089 		 * task could have been flipped by a concurrent
2090 		 * perf_event_context_sched_out()
2091 		 */
2092 		task = ctx->task;
2093 		goto retry;
2094 	}
2095 
2096 out:
2097 	raw_spin_unlock_irq(&ctx->lock);
2098 }
2099 EXPORT_SYMBOL_GPL(perf_event_enable);
2100 
2101 int perf_event_refresh(struct perf_event *event, int refresh)
2102 {
2103 	/*
2104 	 * not supported on inherited events
2105 	 */
2106 	if (event->attr.inherit || !is_sampling_event(event))
2107 		return -EINVAL;
2108 
2109 	atomic_add(refresh, &event->event_limit);
2110 	perf_event_enable(event);
2111 
2112 	return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(perf_event_refresh);
2115 
2116 static void ctx_sched_out(struct perf_event_context *ctx,
2117 			  struct perf_cpu_context *cpuctx,
2118 			  enum event_type_t event_type)
2119 {
2120 	struct perf_event *event;
2121 	int is_active = ctx->is_active;
2122 
2123 	ctx->is_active &= ~event_type;
2124 	if (likely(!ctx->nr_events))
2125 		return;
2126 
2127 	update_context_time(ctx);
2128 	update_cgrp_time_from_cpuctx(cpuctx);
2129 	if (!ctx->nr_active)
2130 		return;
2131 
2132 	perf_pmu_disable(ctx->pmu);
2133 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 			group_sched_out(event, cpuctx, ctx);
2136 	}
2137 
2138 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140 			group_sched_out(event, cpuctx, ctx);
2141 	}
2142 	perf_pmu_enable(ctx->pmu);
2143 }
2144 
2145 /*
2146  * Test whether two contexts are equivalent, i.e. whether they
2147  * have both been cloned from the same version of the same context
2148  * and they both have the same number of enabled events.
2149  * If the number of enabled events is the same, then the set
2150  * of enabled events should be the same, because these are both
2151  * inherited contexts, therefore we can't access individual events
2152  * in them directly with an fd; we can only enable/disable all
2153  * events via prctl, or enable/disable all events in a family
2154  * via ioctl, which will have the same effect on both contexts.
2155  */
2156 static int context_equiv(struct perf_event_context *ctx1,
2157 			 struct perf_event_context *ctx2)
2158 {
2159 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160 		&& ctx1->parent_gen == ctx2->parent_gen
2161 		&& !ctx1->pin_count && !ctx2->pin_count;
2162 }
2163 
2164 static void __perf_event_sync_stat(struct perf_event *event,
2165 				     struct perf_event *next_event)
2166 {
2167 	u64 value;
2168 
2169 	if (!event->attr.inherit_stat)
2170 		return;
2171 
2172 	/*
2173 	 * Update the event value, we cannot use perf_event_read()
2174 	 * because we're in the middle of a context switch and have IRQs
2175 	 * disabled, which upsets smp_call_function_single(), however
2176 	 * we know the event must be on the current CPU, therefore we
2177 	 * don't need to use it.
2178 	 */
2179 	switch (event->state) {
2180 	case PERF_EVENT_STATE_ACTIVE:
2181 		event->pmu->read(event);
2182 		/* fall-through */
2183 
2184 	case PERF_EVENT_STATE_INACTIVE:
2185 		update_event_times(event);
2186 		break;
2187 
2188 	default:
2189 		break;
2190 	}
2191 
2192 	/*
2193 	 * In order to keep per-task stats reliable we need to flip the event
2194 	 * values when we flip the contexts.
2195 	 */
2196 	value = local64_read(&next_event->count);
2197 	value = local64_xchg(&event->count, value);
2198 	local64_set(&next_event->count, value);
2199 
2200 	swap(event->total_time_enabled, next_event->total_time_enabled);
2201 	swap(event->total_time_running, next_event->total_time_running);
2202 
2203 	/*
2204 	 * Since we swizzled the values, update the user visible data too.
2205 	 */
2206 	perf_event_update_userpage(event);
2207 	perf_event_update_userpage(next_event);
2208 }
2209 
2210 #define list_next_entry(pos, member) \
2211 	list_entry(pos->member.next, typeof(*pos), member)
2212 
2213 static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 				   struct perf_event_context *next_ctx)
2215 {
2216 	struct perf_event *event, *next_event;
2217 
2218 	if (!ctx->nr_stat)
2219 		return;
2220 
2221 	update_context_time(ctx);
2222 
2223 	event = list_first_entry(&ctx->event_list,
2224 				   struct perf_event, event_entry);
2225 
2226 	next_event = list_first_entry(&next_ctx->event_list,
2227 					struct perf_event, event_entry);
2228 
2229 	while (&event->event_entry != &ctx->event_list &&
2230 	       &next_event->event_entry != &next_ctx->event_list) {
2231 
2232 		__perf_event_sync_stat(event, next_event);
2233 
2234 		event = list_next_entry(event, event_entry);
2235 		next_event = list_next_entry(next_event, event_entry);
2236 	}
2237 }
2238 
2239 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 					 struct task_struct *next)
2241 {
2242 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 	struct perf_event_context *next_ctx;
2244 	struct perf_event_context *parent;
2245 	struct perf_cpu_context *cpuctx;
2246 	int do_switch = 1;
2247 
2248 	if (likely(!ctx))
2249 		return;
2250 
2251 	cpuctx = __get_cpu_context(ctx);
2252 	if (!cpuctx->task_ctx)
2253 		return;
2254 
2255 	rcu_read_lock();
2256 	parent = rcu_dereference(ctx->parent_ctx);
2257 	next_ctx = next->perf_event_ctxp[ctxn];
2258 	if (parent && next_ctx &&
2259 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 		/*
2261 		 * Looks like the two contexts are clones, so we might be
2262 		 * able to optimize the context switch.  We lock both
2263 		 * contexts and check that they are clones under the
2264 		 * lock (including re-checking that neither has been
2265 		 * uncloned in the meantime).  It doesn't matter which
2266 		 * order we take the locks because no other cpu could
2267 		 * be trying to lock both of these tasks.
2268 		 */
2269 		raw_spin_lock(&ctx->lock);
2270 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271 		if (context_equiv(ctx, next_ctx)) {
2272 			/*
2273 			 * XXX do we need a memory barrier of sorts
2274 			 * wrt to rcu_dereference() of perf_event_ctxp
2275 			 */
2276 			task->perf_event_ctxp[ctxn] = next_ctx;
2277 			next->perf_event_ctxp[ctxn] = ctx;
2278 			ctx->task = next;
2279 			next_ctx->task = task;
2280 			do_switch = 0;
2281 
2282 			perf_event_sync_stat(ctx, next_ctx);
2283 		}
2284 		raw_spin_unlock(&next_ctx->lock);
2285 		raw_spin_unlock(&ctx->lock);
2286 	}
2287 	rcu_read_unlock();
2288 
2289 	if (do_switch) {
2290 		raw_spin_lock(&ctx->lock);
2291 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292 		cpuctx->task_ctx = NULL;
2293 		raw_spin_unlock(&ctx->lock);
2294 	}
2295 }
2296 
2297 #define for_each_task_context_nr(ctxn)					\
2298 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299 
2300 /*
2301  * Called from scheduler to remove the events of the current task,
2302  * with interrupts disabled.
2303  *
2304  * We stop each event and update the event value in event->count.
2305  *
2306  * This does not protect us against NMI, but disable()
2307  * sets the disabled bit in the control field of event _before_
2308  * accessing the event control register. If a NMI hits, then it will
2309  * not restart the event.
2310  */
2311 void __perf_event_task_sched_out(struct task_struct *task,
2312 				 struct task_struct *next)
2313 {
2314 	int ctxn;
2315 
2316 	for_each_task_context_nr(ctxn)
2317 		perf_event_context_sched_out(task, ctxn, next);
2318 
2319 	/*
2320 	 * if cgroup events exist on this CPU, then we need
2321 	 * to check if we have to switch out PMU state.
2322 	 * cgroup event are system-wide mode only
2323 	 */
2324 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325 		perf_cgroup_sched_out(task, next);
2326 }
2327 
2328 static void task_ctx_sched_out(struct perf_event_context *ctx)
2329 {
2330 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331 
2332 	if (!cpuctx->task_ctx)
2333 		return;
2334 
2335 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 		return;
2337 
2338 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 	cpuctx->task_ctx = NULL;
2340 }
2341 
2342 /*
2343  * Called with IRQs disabled
2344  */
2345 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 			      enum event_type_t event_type)
2347 {
2348 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 }
2350 
2351 static void
2352 ctx_pinned_sched_in(struct perf_event_context *ctx,
2353 		    struct perf_cpu_context *cpuctx)
2354 {
2355 	struct perf_event *event;
2356 
2357 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 		if (event->state <= PERF_EVENT_STATE_OFF)
2359 			continue;
2360 		if (!event_filter_match(event))
2361 			continue;
2362 
2363 		/* may need to reset tstamp_enabled */
2364 		if (is_cgroup_event(event))
2365 			perf_cgroup_mark_enabled(event, ctx);
2366 
2367 		if (group_can_go_on(event, cpuctx, 1))
2368 			group_sched_in(event, cpuctx, ctx);
2369 
2370 		/*
2371 		 * If this pinned group hasn't been scheduled,
2372 		 * put it in error state.
2373 		 */
2374 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 			update_group_times(event);
2376 			event->state = PERF_EVENT_STATE_ERROR;
2377 		}
2378 	}
2379 }
2380 
2381 static void
2382 ctx_flexible_sched_in(struct perf_event_context *ctx,
2383 		      struct perf_cpu_context *cpuctx)
2384 {
2385 	struct perf_event *event;
2386 	int can_add_hw = 1;
2387 
2388 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 		/* Ignore events in OFF or ERROR state */
2390 		if (event->state <= PERF_EVENT_STATE_OFF)
2391 			continue;
2392 		/*
2393 		 * Listen to the 'cpu' scheduling filter constraint
2394 		 * of events:
2395 		 */
2396 		if (!event_filter_match(event))
2397 			continue;
2398 
2399 		/* may need to reset tstamp_enabled */
2400 		if (is_cgroup_event(event))
2401 			perf_cgroup_mark_enabled(event, ctx);
2402 
2403 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404 			if (group_sched_in(event, cpuctx, ctx))
2405 				can_add_hw = 0;
2406 		}
2407 	}
2408 }
2409 
2410 static void
2411 ctx_sched_in(struct perf_event_context *ctx,
2412 	     struct perf_cpu_context *cpuctx,
2413 	     enum event_type_t event_type,
2414 	     struct task_struct *task)
2415 {
2416 	u64 now;
2417 	int is_active = ctx->is_active;
2418 
2419 	ctx->is_active |= event_type;
2420 	if (likely(!ctx->nr_events))
2421 		return;
2422 
2423 	now = perf_clock();
2424 	ctx->timestamp = now;
2425 	perf_cgroup_set_timestamp(task, ctx);
2426 	/*
2427 	 * First go through the list and put on any pinned groups
2428 	 * in order to give them the best chance of going on.
2429 	 */
2430 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431 		ctx_pinned_sched_in(ctx, cpuctx);
2432 
2433 	/* Then walk through the lower prio flexible groups */
2434 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435 		ctx_flexible_sched_in(ctx, cpuctx);
2436 }
2437 
2438 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2439 			     enum event_type_t event_type,
2440 			     struct task_struct *task)
2441 {
2442 	struct perf_event_context *ctx = &cpuctx->ctx;
2443 
2444 	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 }
2446 
2447 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 					struct task_struct *task)
2449 {
2450 	struct perf_cpu_context *cpuctx;
2451 
2452 	cpuctx = __get_cpu_context(ctx);
2453 	if (cpuctx->task_ctx == ctx)
2454 		return;
2455 
2456 	perf_ctx_lock(cpuctx, ctx);
2457 	perf_pmu_disable(ctx->pmu);
2458 	/*
2459 	 * We want to keep the following priority order:
2460 	 * cpu pinned (that don't need to move), task pinned,
2461 	 * cpu flexible, task flexible.
2462 	 */
2463 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464 
2465 	if (ctx->nr_events)
2466 		cpuctx->task_ctx = ctx;
2467 
2468 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469 
2470 	perf_pmu_enable(ctx->pmu);
2471 	perf_ctx_unlock(cpuctx, ctx);
2472 
2473 	/*
2474 	 * Since these rotations are per-cpu, we need to ensure the
2475 	 * cpu-context we got scheduled on is actually rotating.
2476 	 */
2477 	perf_pmu_rotate_start(ctx->pmu);
2478 }
2479 
2480 /*
2481  * When sampling the branck stack in system-wide, it may be necessary
2482  * to flush the stack on context switch. This happens when the branch
2483  * stack does not tag its entries with the pid of the current task.
2484  * Otherwise it becomes impossible to associate a branch entry with a
2485  * task. This ambiguity is more likely to appear when the branch stack
2486  * supports priv level filtering and the user sets it to monitor only
2487  * at the user level (which could be a useful measurement in system-wide
2488  * mode). In that case, the risk is high of having a branch stack with
2489  * branch from multiple tasks. Flushing may mean dropping the existing
2490  * entries or stashing them somewhere in the PMU specific code layer.
2491  *
2492  * This function provides the context switch callback to the lower code
2493  * layer. It is invoked ONLY when there is at least one system-wide context
2494  * with at least one active event using taken branch sampling.
2495  */
2496 static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 				       struct task_struct *task)
2498 {
2499 	struct perf_cpu_context *cpuctx;
2500 	struct pmu *pmu;
2501 	unsigned long flags;
2502 
2503 	/* no need to flush branch stack if not changing task */
2504 	if (prev == task)
2505 		return;
2506 
2507 	local_irq_save(flags);
2508 
2509 	rcu_read_lock();
2510 
2511 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513 
2514 		/*
2515 		 * check if the context has at least one
2516 		 * event using PERF_SAMPLE_BRANCH_STACK
2517 		 */
2518 		if (cpuctx->ctx.nr_branch_stack > 0
2519 		    && pmu->flush_branch_stack) {
2520 
2521 			pmu = cpuctx->ctx.pmu;
2522 
2523 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524 
2525 			perf_pmu_disable(pmu);
2526 
2527 			pmu->flush_branch_stack();
2528 
2529 			perf_pmu_enable(pmu);
2530 
2531 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 		}
2533 	}
2534 
2535 	rcu_read_unlock();
2536 
2537 	local_irq_restore(flags);
2538 }
2539 
2540 /*
2541  * Called from scheduler to add the events of the current task
2542  * with interrupts disabled.
2543  *
2544  * We restore the event value and then enable it.
2545  *
2546  * This does not protect us against NMI, but enable()
2547  * sets the enabled bit in the control field of event _before_
2548  * accessing the event control register. If a NMI hits, then it will
2549  * keep the event running.
2550  */
2551 void __perf_event_task_sched_in(struct task_struct *prev,
2552 				struct task_struct *task)
2553 {
2554 	struct perf_event_context *ctx;
2555 	int ctxn;
2556 
2557 	for_each_task_context_nr(ctxn) {
2558 		ctx = task->perf_event_ctxp[ctxn];
2559 		if (likely(!ctx))
2560 			continue;
2561 
2562 		perf_event_context_sched_in(ctx, task);
2563 	}
2564 	/*
2565 	 * if cgroup events exist on this CPU, then we need
2566 	 * to check if we have to switch in PMU state.
2567 	 * cgroup event are system-wide mode only
2568 	 */
2569 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570 		perf_cgroup_sched_in(prev, task);
2571 
2572 	/* check for system-wide branch_stack events */
2573 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 		perf_branch_stack_sched_in(prev, task);
2575 }
2576 
2577 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578 {
2579 	u64 frequency = event->attr.sample_freq;
2580 	u64 sec = NSEC_PER_SEC;
2581 	u64 divisor, dividend;
2582 
2583 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2584 
2585 	count_fls = fls64(count);
2586 	nsec_fls = fls64(nsec);
2587 	frequency_fls = fls64(frequency);
2588 	sec_fls = 30;
2589 
2590 	/*
2591 	 * We got @count in @nsec, with a target of sample_freq HZ
2592 	 * the target period becomes:
2593 	 *
2594 	 *             @count * 10^9
2595 	 * period = -------------------
2596 	 *          @nsec * sample_freq
2597 	 *
2598 	 */
2599 
2600 	/*
2601 	 * Reduce accuracy by one bit such that @a and @b converge
2602 	 * to a similar magnitude.
2603 	 */
2604 #define REDUCE_FLS(a, b)		\
2605 do {					\
2606 	if (a##_fls > b##_fls) {	\
2607 		a >>= 1;		\
2608 		a##_fls--;		\
2609 	} else {			\
2610 		b >>= 1;		\
2611 		b##_fls--;		\
2612 	}				\
2613 } while (0)
2614 
2615 	/*
2616 	 * Reduce accuracy until either term fits in a u64, then proceed with
2617 	 * the other, so that finally we can do a u64/u64 division.
2618 	 */
2619 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 		REDUCE_FLS(nsec, frequency);
2621 		REDUCE_FLS(sec, count);
2622 	}
2623 
2624 	if (count_fls + sec_fls > 64) {
2625 		divisor = nsec * frequency;
2626 
2627 		while (count_fls + sec_fls > 64) {
2628 			REDUCE_FLS(count, sec);
2629 			divisor >>= 1;
2630 		}
2631 
2632 		dividend = count * sec;
2633 	} else {
2634 		dividend = count * sec;
2635 
2636 		while (nsec_fls + frequency_fls > 64) {
2637 			REDUCE_FLS(nsec, frequency);
2638 			dividend >>= 1;
2639 		}
2640 
2641 		divisor = nsec * frequency;
2642 	}
2643 
2644 	if (!divisor)
2645 		return dividend;
2646 
2647 	return div64_u64(dividend, divisor);
2648 }
2649 
2650 static DEFINE_PER_CPU(int, perf_throttled_count);
2651 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652 
2653 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654 {
2655 	struct hw_perf_event *hwc = &event->hw;
2656 	s64 period, sample_period;
2657 	s64 delta;
2658 
2659 	period = perf_calculate_period(event, nsec, count);
2660 
2661 	delta = (s64)(period - hwc->sample_period);
2662 	delta = (delta + 7) / 8; /* low pass filter */
2663 
2664 	sample_period = hwc->sample_period + delta;
2665 
2666 	if (!sample_period)
2667 		sample_period = 1;
2668 
2669 	hwc->sample_period = sample_period;
2670 
2671 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 		if (disable)
2673 			event->pmu->stop(event, PERF_EF_UPDATE);
2674 
2675 		local64_set(&hwc->period_left, 0);
2676 
2677 		if (disable)
2678 			event->pmu->start(event, PERF_EF_RELOAD);
2679 	}
2680 }
2681 
2682 /*
2683  * combine freq adjustment with unthrottling to avoid two passes over the
2684  * events. At the same time, make sure, having freq events does not change
2685  * the rate of unthrottling as that would introduce bias.
2686  */
2687 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 					   int needs_unthr)
2689 {
2690 	struct perf_event *event;
2691 	struct hw_perf_event *hwc;
2692 	u64 now, period = TICK_NSEC;
2693 	s64 delta;
2694 
2695 	/*
2696 	 * only need to iterate over all events iff:
2697 	 * - context have events in frequency mode (needs freq adjust)
2698 	 * - there are events to unthrottle on this cpu
2699 	 */
2700 	if (!(ctx->nr_freq || needs_unthr))
2701 		return;
2702 
2703 	raw_spin_lock(&ctx->lock);
2704 	perf_pmu_disable(ctx->pmu);
2705 
2706 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 			continue;
2709 
2710 		if (!event_filter_match(event))
2711 			continue;
2712 
2713 		hwc = &event->hw;
2714 
2715 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 			hwc->interrupts = 0;
2717 			perf_log_throttle(event, 1);
2718 			event->pmu->start(event, 0);
2719 		}
2720 
2721 		if (!event->attr.freq || !event->attr.sample_freq)
2722 			continue;
2723 
2724 		/*
2725 		 * stop the event and update event->count
2726 		 */
2727 		event->pmu->stop(event, PERF_EF_UPDATE);
2728 
2729 		now = local64_read(&event->count);
2730 		delta = now - hwc->freq_count_stamp;
2731 		hwc->freq_count_stamp = now;
2732 
2733 		/*
2734 		 * restart the event
2735 		 * reload only if value has changed
2736 		 * we have stopped the event so tell that
2737 		 * to perf_adjust_period() to avoid stopping it
2738 		 * twice.
2739 		 */
2740 		if (delta > 0)
2741 			perf_adjust_period(event, period, delta, false);
2742 
2743 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744 	}
2745 
2746 	perf_pmu_enable(ctx->pmu);
2747 	raw_spin_unlock(&ctx->lock);
2748 }
2749 
2750 /*
2751  * Round-robin a context's events:
2752  */
2753 static void rotate_ctx(struct perf_event_context *ctx)
2754 {
2755 	/*
2756 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 	 * disabled by the inheritance code.
2758 	 */
2759 	if (!ctx->rotate_disable)
2760 		list_rotate_left(&ctx->flexible_groups);
2761 }
2762 
2763 /*
2764  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765  * because they're strictly cpu affine and rotate_start is called with IRQs
2766  * disabled, while rotate_context is called from IRQ context.
2767  */
2768 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769 {
2770 	struct perf_event_context *ctx = NULL;
2771 	int rotate = 0, remove = 1;
2772 
2773 	if (cpuctx->ctx.nr_events) {
2774 		remove = 0;
2775 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 			rotate = 1;
2777 	}
2778 
2779 	ctx = cpuctx->task_ctx;
2780 	if (ctx && ctx->nr_events) {
2781 		remove = 0;
2782 		if (ctx->nr_events != ctx->nr_active)
2783 			rotate = 1;
2784 	}
2785 
2786 	if (!rotate)
2787 		goto done;
2788 
2789 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2790 	perf_pmu_disable(cpuctx->ctx.pmu);
2791 
2792 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 	if (ctx)
2794 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2795 
2796 	rotate_ctx(&cpuctx->ctx);
2797 	if (ctx)
2798 		rotate_ctx(ctx);
2799 
2800 	perf_event_sched_in(cpuctx, ctx, current);
2801 
2802 	perf_pmu_enable(cpuctx->ctx.pmu);
2803 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804 done:
2805 	if (remove)
2806 		list_del_init(&cpuctx->rotation_list);
2807 
2808 	return rotate;
2809 }
2810 
2811 #ifdef CONFIG_NO_HZ_FULL
2812 bool perf_event_can_stop_tick(void)
2813 {
2814 	if (list_empty(&__get_cpu_var(rotation_list)))
2815 		return true;
2816 	else
2817 		return false;
2818 }
2819 #endif
2820 
2821 void perf_event_task_tick(void)
2822 {
2823 	struct list_head *head = &__get_cpu_var(rotation_list);
2824 	struct perf_cpu_context *cpuctx, *tmp;
2825 	struct perf_event_context *ctx;
2826 	int throttled;
2827 
2828 	WARN_ON(!irqs_disabled());
2829 
2830 	__this_cpu_inc(perf_throttled_seq);
2831 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2832 
2833 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2834 		ctx = &cpuctx->ctx;
2835 		perf_adjust_freq_unthr_context(ctx, throttled);
2836 
2837 		ctx = cpuctx->task_ctx;
2838 		if (ctx)
2839 			perf_adjust_freq_unthr_context(ctx, throttled);
2840 	}
2841 }
2842 
2843 static int event_enable_on_exec(struct perf_event *event,
2844 				struct perf_event_context *ctx)
2845 {
2846 	if (!event->attr.enable_on_exec)
2847 		return 0;
2848 
2849 	event->attr.enable_on_exec = 0;
2850 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2851 		return 0;
2852 
2853 	__perf_event_mark_enabled(event);
2854 
2855 	return 1;
2856 }
2857 
2858 /*
2859  * Enable all of a task's events that have been marked enable-on-exec.
2860  * This expects task == current.
2861  */
2862 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2863 {
2864 	struct perf_event *event;
2865 	unsigned long flags;
2866 	int enabled = 0;
2867 	int ret;
2868 
2869 	local_irq_save(flags);
2870 	if (!ctx || !ctx->nr_events)
2871 		goto out;
2872 
2873 	/*
2874 	 * We must ctxsw out cgroup events to avoid conflict
2875 	 * when invoking perf_task_event_sched_in() later on
2876 	 * in this function. Otherwise we end up trying to
2877 	 * ctxswin cgroup events which are already scheduled
2878 	 * in.
2879 	 */
2880 	perf_cgroup_sched_out(current, NULL);
2881 
2882 	raw_spin_lock(&ctx->lock);
2883 	task_ctx_sched_out(ctx);
2884 
2885 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2886 		ret = event_enable_on_exec(event, ctx);
2887 		if (ret)
2888 			enabled = 1;
2889 	}
2890 
2891 	/*
2892 	 * Unclone this context if we enabled any event.
2893 	 */
2894 	if (enabled)
2895 		unclone_ctx(ctx);
2896 
2897 	raw_spin_unlock(&ctx->lock);
2898 
2899 	/*
2900 	 * Also calls ctxswin for cgroup events, if any:
2901 	 */
2902 	perf_event_context_sched_in(ctx, ctx->task);
2903 out:
2904 	local_irq_restore(flags);
2905 }
2906 
2907 /*
2908  * Cross CPU call to read the hardware event
2909  */
2910 static void __perf_event_read(void *info)
2911 {
2912 	struct perf_event *event = info;
2913 	struct perf_event_context *ctx = event->ctx;
2914 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2915 
2916 	/*
2917 	 * If this is a task context, we need to check whether it is
2918 	 * the current task context of this cpu.  If not it has been
2919 	 * scheduled out before the smp call arrived.  In that case
2920 	 * event->count would have been updated to a recent sample
2921 	 * when the event was scheduled out.
2922 	 */
2923 	if (ctx->task && cpuctx->task_ctx != ctx)
2924 		return;
2925 
2926 	raw_spin_lock(&ctx->lock);
2927 	if (ctx->is_active) {
2928 		update_context_time(ctx);
2929 		update_cgrp_time_from_event(event);
2930 	}
2931 	update_event_times(event);
2932 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2933 		event->pmu->read(event);
2934 	raw_spin_unlock(&ctx->lock);
2935 }
2936 
2937 static inline u64 perf_event_count(struct perf_event *event)
2938 {
2939 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2940 }
2941 
2942 static u64 perf_event_read(struct perf_event *event)
2943 {
2944 	/*
2945 	 * If event is enabled and currently active on a CPU, update the
2946 	 * value in the event structure:
2947 	 */
2948 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2949 		smp_call_function_single(event->oncpu,
2950 					 __perf_event_read, event, 1);
2951 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2952 		struct perf_event_context *ctx = event->ctx;
2953 		unsigned long flags;
2954 
2955 		raw_spin_lock_irqsave(&ctx->lock, flags);
2956 		/*
2957 		 * may read while context is not active
2958 		 * (e.g., thread is blocked), in that case
2959 		 * we cannot update context time
2960 		 */
2961 		if (ctx->is_active) {
2962 			update_context_time(ctx);
2963 			update_cgrp_time_from_event(event);
2964 		}
2965 		update_event_times(event);
2966 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2967 	}
2968 
2969 	return perf_event_count(event);
2970 }
2971 
2972 /*
2973  * Initialize the perf_event context in a task_struct:
2974  */
2975 static void __perf_event_init_context(struct perf_event_context *ctx)
2976 {
2977 	raw_spin_lock_init(&ctx->lock);
2978 	mutex_init(&ctx->mutex);
2979 	INIT_LIST_HEAD(&ctx->pinned_groups);
2980 	INIT_LIST_HEAD(&ctx->flexible_groups);
2981 	INIT_LIST_HEAD(&ctx->event_list);
2982 	atomic_set(&ctx->refcount, 1);
2983 }
2984 
2985 static struct perf_event_context *
2986 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2987 {
2988 	struct perf_event_context *ctx;
2989 
2990 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2991 	if (!ctx)
2992 		return NULL;
2993 
2994 	__perf_event_init_context(ctx);
2995 	if (task) {
2996 		ctx->task = task;
2997 		get_task_struct(task);
2998 	}
2999 	ctx->pmu = pmu;
3000 
3001 	return ctx;
3002 }
3003 
3004 static struct task_struct *
3005 find_lively_task_by_vpid(pid_t vpid)
3006 {
3007 	struct task_struct *task;
3008 	int err;
3009 
3010 	rcu_read_lock();
3011 	if (!vpid)
3012 		task = current;
3013 	else
3014 		task = find_task_by_vpid(vpid);
3015 	if (task)
3016 		get_task_struct(task);
3017 	rcu_read_unlock();
3018 
3019 	if (!task)
3020 		return ERR_PTR(-ESRCH);
3021 
3022 	/* Reuse ptrace permission checks for now. */
3023 	err = -EACCES;
3024 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3025 		goto errout;
3026 
3027 	return task;
3028 errout:
3029 	put_task_struct(task);
3030 	return ERR_PTR(err);
3031 
3032 }
3033 
3034 /*
3035  * Returns a matching context with refcount and pincount.
3036  */
3037 static struct perf_event_context *
3038 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3039 {
3040 	struct perf_event_context *ctx;
3041 	struct perf_cpu_context *cpuctx;
3042 	unsigned long flags;
3043 	int ctxn, err;
3044 
3045 	if (!task) {
3046 		/* Must be root to operate on a CPU event: */
3047 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3048 			return ERR_PTR(-EACCES);
3049 
3050 		/*
3051 		 * We could be clever and allow to attach a event to an
3052 		 * offline CPU and activate it when the CPU comes up, but
3053 		 * that's for later.
3054 		 */
3055 		if (!cpu_online(cpu))
3056 			return ERR_PTR(-ENODEV);
3057 
3058 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3059 		ctx = &cpuctx->ctx;
3060 		get_ctx(ctx);
3061 		++ctx->pin_count;
3062 
3063 		return ctx;
3064 	}
3065 
3066 	err = -EINVAL;
3067 	ctxn = pmu->task_ctx_nr;
3068 	if (ctxn < 0)
3069 		goto errout;
3070 
3071 retry:
3072 	ctx = perf_lock_task_context(task, ctxn, &flags);
3073 	if (ctx) {
3074 		unclone_ctx(ctx);
3075 		++ctx->pin_count;
3076 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3077 	} else {
3078 		ctx = alloc_perf_context(pmu, task);
3079 		err = -ENOMEM;
3080 		if (!ctx)
3081 			goto errout;
3082 
3083 		err = 0;
3084 		mutex_lock(&task->perf_event_mutex);
3085 		/*
3086 		 * If it has already passed perf_event_exit_task().
3087 		 * we must see PF_EXITING, it takes this mutex too.
3088 		 */
3089 		if (task->flags & PF_EXITING)
3090 			err = -ESRCH;
3091 		else if (task->perf_event_ctxp[ctxn])
3092 			err = -EAGAIN;
3093 		else {
3094 			get_ctx(ctx);
3095 			++ctx->pin_count;
3096 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3097 		}
3098 		mutex_unlock(&task->perf_event_mutex);
3099 
3100 		if (unlikely(err)) {
3101 			put_ctx(ctx);
3102 
3103 			if (err == -EAGAIN)
3104 				goto retry;
3105 			goto errout;
3106 		}
3107 	}
3108 
3109 	return ctx;
3110 
3111 errout:
3112 	return ERR_PTR(err);
3113 }
3114 
3115 static void perf_event_free_filter(struct perf_event *event);
3116 
3117 static void free_event_rcu(struct rcu_head *head)
3118 {
3119 	struct perf_event *event;
3120 
3121 	event = container_of(head, struct perf_event, rcu_head);
3122 	if (event->ns)
3123 		put_pid_ns(event->ns);
3124 	perf_event_free_filter(event);
3125 	kfree(event);
3126 }
3127 
3128 static void ring_buffer_put(struct ring_buffer *rb);
3129 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3130 
3131 static void free_event(struct perf_event *event)
3132 {
3133 	irq_work_sync(&event->pending);
3134 
3135 	if (!event->parent) {
3136 		if (event->attach_state & PERF_ATTACH_TASK)
3137 			static_key_slow_dec_deferred(&perf_sched_events);
3138 		if (event->attr.mmap || event->attr.mmap_data)
3139 			atomic_dec(&nr_mmap_events);
3140 		if (event->attr.comm)
3141 			atomic_dec(&nr_comm_events);
3142 		if (event->attr.task)
3143 			atomic_dec(&nr_task_events);
3144 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3145 			put_callchain_buffers();
3146 		if (is_cgroup_event(event)) {
3147 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3148 			static_key_slow_dec_deferred(&perf_sched_events);
3149 		}
3150 
3151 		if (has_branch_stack(event)) {
3152 			static_key_slow_dec_deferred(&perf_sched_events);
3153 			/* is system-wide event */
3154 			if (!(event->attach_state & PERF_ATTACH_TASK)) {
3155 				atomic_dec(&per_cpu(perf_branch_stack_events,
3156 						    event->cpu));
3157 			}
3158 		}
3159 	}
3160 
3161 	if (event->rb) {
3162 		struct ring_buffer *rb;
3163 
3164 		/*
3165 		 * Can happen when we close an event with re-directed output.
3166 		 *
3167 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3168 		 * over us; possibly making our ring_buffer_put() the last.
3169 		 */
3170 		mutex_lock(&event->mmap_mutex);
3171 		rb = event->rb;
3172 		if (rb) {
3173 			rcu_assign_pointer(event->rb, NULL);
3174 			ring_buffer_detach(event, rb);
3175 			ring_buffer_put(rb); /* could be last */
3176 		}
3177 		mutex_unlock(&event->mmap_mutex);
3178 	}
3179 
3180 	if (is_cgroup_event(event))
3181 		perf_detach_cgroup(event);
3182 
3183 	if (event->destroy)
3184 		event->destroy(event);
3185 
3186 	if (event->ctx)
3187 		put_ctx(event->ctx);
3188 
3189 	call_rcu(&event->rcu_head, free_event_rcu);
3190 }
3191 
3192 int perf_event_release_kernel(struct perf_event *event)
3193 {
3194 	struct perf_event_context *ctx = event->ctx;
3195 
3196 	WARN_ON_ONCE(ctx->parent_ctx);
3197 	/*
3198 	 * There are two ways this annotation is useful:
3199 	 *
3200 	 *  1) there is a lock recursion from perf_event_exit_task
3201 	 *     see the comment there.
3202 	 *
3203 	 *  2) there is a lock-inversion with mmap_sem through
3204 	 *     perf_event_read_group(), which takes faults while
3205 	 *     holding ctx->mutex, however this is called after
3206 	 *     the last filedesc died, so there is no possibility
3207 	 *     to trigger the AB-BA case.
3208 	 */
3209 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3210 	raw_spin_lock_irq(&ctx->lock);
3211 	perf_group_detach(event);
3212 	raw_spin_unlock_irq(&ctx->lock);
3213 	perf_remove_from_context(event);
3214 	mutex_unlock(&ctx->mutex);
3215 
3216 	free_event(event);
3217 
3218 	return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3221 
3222 /*
3223  * Called when the last reference to the file is gone.
3224  */
3225 static void put_event(struct perf_event *event)
3226 {
3227 	struct task_struct *owner;
3228 
3229 	if (!atomic_long_dec_and_test(&event->refcount))
3230 		return;
3231 
3232 	rcu_read_lock();
3233 	owner = ACCESS_ONCE(event->owner);
3234 	/*
3235 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3236 	 * !owner it means the list deletion is complete and we can indeed
3237 	 * free this event, otherwise we need to serialize on
3238 	 * owner->perf_event_mutex.
3239 	 */
3240 	smp_read_barrier_depends();
3241 	if (owner) {
3242 		/*
3243 		 * Since delayed_put_task_struct() also drops the last
3244 		 * task reference we can safely take a new reference
3245 		 * while holding the rcu_read_lock().
3246 		 */
3247 		get_task_struct(owner);
3248 	}
3249 	rcu_read_unlock();
3250 
3251 	if (owner) {
3252 		mutex_lock(&owner->perf_event_mutex);
3253 		/*
3254 		 * We have to re-check the event->owner field, if it is cleared
3255 		 * we raced with perf_event_exit_task(), acquiring the mutex
3256 		 * ensured they're done, and we can proceed with freeing the
3257 		 * event.
3258 		 */
3259 		if (event->owner)
3260 			list_del_init(&event->owner_entry);
3261 		mutex_unlock(&owner->perf_event_mutex);
3262 		put_task_struct(owner);
3263 	}
3264 
3265 	perf_event_release_kernel(event);
3266 }
3267 
3268 static int perf_release(struct inode *inode, struct file *file)
3269 {
3270 	put_event(file->private_data);
3271 	return 0;
3272 }
3273 
3274 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3275 {
3276 	struct perf_event *child;
3277 	u64 total = 0;
3278 
3279 	*enabled = 0;
3280 	*running = 0;
3281 
3282 	mutex_lock(&event->child_mutex);
3283 	total += perf_event_read(event);
3284 	*enabled += event->total_time_enabled +
3285 			atomic64_read(&event->child_total_time_enabled);
3286 	*running += event->total_time_running +
3287 			atomic64_read(&event->child_total_time_running);
3288 
3289 	list_for_each_entry(child, &event->child_list, child_list) {
3290 		total += perf_event_read(child);
3291 		*enabled += child->total_time_enabled;
3292 		*running += child->total_time_running;
3293 	}
3294 	mutex_unlock(&event->child_mutex);
3295 
3296 	return total;
3297 }
3298 EXPORT_SYMBOL_GPL(perf_event_read_value);
3299 
3300 static int perf_event_read_group(struct perf_event *event,
3301 				   u64 read_format, char __user *buf)
3302 {
3303 	struct perf_event *leader = event->group_leader, *sub;
3304 	int n = 0, size = 0, ret = -EFAULT;
3305 	struct perf_event_context *ctx = leader->ctx;
3306 	u64 values[5];
3307 	u64 count, enabled, running;
3308 
3309 	mutex_lock(&ctx->mutex);
3310 	count = perf_event_read_value(leader, &enabled, &running);
3311 
3312 	values[n++] = 1 + leader->nr_siblings;
3313 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3314 		values[n++] = enabled;
3315 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3316 		values[n++] = running;
3317 	values[n++] = count;
3318 	if (read_format & PERF_FORMAT_ID)
3319 		values[n++] = primary_event_id(leader);
3320 
3321 	size = n * sizeof(u64);
3322 
3323 	if (copy_to_user(buf, values, size))
3324 		goto unlock;
3325 
3326 	ret = size;
3327 
3328 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3329 		n = 0;
3330 
3331 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3332 		if (read_format & PERF_FORMAT_ID)
3333 			values[n++] = primary_event_id(sub);
3334 
3335 		size = n * sizeof(u64);
3336 
3337 		if (copy_to_user(buf + ret, values, size)) {
3338 			ret = -EFAULT;
3339 			goto unlock;
3340 		}
3341 
3342 		ret += size;
3343 	}
3344 unlock:
3345 	mutex_unlock(&ctx->mutex);
3346 
3347 	return ret;
3348 }
3349 
3350 static int perf_event_read_one(struct perf_event *event,
3351 				 u64 read_format, char __user *buf)
3352 {
3353 	u64 enabled, running;
3354 	u64 values[4];
3355 	int n = 0;
3356 
3357 	values[n++] = perf_event_read_value(event, &enabled, &running);
3358 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3359 		values[n++] = enabled;
3360 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3361 		values[n++] = running;
3362 	if (read_format & PERF_FORMAT_ID)
3363 		values[n++] = primary_event_id(event);
3364 
3365 	if (copy_to_user(buf, values, n * sizeof(u64)))
3366 		return -EFAULT;
3367 
3368 	return n * sizeof(u64);
3369 }
3370 
3371 /*
3372  * Read the performance event - simple non blocking version for now
3373  */
3374 static ssize_t
3375 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3376 {
3377 	u64 read_format = event->attr.read_format;
3378 	int ret;
3379 
3380 	/*
3381 	 * Return end-of-file for a read on a event that is in
3382 	 * error state (i.e. because it was pinned but it couldn't be
3383 	 * scheduled on to the CPU at some point).
3384 	 */
3385 	if (event->state == PERF_EVENT_STATE_ERROR)
3386 		return 0;
3387 
3388 	if (count < event->read_size)
3389 		return -ENOSPC;
3390 
3391 	WARN_ON_ONCE(event->ctx->parent_ctx);
3392 	if (read_format & PERF_FORMAT_GROUP)
3393 		ret = perf_event_read_group(event, read_format, buf);
3394 	else
3395 		ret = perf_event_read_one(event, read_format, buf);
3396 
3397 	return ret;
3398 }
3399 
3400 static ssize_t
3401 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3402 {
3403 	struct perf_event *event = file->private_data;
3404 
3405 	return perf_read_hw(event, buf, count);
3406 }
3407 
3408 static unsigned int perf_poll(struct file *file, poll_table *wait)
3409 {
3410 	struct perf_event *event = file->private_data;
3411 	struct ring_buffer *rb;
3412 	unsigned int events = POLL_HUP;
3413 
3414 	/*
3415 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3416 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3417 	 */
3418 	mutex_lock(&event->mmap_mutex);
3419 	rb = event->rb;
3420 	if (rb)
3421 		events = atomic_xchg(&rb->poll, 0);
3422 	mutex_unlock(&event->mmap_mutex);
3423 
3424 	poll_wait(file, &event->waitq, wait);
3425 
3426 	return events;
3427 }
3428 
3429 static void perf_event_reset(struct perf_event *event)
3430 {
3431 	(void)perf_event_read(event);
3432 	local64_set(&event->count, 0);
3433 	perf_event_update_userpage(event);
3434 }
3435 
3436 /*
3437  * Holding the top-level event's child_mutex means that any
3438  * descendant process that has inherited this event will block
3439  * in sync_child_event if it goes to exit, thus satisfying the
3440  * task existence requirements of perf_event_enable/disable.
3441  */
3442 static void perf_event_for_each_child(struct perf_event *event,
3443 					void (*func)(struct perf_event *))
3444 {
3445 	struct perf_event *child;
3446 
3447 	WARN_ON_ONCE(event->ctx->parent_ctx);
3448 	mutex_lock(&event->child_mutex);
3449 	func(event);
3450 	list_for_each_entry(child, &event->child_list, child_list)
3451 		func(child);
3452 	mutex_unlock(&event->child_mutex);
3453 }
3454 
3455 static void perf_event_for_each(struct perf_event *event,
3456 				  void (*func)(struct perf_event *))
3457 {
3458 	struct perf_event_context *ctx = event->ctx;
3459 	struct perf_event *sibling;
3460 
3461 	WARN_ON_ONCE(ctx->parent_ctx);
3462 	mutex_lock(&ctx->mutex);
3463 	event = event->group_leader;
3464 
3465 	perf_event_for_each_child(event, func);
3466 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3467 		perf_event_for_each_child(sibling, func);
3468 	mutex_unlock(&ctx->mutex);
3469 }
3470 
3471 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3472 {
3473 	struct perf_event_context *ctx = event->ctx;
3474 	int ret = 0;
3475 	u64 value;
3476 
3477 	if (!is_sampling_event(event))
3478 		return -EINVAL;
3479 
3480 	if (copy_from_user(&value, arg, sizeof(value)))
3481 		return -EFAULT;
3482 
3483 	if (!value)
3484 		return -EINVAL;
3485 
3486 	raw_spin_lock_irq(&ctx->lock);
3487 	if (event->attr.freq) {
3488 		if (value > sysctl_perf_event_sample_rate) {
3489 			ret = -EINVAL;
3490 			goto unlock;
3491 		}
3492 
3493 		event->attr.sample_freq = value;
3494 	} else {
3495 		event->attr.sample_period = value;
3496 		event->hw.sample_period = value;
3497 	}
3498 unlock:
3499 	raw_spin_unlock_irq(&ctx->lock);
3500 
3501 	return ret;
3502 }
3503 
3504 static const struct file_operations perf_fops;
3505 
3506 static inline int perf_fget_light(int fd, struct fd *p)
3507 {
3508 	struct fd f = fdget(fd);
3509 	if (!f.file)
3510 		return -EBADF;
3511 
3512 	if (f.file->f_op != &perf_fops) {
3513 		fdput(f);
3514 		return -EBADF;
3515 	}
3516 	*p = f;
3517 	return 0;
3518 }
3519 
3520 static int perf_event_set_output(struct perf_event *event,
3521 				 struct perf_event *output_event);
3522 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3523 
3524 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3525 {
3526 	struct perf_event *event = file->private_data;
3527 	void (*func)(struct perf_event *);
3528 	u32 flags = arg;
3529 
3530 	switch (cmd) {
3531 	case PERF_EVENT_IOC_ENABLE:
3532 		func = perf_event_enable;
3533 		break;
3534 	case PERF_EVENT_IOC_DISABLE:
3535 		func = perf_event_disable;
3536 		break;
3537 	case PERF_EVENT_IOC_RESET:
3538 		func = perf_event_reset;
3539 		break;
3540 
3541 	case PERF_EVENT_IOC_REFRESH:
3542 		return perf_event_refresh(event, arg);
3543 
3544 	case PERF_EVENT_IOC_PERIOD:
3545 		return perf_event_period(event, (u64 __user *)arg);
3546 
3547 	case PERF_EVENT_IOC_SET_OUTPUT:
3548 	{
3549 		int ret;
3550 		if (arg != -1) {
3551 			struct perf_event *output_event;
3552 			struct fd output;
3553 			ret = perf_fget_light(arg, &output);
3554 			if (ret)
3555 				return ret;
3556 			output_event = output.file->private_data;
3557 			ret = perf_event_set_output(event, output_event);
3558 			fdput(output);
3559 		} else {
3560 			ret = perf_event_set_output(event, NULL);
3561 		}
3562 		return ret;
3563 	}
3564 
3565 	case PERF_EVENT_IOC_SET_FILTER:
3566 		return perf_event_set_filter(event, (void __user *)arg);
3567 
3568 	default:
3569 		return -ENOTTY;
3570 	}
3571 
3572 	if (flags & PERF_IOC_FLAG_GROUP)
3573 		perf_event_for_each(event, func);
3574 	else
3575 		perf_event_for_each_child(event, func);
3576 
3577 	return 0;
3578 }
3579 
3580 int perf_event_task_enable(void)
3581 {
3582 	struct perf_event *event;
3583 
3584 	mutex_lock(&current->perf_event_mutex);
3585 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3586 		perf_event_for_each_child(event, perf_event_enable);
3587 	mutex_unlock(&current->perf_event_mutex);
3588 
3589 	return 0;
3590 }
3591 
3592 int perf_event_task_disable(void)
3593 {
3594 	struct perf_event *event;
3595 
3596 	mutex_lock(&current->perf_event_mutex);
3597 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3598 		perf_event_for_each_child(event, perf_event_disable);
3599 	mutex_unlock(&current->perf_event_mutex);
3600 
3601 	return 0;
3602 }
3603 
3604 static int perf_event_index(struct perf_event *event)
3605 {
3606 	if (event->hw.state & PERF_HES_STOPPED)
3607 		return 0;
3608 
3609 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 		return 0;
3611 
3612 	return event->pmu->event_idx(event);
3613 }
3614 
3615 static void calc_timer_values(struct perf_event *event,
3616 				u64 *now,
3617 				u64 *enabled,
3618 				u64 *running)
3619 {
3620 	u64 ctx_time;
3621 
3622 	*now = perf_clock();
3623 	ctx_time = event->shadow_ctx_time + *now;
3624 	*enabled = ctx_time - event->tstamp_enabled;
3625 	*running = ctx_time - event->tstamp_running;
3626 }
3627 
3628 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3629 {
3630 }
3631 
3632 /*
3633  * Callers need to ensure there can be no nesting of this function, otherwise
3634  * the seqlock logic goes bad. We can not serialize this because the arch
3635  * code calls this from NMI context.
3636  */
3637 void perf_event_update_userpage(struct perf_event *event)
3638 {
3639 	struct perf_event_mmap_page *userpg;
3640 	struct ring_buffer *rb;
3641 	u64 enabled, running, now;
3642 
3643 	rcu_read_lock();
3644 	/*
3645 	 * compute total_time_enabled, total_time_running
3646 	 * based on snapshot values taken when the event
3647 	 * was last scheduled in.
3648 	 *
3649 	 * we cannot simply called update_context_time()
3650 	 * because of locking issue as we can be called in
3651 	 * NMI context
3652 	 */
3653 	calc_timer_values(event, &now, &enabled, &running);
3654 	rb = rcu_dereference(event->rb);
3655 	if (!rb)
3656 		goto unlock;
3657 
3658 	userpg = rb->user_page;
3659 
3660 	/*
3661 	 * Disable preemption so as to not let the corresponding user-space
3662 	 * spin too long if we get preempted.
3663 	 */
3664 	preempt_disable();
3665 	++userpg->lock;
3666 	barrier();
3667 	userpg->index = perf_event_index(event);
3668 	userpg->offset = perf_event_count(event);
3669 	if (userpg->index)
3670 		userpg->offset -= local64_read(&event->hw.prev_count);
3671 
3672 	userpg->time_enabled = enabled +
3673 			atomic64_read(&event->child_total_time_enabled);
3674 
3675 	userpg->time_running = running +
3676 			atomic64_read(&event->child_total_time_running);
3677 
3678 	arch_perf_update_userpage(userpg, now);
3679 
3680 	barrier();
3681 	++userpg->lock;
3682 	preempt_enable();
3683 unlock:
3684 	rcu_read_unlock();
3685 }
3686 
3687 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3688 {
3689 	struct perf_event *event = vma->vm_file->private_data;
3690 	struct ring_buffer *rb;
3691 	int ret = VM_FAULT_SIGBUS;
3692 
3693 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3694 		if (vmf->pgoff == 0)
3695 			ret = 0;
3696 		return ret;
3697 	}
3698 
3699 	rcu_read_lock();
3700 	rb = rcu_dereference(event->rb);
3701 	if (!rb)
3702 		goto unlock;
3703 
3704 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3705 		goto unlock;
3706 
3707 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3708 	if (!vmf->page)
3709 		goto unlock;
3710 
3711 	get_page(vmf->page);
3712 	vmf->page->mapping = vma->vm_file->f_mapping;
3713 	vmf->page->index   = vmf->pgoff;
3714 
3715 	ret = 0;
3716 unlock:
3717 	rcu_read_unlock();
3718 
3719 	return ret;
3720 }
3721 
3722 static void ring_buffer_attach(struct perf_event *event,
3723 			       struct ring_buffer *rb)
3724 {
3725 	unsigned long flags;
3726 
3727 	if (!list_empty(&event->rb_entry))
3728 		return;
3729 
3730 	spin_lock_irqsave(&rb->event_lock, flags);
3731 	if (list_empty(&event->rb_entry))
3732 		list_add(&event->rb_entry, &rb->event_list);
3733 	spin_unlock_irqrestore(&rb->event_lock, flags);
3734 }
3735 
3736 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3737 {
3738 	unsigned long flags;
3739 
3740 	if (list_empty(&event->rb_entry))
3741 		return;
3742 
3743 	spin_lock_irqsave(&rb->event_lock, flags);
3744 	list_del_init(&event->rb_entry);
3745 	wake_up_all(&event->waitq);
3746 	spin_unlock_irqrestore(&rb->event_lock, flags);
3747 }
3748 
3749 static void ring_buffer_wakeup(struct perf_event *event)
3750 {
3751 	struct ring_buffer *rb;
3752 
3753 	rcu_read_lock();
3754 	rb = rcu_dereference(event->rb);
3755 	if (rb) {
3756 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3757 			wake_up_all(&event->waitq);
3758 	}
3759 	rcu_read_unlock();
3760 }
3761 
3762 static void rb_free_rcu(struct rcu_head *rcu_head)
3763 {
3764 	struct ring_buffer *rb;
3765 
3766 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3767 	rb_free(rb);
3768 }
3769 
3770 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3771 {
3772 	struct ring_buffer *rb;
3773 
3774 	rcu_read_lock();
3775 	rb = rcu_dereference(event->rb);
3776 	if (rb) {
3777 		if (!atomic_inc_not_zero(&rb->refcount))
3778 			rb = NULL;
3779 	}
3780 	rcu_read_unlock();
3781 
3782 	return rb;
3783 }
3784 
3785 static void ring_buffer_put(struct ring_buffer *rb)
3786 {
3787 	if (!atomic_dec_and_test(&rb->refcount))
3788 		return;
3789 
3790 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3791 
3792 	call_rcu(&rb->rcu_head, rb_free_rcu);
3793 }
3794 
3795 static void perf_mmap_open(struct vm_area_struct *vma)
3796 {
3797 	struct perf_event *event = vma->vm_file->private_data;
3798 
3799 	atomic_inc(&event->mmap_count);
3800 	atomic_inc(&event->rb->mmap_count);
3801 }
3802 
3803 /*
3804  * A buffer can be mmap()ed multiple times; either directly through the same
3805  * event, or through other events by use of perf_event_set_output().
3806  *
3807  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3808  * the buffer here, where we still have a VM context. This means we need
3809  * to detach all events redirecting to us.
3810  */
3811 static void perf_mmap_close(struct vm_area_struct *vma)
3812 {
3813 	struct perf_event *event = vma->vm_file->private_data;
3814 
3815 	struct ring_buffer *rb = event->rb;
3816 	struct user_struct *mmap_user = rb->mmap_user;
3817 	int mmap_locked = rb->mmap_locked;
3818 	unsigned long size = perf_data_size(rb);
3819 
3820 	atomic_dec(&rb->mmap_count);
3821 
3822 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3823 		return;
3824 
3825 	/* Detach current event from the buffer. */
3826 	rcu_assign_pointer(event->rb, NULL);
3827 	ring_buffer_detach(event, rb);
3828 	mutex_unlock(&event->mmap_mutex);
3829 
3830 	/* If there's still other mmap()s of this buffer, we're done. */
3831 	if (atomic_read(&rb->mmap_count)) {
3832 		ring_buffer_put(rb); /* can't be last */
3833 		return;
3834 	}
3835 
3836 	/*
3837 	 * No other mmap()s, detach from all other events that might redirect
3838 	 * into the now unreachable buffer. Somewhat complicated by the
3839 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3840 	 */
3841 again:
3842 	rcu_read_lock();
3843 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3844 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3845 			/*
3846 			 * This event is en-route to free_event() which will
3847 			 * detach it and remove it from the list.
3848 			 */
3849 			continue;
3850 		}
3851 		rcu_read_unlock();
3852 
3853 		mutex_lock(&event->mmap_mutex);
3854 		/*
3855 		 * Check we didn't race with perf_event_set_output() which can
3856 		 * swizzle the rb from under us while we were waiting to
3857 		 * acquire mmap_mutex.
3858 		 *
3859 		 * If we find a different rb; ignore this event, a next
3860 		 * iteration will no longer find it on the list. We have to
3861 		 * still restart the iteration to make sure we're not now
3862 		 * iterating the wrong list.
3863 		 */
3864 		if (event->rb == rb) {
3865 			rcu_assign_pointer(event->rb, NULL);
3866 			ring_buffer_detach(event, rb);
3867 			ring_buffer_put(rb); /* can't be last, we still have one */
3868 		}
3869 		mutex_unlock(&event->mmap_mutex);
3870 		put_event(event);
3871 
3872 		/*
3873 		 * Restart the iteration; either we're on the wrong list or
3874 		 * destroyed its integrity by doing a deletion.
3875 		 */
3876 		goto again;
3877 	}
3878 	rcu_read_unlock();
3879 
3880 	/*
3881 	 * It could be there's still a few 0-ref events on the list; they'll
3882 	 * get cleaned up by free_event() -- they'll also still have their
3883 	 * ref on the rb and will free it whenever they are done with it.
3884 	 *
3885 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3886 	 * undo the VM accounting.
3887 	 */
3888 
3889 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3890 	vma->vm_mm->pinned_vm -= mmap_locked;
3891 	free_uid(mmap_user);
3892 
3893 	ring_buffer_put(rb); /* could be last */
3894 }
3895 
3896 static const struct vm_operations_struct perf_mmap_vmops = {
3897 	.open		= perf_mmap_open,
3898 	.close		= perf_mmap_close,
3899 	.fault		= perf_mmap_fault,
3900 	.page_mkwrite	= perf_mmap_fault,
3901 };
3902 
3903 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3904 {
3905 	struct perf_event *event = file->private_data;
3906 	unsigned long user_locked, user_lock_limit;
3907 	struct user_struct *user = current_user();
3908 	unsigned long locked, lock_limit;
3909 	struct ring_buffer *rb;
3910 	unsigned long vma_size;
3911 	unsigned long nr_pages;
3912 	long user_extra, extra;
3913 	int ret = 0, flags = 0;
3914 
3915 	/*
3916 	 * Don't allow mmap() of inherited per-task counters. This would
3917 	 * create a performance issue due to all children writing to the
3918 	 * same rb.
3919 	 */
3920 	if (event->cpu == -1 && event->attr.inherit)
3921 		return -EINVAL;
3922 
3923 	if (!(vma->vm_flags & VM_SHARED))
3924 		return -EINVAL;
3925 
3926 	vma_size = vma->vm_end - vma->vm_start;
3927 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3928 
3929 	/*
3930 	 * If we have rb pages ensure they're a power-of-two number, so we
3931 	 * can do bitmasks instead of modulo.
3932 	 */
3933 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3934 		return -EINVAL;
3935 
3936 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3937 		return -EINVAL;
3938 
3939 	if (vma->vm_pgoff != 0)
3940 		return -EINVAL;
3941 
3942 	WARN_ON_ONCE(event->ctx->parent_ctx);
3943 again:
3944 	mutex_lock(&event->mmap_mutex);
3945 	if (event->rb) {
3946 		if (event->rb->nr_pages != nr_pages) {
3947 			ret = -EINVAL;
3948 			goto unlock;
3949 		}
3950 
3951 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3952 			/*
3953 			 * Raced against perf_mmap_close() through
3954 			 * perf_event_set_output(). Try again, hope for better
3955 			 * luck.
3956 			 */
3957 			mutex_unlock(&event->mmap_mutex);
3958 			goto again;
3959 		}
3960 
3961 		goto unlock;
3962 	}
3963 
3964 	user_extra = nr_pages + 1;
3965 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3966 
3967 	/*
3968 	 * Increase the limit linearly with more CPUs:
3969 	 */
3970 	user_lock_limit *= num_online_cpus();
3971 
3972 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3973 
3974 	extra = 0;
3975 	if (user_locked > user_lock_limit)
3976 		extra = user_locked - user_lock_limit;
3977 
3978 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3979 	lock_limit >>= PAGE_SHIFT;
3980 	locked = vma->vm_mm->pinned_vm + extra;
3981 
3982 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3983 		!capable(CAP_IPC_LOCK)) {
3984 		ret = -EPERM;
3985 		goto unlock;
3986 	}
3987 
3988 	WARN_ON(event->rb);
3989 
3990 	if (vma->vm_flags & VM_WRITE)
3991 		flags |= RING_BUFFER_WRITABLE;
3992 
3993 	rb = rb_alloc(nr_pages,
3994 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3995 		event->cpu, flags);
3996 
3997 	if (!rb) {
3998 		ret = -ENOMEM;
3999 		goto unlock;
4000 	}
4001 
4002 	atomic_set(&rb->mmap_count, 1);
4003 	rb->mmap_locked = extra;
4004 	rb->mmap_user = get_current_user();
4005 
4006 	atomic_long_add(user_extra, &user->locked_vm);
4007 	vma->vm_mm->pinned_vm += extra;
4008 
4009 	ring_buffer_attach(event, rb);
4010 	rcu_assign_pointer(event->rb, rb);
4011 
4012 	perf_event_update_userpage(event);
4013 
4014 unlock:
4015 	if (!ret)
4016 		atomic_inc(&event->mmap_count);
4017 	mutex_unlock(&event->mmap_mutex);
4018 
4019 	/*
4020 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4021 	 * vma.
4022 	 */
4023 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4024 	vma->vm_ops = &perf_mmap_vmops;
4025 
4026 	return ret;
4027 }
4028 
4029 static int perf_fasync(int fd, struct file *filp, int on)
4030 {
4031 	struct inode *inode = file_inode(filp);
4032 	struct perf_event *event = filp->private_data;
4033 	int retval;
4034 
4035 	mutex_lock(&inode->i_mutex);
4036 	retval = fasync_helper(fd, filp, on, &event->fasync);
4037 	mutex_unlock(&inode->i_mutex);
4038 
4039 	if (retval < 0)
4040 		return retval;
4041 
4042 	return 0;
4043 }
4044 
4045 static const struct file_operations perf_fops = {
4046 	.llseek			= no_llseek,
4047 	.release		= perf_release,
4048 	.read			= perf_read,
4049 	.poll			= perf_poll,
4050 	.unlocked_ioctl		= perf_ioctl,
4051 	.compat_ioctl		= perf_ioctl,
4052 	.mmap			= perf_mmap,
4053 	.fasync			= perf_fasync,
4054 };
4055 
4056 /*
4057  * Perf event wakeup
4058  *
4059  * If there's data, ensure we set the poll() state and publish everything
4060  * to user-space before waking everybody up.
4061  */
4062 
4063 void perf_event_wakeup(struct perf_event *event)
4064 {
4065 	ring_buffer_wakeup(event);
4066 
4067 	if (event->pending_kill) {
4068 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4069 		event->pending_kill = 0;
4070 	}
4071 }
4072 
4073 static void perf_pending_event(struct irq_work *entry)
4074 {
4075 	struct perf_event *event = container_of(entry,
4076 			struct perf_event, pending);
4077 
4078 	if (event->pending_disable) {
4079 		event->pending_disable = 0;
4080 		__perf_event_disable(event);
4081 	}
4082 
4083 	if (event->pending_wakeup) {
4084 		event->pending_wakeup = 0;
4085 		perf_event_wakeup(event);
4086 	}
4087 }
4088 
4089 /*
4090  * We assume there is only KVM supporting the callbacks.
4091  * Later on, we might change it to a list if there is
4092  * another virtualization implementation supporting the callbacks.
4093  */
4094 struct perf_guest_info_callbacks *perf_guest_cbs;
4095 
4096 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4097 {
4098 	perf_guest_cbs = cbs;
4099 	return 0;
4100 }
4101 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4102 
4103 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4104 {
4105 	perf_guest_cbs = NULL;
4106 	return 0;
4107 }
4108 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4109 
4110 static void
4111 perf_output_sample_regs(struct perf_output_handle *handle,
4112 			struct pt_regs *regs, u64 mask)
4113 {
4114 	int bit;
4115 
4116 	for_each_set_bit(bit, (const unsigned long *) &mask,
4117 			 sizeof(mask) * BITS_PER_BYTE) {
4118 		u64 val;
4119 
4120 		val = perf_reg_value(regs, bit);
4121 		perf_output_put(handle, val);
4122 	}
4123 }
4124 
4125 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4126 				  struct pt_regs *regs)
4127 {
4128 	if (!user_mode(regs)) {
4129 		if (current->mm)
4130 			regs = task_pt_regs(current);
4131 		else
4132 			regs = NULL;
4133 	}
4134 
4135 	if (regs) {
4136 		regs_user->regs = regs;
4137 		regs_user->abi  = perf_reg_abi(current);
4138 	}
4139 }
4140 
4141 /*
4142  * Get remaining task size from user stack pointer.
4143  *
4144  * It'd be better to take stack vma map and limit this more
4145  * precisly, but there's no way to get it safely under interrupt,
4146  * so using TASK_SIZE as limit.
4147  */
4148 static u64 perf_ustack_task_size(struct pt_regs *regs)
4149 {
4150 	unsigned long addr = perf_user_stack_pointer(regs);
4151 
4152 	if (!addr || addr >= TASK_SIZE)
4153 		return 0;
4154 
4155 	return TASK_SIZE - addr;
4156 }
4157 
4158 static u16
4159 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4160 			struct pt_regs *regs)
4161 {
4162 	u64 task_size;
4163 
4164 	/* No regs, no stack pointer, no dump. */
4165 	if (!regs)
4166 		return 0;
4167 
4168 	/*
4169 	 * Check if we fit in with the requested stack size into the:
4170 	 * - TASK_SIZE
4171 	 *   If we don't, we limit the size to the TASK_SIZE.
4172 	 *
4173 	 * - remaining sample size
4174 	 *   If we don't, we customize the stack size to
4175 	 *   fit in to the remaining sample size.
4176 	 */
4177 
4178 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4179 	stack_size = min(stack_size, (u16) task_size);
4180 
4181 	/* Current header size plus static size and dynamic size. */
4182 	header_size += 2 * sizeof(u64);
4183 
4184 	/* Do we fit in with the current stack dump size? */
4185 	if ((u16) (header_size + stack_size) < header_size) {
4186 		/*
4187 		 * If we overflow the maximum size for the sample,
4188 		 * we customize the stack dump size to fit in.
4189 		 */
4190 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4191 		stack_size = round_up(stack_size, sizeof(u64));
4192 	}
4193 
4194 	return stack_size;
4195 }
4196 
4197 static void
4198 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4199 			  struct pt_regs *regs)
4200 {
4201 	/* Case of a kernel thread, nothing to dump */
4202 	if (!regs) {
4203 		u64 size = 0;
4204 		perf_output_put(handle, size);
4205 	} else {
4206 		unsigned long sp;
4207 		unsigned int rem;
4208 		u64 dyn_size;
4209 
4210 		/*
4211 		 * We dump:
4212 		 * static size
4213 		 *   - the size requested by user or the best one we can fit
4214 		 *     in to the sample max size
4215 		 * data
4216 		 *   - user stack dump data
4217 		 * dynamic size
4218 		 *   - the actual dumped size
4219 		 */
4220 
4221 		/* Static size. */
4222 		perf_output_put(handle, dump_size);
4223 
4224 		/* Data. */
4225 		sp = perf_user_stack_pointer(regs);
4226 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4227 		dyn_size = dump_size - rem;
4228 
4229 		perf_output_skip(handle, rem);
4230 
4231 		/* Dynamic size. */
4232 		perf_output_put(handle, dyn_size);
4233 	}
4234 }
4235 
4236 static void __perf_event_header__init_id(struct perf_event_header *header,
4237 					 struct perf_sample_data *data,
4238 					 struct perf_event *event)
4239 {
4240 	u64 sample_type = event->attr.sample_type;
4241 
4242 	data->type = sample_type;
4243 	header->size += event->id_header_size;
4244 
4245 	if (sample_type & PERF_SAMPLE_TID) {
4246 		/* namespace issues */
4247 		data->tid_entry.pid = perf_event_pid(event, current);
4248 		data->tid_entry.tid = perf_event_tid(event, current);
4249 	}
4250 
4251 	if (sample_type & PERF_SAMPLE_TIME)
4252 		data->time = perf_clock();
4253 
4254 	if (sample_type & PERF_SAMPLE_ID)
4255 		data->id = primary_event_id(event);
4256 
4257 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4258 		data->stream_id = event->id;
4259 
4260 	if (sample_type & PERF_SAMPLE_CPU) {
4261 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4262 		data->cpu_entry.reserved = 0;
4263 	}
4264 }
4265 
4266 void perf_event_header__init_id(struct perf_event_header *header,
4267 				struct perf_sample_data *data,
4268 				struct perf_event *event)
4269 {
4270 	if (event->attr.sample_id_all)
4271 		__perf_event_header__init_id(header, data, event);
4272 }
4273 
4274 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4275 					   struct perf_sample_data *data)
4276 {
4277 	u64 sample_type = data->type;
4278 
4279 	if (sample_type & PERF_SAMPLE_TID)
4280 		perf_output_put(handle, data->tid_entry);
4281 
4282 	if (sample_type & PERF_SAMPLE_TIME)
4283 		perf_output_put(handle, data->time);
4284 
4285 	if (sample_type & PERF_SAMPLE_ID)
4286 		perf_output_put(handle, data->id);
4287 
4288 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4289 		perf_output_put(handle, data->stream_id);
4290 
4291 	if (sample_type & PERF_SAMPLE_CPU)
4292 		perf_output_put(handle, data->cpu_entry);
4293 }
4294 
4295 void perf_event__output_id_sample(struct perf_event *event,
4296 				  struct perf_output_handle *handle,
4297 				  struct perf_sample_data *sample)
4298 {
4299 	if (event->attr.sample_id_all)
4300 		__perf_event__output_id_sample(handle, sample);
4301 }
4302 
4303 static void perf_output_read_one(struct perf_output_handle *handle,
4304 				 struct perf_event *event,
4305 				 u64 enabled, u64 running)
4306 {
4307 	u64 read_format = event->attr.read_format;
4308 	u64 values[4];
4309 	int n = 0;
4310 
4311 	values[n++] = perf_event_count(event);
4312 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4313 		values[n++] = enabled +
4314 			atomic64_read(&event->child_total_time_enabled);
4315 	}
4316 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4317 		values[n++] = running +
4318 			atomic64_read(&event->child_total_time_running);
4319 	}
4320 	if (read_format & PERF_FORMAT_ID)
4321 		values[n++] = primary_event_id(event);
4322 
4323 	__output_copy(handle, values, n * sizeof(u64));
4324 }
4325 
4326 /*
4327  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4328  */
4329 static void perf_output_read_group(struct perf_output_handle *handle,
4330 			    struct perf_event *event,
4331 			    u64 enabled, u64 running)
4332 {
4333 	struct perf_event *leader = event->group_leader, *sub;
4334 	u64 read_format = event->attr.read_format;
4335 	u64 values[5];
4336 	int n = 0;
4337 
4338 	values[n++] = 1 + leader->nr_siblings;
4339 
4340 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4341 		values[n++] = enabled;
4342 
4343 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4344 		values[n++] = running;
4345 
4346 	if (leader != event)
4347 		leader->pmu->read(leader);
4348 
4349 	values[n++] = perf_event_count(leader);
4350 	if (read_format & PERF_FORMAT_ID)
4351 		values[n++] = primary_event_id(leader);
4352 
4353 	__output_copy(handle, values, n * sizeof(u64));
4354 
4355 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4356 		n = 0;
4357 
4358 		if (sub != event)
4359 			sub->pmu->read(sub);
4360 
4361 		values[n++] = perf_event_count(sub);
4362 		if (read_format & PERF_FORMAT_ID)
4363 			values[n++] = primary_event_id(sub);
4364 
4365 		__output_copy(handle, values, n * sizeof(u64));
4366 	}
4367 }
4368 
4369 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4370 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4371 
4372 static void perf_output_read(struct perf_output_handle *handle,
4373 			     struct perf_event *event)
4374 {
4375 	u64 enabled = 0, running = 0, now;
4376 	u64 read_format = event->attr.read_format;
4377 
4378 	/*
4379 	 * compute total_time_enabled, total_time_running
4380 	 * based on snapshot values taken when the event
4381 	 * was last scheduled in.
4382 	 *
4383 	 * we cannot simply called update_context_time()
4384 	 * because of locking issue as we are called in
4385 	 * NMI context
4386 	 */
4387 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4388 		calc_timer_values(event, &now, &enabled, &running);
4389 
4390 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4391 		perf_output_read_group(handle, event, enabled, running);
4392 	else
4393 		perf_output_read_one(handle, event, enabled, running);
4394 }
4395 
4396 void perf_output_sample(struct perf_output_handle *handle,
4397 			struct perf_event_header *header,
4398 			struct perf_sample_data *data,
4399 			struct perf_event *event)
4400 {
4401 	u64 sample_type = data->type;
4402 
4403 	perf_output_put(handle, *header);
4404 
4405 	if (sample_type & PERF_SAMPLE_IP)
4406 		perf_output_put(handle, data->ip);
4407 
4408 	if (sample_type & PERF_SAMPLE_TID)
4409 		perf_output_put(handle, data->tid_entry);
4410 
4411 	if (sample_type & PERF_SAMPLE_TIME)
4412 		perf_output_put(handle, data->time);
4413 
4414 	if (sample_type & PERF_SAMPLE_ADDR)
4415 		perf_output_put(handle, data->addr);
4416 
4417 	if (sample_type & PERF_SAMPLE_ID)
4418 		perf_output_put(handle, data->id);
4419 
4420 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4421 		perf_output_put(handle, data->stream_id);
4422 
4423 	if (sample_type & PERF_SAMPLE_CPU)
4424 		perf_output_put(handle, data->cpu_entry);
4425 
4426 	if (sample_type & PERF_SAMPLE_PERIOD)
4427 		perf_output_put(handle, data->period);
4428 
4429 	if (sample_type & PERF_SAMPLE_READ)
4430 		perf_output_read(handle, event);
4431 
4432 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4433 		if (data->callchain) {
4434 			int size = 1;
4435 
4436 			if (data->callchain)
4437 				size += data->callchain->nr;
4438 
4439 			size *= sizeof(u64);
4440 
4441 			__output_copy(handle, data->callchain, size);
4442 		} else {
4443 			u64 nr = 0;
4444 			perf_output_put(handle, nr);
4445 		}
4446 	}
4447 
4448 	if (sample_type & PERF_SAMPLE_RAW) {
4449 		if (data->raw) {
4450 			perf_output_put(handle, data->raw->size);
4451 			__output_copy(handle, data->raw->data,
4452 					   data->raw->size);
4453 		} else {
4454 			struct {
4455 				u32	size;
4456 				u32	data;
4457 			} raw = {
4458 				.size = sizeof(u32),
4459 				.data = 0,
4460 			};
4461 			perf_output_put(handle, raw);
4462 		}
4463 	}
4464 
4465 	if (!event->attr.watermark) {
4466 		int wakeup_events = event->attr.wakeup_events;
4467 
4468 		if (wakeup_events) {
4469 			struct ring_buffer *rb = handle->rb;
4470 			int events = local_inc_return(&rb->events);
4471 
4472 			if (events >= wakeup_events) {
4473 				local_sub(wakeup_events, &rb->events);
4474 				local_inc(&rb->wakeup);
4475 			}
4476 		}
4477 	}
4478 
4479 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4480 		if (data->br_stack) {
4481 			size_t size;
4482 
4483 			size = data->br_stack->nr
4484 			     * sizeof(struct perf_branch_entry);
4485 
4486 			perf_output_put(handle, data->br_stack->nr);
4487 			perf_output_copy(handle, data->br_stack->entries, size);
4488 		} else {
4489 			/*
4490 			 * we always store at least the value of nr
4491 			 */
4492 			u64 nr = 0;
4493 			perf_output_put(handle, nr);
4494 		}
4495 	}
4496 
4497 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4498 		u64 abi = data->regs_user.abi;
4499 
4500 		/*
4501 		 * If there are no regs to dump, notice it through
4502 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4503 		 */
4504 		perf_output_put(handle, abi);
4505 
4506 		if (abi) {
4507 			u64 mask = event->attr.sample_regs_user;
4508 			perf_output_sample_regs(handle,
4509 						data->regs_user.regs,
4510 						mask);
4511 		}
4512 	}
4513 
4514 	if (sample_type & PERF_SAMPLE_STACK_USER)
4515 		perf_output_sample_ustack(handle,
4516 					  data->stack_user_size,
4517 					  data->regs_user.regs);
4518 
4519 	if (sample_type & PERF_SAMPLE_WEIGHT)
4520 		perf_output_put(handle, data->weight);
4521 
4522 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4523 		perf_output_put(handle, data->data_src.val);
4524 }
4525 
4526 void perf_prepare_sample(struct perf_event_header *header,
4527 			 struct perf_sample_data *data,
4528 			 struct perf_event *event,
4529 			 struct pt_regs *regs)
4530 {
4531 	u64 sample_type = event->attr.sample_type;
4532 
4533 	header->type = PERF_RECORD_SAMPLE;
4534 	header->size = sizeof(*header) + event->header_size;
4535 
4536 	header->misc = 0;
4537 	header->misc |= perf_misc_flags(regs);
4538 
4539 	__perf_event_header__init_id(header, data, event);
4540 
4541 	if (sample_type & PERF_SAMPLE_IP)
4542 		data->ip = perf_instruction_pointer(regs);
4543 
4544 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4545 		int size = 1;
4546 
4547 		data->callchain = perf_callchain(event, regs);
4548 
4549 		if (data->callchain)
4550 			size += data->callchain->nr;
4551 
4552 		header->size += size * sizeof(u64);
4553 	}
4554 
4555 	if (sample_type & PERF_SAMPLE_RAW) {
4556 		int size = sizeof(u32);
4557 
4558 		if (data->raw)
4559 			size += data->raw->size;
4560 		else
4561 			size += sizeof(u32);
4562 
4563 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4564 		header->size += size;
4565 	}
4566 
4567 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4568 		int size = sizeof(u64); /* nr */
4569 		if (data->br_stack) {
4570 			size += data->br_stack->nr
4571 			      * sizeof(struct perf_branch_entry);
4572 		}
4573 		header->size += size;
4574 	}
4575 
4576 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4577 		/* regs dump ABI info */
4578 		int size = sizeof(u64);
4579 
4580 		perf_sample_regs_user(&data->regs_user, regs);
4581 
4582 		if (data->regs_user.regs) {
4583 			u64 mask = event->attr.sample_regs_user;
4584 			size += hweight64(mask) * sizeof(u64);
4585 		}
4586 
4587 		header->size += size;
4588 	}
4589 
4590 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4591 		/*
4592 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4593 		 * processed as the last one or have additional check added
4594 		 * in case new sample type is added, because we could eat
4595 		 * up the rest of the sample size.
4596 		 */
4597 		struct perf_regs_user *uregs = &data->regs_user;
4598 		u16 stack_size = event->attr.sample_stack_user;
4599 		u16 size = sizeof(u64);
4600 
4601 		if (!uregs->abi)
4602 			perf_sample_regs_user(uregs, regs);
4603 
4604 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4605 						     uregs->regs);
4606 
4607 		/*
4608 		 * If there is something to dump, add space for the dump
4609 		 * itself and for the field that tells the dynamic size,
4610 		 * which is how many have been actually dumped.
4611 		 */
4612 		if (stack_size)
4613 			size += sizeof(u64) + stack_size;
4614 
4615 		data->stack_user_size = stack_size;
4616 		header->size += size;
4617 	}
4618 }
4619 
4620 static void perf_event_output(struct perf_event *event,
4621 				struct perf_sample_data *data,
4622 				struct pt_regs *regs)
4623 {
4624 	struct perf_output_handle handle;
4625 	struct perf_event_header header;
4626 
4627 	/* protect the callchain buffers */
4628 	rcu_read_lock();
4629 
4630 	perf_prepare_sample(&header, data, event, regs);
4631 
4632 	if (perf_output_begin(&handle, event, header.size))
4633 		goto exit;
4634 
4635 	perf_output_sample(&handle, &header, data, event);
4636 
4637 	perf_output_end(&handle);
4638 
4639 exit:
4640 	rcu_read_unlock();
4641 }
4642 
4643 /*
4644  * read event_id
4645  */
4646 
4647 struct perf_read_event {
4648 	struct perf_event_header	header;
4649 
4650 	u32				pid;
4651 	u32				tid;
4652 };
4653 
4654 static void
4655 perf_event_read_event(struct perf_event *event,
4656 			struct task_struct *task)
4657 {
4658 	struct perf_output_handle handle;
4659 	struct perf_sample_data sample;
4660 	struct perf_read_event read_event = {
4661 		.header = {
4662 			.type = PERF_RECORD_READ,
4663 			.misc = 0,
4664 			.size = sizeof(read_event) + event->read_size,
4665 		},
4666 		.pid = perf_event_pid(event, task),
4667 		.tid = perf_event_tid(event, task),
4668 	};
4669 	int ret;
4670 
4671 	perf_event_header__init_id(&read_event.header, &sample, event);
4672 	ret = perf_output_begin(&handle, event, read_event.header.size);
4673 	if (ret)
4674 		return;
4675 
4676 	perf_output_put(&handle, read_event);
4677 	perf_output_read(&handle, event);
4678 	perf_event__output_id_sample(event, &handle, &sample);
4679 
4680 	perf_output_end(&handle);
4681 }
4682 
4683 typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4684 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4685 
4686 static void
4687 perf_event_aux_ctx(struct perf_event_context *ctx,
4688 		   perf_event_aux_match_cb match,
4689 		   perf_event_aux_output_cb output,
4690 		   void *data)
4691 {
4692 	struct perf_event *event;
4693 
4694 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4695 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4696 			continue;
4697 		if (!event_filter_match(event))
4698 			continue;
4699 		if (match(event, data))
4700 			output(event, data);
4701 	}
4702 }
4703 
4704 static void
4705 perf_event_aux(perf_event_aux_match_cb match,
4706 	       perf_event_aux_output_cb output,
4707 	       void *data,
4708 	       struct perf_event_context *task_ctx)
4709 {
4710 	struct perf_cpu_context *cpuctx;
4711 	struct perf_event_context *ctx;
4712 	struct pmu *pmu;
4713 	int ctxn;
4714 
4715 	rcu_read_lock();
4716 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4717 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4718 		if (cpuctx->unique_pmu != pmu)
4719 			goto next;
4720 		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4721 		if (task_ctx)
4722 			goto next;
4723 		ctxn = pmu->task_ctx_nr;
4724 		if (ctxn < 0)
4725 			goto next;
4726 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4727 		if (ctx)
4728 			perf_event_aux_ctx(ctx, match, output, data);
4729 next:
4730 		put_cpu_ptr(pmu->pmu_cpu_context);
4731 	}
4732 
4733 	if (task_ctx) {
4734 		preempt_disable();
4735 		perf_event_aux_ctx(task_ctx, match, output, data);
4736 		preempt_enable();
4737 	}
4738 	rcu_read_unlock();
4739 }
4740 
4741 /*
4742  * task tracking -- fork/exit
4743  *
4744  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4745  */
4746 
4747 struct perf_task_event {
4748 	struct task_struct		*task;
4749 	struct perf_event_context	*task_ctx;
4750 
4751 	struct {
4752 		struct perf_event_header	header;
4753 
4754 		u32				pid;
4755 		u32				ppid;
4756 		u32				tid;
4757 		u32				ptid;
4758 		u64				time;
4759 	} event_id;
4760 };
4761 
4762 static void perf_event_task_output(struct perf_event *event,
4763 				   void *data)
4764 {
4765 	struct perf_task_event *task_event = data;
4766 	struct perf_output_handle handle;
4767 	struct perf_sample_data	sample;
4768 	struct task_struct *task = task_event->task;
4769 	int ret, size = task_event->event_id.header.size;
4770 
4771 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4772 
4773 	ret = perf_output_begin(&handle, event,
4774 				task_event->event_id.header.size);
4775 	if (ret)
4776 		goto out;
4777 
4778 	task_event->event_id.pid = perf_event_pid(event, task);
4779 	task_event->event_id.ppid = perf_event_pid(event, current);
4780 
4781 	task_event->event_id.tid = perf_event_tid(event, task);
4782 	task_event->event_id.ptid = perf_event_tid(event, current);
4783 
4784 	perf_output_put(&handle, task_event->event_id);
4785 
4786 	perf_event__output_id_sample(event, &handle, &sample);
4787 
4788 	perf_output_end(&handle);
4789 out:
4790 	task_event->event_id.header.size = size;
4791 }
4792 
4793 static int perf_event_task_match(struct perf_event *event,
4794 				 void *data __maybe_unused)
4795 {
4796 	return event->attr.comm || event->attr.mmap ||
4797 	       event->attr.mmap_data || event->attr.task;
4798 }
4799 
4800 static void perf_event_task(struct task_struct *task,
4801 			      struct perf_event_context *task_ctx,
4802 			      int new)
4803 {
4804 	struct perf_task_event task_event;
4805 
4806 	if (!atomic_read(&nr_comm_events) &&
4807 	    !atomic_read(&nr_mmap_events) &&
4808 	    !atomic_read(&nr_task_events))
4809 		return;
4810 
4811 	task_event = (struct perf_task_event){
4812 		.task	  = task,
4813 		.task_ctx = task_ctx,
4814 		.event_id    = {
4815 			.header = {
4816 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4817 				.misc = 0,
4818 				.size = sizeof(task_event.event_id),
4819 			},
4820 			/* .pid  */
4821 			/* .ppid */
4822 			/* .tid  */
4823 			/* .ptid */
4824 			.time = perf_clock(),
4825 		},
4826 	};
4827 
4828 	perf_event_aux(perf_event_task_match,
4829 		       perf_event_task_output,
4830 		       &task_event,
4831 		       task_ctx);
4832 }
4833 
4834 void perf_event_fork(struct task_struct *task)
4835 {
4836 	perf_event_task(task, NULL, 1);
4837 }
4838 
4839 /*
4840  * comm tracking
4841  */
4842 
4843 struct perf_comm_event {
4844 	struct task_struct	*task;
4845 	char			*comm;
4846 	int			comm_size;
4847 
4848 	struct {
4849 		struct perf_event_header	header;
4850 
4851 		u32				pid;
4852 		u32				tid;
4853 	} event_id;
4854 };
4855 
4856 static void perf_event_comm_output(struct perf_event *event,
4857 				   void *data)
4858 {
4859 	struct perf_comm_event *comm_event = data;
4860 	struct perf_output_handle handle;
4861 	struct perf_sample_data sample;
4862 	int size = comm_event->event_id.header.size;
4863 	int ret;
4864 
4865 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4866 	ret = perf_output_begin(&handle, event,
4867 				comm_event->event_id.header.size);
4868 
4869 	if (ret)
4870 		goto out;
4871 
4872 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4873 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4874 
4875 	perf_output_put(&handle, comm_event->event_id);
4876 	__output_copy(&handle, comm_event->comm,
4877 				   comm_event->comm_size);
4878 
4879 	perf_event__output_id_sample(event, &handle, &sample);
4880 
4881 	perf_output_end(&handle);
4882 out:
4883 	comm_event->event_id.header.size = size;
4884 }
4885 
4886 static int perf_event_comm_match(struct perf_event *event,
4887 				 void *data __maybe_unused)
4888 {
4889 	return event->attr.comm;
4890 }
4891 
4892 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4893 {
4894 	char comm[TASK_COMM_LEN];
4895 	unsigned int size;
4896 
4897 	memset(comm, 0, sizeof(comm));
4898 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4899 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4900 
4901 	comm_event->comm = comm;
4902 	comm_event->comm_size = size;
4903 
4904 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4905 
4906 	perf_event_aux(perf_event_comm_match,
4907 		       perf_event_comm_output,
4908 		       comm_event,
4909 		       NULL);
4910 }
4911 
4912 void perf_event_comm(struct task_struct *task)
4913 {
4914 	struct perf_comm_event comm_event;
4915 	struct perf_event_context *ctx;
4916 	int ctxn;
4917 
4918 	rcu_read_lock();
4919 	for_each_task_context_nr(ctxn) {
4920 		ctx = task->perf_event_ctxp[ctxn];
4921 		if (!ctx)
4922 			continue;
4923 
4924 		perf_event_enable_on_exec(ctx);
4925 	}
4926 	rcu_read_unlock();
4927 
4928 	if (!atomic_read(&nr_comm_events))
4929 		return;
4930 
4931 	comm_event = (struct perf_comm_event){
4932 		.task	= task,
4933 		/* .comm      */
4934 		/* .comm_size */
4935 		.event_id  = {
4936 			.header = {
4937 				.type = PERF_RECORD_COMM,
4938 				.misc = 0,
4939 				/* .size */
4940 			},
4941 			/* .pid */
4942 			/* .tid */
4943 		},
4944 	};
4945 
4946 	perf_event_comm_event(&comm_event);
4947 }
4948 
4949 /*
4950  * mmap tracking
4951  */
4952 
4953 struct perf_mmap_event {
4954 	struct vm_area_struct	*vma;
4955 
4956 	const char		*file_name;
4957 	int			file_size;
4958 
4959 	struct {
4960 		struct perf_event_header	header;
4961 
4962 		u32				pid;
4963 		u32				tid;
4964 		u64				start;
4965 		u64				len;
4966 		u64				pgoff;
4967 	} event_id;
4968 };
4969 
4970 static void perf_event_mmap_output(struct perf_event *event,
4971 				   void *data)
4972 {
4973 	struct perf_mmap_event *mmap_event = data;
4974 	struct perf_output_handle handle;
4975 	struct perf_sample_data sample;
4976 	int size = mmap_event->event_id.header.size;
4977 	int ret;
4978 
4979 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4980 	ret = perf_output_begin(&handle, event,
4981 				mmap_event->event_id.header.size);
4982 	if (ret)
4983 		goto out;
4984 
4985 	mmap_event->event_id.pid = perf_event_pid(event, current);
4986 	mmap_event->event_id.tid = perf_event_tid(event, current);
4987 
4988 	perf_output_put(&handle, mmap_event->event_id);
4989 	__output_copy(&handle, mmap_event->file_name,
4990 				   mmap_event->file_size);
4991 
4992 	perf_event__output_id_sample(event, &handle, &sample);
4993 
4994 	perf_output_end(&handle);
4995 out:
4996 	mmap_event->event_id.header.size = size;
4997 }
4998 
4999 static int perf_event_mmap_match(struct perf_event *event,
5000 				 void *data)
5001 {
5002 	struct perf_mmap_event *mmap_event = data;
5003 	struct vm_area_struct *vma = mmap_event->vma;
5004 	int executable = vma->vm_flags & VM_EXEC;
5005 
5006 	return (!executable && event->attr.mmap_data) ||
5007 	       (executable && event->attr.mmap);
5008 }
5009 
5010 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5011 {
5012 	struct vm_area_struct *vma = mmap_event->vma;
5013 	struct file *file = vma->vm_file;
5014 	unsigned int size;
5015 	char tmp[16];
5016 	char *buf = NULL;
5017 	const char *name;
5018 
5019 	memset(tmp, 0, sizeof(tmp));
5020 
5021 	if (file) {
5022 		/*
5023 		 * d_path works from the end of the rb backwards, so we
5024 		 * need to add enough zero bytes after the string to handle
5025 		 * the 64bit alignment we do later.
5026 		 */
5027 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5028 		if (!buf) {
5029 			name = strncpy(tmp, "//enomem", sizeof(tmp));
5030 			goto got_name;
5031 		}
5032 		name = d_path(&file->f_path, buf, PATH_MAX);
5033 		if (IS_ERR(name)) {
5034 			name = strncpy(tmp, "//toolong", sizeof(tmp));
5035 			goto got_name;
5036 		}
5037 	} else {
5038 		if (arch_vma_name(mmap_event->vma)) {
5039 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5040 				       sizeof(tmp) - 1);
5041 			tmp[sizeof(tmp) - 1] = '\0';
5042 			goto got_name;
5043 		}
5044 
5045 		if (!vma->vm_mm) {
5046 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
5047 			goto got_name;
5048 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
5049 				vma->vm_end >= vma->vm_mm->brk) {
5050 			name = strncpy(tmp, "[heap]", sizeof(tmp));
5051 			goto got_name;
5052 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
5053 				vma->vm_end >= vma->vm_mm->start_stack) {
5054 			name = strncpy(tmp, "[stack]", sizeof(tmp));
5055 			goto got_name;
5056 		}
5057 
5058 		name = strncpy(tmp, "//anon", sizeof(tmp));
5059 		goto got_name;
5060 	}
5061 
5062 got_name:
5063 	size = ALIGN(strlen(name)+1, sizeof(u64));
5064 
5065 	mmap_event->file_name = name;
5066 	mmap_event->file_size = size;
5067 
5068 	if (!(vma->vm_flags & VM_EXEC))
5069 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5070 
5071 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5072 
5073 	perf_event_aux(perf_event_mmap_match,
5074 		       perf_event_mmap_output,
5075 		       mmap_event,
5076 		       NULL);
5077 
5078 	kfree(buf);
5079 }
5080 
5081 void perf_event_mmap(struct vm_area_struct *vma)
5082 {
5083 	struct perf_mmap_event mmap_event;
5084 
5085 	if (!atomic_read(&nr_mmap_events))
5086 		return;
5087 
5088 	mmap_event = (struct perf_mmap_event){
5089 		.vma	= vma,
5090 		/* .file_name */
5091 		/* .file_size */
5092 		.event_id  = {
5093 			.header = {
5094 				.type = PERF_RECORD_MMAP,
5095 				.misc = PERF_RECORD_MISC_USER,
5096 				/* .size */
5097 			},
5098 			/* .pid */
5099 			/* .tid */
5100 			.start  = vma->vm_start,
5101 			.len    = vma->vm_end - vma->vm_start,
5102 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5103 		},
5104 	};
5105 
5106 	perf_event_mmap_event(&mmap_event);
5107 }
5108 
5109 /*
5110  * IRQ throttle logging
5111  */
5112 
5113 static void perf_log_throttle(struct perf_event *event, int enable)
5114 {
5115 	struct perf_output_handle handle;
5116 	struct perf_sample_data sample;
5117 	int ret;
5118 
5119 	struct {
5120 		struct perf_event_header	header;
5121 		u64				time;
5122 		u64				id;
5123 		u64				stream_id;
5124 	} throttle_event = {
5125 		.header = {
5126 			.type = PERF_RECORD_THROTTLE,
5127 			.misc = 0,
5128 			.size = sizeof(throttle_event),
5129 		},
5130 		.time		= perf_clock(),
5131 		.id		= primary_event_id(event),
5132 		.stream_id	= event->id,
5133 	};
5134 
5135 	if (enable)
5136 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5137 
5138 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5139 
5140 	ret = perf_output_begin(&handle, event,
5141 				throttle_event.header.size);
5142 	if (ret)
5143 		return;
5144 
5145 	perf_output_put(&handle, throttle_event);
5146 	perf_event__output_id_sample(event, &handle, &sample);
5147 	perf_output_end(&handle);
5148 }
5149 
5150 /*
5151  * Generic event overflow handling, sampling.
5152  */
5153 
5154 static int __perf_event_overflow(struct perf_event *event,
5155 				   int throttle, struct perf_sample_data *data,
5156 				   struct pt_regs *regs)
5157 {
5158 	int events = atomic_read(&event->event_limit);
5159 	struct hw_perf_event *hwc = &event->hw;
5160 	u64 seq;
5161 	int ret = 0;
5162 
5163 	/*
5164 	 * Non-sampling counters might still use the PMI to fold short
5165 	 * hardware counters, ignore those.
5166 	 */
5167 	if (unlikely(!is_sampling_event(event)))
5168 		return 0;
5169 
5170 	seq = __this_cpu_read(perf_throttled_seq);
5171 	if (seq != hwc->interrupts_seq) {
5172 		hwc->interrupts_seq = seq;
5173 		hwc->interrupts = 1;
5174 	} else {
5175 		hwc->interrupts++;
5176 		if (unlikely(throttle
5177 			     && hwc->interrupts >= max_samples_per_tick)) {
5178 			__this_cpu_inc(perf_throttled_count);
5179 			hwc->interrupts = MAX_INTERRUPTS;
5180 			perf_log_throttle(event, 0);
5181 			ret = 1;
5182 		}
5183 	}
5184 
5185 	if (event->attr.freq) {
5186 		u64 now = perf_clock();
5187 		s64 delta = now - hwc->freq_time_stamp;
5188 
5189 		hwc->freq_time_stamp = now;
5190 
5191 		if (delta > 0 && delta < 2*TICK_NSEC)
5192 			perf_adjust_period(event, delta, hwc->last_period, true);
5193 	}
5194 
5195 	/*
5196 	 * XXX event_limit might not quite work as expected on inherited
5197 	 * events
5198 	 */
5199 
5200 	event->pending_kill = POLL_IN;
5201 	if (events && atomic_dec_and_test(&event->event_limit)) {
5202 		ret = 1;
5203 		event->pending_kill = POLL_HUP;
5204 		event->pending_disable = 1;
5205 		irq_work_queue(&event->pending);
5206 	}
5207 
5208 	if (event->overflow_handler)
5209 		event->overflow_handler(event, data, regs);
5210 	else
5211 		perf_event_output(event, data, regs);
5212 
5213 	if (event->fasync && event->pending_kill) {
5214 		event->pending_wakeup = 1;
5215 		irq_work_queue(&event->pending);
5216 	}
5217 
5218 	return ret;
5219 }
5220 
5221 int perf_event_overflow(struct perf_event *event,
5222 			  struct perf_sample_data *data,
5223 			  struct pt_regs *regs)
5224 {
5225 	return __perf_event_overflow(event, 1, data, regs);
5226 }
5227 
5228 /*
5229  * Generic software event infrastructure
5230  */
5231 
5232 struct swevent_htable {
5233 	struct swevent_hlist		*swevent_hlist;
5234 	struct mutex			hlist_mutex;
5235 	int				hlist_refcount;
5236 
5237 	/* Recursion avoidance in each contexts */
5238 	int				recursion[PERF_NR_CONTEXTS];
5239 };
5240 
5241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5242 
5243 /*
5244  * We directly increment event->count and keep a second value in
5245  * event->hw.period_left to count intervals. This period event
5246  * is kept in the range [-sample_period, 0] so that we can use the
5247  * sign as trigger.
5248  */
5249 
5250 u64 perf_swevent_set_period(struct perf_event *event)
5251 {
5252 	struct hw_perf_event *hwc = &event->hw;
5253 	u64 period = hwc->last_period;
5254 	u64 nr, offset;
5255 	s64 old, val;
5256 
5257 	hwc->last_period = hwc->sample_period;
5258 
5259 again:
5260 	old = val = local64_read(&hwc->period_left);
5261 	if (val < 0)
5262 		return 0;
5263 
5264 	nr = div64_u64(period + val, period);
5265 	offset = nr * period;
5266 	val -= offset;
5267 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5268 		goto again;
5269 
5270 	return nr;
5271 }
5272 
5273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5274 				    struct perf_sample_data *data,
5275 				    struct pt_regs *regs)
5276 {
5277 	struct hw_perf_event *hwc = &event->hw;
5278 	int throttle = 0;
5279 
5280 	if (!overflow)
5281 		overflow = perf_swevent_set_period(event);
5282 
5283 	if (hwc->interrupts == MAX_INTERRUPTS)
5284 		return;
5285 
5286 	for (; overflow; overflow--) {
5287 		if (__perf_event_overflow(event, throttle,
5288 					    data, regs)) {
5289 			/*
5290 			 * We inhibit the overflow from happening when
5291 			 * hwc->interrupts == MAX_INTERRUPTS.
5292 			 */
5293 			break;
5294 		}
5295 		throttle = 1;
5296 	}
5297 }
5298 
5299 static void perf_swevent_event(struct perf_event *event, u64 nr,
5300 			       struct perf_sample_data *data,
5301 			       struct pt_regs *regs)
5302 {
5303 	struct hw_perf_event *hwc = &event->hw;
5304 
5305 	local64_add(nr, &event->count);
5306 
5307 	if (!regs)
5308 		return;
5309 
5310 	if (!is_sampling_event(event))
5311 		return;
5312 
5313 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5314 		data->period = nr;
5315 		return perf_swevent_overflow(event, 1, data, regs);
5316 	} else
5317 		data->period = event->hw.last_period;
5318 
5319 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5320 		return perf_swevent_overflow(event, 1, data, regs);
5321 
5322 	if (local64_add_negative(nr, &hwc->period_left))
5323 		return;
5324 
5325 	perf_swevent_overflow(event, 0, data, regs);
5326 }
5327 
5328 static int perf_exclude_event(struct perf_event *event,
5329 			      struct pt_regs *regs)
5330 {
5331 	if (event->hw.state & PERF_HES_STOPPED)
5332 		return 1;
5333 
5334 	if (regs) {
5335 		if (event->attr.exclude_user && user_mode(regs))
5336 			return 1;
5337 
5338 		if (event->attr.exclude_kernel && !user_mode(regs))
5339 			return 1;
5340 	}
5341 
5342 	return 0;
5343 }
5344 
5345 static int perf_swevent_match(struct perf_event *event,
5346 				enum perf_type_id type,
5347 				u32 event_id,
5348 				struct perf_sample_data *data,
5349 				struct pt_regs *regs)
5350 {
5351 	if (event->attr.type != type)
5352 		return 0;
5353 
5354 	if (event->attr.config != event_id)
5355 		return 0;
5356 
5357 	if (perf_exclude_event(event, regs))
5358 		return 0;
5359 
5360 	return 1;
5361 }
5362 
5363 static inline u64 swevent_hash(u64 type, u32 event_id)
5364 {
5365 	u64 val = event_id | (type << 32);
5366 
5367 	return hash_64(val, SWEVENT_HLIST_BITS);
5368 }
5369 
5370 static inline struct hlist_head *
5371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5372 {
5373 	u64 hash = swevent_hash(type, event_id);
5374 
5375 	return &hlist->heads[hash];
5376 }
5377 
5378 /* For the read side: events when they trigger */
5379 static inline struct hlist_head *
5380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5381 {
5382 	struct swevent_hlist *hlist;
5383 
5384 	hlist = rcu_dereference(swhash->swevent_hlist);
5385 	if (!hlist)
5386 		return NULL;
5387 
5388 	return __find_swevent_head(hlist, type, event_id);
5389 }
5390 
5391 /* For the event head insertion and removal in the hlist */
5392 static inline struct hlist_head *
5393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5394 {
5395 	struct swevent_hlist *hlist;
5396 	u32 event_id = event->attr.config;
5397 	u64 type = event->attr.type;
5398 
5399 	/*
5400 	 * Event scheduling is always serialized against hlist allocation
5401 	 * and release. Which makes the protected version suitable here.
5402 	 * The context lock guarantees that.
5403 	 */
5404 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5405 					  lockdep_is_held(&event->ctx->lock));
5406 	if (!hlist)
5407 		return NULL;
5408 
5409 	return __find_swevent_head(hlist, type, event_id);
5410 }
5411 
5412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5413 				    u64 nr,
5414 				    struct perf_sample_data *data,
5415 				    struct pt_regs *regs)
5416 {
5417 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5418 	struct perf_event *event;
5419 	struct hlist_head *head;
5420 
5421 	rcu_read_lock();
5422 	head = find_swevent_head_rcu(swhash, type, event_id);
5423 	if (!head)
5424 		goto end;
5425 
5426 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5427 		if (perf_swevent_match(event, type, event_id, data, regs))
5428 			perf_swevent_event(event, nr, data, regs);
5429 	}
5430 end:
5431 	rcu_read_unlock();
5432 }
5433 
5434 int perf_swevent_get_recursion_context(void)
5435 {
5436 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5437 
5438 	return get_recursion_context(swhash->recursion);
5439 }
5440 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5441 
5442 inline void perf_swevent_put_recursion_context(int rctx)
5443 {
5444 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5445 
5446 	put_recursion_context(swhash->recursion, rctx);
5447 }
5448 
5449 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5450 {
5451 	struct perf_sample_data data;
5452 	int rctx;
5453 
5454 	preempt_disable_notrace();
5455 	rctx = perf_swevent_get_recursion_context();
5456 	if (rctx < 0)
5457 		return;
5458 
5459 	perf_sample_data_init(&data, addr, 0);
5460 
5461 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5462 
5463 	perf_swevent_put_recursion_context(rctx);
5464 	preempt_enable_notrace();
5465 }
5466 
5467 static void perf_swevent_read(struct perf_event *event)
5468 {
5469 }
5470 
5471 static int perf_swevent_add(struct perf_event *event, int flags)
5472 {
5473 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5474 	struct hw_perf_event *hwc = &event->hw;
5475 	struct hlist_head *head;
5476 
5477 	if (is_sampling_event(event)) {
5478 		hwc->last_period = hwc->sample_period;
5479 		perf_swevent_set_period(event);
5480 	}
5481 
5482 	hwc->state = !(flags & PERF_EF_START);
5483 
5484 	head = find_swevent_head(swhash, event);
5485 	if (WARN_ON_ONCE(!head))
5486 		return -EINVAL;
5487 
5488 	hlist_add_head_rcu(&event->hlist_entry, head);
5489 
5490 	return 0;
5491 }
5492 
5493 static void perf_swevent_del(struct perf_event *event, int flags)
5494 {
5495 	hlist_del_rcu(&event->hlist_entry);
5496 }
5497 
5498 static void perf_swevent_start(struct perf_event *event, int flags)
5499 {
5500 	event->hw.state = 0;
5501 }
5502 
5503 static void perf_swevent_stop(struct perf_event *event, int flags)
5504 {
5505 	event->hw.state = PERF_HES_STOPPED;
5506 }
5507 
5508 /* Deref the hlist from the update side */
5509 static inline struct swevent_hlist *
5510 swevent_hlist_deref(struct swevent_htable *swhash)
5511 {
5512 	return rcu_dereference_protected(swhash->swevent_hlist,
5513 					 lockdep_is_held(&swhash->hlist_mutex));
5514 }
5515 
5516 static void swevent_hlist_release(struct swevent_htable *swhash)
5517 {
5518 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5519 
5520 	if (!hlist)
5521 		return;
5522 
5523 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5524 	kfree_rcu(hlist, rcu_head);
5525 }
5526 
5527 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5528 {
5529 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5530 
5531 	mutex_lock(&swhash->hlist_mutex);
5532 
5533 	if (!--swhash->hlist_refcount)
5534 		swevent_hlist_release(swhash);
5535 
5536 	mutex_unlock(&swhash->hlist_mutex);
5537 }
5538 
5539 static void swevent_hlist_put(struct perf_event *event)
5540 {
5541 	int cpu;
5542 
5543 	if (event->cpu != -1) {
5544 		swevent_hlist_put_cpu(event, event->cpu);
5545 		return;
5546 	}
5547 
5548 	for_each_possible_cpu(cpu)
5549 		swevent_hlist_put_cpu(event, cpu);
5550 }
5551 
5552 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5553 {
5554 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5555 	int err = 0;
5556 
5557 	mutex_lock(&swhash->hlist_mutex);
5558 
5559 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5560 		struct swevent_hlist *hlist;
5561 
5562 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5563 		if (!hlist) {
5564 			err = -ENOMEM;
5565 			goto exit;
5566 		}
5567 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5568 	}
5569 	swhash->hlist_refcount++;
5570 exit:
5571 	mutex_unlock(&swhash->hlist_mutex);
5572 
5573 	return err;
5574 }
5575 
5576 static int swevent_hlist_get(struct perf_event *event)
5577 {
5578 	int err;
5579 	int cpu, failed_cpu;
5580 
5581 	if (event->cpu != -1)
5582 		return swevent_hlist_get_cpu(event, event->cpu);
5583 
5584 	get_online_cpus();
5585 	for_each_possible_cpu(cpu) {
5586 		err = swevent_hlist_get_cpu(event, cpu);
5587 		if (err) {
5588 			failed_cpu = cpu;
5589 			goto fail;
5590 		}
5591 	}
5592 	put_online_cpus();
5593 
5594 	return 0;
5595 fail:
5596 	for_each_possible_cpu(cpu) {
5597 		if (cpu == failed_cpu)
5598 			break;
5599 		swevent_hlist_put_cpu(event, cpu);
5600 	}
5601 
5602 	put_online_cpus();
5603 	return err;
5604 }
5605 
5606 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5607 
5608 static void sw_perf_event_destroy(struct perf_event *event)
5609 {
5610 	u64 event_id = event->attr.config;
5611 
5612 	WARN_ON(event->parent);
5613 
5614 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5615 	swevent_hlist_put(event);
5616 }
5617 
5618 static int perf_swevent_init(struct perf_event *event)
5619 {
5620 	u64 event_id = event->attr.config;
5621 
5622 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5623 		return -ENOENT;
5624 
5625 	/*
5626 	 * no branch sampling for software events
5627 	 */
5628 	if (has_branch_stack(event))
5629 		return -EOPNOTSUPP;
5630 
5631 	switch (event_id) {
5632 	case PERF_COUNT_SW_CPU_CLOCK:
5633 	case PERF_COUNT_SW_TASK_CLOCK:
5634 		return -ENOENT;
5635 
5636 	default:
5637 		break;
5638 	}
5639 
5640 	if (event_id >= PERF_COUNT_SW_MAX)
5641 		return -ENOENT;
5642 
5643 	if (!event->parent) {
5644 		int err;
5645 
5646 		err = swevent_hlist_get(event);
5647 		if (err)
5648 			return err;
5649 
5650 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5651 		event->destroy = sw_perf_event_destroy;
5652 	}
5653 
5654 	return 0;
5655 }
5656 
5657 static int perf_swevent_event_idx(struct perf_event *event)
5658 {
5659 	return 0;
5660 }
5661 
5662 static struct pmu perf_swevent = {
5663 	.task_ctx_nr	= perf_sw_context,
5664 
5665 	.event_init	= perf_swevent_init,
5666 	.add		= perf_swevent_add,
5667 	.del		= perf_swevent_del,
5668 	.start		= perf_swevent_start,
5669 	.stop		= perf_swevent_stop,
5670 	.read		= perf_swevent_read,
5671 
5672 	.event_idx	= perf_swevent_event_idx,
5673 };
5674 
5675 #ifdef CONFIG_EVENT_TRACING
5676 
5677 static int perf_tp_filter_match(struct perf_event *event,
5678 				struct perf_sample_data *data)
5679 {
5680 	void *record = data->raw->data;
5681 
5682 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5683 		return 1;
5684 	return 0;
5685 }
5686 
5687 static int perf_tp_event_match(struct perf_event *event,
5688 				struct perf_sample_data *data,
5689 				struct pt_regs *regs)
5690 {
5691 	if (event->hw.state & PERF_HES_STOPPED)
5692 		return 0;
5693 	/*
5694 	 * All tracepoints are from kernel-space.
5695 	 */
5696 	if (event->attr.exclude_kernel)
5697 		return 0;
5698 
5699 	if (!perf_tp_filter_match(event, data))
5700 		return 0;
5701 
5702 	return 1;
5703 }
5704 
5705 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5706 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5707 		   struct task_struct *task)
5708 {
5709 	struct perf_sample_data data;
5710 	struct perf_event *event;
5711 
5712 	struct perf_raw_record raw = {
5713 		.size = entry_size,
5714 		.data = record,
5715 	};
5716 
5717 	perf_sample_data_init(&data, addr, 0);
5718 	data.raw = &raw;
5719 
5720 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5721 		if (perf_tp_event_match(event, &data, regs))
5722 			perf_swevent_event(event, count, &data, regs);
5723 	}
5724 
5725 	/*
5726 	 * If we got specified a target task, also iterate its context and
5727 	 * deliver this event there too.
5728 	 */
5729 	if (task && task != current) {
5730 		struct perf_event_context *ctx;
5731 		struct trace_entry *entry = record;
5732 
5733 		rcu_read_lock();
5734 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5735 		if (!ctx)
5736 			goto unlock;
5737 
5738 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5739 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5740 				continue;
5741 			if (event->attr.config != entry->type)
5742 				continue;
5743 			if (perf_tp_event_match(event, &data, regs))
5744 				perf_swevent_event(event, count, &data, regs);
5745 		}
5746 unlock:
5747 		rcu_read_unlock();
5748 	}
5749 
5750 	perf_swevent_put_recursion_context(rctx);
5751 }
5752 EXPORT_SYMBOL_GPL(perf_tp_event);
5753 
5754 static void tp_perf_event_destroy(struct perf_event *event)
5755 {
5756 	perf_trace_destroy(event);
5757 }
5758 
5759 static int perf_tp_event_init(struct perf_event *event)
5760 {
5761 	int err;
5762 
5763 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5764 		return -ENOENT;
5765 
5766 	/*
5767 	 * no branch sampling for tracepoint events
5768 	 */
5769 	if (has_branch_stack(event))
5770 		return -EOPNOTSUPP;
5771 
5772 	err = perf_trace_init(event);
5773 	if (err)
5774 		return err;
5775 
5776 	event->destroy = tp_perf_event_destroy;
5777 
5778 	return 0;
5779 }
5780 
5781 static struct pmu perf_tracepoint = {
5782 	.task_ctx_nr	= perf_sw_context,
5783 
5784 	.event_init	= perf_tp_event_init,
5785 	.add		= perf_trace_add,
5786 	.del		= perf_trace_del,
5787 	.start		= perf_swevent_start,
5788 	.stop		= perf_swevent_stop,
5789 	.read		= perf_swevent_read,
5790 
5791 	.event_idx	= perf_swevent_event_idx,
5792 };
5793 
5794 static inline void perf_tp_register(void)
5795 {
5796 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5797 }
5798 
5799 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5800 {
5801 	char *filter_str;
5802 	int ret;
5803 
5804 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5805 		return -EINVAL;
5806 
5807 	filter_str = strndup_user(arg, PAGE_SIZE);
5808 	if (IS_ERR(filter_str))
5809 		return PTR_ERR(filter_str);
5810 
5811 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5812 
5813 	kfree(filter_str);
5814 	return ret;
5815 }
5816 
5817 static void perf_event_free_filter(struct perf_event *event)
5818 {
5819 	ftrace_profile_free_filter(event);
5820 }
5821 
5822 #else
5823 
5824 static inline void perf_tp_register(void)
5825 {
5826 }
5827 
5828 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5829 {
5830 	return -ENOENT;
5831 }
5832 
5833 static void perf_event_free_filter(struct perf_event *event)
5834 {
5835 }
5836 
5837 #endif /* CONFIG_EVENT_TRACING */
5838 
5839 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5840 void perf_bp_event(struct perf_event *bp, void *data)
5841 {
5842 	struct perf_sample_data sample;
5843 	struct pt_regs *regs = data;
5844 
5845 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5846 
5847 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5848 		perf_swevent_event(bp, 1, &sample, regs);
5849 }
5850 #endif
5851 
5852 /*
5853  * hrtimer based swevent callback
5854  */
5855 
5856 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5857 {
5858 	enum hrtimer_restart ret = HRTIMER_RESTART;
5859 	struct perf_sample_data data;
5860 	struct pt_regs *regs;
5861 	struct perf_event *event;
5862 	u64 period;
5863 
5864 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5865 
5866 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5867 		return HRTIMER_NORESTART;
5868 
5869 	event->pmu->read(event);
5870 
5871 	perf_sample_data_init(&data, 0, event->hw.last_period);
5872 	regs = get_irq_regs();
5873 
5874 	if (regs && !perf_exclude_event(event, regs)) {
5875 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5876 			if (__perf_event_overflow(event, 1, &data, regs))
5877 				ret = HRTIMER_NORESTART;
5878 	}
5879 
5880 	period = max_t(u64, 10000, event->hw.sample_period);
5881 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5882 
5883 	return ret;
5884 }
5885 
5886 static void perf_swevent_start_hrtimer(struct perf_event *event)
5887 {
5888 	struct hw_perf_event *hwc = &event->hw;
5889 	s64 period;
5890 
5891 	if (!is_sampling_event(event))
5892 		return;
5893 
5894 	period = local64_read(&hwc->period_left);
5895 	if (period) {
5896 		if (period < 0)
5897 			period = 10000;
5898 
5899 		local64_set(&hwc->period_left, 0);
5900 	} else {
5901 		period = max_t(u64, 10000, hwc->sample_period);
5902 	}
5903 	__hrtimer_start_range_ns(&hwc->hrtimer,
5904 				ns_to_ktime(period), 0,
5905 				HRTIMER_MODE_REL_PINNED, 0);
5906 }
5907 
5908 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5909 {
5910 	struct hw_perf_event *hwc = &event->hw;
5911 
5912 	if (is_sampling_event(event)) {
5913 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5914 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5915 
5916 		hrtimer_cancel(&hwc->hrtimer);
5917 	}
5918 }
5919 
5920 static void perf_swevent_init_hrtimer(struct perf_event *event)
5921 {
5922 	struct hw_perf_event *hwc = &event->hw;
5923 
5924 	if (!is_sampling_event(event))
5925 		return;
5926 
5927 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5928 	hwc->hrtimer.function = perf_swevent_hrtimer;
5929 
5930 	/*
5931 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5932 	 * mapping and avoid the whole period adjust feedback stuff.
5933 	 */
5934 	if (event->attr.freq) {
5935 		long freq = event->attr.sample_freq;
5936 
5937 		event->attr.sample_period = NSEC_PER_SEC / freq;
5938 		hwc->sample_period = event->attr.sample_period;
5939 		local64_set(&hwc->period_left, hwc->sample_period);
5940 		hwc->last_period = hwc->sample_period;
5941 		event->attr.freq = 0;
5942 	}
5943 }
5944 
5945 /*
5946  * Software event: cpu wall time clock
5947  */
5948 
5949 static void cpu_clock_event_update(struct perf_event *event)
5950 {
5951 	s64 prev;
5952 	u64 now;
5953 
5954 	now = local_clock();
5955 	prev = local64_xchg(&event->hw.prev_count, now);
5956 	local64_add(now - prev, &event->count);
5957 }
5958 
5959 static void cpu_clock_event_start(struct perf_event *event, int flags)
5960 {
5961 	local64_set(&event->hw.prev_count, local_clock());
5962 	perf_swevent_start_hrtimer(event);
5963 }
5964 
5965 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5966 {
5967 	perf_swevent_cancel_hrtimer(event);
5968 	cpu_clock_event_update(event);
5969 }
5970 
5971 static int cpu_clock_event_add(struct perf_event *event, int flags)
5972 {
5973 	if (flags & PERF_EF_START)
5974 		cpu_clock_event_start(event, flags);
5975 
5976 	return 0;
5977 }
5978 
5979 static void cpu_clock_event_del(struct perf_event *event, int flags)
5980 {
5981 	cpu_clock_event_stop(event, flags);
5982 }
5983 
5984 static void cpu_clock_event_read(struct perf_event *event)
5985 {
5986 	cpu_clock_event_update(event);
5987 }
5988 
5989 static int cpu_clock_event_init(struct perf_event *event)
5990 {
5991 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5992 		return -ENOENT;
5993 
5994 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5995 		return -ENOENT;
5996 
5997 	/*
5998 	 * no branch sampling for software events
5999 	 */
6000 	if (has_branch_stack(event))
6001 		return -EOPNOTSUPP;
6002 
6003 	perf_swevent_init_hrtimer(event);
6004 
6005 	return 0;
6006 }
6007 
6008 static struct pmu perf_cpu_clock = {
6009 	.task_ctx_nr	= perf_sw_context,
6010 
6011 	.event_init	= cpu_clock_event_init,
6012 	.add		= cpu_clock_event_add,
6013 	.del		= cpu_clock_event_del,
6014 	.start		= cpu_clock_event_start,
6015 	.stop		= cpu_clock_event_stop,
6016 	.read		= cpu_clock_event_read,
6017 
6018 	.event_idx	= perf_swevent_event_idx,
6019 };
6020 
6021 /*
6022  * Software event: task time clock
6023  */
6024 
6025 static void task_clock_event_update(struct perf_event *event, u64 now)
6026 {
6027 	u64 prev;
6028 	s64 delta;
6029 
6030 	prev = local64_xchg(&event->hw.prev_count, now);
6031 	delta = now - prev;
6032 	local64_add(delta, &event->count);
6033 }
6034 
6035 static void task_clock_event_start(struct perf_event *event, int flags)
6036 {
6037 	local64_set(&event->hw.prev_count, event->ctx->time);
6038 	perf_swevent_start_hrtimer(event);
6039 }
6040 
6041 static void task_clock_event_stop(struct perf_event *event, int flags)
6042 {
6043 	perf_swevent_cancel_hrtimer(event);
6044 	task_clock_event_update(event, event->ctx->time);
6045 }
6046 
6047 static int task_clock_event_add(struct perf_event *event, int flags)
6048 {
6049 	if (flags & PERF_EF_START)
6050 		task_clock_event_start(event, flags);
6051 
6052 	return 0;
6053 }
6054 
6055 static void task_clock_event_del(struct perf_event *event, int flags)
6056 {
6057 	task_clock_event_stop(event, PERF_EF_UPDATE);
6058 }
6059 
6060 static void task_clock_event_read(struct perf_event *event)
6061 {
6062 	u64 now = perf_clock();
6063 	u64 delta = now - event->ctx->timestamp;
6064 	u64 time = event->ctx->time + delta;
6065 
6066 	task_clock_event_update(event, time);
6067 }
6068 
6069 static int task_clock_event_init(struct perf_event *event)
6070 {
6071 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6072 		return -ENOENT;
6073 
6074 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6075 		return -ENOENT;
6076 
6077 	/*
6078 	 * no branch sampling for software events
6079 	 */
6080 	if (has_branch_stack(event))
6081 		return -EOPNOTSUPP;
6082 
6083 	perf_swevent_init_hrtimer(event);
6084 
6085 	return 0;
6086 }
6087 
6088 static struct pmu perf_task_clock = {
6089 	.task_ctx_nr	= perf_sw_context,
6090 
6091 	.event_init	= task_clock_event_init,
6092 	.add		= task_clock_event_add,
6093 	.del		= task_clock_event_del,
6094 	.start		= task_clock_event_start,
6095 	.stop		= task_clock_event_stop,
6096 	.read		= task_clock_event_read,
6097 
6098 	.event_idx	= perf_swevent_event_idx,
6099 };
6100 
6101 static void perf_pmu_nop_void(struct pmu *pmu)
6102 {
6103 }
6104 
6105 static int perf_pmu_nop_int(struct pmu *pmu)
6106 {
6107 	return 0;
6108 }
6109 
6110 static void perf_pmu_start_txn(struct pmu *pmu)
6111 {
6112 	perf_pmu_disable(pmu);
6113 }
6114 
6115 static int perf_pmu_commit_txn(struct pmu *pmu)
6116 {
6117 	perf_pmu_enable(pmu);
6118 	return 0;
6119 }
6120 
6121 static void perf_pmu_cancel_txn(struct pmu *pmu)
6122 {
6123 	perf_pmu_enable(pmu);
6124 }
6125 
6126 static int perf_event_idx_default(struct perf_event *event)
6127 {
6128 	return event->hw.idx + 1;
6129 }
6130 
6131 /*
6132  * Ensures all contexts with the same task_ctx_nr have the same
6133  * pmu_cpu_context too.
6134  */
6135 static void *find_pmu_context(int ctxn)
6136 {
6137 	struct pmu *pmu;
6138 
6139 	if (ctxn < 0)
6140 		return NULL;
6141 
6142 	list_for_each_entry(pmu, &pmus, entry) {
6143 		if (pmu->task_ctx_nr == ctxn)
6144 			return pmu->pmu_cpu_context;
6145 	}
6146 
6147 	return NULL;
6148 }
6149 
6150 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6151 {
6152 	int cpu;
6153 
6154 	for_each_possible_cpu(cpu) {
6155 		struct perf_cpu_context *cpuctx;
6156 
6157 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6158 
6159 		if (cpuctx->unique_pmu == old_pmu)
6160 			cpuctx->unique_pmu = pmu;
6161 	}
6162 }
6163 
6164 static void free_pmu_context(struct pmu *pmu)
6165 {
6166 	struct pmu *i;
6167 
6168 	mutex_lock(&pmus_lock);
6169 	/*
6170 	 * Like a real lame refcount.
6171 	 */
6172 	list_for_each_entry(i, &pmus, entry) {
6173 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6174 			update_pmu_context(i, pmu);
6175 			goto out;
6176 		}
6177 	}
6178 
6179 	free_percpu(pmu->pmu_cpu_context);
6180 out:
6181 	mutex_unlock(&pmus_lock);
6182 }
6183 static struct idr pmu_idr;
6184 
6185 static ssize_t
6186 type_show(struct device *dev, struct device_attribute *attr, char *page)
6187 {
6188 	struct pmu *pmu = dev_get_drvdata(dev);
6189 
6190 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6191 }
6192 
6193 static ssize_t
6194 perf_event_mux_interval_ms_show(struct device *dev,
6195 				struct device_attribute *attr,
6196 				char *page)
6197 {
6198 	struct pmu *pmu = dev_get_drvdata(dev);
6199 
6200 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6201 }
6202 
6203 static ssize_t
6204 perf_event_mux_interval_ms_store(struct device *dev,
6205 				 struct device_attribute *attr,
6206 				 const char *buf, size_t count)
6207 {
6208 	struct pmu *pmu = dev_get_drvdata(dev);
6209 	int timer, cpu, ret;
6210 
6211 	ret = kstrtoint(buf, 0, &timer);
6212 	if (ret)
6213 		return ret;
6214 
6215 	if (timer < 1)
6216 		return -EINVAL;
6217 
6218 	/* same value, noting to do */
6219 	if (timer == pmu->hrtimer_interval_ms)
6220 		return count;
6221 
6222 	pmu->hrtimer_interval_ms = timer;
6223 
6224 	/* update all cpuctx for this PMU */
6225 	for_each_possible_cpu(cpu) {
6226 		struct perf_cpu_context *cpuctx;
6227 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6228 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6229 
6230 		if (hrtimer_active(&cpuctx->hrtimer))
6231 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6232 	}
6233 
6234 	return count;
6235 }
6236 
6237 static struct device_attribute pmu_dev_attrs[] = {
6238 	__ATTR_RO(type),
6239 	__ATTR_RW(perf_event_mux_interval_ms),
6240 	__ATTR_NULL,
6241 };
6242 
6243 static int pmu_bus_running;
6244 static struct bus_type pmu_bus = {
6245 	.name		= "event_source",
6246 	.dev_attrs	= pmu_dev_attrs,
6247 };
6248 
6249 static void pmu_dev_release(struct device *dev)
6250 {
6251 	kfree(dev);
6252 }
6253 
6254 static int pmu_dev_alloc(struct pmu *pmu)
6255 {
6256 	int ret = -ENOMEM;
6257 
6258 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6259 	if (!pmu->dev)
6260 		goto out;
6261 
6262 	pmu->dev->groups = pmu->attr_groups;
6263 	device_initialize(pmu->dev);
6264 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6265 	if (ret)
6266 		goto free_dev;
6267 
6268 	dev_set_drvdata(pmu->dev, pmu);
6269 	pmu->dev->bus = &pmu_bus;
6270 	pmu->dev->release = pmu_dev_release;
6271 	ret = device_add(pmu->dev);
6272 	if (ret)
6273 		goto free_dev;
6274 
6275 out:
6276 	return ret;
6277 
6278 free_dev:
6279 	put_device(pmu->dev);
6280 	goto out;
6281 }
6282 
6283 static struct lock_class_key cpuctx_mutex;
6284 static struct lock_class_key cpuctx_lock;
6285 
6286 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6287 {
6288 	int cpu, ret;
6289 
6290 	mutex_lock(&pmus_lock);
6291 	ret = -ENOMEM;
6292 	pmu->pmu_disable_count = alloc_percpu(int);
6293 	if (!pmu->pmu_disable_count)
6294 		goto unlock;
6295 
6296 	pmu->type = -1;
6297 	if (!name)
6298 		goto skip_type;
6299 	pmu->name = name;
6300 
6301 	if (type < 0) {
6302 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6303 		if (type < 0) {
6304 			ret = type;
6305 			goto free_pdc;
6306 		}
6307 	}
6308 	pmu->type = type;
6309 
6310 	if (pmu_bus_running) {
6311 		ret = pmu_dev_alloc(pmu);
6312 		if (ret)
6313 			goto free_idr;
6314 	}
6315 
6316 skip_type:
6317 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6318 	if (pmu->pmu_cpu_context)
6319 		goto got_cpu_context;
6320 
6321 	ret = -ENOMEM;
6322 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6323 	if (!pmu->pmu_cpu_context)
6324 		goto free_dev;
6325 
6326 	for_each_possible_cpu(cpu) {
6327 		struct perf_cpu_context *cpuctx;
6328 
6329 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6330 		__perf_event_init_context(&cpuctx->ctx);
6331 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6332 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6333 		cpuctx->ctx.type = cpu_context;
6334 		cpuctx->ctx.pmu = pmu;
6335 
6336 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6337 
6338 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6339 		cpuctx->unique_pmu = pmu;
6340 	}
6341 
6342 got_cpu_context:
6343 	if (!pmu->start_txn) {
6344 		if (pmu->pmu_enable) {
6345 			/*
6346 			 * If we have pmu_enable/pmu_disable calls, install
6347 			 * transaction stubs that use that to try and batch
6348 			 * hardware accesses.
6349 			 */
6350 			pmu->start_txn  = perf_pmu_start_txn;
6351 			pmu->commit_txn = perf_pmu_commit_txn;
6352 			pmu->cancel_txn = perf_pmu_cancel_txn;
6353 		} else {
6354 			pmu->start_txn  = perf_pmu_nop_void;
6355 			pmu->commit_txn = perf_pmu_nop_int;
6356 			pmu->cancel_txn = perf_pmu_nop_void;
6357 		}
6358 	}
6359 
6360 	if (!pmu->pmu_enable) {
6361 		pmu->pmu_enable  = perf_pmu_nop_void;
6362 		pmu->pmu_disable = perf_pmu_nop_void;
6363 	}
6364 
6365 	if (!pmu->event_idx)
6366 		pmu->event_idx = perf_event_idx_default;
6367 
6368 	list_add_rcu(&pmu->entry, &pmus);
6369 	ret = 0;
6370 unlock:
6371 	mutex_unlock(&pmus_lock);
6372 
6373 	return ret;
6374 
6375 free_dev:
6376 	device_del(pmu->dev);
6377 	put_device(pmu->dev);
6378 
6379 free_idr:
6380 	if (pmu->type >= PERF_TYPE_MAX)
6381 		idr_remove(&pmu_idr, pmu->type);
6382 
6383 free_pdc:
6384 	free_percpu(pmu->pmu_disable_count);
6385 	goto unlock;
6386 }
6387 
6388 void perf_pmu_unregister(struct pmu *pmu)
6389 {
6390 	mutex_lock(&pmus_lock);
6391 	list_del_rcu(&pmu->entry);
6392 	mutex_unlock(&pmus_lock);
6393 
6394 	/*
6395 	 * We dereference the pmu list under both SRCU and regular RCU, so
6396 	 * synchronize against both of those.
6397 	 */
6398 	synchronize_srcu(&pmus_srcu);
6399 	synchronize_rcu();
6400 
6401 	free_percpu(pmu->pmu_disable_count);
6402 	if (pmu->type >= PERF_TYPE_MAX)
6403 		idr_remove(&pmu_idr, pmu->type);
6404 	device_del(pmu->dev);
6405 	put_device(pmu->dev);
6406 	free_pmu_context(pmu);
6407 }
6408 
6409 struct pmu *perf_init_event(struct perf_event *event)
6410 {
6411 	struct pmu *pmu = NULL;
6412 	int idx;
6413 	int ret;
6414 
6415 	idx = srcu_read_lock(&pmus_srcu);
6416 
6417 	rcu_read_lock();
6418 	pmu = idr_find(&pmu_idr, event->attr.type);
6419 	rcu_read_unlock();
6420 	if (pmu) {
6421 		event->pmu = pmu;
6422 		ret = pmu->event_init(event);
6423 		if (ret)
6424 			pmu = ERR_PTR(ret);
6425 		goto unlock;
6426 	}
6427 
6428 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6429 		event->pmu = pmu;
6430 		ret = pmu->event_init(event);
6431 		if (!ret)
6432 			goto unlock;
6433 
6434 		if (ret != -ENOENT) {
6435 			pmu = ERR_PTR(ret);
6436 			goto unlock;
6437 		}
6438 	}
6439 	pmu = ERR_PTR(-ENOENT);
6440 unlock:
6441 	srcu_read_unlock(&pmus_srcu, idx);
6442 
6443 	return pmu;
6444 }
6445 
6446 /*
6447  * Allocate and initialize a event structure
6448  */
6449 static struct perf_event *
6450 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6451 		 struct task_struct *task,
6452 		 struct perf_event *group_leader,
6453 		 struct perf_event *parent_event,
6454 		 perf_overflow_handler_t overflow_handler,
6455 		 void *context)
6456 {
6457 	struct pmu *pmu;
6458 	struct perf_event *event;
6459 	struct hw_perf_event *hwc;
6460 	long err;
6461 
6462 	if ((unsigned)cpu >= nr_cpu_ids) {
6463 		if (!task || cpu != -1)
6464 			return ERR_PTR(-EINVAL);
6465 	}
6466 
6467 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6468 	if (!event)
6469 		return ERR_PTR(-ENOMEM);
6470 
6471 	/*
6472 	 * Single events are their own group leaders, with an
6473 	 * empty sibling list:
6474 	 */
6475 	if (!group_leader)
6476 		group_leader = event;
6477 
6478 	mutex_init(&event->child_mutex);
6479 	INIT_LIST_HEAD(&event->child_list);
6480 
6481 	INIT_LIST_HEAD(&event->group_entry);
6482 	INIT_LIST_HEAD(&event->event_entry);
6483 	INIT_LIST_HEAD(&event->sibling_list);
6484 	INIT_LIST_HEAD(&event->rb_entry);
6485 
6486 	init_waitqueue_head(&event->waitq);
6487 	init_irq_work(&event->pending, perf_pending_event);
6488 
6489 	mutex_init(&event->mmap_mutex);
6490 
6491 	atomic_long_set(&event->refcount, 1);
6492 	event->cpu		= cpu;
6493 	event->attr		= *attr;
6494 	event->group_leader	= group_leader;
6495 	event->pmu		= NULL;
6496 	event->oncpu		= -1;
6497 
6498 	event->parent		= parent_event;
6499 
6500 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6501 	event->id		= atomic64_inc_return(&perf_event_id);
6502 
6503 	event->state		= PERF_EVENT_STATE_INACTIVE;
6504 
6505 	if (task) {
6506 		event->attach_state = PERF_ATTACH_TASK;
6507 
6508 		if (attr->type == PERF_TYPE_TRACEPOINT)
6509 			event->hw.tp_target = task;
6510 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6511 		/*
6512 		 * hw_breakpoint is a bit difficult here..
6513 		 */
6514 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6515 			event->hw.bp_target = task;
6516 #endif
6517 	}
6518 
6519 	if (!overflow_handler && parent_event) {
6520 		overflow_handler = parent_event->overflow_handler;
6521 		context = parent_event->overflow_handler_context;
6522 	}
6523 
6524 	event->overflow_handler	= overflow_handler;
6525 	event->overflow_handler_context = context;
6526 
6527 	perf_event__state_init(event);
6528 
6529 	pmu = NULL;
6530 
6531 	hwc = &event->hw;
6532 	hwc->sample_period = attr->sample_period;
6533 	if (attr->freq && attr->sample_freq)
6534 		hwc->sample_period = 1;
6535 	hwc->last_period = hwc->sample_period;
6536 
6537 	local64_set(&hwc->period_left, hwc->sample_period);
6538 
6539 	/*
6540 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6541 	 */
6542 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6543 		goto done;
6544 
6545 	pmu = perf_init_event(event);
6546 
6547 done:
6548 	err = 0;
6549 	if (!pmu)
6550 		err = -EINVAL;
6551 	else if (IS_ERR(pmu))
6552 		err = PTR_ERR(pmu);
6553 
6554 	if (err) {
6555 		if (event->ns)
6556 			put_pid_ns(event->ns);
6557 		kfree(event);
6558 		return ERR_PTR(err);
6559 	}
6560 
6561 	if (!event->parent) {
6562 		if (event->attach_state & PERF_ATTACH_TASK)
6563 			static_key_slow_inc(&perf_sched_events.key);
6564 		if (event->attr.mmap || event->attr.mmap_data)
6565 			atomic_inc(&nr_mmap_events);
6566 		if (event->attr.comm)
6567 			atomic_inc(&nr_comm_events);
6568 		if (event->attr.task)
6569 			atomic_inc(&nr_task_events);
6570 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6571 			err = get_callchain_buffers();
6572 			if (err) {
6573 				free_event(event);
6574 				return ERR_PTR(err);
6575 			}
6576 		}
6577 		if (has_branch_stack(event)) {
6578 			static_key_slow_inc(&perf_sched_events.key);
6579 			if (!(event->attach_state & PERF_ATTACH_TASK))
6580 				atomic_inc(&per_cpu(perf_branch_stack_events,
6581 						    event->cpu));
6582 		}
6583 	}
6584 
6585 	return event;
6586 }
6587 
6588 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6589 			  struct perf_event_attr *attr)
6590 {
6591 	u32 size;
6592 	int ret;
6593 
6594 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6595 		return -EFAULT;
6596 
6597 	/*
6598 	 * zero the full structure, so that a short copy will be nice.
6599 	 */
6600 	memset(attr, 0, sizeof(*attr));
6601 
6602 	ret = get_user(size, &uattr->size);
6603 	if (ret)
6604 		return ret;
6605 
6606 	if (size > PAGE_SIZE)	/* silly large */
6607 		goto err_size;
6608 
6609 	if (!size)		/* abi compat */
6610 		size = PERF_ATTR_SIZE_VER0;
6611 
6612 	if (size < PERF_ATTR_SIZE_VER0)
6613 		goto err_size;
6614 
6615 	/*
6616 	 * If we're handed a bigger struct than we know of,
6617 	 * ensure all the unknown bits are 0 - i.e. new
6618 	 * user-space does not rely on any kernel feature
6619 	 * extensions we dont know about yet.
6620 	 */
6621 	if (size > sizeof(*attr)) {
6622 		unsigned char __user *addr;
6623 		unsigned char __user *end;
6624 		unsigned char val;
6625 
6626 		addr = (void __user *)uattr + sizeof(*attr);
6627 		end  = (void __user *)uattr + size;
6628 
6629 		for (; addr < end; addr++) {
6630 			ret = get_user(val, addr);
6631 			if (ret)
6632 				return ret;
6633 			if (val)
6634 				goto err_size;
6635 		}
6636 		size = sizeof(*attr);
6637 	}
6638 
6639 	ret = copy_from_user(attr, uattr, size);
6640 	if (ret)
6641 		return -EFAULT;
6642 
6643 	if (attr->__reserved_1)
6644 		return -EINVAL;
6645 
6646 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6647 		return -EINVAL;
6648 
6649 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6650 		return -EINVAL;
6651 
6652 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6653 		u64 mask = attr->branch_sample_type;
6654 
6655 		/* only using defined bits */
6656 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6657 			return -EINVAL;
6658 
6659 		/* at least one branch bit must be set */
6660 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6661 			return -EINVAL;
6662 
6663 		/* propagate priv level, when not set for branch */
6664 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6665 
6666 			/* exclude_kernel checked on syscall entry */
6667 			if (!attr->exclude_kernel)
6668 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6669 
6670 			if (!attr->exclude_user)
6671 				mask |= PERF_SAMPLE_BRANCH_USER;
6672 
6673 			if (!attr->exclude_hv)
6674 				mask |= PERF_SAMPLE_BRANCH_HV;
6675 			/*
6676 			 * adjust user setting (for HW filter setup)
6677 			 */
6678 			attr->branch_sample_type = mask;
6679 		}
6680 		/* privileged levels capture (kernel, hv): check permissions */
6681 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6682 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6683 			return -EACCES;
6684 	}
6685 
6686 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6687 		ret = perf_reg_validate(attr->sample_regs_user);
6688 		if (ret)
6689 			return ret;
6690 	}
6691 
6692 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6693 		if (!arch_perf_have_user_stack_dump())
6694 			return -ENOSYS;
6695 
6696 		/*
6697 		 * We have __u32 type for the size, but so far
6698 		 * we can only use __u16 as maximum due to the
6699 		 * __u16 sample size limit.
6700 		 */
6701 		if (attr->sample_stack_user >= USHRT_MAX)
6702 			ret = -EINVAL;
6703 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6704 			ret = -EINVAL;
6705 	}
6706 
6707 out:
6708 	return ret;
6709 
6710 err_size:
6711 	put_user(sizeof(*attr), &uattr->size);
6712 	ret = -E2BIG;
6713 	goto out;
6714 }
6715 
6716 static int
6717 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6718 {
6719 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6720 	int ret = -EINVAL;
6721 
6722 	if (!output_event)
6723 		goto set;
6724 
6725 	/* don't allow circular references */
6726 	if (event == output_event)
6727 		goto out;
6728 
6729 	/*
6730 	 * Don't allow cross-cpu buffers
6731 	 */
6732 	if (output_event->cpu != event->cpu)
6733 		goto out;
6734 
6735 	/*
6736 	 * If its not a per-cpu rb, it must be the same task.
6737 	 */
6738 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6739 		goto out;
6740 
6741 set:
6742 	mutex_lock(&event->mmap_mutex);
6743 	/* Can't redirect output if we've got an active mmap() */
6744 	if (atomic_read(&event->mmap_count))
6745 		goto unlock;
6746 
6747 	old_rb = event->rb;
6748 
6749 	if (output_event) {
6750 		/* get the rb we want to redirect to */
6751 		rb = ring_buffer_get(output_event);
6752 		if (!rb)
6753 			goto unlock;
6754 	}
6755 
6756 	if (old_rb)
6757 		ring_buffer_detach(event, old_rb);
6758 
6759 	if (rb)
6760 		ring_buffer_attach(event, rb);
6761 
6762 	rcu_assign_pointer(event->rb, rb);
6763 
6764 	if (old_rb) {
6765 		ring_buffer_put(old_rb);
6766 		/*
6767 		 * Since we detached before setting the new rb, so that we
6768 		 * could attach the new rb, we could have missed a wakeup.
6769 		 * Provide it now.
6770 		 */
6771 		wake_up_all(&event->waitq);
6772 	}
6773 
6774 	ret = 0;
6775 unlock:
6776 	mutex_unlock(&event->mmap_mutex);
6777 
6778 out:
6779 	return ret;
6780 }
6781 
6782 /**
6783  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6784  *
6785  * @attr_uptr:	event_id type attributes for monitoring/sampling
6786  * @pid:		target pid
6787  * @cpu:		target cpu
6788  * @group_fd:		group leader event fd
6789  */
6790 SYSCALL_DEFINE5(perf_event_open,
6791 		struct perf_event_attr __user *, attr_uptr,
6792 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6793 {
6794 	struct perf_event *group_leader = NULL, *output_event = NULL;
6795 	struct perf_event *event, *sibling;
6796 	struct perf_event_attr attr;
6797 	struct perf_event_context *ctx;
6798 	struct file *event_file = NULL;
6799 	struct fd group = {NULL, 0};
6800 	struct task_struct *task = NULL;
6801 	struct pmu *pmu;
6802 	int event_fd;
6803 	int move_group = 0;
6804 	int err;
6805 
6806 	/* for future expandability... */
6807 	if (flags & ~PERF_FLAG_ALL)
6808 		return -EINVAL;
6809 
6810 	err = perf_copy_attr(attr_uptr, &attr);
6811 	if (err)
6812 		return err;
6813 
6814 	if (!attr.exclude_kernel) {
6815 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6816 			return -EACCES;
6817 	}
6818 
6819 	if (attr.freq) {
6820 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6821 			return -EINVAL;
6822 	}
6823 
6824 	/*
6825 	 * In cgroup mode, the pid argument is used to pass the fd
6826 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6827 	 * designates the cpu on which to monitor threads from that
6828 	 * cgroup.
6829 	 */
6830 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6831 		return -EINVAL;
6832 
6833 	event_fd = get_unused_fd();
6834 	if (event_fd < 0)
6835 		return event_fd;
6836 
6837 	if (group_fd != -1) {
6838 		err = perf_fget_light(group_fd, &group);
6839 		if (err)
6840 			goto err_fd;
6841 		group_leader = group.file->private_data;
6842 		if (flags & PERF_FLAG_FD_OUTPUT)
6843 			output_event = group_leader;
6844 		if (flags & PERF_FLAG_FD_NO_GROUP)
6845 			group_leader = NULL;
6846 	}
6847 
6848 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6849 		task = find_lively_task_by_vpid(pid);
6850 		if (IS_ERR(task)) {
6851 			err = PTR_ERR(task);
6852 			goto err_group_fd;
6853 		}
6854 	}
6855 
6856 	get_online_cpus();
6857 
6858 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6859 				 NULL, NULL);
6860 	if (IS_ERR(event)) {
6861 		err = PTR_ERR(event);
6862 		goto err_task;
6863 	}
6864 
6865 	if (flags & PERF_FLAG_PID_CGROUP) {
6866 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6867 		if (err)
6868 			goto err_alloc;
6869 		/*
6870 		 * one more event:
6871 		 * - that has cgroup constraint on event->cpu
6872 		 * - that may need work on context switch
6873 		 */
6874 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6875 		static_key_slow_inc(&perf_sched_events.key);
6876 	}
6877 
6878 	/*
6879 	 * Special case software events and allow them to be part of
6880 	 * any hardware group.
6881 	 */
6882 	pmu = event->pmu;
6883 
6884 	if (group_leader &&
6885 	    (is_software_event(event) != is_software_event(group_leader))) {
6886 		if (is_software_event(event)) {
6887 			/*
6888 			 * If event and group_leader are not both a software
6889 			 * event, and event is, then group leader is not.
6890 			 *
6891 			 * Allow the addition of software events to !software
6892 			 * groups, this is safe because software events never
6893 			 * fail to schedule.
6894 			 */
6895 			pmu = group_leader->pmu;
6896 		} else if (is_software_event(group_leader) &&
6897 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6898 			/*
6899 			 * In case the group is a pure software group, and we
6900 			 * try to add a hardware event, move the whole group to
6901 			 * the hardware context.
6902 			 */
6903 			move_group = 1;
6904 		}
6905 	}
6906 
6907 	/*
6908 	 * Get the target context (task or percpu):
6909 	 */
6910 	ctx = find_get_context(pmu, task, event->cpu);
6911 	if (IS_ERR(ctx)) {
6912 		err = PTR_ERR(ctx);
6913 		goto err_alloc;
6914 	}
6915 
6916 	if (task) {
6917 		put_task_struct(task);
6918 		task = NULL;
6919 	}
6920 
6921 	/*
6922 	 * Look up the group leader (we will attach this event to it):
6923 	 */
6924 	if (group_leader) {
6925 		err = -EINVAL;
6926 
6927 		/*
6928 		 * Do not allow a recursive hierarchy (this new sibling
6929 		 * becoming part of another group-sibling):
6930 		 */
6931 		if (group_leader->group_leader != group_leader)
6932 			goto err_context;
6933 		/*
6934 		 * Do not allow to attach to a group in a different
6935 		 * task or CPU context:
6936 		 */
6937 		if (move_group) {
6938 			if (group_leader->ctx->type != ctx->type)
6939 				goto err_context;
6940 		} else {
6941 			if (group_leader->ctx != ctx)
6942 				goto err_context;
6943 		}
6944 
6945 		/*
6946 		 * Only a group leader can be exclusive or pinned
6947 		 */
6948 		if (attr.exclusive || attr.pinned)
6949 			goto err_context;
6950 	}
6951 
6952 	if (output_event) {
6953 		err = perf_event_set_output(event, output_event);
6954 		if (err)
6955 			goto err_context;
6956 	}
6957 
6958 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6959 	if (IS_ERR(event_file)) {
6960 		err = PTR_ERR(event_file);
6961 		goto err_context;
6962 	}
6963 
6964 	if (move_group) {
6965 		struct perf_event_context *gctx = group_leader->ctx;
6966 
6967 		mutex_lock(&gctx->mutex);
6968 		perf_remove_from_context(group_leader);
6969 
6970 		/*
6971 		 * Removing from the context ends up with disabled
6972 		 * event. What we want here is event in the initial
6973 		 * startup state, ready to be add into new context.
6974 		 */
6975 		perf_event__state_init(group_leader);
6976 		list_for_each_entry(sibling, &group_leader->sibling_list,
6977 				    group_entry) {
6978 			perf_remove_from_context(sibling);
6979 			perf_event__state_init(sibling);
6980 			put_ctx(gctx);
6981 		}
6982 		mutex_unlock(&gctx->mutex);
6983 		put_ctx(gctx);
6984 	}
6985 
6986 	WARN_ON_ONCE(ctx->parent_ctx);
6987 	mutex_lock(&ctx->mutex);
6988 
6989 	if (move_group) {
6990 		synchronize_rcu();
6991 		perf_install_in_context(ctx, group_leader, event->cpu);
6992 		get_ctx(ctx);
6993 		list_for_each_entry(sibling, &group_leader->sibling_list,
6994 				    group_entry) {
6995 			perf_install_in_context(ctx, sibling, event->cpu);
6996 			get_ctx(ctx);
6997 		}
6998 	}
6999 
7000 	perf_install_in_context(ctx, event, event->cpu);
7001 	++ctx->generation;
7002 	perf_unpin_context(ctx);
7003 	mutex_unlock(&ctx->mutex);
7004 
7005 	put_online_cpus();
7006 
7007 	event->owner = current;
7008 
7009 	mutex_lock(&current->perf_event_mutex);
7010 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7011 	mutex_unlock(&current->perf_event_mutex);
7012 
7013 	/*
7014 	 * Precalculate sample_data sizes
7015 	 */
7016 	perf_event__header_size(event);
7017 	perf_event__id_header_size(event);
7018 
7019 	/*
7020 	 * Drop the reference on the group_event after placing the
7021 	 * new event on the sibling_list. This ensures destruction
7022 	 * of the group leader will find the pointer to itself in
7023 	 * perf_group_detach().
7024 	 */
7025 	fdput(group);
7026 	fd_install(event_fd, event_file);
7027 	return event_fd;
7028 
7029 err_context:
7030 	perf_unpin_context(ctx);
7031 	put_ctx(ctx);
7032 err_alloc:
7033 	free_event(event);
7034 err_task:
7035 	put_online_cpus();
7036 	if (task)
7037 		put_task_struct(task);
7038 err_group_fd:
7039 	fdput(group);
7040 err_fd:
7041 	put_unused_fd(event_fd);
7042 	return err;
7043 }
7044 
7045 /**
7046  * perf_event_create_kernel_counter
7047  *
7048  * @attr: attributes of the counter to create
7049  * @cpu: cpu in which the counter is bound
7050  * @task: task to profile (NULL for percpu)
7051  */
7052 struct perf_event *
7053 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7054 				 struct task_struct *task,
7055 				 perf_overflow_handler_t overflow_handler,
7056 				 void *context)
7057 {
7058 	struct perf_event_context *ctx;
7059 	struct perf_event *event;
7060 	int err;
7061 
7062 	/*
7063 	 * Get the target context (task or percpu):
7064 	 */
7065 
7066 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7067 				 overflow_handler, context);
7068 	if (IS_ERR(event)) {
7069 		err = PTR_ERR(event);
7070 		goto err;
7071 	}
7072 
7073 	ctx = find_get_context(event->pmu, task, cpu);
7074 	if (IS_ERR(ctx)) {
7075 		err = PTR_ERR(ctx);
7076 		goto err_free;
7077 	}
7078 
7079 	WARN_ON_ONCE(ctx->parent_ctx);
7080 	mutex_lock(&ctx->mutex);
7081 	perf_install_in_context(ctx, event, cpu);
7082 	++ctx->generation;
7083 	perf_unpin_context(ctx);
7084 	mutex_unlock(&ctx->mutex);
7085 
7086 	return event;
7087 
7088 err_free:
7089 	free_event(event);
7090 err:
7091 	return ERR_PTR(err);
7092 }
7093 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7094 
7095 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7096 {
7097 	struct perf_event_context *src_ctx;
7098 	struct perf_event_context *dst_ctx;
7099 	struct perf_event *event, *tmp;
7100 	LIST_HEAD(events);
7101 
7102 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7103 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7104 
7105 	mutex_lock(&src_ctx->mutex);
7106 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7107 				 event_entry) {
7108 		perf_remove_from_context(event);
7109 		put_ctx(src_ctx);
7110 		list_add(&event->event_entry, &events);
7111 	}
7112 	mutex_unlock(&src_ctx->mutex);
7113 
7114 	synchronize_rcu();
7115 
7116 	mutex_lock(&dst_ctx->mutex);
7117 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
7118 		list_del(&event->event_entry);
7119 		if (event->state >= PERF_EVENT_STATE_OFF)
7120 			event->state = PERF_EVENT_STATE_INACTIVE;
7121 		perf_install_in_context(dst_ctx, event, dst_cpu);
7122 		get_ctx(dst_ctx);
7123 	}
7124 	mutex_unlock(&dst_ctx->mutex);
7125 }
7126 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7127 
7128 static void sync_child_event(struct perf_event *child_event,
7129 			       struct task_struct *child)
7130 {
7131 	struct perf_event *parent_event = child_event->parent;
7132 	u64 child_val;
7133 
7134 	if (child_event->attr.inherit_stat)
7135 		perf_event_read_event(child_event, child);
7136 
7137 	child_val = perf_event_count(child_event);
7138 
7139 	/*
7140 	 * Add back the child's count to the parent's count:
7141 	 */
7142 	atomic64_add(child_val, &parent_event->child_count);
7143 	atomic64_add(child_event->total_time_enabled,
7144 		     &parent_event->child_total_time_enabled);
7145 	atomic64_add(child_event->total_time_running,
7146 		     &parent_event->child_total_time_running);
7147 
7148 	/*
7149 	 * Remove this event from the parent's list
7150 	 */
7151 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7152 	mutex_lock(&parent_event->child_mutex);
7153 	list_del_init(&child_event->child_list);
7154 	mutex_unlock(&parent_event->child_mutex);
7155 
7156 	/*
7157 	 * Release the parent event, if this was the last
7158 	 * reference to it.
7159 	 */
7160 	put_event(parent_event);
7161 }
7162 
7163 static void
7164 __perf_event_exit_task(struct perf_event *child_event,
7165 			 struct perf_event_context *child_ctx,
7166 			 struct task_struct *child)
7167 {
7168 	if (child_event->parent) {
7169 		raw_spin_lock_irq(&child_ctx->lock);
7170 		perf_group_detach(child_event);
7171 		raw_spin_unlock_irq(&child_ctx->lock);
7172 	}
7173 
7174 	perf_remove_from_context(child_event);
7175 
7176 	/*
7177 	 * It can happen that the parent exits first, and has events
7178 	 * that are still around due to the child reference. These
7179 	 * events need to be zapped.
7180 	 */
7181 	if (child_event->parent) {
7182 		sync_child_event(child_event, child);
7183 		free_event(child_event);
7184 	}
7185 }
7186 
7187 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7188 {
7189 	struct perf_event *child_event, *tmp;
7190 	struct perf_event_context *child_ctx;
7191 	unsigned long flags;
7192 
7193 	if (likely(!child->perf_event_ctxp[ctxn])) {
7194 		perf_event_task(child, NULL, 0);
7195 		return;
7196 	}
7197 
7198 	local_irq_save(flags);
7199 	/*
7200 	 * We can't reschedule here because interrupts are disabled,
7201 	 * and either child is current or it is a task that can't be
7202 	 * scheduled, so we are now safe from rescheduling changing
7203 	 * our context.
7204 	 */
7205 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7206 
7207 	/*
7208 	 * Take the context lock here so that if find_get_context is
7209 	 * reading child->perf_event_ctxp, we wait until it has
7210 	 * incremented the context's refcount before we do put_ctx below.
7211 	 */
7212 	raw_spin_lock(&child_ctx->lock);
7213 	task_ctx_sched_out(child_ctx);
7214 	child->perf_event_ctxp[ctxn] = NULL;
7215 	/*
7216 	 * If this context is a clone; unclone it so it can't get
7217 	 * swapped to another process while we're removing all
7218 	 * the events from it.
7219 	 */
7220 	unclone_ctx(child_ctx);
7221 	update_context_time(child_ctx);
7222 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7223 
7224 	/*
7225 	 * Report the task dead after unscheduling the events so that we
7226 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7227 	 * get a few PERF_RECORD_READ events.
7228 	 */
7229 	perf_event_task(child, child_ctx, 0);
7230 
7231 	/*
7232 	 * We can recurse on the same lock type through:
7233 	 *
7234 	 *   __perf_event_exit_task()
7235 	 *     sync_child_event()
7236 	 *       put_event()
7237 	 *         mutex_lock(&ctx->mutex)
7238 	 *
7239 	 * But since its the parent context it won't be the same instance.
7240 	 */
7241 	mutex_lock(&child_ctx->mutex);
7242 
7243 again:
7244 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7245 				 group_entry)
7246 		__perf_event_exit_task(child_event, child_ctx, child);
7247 
7248 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7249 				 group_entry)
7250 		__perf_event_exit_task(child_event, child_ctx, child);
7251 
7252 	/*
7253 	 * If the last event was a group event, it will have appended all
7254 	 * its siblings to the list, but we obtained 'tmp' before that which
7255 	 * will still point to the list head terminating the iteration.
7256 	 */
7257 	if (!list_empty(&child_ctx->pinned_groups) ||
7258 	    !list_empty(&child_ctx->flexible_groups))
7259 		goto again;
7260 
7261 	mutex_unlock(&child_ctx->mutex);
7262 
7263 	put_ctx(child_ctx);
7264 }
7265 
7266 /*
7267  * When a child task exits, feed back event values to parent events.
7268  */
7269 void perf_event_exit_task(struct task_struct *child)
7270 {
7271 	struct perf_event *event, *tmp;
7272 	int ctxn;
7273 
7274 	mutex_lock(&child->perf_event_mutex);
7275 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7276 				 owner_entry) {
7277 		list_del_init(&event->owner_entry);
7278 
7279 		/*
7280 		 * Ensure the list deletion is visible before we clear
7281 		 * the owner, closes a race against perf_release() where
7282 		 * we need to serialize on the owner->perf_event_mutex.
7283 		 */
7284 		smp_wmb();
7285 		event->owner = NULL;
7286 	}
7287 	mutex_unlock(&child->perf_event_mutex);
7288 
7289 	for_each_task_context_nr(ctxn)
7290 		perf_event_exit_task_context(child, ctxn);
7291 }
7292 
7293 static void perf_free_event(struct perf_event *event,
7294 			    struct perf_event_context *ctx)
7295 {
7296 	struct perf_event *parent = event->parent;
7297 
7298 	if (WARN_ON_ONCE(!parent))
7299 		return;
7300 
7301 	mutex_lock(&parent->child_mutex);
7302 	list_del_init(&event->child_list);
7303 	mutex_unlock(&parent->child_mutex);
7304 
7305 	put_event(parent);
7306 
7307 	perf_group_detach(event);
7308 	list_del_event(event, ctx);
7309 	free_event(event);
7310 }
7311 
7312 /*
7313  * free an unexposed, unused context as created by inheritance by
7314  * perf_event_init_task below, used by fork() in case of fail.
7315  */
7316 void perf_event_free_task(struct task_struct *task)
7317 {
7318 	struct perf_event_context *ctx;
7319 	struct perf_event *event, *tmp;
7320 	int ctxn;
7321 
7322 	for_each_task_context_nr(ctxn) {
7323 		ctx = task->perf_event_ctxp[ctxn];
7324 		if (!ctx)
7325 			continue;
7326 
7327 		mutex_lock(&ctx->mutex);
7328 again:
7329 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7330 				group_entry)
7331 			perf_free_event(event, ctx);
7332 
7333 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7334 				group_entry)
7335 			perf_free_event(event, ctx);
7336 
7337 		if (!list_empty(&ctx->pinned_groups) ||
7338 				!list_empty(&ctx->flexible_groups))
7339 			goto again;
7340 
7341 		mutex_unlock(&ctx->mutex);
7342 
7343 		put_ctx(ctx);
7344 	}
7345 }
7346 
7347 void perf_event_delayed_put(struct task_struct *task)
7348 {
7349 	int ctxn;
7350 
7351 	for_each_task_context_nr(ctxn)
7352 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7353 }
7354 
7355 /*
7356  * inherit a event from parent task to child task:
7357  */
7358 static struct perf_event *
7359 inherit_event(struct perf_event *parent_event,
7360 	      struct task_struct *parent,
7361 	      struct perf_event_context *parent_ctx,
7362 	      struct task_struct *child,
7363 	      struct perf_event *group_leader,
7364 	      struct perf_event_context *child_ctx)
7365 {
7366 	struct perf_event *child_event;
7367 	unsigned long flags;
7368 
7369 	/*
7370 	 * Instead of creating recursive hierarchies of events,
7371 	 * we link inherited events back to the original parent,
7372 	 * which has a filp for sure, which we use as the reference
7373 	 * count:
7374 	 */
7375 	if (parent_event->parent)
7376 		parent_event = parent_event->parent;
7377 
7378 	child_event = perf_event_alloc(&parent_event->attr,
7379 					   parent_event->cpu,
7380 					   child,
7381 					   group_leader, parent_event,
7382 				           NULL, NULL);
7383 	if (IS_ERR(child_event))
7384 		return child_event;
7385 
7386 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7387 		free_event(child_event);
7388 		return NULL;
7389 	}
7390 
7391 	get_ctx(child_ctx);
7392 
7393 	/*
7394 	 * Make the child state follow the state of the parent event,
7395 	 * not its attr.disabled bit.  We hold the parent's mutex,
7396 	 * so we won't race with perf_event_{en, dis}able_family.
7397 	 */
7398 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7399 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7400 	else
7401 		child_event->state = PERF_EVENT_STATE_OFF;
7402 
7403 	if (parent_event->attr.freq) {
7404 		u64 sample_period = parent_event->hw.sample_period;
7405 		struct hw_perf_event *hwc = &child_event->hw;
7406 
7407 		hwc->sample_period = sample_period;
7408 		hwc->last_period   = sample_period;
7409 
7410 		local64_set(&hwc->period_left, sample_period);
7411 	}
7412 
7413 	child_event->ctx = child_ctx;
7414 	child_event->overflow_handler = parent_event->overflow_handler;
7415 	child_event->overflow_handler_context
7416 		= parent_event->overflow_handler_context;
7417 
7418 	/*
7419 	 * Precalculate sample_data sizes
7420 	 */
7421 	perf_event__header_size(child_event);
7422 	perf_event__id_header_size(child_event);
7423 
7424 	/*
7425 	 * Link it up in the child's context:
7426 	 */
7427 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7428 	add_event_to_ctx(child_event, child_ctx);
7429 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7430 
7431 	/*
7432 	 * Link this into the parent event's child list
7433 	 */
7434 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7435 	mutex_lock(&parent_event->child_mutex);
7436 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7437 	mutex_unlock(&parent_event->child_mutex);
7438 
7439 	return child_event;
7440 }
7441 
7442 static int inherit_group(struct perf_event *parent_event,
7443 	      struct task_struct *parent,
7444 	      struct perf_event_context *parent_ctx,
7445 	      struct task_struct *child,
7446 	      struct perf_event_context *child_ctx)
7447 {
7448 	struct perf_event *leader;
7449 	struct perf_event *sub;
7450 	struct perf_event *child_ctr;
7451 
7452 	leader = inherit_event(parent_event, parent, parent_ctx,
7453 				 child, NULL, child_ctx);
7454 	if (IS_ERR(leader))
7455 		return PTR_ERR(leader);
7456 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7457 		child_ctr = inherit_event(sub, parent, parent_ctx,
7458 					    child, leader, child_ctx);
7459 		if (IS_ERR(child_ctr))
7460 			return PTR_ERR(child_ctr);
7461 	}
7462 	return 0;
7463 }
7464 
7465 static int
7466 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7467 		   struct perf_event_context *parent_ctx,
7468 		   struct task_struct *child, int ctxn,
7469 		   int *inherited_all)
7470 {
7471 	int ret;
7472 	struct perf_event_context *child_ctx;
7473 
7474 	if (!event->attr.inherit) {
7475 		*inherited_all = 0;
7476 		return 0;
7477 	}
7478 
7479 	child_ctx = child->perf_event_ctxp[ctxn];
7480 	if (!child_ctx) {
7481 		/*
7482 		 * This is executed from the parent task context, so
7483 		 * inherit events that have been marked for cloning.
7484 		 * First allocate and initialize a context for the
7485 		 * child.
7486 		 */
7487 
7488 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7489 		if (!child_ctx)
7490 			return -ENOMEM;
7491 
7492 		child->perf_event_ctxp[ctxn] = child_ctx;
7493 	}
7494 
7495 	ret = inherit_group(event, parent, parent_ctx,
7496 			    child, child_ctx);
7497 
7498 	if (ret)
7499 		*inherited_all = 0;
7500 
7501 	return ret;
7502 }
7503 
7504 /*
7505  * Initialize the perf_event context in task_struct
7506  */
7507 int perf_event_init_context(struct task_struct *child, int ctxn)
7508 {
7509 	struct perf_event_context *child_ctx, *parent_ctx;
7510 	struct perf_event_context *cloned_ctx;
7511 	struct perf_event *event;
7512 	struct task_struct *parent = current;
7513 	int inherited_all = 1;
7514 	unsigned long flags;
7515 	int ret = 0;
7516 
7517 	if (likely(!parent->perf_event_ctxp[ctxn]))
7518 		return 0;
7519 
7520 	/*
7521 	 * If the parent's context is a clone, pin it so it won't get
7522 	 * swapped under us.
7523 	 */
7524 	parent_ctx = perf_pin_task_context(parent, ctxn);
7525 
7526 	/*
7527 	 * No need to check if parent_ctx != NULL here; since we saw
7528 	 * it non-NULL earlier, the only reason for it to become NULL
7529 	 * is if we exit, and since we're currently in the middle of
7530 	 * a fork we can't be exiting at the same time.
7531 	 */
7532 
7533 	/*
7534 	 * Lock the parent list. No need to lock the child - not PID
7535 	 * hashed yet and not running, so nobody can access it.
7536 	 */
7537 	mutex_lock(&parent_ctx->mutex);
7538 
7539 	/*
7540 	 * We dont have to disable NMIs - we are only looking at
7541 	 * the list, not manipulating it:
7542 	 */
7543 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7544 		ret = inherit_task_group(event, parent, parent_ctx,
7545 					 child, ctxn, &inherited_all);
7546 		if (ret)
7547 			break;
7548 	}
7549 
7550 	/*
7551 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7552 	 * to allocations, but we need to prevent rotation because
7553 	 * rotate_ctx() will change the list from interrupt context.
7554 	 */
7555 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7556 	parent_ctx->rotate_disable = 1;
7557 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7558 
7559 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7560 		ret = inherit_task_group(event, parent, parent_ctx,
7561 					 child, ctxn, &inherited_all);
7562 		if (ret)
7563 			break;
7564 	}
7565 
7566 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7567 	parent_ctx->rotate_disable = 0;
7568 
7569 	child_ctx = child->perf_event_ctxp[ctxn];
7570 
7571 	if (child_ctx && inherited_all) {
7572 		/*
7573 		 * Mark the child context as a clone of the parent
7574 		 * context, or of whatever the parent is a clone of.
7575 		 *
7576 		 * Note that if the parent is a clone, the holding of
7577 		 * parent_ctx->lock avoids it from being uncloned.
7578 		 */
7579 		cloned_ctx = parent_ctx->parent_ctx;
7580 		if (cloned_ctx) {
7581 			child_ctx->parent_ctx = cloned_ctx;
7582 			child_ctx->parent_gen = parent_ctx->parent_gen;
7583 		} else {
7584 			child_ctx->parent_ctx = parent_ctx;
7585 			child_ctx->parent_gen = parent_ctx->generation;
7586 		}
7587 		get_ctx(child_ctx->parent_ctx);
7588 	}
7589 
7590 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7591 	mutex_unlock(&parent_ctx->mutex);
7592 
7593 	perf_unpin_context(parent_ctx);
7594 	put_ctx(parent_ctx);
7595 
7596 	return ret;
7597 }
7598 
7599 /*
7600  * Initialize the perf_event context in task_struct
7601  */
7602 int perf_event_init_task(struct task_struct *child)
7603 {
7604 	int ctxn, ret;
7605 
7606 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7607 	mutex_init(&child->perf_event_mutex);
7608 	INIT_LIST_HEAD(&child->perf_event_list);
7609 
7610 	for_each_task_context_nr(ctxn) {
7611 		ret = perf_event_init_context(child, ctxn);
7612 		if (ret)
7613 			return ret;
7614 	}
7615 
7616 	return 0;
7617 }
7618 
7619 static void __init perf_event_init_all_cpus(void)
7620 {
7621 	struct swevent_htable *swhash;
7622 	int cpu;
7623 
7624 	for_each_possible_cpu(cpu) {
7625 		swhash = &per_cpu(swevent_htable, cpu);
7626 		mutex_init(&swhash->hlist_mutex);
7627 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7628 	}
7629 }
7630 
7631 static void perf_event_init_cpu(int cpu)
7632 {
7633 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7634 
7635 	mutex_lock(&swhash->hlist_mutex);
7636 	if (swhash->hlist_refcount > 0) {
7637 		struct swevent_hlist *hlist;
7638 
7639 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7640 		WARN_ON(!hlist);
7641 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7642 	}
7643 	mutex_unlock(&swhash->hlist_mutex);
7644 }
7645 
7646 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7647 static void perf_pmu_rotate_stop(struct pmu *pmu)
7648 {
7649 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7650 
7651 	WARN_ON(!irqs_disabled());
7652 
7653 	list_del_init(&cpuctx->rotation_list);
7654 }
7655 
7656 static void __perf_event_exit_context(void *__info)
7657 {
7658 	struct perf_event_context *ctx = __info;
7659 	struct perf_event *event, *tmp;
7660 
7661 	perf_pmu_rotate_stop(ctx->pmu);
7662 
7663 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7664 		__perf_remove_from_context(event);
7665 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7666 		__perf_remove_from_context(event);
7667 }
7668 
7669 static void perf_event_exit_cpu_context(int cpu)
7670 {
7671 	struct perf_event_context *ctx;
7672 	struct pmu *pmu;
7673 	int idx;
7674 
7675 	idx = srcu_read_lock(&pmus_srcu);
7676 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7677 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7678 
7679 		mutex_lock(&ctx->mutex);
7680 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7681 		mutex_unlock(&ctx->mutex);
7682 	}
7683 	srcu_read_unlock(&pmus_srcu, idx);
7684 }
7685 
7686 static void perf_event_exit_cpu(int cpu)
7687 {
7688 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7689 
7690 	mutex_lock(&swhash->hlist_mutex);
7691 	swevent_hlist_release(swhash);
7692 	mutex_unlock(&swhash->hlist_mutex);
7693 
7694 	perf_event_exit_cpu_context(cpu);
7695 }
7696 #else
7697 static inline void perf_event_exit_cpu(int cpu) { }
7698 #endif
7699 
7700 static int
7701 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7702 {
7703 	int cpu;
7704 
7705 	for_each_online_cpu(cpu)
7706 		perf_event_exit_cpu(cpu);
7707 
7708 	return NOTIFY_OK;
7709 }
7710 
7711 /*
7712  * Run the perf reboot notifier at the very last possible moment so that
7713  * the generic watchdog code runs as long as possible.
7714  */
7715 static struct notifier_block perf_reboot_notifier = {
7716 	.notifier_call = perf_reboot,
7717 	.priority = INT_MIN,
7718 };
7719 
7720 static int
7721 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7722 {
7723 	unsigned int cpu = (long)hcpu;
7724 
7725 	switch (action & ~CPU_TASKS_FROZEN) {
7726 
7727 	case CPU_UP_PREPARE:
7728 	case CPU_DOWN_FAILED:
7729 		perf_event_init_cpu(cpu);
7730 		break;
7731 
7732 	case CPU_UP_CANCELED:
7733 	case CPU_DOWN_PREPARE:
7734 		perf_event_exit_cpu(cpu);
7735 		break;
7736 	default:
7737 		break;
7738 	}
7739 
7740 	return NOTIFY_OK;
7741 }
7742 
7743 void __init perf_event_init(void)
7744 {
7745 	int ret;
7746 
7747 	idr_init(&pmu_idr);
7748 
7749 	perf_event_init_all_cpus();
7750 	init_srcu_struct(&pmus_srcu);
7751 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7752 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7753 	perf_pmu_register(&perf_task_clock, NULL, -1);
7754 	perf_tp_register();
7755 	perf_cpu_notifier(perf_cpu_notify);
7756 	register_reboot_notifier(&perf_reboot_notifier);
7757 
7758 	ret = init_hw_breakpoint();
7759 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7760 
7761 	/* do not patch jump label more than once per second */
7762 	jump_label_rate_limit(&perf_sched_events, HZ);
7763 
7764 	/*
7765 	 * Build time assertion that we keep the data_head at the intended
7766 	 * location.  IOW, validation we got the __reserved[] size right.
7767 	 */
7768 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7769 		     != 1024);
7770 }
7771 
7772 static int __init perf_event_sysfs_init(void)
7773 {
7774 	struct pmu *pmu;
7775 	int ret;
7776 
7777 	mutex_lock(&pmus_lock);
7778 
7779 	ret = bus_register(&pmu_bus);
7780 	if (ret)
7781 		goto unlock;
7782 
7783 	list_for_each_entry(pmu, &pmus, entry) {
7784 		if (!pmu->name || pmu->type < 0)
7785 			continue;
7786 
7787 		ret = pmu_dev_alloc(pmu);
7788 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7789 	}
7790 	pmu_bus_running = 1;
7791 	ret = 0;
7792 
7793 unlock:
7794 	mutex_unlock(&pmus_lock);
7795 
7796 	return ret;
7797 }
7798 device_initcall(perf_event_sysfs_init);
7799 
7800 #ifdef CONFIG_CGROUP_PERF
7801 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7802 {
7803 	struct perf_cgroup *jc;
7804 
7805 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7806 	if (!jc)
7807 		return ERR_PTR(-ENOMEM);
7808 
7809 	jc->info = alloc_percpu(struct perf_cgroup_info);
7810 	if (!jc->info) {
7811 		kfree(jc);
7812 		return ERR_PTR(-ENOMEM);
7813 	}
7814 
7815 	return &jc->css;
7816 }
7817 
7818 static void perf_cgroup_css_free(struct cgroup *cont)
7819 {
7820 	struct perf_cgroup *jc;
7821 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7822 			  struct perf_cgroup, css);
7823 	free_percpu(jc->info);
7824 	kfree(jc);
7825 }
7826 
7827 static int __perf_cgroup_move(void *info)
7828 {
7829 	struct task_struct *task = info;
7830 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7831 	return 0;
7832 }
7833 
7834 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7835 {
7836 	struct task_struct *task;
7837 
7838 	cgroup_taskset_for_each(task, cgrp, tset)
7839 		task_function_call(task, __perf_cgroup_move, task);
7840 }
7841 
7842 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7843 			     struct task_struct *task)
7844 {
7845 	/*
7846 	 * cgroup_exit() is called in the copy_process() failure path.
7847 	 * Ignore this case since the task hasn't ran yet, this avoids
7848 	 * trying to poke a half freed task state from generic code.
7849 	 */
7850 	if (!(task->flags & PF_EXITING))
7851 		return;
7852 
7853 	task_function_call(task, __perf_cgroup_move, task);
7854 }
7855 
7856 struct cgroup_subsys perf_subsys = {
7857 	.name		= "perf_event",
7858 	.subsys_id	= perf_subsys_id,
7859 	.css_alloc	= perf_cgroup_css_alloc,
7860 	.css_free	= perf_cgroup_css_free,
7861 	.exit		= perf_cgroup_exit,
7862 	.attach		= perf_cgroup_attach,
7863 };
7864 #endif /* CONFIG_CGROUP_PERF */
7865