1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 52 #include "internal.h" 53 54 #include <asm/irq_regs.h> 55 56 typedef int (*remote_function_f)(void *); 57 58 struct remote_function_call { 59 struct task_struct *p; 60 remote_function_f func; 61 void *info; 62 int ret; 63 }; 64 65 static void remote_function(void *data) 66 { 67 struct remote_function_call *tfc = data; 68 struct task_struct *p = tfc->p; 69 70 if (p) { 71 /* -EAGAIN */ 72 if (task_cpu(p) != smp_processor_id()) 73 return; 74 75 /* 76 * Now that we're on right CPU with IRQs disabled, we can test 77 * if we hit the right task without races. 78 */ 79 80 tfc->ret = -ESRCH; /* No such (running) process */ 81 if (p != current) 82 return; 83 } 84 85 tfc->ret = tfc->func(tfc->info); 86 } 87 88 /** 89 * task_function_call - call a function on the cpu on which a task runs 90 * @p: the task to evaluate 91 * @func: the function to be called 92 * @info: the function call argument 93 * 94 * Calls the function @func when the task is currently running. This might 95 * be on the current CPU, which just calls the function directly 96 * 97 * returns: @func return value, or 98 * -ESRCH - when the process isn't running 99 * -EAGAIN - when the process moved away 100 */ 101 static int 102 task_function_call(struct task_struct *p, remote_function_f func, void *info) 103 { 104 struct remote_function_call data = { 105 .p = p, 106 .func = func, 107 .info = info, 108 .ret = -EAGAIN, 109 }; 110 int ret; 111 112 do { 113 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 114 if (!ret) 115 ret = data.ret; 116 } while (ret == -EAGAIN); 117 118 return ret; 119 } 120 121 /** 122 * cpu_function_call - call a function on the cpu 123 * @func: the function to be called 124 * @info: the function call argument 125 * 126 * Calls the function @func on the remote cpu. 127 * 128 * returns: @func return value or -ENXIO when the cpu is offline 129 */ 130 static int cpu_function_call(int cpu, remote_function_f func, void *info) 131 { 132 struct remote_function_call data = { 133 .p = NULL, 134 .func = func, 135 .info = info, 136 .ret = -ENXIO, /* No such CPU */ 137 }; 138 139 smp_call_function_single(cpu, remote_function, &data, 1); 140 141 return data.ret; 142 } 143 144 static inline struct perf_cpu_context * 145 __get_cpu_context(struct perf_event_context *ctx) 146 { 147 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 148 } 149 150 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 151 struct perf_event_context *ctx) 152 { 153 raw_spin_lock(&cpuctx->ctx.lock); 154 if (ctx) 155 raw_spin_lock(&ctx->lock); 156 } 157 158 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 if (ctx) 162 raw_spin_unlock(&ctx->lock); 163 raw_spin_unlock(&cpuctx->ctx.lock); 164 } 165 166 #define TASK_TOMBSTONE ((void *)-1L) 167 168 static bool is_kernel_event(struct perf_event *event) 169 { 170 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 171 } 172 173 /* 174 * On task ctx scheduling... 175 * 176 * When !ctx->nr_events a task context will not be scheduled. This means 177 * we can disable the scheduler hooks (for performance) without leaving 178 * pending task ctx state. 179 * 180 * This however results in two special cases: 181 * 182 * - removing the last event from a task ctx; this is relatively straight 183 * forward and is done in __perf_remove_from_context. 184 * 185 * - adding the first event to a task ctx; this is tricky because we cannot 186 * rely on ctx->is_active and therefore cannot use event_function_call(). 187 * See perf_install_in_context(). 188 * 189 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 190 */ 191 192 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 193 struct perf_event_context *, void *); 194 195 struct event_function_struct { 196 struct perf_event *event; 197 event_f func; 198 void *data; 199 }; 200 201 static int event_function(void *info) 202 { 203 struct event_function_struct *efs = info; 204 struct perf_event *event = efs->event; 205 struct perf_event_context *ctx = event->ctx; 206 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 207 struct perf_event_context *task_ctx = cpuctx->task_ctx; 208 int ret = 0; 209 210 WARN_ON_ONCE(!irqs_disabled()); 211 212 perf_ctx_lock(cpuctx, task_ctx); 213 /* 214 * Since we do the IPI call without holding ctx->lock things can have 215 * changed, double check we hit the task we set out to hit. 216 */ 217 if (ctx->task) { 218 if (ctx->task != current) { 219 ret = -ESRCH; 220 goto unlock; 221 } 222 223 /* 224 * We only use event_function_call() on established contexts, 225 * and event_function() is only ever called when active (or 226 * rather, we'll have bailed in task_function_call() or the 227 * above ctx->task != current test), therefore we must have 228 * ctx->is_active here. 229 */ 230 WARN_ON_ONCE(!ctx->is_active); 231 /* 232 * And since we have ctx->is_active, cpuctx->task_ctx must 233 * match. 234 */ 235 WARN_ON_ONCE(task_ctx != ctx); 236 } else { 237 WARN_ON_ONCE(&cpuctx->ctx != ctx); 238 } 239 240 efs->func(event, cpuctx, ctx, efs->data); 241 unlock: 242 perf_ctx_unlock(cpuctx, task_ctx); 243 244 return ret; 245 } 246 247 static void event_function_call(struct perf_event *event, event_f func, void *data) 248 { 249 struct perf_event_context *ctx = event->ctx; 250 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 251 struct event_function_struct efs = { 252 .event = event, 253 .func = func, 254 .data = data, 255 }; 256 257 if (!event->parent) { 258 /* 259 * If this is a !child event, we must hold ctx::mutex to 260 * stabilize the the event->ctx relation. See 261 * perf_event_ctx_lock(). 262 */ 263 lockdep_assert_held(&ctx->mutex); 264 } 265 266 if (!task) { 267 cpu_function_call(event->cpu, event_function, &efs); 268 return; 269 } 270 271 if (task == TASK_TOMBSTONE) 272 return; 273 274 again: 275 if (!task_function_call(task, event_function, &efs)) 276 return; 277 278 raw_spin_lock_irq(&ctx->lock); 279 /* 280 * Reload the task pointer, it might have been changed by 281 * a concurrent perf_event_context_sched_out(). 282 */ 283 task = ctx->task; 284 if (task == TASK_TOMBSTONE) { 285 raw_spin_unlock_irq(&ctx->lock); 286 return; 287 } 288 if (ctx->is_active) { 289 raw_spin_unlock_irq(&ctx->lock); 290 goto again; 291 } 292 func(event, NULL, ctx, data); 293 raw_spin_unlock_irq(&ctx->lock); 294 } 295 296 /* 297 * Similar to event_function_call() + event_function(), but hard assumes IRQs 298 * are already disabled and we're on the right CPU. 299 */ 300 static void event_function_local(struct perf_event *event, event_f func, void *data) 301 { 302 struct perf_event_context *ctx = event->ctx; 303 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 304 struct task_struct *task = READ_ONCE(ctx->task); 305 struct perf_event_context *task_ctx = NULL; 306 307 WARN_ON_ONCE(!irqs_disabled()); 308 309 if (task) { 310 if (task == TASK_TOMBSTONE) 311 return; 312 313 task_ctx = ctx; 314 } 315 316 perf_ctx_lock(cpuctx, task_ctx); 317 318 task = ctx->task; 319 if (task == TASK_TOMBSTONE) 320 goto unlock; 321 322 if (task) { 323 /* 324 * We must be either inactive or active and the right task, 325 * otherwise we're screwed, since we cannot IPI to somewhere 326 * else. 327 */ 328 if (ctx->is_active) { 329 if (WARN_ON_ONCE(task != current)) 330 goto unlock; 331 332 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 333 goto unlock; 334 } 335 } else { 336 WARN_ON_ONCE(&cpuctx->ctx != ctx); 337 } 338 339 func(event, cpuctx, ctx, data); 340 unlock: 341 perf_ctx_unlock(cpuctx, task_ctx); 342 } 343 344 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 345 PERF_FLAG_FD_OUTPUT |\ 346 PERF_FLAG_PID_CGROUP |\ 347 PERF_FLAG_FD_CLOEXEC) 348 349 /* 350 * branch priv levels that need permission checks 351 */ 352 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 353 (PERF_SAMPLE_BRANCH_KERNEL |\ 354 PERF_SAMPLE_BRANCH_HV) 355 356 enum event_type_t { 357 EVENT_FLEXIBLE = 0x1, 358 EVENT_PINNED = 0x2, 359 EVENT_TIME = 0x4, 360 /* see ctx_resched() for details */ 361 EVENT_CPU = 0x8, 362 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 363 }; 364 365 /* 366 * perf_sched_events : >0 events exist 367 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 368 */ 369 370 static void perf_sched_delayed(struct work_struct *work); 371 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 372 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 373 static DEFINE_MUTEX(perf_sched_mutex); 374 static atomic_t perf_sched_count; 375 376 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 377 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 378 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 379 380 static atomic_t nr_mmap_events __read_mostly; 381 static atomic_t nr_comm_events __read_mostly; 382 static atomic_t nr_task_events __read_mostly; 383 static atomic_t nr_freq_events __read_mostly; 384 static atomic_t nr_switch_events __read_mostly; 385 386 static LIST_HEAD(pmus); 387 static DEFINE_MUTEX(pmus_lock); 388 static struct srcu_struct pmus_srcu; 389 390 /* 391 * perf event paranoia level: 392 * -1 - not paranoid at all 393 * 0 - disallow raw tracepoint access for unpriv 394 * 1 - disallow cpu events for unpriv 395 * 2 - disallow kernel profiling for unpriv 396 */ 397 int sysctl_perf_event_paranoid __read_mostly = 2; 398 399 /* Minimum for 512 kiB + 1 user control page */ 400 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 401 402 /* 403 * max perf event sample rate 404 */ 405 #define DEFAULT_MAX_SAMPLE_RATE 100000 406 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 407 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 408 409 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 410 411 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 412 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 413 414 static int perf_sample_allowed_ns __read_mostly = 415 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 416 417 static void update_perf_cpu_limits(void) 418 { 419 u64 tmp = perf_sample_period_ns; 420 421 tmp *= sysctl_perf_cpu_time_max_percent; 422 tmp = div_u64(tmp, 100); 423 if (!tmp) 424 tmp = 1; 425 426 WRITE_ONCE(perf_sample_allowed_ns, tmp); 427 } 428 429 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 430 431 int perf_proc_update_handler(struct ctl_table *table, int write, 432 void __user *buffer, size_t *lenp, 433 loff_t *ppos) 434 { 435 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 436 437 if (ret || !write) 438 return ret; 439 440 /* 441 * If throttling is disabled don't allow the write: 442 */ 443 if (sysctl_perf_cpu_time_max_percent == 100 || 444 sysctl_perf_cpu_time_max_percent == 0) 445 return -EINVAL; 446 447 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 448 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 449 update_perf_cpu_limits(); 450 451 return 0; 452 } 453 454 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 455 456 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 457 void __user *buffer, size_t *lenp, 458 loff_t *ppos) 459 { 460 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 461 462 if (ret || !write) 463 return ret; 464 465 if (sysctl_perf_cpu_time_max_percent == 100 || 466 sysctl_perf_cpu_time_max_percent == 0) { 467 printk(KERN_WARNING 468 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 469 WRITE_ONCE(perf_sample_allowed_ns, 0); 470 } else { 471 update_perf_cpu_limits(); 472 } 473 474 return 0; 475 } 476 477 /* 478 * perf samples are done in some very critical code paths (NMIs). 479 * If they take too much CPU time, the system can lock up and not 480 * get any real work done. This will drop the sample rate when 481 * we detect that events are taking too long. 482 */ 483 #define NR_ACCUMULATED_SAMPLES 128 484 static DEFINE_PER_CPU(u64, running_sample_length); 485 486 static u64 __report_avg; 487 static u64 __report_allowed; 488 489 static void perf_duration_warn(struct irq_work *w) 490 { 491 printk_ratelimited(KERN_INFO 492 "perf: interrupt took too long (%lld > %lld), lowering " 493 "kernel.perf_event_max_sample_rate to %d\n", 494 __report_avg, __report_allowed, 495 sysctl_perf_event_sample_rate); 496 } 497 498 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 499 500 void perf_sample_event_took(u64 sample_len_ns) 501 { 502 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 503 u64 running_len; 504 u64 avg_len; 505 u32 max; 506 507 if (max_len == 0) 508 return; 509 510 /* Decay the counter by 1 average sample. */ 511 running_len = __this_cpu_read(running_sample_length); 512 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 513 running_len += sample_len_ns; 514 __this_cpu_write(running_sample_length, running_len); 515 516 /* 517 * Note: this will be biased artifically low until we have 518 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 519 * from having to maintain a count. 520 */ 521 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 522 if (avg_len <= max_len) 523 return; 524 525 __report_avg = avg_len; 526 __report_allowed = max_len; 527 528 /* 529 * Compute a throttle threshold 25% below the current duration. 530 */ 531 avg_len += avg_len / 4; 532 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 533 if (avg_len < max) 534 max /= (u32)avg_len; 535 else 536 max = 1; 537 538 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 539 WRITE_ONCE(max_samples_per_tick, max); 540 541 sysctl_perf_event_sample_rate = max * HZ; 542 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 543 544 if (!irq_work_queue(&perf_duration_work)) { 545 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 546 "kernel.perf_event_max_sample_rate to %d\n", 547 __report_avg, __report_allowed, 548 sysctl_perf_event_sample_rate); 549 } 550 } 551 552 static atomic64_t perf_event_id; 553 554 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 555 enum event_type_t event_type); 556 557 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 558 enum event_type_t event_type, 559 struct task_struct *task); 560 561 static void update_context_time(struct perf_event_context *ctx); 562 static u64 perf_event_time(struct perf_event *event); 563 564 void __weak perf_event_print_debug(void) { } 565 566 extern __weak const char *perf_pmu_name(void) 567 { 568 return "pmu"; 569 } 570 571 static inline u64 perf_clock(void) 572 { 573 return local_clock(); 574 } 575 576 static inline u64 perf_event_clock(struct perf_event *event) 577 { 578 return event->clock(); 579 } 580 581 #ifdef CONFIG_CGROUP_PERF 582 583 static inline bool 584 perf_cgroup_match(struct perf_event *event) 585 { 586 struct perf_event_context *ctx = event->ctx; 587 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 588 589 /* @event doesn't care about cgroup */ 590 if (!event->cgrp) 591 return true; 592 593 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 594 if (!cpuctx->cgrp) 595 return false; 596 597 /* 598 * Cgroup scoping is recursive. An event enabled for a cgroup is 599 * also enabled for all its descendant cgroups. If @cpuctx's 600 * cgroup is a descendant of @event's (the test covers identity 601 * case), it's a match. 602 */ 603 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 604 event->cgrp->css.cgroup); 605 } 606 607 static inline void perf_detach_cgroup(struct perf_event *event) 608 { 609 css_put(&event->cgrp->css); 610 event->cgrp = NULL; 611 } 612 613 static inline int is_cgroup_event(struct perf_event *event) 614 { 615 return event->cgrp != NULL; 616 } 617 618 static inline u64 perf_cgroup_event_time(struct perf_event *event) 619 { 620 struct perf_cgroup_info *t; 621 622 t = per_cpu_ptr(event->cgrp->info, event->cpu); 623 return t->time; 624 } 625 626 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 627 { 628 struct perf_cgroup_info *info; 629 u64 now; 630 631 now = perf_clock(); 632 633 info = this_cpu_ptr(cgrp->info); 634 635 info->time += now - info->timestamp; 636 info->timestamp = now; 637 } 638 639 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 640 { 641 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 642 if (cgrp_out) 643 __update_cgrp_time(cgrp_out); 644 } 645 646 static inline void update_cgrp_time_from_event(struct perf_event *event) 647 { 648 struct perf_cgroup *cgrp; 649 650 /* 651 * ensure we access cgroup data only when needed and 652 * when we know the cgroup is pinned (css_get) 653 */ 654 if (!is_cgroup_event(event)) 655 return; 656 657 cgrp = perf_cgroup_from_task(current, event->ctx); 658 /* 659 * Do not update time when cgroup is not active 660 */ 661 if (cgrp == event->cgrp) 662 __update_cgrp_time(event->cgrp); 663 } 664 665 static inline void 666 perf_cgroup_set_timestamp(struct task_struct *task, 667 struct perf_event_context *ctx) 668 { 669 struct perf_cgroup *cgrp; 670 struct perf_cgroup_info *info; 671 672 /* 673 * ctx->lock held by caller 674 * ensure we do not access cgroup data 675 * unless we have the cgroup pinned (css_get) 676 */ 677 if (!task || !ctx->nr_cgroups) 678 return; 679 680 cgrp = perf_cgroup_from_task(task, ctx); 681 info = this_cpu_ptr(cgrp->info); 682 info->timestamp = ctx->timestamp; 683 } 684 685 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 686 687 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 688 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 689 690 /* 691 * reschedule events based on the cgroup constraint of task. 692 * 693 * mode SWOUT : schedule out everything 694 * mode SWIN : schedule in based on cgroup for next 695 */ 696 static void perf_cgroup_switch(struct task_struct *task, int mode) 697 { 698 struct perf_cpu_context *cpuctx; 699 struct list_head *list; 700 unsigned long flags; 701 702 /* 703 * Disable interrupts and preemption to avoid this CPU's 704 * cgrp_cpuctx_entry to change under us. 705 */ 706 local_irq_save(flags); 707 708 list = this_cpu_ptr(&cgrp_cpuctx_list); 709 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 710 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 711 712 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 713 perf_pmu_disable(cpuctx->ctx.pmu); 714 715 if (mode & PERF_CGROUP_SWOUT) { 716 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 717 /* 718 * must not be done before ctxswout due 719 * to event_filter_match() in event_sched_out() 720 */ 721 cpuctx->cgrp = NULL; 722 } 723 724 if (mode & PERF_CGROUP_SWIN) { 725 WARN_ON_ONCE(cpuctx->cgrp); 726 /* 727 * set cgrp before ctxsw in to allow 728 * event_filter_match() to not have to pass 729 * task around 730 * we pass the cpuctx->ctx to perf_cgroup_from_task() 731 * because cgorup events are only per-cpu 732 */ 733 cpuctx->cgrp = perf_cgroup_from_task(task, 734 &cpuctx->ctx); 735 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 736 } 737 perf_pmu_enable(cpuctx->ctx.pmu); 738 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 739 } 740 741 local_irq_restore(flags); 742 } 743 744 static inline void perf_cgroup_sched_out(struct task_struct *task, 745 struct task_struct *next) 746 { 747 struct perf_cgroup *cgrp1; 748 struct perf_cgroup *cgrp2 = NULL; 749 750 rcu_read_lock(); 751 /* 752 * we come here when we know perf_cgroup_events > 0 753 * we do not need to pass the ctx here because we know 754 * we are holding the rcu lock 755 */ 756 cgrp1 = perf_cgroup_from_task(task, NULL); 757 cgrp2 = perf_cgroup_from_task(next, NULL); 758 759 /* 760 * only schedule out current cgroup events if we know 761 * that we are switching to a different cgroup. Otherwise, 762 * do no touch the cgroup events. 763 */ 764 if (cgrp1 != cgrp2) 765 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 766 767 rcu_read_unlock(); 768 } 769 770 static inline void perf_cgroup_sched_in(struct task_struct *prev, 771 struct task_struct *task) 772 { 773 struct perf_cgroup *cgrp1; 774 struct perf_cgroup *cgrp2 = NULL; 775 776 rcu_read_lock(); 777 /* 778 * we come here when we know perf_cgroup_events > 0 779 * we do not need to pass the ctx here because we know 780 * we are holding the rcu lock 781 */ 782 cgrp1 = perf_cgroup_from_task(task, NULL); 783 cgrp2 = perf_cgroup_from_task(prev, NULL); 784 785 /* 786 * only need to schedule in cgroup events if we are changing 787 * cgroup during ctxsw. Cgroup events were not scheduled 788 * out of ctxsw out if that was not the case. 789 */ 790 if (cgrp1 != cgrp2) 791 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 792 793 rcu_read_unlock(); 794 } 795 796 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 797 struct perf_event_attr *attr, 798 struct perf_event *group_leader) 799 { 800 struct perf_cgroup *cgrp; 801 struct cgroup_subsys_state *css; 802 struct fd f = fdget(fd); 803 int ret = 0; 804 805 if (!f.file) 806 return -EBADF; 807 808 css = css_tryget_online_from_dir(f.file->f_path.dentry, 809 &perf_event_cgrp_subsys); 810 if (IS_ERR(css)) { 811 ret = PTR_ERR(css); 812 goto out; 813 } 814 815 cgrp = container_of(css, struct perf_cgroup, css); 816 event->cgrp = cgrp; 817 818 /* 819 * all events in a group must monitor 820 * the same cgroup because a task belongs 821 * to only one perf cgroup at a time 822 */ 823 if (group_leader && group_leader->cgrp != cgrp) { 824 perf_detach_cgroup(event); 825 ret = -EINVAL; 826 } 827 out: 828 fdput(f); 829 return ret; 830 } 831 832 static inline void 833 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 834 { 835 struct perf_cgroup_info *t; 836 t = per_cpu_ptr(event->cgrp->info, event->cpu); 837 event->shadow_ctx_time = now - t->timestamp; 838 } 839 840 static inline void 841 perf_cgroup_defer_enabled(struct perf_event *event) 842 { 843 /* 844 * when the current task's perf cgroup does not match 845 * the event's, we need to remember to call the 846 * perf_mark_enable() function the first time a task with 847 * a matching perf cgroup is scheduled in. 848 */ 849 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 850 event->cgrp_defer_enabled = 1; 851 } 852 853 static inline void 854 perf_cgroup_mark_enabled(struct perf_event *event, 855 struct perf_event_context *ctx) 856 { 857 struct perf_event *sub; 858 u64 tstamp = perf_event_time(event); 859 860 if (!event->cgrp_defer_enabled) 861 return; 862 863 event->cgrp_defer_enabled = 0; 864 865 event->tstamp_enabled = tstamp - event->total_time_enabled; 866 list_for_each_entry(sub, &event->sibling_list, group_entry) { 867 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 868 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 869 sub->cgrp_defer_enabled = 0; 870 } 871 } 872 } 873 874 /* 875 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 876 * cleared when last cgroup event is removed. 877 */ 878 static inline void 879 list_update_cgroup_event(struct perf_event *event, 880 struct perf_event_context *ctx, bool add) 881 { 882 struct perf_cpu_context *cpuctx; 883 struct list_head *cpuctx_entry; 884 885 if (!is_cgroup_event(event)) 886 return; 887 888 if (add && ctx->nr_cgroups++) 889 return; 890 else if (!add && --ctx->nr_cgroups) 891 return; 892 /* 893 * Because cgroup events are always per-cpu events, 894 * this will always be called from the right CPU. 895 */ 896 cpuctx = __get_cpu_context(ctx); 897 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 898 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 899 if (add) { 900 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 901 if (perf_cgroup_from_task(current, ctx) == event->cgrp) 902 cpuctx->cgrp = event->cgrp; 903 } else { 904 list_del(cpuctx_entry); 905 cpuctx->cgrp = NULL; 906 } 907 } 908 909 #else /* !CONFIG_CGROUP_PERF */ 910 911 static inline bool 912 perf_cgroup_match(struct perf_event *event) 913 { 914 return true; 915 } 916 917 static inline void perf_detach_cgroup(struct perf_event *event) 918 {} 919 920 static inline int is_cgroup_event(struct perf_event *event) 921 { 922 return 0; 923 } 924 925 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 926 { 927 return 0; 928 } 929 930 static inline void update_cgrp_time_from_event(struct perf_event *event) 931 { 932 } 933 934 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 935 { 936 } 937 938 static inline void perf_cgroup_sched_out(struct task_struct *task, 939 struct task_struct *next) 940 { 941 } 942 943 static inline void perf_cgroup_sched_in(struct task_struct *prev, 944 struct task_struct *task) 945 { 946 } 947 948 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 949 struct perf_event_attr *attr, 950 struct perf_event *group_leader) 951 { 952 return -EINVAL; 953 } 954 955 static inline void 956 perf_cgroup_set_timestamp(struct task_struct *task, 957 struct perf_event_context *ctx) 958 { 959 } 960 961 void 962 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 963 { 964 } 965 966 static inline void 967 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 968 { 969 } 970 971 static inline u64 perf_cgroup_event_time(struct perf_event *event) 972 { 973 return 0; 974 } 975 976 static inline void 977 perf_cgroup_defer_enabled(struct perf_event *event) 978 { 979 } 980 981 static inline void 982 perf_cgroup_mark_enabled(struct perf_event *event, 983 struct perf_event_context *ctx) 984 { 985 } 986 987 static inline void 988 list_update_cgroup_event(struct perf_event *event, 989 struct perf_event_context *ctx, bool add) 990 { 991 } 992 993 #endif 994 995 /* 996 * set default to be dependent on timer tick just 997 * like original code 998 */ 999 #define PERF_CPU_HRTIMER (1000 / HZ) 1000 /* 1001 * function must be called with interrupts disabled 1002 */ 1003 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1004 { 1005 struct perf_cpu_context *cpuctx; 1006 int rotations = 0; 1007 1008 WARN_ON(!irqs_disabled()); 1009 1010 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1011 rotations = perf_rotate_context(cpuctx); 1012 1013 raw_spin_lock(&cpuctx->hrtimer_lock); 1014 if (rotations) 1015 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1016 else 1017 cpuctx->hrtimer_active = 0; 1018 raw_spin_unlock(&cpuctx->hrtimer_lock); 1019 1020 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1021 } 1022 1023 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1024 { 1025 struct hrtimer *timer = &cpuctx->hrtimer; 1026 struct pmu *pmu = cpuctx->ctx.pmu; 1027 u64 interval; 1028 1029 /* no multiplexing needed for SW PMU */ 1030 if (pmu->task_ctx_nr == perf_sw_context) 1031 return; 1032 1033 /* 1034 * check default is sane, if not set then force to 1035 * default interval (1/tick) 1036 */ 1037 interval = pmu->hrtimer_interval_ms; 1038 if (interval < 1) 1039 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1040 1041 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1042 1043 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1044 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1045 timer->function = perf_mux_hrtimer_handler; 1046 } 1047 1048 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1049 { 1050 struct hrtimer *timer = &cpuctx->hrtimer; 1051 struct pmu *pmu = cpuctx->ctx.pmu; 1052 unsigned long flags; 1053 1054 /* not for SW PMU */ 1055 if (pmu->task_ctx_nr == perf_sw_context) 1056 return 0; 1057 1058 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1059 if (!cpuctx->hrtimer_active) { 1060 cpuctx->hrtimer_active = 1; 1061 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1062 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1063 } 1064 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1065 1066 return 0; 1067 } 1068 1069 void perf_pmu_disable(struct pmu *pmu) 1070 { 1071 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1072 if (!(*count)++) 1073 pmu->pmu_disable(pmu); 1074 } 1075 1076 void perf_pmu_enable(struct pmu *pmu) 1077 { 1078 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1079 if (!--(*count)) 1080 pmu->pmu_enable(pmu); 1081 } 1082 1083 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1084 1085 /* 1086 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1087 * perf_event_task_tick() are fully serialized because they're strictly cpu 1088 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1089 * disabled, while perf_event_task_tick is called from IRQ context. 1090 */ 1091 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1092 { 1093 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1094 1095 WARN_ON(!irqs_disabled()); 1096 1097 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1098 1099 list_add(&ctx->active_ctx_list, head); 1100 } 1101 1102 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1103 { 1104 WARN_ON(!irqs_disabled()); 1105 1106 WARN_ON(list_empty(&ctx->active_ctx_list)); 1107 1108 list_del_init(&ctx->active_ctx_list); 1109 } 1110 1111 static void get_ctx(struct perf_event_context *ctx) 1112 { 1113 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1114 } 1115 1116 static void free_ctx(struct rcu_head *head) 1117 { 1118 struct perf_event_context *ctx; 1119 1120 ctx = container_of(head, struct perf_event_context, rcu_head); 1121 kfree(ctx->task_ctx_data); 1122 kfree(ctx); 1123 } 1124 1125 static void put_ctx(struct perf_event_context *ctx) 1126 { 1127 if (atomic_dec_and_test(&ctx->refcount)) { 1128 if (ctx->parent_ctx) 1129 put_ctx(ctx->parent_ctx); 1130 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1131 put_task_struct(ctx->task); 1132 call_rcu(&ctx->rcu_head, free_ctx); 1133 } 1134 } 1135 1136 /* 1137 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1138 * perf_pmu_migrate_context() we need some magic. 1139 * 1140 * Those places that change perf_event::ctx will hold both 1141 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1142 * 1143 * Lock ordering is by mutex address. There are two other sites where 1144 * perf_event_context::mutex nests and those are: 1145 * 1146 * - perf_event_exit_task_context() [ child , 0 ] 1147 * perf_event_exit_event() 1148 * put_event() [ parent, 1 ] 1149 * 1150 * - perf_event_init_context() [ parent, 0 ] 1151 * inherit_task_group() 1152 * inherit_group() 1153 * inherit_event() 1154 * perf_event_alloc() 1155 * perf_init_event() 1156 * perf_try_init_event() [ child , 1 ] 1157 * 1158 * While it appears there is an obvious deadlock here -- the parent and child 1159 * nesting levels are inverted between the two. This is in fact safe because 1160 * life-time rules separate them. That is an exiting task cannot fork, and a 1161 * spawning task cannot (yet) exit. 1162 * 1163 * But remember that that these are parent<->child context relations, and 1164 * migration does not affect children, therefore these two orderings should not 1165 * interact. 1166 * 1167 * The change in perf_event::ctx does not affect children (as claimed above) 1168 * because the sys_perf_event_open() case will install a new event and break 1169 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1170 * concerned with cpuctx and that doesn't have children. 1171 * 1172 * The places that change perf_event::ctx will issue: 1173 * 1174 * perf_remove_from_context(); 1175 * synchronize_rcu(); 1176 * perf_install_in_context(); 1177 * 1178 * to affect the change. The remove_from_context() + synchronize_rcu() should 1179 * quiesce the event, after which we can install it in the new location. This 1180 * means that only external vectors (perf_fops, prctl) can perturb the event 1181 * while in transit. Therefore all such accessors should also acquire 1182 * perf_event_context::mutex to serialize against this. 1183 * 1184 * However; because event->ctx can change while we're waiting to acquire 1185 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1186 * function. 1187 * 1188 * Lock order: 1189 * cred_guard_mutex 1190 * task_struct::perf_event_mutex 1191 * perf_event_context::mutex 1192 * perf_event::child_mutex; 1193 * perf_event_context::lock 1194 * perf_event::mmap_mutex 1195 * mmap_sem 1196 */ 1197 static struct perf_event_context * 1198 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1199 { 1200 struct perf_event_context *ctx; 1201 1202 again: 1203 rcu_read_lock(); 1204 ctx = ACCESS_ONCE(event->ctx); 1205 if (!atomic_inc_not_zero(&ctx->refcount)) { 1206 rcu_read_unlock(); 1207 goto again; 1208 } 1209 rcu_read_unlock(); 1210 1211 mutex_lock_nested(&ctx->mutex, nesting); 1212 if (event->ctx != ctx) { 1213 mutex_unlock(&ctx->mutex); 1214 put_ctx(ctx); 1215 goto again; 1216 } 1217 1218 return ctx; 1219 } 1220 1221 static inline struct perf_event_context * 1222 perf_event_ctx_lock(struct perf_event *event) 1223 { 1224 return perf_event_ctx_lock_nested(event, 0); 1225 } 1226 1227 static void perf_event_ctx_unlock(struct perf_event *event, 1228 struct perf_event_context *ctx) 1229 { 1230 mutex_unlock(&ctx->mutex); 1231 put_ctx(ctx); 1232 } 1233 1234 /* 1235 * This must be done under the ctx->lock, such as to serialize against 1236 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1237 * calling scheduler related locks and ctx->lock nests inside those. 1238 */ 1239 static __must_check struct perf_event_context * 1240 unclone_ctx(struct perf_event_context *ctx) 1241 { 1242 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1243 1244 lockdep_assert_held(&ctx->lock); 1245 1246 if (parent_ctx) 1247 ctx->parent_ctx = NULL; 1248 ctx->generation++; 1249 1250 return parent_ctx; 1251 } 1252 1253 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1254 { 1255 /* 1256 * only top level events have the pid namespace they were created in 1257 */ 1258 if (event->parent) 1259 event = event->parent; 1260 1261 return task_tgid_nr_ns(p, event->ns); 1262 } 1263 1264 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1265 { 1266 /* 1267 * only top level events have the pid namespace they were created in 1268 */ 1269 if (event->parent) 1270 event = event->parent; 1271 1272 return task_pid_nr_ns(p, event->ns); 1273 } 1274 1275 /* 1276 * If we inherit events we want to return the parent event id 1277 * to userspace. 1278 */ 1279 static u64 primary_event_id(struct perf_event *event) 1280 { 1281 u64 id = event->id; 1282 1283 if (event->parent) 1284 id = event->parent->id; 1285 1286 return id; 1287 } 1288 1289 /* 1290 * Get the perf_event_context for a task and lock it. 1291 * 1292 * This has to cope with with the fact that until it is locked, 1293 * the context could get moved to another task. 1294 */ 1295 static struct perf_event_context * 1296 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1297 { 1298 struct perf_event_context *ctx; 1299 1300 retry: 1301 /* 1302 * One of the few rules of preemptible RCU is that one cannot do 1303 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1304 * part of the read side critical section was irqs-enabled -- see 1305 * rcu_read_unlock_special(). 1306 * 1307 * Since ctx->lock nests under rq->lock we must ensure the entire read 1308 * side critical section has interrupts disabled. 1309 */ 1310 local_irq_save(*flags); 1311 rcu_read_lock(); 1312 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1313 if (ctx) { 1314 /* 1315 * If this context is a clone of another, it might 1316 * get swapped for another underneath us by 1317 * perf_event_task_sched_out, though the 1318 * rcu_read_lock() protects us from any context 1319 * getting freed. Lock the context and check if it 1320 * got swapped before we could get the lock, and retry 1321 * if so. If we locked the right context, then it 1322 * can't get swapped on us any more. 1323 */ 1324 raw_spin_lock(&ctx->lock); 1325 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1326 raw_spin_unlock(&ctx->lock); 1327 rcu_read_unlock(); 1328 local_irq_restore(*flags); 1329 goto retry; 1330 } 1331 1332 if (ctx->task == TASK_TOMBSTONE || 1333 !atomic_inc_not_zero(&ctx->refcount)) { 1334 raw_spin_unlock(&ctx->lock); 1335 ctx = NULL; 1336 } else { 1337 WARN_ON_ONCE(ctx->task != task); 1338 } 1339 } 1340 rcu_read_unlock(); 1341 if (!ctx) 1342 local_irq_restore(*flags); 1343 return ctx; 1344 } 1345 1346 /* 1347 * Get the context for a task and increment its pin_count so it 1348 * can't get swapped to another task. This also increments its 1349 * reference count so that the context can't get freed. 1350 */ 1351 static struct perf_event_context * 1352 perf_pin_task_context(struct task_struct *task, int ctxn) 1353 { 1354 struct perf_event_context *ctx; 1355 unsigned long flags; 1356 1357 ctx = perf_lock_task_context(task, ctxn, &flags); 1358 if (ctx) { 1359 ++ctx->pin_count; 1360 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1361 } 1362 return ctx; 1363 } 1364 1365 static void perf_unpin_context(struct perf_event_context *ctx) 1366 { 1367 unsigned long flags; 1368 1369 raw_spin_lock_irqsave(&ctx->lock, flags); 1370 --ctx->pin_count; 1371 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1372 } 1373 1374 /* 1375 * Update the record of the current time in a context. 1376 */ 1377 static void update_context_time(struct perf_event_context *ctx) 1378 { 1379 u64 now = perf_clock(); 1380 1381 ctx->time += now - ctx->timestamp; 1382 ctx->timestamp = now; 1383 } 1384 1385 static u64 perf_event_time(struct perf_event *event) 1386 { 1387 struct perf_event_context *ctx = event->ctx; 1388 1389 if (is_cgroup_event(event)) 1390 return perf_cgroup_event_time(event); 1391 1392 return ctx ? ctx->time : 0; 1393 } 1394 1395 /* 1396 * Update the total_time_enabled and total_time_running fields for a event. 1397 */ 1398 static void update_event_times(struct perf_event *event) 1399 { 1400 struct perf_event_context *ctx = event->ctx; 1401 u64 run_end; 1402 1403 lockdep_assert_held(&ctx->lock); 1404 1405 if (event->state < PERF_EVENT_STATE_INACTIVE || 1406 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1407 return; 1408 1409 /* 1410 * in cgroup mode, time_enabled represents 1411 * the time the event was enabled AND active 1412 * tasks were in the monitored cgroup. This is 1413 * independent of the activity of the context as 1414 * there may be a mix of cgroup and non-cgroup events. 1415 * 1416 * That is why we treat cgroup events differently 1417 * here. 1418 */ 1419 if (is_cgroup_event(event)) 1420 run_end = perf_cgroup_event_time(event); 1421 else if (ctx->is_active) 1422 run_end = ctx->time; 1423 else 1424 run_end = event->tstamp_stopped; 1425 1426 event->total_time_enabled = run_end - event->tstamp_enabled; 1427 1428 if (event->state == PERF_EVENT_STATE_INACTIVE) 1429 run_end = event->tstamp_stopped; 1430 else 1431 run_end = perf_event_time(event); 1432 1433 event->total_time_running = run_end - event->tstamp_running; 1434 1435 } 1436 1437 /* 1438 * Update total_time_enabled and total_time_running for all events in a group. 1439 */ 1440 static void update_group_times(struct perf_event *leader) 1441 { 1442 struct perf_event *event; 1443 1444 update_event_times(leader); 1445 list_for_each_entry(event, &leader->sibling_list, group_entry) 1446 update_event_times(event); 1447 } 1448 1449 static enum event_type_t get_event_type(struct perf_event *event) 1450 { 1451 struct perf_event_context *ctx = event->ctx; 1452 enum event_type_t event_type; 1453 1454 lockdep_assert_held(&ctx->lock); 1455 1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1457 if (!ctx->task) 1458 event_type |= EVENT_CPU; 1459 1460 return event_type; 1461 } 1462 1463 static struct list_head * 1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1465 { 1466 if (event->attr.pinned) 1467 return &ctx->pinned_groups; 1468 else 1469 return &ctx->flexible_groups; 1470 } 1471 1472 /* 1473 * Add a event from the lists for its context. 1474 * Must be called with ctx->mutex and ctx->lock held. 1475 */ 1476 static void 1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1478 { 1479 lockdep_assert_held(&ctx->lock); 1480 1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1482 event->attach_state |= PERF_ATTACH_CONTEXT; 1483 1484 /* 1485 * If we're a stand alone event or group leader, we go to the context 1486 * list, group events are kept attached to the group so that 1487 * perf_group_detach can, at all times, locate all siblings. 1488 */ 1489 if (event->group_leader == event) { 1490 struct list_head *list; 1491 1492 event->group_caps = event->event_caps; 1493 1494 list = ctx_group_list(event, ctx); 1495 list_add_tail(&event->group_entry, list); 1496 } 1497 1498 list_update_cgroup_event(event, ctx, true); 1499 1500 list_add_rcu(&event->event_entry, &ctx->event_list); 1501 ctx->nr_events++; 1502 if (event->attr.inherit_stat) 1503 ctx->nr_stat++; 1504 1505 ctx->generation++; 1506 } 1507 1508 /* 1509 * Initialize event state based on the perf_event_attr::disabled. 1510 */ 1511 static inline void perf_event__state_init(struct perf_event *event) 1512 { 1513 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1514 PERF_EVENT_STATE_INACTIVE; 1515 } 1516 1517 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1518 { 1519 int entry = sizeof(u64); /* value */ 1520 int size = 0; 1521 int nr = 1; 1522 1523 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1524 size += sizeof(u64); 1525 1526 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1527 size += sizeof(u64); 1528 1529 if (event->attr.read_format & PERF_FORMAT_ID) 1530 entry += sizeof(u64); 1531 1532 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1533 nr += nr_siblings; 1534 size += sizeof(u64); 1535 } 1536 1537 size += entry * nr; 1538 event->read_size = size; 1539 } 1540 1541 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1542 { 1543 struct perf_sample_data *data; 1544 u16 size = 0; 1545 1546 if (sample_type & PERF_SAMPLE_IP) 1547 size += sizeof(data->ip); 1548 1549 if (sample_type & PERF_SAMPLE_ADDR) 1550 size += sizeof(data->addr); 1551 1552 if (sample_type & PERF_SAMPLE_PERIOD) 1553 size += sizeof(data->period); 1554 1555 if (sample_type & PERF_SAMPLE_WEIGHT) 1556 size += sizeof(data->weight); 1557 1558 if (sample_type & PERF_SAMPLE_READ) 1559 size += event->read_size; 1560 1561 if (sample_type & PERF_SAMPLE_DATA_SRC) 1562 size += sizeof(data->data_src.val); 1563 1564 if (sample_type & PERF_SAMPLE_TRANSACTION) 1565 size += sizeof(data->txn); 1566 1567 event->header_size = size; 1568 } 1569 1570 /* 1571 * Called at perf_event creation and when events are attached/detached from a 1572 * group. 1573 */ 1574 static void perf_event__header_size(struct perf_event *event) 1575 { 1576 __perf_event_read_size(event, 1577 event->group_leader->nr_siblings); 1578 __perf_event_header_size(event, event->attr.sample_type); 1579 } 1580 1581 static void perf_event__id_header_size(struct perf_event *event) 1582 { 1583 struct perf_sample_data *data; 1584 u64 sample_type = event->attr.sample_type; 1585 u16 size = 0; 1586 1587 if (sample_type & PERF_SAMPLE_TID) 1588 size += sizeof(data->tid_entry); 1589 1590 if (sample_type & PERF_SAMPLE_TIME) 1591 size += sizeof(data->time); 1592 1593 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1594 size += sizeof(data->id); 1595 1596 if (sample_type & PERF_SAMPLE_ID) 1597 size += sizeof(data->id); 1598 1599 if (sample_type & PERF_SAMPLE_STREAM_ID) 1600 size += sizeof(data->stream_id); 1601 1602 if (sample_type & PERF_SAMPLE_CPU) 1603 size += sizeof(data->cpu_entry); 1604 1605 event->id_header_size = size; 1606 } 1607 1608 static bool perf_event_validate_size(struct perf_event *event) 1609 { 1610 /* 1611 * The values computed here will be over-written when we actually 1612 * attach the event. 1613 */ 1614 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1615 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1616 perf_event__id_header_size(event); 1617 1618 /* 1619 * Sum the lot; should not exceed the 64k limit we have on records. 1620 * Conservative limit to allow for callchains and other variable fields. 1621 */ 1622 if (event->read_size + event->header_size + 1623 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1624 return false; 1625 1626 return true; 1627 } 1628 1629 static void perf_group_attach(struct perf_event *event) 1630 { 1631 struct perf_event *group_leader = event->group_leader, *pos; 1632 1633 lockdep_assert_held(&event->ctx->lock); 1634 1635 /* 1636 * We can have double attach due to group movement in perf_event_open. 1637 */ 1638 if (event->attach_state & PERF_ATTACH_GROUP) 1639 return; 1640 1641 event->attach_state |= PERF_ATTACH_GROUP; 1642 1643 if (group_leader == event) 1644 return; 1645 1646 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1647 1648 group_leader->group_caps &= event->event_caps; 1649 1650 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1651 group_leader->nr_siblings++; 1652 1653 perf_event__header_size(group_leader); 1654 1655 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1656 perf_event__header_size(pos); 1657 } 1658 1659 /* 1660 * Remove a event from the lists for its context. 1661 * Must be called with ctx->mutex and ctx->lock held. 1662 */ 1663 static void 1664 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1665 { 1666 WARN_ON_ONCE(event->ctx != ctx); 1667 lockdep_assert_held(&ctx->lock); 1668 1669 /* 1670 * We can have double detach due to exit/hot-unplug + close. 1671 */ 1672 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1673 return; 1674 1675 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1676 1677 list_update_cgroup_event(event, ctx, false); 1678 1679 ctx->nr_events--; 1680 if (event->attr.inherit_stat) 1681 ctx->nr_stat--; 1682 1683 list_del_rcu(&event->event_entry); 1684 1685 if (event->group_leader == event) 1686 list_del_init(&event->group_entry); 1687 1688 update_group_times(event); 1689 1690 /* 1691 * If event was in error state, then keep it 1692 * that way, otherwise bogus counts will be 1693 * returned on read(). The only way to get out 1694 * of error state is by explicit re-enabling 1695 * of the event 1696 */ 1697 if (event->state > PERF_EVENT_STATE_OFF) 1698 event->state = PERF_EVENT_STATE_OFF; 1699 1700 ctx->generation++; 1701 } 1702 1703 static void perf_group_detach(struct perf_event *event) 1704 { 1705 struct perf_event *sibling, *tmp; 1706 struct list_head *list = NULL; 1707 1708 lockdep_assert_held(&event->ctx->lock); 1709 1710 /* 1711 * We can have double detach due to exit/hot-unplug + close. 1712 */ 1713 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1714 return; 1715 1716 event->attach_state &= ~PERF_ATTACH_GROUP; 1717 1718 /* 1719 * If this is a sibling, remove it from its group. 1720 */ 1721 if (event->group_leader != event) { 1722 list_del_init(&event->group_entry); 1723 event->group_leader->nr_siblings--; 1724 goto out; 1725 } 1726 1727 if (!list_empty(&event->group_entry)) 1728 list = &event->group_entry; 1729 1730 /* 1731 * If this was a group event with sibling events then 1732 * upgrade the siblings to singleton events by adding them 1733 * to whatever list we are on. 1734 */ 1735 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1736 if (list) 1737 list_move_tail(&sibling->group_entry, list); 1738 sibling->group_leader = sibling; 1739 1740 /* Inherit group flags from the previous leader */ 1741 sibling->group_caps = event->group_caps; 1742 1743 WARN_ON_ONCE(sibling->ctx != event->ctx); 1744 } 1745 1746 out: 1747 perf_event__header_size(event->group_leader); 1748 1749 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1750 perf_event__header_size(tmp); 1751 } 1752 1753 static bool is_orphaned_event(struct perf_event *event) 1754 { 1755 return event->state == PERF_EVENT_STATE_DEAD; 1756 } 1757 1758 static inline int __pmu_filter_match(struct perf_event *event) 1759 { 1760 struct pmu *pmu = event->pmu; 1761 return pmu->filter_match ? pmu->filter_match(event) : 1; 1762 } 1763 1764 /* 1765 * Check whether we should attempt to schedule an event group based on 1766 * PMU-specific filtering. An event group can consist of HW and SW events, 1767 * potentially with a SW leader, so we must check all the filters, to 1768 * determine whether a group is schedulable: 1769 */ 1770 static inline int pmu_filter_match(struct perf_event *event) 1771 { 1772 struct perf_event *child; 1773 1774 if (!__pmu_filter_match(event)) 1775 return 0; 1776 1777 list_for_each_entry(child, &event->sibling_list, group_entry) { 1778 if (!__pmu_filter_match(child)) 1779 return 0; 1780 } 1781 1782 return 1; 1783 } 1784 1785 static inline int 1786 event_filter_match(struct perf_event *event) 1787 { 1788 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1789 perf_cgroup_match(event) && pmu_filter_match(event); 1790 } 1791 1792 static void 1793 event_sched_out(struct perf_event *event, 1794 struct perf_cpu_context *cpuctx, 1795 struct perf_event_context *ctx) 1796 { 1797 u64 tstamp = perf_event_time(event); 1798 u64 delta; 1799 1800 WARN_ON_ONCE(event->ctx != ctx); 1801 lockdep_assert_held(&ctx->lock); 1802 1803 /* 1804 * An event which could not be activated because of 1805 * filter mismatch still needs to have its timings 1806 * maintained, otherwise bogus information is return 1807 * via read() for time_enabled, time_running: 1808 */ 1809 if (event->state == PERF_EVENT_STATE_INACTIVE && 1810 !event_filter_match(event)) { 1811 delta = tstamp - event->tstamp_stopped; 1812 event->tstamp_running += delta; 1813 event->tstamp_stopped = tstamp; 1814 } 1815 1816 if (event->state != PERF_EVENT_STATE_ACTIVE) 1817 return; 1818 1819 perf_pmu_disable(event->pmu); 1820 1821 event->tstamp_stopped = tstamp; 1822 event->pmu->del(event, 0); 1823 event->oncpu = -1; 1824 event->state = PERF_EVENT_STATE_INACTIVE; 1825 if (event->pending_disable) { 1826 event->pending_disable = 0; 1827 event->state = PERF_EVENT_STATE_OFF; 1828 } 1829 1830 if (!is_software_event(event)) 1831 cpuctx->active_oncpu--; 1832 if (!--ctx->nr_active) 1833 perf_event_ctx_deactivate(ctx); 1834 if (event->attr.freq && event->attr.sample_freq) 1835 ctx->nr_freq--; 1836 if (event->attr.exclusive || !cpuctx->active_oncpu) 1837 cpuctx->exclusive = 0; 1838 1839 perf_pmu_enable(event->pmu); 1840 } 1841 1842 static void 1843 group_sched_out(struct perf_event *group_event, 1844 struct perf_cpu_context *cpuctx, 1845 struct perf_event_context *ctx) 1846 { 1847 struct perf_event *event; 1848 int state = group_event->state; 1849 1850 perf_pmu_disable(ctx->pmu); 1851 1852 event_sched_out(group_event, cpuctx, ctx); 1853 1854 /* 1855 * Schedule out siblings (if any): 1856 */ 1857 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1858 event_sched_out(event, cpuctx, ctx); 1859 1860 perf_pmu_enable(ctx->pmu); 1861 1862 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1863 cpuctx->exclusive = 0; 1864 } 1865 1866 #define DETACH_GROUP 0x01UL 1867 1868 /* 1869 * Cross CPU call to remove a performance event 1870 * 1871 * We disable the event on the hardware level first. After that we 1872 * remove it from the context list. 1873 */ 1874 static void 1875 __perf_remove_from_context(struct perf_event *event, 1876 struct perf_cpu_context *cpuctx, 1877 struct perf_event_context *ctx, 1878 void *info) 1879 { 1880 unsigned long flags = (unsigned long)info; 1881 1882 event_sched_out(event, cpuctx, ctx); 1883 if (flags & DETACH_GROUP) 1884 perf_group_detach(event); 1885 list_del_event(event, ctx); 1886 1887 if (!ctx->nr_events && ctx->is_active) { 1888 ctx->is_active = 0; 1889 if (ctx->task) { 1890 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1891 cpuctx->task_ctx = NULL; 1892 } 1893 } 1894 } 1895 1896 /* 1897 * Remove the event from a task's (or a CPU's) list of events. 1898 * 1899 * If event->ctx is a cloned context, callers must make sure that 1900 * every task struct that event->ctx->task could possibly point to 1901 * remains valid. This is OK when called from perf_release since 1902 * that only calls us on the top-level context, which can't be a clone. 1903 * When called from perf_event_exit_task, it's OK because the 1904 * context has been detached from its task. 1905 */ 1906 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1907 { 1908 struct perf_event_context *ctx = event->ctx; 1909 1910 lockdep_assert_held(&ctx->mutex); 1911 1912 event_function_call(event, __perf_remove_from_context, (void *)flags); 1913 1914 /* 1915 * The above event_function_call() can NO-OP when it hits 1916 * TASK_TOMBSTONE. In that case we must already have been detached 1917 * from the context (by perf_event_exit_event()) but the grouping 1918 * might still be in-tact. 1919 */ 1920 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1921 if ((flags & DETACH_GROUP) && 1922 (event->attach_state & PERF_ATTACH_GROUP)) { 1923 /* 1924 * Since in that case we cannot possibly be scheduled, simply 1925 * detach now. 1926 */ 1927 raw_spin_lock_irq(&ctx->lock); 1928 perf_group_detach(event); 1929 raw_spin_unlock_irq(&ctx->lock); 1930 } 1931 } 1932 1933 /* 1934 * Cross CPU call to disable a performance event 1935 */ 1936 static void __perf_event_disable(struct perf_event *event, 1937 struct perf_cpu_context *cpuctx, 1938 struct perf_event_context *ctx, 1939 void *info) 1940 { 1941 if (event->state < PERF_EVENT_STATE_INACTIVE) 1942 return; 1943 1944 update_context_time(ctx); 1945 update_cgrp_time_from_event(event); 1946 update_group_times(event); 1947 if (event == event->group_leader) 1948 group_sched_out(event, cpuctx, ctx); 1949 else 1950 event_sched_out(event, cpuctx, ctx); 1951 event->state = PERF_EVENT_STATE_OFF; 1952 } 1953 1954 /* 1955 * Disable a event. 1956 * 1957 * If event->ctx is a cloned context, callers must make sure that 1958 * every task struct that event->ctx->task could possibly point to 1959 * remains valid. This condition is satisifed when called through 1960 * perf_event_for_each_child or perf_event_for_each because they 1961 * hold the top-level event's child_mutex, so any descendant that 1962 * goes to exit will block in perf_event_exit_event(). 1963 * 1964 * When called from perf_pending_event it's OK because event->ctx 1965 * is the current context on this CPU and preemption is disabled, 1966 * hence we can't get into perf_event_task_sched_out for this context. 1967 */ 1968 static void _perf_event_disable(struct perf_event *event) 1969 { 1970 struct perf_event_context *ctx = event->ctx; 1971 1972 raw_spin_lock_irq(&ctx->lock); 1973 if (event->state <= PERF_EVENT_STATE_OFF) { 1974 raw_spin_unlock_irq(&ctx->lock); 1975 return; 1976 } 1977 raw_spin_unlock_irq(&ctx->lock); 1978 1979 event_function_call(event, __perf_event_disable, NULL); 1980 } 1981 1982 void perf_event_disable_local(struct perf_event *event) 1983 { 1984 event_function_local(event, __perf_event_disable, NULL); 1985 } 1986 1987 /* 1988 * Strictly speaking kernel users cannot create groups and therefore this 1989 * interface does not need the perf_event_ctx_lock() magic. 1990 */ 1991 void perf_event_disable(struct perf_event *event) 1992 { 1993 struct perf_event_context *ctx; 1994 1995 ctx = perf_event_ctx_lock(event); 1996 _perf_event_disable(event); 1997 perf_event_ctx_unlock(event, ctx); 1998 } 1999 EXPORT_SYMBOL_GPL(perf_event_disable); 2000 2001 void perf_event_disable_inatomic(struct perf_event *event) 2002 { 2003 event->pending_disable = 1; 2004 irq_work_queue(&event->pending); 2005 } 2006 2007 static void perf_set_shadow_time(struct perf_event *event, 2008 struct perf_event_context *ctx, 2009 u64 tstamp) 2010 { 2011 /* 2012 * use the correct time source for the time snapshot 2013 * 2014 * We could get by without this by leveraging the 2015 * fact that to get to this function, the caller 2016 * has most likely already called update_context_time() 2017 * and update_cgrp_time_xx() and thus both timestamp 2018 * are identical (or very close). Given that tstamp is, 2019 * already adjusted for cgroup, we could say that: 2020 * tstamp - ctx->timestamp 2021 * is equivalent to 2022 * tstamp - cgrp->timestamp. 2023 * 2024 * Then, in perf_output_read(), the calculation would 2025 * work with no changes because: 2026 * - event is guaranteed scheduled in 2027 * - no scheduled out in between 2028 * - thus the timestamp would be the same 2029 * 2030 * But this is a bit hairy. 2031 * 2032 * So instead, we have an explicit cgroup call to remain 2033 * within the time time source all along. We believe it 2034 * is cleaner and simpler to understand. 2035 */ 2036 if (is_cgroup_event(event)) 2037 perf_cgroup_set_shadow_time(event, tstamp); 2038 else 2039 event->shadow_ctx_time = tstamp - ctx->timestamp; 2040 } 2041 2042 #define MAX_INTERRUPTS (~0ULL) 2043 2044 static void perf_log_throttle(struct perf_event *event, int enable); 2045 static void perf_log_itrace_start(struct perf_event *event); 2046 2047 static int 2048 event_sched_in(struct perf_event *event, 2049 struct perf_cpu_context *cpuctx, 2050 struct perf_event_context *ctx) 2051 { 2052 u64 tstamp = perf_event_time(event); 2053 int ret = 0; 2054 2055 lockdep_assert_held(&ctx->lock); 2056 2057 if (event->state <= PERF_EVENT_STATE_OFF) 2058 return 0; 2059 2060 WRITE_ONCE(event->oncpu, smp_processor_id()); 2061 /* 2062 * Order event::oncpu write to happen before the ACTIVE state 2063 * is visible. 2064 */ 2065 smp_wmb(); 2066 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 2067 2068 /* 2069 * Unthrottle events, since we scheduled we might have missed several 2070 * ticks already, also for a heavily scheduling task there is little 2071 * guarantee it'll get a tick in a timely manner. 2072 */ 2073 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2074 perf_log_throttle(event, 1); 2075 event->hw.interrupts = 0; 2076 } 2077 2078 /* 2079 * The new state must be visible before we turn it on in the hardware: 2080 */ 2081 smp_wmb(); 2082 2083 perf_pmu_disable(event->pmu); 2084 2085 perf_set_shadow_time(event, ctx, tstamp); 2086 2087 perf_log_itrace_start(event); 2088 2089 if (event->pmu->add(event, PERF_EF_START)) { 2090 event->state = PERF_EVENT_STATE_INACTIVE; 2091 event->oncpu = -1; 2092 ret = -EAGAIN; 2093 goto out; 2094 } 2095 2096 event->tstamp_running += tstamp - event->tstamp_stopped; 2097 2098 if (!is_software_event(event)) 2099 cpuctx->active_oncpu++; 2100 if (!ctx->nr_active++) 2101 perf_event_ctx_activate(ctx); 2102 if (event->attr.freq && event->attr.sample_freq) 2103 ctx->nr_freq++; 2104 2105 if (event->attr.exclusive) 2106 cpuctx->exclusive = 1; 2107 2108 out: 2109 perf_pmu_enable(event->pmu); 2110 2111 return ret; 2112 } 2113 2114 static int 2115 group_sched_in(struct perf_event *group_event, 2116 struct perf_cpu_context *cpuctx, 2117 struct perf_event_context *ctx) 2118 { 2119 struct perf_event *event, *partial_group = NULL; 2120 struct pmu *pmu = ctx->pmu; 2121 u64 now = ctx->time; 2122 bool simulate = false; 2123 2124 if (group_event->state == PERF_EVENT_STATE_OFF) 2125 return 0; 2126 2127 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2128 2129 if (event_sched_in(group_event, cpuctx, ctx)) { 2130 pmu->cancel_txn(pmu); 2131 perf_mux_hrtimer_restart(cpuctx); 2132 return -EAGAIN; 2133 } 2134 2135 /* 2136 * Schedule in siblings as one group (if any): 2137 */ 2138 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2139 if (event_sched_in(event, cpuctx, ctx)) { 2140 partial_group = event; 2141 goto group_error; 2142 } 2143 } 2144 2145 if (!pmu->commit_txn(pmu)) 2146 return 0; 2147 2148 group_error: 2149 /* 2150 * Groups can be scheduled in as one unit only, so undo any 2151 * partial group before returning: 2152 * The events up to the failed event are scheduled out normally, 2153 * tstamp_stopped will be updated. 2154 * 2155 * The failed events and the remaining siblings need to have 2156 * their timings updated as if they had gone thru event_sched_in() 2157 * and event_sched_out(). This is required to get consistent timings 2158 * across the group. This also takes care of the case where the group 2159 * could never be scheduled by ensuring tstamp_stopped is set to mark 2160 * the time the event was actually stopped, such that time delta 2161 * calculation in update_event_times() is correct. 2162 */ 2163 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2164 if (event == partial_group) 2165 simulate = true; 2166 2167 if (simulate) { 2168 event->tstamp_running += now - event->tstamp_stopped; 2169 event->tstamp_stopped = now; 2170 } else { 2171 event_sched_out(event, cpuctx, ctx); 2172 } 2173 } 2174 event_sched_out(group_event, cpuctx, ctx); 2175 2176 pmu->cancel_txn(pmu); 2177 2178 perf_mux_hrtimer_restart(cpuctx); 2179 2180 return -EAGAIN; 2181 } 2182 2183 /* 2184 * Work out whether we can put this event group on the CPU now. 2185 */ 2186 static int group_can_go_on(struct perf_event *event, 2187 struct perf_cpu_context *cpuctx, 2188 int can_add_hw) 2189 { 2190 /* 2191 * Groups consisting entirely of software events can always go on. 2192 */ 2193 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2194 return 1; 2195 /* 2196 * If an exclusive group is already on, no other hardware 2197 * events can go on. 2198 */ 2199 if (cpuctx->exclusive) 2200 return 0; 2201 /* 2202 * If this group is exclusive and there are already 2203 * events on the CPU, it can't go on. 2204 */ 2205 if (event->attr.exclusive && cpuctx->active_oncpu) 2206 return 0; 2207 /* 2208 * Otherwise, try to add it if all previous groups were able 2209 * to go on. 2210 */ 2211 return can_add_hw; 2212 } 2213 2214 static void add_event_to_ctx(struct perf_event *event, 2215 struct perf_event_context *ctx) 2216 { 2217 u64 tstamp = perf_event_time(event); 2218 2219 list_add_event(event, ctx); 2220 perf_group_attach(event); 2221 event->tstamp_enabled = tstamp; 2222 event->tstamp_running = tstamp; 2223 event->tstamp_stopped = tstamp; 2224 } 2225 2226 static void ctx_sched_out(struct perf_event_context *ctx, 2227 struct perf_cpu_context *cpuctx, 2228 enum event_type_t event_type); 2229 static void 2230 ctx_sched_in(struct perf_event_context *ctx, 2231 struct perf_cpu_context *cpuctx, 2232 enum event_type_t event_type, 2233 struct task_struct *task); 2234 2235 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2236 struct perf_event_context *ctx, 2237 enum event_type_t event_type) 2238 { 2239 if (!cpuctx->task_ctx) 2240 return; 2241 2242 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2243 return; 2244 2245 ctx_sched_out(ctx, cpuctx, event_type); 2246 } 2247 2248 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2249 struct perf_event_context *ctx, 2250 struct task_struct *task) 2251 { 2252 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2253 if (ctx) 2254 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2255 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2256 if (ctx) 2257 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2258 } 2259 2260 /* 2261 * We want to maintain the following priority of scheduling: 2262 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2263 * - task pinned (EVENT_PINNED) 2264 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2265 * - task flexible (EVENT_FLEXIBLE). 2266 * 2267 * In order to avoid unscheduling and scheduling back in everything every 2268 * time an event is added, only do it for the groups of equal priority and 2269 * below. 2270 * 2271 * This can be called after a batch operation on task events, in which case 2272 * event_type is a bit mask of the types of events involved. For CPU events, 2273 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2274 */ 2275 static void ctx_resched(struct perf_cpu_context *cpuctx, 2276 struct perf_event_context *task_ctx, 2277 enum event_type_t event_type) 2278 { 2279 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2280 bool cpu_event = !!(event_type & EVENT_CPU); 2281 2282 /* 2283 * If pinned groups are involved, flexible groups also need to be 2284 * scheduled out. 2285 */ 2286 if (event_type & EVENT_PINNED) 2287 event_type |= EVENT_FLEXIBLE; 2288 2289 perf_pmu_disable(cpuctx->ctx.pmu); 2290 if (task_ctx) 2291 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2292 2293 /* 2294 * Decide which cpu ctx groups to schedule out based on the types 2295 * of events that caused rescheduling: 2296 * - EVENT_CPU: schedule out corresponding groups; 2297 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2298 * - otherwise, do nothing more. 2299 */ 2300 if (cpu_event) 2301 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2302 else if (ctx_event_type & EVENT_PINNED) 2303 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2304 2305 perf_event_sched_in(cpuctx, task_ctx, current); 2306 perf_pmu_enable(cpuctx->ctx.pmu); 2307 } 2308 2309 /* 2310 * Cross CPU call to install and enable a performance event 2311 * 2312 * Very similar to remote_function() + event_function() but cannot assume that 2313 * things like ctx->is_active and cpuctx->task_ctx are set. 2314 */ 2315 static int __perf_install_in_context(void *info) 2316 { 2317 struct perf_event *event = info; 2318 struct perf_event_context *ctx = event->ctx; 2319 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2320 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2321 bool reprogram = true; 2322 int ret = 0; 2323 2324 raw_spin_lock(&cpuctx->ctx.lock); 2325 if (ctx->task) { 2326 raw_spin_lock(&ctx->lock); 2327 task_ctx = ctx; 2328 2329 reprogram = (ctx->task == current); 2330 2331 /* 2332 * If the task is running, it must be running on this CPU, 2333 * otherwise we cannot reprogram things. 2334 * 2335 * If its not running, we don't care, ctx->lock will 2336 * serialize against it becoming runnable. 2337 */ 2338 if (task_curr(ctx->task) && !reprogram) { 2339 ret = -ESRCH; 2340 goto unlock; 2341 } 2342 2343 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2344 } else if (task_ctx) { 2345 raw_spin_lock(&task_ctx->lock); 2346 } 2347 2348 if (reprogram) { 2349 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2350 add_event_to_ctx(event, ctx); 2351 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2352 } else { 2353 add_event_to_ctx(event, ctx); 2354 } 2355 2356 unlock: 2357 perf_ctx_unlock(cpuctx, task_ctx); 2358 2359 return ret; 2360 } 2361 2362 /* 2363 * Attach a performance event to a context. 2364 * 2365 * Very similar to event_function_call, see comment there. 2366 */ 2367 static void 2368 perf_install_in_context(struct perf_event_context *ctx, 2369 struct perf_event *event, 2370 int cpu) 2371 { 2372 struct task_struct *task = READ_ONCE(ctx->task); 2373 2374 lockdep_assert_held(&ctx->mutex); 2375 2376 if (event->cpu != -1) 2377 event->cpu = cpu; 2378 2379 /* 2380 * Ensures that if we can observe event->ctx, both the event and ctx 2381 * will be 'complete'. See perf_iterate_sb_cpu(). 2382 */ 2383 smp_store_release(&event->ctx, ctx); 2384 2385 if (!task) { 2386 cpu_function_call(cpu, __perf_install_in_context, event); 2387 return; 2388 } 2389 2390 /* 2391 * Should not happen, we validate the ctx is still alive before calling. 2392 */ 2393 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2394 return; 2395 2396 /* 2397 * Installing events is tricky because we cannot rely on ctx->is_active 2398 * to be set in case this is the nr_events 0 -> 1 transition. 2399 * 2400 * Instead we use task_curr(), which tells us if the task is running. 2401 * However, since we use task_curr() outside of rq::lock, we can race 2402 * against the actual state. This means the result can be wrong. 2403 * 2404 * If we get a false positive, we retry, this is harmless. 2405 * 2406 * If we get a false negative, things are complicated. If we are after 2407 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2408 * value must be correct. If we're before, it doesn't matter since 2409 * perf_event_context_sched_in() will program the counter. 2410 * 2411 * However, this hinges on the remote context switch having observed 2412 * our task->perf_event_ctxp[] store, such that it will in fact take 2413 * ctx::lock in perf_event_context_sched_in(). 2414 * 2415 * We do this by task_function_call(), if the IPI fails to hit the task 2416 * we know any future context switch of task must see the 2417 * perf_event_ctpx[] store. 2418 */ 2419 2420 /* 2421 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2422 * task_cpu() load, such that if the IPI then does not find the task 2423 * running, a future context switch of that task must observe the 2424 * store. 2425 */ 2426 smp_mb(); 2427 again: 2428 if (!task_function_call(task, __perf_install_in_context, event)) 2429 return; 2430 2431 raw_spin_lock_irq(&ctx->lock); 2432 task = ctx->task; 2433 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2434 /* 2435 * Cannot happen because we already checked above (which also 2436 * cannot happen), and we hold ctx->mutex, which serializes us 2437 * against perf_event_exit_task_context(). 2438 */ 2439 raw_spin_unlock_irq(&ctx->lock); 2440 return; 2441 } 2442 /* 2443 * If the task is not running, ctx->lock will avoid it becoming so, 2444 * thus we can safely install the event. 2445 */ 2446 if (task_curr(task)) { 2447 raw_spin_unlock_irq(&ctx->lock); 2448 goto again; 2449 } 2450 add_event_to_ctx(event, ctx); 2451 raw_spin_unlock_irq(&ctx->lock); 2452 } 2453 2454 /* 2455 * Put a event into inactive state and update time fields. 2456 * Enabling the leader of a group effectively enables all 2457 * the group members that aren't explicitly disabled, so we 2458 * have to update their ->tstamp_enabled also. 2459 * Note: this works for group members as well as group leaders 2460 * since the non-leader members' sibling_lists will be empty. 2461 */ 2462 static void __perf_event_mark_enabled(struct perf_event *event) 2463 { 2464 struct perf_event *sub; 2465 u64 tstamp = perf_event_time(event); 2466 2467 event->state = PERF_EVENT_STATE_INACTIVE; 2468 event->tstamp_enabled = tstamp - event->total_time_enabled; 2469 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2470 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2471 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2472 } 2473 } 2474 2475 /* 2476 * Cross CPU call to enable a performance event 2477 */ 2478 static void __perf_event_enable(struct perf_event *event, 2479 struct perf_cpu_context *cpuctx, 2480 struct perf_event_context *ctx, 2481 void *info) 2482 { 2483 struct perf_event *leader = event->group_leader; 2484 struct perf_event_context *task_ctx; 2485 2486 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2487 event->state <= PERF_EVENT_STATE_ERROR) 2488 return; 2489 2490 if (ctx->is_active) 2491 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2492 2493 __perf_event_mark_enabled(event); 2494 2495 if (!ctx->is_active) 2496 return; 2497 2498 if (!event_filter_match(event)) { 2499 if (is_cgroup_event(event)) 2500 perf_cgroup_defer_enabled(event); 2501 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2502 return; 2503 } 2504 2505 /* 2506 * If the event is in a group and isn't the group leader, 2507 * then don't put it on unless the group is on. 2508 */ 2509 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2510 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2511 return; 2512 } 2513 2514 task_ctx = cpuctx->task_ctx; 2515 if (ctx->task) 2516 WARN_ON_ONCE(task_ctx != ctx); 2517 2518 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2519 } 2520 2521 /* 2522 * Enable a event. 2523 * 2524 * If event->ctx is a cloned context, callers must make sure that 2525 * every task struct that event->ctx->task could possibly point to 2526 * remains valid. This condition is satisfied when called through 2527 * perf_event_for_each_child or perf_event_for_each as described 2528 * for perf_event_disable. 2529 */ 2530 static void _perf_event_enable(struct perf_event *event) 2531 { 2532 struct perf_event_context *ctx = event->ctx; 2533 2534 raw_spin_lock_irq(&ctx->lock); 2535 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2536 event->state < PERF_EVENT_STATE_ERROR) { 2537 raw_spin_unlock_irq(&ctx->lock); 2538 return; 2539 } 2540 2541 /* 2542 * If the event is in error state, clear that first. 2543 * 2544 * That way, if we see the event in error state below, we know that it 2545 * has gone back into error state, as distinct from the task having 2546 * been scheduled away before the cross-call arrived. 2547 */ 2548 if (event->state == PERF_EVENT_STATE_ERROR) 2549 event->state = PERF_EVENT_STATE_OFF; 2550 raw_spin_unlock_irq(&ctx->lock); 2551 2552 event_function_call(event, __perf_event_enable, NULL); 2553 } 2554 2555 /* 2556 * See perf_event_disable(); 2557 */ 2558 void perf_event_enable(struct perf_event *event) 2559 { 2560 struct perf_event_context *ctx; 2561 2562 ctx = perf_event_ctx_lock(event); 2563 _perf_event_enable(event); 2564 perf_event_ctx_unlock(event, ctx); 2565 } 2566 EXPORT_SYMBOL_GPL(perf_event_enable); 2567 2568 struct stop_event_data { 2569 struct perf_event *event; 2570 unsigned int restart; 2571 }; 2572 2573 static int __perf_event_stop(void *info) 2574 { 2575 struct stop_event_data *sd = info; 2576 struct perf_event *event = sd->event; 2577 2578 /* if it's already INACTIVE, do nothing */ 2579 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2580 return 0; 2581 2582 /* matches smp_wmb() in event_sched_in() */ 2583 smp_rmb(); 2584 2585 /* 2586 * There is a window with interrupts enabled before we get here, 2587 * so we need to check again lest we try to stop another CPU's event. 2588 */ 2589 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2590 return -EAGAIN; 2591 2592 event->pmu->stop(event, PERF_EF_UPDATE); 2593 2594 /* 2595 * May race with the actual stop (through perf_pmu_output_stop()), 2596 * but it is only used for events with AUX ring buffer, and such 2597 * events will refuse to restart because of rb::aux_mmap_count==0, 2598 * see comments in perf_aux_output_begin(). 2599 * 2600 * Since this is happening on a event-local CPU, no trace is lost 2601 * while restarting. 2602 */ 2603 if (sd->restart) 2604 event->pmu->start(event, 0); 2605 2606 return 0; 2607 } 2608 2609 static int perf_event_stop(struct perf_event *event, int restart) 2610 { 2611 struct stop_event_data sd = { 2612 .event = event, 2613 .restart = restart, 2614 }; 2615 int ret = 0; 2616 2617 do { 2618 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2619 return 0; 2620 2621 /* matches smp_wmb() in event_sched_in() */ 2622 smp_rmb(); 2623 2624 /* 2625 * We only want to restart ACTIVE events, so if the event goes 2626 * inactive here (event->oncpu==-1), there's nothing more to do; 2627 * fall through with ret==-ENXIO. 2628 */ 2629 ret = cpu_function_call(READ_ONCE(event->oncpu), 2630 __perf_event_stop, &sd); 2631 } while (ret == -EAGAIN); 2632 2633 return ret; 2634 } 2635 2636 /* 2637 * In order to contain the amount of racy and tricky in the address filter 2638 * configuration management, it is a two part process: 2639 * 2640 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2641 * we update the addresses of corresponding vmas in 2642 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2643 * (p2) when an event is scheduled in (pmu::add), it calls 2644 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2645 * if the generation has changed since the previous call. 2646 * 2647 * If (p1) happens while the event is active, we restart it to force (p2). 2648 * 2649 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2650 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2651 * ioctl; 2652 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2653 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2654 * for reading; 2655 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2656 * of exec. 2657 */ 2658 void perf_event_addr_filters_sync(struct perf_event *event) 2659 { 2660 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2661 2662 if (!has_addr_filter(event)) 2663 return; 2664 2665 raw_spin_lock(&ifh->lock); 2666 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2667 event->pmu->addr_filters_sync(event); 2668 event->hw.addr_filters_gen = event->addr_filters_gen; 2669 } 2670 raw_spin_unlock(&ifh->lock); 2671 } 2672 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2673 2674 static int _perf_event_refresh(struct perf_event *event, int refresh) 2675 { 2676 /* 2677 * not supported on inherited events 2678 */ 2679 if (event->attr.inherit || !is_sampling_event(event)) 2680 return -EINVAL; 2681 2682 atomic_add(refresh, &event->event_limit); 2683 _perf_event_enable(event); 2684 2685 return 0; 2686 } 2687 2688 /* 2689 * See perf_event_disable() 2690 */ 2691 int perf_event_refresh(struct perf_event *event, int refresh) 2692 { 2693 struct perf_event_context *ctx; 2694 int ret; 2695 2696 ctx = perf_event_ctx_lock(event); 2697 ret = _perf_event_refresh(event, refresh); 2698 perf_event_ctx_unlock(event, ctx); 2699 2700 return ret; 2701 } 2702 EXPORT_SYMBOL_GPL(perf_event_refresh); 2703 2704 static void ctx_sched_out(struct perf_event_context *ctx, 2705 struct perf_cpu_context *cpuctx, 2706 enum event_type_t event_type) 2707 { 2708 int is_active = ctx->is_active; 2709 struct perf_event *event; 2710 2711 lockdep_assert_held(&ctx->lock); 2712 2713 if (likely(!ctx->nr_events)) { 2714 /* 2715 * See __perf_remove_from_context(). 2716 */ 2717 WARN_ON_ONCE(ctx->is_active); 2718 if (ctx->task) 2719 WARN_ON_ONCE(cpuctx->task_ctx); 2720 return; 2721 } 2722 2723 ctx->is_active &= ~event_type; 2724 if (!(ctx->is_active & EVENT_ALL)) 2725 ctx->is_active = 0; 2726 2727 if (ctx->task) { 2728 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2729 if (!ctx->is_active) 2730 cpuctx->task_ctx = NULL; 2731 } 2732 2733 /* 2734 * Always update time if it was set; not only when it changes. 2735 * Otherwise we can 'forget' to update time for any but the last 2736 * context we sched out. For example: 2737 * 2738 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2739 * ctx_sched_out(.event_type = EVENT_PINNED) 2740 * 2741 * would only update time for the pinned events. 2742 */ 2743 if (is_active & EVENT_TIME) { 2744 /* update (and stop) ctx time */ 2745 update_context_time(ctx); 2746 update_cgrp_time_from_cpuctx(cpuctx); 2747 } 2748 2749 is_active ^= ctx->is_active; /* changed bits */ 2750 2751 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2752 return; 2753 2754 perf_pmu_disable(ctx->pmu); 2755 if (is_active & EVENT_PINNED) { 2756 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2757 group_sched_out(event, cpuctx, ctx); 2758 } 2759 2760 if (is_active & EVENT_FLEXIBLE) { 2761 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2762 group_sched_out(event, cpuctx, ctx); 2763 } 2764 perf_pmu_enable(ctx->pmu); 2765 } 2766 2767 /* 2768 * Test whether two contexts are equivalent, i.e. whether they have both been 2769 * cloned from the same version of the same context. 2770 * 2771 * Equivalence is measured using a generation number in the context that is 2772 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2773 * and list_del_event(). 2774 */ 2775 static int context_equiv(struct perf_event_context *ctx1, 2776 struct perf_event_context *ctx2) 2777 { 2778 lockdep_assert_held(&ctx1->lock); 2779 lockdep_assert_held(&ctx2->lock); 2780 2781 /* Pinning disables the swap optimization */ 2782 if (ctx1->pin_count || ctx2->pin_count) 2783 return 0; 2784 2785 /* If ctx1 is the parent of ctx2 */ 2786 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2787 return 1; 2788 2789 /* If ctx2 is the parent of ctx1 */ 2790 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2791 return 1; 2792 2793 /* 2794 * If ctx1 and ctx2 have the same parent; we flatten the parent 2795 * hierarchy, see perf_event_init_context(). 2796 */ 2797 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2798 ctx1->parent_gen == ctx2->parent_gen) 2799 return 1; 2800 2801 /* Unmatched */ 2802 return 0; 2803 } 2804 2805 static void __perf_event_sync_stat(struct perf_event *event, 2806 struct perf_event *next_event) 2807 { 2808 u64 value; 2809 2810 if (!event->attr.inherit_stat) 2811 return; 2812 2813 /* 2814 * Update the event value, we cannot use perf_event_read() 2815 * because we're in the middle of a context switch and have IRQs 2816 * disabled, which upsets smp_call_function_single(), however 2817 * we know the event must be on the current CPU, therefore we 2818 * don't need to use it. 2819 */ 2820 switch (event->state) { 2821 case PERF_EVENT_STATE_ACTIVE: 2822 event->pmu->read(event); 2823 /* fall-through */ 2824 2825 case PERF_EVENT_STATE_INACTIVE: 2826 update_event_times(event); 2827 break; 2828 2829 default: 2830 break; 2831 } 2832 2833 /* 2834 * In order to keep per-task stats reliable we need to flip the event 2835 * values when we flip the contexts. 2836 */ 2837 value = local64_read(&next_event->count); 2838 value = local64_xchg(&event->count, value); 2839 local64_set(&next_event->count, value); 2840 2841 swap(event->total_time_enabled, next_event->total_time_enabled); 2842 swap(event->total_time_running, next_event->total_time_running); 2843 2844 /* 2845 * Since we swizzled the values, update the user visible data too. 2846 */ 2847 perf_event_update_userpage(event); 2848 perf_event_update_userpage(next_event); 2849 } 2850 2851 static void perf_event_sync_stat(struct perf_event_context *ctx, 2852 struct perf_event_context *next_ctx) 2853 { 2854 struct perf_event *event, *next_event; 2855 2856 if (!ctx->nr_stat) 2857 return; 2858 2859 update_context_time(ctx); 2860 2861 event = list_first_entry(&ctx->event_list, 2862 struct perf_event, event_entry); 2863 2864 next_event = list_first_entry(&next_ctx->event_list, 2865 struct perf_event, event_entry); 2866 2867 while (&event->event_entry != &ctx->event_list && 2868 &next_event->event_entry != &next_ctx->event_list) { 2869 2870 __perf_event_sync_stat(event, next_event); 2871 2872 event = list_next_entry(event, event_entry); 2873 next_event = list_next_entry(next_event, event_entry); 2874 } 2875 } 2876 2877 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2878 struct task_struct *next) 2879 { 2880 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2881 struct perf_event_context *next_ctx; 2882 struct perf_event_context *parent, *next_parent; 2883 struct perf_cpu_context *cpuctx; 2884 int do_switch = 1; 2885 2886 if (likely(!ctx)) 2887 return; 2888 2889 cpuctx = __get_cpu_context(ctx); 2890 if (!cpuctx->task_ctx) 2891 return; 2892 2893 rcu_read_lock(); 2894 next_ctx = next->perf_event_ctxp[ctxn]; 2895 if (!next_ctx) 2896 goto unlock; 2897 2898 parent = rcu_dereference(ctx->parent_ctx); 2899 next_parent = rcu_dereference(next_ctx->parent_ctx); 2900 2901 /* If neither context have a parent context; they cannot be clones. */ 2902 if (!parent && !next_parent) 2903 goto unlock; 2904 2905 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2906 /* 2907 * Looks like the two contexts are clones, so we might be 2908 * able to optimize the context switch. We lock both 2909 * contexts and check that they are clones under the 2910 * lock (including re-checking that neither has been 2911 * uncloned in the meantime). It doesn't matter which 2912 * order we take the locks because no other cpu could 2913 * be trying to lock both of these tasks. 2914 */ 2915 raw_spin_lock(&ctx->lock); 2916 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2917 if (context_equiv(ctx, next_ctx)) { 2918 WRITE_ONCE(ctx->task, next); 2919 WRITE_ONCE(next_ctx->task, task); 2920 2921 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2922 2923 /* 2924 * RCU_INIT_POINTER here is safe because we've not 2925 * modified the ctx and the above modification of 2926 * ctx->task and ctx->task_ctx_data are immaterial 2927 * since those values are always verified under 2928 * ctx->lock which we're now holding. 2929 */ 2930 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2931 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2932 2933 do_switch = 0; 2934 2935 perf_event_sync_stat(ctx, next_ctx); 2936 } 2937 raw_spin_unlock(&next_ctx->lock); 2938 raw_spin_unlock(&ctx->lock); 2939 } 2940 unlock: 2941 rcu_read_unlock(); 2942 2943 if (do_switch) { 2944 raw_spin_lock(&ctx->lock); 2945 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2946 raw_spin_unlock(&ctx->lock); 2947 } 2948 } 2949 2950 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2951 2952 void perf_sched_cb_dec(struct pmu *pmu) 2953 { 2954 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2955 2956 this_cpu_dec(perf_sched_cb_usages); 2957 2958 if (!--cpuctx->sched_cb_usage) 2959 list_del(&cpuctx->sched_cb_entry); 2960 } 2961 2962 2963 void perf_sched_cb_inc(struct pmu *pmu) 2964 { 2965 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2966 2967 if (!cpuctx->sched_cb_usage++) 2968 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2969 2970 this_cpu_inc(perf_sched_cb_usages); 2971 } 2972 2973 /* 2974 * This function provides the context switch callback to the lower code 2975 * layer. It is invoked ONLY when the context switch callback is enabled. 2976 * 2977 * This callback is relevant even to per-cpu events; for example multi event 2978 * PEBS requires this to provide PID/TID information. This requires we flush 2979 * all queued PEBS records before we context switch to a new task. 2980 */ 2981 static void perf_pmu_sched_task(struct task_struct *prev, 2982 struct task_struct *next, 2983 bool sched_in) 2984 { 2985 struct perf_cpu_context *cpuctx; 2986 struct pmu *pmu; 2987 2988 if (prev == next) 2989 return; 2990 2991 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2992 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2993 2994 if (WARN_ON_ONCE(!pmu->sched_task)) 2995 continue; 2996 2997 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2998 perf_pmu_disable(pmu); 2999 3000 pmu->sched_task(cpuctx->task_ctx, sched_in); 3001 3002 perf_pmu_enable(pmu); 3003 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3004 } 3005 } 3006 3007 static void perf_event_switch(struct task_struct *task, 3008 struct task_struct *next_prev, bool sched_in); 3009 3010 #define for_each_task_context_nr(ctxn) \ 3011 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3012 3013 /* 3014 * Called from scheduler to remove the events of the current task, 3015 * with interrupts disabled. 3016 * 3017 * We stop each event and update the event value in event->count. 3018 * 3019 * This does not protect us against NMI, but disable() 3020 * sets the disabled bit in the control field of event _before_ 3021 * accessing the event control register. If a NMI hits, then it will 3022 * not restart the event. 3023 */ 3024 void __perf_event_task_sched_out(struct task_struct *task, 3025 struct task_struct *next) 3026 { 3027 int ctxn; 3028 3029 if (__this_cpu_read(perf_sched_cb_usages)) 3030 perf_pmu_sched_task(task, next, false); 3031 3032 if (atomic_read(&nr_switch_events)) 3033 perf_event_switch(task, next, false); 3034 3035 for_each_task_context_nr(ctxn) 3036 perf_event_context_sched_out(task, ctxn, next); 3037 3038 /* 3039 * if cgroup events exist on this CPU, then we need 3040 * to check if we have to switch out PMU state. 3041 * cgroup event are system-wide mode only 3042 */ 3043 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3044 perf_cgroup_sched_out(task, next); 3045 } 3046 3047 /* 3048 * Called with IRQs disabled 3049 */ 3050 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3051 enum event_type_t event_type) 3052 { 3053 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3054 } 3055 3056 static void 3057 ctx_pinned_sched_in(struct perf_event_context *ctx, 3058 struct perf_cpu_context *cpuctx) 3059 { 3060 struct perf_event *event; 3061 3062 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3063 if (event->state <= PERF_EVENT_STATE_OFF) 3064 continue; 3065 if (!event_filter_match(event)) 3066 continue; 3067 3068 /* may need to reset tstamp_enabled */ 3069 if (is_cgroup_event(event)) 3070 perf_cgroup_mark_enabled(event, ctx); 3071 3072 if (group_can_go_on(event, cpuctx, 1)) 3073 group_sched_in(event, cpuctx, ctx); 3074 3075 /* 3076 * If this pinned group hasn't been scheduled, 3077 * put it in error state. 3078 */ 3079 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3080 update_group_times(event); 3081 event->state = PERF_EVENT_STATE_ERROR; 3082 } 3083 } 3084 } 3085 3086 static void 3087 ctx_flexible_sched_in(struct perf_event_context *ctx, 3088 struct perf_cpu_context *cpuctx) 3089 { 3090 struct perf_event *event; 3091 int can_add_hw = 1; 3092 3093 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3094 /* Ignore events in OFF or ERROR state */ 3095 if (event->state <= PERF_EVENT_STATE_OFF) 3096 continue; 3097 /* 3098 * Listen to the 'cpu' scheduling filter constraint 3099 * of events: 3100 */ 3101 if (!event_filter_match(event)) 3102 continue; 3103 3104 /* may need to reset tstamp_enabled */ 3105 if (is_cgroup_event(event)) 3106 perf_cgroup_mark_enabled(event, ctx); 3107 3108 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3109 if (group_sched_in(event, cpuctx, ctx)) 3110 can_add_hw = 0; 3111 } 3112 } 3113 } 3114 3115 static void 3116 ctx_sched_in(struct perf_event_context *ctx, 3117 struct perf_cpu_context *cpuctx, 3118 enum event_type_t event_type, 3119 struct task_struct *task) 3120 { 3121 int is_active = ctx->is_active; 3122 u64 now; 3123 3124 lockdep_assert_held(&ctx->lock); 3125 3126 if (likely(!ctx->nr_events)) 3127 return; 3128 3129 ctx->is_active |= (event_type | EVENT_TIME); 3130 if (ctx->task) { 3131 if (!is_active) 3132 cpuctx->task_ctx = ctx; 3133 else 3134 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3135 } 3136 3137 is_active ^= ctx->is_active; /* changed bits */ 3138 3139 if (is_active & EVENT_TIME) { 3140 /* start ctx time */ 3141 now = perf_clock(); 3142 ctx->timestamp = now; 3143 perf_cgroup_set_timestamp(task, ctx); 3144 } 3145 3146 /* 3147 * First go through the list and put on any pinned groups 3148 * in order to give them the best chance of going on. 3149 */ 3150 if (is_active & EVENT_PINNED) 3151 ctx_pinned_sched_in(ctx, cpuctx); 3152 3153 /* Then walk through the lower prio flexible groups */ 3154 if (is_active & EVENT_FLEXIBLE) 3155 ctx_flexible_sched_in(ctx, cpuctx); 3156 } 3157 3158 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3159 enum event_type_t event_type, 3160 struct task_struct *task) 3161 { 3162 struct perf_event_context *ctx = &cpuctx->ctx; 3163 3164 ctx_sched_in(ctx, cpuctx, event_type, task); 3165 } 3166 3167 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3168 struct task_struct *task) 3169 { 3170 struct perf_cpu_context *cpuctx; 3171 3172 cpuctx = __get_cpu_context(ctx); 3173 if (cpuctx->task_ctx == ctx) 3174 return; 3175 3176 perf_ctx_lock(cpuctx, ctx); 3177 perf_pmu_disable(ctx->pmu); 3178 /* 3179 * We want to keep the following priority order: 3180 * cpu pinned (that don't need to move), task pinned, 3181 * cpu flexible, task flexible. 3182 * 3183 * However, if task's ctx is not carrying any pinned 3184 * events, no need to flip the cpuctx's events around. 3185 */ 3186 if (!list_empty(&ctx->pinned_groups)) 3187 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3188 perf_event_sched_in(cpuctx, ctx, task); 3189 perf_pmu_enable(ctx->pmu); 3190 perf_ctx_unlock(cpuctx, ctx); 3191 } 3192 3193 /* 3194 * Called from scheduler to add the events of the current task 3195 * with interrupts disabled. 3196 * 3197 * We restore the event value and then enable it. 3198 * 3199 * This does not protect us against NMI, but enable() 3200 * sets the enabled bit in the control field of event _before_ 3201 * accessing the event control register. If a NMI hits, then it will 3202 * keep the event running. 3203 */ 3204 void __perf_event_task_sched_in(struct task_struct *prev, 3205 struct task_struct *task) 3206 { 3207 struct perf_event_context *ctx; 3208 int ctxn; 3209 3210 /* 3211 * If cgroup events exist on this CPU, then we need to check if we have 3212 * to switch in PMU state; cgroup event are system-wide mode only. 3213 * 3214 * Since cgroup events are CPU events, we must schedule these in before 3215 * we schedule in the task events. 3216 */ 3217 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3218 perf_cgroup_sched_in(prev, task); 3219 3220 for_each_task_context_nr(ctxn) { 3221 ctx = task->perf_event_ctxp[ctxn]; 3222 if (likely(!ctx)) 3223 continue; 3224 3225 perf_event_context_sched_in(ctx, task); 3226 } 3227 3228 if (atomic_read(&nr_switch_events)) 3229 perf_event_switch(task, prev, true); 3230 3231 if (__this_cpu_read(perf_sched_cb_usages)) 3232 perf_pmu_sched_task(prev, task, true); 3233 } 3234 3235 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3236 { 3237 u64 frequency = event->attr.sample_freq; 3238 u64 sec = NSEC_PER_SEC; 3239 u64 divisor, dividend; 3240 3241 int count_fls, nsec_fls, frequency_fls, sec_fls; 3242 3243 count_fls = fls64(count); 3244 nsec_fls = fls64(nsec); 3245 frequency_fls = fls64(frequency); 3246 sec_fls = 30; 3247 3248 /* 3249 * We got @count in @nsec, with a target of sample_freq HZ 3250 * the target period becomes: 3251 * 3252 * @count * 10^9 3253 * period = ------------------- 3254 * @nsec * sample_freq 3255 * 3256 */ 3257 3258 /* 3259 * Reduce accuracy by one bit such that @a and @b converge 3260 * to a similar magnitude. 3261 */ 3262 #define REDUCE_FLS(a, b) \ 3263 do { \ 3264 if (a##_fls > b##_fls) { \ 3265 a >>= 1; \ 3266 a##_fls--; \ 3267 } else { \ 3268 b >>= 1; \ 3269 b##_fls--; \ 3270 } \ 3271 } while (0) 3272 3273 /* 3274 * Reduce accuracy until either term fits in a u64, then proceed with 3275 * the other, so that finally we can do a u64/u64 division. 3276 */ 3277 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3278 REDUCE_FLS(nsec, frequency); 3279 REDUCE_FLS(sec, count); 3280 } 3281 3282 if (count_fls + sec_fls > 64) { 3283 divisor = nsec * frequency; 3284 3285 while (count_fls + sec_fls > 64) { 3286 REDUCE_FLS(count, sec); 3287 divisor >>= 1; 3288 } 3289 3290 dividend = count * sec; 3291 } else { 3292 dividend = count * sec; 3293 3294 while (nsec_fls + frequency_fls > 64) { 3295 REDUCE_FLS(nsec, frequency); 3296 dividend >>= 1; 3297 } 3298 3299 divisor = nsec * frequency; 3300 } 3301 3302 if (!divisor) 3303 return dividend; 3304 3305 return div64_u64(dividend, divisor); 3306 } 3307 3308 static DEFINE_PER_CPU(int, perf_throttled_count); 3309 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3310 3311 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3312 { 3313 struct hw_perf_event *hwc = &event->hw; 3314 s64 period, sample_period; 3315 s64 delta; 3316 3317 period = perf_calculate_period(event, nsec, count); 3318 3319 delta = (s64)(period - hwc->sample_period); 3320 delta = (delta + 7) / 8; /* low pass filter */ 3321 3322 sample_period = hwc->sample_period + delta; 3323 3324 if (!sample_period) 3325 sample_period = 1; 3326 3327 hwc->sample_period = sample_period; 3328 3329 if (local64_read(&hwc->period_left) > 8*sample_period) { 3330 if (disable) 3331 event->pmu->stop(event, PERF_EF_UPDATE); 3332 3333 local64_set(&hwc->period_left, 0); 3334 3335 if (disable) 3336 event->pmu->start(event, PERF_EF_RELOAD); 3337 } 3338 } 3339 3340 /* 3341 * combine freq adjustment with unthrottling to avoid two passes over the 3342 * events. At the same time, make sure, having freq events does not change 3343 * the rate of unthrottling as that would introduce bias. 3344 */ 3345 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3346 int needs_unthr) 3347 { 3348 struct perf_event *event; 3349 struct hw_perf_event *hwc; 3350 u64 now, period = TICK_NSEC; 3351 s64 delta; 3352 3353 /* 3354 * only need to iterate over all events iff: 3355 * - context have events in frequency mode (needs freq adjust) 3356 * - there are events to unthrottle on this cpu 3357 */ 3358 if (!(ctx->nr_freq || needs_unthr)) 3359 return; 3360 3361 raw_spin_lock(&ctx->lock); 3362 perf_pmu_disable(ctx->pmu); 3363 3364 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3365 if (event->state != PERF_EVENT_STATE_ACTIVE) 3366 continue; 3367 3368 if (!event_filter_match(event)) 3369 continue; 3370 3371 perf_pmu_disable(event->pmu); 3372 3373 hwc = &event->hw; 3374 3375 if (hwc->interrupts == MAX_INTERRUPTS) { 3376 hwc->interrupts = 0; 3377 perf_log_throttle(event, 1); 3378 event->pmu->start(event, 0); 3379 } 3380 3381 if (!event->attr.freq || !event->attr.sample_freq) 3382 goto next; 3383 3384 /* 3385 * stop the event and update event->count 3386 */ 3387 event->pmu->stop(event, PERF_EF_UPDATE); 3388 3389 now = local64_read(&event->count); 3390 delta = now - hwc->freq_count_stamp; 3391 hwc->freq_count_stamp = now; 3392 3393 /* 3394 * restart the event 3395 * reload only if value has changed 3396 * we have stopped the event so tell that 3397 * to perf_adjust_period() to avoid stopping it 3398 * twice. 3399 */ 3400 if (delta > 0) 3401 perf_adjust_period(event, period, delta, false); 3402 3403 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3404 next: 3405 perf_pmu_enable(event->pmu); 3406 } 3407 3408 perf_pmu_enable(ctx->pmu); 3409 raw_spin_unlock(&ctx->lock); 3410 } 3411 3412 /* 3413 * Round-robin a context's events: 3414 */ 3415 static void rotate_ctx(struct perf_event_context *ctx) 3416 { 3417 /* 3418 * Rotate the first entry last of non-pinned groups. Rotation might be 3419 * disabled by the inheritance code. 3420 */ 3421 if (!ctx->rotate_disable) 3422 list_rotate_left(&ctx->flexible_groups); 3423 } 3424 3425 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3426 { 3427 struct perf_event_context *ctx = NULL; 3428 int rotate = 0; 3429 3430 if (cpuctx->ctx.nr_events) { 3431 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3432 rotate = 1; 3433 } 3434 3435 ctx = cpuctx->task_ctx; 3436 if (ctx && ctx->nr_events) { 3437 if (ctx->nr_events != ctx->nr_active) 3438 rotate = 1; 3439 } 3440 3441 if (!rotate) 3442 goto done; 3443 3444 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3445 perf_pmu_disable(cpuctx->ctx.pmu); 3446 3447 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3448 if (ctx) 3449 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3450 3451 rotate_ctx(&cpuctx->ctx); 3452 if (ctx) 3453 rotate_ctx(ctx); 3454 3455 perf_event_sched_in(cpuctx, ctx, current); 3456 3457 perf_pmu_enable(cpuctx->ctx.pmu); 3458 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3459 done: 3460 3461 return rotate; 3462 } 3463 3464 void perf_event_task_tick(void) 3465 { 3466 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3467 struct perf_event_context *ctx, *tmp; 3468 int throttled; 3469 3470 WARN_ON(!irqs_disabled()); 3471 3472 __this_cpu_inc(perf_throttled_seq); 3473 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3474 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3475 3476 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3477 perf_adjust_freq_unthr_context(ctx, throttled); 3478 } 3479 3480 static int event_enable_on_exec(struct perf_event *event, 3481 struct perf_event_context *ctx) 3482 { 3483 if (!event->attr.enable_on_exec) 3484 return 0; 3485 3486 event->attr.enable_on_exec = 0; 3487 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3488 return 0; 3489 3490 __perf_event_mark_enabled(event); 3491 3492 return 1; 3493 } 3494 3495 /* 3496 * Enable all of a task's events that have been marked enable-on-exec. 3497 * This expects task == current. 3498 */ 3499 static void perf_event_enable_on_exec(int ctxn) 3500 { 3501 struct perf_event_context *ctx, *clone_ctx = NULL; 3502 enum event_type_t event_type = 0; 3503 struct perf_cpu_context *cpuctx; 3504 struct perf_event *event; 3505 unsigned long flags; 3506 int enabled = 0; 3507 3508 local_irq_save(flags); 3509 ctx = current->perf_event_ctxp[ctxn]; 3510 if (!ctx || !ctx->nr_events) 3511 goto out; 3512 3513 cpuctx = __get_cpu_context(ctx); 3514 perf_ctx_lock(cpuctx, ctx); 3515 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3516 list_for_each_entry(event, &ctx->event_list, event_entry) { 3517 enabled |= event_enable_on_exec(event, ctx); 3518 event_type |= get_event_type(event); 3519 } 3520 3521 /* 3522 * Unclone and reschedule this context if we enabled any event. 3523 */ 3524 if (enabled) { 3525 clone_ctx = unclone_ctx(ctx); 3526 ctx_resched(cpuctx, ctx, event_type); 3527 } else { 3528 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3529 } 3530 perf_ctx_unlock(cpuctx, ctx); 3531 3532 out: 3533 local_irq_restore(flags); 3534 3535 if (clone_ctx) 3536 put_ctx(clone_ctx); 3537 } 3538 3539 struct perf_read_data { 3540 struct perf_event *event; 3541 bool group; 3542 int ret; 3543 }; 3544 3545 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3546 { 3547 u16 local_pkg, event_pkg; 3548 3549 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3550 int local_cpu = smp_processor_id(); 3551 3552 event_pkg = topology_physical_package_id(event_cpu); 3553 local_pkg = topology_physical_package_id(local_cpu); 3554 3555 if (event_pkg == local_pkg) 3556 return local_cpu; 3557 } 3558 3559 return event_cpu; 3560 } 3561 3562 /* 3563 * Cross CPU call to read the hardware event 3564 */ 3565 static void __perf_event_read(void *info) 3566 { 3567 struct perf_read_data *data = info; 3568 struct perf_event *sub, *event = data->event; 3569 struct perf_event_context *ctx = event->ctx; 3570 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3571 struct pmu *pmu = event->pmu; 3572 3573 /* 3574 * If this is a task context, we need to check whether it is 3575 * the current task context of this cpu. If not it has been 3576 * scheduled out before the smp call arrived. In that case 3577 * event->count would have been updated to a recent sample 3578 * when the event was scheduled out. 3579 */ 3580 if (ctx->task && cpuctx->task_ctx != ctx) 3581 return; 3582 3583 raw_spin_lock(&ctx->lock); 3584 if (ctx->is_active) { 3585 update_context_time(ctx); 3586 update_cgrp_time_from_event(event); 3587 } 3588 3589 update_event_times(event); 3590 if (event->state != PERF_EVENT_STATE_ACTIVE) 3591 goto unlock; 3592 3593 if (!data->group) { 3594 pmu->read(event); 3595 data->ret = 0; 3596 goto unlock; 3597 } 3598 3599 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3600 3601 pmu->read(event); 3602 3603 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3604 update_event_times(sub); 3605 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3606 /* 3607 * Use sibling's PMU rather than @event's since 3608 * sibling could be on different (eg: software) PMU. 3609 */ 3610 sub->pmu->read(sub); 3611 } 3612 } 3613 3614 data->ret = pmu->commit_txn(pmu); 3615 3616 unlock: 3617 raw_spin_unlock(&ctx->lock); 3618 } 3619 3620 static inline u64 perf_event_count(struct perf_event *event) 3621 { 3622 if (event->pmu->count) 3623 return event->pmu->count(event); 3624 3625 return __perf_event_count(event); 3626 } 3627 3628 /* 3629 * NMI-safe method to read a local event, that is an event that 3630 * is: 3631 * - either for the current task, or for this CPU 3632 * - does not have inherit set, for inherited task events 3633 * will not be local and we cannot read them atomically 3634 * - must not have a pmu::count method 3635 */ 3636 u64 perf_event_read_local(struct perf_event *event) 3637 { 3638 unsigned long flags; 3639 u64 val; 3640 3641 /* 3642 * Disabling interrupts avoids all counter scheduling (context 3643 * switches, timer based rotation and IPIs). 3644 */ 3645 local_irq_save(flags); 3646 3647 /* If this is a per-task event, it must be for current */ 3648 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3649 event->hw.target != current); 3650 3651 /* If this is a per-CPU event, it must be for this CPU */ 3652 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3653 event->cpu != smp_processor_id()); 3654 3655 /* 3656 * It must not be an event with inherit set, we cannot read 3657 * all child counters from atomic context. 3658 */ 3659 WARN_ON_ONCE(event->attr.inherit); 3660 3661 /* 3662 * It must not have a pmu::count method, those are not 3663 * NMI safe. 3664 */ 3665 WARN_ON_ONCE(event->pmu->count); 3666 3667 /* 3668 * If the event is currently on this CPU, its either a per-task event, 3669 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3670 * oncpu == -1). 3671 */ 3672 if (event->oncpu == smp_processor_id()) 3673 event->pmu->read(event); 3674 3675 val = local64_read(&event->count); 3676 local_irq_restore(flags); 3677 3678 return val; 3679 } 3680 3681 static int perf_event_read(struct perf_event *event, bool group) 3682 { 3683 int event_cpu, ret = 0; 3684 3685 /* 3686 * If event is enabled and currently active on a CPU, update the 3687 * value in the event structure: 3688 */ 3689 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3690 struct perf_read_data data = { 3691 .event = event, 3692 .group = group, 3693 .ret = 0, 3694 }; 3695 3696 event_cpu = READ_ONCE(event->oncpu); 3697 if ((unsigned)event_cpu >= nr_cpu_ids) 3698 return 0; 3699 3700 preempt_disable(); 3701 event_cpu = __perf_event_read_cpu(event, event_cpu); 3702 3703 /* 3704 * Purposely ignore the smp_call_function_single() return 3705 * value. 3706 * 3707 * If event_cpu isn't a valid CPU it means the event got 3708 * scheduled out and that will have updated the event count. 3709 * 3710 * Therefore, either way, we'll have an up-to-date event count 3711 * after this. 3712 */ 3713 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3714 preempt_enable(); 3715 ret = data.ret; 3716 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3717 struct perf_event_context *ctx = event->ctx; 3718 unsigned long flags; 3719 3720 raw_spin_lock_irqsave(&ctx->lock, flags); 3721 /* 3722 * may read while context is not active 3723 * (e.g., thread is blocked), in that case 3724 * we cannot update context time 3725 */ 3726 if (ctx->is_active) { 3727 update_context_time(ctx); 3728 update_cgrp_time_from_event(event); 3729 } 3730 if (group) 3731 update_group_times(event); 3732 else 3733 update_event_times(event); 3734 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3735 } 3736 3737 return ret; 3738 } 3739 3740 /* 3741 * Initialize the perf_event context in a task_struct: 3742 */ 3743 static void __perf_event_init_context(struct perf_event_context *ctx) 3744 { 3745 raw_spin_lock_init(&ctx->lock); 3746 mutex_init(&ctx->mutex); 3747 INIT_LIST_HEAD(&ctx->active_ctx_list); 3748 INIT_LIST_HEAD(&ctx->pinned_groups); 3749 INIT_LIST_HEAD(&ctx->flexible_groups); 3750 INIT_LIST_HEAD(&ctx->event_list); 3751 atomic_set(&ctx->refcount, 1); 3752 } 3753 3754 static struct perf_event_context * 3755 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3756 { 3757 struct perf_event_context *ctx; 3758 3759 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3760 if (!ctx) 3761 return NULL; 3762 3763 __perf_event_init_context(ctx); 3764 if (task) { 3765 ctx->task = task; 3766 get_task_struct(task); 3767 } 3768 ctx->pmu = pmu; 3769 3770 return ctx; 3771 } 3772 3773 static struct task_struct * 3774 find_lively_task_by_vpid(pid_t vpid) 3775 { 3776 struct task_struct *task; 3777 3778 rcu_read_lock(); 3779 if (!vpid) 3780 task = current; 3781 else 3782 task = find_task_by_vpid(vpid); 3783 if (task) 3784 get_task_struct(task); 3785 rcu_read_unlock(); 3786 3787 if (!task) 3788 return ERR_PTR(-ESRCH); 3789 3790 return task; 3791 } 3792 3793 /* 3794 * Returns a matching context with refcount and pincount. 3795 */ 3796 static struct perf_event_context * 3797 find_get_context(struct pmu *pmu, struct task_struct *task, 3798 struct perf_event *event) 3799 { 3800 struct perf_event_context *ctx, *clone_ctx = NULL; 3801 struct perf_cpu_context *cpuctx; 3802 void *task_ctx_data = NULL; 3803 unsigned long flags; 3804 int ctxn, err; 3805 int cpu = event->cpu; 3806 3807 if (!task) { 3808 /* Must be root to operate on a CPU event: */ 3809 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3810 return ERR_PTR(-EACCES); 3811 3812 /* 3813 * We could be clever and allow to attach a event to an 3814 * offline CPU and activate it when the CPU comes up, but 3815 * that's for later. 3816 */ 3817 if (!cpu_online(cpu)) 3818 return ERR_PTR(-ENODEV); 3819 3820 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3821 ctx = &cpuctx->ctx; 3822 get_ctx(ctx); 3823 ++ctx->pin_count; 3824 3825 return ctx; 3826 } 3827 3828 err = -EINVAL; 3829 ctxn = pmu->task_ctx_nr; 3830 if (ctxn < 0) 3831 goto errout; 3832 3833 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3834 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3835 if (!task_ctx_data) { 3836 err = -ENOMEM; 3837 goto errout; 3838 } 3839 } 3840 3841 retry: 3842 ctx = perf_lock_task_context(task, ctxn, &flags); 3843 if (ctx) { 3844 clone_ctx = unclone_ctx(ctx); 3845 ++ctx->pin_count; 3846 3847 if (task_ctx_data && !ctx->task_ctx_data) { 3848 ctx->task_ctx_data = task_ctx_data; 3849 task_ctx_data = NULL; 3850 } 3851 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3852 3853 if (clone_ctx) 3854 put_ctx(clone_ctx); 3855 } else { 3856 ctx = alloc_perf_context(pmu, task); 3857 err = -ENOMEM; 3858 if (!ctx) 3859 goto errout; 3860 3861 if (task_ctx_data) { 3862 ctx->task_ctx_data = task_ctx_data; 3863 task_ctx_data = NULL; 3864 } 3865 3866 err = 0; 3867 mutex_lock(&task->perf_event_mutex); 3868 /* 3869 * If it has already passed perf_event_exit_task(). 3870 * we must see PF_EXITING, it takes this mutex too. 3871 */ 3872 if (task->flags & PF_EXITING) 3873 err = -ESRCH; 3874 else if (task->perf_event_ctxp[ctxn]) 3875 err = -EAGAIN; 3876 else { 3877 get_ctx(ctx); 3878 ++ctx->pin_count; 3879 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3880 } 3881 mutex_unlock(&task->perf_event_mutex); 3882 3883 if (unlikely(err)) { 3884 put_ctx(ctx); 3885 3886 if (err == -EAGAIN) 3887 goto retry; 3888 goto errout; 3889 } 3890 } 3891 3892 kfree(task_ctx_data); 3893 return ctx; 3894 3895 errout: 3896 kfree(task_ctx_data); 3897 return ERR_PTR(err); 3898 } 3899 3900 static void perf_event_free_filter(struct perf_event *event); 3901 static void perf_event_free_bpf_prog(struct perf_event *event); 3902 3903 static void free_event_rcu(struct rcu_head *head) 3904 { 3905 struct perf_event *event; 3906 3907 event = container_of(head, struct perf_event, rcu_head); 3908 if (event->ns) 3909 put_pid_ns(event->ns); 3910 perf_event_free_filter(event); 3911 kfree(event); 3912 } 3913 3914 static void ring_buffer_attach(struct perf_event *event, 3915 struct ring_buffer *rb); 3916 3917 static void detach_sb_event(struct perf_event *event) 3918 { 3919 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3920 3921 raw_spin_lock(&pel->lock); 3922 list_del_rcu(&event->sb_list); 3923 raw_spin_unlock(&pel->lock); 3924 } 3925 3926 static bool is_sb_event(struct perf_event *event) 3927 { 3928 struct perf_event_attr *attr = &event->attr; 3929 3930 if (event->parent) 3931 return false; 3932 3933 if (event->attach_state & PERF_ATTACH_TASK) 3934 return false; 3935 3936 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3937 attr->comm || attr->comm_exec || 3938 attr->task || 3939 attr->context_switch) 3940 return true; 3941 return false; 3942 } 3943 3944 static void unaccount_pmu_sb_event(struct perf_event *event) 3945 { 3946 if (is_sb_event(event)) 3947 detach_sb_event(event); 3948 } 3949 3950 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3951 { 3952 if (event->parent) 3953 return; 3954 3955 if (is_cgroup_event(event)) 3956 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3957 } 3958 3959 #ifdef CONFIG_NO_HZ_FULL 3960 static DEFINE_SPINLOCK(nr_freq_lock); 3961 #endif 3962 3963 static void unaccount_freq_event_nohz(void) 3964 { 3965 #ifdef CONFIG_NO_HZ_FULL 3966 spin_lock(&nr_freq_lock); 3967 if (atomic_dec_and_test(&nr_freq_events)) 3968 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3969 spin_unlock(&nr_freq_lock); 3970 #endif 3971 } 3972 3973 static void unaccount_freq_event(void) 3974 { 3975 if (tick_nohz_full_enabled()) 3976 unaccount_freq_event_nohz(); 3977 else 3978 atomic_dec(&nr_freq_events); 3979 } 3980 3981 static void unaccount_event(struct perf_event *event) 3982 { 3983 bool dec = false; 3984 3985 if (event->parent) 3986 return; 3987 3988 if (event->attach_state & PERF_ATTACH_TASK) 3989 dec = true; 3990 if (event->attr.mmap || event->attr.mmap_data) 3991 atomic_dec(&nr_mmap_events); 3992 if (event->attr.comm) 3993 atomic_dec(&nr_comm_events); 3994 if (event->attr.task) 3995 atomic_dec(&nr_task_events); 3996 if (event->attr.freq) 3997 unaccount_freq_event(); 3998 if (event->attr.context_switch) { 3999 dec = true; 4000 atomic_dec(&nr_switch_events); 4001 } 4002 if (is_cgroup_event(event)) 4003 dec = true; 4004 if (has_branch_stack(event)) 4005 dec = true; 4006 4007 if (dec) { 4008 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4009 schedule_delayed_work(&perf_sched_work, HZ); 4010 } 4011 4012 unaccount_event_cpu(event, event->cpu); 4013 4014 unaccount_pmu_sb_event(event); 4015 } 4016 4017 static void perf_sched_delayed(struct work_struct *work) 4018 { 4019 mutex_lock(&perf_sched_mutex); 4020 if (atomic_dec_and_test(&perf_sched_count)) 4021 static_branch_disable(&perf_sched_events); 4022 mutex_unlock(&perf_sched_mutex); 4023 } 4024 4025 /* 4026 * The following implement mutual exclusion of events on "exclusive" pmus 4027 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4028 * at a time, so we disallow creating events that might conflict, namely: 4029 * 4030 * 1) cpu-wide events in the presence of per-task events, 4031 * 2) per-task events in the presence of cpu-wide events, 4032 * 3) two matching events on the same context. 4033 * 4034 * The former two cases are handled in the allocation path (perf_event_alloc(), 4035 * _free_event()), the latter -- before the first perf_install_in_context(). 4036 */ 4037 static int exclusive_event_init(struct perf_event *event) 4038 { 4039 struct pmu *pmu = event->pmu; 4040 4041 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4042 return 0; 4043 4044 /* 4045 * Prevent co-existence of per-task and cpu-wide events on the 4046 * same exclusive pmu. 4047 * 4048 * Negative pmu::exclusive_cnt means there are cpu-wide 4049 * events on this "exclusive" pmu, positive means there are 4050 * per-task events. 4051 * 4052 * Since this is called in perf_event_alloc() path, event::ctx 4053 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4054 * to mean "per-task event", because unlike other attach states it 4055 * never gets cleared. 4056 */ 4057 if (event->attach_state & PERF_ATTACH_TASK) { 4058 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4059 return -EBUSY; 4060 } else { 4061 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4062 return -EBUSY; 4063 } 4064 4065 return 0; 4066 } 4067 4068 static void exclusive_event_destroy(struct perf_event *event) 4069 { 4070 struct pmu *pmu = event->pmu; 4071 4072 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4073 return; 4074 4075 /* see comment in exclusive_event_init() */ 4076 if (event->attach_state & PERF_ATTACH_TASK) 4077 atomic_dec(&pmu->exclusive_cnt); 4078 else 4079 atomic_inc(&pmu->exclusive_cnt); 4080 } 4081 4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4083 { 4084 if ((e1->pmu == e2->pmu) && 4085 (e1->cpu == e2->cpu || 4086 e1->cpu == -1 || 4087 e2->cpu == -1)) 4088 return true; 4089 return false; 4090 } 4091 4092 /* Called under the same ctx::mutex as perf_install_in_context() */ 4093 static bool exclusive_event_installable(struct perf_event *event, 4094 struct perf_event_context *ctx) 4095 { 4096 struct perf_event *iter_event; 4097 struct pmu *pmu = event->pmu; 4098 4099 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4100 return true; 4101 4102 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4103 if (exclusive_event_match(iter_event, event)) 4104 return false; 4105 } 4106 4107 return true; 4108 } 4109 4110 static void perf_addr_filters_splice(struct perf_event *event, 4111 struct list_head *head); 4112 4113 static void _free_event(struct perf_event *event) 4114 { 4115 irq_work_sync(&event->pending); 4116 4117 unaccount_event(event); 4118 4119 if (event->rb) { 4120 /* 4121 * Can happen when we close an event with re-directed output. 4122 * 4123 * Since we have a 0 refcount, perf_mmap_close() will skip 4124 * over us; possibly making our ring_buffer_put() the last. 4125 */ 4126 mutex_lock(&event->mmap_mutex); 4127 ring_buffer_attach(event, NULL); 4128 mutex_unlock(&event->mmap_mutex); 4129 } 4130 4131 if (is_cgroup_event(event)) 4132 perf_detach_cgroup(event); 4133 4134 if (!event->parent) { 4135 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4136 put_callchain_buffers(); 4137 } 4138 4139 perf_event_free_bpf_prog(event); 4140 perf_addr_filters_splice(event, NULL); 4141 kfree(event->addr_filters_offs); 4142 4143 if (event->destroy) 4144 event->destroy(event); 4145 4146 if (event->ctx) 4147 put_ctx(event->ctx); 4148 4149 exclusive_event_destroy(event); 4150 module_put(event->pmu->module); 4151 4152 call_rcu(&event->rcu_head, free_event_rcu); 4153 } 4154 4155 /* 4156 * Used to free events which have a known refcount of 1, such as in error paths 4157 * where the event isn't exposed yet and inherited events. 4158 */ 4159 static void free_event(struct perf_event *event) 4160 { 4161 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4162 "unexpected event refcount: %ld; ptr=%p\n", 4163 atomic_long_read(&event->refcount), event)) { 4164 /* leak to avoid use-after-free */ 4165 return; 4166 } 4167 4168 _free_event(event); 4169 } 4170 4171 /* 4172 * Remove user event from the owner task. 4173 */ 4174 static void perf_remove_from_owner(struct perf_event *event) 4175 { 4176 struct task_struct *owner; 4177 4178 rcu_read_lock(); 4179 /* 4180 * Matches the smp_store_release() in perf_event_exit_task(). If we 4181 * observe !owner it means the list deletion is complete and we can 4182 * indeed free this event, otherwise we need to serialize on 4183 * owner->perf_event_mutex. 4184 */ 4185 owner = lockless_dereference(event->owner); 4186 if (owner) { 4187 /* 4188 * Since delayed_put_task_struct() also drops the last 4189 * task reference we can safely take a new reference 4190 * while holding the rcu_read_lock(). 4191 */ 4192 get_task_struct(owner); 4193 } 4194 rcu_read_unlock(); 4195 4196 if (owner) { 4197 /* 4198 * If we're here through perf_event_exit_task() we're already 4199 * holding ctx->mutex which would be an inversion wrt. the 4200 * normal lock order. 4201 * 4202 * However we can safely take this lock because its the child 4203 * ctx->mutex. 4204 */ 4205 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4206 4207 /* 4208 * We have to re-check the event->owner field, if it is cleared 4209 * we raced with perf_event_exit_task(), acquiring the mutex 4210 * ensured they're done, and we can proceed with freeing the 4211 * event. 4212 */ 4213 if (event->owner) { 4214 list_del_init(&event->owner_entry); 4215 smp_store_release(&event->owner, NULL); 4216 } 4217 mutex_unlock(&owner->perf_event_mutex); 4218 put_task_struct(owner); 4219 } 4220 } 4221 4222 static void put_event(struct perf_event *event) 4223 { 4224 if (!atomic_long_dec_and_test(&event->refcount)) 4225 return; 4226 4227 _free_event(event); 4228 } 4229 4230 /* 4231 * Kill an event dead; while event:refcount will preserve the event 4232 * object, it will not preserve its functionality. Once the last 'user' 4233 * gives up the object, we'll destroy the thing. 4234 */ 4235 int perf_event_release_kernel(struct perf_event *event) 4236 { 4237 struct perf_event_context *ctx = event->ctx; 4238 struct perf_event *child, *tmp; 4239 4240 /* 4241 * If we got here through err_file: fput(event_file); we will not have 4242 * attached to a context yet. 4243 */ 4244 if (!ctx) { 4245 WARN_ON_ONCE(event->attach_state & 4246 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4247 goto no_ctx; 4248 } 4249 4250 if (!is_kernel_event(event)) 4251 perf_remove_from_owner(event); 4252 4253 ctx = perf_event_ctx_lock(event); 4254 WARN_ON_ONCE(ctx->parent_ctx); 4255 perf_remove_from_context(event, DETACH_GROUP); 4256 4257 raw_spin_lock_irq(&ctx->lock); 4258 /* 4259 * Mark this event as STATE_DEAD, there is no external reference to it 4260 * anymore. 4261 * 4262 * Anybody acquiring event->child_mutex after the below loop _must_ 4263 * also see this, most importantly inherit_event() which will avoid 4264 * placing more children on the list. 4265 * 4266 * Thus this guarantees that we will in fact observe and kill _ALL_ 4267 * child events. 4268 */ 4269 event->state = PERF_EVENT_STATE_DEAD; 4270 raw_spin_unlock_irq(&ctx->lock); 4271 4272 perf_event_ctx_unlock(event, ctx); 4273 4274 again: 4275 mutex_lock(&event->child_mutex); 4276 list_for_each_entry(child, &event->child_list, child_list) { 4277 4278 /* 4279 * Cannot change, child events are not migrated, see the 4280 * comment with perf_event_ctx_lock_nested(). 4281 */ 4282 ctx = lockless_dereference(child->ctx); 4283 /* 4284 * Since child_mutex nests inside ctx::mutex, we must jump 4285 * through hoops. We start by grabbing a reference on the ctx. 4286 * 4287 * Since the event cannot get freed while we hold the 4288 * child_mutex, the context must also exist and have a !0 4289 * reference count. 4290 */ 4291 get_ctx(ctx); 4292 4293 /* 4294 * Now that we have a ctx ref, we can drop child_mutex, and 4295 * acquire ctx::mutex without fear of it going away. Then we 4296 * can re-acquire child_mutex. 4297 */ 4298 mutex_unlock(&event->child_mutex); 4299 mutex_lock(&ctx->mutex); 4300 mutex_lock(&event->child_mutex); 4301 4302 /* 4303 * Now that we hold ctx::mutex and child_mutex, revalidate our 4304 * state, if child is still the first entry, it didn't get freed 4305 * and we can continue doing so. 4306 */ 4307 tmp = list_first_entry_or_null(&event->child_list, 4308 struct perf_event, child_list); 4309 if (tmp == child) { 4310 perf_remove_from_context(child, DETACH_GROUP); 4311 list_del(&child->child_list); 4312 free_event(child); 4313 /* 4314 * This matches the refcount bump in inherit_event(); 4315 * this can't be the last reference. 4316 */ 4317 put_event(event); 4318 } 4319 4320 mutex_unlock(&event->child_mutex); 4321 mutex_unlock(&ctx->mutex); 4322 put_ctx(ctx); 4323 goto again; 4324 } 4325 mutex_unlock(&event->child_mutex); 4326 4327 no_ctx: 4328 put_event(event); /* Must be the 'last' reference */ 4329 return 0; 4330 } 4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4332 4333 /* 4334 * Called when the last reference to the file is gone. 4335 */ 4336 static int perf_release(struct inode *inode, struct file *file) 4337 { 4338 perf_event_release_kernel(file->private_data); 4339 return 0; 4340 } 4341 4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4343 { 4344 struct perf_event *child; 4345 u64 total = 0; 4346 4347 *enabled = 0; 4348 *running = 0; 4349 4350 mutex_lock(&event->child_mutex); 4351 4352 (void)perf_event_read(event, false); 4353 total += perf_event_count(event); 4354 4355 *enabled += event->total_time_enabled + 4356 atomic64_read(&event->child_total_time_enabled); 4357 *running += event->total_time_running + 4358 atomic64_read(&event->child_total_time_running); 4359 4360 list_for_each_entry(child, &event->child_list, child_list) { 4361 (void)perf_event_read(child, false); 4362 total += perf_event_count(child); 4363 *enabled += child->total_time_enabled; 4364 *running += child->total_time_running; 4365 } 4366 mutex_unlock(&event->child_mutex); 4367 4368 return total; 4369 } 4370 EXPORT_SYMBOL_GPL(perf_event_read_value); 4371 4372 static int __perf_read_group_add(struct perf_event *leader, 4373 u64 read_format, u64 *values) 4374 { 4375 struct perf_event *sub; 4376 int n = 1; /* skip @nr */ 4377 int ret; 4378 4379 ret = perf_event_read(leader, true); 4380 if (ret) 4381 return ret; 4382 4383 /* 4384 * Since we co-schedule groups, {enabled,running} times of siblings 4385 * will be identical to those of the leader, so we only publish one 4386 * set. 4387 */ 4388 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4389 values[n++] += leader->total_time_enabled + 4390 atomic64_read(&leader->child_total_time_enabled); 4391 } 4392 4393 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4394 values[n++] += leader->total_time_running + 4395 atomic64_read(&leader->child_total_time_running); 4396 } 4397 4398 /* 4399 * Write {count,id} tuples for every sibling. 4400 */ 4401 values[n++] += perf_event_count(leader); 4402 if (read_format & PERF_FORMAT_ID) 4403 values[n++] = primary_event_id(leader); 4404 4405 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4406 values[n++] += perf_event_count(sub); 4407 if (read_format & PERF_FORMAT_ID) 4408 values[n++] = primary_event_id(sub); 4409 } 4410 4411 return 0; 4412 } 4413 4414 static int perf_read_group(struct perf_event *event, 4415 u64 read_format, char __user *buf) 4416 { 4417 struct perf_event *leader = event->group_leader, *child; 4418 struct perf_event_context *ctx = leader->ctx; 4419 int ret; 4420 u64 *values; 4421 4422 lockdep_assert_held(&ctx->mutex); 4423 4424 values = kzalloc(event->read_size, GFP_KERNEL); 4425 if (!values) 4426 return -ENOMEM; 4427 4428 values[0] = 1 + leader->nr_siblings; 4429 4430 /* 4431 * By locking the child_mutex of the leader we effectively 4432 * lock the child list of all siblings.. XXX explain how. 4433 */ 4434 mutex_lock(&leader->child_mutex); 4435 4436 ret = __perf_read_group_add(leader, read_format, values); 4437 if (ret) 4438 goto unlock; 4439 4440 list_for_each_entry(child, &leader->child_list, child_list) { 4441 ret = __perf_read_group_add(child, read_format, values); 4442 if (ret) 4443 goto unlock; 4444 } 4445 4446 mutex_unlock(&leader->child_mutex); 4447 4448 ret = event->read_size; 4449 if (copy_to_user(buf, values, event->read_size)) 4450 ret = -EFAULT; 4451 goto out; 4452 4453 unlock: 4454 mutex_unlock(&leader->child_mutex); 4455 out: 4456 kfree(values); 4457 return ret; 4458 } 4459 4460 static int perf_read_one(struct perf_event *event, 4461 u64 read_format, char __user *buf) 4462 { 4463 u64 enabled, running; 4464 u64 values[4]; 4465 int n = 0; 4466 4467 values[n++] = perf_event_read_value(event, &enabled, &running); 4468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4469 values[n++] = enabled; 4470 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4471 values[n++] = running; 4472 if (read_format & PERF_FORMAT_ID) 4473 values[n++] = primary_event_id(event); 4474 4475 if (copy_to_user(buf, values, n * sizeof(u64))) 4476 return -EFAULT; 4477 4478 return n * sizeof(u64); 4479 } 4480 4481 static bool is_event_hup(struct perf_event *event) 4482 { 4483 bool no_children; 4484 4485 if (event->state > PERF_EVENT_STATE_EXIT) 4486 return false; 4487 4488 mutex_lock(&event->child_mutex); 4489 no_children = list_empty(&event->child_list); 4490 mutex_unlock(&event->child_mutex); 4491 return no_children; 4492 } 4493 4494 /* 4495 * Read the performance event - simple non blocking version for now 4496 */ 4497 static ssize_t 4498 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4499 { 4500 u64 read_format = event->attr.read_format; 4501 int ret; 4502 4503 /* 4504 * Return end-of-file for a read on a event that is in 4505 * error state (i.e. because it was pinned but it couldn't be 4506 * scheduled on to the CPU at some point). 4507 */ 4508 if (event->state == PERF_EVENT_STATE_ERROR) 4509 return 0; 4510 4511 if (count < event->read_size) 4512 return -ENOSPC; 4513 4514 WARN_ON_ONCE(event->ctx->parent_ctx); 4515 if (read_format & PERF_FORMAT_GROUP) 4516 ret = perf_read_group(event, read_format, buf); 4517 else 4518 ret = perf_read_one(event, read_format, buf); 4519 4520 return ret; 4521 } 4522 4523 static ssize_t 4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4525 { 4526 struct perf_event *event = file->private_data; 4527 struct perf_event_context *ctx; 4528 int ret; 4529 4530 ctx = perf_event_ctx_lock(event); 4531 ret = __perf_read(event, buf, count); 4532 perf_event_ctx_unlock(event, ctx); 4533 4534 return ret; 4535 } 4536 4537 static unsigned int perf_poll(struct file *file, poll_table *wait) 4538 { 4539 struct perf_event *event = file->private_data; 4540 struct ring_buffer *rb; 4541 unsigned int events = POLLHUP; 4542 4543 poll_wait(file, &event->waitq, wait); 4544 4545 if (is_event_hup(event)) 4546 return events; 4547 4548 /* 4549 * Pin the event->rb by taking event->mmap_mutex; otherwise 4550 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4551 */ 4552 mutex_lock(&event->mmap_mutex); 4553 rb = event->rb; 4554 if (rb) 4555 events = atomic_xchg(&rb->poll, 0); 4556 mutex_unlock(&event->mmap_mutex); 4557 return events; 4558 } 4559 4560 static void _perf_event_reset(struct perf_event *event) 4561 { 4562 (void)perf_event_read(event, false); 4563 local64_set(&event->count, 0); 4564 perf_event_update_userpage(event); 4565 } 4566 4567 /* 4568 * Holding the top-level event's child_mutex means that any 4569 * descendant process that has inherited this event will block 4570 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4571 * task existence requirements of perf_event_enable/disable. 4572 */ 4573 static void perf_event_for_each_child(struct perf_event *event, 4574 void (*func)(struct perf_event *)) 4575 { 4576 struct perf_event *child; 4577 4578 WARN_ON_ONCE(event->ctx->parent_ctx); 4579 4580 mutex_lock(&event->child_mutex); 4581 func(event); 4582 list_for_each_entry(child, &event->child_list, child_list) 4583 func(child); 4584 mutex_unlock(&event->child_mutex); 4585 } 4586 4587 static void perf_event_for_each(struct perf_event *event, 4588 void (*func)(struct perf_event *)) 4589 { 4590 struct perf_event_context *ctx = event->ctx; 4591 struct perf_event *sibling; 4592 4593 lockdep_assert_held(&ctx->mutex); 4594 4595 event = event->group_leader; 4596 4597 perf_event_for_each_child(event, func); 4598 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4599 perf_event_for_each_child(sibling, func); 4600 } 4601 4602 static void __perf_event_period(struct perf_event *event, 4603 struct perf_cpu_context *cpuctx, 4604 struct perf_event_context *ctx, 4605 void *info) 4606 { 4607 u64 value = *((u64 *)info); 4608 bool active; 4609 4610 if (event->attr.freq) { 4611 event->attr.sample_freq = value; 4612 } else { 4613 event->attr.sample_period = value; 4614 event->hw.sample_period = value; 4615 } 4616 4617 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4618 if (active) { 4619 perf_pmu_disable(ctx->pmu); 4620 /* 4621 * We could be throttled; unthrottle now to avoid the tick 4622 * trying to unthrottle while we already re-started the event. 4623 */ 4624 if (event->hw.interrupts == MAX_INTERRUPTS) { 4625 event->hw.interrupts = 0; 4626 perf_log_throttle(event, 1); 4627 } 4628 event->pmu->stop(event, PERF_EF_UPDATE); 4629 } 4630 4631 local64_set(&event->hw.period_left, 0); 4632 4633 if (active) { 4634 event->pmu->start(event, PERF_EF_RELOAD); 4635 perf_pmu_enable(ctx->pmu); 4636 } 4637 } 4638 4639 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4640 { 4641 u64 value; 4642 4643 if (!is_sampling_event(event)) 4644 return -EINVAL; 4645 4646 if (copy_from_user(&value, arg, sizeof(value))) 4647 return -EFAULT; 4648 4649 if (!value) 4650 return -EINVAL; 4651 4652 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4653 return -EINVAL; 4654 4655 event_function_call(event, __perf_event_period, &value); 4656 4657 return 0; 4658 } 4659 4660 static const struct file_operations perf_fops; 4661 4662 static inline int perf_fget_light(int fd, struct fd *p) 4663 { 4664 struct fd f = fdget(fd); 4665 if (!f.file) 4666 return -EBADF; 4667 4668 if (f.file->f_op != &perf_fops) { 4669 fdput(f); 4670 return -EBADF; 4671 } 4672 *p = f; 4673 return 0; 4674 } 4675 4676 static int perf_event_set_output(struct perf_event *event, 4677 struct perf_event *output_event); 4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4680 4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4682 { 4683 void (*func)(struct perf_event *); 4684 u32 flags = arg; 4685 4686 switch (cmd) { 4687 case PERF_EVENT_IOC_ENABLE: 4688 func = _perf_event_enable; 4689 break; 4690 case PERF_EVENT_IOC_DISABLE: 4691 func = _perf_event_disable; 4692 break; 4693 case PERF_EVENT_IOC_RESET: 4694 func = _perf_event_reset; 4695 break; 4696 4697 case PERF_EVENT_IOC_REFRESH: 4698 return _perf_event_refresh(event, arg); 4699 4700 case PERF_EVENT_IOC_PERIOD: 4701 return perf_event_period(event, (u64 __user *)arg); 4702 4703 case PERF_EVENT_IOC_ID: 4704 { 4705 u64 id = primary_event_id(event); 4706 4707 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4708 return -EFAULT; 4709 return 0; 4710 } 4711 4712 case PERF_EVENT_IOC_SET_OUTPUT: 4713 { 4714 int ret; 4715 if (arg != -1) { 4716 struct perf_event *output_event; 4717 struct fd output; 4718 ret = perf_fget_light(arg, &output); 4719 if (ret) 4720 return ret; 4721 output_event = output.file->private_data; 4722 ret = perf_event_set_output(event, output_event); 4723 fdput(output); 4724 } else { 4725 ret = perf_event_set_output(event, NULL); 4726 } 4727 return ret; 4728 } 4729 4730 case PERF_EVENT_IOC_SET_FILTER: 4731 return perf_event_set_filter(event, (void __user *)arg); 4732 4733 case PERF_EVENT_IOC_SET_BPF: 4734 return perf_event_set_bpf_prog(event, arg); 4735 4736 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4737 struct ring_buffer *rb; 4738 4739 rcu_read_lock(); 4740 rb = rcu_dereference(event->rb); 4741 if (!rb || !rb->nr_pages) { 4742 rcu_read_unlock(); 4743 return -EINVAL; 4744 } 4745 rb_toggle_paused(rb, !!arg); 4746 rcu_read_unlock(); 4747 return 0; 4748 } 4749 default: 4750 return -ENOTTY; 4751 } 4752 4753 if (flags & PERF_IOC_FLAG_GROUP) 4754 perf_event_for_each(event, func); 4755 else 4756 perf_event_for_each_child(event, func); 4757 4758 return 0; 4759 } 4760 4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4762 { 4763 struct perf_event *event = file->private_data; 4764 struct perf_event_context *ctx; 4765 long ret; 4766 4767 ctx = perf_event_ctx_lock(event); 4768 ret = _perf_ioctl(event, cmd, arg); 4769 perf_event_ctx_unlock(event, ctx); 4770 4771 return ret; 4772 } 4773 4774 #ifdef CONFIG_COMPAT 4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4776 unsigned long arg) 4777 { 4778 switch (_IOC_NR(cmd)) { 4779 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4780 case _IOC_NR(PERF_EVENT_IOC_ID): 4781 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4782 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4783 cmd &= ~IOCSIZE_MASK; 4784 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4785 } 4786 break; 4787 } 4788 return perf_ioctl(file, cmd, arg); 4789 } 4790 #else 4791 # define perf_compat_ioctl NULL 4792 #endif 4793 4794 int perf_event_task_enable(void) 4795 { 4796 struct perf_event_context *ctx; 4797 struct perf_event *event; 4798 4799 mutex_lock(¤t->perf_event_mutex); 4800 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4801 ctx = perf_event_ctx_lock(event); 4802 perf_event_for_each_child(event, _perf_event_enable); 4803 perf_event_ctx_unlock(event, ctx); 4804 } 4805 mutex_unlock(¤t->perf_event_mutex); 4806 4807 return 0; 4808 } 4809 4810 int perf_event_task_disable(void) 4811 { 4812 struct perf_event_context *ctx; 4813 struct perf_event *event; 4814 4815 mutex_lock(¤t->perf_event_mutex); 4816 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4817 ctx = perf_event_ctx_lock(event); 4818 perf_event_for_each_child(event, _perf_event_disable); 4819 perf_event_ctx_unlock(event, ctx); 4820 } 4821 mutex_unlock(¤t->perf_event_mutex); 4822 4823 return 0; 4824 } 4825 4826 static int perf_event_index(struct perf_event *event) 4827 { 4828 if (event->hw.state & PERF_HES_STOPPED) 4829 return 0; 4830 4831 if (event->state != PERF_EVENT_STATE_ACTIVE) 4832 return 0; 4833 4834 return event->pmu->event_idx(event); 4835 } 4836 4837 static void calc_timer_values(struct perf_event *event, 4838 u64 *now, 4839 u64 *enabled, 4840 u64 *running) 4841 { 4842 u64 ctx_time; 4843 4844 *now = perf_clock(); 4845 ctx_time = event->shadow_ctx_time + *now; 4846 *enabled = ctx_time - event->tstamp_enabled; 4847 *running = ctx_time - event->tstamp_running; 4848 } 4849 4850 static void perf_event_init_userpage(struct perf_event *event) 4851 { 4852 struct perf_event_mmap_page *userpg; 4853 struct ring_buffer *rb; 4854 4855 rcu_read_lock(); 4856 rb = rcu_dereference(event->rb); 4857 if (!rb) 4858 goto unlock; 4859 4860 userpg = rb->user_page; 4861 4862 /* Allow new userspace to detect that bit 0 is deprecated */ 4863 userpg->cap_bit0_is_deprecated = 1; 4864 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4865 userpg->data_offset = PAGE_SIZE; 4866 userpg->data_size = perf_data_size(rb); 4867 4868 unlock: 4869 rcu_read_unlock(); 4870 } 4871 4872 void __weak arch_perf_update_userpage( 4873 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4874 { 4875 } 4876 4877 /* 4878 * Callers need to ensure there can be no nesting of this function, otherwise 4879 * the seqlock logic goes bad. We can not serialize this because the arch 4880 * code calls this from NMI context. 4881 */ 4882 void perf_event_update_userpage(struct perf_event *event) 4883 { 4884 struct perf_event_mmap_page *userpg; 4885 struct ring_buffer *rb; 4886 u64 enabled, running, now; 4887 4888 rcu_read_lock(); 4889 rb = rcu_dereference(event->rb); 4890 if (!rb) 4891 goto unlock; 4892 4893 /* 4894 * compute total_time_enabled, total_time_running 4895 * based on snapshot values taken when the event 4896 * was last scheduled in. 4897 * 4898 * we cannot simply called update_context_time() 4899 * because of locking issue as we can be called in 4900 * NMI context 4901 */ 4902 calc_timer_values(event, &now, &enabled, &running); 4903 4904 userpg = rb->user_page; 4905 /* 4906 * Disable preemption so as to not let the corresponding user-space 4907 * spin too long if we get preempted. 4908 */ 4909 preempt_disable(); 4910 ++userpg->lock; 4911 barrier(); 4912 userpg->index = perf_event_index(event); 4913 userpg->offset = perf_event_count(event); 4914 if (userpg->index) 4915 userpg->offset -= local64_read(&event->hw.prev_count); 4916 4917 userpg->time_enabled = enabled + 4918 atomic64_read(&event->child_total_time_enabled); 4919 4920 userpg->time_running = running + 4921 atomic64_read(&event->child_total_time_running); 4922 4923 arch_perf_update_userpage(event, userpg, now); 4924 4925 barrier(); 4926 ++userpg->lock; 4927 preempt_enable(); 4928 unlock: 4929 rcu_read_unlock(); 4930 } 4931 4932 static int perf_mmap_fault(struct vm_fault *vmf) 4933 { 4934 struct perf_event *event = vmf->vma->vm_file->private_data; 4935 struct ring_buffer *rb; 4936 int ret = VM_FAULT_SIGBUS; 4937 4938 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4939 if (vmf->pgoff == 0) 4940 ret = 0; 4941 return ret; 4942 } 4943 4944 rcu_read_lock(); 4945 rb = rcu_dereference(event->rb); 4946 if (!rb) 4947 goto unlock; 4948 4949 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4950 goto unlock; 4951 4952 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4953 if (!vmf->page) 4954 goto unlock; 4955 4956 get_page(vmf->page); 4957 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4958 vmf->page->index = vmf->pgoff; 4959 4960 ret = 0; 4961 unlock: 4962 rcu_read_unlock(); 4963 4964 return ret; 4965 } 4966 4967 static void ring_buffer_attach(struct perf_event *event, 4968 struct ring_buffer *rb) 4969 { 4970 struct ring_buffer *old_rb = NULL; 4971 unsigned long flags; 4972 4973 if (event->rb) { 4974 /* 4975 * Should be impossible, we set this when removing 4976 * event->rb_entry and wait/clear when adding event->rb_entry. 4977 */ 4978 WARN_ON_ONCE(event->rcu_pending); 4979 4980 old_rb = event->rb; 4981 spin_lock_irqsave(&old_rb->event_lock, flags); 4982 list_del_rcu(&event->rb_entry); 4983 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4984 4985 event->rcu_batches = get_state_synchronize_rcu(); 4986 event->rcu_pending = 1; 4987 } 4988 4989 if (rb) { 4990 if (event->rcu_pending) { 4991 cond_synchronize_rcu(event->rcu_batches); 4992 event->rcu_pending = 0; 4993 } 4994 4995 spin_lock_irqsave(&rb->event_lock, flags); 4996 list_add_rcu(&event->rb_entry, &rb->event_list); 4997 spin_unlock_irqrestore(&rb->event_lock, flags); 4998 } 4999 5000 /* 5001 * Avoid racing with perf_mmap_close(AUX): stop the event 5002 * before swizzling the event::rb pointer; if it's getting 5003 * unmapped, its aux_mmap_count will be 0 and it won't 5004 * restart. See the comment in __perf_pmu_output_stop(). 5005 * 5006 * Data will inevitably be lost when set_output is done in 5007 * mid-air, but then again, whoever does it like this is 5008 * not in for the data anyway. 5009 */ 5010 if (has_aux(event)) 5011 perf_event_stop(event, 0); 5012 5013 rcu_assign_pointer(event->rb, rb); 5014 5015 if (old_rb) { 5016 ring_buffer_put(old_rb); 5017 /* 5018 * Since we detached before setting the new rb, so that we 5019 * could attach the new rb, we could have missed a wakeup. 5020 * Provide it now. 5021 */ 5022 wake_up_all(&event->waitq); 5023 } 5024 } 5025 5026 static void ring_buffer_wakeup(struct perf_event *event) 5027 { 5028 struct ring_buffer *rb; 5029 5030 rcu_read_lock(); 5031 rb = rcu_dereference(event->rb); 5032 if (rb) { 5033 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5034 wake_up_all(&event->waitq); 5035 } 5036 rcu_read_unlock(); 5037 } 5038 5039 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5040 { 5041 struct ring_buffer *rb; 5042 5043 rcu_read_lock(); 5044 rb = rcu_dereference(event->rb); 5045 if (rb) { 5046 if (!atomic_inc_not_zero(&rb->refcount)) 5047 rb = NULL; 5048 } 5049 rcu_read_unlock(); 5050 5051 return rb; 5052 } 5053 5054 void ring_buffer_put(struct ring_buffer *rb) 5055 { 5056 if (!atomic_dec_and_test(&rb->refcount)) 5057 return; 5058 5059 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5060 5061 call_rcu(&rb->rcu_head, rb_free_rcu); 5062 } 5063 5064 static void perf_mmap_open(struct vm_area_struct *vma) 5065 { 5066 struct perf_event *event = vma->vm_file->private_data; 5067 5068 atomic_inc(&event->mmap_count); 5069 atomic_inc(&event->rb->mmap_count); 5070 5071 if (vma->vm_pgoff) 5072 atomic_inc(&event->rb->aux_mmap_count); 5073 5074 if (event->pmu->event_mapped) 5075 event->pmu->event_mapped(event); 5076 } 5077 5078 static void perf_pmu_output_stop(struct perf_event *event); 5079 5080 /* 5081 * A buffer can be mmap()ed multiple times; either directly through the same 5082 * event, or through other events by use of perf_event_set_output(). 5083 * 5084 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5085 * the buffer here, where we still have a VM context. This means we need 5086 * to detach all events redirecting to us. 5087 */ 5088 static void perf_mmap_close(struct vm_area_struct *vma) 5089 { 5090 struct perf_event *event = vma->vm_file->private_data; 5091 5092 struct ring_buffer *rb = ring_buffer_get(event); 5093 struct user_struct *mmap_user = rb->mmap_user; 5094 int mmap_locked = rb->mmap_locked; 5095 unsigned long size = perf_data_size(rb); 5096 5097 if (event->pmu->event_unmapped) 5098 event->pmu->event_unmapped(event); 5099 5100 /* 5101 * rb->aux_mmap_count will always drop before rb->mmap_count and 5102 * event->mmap_count, so it is ok to use event->mmap_mutex to 5103 * serialize with perf_mmap here. 5104 */ 5105 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5106 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5107 /* 5108 * Stop all AUX events that are writing to this buffer, 5109 * so that we can free its AUX pages and corresponding PMU 5110 * data. Note that after rb::aux_mmap_count dropped to zero, 5111 * they won't start any more (see perf_aux_output_begin()). 5112 */ 5113 perf_pmu_output_stop(event); 5114 5115 /* now it's safe to free the pages */ 5116 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5117 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5118 5119 /* this has to be the last one */ 5120 rb_free_aux(rb); 5121 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5122 5123 mutex_unlock(&event->mmap_mutex); 5124 } 5125 5126 atomic_dec(&rb->mmap_count); 5127 5128 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5129 goto out_put; 5130 5131 ring_buffer_attach(event, NULL); 5132 mutex_unlock(&event->mmap_mutex); 5133 5134 /* If there's still other mmap()s of this buffer, we're done. */ 5135 if (atomic_read(&rb->mmap_count)) 5136 goto out_put; 5137 5138 /* 5139 * No other mmap()s, detach from all other events that might redirect 5140 * into the now unreachable buffer. Somewhat complicated by the 5141 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5142 */ 5143 again: 5144 rcu_read_lock(); 5145 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5146 if (!atomic_long_inc_not_zero(&event->refcount)) { 5147 /* 5148 * This event is en-route to free_event() which will 5149 * detach it and remove it from the list. 5150 */ 5151 continue; 5152 } 5153 rcu_read_unlock(); 5154 5155 mutex_lock(&event->mmap_mutex); 5156 /* 5157 * Check we didn't race with perf_event_set_output() which can 5158 * swizzle the rb from under us while we were waiting to 5159 * acquire mmap_mutex. 5160 * 5161 * If we find a different rb; ignore this event, a next 5162 * iteration will no longer find it on the list. We have to 5163 * still restart the iteration to make sure we're not now 5164 * iterating the wrong list. 5165 */ 5166 if (event->rb == rb) 5167 ring_buffer_attach(event, NULL); 5168 5169 mutex_unlock(&event->mmap_mutex); 5170 put_event(event); 5171 5172 /* 5173 * Restart the iteration; either we're on the wrong list or 5174 * destroyed its integrity by doing a deletion. 5175 */ 5176 goto again; 5177 } 5178 rcu_read_unlock(); 5179 5180 /* 5181 * It could be there's still a few 0-ref events on the list; they'll 5182 * get cleaned up by free_event() -- they'll also still have their 5183 * ref on the rb and will free it whenever they are done with it. 5184 * 5185 * Aside from that, this buffer is 'fully' detached and unmapped, 5186 * undo the VM accounting. 5187 */ 5188 5189 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5190 vma->vm_mm->pinned_vm -= mmap_locked; 5191 free_uid(mmap_user); 5192 5193 out_put: 5194 ring_buffer_put(rb); /* could be last */ 5195 } 5196 5197 static const struct vm_operations_struct perf_mmap_vmops = { 5198 .open = perf_mmap_open, 5199 .close = perf_mmap_close, /* non mergable */ 5200 .fault = perf_mmap_fault, 5201 .page_mkwrite = perf_mmap_fault, 5202 }; 5203 5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5205 { 5206 struct perf_event *event = file->private_data; 5207 unsigned long user_locked, user_lock_limit; 5208 struct user_struct *user = current_user(); 5209 unsigned long locked, lock_limit; 5210 struct ring_buffer *rb = NULL; 5211 unsigned long vma_size; 5212 unsigned long nr_pages; 5213 long user_extra = 0, extra = 0; 5214 int ret = 0, flags = 0; 5215 5216 /* 5217 * Don't allow mmap() of inherited per-task counters. This would 5218 * create a performance issue due to all children writing to the 5219 * same rb. 5220 */ 5221 if (event->cpu == -1 && event->attr.inherit) 5222 return -EINVAL; 5223 5224 if (!(vma->vm_flags & VM_SHARED)) 5225 return -EINVAL; 5226 5227 vma_size = vma->vm_end - vma->vm_start; 5228 5229 if (vma->vm_pgoff == 0) { 5230 nr_pages = (vma_size / PAGE_SIZE) - 1; 5231 } else { 5232 /* 5233 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5234 * mapped, all subsequent mappings should have the same size 5235 * and offset. Must be above the normal perf buffer. 5236 */ 5237 u64 aux_offset, aux_size; 5238 5239 if (!event->rb) 5240 return -EINVAL; 5241 5242 nr_pages = vma_size / PAGE_SIZE; 5243 5244 mutex_lock(&event->mmap_mutex); 5245 ret = -EINVAL; 5246 5247 rb = event->rb; 5248 if (!rb) 5249 goto aux_unlock; 5250 5251 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 5252 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 5253 5254 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5255 goto aux_unlock; 5256 5257 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5258 goto aux_unlock; 5259 5260 /* already mapped with a different offset */ 5261 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5262 goto aux_unlock; 5263 5264 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5265 goto aux_unlock; 5266 5267 /* already mapped with a different size */ 5268 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5269 goto aux_unlock; 5270 5271 if (!is_power_of_2(nr_pages)) 5272 goto aux_unlock; 5273 5274 if (!atomic_inc_not_zero(&rb->mmap_count)) 5275 goto aux_unlock; 5276 5277 if (rb_has_aux(rb)) { 5278 atomic_inc(&rb->aux_mmap_count); 5279 ret = 0; 5280 goto unlock; 5281 } 5282 5283 atomic_set(&rb->aux_mmap_count, 1); 5284 user_extra = nr_pages; 5285 5286 goto accounting; 5287 } 5288 5289 /* 5290 * If we have rb pages ensure they're a power-of-two number, so we 5291 * can do bitmasks instead of modulo. 5292 */ 5293 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5294 return -EINVAL; 5295 5296 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5297 return -EINVAL; 5298 5299 WARN_ON_ONCE(event->ctx->parent_ctx); 5300 again: 5301 mutex_lock(&event->mmap_mutex); 5302 if (event->rb) { 5303 if (event->rb->nr_pages != nr_pages) { 5304 ret = -EINVAL; 5305 goto unlock; 5306 } 5307 5308 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5309 /* 5310 * Raced against perf_mmap_close() through 5311 * perf_event_set_output(). Try again, hope for better 5312 * luck. 5313 */ 5314 mutex_unlock(&event->mmap_mutex); 5315 goto again; 5316 } 5317 5318 goto unlock; 5319 } 5320 5321 user_extra = nr_pages + 1; 5322 5323 accounting: 5324 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5325 5326 /* 5327 * Increase the limit linearly with more CPUs: 5328 */ 5329 user_lock_limit *= num_online_cpus(); 5330 5331 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5332 5333 if (user_locked > user_lock_limit) 5334 extra = user_locked - user_lock_limit; 5335 5336 lock_limit = rlimit(RLIMIT_MEMLOCK); 5337 lock_limit >>= PAGE_SHIFT; 5338 locked = vma->vm_mm->pinned_vm + extra; 5339 5340 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5341 !capable(CAP_IPC_LOCK)) { 5342 ret = -EPERM; 5343 goto unlock; 5344 } 5345 5346 WARN_ON(!rb && event->rb); 5347 5348 if (vma->vm_flags & VM_WRITE) 5349 flags |= RING_BUFFER_WRITABLE; 5350 5351 if (!rb) { 5352 rb = rb_alloc(nr_pages, 5353 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5354 event->cpu, flags); 5355 5356 if (!rb) { 5357 ret = -ENOMEM; 5358 goto unlock; 5359 } 5360 5361 atomic_set(&rb->mmap_count, 1); 5362 rb->mmap_user = get_current_user(); 5363 rb->mmap_locked = extra; 5364 5365 ring_buffer_attach(event, rb); 5366 5367 perf_event_init_userpage(event); 5368 perf_event_update_userpage(event); 5369 } else { 5370 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5371 event->attr.aux_watermark, flags); 5372 if (!ret) 5373 rb->aux_mmap_locked = extra; 5374 } 5375 5376 unlock: 5377 if (!ret) { 5378 atomic_long_add(user_extra, &user->locked_vm); 5379 vma->vm_mm->pinned_vm += extra; 5380 5381 atomic_inc(&event->mmap_count); 5382 } else if (rb) { 5383 atomic_dec(&rb->mmap_count); 5384 } 5385 aux_unlock: 5386 mutex_unlock(&event->mmap_mutex); 5387 5388 /* 5389 * Since pinned accounting is per vm we cannot allow fork() to copy our 5390 * vma. 5391 */ 5392 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5393 vma->vm_ops = &perf_mmap_vmops; 5394 5395 if (event->pmu->event_mapped) 5396 event->pmu->event_mapped(event); 5397 5398 return ret; 5399 } 5400 5401 static int perf_fasync(int fd, struct file *filp, int on) 5402 { 5403 struct inode *inode = file_inode(filp); 5404 struct perf_event *event = filp->private_data; 5405 int retval; 5406 5407 inode_lock(inode); 5408 retval = fasync_helper(fd, filp, on, &event->fasync); 5409 inode_unlock(inode); 5410 5411 if (retval < 0) 5412 return retval; 5413 5414 return 0; 5415 } 5416 5417 static const struct file_operations perf_fops = { 5418 .llseek = no_llseek, 5419 .release = perf_release, 5420 .read = perf_read, 5421 .poll = perf_poll, 5422 .unlocked_ioctl = perf_ioctl, 5423 .compat_ioctl = perf_compat_ioctl, 5424 .mmap = perf_mmap, 5425 .fasync = perf_fasync, 5426 }; 5427 5428 /* 5429 * Perf event wakeup 5430 * 5431 * If there's data, ensure we set the poll() state and publish everything 5432 * to user-space before waking everybody up. 5433 */ 5434 5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5436 { 5437 /* only the parent has fasync state */ 5438 if (event->parent) 5439 event = event->parent; 5440 return &event->fasync; 5441 } 5442 5443 void perf_event_wakeup(struct perf_event *event) 5444 { 5445 ring_buffer_wakeup(event); 5446 5447 if (event->pending_kill) { 5448 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5449 event->pending_kill = 0; 5450 } 5451 } 5452 5453 static void perf_pending_event(struct irq_work *entry) 5454 { 5455 struct perf_event *event = container_of(entry, 5456 struct perf_event, pending); 5457 int rctx; 5458 5459 rctx = perf_swevent_get_recursion_context(); 5460 /* 5461 * If we 'fail' here, that's OK, it means recursion is already disabled 5462 * and we won't recurse 'further'. 5463 */ 5464 5465 if (event->pending_disable) { 5466 event->pending_disable = 0; 5467 perf_event_disable_local(event); 5468 } 5469 5470 if (event->pending_wakeup) { 5471 event->pending_wakeup = 0; 5472 perf_event_wakeup(event); 5473 } 5474 5475 if (rctx >= 0) 5476 perf_swevent_put_recursion_context(rctx); 5477 } 5478 5479 /* 5480 * We assume there is only KVM supporting the callbacks. 5481 * Later on, we might change it to a list if there is 5482 * another virtualization implementation supporting the callbacks. 5483 */ 5484 struct perf_guest_info_callbacks *perf_guest_cbs; 5485 5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5487 { 5488 perf_guest_cbs = cbs; 5489 return 0; 5490 } 5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5492 5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5494 { 5495 perf_guest_cbs = NULL; 5496 return 0; 5497 } 5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5499 5500 static void 5501 perf_output_sample_regs(struct perf_output_handle *handle, 5502 struct pt_regs *regs, u64 mask) 5503 { 5504 int bit; 5505 DECLARE_BITMAP(_mask, 64); 5506 5507 bitmap_from_u64(_mask, mask); 5508 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5509 u64 val; 5510 5511 val = perf_reg_value(regs, bit); 5512 perf_output_put(handle, val); 5513 } 5514 } 5515 5516 static void perf_sample_regs_user(struct perf_regs *regs_user, 5517 struct pt_regs *regs, 5518 struct pt_regs *regs_user_copy) 5519 { 5520 if (user_mode(regs)) { 5521 regs_user->abi = perf_reg_abi(current); 5522 regs_user->regs = regs; 5523 } else if (current->mm) { 5524 perf_get_regs_user(regs_user, regs, regs_user_copy); 5525 } else { 5526 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5527 regs_user->regs = NULL; 5528 } 5529 } 5530 5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5532 struct pt_regs *regs) 5533 { 5534 regs_intr->regs = regs; 5535 regs_intr->abi = perf_reg_abi(current); 5536 } 5537 5538 5539 /* 5540 * Get remaining task size from user stack pointer. 5541 * 5542 * It'd be better to take stack vma map and limit this more 5543 * precisly, but there's no way to get it safely under interrupt, 5544 * so using TASK_SIZE as limit. 5545 */ 5546 static u64 perf_ustack_task_size(struct pt_regs *regs) 5547 { 5548 unsigned long addr = perf_user_stack_pointer(regs); 5549 5550 if (!addr || addr >= TASK_SIZE) 5551 return 0; 5552 5553 return TASK_SIZE - addr; 5554 } 5555 5556 static u16 5557 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5558 struct pt_regs *regs) 5559 { 5560 u64 task_size; 5561 5562 /* No regs, no stack pointer, no dump. */ 5563 if (!regs) 5564 return 0; 5565 5566 /* 5567 * Check if we fit in with the requested stack size into the: 5568 * - TASK_SIZE 5569 * If we don't, we limit the size to the TASK_SIZE. 5570 * 5571 * - remaining sample size 5572 * If we don't, we customize the stack size to 5573 * fit in to the remaining sample size. 5574 */ 5575 5576 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5577 stack_size = min(stack_size, (u16) task_size); 5578 5579 /* Current header size plus static size and dynamic size. */ 5580 header_size += 2 * sizeof(u64); 5581 5582 /* Do we fit in with the current stack dump size? */ 5583 if ((u16) (header_size + stack_size) < header_size) { 5584 /* 5585 * If we overflow the maximum size for the sample, 5586 * we customize the stack dump size to fit in. 5587 */ 5588 stack_size = USHRT_MAX - header_size - sizeof(u64); 5589 stack_size = round_up(stack_size, sizeof(u64)); 5590 } 5591 5592 return stack_size; 5593 } 5594 5595 static void 5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5597 struct pt_regs *regs) 5598 { 5599 /* Case of a kernel thread, nothing to dump */ 5600 if (!regs) { 5601 u64 size = 0; 5602 perf_output_put(handle, size); 5603 } else { 5604 unsigned long sp; 5605 unsigned int rem; 5606 u64 dyn_size; 5607 5608 /* 5609 * We dump: 5610 * static size 5611 * - the size requested by user or the best one we can fit 5612 * in to the sample max size 5613 * data 5614 * - user stack dump data 5615 * dynamic size 5616 * - the actual dumped size 5617 */ 5618 5619 /* Static size. */ 5620 perf_output_put(handle, dump_size); 5621 5622 /* Data. */ 5623 sp = perf_user_stack_pointer(regs); 5624 rem = __output_copy_user(handle, (void *) sp, dump_size); 5625 dyn_size = dump_size - rem; 5626 5627 perf_output_skip(handle, rem); 5628 5629 /* Dynamic size. */ 5630 perf_output_put(handle, dyn_size); 5631 } 5632 } 5633 5634 static void __perf_event_header__init_id(struct perf_event_header *header, 5635 struct perf_sample_data *data, 5636 struct perf_event *event) 5637 { 5638 u64 sample_type = event->attr.sample_type; 5639 5640 data->type = sample_type; 5641 header->size += event->id_header_size; 5642 5643 if (sample_type & PERF_SAMPLE_TID) { 5644 /* namespace issues */ 5645 data->tid_entry.pid = perf_event_pid(event, current); 5646 data->tid_entry.tid = perf_event_tid(event, current); 5647 } 5648 5649 if (sample_type & PERF_SAMPLE_TIME) 5650 data->time = perf_event_clock(event); 5651 5652 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5653 data->id = primary_event_id(event); 5654 5655 if (sample_type & PERF_SAMPLE_STREAM_ID) 5656 data->stream_id = event->id; 5657 5658 if (sample_type & PERF_SAMPLE_CPU) { 5659 data->cpu_entry.cpu = raw_smp_processor_id(); 5660 data->cpu_entry.reserved = 0; 5661 } 5662 } 5663 5664 void perf_event_header__init_id(struct perf_event_header *header, 5665 struct perf_sample_data *data, 5666 struct perf_event *event) 5667 { 5668 if (event->attr.sample_id_all) 5669 __perf_event_header__init_id(header, data, event); 5670 } 5671 5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5673 struct perf_sample_data *data) 5674 { 5675 u64 sample_type = data->type; 5676 5677 if (sample_type & PERF_SAMPLE_TID) 5678 perf_output_put(handle, data->tid_entry); 5679 5680 if (sample_type & PERF_SAMPLE_TIME) 5681 perf_output_put(handle, data->time); 5682 5683 if (sample_type & PERF_SAMPLE_ID) 5684 perf_output_put(handle, data->id); 5685 5686 if (sample_type & PERF_SAMPLE_STREAM_ID) 5687 perf_output_put(handle, data->stream_id); 5688 5689 if (sample_type & PERF_SAMPLE_CPU) 5690 perf_output_put(handle, data->cpu_entry); 5691 5692 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5693 perf_output_put(handle, data->id); 5694 } 5695 5696 void perf_event__output_id_sample(struct perf_event *event, 5697 struct perf_output_handle *handle, 5698 struct perf_sample_data *sample) 5699 { 5700 if (event->attr.sample_id_all) 5701 __perf_event__output_id_sample(handle, sample); 5702 } 5703 5704 static void perf_output_read_one(struct perf_output_handle *handle, 5705 struct perf_event *event, 5706 u64 enabled, u64 running) 5707 { 5708 u64 read_format = event->attr.read_format; 5709 u64 values[4]; 5710 int n = 0; 5711 5712 values[n++] = perf_event_count(event); 5713 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5714 values[n++] = enabled + 5715 atomic64_read(&event->child_total_time_enabled); 5716 } 5717 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5718 values[n++] = running + 5719 atomic64_read(&event->child_total_time_running); 5720 } 5721 if (read_format & PERF_FORMAT_ID) 5722 values[n++] = primary_event_id(event); 5723 5724 __output_copy(handle, values, n * sizeof(u64)); 5725 } 5726 5727 /* 5728 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5729 */ 5730 static void perf_output_read_group(struct perf_output_handle *handle, 5731 struct perf_event *event, 5732 u64 enabled, u64 running) 5733 { 5734 struct perf_event *leader = event->group_leader, *sub; 5735 u64 read_format = event->attr.read_format; 5736 u64 values[5]; 5737 int n = 0; 5738 5739 values[n++] = 1 + leader->nr_siblings; 5740 5741 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5742 values[n++] = enabled; 5743 5744 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5745 values[n++] = running; 5746 5747 if (leader != event) 5748 leader->pmu->read(leader); 5749 5750 values[n++] = perf_event_count(leader); 5751 if (read_format & PERF_FORMAT_ID) 5752 values[n++] = primary_event_id(leader); 5753 5754 __output_copy(handle, values, n * sizeof(u64)); 5755 5756 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5757 n = 0; 5758 5759 if ((sub != event) && 5760 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5761 sub->pmu->read(sub); 5762 5763 values[n++] = perf_event_count(sub); 5764 if (read_format & PERF_FORMAT_ID) 5765 values[n++] = primary_event_id(sub); 5766 5767 __output_copy(handle, values, n * sizeof(u64)); 5768 } 5769 } 5770 5771 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5772 PERF_FORMAT_TOTAL_TIME_RUNNING) 5773 5774 static void perf_output_read(struct perf_output_handle *handle, 5775 struct perf_event *event) 5776 { 5777 u64 enabled = 0, running = 0, now; 5778 u64 read_format = event->attr.read_format; 5779 5780 /* 5781 * compute total_time_enabled, total_time_running 5782 * based on snapshot values taken when the event 5783 * was last scheduled in. 5784 * 5785 * we cannot simply called update_context_time() 5786 * because of locking issue as we are called in 5787 * NMI context 5788 */ 5789 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5790 calc_timer_values(event, &now, &enabled, &running); 5791 5792 if (event->attr.read_format & PERF_FORMAT_GROUP) 5793 perf_output_read_group(handle, event, enabled, running); 5794 else 5795 perf_output_read_one(handle, event, enabled, running); 5796 } 5797 5798 void perf_output_sample(struct perf_output_handle *handle, 5799 struct perf_event_header *header, 5800 struct perf_sample_data *data, 5801 struct perf_event *event) 5802 { 5803 u64 sample_type = data->type; 5804 5805 perf_output_put(handle, *header); 5806 5807 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5808 perf_output_put(handle, data->id); 5809 5810 if (sample_type & PERF_SAMPLE_IP) 5811 perf_output_put(handle, data->ip); 5812 5813 if (sample_type & PERF_SAMPLE_TID) 5814 perf_output_put(handle, data->tid_entry); 5815 5816 if (sample_type & PERF_SAMPLE_TIME) 5817 perf_output_put(handle, data->time); 5818 5819 if (sample_type & PERF_SAMPLE_ADDR) 5820 perf_output_put(handle, data->addr); 5821 5822 if (sample_type & PERF_SAMPLE_ID) 5823 perf_output_put(handle, data->id); 5824 5825 if (sample_type & PERF_SAMPLE_STREAM_ID) 5826 perf_output_put(handle, data->stream_id); 5827 5828 if (sample_type & PERF_SAMPLE_CPU) 5829 perf_output_put(handle, data->cpu_entry); 5830 5831 if (sample_type & PERF_SAMPLE_PERIOD) 5832 perf_output_put(handle, data->period); 5833 5834 if (sample_type & PERF_SAMPLE_READ) 5835 perf_output_read(handle, event); 5836 5837 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5838 if (data->callchain) { 5839 int size = 1; 5840 5841 if (data->callchain) 5842 size += data->callchain->nr; 5843 5844 size *= sizeof(u64); 5845 5846 __output_copy(handle, data->callchain, size); 5847 } else { 5848 u64 nr = 0; 5849 perf_output_put(handle, nr); 5850 } 5851 } 5852 5853 if (sample_type & PERF_SAMPLE_RAW) { 5854 struct perf_raw_record *raw = data->raw; 5855 5856 if (raw) { 5857 struct perf_raw_frag *frag = &raw->frag; 5858 5859 perf_output_put(handle, raw->size); 5860 do { 5861 if (frag->copy) { 5862 __output_custom(handle, frag->copy, 5863 frag->data, frag->size); 5864 } else { 5865 __output_copy(handle, frag->data, 5866 frag->size); 5867 } 5868 if (perf_raw_frag_last(frag)) 5869 break; 5870 frag = frag->next; 5871 } while (1); 5872 if (frag->pad) 5873 __output_skip(handle, NULL, frag->pad); 5874 } else { 5875 struct { 5876 u32 size; 5877 u32 data; 5878 } raw = { 5879 .size = sizeof(u32), 5880 .data = 0, 5881 }; 5882 perf_output_put(handle, raw); 5883 } 5884 } 5885 5886 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5887 if (data->br_stack) { 5888 size_t size; 5889 5890 size = data->br_stack->nr 5891 * sizeof(struct perf_branch_entry); 5892 5893 perf_output_put(handle, data->br_stack->nr); 5894 perf_output_copy(handle, data->br_stack->entries, size); 5895 } else { 5896 /* 5897 * we always store at least the value of nr 5898 */ 5899 u64 nr = 0; 5900 perf_output_put(handle, nr); 5901 } 5902 } 5903 5904 if (sample_type & PERF_SAMPLE_REGS_USER) { 5905 u64 abi = data->regs_user.abi; 5906 5907 /* 5908 * If there are no regs to dump, notice it through 5909 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5910 */ 5911 perf_output_put(handle, abi); 5912 5913 if (abi) { 5914 u64 mask = event->attr.sample_regs_user; 5915 perf_output_sample_regs(handle, 5916 data->regs_user.regs, 5917 mask); 5918 } 5919 } 5920 5921 if (sample_type & PERF_SAMPLE_STACK_USER) { 5922 perf_output_sample_ustack(handle, 5923 data->stack_user_size, 5924 data->regs_user.regs); 5925 } 5926 5927 if (sample_type & PERF_SAMPLE_WEIGHT) 5928 perf_output_put(handle, data->weight); 5929 5930 if (sample_type & PERF_SAMPLE_DATA_SRC) 5931 perf_output_put(handle, data->data_src.val); 5932 5933 if (sample_type & PERF_SAMPLE_TRANSACTION) 5934 perf_output_put(handle, data->txn); 5935 5936 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5937 u64 abi = data->regs_intr.abi; 5938 /* 5939 * If there are no regs to dump, notice it through 5940 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5941 */ 5942 perf_output_put(handle, abi); 5943 5944 if (abi) { 5945 u64 mask = event->attr.sample_regs_intr; 5946 5947 perf_output_sample_regs(handle, 5948 data->regs_intr.regs, 5949 mask); 5950 } 5951 } 5952 5953 if (!event->attr.watermark) { 5954 int wakeup_events = event->attr.wakeup_events; 5955 5956 if (wakeup_events) { 5957 struct ring_buffer *rb = handle->rb; 5958 int events = local_inc_return(&rb->events); 5959 5960 if (events >= wakeup_events) { 5961 local_sub(wakeup_events, &rb->events); 5962 local_inc(&rb->wakeup); 5963 } 5964 } 5965 } 5966 } 5967 5968 void perf_prepare_sample(struct perf_event_header *header, 5969 struct perf_sample_data *data, 5970 struct perf_event *event, 5971 struct pt_regs *regs) 5972 { 5973 u64 sample_type = event->attr.sample_type; 5974 5975 header->type = PERF_RECORD_SAMPLE; 5976 header->size = sizeof(*header) + event->header_size; 5977 5978 header->misc = 0; 5979 header->misc |= perf_misc_flags(regs); 5980 5981 __perf_event_header__init_id(header, data, event); 5982 5983 if (sample_type & PERF_SAMPLE_IP) 5984 data->ip = perf_instruction_pointer(regs); 5985 5986 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5987 int size = 1; 5988 5989 data->callchain = perf_callchain(event, regs); 5990 5991 if (data->callchain) 5992 size += data->callchain->nr; 5993 5994 header->size += size * sizeof(u64); 5995 } 5996 5997 if (sample_type & PERF_SAMPLE_RAW) { 5998 struct perf_raw_record *raw = data->raw; 5999 int size; 6000 6001 if (raw) { 6002 struct perf_raw_frag *frag = &raw->frag; 6003 u32 sum = 0; 6004 6005 do { 6006 sum += frag->size; 6007 if (perf_raw_frag_last(frag)) 6008 break; 6009 frag = frag->next; 6010 } while (1); 6011 6012 size = round_up(sum + sizeof(u32), sizeof(u64)); 6013 raw->size = size - sizeof(u32); 6014 frag->pad = raw->size - sum; 6015 } else { 6016 size = sizeof(u64); 6017 } 6018 6019 header->size += size; 6020 } 6021 6022 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6023 int size = sizeof(u64); /* nr */ 6024 if (data->br_stack) { 6025 size += data->br_stack->nr 6026 * sizeof(struct perf_branch_entry); 6027 } 6028 header->size += size; 6029 } 6030 6031 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6032 perf_sample_regs_user(&data->regs_user, regs, 6033 &data->regs_user_copy); 6034 6035 if (sample_type & PERF_SAMPLE_REGS_USER) { 6036 /* regs dump ABI info */ 6037 int size = sizeof(u64); 6038 6039 if (data->regs_user.regs) { 6040 u64 mask = event->attr.sample_regs_user; 6041 size += hweight64(mask) * sizeof(u64); 6042 } 6043 6044 header->size += size; 6045 } 6046 6047 if (sample_type & PERF_SAMPLE_STACK_USER) { 6048 /* 6049 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6050 * processed as the last one or have additional check added 6051 * in case new sample type is added, because we could eat 6052 * up the rest of the sample size. 6053 */ 6054 u16 stack_size = event->attr.sample_stack_user; 6055 u16 size = sizeof(u64); 6056 6057 stack_size = perf_sample_ustack_size(stack_size, header->size, 6058 data->regs_user.regs); 6059 6060 /* 6061 * If there is something to dump, add space for the dump 6062 * itself and for the field that tells the dynamic size, 6063 * which is how many have been actually dumped. 6064 */ 6065 if (stack_size) 6066 size += sizeof(u64) + stack_size; 6067 6068 data->stack_user_size = stack_size; 6069 header->size += size; 6070 } 6071 6072 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6073 /* regs dump ABI info */ 6074 int size = sizeof(u64); 6075 6076 perf_sample_regs_intr(&data->regs_intr, regs); 6077 6078 if (data->regs_intr.regs) { 6079 u64 mask = event->attr.sample_regs_intr; 6080 6081 size += hweight64(mask) * sizeof(u64); 6082 } 6083 6084 header->size += size; 6085 } 6086 } 6087 6088 static void __always_inline 6089 __perf_event_output(struct perf_event *event, 6090 struct perf_sample_data *data, 6091 struct pt_regs *regs, 6092 int (*output_begin)(struct perf_output_handle *, 6093 struct perf_event *, 6094 unsigned int)) 6095 { 6096 struct perf_output_handle handle; 6097 struct perf_event_header header; 6098 6099 /* protect the callchain buffers */ 6100 rcu_read_lock(); 6101 6102 perf_prepare_sample(&header, data, event, regs); 6103 6104 if (output_begin(&handle, event, header.size)) 6105 goto exit; 6106 6107 perf_output_sample(&handle, &header, data, event); 6108 6109 perf_output_end(&handle); 6110 6111 exit: 6112 rcu_read_unlock(); 6113 } 6114 6115 void 6116 perf_event_output_forward(struct perf_event *event, 6117 struct perf_sample_data *data, 6118 struct pt_regs *regs) 6119 { 6120 __perf_event_output(event, data, regs, perf_output_begin_forward); 6121 } 6122 6123 void 6124 perf_event_output_backward(struct perf_event *event, 6125 struct perf_sample_data *data, 6126 struct pt_regs *regs) 6127 { 6128 __perf_event_output(event, data, regs, perf_output_begin_backward); 6129 } 6130 6131 void 6132 perf_event_output(struct perf_event *event, 6133 struct perf_sample_data *data, 6134 struct pt_regs *regs) 6135 { 6136 __perf_event_output(event, data, regs, perf_output_begin); 6137 } 6138 6139 /* 6140 * read event_id 6141 */ 6142 6143 struct perf_read_event { 6144 struct perf_event_header header; 6145 6146 u32 pid; 6147 u32 tid; 6148 }; 6149 6150 static void 6151 perf_event_read_event(struct perf_event *event, 6152 struct task_struct *task) 6153 { 6154 struct perf_output_handle handle; 6155 struct perf_sample_data sample; 6156 struct perf_read_event read_event = { 6157 .header = { 6158 .type = PERF_RECORD_READ, 6159 .misc = 0, 6160 .size = sizeof(read_event) + event->read_size, 6161 }, 6162 .pid = perf_event_pid(event, task), 6163 .tid = perf_event_tid(event, task), 6164 }; 6165 int ret; 6166 6167 perf_event_header__init_id(&read_event.header, &sample, event); 6168 ret = perf_output_begin(&handle, event, read_event.header.size); 6169 if (ret) 6170 return; 6171 6172 perf_output_put(&handle, read_event); 6173 perf_output_read(&handle, event); 6174 perf_event__output_id_sample(event, &handle, &sample); 6175 6176 perf_output_end(&handle); 6177 } 6178 6179 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6180 6181 static void 6182 perf_iterate_ctx(struct perf_event_context *ctx, 6183 perf_iterate_f output, 6184 void *data, bool all) 6185 { 6186 struct perf_event *event; 6187 6188 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6189 if (!all) { 6190 if (event->state < PERF_EVENT_STATE_INACTIVE) 6191 continue; 6192 if (!event_filter_match(event)) 6193 continue; 6194 } 6195 6196 output(event, data); 6197 } 6198 } 6199 6200 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6201 { 6202 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6203 struct perf_event *event; 6204 6205 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6206 /* 6207 * Skip events that are not fully formed yet; ensure that 6208 * if we observe event->ctx, both event and ctx will be 6209 * complete enough. See perf_install_in_context(). 6210 */ 6211 if (!smp_load_acquire(&event->ctx)) 6212 continue; 6213 6214 if (event->state < PERF_EVENT_STATE_INACTIVE) 6215 continue; 6216 if (!event_filter_match(event)) 6217 continue; 6218 output(event, data); 6219 } 6220 } 6221 6222 /* 6223 * Iterate all events that need to receive side-band events. 6224 * 6225 * For new callers; ensure that account_pmu_sb_event() includes 6226 * your event, otherwise it might not get delivered. 6227 */ 6228 static void 6229 perf_iterate_sb(perf_iterate_f output, void *data, 6230 struct perf_event_context *task_ctx) 6231 { 6232 struct perf_event_context *ctx; 6233 int ctxn; 6234 6235 rcu_read_lock(); 6236 preempt_disable(); 6237 6238 /* 6239 * If we have task_ctx != NULL we only notify the task context itself. 6240 * The task_ctx is set only for EXIT events before releasing task 6241 * context. 6242 */ 6243 if (task_ctx) { 6244 perf_iterate_ctx(task_ctx, output, data, false); 6245 goto done; 6246 } 6247 6248 perf_iterate_sb_cpu(output, data); 6249 6250 for_each_task_context_nr(ctxn) { 6251 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6252 if (ctx) 6253 perf_iterate_ctx(ctx, output, data, false); 6254 } 6255 done: 6256 preempt_enable(); 6257 rcu_read_unlock(); 6258 } 6259 6260 /* 6261 * Clear all file-based filters at exec, they'll have to be 6262 * re-instated when/if these objects are mmapped again. 6263 */ 6264 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6265 { 6266 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6267 struct perf_addr_filter *filter; 6268 unsigned int restart = 0, count = 0; 6269 unsigned long flags; 6270 6271 if (!has_addr_filter(event)) 6272 return; 6273 6274 raw_spin_lock_irqsave(&ifh->lock, flags); 6275 list_for_each_entry(filter, &ifh->list, entry) { 6276 if (filter->inode) { 6277 event->addr_filters_offs[count] = 0; 6278 restart++; 6279 } 6280 6281 count++; 6282 } 6283 6284 if (restart) 6285 event->addr_filters_gen++; 6286 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6287 6288 if (restart) 6289 perf_event_stop(event, 1); 6290 } 6291 6292 void perf_event_exec(void) 6293 { 6294 struct perf_event_context *ctx; 6295 int ctxn; 6296 6297 rcu_read_lock(); 6298 for_each_task_context_nr(ctxn) { 6299 ctx = current->perf_event_ctxp[ctxn]; 6300 if (!ctx) 6301 continue; 6302 6303 perf_event_enable_on_exec(ctxn); 6304 6305 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6306 true); 6307 } 6308 rcu_read_unlock(); 6309 } 6310 6311 struct remote_output { 6312 struct ring_buffer *rb; 6313 int err; 6314 }; 6315 6316 static void __perf_event_output_stop(struct perf_event *event, void *data) 6317 { 6318 struct perf_event *parent = event->parent; 6319 struct remote_output *ro = data; 6320 struct ring_buffer *rb = ro->rb; 6321 struct stop_event_data sd = { 6322 .event = event, 6323 }; 6324 6325 if (!has_aux(event)) 6326 return; 6327 6328 if (!parent) 6329 parent = event; 6330 6331 /* 6332 * In case of inheritance, it will be the parent that links to the 6333 * ring-buffer, but it will be the child that's actually using it. 6334 * 6335 * We are using event::rb to determine if the event should be stopped, 6336 * however this may race with ring_buffer_attach() (through set_output), 6337 * which will make us skip the event that actually needs to be stopped. 6338 * So ring_buffer_attach() has to stop an aux event before re-assigning 6339 * its rb pointer. 6340 */ 6341 if (rcu_dereference(parent->rb) == rb) 6342 ro->err = __perf_event_stop(&sd); 6343 } 6344 6345 static int __perf_pmu_output_stop(void *info) 6346 { 6347 struct perf_event *event = info; 6348 struct pmu *pmu = event->pmu; 6349 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6350 struct remote_output ro = { 6351 .rb = event->rb, 6352 }; 6353 6354 rcu_read_lock(); 6355 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6356 if (cpuctx->task_ctx) 6357 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6358 &ro, false); 6359 rcu_read_unlock(); 6360 6361 return ro.err; 6362 } 6363 6364 static void perf_pmu_output_stop(struct perf_event *event) 6365 { 6366 struct perf_event *iter; 6367 int err, cpu; 6368 6369 restart: 6370 rcu_read_lock(); 6371 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6372 /* 6373 * For per-CPU events, we need to make sure that neither they 6374 * nor their children are running; for cpu==-1 events it's 6375 * sufficient to stop the event itself if it's active, since 6376 * it can't have children. 6377 */ 6378 cpu = iter->cpu; 6379 if (cpu == -1) 6380 cpu = READ_ONCE(iter->oncpu); 6381 6382 if (cpu == -1) 6383 continue; 6384 6385 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6386 if (err == -EAGAIN) { 6387 rcu_read_unlock(); 6388 goto restart; 6389 } 6390 } 6391 rcu_read_unlock(); 6392 } 6393 6394 /* 6395 * task tracking -- fork/exit 6396 * 6397 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6398 */ 6399 6400 struct perf_task_event { 6401 struct task_struct *task; 6402 struct perf_event_context *task_ctx; 6403 6404 struct { 6405 struct perf_event_header header; 6406 6407 u32 pid; 6408 u32 ppid; 6409 u32 tid; 6410 u32 ptid; 6411 u64 time; 6412 } event_id; 6413 }; 6414 6415 static int perf_event_task_match(struct perf_event *event) 6416 { 6417 return event->attr.comm || event->attr.mmap || 6418 event->attr.mmap2 || event->attr.mmap_data || 6419 event->attr.task; 6420 } 6421 6422 static void perf_event_task_output(struct perf_event *event, 6423 void *data) 6424 { 6425 struct perf_task_event *task_event = data; 6426 struct perf_output_handle handle; 6427 struct perf_sample_data sample; 6428 struct task_struct *task = task_event->task; 6429 int ret, size = task_event->event_id.header.size; 6430 6431 if (!perf_event_task_match(event)) 6432 return; 6433 6434 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6435 6436 ret = perf_output_begin(&handle, event, 6437 task_event->event_id.header.size); 6438 if (ret) 6439 goto out; 6440 6441 task_event->event_id.pid = perf_event_pid(event, task); 6442 task_event->event_id.ppid = perf_event_pid(event, current); 6443 6444 task_event->event_id.tid = perf_event_tid(event, task); 6445 task_event->event_id.ptid = perf_event_tid(event, current); 6446 6447 task_event->event_id.time = perf_event_clock(event); 6448 6449 perf_output_put(&handle, task_event->event_id); 6450 6451 perf_event__output_id_sample(event, &handle, &sample); 6452 6453 perf_output_end(&handle); 6454 out: 6455 task_event->event_id.header.size = size; 6456 } 6457 6458 static void perf_event_task(struct task_struct *task, 6459 struct perf_event_context *task_ctx, 6460 int new) 6461 { 6462 struct perf_task_event task_event; 6463 6464 if (!atomic_read(&nr_comm_events) && 6465 !atomic_read(&nr_mmap_events) && 6466 !atomic_read(&nr_task_events)) 6467 return; 6468 6469 task_event = (struct perf_task_event){ 6470 .task = task, 6471 .task_ctx = task_ctx, 6472 .event_id = { 6473 .header = { 6474 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6475 .misc = 0, 6476 .size = sizeof(task_event.event_id), 6477 }, 6478 /* .pid */ 6479 /* .ppid */ 6480 /* .tid */ 6481 /* .ptid */ 6482 /* .time */ 6483 }, 6484 }; 6485 6486 perf_iterate_sb(perf_event_task_output, 6487 &task_event, 6488 task_ctx); 6489 } 6490 6491 void perf_event_fork(struct task_struct *task) 6492 { 6493 perf_event_task(task, NULL, 1); 6494 } 6495 6496 /* 6497 * comm tracking 6498 */ 6499 6500 struct perf_comm_event { 6501 struct task_struct *task; 6502 char *comm; 6503 int comm_size; 6504 6505 struct { 6506 struct perf_event_header header; 6507 6508 u32 pid; 6509 u32 tid; 6510 } event_id; 6511 }; 6512 6513 static int perf_event_comm_match(struct perf_event *event) 6514 { 6515 return event->attr.comm; 6516 } 6517 6518 static void perf_event_comm_output(struct perf_event *event, 6519 void *data) 6520 { 6521 struct perf_comm_event *comm_event = data; 6522 struct perf_output_handle handle; 6523 struct perf_sample_data sample; 6524 int size = comm_event->event_id.header.size; 6525 int ret; 6526 6527 if (!perf_event_comm_match(event)) 6528 return; 6529 6530 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6531 ret = perf_output_begin(&handle, event, 6532 comm_event->event_id.header.size); 6533 6534 if (ret) 6535 goto out; 6536 6537 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6538 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6539 6540 perf_output_put(&handle, comm_event->event_id); 6541 __output_copy(&handle, comm_event->comm, 6542 comm_event->comm_size); 6543 6544 perf_event__output_id_sample(event, &handle, &sample); 6545 6546 perf_output_end(&handle); 6547 out: 6548 comm_event->event_id.header.size = size; 6549 } 6550 6551 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6552 { 6553 char comm[TASK_COMM_LEN]; 6554 unsigned int size; 6555 6556 memset(comm, 0, sizeof(comm)); 6557 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6558 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6559 6560 comm_event->comm = comm; 6561 comm_event->comm_size = size; 6562 6563 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6564 6565 perf_iterate_sb(perf_event_comm_output, 6566 comm_event, 6567 NULL); 6568 } 6569 6570 void perf_event_comm(struct task_struct *task, bool exec) 6571 { 6572 struct perf_comm_event comm_event; 6573 6574 if (!atomic_read(&nr_comm_events)) 6575 return; 6576 6577 comm_event = (struct perf_comm_event){ 6578 .task = task, 6579 /* .comm */ 6580 /* .comm_size */ 6581 .event_id = { 6582 .header = { 6583 .type = PERF_RECORD_COMM, 6584 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6585 /* .size */ 6586 }, 6587 /* .pid */ 6588 /* .tid */ 6589 }, 6590 }; 6591 6592 perf_event_comm_event(&comm_event); 6593 } 6594 6595 /* 6596 * mmap tracking 6597 */ 6598 6599 struct perf_mmap_event { 6600 struct vm_area_struct *vma; 6601 6602 const char *file_name; 6603 int file_size; 6604 int maj, min; 6605 u64 ino; 6606 u64 ino_generation; 6607 u32 prot, flags; 6608 6609 struct { 6610 struct perf_event_header header; 6611 6612 u32 pid; 6613 u32 tid; 6614 u64 start; 6615 u64 len; 6616 u64 pgoff; 6617 } event_id; 6618 }; 6619 6620 static int perf_event_mmap_match(struct perf_event *event, 6621 void *data) 6622 { 6623 struct perf_mmap_event *mmap_event = data; 6624 struct vm_area_struct *vma = mmap_event->vma; 6625 int executable = vma->vm_flags & VM_EXEC; 6626 6627 return (!executable && event->attr.mmap_data) || 6628 (executable && (event->attr.mmap || event->attr.mmap2)); 6629 } 6630 6631 static void perf_event_mmap_output(struct perf_event *event, 6632 void *data) 6633 { 6634 struct perf_mmap_event *mmap_event = data; 6635 struct perf_output_handle handle; 6636 struct perf_sample_data sample; 6637 int size = mmap_event->event_id.header.size; 6638 int ret; 6639 6640 if (!perf_event_mmap_match(event, data)) 6641 return; 6642 6643 if (event->attr.mmap2) { 6644 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6645 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6646 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6647 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6648 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6649 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6650 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6651 } 6652 6653 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6654 ret = perf_output_begin(&handle, event, 6655 mmap_event->event_id.header.size); 6656 if (ret) 6657 goto out; 6658 6659 mmap_event->event_id.pid = perf_event_pid(event, current); 6660 mmap_event->event_id.tid = perf_event_tid(event, current); 6661 6662 perf_output_put(&handle, mmap_event->event_id); 6663 6664 if (event->attr.mmap2) { 6665 perf_output_put(&handle, mmap_event->maj); 6666 perf_output_put(&handle, mmap_event->min); 6667 perf_output_put(&handle, mmap_event->ino); 6668 perf_output_put(&handle, mmap_event->ino_generation); 6669 perf_output_put(&handle, mmap_event->prot); 6670 perf_output_put(&handle, mmap_event->flags); 6671 } 6672 6673 __output_copy(&handle, mmap_event->file_name, 6674 mmap_event->file_size); 6675 6676 perf_event__output_id_sample(event, &handle, &sample); 6677 6678 perf_output_end(&handle); 6679 out: 6680 mmap_event->event_id.header.size = size; 6681 } 6682 6683 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6684 { 6685 struct vm_area_struct *vma = mmap_event->vma; 6686 struct file *file = vma->vm_file; 6687 int maj = 0, min = 0; 6688 u64 ino = 0, gen = 0; 6689 u32 prot = 0, flags = 0; 6690 unsigned int size; 6691 char tmp[16]; 6692 char *buf = NULL; 6693 char *name; 6694 6695 if (vma->vm_flags & VM_READ) 6696 prot |= PROT_READ; 6697 if (vma->vm_flags & VM_WRITE) 6698 prot |= PROT_WRITE; 6699 if (vma->vm_flags & VM_EXEC) 6700 prot |= PROT_EXEC; 6701 6702 if (vma->vm_flags & VM_MAYSHARE) 6703 flags = MAP_SHARED; 6704 else 6705 flags = MAP_PRIVATE; 6706 6707 if (vma->vm_flags & VM_DENYWRITE) 6708 flags |= MAP_DENYWRITE; 6709 if (vma->vm_flags & VM_MAYEXEC) 6710 flags |= MAP_EXECUTABLE; 6711 if (vma->vm_flags & VM_LOCKED) 6712 flags |= MAP_LOCKED; 6713 if (vma->vm_flags & VM_HUGETLB) 6714 flags |= MAP_HUGETLB; 6715 6716 if (file) { 6717 struct inode *inode; 6718 dev_t dev; 6719 6720 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6721 if (!buf) { 6722 name = "//enomem"; 6723 goto cpy_name; 6724 } 6725 /* 6726 * d_path() works from the end of the rb backwards, so we 6727 * need to add enough zero bytes after the string to handle 6728 * the 64bit alignment we do later. 6729 */ 6730 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6731 if (IS_ERR(name)) { 6732 name = "//toolong"; 6733 goto cpy_name; 6734 } 6735 inode = file_inode(vma->vm_file); 6736 dev = inode->i_sb->s_dev; 6737 ino = inode->i_ino; 6738 gen = inode->i_generation; 6739 maj = MAJOR(dev); 6740 min = MINOR(dev); 6741 6742 goto got_name; 6743 } else { 6744 if (vma->vm_ops && vma->vm_ops->name) { 6745 name = (char *) vma->vm_ops->name(vma); 6746 if (name) 6747 goto cpy_name; 6748 } 6749 6750 name = (char *)arch_vma_name(vma); 6751 if (name) 6752 goto cpy_name; 6753 6754 if (vma->vm_start <= vma->vm_mm->start_brk && 6755 vma->vm_end >= vma->vm_mm->brk) { 6756 name = "[heap]"; 6757 goto cpy_name; 6758 } 6759 if (vma->vm_start <= vma->vm_mm->start_stack && 6760 vma->vm_end >= vma->vm_mm->start_stack) { 6761 name = "[stack]"; 6762 goto cpy_name; 6763 } 6764 6765 name = "//anon"; 6766 goto cpy_name; 6767 } 6768 6769 cpy_name: 6770 strlcpy(tmp, name, sizeof(tmp)); 6771 name = tmp; 6772 got_name: 6773 /* 6774 * Since our buffer works in 8 byte units we need to align our string 6775 * size to a multiple of 8. However, we must guarantee the tail end is 6776 * zero'd out to avoid leaking random bits to userspace. 6777 */ 6778 size = strlen(name)+1; 6779 while (!IS_ALIGNED(size, sizeof(u64))) 6780 name[size++] = '\0'; 6781 6782 mmap_event->file_name = name; 6783 mmap_event->file_size = size; 6784 mmap_event->maj = maj; 6785 mmap_event->min = min; 6786 mmap_event->ino = ino; 6787 mmap_event->ino_generation = gen; 6788 mmap_event->prot = prot; 6789 mmap_event->flags = flags; 6790 6791 if (!(vma->vm_flags & VM_EXEC)) 6792 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6793 6794 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6795 6796 perf_iterate_sb(perf_event_mmap_output, 6797 mmap_event, 6798 NULL); 6799 6800 kfree(buf); 6801 } 6802 6803 /* 6804 * Check whether inode and address range match filter criteria. 6805 */ 6806 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6807 struct file *file, unsigned long offset, 6808 unsigned long size) 6809 { 6810 if (filter->inode != file_inode(file)) 6811 return false; 6812 6813 if (filter->offset > offset + size) 6814 return false; 6815 6816 if (filter->offset + filter->size < offset) 6817 return false; 6818 6819 return true; 6820 } 6821 6822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6823 { 6824 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6825 struct vm_area_struct *vma = data; 6826 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6827 struct file *file = vma->vm_file; 6828 struct perf_addr_filter *filter; 6829 unsigned int restart = 0, count = 0; 6830 6831 if (!has_addr_filter(event)) 6832 return; 6833 6834 if (!file) 6835 return; 6836 6837 raw_spin_lock_irqsave(&ifh->lock, flags); 6838 list_for_each_entry(filter, &ifh->list, entry) { 6839 if (perf_addr_filter_match(filter, file, off, 6840 vma->vm_end - vma->vm_start)) { 6841 event->addr_filters_offs[count] = vma->vm_start; 6842 restart++; 6843 } 6844 6845 count++; 6846 } 6847 6848 if (restart) 6849 event->addr_filters_gen++; 6850 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6851 6852 if (restart) 6853 perf_event_stop(event, 1); 6854 } 6855 6856 /* 6857 * Adjust all task's events' filters to the new vma 6858 */ 6859 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6860 { 6861 struct perf_event_context *ctx; 6862 int ctxn; 6863 6864 /* 6865 * Data tracing isn't supported yet and as such there is no need 6866 * to keep track of anything that isn't related to executable code: 6867 */ 6868 if (!(vma->vm_flags & VM_EXEC)) 6869 return; 6870 6871 rcu_read_lock(); 6872 for_each_task_context_nr(ctxn) { 6873 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6874 if (!ctx) 6875 continue; 6876 6877 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6878 } 6879 rcu_read_unlock(); 6880 } 6881 6882 void perf_event_mmap(struct vm_area_struct *vma) 6883 { 6884 struct perf_mmap_event mmap_event; 6885 6886 if (!atomic_read(&nr_mmap_events)) 6887 return; 6888 6889 mmap_event = (struct perf_mmap_event){ 6890 .vma = vma, 6891 /* .file_name */ 6892 /* .file_size */ 6893 .event_id = { 6894 .header = { 6895 .type = PERF_RECORD_MMAP, 6896 .misc = PERF_RECORD_MISC_USER, 6897 /* .size */ 6898 }, 6899 /* .pid */ 6900 /* .tid */ 6901 .start = vma->vm_start, 6902 .len = vma->vm_end - vma->vm_start, 6903 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6904 }, 6905 /* .maj (attr_mmap2 only) */ 6906 /* .min (attr_mmap2 only) */ 6907 /* .ino (attr_mmap2 only) */ 6908 /* .ino_generation (attr_mmap2 only) */ 6909 /* .prot (attr_mmap2 only) */ 6910 /* .flags (attr_mmap2 only) */ 6911 }; 6912 6913 perf_addr_filters_adjust(vma); 6914 perf_event_mmap_event(&mmap_event); 6915 } 6916 6917 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6918 unsigned long size, u64 flags) 6919 { 6920 struct perf_output_handle handle; 6921 struct perf_sample_data sample; 6922 struct perf_aux_event { 6923 struct perf_event_header header; 6924 u64 offset; 6925 u64 size; 6926 u64 flags; 6927 } rec = { 6928 .header = { 6929 .type = PERF_RECORD_AUX, 6930 .misc = 0, 6931 .size = sizeof(rec), 6932 }, 6933 .offset = head, 6934 .size = size, 6935 .flags = flags, 6936 }; 6937 int ret; 6938 6939 perf_event_header__init_id(&rec.header, &sample, event); 6940 ret = perf_output_begin(&handle, event, rec.header.size); 6941 6942 if (ret) 6943 return; 6944 6945 perf_output_put(&handle, rec); 6946 perf_event__output_id_sample(event, &handle, &sample); 6947 6948 perf_output_end(&handle); 6949 } 6950 6951 /* 6952 * Lost/dropped samples logging 6953 */ 6954 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6955 { 6956 struct perf_output_handle handle; 6957 struct perf_sample_data sample; 6958 int ret; 6959 6960 struct { 6961 struct perf_event_header header; 6962 u64 lost; 6963 } lost_samples_event = { 6964 .header = { 6965 .type = PERF_RECORD_LOST_SAMPLES, 6966 .misc = 0, 6967 .size = sizeof(lost_samples_event), 6968 }, 6969 .lost = lost, 6970 }; 6971 6972 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6973 6974 ret = perf_output_begin(&handle, event, 6975 lost_samples_event.header.size); 6976 if (ret) 6977 return; 6978 6979 perf_output_put(&handle, lost_samples_event); 6980 perf_event__output_id_sample(event, &handle, &sample); 6981 perf_output_end(&handle); 6982 } 6983 6984 /* 6985 * context_switch tracking 6986 */ 6987 6988 struct perf_switch_event { 6989 struct task_struct *task; 6990 struct task_struct *next_prev; 6991 6992 struct { 6993 struct perf_event_header header; 6994 u32 next_prev_pid; 6995 u32 next_prev_tid; 6996 } event_id; 6997 }; 6998 6999 static int perf_event_switch_match(struct perf_event *event) 7000 { 7001 return event->attr.context_switch; 7002 } 7003 7004 static void perf_event_switch_output(struct perf_event *event, void *data) 7005 { 7006 struct perf_switch_event *se = data; 7007 struct perf_output_handle handle; 7008 struct perf_sample_data sample; 7009 int ret; 7010 7011 if (!perf_event_switch_match(event)) 7012 return; 7013 7014 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7015 if (event->ctx->task) { 7016 se->event_id.header.type = PERF_RECORD_SWITCH; 7017 se->event_id.header.size = sizeof(se->event_id.header); 7018 } else { 7019 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7020 se->event_id.header.size = sizeof(se->event_id); 7021 se->event_id.next_prev_pid = 7022 perf_event_pid(event, se->next_prev); 7023 se->event_id.next_prev_tid = 7024 perf_event_tid(event, se->next_prev); 7025 } 7026 7027 perf_event_header__init_id(&se->event_id.header, &sample, event); 7028 7029 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7030 if (ret) 7031 return; 7032 7033 if (event->ctx->task) 7034 perf_output_put(&handle, se->event_id.header); 7035 else 7036 perf_output_put(&handle, se->event_id); 7037 7038 perf_event__output_id_sample(event, &handle, &sample); 7039 7040 perf_output_end(&handle); 7041 } 7042 7043 static void perf_event_switch(struct task_struct *task, 7044 struct task_struct *next_prev, bool sched_in) 7045 { 7046 struct perf_switch_event switch_event; 7047 7048 /* N.B. caller checks nr_switch_events != 0 */ 7049 7050 switch_event = (struct perf_switch_event){ 7051 .task = task, 7052 .next_prev = next_prev, 7053 .event_id = { 7054 .header = { 7055 /* .type */ 7056 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7057 /* .size */ 7058 }, 7059 /* .next_prev_pid */ 7060 /* .next_prev_tid */ 7061 }, 7062 }; 7063 7064 perf_iterate_sb(perf_event_switch_output, 7065 &switch_event, 7066 NULL); 7067 } 7068 7069 /* 7070 * IRQ throttle logging 7071 */ 7072 7073 static void perf_log_throttle(struct perf_event *event, int enable) 7074 { 7075 struct perf_output_handle handle; 7076 struct perf_sample_data sample; 7077 int ret; 7078 7079 struct { 7080 struct perf_event_header header; 7081 u64 time; 7082 u64 id; 7083 u64 stream_id; 7084 } throttle_event = { 7085 .header = { 7086 .type = PERF_RECORD_THROTTLE, 7087 .misc = 0, 7088 .size = sizeof(throttle_event), 7089 }, 7090 .time = perf_event_clock(event), 7091 .id = primary_event_id(event), 7092 .stream_id = event->id, 7093 }; 7094 7095 if (enable) 7096 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7097 7098 perf_event_header__init_id(&throttle_event.header, &sample, event); 7099 7100 ret = perf_output_begin(&handle, event, 7101 throttle_event.header.size); 7102 if (ret) 7103 return; 7104 7105 perf_output_put(&handle, throttle_event); 7106 perf_event__output_id_sample(event, &handle, &sample); 7107 perf_output_end(&handle); 7108 } 7109 7110 static void perf_log_itrace_start(struct perf_event *event) 7111 { 7112 struct perf_output_handle handle; 7113 struct perf_sample_data sample; 7114 struct perf_aux_event { 7115 struct perf_event_header header; 7116 u32 pid; 7117 u32 tid; 7118 } rec; 7119 int ret; 7120 7121 if (event->parent) 7122 event = event->parent; 7123 7124 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7125 event->hw.itrace_started) 7126 return; 7127 7128 rec.header.type = PERF_RECORD_ITRACE_START; 7129 rec.header.misc = 0; 7130 rec.header.size = sizeof(rec); 7131 rec.pid = perf_event_pid(event, current); 7132 rec.tid = perf_event_tid(event, current); 7133 7134 perf_event_header__init_id(&rec.header, &sample, event); 7135 ret = perf_output_begin(&handle, event, rec.header.size); 7136 7137 if (ret) 7138 return; 7139 7140 perf_output_put(&handle, rec); 7141 perf_event__output_id_sample(event, &handle, &sample); 7142 7143 perf_output_end(&handle); 7144 } 7145 7146 static int 7147 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7148 { 7149 struct hw_perf_event *hwc = &event->hw; 7150 int ret = 0; 7151 u64 seq; 7152 7153 seq = __this_cpu_read(perf_throttled_seq); 7154 if (seq != hwc->interrupts_seq) { 7155 hwc->interrupts_seq = seq; 7156 hwc->interrupts = 1; 7157 } else { 7158 hwc->interrupts++; 7159 if (unlikely(throttle 7160 && hwc->interrupts >= max_samples_per_tick)) { 7161 __this_cpu_inc(perf_throttled_count); 7162 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7163 hwc->interrupts = MAX_INTERRUPTS; 7164 perf_log_throttle(event, 0); 7165 ret = 1; 7166 } 7167 } 7168 7169 if (event->attr.freq) { 7170 u64 now = perf_clock(); 7171 s64 delta = now - hwc->freq_time_stamp; 7172 7173 hwc->freq_time_stamp = now; 7174 7175 if (delta > 0 && delta < 2*TICK_NSEC) 7176 perf_adjust_period(event, delta, hwc->last_period, true); 7177 } 7178 7179 return ret; 7180 } 7181 7182 int perf_event_account_interrupt(struct perf_event *event) 7183 { 7184 return __perf_event_account_interrupt(event, 1); 7185 } 7186 7187 /* 7188 * Generic event overflow handling, sampling. 7189 */ 7190 7191 static int __perf_event_overflow(struct perf_event *event, 7192 int throttle, struct perf_sample_data *data, 7193 struct pt_regs *regs) 7194 { 7195 int events = atomic_read(&event->event_limit); 7196 int ret = 0; 7197 7198 /* 7199 * Non-sampling counters might still use the PMI to fold short 7200 * hardware counters, ignore those. 7201 */ 7202 if (unlikely(!is_sampling_event(event))) 7203 return 0; 7204 7205 ret = __perf_event_account_interrupt(event, throttle); 7206 7207 /* 7208 * XXX event_limit might not quite work as expected on inherited 7209 * events 7210 */ 7211 7212 event->pending_kill = POLL_IN; 7213 if (events && atomic_dec_and_test(&event->event_limit)) { 7214 ret = 1; 7215 event->pending_kill = POLL_HUP; 7216 7217 perf_event_disable_inatomic(event); 7218 } 7219 7220 READ_ONCE(event->overflow_handler)(event, data, regs); 7221 7222 if (*perf_event_fasync(event) && event->pending_kill) { 7223 event->pending_wakeup = 1; 7224 irq_work_queue(&event->pending); 7225 } 7226 7227 return ret; 7228 } 7229 7230 int perf_event_overflow(struct perf_event *event, 7231 struct perf_sample_data *data, 7232 struct pt_regs *regs) 7233 { 7234 return __perf_event_overflow(event, 1, data, regs); 7235 } 7236 7237 /* 7238 * Generic software event infrastructure 7239 */ 7240 7241 struct swevent_htable { 7242 struct swevent_hlist *swevent_hlist; 7243 struct mutex hlist_mutex; 7244 int hlist_refcount; 7245 7246 /* Recursion avoidance in each contexts */ 7247 int recursion[PERF_NR_CONTEXTS]; 7248 }; 7249 7250 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7251 7252 /* 7253 * We directly increment event->count and keep a second value in 7254 * event->hw.period_left to count intervals. This period event 7255 * is kept in the range [-sample_period, 0] so that we can use the 7256 * sign as trigger. 7257 */ 7258 7259 u64 perf_swevent_set_period(struct perf_event *event) 7260 { 7261 struct hw_perf_event *hwc = &event->hw; 7262 u64 period = hwc->last_period; 7263 u64 nr, offset; 7264 s64 old, val; 7265 7266 hwc->last_period = hwc->sample_period; 7267 7268 again: 7269 old = val = local64_read(&hwc->period_left); 7270 if (val < 0) 7271 return 0; 7272 7273 nr = div64_u64(period + val, period); 7274 offset = nr * period; 7275 val -= offset; 7276 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7277 goto again; 7278 7279 return nr; 7280 } 7281 7282 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7283 struct perf_sample_data *data, 7284 struct pt_regs *regs) 7285 { 7286 struct hw_perf_event *hwc = &event->hw; 7287 int throttle = 0; 7288 7289 if (!overflow) 7290 overflow = perf_swevent_set_period(event); 7291 7292 if (hwc->interrupts == MAX_INTERRUPTS) 7293 return; 7294 7295 for (; overflow; overflow--) { 7296 if (__perf_event_overflow(event, throttle, 7297 data, regs)) { 7298 /* 7299 * We inhibit the overflow from happening when 7300 * hwc->interrupts == MAX_INTERRUPTS. 7301 */ 7302 break; 7303 } 7304 throttle = 1; 7305 } 7306 } 7307 7308 static void perf_swevent_event(struct perf_event *event, u64 nr, 7309 struct perf_sample_data *data, 7310 struct pt_regs *regs) 7311 { 7312 struct hw_perf_event *hwc = &event->hw; 7313 7314 local64_add(nr, &event->count); 7315 7316 if (!regs) 7317 return; 7318 7319 if (!is_sampling_event(event)) 7320 return; 7321 7322 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7323 data->period = nr; 7324 return perf_swevent_overflow(event, 1, data, regs); 7325 } else 7326 data->period = event->hw.last_period; 7327 7328 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7329 return perf_swevent_overflow(event, 1, data, regs); 7330 7331 if (local64_add_negative(nr, &hwc->period_left)) 7332 return; 7333 7334 perf_swevent_overflow(event, 0, data, regs); 7335 } 7336 7337 static int perf_exclude_event(struct perf_event *event, 7338 struct pt_regs *regs) 7339 { 7340 if (event->hw.state & PERF_HES_STOPPED) 7341 return 1; 7342 7343 if (regs) { 7344 if (event->attr.exclude_user && user_mode(regs)) 7345 return 1; 7346 7347 if (event->attr.exclude_kernel && !user_mode(regs)) 7348 return 1; 7349 } 7350 7351 return 0; 7352 } 7353 7354 static int perf_swevent_match(struct perf_event *event, 7355 enum perf_type_id type, 7356 u32 event_id, 7357 struct perf_sample_data *data, 7358 struct pt_regs *regs) 7359 { 7360 if (event->attr.type != type) 7361 return 0; 7362 7363 if (event->attr.config != event_id) 7364 return 0; 7365 7366 if (perf_exclude_event(event, regs)) 7367 return 0; 7368 7369 return 1; 7370 } 7371 7372 static inline u64 swevent_hash(u64 type, u32 event_id) 7373 { 7374 u64 val = event_id | (type << 32); 7375 7376 return hash_64(val, SWEVENT_HLIST_BITS); 7377 } 7378 7379 static inline struct hlist_head * 7380 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7381 { 7382 u64 hash = swevent_hash(type, event_id); 7383 7384 return &hlist->heads[hash]; 7385 } 7386 7387 /* For the read side: events when they trigger */ 7388 static inline struct hlist_head * 7389 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7390 { 7391 struct swevent_hlist *hlist; 7392 7393 hlist = rcu_dereference(swhash->swevent_hlist); 7394 if (!hlist) 7395 return NULL; 7396 7397 return __find_swevent_head(hlist, type, event_id); 7398 } 7399 7400 /* For the event head insertion and removal in the hlist */ 7401 static inline struct hlist_head * 7402 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7403 { 7404 struct swevent_hlist *hlist; 7405 u32 event_id = event->attr.config; 7406 u64 type = event->attr.type; 7407 7408 /* 7409 * Event scheduling is always serialized against hlist allocation 7410 * and release. Which makes the protected version suitable here. 7411 * The context lock guarantees that. 7412 */ 7413 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7414 lockdep_is_held(&event->ctx->lock)); 7415 if (!hlist) 7416 return NULL; 7417 7418 return __find_swevent_head(hlist, type, event_id); 7419 } 7420 7421 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7422 u64 nr, 7423 struct perf_sample_data *data, 7424 struct pt_regs *regs) 7425 { 7426 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7427 struct perf_event *event; 7428 struct hlist_head *head; 7429 7430 rcu_read_lock(); 7431 head = find_swevent_head_rcu(swhash, type, event_id); 7432 if (!head) 7433 goto end; 7434 7435 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7436 if (perf_swevent_match(event, type, event_id, data, regs)) 7437 perf_swevent_event(event, nr, data, regs); 7438 } 7439 end: 7440 rcu_read_unlock(); 7441 } 7442 7443 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7444 7445 int perf_swevent_get_recursion_context(void) 7446 { 7447 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7448 7449 return get_recursion_context(swhash->recursion); 7450 } 7451 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7452 7453 void perf_swevent_put_recursion_context(int rctx) 7454 { 7455 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7456 7457 put_recursion_context(swhash->recursion, rctx); 7458 } 7459 7460 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7461 { 7462 struct perf_sample_data data; 7463 7464 if (WARN_ON_ONCE(!regs)) 7465 return; 7466 7467 perf_sample_data_init(&data, addr, 0); 7468 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7469 } 7470 7471 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7472 { 7473 int rctx; 7474 7475 preempt_disable_notrace(); 7476 rctx = perf_swevent_get_recursion_context(); 7477 if (unlikely(rctx < 0)) 7478 goto fail; 7479 7480 ___perf_sw_event(event_id, nr, regs, addr); 7481 7482 perf_swevent_put_recursion_context(rctx); 7483 fail: 7484 preempt_enable_notrace(); 7485 } 7486 7487 static void perf_swevent_read(struct perf_event *event) 7488 { 7489 } 7490 7491 static int perf_swevent_add(struct perf_event *event, int flags) 7492 { 7493 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7494 struct hw_perf_event *hwc = &event->hw; 7495 struct hlist_head *head; 7496 7497 if (is_sampling_event(event)) { 7498 hwc->last_period = hwc->sample_period; 7499 perf_swevent_set_period(event); 7500 } 7501 7502 hwc->state = !(flags & PERF_EF_START); 7503 7504 head = find_swevent_head(swhash, event); 7505 if (WARN_ON_ONCE(!head)) 7506 return -EINVAL; 7507 7508 hlist_add_head_rcu(&event->hlist_entry, head); 7509 perf_event_update_userpage(event); 7510 7511 return 0; 7512 } 7513 7514 static void perf_swevent_del(struct perf_event *event, int flags) 7515 { 7516 hlist_del_rcu(&event->hlist_entry); 7517 } 7518 7519 static void perf_swevent_start(struct perf_event *event, int flags) 7520 { 7521 event->hw.state = 0; 7522 } 7523 7524 static void perf_swevent_stop(struct perf_event *event, int flags) 7525 { 7526 event->hw.state = PERF_HES_STOPPED; 7527 } 7528 7529 /* Deref the hlist from the update side */ 7530 static inline struct swevent_hlist * 7531 swevent_hlist_deref(struct swevent_htable *swhash) 7532 { 7533 return rcu_dereference_protected(swhash->swevent_hlist, 7534 lockdep_is_held(&swhash->hlist_mutex)); 7535 } 7536 7537 static void swevent_hlist_release(struct swevent_htable *swhash) 7538 { 7539 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7540 7541 if (!hlist) 7542 return; 7543 7544 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7545 kfree_rcu(hlist, rcu_head); 7546 } 7547 7548 static void swevent_hlist_put_cpu(int cpu) 7549 { 7550 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7551 7552 mutex_lock(&swhash->hlist_mutex); 7553 7554 if (!--swhash->hlist_refcount) 7555 swevent_hlist_release(swhash); 7556 7557 mutex_unlock(&swhash->hlist_mutex); 7558 } 7559 7560 static void swevent_hlist_put(void) 7561 { 7562 int cpu; 7563 7564 for_each_possible_cpu(cpu) 7565 swevent_hlist_put_cpu(cpu); 7566 } 7567 7568 static int swevent_hlist_get_cpu(int cpu) 7569 { 7570 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7571 int err = 0; 7572 7573 mutex_lock(&swhash->hlist_mutex); 7574 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7575 struct swevent_hlist *hlist; 7576 7577 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7578 if (!hlist) { 7579 err = -ENOMEM; 7580 goto exit; 7581 } 7582 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7583 } 7584 swhash->hlist_refcount++; 7585 exit: 7586 mutex_unlock(&swhash->hlist_mutex); 7587 7588 return err; 7589 } 7590 7591 static int swevent_hlist_get(void) 7592 { 7593 int err, cpu, failed_cpu; 7594 7595 get_online_cpus(); 7596 for_each_possible_cpu(cpu) { 7597 err = swevent_hlist_get_cpu(cpu); 7598 if (err) { 7599 failed_cpu = cpu; 7600 goto fail; 7601 } 7602 } 7603 put_online_cpus(); 7604 7605 return 0; 7606 fail: 7607 for_each_possible_cpu(cpu) { 7608 if (cpu == failed_cpu) 7609 break; 7610 swevent_hlist_put_cpu(cpu); 7611 } 7612 7613 put_online_cpus(); 7614 return err; 7615 } 7616 7617 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7618 7619 static void sw_perf_event_destroy(struct perf_event *event) 7620 { 7621 u64 event_id = event->attr.config; 7622 7623 WARN_ON(event->parent); 7624 7625 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7626 swevent_hlist_put(); 7627 } 7628 7629 static int perf_swevent_init(struct perf_event *event) 7630 { 7631 u64 event_id = event->attr.config; 7632 7633 if (event->attr.type != PERF_TYPE_SOFTWARE) 7634 return -ENOENT; 7635 7636 /* 7637 * no branch sampling for software events 7638 */ 7639 if (has_branch_stack(event)) 7640 return -EOPNOTSUPP; 7641 7642 switch (event_id) { 7643 case PERF_COUNT_SW_CPU_CLOCK: 7644 case PERF_COUNT_SW_TASK_CLOCK: 7645 return -ENOENT; 7646 7647 default: 7648 break; 7649 } 7650 7651 if (event_id >= PERF_COUNT_SW_MAX) 7652 return -ENOENT; 7653 7654 if (!event->parent) { 7655 int err; 7656 7657 err = swevent_hlist_get(); 7658 if (err) 7659 return err; 7660 7661 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7662 event->destroy = sw_perf_event_destroy; 7663 } 7664 7665 return 0; 7666 } 7667 7668 static struct pmu perf_swevent = { 7669 .task_ctx_nr = perf_sw_context, 7670 7671 .capabilities = PERF_PMU_CAP_NO_NMI, 7672 7673 .event_init = perf_swevent_init, 7674 .add = perf_swevent_add, 7675 .del = perf_swevent_del, 7676 .start = perf_swevent_start, 7677 .stop = perf_swevent_stop, 7678 .read = perf_swevent_read, 7679 }; 7680 7681 #ifdef CONFIG_EVENT_TRACING 7682 7683 static int perf_tp_filter_match(struct perf_event *event, 7684 struct perf_sample_data *data) 7685 { 7686 void *record = data->raw->frag.data; 7687 7688 /* only top level events have filters set */ 7689 if (event->parent) 7690 event = event->parent; 7691 7692 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7693 return 1; 7694 return 0; 7695 } 7696 7697 static int perf_tp_event_match(struct perf_event *event, 7698 struct perf_sample_data *data, 7699 struct pt_regs *regs) 7700 { 7701 if (event->hw.state & PERF_HES_STOPPED) 7702 return 0; 7703 /* 7704 * All tracepoints are from kernel-space. 7705 */ 7706 if (event->attr.exclude_kernel) 7707 return 0; 7708 7709 if (!perf_tp_filter_match(event, data)) 7710 return 0; 7711 7712 return 1; 7713 } 7714 7715 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7716 struct trace_event_call *call, u64 count, 7717 struct pt_regs *regs, struct hlist_head *head, 7718 struct task_struct *task) 7719 { 7720 struct bpf_prog *prog = call->prog; 7721 7722 if (prog) { 7723 *(struct pt_regs **)raw_data = regs; 7724 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7725 perf_swevent_put_recursion_context(rctx); 7726 return; 7727 } 7728 } 7729 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7730 rctx, task); 7731 } 7732 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7733 7734 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7735 struct pt_regs *regs, struct hlist_head *head, int rctx, 7736 struct task_struct *task) 7737 { 7738 struct perf_sample_data data; 7739 struct perf_event *event; 7740 7741 struct perf_raw_record raw = { 7742 .frag = { 7743 .size = entry_size, 7744 .data = record, 7745 }, 7746 }; 7747 7748 perf_sample_data_init(&data, 0, 0); 7749 data.raw = &raw; 7750 7751 perf_trace_buf_update(record, event_type); 7752 7753 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7754 if (perf_tp_event_match(event, &data, regs)) 7755 perf_swevent_event(event, count, &data, regs); 7756 } 7757 7758 /* 7759 * If we got specified a target task, also iterate its context and 7760 * deliver this event there too. 7761 */ 7762 if (task && task != current) { 7763 struct perf_event_context *ctx; 7764 struct trace_entry *entry = record; 7765 7766 rcu_read_lock(); 7767 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7768 if (!ctx) 7769 goto unlock; 7770 7771 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7772 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7773 continue; 7774 if (event->attr.config != entry->type) 7775 continue; 7776 if (perf_tp_event_match(event, &data, regs)) 7777 perf_swevent_event(event, count, &data, regs); 7778 } 7779 unlock: 7780 rcu_read_unlock(); 7781 } 7782 7783 perf_swevent_put_recursion_context(rctx); 7784 } 7785 EXPORT_SYMBOL_GPL(perf_tp_event); 7786 7787 static void tp_perf_event_destroy(struct perf_event *event) 7788 { 7789 perf_trace_destroy(event); 7790 } 7791 7792 static int perf_tp_event_init(struct perf_event *event) 7793 { 7794 int err; 7795 7796 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7797 return -ENOENT; 7798 7799 /* 7800 * no branch sampling for tracepoint events 7801 */ 7802 if (has_branch_stack(event)) 7803 return -EOPNOTSUPP; 7804 7805 err = perf_trace_init(event); 7806 if (err) 7807 return err; 7808 7809 event->destroy = tp_perf_event_destroy; 7810 7811 return 0; 7812 } 7813 7814 static struct pmu perf_tracepoint = { 7815 .task_ctx_nr = perf_sw_context, 7816 7817 .event_init = perf_tp_event_init, 7818 .add = perf_trace_add, 7819 .del = perf_trace_del, 7820 .start = perf_swevent_start, 7821 .stop = perf_swevent_stop, 7822 .read = perf_swevent_read, 7823 }; 7824 7825 static inline void perf_tp_register(void) 7826 { 7827 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7828 } 7829 7830 static void perf_event_free_filter(struct perf_event *event) 7831 { 7832 ftrace_profile_free_filter(event); 7833 } 7834 7835 #ifdef CONFIG_BPF_SYSCALL 7836 static void bpf_overflow_handler(struct perf_event *event, 7837 struct perf_sample_data *data, 7838 struct pt_regs *regs) 7839 { 7840 struct bpf_perf_event_data_kern ctx = { 7841 .data = data, 7842 .regs = regs, 7843 }; 7844 int ret = 0; 7845 7846 preempt_disable(); 7847 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 7848 goto out; 7849 rcu_read_lock(); 7850 ret = BPF_PROG_RUN(event->prog, &ctx); 7851 rcu_read_unlock(); 7852 out: 7853 __this_cpu_dec(bpf_prog_active); 7854 preempt_enable(); 7855 if (!ret) 7856 return; 7857 7858 event->orig_overflow_handler(event, data, regs); 7859 } 7860 7861 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7862 { 7863 struct bpf_prog *prog; 7864 7865 if (event->overflow_handler_context) 7866 /* hw breakpoint or kernel counter */ 7867 return -EINVAL; 7868 7869 if (event->prog) 7870 return -EEXIST; 7871 7872 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 7873 if (IS_ERR(prog)) 7874 return PTR_ERR(prog); 7875 7876 event->prog = prog; 7877 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 7878 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 7879 return 0; 7880 } 7881 7882 static void perf_event_free_bpf_handler(struct perf_event *event) 7883 { 7884 struct bpf_prog *prog = event->prog; 7885 7886 if (!prog) 7887 return; 7888 7889 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 7890 event->prog = NULL; 7891 bpf_prog_put(prog); 7892 } 7893 #else 7894 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 7895 { 7896 return -EOPNOTSUPP; 7897 } 7898 static void perf_event_free_bpf_handler(struct perf_event *event) 7899 { 7900 } 7901 #endif 7902 7903 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7904 { 7905 bool is_kprobe, is_tracepoint; 7906 struct bpf_prog *prog; 7907 7908 if (event->attr.type == PERF_TYPE_HARDWARE || 7909 event->attr.type == PERF_TYPE_SOFTWARE) 7910 return perf_event_set_bpf_handler(event, prog_fd); 7911 7912 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7913 return -EINVAL; 7914 7915 if (event->tp_event->prog) 7916 return -EEXIST; 7917 7918 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7919 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7920 if (!is_kprobe && !is_tracepoint) 7921 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7922 return -EINVAL; 7923 7924 prog = bpf_prog_get(prog_fd); 7925 if (IS_ERR(prog)) 7926 return PTR_ERR(prog); 7927 7928 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7929 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7930 /* valid fd, but invalid bpf program type */ 7931 bpf_prog_put(prog); 7932 return -EINVAL; 7933 } 7934 7935 if (is_tracepoint) { 7936 int off = trace_event_get_offsets(event->tp_event); 7937 7938 if (prog->aux->max_ctx_offset > off) { 7939 bpf_prog_put(prog); 7940 return -EACCES; 7941 } 7942 } 7943 event->tp_event->prog = prog; 7944 7945 return 0; 7946 } 7947 7948 static void perf_event_free_bpf_prog(struct perf_event *event) 7949 { 7950 struct bpf_prog *prog; 7951 7952 perf_event_free_bpf_handler(event); 7953 7954 if (!event->tp_event) 7955 return; 7956 7957 prog = event->tp_event->prog; 7958 if (prog) { 7959 event->tp_event->prog = NULL; 7960 bpf_prog_put(prog); 7961 } 7962 } 7963 7964 #else 7965 7966 static inline void perf_tp_register(void) 7967 { 7968 } 7969 7970 static void perf_event_free_filter(struct perf_event *event) 7971 { 7972 } 7973 7974 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7975 { 7976 return -ENOENT; 7977 } 7978 7979 static void perf_event_free_bpf_prog(struct perf_event *event) 7980 { 7981 } 7982 #endif /* CONFIG_EVENT_TRACING */ 7983 7984 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7985 void perf_bp_event(struct perf_event *bp, void *data) 7986 { 7987 struct perf_sample_data sample; 7988 struct pt_regs *regs = data; 7989 7990 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7991 7992 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7993 perf_swevent_event(bp, 1, &sample, regs); 7994 } 7995 #endif 7996 7997 /* 7998 * Allocate a new address filter 7999 */ 8000 static struct perf_addr_filter * 8001 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8002 { 8003 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8004 struct perf_addr_filter *filter; 8005 8006 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8007 if (!filter) 8008 return NULL; 8009 8010 INIT_LIST_HEAD(&filter->entry); 8011 list_add_tail(&filter->entry, filters); 8012 8013 return filter; 8014 } 8015 8016 static void free_filters_list(struct list_head *filters) 8017 { 8018 struct perf_addr_filter *filter, *iter; 8019 8020 list_for_each_entry_safe(filter, iter, filters, entry) { 8021 if (filter->inode) 8022 iput(filter->inode); 8023 list_del(&filter->entry); 8024 kfree(filter); 8025 } 8026 } 8027 8028 /* 8029 * Free existing address filters and optionally install new ones 8030 */ 8031 static void perf_addr_filters_splice(struct perf_event *event, 8032 struct list_head *head) 8033 { 8034 unsigned long flags; 8035 LIST_HEAD(list); 8036 8037 if (!has_addr_filter(event)) 8038 return; 8039 8040 /* don't bother with children, they don't have their own filters */ 8041 if (event->parent) 8042 return; 8043 8044 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8045 8046 list_splice_init(&event->addr_filters.list, &list); 8047 if (head) 8048 list_splice(head, &event->addr_filters.list); 8049 8050 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8051 8052 free_filters_list(&list); 8053 } 8054 8055 /* 8056 * Scan through mm's vmas and see if one of them matches the 8057 * @filter; if so, adjust filter's address range. 8058 * Called with mm::mmap_sem down for reading. 8059 */ 8060 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8061 struct mm_struct *mm) 8062 { 8063 struct vm_area_struct *vma; 8064 8065 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8066 struct file *file = vma->vm_file; 8067 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8068 unsigned long vma_size = vma->vm_end - vma->vm_start; 8069 8070 if (!file) 8071 continue; 8072 8073 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8074 continue; 8075 8076 return vma->vm_start; 8077 } 8078 8079 return 0; 8080 } 8081 8082 /* 8083 * Update event's address range filters based on the 8084 * task's existing mappings, if any. 8085 */ 8086 static void perf_event_addr_filters_apply(struct perf_event *event) 8087 { 8088 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8089 struct task_struct *task = READ_ONCE(event->ctx->task); 8090 struct perf_addr_filter *filter; 8091 struct mm_struct *mm = NULL; 8092 unsigned int count = 0; 8093 unsigned long flags; 8094 8095 /* 8096 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8097 * will stop on the parent's child_mutex that our caller is also holding 8098 */ 8099 if (task == TASK_TOMBSTONE) 8100 return; 8101 8102 if (!ifh->nr_file_filters) 8103 return; 8104 8105 mm = get_task_mm(event->ctx->task); 8106 if (!mm) 8107 goto restart; 8108 8109 down_read(&mm->mmap_sem); 8110 8111 raw_spin_lock_irqsave(&ifh->lock, flags); 8112 list_for_each_entry(filter, &ifh->list, entry) { 8113 event->addr_filters_offs[count] = 0; 8114 8115 /* 8116 * Adjust base offset if the filter is associated to a binary 8117 * that needs to be mapped: 8118 */ 8119 if (filter->inode) 8120 event->addr_filters_offs[count] = 8121 perf_addr_filter_apply(filter, mm); 8122 8123 count++; 8124 } 8125 8126 event->addr_filters_gen++; 8127 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8128 8129 up_read(&mm->mmap_sem); 8130 8131 mmput(mm); 8132 8133 restart: 8134 perf_event_stop(event, 1); 8135 } 8136 8137 /* 8138 * Address range filtering: limiting the data to certain 8139 * instruction address ranges. Filters are ioctl()ed to us from 8140 * userspace as ascii strings. 8141 * 8142 * Filter string format: 8143 * 8144 * ACTION RANGE_SPEC 8145 * where ACTION is one of the 8146 * * "filter": limit the trace to this region 8147 * * "start": start tracing from this address 8148 * * "stop": stop tracing at this address/region; 8149 * RANGE_SPEC is 8150 * * for kernel addresses: <start address>[/<size>] 8151 * * for object files: <start address>[/<size>]@</path/to/object/file> 8152 * 8153 * if <size> is not specified, the range is treated as a single address. 8154 */ 8155 enum { 8156 IF_ACT_NONE = -1, 8157 IF_ACT_FILTER, 8158 IF_ACT_START, 8159 IF_ACT_STOP, 8160 IF_SRC_FILE, 8161 IF_SRC_KERNEL, 8162 IF_SRC_FILEADDR, 8163 IF_SRC_KERNELADDR, 8164 }; 8165 8166 enum { 8167 IF_STATE_ACTION = 0, 8168 IF_STATE_SOURCE, 8169 IF_STATE_END, 8170 }; 8171 8172 static const match_table_t if_tokens = { 8173 { IF_ACT_FILTER, "filter" }, 8174 { IF_ACT_START, "start" }, 8175 { IF_ACT_STOP, "stop" }, 8176 { IF_SRC_FILE, "%u/%u@%s" }, 8177 { IF_SRC_KERNEL, "%u/%u" }, 8178 { IF_SRC_FILEADDR, "%u@%s" }, 8179 { IF_SRC_KERNELADDR, "%u" }, 8180 { IF_ACT_NONE, NULL }, 8181 }; 8182 8183 /* 8184 * Address filter string parser 8185 */ 8186 static int 8187 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8188 struct list_head *filters) 8189 { 8190 struct perf_addr_filter *filter = NULL; 8191 char *start, *orig, *filename = NULL; 8192 struct path path; 8193 substring_t args[MAX_OPT_ARGS]; 8194 int state = IF_STATE_ACTION, token; 8195 unsigned int kernel = 0; 8196 int ret = -EINVAL; 8197 8198 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8199 if (!fstr) 8200 return -ENOMEM; 8201 8202 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8203 ret = -EINVAL; 8204 8205 if (!*start) 8206 continue; 8207 8208 /* filter definition begins */ 8209 if (state == IF_STATE_ACTION) { 8210 filter = perf_addr_filter_new(event, filters); 8211 if (!filter) 8212 goto fail; 8213 } 8214 8215 token = match_token(start, if_tokens, args); 8216 switch (token) { 8217 case IF_ACT_FILTER: 8218 case IF_ACT_START: 8219 filter->filter = 1; 8220 8221 case IF_ACT_STOP: 8222 if (state != IF_STATE_ACTION) 8223 goto fail; 8224 8225 state = IF_STATE_SOURCE; 8226 break; 8227 8228 case IF_SRC_KERNELADDR: 8229 case IF_SRC_KERNEL: 8230 kernel = 1; 8231 8232 case IF_SRC_FILEADDR: 8233 case IF_SRC_FILE: 8234 if (state != IF_STATE_SOURCE) 8235 goto fail; 8236 8237 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8238 filter->range = 1; 8239 8240 *args[0].to = 0; 8241 ret = kstrtoul(args[0].from, 0, &filter->offset); 8242 if (ret) 8243 goto fail; 8244 8245 if (filter->range) { 8246 *args[1].to = 0; 8247 ret = kstrtoul(args[1].from, 0, &filter->size); 8248 if (ret) 8249 goto fail; 8250 } 8251 8252 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8253 int fpos = filter->range ? 2 : 1; 8254 8255 filename = match_strdup(&args[fpos]); 8256 if (!filename) { 8257 ret = -ENOMEM; 8258 goto fail; 8259 } 8260 } 8261 8262 state = IF_STATE_END; 8263 break; 8264 8265 default: 8266 goto fail; 8267 } 8268 8269 /* 8270 * Filter definition is fully parsed, validate and install it. 8271 * Make sure that it doesn't contradict itself or the event's 8272 * attribute. 8273 */ 8274 if (state == IF_STATE_END) { 8275 ret = -EINVAL; 8276 if (kernel && event->attr.exclude_kernel) 8277 goto fail; 8278 8279 if (!kernel) { 8280 if (!filename) 8281 goto fail; 8282 8283 /* 8284 * For now, we only support file-based filters 8285 * in per-task events; doing so for CPU-wide 8286 * events requires additional context switching 8287 * trickery, since same object code will be 8288 * mapped at different virtual addresses in 8289 * different processes. 8290 */ 8291 ret = -EOPNOTSUPP; 8292 if (!event->ctx->task) 8293 goto fail_free_name; 8294 8295 /* look up the path and grab its inode */ 8296 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8297 if (ret) 8298 goto fail_free_name; 8299 8300 filter->inode = igrab(d_inode(path.dentry)); 8301 path_put(&path); 8302 kfree(filename); 8303 filename = NULL; 8304 8305 ret = -EINVAL; 8306 if (!filter->inode || 8307 !S_ISREG(filter->inode->i_mode)) 8308 /* free_filters_list() will iput() */ 8309 goto fail; 8310 8311 event->addr_filters.nr_file_filters++; 8312 } 8313 8314 /* ready to consume more filters */ 8315 state = IF_STATE_ACTION; 8316 filter = NULL; 8317 } 8318 } 8319 8320 if (state != IF_STATE_ACTION) 8321 goto fail; 8322 8323 kfree(orig); 8324 8325 return 0; 8326 8327 fail_free_name: 8328 kfree(filename); 8329 fail: 8330 free_filters_list(filters); 8331 kfree(orig); 8332 8333 return ret; 8334 } 8335 8336 static int 8337 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8338 { 8339 LIST_HEAD(filters); 8340 int ret; 8341 8342 /* 8343 * Since this is called in perf_ioctl() path, we're already holding 8344 * ctx::mutex. 8345 */ 8346 lockdep_assert_held(&event->ctx->mutex); 8347 8348 if (WARN_ON_ONCE(event->parent)) 8349 return -EINVAL; 8350 8351 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8352 if (ret) 8353 goto fail_clear_files; 8354 8355 ret = event->pmu->addr_filters_validate(&filters); 8356 if (ret) 8357 goto fail_free_filters; 8358 8359 /* remove existing filters, if any */ 8360 perf_addr_filters_splice(event, &filters); 8361 8362 /* install new filters */ 8363 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8364 8365 return ret; 8366 8367 fail_free_filters: 8368 free_filters_list(&filters); 8369 8370 fail_clear_files: 8371 event->addr_filters.nr_file_filters = 0; 8372 8373 return ret; 8374 } 8375 8376 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8377 { 8378 char *filter_str; 8379 int ret = -EINVAL; 8380 8381 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8382 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8383 !has_addr_filter(event)) 8384 return -EINVAL; 8385 8386 filter_str = strndup_user(arg, PAGE_SIZE); 8387 if (IS_ERR(filter_str)) 8388 return PTR_ERR(filter_str); 8389 8390 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8391 event->attr.type == PERF_TYPE_TRACEPOINT) 8392 ret = ftrace_profile_set_filter(event, event->attr.config, 8393 filter_str); 8394 else if (has_addr_filter(event)) 8395 ret = perf_event_set_addr_filter(event, filter_str); 8396 8397 kfree(filter_str); 8398 return ret; 8399 } 8400 8401 /* 8402 * hrtimer based swevent callback 8403 */ 8404 8405 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8406 { 8407 enum hrtimer_restart ret = HRTIMER_RESTART; 8408 struct perf_sample_data data; 8409 struct pt_regs *regs; 8410 struct perf_event *event; 8411 u64 period; 8412 8413 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8414 8415 if (event->state != PERF_EVENT_STATE_ACTIVE) 8416 return HRTIMER_NORESTART; 8417 8418 event->pmu->read(event); 8419 8420 perf_sample_data_init(&data, 0, event->hw.last_period); 8421 regs = get_irq_regs(); 8422 8423 if (regs && !perf_exclude_event(event, regs)) { 8424 if (!(event->attr.exclude_idle && is_idle_task(current))) 8425 if (__perf_event_overflow(event, 1, &data, regs)) 8426 ret = HRTIMER_NORESTART; 8427 } 8428 8429 period = max_t(u64, 10000, event->hw.sample_period); 8430 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8431 8432 return ret; 8433 } 8434 8435 static void perf_swevent_start_hrtimer(struct perf_event *event) 8436 { 8437 struct hw_perf_event *hwc = &event->hw; 8438 s64 period; 8439 8440 if (!is_sampling_event(event)) 8441 return; 8442 8443 period = local64_read(&hwc->period_left); 8444 if (period) { 8445 if (period < 0) 8446 period = 10000; 8447 8448 local64_set(&hwc->period_left, 0); 8449 } else { 8450 period = max_t(u64, 10000, hwc->sample_period); 8451 } 8452 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8453 HRTIMER_MODE_REL_PINNED); 8454 } 8455 8456 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8457 { 8458 struct hw_perf_event *hwc = &event->hw; 8459 8460 if (is_sampling_event(event)) { 8461 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8462 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8463 8464 hrtimer_cancel(&hwc->hrtimer); 8465 } 8466 } 8467 8468 static void perf_swevent_init_hrtimer(struct perf_event *event) 8469 { 8470 struct hw_perf_event *hwc = &event->hw; 8471 8472 if (!is_sampling_event(event)) 8473 return; 8474 8475 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8476 hwc->hrtimer.function = perf_swevent_hrtimer; 8477 8478 /* 8479 * Since hrtimers have a fixed rate, we can do a static freq->period 8480 * mapping and avoid the whole period adjust feedback stuff. 8481 */ 8482 if (event->attr.freq) { 8483 long freq = event->attr.sample_freq; 8484 8485 event->attr.sample_period = NSEC_PER_SEC / freq; 8486 hwc->sample_period = event->attr.sample_period; 8487 local64_set(&hwc->period_left, hwc->sample_period); 8488 hwc->last_period = hwc->sample_period; 8489 event->attr.freq = 0; 8490 } 8491 } 8492 8493 /* 8494 * Software event: cpu wall time clock 8495 */ 8496 8497 static void cpu_clock_event_update(struct perf_event *event) 8498 { 8499 s64 prev; 8500 u64 now; 8501 8502 now = local_clock(); 8503 prev = local64_xchg(&event->hw.prev_count, now); 8504 local64_add(now - prev, &event->count); 8505 } 8506 8507 static void cpu_clock_event_start(struct perf_event *event, int flags) 8508 { 8509 local64_set(&event->hw.prev_count, local_clock()); 8510 perf_swevent_start_hrtimer(event); 8511 } 8512 8513 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8514 { 8515 perf_swevent_cancel_hrtimer(event); 8516 cpu_clock_event_update(event); 8517 } 8518 8519 static int cpu_clock_event_add(struct perf_event *event, int flags) 8520 { 8521 if (flags & PERF_EF_START) 8522 cpu_clock_event_start(event, flags); 8523 perf_event_update_userpage(event); 8524 8525 return 0; 8526 } 8527 8528 static void cpu_clock_event_del(struct perf_event *event, int flags) 8529 { 8530 cpu_clock_event_stop(event, flags); 8531 } 8532 8533 static void cpu_clock_event_read(struct perf_event *event) 8534 { 8535 cpu_clock_event_update(event); 8536 } 8537 8538 static int cpu_clock_event_init(struct perf_event *event) 8539 { 8540 if (event->attr.type != PERF_TYPE_SOFTWARE) 8541 return -ENOENT; 8542 8543 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8544 return -ENOENT; 8545 8546 /* 8547 * no branch sampling for software events 8548 */ 8549 if (has_branch_stack(event)) 8550 return -EOPNOTSUPP; 8551 8552 perf_swevent_init_hrtimer(event); 8553 8554 return 0; 8555 } 8556 8557 static struct pmu perf_cpu_clock = { 8558 .task_ctx_nr = perf_sw_context, 8559 8560 .capabilities = PERF_PMU_CAP_NO_NMI, 8561 8562 .event_init = cpu_clock_event_init, 8563 .add = cpu_clock_event_add, 8564 .del = cpu_clock_event_del, 8565 .start = cpu_clock_event_start, 8566 .stop = cpu_clock_event_stop, 8567 .read = cpu_clock_event_read, 8568 }; 8569 8570 /* 8571 * Software event: task time clock 8572 */ 8573 8574 static void task_clock_event_update(struct perf_event *event, u64 now) 8575 { 8576 u64 prev; 8577 s64 delta; 8578 8579 prev = local64_xchg(&event->hw.prev_count, now); 8580 delta = now - prev; 8581 local64_add(delta, &event->count); 8582 } 8583 8584 static void task_clock_event_start(struct perf_event *event, int flags) 8585 { 8586 local64_set(&event->hw.prev_count, event->ctx->time); 8587 perf_swevent_start_hrtimer(event); 8588 } 8589 8590 static void task_clock_event_stop(struct perf_event *event, int flags) 8591 { 8592 perf_swevent_cancel_hrtimer(event); 8593 task_clock_event_update(event, event->ctx->time); 8594 } 8595 8596 static int task_clock_event_add(struct perf_event *event, int flags) 8597 { 8598 if (flags & PERF_EF_START) 8599 task_clock_event_start(event, flags); 8600 perf_event_update_userpage(event); 8601 8602 return 0; 8603 } 8604 8605 static void task_clock_event_del(struct perf_event *event, int flags) 8606 { 8607 task_clock_event_stop(event, PERF_EF_UPDATE); 8608 } 8609 8610 static void task_clock_event_read(struct perf_event *event) 8611 { 8612 u64 now = perf_clock(); 8613 u64 delta = now - event->ctx->timestamp; 8614 u64 time = event->ctx->time + delta; 8615 8616 task_clock_event_update(event, time); 8617 } 8618 8619 static int task_clock_event_init(struct perf_event *event) 8620 { 8621 if (event->attr.type != PERF_TYPE_SOFTWARE) 8622 return -ENOENT; 8623 8624 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8625 return -ENOENT; 8626 8627 /* 8628 * no branch sampling for software events 8629 */ 8630 if (has_branch_stack(event)) 8631 return -EOPNOTSUPP; 8632 8633 perf_swevent_init_hrtimer(event); 8634 8635 return 0; 8636 } 8637 8638 static struct pmu perf_task_clock = { 8639 .task_ctx_nr = perf_sw_context, 8640 8641 .capabilities = PERF_PMU_CAP_NO_NMI, 8642 8643 .event_init = task_clock_event_init, 8644 .add = task_clock_event_add, 8645 .del = task_clock_event_del, 8646 .start = task_clock_event_start, 8647 .stop = task_clock_event_stop, 8648 .read = task_clock_event_read, 8649 }; 8650 8651 static void perf_pmu_nop_void(struct pmu *pmu) 8652 { 8653 } 8654 8655 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8656 { 8657 } 8658 8659 static int perf_pmu_nop_int(struct pmu *pmu) 8660 { 8661 return 0; 8662 } 8663 8664 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8665 8666 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8667 { 8668 __this_cpu_write(nop_txn_flags, flags); 8669 8670 if (flags & ~PERF_PMU_TXN_ADD) 8671 return; 8672 8673 perf_pmu_disable(pmu); 8674 } 8675 8676 static int perf_pmu_commit_txn(struct pmu *pmu) 8677 { 8678 unsigned int flags = __this_cpu_read(nop_txn_flags); 8679 8680 __this_cpu_write(nop_txn_flags, 0); 8681 8682 if (flags & ~PERF_PMU_TXN_ADD) 8683 return 0; 8684 8685 perf_pmu_enable(pmu); 8686 return 0; 8687 } 8688 8689 static void perf_pmu_cancel_txn(struct pmu *pmu) 8690 { 8691 unsigned int flags = __this_cpu_read(nop_txn_flags); 8692 8693 __this_cpu_write(nop_txn_flags, 0); 8694 8695 if (flags & ~PERF_PMU_TXN_ADD) 8696 return; 8697 8698 perf_pmu_enable(pmu); 8699 } 8700 8701 static int perf_event_idx_default(struct perf_event *event) 8702 { 8703 return 0; 8704 } 8705 8706 /* 8707 * Ensures all contexts with the same task_ctx_nr have the same 8708 * pmu_cpu_context too. 8709 */ 8710 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8711 { 8712 struct pmu *pmu; 8713 8714 if (ctxn < 0) 8715 return NULL; 8716 8717 list_for_each_entry(pmu, &pmus, entry) { 8718 if (pmu->task_ctx_nr == ctxn) 8719 return pmu->pmu_cpu_context; 8720 } 8721 8722 return NULL; 8723 } 8724 8725 static void free_pmu_context(struct pmu *pmu) 8726 { 8727 mutex_lock(&pmus_lock); 8728 free_percpu(pmu->pmu_cpu_context); 8729 mutex_unlock(&pmus_lock); 8730 } 8731 8732 /* 8733 * Let userspace know that this PMU supports address range filtering: 8734 */ 8735 static ssize_t nr_addr_filters_show(struct device *dev, 8736 struct device_attribute *attr, 8737 char *page) 8738 { 8739 struct pmu *pmu = dev_get_drvdata(dev); 8740 8741 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8742 } 8743 DEVICE_ATTR_RO(nr_addr_filters); 8744 8745 static struct idr pmu_idr; 8746 8747 static ssize_t 8748 type_show(struct device *dev, struct device_attribute *attr, char *page) 8749 { 8750 struct pmu *pmu = dev_get_drvdata(dev); 8751 8752 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8753 } 8754 static DEVICE_ATTR_RO(type); 8755 8756 static ssize_t 8757 perf_event_mux_interval_ms_show(struct device *dev, 8758 struct device_attribute *attr, 8759 char *page) 8760 { 8761 struct pmu *pmu = dev_get_drvdata(dev); 8762 8763 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8764 } 8765 8766 static DEFINE_MUTEX(mux_interval_mutex); 8767 8768 static ssize_t 8769 perf_event_mux_interval_ms_store(struct device *dev, 8770 struct device_attribute *attr, 8771 const char *buf, size_t count) 8772 { 8773 struct pmu *pmu = dev_get_drvdata(dev); 8774 int timer, cpu, ret; 8775 8776 ret = kstrtoint(buf, 0, &timer); 8777 if (ret) 8778 return ret; 8779 8780 if (timer < 1) 8781 return -EINVAL; 8782 8783 /* same value, noting to do */ 8784 if (timer == pmu->hrtimer_interval_ms) 8785 return count; 8786 8787 mutex_lock(&mux_interval_mutex); 8788 pmu->hrtimer_interval_ms = timer; 8789 8790 /* update all cpuctx for this PMU */ 8791 get_online_cpus(); 8792 for_each_online_cpu(cpu) { 8793 struct perf_cpu_context *cpuctx; 8794 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8795 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8796 8797 cpu_function_call(cpu, 8798 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8799 } 8800 put_online_cpus(); 8801 mutex_unlock(&mux_interval_mutex); 8802 8803 return count; 8804 } 8805 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8806 8807 static struct attribute *pmu_dev_attrs[] = { 8808 &dev_attr_type.attr, 8809 &dev_attr_perf_event_mux_interval_ms.attr, 8810 NULL, 8811 }; 8812 ATTRIBUTE_GROUPS(pmu_dev); 8813 8814 static int pmu_bus_running; 8815 static struct bus_type pmu_bus = { 8816 .name = "event_source", 8817 .dev_groups = pmu_dev_groups, 8818 }; 8819 8820 static void pmu_dev_release(struct device *dev) 8821 { 8822 kfree(dev); 8823 } 8824 8825 static int pmu_dev_alloc(struct pmu *pmu) 8826 { 8827 int ret = -ENOMEM; 8828 8829 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8830 if (!pmu->dev) 8831 goto out; 8832 8833 pmu->dev->groups = pmu->attr_groups; 8834 device_initialize(pmu->dev); 8835 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8836 if (ret) 8837 goto free_dev; 8838 8839 dev_set_drvdata(pmu->dev, pmu); 8840 pmu->dev->bus = &pmu_bus; 8841 pmu->dev->release = pmu_dev_release; 8842 ret = device_add(pmu->dev); 8843 if (ret) 8844 goto free_dev; 8845 8846 /* For PMUs with address filters, throw in an extra attribute: */ 8847 if (pmu->nr_addr_filters) 8848 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8849 8850 if (ret) 8851 goto del_dev; 8852 8853 out: 8854 return ret; 8855 8856 del_dev: 8857 device_del(pmu->dev); 8858 8859 free_dev: 8860 put_device(pmu->dev); 8861 goto out; 8862 } 8863 8864 static struct lock_class_key cpuctx_mutex; 8865 static struct lock_class_key cpuctx_lock; 8866 8867 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8868 { 8869 int cpu, ret; 8870 8871 mutex_lock(&pmus_lock); 8872 ret = -ENOMEM; 8873 pmu->pmu_disable_count = alloc_percpu(int); 8874 if (!pmu->pmu_disable_count) 8875 goto unlock; 8876 8877 pmu->type = -1; 8878 if (!name) 8879 goto skip_type; 8880 pmu->name = name; 8881 8882 if (type < 0) { 8883 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8884 if (type < 0) { 8885 ret = type; 8886 goto free_pdc; 8887 } 8888 } 8889 pmu->type = type; 8890 8891 if (pmu_bus_running) { 8892 ret = pmu_dev_alloc(pmu); 8893 if (ret) 8894 goto free_idr; 8895 } 8896 8897 skip_type: 8898 if (pmu->task_ctx_nr == perf_hw_context) { 8899 static int hw_context_taken = 0; 8900 8901 /* 8902 * Other than systems with heterogeneous CPUs, it never makes 8903 * sense for two PMUs to share perf_hw_context. PMUs which are 8904 * uncore must use perf_invalid_context. 8905 */ 8906 if (WARN_ON_ONCE(hw_context_taken && 8907 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8908 pmu->task_ctx_nr = perf_invalid_context; 8909 8910 hw_context_taken = 1; 8911 } 8912 8913 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8914 if (pmu->pmu_cpu_context) 8915 goto got_cpu_context; 8916 8917 ret = -ENOMEM; 8918 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8919 if (!pmu->pmu_cpu_context) 8920 goto free_dev; 8921 8922 for_each_possible_cpu(cpu) { 8923 struct perf_cpu_context *cpuctx; 8924 8925 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8926 __perf_event_init_context(&cpuctx->ctx); 8927 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8928 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8929 cpuctx->ctx.pmu = pmu; 8930 8931 __perf_mux_hrtimer_init(cpuctx, cpu); 8932 } 8933 8934 got_cpu_context: 8935 if (!pmu->start_txn) { 8936 if (pmu->pmu_enable) { 8937 /* 8938 * If we have pmu_enable/pmu_disable calls, install 8939 * transaction stubs that use that to try and batch 8940 * hardware accesses. 8941 */ 8942 pmu->start_txn = perf_pmu_start_txn; 8943 pmu->commit_txn = perf_pmu_commit_txn; 8944 pmu->cancel_txn = perf_pmu_cancel_txn; 8945 } else { 8946 pmu->start_txn = perf_pmu_nop_txn; 8947 pmu->commit_txn = perf_pmu_nop_int; 8948 pmu->cancel_txn = perf_pmu_nop_void; 8949 } 8950 } 8951 8952 if (!pmu->pmu_enable) { 8953 pmu->pmu_enable = perf_pmu_nop_void; 8954 pmu->pmu_disable = perf_pmu_nop_void; 8955 } 8956 8957 if (!pmu->event_idx) 8958 pmu->event_idx = perf_event_idx_default; 8959 8960 list_add_rcu(&pmu->entry, &pmus); 8961 atomic_set(&pmu->exclusive_cnt, 0); 8962 ret = 0; 8963 unlock: 8964 mutex_unlock(&pmus_lock); 8965 8966 return ret; 8967 8968 free_dev: 8969 device_del(pmu->dev); 8970 put_device(pmu->dev); 8971 8972 free_idr: 8973 if (pmu->type >= PERF_TYPE_MAX) 8974 idr_remove(&pmu_idr, pmu->type); 8975 8976 free_pdc: 8977 free_percpu(pmu->pmu_disable_count); 8978 goto unlock; 8979 } 8980 EXPORT_SYMBOL_GPL(perf_pmu_register); 8981 8982 void perf_pmu_unregister(struct pmu *pmu) 8983 { 8984 int remove_device; 8985 8986 mutex_lock(&pmus_lock); 8987 remove_device = pmu_bus_running; 8988 list_del_rcu(&pmu->entry); 8989 mutex_unlock(&pmus_lock); 8990 8991 /* 8992 * We dereference the pmu list under both SRCU and regular RCU, so 8993 * synchronize against both of those. 8994 */ 8995 synchronize_srcu(&pmus_srcu); 8996 synchronize_rcu(); 8997 8998 free_percpu(pmu->pmu_disable_count); 8999 if (pmu->type >= PERF_TYPE_MAX) 9000 idr_remove(&pmu_idr, pmu->type); 9001 if (remove_device) { 9002 if (pmu->nr_addr_filters) 9003 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9004 device_del(pmu->dev); 9005 put_device(pmu->dev); 9006 } 9007 free_pmu_context(pmu); 9008 } 9009 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9010 9011 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9012 { 9013 struct perf_event_context *ctx = NULL; 9014 int ret; 9015 9016 if (!try_module_get(pmu->module)) 9017 return -ENODEV; 9018 9019 if (event->group_leader != event) { 9020 /* 9021 * This ctx->mutex can nest when we're called through 9022 * inheritance. See the perf_event_ctx_lock_nested() comment. 9023 */ 9024 ctx = perf_event_ctx_lock_nested(event->group_leader, 9025 SINGLE_DEPTH_NESTING); 9026 BUG_ON(!ctx); 9027 } 9028 9029 event->pmu = pmu; 9030 ret = pmu->event_init(event); 9031 9032 if (ctx) 9033 perf_event_ctx_unlock(event->group_leader, ctx); 9034 9035 if (ret) 9036 module_put(pmu->module); 9037 9038 return ret; 9039 } 9040 9041 static struct pmu *perf_init_event(struct perf_event *event) 9042 { 9043 struct pmu *pmu = NULL; 9044 int idx; 9045 int ret; 9046 9047 idx = srcu_read_lock(&pmus_srcu); 9048 9049 /* Try parent's PMU first: */ 9050 if (event->parent && event->parent->pmu) { 9051 pmu = event->parent->pmu; 9052 ret = perf_try_init_event(pmu, event); 9053 if (!ret) 9054 goto unlock; 9055 } 9056 9057 rcu_read_lock(); 9058 pmu = idr_find(&pmu_idr, event->attr.type); 9059 rcu_read_unlock(); 9060 if (pmu) { 9061 ret = perf_try_init_event(pmu, event); 9062 if (ret) 9063 pmu = ERR_PTR(ret); 9064 goto unlock; 9065 } 9066 9067 list_for_each_entry_rcu(pmu, &pmus, entry) { 9068 ret = perf_try_init_event(pmu, event); 9069 if (!ret) 9070 goto unlock; 9071 9072 if (ret != -ENOENT) { 9073 pmu = ERR_PTR(ret); 9074 goto unlock; 9075 } 9076 } 9077 pmu = ERR_PTR(-ENOENT); 9078 unlock: 9079 srcu_read_unlock(&pmus_srcu, idx); 9080 9081 return pmu; 9082 } 9083 9084 static void attach_sb_event(struct perf_event *event) 9085 { 9086 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9087 9088 raw_spin_lock(&pel->lock); 9089 list_add_rcu(&event->sb_list, &pel->list); 9090 raw_spin_unlock(&pel->lock); 9091 } 9092 9093 /* 9094 * We keep a list of all !task (and therefore per-cpu) events 9095 * that need to receive side-band records. 9096 * 9097 * This avoids having to scan all the various PMU per-cpu contexts 9098 * looking for them. 9099 */ 9100 static void account_pmu_sb_event(struct perf_event *event) 9101 { 9102 if (is_sb_event(event)) 9103 attach_sb_event(event); 9104 } 9105 9106 static void account_event_cpu(struct perf_event *event, int cpu) 9107 { 9108 if (event->parent) 9109 return; 9110 9111 if (is_cgroup_event(event)) 9112 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9113 } 9114 9115 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9116 static void account_freq_event_nohz(void) 9117 { 9118 #ifdef CONFIG_NO_HZ_FULL 9119 /* Lock so we don't race with concurrent unaccount */ 9120 spin_lock(&nr_freq_lock); 9121 if (atomic_inc_return(&nr_freq_events) == 1) 9122 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9123 spin_unlock(&nr_freq_lock); 9124 #endif 9125 } 9126 9127 static void account_freq_event(void) 9128 { 9129 if (tick_nohz_full_enabled()) 9130 account_freq_event_nohz(); 9131 else 9132 atomic_inc(&nr_freq_events); 9133 } 9134 9135 9136 static void account_event(struct perf_event *event) 9137 { 9138 bool inc = false; 9139 9140 if (event->parent) 9141 return; 9142 9143 if (event->attach_state & PERF_ATTACH_TASK) 9144 inc = true; 9145 if (event->attr.mmap || event->attr.mmap_data) 9146 atomic_inc(&nr_mmap_events); 9147 if (event->attr.comm) 9148 atomic_inc(&nr_comm_events); 9149 if (event->attr.task) 9150 atomic_inc(&nr_task_events); 9151 if (event->attr.freq) 9152 account_freq_event(); 9153 if (event->attr.context_switch) { 9154 atomic_inc(&nr_switch_events); 9155 inc = true; 9156 } 9157 if (has_branch_stack(event)) 9158 inc = true; 9159 if (is_cgroup_event(event)) 9160 inc = true; 9161 9162 if (inc) { 9163 if (atomic_inc_not_zero(&perf_sched_count)) 9164 goto enabled; 9165 9166 mutex_lock(&perf_sched_mutex); 9167 if (!atomic_read(&perf_sched_count)) { 9168 static_branch_enable(&perf_sched_events); 9169 /* 9170 * Guarantee that all CPUs observe they key change and 9171 * call the perf scheduling hooks before proceeding to 9172 * install events that need them. 9173 */ 9174 synchronize_sched(); 9175 } 9176 /* 9177 * Now that we have waited for the sync_sched(), allow further 9178 * increments to by-pass the mutex. 9179 */ 9180 atomic_inc(&perf_sched_count); 9181 mutex_unlock(&perf_sched_mutex); 9182 } 9183 enabled: 9184 9185 account_event_cpu(event, event->cpu); 9186 9187 account_pmu_sb_event(event); 9188 } 9189 9190 /* 9191 * Allocate and initialize a event structure 9192 */ 9193 static struct perf_event * 9194 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9195 struct task_struct *task, 9196 struct perf_event *group_leader, 9197 struct perf_event *parent_event, 9198 perf_overflow_handler_t overflow_handler, 9199 void *context, int cgroup_fd) 9200 { 9201 struct pmu *pmu; 9202 struct perf_event *event; 9203 struct hw_perf_event *hwc; 9204 long err = -EINVAL; 9205 9206 if ((unsigned)cpu >= nr_cpu_ids) { 9207 if (!task || cpu != -1) 9208 return ERR_PTR(-EINVAL); 9209 } 9210 9211 event = kzalloc(sizeof(*event), GFP_KERNEL); 9212 if (!event) 9213 return ERR_PTR(-ENOMEM); 9214 9215 /* 9216 * Single events are their own group leaders, with an 9217 * empty sibling list: 9218 */ 9219 if (!group_leader) 9220 group_leader = event; 9221 9222 mutex_init(&event->child_mutex); 9223 INIT_LIST_HEAD(&event->child_list); 9224 9225 INIT_LIST_HEAD(&event->group_entry); 9226 INIT_LIST_HEAD(&event->event_entry); 9227 INIT_LIST_HEAD(&event->sibling_list); 9228 INIT_LIST_HEAD(&event->rb_entry); 9229 INIT_LIST_HEAD(&event->active_entry); 9230 INIT_LIST_HEAD(&event->addr_filters.list); 9231 INIT_HLIST_NODE(&event->hlist_entry); 9232 9233 9234 init_waitqueue_head(&event->waitq); 9235 init_irq_work(&event->pending, perf_pending_event); 9236 9237 mutex_init(&event->mmap_mutex); 9238 raw_spin_lock_init(&event->addr_filters.lock); 9239 9240 atomic_long_set(&event->refcount, 1); 9241 event->cpu = cpu; 9242 event->attr = *attr; 9243 event->group_leader = group_leader; 9244 event->pmu = NULL; 9245 event->oncpu = -1; 9246 9247 event->parent = parent_event; 9248 9249 event->ns = get_pid_ns(task_active_pid_ns(current)); 9250 event->id = atomic64_inc_return(&perf_event_id); 9251 9252 event->state = PERF_EVENT_STATE_INACTIVE; 9253 9254 if (task) { 9255 event->attach_state = PERF_ATTACH_TASK; 9256 /* 9257 * XXX pmu::event_init needs to know what task to account to 9258 * and we cannot use the ctx information because we need the 9259 * pmu before we get a ctx. 9260 */ 9261 event->hw.target = task; 9262 } 9263 9264 event->clock = &local_clock; 9265 if (parent_event) 9266 event->clock = parent_event->clock; 9267 9268 if (!overflow_handler && parent_event) { 9269 overflow_handler = parent_event->overflow_handler; 9270 context = parent_event->overflow_handler_context; 9271 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9272 if (overflow_handler == bpf_overflow_handler) { 9273 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9274 9275 if (IS_ERR(prog)) { 9276 err = PTR_ERR(prog); 9277 goto err_ns; 9278 } 9279 event->prog = prog; 9280 event->orig_overflow_handler = 9281 parent_event->orig_overflow_handler; 9282 } 9283 #endif 9284 } 9285 9286 if (overflow_handler) { 9287 event->overflow_handler = overflow_handler; 9288 event->overflow_handler_context = context; 9289 } else if (is_write_backward(event)){ 9290 event->overflow_handler = perf_event_output_backward; 9291 event->overflow_handler_context = NULL; 9292 } else { 9293 event->overflow_handler = perf_event_output_forward; 9294 event->overflow_handler_context = NULL; 9295 } 9296 9297 perf_event__state_init(event); 9298 9299 pmu = NULL; 9300 9301 hwc = &event->hw; 9302 hwc->sample_period = attr->sample_period; 9303 if (attr->freq && attr->sample_freq) 9304 hwc->sample_period = 1; 9305 hwc->last_period = hwc->sample_period; 9306 9307 local64_set(&hwc->period_left, hwc->sample_period); 9308 9309 /* 9310 * we currently do not support PERF_FORMAT_GROUP on inherited events 9311 */ 9312 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 9313 goto err_ns; 9314 9315 if (!has_branch_stack(event)) 9316 event->attr.branch_sample_type = 0; 9317 9318 if (cgroup_fd != -1) { 9319 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9320 if (err) 9321 goto err_ns; 9322 } 9323 9324 pmu = perf_init_event(event); 9325 if (!pmu) 9326 goto err_ns; 9327 else if (IS_ERR(pmu)) { 9328 err = PTR_ERR(pmu); 9329 goto err_ns; 9330 } 9331 9332 err = exclusive_event_init(event); 9333 if (err) 9334 goto err_pmu; 9335 9336 if (has_addr_filter(event)) { 9337 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9338 sizeof(unsigned long), 9339 GFP_KERNEL); 9340 if (!event->addr_filters_offs) 9341 goto err_per_task; 9342 9343 /* force hw sync on the address filters */ 9344 event->addr_filters_gen = 1; 9345 } 9346 9347 if (!event->parent) { 9348 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9349 err = get_callchain_buffers(attr->sample_max_stack); 9350 if (err) 9351 goto err_addr_filters; 9352 } 9353 } 9354 9355 /* symmetric to unaccount_event() in _free_event() */ 9356 account_event(event); 9357 9358 return event; 9359 9360 err_addr_filters: 9361 kfree(event->addr_filters_offs); 9362 9363 err_per_task: 9364 exclusive_event_destroy(event); 9365 9366 err_pmu: 9367 if (event->destroy) 9368 event->destroy(event); 9369 module_put(pmu->module); 9370 err_ns: 9371 if (is_cgroup_event(event)) 9372 perf_detach_cgroup(event); 9373 if (event->ns) 9374 put_pid_ns(event->ns); 9375 kfree(event); 9376 9377 return ERR_PTR(err); 9378 } 9379 9380 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9381 struct perf_event_attr *attr) 9382 { 9383 u32 size; 9384 int ret; 9385 9386 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9387 return -EFAULT; 9388 9389 /* 9390 * zero the full structure, so that a short copy will be nice. 9391 */ 9392 memset(attr, 0, sizeof(*attr)); 9393 9394 ret = get_user(size, &uattr->size); 9395 if (ret) 9396 return ret; 9397 9398 if (size > PAGE_SIZE) /* silly large */ 9399 goto err_size; 9400 9401 if (!size) /* abi compat */ 9402 size = PERF_ATTR_SIZE_VER0; 9403 9404 if (size < PERF_ATTR_SIZE_VER0) 9405 goto err_size; 9406 9407 /* 9408 * If we're handed a bigger struct than we know of, 9409 * ensure all the unknown bits are 0 - i.e. new 9410 * user-space does not rely on any kernel feature 9411 * extensions we dont know about yet. 9412 */ 9413 if (size > sizeof(*attr)) { 9414 unsigned char __user *addr; 9415 unsigned char __user *end; 9416 unsigned char val; 9417 9418 addr = (void __user *)uattr + sizeof(*attr); 9419 end = (void __user *)uattr + size; 9420 9421 for (; addr < end; addr++) { 9422 ret = get_user(val, addr); 9423 if (ret) 9424 return ret; 9425 if (val) 9426 goto err_size; 9427 } 9428 size = sizeof(*attr); 9429 } 9430 9431 ret = copy_from_user(attr, uattr, size); 9432 if (ret) 9433 return -EFAULT; 9434 9435 if (attr->__reserved_1) 9436 return -EINVAL; 9437 9438 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9439 return -EINVAL; 9440 9441 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9442 return -EINVAL; 9443 9444 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9445 u64 mask = attr->branch_sample_type; 9446 9447 /* only using defined bits */ 9448 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9449 return -EINVAL; 9450 9451 /* at least one branch bit must be set */ 9452 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9453 return -EINVAL; 9454 9455 /* propagate priv level, when not set for branch */ 9456 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9457 9458 /* exclude_kernel checked on syscall entry */ 9459 if (!attr->exclude_kernel) 9460 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9461 9462 if (!attr->exclude_user) 9463 mask |= PERF_SAMPLE_BRANCH_USER; 9464 9465 if (!attr->exclude_hv) 9466 mask |= PERF_SAMPLE_BRANCH_HV; 9467 /* 9468 * adjust user setting (for HW filter setup) 9469 */ 9470 attr->branch_sample_type = mask; 9471 } 9472 /* privileged levels capture (kernel, hv): check permissions */ 9473 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9474 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9475 return -EACCES; 9476 } 9477 9478 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9479 ret = perf_reg_validate(attr->sample_regs_user); 9480 if (ret) 9481 return ret; 9482 } 9483 9484 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9485 if (!arch_perf_have_user_stack_dump()) 9486 return -ENOSYS; 9487 9488 /* 9489 * We have __u32 type for the size, but so far 9490 * we can only use __u16 as maximum due to the 9491 * __u16 sample size limit. 9492 */ 9493 if (attr->sample_stack_user >= USHRT_MAX) 9494 ret = -EINVAL; 9495 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9496 ret = -EINVAL; 9497 } 9498 9499 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9500 ret = perf_reg_validate(attr->sample_regs_intr); 9501 out: 9502 return ret; 9503 9504 err_size: 9505 put_user(sizeof(*attr), &uattr->size); 9506 ret = -E2BIG; 9507 goto out; 9508 } 9509 9510 static int 9511 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9512 { 9513 struct ring_buffer *rb = NULL; 9514 int ret = -EINVAL; 9515 9516 if (!output_event) 9517 goto set; 9518 9519 /* don't allow circular references */ 9520 if (event == output_event) 9521 goto out; 9522 9523 /* 9524 * Don't allow cross-cpu buffers 9525 */ 9526 if (output_event->cpu != event->cpu) 9527 goto out; 9528 9529 /* 9530 * If its not a per-cpu rb, it must be the same task. 9531 */ 9532 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9533 goto out; 9534 9535 /* 9536 * Mixing clocks in the same buffer is trouble you don't need. 9537 */ 9538 if (output_event->clock != event->clock) 9539 goto out; 9540 9541 /* 9542 * Either writing ring buffer from beginning or from end. 9543 * Mixing is not allowed. 9544 */ 9545 if (is_write_backward(output_event) != is_write_backward(event)) 9546 goto out; 9547 9548 /* 9549 * If both events generate aux data, they must be on the same PMU 9550 */ 9551 if (has_aux(event) && has_aux(output_event) && 9552 event->pmu != output_event->pmu) 9553 goto out; 9554 9555 set: 9556 mutex_lock(&event->mmap_mutex); 9557 /* Can't redirect output if we've got an active mmap() */ 9558 if (atomic_read(&event->mmap_count)) 9559 goto unlock; 9560 9561 if (output_event) { 9562 /* get the rb we want to redirect to */ 9563 rb = ring_buffer_get(output_event); 9564 if (!rb) 9565 goto unlock; 9566 } 9567 9568 ring_buffer_attach(event, rb); 9569 9570 ret = 0; 9571 unlock: 9572 mutex_unlock(&event->mmap_mutex); 9573 9574 out: 9575 return ret; 9576 } 9577 9578 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9579 { 9580 if (b < a) 9581 swap(a, b); 9582 9583 mutex_lock(a); 9584 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9585 } 9586 9587 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9588 { 9589 bool nmi_safe = false; 9590 9591 switch (clk_id) { 9592 case CLOCK_MONOTONIC: 9593 event->clock = &ktime_get_mono_fast_ns; 9594 nmi_safe = true; 9595 break; 9596 9597 case CLOCK_MONOTONIC_RAW: 9598 event->clock = &ktime_get_raw_fast_ns; 9599 nmi_safe = true; 9600 break; 9601 9602 case CLOCK_REALTIME: 9603 event->clock = &ktime_get_real_ns; 9604 break; 9605 9606 case CLOCK_BOOTTIME: 9607 event->clock = &ktime_get_boot_ns; 9608 break; 9609 9610 case CLOCK_TAI: 9611 event->clock = &ktime_get_tai_ns; 9612 break; 9613 9614 default: 9615 return -EINVAL; 9616 } 9617 9618 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9619 return -EINVAL; 9620 9621 return 0; 9622 } 9623 9624 /* 9625 * Variation on perf_event_ctx_lock_nested(), except we take two context 9626 * mutexes. 9627 */ 9628 static struct perf_event_context * 9629 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9630 struct perf_event_context *ctx) 9631 { 9632 struct perf_event_context *gctx; 9633 9634 again: 9635 rcu_read_lock(); 9636 gctx = READ_ONCE(group_leader->ctx); 9637 if (!atomic_inc_not_zero(&gctx->refcount)) { 9638 rcu_read_unlock(); 9639 goto again; 9640 } 9641 rcu_read_unlock(); 9642 9643 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9644 9645 if (group_leader->ctx != gctx) { 9646 mutex_unlock(&ctx->mutex); 9647 mutex_unlock(&gctx->mutex); 9648 put_ctx(gctx); 9649 goto again; 9650 } 9651 9652 return gctx; 9653 } 9654 9655 /** 9656 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9657 * 9658 * @attr_uptr: event_id type attributes for monitoring/sampling 9659 * @pid: target pid 9660 * @cpu: target cpu 9661 * @group_fd: group leader event fd 9662 */ 9663 SYSCALL_DEFINE5(perf_event_open, 9664 struct perf_event_attr __user *, attr_uptr, 9665 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9666 { 9667 struct perf_event *group_leader = NULL, *output_event = NULL; 9668 struct perf_event *event, *sibling; 9669 struct perf_event_attr attr; 9670 struct perf_event_context *ctx, *uninitialized_var(gctx); 9671 struct file *event_file = NULL; 9672 struct fd group = {NULL, 0}; 9673 struct task_struct *task = NULL; 9674 struct pmu *pmu; 9675 int event_fd; 9676 int move_group = 0; 9677 int err; 9678 int f_flags = O_RDWR; 9679 int cgroup_fd = -1; 9680 9681 /* for future expandability... */ 9682 if (flags & ~PERF_FLAG_ALL) 9683 return -EINVAL; 9684 9685 err = perf_copy_attr(attr_uptr, &attr); 9686 if (err) 9687 return err; 9688 9689 if (!attr.exclude_kernel) { 9690 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9691 return -EACCES; 9692 } 9693 9694 if (attr.freq) { 9695 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9696 return -EINVAL; 9697 } else { 9698 if (attr.sample_period & (1ULL << 63)) 9699 return -EINVAL; 9700 } 9701 9702 if (!attr.sample_max_stack) 9703 attr.sample_max_stack = sysctl_perf_event_max_stack; 9704 9705 /* 9706 * In cgroup mode, the pid argument is used to pass the fd 9707 * opened to the cgroup directory in cgroupfs. The cpu argument 9708 * designates the cpu on which to monitor threads from that 9709 * cgroup. 9710 */ 9711 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9712 return -EINVAL; 9713 9714 if (flags & PERF_FLAG_FD_CLOEXEC) 9715 f_flags |= O_CLOEXEC; 9716 9717 event_fd = get_unused_fd_flags(f_flags); 9718 if (event_fd < 0) 9719 return event_fd; 9720 9721 if (group_fd != -1) { 9722 err = perf_fget_light(group_fd, &group); 9723 if (err) 9724 goto err_fd; 9725 group_leader = group.file->private_data; 9726 if (flags & PERF_FLAG_FD_OUTPUT) 9727 output_event = group_leader; 9728 if (flags & PERF_FLAG_FD_NO_GROUP) 9729 group_leader = NULL; 9730 } 9731 9732 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9733 task = find_lively_task_by_vpid(pid); 9734 if (IS_ERR(task)) { 9735 err = PTR_ERR(task); 9736 goto err_group_fd; 9737 } 9738 } 9739 9740 if (task && group_leader && 9741 group_leader->attr.inherit != attr.inherit) { 9742 err = -EINVAL; 9743 goto err_task; 9744 } 9745 9746 get_online_cpus(); 9747 9748 if (task) { 9749 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9750 if (err) 9751 goto err_cpus; 9752 9753 /* 9754 * Reuse ptrace permission checks for now. 9755 * 9756 * We must hold cred_guard_mutex across this and any potential 9757 * perf_install_in_context() call for this new event to 9758 * serialize against exec() altering our credentials (and the 9759 * perf_event_exit_task() that could imply). 9760 */ 9761 err = -EACCES; 9762 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9763 goto err_cred; 9764 } 9765 9766 if (flags & PERF_FLAG_PID_CGROUP) 9767 cgroup_fd = pid; 9768 9769 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9770 NULL, NULL, cgroup_fd); 9771 if (IS_ERR(event)) { 9772 err = PTR_ERR(event); 9773 goto err_cred; 9774 } 9775 9776 if (is_sampling_event(event)) { 9777 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9778 err = -EOPNOTSUPP; 9779 goto err_alloc; 9780 } 9781 } 9782 9783 /* 9784 * Special case software events and allow them to be part of 9785 * any hardware group. 9786 */ 9787 pmu = event->pmu; 9788 9789 if (attr.use_clockid) { 9790 err = perf_event_set_clock(event, attr.clockid); 9791 if (err) 9792 goto err_alloc; 9793 } 9794 9795 if (pmu->task_ctx_nr == perf_sw_context) 9796 event->event_caps |= PERF_EV_CAP_SOFTWARE; 9797 9798 if (group_leader && 9799 (is_software_event(event) != is_software_event(group_leader))) { 9800 if (is_software_event(event)) { 9801 /* 9802 * If event and group_leader are not both a software 9803 * event, and event is, then group leader is not. 9804 * 9805 * Allow the addition of software events to !software 9806 * groups, this is safe because software events never 9807 * fail to schedule. 9808 */ 9809 pmu = group_leader->pmu; 9810 } else if (is_software_event(group_leader) && 9811 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9812 /* 9813 * In case the group is a pure software group, and we 9814 * try to add a hardware event, move the whole group to 9815 * the hardware context. 9816 */ 9817 move_group = 1; 9818 } 9819 } 9820 9821 /* 9822 * Get the target context (task or percpu): 9823 */ 9824 ctx = find_get_context(pmu, task, event); 9825 if (IS_ERR(ctx)) { 9826 err = PTR_ERR(ctx); 9827 goto err_alloc; 9828 } 9829 9830 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9831 err = -EBUSY; 9832 goto err_context; 9833 } 9834 9835 /* 9836 * Look up the group leader (we will attach this event to it): 9837 */ 9838 if (group_leader) { 9839 err = -EINVAL; 9840 9841 /* 9842 * Do not allow a recursive hierarchy (this new sibling 9843 * becoming part of another group-sibling): 9844 */ 9845 if (group_leader->group_leader != group_leader) 9846 goto err_context; 9847 9848 /* All events in a group should have the same clock */ 9849 if (group_leader->clock != event->clock) 9850 goto err_context; 9851 9852 /* 9853 * Do not allow to attach to a group in a different 9854 * task or CPU context: 9855 */ 9856 if (move_group) { 9857 /* 9858 * Make sure we're both on the same task, or both 9859 * per-cpu events. 9860 */ 9861 if (group_leader->ctx->task != ctx->task) 9862 goto err_context; 9863 9864 /* 9865 * Make sure we're both events for the same CPU; 9866 * grouping events for different CPUs is broken; since 9867 * you can never concurrently schedule them anyhow. 9868 */ 9869 if (group_leader->cpu != event->cpu) 9870 goto err_context; 9871 } else { 9872 if (group_leader->ctx != ctx) 9873 goto err_context; 9874 } 9875 9876 /* 9877 * Only a group leader can be exclusive or pinned 9878 */ 9879 if (attr.exclusive || attr.pinned) 9880 goto err_context; 9881 } 9882 9883 if (output_event) { 9884 err = perf_event_set_output(event, output_event); 9885 if (err) 9886 goto err_context; 9887 } 9888 9889 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9890 f_flags); 9891 if (IS_ERR(event_file)) { 9892 err = PTR_ERR(event_file); 9893 event_file = NULL; 9894 goto err_context; 9895 } 9896 9897 if (move_group) { 9898 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 9899 9900 if (gctx->task == TASK_TOMBSTONE) { 9901 err = -ESRCH; 9902 goto err_locked; 9903 } 9904 9905 /* 9906 * Check if we raced against another sys_perf_event_open() call 9907 * moving the software group underneath us. 9908 */ 9909 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 9910 /* 9911 * If someone moved the group out from under us, check 9912 * if this new event wound up on the same ctx, if so 9913 * its the regular !move_group case, otherwise fail. 9914 */ 9915 if (gctx != ctx) { 9916 err = -EINVAL; 9917 goto err_locked; 9918 } else { 9919 perf_event_ctx_unlock(group_leader, gctx); 9920 move_group = 0; 9921 } 9922 } 9923 } else { 9924 mutex_lock(&ctx->mutex); 9925 } 9926 9927 if (ctx->task == TASK_TOMBSTONE) { 9928 err = -ESRCH; 9929 goto err_locked; 9930 } 9931 9932 if (!perf_event_validate_size(event)) { 9933 err = -E2BIG; 9934 goto err_locked; 9935 } 9936 9937 /* 9938 * Must be under the same ctx::mutex as perf_install_in_context(), 9939 * because we need to serialize with concurrent event creation. 9940 */ 9941 if (!exclusive_event_installable(event, ctx)) { 9942 /* exclusive and group stuff are assumed mutually exclusive */ 9943 WARN_ON_ONCE(move_group); 9944 9945 err = -EBUSY; 9946 goto err_locked; 9947 } 9948 9949 WARN_ON_ONCE(ctx->parent_ctx); 9950 9951 /* 9952 * This is the point on no return; we cannot fail hereafter. This is 9953 * where we start modifying current state. 9954 */ 9955 9956 if (move_group) { 9957 /* 9958 * See perf_event_ctx_lock() for comments on the details 9959 * of swizzling perf_event::ctx. 9960 */ 9961 perf_remove_from_context(group_leader, 0); 9962 put_ctx(gctx); 9963 9964 list_for_each_entry(sibling, &group_leader->sibling_list, 9965 group_entry) { 9966 perf_remove_from_context(sibling, 0); 9967 put_ctx(gctx); 9968 } 9969 9970 /* 9971 * Wait for everybody to stop referencing the events through 9972 * the old lists, before installing it on new lists. 9973 */ 9974 synchronize_rcu(); 9975 9976 /* 9977 * Install the group siblings before the group leader. 9978 * 9979 * Because a group leader will try and install the entire group 9980 * (through the sibling list, which is still in-tact), we can 9981 * end up with siblings installed in the wrong context. 9982 * 9983 * By installing siblings first we NO-OP because they're not 9984 * reachable through the group lists. 9985 */ 9986 list_for_each_entry(sibling, &group_leader->sibling_list, 9987 group_entry) { 9988 perf_event__state_init(sibling); 9989 perf_install_in_context(ctx, sibling, sibling->cpu); 9990 get_ctx(ctx); 9991 } 9992 9993 /* 9994 * Removing from the context ends up with disabled 9995 * event. What we want here is event in the initial 9996 * startup state, ready to be add into new context. 9997 */ 9998 perf_event__state_init(group_leader); 9999 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10000 get_ctx(ctx); 10001 } 10002 10003 /* 10004 * Precalculate sample_data sizes; do while holding ctx::mutex such 10005 * that we're serialized against further additions and before 10006 * perf_install_in_context() which is the point the event is active and 10007 * can use these values. 10008 */ 10009 perf_event__header_size(event); 10010 perf_event__id_header_size(event); 10011 10012 event->owner = current; 10013 10014 perf_install_in_context(ctx, event, event->cpu); 10015 perf_unpin_context(ctx); 10016 10017 if (move_group) 10018 perf_event_ctx_unlock(group_leader, gctx); 10019 mutex_unlock(&ctx->mutex); 10020 10021 if (task) { 10022 mutex_unlock(&task->signal->cred_guard_mutex); 10023 put_task_struct(task); 10024 } 10025 10026 put_online_cpus(); 10027 10028 mutex_lock(¤t->perf_event_mutex); 10029 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10030 mutex_unlock(¤t->perf_event_mutex); 10031 10032 /* 10033 * Drop the reference on the group_event after placing the 10034 * new event on the sibling_list. This ensures destruction 10035 * of the group leader will find the pointer to itself in 10036 * perf_group_detach(). 10037 */ 10038 fdput(group); 10039 fd_install(event_fd, event_file); 10040 return event_fd; 10041 10042 err_locked: 10043 if (move_group) 10044 perf_event_ctx_unlock(group_leader, gctx); 10045 mutex_unlock(&ctx->mutex); 10046 /* err_file: */ 10047 fput(event_file); 10048 err_context: 10049 perf_unpin_context(ctx); 10050 put_ctx(ctx); 10051 err_alloc: 10052 /* 10053 * If event_file is set, the fput() above will have called ->release() 10054 * and that will take care of freeing the event. 10055 */ 10056 if (!event_file) 10057 free_event(event); 10058 err_cred: 10059 if (task) 10060 mutex_unlock(&task->signal->cred_guard_mutex); 10061 err_cpus: 10062 put_online_cpus(); 10063 err_task: 10064 if (task) 10065 put_task_struct(task); 10066 err_group_fd: 10067 fdput(group); 10068 err_fd: 10069 put_unused_fd(event_fd); 10070 return err; 10071 } 10072 10073 /** 10074 * perf_event_create_kernel_counter 10075 * 10076 * @attr: attributes of the counter to create 10077 * @cpu: cpu in which the counter is bound 10078 * @task: task to profile (NULL for percpu) 10079 */ 10080 struct perf_event * 10081 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10082 struct task_struct *task, 10083 perf_overflow_handler_t overflow_handler, 10084 void *context) 10085 { 10086 struct perf_event_context *ctx; 10087 struct perf_event *event; 10088 int err; 10089 10090 /* 10091 * Get the target context (task or percpu): 10092 */ 10093 10094 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10095 overflow_handler, context, -1); 10096 if (IS_ERR(event)) { 10097 err = PTR_ERR(event); 10098 goto err; 10099 } 10100 10101 /* Mark owner so we could distinguish it from user events. */ 10102 event->owner = TASK_TOMBSTONE; 10103 10104 ctx = find_get_context(event->pmu, task, event); 10105 if (IS_ERR(ctx)) { 10106 err = PTR_ERR(ctx); 10107 goto err_free; 10108 } 10109 10110 WARN_ON_ONCE(ctx->parent_ctx); 10111 mutex_lock(&ctx->mutex); 10112 if (ctx->task == TASK_TOMBSTONE) { 10113 err = -ESRCH; 10114 goto err_unlock; 10115 } 10116 10117 if (!exclusive_event_installable(event, ctx)) { 10118 err = -EBUSY; 10119 goto err_unlock; 10120 } 10121 10122 perf_install_in_context(ctx, event, cpu); 10123 perf_unpin_context(ctx); 10124 mutex_unlock(&ctx->mutex); 10125 10126 return event; 10127 10128 err_unlock: 10129 mutex_unlock(&ctx->mutex); 10130 perf_unpin_context(ctx); 10131 put_ctx(ctx); 10132 err_free: 10133 free_event(event); 10134 err: 10135 return ERR_PTR(err); 10136 } 10137 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10138 10139 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10140 { 10141 struct perf_event_context *src_ctx; 10142 struct perf_event_context *dst_ctx; 10143 struct perf_event *event, *tmp; 10144 LIST_HEAD(events); 10145 10146 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10147 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10148 10149 /* 10150 * See perf_event_ctx_lock() for comments on the details 10151 * of swizzling perf_event::ctx. 10152 */ 10153 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10154 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10155 event_entry) { 10156 perf_remove_from_context(event, 0); 10157 unaccount_event_cpu(event, src_cpu); 10158 put_ctx(src_ctx); 10159 list_add(&event->migrate_entry, &events); 10160 } 10161 10162 /* 10163 * Wait for the events to quiesce before re-instating them. 10164 */ 10165 synchronize_rcu(); 10166 10167 /* 10168 * Re-instate events in 2 passes. 10169 * 10170 * Skip over group leaders and only install siblings on this first 10171 * pass, siblings will not get enabled without a leader, however a 10172 * leader will enable its siblings, even if those are still on the old 10173 * context. 10174 */ 10175 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10176 if (event->group_leader == event) 10177 continue; 10178 10179 list_del(&event->migrate_entry); 10180 if (event->state >= PERF_EVENT_STATE_OFF) 10181 event->state = PERF_EVENT_STATE_INACTIVE; 10182 account_event_cpu(event, dst_cpu); 10183 perf_install_in_context(dst_ctx, event, dst_cpu); 10184 get_ctx(dst_ctx); 10185 } 10186 10187 /* 10188 * Once all the siblings are setup properly, install the group leaders 10189 * to make it go. 10190 */ 10191 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10192 list_del(&event->migrate_entry); 10193 if (event->state >= PERF_EVENT_STATE_OFF) 10194 event->state = PERF_EVENT_STATE_INACTIVE; 10195 account_event_cpu(event, dst_cpu); 10196 perf_install_in_context(dst_ctx, event, dst_cpu); 10197 get_ctx(dst_ctx); 10198 } 10199 mutex_unlock(&dst_ctx->mutex); 10200 mutex_unlock(&src_ctx->mutex); 10201 } 10202 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10203 10204 static void sync_child_event(struct perf_event *child_event, 10205 struct task_struct *child) 10206 { 10207 struct perf_event *parent_event = child_event->parent; 10208 u64 child_val; 10209 10210 if (child_event->attr.inherit_stat) 10211 perf_event_read_event(child_event, child); 10212 10213 child_val = perf_event_count(child_event); 10214 10215 /* 10216 * Add back the child's count to the parent's count: 10217 */ 10218 atomic64_add(child_val, &parent_event->child_count); 10219 atomic64_add(child_event->total_time_enabled, 10220 &parent_event->child_total_time_enabled); 10221 atomic64_add(child_event->total_time_running, 10222 &parent_event->child_total_time_running); 10223 } 10224 10225 static void 10226 perf_event_exit_event(struct perf_event *child_event, 10227 struct perf_event_context *child_ctx, 10228 struct task_struct *child) 10229 { 10230 struct perf_event *parent_event = child_event->parent; 10231 10232 /* 10233 * Do not destroy the 'original' grouping; because of the context 10234 * switch optimization the original events could've ended up in a 10235 * random child task. 10236 * 10237 * If we were to destroy the original group, all group related 10238 * operations would cease to function properly after this random 10239 * child dies. 10240 * 10241 * Do destroy all inherited groups, we don't care about those 10242 * and being thorough is better. 10243 */ 10244 raw_spin_lock_irq(&child_ctx->lock); 10245 WARN_ON_ONCE(child_ctx->is_active); 10246 10247 if (parent_event) 10248 perf_group_detach(child_event); 10249 list_del_event(child_event, child_ctx); 10250 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 10251 raw_spin_unlock_irq(&child_ctx->lock); 10252 10253 /* 10254 * Parent events are governed by their filedesc, retain them. 10255 */ 10256 if (!parent_event) { 10257 perf_event_wakeup(child_event); 10258 return; 10259 } 10260 /* 10261 * Child events can be cleaned up. 10262 */ 10263 10264 sync_child_event(child_event, child); 10265 10266 /* 10267 * Remove this event from the parent's list 10268 */ 10269 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10270 mutex_lock(&parent_event->child_mutex); 10271 list_del_init(&child_event->child_list); 10272 mutex_unlock(&parent_event->child_mutex); 10273 10274 /* 10275 * Kick perf_poll() for is_event_hup(). 10276 */ 10277 perf_event_wakeup(parent_event); 10278 free_event(child_event); 10279 put_event(parent_event); 10280 } 10281 10282 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10283 { 10284 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10285 struct perf_event *child_event, *next; 10286 10287 WARN_ON_ONCE(child != current); 10288 10289 child_ctx = perf_pin_task_context(child, ctxn); 10290 if (!child_ctx) 10291 return; 10292 10293 /* 10294 * In order to reduce the amount of tricky in ctx tear-down, we hold 10295 * ctx::mutex over the entire thing. This serializes against almost 10296 * everything that wants to access the ctx. 10297 * 10298 * The exception is sys_perf_event_open() / 10299 * perf_event_create_kernel_count() which does find_get_context() 10300 * without ctx::mutex (it cannot because of the move_group double mutex 10301 * lock thing). See the comments in perf_install_in_context(). 10302 */ 10303 mutex_lock(&child_ctx->mutex); 10304 10305 /* 10306 * In a single ctx::lock section, de-schedule the events and detach the 10307 * context from the task such that we cannot ever get it scheduled back 10308 * in. 10309 */ 10310 raw_spin_lock_irq(&child_ctx->lock); 10311 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10312 10313 /* 10314 * Now that the context is inactive, destroy the task <-> ctx relation 10315 * and mark the context dead. 10316 */ 10317 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10318 put_ctx(child_ctx); /* cannot be last */ 10319 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10320 put_task_struct(current); /* cannot be last */ 10321 10322 clone_ctx = unclone_ctx(child_ctx); 10323 raw_spin_unlock_irq(&child_ctx->lock); 10324 10325 if (clone_ctx) 10326 put_ctx(clone_ctx); 10327 10328 /* 10329 * Report the task dead after unscheduling the events so that we 10330 * won't get any samples after PERF_RECORD_EXIT. We can however still 10331 * get a few PERF_RECORD_READ events. 10332 */ 10333 perf_event_task(child, child_ctx, 0); 10334 10335 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10336 perf_event_exit_event(child_event, child_ctx, child); 10337 10338 mutex_unlock(&child_ctx->mutex); 10339 10340 put_ctx(child_ctx); 10341 } 10342 10343 /* 10344 * When a child task exits, feed back event values to parent events. 10345 * 10346 * Can be called with cred_guard_mutex held when called from 10347 * install_exec_creds(). 10348 */ 10349 void perf_event_exit_task(struct task_struct *child) 10350 { 10351 struct perf_event *event, *tmp; 10352 int ctxn; 10353 10354 mutex_lock(&child->perf_event_mutex); 10355 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10356 owner_entry) { 10357 list_del_init(&event->owner_entry); 10358 10359 /* 10360 * Ensure the list deletion is visible before we clear 10361 * the owner, closes a race against perf_release() where 10362 * we need to serialize on the owner->perf_event_mutex. 10363 */ 10364 smp_store_release(&event->owner, NULL); 10365 } 10366 mutex_unlock(&child->perf_event_mutex); 10367 10368 for_each_task_context_nr(ctxn) 10369 perf_event_exit_task_context(child, ctxn); 10370 10371 /* 10372 * The perf_event_exit_task_context calls perf_event_task 10373 * with child's task_ctx, which generates EXIT events for 10374 * child contexts and sets child->perf_event_ctxp[] to NULL. 10375 * At this point we need to send EXIT events to cpu contexts. 10376 */ 10377 perf_event_task(child, NULL, 0); 10378 } 10379 10380 static void perf_free_event(struct perf_event *event, 10381 struct perf_event_context *ctx) 10382 { 10383 struct perf_event *parent = event->parent; 10384 10385 if (WARN_ON_ONCE(!parent)) 10386 return; 10387 10388 mutex_lock(&parent->child_mutex); 10389 list_del_init(&event->child_list); 10390 mutex_unlock(&parent->child_mutex); 10391 10392 put_event(parent); 10393 10394 raw_spin_lock_irq(&ctx->lock); 10395 perf_group_detach(event); 10396 list_del_event(event, ctx); 10397 raw_spin_unlock_irq(&ctx->lock); 10398 free_event(event); 10399 } 10400 10401 /* 10402 * Free an unexposed, unused context as created by inheritance by 10403 * perf_event_init_task below, used by fork() in case of fail. 10404 * 10405 * Not all locks are strictly required, but take them anyway to be nice and 10406 * help out with the lockdep assertions. 10407 */ 10408 void perf_event_free_task(struct task_struct *task) 10409 { 10410 struct perf_event_context *ctx; 10411 struct perf_event *event, *tmp; 10412 int ctxn; 10413 10414 for_each_task_context_nr(ctxn) { 10415 ctx = task->perf_event_ctxp[ctxn]; 10416 if (!ctx) 10417 continue; 10418 10419 mutex_lock(&ctx->mutex); 10420 raw_spin_lock_irq(&ctx->lock); 10421 /* 10422 * Destroy the task <-> ctx relation and mark the context dead. 10423 * 10424 * This is important because even though the task hasn't been 10425 * exposed yet the context has been (through child_list). 10426 */ 10427 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10428 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10429 put_task_struct(task); /* cannot be last */ 10430 raw_spin_unlock_irq(&ctx->lock); 10431 10432 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10433 perf_free_event(event, ctx); 10434 10435 mutex_unlock(&ctx->mutex); 10436 put_ctx(ctx); 10437 } 10438 } 10439 10440 void perf_event_delayed_put(struct task_struct *task) 10441 { 10442 int ctxn; 10443 10444 for_each_task_context_nr(ctxn) 10445 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10446 } 10447 10448 struct file *perf_event_get(unsigned int fd) 10449 { 10450 struct file *file; 10451 10452 file = fget_raw(fd); 10453 if (!file) 10454 return ERR_PTR(-EBADF); 10455 10456 if (file->f_op != &perf_fops) { 10457 fput(file); 10458 return ERR_PTR(-EBADF); 10459 } 10460 10461 return file; 10462 } 10463 10464 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10465 { 10466 if (!event) 10467 return ERR_PTR(-EINVAL); 10468 10469 return &event->attr; 10470 } 10471 10472 /* 10473 * Inherit a event from parent task to child task. 10474 * 10475 * Returns: 10476 * - valid pointer on success 10477 * - NULL for orphaned events 10478 * - IS_ERR() on error 10479 */ 10480 static struct perf_event * 10481 inherit_event(struct perf_event *parent_event, 10482 struct task_struct *parent, 10483 struct perf_event_context *parent_ctx, 10484 struct task_struct *child, 10485 struct perf_event *group_leader, 10486 struct perf_event_context *child_ctx) 10487 { 10488 enum perf_event_active_state parent_state = parent_event->state; 10489 struct perf_event *child_event; 10490 unsigned long flags; 10491 10492 /* 10493 * Instead of creating recursive hierarchies of events, 10494 * we link inherited events back to the original parent, 10495 * which has a filp for sure, which we use as the reference 10496 * count: 10497 */ 10498 if (parent_event->parent) 10499 parent_event = parent_event->parent; 10500 10501 child_event = perf_event_alloc(&parent_event->attr, 10502 parent_event->cpu, 10503 child, 10504 group_leader, parent_event, 10505 NULL, NULL, -1); 10506 if (IS_ERR(child_event)) 10507 return child_event; 10508 10509 /* 10510 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10511 * must be under the same lock in order to serialize against 10512 * perf_event_release_kernel(), such that either we must observe 10513 * is_orphaned_event() or they will observe us on the child_list. 10514 */ 10515 mutex_lock(&parent_event->child_mutex); 10516 if (is_orphaned_event(parent_event) || 10517 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10518 mutex_unlock(&parent_event->child_mutex); 10519 free_event(child_event); 10520 return NULL; 10521 } 10522 10523 get_ctx(child_ctx); 10524 10525 /* 10526 * Make the child state follow the state of the parent event, 10527 * not its attr.disabled bit. We hold the parent's mutex, 10528 * so we won't race with perf_event_{en, dis}able_family. 10529 */ 10530 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10531 child_event->state = PERF_EVENT_STATE_INACTIVE; 10532 else 10533 child_event->state = PERF_EVENT_STATE_OFF; 10534 10535 if (parent_event->attr.freq) { 10536 u64 sample_period = parent_event->hw.sample_period; 10537 struct hw_perf_event *hwc = &child_event->hw; 10538 10539 hwc->sample_period = sample_period; 10540 hwc->last_period = sample_period; 10541 10542 local64_set(&hwc->period_left, sample_period); 10543 } 10544 10545 child_event->ctx = child_ctx; 10546 child_event->overflow_handler = parent_event->overflow_handler; 10547 child_event->overflow_handler_context 10548 = parent_event->overflow_handler_context; 10549 10550 /* 10551 * Precalculate sample_data sizes 10552 */ 10553 perf_event__header_size(child_event); 10554 perf_event__id_header_size(child_event); 10555 10556 /* 10557 * Link it up in the child's context: 10558 */ 10559 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10560 add_event_to_ctx(child_event, child_ctx); 10561 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10562 10563 /* 10564 * Link this into the parent event's child list 10565 */ 10566 list_add_tail(&child_event->child_list, &parent_event->child_list); 10567 mutex_unlock(&parent_event->child_mutex); 10568 10569 return child_event; 10570 } 10571 10572 /* 10573 * Inherits an event group. 10574 * 10575 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10576 * This matches with perf_event_release_kernel() removing all child events. 10577 * 10578 * Returns: 10579 * - 0 on success 10580 * - <0 on error 10581 */ 10582 static int inherit_group(struct perf_event *parent_event, 10583 struct task_struct *parent, 10584 struct perf_event_context *parent_ctx, 10585 struct task_struct *child, 10586 struct perf_event_context *child_ctx) 10587 { 10588 struct perf_event *leader; 10589 struct perf_event *sub; 10590 struct perf_event *child_ctr; 10591 10592 leader = inherit_event(parent_event, parent, parent_ctx, 10593 child, NULL, child_ctx); 10594 if (IS_ERR(leader)) 10595 return PTR_ERR(leader); 10596 /* 10597 * @leader can be NULL here because of is_orphaned_event(). In this 10598 * case inherit_event() will create individual events, similar to what 10599 * perf_group_detach() would do anyway. 10600 */ 10601 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10602 child_ctr = inherit_event(sub, parent, parent_ctx, 10603 child, leader, child_ctx); 10604 if (IS_ERR(child_ctr)) 10605 return PTR_ERR(child_ctr); 10606 } 10607 return 0; 10608 } 10609 10610 /* 10611 * Creates the child task context and tries to inherit the event-group. 10612 * 10613 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10614 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10615 * consistent with perf_event_release_kernel() removing all child events. 10616 * 10617 * Returns: 10618 * - 0 on success 10619 * - <0 on error 10620 */ 10621 static int 10622 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10623 struct perf_event_context *parent_ctx, 10624 struct task_struct *child, int ctxn, 10625 int *inherited_all) 10626 { 10627 int ret; 10628 struct perf_event_context *child_ctx; 10629 10630 if (!event->attr.inherit) { 10631 *inherited_all = 0; 10632 return 0; 10633 } 10634 10635 child_ctx = child->perf_event_ctxp[ctxn]; 10636 if (!child_ctx) { 10637 /* 10638 * This is executed from the parent task context, so 10639 * inherit events that have been marked for cloning. 10640 * First allocate and initialize a context for the 10641 * child. 10642 */ 10643 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10644 if (!child_ctx) 10645 return -ENOMEM; 10646 10647 child->perf_event_ctxp[ctxn] = child_ctx; 10648 } 10649 10650 ret = inherit_group(event, parent, parent_ctx, 10651 child, child_ctx); 10652 10653 if (ret) 10654 *inherited_all = 0; 10655 10656 return ret; 10657 } 10658 10659 /* 10660 * Initialize the perf_event context in task_struct 10661 */ 10662 static int perf_event_init_context(struct task_struct *child, int ctxn) 10663 { 10664 struct perf_event_context *child_ctx, *parent_ctx; 10665 struct perf_event_context *cloned_ctx; 10666 struct perf_event *event; 10667 struct task_struct *parent = current; 10668 int inherited_all = 1; 10669 unsigned long flags; 10670 int ret = 0; 10671 10672 if (likely(!parent->perf_event_ctxp[ctxn])) 10673 return 0; 10674 10675 /* 10676 * If the parent's context is a clone, pin it so it won't get 10677 * swapped under us. 10678 */ 10679 parent_ctx = perf_pin_task_context(parent, ctxn); 10680 if (!parent_ctx) 10681 return 0; 10682 10683 /* 10684 * No need to check if parent_ctx != NULL here; since we saw 10685 * it non-NULL earlier, the only reason for it to become NULL 10686 * is if we exit, and since we're currently in the middle of 10687 * a fork we can't be exiting at the same time. 10688 */ 10689 10690 /* 10691 * Lock the parent list. No need to lock the child - not PID 10692 * hashed yet and not running, so nobody can access it. 10693 */ 10694 mutex_lock(&parent_ctx->mutex); 10695 10696 /* 10697 * We dont have to disable NMIs - we are only looking at 10698 * the list, not manipulating it: 10699 */ 10700 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10701 ret = inherit_task_group(event, parent, parent_ctx, 10702 child, ctxn, &inherited_all); 10703 if (ret) 10704 goto out_unlock; 10705 } 10706 10707 /* 10708 * We can't hold ctx->lock when iterating the ->flexible_group list due 10709 * to allocations, but we need to prevent rotation because 10710 * rotate_ctx() will change the list from interrupt context. 10711 */ 10712 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10713 parent_ctx->rotate_disable = 1; 10714 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10715 10716 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10717 ret = inherit_task_group(event, parent, parent_ctx, 10718 child, ctxn, &inherited_all); 10719 if (ret) 10720 goto out_unlock; 10721 } 10722 10723 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10724 parent_ctx->rotate_disable = 0; 10725 10726 child_ctx = child->perf_event_ctxp[ctxn]; 10727 10728 if (child_ctx && inherited_all) { 10729 /* 10730 * Mark the child context as a clone of the parent 10731 * context, or of whatever the parent is a clone of. 10732 * 10733 * Note that if the parent is a clone, the holding of 10734 * parent_ctx->lock avoids it from being uncloned. 10735 */ 10736 cloned_ctx = parent_ctx->parent_ctx; 10737 if (cloned_ctx) { 10738 child_ctx->parent_ctx = cloned_ctx; 10739 child_ctx->parent_gen = parent_ctx->parent_gen; 10740 } else { 10741 child_ctx->parent_ctx = parent_ctx; 10742 child_ctx->parent_gen = parent_ctx->generation; 10743 } 10744 get_ctx(child_ctx->parent_ctx); 10745 } 10746 10747 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10748 out_unlock: 10749 mutex_unlock(&parent_ctx->mutex); 10750 10751 perf_unpin_context(parent_ctx); 10752 put_ctx(parent_ctx); 10753 10754 return ret; 10755 } 10756 10757 /* 10758 * Initialize the perf_event context in task_struct 10759 */ 10760 int perf_event_init_task(struct task_struct *child) 10761 { 10762 int ctxn, ret; 10763 10764 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10765 mutex_init(&child->perf_event_mutex); 10766 INIT_LIST_HEAD(&child->perf_event_list); 10767 10768 for_each_task_context_nr(ctxn) { 10769 ret = perf_event_init_context(child, ctxn); 10770 if (ret) { 10771 perf_event_free_task(child); 10772 return ret; 10773 } 10774 } 10775 10776 return 0; 10777 } 10778 10779 static void __init perf_event_init_all_cpus(void) 10780 { 10781 struct swevent_htable *swhash; 10782 int cpu; 10783 10784 for_each_possible_cpu(cpu) { 10785 swhash = &per_cpu(swevent_htable, cpu); 10786 mutex_init(&swhash->hlist_mutex); 10787 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10788 10789 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 10790 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 10791 10792 #ifdef CONFIG_CGROUP_PERF 10793 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 10794 #endif 10795 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 10796 } 10797 } 10798 10799 int perf_event_init_cpu(unsigned int cpu) 10800 { 10801 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10802 10803 mutex_lock(&swhash->hlist_mutex); 10804 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10805 struct swevent_hlist *hlist; 10806 10807 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10808 WARN_ON(!hlist); 10809 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10810 } 10811 mutex_unlock(&swhash->hlist_mutex); 10812 return 0; 10813 } 10814 10815 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10816 static void __perf_event_exit_context(void *__info) 10817 { 10818 struct perf_event_context *ctx = __info; 10819 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10820 struct perf_event *event; 10821 10822 raw_spin_lock(&ctx->lock); 10823 list_for_each_entry(event, &ctx->event_list, event_entry) 10824 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10825 raw_spin_unlock(&ctx->lock); 10826 } 10827 10828 static void perf_event_exit_cpu_context(int cpu) 10829 { 10830 struct perf_event_context *ctx; 10831 struct pmu *pmu; 10832 int idx; 10833 10834 idx = srcu_read_lock(&pmus_srcu); 10835 list_for_each_entry_rcu(pmu, &pmus, entry) { 10836 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10837 10838 mutex_lock(&ctx->mutex); 10839 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10840 mutex_unlock(&ctx->mutex); 10841 } 10842 srcu_read_unlock(&pmus_srcu, idx); 10843 } 10844 #else 10845 10846 static void perf_event_exit_cpu_context(int cpu) { } 10847 10848 #endif 10849 10850 int perf_event_exit_cpu(unsigned int cpu) 10851 { 10852 perf_event_exit_cpu_context(cpu); 10853 return 0; 10854 } 10855 10856 static int 10857 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10858 { 10859 int cpu; 10860 10861 for_each_online_cpu(cpu) 10862 perf_event_exit_cpu(cpu); 10863 10864 return NOTIFY_OK; 10865 } 10866 10867 /* 10868 * Run the perf reboot notifier at the very last possible moment so that 10869 * the generic watchdog code runs as long as possible. 10870 */ 10871 static struct notifier_block perf_reboot_notifier = { 10872 .notifier_call = perf_reboot, 10873 .priority = INT_MIN, 10874 }; 10875 10876 void __init perf_event_init(void) 10877 { 10878 int ret; 10879 10880 idr_init(&pmu_idr); 10881 10882 perf_event_init_all_cpus(); 10883 init_srcu_struct(&pmus_srcu); 10884 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10885 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10886 perf_pmu_register(&perf_task_clock, NULL, -1); 10887 perf_tp_register(); 10888 perf_event_init_cpu(smp_processor_id()); 10889 register_reboot_notifier(&perf_reboot_notifier); 10890 10891 ret = init_hw_breakpoint(); 10892 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10893 10894 /* 10895 * Build time assertion that we keep the data_head at the intended 10896 * location. IOW, validation we got the __reserved[] size right. 10897 */ 10898 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10899 != 1024); 10900 } 10901 10902 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10903 char *page) 10904 { 10905 struct perf_pmu_events_attr *pmu_attr = 10906 container_of(attr, struct perf_pmu_events_attr, attr); 10907 10908 if (pmu_attr->event_str) 10909 return sprintf(page, "%s\n", pmu_attr->event_str); 10910 10911 return 0; 10912 } 10913 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10914 10915 static int __init perf_event_sysfs_init(void) 10916 { 10917 struct pmu *pmu; 10918 int ret; 10919 10920 mutex_lock(&pmus_lock); 10921 10922 ret = bus_register(&pmu_bus); 10923 if (ret) 10924 goto unlock; 10925 10926 list_for_each_entry(pmu, &pmus, entry) { 10927 if (!pmu->name || pmu->type < 0) 10928 continue; 10929 10930 ret = pmu_dev_alloc(pmu); 10931 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10932 } 10933 pmu_bus_running = 1; 10934 ret = 0; 10935 10936 unlock: 10937 mutex_unlock(&pmus_lock); 10938 10939 return ret; 10940 } 10941 device_initcall(perf_event_sysfs_init); 10942 10943 #ifdef CONFIG_CGROUP_PERF 10944 static struct cgroup_subsys_state * 10945 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10946 { 10947 struct perf_cgroup *jc; 10948 10949 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10950 if (!jc) 10951 return ERR_PTR(-ENOMEM); 10952 10953 jc->info = alloc_percpu(struct perf_cgroup_info); 10954 if (!jc->info) { 10955 kfree(jc); 10956 return ERR_PTR(-ENOMEM); 10957 } 10958 10959 return &jc->css; 10960 } 10961 10962 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10963 { 10964 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10965 10966 free_percpu(jc->info); 10967 kfree(jc); 10968 } 10969 10970 static int __perf_cgroup_move(void *info) 10971 { 10972 struct task_struct *task = info; 10973 rcu_read_lock(); 10974 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10975 rcu_read_unlock(); 10976 return 0; 10977 } 10978 10979 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10980 { 10981 struct task_struct *task; 10982 struct cgroup_subsys_state *css; 10983 10984 cgroup_taskset_for_each(task, css, tset) 10985 task_function_call(task, __perf_cgroup_move, task); 10986 } 10987 10988 struct cgroup_subsys perf_event_cgrp_subsys = { 10989 .css_alloc = perf_cgroup_css_alloc, 10990 .css_free = perf_cgroup_css_free, 10991 .attach = perf_cgroup_attach, 10992 /* 10993 * Implicitly enable on dfl hierarchy so that perf events can 10994 * always be filtered by cgroup2 path as long as perf_event 10995 * controller is not mounted on a legacy hierarchy. 10996 */ 10997 .implicit_on_dfl = true, 10998 }; 10999 #endif /* CONFIG_CGROUP_PERF */ 11000