1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 55 #include "internal.h" 56 57 #include <asm/irq_regs.h> 58 59 typedef int (*remote_function_f)(void *); 60 61 struct remote_function_call { 62 struct task_struct *p; 63 remote_function_f func; 64 void *info; 65 int ret; 66 }; 67 68 static void remote_function(void *data) 69 { 70 struct remote_function_call *tfc = data; 71 struct task_struct *p = tfc->p; 72 73 if (p) { 74 /* -EAGAIN */ 75 if (task_cpu(p) != smp_processor_id()) 76 return; 77 78 /* 79 * Now that we're on right CPU with IRQs disabled, we can test 80 * if we hit the right task without races. 81 */ 82 83 tfc->ret = -ESRCH; /* No such (running) process */ 84 if (p != current) 85 return; 86 } 87 88 tfc->ret = tfc->func(tfc->info); 89 } 90 91 /** 92 * task_function_call - call a function on the cpu on which a task runs 93 * @p: the task to evaluate 94 * @func: the function to be called 95 * @info: the function call argument 96 * 97 * Calls the function @func when the task is currently running. This might 98 * be on the current CPU, which just calls the function directly. This will 99 * retry due to any failures in smp_call_function_single(), such as if the 100 * task_cpu() goes offline concurrently. 101 * 102 * returns @func return value or -ESRCH when the process isn't running 103 */ 104 static int 105 task_function_call(struct task_struct *p, remote_function_f func, void *info) 106 { 107 struct remote_function_call data = { 108 .p = p, 109 .func = func, 110 .info = info, 111 .ret = -EAGAIN, 112 }; 113 int ret; 114 115 for (;;) { 116 ret = smp_call_function_single(task_cpu(p), remote_function, 117 &data, 1); 118 ret = !ret ? data.ret : -EAGAIN; 119 120 if (ret != -EAGAIN) 121 break; 122 123 cond_resched(); 124 } 125 126 return ret; 127 } 128 129 /** 130 * cpu_function_call - call a function on the cpu 131 * @func: the function to be called 132 * @info: the function call argument 133 * 134 * Calls the function @func on the remote cpu. 135 * 136 * returns: @func return value or -ENXIO when the cpu is offline 137 */ 138 static int cpu_function_call(int cpu, remote_function_f func, void *info) 139 { 140 struct remote_function_call data = { 141 .p = NULL, 142 .func = func, 143 .info = info, 144 .ret = -ENXIO, /* No such CPU */ 145 }; 146 147 smp_call_function_single(cpu, remote_function, &data, 1); 148 149 return data.ret; 150 } 151 152 static inline struct perf_cpu_context * 153 __get_cpu_context(struct perf_event_context *ctx) 154 { 155 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 /* 182 * On task ctx scheduling... 183 * 184 * When !ctx->nr_events a task context will not be scheduled. This means 185 * we can disable the scheduler hooks (for performance) without leaving 186 * pending task ctx state. 187 * 188 * This however results in two special cases: 189 * 190 * - removing the last event from a task ctx; this is relatively straight 191 * forward and is done in __perf_remove_from_context. 192 * 193 * - adding the first event to a task ctx; this is tricky because we cannot 194 * rely on ctx->is_active and therefore cannot use event_function_call(). 195 * See perf_install_in_context(). 196 * 197 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 198 */ 199 200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 201 struct perf_event_context *, void *); 202 203 struct event_function_struct { 204 struct perf_event *event; 205 event_f func; 206 void *data; 207 }; 208 209 static int event_function(void *info) 210 { 211 struct event_function_struct *efs = info; 212 struct perf_event *event = efs->event; 213 struct perf_event_context *ctx = event->ctx; 214 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 215 struct perf_event_context *task_ctx = cpuctx->task_ctx; 216 int ret = 0; 217 218 lockdep_assert_irqs_disabled(); 219 220 perf_ctx_lock(cpuctx, task_ctx); 221 /* 222 * Since we do the IPI call without holding ctx->lock things can have 223 * changed, double check we hit the task we set out to hit. 224 */ 225 if (ctx->task) { 226 if (ctx->task != current) { 227 ret = -ESRCH; 228 goto unlock; 229 } 230 231 /* 232 * We only use event_function_call() on established contexts, 233 * and event_function() is only ever called when active (or 234 * rather, we'll have bailed in task_function_call() or the 235 * above ctx->task != current test), therefore we must have 236 * ctx->is_active here. 237 */ 238 WARN_ON_ONCE(!ctx->is_active); 239 /* 240 * And since we have ctx->is_active, cpuctx->task_ctx must 241 * match. 242 */ 243 WARN_ON_ONCE(task_ctx != ctx); 244 } else { 245 WARN_ON_ONCE(&cpuctx->ctx != ctx); 246 } 247 248 efs->func(event, cpuctx, ctx, efs->data); 249 unlock: 250 perf_ctx_unlock(cpuctx, task_ctx); 251 252 return ret; 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 /* 305 * Similar to event_function_call() + event_function(), but hard assumes IRQs 306 * are already disabled and we're on the right CPU. 307 */ 308 static void event_function_local(struct perf_event *event, event_f func, void *data) 309 { 310 struct perf_event_context *ctx = event->ctx; 311 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 312 struct task_struct *task = READ_ONCE(ctx->task); 313 struct perf_event_context *task_ctx = NULL; 314 315 lockdep_assert_irqs_disabled(); 316 317 if (task) { 318 if (task == TASK_TOMBSTONE) 319 return; 320 321 task_ctx = ctx; 322 } 323 324 perf_ctx_lock(cpuctx, task_ctx); 325 326 task = ctx->task; 327 if (task == TASK_TOMBSTONE) 328 goto unlock; 329 330 if (task) { 331 /* 332 * We must be either inactive or active and the right task, 333 * otherwise we're screwed, since we cannot IPI to somewhere 334 * else. 335 */ 336 if (ctx->is_active) { 337 if (WARN_ON_ONCE(task != current)) 338 goto unlock; 339 340 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 341 goto unlock; 342 } 343 } else { 344 WARN_ON_ONCE(&cpuctx->ctx != ctx); 345 } 346 347 func(event, cpuctx, ctx, data); 348 unlock: 349 perf_ctx_unlock(cpuctx, task_ctx); 350 } 351 352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 353 PERF_FLAG_FD_OUTPUT |\ 354 PERF_FLAG_PID_CGROUP |\ 355 PERF_FLAG_FD_CLOEXEC) 356 357 /* 358 * branch priv levels that need permission checks 359 */ 360 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 361 (PERF_SAMPLE_BRANCH_KERNEL |\ 362 PERF_SAMPLE_BRANCH_HV) 363 364 enum event_type_t { 365 EVENT_FLEXIBLE = 0x1, 366 EVENT_PINNED = 0x2, 367 EVENT_TIME = 0x4, 368 /* see ctx_resched() for details */ 369 EVENT_CPU = 0x8, 370 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 371 }; 372 373 /* 374 * perf_sched_events : >0 events exist 375 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 376 */ 377 378 static void perf_sched_delayed(struct work_struct *work); 379 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 381 static DEFINE_MUTEX(perf_sched_mutex); 382 static atomic_t perf_sched_count; 383 384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 385 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 387 388 static atomic_t nr_mmap_events __read_mostly; 389 static atomic_t nr_comm_events __read_mostly; 390 static atomic_t nr_namespaces_events __read_mostly; 391 static atomic_t nr_task_events __read_mostly; 392 static atomic_t nr_freq_events __read_mostly; 393 static atomic_t nr_switch_events __read_mostly; 394 static atomic_t nr_ksymbol_events __read_mostly; 395 static atomic_t nr_bpf_events __read_mostly; 396 static atomic_t nr_cgroup_events __read_mostly; 397 static atomic_t nr_text_poke_events __read_mostly; 398 399 static LIST_HEAD(pmus); 400 static DEFINE_MUTEX(pmus_lock); 401 static struct srcu_struct pmus_srcu; 402 static cpumask_var_t perf_online_mask; 403 404 /* 405 * perf event paranoia level: 406 * -1 - not paranoid at all 407 * 0 - disallow raw tracepoint access for unpriv 408 * 1 - disallow cpu events for unpriv 409 * 2 - disallow kernel profiling for unpriv 410 */ 411 int sysctl_perf_event_paranoid __read_mostly = 2; 412 413 /* Minimum for 512 kiB + 1 user control page */ 414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 415 416 /* 417 * max perf event sample rate 418 */ 419 #define DEFAULT_MAX_SAMPLE_RATE 100000 420 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 421 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 422 423 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 424 425 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 426 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 427 428 static int perf_sample_allowed_ns __read_mostly = 429 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 430 431 static void update_perf_cpu_limits(void) 432 { 433 u64 tmp = perf_sample_period_ns; 434 435 tmp *= sysctl_perf_cpu_time_max_percent; 436 tmp = div_u64(tmp, 100); 437 if (!tmp) 438 tmp = 1; 439 440 WRITE_ONCE(perf_sample_allowed_ns, tmp); 441 } 442 443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 444 445 int perf_proc_update_handler(struct ctl_table *table, int write, 446 void *buffer, size_t *lenp, loff_t *ppos) 447 { 448 int ret; 449 int perf_cpu = sysctl_perf_cpu_time_max_percent; 450 /* 451 * If throttling is disabled don't allow the write: 452 */ 453 if (write && (perf_cpu == 100 || perf_cpu == 0)) 454 return -EINVAL; 455 456 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 457 if (ret || !write) 458 return ret; 459 460 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 461 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 462 update_perf_cpu_limits(); 463 464 return 0; 465 } 466 467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 468 469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 470 void *buffer, size_t *lenp, loff_t *ppos) 471 { 472 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 473 474 if (ret || !write) 475 return ret; 476 477 if (sysctl_perf_cpu_time_max_percent == 100 || 478 sysctl_perf_cpu_time_max_percent == 0) { 479 printk(KERN_WARNING 480 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 481 WRITE_ONCE(perf_sample_allowed_ns, 0); 482 } else { 483 update_perf_cpu_limits(); 484 } 485 486 return 0; 487 } 488 489 /* 490 * perf samples are done in some very critical code paths (NMIs). 491 * If they take too much CPU time, the system can lock up and not 492 * get any real work done. This will drop the sample rate when 493 * we detect that events are taking too long. 494 */ 495 #define NR_ACCUMULATED_SAMPLES 128 496 static DEFINE_PER_CPU(u64, running_sample_length); 497 498 static u64 __report_avg; 499 static u64 __report_allowed; 500 501 static void perf_duration_warn(struct irq_work *w) 502 { 503 printk_ratelimited(KERN_INFO 504 "perf: interrupt took too long (%lld > %lld), lowering " 505 "kernel.perf_event_max_sample_rate to %d\n", 506 __report_avg, __report_allowed, 507 sysctl_perf_event_sample_rate); 508 } 509 510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 511 512 void perf_sample_event_took(u64 sample_len_ns) 513 { 514 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 515 u64 running_len; 516 u64 avg_len; 517 u32 max; 518 519 if (max_len == 0) 520 return; 521 522 /* Decay the counter by 1 average sample. */ 523 running_len = __this_cpu_read(running_sample_length); 524 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 525 running_len += sample_len_ns; 526 __this_cpu_write(running_sample_length, running_len); 527 528 /* 529 * Note: this will be biased artifically low until we have 530 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 531 * from having to maintain a count. 532 */ 533 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 534 if (avg_len <= max_len) 535 return; 536 537 __report_avg = avg_len; 538 __report_allowed = max_len; 539 540 /* 541 * Compute a throttle threshold 25% below the current duration. 542 */ 543 avg_len += avg_len / 4; 544 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 545 if (avg_len < max) 546 max /= (u32)avg_len; 547 else 548 max = 1; 549 550 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 551 WRITE_ONCE(max_samples_per_tick, max); 552 553 sysctl_perf_event_sample_rate = max * HZ; 554 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 555 556 if (!irq_work_queue(&perf_duration_work)) { 557 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 558 "kernel.perf_event_max_sample_rate to %d\n", 559 __report_avg, __report_allowed, 560 sysctl_perf_event_sample_rate); 561 } 562 } 563 564 static atomic64_t perf_event_id; 565 566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 567 enum event_type_t event_type); 568 569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 570 enum event_type_t event_type, 571 struct task_struct *task); 572 573 static void update_context_time(struct perf_event_context *ctx); 574 static u64 perf_event_time(struct perf_event *event); 575 576 void __weak perf_event_print_debug(void) { } 577 578 extern __weak const char *perf_pmu_name(void) 579 { 580 return "pmu"; 581 } 582 583 static inline u64 perf_clock(void) 584 { 585 return local_clock(); 586 } 587 588 static inline u64 perf_event_clock(struct perf_event *event) 589 { 590 return event->clock(); 591 } 592 593 /* 594 * State based event timekeeping... 595 * 596 * The basic idea is to use event->state to determine which (if any) time 597 * fields to increment with the current delta. This means we only need to 598 * update timestamps when we change state or when they are explicitly requested 599 * (read). 600 * 601 * Event groups make things a little more complicated, but not terribly so. The 602 * rules for a group are that if the group leader is OFF the entire group is 603 * OFF, irrespecive of what the group member states are. This results in 604 * __perf_effective_state(). 605 * 606 * A futher ramification is that when a group leader flips between OFF and 607 * !OFF, we need to update all group member times. 608 * 609 * 610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 611 * need to make sure the relevant context time is updated before we try and 612 * update our timestamps. 613 */ 614 615 static __always_inline enum perf_event_state 616 __perf_effective_state(struct perf_event *event) 617 { 618 struct perf_event *leader = event->group_leader; 619 620 if (leader->state <= PERF_EVENT_STATE_OFF) 621 return leader->state; 622 623 return event->state; 624 } 625 626 static __always_inline void 627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 628 { 629 enum perf_event_state state = __perf_effective_state(event); 630 u64 delta = now - event->tstamp; 631 632 *enabled = event->total_time_enabled; 633 if (state >= PERF_EVENT_STATE_INACTIVE) 634 *enabled += delta; 635 636 *running = event->total_time_running; 637 if (state >= PERF_EVENT_STATE_ACTIVE) 638 *running += delta; 639 } 640 641 static void perf_event_update_time(struct perf_event *event) 642 { 643 u64 now = perf_event_time(event); 644 645 __perf_update_times(event, now, &event->total_time_enabled, 646 &event->total_time_running); 647 event->tstamp = now; 648 } 649 650 static void perf_event_update_sibling_time(struct perf_event *leader) 651 { 652 struct perf_event *sibling; 653 654 for_each_sibling_event(sibling, leader) 655 perf_event_update_time(sibling); 656 } 657 658 static void 659 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 660 { 661 if (event->state == state) 662 return; 663 664 perf_event_update_time(event); 665 /* 666 * If a group leader gets enabled/disabled all its siblings 667 * are affected too. 668 */ 669 if ((event->state < 0) ^ (state < 0)) 670 perf_event_update_sibling_time(event); 671 672 WRITE_ONCE(event->state, state); 673 } 674 675 #ifdef CONFIG_CGROUP_PERF 676 677 static inline bool 678 perf_cgroup_match(struct perf_event *event) 679 { 680 struct perf_event_context *ctx = event->ctx; 681 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 682 683 /* @event doesn't care about cgroup */ 684 if (!event->cgrp) 685 return true; 686 687 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 688 if (!cpuctx->cgrp) 689 return false; 690 691 /* 692 * Cgroup scoping is recursive. An event enabled for a cgroup is 693 * also enabled for all its descendant cgroups. If @cpuctx's 694 * cgroup is a descendant of @event's (the test covers identity 695 * case), it's a match. 696 */ 697 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 698 event->cgrp->css.cgroup); 699 } 700 701 static inline void perf_detach_cgroup(struct perf_event *event) 702 { 703 css_put(&event->cgrp->css); 704 event->cgrp = NULL; 705 } 706 707 static inline int is_cgroup_event(struct perf_event *event) 708 { 709 return event->cgrp != NULL; 710 } 711 712 static inline u64 perf_cgroup_event_time(struct perf_event *event) 713 { 714 struct perf_cgroup_info *t; 715 716 t = per_cpu_ptr(event->cgrp->info, event->cpu); 717 return t->time; 718 } 719 720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 721 { 722 struct perf_cgroup_info *info; 723 u64 now; 724 725 now = perf_clock(); 726 727 info = this_cpu_ptr(cgrp->info); 728 729 info->time += now - info->timestamp; 730 info->timestamp = now; 731 } 732 733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 734 { 735 struct perf_cgroup *cgrp = cpuctx->cgrp; 736 struct cgroup_subsys_state *css; 737 738 if (cgrp) { 739 for (css = &cgrp->css; css; css = css->parent) { 740 cgrp = container_of(css, struct perf_cgroup, css); 741 __update_cgrp_time(cgrp); 742 } 743 } 744 } 745 746 static inline void update_cgrp_time_from_event(struct perf_event *event) 747 { 748 struct perf_cgroup *cgrp; 749 750 /* 751 * ensure we access cgroup data only when needed and 752 * when we know the cgroup is pinned (css_get) 753 */ 754 if (!is_cgroup_event(event)) 755 return; 756 757 cgrp = perf_cgroup_from_task(current, event->ctx); 758 /* 759 * Do not update time when cgroup is not active 760 */ 761 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 762 __update_cgrp_time(event->cgrp); 763 } 764 765 static inline void 766 perf_cgroup_set_timestamp(struct task_struct *task, 767 struct perf_event_context *ctx) 768 { 769 struct perf_cgroup *cgrp; 770 struct perf_cgroup_info *info; 771 struct cgroup_subsys_state *css; 772 773 /* 774 * ctx->lock held by caller 775 * ensure we do not access cgroup data 776 * unless we have the cgroup pinned (css_get) 777 */ 778 if (!task || !ctx->nr_cgroups) 779 return; 780 781 cgrp = perf_cgroup_from_task(task, ctx); 782 783 for (css = &cgrp->css; css; css = css->parent) { 784 cgrp = container_of(css, struct perf_cgroup, css); 785 info = this_cpu_ptr(cgrp->info); 786 info->timestamp = ctx->timestamp; 787 } 788 } 789 790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 791 792 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 793 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 794 795 /* 796 * reschedule events based on the cgroup constraint of task. 797 * 798 * mode SWOUT : schedule out everything 799 * mode SWIN : schedule in based on cgroup for next 800 */ 801 static void perf_cgroup_switch(struct task_struct *task, int mode) 802 { 803 struct perf_cpu_context *cpuctx; 804 struct list_head *list; 805 unsigned long flags; 806 807 /* 808 * Disable interrupts and preemption to avoid this CPU's 809 * cgrp_cpuctx_entry to change under us. 810 */ 811 local_irq_save(flags); 812 813 list = this_cpu_ptr(&cgrp_cpuctx_list); 814 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 815 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 816 817 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 818 perf_pmu_disable(cpuctx->ctx.pmu); 819 820 if (mode & PERF_CGROUP_SWOUT) { 821 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 822 /* 823 * must not be done before ctxswout due 824 * to event_filter_match() in event_sched_out() 825 */ 826 cpuctx->cgrp = NULL; 827 } 828 829 if (mode & PERF_CGROUP_SWIN) { 830 WARN_ON_ONCE(cpuctx->cgrp); 831 /* 832 * set cgrp before ctxsw in to allow 833 * event_filter_match() to not have to pass 834 * task around 835 * we pass the cpuctx->ctx to perf_cgroup_from_task() 836 * because cgorup events are only per-cpu 837 */ 838 cpuctx->cgrp = perf_cgroup_from_task(task, 839 &cpuctx->ctx); 840 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 841 } 842 perf_pmu_enable(cpuctx->ctx.pmu); 843 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 844 } 845 846 local_irq_restore(flags); 847 } 848 849 static inline void perf_cgroup_sched_out(struct task_struct *task, 850 struct task_struct *next) 851 { 852 struct perf_cgroup *cgrp1; 853 struct perf_cgroup *cgrp2 = NULL; 854 855 rcu_read_lock(); 856 /* 857 * we come here when we know perf_cgroup_events > 0 858 * we do not need to pass the ctx here because we know 859 * we are holding the rcu lock 860 */ 861 cgrp1 = perf_cgroup_from_task(task, NULL); 862 cgrp2 = perf_cgroup_from_task(next, NULL); 863 864 /* 865 * only schedule out current cgroup events if we know 866 * that we are switching to a different cgroup. Otherwise, 867 * do no touch the cgroup events. 868 */ 869 if (cgrp1 != cgrp2) 870 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 871 872 rcu_read_unlock(); 873 } 874 875 static inline void perf_cgroup_sched_in(struct task_struct *prev, 876 struct task_struct *task) 877 { 878 struct perf_cgroup *cgrp1; 879 struct perf_cgroup *cgrp2 = NULL; 880 881 rcu_read_lock(); 882 /* 883 * we come here when we know perf_cgroup_events > 0 884 * we do not need to pass the ctx here because we know 885 * we are holding the rcu lock 886 */ 887 cgrp1 = perf_cgroup_from_task(task, NULL); 888 cgrp2 = perf_cgroup_from_task(prev, NULL); 889 890 /* 891 * only need to schedule in cgroup events if we are changing 892 * cgroup during ctxsw. Cgroup events were not scheduled 893 * out of ctxsw out if that was not the case. 894 */ 895 if (cgrp1 != cgrp2) 896 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 897 898 rcu_read_unlock(); 899 } 900 901 static int perf_cgroup_ensure_storage(struct perf_event *event, 902 struct cgroup_subsys_state *css) 903 { 904 struct perf_cpu_context *cpuctx; 905 struct perf_event **storage; 906 int cpu, heap_size, ret = 0; 907 908 /* 909 * Allow storage to have sufficent space for an iterator for each 910 * possibly nested cgroup plus an iterator for events with no cgroup. 911 */ 912 for (heap_size = 1; css; css = css->parent) 913 heap_size++; 914 915 for_each_possible_cpu(cpu) { 916 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 917 if (heap_size <= cpuctx->heap_size) 918 continue; 919 920 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 921 GFP_KERNEL, cpu_to_node(cpu)); 922 if (!storage) { 923 ret = -ENOMEM; 924 break; 925 } 926 927 raw_spin_lock_irq(&cpuctx->ctx.lock); 928 if (cpuctx->heap_size < heap_size) { 929 swap(cpuctx->heap, storage); 930 if (storage == cpuctx->heap_default) 931 storage = NULL; 932 cpuctx->heap_size = heap_size; 933 } 934 raw_spin_unlock_irq(&cpuctx->ctx.lock); 935 936 kfree(storage); 937 } 938 939 return ret; 940 } 941 942 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 943 struct perf_event_attr *attr, 944 struct perf_event *group_leader) 945 { 946 struct perf_cgroup *cgrp; 947 struct cgroup_subsys_state *css; 948 struct fd f = fdget(fd); 949 int ret = 0; 950 951 if (!f.file) 952 return -EBADF; 953 954 css = css_tryget_online_from_dir(f.file->f_path.dentry, 955 &perf_event_cgrp_subsys); 956 if (IS_ERR(css)) { 957 ret = PTR_ERR(css); 958 goto out; 959 } 960 961 ret = perf_cgroup_ensure_storage(event, css); 962 if (ret) 963 goto out; 964 965 cgrp = container_of(css, struct perf_cgroup, css); 966 event->cgrp = cgrp; 967 968 /* 969 * all events in a group must monitor 970 * the same cgroup because a task belongs 971 * to only one perf cgroup at a time 972 */ 973 if (group_leader && group_leader->cgrp != cgrp) { 974 perf_detach_cgroup(event); 975 ret = -EINVAL; 976 } 977 out: 978 fdput(f); 979 return ret; 980 } 981 982 static inline void 983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 984 { 985 struct perf_cgroup_info *t; 986 t = per_cpu_ptr(event->cgrp->info, event->cpu); 987 event->shadow_ctx_time = now - t->timestamp; 988 } 989 990 static inline void 991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 992 { 993 struct perf_cpu_context *cpuctx; 994 995 if (!is_cgroup_event(event)) 996 return; 997 998 /* 999 * Because cgroup events are always per-cpu events, 1000 * @ctx == &cpuctx->ctx. 1001 */ 1002 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1003 1004 /* 1005 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1006 * matching the event's cgroup, we must do this for every new event, 1007 * because if the first would mismatch, the second would not try again 1008 * and we would leave cpuctx->cgrp unset. 1009 */ 1010 if (ctx->is_active && !cpuctx->cgrp) { 1011 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1012 1013 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1014 cpuctx->cgrp = cgrp; 1015 } 1016 1017 if (ctx->nr_cgroups++) 1018 return; 1019 1020 list_add(&cpuctx->cgrp_cpuctx_entry, 1021 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1022 } 1023 1024 static inline void 1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1026 { 1027 struct perf_cpu_context *cpuctx; 1028 1029 if (!is_cgroup_event(event)) 1030 return; 1031 1032 /* 1033 * Because cgroup events are always per-cpu events, 1034 * @ctx == &cpuctx->ctx. 1035 */ 1036 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1037 1038 if (--ctx->nr_cgroups) 1039 return; 1040 1041 if (ctx->is_active && cpuctx->cgrp) 1042 cpuctx->cgrp = NULL; 1043 1044 list_del(&cpuctx->cgrp_cpuctx_entry); 1045 } 1046 1047 #else /* !CONFIG_CGROUP_PERF */ 1048 1049 static inline bool 1050 perf_cgroup_match(struct perf_event *event) 1051 { 1052 return true; 1053 } 1054 1055 static inline void perf_detach_cgroup(struct perf_event *event) 1056 {} 1057 1058 static inline int is_cgroup_event(struct perf_event *event) 1059 { 1060 return 0; 1061 } 1062 1063 static inline void update_cgrp_time_from_event(struct perf_event *event) 1064 { 1065 } 1066 1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1068 { 1069 } 1070 1071 static inline void perf_cgroup_sched_out(struct task_struct *task, 1072 struct task_struct *next) 1073 { 1074 } 1075 1076 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1077 struct task_struct *task) 1078 { 1079 } 1080 1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1082 struct perf_event_attr *attr, 1083 struct perf_event *group_leader) 1084 { 1085 return -EINVAL; 1086 } 1087 1088 static inline void 1089 perf_cgroup_set_timestamp(struct task_struct *task, 1090 struct perf_event_context *ctx) 1091 { 1092 } 1093 1094 static inline void 1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1096 { 1097 } 1098 1099 static inline void 1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1101 { 1102 } 1103 1104 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1105 { 1106 return 0; 1107 } 1108 1109 static inline void 1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1111 { 1112 } 1113 1114 static inline void 1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1116 { 1117 } 1118 #endif 1119 1120 /* 1121 * set default to be dependent on timer tick just 1122 * like original code 1123 */ 1124 #define PERF_CPU_HRTIMER (1000 / HZ) 1125 /* 1126 * function must be called with interrupts disabled 1127 */ 1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1129 { 1130 struct perf_cpu_context *cpuctx; 1131 bool rotations; 1132 1133 lockdep_assert_irqs_disabled(); 1134 1135 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1136 rotations = perf_rotate_context(cpuctx); 1137 1138 raw_spin_lock(&cpuctx->hrtimer_lock); 1139 if (rotations) 1140 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1141 else 1142 cpuctx->hrtimer_active = 0; 1143 raw_spin_unlock(&cpuctx->hrtimer_lock); 1144 1145 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1146 } 1147 1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1149 { 1150 struct hrtimer *timer = &cpuctx->hrtimer; 1151 struct pmu *pmu = cpuctx->ctx.pmu; 1152 u64 interval; 1153 1154 /* no multiplexing needed for SW PMU */ 1155 if (pmu->task_ctx_nr == perf_sw_context) 1156 return; 1157 1158 /* 1159 * check default is sane, if not set then force to 1160 * default interval (1/tick) 1161 */ 1162 interval = pmu->hrtimer_interval_ms; 1163 if (interval < 1) 1164 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1165 1166 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1167 1168 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1169 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1170 timer->function = perf_mux_hrtimer_handler; 1171 } 1172 1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1174 { 1175 struct hrtimer *timer = &cpuctx->hrtimer; 1176 struct pmu *pmu = cpuctx->ctx.pmu; 1177 unsigned long flags; 1178 1179 /* not for SW PMU */ 1180 if (pmu->task_ctx_nr == perf_sw_context) 1181 return 0; 1182 1183 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1184 if (!cpuctx->hrtimer_active) { 1185 cpuctx->hrtimer_active = 1; 1186 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1187 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1188 } 1189 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1190 1191 return 0; 1192 } 1193 1194 void perf_pmu_disable(struct pmu *pmu) 1195 { 1196 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1197 if (!(*count)++) 1198 pmu->pmu_disable(pmu); 1199 } 1200 1201 void perf_pmu_enable(struct pmu *pmu) 1202 { 1203 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1204 if (!--(*count)) 1205 pmu->pmu_enable(pmu); 1206 } 1207 1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1209 1210 /* 1211 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1212 * perf_event_task_tick() are fully serialized because they're strictly cpu 1213 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1214 * disabled, while perf_event_task_tick is called from IRQ context. 1215 */ 1216 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1217 { 1218 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1219 1220 lockdep_assert_irqs_disabled(); 1221 1222 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1223 1224 list_add(&ctx->active_ctx_list, head); 1225 } 1226 1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1228 { 1229 lockdep_assert_irqs_disabled(); 1230 1231 WARN_ON(list_empty(&ctx->active_ctx_list)); 1232 1233 list_del_init(&ctx->active_ctx_list); 1234 } 1235 1236 static void get_ctx(struct perf_event_context *ctx) 1237 { 1238 refcount_inc(&ctx->refcount); 1239 } 1240 1241 static void *alloc_task_ctx_data(struct pmu *pmu) 1242 { 1243 if (pmu->task_ctx_cache) 1244 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1245 1246 return NULL; 1247 } 1248 1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1250 { 1251 if (pmu->task_ctx_cache && task_ctx_data) 1252 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1253 } 1254 1255 static void free_ctx(struct rcu_head *head) 1256 { 1257 struct perf_event_context *ctx; 1258 1259 ctx = container_of(head, struct perf_event_context, rcu_head); 1260 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1261 kfree(ctx); 1262 } 1263 1264 static void put_ctx(struct perf_event_context *ctx) 1265 { 1266 if (refcount_dec_and_test(&ctx->refcount)) { 1267 if (ctx->parent_ctx) 1268 put_ctx(ctx->parent_ctx); 1269 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1270 put_task_struct(ctx->task); 1271 call_rcu(&ctx->rcu_head, free_ctx); 1272 } 1273 } 1274 1275 /* 1276 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1277 * perf_pmu_migrate_context() we need some magic. 1278 * 1279 * Those places that change perf_event::ctx will hold both 1280 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1281 * 1282 * Lock ordering is by mutex address. There are two other sites where 1283 * perf_event_context::mutex nests and those are: 1284 * 1285 * - perf_event_exit_task_context() [ child , 0 ] 1286 * perf_event_exit_event() 1287 * put_event() [ parent, 1 ] 1288 * 1289 * - perf_event_init_context() [ parent, 0 ] 1290 * inherit_task_group() 1291 * inherit_group() 1292 * inherit_event() 1293 * perf_event_alloc() 1294 * perf_init_event() 1295 * perf_try_init_event() [ child , 1 ] 1296 * 1297 * While it appears there is an obvious deadlock here -- the parent and child 1298 * nesting levels are inverted between the two. This is in fact safe because 1299 * life-time rules separate them. That is an exiting task cannot fork, and a 1300 * spawning task cannot (yet) exit. 1301 * 1302 * But remember that that these are parent<->child context relations, and 1303 * migration does not affect children, therefore these two orderings should not 1304 * interact. 1305 * 1306 * The change in perf_event::ctx does not affect children (as claimed above) 1307 * because the sys_perf_event_open() case will install a new event and break 1308 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1309 * concerned with cpuctx and that doesn't have children. 1310 * 1311 * The places that change perf_event::ctx will issue: 1312 * 1313 * perf_remove_from_context(); 1314 * synchronize_rcu(); 1315 * perf_install_in_context(); 1316 * 1317 * to affect the change. The remove_from_context() + synchronize_rcu() should 1318 * quiesce the event, after which we can install it in the new location. This 1319 * means that only external vectors (perf_fops, prctl) can perturb the event 1320 * while in transit. Therefore all such accessors should also acquire 1321 * perf_event_context::mutex to serialize against this. 1322 * 1323 * However; because event->ctx can change while we're waiting to acquire 1324 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1325 * function. 1326 * 1327 * Lock order: 1328 * exec_update_mutex 1329 * task_struct::perf_event_mutex 1330 * perf_event_context::mutex 1331 * perf_event::child_mutex; 1332 * perf_event_context::lock 1333 * perf_event::mmap_mutex 1334 * mmap_lock 1335 * perf_addr_filters_head::lock 1336 * 1337 * cpu_hotplug_lock 1338 * pmus_lock 1339 * cpuctx->mutex / perf_event_context::mutex 1340 */ 1341 static struct perf_event_context * 1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1343 { 1344 struct perf_event_context *ctx; 1345 1346 again: 1347 rcu_read_lock(); 1348 ctx = READ_ONCE(event->ctx); 1349 if (!refcount_inc_not_zero(&ctx->refcount)) { 1350 rcu_read_unlock(); 1351 goto again; 1352 } 1353 rcu_read_unlock(); 1354 1355 mutex_lock_nested(&ctx->mutex, nesting); 1356 if (event->ctx != ctx) { 1357 mutex_unlock(&ctx->mutex); 1358 put_ctx(ctx); 1359 goto again; 1360 } 1361 1362 return ctx; 1363 } 1364 1365 static inline struct perf_event_context * 1366 perf_event_ctx_lock(struct perf_event *event) 1367 { 1368 return perf_event_ctx_lock_nested(event, 0); 1369 } 1370 1371 static void perf_event_ctx_unlock(struct perf_event *event, 1372 struct perf_event_context *ctx) 1373 { 1374 mutex_unlock(&ctx->mutex); 1375 put_ctx(ctx); 1376 } 1377 1378 /* 1379 * This must be done under the ctx->lock, such as to serialize against 1380 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1381 * calling scheduler related locks and ctx->lock nests inside those. 1382 */ 1383 static __must_check struct perf_event_context * 1384 unclone_ctx(struct perf_event_context *ctx) 1385 { 1386 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1387 1388 lockdep_assert_held(&ctx->lock); 1389 1390 if (parent_ctx) 1391 ctx->parent_ctx = NULL; 1392 ctx->generation++; 1393 1394 return parent_ctx; 1395 } 1396 1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1398 enum pid_type type) 1399 { 1400 u32 nr; 1401 /* 1402 * only top level events have the pid namespace they were created in 1403 */ 1404 if (event->parent) 1405 event = event->parent; 1406 1407 nr = __task_pid_nr_ns(p, type, event->ns); 1408 /* avoid -1 if it is idle thread or runs in another ns */ 1409 if (!nr && !pid_alive(p)) 1410 nr = -1; 1411 return nr; 1412 } 1413 1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1415 { 1416 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1417 } 1418 1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1420 { 1421 return perf_event_pid_type(event, p, PIDTYPE_PID); 1422 } 1423 1424 /* 1425 * If we inherit events we want to return the parent event id 1426 * to userspace. 1427 */ 1428 static u64 primary_event_id(struct perf_event *event) 1429 { 1430 u64 id = event->id; 1431 1432 if (event->parent) 1433 id = event->parent->id; 1434 1435 return id; 1436 } 1437 1438 /* 1439 * Get the perf_event_context for a task and lock it. 1440 * 1441 * This has to cope with with the fact that until it is locked, 1442 * the context could get moved to another task. 1443 */ 1444 static struct perf_event_context * 1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1446 { 1447 struct perf_event_context *ctx; 1448 1449 retry: 1450 /* 1451 * One of the few rules of preemptible RCU is that one cannot do 1452 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1453 * part of the read side critical section was irqs-enabled -- see 1454 * rcu_read_unlock_special(). 1455 * 1456 * Since ctx->lock nests under rq->lock we must ensure the entire read 1457 * side critical section has interrupts disabled. 1458 */ 1459 local_irq_save(*flags); 1460 rcu_read_lock(); 1461 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1462 if (ctx) { 1463 /* 1464 * If this context is a clone of another, it might 1465 * get swapped for another underneath us by 1466 * perf_event_task_sched_out, though the 1467 * rcu_read_lock() protects us from any context 1468 * getting freed. Lock the context and check if it 1469 * got swapped before we could get the lock, and retry 1470 * if so. If we locked the right context, then it 1471 * can't get swapped on us any more. 1472 */ 1473 raw_spin_lock(&ctx->lock); 1474 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1475 raw_spin_unlock(&ctx->lock); 1476 rcu_read_unlock(); 1477 local_irq_restore(*flags); 1478 goto retry; 1479 } 1480 1481 if (ctx->task == TASK_TOMBSTONE || 1482 !refcount_inc_not_zero(&ctx->refcount)) { 1483 raw_spin_unlock(&ctx->lock); 1484 ctx = NULL; 1485 } else { 1486 WARN_ON_ONCE(ctx->task != task); 1487 } 1488 } 1489 rcu_read_unlock(); 1490 if (!ctx) 1491 local_irq_restore(*flags); 1492 return ctx; 1493 } 1494 1495 /* 1496 * Get the context for a task and increment its pin_count so it 1497 * can't get swapped to another task. This also increments its 1498 * reference count so that the context can't get freed. 1499 */ 1500 static struct perf_event_context * 1501 perf_pin_task_context(struct task_struct *task, int ctxn) 1502 { 1503 struct perf_event_context *ctx; 1504 unsigned long flags; 1505 1506 ctx = perf_lock_task_context(task, ctxn, &flags); 1507 if (ctx) { 1508 ++ctx->pin_count; 1509 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1510 } 1511 return ctx; 1512 } 1513 1514 static void perf_unpin_context(struct perf_event_context *ctx) 1515 { 1516 unsigned long flags; 1517 1518 raw_spin_lock_irqsave(&ctx->lock, flags); 1519 --ctx->pin_count; 1520 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1521 } 1522 1523 /* 1524 * Update the record of the current time in a context. 1525 */ 1526 static void update_context_time(struct perf_event_context *ctx) 1527 { 1528 u64 now = perf_clock(); 1529 1530 ctx->time += now - ctx->timestamp; 1531 ctx->timestamp = now; 1532 } 1533 1534 static u64 perf_event_time(struct perf_event *event) 1535 { 1536 struct perf_event_context *ctx = event->ctx; 1537 1538 if (is_cgroup_event(event)) 1539 return perf_cgroup_event_time(event); 1540 1541 return ctx ? ctx->time : 0; 1542 } 1543 1544 static enum event_type_t get_event_type(struct perf_event *event) 1545 { 1546 struct perf_event_context *ctx = event->ctx; 1547 enum event_type_t event_type; 1548 1549 lockdep_assert_held(&ctx->lock); 1550 1551 /* 1552 * It's 'group type', really, because if our group leader is 1553 * pinned, so are we. 1554 */ 1555 if (event->group_leader != event) 1556 event = event->group_leader; 1557 1558 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1559 if (!ctx->task) 1560 event_type |= EVENT_CPU; 1561 1562 return event_type; 1563 } 1564 1565 /* 1566 * Helper function to initialize event group nodes. 1567 */ 1568 static void init_event_group(struct perf_event *event) 1569 { 1570 RB_CLEAR_NODE(&event->group_node); 1571 event->group_index = 0; 1572 } 1573 1574 /* 1575 * Extract pinned or flexible groups from the context 1576 * based on event attrs bits. 1577 */ 1578 static struct perf_event_groups * 1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1580 { 1581 if (event->attr.pinned) 1582 return &ctx->pinned_groups; 1583 else 1584 return &ctx->flexible_groups; 1585 } 1586 1587 /* 1588 * Helper function to initializes perf_event_group trees. 1589 */ 1590 static void perf_event_groups_init(struct perf_event_groups *groups) 1591 { 1592 groups->tree = RB_ROOT; 1593 groups->index = 0; 1594 } 1595 1596 /* 1597 * Compare function for event groups; 1598 * 1599 * Implements complex key that first sorts by CPU and then by virtual index 1600 * which provides ordering when rotating groups for the same CPU. 1601 */ 1602 static bool 1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1604 { 1605 if (left->cpu < right->cpu) 1606 return true; 1607 if (left->cpu > right->cpu) 1608 return false; 1609 1610 #ifdef CONFIG_CGROUP_PERF 1611 if (left->cgrp != right->cgrp) { 1612 if (!left->cgrp || !left->cgrp->css.cgroup) { 1613 /* 1614 * Left has no cgroup but right does, no cgroups come 1615 * first. 1616 */ 1617 return true; 1618 } 1619 if (!right->cgrp || !right->cgrp->css.cgroup) { 1620 /* 1621 * Right has no cgroup but left does, no cgroups come 1622 * first. 1623 */ 1624 return false; 1625 } 1626 /* Two dissimilar cgroups, order by id. */ 1627 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id) 1628 return true; 1629 1630 return false; 1631 } 1632 #endif 1633 1634 if (left->group_index < right->group_index) 1635 return true; 1636 if (left->group_index > right->group_index) 1637 return false; 1638 1639 return false; 1640 } 1641 1642 /* 1643 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1644 * key (see perf_event_groups_less). This places it last inside the CPU 1645 * subtree. 1646 */ 1647 static void 1648 perf_event_groups_insert(struct perf_event_groups *groups, 1649 struct perf_event *event) 1650 { 1651 struct perf_event *node_event; 1652 struct rb_node *parent; 1653 struct rb_node **node; 1654 1655 event->group_index = ++groups->index; 1656 1657 node = &groups->tree.rb_node; 1658 parent = *node; 1659 1660 while (*node) { 1661 parent = *node; 1662 node_event = container_of(*node, struct perf_event, group_node); 1663 1664 if (perf_event_groups_less(event, node_event)) 1665 node = &parent->rb_left; 1666 else 1667 node = &parent->rb_right; 1668 } 1669 1670 rb_link_node(&event->group_node, parent, node); 1671 rb_insert_color(&event->group_node, &groups->tree); 1672 } 1673 1674 /* 1675 * Helper function to insert event into the pinned or flexible groups. 1676 */ 1677 static void 1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1679 { 1680 struct perf_event_groups *groups; 1681 1682 groups = get_event_groups(event, ctx); 1683 perf_event_groups_insert(groups, event); 1684 } 1685 1686 /* 1687 * Delete a group from a tree. 1688 */ 1689 static void 1690 perf_event_groups_delete(struct perf_event_groups *groups, 1691 struct perf_event *event) 1692 { 1693 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1694 RB_EMPTY_ROOT(&groups->tree)); 1695 1696 rb_erase(&event->group_node, &groups->tree); 1697 init_event_group(event); 1698 } 1699 1700 /* 1701 * Helper function to delete event from its groups. 1702 */ 1703 static void 1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1705 { 1706 struct perf_event_groups *groups; 1707 1708 groups = get_event_groups(event, ctx); 1709 perf_event_groups_delete(groups, event); 1710 } 1711 1712 /* 1713 * Get the leftmost event in the cpu/cgroup subtree. 1714 */ 1715 static struct perf_event * 1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1717 struct cgroup *cgrp) 1718 { 1719 struct perf_event *node_event = NULL, *match = NULL; 1720 struct rb_node *node = groups->tree.rb_node; 1721 #ifdef CONFIG_CGROUP_PERF 1722 u64 node_cgrp_id, cgrp_id = 0; 1723 1724 if (cgrp) 1725 cgrp_id = cgrp->kn->id; 1726 #endif 1727 1728 while (node) { 1729 node_event = container_of(node, struct perf_event, group_node); 1730 1731 if (cpu < node_event->cpu) { 1732 node = node->rb_left; 1733 continue; 1734 } 1735 if (cpu > node_event->cpu) { 1736 node = node->rb_right; 1737 continue; 1738 } 1739 #ifdef CONFIG_CGROUP_PERF 1740 node_cgrp_id = 0; 1741 if (node_event->cgrp && node_event->cgrp->css.cgroup) 1742 node_cgrp_id = node_event->cgrp->css.cgroup->kn->id; 1743 1744 if (cgrp_id < node_cgrp_id) { 1745 node = node->rb_left; 1746 continue; 1747 } 1748 if (cgrp_id > node_cgrp_id) { 1749 node = node->rb_right; 1750 continue; 1751 } 1752 #endif 1753 match = node_event; 1754 node = node->rb_left; 1755 } 1756 1757 return match; 1758 } 1759 1760 /* 1761 * Like rb_entry_next_safe() for the @cpu subtree. 1762 */ 1763 static struct perf_event * 1764 perf_event_groups_next(struct perf_event *event) 1765 { 1766 struct perf_event *next; 1767 #ifdef CONFIG_CGROUP_PERF 1768 u64 curr_cgrp_id = 0; 1769 u64 next_cgrp_id = 0; 1770 #endif 1771 1772 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1773 if (next == NULL || next->cpu != event->cpu) 1774 return NULL; 1775 1776 #ifdef CONFIG_CGROUP_PERF 1777 if (event->cgrp && event->cgrp->css.cgroup) 1778 curr_cgrp_id = event->cgrp->css.cgroup->kn->id; 1779 1780 if (next->cgrp && next->cgrp->css.cgroup) 1781 next_cgrp_id = next->cgrp->css.cgroup->kn->id; 1782 1783 if (curr_cgrp_id != next_cgrp_id) 1784 return NULL; 1785 #endif 1786 return next; 1787 } 1788 1789 /* 1790 * Iterate through the whole groups tree. 1791 */ 1792 #define perf_event_groups_for_each(event, groups) \ 1793 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1794 typeof(*event), group_node); event; \ 1795 event = rb_entry_safe(rb_next(&event->group_node), \ 1796 typeof(*event), group_node)) 1797 1798 /* 1799 * Add an event from the lists for its context. 1800 * Must be called with ctx->mutex and ctx->lock held. 1801 */ 1802 static void 1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1804 { 1805 lockdep_assert_held(&ctx->lock); 1806 1807 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1808 event->attach_state |= PERF_ATTACH_CONTEXT; 1809 1810 event->tstamp = perf_event_time(event); 1811 1812 /* 1813 * If we're a stand alone event or group leader, we go to the context 1814 * list, group events are kept attached to the group so that 1815 * perf_group_detach can, at all times, locate all siblings. 1816 */ 1817 if (event->group_leader == event) { 1818 event->group_caps = event->event_caps; 1819 add_event_to_groups(event, ctx); 1820 } 1821 1822 list_add_rcu(&event->event_entry, &ctx->event_list); 1823 ctx->nr_events++; 1824 if (event->attr.inherit_stat) 1825 ctx->nr_stat++; 1826 1827 if (event->state > PERF_EVENT_STATE_OFF) 1828 perf_cgroup_event_enable(event, ctx); 1829 1830 ctx->generation++; 1831 } 1832 1833 /* 1834 * Initialize event state based on the perf_event_attr::disabled. 1835 */ 1836 static inline void perf_event__state_init(struct perf_event *event) 1837 { 1838 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1839 PERF_EVENT_STATE_INACTIVE; 1840 } 1841 1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1843 { 1844 int entry = sizeof(u64); /* value */ 1845 int size = 0; 1846 int nr = 1; 1847 1848 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1849 size += sizeof(u64); 1850 1851 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1852 size += sizeof(u64); 1853 1854 if (event->attr.read_format & PERF_FORMAT_ID) 1855 entry += sizeof(u64); 1856 1857 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1858 nr += nr_siblings; 1859 size += sizeof(u64); 1860 } 1861 1862 size += entry * nr; 1863 event->read_size = size; 1864 } 1865 1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1867 { 1868 struct perf_sample_data *data; 1869 u16 size = 0; 1870 1871 if (sample_type & PERF_SAMPLE_IP) 1872 size += sizeof(data->ip); 1873 1874 if (sample_type & PERF_SAMPLE_ADDR) 1875 size += sizeof(data->addr); 1876 1877 if (sample_type & PERF_SAMPLE_PERIOD) 1878 size += sizeof(data->period); 1879 1880 if (sample_type & PERF_SAMPLE_WEIGHT) 1881 size += sizeof(data->weight); 1882 1883 if (sample_type & PERF_SAMPLE_READ) 1884 size += event->read_size; 1885 1886 if (sample_type & PERF_SAMPLE_DATA_SRC) 1887 size += sizeof(data->data_src.val); 1888 1889 if (sample_type & PERF_SAMPLE_TRANSACTION) 1890 size += sizeof(data->txn); 1891 1892 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1893 size += sizeof(data->phys_addr); 1894 1895 if (sample_type & PERF_SAMPLE_CGROUP) 1896 size += sizeof(data->cgroup); 1897 1898 event->header_size = size; 1899 } 1900 1901 /* 1902 * Called at perf_event creation and when events are attached/detached from a 1903 * group. 1904 */ 1905 static void perf_event__header_size(struct perf_event *event) 1906 { 1907 __perf_event_read_size(event, 1908 event->group_leader->nr_siblings); 1909 __perf_event_header_size(event, event->attr.sample_type); 1910 } 1911 1912 static void perf_event__id_header_size(struct perf_event *event) 1913 { 1914 struct perf_sample_data *data; 1915 u64 sample_type = event->attr.sample_type; 1916 u16 size = 0; 1917 1918 if (sample_type & PERF_SAMPLE_TID) 1919 size += sizeof(data->tid_entry); 1920 1921 if (sample_type & PERF_SAMPLE_TIME) 1922 size += sizeof(data->time); 1923 1924 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1925 size += sizeof(data->id); 1926 1927 if (sample_type & PERF_SAMPLE_ID) 1928 size += sizeof(data->id); 1929 1930 if (sample_type & PERF_SAMPLE_STREAM_ID) 1931 size += sizeof(data->stream_id); 1932 1933 if (sample_type & PERF_SAMPLE_CPU) 1934 size += sizeof(data->cpu_entry); 1935 1936 event->id_header_size = size; 1937 } 1938 1939 static bool perf_event_validate_size(struct perf_event *event) 1940 { 1941 /* 1942 * The values computed here will be over-written when we actually 1943 * attach the event. 1944 */ 1945 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1946 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1947 perf_event__id_header_size(event); 1948 1949 /* 1950 * Sum the lot; should not exceed the 64k limit we have on records. 1951 * Conservative limit to allow for callchains and other variable fields. 1952 */ 1953 if (event->read_size + event->header_size + 1954 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1955 return false; 1956 1957 return true; 1958 } 1959 1960 static void perf_group_attach(struct perf_event *event) 1961 { 1962 struct perf_event *group_leader = event->group_leader, *pos; 1963 1964 lockdep_assert_held(&event->ctx->lock); 1965 1966 /* 1967 * We can have double attach due to group movement in perf_event_open. 1968 */ 1969 if (event->attach_state & PERF_ATTACH_GROUP) 1970 return; 1971 1972 event->attach_state |= PERF_ATTACH_GROUP; 1973 1974 if (group_leader == event) 1975 return; 1976 1977 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1978 1979 group_leader->group_caps &= event->event_caps; 1980 1981 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1982 group_leader->nr_siblings++; 1983 1984 perf_event__header_size(group_leader); 1985 1986 for_each_sibling_event(pos, group_leader) 1987 perf_event__header_size(pos); 1988 } 1989 1990 /* 1991 * Remove an event from the lists for its context. 1992 * Must be called with ctx->mutex and ctx->lock held. 1993 */ 1994 static void 1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1996 { 1997 WARN_ON_ONCE(event->ctx != ctx); 1998 lockdep_assert_held(&ctx->lock); 1999 2000 /* 2001 * We can have double detach due to exit/hot-unplug + close. 2002 */ 2003 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2004 return; 2005 2006 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2007 2008 ctx->nr_events--; 2009 if (event->attr.inherit_stat) 2010 ctx->nr_stat--; 2011 2012 list_del_rcu(&event->event_entry); 2013 2014 if (event->group_leader == event) 2015 del_event_from_groups(event, ctx); 2016 2017 /* 2018 * If event was in error state, then keep it 2019 * that way, otherwise bogus counts will be 2020 * returned on read(). The only way to get out 2021 * of error state is by explicit re-enabling 2022 * of the event 2023 */ 2024 if (event->state > PERF_EVENT_STATE_OFF) { 2025 perf_cgroup_event_disable(event, ctx); 2026 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2027 } 2028 2029 ctx->generation++; 2030 } 2031 2032 static int 2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2034 { 2035 if (!has_aux(aux_event)) 2036 return 0; 2037 2038 if (!event->pmu->aux_output_match) 2039 return 0; 2040 2041 return event->pmu->aux_output_match(aux_event); 2042 } 2043 2044 static void put_event(struct perf_event *event); 2045 static void event_sched_out(struct perf_event *event, 2046 struct perf_cpu_context *cpuctx, 2047 struct perf_event_context *ctx); 2048 2049 static void perf_put_aux_event(struct perf_event *event) 2050 { 2051 struct perf_event_context *ctx = event->ctx; 2052 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2053 struct perf_event *iter; 2054 2055 /* 2056 * If event uses aux_event tear down the link 2057 */ 2058 if (event->aux_event) { 2059 iter = event->aux_event; 2060 event->aux_event = NULL; 2061 put_event(iter); 2062 return; 2063 } 2064 2065 /* 2066 * If the event is an aux_event, tear down all links to 2067 * it from other events. 2068 */ 2069 for_each_sibling_event(iter, event->group_leader) { 2070 if (iter->aux_event != event) 2071 continue; 2072 2073 iter->aux_event = NULL; 2074 put_event(event); 2075 2076 /* 2077 * If it's ACTIVE, schedule it out and put it into ERROR 2078 * state so that we don't try to schedule it again. Note 2079 * that perf_event_enable() will clear the ERROR status. 2080 */ 2081 event_sched_out(iter, cpuctx, ctx); 2082 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2083 } 2084 } 2085 2086 static bool perf_need_aux_event(struct perf_event *event) 2087 { 2088 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2089 } 2090 2091 static int perf_get_aux_event(struct perf_event *event, 2092 struct perf_event *group_leader) 2093 { 2094 /* 2095 * Our group leader must be an aux event if we want to be 2096 * an aux_output. This way, the aux event will precede its 2097 * aux_output events in the group, and therefore will always 2098 * schedule first. 2099 */ 2100 if (!group_leader) 2101 return 0; 2102 2103 /* 2104 * aux_output and aux_sample_size are mutually exclusive. 2105 */ 2106 if (event->attr.aux_output && event->attr.aux_sample_size) 2107 return 0; 2108 2109 if (event->attr.aux_output && 2110 !perf_aux_output_match(event, group_leader)) 2111 return 0; 2112 2113 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2114 return 0; 2115 2116 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2117 return 0; 2118 2119 /* 2120 * Link aux_outputs to their aux event; this is undone in 2121 * perf_group_detach() by perf_put_aux_event(). When the 2122 * group in torn down, the aux_output events loose their 2123 * link to the aux_event and can't schedule any more. 2124 */ 2125 event->aux_event = group_leader; 2126 2127 return 1; 2128 } 2129 2130 static inline struct list_head *get_event_list(struct perf_event *event) 2131 { 2132 struct perf_event_context *ctx = event->ctx; 2133 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2134 } 2135 2136 static void perf_group_detach(struct perf_event *event) 2137 { 2138 struct perf_event *sibling, *tmp; 2139 struct perf_event_context *ctx = event->ctx; 2140 2141 lockdep_assert_held(&ctx->lock); 2142 2143 /* 2144 * We can have double detach due to exit/hot-unplug + close. 2145 */ 2146 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2147 return; 2148 2149 event->attach_state &= ~PERF_ATTACH_GROUP; 2150 2151 perf_put_aux_event(event); 2152 2153 /* 2154 * If this is a sibling, remove it from its group. 2155 */ 2156 if (event->group_leader != event) { 2157 list_del_init(&event->sibling_list); 2158 event->group_leader->nr_siblings--; 2159 goto out; 2160 } 2161 2162 /* 2163 * If this was a group event with sibling events then 2164 * upgrade the siblings to singleton events by adding them 2165 * to whatever list we are on. 2166 */ 2167 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2168 2169 sibling->group_leader = sibling; 2170 list_del_init(&sibling->sibling_list); 2171 2172 /* Inherit group flags from the previous leader */ 2173 sibling->group_caps = event->group_caps; 2174 2175 if (!RB_EMPTY_NODE(&event->group_node)) { 2176 add_event_to_groups(sibling, event->ctx); 2177 2178 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2179 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2180 } 2181 2182 WARN_ON_ONCE(sibling->ctx != event->ctx); 2183 } 2184 2185 out: 2186 perf_event__header_size(event->group_leader); 2187 2188 for_each_sibling_event(tmp, event->group_leader) 2189 perf_event__header_size(tmp); 2190 } 2191 2192 static bool is_orphaned_event(struct perf_event *event) 2193 { 2194 return event->state == PERF_EVENT_STATE_DEAD; 2195 } 2196 2197 static inline int __pmu_filter_match(struct perf_event *event) 2198 { 2199 struct pmu *pmu = event->pmu; 2200 return pmu->filter_match ? pmu->filter_match(event) : 1; 2201 } 2202 2203 /* 2204 * Check whether we should attempt to schedule an event group based on 2205 * PMU-specific filtering. An event group can consist of HW and SW events, 2206 * potentially with a SW leader, so we must check all the filters, to 2207 * determine whether a group is schedulable: 2208 */ 2209 static inline int pmu_filter_match(struct perf_event *event) 2210 { 2211 struct perf_event *sibling; 2212 2213 if (!__pmu_filter_match(event)) 2214 return 0; 2215 2216 for_each_sibling_event(sibling, event) { 2217 if (!__pmu_filter_match(sibling)) 2218 return 0; 2219 } 2220 2221 return 1; 2222 } 2223 2224 static inline int 2225 event_filter_match(struct perf_event *event) 2226 { 2227 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2228 perf_cgroup_match(event) && pmu_filter_match(event); 2229 } 2230 2231 static void 2232 event_sched_out(struct perf_event *event, 2233 struct perf_cpu_context *cpuctx, 2234 struct perf_event_context *ctx) 2235 { 2236 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2237 2238 WARN_ON_ONCE(event->ctx != ctx); 2239 lockdep_assert_held(&ctx->lock); 2240 2241 if (event->state != PERF_EVENT_STATE_ACTIVE) 2242 return; 2243 2244 /* 2245 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2246 * we can schedule events _OUT_ individually through things like 2247 * __perf_remove_from_context(). 2248 */ 2249 list_del_init(&event->active_list); 2250 2251 perf_pmu_disable(event->pmu); 2252 2253 event->pmu->del(event, 0); 2254 event->oncpu = -1; 2255 2256 if (READ_ONCE(event->pending_disable) >= 0) { 2257 WRITE_ONCE(event->pending_disable, -1); 2258 perf_cgroup_event_disable(event, ctx); 2259 state = PERF_EVENT_STATE_OFF; 2260 } 2261 perf_event_set_state(event, state); 2262 2263 if (!is_software_event(event)) 2264 cpuctx->active_oncpu--; 2265 if (!--ctx->nr_active) 2266 perf_event_ctx_deactivate(ctx); 2267 if (event->attr.freq && event->attr.sample_freq) 2268 ctx->nr_freq--; 2269 if (event->attr.exclusive || !cpuctx->active_oncpu) 2270 cpuctx->exclusive = 0; 2271 2272 perf_pmu_enable(event->pmu); 2273 } 2274 2275 static void 2276 group_sched_out(struct perf_event *group_event, 2277 struct perf_cpu_context *cpuctx, 2278 struct perf_event_context *ctx) 2279 { 2280 struct perf_event *event; 2281 2282 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2283 return; 2284 2285 perf_pmu_disable(ctx->pmu); 2286 2287 event_sched_out(group_event, cpuctx, ctx); 2288 2289 /* 2290 * Schedule out siblings (if any): 2291 */ 2292 for_each_sibling_event(event, group_event) 2293 event_sched_out(event, cpuctx, ctx); 2294 2295 perf_pmu_enable(ctx->pmu); 2296 2297 if (group_event->attr.exclusive) 2298 cpuctx->exclusive = 0; 2299 } 2300 2301 #define DETACH_GROUP 0x01UL 2302 2303 /* 2304 * Cross CPU call to remove a performance event 2305 * 2306 * We disable the event on the hardware level first. After that we 2307 * remove it from the context list. 2308 */ 2309 static void 2310 __perf_remove_from_context(struct perf_event *event, 2311 struct perf_cpu_context *cpuctx, 2312 struct perf_event_context *ctx, 2313 void *info) 2314 { 2315 unsigned long flags = (unsigned long)info; 2316 2317 if (ctx->is_active & EVENT_TIME) { 2318 update_context_time(ctx); 2319 update_cgrp_time_from_cpuctx(cpuctx); 2320 } 2321 2322 event_sched_out(event, cpuctx, ctx); 2323 if (flags & DETACH_GROUP) 2324 perf_group_detach(event); 2325 list_del_event(event, ctx); 2326 2327 if (!ctx->nr_events && ctx->is_active) { 2328 ctx->is_active = 0; 2329 ctx->rotate_necessary = 0; 2330 if (ctx->task) { 2331 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2332 cpuctx->task_ctx = NULL; 2333 } 2334 } 2335 } 2336 2337 /* 2338 * Remove the event from a task's (or a CPU's) list of events. 2339 * 2340 * If event->ctx is a cloned context, callers must make sure that 2341 * every task struct that event->ctx->task could possibly point to 2342 * remains valid. This is OK when called from perf_release since 2343 * that only calls us on the top-level context, which can't be a clone. 2344 * When called from perf_event_exit_task, it's OK because the 2345 * context has been detached from its task. 2346 */ 2347 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2348 { 2349 struct perf_event_context *ctx = event->ctx; 2350 2351 lockdep_assert_held(&ctx->mutex); 2352 2353 event_function_call(event, __perf_remove_from_context, (void *)flags); 2354 2355 /* 2356 * The above event_function_call() can NO-OP when it hits 2357 * TASK_TOMBSTONE. In that case we must already have been detached 2358 * from the context (by perf_event_exit_event()) but the grouping 2359 * might still be in-tact. 2360 */ 2361 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2362 if ((flags & DETACH_GROUP) && 2363 (event->attach_state & PERF_ATTACH_GROUP)) { 2364 /* 2365 * Since in that case we cannot possibly be scheduled, simply 2366 * detach now. 2367 */ 2368 raw_spin_lock_irq(&ctx->lock); 2369 perf_group_detach(event); 2370 raw_spin_unlock_irq(&ctx->lock); 2371 } 2372 } 2373 2374 /* 2375 * Cross CPU call to disable a performance event 2376 */ 2377 static void __perf_event_disable(struct perf_event *event, 2378 struct perf_cpu_context *cpuctx, 2379 struct perf_event_context *ctx, 2380 void *info) 2381 { 2382 if (event->state < PERF_EVENT_STATE_INACTIVE) 2383 return; 2384 2385 if (ctx->is_active & EVENT_TIME) { 2386 update_context_time(ctx); 2387 update_cgrp_time_from_event(event); 2388 } 2389 2390 if (event == event->group_leader) 2391 group_sched_out(event, cpuctx, ctx); 2392 else 2393 event_sched_out(event, cpuctx, ctx); 2394 2395 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2396 perf_cgroup_event_disable(event, ctx); 2397 } 2398 2399 /* 2400 * Disable an event. 2401 * 2402 * If event->ctx is a cloned context, callers must make sure that 2403 * every task struct that event->ctx->task could possibly point to 2404 * remains valid. This condition is satisfied when called through 2405 * perf_event_for_each_child or perf_event_for_each because they 2406 * hold the top-level event's child_mutex, so any descendant that 2407 * goes to exit will block in perf_event_exit_event(). 2408 * 2409 * When called from perf_pending_event it's OK because event->ctx 2410 * is the current context on this CPU and preemption is disabled, 2411 * hence we can't get into perf_event_task_sched_out for this context. 2412 */ 2413 static void _perf_event_disable(struct perf_event *event) 2414 { 2415 struct perf_event_context *ctx = event->ctx; 2416 2417 raw_spin_lock_irq(&ctx->lock); 2418 if (event->state <= PERF_EVENT_STATE_OFF) { 2419 raw_spin_unlock_irq(&ctx->lock); 2420 return; 2421 } 2422 raw_spin_unlock_irq(&ctx->lock); 2423 2424 event_function_call(event, __perf_event_disable, NULL); 2425 } 2426 2427 void perf_event_disable_local(struct perf_event *event) 2428 { 2429 event_function_local(event, __perf_event_disable, NULL); 2430 } 2431 2432 /* 2433 * Strictly speaking kernel users cannot create groups and therefore this 2434 * interface does not need the perf_event_ctx_lock() magic. 2435 */ 2436 void perf_event_disable(struct perf_event *event) 2437 { 2438 struct perf_event_context *ctx; 2439 2440 ctx = perf_event_ctx_lock(event); 2441 _perf_event_disable(event); 2442 perf_event_ctx_unlock(event, ctx); 2443 } 2444 EXPORT_SYMBOL_GPL(perf_event_disable); 2445 2446 void perf_event_disable_inatomic(struct perf_event *event) 2447 { 2448 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2449 /* can fail, see perf_pending_event_disable() */ 2450 irq_work_queue(&event->pending); 2451 } 2452 2453 static void perf_set_shadow_time(struct perf_event *event, 2454 struct perf_event_context *ctx) 2455 { 2456 /* 2457 * use the correct time source for the time snapshot 2458 * 2459 * We could get by without this by leveraging the 2460 * fact that to get to this function, the caller 2461 * has most likely already called update_context_time() 2462 * and update_cgrp_time_xx() and thus both timestamp 2463 * are identical (or very close). Given that tstamp is, 2464 * already adjusted for cgroup, we could say that: 2465 * tstamp - ctx->timestamp 2466 * is equivalent to 2467 * tstamp - cgrp->timestamp. 2468 * 2469 * Then, in perf_output_read(), the calculation would 2470 * work with no changes because: 2471 * - event is guaranteed scheduled in 2472 * - no scheduled out in between 2473 * - thus the timestamp would be the same 2474 * 2475 * But this is a bit hairy. 2476 * 2477 * So instead, we have an explicit cgroup call to remain 2478 * within the time time source all along. We believe it 2479 * is cleaner and simpler to understand. 2480 */ 2481 if (is_cgroup_event(event)) 2482 perf_cgroup_set_shadow_time(event, event->tstamp); 2483 else 2484 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2485 } 2486 2487 #define MAX_INTERRUPTS (~0ULL) 2488 2489 static void perf_log_throttle(struct perf_event *event, int enable); 2490 static void perf_log_itrace_start(struct perf_event *event); 2491 2492 static int 2493 event_sched_in(struct perf_event *event, 2494 struct perf_cpu_context *cpuctx, 2495 struct perf_event_context *ctx) 2496 { 2497 int ret = 0; 2498 2499 WARN_ON_ONCE(event->ctx != ctx); 2500 2501 lockdep_assert_held(&ctx->lock); 2502 2503 if (event->state <= PERF_EVENT_STATE_OFF) 2504 return 0; 2505 2506 WRITE_ONCE(event->oncpu, smp_processor_id()); 2507 /* 2508 * Order event::oncpu write to happen before the ACTIVE state is 2509 * visible. This allows perf_event_{stop,read}() to observe the correct 2510 * ->oncpu if it sees ACTIVE. 2511 */ 2512 smp_wmb(); 2513 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2514 2515 /* 2516 * Unthrottle events, since we scheduled we might have missed several 2517 * ticks already, also for a heavily scheduling task there is little 2518 * guarantee it'll get a tick in a timely manner. 2519 */ 2520 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2521 perf_log_throttle(event, 1); 2522 event->hw.interrupts = 0; 2523 } 2524 2525 perf_pmu_disable(event->pmu); 2526 2527 perf_set_shadow_time(event, ctx); 2528 2529 perf_log_itrace_start(event); 2530 2531 if (event->pmu->add(event, PERF_EF_START)) { 2532 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2533 event->oncpu = -1; 2534 ret = -EAGAIN; 2535 goto out; 2536 } 2537 2538 if (!is_software_event(event)) 2539 cpuctx->active_oncpu++; 2540 if (!ctx->nr_active++) 2541 perf_event_ctx_activate(ctx); 2542 if (event->attr.freq && event->attr.sample_freq) 2543 ctx->nr_freq++; 2544 2545 if (event->attr.exclusive) 2546 cpuctx->exclusive = 1; 2547 2548 out: 2549 perf_pmu_enable(event->pmu); 2550 2551 return ret; 2552 } 2553 2554 static int 2555 group_sched_in(struct perf_event *group_event, 2556 struct perf_cpu_context *cpuctx, 2557 struct perf_event_context *ctx) 2558 { 2559 struct perf_event *event, *partial_group = NULL; 2560 struct pmu *pmu = ctx->pmu; 2561 2562 if (group_event->state == PERF_EVENT_STATE_OFF) 2563 return 0; 2564 2565 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2566 2567 if (event_sched_in(group_event, cpuctx, ctx)) { 2568 pmu->cancel_txn(pmu); 2569 perf_mux_hrtimer_restart(cpuctx); 2570 return -EAGAIN; 2571 } 2572 2573 /* 2574 * Schedule in siblings as one group (if any): 2575 */ 2576 for_each_sibling_event(event, group_event) { 2577 if (event_sched_in(event, cpuctx, ctx)) { 2578 partial_group = event; 2579 goto group_error; 2580 } 2581 } 2582 2583 if (!pmu->commit_txn(pmu)) 2584 return 0; 2585 2586 group_error: 2587 /* 2588 * Groups can be scheduled in as one unit only, so undo any 2589 * partial group before returning: 2590 * The events up to the failed event are scheduled out normally. 2591 */ 2592 for_each_sibling_event(event, group_event) { 2593 if (event == partial_group) 2594 break; 2595 2596 event_sched_out(event, cpuctx, ctx); 2597 } 2598 event_sched_out(group_event, cpuctx, ctx); 2599 2600 pmu->cancel_txn(pmu); 2601 2602 perf_mux_hrtimer_restart(cpuctx); 2603 2604 return -EAGAIN; 2605 } 2606 2607 /* 2608 * Work out whether we can put this event group on the CPU now. 2609 */ 2610 static int group_can_go_on(struct perf_event *event, 2611 struct perf_cpu_context *cpuctx, 2612 int can_add_hw) 2613 { 2614 /* 2615 * Groups consisting entirely of software events can always go on. 2616 */ 2617 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2618 return 1; 2619 /* 2620 * If an exclusive group is already on, no other hardware 2621 * events can go on. 2622 */ 2623 if (cpuctx->exclusive) 2624 return 0; 2625 /* 2626 * If this group is exclusive and there are already 2627 * events on the CPU, it can't go on. 2628 */ 2629 if (event->attr.exclusive && cpuctx->active_oncpu) 2630 return 0; 2631 /* 2632 * Otherwise, try to add it if all previous groups were able 2633 * to go on. 2634 */ 2635 return can_add_hw; 2636 } 2637 2638 static void add_event_to_ctx(struct perf_event *event, 2639 struct perf_event_context *ctx) 2640 { 2641 list_add_event(event, ctx); 2642 perf_group_attach(event); 2643 } 2644 2645 static void ctx_sched_out(struct perf_event_context *ctx, 2646 struct perf_cpu_context *cpuctx, 2647 enum event_type_t event_type); 2648 static void 2649 ctx_sched_in(struct perf_event_context *ctx, 2650 struct perf_cpu_context *cpuctx, 2651 enum event_type_t event_type, 2652 struct task_struct *task); 2653 2654 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2655 struct perf_event_context *ctx, 2656 enum event_type_t event_type) 2657 { 2658 if (!cpuctx->task_ctx) 2659 return; 2660 2661 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2662 return; 2663 2664 ctx_sched_out(ctx, cpuctx, event_type); 2665 } 2666 2667 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2668 struct perf_event_context *ctx, 2669 struct task_struct *task) 2670 { 2671 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2672 if (ctx) 2673 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2674 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2675 if (ctx) 2676 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2677 } 2678 2679 /* 2680 * We want to maintain the following priority of scheduling: 2681 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2682 * - task pinned (EVENT_PINNED) 2683 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2684 * - task flexible (EVENT_FLEXIBLE). 2685 * 2686 * In order to avoid unscheduling and scheduling back in everything every 2687 * time an event is added, only do it for the groups of equal priority and 2688 * below. 2689 * 2690 * This can be called after a batch operation on task events, in which case 2691 * event_type is a bit mask of the types of events involved. For CPU events, 2692 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2693 */ 2694 static void ctx_resched(struct perf_cpu_context *cpuctx, 2695 struct perf_event_context *task_ctx, 2696 enum event_type_t event_type) 2697 { 2698 enum event_type_t ctx_event_type; 2699 bool cpu_event = !!(event_type & EVENT_CPU); 2700 2701 /* 2702 * If pinned groups are involved, flexible groups also need to be 2703 * scheduled out. 2704 */ 2705 if (event_type & EVENT_PINNED) 2706 event_type |= EVENT_FLEXIBLE; 2707 2708 ctx_event_type = event_type & EVENT_ALL; 2709 2710 perf_pmu_disable(cpuctx->ctx.pmu); 2711 if (task_ctx) 2712 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2713 2714 /* 2715 * Decide which cpu ctx groups to schedule out based on the types 2716 * of events that caused rescheduling: 2717 * - EVENT_CPU: schedule out corresponding groups; 2718 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2719 * - otherwise, do nothing more. 2720 */ 2721 if (cpu_event) 2722 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2723 else if (ctx_event_type & EVENT_PINNED) 2724 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2725 2726 perf_event_sched_in(cpuctx, task_ctx, current); 2727 perf_pmu_enable(cpuctx->ctx.pmu); 2728 } 2729 2730 void perf_pmu_resched(struct pmu *pmu) 2731 { 2732 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2733 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2734 2735 perf_ctx_lock(cpuctx, task_ctx); 2736 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2737 perf_ctx_unlock(cpuctx, task_ctx); 2738 } 2739 2740 /* 2741 * Cross CPU call to install and enable a performance event 2742 * 2743 * Very similar to remote_function() + event_function() but cannot assume that 2744 * things like ctx->is_active and cpuctx->task_ctx are set. 2745 */ 2746 static int __perf_install_in_context(void *info) 2747 { 2748 struct perf_event *event = info; 2749 struct perf_event_context *ctx = event->ctx; 2750 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2751 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2752 bool reprogram = true; 2753 int ret = 0; 2754 2755 raw_spin_lock(&cpuctx->ctx.lock); 2756 if (ctx->task) { 2757 raw_spin_lock(&ctx->lock); 2758 task_ctx = ctx; 2759 2760 reprogram = (ctx->task == current); 2761 2762 /* 2763 * If the task is running, it must be running on this CPU, 2764 * otherwise we cannot reprogram things. 2765 * 2766 * If its not running, we don't care, ctx->lock will 2767 * serialize against it becoming runnable. 2768 */ 2769 if (task_curr(ctx->task) && !reprogram) { 2770 ret = -ESRCH; 2771 goto unlock; 2772 } 2773 2774 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2775 } else if (task_ctx) { 2776 raw_spin_lock(&task_ctx->lock); 2777 } 2778 2779 #ifdef CONFIG_CGROUP_PERF 2780 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2781 /* 2782 * If the current cgroup doesn't match the event's 2783 * cgroup, we should not try to schedule it. 2784 */ 2785 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2786 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2787 event->cgrp->css.cgroup); 2788 } 2789 #endif 2790 2791 if (reprogram) { 2792 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2793 add_event_to_ctx(event, ctx); 2794 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2795 } else { 2796 add_event_to_ctx(event, ctx); 2797 } 2798 2799 unlock: 2800 perf_ctx_unlock(cpuctx, task_ctx); 2801 2802 return ret; 2803 } 2804 2805 static bool exclusive_event_installable(struct perf_event *event, 2806 struct perf_event_context *ctx); 2807 2808 /* 2809 * Attach a performance event to a context. 2810 * 2811 * Very similar to event_function_call, see comment there. 2812 */ 2813 static void 2814 perf_install_in_context(struct perf_event_context *ctx, 2815 struct perf_event *event, 2816 int cpu) 2817 { 2818 struct task_struct *task = READ_ONCE(ctx->task); 2819 2820 lockdep_assert_held(&ctx->mutex); 2821 2822 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2823 2824 if (event->cpu != -1) 2825 event->cpu = cpu; 2826 2827 /* 2828 * Ensures that if we can observe event->ctx, both the event and ctx 2829 * will be 'complete'. See perf_iterate_sb_cpu(). 2830 */ 2831 smp_store_release(&event->ctx, ctx); 2832 2833 /* 2834 * perf_event_attr::disabled events will not run and can be initialized 2835 * without IPI. Except when this is the first event for the context, in 2836 * that case we need the magic of the IPI to set ctx->is_active. 2837 * 2838 * The IOC_ENABLE that is sure to follow the creation of a disabled 2839 * event will issue the IPI and reprogram the hardware. 2840 */ 2841 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2842 raw_spin_lock_irq(&ctx->lock); 2843 if (ctx->task == TASK_TOMBSTONE) { 2844 raw_spin_unlock_irq(&ctx->lock); 2845 return; 2846 } 2847 add_event_to_ctx(event, ctx); 2848 raw_spin_unlock_irq(&ctx->lock); 2849 return; 2850 } 2851 2852 if (!task) { 2853 cpu_function_call(cpu, __perf_install_in_context, event); 2854 return; 2855 } 2856 2857 /* 2858 * Should not happen, we validate the ctx is still alive before calling. 2859 */ 2860 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2861 return; 2862 2863 /* 2864 * Installing events is tricky because we cannot rely on ctx->is_active 2865 * to be set in case this is the nr_events 0 -> 1 transition. 2866 * 2867 * Instead we use task_curr(), which tells us if the task is running. 2868 * However, since we use task_curr() outside of rq::lock, we can race 2869 * against the actual state. This means the result can be wrong. 2870 * 2871 * If we get a false positive, we retry, this is harmless. 2872 * 2873 * If we get a false negative, things are complicated. If we are after 2874 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2875 * value must be correct. If we're before, it doesn't matter since 2876 * perf_event_context_sched_in() will program the counter. 2877 * 2878 * However, this hinges on the remote context switch having observed 2879 * our task->perf_event_ctxp[] store, such that it will in fact take 2880 * ctx::lock in perf_event_context_sched_in(). 2881 * 2882 * We do this by task_function_call(), if the IPI fails to hit the task 2883 * we know any future context switch of task must see the 2884 * perf_event_ctpx[] store. 2885 */ 2886 2887 /* 2888 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2889 * task_cpu() load, such that if the IPI then does not find the task 2890 * running, a future context switch of that task must observe the 2891 * store. 2892 */ 2893 smp_mb(); 2894 again: 2895 if (!task_function_call(task, __perf_install_in_context, event)) 2896 return; 2897 2898 raw_spin_lock_irq(&ctx->lock); 2899 task = ctx->task; 2900 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2901 /* 2902 * Cannot happen because we already checked above (which also 2903 * cannot happen), and we hold ctx->mutex, which serializes us 2904 * against perf_event_exit_task_context(). 2905 */ 2906 raw_spin_unlock_irq(&ctx->lock); 2907 return; 2908 } 2909 /* 2910 * If the task is not running, ctx->lock will avoid it becoming so, 2911 * thus we can safely install the event. 2912 */ 2913 if (task_curr(task)) { 2914 raw_spin_unlock_irq(&ctx->lock); 2915 goto again; 2916 } 2917 add_event_to_ctx(event, ctx); 2918 raw_spin_unlock_irq(&ctx->lock); 2919 } 2920 2921 /* 2922 * Cross CPU call to enable a performance event 2923 */ 2924 static void __perf_event_enable(struct perf_event *event, 2925 struct perf_cpu_context *cpuctx, 2926 struct perf_event_context *ctx, 2927 void *info) 2928 { 2929 struct perf_event *leader = event->group_leader; 2930 struct perf_event_context *task_ctx; 2931 2932 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2933 event->state <= PERF_EVENT_STATE_ERROR) 2934 return; 2935 2936 if (ctx->is_active) 2937 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2938 2939 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2940 perf_cgroup_event_enable(event, ctx); 2941 2942 if (!ctx->is_active) 2943 return; 2944 2945 if (!event_filter_match(event)) { 2946 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2947 return; 2948 } 2949 2950 /* 2951 * If the event is in a group and isn't the group leader, 2952 * then don't put it on unless the group is on. 2953 */ 2954 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2955 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2956 return; 2957 } 2958 2959 task_ctx = cpuctx->task_ctx; 2960 if (ctx->task) 2961 WARN_ON_ONCE(task_ctx != ctx); 2962 2963 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2964 } 2965 2966 /* 2967 * Enable an event. 2968 * 2969 * If event->ctx is a cloned context, callers must make sure that 2970 * every task struct that event->ctx->task could possibly point to 2971 * remains valid. This condition is satisfied when called through 2972 * perf_event_for_each_child or perf_event_for_each as described 2973 * for perf_event_disable. 2974 */ 2975 static void _perf_event_enable(struct perf_event *event) 2976 { 2977 struct perf_event_context *ctx = event->ctx; 2978 2979 raw_spin_lock_irq(&ctx->lock); 2980 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2981 event->state < PERF_EVENT_STATE_ERROR) { 2982 raw_spin_unlock_irq(&ctx->lock); 2983 return; 2984 } 2985 2986 /* 2987 * If the event is in error state, clear that first. 2988 * 2989 * That way, if we see the event in error state below, we know that it 2990 * has gone back into error state, as distinct from the task having 2991 * been scheduled away before the cross-call arrived. 2992 */ 2993 if (event->state == PERF_EVENT_STATE_ERROR) 2994 event->state = PERF_EVENT_STATE_OFF; 2995 raw_spin_unlock_irq(&ctx->lock); 2996 2997 event_function_call(event, __perf_event_enable, NULL); 2998 } 2999 3000 /* 3001 * See perf_event_disable(); 3002 */ 3003 void perf_event_enable(struct perf_event *event) 3004 { 3005 struct perf_event_context *ctx; 3006 3007 ctx = perf_event_ctx_lock(event); 3008 _perf_event_enable(event); 3009 perf_event_ctx_unlock(event, ctx); 3010 } 3011 EXPORT_SYMBOL_GPL(perf_event_enable); 3012 3013 struct stop_event_data { 3014 struct perf_event *event; 3015 unsigned int restart; 3016 }; 3017 3018 static int __perf_event_stop(void *info) 3019 { 3020 struct stop_event_data *sd = info; 3021 struct perf_event *event = sd->event; 3022 3023 /* if it's already INACTIVE, do nothing */ 3024 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3025 return 0; 3026 3027 /* matches smp_wmb() in event_sched_in() */ 3028 smp_rmb(); 3029 3030 /* 3031 * There is a window with interrupts enabled before we get here, 3032 * so we need to check again lest we try to stop another CPU's event. 3033 */ 3034 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3035 return -EAGAIN; 3036 3037 event->pmu->stop(event, PERF_EF_UPDATE); 3038 3039 /* 3040 * May race with the actual stop (through perf_pmu_output_stop()), 3041 * but it is only used for events with AUX ring buffer, and such 3042 * events will refuse to restart because of rb::aux_mmap_count==0, 3043 * see comments in perf_aux_output_begin(). 3044 * 3045 * Since this is happening on an event-local CPU, no trace is lost 3046 * while restarting. 3047 */ 3048 if (sd->restart) 3049 event->pmu->start(event, 0); 3050 3051 return 0; 3052 } 3053 3054 static int perf_event_stop(struct perf_event *event, int restart) 3055 { 3056 struct stop_event_data sd = { 3057 .event = event, 3058 .restart = restart, 3059 }; 3060 int ret = 0; 3061 3062 do { 3063 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3064 return 0; 3065 3066 /* matches smp_wmb() in event_sched_in() */ 3067 smp_rmb(); 3068 3069 /* 3070 * We only want to restart ACTIVE events, so if the event goes 3071 * inactive here (event->oncpu==-1), there's nothing more to do; 3072 * fall through with ret==-ENXIO. 3073 */ 3074 ret = cpu_function_call(READ_ONCE(event->oncpu), 3075 __perf_event_stop, &sd); 3076 } while (ret == -EAGAIN); 3077 3078 return ret; 3079 } 3080 3081 /* 3082 * In order to contain the amount of racy and tricky in the address filter 3083 * configuration management, it is a two part process: 3084 * 3085 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3086 * we update the addresses of corresponding vmas in 3087 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3088 * (p2) when an event is scheduled in (pmu::add), it calls 3089 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3090 * if the generation has changed since the previous call. 3091 * 3092 * If (p1) happens while the event is active, we restart it to force (p2). 3093 * 3094 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3095 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3096 * ioctl; 3097 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3098 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3099 * for reading; 3100 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3101 * of exec. 3102 */ 3103 void perf_event_addr_filters_sync(struct perf_event *event) 3104 { 3105 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3106 3107 if (!has_addr_filter(event)) 3108 return; 3109 3110 raw_spin_lock(&ifh->lock); 3111 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3112 event->pmu->addr_filters_sync(event); 3113 event->hw.addr_filters_gen = event->addr_filters_gen; 3114 } 3115 raw_spin_unlock(&ifh->lock); 3116 } 3117 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3118 3119 static int _perf_event_refresh(struct perf_event *event, int refresh) 3120 { 3121 /* 3122 * not supported on inherited events 3123 */ 3124 if (event->attr.inherit || !is_sampling_event(event)) 3125 return -EINVAL; 3126 3127 atomic_add(refresh, &event->event_limit); 3128 _perf_event_enable(event); 3129 3130 return 0; 3131 } 3132 3133 /* 3134 * See perf_event_disable() 3135 */ 3136 int perf_event_refresh(struct perf_event *event, int refresh) 3137 { 3138 struct perf_event_context *ctx; 3139 int ret; 3140 3141 ctx = perf_event_ctx_lock(event); 3142 ret = _perf_event_refresh(event, refresh); 3143 perf_event_ctx_unlock(event, ctx); 3144 3145 return ret; 3146 } 3147 EXPORT_SYMBOL_GPL(perf_event_refresh); 3148 3149 static int perf_event_modify_breakpoint(struct perf_event *bp, 3150 struct perf_event_attr *attr) 3151 { 3152 int err; 3153 3154 _perf_event_disable(bp); 3155 3156 err = modify_user_hw_breakpoint_check(bp, attr, true); 3157 3158 if (!bp->attr.disabled) 3159 _perf_event_enable(bp); 3160 3161 return err; 3162 } 3163 3164 static int perf_event_modify_attr(struct perf_event *event, 3165 struct perf_event_attr *attr) 3166 { 3167 if (event->attr.type != attr->type) 3168 return -EINVAL; 3169 3170 switch (event->attr.type) { 3171 case PERF_TYPE_BREAKPOINT: 3172 return perf_event_modify_breakpoint(event, attr); 3173 default: 3174 /* Place holder for future additions. */ 3175 return -EOPNOTSUPP; 3176 } 3177 } 3178 3179 static void ctx_sched_out(struct perf_event_context *ctx, 3180 struct perf_cpu_context *cpuctx, 3181 enum event_type_t event_type) 3182 { 3183 struct perf_event *event, *tmp; 3184 int is_active = ctx->is_active; 3185 3186 lockdep_assert_held(&ctx->lock); 3187 3188 if (likely(!ctx->nr_events)) { 3189 /* 3190 * See __perf_remove_from_context(). 3191 */ 3192 WARN_ON_ONCE(ctx->is_active); 3193 if (ctx->task) 3194 WARN_ON_ONCE(cpuctx->task_ctx); 3195 return; 3196 } 3197 3198 ctx->is_active &= ~event_type; 3199 if (!(ctx->is_active & EVENT_ALL)) 3200 ctx->is_active = 0; 3201 3202 if (ctx->task) { 3203 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3204 if (!ctx->is_active) 3205 cpuctx->task_ctx = NULL; 3206 } 3207 3208 /* 3209 * Always update time if it was set; not only when it changes. 3210 * Otherwise we can 'forget' to update time for any but the last 3211 * context we sched out. For example: 3212 * 3213 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3214 * ctx_sched_out(.event_type = EVENT_PINNED) 3215 * 3216 * would only update time for the pinned events. 3217 */ 3218 if (is_active & EVENT_TIME) { 3219 /* update (and stop) ctx time */ 3220 update_context_time(ctx); 3221 update_cgrp_time_from_cpuctx(cpuctx); 3222 } 3223 3224 is_active ^= ctx->is_active; /* changed bits */ 3225 3226 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3227 return; 3228 3229 perf_pmu_disable(ctx->pmu); 3230 if (is_active & EVENT_PINNED) { 3231 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3232 group_sched_out(event, cpuctx, ctx); 3233 } 3234 3235 if (is_active & EVENT_FLEXIBLE) { 3236 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3237 group_sched_out(event, cpuctx, ctx); 3238 3239 /* 3240 * Since we cleared EVENT_FLEXIBLE, also clear 3241 * rotate_necessary, is will be reset by 3242 * ctx_flexible_sched_in() when needed. 3243 */ 3244 ctx->rotate_necessary = 0; 3245 } 3246 perf_pmu_enable(ctx->pmu); 3247 } 3248 3249 /* 3250 * Test whether two contexts are equivalent, i.e. whether they have both been 3251 * cloned from the same version of the same context. 3252 * 3253 * Equivalence is measured using a generation number in the context that is 3254 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3255 * and list_del_event(). 3256 */ 3257 static int context_equiv(struct perf_event_context *ctx1, 3258 struct perf_event_context *ctx2) 3259 { 3260 lockdep_assert_held(&ctx1->lock); 3261 lockdep_assert_held(&ctx2->lock); 3262 3263 /* Pinning disables the swap optimization */ 3264 if (ctx1->pin_count || ctx2->pin_count) 3265 return 0; 3266 3267 /* If ctx1 is the parent of ctx2 */ 3268 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3269 return 1; 3270 3271 /* If ctx2 is the parent of ctx1 */ 3272 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3273 return 1; 3274 3275 /* 3276 * If ctx1 and ctx2 have the same parent; we flatten the parent 3277 * hierarchy, see perf_event_init_context(). 3278 */ 3279 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3280 ctx1->parent_gen == ctx2->parent_gen) 3281 return 1; 3282 3283 /* Unmatched */ 3284 return 0; 3285 } 3286 3287 static void __perf_event_sync_stat(struct perf_event *event, 3288 struct perf_event *next_event) 3289 { 3290 u64 value; 3291 3292 if (!event->attr.inherit_stat) 3293 return; 3294 3295 /* 3296 * Update the event value, we cannot use perf_event_read() 3297 * because we're in the middle of a context switch and have IRQs 3298 * disabled, which upsets smp_call_function_single(), however 3299 * we know the event must be on the current CPU, therefore we 3300 * don't need to use it. 3301 */ 3302 if (event->state == PERF_EVENT_STATE_ACTIVE) 3303 event->pmu->read(event); 3304 3305 perf_event_update_time(event); 3306 3307 /* 3308 * In order to keep per-task stats reliable we need to flip the event 3309 * values when we flip the contexts. 3310 */ 3311 value = local64_read(&next_event->count); 3312 value = local64_xchg(&event->count, value); 3313 local64_set(&next_event->count, value); 3314 3315 swap(event->total_time_enabled, next_event->total_time_enabled); 3316 swap(event->total_time_running, next_event->total_time_running); 3317 3318 /* 3319 * Since we swizzled the values, update the user visible data too. 3320 */ 3321 perf_event_update_userpage(event); 3322 perf_event_update_userpage(next_event); 3323 } 3324 3325 static void perf_event_sync_stat(struct perf_event_context *ctx, 3326 struct perf_event_context *next_ctx) 3327 { 3328 struct perf_event *event, *next_event; 3329 3330 if (!ctx->nr_stat) 3331 return; 3332 3333 update_context_time(ctx); 3334 3335 event = list_first_entry(&ctx->event_list, 3336 struct perf_event, event_entry); 3337 3338 next_event = list_first_entry(&next_ctx->event_list, 3339 struct perf_event, event_entry); 3340 3341 while (&event->event_entry != &ctx->event_list && 3342 &next_event->event_entry != &next_ctx->event_list) { 3343 3344 __perf_event_sync_stat(event, next_event); 3345 3346 event = list_next_entry(event, event_entry); 3347 next_event = list_next_entry(next_event, event_entry); 3348 } 3349 } 3350 3351 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3352 struct task_struct *next) 3353 { 3354 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3355 struct perf_event_context *next_ctx; 3356 struct perf_event_context *parent, *next_parent; 3357 struct perf_cpu_context *cpuctx; 3358 int do_switch = 1; 3359 3360 if (likely(!ctx)) 3361 return; 3362 3363 cpuctx = __get_cpu_context(ctx); 3364 if (!cpuctx->task_ctx) 3365 return; 3366 3367 rcu_read_lock(); 3368 next_ctx = next->perf_event_ctxp[ctxn]; 3369 if (!next_ctx) 3370 goto unlock; 3371 3372 parent = rcu_dereference(ctx->parent_ctx); 3373 next_parent = rcu_dereference(next_ctx->parent_ctx); 3374 3375 /* If neither context have a parent context; they cannot be clones. */ 3376 if (!parent && !next_parent) 3377 goto unlock; 3378 3379 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3380 /* 3381 * Looks like the two contexts are clones, so we might be 3382 * able to optimize the context switch. We lock both 3383 * contexts and check that they are clones under the 3384 * lock (including re-checking that neither has been 3385 * uncloned in the meantime). It doesn't matter which 3386 * order we take the locks because no other cpu could 3387 * be trying to lock both of these tasks. 3388 */ 3389 raw_spin_lock(&ctx->lock); 3390 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3391 if (context_equiv(ctx, next_ctx)) { 3392 struct pmu *pmu = ctx->pmu; 3393 3394 WRITE_ONCE(ctx->task, next); 3395 WRITE_ONCE(next_ctx->task, task); 3396 3397 /* 3398 * PMU specific parts of task perf context can require 3399 * additional synchronization. As an example of such 3400 * synchronization see implementation details of Intel 3401 * LBR call stack data profiling; 3402 */ 3403 if (pmu->swap_task_ctx) 3404 pmu->swap_task_ctx(ctx, next_ctx); 3405 else 3406 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3407 3408 /* 3409 * RCU_INIT_POINTER here is safe because we've not 3410 * modified the ctx and the above modification of 3411 * ctx->task and ctx->task_ctx_data are immaterial 3412 * since those values are always verified under 3413 * ctx->lock which we're now holding. 3414 */ 3415 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3416 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3417 3418 do_switch = 0; 3419 3420 perf_event_sync_stat(ctx, next_ctx); 3421 } 3422 raw_spin_unlock(&next_ctx->lock); 3423 raw_spin_unlock(&ctx->lock); 3424 } 3425 unlock: 3426 rcu_read_unlock(); 3427 3428 if (do_switch) { 3429 raw_spin_lock(&ctx->lock); 3430 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3431 raw_spin_unlock(&ctx->lock); 3432 } 3433 } 3434 3435 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3436 3437 void perf_sched_cb_dec(struct pmu *pmu) 3438 { 3439 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3440 3441 this_cpu_dec(perf_sched_cb_usages); 3442 3443 if (!--cpuctx->sched_cb_usage) 3444 list_del(&cpuctx->sched_cb_entry); 3445 } 3446 3447 3448 void perf_sched_cb_inc(struct pmu *pmu) 3449 { 3450 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3451 3452 if (!cpuctx->sched_cb_usage++) 3453 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3454 3455 this_cpu_inc(perf_sched_cb_usages); 3456 } 3457 3458 /* 3459 * This function provides the context switch callback to the lower code 3460 * layer. It is invoked ONLY when the context switch callback is enabled. 3461 * 3462 * This callback is relevant even to per-cpu events; for example multi event 3463 * PEBS requires this to provide PID/TID information. This requires we flush 3464 * all queued PEBS records before we context switch to a new task. 3465 */ 3466 static void perf_pmu_sched_task(struct task_struct *prev, 3467 struct task_struct *next, 3468 bool sched_in) 3469 { 3470 struct perf_cpu_context *cpuctx; 3471 struct pmu *pmu; 3472 3473 if (prev == next) 3474 return; 3475 3476 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3477 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3478 3479 if (WARN_ON_ONCE(!pmu->sched_task)) 3480 continue; 3481 3482 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3483 perf_pmu_disable(pmu); 3484 3485 pmu->sched_task(cpuctx->task_ctx, sched_in); 3486 3487 perf_pmu_enable(pmu); 3488 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3489 } 3490 } 3491 3492 static void perf_event_switch(struct task_struct *task, 3493 struct task_struct *next_prev, bool sched_in); 3494 3495 #define for_each_task_context_nr(ctxn) \ 3496 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3497 3498 /* 3499 * Called from scheduler to remove the events of the current task, 3500 * with interrupts disabled. 3501 * 3502 * We stop each event and update the event value in event->count. 3503 * 3504 * This does not protect us against NMI, but disable() 3505 * sets the disabled bit in the control field of event _before_ 3506 * accessing the event control register. If a NMI hits, then it will 3507 * not restart the event. 3508 */ 3509 void __perf_event_task_sched_out(struct task_struct *task, 3510 struct task_struct *next) 3511 { 3512 int ctxn; 3513 3514 if (__this_cpu_read(perf_sched_cb_usages)) 3515 perf_pmu_sched_task(task, next, false); 3516 3517 if (atomic_read(&nr_switch_events)) 3518 perf_event_switch(task, next, false); 3519 3520 for_each_task_context_nr(ctxn) 3521 perf_event_context_sched_out(task, ctxn, next); 3522 3523 /* 3524 * if cgroup events exist on this CPU, then we need 3525 * to check if we have to switch out PMU state. 3526 * cgroup event are system-wide mode only 3527 */ 3528 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3529 perf_cgroup_sched_out(task, next); 3530 } 3531 3532 /* 3533 * Called with IRQs disabled 3534 */ 3535 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3536 enum event_type_t event_type) 3537 { 3538 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3539 } 3540 3541 static bool perf_less_group_idx(const void *l, const void *r) 3542 { 3543 const struct perf_event *le = *(const struct perf_event **)l; 3544 const struct perf_event *re = *(const struct perf_event **)r; 3545 3546 return le->group_index < re->group_index; 3547 } 3548 3549 static void swap_ptr(void *l, void *r) 3550 { 3551 void **lp = l, **rp = r; 3552 3553 swap(*lp, *rp); 3554 } 3555 3556 static const struct min_heap_callbacks perf_min_heap = { 3557 .elem_size = sizeof(struct perf_event *), 3558 .less = perf_less_group_idx, 3559 .swp = swap_ptr, 3560 }; 3561 3562 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3563 { 3564 struct perf_event **itrs = heap->data; 3565 3566 if (event) { 3567 itrs[heap->nr] = event; 3568 heap->nr++; 3569 } 3570 } 3571 3572 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3573 struct perf_event_groups *groups, int cpu, 3574 int (*func)(struct perf_event *, void *), 3575 void *data) 3576 { 3577 #ifdef CONFIG_CGROUP_PERF 3578 struct cgroup_subsys_state *css = NULL; 3579 #endif 3580 /* Space for per CPU and/or any CPU event iterators. */ 3581 struct perf_event *itrs[2]; 3582 struct min_heap event_heap; 3583 struct perf_event **evt; 3584 int ret; 3585 3586 if (cpuctx) { 3587 event_heap = (struct min_heap){ 3588 .data = cpuctx->heap, 3589 .nr = 0, 3590 .size = cpuctx->heap_size, 3591 }; 3592 3593 lockdep_assert_held(&cpuctx->ctx.lock); 3594 3595 #ifdef CONFIG_CGROUP_PERF 3596 if (cpuctx->cgrp) 3597 css = &cpuctx->cgrp->css; 3598 #endif 3599 } else { 3600 event_heap = (struct min_heap){ 3601 .data = itrs, 3602 .nr = 0, 3603 .size = ARRAY_SIZE(itrs), 3604 }; 3605 /* Events not within a CPU context may be on any CPU. */ 3606 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3607 } 3608 evt = event_heap.data; 3609 3610 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3611 3612 #ifdef CONFIG_CGROUP_PERF 3613 for (; css; css = css->parent) 3614 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3615 #endif 3616 3617 min_heapify_all(&event_heap, &perf_min_heap); 3618 3619 while (event_heap.nr) { 3620 ret = func(*evt, data); 3621 if (ret) 3622 return ret; 3623 3624 *evt = perf_event_groups_next(*evt); 3625 if (*evt) 3626 min_heapify(&event_heap, 0, &perf_min_heap); 3627 else 3628 min_heap_pop(&event_heap, &perf_min_heap); 3629 } 3630 3631 return 0; 3632 } 3633 3634 static int merge_sched_in(struct perf_event *event, void *data) 3635 { 3636 struct perf_event_context *ctx = event->ctx; 3637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3638 int *can_add_hw = data; 3639 3640 if (event->state <= PERF_EVENT_STATE_OFF) 3641 return 0; 3642 3643 if (!event_filter_match(event)) 3644 return 0; 3645 3646 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3647 if (!group_sched_in(event, cpuctx, ctx)) 3648 list_add_tail(&event->active_list, get_event_list(event)); 3649 } 3650 3651 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3652 if (event->attr.pinned) { 3653 perf_cgroup_event_disable(event, ctx); 3654 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3655 } 3656 3657 *can_add_hw = 0; 3658 ctx->rotate_necessary = 1; 3659 } 3660 3661 return 0; 3662 } 3663 3664 static void 3665 ctx_pinned_sched_in(struct perf_event_context *ctx, 3666 struct perf_cpu_context *cpuctx) 3667 { 3668 int can_add_hw = 1; 3669 3670 if (ctx != &cpuctx->ctx) 3671 cpuctx = NULL; 3672 3673 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3674 smp_processor_id(), 3675 merge_sched_in, &can_add_hw); 3676 } 3677 3678 static void 3679 ctx_flexible_sched_in(struct perf_event_context *ctx, 3680 struct perf_cpu_context *cpuctx) 3681 { 3682 int can_add_hw = 1; 3683 3684 if (ctx != &cpuctx->ctx) 3685 cpuctx = NULL; 3686 3687 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3688 smp_processor_id(), 3689 merge_sched_in, &can_add_hw); 3690 } 3691 3692 static void 3693 ctx_sched_in(struct perf_event_context *ctx, 3694 struct perf_cpu_context *cpuctx, 3695 enum event_type_t event_type, 3696 struct task_struct *task) 3697 { 3698 int is_active = ctx->is_active; 3699 u64 now; 3700 3701 lockdep_assert_held(&ctx->lock); 3702 3703 if (likely(!ctx->nr_events)) 3704 return; 3705 3706 ctx->is_active |= (event_type | EVENT_TIME); 3707 if (ctx->task) { 3708 if (!is_active) 3709 cpuctx->task_ctx = ctx; 3710 else 3711 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3712 } 3713 3714 is_active ^= ctx->is_active; /* changed bits */ 3715 3716 if (is_active & EVENT_TIME) { 3717 /* start ctx time */ 3718 now = perf_clock(); 3719 ctx->timestamp = now; 3720 perf_cgroup_set_timestamp(task, ctx); 3721 } 3722 3723 /* 3724 * First go through the list and put on any pinned groups 3725 * in order to give them the best chance of going on. 3726 */ 3727 if (is_active & EVENT_PINNED) 3728 ctx_pinned_sched_in(ctx, cpuctx); 3729 3730 /* Then walk through the lower prio flexible groups */ 3731 if (is_active & EVENT_FLEXIBLE) 3732 ctx_flexible_sched_in(ctx, cpuctx); 3733 } 3734 3735 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3736 enum event_type_t event_type, 3737 struct task_struct *task) 3738 { 3739 struct perf_event_context *ctx = &cpuctx->ctx; 3740 3741 ctx_sched_in(ctx, cpuctx, event_type, task); 3742 } 3743 3744 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3745 struct task_struct *task) 3746 { 3747 struct perf_cpu_context *cpuctx; 3748 3749 cpuctx = __get_cpu_context(ctx); 3750 if (cpuctx->task_ctx == ctx) 3751 return; 3752 3753 perf_ctx_lock(cpuctx, ctx); 3754 /* 3755 * We must check ctx->nr_events while holding ctx->lock, such 3756 * that we serialize against perf_install_in_context(). 3757 */ 3758 if (!ctx->nr_events) 3759 goto unlock; 3760 3761 perf_pmu_disable(ctx->pmu); 3762 /* 3763 * We want to keep the following priority order: 3764 * cpu pinned (that don't need to move), task pinned, 3765 * cpu flexible, task flexible. 3766 * 3767 * However, if task's ctx is not carrying any pinned 3768 * events, no need to flip the cpuctx's events around. 3769 */ 3770 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3771 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3772 perf_event_sched_in(cpuctx, ctx, task); 3773 perf_pmu_enable(ctx->pmu); 3774 3775 unlock: 3776 perf_ctx_unlock(cpuctx, ctx); 3777 } 3778 3779 /* 3780 * Called from scheduler to add the events of the current task 3781 * with interrupts disabled. 3782 * 3783 * We restore the event value and then enable it. 3784 * 3785 * This does not protect us against NMI, but enable() 3786 * sets the enabled bit in the control field of event _before_ 3787 * accessing the event control register. If a NMI hits, then it will 3788 * keep the event running. 3789 */ 3790 void __perf_event_task_sched_in(struct task_struct *prev, 3791 struct task_struct *task) 3792 { 3793 struct perf_event_context *ctx; 3794 int ctxn; 3795 3796 /* 3797 * If cgroup events exist on this CPU, then we need to check if we have 3798 * to switch in PMU state; cgroup event are system-wide mode only. 3799 * 3800 * Since cgroup events are CPU events, we must schedule these in before 3801 * we schedule in the task events. 3802 */ 3803 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3804 perf_cgroup_sched_in(prev, task); 3805 3806 for_each_task_context_nr(ctxn) { 3807 ctx = task->perf_event_ctxp[ctxn]; 3808 if (likely(!ctx)) 3809 continue; 3810 3811 perf_event_context_sched_in(ctx, task); 3812 } 3813 3814 if (atomic_read(&nr_switch_events)) 3815 perf_event_switch(task, prev, true); 3816 3817 if (__this_cpu_read(perf_sched_cb_usages)) 3818 perf_pmu_sched_task(prev, task, true); 3819 } 3820 3821 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3822 { 3823 u64 frequency = event->attr.sample_freq; 3824 u64 sec = NSEC_PER_SEC; 3825 u64 divisor, dividend; 3826 3827 int count_fls, nsec_fls, frequency_fls, sec_fls; 3828 3829 count_fls = fls64(count); 3830 nsec_fls = fls64(nsec); 3831 frequency_fls = fls64(frequency); 3832 sec_fls = 30; 3833 3834 /* 3835 * We got @count in @nsec, with a target of sample_freq HZ 3836 * the target period becomes: 3837 * 3838 * @count * 10^9 3839 * period = ------------------- 3840 * @nsec * sample_freq 3841 * 3842 */ 3843 3844 /* 3845 * Reduce accuracy by one bit such that @a and @b converge 3846 * to a similar magnitude. 3847 */ 3848 #define REDUCE_FLS(a, b) \ 3849 do { \ 3850 if (a##_fls > b##_fls) { \ 3851 a >>= 1; \ 3852 a##_fls--; \ 3853 } else { \ 3854 b >>= 1; \ 3855 b##_fls--; \ 3856 } \ 3857 } while (0) 3858 3859 /* 3860 * Reduce accuracy until either term fits in a u64, then proceed with 3861 * the other, so that finally we can do a u64/u64 division. 3862 */ 3863 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3864 REDUCE_FLS(nsec, frequency); 3865 REDUCE_FLS(sec, count); 3866 } 3867 3868 if (count_fls + sec_fls > 64) { 3869 divisor = nsec * frequency; 3870 3871 while (count_fls + sec_fls > 64) { 3872 REDUCE_FLS(count, sec); 3873 divisor >>= 1; 3874 } 3875 3876 dividend = count * sec; 3877 } else { 3878 dividend = count * sec; 3879 3880 while (nsec_fls + frequency_fls > 64) { 3881 REDUCE_FLS(nsec, frequency); 3882 dividend >>= 1; 3883 } 3884 3885 divisor = nsec * frequency; 3886 } 3887 3888 if (!divisor) 3889 return dividend; 3890 3891 return div64_u64(dividend, divisor); 3892 } 3893 3894 static DEFINE_PER_CPU(int, perf_throttled_count); 3895 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3896 3897 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3898 { 3899 struct hw_perf_event *hwc = &event->hw; 3900 s64 period, sample_period; 3901 s64 delta; 3902 3903 period = perf_calculate_period(event, nsec, count); 3904 3905 delta = (s64)(period - hwc->sample_period); 3906 delta = (delta + 7) / 8; /* low pass filter */ 3907 3908 sample_period = hwc->sample_period + delta; 3909 3910 if (!sample_period) 3911 sample_period = 1; 3912 3913 hwc->sample_period = sample_period; 3914 3915 if (local64_read(&hwc->period_left) > 8*sample_period) { 3916 if (disable) 3917 event->pmu->stop(event, PERF_EF_UPDATE); 3918 3919 local64_set(&hwc->period_left, 0); 3920 3921 if (disable) 3922 event->pmu->start(event, PERF_EF_RELOAD); 3923 } 3924 } 3925 3926 /* 3927 * combine freq adjustment with unthrottling to avoid two passes over the 3928 * events. At the same time, make sure, having freq events does not change 3929 * the rate of unthrottling as that would introduce bias. 3930 */ 3931 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3932 int needs_unthr) 3933 { 3934 struct perf_event *event; 3935 struct hw_perf_event *hwc; 3936 u64 now, period = TICK_NSEC; 3937 s64 delta; 3938 3939 /* 3940 * only need to iterate over all events iff: 3941 * - context have events in frequency mode (needs freq adjust) 3942 * - there are events to unthrottle on this cpu 3943 */ 3944 if (!(ctx->nr_freq || needs_unthr)) 3945 return; 3946 3947 raw_spin_lock(&ctx->lock); 3948 perf_pmu_disable(ctx->pmu); 3949 3950 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3951 if (event->state != PERF_EVENT_STATE_ACTIVE) 3952 continue; 3953 3954 if (!event_filter_match(event)) 3955 continue; 3956 3957 perf_pmu_disable(event->pmu); 3958 3959 hwc = &event->hw; 3960 3961 if (hwc->interrupts == MAX_INTERRUPTS) { 3962 hwc->interrupts = 0; 3963 perf_log_throttle(event, 1); 3964 event->pmu->start(event, 0); 3965 } 3966 3967 if (!event->attr.freq || !event->attr.sample_freq) 3968 goto next; 3969 3970 /* 3971 * stop the event and update event->count 3972 */ 3973 event->pmu->stop(event, PERF_EF_UPDATE); 3974 3975 now = local64_read(&event->count); 3976 delta = now - hwc->freq_count_stamp; 3977 hwc->freq_count_stamp = now; 3978 3979 /* 3980 * restart the event 3981 * reload only if value has changed 3982 * we have stopped the event so tell that 3983 * to perf_adjust_period() to avoid stopping it 3984 * twice. 3985 */ 3986 if (delta > 0) 3987 perf_adjust_period(event, period, delta, false); 3988 3989 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3990 next: 3991 perf_pmu_enable(event->pmu); 3992 } 3993 3994 perf_pmu_enable(ctx->pmu); 3995 raw_spin_unlock(&ctx->lock); 3996 } 3997 3998 /* 3999 * Move @event to the tail of the @ctx's elegible events. 4000 */ 4001 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4002 { 4003 /* 4004 * Rotate the first entry last of non-pinned groups. Rotation might be 4005 * disabled by the inheritance code. 4006 */ 4007 if (ctx->rotate_disable) 4008 return; 4009 4010 perf_event_groups_delete(&ctx->flexible_groups, event); 4011 perf_event_groups_insert(&ctx->flexible_groups, event); 4012 } 4013 4014 /* pick an event from the flexible_groups to rotate */ 4015 static inline struct perf_event * 4016 ctx_event_to_rotate(struct perf_event_context *ctx) 4017 { 4018 struct perf_event *event; 4019 4020 /* pick the first active flexible event */ 4021 event = list_first_entry_or_null(&ctx->flexible_active, 4022 struct perf_event, active_list); 4023 4024 /* if no active flexible event, pick the first event */ 4025 if (!event) { 4026 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4027 typeof(*event), group_node); 4028 } 4029 4030 /* 4031 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4032 * finds there are unschedulable events, it will set it again. 4033 */ 4034 ctx->rotate_necessary = 0; 4035 4036 return event; 4037 } 4038 4039 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4040 { 4041 struct perf_event *cpu_event = NULL, *task_event = NULL; 4042 struct perf_event_context *task_ctx = NULL; 4043 int cpu_rotate, task_rotate; 4044 4045 /* 4046 * Since we run this from IRQ context, nobody can install new 4047 * events, thus the event count values are stable. 4048 */ 4049 4050 cpu_rotate = cpuctx->ctx.rotate_necessary; 4051 task_ctx = cpuctx->task_ctx; 4052 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4053 4054 if (!(cpu_rotate || task_rotate)) 4055 return false; 4056 4057 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4058 perf_pmu_disable(cpuctx->ctx.pmu); 4059 4060 if (task_rotate) 4061 task_event = ctx_event_to_rotate(task_ctx); 4062 if (cpu_rotate) 4063 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4064 4065 /* 4066 * As per the order given at ctx_resched() first 'pop' task flexible 4067 * and then, if needed CPU flexible. 4068 */ 4069 if (task_event || (task_ctx && cpu_event)) 4070 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4071 if (cpu_event) 4072 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4073 4074 if (task_event) 4075 rotate_ctx(task_ctx, task_event); 4076 if (cpu_event) 4077 rotate_ctx(&cpuctx->ctx, cpu_event); 4078 4079 perf_event_sched_in(cpuctx, task_ctx, current); 4080 4081 perf_pmu_enable(cpuctx->ctx.pmu); 4082 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4083 4084 return true; 4085 } 4086 4087 void perf_event_task_tick(void) 4088 { 4089 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4090 struct perf_event_context *ctx, *tmp; 4091 int throttled; 4092 4093 lockdep_assert_irqs_disabled(); 4094 4095 __this_cpu_inc(perf_throttled_seq); 4096 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4097 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4098 4099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4100 perf_adjust_freq_unthr_context(ctx, throttled); 4101 } 4102 4103 static int event_enable_on_exec(struct perf_event *event, 4104 struct perf_event_context *ctx) 4105 { 4106 if (!event->attr.enable_on_exec) 4107 return 0; 4108 4109 event->attr.enable_on_exec = 0; 4110 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4111 return 0; 4112 4113 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4114 4115 return 1; 4116 } 4117 4118 /* 4119 * Enable all of a task's events that have been marked enable-on-exec. 4120 * This expects task == current. 4121 */ 4122 static void perf_event_enable_on_exec(int ctxn) 4123 { 4124 struct perf_event_context *ctx, *clone_ctx = NULL; 4125 enum event_type_t event_type = 0; 4126 struct perf_cpu_context *cpuctx; 4127 struct perf_event *event; 4128 unsigned long flags; 4129 int enabled = 0; 4130 4131 local_irq_save(flags); 4132 ctx = current->perf_event_ctxp[ctxn]; 4133 if (!ctx || !ctx->nr_events) 4134 goto out; 4135 4136 cpuctx = __get_cpu_context(ctx); 4137 perf_ctx_lock(cpuctx, ctx); 4138 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4139 list_for_each_entry(event, &ctx->event_list, event_entry) { 4140 enabled |= event_enable_on_exec(event, ctx); 4141 event_type |= get_event_type(event); 4142 } 4143 4144 /* 4145 * Unclone and reschedule this context if we enabled any event. 4146 */ 4147 if (enabled) { 4148 clone_ctx = unclone_ctx(ctx); 4149 ctx_resched(cpuctx, ctx, event_type); 4150 } else { 4151 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4152 } 4153 perf_ctx_unlock(cpuctx, ctx); 4154 4155 out: 4156 local_irq_restore(flags); 4157 4158 if (clone_ctx) 4159 put_ctx(clone_ctx); 4160 } 4161 4162 struct perf_read_data { 4163 struct perf_event *event; 4164 bool group; 4165 int ret; 4166 }; 4167 4168 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4169 { 4170 u16 local_pkg, event_pkg; 4171 4172 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4173 int local_cpu = smp_processor_id(); 4174 4175 event_pkg = topology_physical_package_id(event_cpu); 4176 local_pkg = topology_physical_package_id(local_cpu); 4177 4178 if (event_pkg == local_pkg) 4179 return local_cpu; 4180 } 4181 4182 return event_cpu; 4183 } 4184 4185 /* 4186 * Cross CPU call to read the hardware event 4187 */ 4188 static void __perf_event_read(void *info) 4189 { 4190 struct perf_read_data *data = info; 4191 struct perf_event *sub, *event = data->event; 4192 struct perf_event_context *ctx = event->ctx; 4193 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4194 struct pmu *pmu = event->pmu; 4195 4196 /* 4197 * If this is a task context, we need to check whether it is 4198 * the current task context of this cpu. If not it has been 4199 * scheduled out before the smp call arrived. In that case 4200 * event->count would have been updated to a recent sample 4201 * when the event was scheduled out. 4202 */ 4203 if (ctx->task && cpuctx->task_ctx != ctx) 4204 return; 4205 4206 raw_spin_lock(&ctx->lock); 4207 if (ctx->is_active & EVENT_TIME) { 4208 update_context_time(ctx); 4209 update_cgrp_time_from_event(event); 4210 } 4211 4212 perf_event_update_time(event); 4213 if (data->group) 4214 perf_event_update_sibling_time(event); 4215 4216 if (event->state != PERF_EVENT_STATE_ACTIVE) 4217 goto unlock; 4218 4219 if (!data->group) { 4220 pmu->read(event); 4221 data->ret = 0; 4222 goto unlock; 4223 } 4224 4225 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4226 4227 pmu->read(event); 4228 4229 for_each_sibling_event(sub, event) { 4230 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4231 /* 4232 * Use sibling's PMU rather than @event's since 4233 * sibling could be on different (eg: software) PMU. 4234 */ 4235 sub->pmu->read(sub); 4236 } 4237 } 4238 4239 data->ret = pmu->commit_txn(pmu); 4240 4241 unlock: 4242 raw_spin_unlock(&ctx->lock); 4243 } 4244 4245 static inline u64 perf_event_count(struct perf_event *event) 4246 { 4247 return local64_read(&event->count) + atomic64_read(&event->child_count); 4248 } 4249 4250 /* 4251 * NMI-safe method to read a local event, that is an event that 4252 * is: 4253 * - either for the current task, or for this CPU 4254 * - does not have inherit set, for inherited task events 4255 * will not be local and we cannot read them atomically 4256 * - must not have a pmu::count method 4257 */ 4258 int perf_event_read_local(struct perf_event *event, u64 *value, 4259 u64 *enabled, u64 *running) 4260 { 4261 unsigned long flags; 4262 int ret = 0; 4263 4264 /* 4265 * Disabling interrupts avoids all counter scheduling (context 4266 * switches, timer based rotation and IPIs). 4267 */ 4268 local_irq_save(flags); 4269 4270 /* 4271 * It must not be an event with inherit set, we cannot read 4272 * all child counters from atomic context. 4273 */ 4274 if (event->attr.inherit) { 4275 ret = -EOPNOTSUPP; 4276 goto out; 4277 } 4278 4279 /* If this is a per-task event, it must be for current */ 4280 if ((event->attach_state & PERF_ATTACH_TASK) && 4281 event->hw.target != current) { 4282 ret = -EINVAL; 4283 goto out; 4284 } 4285 4286 /* If this is a per-CPU event, it must be for this CPU */ 4287 if (!(event->attach_state & PERF_ATTACH_TASK) && 4288 event->cpu != smp_processor_id()) { 4289 ret = -EINVAL; 4290 goto out; 4291 } 4292 4293 /* If this is a pinned event it must be running on this CPU */ 4294 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4295 ret = -EBUSY; 4296 goto out; 4297 } 4298 4299 /* 4300 * If the event is currently on this CPU, its either a per-task event, 4301 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4302 * oncpu == -1). 4303 */ 4304 if (event->oncpu == smp_processor_id()) 4305 event->pmu->read(event); 4306 4307 *value = local64_read(&event->count); 4308 if (enabled || running) { 4309 u64 now = event->shadow_ctx_time + perf_clock(); 4310 u64 __enabled, __running; 4311 4312 __perf_update_times(event, now, &__enabled, &__running); 4313 if (enabled) 4314 *enabled = __enabled; 4315 if (running) 4316 *running = __running; 4317 } 4318 out: 4319 local_irq_restore(flags); 4320 4321 return ret; 4322 } 4323 4324 static int perf_event_read(struct perf_event *event, bool group) 4325 { 4326 enum perf_event_state state = READ_ONCE(event->state); 4327 int event_cpu, ret = 0; 4328 4329 /* 4330 * If event is enabled and currently active on a CPU, update the 4331 * value in the event structure: 4332 */ 4333 again: 4334 if (state == PERF_EVENT_STATE_ACTIVE) { 4335 struct perf_read_data data; 4336 4337 /* 4338 * Orders the ->state and ->oncpu loads such that if we see 4339 * ACTIVE we must also see the right ->oncpu. 4340 * 4341 * Matches the smp_wmb() from event_sched_in(). 4342 */ 4343 smp_rmb(); 4344 4345 event_cpu = READ_ONCE(event->oncpu); 4346 if ((unsigned)event_cpu >= nr_cpu_ids) 4347 return 0; 4348 4349 data = (struct perf_read_data){ 4350 .event = event, 4351 .group = group, 4352 .ret = 0, 4353 }; 4354 4355 preempt_disable(); 4356 event_cpu = __perf_event_read_cpu(event, event_cpu); 4357 4358 /* 4359 * Purposely ignore the smp_call_function_single() return 4360 * value. 4361 * 4362 * If event_cpu isn't a valid CPU it means the event got 4363 * scheduled out and that will have updated the event count. 4364 * 4365 * Therefore, either way, we'll have an up-to-date event count 4366 * after this. 4367 */ 4368 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4369 preempt_enable(); 4370 ret = data.ret; 4371 4372 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4373 struct perf_event_context *ctx = event->ctx; 4374 unsigned long flags; 4375 4376 raw_spin_lock_irqsave(&ctx->lock, flags); 4377 state = event->state; 4378 if (state != PERF_EVENT_STATE_INACTIVE) { 4379 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4380 goto again; 4381 } 4382 4383 /* 4384 * May read while context is not active (e.g., thread is 4385 * blocked), in that case we cannot update context time 4386 */ 4387 if (ctx->is_active & EVENT_TIME) { 4388 update_context_time(ctx); 4389 update_cgrp_time_from_event(event); 4390 } 4391 4392 perf_event_update_time(event); 4393 if (group) 4394 perf_event_update_sibling_time(event); 4395 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4396 } 4397 4398 return ret; 4399 } 4400 4401 /* 4402 * Initialize the perf_event context in a task_struct: 4403 */ 4404 static void __perf_event_init_context(struct perf_event_context *ctx) 4405 { 4406 raw_spin_lock_init(&ctx->lock); 4407 mutex_init(&ctx->mutex); 4408 INIT_LIST_HEAD(&ctx->active_ctx_list); 4409 perf_event_groups_init(&ctx->pinned_groups); 4410 perf_event_groups_init(&ctx->flexible_groups); 4411 INIT_LIST_HEAD(&ctx->event_list); 4412 INIT_LIST_HEAD(&ctx->pinned_active); 4413 INIT_LIST_HEAD(&ctx->flexible_active); 4414 refcount_set(&ctx->refcount, 1); 4415 } 4416 4417 static struct perf_event_context * 4418 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4419 { 4420 struct perf_event_context *ctx; 4421 4422 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4423 if (!ctx) 4424 return NULL; 4425 4426 __perf_event_init_context(ctx); 4427 if (task) 4428 ctx->task = get_task_struct(task); 4429 ctx->pmu = pmu; 4430 4431 return ctx; 4432 } 4433 4434 static struct task_struct * 4435 find_lively_task_by_vpid(pid_t vpid) 4436 { 4437 struct task_struct *task; 4438 4439 rcu_read_lock(); 4440 if (!vpid) 4441 task = current; 4442 else 4443 task = find_task_by_vpid(vpid); 4444 if (task) 4445 get_task_struct(task); 4446 rcu_read_unlock(); 4447 4448 if (!task) 4449 return ERR_PTR(-ESRCH); 4450 4451 return task; 4452 } 4453 4454 /* 4455 * Returns a matching context with refcount and pincount. 4456 */ 4457 static struct perf_event_context * 4458 find_get_context(struct pmu *pmu, struct task_struct *task, 4459 struct perf_event *event) 4460 { 4461 struct perf_event_context *ctx, *clone_ctx = NULL; 4462 struct perf_cpu_context *cpuctx; 4463 void *task_ctx_data = NULL; 4464 unsigned long flags; 4465 int ctxn, err; 4466 int cpu = event->cpu; 4467 4468 if (!task) { 4469 /* Must be root to operate on a CPU event: */ 4470 err = perf_allow_cpu(&event->attr); 4471 if (err) 4472 return ERR_PTR(err); 4473 4474 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4475 ctx = &cpuctx->ctx; 4476 get_ctx(ctx); 4477 ++ctx->pin_count; 4478 4479 return ctx; 4480 } 4481 4482 err = -EINVAL; 4483 ctxn = pmu->task_ctx_nr; 4484 if (ctxn < 0) 4485 goto errout; 4486 4487 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4488 task_ctx_data = alloc_task_ctx_data(pmu); 4489 if (!task_ctx_data) { 4490 err = -ENOMEM; 4491 goto errout; 4492 } 4493 } 4494 4495 retry: 4496 ctx = perf_lock_task_context(task, ctxn, &flags); 4497 if (ctx) { 4498 clone_ctx = unclone_ctx(ctx); 4499 ++ctx->pin_count; 4500 4501 if (task_ctx_data && !ctx->task_ctx_data) { 4502 ctx->task_ctx_data = task_ctx_data; 4503 task_ctx_data = NULL; 4504 } 4505 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4506 4507 if (clone_ctx) 4508 put_ctx(clone_ctx); 4509 } else { 4510 ctx = alloc_perf_context(pmu, task); 4511 err = -ENOMEM; 4512 if (!ctx) 4513 goto errout; 4514 4515 if (task_ctx_data) { 4516 ctx->task_ctx_data = task_ctx_data; 4517 task_ctx_data = NULL; 4518 } 4519 4520 err = 0; 4521 mutex_lock(&task->perf_event_mutex); 4522 /* 4523 * If it has already passed perf_event_exit_task(). 4524 * we must see PF_EXITING, it takes this mutex too. 4525 */ 4526 if (task->flags & PF_EXITING) 4527 err = -ESRCH; 4528 else if (task->perf_event_ctxp[ctxn]) 4529 err = -EAGAIN; 4530 else { 4531 get_ctx(ctx); 4532 ++ctx->pin_count; 4533 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4534 } 4535 mutex_unlock(&task->perf_event_mutex); 4536 4537 if (unlikely(err)) { 4538 put_ctx(ctx); 4539 4540 if (err == -EAGAIN) 4541 goto retry; 4542 goto errout; 4543 } 4544 } 4545 4546 free_task_ctx_data(pmu, task_ctx_data); 4547 return ctx; 4548 4549 errout: 4550 free_task_ctx_data(pmu, task_ctx_data); 4551 return ERR_PTR(err); 4552 } 4553 4554 static void perf_event_free_filter(struct perf_event *event); 4555 static void perf_event_free_bpf_prog(struct perf_event *event); 4556 4557 static void free_event_rcu(struct rcu_head *head) 4558 { 4559 struct perf_event *event; 4560 4561 event = container_of(head, struct perf_event, rcu_head); 4562 if (event->ns) 4563 put_pid_ns(event->ns); 4564 perf_event_free_filter(event); 4565 kfree(event); 4566 } 4567 4568 static void ring_buffer_attach(struct perf_event *event, 4569 struct perf_buffer *rb); 4570 4571 static void detach_sb_event(struct perf_event *event) 4572 { 4573 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4574 4575 raw_spin_lock(&pel->lock); 4576 list_del_rcu(&event->sb_list); 4577 raw_spin_unlock(&pel->lock); 4578 } 4579 4580 static bool is_sb_event(struct perf_event *event) 4581 { 4582 struct perf_event_attr *attr = &event->attr; 4583 4584 if (event->parent) 4585 return false; 4586 4587 if (event->attach_state & PERF_ATTACH_TASK) 4588 return false; 4589 4590 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4591 attr->comm || attr->comm_exec || 4592 attr->task || attr->ksymbol || 4593 attr->context_switch || attr->text_poke || 4594 attr->bpf_event) 4595 return true; 4596 return false; 4597 } 4598 4599 static void unaccount_pmu_sb_event(struct perf_event *event) 4600 { 4601 if (is_sb_event(event)) 4602 detach_sb_event(event); 4603 } 4604 4605 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4606 { 4607 if (event->parent) 4608 return; 4609 4610 if (is_cgroup_event(event)) 4611 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4612 } 4613 4614 #ifdef CONFIG_NO_HZ_FULL 4615 static DEFINE_SPINLOCK(nr_freq_lock); 4616 #endif 4617 4618 static void unaccount_freq_event_nohz(void) 4619 { 4620 #ifdef CONFIG_NO_HZ_FULL 4621 spin_lock(&nr_freq_lock); 4622 if (atomic_dec_and_test(&nr_freq_events)) 4623 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4624 spin_unlock(&nr_freq_lock); 4625 #endif 4626 } 4627 4628 static void unaccount_freq_event(void) 4629 { 4630 if (tick_nohz_full_enabled()) 4631 unaccount_freq_event_nohz(); 4632 else 4633 atomic_dec(&nr_freq_events); 4634 } 4635 4636 static void unaccount_event(struct perf_event *event) 4637 { 4638 bool dec = false; 4639 4640 if (event->parent) 4641 return; 4642 4643 if (event->attach_state & PERF_ATTACH_TASK) 4644 dec = true; 4645 if (event->attr.mmap || event->attr.mmap_data) 4646 atomic_dec(&nr_mmap_events); 4647 if (event->attr.comm) 4648 atomic_dec(&nr_comm_events); 4649 if (event->attr.namespaces) 4650 atomic_dec(&nr_namespaces_events); 4651 if (event->attr.cgroup) 4652 atomic_dec(&nr_cgroup_events); 4653 if (event->attr.task) 4654 atomic_dec(&nr_task_events); 4655 if (event->attr.freq) 4656 unaccount_freq_event(); 4657 if (event->attr.context_switch) { 4658 dec = true; 4659 atomic_dec(&nr_switch_events); 4660 } 4661 if (is_cgroup_event(event)) 4662 dec = true; 4663 if (has_branch_stack(event)) 4664 dec = true; 4665 if (event->attr.ksymbol) 4666 atomic_dec(&nr_ksymbol_events); 4667 if (event->attr.bpf_event) 4668 atomic_dec(&nr_bpf_events); 4669 if (event->attr.text_poke) 4670 atomic_dec(&nr_text_poke_events); 4671 4672 if (dec) { 4673 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4674 schedule_delayed_work(&perf_sched_work, HZ); 4675 } 4676 4677 unaccount_event_cpu(event, event->cpu); 4678 4679 unaccount_pmu_sb_event(event); 4680 } 4681 4682 static void perf_sched_delayed(struct work_struct *work) 4683 { 4684 mutex_lock(&perf_sched_mutex); 4685 if (atomic_dec_and_test(&perf_sched_count)) 4686 static_branch_disable(&perf_sched_events); 4687 mutex_unlock(&perf_sched_mutex); 4688 } 4689 4690 /* 4691 * The following implement mutual exclusion of events on "exclusive" pmus 4692 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4693 * at a time, so we disallow creating events that might conflict, namely: 4694 * 4695 * 1) cpu-wide events in the presence of per-task events, 4696 * 2) per-task events in the presence of cpu-wide events, 4697 * 3) two matching events on the same context. 4698 * 4699 * The former two cases are handled in the allocation path (perf_event_alloc(), 4700 * _free_event()), the latter -- before the first perf_install_in_context(). 4701 */ 4702 static int exclusive_event_init(struct perf_event *event) 4703 { 4704 struct pmu *pmu = event->pmu; 4705 4706 if (!is_exclusive_pmu(pmu)) 4707 return 0; 4708 4709 /* 4710 * Prevent co-existence of per-task and cpu-wide events on the 4711 * same exclusive pmu. 4712 * 4713 * Negative pmu::exclusive_cnt means there are cpu-wide 4714 * events on this "exclusive" pmu, positive means there are 4715 * per-task events. 4716 * 4717 * Since this is called in perf_event_alloc() path, event::ctx 4718 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4719 * to mean "per-task event", because unlike other attach states it 4720 * never gets cleared. 4721 */ 4722 if (event->attach_state & PERF_ATTACH_TASK) { 4723 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4724 return -EBUSY; 4725 } else { 4726 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4727 return -EBUSY; 4728 } 4729 4730 return 0; 4731 } 4732 4733 static void exclusive_event_destroy(struct perf_event *event) 4734 { 4735 struct pmu *pmu = event->pmu; 4736 4737 if (!is_exclusive_pmu(pmu)) 4738 return; 4739 4740 /* see comment in exclusive_event_init() */ 4741 if (event->attach_state & PERF_ATTACH_TASK) 4742 atomic_dec(&pmu->exclusive_cnt); 4743 else 4744 atomic_inc(&pmu->exclusive_cnt); 4745 } 4746 4747 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4748 { 4749 if ((e1->pmu == e2->pmu) && 4750 (e1->cpu == e2->cpu || 4751 e1->cpu == -1 || 4752 e2->cpu == -1)) 4753 return true; 4754 return false; 4755 } 4756 4757 static bool exclusive_event_installable(struct perf_event *event, 4758 struct perf_event_context *ctx) 4759 { 4760 struct perf_event *iter_event; 4761 struct pmu *pmu = event->pmu; 4762 4763 lockdep_assert_held(&ctx->mutex); 4764 4765 if (!is_exclusive_pmu(pmu)) 4766 return true; 4767 4768 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4769 if (exclusive_event_match(iter_event, event)) 4770 return false; 4771 } 4772 4773 return true; 4774 } 4775 4776 static void perf_addr_filters_splice(struct perf_event *event, 4777 struct list_head *head); 4778 4779 static void _free_event(struct perf_event *event) 4780 { 4781 irq_work_sync(&event->pending); 4782 4783 unaccount_event(event); 4784 4785 security_perf_event_free(event); 4786 4787 if (event->rb) { 4788 /* 4789 * Can happen when we close an event with re-directed output. 4790 * 4791 * Since we have a 0 refcount, perf_mmap_close() will skip 4792 * over us; possibly making our ring_buffer_put() the last. 4793 */ 4794 mutex_lock(&event->mmap_mutex); 4795 ring_buffer_attach(event, NULL); 4796 mutex_unlock(&event->mmap_mutex); 4797 } 4798 4799 if (is_cgroup_event(event)) 4800 perf_detach_cgroup(event); 4801 4802 if (!event->parent) { 4803 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4804 put_callchain_buffers(); 4805 } 4806 4807 perf_event_free_bpf_prog(event); 4808 perf_addr_filters_splice(event, NULL); 4809 kfree(event->addr_filter_ranges); 4810 4811 if (event->destroy) 4812 event->destroy(event); 4813 4814 /* 4815 * Must be after ->destroy(), due to uprobe_perf_close() using 4816 * hw.target. 4817 */ 4818 if (event->hw.target) 4819 put_task_struct(event->hw.target); 4820 4821 /* 4822 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4823 * all task references must be cleaned up. 4824 */ 4825 if (event->ctx) 4826 put_ctx(event->ctx); 4827 4828 exclusive_event_destroy(event); 4829 module_put(event->pmu->module); 4830 4831 call_rcu(&event->rcu_head, free_event_rcu); 4832 } 4833 4834 /* 4835 * Used to free events which have a known refcount of 1, such as in error paths 4836 * where the event isn't exposed yet and inherited events. 4837 */ 4838 static void free_event(struct perf_event *event) 4839 { 4840 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4841 "unexpected event refcount: %ld; ptr=%p\n", 4842 atomic_long_read(&event->refcount), event)) { 4843 /* leak to avoid use-after-free */ 4844 return; 4845 } 4846 4847 _free_event(event); 4848 } 4849 4850 /* 4851 * Remove user event from the owner task. 4852 */ 4853 static void perf_remove_from_owner(struct perf_event *event) 4854 { 4855 struct task_struct *owner; 4856 4857 rcu_read_lock(); 4858 /* 4859 * Matches the smp_store_release() in perf_event_exit_task(). If we 4860 * observe !owner it means the list deletion is complete and we can 4861 * indeed free this event, otherwise we need to serialize on 4862 * owner->perf_event_mutex. 4863 */ 4864 owner = READ_ONCE(event->owner); 4865 if (owner) { 4866 /* 4867 * Since delayed_put_task_struct() also drops the last 4868 * task reference we can safely take a new reference 4869 * while holding the rcu_read_lock(). 4870 */ 4871 get_task_struct(owner); 4872 } 4873 rcu_read_unlock(); 4874 4875 if (owner) { 4876 /* 4877 * If we're here through perf_event_exit_task() we're already 4878 * holding ctx->mutex which would be an inversion wrt. the 4879 * normal lock order. 4880 * 4881 * However we can safely take this lock because its the child 4882 * ctx->mutex. 4883 */ 4884 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4885 4886 /* 4887 * We have to re-check the event->owner field, if it is cleared 4888 * we raced with perf_event_exit_task(), acquiring the mutex 4889 * ensured they're done, and we can proceed with freeing the 4890 * event. 4891 */ 4892 if (event->owner) { 4893 list_del_init(&event->owner_entry); 4894 smp_store_release(&event->owner, NULL); 4895 } 4896 mutex_unlock(&owner->perf_event_mutex); 4897 put_task_struct(owner); 4898 } 4899 } 4900 4901 static void put_event(struct perf_event *event) 4902 { 4903 if (!atomic_long_dec_and_test(&event->refcount)) 4904 return; 4905 4906 _free_event(event); 4907 } 4908 4909 /* 4910 * Kill an event dead; while event:refcount will preserve the event 4911 * object, it will not preserve its functionality. Once the last 'user' 4912 * gives up the object, we'll destroy the thing. 4913 */ 4914 int perf_event_release_kernel(struct perf_event *event) 4915 { 4916 struct perf_event_context *ctx = event->ctx; 4917 struct perf_event *child, *tmp; 4918 LIST_HEAD(free_list); 4919 4920 /* 4921 * If we got here through err_file: fput(event_file); we will not have 4922 * attached to a context yet. 4923 */ 4924 if (!ctx) { 4925 WARN_ON_ONCE(event->attach_state & 4926 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4927 goto no_ctx; 4928 } 4929 4930 if (!is_kernel_event(event)) 4931 perf_remove_from_owner(event); 4932 4933 ctx = perf_event_ctx_lock(event); 4934 WARN_ON_ONCE(ctx->parent_ctx); 4935 perf_remove_from_context(event, DETACH_GROUP); 4936 4937 raw_spin_lock_irq(&ctx->lock); 4938 /* 4939 * Mark this event as STATE_DEAD, there is no external reference to it 4940 * anymore. 4941 * 4942 * Anybody acquiring event->child_mutex after the below loop _must_ 4943 * also see this, most importantly inherit_event() which will avoid 4944 * placing more children on the list. 4945 * 4946 * Thus this guarantees that we will in fact observe and kill _ALL_ 4947 * child events. 4948 */ 4949 event->state = PERF_EVENT_STATE_DEAD; 4950 raw_spin_unlock_irq(&ctx->lock); 4951 4952 perf_event_ctx_unlock(event, ctx); 4953 4954 again: 4955 mutex_lock(&event->child_mutex); 4956 list_for_each_entry(child, &event->child_list, child_list) { 4957 4958 /* 4959 * Cannot change, child events are not migrated, see the 4960 * comment with perf_event_ctx_lock_nested(). 4961 */ 4962 ctx = READ_ONCE(child->ctx); 4963 /* 4964 * Since child_mutex nests inside ctx::mutex, we must jump 4965 * through hoops. We start by grabbing a reference on the ctx. 4966 * 4967 * Since the event cannot get freed while we hold the 4968 * child_mutex, the context must also exist and have a !0 4969 * reference count. 4970 */ 4971 get_ctx(ctx); 4972 4973 /* 4974 * Now that we have a ctx ref, we can drop child_mutex, and 4975 * acquire ctx::mutex without fear of it going away. Then we 4976 * can re-acquire child_mutex. 4977 */ 4978 mutex_unlock(&event->child_mutex); 4979 mutex_lock(&ctx->mutex); 4980 mutex_lock(&event->child_mutex); 4981 4982 /* 4983 * Now that we hold ctx::mutex and child_mutex, revalidate our 4984 * state, if child is still the first entry, it didn't get freed 4985 * and we can continue doing so. 4986 */ 4987 tmp = list_first_entry_or_null(&event->child_list, 4988 struct perf_event, child_list); 4989 if (tmp == child) { 4990 perf_remove_from_context(child, DETACH_GROUP); 4991 list_move(&child->child_list, &free_list); 4992 /* 4993 * This matches the refcount bump in inherit_event(); 4994 * this can't be the last reference. 4995 */ 4996 put_event(event); 4997 } 4998 4999 mutex_unlock(&event->child_mutex); 5000 mutex_unlock(&ctx->mutex); 5001 put_ctx(ctx); 5002 goto again; 5003 } 5004 mutex_unlock(&event->child_mutex); 5005 5006 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5007 void *var = &child->ctx->refcount; 5008 5009 list_del(&child->child_list); 5010 free_event(child); 5011 5012 /* 5013 * Wake any perf_event_free_task() waiting for this event to be 5014 * freed. 5015 */ 5016 smp_mb(); /* pairs with wait_var_event() */ 5017 wake_up_var(var); 5018 } 5019 5020 no_ctx: 5021 put_event(event); /* Must be the 'last' reference */ 5022 return 0; 5023 } 5024 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5025 5026 /* 5027 * Called when the last reference to the file is gone. 5028 */ 5029 static int perf_release(struct inode *inode, struct file *file) 5030 { 5031 perf_event_release_kernel(file->private_data); 5032 return 0; 5033 } 5034 5035 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5036 { 5037 struct perf_event *child; 5038 u64 total = 0; 5039 5040 *enabled = 0; 5041 *running = 0; 5042 5043 mutex_lock(&event->child_mutex); 5044 5045 (void)perf_event_read(event, false); 5046 total += perf_event_count(event); 5047 5048 *enabled += event->total_time_enabled + 5049 atomic64_read(&event->child_total_time_enabled); 5050 *running += event->total_time_running + 5051 atomic64_read(&event->child_total_time_running); 5052 5053 list_for_each_entry(child, &event->child_list, child_list) { 5054 (void)perf_event_read(child, false); 5055 total += perf_event_count(child); 5056 *enabled += child->total_time_enabled; 5057 *running += child->total_time_running; 5058 } 5059 mutex_unlock(&event->child_mutex); 5060 5061 return total; 5062 } 5063 5064 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5065 { 5066 struct perf_event_context *ctx; 5067 u64 count; 5068 5069 ctx = perf_event_ctx_lock(event); 5070 count = __perf_event_read_value(event, enabled, running); 5071 perf_event_ctx_unlock(event, ctx); 5072 5073 return count; 5074 } 5075 EXPORT_SYMBOL_GPL(perf_event_read_value); 5076 5077 static int __perf_read_group_add(struct perf_event *leader, 5078 u64 read_format, u64 *values) 5079 { 5080 struct perf_event_context *ctx = leader->ctx; 5081 struct perf_event *sub; 5082 unsigned long flags; 5083 int n = 1; /* skip @nr */ 5084 int ret; 5085 5086 ret = perf_event_read(leader, true); 5087 if (ret) 5088 return ret; 5089 5090 raw_spin_lock_irqsave(&ctx->lock, flags); 5091 5092 /* 5093 * Since we co-schedule groups, {enabled,running} times of siblings 5094 * will be identical to those of the leader, so we only publish one 5095 * set. 5096 */ 5097 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5098 values[n++] += leader->total_time_enabled + 5099 atomic64_read(&leader->child_total_time_enabled); 5100 } 5101 5102 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5103 values[n++] += leader->total_time_running + 5104 atomic64_read(&leader->child_total_time_running); 5105 } 5106 5107 /* 5108 * Write {count,id} tuples for every sibling. 5109 */ 5110 values[n++] += perf_event_count(leader); 5111 if (read_format & PERF_FORMAT_ID) 5112 values[n++] = primary_event_id(leader); 5113 5114 for_each_sibling_event(sub, leader) { 5115 values[n++] += perf_event_count(sub); 5116 if (read_format & PERF_FORMAT_ID) 5117 values[n++] = primary_event_id(sub); 5118 } 5119 5120 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5121 return 0; 5122 } 5123 5124 static int perf_read_group(struct perf_event *event, 5125 u64 read_format, char __user *buf) 5126 { 5127 struct perf_event *leader = event->group_leader, *child; 5128 struct perf_event_context *ctx = leader->ctx; 5129 int ret; 5130 u64 *values; 5131 5132 lockdep_assert_held(&ctx->mutex); 5133 5134 values = kzalloc(event->read_size, GFP_KERNEL); 5135 if (!values) 5136 return -ENOMEM; 5137 5138 values[0] = 1 + leader->nr_siblings; 5139 5140 /* 5141 * By locking the child_mutex of the leader we effectively 5142 * lock the child list of all siblings.. XXX explain how. 5143 */ 5144 mutex_lock(&leader->child_mutex); 5145 5146 ret = __perf_read_group_add(leader, read_format, values); 5147 if (ret) 5148 goto unlock; 5149 5150 list_for_each_entry(child, &leader->child_list, child_list) { 5151 ret = __perf_read_group_add(child, read_format, values); 5152 if (ret) 5153 goto unlock; 5154 } 5155 5156 mutex_unlock(&leader->child_mutex); 5157 5158 ret = event->read_size; 5159 if (copy_to_user(buf, values, event->read_size)) 5160 ret = -EFAULT; 5161 goto out; 5162 5163 unlock: 5164 mutex_unlock(&leader->child_mutex); 5165 out: 5166 kfree(values); 5167 return ret; 5168 } 5169 5170 static int perf_read_one(struct perf_event *event, 5171 u64 read_format, char __user *buf) 5172 { 5173 u64 enabled, running; 5174 u64 values[4]; 5175 int n = 0; 5176 5177 values[n++] = __perf_event_read_value(event, &enabled, &running); 5178 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5179 values[n++] = enabled; 5180 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5181 values[n++] = running; 5182 if (read_format & PERF_FORMAT_ID) 5183 values[n++] = primary_event_id(event); 5184 5185 if (copy_to_user(buf, values, n * sizeof(u64))) 5186 return -EFAULT; 5187 5188 return n * sizeof(u64); 5189 } 5190 5191 static bool is_event_hup(struct perf_event *event) 5192 { 5193 bool no_children; 5194 5195 if (event->state > PERF_EVENT_STATE_EXIT) 5196 return false; 5197 5198 mutex_lock(&event->child_mutex); 5199 no_children = list_empty(&event->child_list); 5200 mutex_unlock(&event->child_mutex); 5201 return no_children; 5202 } 5203 5204 /* 5205 * Read the performance event - simple non blocking version for now 5206 */ 5207 static ssize_t 5208 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5209 { 5210 u64 read_format = event->attr.read_format; 5211 int ret; 5212 5213 /* 5214 * Return end-of-file for a read on an event that is in 5215 * error state (i.e. because it was pinned but it couldn't be 5216 * scheduled on to the CPU at some point). 5217 */ 5218 if (event->state == PERF_EVENT_STATE_ERROR) 5219 return 0; 5220 5221 if (count < event->read_size) 5222 return -ENOSPC; 5223 5224 WARN_ON_ONCE(event->ctx->parent_ctx); 5225 if (read_format & PERF_FORMAT_GROUP) 5226 ret = perf_read_group(event, read_format, buf); 5227 else 5228 ret = perf_read_one(event, read_format, buf); 5229 5230 return ret; 5231 } 5232 5233 static ssize_t 5234 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5235 { 5236 struct perf_event *event = file->private_data; 5237 struct perf_event_context *ctx; 5238 int ret; 5239 5240 ret = security_perf_event_read(event); 5241 if (ret) 5242 return ret; 5243 5244 ctx = perf_event_ctx_lock(event); 5245 ret = __perf_read(event, buf, count); 5246 perf_event_ctx_unlock(event, ctx); 5247 5248 return ret; 5249 } 5250 5251 static __poll_t perf_poll(struct file *file, poll_table *wait) 5252 { 5253 struct perf_event *event = file->private_data; 5254 struct perf_buffer *rb; 5255 __poll_t events = EPOLLHUP; 5256 5257 poll_wait(file, &event->waitq, wait); 5258 5259 if (is_event_hup(event)) 5260 return events; 5261 5262 /* 5263 * Pin the event->rb by taking event->mmap_mutex; otherwise 5264 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5265 */ 5266 mutex_lock(&event->mmap_mutex); 5267 rb = event->rb; 5268 if (rb) 5269 events = atomic_xchg(&rb->poll, 0); 5270 mutex_unlock(&event->mmap_mutex); 5271 return events; 5272 } 5273 5274 static void _perf_event_reset(struct perf_event *event) 5275 { 5276 (void)perf_event_read(event, false); 5277 local64_set(&event->count, 0); 5278 perf_event_update_userpage(event); 5279 } 5280 5281 /* Assume it's not an event with inherit set. */ 5282 u64 perf_event_pause(struct perf_event *event, bool reset) 5283 { 5284 struct perf_event_context *ctx; 5285 u64 count; 5286 5287 ctx = perf_event_ctx_lock(event); 5288 WARN_ON_ONCE(event->attr.inherit); 5289 _perf_event_disable(event); 5290 count = local64_read(&event->count); 5291 if (reset) 5292 local64_set(&event->count, 0); 5293 perf_event_ctx_unlock(event, ctx); 5294 5295 return count; 5296 } 5297 EXPORT_SYMBOL_GPL(perf_event_pause); 5298 5299 /* 5300 * Holding the top-level event's child_mutex means that any 5301 * descendant process that has inherited this event will block 5302 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5303 * task existence requirements of perf_event_enable/disable. 5304 */ 5305 static void perf_event_for_each_child(struct perf_event *event, 5306 void (*func)(struct perf_event *)) 5307 { 5308 struct perf_event *child; 5309 5310 WARN_ON_ONCE(event->ctx->parent_ctx); 5311 5312 mutex_lock(&event->child_mutex); 5313 func(event); 5314 list_for_each_entry(child, &event->child_list, child_list) 5315 func(child); 5316 mutex_unlock(&event->child_mutex); 5317 } 5318 5319 static void perf_event_for_each(struct perf_event *event, 5320 void (*func)(struct perf_event *)) 5321 { 5322 struct perf_event_context *ctx = event->ctx; 5323 struct perf_event *sibling; 5324 5325 lockdep_assert_held(&ctx->mutex); 5326 5327 event = event->group_leader; 5328 5329 perf_event_for_each_child(event, func); 5330 for_each_sibling_event(sibling, event) 5331 perf_event_for_each_child(sibling, func); 5332 } 5333 5334 static void __perf_event_period(struct perf_event *event, 5335 struct perf_cpu_context *cpuctx, 5336 struct perf_event_context *ctx, 5337 void *info) 5338 { 5339 u64 value = *((u64 *)info); 5340 bool active; 5341 5342 if (event->attr.freq) { 5343 event->attr.sample_freq = value; 5344 } else { 5345 event->attr.sample_period = value; 5346 event->hw.sample_period = value; 5347 } 5348 5349 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5350 if (active) { 5351 perf_pmu_disable(ctx->pmu); 5352 /* 5353 * We could be throttled; unthrottle now to avoid the tick 5354 * trying to unthrottle while we already re-started the event. 5355 */ 5356 if (event->hw.interrupts == MAX_INTERRUPTS) { 5357 event->hw.interrupts = 0; 5358 perf_log_throttle(event, 1); 5359 } 5360 event->pmu->stop(event, PERF_EF_UPDATE); 5361 } 5362 5363 local64_set(&event->hw.period_left, 0); 5364 5365 if (active) { 5366 event->pmu->start(event, PERF_EF_RELOAD); 5367 perf_pmu_enable(ctx->pmu); 5368 } 5369 } 5370 5371 static int perf_event_check_period(struct perf_event *event, u64 value) 5372 { 5373 return event->pmu->check_period(event, value); 5374 } 5375 5376 static int _perf_event_period(struct perf_event *event, u64 value) 5377 { 5378 if (!is_sampling_event(event)) 5379 return -EINVAL; 5380 5381 if (!value) 5382 return -EINVAL; 5383 5384 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5385 return -EINVAL; 5386 5387 if (perf_event_check_period(event, value)) 5388 return -EINVAL; 5389 5390 if (!event->attr.freq && (value & (1ULL << 63))) 5391 return -EINVAL; 5392 5393 event_function_call(event, __perf_event_period, &value); 5394 5395 return 0; 5396 } 5397 5398 int perf_event_period(struct perf_event *event, u64 value) 5399 { 5400 struct perf_event_context *ctx; 5401 int ret; 5402 5403 ctx = perf_event_ctx_lock(event); 5404 ret = _perf_event_period(event, value); 5405 perf_event_ctx_unlock(event, ctx); 5406 5407 return ret; 5408 } 5409 EXPORT_SYMBOL_GPL(perf_event_period); 5410 5411 static const struct file_operations perf_fops; 5412 5413 static inline int perf_fget_light(int fd, struct fd *p) 5414 { 5415 struct fd f = fdget(fd); 5416 if (!f.file) 5417 return -EBADF; 5418 5419 if (f.file->f_op != &perf_fops) { 5420 fdput(f); 5421 return -EBADF; 5422 } 5423 *p = f; 5424 return 0; 5425 } 5426 5427 static int perf_event_set_output(struct perf_event *event, 5428 struct perf_event *output_event); 5429 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5430 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5431 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5432 struct perf_event_attr *attr); 5433 5434 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5435 { 5436 void (*func)(struct perf_event *); 5437 u32 flags = arg; 5438 5439 switch (cmd) { 5440 case PERF_EVENT_IOC_ENABLE: 5441 func = _perf_event_enable; 5442 break; 5443 case PERF_EVENT_IOC_DISABLE: 5444 func = _perf_event_disable; 5445 break; 5446 case PERF_EVENT_IOC_RESET: 5447 func = _perf_event_reset; 5448 break; 5449 5450 case PERF_EVENT_IOC_REFRESH: 5451 return _perf_event_refresh(event, arg); 5452 5453 case PERF_EVENT_IOC_PERIOD: 5454 { 5455 u64 value; 5456 5457 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5458 return -EFAULT; 5459 5460 return _perf_event_period(event, value); 5461 } 5462 case PERF_EVENT_IOC_ID: 5463 { 5464 u64 id = primary_event_id(event); 5465 5466 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5467 return -EFAULT; 5468 return 0; 5469 } 5470 5471 case PERF_EVENT_IOC_SET_OUTPUT: 5472 { 5473 int ret; 5474 if (arg != -1) { 5475 struct perf_event *output_event; 5476 struct fd output; 5477 ret = perf_fget_light(arg, &output); 5478 if (ret) 5479 return ret; 5480 output_event = output.file->private_data; 5481 ret = perf_event_set_output(event, output_event); 5482 fdput(output); 5483 } else { 5484 ret = perf_event_set_output(event, NULL); 5485 } 5486 return ret; 5487 } 5488 5489 case PERF_EVENT_IOC_SET_FILTER: 5490 return perf_event_set_filter(event, (void __user *)arg); 5491 5492 case PERF_EVENT_IOC_SET_BPF: 5493 return perf_event_set_bpf_prog(event, arg); 5494 5495 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5496 struct perf_buffer *rb; 5497 5498 rcu_read_lock(); 5499 rb = rcu_dereference(event->rb); 5500 if (!rb || !rb->nr_pages) { 5501 rcu_read_unlock(); 5502 return -EINVAL; 5503 } 5504 rb_toggle_paused(rb, !!arg); 5505 rcu_read_unlock(); 5506 return 0; 5507 } 5508 5509 case PERF_EVENT_IOC_QUERY_BPF: 5510 return perf_event_query_prog_array(event, (void __user *)arg); 5511 5512 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5513 struct perf_event_attr new_attr; 5514 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5515 &new_attr); 5516 5517 if (err) 5518 return err; 5519 5520 return perf_event_modify_attr(event, &new_attr); 5521 } 5522 default: 5523 return -ENOTTY; 5524 } 5525 5526 if (flags & PERF_IOC_FLAG_GROUP) 5527 perf_event_for_each(event, func); 5528 else 5529 perf_event_for_each_child(event, func); 5530 5531 return 0; 5532 } 5533 5534 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5535 { 5536 struct perf_event *event = file->private_data; 5537 struct perf_event_context *ctx; 5538 long ret; 5539 5540 /* Treat ioctl like writes as it is likely a mutating operation. */ 5541 ret = security_perf_event_write(event); 5542 if (ret) 5543 return ret; 5544 5545 ctx = perf_event_ctx_lock(event); 5546 ret = _perf_ioctl(event, cmd, arg); 5547 perf_event_ctx_unlock(event, ctx); 5548 5549 return ret; 5550 } 5551 5552 #ifdef CONFIG_COMPAT 5553 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5554 unsigned long arg) 5555 { 5556 switch (_IOC_NR(cmd)) { 5557 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5558 case _IOC_NR(PERF_EVENT_IOC_ID): 5559 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5560 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5561 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5562 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5563 cmd &= ~IOCSIZE_MASK; 5564 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5565 } 5566 break; 5567 } 5568 return perf_ioctl(file, cmd, arg); 5569 } 5570 #else 5571 # define perf_compat_ioctl NULL 5572 #endif 5573 5574 int perf_event_task_enable(void) 5575 { 5576 struct perf_event_context *ctx; 5577 struct perf_event *event; 5578 5579 mutex_lock(¤t->perf_event_mutex); 5580 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5581 ctx = perf_event_ctx_lock(event); 5582 perf_event_for_each_child(event, _perf_event_enable); 5583 perf_event_ctx_unlock(event, ctx); 5584 } 5585 mutex_unlock(¤t->perf_event_mutex); 5586 5587 return 0; 5588 } 5589 5590 int perf_event_task_disable(void) 5591 { 5592 struct perf_event_context *ctx; 5593 struct perf_event *event; 5594 5595 mutex_lock(¤t->perf_event_mutex); 5596 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5597 ctx = perf_event_ctx_lock(event); 5598 perf_event_for_each_child(event, _perf_event_disable); 5599 perf_event_ctx_unlock(event, ctx); 5600 } 5601 mutex_unlock(¤t->perf_event_mutex); 5602 5603 return 0; 5604 } 5605 5606 static int perf_event_index(struct perf_event *event) 5607 { 5608 if (event->hw.state & PERF_HES_STOPPED) 5609 return 0; 5610 5611 if (event->state != PERF_EVENT_STATE_ACTIVE) 5612 return 0; 5613 5614 return event->pmu->event_idx(event); 5615 } 5616 5617 static void calc_timer_values(struct perf_event *event, 5618 u64 *now, 5619 u64 *enabled, 5620 u64 *running) 5621 { 5622 u64 ctx_time; 5623 5624 *now = perf_clock(); 5625 ctx_time = event->shadow_ctx_time + *now; 5626 __perf_update_times(event, ctx_time, enabled, running); 5627 } 5628 5629 static void perf_event_init_userpage(struct perf_event *event) 5630 { 5631 struct perf_event_mmap_page *userpg; 5632 struct perf_buffer *rb; 5633 5634 rcu_read_lock(); 5635 rb = rcu_dereference(event->rb); 5636 if (!rb) 5637 goto unlock; 5638 5639 userpg = rb->user_page; 5640 5641 /* Allow new userspace to detect that bit 0 is deprecated */ 5642 userpg->cap_bit0_is_deprecated = 1; 5643 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5644 userpg->data_offset = PAGE_SIZE; 5645 userpg->data_size = perf_data_size(rb); 5646 5647 unlock: 5648 rcu_read_unlock(); 5649 } 5650 5651 void __weak arch_perf_update_userpage( 5652 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5653 { 5654 } 5655 5656 /* 5657 * Callers need to ensure there can be no nesting of this function, otherwise 5658 * the seqlock logic goes bad. We can not serialize this because the arch 5659 * code calls this from NMI context. 5660 */ 5661 void perf_event_update_userpage(struct perf_event *event) 5662 { 5663 struct perf_event_mmap_page *userpg; 5664 struct perf_buffer *rb; 5665 u64 enabled, running, now; 5666 5667 rcu_read_lock(); 5668 rb = rcu_dereference(event->rb); 5669 if (!rb) 5670 goto unlock; 5671 5672 /* 5673 * compute total_time_enabled, total_time_running 5674 * based on snapshot values taken when the event 5675 * was last scheduled in. 5676 * 5677 * we cannot simply called update_context_time() 5678 * because of locking issue as we can be called in 5679 * NMI context 5680 */ 5681 calc_timer_values(event, &now, &enabled, &running); 5682 5683 userpg = rb->user_page; 5684 /* 5685 * Disable preemption to guarantee consistent time stamps are stored to 5686 * the user page. 5687 */ 5688 preempt_disable(); 5689 ++userpg->lock; 5690 barrier(); 5691 userpg->index = perf_event_index(event); 5692 userpg->offset = perf_event_count(event); 5693 if (userpg->index) 5694 userpg->offset -= local64_read(&event->hw.prev_count); 5695 5696 userpg->time_enabled = enabled + 5697 atomic64_read(&event->child_total_time_enabled); 5698 5699 userpg->time_running = running + 5700 atomic64_read(&event->child_total_time_running); 5701 5702 arch_perf_update_userpage(event, userpg, now); 5703 5704 barrier(); 5705 ++userpg->lock; 5706 preempt_enable(); 5707 unlock: 5708 rcu_read_unlock(); 5709 } 5710 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5711 5712 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5713 { 5714 struct perf_event *event = vmf->vma->vm_file->private_data; 5715 struct perf_buffer *rb; 5716 vm_fault_t ret = VM_FAULT_SIGBUS; 5717 5718 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5719 if (vmf->pgoff == 0) 5720 ret = 0; 5721 return ret; 5722 } 5723 5724 rcu_read_lock(); 5725 rb = rcu_dereference(event->rb); 5726 if (!rb) 5727 goto unlock; 5728 5729 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5730 goto unlock; 5731 5732 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5733 if (!vmf->page) 5734 goto unlock; 5735 5736 get_page(vmf->page); 5737 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5738 vmf->page->index = vmf->pgoff; 5739 5740 ret = 0; 5741 unlock: 5742 rcu_read_unlock(); 5743 5744 return ret; 5745 } 5746 5747 static void ring_buffer_attach(struct perf_event *event, 5748 struct perf_buffer *rb) 5749 { 5750 struct perf_buffer *old_rb = NULL; 5751 unsigned long flags; 5752 5753 if (event->rb) { 5754 /* 5755 * Should be impossible, we set this when removing 5756 * event->rb_entry and wait/clear when adding event->rb_entry. 5757 */ 5758 WARN_ON_ONCE(event->rcu_pending); 5759 5760 old_rb = event->rb; 5761 spin_lock_irqsave(&old_rb->event_lock, flags); 5762 list_del_rcu(&event->rb_entry); 5763 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5764 5765 event->rcu_batches = get_state_synchronize_rcu(); 5766 event->rcu_pending = 1; 5767 } 5768 5769 if (rb) { 5770 if (event->rcu_pending) { 5771 cond_synchronize_rcu(event->rcu_batches); 5772 event->rcu_pending = 0; 5773 } 5774 5775 spin_lock_irqsave(&rb->event_lock, flags); 5776 list_add_rcu(&event->rb_entry, &rb->event_list); 5777 spin_unlock_irqrestore(&rb->event_lock, flags); 5778 } 5779 5780 /* 5781 * Avoid racing with perf_mmap_close(AUX): stop the event 5782 * before swizzling the event::rb pointer; if it's getting 5783 * unmapped, its aux_mmap_count will be 0 and it won't 5784 * restart. See the comment in __perf_pmu_output_stop(). 5785 * 5786 * Data will inevitably be lost when set_output is done in 5787 * mid-air, but then again, whoever does it like this is 5788 * not in for the data anyway. 5789 */ 5790 if (has_aux(event)) 5791 perf_event_stop(event, 0); 5792 5793 rcu_assign_pointer(event->rb, rb); 5794 5795 if (old_rb) { 5796 ring_buffer_put(old_rb); 5797 /* 5798 * Since we detached before setting the new rb, so that we 5799 * could attach the new rb, we could have missed a wakeup. 5800 * Provide it now. 5801 */ 5802 wake_up_all(&event->waitq); 5803 } 5804 } 5805 5806 static void ring_buffer_wakeup(struct perf_event *event) 5807 { 5808 struct perf_buffer *rb; 5809 5810 rcu_read_lock(); 5811 rb = rcu_dereference(event->rb); 5812 if (rb) { 5813 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5814 wake_up_all(&event->waitq); 5815 } 5816 rcu_read_unlock(); 5817 } 5818 5819 struct perf_buffer *ring_buffer_get(struct perf_event *event) 5820 { 5821 struct perf_buffer *rb; 5822 5823 rcu_read_lock(); 5824 rb = rcu_dereference(event->rb); 5825 if (rb) { 5826 if (!refcount_inc_not_zero(&rb->refcount)) 5827 rb = NULL; 5828 } 5829 rcu_read_unlock(); 5830 5831 return rb; 5832 } 5833 5834 void ring_buffer_put(struct perf_buffer *rb) 5835 { 5836 if (!refcount_dec_and_test(&rb->refcount)) 5837 return; 5838 5839 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5840 5841 call_rcu(&rb->rcu_head, rb_free_rcu); 5842 } 5843 5844 static void perf_mmap_open(struct vm_area_struct *vma) 5845 { 5846 struct perf_event *event = vma->vm_file->private_data; 5847 5848 atomic_inc(&event->mmap_count); 5849 atomic_inc(&event->rb->mmap_count); 5850 5851 if (vma->vm_pgoff) 5852 atomic_inc(&event->rb->aux_mmap_count); 5853 5854 if (event->pmu->event_mapped) 5855 event->pmu->event_mapped(event, vma->vm_mm); 5856 } 5857 5858 static void perf_pmu_output_stop(struct perf_event *event); 5859 5860 /* 5861 * A buffer can be mmap()ed multiple times; either directly through the same 5862 * event, or through other events by use of perf_event_set_output(). 5863 * 5864 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5865 * the buffer here, where we still have a VM context. This means we need 5866 * to detach all events redirecting to us. 5867 */ 5868 static void perf_mmap_close(struct vm_area_struct *vma) 5869 { 5870 struct perf_event *event = vma->vm_file->private_data; 5871 5872 struct perf_buffer *rb = ring_buffer_get(event); 5873 struct user_struct *mmap_user = rb->mmap_user; 5874 int mmap_locked = rb->mmap_locked; 5875 unsigned long size = perf_data_size(rb); 5876 5877 if (event->pmu->event_unmapped) 5878 event->pmu->event_unmapped(event, vma->vm_mm); 5879 5880 /* 5881 * rb->aux_mmap_count will always drop before rb->mmap_count and 5882 * event->mmap_count, so it is ok to use event->mmap_mutex to 5883 * serialize with perf_mmap here. 5884 */ 5885 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5886 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5887 /* 5888 * Stop all AUX events that are writing to this buffer, 5889 * so that we can free its AUX pages and corresponding PMU 5890 * data. Note that after rb::aux_mmap_count dropped to zero, 5891 * they won't start any more (see perf_aux_output_begin()). 5892 */ 5893 perf_pmu_output_stop(event); 5894 5895 /* now it's safe to free the pages */ 5896 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 5897 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5898 5899 /* this has to be the last one */ 5900 rb_free_aux(rb); 5901 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5902 5903 mutex_unlock(&event->mmap_mutex); 5904 } 5905 5906 atomic_dec(&rb->mmap_count); 5907 5908 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5909 goto out_put; 5910 5911 ring_buffer_attach(event, NULL); 5912 mutex_unlock(&event->mmap_mutex); 5913 5914 /* If there's still other mmap()s of this buffer, we're done. */ 5915 if (atomic_read(&rb->mmap_count)) 5916 goto out_put; 5917 5918 /* 5919 * No other mmap()s, detach from all other events that might redirect 5920 * into the now unreachable buffer. Somewhat complicated by the 5921 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5922 */ 5923 again: 5924 rcu_read_lock(); 5925 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5926 if (!atomic_long_inc_not_zero(&event->refcount)) { 5927 /* 5928 * This event is en-route to free_event() which will 5929 * detach it and remove it from the list. 5930 */ 5931 continue; 5932 } 5933 rcu_read_unlock(); 5934 5935 mutex_lock(&event->mmap_mutex); 5936 /* 5937 * Check we didn't race with perf_event_set_output() which can 5938 * swizzle the rb from under us while we were waiting to 5939 * acquire mmap_mutex. 5940 * 5941 * If we find a different rb; ignore this event, a next 5942 * iteration will no longer find it on the list. We have to 5943 * still restart the iteration to make sure we're not now 5944 * iterating the wrong list. 5945 */ 5946 if (event->rb == rb) 5947 ring_buffer_attach(event, NULL); 5948 5949 mutex_unlock(&event->mmap_mutex); 5950 put_event(event); 5951 5952 /* 5953 * Restart the iteration; either we're on the wrong list or 5954 * destroyed its integrity by doing a deletion. 5955 */ 5956 goto again; 5957 } 5958 rcu_read_unlock(); 5959 5960 /* 5961 * It could be there's still a few 0-ref events on the list; they'll 5962 * get cleaned up by free_event() -- they'll also still have their 5963 * ref on the rb and will free it whenever they are done with it. 5964 * 5965 * Aside from that, this buffer is 'fully' detached and unmapped, 5966 * undo the VM accounting. 5967 */ 5968 5969 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 5970 &mmap_user->locked_vm); 5971 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5972 free_uid(mmap_user); 5973 5974 out_put: 5975 ring_buffer_put(rb); /* could be last */ 5976 } 5977 5978 static const struct vm_operations_struct perf_mmap_vmops = { 5979 .open = perf_mmap_open, 5980 .close = perf_mmap_close, /* non mergeable */ 5981 .fault = perf_mmap_fault, 5982 .page_mkwrite = perf_mmap_fault, 5983 }; 5984 5985 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5986 { 5987 struct perf_event *event = file->private_data; 5988 unsigned long user_locked, user_lock_limit; 5989 struct user_struct *user = current_user(); 5990 struct perf_buffer *rb = NULL; 5991 unsigned long locked, lock_limit; 5992 unsigned long vma_size; 5993 unsigned long nr_pages; 5994 long user_extra = 0, extra = 0; 5995 int ret = 0, flags = 0; 5996 5997 /* 5998 * Don't allow mmap() of inherited per-task counters. This would 5999 * create a performance issue due to all children writing to the 6000 * same rb. 6001 */ 6002 if (event->cpu == -1 && event->attr.inherit) 6003 return -EINVAL; 6004 6005 if (!(vma->vm_flags & VM_SHARED)) 6006 return -EINVAL; 6007 6008 ret = security_perf_event_read(event); 6009 if (ret) 6010 return ret; 6011 6012 vma_size = vma->vm_end - vma->vm_start; 6013 6014 if (vma->vm_pgoff == 0) { 6015 nr_pages = (vma_size / PAGE_SIZE) - 1; 6016 } else { 6017 /* 6018 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6019 * mapped, all subsequent mappings should have the same size 6020 * and offset. Must be above the normal perf buffer. 6021 */ 6022 u64 aux_offset, aux_size; 6023 6024 if (!event->rb) 6025 return -EINVAL; 6026 6027 nr_pages = vma_size / PAGE_SIZE; 6028 6029 mutex_lock(&event->mmap_mutex); 6030 ret = -EINVAL; 6031 6032 rb = event->rb; 6033 if (!rb) 6034 goto aux_unlock; 6035 6036 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6037 aux_size = READ_ONCE(rb->user_page->aux_size); 6038 6039 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6040 goto aux_unlock; 6041 6042 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6043 goto aux_unlock; 6044 6045 /* already mapped with a different offset */ 6046 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6047 goto aux_unlock; 6048 6049 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6050 goto aux_unlock; 6051 6052 /* already mapped with a different size */ 6053 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6054 goto aux_unlock; 6055 6056 if (!is_power_of_2(nr_pages)) 6057 goto aux_unlock; 6058 6059 if (!atomic_inc_not_zero(&rb->mmap_count)) 6060 goto aux_unlock; 6061 6062 if (rb_has_aux(rb)) { 6063 atomic_inc(&rb->aux_mmap_count); 6064 ret = 0; 6065 goto unlock; 6066 } 6067 6068 atomic_set(&rb->aux_mmap_count, 1); 6069 user_extra = nr_pages; 6070 6071 goto accounting; 6072 } 6073 6074 /* 6075 * If we have rb pages ensure they're a power-of-two number, so we 6076 * can do bitmasks instead of modulo. 6077 */ 6078 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6079 return -EINVAL; 6080 6081 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6082 return -EINVAL; 6083 6084 WARN_ON_ONCE(event->ctx->parent_ctx); 6085 again: 6086 mutex_lock(&event->mmap_mutex); 6087 if (event->rb) { 6088 if (event->rb->nr_pages != nr_pages) { 6089 ret = -EINVAL; 6090 goto unlock; 6091 } 6092 6093 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6094 /* 6095 * Raced against perf_mmap_close() through 6096 * perf_event_set_output(). Try again, hope for better 6097 * luck. 6098 */ 6099 mutex_unlock(&event->mmap_mutex); 6100 goto again; 6101 } 6102 6103 goto unlock; 6104 } 6105 6106 user_extra = nr_pages + 1; 6107 6108 accounting: 6109 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6110 6111 /* 6112 * Increase the limit linearly with more CPUs: 6113 */ 6114 user_lock_limit *= num_online_cpus(); 6115 6116 user_locked = atomic_long_read(&user->locked_vm); 6117 6118 /* 6119 * sysctl_perf_event_mlock may have changed, so that 6120 * user->locked_vm > user_lock_limit 6121 */ 6122 if (user_locked > user_lock_limit) 6123 user_locked = user_lock_limit; 6124 user_locked += user_extra; 6125 6126 if (user_locked > user_lock_limit) { 6127 /* 6128 * charge locked_vm until it hits user_lock_limit; 6129 * charge the rest from pinned_vm 6130 */ 6131 extra = user_locked - user_lock_limit; 6132 user_extra -= extra; 6133 } 6134 6135 lock_limit = rlimit(RLIMIT_MEMLOCK); 6136 lock_limit >>= PAGE_SHIFT; 6137 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6138 6139 if ((locked > lock_limit) && perf_is_paranoid() && 6140 !capable(CAP_IPC_LOCK)) { 6141 ret = -EPERM; 6142 goto unlock; 6143 } 6144 6145 WARN_ON(!rb && event->rb); 6146 6147 if (vma->vm_flags & VM_WRITE) 6148 flags |= RING_BUFFER_WRITABLE; 6149 6150 if (!rb) { 6151 rb = rb_alloc(nr_pages, 6152 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6153 event->cpu, flags); 6154 6155 if (!rb) { 6156 ret = -ENOMEM; 6157 goto unlock; 6158 } 6159 6160 atomic_set(&rb->mmap_count, 1); 6161 rb->mmap_user = get_current_user(); 6162 rb->mmap_locked = extra; 6163 6164 ring_buffer_attach(event, rb); 6165 6166 perf_event_init_userpage(event); 6167 perf_event_update_userpage(event); 6168 } else { 6169 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6170 event->attr.aux_watermark, flags); 6171 if (!ret) 6172 rb->aux_mmap_locked = extra; 6173 } 6174 6175 unlock: 6176 if (!ret) { 6177 atomic_long_add(user_extra, &user->locked_vm); 6178 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6179 6180 atomic_inc(&event->mmap_count); 6181 } else if (rb) { 6182 atomic_dec(&rb->mmap_count); 6183 } 6184 aux_unlock: 6185 mutex_unlock(&event->mmap_mutex); 6186 6187 /* 6188 * Since pinned accounting is per vm we cannot allow fork() to copy our 6189 * vma. 6190 */ 6191 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6192 vma->vm_ops = &perf_mmap_vmops; 6193 6194 if (event->pmu->event_mapped) 6195 event->pmu->event_mapped(event, vma->vm_mm); 6196 6197 return ret; 6198 } 6199 6200 static int perf_fasync(int fd, struct file *filp, int on) 6201 { 6202 struct inode *inode = file_inode(filp); 6203 struct perf_event *event = filp->private_data; 6204 int retval; 6205 6206 inode_lock(inode); 6207 retval = fasync_helper(fd, filp, on, &event->fasync); 6208 inode_unlock(inode); 6209 6210 if (retval < 0) 6211 return retval; 6212 6213 return 0; 6214 } 6215 6216 static const struct file_operations perf_fops = { 6217 .llseek = no_llseek, 6218 .release = perf_release, 6219 .read = perf_read, 6220 .poll = perf_poll, 6221 .unlocked_ioctl = perf_ioctl, 6222 .compat_ioctl = perf_compat_ioctl, 6223 .mmap = perf_mmap, 6224 .fasync = perf_fasync, 6225 }; 6226 6227 /* 6228 * Perf event wakeup 6229 * 6230 * If there's data, ensure we set the poll() state and publish everything 6231 * to user-space before waking everybody up. 6232 */ 6233 6234 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6235 { 6236 /* only the parent has fasync state */ 6237 if (event->parent) 6238 event = event->parent; 6239 return &event->fasync; 6240 } 6241 6242 void perf_event_wakeup(struct perf_event *event) 6243 { 6244 ring_buffer_wakeup(event); 6245 6246 if (event->pending_kill) { 6247 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6248 event->pending_kill = 0; 6249 } 6250 } 6251 6252 static void perf_pending_event_disable(struct perf_event *event) 6253 { 6254 int cpu = READ_ONCE(event->pending_disable); 6255 6256 if (cpu < 0) 6257 return; 6258 6259 if (cpu == smp_processor_id()) { 6260 WRITE_ONCE(event->pending_disable, -1); 6261 perf_event_disable_local(event); 6262 return; 6263 } 6264 6265 /* 6266 * CPU-A CPU-B 6267 * 6268 * perf_event_disable_inatomic() 6269 * @pending_disable = CPU-A; 6270 * irq_work_queue(); 6271 * 6272 * sched-out 6273 * @pending_disable = -1; 6274 * 6275 * sched-in 6276 * perf_event_disable_inatomic() 6277 * @pending_disable = CPU-B; 6278 * irq_work_queue(); // FAILS 6279 * 6280 * irq_work_run() 6281 * perf_pending_event() 6282 * 6283 * But the event runs on CPU-B and wants disabling there. 6284 */ 6285 irq_work_queue_on(&event->pending, cpu); 6286 } 6287 6288 static void perf_pending_event(struct irq_work *entry) 6289 { 6290 struct perf_event *event = container_of(entry, struct perf_event, pending); 6291 int rctx; 6292 6293 rctx = perf_swevent_get_recursion_context(); 6294 /* 6295 * If we 'fail' here, that's OK, it means recursion is already disabled 6296 * and we won't recurse 'further'. 6297 */ 6298 6299 perf_pending_event_disable(event); 6300 6301 if (event->pending_wakeup) { 6302 event->pending_wakeup = 0; 6303 perf_event_wakeup(event); 6304 } 6305 6306 if (rctx >= 0) 6307 perf_swevent_put_recursion_context(rctx); 6308 } 6309 6310 /* 6311 * We assume there is only KVM supporting the callbacks. 6312 * Later on, we might change it to a list if there is 6313 * another virtualization implementation supporting the callbacks. 6314 */ 6315 struct perf_guest_info_callbacks *perf_guest_cbs; 6316 6317 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6318 { 6319 perf_guest_cbs = cbs; 6320 return 0; 6321 } 6322 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6323 6324 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6325 { 6326 perf_guest_cbs = NULL; 6327 return 0; 6328 } 6329 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6330 6331 static void 6332 perf_output_sample_regs(struct perf_output_handle *handle, 6333 struct pt_regs *regs, u64 mask) 6334 { 6335 int bit; 6336 DECLARE_BITMAP(_mask, 64); 6337 6338 bitmap_from_u64(_mask, mask); 6339 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6340 u64 val; 6341 6342 val = perf_reg_value(regs, bit); 6343 perf_output_put(handle, val); 6344 } 6345 } 6346 6347 static void perf_sample_regs_user(struct perf_regs *regs_user, 6348 struct pt_regs *regs, 6349 struct pt_regs *regs_user_copy) 6350 { 6351 if (user_mode(regs)) { 6352 regs_user->abi = perf_reg_abi(current); 6353 regs_user->regs = regs; 6354 } else if (!(current->flags & PF_KTHREAD)) { 6355 perf_get_regs_user(regs_user, regs, regs_user_copy); 6356 } else { 6357 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6358 regs_user->regs = NULL; 6359 } 6360 } 6361 6362 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6363 struct pt_regs *regs) 6364 { 6365 regs_intr->regs = regs; 6366 regs_intr->abi = perf_reg_abi(current); 6367 } 6368 6369 6370 /* 6371 * Get remaining task size from user stack pointer. 6372 * 6373 * It'd be better to take stack vma map and limit this more 6374 * precisely, but there's no way to get it safely under interrupt, 6375 * so using TASK_SIZE as limit. 6376 */ 6377 static u64 perf_ustack_task_size(struct pt_regs *regs) 6378 { 6379 unsigned long addr = perf_user_stack_pointer(regs); 6380 6381 if (!addr || addr >= TASK_SIZE) 6382 return 0; 6383 6384 return TASK_SIZE - addr; 6385 } 6386 6387 static u16 6388 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6389 struct pt_regs *regs) 6390 { 6391 u64 task_size; 6392 6393 /* No regs, no stack pointer, no dump. */ 6394 if (!regs) 6395 return 0; 6396 6397 /* 6398 * Check if we fit in with the requested stack size into the: 6399 * - TASK_SIZE 6400 * If we don't, we limit the size to the TASK_SIZE. 6401 * 6402 * - remaining sample size 6403 * If we don't, we customize the stack size to 6404 * fit in to the remaining sample size. 6405 */ 6406 6407 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6408 stack_size = min(stack_size, (u16) task_size); 6409 6410 /* Current header size plus static size and dynamic size. */ 6411 header_size += 2 * sizeof(u64); 6412 6413 /* Do we fit in with the current stack dump size? */ 6414 if ((u16) (header_size + stack_size) < header_size) { 6415 /* 6416 * If we overflow the maximum size for the sample, 6417 * we customize the stack dump size to fit in. 6418 */ 6419 stack_size = USHRT_MAX - header_size - sizeof(u64); 6420 stack_size = round_up(stack_size, sizeof(u64)); 6421 } 6422 6423 return stack_size; 6424 } 6425 6426 static void 6427 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6428 struct pt_regs *regs) 6429 { 6430 /* Case of a kernel thread, nothing to dump */ 6431 if (!regs) { 6432 u64 size = 0; 6433 perf_output_put(handle, size); 6434 } else { 6435 unsigned long sp; 6436 unsigned int rem; 6437 u64 dyn_size; 6438 mm_segment_t fs; 6439 6440 /* 6441 * We dump: 6442 * static size 6443 * - the size requested by user or the best one we can fit 6444 * in to the sample max size 6445 * data 6446 * - user stack dump data 6447 * dynamic size 6448 * - the actual dumped size 6449 */ 6450 6451 /* Static size. */ 6452 perf_output_put(handle, dump_size); 6453 6454 /* Data. */ 6455 sp = perf_user_stack_pointer(regs); 6456 fs = force_uaccess_begin(); 6457 rem = __output_copy_user(handle, (void *) sp, dump_size); 6458 force_uaccess_end(fs); 6459 dyn_size = dump_size - rem; 6460 6461 perf_output_skip(handle, rem); 6462 6463 /* Dynamic size. */ 6464 perf_output_put(handle, dyn_size); 6465 } 6466 } 6467 6468 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6469 struct perf_sample_data *data, 6470 size_t size) 6471 { 6472 struct perf_event *sampler = event->aux_event; 6473 struct perf_buffer *rb; 6474 6475 data->aux_size = 0; 6476 6477 if (!sampler) 6478 goto out; 6479 6480 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6481 goto out; 6482 6483 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6484 goto out; 6485 6486 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6487 if (!rb) 6488 goto out; 6489 6490 /* 6491 * If this is an NMI hit inside sampling code, don't take 6492 * the sample. See also perf_aux_sample_output(). 6493 */ 6494 if (READ_ONCE(rb->aux_in_sampling)) { 6495 data->aux_size = 0; 6496 } else { 6497 size = min_t(size_t, size, perf_aux_size(rb)); 6498 data->aux_size = ALIGN(size, sizeof(u64)); 6499 } 6500 ring_buffer_put(rb); 6501 6502 out: 6503 return data->aux_size; 6504 } 6505 6506 long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6507 struct perf_event *event, 6508 struct perf_output_handle *handle, 6509 unsigned long size) 6510 { 6511 unsigned long flags; 6512 long ret; 6513 6514 /* 6515 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6516 * paths. If we start calling them in NMI context, they may race with 6517 * the IRQ ones, that is, for example, re-starting an event that's just 6518 * been stopped, which is why we're using a separate callback that 6519 * doesn't change the event state. 6520 * 6521 * IRQs need to be disabled to prevent IPIs from racing with us. 6522 */ 6523 local_irq_save(flags); 6524 /* 6525 * Guard against NMI hits inside the critical section; 6526 * see also perf_prepare_sample_aux(). 6527 */ 6528 WRITE_ONCE(rb->aux_in_sampling, 1); 6529 barrier(); 6530 6531 ret = event->pmu->snapshot_aux(event, handle, size); 6532 6533 barrier(); 6534 WRITE_ONCE(rb->aux_in_sampling, 0); 6535 local_irq_restore(flags); 6536 6537 return ret; 6538 } 6539 6540 static void perf_aux_sample_output(struct perf_event *event, 6541 struct perf_output_handle *handle, 6542 struct perf_sample_data *data) 6543 { 6544 struct perf_event *sampler = event->aux_event; 6545 struct perf_buffer *rb; 6546 unsigned long pad; 6547 long size; 6548 6549 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6550 return; 6551 6552 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6553 if (!rb) 6554 return; 6555 6556 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6557 6558 /* 6559 * An error here means that perf_output_copy() failed (returned a 6560 * non-zero surplus that it didn't copy), which in its current 6561 * enlightened implementation is not possible. If that changes, we'd 6562 * like to know. 6563 */ 6564 if (WARN_ON_ONCE(size < 0)) 6565 goto out_put; 6566 6567 /* 6568 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6569 * perf_prepare_sample_aux(), so should not be more than that. 6570 */ 6571 pad = data->aux_size - size; 6572 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6573 pad = 8; 6574 6575 if (pad) { 6576 u64 zero = 0; 6577 perf_output_copy(handle, &zero, pad); 6578 } 6579 6580 out_put: 6581 ring_buffer_put(rb); 6582 } 6583 6584 static void __perf_event_header__init_id(struct perf_event_header *header, 6585 struct perf_sample_data *data, 6586 struct perf_event *event) 6587 { 6588 u64 sample_type = event->attr.sample_type; 6589 6590 data->type = sample_type; 6591 header->size += event->id_header_size; 6592 6593 if (sample_type & PERF_SAMPLE_TID) { 6594 /* namespace issues */ 6595 data->tid_entry.pid = perf_event_pid(event, current); 6596 data->tid_entry.tid = perf_event_tid(event, current); 6597 } 6598 6599 if (sample_type & PERF_SAMPLE_TIME) 6600 data->time = perf_event_clock(event); 6601 6602 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6603 data->id = primary_event_id(event); 6604 6605 if (sample_type & PERF_SAMPLE_STREAM_ID) 6606 data->stream_id = event->id; 6607 6608 if (sample_type & PERF_SAMPLE_CPU) { 6609 data->cpu_entry.cpu = raw_smp_processor_id(); 6610 data->cpu_entry.reserved = 0; 6611 } 6612 } 6613 6614 void perf_event_header__init_id(struct perf_event_header *header, 6615 struct perf_sample_data *data, 6616 struct perf_event *event) 6617 { 6618 if (event->attr.sample_id_all) 6619 __perf_event_header__init_id(header, data, event); 6620 } 6621 6622 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6623 struct perf_sample_data *data) 6624 { 6625 u64 sample_type = data->type; 6626 6627 if (sample_type & PERF_SAMPLE_TID) 6628 perf_output_put(handle, data->tid_entry); 6629 6630 if (sample_type & PERF_SAMPLE_TIME) 6631 perf_output_put(handle, data->time); 6632 6633 if (sample_type & PERF_SAMPLE_ID) 6634 perf_output_put(handle, data->id); 6635 6636 if (sample_type & PERF_SAMPLE_STREAM_ID) 6637 perf_output_put(handle, data->stream_id); 6638 6639 if (sample_type & PERF_SAMPLE_CPU) 6640 perf_output_put(handle, data->cpu_entry); 6641 6642 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6643 perf_output_put(handle, data->id); 6644 } 6645 6646 void perf_event__output_id_sample(struct perf_event *event, 6647 struct perf_output_handle *handle, 6648 struct perf_sample_data *sample) 6649 { 6650 if (event->attr.sample_id_all) 6651 __perf_event__output_id_sample(handle, sample); 6652 } 6653 6654 static void perf_output_read_one(struct perf_output_handle *handle, 6655 struct perf_event *event, 6656 u64 enabled, u64 running) 6657 { 6658 u64 read_format = event->attr.read_format; 6659 u64 values[4]; 6660 int n = 0; 6661 6662 values[n++] = perf_event_count(event); 6663 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6664 values[n++] = enabled + 6665 atomic64_read(&event->child_total_time_enabled); 6666 } 6667 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6668 values[n++] = running + 6669 atomic64_read(&event->child_total_time_running); 6670 } 6671 if (read_format & PERF_FORMAT_ID) 6672 values[n++] = primary_event_id(event); 6673 6674 __output_copy(handle, values, n * sizeof(u64)); 6675 } 6676 6677 static void perf_output_read_group(struct perf_output_handle *handle, 6678 struct perf_event *event, 6679 u64 enabled, u64 running) 6680 { 6681 struct perf_event *leader = event->group_leader, *sub; 6682 u64 read_format = event->attr.read_format; 6683 u64 values[5]; 6684 int n = 0; 6685 6686 values[n++] = 1 + leader->nr_siblings; 6687 6688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6689 values[n++] = enabled; 6690 6691 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6692 values[n++] = running; 6693 6694 if ((leader != event) && 6695 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6696 leader->pmu->read(leader); 6697 6698 values[n++] = perf_event_count(leader); 6699 if (read_format & PERF_FORMAT_ID) 6700 values[n++] = primary_event_id(leader); 6701 6702 __output_copy(handle, values, n * sizeof(u64)); 6703 6704 for_each_sibling_event(sub, leader) { 6705 n = 0; 6706 6707 if ((sub != event) && 6708 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6709 sub->pmu->read(sub); 6710 6711 values[n++] = perf_event_count(sub); 6712 if (read_format & PERF_FORMAT_ID) 6713 values[n++] = primary_event_id(sub); 6714 6715 __output_copy(handle, values, n * sizeof(u64)); 6716 } 6717 } 6718 6719 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6720 PERF_FORMAT_TOTAL_TIME_RUNNING) 6721 6722 /* 6723 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6724 * 6725 * The problem is that its both hard and excessively expensive to iterate the 6726 * child list, not to mention that its impossible to IPI the children running 6727 * on another CPU, from interrupt/NMI context. 6728 */ 6729 static void perf_output_read(struct perf_output_handle *handle, 6730 struct perf_event *event) 6731 { 6732 u64 enabled = 0, running = 0, now; 6733 u64 read_format = event->attr.read_format; 6734 6735 /* 6736 * compute total_time_enabled, total_time_running 6737 * based on snapshot values taken when the event 6738 * was last scheduled in. 6739 * 6740 * we cannot simply called update_context_time() 6741 * because of locking issue as we are called in 6742 * NMI context 6743 */ 6744 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6745 calc_timer_values(event, &now, &enabled, &running); 6746 6747 if (event->attr.read_format & PERF_FORMAT_GROUP) 6748 perf_output_read_group(handle, event, enabled, running); 6749 else 6750 perf_output_read_one(handle, event, enabled, running); 6751 } 6752 6753 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6754 { 6755 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6756 } 6757 6758 void perf_output_sample(struct perf_output_handle *handle, 6759 struct perf_event_header *header, 6760 struct perf_sample_data *data, 6761 struct perf_event *event) 6762 { 6763 u64 sample_type = data->type; 6764 6765 perf_output_put(handle, *header); 6766 6767 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6768 perf_output_put(handle, data->id); 6769 6770 if (sample_type & PERF_SAMPLE_IP) 6771 perf_output_put(handle, data->ip); 6772 6773 if (sample_type & PERF_SAMPLE_TID) 6774 perf_output_put(handle, data->tid_entry); 6775 6776 if (sample_type & PERF_SAMPLE_TIME) 6777 perf_output_put(handle, data->time); 6778 6779 if (sample_type & PERF_SAMPLE_ADDR) 6780 perf_output_put(handle, data->addr); 6781 6782 if (sample_type & PERF_SAMPLE_ID) 6783 perf_output_put(handle, data->id); 6784 6785 if (sample_type & PERF_SAMPLE_STREAM_ID) 6786 perf_output_put(handle, data->stream_id); 6787 6788 if (sample_type & PERF_SAMPLE_CPU) 6789 perf_output_put(handle, data->cpu_entry); 6790 6791 if (sample_type & PERF_SAMPLE_PERIOD) 6792 perf_output_put(handle, data->period); 6793 6794 if (sample_type & PERF_SAMPLE_READ) 6795 perf_output_read(handle, event); 6796 6797 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6798 int size = 1; 6799 6800 size += data->callchain->nr; 6801 size *= sizeof(u64); 6802 __output_copy(handle, data->callchain, size); 6803 } 6804 6805 if (sample_type & PERF_SAMPLE_RAW) { 6806 struct perf_raw_record *raw = data->raw; 6807 6808 if (raw) { 6809 struct perf_raw_frag *frag = &raw->frag; 6810 6811 perf_output_put(handle, raw->size); 6812 do { 6813 if (frag->copy) { 6814 __output_custom(handle, frag->copy, 6815 frag->data, frag->size); 6816 } else { 6817 __output_copy(handle, frag->data, 6818 frag->size); 6819 } 6820 if (perf_raw_frag_last(frag)) 6821 break; 6822 frag = frag->next; 6823 } while (1); 6824 if (frag->pad) 6825 __output_skip(handle, NULL, frag->pad); 6826 } else { 6827 struct { 6828 u32 size; 6829 u32 data; 6830 } raw = { 6831 .size = sizeof(u32), 6832 .data = 0, 6833 }; 6834 perf_output_put(handle, raw); 6835 } 6836 } 6837 6838 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6839 if (data->br_stack) { 6840 size_t size; 6841 6842 size = data->br_stack->nr 6843 * sizeof(struct perf_branch_entry); 6844 6845 perf_output_put(handle, data->br_stack->nr); 6846 if (perf_sample_save_hw_index(event)) 6847 perf_output_put(handle, data->br_stack->hw_idx); 6848 perf_output_copy(handle, data->br_stack->entries, size); 6849 } else { 6850 /* 6851 * we always store at least the value of nr 6852 */ 6853 u64 nr = 0; 6854 perf_output_put(handle, nr); 6855 } 6856 } 6857 6858 if (sample_type & PERF_SAMPLE_REGS_USER) { 6859 u64 abi = data->regs_user.abi; 6860 6861 /* 6862 * If there are no regs to dump, notice it through 6863 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6864 */ 6865 perf_output_put(handle, abi); 6866 6867 if (abi) { 6868 u64 mask = event->attr.sample_regs_user; 6869 perf_output_sample_regs(handle, 6870 data->regs_user.regs, 6871 mask); 6872 } 6873 } 6874 6875 if (sample_type & PERF_SAMPLE_STACK_USER) { 6876 perf_output_sample_ustack(handle, 6877 data->stack_user_size, 6878 data->regs_user.regs); 6879 } 6880 6881 if (sample_type & PERF_SAMPLE_WEIGHT) 6882 perf_output_put(handle, data->weight); 6883 6884 if (sample_type & PERF_SAMPLE_DATA_SRC) 6885 perf_output_put(handle, data->data_src.val); 6886 6887 if (sample_type & PERF_SAMPLE_TRANSACTION) 6888 perf_output_put(handle, data->txn); 6889 6890 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6891 u64 abi = data->regs_intr.abi; 6892 /* 6893 * If there are no regs to dump, notice it through 6894 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6895 */ 6896 perf_output_put(handle, abi); 6897 6898 if (abi) { 6899 u64 mask = event->attr.sample_regs_intr; 6900 6901 perf_output_sample_regs(handle, 6902 data->regs_intr.regs, 6903 mask); 6904 } 6905 } 6906 6907 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6908 perf_output_put(handle, data->phys_addr); 6909 6910 if (sample_type & PERF_SAMPLE_CGROUP) 6911 perf_output_put(handle, data->cgroup); 6912 6913 if (sample_type & PERF_SAMPLE_AUX) { 6914 perf_output_put(handle, data->aux_size); 6915 6916 if (data->aux_size) 6917 perf_aux_sample_output(event, handle, data); 6918 } 6919 6920 if (!event->attr.watermark) { 6921 int wakeup_events = event->attr.wakeup_events; 6922 6923 if (wakeup_events) { 6924 struct perf_buffer *rb = handle->rb; 6925 int events = local_inc_return(&rb->events); 6926 6927 if (events >= wakeup_events) { 6928 local_sub(wakeup_events, &rb->events); 6929 local_inc(&rb->wakeup); 6930 } 6931 } 6932 } 6933 } 6934 6935 static u64 perf_virt_to_phys(u64 virt) 6936 { 6937 u64 phys_addr = 0; 6938 struct page *p = NULL; 6939 6940 if (!virt) 6941 return 0; 6942 6943 if (virt >= TASK_SIZE) { 6944 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6945 if (virt_addr_valid((void *)(uintptr_t)virt) && 6946 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6947 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6948 } else { 6949 /* 6950 * Walking the pages tables for user address. 6951 * Interrupts are disabled, so it prevents any tear down 6952 * of the page tables. 6953 * Try IRQ-safe get_user_page_fast_only first. 6954 * If failed, leave phys_addr as 0. 6955 */ 6956 if (current->mm != NULL) { 6957 pagefault_disable(); 6958 if (get_user_page_fast_only(virt, 0, &p)) 6959 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6960 pagefault_enable(); 6961 } 6962 6963 if (p) 6964 put_page(p); 6965 } 6966 6967 return phys_addr; 6968 } 6969 6970 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6971 6972 struct perf_callchain_entry * 6973 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6974 { 6975 bool kernel = !event->attr.exclude_callchain_kernel; 6976 bool user = !event->attr.exclude_callchain_user; 6977 /* Disallow cross-task user callchains. */ 6978 bool crosstask = event->ctx->task && event->ctx->task != current; 6979 const u32 max_stack = event->attr.sample_max_stack; 6980 struct perf_callchain_entry *callchain; 6981 6982 if (!kernel && !user) 6983 return &__empty_callchain; 6984 6985 callchain = get_perf_callchain(regs, 0, kernel, user, 6986 max_stack, crosstask, true); 6987 return callchain ?: &__empty_callchain; 6988 } 6989 6990 void perf_prepare_sample(struct perf_event_header *header, 6991 struct perf_sample_data *data, 6992 struct perf_event *event, 6993 struct pt_regs *regs) 6994 { 6995 u64 sample_type = event->attr.sample_type; 6996 6997 header->type = PERF_RECORD_SAMPLE; 6998 header->size = sizeof(*header) + event->header_size; 6999 7000 header->misc = 0; 7001 header->misc |= perf_misc_flags(regs); 7002 7003 __perf_event_header__init_id(header, data, event); 7004 7005 if (sample_type & PERF_SAMPLE_IP) 7006 data->ip = perf_instruction_pointer(regs); 7007 7008 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7009 int size = 1; 7010 7011 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7012 data->callchain = perf_callchain(event, regs); 7013 7014 size += data->callchain->nr; 7015 7016 header->size += size * sizeof(u64); 7017 } 7018 7019 if (sample_type & PERF_SAMPLE_RAW) { 7020 struct perf_raw_record *raw = data->raw; 7021 int size; 7022 7023 if (raw) { 7024 struct perf_raw_frag *frag = &raw->frag; 7025 u32 sum = 0; 7026 7027 do { 7028 sum += frag->size; 7029 if (perf_raw_frag_last(frag)) 7030 break; 7031 frag = frag->next; 7032 } while (1); 7033 7034 size = round_up(sum + sizeof(u32), sizeof(u64)); 7035 raw->size = size - sizeof(u32); 7036 frag->pad = raw->size - sum; 7037 } else { 7038 size = sizeof(u64); 7039 } 7040 7041 header->size += size; 7042 } 7043 7044 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7045 int size = sizeof(u64); /* nr */ 7046 if (data->br_stack) { 7047 if (perf_sample_save_hw_index(event)) 7048 size += sizeof(u64); 7049 7050 size += data->br_stack->nr 7051 * sizeof(struct perf_branch_entry); 7052 } 7053 header->size += size; 7054 } 7055 7056 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7057 perf_sample_regs_user(&data->regs_user, regs, 7058 &data->regs_user_copy); 7059 7060 if (sample_type & PERF_SAMPLE_REGS_USER) { 7061 /* regs dump ABI info */ 7062 int size = sizeof(u64); 7063 7064 if (data->regs_user.regs) { 7065 u64 mask = event->attr.sample_regs_user; 7066 size += hweight64(mask) * sizeof(u64); 7067 } 7068 7069 header->size += size; 7070 } 7071 7072 if (sample_type & PERF_SAMPLE_STACK_USER) { 7073 /* 7074 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7075 * processed as the last one or have additional check added 7076 * in case new sample type is added, because we could eat 7077 * up the rest of the sample size. 7078 */ 7079 u16 stack_size = event->attr.sample_stack_user; 7080 u16 size = sizeof(u64); 7081 7082 stack_size = perf_sample_ustack_size(stack_size, header->size, 7083 data->regs_user.regs); 7084 7085 /* 7086 * If there is something to dump, add space for the dump 7087 * itself and for the field that tells the dynamic size, 7088 * which is how many have been actually dumped. 7089 */ 7090 if (stack_size) 7091 size += sizeof(u64) + stack_size; 7092 7093 data->stack_user_size = stack_size; 7094 header->size += size; 7095 } 7096 7097 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7098 /* regs dump ABI info */ 7099 int size = sizeof(u64); 7100 7101 perf_sample_regs_intr(&data->regs_intr, regs); 7102 7103 if (data->regs_intr.regs) { 7104 u64 mask = event->attr.sample_regs_intr; 7105 7106 size += hweight64(mask) * sizeof(u64); 7107 } 7108 7109 header->size += size; 7110 } 7111 7112 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7113 data->phys_addr = perf_virt_to_phys(data->addr); 7114 7115 #ifdef CONFIG_CGROUP_PERF 7116 if (sample_type & PERF_SAMPLE_CGROUP) { 7117 struct cgroup *cgrp; 7118 7119 /* protected by RCU */ 7120 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7121 data->cgroup = cgroup_id(cgrp); 7122 } 7123 #endif 7124 7125 if (sample_type & PERF_SAMPLE_AUX) { 7126 u64 size; 7127 7128 header->size += sizeof(u64); /* size */ 7129 7130 /* 7131 * Given the 16bit nature of header::size, an AUX sample can 7132 * easily overflow it, what with all the preceding sample bits. 7133 * Make sure this doesn't happen by using up to U16_MAX bytes 7134 * per sample in total (rounded down to 8 byte boundary). 7135 */ 7136 size = min_t(size_t, U16_MAX - header->size, 7137 event->attr.aux_sample_size); 7138 size = rounddown(size, 8); 7139 size = perf_prepare_sample_aux(event, data, size); 7140 7141 WARN_ON_ONCE(size + header->size > U16_MAX); 7142 header->size += size; 7143 } 7144 /* 7145 * If you're adding more sample types here, you likely need to do 7146 * something about the overflowing header::size, like repurpose the 7147 * lowest 3 bits of size, which should be always zero at the moment. 7148 * This raises a more important question, do we really need 512k sized 7149 * samples and why, so good argumentation is in order for whatever you 7150 * do here next. 7151 */ 7152 WARN_ON_ONCE(header->size & 7); 7153 } 7154 7155 static __always_inline int 7156 __perf_event_output(struct perf_event *event, 7157 struct perf_sample_data *data, 7158 struct pt_regs *regs, 7159 int (*output_begin)(struct perf_output_handle *, 7160 struct perf_event *, 7161 unsigned int)) 7162 { 7163 struct perf_output_handle handle; 7164 struct perf_event_header header; 7165 int err; 7166 7167 /* protect the callchain buffers */ 7168 rcu_read_lock(); 7169 7170 perf_prepare_sample(&header, data, event, regs); 7171 7172 err = output_begin(&handle, event, header.size); 7173 if (err) 7174 goto exit; 7175 7176 perf_output_sample(&handle, &header, data, event); 7177 7178 perf_output_end(&handle); 7179 7180 exit: 7181 rcu_read_unlock(); 7182 return err; 7183 } 7184 7185 void 7186 perf_event_output_forward(struct perf_event *event, 7187 struct perf_sample_data *data, 7188 struct pt_regs *regs) 7189 { 7190 __perf_event_output(event, data, regs, perf_output_begin_forward); 7191 } 7192 7193 void 7194 perf_event_output_backward(struct perf_event *event, 7195 struct perf_sample_data *data, 7196 struct pt_regs *regs) 7197 { 7198 __perf_event_output(event, data, regs, perf_output_begin_backward); 7199 } 7200 7201 int 7202 perf_event_output(struct perf_event *event, 7203 struct perf_sample_data *data, 7204 struct pt_regs *regs) 7205 { 7206 return __perf_event_output(event, data, regs, perf_output_begin); 7207 } 7208 7209 /* 7210 * read event_id 7211 */ 7212 7213 struct perf_read_event { 7214 struct perf_event_header header; 7215 7216 u32 pid; 7217 u32 tid; 7218 }; 7219 7220 static void 7221 perf_event_read_event(struct perf_event *event, 7222 struct task_struct *task) 7223 { 7224 struct perf_output_handle handle; 7225 struct perf_sample_data sample; 7226 struct perf_read_event read_event = { 7227 .header = { 7228 .type = PERF_RECORD_READ, 7229 .misc = 0, 7230 .size = sizeof(read_event) + event->read_size, 7231 }, 7232 .pid = perf_event_pid(event, task), 7233 .tid = perf_event_tid(event, task), 7234 }; 7235 int ret; 7236 7237 perf_event_header__init_id(&read_event.header, &sample, event); 7238 ret = perf_output_begin(&handle, event, read_event.header.size); 7239 if (ret) 7240 return; 7241 7242 perf_output_put(&handle, read_event); 7243 perf_output_read(&handle, event); 7244 perf_event__output_id_sample(event, &handle, &sample); 7245 7246 perf_output_end(&handle); 7247 } 7248 7249 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7250 7251 static void 7252 perf_iterate_ctx(struct perf_event_context *ctx, 7253 perf_iterate_f output, 7254 void *data, bool all) 7255 { 7256 struct perf_event *event; 7257 7258 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7259 if (!all) { 7260 if (event->state < PERF_EVENT_STATE_INACTIVE) 7261 continue; 7262 if (!event_filter_match(event)) 7263 continue; 7264 } 7265 7266 output(event, data); 7267 } 7268 } 7269 7270 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7271 { 7272 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7273 struct perf_event *event; 7274 7275 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7276 /* 7277 * Skip events that are not fully formed yet; ensure that 7278 * if we observe event->ctx, both event and ctx will be 7279 * complete enough. See perf_install_in_context(). 7280 */ 7281 if (!smp_load_acquire(&event->ctx)) 7282 continue; 7283 7284 if (event->state < PERF_EVENT_STATE_INACTIVE) 7285 continue; 7286 if (!event_filter_match(event)) 7287 continue; 7288 output(event, data); 7289 } 7290 } 7291 7292 /* 7293 * Iterate all events that need to receive side-band events. 7294 * 7295 * For new callers; ensure that account_pmu_sb_event() includes 7296 * your event, otherwise it might not get delivered. 7297 */ 7298 static void 7299 perf_iterate_sb(perf_iterate_f output, void *data, 7300 struct perf_event_context *task_ctx) 7301 { 7302 struct perf_event_context *ctx; 7303 int ctxn; 7304 7305 rcu_read_lock(); 7306 preempt_disable(); 7307 7308 /* 7309 * If we have task_ctx != NULL we only notify the task context itself. 7310 * The task_ctx is set only for EXIT events before releasing task 7311 * context. 7312 */ 7313 if (task_ctx) { 7314 perf_iterate_ctx(task_ctx, output, data, false); 7315 goto done; 7316 } 7317 7318 perf_iterate_sb_cpu(output, data); 7319 7320 for_each_task_context_nr(ctxn) { 7321 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7322 if (ctx) 7323 perf_iterate_ctx(ctx, output, data, false); 7324 } 7325 done: 7326 preempt_enable(); 7327 rcu_read_unlock(); 7328 } 7329 7330 /* 7331 * Clear all file-based filters at exec, they'll have to be 7332 * re-instated when/if these objects are mmapped again. 7333 */ 7334 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7335 { 7336 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7337 struct perf_addr_filter *filter; 7338 unsigned int restart = 0, count = 0; 7339 unsigned long flags; 7340 7341 if (!has_addr_filter(event)) 7342 return; 7343 7344 raw_spin_lock_irqsave(&ifh->lock, flags); 7345 list_for_each_entry(filter, &ifh->list, entry) { 7346 if (filter->path.dentry) { 7347 event->addr_filter_ranges[count].start = 0; 7348 event->addr_filter_ranges[count].size = 0; 7349 restart++; 7350 } 7351 7352 count++; 7353 } 7354 7355 if (restart) 7356 event->addr_filters_gen++; 7357 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7358 7359 if (restart) 7360 perf_event_stop(event, 1); 7361 } 7362 7363 void perf_event_exec(void) 7364 { 7365 struct perf_event_context *ctx; 7366 int ctxn; 7367 7368 rcu_read_lock(); 7369 for_each_task_context_nr(ctxn) { 7370 ctx = current->perf_event_ctxp[ctxn]; 7371 if (!ctx) 7372 continue; 7373 7374 perf_event_enable_on_exec(ctxn); 7375 7376 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 7377 true); 7378 } 7379 rcu_read_unlock(); 7380 } 7381 7382 struct remote_output { 7383 struct perf_buffer *rb; 7384 int err; 7385 }; 7386 7387 static void __perf_event_output_stop(struct perf_event *event, void *data) 7388 { 7389 struct perf_event *parent = event->parent; 7390 struct remote_output *ro = data; 7391 struct perf_buffer *rb = ro->rb; 7392 struct stop_event_data sd = { 7393 .event = event, 7394 }; 7395 7396 if (!has_aux(event)) 7397 return; 7398 7399 if (!parent) 7400 parent = event; 7401 7402 /* 7403 * In case of inheritance, it will be the parent that links to the 7404 * ring-buffer, but it will be the child that's actually using it. 7405 * 7406 * We are using event::rb to determine if the event should be stopped, 7407 * however this may race with ring_buffer_attach() (through set_output), 7408 * which will make us skip the event that actually needs to be stopped. 7409 * So ring_buffer_attach() has to stop an aux event before re-assigning 7410 * its rb pointer. 7411 */ 7412 if (rcu_dereference(parent->rb) == rb) 7413 ro->err = __perf_event_stop(&sd); 7414 } 7415 7416 static int __perf_pmu_output_stop(void *info) 7417 { 7418 struct perf_event *event = info; 7419 struct pmu *pmu = event->ctx->pmu; 7420 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7421 struct remote_output ro = { 7422 .rb = event->rb, 7423 }; 7424 7425 rcu_read_lock(); 7426 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7427 if (cpuctx->task_ctx) 7428 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7429 &ro, false); 7430 rcu_read_unlock(); 7431 7432 return ro.err; 7433 } 7434 7435 static void perf_pmu_output_stop(struct perf_event *event) 7436 { 7437 struct perf_event *iter; 7438 int err, cpu; 7439 7440 restart: 7441 rcu_read_lock(); 7442 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7443 /* 7444 * For per-CPU events, we need to make sure that neither they 7445 * nor their children are running; for cpu==-1 events it's 7446 * sufficient to stop the event itself if it's active, since 7447 * it can't have children. 7448 */ 7449 cpu = iter->cpu; 7450 if (cpu == -1) 7451 cpu = READ_ONCE(iter->oncpu); 7452 7453 if (cpu == -1) 7454 continue; 7455 7456 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7457 if (err == -EAGAIN) { 7458 rcu_read_unlock(); 7459 goto restart; 7460 } 7461 } 7462 rcu_read_unlock(); 7463 } 7464 7465 /* 7466 * task tracking -- fork/exit 7467 * 7468 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7469 */ 7470 7471 struct perf_task_event { 7472 struct task_struct *task; 7473 struct perf_event_context *task_ctx; 7474 7475 struct { 7476 struct perf_event_header header; 7477 7478 u32 pid; 7479 u32 ppid; 7480 u32 tid; 7481 u32 ptid; 7482 u64 time; 7483 } event_id; 7484 }; 7485 7486 static int perf_event_task_match(struct perf_event *event) 7487 { 7488 return event->attr.comm || event->attr.mmap || 7489 event->attr.mmap2 || event->attr.mmap_data || 7490 event->attr.task; 7491 } 7492 7493 static void perf_event_task_output(struct perf_event *event, 7494 void *data) 7495 { 7496 struct perf_task_event *task_event = data; 7497 struct perf_output_handle handle; 7498 struct perf_sample_data sample; 7499 struct task_struct *task = task_event->task; 7500 int ret, size = task_event->event_id.header.size; 7501 7502 if (!perf_event_task_match(event)) 7503 return; 7504 7505 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7506 7507 ret = perf_output_begin(&handle, event, 7508 task_event->event_id.header.size); 7509 if (ret) 7510 goto out; 7511 7512 task_event->event_id.pid = perf_event_pid(event, task); 7513 task_event->event_id.tid = perf_event_tid(event, task); 7514 7515 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7516 task_event->event_id.ppid = perf_event_pid(event, 7517 task->real_parent); 7518 task_event->event_id.ptid = perf_event_pid(event, 7519 task->real_parent); 7520 } else { /* PERF_RECORD_FORK */ 7521 task_event->event_id.ppid = perf_event_pid(event, current); 7522 task_event->event_id.ptid = perf_event_tid(event, current); 7523 } 7524 7525 task_event->event_id.time = perf_event_clock(event); 7526 7527 perf_output_put(&handle, task_event->event_id); 7528 7529 perf_event__output_id_sample(event, &handle, &sample); 7530 7531 perf_output_end(&handle); 7532 out: 7533 task_event->event_id.header.size = size; 7534 } 7535 7536 static void perf_event_task(struct task_struct *task, 7537 struct perf_event_context *task_ctx, 7538 int new) 7539 { 7540 struct perf_task_event task_event; 7541 7542 if (!atomic_read(&nr_comm_events) && 7543 !atomic_read(&nr_mmap_events) && 7544 !atomic_read(&nr_task_events)) 7545 return; 7546 7547 task_event = (struct perf_task_event){ 7548 .task = task, 7549 .task_ctx = task_ctx, 7550 .event_id = { 7551 .header = { 7552 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7553 .misc = 0, 7554 .size = sizeof(task_event.event_id), 7555 }, 7556 /* .pid */ 7557 /* .ppid */ 7558 /* .tid */ 7559 /* .ptid */ 7560 /* .time */ 7561 }, 7562 }; 7563 7564 perf_iterate_sb(perf_event_task_output, 7565 &task_event, 7566 task_ctx); 7567 } 7568 7569 void perf_event_fork(struct task_struct *task) 7570 { 7571 perf_event_task(task, NULL, 1); 7572 perf_event_namespaces(task); 7573 } 7574 7575 /* 7576 * comm tracking 7577 */ 7578 7579 struct perf_comm_event { 7580 struct task_struct *task; 7581 char *comm; 7582 int comm_size; 7583 7584 struct { 7585 struct perf_event_header header; 7586 7587 u32 pid; 7588 u32 tid; 7589 } event_id; 7590 }; 7591 7592 static int perf_event_comm_match(struct perf_event *event) 7593 { 7594 return event->attr.comm; 7595 } 7596 7597 static void perf_event_comm_output(struct perf_event *event, 7598 void *data) 7599 { 7600 struct perf_comm_event *comm_event = data; 7601 struct perf_output_handle handle; 7602 struct perf_sample_data sample; 7603 int size = comm_event->event_id.header.size; 7604 int ret; 7605 7606 if (!perf_event_comm_match(event)) 7607 return; 7608 7609 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7610 ret = perf_output_begin(&handle, event, 7611 comm_event->event_id.header.size); 7612 7613 if (ret) 7614 goto out; 7615 7616 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7617 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7618 7619 perf_output_put(&handle, comm_event->event_id); 7620 __output_copy(&handle, comm_event->comm, 7621 comm_event->comm_size); 7622 7623 perf_event__output_id_sample(event, &handle, &sample); 7624 7625 perf_output_end(&handle); 7626 out: 7627 comm_event->event_id.header.size = size; 7628 } 7629 7630 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7631 { 7632 char comm[TASK_COMM_LEN]; 7633 unsigned int size; 7634 7635 memset(comm, 0, sizeof(comm)); 7636 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7637 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7638 7639 comm_event->comm = comm; 7640 comm_event->comm_size = size; 7641 7642 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7643 7644 perf_iterate_sb(perf_event_comm_output, 7645 comm_event, 7646 NULL); 7647 } 7648 7649 void perf_event_comm(struct task_struct *task, bool exec) 7650 { 7651 struct perf_comm_event comm_event; 7652 7653 if (!atomic_read(&nr_comm_events)) 7654 return; 7655 7656 comm_event = (struct perf_comm_event){ 7657 .task = task, 7658 /* .comm */ 7659 /* .comm_size */ 7660 .event_id = { 7661 .header = { 7662 .type = PERF_RECORD_COMM, 7663 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7664 /* .size */ 7665 }, 7666 /* .pid */ 7667 /* .tid */ 7668 }, 7669 }; 7670 7671 perf_event_comm_event(&comm_event); 7672 } 7673 7674 /* 7675 * namespaces tracking 7676 */ 7677 7678 struct perf_namespaces_event { 7679 struct task_struct *task; 7680 7681 struct { 7682 struct perf_event_header header; 7683 7684 u32 pid; 7685 u32 tid; 7686 u64 nr_namespaces; 7687 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7688 } event_id; 7689 }; 7690 7691 static int perf_event_namespaces_match(struct perf_event *event) 7692 { 7693 return event->attr.namespaces; 7694 } 7695 7696 static void perf_event_namespaces_output(struct perf_event *event, 7697 void *data) 7698 { 7699 struct perf_namespaces_event *namespaces_event = data; 7700 struct perf_output_handle handle; 7701 struct perf_sample_data sample; 7702 u16 header_size = namespaces_event->event_id.header.size; 7703 int ret; 7704 7705 if (!perf_event_namespaces_match(event)) 7706 return; 7707 7708 perf_event_header__init_id(&namespaces_event->event_id.header, 7709 &sample, event); 7710 ret = perf_output_begin(&handle, event, 7711 namespaces_event->event_id.header.size); 7712 if (ret) 7713 goto out; 7714 7715 namespaces_event->event_id.pid = perf_event_pid(event, 7716 namespaces_event->task); 7717 namespaces_event->event_id.tid = perf_event_tid(event, 7718 namespaces_event->task); 7719 7720 perf_output_put(&handle, namespaces_event->event_id); 7721 7722 perf_event__output_id_sample(event, &handle, &sample); 7723 7724 perf_output_end(&handle); 7725 out: 7726 namespaces_event->event_id.header.size = header_size; 7727 } 7728 7729 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7730 struct task_struct *task, 7731 const struct proc_ns_operations *ns_ops) 7732 { 7733 struct path ns_path; 7734 struct inode *ns_inode; 7735 int error; 7736 7737 error = ns_get_path(&ns_path, task, ns_ops); 7738 if (!error) { 7739 ns_inode = ns_path.dentry->d_inode; 7740 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7741 ns_link_info->ino = ns_inode->i_ino; 7742 path_put(&ns_path); 7743 } 7744 } 7745 7746 void perf_event_namespaces(struct task_struct *task) 7747 { 7748 struct perf_namespaces_event namespaces_event; 7749 struct perf_ns_link_info *ns_link_info; 7750 7751 if (!atomic_read(&nr_namespaces_events)) 7752 return; 7753 7754 namespaces_event = (struct perf_namespaces_event){ 7755 .task = task, 7756 .event_id = { 7757 .header = { 7758 .type = PERF_RECORD_NAMESPACES, 7759 .misc = 0, 7760 .size = sizeof(namespaces_event.event_id), 7761 }, 7762 /* .pid */ 7763 /* .tid */ 7764 .nr_namespaces = NR_NAMESPACES, 7765 /* .link_info[NR_NAMESPACES] */ 7766 }, 7767 }; 7768 7769 ns_link_info = namespaces_event.event_id.link_info; 7770 7771 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7772 task, &mntns_operations); 7773 7774 #ifdef CONFIG_USER_NS 7775 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7776 task, &userns_operations); 7777 #endif 7778 #ifdef CONFIG_NET_NS 7779 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7780 task, &netns_operations); 7781 #endif 7782 #ifdef CONFIG_UTS_NS 7783 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7784 task, &utsns_operations); 7785 #endif 7786 #ifdef CONFIG_IPC_NS 7787 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7788 task, &ipcns_operations); 7789 #endif 7790 #ifdef CONFIG_PID_NS 7791 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7792 task, &pidns_operations); 7793 #endif 7794 #ifdef CONFIG_CGROUPS 7795 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7796 task, &cgroupns_operations); 7797 #endif 7798 7799 perf_iterate_sb(perf_event_namespaces_output, 7800 &namespaces_event, 7801 NULL); 7802 } 7803 7804 /* 7805 * cgroup tracking 7806 */ 7807 #ifdef CONFIG_CGROUP_PERF 7808 7809 struct perf_cgroup_event { 7810 char *path; 7811 int path_size; 7812 struct { 7813 struct perf_event_header header; 7814 u64 id; 7815 char path[]; 7816 } event_id; 7817 }; 7818 7819 static int perf_event_cgroup_match(struct perf_event *event) 7820 { 7821 return event->attr.cgroup; 7822 } 7823 7824 static void perf_event_cgroup_output(struct perf_event *event, void *data) 7825 { 7826 struct perf_cgroup_event *cgroup_event = data; 7827 struct perf_output_handle handle; 7828 struct perf_sample_data sample; 7829 u16 header_size = cgroup_event->event_id.header.size; 7830 int ret; 7831 7832 if (!perf_event_cgroup_match(event)) 7833 return; 7834 7835 perf_event_header__init_id(&cgroup_event->event_id.header, 7836 &sample, event); 7837 ret = perf_output_begin(&handle, event, 7838 cgroup_event->event_id.header.size); 7839 if (ret) 7840 goto out; 7841 7842 perf_output_put(&handle, cgroup_event->event_id); 7843 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 7844 7845 perf_event__output_id_sample(event, &handle, &sample); 7846 7847 perf_output_end(&handle); 7848 out: 7849 cgroup_event->event_id.header.size = header_size; 7850 } 7851 7852 static void perf_event_cgroup(struct cgroup *cgrp) 7853 { 7854 struct perf_cgroup_event cgroup_event; 7855 char path_enomem[16] = "//enomem"; 7856 char *pathname; 7857 size_t size; 7858 7859 if (!atomic_read(&nr_cgroup_events)) 7860 return; 7861 7862 cgroup_event = (struct perf_cgroup_event){ 7863 .event_id = { 7864 .header = { 7865 .type = PERF_RECORD_CGROUP, 7866 .misc = 0, 7867 .size = sizeof(cgroup_event.event_id), 7868 }, 7869 .id = cgroup_id(cgrp), 7870 }, 7871 }; 7872 7873 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 7874 if (pathname == NULL) { 7875 cgroup_event.path = path_enomem; 7876 } else { 7877 /* just to be sure to have enough space for alignment */ 7878 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 7879 cgroup_event.path = pathname; 7880 } 7881 7882 /* 7883 * Since our buffer works in 8 byte units we need to align our string 7884 * size to a multiple of 8. However, we must guarantee the tail end is 7885 * zero'd out to avoid leaking random bits to userspace. 7886 */ 7887 size = strlen(cgroup_event.path) + 1; 7888 while (!IS_ALIGNED(size, sizeof(u64))) 7889 cgroup_event.path[size++] = '\0'; 7890 7891 cgroup_event.event_id.header.size += size; 7892 cgroup_event.path_size = size; 7893 7894 perf_iterate_sb(perf_event_cgroup_output, 7895 &cgroup_event, 7896 NULL); 7897 7898 kfree(pathname); 7899 } 7900 7901 #endif 7902 7903 /* 7904 * mmap tracking 7905 */ 7906 7907 struct perf_mmap_event { 7908 struct vm_area_struct *vma; 7909 7910 const char *file_name; 7911 int file_size; 7912 int maj, min; 7913 u64 ino; 7914 u64 ino_generation; 7915 u32 prot, flags; 7916 7917 struct { 7918 struct perf_event_header header; 7919 7920 u32 pid; 7921 u32 tid; 7922 u64 start; 7923 u64 len; 7924 u64 pgoff; 7925 } event_id; 7926 }; 7927 7928 static int perf_event_mmap_match(struct perf_event *event, 7929 void *data) 7930 { 7931 struct perf_mmap_event *mmap_event = data; 7932 struct vm_area_struct *vma = mmap_event->vma; 7933 int executable = vma->vm_flags & VM_EXEC; 7934 7935 return (!executable && event->attr.mmap_data) || 7936 (executable && (event->attr.mmap || event->attr.mmap2)); 7937 } 7938 7939 static void perf_event_mmap_output(struct perf_event *event, 7940 void *data) 7941 { 7942 struct perf_mmap_event *mmap_event = data; 7943 struct perf_output_handle handle; 7944 struct perf_sample_data sample; 7945 int size = mmap_event->event_id.header.size; 7946 u32 type = mmap_event->event_id.header.type; 7947 int ret; 7948 7949 if (!perf_event_mmap_match(event, data)) 7950 return; 7951 7952 if (event->attr.mmap2) { 7953 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7954 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7955 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7956 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7957 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7958 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7959 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7960 } 7961 7962 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7963 ret = perf_output_begin(&handle, event, 7964 mmap_event->event_id.header.size); 7965 if (ret) 7966 goto out; 7967 7968 mmap_event->event_id.pid = perf_event_pid(event, current); 7969 mmap_event->event_id.tid = perf_event_tid(event, current); 7970 7971 perf_output_put(&handle, mmap_event->event_id); 7972 7973 if (event->attr.mmap2) { 7974 perf_output_put(&handle, mmap_event->maj); 7975 perf_output_put(&handle, mmap_event->min); 7976 perf_output_put(&handle, mmap_event->ino); 7977 perf_output_put(&handle, mmap_event->ino_generation); 7978 perf_output_put(&handle, mmap_event->prot); 7979 perf_output_put(&handle, mmap_event->flags); 7980 } 7981 7982 __output_copy(&handle, mmap_event->file_name, 7983 mmap_event->file_size); 7984 7985 perf_event__output_id_sample(event, &handle, &sample); 7986 7987 perf_output_end(&handle); 7988 out: 7989 mmap_event->event_id.header.size = size; 7990 mmap_event->event_id.header.type = type; 7991 } 7992 7993 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7994 { 7995 struct vm_area_struct *vma = mmap_event->vma; 7996 struct file *file = vma->vm_file; 7997 int maj = 0, min = 0; 7998 u64 ino = 0, gen = 0; 7999 u32 prot = 0, flags = 0; 8000 unsigned int size; 8001 char tmp[16]; 8002 char *buf = NULL; 8003 char *name; 8004 8005 if (vma->vm_flags & VM_READ) 8006 prot |= PROT_READ; 8007 if (vma->vm_flags & VM_WRITE) 8008 prot |= PROT_WRITE; 8009 if (vma->vm_flags & VM_EXEC) 8010 prot |= PROT_EXEC; 8011 8012 if (vma->vm_flags & VM_MAYSHARE) 8013 flags = MAP_SHARED; 8014 else 8015 flags = MAP_PRIVATE; 8016 8017 if (vma->vm_flags & VM_DENYWRITE) 8018 flags |= MAP_DENYWRITE; 8019 if (vma->vm_flags & VM_MAYEXEC) 8020 flags |= MAP_EXECUTABLE; 8021 if (vma->vm_flags & VM_LOCKED) 8022 flags |= MAP_LOCKED; 8023 if (is_vm_hugetlb_page(vma)) 8024 flags |= MAP_HUGETLB; 8025 8026 if (file) { 8027 struct inode *inode; 8028 dev_t dev; 8029 8030 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8031 if (!buf) { 8032 name = "//enomem"; 8033 goto cpy_name; 8034 } 8035 /* 8036 * d_path() works from the end of the rb backwards, so we 8037 * need to add enough zero bytes after the string to handle 8038 * the 64bit alignment we do later. 8039 */ 8040 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8041 if (IS_ERR(name)) { 8042 name = "//toolong"; 8043 goto cpy_name; 8044 } 8045 inode = file_inode(vma->vm_file); 8046 dev = inode->i_sb->s_dev; 8047 ino = inode->i_ino; 8048 gen = inode->i_generation; 8049 maj = MAJOR(dev); 8050 min = MINOR(dev); 8051 8052 goto got_name; 8053 } else { 8054 if (vma->vm_ops && vma->vm_ops->name) { 8055 name = (char *) vma->vm_ops->name(vma); 8056 if (name) 8057 goto cpy_name; 8058 } 8059 8060 name = (char *)arch_vma_name(vma); 8061 if (name) 8062 goto cpy_name; 8063 8064 if (vma->vm_start <= vma->vm_mm->start_brk && 8065 vma->vm_end >= vma->vm_mm->brk) { 8066 name = "[heap]"; 8067 goto cpy_name; 8068 } 8069 if (vma->vm_start <= vma->vm_mm->start_stack && 8070 vma->vm_end >= vma->vm_mm->start_stack) { 8071 name = "[stack]"; 8072 goto cpy_name; 8073 } 8074 8075 name = "//anon"; 8076 goto cpy_name; 8077 } 8078 8079 cpy_name: 8080 strlcpy(tmp, name, sizeof(tmp)); 8081 name = tmp; 8082 got_name: 8083 /* 8084 * Since our buffer works in 8 byte units we need to align our string 8085 * size to a multiple of 8. However, we must guarantee the tail end is 8086 * zero'd out to avoid leaking random bits to userspace. 8087 */ 8088 size = strlen(name)+1; 8089 while (!IS_ALIGNED(size, sizeof(u64))) 8090 name[size++] = '\0'; 8091 8092 mmap_event->file_name = name; 8093 mmap_event->file_size = size; 8094 mmap_event->maj = maj; 8095 mmap_event->min = min; 8096 mmap_event->ino = ino; 8097 mmap_event->ino_generation = gen; 8098 mmap_event->prot = prot; 8099 mmap_event->flags = flags; 8100 8101 if (!(vma->vm_flags & VM_EXEC)) 8102 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8103 8104 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8105 8106 perf_iterate_sb(perf_event_mmap_output, 8107 mmap_event, 8108 NULL); 8109 8110 kfree(buf); 8111 } 8112 8113 /* 8114 * Check whether inode and address range match filter criteria. 8115 */ 8116 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8117 struct file *file, unsigned long offset, 8118 unsigned long size) 8119 { 8120 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8121 if (!filter->path.dentry) 8122 return false; 8123 8124 if (d_inode(filter->path.dentry) != file_inode(file)) 8125 return false; 8126 8127 if (filter->offset > offset + size) 8128 return false; 8129 8130 if (filter->offset + filter->size < offset) 8131 return false; 8132 8133 return true; 8134 } 8135 8136 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8137 struct vm_area_struct *vma, 8138 struct perf_addr_filter_range *fr) 8139 { 8140 unsigned long vma_size = vma->vm_end - vma->vm_start; 8141 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8142 struct file *file = vma->vm_file; 8143 8144 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8145 return false; 8146 8147 if (filter->offset < off) { 8148 fr->start = vma->vm_start; 8149 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8150 } else { 8151 fr->start = vma->vm_start + filter->offset - off; 8152 fr->size = min(vma->vm_end - fr->start, filter->size); 8153 } 8154 8155 return true; 8156 } 8157 8158 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8159 { 8160 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8161 struct vm_area_struct *vma = data; 8162 struct perf_addr_filter *filter; 8163 unsigned int restart = 0, count = 0; 8164 unsigned long flags; 8165 8166 if (!has_addr_filter(event)) 8167 return; 8168 8169 if (!vma->vm_file) 8170 return; 8171 8172 raw_spin_lock_irqsave(&ifh->lock, flags); 8173 list_for_each_entry(filter, &ifh->list, entry) { 8174 if (perf_addr_filter_vma_adjust(filter, vma, 8175 &event->addr_filter_ranges[count])) 8176 restart++; 8177 8178 count++; 8179 } 8180 8181 if (restart) 8182 event->addr_filters_gen++; 8183 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8184 8185 if (restart) 8186 perf_event_stop(event, 1); 8187 } 8188 8189 /* 8190 * Adjust all task's events' filters to the new vma 8191 */ 8192 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8193 { 8194 struct perf_event_context *ctx; 8195 int ctxn; 8196 8197 /* 8198 * Data tracing isn't supported yet and as such there is no need 8199 * to keep track of anything that isn't related to executable code: 8200 */ 8201 if (!(vma->vm_flags & VM_EXEC)) 8202 return; 8203 8204 rcu_read_lock(); 8205 for_each_task_context_nr(ctxn) { 8206 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8207 if (!ctx) 8208 continue; 8209 8210 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8211 } 8212 rcu_read_unlock(); 8213 } 8214 8215 void perf_event_mmap(struct vm_area_struct *vma) 8216 { 8217 struct perf_mmap_event mmap_event; 8218 8219 if (!atomic_read(&nr_mmap_events)) 8220 return; 8221 8222 mmap_event = (struct perf_mmap_event){ 8223 .vma = vma, 8224 /* .file_name */ 8225 /* .file_size */ 8226 .event_id = { 8227 .header = { 8228 .type = PERF_RECORD_MMAP, 8229 .misc = PERF_RECORD_MISC_USER, 8230 /* .size */ 8231 }, 8232 /* .pid */ 8233 /* .tid */ 8234 .start = vma->vm_start, 8235 .len = vma->vm_end - vma->vm_start, 8236 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8237 }, 8238 /* .maj (attr_mmap2 only) */ 8239 /* .min (attr_mmap2 only) */ 8240 /* .ino (attr_mmap2 only) */ 8241 /* .ino_generation (attr_mmap2 only) */ 8242 /* .prot (attr_mmap2 only) */ 8243 /* .flags (attr_mmap2 only) */ 8244 }; 8245 8246 perf_addr_filters_adjust(vma); 8247 perf_event_mmap_event(&mmap_event); 8248 } 8249 8250 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8251 unsigned long size, u64 flags) 8252 { 8253 struct perf_output_handle handle; 8254 struct perf_sample_data sample; 8255 struct perf_aux_event { 8256 struct perf_event_header header; 8257 u64 offset; 8258 u64 size; 8259 u64 flags; 8260 } rec = { 8261 .header = { 8262 .type = PERF_RECORD_AUX, 8263 .misc = 0, 8264 .size = sizeof(rec), 8265 }, 8266 .offset = head, 8267 .size = size, 8268 .flags = flags, 8269 }; 8270 int ret; 8271 8272 perf_event_header__init_id(&rec.header, &sample, event); 8273 ret = perf_output_begin(&handle, event, rec.header.size); 8274 8275 if (ret) 8276 return; 8277 8278 perf_output_put(&handle, rec); 8279 perf_event__output_id_sample(event, &handle, &sample); 8280 8281 perf_output_end(&handle); 8282 } 8283 8284 /* 8285 * Lost/dropped samples logging 8286 */ 8287 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8288 { 8289 struct perf_output_handle handle; 8290 struct perf_sample_data sample; 8291 int ret; 8292 8293 struct { 8294 struct perf_event_header header; 8295 u64 lost; 8296 } lost_samples_event = { 8297 .header = { 8298 .type = PERF_RECORD_LOST_SAMPLES, 8299 .misc = 0, 8300 .size = sizeof(lost_samples_event), 8301 }, 8302 .lost = lost, 8303 }; 8304 8305 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8306 8307 ret = perf_output_begin(&handle, event, 8308 lost_samples_event.header.size); 8309 if (ret) 8310 return; 8311 8312 perf_output_put(&handle, lost_samples_event); 8313 perf_event__output_id_sample(event, &handle, &sample); 8314 perf_output_end(&handle); 8315 } 8316 8317 /* 8318 * context_switch tracking 8319 */ 8320 8321 struct perf_switch_event { 8322 struct task_struct *task; 8323 struct task_struct *next_prev; 8324 8325 struct { 8326 struct perf_event_header header; 8327 u32 next_prev_pid; 8328 u32 next_prev_tid; 8329 } event_id; 8330 }; 8331 8332 static int perf_event_switch_match(struct perf_event *event) 8333 { 8334 return event->attr.context_switch; 8335 } 8336 8337 static void perf_event_switch_output(struct perf_event *event, void *data) 8338 { 8339 struct perf_switch_event *se = data; 8340 struct perf_output_handle handle; 8341 struct perf_sample_data sample; 8342 int ret; 8343 8344 if (!perf_event_switch_match(event)) 8345 return; 8346 8347 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8348 if (event->ctx->task) { 8349 se->event_id.header.type = PERF_RECORD_SWITCH; 8350 se->event_id.header.size = sizeof(se->event_id.header); 8351 } else { 8352 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8353 se->event_id.header.size = sizeof(se->event_id); 8354 se->event_id.next_prev_pid = 8355 perf_event_pid(event, se->next_prev); 8356 se->event_id.next_prev_tid = 8357 perf_event_tid(event, se->next_prev); 8358 } 8359 8360 perf_event_header__init_id(&se->event_id.header, &sample, event); 8361 8362 ret = perf_output_begin(&handle, event, se->event_id.header.size); 8363 if (ret) 8364 return; 8365 8366 if (event->ctx->task) 8367 perf_output_put(&handle, se->event_id.header); 8368 else 8369 perf_output_put(&handle, se->event_id); 8370 8371 perf_event__output_id_sample(event, &handle, &sample); 8372 8373 perf_output_end(&handle); 8374 } 8375 8376 static void perf_event_switch(struct task_struct *task, 8377 struct task_struct *next_prev, bool sched_in) 8378 { 8379 struct perf_switch_event switch_event; 8380 8381 /* N.B. caller checks nr_switch_events != 0 */ 8382 8383 switch_event = (struct perf_switch_event){ 8384 .task = task, 8385 .next_prev = next_prev, 8386 .event_id = { 8387 .header = { 8388 /* .type */ 8389 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8390 /* .size */ 8391 }, 8392 /* .next_prev_pid */ 8393 /* .next_prev_tid */ 8394 }, 8395 }; 8396 8397 if (!sched_in && task->state == TASK_RUNNING) 8398 switch_event.event_id.header.misc |= 8399 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8400 8401 perf_iterate_sb(perf_event_switch_output, 8402 &switch_event, 8403 NULL); 8404 } 8405 8406 /* 8407 * IRQ throttle logging 8408 */ 8409 8410 static void perf_log_throttle(struct perf_event *event, int enable) 8411 { 8412 struct perf_output_handle handle; 8413 struct perf_sample_data sample; 8414 int ret; 8415 8416 struct { 8417 struct perf_event_header header; 8418 u64 time; 8419 u64 id; 8420 u64 stream_id; 8421 } throttle_event = { 8422 .header = { 8423 .type = PERF_RECORD_THROTTLE, 8424 .misc = 0, 8425 .size = sizeof(throttle_event), 8426 }, 8427 .time = perf_event_clock(event), 8428 .id = primary_event_id(event), 8429 .stream_id = event->id, 8430 }; 8431 8432 if (enable) 8433 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8434 8435 perf_event_header__init_id(&throttle_event.header, &sample, event); 8436 8437 ret = perf_output_begin(&handle, event, 8438 throttle_event.header.size); 8439 if (ret) 8440 return; 8441 8442 perf_output_put(&handle, throttle_event); 8443 perf_event__output_id_sample(event, &handle, &sample); 8444 perf_output_end(&handle); 8445 } 8446 8447 /* 8448 * ksymbol register/unregister tracking 8449 */ 8450 8451 struct perf_ksymbol_event { 8452 const char *name; 8453 int name_len; 8454 struct { 8455 struct perf_event_header header; 8456 u64 addr; 8457 u32 len; 8458 u16 ksym_type; 8459 u16 flags; 8460 } event_id; 8461 }; 8462 8463 static int perf_event_ksymbol_match(struct perf_event *event) 8464 { 8465 return event->attr.ksymbol; 8466 } 8467 8468 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8469 { 8470 struct perf_ksymbol_event *ksymbol_event = data; 8471 struct perf_output_handle handle; 8472 struct perf_sample_data sample; 8473 int ret; 8474 8475 if (!perf_event_ksymbol_match(event)) 8476 return; 8477 8478 perf_event_header__init_id(&ksymbol_event->event_id.header, 8479 &sample, event); 8480 ret = perf_output_begin(&handle, event, 8481 ksymbol_event->event_id.header.size); 8482 if (ret) 8483 return; 8484 8485 perf_output_put(&handle, ksymbol_event->event_id); 8486 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8487 perf_event__output_id_sample(event, &handle, &sample); 8488 8489 perf_output_end(&handle); 8490 } 8491 8492 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8493 const char *sym) 8494 { 8495 struct perf_ksymbol_event ksymbol_event; 8496 char name[KSYM_NAME_LEN]; 8497 u16 flags = 0; 8498 int name_len; 8499 8500 if (!atomic_read(&nr_ksymbol_events)) 8501 return; 8502 8503 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8504 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8505 goto err; 8506 8507 strlcpy(name, sym, KSYM_NAME_LEN); 8508 name_len = strlen(name) + 1; 8509 while (!IS_ALIGNED(name_len, sizeof(u64))) 8510 name[name_len++] = '\0'; 8511 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8512 8513 if (unregister) 8514 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8515 8516 ksymbol_event = (struct perf_ksymbol_event){ 8517 .name = name, 8518 .name_len = name_len, 8519 .event_id = { 8520 .header = { 8521 .type = PERF_RECORD_KSYMBOL, 8522 .size = sizeof(ksymbol_event.event_id) + 8523 name_len, 8524 }, 8525 .addr = addr, 8526 .len = len, 8527 .ksym_type = ksym_type, 8528 .flags = flags, 8529 }, 8530 }; 8531 8532 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8533 return; 8534 err: 8535 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8536 } 8537 8538 /* 8539 * bpf program load/unload tracking 8540 */ 8541 8542 struct perf_bpf_event { 8543 struct bpf_prog *prog; 8544 struct { 8545 struct perf_event_header header; 8546 u16 type; 8547 u16 flags; 8548 u32 id; 8549 u8 tag[BPF_TAG_SIZE]; 8550 } event_id; 8551 }; 8552 8553 static int perf_event_bpf_match(struct perf_event *event) 8554 { 8555 return event->attr.bpf_event; 8556 } 8557 8558 static void perf_event_bpf_output(struct perf_event *event, void *data) 8559 { 8560 struct perf_bpf_event *bpf_event = data; 8561 struct perf_output_handle handle; 8562 struct perf_sample_data sample; 8563 int ret; 8564 8565 if (!perf_event_bpf_match(event)) 8566 return; 8567 8568 perf_event_header__init_id(&bpf_event->event_id.header, 8569 &sample, event); 8570 ret = perf_output_begin(&handle, event, 8571 bpf_event->event_id.header.size); 8572 if (ret) 8573 return; 8574 8575 perf_output_put(&handle, bpf_event->event_id); 8576 perf_event__output_id_sample(event, &handle, &sample); 8577 8578 perf_output_end(&handle); 8579 } 8580 8581 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8582 enum perf_bpf_event_type type) 8583 { 8584 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8585 int i; 8586 8587 if (prog->aux->func_cnt == 0) { 8588 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8589 (u64)(unsigned long)prog->bpf_func, 8590 prog->jited_len, unregister, 8591 prog->aux->ksym.name); 8592 } else { 8593 for (i = 0; i < prog->aux->func_cnt; i++) { 8594 struct bpf_prog *subprog = prog->aux->func[i]; 8595 8596 perf_event_ksymbol( 8597 PERF_RECORD_KSYMBOL_TYPE_BPF, 8598 (u64)(unsigned long)subprog->bpf_func, 8599 subprog->jited_len, unregister, 8600 prog->aux->ksym.name); 8601 } 8602 } 8603 } 8604 8605 void perf_event_bpf_event(struct bpf_prog *prog, 8606 enum perf_bpf_event_type type, 8607 u16 flags) 8608 { 8609 struct perf_bpf_event bpf_event; 8610 8611 if (type <= PERF_BPF_EVENT_UNKNOWN || 8612 type >= PERF_BPF_EVENT_MAX) 8613 return; 8614 8615 switch (type) { 8616 case PERF_BPF_EVENT_PROG_LOAD: 8617 case PERF_BPF_EVENT_PROG_UNLOAD: 8618 if (atomic_read(&nr_ksymbol_events)) 8619 perf_event_bpf_emit_ksymbols(prog, type); 8620 break; 8621 default: 8622 break; 8623 } 8624 8625 if (!atomic_read(&nr_bpf_events)) 8626 return; 8627 8628 bpf_event = (struct perf_bpf_event){ 8629 .prog = prog, 8630 .event_id = { 8631 .header = { 8632 .type = PERF_RECORD_BPF_EVENT, 8633 .size = sizeof(bpf_event.event_id), 8634 }, 8635 .type = type, 8636 .flags = flags, 8637 .id = prog->aux->id, 8638 }, 8639 }; 8640 8641 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8642 8643 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8644 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8645 } 8646 8647 struct perf_text_poke_event { 8648 const void *old_bytes; 8649 const void *new_bytes; 8650 size_t pad; 8651 u16 old_len; 8652 u16 new_len; 8653 8654 struct { 8655 struct perf_event_header header; 8656 8657 u64 addr; 8658 } event_id; 8659 }; 8660 8661 static int perf_event_text_poke_match(struct perf_event *event) 8662 { 8663 return event->attr.text_poke; 8664 } 8665 8666 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8667 { 8668 struct perf_text_poke_event *text_poke_event = data; 8669 struct perf_output_handle handle; 8670 struct perf_sample_data sample; 8671 u64 padding = 0; 8672 int ret; 8673 8674 if (!perf_event_text_poke_match(event)) 8675 return; 8676 8677 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 8678 8679 ret = perf_output_begin(&handle, event, text_poke_event->event_id.header.size); 8680 if (ret) 8681 return; 8682 8683 perf_output_put(&handle, text_poke_event->event_id); 8684 perf_output_put(&handle, text_poke_event->old_len); 8685 perf_output_put(&handle, text_poke_event->new_len); 8686 8687 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 8688 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 8689 8690 if (text_poke_event->pad) 8691 __output_copy(&handle, &padding, text_poke_event->pad); 8692 8693 perf_event__output_id_sample(event, &handle, &sample); 8694 8695 perf_output_end(&handle); 8696 } 8697 8698 void perf_event_text_poke(const void *addr, const void *old_bytes, 8699 size_t old_len, const void *new_bytes, size_t new_len) 8700 { 8701 struct perf_text_poke_event text_poke_event; 8702 size_t tot, pad; 8703 8704 if (!atomic_read(&nr_text_poke_events)) 8705 return; 8706 8707 tot = sizeof(text_poke_event.old_len) + old_len; 8708 tot += sizeof(text_poke_event.new_len) + new_len; 8709 pad = ALIGN(tot, sizeof(u64)) - tot; 8710 8711 text_poke_event = (struct perf_text_poke_event){ 8712 .old_bytes = old_bytes, 8713 .new_bytes = new_bytes, 8714 .pad = pad, 8715 .old_len = old_len, 8716 .new_len = new_len, 8717 .event_id = { 8718 .header = { 8719 .type = PERF_RECORD_TEXT_POKE, 8720 .misc = PERF_RECORD_MISC_KERNEL, 8721 .size = sizeof(text_poke_event.event_id) + tot + pad, 8722 }, 8723 .addr = (unsigned long)addr, 8724 }, 8725 }; 8726 8727 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 8728 } 8729 8730 void perf_event_itrace_started(struct perf_event *event) 8731 { 8732 event->attach_state |= PERF_ATTACH_ITRACE; 8733 } 8734 8735 static void perf_log_itrace_start(struct perf_event *event) 8736 { 8737 struct perf_output_handle handle; 8738 struct perf_sample_data sample; 8739 struct perf_aux_event { 8740 struct perf_event_header header; 8741 u32 pid; 8742 u32 tid; 8743 } rec; 8744 int ret; 8745 8746 if (event->parent) 8747 event = event->parent; 8748 8749 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 8750 event->attach_state & PERF_ATTACH_ITRACE) 8751 return; 8752 8753 rec.header.type = PERF_RECORD_ITRACE_START; 8754 rec.header.misc = 0; 8755 rec.header.size = sizeof(rec); 8756 rec.pid = perf_event_pid(event, current); 8757 rec.tid = perf_event_tid(event, current); 8758 8759 perf_event_header__init_id(&rec.header, &sample, event); 8760 ret = perf_output_begin(&handle, event, rec.header.size); 8761 8762 if (ret) 8763 return; 8764 8765 perf_output_put(&handle, rec); 8766 perf_event__output_id_sample(event, &handle, &sample); 8767 8768 perf_output_end(&handle); 8769 } 8770 8771 static int 8772 __perf_event_account_interrupt(struct perf_event *event, int throttle) 8773 { 8774 struct hw_perf_event *hwc = &event->hw; 8775 int ret = 0; 8776 u64 seq; 8777 8778 seq = __this_cpu_read(perf_throttled_seq); 8779 if (seq != hwc->interrupts_seq) { 8780 hwc->interrupts_seq = seq; 8781 hwc->interrupts = 1; 8782 } else { 8783 hwc->interrupts++; 8784 if (unlikely(throttle 8785 && hwc->interrupts >= max_samples_per_tick)) { 8786 __this_cpu_inc(perf_throttled_count); 8787 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 8788 hwc->interrupts = MAX_INTERRUPTS; 8789 perf_log_throttle(event, 0); 8790 ret = 1; 8791 } 8792 } 8793 8794 if (event->attr.freq) { 8795 u64 now = perf_clock(); 8796 s64 delta = now - hwc->freq_time_stamp; 8797 8798 hwc->freq_time_stamp = now; 8799 8800 if (delta > 0 && delta < 2*TICK_NSEC) 8801 perf_adjust_period(event, delta, hwc->last_period, true); 8802 } 8803 8804 return ret; 8805 } 8806 8807 int perf_event_account_interrupt(struct perf_event *event) 8808 { 8809 return __perf_event_account_interrupt(event, 1); 8810 } 8811 8812 /* 8813 * Generic event overflow handling, sampling. 8814 */ 8815 8816 static int __perf_event_overflow(struct perf_event *event, 8817 int throttle, struct perf_sample_data *data, 8818 struct pt_regs *regs) 8819 { 8820 int events = atomic_read(&event->event_limit); 8821 int ret = 0; 8822 8823 /* 8824 * Non-sampling counters might still use the PMI to fold short 8825 * hardware counters, ignore those. 8826 */ 8827 if (unlikely(!is_sampling_event(event))) 8828 return 0; 8829 8830 ret = __perf_event_account_interrupt(event, throttle); 8831 8832 /* 8833 * XXX event_limit might not quite work as expected on inherited 8834 * events 8835 */ 8836 8837 event->pending_kill = POLL_IN; 8838 if (events && atomic_dec_and_test(&event->event_limit)) { 8839 ret = 1; 8840 event->pending_kill = POLL_HUP; 8841 8842 perf_event_disable_inatomic(event); 8843 } 8844 8845 READ_ONCE(event->overflow_handler)(event, data, regs); 8846 8847 if (*perf_event_fasync(event) && event->pending_kill) { 8848 event->pending_wakeup = 1; 8849 irq_work_queue(&event->pending); 8850 } 8851 8852 return ret; 8853 } 8854 8855 int perf_event_overflow(struct perf_event *event, 8856 struct perf_sample_data *data, 8857 struct pt_regs *regs) 8858 { 8859 return __perf_event_overflow(event, 1, data, regs); 8860 } 8861 8862 /* 8863 * Generic software event infrastructure 8864 */ 8865 8866 struct swevent_htable { 8867 struct swevent_hlist *swevent_hlist; 8868 struct mutex hlist_mutex; 8869 int hlist_refcount; 8870 8871 /* Recursion avoidance in each contexts */ 8872 int recursion[PERF_NR_CONTEXTS]; 8873 }; 8874 8875 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8876 8877 /* 8878 * We directly increment event->count and keep a second value in 8879 * event->hw.period_left to count intervals. This period event 8880 * is kept in the range [-sample_period, 0] so that we can use the 8881 * sign as trigger. 8882 */ 8883 8884 u64 perf_swevent_set_period(struct perf_event *event) 8885 { 8886 struct hw_perf_event *hwc = &event->hw; 8887 u64 period = hwc->last_period; 8888 u64 nr, offset; 8889 s64 old, val; 8890 8891 hwc->last_period = hwc->sample_period; 8892 8893 again: 8894 old = val = local64_read(&hwc->period_left); 8895 if (val < 0) 8896 return 0; 8897 8898 nr = div64_u64(period + val, period); 8899 offset = nr * period; 8900 val -= offset; 8901 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8902 goto again; 8903 8904 return nr; 8905 } 8906 8907 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8908 struct perf_sample_data *data, 8909 struct pt_regs *regs) 8910 { 8911 struct hw_perf_event *hwc = &event->hw; 8912 int throttle = 0; 8913 8914 if (!overflow) 8915 overflow = perf_swevent_set_period(event); 8916 8917 if (hwc->interrupts == MAX_INTERRUPTS) 8918 return; 8919 8920 for (; overflow; overflow--) { 8921 if (__perf_event_overflow(event, throttle, 8922 data, regs)) { 8923 /* 8924 * We inhibit the overflow from happening when 8925 * hwc->interrupts == MAX_INTERRUPTS. 8926 */ 8927 break; 8928 } 8929 throttle = 1; 8930 } 8931 } 8932 8933 static void perf_swevent_event(struct perf_event *event, u64 nr, 8934 struct perf_sample_data *data, 8935 struct pt_regs *regs) 8936 { 8937 struct hw_perf_event *hwc = &event->hw; 8938 8939 local64_add(nr, &event->count); 8940 8941 if (!regs) 8942 return; 8943 8944 if (!is_sampling_event(event)) 8945 return; 8946 8947 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8948 data->period = nr; 8949 return perf_swevent_overflow(event, 1, data, regs); 8950 } else 8951 data->period = event->hw.last_period; 8952 8953 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8954 return perf_swevent_overflow(event, 1, data, regs); 8955 8956 if (local64_add_negative(nr, &hwc->period_left)) 8957 return; 8958 8959 perf_swevent_overflow(event, 0, data, regs); 8960 } 8961 8962 static int perf_exclude_event(struct perf_event *event, 8963 struct pt_regs *regs) 8964 { 8965 if (event->hw.state & PERF_HES_STOPPED) 8966 return 1; 8967 8968 if (regs) { 8969 if (event->attr.exclude_user && user_mode(regs)) 8970 return 1; 8971 8972 if (event->attr.exclude_kernel && !user_mode(regs)) 8973 return 1; 8974 } 8975 8976 return 0; 8977 } 8978 8979 static int perf_swevent_match(struct perf_event *event, 8980 enum perf_type_id type, 8981 u32 event_id, 8982 struct perf_sample_data *data, 8983 struct pt_regs *regs) 8984 { 8985 if (event->attr.type != type) 8986 return 0; 8987 8988 if (event->attr.config != event_id) 8989 return 0; 8990 8991 if (perf_exclude_event(event, regs)) 8992 return 0; 8993 8994 return 1; 8995 } 8996 8997 static inline u64 swevent_hash(u64 type, u32 event_id) 8998 { 8999 u64 val = event_id | (type << 32); 9000 9001 return hash_64(val, SWEVENT_HLIST_BITS); 9002 } 9003 9004 static inline struct hlist_head * 9005 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9006 { 9007 u64 hash = swevent_hash(type, event_id); 9008 9009 return &hlist->heads[hash]; 9010 } 9011 9012 /* For the read side: events when they trigger */ 9013 static inline struct hlist_head * 9014 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9015 { 9016 struct swevent_hlist *hlist; 9017 9018 hlist = rcu_dereference(swhash->swevent_hlist); 9019 if (!hlist) 9020 return NULL; 9021 9022 return __find_swevent_head(hlist, type, event_id); 9023 } 9024 9025 /* For the event head insertion and removal in the hlist */ 9026 static inline struct hlist_head * 9027 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9028 { 9029 struct swevent_hlist *hlist; 9030 u32 event_id = event->attr.config; 9031 u64 type = event->attr.type; 9032 9033 /* 9034 * Event scheduling is always serialized against hlist allocation 9035 * and release. Which makes the protected version suitable here. 9036 * The context lock guarantees that. 9037 */ 9038 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9039 lockdep_is_held(&event->ctx->lock)); 9040 if (!hlist) 9041 return NULL; 9042 9043 return __find_swevent_head(hlist, type, event_id); 9044 } 9045 9046 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9047 u64 nr, 9048 struct perf_sample_data *data, 9049 struct pt_regs *regs) 9050 { 9051 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9052 struct perf_event *event; 9053 struct hlist_head *head; 9054 9055 rcu_read_lock(); 9056 head = find_swevent_head_rcu(swhash, type, event_id); 9057 if (!head) 9058 goto end; 9059 9060 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9061 if (perf_swevent_match(event, type, event_id, data, regs)) 9062 perf_swevent_event(event, nr, data, regs); 9063 } 9064 end: 9065 rcu_read_unlock(); 9066 } 9067 9068 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9069 9070 int perf_swevent_get_recursion_context(void) 9071 { 9072 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9073 9074 return get_recursion_context(swhash->recursion); 9075 } 9076 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9077 9078 void perf_swevent_put_recursion_context(int rctx) 9079 { 9080 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9081 9082 put_recursion_context(swhash->recursion, rctx); 9083 } 9084 9085 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9086 { 9087 struct perf_sample_data data; 9088 9089 if (WARN_ON_ONCE(!regs)) 9090 return; 9091 9092 perf_sample_data_init(&data, addr, 0); 9093 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9094 } 9095 9096 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9097 { 9098 int rctx; 9099 9100 preempt_disable_notrace(); 9101 rctx = perf_swevent_get_recursion_context(); 9102 if (unlikely(rctx < 0)) 9103 goto fail; 9104 9105 ___perf_sw_event(event_id, nr, regs, addr); 9106 9107 perf_swevent_put_recursion_context(rctx); 9108 fail: 9109 preempt_enable_notrace(); 9110 } 9111 9112 static void perf_swevent_read(struct perf_event *event) 9113 { 9114 } 9115 9116 static int perf_swevent_add(struct perf_event *event, int flags) 9117 { 9118 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9119 struct hw_perf_event *hwc = &event->hw; 9120 struct hlist_head *head; 9121 9122 if (is_sampling_event(event)) { 9123 hwc->last_period = hwc->sample_period; 9124 perf_swevent_set_period(event); 9125 } 9126 9127 hwc->state = !(flags & PERF_EF_START); 9128 9129 head = find_swevent_head(swhash, event); 9130 if (WARN_ON_ONCE(!head)) 9131 return -EINVAL; 9132 9133 hlist_add_head_rcu(&event->hlist_entry, head); 9134 perf_event_update_userpage(event); 9135 9136 return 0; 9137 } 9138 9139 static void perf_swevent_del(struct perf_event *event, int flags) 9140 { 9141 hlist_del_rcu(&event->hlist_entry); 9142 } 9143 9144 static void perf_swevent_start(struct perf_event *event, int flags) 9145 { 9146 event->hw.state = 0; 9147 } 9148 9149 static void perf_swevent_stop(struct perf_event *event, int flags) 9150 { 9151 event->hw.state = PERF_HES_STOPPED; 9152 } 9153 9154 /* Deref the hlist from the update side */ 9155 static inline struct swevent_hlist * 9156 swevent_hlist_deref(struct swevent_htable *swhash) 9157 { 9158 return rcu_dereference_protected(swhash->swevent_hlist, 9159 lockdep_is_held(&swhash->hlist_mutex)); 9160 } 9161 9162 static void swevent_hlist_release(struct swevent_htable *swhash) 9163 { 9164 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9165 9166 if (!hlist) 9167 return; 9168 9169 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9170 kfree_rcu(hlist, rcu_head); 9171 } 9172 9173 static void swevent_hlist_put_cpu(int cpu) 9174 { 9175 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9176 9177 mutex_lock(&swhash->hlist_mutex); 9178 9179 if (!--swhash->hlist_refcount) 9180 swevent_hlist_release(swhash); 9181 9182 mutex_unlock(&swhash->hlist_mutex); 9183 } 9184 9185 static void swevent_hlist_put(void) 9186 { 9187 int cpu; 9188 9189 for_each_possible_cpu(cpu) 9190 swevent_hlist_put_cpu(cpu); 9191 } 9192 9193 static int swevent_hlist_get_cpu(int cpu) 9194 { 9195 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9196 int err = 0; 9197 9198 mutex_lock(&swhash->hlist_mutex); 9199 if (!swevent_hlist_deref(swhash) && 9200 cpumask_test_cpu(cpu, perf_online_mask)) { 9201 struct swevent_hlist *hlist; 9202 9203 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9204 if (!hlist) { 9205 err = -ENOMEM; 9206 goto exit; 9207 } 9208 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9209 } 9210 swhash->hlist_refcount++; 9211 exit: 9212 mutex_unlock(&swhash->hlist_mutex); 9213 9214 return err; 9215 } 9216 9217 static int swevent_hlist_get(void) 9218 { 9219 int err, cpu, failed_cpu; 9220 9221 mutex_lock(&pmus_lock); 9222 for_each_possible_cpu(cpu) { 9223 err = swevent_hlist_get_cpu(cpu); 9224 if (err) { 9225 failed_cpu = cpu; 9226 goto fail; 9227 } 9228 } 9229 mutex_unlock(&pmus_lock); 9230 return 0; 9231 fail: 9232 for_each_possible_cpu(cpu) { 9233 if (cpu == failed_cpu) 9234 break; 9235 swevent_hlist_put_cpu(cpu); 9236 } 9237 mutex_unlock(&pmus_lock); 9238 return err; 9239 } 9240 9241 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9242 9243 static void sw_perf_event_destroy(struct perf_event *event) 9244 { 9245 u64 event_id = event->attr.config; 9246 9247 WARN_ON(event->parent); 9248 9249 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9250 swevent_hlist_put(); 9251 } 9252 9253 static int perf_swevent_init(struct perf_event *event) 9254 { 9255 u64 event_id = event->attr.config; 9256 9257 if (event->attr.type != PERF_TYPE_SOFTWARE) 9258 return -ENOENT; 9259 9260 /* 9261 * no branch sampling for software events 9262 */ 9263 if (has_branch_stack(event)) 9264 return -EOPNOTSUPP; 9265 9266 switch (event_id) { 9267 case PERF_COUNT_SW_CPU_CLOCK: 9268 case PERF_COUNT_SW_TASK_CLOCK: 9269 return -ENOENT; 9270 9271 default: 9272 break; 9273 } 9274 9275 if (event_id >= PERF_COUNT_SW_MAX) 9276 return -ENOENT; 9277 9278 if (!event->parent) { 9279 int err; 9280 9281 err = swevent_hlist_get(); 9282 if (err) 9283 return err; 9284 9285 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9286 event->destroy = sw_perf_event_destroy; 9287 } 9288 9289 return 0; 9290 } 9291 9292 static struct pmu perf_swevent = { 9293 .task_ctx_nr = perf_sw_context, 9294 9295 .capabilities = PERF_PMU_CAP_NO_NMI, 9296 9297 .event_init = perf_swevent_init, 9298 .add = perf_swevent_add, 9299 .del = perf_swevent_del, 9300 .start = perf_swevent_start, 9301 .stop = perf_swevent_stop, 9302 .read = perf_swevent_read, 9303 }; 9304 9305 #ifdef CONFIG_EVENT_TRACING 9306 9307 static int perf_tp_filter_match(struct perf_event *event, 9308 struct perf_sample_data *data) 9309 { 9310 void *record = data->raw->frag.data; 9311 9312 /* only top level events have filters set */ 9313 if (event->parent) 9314 event = event->parent; 9315 9316 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9317 return 1; 9318 return 0; 9319 } 9320 9321 static int perf_tp_event_match(struct perf_event *event, 9322 struct perf_sample_data *data, 9323 struct pt_regs *regs) 9324 { 9325 if (event->hw.state & PERF_HES_STOPPED) 9326 return 0; 9327 /* 9328 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9329 */ 9330 if (event->attr.exclude_kernel && !user_mode(regs)) 9331 return 0; 9332 9333 if (!perf_tp_filter_match(event, data)) 9334 return 0; 9335 9336 return 1; 9337 } 9338 9339 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9340 struct trace_event_call *call, u64 count, 9341 struct pt_regs *regs, struct hlist_head *head, 9342 struct task_struct *task) 9343 { 9344 if (bpf_prog_array_valid(call)) { 9345 *(struct pt_regs **)raw_data = regs; 9346 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9347 perf_swevent_put_recursion_context(rctx); 9348 return; 9349 } 9350 } 9351 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9352 rctx, task); 9353 } 9354 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9355 9356 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9357 struct pt_regs *regs, struct hlist_head *head, int rctx, 9358 struct task_struct *task) 9359 { 9360 struct perf_sample_data data; 9361 struct perf_event *event; 9362 9363 struct perf_raw_record raw = { 9364 .frag = { 9365 .size = entry_size, 9366 .data = record, 9367 }, 9368 }; 9369 9370 perf_sample_data_init(&data, 0, 0); 9371 data.raw = &raw; 9372 9373 perf_trace_buf_update(record, event_type); 9374 9375 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9376 if (perf_tp_event_match(event, &data, regs)) 9377 perf_swevent_event(event, count, &data, regs); 9378 } 9379 9380 /* 9381 * If we got specified a target task, also iterate its context and 9382 * deliver this event there too. 9383 */ 9384 if (task && task != current) { 9385 struct perf_event_context *ctx; 9386 struct trace_entry *entry = record; 9387 9388 rcu_read_lock(); 9389 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9390 if (!ctx) 9391 goto unlock; 9392 9393 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9394 if (event->cpu != smp_processor_id()) 9395 continue; 9396 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9397 continue; 9398 if (event->attr.config != entry->type) 9399 continue; 9400 if (perf_tp_event_match(event, &data, regs)) 9401 perf_swevent_event(event, count, &data, regs); 9402 } 9403 unlock: 9404 rcu_read_unlock(); 9405 } 9406 9407 perf_swevent_put_recursion_context(rctx); 9408 } 9409 EXPORT_SYMBOL_GPL(perf_tp_event); 9410 9411 static void tp_perf_event_destroy(struct perf_event *event) 9412 { 9413 perf_trace_destroy(event); 9414 } 9415 9416 static int perf_tp_event_init(struct perf_event *event) 9417 { 9418 int err; 9419 9420 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9421 return -ENOENT; 9422 9423 /* 9424 * no branch sampling for tracepoint events 9425 */ 9426 if (has_branch_stack(event)) 9427 return -EOPNOTSUPP; 9428 9429 err = perf_trace_init(event); 9430 if (err) 9431 return err; 9432 9433 event->destroy = tp_perf_event_destroy; 9434 9435 return 0; 9436 } 9437 9438 static struct pmu perf_tracepoint = { 9439 .task_ctx_nr = perf_sw_context, 9440 9441 .event_init = perf_tp_event_init, 9442 .add = perf_trace_add, 9443 .del = perf_trace_del, 9444 .start = perf_swevent_start, 9445 .stop = perf_swevent_stop, 9446 .read = perf_swevent_read, 9447 }; 9448 9449 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9450 /* 9451 * Flags in config, used by dynamic PMU kprobe and uprobe 9452 * The flags should match following PMU_FORMAT_ATTR(). 9453 * 9454 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9455 * if not set, create kprobe/uprobe 9456 * 9457 * The following values specify a reference counter (or semaphore in the 9458 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9459 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9460 * 9461 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9462 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9463 */ 9464 enum perf_probe_config { 9465 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9466 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9467 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9468 }; 9469 9470 PMU_FORMAT_ATTR(retprobe, "config:0"); 9471 #endif 9472 9473 #ifdef CONFIG_KPROBE_EVENTS 9474 static struct attribute *kprobe_attrs[] = { 9475 &format_attr_retprobe.attr, 9476 NULL, 9477 }; 9478 9479 static struct attribute_group kprobe_format_group = { 9480 .name = "format", 9481 .attrs = kprobe_attrs, 9482 }; 9483 9484 static const struct attribute_group *kprobe_attr_groups[] = { 9485 &kprobe_format_group, 9486 NULL, 9487 }; 9488 9489 static int perf_kprobe_event_init(struct perf_event *event); 9490 static struct pmu perf_kprobe = { 9491 .task_ctx_nr = perf_sw_context, 9492 .event_init = perf_kprobe_event_init, 9493 .add = perf_trace_add, 9494 .del = perf_trace_del, 9495 .start = perf_swevent_start, 9496 .stop = perf_swevent_stop, 9497 .read = perf_swevent_read, 9498 .attr_groups = kprobe_attr_groups, 9499 }; 9500 9501 static int perf_kprobe_event_init(struct perf_event *event) 9502 { 9503 int err; 9504 bool is_retprobe; 9505 9506 if (event->attr.type != perf_kprobe.type) 9507 return -ENOENT; 9508 9509 if (!perfmon_capable()) 9510 return -EACCES; 9511 9512 /* 9513 * no branch sampling for probe events 9514 */ 9515 if (has_branch_stack(event)) 9516 return -EOPNOTSUPP; 9517 9518 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9519 err = perf_kprobe_init(event, is_retprobe); 9520 if (err) 9521 return err; 9522 9523 event->destroy = perf_kprobe_destroy; 9524 9525 return 0; 9526 } 9527 #endif /* CONFIG_KPROBE_EVENTS */ 9528 9529 #ifdef CONFIG_UPROBE_EVENTS 9530 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9531 9532 static struct attribute *uprobe_attrs[] = { 9533 &format_attr_retprobe.attr, 9534 &format_attr_ref_ctr_offset.attr, 9535 NULL, 9536 }; 9537 9538 static struct attribute_group uprobe_format_group = { 9539 .name = "format", 9540 .attrs = uprobe_attrs, 9541 }; 9542 9543 static const struct attribute_group *uprobe_attr_groups[] = { 9544 &uprobe_format_group, 9545 NULL, 9546 }; 9547 9548 static int perf_uprobe_event_init(struct perf_event *event); 9549 static struct pmu perf_uprobe = { 9550 .task_ctx_nr = perf_sw_context, 9551 .event_init = perf_uprobe_event_init, 9552 .add = perf_trace_add, 9553 .del = perf_trace_del, 9554 .start = perf_swevent_start, 9555 .stop = perf_swevent_stop, 9556 .read = perf_swevent_read, 9557 .attr_groups = uprobe_attr_groups, 9558 }; 9559 9560 static int perf_uprobe_event_init(struct perf_event *event) 9561 { 9562 int err; 9563 unsigned long ref_ctr_offset; 9564 bool is_retprobe; 9565 9566 if (event->attr.type != perf_uprobe.type) 9567 return -ENOENT; 9568 9569 if (!perfmon_capable()) 9570 return -EACCES; 9571 9572 /* 9573 * no branch sampling for probe events 9574 */ 9575 if (has_branch_stack(event)) 9576 return -EOPNOTSUPP; 9577 9578 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9579 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9580 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9581 if (err) 9582 return err; 9583 9584 event->destroy = perf_uprobe_destroy; 9585 9586 return 0; 9587 } 9588 #endif /* CONFIG_UPROBE_EVENTS */ 9589 9590 static inline void perf_tp_register(void) 9591 { 9592 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9593 #ifdef CONFIG_KPROBE_EVENTS 9594 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9595 #endif 9596 #ifdef CONFIG_UPROBE_EVENTS 9597 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9598 #endif 9599 } 9600 9601 static void perf_event_free_filter(struct perf_event *event) 9602 { 9603 ftrace_profile_free_filter(event); 9604 } 9605 9606 #ifdef CONFIG_BPF_SYSCALL 9607 static void bpf_overflow_handler(struct perf_event *event, 9608 struct perf_sample_data *data, 9609 struct pt_regs *regs) 9610 { 9611 struct bpf_perf_event_data_kern ctx = { 9612 .data = data, 9613 .event = event, 9614 }; 9615 int ret = 0; 9616 9617 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9618 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9619 goto out; 9620 rcu_read_lock(); 9621 ret = BPF_PROG_RUN(event->prog, &ctx); 9622 rcu_read_unlock(); 9623 out: 9624 __this_cpu_dec(bpf_prog_active); 9625 if (!ret) 9626 return; 9627 9628 event->orig_overflow_handler(event, data, regs); 9629 } 9630 9631 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9632 { 9633 struct bpf_prog *prog; 9634 9635 if (event->overflow_handler_context) 9636 /* hw breakpoint or kernel counter */ 9637 return -EINVAL; 9638 9639 if (event->prog) 9640 return -EEXIST; 9641 9642 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 9643 if (IS_ERR(prog)) 9644 return PTR_ERR(prog); 9645 9646 if (event->attr.precise_ip && 9647 prog->call_get_stack && 9648 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 9649 event->attr.exclude_callchain_kernel || 9650 event->attr.exclude_callchain_user)) { 9651 /* 9652 * On perf_event with precise_ip, calling bpf_get_stack() 9653 * may trigger unwinder warnings and occasional crashes. 9654 * bpf_get_[stack|stackid] works around this issue by using 9655 * callchain attached to perf_sample_data. If the 9656 * perf_event does not full (kernel and user) callchain 9657 * attached to perf_sample_data, do not allow attaching BPF 9658 * program that calls bpf_get_[stack|stackid]. 9659 */ 9660 bpf_prog_put(prog); 9661 return -EPROTO; 9662 } 9663 9664 event->prog = prog; 9665 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 9666 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 9667 return 0; 9668 } 9669 9670 static void perf_event_free_bpf_handler(struct perf_event *event) 9671 { 9672 struct bpf_prog *prog = event->prog; 9673 9674 if (!prog) 9675 return; 9676 9677 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 9678 event->prog = NULL; 9679 bpf_prog_put(prog); 9680 } 9681 #else 9682 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 9683 { 9684 return -EOPNOTSUPP; 9685 } 9686 static void perf_event_free_bpf_handler(struct perf_event *event) 9687 { 9688 } 9689 #endif 9690 9691 /* 9692 * returns true if the event is a tracepoint, or a kprobe/upprobe created 9693 * with perf_event_open() 9694 */ 9695 static inline bool perf_event_is_tracing(struct perf_event *event) 9696 { 9697 if (event->pmu == &perf_tracepoint) 9698 return true; 9699 #ifdef CONFIG_KPROBE_EVENTS 9700 if (event->pmu == &perf_kprobe) 9701 return true; 9702 #endif 9703 #ifdef CONFIG_UPROBE_EVENTS 9704 if (event->pmu == &perf_uprobe) 9705 return true; 9706 #endif 9707 return false; 9708 } 9709 9710 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9711 { 9712 bool is_kprobe, is_tracepoint, is_syscall_tp; 9713 struct bpf_prog *prog; 9714 int ret; 9715 9716 if (!perf_event_is_tracing(event)) 9717 return perf_event_set_bpf_handler(event, prog_fd); 9718 9719 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 9720 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 9721 is_syscall_tp = is_syscall_trace_event(event->tp_event); 9722 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 9723 /* bpf programs can only be attached to u/kprobe or tracepoint */ 9724 return -EINVAL; 9725 9726 prog = bpf_prog_get(prog_fd); 9727 if (IS_ERR(prog)) 9728 return PTR_ERR(prog); 9729 9730 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 9731 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 9732 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 9733 /* valid fd, but invalid bpf program type */ 9734 bpf_prog_put(prog); 9735 return -EINVAL; 9736 } 9737 9738 /* Kprobe override only works for kprobes, not uprobes. */ 9739 if (prog->kprobe_override && 9740 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 9741 bpf_prog_put(prog); 9742 return -EINVAL; 9743 } 9744 9745 if (is_tracepoint || is_syscall_tp) { 9746 int off = trace_event_get_offsets(event->tp_event); 9747 9748 if (prog->aux->max_ctx_offset > off) { 9749 bpf_prog_put(prog); 9750 return -EACCES; 9751 } 9752 } 9753 9754 ret = perf_event_attach_bpf_prog(event, prog); 9755 if (ret) 9756 bpf_prog_put(prog); 9757 return ret; 9758 } 9759 9760 static void perf_event_free_bpf_prog(struct perf_event *event) 9761 { 9762 if (!perf_event_is_tracing(event)) { 9763 perf_event_free_bpf_handler(event); 9764 return; 9765 } 9766 perf_event_detach_bpf_prog(event); 9767 } 9768 9769 #else 9770 9771 static inline void perf_tp_register(void) 9772 { 9773 } 9774 9775 static void perf_event_free_filter(struct perf_event *event) 9776 { 9777 } 9778 9779 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 9780 { 9781 return -ENOENT; 9782 } 9783 9784 static void perf_event_free_bpf_prog(struct perf_event *event) 9785 { 9786 } 9787 #endif /* CONFIG_EVENT_TRACING */ 9788 9789 #ifdef CONFIG_HAVE_HW_BREAKPOINT 9790 void perf_bp_event(struct perf_event *bp, void *data) 9791 { 9792 struct perf_sample_data sample; 9793 struct pt_regs *regs = data; 9794 9795 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 9796 9797 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 9798 perf_swevent_event(bp, 1, &sample, regs); 9799 } 9800 #endif 9801 9802 /* 9803 * Allocate a new address filter 9804 */ 9805 static struct perf_addr_filter * 9806 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 9807 { 9808 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 9809 struct perf_addr_filter *filter; 9810 9811 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 9812 if (!filter) 9813 return NULL; 9814 9815 INIT_LIST_HEAD(&filter->entry); 9816 list_add_tail(&filter->entry, filters); 9817 9818 return filter; 9819 } 9820 9821 static void free_filters_list(struct list_head *filters) 9822 { 9823 struct perf_addr_filter *filter, *iter; 9824 9825 list_for_each_entry_safe(filter, iter, filters, entry) { 9826 path_put(&filter->path); 9827 list_del(&filter->entry); 9828 kfree(filter); 9829 } 9830 } 9831 9832 /* 9833 * Free existing address filters and optionally install new ones 9834 */ 9835 static void perf_addr_filters_splice(struct perf_event *event, 9836 struct list_head *head) 9837 { 9838 unsigned long flags; 9839 LIST_HEAD(list); 9840 9841 if (!has_addr_filter(event)) 9842 return; 9843 9844 /* don't bother with children, they don't have their own filters */ 9845 if (event->parent) 9846 return; 9847 9848 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9849 9850 list_splice_init(&event->addr_filters.list, &list); 9851 if (head) 9852 list_splice(head, &event->addr_filters.list); 9853 9854 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9855 9856 free_filters_list(&list); 9857 } 9858 9859 /* 9860 * Scan through mm's vmas and see if one of them matches the 9861 * @filter; if so, adjust filter's address range. 9862 * Called with mm::mmap_lock down for reading. 9863 */ 9864 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9865 struct mm_struct *mm, 9866 struct perf_addr_filter_range *fr) 9867 { 9868 struct vm_area_struct *vma; 9869 9870 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9871 if (!vma->vm_file) 9872 continue; 9873 9874 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9875 return; 9876 } 9877 } 9878 9879 /* 9880 * Update event's address range filters based on the 9881 * task's existing mappings, if any. 9882 */ 9883 static void perf_event_addr_filters_apply(struct perf_event *event) 9884 { 9885 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9886 struct task_struct *task = READ_ONCE(event->ctx->task); 9887 struct perf_addr_filter *filter; 9888 struct mm_struct *mm = NULL; 9889 unsigned int count = 0; 9890 unsigned long flags; 9891 9892 /* 9893 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9894 * will stop on the parent's child_mutex that our caller is also holding 9895 */ 9896 if (task == TASK_TOMBSTONE) 9897 return; 9898 9899 if (ifh->nr_file_filters) { 9900 mm = get_task_mm(event->ctx->task); 9901 if (!mm) 9902 goto restart; 9903 9904 mmap_read_lock(mm); 9905 } 9906 9907 raw_spin_lock_irqsave(&ifh->lock, flags); 9908 list_for_each_entry(filter, &ifh->list, entry) { 9909 if (filter->path.dentry) { 9910 /* 9911 * Adjust base offset if the filter is associated to a 9912 * binary that needs to be mapped: 9913 */ 9914 event->addr_filter_ranges[count].start = 0; 9915 event->addr_filter_ranges[count].size = 0; 9916 9917 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9918 } else { 9919 event->addr_filter_ranges[count].start = filter->offset; 9920 event->addr_filter_ranges[count].size = filter->size; 9921 } 9922 9923 count++; 9924 } 9925 9926 event->addr_filters_gen++; 9927 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9928 9929 if (ifh->nr_file_filters) { 9930 mmap_read_unlock(mm); 9931 9932 mmput(mm); 9933 } 9934 9935 restart: 9936 perf_event_stop(event, 1); 9937 } 9938 9939 /* 9940 * Address range filtering: limiting the data to certain 9941 * instruction address ranges. Filters are ioctl()ed to us from 9942 * userspace as ascii strings. 9943 * 9944 * Filter string format: 9945 * 9946 * ACTION RANGE_SPEC 9947 * where ACTION is one of the 9948 * * "filter": limit the trace to this region 9949 * * "start": start tracing from this address 9950 * * "stop": stop tracing at this address/region; 9951 * RANGE_SPEC is 9952 * * for kernel addresses: <start address>[/<size>] 9953 * * for object files: <start address>[/<size>]@</path/to/object/file> 9954 * 9955 * if <size> is not specified or is zero, the range is treated as a single 9956 * address; not valid for ACTION=="filter". 9957 */ 9958 enum { 9959 IF_ACT_NONE = -1, 9960 IF_ACT_FILTER, 9961 IF_ACT_START, 9962 IF_ACT_STOP, 9963 IF_SRC_FILE, 9964 IF_SRC_KERNEL, 9965 IF_SRC_FILEADDR, 9966 IF_SRC_KERNELADDR, 9967 }; 9968 9969 enum { 9970 IF_STATE_ACTION = 0, 9971 IF_STATE_SOURCE, 9972 IF_STATE_END, 9973 }; 9974 9975 static const match_table_t if_tokens = { 9976 { IF_ACT_FILTER, "filter" }, 9977 { IF_ACT_START, "start" }, 9978 { IF_ACT_STOP, "stop" }, 9979 { IF_SRC_FILE, "%u/%u@%s" }, 9980 { IF_SRC_KERNEL, "%u/%u" }, 9981 { IF_SRC_FILEADDR, "%u@%s" }, 9982 { IF_SRC_KERNELADDR, "%u" }, 9983 { IF_ACT_NONE, NULL }, 9984 }; 9985 9986 /* 9987 * Address filter string parser 9988 */ 9989 static int 9990 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9991 struct list_head *filters) 9992 { 9993 struct perf_addr_filter *filter = NULL; 9994 char *start, *orig, *filename = NULL; 9995 substring_t args[MAX_OPT_ARGS]; 9996 int state = IF_STATE_ACTION, token; 9997 unsigned int kernel = 0; 9998 int ret = -EINVAL; 9999 10000 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10001 if (!fstr) 10002 return -ENOMEM; 10003 10004 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10005 static const enum perf_addr_filter_action_t actions[] = { 10006 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10007 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10008 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10009 }; 10010 ret = -EINVAL; 10011 10012 if (!*start) 10013 continue; 10014 10015 /* filter definition begins */ 10016 if (state == IF_STATE_ACTION) { 10017 filter = perf_addr_filter_new(event, filters); 10018 if (!filter) 10019 goto fail; 10020 } 10021 10022 token = match_token(start, if_tokens, args); 10023 switch (token) { 10024 case IF_ACT_FILTER: 10025 case IF_ACT_START: 10026 case IF_ACT_STOP: 10027 if (state != IF_STATE_ACTION) 10028 goto fail; 10029 10030 filter->action = actions[token]; 10031 state = IF_STATE_SOURCE; 10032 break; 10033 10034 case IF_SRC_KERNELADDR: 10035 case IF_SRC_KERNEL: 10036 kernel = 1; 10037 /* fall through */ 10038 10039 case IF_SRC_FILEADDR: 10040 case IF_SRC_FILE: 10041 if (state != IF_STATE_SOURCE) 10042 goto fail; 10043 10044 *args[0].to = 0; 10045 ret = kstrtoul(args[0].from, 0, &filter->offset); 10046 if (ret) 10047 goto fail; 10048 10049 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10050 *args[1].to = 0; 10051 ret = kstrtoul(args[1].from, 0, &filter->size); 10052 if (ret) 10053 goto fail; 10054 } 10055 10056 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10057 int fpos = token == IF_SRC_FILE ? 2 : 1; 10058 10059 filename = match_strdup(&args[fpos]); 10060 if (!filename) { 10061 ret = -ENOMEM; 10062 goto fail; 10063 } 10064 } 10065 10066 state = IF_STATE_END; 10067 break; 10068 10069 default: 10070 goto fail; 10071 } 10072 10073 /* 10074 * Filter definition is fully parsed, validate and install it. 10075 * Make sure that it doesn't contradict itself or the event's 10076 * attribute. 10077 */ 10078 if (state == IF_STATE_END) { 10079 ret = -EINVAL; 10080 if (kernel && event->attr.exclude_kernel) 10081 goto fail; 10082 10083 /* 10084 * ACTION "filter" must have a non-zero length region 10085 * specified. 10086 */ 10087 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10088 !filter->size) 10089 goto fail; 10090 10091 if (!kernel) { 10092 if (!filename) 10093 goto fail; 10094 10095 /* 10096 * For now, we only support file-based filters 10097 * in per-task events; doing so for CPU-wide 10098 * events requires additional context switching 10099 * trickery, since same object code will be 10100 * mapped at different virtual addresses in 10101 * different processes. 10102 */ 10103 ret = -EOPNOTSUPP; 10104 if (!event->ctx->task) 10105 goto fail_free_name; 10106 10107 /* look up the path and grab its inode */ 10108 ret = kern_path(filename, LOOKUP_FOLLOW, 10109 &filter->path); 10110 if (ret) 10111 goto fail_free_name; 10112 10113 kfree(filename); 10114 filename = NULL; 10115 10116 ret = -EINVAL; 10117 if (!filter->path.dentry || 10118 !S_ISREG(d_inode(filter->path.dentry) 10119 ->i_mode)) 10120 goto fail; 10121 10122 event->addr_filters.nr_file_filters++; 10123 } 10124 10125 /* ready to consume more filters */ 10126 state = IF_STATE_ACTION; 10127 filter = NULL; 10128 } 10129 } 10130 10131 if (state != IF_STATE_ACTION) 10132 goto fail; 10133 10134 kfree(orig); 10135 10136 return 0; 10137 10138 fail_free_name: 10139 kfree(filename); 10140 fail: 10141 free_filters_list(filters); 10142 kfree(orig); 10143 10144 return ret; 10145 } 10146 10147 static int 10148 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10149 { 10150 LIST_HEAD(filters); 10151 int ret; 10152 10153 /* 10154 * Since this is called in perf_ioctl() path, we're already holding 10155 * ctx::mutex. 10156 */ 10157 lockdep_assert_held(&event->ctx->mutex); 10158 10159 if (WARN_ON_ONCE(event->parent)) 10160 return -EINVAL; 10161 10162 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10163 if (ret) 10164 goto fail_clear_files; 10165 10166 ret = event->pmu->addr_filters_validate(&filters); 10167 if (ret) 10168 goto fail_free_filters; 10169 10170 /* remove existing filters, if any */ 10171 perf_addr_filters_splice(event, &filters); 10172 10173 /* install new filters */ 10174 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10175 10176 return ret; 10177 10178 fail_free_filters: 10179 free_filters_list(&filters); 10180 10181 fail_clear_files: 10182 event->addr_filters.nr_file_filters = 0; 10183 10184 return ret; 10185 } 10186 10187 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10188 { 10189 int ret = -EINVAL; 10190 char *filter_str; 10191 10192 filter_str = strndup_user(arg, PAGE_SIZE); 10193 if (IS_ERR(filter_str)) 10194 return PTR_ERR(filter_str); 10195 10196 #ifdef CONFIG_EVENT_TRACING 10197 if (perf_event_is_tracing(event)) { 10198 struct perf_event_context *ctx = event->ctx; 10199 10200 /* 10201 * Beware, here be dragons!! 10202 * 10203 * the tracepoint muck will deadlock against ctx->mutex, but 10204 * the tracepoint stuff does not actually need it. So 10205 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10206 * already have a reference on ctx. 10207 * 10208 * This can result in event getting moved to a different ctx, 10209 * but that does not affect the tracepoint state. 10210 */ 10211 mutex_unlock(&ctx->mutex); 10212 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10213 mutex_lock(&ctx->mutex); 10214 } else 10215 #endif 10216 if (has_addr_filter(event)) 10217 ret = perf_event_set_addr_filter(event, filter_str); 10218 10219 kfree(filter_str); 10220 return ret; 10221 } 10222 10223 /* 10224 * hrtimer based swevent callback 10225 */ 10226 10227 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10228 { 10229 enum hrtimer_restart ret = HRTIMER_RESTART; 10230 struct perf_sample_data data; 10231 struct pt_regs *regs; 10232 struct perf_event *event; 10233 u64 period; 10234 10235 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10236 10237 if (event->state != PERF_EVENT_STATE_ACTIVE) 10238 return HRTIMER_NORESTART; 10239 10240 event->pmu->read(event); 10241 10242 perf_sample_data_init(&data, 0, event->hw.last_period); 10243 regs = get_irq_regs(); 10244 10245 if (regs && !perf_exclude_event(event, regs)) { 10246 if (!(event->attr.exclude_idle && is_idle_task(current))) 10247 if (__perf_event_overflow(event, 1, &data, regs)) 10248 ret = HRTIMER_NORESTART; 10249 } 10250 10251 period = max_t(u64, 10000, event->hw.sample_period); 10252 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10253 10254 return ret; 10255 } 10256 10257 static void perf_swevent_start_hrtimer(struct perf_event *event) 10258 { 10259 struct hw_perf_event *hwc = &event->hw; 10260 s64 period; 10261 10262 if (!is_sampling_event(event)) 10263 return; 10264 10265 period = local64_read(&hwc->period_left); 10266 if (period) { 10267 if (period < 0) 10268 period = 10000; 10269 10270 local64_set(&hwc->period_left, 0); 10271 } else { 10272 period = max_t(u64, 10000, hwc->sample_period); 10273 } 10274 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10275 HRTIMER_MODE_REL_PINNED_HARD); 10276 } 10277 10278 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10279 { 10280 struct hw_perf_event *hwc = &event->hw; 10281 10282 if (is_sampling_event(event)) { 10283 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10284 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10285 10286 hrtimer_cancel(&hwc->hrtimer); 10287 } 10288 } 10289 10290 static void perf_swevent_init_hrtimer(struct perf_event *event) 10291 { 10292 struct hw_perf_event *hwc = &event->hw; 10293 10294 if (!is_sampling_event(event)) 10295 return; 10296 10297 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10298 hwc->hrtimer.function = perf_swevent_hrtimer; 10299 10300 /* 10301 * Since hrtimers have a fixed rate, we can do a static freq->period 10302 * mapping and avoid the whole period adjust feedback stuff. 10303 */ 10304 if (event->attr.freq) { 10305 long freq = event->attr.sample_freq; 10306 10307 event->attr.sample_period = NSEC_PER_SEC / freq; 10308 hwc->sample_period = event->attr.sample_period; 10309 local64_set(&hwc->period_left, hwc->sample_period); 10310 hwc->last_period = hwc->sample_period; 10311 event->attr.freq = 0; 10312 } 10313 } 10314 10315 /* 10316 * Software event: cpu wall time clock 10317 */ 10318 10319 static void cpu_clock_event_update(struct perf_event *event) 10320 { 10321 s64 prev; 10322 u64 now; 10323 10324 now = local_clock(); 10325 prev = local64_xchg(&event->hw.prev_count, now); 10326 local64_add(now - prev, &event->count); 10327 } 10328 10329 static void cpu_clock_event_start(struct perf_event *event, int flags) 10330 { 10331 local64_set(&event->hw.prev_count, local_clock()); 10332 perf_swevent_start_hrtimer(event); 10333 } 10334 10335 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10336 { 10337 perf_swevent_cancel_hrtimer(event); 10338 cpu_clock_event_update(event); 10339 } 10340 10341 static int cpu_clock_event_add(struct perf_event *event, int flags) 10342 { 10343 if (flags & PERF_EF_START) 10344 cpu_clock_event_start(event, flags); 10345 perf_event_update_userpage(event); 10346 10347 return 0; 10348 } 10349 10350 static void cpu_clock_event_del(struct perf_event *event, int flags) 10351 { 10352 cpu_clock_event_stop(event, flags); 10353 } 10354 10355 static void cpu_clock_event_read(struct perf_event *event) 10356 { 10357 cpu_clock_event_update(event); 10358 } 10359 10360 static int cpu_clock_event_init(struct perf_event *event) 10361 { 10362 if (event->attr.type != PERF_TYPE_SOFTWARE) 10363 return -ENOENT; 10364 10365 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10366 return -ENOENT; 10367 10368 /* 10369 * no branch sampling for software events 10370 */ 10371 if (has_branch_stack(event)) 10372 return -EOPNOTSUPP; 10373 10374 perf_swevent_init_hrtimer(event); 10375 10376 return 0; 10377 } 10378 10379 static struct pmu perf_cpu_clock = { 10380 .task_ctx_nr = perf_sw_context, 10381 10382 .capabilities = PERF_PMU_CAP_NO_NMI, 10383 10384 .event_init = cpu_clock_event_init, 10385 .add = cpu_clock_event_add, 10386 .del = cpu_clock_event_del, 10387 .start = cpu_clock_event_start, 10388 .stop = cpu_clock_event_stop, 10389 .read = cpu_clock_event_read, 10390 }; 10391 10392 /* 10393 * Software event: task time clock 10394 */ 10395 10396 static void task_clock_event_update(struct perf_event *event, u64 now) 10397 { 10398 u64 prev; 10399 s64 delta; 10400 10401 prev = local64_xchg(&event->hw.prev_count, now); 10402 delta = now - prev; 10403 local64_add(delta, &event->count); 10404 } 10405 10406 static void task_clock_event_start(struct perf_event *event, int flags) 10407 { 10408 local64_set(&event->hw.prev_count, event->ctx->time); 10409 perf_swevent_start_hrtimer(event); 10410 } 10411 10412 static void task_clock_event_stop(struct perf_event *event, int flags) 10413 { 10414 perf_swevent_cancel_hrtimer(event); 10415 task_clock_event_update(event, event->ctx->time); 10416 } 10417 10418 static int task_clock_event_add(struct perf_event *event, int flags) 10419 { 10420 if (flags & PERF_EF_START) 10421 task_clock_event_start(event, flags); 10422 perf_event_update_userpage(event); 10423 10424 return 0; 10425 } 10426 10427 static void task_clock_event_del(struct perf_event *event, int flags) 10428 { 10429 task_clock_event_stop(event, PERF_EF_UPDATE); 10430 } 10431 10432 static void task_clock_event_read(struct perf_event *event) 10433 { 10434 u64 now = perf_clock(); 10435 u64 delta = now - event->ctx->timestamp; 10436 u64 time = event->ctx->time + delta; 10437 10438 task_clock_event_update(event, time); 10439 } 10440 10441 static int task_clock_event_init(struct perf_event *event) 10442 { 10443 if (event->attr.type != PERF_TYPE_SOFTWARE) 10444 return -ENOENT; 10445 10446 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10447 return -ENOENT; 10448 10449 /* 10450 * no branch sampling for software events 10451 */ 10452 if (has_branch_stack(event)) 10453 return -EOPNOTSUPP; 10454 10455 perf_swevent_init_hrtimer(event); 10456 10457 return 0; 10458 } 10459 10460 static struct pmu perf_task_clock = { 10461 .task_ctx_nr = perf_sw_context, 10462 10463 .capabilities = PERF_PMU_CAP_NO_NMI, 10464 10465 .event_init = task_clock_event_init, 10466 .add = task_clock_event_add, 10467 .del = task_clock_event_del, 10468 .start = task_clock_event_start, 10469 .stop = task_clock_event_stop, 10470 .read = task_clock_event_read, 10471 }; 10472 10473 static void perf_pmu_nop_void(struct pmu *pmu) 10474 { 10475 } 10476 10477 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10478 { 10479 } 10480 10481 static int perf_pmu_nop_int(struct pmu *pmu) 10482 { 10483 return 0; 10484 } 10485 10486 static int perf_event_nop_int(struct perf_event *event, u64 value) 10487 { 10488 return 0; 10489 } 10490 10491 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10492 10493 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10494 { 10495 __this_cpu_write(nop_txn_flags, flags); 10496 10497 if (flags & ~PERF_PMU_TXN_ADD) 10498 return; 10499 10500 perf_pmu_disable(pmu); 10501 } 10502 10503 static int perf_pmu_commit_txn(struct pmu *pmu) 10504 { 10505 unsigned int flags = __this_cpu_read(nop_txn_flags); 10506 10507 __this_cpu_write(nop_txn_flags, 0); 10508 10509 if (flags & ~PERF_PMU_TXN_ADD) 10510 return 0; 10511 10512 perf_pmu_enable(pmu); 10513 return 0; 10514 } 10515 10516 static void perf_pmu_cancel_txn(struct pmu *pmu) 10517 { 10518 unsigned int flags = __this_cpu_read(nop_txn_flags); 10519 10520 __this_cpu_write(nop_txn_flags, 0); 10521 10522 if (flags & ~PERF_PMU_TXN_ADD) 10523 return; 10524 10525 perf_pmu_enable(pmu); 10526 } 10527 10528 static int perf_event_idx_default(struct perf_event *event) 10529 { 10530 return 0; 10531 } 10532 10533 /* 10534 * Ensures all contexts with the same task_ctx_nr have the same 10535 * pmu_cpu_context too. 10536 */ 10537 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10538 { 10539 struct pmu *pmu; 10540 10541 if (ctxn < 0) 10542 return NULL; 10543 10544 list_for_each_entry(pmu, &pmus, entry) { 10545 if (pmu->task_ctx_nr == ctxn) 10546 return pmu->pmu_cpu_context; 10547 } 10548 10549 return NULL; 10550 } 10551 10552 static void free_pmu_context(struct pmu *pmu) 10553 { 10554 /* 10555 * Static contexts such as perf_sw_context have a global lifetime 10556 * and may be shared between different PMUs. Avoid freeing them 10557 * when a single PMU is going away. 10558 */ 10559 if (pmu->task_ctx_nr > perf_invalid_context) 10560 return; 10561 10562 free_percpu(pmu->pmu_cpu_context); 10563 } 10564 10565 /* 10566 * Let userspace know that this PMU supports address range filtering: 10567 */ 10568 static ssize_t nr_addr_filters_show(struct device *dev, 10569 struct device_attribute *attr, 10570 char *page) 10571 { 10572 struct pmu *pmu = dev_get_drvdata(dev); 10573 10574 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10575 } 10576 DEVICE_ATTR_RO(nr_addr_filters); 10577 10578 static struct idr pmu_idr; 10579 10580 static ssize_t 10581 type_show(struct device *dev, struct device_attribute *attr, char *page) 10582 { 10583 struct pmu *pmu = dev_get_drvdata(dev); 10584 10585 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10586 } 10587 static DEVICE_ATTR_RO(type); 10588 10589 static ssize_t 10590 perf_event_mux_interval_ms_show(struct device *dev, 10591 struct device_attribute *attr, 10592 char *page) 10593 { 10594 struct pmu *pmu = dev_get_drvdata(dev); 10595 10596 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10597 } 10598 10599 static DEFINE_MUTEX(mux_interval_mutex); 10600 10601 static ssize_t 10602 perf_event_mux_interval_ms_store(struct device *dev, 10603 struct device_attribute *attr, 10604 const char *buf, size_t count) 10605 { 10606 struct pmu *pmu = dev_get_drvdata(dev); 10607 int timer, cpu, ret; 10608 10609 ret = kstrtoint(buf, 0, &timer); 10610 if (ret) 10611 return ret; 10612 10613 if (timer < 1) 10614 return -EINVAL; 10615 10616 /* same value, noting to do */ 10617 if (timer == pmu->hrtimer_interval_ms) 10618 return count; 10619 10620 mutex_lock(&mux_interval_mutex); 10621 pmu->hrtimer_interval_ms = timer; 10622 10623 /* update all cpuctx for this PMU */ 10624 cpus_read_lock(); 10625 for_each_online_cpu(cpu) { 10626 struct perf_cpu_context *cpuctx; 10627 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10628 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10629 10630 cpu_function_call(cpu, 10631 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10632 } 10633 cpus_read_unlock(); 10634 mutex_unlock(&mux_interval_mutex); 10635 10636 return count; 10637 } 10638 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10639 10640 static struct attribute *pmu_dev_attrs[] = { 10641 &dev_attr_type.attr, 10642 &dev_attr_perf_event_mux_interval_ms.attr, 10643 NULL, 10644 }; 10645 ATTRIBUTE_GROUPS(pmu_dev); 10646 10647 static int pmu_bus_running; 10648 static struct bus_type pmu_bus = { 10649 .name = "event_source", 10650 .dev_groups = pmu_dev_groups, 10651 }; 10652 10653 static void pmu_dev_release(struct device *dev) 10654 { 10655 kfree(dev); 10656 } 10657 10658 static int pmu_dev_alloc(struct pmu *pmu) 10659 { 10660 int ret = -ENOMEM; 10661 10662 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 10663 if (!pmu->dev) 10664 goto out; 10665 10666 pmu->dev->groups = pmu->attr_groups; 10667 device_initialize(pmu->dev); 10668 ret = dev_set_name(pmu->dev, "%s", pmu->name); 10669 if (ret) 10670 goto free_dev; 10671 10672 dev_set_drvdata(pmu->dev, pmu); 10673 pmu->dev->bus = &pmu_bus; 10674 pmu->dev->release = pmu_dev_release; 10675 ret = device_add(pmu->dev); 10676 if (ret) 10677 goto free_dev; 10678 10679 /* For PMUs with address filters, throw in an extra attribute: */ 10680 if (pmu->nr_addr_filters) 10681 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 10682 10683 if (ret) 10684 goto del_dev; 10685 10686 if (pmu->attr_update) 10687 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 10688 10689 if (ret) 10690 goto del_dev; 10691 10692 out: 10693 return ret; 10694 10695 del_dev: 10696 device_del(pmu->dev); 10697 10698 free_dev: 10699 put_device(pmu->dev); 10700 goto out; 10701 } 10702 10703 static struct lock_class_key cpuctx_mutex; 10704 static struct lock_class_key cpuctx_lock; 10705 10706 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 10707 { 10708 int cpu, ret, max = PERF_TYPE_MAX; 10709 10710 mutex_lock(&pmus_lock); 10711 ret = -ENOMEM; 10712 pmu->pmu_disable_count = alloc_percpu(int); 10713 if (!pmu->pmu_disable_count) 10714 goto unlock; 10715 10716 pmu->type = -1; 10717 if (!name) 10718 goto skip_type; 10719 pmu->name = name; 10720 10721 if (type != PERF_TYPE_SOFTWARE) { 10722 if (type >= 0) 10723 max = type; 10724 10725 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 10726 if (ret < 0) 10727 goto free_pdc; 10728 10729 WARN_ON(type >= 0 && ret != type); 10730 10731 type = ret; 10732 } 10733 pmu->type = type; 10734 10735 if (pmu_bus_running) { 10736 ret = pmu_dev_alloc(pmu); 10737 if (ret) 10738 goto free_idr; 10739 } 10740 10741 skip_type: 10742 if (pmu->task_ctx_nr == perf_hw_context) { 10743 static int hw_context_taken = 0; 10744 10745 /* 10746 * Other than systems with heterogeneous CPUs, it never makes 10747 * sense for two PMUs to share perf_hw_context. PMUs which are 10748 * uncore must use perf_invalid_context. 10749 */ 10750 if (WARN_ON_ONCE(hw_context_taken && 10751 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 10752 pmu->task_ctx_nr = perf_invalid_context; 10753 10754 hw_context_taken = 1; 10755 } 10756 10757 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 10758 if (pmu->pmu_cpu_context) 10759 goto got_cpu_context; 10760 10761 ret = -ENOMEM; 10762 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 10763 if (!pmu->pmu_cpu_context) 10764 goto free_dev; 10765 10766 for_each_possible_cpu(cpu) { 10767 struct perf_cpu_context *cpuctx; 10768 10769 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10770 __perf_event_init_context(&cpuctx->ctx); 10771 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 10772 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 10773 cpuctx->ctx.pmu = pmu; 10774 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 10775 10776 __perf_mux_hrtimer_init(cpuctx, cpu); 10777 10778 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 10779 cpuctx->heap = cpuctx->heap_default; 10780 } 10781 10782 got_cpu_context: 10783 if (!pmu->start_txn) { 10784 if (pmu->pmu_enable) { 10785 /* 10786 * If we have pmu_enable/pmu_disable calls, install 10787 * transaction stubs that use that to try and batch 10788 * hardware accesses. 10789 */ 10790 pmu->start_txn = perf_pmu_start_txn; 10791 pmu->commit_txn = perf_pmu_commit_txn; 10792 pmu->cancel_txn = perf_pmu_cancel_txn; 10793 } else { 10794 pmu->start_txn = perf_pmu_nop_txn; 10795 pmu->commit_txn = perf_pmu_nop_int; 10796 pmu->cancel_txn = perf_pmu_nop_void; 10797 } 10798 } 10799 10800 if (!pmu->pmu_enable) { 10801 pmu->pmu_enable = perf_pmu_nop_void; 10802 pmu->pmu_disable = perf_pmu_nop_void; 10803 } 10804 10805 if (!pmu->check_period) 10806 pmu->check_period = perf_event_nop_int; 10807 10808 if (!pmu->event_idx) 10809 pmu->event_idx = perf_event_idx_default; 10810 10811 /* 10812 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 10813 * since these cannot be in the IDR. This way the linear search 10814 * is fast, provided a valid software event is provided. 10815 */ 10816 if (type == PERF_TYPE_SOFTWARE || !name) 10817 list_add_rcu(&pmu->entry, &pmus); 10818 else 10819 list_add_tail_rcu(&pmu->entry, &pmus); 10820 10821 atomic_set(&pmu->exclusive_cnt, 0); 10822 ret = 0; 10823 unlock: 10824 mutex_unlock(&pmus_lock); 10825 10826 return ret; 10827 10828 free_dev: 10829 device_del(pmu->dev); 10830 put_device(pmu->dev); 10831 10832 free_idr: 10833 if (pmu->type != PERF_TYPE_SOFTWARE) 10834 idr_remove(&pmu_idr, pmu->type); 10835 10836 free_pdc: 10837 free_percpu(pmu->pmu_disable_count); 10838 goto unlock; 10839 } 10840 EXPORT_SYMBOL_GPL(perf_pmu_register); 10841 10842 void perf_pmu_unregister(struct pmu *pmu) 10843 { 10844 mutex_lock(&pmus_lock); 10845 list_del_rcu(&pmu->entry); 10846 10847 /* 10848 * We dereference the pmu list under both SRCU and regular RCU, so 10849 * synchronize against both of those. 10850 */ 10851 synchronize_srcu(&pmus_srcu); 10852 synchronize_rcu(); 10853 10854 free_percpu(pmu->pmu_disable_count); 10855 if (pmu->type != PERF_TYPE_SOFTWARE) 10856 idr_remove(&pmu_idr, pmu->type); 10857 if (pmu_bus_running) { 10858 if (pmu->nr_addr_filters) 10859 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10860 device_del(pmu->dev); 10861 put_device(pmu->dev); 10862 } 10863 free_pmu_context(pmu); 10864 mutex_unlock(&pmus_lock); 10865 } 10866 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10867 10868 static inline bool has_extended_regs(struct perf_event *event) 10869 { 10870 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 10871 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 10872 } 10873 10874 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10875 { 10876 struct perf_event_context *ctx = NULL; 10877 int ret; 10878 10879 if (!try_module_get(pmu->module)) 10880 return -ENODEV; 10881 10882 /* 10883 * A number of pmu->event_init() methods iterate the sibling_list to, 10884 * for example, validate if the group fits on the PMU. Therefore, 10885 * if this is a sibling event, acquire the ctx->mutex to protect 10886 * the sibling_list. 10887 */ 10888 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10889 /* 10890 * This ctx->mutex can nest when we're called through 10891 * inheritance. See the perf_event_ctx_lock_nested() comment. 10892 */ 10893 ctx = perf_event_ctx_lock_nested(event->group_leader, 10894 SINGLE_DEPTH_NESTING); 10895 BUG_ON(!ctx); 10896 } 10897 10898 event->pmu = pmu; 10899 ret = pmu->event_init(event); 10900 10901 if (ctx) 10902 perf_event_ctx_unlock(event->group_leader, ctx); 10903 10904 if (!ret) { 10905 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 10906 has_extended_regs(event)) 10907 ret = -EOPNOTSUPP; 10908 10909 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10910 event_has_any_exclude_flag(event)) 10911 ret = -EINVAL; 10912 10913 if (ret && event->destroy) 10914 event->destroy(event); 10915 } 10916 10917 if (ret) 10918 module_put(pmu->module); 10919 10920 return ret; 10921 } 10922 10923 static struct pmu *perf_init_event(struct perf_event *event) 10924 { 10925 int idx, type, ret; 10926 struct pmu *pmu; 10927 10928 idx = srcu_read_lock(&pmus_srcu); 10929 10930 /* Try parent's PMU first: */ 10931 if (event->parent && event->parent->pmu) { 10932 pmu = event->parent->pmu; 10933 ret = perf_try_init_event(pmu, event); 10934 if (!ret) 10935 goto unlock; 10936 } 10937 10938 /* 10939 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 10940 * are often aliases for PERF_TYPE_RAW. 10941 */ 10942 type = event->attr.type; 10943 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) 10944 type = PERF_TYPE_RAW; 10945 10946 again: 10947 rcu_read_lock(); 10948 pmu = idr_find(&pmu_idr, type); 10949 rcu_read_unlock(); 10950 if (pmu) { 10951 ret = perf_try_init_event(pmu, event); 10952 if (ret == -ENOENT && event->attr.type != type) { 10953 type = event->attr.type; 10954 goto again; 10955 } 10956 10957 if (ret) 10958 pmu = ERR_PTR(ret); 10959 10960 goto unlock; 10961 } 10962 10963 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 10964 ret = perf_try_init_event(pmu, event); 10965 if (!ret) 10966 goto unlock; 10967 10968 if (ret != -ENOENT) { 10969 pmu = ERR_PTR(ret); 10970 goto unlock; 10971 } 10972 } 10973 pmu = ERR_PTR(-ENOENT); 10974 unlock: 10975 srcu_read_unlock(&pmus_srcu, idx); 10976 10977 return pmu; 10978 } 10979 10980 static void attach_sb_event(struct perf_event *event) 10981 { 10982 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10983 10984 raw_spin_lock(&pel->lock); 10985 list_add_rcu(&event->sb_list, &pel->list); 10986 raw_spin_unlock(&pel->lock); 10987 } 10988 10989 /* 10990 * We keep a list of all !task (and therefore per-cpu) events 10991 * that need to receive side-band records. 10992 * 10993 * This avoids having to scan all the various PMU per-cpu contexts 10994 * looking for them. 10995 */ 10996 static void account_pmu_sb_event(struct perf_event *event) 10997 { 10998 if (is_sb_event(event)) 10999 attach_sb_event(event); 11000 } 11001 11002 static void account_event_cpu(struct perf_event *event, int cpu) 11003 { 11004 if (event->parent) 11005 return; 11006 11007 if (is_cgroup_event(event)) 11008 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11009 } 11010 11011 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11012 static void account_freq_event_nohz(void) 11013 { 11014 #ifdef CONFIG_NO_HZ_FULL 11015 /* Lock so we don't race with concurrent unaccount */ 11016 spin_lock(&nr_freq_lock); 11017 if (atomic_inc_return(&nr_freq_events) == 1) 11018 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11019 spin_unlock(&nr_freq_lock); 11020 #endif 11021 } 11022 11023 static void account_freq_event(void) 11024 { 11025 if (tick_nohz_full_enabled()) 11026 account_freq_event_nohz(); 11027 else 11028 atomic_inc(&nr_freq_events); 11029 } 11030 11031 11032 static void account_event(struct perf_event *event) 11033 { 11034 bool inc = false; 11035 11036 if (event->parent) 11037 return; 11038 11039 if (event->attach_state & PERF_ATTACH_TASK) 11040 inc = true; 11041 if (event->attr.mmap || event->attr.mmap_data) 11042 atomic_inc(&nr_mmap_events); 11043 if (event->attr.comm) 11044 atomic_inc(&nr_comm_events); 11045 if (event->attr.namespaces) 11046 atomic_inc(&nr_namespaces_events); 11047 if (event->attr.cgroup) 11048 atomic_inc(&nr_cgroup_events); 11049 if (event->attr.task) 11050 atomic_inc(&nr_task_events); 11051 if (event->attr.freq) 11052 account_freq_event(); 11053 if (event->attr.context_switch) { 11054 atomic_inc(&nr_switch_events); 11055 inc = true; 11056 } 11057 if (has_branch_stack(event)) 11058 inc = true; 11059 if (is_cgroup_event(event)) 11060 inc = true; 11061 if (event->attr.ksymbol) 11062 atomic_inc(&nr_ksymbol_events); 11063 if (event->attr.bpf_event) 11064 atomic_inc(&nr_bpf_events); 11065 if (event->attr.text_poke) 11066 atomic_inc(&nr_text_poke_events); 11067 11068 if (inc) { 11069 /* 11070 * We need the mutex here because static_branch_enable() 11071 * must complete *before* the perf_sched_count increment 11072 * becomes visible. 11073 */ 11074 if (atomic_inc_not_zero(&perf_sched_count)) 11075 goto enabled; 11076 11077 mutex_lock(&perf_sched_mutex); 11078 if (!atomic_read(&perf_sched_count)) { 11079 static_branch_enable(&perf_sched_events); 11080 /* 11081 * Guarantee that all CPUs observe they key change and 11082 * call the perf scheduling hooks before proceeding to 11083 * install events that need them. 11084 */ 11085 synchronize_rcu(); 11086 } 11087 /* 11088 * Now that we have waited for the sync_sched(), allow further 11089 * increments to by-pass the mutex. 11090 */ 11091 atomic_inc(&perf_sched_count); 11092 mutex_unlock(&perf_sched_mutex); 11093 } 11094 enabled: 11095 11096 account_event_cpu(event, event->cpu); 11097 11098 account_pmu_sb_event(event); 11099 } 11100 11101 /* 11102 * Allocate and initialize an event structure 11103 */ 11104 static struct perf_event * 11105 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11106 struct task_struct *task, 11107 struct perf_event *group_leader, 11108 struct perf_event *parent_event, 11109 perf_overflow_handler_t overflow_handler, 11110 void *context, int cgroup_fd) 11111 { 11112 struct pmu *pmu; 11113 struct perf_event *event; 11114 struct hw_perf_event *hwc; 11115 long err = -EINVAL; 11116 11117 if ((unsigned)cpu >= nr_cpu_ids) { 11118 if (!task || cpu != -1) 11119 return ERR_PTR(-EINVAL); 11120 } 11121 11122 event = kzalloc(sizeof(*event), GFP_KERNEL); 11123 if (!event) 11124 return ERR_PTR(-ENOMEM); 11125 11126 /* 11127 * Single events are their own group leaders, with an 11128 * empty sibling list: 11129 */ 11130 if (!group_leader) 11131 group_leader = event; 11132 11133 mutex_init(&event->child_mutex); 11134 INIT_LIST_HEAD(&event->child_list); 11135 11136 INIT_LIST_HEAD(&event->event_entry); 11137 INIT_LIST_HEAD(&event->sibling_list); 11138 INIT_LIST_HEAD(&event->active_list); 11139 init_event_group(event); 11140 INIT_LIST_HEAD(&event->rb_entry); 11141 INIT_LIST_HEAD(&event->active_entry); 11142 INIT_LIST_HEAD(&event->addr_filters.list); 11143 INIT_HLIST_NODE(&event->hlist_entry); 11144 11145 11146 init_waitqueue_head(&event->waitq); 11147 event->pending_disable = -1; 11148 init_irq_work(&event->pending, perf_pending_event); 11149 11150 mutex_init(&event->mmap_mutex); 11151 raw_spin_lock_init(&event->addr_filters.lock); 11152 11153 atomic_long_set(&event->refcount, 1); 11154 event->cpu = cpu; 11155 event->attr = *attr; 11156 event->group_leader = group_leader; 11157 event->pmu = NULL; 11158 event->oncpu = -1; 11159 11160 event->parent = parent_event; 11161 11162 event->ns = get_pid_ns(task_active_pid_ns(current)); 11163 event->id = atomic64_inc_return(&perf_event_id); 11164 11165 event->state = PERF_EVENT_STATE_INACTIVE; 11166 11167 if (task) { 11168 event->attach_state = PERF_ATTACH_TASK; 11169 /* 11170 * XXX pmu::event_init needs to know what task to account to 11171 * and we cannot use the ctx information because we need the 11172 * pmu before we get a ctx. 11173 */ 11174 event->hw.target = get_task_struct(task); 11175 } 11176 11177 event->clock = &local_clock; 11178 if (parent_event) 11179 event->clock = parent_event->clock; 11180 11181 if (!overflow_handler && parent_event) { 11182 overflow_handler = parent_event->overflow_handler; 11183 context = parent_event->overflow_handler_context; 11184 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11185 if (overflow_handler == bpf_overflow_handler) { 11186 struct bpf_prog *prog = parent_event->prog; 11187 11188 bpf_prog_inc(prog); 11189 event->prog = prog; 11190 event->orig_overflow_handler = 11191 parent_event->orig_overflow_handler; 11192 } 11193 #endif 11194 } 11195 11196 if (overflow_handler) { 11197 event->overflow_handler = overflow_handler; 11198 event->overflow_handler_context = context; 11199 } else if (is_write_backward(event)){ 11200 event->overflow_handler = perf_event_output_backward; 11201 event->overflow_handler_context = NULL; 11202 } else { 11203 event->overflow_handler = perf_event_output_forward; 11204 event->overflow_handler_context = NULL; 11205 } 11206 11207 perf_event__state_init(event); 11208 11209 pmu = NULL; 11210 11211 hwc = &event->hw; 11212 hwc->sample_period = attr->sample_period; 11213 if (attr->freq && attr->sample_freq) 11214 hwc->sample_period = 1; 11215 hwc->last_period = hwc->sample_period; 11216 11217 local64_set(&hwc->period_left, hwc->sample_period); 11218 11219 /* 11220 * We currently do not support PERF_SAMPLE_READ on inherited events. 11221 * See perf_output_read(). 11222 */ 11223 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11224 goto err_ns; 11225 11226 if (!has_branch_stack(event)) 11227 event->attr.branch_sample_type = 0; 11228 11229 pmu = perf_init_event(event); 11230 if (IS_ERR(pmu)) { 11231 err = PTR_ERR(pmu); 11232 goto err_ns; 11233 } 11234 11235 /* 11236 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11237 * be different on other CPUs in the uncore mask. 11238 */ 11239 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11240 err = -EINVAL; 11241 goto err_pmu; 11242 } 11243 11244 if (event->attr.aux_output && 11245 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11246 err = -EOPNOTSUPP; 11247 goto err_pmu; 11248 } 11249 11250 if (cgroup_fd != -1) { 11251 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11252 if (err) 11253 goto err_pmu; 11254 } 11255 11256 err = exclusive_event_init(event); 11257 if (err) 11258 goto err_pmu; 11259 11260 if (has_addr_filter(event)) { 11261 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11262 sizeof(struct perf_addr_filter_range), 11263 GFP_KERNEL); 11264 if (!event->addr_filter_ranges) { 11265 err = -ENOMEM; 11266 goto err_per_task; 11267 } 11268 11269 /* 11270 * Clone the parent's vma offsets: they are valid until exec() 11271 * even if the mm is not shared with the parent. 11272 */ 11273 if (event->parent) { 11274 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11275 11276 raw_spin_lock_irq(&ifh->lock); 11277 memcpy(event->addr_filter_ranges, 11278 event->parent->addr_filter_ranges, 11279 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11280 raw_spin_unlock_irq(&ifh->lock); 11281 } 11282 11283 /* force hw sync on the address filters */ 11284 event->addr_filters_gen = 1; 11285 } 11286 11287 if (!event->parent) { 11288 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11289 err = get_callchain_buffers(attr->sample_max_stack); 11290 if (err) 11291 goto err_addr_filters; 11292 } 11293 } 11294 11295 err = security_perf_event_alloc(event); 11296 if (err) 11297 goto err_callchain_buffer; 11298 11299 /* symmetric to unaccount_event() in _free_event() */ 11300 account_event(event); 11301 11302 return event; 11303 11304 err_callchain_buffer: 11305 if (!event->parent) { 11306 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11307 put_callchain_buffers(); 11308 } 11309 err_addr_filters: 11310 kfree(event->addr_filter_ranges); 11311 11312 err_per_task: 11313 exclusive_event_destroy(event); 11314 11315 err_pmu: 11316 if (is_cgroup_event(event)) 11317 perf_detach_cgroup(event); 11318 if (event->destroy) 11319 event->destroy(event); 11320 module_put(pmu->module); 11321 err_ns: 11322 if (event->ns) 11323 put_pid_ns(event->ns); 11324 if (event->hw.target) 11325 put_task_struct(event->hw.target); 11326 kfree(event); 11327 11328 return ERR_PTR(err); 11329 } 11330 11331 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11332 struct perf_event_attr *attr) 11333 { 11334 u32 size; 11335 int ret; 11336 11337 /* Zero the full structure, so that a short copy will be nice. */ 11338 memset(attr, 0, sizeof(*attr)); 11339 11340 ret = get_user(size, &uattr->size); 11341 if (ret) 11342 return ret; 11343 11344 /* ABI compatibility quirk: */ 11345 if (!size) 11346 size = PERF_ATTR_SIZE_VER0; 11347 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11348 goto err_size; 11349 11350 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11351 if (ret) { 11352 if (ret == -E2BIG) 11353 goto err_size; 11354 return ret; 11355 } 11356 11357 attr->size = size; 11358 11359 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11360 return -EINVAL; 11361 11362 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11363 return -EINVAL; 11364 11365 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11366 return -EINVAL; 11367 11368 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11369 u64 mask = attr->branch_sample_type; 11370 11371 /* only using defined bits */ 11372 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11373 return -EINVAL; 11374 11375 /* at least one branch bit must be set */ 11376 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11377 return -EINVAL; 11378 11379 /* propagate priv level, when not set for branch */ 11380 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11381 11382 /* exclude_kernel checked on syscall entry */ 11383 if (!attr->exclude_kernel) 11384 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11385 11386 if (!attr->exclude_user) 11387 mask |= PERF_SAMPLE_BRANCH_USER; 11388 11389 if (!attr->exclude_hv) 11390 mask |= PERF_SAMPLE_BRANCH_HV; 11391 /* 11392 * adjust user setting (for HW filter setup) 11393 */ 11394 attr->branch_sample_type = mask; 11395 } 11396 /* privileged levels capture (kernel, hv): check permissions */ 11397 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11398 ret = perf_allow_kernel(attr); 11399 if (ret) 11400 return ret; 11401 } 11402 } 11403 11404 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11405 ret = perf_reg_validate(attr->sample_regs_user); 11406 if (ret) 11407 return ret; 11408 } 11409 11410 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11411 if (!arch_perf_have_user_stack_dump()) 11412 return -ENOSYS; 11413 11414 /* 11415 * We have __u32 type for the size, but so far 11416 * we can only use __u16 as maximum due to the 11417 * __u16 sample size limit. 11418 */ 11419 if (attr->sample_stack_user >= USHRT_MAX) 11420 return -EINVAL; 11421 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11422 return -EINVAL; 11423 } 11424 11425 if (!attr->sample_max_stack) 11426 attr->sample_max_stack = sysctl_perf_event_max_stack; 11427 11428 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11429 ret = perf_reg_validate(attr->sample_regs_intr); 11430 11431 #ifndef CONFIG_CGROUP_PERF 11432 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11433 return -EINVAL; 11434 #endif 11435 11436 out: 11437 return ret; 11438 11439 err_size: 11440 put_user(sizeof(*attr), &uattr->size); 11441 ret = -E2BIG; 11442 goto out; 11443 } 11444 11445 static int 11446 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11447 { 11448 struct perf_buffer *rb = NULL; 11449 int ret = -EINVAL; 11450 11451 if (!output_event) 11452 goto set; 11453 11454 /* don't allow circular references */ 11455 if (event == output_event) 11456 goto out; 11457 11458 /* 11459 * Don't allow cross-cpu buffers 11460 */ 11461 if (output_event->cpu != event->cpu) 11462 goto out; 11463 11464 /* 11465 * If its not a per-cpu rb, it must be the same task. 11466 */ 11467 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11468 goto out; 11469 11470 /* 11471 * Mixing clocks in the same buffer is trouble you don't need. 11472 */ 11473 if (output_event->clock != event->clock) 11474 goto out; 11475 11476 /* 11477 * Either writing ring buffer from beginning or from end. 11478 * Mixing is not allowed. 11479 */ 11480 if (is_write_backward(output_event) != is_write_backward(event)) 11481 goto out; 11482 11483 /* 11484 * If both events generate aux data, they must be on the same PMU 11485 */ 11486 if (has_aux(event) && has_aux(output_event) && 11487 event->pmu != output_event->pmu) 11488 goto out; 11489 11490 set: 11491 mutex_lock(&event->mmap_mutex); 11492 /* Can't redirect output if we've got an active mmap() */ 11493 if (atomic_read(&event->mmap_count)) 11494 goto unlock; 11495 11496 if (output_event) { 11497 /* get the rb we want to redirect to */ 11498 rb = ring_buffer_get(output_event); 11499 if (!rb) 11500 goto unlock; 11501 } 11502 11503 ring_buffer_attach(event, rb); 11504 11505 ret = 0; 11506 unlock: 11507 mutex_unlock(&event->mmap_mutex); 11508 11509 out: 11510 return ret; 11511 } 11512 11513 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11514 { 11515 if (b < a) 11516 swap(a, b); 11517 11518 mutex_lock(a); 11519 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11520 } 11521 11522 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11523 { 11524 bool nmi_safe = false; 11525 11526 switch (clk_id) { 11527 case CLOCK_MONOTONIC: 11528 event->clock = &ktime_get_mono_fast_ns; 11529 nmi_safe = true; 11530 break; 11531 11532 case CLOCK_MONOTONIC_RAW: 11533 event->clock = &ktime_get_raw_fast_ns; 11534 nmi_safe = true; 11535 break; 11536 11537 case CLOCK_REALTIME: 11538 event->clock = &ktime_get_real_ns; 11539 break; 11540 11541 case CLOCK_BOOTTIME: 11542 event->clock = &ktime_get_boottime_ns; 11543 break; 11544 11545 case CLOCK_TAI: 11546 event->clock = &ktime_get_clocktai_ns; 11547 break; 11548 11549 default: 11550 return -EINVAL; 11551 } 11552 11553 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11554 return -EINVAL; 11555 11556 return 0; 11557 } 11558 11559 /* 11560 * Variation on perf_event_ctx_lock_nested(), except we take two context 11561 * mutexes. 11562 */ 11563 static struct perf_event_context * 11564 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11565 struct perf_event_context *ctx) 11566 { 11567 struct perf_event_context *gctx; 11568 11569 again: 11570 rcu_read_lock(); 11571 gctx = READ_ONCE(group_leader->ctx); 11572 if (!refcount_inc_not_zero(&gctx->refcount)) { 11573 rcu_read_unlock(); 11574 goto again; 11575 } 11576 rcu_read_unlock(); 11577 11578 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11579 11580 if (group_leader->ctx != gctx) { 11581 mutex_unlock(&ctx->mutex); 11582 mutex_unlock(&gctx->mutex); 11583 put_ctx(gctx); 11584 goto again; 11585 } 11586 11587 return gctx; 11588 } 11589 11590 /** 11591 * sys_perf_event_open - open a performance event, associate it to a task/cpu 11592 * 11593 * @attr_uptr: event_id type attributes for monitoring/sampling 11594 * @pid: target pid 11595 * @cpu: target cpu 11596 * @group_fd: group leader event fd 11597 */ 11598 SYSCALL_DEFINE5(perf_event_open, 11599 struct perf_event_attr __user *, attr_uptr, 11600 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 11601 { 11602 struct perf_event *group_leader = NULL, *output_event = NULL; 11603 struct perf_event *event, *sibling; 11604 struct perf_event_attr attr; 11605 struct perf_event_context *ctx, *gctx; 11606 struct file *event_file = NULL; 11607 struct fd group = {NULL, 0}; 11608 struct task_struct *task = NULL; 11609 struct pmu *pmu; 11610 int event_fd; 11611 int move_group = 0; 11612 int err; 11613 int f_flags = O_RDWR; 11614 int cgroup_fd = -1; 11615 11616 /* for future expandability... */ 11617 if (flags & ~PERF_FLAG_ALL) 11618 return -EINVAL; 11619 11620 /* Do we allow access to perf_event_open(2) ? */ 11621 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 11622 if (err) 11623 return err; 11624 11625 err = perf_copy_attr(attr_uptr, &attr); 11626 if (err) 11627 return err; 11628 11629 if (!attr.exclude_kernel) { 11630 err = perf_allow_kernel(&attr); 11631 if (err) 11632 return err; 11633 } 11634 11635 if (attr.namespaces) { 11636 if (!perfmon_capable()) 11637 return -EACCES; 11638 } 11639 11640 if (attr.freq) { 11641 if (attr.sample_freq > sysctl_perf_event_sample_rate) 11642 return -EINVAL; 11643 } else { 11644 if (attr.sample_period & (1ULL << 63)) 11645 return -EINVAL; 11646 } 11647 11648 /* Only privileged users can get physical addresses */ 11649 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 11650 err = perf_allow_kernel(&attr); 11651 if (err) 11652 return err; 11653 } 11654 11655 err = security_locked_down(LOCKDOWN_PERF); 11656 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR)) 11657 /* REGS_INTR can leak data, lockdown must prevent this */ 11658 return err; 11659 11660 err = 0; 11661 11662 /* 11663 * In cgroup mode, the pid argument is used to pass the fd 11664 * opened to the cgroup directory in cgroupfs. The cpu argument 11665 * designates the cpu on which to monitor threads from that 11666 * cgroup. 11667 */ 11668 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 11669 return -EINVAL; 11670 11671 if (flags & PERF_FLAG_FD_CLOEXEC) 11672 f_flags |= O_CLOEXEC; 11673 11674 event_fd = get_unused_fd_flags(f_flags); 11675 if (event_fd < 0) 11676 return event_fd; 11677 11678 if (group_fd != -1) { 11679 err = perf_fget_light(group_fd, &group); 11680 if (err) 11681 goto err_fd; 11682 group_leader = group.file->private_data; 11683 if (flags & PERF_FLAG_FD_OUTPUT) 11684 output_event = group_leader; 11685 if (flags & PERF_FLAG_FD_NO_GROUP) 11686 group_leader = NULL; 11687 } 11688 11689 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 11690 task = find_lively_task_by_vpid(pid); 11691 if (IS_ERR(task)) { 11692 err = PTR_ERR(task); 11693 goto err_group_fd; 11694 } 11695 } 11696 11697 if (task && group_leader && 11698 group_leader->attr.inherit != attr.inherit) { 11699 err = -EINVAL; 11700 goto err_task; 11701 } 11702 11703 if (task) { 11704 err = mutex_lock_interruptible(&task->signal->exec_update_mutex); 11705 if (err) 11706 goto err_task; 11707 11708 /* 11709 * Preserve ptrace permission check for backwards compatibility. 11710 * 11711 * We must hold exec_update_mutex across this and any potential 11712 * perf_install_in_context() call for this new event to 11713 * serialize against exec() altering our credentials (and the 11714 * perf_event_exit_task() that could imply). 11715 */ 11716 err = -EACCES; 11717 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 11718 goto err_cred; 11719 } 11720 11721 if (flags & PERF_FLAG_PID_CGROUP) 11722 cgroup_fd = pid; 11723 11724 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 11725 NULL, NULL, cgroup_fd); 11726 if (IS_ERR(event)) { 11727 err = PTR_ERR(event); 11728 goto err_cred; 11729 } 11730 11731 if (is_sampling_event(event)) { 11732 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 11733 err = -EOPNOTSUPP; 11734 goto err_alloc; 11735 } 11736 } 11737 11738 /* 11739 * Special case software events and allow them to be part of 11740 * any hardware group. 11741 */ 11742 pmu = event->pmu; 11743 11744 if (attr.use_clockid) { 11745 err = perf_event_set_clock(event, attr.clockid); 11746 if (err) 11747 goto err_alloc; 11748 } 11749 11750 if (pmu->task_ctx_nr == perf_sw_context) 11751 event->event_caps |= PERF_EV_CAP_SOFTWARE; 11752 11753 if (group_leader) { 11754 if (is_software_event(event) && 11755 !in_software_context(group_leader)) { 11756 /* 11757 * If the event is a sw event, but the group_leader 11758 * is on hw context. 11759 * 11760 * Allow the addition of software events to hw 11761 * groups, this is safe because software events 11762 * never fail to schedule. 11763 */ 11764 pmu = group_leader->ctx->pmu; 11765 } else if (!is_software_event(event) && 11766 is_software_event(group_leader) && 11767 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11768 /* 11769 * In case the group is a pure software group, and we 11770 * try to add a hardware event, move the whole group to 11771 * the hardware context. 11772 */ 11773 move_group = 1; 11774 } 11775 } 11776 11777 /* 11778 * Get the target context (task or percpu): 11779 */ 11780 ctx = find_get_context(pmu, task, event); 11781 if (IS_ERR(ctx)) { 11782 err = PTR_ERR(ctx); 11783 goto err_alloc; 11784 } 11785 11786 /* 11787 * Look up the group leader (we will attach this event to it): 11788 */ 11789 if (group_leader) { 11790 err = -EINVAL; 11791 11792 /* 11793 * Do not allow a recursive hierarchy (this new sibling 11794 * becoming part of another group-sibling): 11795 */ 11796 if (group_leader->group_leader != group_leader) 11797 goto err_context; 11798 11799 /* All events in a group should have the same clock */ 11800 if (group_leader->clock != event->clock) 11801 goto err_context; 11802 11803 /* 11804 * Make sure we're both events for the same CPU; 11805 * grouping events for different CPUs is broken; since 11806 * you can never concurrently schedule them anyhow. 11807 */ 11808 if (group_leader->cpu != event->cpu) 11809 goto err_context; 11810 11811 /* 11812 * Make sure we're both on the same task, or both 11813 * per-CPU events. 11814 */ 11815 if (group_leader->ctx->task != ctx->task) 11816 goto err_context; 11817 11818 /* 11819 * Do not allow to attach to a group in a different task 11820 * or CPU context. If we're moving SW events, we'll fix 11821 * this up later, so allow that. 11822 */ 11823 if (!move_group && group_leader->ctx != ctx) 11824 goto err_context; 11825 11826 /* 11827 * Only a group leader can be exclusive or pinned 11828 */ 11829 if (attr.exclusive || attr.pinned) 11830 goto err_context; 11831 } 11832 11833 if (output_event) { 11834 err = perf_event_set_output(event, output_event); 11835 if (err) 11836 goto err_context; 11837 } 11838 11839 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 11840 f_flags); 11841 if (IS_ERR(event_file)) { 11842 err = PTR_ERR(event_file); 11843 event_file = NULL; 11844 goto err_context; 11845 } 11846 11847 if (move_group) { 11848 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 11849 11850 if (gctx->task == TASK_TOMBSTONE) { 11851 err = -ESRCH; 11852 goto err_locked; 11853 } 11854 11855 /* 11856 * Check if we raced against another sys_perf_event_open() call 11857 * moving the software group underneath us. 11858 */ 11859 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 11860 /* 11861 * If someone moved the group out from under us, check 11862 * if this new event wound up on the same ctx, if so 11863 * its the regular !move_group case, otherwise fail. 11864 */ 11865 if (gctx != ctx) { 11866 err = -EINVAL; 11867 goto err_locked; 11868 } else { 11869 perf_event_ctx_unlock(group_leader, gctx); 11870 move_group = 0; 11871 } 11872 } 11873 11874 /* 11875 * Failure to create exclusive events returns -EBUSY. 11876 */ 11877 err = -EBUSY; 11878 if (!exclusive_event_installable(group_leader, ctx)) 11879 goto err_locked; 11880 11881 for_each_sibling_event(sibling, group_leader) { 11882 if (!exclusive_event_installable(sibling, ctx)) 11883 goto err_locked; 11884 } 11885 } else { 11886 mutex_lock(&ctx->mutex); 11887 } 11888 11889 if (ctx->task == TASK_TOMBSTONE) { 11890 err = -ESRCH; 11891 goto err_locked; 11892 } 11893 11894 if (!perf_event_validate_size(event)) { 11895 err = -E2BIG; 11896 goto err_locked; 11897 } 11898 11899 if (!task) { 11900 /* 11901 * Check if the @cpu we're creating an event for is online. 11902 * 11903 * We use the perf_cpu_context::ctx::mutex to serialize against 11904 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11905 */ 11906 struct perf_cpu_context *cpuctx = 11907 container_of(ctx, struct perf_cpu_context, ctx); 11908 11909 if (!cpuctx->online) { 11910 err = -ENODEV; 11911 goto err_locked; 11912 } 11913 } 11914 11915 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 11916 err = -EINVAL; 11917 goto err_locked; 11918 } 11919 11920 /* 11921 * Must be under the same ctx::mutex as perf_install_in_context(), 11922 * because we need to serialize with concurrent event creation. 11923 */ 11924 if (!exclusive_event_installable(event, ctx)) { 11925 err = -EBUSY; 11926 goto err_locked; 11927 } 11928 11929 WARN_ON_ONCE(ctx->parent_ctx); 11930 11931 /* 11932 * This is the point on no return; we cannot fail hereafter. This is 11933 * where we start modifying current state. 11934 */ 11935 11936 if (move_group) { 11937 /* 11938 * See perf_event_ctx_lock() for comments on the details 11939 * of swizzling perf_event::ctx. 11940 */ 11941 perf_remove_from_context(group_leader, 0); 11942 put_ctx(gctx); 11943 11944 for_each_sibling_event(sibling, group_leader) { 11945 perf_remove_from_context(sibling, 0); 11946 put_ctx(gctx); 11947 } 11948 11949 /* 11950 * Wait for everybody to stop referencing the events through 11951 * the old lists, before installing it on new lists. 11952 */ 11953 synchronize_rcu(); 11954 11955 /* 11956 * Install the group siblings before the group leader. 11957 * 11958 * Because a group leader will try and install the entire group 11959 * (through the sibling list, which is still in-tact), we can 11960 * end up with siblings installed in the wrong context. 11961 * 11962 * By installing siblings first we NO-OP because they're not 11963 * reachable through the group lists. 11964 */ 11965 for_each_sibling_event(sibling, group_leader) { 11966 perf_event__state_init(sibling); 11967 perf_install_in_context(ctx, sibling, sibling->cpu); 11968 get_ctx(ctx); 11969 } 11970 11971 /* 11972 * Removing from the context ends up with disabled 11973 * event. What we want here is event in the initial 11974 * startup state, ready to be add into new context. 11975 */ 11976 perf_event__state_init(group_leader); 11977 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11978 get_ctx(ctx); 11979 } 11980 11981 /* 11982 * Precalculate sample_data sizes; do while holding ctx::mutex such 11983 * that we're serialized against further additions and before 11984 * perf_install_in_context() which is the point the event is active and 11985 * can use these values. 11986 */ 11987 perf_event__header_size(event); 11988 perf_event__id_header_size(event); 11989 11990 event->owner = current; 11991 11992 perf_install_in_context(ctx, event, event->cpu); 11993 perf_unpin_context(ctx); 11994 11995 if (move_group) 11996 perf_event_ctx_unlock(group_leader, gctx); 11997 mutex_unlock(&ctx->mutex); 11998 11999 if (task) { 12000 mutex_unlock(&task->signal->exec_update_mutex); 12001 put_task_struct(task); 12002 } 12003 12004 mutex_lock(¤t->perf_event_mutex); 12005 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12006 mutex_unlock(¤t->perf_event_mutex); 12007 12008 /* 12009 * Drop the reference on the group_event after placing the 12010 * new event on the sibling_list. This ensures destruction 12011 * of the group leader will find the pointer to itself in 12012 * perf_group_detach(). 12013 */ 12014 fdput(group); 12015 fd_install(event_fd, event_file); 12016 return event_fd; 12017 12018 err_locked: 12019 if (move_group) 12020 perf_event_ctx_unlock(group_leader, gctx); 12021 mutex_unlock(&ctx->mutex); 12022 /* err_file: */ 12023 fput(event_file); 12024 err_context: 12025 perf_unpin_context(ctx); 12026 put_ctx(ctx); 12027 err_alloc: 12028 /* 12029 * If event_file is set, the fput() above will have called ->release() 12030 * and that will take care of freeing the event. 12031 */ 12032 if (!event_file) 12033 free_event(event); 12034 err_cred: 12035 if (task) 12036 mutex_unlock(&task->signal->exec_update_mutex); 12037 err_task: 12038 if (task) 12039 put_task_struct(task); 12040 err_group_fd: 12041 fdput(group); 12042 err_fd: 12043 put_unused_fd(event_fd); 12044 return err; 12045 } 12046 12047 /** 12048 * perf_event_create_kernel_counter 12049 * 12050 * @attr: attributes of the counter to create 12051 * @cpu: cpu in which the counter is bound 12052 * @task: task to profile (NULL for percpu) 12053 */ 12054 struct perf_event * 12055 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12056 struct task_struct *task, 12057 perf_overflow_handler_t overflow_handler, 12058 void *context) 12059 { 12060 struct perf_event_context *ctx; 12061 struct perf_event *event; 12062 int err; 12063 12064 /* 12065 * Grouping is not supported for kernel events, neither is 'AUX', 12066 * make sure the caller's intentions are adjusted. 12067 */ 12068 if (attr->aux_output) 12069 return ERR_PTR(-EINVAL); 12070 12071 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12072 overflow_handler, context, -1); 12073 if (IS_ERR(event)) { 12074 err = PTR_ERR(event); 12075 goto err; 12076 } 12077 12078 /* Mark owner so we could distinguish it from user events. */ 12079 event->owner = TASK_TOMBSTONE; 12080 12081 /* 12082 * Get the target context (task or percpu): 12083 */ 12084 ctx = find_get_context(event->pmu, task, event); 12085 if (IS_ERR(ctx)) { 12086 err = PTR_ERR(ctx); 12087 goto err_free; 12088 } 12089 12090 WARN_ON_ONCE(ctx->parent_ctx); 12091 mutex_lock(&ctx->mutex); 12092 if (ctx->task == TASK_TOMBSTONE) { 12093 err = -ESRCH; 12094 goto err_unlock; 12095 } 12096 12097 if (!task) { 12098 /* 12099 * Check if the @cpu we're creating an event for is online. 12100 * 12101 * We use the perf_cpu_context::ctx::mutex to serialize against 12102 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12103 */ 12104 struct perf_cpu_context *cpuctx = 12105 container_of(ctx, struct perf_cpu_context, ctx); 12106 if (!cpuctx->online) { 12107 err = -ENODEV; 12108 goto err_unlock; 12109 } 12110 } 12111 12112 if (!exclusive_event_installable(event, ctx)) { 12113 err = -EBUSY; 12114 goto err_unlock; 12115 } 12116 12117 perf_install_in_context(ctx, event, event->cpu); 12118 perf_unpin_context(ctx); 12119 mutex_unlock(&ctx->mutex); 12120 12121 return event; 12122 12123 err_unlock: 12124 mutex_unlock(&ctx->mutex); 12125 perf_unpin_context(ctx); 12126 put_ctx(ctx); 12127 err_free: 12128 free_event(event); 12129 err: 12130 return ERR_PTR(err); 12131 } 12132 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12133 12134 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12135 { 12136 struct perf_event_context *src_ctx; 12137 struct perf_event_context *dst_ctx; 12138 struct perf_event *event, *tmp; 12139 LIST_HEAD(events); 12140 12141 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12142 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12143 12144 /* 12145 * See perf_event_ctx_lock() for comments on the details 12146 * of swizzling perf_event::ctx. 12147 */ 12148 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12149 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12150 event_entry) { 12151 perf_remove_from_context(event, 0); 12152 unaccount_event_cpu(event, src_cpu); 12153 put_ctx(src_ctx); 12154 list_add(&event->migrate_entry, &events); 12155 } 12156 12157 /* 12158 * Wait for the events to quiesce before re-instating them. 12159 */ 12160 synchronize_rcu(); 12161 12162 /* 12163 * Re-instate events in 2 passes. 12164 * 12165 * Skip over group leaders and only install siblings on this first 12166 * pass, siblings will not get enabled without a leader, however a 12167 * leader will enable its siblings, even if those are still on the old 12168 * context. 12169 */ 12170 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12171 if (event->group_leader == event) 12172 continue; 12173 12174 list_del(&event->migrate_entry); 12175 if (event->state >= PERF_EVENT_STATE_OFF) 12176 event->state = PERF_EVENT_STATE_INACTIVE; 12177 account_event_cpu(event, dst_cpu); 12178 perf_install_in_context(dst_ctx, event, dst_cpu); 12179 get_ctx(dst_ctx); 12180 } 12181 12182 /* 12183 * Once all the siblings are setup properly, install the group leaders 12184 * to make it go. 12185 */ 12186 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12187 list_del(&event->migrate_entry); 12188 if (event->state >= PERF_EVENT_STATE_OFF) 12189 event->state = PERF_EVENT_STATE_INACTIVE; 12190 account_event_cpu(event, dst_cpu); 12191 perf_install_in_context(dst_ctx, event, dst_cpu); 12192 get_ctx(dst_ctx); 12193 } 12194 mutex_unlock(&dst_ctx->mutex); 12195 mutex_unlock(&src_ctx->mutex); 12196 } 12197 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12198 12199 static void sync_child_event(struct perf_event *child_event, 12200 struct task_struct *child) 12201 { 12202 struct perf_event *parent_event = child_event->parent; 12203 u64 child_val; 12204 12205 if (child_event->attr.inherit_stat) 12206 perf_event_read_event(child_event, child); 12207 12208 child_val = perf_event_count(child_event); 12209 12210 /* 12211 * Add back the child's count to the parent's count: 12212 */ 12213 atomic64_add(child_val, &parent_event->child_count); 12214 atomic64_add(child_event->total_time_enabled, 12215 &parent_event->child_total_time_enabled); 12216 atomic64_add(child_event->total_time_running, 12217 &parent_event->child_total_time_running); 12218 } 12219 12220 static void 12221 perf_event_exit_event(struct perf_event *child_event, 12222 struct perf_event_context *child_ctx, 12223 struct task_struct *child) 12224 { 12225 struct perf_event *parent_event = child_event->parent; 12226 12227 /* 12228 * Do not destroy the 'original' grouping; because of the context 12229 * switch optimization the original events could've ended up in a 12230 * random child task. 12231 * 12232 * If we were to destroy the original group, all group related 12233 * operations would cease to function properly after this random 12234 * child dies. 12235 * 12236 * Do destroy all inherited groups, we don't care about those 12237 * and being thorough is better. 12238 */ 12239 raw_spin_lock_irq(&child_ctx->lock); 12240 WARN_ON_ONCE(child_ctx->is_active); 12241 12242 if (parent_event) 12243 perf_group_detach(child_event); 12244 list_del_event(child_event, child_ctx); 12245 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 12246 raw_spin_unlock_irq(&child_ctx->lock); 12247 12248 /* 12249 * Parent events are governed by their filedesc, retain them. 12250 */ 12251 if (!parent_event) { 12252 perf_event_wakeup(child_event); 12253 return; 12254 } 12255 /* 12256 * Child events can be cleaned up. 12257 */ 12258 12259 sync_child_event(child_event, child); 12260 12261 /* 12262 * Remove this event from the parent's list 12263 */ 12264 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 12265 mutex_lock(&parent_event->child_mutex); 12266 list_del_init(&child_event->child_list); 12267 mutex_unlock(&parent_event->child_mutex); 12268 12269 /* 12270 * Kick perf_poll() for is_event_hup(). 12271 */ 12272 perf_event_wakeup(parent_event); 12273 free_event(child_event); 12274 put_event(parent_event); 12275 } 12276 12277 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12278 { 12279 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12280 struct perf_event *child_event, *next; 12281 12282 WARN_ON_ONCE(child != current); 12283 12284 child_ctx = perf_pin_task_context(child, ctxn); 12285 if (!child_ctx) 12286 return; 12287 12288 /* 12289 * In order to reduce the amount of tricky in ctx tear-down, we hold 12290 * ctx::mutex over the entire thing. This serializes against almost 12291 * everything that wants to access the ctx. 12292 * 12293 * The exception is sys_perf_event_open() / 12294 * perf_event_create_kernel_count() which does find_get_context() 12295 * without ctx::mutex (it cannot because of the move_group double mutex 12296 * lock thing). See the comments in perf_install_in_context(). 12297 */ 12298 mutex_lock(&child_ctx->mutex); 12299 12300 /* 12301 * In a single ctx::lock section, de-schedule the events and detach the 12302 * context from the task such that we cannot ever get it scheduled back 12303 * in. 12304 */ 12305 raw_spin_lock_irq(&child_ctx->lock); 12306 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12307 12308 /* 12309 * Now that the context is inactive, destroy the task <-> ctx relation 12310 * and mark the context dead. 12311 */ 12312 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12313 put_ctx(child_ctx); /* cannot be last */ 12314 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12315 put_task_struct(current); /* cannot be last */ 12316 12317 clone_ctx = unclone_ctx(child_ctx); 12318 raw_spin_unlock_irq(&child_ctx->lock); 12319 12320 if (clone_ctx) 12321 put_ctx(clone_ctx); 12322 12323 /* 12324 * Report the task dead after unscheduling the events so that we 12325 * won't get any samples after PERF_RECORD_EXIT. We can however still 12326 * get a few PERF_RECORD_READ events. 12327 */ 12328 perf_event_task(child, child_ctx, 0); 12329 12330 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12331 perf_event_exit_event(child_event, child_ctx, child); 12332 12333 mutex_unlock(&child_ctx->mutex); 12334 12335 put_ctx(child_ctx); 12336 } 12337 12338 /* 12339 * When a child task exits, feed back event values to parent events. 12340 * 12341 * Can be called with exec_update_mutex held when called from 12342 * setup_new_exec(). 12343 */ 12344 void perf_event_exit_task(struct task_struct *child) 12345 { 12346 struct perf_event *event, *tmp; 12347 int ctxn; 12348 12349 mutex_lock(&child->perf_event_mutex); 12350 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12351 owner_entry) { 12352 list_del_init(&event->owner_entry); 12353 12354 /* 12355 * Ensure the list deletion is visible before we clear 12356 * the owner, closes a race against perf_release() where 12357 * we need to serialize on the owner->perf_event_mutex. 12358 */ 12359 smp_store_release(&event->owner, NULL); 12360 } 12361 mutex_unlock(&child->perf_event_mutex); 12362 12363 for_each_task_context_nr(ctxn) 12364 perf_event_exit_task_context(child, ctxn); 12365 12366 /* 12367 * The perf_event_exit_task_context calls perf_event_task 12368 * with child's task_ctx, which generates EXIT events for 12369 * child contexts and sets child->perf_event_ctxp[] to NULL. 12370 * At this point we need to send EXIT events to cpu contexts. 12371 */ 12372 perf_event_task(child, NULL, 0); 12373 } 12374 12375 static void perf_free_event(struct perf_event *event, 12376 struct perf_event_context *ctx) 12377 { 12378 struct perf_event *parent = event->parent; 12379 12380 if (WARN_ON_ONCE(!parent)) 12381 return; 12382 12383 mutex_lock(&parent->child_mutex); 12384 list_del_init(&event->child_list); 12385 mutex_unlock(&parent->child_mutex); 12386 12387 put_event(parent); 12388 12389 raw_spin_lock_irq(&ctx->lock); 12390 perf_group_detach(event); 12391 list_del_event(event, ctx); 12392 raw_spin_unlock_irq(&ctx->lock); 12393 free_event(event); 12394 } 12395 12396 /* 12397 * Free a context as created by inheritance by perf_event_init_task() below, 12398 * used by fork() in case of fail. 12399 * 12400 * Even though the task has never lived, the context and events have been 12401 * exposed through the child_list, so we must take care tearing it all down. 12402 */ 12403 void perf_event_free_task(struct task_struct *task) 12404 { 12405 struct perf_event_context *ctx; 12406 struct perf_event *event, *tmp; 12407 int ctxn; 12408 12409 for_each_task_context_nr(ctxn) { 12410 ctx = task->perf_event_ctxp[ctxn]; 12411 if (!ctx) 12412 continue; 12413 12414 mutex_lock(&ctx->mutex); 12415 raw_spin_lock_irq(&ctx->lock); 12416 /* 12417 * Destroy the task <-> ctx relation and mark the context dead. 12418 * 12419 * This is important because even though the task hasn't been 12420 * exposed yet the context has been (through child_list). 12421 */ 12422 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12423 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12424 put_task_struct(task); /* cannot be last */ 12425 raw_spin_unlock_irq(&ctx->lock); 12426 12427 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12428 perf_free_event(event, ctx); 12429 12430 mutex_unlock(&ctx->mutex); 12431 12432 /* 12433 * perf_event_release_kernel() could've stolen some of our 12434 * child events and still have them on its free_list. In that 12435 * case we must wait for these events to have been freed (in 12436 * particular all their references to this task must've been 12437 * dropped). 12438 * 12439 * Without this copy_process() will unconditionally free this 12440 * task (irrespective of its reference count) and 12441 * _free_event()'s put_task_struct(event->hw.target) will be a 12442 * use-after-free. 12443 * 12444 * Wait for all events to drop their context reference. 12445 */ 12446 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12447 put_ctx(ctx); /* must be last */ 12448 } 12449 } 12450 12451 void perf_event_delayed_put(struct task_struct *task) 12452 { 12453 int ctxn; 12454 12455 for_each_task_context_nr(ctxn) 12456 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12457 } 12458 12459 struct file *perf_event_get(unsigned int fd) 12460 { 12461 struct file *file = fget(fd); 12462 if (!file) 12463 return ERR_PTR(-EBADF); 12464 12465 if (file->f_op != &perf_fops) { 12466 fput(file); 12467 return ERR_PTR(-EBADF); 12468 } 12469 12470 return file; 12471 } 12472 12473 const struct perf_event *perf_get_event(struct file *file) 12474 { 12475 if (file->f_op != &perf_fops) 12476 return ERR_PTR(-EINVAL); 12477 12478 return file->private_data; 12479 } 12480 12481 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12482 { 12483 if (!event) 12484 return ERR_PTR(-EINVAL); 12485 12486 return &event->attr; 12487 } 12488 12489 /* 12490 * Inherit an event from parent task to child task. 12491 * 12492 * Returns: 12493 * - valid pointer on success 12494 * - NULL for orphaned events 12495 * - IS_ERR() on error 12496 */ 12497 static struct perf_event * 12498 inherit_event(struct perf_event *parent_event, 12499 struct task_struct *parent, 12500 struct perf_event_context *parent_ctx, 12501 struct task_struct *child, 12502 struct perf_event *group_leader, 12503 struct perf_event_context *child_ctx) 12504 { 12505 enum perf_event_state parent_state = parent_event->state; 12506 struct perf_event *child_event; 12507 unsigned long flags; 12508 12509 /* 12510 * Instead of creating recursive hierarchies of events, 12511 * we link inherited events back to the original parent, 12512 * which has a filp for sure, which we use as the reference 12513 * count: 12514 */ 12515 if (parent_event->parent) 12516 parent_event = parent_event->parent; 12517 12518 child_event = perf_event_alloc(&parent_event->attr, 12519 parent_event->cpu, 12520 child, 12521 group_leader, parent_event, 12522 NULL, NULL, -1); 12523 if (IS_ERR(child_event)) 12524 return child_event; 12525 12526 12527 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12528 !child_ctx->task_ctx_data) { 12529 struct pmu *pmu = child_event->pmu; 12530 12531 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12532 if (!child_ctx->task_ctx_data) { 12533 free_event(child_event); 12534 return ERR_PTR(-ENOMEM); 12535 } 12536 } 12537 12538 /* 12539 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12540 * must be under the same lock in order to serialize against 12541 * perf_event_release_kernel(), such that either we must observe 12542 * is_orphaned_event() or they will observe us on the child_list. 12543 */ 12544 mutex_lock(&parent_event->child_mutex); 12545 if (is_orphaned_event(parent_event) || 12546 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12547 mutex_unlock(&parent_event->child_mutex); 12548 /* task_ctx_data is freed with child_ctx */ 12549 free_event(child_event); 12550 return NULL; 12551 } 12552 12553 get_ctx(child_ctx); 12554 12555 /* 12556 * Make the child state follow the state of the parent event, 12557 * not its attr.disabled bit. We hold the parent's mutex, 12558 * so we won't race with perf_event_{en, dis}able_family. 12559 */ 12560 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12561 child_event->state = PERF_EVENT_STATE_INACTIVE; 12562 else 12563 child_event->state = PERF_EVENT_STATE_OFF; 12564 12565 if (parent_event->attr.freq) { 12566 u64 sample_period = parent_event->hw.sample_period; 12567 struct hw_perf_event *hwc = &child_event->hw; 12568 12569 hwc->sample_period = sample_period; 12570 hwc->last_period = sample_period; 12571 12572 local64_set(&hwc->period_left, sample_period); 12573 } 12574 12575 child_event->ctx = child_ctx; 12576 child_event->overflow_handler = parent_event->overflow_handler; 12577 child_event->overflow_handler_context 12578 = parent_event->overflow_handler_context; 12579 12580 /* 12581 * Precalculate sample_data sizes 12582 */ 12583 perf_event__header_size(child_event); 12584 perf_event__id_header_size(child_event); 12585 12586 /* 12587 * Link it up in the child's context: 12588 */ 12589 raw_spin_lock_irqsave(&child_ctx->lock, flags); 12590 add_event_to_ctx(child_event, child_ctx); 12591 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 12592 12593 /* 12594 * Link this into the parent event's child list 12595 */ 12596 list_add_tail(&child_event->child_list, &parent_event->child_list); 12597 mutex_unlock(&parent_event->child_mutex); 12598 12599 return child_event; 12600 } 12601 12602 /* 12603 * Inherits an event group. 12604 * 12605 * This will quietly suppress orphaned events; !inherit_event() is not an error. 12606 * This matches with perf_event_release_kernel() removing all child events. 12607 * 12608 * Returns: 12609 * - 0 on success 12610 * - <0 on error 12611 */ 12612 static int inherit_group(struct perf_event *parent_event, 12613 struct task_struct *parent, 12614 struct perf_event_context *parent_ctx, 12615 struct task_struct *child, 12616 struct perf_event_context *child_ctx) 12617 { 12618 struct perf_event *leader; 12619 struct perf_event *sub; 12620 struct perf_event *child_ctr; 12621 12622 leader = inherit_event(parent_event, parent, parent_ctx, 12623 child, NULL, child_ctx); 12624 if (IS_ERR(leader)) 12625 return PTR_ERR(leader); 12626 /* 12627 * @leader can be NULL here because of is_orphaned_event(). In this 12628 * case inherit_event() will create individual events, similar to what 12629 * perf_group_detach() would do anyway. 12630 */ 12631 for_each_sibling_event(sub, parent_event) { 12632 child_ctr = inherit_event(sub, parent, parent_ctx, 12633 child, leader, child_ctx); 12634 if (IS_ERR(child_ctr)) 12635 return PTR_ERR(child_ctr); 12636 12637 if (sub->aux_event == parent_event && child_ctr && 12638 !perf_get_aux_event(child_ctr, leader)) 12639 return -EINVAL; 12640 } 12641 return 0; 12642 } 12643 12644 /* 12645 * Creates the child task context and tries to inherit the event-group. 12646 * 12647 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 12648 * inherited_all set when we 'fail' to inherit an orphaned event; this is 12649 * consistent with perf_event_release_kernel() removing all child events. 12650 * 12651 * Returns: 12652 * - 0 on success 12653 * - <0 on error 12654 */ 12655 static int 12656 inherit_task_group(struct perf_event *event, struct task_struct *parent, 12657 struct perf_event_context *parent_ctx, 12658 struct task_struct *child, int ctxn, 12659 int *inherited_all) 12660 { 12661 int ret; 12662 struct perf_event_context *child_ctx; 12663 12664 if (!event->attr.inherit) { 12665 *inherited_all = 0; 12666 return 0; 12667 } 12668 12669 child_ctx = child->perf_event_ctxp[ctxn]; 12670 if (!child_ctx) { 12671 /* 12672 * This is executed from the parent task context, so 12673 * inherit events that have been marked for cloning. 12674 * First allocate and initialize a context for the 12675 * child. 12676 */ 12677 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 12678 if (!child_ctx) 12679 return -ENOMEM; 12680 12681 child->perf_event_ctxp[ctxn] = child_ctx; 12682 } 12683 12684 ret = inherit_group(event, parent, parent_ctx, 12685 child, child_ctx); 12686 12687 if (ret) 12688 *inherited_all = 0; 12689 12690 return ret; 12691 } 12692 12693 /* 12694 * Initialize the perf_event context in task_struct 12695 */ 12696 static int perf_event_init_context(struct task_struct *child, int ctxn) 12697 { 12698 struct perf_event_context *child_ctx, *parent_ctx; 12699 struct perf_event_context *cloned_ctx; 12700 struct perf_event *event; 12701 struct task_struct *parent = current; 12702 int inherited_all = 1; 12703 unsigned long flags; 12704 int ret = 0; 12705 12706 if (likely(!parent->perf_event_ctxp[ctxn])) 12707 return 0; 12708 12709 /* 12710 * If the parent's context is a clone, pin it so it won't get 12711 * swapped under us. 12712 */ 12713 parent_ctx = perf_pin_task_context(parent, ctxn); 12714 if (!parent_ctx) 12715 return 0; 12716 12717 /* 12718 * No need to check if parent_ctx != NULL here; since we saw 12719 * it non-NULL earlier, the only reason for it to become NULL 12720 * is if we exit, and since we're currently in the middle of 12721 * a fork we can't be exiting at the same time. 12722 */ 12723 12724 /* 12725 * Lock the parent list. No need to lock the child - not PID 12726 * hashed yet and not running, so nobody can access it. 12727 */ 12728 mutex_lock(&parent_ctx->mutex); 12729 12730 /* 12731 * We dont have to disable NMIs - we are only looking at 12732 * the list, not manipulating it: 12733 */ 12734 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 12735 ret = inherit_task_group(event, parent, parent_ctx, 12736 child, ctxn, &inherited_all); 12737 if (ret) 12738 goto out_unlock; 12739 } 12740 12741 /* 12742 * We can't hold ctx->lock when iterating the ->flexible_group list due 12743 * to allocations, but we need to prevent rotation because 12744 * rotate_ctx() will change the list from interrupt context. 12745 */ 12746 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12747 parent_ctx->rotate_disable = 1; 12748 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12749 12750 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 12751 ret = inherit_task_group(event, parent, parent_ctx, 12752 child, ctxn, &inherited_all); 12753 if (ret) 12754 goto out_unlock; 12755 } 12756 12757 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 12758 parent_ctx->rotate_disable = 0; 12759 12760 child_ctx = child->perf_event_ctxp[ctxn]; 12761 12762 if (child_ctx && inherited_all) { 12763 /* 12764 * Mark the child context as a clone of the parent 12765 * context, or of whatever the parent is a clone of. 12766 * 12767 * Note that if the parent is a clone, the holding of 12768 * parent_ctx->lock avoids it from being uncloned. 12769 */ 12770 cloned_ctx = parent_ctx->parent_ctx; 12771 if (cloned_ctx) { 12772 child_ctx->parent_ctx = cloned_ctx; 12773 child_ctx->parent_gen = parent_ctx->parent_gen; 12774 } else { 12775 child_ctx->parent_ctx = parent_ctx; 12776 child_ctx->parent_gen = parent_ctx->generation; 12777 } 12778 get_ctx(child_ctx->parent_ctx); 12779 } 12780 12781 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 12782 out_unlock: 12783 mutex_unlock(&parent_ctx->mutex); 12784 12785 perf_unpin_context(parent_ctx); 12786 put_ctx(parent_ctx); 12787 12788 return ret; 12789 } 12790 12791 /* 12792 * Initialize the perf_event context in task_struct 12793 */ 12794 int perf_event_init_task(struct task_struct *child) 12795 { 12796 int ctxn, ret; 12797 12798 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 12799 mutex_init(&child->perf_event_mutex); 12800 INIT_LIST_HEAD(&child->perf_event_list); 12801 12802 for_each_task_context_nr(ctxn) { 12803 ret = perf_event_init_context(child, ctxn); 12804 if (ret) { 12805 perf_event_free_task(child); 12806 return ret; 12807 } 12808 } 12809 12810 return 0; 12811 } 12812 12813 static void __init perf_event_init_all_cpus(void) 12814 { 12815 struct swevent_htable *swhash; 12816 int cpu; 12817 12818 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 12819 12820 for_each_possible_cpu(cpu) { 12821 swhash = &per_cpu(swevent_htable, cpu); 12822 mutex_init(&swhash->hlist_mutex); 12823 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 12824 12825 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 12826 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 12827 12828 #ifdef CONFIG_CGROUP_PERF 12829 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 12830 #endif 12831 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 12832 } 12833 } 12834 12835 static void perf_swevent_init_cpu(unsigned int cpu) 12836 { 12837 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 12838 12839 mutex_lock(&swhash->hlist_mutex); 12840 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 12841 struct swevent_hlist *hlist; 12842 12843 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 12844 WARN_ON(!hlist); 12845 rcu_assign_pointer(swhash->swevent_hlist, hlist); 12846 } 12847 mutex_unlock(&swhash->hlist_mutex); 12848 } 12849 12850 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 12851 static void __perf_event_exit_context(void *__info) 12852 { 12853 struct perf_event_context *ctx = __info; 12854 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 12855 struct perf_event *event; 12856 12857 raw_spin_lock(&ctx->lock); 12858 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 12859 list_for_each_entry(event, &ctx->event_list, event_entry) 12860 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 12861 raw_spin_unlock(&ctx->lock); 12862 } 12863 12864 static void perf_event_exit_cpu_context(int cpu) 12865 { 12866 struct perf_cpu_context *cpuctx; 12867 struct perf_event_context *ctx; 12868 struct pmu *pmu; 12869 12870 mutex_lock(&pmus_lock); 12871 list_for_each_entry(pmu, &pmus, entry) { 12872 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12873 ctx = &cpuctx->ctx; 12874 12875 mutex_lock(&ctx->mutex); 12876 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 12877 cpuctx->online = 0; 12878 mutex_unlock(&ctx->mutex); 12879 } 12880 cpumask_clear_cpu(cpu, perf_online_mask); 12881 mutex_unlock(&pmus_lock); 12882 } 12883 #else 12884 12885 static void perf_event_exit_cpu_context(int cpu) { } 12886 12887 #endif 12888 12889 int perf_event_init_cpu(unsigned int cpu) 12890 { 12891 struct perf_cpu_context *cpuctx; 12892 struct perf_event_context *ctx; 12893 struct pmu *pmu; 12894 12895 perf_swevent_init_cpu(cpu); 12896 12897 mutex_lock(&pmus_lock); 12898 cpumask_set_cpu(cpu, perf_online_mask); 12899 list_for_each_entry(pmu, &pmus, entry) { 12900 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 12901 ctx = &cpuctx->ctx; 12902 12903 mutex_lock(&ctx->mutex); 12904 cpuctx->online = 1; 12905 mutex_unlock(&ctx->mutex); 12906 } 12907 mutex_unlock(&pmus_lock); 12908 12909 return 0; 12910 } 12911 12912 int perf_event_exit_cpu(unsigned int cpu) 12913 { 12914 perf_event_exit_cpu_context(cpu); 12915 return 0; 12916 } 12917 12918 static int 12919 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12920 { 12921 int cpu; 12922 12923 for_each_online_cpu(cpu) 12924 perf_event_exit_cpu(cpu); 12925 12926 return NOTIFY_OK; 12927 } 12928 12929 /* 12930 * Run the perf reboot notifier at the very last possible moment so that 12931 * the generic watchdog code runs as long as possible. 12932 */ 12933 static struct notifier_block perf_reboot_notifier = { 12934 .notifier_call = perf_reboot, 12935 .priority = INT_MIN, 12936 }; 12937 12938 void __init perf_event_init(void) 12939 { 12940 int ret; 12941 12942 idr_init(&pmu_idr); 12943 12944 perf_event_init_all_cpus(); 12945 init_srcu_struct(&pmus_srcu); 12946 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12947 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12948 perf_pmu_register(&perf_task_clock, NULL, -1); 12949 perf_tp_register(); 12950 perf_event_init_cpu(smp_processor_id()); 12951 register_reboot_notifier(&perf_reboot_notifier); 12952 12953 ret = init_hw_breakpoint(); 12954 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12955 12956 /* 12957 * Build time assertion that we keep the data_head at the intended 12958 * location. IOW, validation we got the __reserved[] size right. 12959 */ 12960 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12961 != 1024); 12962 } 12963 12964 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12965 char *page) 12966 { 12967 struct perf_pmu_events_attr *pmu_attr = 12968 container_of(attr, struct perf_pmu_events_attr, attr); 12969 12970 if (pmu_attr->event_str) 12971 return sprintf(page, "%s\n", pmu_attr->event_str); 12972 12973 return 0; 12974 } 12975 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12976 12977 static int __init perf_event_sysfs_init(void) 12978 { 12979 struct pmu *pmu; 12980 int ret; 12981 12982 mutex_lock(&pmus_lock); 12983 12984 ret = bus_register(&pmu_bus); 12985 if (ret) 12986 goto unlock; 12987 12988 list_for_each_entry(pmu, &pmus, entry) { 12989 if (!pmu->name || pmu->type < 0) 12990 continue; 12991 12992 ret = pmu_dev_alloc(pmu); 12993 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12994 } 12995 pmu_bus_running = 1; 12996 ret = 0; 12997 12998 unlock: 12999 mutex_unlock(&pmus_lock); 13000 13001 return ret; 13002 } 13003 device_initcall(perf_event_sysfs_init); 13004 13005 #ifdef CONFIG_CGROUP_PERF 13006 static struct cgroup_subsys_state * 13007 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13008 { 13009 struct perf_cgroup *jc; 13010 13011 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13012 if (!jc) 13013 return ERR_PTR(-ENOMEM); 13014 13015 jc->info = alloc_percpu(struct perf_cgroup_info); 13016 if (!jc->info) { 13017 kfree(jc); 13018 return ERR_PTR(-ENOMEM); 13019 } 13020 13021 return &jc->css; 13022 } 13023 13024 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13025 { 13026 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13027 13028 free_percpu(jc->info); 13029 kfree(jc); 13030 } 13031 13032 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13033 { 13034 perf_event_cgroup(css->cgroup); 13035 return 0; 13036 } 13037 13038 static int __perf_cgroup_move(void *info) 13039 { 13040 struct task_struct *task = info; 13041 rcu_read_lock(); 13042 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13043 rcu_read_unlock(); 13044 return 0; 13045 } 13046 13047 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13048 { 13049 struct task_struct *task; 13050 struct cgroup_subsys_state *css; 13051 13052 cgroup_taskset_for_each(task, css, tset) 13053 task_function_call(task, __perf_cgroup_move, task); 13054 } 13055 13056 struct cgroup_subsys perf_event_cgrp_subsys = { 13057 .css_alloc = perf_cgroup_css_alloc, 13058 .css_free = perf_cgroup_css_free, 13059 .css_online = perf_cgroup_css_online, 13060 .attach = perf_cgroup_attach, 13061 /* 13062 * Implicitly enable on dfl hierarchy so that perf events can 13063 * always be filtered by cgroup2 path as long as perf_event 13064 * controller is not mounted on a legacy hierarchy. 13065 */ 13066 .implicit_on_dfl = true, 13067 .threaded = true, 13068 }; 13069 #endif /* CONFIG_CGROUP_PERF */ 13070