xref: /openbmc/linux/kernel/events/core.c (revision 48c926cd)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 #ifdef CONFIG_CGROUP_PERF
586 
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 	struct perf_event_context *ctx = event->ctx;
591 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592 
593 	/* @event doesn't care about cgroup */
594 	if (!event->cgrp)
595 		return true;
596 
597 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
598 	if (!cpuctx->cgrp)
599 		return false;
600 
601 	/*
602 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
603 	 * also enabled for all its descendant cgroups.  If @cpuctx's
604 	 * cgroup is a descendant of @event's (the test covers identity
605 	 * case), it's a match.
606 	 */
607 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 				    event->cgrp->css.cgroup);
609 }
610 
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 	css_put(&event->cgrp->css);
614 	event->cgrp = NULL;
615 }
616 
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 	return event->cgrp != NULL;
620 }
621 
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 	struct perf_cgroup_info *t;
625 
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	return t->time;
628 }
629 
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 	struct perf_cgroup_info *info;
633 	u64 now;
634 
635 	now = perf_clock();
636 
637 	info = this_cpu_ptr(cgrp->info);
638 
639 	info->time += now - info->timestamp;
640 	info->timestamp = now;
641 }
642 
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 	if (cgrp_out)
647 		__update_cgrp_time(cgrp_out);
648 }
649 
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 	struct perf_cgroup *cgrp;
653 
654 	/*
655 	 * ensure we access cgroup data only when needed and
656 	 * when we know the cgroup is pinned (css_get)
657 	 */
658 	if (!is_cgroup_event(event))
659 		return;
660 
661 	cgrp = perf_cgroup_from_task(current, event->ctx);
662 	/*
663 	 * Do not update time when cgroup is not active
664 	 */
665 	if (cgrp == event->cgrp)
666 		__update_cgrp_time(event->cgrp);
667 }
668 
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 			  struct perf_event_context *ctx)
672 {
673 	struct perf_cgroup *cgrp;
674 	struct perf_cgroup_info *info;
675 
676 	/*
677 	 * ctx->lock held by caller
678 	 * ensure we do not access cgroup data
679 	 * unless we have the cgroup pinned (css_get)
680 	 */
681 	if (!task || !ctx->nr_cgroups)
682 		return;
683 
684 	cgrp = perf_cgroup_from_task(task, ctx);
685 	info = this_cpu_ptr(cgrp->info);
686 	info->timestamp = ctx->timestamp;
687 }
688 
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690 
691 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
693 
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 	struct perf_cpu_context *cpuctx;
703 	struct list_head *list;
704 	unsigned long flags;
705 
706 	/*
707 	 * Disable interrupts and preemption to avoid this CPU's
708 	 * cgrp_cpuctx_entry to change under us.
709 	 */
710 	local_irq_save(flags);
711 
712 	list = this_cpu_ptr(&cgrp_cpuctx_list);
713 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715 
716 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 		perf_pmu_disable(cpuctx->ctx.pmu);
718 
719 		if (mode & PERF_CGROUP_SWOUT) {
720 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 			/*
722 			 * must not be done before ctxswout due
723 			 * to event_filter_match() in event_sched_out()
724 			 */
725 			cpuctx->cgrp = NULL;
726 		}
727 
728 		if (mode & PERF_CGROUP_SWIN) {
729 			WARN_ON_ONCE(cpuctx->cgrp);
730 			/*
731 			 * set cgrp before ctxsw in to allow
732 			 * event_filter_match() to not have to pass
733 			 * task around
734 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 			 * because cgorup events are only per-cpu
736 			 */
737 			cpuctx->cgrp = perf_cgroup_from_task(task,
738 							     &cpuctx->ctx);
739 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 		}
741 		perf_pmu_enable(cpuctx->ctx.pmu);
742 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 	}
744 
745 	local_irq_restore(flags);
746 }
747 
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 					 struct task_struct *next)
750 {
751 	struct perf_cgroup *cgrp1;
752 	struct perf_cgroup *cgrp2 = NULL;
753 
754 	rcu_read_lock();
755 	/*
756 	 * we come here when we know perf_cgroup_events > 0
757 	 * we do not need to pass the ctx here because we know
758 	 * we are holding the rcu lock
759 	 */
760 	cgrp1 = perf_cgroup_from_task(task, NULL);
761 	cgrp2 = perf_cgroup_from_task(next, NULL);
762 
763 	/*
764 	 * only schedule out current cgroup events if we know
765 	 * that we are switching to a different cgroup. Otherwise,
766 	 * do no touch the cgroup events.
767 	 */
768 	if (cgrp1 != cgrp2)
769 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 
771 	rcu_read_unlock();
772 }
773 
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 					struct task_struct *task)
776 {
777 	struct perf_cgroup *cgrp1;
778 	struct perf_cgroup *cgrp2 = NULL;
779 
780 	rcu_read_lock();
781 	/*
782 	 * we come here when we know perf_cgroup_events > 0
783 	 * we do not need to pass the ctx here because we know
784 	 * we are holding the rcu lock
785 	 */
786 	cgrp1 = perf_cgroup_from_task(task, NULL);
787 	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 
789 	/*
790 	 * only need to schedule in cgroup events if we are changing
791 	 * cgroup during ctxsw. Cgroup events were not scheduled
792 	 * out of ctxsw out if that was not the case.
793 	 */
794 	if (cgrp1 != cgrp2)
795 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 
797 	rcu_read_unlock();
798 }
799 
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 				      struct perf_event_attr *attr,
802 				      struct perf_event *group_leader)
803 {
804 	struct perf_cgroup *cgrp;
805 	struct cgroup_subsys_state *css;
806 	struct fd f = fdget(fd);
807 	int ret = 0;
808 
809 	if (!f.file)
810 		return -EBADF;
811 
812 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 					 &perf_event_cgrp_subsys);
814 	if (IS_ERR(css)) {
815 		ret = PTR_ERR(css);
816 		goto out;
817 	}
818 
819 	cgrp = container_of(css, struct perf_cgroup, css);
820 	event->cgrp = cgrp;
821 
822 	/*
823 	 * all events in a group must monitor
824 	 * the same cgroup because a task belongs
825 	 * to only one perf cgroup at a time
826 	 */
827 	if (group_leader && group_leader->cgrp != cgrp) {
828 		perf_detach_cgroup(event);
829 		ret = -EINVAL;
830 	}
831 out:
832 	fdput(f);
833 	return ret;
834 }
835 
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 	struct perf_cgroup_info *t;
840 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 	event->shadow_ctx_time = now - t->timestamp;
842 }
843 
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 	/*
848 	 * when the current task's perf cgroup does not match
849 	 * the event's, we need to remember to call the
850 	 * perf_mark_enable() function the first time a task with
851 	 * a matching perf cgroup is scheduled in.
852 	 */
853 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 		event->cgrp_defer_enabled = 1;
855 }
856 
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 			 struct perf_event_context *ctx)
860 {
861 	struct perf_event *sub;
862 	u64 tstamp = perf_event_time(event);
863 
864 	if (!event->cgrp_defer_enabled)
865 		return;
866 
867 	event->cgrp_defer_enabled = 0;
868 
869 	event->tstamp_enabled = tstamp - event->total_time_enabled;
870 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 			sub->cgrp_defer_enabled = 0;
874 		}
875 	}
876 }
877 
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 			 struct perf_event_context *ctx, bool add)
885 {
886 	struct perf_cpu_context *cpuctx;
887 	struct list_head *cpuctx_entry;
888 
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	if (add && ctx->nr_cgroups++)
893 		return;
894 	else if (!add && --ctx->nr_cgroups)
895 		return;
896 	/*
897 	 * Because cgroup events are always per-cpu events,
898 	 * this will always be called from the right CPU.
899 	 */
900 	cpuctx = __get_cpu_context(ctx);
901 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 	if (add) {
904 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 			cpuctx->cgrp = event->cgrp;
907 	} else {
908 		list_del(cpuctx_entry);
909 		cpuctx->cgrp = NULL;
910 	}
911 }
912 
913 #else /* !CONFIG_CGROUP_PERF */
914 
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 	return true;
919 }
920 
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923 
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 				enum pid_type type)
1254 {
1255 	u32 nr;
1256 	/*
1257 	 * only top level events have the pid namespace they were created in
1258 	 */
1259 	if (event->parent)
1260 		event = event->parent;
1261 
1262 	nr = __task_pid_nr_ns(p, type, event->ns);
1263 	/* avoid -1 if it is idle thread or runs in another ns */
1264 	if (!nr && !pid_alive(p))
1265 		nr = -1;
1266 	return nr;
1267 }
1268 
1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1270 {
1271 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272 }
1273 
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1277 }
1278 
1279 /*
1280  * If we inherit events we want to return the parent event id
1281  * to userspace.
1282  */
1283 static u64 primary_event_id(struct perf_event *event)
1284 {
1285 	u64 id = event->id;
1286 
1287 	if (event->parent)
1288 		id = event->parent->id;
1289 
1290 	return id;
1291 }
1292 
1293 /*
1294  * Get the perf_event_context for a task and lock it.
1295  *
1296  * This has to cope with with the fact that until it is locked,
1297  * the context could get moved to another task.
1298  */
1299 static struct perf_event_context *
1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 retry:
1305 	/*
1306 	 * One of the few rules of preemptible RCU is that one cannot do
1307 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308 	 * part of the read side critical section was irqs-enabled -- see
1309 	 * rcu_read_unlock_special().
1310 	 *
1311 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1312 	 * side critical section has interrupts disabled.
1313 	 */
1314 	local_irq_save(*flags);
1315 	rcu_read_lock();
1316 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317 	if (ctx) {
1318 		/*
1319 		 * If this context is a clone of another, it might
1320 		 * get swapped for another underneath us by
1321 		 * perf_event_task_sched_out, though the
1322 		 * rcu_read_lock() protects us from any context
1323 		 * getting freed.  Lock the context and check if it
1324 		 * got swapped before we could get the lock, and retry
1325 		 * if so.  If we locked the right context, then it
1326 		 * can't get swapped on us any more.
1327 		 */
1328 		raw_spin_lock(&ctx->lock);
1329 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330 			raw_spin_unlock(&ctx->lock);
1331 			rcu_read_unlock();
1332 			local_irq_restore(*flags);
1333 			goto retry;
1334 		}
1335 
1336 		if (ctx->task == TASK_TOMBSTONE ||
1337 		    !atomic_inc_not_zero(&ctx->refcount)) {
1338 			raw_spin_unlock(&ctx->lock);
1339 			ctx = NULL;
1340 		} else {
1341 			WARN_ON_ONCE(ctx->task != task);
1342 		}
1343 	}
1344 	rcu_read_unlock();
1345 	if (!ctx)
1346 		local_irq_restore(*flags);
1347 	return ctx;
1348 }
1349 
1350 /*
1351  * Get the context for a task and increment its pin_count so it
1352  * can't get swapped to another task.  This also increments its
1353  * reference count so that the context can't get freed.
1354  */
1355 static struct perf_event_context *
1356 perf_pin_task_context(struct task_struct *task, int ctxn)
1357 {
1358 	struct perf_event_context *ctx;
1359 	unsigned long flags;
1360 
1361 	ctx = perf_lock_task_context(task, ctxn, &flags);
1362 	if (ctx) {
1363 		++ctx->pin_count;
1364 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1365 	}
1366 	return ctx;
1367 }
1368 
1369 static void perf_unpin_context(struct perf_event_context *ctx)
1370 {
1371 	unsigned long flags;
1372 
1373 	raw_spin_lock_irqsave(&ctx->lock, flags);
1374 	--ctx->pin_count;
1375 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1376 }
1377 
1378 /*
1379  * Update the record of the current time in a context.
1380  */
1381 static void update_context_time(struct perf_event_context *ctx)
1382 {
1383 	u64 now = perf_clock();
1384 
1385 	ctx->time += now - ctx->timestamp;
1386 	ctx->timestamp = now;
1387 }
1388 
1389 static u64 perf_event_time(struct perf_event *event)
1390 {
1391 	struct perf_event_context *ctx = event->ctx;
1392 
1393 	if (is_cgroup_event(event))
1394 		return perf_cgroup_event_time(event);
1395 
1396 	return ctx ? ctx->time : 0;
1397 }
1398 
1399 /*
1400  * Update the total_time_enabled and total_time_running fields for a event.
1401  */
1402 static void update_event_times(struct perf_event *event)
1403 {
1404 	struct perf_event_context *ctx = event->ctx;
1405 	u64 run_end;
1406 
1407 	lockdep_assert_held(&ctx->lock);
1408 
1409 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 		return;
1412 
1413 	/*
1414 	 * in cgroup mode, time_enabled represents
1415 	 * the time the event was enabled AND active
1416 	 * tasks were in the monitored cgroup. This is
1417 	 * independent of the activity of the context as
1418 	 * there may be a mix of cgroup and non-cgroup events.
1419 	 *
1420 	 * That is why we treat cgroup events differently
1421 	 * here.
1422 	 */
1423 	if (is_cgroup_event(event))
1424 		run_end = perf_cgroup_event_time(event);
1425 	else if (ctx->is_active)
1426 		run_end = ctx->time;
1427 	else
1428 		run_end = event->tstamp_stopped;
1429 
1430 	event->total_time_enabled = run_end - event->tstamp_enabled;
1431 
1432 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 		run_end = event->tstamp_stopped;
1434 	else
1435 		run_end = perf_event_time(event);
1436 
1437 	event->total_time_running = run_end - event->tstamp_running;
1438 
1439 }
1440 
1441 /*
1442  * Update total_time_enabled and total_time_running for all events in a group.
1443  */
1444 static void update_group_times(struct perf_event *leader)
1445 {
1446 	struct perf_event *event;
1447 
1448 	update_event_times(leader);
1449 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 		update_event_times(event);
1451 }
1452 
1453 static enum event_type_t get_event_type(struct perf_event *event)
1454 {
1455 	struct perf_event_context *ctx = event->ctx;
1456 	enum event_type_t event_type;
1457 
1458 	lockdep_assert_held(&ctx->lock);
1459 
1460 	/*
1461 	 * It's 'group type', really, because if our group leader is
1462 	 * pinned, so are we.
1463 	 */
1464 	if (event->group_leader != event)
1465 		event = event->group_leader;
1466 
1467 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 	if (!ctx->task)
1469 		event_type |= EVENT_CPU;
1470 
1471 	return event_type;
1472 }
1473 
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 	if (event->attr.pinned)
1478 		return &ctx->pinned_groups;
1479 	else
1480 		return &ctx->flexible_groups;
1481 }
1482 
1483 /*
1484  * Add a event from the lists for its context.
1485  * Must be called with ctx->mutex and ctx->lock held.
1486  */
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489 {
1490 	lockdep_assert_held(&ctx->lock);
1491 
1492 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 	event->attach_state |= PERF_ATTACH_CONTEXT;
1494 
1495 	/*
1496 	 * If we're a stand alone event or group leader, we go to the context
1497 	 * list, group events are kept attached to the group so that
1498 	 * perf_group_detach can, at all times, locate all siblings.
1499 	 */
1500 	if (event->group_leader == event) {
1501 		struct list_head *list;
1502 
1503 		event->group_caps = event->event_caps;
1504 
1505 		list = ctx_group_list(event, ctx);
1506 		list_add_tail(&event->group_entry, list);
1507 	}
1508 
1509 	list_update_cgroup_event(event, ctx, true);
1510 
1511 	list_add_rcu(&event->event_entry, &ctx->event_list);
1512 	ctx->nr_events++;
1513 	if (event->attr.inherit_stat)
1514 		ctx->nr_stat++;
1515 
1516 	ctx->generation++;
1517 }
1518 
1519 /*
1520  * Initialize event state based on the perf_event_attr::disabled.
1521  */
1522 static inline void perf_event__state_init(struct perf_event *event)
1523 {
1524 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 					      PERF_EVENT_STATE_INACTIVE;
1526 }
1527 
1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1529 {
1530 	int entry = sizeof(u64); /* value */
1531 	int size = 0;
1532 	int nr = 1;
1533 
1534 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 		size += sizeof(u64);
1536 
1537 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 		size += sizeof(u64);
1539 
1540 	if (event->attr.read_format & PERF_FORMAT_ID)
1541 		entry += sizeof(u64);
1542 
1543 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1544 		nr += nr_siblings;
1545 		size += sizeof(u64);
1546 	}
1547 
1548 	size += entry * nr;
1549 	event->read_size = size;
1550 }
1551 
1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1553 {
1554 	struct perf_sample_data *data;
1555 	u16 size = 0;
1556 
1557 	if (sample_type & PERF_SAMPLE_IP)
1558 		size += sizeof(data->ip);
1559 
1560 	if (sample_type & PERF_SAMPLE_ADDR)
1561 		size += sizeof(data->addr);
1562 
1563 	if (sample_type & PERF_SAMPLE_PERIOD)
1564 		size += sizeof(data->period);
1565 
1566 	if (sample_type & PERF_SAMPLE_WEIGHT)
1567 		size += sizeof(data->weight);
1568 
1569 	if (sample_type & PERF_SAMPLE_READ)
1570 		size += event->read_size;
1571 
1572 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 		size += sizeof(data->data_src.val);
1574 
1575 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 		size += sizeof(data->txn);
1577 
1578 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 		size += sizeof(data->phys_addr);
1580 
1581 	event->header_size = size;
1582 }
1583 
1584 /*
1585  * Called at perf_event creation and when events are attached/detached from a
1586  * group.
1587  */
1588 static void perf_event__header_size(struct perf_event *event)
1589 {
1590 	__perf_event_read_size(event,
1591 			       event->group_leader->nr_siblings);
1592 	__perf_event_header_size(event, event->attr.sample_type);
1593 }
1594 
1595 static void perf_event__id_header_size(struct perf_event *event)
1596 {
1597 	struct perf_sample_data *data;
1598 	u64 sample_type = event->attr.sample_type;
1599 	u16 size = 0;
1600 
1601 	if (sample_type & PERF_SAMPLE_TID)
1602 		size += sizeof(data->tid_entry);
1603 
1604 	if (sample_type & PERF_SAMPLE_TIME)
1605 		size += sizeof(data->time);
1606 
1607 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 		size += sizeof(data->id);
1609 
1610 	if (sample_type & PERF_SAMPLE_ID)
1611 		size += sizeof(data->id);
1612 
1613 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 		size += sizeof(data->stream_id);
1615 
1616 	if (sample_type & PERF_SAMPLE_CPU)
1617 		size += sizeof(data->cpu_entry);
1618 
1619 	event->id_header_size = size;
1620 }
1621 
1622 static bool perf_event_validate_size(struct perf_event *event)
1623 {
1624 	/*
1625 	 * The values computed here will be over-written when we actually
1626 	 * attach the event.
1627 	 */
1628 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 	perf_event__id_header_size(event);
1631 
1632 	/*
1633 	 * Sum the lot; should not exceed the 64k limit we have on records.
1634 	 * Conservative limit to allow for callchains and other variable fields.
1635 	 */
1636 	if (event->read_size + event->header_size +
1637 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 		return false;
1639 
1640 	return true;
1641 }
1642 
1643 static void perf_group_attach(struct perf_event *event)
1644 {
1645 	struct perf_event *group_leader = event->group_leader, *pos;
1646 
1647 	lockdep_assert_held(&event->ctx->lock);
1648 
1649 	/*
1650 	 * We can have double attach due to group movement in perf_event_open.
1651 	 */
1652 	if (event->attach_state & PERF_ATTACH_GROUP)
1653 		return;
1654 
1655 	event->attach_state |= PERF_ATTACH_GROUP;
1656 
1657 	if (group_leader == event)
1658 		return;
1659 
1660 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661 
1662 	group_leader->group_caps &= event->event_caps;
1663 
1664 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 	group_leader->nr_siblings++;
1666 
1667 	perf_event__header_size(group_leader);
1668 
1669 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 		perf_event__header_size(pos);
1671 }
1672 
1673 /*
1674  * Remove a event from the lists for its context.
1675  * Must be called with ctx->mutex and ctx->lock held.
1676  */
1677 static void
1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680 	WARN_ON_ONCE(event->ctx != ctx);
1681 	lockdep_assert_held(&ctx->lock);
1682 
1683 	/*
1684 	 * We can have double detach due to exit/hot-unplug + close.
1685 	 */
1686 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687 		return;
1688 
1689 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690 
1691 	list_update_cgroup_event(event, ctx, false);
1692 
1693 	ctx->nr_events--;
1694 	if (event->attr.inherit_stat)
1695 		ctx->nr_stat--;
1696 
1697 	list_del_rcu(&event->event_entry);
1698 
1699 	if (event->group_leader == event)
1700 		list_del_init(&event->group_entry);
1701 
1702 	update_group_times(event);
1703 
1704 	/*
1705 	 * If event was in error state, then keep it
1706 	 * that way, otherwise bogus counts will be
1707 	 * returned on read(). The only way to get out
1708 	 * of error state is by explicit re-enabling
1709 	 * of the event
1710 	 */
1711 	if (event->state > PERF_EVENT_STATE_OFF)
1712 		event->state = PERF_EVENT_STATE_OFF;
1713 
1714 	ctx->generation++;
1715 }
1716 
1717 static void perf_group_detach(struct perf_event *event)
1718 {
1719 	struct perf_event *sibling, *tmp;
1720 	struct list_head *list = NULL;
1721 
1722 	lockdep_assert_held(&event->ctx->lock);
1723 
1724 	/*
1725 	 * We can have double detach due to exit/hot-unplug + close.
1726 	 */
1727 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 		return;
1729 
1730 	event->attach_state &= ~PERF_ATTACH_GROUP;
1731 
1732 	/*
1733 	 * If this is a sibling, remove it from its group.
1734 	 */
1735 	if (event->group_leader != event) {
1736 		list_del_init(&event->group_entry);
1737 		event->group_leader->nr_siblings--;
1738 		goto out;
1739 	}
1740 
1741 	if (!list_empty(&event->group_entry))
1742 		list = &event->group_entry;
1743 
1744 	/*
1745 	 * If this was a group event with sibling events then
1746 	 * upgrade the siblings to singleton events by adding them
1747 	 * to whatever list we are on.
1748 	 */
1749 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 		if (list)
1751 			list_move_tail(&sibling->group_entry, list);
1752 		sibling->group_leader = sibling;
1753 
1754 		/* Inherit group flags from the previous leader */
1755 		sibling->group_caps = event->group_caps;
1756 
1757 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1758 	}
1759 
1760 out:
1761 	perf_event__header_size(event->group_leader);
1762 
1763 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 		perf_event__header_size(tmp);
1765 }
1766 
1767 static bool is_orphaned_event(struct perf_event *event)
1768 {
1769 	return event->state == PERF_EVENT_STATE_DEAD;
1770 }
1771 
1772 static inline int __pmu_filter_match(struct perf_event *event)
1773 {
1774 	struct pmu *pmu = event->pmu;
1775 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1776 }
1777 
1778 /*
1779  * Check whether we should attempt to schedule an event group based on
1780  * PMU-specific filtering. An event group can consist of HW and SW events,
1781  * potentially with a SW leader, so we must check all the filters, to
1782  * determine whether a group is schedulable:
1783  */
1784 static inline int pmu_filter_match(struct perf_event *event)
1785 {
1786 	struct perf_event *child;
1787 
1788 	if (!__pmu_filter_match(event))
1789 		return 0;
1790 
1791 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 		if (!__pmu_filter_match(child))
1793 			return 0;
1794 	}
1795 
1796 	return 1;
1797 }
1798 
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1801 {
1802 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 	       perf_cgroup_match(event) && pmu_filter_match(event);
1804 }
1805 
1806 static void
1807 event_sched_out(struct perf_event *event,
1808 		  struct perf_cpu_context *cpuctx,
1809 		  struct perf_event_context *ctx)
1810 {
1811 	u64 tstamp = perf_event_time(event);
1812 	u64 delta;
1813 
1814 	WARN_ON_ONCE(event->ctx != ctx);
1815 	lockdep_assert_held(&ctx->lock);
1816 
1817 	/*
1818 	 * An event which could not be activated because of
1819 	 * filter mismatch still needs to have its timings
1820 	 * maintained, otherwise bogus information is return
1821 	 * via read() for time_enabled, time_running:
1822 	 */
1823 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 	    !event_filter_match(event)) {
1825 		delta = tstamp - event->tstamp_stopped;
1826 		event->tstamp_running += delta;
1827 		event->tstamp_stopped = tstamp;
1828 	}
1829 
1830 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1831 		return;
1832 
1833 	perf_pmu_disable(event->pmu);
1834 
1835 	event->tstamp_stopped = tstamp;
1836 	event->pmu->del(event, 0);
1837 	event->oncpu = -1;
1838 	event->state = PERF_EVENT_STATE_INACTIVE;
1839 	if (event->pending_disable) {
1840 		event->pending_disable = 0;
1841 		event->state = PERF_EVENT_STATE_OFF;
1842 	}
1843 
1844 	if (!is_software_event(event))
1845 		cpuctx->active_oncpu--;
1846 	if (!--ctx->nr_active)
1847 		perf_event_ctx_deactivate(ctx);
1848 	if (event->attr.freq && event->attr.sample_freq)
1849 		ctx->nr_freq--;
1850 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1851 		cpuctx->exclusive = 0;
1852 
1853 	perf_pmu_enable(event->pmu);
1854 }
1855 
1856 static void
1857 group_sched_out(struct perf_event *group_event,
1858 		struct perf_cpu_context *cpuctx,
1859 		struct perf_event_context *ctx)
1860 {
1861 	struct perf_event *event;
1862 	int state = group_event->state;
1863 
1864 	perf_pmu_disable(ctx->pmu);
1865 
1866 	event_sched_out(group_event, cpuctx, ctx);
1867 
1868 	/*
1869 	 * Schedule out siblings (if any):
1870 	 */
1871 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 		event_sched_out(event, cpuctx, ctx);
1873 
1874 	perf_pmu_enable(ctx->pmu);
1875 
1876 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877 		cpuctx->exclusive = 0;
1878 }
1879 
1880 #define DETACH_GROUP	0x01UL
1881 
1882 /*
1883  * Cross CPU call to remove a performance event
1884  *
1885  * We disable the event on the hardware level first. After that we
1886  * remove it from the context list.
1887  */
1888 static void
1889 __perf_remove_from_context(struct perf_event *event,
1890 			   struct perf_cpu_context *cpuctx,
1891 			   struct perf_event_context *ctx,
1892 			   void *info)
1893 {
1894 	unsigned long flags = (unsigned long)info;
1895 
1896 	event_sched_out(event, cpuctx, ctx);
1897 	if (flags & DETACH_GROUP)
1898 		perf_group_detach(event);
1899 	list_del_event(event, ctx);
1900 
1901 	if (!ctx->nr_events && ctx->is_active) {
1902 		ctx->is_active = 0;
1903 		if (ctx->task) {
1904 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 			cpuctx->task_ctx = NULL;
1906 		}
1907 	}
1908 }
1909 
1910 /*
1911  * Remove the event from a task's (or a CPU's) list of events.
1912  *
1913  * If event->ctx is a cloned context, callers must make sure that
1914  * every task struct that event->ctx->task could possibly point to
1915  * remains valid.  This is OK when called from perf_release since
1916  * that only calls us on the top-level context, which can't be a clone.
1917  * When called from perf_event_exit_task, it's OK because the
1918  * context has been detached from its task.
1919  */
1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1921 {
1922 	struct perf_event_context *ctx = event->ctx;
1923 
1924 	lockdep_assert_held(&ctx->mutex);
1925 
1926 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1927 
1928 	/*
1929 	 * The above event_function_call() can NO-OP when it hits
1930 	 * TASK_TOMBSTONE. In that case we must already have been detached
1931 	 * from the context (by perf_event_exit_event()) but the grouping
1932 	 * might still be in-tact.
1933 	 */
1934 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 	if ((flags & DETACH_GROUP) &&
1936 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1937 		/*
1938 		 * Since in that case we cannot possibly be scheduled, simply
1939 		 * detach now.
1940 		 */
1941 		raw_spin_lock_irq(&ctx->lock);
1942 		perf_group_detach(event);
1943 		raw_spin_unlock_irq(&ctx->lock);
1944 	}
1945 }
1946 
1947 /*
1948  * Cross CPU call to disable a performance event
1949  */
1950 static void __perf_event_disable(struct perf_event *event,
1951 				 struct perf_cpu_context *cpuctx,
1952 				 struct perf_event_context *ctx,
1953 				 void *info)
1954 {
1955 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 		return;
1957 
1958 	update_context_time(ctx);
1959 	update_cgrp_time_from_event(event);
1960 	update_group_times(event);
1961 	if (event == event->group_leader)
1962 		group_sched_out(event, cpuctx, ctx);
1963 	else
1964 		event_sched_out(event, cpuctx, ctx);
1965 	event->state = PERF_EVENT_STATE_OFF;
1966 }
1967 
1968 /*
1969  * Disable a event.
1970  *
1971  * If event->ctx is a cloned context, callers must make sure that
1972  * every task struct that event->ctx->task could possibly point to
1973  * remains valid.  This condition is satisifed when called through
1974  * perf_event_for_each_child or perf_event_for_each because they
1975  * hold the top-level event's child_mutex, so any descendant that
1976  * goes to exit will block in perf_event_exit_event().
1977  *
1978  * When called from perf_pending_event it's OK because event->ctx
1979  * is the current context on this CPU and preemption is disabled,
1980  * hence we can't get into perf_event_task_sched_out for this context.
1981  */
1982 static void _perf_event_disable(struct perf_event *event)
1983 {
1984 	struct perf_event_context *ctx = event->ctx;
1985 
1986 	raw_spin_lock_irq(&ctx->lock);
1987 	if (event->state <= PERF_EVENT_STATE_OFF) {
1988 		raw_spin_unlock_irq(&ctx->lock);
1989 		return;
1990 	}
1991 	raw_spin_unlock_irq(&ctx->lock);
1992 
1993 	event_function_call(event, __perf_event_disable, NULL);
1994 }
1995 
1996 void perf_event_disable_local(struct perf_event *event)
1997 {
1998 	event_function_local(event, __perf_event_disable, NULL);
1999 }
2000 
2001 /*
2002  * Strictly speaking kernel users cannot create groups and therefore this
2003  * interface does not need the perf_event_ctx_lock() magic.
2004  */
2005 void perf_event_disable(struct perf_event *event)
2006 {
2007 	struct perf_event_context *ctx;
2008 
2009 	ctx = perf_event_ctx_lock(event);
2010 	_perf_event_disable(event);
2011 	perf_event_ctx_unlock(event, ctx);
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_disable);
2014 
2015 void perf_event_disable_inatomic(struct perf_event *event)
2016 {
2017 	event->pending_disable = 1;
2018 	irq_work_queue(&event->pending);
2019 }
2020 
2021 static void perf_set_shadow_time(struct perf_event *event,
2022 				 struct perf_event_context *ctx,
2023 				 u64 tstamp)
2024 {
2025 	/*
2026 	 * use the correct time source for the time snapshot
2027 	 *
2028 	 * We could get by without this by leveraging the
2029 	 * fact that to get to this function, the caller
2030 	 * has most likely already called update_context_time()
2031 	 * and update_cgrp_time_xx() and thus both timestamp
2032 	 * are identical (or very close). Given that tstamp is,
2033 	 * already adjusted for cgroup, we could say that:
2034 	 *    tstamp - ctx->timestamp
2035 	 * is equivalent to
2036 	 *    tstamp - cgrp->timestamp.
2037 	 *
2038 	 * Then, in perf_output_read(), the calculation would
2039 	 * work with no changes because:
2040 	 * - event is guaranteed scheduled in
2041 	 * - no scheduled out in between
2042 	 * - thus the timestamp would be the same
2043 	 *
2044 	 * But this is a bit hairy.
2045 	 *
2046 	 * So instead, we have an explicit cgroup call to remain
2047 	 * within the time time source all along. We believe it
2048 	 * is cleaner and simpler to understand.
2049 	 */
2050 	if (is_cgroup_event(event))
2051 		perf_cgroup_set_shadow_time(event, tstamp);
2052 	else
2053 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2054 }
2055 
2056 #define MAX_INTERRUPTS (~0ULL)
2057 
2058 static void perf_log_throttle(struct perf_event *event, int enable);
2059 static void perf_log_itrace_start(struct perf_event *event);
2060 
2061 static int
2062 event_sched_in(struct perf_event *event,
2063 		 struct perf_cpu_context *cpuctx,
2064 		 struct perf_event_context *ctx)
2065 {
2066 	u64 tstamp = perf_event_time(event);
2067 	int ret = 0;
2068 
2069 	lockdep_assert_held(&ctx->lock);
2070 
2071 	if (event->state <= PERF_EVENT_STATE_OFF)
2072 		return 0;
2073 
2074 	WRITE_ONCE(event->oncpu, smp_processor_id());
2075 	/*
2076 	 * Order event::oncpu write to happen before the ACTIVE state
2077 	 * is visible.
2078 	 */
2079 	smp_wmb();
2080 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2081 
2082 	/*
2083 	 * Unthrottle events, since we scheduled we might have missed several
2084 	 * ticks already, also for a heavily scheduling task there is little
2085 	 * guarantee it'll get a tick in a timely manner.
2086 	 */
2087 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 		perf_log_throttle(event, 1);
2089 		event->hw.interrupts = 0;
2090 	}
2091 
2092 	/*
2093 	 * The new state must be visible before we turn it on in the hardware:
2094 	 */
2095 	smp_wmb();
2096 
2097 	perf_pmu_disable(event->pmu);
2098 
2099 	perf_set_shadow_time(event, ctx, tstamp);
2100 
2101 	perf_log_itrace_start(event);
2102 
2103 	if (event->pmu->add(event, PERF_EF_START)) {
2104 		event->state = PERF_EVENT_STATE_INACTIVE;
2105 		event->oncpu = -1;
2106 		ret = -EAGAIN;
2107 		goto out;
2108 	}
2109 
2110 	event->tstamp_running += tstamp - event->tstamp_stopped;
2111 
2112 	if (!is_software_event(event))
2113 		cpuctx->active_oncpu++;
2114 	if (!ctx->nr_active++)
2115 		perf_event_ctx_activate(ctx);
2116 	if (event->attr.freq && event->attr.sample_freq)
2117 		ctx->nr_freq++;
2118 
2119 	if (event->attr.exclusive)
2120 		cpuctx->exclusive = 1;
2121 
2122 out:
2123 	perf_pmu_enable(event->pmu);
2124 
2125 	return ret;
2126 }
2127 
2128 static int
2129 group_sched_in(struct perf_event *group_event,
2130 	       struct perf_cpu_context *cpuctx,
2131 	       struct perf_event_context *ctx)
2132 {
2133 	struct perf_event *event, *partial_group = NULL;
2134 	struct pmu *pmu = ctx->pmu;
2135 	u64 now = ctx->time;
2136 	bool simulate = false;
2137 
2138 	if (group_event->state == PERF_EVENT_STATE_OFF)
2139 		return 0;
2140 
2141 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2142 
2143 	if (event_sched_in(group_event, cpuctx, ctx)) {
2144 		pmu->cancel_txn(pmu);
2145 		perf_mux_hrtimer_restart(cpuctx);
2146 		return -EAGAIN;
2147 	}
2148 
2149 	/*
2150 	 * Schedule in siblings as one group (if any):
2151 	 */
2152 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153 		if (event_sched_in(event, cpuctx, ctx)) {
2154 			partial_group = event;
2155 			goto group_error;
2156 		}
2157 	}
2158 
2159 	if (!pmu->commit_txn(pmu))
2160 		return 0;
2161 
2162 group_error:
2163 	/*
2164 	 * Groups can be scheduled in as one unit only, so undo any
2165 	 * partial group before returning:
2166 	 * The events up to the failed event are scheduled out normally,
2167 	 * tstamp_stopped will be updated.
2168 	 *
2169 	 * The failed events and the remaining siblings need to have
2170 	 * their timings updated as if they had gone thru event_sched_in()
2171 	 * and event_sched_out(). This is required to get consistent timings
2172 	 * across the group. This also takes care of the case where the group
2173 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 	 * the time the event was actually stopped, such that time delta
2175 	 * calculation in update_event_times() is correct.
2176 	 */
2177 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 		if (event == partial_group)
2179 			simulate = true;
2180 
2181 		if (simulate) {
2182 			event->tstamp_running += now - event->tstamp_stopped;
2183 			event->tstamp_stopped = now;
2184 		} else {
2185 			event_sched_out(event, cpuctx, ctx);
2186 		}
2187 	}
2188 	event_sched_out(group_event, cpuctx, ctx);
2189 
2190 	pmu->cancel_txn(pmu);
2191 
2192 	perf_mux_hrtimer_restart(cpuctx);
2193 
2194 	return -EAGAIN;
2195 }
2196 
2197 /*
2198  * Work out whether we can put this event group on the CPU now.
2199  */
2200 static int group_can_go_on(struct perf_event *event,
2201 			   struct perf_cpu_context *cpuctx,
2202 			   int can_add_hw)
2203 {
2204 	/*
2205 	 * Groups consisting entirely of software events can always go on.
2206 	 */
2207 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208 		return 1;
2209 	/*
2210 	 * If an exclusive group is already on, no other hardware
2211 	 * events can go on.
2212 	 */
2213 	if (cpuctx->exclusive)
2214 		return 0;
2215 	/*
2216 	 * If this group is exclusive and there are already
2217 	 * events on the CPU, it can't go on.
2218 	 */
2219 	if (event->attr.exclusive && cpuctx->active_oncpu)
2220 		return 0;
2221 	/*
2222 	 * Otherwise, try to add it if all previous groups were able
2223 	 * to go on.
2224 	 */
2225 	return can_add_hw;
2226 }
2227 
2228 /*
2229  * Complement to update_event_times(). This computes the tstamp_* values to
2230  * continue 'enabled' state from @now, and effectively discards the time
2231  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232  * just switched (context) time base).
2233  *
2234  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235  * cannot have been scheduled in yet. And going into INACTIVE state means
2236  * '@event->tstamp_stopped = @now'.
2237  *
2238  * Thus given the rules of update_event_times():
2239  *
2240  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2241  *   total_time_running = tstamp_stopped - tstamp_running
2242  *
2243  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244  * tstamp_* values.
2245  */
2246 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247 {
2248 	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249 
2250 	event->tstamp_stopped = now;
2251 	event->tstamp_enabled = now - event->total_time_enabled;
2252 	event->tstamp_running = now - event->total_time_running;
2253 }
2254 
2255 static void add_event_to_ctx(struct perf_event *event,
2256 			       struct perf_event_context *ctx)
2257 {
2258 	u64 tstamp = perf_event_time(event);
2259 
2260 	list_add_event(event, ctx);
2261 	perf_group_attach(event);
2262 	/*
2263 	 * We can be called with event->state == STATE_OFF when we create with
2264 	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 	 */
2266 	if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 		__perf_event_enable_time(event, tstamp);
2268 }
2269 
2270 static void ctx_sched_out(struct perf_event_context *ctx,
2271 			  struct perf_cpu_context *cpuctx,
2272 			  enum event_type_t event_type);
2273 static void
2274 ctx_sched_in(struct perf_event_context *ctx,
2275 	     struct perf_cpu_context *cpuctx,
2276 	     enum event_type_t event_type,
2277 	     struct task_struct *task);
2278 
2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280 			       struct perf_event_context *ctx,
2281 			       enum event_type_t event_type)
2282 {
2283 	if (!cpuctx->task_ctx)
2284 		return;
2285 
2286 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 		return;
2288 
2289 	ctx_sched_out(ctx, cpuctx, event_type);
2290 }
2291 
2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 				struct perf_event_context *ctx,
2294 				struct task_struct *task)
2295 {
2296 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 	if (ctx)
2298 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 	if (ctx)
2301 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302 }
2303 
2304 /*
2305  * We want to maintain the following priority of scheduling:
2306  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307  *  - task pinned (EVENT_PINNED)
2308  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309  *  - task flexible (EVENT_FLEXIBLE).
2310  *
2311  * In order to avoid unscheduling and scheduling back in everything every
2312  * time an event is added, only do it for the groups of equal priority and
2313  * below.
2314  *
2315  * This can be called after a batch operation on task events, in which case
2316  * event_type is a bit mask of the types of events involved. For CPU events,
2317  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318  */
2319 static void ctx_resched(struct perf_cpu_context *cpuctx,
2320 			struct perf_event_context *task_ctx,
2321 			enum event_type_t event_type)
2322 {
2323 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 	bool cpu_event = !!(event_type & EVENT_CPU);
2325 
2326 	/*
2327 	 * If pinned groups are involved, flexible groups also need to be
2328 	 * scheduled out.
2329 	 */
2330 	if (event_type & EVENT_PINNED)
2331 		event_type |= EVENT_FLEXIBLE;
2332 
2333 	perf_pmu_disable(cpuctx->ctx.pmu);
2334 	if (task_ctx)
2335 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336 
2337 	/*
2338 	 * Decide which cpu ctx groups to schedule out based on the types
2339 	 * of events that caused rescheduling:
2340 	 *  - EVENT_CPU: schedule out corresponding groups;
2341 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 	 *  - otherwise, do nothing more.
2343 	 */
2344 	if (cpu_event)
2345 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 	else if (ctx_event_type & EVENT_PINNED)
2347 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348 
2349 	perf_event_sched_in(cpuctx, task_ctx, current);
2350 	perf_pmu_enable(cpuctx->ctx.pmu);
2351 }
2352 
2353 /*
2354  * Cross CPU call to install and enable a performance event
2355  *
2356  * Very similar to remote_function() + event_function() but cannot assume that
2357  * things like ctx->is_active and cpuctx->task_ctx are set.
2358  */
2359 static int  __perf_install_in_context(void *info)
2360 {
2361 	struct perf_event *event = info;
2362 	struct perf_event_context *ctx = event->ctx;
2363 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365 	bool reprogram = true;
2366 	int ret = 0;
2367 
2368 	raw_spin_lock(&cpuctx->ctx.lock);
2369 	if (ctx->task) {
2370 		raw_spin_lock(&ctx->lock);
2371 		task_ctx = ctx;
2372 
2373 		reprogram = (ctx->task == current);
2374 
2375 		/*
2376 		 * If the task is running, it must be running on this CPU,
2377 		 * otherwise we cannot reprogram things.
2378 		 *
2379 		 * If its not running, we don't care, ctx->lock will
2380 		 * serialize against it becoming runnable.
2381 		 */
2382 		if (task_curr(ctx->task) && !reprogram) {
2383 			ret = -ESRCH;
2384 			goto unlock;
2385 		}
2386 
2387 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388 	} else if (task_ctx) {
2389 		raw_spin_lock(&task_ctx->lock);
2390 	}
2391 
2392 	if (reprogram) {
2393 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 		add_event_to_ctx(event, ctx);
2395 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396 	} else {
2397 		add_event_to_ctx(event, ctx);
2398 	}
2399 
2400 unlock:
2401 	perf_ctx_unlock(cpuctx, task_ctx);
2402 
2403 	return ret;
2404 }
2405 
2406 /*
2407  * Attach a performance event to a context.
2408  *
2409  * Very similar to event_function_call, see comment there.
2410  */
2411 static void
2412 perf_install_in_context(struct perf_event_context *ctx,
2413 			struct perf_event *event,
2414 			int cpu)
2415 {
2416 	struct task_struct *task = READ_ONCE(ctx->task);
2417 
2418 	lockdep_assert_held(&ctx->mutex);
2419 
2420 	if (event->cpu != -1)
2421 		event->cpu = cpu;
2422 
2423 	/*
2424 	 * Ensures that if we can observe event->ctx, both the event and ctx
2425 	 * will be 'complete'. See perf_iterate_sb_cpu().
2426 	 */
2427 	smp_store_release(&event->ctx, ctx);
2428 
2429 	if (!task) {
2430 		cpu_function_call(cpu, __perf_install_in_context, event);
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Should not happen, we validate the ctx is still alive before calling.
2436 	 */
2437 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 		return;
2439 
2440 	/*
2441 	 * Installing events is tricky because we cannot rely on ctx->is_active
2442 	 * to be set in case this is the nr_events 0 -> 1 transition.
2443 	 *
2444 	 * Instead we use task_curr(), which tells us if the task is running.
2445 	 * However, since we use task_curr() outside of rq::lock, we can race
2446 	 * against the actual state. This means the result can be wrong.
2447 	 *
2448 	 * If we get a false positive, we retry, this is harmless.
2449 	 *
2450 	 * If we get a false negative, things are complicated. If we are after
2451 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 	 * value must be correct. If we're before, it doesn't matter since
2453 	 * perf_event_context_sched_in() will program the counter.
2454 	 *
2455 	 * However, this hinges on the remote context switch having observed
2456 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 	 * ctx::lock in perf_event_context_sched_in().
2458 	 *
2459 	 * We do this by task_function_call(), if the IPI fails to hit the task
2460 	 * we know any future context switch of task must see the
2461 	 * perf_event_ctpx[] store.
2462 	 */
2463 
2464 	/*
2465 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 	 * task_cpu() load, such that if the IPI then does not find the task
2467 	 * running, a future context switch of that task must observe the
2468 	 * store.
2469 	 */
2470 	smp_mb();
2471 again:
2472 	if (!task_function_call(task, __perf_install_in_context, event))
2473 		return;
2474 
2475 	raw_spin_lock_irq(&ctx->lock);
2476 	task = ctx->task;
2477 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2478 		/*
2479 		 * Cannot happen because we already checked above (which also
2480 		 * cannot happen), and we hold ctx->mutex, which serializes us
2481 		 * against perf_event_exit_task_context().
2482 		 */
2483 		raw_spin_unlock_irq(&ctx->lock);
2484 		return;
2485 	}
2486 	/*
2487 	 * If the task is not running, ctx->lock will avoid it becoming so,
2488 	 * thus we can safely install the event.
2489 	 */
2490 	if (task_curr(task)) {
2491 		raw_spin_unlock_irq(&ctx->lock);
2492 		goto again;
2493 	}
2494 	add_event_to_ctx(event, ctx);
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 }
2497 
2498 /*
2499  * Put a event into inactive state and update time fields.
2500  * Enabling the leader of a group effectively enables all
2501  * the group members that aren't explicitly disabled, so we
2502  * have to update their ->tstamp_enabled also.
2503  * Note: this works for group members as well as group leaders
2504  * since the non-leader members' sibling_lists will be empty.
2505  */
2506 static void __perf_event_mark_enabled(struct perf_event *event)
2507 {
2508 	struct perf_event *sub;
2509 	u64 tstamp = perf_event_time(event);
2510 
2511 	event->state = PERF_EVENT_STATE_INACTIVE;
2512 	__perf_event_enable_time(event, tstamp);
2513 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514 		/* XXX should not be > INACTIVE if event isn't */
2515 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516 			__perf_event_enable_time(sub, tstamp);
2517 	}
2518 }
2519 
2520 /*
2521  * Cross CPU call to enable a performance event
2522  */
2523 static void __perf_event_enable(struct perf_event *event,
2524 				struct perf_cpu_context *cpuctx,
2525 				struct perf_event_context *ctx,
2526 				void *info)
2527 {
2528 	struct perf_event *leader = event->group_leader;
2529 	struct perf_event_context *task_ctx;
2530 
2531 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 	    event->state <= PERF_EVENT_STATE_ERROR)
2533 		return;
2534 
2535 	if (ctx->is_active)
2536 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537 
2538 	__perf_event_mark_enabled(event);
2539 
2540 	if (!ctx->is_active)
2541 		return;
2542 
2543 	if (!event_filter_match(event)) {
2544 		if (is_cgroup_event(event))
2545 			perf_cgroup_defer_enabled(event);
2546 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547 		return;
2548 	}
2549 
2550 	/*
2551 	 * If the event is in a group and isn't the group leader,
2552 	 * then don't put it on unless the group is on.
2553 	 */
2554 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556 		return;
2557 	}
2558 
2559 	task_ctx = cpuctx->task_ctx;
2560 	if (ctx->task)
2561 		WARN_ON_ONCE(task_ctx != ctx);
2562 
2563 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2564 }
2565 
2566 /*
2567  * Enable a event.
2568  *
2569  * If event->ctx is a cloned context, callers must make sure that
2570  * every task struct that event->ctx->task could possibly point to
2571  * remains valid.  This condition is satisfied when called through
2572  * perf_event_for_each_child or perf_event_for_each as described
2573  * for perf_event_disable.
2574  */
2575 static void _perf_event_enable(struct perf_event *event)
2576 {
2577 	struct perf_event_context *ctx = event->ctx;
2578 
2579 	raw_spin_lock_irq(&ctx->lock);
2580 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 	    event->state <  PERF_EVENT_STATE_ERROR) {
2582 		raw_spin_unlock_irq(&ctx->lock);
2583 		return;
2584 	}
2585 
2586 	/*
2587 	 * If the event is in error state, clear that first.
2588 	 *
2589 	 * That way, if we see the event in error state below, we know that it
2590 	 * has gone back into error state, as distinct from the task having
2591 	 * been scheduled away before the cross-call arrived.
2592 	 */
2593 	if (event->state == PERF_EVENT_STATE_ERROR)
2594 		event->state = PERF_EVENT_STATE_OFF;
2595 	raw_spin_unlock_irq(&ctx->lock);
2596 
2597 	event_function_call(event, __perf_event_enable, NULL);
2598 }
2599 
2600 /*
2601  * See perf_event_disable();
2602  */
2603 void perf_event_enable(struct perf_event *event)
2604 {
2605 	struct perf_event_context *ctx;
2606 
2607 	ctx = perf_event_ctx_lock(event);
2608 	_perf_event_enable(event);
2609 	perf_event_ctx_unlock(event, ctx);
2610 }
2611 EXPORT_SYMBOL_GPL(perf_event_enable);
2612 
2613 struct stop_event_data {
2614 	struct perf_event	*event;
2615 	unsigned int		restart;
2616 };
2617 
2618 static int __perf_event_stop(void *info)
2619 {
2620 	struct stop_event_data *sd = info;
2621 	struct perf_event *event = sd->event;
2622 
2623 	/* if it's already INACTIVE, do nothing */
2624 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 		return 0;
2626 
2627 	/* matches smp_wmb() in event_sched_in() */
2628 	smp_rmb();
2629 
2630 	/*
2631 	 * There is a window with interrupts enabled before we get here,
2632 	 * so we need to check again lest we try to stop another CPU's event.
2633 	 */
2634 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 		return -EAGAIN;
2636 
2637 	event->pmu->stop(event, PERF_EF_UPDATE);
2638 
2639 	/*
2640 	 * May race with the actual stop (through perf_pmu_output_stop()),
2641 	 * but it is only used for events with AUX ring buffer, and such
2642 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 	 * see comments in perf_aux_output_begin().
2644 	 *
2645 	 * Since this is happening on a event-local CPU, no trace is lost
2646 	 * while restarting.
2647 	 */
2648 	if (sd->restart)
2649 		event->pmu->start(event, 0);
2650 
2651 	return 0;
2652 }
2653 
2654 static int perf_event_stop(struct perf_event *event, int restart)
2655 {
2656 	struct stop_event_data sd = {
2657 		.event		= event,
2658 		.restart	= restart,
2659 	};
2660 	int ret = 0;
2661 
2662 	do {
2663 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 			return 0;
2665 
2666 		/* matches smp_wmb() in event_sched_in() */
2667 		smp_rmb();
2668 
2669 		/*
2670 		 * We only want to restart ACTIVE events, so if the event goes
2671 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 		 * fall through with ret==-ENXIO.
2673 		 */
2674 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 					__perf_event_stop, &sd);
2676 	} while (ret == -EAGAIN);
2677 
2678 	return ret;
2679 }
2680 
2681 /*
2682  * In order to contain the amount of racy and tricky in the address filter
2683  * configuration management, it is a two part process:
2684  *
2685  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686  *      we update the addresses of corresponding vmas in
2687  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2688  * (p2) when an event is scheduled in (pmu::add), it calls
2689  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690  *      if the generation has changed since the previous call.
2691  *
2692  * If (p1) happens while the event is active, we restart it to force (p2).
2693  *
2694  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2696  *     ioctl;
2697  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2699  *     for reading;
2700  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701  *     of exec.
2702  */
2703 void perf_event_addr_filters_sync(struct perf_event *event)
2704 {
2705 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706 
2707 	if (!has_addr_filter(event))
2708 		return;
2709 
2710 	raw_spin_lock(&ifh->lock);
2711 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 		event->pmu->addr_filters_sync(event);
2713 		event->hw.addr_filters_gen = event->addr_filters_gen;
2714 	}
2715 	raw_spin_unlock(&ifh->lock);
2716 }
2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718 
2719 static int _perf_event_refresh(struct perf_event *event, int refresh)
2720 {
2721 	/*
2722 	 * not supported on inherited events
2723 	 */
2724 	if (event->attr.inherit || !is_sampling_event(event))
2725 		return -EINVAL;
2726 
2727 	atomic_add(refresh, &event->event_limit);
2728 	_perf_event_enable(event);
2729 
2730 	return 0;
2731 }
2732 
2733 /*
2734  * See perf_event_disable()
2735  */
2736 int perf_event_refresh(struct perf_event *event, int refresh)
2737 {
2738 	struct perf_event_context *ctx;
2739 	int ret;
2740 
2741 	ctx = perf_event_ctx_lock(event);
2742 	ret = _perf_event_refresh(event, refresh);
2743 	perf_event_ctx_unlock(event, ctx);
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(perf_event_refresh);
2748 
2749 static void ctx_sched_out(struct perf_event_context *ctx,
2750 			  struct perf_cpu_context *cpuctx,
2751 			  enum event_type_t event_type)
2752 {
2753 	int is_active = ctx->is_active;
2754 	struct perf_event *event;
2755 
2756 	lockdep_assert_held(&ctx->lock);
2757 
2758 	if (likely(!ctx->nr_events)) {
2759 		/*
2760 		 * See __perf_remove_from_context().
2761 		 */
2762 		WARN_ON_ONCE(ctx->is_active);
2763 		if (ctx->task)
2764 			WARN_ON_ONCE(cpuctx->task_ctx);
2765 		return;
2766 	}
2767 
2768 	ctx->is_active &= ~event_type;
2769 	if (!(ctx->is_active & EVENT_ALL))
2770 		ctx->is_active = 0;
2771 
2772 	if (ctx->task) {
2773 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 		if (!ctx->is_active)
2775 			cpuctx->task_ctx = NULL;
2776 	}
2777 
2778 	/*
2779 	 * Always update time if it was set; not only when it changes.
2780 	 * Otherwise we can 'forget' to update time for any but the last
2781 	 * context we sched out. For example:
2782 	 *
2783 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2785 	 *
2786 	 * would only update time for the pinned events.
2787 	 */
2788 	if (is_active & EVENT_TIME) {
2789 		/* update (and stop) ctx time */
2790 		update_context_time(ctx);
2791 		update_cgrp_time_from_cpuctx(cpuctx);
2792 	}
2793 
2794 	is_active ^= ctx->is_active; /* changed bits */
2795 
2796 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797 		return;
2798 
2799 	perf_pmu_disable(ctx->pmu);
2800 	if (is_active & EVENT_PINNED) {
2801 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 			group_sched_out(event, cpuctx, ctx);
2803 	}
2804 
2805 	if (is_active & EVENT_FLEXIBLE) {
2806 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807 			group_sched_out(event, cpuctx, ctx);
2808 	}
2809 	perf_pmu_enable(ctx->pmu);
2810 }
2811 
2812 /*
2813  * Test whether two contexts are equivalent, i.e. whether they have both been
2814  * cloned from the same version of the same context.
2815  *
2816  * Equivalence is measured using a generation number in the context that is
2817  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818  * and list_del_event().
2819  */
2820 static int context_equiv(struct perf_event_context *ctx1,
2821 			 struct perf_event_context *ctx2)
2822 {
2823 	lockdep_assert_held(&ctx1->lock);
2824 	lockdep_assert_held(&ctx2->lock);
2825 
2826 	/* Pinning disables the swap optimization */
2827 	if (ctx1->pin_count || ctx2->pin_count)
2828 		return 0;
2829 
2830 	/* If ctx1 is the parent of ctx2 */
2831 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 		return 1;
2833 
2834 	/* If ctx2 is the parent of ctx1 */
2835 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 		return 1;
2837 
2838 	/*
2839 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 	 * hierarchy, see perf_event_init_context().
2841 	 */
2842 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 			ctx1->parent_gen == ctx2->parent_gen)
2844 		return 1;
2845 
2846 	/* Unmatched */
2847 	return 0;
2848 }
2849 
2850 static void __perf_event_sync_stat(struct perf_event *event,
2851 				     struct perf_event *next_event)
2852 {
2853 	u64 value;
2854 
2855 	if (!event->attr.inherit_stat)
2856 		return;
2857 
2858 	/*
2859 	 * Update the event value, we cannot use perf_event_read()
2860 	 * because we're in the middle of a context switch and have IRQs
2861 	 * disabled, which upsets smp_call_function_single(), however
2862 	 * we know the event must be on the current CPU, therefore we
2863 	 * don't need to use it.
2864 	 */
2865 	switch (event->state) {
2866 	case PERF_EVENT_STATE_ACTIVE:
2867 		event->pmu->read(event);
2868 		/* fall-through */
2869 
2870 	case PERF_EVENT_STATE_INACTIVE:
2871 		update_event_times(event);
2872 		break;
2873 
2874 	default:
2875 		break;
2876 	}
2877 
2878 	/*
2879 	 * In order to keep per-task stats reliable we need to flip the event
2880 	 * values when we flip the contexts.
2881 	 */
2882 	value = local64_read(&next_event->count);
2883 	value = local64_xchg(&event->count, value);
2884 	local64_set(&next_event->count, value);
2885 
2886 	swap(event->total_time_enabled, next_event->total_time_enabled);
2887 	swap(event->total_time_running, next_event->total_time_running);
2888 
2889 	/*
2890 	 * Since we swizzled the values, update the user visible data too.
2891 	 */
2892 	perf_event_update_userpage(event);
2893 	perf_event_update_userpage(next_event);
2894 }
2895 
2896 static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 				   struct perf_event_context *next_ctx)
2898 {
2899 	struct perf_event *event, *next_event;
2900 
2901 	if (!ctx->nr_stat)
2902 		return;
2903 
2904 	update_context_time(ctx);
2905 
2906 	event = list_first_entry(&ctx->event_list,
2907 				   struct perf_event, event_entry);
2908 
2909 	next_event = list_first_entry(&next_ctx->event_list,
2910 					struct perf_event, event_entry);
2911 
2912 	while (&event->event_entry != &ctx->event_list &&
2913 	       &next_event->event_entry != &next_ctx->event_list) {
2914 
2915 		__perf_event_sync_stat(event, next_event);
2916 
2917 		event = list_next_entry(event, event_entry);
2918 		next_event = list_next_entry(next_event, event_entry);
2919 	}
2920 }
2921 
2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 					 struct task_struct *next)
2924 {
2925 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926 	struct perf_event_context *next_ctx;
2927 	struct perf_event_context *parent, *next_parent;
2928 	struct perf_cpu_context *cpuctx;
2929 	int do_switch = 1;
2930 
2931 	if (likely(!ctx))
2932 		return;
2933 
2934 	cpuctx = __get_cpu_context(ctx);
2935 	if (!cpuctx->task_ctx)
2936 		return;
2937 
2938 	rcu_read_lock();
2939 	next_ctx = next->perf_event_ctxp[ctxn];
2940 	if (!next_ctx)
2941 		goto unlock;
2942 
2943 	parent = rcu_dereference(ctx->parent_ctx);
2944 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2945 
2946 	/* If neither context have a parent context; they cannot be clones. */
2947 	if (!parent && !next_parent)
2948 		goto unlock;
2949 
2950 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2951 		/*
2952 		 * Looks like the two contexts are clones, so we might be
2953 		 * able to optimize the context switch.  We lock both
2954 		 * contexts and check that they are clones under the
2955 		 * lock (including re-checking that neither has been
2956 		 * uncloned in the meantime).  It doesn't matter which
2957 		 * order we take the locks because no other cpu could
2958 		 * be trying to lock both of these tasks.
2959 		 */
2960 		raw_spin_lock(&ctx->lock);
2961 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962 		if (context_equiv(ctx, next_ctx)) {
2963 			WRITE_ONCE(ctx->task, next);
2964 			WRITE_ONCE(next_ctx->task, task);
2965 
2966 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967 
2968 			/*
2969 			 * RCU_INIT_POINTER here is safe because we've not
2970 			 * modified the ctx and the above modification of
2971 			 * ctx->task and ctx->task_ctx_data are immaterial
2972 			 * since those values are always verified under
2973 			 * ctx->lock which we're now holding.
2974 			 */
2975 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977 
2978 			do_switch = 0;
2979 
2980 			perf_event_sync_stat(ctx, next_ctx);
2981 		}
2982 		raw_spin_unlock(&next_ctx->lock);
2983 		raw_spin_unlock(&ctx->lock);
2984 	}
2985 unlock:
2986 	rcu_read_unlock();
2987 
2988 	if (do_switch) {
2989 		raw_spin_lock(&ctx->lock);
2990 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991 		raw_spin_unlock(&ctx->lock);
2992 	}
2993 }
2994 
2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996 
2997 void perf_sched_cb_dec(struct pmu *pmu)
2998 {
2999 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000 
3001 	this_cpu_dec(perf_sched_cb_usages);
3002 
3003 	if (!--cpuctx->sched_cb_usage)
3004 		list_del(&cpuctx->sched_cb_entry);
3005 }
3006 
3007 
3008 void perf_sched_cb_inc(struct pmu *pmu)
3009 {
3010 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011 
3012 	if (!cpuctx->sched_cb_usage++)
3013 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014 
3015 	this_cpu_inc(perf_sched_cb_usages);
3016 }
3017 
3018 /*
3019  * This function provides the context switch callback to the lower code
3020  * layer. It is invoked ONLY when the context switch callback is enabled.
3021  *
3022  * This callback is relevant even to per-cpu events; for example multi event
3023  * PEBS requires this to provide PID/TID information. This requires we flush
3024  * all queued PEBS records before we context switch to a new task.
3025  */
3026 static void perf_pmu_sched_task(struct task_struct *prev,
3027 				struct task_struct *next,
3028 				bool sched_in)
3029 {
3030 	struct perf_cpu_context *cpuctx;
3031 	struct pmu *pmu;
3032 
3033 	if (prev == next)
3034 		return;
3035 
3036 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3038 
3039 		if (WARN_ON_ONCE(!pmu->sched_task))
3040 			continue;
3041 
3042 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 		perf_pmu_disable(pmu);
3044 
3045 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3046 
3047 		perf_pmu_enable(pmu);
3048 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 	}
3050 }
3051 
3052 static void perf_event_switch(struct task_struct *task,
3053 			      struct task_struct *next_prev, bool sched_in);
3054 
3055 #define for_each_task_context_nr(ctxn)					\
3056 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057 
3058 /*
3059  * Called from scheduler to remove the events of the current task,
3060  * with interrupts disabled.
3061  *
3062  * We stop each event and update the event value in event->count.
3063  *
3064  * This does not protect us against NMI, but disable()
3065  * sets the disabled bit in the control field of event _before_
3066  * accessing the event control register. If a NMI hits, then it will
3067  * not restart the event.
3068  */
3069 void __perf_event_task_sched_out(struct task_struct *task,
3070 				 struct task_struct *next)
3071 {
3072 	int ctxn;
3073 
3074 	if (__this_cpu_read(perf_sched_cb_usages))
3075 		perf_pmu_sched_task(task, next, false);
3076 
3077 	if (atomic_read(&nr_switch_events))
3078 		perf_event_switch(task, next, false);
3079 
3080 	for_each_task_context_nr(ctxn)
3081 		perf_event_context_sched_out(task, ctxn, next);
3082 
3083 	/*
3084 	 * if cgroup events exist on this CPU, then we need
3085 	 * to check if we have to switch out PMU state.
3086 	 * cgroup event are system-wide mode only
3087 	 */
3088 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089 		perf_cgroup_sched_out(task, next);
3090 }
3091 
3092 /*
3093  * Called with IRQs disabled
3094  */
3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 			      enum event_type_t event_type)
3097 {
3098 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3099 }
3100 
3101 static void
3102 ctx_pinned_sched_in(struct perf_event_context *ctx,
3103 		    struct perf_cpu_context *cpuctx)
3104 {
3105 	struct perf_event *event;
3106 
3107 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 		if (event->state <= PERF_EVENT_STATE_OFF)
3109 			continue;
3110 		if (!event_filter_match(event))
3111 			continue;
3112 
3113 		/* may need to reset tstamp_enabled */
3114 		if (is_cgroup_event(event))
3115 			perf_cgroup_mark_enabled(event, ctx);
3116 
3117 		if (group_can_go_on(event, cpuctx, 1))
3118 			group_sched_in(event, cpuctx, ctx);
3119 
3120 		/*
3121 		 * If this pinned group hasn't been scheduled,
3122 		 * put it in error state.
3123 		 */
3124 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 			update_group_times(event);
3126 			event->state = PERF_EVENT_STATE_ERROR;
3127 		}
3128 	}
3129 }
3130 
3131 static void
3132 ctx_flexible_sched_in(struct perf_event_context *ctx,
3133 		      struct perf_cpu_context *cpuctx)
3134 {
3135 	struct perf_event *event;
3136 	int can_add_hw = 1;
3137 
3138 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 		/* Ignore events in OFF or ERROR state */
3140 		if (event->state <= PERF_EVENT_STATE_OFF)
3141 			continue;
3142 		/*
3143 		 * Listen to the 'cpu' scheduling filter constraint
3144 		 * of events:
3145 		 */
3146 		if (!event_filter_match(event))
3147 			continue;
3148 
3149 		/* may need to reset tstamp_enabled */
3150 		if (is_cgroup_event(event))
3151 			perf_cgroup_mark_enabled(event, ctx);
3152 
3153 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154 			if (group_sched_in(event, cpuctx, ctx))
3155 				can_add_hw = 0;
3156 		}
3157 	}
3158 }
3159 
3160 static void
3161 ctx_sched_in(struct perf_event_context *ctx,
3162 	     struct perf_cpu_context *cpuctx,
3163 	     enum event_type_t event_type,
3164 	     struct task_struct *task)
3165 {
3166 	int is_active = ctx->is_active;
3167 	u64 now;
3168 
3169 	lockdep_assert_held(&ctx->lock);
3170 
3171 	if (likely(!ctx->nr_events))
3172 		return;
3173 
3174 	ctx->is_active |= (event_type | EVENT_TIME);
3175 	if (ctx->task) {
3176 		if (!is_active)
3177 			cpuctx->task_ctx = ctx;
3178 		else
3179 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 	}
3181 
3182 	is_active ^= ctx->is_active; /* changed bits */
3183 
3184 	if (is_active & EVENT_TIME) {
3185 		/* start ctx time */
3186 		now = perf_clock();
3187 		ctx->timestamp = now;
3188 		perf_cgroup_set_timestamp(task, ctx);
3189 	}
3190 
3191 	/*
3192 	 * First go through the list and put on any pinned groups
3193 	 * in order to give them the best chance of going on.
3194 	 */
3195 	if (is_active & EVENT_PINNED)
3196 		ctx_pinned_sched_in(ctx, cpuctx);
3197 
3198 	/* Then walk through the lower prio flexible groups */
3199 	if (is_active & EVENT_FLEXIBLE)
3200 		ctx_flexible_sched_in(ctx, cpuctx);
3201 }
3202 
3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3204 			     enum event_type_t event_type,
3205 			     struct task_struct *task)
3206 {
3207 	struct perf_event_context *ctx = &cpuctx->ctx;
3208 
3209 	ctx_sched_in(ctx, cpuctx, event_type, task);
3210 }
3211 
3212 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 					struct task_struct *task)
3214 {
3215 	struct perf_cpu_context *cpuctx;
3216 
3217 	cpuctx = __get_cpu_context(ctx);
3218 	if (cpuctx->task_ctx == ctx)
3219 		return;
3220 
3221 	perf_ctx_lock(cpuctx, ctx);
3222 	/*
3223 	 * We must check ctx->nr_events while holding ctx->lock, such
3224 	 * that we serialize against perf_install_in_context().
3225 	 */
3226 	if (!ctx->nr_events)
3227 		goto unlock;
3228 
3229 	perf_pmu_disable(ctx->pmu);
3230 	/*
3231 	 * We want to keep the following priority order:
3232 	 * cpu pinned (that don't need to move), task pinned,
3233 	 * cpu flexible, task flexible.
3234 	 *
3235 	 * However, if task's ctx is not carrying any pinned
3236 	 * events, no need to flip the cpuctx's events around.
3237 	 */
3238 	if (!list_empty(&ctx->pinned_groups))
3239 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240 	perf_event_sched_in(cpuctx, ctx, task);
3241 	perf_pmu_enable(ctx->pmu);
3242 
3243 unlock:
3244 	perf_ctx_unlock(cpuctx, ctx);
3245 }
3246 
3247 /*
3248  * Called from scheduler to add the events of the current task
3249  * with interrupts disabled.
3250  *
3251  * We restore the event value and then enable it.
3252  *
3253  * This does not protect us against NMI, but enable()
3254  * sets the enabled bit in the control field of event _before_
3255  * accessing the event control register. If a NMI hits, then it will
3256  * keep the event running.
3257  */
3258 void __perf_event_task_sched_in(struct task_struct *prev,
3259 				struct task_struct *task)
3260 {
3261 	struct perf_event_context *ctx;
3262 	int ctxn;
3263 
3264 	/*
3265 	 * If cgroup events exist on this CPU, then we need to check if we have
3266 	 * to switch in PMU state; cgroup event are system-wide mode only.
3267 	 *
3268 	 * Since cgroup events are CPU events, we must schedule these in before
3269 	 * we schedule in the task events.
3270 	 */
3271 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 		perf_cgroup_sched_in(prev, task);
3273 
3274 	for_each_task_context_nr(ctxn) {
3275 		ctx = task->perf_event_ctxp[ctxn];
3276 		if (likely(!ctx))
3277 			continue;
3278 
3279 		perf_event_context_sched_in(ctx, task);
3280 	}
3281 
3282 	if (atomic_read(&nr_switch_events))
3283 		perf_event_switch(task, prev, true);
3284 
3285 	if (__this_cpu_read(perf_sched_cb_usages))
3286 		perf_pmu_sched_task(prev, task, true);
3287 }
3288 
3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290 {
3291 	u64 frequency = event->attr.sample_freq;
3292 	u64 sec = NSEC_PER_SEC;
3293 	u64 divisor, dividend;
3294 
3295 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3296 
3297 	count_fls = fls64(count);
3298 	nsec_fls = fls64(nsec);
3299 	frequency_fls = fls64(frequency);
3300 	sec_fls = 30;
3301 
3302 	/*
3303 	 * We got @count in @nsec, with a target of sample_freq HZ
3304 	 * the target period becomes:
3305 	 *
3306 	 *             @count * 10^9
3307 	 * period = -------------------
3308 	 *          @nsec * sample_freq
3309 	 *
3310 	 */
3311 
3312 	/*
3313 	 * Reduce accuracy by one bit such that @a and @b converge
3314 	 * to a similar magnitude.
3315 	 */
3316 #define REDUCE_FLS(a, b)		\
3317 do {					\
3318 	if (a##_fls > b##_fls) {	\
3319 		a >>= 1;		\
3320 		a##_fls--;		\
3321 	} else {			\
3322 		b >>= 1;		\
3323 		b##_fls--;		\
3324 	}				\
3325 } while (0)
3326 
3327 	/*
3328 	 * Reduce accuracy until either term fits in a u64, then proceed with
3329 	 * the other, so that finally we can do a u64/u64 division.
3330 	 */
3331 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 		REDUCE_FLS(nsec, frequency);
3333 		REDUCE_FLS(sec, count);
3334 	}
3335 
3336 	if (count_fls + sec_fls > 64) {
3337 		divisor = nsec * frequency;
3338 
3339 		while (count_fls + sec_fls > 64) {
3340 			REDUCE_FLS(count, sec);
3341 			divisor >>= 1;
3342 		}
3343 
3344 		dividend = count * sec;
3345 	} else {
3346 		dividend = count * sec;
3347 
3348 		while (nsec_fls + frequency_fls > 64) {
3349 			REDUCE_FLS(nsec, frequency);
3350 			dividend >>= 1;
3351 		}
3352 
3353 		divisor = nsec * frequency;
3354 	}
3355 
3356 	if (!divisor)
3357 		return dividend;
3358 
3359 	return div64_u64(dividend, divisor);
3360 }
3361 
3362 static DEFINE_PER_CPU(int, perf_throttled_count);
3363 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364 
3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3366 {
3367 	struct hw_perf_event *hwc = &event->hw;
3368 	s64 period, sample_period;
3369 	s64 delta;
3370 
3371 	period = perf_calculate_period(event, nsec, count);
3372 
3373 	delta = (s64)(period - hwc->sample_period);
3374 	delta = (delta + 7) / 8; /* low pass filter */
3375 
3376 	sample_period = hwc->sample_period + delta;
3377 
3378 	if (!sample_period)
3379 		sample_period = 1;
3380 
3381 	hwc->sample_period = sample_period;
3382 
3383 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3384 		if (disable)
3385 			event->pmu->stop(event, PERF_EF_UPDATE);
3386 
3387 		local64_set(&hwc->period_left, 0);
3388 
3389 		if (disable)
3390 			event->pmu->start(event, PERF_EF_RELOAD);
3391 	}
3392 }
3393 
3394 /*
3395  * combine freq adjustment with unthrottling to avoid two passes over the
3396  * events. At the same time, make sure, having freq events does not change
3397  * the rate of unthrottling as that would introduce bias.
3398  */
3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 					   int needs_unthr)
3401 {
3402 	struct perf_event *event;
3403 	struct hw_perf_event *hwc;
3404 	u64 now, period = TICK_NSEC;
3405 	s64 delta;
3406 
3407 	/*
3408 	 * only need to iterate over all events iff:
3409 	 * - context have events in frequency mode (needs freq adjust)
3410 	 * - there are events to unthrottle on this cpu
3411 	 */
3412 	if (!(ctx->nr_freq || needs_unthr))
3413 		return;
3414 
3415 	raw_spin_lock(&ctx->lock);
3416 	perf_pmu_disable(ctx->pmu);
3417 
3418 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3420 			continue;
3421 
3422 		if (!event_filter_match(event))
3423 			continue;
3424 
3425 		perf_pmu_disable(event->pmu);
3426 
3427 		hwc = &event->hw;
3428 
3429 		if (hwc->interrupts == MAX_INTERRUPTS) {
3430 			hwc->interrupts = 0;
3431 			perf_log_throttle(event, 1);
3432 			event->pmu->start(event, 0);
3433 		}
3434 
3435 		if (!event->attr.freq || !event->attr.sample_freq)
3436 			goto next;
3437 
3438 		/*
3439 		 * stop the event and update event->count
3440 		 */
3441 		event->pmu->stop(event, PERF_EF_UPDATE);
3442 
3443 		now = local64_read(&event->count);
3444 		delta = now - hwc->freq_count_stamp;
3445 		hwc->freq_count_stamp = now;
3446 
3447 		/*
3448 		 * restart the event
3449 		 * reload only if value has changed
3450 		 * we have stopped the event so tell that
3451 		 * to perf_adjust_period() to avoid stopping it
3452 		 * twice.
3453 		 */
3454 		if (delta > 0)
3455 			perf_adjust_period(event, period, delta, false);
3456 
3457 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458 	next:
3459 		perf_pmu_enable(event->pmu);
3460 	}
3461 
3462 	perf_pmu_enable(ctx->pmu);
3463 	raw_spin_unlock(&ctx->lock);
3464 }
3465 
3466 /*
3467  * Round-robin a context's events:
3468  */
3469 static void rotate_ctx(struct perf_event_context *ctx)
3470 {
3471 	/*
3472 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 	 * disabled by the inheritance code.
3474 	 */
3475 	if (!ctx->rotate_disable)
3476 		list_rotate_left(&ctx->flexible_groups);
3477 }
3478 
3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3480 {
3481 	struct perf_event_context *ctx = NULL;
3482 	int rotate = 0;
3483 
3484 	if (cpuctx->ctx.nr_events) {
3485 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 			rotate = 1;
3487 	}
3488 
3489 	ctx = cpuctx->task_ctx;
3490 	if (ctx && ctx->nr_events) {
3491 		if (ctx->nr_events != ctx->nr_active)
3492 			rotate = 1;
3493 	}
3494 
3495 	if (!rotate)
3496 		goto done;
3497 
3498 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3499 	perf_pmu_disable(cpuctx->ctx.pmu);
3500 
3501 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 	if (ctx)
3503 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3504 
3505 	rotate_ctx(&cpuctx->ctx);
3506 	if (ctx)
3507 		rotate_ctx(ctx);
3508 
3509 	perf_event_sched_in(cpuctx, ctx, current);
3510 
3511 	perf_pmu_enable(cpuctx->ctx.pmu);
3512 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513 done:
3514 
3515 	return rotate;
3516 }
3517 
3518 void perf_event_task_tick(void)
3519 {
3520 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 	struct perf_event_context *ctx, *tmp;
3522 	int throttled;
3523 
3524 	WARN_ON(!irqs_disabled());
3525 
3526 	__this_cpu_inc(perf_throttled_seq);
3527 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3529 
3530 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531 		perf_adjust_freq_unthr_context(ctx, throttled);
3532 }
3533 
3534 static int event_enable_on_exec(struct perf_event *event,
3535 				struct perf_event_context *ctx)
3536 {
3537 	if (!event->attr.enable_on_exec)
3538 		return 0;
3539 
3540 	event->attr.enable_on_exec = 0;
3541 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 		return 0;
3543 
3544 	__perf_event_mark_enabled(event);
3545 
3546 	return 1;
3547 }
3548 
3549 /*
3550  * Enable all of a task's events that have been marked enable-on-exec.
3551  * This expects task == current.
3552  */
3553 static void perf_event_enable_on_exec(int ctxn)
3554 {
3555 	struct perf_event_context *ctx, *clone_ctx = NULL;
3556 	enum event_type_t event_type = 0;
3557 	struct perf_cpu_context *cpuctx;
3558 	struct perf_event *event;
3559 	unsigned long flags;
3560 	int enabled = 0;
3561 
3562 	local_irq_save(flags);
3563 	ctx = current->perf_event_ctxp[ctxn];
3564 	if (!ctx || !ctx->nr_events)
3565 		goto out;
3566 
3567 	cpuctx = __get_cpu_context(ctx);
3568 	perf_ctx_lock(cpuctx, ctx);
3569 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3571 		enabled |= event_enable_on_exec(event, ctx);
3572 		event_type |= get_event_type(event);
3573 	}
3574 
3575 	/*
3576 	 * Unclone and reschedule this context if we enabled any event.
3577 	 */
3578 	if (enabled) {
3579 		clone_ctx = unclone_ctx(ctx);
3580 		ctx_resched(cpuctx, ctx, event_type);
3581 	} else {
3582 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3583 	}
3584 	perf_ctx_unlock(cpuctx, ctx);
3585 
3586 out:
3587 	local_irq_restore(flags);
3588 
3589 	if (clone_ctx)
3590 		put_ctx(clone_ctx);
3591 }
3592 
3593 struct perf_read_data {
3594 	struct perf_event *event;
3595 	bool group;
3596 	int ret;
3597 };
3598 
3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3600 {
3601 	u16 local_pkg, event_pkg;
3602 
3603 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604 		int local_cpu = smp_processor_id();
3605 
3606 		event_pkg = topology_physical_package_id(event_cpu);
3607 		local_pkg = topology_physical_package_id(local_cpu);
3608 
3609 		if (event_pkg == local_pkg)
3610 			return local_cpu;
3611 	}
3612 
3613 	return event_cpu;
3614 }
3615 
3616 /*
3617  * Cross CPU call to read the hardware event
3618  */
3619 static void __perf_event_read(void *info)
3620 {
3621 	struct perf_read_data *data = info;
3622 	struct perf_event *sub, *event = data->event;
3623 	struct perf_event_context *ctx = event->ctx;
3624 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625 	struct pmu *pmu = event->pmu;
3626 
3627 	/*
3628 	 * If this is a task context, we need to check whether it is
3629 	 * the current task context of this cpu.  If not it has been
3630 	 * scheduled out before the smp call arrived.  In that case
3631 	 * event->count would have been updated to a recent sample
3632 	 * when the event was scheduled out.
3633 	 */
3634 	if (ctx->task && cpuctx->task_ctx != ctx)
3635 		return;
3636 
3637 	raw_spin_lock(&ctx->lock);
3638 	if (ctx->is_active) {
3639 		update_context_time(ctx);
3640 		update_cgrp_time_from_event(event);
3641 	}
3642 
3643 	update_event_times(event);
3644 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 		goto unlock;
3646 
3647 	if (!data->group) {
3648 		pmu->read(event);
3649 		data->ret = 0;
3650 		goto unlock;
3651 	}
3652 
3653 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654 
3655 	pmu->read(event);
3656 
3657 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 		update_event_times(sub);
3659 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 			/*
3661 			 * Use sibling's PMU rather than @event's since
3662 			 * sibling could be on different (eg: software) PMU.
3663 			 */
3664 			sub->pmu->read(sub);
3665 		}
3666 	}
3667 
3668 	data->ret = pmu->commit_txn(pmu);
3669 
3670 unlock:
3671 	raw_spin_unlock(&ctx->lock);
3672 }
3673 
3674 static inline u64 perf_event_count(struct perf_event *event)
3675 {
3676 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3677 }
3678 
3679 /*
3680  * NMI-safe method to read a local event, that is an event that
3681  * is:
3682  *   - either for the current task, or for this CPU
3683  *   - does not have inherit set, for inherited task events
3684  *     will not be local and we cannot read them atomically
3685  *   - must not have a pmu::count method
3686  */
3687 int perf_event_read_local(struct perf_event *event, u64 *value)
3688 {
3689 	unsigned long flags;
3690 	int ret = 0;
3691 
3692 	/*
3693 	 * Disabling interrupts avoids all counter scheduling (context
3694 	 * switches, timer based rotation and IPIs).
3695 	 */
3696 	local_irq_save(flags);
3697 
3698 	/*
3699 	 * It must not be an event with inherit set, we cannot read
3700 	 * all child counters from atomic context.
3701 	 */
3702 	if (event->attr.inherit) {
3703 		ret = -EOPNOTSUPP;
3704 		goto out;
3705 	}
3706 
3707 	/* If this is a per-task event, it must be for current */
3708 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3709 	    event->hw.target != current) {
3710 		ret = -EINVAL;
3711 		goto out;
3712 	}
3713 
3714 	/* If this is a per-CPU event, it must be for this CPU */
3715 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3716 	    event->cpu != smp_processor_id()) {
3717 		ret = -EINVAL;
3718 		goto out;
3719 	}
3720 
3721 	/*
3722 	 * If the event is currently on this CPU, its either a per-task event,
3723 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3724 	 * oncpu == -1).
3725 	 */
3726 	if (event->oncpu == smp_processor_id())
3727 		event->pmu->read(event);
3728 
3729 	*value = local64_read(&event->count);
3730 out:
3731 	local_irq_restore(flags);
3732 
3733 	return ret;
3734 }
3735 
3736 static int perf_event_read(struct perf_event *event, bool group)
3737 {
3738 	int event_cpu, ret = 0;
3739 
3740 	/*
3741 	 * If event is enabled and currently active on a CPU, update the
3742 	 * value in the event structure:
3743 	 */
3744 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3745 		struct perf_read_data data = {
3746 			.event = event,
3747 			.group = group,
3748 			.ret = 0,
3749 		};
3750 
3751 		event_cpu = READ_ONCE(event->oncpu);
3752 		if ((unsigned)event_cpu >= nr_cpu_ids)
3753 			return 0;
3754 
3755 		preempt_disable();
3756 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3757 
3758 		/*
3759 		 * Purposely ignore the smp_call_function_single() return
3760 		 * value.
3761 		 *
3762 		 * If event_cpu isn't a valid CPU it means the event got
3763 		 * scheduled out and that will have updated the event count.
3764 		 *
3765 		 * Therefore, either way, we'll have an up-to-date event count
3766 		 * after this.
3767 		 */
3768 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3769 		preempt_enable();
3770 		ret = data.ret;
3771 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3772 		struct perf_event_context *ctx = event->ctx;
3773 		unsigned long flags;
3774 
3775 		raw_spin_lock_irqsave(&ctx->lock, flags);
3776 		/*
3777 		 * may read while context is not active
3778 		 * (e.g., thread is blocked), in that case
3779 		 * we cannot update context time
3780 		 */
3781 		if (ctx->is_active) {
3782 			update_context_time(ctx);
3783 			update_cgrp_time_from_event(event);
3784 		}
3785 		if (group)
3786 			update_group_times(event);
3787 		else
3788 			update_event_times(event);
3789 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3790 	}
3791 
3792 	return ret;
3793 }
3794 
3795 /*
3796  * Initialize the perf_event context in a task_struct:
3797  */
3798 static void __perf_event_init_context(struct perf_event_context *ctx)
3799 {
3800 	raw_spin_lock_init(&ctx->lock);
3801 	mutex_init(&ctx->mutex);
3802 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3803 	INIT_LIST_HEAD(&ctx->pinned_groups);
3804 	INIT_LIST_HEAD(&ctx->flexible_groups);
3805 	INIT_LIST_HEAD(&ctx->event_list);
3806 	atomic_set(&ctx->refcount, 1);
3807 }
3808 
3809 static struct perf_event_context *
3810 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3811 {
3812 	struct perf_event_context *ctx;
3813 
3814 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3815 	if (!ctx)
3816 		return NULL;
3817 
3818 	__perf_event_init_context(ctx);
3819 	if (task) {
3820 		ctx->task = task;
3821 		get_task_struct(task);
3822 	}
3823 	ctx->pmu = pmu;
3824 
3825 	return ctx;
3826 }
3827 
3828 static struct task_struct *
3829 find_lively_task_by_vpid(pid_t vpid)
3830 {
3831 	struct task_struct *task;
3832 
3833 	rcu_read_lock();
3834 	if (!vpid)
3835 		task = current;
3836 	else
3837 		task = find_task_by_vpid(vpid);
3838 	if (task)
3839 		get_task_struct(task);
3840 	rcu_read_unlock();
3841 
3842 	if (!task)
3843 		return ERR_PTR(-ESRCH);
3844 
3845 	return task;
3846 }
3847 
3848 /*
3849  * Returns a matching context with refcount and pincount.
3850  */
3851 static struct perf_event_context *
3852 find_get_context(struct pmu *pmu, struct task_struct *task,
3853 		struct perf_event *event)
3854 {
3855 	struct perf_event_context *ctx, *clone_ctx = NULL;
3856 	struct perf_cpu_context *cpuctx;
3857 	void *task_ctx_data = NULL;
3858 	unsigned long flags;
3859 	int ctxn, err;
3860 	int cpu = event->cpu;
3861 
3862 	if (!task) {
3863 		/* Must be root to operate on a CPU event: */
3864 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3865 			return ERR_PTR(-EACCES);
3866 
3867 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3868 		ctx = &cpuctx->ctx;
3869 		get_ctx(ctx);
3870 		++ctx->pin_count;
3871 
3872 		return ctx;
3873 	}
3874 
3875 	err = -EINVAL;
3876 	ctxn = pmu->task_ctx_nr;
3877 	if (ctxn < 0)
3878 		goto errout;
3879 
3880 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3881 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3882 		if (!task_ctx_data) {
3883 			err = -ENOMEM;
3884 			goto errout;
3885 		}
3886 	}
3887 
3888 retry:
3889 	ctx = perf_lock_task_context(task, ctxn, &flags);
3890 	if (ctx) {
3891 		clone_ctx = unclone_ctx(ctx);
3892 		++ctx->pin_count;
3893 
3894 		if (task_ctx_data && !ctx->task_ctx_data) {
3895 			ctx->task_ctx_data = task_ctx_data;
3896 			task_ctx_data = NULL;
3897 		}
3898 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3899 
3900 		if (clone_ctx)
3901 			put_ctx(clone_ctx);
3902 	} else {
3903 		ctx = alloc_perf_context(pmu, task);
3904 		err = -ENOMEM;
3905 		if (!ctx)
3906 			goto errout;
3907 
3908 		if (task_ctx_data) {
3909 			ctx->task_ctx_data = task_ctx_data;
3910 			task_ctx_data = NULL;
3911 		}
3912 
3913 		err = 0;
3914 		mutex_lock(&task->perf_event_mutex);
3915 		/*
3916 		 * If it has already passed perf_event_exit_task().
3917 		 * we must see PF_EXITING, it takes this mutex too.
3918 		 */
3919 		if (task->flags & PF_EXITING)
3920 			err = -ESRCH;
3921 		else if (task->perf_event_ctxp[ctxn])
3922 			err = -EAGAIN;
3923 		else {
3924 			get_ctx(ctx);
3925 			++ctx->pin_count;
3926 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3927 		}
3928 		mutex_unlock(&task->perf_event_mutex);
3929 
3930 		if (unlikely(err)) {
3931 			put_ctx(ctx);
3932 
3933 			if (err == -EAGAIN)
3934 				goto retry;
3935 			goto errout;
3936 		}
3937 	}
3938 
3939 	kfree(task_ctx_data);
3940 	return ctx;
3941 
3942 errout:
3943 	kfree(task_ctx_data);
3944 	return ERR_PTR(err);
3945 }
3946 
3947 static void perf_event_free_filter(struct perf_event *event);
3948 static void perf_event_free_bpf_prog(struct perf_event *event);
3949 
3950 static void free_event_rcu(struct rcu_head *head)
3951 {
3952 	struct perf_event *event;
3953 
3954 	event = container_of(head, struct perf_event, rcu_head);
3955 	if (event->ns)
3956 		put_pid_ns(event->ns);
3957 	perf_event_free_filter(event);
3958 	kfree(event);
3959 }
3960 
3961 static void ring_buffer_attach(struct perf_event *event,
3962 			       struct ring_buffer *rb);
3963 
3964 static void detach_sb_event(struct perf_event *event)
3965 {
3966 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3967 
3968 	raw_spin_lock(&pel->lock);
3969 	list_del_rcu(&event->sb_list);
3970 	raw_spin_unlock(&pel->lock);
3971 }
3972 
3973 static bool is_sb_event(struct perf_event *event)
3974 {
3975 	struct perf_event_attr *attr = &event->attr;
3976 
3977 	if (event->parent)
3978 		return false;
3979 
3980 	if (event->attach_state & PERF_ATTACH_TASK)
3981 		return false;
3982 
3983 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3984 	    attr->comm || attr->comm_exec ||
3985 	    attr->task ||
3986 	    attr->context_switch)
3987 		return true;
3988 	return false;
3989 }
3990 
3991 static void unaccount_pmu_sb_event(struct perf_event *event)
3992 {
3993 	if (is_sb_event(event))
3994 		detach_sb_event(event);
3995 }
3996 
3997 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3998 {
3999 	if (event->parent)
4000 		return;
4001 
4002 	if (is_cgroup_event(event))
4003 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4004 }
4005 
4006 #ifdef CONFIG_NO_HZ_FULL
4007 static DEFINE_SPINLOCK(nr_freq_lock);
4008 #endif
4009 
4010 static void unaccount_freq_event_nohz(void)
4011 {
4012 #ifdef CONFIG_NO_HZ_FULL
4013 	spin_lock(&nr_freq_lock);
4014 	if (atomic_dec_and_test(&nr_freq_events))
4015 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4016 	spin_unlock(&nr_freq_lock);
4017 #endif
4018 }
4019 
4020 static void unaccount_freq_event(void)
4021 {
4022 	if (tick_nohz_full_enabled())
4023 		unaccount_freq_event_nohz();
4024 	else
4025 		atomic_dec(&nr_freq_events);
4026 }
4027 
4028 static void unaccount_event(struct perf_event *event)
4029 {
4030 	bool dec = false;
4031 
4032 	if (event->parent)
4033 		return;
4034 
4035 	if (event->attach_state & PERF_ATTACH_TASK)
4036 		dec = true;
4037 	if (event->attr.mmap || event->attr.mmap_data)
4038 		atomic_dec(&nr_mmap_events);
4039 	if (event->attr.comm)
4040 		atomic_dec(&nr_comm_events);
4041 	if (event->attr.namespaces)
4042 		atomic_dec(&nr_namespaces_events);
4043 	if (event->attr.task)
4044 		atomic_dec(&nr_task_events);
4045 	if (event->attr.freq)
4046 		unaccount_freq_event();
4047 	if (event->attr.context_switch) {
4048 		dec = true;
4049 		atomic_dec(&nr_switch_events);
4050 	}
4051 	if (is_cgroup_event(event))
4052 		dec = true;
4053 	if (has_branch_stack(event))
4054 		dec = true;
4055 
4056 	if (dec) {
4057 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4058 			schedule_delayed_work(&perf_sched_work, HZ);
4059 	}
4060 
4061 	unaccount_event_cpu(event, event->cpu);
4062 
4063 	unaccount_pmu_sb_event(event);
4064 }
4065 
4066 static void perf_sched_delayed(struct work_struct *work)
4067 {
4068 	mutex_lock(&perf_sched_mutex);
4069 	if (atomic_dec_and_test(&perf_sched_count))
4070 		static_branch_disable(&perf_sched_events);
4071 	mutex_unlock(&perf_sched_mutex);
4072 }
4073 
4074 /*
4075  * The following implement mutual exclusion of events on "exclusive" pmus
4076  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4077  * at a time, so we disallow creating events that might conflict, namely:
4078  *
4079  *  1) cpu-wide events in the presence of per-task events,
4080  *  2) per-task events in the presence of cpu-wide events,
4081  *  3) two matching events on the same context.
4082  *
4083  * The former two cases are handled in the allocation path (perf_event_alloc(),
4084  * _free_event()), the latter -- before the first perf_install_in_context().
4085  */
4086 static int exclusive_event_init(struct perf_event *event)
4087 {
4088 	struct pmu *pmu = event->pmu;
4089 
4090 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091 		return 0;
4092 
4093 	/*
4094 	 * Prevent co-existence of per-task and cpu-wide events on the
4095 	 * same exclusive pmu.
4096 	 *
4097 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4098 	 * events on this "exclusive" pmu, positive means there are
4099 	 * per-task events.
4100 	 *
4101 	 * Since this is called in perf_event_alloc() path, event::ctx
4102 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4103 	 * to mean "per-task event", because unlike other attach states it
4104 	 * never gets cleared.
4105 	 */
4106 	if (event->attach_state & PERF_ATTACH_TASK) {
4107 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4108 			return -EBUSY;
4109 	} else {
4110 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4111 			return -EBUSY;
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 static void exclusive_event_destroy(struct perf_event *event)
4118 {
4119 	struct pmu *pmu = event->pmu;
4120 
4121 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4122 		return;
4123 
4124 	/* see comment in exclusive_event_init() */
4125 	if (event->attach_state & PERF_ATTACH_TASK)
4126 		atomic_dec(&pmu->exclusive_cnt);
4127 	else
4128 		atomic_inc(&pmu->exclusive_cnt);
4129 }
4130 
4131 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4132 {
4133 	if ((e1->pmu == e2->pmu) &&
4134 	    (e1->cpu == e2->cpu ||
4135 	     e1->cpu == -1 ||
4136 	     e2->cpu == -1))
4137 		return true;
4138 	return false;
4139 }
4140 
4141 /* Called under the same ctx::mutex as perf_install_in_context() */
4142 static bool exclusive_event_installable(struct perf_event *event,
4143 					struct perf_event_context *ctx)
4144 {
4145 	struct perf_event *iter_event;
4146 	struct pmu *pmu = event->pmu;
4147 
4148 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4149 		return true;
4150 
4151 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4152 		if (exclusive_event_match(iter_event, event))
4153 			return false;
4154 	}
4155 
4156 	return true;
4157 }
4158 
4159 static void perf_addr_filters_splice(struct perf_event *event,
4160 				       struct list_head *head);
4161 
4162 static void _free_event(struct perf_event *event)
4163 {
4164 	irq_work_sync(&event->pending);
4165 
4166 	unaccount_event(event);
4167 
4168 	if (event->rb) {
4169 		/*
4170 		 * Can happen when we close an event with re-directed output.
4171 		 *
4172 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4173 		 * over us; possibly making our ring_buffer_put() the last.
4174 		 */
4175 		mutex_lock(&event->mmap_mutex);
4176 		ring_buffer_attach(event, NULL);
4177 		mutex_unlock(&event->mmap_mutex);
4178 	}
4179 
4180 	if (is_cgroup_event(event))
4181 		perf_detach_cgroup(event);
4182 
4183 	if (!event->parent) {
4184 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4185 			put_callchain_buffers();
4186 	}
4187 
4188 	perf_event_free_bpf_prog(event);
4189 	perf_addr_filters_splice(event, NULL);
4190 	kfree(event->addr_filters_offs);
4191 
4192 	if (event->destroy)
4193 		event->destroy(event);
4194 
4195 	if (event->ctx)
4196 		put_ctx(event->ctx);
4197 
4198 	exclusive_event_destroy(event);
4199 	module_put(event->pmu->module);
4200 
4201 	call_rcu(&event->rcu_head, free_event_rcu);
4202 }
4203 
4204 /*
4205  * Used to free events which have a known refcount of 1, such as in error paths
4206  * where the event isn't exposed yet and inherited events.
4207  */
4208 static void free_event(struct perf_event *event)
4209 {
4210 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4211 				"unexpected event refcount: %ld; ptr=%p\n",
4212 				atomic_long_read(&event->refcount), event)) {
4213 		/* leak to avoid use-after-free */
4214 		return;
4215 	}
4216 
4217 	_free_event(event);
4218 }
4219 
4220 /*
4221  * Remove user event from the owner task.
4222  */
4223 static void perf_remove_from_owner(struct perf_event *event)
4224 {
4225 	struct task_struct *owner;
4226 
4227 	rcu_read_lock();
4228 	/*
4229 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4230 	 * observe !owner it means the list deletion is complete and we can
4231 	 * indeed free this event, otherwise we need to serialize on
4232 	 * owner->perf_event_mutex.
4233 	 */
4234 	owner = lockless_dereference(event->owner);
4235 	if (owner) {
4236 		/*
4237 		 * Since delayed_put_task_struct() also drops the last
4238 		 * task reference we can safely take a new reference
4239 		 * while holding the rcu_read_lock().
4240 		 */
4241 		get_task_struct(owner);
4242 	}
4243 	rcu_read_unlock();
4244 
4245 	if (owner) {
4246 		/*
4247 		 * If we're here through perf_event_exit_task() we're already
4248 		 * holding ctx->mutex which would be an inversion wrt. the
4249 		 * normal lock order.
4250 		 *
4251 		 * However we can safely take this lock because its the child
4252 		 * ctx->mutex.
4253 		 */
4254 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4255 
4256 		/*
4257 		 * We have to re-check the event->owner field, if it is cleared
4258 		 * we raced with perf_event_exit_task(), acquiring the mutex
4259 		 * ensured they're done, and we can proceed with freeing the
4260 		 * event.
4261 		 */
4262 		if (event->owner) {
4263 			list_del_init(&event->owner_entry);
4264 			smp_store_release(&event->owner, NULL);
4265 		}
4266 		mutex_unlock(&owner->perf_event_mutex);
4267 		put_task_struct(owner);
4268 	}
4269 }
4270 
4271 static void put_event(struct perf_event *event)
4272 {
4273 	if (!atomic_long_dec_and_test(&event->refcount))
4274 		return;
4275 
4276 	_free_event(event);
4277 }
4278 
4279 /*
4280  * Kill an event dead; while event:refcount will preserve the event
4281  * object, it will not preserve its functionality. Once the last 'user'
4282  * gives up the object, we'll destroy the thing.
4283  */
4284 int perf_event_release_kernel(struct perf_event *event)
4285 {
4286 	struct perf_event_context *ctx = event->ctx;
4287 	struct perf_event *child, *tmp;
4288 
4289 	/*
4290 	 * If we got here through err_file: fput(event_file); we will not have
4291 	 * attached to a context yet.
4292 	 */
4293 	if (!ctx) {
4294 		WARN_ON_ONCE(event->attach_state &
4295 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4296 		goto no_ctx;
4297 	}
4298 
4299 	if (!is_kernel_event(event))
4300 		perf_remove_from_owner(event);
4301 
4302 	ctx = perf_event_ctx_lock(event);
4303 	WARN_ON_ONCE(ctx->parent_ctx);
4304 	perf_remove_from_context(event, DETACH_GROUP);
4305 
4306 	raw_spin_lock_irq(&ctx->lock);
4307 	/*
4308 	 * Mark this event as STATE_DEAD, there is no external reference to it
4309 	 * anymore.
4310 	 *
4311 	 * Anybody acquiring event->child_mutex after the below loop _must_
4312 	 * also see this, most importantly inherit_event() which will avoid
4313 	 * placing more children on the list.
4314 	 *
4315 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4316 	 * child events.
4317 	 */
4318 	event->state = PERF_EVENT_STATE_DEAD;
4319 	raw_spin_unlock_irq(&ctx->lock);
4320 
4321 	perf_event_ctx_unlock(event, ctx);
4322 
4323 again:
4324 	mutex_lock(&event->child_mutex);
4325 	list_for_each_entry(child, &event->child_list, child_list) {
4326 
4327 		/*
4328 		 * Cannot change, child events are not migrated, see the
4329 		 * comment with perf_event_ctx_lock_nested().
4330 		 */
4331 		ctx = lockless_dereference(child->ctx);
4332 		/*
4333 		 * Since child_mutex nests inside ctx::mutex, we must jump
4334 		 * through hoops. We start by grabbing a reference on the ctx.
4335 		 *
4336 		 * Since the event cannot get freed while we hold the
4337 		 * child_mutex, the context must also exist and have a !0
4338 		 * reference count.
4339 		 */
4340 		get_ctx(ctx);
4341 
4342 		/*
4343 		 * Now that we have a ctx ref, we can drop child_mutex, and
4344 		 * acquire ctx::mutex without fear of it going away. Then we
4345 		 * can re-acquire child_mutex.
4346 		 */
4347 		mutex_unlock(&event->child_mutex);
4348 		mutex_lock(&ctx->mutex);
4349 		mutex_lock(&event->child_mutex);
4350 
4351 		/*
4352 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4353 		 * state, if child is still the first entry, it didn't get freed
4354 		 * and we can continue doing so.
4355 		 */
4356 		tmp = list_first_entry_or_null(&event->child_list,
4357 					       struct perf_event, child_list);
4358 		if (tmp == child) {
4359 			perf_remove_from_context(child, DETACH_GROUP);
4360 			list_del(&child->child_list);
4361 			free_event(child);
4362 			/*
4363 			 * This matches the refcount bump in inherit_event();
4364 			 * this can't be the last reference.
4365 			 */
4366 			put_event(event);
4367 		}
4368 
4369 		mutex_unlock(&event->child_mutex);
4370 		mutex_unlock(&ctx->mutex);
4371 		put_ctx(ctx);
4372 		goto again;
4373 	}
4374 	mutex_unlock(&event->child_mutex);
4375 
4376 no_ctx:
4377 	put_event(event); /* Must be the 'last' reference */
4378 	return 0;
4379 }
4380 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4381 
4382 /*
4383  * Called when the last reference to the file is gone.
4384  */
4385 static int perf_release(struct inode *inode, struct file *file)
4386 {
4387 	perf_event_release_kernel(file->private_data);
4388 	return 0;
4389 }
4390 
4391 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4392 {
4393 	struct perf_event *child;
4394 	u64 total = 0;
4395 
4396 	*enabled = 0;
4397 	*running = 0;
4398 
4399 	mutex_lock(&event->child_mutex);
4400 
4401 	(void)perf_event_read(event, false);
4402 	total += perf_event_count(event);
4403 
4404 	*enabled += event->total_time_enabled +
4405 			atomic64_read(&event->child_total_time_enabled);
4406 	*running += event->total_time_running +
4407 			atomic64_read(&event->child_total_time_running);
4408 
4409 	list_for_each_entry(child, &event->child_list, child_list) {
4410 		(void)perf_event_read(child, false);
4411 		total += perf_event_count(child);
4412 		*enabled += child->total_time_enabled;
4413 		*running += child->total_time_running;
4414 	}
4415 	mutex_unlock(&event->child_mutex);
4416 
4417 	return total;
4418 }
4419 EXPORT_SYMBOL_GPL(perf_event_read_value);
4420 
4421 static int __perf_read_group_add(struct perf_event *leader,
4422 					u64 read_format, u64 *values)
4423 {
4424 	struct perf_event_context *ctx = leader->ctx;
4425 	struct perf_event *sub;
4426 	unsigned long flags;
4427 	int n = 1; /* skip @nr */
4428 	int ret;
4429 
4430 	ret = perf_event_read(leader, true);
4431 	if (ret)
4432 		return ret;
4433 
4434 	/*
4435 	 * Since we co-schedule groups, {enabled,running} times of siblings
4436 	 * will be identical to those of the leader, so we only publish one
4437 	 * set.
4438 	 */
4439 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4440 		values[n++] += leader->total_time_enabled +
4441 			atomic64_read(&leader->child_total_time_enabled);
4442 	}
4443 
4444 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4445 		values[n++] += leader->total_time_running +
4446 			atomic64_read(&leader->child_total_time_running);
4447 	}
4448 
4449 	/*
4450 	 * Write {count,id} tuples for every sibling.
4451 	 */
4452 	values[n++] += perf_event_count(leader);
4453 	if (read_format & PERF_FORMAT_ID)
4454 		values[n++] = primary_event_id(leader);
4455 
4456 	raw_spin_lock_irqsave(&ctx->lock, flags);
4457 
4458 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459 		values[n++] += perf_event_count(sub);
4460 		if (read_format & PERF_FORMAT_ID)
4461 			values[n++] = primary_event_id(sub);
4462 	}
4463 
4464 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4465 	return 0;
4466 }
4467 
4468 static int perf_read_group(struct perf_event *event,
4469 				   u64 read_format, char __user *buf)
4470 {
4471 	struct perf_event *leader = event->group_leader, *child;
4472 	struct perf_event_context *ctx = leader->ctx;
4473 	int ret;
4474 	u64 *values;
4475 
4476 	lockdep_assert_held(&ctx->mutex);
4477 
4478 	values = kzalloc(event->read_size, GFP_KERNEL);
4479 	if (!values)
4480 		return -ENOMEM;
4481 
4482 	values[0] = 1 + leader->nr_siblings;
4483 
4484 	/*
4485 	 * By locking the child_mutex of the leader we effectively
4486 	 * lock the child list of all siblings.. XXX explain how.
4487 	 */
4488 	mutex_lock(&leader->child_mutex);
4489 
4490 	ret = __perf_read_group_add(leader, read_format, values);
4491 	if (ret)
4492 		goto unlock;
4493 
4494 	list_for_each_entry(child, &leader->child_list, child_list) {
4495 		ret = __perf_read_group_add(child, read_format, values);
4496 		if (ret)
4497 			goto unlock;
4498 	}
4499 
4500 	mutex_unlock(&leader->child_mutex);
4501 
4502 	ret = event->read_size;
4503 	if (copy_to_user(buf, values, event->read_size))
4504 		ret = -EFAULT;
4505 	goto out;
4506 
4507 unlock:
4508 	mutex_unlock(&leader->child_mutex);
4509 out:
4510 	kfree(values);
4511 	return ret;
4512 }
4513 
4514 static int perf_read_one(struct perf_event *event,
4515 				 u64 read_format, char __user *buf)
4516 {
4517 	u64 enabled, running;
4518 	u64 values[4];
4519 	int n = 0;
4520 
4521 	values[n++] = perf_event_read_value(event, &enabled, &running);
4522 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4523 		values[n++] = enabled;
4524 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4525 		values[n++] = running;
4526 	if (read_format & PERF_FORMAT_ID)
4527 		values[n++] = primary_event_id(event);
4528 
4529 	if (copy_to_user(buf, values, n * sizeof(u64)))
4530 		return -EFAULT;
4531 
4532 	return n * sizeof(u64);
4533 }
4534 
4535 static bool is_event_hup(struct perf_event *event)
4536 {
4537 	bool no_children;
4538 
4539 	if (event->state > PERF_EVENT_STATE_EXIT)
4540 		return false;
4541 
4542 	mutex_lock(&event->child_mutex);
4543 	no_children = list_empty(&event->child_list);
4544 	mutex_unlock(&event->child_mutex);
4545 	return no_children;
4546 }
4547 
4548 /*
4549  * Read the performance event - simple non blocking version for now
4550  */
4551 static ssize_t
4552 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4553 {
4554 	u64 read_format = event->attr.read_format;
4555 	int ret;
4556 
4557 	/*
4558 	 * Return end-of-file for a read on a event that is in
4559 	 * error state (i.e. because it was pinned but it couldn't be
4560 	 * scheduled on to the CPU at some point).
4561 	 */
4562 	if (event->state == PERF_EVENT_STATE_ERROR)
4563 		return 0;
4564 
4565 	if (count < event->read_size)
4566 		return -ENOSPC;
4567 
4568 	WARN_ON_ONCE(event->ctx->parent_ctx);
4569 	if (read_format & PERF_FORMAT_GROUP)
4570 		ret = perf_read_group(event, read_format, buf);
4571 	else
4572 		ret = perf_read_one(event, read_format, buf);
4573 
4574 	return ret;
4575 }
4576 
4577 static ssize_t
4578 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4579 {
4580 	struct perf_event *event = file->private_data;
4581 	struct perf_event_context *ctx;
4582 	int ret;
4583 
4584 	ctx = perf_event_ctx_lock(event);
4585 	ret = __perf_read(event, buf, count);
4586 	perf_event_ctx_unlock(event, ctx);
4587 
4588 	return ret;
4589 }
4590 
4591 static unsigned int perf_poll(struct file *file, poll_table *wait)
4592 {
4593 	struct perf_event *event = file->private_data;
4594 	struct ring_buffer *rb;
4595 	unsigned int events = POLLHUP;
4596 
4597 	poll_wait(file, &event->waitq, wait);
4598 
4599 	if (is_event_hup(event))
4600 		return events;
4601 
4602 	/*
4603 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4604 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4605 	 */
4606 	mutex_lock(&event->mmap_mutex);
4607 	rb = event->rb;
4608 	if (rb)
4609 		events = atomic_xchg(&rb->poll, 0);
4610 	mutex_unlock(&event->mmap_mutex);
4611 	return events;
4612 }
4613 
4614 static void _perf_event_reset(struct perf_event *event)
4615 {
4616 	(void)perf_event_read(event, false);
4617 	local64_set(&event->count, 0);
4618 	perf_event_update_userpage(event);
4619 }
4620 
4621 /*
4622  * Holding the top-level event's child_mutex means that any
4623  * descendant process that has inherited this event will block
4624  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4625  * task existence requirements of perf_event_enable/disable.
4626  */
4627 static void perf_event_for_each_child(struct perf_event *event,
4628 					void (*func)(struct perf_event *))
4629 {
4630 	struct perf_event *child;
4631 
4632 	WARN_ON_ONCE(event->ctx->parent_ctx);
4633 
4634 	mutex_lock(&event->child_mutex);
4635 	func(event);
4636 	list_for_each_entry(child, &event->child_list, child_list)
4637 		func(child);
4638 	mutex_unlock(&event->child_mutex);
4639 }
4640 
4641 static void perf_event_for_each(struct perf_event *event,
4642 				  void (*func)(struct perf_event *))
4643 {
4644 	struct perf_event_context *ctx = event->ctx;
4645 	struct perf_event *sibling;
4646 
4647 	lockdep_assert_held(&ctx->mutex);
4648 
4649 	event = event->group_leader;
4650 
4651 	perf_event_for_each_child(event, func);
4652 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4653 		perf_event_for_each_child(sibling, func);
4654 }
4655 
4656 static void __perf_event_period(struct perf_event *event,
4657 				struct perf_cpu_context *cpuctx,
4658 				struct perf_event_context *ctx,
4659 				void *info)
4660 {
4661 	u64 value = *((u64 *)info);
4662 	bool active;
4663 
4664 	if (event->attr.freq) {
4665 		event->attr.sample_freq = value;
4666 	} else {
4667 		event->attr.sample_period = value;
4668 		event->hw.sample_period = value;
4669 	}
4670 
4671 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4672 	if (active) {
4673 		perf_pmu_disable(ctx->pmu);
4674 		/*
4675 		 * We could be throttled; unthrottle now to avoid the tick
4676 		 * trying to unthrottle while we already re-started the event.
4677 		 */
4678 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4679 			event->hw.interrupts = 0;
4680 			perf_log_throttle(event, 1);
4681 		}
4682 		event->pmu->stop(event, PERF_EF_UPDATE);
4683 	}
4684 
4685 	local64_set(&event->hw.period_left, 0);
4686 
4687 	if (active) {
4688 		event->pmu->start(event, PERF_EF_RELOAD);
4689 		perf_pmu_enable(ctx->pmu);
4690 	}
4691 }
4692 
4693 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4694 {
4695 	u64 value;
4696 
4697 	if (!is_sampling_event(event))
4698 		return -EINVAL;
4699 
4700 	if (copy_from_user(&value, arg, sizeof(value)))
4701 		return -EFAULT;
4702 
4703 	if (!value)
4704 		return -EINVAL;
4705 
4706 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4707 		return -EINVAL;
4708 
4709 	event_function_call(event, __perf_event_period, &value);
4710 
4711 	return 0;
4712 }
4713 
4714 static const struct file_operations perf_fops;
4715 
4716 static inline int perf_fget_light(int fd, struct fd *p)
4717 {
4718 	struct fd f = fdget(fd);
4719 	if (!f.file)
4720 		return -EBADF;
4721 
4722 	if (f.file->f_op != &perf_fops) {
4723 		fdput(f);
4724 		return -EBADF;
4725 	}
4726 	*p = f;
4727 	return 0;
4728 }
4729 
4730 static int perf_event_set_output(struct perf_event *event,
4731 				 struct perf_event *output_event);
4732 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4733 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4734 
4735 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4736 {
4737 	void (*func)(struct perf_event *);
4738 	u32 flags = arg;
4739 
4740 	switch (cmd) {
4741 	case PERF_EVENT_IOC_ENABLE:
4742 		func = _perf_event_enable;
4743 		break;
4744 	case PERF_EVENT_IOC_DISABLE:
4745 		func = _perf_event_disable;
4746 		break;
4747 	case PERF_EVENT_IOC_RESET:
4748 		func = _perf_event_reset;
4749 		break;
4750 
4751 	case PERF_EVENT_IOC_REFRESH:
4752 		return _perf_event_refresh(event, arg);
4753 
4754 	case PERF_EVENT_IOC_PERIOD:
4755 		return perf_event_period(event, (u64 __user *)arg);
4756 
4757 	case PERF_EVENT_IOC_ID:
4758 	{
4759 		u64 id = primary_event_id(event);
4760 
4761 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4762 			return -EFAULT;
4763 		return 0;
4764 	}
4765 
4766 	case PERF_EVENT_IOC_SET_OUTPUT:
4767 	{
4768 		int ret;
4769 		if (arg != -1) {
4770 			struct perf_event *output_event;
4771 			struct fd output;
4772 			ret = perf_fget_light(arg, &output);
4773 			if (ret)
4774 				return ret;
4775 			output_event = output.file->private_data;
4776 			ret = perf_event_set_output(event, output_event);
4777 			fdput(output);
4778 		} else {
4779 			ret = perf_event_set_output(event, NULL);
4780 		}
4781 		return ret;
4782 	}
4783 
4784 	case PERF_EVENT_IOC_SET_FILTER:
4785 		return perf_event_set_filter(event, (void __user *)arg);
4786 
4787 	case PERF_EVENT_IOC_SET_BPF:
4788 		return perf_event_set_bpf_prog(event, arg);
4789 
4790 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4791 		struct ring_buffer *rb;
4792 
4793 		rcu_read_lock();
4794 		rb = rcu_dereference(event->rb);
4795 		if (!rb || !rb->nr_pages) {
4796 			rcu_read_unlock();
4797 			return -EINVAL;
4798 		}
4799 		rb_toggle_paused(rb, !!arg);
4800 		rcu_read_unlock();
4801 		return 0;
4802 	}
4803 	default:
4804 		return -ENOTTY;
4805 	}
4806 
4807 	if (flags & PERF_IOC_FLAG_GROUP)
4808 		perf_event_for_each(event, func);
4809 	else
4810 		perf_event_for_each_child(event, func);
4811 
4812 	return 0;
4813 }
4814 
4815 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4816 {
4817 	struct perf_event *event = file->private_data;
4818 	struct perf_event_context *ctx;
4819 	long ret;
4820 
4821 	ctx = perf_event_ctx_lock(event);
4822 	ret = _perf_ioctl(event, cmd, arg);
4823 	perf_event_ctx_unlock(event, ctx);
4824 
4825 	return ret;
4826 }
4827 
4828 #ifdef CONFIG_COMPAT
4829 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4830 				unsigned long arg)
4831 {
4832 	switch (_IOC_NR(cmd)) {
4833 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4834 	case _IOC_NR(PERF_EVENT_IOC_ID):
4835 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4836 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4837 			cmd &= ~IOCSIZE_MASK;
4838 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4839 		}
4840 		break;
4841 	}
4842 	return perf_ioctl(file, cmd, arg);
4843 }
4844 #else
4845 # define perf_compat_ioctl NULL
4846 #endif
4847 
4848 int perf_event_task_enable(void)
4849 {
4850 	struct perf_event_context *ctx;
4851 	struct perf_event *event;
4852 
4853 	mutex_lock(&current->perf_event_mutex);
4854 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4855 		ctx = perf_event_ctx_lock(event);
4856 		perf_event_for_each_child(event, _perf_event_enable);
4857 		perf_event_ctx_unlock(event, ctx);
4858 	}
4859 	mutex_unlock(&current->perf_event_mutex);
4860 
4861 	return 0;
4862 }
4863 
4864 int perf_event_task_disable(void)
4865 {
4866 	struct perf_event_context *ctx;
4867 	struct perf_event *event;
4868 
4869 	mutex_lock(&current->perf_event_mutex);
4870 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4871 		ctx = perf_event_ctx_lock(event);
4872 		perf_event_for_each_child(event, _perf_event_disable);
4873 		perf_event_ctx_unlock(event, ctx);
4874 	}
4875 	mutex_unlock(&current->perf_event_mutex);
4876 
4877 	return 0;
4878 }
4879 
4880 static int perf_event_index(struct perf_event *event)
4881 {
4882 	if (event->hw.state & PERF_HES_STOPPED)
4883 		return 0;
4884 
4885 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4886 		return 0;
4887 
4888 	return event->pmu->event_idx(event);
4889 }
4890 
4891 static void calc_timer_values(struct perf_event *event,
4892 				u64 *now,
4893 				u64 *enabled,
4894 				u64 *running)
4895 {
4896 	u64 ctx_time;
4897 
4898 	*now = perf_clock();
4899 	ctx_time = event->shadow_ctx_time + *now;
4900 	*enabled = ctx_time - event->tstamp_enabled;
4901 	*running = ctx_time - event->tstamp_running;
4902 }
4903 
4904 static void perf_event_init_userpage(struct perf_event *event)
4905 {
4906 	struct perf_event_mmap_page *userpg;
4907 	struct ring_buffer *rb;
4908 
4909 	rcu_read_lock();
4910 	rb = rcu_dereference(event->rb);
4911 	if (!rb)
4912 		goto unlock;
4913 
4914 	userpg = rb->user_page;
4915 
4916 	/* Allow new userspace to detect that bit 0 is deprecated */
4917 	userpg->cap_bit0_is_deprecated = 1;
4918 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4919 	userpg->data_offset = PAGE_SIZE;
4920 	userpg->data_size = perf_data_size(rb);
4921 
4922 unlock:
4923 	rcu_read_unlock();
4924 }
4925 
4926 void __weak arch_perf_update_userpage(
4927 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4928 {
4929 }
4930 
4931 /*
4932  * Callers need to ensure there can be no nesting of this function, otherwise
4933  * the seqlock logic goes bad. We can not serialize this because the arch
4934  * code calls this from NMI context.
4935  */
4936 void perf_event_update_userpage(struct perf_event *event)
4937 {
4938 	struct perf_event_mmap_page *userpg;
4939 	struct ring_buffer *rb;
4940 	u64 enabled, running, now;
4941 
4942 	rcu_read_lock();
4943 	rb = rcu_dereference(event->rb);
4944 	if (!rb)
4945 		goto unlock;
4946 
4947 	/*
4948 	 * compute total_time_enabled, total_time_running
4949 	 * based on snapshot values taken when the event
4950 	 * was last scheduled in.
4951 	 *
4952 	 * we cannot simply called update_context_time()
4953 	 * because of locking issue as we can be called in
4954 	 * NMI context
4955 	 */
4956 	calc_timer_values(event, &now, &enabled, &running);
4957 
4958 	userpg = rb->user_page;
4959 	/*
4960 	 * Disable preemption so as to not let the corresponding user-space
4961 	 * spin too long if we get preempted.
4962 	 */
4963 	preempt_disable();
4964 	++userpg->lock;
4965 	barrier();
4966 	userpg->index = perf_event_index(event);
4967 	userpg->offset = perf_event_count(event);
4968 	if (userpg->index)
4969 		userpg->offset -= local64_read(&event->hw.prev_count);
4970 
4971 	userpg->time_enabled = enabled +
4972 			atomic64_read(&event->child_total_time_enabled);
4973 
4974 	userpg->time_running = running +
4975 			atomic64_read(&event->child_total_time_running);
4976 
4977 	arch_perf_update_userpage(event, userpg, now);
4978 
4979 	barrier();
4980 	++userpg->lock;
4981 	preempt_enable();
4982 unlock:
4983 	rcu_read_unlock();
4984 }
4985 
4986 static int perf_mmap_fault(struct vm_fault *vmf)
4987 {
4988 	struct perf_event *event = vmf->vma->vm_file->private_data;
4989 	struct ring_buffer *rb;
4990 	int ret = VM_FAULT_SIGBUS;
4991 
4992 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4993 		if (vmf->pgoff == 0)
4994 			ret = 0;
4995 		return ret;
4996 	}
4997 
4998 	rcu_read_lock();
4999 	rb = rcu_dereference(event->rb);
5000 	if (!rb)
5001 		goto unlock;
5002 
5003 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5004 		goto unlock;
5005 
5006 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5007 	if (!vmf->page)
5008 		goto unlock;
5009 
5010 	get_page(vmf->page);
5011 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5012 	vmf->page->index   = vmf->pgoff;
5013 
5014 	ret = 0;
5015 unlock:
5016 	rcu_read_unlock();
5017 
5018 	return ret;
5019 }
5020 
5021 static void ring_buffer_attach(struct perf_event *event,
5022 			       struct ring_buffer *rb)
5023 {
5024 	struct ring_buffer *old_rb = NULL;
5025 	unsigned long flags;
5026 
5027 	if (event->rb) {
5028 		/*
5029 		 * Should be impossible, we set this when removing
5030 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5031 		 */
5032 		WARN_ON_ONCE(event->rcu_pending);
5033 
5034 		old_rb = event->rb;
5035 		spin_lock_irqsave(&old_rb->event_lock, flags);
5036 		list_del_rcu(&event->rb_entry);
5037 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5038 
5039 		event->rcu_batches = get_state_synchronize_rcu();
5040 		event->rcu_pending = 1;
5041 	}
5042 
5043 	if (rb) {
5044 		if (event->rcu_pending) {
5045 			cond_synchronize_rcu(event->rcu_batches);
5046 			event->rcu_pending = 0;
5047 		}
5048 
5049 		spin_lock_irqsave(&rb->event_lock, flags);
5050 		list_add_rcu(&event->rb_entry, &rb->event_list);
5051 		spin_unlock_irqrestore(&rb->event_lock, flags);
5052 	}
5053 
5054 	/*
5055 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5056 	 * before swizzling the event::rb pointer; if it's getting
5057 	 * unmapped, its aux_mmap_count will be 0 and it won't
5058 	 * restart. See the comment in __perf_pmu_output_stop().
5059 	 *
5060 	 * Data will inevitably be lost when set_output is done in
5061 	 * mid-air, but then again, whoever does it like this is
5062 	 * not in for the data anyway.
5063 	 */
5064 	if (has_aux(event))
5065 		perf_event_stop(event, 0);
5066 
5067 	rcu_assign_pointer(event->rb, rb);
5068 
5069 	if (old_rb) {
5070 		ring_buffer_put(old_rb);
5071 		/*
5072 		 * Since we detached before setting the new rb, so that we
5073 		 * could attach the new rb, we could have missed a wakeup.
5074 		 * Provide it now.
5075 		 */
5076 		wake_up_all(&event->waitq);
5077 	}
5078 }
5079 
5080 static void ring_buffer_wakeup(struct perf_event *event)
5081 {
5082 	struct ring_buffer *rb;
5083 
5084 	rcu_read_lock();
5085 	rb = rcu_dereference(event->rb);
5086 	if (rb) {
5087 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5088 			wake_up_all(&event->waitq);
5089 	}
5090 	rcu_read_unlock();
5091 }
5092 
5093 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5094 {
5095 	struct ring_buffer *rb;
5096 
5097 	rcu_read_lock();
5098 	rb = rcu_dereference(event->rb);
5099 	if (rb) {
5100 		if (!atomic_inc_not_zero(&rb->refcount))
5101 			rb = NULL;
5102 	}
5103 	rcu_read_unlock();
5104 
5105 	return rb;
5106 }
5107 
5108 void ring_buffer_put(struct ring_buffer *rb)
5109 {
5110 	if (!atomic_dec_and_test(&rb->refcount))
5111 		return;
5112 
5113 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5114 
5115 	call_rcu(&rb->rcu_head, rb_free_rcu);
5116 }
5117 
5118 static void perf_mmap_open(struct vm_area_struct *vma)
5119 {
5120 	struct perf_event *event = vma->vm_file->private_data;
5121 
5122 	atomic_inc(&event->mmap_count);
5123 	atomic_inc(&event->rb->mmap_count);
5124 
5125 	if (vma->vm_pgoff)
5126 		atomic_inc(&event->rb->aux_mmap_count);
5127 
5128 	if (event->pmu->event_mapped)
5129 		event->pmu->event_mapped(event, vma->vm_mm);
5130 }
5131 
5132 static void perf_pmu_output_stop(struct perf_event *event);
5133 
5134 /*
5135  * A buffer can be mmap()ed multiple times; either directly through the same
5136  * event, or through other events by use of perf_event_set_output().
5137  *
5138  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5139  * the buffer here, where we still have a VM context. This means we need
5140  * to detach all events redirecting to us.
5141  */
5142 static void perf_mmap_close(struct vm_area_struct *vma)
5143 {
5144 	struct perf_event *event = vma->vm_file->private_data;
5145 
5146 	struct ring_buffer *rb = ring_buffer_get(event);
5147 	struct user_struct *mmap_user = rb->mmap_user;
5148 	int mmap_locked = rb->mmap_locked;
5149 	unsigned long size = perf_data_size(rb);
5150 
5151 	if (event->pmu->event_unmapped)
5152 		event->pmu->event_unmapped(event, vma->vm_mm);
5153 
5154 	/*
5155 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5156 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5157 	 * serialize with perf_mmap here.
5158 	 */
5159 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5160 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5161 		/*
5162 		 * Stop all AUX events that are writing to this buffer,
5163 		 * so that we can free its AUX pages and corresponding PMU
5164 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5165 		 * they won't start any more (see perf_aux_output_begin()).
5166 		 */
5167 		perf_pmu_output_stop(event);
5168 
5169 		/* now it's safe to free the pages */
5170 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5171 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5172 
5173 		/* this has to be the last one */
5174 		rb_free_aux(rb);
5175 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5176 
5177 		mutex_unlock(&event->mmap_mutex);
5178 	}
5179 
5180 	atomic_dec(&rb->mmap_count);
5181 
5182 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5183 		goto out_put;
5184 
5185 	ring_buffer_attach(event, NULL);
5186 	mutex_unlock(&event->mmap_mutex);
5187 
5188 	/* If there's still other mmap()s of this buffer, we're done. */
5189 	if (atomic_read(&rb->mmap_count))
5190 		goto out_put;
5191 
5192 	/*
5193 	 * No other mmap()s, detach from all other events that might redirect
5194 	 * into the now unreachable buffer. Somewhat complicated by the
5195 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5196 	 */
5197 again:
5198 	rcu_read_lock();
5199 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5200 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5201 			/*
5202 			 * This event is en-route to free_event() which will
5203 			 * detach it and remove it from the list.
5204 			 */
5205 			continue;
5206 		}
5207 		rcu_read_unlock();
5208 
5209 		mutex_lock(&event->mmap_mutex);
5210 		/*
5211 		 * Check we didn't race with perf_event_set_output() which can
5212 		 * swizzle the rb from under us while we were waiting to
5213 		 * acquire mmap_mutex.
5214 		 *
5215 		 * If we find a different rb; ignore this event, a next
5216 		 * iteration will no longer find it on the list. We have to
5217 		 * still restart the iteration to make sure we're not now
5218 		 * iterating the wrong list.
5219 		 */
5220 		if (event->rb == rb)
5221 			ring_buffer_attach(event, NULL);
5222 
5223 		mutex_unlock(&event->mmap_mutex);
5224 		put_event(event);
5225 
5226 		/*
5227 		 * Restart the iteration; either we're on the wrong list or
5228 		 * destroyed its integrity by doing a deletion.
5229 		 */
5230 		goto again;
5231 	}
5232 	rcu_read_unlock();
5233 
5234 	/*
5235 	 * It could be there's still a few 0-ref events on the list; they'll
5236 	 * get cleaned up by free_event() -- they'll also still have their
5237 	 * ref on the rb and will free it whenever they are done with it.
5238 	 *
5239 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5240 	 * undo the VM accounting.
5241 	 */
5242 
5243 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5244 	vma->vm_mm->pinned_vm -= mmap_locked;
5245 	free_uid(mmap_user);
5246 
5247 out_put:
5248 	ring_buffer_put(rb); /* could be last */
5249 }
5250 
5251 static const struct vm_operations_struct perf_mmap_vmops = {
5252 	.open		= perf_mmap_open,
5253 	.close		= perf_mmap_close, /* non mergable */
5254 	.fault		= perf_mmap_fault,
5255 	.page_mkwrite	= perf_mmap_fault,
5256 };
5257 
5258 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5259 {
5260 	struct perf_event *event = file->private_data;
5261 	unsigned long user_locked, user_lock_limit;
5262 	struct user_struct *user = current_user();
5263 	unsigned long locked, lock_limit;
5264 	struct ring_buffer *rb = NULL;
5265 	unsigned long vma_size;
5266 	unsigned long nr_pages;
5267 	long user_extra = 0, extra = 0;
5268 	int ret = 0, flags = 0;
5269 
5270 	/*
5271 	 * Don't allow mmap() of inherited per-task counters. This would
5272 	 * create a performance issue due to all children writing to the
5273 	 * same rb.
5274 	 */
5275 	if (event->cpu == -1 && event->attr.inherit)
5276 		return -EINVAL;
5277 
5278 	if (!(vma->vm_flags & VM_SHARED))
5279 		return -EINVAL;
5280 
5281 	vma_size = vma->vm_end - vma->vm_start;
5282 
5283 	if (vma->vm_pgoff == 0) {
5284 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5285 	} else {
5286 		/*
5287 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5288 		 * mapped, all subsequent mappings should have the same size
5289 		 * and offset. Must be above the normal perf buffer.
5290 		 */
5291 		u64 aux_offset, aux_size;
5292 
5293 		if (!event->rb)
5294 			return -EINVAL;
5295 
5296 		nr_pages = vma_size / PAGE_SIZE;
5297 
5298 		mutex_lock(&event->mmap_mutex);
5299 		ret = -EINVAL;
5300 
5301 		rb = event->rb;
5302 		if (!rb)
5303 			goto aux_unlock;
5304 
5305 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5306 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5307 
5308 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5309 			goto aux_unlock;
5310 
5311 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5312 			goto aux_unlock;
5313 
5314 		/* already mapped with a different offset */
5315 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5316 			goto aux_unlock;
5317 
5318 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5319 			goto aux_unlock;
5320 
5321 		/* already mapped with a different size */
5322 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5323 			goto aux_unlock;
5324 
5325 		if (!is_power_of_2(nr_pages))
5326 			goto aux_unlock;
5327 
5328 		if (!atomic_inc_not_zero(&rb->mmap_count))
5329 			goto aux_unlock;
5330 
5331 		if (rb_has_aux(rb)) {
5332 			atomic_inc(&rb->aux_mmap_count);
5333 			ret = 0;
5334 			goto unlock;
5335 		}
5336 
5337 		atomic_set(&rb->aux_mmap_count, 1);
5338 		user_extra = nr_pages;
5339 
5340 		goto accounting;
5341 	}
5342 
5343 	/*
5344 	 * If we have rb pages ensure they're a power-of-two number, so we
5345 	 * can do bitmasks instead of modulo.
5346 	 */
5347 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5348 		return -EINVAL;
5349 
5350 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5351 		return -EINVAL;
5352 
5353 	WARN_ON_ONCE(event->ctx->parent_ctx);
5354 again:
5355 	mutex_lock(&event->mmap_mutex);
5356 	if (event->rb) {
5357 		if (event->rb->nr_pages != nr_pages) {
5358 			ret = -EINVAL;
5359 			goto unlock;
5360 		}
5361 
5362 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5363 			/*
5364 			 * Raced against perf_mmap_close() through
5365 			 * perf_event_set_output(). Try again, hope for better
5366 			 * luck.
5367 			 */
5368 			mutex_unlock(&event->mmap_mutex);
5369 			goto again;
5370 		}
5371 
5372 		goto unlock;
5373 	}
5374 
5375 	user_extra = nr_pages + 1;
5376 
5377 accounting:
5378 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5379 
5380 	/*
5381 	 * Increase the limit linearly with more CPUs:
5382 	 */
5383 	user_lock_limit *= num_online_cpus();
5384 
5385 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5386 
5387 	if (user_locked > user_lock_limit)
5388 		extra = user_locked - user_lock_limit;
5389 
5390 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5391 	lock_limit >>= PAGE_SHIFT;
5392 	locked = vma->vm_mm->pinned_vm + extra;
5393 
5394 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5395 		!capable(CAP_IPC_LOCK)) {
5396 		ret = -EPERM;
5397 		goto unlock;
5398 	}
5399 
5400 	WARN_ON(!rb && event->rb);
5401 
5402 	if (vma->vm_flags & VM_WRITE)
5403 		flags |= RING_BUFFER_WRITABLE;
5404 
5405 	if (!rb) {
5406 		rb = rb_alloc(nr_pages,
5407 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5408 			      event->cpu, flags);
5409 
5410 		if (!rb) {
5411 			ret = -ENOMEM;
5412 			goto unlock;
5413 		}
5414 
5415 		atomic_set(&rb->mmap_count, 1);
5416 		rb->mmap_user = get_current_user();
5417 		rb->mmap_locked = extra;
5418 
5419 		ring_buffer_attach(event, rb);
5420 
5421 		perf_event_init_userpage(event);
5422 		perf_event_update_userpage(event);
5423 	} else {
5424 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5425 				   event->attr.aux_watermark, flags);
5426 		if (!ret)
5427 			rb->aux_mmap_locked = extra;
5428 	}
5429 
5430 unlock:
5431 	if (!ret) {
5432 		atomic_long_add(user_extra, &user->locked_vm);
5433 		vma->vm_mm->pinned_vm += extra;
5434 
5435 		atomic_inc(&event->mmap_count);
5436 	} else if (rb) {
5437 		atomic_dec(&rb->mmap_count);
5438 	}
5439 aux_unlock:
5440 	mutex_unlock(&event->mmap_mutex);
5441 
5442 	/*
5443 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5444 	 * vma.
5445 	 */
5446 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5447 	vma->vm_ops = &perf_mmap_vmops;
5448 
5449 	if (event->pmu->event_mapped)
5450 		event->pmu->event_mapped(event, vma->vm_mm);
5451 
5452 	return ret;
5453 }
5454 
5455 static int perf_fasync(int fd, struct file *filp, int on)
5456 {
5457 	struct inode *inode = file_inode(filp);
5458 	struct perf_event *event = filp->private_data;
5459 	int retval;
5460 
5461 	inode_lock(inode);
5462 	retval = fasync_helper(fd, filp, on, &event->fasync);
5463 	inode_unlock(inode);
5464 
5465 	if (retval < 0)
5466 		return retval;
5467 
5468 	return 0;
5469 }
5470 
5471 static const struct file_operations perf_fops = {
5472 	.llseek			= no_llseek,
5473 	.release		= perf_release,
5474 	.read			= perf_read,
5475 	.poll			= perf_poll,
5476 	.unlocked_ioctl		= perf_ioctl,
5477 	.compat_ioctl		= perf_compat_ioctl,
5478 	.mmap			= perf_mmap,
5479 	.fasync			= perf_fasync,
5480 };
5481 
5482 /*
5483  * Perf event wakeup
5484  *
5485  * If there's data, ensure we set the poll() state and publish everything
5486  * to user-space before waking everybody up.
5487  */
5488 
5489 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5490 {
5491 	/* only the parent has fasync state */
5492 	if (event->parent)
5493 		event = event->parent;
5494 	return &event->fasync;
5495 }
5496 
5497 void perf_event_wakeup(struct perf_event *event)
5498 {
5499 	ring_buffer_wakeup(event);
5500 
5501 	if (event->pending_kill) {
5502 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5503 		event->pending_kill = 0;
5504 	}
5505 }
5506 
5507 static void perf_pending_event(struct irq_work *entry)
5508 {
5509 	struct perf_event *event = container_of(entry,
5510 			struct perf_event, pending);
5511 	int rctx;
5512 
5513 	rctx = perf_swevent_get_recursion_context();
5514 	/*
5515 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5516 	 * and we won't recurse 'further'.
5517 	 */
5518 
5519 	if (event->pending_disable) {
5520 		event->pending_disable = 0;
5521 		perf_event_disable_local(event);
5522 	}
5523 
5524 	if (event->pending_wakeup) {
5525 		event->pending_wakeup = 0;
5526 		perf_event_wakeup(event);
5527 	}
5528 
5529 	if (rctx >= 0)
5530 		perf_swevent_put_recursion_context(rctx);
5531 }
5532 
5533 /*
5534  * We assume there is only KVM supporting the callbacks.
5535  * Later on, we might change it to a list if there is
5536  * another virtualization implementation supporting the callbacks.
5537  */
5538 struct perf_guest_info_callbacks *perf_guest_cbs;
5539 
5540 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5541 {
5542 	perf_guest_cbs = cbs;
5543 	return 0;
5544 }
5545 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5546 
5547 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5548 {
5549 	perf_guest_cbs = NULL;
5550 	return 0;
5551 }
5552 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5553 
5554 static void
5555 perf_output_sample_regs(struct perf_output_handle *handle,
5556 			struct pt_regs *regs, u64 mask)
5557 {
5558 	int bit;
5559 	DECLARE_BITMAP(_mask, 64);
5560 
5561 	bitmap_from_u64(_mask, mask);
5562 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5563 		u64 val;
5564 
5565 		val = perf_reg_value(regs, bit);
5566 		perf_output_put(handle, val);
5567 	}
5568 }
5569 
5570 static void perf_sample_regs_user(struct perf_regs *regs_user,
5571 				  struct pt_regs *regs,
5572 				  struct pt_regs *regs_user_copy)
5573 {
5574 	if (user_mode(regs)) {
5575 		regs_user->abi = perf_reg_abi(current);
5576 		regs_user->regs = regs;
5577 	} else if (current->mm) {
5578 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5579 	} else {
5580 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5581 		regs_user->regs = NULL;
5582 	}
5583 }
5584 
5585 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5586 				  struct pt_regs *regs)
5587 {
5588 	regs_intr->regs = regs;
5589 	regs_intr->abi  = perf_reg_abi(current);
5590 }
5591 
5592 
5593 /*
5594  * Get remaining task size from user stack pointer.
5595  *
5596  * It'd be better to take stack vma map and limit this more
5597  * precisly, but there's no way to get it safely under interrupt,
5598  * so using TASK_SIZE as limit.
5599  */
5600 static u64 perf_ustack_task_size(struct pt_regs *regs)
5601 {
5602 	unsigned long addr = perf_user_stack_pointer(regs);
5603 
5604 	if (!addr || addr >= TASK_SIZE)
5605 		return 0;
5606 
5607 	return TASK_SIZE - addr;
5608 }
5609 
5610 static u16
5611 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5612 			struct pt_regs *regs)
5613 {
5614 	u64 task_size;
5615 
5616 	/* No regs, no stack pointer, no dump. */
5617 	if (!regs)
5618 		return 0;
5619 
5620 	/*
5621 	 * Check if we fit in with the requested stack size into the:
5622 	 * - TASK_SIZE
5623 	 *   If we don't, we limit the size to the TASK_SIZE.
5624 	 *
5625 	 * - remaining sample size
5626 	 *   If we don't, we customize the stack size to
5627 	 *   fit in to the remaining sample size.
5628 	 */
5629 
5630 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5631 	stack_size = min(stack_size, (u16) task_size);
5632 
5633 	/* Current header size plus static size and dynamic size. */
5634 	header_size += 2 * sizeof(u64);
5635 
5636 	/* Do we fit in with the current stack dump size? */
5637 	if ((u16) (header_size + stack_size) < header_size) {
5638 		/*
5639 		 * If we overflow the maximum size for the sample,
5640 		 * we customize the stack dump size to fit in.
5641 		 */
5642 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5643 		stack_size = round_up(stack_size, sizeof(u64));
5644 	}
5645 
5646 	return stack_size;
5647 }
5648 
5649 static void
5650 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5651 			  struct pt_regs *regs)
5652 {
5653 	/* Case of a kernel thread, nothing to dump */
5654 	if (!regs) {
5655 		u64 size = 0;
5656 		perf_output_put(handle, size);
5657 	} else {
5658 		unsigned long sp;
5659 		unsigned int rem;
5660 		u64 dyn_size;
5661 
5662 		/*
5663 		 * We dump:
5664 		 * static size
5665 		 *   - the size requested by user or the best one we can fit
5666 		 *     in to the sample max size
5667 		 * data
5668 		 *   - user stack dump data
5669 		 * dynamic size
5670 		 *   - the actual dumped size
5671 		 */
5672 
5673 		/* Static size. */
5674 		perf_output_put(handle, dump_size);
5675 
5676 		/* Data. */
5677 		sp = perf_user_stack_pointer(regs);
5678 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5679 		dyn_size = dump_size - rem;
5680 
5681 		perf_output_skip(handle, rem);
5682 
5683 		/* Dynamic size. */
5684 		perf_output_put(handle, dyn_size);
5685 	}
5686 }
5687 
5688 static void __perf_event_header__init_id(struct perf_event_header *header,
5689 					 struct perf_sample_data *data,
5690 					 struct perf_event *event)
5691 {
5692 	u64 sample_type = event->attr.sample_type;
5693 
5694 	data->type = sample_type;
5695 	header->size += event->id_header_size;
5696 
5697 	if (sample_type & PERF_SAMPLE_TID) {
5698 		/* namespace issues */
5699 		data->tid_entry.pid = perf_event_pid(event, current);
5700 		data->tid_entry.tid = perf_event_tid(event, current);
5701 	}
5702 
5703 	if (sample_type & PERF_SAMPLE_TIME)
5704 		data->time = perf_event_clock(event);
5705 
5706 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5707 		data->id = primary_event_id(event);
5708 
5709 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5710 		data->stream_id = event->id;
5711 
5712 	if (sample_type & PERF_SAMPLE_CPU) {
5713 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5714 		data->cpu_entry.reserved = 0;
5715 	}
5716 }
5717 
5718 void perf_event_header__init_id(struct perf_event_header *header,
5719 				struct perf_sample_data *data,
5720 				struct perf_event *event)
5721 {
5722 	if (event->attr.sample_id_all)
5723 		__perf_event_header__init_id(header, data, event);
5724 }
5725 
5726 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5727 					   struct perf_sample_data *data)
5728 {
5729 	u64 sample_type = data->type;
5730 
5731 	if (sample_type & PERF_SAMPLE_TID)
5732 		perf_output_put(handle, data->tid_entry);
5733 
5734 	if (sample_type & PERF_SAMPLE_TIME)
5735 		perf_output_put(handle, data->time);
5736 
5737 	if (sample_type & PERF_SAMPLE_ID)
5738 		perf_output_put(handle, data->id);
5739 
5740 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5741 		perf_output_put(handle, data->stream_id);
5742 
5743 	if (sample_type & PERF_SAMPLE_CPU)
5744 		perf_output_put(handle, data->cpu_entry);
5745 
5746 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5747 		perf_output_put(handle, data->id);
5748 }
5749 
5750 void perf_event__output_id_sample(struct perf_event *event,
5751 				  struct perf_output_handle *handle,
5752 				  struct perf_sample_data *sample)
5753 {
5754 	if (event->attr.sample_id_all)
5755 		__perf_event__output_id_sample(handle, sample);
5756 }
5757 
5758 static void perf_output_read_one(struct perf_output_handle *handle,
5759 				 struct perf_event *event,
5760 				 u64 enabled, u64 running)
5761 {
5762 	u64 read_format = event->attr.read_format;
5763 	u64 values[4];
5764 	int n = 0;
5765 
5766 	values[n++] = perf_event_count(event);
5767 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5768 		values[n++] = enabled +
5769 			atomic64_read(&event->child_total_time_enabled);
5770 	}
5771 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5772 		values[n++] = running +
5773 			atomic64_read(&event->child_total_time_running);
5774 	}
5775 	if (read_format & PERF_FORMAT_ID)
5776 		values[n++] = primary_event_id(event);
5777 
5778 	__output_copy(handle, values, n * sizeof(u64));
5779 }
5780 
5781 static void perf_output_read_group(struct perf_output_handle *handle,
5782 			    struct perf_event *event,
5783 			    u64 enabled, u64 running)
5784 {
5785 	struct perf_event *leader = event->group_leader, *sub;
5786 	u64 read_format = event->attr.read_format;
5787 	u64 values[5];
5788 	int n = 0;
5789 
5790 	values[n++] = 1 + leader->nr_siblings;
5791 
5792 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5793 		values[n++] = enabled;
5794 
5795 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5796 		values[n++] = running;
5797 
5798 	if (leader != event)
5799 		leader->pmu->read(leader);
5800 
5801 	values[n++] = perf_event_count(leader);
5802 	if (read_format & PERF_FORMAT_ID)
5803 		values[n++] = primary_event_id(leader);
5804 
5805 	__output_copy(handle, values, n * sizeof(u64));
5806 
5807 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5808 		n = 0;
5809 
5810 		if ((sub != event) &&
5811 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5812 			sub->pmu->read(sub);
5813 
5814 		values[n++] = perf_event_count(sub);
5815 		if (read_format & PERF_FORMAT_ID)
5816 			values[n++] = primary_event_id(sub);
5817 
5818 		__output_copy(handle, values, n * sizeof(u64));
5819 	}
5820 }
5821 
5822 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5823 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5824 
5825 /*
5826  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5827  *
5828  * The problem is that its both hard and excessively expensive to iterate the
5829  * child list, not to mention that its impossible to IPI the children running
5830  * on another CPU, from interrupt/NMI context.
5831  */
5832 static void perf_output_read(struct perf_output_handle *handle,
5833 			     struct perf_event *event)
5834 {
5835 	u64 enabled = 0, running = 0, now;
5836 	u64 read_format = event->attr.read_format;
5837 
5838 	/*
5839 	 * compute total_time_enabled, total_time_running
5840 	 * based on snapshot values taken when the event
5841 	 * was last scheduled in.
5842 	 *
5843 	 * we cannot simply called update_context_time()
5844 	 * because of locking issue as we are called in
5845 	 * NMI context
5846 	 */
5847 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5848 		calc_timer_values(event, &now, &enabled, &running);
5849 
5850 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5851 		perf_output_read_group(handle, event, enabled, running);
5852 	else
5853 		perf_output_read_one(handle, event, enabled, running);
5854 }
5855 
5856 void perf_output_sample(struct perf_output_handle *handle,
5857 			struct perf_event_header *header,
5858 			struct perf_sample_data *data,
5859 			struct perf_event *event)
5860 {
5861 	u64 sample_type = data->type;
5862 
5863 	perf_output_put(handle, *header);
5864 
5865 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5866 		perf_output_put(handle, data->id);
5867 
5868 	if (sample_type & PERF_SAMPLE_IP)
5869 		perf_output_put(handle, data->ip);
5870 
5871 	if (sample_type & PERF_SAMPLE_TID)
5872 		perf_output_put(handle, data->tid_entry);
5873 
5874 	if (sample_type & PERF_SAMPLE_TIME)
5875 		perf_output_put(handle, data->time);
5876 
5877 	if (sample_type & PERF_SAMPLE_ADDR)
5878 		perf_output_put(handle, data->addr);
5879 
5880 	if (sample_type & PERF_SAMPLE_ID)
5881 		perf_output_put(handle, data->id);
5882 
5883 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5884 		perf_output_put(handle, data->stream_id);
5885 
5886 	if (sample_type & PERF_SAMPLE_CPU)
5887 		perf_output_put(handle, data->cpu_entry);
5888 
5889 	if (sample_type & PERF_SAMPLE_PERIOD)
5890 		perf_output_put(handle, data->period);
5891 
5892 	if (sample_type & PERF_SAMPLE_READ)
5893 		perf_output_read(handle, event);
5894 
5895 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5896 		if (data->callchain) {
5897 			int size = 1;
5898 
5899 			if (data->callchain)
5900 				size += data->callchain->nr;
5901 
5902 			size *= sizeof(u64);
5903 
5904 			__output_copy(handle, data->callchain, size);
5905 		} else {
5906 			u64 nr = 0;
5907 			perf_output_put(handle, nr);
5908 		}
5909 	}
5910 
5911 	if (sample_type & PERF_SAMPLE_RAW) {
5912 		struct perf_raw_record *raw = data->raw;
5913 
5914 		if (raw) {
5915 			struct perf_raw_frag *frag = &raw->frag;
5916 
5917 			perf_output_put(handle, raw->size);
5918 			do {
5919 				if (frag->copy) {
5920 					__output_custom(handle, frag->copy,
5921 							frag->data, frag->size);
5922 				} else {
5923 					__output_copy(handle, frag->data,
5924 						      frag->size);
5925 				}
5926 				if (perf_raw_frag_last(frag))
5927 					break;
5928 				frag = frag->next;
5929 			} while (1);
5930 			if (frag->pad)
5931 				__output_skip(handle, NULL, frag->pad);
5932 		} else {
5933 			struct {
5934 				u32	size;
5935 				u32	data;
5936 			} raw = {
5937 				.size = sizeof(u32),
5938 				.data = 0,
5939 			};
5940 			perf_output_put(handle, raw);
5941 		}
5942 	}
5943 
5944 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5945 		if (data->br_stack) {
5946 			size_t size;
5947 
5948 			size = data->br_stack->nr
5949 			     * sizeof(struct perf_branch_entry);
5950 
5951 			perf_output_put(handle, data->br_stack->nr);
5952 			perf_output_copy(handle, data->br_stack->entries, size);
5953 		} else {
5954 			/*
5955 			 * we always store at least the value of nr
5956 			 */
5957 			u64 nr = 0;
5958 			perf_output_put(handle, nr);
5959 		}
5960 	}
5961 
5962 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5963 		u64 abi = data->regs_user.abi;
5964 
5965 		/*
5966 		 * If there are no regs to dump, notice it through
5967 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5968 		 */
5969 		perf_output_put(handle, abi);
5970 
5971 		if (abi) {
5972 			u64 mask = event->attr.sample_regs_user;
5973 			perf_output_sample_regs(handle,
5974 						data->regs_user.regs,
5975 						mask);
5976 		}
5977 	}
5978 
5979 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5980 		perf_output_sample_ustack(handle,
5981 					  data->stack_user_size,
5982 					  data->regs_user.regs);
5983 	}
5984 
5985 	if (sample_type & PERF_SAMPLE_WEIGHT)
5986 		perf_output_put(handle, data->weight);
5987 
5988 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5989 		perf_output_put(handle, data->data_src.val);
5990 
5991 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5992 		perf_output_put(handle, data->txn);
5993 
5994 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5995 		u64 abi = data->regs_intr.abi;
5996 		/*
5997 		 * If there are no regs to dump, notice it through
5998 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5999 		 */
6000 		perf_output_put(handle, abi);
6001 
6002 		if (abi) {
6003 			u64 mask = event->attr.sample_regs_intr;
6004 
6005 			perf_output_sample_regs(handle,
6006 						data->regs_intr.regs,
6007 						mask);
6008 		}
6009 	}
6010 
6011 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6012 		perf_output_put(handle, data->phys_addr);
6013 
6014 	if (!event->attr.watermark) {
6015 		int wakeup_events = event->attr.wakeup_events;
6016 
6017 		if (wakeup_events) {
6018 			struct ring_buffer *rb = handle->rb;
6019 			int events = local_inc_return(&rb->events);
6020 
6021 			if (events >= wakeup_events) {
6022 				local_sub(wakeup_events, &rb->events);
6023 				local_inc(&rb->wakeup);
6024 			}
6025 		}
6026 	}
6027 }
6028 
6029 static u64 perf_virt_to_phys(u64 virt)
6030 {
6031 	u64 phys_addr = 0;
6032 	struct page *p = NULL;
6033 
6034 	if (!virt)
6035 		return 0;
6036 
6037 	if (virt >= TASK_SIZE) {
6038 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6039 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6040 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6041 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6042 	} else {
6043 		/*
6044 		 * Walking the pages tables for user address.
6045 		 * Interrupts are disabled, so it prevents any tear down
6046 		 * of the page tables.
6047 		 * Try IRQ-safe __get_user_pages_fast first.
6048 		 * If failed, leave phys_addr as 0.
6049 		 */
6050 		if ((current->mm != NULL) &&
6051 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6052 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6053 
6054 		if (p)
6055 			put_page(p);
6056 	}
6057 
6058 	return phys_addr;
6059 }
6060 
6061 void perf_prepare_sample(struct perf_event_header *header,
6062 			 struct perf_sample_data *data,
6063 			 struct perf_event *event,
6064 			 struct pt_regs *regs)
6065 {
6066 	u64 sample_type = event->attr.sample_type;
6067 
6068 	header->type = PERF_RECORD_SAMPLE;
6069 	header->size = sizeof(*header) + event->header_size;
6070 
6071 	header->misc = 0;
6072 	header->misc |= perf_misc_flags(regs);
6073 
6074 	__perf_event_header__init_id(header, data, event);
6075 
6076 	if (sample_type & PERF_SAMPLE_IP)
6077 		data->ip = perf_instruction_pointer(regs);
6078 
6079 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6080 		int size = 1;
6081 
6082 		data->callchain = perf_callchain(event, regs);
6083 
6084 		if (data->callchain)
6085 			size += data->callchain->nr;
6086 
6087 		header->size += size * sizeof(u64);
6088 	}
6089 
6090 	if (sample_type & PERF_SAMPLE_RAW) {
6091 		struct perf_raw_record *raw = data->raw;
6092 		int size;
6093 
6094 		if (raw) {
6095 			struct perf_raw_frag *frag = &raw->frag;
6096 			u32 sum = 0;
6097 
6098 			do {
6099 				sum += frag->size;
6100 				if (perf_raw_frag_last(frag))
6101 					break;
6102 				frag = frag->next;
6103 			} while (1);
6104 
6105 			size = round_up(sum + sizeof(u32), sizeof(u64));
6106 			raw->size = size - sizeof(u32);
6107 			frag->pad = raw->size - sum;
6108 		} else {
6109 			size = sizeof(u64);
6110 		}
6111 
6112 		header->size += size;
6113 	}
6114 
6115 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6116 		int size = sizeof(u64); /* nr */
6117 		if (data->br_stack) {
6118 			size += data->br_stack->nr
6119 			      * sizeof(struct perf_branch_entry);
6120 		}
6121 		header->size += size;
6122 	}
6123 
6124 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6125 		perf_sample_regs_user(&data->regs_user, regs,
6126 				      &data->regs_user_copy);
6127 
6128 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6129 		/* regs dump ABI info */
6130 		int size = sizeof(u64);
6131 
6132 		if (data->regs_user.regs) {
6133 			u64 mask = event->attr.sample_regs_user;
6134 			size += hweight64(mask) * sizeof(u64);
6135 		}
6136 
6137 		header->size += size;
6138 	}
6139 
6140 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6141 		/*
6142 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6143 		 * processed as the last one or have additional check added
6144 		 * in case new sample type is added, because we could eat
6145 		 * up the rest of the sample size.
6146 		 */
6147 		u16 stack_size = event->attr.sample_stack_user;
6148 		u16 size = sizeof(u64);
6149 
6150 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6151 						     data->regs_user.regs);
6152 
6153 		/*
6154 		 * If there is something to dump, add space for the dump
6155 		 * itself and for the field that tells the dynamic size,
6156 		 * which is how many have been actually dumped.
6157 		 */
6158 		if (stack_size)
6159 			size += sizeof(u64) + stack_size;
6160 
6161 		data->stack_user_size = stack_size;
6162 		header->size += size;
6163 	}
6164 
6165 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6166 		/* regs dump ABI info */
6167 		int size = sizeof(u64);
6168 
6169 		perf_sample_regs_intr(&data->regs_intr, regs);
6170 
6171 		if (data->regs_intr.regs) {
6172 			u64 mask = event->attr.sample_regs_intr;
6173 
6174 			size += hweight64(mask) * sizeof(u64);
6175 		}
6176 
6177 		header->size += size;
6178 	}
6179 
6180 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6181 		data->phys_addr = perf_virt_to_phys(data->addr);
6182 }
6183 
6184 static void __always_inline
6185 __perf_event_output(struct perf_event *event,
6186 		    struct perf_sample_data *data,
6187 		    struct pt_regs *regs,
6188 		    int (*output_begin)(struct perf_output_handle *,
6189 					struct perf_event *,
6190 					unsigned int))
6191 {
6192 	struct perf_output_handle handle;
6193 	struct perf_event_header header;
6194 
6195 	/* protect the callchain buffers */
6196 	rcu_read_lock();
6197 
6198 	perf_prepare_sample(&header, data, event, regs);
6199 
6200 	if (output_begin(&handle, event, header.size))
6201 		goto exit;
6202 
6203 	perf_output_sample(&handle, &header, data, event);
6204 
6205 	perf_output_end(&handle);
6206 
6207 exit:
6208 	rcu_read_unlock();
6209 }
6210 
6211 void
6212 perf_event_output_forward(struct perf_event *event,
6213 			 struct perf_sample_data *data,
6214 			 struct pt_regs *regs)
6215 {
6216 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6217 }
6218 
6219 void
6220 perf_event_output_backward(struct perf_event *event,
6221 			   struct perf_sample_data *data,
6222 			   struct pt_regs *regs)
6223 {
6224 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6225 }
6226 
6227 void
6228 perf_event_output(struct perf_event *event,
6229 		  struct perf_sample_data *data,
6230 		  struct pt_regs *regs)
6231 {
6232 	__perf_event_output(event, data, regs, perf_output_begin);
6233 }
6234 
6235 /*
6236  * read event_id
6237  */
6238 
6239 struct perf_read_event {
6240 	struct perf_event_header	header;
6241 
6242 	u32				pid;
6243 	u32				tid;
6244 };
6245 
6246 static void
6247 perf_event_read_event(struct perf_event *event,
6248 			struct task_struct *task)
6249 {
6250 	struct perf_output_handle handle;
6251 	struct perf_sample_data sample;
6252 	struct perf_read_event read_event = {
6253 		.header = {
6254 			.type = PERF_RECORD_READ,
6255 			.misc = 0,
6256 			.size = sizeof(read_event) + event->read_size,
6257 		},
6258 		.pid = perf_event_pid(event, task),
6259 		.tid = perf_event_tid(event, task),
6260 	};
6261 	int ret;
6262 
6263 	perf_event_header__init_id(&read_event.header, &sample, event);
6264 	ret = perf_output_begin(&handle, event, read_event.header.size);
6265 	if (ret)
6266 		return;
6267 
6268 	perf_output_put(&handle, read_event);
6269 	perf_output_read(&handle, event);
6270 	perf_event__output_id_sample(event, &handle, &sample);
6271 
6272 	perf_output_end(&handle);
6273 }
6274 
6275 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6276 
6277 static void
6278 perf_iterate_ctx(struct perf_event_context *ctx,
6279 		   perf_iterate_f output,
6280 		   void *data, bool all)
6281 {
6282 	struct perf_event *event;
6283 
6284 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6285 		if (!all) {
6286 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6287 				continue;
6288 			if (!event_filter_match(event))
6289 				continue;
6290 		}
6291 
6292 		output(event, data);
6293 	}
6294 }
6295 
6296 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6297 {
6298 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6299 	struct perf_event *event;
6300 
6301 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6302 		/*
6303 		 * Skip events that are not fully formed yet; ensure that
6304 		 * if we observe event->ctx, both event and ctx will be
6305 		 * complete enough. See perf_install_in_context().
6306 		 */
6307 		if (!smp_load_acquire(&event->ctx))
6308 			continue;
6309 
6310 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6311 			continue;
6312 		if (!event_filter_match(event))
6313 			continue;
6314 		output(event, data);
6315 	}
6316 }
6317 
6318 /*
6319  * Iterate all events that need to receive side-band events.
6320  *
6321  * For new callers; ensure that account_pmu_sb_event() includes
6322  * your event, otherwise it might not get delivered.
6323  */
6324 static void
6325 perf_iterate_sb(perf_iterate_f output, void *data,
6326 	       struct perf_event_context *task_ctx)
6327 {
6328 	struct perf_event_context *ctx;
6329 	int ctxn;
6330 
6331 	rcu_read_lock();
6332 	preempt_disable();
6333 
6334 	/*
6335 	 * If we have task_ctx != NULL we only notify the task context itself.
6336 	 * The task_ctx is set only for EXIT events before releasing task
6337 	 * context.
6338 	 */
6339 	if (task_ctx) {
6340 		perf_iterate_ctx(task_ctx, output, data, false);
6341 		goto done;
6342 	}
6343 
6344 	perf_iterate_sb_cpu(output, data);
6345 
6346 	for_each_task_context_nr(ctxn) {
6347 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6348 		if (ctx)
6349 			perf_iterate_ctx(ctx, output, data, false);
6350 	}
6351 done:
6352 	preempt_enable();
6353 	rcu_read_unlock();
6354 }
6355 
6356 /*
6357  * Clear all file-based filters at exec, they'll have to be
6358  * re-instated when/if these objects are mmapped again.
6359  */
6360 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6361 {
6362 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6363 	struct perf_addr_filter *filter;
6364 	unsigned int restart = 0, count = 0;
6365 	unsigned long flags;
6366 
6367 	if (!has_addr_filter(event))
6368 		return;
6369 
6370 	raw_spin_lock_irqsave(&ifh->lock, flags);
6371 	list_for_each_entry(filter, &ifh->list, entry) {
6372 		if (filter->inode) {
6373 			event->addr_filters_offs[count] = 0;
6374 			restart++;
6375 		}
6376 
6377 		count++;
6378 	}
6379 
6380 	if (restart)
6381 		event->addr_filters_gen++;
6382 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6383 
6384 	if (restart)
6385 		perf_event_stop(event, 1);
6386 }
6387 
6388 void perf_event_exec(void)
6389 {
6390 	struct perf_event_context *ctx;
6391 	int ctxn;
6392 
6393 	rcu_read_lock();
6394 	for_each_task_context_nr(ctxn) {
6395 		ctx = current->perf_event_ctxp[ctxn];
6396 		if (!ctx)
6397 			continue;
6398 
6399 		perf_event_enable_on_exec(ctxn);
6400 
6401 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6402 				   true);
6403 	}
6404 	rcu_read_unlock();
6405 }
6406 
6407 struct remote_output {
6408 	struct ring_buffer	*rb;
6409 	int			err;
6410 };
6411 
6412 static void __perf_event_output_stop(struct perf_event *event, void *data)
6413 {
6414 	struct perf_event *parent = event->parent;
6415 	struct remote_output *ro = data;
6416 	struct ring_buffer *rb = ro->rb;
6417 	struct stop_event_data sd = {
6418 		.event	= event,
6419 	};
6420 
6421 	if (!has_aux(event))
6422 		return;
6423 
6424 	if (!parent)
6425 		parent = event;
6426 
6427 	/*
6428 	 * In case of inheritance, it will be the parent that links to the
6429 	 * ring-buffer, but it will be the child that's actually using it.
6430 	 *
6431 	 * We are using event::rb to determine if the event should be stopped,
6432 	 * however this may race with ring_buffer_attach() (through set_output),
6433 	 * which will make us skip the event that actually needs to be stopped.
6434 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6435 	 * its rb pointer.
6436 	 */
6437 	if (rcu_dereference(parent->rb) == rb)
6438 		ro->err = __perf_event_stop(&sd);
6439 }
6440 
6441 static int __perf_pmu_output_stop(void *info)
6442 {
6443 	struct perf_event *event = info;
6444 	struct pmu *pmu = event->pmu;
6445 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6446 	struct remote_output ro = {
6447 		.rb	= event->rb,
6448 	};
6449 
6450 	rcu_read_lock();
6451 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6452 	if (cpuctx->task_ctx)
6453 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6454 				   &ro, false);
6455 	rcu_read_unlock();
6456 
6457 	return ro.err;
6458 }
6459 
6460 static void perf_pmu_output_stop(struct perf_event *event)
6461 {
6462 	struct perf_event *iter;
6463 	int err, cpu;
6464 
6465 restart:
6466 	rcu_read_lock();
6467 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6468 		/*
6469 		 * For per-CPU events, we need to make sure that neither they
6470 		 * nor their children are running; for cpu==-1 events it's
6471 		 * sufficient to stop the event itself if it's active, since
6472 		 * it can't have children.
6473 		 */
6474 		cpu = iter->cpu;
6475 		if (cpu == -1)
6476 			cpu = READ_ONCE(iter->oncpu);
6477 
6478 		if (cpu == -1)
6479 			continue;
6480 
6481 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6482 		if (err == -EAGAIN) {
6483 			rcu_read_unlock();
6484 			goto restart;
6485 		}
6486 	}
6487 	rcu_read_unlock();
6488 }
6489 
6490 /*
6491  * task tracking -- fork/exit
6492  *
6493  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6494  */
6495 
6496 struct perf_task_event {
6497 	struct task_struct		*task;
6498 	struct perf_event_context	*task_ctx;
6499 
6500 	struct {
6501 		struct perf_event_header	header;
6502 
6503 		u32				pid;
6504 		u32				ppid;
6505 		u32				tid;
6506 		u32				ptid;
6507 		u64				time;
6508 	} event_id;
6509 };
6510 
6511 static int perf_event_task_match(struct perf_event *event)
6512 {
6513 	return event->attr.comm  || event->attr.mmap ||
6514 	       event->attr.mmap2 || event->attr.mmap_data ||
6515 	       event->attr.task;
6516 }
6517 
6518 static void perf_event_task_output(struct perf_event *event,
6519 				   void *data)
6520 {
6521 	struct perf_task_event *task_event = data;
6522 	struct perf_output_handle handle;
6523 	struct perf_sample_data	sample;
6524 	struct task_struct *task = task_event->task;
6525 	int ret, size = task_event->event_id.header.size;
6526 
6527 	if (!perf_event_task_match(event))
6528 		return;
6529 
6530 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6531 
6532 	ret = perf_output_begin(&handle, event,
6533 				task_event->event_id.header.size);
6534 	if (ret)
6535 		goto out;
6536 
6537 	task_event->event_id.pid = perf_event_pid(event, task);
6538 	task_event->event_id.ppid = perf_event_pid(event, current);
6539 
6540 	task_event->event_id.tid = perf_event_tid(event, task);
6541 	task_event->event_id.ptid = perf_event_tid(event, current);
6542 
6543 	task_event->event_id.time = perf_event_clock(event);
6544 
6545 	perf_output_put(&handle, task_event->event_id);
6546 
6547 	perf_event__output_id_sample(event, &handle, &sample);
6548 
6549 	perf_output_end(&handle);
6550 out:
6551 	task_event->event_id.header.size = size;
6552 }
6553 
6554 static void perf_event_task(struct task_struct *task,
6555 			      struct perf_event_context *task_ctx,
6556 			      int new)
6557 {
6558 	struct perf_task_event task_event;
6559 
6560 	if (!atomic_read(&nr_comm_events) &&
6561 	    !atomic_read(&nr_mmap_events) &&
6562 	    !atomic_read(&nr_task_events))
6563 		return;
6564 
6565 	task_event = (struct perf_task_event){
6566 		.task	  = task,
6567 		.task_ctx = task_ctx,
6568 		.event_id    = {
6569 			.header = {
6570 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6571 				.misc = 0,
6572 				.size = sizeof(task_event.event_id),
6573 			},
6574 			/* .pid  */
6575 			/* .ppid */
6576 			/* .tid  */
6577 			/* .ptid */
6578 			/* .time */
6579 		},
6580 	};
6581 
6582 	perf_iterate_sb(perf_event_task_output,
6583 		       &task_event,
6584 		       task_ctx);
6585 }
6586 
6587 void perf_event_fork(struct task_struct *task)
6588 {
6589 	perf_event_task(task, NULL, 1);
6590 	perf_event_namespaces(task);
6591 }
6592 
6593 /*
6594  * comm tracking
6595  */
6596 
6597 struct perf_comm_event {
6598 	struct task_struct	*task;
6599 	char			*comm;
6600 	int			comm_size;
6601 
6602 	struct {
6603 		struct perf_event_header	header;
6604 
6605 		u32				pid;
6606 		u32				tid;
6607 	} event_id;
6608 };
6609 
6610 static int perf_event_comm_match(struct perf_event *event)
6611 {
6612 	return event->attr.comm;
6613 }
6614 
6615 static void perf_event_comm_output(struct perf_event *event,
6616 				   void *data)
6617 {
6618 	struct perf_comm_event *comm_event = data;
6619 	struct perf_output_handle handle;
6620 	struct perf_sample_data sample;
6621 	int size = comm_event->event_id.header.size;
6622 	int ret;
6623 
6624 	if (!perf_event_comm_match(event))
6625 		return;
6626 
6627 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6628 	ret = perf_output_begin(&handle, event,
6629 				comm_event->event_id.header.size);
6630 
6631 	if (ret)
6632 		goto out;
6633 
6634 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6635 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6636 
6637 	perf_output_put(&handle, comm_event->event_id);
6638 	__output_copy(&handle, comm_event->comm,
6639 				   comm_event->comm_size);
6640 
6641 	perf_event__output_id_sample(event, &handle, &sample);
6642 
6643 	perf_output_end(&handle);
6644 out:
6645 	comm_event->event_id.header.size = size;
6646 }
6647 
6648 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6649 {
6650 	char comm[TASK_COMM_LEN];
6651 	unsigned int size;
6652 
6653 	memset(comm, 0, sizeof(comm));
6654 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6655 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6656 
6657 	comm_event->comm = comm;
6658 	comm_event->comm_size = size;
6659 
6660 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6661 
6662 	perf_iterate_sb(perf_event_comm_output,
6663 		       comm_event,
6664 		       NULL);
6665 }
6666 
6667 void perf_event_comm(struct task_struct *task, bool exec)
6668 {
6669 	struct perf_comm_event comm_event;
6670 
6671 	if (!atomic_read(&nr_comm_events))
6672 		return;
6673 
6674 	comm_event = (struct perf_comm_event){
6675 		.task	= task,
6676 		/* .comm      */
6677 		/* .comm_size */
6678 		.event_id  = {
6679 			.header = {
6680 				.type = PERF_RECORD_COMM,
6681 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6682 				/* .size */
6683 			},
6684 			/* .pid */
6685 			/* .tid */
6686 		},
6687 	};
6688 
6689 	perf_event_comm_event(&comm_event);
6690 }
6691 
6692 /*
6693  * namespaces tracking
6694  */
6695 
6696 struct perf_namespaces_event {
6697 	struct task_struct		*task;
6698 
6699 	struct {
6700 		struct perf_event_header	header;
6701 
6702 		u32				pid;
6703 		u32				tid;
6704 		u64				nr_namespaces;
6705 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6706 	} event_id;
6707 };
6708 
6709 static int perf_event_namespaces_match(struct perf_event *event)
6710 {
6711 	return event->attr.namespaces;
6712 }
6713 
6714 static void perf_event_namespaces_output(struct perf_event *event,
6715 					 void *data)
6716 {
6717 	struct perf_namespaces_event *namespaces_event = data;
6718 	struct perf_output_handle handle;
6719 	struct perf_sample_data sample;
6720 	int ret;
6721 
6722 	if (!perf_event_namespaces_match(event))
6723 		return;
6724 
6725 	perf_event_header__init_id(&namespaces_event->event_id.header,
6726 				   &sample, event);
6727 	ret = perf_output_begin(&handle, event,
6728 				namespaces_event->event_id.header.size);
6729 	if (ret)
6730 		return;
6731 
6732 	namespaces_event->event_id.pid = perf_event_pid(event,
6733 							namespaces_event->task);
6734 	namespaces_event->event_id.tid = perf_event_tid(event,
6735 							namespaces_event->task);
6736 
6737 	perf_output_put(&handle, namespaces_event->event_id);
6738 
6739 	perf_event__output_id_sample(event, &handle, &sample);
6740 
6741 	perf_output_end(&handle);
6742 }
6743 
6744 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6745 				   struct task_struct *task,
6746 				   const struct proc_ns_operations *ns_ops)
6747 {
6748 	struct path ns_path;
6749 	struct inode *ns_inode;
6750 	void *error;
6751 
6752 	error = ns_get_path(&ns_path, task, ns_ops);
6753 	if (!error) {
6754 		ns_inode = ns_path.dentry->d_inode;
6755 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6756 		ns_link_info->ino = ns_inode->i_ino;
6757 	}
6758 }
6759 
6760 void perf_event_namespaces(struct task_struct *task)
6761 {
6762 	struct perf_namespaces_event namespaces_event;
6763 	struct perf_ns_link_info *ns_link_info;
6764 
6765 	if (!atomic_read(&nr_namespaces_events))
6766 		return;
6767 
6768 	namespaces_event = (struct perf_namespaces_event){
6769 		.task	= task,
6770 		.event_id  = {
6771 			.header = {
6772 				.type = PERF_RECORD_NAMESPACES,
6773 				.misc = 0,
6774 				.size = sizeof(namespaces_event.event_id),
6775 			},
6776 			/* .pid */
6777 			/* .tid */
6778 			.nr_namespaces = NR_NAMESPACES,
6779 			/* .link_info[NR_NAMESPACES] */
6780 		},
6781 	};
6782 
6783 	ns_link_info = namespaces_event.event_id.link_info;
6784 
6785 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6786 			       task, &mntns_operations);
6787 
6788 #ifdef CONFIG_USER_NS
6789 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6790 			       task, &userns_operations);
6791 #endif
6792 #ifdef CONFIG_NET_NS
6793 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6794 			       task, &netns_operations);
6795 #endif
6796 #ifdef CONFIG_UTS_NS
6797 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6798 			       task, &utsns_operations);
6799 #endif
6800 #ifdef CONFIG_IPC_NS
6801 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6802 			       task, &ipcns_operations);
6803 #endif
6804 #ifdef CONFIG_PID_NS
6805 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6806 			       task, &pidns_operations);
6807 #endif
6808 #ifdef CONFIG_CGROUPS
6809 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6810 			       task, &cgroupns_operations);
6811 #endif
6812 
6813 	perf_iterate_sb(perf_event_namespaces_output,
6814 			&namespaces_event,
6815 			NULL);
6816 }
6817 
6818 /*
6819  * mmap tracking
6820  */
6821 
6822 struct perf_mmap_event {
6823 	struct vm_area_struct	*vma;
6824 
6825 	const char		*file_name;
6826 	int			file_size;
6827 	int			maj, min;
6828 	u64			ino;
6829 	u64			ino_generation;
6830 	u32			prot, flags;
6831 
6832 	struct {
6833 		struct perf_event_header	header;
6834 
6835 		u32				pid;
6836 		u32				tid;
6837 		u64				start;
6838 		u64				len;
6839 		u64				pgoff;
6840 	} event_id;
6841 };
6842 
6843 static int perf_event_mmap_match(struct perf_event *event,
6844 				 void *data)
6845 {
6846 	struct perf_mmap_event *mmap_event = data;
6847 	struct vm_area_struct *vma = mmap_event->vma;
6848 	int executable = vma->vm_flags & VM_EXEC;
6849 
6850 	return (!executable && event->attr.mmap_data) ||
6851 	       (executable && (event->attr.mmap || event->attr.mmap2));
6852 }
6853 
6854 static void perf_event_mmap_output(struct perf_event *event,
6855 				   void *data)
6856 {
6857 	struct perf_mmap_event *mmap_event = data;
6858 	struct perf_output_handle handle;
6859 	struct perf_sample_data sample;
6860 	int size = mmap_event->event_id.header.size;
6861 	int ret;
6862 
6863 	if (!perf_event_mmap_match(event, data))
6864 		return;
6865 
6866 	if (event->attr.mmap2) {
6867 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6868 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6869 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6870 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6871 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6872 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6873 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6874 	}
6875 
6876 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6877 	ret = perf_output_begin(&handle, event,
6878 				mmap_event->event_id.header.size);
6879 	if (ret)
6880 		goto out;
6881 
6882 	mmap_event->event_id.pid = perf_event_pid(event, current);
6883 	mmap_event->event_id.tid = perf_event_tid(event, current);
6884 
6885 	perf_output_put(&handle, mmap_event->event_id);
6886 
6887 	if (event->attr.mmap2) {
6888 		perf_output_put(&handle, mmap_event->maj);
6889 		perf_output_put(&handle, mmap_event->min);
6890 		perf_output_put(&handle, mmap_event->ino);
6891 		perf_output_put(&handle, mmap_event->ino_generation);
6892 		perf_output_put(&handle, mmap_event->prot);
6893 		perf_output_put(&handle, mmap_event->flags);
6894 	}
6895 
6896 	__output_copy(&handle, mmap_event->file_name,
6897 				   mmap_event->file_size);
6898 
6899 	perf_event__output_id_sample(event, &handle, &sample);
6900 
6901 	perf_output_end(&handle);
6902 out:
6903 	mmap_event->event_id.header.size = size;
6904 }
6905 
6906 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6907 {
6908 	struct vm_area_struct *vma = mmap_event->vma;
6909 	struct file *file = vma->vm_file;
6910 	int maj = 0, min = 0;
6911 	u64 ino = 0, gen = 0;
6912 	u32 prot = 0, flags = 0;
6913 	unsigned int size;
6914 	char tmp[16];
6915 	char *buf = NULL;
6916 	char *name;
6917 
6918 	if (vma->vm_flags & VM_READ)
6919 		prot |= PROT_READ;
6920 	if (vma->vm_flags & VM_WRITE)
6921 		prot |= PROT_WRITE;
6922 	if (vma->vm_flags & VM_EXEC)
6923 		prot |= PROT_EXEC;
6924 
6925 	if (vma->vm_flags & VM_MAYSHARE)
6926 		flags = MAP_SHARED;
6927 	else
6928 		flags = MAP_PRIVATE;
6929 
6930 	if (vma->vm_flags & VM_DENYWRITE)
6931 		flags |= MAP_DENYWRITE;
6932 	if (vma->vm_flags & VM_MAYEXEC)
6933 		flags |= MAP_EXECUTABLE;
6934 	if (vma->vm_flags & VM_LOCKED)
6935 		flags |= MAP_LOCKED;
6936 	if (vma->vm_flags & VM_HUGETLB)
6937 		flags |= MAP_HUGETLB;
6938 
6939 	if (file) {
6940 		struct inode *inode;
6941 		dev_t dev;
6942 
6943 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6944 		if (!buf) {
6945 			name = "//enomem";
6946 			goto cpy_name;
6947 		}
6948 		/*
6949 		 * d_path() works from the end of the rb backwards, so we
6950 		 * need to add enough zero bytes after the string to handle
6951 		 * the 64bit alignment we do later.
6952 		 */
6953 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6954 		if (IS_ERR(name)) {
6955 			name = "//toolong";
6956 			goto cpy_name;
6957 		}
6958 		inode = file_inode(vma->vm_file);
6959 		dev = inode->i_sb->s_dev;
6960 		ino = inode->i_ino;
6961 		gen = inode->i_generation;
6962 		maj = MAJOR(dev);
6963 		min = MINOR(dev);
6964 
6965 		goto got_name;
6966 	} else {
6967 		if (vma->vm_ops && vma->vm_ops->name) {
6968 			name = (char *) vma->vm_ops->name(vma);
6969 			if (name)
6970 				goto cpy_name;
6971 		}
6972 
6973 		name = (char *)arch_vma_name(vma);
6974 		if (name)
6975 			goto cpy_name;
6976 
6977 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6978 				vma->vm_end >= vma->vm_mm->brk) {
6979 			name = "[heap]";
6980 			goto cpy_name;
6981 		}
6982 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6983 				vma->vm_end >= vma->vm_mm->start_stack) {
6984 			name = "[stack]";
6985 			goto cpy_name;
6986 		}
6987 
6988 		name = "//anon";
6989 		goto cpy_name;
6990 	}
6991 
6992 cpy_name:
6993 	strlcpy(tmp, name, sizeof(tmp));
6994 	name = tmp;
6995 got_name:
6996 	/*
6997 	 * Since our buffer works in 8 byte units we need to align our string
6998 	 * size to a multiple of 8. However, we must guarantee the tail end is
6999 	 * zero'd out to avoid leaking random bits to userspace.
7000 	 */
7001 	size = strlen(name)+1;
7002 	while (!IS_ALIGNED(size, sizeof(u64)))
7003 		name[size++] = '\0';
7004 
7005 	mmap_event->file_name = name;
7006 	mmap_event->file_size = size;
7007 	mmap_event->maj = maj;
7008 	mmap_event->min = min;
7009 	mmap_event->ino = ino;
7010 	mmap_event->ino_generation = gen;
7011 	mmap_event->prot = prot;
7012 	mmap_event->flags = flags;
7013 
7014 	if (!(vma->vm_flags & VM_EXEC))
7015 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7016 
7017 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7018 
7019 	perf_iterate_sb(perf_event_mmap_output,
7020 		       mmap_event,
7021 		       NULL);
7022 
7023 	kfree(buf);
7024 }
7025 
7026 /*
7027  * Check whether inode and address range match filter criteria.
7028  */
7029 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7030 				     struct file *file, unsigned long offset,
7031 				     unsigned long size)
7032 {
7033 	if (filter->inode != file_inode(file))
7034 		return false;
7035 
7036 	if (filter->offset > offset + size)
7037 		return false;
7038 
7039 	if (filter->offset + filter->size < offset)
7040 		return false;
7041 
7042 	return true;
7043 }
7044 
7045 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7046 {
7047 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7048 	struct vm_area_struct *vma = data;
7049 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7050 	struct file *file = vma->vm_file;
7051 	struct perf_addr_filter *filter;
7052 	unsigned int restart = 0, count = 0;
7053 
7054 	if (!has_addr_filter(event))
7055 		return;
7056 
7057 	if (!file)
7058 		return;
7059 
7060 	raw_spin_lock_irqsave(&ifh->lock, flags);
7061 	list_for_each_entry(filter, &ifh->list, entry) {
7062 		if (perf_addr_filter_match(filter, file, off,
7063 					     vma->vm_end - vma->vm_start)) {
7064 			event->addr_filters_offs[count] = vma->vm_start;
7065 			restart++;
7066 		}
7067 
7068 		count++;
7069 	}
7070 
7071 	if (restart)
7072 		event->addr_filters_gen++;
7073 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7074 
7075 	if (restart)
7076 		perf_event_stop(event, 1);
7077 }
7078 
7079 /*
7080  * Adjust all task's events' filters to the new vma
7081  */
7082 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7083 {
7084 	struct perf_event_context *ctx;
7085 	int ctxn;
7086 
7087 	/*
7088 	 * Data tracing isn't supported yet and as such there is no need
7089 	 * to keep track of anything that isn't related to executable code:
7090 	 */
7091 	if (!(vma->vm_flags & VM_EXEC))
7092 		return;
7093 
7094 	rcu_read_lock();
7095 	for_each_task_context_nr(ctxn) {
7096 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7097 		if (!ctx)
7098 			continue;
7099 
7100 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7101 	}
7102 	rcu_read_unlock();
7103 }
7104 
7105 void perf_event_mmap(struct vm_area_struct *vma)
7106 {
7107 	struct perf_mmap_event mmap_event;
7108 
7109 	if (!atomic_read(&nr_mmap_events))
7110 		return;
7111 
7112 	mmap_event = (struct perf_mmap_event){
7113 		.vma	= vma,
7114 		/* .file_name */
7115 		/* .file_size */
7116 		.event_id  = {
7117 			.header = {
7118 				.type = PERF_RECORD_MMAP,
7119 				.misc = PERF_RECORD_MISC_USER,
7120 				/* .size */
7121 			},
7122 			/* .pid */
7123 			/* .tid */
7124 			.start  = vma->vm_start,
7125 			.len    = vma->vm_end - vma->vm_start,
7126 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7127 		},
7128 		/* .maj (attr_mmap2 only) */
7129 		/* .min (attr_mmap2 only) */
7130 		/* .ino (attr_mmap2 only) */
7131 		/* .ino_generation (attr_mmap2 only) */
7132 		/* .prot (attr_mmap2 only) */
7133 		/* .flags (attr_mmap2 only) */
7134 	};
7135 
7136 	perf_addr_filters_adjust(vma);
7137 	perf_event_mmap_event(&mmap_event);
7138 }
7139 
7140 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7141 			  unsigned long size, u64 flags)
7142 {
7143 	struct perf_output_handle handle;
7144 	struct perf_sample_data sample;
7145 	struct perf_aux_event {
7146 		struct perf_event_header	header;
7147 		u64				offset;
7148 		u64				size;
7149 		u64				flags;
7150 	} rec = {
7151 		.header = {
7152 			.type = PERF_RECORD_AUX,
7153 			.misc = 0,
7154 			.size = sizeof(rec),
7155 		},
7156 		.offset		= head,
7157 		.size		= size,
7158 		.flags		= flags,
7159 	};
7160 	int ret;
7161 
7162 	perf_event_header__init_id(&rec.header, &sample, event);
7163 	ret = perf_output_begin(&handle, event, rec.header.size);
7164 
7165 	if (ret)
7166 		return;
7167 
7168 	perf_output_put(&handle, rec);
7169 	perf_event__output_id_sample(event, &handle, &sample);
7170 
7171 	perf_output_end(&handle);
7172 }
7173 
7174 /*
7175  * Lost/dropped samples logging
7176  */
7177 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7178 {
7179 	struct perf_output_handle handle;
7180 	struct perf_sample_data sample;
7181 	int ret;
7182 
7183 	struct {
7184 		struct perf_event_header	header;
7185 		u64				lost;
7186 	} lost_samples_event = {
7187 		.header = {
7188 			.type = PERF_RECORD_LOST_SAMPLES,
7189 			.misc = 0,
7190 			.size = sizeof(lost_samples_event),
7191 		},
7192 		.lost		= lost,
7193 	};
7194 
7195 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7196 
7197 	ret = perf_output_begin(&handle, event,
7198 				lost_samples_event.header.size);
7199 	if (ret)
7200 		return;
7201 
7202 	perf_output_put(&handle, lost_samples_event);
7203 	perf_event__output_id_sample(event, &handle, &sample);
7204 	perf_output_end(&handle);
7205 }
7206 
7207 /*
7208  * context_switch tracking
7209  */
7210 
7211 struct perf_switch_event {
7212 	struct task_struct	*task;
7213 	struct task_struct	*next_prev;
7214 
7215 	struct {
7216 		struct perf_event_header	header;
7217 		u32				next_prev_pid;
7218 		u32				next_prev_tid;
7219 	} event_id;
7220 };
7221 
7222 static int perf_event_switch_match(struct perf_event *event)
7223 {
7224 	return event->attr.context_switch;
7225 }
7226 
7227 static void perf_event_switch_output(struct perf_event *event, void *data)
7228 {
7229 	struct perf_switch_event *se = data;
7230 	struct perf_output_handle handle;
7231 	struct perf_sample_data sample;
7232 	int ret;
7233 
7234 	if (!perf_event_switch_match(event))
7235 		return;
7236 
7237 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7238 	if (event->ctx->task) {
7239 		se->event_id.header.type = PERF_RECORD_SWITCH;
7240 		se->event_id.header.size = sizeof(se->event_id.header);
7241 	} else {
7242 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7243 		se->event_id.header.size = sizeof(se->event_id);
7244 		se->event_id.next_prev_pid =
7245 					perf_event_pid(event, se->next_prev);
7246 		se->event_id.next_prev_tid =
7247 					perf_event_tid(event, se->next_prev);
7248 	}
7249 
7250 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7251 
7252 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7253 	if (ret)
7254 		return;
7255 
7256 	if (event->ctx->task)
7257 		perf_output_put(&handle, se->event_id.header);
7258 	else
7259 		perf_output_put(&handle, se->event_id);
7260 
7261 	perf_event__output_id_sample(event, &handle, &sample);
7262 
7263 	perf_output_end(&handle);
7264 }
7265 
7266 static void perf_event_switch(struct task_struct *task,
7267 			      struct task_struct *next_prev, bool sched_in)
7268 {
7269 	struct perf_switch_event switch_event;
7270 
7271 	/* N.B. caller checks nr_switch_events != 0 */
7272 
7273 	switch_event = (struct perf_switch_event){
7274 		.task		= task,
7275 		.next_prev	= next_prev,
7276 		.event_id	= {
7277 			.header = {
7278 				/* .type */
7279 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7280 				/* .size */
7281 			},
7282 			/* .next_prev_pid */
7283 			/* .next_prev_tid */
7284 		},
7285 	};
7286 
7287 	perf_iterate_sb(perf_event_switch_output,
7288 		       &switch_event,
7289 		       NULL);
7290 }
7291 
7292 /*
7293  * IRQ throttle logging
7294  */
7295 
7296 static void perf_log_throttle(struct perf_event *event, int enable)
7297 {
7298 	struct perf_output_handle handle;
7299 	struct perf_sample_data sample;
7300 	int ret;
7301 
7302 	struct {
7303 		struct perf_event_header	header;
7304 		u64				time;
7305 		u64				id;
7306 		u64				stream_id;
7307 	} throttle_event = {
7308 		.header = {
7309 			.type = PERF_RECORD_THROTTLE,
7310 			.misc = 0,
7311 			.size = sizeof(throttle_event),
7312 		},
7313 		.time		= perf_event_clock(event),
7314 		.id		= primary_event_id(event),
7315 		.stream_id	= event->id,
7316 	};
7317 
7318 	if (enable)
7319 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7320 
7321 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7322 
7323 	ret = perf_output_begin(&handle, event,
7324 				throttle_event.header.size);
7325 	if (ret)
7326 		return;
7327 
7328 	perf_output_put(&handle, throttle_event);
7329 	perf_event__output_id_sample(event, &handle, &sample);
7330 	perf_output_end(&handle);
7331 }
7332 
7333 void perf_event_itrace_started(struct perf_event *event)
7334 {
7335 	event->attach_state |= PERF_ATTACH_ITRACE;
7336 }
7337 
7338 static void perf_log_itrace_start(struct perf_event *event)
7339 {
7340 	struct perf_output_handle handle;
7341 	struct perf_sample_data sample;
7342 	struct perf_aux_event {
7343 		struct perf_event_header        header;
7344 		u32				pid;
7345 		u32				tid;
7346 	} rec;
7347 	int ret;
7348 
7349 	if (event->parent)
7350 		event = event->parent;
7351 
7352 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7353 	    event->attach_state & PERF_ATTACH_ITRACE)
7354 		return;
7355 
7356 	rec.header.type	= PERF_RECORD_ITRACE_START;
7357 	rec.header.misc	= 0;
7358 	rec.header.size	= sizeof(rec);
7359 	rec.pid	= perf_event_pid(event, current);
7360 	rec.tid	= perf_event_tid(event, current);
7361 
7362 	perf_event_header__init_id(&rec.header, &sample, event);
7363 	ret = perf_output_begin(&handle, event, rec.header.size);
7364 
7365 	if (ret)
7366 		return;
7367 
7368 	perf_output_put(&handle, rec);
7369 	perf_event__output_id_sample(event, &handle, &sample);
7370 
7371 	perf_output_end(&handle);
7372 }
7373 
7374 static int
7375 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7376 {
7377 	struct hw_perf_event *hwc = &event->hw;
7378 	int ret = 0;
7379 	u64 seq;
7380 
7381 	seq = __this_cpu_read(perf_throttled_seq);
7382 	if (seq != hwc->interrupts_seq) {
7383 		hwc->interrupts_seq = seq;
7384 		hwc->interrupts = 1;
7385 	} else {
7386 		hwc->interrupts++;
7387 		if (unlikely(throttle
7388 			     && hwc->interrupts >= max_samples_per_tick)) {
7389 			__this_cpu_inc(perf_throttled_count);
7390 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7391 			hwc->interrupts = MAX_INTERRUPTS;
7392 			perf_log_throttle(event, 0);
7393 			ret = 1;
7394 		}
7395 	}
7396 
7397 	if (event->attr.freq) {
7398 		u64 now = perf_clock();
7399 		s64 delta = now - hwc->freq_time_stamp;
7400 
7401 		hwc->freq_time_stamp = now;
7402 
7403 		if (delta > 0 && delta < 2*TICK_NSEC)
7404 			perf_adjust_period(event, delta, hwc->last_period, true);
7405 	}
7406 
7407 	return ret;
7408 }
7409 
7410 int perf_event_account_interrupt(struct perf_event *event)
7411 {
7412 	return __perf_event_account_interrupt(event, 1);
7413 }
7414 
7415 /*
7416  * Generic event overflow handling, sampling.
7417  */
7418 
7419 static int __perf_event_overflow(struct perf_event *event,
7420 				   int throttle, struct perf_sample_data *data,
7421 				   struct pt_regs *regs)
7422 {
7423 	int events = atomic_read(&event->event_limit);
7424 	int ret = 0;
7425 
7426 	/*
7427 	 * Non-sampling counters might still use the PMI to fold short
7428 	 * hardware counters, ignore those.
7429 	 */
7430 	if (unlikely(!is_sampling_event(event)))
7431 		return 0;
7432 
7433 	ret = __perf_event_account_interrupt(event, throttle);
7434 
7435 	/*
7436 	 * XXX event_limit might not quite work as expected on inherited
7437 	 * events
7438 	 */
7439 
7440 	event->pending_kill = POLL_IN;
7441 	if (events && atomic_dec_and_test(&event->event_limit)) {
7442 		ret = 1;
7443 		event->pending_kill = POLL_HUP;
7444 
7445 		perf_event_disable_inatomic(event);
7446 	}
7447 
7448 	READ_ONCE(event->overflow_handler)(event, data, regs);
7449 
7450 	if (*perf_event_fasync(event) && event->pending_kill) {
7451 		event->pending_wakeup = 1;
7452 		irq_work_queue(&event->pending);
7453 	}
7454 
7455 	return ret;
7456 }
7457 
7458 int perf_event_overflow(struct perf_event *event,
7459 			  struct perf_sample_data *data,
7460 			  struct pt_regs *regs)
7461 {
7462 	return __perf_event_overflow(event, 1, data, regs);
7463 }
7464 
7465 /*
7466  * Generic software event infrastructure
7467  */
7468 
7469 struct swevent_htable {
7470 	struct swevent_hlist		*swevent_hlist;
7471 	struct mutex			hlist_mutex;
7472 	int				hlist_refcount;
7473 
7474 	/* Recursion avoidance in each contexts */
7475 	int				recursion[PERF_NR_CONTEXTS];
7476 };
7477 
7478 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7479 
7480 /*
7481  * We directly increment event->count and keep a second value in
7482  * event->hw.period_left to count intervals. This period event
7483  * is kept in the range [-sample_period, 0] so that we can use the
7484  * sign as trigger.
7485  */
7486 
7487 u64 perf_swevent_set_period(struct perf_event *event)
7488 {
7489 	struct hw_perf_event *hwc = &event->hw;
7490 	u64 period = hwc->last_period;
7491 	u64 nr, offset;
7492 	s64 old, val;
7493 
7494 	hwc->last_period = hwc->sample_period;
7495 
7496 again:
7497 	old = val = local64_read(&hwc->period_left);
7498 	if (val < 0)
7499 		return 0;
7500 
7501 	nr = div64_u64(period + val, period);
7502 	offset = nr * period;
7503 	val -= offset;
7504 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7505 		goto again;
7506 
7507 	return nr;
7508 }
7509 
7510 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7511 				    struct perf_sample_data *data,
7512 				    struct pt_regs *regs)
7513 {
7514 	struct hw_perf_event *hwc = &event->hw;
7515 	int throttle = 0;
7516 
7517 	if (!overflow)
7518 		overflow = perf_swevent_set_period(event);
7519 
7520 	if (hwc->interrupts == MAX_INTERRUPTS)
7521 		return;
7522 
7523 	for (; overflow; overflow--) {
7524 		if (__perf_event_overflow(event, throttle,
7525 					    data, regs)) {
7526 			/*
7527 			 * We inhibit the overflow from happening when
7528 			 * hwc->interrupts == MAX_INTERRUPTS.
7529 			 */
7530 			break;
7531 		}
7532 		throttle = 1;
7533 	}
7534 }
7535 
7536 static void perf_swevent_event(struct perf_event *event, u64 nr,
7537 			       struct perf_sample_data *data,
7538 			       struct pt_regs *regs)
7539 {
7540 	struct hw_perf_event *hwc = &event->hw;
7541 
7542 	local64_add(nr, &event->count);
7543 
7544 	if (!regs)
7545 		return;
7546 
7547 	if (!is_sampling_event(event))
7548 		return;
7549 
7550 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7551 		data->period = nr;
7552 		return perf_swevent_overflow(event, 1, data, regs);
7553 	} else
7554 		data->period = event->hw.last_period;
7555 
7556 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7557 		return perf_swevent_overflow(event, 1, data, regs);
7558 
7559 	if (local64_add_negative(nr, &hwc->period_left))
7560 		return;
7561 
7562 	perf_swevent_overflow(event, 0, data, regs);
7563 }
7564 
7565 static int perf_exclude_event(struct perf_event *event,
7566 			      struct pt_regs *regs)
7567 {
7568 	if (event->hw.state & PERF_HES_STOPPED)
7569 		return 1;
7570 
7571 	if (regs) {
7572 		if (event->attr.exclude_user && user_mode(regs))
7573 			return 1;
7574 
7575 		if (event->attr.exclude_kernel && !user_mode(regs))
7576 			return 1;
7577 	}
7578 
7579 	return 0;
7580 }
7581 
7582 static int perf_swevent_match(struct perf_event *event,
7583 				enum perf_type_id type,
7584 				u32 event_id,
7585 				struct perf_sample_data *data,
7586 				struct pt_regs *regs)
7587 {
7588 	if (event->attr.type != type)
7589 		return 0;
7590 
7591 	if (event->attr.config != event_id)
7592 		return 0;
7593 
7594 	if (perf_exclude_event(event, regs))
7595 		return 0;
7596 
7597 	return 1;
7598 }
7599 
7600 static inline u64 swevent_hash(u64 type, u32 event_id)
7601 {
7602 	u64 val = event_id | (type << 32);
7603 
7604 	return hash_64(val, SWEVENT_HLIST_BITS);
7605 }
7606 
7607 static inline struct hlist_head *
7608 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7609 {
7610 	u64 hash = swevent_hash(type, event_id);
7611 
7612 	return &hlist->heads[hash];
7613 }
7614 
7615 /* For the read side: events when they trigger */
7616 static inline struct hlist_head *
7617 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7618 {
7619 	struct swevent_hlist *hlist;
7620 
7621 	hlist = rcu_dereference(swhash->swevent_hlist);
7622 	if (!hlist)
7623 		return NULL;
7624 
7625 	return __find_swevent_head(hlist, type, event_id);
7626 }
7627 
7628 /* For the event head insertion and removal in the hlist */
7629 static inline struct hlist_head *
7630 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7631 {
7632 	struct swevent_hlist *hlist;
7633 	u32 event_id = event->attr.config;
7634 	u64 type = event->attr.type;
7635 
7636 	/*
7637 	 * Event scheduling is always serialized against hlist allocation
7638 	 * and release. Which makes the protected version suitable here.
7639 	 * The context lock guarantees that.
7640 	 */
7641 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7642 					  lockdep_is_held(&event->ctx->lock));
7643 	if (!hlist)
7644 		return NULL;
7645 
7646 	return __find_swevent_head(hlist, type, event_id);
7647 }
7648 
7649 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7650 				    u64 nr,
7651 				    struct perf_sample_data *data,
7652 				    struct pt_regs *regs)
7653 {
7654 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7655 	struct perf_event *event;
7656 	struct hlist_head *head;
7657 
7658 	rcu_read_lock();
7659 	head = find_swevent_head_rcu(swhash, type, event_id);
7660 	if (!head)
7661 		goto end;
7662 
7663 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7664 		if (perf_swevent_match(event, type, event_id, data, regs))
7665 			perf_swevent_event(event, nr, data, regs);
7666 	}
7667 end:
7668 	rcu_read_unlock();
7669 }
7670 
7671 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7672 
7673 int perf_swevent_get_recursion_context(void)
7674 {
7675 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7676 
7677 	return get_recursion_context(swhash->recursion);
7678 }
7679 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7680 
7681 void perf_swevent_put_recursion_context(int rctx)
7682 {
7683 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7684 
7685 	put_recursion_context(swhash->recursion, rctx);
7686 }
7687 
7688 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7689 {
7690 	struct perf_sample_data data;
7691 
7692 	if (WARN_ON_ONCE(!regs))
7693 		return;
7694 
7695 	perf_sample_data_init(&data, addr, 0);
7696 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7697 }
7698 
7699 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7700 {
7701 	int rctx;
7702 
7703 	preempt_disable_notrace();
7704 	rctx = perf_swevent_get_recursion_context();
7705 	if (unlikely(rctx < 0))
7706 		goto fail;
7707 
7708 	___perf_sw_event(event_id, nr, regs, addr);
7709 
7710 	perf_swevent_put_recursion_context(rctx);
7711 fail:
7712 	preempt_enable_notrace();
7713 }
7714 
7715 static void perf_swevent_read(struct perf_event *event)
7716 {
7717 }
7718 
7719 static int perf_swevent_add(struct perf_event *event, int flags)
7720 {
7721 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7722 	struct hw_perf_event *hwc = &event->hw;
7723 	struct hlist_head *head;
7724 
7725 	if (is_sampling_event(event)) {
7726 		hwc->last_period = hwc->sample_period;
7727 		perf_swevent_set_period(event);
7728 	}
7729 
7730 	hwc->state = !(flags & PERF_EF_START);
7731 
7732 	head = find_swevent_head(swhash, event);
7733 	if (WARN_ON_ONCE(!head))
7734 		return -EINVAL;
7735 
7736 	hlist_add_head_rcu(&event->hlist_entry, head);
7737 	perf_event_update_userpage(event);
7738 
7739 	return 0;
7740 }
7741 
7742 static void perf_swevent_del(struct perf_event *event, int flags)
7743 {
7744 	hlist_del_rcu(&event->hlist_entry);
7745 }
7746 
7747 static void perf_swevent_start(struct perf_event *event, int flags)
7748 {
7749 	event->hw.state = 0;
7750 }
7751 
7752 static void perf_swevent_stop(struct perf_event *event, int flags)
7753 {
7754 	event->hw.state = PERF_HES_STOPPED;
7755 }
7756 
7757 /* Deref the hlist from the update side */
7758 static inline struct swevent_hlist *
7759 swevent_hlist_deref(struct swevent_htable *swhash)
7760 {
7761 	return rcu_dereference_protected(swhash->swevent_hlist,
7762 					 lockdep_is_held(&swhash->hlist_mutex));
7763 }
7764 
7765 static void swevent_hlist_release(struct swevent_htable *swhash)
7766 {
7767 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7768 
7769 	if (!hlist)
7770 		return;
7771 
7772 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7773 	kfree_rcu(hlist, rcu_head);
7774 }
7775 
7776 static void swevent_hlist_put_cpu(int cpu)
7777 {
7778 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7779 
7780 	mutex_lock(&swhash->hlist_mutex);
7781 
7782 	if (!--swhash->hlist_refcount)
7783 		swevent_hlist_release(swhash);
7784 
7785 	mutex_unlock(&swhash->hlist_mutex);
7786 }
7787 
7788 static void swevent_hlist_put(void)
7789 {
7790 	int cpu;
7791 
7792 	for_each_possible_cpu(cpu)
7793 		swevent_hlist_put_cpu(cpu);
7794 }
7795 
7796 static int swevent_hlist_get_cpu(int cpu)
7797 {
7798 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7799 	int err = 0;
7800 
7801 	mutex_lock(&swhash->hlist_mutex);
7802 	if (!swevent_hlist_deref(swhash) &&
7803 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7804 		struct swevent_hlist *hlist;
7805 
7806 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7807 		if (!hlist) {
7808 			err = -ENOMEM;
7809 			goto exit;
7810 		}
7811 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7812 	}
7813 	swhash->hlist_refcount++;
7814 exit:
7815 	mutex_unlock(&swhash->hlist_mutex);
7816 
7817 	return err;
7818 }
7819 
7820 static int swevent_hlist_get(void)
7821 {
7822 	int err, cpu, failed_cpu;
7823 
7824 	mutex_lock(&pmus_lock);
7825 	for_each_possible_cpu(cpu) {
7826 		err = swevent_hlist_get_cpu(cpu);
7827 		if (err) {
7828 			failed_cpu = cpu;
7829 			goto fail;
7830 		}
7831 	}
7832 	mutex_unlock(&pmus_lock);
7833 	return 0;
7834 fail:
7835 	for_each_possible_cpu(cpu) {
7836 		if (cpu == failed_cpu)
7837 			break;
7838 		swevent_hlist_put_cpu(cpu);
7839 	}
7840 	mutex_unlock(&pmus_lock);
7841 	return err;
7842 }
7843 
7844 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7845 
7846 static void sw_perf_event_destroy(struct perf_event *event)
7847 {
7848 	u64 event_id = event->attr.config;
7849 
7850 	WARN_ON(event->parent);
7851 
7852 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7853 	swevent_hlist_put();
7854 }
7855 
7856 static int perf_swevent_init(struct perf_event *event)
7857 {
7858 	u64 event_id = event->attr.config;
7859 
7860 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7861 		return -ENOENT;
7862 
7863 	/*
7864 	 * no branch sampling for software events
7865 	 */
7866 	if (has_branch_stack(event))
7867 		return -EOPNOTSUPP;
7868 
7869 	switch (event_id) {
7870 	case PERF_COUNT_SW_CPU_CLOCK:
7871 	case PERF_COUNT_SW_TASK_CLOCK:
7872 		return -ENOENT;
7873 
7874 	default:
7875 		break;
7876 	}
7877 
7878 	if (event_id >= PERF_COUNT_SW_MAX)
7879 		return -ENOENT;
7880 
7881 	if (!event->parent) {
7882 		int err;
7883 
7884 		err = swevent_hlist_get();
7885 		if (err)
7886 			return err;
7887 
7888 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7889 		event->destroy = sw_perf_event_destroy;
7890 	}
7891 
7892 	return 0;
7893 }
7894 
7895 static struct pmu perf_swevent = {
7896 	.task_ctx_nr	= perf_sw_context,
7897 
7898 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7899 
7900 	.event_init	= perf_swevent_init,
7901 	.add		= perf_swevent_add,
7902 	.del		= perf_swevent_del,
7903 	.start		= perf_swevent_start,
7904 	.stop		= perf_swevent_stop,
7905 	.read		= perf_swevent_read,
7906 };
7907 
7908 #ifdef CONFIG_EVENT_TRACING
7909 
7910 static int perf_tp_filter_match(struct perf_event *event,
7911 				struct perf_sample_data *data)
7912 {
7913 	void *record = data->raw->frag.data;
7914 
7915 	/* only top level events have filters set */
7916 	if (event->parent)
7917 		event = event->parent;
7918 
7919 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7920 		return 1;
7921 	return 0;
7922 }
7923 
7924 static int perf_tp_event_match(struct perf_event *event,
7925 				struct perf_sample_data *data,
7926 				struct pt_regs *regs)
7927 {
7928 	if (event->hw.state & PERF_HES_STOPPED)
7929 		return 0;
7930 	/*
7931 	 * All tracepoints are from kernel-space.
7932 	 */
7933 	if (event->attr.exclude_kernel)
7934 		return 0;
7935 
7936 	if (!perf_tp_filter_match(event, data))
7937 		return 0;
7938 
7939 	return 1;
7940 }
7941 
7942 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7943 			       struct trace_event_call *call, u64 count,
7944 			       struct pt_regs *regs, struct hlist_head *head,
7945 			       struct task_struct *task)
7946 {
7947 	struct bpf_prog *prog = call->prog;
7948 
7949 	if (prog) {
7950 		*(struct pt_regs **)raw_data = regs;
7951 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7952 			perf_swevent_put_recursion_context(rctx);
7953 			return;
7954 		}
7955 	}
7956 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7957 		      rctx, task, NULL);
7958 }
7959 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7960 
7961 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7962 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7963 		   struct task_struct *task, struct perf_event *event)
7964 {
7965 	struct perf_sample_data data;
7966 
7967 	struct perf_raw_record raw = {
7968 		.frag = {
7969 			.size = entry_size,
7970 			.data = record,
7971 		},
7972 	};
7973 
7974 	perf_sample_data_init(&data, 0, 0);
7975 	data.raw = &raw;
7976 
7977 	perf_trace_buf_update(record, event_type);
7978 
7979 	/* Use the given event instead of the hlist */
7980 	if (event) {
7981 		if (perf_tp_event_match(event, &data, regs))
7982 			perf_swevent_event(event, count, &data, regs);
7983 	} else {
7984 		hlist_for_each_entry_rcu(event, head, hlist_entry) {
7985 			if (perf_tp_event_match(event, &data, regs))
7986 				perf_swevent_event(event, count, &data, regs);
7987 		}
7988 	}
7989 
7990 	/*
7991 	 * If we got specified a target task, also iterate its context and
7992 	 * deliver this event there too.
7993 	 */
7994 	if (task && task != current) {
7995 		struct perf_event_context *ctx;
7996 		struct trace_entry *entry = record;
7997 
7998 		rcu_read_lock();
7999 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8000 		if (!ctx)
8001 			goto unlock;
8002 
8003 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8004 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8005 				continue;
8006 			if (event->attr.config != entry->type)
8007 				continue;
8008 			if (perf_tp_event_match(event, &data, regs))
8009 				perf_swevent_event(event, count, &data, regs);
8010 		}
8011 unlock:
8012 		rcu_read_unlock();
8013 	}
8014 
8015 	perf_swevent_put_recursion_context(rctx);
8016 }
8017 EXPORT_SYMBOL_GPL(perf_tp_event);
8018 
8019 static void tp_perf_event_destroy(struct perf_event *event)
8020 {
8021 	perf_trace_destroy(event);
8022 }
8023 
8024 static int perf_tp_event_init(struct perf_event *event)
8025 {
8026 	int err;
8027 
8028 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8029 		return -ENOENT;
8030 
8031 	/*
8032 	 * no branch sampling for tracepoint events
8033 	 */
8034 	if (has_branch_stack(event))
8035 		return -EOPNOTSUPP;
8036 
8037 	err = perf_trace_init(event);
8038 	if (err)
8039 		return err;
8040 
8041 	event->destroy = tp_perf_event_destroy;
8042 
8043 	return 0;
8044 }
8045 
8046 static struct pmu perf_tracepoint = {
8047 	.task_ctx_nr	= perf_sw_context,
8048 
8049 	.event_init	= perf_tp_event_init,
8050 	.add		= perf_trace_add,
8051 	.del		= perf_trace_del,
8052 	.start		= perf_swevent_start,
8053 	.stop		= perf_swevent_stop,
8054 	.read		= perf_swevent_read,
8055 };
8056 
8057 static inline void perf_tp_register(void)
8058 {
8059 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8060 }
8061 
8062 static void perf_event_free_filter(struct perf_event *event)
8063 {
8064 	ftrace_profile_free_filter(event);
8065 }
8066 
8067 #ifdef CONFIG_BPF_SYSCALL
8068 static void bpf_overflow_handler(struct perf_event *event,
8069 				 struct perf_sample_data *data,
8070 				 struct pt_regs *regs)
8071 {
8072 	struct bpf_perf_event_data_kern ctx = {
8073 		.data = data,
8074 		.regs = regs,
8075 	};
8076 	int ret = 0;
8077 
8078 	preempt_disable();
8079 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8080 		goto out;
8081 	rcu_read_lock();
8082 	ret = BPF_PROG_RUN(event->prog, &ctx);
8083 	rcu_read_unlock();
8084 out:
8085 	__this_cpu_dec(bpf_prog_active);
8086 	preempt_enable();
8087 	if (!ret)
8088 		return;
8089 
8090 	event->orig_overflow_handler(event, data, regs);
8091 }
8092 
8093 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8094 {
8095 	struct bpf_prog *prog;
8096 
8097 	if (event->overflow_handler_context)
8098 		/* hw breakpoint or kernel counter */
8099 		return -EINVAL;
8100 
8101 	if (event->prog)
8102 		return -EEXIST;
8103 
8104 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8105 	if (IS_ERR(prog))
8106 		return PTR_ERR(prog);
8107 
8108 	event->prog = prog;
8109 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8110 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8111 	return 0;
8112 }
8113 
8114 static void perf_event_free_bpf_handler(struct perf_event *event)
8115 {
8116 	struct bpf_prog *prog = event->prog;
8117 
8118 	if (!prog)
8119 		return;
8120 
8121 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8122 	event->prog = NULL;
8123 	bpf_prog_put(prog);
8124 }
8125 #else
8126 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8127 {
8128 	return -EOPNOTSUPP;
8129 }
8130 static void perf_event_free_bpf_handler(struct perf_event *event)
8131 {
8132 }
8133 #endif
8134 
8135 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8136 {
8137 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8138 	struct bpf_prog *prog;
8139 
8140 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8141 		return perf_event_set_bpf_handler(event, prog_fd);
8142 
8143 	if (event->tp_event->prog)
8144 		return -EEXIST;
8145 
8146 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8147 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8148 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8149 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8150 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8151 		return -EINVAL;
8152 
8153 	prog = bpf_prog_get(prog_fd);
8154 	if (IS_ERR(prog))
8155 		return PTR_ERR(prog);
8156 
8157 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8158 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8159 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8160 		/* valid fd, but invalid bpf program type */
8161 		bpf_prog_put(prog);
8162 		return -EINVAL;
8163 	}
8164 
8165 	if (is_tracepoint || is_syscall_tp) {
8166 		int off = trace_event_get_offsets(event->tp_event);
8167 
8168 		if (prog->aux->max_ctx_offset > off) {
8169 			bpf_prog_put(prog);
8170 			return -EACCES;
8171 		}
8172 	}
8173 	event->tp_event->prog = prog;
8174 
8175 	return 0;
8176 }
8177 
8178 static void perf_event_free_bpf_prog(struct perf_event *event)
8179 {
8180 	struct bpf_prog *prog;
8181 
8182 	perf_event_free_bpf_handler(event);
8183 
8184 	if (!event->tp_event)
8185 		return;
8186 
8187 	prog = event->tp_event->prog;
8188 	if (prog) {
8189 		event->tp_event->prog = NULL;
8190 		bpf_prog_put(prog);
8191 	}
8192 }
8193 
8194 #else
8195 
8196 static inline void perf_tp_register(void)
8197 {
8198 }
8199 
8200 static void perf_event_free_filter(struct perf_event *event)
8201 {
8202 }
8203 
8204 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8205 {
8206 	return -ENOENT;
8207 }
8208 
8209 static void perf_event_free_bpf_prog(struct perf_event *event)
8210 {
8211 }
8212 #endif /* CONFIG_EVENT_TRACING */
8213 
8214 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8215 void perf_bp_event(struct perf_event *bp, void *data)
8216 {
8217 	struct perf_sample_data sample;
8218 	struct pt_regs *regs = data;
8219 
8220 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8221 
8222 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8223 		perf_swevent_event(bp, 1, &sample, regs);
8224 }
8225 #endif
8226 
8227 /*
8228  * Allocate a new address filter
8229  */
8230 static struct perf_addr_filter *
8231 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8232 {
8233 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8234 	struct perf_addr_filter *filter;
8235 
8236 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8237 	if (!filter)
8238 		return NULL;
8239 
8240 	INIT_LIST_HEAD(&filter->entry);
8241 	list_add_tail(&filter->entry, filters);
8242 
8243 	return filter;
8244 }
8245 
8246 static void free_filters_list(struct list_head *filters)
8247 {
8248 	struct perf_addr_filter *filter, *iter;
8249 
8250 	list_for_each_entry_safe(filter, iter, filters, entry) {
8251 		if (filter->inode)
8252 			iput(filter->inode);
8253 		list_del(&filter->entry);
8254 		kfree(filter);
8255 	}
8256 }
8257 
8258 /*
8259  * Free existing address filters and optionally install new ones
8260  */
8261 static void perf_addr_filters_splice(struct perf_event *event,
8262 				     struct list_head *head)
8263 {
8264 	unsigned long flags;
8265 	LIST_HEAD(list);
8266 
8267 	if (!has_addr_filter(event))
8268 		return;
8269 
8270 	/* don't bother with children, they don't have their own filters */
8271 	if (event->parent)
8272 		return;
8273 
8274 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8275 
8276 	list_splice_init(&event->addr_filters.list, &list);
8277 	if (head)
8278 		list_splice(head, &event->addr_filters.list);
8279 
8280 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8281 
8282 	free_filters_list(&list);
8283 }
8284 
8285 /*
8286  * Scan through mm's vmas and see if one of them matches the
8287  * @filter; if so, adjust filter's address range.
8288  * Called with mm::mmap_sem down for reading.
8289  */
8290 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8291 					    struct mm_struct *mm)
8292 {
8293 	struct vm_area_struct *vma;
8294 
8295 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8296 		struct file *file = vma->vm_file;
8297 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8298 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8299 
8300 		if (!file)
8301 			continue;
8302 
8303 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8304 			continue;
8305 
8306 		return vma->vm_start;
8307 	}
8308 
8309 	return 0;
8310 }
8311 
8312 /*
8313  * Update event's address range filters based on the
8314  * task's existing mappings, if any.
8315  */
8316 static void perf_event_addr_filters_apply(struct perf_event *event)
8317 {
8318 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8319 	struct task_struct *task = READ_ONCE(event->ctx->task);
8320 	struct perf_addr_filter *filter;
8321 	struct mm_struct *mm = NULL;
8322 	unsigned int count = 0;
8323 	unsigned long flags;
8324 
8325 	/*
8326 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8327 	 * will stop on the parent's child_mutex that our caller is also holding
8328 	 */
8329 	if (task == TASK_TOMBSTONE)
8330 		return;
8331 
8332 	if (!ifh->nr_file_filters)
8333 		return;
8334 
8335 	mm = get_task_mm(event->ctx->task);
8336 	if (!mm)
8337 		goto restart;
8338 
8339 	down_read(&mm->mmap_sem);
8340 
8341 	raw_spin_lock_irqsave(&ifh->lock, flags);
8342 	list_for_each_entry(filter, &ifh->list, entry) {
8343 		event->addr_filters_offs[count] = 0;
8344 
8345 		/*
8346 		 * Adjust base offset if the filter is associated to a binary
8347 		 * that needs to be mapped:
8348 		 */
8349 		if (filter->inode)
8350 			event->addr_filters_offs[count] =
8351 				perf_addr_filter_apply(filter, mm);
8352 
8353 		count++;
8354 	}
8355 
8356 	event->addr_filters_gen++;
8357 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8358 
8359 	up_read(&mm->mmap_sem);
8360 
8361 	mmput(mm);
8362 
8363 restart:
8364 	perf_event_stop(event, 1);
8365 }
8366 
8367 /*
8368  * Address range filtering: limiting the data to certain
8369  * instruction address ranges. Filters are ioctl()ed to us from
8370  * userspace as ascii strings.
8371  *
8372  * Filter string format:
8373  *
8374  * ACTION RANGE_SPEC
8375  * where ACTION is one of the
8376  *  * "filter": limit the trace to this region
8377  *  * "start": start tracing from this address
8378  *  * "stop": stop tracing at this address/region;
8379  * RANGE_SPEC is
8380  *  * for kernel addresses: <start address>[/<size>]
8381  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8382  *
8383  * if <size> is not specified, the range is treated as a single address.
8384  */
8385 enum {
8386 	IF_ACT_NONE = -1,
8387 	IF_ACT_FILTER,
8388 	IF_ACT_START,
8389 	IF_ACT_STOP,
8390 	IF_SRC_FILE,
8391 	IF_SRC_KERNEL,
8392 	IF_SRC_FILEADDR,
8393 	IF_SRC_KERNELADDR,
8394 };
8395 
8396 enum {
8397 	IF_STATE_ACTION = 0,
8398 	IF_STATE_SOURCE,
8399 	IF_STATE_END,
8400 };
8401 
8402 static const match_table_t if_tokens = {
8403 	{ IF_ACT_FILTER,	"filter" },
8404 	{ IF_ACT_START,		"start" },
8405 	{ IF_ACT_STOP,		"stop" },
8406 	{ IF_SRC_FILE,		"%u/%u@%s" },
8407 	{ IF_SRC_KERNEL,	"%u/%u" },
8408 	{ IF_SRC_FILEADDR,	"%u@%s" },
8409 	{ IF_SRC_KERNELADDR,	"%u" },
8410 	{ IF_ACT_NONE,		NULL },
8411 };
8412 
8413 /*
8414  * Address filter string parser
8415  */
8416 static int
8417 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8418 			     struct list_head *filters)
8419 {
8420 	struct perf_addr_filter *filter = NULL;
8421 	char *start, *orig, *filename = NULL;
8422 	struct path path;
8423 	substring_t args[MAX_OPT_ARGS];
8424 	int state = IF_STATE_ACTION, token;
8425 	unsigned int kernel = 0;
8426 	int ret = -EINVAL;
8427 
8428 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8429 	if (!fstr)
8430 		return -ENOMEM;
8431 
8432 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8433 		ret = -EINVAL;
8434 
8435 		if (!*start)
8436 			continue;
8437 
8438 		/* filter definition begins */
8439 		if (state == IF_STATE_ACTION) {
8440 			filter = perf_addr_filter_new(event, filters);
8441 			if (!filter)
8442 				goto fail;
8443 		}
8444 
8445 		token = match_token(start, if_tokens, args);
8446 		switch (token) {
8447 		case IF_ACT_FILTER:
8448 		case IF_ACT_START:
8449 			filter->filter = 1;
8450 
8451 		case IF_ACT_STOP:
8452 			if (state != IF_STATE_ACTION)
8453 				goto fail;
8454 
8455 			state = IF_STATE_SOURCE;
8456 			break;
8457 
8458 		case IF_SRC_KERNELADDR:
8459 		case IF_SRC_KERNEL:
8460 			kernel = 1;
8461 
8462 		case IF_SRC_FILEADDR:
8463 		case IF_SRC_FILE:
8464 			if (state != IF_STATE_SOURCE)
8465 				goto fail;
8466 
8467 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8468 				filter->range = 1;
8469 
8470 			*args[0].to = 0;
8471 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8472 			if (ret)
8473 				goto fail;
8474 
8475 			if (filter->range) {
8476 				*args[1].to = 0;
8477 				ret = kstrtoul(args[1].from, 0, &filter->size);
8478 				if (ret)
8479 					goto fail;
8480 			}
8481 
8482 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8483 				int fpos = filter->range ? 2 : 1;
8484 
8485 				filename = match_strdup(&args[fpos]);
8486 				if (!filename) {
8487 					ret = -ENOMEM;
8488 					goto fail;
8489 				}
8490 			}
8491 
8492 			state = IF_STATE_END;
8493 			break;
8494 
8495 		default:
8496 			goto fail;
8497 		}
8498 
8499 		/*
8500 		 * Filter definition is fully parsed, validate and install it.
8501 		 * Make sure that it doesn't contradict itself or the event's
8502 		 * attribute.
8503 		 */
8504 		if (state == IF_STATE_END) {
8505 			ret = -EINVAL;
8506 			if (kernel && event->attr.exclude_kernel)
8507 				goto fail;
8508 
8509 			if (!kernel) {
8510 				if (!filename)
8511 					goto fail;
8512 
8513 				/*
8514 				 * For now, we only support file-based filters
8515 				 * in per-task events; doing so for CPU-wide
8516 				 * events requires additional context switching
8517 				 * trickery, since same object code will be
8518 				 * mapped at different virtual addresses in
8519 				 * different processes.
8520 				 */
8521 				ret = -EOPNOTSUPP;
8522 				if (!event->ctx->task)
8523 					goto fail_free_name;
8524 
8525 				/* look up the path and grab its inode */
8526 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8527 				if (ret)
8528 					goto fail_free_name;
8529 
8530 				filter->inode = igrab(d_inode(path.dentry));
8531 				path_put(&path);
8532 				kfree(filename);
8533 				filename = NULL;
8534 
8535 				ret = -EINVAL;
8536 				if (!filter->inode ||
8537 				    !S_ISREG(filter->inode->i_mode))
8538 					/* free_filters_list() will iput() */
8539 					goto fail;
8540 
8541 				event->addr_filters.nr_file_filters++;
8542 			}
8543 
8544 			/* ready to consume more filters */
8545 			state = IF_STATE_ACTION;
8546 			filter = NULL;
8547 		}
8548 	}
8549 
8550 	if (state != IF_STATE_ACTION)
8551 		goto fail;
8552 
8553 	kfree(orig);
8554 
8555 	return 0;
8556 
8557 fail_free_name:
8558 	kfree(filename);
8559 fail:
8560 	free_filters_list(filters);
8561 	kfree(orig);
8562 
8563 	return ret;
8564 }
8565 
8566 static int
8567 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8568 {
8569 	LIST_HEAD(filters);
8570 	int ret;
8571 
8572 	/*
8573 	 * Since this is called in perf_ioctl() path, we're already holding
8574 	 * ctx::mutex.
8575 	 */
8576 	lockdep_assert_held(&event->ctx->mutex);
8577 
8578 	if (WARN_ON_ONCE(event->parent))
8579 		return -EINVAL;
8580 
8581 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8582 	if (ret)
8583 		goto fail_clear_files;
8584 
8585 	ret = event->pmu->addr_filters_validate(&filters);
8586 	if (ret)
8587 		goto fail_free_filters;
8588 
8589 	/* remove existing filters, if any */
8590 	perf_addr_filters_splice(event, &filters);
8591 
8592 	/* install new filters */
8593 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8594 
8595 	return ret;
8596 
8597 fail_free_filters:
8598 	free_filters_list(&filters);
8599 
8600 fail_clear_files:
8601 	event->addr_filters.nr_file_filters = 0;
8602 
8603 	return ret;
8604 }
8605 
8606 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8607 {
8608 	char *filter_str;
8609 	int ret = -EINVAL;
8610 
8611 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8612 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8613 	    !has_addr_filter(event))
8614 		return -EINVAL;
8615 
8616 	filter_str = strndup_user(arg, PAGE_SIZE);
8617 	if (IS_ERR(filter_str))
8618 		return PTR_ERR(filter_str);
8619 
8620 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8621 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8622 		ret = ftrace_profile_set_filter(event, event->attr.config,
8623 						filter_str);
8624 	else if (has_addr_filter(event))
8625 		ret = perf_event_set_addr_filter(event, filter_str);
8626 
8627 	kfree(filter_str);
8628 	return ret;
8629 }
8630 
8631 /*
8632  * hrtimer based swevent callback
8633  */
8634 
8635 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8636 {
8637 	enum hrtimer_restart ret = HRTIMER_RESTART;
8638 	struct perf_sample_data data;
8639 	struct pt_regs *regs;
8640 	struct perf_event *event;
8641 	u64 period;
8642 
8643 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8644 
8645 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8646 		return HRTIMER_NORESTART;
8647 
8648 	event->pmu->read(event);
8649 
8650 	perf_sample_data_init(&data, 0, event->hw.last_period);
8651 	regs = get_irq_regs();
8652 
8653 	if (regs && !perf_exclude_event(event, regs)) {
8654 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8655 			if (__perf_event_overflow(event, 1, &data, regs))
8656 				ret = HRTIMER_NORESTART;
8657 	}
8658 
8659 	period = max_t(u64, 10000, event->hw.sample_period);
8660 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8661 
8662 	return ret;
8663 }
8664 
8665 static void perf_swevent_start_hrtimer(struct perf_event *event)
8666 {
8667 	struct hw_perf_event *hwc = &event->hw;
8668 	s64 period;
8669 
8670 	if (!is_sampling_event(event))
8671 		return;
8672 
8673 	period = local64_read(&hwc->period_left);
8674 	if (period) {
8675 		if (period < 0)
8676 			period = 10000;
8677 
8678 		local64_set(&hwc->period_left, 0);
8679 	} else {
8680 		period = max_t(u64, 10000, hwc->sample_period);
8681 	}
8682 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8683 		      HRTIMER_MODE_REL_PINNED);
8684 }
8685 
8686 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8687 {
8688 	struct hw_perf_event *hwc = &event->hw;
8689 
8690 	if (is_sampling_event(event)) {
8691 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8692 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8693 
8694 		hrtimer_cancel(&hwc->hrtimer);
8695 	}
8696 }
8697 
8698 static void perf_swevent_init_hrtimer(struct perf_event *event)
8699 {
8700 	struct hw_perf_event *hwc = &event->hw;
8701 
8702 	if (!is_sampling_event(event))
8703 		return;
8704 
8705 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8706 	hwc->hrtimer.function = perf_swevent_hrtimer;
8707 
8708 	/*
8709 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8710 	 * mapping and avoid the whole period adjust feedback stuff.
8711 	 */
8712 	if (event->attr.freq) {
8713 		long freq = event->attr.sample_freq;
8714 
8715 		event->attr.sample_period = NSEC_PER_SEC / freq;
8716 		hwc->sample_period = event->attr.sample_period;
8717 		local64_set(&hwc->period_left, hwc->sample_period);
8718 		hwc->last_period = hwc->sample_period;
8719 		event->attr.freq = 0;
8720 	}
8721 }
8722 
8723 /*
8724  * Software event: cpu wall time clock
8725  */
8726 
8727 static void cpu_clock_event_update(struct perf_event *event)
8728 {
8729 	s64 prev;
8730 	u64 now;
8731 
8732 	now = local_clock();
8733 	prev = local64_xchg(&event->hw.prev_count, now);
8734 	local64_add(now - prev, &event->count);
8735 }
8736 
8737 static void cpu_clock_event_start(struct perf_event *event, int flags)
8738 {
8739 	local64_set(&event->hw.prev_count, local_clock());
8740 	perf_swevent_start_hrtimer(event);
8741 }
8742 
8743 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8744 {
8745 	perf_swevent_cancel_hrtimer(event);
8746 	cpu_clock_event_update(event);
8747 }
8748 
8749 static int cpu_clock_event_add(struct perf_event *event, int flags)
8750 {
8751 	if (flags & PERF_EF_START)
8752 		cpu_clock_event_start(event, flags);
8753 	perf_event_update_userpage(event);
8754 
8755 	return 0;
8756 }
8757 
8758 static void cpu_clock_event_del(struct perf_event *event, int flags)
8759 {
8760 	cpu_clock_event_stop(event, flags);
8761 }
8762 
8763 static void cpu_clock_event_read(struct perf_event *event)
8764 {
8765 	cpu_clock_event_update(event);
8766 }
8767 
8768 static int cpu_clock_event_init(struct perf_event *event)
8769 {
8770 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8771 		return -ENOENT;
8772 
8773 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8774 		return -ENOENT;
8775 
8776 	/*
8777 	 * no branch sampling for software events
8778 	 */
8779 	if (has_branch_stack(event))
8780 		return -EOPNOTSUPP;
8781 
8782 	perf_swevent_init_hrtimer(event);
8783 
8784 	return 0;
8785 }
8786 
8787 static struct pmu perf_cpu_clock = {
8788 	.task_ctx_nr	= perf_sw_context,
8789 
8790 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8791 
8792 	.event_init	= cpu_clock_event_init,
8793 	.add		= cpu_clock_event_add,
8794 	.del		= cpu_clock_event_del,
8795 	.start		= cpu_clock_event_start,
8796 	.stop		= cpu_clock_event_stop,
8797 	.read		= cpu_clock_event_read,
8798 };
8799 
8800 /*
8801  * Software event: task time clock
8802  */
8803 
8804 static void task_clock_event_update(struct perf_event *event, u64 now)
8805 {
8806 	u64 prev;
8807 	s64 delta;
8808 
8809 	prev = local64_xchg(&event->hw.prev_count, now);
8810 	delta = now - prev;
8811 	local64_add(delta, &event->count);
8812 }
8813 
8814 static void task_clock_event_start(struct perf_event *event, int flags)
8815 {
8816 	local64_set(&event->hw.prev_count, event->ctx->time);
8817 	perf_swevent_start_hrtimer(event);
8818 }
8819 
8820 static void task_clock_event_stop(struct perf_event *event, int flags)
8821 {
8822 	perf_swevent_cancel_hrtimer(event);
8823 	task_clock_event_update(event, event->ctx->time);
8824 }
8825 
8826 static int task_clock_event_add(struct perf_event *event, int flags)
8827 {
8828 	if (flags & PERF_EF_START)
8829 		task_clock_event_start(event, flags);
8830 	perf_event_update_userpage(event);
8831 
8832 	return 0;
8833 }
8834 
8835 static void task_clock_event_del(struct perf_event *event, int flags)
8836 {
8837 	task_clock_event_stop(event, PERF_EF_UPDATE);
8838 }
8839 
8840 static void task_clock_event_read(struct perf_event *event)
8841 {
8842 	u64 now = perf_clock();
8843 	u64 delta = now - event->ctx->timestamp;
8844 	u64 time = event->ctx->time + delta;
8845 
8846 	task_clock_event_update(event, time);
8847 }
8848 
8849 static int task_clock_event_init(struct perf_event *event)
8850 {
8851 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8852 		return -ENOENT;
8853 
8854 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8855 		return -ENOENT;
8856 
8857 	/*
8858 	 * no branch sampling for software events
8859 	 */
8860 	if (has_branch_stack(event))
8861 		return -EOPNOTSUPP;
8862 
8863 	perf_swevent_init_hrtimer(event);
8864 
8865 	return 0;
8866 }
8867 
8868 static struct pmu perf_task_clock = {
8869 	.task_ctx_nr	= perf_sw_context,
8870 
8871 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8872 
8873 	.event_init	= task_clock_event_init,
8874 	.add		= task_clock_event_add,
8875 	.del		= task_clock_event_del,
8876 	.start		= task_clock_event_start,
8877 	.stop		= task_clock_event_stop,
8878 	.read		= task_clock_event_read,
8879 };
8880 
8881 static void perf_pmu_nop_void(struct pmu *pmu)
8882 {
8883 }
8884 
8885 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8886 {
8887 }
8888 
8889 static int perf_pmu_nop_int(struct pmu *pmu)
8890 {
8891 	return 0;
8892 }
8893 
8894 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8895 
8896 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8897 {
8898 	__this_cpu_write(nop_txn_flags, flags);
8899 
8900 	if (flags & ~PERF_PMU_TXN_ADD)
8901 		return;
8902 
8903 	perf_pmu_disable(pmu);
8904 }
8905 
8906 static int perf_pmu_commit_txn(struct pmu *pmu)
8907 {
8908 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8909 
8910 	__this_cpu_write(nop_txn_flags, 0);
8911 
8912 	if (flags & ~PERF_PMU_TXN_ADD)
8913 		return 0;
8914 
8915 	perf_pmu_enable(pmu);
8916 	return 0;
8917 }
8918 
8919 static void perf_pmu_cancel_txn(struct pmu *pmu)
8920 {
8921 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8922 
8923 	__this_cpu_write(nop_txn_flags, 0);
8924 
8925 	if (flags & ~PERF_PMU_TXN_ADD)
8926 		return;
8927 
8928 	perf_pmu_enable(pmu);
8929 }
8930 
8931 static int perf_event_idx_default(struct perf_event *event)
8932 {
8933 	return 0;
8934 }
8935 
8936 /*
8937  * Ensures all contexts with the same task_ctx_nr have the same
8938  * pmu_cpu_context too.
8939  */
8940 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8941 {
8942 	struct pmu *pmu;
8943 
8944 	if (ctxn < 0)
8945 		return NULL;
8946 
8947 	list_for_each_entry(pmu, &pmus, entry) {
8948 		if (pmu->task_ctx_nr == ctxn)
8949 			return pmu->pmu_cpu_context;
8950 	}
8951 
8952 	return NULL;
8953 }
8954 
8955 static void free_pmu_context(struct pmu *pmu)
8956 {
8957 	mutex_lock(&pmus_lock);
8958 	free_percpu(pmu->pmu_cpu_context);
8959 	mutex_unlock(&pmus_lock);
8960 }
8961 
8962 /*
8963  * Let userspace know that this PMU supports address range filtering:
8964  */
8965 static ssize_t nr_addr_filters_show(struct device *dev,
8966 				    struct device_attribute *attr,
8967 				    char *page)
8968 {
8969 	struct pmu *pmu = dev_get_drvdata(dev);
8970 
8971 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8972 }
8973 DEVICE_ATTR_RO(nr_addr_filters);
8974 
8975 static struct idr pmu_idr;
8976 
8977 static ssize_t
8978 type_show(struct device *dev, struct device_attribute *attr, char *page)
8979 {
8980 	struct pmu *pmu = dev_get_drvdata(dev);
8981 
8982 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8983 }
8984 static DEVICE_ATTR_RO(type);
8985 
8986 static ssize_t
8987 perf_event_mux_interval_ms_show(struct device *dev,
8988 				struct device_attribute *attr,
8989 				char *page)
8990 {
8991 	struct pmu *pmu = dev_get_drvdata(dev);
8992 
8993 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8994 }
8995 
8996 static DEFINE_MUTEX(mux_interval_mutex);
8997 
8998 static ssize_t
8999 perf_event_mux_interval_ms_store(struct device *dev,
9000 				 struct device_attribute *attr,
9001 				 const char *buf, size_t count)
9002 {
9003 	struct pmu *pmu = dev_get_drvdata(dev);
9004 	int timer, cpu, ret;
9005 
9006 	ret = kstrtoint(buf, 0, &timer);
9007 	if (ret)
9008 		return ret;
9009 
9010 	if (timer < 1)
9011 		return -EINVAL;
9012 
9013 	/* same value, noting to do */
9014 	if (timer == pmu->hrtimer_interval_ms)
9015 		return count;
9016 
9017 	mutex_lock(&mux_interval_mutex);
9018 	pmu->hrtimer_interval_ms = timer;
9019 
9020 	/* update all cpuctx for this PMU */
9021 	cpus_read_lock();
9022 	for_each_online_cpu(cpu) {
9023 		struct perf_cpu_context *cpuctx;
9024 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9025 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9026 
9027 		cpu_function_call(cpu,
9028 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9029 	}
9030 	cpus_read_unlock();
9031 	mutex_unlock(&mux_interval_mutex);
9032 
9033 	return count;
9034 }
9035 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9036 
9037 static struct attribute *pmu_dev_attrs[] = {
9038 	&dev_attr_type.attr,
9039 	&dev_attr_perf_event_mux_interval_ms.attr,
9040 	NULL,
9041 };
9042 ATTRIBUTE_GROUPS(pmu_dev);
9043 
9044 static int pmu_bus_running;
9045 static struct bus_type pmu_bus = {
9046 	.name		= "event_source",
9047 	.dev_groups	= pmu_dev_groups,
9048 };
9049 
9050 static void pmu_dev_release(struct device *dev)
9051 {
9052 	kfree(dev);
9053 }
9054 
9055 static int pmu_dev_alloc(struct pmu *pmu)
9056 {
9057 	int ret = -ENOMEM;
9058 
9059 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9060 	if (!pmu->dev)
9061 		goto out;
9062 
9063 	pmu->dev->groups = pmu->attr_groups;
9064 	device_initialize(pmu->dev);
9065 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9066 	if (ret)
9067 		goto free_dev;
9068 
9069 	dev_set_drvdata(pmu->dev, pmu);
9070 	pmu->dev->bus = &pmu_bus;
9071 	pmu->dev->release = pmu_dev_release;
9072 	ret = device_add(pmu->dev);
9073 	if (ret)
9074 		goto free_dev;
9075 
9076 	/* For PMUs with address filters, throw in an extra attribute: */
9077 	if (pmu->nr_addr_filters)
9078 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9079 
9080 	if (ret)
9081 		goto del_dev;
9082 
9083 out:
9084 	return ret;
9085 
9086 del_dev:
9087 	device_del(pmu->dev);
9088 
9089 free_dev:
9090 	put_device(pmu->dev);
9091 	goto out;
9092 }
9093 
9094 static struct lock_class_key cpuctx_mutex;
9095 static struct lock_class_key cpuctx_lock;
9096 
9097 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9098 {
9099 	int cpu, ret;
9100 
9101 	mutex_lock(&pmus_lock);
9102 	ret = -ENOMEM;
9103 	pmu->pmu_disable_count = alloc_percpu(int);
9104 	if (!pmu->pmu_disable_count)
9105 		goto unlock;
9106 
9107 	pmu->type = -1;
9108 	if (!name)
9109 		goto skip_type;
9110 	pmu->name = name;
9111 
9112 	if (type < 0) {
9113 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9114 		if (type < 0) {
9115 			ret = type;
9116 			goto free_pdc;
9117 		}
9118 	}
9119 	pmu->type = type;
9120 
9121 	if (pmu_bus_running) {
9122 		ret = pmu_dev_alloc(pmu);
9123 		if (ret)
9124 			goto free_idr;
9125 	}
9126 
9127 skip_type:
9128 	if (pmu->task_ctx_nr == perf_hw_context) {
9129 		static int hw_context_taken = 0;
9130 
9131 		/*
9132 		 * Other than systems with heterogeneous CPUs, it never makes
9133 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9134 		 * uncore must use perf_invalid_context.
9135 		 */
9136 		if (WARN_ON_ONCE(hw_context_taken &&
9137 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9138 			pmu->task_ctx_nr = perf_invalid_context;
9139 
9140 		hw_context_taken = 1;
9141 	}
9142 
9143 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9144 	if (pmu->pmu_cpu_context)
9145 		goto got_cpu_context;
9146 
9147 	ret = -ENOMEM;
9148 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9149 	if (!pmu->pmu_cpu_context)
9150 		goto free_dev;
9151 
9152 	for_each_possible_cpu(cpu) {
9153 		struct perf_cpu_context *cpuctx;
9154 
9155 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9156 		__perf_event_init_context(&cpuctx->ctx);
9157 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9158 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9159 		cpuctx->ctx.pmu = pmu;
9160 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9161 
9162 		__perf_mux_hrtimer_init(cpuctx, cpu);
9163 	}
9164 
9165 got_cpu_context:
9166 	if (!pmu->start_txn) {
9167 		if (pmu->pmu_enable) {
9168 			/*
9169 			 * If we have pmu_enable/pmu_disable calls, install
9170 			 * transaction stubs that use that to try and batch
9171 			 * hardware accesses.
9172 			 */
9173 			pmu->start_txn  = perf_pmu_start_txn;
9174 			pmu->commit_txn = perf_pmu_commit_txn;
9175 			pmu->cancel_txn = perf_pmu_cancel_txn;
9176 		} else {
9177 			pmu->start_txn  = perf_pmu_nop_txn;
9178 			pmu->commit_txn = perf_pmu_nop_int;
9179 			pmu->cancel_txn = perf_pmu_nop_void;
9180 		}
9181 	}
9182 
9183 	if (!pmu->pmu_enable) {
9184 		pmu->pmu_enable  = perf_pmu_nop_void;
9185 		pmu->pmu_disable = perf_pmu_nop_void;
9186 	}
9187 
9188 	if (!pmu->event_idx)
9189 		pmu->event_idx = perf_event_idx_default;
9190 
9191 	list_add_rcu(&pmu->entry, &pmus);
9192 	atomic_set(&pmu->exclusive_cnt, 0);
9193 	ret = 0;
9194 unlock:
9195 	mutex_unlock(&pmus_lock);
9196 
9197 	return ret;
9198 
9199 free_dev:
9200 	device_del(pmu->dev);
9201 	put_device(pmu->dev);
9202 
9203 free_idr:
9204 	if (pmu->type >= PERF_TYPE_MAX)
9205 		idr_remove(&pmu_idr, pmu->type);
9206 
9207 free_pdc:
9208 	free_percpu(pmu->pmu_disable_count);
9209 	goto unlock;
9210 }
9211 EXPORT_SYMBOL_GPL(perf_pmu_register);
9212 
9213 void perf_pmu_unregister(struct pmu *pmu)
9214 {
9215 	int remove_device;
9216 
9217 	mutex_lock(&pmus_lock);
9218 	remove_device = pmu_bus_running;
9219 	list_del_rcu(&pmu->entry);
9220 	mutex_unlock(&pmus_lock);
9221 
9222 	/*
9223 	 * We dereference the pmu list under both SRCU and regular RCU, so
9224 	 * synchronize against both of those.
9225 	 */
9226 	synchronize_srcu(&pmus_srcu);
9227 	synchronize_rcu();
9228 
9229 	free_percpu(pmu->pmu_disable_count);
9230 	if (pmu->type >= PERF_TYPE_MAX)
9231 		idr_remove(&pmu_idr, pmu->type);
9232 	if (remove_device) {
9233 		if (pmu->nr_addr_filters)
9234 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9235 		device_del(pmu->dev);
9236 		put_device(pmu->dev);
9237 	}
9238 	free_pmu_context(pmu);
9239 }
9240 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9241 
9242 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9243 {
9244 	struct perf_event_context *ctx = NULL;
9245 	int ret;
9246 
9247 	if (!try_module_get(pmu->module))
9248 		return -ENODEV;
9249 
9250 	if (event->group_leader != event) {
9251 		/*
9252 		 * This ctx->mutex can nest when we're called through
9253 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9254 		 */
9255 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9256 						 SINGLE_DEPTH_NESTING);
9257 		BUG_ON(!ctx);
9258 	}
9259 
9260 	event->pmu = pmu;
9261 	ret = pmu->event_init(event);
9262 
9263 	if (ctx)
9264 		perf_event_ctx_unlock(event->group_leader, ctx);
9265 
9266 	if (ret)
9267 		module_put(pmu->module);
9268 
9269 	return ret;
9270 }
9271 
9272 static struct pmu *perf_init_event(struct perf_event *event)
9273 {
9274 	struct pmu *pmu;
9275 	int idx;
9276 	int ret;
9277 
9278 	idx = srcu_read_lock(&pmus_srcu);
9279 
9280 	/* Try parent's PMU first: */
9281 	if (event->parent && event->parent->pmu) {
9282 		pmu = event->parent->pmu;
9283 		ret = perf_try_init_event(pmu, event);
9284 		if (!ret)
9285 			goto unlock;
9286 	}
9287 
9288 	rcu_read_lock();
9289 	pmu = idr_find(&pmu_idr, event->attr.type);
9290 	rcu_read_unlock();
9291 	if (pmu) {
9292 		ret = perf_try_init_event(pmu, event);
9293 		if (ret)
9294 			pmu = ERR_PTR(ret);
9295 		goto unlock;
9296 	}
9297 
9298 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9299 		ret = perf_try_init_event(pmu, event);
9300 		if (!ret)
9301 			goto unlock;
9302 
9303 		if (ret != -ENOENT) {
9304 			pmu = ERR_PTR(ret);
9305 			goto unlock;
9306 		}
9307 	}
9308 	pmu = ERR_PTR(-ENOENT);
9309 unlock:
9310 	srcu_read_unlock(&pmus_srcu, idx);
9311 
9312 	return pmu;
9313 }
9314 
9315 static void attach_sb_event(struct perf_event *event)
9316 {
9317 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9318 
9319 	raw_spin_lock(&pel->lock);
9320 	list_add_rcu(&event->sb_list, &pel->list);
9321 	raw_spin_unlock(&pel->lock);
9322 }
9323 
9324 /*
9325  * We keep a list of all !task (and therefore per-cpu) events
9326  * that need to receive side-band records.
9327  *
9328  * This avoids having to scan all the various PMU per-cpu contexts
9329  * looking for them.
9330  */
9331 static void account_pmu_sb_event(struct perf_event *event)
9332 {
9333 	if (is_sb_event(event))
9334 		attach_sb_event(event);
9335 }
9336 
9337 static void account_event_cpu(struct perf_event *event, int cpu)
9338 {
9339 	if (event->parent)
9340 		return;
9341 
9342 	if (is_cgroup_event(event))
9343 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9344 }
9345 
9346 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9347 static void account_freq_event_nohz(void)
9348 {
9349 #ifdef CONFIG_NO_HZ_FULL
9350 	/* Lock so we don't race with concurrent unaccount */
9351 	spin_lock(&nr_freq_lock);
9352 	if (atomic_inc_return(&nr_freq_events) == 1)
9353 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9354 	spin_unlock(&nr_freq_lock);
9355 #endif
9356 }
9357 
9358 static void account_freq_event(void)
9359 {
9360 	if (tick_nohz_full_enabled())
9361 		account_freq_event_nohz();
9362 	else
9363 		atomic_inc(&nr_freq_events);
9364 }
9365 
9366 
9367 static void account_event(struct perf_event *event)
9368 {
9369 	bool inc = false;
9370 
9371 	if (event->parent)
9372 		return;
9373 
9374 	if (event->attach_state & PERF_ATTACH_TASK)
9375 		inc = true;
9376 	if (event->attr.mmap || event->attr.mmap_data)
9377 		atomic_inc(&nr_mmap_events);
9378 	if (event->attr.comm)
9379 		atomic_inc(&nr_comm_events);
9380 	if (event->attr.namespaces)
9381 		atomic_inc(&nr_namespaces_events);
9382 	if (event->attr.task)
9383 		atomic_inc(&nr_task_events);
9384 	if (event->attr.freq)
9385 		account_freq_event();
9386 	if (event->attr.context_switch) {
9387 		atomic_inc(&nr_switch_events);
9388 		inc = true;
9389 	}
9390 	if (has_branch_stack(event))
9391 		inc = true;
9392 	if (is_cgroup_event(event))
9393 		inc = true;
9394 
9395 	if (inc) {
9396 		if (atomic_inc_not_zero(&perf_sched_count))
9397 			goto enabled;
9398 
9399 		mutex_lock(&perf_sched_mutex);
9400 		if (!atomic_read(&perf_sched_count)) {
9401 			static_branch_enable(&perf_sched_events);
9402 			/*
9403 			 * Guarantee that all CPUs observe they key change and
9404 			 * call the perf scheduling hooks before proceeding to
9405 			 * install events that need them.
9406 			 */
9407 			synchronize_sched();
9408 		}
9409 		/*
9410 		 * Now that we have waited for the sync_sched(), allow further
9411 		 * increments to by-pass the mutex.
9412 		 */
9413 		atomic_inc(&perf_sched_count);
9414 		mutex_unlock(&perf_sched_mutex);
9415 	}
9416 enabled:
9417 
9418 	account_event_cpu(event, event->cpu);
9419 
9420 	account_pmu_sb_event(event);
9421 }
9422 
9423 /*
9424  * Allocate and initialize a event structure
9425  */
9426 static struct perf_event *
9427 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9428 		 struct task_struct *task,
9429 		 struct perf_event *group_leader,
9430 		 struct perf_event *parent_event,
9431 		 perf_overflow_handler_t overflow_handler,
9432 		 void *context, int cgroup_fd)
9433 {
9434 	struct pmu *pmu;
9435 	struct perf_event *event;
9436 	struct hw_perf_event *hwc;
9437 	long err = -EINVAL;
9438 
9439 	if ((unsigned)cpu >= nr_cpu_ids) {
9440 		if (!task || cpu != -1)
9441 			return ERR_PTR(-EINVAL);
9442 	}
9443 
9444 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9445 	if (!event)
9446 		return ERR_PTR(-ENOMEM);
9447 
9448 	/*
9449 	 * Single events are their own group leaders, with an
9450 	 * empty sibling list:
9451 	 */
9452 	if (!group_leader)
9453 		group_leader = event;
9454 
9455 	mutex_init(&event->child_mutex);
9456 	INIT_LIST_HEAD(&event->child_list);
9457 
9458 	INIT_LIST_HEAD(&event->group_entry);
9459 	INIT_LIST_HEAD(&event->event_entry);
9460 	INIT_LIST_HEAD(&event->sibling_list);
9461 	INIT_LIST_HEAD(&event->rb_entry);
9462 	INIT_LIST_HEAD(&event->active_entry);
9463 	INIT_LIST_HEAD(&event->addr_filters.list);
9464 	INIT_HLIST_NODE(&event->hlist_entry);
9465 
9466 
9467 	init_waitqueue_head(&event->waitq);
9468 	init_irq_work(&event->pending, perf_pending_event);
9469 
9470 	mutex_init(&event->mmap_mutex);
9471 	raw_spin_lock_init(&event->addr_filters.lock);
9472 
9473 	atomic_long_set(&event->refcount, 1);
9474 	event->cpu		= cpu;
9475 	event->attr		= *attr;
9476 	event->group_leader	= group_leader;
9477 	event->pmu		= NULL;
9478 	event->oncpu		= -1;
9479 
9480 	event->parent		= parent_event;
9481 
9482 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9483 	event->id		= atomic64_inc_return(&perf_event_id);
9484 
9485 	event->state		= PERF_EVENT_STATE_INACTIVE;
9486 
9487 	if (task) {
9488 		event->attach_state = PERF_ATTACH_TASK;
9489 		/*
9490 		 * XXX pmu::event_init needs to know what task to account to
9491 		 * and we cannot use the ctx information because we need the
9492 		 * pmu before we get a ctx.
9493 		 */
9494 		event->hw.target = task;
9495 	}
9496 
9497 	event->clock = &local_clock;
9498 	if (parent_event)
9499 		event->clock = parent_event->clock;
9500 
9501 	if (!overflow_handler && parent_event) {
9502 		overflow_handler = parent_event->overflow_handler;
9503 		context = parent_event->overflow_handler_context;
9504 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9505 		if (overflow_handler == bpf_overflow_handler) {
9506 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9507 
9508 			if (IS_ERR(prog)) {
9509 				err = PTR_ERR(prog);
9510 				goto err_ns;
9511 			}
9512 			event->prog = prog;
9513 			event->orig_overflow_handler =
9514 				parent_event->orig_overflow_handler;
9515 		}
9516 #endif
9517 	}
9518 
9519 	if (overflow_handler) {
9520 		event->overflow_handler	= overflow_handler;
9521 		event->overflow_handler_context = context;
9522 	} else if (is_write_backward(event)){
9523 		event->overflow_handler = perf_event_output_backward;
9524 		event->overflow_handler_context = NULL;
9525 	} else {
9526 		event->overflow_handler = perf_event_output_forward;
9527 		event->overflow_handler_context = NULL;
9528 	}
9529 
9530 	perf_event__state_init(event);
9531 
9532 	pmu = NULL;
9533 
9534 	hwc = &event->hw;
9535 	hwc->sample_period = attr->sample_period;
9536 	if (attr->freq && attr->sample_freq)
9537 		hwc->sample_period = 1;
9538 	hwc->last_period = hwc->sample_period;
9539 
9540 	local64_set(&hwc->period_left, hwc->sample_period);
9541 
9542 	/*
9543 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9544 	 * See perf_output_read().
9545 	 */
9546 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9547 		goto err_ns;
9548 
9549 	if (!has_branch_stack(event))
9550 		event->attr.branch_sample_type = 0;
9551 
9552 	if (cgroup_fd != -1) {
9553 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9554 		if (err)
9555 			goto err_ns;
9556 	}
9557 
9558 	pmu = perf_init_event(event);
9559 	if (IS_ERR(pmu)) {
9560 		err = PTR_ERR(pmu);
9561 		goto err_ns;
9562 	}
9563 
9564 	err = exclusive_event_init(event);
9565 	if (err)
9566 		goto err_pmu;
9567 
9568 	if (has_addr_filter(event)) {
9569 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9570 						   sizeof(unsigned long),
9571 						   GFP_KERNEL);
9572 		if (!event->addr_filters_offs) {
9573 			err = -ENOMEM;
9574 			goto err_per_task;
9575 		}
9576 
9577 		/* force hw sync on the address filters */
9578 		event->addr_filters_gen = 1;
9579 	}
9580 
9581 	if (!event->parent) {
9582 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9583 			err = get_callchain_buffers(attr->sample_max_stack);
9584 			if (err)
9585 				goto err_addr_filters;
9586 		}
9587 	}
9588 
9589 	/* symmetric to unaccount_event() in _free_event() */
9590 	account_event(event);
9591 
9592 	return event;
9593 
9594 err_addr_filters:
9595 	kfree(event->addr_filters_offs);
9596 
9597 err_per_task:
9598 	exclusive_event_destroy(event);
9599 
9600 err_pmu:
9601 	if (event->destroy)
9602 		event->destroy(event);
9603 	module_put(pmu->module);
9604 err_ns:
9605 	if (is_cgroup_event(event))
9606 		perf_detach_cgroup(event);
9607 	if (event->ns)
9608 		put_pid_ns(event->ns);
9609 	kfree(event);
9610 
9611 	return ERR_PTR(err);
9612 }
9613 
9614 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9615 			  struct perf_event_attr *attr)
9616 {
9617 	u32 size;
9618 	int ret;
9619 
9620 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9621 		return -EFAULT;
9622 
9623 	/*
9624 	 * zero the full structure, so that a short copy will be nice.
9625 	 */
9626 	memset(attr, 0, sizeof(*attr));
9627 
9628 	ret = get_user(size, &uattr->size);
9629 	if (ret)
9630 		return ret;
9631 
9632 	if (size > PAGE_SIZE)	/* silly large */
9633 		goto err_size;
9634 
9635 	if (!size)		/* abi compat */
9636 		size = PERF_ATTR_SIZE_VER0;
9637 
9638 	if (size < PERF_ATTR_SIZE_VER0)
9639 		goto err_size;
9640 
9641 	/*
9642 	 * If we're handed a bigger struct than we know of,
9643 	 * ensure all the unknown bits are 0 - i.e. new
9644 	 * user-space does not rely on any kernel feature
9645 	 * extensions we dont know about yet.
9646 	 */
9647 	if (size > sizeof(*attr)) {
9648 		unsigned char __user *addr;
9649 		unsigned char __user *end;
9650 		unsigned char val;
9651 
9652 		addr = (void __user *)uattr + sizeof(*attr);
9653 		end  = (void __user *)uattr + size;
9654 
9655 		for (; addr < end; addr++) {
9656 			ret = get_user(val, addr);
9657 			if (ret)
9658 				return ret;
9659 			if (val)
9660 				goto err_size;
9661 		}
9662 		size = sizeof(*attr);
9663 	}
9664 
9665 	ret = copy_from_user(attr, uattr, size);
9666 	if (ret)
9667 		return -EFAULT;
9668 
9669 	attr->size = size;
9670 
9671 	if (attr->__reserved_1)
9672 		return -EINVAL;
9673 
9674 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9675 		return -EINVAL;
9676 
9677 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9678 		return -EINVAL;
9679 
9680 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9681 		u64 mask = attr->branch_sample_type;
9682 
9683 		/* only using defined bits */
9684 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9685 			return -EINVAL;
9686 
9687 		/* at least one branch bit must be set */
9688 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9689 			return -EINVAL;
9690 
9691 		/* propagate priv level, when not set for branch */
9692 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9693 
9694 			/* exclude_kernel checked on syscall entry */
9695 			if (!attr->exclude_kernel)
9696 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9697 
9698 			if (!attr->exclude_user)
9699 				mask |= PERF_SAMPLE_BRANCH_USER;
9700 
9701 			if (!attr->exclude_hv)
9702 				mask |= PERF_SAMPLE_BRANCH_HV;
9703 			/*
9704 			 * adjust user setting (for HW filter setup)
9705 			 */
9706 			attr->branch_sample_type = mask;
9707 		}
9708 		/* privileged levels capture (kernel, hv): check permissions */
9709 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9710 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9711 			return -EACCES;
9712 	}
9713 
9714 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9715 		ret = perf_reg_validate(attr->sample_regs_user);
9716 		if (ret)
9717 			return ret;
9718 	}
9719 
9720 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9721 		if (!arch_perf_have_user_stack_dump())
9722 			return -ENOSYS;
9723 
9724 		/*
9725 		 * We have __u32 type for the size, but so far
9726 		 * we can only use __u16 as maximum due to the
9727 		 * __u16 sample size limit.
9728 		 */
9729 		if (attr->sample_stack_user >= USHRT_MAX)
9730 			ret = -EINVAL;
9731 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9732 			ret = -EINVAL;
9733 	}
9734 
9735 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9736 		ret = perf_reg_validate(attr->sample_regs_intr);
9737 out:
9738 	return ret;
9739 
9740 err_size:
9741 	put_user(sizeof(*attr), &uattr->size);
9742 	ret = -E2BIG;
9743 	goto out;
9744 }
9745 
9746 static int
9747 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9748 {
9749 	struct ring_buffer *rb = NULL;
9750 	int ret = -EINVAL;
9751 
9752 	if (!output_event)
9753 		goto set;
9754 
9755 	/* don't allow circular references */
9756 	if (event == output_event)
9757 		goto out;
9758 
9759 	/*
9760 	 * Don't allow cross-cpu buffers
9761 	 */
9762 	if (output_event->cpu != event->cpu)
9763 		goto out;
9764 
9765 	/*
9766 	 * If its not a per-cpu rb, it must be the same task.
9767 	 */
9768 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9769 		goto out;
9770 
9771 	/*
9772 	 * Mixing clocks in the same buffer is trouble you don't need.
9773 	 */
9774 	if (output_event->clock != event->clock)
9775 		goto out;
9776 
9777 	/*
9778 	 * Either writing ring buffer from beginning or from end.
9779 	 * Mixing is not allowed.
9780 	 */
9781 	if (is_write_backward(output_event) != is_write_backward(event))
9782 		goto out;
9783 
9784 	/*
9785 	 * If both events generate aux data, they must be on the same PMU
9786 	 */
9787 	if (has_aux(event) && has_aux(output_event) &&
9788 	    event->pmu != output_event->pmu)
9789 		goto out;
9790 
9791 set:
9792 	mutex_lock(&event->mmap_mutex);
9793 	/* Can't redirect output if we've got an active mmap() */
9794 	if (atomic_read(&event->mmap_count))
9795 		goto unlock;
9796 
9797 	if (output_event) {
9798 		/* get the rb we want to redirect to */
9799 		rb = ring_buffer_get(output_event);
9800 		if (!rb)
9801 			goto unlock;
9802 	}
9803 
9804 	ring_buffer_attach(event, rb);
9805 
9806 	ret = 0;
9807 unlock:
9808 	mutex_unlock(&event->mmap_mutex);
9809 
9810 out:
9811 	return ret;
9812 }
9813 
9814 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9815 {
9816 	if (b < a)
9817 		swap(a, b);
9818 
9819 	mutex_lock(a);
9820 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9821 }
9822 
9823 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9824 {
9825 	bool nmi_safe = false;
9826 
9827 	switch (clk_id) {
9828 	case CLOCK_MONOTONIC:
9829 		event->clock = &ktime_get_mono_fast_ns;
9830 		nmi_safe = true;
9831 		break;
9832 
9833 	case CLOCK_MONOTONIC_RAW:
9834 		event->clock = &ktime_get_raw_fast_ns;
9835 		nmi_safe = true;
9836 		break;
9837 
9838 	case CLOCK_REALTIME:
9839 		event->clock = &ktime_get_real_ns;
9840 		break;
9841 
9842 	case CLOCK_BOOTTIME:
9843 		event->clock = &ktime_get_boot_ns;
9844 		break;
9845 
9846 	case CLOCK_TAI:
9847 		event->clock = &ktime_get_tai_ns;
9848 		break;
9849 
9850 	default:
9851 		return -EINVAL;
9852 	}
9853 
9854 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9855 		return -EINVAL;
9856 
9857 	return 0;
9858 }
9859 
9860 /*
9861  * Variation on perf_event_ctx_lock_nested(), except we take two context
9862  * mutexes.
9863  */
9864 static struct perf_event_context *
9865 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9866 			     struct perf_event_context *ctx)
9867 {
9868 	struct perf_event_context *gctx;
9869 
9870 again:
9871 	rcu_read_lock();
9872 	gctx = READ_ONCE(group_leader->ctx);
9873 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9874 		rcu_read_unlock();
9875 		goto again;
9876 	}
9877 	rcu_read_unlock();
9878 
9879 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9880 
9881 	if (group_leader->ctx != gctx) {
9882 		mutex_unlock(&ctx->mutex);
9883 		mutex_unlock(&gctx->mutex);
9884 		put_ctx(gctx);
9885 		goto again;
9886 	}
9887 
9888 	return gctx;
9889 }
9890 
9891 /**
9892  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9893  *
9894  * @attr_uptr:	event_id type attributes for monitoring/sampling
9895  * @pid:		target pid
9896  * @cpu:		target cpu
9897  * @group_fd:		group leader event fd
9898  */
9899 SYSCALL_DEFINE5(perf_event_open,
9900 		struct perf_event_attr __user *, attr_uptr,
9901 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9902 {
9903 	struct perf_event *group_leader = NULL, *output_event = NULL;
9904 	struct perf_event *event, *sibling;
9905 	struct perf_event_attr attr;
9906 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9907 	struct file *event_file = NULL;
9908 	struct fd group = {NULL, 0};
9909 	struct task_struct *task = NULL;
9910 	struct pmu *pmu;
9911 	int event_fd;
9912 	int move_group = 0;
9913 	int err;
9914 	int f_flags = O_RDWR;
9915 	int cgroup_fd = -1;
9916 
9917 	/* for future expandability... */
9918 	if (flags & ~PERF_FLAG_ALL)
9919 		return -EINVAL;
9920 
9921 	err = perf_copy_attr(attr_uptr, &attr);
9922 	if (err)
9923 		return err;
9924 
9925 	if (!attr.exclude_kernel) {
9926 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9927 			return -EACCES;
9928 	}
9929 
9930 	if (attr.namespaces) {
9931 		if (!capable(CAP_SYS_ADMIN))
9932 			return -EACCES;
9933 	}
9934 
9935 	if (attr.freq) {
9936 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9937 			return -EINVAL;
9938 	} else {
9939 		if (attr.sample_period & (1ULL << 63))
9940 			return -EINVAL;
9941 	}
9942 
9943 	/* Only privileged users can get physical addresses */
9944 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9945 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9946 		return -EACCES;
9947 
9948 	if (!attr.sample_max_stack)
9949 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9950 
9951 	/*
9952 	 * In cgroup mode, the pid argument is used to pass the fd
9953 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9954 	 * designates the cpu on which to monitor threads from that
9955 	 * cgroup.
9956 	 */
9957 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9958 		return -EINVAL;
9959 
9960 	if (flags & PERF_FLAG_FD_CLOEXEC)
9961 		f_flags |= O_CLOEXEC;
9962 
9963 	event_fd = get_unused_fd_flags(f_flags);
9964 	if (event_fd < 0)
9965 		return event_fd;
9966 
9967 	if (group_fd != -1) {
9968 		err = perf_fget_light(group_fd, &group);
9969 		if (err)
9970 			goto err_fd;
9971 		group_leader = group.file->private_data;
9972 		if (flags & PERF_FLAG_FD_OUTPUT)
9973 			output_event = group_leader;
9974 		if (flags & PERF_FLAG_FD_NO_GROUP)
9975 			group_leader = NULL;
9976 	}
9977 
9978 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9979 		task = find_lively_task_by_vpid(pid);
9980 		if (IS_ERR(task)) {
9981 			err = PTR_ERR(task);
9982 			goto err_group_fd;
9983 		}
9984 	}
9985 
9986 	if (task && group_leader &&
9987 	    group_leader->attr.inherit != attr.inherit) {
9988 		err = -EINVAL;
9989 		goto err_task;
9990 	}
9991 
9992 	if (task) {
9993 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9994 		if (err)
9995 			goto err_task;
9996 
9997 		/*
9998 		 * Reuse ptrace permission checks for now.
9999 		 *
10000 		 * We must hold cred_guard_mutex across this and any potential
10001 		 * perf_install_in_context() call for this new event to
10002 		 * serialize against exec() altering our credentials (and the
10003 		 * perf_event_exit_task() that could imply).
10004 		 */
10005 		err = -EACCES;
10006 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10007 			goto err_cred;
10008 	}
10009 
10010 	if (flags & PERF_FLAG_PID_CGROUP)
10011 		cgroup_fd = pid;
10012 
10013 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10014 				 NULL, NULL, cgroup_fd);
10015 	if (IS_ERR(event)) {
10016 		err = PTR_ERR(event);
10017 		goto err_cred;
10018 	}
10019 
10020 	if (is_sampling_event(event)) {
10021 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10022 			err = -EOPNOTSUPP;
10023 			goto err_alloc;
10024 		}
10025 	}
10026 
10027 	/*
10028 	 * Special case software events and allow them to be part of
10029 	 * any hardware group.
10030 	 */
10031 	pmu = event->pmu;
10032 
10033 	if (attr.use_clockid) {
10034 		err = perf_event_set_clock(event, attr.clockid);
10035 		if (err)
10036 			goto err_alloc;
10037 	}
10038 
10039 	if (pmu->task_ctx_nr == perf_sw_context)
10040 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10041 
10042 	if (group_leader &&
10043 	    (is_software_event(event) != is_software_event(group_leader))) {
10044 		if (is_software_event(event)) {
10045 			/*
10046 			 * If event and group_leader are not both a software
10047 			 * event, and event is, then group leader is not.
10048 			 *
10049 			 * Allow the addition of software events to !software
10050 			 * groups, this is safe because software events never
10051 			 * fail to schedule.
10052 			 */
10053 			pmu = group_leader->pmu;
10054 		} else if (is_software_event(group_leader) &&
10055 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10056 			/*
10057 			 * In case the group is a pure software group, and we
10058 			 * try to add a hardware event, move the whole group to
10059 			 * the hardware context.
10060 			 */
10061 			move_group = 1;
10062 		}
10063 	}
10064 
10065 	/*
10066 	 * Get the target context (task or percpu):
10067 	 */
10068 	ctx = find_get_context(pmu, task, event);
10069 	if (IS_ERR(ctx)) {
10070 		err = PTR_ERR(ctx);
10071 		goto err_alloc;
10072 	}
10073 
10074 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10075 		err = -EBUSY;
10076 		goto err_context;
10077 	}
10078 
10079 	/*
10080 	 * Look up the group leader (we will attach this event to it):
10081 	 */
10082 	if (group_leader) {
10083 		err = -EINVAL;
10084 
10085 		/*
10086 		 * Do not allow a recursive hierarchy (this new sibling
10087 		 * becoming part of another group-sibling):
10088 		 */
10089 		if (group_leader->group_leader != group_leader)
10090 			goto err_context;
10091 
10092 		/* All events in a group should have the same clock */
10093 		if (group_leader->clock != event->clock)
10094 			goto err_context;
10095 
10096 		/*
10097 		 * Make sure we're both events for the same CPU;
10098 		 * grouping events for different CPUs is broken; since
10099 		 * you can never concurrently schedule them anyhow.
10100 		 */
10101 		if (group_leader->cpu != event->cpu)
10102 			goto err_context;
10103 
10104 		/*
10105 		 * Make sure we're both on the same task, or both
10106 		 * per-CPU events.
10107 		 */
10108 		if (group_leader->ctx->task != ctx->task)
10109 			goto err_context;
10110 
10111 		/*
10112 		 * Do not allow to attach to a group in a different task
10113 		 * or CPU context. If we're moving SW events, we'll fix
10114 		 * this up later, so allow that.
10115 		 */
10116 		if (!move_group && group_leader->ctx != ctx)
10117 			goto err_context;
10118 
10119 		/*
10120 		 * Only a group leader can be exclusive or pinned
10121 		 */
10122 		if (attr.exclusive || attr.pinned)
10123 			goto err_context;
10124 	}
10125 
10126 	if (output_event) {
10127 		err = perf_event_set_output(event, output_event);
10128 		if (err)
10129 			goto err_context;
10130 	}
10131 
10132 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10133 					f_flags);
10134 	if (IS_ERR(event_file)) {
10135 		err = PTR_ERR(event_file);
10136 		event_file = NULL;
10137 		goto err_context;
10138 	}
10139 
10140 	if (move_group) {
10141 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10142 
10143 		if (gctx->task == TASK_TOMBSTONE) {
10144 			err = -ESRCH;
10145 			goto err_locked;
10146 		}
10147 
10148 		/*
10149 		 * Check if we raced against another sys_perf_event_open() call
10150 		 * moving the software group underneath us.
10151 		 */
10152 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10153 			/*
10154 			 * If someone moved the group out from under us, check
10155 			 * if this new event wound up on the same ctx, if so
10156 			 * its the regular !move_group case, otherwise fail.
10157 			 */
10158 			if (gctx != ctx) {
10159 				err = -EINVAL;
10160 				goto err_locked;
10161 			} else {
10162 				perf_event_ctx_unlock(group_leader, gctx);
10163 				move_group = 0;
10164 			}
10165 		}
10166 	} else {
10167 		mutex_lock(&ctx->mutex);
10168 	}
10169 
10170 	if (ctx->task == TASK_TOMBSTONE) {
10171 		err = -ESRCH;
10172 		goto err_locked;
10173 	}
10174 
10175 	if (!perf_event_validate_size(event)) {
10176 		err = -E2BIG;
10177 		goto err_locked;
10178 	}
10179 
10180 	if (!task) {
10181 		/*
10182 		 * Check if the @cpu we're creating an event for is online.
10183 		 *
10184 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10185 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10186 		 */
10187 		struct perf_cpu_context *cpuctx =
10188 			container_of(ctx, struct perf_cpu_context, ctx);
10189 
10190 		if (!cpuctx->online) {
10191 			err = -ENODEV;
10192 			goto err_locked;
10193 		}
10194 	}
10195 
10196 
10197 	/*
10198 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10199 	 * because we need to serialize with concurrent event creation.
10200 	 */
10201 	if (!exclusive_event_installable(event, ctx)) {
10202 		/* exclusive and group stuff are assumed mutually exclusive */
10203 		WARN_ON_ONCE(move_group);
10204 
10205 		err = -EBUSY;
10206 		goto err_locked;
10207 	}
10208 
10209 	WARN_ON_ONCE(ctx->parent_ctx);
10210 
10211 	/*
10212 	 * This is the point on no return; we cannot fail hereafter. This is
10213 	 * where we start modifying current state.
10214 	 */
10215 
10216 	if (move_group) {
10217 		/*
10218 		 * See perf_event_ctx_lock() for comments on the details
10219 		 * of swizzling perf_event::ctx.
10220 		 */
10221 		perf_remove_from_context(group_leader, 0);
10222 		put_ctx(gctx);
10223 
10224 		list_for_each_entry(sibling, &group_leader->sibling_list,
10225 				    group_entry) {
10226 			perf_remove_from_context(sibling, 0);
10227 			put_ctx(gctx);
10228 		}
10229 
10230 		/*
10231 		 * Wait for everybody to stop referencing the events through
10232 		 * the old lists, before installing it on new lists.
10233 		 */
10234 		synchronize_rcu();
10235 
10236 		/*
10237 		 * Install the group siblings before the group leader.
10238 		 *
10239 		 * Because a group leader will try and install the entire group
10240 		 * (through the sibling list, which is still in-tact), we can
10241 		 * end up with siblings installed in the wrong context.
10242 		 *
10243 		 * By installing siblings first we NO-OP because they're not
10244 		 * reachable through the group lists.
10245 		 */
10246 		list_for_each_entry(sibling, &group_leader->sibling_list,
10247 				    group_entry) {
10248 			perf_event__state_init(sibling);
10249 			perf_install_in_context(ctx, sibling, sibling->cpu);
10250 			get_ctx(ctx);
10251 		}
10252 
10253 		/*
10254 		 * Removing from the context ends up with disabled
10255 		 * event. What we want here is event in the initial
10256 		 * startup state, ready to be add into new context.
10257 		 */
10258 		perf_event__state_init(group_leader);
10259 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10260 		get_ctx(ctx);
10261 	}
10262 
10263 	/*
10264 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10265 	 * that we're serialized against further additions and before
10266 	 * perf_install_in_context() which is the point the event is active and
10267 	 * can use these values.
10268 	 */
10269 	perf_event__header_size(event);
10270 	perf_event__id_header_size(event);
10271 
10272 	event->owner = current;
10273 
10274 	perf_install_in_context(ctx, event, event->cpu);
10275 	perf_unpin_context(ctx);
10276 
10277 	if (move_group)
10278 		perf_event_ctx_unlock(group_leader, gctx);
10279 	mutex_unlock(&ctx->mutex);
10280 
10281 	if (task) {
10282 		mutex_unlock(&task->signal->cred_guard_mutex);
10283 		put_task_struct(task);
10284 	}
10285 
10286 	mutex_lock(&current->perf_event_mutex);
10287 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10288 	mutex_unlock(&current->perf_event_mutex);
10289 
10290 	/*
10291 	 * Drop the reference on the group_event after placing the
10292 	 * new event on the sibling_list. This ensures destruction
10293 	 * of the group leader will find the pointer to itself in
10294 	 * perf_group_detach().
10295 	 */
10296 	fdput(group);
10297 	fd_install(event_fd, event_file);
10298 	return event_fd;
10299 
10300 err_locked:
10301 	if (move_group)
10302 		perf_event_ctx_unlock(group_leader, gctx);
10303 	mutex_unlock(&ctx->mutex);
10304 /* err_file: */
10305 	fput(event_file);
10306 err_context:
10307 	perf_unpin_context(ctx);
10308 	put_ctx(ctx);
10309 err_alloc:
10310 	/*
10311 	 * If event_file is set, the fput() above will have called ->release()
10312 	 * and that will take care of freeing the event.
10313 	 */
10314 	if (!event_file)
10315 		free_event(event);
10316 err_cred:
10317 	if (task)
10318 		mutex_unlock(&task->signal->cred_guard_mutex);
10319 err_task:
10320 	if (task)
10321 		put_task_struct(task);
10322 err_group_fd:
10323 	fdput(group);
10324 err_fd:
10325 	put_unused_fd(event_fd);
10326 	return err;
10327 }
10328 
10329 /**
10330  * perf_event_create_kernel_counter
10331  *
10332  * @attr: attributes of the counter to create
10333  * @cpu: cpu in which the counter is bound
10334  * @task: task to profile (NULL for percpu)
10335  */
10336 struct perf_event *
10337 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10338 				 struct task_struct *task,
10339 				 perf_overflow_handler_t overflow_handler,
10340 				 void *context)
10341 {
10342 	struct perf_event_context *ctx;
10343 	struct perf_event *event;
10344 	int err;
10345 
10346 	/*
10347 	 * Get the target context (task or percpu):
10348 	 */
10349 
10350 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10351 				 overflow_handler, context, -1);
10352 	if (IS_ERR(event)) {
10353 		err = PTR_ERR(event);
10354 		goto err;
10355 	}
10356 
10357 	/* Mark owner so we could distinguish it from user events. */
10358 	event->owner = TASK_TOMBSTONE;
10359 
10360 	ctx = find_get_context(event->pmu, task, event);
10361 	if (IS_ERR(ctx)) {
10362 		err = PTR_ERR(ctx);
10363 		goto err_free;
10364 	}
10365 
10366 	WARN_ON_ONCE(ctx->parent_ctx);
10367 	mutex_lock(&ctx->mutex);
10368 	if (ctx->task == TASK_TOMBSTONE) {
10369 		err = -ESRCH;
10370 		goto err_unlock;
10371 	}
10372 
10373 	if (!task) {
10374 		/*
10375 		 * Check if the @cpu we're creating an event for is online.
10376 		 *
10377 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10378 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10379 		 */
10380 		struct perf_cpu_context *cpuctx =
10381 			container_of(ctx, struct perf_cpu_context, ctx);
10382 		if (!cpuctx->online) {
10383 			err = -ENODEV;
10384 			goto err_unlock;
10385 		}
10386 	}
10387 
10388 	if (!exclusive_event_installable(event, ctx)) {
10389 		err = -EBUSY;
10390 		goto err_unlock;
10391 	}
10392 
10393 	perf_install_in_context(ctx, event, cpu);
10394 	perf_unpin_context(ctx);
10395 	mutex_unlock(&ctx->mutex);
10396 
10397 	return event;
10398 
10399 err_unlock:
10400 	mutex_unlock(&ctx->mutex);
10401 	perf_unpin_context(ctx);
10402 	put_ctx(ctx);
10403 err_free:
10404 	free_event(event);
10405 err:
10406 	return ERR_PTR(err);
10407 }
10408 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10409 
10410 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10411 {
10412 	struct perf_event_context *src_ctx;
10413 	struct perf_event_context *dst_ctx;
10414 	struct perf_event *event, *tmp;
10415 	LIST_HEAD(events);
10416 
10417 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10418 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10419 
10420 	/*
10421 	 * See perf_event_ctx_lock() for comments on the details
10422 	 * of swizzling perf_event::ctx.
10423 	 */
10424 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10425 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10426 				 event_entry) {
10427 		perf_remove_from_context(event, 0);
10428 		unaccount_event_cpu(event, src_cpu);
10429 		put_ctx(src_ctx);
10430 		list_add(&event->migrate_entry, &events);
10431 	}
10432 
10433 	/*
10434 	 * Wait for the events to quiesce before re-instating them.
10435 	 */
10436 	synchronize_rcu();
10437 
10438 	/*
10439 	 * Re-instate events in 2 passes.
10440 	 *
10441 	 * Skip over group leaders and only install siblings on this first
10442 	 * pass, siblings will not get enabled without a leader, however a
10443 	 * leader will enable its siblings, even if those are still on the old
10444 	 * context.
10445 	 */
10446 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10447 		if (event->group_leader == event)
10448 			continue;
10449 
10450 		list_del(&event->migrate_entry);
10451 		if (event->state >= PERF_EVENT_STATE_OFF)
10452 			event->state = PERF_EVENT_STATE_INACTIVE;
10453 		account_event_cpu(event, dst_cpu);
10454 		perf_install_in_context(dst_ctx, event, dst_cpu);
10455 		get_ctx(dst_ctx);
10456 	}
10457 
10458 	/*
10459 	 * Once all the siblings are setup properly, install the group leaders
10460 	 * to make it go.
10461 	 */
10462 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10463 		list_del(&event->migrate_entry);
10464 		if (event->state >= PERF_EVENT_STATE_OFF)
10465 			event->state = PERF_EVENT_STATE_INACTIVE;
10466 		account_event_cpu(event, dst_cpu);
10467 		perf_install_in_context(dst_ctx, event, dst_cpu);
10468 		get_ctx(dst_ctx);
10469 	}
10470 	mutex_unlock(&dst_ctx->mutex);
10471 	mutex_unlock(&src_ctx->mutex);
10472 }
10473 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10474 
10475 static void sync_child_event(struct perf_event *child_event,
10476 			       struct task_struct *child)
10477 {
10478 	struct perf_event *parent_event = child_event->parent;
10479 	u64 child_val;
10480 
10481 	if (child_event->attr.inherit_stat)
10482 		perf_event_read_event(child_event, child);
10483 
10484 	child_val = perf_event_count(child_event);
10485 
10486 	/*
10487 	 * Add back the child's count to the parent's count:
10488 	 */
10489 	atomic64_add(child_val, &parent_event->child_count);
10490 	atomic64_add(child_event->total_time_enabled,
10491 		     &parent_event->child_total_time_enabled);
10492 	atomic64_add(child_event->total_time_running,
10493 		     &parent_event->child_total_time_running);
10494 }
10495 
10496 static void
10497 perf_event_exit_event(struct perf_event *child_event,
10498 		      struct perf_event_context *child_ctx,
10499 		      struct task_struct *child)
10500 {
10501 	struct perf_event *parent_event = child_event->parent;
10502 
10503 	/*
10504 	 * Do not destroy the 'original' grouping; because of the context
10505 	 * switch optimization the original events could've ended up in a
10506 	 * random child task.
10507 	 *
10508 	 * If we were to destroy the original group, all group related
10509 	 * operations would cease to function properly after this random
10510 	 * child dies.
10511 	 *
10512 	 * Do destroy all inherited groups, we don't care about those
10513 	 * and being thorough is better.
10514 	 */
10515 	raw_spin_lock_irq(&child_ctx->lock);
10516 	WARN_ON_ONCE(child_ctx->is_active);
10517 
10518 	if (parent_event)
10519 		perf_group_detach(child_event);
10520 	list_del_event(child_event, child_ctx);
10521 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10522 	raw_spin_unlock_irq(&child_ctx->lock);
10523 
10524 	/*
10525 	 * Parent events are governed by their filedesc, retain them.
10526 	 */
10527 	if (!parent_event) {
10528 		perf_event_wakeup(child_event);
10529 		return;
10530 	}
10531 	/*
10532 	 * Child events can be cleaned up.
10533 	 */
10534 
10535 	sync_child_event(child_event, child);
10536 
10537 	/*
10538 	 * Remove this event from the parent's list
10539 	 */
10540 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10541 	mutex_lock(&parent_event->child_mutex);
10542 	list_del_init(&child_event->child_list);
10543 	mutex_unlock(&parent_event->child_mutex);
10544 
10545 	/*
10546 	 * Kick perf_poll() for is_event_hup().
10547 	 */
10548 	perf_event_wakeup(parent_event);
10549 	free_event(child_event);
10550 	put_event(parent_event);
10551 }
10552 
10553 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10554 {
10555 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10556 	struct perf_event *child_event, *next;
10557 
10558 	WARN_ON_ONCE(child != current);
10559 
10560 	child_ctx = perf_pin_task_context(child, ctxn);
10561 	if (!child_ctx)
10562 		return;
10563 
10564 	/*
10565 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10566 	 * ctx::mutex over the entire thing. This serializes against almost
10567 	 * everything that wants to access the ctx.
10568 	 *
10569 	 * The exception is sys_perf_event_open() /
10570 	 * perf_event_create_kernel_count() which does find_get_context()
10571 	 * without ctx::mutex (it cannot because of the move_group double mutex
10572 	 * lock thing). See the comments in perf_install_in_context().
10573 	 */
10574 	mutex_lock(&child_ctx->mutex);
10575 
10576 	/*
10577 	 * In a single ctx::lock section, de-schedule the events and detach the
10578 	 * context from the task such that we cannot ever get it scheduled back
10579 	 * in.
10580 	 */
10581 	raw_spin_lock_irq(&child_ctx->lock);
10582 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10583 
10584 	/*
10585 	 * Now that the context is inactive, destroy the task <-> ctx relation
10586 	 * and mark the context dead.
10587 	 */
10588 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10589 	put_ctx(child_ctx); /* cannot be last */
10590 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10591 	put_task_struct(current); /* cannot be last */
10592 
10593 	clone_ctx = unclone_ctx(child_ctx);
10594 	raw_spin_unlock_irq(&child_ctx->lock);
10595 
10596 	if (clone_ctx)
10597 		put_ctx(clone_ctx);
10598 
10599 	/*
10600 	 * Report the task dead after unscheduling the events so that we
10601 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10602 	 * get a few PERF_RECORD_READ events.
10603 	 */
10604 	perf_event_task(child, child_ctx, 0);
10605 
10606 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10607 		perf_event_exit_event(child_event, child_ctx, child);
10608 
10609 	mutex_unlock(&child_ctx->mutex);
10610 
10611 	put_ctx(child_ctx);
10612 }
10613 
10614 /*
10615  * When a child task exits, feed back event values to parent events.
10616  *
10617  * Can be called with cred_guard_mutex held when called from
10618  * install_exec_creds().
10619  */
10620 void perf_event_exit_task(struct task_struct *child)
10621 {
10622 	struct perf_event *event, *tmp;
10623 	int ctxn;
10624 
10625 	mutex_lock(&child->perf_event_mutex);
10626 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10627 				 owner_entry) {
10628 		list_del_init(&event->owner_entry);
10629 
10630 		/*
10631 		 * Ensure the list deletion is visible before we clear
10632 		 * the owner, closes a race against perf_release() where
10633 		 * we need to serialize on the owner->perf_event_mutex.
10634 		 */
10635 		smp_store_release(&event->owner, NULL);
10636 	}
10637 	mutex_unlock(&child->perf_event_mutex);
10638 
10639 	for_each_task_context_nr(ctxn)
10640 		perf_event_exit_task_context(child, ctxn);
10641 
10642 	/*
10643 	 * The perf_event_exit_task_context calls perf_event_task
10644 	 * with child's task_ctx, which generates EXIT events for
10645 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10646 	 * At this point we need to send EXIT events to cpu contexts.
10647 	 */
10648 	perf_event_task(child, NULL, 0);
10649 }
10650 
10651 static void perf_free_event(struct perf_event *event,
10652 			    struct perf_event_context *ctx)
10653 {
10654 	struct perf_event *parent = event->parent;
10655 
10656 	if (WARN_ON_ONCE(!parent))
10657 		return;
10658 
10659 	mutex_lock(&parent->child_mutex);
10660 	list_del_init(&event->child_list);
10661 	mutex_unlock(&parent->child_mutex);
10662 
10663 	put_event(parent);
10664 
10665 	raw_spin_lock_irq(&ctx->lock);
10666 	perf_group_detach(event);
10667 	list_del_event(event, ctx);
10668 	raw_spin_unlock_irq(&ctx->lock);
10669 	free_event(event);
10670 }
10671 
10672 /*
10673  * Free an unexposed, unused context as created by inheritance by
10674  * perf_event_init_task below, used by fork() in case of fail.
10675  *
10676  * Not all locks are strictly required, but take them anyway to be nice and
10677  * help out with the lockdep assertions.
10678  */
10679 void perf_event_free_task(struct task_struct *task)
10680 {
10681 	struct perf_event_context *ctx;
10682 	struct perf_event *event, *tmp;
10683 	int ctxn;
10684 
10685 	for_each_task_context_nr(ctxn) {
10686 		ctx = task->perf_event_ctxp[ctxn];
10687 		if (!ctx)
10688 			continue;
10689 
10690 		mutex_lock(&ctx->mutex);
10691 		raw_spin_lock_irq(&ctx->lock);
10692 		/*
10693 		 * Destroy the task <-> ctx relation and mark the context dead.
10694 		 *
10695 		 * This is important because even though the task hasn't been
10696 		 * exposed yet the context has been (through child_list).
10697 		 */
10698 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10699 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10700 		put_task_struct(task); /* cannot be last */
10701 		raw_spin_unlock_irq(&ctx->lock);
10702 
10703 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10704 			perf_free_event(event, ctx);
10705 
10706 		mutex_unlock(&ctx->mutex);
10707 		put_ctx(ctx);
10708 	}
10709 }
10710 
10711 void perf_event_delayed_put(struct task_struct *task)
10712 {
10713 	int ctxn;
10714 
10715 	for_each_task_context_nr(ctxn)
10716 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10717 }
10718 
10719 struct file *perf_event_get(unsigned int fd)
10720 {
10721 	struct file *file;
10722 
10723 	file = fget_raw(fd);
10724 	if (!file)
10725 		return ERR_PTR(-EBADF);
10726 
10727 	if (file->f_op != &perf_fops) {
10728 		fput(file);
10729 		return ERR_PTR(-EBADF);
10730 	}
10731 
10732 	return file;
10733 }
10734 
10735 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10736 {
10737 	if (!event)
10738 		return ERR_PTR(-EINVAL);
10739 
10740 	return &event->attr;
10741 }
10742 
10743 /*
10744  * Inherit a event from parent task to child task.
10745  *
10746  * Returns:
10747  *  - valid pointer on success
10748  *  - NULL for orphaned events
10749  *  - IS_ERR() on error
10750  */
10751 static struct perf_event *
10752 inherit_event(struct perf_event *parent_event,
10753 	      struct task_struct *parent,
10754 	      struct perf_event_context *parent_ctx,
10755 	      struct task_struct *child,
10756 	      struct perf_event *group_leader,
10757 	      struct perf_event_context *child_ctx)
10758 {
10759 	enum perf_event_active_state parent_state = parent_event->state;
10760 	struct perf_event *child_event;
10761 	unsigned long flags;
10762 
10763 	/*
10764 	 * Instead of creating recursive hierarchies of events,
10765 	 * we link inherited events back to the original parent,
10766 	 * which has a filp for sure, which we use as the reference
10767 	 * count:
10768 	 */
10769 	if (parent_event->parent)
10770 		parent_event = parent_event->parent;
10771 
10772 	child_event = perf_event_alloc(&parent_event->attr,
10773 					   parent_event->cpu,
10774 					   child,
10775 					   group_leader, parent_event,
10776 					   NULL, NULL, -1);
10777 	if (IS_ERR(child_event))
10778 		return child_event;
10779 
10780 	/*
10781 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10782 	 * must be under the same lock in order to serialize against
10783 	 * perf_event_release_kernel(), such that either we must observe
10784 	 * is_orphaned_event() or they will observe us on the child_list.
10785 	 */
10786 	mutex_lock(&parent_event->child_mutex);
10787 	if (is_orphaned_event(parent_event) ||
10788 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10789 		mutex_unlock(&parent_event->child_mutex);
10790 		free_event(child_event);
10791 		return NULL;
10792 	}
10793 
10794 	get_ctx(child_ctx);
10795 
10796 	/*
10797 	 * Make the child state follow the state of the parent event,
10798 	 * not its attr.disabled bit.  We hold the parent's mutex,
10799 	 * so we won't race with perf_event_{en, dis}able_family.
10800 	 */
10801 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10802 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10803 	else
10804 		child_event->state = PERF_EVENT_STATE_OFF;
10805 
10806 	if (parent_event->attr.freq) {
10807 		u64 sample_period = parent_event->hw.sample_period;
10808 		struct hw_perf_event *hwc = &child_event->hw;
10809 
10810 		hwc->sample_period = sample_period;
10811 		hwc->last_period   = sample_period;
10812 
10813 		local64_set(&hwc->period_left, sample_period);
10814 	}
10815 
10816 	child_event->ctx = child_ctx;
10817 	child_event->overflow_handler = parent_event->overflow_handler;
10818 	child_event->overflow_handler_context
10819 		= parent_event->overflow_handler_context;
10820 
10821 	/*
10822 	 * Precalculate sample_data sizes
10823 	 */
10824 	perf_event__header_size(child_event);
10825 	perf_event__id_header_size(child_event);
10826 
10827 	/*
10828 	 * Link it up in the child's context:
10829 	 */
10830 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10831 	add_event_to_ctx(child_event, child_ctx);
10832 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10833 
10834 	/*
10835 	 * Link this into the parent event's child list
10836 	 */
10837 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10838 	mutex_unlock(&parent_event->child_mutex);
10839 
10840 	return child_event;
10841 }
10842 
10843 /*
10844  * Inherits an event group.
10845  *
10846  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10847  * This matches with perf_event_release_kernel() removing all child events.
10848  *
10849  * Returns:
10850  *  - 0 on success
10851  *  - <0 on error
10852  */
10853 static int inherit_group(struct perf_event *parent_event,
10854 	      struct task_struct *parent,
10855 	      struct perf_event_context *parent_ctx,
10856 	      struct task_struct *child,
10857 	      struct perf_event_context *child_ctx)
10858 {
10859 	struct perf_event *leader;
10860 	struct perf_event *sub;
10861 	struct perf_event *child_ctr;
10862 
10863 	leader = inherit_event(parent_event, parent, parent_ctx,
10864 				 child, NULL, child_ctx);
10865 	if (IS_ERR(leader))
10866 		return PTR_ERR(leader);
10867 	/*
10868 	 * @leader can be NULL here because of is_orphaned_event(). In this
10869 	 * case inherit_event() will create individual events, similar to what
10870 	 * perf_group_detach() would do anyway.
10871 	 */
10872 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10873 		child_ctr = inherit_event(sub, parent, parent_ctx,
10874 					    child, leader, child_ctx);
10875 		if (IS_ERR(child_ctr))
10876 			return PTR_ERR(child_ctr);
10877 	}
10878 	return 0;
10879 }
10880 
10881 /*
10882  * Creates the child task context and tries to inherit the event-group.
10883  *
10884  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10885  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10886  * consistent with perf_event_release_kernel() removing all child events.
10887  *
10888  * Returns:
10889  *  - 0 on success
10890  *  - <0 on error
10891  */
10892 static int
10893 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10894 		   struct perf_event_context *parent_ctx,
10895 		   struct task_struct *child, int ctxn,
10896 		   int *inherited_all)
10897 {
10898 	int ret;
10899 	struct perf_event_context *child_ctx;
10900 
10901 	if (!event->attr.inherit) {
10902 		*inherited_all = 0;
10903 		return 0;
10904 	}
10905 
10906 	child_ctx = child->perf_event_ctxp[ctxn];
10907 	if (!child_ctx) {
10908 		/*
10909 		 * This is executed from the parent task context, so
10910 		 * inherit events that have been marked for cloning.
10911 		 * First allocate and initialize a context for the
10912 		 * child.
10913 		 */
10914 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10915 		if (!child_ctx)
10916 			return -ENOMEM;
10917 
10918 		child->perf_event_ctxp[ctxn] = child_ctx;
10919 	}
10920 
10921 	ret = inherit_group(event, parent, parent_ctx,
10922 			    child, child_ctx);
10923 
10924 	if (ret)
10925 		*inherited_all = 0;
10926 
10927 	return ret;
10928 }
10929 
10930 /*
10931  * Initialize the perf_event context in task_struct
10932  */
10933 static int perf_event_init_context(struct task_struct *child, int ctxn)
10934 {
10935 	struct perf_event_context *child_ctx, *parent_ctx;
10936 	struct perf_event_context *cloned_ctx;
10937 	struct perf_event *event;
10938 	struct task_struct *parent = current;
10939 	int inherited_all = 1;
10940 	unsigned long flags;
10941 	int ret = 0;
10942 
10943 	if (likely(!parent->perf_event_ctxp[ctxn]))
10944 		return 0;
10945 
10946 	/*
10947 	 * If the parent's context is a clone, pin it so it won't get
10948 	 * swapped under us.
10949 	 */
10950 	parent_ctx = perf_pin_task_context(parent, ctxn);
10951 	if (!parent_ctx)
10952 		return 0;
10953 
10954 	/*
10955 	 * No need to check if parent_ctx != NULL here; since we saw
10956 	 * it non-NULL earlier, the only reason for it to become NULL
10957 	 * is if we exit, and since we're currently in the middle of
10958 	 * a fork we can't be exiting at the same time.
10959 	 */
10960 
10961 	/*
10962 	 * Lock the parent list. No need to lock the child - not PID
10963 	 * hashed yet and not running, so nobody can access it.
10964 	 */
10965 	mutex_lock(&parent_ctx->mutex);
10966 
10967 	/*
10968 	 * We dont have to disable NMIs - we are only looking at
10969 	 * the list, not manipulating it:
10970 	 */
10971 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10972 		ret = inherit_task_group(event, parent, parent_ctx,
10973 					 child, ctxn, &inherited_all);
10974 		if (ret)
10975 			goto out_unlock;
10976 	}
10977 
10978 	/*
10979 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10980 	 * to allocations, but we need to prevent rotation because
10981 	 * rotate_ctx() will change the list from interrupt context.
10982 	 */
10983 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10984 	parent_ctx->rotate_disable = 1;
10985 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10986 
10987 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10988 		ret = inherit_task_group(event, parent, parent_ctx,
10989 					 child, ctxn, &inherited_all);
10990 		if (ret)
10991 			goto out_unlock;
10992 	}
10993 
10994 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10995 	parent_ctx->rotate_disable = 0;
10996 
10997 	child_ctx = child->perf_event_ctxp[ctxn];
10998 
10999 	if (child_ctx && inherited_all) {
11000 		/*
11001 		 * Mark the child context as a clone of the parent
11002 		 * context, or of whatever the parent is a clone of.
11003 		 *
11004 		 * Note that if the parent is a clone, the holding of
11005 		 * parent_ctx->lock avoids it from being uncloned.
11006 		 */
11007 		cloned_ctx = parent_ctx->parent_ctx;
11008 		if (cloned_ctx) {
11009 			child_ctx->parent_ctx = cloned_ctx;
11010 			child_ctx->parent_gen = parent_ctx->parent_gen;
11011 		} else {
11012 			child_ctx->parent_ctx = parent_ctx;
11013 			child_ctx->parent_gen = parent_ctx->generation;
11014 		}
11015 		get_ctx(child_ctx->parent_ctx);
11016 	}
11017 
11018 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11019 out_unlock:
11020 	mutex_unlock(&parent_ctx->mutex);
11021 
11022 	perf_unpin_context(parent_ctx);
11023 	put_ctx(parent_ctx);
11024 
11025 	return ret;
11026 }
11027 
11028 /*
11029  * Initialize the perf_event context in task_struct
11030  */
11031 int perf_event_init_task(struct task_struct *child)
11032 {
11033 	int ctxn, ret;
11034 
11035 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11036 	mutex_init(&child->perf_event_mutex);
11037 	INIT_LIST_HEAD(&child->perf_event_list);
11038 
11039 	for_each_task_context_nr(ctxn) {
11040 		ret = perf_event_init_context(child, ctxn);
11041 		if (ret) {
11042 			perf_event_free_task(child);
11043 			return ret;
11044 		}
11045 	}
11046 
11047 	return 0;
11048 }
11049 
11050 static void __init perf_event_init_all_cpus(void)
11051 {
11052 	struct swevent_htable *swhash;
11053 	int cpu;
11054 
11055 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11056 
11057 	for_each_possible_cpu(cpu) {
11058 		swhash = &per_cpu(swevent_htable, cpu);
11059 		mutex_init(&swhash->hlist_mutex);
11060 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11061 
11062 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11063 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11064 
11065 #ifdef CONFIG_CGROUP_PERF
11066 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11067 #endif
11068 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11069 	}
11070 }
11071 
11072 void perf_swevent_init_cpu(unsigned int cpu)
11073 {
11074 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11075 
11076 	mutex_lock(&swhash->hlist_mutex);
11077 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11078 		struct swevent_hlist *hlist;
11079 
11080 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11081 		WARN_ON(!hlist);
11082 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11083 	}
11084 	mutex_unlock(&swhash->hlist_mutex);
11085 }
11086 
11087 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11088 static void __perf_event_exit_context(void *__info)
11089 {
11090 	struct perf_event_context *ctx = __info;
11091 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11092 	struct perf_event *event;
11093 
11094 	raw_spin_lock(&ctx->lock);
11095 	list_for_each_entry(event, &ctx->event_list, event_entry)
11096 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11097 	raw_spin_unlock(&ctx->lock);
11098 }
11099 
11100 static void perf_event_exit_cpu_context(int cpu)
11101 {
11102 	struct perf_cpu_context *cpuctx;
11103 	struct perf_event_context *ctx;
11104 	struct pmu *pmu;
11105 
11106 	mutex_lock(&pmus_lock);
11107 	list_for_each_entry(pmu, &pmus, entry) {
11108 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11109 		ctx = &cpuctx->ctx;
11110 
11111 		mutex_lock(&ctx->mutex);
11112 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11113 		cpuctx->online = 0;
11114 		mutex_unlock(&ctx->mutex);
11115 	}
11116 	cpumask_clear_cpu(cpu, perf_online_mask);
11117 	mutex_unlock(&pmus_lock);
11118 }
11119 #else
11120 
11121 static void perf_event_exit_cpu_context(int cpu) { }
11122 
11123 #endif
11124 
11125 int perf_event_init_cpu(unsigned int cpu)
11126 {
11127 	struct perf_cpu_context *cpuctx;
11128 	struct perf_event_context *ctx;
11129 	struct pmu *pmu;
11130 
11131 	perf_swevent_init_cpu(cpu);
11132 
11133 	mutex_lock(&pmus_lock);
11134 	cpumask_set_cpu(cpu, perf_online_mask);
11135 	list_for_each_entry(pmu, &pmus, entry) {
11136 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11137 		ctx = &cpuctx->ctx;
11138 
11139 		mutex_lock(&ctx->mutex);
11140 		cpuctx->online = 1;
11141 		mutex_unlock(&ctx->mutex);
11142 	}
11143 	mutex_unlock(&pmus_lock);
11144 
11145 	return 0;
11146 }
11147 
11148 int perf_event_exit_cpu(unsigned int cpu)
11149 {
11150 	perf_event_exit_cpu_context(cpu);
11151 	return 0;
11152 }
11153 
11154 static int
11155 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11156 {
11157 	int cpu;
11158 
11159 	for_each_online_cpu(cpu)
11160 		perf_event_exit_cpu(cpu);
11161 
11162 	return NOTIFY_OK;
11163 }
11164 
11165 /*
11166  * Run the perf reboot notifier at the very last possible moment so that
11167  * the generic watchdog code runs as long as possible.
11168  */
11169 static struct notifier_block perf_reboot_notifier = {
11170 	.notifier_call = perf_reboot,
11171 	.priority = INT_MIN,
11172 };
11173 
11174 void __init perf_event_init(void)
11175 {
11176 	int ret;
11177 
11178 	idr_init(&pmu_idr);
11179 
11180 	perf_event_init_all_cpus();
11181 	init_srcu_struct(&pmus_srcu);
11182 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11183 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11184 	perf_pmu_register(&perf_task_clock, NULL, -1);
11185 	perf_tp_register();
11186 	perf_event_init_cpu(smp_processor_id());
11187 	register_reboot_notifier(&perf_reboot_notifier);
11188 
11189 	ret = init_hw_breakpoint();
11190 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11191 
11192 	/*
11193 	 * Build time assertion that we keep the data_head at the intended
11194 	 * location.  IOW, validation we got the __reserved[] size right.
11195 	 */
11196 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11197 		     != 1024);
11198 }
11199 
11200 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11201 			      char *page)
11202 {
11203 	struct perf_pmu_events_attr *pmu_attr =
11204 		container_of(attr, struct perf_pmu_events_attr, attr);
11205 
11206 	if (pmu_attr->event_str)
11207 		return sprintf(page, "%s\n", pmu_attr->event_str);
11208 
11209 	return 0;
11210 }
11211 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11212 
11213 static int __init perf_event_sysfs_init(void)
11214 {
11215 	struct pmu *pmu;
11216 	int ret;
11217 
11218 	mutex_lock(&pmus_lock);
11219 
11220 	ret = bus_register(&pmu_bus);
11221 	if (ret)
11222 		goto unlock;
11223 
11224 	list_for_each_entry(pmu, &pmus, entry) {
11225 		if (!pmu->name || pmu->type < 0)
11226 			continue;
11227 
11228 		ret = pmu_dev_alloc(pmu);
11229 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11230 	}
11231 	pmu_bus_running = 1;
11232 	ret = 0;
11233 
11234 unlock:
11235 	mutex_unlock(&pmus_lock);
11236 
11237 	return ret;
11238 }
11239 device_initcall(perf_event_sysfs_init);
11240 
11241 #ifdef CONFIG_CGROUP_PERF
11242 static struct cgroup_subsys_state *
11243 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11244 {
11245 	struct perf_cgroup *jc;
11246 
11247 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11248 	if (!jc)
11249 		return ERR_PTR(-ENOMEM);
11250 
11251 	jc->info = alloc_percpu(struct perf_cgroup_info);
11252 	if (!jc->info) {
11253 		kfree(jc);
11254 		return ERR_PTR(-ENOMEM);
11255 	}
11256 
11257 	return &jc->css;
11258 }
11259 
11260 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11261 {
11262 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11263 
11264 	free_percpu(jc->info);
11265 	kfree(jc);
11266 }
11267 
11268 static int __perf_cgroup_move(void *info)
11269 {
11270 	struct task_struct *task = info;
11271 	rcu_read_lock();
11272 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11273 	rcu_read_unlock();
11274 	return 0;
11275 }
11276 
11277 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11278 {
11279 	struct task_struct *task;
11280 	struct cgroup_subsys_state *css;
11281 
11282 	cgroup_taskset_for_each(task, css, tset)
11283 		task_function_call(task, __perf_cgroup_move, task);
11284 }
11285 
11286 struct cgroup_subsys perf_event_cgrp_subsys = {
11287 	.css_alloc	= perf_cgroup_css_alloc,
11288 	.css_free	= perf_cgroup_css_free,
11289 	.attach		= perf_cgroup_attach,
11290 	/*
11291 	 * Implicitly enable on dfl hierarchy so that perf events can
11292 	 * always be filtered by cgroup2 path as long as perf_event
11293 	 * controller is not mounted on a legacy hierarchy.
11294 	 */
11295 	.implicit_on_dfl = true,
11296 	.threaded	= true,
11297 };
11298 #endif /* CONFIG_CGROUP_PERF */
11299