xref: /openbmc/linux/kernel/events/core.c (revision 3932b9ca)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 struct remote_function_call {
51 	struct task_struct	*p;
52 	int			(*func)(void *info);
53 	void			*info;
54 	int			ret;
55 };
56 
57 static void remote_function(void *data)
58 {
59 	struct remote_function_call *tfc = data;
60 	struct task_struct *p = tfc->p;
61 
62 	if (p) {
63 		tfc->ret = -EAGAIN;
64 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
65 			return;
66 	}
67 
68 	tfc->ret = tfc->func(tfc->info);
69 }
70 
71 /**
72  * task_function_call - call a function on the cpu on which a task runs
73  * @p:		the task to evaluate
74  * @func:	the function to be called
75  * @info:	the function call argument
76  *
77  * Calls the function @func when the task is currently running. This might
78  * be on the current CPU, which just calls the function directly
79  *
80  * returns: @func return value, or
81  *	    -ESRCH  - when the process isn't running
82  *	    -EAGAIN - when the process moved away
83  */
84 static int
85 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
86 {
87 	struct remote_function_call data = {
88 		.p	= p,
89 		.func	= func,
90 		.info	= info,
91 		.ret	= -ESRCH, /* No such (running) process */
92 	};
93 
94 	if (task_curr(p))
95 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
96 
97 	return data.ret;
98 }
99 
100 /**
101  * cpu_function_call - call a function on the cpu
102  * @func:	the function to be called
103  * @info:	the function call argument
104  *
105  * Calls the function @func on the remote cpu.
106  *
107  * returns: @func return value or -ENXIO when the cpu is offline
108  */
109 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= NULL,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -ENXIO, /* No such CPU */
116 	};
117 
118 	smp_call_function_single(cpu, remote_function, &data, 1);
119 
120 	return data.ret;
121 }
122 
123 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
124 		       PERF_FLAG_FD_OUTPUT  |\
125 		       PERF_FLAG_PID_CGROUP |\
126 		       PERF_FLAG_FD_CLOEXEC)
127 
128 /*
129  * branch priv levels that need permission checks
130  */
131 #define PERF_SAMPLE_BRANCH_PERM_PLM \
132 	(PERF_SAMPLE_BRANCH_KERNEL |\
133 	 PERF_SAMPLE_BRANCH_HV)
134 
135 enum event_type_t {
136 	EVENT_FLEXIBLE = 0x1,
137 	EVENT_PINNED = 0x2,
138 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
139 };
140 
141 /*
142  * perf_sched_events : >0 events exist
143  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
144  */
145 struct static_key_deferred perf_sched_events __read_mostly;
146 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
147 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
148 
149 static atomic_t nr_mmap_events __read_mostly;
150 static atomic_t nr_comm_events __read_mostly;
151 static atomic_t nr_task_events __read_mostly;
152 static atomic_t nr_freq_events __read_mostly;
153 
154 static LIST_HEAD(pmus);
155 static DEFINE_MUTEX(pmus_lock);
156 static struct srcu_struct pmus_srcu;
157 
158 /*
159  * perf event paranoia level:
160  *  -1 - not paranoid at all
161  *   0 - disallow raw tracepoint access for unpriv
162  *   1 - disallow cpu events for unpriv
163  *   2 - disallow kernel profiling for unpriv
164  */
165 int sysctl_perf_event_paranoid __read_mostly = 1;
166 
167 /* Minimum for 512 kiB + 1 user control page */
168 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
169 
170 /*
171  * max perf event sample rate
172  */
173 #define DEFAULT_MAX_SAMPLE_RATE		100000
174 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
175 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
176 
177 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
178 
179 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
180 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
181 
182 static int perf_sample_allowed_ns __read_mostly =
183 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
184 
185 void update_perf_cpu_limits(void)
186 {
187 	u64 tmp = perf_sample_period_ns;
188 
189 	tmp *= sysctl_perf_cpu_time_max_percent;
190 	do_div(tmp, 100);
191 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
192 }
193 
194 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
195 
196 int perf_proc_update_handler(struct ctl_table *table, int write,
197 		void __user *buffer, size_t *lenp,
198 		loff_t *ppos)
199 {
200 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
201 
202 	if (ret || !write)
203 		return ret;
204 
205 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
206 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
207 	update_perf_cpu_limits();
208 
209 	return 0;
210 }
211 
212 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
213 
214 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
215 				void __user *buffer, size_t *lenp,
216 				loff_t *ppos)
217 {
218 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
219 
220 	if (ret || !write)
221 		return ret;
222 
223 	update_perf_cpu_limits();
224 
225 	return 0;
226 }
227 
228 /*
229  * perf samples are done in some very critical code paths (NMIs).
230  * If they take too much CPU time, the system can lock up and not
231  * get any real work done.  This will drop the sample rate when
232  * we detect that events are taking too long.
233  */
234 #define NR_ACCUMULATED_SAMPLES 128
235 static DEFINE_PER_CPU(u64, running_sample_length);
236 
237 static void perf_duration_warn(struct irq_work *w)
238 {
239 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
240 	u64 avg_local_sample_len;
241 	u64 local_samples_len;
242 
243 	local_samples_len = __get_cpu_var(running_sample_length);
244 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
245 
246 	printk_ratelimited(KERN_WARNING
247 			"perf interrupt took too long (%lld > %lld), lowering "
248 			"kernel.perf_event_max_sample_rate to %d\n",
249 			avg_local_sample_len, allowed_ns >> 1,
250 			sysctl_perf_event_sample_rate);
251 }
252 
253 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
254 
255 void perf_sample_event_took(u64 sample_len_ns)
256 {
257 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
258 	u64 avg_local_sample_len;
259 	u64 local_samples_len;
260 
261 	if (allowed_ns == 0)
262 		return;
263 
264 	/* decay the counter by 1 average sample */
265 	local_samples_len = __get_cpu_var(running_sample_length);
266 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
267 	local_samples_len += sample_len_ns;
268 	__get_cpu_var(running_sample_length) = local_samples_len;
269 
270 	/*
271 	 * note: this will be biased artifically low until we have
272 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
273 	 * from having to maintain a count.
274 	 */
275 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
276 
277 	if (avg_local_sample_len <= allowed_ns)
278 		return;
279 
280 	if (max_samples_per_tick <= 1)
281 		return;
282 
283 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
284 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
285 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
286 
287 	update_perf_cpu_limits();
288 
289 	if (!irq_work_queue(&perf_duration_work)) {
290 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
291 			     "kernel.perf_event_max_sample_rate to %d\n",
292 			     avg_local_sample_len, allowed_ns >> 1,
293 			     sysctl_perf_event_sample_rate);
294 	}
295 }
296 
297 static atomic64_t perf_event_id;
298 
299 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
300 			      enum event_type_t event_type);
301 
302 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
303 			     enum event_type_t event_type,
304 			     struct task_struct *task);
305 
306 static void update_context_time(struct perf_event_context *ctx);
307 static u64 perf_event_time(struct perf_event *event);
308 
309 void __weak perf_event_print_debug(void)	{ }
310 
311 extern __weak const char *perf_pmu_name(void)
312 {
313 	return "pmu";
314 }
315 
316 static inline u64 perf_clock(void)
317 {
318 	return local_clock();
319 }
320 
321 static inline struct perf_cpu_context *
322 __get_cpu_context(struct perf_event_context *ctx)
323 {
324 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
325 }
326 
327 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
328 			  struct perf_event_context *ctx)
329 {
330 	raw_spin_lock(&cpuctx->ctx.lock);
331 	if (ctx)
332 		raw_spin_lock(&ctx->lock);
333 }
334 
335 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
336 			    struct perf_event_context *ctx)
337 {
338 	if (ctx)
339 		raw_spin_unlock(&ctx->lock);
340 	raw_spin_unlock(&cpuctx->ctx.lock);
341 }
342 
343 #ifdef CONFIG_CGROUP_PERF
344 
345 /*
346  * perf_cgroup_info keeps track of time_enabled for a cgroup.
347  * This is a per-cpu dynamically allocated data structure.
348  */
349 struct perf_cgroup_info {
350 	u64				time;
351 	u64				timestamp;
352 };
353 
354 struct perf_cgroup {
355 	struct cgroup_subsys_state	css;
356 	struct perf_cgroup_info	__percpu *info;
357 };
358 
359 /*
360  * Must ensure cgroup is pinned (css_get) before calling
361  * this function. In other words, we cannot call this function
362  * if there is no cgroup event for the current CPU context.
363  */
364 static inline struct perf_cgroup *
365 perf_cgroup_from_task(struct task_struct *task)
366 {
367 	return container_of(task_css(task, perf_event_cgrp_id),
368 			    struct perf_cgroup, css);
369 }
370 
371 static inline bool
372 perf_cgroup_match(struct perf_event *event)
373 {
374 	struct perf_event_context *ctx = event->ctx;
375 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
376 
377 	/* @event doesn't care about cgroup */
378 	if (!event->cgrp)
379 		return true;
380 
381 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
382 	if (!cpuctx->cgrp)
383 		return false;
384 
385 	/*
386 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
387 	 * also enabled for all its descendant cgroups.  If @cpuctx's
388 	 * cgroup is a descendant of @event's (the test covers identity
389 	 * case), it's a match.
390 	 */
391 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
392 				    event->cgrp->css.cgroup);
393 }
394 
395 static inline void perf_put_cgroup(struct perf_event *event)
396 {
397 	css_put(&event->cgrp->css);
398 }
399 
400 static inline void perf_detach_cgroup(struct perf_event *event)
401 {
402 	perf_put_cgroup(event);
403 	event->cgrp = NULL;
404 }
405 
406 static inline int is_cgroup_event(struct perf_event *event)
407 {
408 	return event->cgrp != NULL;
409 }
410 
411 static inline u64 perf_cgroup_event_time(struct perf_event *event)
412 {
413 	struct perf_cgroup_info *t;
414 
415 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
416 	return t->time;
417 }
418 
419 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
420 {
421 	struct perf_cgroup_info *info;
422 	u64 now;
423 
424 	now = perf_clock();
425 
426 	info = this_cpu_ptr(cgrp->info);
427 
428 	info->time += now - info->timestamp;
429 	info->timestamp = now;
430 }
431 
432 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
433 {
434 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
435 	if (cgrp_out)
436 		__update_cgrp_time(cgrp_out);
437 }
438 
439 static inline void update_cgrp_time_from_event(struct perf_event *event)
440 {
441 	struct perf_cgroup *cgrp;
442 
443 	/*
444 	 * ensure we access cgroup data only when needed and
445 	 * when we know the cgroup is pinned (css_get)
446 	 */
447 	if (!is_cgroup_event(event))
448 		return;
449 
450 	cgrp = perf_cgroup_from_task(current);
451 	/*
452 	 * Do not update time when cgroup is not active
453 	 */
454 	if (cgrp == event->cgrp)
455 		__update_cgrp_time(event->cgrp);
456 }
457 
458 static inline void
459 perf_cgroup_set_timestamp(struct task_struct *task,
460 			  struct perf_event_context *ctx)
461 {
462 	struct perf_cgroup *cgrp;
463 	struct perf_cgroup_info *info;
464 
465 	/*
466 	 * ctx->lock held by caller
467 	 * ensure we do not access cgroup data
468 	 * unless we have the cgroup pinned (css_get)
469 	 */
470 	if (!task || !ctx->nr_cgroups)
471 		return;
472 
473 	cgrp = perf_cgroup_from_task(task);
474 	info = this_cpu_ptr(cgrp->info);
475 	info->timestamp = ctx->timestamp;
476 }
477 
478 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
479 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
480 
481 /*
482  * reschedule events based on the cgroup constraint of task.
483  *
484  * mode SWOUT : schedule out everything
485  * mode SWIN : schedule in based on cgroup for next
486  */
487 void perf_cgroup_switch(struct task_struct *task, int mode)
488 {
489 	struct perf_cpu_context *cpuctx;
490 	struct pmu *pmu;
491 	unsigned long flags;
492 
493 	/*
494 	 * disable interrupts to avoid geting nr_cgroup
495 	 * changes via __perf_event_disable(). Also
496 	 * avoids preemption.
497 	 */
498 	local_irq_save(flags);
499 
500 	/*
501 	 * we reschedule only in the presence of cgroup
502 	 * constrained events.
503 	 */
504 	rcu_read_lock();
505 
506 	list_for_each_entry_rcu(pmu, &pmus, entry) {
507 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
508 		if (cpuctx->unique_pmu != pmu)
509 			continue; /* ensure we process each cpuctx once */
510 
511 		/*
512 		 * perf_cgroup_events says at least one
513 		 * context on this CPU has cgroup events.
514 		 *
515 		 * ctx->nr_cgroups reports the number of cgroup
516 		 * events for a context.
517 		 */
518 		if (cpuctx->ctx.nr_cgroups > 0) {
519 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
520 			perf_pmu_disable(cpuctx->ctx.pmu);
521 
522 			if (mode & PERF_CGROUP_SWOUT) {
523 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
524 				/*
525 				 * must not be done before ctxswout due
526 				 * to event_filter_match() in event_sched_out()
527 				 */
528 				cpuctx->cgrp = NULL;
529 			}
530 
531 			if (mode & PERF_CGROUP_SWIN) {
532 				WARN_ON_ONCE(cpuctx->cgrp);
533 				/*
534 				 * set cgrp before ctxsw in to allow
535 				 * event_filter_match() to not have to pass
536 				 * task around
537 				 */
538 				cpuctx->cgrp = perf_cgroup_from_task(task);
539 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
540 			}
541 			perf_pmu_enable(cpuctx->ctx.pmu);
542 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
543 		}
544 	}
545 
546 	rcu_read_unlock();
547 
548 	local_irq_restore(flags);
549 }
550 
551 static inline void perf_cgroup_sched_out(struct task_struct *task,
552 					 struct task_struct *next)
553 {
554 	struct perf_cgroup *cgrp1;
555 	struct perf_cgroup *cgrp2 = NULL;
556 
557 	/*
558 	 * we come here when we know perf_cgroup_events > 0
559 	 */
560 	cgrp1 = perf_cgroup_from_task(task);
561 
562 	/*
563 	 * next is NULL when called from perf_event_enable_on_exec()
564 	 * that will systematically cause a cgroup_switch()
565 	 */
566 	if (next)
567 		cgrp2 = perf_cgroup_from_task(next);
568 
569 	/*
570 	 * only schedule out current cgroup events if we know
571 	 * that we are switching to a different cgroup. Otherwise,
572 	 * do no touch the cgroup events.
573 	 */
574 	if (cgrp1 != cgrp2)
575 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
576 }
577 
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 					struct task_struct *task)
580 {
581 	struct perf_cgroup *cgrp1;
582 	struct perf_cgroup *cgrp2 = NULL;
583 
584 	/*
585 	 * we come here when we know perf_cgroup_events > 0
586 	 */
587 	cgrp1 = perf_cgroup_from_task(task);
588 
589 	/* prev can never be NULL */
590 	cgrp2 = perf_cgroup_from_task(prev);
591 
592 	/*
593 	 * only need to schedule in cgroup events if we are changing
594 	 * cgroup during ctxsw. Cgroup events were not scheduled
595 	 * out of ctxsw out if that was not the case.
596 	 */
597 	if (cgrp1 != cgrp2)
598 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
599 }
600 
601 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
602 				      struct perf_event_attr *attr,
603 				      struct perf_event *group_leader)
604 {
605 	struct perf_cgroup *cgrp;
606 	struct cgroup_subsys_state *css;
607 	struct fd f = fdget(fd);
608 	int ret = 0;
609 
610 	if (!f.file)
611 		return -EBADF;
612 
613 	css = css_tryget_online_from_dir(f.file->f_dentry,
614 					 &perf_event_cgrp_subsys);
615 	if (IS_ERR(css)) {
616 		ret = PTR_ERR(css);
617 		goto out;
618 	}
619 
620 	cgrp = container_of(css, struct perf_cgroup, css);
621 	event->cgrp = cgrp;
622 
623 	/*
624 	 * all events in a group must monitor
625 	 * the same cgroup because a task belongs
626 	 * to only one perf cgroup at a time
627 	 */
628 	if (group_leader && group_leader->cgrp != cgrp) {
629 		perf_detach_cgroup(event);
630 		ret = -EINVAL;
631 	}
632 out:
633 	fdput(f);
634 	return ret;
635 }
636 
637 static inline void
638 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
639 {
640 	struct perf_cgroup_info *t;
641 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
642 	event->shadow_ctx_time = now - t->timestamp;
643 }
644 
645 static inline void
646 perf_cgroup_defer_enabled(struct perf_event *event)
647 {
648 	/*
649 	 * when the current task's perf cgroup does not match
650 	 * the event's, we need to remember to call the
651 	 * perf_mark_enable() function the first time a task with
652 	 * a matching perf cgroup is scheduled in.
653 	 */
654 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
655 		event->cgrp_defer_enabled = 1;
656 }
657 
658 static inline void
659 perf_cgroup_mark_enabled(struct perf_event *event,
660 			 struct perf_event_context *ctx)
661 {
662 	struct perf_event *sub;
663 	u64 tstamp = perf_event_time(event);
664 
665 	if (!event->cgrp_defer_enabled)
666 		return;
667 
668 	event->cgrp_defer_enabled = 0;
669 
670 	event->tstamp_enabled = tstamp - event->total_time_enabled;
671 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
672 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
673 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
674 			sub->cgrp_defer_enabled = 0;
675 		}
676 	}
677 }
678 #else /* !CONFIG_CGROUP_PERF */
679 
680 static inline bool
681 perf_cgroup_match(struct perf_event *event)
682 {
683 	return true;
684 }
685 
686 static inline void perf_detach_cgroup(struct perf_event *event)
687 {}
688 
689 static inline int is_cgroup_event(struct perf_event *event)
690 {
691 	return 0;
692 }
693 
694 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
695 {
696 	return 0;
697 }
698 
699 static inline void update_cgrp_time_from_event(struct perf_event *event)
700 {
701 }
702 
703 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
704 {
705 }
706 
707 static inline void perf_cgroup_sched_out(struct task_struct *task,
708 					 struct task_struct *next)
709 {
710 }
711 
712 static inline void perf_cgroup_sched_in(struct task_struct *prev,
713 					struct task_struct *task)
714 {
715 }
716 
717 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
718 				      struct perf_event_attr *attr,
719 				      struct perf_event *group_leader)
720 {
721 	return -EINVAL;
722 }
723 
724 static inline void
725 perf_cgroup_set_timestamp(struct task_struct *task,
726 			  struct perf_event_context *ctx)
727 {
728 }
729 
730 void
731 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
732 {
733 }
734 
735 static inline void
736 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
737 {
738 }
739 
740 static inline u64 perf_cgroup_event_time(struct perf_event *event)
741 {
742 	return 0;
743 }
744 
745 static inline void
746 perf_cgroup_defer_enabled(struct perf_event *event)
747 {
748 }
749 
750 static inline void
751 perf_cgroup_mark_enabled(struct perf_event *event,
752 			 struct perf_event_context *ctx)
753 {
754 }
755 #endif
756 
757 /*
758  * set default to be dependent on timer tick just
759  * like original code
760  */
761 #define PERF_CPU_HRTIMER (1000 / HZ)
762 /*
763  * function must be called with interrupts disbled
764  */
765 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
766 {
767 	struct perf_cpu_context *cpuctx;
768 	enum hrtimer_restart ret = HRTIMER_NORESTART;
769 	int rotations = 0;
770 
771 	WARN_ON(!irqs_disabled());
772 
773 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
774 
775 	rotations = perf_rotate_context(cpuctx);
776 
777 	/*
778 	 * arm timer if needed
779 	 */
780 	if (rotations) {
781 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
782 		ret = HRTIMER_RESTART;
783 	}
784 
785 	return ret;
786 }
787 
788 /* CPU is going down */
789 void perf_cpu_hrtimer_cancel(int cpu)
790 {
791 	struct perf_cpu_context *cpuctx;
792 	struct pmu *pmu;
793 	unsigned long flags;
794 
795 	if (WARN_ON(cpu != smp_processor_id()))
796 		return;
797 
798 	local_irq_save(flags);
799 
800 	rcu_read_lock();
801 
802 	list_for_each_entry_rcu(pmu, &pmus, entry) {
803 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
804 
805 		if (pmu->task_ctx_nr == perf_sw_context)
806 			continue;
807 
808 		hrtimer_cancel(&cpuctx->hrtimer);
809 	}
810 
811 	rcu_read_unlock();
812 
813 	local_irq_restore(flags);
814 }
815 
816 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
817 {
818 	struct hrtimer *hr = &cpuctx->hrtimer;
819 	struct pmu *pmu = cpuctx->ctx.pmu;
820 	int timer;
821 
822 	/* no multiplexing needed for SW PMU */
823 	if (pmu->task_ctx_nr == perf_sw_context)
824 		return;
825 
826 	/*
827 	 * check default is sane, if not set then force to
828 	 * default interval (1/tick)
829 	 */
830 	timer = pmu->hrtimer_interval_ms;
831 	if (timer < 1)
832 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
833 
834 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
835 
836 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
837 	hr->function = perf_cpu_hrtimer_handler;
838 }
839 
840 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
841 {
842 	struct hrtimer *hr = &cpuctx->hrtimer;
843 	struct pmu *pmu = cpuctx->ctx.pmu;
844 
845 	/* not for SW PMU */
846 	if (pmu->task_ctx_nr == perf_sw_context)
847 		return;
848 
849 	if (hrtimer_active(hr))
850 		return;
851 
852 	if (!hrtimer_callback_running(hr))
853 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
854 					 0, HRTIMER_MODE_REL_PINNED, 0);
855 }
856 
857 void perf_pmu_disable(struct pmu *pmu)
858 {
859 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
860 	if (!(*count)++)
861 		pmu->pmu_disable(pmu);
862 }
863 
864 void perf_pmu_enable(struct pmu *pmu)
865 {
866 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
867 	if (!--(*count))
868 		pmu->pmu_enable(pmu);
869 }
870 
871 static DEFINE_PER_CPU(struct list_head, rotation_list);
872 
873 /*
874  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
875  * because they're strictly cpu affine and rotate_start is called with IRQs
876  * disabled, while rotate_context is called from IRQ context.
877  */
878 static void perf_pmu_rotate_start(struct pmu *pmu)
879 {
880 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
881 	struct list_head *head = &__get_cpu_var(rotation_list);
882 
883 	WARN_ON(!irqs_disabled());
884 
885 	if (list_empty(&cpuctx->rotation_list))
886 		list_add(&cpuctx->rotation_list, head);
887 }
888 
889 static void get_ctx(struct perf_event_context *ctx)
890 {
891 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
892 }
893 
894 static void put_ctx(struct perf_event_context *ctx)
895 {
896 	if (atomic_dec_and_test(&ctx->refcount)) {
897 		if (ctx->parent_ctx)
898 			put_ctx(ctx->parent_ctx);
899 		if (ctx->task)
900 			put_task_struct(ctx->task);
901 		kfree_rcu(ctx, rcu_head);
902 	}
903 }
904 
905 static void unclone_ctx(struct perf_event_context *ctx)
906 {
907 	if (ctx->parent_ctx) {
908 		put_ctx(ctx->parent_ctx);
909 		ctx->parent_ctx = NULL;
910 	}
911 	ctx->generation++;
912 }
913 
914 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
915 {
916 	/*
917 	 * only top level events have the pid namespace they were created in
918 	 */
919 	if (event->parent)
920 		event = event->parent;
921 
922 	return task_tgid_nr_ns(p, event->ns);
923 }
924 
925 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
926 {
927 	/*
928 	 * only top level events have the pid namespace they were created in
929 	 */
930 	if (event->parent)
931 		event = event->parent;
932 
933 	return task_pid_nr_ns(p, event->ns);
934 }
935 
936 /*
937  * If we inherit events we want to return the parent event id
938  * to userspace.
939  */
940 static u64 primary_event_id(struct perf_event *event)
941 {
942 	u64 id = event->id;
943 
944 	if (event->parent)
945 		id = event->parent->id;
946 
947 	return id;
948 }
949 
950 /*
951  * Get the perf_event_context for a task and lock it.
952  * This has to cope with with the fact that until it is locked,
953  * the context could get moved to another task.
954  */
955 static struct perf_event_context *
956 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
957 {
958 	struct perf_event_context *ctx;
959 
960 retry:
961 	/*
962 	 * One of the few rules of preemptible RCU is that one cannot do
963 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
964 	 * part of the read side critical section was preemptible -- see
965 	 * rcu_read_unlock_special().
966 	 *
967 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
968 	 * side critical section is non-preemptible.
969 	 */
970 	preempt_disable();
971 	rcu_read_lock();
972 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
973 	if (ctx) {
974 		/*
975 		 * If this context is a clone of another, it might
976 		 * get swapped for another underneath us by
977 		 * perf_event_task_sched_out, though the
978 		 * rcu_read_lock() protects us from any context
979 		 * getting freed.  Lock the context and check if it
980 		 * got swapped before we could get the lock, and retry
981 		 * if so.  If we locked the right context, then it
982 		 * can't get swapped on us any more.
983 		 */
984 		raw_spin_lock_irqsave(&ctx->lock, *flags);
985 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
986 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
987 			rcu_read_unlock();
988 			preempt_enable();
989 			goto retry;
990 		}
991 
992 		if (!atomic_inc_not_zero(&ctx->refcount)) {
993 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
994 			ctx = NULL;
995 		}
996 	}
997 	rcu_read_unlock();
998 	preempt_enable();
999 	return ctx;
1000 }
1001 
1002 /*
1003  * Get the context for a task and increment its pin_count so it
1004  * can't get swapped to another task.  This also increments its
1005  * reference count so that the context can't get freed.
1006  */
1007 static struct perf_event_context *
1008 perf_pin_task_context(struct task_struct *task, int ctxn)
1009 {
1010 	struct perf_event_context *ctx;
1011 	unsigned long flags;
1012 
1013 	ctx = perf_lock_task_context(task, ctxn, &flags);
1014 	if (ctx) {
1015 		++ctx->pin_count;
1016 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1017 	}
1018 	return ctx;
1019 }
1020 
1021 static void perf_unpin_context(struct perf_event_context *ctx)
1022 {
1023 	unsigned long flags;
1024 
1025 	raw_spin_lock_irqsave(&ctx->lock, flags);
1026 	--ctx->pin_count;
1027 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1028 }
1029 
1030 /*
1031  * Update the record of the current time in a context.
1032  */
1033 static void update_context_time(struct perf_event_context *ctx)
1034 {
1035 	u64 now = perf_clock();
1036 
1037 	ctx->time += now - ctx->timestamp;
1038 	ctx->timestamp = now;
1039 }
1040 
1041 static u64 perf_event_time(struct perf_event *event)
1042 {
1043 	struct perf_event_context *ctx = event->ctx;
1044 
1045 	if (is_cgroup_event(event))
1046 		return perf_cgroup_event_time(event);
1047 
1048 	return ctx ? ctx->time : 0;
1049 }
1050 
1051 /*
1052  * Update the total_time_enabled and total_time_running fields for a event.
1053  * The caller of this function needs to hold the ctx->lock.
1054  */
1055 static void update_event_times(struct perf_event *event)
1056 {
1057 	struct perf_event_context *ctx = event->ctx;
1058 	u64 run_end;
1059 
1060 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1061 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1062 		return;
1063 	/*
1064 	 * in cgroup mode, time_enabled represents
1065 	 * the time the event was enabled AND active
1066 	 * tasks were in the monitored cgroup. This is
1067 	 * independent of the activity of the context as
1068 	 * there may be a mix of cgroup and non-cgroup events.
1069 	 *
1070 	 * That is why we treat cgroup events differently
1071 	 * here.
1072 	 */
1073 	if (is_cgroup_event(event))
1074 		run_end = perf_cgroup_event_time(event);
1075 	else if (ctx->is_active)
1076 		run_end = ctx->time;
1077 	else
1078 		run_end = event->tstamp_stopped;
1079 
1080 	event->total_time_enabled = run_end - event->tstamp_enabled;
1081 
1082 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1083 		run_end = event->tstamp_stopped;
1084 	else
1085 		run_end = perf_event_time(event);
1086 
1087 	event->total_time_running = run_end - event->tstamp_running;
1088 
1089 }
1090 
1091 /*
1092  * Update total_time_enabled and total_time_running for all events in a group.
1093  */
1094 static void update_group_times(struct perf_event *leader)
1095 {
1096 	struct perf_event *event;
1097 
1098 	update_event_times(leader);
1099 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1100 		update_event_times(event);
1101 }
1102 
1103 static struct list_head *
1104 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1105 {
1106 	if (event->attr.pinned)
1107 		return &ctx->pinned_groups;
1108 	else
1109 		return &ctx->flexible_groups;
1110 }
1111 
1112 /*
1113  * Add a event from the lists for its context.
1114  * Must be called with ctx->mutex and ctx->lock held.
1115  */
1116 static void
1117 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1120 	event->attach_state |= PERF_ATTACH_CONTEXT;
1121 
1122 	/*
1123 	 * If we're a stand alone event or group leader, we go to the context
1124 	 * list, group events are kept attached to the group so that
1125 	 * perf_group_detach can, at all times, locate all siblings.
1126 	 */
1127 	if (event->group_leader == event) {
1128 		struct list_head *list;
1129 
1130 		if (is_software_event(event))
1131 			event->group_flags |= PERF_GROUP_SOFTWARE;
1132 
1133 		list = ctx_group_list(event, ctx);
1134 		list_add_tail(&event->group_entry, list);
1135 	}
1136 
1137 	if (is_cgroup_event(event))
1138 		ctx->nr_cgroups++;
1139 
1140 	if (has_branch_stack(event))
1141 		ctx->nr_branch_stack++;
1142 
1143 	list_add_rcu(&event->event_entry, &ctx->event_list);
1144 	if (!ctx->nr_events)
1145 		perf_pmu_rotate_start(ctx->pmu);
1146 	ctx->nr_events++;
1147 	if (event->attr.inherit_stat)
1148 		ctx->nr_stat++;
1149 
1150 	ctx->generation++;
1151 }
1152 
1153 /*
1154  * Initialize event state based on the perf_event_attr::disabled.
1155  */
1156 static inline void perf_event__state_init(struct perf_event *event)
1157 {
1158 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1159 					      PERF_EVENT_STATE_INACTIVE;
1160 }
1161 
1162 /*
1163  * Called at perf_event creation and when events are attached/detached from a
1164  * group.
1165  */
1166 static void perf_event__read_size(struct perf_event *event)
1167 {
1168 	int entry = sizeof(u64); /* value */
1169 	int size = 0;
1170 	int nr = 1;
1171 
1172 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1173 		size += sizeof(u64);
1174 
1175 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1176 		size += sizeof(u64);
1177 
1178 	if (event->attr.read_format & PERF_FORMAT_ID)
1179 		entry += sizeof(u64);
1180 
1181 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1182 		nr += event->group_leader->nr_siblings;
1183 		size += sizeof(u64);
1184 	}
1185 
1186 	size += entry * nr;
1187 	event->read_size = size;
1188 }
1189 
1190 static void perf_event__header_size(struct perf_event *event)
1191 {
1192 	struct perf_sample_data *data;
1193 	u64 sample_type = event->attr.sample_type;
1194 	u16 size = 0;
1195 
1196 	perf_event__read_size(event);
1197 
1198 	if (sample_type & PERF_SAMPLE_IP)
1199 		size += sizeof(data->ip);
1200 
1201 	if (sample_type & PERF_SAMPLE_ADDR)
1202 		size += sizeof(data->addr);
1203 
1204 	if (sample_type & PERF_SAMPLE_PERIOD)
1205 		size += sizeof(data->period);
1206 
1207 	if (sample_type & PERF_SAMPLE_WEIGHT)
1208 		size += sizeof(data->weight);
1209 
1210 	if (sample_type & PERF_SAMPLE_READ)
1211 		size += event->read_size;
1212 
1213 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1214 		size += sizeof(data->data_src.val);
1215 
1216 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1217 		size += sizeof(data->txn);
1218 
1219 	event->header_size = size;
1220 }
1221 
1222 static void perf_event__id_header_size(struct perf_event *event)
1223 {
1224 	struct perf_sample_data *data;
1225 	u64 sample_type = event->attr.sample_type;
1226 	u16 size = 0;
1227 
1228 	if (sample_type & PERF_SAMPLE_TID)
1229 		size += sizeof(data->tid_entry);
1230 
1231 	if (sample_type & PERF_SAMPLE_TIME)
1232 		size += sizeof(data->time);
1233 
1234 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1235 		size += sizeof(data->id);
1236 
1237 	if (sample_type & PERF_SAMPLE_ID)
1238 		size += sizeof(data->id);
1239 
1240 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1241 		size += sizeof(data->stream_id);
1242 
1243 	if (sample_type & PERF_SAMPLE_CPU)
1244 		size += sizeof(data->cpu_entry);
1245 
1246 	event->id_header_size = size;
1247 }
1248 
1249 static void perf_group_attach(struct perf_event *event)
1250 {
1251 	struct perf_event *group_leader = event->group_leader, *pos;
1252 
1253 	/*
1254 	 * We can have double attach due to group movement in perf_event_open.
1255 	 */
1256 	if (event->attach_state & PERF_ATTACH_GROUP)
1257 		return;
1258 
1259 	event->attach_state |= PERF_ATTACH_GROUP;
1260 
1261 	if (group_leader == event)
1262 		return;
1263 
1264 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1265 			!is_software_event(event))
1266 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1267 
1268 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1269 	group_leader->nr_siblings++;
1270 
1271 	perf_event__header_size(group_leader);
1272 
1273 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1274 		perf_event__header_size(pos);
1275 }
1276 
1277 /*
1278  * Remove a event from the lists for its context.
1279  * Must be called with ctx->mutex and ctx->lock held.
1280  */
1281 static void
1282 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1283 {
1284 	struct perf_cpu_context *cpuctx;
1285 	/*
1286 	 * We can have double detach due to exit/hot-unplug + close.
1287 	 */
1288 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1289 		return;
1290 
1291 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1292 
1293 	if (is_cgroup_event(event)) {
1294 		ctx->nr_cgroups--;
1295 		cpuctx = __get_cpu_context(ctx);
1296 		/*
1297 		 * if there are no more cgroup events
1298 		 * then cler cgrp to avoid stale pointer
1299 		 * in update_cgrp_time_from_cpuctx()
1300 		 */
1301 		if (!ctx->nr_cgroups)
1302 			cpuctx->cgrp = NULL;
1303 	}
1304 
1305 	if (has_branch_stack(event))
1306 		ctx->nr_branch_stack--;
1307 
1308 	ctx->nr_events--;
1309 	if (event->attr.inherit_stat)
1310 		ctx->nr_stat--;
1311 
1312 	list_del_rcu(&event->event_entry);
1313 
1314 	if (event->group_leader == event)
1315 		list_del_init(&event->group_entry);
1316 
1317 	update_group_times(event);
1318 
1319 	/*
1320 	 * If event was in error state, then keep it
1321 	 * that way, otherwise bogus counts will be
1322 	 * returned on read(). The only way to get out
1323 	 * of error state is by explicit re-enabling
1324 	 * of the event
1325 	 */
1326 	if (event->state > PERF_EVENT_STATE_OFF)
1327 		event->state = PERF_EVENT_STATE_OFF;
1328 
1329 	ctx->generation++;
1330 }
1331 
1332 static void perf_group_detach(struct perf_event *event)
1333 {
1334 	struct perf_event *sibling, *tmp;
1335 	struct list_head *list = NULL;
1336 
1337 	/*
1338 	 * We can have double detach due to exit/hot-unplug + close.
1339 	 */
1340 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1341 		return;
1342 
1343 	event->attach_state &= ~PERF_ATTACH_GROUP;
1344 
1345 	/*
1346 	 * If this is a sibling, remove it from its group.
1347 	 */
1348 	if (event->group_leader != event) {
1349 		list_del_init(&event->group_entry);
1350 		event->group_leader->nr_siblings--;
1351 		goto out;
1352 	}
1353 
1354 	if (!list_empty(&event->group_entry))
1355 		list = &event->group_entry;
1356 
1357 	/*
1358 	 * If this was a group event with sibling events then
1359 	 * upgrade the siblings to singleton events by adding them
1360 	 * to whatever list we are on.
1361 	 */
1362 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1363 		if (list)
1364 			list_move_tail(&sibling->group_entry, list);
1365 		sibling->group_leader = sibling;
1366 
1367 		/* Inherit group flags from the previous leader */
1368 		sibling->group_flags = event->group_flags;
1369 	}
1370 
1371 out:
1372 	perf_event__header_size(event->group_leader);
1373 
1374 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1375 		perf_event__header_size(tmp);
1376 }
1377 
1378 static inline int
1379 event_filter_match(struct perf_event *event)
1380 {
1381 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1382 	    && perf_cgroup_match(event);
1383 }
1384 
1385 static void
1386 event_sched_out(struct perf_event *event,
1387 		  struct perf_cpu_context *cpuctx,
1388 		  struct perf_event_context *ctx)
1389 {
1390 	u64 tstamp = perf_event_time(event);
1391 	u64 delta;
1392 	/*
1393 	 * An event which could not be activated because of
1394 	 * filter mismatch still needs to have its timings
1395 	 * maintained, otherwise bogus information is return
1396 	 * via read() for time_enabled, time_running:
1397 	 */
1398 	if (event->state == PERF_EVENT_STATE_INACTIVE
1399 	    && !event_filter_match(event)) {
1400 		delta = tstamp - event->tstamp_stopped;
1401 		event->tstamp_running += delta;
1402 		event->tstamp_stopped = tstamp;
1403 	}
1404 
1405 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1406 		return;
1407 
1408 	perf_pmu_disable(event->pmu);
1409 
1410 	event->state = PERF_EVENT_STATE_INACTIVE;
1411 	if (event->pending_disable) {
1412 		event->pending_disable = 0;
1413 		event->state = PERF_EVENT_STATE_OFF;
1414 	}
1415 	event->tstamp_stopped = tstamp;
1416 	event->pmu->del(event, 0);
1417 	event->oncpu = -1;
1418 
1419 	if (!is_software_event(event))
1420 		cpuctx->active_oncpu--;
1421 	ctx->nr_active--;
1422 	if (event->attr.freq && event->attr.sample_freq)
1423 		ctx->nr_freq--;
1424 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1425 		cpuctx->exclusive = 0;
1426 
1427 	perf_pmu_enable(event->pmu);
1428 }
1429 
1430 static void
1431 group_sched_out(struct perf_event *group_event,
1432 		struct perf_cpu_context *cpuctx,
1433 		struct perf_event_context *ctx)
1434 {
1435 	struct perf_event *event;
1436 	int state = group_event->state;
1437 
1438 	event_sched_out(group_event, cpuctx, ctx);
1439 
1440 	/*
1441 	 * Schedule out siblings (if any):
1442 	 */
1443 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1444 		event_sched_out(event, cpuctx, ctx);
1445 
1446 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1447 		cpuctx->exclusive = 0;
1448 }
1449 
1450 struct remove_event {
1451 	struct perf_event *event;
1452 	bool detach_group;
1453 };
1454 
1455 /*
1456  * Cross CPU call to remove a performance event
1457  *
1458  * We disable the event on the hardware level first. After that we
1459  * remove it from the context list.
1460  */
1461 static int __perf_remove_from_context(void *info)
1462 {
1463 	struct remove_event *re = info;
1464 	struct perf_event *event = re->event;
1465 	struct perf_event_context *ctx = event->ctx;
1466 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1467 
1468 	raw_spin_lock(&ctx->lock);
1469 	event_sched_out(event, cpuctx, ctx);
1470 	if (re->detach_group)
1471 		perf_group_detach(event);
1472 	list_del_event(event, ctx);
1473 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1474 		ctx->is_active = 0;
1475 		cpuctx->task_ctx = NULL;
1476 	}
1477 	raw_spin_unlock(&ctx->lock);
1478 
1479 	return 0;
1480 }
1481 
1482 
1483 /*
1484  * Remove the event from a task's (or a CPU's) list of events.
1485  *
1486  * CPU events are removed with a smp call. For task events we only
1487  * call when the task is on a CPU.
1488  *
1489  * If event->ctx is a cloned context, callers must make sure that
1490  * every task struct that event->ctx->task could possibly point to
1491  * remains valid.  This is OK when called from perf_release since
1492  * that only calls us on the top-level context, which can't be a clone.
1493  * When called from perf_event_exit_task, it's OK because the
1494  * context has been detached from its task.
1495  */
1496 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1497 {
1498 	struct perf_event_context *ctx = event->ctx;
1499 	struct task_struct *task = ctx->task;
1500 	struct remove_event re = {
1501 		.event = event,
1502 		.detach_group = detach_group,
1503 	};
1504 
1505 	lockdep_assert_held(&ctx->mutex);
1506 
1507 	if (!task) {
1508 		/*
1509 		 * Per cpu events are removed via an smp call and
1510 		 * the removal is always successful.
1511 		 */
1512 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1513 		return;
1514 	}
1515 
1516 retry:
1517 	if (!task_function_call(task, __perf_remove_from_context, &re))
1518 		return;
1519 
1520 	raw_spin_lock_irq(&ctx->lock);
1521 	/*
1522 	 * If we failed to find a running task, but find the context active now
1523 	 * that we've acquired the ctx->lock, retry.
1524 	 */
1525 	if (ctx->is_active) {
1526 		raw_spin_unlock_irq(&ctx->lock);
1527 		/*
1528 		 * Reload the task pointer, it might have been changed by
1529 		 * a concurrent perf_event_context_sched_out().
1530 		 */
1531 		task = ctx->task;
1532 		goto retry;
1533 	}
1534 
1535 	/*
1536 	 * Since the task isn't running, its safe to remove the event, us
1537 	 * holding the ctx->lock ensures the task won't get scheduled in.
1538 	 */
1539 	if (detach_group)
1540 		perf_group_detach(event);
1541 	list_del_event(event, ctx);
1542 	raw_spin_unlock_irq(&ctx->lock);
1543 }
1544 
1545 /*
1546  * Cross CPU call to disable a performance event
1547  */
1548 int __perf_event_disable(void *info)
1549 {
1550 	struct perf_event *event = info;
1551 	struct perf_event_context *ctx = event->ctx;
1552 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1553 
1554 	/*
1555 	 * If this is a per-task event, need to check whether this
1556 	 * event's task is the current task on this cpu.
1557 	 *
1558 	 * Can trigger due to concurrent perf_event_context_sched_out()
1559 	 * flipping contexts around.
1560 	 */
1561 	if (ctx->task && cpuctx->task_ctx != ctx)
1562 		return -EINVAL;
1563 
1564 	raw_spin_lock(&ctx->lock);
1565 
1566 	/*
1567 	 * If the event is on, turn it off.
1568 	 * If it is in error state, leave it in error state.
1569 	 */
1570 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1571 		update_context_time(ctx);
1572 		update_cgrp_time_from_event(event);
1573 		update_group_times(event);
1574 		if (event == event->group_leader)
1575 			group_sched_out(event, cpuctx, ctx);
1576 		else
1577 			event_sched_out(event, cpuctx, ctx);
1578 		event->state = PERF_EVENT_STATE_OFF;
1579 	}
1580 
1581 	raw_spin_unlock(&ctx->lock);
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Disable a event.
1588  *
1589  * If event->ctx is a cloned context, callers must make sure that
1590  * every task struct that event->ctx->task could possibly point to
1591  * remains valid.  This condition is satisifed when called through
1592  * perf_event_for_each_child or perf_event_for_each because they
1593  * hold the top-level event's child_mutex, so any descendant that
1594  * goes to exit will block in sync_child_event.
1595  * When called from perf_pending_event it's OK because event->ctx
1596  * is the current context on this CPU and preemption is disabled,
1597  * hence we can't get into perf_event_task_sched_out for this context.
1598  */
1599 void perf_event_disable(struct perf_event *event)
1600 {
1601 	struct perf_event_context *ctx = event->ctx;
1602 	struct task_struct *task = ctx->task;
1603 
1604 	if (!task) {
1605 		/*
1606 		 * Disable the event on the cpu that it's on
1607 		 */
1608 		cpu_function_call(event->cpu, __perf_event_disable, event);
1609 		return;
1610 	}
1611 
1612 retry:
1613 	if (!task_function_call(task, __perf_event_disable, event))
1614 		return;
1615 
1616 	raw_spin_lock_irq(&ctx->lock);
1617 	/*
1618 	 * If the event is still active, we need to retry the cross-call.
1619 	 */
1620 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1621 		raw_spin_unlock_irq(&ctx->lock);
1622 		/*
1623 		 * Reload the task pointer, it might have been changed by
1624 		 * a concurrent perf_event_context_sched_out().
1625 		 */
1626 		task = ctx->task;
1627 		goto retry;
1628 	}
1629 
1630 	/*
1631 	 * Since we have the lock this context can't be scheduled
1632 	 * in, so we can change the state safely.
1633 	 */
1634 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1635 		update_group_times(event);
1636 		event->state = PERF_EVENT_STATE_OFF;
1637 	}
1638 	raw_spin_unlock_irq(&ctx->lock);
1639 }
1640 EXPORT_SYMBOL_GPL(perf_event_disable);
1641 
1642 static void perf_set_shadow_time(struct perf_event *event,
1643 				 struct perf_event_context *ctx,
1644 				 u64 tstamp)
1645 {
1646 	/*
1647 	 * use the correct time source for the time snapshot
1648 	 *
1649 	 * We could get by without this by leveraging the
1650 	 * fact that to get to this function, the caller
1651 	 * has most likely already called update_context_time()
1652 	 * and update_cgrp_time_xx() and thus both timestamp
1653 	 * are identical (or very close). Given that tstamp is,
1654 	 * already adjusted for cgroup, we could say that:
1655 	 *    tstamp - ctx->timestamp
1656 	 * is equivalent to
1657 	 *    tstamp - cgrp->timestamp.
1658 	 *
1659 	 * Then, in perf_output_read(), the calculation would
1660 	 * work with no changes because:
1661 	 * - event is guaranteed scheduled in
1662 	 * - no scheduled out in between
1663 	 * - thus the timestamp would be the same
1664 	 *
1665 	 * But this is a bit hairy.
1666 	 *
1667 	 * So instead, we have an explicit cgroup call to remain
1668 	 * within the time time source all along. We believe it
1669 	 * is cleaner and simpler to understand.
1670 	 */
1671 	if (is_cgroup_event(event))
1672 		perf_cgroup_set_shadow_time(event, tstamp);
1673 	else
1674 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1675 }
1676 
1677 #define MAX_INTERRUPTS (~0ULL)
1678 
1679 static void perf_log_throttle(struct perf_event *event, int enable);
1680 
1681 static int
1682 event_sched_in(struct perf_event *event,
1683 		 struct perf_cpu_context *cpuctx,
1684 		 struct perf_event_context *ctx)
1685 {
1686 	u64 tstamp = perf_event_time(event);
1687 	int ret = 0;
1688 
1689 	lockdep_assert_held(&ctx->lock);
1690 
1691 	if (event->state <= PERF_EVENT_STATE_OFF)
1692 		return 0;
1693 
1694 	event->state = PERF_EVENT_STATE_ACTIVE;
1695 	event->oncpu = smp_processor_id();
1696 
1697 	/*
1698 	 * Unthrottle events, since we scheduled we might have missed several
1699 	 * ticks already, also for a heavily scheduling task there is little
1700 	 * guarantee it'll get a tick in a timely manner.
1701 	 */
1702 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1703 		perf_log_throttle(event, 1);
1704 		event->hw.interrupts = 0;
1705 	}
1706 
1707 	/*
1708 	 * The new state must be visible before we turn it on in the hardware:
1709 	 */
1710 	smp_wmb();
1711 
1712 	perf_pmu_disable(event->pmu);
1713 
1714 	if (event->pmu->add(event, PERF_EF_START)) {
1715 		event->state = PERF_EVENT_STATE_INACTIVE;
1716 		event->oncpu = -1;
1717 		ret = -EAGAIN;
1718 		goto out;
1719 	}
1720 
1721 	event->tstamp_running += tstamp - event->tstamp_stopped;
1722 
1723 	perf_set_shadow_time(event, ctx, tstamp);
1724 
1725 	if (!is_software_event(event))
1726 		cpuctx->active_oncpu++;
1727 	ctx->nr_active++;
1728 	if (event->attr.freq && event->attr.sample_freq)
1729 		ctx->nr_freq++;
1730 
1731 	if (event->attr.exclusive)
1732 		cpuctx->exclusive = 1;
1733 
1734 out:
1735 	perf_pmu_enable(event->pmu);
1736 
1737 	return ret;
1738 }
1739 
1740 static int
1741 group_sched_in(struct perf_event *group_event,
1742 	       struct perf_cpu_context *cpuctx,
1743 	       struct perf_event_context *ctx)
1744 {
1745 	struct perf_event *event, *partial_group = NULL;
1746 	struct pmu *pmu = ctx->pmu;
1747 	u64 now = ctx->time;
1748 	bool simulate = false;
1749 
1750 	if (group_event->state == PERF_EVENT_STATE_OFF)
1751 		return 0;
1752 
1753 	pmu->start_txn(pmu);
1754 
1755 	if (event_sched_in(group_event, cpuctx, ctx)) {
1756 		pmu->cancel_txn(pmu);
1757 		perf_cpu_hrtimer_restart(cpuctx);
1758 		return -EAGAIN;
1759 	}
1760 
1761 	/*
1762 	 * Schedule in siblings as one group (if any):
1763 	 */
1764 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1765 		if (event_sched_in(event, cpuctx, ctx)) {
1766 			partial_group = event;
1767 			goto group_error;
1768 		}
1769 	}
1770 
1771 	if (!pmu->commit_txn(pmu))
1772 		return 0;
1773 
1774 group_error:
1775 	/*
1776 	 * Groups can be scheduled in as one unit only, so undo any
1777 	 * partial group before returning:
1778 	 * The events up to the failed event are scheduled out normally,
1779 	 * tstamp_stopped will be updated.
1780 	 *
1781 	 * The failed events and the remaining siblings need to have
1782 	 * their timings updated as if they had gone thru event_sched_in()
1783 	 * and event_sched_out(). This is required to get consistent timings
1784 	 * across the group. This also takes care of the case where the group
1785 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1786 	 * the time the event was actually stopped, such that time delta
1787 	 * calculation in update_event_times() is correct.
1788 	 */
1789 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1790 		if (event == partial_group)
1791 			simulate = true;
1792 
1793 		if (simulate) {
1794 			event->tstamp_running += now - event->tstamp_stopped;
1795 			event->tstamp_stopped = now;
1796 		} else {
1797 			event_sched_out(event, cpuctx, ctx);
1798 		}
1799 	}
1800 	event_sched_out(group_event, cpuctx, ctx);
1801 
1802 	pmu->cancel_txn(pmu);
1803 
1804 	perf_cpu_hrtimer_restart(cpuctx);
1805 
1806 	return -EAGAIN;
1807 }
1808 
1809 /*
1810  * Work out whether we can put this event group on the CPU now.
1811  */
1812 static int group_can_go_on(struct perf_event *event,
1813 			   struct perf_cpu_context *cpuctx,
1814 			   int can_add_hw)
1815 {
1816 	/*
1817 	 * Groups consisting entirely of software events can always go on.
1818 	 */
1819 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1820 		return 1;
1821 	/*
1822 	 * If an exclusive group is already on, no other hardware
1823 	 * events can go on.
1824 	 */
1825 	if (cpuctx->exclusive)
1826 		return 0;
1827 	/*
1828 	 * If this group is exclusive and there are already
1829 	 * events on the CPU, it can't go on.
1830 	 */
1831 	if (event->attr.exclusive && cpuctx->active_oncpu)
1832 		return 0;
1833 	/*
1834 	 * Otherwise, try to add it if all previous groups were able
1835 	 * to go on.
1836 	 */
1837 	return can_add_hw;
1838 }
1839 
1840 static void add_event_to_ctx(struct perf_event *event,
1841 			       struct perf_event_context *ctx)
1842 {
1843 	u64 tstamp = perf_event_time(event);
1844 
1845 	list_add_event(event, ctx);
1846 	perf_group_attach(event);
1847 	event->tstamp_enabled = tstamp;
1848 	event->tstamp_running = tstamp;
1849 	event->tstamp_stopped = tstamp;
1850 }
1851 
1852 static void task_ctx_sched_out(struct perf_event_context *ctx);
1853 static void
1854 ctx_sched_in(struct perf_event_context *ctx,
1855 	     struct perf_cpu_context *cpuctx,
1856 	     enum event_type_t event_type,
1857 	     struct task_struct *task);
1858 
1859 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1860 				struct perf_event_context *ctx,
1861 				struct task_struct *task)
1862 {
1863 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1864 	if (ctx)
1865 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1866 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1867 	if (ctx)
1868 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1869 }
1870 
1871 /*
1872  * Cross CPU call to install and enable a performance event
1873  *
1874  * Must be called with ctx->mutex held
1875  */
1876 static int  __perf_install_in_context(void *info)
1877 {
1878 	struct perf_event *event = info;
1879 	struct perf_event_context *ctx = event->ctx;
1880 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1881 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1882 	struct task_struct *task = current;
1883 
1884 	perf_ctx_lock(cpuctx, task_ctx);
1885 	perf_pmu_disable(cpuctx->ctx.pmu);
1886 
1887 	/*
1888 	 * If there was an active task_ctx schedule it out.
1889 	 */
1890 	if (task_ctx)
1891 		task_ctx_sched_out(task_ctx);
1892 
1893 	/*
1894 	 * If the context we're installing events in is not the
1895 	 * active task_ctx, flip them.
1896 	 */
1897 	if (ctx->task && task_ctx != ctx) {
1898 		if (task_ctx)
1899 			raw_spin_unlock(&task_ctx->lock);
1900 		raw_spin_lock(&ctx->lock);
1901 		task_ctx = ctx;
1902 	}
1903 
1904 	if (task_ctx) {
1905 		cpuctx->task_ctx = task_ctx;
1906 		task = task_ctx->task;
1907 	}
1908 
1909 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1910 
1911 	update_context_time(ctx);
1912 	/*
1913 	 * update cgrp time only if current cgrp
1914 	 * matches event->cgrp. Must be done before
1915 	 * calling add_event_to_ctx()
1916 	 */
1917 	update_cgrp_time_from_event(event);
1918 
1919 	add_event_to_ctx(event, ctx);
1920 
1921 	/*
1922 	 * Schedule everything back in
1923 	 */
1924 	perf_event_sched_in(cpuctx, task_ctx, task);
1925 
1926 	perf_pmu_enable(cpuctx->ctx.pmu);
1927 	perf_ctx_unlock(cpuctx, task_ctx);
1928 
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Attach a performance event to a context
1934  *
1935  * First we add the event to the list with the hardware enable bit
1936  * in event->hw_config cleared.
1937  *
1938  * If the event is attached to a task which is on a CPU we use a smp
1939  * call to enable it in the task context. The task might have been
1940  * scheduled away, but we check this in the smp call again.
1941  */
1942 static void
1943 perf_install_in_context(struct perf_event_context *ctx,
1944 			struct perf_event *event,
1945 			int cpu)
1946 {
1947 	struct task_struct *task = ctx->task;
1948 
1949 	lockdep_assert_held(&ctx->mutex);
1950 
1951 	event->ctx = ctx;
1952 	if (event->cpu != -1)
1953 		event->cpu = cpu;
1954 
1955 	if (!task) {
1956 		/*
1957 		 * Per cpu events are installed via an smp call and
1958 		 * the install is always successful.
1959 		 */
1960 		cpu_function_call(cpu, __perf_install_in_context, event);
1961 		return;
1962 	}
1963 
1964 retry:
1965 	if (!task_function_call(task, __perf_install_in_context, event))
1966 		return;
1967 
1968 	raw_spin_lock_irq(&ctx->lock);
1969 	/*
1970 	 * If we failed to find a running task, but find the context active now
1971 	 * that we've acquired the ctx->lock, retry.
1972 	 */
1973 	if (ctx->is_active) {
1974 		raw_spin_unlock_irq(&ctx->lock);
1975 		/*
1976 		 * Reload the task pointer, it might have been changed by
1977 		 * a concurrent perf_event_context_sched_out().
1978 		 */
1979 		task = ctx->task;
1980 		goto retry;
1981 	}
1982 
1983 	/*
1984 	 * Since the task isn't running, its safe to add the event, us holding
1985 	 * the ctx->lock ensures the task won't get scheduled in.
1986 	 */
1987 	add_event_to_ctx(event, ctx);
1988 	raw_spin_unlock_irq(&ctx->lock);
1989 }
1990 
1991 /*
1992  * Put a event into inactive state and update time fields.
1993  * Enabling the leader of a group effectively enables all
1994  * the group members that aren't explicitly disabled, so we
1995  * have to update their ->tstamp_enabled also.
1996  * Note: this works for group members as well as group leaders
1997  * since the non-leader members' sibling_lists will be empty.
1998  */
1999 static void __perf_event_mark_enabled(struct perf_event *event)
2000 {
2001 	struct perf_event *sub;
2002 	u64 tstamp = perf_event_time(event);
2003 
2004 	event->state = PERF_EVENT_STATE_INACTIVE;
2005 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2006 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2007 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2008 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2009 	}
2010 }
2011 
2012 /*
2013  * Cross CPU call to enable a performance event
2014  */
2015 static int __perf_event_enable(void *info)
2016 {
2017 	struct perf_event *event = info;
2018 	struct perf_event_context *ctx = event->ctx;
2019 	struct perf_event *leader = event->group_leader;
2020 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2021 	int err;
2022 
2023 	/*
2024 	 * There's a time window between 'ctx->is_active' check
2025 	 * in perf_event_enable function and this place having:
2026 	 *   - IRQs on
2027 	 *   - ctx->lock unlocked
2028 	 *
2029 	 * where the task could be killed and 'ctx' deactivated
2030 	 * by perf_event_exit_task.
2031 	 */
2032 	if (!ctx->is_active)
2033 		return -EINVAL;
2034 
2035 	raw_spin_lock(&ctx->lock);
2036 	update_context_time(ctx);
2037 
2038 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2039 		goto unlock;
2040 
2041 	/*
2042 	 * set current task's cgroup time reference point
2043 	 */
2044 	perf_cgroup_set_timestamp(current, ctx);
2045 
2046 	__perf_event_mark_enabled(event);
2047 
2048 	if (!event_filter_match(event)) {
2049 		if (is_cgroup_event(event))
2050 			perf_cgroup_defer_enabled(event);
2051 		goto unlock;
2052 	}
2053 
2054 	/*
2055 	 * If the event is in a group and isn't the group leader,
2056 	 * then don't put it on unless the group is on.
2057 	 */
2058 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2059 		goto unlock;
2060 
2061 	if (!group_can_go_on(event, cpuctx, 1)) {
2062 		err = -EEXIST;
2063 	} else {
2064 		if (event == leader)
2065 			err = group_sched_in(event, cpuctx, ctx);
2066 		else
2067 			err = event_sched_in(event, cpuctx, ctx);
2068 	}
2069 
2070 	if (err) {
2071 		/*
2072 		 * If this event can't go on and it's part of a
2073 		 * group, then the whole group has to come off.
2074 		 */
2075 		if (leader != event) {
2076 			group_sched_out(leader, cpuctx, ctx);
2077 			perf_cpu_hrtimer_restart(cpuctx);
2078 		}
2079 		if (leader->attr.pinned) {
2080 			update_group_times(leader);
2081 			leader->state = PERF_EVENT_STATE_ERROR;
2082 		}
2083 	}
2084 
2085 unlock:
2086 	raw_spin_unlock(&ctx->lock);
2087 
2088 	return 0;
2089 }
2090 
2091 /*
2092  * Enable a event.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This condition is satisfied when called through
2097  * perf_event_for_each_child or perf_event_for_each as described
2098  * for perf_event_disable.
2099  */
2100 void perf_event_enable(struct perf_event *event)
2101 {
2102 	struct perf_event_context *ctx = event->ctx;
2103 	struct task_struct *task = ctx->task;
2104 
2105 	if (!task) {
2106 		/*
2107 		 * Enable the event on the cpu that it's on
2108 		 */
2109 		cpu_function_call(event->cpu, __perf_event_enable, event);
2110 		return;
2111 	}
2112 
2113 	raw_spin_lock_irq(&ctx->lock);
2114 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2115 		goto out;
2116 
2117 	/*
2118 	 * If the event is in error state, clear that first.
2119 	 * That way, if we see the event in error state below, we
2120 	 * know that it has gone back into error state, as distinct
2121 	 * from the task having been scheduled away before the
2122 	 * cross-call arrived.
2123 	 */
2124 	if (event->state == PERF_EVENT_STATE_ERROR)
2125 		event->state = PERF_EVENT_STATE_OFF;
2126 
2127 retry:
2128 	if (!ctx->is_active) {
2129 		__perf_event_mark_enabled(event);
2130 		goto out;
2131 	}
2132 
2133 	raw_spin_unlock_irq(&ctx->lock);
2134 
2135 	if (!task_function_call(task, __perf_event_enable, event))
2136 		return;
2137 
2138 	raw_spin_lock_irq(&ctx->lock);
2139 
2140 	/*
2141 	 * If the context is active and the event is still off,
2142 	 * we need to retry the cross-call.
2143 	 */
2144 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2145 		/*
2146 		 * task could have been flipped by a concurrent
2147 		 * perf_event_context_sched_out()
2148 		 */
2149 		task = ctx->task;
2150 		goto retry;
2151 	}
2152 
2153 out:
2154 	raw_spin_unlock_irq(&ctx->lock);
2155 }
2156 EXPORT_SYMBOL_GPL(perf_event_enable);
2157 
2158 int perf_event_refresh(struct perf_event *event, int refresh)
2159 {
2160 	/*
2161 	 * not supported on inherited events
2162 	 */
2163 	if (event->attr.inherit || !is_sampling_event(event))
2164 		return -EINVAL;
2165 
2166 	atomic_add(refresh, &event->event_limit);
2167 	perf_event_enable(event);
2168 
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(perf_event_refresh);
2172 
2173 static void ctx_sched_out(struct perf_event_context *ctx,
2174 			  struct perf_cpu_context *cpuctx,
2175 			  enum event_type_t event_type)
2176 {
2177 	struct perf_event *event;
2178 	int is_active = ctx->is_active;
2179 
2180 	ctx->is_active &= ~event_type;
2181 	if (likely(!ctx->nr_events))
2182 		return;
2183 
2184 	update_context_time(ctx);
2185 	update_cgrp_time_from_cpuctx(cpuctx);
2186 	if (!ctx->nr_active)
2187 		return;
2188 
2189 	perf_pmu_disable(ctx->pmu);
2190 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2191 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2192 			group_sched_out(event, cpuctx, ctx);
2193 	}
2194 
2195 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2196 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2197 			group_sched_out(event, cpuctx, ctx);
2198 	}
2199 	perf_pmu_enable(ctx->pmu);
2200 }
2201 
2202 /*
2203  * Test whether two contexts are equivalent, i.e. whether they have both been
2204  * cloned from the same version of the same context.
2205  *
2206  * Equivalence is measured using a generation number in the context that is
2207  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2208  * and list_del_event().
2209  */
2210 static int context_equiv(struct perf_event_context *ctx1,
2211 			 struct perf_event_context *ctx2)
2212 {
2213 	/* Pinning disables the swap optimization */
2214 	if (ctx1->pin_count || ctx2->pin_count)
2215 		return 0;
2216 
2217 	/* If ctx1 is the parent of ctx2 */
2218 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2219 		return 1;
2220 
2221 	/* If ctx2 is the parent of ctx1 */
2222 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2223 		return 1;
2224 
2225 	/*
2226 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2227 	 * hierarchy, see perf_event_init_context().
2228 	 */
2229 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2230 			ctx1->parent_gen == ctx2->parent_gen)
2231 		return 1;
2232 
2233 	/* Unmatched */
2234 	return 0;
2235 }
2236 
2237 static void __perf_event_sync_stat(struct perf_event *event,
2238 				     struct perf_event *next_event)
2239 {
2240 	u64 value;
2241 
2242 	if (!event->attr.inherit_stat)
2243 		return;
2244 
2245 	/*
2246 	 * Update the event value, we cannot use perf_event_read()
2247 	 * because we're in the middle of a context switch and have IRQs
2248 	 * disabled, which upsets smp_call_function_single(), however
2249 	 * we know the event must be on the current CPU, therefore we
2250 	 * don't need to use it.
2251 	 */
2252 	switch (event->state) {
2253 	case PERF_EVENT_STATE_ACTIVE:
2254 		event->pmu->read(event);
2255 		/* fall-through */
2256 
2257 	case PERF_EVENT_STATE_INACTIVE:
2258 		update_event_times(event);
2259 		break;
2260 
2261 	default:
2262 		break;
2263 	}
2264 
2265 	/*
2266 	 * In order to keep per-task stats reliable we need to flip the event
2267 	 * values when we flip the contexts.
2268 	 */
2269 	value = local64_read(&next_event->count);
2270 	value = local64_xchg(&event->count, value);
2271 	local64_set(&next_event->count, value);
2272 
2273 	swap(event->total_time_enabled, next_event->total_time_enabled);
2274 	swap(event->total_time_running, next_event->total_time_running);
2275 
2276 	/*
2277 	 * Since we swizzled the values, update the user visible data too.
2278 	 */
2279 	perf_event_update_userpage(event);
2280 	perf_event_update_userpage(next_event);
2281 }
2282 
2283 static void perf_event_sync_stat(struct perf_event_context *ctx,
2284 				   struct perf_event_context *next_ctx)
2285 {
2286 	struct perf_event *event, *next_event;
2287 
2288 	if (!ctx->nr_stat)
2289 		return;
2290 
2291 	update_context_time(ctx);
2292 
2293 	event = list_first_entry(&ctx->event_list,
2294 				   struct perf_event, event_entry);
2295 
2296 	next_event = list_first_entry(&next_ctx->event_list,
2297 					struct perf_event, event_entry);
2298 
2299 	while (&event->event_entry != &ctx->event_list &&
2300 	       &next_event->event_entry != &next_ctx->event_list) {
2301 
2302 		__perf_event_sync_stat(event, next_event);
2303 
2304 		event = list_next_entry(event, event_entry);
2305 		next_event = list_next_entry(next_event, event_entry);
2306 	}
2307 }
2308 
2309 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2310 					 struct task_struct *next)
2311 {
2312 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2313 	struct perf_event_context *next_ctx;
2314 	struct perf_event_context *parent, *next_parent;
2315 	struct perf_cpu_context *cpuctx;
2316 	int do_switch = 1;
2317 
2318 	if (likely(!ctx))
2319 		return;
2320 
2321 	cpuctx = __get_cpu_context(ctx);
2322 	if (!cpuctx->task_ctx)
2323 		return;
2324 
2325 	rcu_read_lock();
2326 	next_ctx = next->perf_event_ctxp[ctxn];
2327 	if (!next_ctx)
2328 		goto unlock;
2329 
2330 	parent = rcu_dereference(ctx->parent_ctx);
2331 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2332 
2333 	/* If neither context have a parent context; they cannot be clones. */
2334 	if (!parent || !next_parent)
2335 		goto unlock;
2336 
2337 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2338 		/*
2339 		 * Looks like the two contexts are clones, so we might be
2340 		 * able to optimize the context switch.  We lock both
2341 		 * contexts and check that they are clones under the
2342 		 * lock (including re-checking that neither has been
2343 		 * uncloned in the meantime).  It doesn't matter which
2344 		 * order we take the locks because no other cpu could
2345 		 * be trying to lock both of these tasks.
2346 		 */
2347 		raw_spin_lock(&ctx->lock);
2348 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2349 		if (context_equiv(ctx, next_ctx)) {
2350 			/*
2351 			 * XXX do we need a memory barrier of sorts
2352 			 * wrt to rcu_dereference() of perf_event_ctxp
2353 			 */
2354 			task->perf_event_ctxp[ctxn] = next_ctx;
2355 			next->perf_event_ctxp[ctxn] = ctx;
2356 			ctx->task = next;
2357 			next_ctx->task = task;
2358 			do_switch = 0;
2359 
2360 			perf_event_sync_stat(ctx, next_ctx);
2361 		}
2362 		raw_spin_unlock(&next_ctx->lock);
2363 		raw_spin_unlock(&ctx->lock);
2364 	}
2365 unlock:
2366 	rcu_read_unlock();
2367 
2368 	if (do_switch) {
2369 		raw_spin_lock(&ctx->lock);
2370 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2371 		cpuctx->task_ctx = NULL;
2372 		raw_spin_unlock(&ctx->lock);
2373 	}
2374 }
2375 
2376 #define for_each_task_context_nr(ctxn)					\
2377 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2378 
2379 /*
2380  * Called from scheduler to remove the events of the current task,
2381  * with interrupts disabled.
2382  *
2383  * We stop each event and update the event value in event->count.
2384  *
2385  * This does not protect us against NMI, but disable()
2386  * sets the disabled bit in the control field of event _before_
2387  * accessing the event control register. If a NMI hits, then it will
2388  * not restart the event.
2389  */
2390 void __perf_event_task_sched_out(struct task_struct *task,
2391 				 struct task_struct *next)
2392 {
2393 	int ctxn;
2394 
2395 	for_each_task_context_nr(ctxn)
2396 		perf_event_context_sched_out(task, ctxn, next);
2397 
2398 	/*
2399 	 * if cgroup events exist on this CPU, then we need
2400 	 * to check if we have to switch out PMU state.
2401 	 * cgroup event are system-wide mode only
2402 	 */
2403 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2404 		perf_cgroup_sched_out(task, next);
2405 }
2406 
2407 static void task_ctx_sched_out(struct perf_event_context *ctx)
2408 {
2409 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2410 
2411 	if (!cpuctx->task_ctx)
2412 		return;
2413 
2414 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2415 		return;
2416 
2417 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2418 	cpuctx->task_ctx = NULL;
2419 }
2420 
2421 /*
2422  * Called with IRQs disabled
2423  */
2424 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2425 			      enum event_type_t event_type)
2426 {
2427 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2428 }
2429 
2430 static void
2431 ctx_pinned_sched_in(struct perf_event_context *ctx,
2432 		    struct perf_cpu_context *cpuctx)
2433 {
2434 	struct perf_event *event;
2435 
2436 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2437 		if (event->state <= PERF_EVENT_STATE_OFF)
2438 			continue;
2439 		if (!event_filter_match(event))
2440 			continue;
2441 
2442 		/* may need to reset tstamp_enabled */
2443 		if (is_cgroup_event(event))
2444 			perf_cgroup_mark_enabled(event, ctx);
2445 
2446 		if (group_can_go_on(event, cpuctx, 1))
2447 			group_sched_in(event, cpuctx, ctx);
2448 
2449 		/*
2450 		 * If this pinned group hasn't been scheduled,
2451 		 * put it in error state.
2452 		 */
2453 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2454 			update_group_times(event);
2455 			event->state = PERF_EVENT_STATE_ERROR;
2456 		}
2457 	}
2458 }
2459 
2460 static void
2461 ctx_flexible_sched_in(struct perf_event_context *ctx,
2462 		      struct perf_cpu_context *cpuctx)
2463 {
2464 	struct perf_event *event;
2465 	int can_add_hw = 1;
2466 
2467 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2468 		/* Ignore events in OFF or ERROR state */
2469 		if (event->state <= PERF_EVENT_STATE_OFF)
2470 			continue;
2471 		/*
2472 		 * Listen to the 'cpu' scheduling filter constraint
2473 		 * of events:
2474 		 */
2475 		if (!event_filter_match(event))
2476 			continue;
2477 
2478 		/* may need to reset tstamp_enabled */
2479 		if (is_cgroup_event(event))
2480 			perf_cgroup_mark_enabled(event, ctx);
2481 
2482 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2483 			if (group_sched_in(event, cpuctx, ctx))
2484 				can_add_hw = 0;
2485 		}
2486 	}
2487 }
2488 
2489 static void
2490 ctx_sched_in(struct perf_event_context *ctx,
2491 	     struct perf_cpu_context *cpuctx,
2492 	     enum event_type_t event_type,
2493 	     struct task_struct *task)
2494 {
2495 	u64 now;
2496 	int is_active = ctx->is_active;
2497 
2498 	ctx->is_active |= event_type;
2499 	if (likely(!ctx->nr_events))
2500 		return;
2501 
2502 	now = perf_clock();
2503 	ctx->timestamp = now;
2504 	perf_cgroup_set_timestamp(task, ctx);
2505 	/*
2506 	 * First go through the list and put on any pinned groups
2507 	 * in order to give them the best chance of going on.
2508 	 */
2509 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2510 		ctx_pinned_sched_in(ctx, cpuctx);
2511 
2512 	/* Then walk through the lower prio flexible groups */
2513 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2514 		ctx_flexible_sched_in(ctx, cpuctx);
2515 }
2516 
2517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2518 			     enum event_type_t event_type,
2519 			     struct task_struct *task)
2520 {
2521 	struct perf_event_context *ctx = &cpuctx->ctx;
2522 
2523 	ctx_sched_in(ctx, cpuctx, event_type, task);
2524 }
2525 
2526 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2527 					struct task_struct *task)
2528 {
2529 	struct perf_cpu_context *cpuctx;
2530 
2531 	cpuctx = __get_cpu_context(ctx);
2532 	if (cpuctx->task_ctx == ctx)
2533 		return;
2534 
2535 	perf_ctx_lock(cpuctx, ctx);
2536 	perf_pmu_disable(ctx->pmu);
2537 	/*
2538 	 * We want to keep the following priority order:
2539 	 * cpu pinned (that don't need to move), task pinned,
2540 	 * cpu flexible, task flexible.
2541 	 */
2542 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2543 
2544 	if (ctx->nr_events)
2545 		cpuctx->task_ctx = ctx;
2546 
2547 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2548 
2549 	perf_pmu_enable(ctx->pmu);
2550 	perf_ctx_unlock(cpuctx, ctx);
2551 
2552 	/*
2553 	 * Since these rotations are per-cpu, we need to ensure the
2554 	 * cpu-context we got scheduled on is actually rotating.
2555 	 */
2556 	perf_pmu_rotate_start(ctx->pmu);
2557 }
2558 
2559 /*
2560  * When sampling the branck stack in system-wide, it may be necessary
2561  * to flush the stack on context switch. This happens when the branch
2562  * stack does not tag its entries with the pid of the current task.
2563  * Otherwise it becomes impossible to associate a branch entry with a
2564  * task. This ambiguity is more likely to appear when the branch stack
2565  * supports priv level filtering and the user sets it to monitor only
2566  * at the user level (which could be a useful measurement in system-wide
2567  * mode). In that case, the risk is high of having a branch stack with
2568  * branch from multiple tasks. Flushing may mean dropping the existing
2569  * entries or stashing them somewhere in the PMU specific code layer.
2570  *
2571  * This function provides the context switch callback to the lower code
2572  * layer. It is invoked ONLY when there is at least one system-wide context
2573  * with at least one active event using taken branch sampling.
2574  */
2575 static void perf_branch_stack_sched_in(struct task_struct *prev,
2576 				       struct task_struct *task)
2577 {
2578 	struct perf_cpu_context *cpuctx;
2579 	struct pmu *pmu;
2580 	unsigned long flags;
2581 
2582 	/* no need to flush branch stack if not changing task */
2583 	if (prev == task)
2584 		return;
2585 
2586 	local_irq_save(flags);
2587 
2588 	rcu_read_lock();
2589 
2590 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2591 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2592 
2593 		/*
2594 		 * check if the context has at least one
2595 		 * event using PERF_SAMPLE_BRANCH_STACK
2596 		 */
2597 		if (cpuctx->ctx.nr_branch_stack > 0
2598 		    && pmu->flush_branch_stack) {
2599 
2600 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2601 
2602 			perf_pmu_disable(pmu);
2603 
2604 			pmu->flush_branch_stack();
2605 
2606 			perf_pmu_enable(pmu);
2607 
2608 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2609 		}
2610 	}
2611 
2612 	rcu_read_unlock();
2613 
2614 	local_irq_restore(flags);
2615 }
2616 
2617 /*
2618  * Called from scheduler to add the events of the current task
2619  * with interrupts disabled.
2620  *
2621  * We restore the event value and then enable it.
2622  *
2623  * This does not protect us against NMI, but enable()
2624  * sets the enabled bit in the control field of event _before_
2625  * accessing the event control register. If a NMI hits, then it will
2626  * keep the event running.
2627  */
2628 void __perf_event_task_sched_in(struct task_struct *prev,
2629 				struct task_struct *task)
2630 {
2631 	struct perf_event_context *ctx;
2632 	int ctxn;
2633 
2634 	for_each_task_context_nr(ctxn) {
2635 		ctx = task->perf_event_ctxp[ctxn];
2636 		if (likely(!ctx))
2637 			continue;
2638 
2639 		perf_event_context_sched_in(ctx, task);
2640 	}
2641 	/*
2642 	 * if cgroup events exist on this CPU, then we need
2643 	 * to check if we have to switch in PMU state.
2644 	 * cgroup event are system-wide mode only
2645 	 */
2646 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2647 		perf_cgroup_sched_in(prev, task);
2648 
2649 	/* check for system-wide branch_stack events */
2650 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2651 		perf_branch_stack_sched_in(prev, task);
2652 }
2653 
2654 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2655 {
2656 	u64 frequency = event->attr.sample_freq;
2657 	u64 sec = NSEC_PER_SEC;
2658 	u64 divisor, dividend;
2659 
2660 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2661 
2662 	count_fls = fls64(count);
2663 	nsec_fls = fls64(nsec);
2664 	frequency_fls = fls64(frequency);
2665 	sec_fls = 30;
2666 
2667 	/*
2668 	 * We got @count in @nsec, with a target of sample_freq HZ
2669 	 * the target period becomes:
2670 	 *
2671 	 *             @count * 10^9
2672 	 * period = -------------------
2673 	 *          @nsec * sample_freq
2674 	 *
2675 	 */
2676 
2677 	/*
2678 	 * Reduce accuracy by one bit such that @a and @b converge
2679 	 * to a similar magnitude.
2680 	 */
2681 #define REDUCE_FLS(a, b)		\
2682 do {					\
2683 	if (a##_fls > b##_fls) {	\
2684 		a >>= 1;		\
2685 		a##_fls--;		\
2686 	} else {			\
2687 		b >>= 1;		\
2688 		b##_fls--;		\
2689 	}				\
2690 } while (0)
2691 
2692 	/*
2693 	 * Reduce accuracy until either term fits in a u64, then proceed with
2694 	 * the other, so that finally we can do a u64/u64 division.
2695 	 */
2696 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2697 		REDUCE_FLS(nsec, frequency);
2698 		REDUCE_FLS(sec, count);
2699 	}
2700 
2701 	if (count_fls + sec_fls > 64) {
2702 		divisor = nsec * frequency;
2703 
2704 		while (count_fls + sec_fls > 64) {
2705 			REDUCE_FLS(count, sec);
2706 			divisor >>= 1;
2707 		}
2708 
2709 		dividend = count * sec;
2710 	} else {
2711 		dividend = count * sec;
2712 
2713 		while (nsec_fls + frequency_fls > 64) {
2714 			REDUCE_FLS(nsec, frequency);
2715 			dividend >>= 1;
2716 		}
2717 
2718 		divisor = nsec * frequency;
2719 	}
2720 
2721 	if (!divisor)
2722 		return dividend;
2723 
2724 	return div64_u64(dividend, divisor);
2725 }
2726 
2727 static DEFINE_PER_CPU(int, perf_throttled_count);
2728 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2729 
2730 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2731 {
2732 	struct hw_perf_event *hwc = &event->hw;
2733 	s64 period, sample_period;
2734 	s64 delta;
2735 
2736 	period = perf_calculate_period(event, nsec, count);
2737 
2738 	delta = (s64)(period - hwc->sample_period);
2739 	delta = (delta + 7) / 8; /* low pass filter */
2740 
2741 	sample_period = hwc->sample_period + delta;
2742 
2743 	if (!sample_period)
2744 		sample_period = 1;
2745 
2746 	hwc->sample_period = sample_period;
2747 
2748 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2749 		if (disable)
2750 			event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 		local64_set(&hwc->period_left, 0);
2753 
2754 		if (disable)
2755 			event->pmu->start(event, PERF_EF_RELOAD);
2756 	}
2757 }
2758 
2759 /*
2760  * combine freq adjustment with unthrottling to avoid two passes over the
2761  * events. At the same time, make sure, having freq events does not change
2762  * the rate of unthrottling as that would introduce bias.
2763  */
2764 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2765 					   int needs_unthr)
2766 {
2767 	struct perf_event *event;
2768 	struct hw_perf_event *hwc;
2769 	u64 now, period = TICK_NSEC;
2770 	s64 delta;
2771 
2772 	/*
2773 	 * only need to iterate over all events iff:
2774 	 * - context have events in frequency mode (needs freq adjust)
2775 	 * - there are events to unthrottle on this cpu
2776 	 */
2777 	if (!(ctx->nr_freq || needs_unthr))
2778 		return;
2779 
2780 	raw_spin_lock(&ctx->lock);
2781 	perf_pmu_disable(ctx->pmu);
2782 
2783 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2784 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2785 			continue;
2786 
2787 		if (!event_filter_match(event))
2788 			continue;
2789 
2790 		perf_pmu_disable(event->pmu);
2791 
2792 		hwc = &event->hw;
2793 
2794 		if (hwc->interrupts == MAX_INTERRUPTS) {
2795 			hwc->interrupts = 0;
2796 			perf_log_throttle(event, 1);
2797 			event->pmu->start(event, 0);
2798 		}
2799 
2800 		if (!event->attr.freq || !event->attr.sample_freq)
2801 			goto next;
2802 
2803 		/*
2804 		 * stop the event and update event->count
2805 		 */
2806 		event->pmu->stop(event, PERF_EF_UPDATE);
2807 
2808 		now = local64_read(&event->count);
2809 		delta = now - hwc->freq_count_stamp;
2810 		hwc->freq_count_stamp = now;
2811 
2812 		/*
2813 		 * restart the event
2814 		 * reload only if value has changed
2815 		 * we have stopped the event so tell that
2816 		 * to perf_adjust_period() to avoid stopping it
2817 		 * twice.
2818 		 */
2819 		if (delta > 0)
2820 			perf_adjust_period(event, period, delta, false);
2821 
2822 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2823 	next:
2824 		perf_pmu_enable(event->pmu);
2825 	}
2826 
2827 	perf_pmu_enable(ctx->pmu);
2828 	raw_spin_unlock(&ctx->lock);
2829 }
2830 
2831 /*
2832  * Round-robin a context's events:
2833  */
2834 static void rotate_ctx(struct perf_event_context *ctx)
2835 {
2836 	/*
2837 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2838 	 * disabled by the inheritance code.
2839 	 */
2840 	if (!ctx->rotate_disable)
2841 		list_rotate_left(&ctx->flexible_groups);
2842 }
2843 
2844 /*
2845  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2846  * because they're strictly cpu affine and rotate_start is called with IRQs
2847  * disabled, while rotate_context is called from IRQ context.
2848  */
2849 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2850 {
2851 	struct perf_event_context *ctx = NULL;
2852 	int rotate = 0, remove = 1;
2853 
2854 	if (cpuctx->ctx.nr_events) {
2855 		remove = 0;
2856 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2857 			rotate = 1;
2858 	}
2859 
2860 	ctx = cpuctx->task_ctx;
2861 	if (ctx && ctx->nr_events) {
2862 		remove = 0;
2863 		if (ctx->nr_events != ctx->nr_active)
2864 			rotate = 1;
2865 	}
2866 
2867 	if (!rotate)
2868 		goto done;
2869 
2870 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2871 	perf_pmu_disable(cpuctx->ctx.pmu);
2872 
2873 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2874 	if (ctx)
2875 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2876 
2877 	rotate_ctx(&cpuctx->ctx);
2878 	if (ctx)
2879 		rotate_ctx(ctx);
2880 
2881 	perf_event_sched_in(cpuctx, ctx, current);
2882 
2883 	perf_pmu_enable(cpuctx->ctx.pmu);
2884 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2885 done:
2886 	if (remove)
2887 		list_del_init(&cpuctx->rotation_list);
2888 
2889 	return rotate;
2890 }
2891 
2892 #ifdef CONFIG_NO_HZ_FULL
2893 bool perf_event_can_stop_tick(void)
2894 {
2895 	if (atomic_read(&nr_freq_events) ||
2896 	    __this_cpu_read(perf_throttled_count))
2897 		return false;
2898 	else
2899 		return true;
2900 }
2901 #endif
2902 
2903 void perf_event_task_tick(void)
2904 {
2905 	struct list_head *head = &__get_cpu_var(rotation_list);
2906 	struct perf_cpu_context *cpuctx, *tmp;
2907 	struct perf_event_context *ctx;
2908 	int throttled;
2909 
2910 	WARN_ON(!irqs_disabled());
2911 
2912 	__this_cpu_inc(perf_throttled_seq);
2913 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2914 
2915 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2916 		ctx = &cpuctx->ctx;
2917 		perf_adjust_freq_unthr_context(ctx, throttled);
2918 
2919 		ctx = cpuctx->task_ctx;
2920 		if (ctx)
2921 			perf_adjust_freq_unthr_context(ctx, throttled);
2922 	}
2923 }
2924 
2925 static int event_enable_on_exec(struct perf_event *event,
2926 				struct perf_event_context *ctx)
2927 {
2928 	if (!event->attr.enable_on_exec)
2929 		return 0;
2930 
2931 	event->attr.enable_on_exec = 0;
2932 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2933 		return 0;
2934 
2935 	__perf_event_mark_enabled(event);
2936 
2937 	return 1;
2938 }
2939 
2940 /*
2941  * Enable all of a task's events that have been marked enable-on-exec.
2942  * This expects task == current.
2943  */
2944 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2945 {
2946 	struct perf_event *event;
2947 	unsigned long flags;
2948 	int enabled = 0;
2949 	int ret;
2950 
2951 	local_irq_save(flags);
2952 	if (!ctx || !ctx->nr_events)
2953 		goto out;
2954 
2955 	/*
2956 	 * We must ctxsw out cgroup events to avoid conflict
2957 	 * when invoking perf_task_event_sched_in() later on
2958 	 * in this function. Otherwise we end up trying to
2959 	 * ctxswin cgroup events which are already scheduled
2960 	 * in.
2961 	 */
2962 	perf_cgroup_sched_out(current, NULL);
2963 
2964 	raw_spin_lock(&ctx->lock);
2965 	task_ctx_sched_out(ctx);
2966 
2967 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2968 		ret = event_enable_on_exec(event, ctx);
2969 		if (ret)
2970 			enabled = 1;
2971 	}
2972 
2973 	/*
2974 	 * Unclone this context if we enabled any event.
2975 	 */
2976 	if (enabled)
2977 		unclone_ctx(ctx);
2978 
2979 	raw_spin_unlock(&ctx->lock);
2980 
2981 	/*
2982 	 * Also calls ctxswin for cgroup events, if any:
2983 	 */
2984 	perf_event_context_sched_in(ctx, ctx->task);
2985 out:
2986 	local_irq_restore(flags);
2987 }
2988 
2989 void perf_event_exec(void)
2990 {
2991 	struct perf_event_context *ctx;
2992 	int ctxn;
2993 
2994 	rcu_read_lock();
2995 	for_each_task_context_nr(ctxn) {
2996 		ctx = current->perf_event_ctxp[ctxn];
2997 		if (!ctx)
2998 			continue;
2999 
3000 		perf_event_enable_on_exec(ctx);
3001 	}
3002 	rcu_read_unlock();
3003 }
3004 
3005 /*
3006  * Cross CPU call to read the hardware event
3007  */
3008 static void __perf_event_read(void *info)
3009 {
3010 	struct perf_event *event = info;
3011 	struct perf_event_context *ctx = event->ctx;
3012 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3013 
3014 	/*
3015 	 * If this is a task context, we need to check whether it is
3016 	 * the current task context of this cpu.  If not it has been
3017 	 * scheduled out before the smp call arrived.  In that case
3018 	 * event->count would have been updated to a recent sample
3019 	 * when the event was scheduled out.
3020 	 */
3021 	if (ctx->task && cpuctx->task_ctx != ctx)
3022 		return;
3023 
3024 	raw_spin_lock(&ctx->lock);
3025 	if (ctx->is_active) {
3026 		update_context_time(ctx);
3027 		update_cgrp_time_from_event(event);
3028 	}
3029 	update_event_times(event);
3030 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3031 		event->pmu->read(event);
3032 	raw_spin_unlock(&ctx->lock);
3033 }
3034 
3035 static inline u64 perf_event_count(struct perf_event *event)
3036 {
3037 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3038 }
3039 
3040 static u64 perf_event_read(struct perf_event *event)
3041 {
3042 	/*
3043 	 * If event is enabled and currently active on a CPU, update the
3044 	 * value in the event structure:
3045 	 */
3046 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3047 		smp_call_function_single(event->oncpu,
3048 					 __perf_event_read, event, 1);
3049 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3050 		struct perf_event_context *ctx = event->ctx;
3051 		unsigned long flags;
3052 
3053 		raw_spin_lock_irqsave(&ctx->lock, flags);
3054 		/*
3055 		 * may read while context is not active
3056 		 * (e.g., thread is blocked), in that case
3057 		 * we cannot update context time
3058 		 */
3059 		if (ctx->is_active) {
3060 			update_context_time(ctx);
3061 			update_cgrp_time_from_event(event);
3062 		}
3063 		update_event_times(event);
3064 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3065 	}
3066 
3067 	return perf_event_count(event);
3068 }
3069 
3070 /*
3071  * Initialize the perf_event context in a task_struct:
3072  */
3073 static void __perf_event_init_context(struct perf_event_context *ctx)
3074 {
3075 	raw_spin_lock_init(&ctx->lock);
3076 	mutex_init(&ctx->mutex);
3077 	INIT_LIST_HEAD(&ctx->pinned_groups);
3078 	INIT_LIST_HEAD(&ctx->flexible_groups);
3079 	INIT_LIST_HEAD(&ctx->event_list);
3080 	atomic_set(&ctx->refcount, 1);
3081 }
3082 
3083 static struct perf_event_context *
3084 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3085 {
3086 	struct perf_event_context *ctx;
3087 
3088 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3089 	if (!ctx)
3090 		return NULL;
3091 
3092 	__perf_event_init_context(ctx);
3093 	if (task) {
3094 		ctx->task = task;
3095 		get_task_struct(task);
3096 	}
3097 	ctx->pmu = pmu;
3098 
3099 	return ctx;
3100 }
3101 
3102 static struct task_struct *
3103 find_lively_task_by_vpid(pid_t vpid)
3104 {
3105 	struct task_struct *task;
3106 	int err;
3107 
3108 	rcu_read_lock();
3109 	if (!vpid)
3110 		task = current;
3111 	else
3112 		task = find_task_by_vpid(vpid);
3113 	if (task)
3114 		get_task_struct(task);
3115 	rcu_read_unlock();
3116 
3117 	if (!task)
3118 		return ERR_PTR(-ESRCH);
3119 
3120 	/* Reuse ptrace permission checks for now. */
3121 	err = -EACCES;
3122 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3123 		goto errout;
3124 
3125 	return task;
3126 errout:
3127 	put_task_struct(task);
3128 	return ERR_PTR(err);
3129 
3130 }
3131 
3132 /*
3133  * Returns a matching context with refcount and pincount.
3134  */
3135 static struct perf_event_context *
3136 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3137 {
3138 	struct perf_event_context *ctx;
3139 	struct perf_cpu_context *cpuctx;
3140 	unsigned long flags;
3141 	int ctxn, err;
3142 
3143 	if (!task) {
3144 		/* Must be root to operate on a CPU event: */
3145 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3146 			return ERR_PTR(-EACCES);
3147 
3148 		/*
3149 		 * We could be clever and allow to attach a event to an
3150 		 * offline CPU and activate it when the CPU comes up, but
3151 		 * that's for later.
3152 		 */
3153 		if (!cpu_online(cpu))
3154 			return ERR_PTR(-ENODEV);
3155 
3156 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3157 		ctx = &cpuctx->ctx;
3158 		get_ctx(ctx);
3159 		++ctx->pin_count;
3160 
3161 		return ctx;
3162 	}
3163 
3164 	err = -EINVAL;
3165 	ctxn = pmu->task_ctx_nr;
3166 	if (ctxn < 0)
3167 		goto errout;
3168 
3169 retry:
3170 	ctx = perf_lock_task_context(task, ctxn, &flags);
3171 	if (ctx) {
3172 		unclone_ctx(ctx);
3173 		++ctx->pin_count;
3174 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3175 	} else {
3176 		ctx = alloc_perf_context(pmu, task);
3177 		err = -ENOMEM;
3178 		if (!ctx)
3179 			goto errout;
3180 
3181 		err = 0;
3182 		mutex_lock(&task->perf_event_mutex);
3183 		/*
3184 		 * If it has already passed perf_event_exit_task().
3185 		 * we must see PF_EXITING, it takes this mutex too.
3186 		 */
3187 		if (task->flags & PF_EXITING)
3188 			err = -ESRCH;
3189 		else if (task->perf_event_ctxp[ctxn])
3190 			err = -EAGAIN;
3191 		else {
3192 			get_ctx(ctx);
3193 			++ctx->pin_count;
3194 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3195 		}
3196 		mutex_unlock(&task->perf_event_mutex);
3197 
3198 		if (unlikely(err)) {
3199 			put_ctx(ctx);
3200 
3201 			if (err == -EAGAIN)
3202 				goto retry;
3203 			goto errout;
3204 		}
3205 	}
3206 
3207 	return ctx;
3208 
3209 errout:
3210 	return ERR_PTR(err);
3211 }
3212 
3213 static void perf_event_free_filter(struct perf_event *event);
3214 
3215 static void free_event_rcu(struct rcu_head *head)
3216 {
3217 	struct perf_event *event;
3218 
3219 	event = container_of(head, struct perf_event, rcu_head);
3220 	if (event->ns)
3221 		put_pid_ns(event->ns);
3222 	perf_event_free_filter(event);
3223 	kfree(event);
3224 }
3225 
3226 static void ring_buffer_put(struct ring_buffer *rb);
3227 static void ring_buffer_attach(struct perf_event *event,
3228 			       struct ring_buffer *rb);
3229 
3230 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3231 {
3232 	if (event->parent)
3233 		return;
3234 
3235 	if (has_branch_stack(event)) {
3236 		if (!(event->attach_state & PERF_ATTACH_TASK))
3237 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3238 	}
3239 	if (is_cgroup_event(event))
3240 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3241 }
3242 
3243 static void unaccount_event(struct perf_event *event)
3244 {
3245 	if (event->parent)
3246 		return;
3247 
3248 	if (event->attach_state & PERF_ATTACH_TASK)
3249 		static_key_slow_dec_deferred(&perf_sched_events);
3250 	if (event->attr.mmap || event->attr.mmap_data)
3251 		atomic_dec(&nr_mmap_events);
3252 	if (event->attr.comm)
3253 		atomic_dec(&nr_comm_events);
3254 	if (event->attr.task)
3255 		atomic_dec(&nr_task_events);
3256 	if (event->attr.freq)
3257 		atomic_dec(&nr_freq_events);
3258 	if (is_cgroup_event(event))
3259 		static_key_slow_dec_deferred(&perf_sched_events);
3260 	if (has_branch_stack(event))
3261 		static_key_slow_dec_deferred(&perf_sched_events);
3262 
3263 	unaccount_event_cpu(event, event->cpu);
3264 }
3265 
3266 static void __free_event(struct perf_event *event)
3267 {
3268 	if (!event->parent) {
3269 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3270 			put_callchain_buffers();
3271 	}
3272 
3273 	if (event->destroy)
3274 		event->destroy(event);
3275 
3276 	if (event->ctx)
3277 		put_ctx(event->ctx);
3278 
3279 	if (event->pmu)
3280 		module_put(event->pmu->module);
3281 
3282 	call_rcu(&event->rcu_head, free_event_rcu);
3283 }
3284 
3285 static void _free_event(struct perf_event *event)
3286 {
3287 	irq_work_sync(&event->pending);
3288 
3289 	unaccount_event(event);
3290 
3291 	if (event->rb) {
3292 		/*
3293 		 * Can happen when we close an event with re-directed output.
3294 		 *
3295 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3296 		 * over us; possibly making our ring_buffer_put() the last.
3297 		 */
3298 		mutex_lock(&event->mmap_mutex);
3299 		ring_buffer_attach(event, NULL);
3300 		mutex_unlock(&event->mmap_mutex);
3301 	}
3302 
3303 	if (is_cgroup_event(event))
3304 		perf_detach_cgroup(event);
3305 
3306 	__free_event(event);
3307 }
3308 
3309 /*
3310  * Used to free events which have a known refcount of 1, such as in error paths
3311  * where the event isn't exposed yet and inherited events.
3312  */
3313 static void free_event(struct perf_event *event)
3314 {
3315 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3316 				"unexpected event refcount: %ld; ptr=%p\n",
3317 				atomic_long_read(&event->refcount), event)) {
3318 		/* leak to avoid use-after-free */
3319 		return;
3320 	}
3321 
3322 	_free_event(event);
3323 }
3324 
3325 /*
3326  * Called when the last reference to the file is gone.
3327  */
3328 static void put_event(struct perf_event *event)
3329 {
3330 	struct perf_event_context *ctx = event->ctx;
3331 	struct task_struct *owner;
3332 
3333 	if (!atomic_long_dec_and_test(&event->refcount))
3334 		return;
3335 
3336 	rcu_read_lock();
3337 	owner = ACCESS_ONCE(event->owner);
3338 	/*
3339 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3340 	 * !owner it means the list deletion is complete and we can indeed
3341 	 * free this event, otherwise we need to serialize on
3342 	 * owner->perf_event_mutex.
3343 	 */
3344 	smp_read_barrier_depends();
3345 	if (owner) {
3346 		/*
3347 		 * Since delayed_put_task_struct() also drops the last
3348 		 * task reference we can safely take a new reference
3349 		 * while holding the rcu_read_lock().
3350 		 */
3351 		get_task_struct(owner);
3352 	}
3353 	rcu_read_unlock();
3354 
3355 	if (owner) {
3356 		mutex_lock(&owner->perf_event_mutex);
3357 		/*
3358 		 * We have to re-check the event->owner field, if it is cleared
3359 		 * we raced with perf_event_exit_task(), acquiring the mutex
3360 		 * ensured they're done, and we can proceed with freeing the
3361 		 * event.
3362 		 */
3363 		if (event->owner)
3364 			list_del_init(&event->owner_entry);
3365 		mutex_unlock(&owner->perf_event_mutex);
3366 		put_task_struct(owner);
3367 	}
3368 
3369 	WARN_ON_ONCE(ctx->parent_ctx);
3370 	/*
3371 	 * There are two ways this annotation is useful:
3372 	 *
3373 	 *  1) there is a lock recursion from perf_event_exit_task
3374 	 *     see the comment there.
3375 	 *
3376 	 *  2) there is a lock-inversion with mmap_sem through
3377 	 *     perf_event_read_group(), which takes faults while
3378 	 *     holding ctx->mutex, however this is called after
3379 	 *     the last filedesc died, so there is no possibility
3380 	 *     to trigger the AB-BA case.
3381 	 */
3382 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3383 	perf_remove_from_context(event, true);
3384 	mutex_unlock(&ctx->mutex);
3385 
3386 	_free_event(event);
3387 }
3388 
3389 int perf_event_release_kernel(struct perf_event *event)
3390 {
3391 	put_event(event);
3392 	return 0;
3393 }
3394 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3395 
3396 static int perf_release(struct inode *inode, struct file *file)
3397 {
3398 	put_event(file->private_data);
3399 	return 0;
3400 }
3401 
3402 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3403 {
3404 	struct perf_event *child;
3405 	u64 total = 0;
3406 
3407 	*enabled = 0;
3408 	*running = 0;
3409 
3410 	mutex_lock(&event->child_mutex);
3411 	total += perf_event_read(event);
3412 	*enabled += event->total_time_enabled +
3413 			atomic64_read(&event->child_total_time_enabled);
3414 	*running += event->total_time_running +
3415 			atomic64_read(&event->child_total_time_running);
3416 
3417 	list_for_each_entry(child, &event->child_list, child_list) {
3418 		total += perf_event_read(child);
3419 		*enabled += child->total_time_enabled;
3420 		*running += child->total_time_running;
3421 	}
3422 	mutex_unlock(&event->child_mutex);
3423 
3424 	return total;
3425 }
3426 EXPORT_SYMBOL_GPL(perf_event_read_value);
3427 
3428 static int perf_event_read_group(struct perf_event *event,
3429 				   u64 read_format, char __user *buf)
3430 {
3431 	struct perf_event *leader = event->group_leader, *sub;
3432 	int n = 0, size = 0, ret = -EFAULT;
3433 	struct perf_event_context *ctx = leader->ctx;
3434 	u64 values[5];
3435 	u64 count, enabled, running;
3436 
3437 	mutex_lock(&ctx->mutex);
3438 	count = perf_event_read_value(leader, &enabled, &running);
3439 
3440 	values[n++] = 1 + leader->nr_siblings;
3441 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3442 		values[n++] = enabled;
3443 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3444 		values[n++] = running;
3445 	values[n++] = count;
3446 	if (read_format & PERF_FORMAT_ID)
3447 		values[n++] = primary_event_id(leader);
3448 
3449 	size = n * sizeof(u64);
3450 
3451 	if (copy_to_user(buf, values, size))
3452 		goto unlock;
3453 
3454 	ret = size;
3455 
3456 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3457 		n = 0;
3458 
3459 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3460 		if (read_format & PERF_FORMAT_ID)
3461 			values[n++] = primary_event_id(sub);
3462 
3463 		size = n * sizeof(u64);
3464 
3465 		if (copy_to_user(buf + ret, values, size)) {
3466 			ret = -EFAULT;
3467 			goto unlock;
3468 		}
3469 
3470 		ret += size;
3471 	}
3472 unlock:
3473 	mutex_unlock(&ctx->mutex);
3474 
3475 	return ret;
3476 }
3477 
3478 static int perf_event_read_one(struct perf_event *event,
3479 				 u64 read_format, char __user *buf)
3480 {
3481 	u64 enabled, running;
3482 	u64 values[4];
3483 	int n = 0;
3484 
3485 	values[n++] = perf_event_read_value(event, &enabled, &running);
3486 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3487 		values[n++] = enabled;
3488 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3489 		values[n++] = running;
3490 	if (read_format & PERF_FORMAT_ID)
3491 		values[n++] = primary_event_id(event);
3492 
3493 	if (copy_to_user(buf, values, n * sizeof(u64)))
3494 		return -EFAULT;
3495 
3496 	return n * sizeof(u64);
3497 }
3498 
3499 /*
3500  * Read the performance event - simple non blocking version for now
3501  */
3502 static ssize_t
3503 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3504 {
3505 	u64 read_format = event->attr.read_format;
3506 	int ret;
3507 
3508 	/*
3509 	 * Return end-of-file for a read on a event that is in
3510 	 * error state (i.e. because it was pinned but it couldn't be
3511 	 * scheduled on to the CPU at some point).
3512 	 */
3513 	if (event->state == PERF_EVENT_STATE_ERROR)
3514 		return 0;
3515 
3516 	if (count < event->read_size)
3517 		return -ENOSPC;
3518 
3519 	WARN_ON_ONCE(event->ctx->parent_ctx);
3520 	if (read_format & PERF_FORMAT_GROUP)
3521 		ret = perf_event_read_group(event, read_format, buf);
3522 	else
3523 		ret = perf_event_read_one(event, read_format, buf);
3524 
3525 	return ret;
3526 }
3527 
3528 static ssize_t
3529 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3530 {
3531 	struct perf_event *event = file->private_data;
3532 
3533 	return perf_read_hw(event, buf, count);
3534 }
3535 
3536 static unsigned int perf_poll(struct file *file, poll_table *wait)
3537 {
3538 	struct perf_event *event = file->private_data;
3539 	struct ring_buffer *rb;
3540 	unsigned int events = POLL_HUP;
3541 
3542 	/*
3543 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3544 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3545 	 */
3546 	mutex_lock(&event->mmap_mutex);
3547 	rb = event->rb;
3548 	if (rb)
3549 		events = atomic_xchg(&rb->poll, 0);
3550 	mutex_unlock(&event->mmap_mutex);
3551 
3552 	poll_wait(file, &event->waitq, wait);
3553 
3554 	return events;
3555 }
3556 
3557 static void perf_event_reset(struct perf_event *event)
3558 {
3559 	(void)perf_event_read(event);
3560 	local64_set(&event->count, 0);
3561 	perf_event_update_userpage(event);
3562 }
3563 
3564 /*
3565  * Holding the top-level event's child_mutex means that any
3566  * descendant process that has inherited this event will block
3567  * in sync_child_event if it goes to exit, thus satisfying the
3568  * task existence requirements of perf_event_enable/disable.
3569  */
3570 static void perf_event_for_each_child(struct perf_event *event,
3571 					void (*func)(struct perf_event *))
3572 {
3573 	struct perf_event *child;
3574 
3575 	WARN_ON_ONCE(event->ctx->parent_ctx);
3576 	mutex_lock(&event->child_mutex);
3577 	func(event);
3578 	list_for_each_entry(child, &event->child_list, child_list)
3579 		func(child);
3580 	mutex_unlock(&event->child_mutex);
3581 }
3582 
3583 static void perf_event_for_each(struct perf_event *event,
3584 				  void (*func)(struct perf_event *))
3585 {
3586 	struct perf_event_context *ctx = event->ctx;
3587 	struct perf_event *sibling;
3588 
3589 	WARN_ON_ONCE(ctx->parent_ctx);
3590 	mutex_lock(&ctx->mutex);
3591 	event = event->group_leader;
3592 
3593 	perf_event_for_each_child(event, func);
3594 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3595 		perf_event_for_each_child(sibling, func);
3596 	mutex_unlock(&ctx->mutex);
3597 }
3598 
3599 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3600 {
3601 	struct perf_event_context *ctx = event->ctx;
3602 	int ret = 0, active;
3603 	u64 value;
3604 
3605 	if (!is_sampling_event(event))
3606 		return -EINVAL;
3607 
3608 	if (copy_from_user(&value, arg, sizeof(value)))
3609 		return -EFAULT;
3610 
3611 	if (!value)
3612 		return -EINVAL;
3613 
3614 	raw_spin_lock_irq(&ctx->lock);
3615 	if (event->attr.freq) {
3616 		if (value > sysctl_perf_event_sample_rate) {
3617 			ret = -EINVAL;
3618 			goto unlock;
3619 		}
3620 
3621 		event->attr.sample_freq = value;
3622 	} else {
3623 		event->attr.sample_period = value;
3624 		event->hw.sample_period = value;
3625 	}
3626 
3627 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3628 	if (active) {
3629 		perf_pmu_disable(ctx->pmu);
3630 		event->pmu->stop(event, PERF_EF_UPDATE);
3631 	}
3632 
3633 	local64_set(&event->hw.period_left, 0);
3634 
3635 	if (active) {
3636 		event->pmu->start(event, PERF_EF_RELOAD);
3637 		perf_pmu_enable(ctx->pmu);
3638 	}
3639 
3640 unlock:
3641 	raw_spin_unlock_irq(&ctx->lock);
3642 
3643 	return ret;
3644 }
3645 
3646 static const struct file_operations perf_fops;
3647 
3648 static inline int perf_fget_light(int fd, struct fd *p)
3649 {
3650 	struct fd f = fdget(fd);
3651 	if (!f.file)
3652 		return -EBADF;
3653 
3654 	if (f.file->f_op != &perf_fops) {
3655 		fdput(f);
3656 		return -EBADF;
3657 	}
3658 	*p = f;
3659 	return 0;
3660 }
3661 
3662 static int perf_event_set_output(struct perf_event *event,
3663 				 struct perf_event *output_event);
3664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3665 
3666 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3667 {
3668 	struct perf_event *event = file->private_data;
3669 	void (*func)(struct perf_event *);
3670 	u32 flags = arg;
3671 
3672 	switch (cmd) {
3673 	case PERF_EVENT_IOC_ENABLE:
3674 		func = perf_event_enable;
3675 		break;
3676 	case PERF_EVENT_IOC_DISABLE:
3677 		func = perf_event_disable;
3678 		break;
3679 	case PERF_EVENT_IOC_RESET:
3680 		func = perf_event_reset;
3681 		break;
3682 
3683 	case PERF_EVENT_IOC_REFRESH:
3684 		return perf_event_refresh(event, arg);
3685 
3686 	case PERF_EVENT_IOC_PERIOD:
3687 		return perf_event_period(event, (u64 __user *)arg);
3688 
3689 	case PERF_EVENT_IOC_ID:
3690 	{
3691 		u64 id = primary_event_id(event);
3692 
3693 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3694 			return -EFAULT;
3695 		return 0;
3696 	}
3697 
3698 	case PERF_EVENT_IOC_SET_OUTPUT:
3699 	{
3700 		int ret;
3701 		if (arg != -1) {
3702 			struct perf_event *output_event;
3703 			struct fd output;
3704 			ret = perf_fget_light(arg, &output);
3705 			if (ret)
3706 				return ret;
3707 			output_event = output.file->private_data;
3708 			ret = perf_event_set_output(event, output_event);
3709 			fdput(output);
3710 		} else {
3711 			ret = perf_event_set_output(event, NULL);
3712 		}
3713 		return ret;
3714 	}
3715 
3716 	case PERF_EVENT_IOC_SET_FILTER:
3717 		return perf_event_set_filter(event, (void __user *)arg);
3718 
3719 	default:
3720 		return -ENOTTY;
3721 	}
3722 
3723 	if (flags & PERF_IOC_FLAG_GROUP)
3724 		perf_event_for_each(event, func);
3725 	else
3726 		perf_event_for_each_child(event, func);
3727 
3728 	return 0;
3729 }
3730 
3731 #ifdef CONFIG_COMPAT
3732 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3733 				unsigned long arg)
3734 {
3735 	switch (_IOC_NR(cmd)) {
3736 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3737 	case _IOC_NR(PERF_EVENT_IOC_ID):
3738 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3739 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3740 			cmd &= ~IOCSIZE_MASK;
3741 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3742 		}
3743 		break;
3744 	}
3745 	return perf_ioctl(file, cmd, arg);
3746 }
3747 #else
3748 # define perf_compat_ioctl NULL
3749 #endif
3750 
3751 int perf_event_task_enable(void)
3752 {
3753 	struct perf_event *event;
3754 
3755 	mutex_lock(&current->perf_event_mutex);
3756 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3757 		perf_event_for_each_child(event, perf_event_enable);
3758 	mutex_unlock(&current->perf_event_mutex);
3759 
3760 	return 0;
3761 }
3762 
3763 int perf_event_task_disable(void)
3764 {
3765 	struct perf_event *event;
3766 
3767 	mutex_lock(&current->perf_event_mutex);
3768 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3769 		perf_event_for_each_child(event, perf_event_disable);
3770 	mutex_unlock(&current->perf_event_mutex);
3771 
3772 	return 0;
3773 }
3774 
3775 static int perf_event_index(struct perf_event *event)
3776 {
3777 	if (event->hw.state & PERF_HES_STOPPED)
3778 		return 0;
3779 
3780 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3781 		return 0;
3782 
3783 	return event->pmu->event_idx(event);
3784 }
3785 
3786 static void calc_timer_values(struct perf_event *event,
3787 				u64 *now,
3788 				u64 *enabled,
3789 				u64 *running)
3790 {
3791 	u64 ctx_time;
3792 
3793 	*now = perf_clock();
3794 	ctx_time = event->shadow_ctx_time + *now;
3795 	*enabled = ctx_time - event->tstamp_enabled;
3796 	*running = ctx_time - event->tstamp_running;
3797 }
3798 
3799 static void perf_event_init_userpage(struct perf_event *event)
3800 {
3801 	struct perf_event_mmap_page *userpg;
3802 	struct ring_buffer *rb;
3803 
3804 	rcu_read_lock();
3805 	rb = rcu_dereference(event->rb);
3806 	if (!rb)
3807 		goto unlock;
3808 
3809 	userpg = rb->user_page;
3810 
3811 	/* Allow new userspace to detect that bit 0 is deprecated */
3812 	userpg->cap_bit0_is_deprecated = 1;
3813 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3814 
3815 unlock:
3816 	rcu_read_unlock();
3817 }
3818 
3819 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3820 {
3821 }
3822 
3823 /*
3824  * Callers need to ensure there can be no nesting of this function, otherwise
3825  * the seqlock logic goes bad. We can not serialize this because the arch
3826  * code calls this from NMI context.
3827  */
3828 void perf_event_update_userpage(struct perf_event *event)
3829 {
3830 	struct perf_event_mmap_page *userpg;
3831 	struct ring_buffer *rb;
3832 	u64 enabled, running, now;
3833 
3834 	rcu_read_lock();
3835 	rb = rcu_dereference(event->rb);
3836 	if (!rb)
3837 		goto unlock;
3838 
3839 	/*
3840 	 * compute total_time_enabled, total_time_running
3841 	 * based on snapshot values taken when the event
3842 	 * was last scheduled in.
3843 	 *
3844 	 * we cannot simply called update_context_time()
3845 	 * because of locking issue as we can be called in
3846 	 * NMI context
3847 	 */
3848 	calc_timer_values(event, &now, &enabled, &running);
3849 
3850 	userpg = rb->user_page;
3851 	/*
3852 	 * Disable preemption so as to not let the corresponding user-space
3853 	 * spin too long if we get preempted.
3854 	 */
3855 	preempt_disable();
3856 	++userpg->lock;
3857 	barrier();
3858 	userpg->index = perf_event_index(event);
3859 	userpg->offset = perf_event_count(event);
3860 	if (userpg->index)
3861 		userpg->offset -= local64_read(&event->hw.prev_count);
3862 
3863 	userpg->time_enabled = enabled +
3864 			atomic64_read(&event->child_total_time_enabled);
3865 
3866 	userpg->time_running = running +
3867 			atomic64_read(&event->child_total_time_running);
3868 
3869 	arch_perf_update_userpage(userpg, now);
3870 
3871 	barrier();
3872 	++userpg->lock;
3873 	preempt_enable();
3874 unlock:
3875 	rcu_read_unlock();
3876 }
3877 
3878 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3879 {
3880 	struct perf_event *event = vma->vm_file->private_data;
3881 	struct ring_buffer *rb;
3882 	int ret = VM_FAULT_SIGBUS;
3883 
3884 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3885 		if (vmf->pgoff == 0)
3886 			ret = 0;
3887 		return ret;
3888 	}
3889 
3890 	rcu_read_lock();
3891 	rb = rcu_dereference(event->rb);
3892 	if (!rb)
3893 		goto unlock;
3894 
3895 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3896 		goto unlock;
3897 
3898 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3899 	if (!vmf->page)
3900 		goto unlock;
3901 
3902 	get_page(vmf->page);
3903 	vmf->page->mapping = vma->vm_file->f_mapping;
3904 	vmf->page->index   = vmf->pgoff;
3905 
3906 	ret = 0;
3907 unlock:
3908 	rcu_read_unlock();
3909 
3910 	return ret;
3911 }
3912 
3913 static void ring_buffer_attach(struct perf_event *event,
3914 			       struct ring_buffer *rb)
3915 {
3916 	struct ring_buffer *old_rb = NULL;
3917 	unsigned long flags;
3918 
3919 	if (event->rb) {
3920 		/*
3921 		 * Should be impossible, we set this when removing
3922 		 * event->rb_entry and wait/clear when adding event->rb_entry.
3923 		 */
3924 		WARN_ON_ONCE(event->rcu_pending);
3925 
3926 		old_rb = event->rb;
3927 		event->rcu_batches = get_state_synchronize_rcu();
3928 		event->rcu_pending = 1;
3929 
3930 		spin_lock_irqsave(&old_rb->event_lock, flags);
3931 		list_del_rcu(&event->rb_entry);
3932 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
3933 	}
3934 
3935 	if (event->rcu_pending && rb) {
3936 		cond_synchronize_rcu(event->rcu_batches);
3937 		event->rcu_pending = 0;
3938 	}
3939 
3940 	if (rb) {
3941 		spin_lock_irqsave(&rb->event_lock, flags);
3942 		list_add_rcu(&event->rb_entry, &rb->event_list);
3943 		spin_unlock_irqrestore(&rb->event_lock, flags);
3944 	}
3945 
3946 	rcu_assign_pointer(event->rb, rb);
3947 
3948 	if (old_rb) {
3949 		ring_buffer_put(old_rb);
3950 		/*
3951 		 * Since we detached before setting the new rb, so that we
3952 		 * could attach the new rb, we could have missed a wakeup.
3953 		 * Provide it now.
3954 		 */
3955 		wake_up_all(&event->waitq);
3956 	}
3957 }
3958 
3959 static void ring_buffer_wakeup(struct perf_event *event)
3960 {
3961 	struct ring_buffer *rb;
3962 
3963 	rcu_read_lock();
3964 	rb = rcu_dereference(event->rb);
3965 	if (rb) {
3966 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3967 			wake_up_all(&event->waitq);
3968 	}
3969 	rcu_read_unlock();
3970 }
3971 
3972 static void rb_free_rcu(struct rcu_head *rcu_head)
3973 {
3974 	struct ring_buffer *rb;
3975 
3976 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3977 	rb_free(rb);
3978 }
3979 
3980 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3981 {
3982 	struct ring_buffer *rb;
3983 
3984 	rcu_read_lock();
3985 	rb = rcu_dereference(event->rb);
3986 	if (rb) {
3987 		if (!atomic_inc_not_zero(&rb->refcount))
3988 			rb = NULL;
3989 	}
3990 	rcu_read_unlock();
3991 
3992 	return rb;
3993 }
3994 
3995 static void ring_buffer_put(struct ring_buffer *rb)
3996 {
3997 	if (!atomic_dec_and_test(&rb->refcount))
3998 		return;
3999 
4000 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4001 
4002 	call_rcu(&rb->rcu_head, rb_free_rcu);
4003 }
4004 
4005 static void perf_mmap_open(struct vm_area_struct *vma)
4006 {
4007 	struct perf_event *event = vma->vm_file->private_data;
4008 
4009 	atomic_inc(&event->mmap_count);
4010 	atomic_inc(&event->rb->mmap_count);
4011 }
4012 
4013 /*
4014  * A buffer can be mmap()ed multiple times; either directly through the same
4015  * event, or through other events by use of perf_event_set_output().
4016  *
4017  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4018  * the buffer here, where we still have a VM context. This means we need
4019  * to detach all events redirecting to us.
4020  */
4021 static void perf_mmap_close(struct vm_area_struct *vma)
4022 {
4023 	struct perf_event *event = vma->vm_file->private_data;
4024 
4025 	struct ring_buffer *rb = ring_buffer_get(event);
4026 	struct user_struct *mmap_user = rb->mmap_user;
4027 	int mmap_locked = rb->mmap_locked;
4028 	unsigned long size = perf_data_size(rb);
4029 
4030 	atomic_dec(&rb->mmap_count);
4031 
4032 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4033 		goto out_put;
4034 
4035 	ring_buffer_attach(event, NULL);
4036 	mutex_unlock(&event->mmap_mutex);
4037 
4038 	/* If there's still other mmap()s of this buffer, we're done. */
4039 	if (atomic_read(&rb->mmap_count))
4040 		goto out_put;
4041 
4042 	/*
4043 	 * No other mmap()s, detach from all other events that might redirect
4044 	 * into the now unreachable buffer. Somewhat complicated by the
4045 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4046 	 */
4047 again:
4048 	rcu_read_lock();
4049 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4050 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4051 			/*
4052 			 * This event is en-route to free_event() which will
4053 			 * detach it and remove it from the list.
4054 			 */
4055 			continue;
4056 		}
4057 		rcu_read_unlock();
4058 
4059 		mutex_lock(&event->mmap_mutex);
4060 		/*
4061 		 * Check we didn't race with perf_event_set_output() which can
4062 		 * swizzle the rb from under us while we were waiting to
4063 		 * acquire mmap_mutex.
4064 		 *
4065 		 * If we find a different rb; ignore this event, a next
4066 		 * iteration will no longer find it on the list. We have to
4067 		 * still restart the iteration to make sure we're not now
4068 		 * iterating the wrong list.
4069 		 */
4070 		if (event->rb == rb)
4071 			ring_buffer_attach(event, NULL);
4072 
4073 		mutex_unlock(&event->mmap_mutex);
4074 		put_event(event);
4075 
4076 		/*
4077 		 * Restart the iteration; either we're on the wrong list or
4078 		 * destroyed its integrity by doing a deletion.
4079 		 */
4080 		goto again;
4081 	}
4082 	rcu_read_unlock();
4083 
4084 	/*
4085 	 * It could be there's still a few 0-ref events on the list; they'll
4086 	 * get cleaned up by free_event() -- they'll also still have their
4087 	 * ref on the rb and will free it whenever they are done with it.
4088 	 *
4089 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4090 	 * undo the VM accounting.
4091 	 */
4092 
4093 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4094 	vma->vm_mm->pinned_vm -= mmap_locked;
4095 	free_uid(mmap_user);
4096 
4097 out_put:
4098 	ring_buffer_put(rb); /* could be last */
4099 }
4100 
4101 static const struct vm_operations_struct perf_mmap_vmops = {
4102 	.open		= perf_mmap_open,
4103 	.close		= perf_mmap_close,
4104 	.fault		= perf_mmap_fault,
4105 	.page_mkwrite	= perf_mmap_fault,
4106 };
4107 
4108 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4109 {
4110 	struct perf_event *event = file->private_data;
4111 	unsigned long user_locked, user_lock_limit;
4112 	struct user_struct *user = current_user();
4113 	unsigned long locked, lock_limit;
4114 	struct ring_buffer *rb;
4115 	unsigned long vma_size;
4116 	unsigned long nr_pages;
4117 	long user_extra, extra;
4118 	int ret = 0, flags = 0;
4119 
4120 	/*
4121 	 * Don't allow mmap() of inherited per-task counters. This would
4122 	 * create a performance issue due to all children writing to the
4123 	 * same rb.
4124 	 */
4125 	if (event->cpu == -1 && event->attr.inherit)
4126 		return -EINVAL;
4127 
4128 	if (!(vma->vm_flags & VM_SHARED))
4129 		return -EINVAL;
4130 
4131 	vma_size = vma->vm_end - vma->vm_start;
4132 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4133 
4134 	/*
4135 	 * If we have rb pages ensure they're a power-of-two number, so we
4136 	 * can do bitmasks instead of modulo.
4137 	 */
4138 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4139 		return -EINVAL;
4140 
4141 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4142 		return -EINVAL;
4143 
4144 	if (vma->vm_pgoff != 0)
4145 		return -EINVAL;
4146 
4147 	WARN_ON_ONCE(event->ctx->parent_ctx);
4148 again:
4149 	mutex_lock(&event->mmap_mutex);
4150 	if (event->rb) {
4151 		if (event->rb->nr_pages != nr_pages) {
4152 			ret = -EINVAL;
4153 			goto unlock;
4154 		}
4155 
4156 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4157 			/*
4158 			 * Raced against perf_mmap_close() through
4159 			 * perf_event_set_output(). Try again, hope for better
4160 			 * luck.
4161 			 */
4162 			mutex_unlock(&event->mmap_mutex);
4163 			goto again;
4164 		}
4165 
4166 		goto unlock;
4167 	}
4168 
4169 	user_extra = nr_pages + 1;
4170 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4171 
4172 	/*
4173 	 * Increase the limit linearly with more CPUs:
4174 	 */
4175 	user_lock_limit *= num_online_cpus();
4176 
4177 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4178 
4179 	extra = 0;
4180 	if (user_locked > user_lock_limit)
4181 		extra = user_locked - user_lock_limit;
4182 
4183 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4184 	lock_limit >>= PAGE_SHIFT;
4185 	locked = vma->vm_mm->pinned_vm + extra;
4186 
4187 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4188 		!capable(CAP_IPC_LOCK)) {
4189 		ret = -EPERM;
4190 		goto unlock;
4191 	}
4192 
4193 	WARN_ON(event->rb);
4194 
4195 	if (vma->vm_flags & VM_WRITE)
4196 		flags |= RING_BUFFER_WRITABLE;
4197 
4198 	rb = rb_alloc(nr_pages,
4199 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4200 		event->cpu, flags);
4201 
4202 	if (!rb) {
4203 		ret = -ENOMEM;
4204 		goto unlock;
4205 	}
4206 
4207 	atomic_set(&rb->mmap_count, 1);
4208 	rb->mmap_locked = extra;
4209 	rb->mmap_user = get_current_user();
4210 
4211 	atomic_long_add(user_extra, &user->locked_vm);
4212 	vma->vm_mm->pinned_vm += extra;
4213 
4214 	ring_buffer_attach(event, rb);
4215 
4216 	perf_event_init_userpage(event);
4217 	perf_event_update_userpage(event);
4218 
4219 unlock:
4220 	if (!ret)
4221 		atomic_inc(&event->mmap_count);
4222 	mutex_unlock(&event->mmap_mutex);
4223 
4224 	/*
4225 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4226 	 * vma.
4227 	 */
4228 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4229 	vma->vm_ops = &perf_mmap_vmops;
4230 
4231 	return ret;
4232 }
4233 
4234 static int perf_fasync(int fd, struct file *filp, int on)
4235 {
4236 	struct inode *inode = file_inode(filp);
4237 	struct perf_event *event = filp->private_data;
4238 	int retval;
4239 
4240 	mutex_lock(&inode->i_mutex);
4241 	retval = fasync_helper(fd, filp, on, &event->fasync);
4242 	mutex_unlock(&inode->i_mutex);
4243 
4244 	if (retval < 0)
4245 		return retval;
4246 
4247 	return 0;
4248 }
4249 
4250 static const struct file_operations perf_fops = {
4251 	.llseek			= no_llseek,
4252 	.release		= perf_release,
4253 	.read			= perf_read,
4254 	.poll			= perf_poll,
4255 	.unlocked_ioctl		= perf_ioctl,
4256 	.compat_ioctl		= perf_compat_ioctl,
4257 	.mmap			= perf_mmap,
4258 	.fasync			= perf_fasync,
4259 };
4260 
4261 /*
4262  * Perf event wakeup
4263  *
4264  * If there's data, ensure we set the poll() state and publish everything
4265  * to user-space before waking everybody up.
4266  */
4267 
4268 void perf_event_wakeup(struct perf_event *event)
4269 {
4270 	ring_buffer_wakeup(event);
4271 
4272 	if (event->pending_kill) {
4273 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4274 		event->pending_kill = 0;
4275 	}
4276 }
4277 
4278 static void perf_pending_event(struct irq_work *entry)
4279 {
4280 	struct perf_event *event = container_of(entry,
4281 			struct perf_event, pending);
4282 
4283 	if (event->pending_disable) {
4284 		event->pending_disable = 0;
4285 		__perf_event_disable(event);
4286 	}
4287 
4288 	if (event->pending_wakeup) {
4289 		event->pending_wakeup = 0;
4290 		perf_event_wakeup(event);
4291 	}
4292 }
4293 
4294 /*
4295  * We assume there is only KVM supporting the callbacks.
4296  * Later on, we might change it to a list if there is
4297  * another virtualization implementation supporting the callbacks.
4298  */
4299 struct perf_guest_info_callbacks *perf_guest_cbs;
4300 
4301 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4302 {
4303 	perf_guest_cbs = cbs;
4304 	return 0;
4305 }
4306 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4307 
4308 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4309 {
4310 	perf_guest_cbs = NULL;
4311 	return 0;
4312 }
4313 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4314 
4315 static void
4316 perf_output_sample_regs(struct perf_output_handle *handle,
4317 			struct pt_regs *regs, u64 mask)
4318 {
4319 	int bit;
4320 
4321 	for_each_set_bit(bit, (const unsigned long *) &mask,
4322 			 sizeof(mask) * BITS_PER_BYTE) {
4323 		u64 val;
4324 
4325 		val = perf_reg_value(regs, bit);
4326 		perf_output_put(handle, val);
4327 	}
4328 }
4329 
4330 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4331 				  struct pt_regs *regs)
4332 {
4333 	if (!user_mode(regs)) {
4334 		if (current->mm)
4335 			regs = task_pt_regs(current);
4336 		else
4337 			regs = NULL;
4338 	}
4339 
4340 	if (regs) {
4341 		regs_user->regs = regs;
4342 		regs_user->abi  = perf_reg_abi(current);
4343 	}
4344 }
4345 
4346 /*
4347  * Get remaining task size from user stack pointer.
4348  *
4349  * It'd be better to take stack vma map and limit this more
4350  * precisly, but there's no way to get it safely under interrupt,
4351  * so using TASK_SIZE as limit.
4352  */
4353 static u64 perf_ustack_task_size(struct pt_regs *regs)
4354 {
4355 	unsigned long addr = perf_user_stack_pointer(regs);
4356 
4357 	if (!addr || addr >= TASK_SIZE)
4358 		return 0;
4359 
4360 	return TASK_SIZE - addr;
4361 }
4362 
4363 static u16
4364 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4365 			struct pt_regs *regs)
4366 {
4367 	u64 task_size;
4368 
4369 	/* No regs, no stack pointer, no dump. */
4370 	if (!regs)
4371 		return 0;
4372 
4373 	/*
4374 	 * Check if we fit in with the requested stack size into the:
4375 	 * - TASK_SIZE
4376 	 *   If we don't, we limit the size to the TASK_SIZE.
4377 	 *
4378 	 * - remaining sample size
4379 	 *   If we don't, we customize the stack size to
4380 	 *   fit in to the remaining sample size.
4381 	 */
4382 
4383 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4384 	stack_size = min(stack_size, (u16) task_size);
4385 
4386 	/* Current header size plus static size and dynamic size. */
4387 	header_size += 2 * sizeof(u64);
4388 
4389 	/* Do we fit in with the current stack dump size? */
4390 	if ((u16) (header_size + stack_size) < header_size) {
4391 		/*
4392 		 * If we overflow the maximum size for the sample,
4393 		 * we customize the stack dump size to fit in.
4394 		 */
4395 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4396 		stack_size = round_up(stack_size, sizeof(u64));
4397 	}
4398 
4399 	return stack_size;
4400 }
4401 
4402 static void
4403 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4404 			  struct pt_regs *regs)
4405 {
4406 	/* Case of a kernel thread, nothing to dump */
4407 	if (!regs) {
4408 		u64 size = 0;
4409 		perf_output_put(handle, size);
4410 	} else {
4411 		unsigned long sp;
4412 		unsigned int rem;
4413 		u64 dyn_size;
4414 
4415 		/*
4416 		 * We dump:
4417 		 * static size
4418 		 *   - the size requested by user or the best one we can fit
4419 		 *     in to the sample max size
4420 		 * data
4421 		 *   - user stack dump data
4422 		 * dynamic size
4423 		 *   - the actual dumped size
4424 		 */
4425 
4426 		/* Static size. */
4427 		perf_output_put(handle, dump_size);
4428 
4429 		/* Data. */
4430 		sp = perf_user_stack_pointer(regs);
4431 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4432 		dyn_size = dump_size - rem;
4433 
4434 		perf_output_skip(handle, rem);
4435 
4436 		/* Dynamic size. */
4437 		perf_output_put(handle, dyn_size);
4438 	}
4439 }
4440 
4441 static void __perf_event_header__init_id(struct perf_event_header *header,
4442 					 struct perf_sample_data *data,
4443 					 struct perf_event *event)
4444 {
4445 	u64 sample_type = event->attr.sample_type;
4446 
4447 	data->type = sample_type;
4448 	header->size += event->id_header_size;
4449 
4450 	if (sample_type & PERF_SAMPLE_TID) {
4451 		/* namespace issues */
4452 		data->tid_entry.pid = perf_event_pid(event, current);
4453 		data->tid_entry.tid = perf_event_tid(event, current);
4454 	}
4455 
4456 	if (sample_type & PERF_SAMPLE_TIME)
4457 		data->time = perf_clock();
4458 
4459 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4460 		data->id = primary_event_id(event);
4461 
4462 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 		data->stream_id = event->id;
4464 
4465 	if (sample_type & PERF_SAMPLE_CPU) {
4466 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4467 		data->cpu_entry.reserved = 0;
4468 	}
4469 }
4470 
4471 void perf_event_header__init_id(struct perf_event_header *header,
4472 				struct perf_sample_data *data,
4473 				struct perf_event *event)
4474 {
4475 	if (event->attr.sample_id_all)
4476 		__perf_event_header__init_id(header, data, event);
4477 }
4478 
4479 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4480 					   struct perf_sample_data *data)
4481 {
4482 	u64 sample_type = data->type;
4483 
4484 	if (sample_type & PERF_SAMPLE_TID)
4485 		perf_output_put(handle, data->tid_entry);
4486 
4487 	if (sample_type & PERF_SAMPLE_TIME)
4488 		perf_output_put(handle, data->time);
4489 
4490 	if (sample_type & PERF_SAMPLE_ID)
4491 		perf_output_put(handle, data->id);
4492 
4493 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4494 		perf_output_put(handle, data->stream_id);
4495 
4496 	if (sample_type & PERF_SAMPLE_CPU)
4497 		perf_output_put(handle, data->cpu_entry);
4498 
4499 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4500 		perf_output_put(handle, data->id);
4501 }
4502 
4503 void perf_event__output_id_sample(struct perf_event *event,
4504 				  struct perf_output_handle *handle,
4505 				  struct perf_sample_data *sample)
4506 {
4507 	if (event->attr.sample_id_all)
4508 		__perf_event__output_id_sample(handle, sample);
4509 }
4510 
4511 static void perf_output_read_one(struct perf_output_handle *handle,
4512 				 struct perf_event *event,
4513 				 u64 enabled, u64 running)
4514 {
4515 	u64 read_format = event->attr.read_format;
4516 	u64 values[4];
4517 	int n = 0;
4518 
4519 	values[n++] = perf_event_count(event);
4520 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4521 		values[n++] = enabled +
4522 			atomic64_read(&event->child_total_time_enabled);
4523 	}
4524 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4525 		values[n++] = running +
4526 			atomic64_read(&event->child_total_time_running);
4527 	}
4528 	if (read_format & PERF_FORMAT_ID)
4529 		values[n++] = primary_event_id(event);
4530 
4531 	__output_copy(handle, values, n * sizeof(u64));
4532 }
4533 
4534 /*
4535  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4536  */
4537 static void perf_output_read_group(struct perf_output_handle *handle,
4538 			    struct perf_event *event,
4539 			    u64 enabled, u64 running)
4540 {
4541 	struct perf_event *leader = event->group_leader, *sub;
4542 	u64 read_format = event->attr.read_format;
4543 	u64 values[5];
4544 	int n = 0;
4545 
4546 	values[n++] = 1 + leader->nr_siblings;
4547 
4548 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4549 		values[n++] = enabled;
4550 
4551 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4552 		values[n++] = running;
4553 
4554 	if (leader != event)
4555 		leader->pmu->read(leader);
4556 
4557 	values[n++] = perf_event_count(leader);
4558 	if (read_format & PERF_FORMAT_ID)
4559 		values[n++] = primary_event_id(leader);
4560 
4561 	__output_copy(handle, values, n * sizeof(u64));
4562 
4563 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4564 		n = 0;
4565 
4566 		if ((sub != event) &&
4567 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4568 			sub->pmu->read(sub);
4569 
4570 		values[n++] = perf_event_count(sub);
4571 		if (read_format & PERF_FORMAT_ID)
4572 			values[n++] = primary_event_id(sub);
4573 
4574 		__output_copy(handle, values, n * sizeof(u64));
4575 	}
4576 }
4577 
4578 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4579 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4580 
4581 static void perf_output_read(struct perf_output_handle *handle,
4582 			     struct perf_event *event)
4583 {
4584 	u64 enabled = 0, running = 0, now;
4585 	u64 read_format = event->attr.read_format;
4586 
4587 	/*
4588 	 * compute total_time_enabled, total_time_running
4589 	 * based on snapshot values taken when the event
4590 	 * was last scheduled in.
4591 	 *
4592 	 * we cannot simply called update_context_time()
4593 	 * because of locking issue as we are called in
4594 	 * NMI context
4595 	 */
4596 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4597 		calc_timer_values(event, &now, &enabled, &running);
4598 
4599 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4600 		perf_output_read_group(handle, event, enabled, running);
4601 	else
4602 		perf_output_read_one(handle, event, enabled, running);
4603 }
4604 
4605 void perf_output_sample(struct perf_output_handle *handle,
4606 			struct perf_event_header *header,
4607 			struct perf_sample_data *data,
4608 			struct perf_event *event)
4609 {
4610 	u64 sample_type = data->type;
4611 
4612 	perf_output_put(handle, *header);
4613 
4614 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4615 		perf_output_put(handle, data->id);
4616 
4617 	if (sample_type & PERF_SAMPLE_IP)
4618 		perf_output_put(handle, data->ip);
4619 
4620 	if (sample_type & PERF_SAMPLE_TID)
4621 		perf_output_put(handle, data->tid_entry);
4622 
4623 	if (sample_type & PERF_SAMPLE_TIME)
4624 		perf_output_put(handle, data->time);
4625 
4626 	if (sample_type & PERF_SAMPLE_ADDR)
4627 		perf_output_put(handle, data->addr);
4628 
4629 	if (sample_type & PERF_SAMPLE_ID)
4630 		perf_output_put(handle, data->id);
4631 
4632 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4633 		perf_output_put(handle, data->stream_id);
4634 
4635 	if (sample_type & PERF_SAMPLE_CPU)
4636 		perf_output_put(handle, data->cpu_entry);
4637 
4638 	if (sample_type & PERF_SAMPLE_PERIOD)
4639 		perf_output_put(handle, data->period);
4640 
4641 	if (sample_type & PERF_SAMPLE_READ)
4642 		perf_output_read(handle, event);
4643 
4644 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4645 		if (data->callchain) {
4646 			int size = 1;
4647 
4648 			if (data->callchain)
4649 				size += data->callchain->nr;
4650 
4651 			size *= sizeof(u64);
4652 
4653 			__output_copy(handle, data->callchain, size);
4654 		} else {
4655 			u64 nr = 0;
4656 			perf_output_put(handle, nr);
4657 		}
4658 	}
4659 
4660 	if (sample_type & PERF_SAMPLE_RAW) {
4661 		if (data->raw) {
4662 			perf_output_put(handle, data->raw->size);
4663 			__output_copy(handle, data->raw->data,
4664 					   data->raw->size);
4665 		} else {
4666 			struct {
4667 				u32	size;
4668 				u32	data;
4669 			} raw = {
4670 				.size = sizeof(u32),
4671 				.data = 0,
4672 			};
4673 			perf_output_put(handle, raw);
4674 		}
4675 	}
4676 
4677 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4678 		if (data->br_stack) {
4679 			size_t size;
4680 
4681 			size = data->br_stack->nr
4682 			     * sizeof(struct perf_branch_entry);
4683 
4684 			perf_output_put(handle, data->br_stack->nr);
4685 			perf_output_copy(handle, data->br_stack->entries, size);
4686 		} else {
4687 			/*
4688 			 * we always store at least the value of nr
4689 			 */
4690 			u64 nr = 0;
4691 			perf_output_put(handle, nr);
4692 		}
4693 	}
4694 
4695 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4696 		u64 abi = data->regs_user.abi;
4697 
4698 		/*
4699 		 * If there are no regs to dump, notice it through
4700 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4701 		 */
4702 		perf_output_put(handle, abi);
4703 
4704 		if (abi) {
4705 			u64 mask = event->attr.sample_regs_user;
4706 			perf_output_sample_regs(handle,
4707 						data->regs_user.regs,
4708 						mask);
4709 		}
4710 	}
4711 
4712 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4713 		perf_output_sample_ustack(handle,
4714 					  data->stack_user_size,
4715 					  data->regs_user.regs);
4716 	}
4717 
4718 	if (sample_type & PERF_SAMPLE_WEIGHT)
4719 		perf_output_put(handle, data->weight);
4720 
4721 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4722 		perf_output_put(handle, data->data_src.val);
4723 
4724 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4725 		perf_output_put(handle, data->txn);
4726 
4727 	if (!event->attr.watermark) {
4728 		int wakeup_events = event->attr.wakeup_events;
4729 
4730 		if (wakeup_events) {
4731 			struct ring_buffer *rb = handle->rb;
4732 			int events = local_inc_return(&rb->events);
4733 
4734 			if (events >= wakeup_events) {
4735 				local_sub(wakeup_events, &rb->events);
4736 				local_inc(&rb->wakeup);
4737 			}
4738 		}
4739 	}
4740 }
4741 
4742 void perf_prepare_sample(struct perf_event_header *header,
4743 			 struct perf_sample_data *data,
4744 			 struct perf_event *event,
4745 			 struct pt_regs *regs)
4746 {
4747 	u64 sample_type = event->attr.sample_type;
4748 
4749 	header->type = PERF_RECORD_SAMPLE;
4750 	header->size = sizeof(*header) + event->header_size;
4751 
4752 	header->misc = 0;
4753 	header->misc |= perf_misc_flags(regs);
4754 
4755 	__perf_event_header__init_id(header, data, event);
4756 
4757 	if (sample_type & PERF_SAMPLE_IP)
4758 		data->ip = perf_instruction_pointer(regs);
4759 
4760 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4761 		int size = 1;
4762 
4763 		data->callchain = perf_callchain(event, regs);
4764 
4765 		if (data->callchain)
4766 			size += data->callchain->nr;
4767 
4768 		header->size += size * sizeof(u64);
4769 	}
4770 
4771 	if (sample_type & PERF_SAMPLE_RAW) {
4772 		int size = sizeof(u32);
4773 
4774 		if (data->raw)
4775 			size += data->raw->size;
4776 		else
4777 			size += sizeof(u32);
4778 
4779 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4780 		header->size += size;
4781 	}
4782 
4783 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4784 		int size = sizeof(u64); /* nr */
4785 		if (data->br_stack) {
4786 			size += data->br_stack->nr
4787 			      * sizeof(struct perf_branch_entry);
4788 		}
4789 		header->size += size;
4790 	}
4791 
4792 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4793 		/* regs dump ABI info */
4794 		int size = sizeof(u64);
4795 
4796 		perf_sample_regs_user(&data->regs_user, regs);
4797 
4798 		if (data->regs_user.regs) {
4799 			u64 mask = event->attr.sample_regs_user;
4800 			size += hweight64(mask) * sizeof(u64);
4801 		}
4802 
4803 		header->size += size;
4804 	}
4805 
4806 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4807 		/*
4808 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4809 		 * processed as the last one or have additional check added
4810 		 * in case new sample type is added, because we could eat
4811 		 * up the rest of the sample size.
4812 		 */
4813 		struct perf_regs_user *uregs = &data->regs_user;
4814 		u16 stack_size = event->attr.sample_stack_user;
4815 		u16 size = sizeof(u64);
4816 
4817 		if (!uregs->abi)
4818 			perf_sample_regs_user(uregs, regs);
4819 
4820 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4821 						     uregs->regs);
4822 
4823 		/*
4824 		 * If there is something to dump, add space for the dump
4825 		 * itself and for the field that tells the dynamic size,
4826 		 * which is how many have been actually dumped.
4827 		 */
4828 		if (stack_size)
4829 			size += sizeof(u64) + stack_size;
4830 
4831 		data->stack_user_size = stack_size;
4832 		header->size += size;
4833 	}
4834 }
4835 
4836 static void perf_event_output(struct perf_event *event,
4837 				struct perf_sample_data *data,
4838 				struct pt_regs *regs)
4839 {
4840 	struct perf_output_handle handle;
4841 	struct perf_event_header header;
4842 
4843 	/* protect the callchain buffers */
4844 	rcu_read_lock();
4845 
4846 	perf_prepare_sample(&header, data, event, regs);
4847 
4848 	if (perf_output_begin(&handle, event, header.size))
4849 		goto exit;
4850 
4851 	perf_output_sample(&handle, &header, data, event);
4852 
4853 	perf_output_end(&handle);
4854 
4855 exit:
4856 	rcu_read_unlock();
4857 }
4858 
4859 /*
4860  * read event_id
4861  */
4862 
4863 struct perf_read_event {
4864 	struct perf_event_header	header;
4865 
4866 	u32				pid;
4867 	u32				tid;
4868 };
4869 
4870 static void
4871 perf_event_read_event(struct perf_event *event,
4872 			struct task_struct *task)
4873 {
4874 	struct perf_output_handle handle;
4875 	struct perf_sample_data sample;
4876 	struct perf_read_event read_event = {
4877 		.header = {
4878 			.type = PERF_RECORD_READ,
4879 			.misc = 0,
4880 			.size = sizeof(read_event) + event->read_size,
4881 		},
4882 		.pid = perf_event_pid(event, task),
4883 		.tid = perf_event_tid(event, task),
4884 	};
4885 	int ret;
4886 
4887 	perf_event_header__init_id(&read_event.header, &sample, event);
4888 	ret = perf_output_begin(&handle, event, read_event.header.size);
4889 	if (ret)
4890 		return;
4891 
4892 	perf_output_put(&handle, read_event);
4893 	perf_output_read(&handle, event);
4894 	perf_event__output_id_sample(event, &handle, &sample);
4895 
4896 	perf_output_end(&handle);
4897 }
4898 
4899 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4900 
4901 static void
4902 perf_event_aux_ctx(struct perf_event_context *ctx,
4903 		   perf_event_aux_output_cb output,
4904 		   void *data)
4905 {
4906 	struct perf_event *event;
4907 
4908 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4909 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4910 			continue;
4911 		if (!event_filter_match(event))
4912 			continue;
4913 		output(event, data);
4914 	}
4915 }
4916 
4917 static void
4918 perf_event_aux(perf_event_aux_output_cb output, void *data,
4919 	       struct perf_event_context *task_ctx)
4920 {
4921 	struct perf_cpu_context *cpuctx;
4922 	struct perf_event_context *ctx;
4923 	struct pmu *pmu;
4924 	int ctxn;
4925 
4926 	rcu_read_lock();
4927 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4928 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4929 		if (cpuctx->unique_pmu != pmu)
4930 			goto next;
4931 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4932 		if (task_ctx)
4933 			goto next;
4934 		ctxn = pmu->task_ctx_nr;
4935 		if (ctxn < 0)
4936 			goto next;
4937 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4938 		if (ctx)
4939 			perf_event_aux_ctx(ctx, output, data);
4940 next:
4941 		put_cpu_ptr(pmu->pmu_cpu_context);
4942 	}
4943 
4944 	if (task_ctx) {
4945 		preempt_disable();
4946 		perf_event_aux_ctx(task_ctx, output, data);
4947 		preempt_enable();
4948 	}
4949 	rcu_read_unlock();
4950 }
4951 
4952 /*
4953  * task tracking -- fork/exit
4954  *
4955  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4956  */
4957 
4958 struct perf_task_event {
4959 	struct task_struct		*task;
4960 	struct perf_event_context	*task_ctx;
4961 
4962 	struct {
4963 		struct perf_event_header	header;
4964 
4965 		u32				pid;
4966 		u32				ppid;
4967 		u32				tid;
4968 		u32				ptid;
4969 		u64				time;
4970 	} event_id;
4971 };
4972 
4973 static int perf_event_task_match(struct perf_event *event)
4974 {
4975 	return event->attr.comm  || event->attr.mmap ||
4976 	       event->attr.mmap2 || event->attr.mmap_data ||
4977 	       event->attr.task;
4978 }
4979 
4980 static void perf_event_task_output(struct perf_event *event,
4981 				   void *data)
4982 {
4983 	struct perf_task_event *task_event = data;
4984 	struct perf_output_handle handle;
4985 	struct perf_sample_data	sample;
4986 	struct task_struct *task = task_event->task;
4987 	int ret, size = task_event->event_id.header.size;
4988 
4989 	if (!perf_event_task_match(event))
4990 		return;
4991 
4992 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4993 
4994 	ret = perf_output_begin(&handle, event,
4995 				task_event->event_id.header.size);
4996 	if (ret)
4997 		goto out;
4998 
4999 	task_event->event_id.pid = perf_event_pid(event, task);
5000 	task_event->event_id.ppid = perf_event_pid(event, current);
5001 
5002 	task_event->event_id.tid = perf_event_tid(event, task);
5003 	task_event->event_id.ptid = perf_event_tid(event, current);
5004 
5005 	perf_output_put(&handle, task_event->event_id);
5006 
5007 	perf_event__output_id_sample(event, &handle, &sample);
5008 
5009 	perf_output_end(&handle);
5010 out:
5011 	task_event->event_id.header.size = size;
5012 }
5013 
5014 static void perf_event_task(struct task_struct *task,
5015 			      struct perf_event_context *task_ctx,
5016 			      int new)
5017 {
5018 	struct perf_task_event task_event;
5019 
5020 	if (!atomic_read(&nr_comm_events) &&
5021 	    !atomic_read(&nr_mmap_events) &&
5022 	    !atomic_read(&nr_task_events))
5023 		return;
5024 
5025 	task_event = (struct perf_task_event){
5026 		.task	  = task,
5027 		.task_ctx = task_ctx,
5028 		.event_id    = {
5029 			.header = {
5030 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5031 				.misc = 0,
5032 				.size = sizeof(task_event.event_id),
5033 			},
5034 			/* .pid  */
5035 			/* .ppid */
5036 			/* .tid  */
5037 			/* .ptid */
5038 			.time = perf_clock(),
5039 		},
5040 	};
5041 
5042 	perf_event_aux(perf_event_task_output,
5043 		       &task_event,
5044 		       task_ctx);
5045 }
5046 
5047 void perf_event_fork(struct task_struct *task)
5048 {
5049 	perf_event_task(task, NULL, 1);
5050 }
5051 
5052 /*
5053  * comm tracking
5054  */
5055 
5056 struct perf_comm_event {
5057 	struct task_struct	*task;
5058 	char			*comm;
5059 	int			comm_size;
5060 
5061 	struct {
5062 		struct perf_event_header	header;
5063 
5064 		u32				pid;
5065 		u32				tid;
5066 	} event_id;
5067 };
5068 
5069 static int perf_event_comm_match(struct perf_event *event)
5070 {
5071 	return event->attr.comm;
5072 }
5073 
5074 static void perf_event_comm_output(struct perf_event *event,
5075 				   void *data)
5076 {
5077 	struct perf_comm_event *comm_event = data;
5078 	struct perf_output_handle handle;
5079 	struct perf_sample_data sample;
5080 	int size = comm_event->event_id.header.size;
5081 	int ret;
5082 
5083 	if (!perf_event_comm_match(event))
5084 		return;
5085 
5086 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5087 	ret = perf_output_begin(&handle, event,
5088 				comm_event->event_id.header.size);
5089 
5090 	if (ret)
5091 		goto out;
5092 
5093 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5094 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5095 
5096 	perf_output_put(&handle, comm_event->event_id);
5097 	__output_copy(&handle, comm_event->comm,
5098 				   comm_event->comm_size);
5099 
5100 	perf_event__output_id_sample(event, &handle, &sample);
5101 
5102 	perf_output_end(&handle);
5103 out:
5104 	comm_event->event_id.header.size = size;
5105 }
5106 
5107 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5108 {
5109 	char comm[TASK_COMM_LEN];
5110 	unsigned int size;
5111 
5112 	memset(comm, 0, sizeof(comm));
5113 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5114 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5115 
5116 	comm_event->comm = comm;
5117 	comm_event->comm_size = size;
5118 
5119 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5120 
5121 	perf_event_aux(perf_event_comm_output,
5122 		       comm_event,
5123 		       NULL);
5124 }
5125 
5126 void perf_event_comm(struct task_struct *task, bool exec)
5127 {
5128 	struct perf_comm_event comm_event;
5129 
5130 	if (!atomic_read(&nr_comm_events))
5131 		return;
5132 
5133 	comm_event = (struct perf_comm_event){
5134 		.task	= task,
5135 		/* .comm      */
5136 		/* .comm_size */
5137 		.event_id  = {
5138 			.header = {
5139 				.type = PERF_RECORD_COMM,
5140 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5141 				/* .size */
5142 			},
5143 			/* .pid */
5144 			/* .tid */
5145 		},
5146 	};
5147 
5148 	perf_event_comm_event(&comm_event);
5149 }
5150 
5151 /*
5152  * mmap tracking
5153  */
5154 
5155 struct perf_mmap_event {
5156 	struct vm_area_struct	*vma;
5157 
5158 	const char		*file_name;
5159 	int			file_size;
5160 	int			maj, min;
5161 	u64			ino;
5162 	u64			ino_generation;
5163 	u32			prot, flags;
5164 
5165 	struct {
5166 		struct perf_event_header	header;
5167 
5168 		u32				pid;
5169 		u32				tid;
5170 		u64				start;
5171 		u64				len;
5172 		u64				pgoff;
5173 	} event_id;
5174 };
5175 
5176 static int perf_event_mmap_match(struct perf_event *event,
5177 				 void *data)
5178 {
5179 	struct perf_mmap_event *mmap_event = data;
5180 	struct vm_area_struct *vma = mmap_event->vma;
5181 	int executable = vma->vm_flags & VM_EXEC;
5182 
5183 	return (!executable && event->attr.mmap_data) ||
5184 	       (executable && (event->attr.mmap || event->attr.mmap2));
5185 }
5186 
5187 static void perf_event_mmap_output(struct perf_event *event,
5188 				   void *data)
5189 {
5190 	struct perf_mmap_event *mmap_event = data;
5191 	struct perf_output_handle handle;
5192 	struct perf_sample_data sample;
5193 	int size = mmap_event->event_id.header.size;
5194 	int ret;
5195 
5196 	if (!perf_event_mmap_match(event, data))
5197 		return;
5198 
5199 	if (event->attr.mmap2) {
5200 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5201 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5202 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5203 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5204 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5205 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5206 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5207 	}
5208 
5209 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5210 	ret = perf_output_begin(&handle, event,
5211 				mmap_event->event_id.header.size);
5212 	if (ret)
5213 		goto out;
5214 
5215 	mmap_event->event_id.pid = perf_event_pid(event, current);
5216 	mmap_event->event_id.tid = perf_event_tid(event, current);
5217 
5218 	perf_output_put(&handle, mmap_event->event_id);
5219 
5220 	if (event->attr.mmap2) {
5221 		perf_output_put(&handle, mmap_event->maj);
5222 		perf_output_put(&handle, mmap_event->min);
5223 		perf_output_put(&handle, mmap_event->ino);
5224 		perf_output_put(&handle, mmap_event->ino_generation);
5225 		perf_output_put(&handle, mmap_event->prot);
5226 		perf_output_put(&handle, mmap_event->flags);
5227 	}
5228 
5229 	__output_copy(&handle, mmap_event->file_name,
5230 				   mmap_event->file_size);
5231 
5232 	perf_event__output_id_sample(event, &handle, &sample);
5233 
5234 	perf_output_end(&handle);
5235 out:
5236 	mmap_event->event_id.header.size = size;
5237 }
5238 
5239 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5240 {
5241 	struct vm_area_struct *vma = mmap_event->vma;
5242 	struct file *file = vma->vm_file;
5243 	int maj = 0, min = 0;
5244 	u64 ino = 0, gen = 0;
5245 	u32 prot = 0, flags = 0;
5246 	unsigned int size;
5247 	char tmp[16];
5248 	char *buf = NULL;
5249 	char *name;
5250 
5251 	if (file) {
5252 		struct inode *inode;
5253 		dev_t dev;
5254 
5255 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5256 		if (!buf) {
5257 			name = "//enomem";
5258 			goto cpy_name;
5259 		}
5260 		/*
5261 		 * d_path() works from the end of the rb backwards, so we
5262 		 * need to add enough zero bytes after the string to handle
5263 		 * the 64bit alignment we do later.
5264 		 */
5265 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5266 		if (IS_ERR(name)) {
5267 			name = "//toolong";
5268 			goto cpy_name;
5269 		}
5270 		inode = file_inode(vma->vm_file);
5271 		dev = inode->i_sb->s_dev;
5272 		ino = inode->i_ino;
5273 		gen = inode->i_generation;
5274 		maj = MAJOR(dev);
5275 		min = MINOR(dev);
5276 
5277 		if (vma->vm_flags & VM_READ)
5278 			prot |= PROT_READ;
5279 		if (vma->vm_flags & VM_WRITE)
5280 			prot |= PROT_WRITE;
5281 		if (vma->vm_flags & VM_EXEC)
5282 			prot |= PROT_EXEC;
5283 
5284 		if (vma->vm_flags & VM_MAYSHARE)
5285 			flags = MAP_SHARED;
5286 		else
5287 			flags = MAP_PRIVATE;
5288 
5289 		if (vma->vm_flags & VM_DENYWRITE)
5290 			flags |= MAP_DENYWRITE;
5291 		if (vma->vm_flags & VM_MAYEXEC)
5292 			flags |= MAP_EXECUTABLE;
5293 		if (vma->vm_flags & VM_LOCKED)
5294 			flags |= MAP_LOCKED;
5295 		if (vma->vm_flags & VM_HUGETLB)
5296 			flags |= MAP_HUGETLB;
5297 
5298 		goto got_name;
5299 	} else {
5300 		if (vma->vm_ops && vma->vm_ops->name) {
5301 			name = (char *) vma->vm_ops->name(vma);
5302 			if (name)
5303 				goto cpy_name;
5304 		}
5305 
5306 		name = (char *)arch_vma_name(vma);
5307 		if (name)
5308 			goto cpy_name;
5309 
5310 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5311 				vma->vm_end >= vma->vm_mm->brk) {
5312 			name = "[heap]";
5313 			goto cpy_name;
5314 		}
5315 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5316 				vma->vm_end >= vma->vm_mm->start_stack) {
5317 			name = "[stack]";
5318 			goto cpy_name;
5319 		}
5320 
5321 		name = "//anon";
5322 		goto cpy_name;
5323 	}
5324 
5325 cpy_name:
5326 	strlcpy(tmp, name, sizeof(tmp));
5327 	name = tmp;
5328 got_name:
5329 	/*
5330 	 * Since our buffer works in 8 byte units we need to align our string
5331 	 * size to a multiple of 8. However, we must guarantee the tail end is
5332 	 * zero'd out to avoid leaking random bits to userspace.
5333 	 */
5334 	size = strlen(name)+1;
5335 	while (!IS_ALIGNED(size, sizeof(u64)))
5336 		name[size++] = '\0';
5337 
5338 	mmap_event->file_name = name;
5339 	mmap_event->file_size = size;
5340 	mmap_event->maj = maj;
5341 	mmap_event->min = min;
5342 	mmap_event->ino = ino;
5343 	mmap_event->ino_generation = gen;
5344 	mmap_event->prot = prot;
5345 	mmap_event->flags = flags;
5346 
5347 	if (!(vma->vm_flags & VM_EXEC))
5348 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5349 
5350 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5351 
5352 	perf_event_aux(perf_event_mmap_output,
5353 		       mmap_event,
5354 		       NULL);
5355 
5356 	kfree(buf);
5357 }
5358 
5359 void perf_event_mmap(struct vm_area_struct *vma)
5360 {
5361 	struct perf_mmap_event mmap_event;
5362 
5363 	if (!atomic_read(&nr_mmap_events))
5364 		return;
5365 
5366 	mmap_event = (struct perf_mmap_event){
5367 		.vma	= vma,
5368 		/* .file_name */
5369 		/* .file_size */
5370 		.event_id  = {
5371 			.header = {
5372 				.type = PERF_RECORD_MMAP,
5373 				.misc = PERF_RECORD_MISC_USER,
5374 				/* .size */
5375 			},
5376 			/* .pid */
5377 			/* .tid */
5378 			.start  = vma->vm_start,
5379 			.len    = vma->vm_end - vma->vm_start,
5380 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5381 		},
5382 		/* .maj (attr_mmap2 only) */
5383 		/* .min (attr_mmap2 only) */
5384 		/* .ino (attr_mmap2 only) */
5385 		/* .ino_generation (attr_mmap2 only) */
5386 		/* .prot (attr_mmap2 only) */
5387 		/* .flags (attr_mmap2 only) */
5388 	};
5389 
5390 	perf_event_mmap_event(&mmap_event);
5391 }
5392 
5393 /*
5394  * IRQ throttle logging
5395  */
5396 
5397 static void perf_log_throttle(struct perf_event *event, int enable)
5398 {
5399 	struct perf_output_handle handle;
5400 	struct perf_sample_data sample;
5401 	int ret;
5402 
5403 	struct {
5404 		struct perf_event_header	header;
5405 		u64				time;
5406 		u64				id;
5407 		u64				stream_id;
5408 	} throttle_event = {
5409 		.header = {
5410 			.type = PERF_RECORD_THROTTLE,
5411 			.misc = 0,
5412 			.size = sizeof(throttle_event),
5413 		},
5414 		.time		= perf_clock(),
5415 		.id		= primary_event_id(event),
5416 		.stream_id	= event->id,
5417 	};
5418 
5419 	if (enable)
5420 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5421 
5422 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5423 
5424 	ret = perf_output_begin(&handle, event,
5425 				throttle_event.header.size);
5426 	if (ret)
5427 		return;
5428 
5429 	perf_output_put(&handle, throttle_event);
5430 	perf_event__output_id_sample(event, &handle, &sample);
5431 	perf_output_end(&handle);
5432 }
5433 
5434 /*
5435  * Generic event overflow handling, sampling.
5436  */
5437 
5438 static int __perf_event_overflow(struct perf_event *event,
5439 				   int throttle, struct perf_sample_data *data,
5440 				   struct pt_regs *regs)
5441 {
5442 	int events = atomic_read(&event->event_limit);
5443 	struct hw_perf_event *hwc = &event->hw;
5444 	u64 seq;
5445 	int ret = 0;
5446 
5447 	/*
5448 	 * Non-sampling counters might still use the PMI to fold short
5449 	 * hardware counters, ignore those.
5450 	 */
5451 	if (unlikely(!is_sampling_event(event)))
5452 		return 0;
5453 
5454 	seq = __this_cpu_read(perf_throttled_seq);
5455 	if (seq != hwc->interrupts_seq) {
5456 		hwc->interrupts_seq = seq;
5457 		hwc->interrupts = 1;
5458 	} else {
5459 		hwc->interrupts++;
5460 		if (unlikely(throttle
5461 			     && hwc->interrupts >= max_samples_per_tick)) {
5462 			__this_cpu_inc(perf_throttled_count);
5463 			hwc->interrupts = MAX_INTERRUPTS;
5464 			perf_log_throttle(event, 0);
5465 			tick_nohz_full_kick();
5466 			ret = 1;
5467 		}
5468 	}
5469 
5470 	if (event->attr.freq) {
5471 		u64 now = perf_clock();
5472 		s64 delta = now - hwc->freq_time_stamp;
5473 
5474 		hwc->freq_time_stamp = now;
5475 
5476 		if (delta > 0 && delta < 2*TICK_NSEC)
5477 			perf_adjust_period(event, delta, hwc->last_period, true);
5478 	}
5479 
5480 	/*
5481 	 * XXX event_limit might not quite work as expected on inherited
5482 	 * events
5483 	 */
5484 
5485 	event->pending_kill = POLL_IN;
5486 	if (events && atomic_dec_and_test(&event->event_limit)) {
5487 		ret = 1;
5488 		event->pending_kill = POLL_HUP;
5489 		event->pending_disable = 1;
5490 		irq_work_queue(&event->pending);
5491 	}
5492 
5493 	if (event->overflow_handler)
5494 		event->overflow_handler(event, data, regs);
5495 	else
5496 		perf_event_output(event, data, regs);
5497 
5498 	if (event->fasync && event->pending_kill) {
5499 		event->pending_wakeup = 1;
5500 		irq_work_queue(&event->pending);
5501 	}
5502 
5503 	return ret;
5504 }
5505 
5506 int perf_event_overflow(struct perf_event *event,
5507 			  struct perf_sample_data *data,
5508 			  struct pt_regs *regs)
5509 {
5510 	return __perf_event_overflow(event, 1, data, regs);
5511 }
5512 
5513 /*
5514  * Generic software event infrastructure
5515  */
5516 
5517 struct swevent_htable {
5518 	struct swevent_hlist		*swevent_hlist;
5519 	struct mutex			hlist_mutex;
5520 	int				hlist_refcount;
5521 
5522 	/* Recursion avoidance in each contexts */
5523 	int				recursion[PERF_NR_CONTEXTS];
5524 
5525 	/* Keeps track of cpu being initialized/exited */
5526 	bool				online;
5527 };
5528 
5529 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5530 
5531 /*
5532  * We directly increment event->count and keep a second value in
5533  * event->hw.period_left to count intervals. This period event
5534  * is kept in the range [-sample_period, 0] so that we can use the
5535  * sign as trigger.
5536  */
5537 
5538 u64 perf_swevent_set_period(struct perf_event *event)
5539 {
5540 	struct hw_perf_event *hwc = &event->hw;
5541 	u64 period = hwc->last_period;
5542 	u64 nr, offset;
5543 	s64 old, val;
5544 
5545 	hwc->last_period = hwc->sample_period;
5546 
5547 again:
5548 	old = val = local64_read(&hwc->period_left);
5549 	if (val < 0)
5550 		return 0;
5551 
5552 	nr = div64_u64(period + val, period);
5553 	offset = nr * period;
5554 	val -= offset;
5555 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5556 		goto again;
5557 
5558 	return nr;
5559 }
5560 
5561 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5562 				    struct perf_sample_data *data,
5563 				    struct pt_regs *regs)
5564 {
5565 	struct hw_perf_event *hwc = &event->hw;
5566 	int throttle = 0;
5567 
5568 	if (!overflow)
5569 		overflow = perf_swevent_set_period(event);
5570 
5571 	if (hwc->interrupts == MAX_INTERRUPTS)
5572 		return;
5573 
5574 	for (; overflow; overflow--) {
5575 		if (__perf_event_overflow(event, throttle,
5576 					    data, regs)) {
5577 			/*
5578 			 * We inhibit the overflow from happening when
5579 			 * hwc->interrupts == MAX_INTERRUPTS.
5580 			 */
5581 			break;
5582 		}
5583 		throttle = 1;
5584 	}
5585 }
5586 
5587 static void perf_swevent_event(struct perf_event *event, u64 nr,
5588 			       struct perf_sample_data *data,
5589 			       struct pt_regs *regs)
5590 {
5591 	struct hw_perf_event *hwc = &event->hw;
5592 
5593 	local64_add(nr, &event->count);
5594 
5595 	if (!regs)
5596 		return;
5597 
5598 	if (!is_sampling_event(event))
5599 		return;
5600 
5601 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5602 		data->period = nr;
5603 		return perf_swevent_overflow(event, 1, data, regs);
5604 	} else
5605 		data->period = event->hw.last_period;
5606 
5607 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5608 		return perf_swevent_overflow(event, 1, data, regs);
5609 
5610 	if (local64_add_negative(nr, &hwc->period_left))
5611 		return;
5612 
5613 	perf_swevent_overflow(event, 0, data, regs);
5614 }
5615 
5616 static int perf_exclude_event(struct perf_event *event,
5617 			      struct pt_regs *regs)
5618 {
5619 	if (event->hw.state & PERF_HES_STOPPED)
5620 		return 1;
5621 
5622 	if (regs) {
5623 		if (event->attr.exclude_user && user_mode(regs))
5624 			return 1;
5625 
5626 		if (event->attr.exclude_kernel && !user_mode(regs))
5627 			return 1;
5628 	}
5629 
5630 	return 0;
5631 }
5632 
5633 static int perf_swevent_match(struct perf_event *event,
5634 				enum perf_type_id type,
5635 				u32 event_id,
5636 				struct perf_sample_data *data,
5637 				struct pt_regs *regs)
5638 {
5639 	if (event->attr.type != type)
5640 		return 0;
5641 
5642 	if (event->attr.config != event_id)
5643 		return 0;
5644 
5645 	if (perf_exclude_event(event, regs))
5646 		return 0;
5647 
5648 	return 1;
5649 }
5650 
5651 static inline u64 swevent_hash(u64 type, u32 event_id)
5652 {
5653 	u64 val = event_id | (type << 32);
5654 
5655 	return hash_64(val, SWEVENT_HLIST_BITS);
5656 }
5657 
5658 static inline struct hlist_head *
5659 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5660 {
5661 	u64 hash = swevent_hash(type, event_id);
5662 
5663 	return &hlist->heads[hash];
5664 }
5665 
5666 /* For the read side: events when they trigger */
5667 static inline struct hlist_head *
5668 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5669 {
5670 	struct swevent_hlist *hlist;
5671 
5672 	hlist = rcu_dereference(swhash->swevent_hlist);
5673 	if (!hlist)
5674 		return NULL;
5675 
5676 	return __find_swevent_head(hlist, type, event_id);
5677 }
5678 
5679 /* For the event head insertion and removal in the hlist */
5680 static inline struct hlist_head *
5681 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5682 {
5683 	struct swevent_hlist *hlist;
5684 	u32 event_id = event->attr.config;
5685 	u64 type = event->attr.type;
5686 
5687 	/*
5688 	 * Event scheduling is always serialized against hlist allocation
5689 	 * and release. Which makes the protected version suitable here.
5690 	 * The context lock guarantees that.
5691 	 */
5692 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5693 					  lockdep_is_held(&event->ctx->lock));
5694 	if (!hlist)
5695 		return NULL;
5696 
5697 	return __find_swevent_head(hlist, type, event_id);
5698 }
5699 
5700 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5701 				    u64 nr,
5702 				    struct perf_sample_data *data,
5703 				    struct pt_regs *regs)
5704 {
5705 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5706 	struct perf_event *event;
5707 	struct hlist_head *head;
5708 
5709 	rcu_read_lock();
5710 	head = find_swevent_head_rcu(swhash, type, event_id);
5711 	if (!head)
5712 		goto end;
5713 
5714 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5715 		if (perf_swevent_match(event, type, event_id, data, regs))
5716 			perf_swevent_event(event, nr, data, regs);
5717 	}
5718 end:
5719 	rcu_read_unlock();
5720 }
5721 
5722 int perf_swevent_get_recursion_context(void)
5723 {
5724 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5725 
5726 	return get_recursion_context(swhash->recursion);
5727 }
5728 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5729 
5730 inline void perf_swevent_put_recursion_context(int rctx)
5731 {
5732 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5733 
5734 	put_recursion_context(swhash->recursion, rctx);
5735 }
5736 
5737 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5738 {
5739 	struct perf_sample_data data;
5740 	int rctx;
5741 
5742 	preempt_disable_notrace();
5743 	rctx = perf_swevent_get_recursion_context();
5744 	if (rctx < 0)
5745 		return;
5746 
5747 	perf_sample_data_init(&data, addr, 0);
5748 
5749 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5750 
5751 	perf_swevent_put_recursion_context(rctx);
5752 	preempt_enable_notrace();
5753 }
5754 
5755 static void perf_swevent_read(struct perf_event *event)
5756 {
5757 }
5758 
5759 static int perf_swevent_add(struct perf_event *event, int flags)
5760 {
5761 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5762 	struct hw_perf_event *hwc = &event->hw;
5763 	struct hlist_head *head;
5764 
5765 	if (is_sampling_event(event)) {
5766 		hwc->last_period = hwc->sample_period;
5767 		perf_swevent_set_period(event);
5768 	}
5769 
5770 	hwc->state = !(flags & PERF_EF_START);
5771 
5772 	head = find_swevent_head(swhash, event);
5773 	if (!head) {
5774 		/*
5775 		 * We can race with cpu hotplug code. Do not
5776 		 * WARN if the cpu just got unplugged.
5777 		 */
5778 		WARN_ON_ONCE(swhash->online);
5779 		return -EINVAL;
5780 	}
5781 
5782 	hlist_add_head_rcu(&event->hlist_entry, head);
5783 
5784 	return 0;
5785 }
5786 
5787 static void perf_swevent_del(struct perf_event *event, int flags)
5788 {
5789 	hlist_del_rcu(&event->hlist_entry);
5790 }
5791 
5792 static void perf_swevent_start(struct perf_event *event, int flags)
5793 {
5794 	event->hw.state = 0;
5795 }
5796 
5797 static void perf_swevent_stop(struct perf_event *event, int flags)
5798 {
5799 	event->hw.state = PERF_HES_STOPPED;
5800 }
5801 
5802 /* Deref the hlist from the update side */
5803 static inline struct swevent_hlist *
5804 swevent_hlist_deref(struct swevent_htable *swhash)
5805 {
5806 	return rcu_dereference_protected(swhash->swevent_hlist,
5807 					 lockdep_is_held(&swhash->hlist_mutex));
5808 }
5809 
5810 static void swevent_hlist_release(struct swevent_htable *swhash)
5811 {
5812 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5813 
5814 	if (!hlist)
5815 		return;
5816 
5817 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5818 	kfree_rcu(hlist, rcu_head);
5819 }
5820 
5821 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5822 {
5823 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5824 
5825 	mutex_lock(&swhash->hlist_mutex);
5826 
5827 	if (!--swhash->hlist_refcount)
5828 		swevent_hlist_release(swhash);
5829 
5830 	mutex_unlock(&swhash->hlist_mutex);
5831 }
5832 
5833 static void swevent_hlist_put(struct perf_event *event)
5834 {
5835 	int cpu;
5836 
5837 	for_each_possible_cpu(cpu)
5838 		swevent_hlist_put_cpu(event, cpu);
5839 }
5840 
5841 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5842 {
5843 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5844 	int err = 0;
5845 
5846 	mutex_lock(&swhash->hlist_mutex);
5847 
5848 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5849 		struct swevent_hlist *hlist;
5850 
5851 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5852 		if (!hlist) {
5853 			err = -ENOMEM;
5854 			goto exit;
5855 		}
5856 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5857 	}
5858 	swhash->hlist_refcount++;
5859 exit:
5860 	mutex_unlock(&swhash->hlist_mutex);
5861 
5862 	return err;
5863 }
5864 
5865 static int swevent_hlist_get(struct perf_event *event)
5866 {
5867 	int err;
5868 	int cpu, failed_cpu;
5869 
5870 	get_online_cpus();
5871 	for_each_possible_cpu(cpu) {
5872 		err = swevent_hlist_get_cpu(event, cpu);
5873 		if (err) {
5874 			failed_cpu = cpu;
5875 			goto fail;
5876 		}
5877 	}
5878 	put_online_cpus();
5879 
5880 	return 0;
5881 fail:
5882 	for_each_possible_cpu(cpu) {
5883 		if (cpu == failed_cpu)
5884 			break;
5885 		swevent_hlist_put_cpu(event, cpu);
5886 	}
5887 
5888 	put_online_cpus();
5889 	return err;
5890 }
5891 
5892 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5893 
5894 static void sw_perf_event_destroy(struct perf_event *event)
5895 {
5896 	u64 event_id = event->attr.config;
5897 
5898 	WARN_ON(event->parent);
5899 
5900 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5901 	swevent_hlist_put(event);
5902 }
5903 
5904 static int perf_swevent_init(struct perf_event *event)
5905 {
5906 	u64 event_id = event->attr.config;
5907 
5908 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5909 		return -ENOENT;
5910 
5911 	/*
5912 	 * no branch sampling for software events
5913 	 */
5914 	if (has_branch_stack(event))
5915 		return -EOPNOTSUPP;
5916 
5917 	switch (event_id) {
5918 	case PERF_COUNT_SW_CPU_CLOCK:
5919 	case PERF_COUNT_SW_TASK_CLOCK:
5920 		return -ENOENT;
5921 
5922 	default:
5923 		break;
5924 	}
5925 
5926 	if (event_id >= PERF_COUNT_SW_MAX)
5927 		return -ENOENT;
5928 
5929 	if (!event->parent) {
5930 		int err;
5931 
5932 		err = swevent_hlist_get(event);
5933 		if (err)
5934 			return err;
5935 
5936 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5937 		event->destroy = sw_perf_event_destroy;
5938 	}
5939 
5940 	return 0;
5941 }
5942 
5943 static int perf_swevent_event_idx(struct perf_event *event)
5944 {
5945 	return 0;
5946 }
5947 
5948 static struct pmu perf_swevent = {
5949 	.task_ctx_nr	= perf_sw_context,
5950 
5951 	.event_init	= perf_swevent_init,
5952 	.add		= perf_swevent_add,
5953 	.del		= perf_swevent_del,
5954 	.start		= perf_swevent_start,
5955 	.stop		= perf_swevent_stop,
5956 	.read		= perf_swevent_read,
5957 
5958 	.event_idx	= perf_swevent_event_idx,
5959 };
5960 
5961 #ifdef CONFIG_EVENT_TRACING
5962 
5963 static int perf_tp_filter_match(struct perf_event *event,
5964 				struct perf_sample_data *data)
5965 {
5966 	void *record = data->raw->data;
5967 
5968 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5969 		return 1;
5970 	return 0;
5971 }
5972 
5973 static int perf_tp_event_match(struct perf_event *event,
5974 				struct perf_sample_data *data,
5975 				struct pt_regs *regs)
5976 {
5977 	if (event->hw.state & PERF_HES_STOPPED)
5978 		return 0;
5979 	/*
5980 	 * All tracepoints are from kernel-space.
5981 	 */
5982 	if (event->attr.exclude_kernel)
5983 		return 0;
5984 
5985 	if (!perf_tp_filter_match(event, data))
5986 		return 0;
5987 
5988 	return 1;
5989 }
5990 
5991 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5992 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5993 		   struct task_struct *task)
5994 {
5995 	struct perf_sample_data data;
5996 	struct perf_event *event;
5997 
5998 	struct perf_raw_record raw = {
5999 		.size = entry_size,
6000 		.data = record,
6001 	};
6002 
6003 	perf_sample_data_init(&data, addr, 0);
6004 	data.raw = &raw;
6005 
6006 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6007 		if (perf_tp_event_match(event, &data, regs))
6008 			perf_swevent_event(event, count, &data, regs);
6009 	}
6010 
6011 	/*
6012 	 * If we got specified a target task, also iterate its context and
6013 	 * deliver this event there too.
6014 	 */
6015 	if (task && task != current) {
6016 		struct perf_event_context *ctx;
6017 		struct trace_entry *entry = record;
6018 
6019 		rcu_read_lock();
6020 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6021 		if (!ctx)
6022 			goto unlock;
6023 
6024 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6025 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6026 				continue;
6027 			if (event->attr.config != entry->type)
6028 				continue;
6029 			if (perf_tp_event_match(event, &data, regs))
6030 				perf_swevent_event(event, count, &data, regs);
6031 		}
6032 unlock:
6033 		rcu_read_unlock();
6034 	}
6035 
6036 	perf_swevent_put_recursion_context(rctx);
6037 }
6038 EXPORT_SYMBOL_GPL(perf_tp_event);
6039 
6040 static void tp_perf_event_destroy(struct perf_event *event)
6041 {
6042 	perf_trace_destroy(event);
6043 }
6044 
6045 static int perf_tp_event_init(struct perf_event *event)
6046 {
6047 	int err;
6048 
6049 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6050 		return -ENOENT;
6051 
6052 	/*
6053 	 * no branch sampling for tracepoint events
6054 	 */
6055 	if (has_branch_stack(event))
6056 		return -EOPNOTSUPP;
6057 
6058 	err = perf_trace_init(event);
6059 	if (err)
6060 		return err;
6061 
6062 	event->destroy = tp_perf_event_destroy;
6063 
6064 	return 0;
6065 }
6066 
6067 static struct pmu perf_tracepoint = {
6068 	.task_ctx_nr	= perf_sw_context,
6069 
6070 	.event_init	= perf_tp_event_init,
6071 	.add		= perf_trace_add,
6072 	.del		= perf_trace_del,
6073 	.start		= perf_swevent_start,
6074 	.stop		= perf_swevent_stop,
6075 	.read		= perf_swevent_read,
6076 
6077 	.event_idx	= perf_swevent_event_idx,
6078 };
6079 
6080 static inline void perf_tp_register(void)
6081 {
6082 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6083 }
6084 
6085 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6086 {
6087 	char *filter_str;
6088 	int ret;
6089 
6090 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6091 		return -EINVAL;
6092 
6093 	filter_str = strndup_user(arg, PAGE_SIZE);
6094 	if (IS_ERR(filter_str))
6095 		return PTR_ERR(filter_str);
6096 
6097 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6098 
6099 	kfree(filter_str);
6100 	return ret;
6101 }
6102 
6103 static void perf_event_free_filter(struct perf_event *event)
6104 {
6105 	ftrace_profile_free_filter(event);
6106 }
6107 
6108 #else
6109 
6110 static inline void perf_tp_register(void)
6111 {
6112 }
6113 
6114 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6115 {
6116 	return -ENOENT;
6117 }
6118 
6119 static void perf_event_free_filter(struct perf_event *event)
6120 {
6121 }
6122 
6123 #endif /* CONFIG_EVENT_TRACING */
6124 
6125 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6126 void perf_bp_event(struct perf_event *bp, void *data)
6127 {
6128 	struct perf_sample_data sample;
6129 	struct pt_regs *regs = data;
6130 
6131 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6132 
6133 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6134 		perf_swevent_event(bp, 1, &sample, regs);
6135 }
6136 #endif
6137 
6138 /*
6139  * hrtimer based swevent callback
6140  */
6141 
6142 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6143 {
6144 	enum hrtimer_restart ret = HRTIMER_RESTART;
6145 	struct perf_sample_data data;
6146 	struct pt_regs *regs;
6147 	struct perf_event *event;
6148 	u64 period;
6149 
6150 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6151 
6152 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6153 		return HRTIMER_NORESTART;
6154 
6155 	event->pmu->read(event);
6156 
6157 	perf_sample_data_init(&data, 0, event->hw.last_period);
6158 	regs = get_irq_regs();
6159 
6160 	if (regs && !perf_exclude_event(event, regs)) {
6161 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6162 			if (__perf_event_overflow(event, 1, &data, regs))
6163 				ret = HRTIMER_NORESTART;
6164 	}
6165 
6166 	period = max_t(u64, 10000, event->hw.sample_period);
6167 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6168 
6169 	return ret;
6170 }
6171 
6172 static void perf_swevent_start_hrtimer(struct perf_event *event)
6173 {
6174 	struct hw_perf_event *hwc = &event->hw;
6175 	s64 period;
6176 
6177 	if (!is_sampling_event(event))
6178 		return;
6179 
6180 	period = local64_read(&hwc->period_left);
6181 	if (period) {
6182 		if (period < 0)
6183 			period = 10000;
6184 
6185 		local64_set(&hwc->period_left, 0);
6186 	} else {
6187 		period = max_t(u64, 10000, hwc->sample_period);
6188 	}
6189 	__hrtimer_start_range_ns(&hwc->hrtimer,
6190 				ns_to_ktime(period), 0,
6191 				HRTIMER_MODE_REL_PINNED, 0);
6192 }
6193 
6194 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6195 {
6196 	struct hw_perf_event *hwc = &event->hw;
6197 
6198 	if (is_sampling_event(event)) {
6199 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6200 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6201 
6202 		hrtimer_cancel(&hwc->hrtimer);
6203 	}
6204 }
6205 
6206 static void perf_swevent_init_hrtimer(struct perf_event *event)
6207 {
6208 	struct hw_perf_event *hwc = &event->hw;
6209 
6210 	if (!is_sampling_event(event))
6211 		return;
6212 
6213 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6214 	hwc->hrtimer.function = perf_swevent_hrtimer;
6215 
6216 	/*
6217 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6218 	 * mapping and avoid the whole period adjust feedback stuff.
6219 	 */
6220 	if (event->attr.freq) {
6221 		long freq = event->attr.sample_freq;
6222 
6223 		event->attr.sample_period = NSEC_PER_SEC / freq;
6224 		hwc->sample_period = event->attr.sample_period;
6225 		local64_set(&hwc->period_left, hwc->sample_period);
6226 		hwc->last_period = hwc->sample_period;
6227 		event->attr.freq = 0;
6228 	}
6229 }
6230 
6231 /*
6232  * Software event: cpu wall time clock
6233  */
6234 
6235 static void cpu_clock_event_update(struct perf_event *event)
6236 {
6237 	s64 prev;
6238 	u64 now;
6239 
6240 	now = local_clock();
6241 	prev = local64_xchg(&event->hw.prev_count, now);
6242 	local64_add(now - prev, &event->count);
6243 }
6244 
6245 static void cpu_clock_event_start(struct perf_event *event, int flags)
6246 {
6247 	local64_set(&event->hw.prev_count, local_clock());
6248 	perf_swevent_start_hrtimer(event);
6249 }
6250 
6251 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6252 {
6253 	perf_swevent_cancel_hrtimer(event);
6254 	cpu_clock_event_update(event);
6255 }
6256 
6257 static int cpu_clock_event_add(struct perf_event *event, int flags)
6258 {
6259 	if (flags & PERF_EF_START)
6260 		cpu_clock_event_start(event, flags);
6261 
6262 	return 0;
6263 }
6264 
6265 static void cpu_clock_event_del(struct perf_event *event, int flags)
6266 {
6267 	cpu_clock_event_stop(event, flags);
6268 }
6269 
6270 static void cpu_clock_event_read(struct perf_event *event)
6271 {
6272 	cpu_clock_event_update(event);
6273 }
6274 
6275 static int cpu_clock_event_init(struct perf_event *event)
6276 {
6277 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6278 		return -ENOENT;
6279 
6280 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6281 		return -ENOENT;
6282 
6283 	/*
6284 	 * no branch sampling for software events
6285 	 */
6286 	if (has_branch_stack(event))
6287 		return -EOPNOTSUPP;
6288 
6289 	perf_swevent_init_hrtimer(event);
6290 
6291 	return 0;
6292 }
6293 
6294 static struct pmu perf_cpu_clock = {
6295 	.task_ctx_nr	= perf_sw_context,
6296 
6297 	.event_init	= cpu_clock_event_init,
6298 	.add		= cpu_clock_event_add,
6299 	.del		= cpu_clock_event_del,
6300 	.start		= cpu_clock_event_start,
6301 	.stop		= cpu_clock_event_stop,
6302 	.read		= cpu_clock_event_read,
6303 
6304 	.event_idx	= perf_swevent_event_idx,
6305 };
6306 
6307 /*
6308  * Software event: task time clock
6309  */
6310 
6311 static void task_clock_event_update(struct perf_event *event, u64 now)
6312 {
6313 	u64 prev;
6314 	s64 delta;
6315 
6316 	prev = local64_xchg(&event->hw.prev_count, now);
6317 	delta = now - prev;
6318 	local64_add(delta, &event->count);
6319 }
6320 
6321 static void task_clock_event_start(struct perf_event *event, int flags)
6322 {
6323 	local64_set(&event->hw.prev_count, event->ctx->time);
6324 	perf_swevent_start_hrtimer(event);
6325 }
6326 
6327 static void task_clock_event_stop(struct perf_event *event, int flags)
6328 {
6329 	perf_swevent_cancel_hrtimer(event);
6330 	task_clock_event_update(event, event->ctx->time);
6331 }
6332 
6333 static int task_clock_event_add(struct perf_event *event, int flags)
6334 {
6335 	if (flags & PERF_EF_START)
6336 		task_clock_event_start(event, flags);
6337 
6338 	return 0;
6339 }
6340 
6341 static void task_clock_event_del(struct perf_event *event, int flags)
6342 {
6343 	task_clock_event_stop(event, PERF_EF_UPDATE);
6344 }
6345 
6346 static void task_clock_event_read(struct perf_event *event)
6347 {
6348 	u64 now = perf_clock();
6349 	u64 delta = now - event->ctx->timestamp;
6350 	u64 time = event->ctx->time + delta;
6351 
6352 	task_clock_event_update(event, time);
6353 }
6354 
6355 static int task_clock_event_init(struct perf_event *event)
6356 {
6357 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6358 		return -ENOENT;
6359 
6360 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6361 		return -ENOENT;
6362 
6363 	/*
6364 	 * no branch sampling for software events
6365 	 */
6366 	if (has_branch_stack(event))
6367 		return -EOPNOTSUPP;
6368 
6369 	perf_swevent_init_hrtimer(event);
6370 
6371 	return 0;
6372 }
6373 
6374 static struct pmu perf_task_clock = {
6375 	.task_ctx_nr	= perf_sw_context,
6376 
6377 	.event_init	= task_clock_event_init,
6378 	.add		= task_clock_event_add,
6379 	.del		= task_clock_event_del,
6380 	.start		= task_clock_event_start,
6381 	.stop		= task_clock_event_stop,
6382 	.read		= task_clock_event_read,
6383 
6384 	.event_idx	= perf_swevent_event_idx,
6385 };
6386 
6387 static void perf_pmu_nop_void(struct pmu *pmu)
6388 {
6389 }
6390 
6391 static int perf_pmu_nop_int(struct pmu *pmu)
6392 {
6393 	return 0;
6394 }
6395 
6396 static void perf_pmu_start_txn(struct pmu *pmu)
6397 {
6398 	perf_pmu_disable(pmu);
6399 }
6400 
6401 static int perf_pmu_commit_txn(struct pmu *pmu)
6402 {
6403 	perf_pmu_enable(pmu);
6404 	return 0;
6405 }
6406 
6407 static void perf_pmu_cancel_txn(struct pmu *pmu)
6408 {
6409 	perf_pmu_enable(pmu);
6410 }
6411 
6412 static int perf_event_idx_default(struct perf_event *event)
6413 {
6414 	return event->hw.idx + 1;
6415 }
6416 
6417 /*
6418  * Ensures all contexts with the same task_ctx_nr have the same
6419  * pmu_cpu_context too.
6420  */
6421 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6422 {
6423 	struct pmu *pmu;
6424 
6425 	if (ctxn < 0)
6426 		return NULL;
6427 
6428 	list_for_each_entry(pmu, &pmus, entry) {
6429 		if (pmu->task_ctx_nr == ctxn)
6430 			return pmu->pmu_cpu_context;
6431 	}
6432 
6433 	return NULL;
6434 }
6435 
6436 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6437 {
6438 	int cpu;
6439 
6440 	for_each_possible_cpu(cpu) {
6441 		struct perf_cpu_context *cpuctx;
6442 
6443 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6444 
6445 		if (cpuctx->unique_pmu == old_pmu)
6446 			cpuctx->unique_pmu = pmu;
6447 	}
6448 }
6449 
6450 static void free_pmu_context(struct pmu *pmu)
6451 {
6452 	struct pmu *i;
6453 
6454 	mutex_lock(&pmus_lock);
6455 	/*
6456 	 * Like a real lame refcount.
6457 	 */
6458 	list_for_each_entry(i, &pmus, entry) {
6459 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6460 			update_pmu_context(i, pmu);
6461 			goto out;
6462 		}
6463 	}
6464 
6465 	free_percpu(pmu->pmu_cpu_context);
6466 out:
6467 	mutex_unlock(&pmus_lock);
6468 }
6469 static struct idr pmu_idr;
6470 
6471 static ssize_t
6472 type_show(struct device *dev, struct device_attribute *attr, char *page)
6473 {
6474 	struct pmu *pmu = dev_get_drvdata(dev);
6475 
6476 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6477 }
6478 static DEVICE_ATTR_RO(type);
6479 
6480 static ssize_t
6481 perf_event_mux_interval_ms_show(struct device *dev,
6482 				struct device_attribute *attr,
6483 				char *page)
6484 {
6485 	struct pmu *pmu = dev_get_drvdata(dev);
6486 
6487 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6488 }
6489 
6490 static ssize_t
6491 perf_event_mux_interval_ms_store(struct device *dev,
6492 				 struct device_attribute *attr,
6493 				 const char *buf, size_t count)
6494 {
6495 	struct pmu *pmu = dev_get_drvdata(dev);
6496 	int timer, cpu, ret;
6497 
6498 	ret = kstrtoint(buf, 0, &timer);
6499 	if (ret)
6500 		return ret;
6501 
6502 	if (timer < 1)
6503 		return -EINVAL;
6504 
6505 	/* same value, noting to do */
6506 	if (timer == pmu->hrtimer_interval_ms)
6507 		return count;
6508 
6509 	pmu->hrtimer_interval_ms = timer;
6510 
6511 	/* update all cpuctx for this PMU */
6512 	for_each_possible_cpu(cpu) {
6513 		struct perf_cpu_context *cpuctx;
6514 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6515 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6516 
6517 		if (hrtimer_active(&cpuctx->hrtimer))
6518 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6519 	}
6520 
6521 	return count;
6522 }
6523 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6524 
6525 static struct attribute *pmu_dev_attrs[] = {
6526 	&dev_attr_type.attr,
6527 	&dev_attr_perf_event_mux_interval_ms.attr,
6528 	NULL,
6529 };
6530 ATTRIBUTE_GROUPS(pmu_dev);
6531 
6532 static int pmu_bus_running;
6533 static struct bus_type pmu_bus = {
6534 	.name		= "event_source",
6535 	.dev_groups	= pmu_dev_groups,
6536 };
6537 
6538 static void pmu_dev_release(struct device *dev)
6539 {
6540 	kfree(dev);
6541 }
6542 
6543 static int pmu_dev_alloc(struct pmu *pmu)
6544 {
6545 	int ret = -ENOMEM;
6546 
6547 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6548 	if (!pmu->dev)
6549 		goto out;
6550 
6551 	pmu->dev->groups = pmu->attr_groups;
6552 	device_initialize(pmu->dev);
6553 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6554 	if (ret)
6555 		goto free_dev;
6556 
6557 	dev_set_drvdata(pmu->dev, pmu);
6558 	pmu->dev->bus = &pmu_bus;
6559 	pmu->dev->release = pmu_dev_release;
6560 	ret = device_add(pmu->dev);
6561 	if (ret)
6562 		goto free_dev;
6563 
6564 out:
6565 	return ret;
6566 
6567 free_dev:
6568 	put_device(pmu->dev);
6569 	goto out;
6570 }
6571 
6572 static struct lock_class_key cpuctx_mutex;
6573 static struct lock_class_key cpuctx_lock;
6574 
6575 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6576 {
6577 	int cpu, ret;
6578 
6579 	mutex_lock(&pmus_lock);
6580 	ret = -ENOMEM;
6581 	pmu->pmu_disable_count = alloc_percpu(int);
6582 	if (!pmu->pmu_disable_count)
6583 		goto unlock;
6584 
6585 	pmu->type = -1;
6586 	if (!name)
6587 		goto skip_type;
6588 	pmu->name = name;
6589 
6590 	if (type < 0) {
6591 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6592 		if (type < 0) {
6593 			ret = type;
6594 			goto free_pdc;
6595 		}
6596 	}
6597 	pmu->type = type;
6598 
6599 	if (pmu_bus_running) {
6600 		ret = pmu_dev_alloc(pmu);
6601 		if (ret)
6602 			goto free_idr;
6603 	}
6604 
6605 skip_type:
6606 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6607 	if (pmu->pmu_cpu_context)
6608 		goto got_cpu_context;
6609 
6610 	ret = -ENOMEM;
6611 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6612 	if (!pmu->pmu_cpu_context)
6613 		goto free_dev;
6614 
6615 	for_each_possible_cpu(cpu) {
6616 		struct perf_cpu_context *cpuctx;
6617 
6618 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6619 		__perf_event_init_context(&cpuctx->ctx);
6620 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6621 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6622 		cpuctx->ctx.type = cpu_context;
6623 		cpuctx->ctx.pmu = pmu;
6624 
6625 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6626 
6627 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6628 		cpuctx->unique_pmu = pmu;
6629 	}
6630 
6631 got_cpu_context:
6632 	if (!pmu->start_txn) {
6633 		if (pmu->pmu_enable) {
6634 			/*
6635 			 * If we have pmu_enable/pmu_disable calls, install
6636 			 * transaction stubs that use that to try and batch
6637 			 * hardware accesses.
6638 			 */
6639 			pmu->start_txn  = perf_pmu_start_txn;
6640 			pmu->commit_txn = perf_pmu_commit_txn;
6641 			pmu->cancel_txn = perf_pmu_cancel_txn;
6642 		} else {
6643 			pmu->start_txn  = perf_pmu_nop_void;
6644 			pmu->commit_txn = perf_pmu_nop_int;
6645 			pmu->cancel_txn = perf_pmu_nop_void;
6646 		}
6647 	}
6648 
6649 	if (!pmu->pmu_enable) {
6650 		pmu->pmu_enable  = perf_pmu_nop_void;
6651 		pmu->pmu_disable = perf_pmu_nop_void;
6652 	}
6653 
6654 	if (!pmu->event_idx)
6655 		pmu->event_idx = perf_event_idx_default;
6656 
6657 	list_add_rcu(&pmu->entry, &pmus);
6658 	ret = 0;
6659 unlock:
6660 	mutex_unlock(&pmus_lock);
6661 
6662 	return ret;
6663 
6664 free_dev:
6665 	device_del(pmu->dev);
6666 	put_device(pmu->dev);
6667 
6668 free_idr:
6669 	if (pmu->type >= PERF_TYPE_MAX)
6670 		idr_remove(&pmu_idr, pmu->type);
6671 
6672 free_pdc:
6673 	free_percpu(pmu->pmu_disable_count);
6674 	goto unlock;
6675 }
6676 EXPORT_SYMBOL_GPL(perf_pmu_register);
6677 
6678 void perf_pmu_unregister(struct pmu *pmu)
6679 {
6680 	mutex_lock(&pmus_lock);
6681 	list_del_rcu(&pmu->entry);
6682 	mutex_unlock(&pmus_lock);
6683 
6684 	/*
6685 	 * We dereference the pmu list under both SRCU and regular RCU, so
6686 	 * synchronize against both of those.
6687 	 */
6688 	synchronize_srcu(&pmus_srcu);
6689 	synchronize_rcu();
6690 
6691 	free_percpu(pmu->pmu_disable_count);
6692 	if (pmu->type >= PERF_TYPE_MAX)
6693 		idr_remove(&pmu_idr, pmu->type);
6694 	device_del(pmu->dev);
6695 	put_device(pmu->dev);
6696 	free_pmu_context(pmu);
6697 }
6698 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6699 
6700 struct pmu *perf_init_event(struct perf_event *event)
6701 {
6702 	struct pmu *pmu = NULL;
6703 	int idx;
6704 	int ret;
6705 
6706 	idx = srcu_read_lock(&pmus_srcu);
6707 
6708 	rcu_read_lock();
6709 	pmu = idr_find(&pmu_idr, event->attr.type);
6710 	rcu_read_unlock();
6711 	if (pmu) {
6712 		if (!try_module_get(pmu->module)) {
6713 			pmu = ERR_PTR(-ENODEV);
6714 			goto unlock;
6715 		}
6716 		event->pmu = pmu;
6717 		ret = pmu->event_init(event);
6718 		if (ret)
6719 			pmu = ERR_PTR(ret);
6720 		goto unlock;
6721 	}
6722 
6723 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6724 		if (!try_module_get(pmu->module)) {
6725 			pmu = ERR_PTR(-ENODEV);
6726 			goto unlock;
6727 		}
6728 		event->pmu = pmu;
6729 		ret = pmu->event_init(event);
6730 		if (!ret)
6731 			goto unlock;
6732 
6733 		if (ret != -ENOENT) {
6734 			pmu = ERR_PTR(ret);
6735 			goto unlock;
6736 		}
6737 	}
6738 	pmu = ERR_PTR(-ENOENT);
6739 unlock:
6740 	srcu_read_unlock(&pmus_srcu, idx);
6741 
6742 	return pmu;
6743 }
6744 
6745 static void account_event_cpu(struct perf_event *event, int cpu)
6746 {
6747 	if (event->parent)
6748 		return;
6749 
6750 	if (has_branch_stack(event)) {
6751 		if (!(event->attach_state & PERF_ATTACH_TASK))
6752 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6753 	}
6754 	if (is_cgroup_event(event))
6755 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6756 }
6757 
6758 static void account_event(struct perf_event *event)
6759 {
6760 	if (event->parent)
6761 		return;
6762 
6763 	if (event->attach_state & PERF_ATTACH_TASK)
6764 		static_key_slow_inc(&perf_sched_events.key);
6765 	if (event->attr.mmap || event->attr.mmap_data)
6766 		atomic_inc(&nr_mmap_events);
6767 	if (event->attr.comm)
6768 		atomic_inc(&nr_comm_events);
6769 	if (event->attr.task)
6770 		atomic_inc(&nr_task_events);
6771 	if (event->attr.freq) {
6772 		if (atomic_inc_return(&nr_freq_events) == 1)
6773 			tick_nohz_full_kick_all();
6774 	}
6775 	if (has_branch_stack(event))
6776 		static_key_slow_inc(&perf_sched_events.key);
6777 	if (is_cgroup_event(event))
6778 		static_key_slow_inc(&perf_sched_events.key);
6779 
6780 	account_event_cpu(event, event->cpu);
6781 }
6782 
6783 /*
6784  * Allocate and initialize a event structure
6785  */
6786 static struct perf_event *
6787 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6788 		 struct task_struct *task,
6789 		 struct perf_event *group_leader,
6790 		 struct perf_event *parent_event,
6791 		 perf_overflow_handler_t overflow_handler,
6792 		 void *context)
6793 {
6794 	struct pmu *pmu;
6795 	struct perf_event *event;
6796 	struct hw_perf_event *hwc;
6797 	long err = -EINVAL;
6798 
6799 	if ((unsigned)cpu >= nr_cpu_ids) {
6800 		if (!task || cpu != -1)
6801 			return ERR_PTR(-EINVAL);
6802 	}
6803 
6804 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6805 	if (!event)
6806 		return ERR_PTR(-ENOMEM);
6807 
6808 	/*
6809 	 * Single events are their own group leaders, with an
6810 	 * empty sibling list:
6811 	 */
6812 	if (!group_leader)
6813 		group_leader = event;
6814 
6815 	mutex_init(&event->child_mutex);
6816 	INIT_LIST_HEAD(&event->child_list);
6817 
6818 	INIT_LIST_HEAD(&event->group_entry);
6819 	INIT_LIST_HEAD(&event->event_entry);
6820 	INIT_LIST_HEAD(&event->sibling_list);
6821 	INIT_LIST_HEAD(&event->rb_entry);
6822 	INIT_LIST_HEAD(&event->active_entry);
6823 	INIT_HLIST_NODE(&event->hlist_entry);
6824 
6825 
6826 	init_waitqueue_head(&event->waitq);
6827 	init_irq_work(&event->pending, perf_pending_event);
6828 
6829 	mutex_init(&event->mmap_mutex);
6830 
6831 	atomic_long_set(&event->refcount, 1);
6832 	event->cpu		= cpu;
6833 	event->attr		= *attr;
6834 	event->group_leader	= group_leader;
6835 	event->pmu		= NULL;
6836 	event->oncpu		= -1;
6837 
6838 	event->parent		= parent_event;
6839 
6840 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6841 	event->id		= atomic64_inc_return(&perf_event_id);
6842 
6843 	event->state		= PERF_EVENT_STATE_INACTIVE;
6844 
6845 	if (task) {
6846 		event->attach_state = PERF_ATTACH_TASK;
6847 
6848 		if (attr->type == PERF_TYPE_TRACEPOINT)
6849 			event->hw.tp_target = task;
6850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6851 		/*
6852 		 * hw_breakpoint is a bit difficult here..
6853 		 */
6854 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6855 			event->hw.bp_target = task;
6856 #endif
6857 	}
6858 
6859 	if (!overflow_handler && parent_event) {
6860 		overflow_handler = parent_event->overflow_handler;
6861 		context = parent_event->overflow_handler_context;
6862 	}
6863 
6864 	event->overflow_handler	= overflow_handler;
6865 	event->overflow_handler_context = context;
6866 
6867 	perf_event__state_init(event);
6868 
6869 	pmu = NULL;
6870 
6871 	hwc = &event->hw;
6872 	hwc->sample_period = attr->sample_period;
6873 	if (attr->freq && attr->sample_freq)
6874 		hwc->sample_period = 1;
6875 	hwc->last_period = hwc->sample_period;
6876 
6877 	local64_set(&hwc->period_left, hwc->sample_period);
6878 
6879 	/*
6880 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6881 	 */
6882 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6883 		goto err_ns;
6884 
6885 	pmu = perf_init_event(event);
6886 	if (!pmu)
6887 		goto err_ns;
6888 	else if (IS_ERR(pmu)) {
6889 		err = PTR_ERR(pmu);
6890 		goto err_ns;
6891 	}
6892 
6893 	if (!event->parent) {
6894 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6895 			err = get_callchain_buffers();
6896 			if (err)
6897 				goto err_pmu;
6898 		}
6899 	}
6900 
6901 	return event;
6902 
6903 err_pmu:
6904 	if (event->destroy)
6905 		event->destroy(event);
6906 	module_put(pmu->module);
6907 err_ns:
6908 	if (event->ns)
6909 		put_pid_ns(event->ns);
6910 	kfree(event);
6911 
6912 	return ERR_PTR(err);
6913 }
6914 
6915 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6916 			  struct perf_event_attr *attr)
6917 {
6918 	u32 size;
6919 	int ret;
6920 
6921 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6922 		return -EFAULT;
6923 
6924 	/*
6925 	 * zero the full structure, so that a short copy will be nice.
6926 	 */
6927 	memset(attr, 0, sizeof(*attr));
6928 
6929 	ret = get_user(size, &uattr->size);
6930 	if (ret)
6931 		return ret;
6932 
6933 	if (size > PAGE_SIZE)	/* silly large */
6934 		goto err_size;
6935 
6936 	if (!size)		/* abi compat */
6937 		size = PERF_ATTR_SIZE_VER0;
6938 
6939 	if (size < PERF_ATTR_SIZE_VER0)
6940 		goto err_size;
6941 
6942 	/*
6943 	 * If we're handed a bigger struct than we know of,
6944 	 * ensure all the unknown bits are 0 - i.e. new
6945 	 * user-space does not rely on any kernel feature
6946 	 * extensions we dont know about yet.
6947 	 */
6948 	if (size > sizeof(*attr)) {
6949 		unsigned char __user *addr;
6950 		unsigned char __user *end;
6951 		unsigned char val;
6952 
6953 		addr = (void __user *)uattr + sizeof(*attr);
6954 		end  = (void __user *)uattr + size;
6955 
6956 		for (; addr < end; addr++) {
6957 			ret = get_user(val, addr);
6958 			if (ret)
6959 				return ret;
6960 			if (val)
6961 				goto err_size;
6962 		}
6963 		size = sizeof(*attr);
6964 	}
6965 
6966 	ret = copy_from_user(attr, uattr, size);
6967 	if (ret)
6968 		return -EFAULT;
6969 
6970 	if (attr->__reserved_1)
6971 		return -EINVAL;
6972 
6973 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6974 		return -EINVAL;
6975 
6976 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6977 		return -EINVAL;
6978 
6979 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6980 		u64 mask = attr->branch_sample_type;
6981 
6982 		/* only using defined bits */
6983 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6984 			return -EINVAL;
6985 
6986 		/* at least one branch bit must be set */
6987 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6988 			return -EINVAL;
6989 
6990 		/* propagate priv level, when not set for branch */
6991 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6992 
6993 			/* exclude_kernel checked on syscall entry */
6994 			if (!attr->exclude_kernel)
6995 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6996 
6997 			if (!attr->exclude_user)
6998 				mask |= PERF_SAMPLE_BRANCH_USER;
6999 
7000 			if (!attr->exclude_hv)
7001 				mask |= PERF_SAMPLE_BRANCH_HV;
7002 			/*
7003 			 * adjust user setting (for HW filter setup)
7004 			 */
7005 			attr->branch_sample_type = mask;
7006 		}
7007 		/* privileged levels capture (kernel, hv): check permissions */
7008 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7009 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7010 			return -EACCES;
7011 	}
7012 
7013 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7014 		ret = perf_reg_validate(attr->sample_regs_user);
7015 		if (ret)
7016 			return ret;
7017 	}
7018 
7019 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7020 		if (!arch_perf_have_user_stack_dump())
7021 			return -ENOSYS;
7022 
7023 		/*
7024 		 * We have __u32 type for the size, but so far
7025 		 * we can only use __u16 as maximum due to the
7026 		 * __u16 sample size limit.
7027 		 */
7028 		if (attr->sample_stack_user >= USHRT_MAX)
7029 			ret = -EINVAL;
7030 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7031 			ret = -EINVAL;
7032 	}
7033 
7034 out:
7035 	return ret;
7036 
7037 err_size:
7038 	put_user(sizeof(*attr), &uattr->size);
7039 	ret = -E2BIG;
7040 	goto out;
7041 }
7042 
7043 static int
7044 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7045 {
7046 	struct ring_buffer *rb = NULL;
7047 	int ret = -EINVAL;
7048 
7049 	if (!output_event)
7050 		goto set;
7051 
7052 	/* don't allow circular references */
7053 	if (event == output_event)
7054 		goto out;
7055 
7056 	/*
7057 	 * Don't allow cross-cpu buffers
7058 	 */
7059 	if (output_event->cpu != event->cpu)
7060 		goto out;
7061 
7062 	/*
7063 	 * If its not a per-cpu rb, it must be the same task.
7064 	 */
7065 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7066 		goto out;
7067 
7068 set:
7069 	mutex_lock(&event->mmap_mutex);
7070 	/* Can't redirect output if we've got an active mmap() */
7071 	if (atomic_read(&event->mmap_count))
7072 		goto unlock;
7073 
7074 	if (output_event) {
7075 		/* get the rb we want to redirect to */
7076 		rb = ring_buffer_get(output_event);
7077 		if (!rb)
7078 			goto unlock;
7079 	}
7080 
7081 	ring_buffer_attach(event, rb);
7082 
7083 	ret = 0;
7084 unlock:
7085 	mutex_unlock(&event->mmap_mutex);
7086 
7087 out:
7088 	return ret;
7089 }
7090 
7091 /**
7092  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7093  *
7094  * @attr_uptr:	event_id type attributes for monitoring/sampling
7095  * @pid:		target pid
7096  * @cpu:		target cpu
7097  * @group_fd:		group leader event fd
7098  */
7099 SYSCALL_DEFINE5(perf_event_open,
7100 		struct perf_event_attr __user *, attr_uptr,
7101 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7102 {
7103 	struct perf_event *group_leader = NULL, *output_event = NULL;
7104 	struct perf_event *event, *sibling;
7105 	struct perf_event_attr attr;
7106 	struct perf_event_context *ctx;
7107 	struct file *event_file = NULL;
7108 	struct fd group = {NULL, 0};
7109 	struct task_struct *task = NULL;
7110 	struct pmu *pmu;
7111 	int event_fd;
7112 	int move_group = 0;
7113 	int err;
7114 	int f_flags = O_RDWR;
7115 
7116 	/* for future expandability... */
7117 	if (flags & ~PERF_FLAG_ALL)
7118 		return -EINVAL;
7119 
7120 	err = perf_copy_attr(attr_uptr, &attr);
7121 	if (err)
7122 		return err;
7123 
7124 	if (!attr.exclude_kernel) {
7125 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7126 			return -EACCES;
7127 	}
7128 
7129 	if (attr.freq) {
7130 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7131 			return -EINVAL;
7132 	} else {
7133 		if (attr.sample_period & (1ULL << 63))
7134 			return -EINVAL;
7135 	}
7136 
7137 	/*
7138 	 * In cgroup mode, the pid argument is used to pass the fd
7139 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7140 	 * designates the cpu on which to monitor threads from that
7141 	 * cgroup.
7142 	 */
7143 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7144 		return -EINVAL;
7145 
7146 	if (flags & PERF_FLAG_FD_CLOEXEC)
7147 		f_flags |= O_CLOEXEC;
7148 
7149 	event_fd = get_unused_fd_flags(f_flags);
7150 	if (event_fd < 0)
7151 		return event_fd;
7152 
7153 	if (group_fd != -1) {
7154 		err = perf_fget_light(group_fd, &group);
7155 		if (err)
7156 			goto err_fd;
7157 		group_leader = group.file->private_data;
7158 		if (flags & PERF_FLAG_FD_OUTPUT)
7159 			output_event = group_leader;
7160 		if (flags & PERF_FLAG_FD_NO_GROUP)
7161 			group_leader = NULL;
7162 	}
7163 
7164 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7165 		task = find_lively_task_by_vpid(pid);
7166 		if (IS_ERR(task)) {
7167 			err = PTR_ERR(task);
7168 			goto err_group_fd;
7169 		}
7170 	}
7171 
7172 	if (task && group_leader &&
7173 	    group_leader->attr.inherit != attr.inherit) {
7174 		err = -EINVAL;
7175 		goto err_task;
7176 	}
7177 
7178 	get_online_cpus();
7179 
7180 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7181 				 NULL, NULL);
7182 	if (IS_ERR(event)) {
7183 		err = PTR_ERR(event);
7184 		goto err_cpus;
7185 	}
7186 
7187 	if (flags & PERF_FLAG_PID_CGROUP) {
7188 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7189 		if (err) {
7190 			__free_event(event);
7191 			goto err_cpus;
7192 		}
7193 	}
7194 
7195 	if (is_sampling_event(event)) {
7196 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7197 			err = -ENOTSUPP;
7198 			goto err_alloc;
7199 		}
7200 	}
7201 
7202 	account_event(event);
7203 
7204 	/*
7205 	 * Special case software events and allow them to be part of
7206 	 * any hardware group.
7207 	 */
7208 	pmu = event->pmu;
7209 
7210 	if (group_leader &&
7211 	    (is_software_event(event) != is_software_event(group_leader))) {
7212 		if (is_software_event(event)) {
7213 			/*
7214 			 * If event and group_leader are not both a software
7215 			 * event, and event is, then group leader is not.
7216 			 *
7217 			 * Allow the addition of software events to !software
7218 			 * groups, this is safe because software events never
7219 			 * fail to schedule.
7220 			 */
7221 			pmu = group_leader->pmu;
7222 		} else if (is_software_event(group_leader) &&
7223 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7224 			/*
7225 			 * In case the group is a pure software group, and we
7226 			 * try to add a hardware event, move the whole group to
7227 			 * the hardware context.
7228 			 */
7229 			move_group = 1;
7230 		}
7231 	}
7232 
7233 	/*
7234 	 * Get the target context (task or percpu):
7235 	 */
7236 	ctx = find_get_context(pmu, task, event->cpu);
7237 	if (IS_ERR(ctx)) {
7238 		err = PTR_ERR(ctx);
7239 		goto err_alloc;
7240 	}
7241 
7242 	if (task) {
7243 		put_task_struct(task);
7244 		task = NULL;
7245 	}
7246 
7247 	/*
7248 	 * Look up the group leader (we will attach this event to it):
7249 	 */
7250 	if (group_leader) {
7251 		err = -EINVAL;
7252 
7253 		/*
7254 		 * Do not allow a recursive hierarchy (this new sibling
7255 		 * becoming part of another group-sibling):
7256 		 */
7257 		if (group_leader->group_leader != group_leader)
7258 			goto err_context;
7259 		/*
7260 		 * Do not allow to attach to a group in a different
7261 		 * task or CPU context:
7262 		 */
7263 		if (move_group) {
7264 			if (group_leader->ctx->type != ctx->type)
7265 				goto err_context;
7266 		} else {
7267 			if (group_leader->ctx != ctx)
7268 				goto err_context;
7269 		}
7270 
7271 		/*
7272 		 * Only a group leader can be exclusive or pinned
7273 		 */
7274 		if (attr.exclusive || attr.pinned)
7275 			goto err_context;
7276 	}
7277 
7278 	if (output_event) {
7279 		err = perf_event_set_output(event, output_event);
7280 		if (err)
7281 			goto err_context;
7282 	}
7283 
7284 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7285 					f_flags);
7286 	if (IS_ERR(event_file)) {
7287 		err = PTR_ERR(event_file);
7288 		goto err_context;
7289 	}
7290 
7291 	if (move_group) {
7292 		struct perf_event_context *gctx = group_leader->ctx;
7293 
7294 		mutex_lock(&gctx->mutex);
7295 		perf_remove_from_context(group_leader, false);
7296 
7297 		/*
7298 		 * Removing from the context ends up with disabled
7299 		 * event. What we want here is event in the initial
7300 		 * startup state, ready to be add into new context.
7301 		 */
7302 		perf_event__state_init(group_leader);
7303 		list_for_each_entry(sibling, &group_leader->sibling_list,
7304 				    group_entry) {
7305 			perf_remove_from_context(sibling, false);
7306 			perf_event__state_init(sibling);
7307 			put_ctx(gctx);
7308 		}
7309 		mutex_unlock(&gctx->mutex);
7310 		put_ctx(gctx);
7311 	}
7312 
7313 	WARN_ON_ONCE(ctx->parent_ctx);
7314 	mutex_lock(&ctx->mutex);
7315 
7316 	if (move_group) {
7317 		synchronize_rcu();
7318 		perf_install_in_context(ctx, group_leader, event->cpu);
7319 		get_ctx(ctx);
7320 		list_for_each_entry(sibling, &group_leader->sibling_list,
7321 				    group_entry) {
7322 			perf_install_in_context(ctx, sibling, event->cpu);
7323 			get_ctx(ctx);
7324 		}
7325 	}
7326 
7327 	perf_install_in_context(ctx, event, event->cpu);
7328 	perf_unpin_context(ctx);
7329 	mutex_unlock(&ctx->mutex);
7330 
7331 	put_online_cpus();
7332 
7333 	event->owner = current;
7334 
7335 	mutex_lock(&current->perf_event_mutex);
7336 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7337 	mutex_unlock(&current->perf_event_mutex);
7338 
7339 	/*
7340 	 * Precalculate sample_data sizes
7341 	 */
7342 	perf_event__header_size(event);
7343 	perf_event__id_header_size(event);
7344 
7345 	/*
7346 	 * Drop the reference on the group_event after placing the
7347 	 * new event on the sibling_list. This ensures destruction
7348 	 * of the group leader will find the pointer to itself in
7349 	 * perf_group_detach().
7350 	 */
7351 	fdput(group);
7352 	fd_install(event_fd, event_file);
7353 	return event_fd;
7354 
7355 err_context:
7356 	perf_unpin_context(ctx);
7357 	put_ctx(ctx);
7358 err_alloc:
7359 	free_event(event);
7360 err_cpus:
7361 	put_online_cpus();
7362 err_task:
7363 	if (task)
7364 		put_task_struct(task);
7365 err_group_fd:
7366 	fdput(group);
7367 err_fd:
7368 	put_unused_fd(event_fd);
7369 	return err;
7370 }
7371 
7372 /**
7373  * perf_event_create_kernel_counter
7374  *
7375  * @attr: attributes of the counter to create
7376  * @cpu: cpu in which the counter is bound
7377  * @task: task to profile (NULL for percpu)
7378  */
7379 struct perf_event *
7380 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7381 				 struct task_struct *task,
7382 				 perf_overflow_handler_t overflow_handler,
7383 				 void *context)
7384 {
7385 	struct perf_event_context *ctx;
7386 	struct perf_event *event;
7387 	int err;
7388 
7389 	/*
7390 	 * Get the target context (task or percpu):
7391 	 */
7392 
7393 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7394 				 overflow_handler, context);
7395 	if (IS_ERR(event)) {
7396 		err = PTR_ERR(event);
7397 		goto err;
7398 	}
7399 
7400 	account_event(event);
7401 
7402 	ctx = find_get_context(event->pmu, task, cpu);
7403 	if (IS_ERR(ctx)) {
7404 		err = PTR_ERR(ctx);
7405 		goto err_free;
7406 	}
7407 
7408 	WARN_ON_ONCE(ctx->parent_ctx);
7409 	mutex_lock(&ctx->mutex);
7410 	perf_install_in_context(ctx, event, cpu);
7411 	perf_unpin_context(ctx);
7412 	mutex_unlock(&ctx->mutex);
7413 
7414 	return event;
7415 
7416 err_free:
7417 	free_event(event);
7418 err:
7419 	return ERR_PTR(err);
7420 }
7421 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7422 
7423 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7424 {
7425 	struct perf_event_context *src_ctx;
7426 	struct perf_event_context *dst_ctx;
7427 	struct perf_event *event, *tmp;
7428 	LIST_HEAD(events);
7429 
7430 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7431 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7432 
7433 	mutex_lock(&src_ctx->mutex);
7434 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7435 				 event_entry) {
7436 		perf_remove_from_context(event, false);
7437 		unaccount_event_cpu(event, src_cpu);
7438 		put_ctx(src_ctx);
7439 		list_add(&event->migrate_entry, &events);
7440 	}
7441 	mutex_unlock(&src_ctx->mutex);
7442 
7443 	synchronize_rcu();
7444 
7445 	mutex_lock(&dst_ctx->mutex);
7446 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7447 		list_del(&event->migrate_entry);
7448 		if (event->state >= PERF_EVENT_STATE_OFF)
7449 			event->state = PERF_EVENT_STATE_INACTIVE;
7450 		account_event_cpu(event, dst_cpu);
7451 		perf_install_in_context(dst_ctx, event, dst_cpu);
7452 		get_ctx(dst_ctx);
7453 	}
7454 	mutex_unlock(&dst_ctx->mutex);
7455 }
7456 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7457 
7458 static void sync_child_event(struct perf_event *child_event,
7459 			       struct task_struct *child)
7460 {
7461 	struct perf_event *parent_event = child_event->parent;
7462 	u64 child_val;
7463 
7464 	if (child_event->attr.inherit_stat)
7465 		perf_event_read_event(child_event, child);
7466 
7467 	child_val = perf_event_count(child_event);
7468 
7469 	/*
7470 	 * Add back the child's count to the parent's count:
7471 	 */
7472 	atomic64_add(child_val, &parent_event->child_count);
7473 	atomic64_add(child_event->total_time_enabled,
7474 		     &parent_event->child_total_time_enabled);
7475 	atomic64_add(child_event->total_time_running,
7476 		     &parent_event->child_total_time_running);
7477 
7478 	/*
7479 	 * Remove this event from the parent's list
7480 	 */
7481 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7482 	mutex_lock(&parent_event->child_mutex);
7483 	list_del_init(&child_event->child_list);
7484 	mutex_unlock(&parent_event->child_mutex);
7485 
7486 	/*
7487 	 * Release the parent event, if this was the last
7488 	 * reference to it.
7489 	 */
7490 	put_event(parent_event);
7491 }
7492 
7493 static void
7494 __perf_event_exit_task(struct perf_event *child_event,
7495 			 struct perf_event_context *child_ctx,
7496 			 struct task_struct *child)
7497 {
7498 	/*
7499 	 * Do not destroy the 'original' grouping; because of the context
7500 	 * switch optimization the original events could've ended up in a
7501 	 * random child task.
7502 	 *
7503 	 * If we were to destroy the original group, all group related
7504 	 * operations would cease to function properly after this random
7505 	 * child dies.
7506 	 *
7507 	 * Do destroy all inherited groups, we don't care about those
7508 	 * and being thorough is better.
7509 	 */
7510 	perf_remove_from_context(child_event, !!child_event->parent);
7511 
7512 	/*
7513 	 * It can happen that the parent exits first, and has events
7514 	 * that are still around due to the child reference. These
7515 	 * events need to be zapped.
7516 	 */
7517 	if (child_event->parent) {
7518 		sync_child_event(child_event, child);
7519 		free_event(child_event);
7520 	}
7521 }
7522 
7523 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7524 {
7525 	struct perf_event *child_event, *next;
7526 	struct perf_event_context *child_ctx, *parent_ctx;
7527 	unsigned long flags;
7528 
7529 	if (likely(!child->perf_event_ctxp[ctxn])) {
7530 		perf_event_task(child, NULL, 0);
7531 		return;
7532 	}
7533 
7534 	local_irq_save(flags);
7535 	/*
7536 	 * We can't reschedule here because interrupts are disabled,
7537 	 * and either child is current or it is a task that can't be
7538 	 * scheduled, so we are now safe from rescheduling changing
7539 	 * our context.
7540 	 */
7541 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7542 
7543 	/*
7544 	 * Take the context lock here so that if find_get_context is
7545 	 * reading child->perf_event_ctxp, we wait until it has
7546 	 * incremented the context's refcount before we do put_ctx below.
7547 	 */
7548 	raw_spin_lock(&child_ctx->lock);
7549 	task_ctx_sched_out(child_ctx);
7550 	child->perf_event_ctxp[ctxn] = NULL;
7551 
7552 	/*
7553 	 * In order to avoid freeing: child_ctx->parent_ctx->task
7554 	 * under perf_event_context::lock, grab another reference.
7555 	 */
7556 	parent_ctx = child_ctx->parent_ctx;
7557 	if (parent_ctx)
7558 		get_ctx(parent_ctx);
7559 
7560 	/*
7561 	 * If this context is a clone; unclone it so it can't get
7562 	 * swapped to another process while we're removing all
7563 	 * the events from it.
7564 	 */
7565 	unclone_ctx(child_ctx);
7566 	update_context_time(child_ctx);
7567 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7568 
7569 	/*
7570 	 * Now that we no longer hold perf_event_context::lock, drop
7571 	 * our extra child_ctx->parent_ctx reference.
7572 	 */
7573 	if (parent_ctx)
7574 		put_ctx(parent_ctx);
7575 
7576 	/*
7577 	 * Report the task dead after unscheduling the events so that we
7578 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7579 	 * get a few PERF_RECORD_READ events.
7580 	 */
7581 	perf_event_task(child, child_ctx, 0);
7582 
7583 	/*
7584 	 * We can recurse on the same lock type through:
7585 	 *
7586 	 *   __perf_event_exit_task()
7587 	 *     sync_child_event()
7588 	 *       put_event()
7589 	 *         mutex_lock(&ctx->mutex)
7590 	 *
7591 	 * But since its the parent context it won't be the same instance.
7592 	 */
7593 	mutex_lock(&child_ctx->mutex);
7594 
7595 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7596 		__perf_event_exit_task(child_event, child_ctx, child);
7597 
7598 	mutex_unlock(&child_ctx->mutex);
7599 
7600 	put_ctx(child_ctx);
7601 }
7602 
7603 /*
7604  * When a child task exits, feed back event values to parent events.
7605  */
7606 void perf_event_exit_task(struct task_struct *child)
7607 {
7608 	struct perf_event *event, *tmp;
7609 	int ctxn;
7610 
7611 	mutex_lock(&child->perf_event_mutex);
7612 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7613 				 owner_entry) {
7614 		list_del_init(&event->owner_entry);
7615 
7616 		/*
7617 		 * Ensure the list deletion is visible before we clear
7618 		 * the owner, closes a race against perf_release() where
7619 		 * we need to serialize on the owner->perf_event_mutex.
7620 		 */
7621 		smp_wmb();
7622 		event->owner = NULL;
7623 	}
7624 	mutex_unlock(&child->perf_event_mutex);
7625 
7626 	for_each_task_context_nr(ctxn)
7627 		perf_event_exit_task_context(child, ctxn);
7628 }
7629 
7630 static void perf_free_event(struct perf_event *event,
7631 			    struct perf_event_context *ctx)
7632 {
7633 	struct perf_event *parent = event->parent;
7634 
7635 	if (WARN_ON_ONCE(!parent))
7636 		return;
7637 
7638 	mutex_lock(&parent->child_mutex);
7639 	list_del_init(&event->child_list);
7640 	mutex_unlock(&parent->child_mutex);
7641 
7642 	put_event(parent);
7643 
7644 	perf_group_detach(event);
7645 	list_del_event(event, ctx);
7646 	free_event(event);
7647 }
7648 
7649 /*
7650  * free an unexposed, unused context as created by inheritance by
7651  * perf_event_init_task below, used by fork() in case of fail.
7652  */
7653 void perf_event_free_task(struct task_struct *task)
7654 {
7655 	struct perf_event_context *ctx;
7656 	struct perf_event *event, *tmp;
7657 	int ctxn;
7658 
7659 	for_each_task_context_nr(ctxn) {
7660 		ctx = task->perf_event_ctxp[ctxn];
7661 		if (!ctx)
7662 			continue;
7663 
7664 		mutex_lock(&ctx->mutex);
7665 again:
7666 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7667 				group_entry)
7668 			perf_free_event(event, ctx);
7669 
7670 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7671 				group_entry)
7672 			perf_free_event(event, ctx);
7673 
7674 		if (!list_empty(&ctx->pinned_groups) ||
7675 				!list_empty(&ctx->flexible_groups))
7676 			goto again;
7677 
7678 		mutex_unlock(&ctx->mutex);
7679 
7680 		put_ctx(ctx);
7681 	}
7682 }
7683 
7684 void perf_event_delayed_put(struct task_struct *task)
7685 {
7686 	int ctxn;
7687 
7688 	for_each_task_context_nr(ctxn)
7689 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7690 }
7691 
7692 /*
7693  * inherit a event from parent task to child task:
7694  */
7695 static struct perf_event *
7696 inherit_event(struct perf_event *parent_event,
7697 	      struct task_struct *parent,
7698 	      struct perf_event_context *parent_ctx,
7699 	      struct task_struct *child,
7700 	      struct perf_event *group_leader,
7701 	      struct perf_event_context *child_ctx)
7702 {
7703 	struct perf_event *child_event;
7704 	unsigned long flags;
7705 
7706 	/*
7707 	 * Instead of creating recursive hierarchies of events,
7708 	 * we link inherited events back to the original parent,
7709 	 * which has a filp for sure, which we use as the reference
7710 	 * count:
7711 	 */
7712 	if (parent_event->parent)
7713 		parent_event = parent_event->parent;
7714 
7715 	child_event = perf_event_alloc(&parent_event->attr,
7716 					   parent_event->cpu,
7717 					   child,
7718 					   group_leader, parent_event,
7719 				           NULL, NULL);
7720 	if (IS_ERR(child_event))
7721 		return child_event;
7722 
7723 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7724 		free_event(child_event);
7725 		return NULL;
7726 	}
7727 
7728 	get_ctx(child_ctx);
7729 
7730 	/*
7731 	 * Make the child state follow the state of the parent event,
7732 	 * not its attr.disabled bit.  We hold the parent's mutex,
7733 	 * so we won't race with perf_event_{en, dis}able_family.
7734 	 */
7735 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7736 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7737 	else
7738 		child_event->state = PERF_EVENT_STATE_OFF;
7739 
7740 	if (parent_event->attr.freq) {
7741 		u64 sample_period = parent_event->hw.sample_period;
7742 		struct hw_perf_event *hwc = &child_event->hw;
7743 
7744 		hwc->sample_period = sample_period;
7745 		hwc->last_period   = sample_period;
7746 
7747 		local64_set(&hwc->period_left, sample_period);
7748 	}
7749 
7750 	child_event->ctx = child_ctx;
7751 	child_event->overflow_handler = parent_event->overflow_handler;
7752 	child_event->overflow_handler_context
7753 		= parent_event->overflow_handler_context;
7754 
7755 	/*
7756 	 * Precalculate sample_data sizes
7757 	 */
7758 	perf_event__header_size(child_event);
7759 	perf_event__id_header_size(child_event);
7760 
7761 	/*
7762 	 * Link it up in the child's context:
7763 	 */
7764 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7765 	add_event_to_ctx(child_event, child_ctx);
7766 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7767 
7768 	/*
7769 	 * Link this into the parent event's child list
7770 	 */
7771 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7772 	mutex_lock(&parent_event->child_mutex);
7773 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7774 	mutex_unlock(&parent_event->child_mutex);
7775 
7776 	return child_event;
7777 }
7778 
7779 static int inherit_group(struct perf_event *parent_event,
7780 	      struct task_struct *parent,
7781 	      struct perf_event_context *parent_ctx,
7782 	      struct task_struct *child,
7783 	      struct perf_event_context *child_ctx)
7784 {
7785 	struct perf_event *leader;
7786 	struct perf_event *sub;
7787 	struct perf_event *child_ctr;
7788 
7789 	leader = inherit_event(parent_event, parent, parent_ctx,
7790 				 child, NULL, child_ctx);
7791 	if (IS_ERR(leader))
7792 		return PTR_ERR(leader);
7793 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7794 		child_ctr = inherit_event(sub, parent, parent_ctx,
7795 					    child, leader, child_ctx);
7796 		if (IS_ERR(child_ctr))
7797 			return PTR_ERR(child_ctr);
7798 	}
7799 	return 0;
7800 }
7801 
7802 static int
7803 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7804 		   struct perf_event_context *parent_ctx,
7805 		   struct task_struct *child, int ctxn,
7806 		   int *inherited_all)
7807 {
7808 	int ret;
7809 	struct perf_event_context *child_ctx;
7810 
7811 	if (!event->attr.inherit) {
7812 		*inherited_all = 0;
7813 		return 0;
7814 	}
7815 
7816 	child_ctx = child->perf_event_ctxp[ctxn];
7817 	if (!child_ctx) {
7818 		/*
7819 		 * This is executed from the parent task context, so
7820 		 * inherit events that have been marked for cloning.
7821 		 * First allocate and initialize a context for the
7822 		 * child.
7823 		 */
7824 
7825 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7826 		if (!child_ctx)
7827 			return -ENOMEM;
7828 
7829 		child->perf_event_ctxp[ctxn] = child_ctx;
7830 	}
7831 
7832 	ret = inherit_group(event, parent, parent_ctx,
7833 			    child, child_ctx);
7834 
7835 	if (ret)
7836 		*inherited_all = 0;
7837 
7838 	return ret;
7839 }
7840 
7841 /*
7842  * Initialize the perf_event context in task_struct
7843  */
7844 static int perf_event_init_context(struct task_struct *child, int ctxn)
7845 {
7846 	struct perf_event_context *child_ctx, *parent_ctx;
7847 	struct perf_event_context *cloned_ctx;
7848 	struct perf_event *event;
7849 	struct task_struct *parent = current;
7850 	int inherited_all = 1;
7851 	unsigned long flags;
7852 	int ret = 0;
7853 
7854 	if (likely(!parent->perf_event_ctxp[ctxn]))
7855 		return 0;
7856 
7857 	/*
7858 	 * If the parent's context is a clone, pin it so it won't get
7859 	 * swapped under us.
7860 	 */
7861 	parent_ctx = perf_pin_task_context(parent, ctxn);
7862 	if (!parent_ctx)
7863 		return 0;
7864 
7865 	/*
7866 	 * No need to check if parent_ctx != NULL here; since we saw
7867 	 * it non-NULL earlier, the only reason for it to become NULL
7868 	 * is if we exit, and since we're currently in the middle of
7869 	 * a fork we can't be exiting at the same time.
7870 	 */
7871 
7872 	/*
7873 	 * Lock the parent list. No need to lock the child - not PID
7874 	 * hashed yet and not running, so nobody can access it.
7875 	 */
7876 	mutex_lock(&parent_ctx->mutex);
7877 
7878 	/*
7879 	 * We dont have to disable NMIs - we are only looking at
7880 	 * the list, not manipulating it:
7881 	 */
7882 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7883 		ret = inherit_task_group(event, parent, parent_ctx,
7884 					 child, ctxn, &inherited_all);
7885 		if (ret)
7886 			break;
7887 	}
7888 
7889 	/*
7890 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7891 	 * to allocations, but we need to prevent rotation because
7892 	 * rotate_ctx() will change the list from interrupt context.
7893 	 */
7894 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7895 	parent_ctx->rotate_disable = 1;
7896 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7897 
7898 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7899 		ret = inherit_task_group(event, parent, parent_ctx,
7900 					 child, ctxn, &inherited_all);
7901 		if (ret)
7902 			break;
7903 	}
7904 
7905 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7906 	parent_ctx->rotate_disable = 0;
7907 
7908 	child_ctx = child->perf_event_ctxp[ctxn];
7909 
7910 	if (child_ctx && inherited_all) {
7911 		/*
7912 		 * Mark the child context as a clone of the parent
7913 		 * context, or of whatever the parent is a clone of.
7914 		 *
7915 		 * Note that if the parent is a clone, the holding of
7916 		 * parent_ctx->lock avoids it from being uncloned.
7917 		 */
7918 		cloned_ctx = parent_ctx->parent_ctx;
7919 		if (cloned_ctx) {
7920 			child_ctx->parent_ctx = cloned_ctx;
7921 			child_ctx->parent_gen = parent_ctx->parent_gen;
7922 		} else {
7923 			child_ctx->parent_ctx = parent_ctx;
7924 			child_ctx->parent_gen = parent_ctx->generation;
7925 		}
7926 		get_ctx(child_ctx->parent_ctx);
7927 	}
7928 
7929 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7930 	mutex_unlock(&parent_ctx->mutex);
7931 
7932 	perf_unpin_context(parent_ctx);
7933 	put_ctx(parent_ctx);
7934 
7935 	return ret;
7936 }
7937 
7938 /*
7939  * Initialize the perf_event context in task_struct
7940  */
7941 int perf_event_init_task(struct task_struct *child)
7942 {
7943 	int ctxn, ret;
7944 
7945 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7946 	mutex_init(&child->perf_event_mutex);
7947 	INIT_LIST_HEAD(&child->perf_event_list);
7948 
7949 	for_each_task_context_nr(ctxn) {
7950 		ret = perf_event_init_context(child, ctxn);
7951 		if (ret) {
7952 			perf_event_free_task(child);
7953 			return ret;
7954 		}
7955 	}
7956 
7957 	return 0;
7958 }
7959 
7960 static void __init perf_event_init_all_cpus(void)
7961 {
7962 	struct swevent_htable *swhash;
7963 	int cpu;
7964 
7965 	for_each_possible_cpu(cpu) {
7966 		swhash = &per_cpu(swevent_htable, cpu);
7967 		mutex_init(&swhash->hlist_mutex);
7968 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7969 	}
7970 }
7971 
7972 static void perf_event_init_cpu(int cpu)
7973 {
7974 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7975 
7976 	mutex_lock(&swhash->hlist_mutex);
7977 	swhash->online = true;
7978 	if (swhash->hlist_refcount > 0) {
7979 		struct swevent_hlist *hlist;
7980 
7981 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7982 		WARN_ON(!hlist);
7983 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7984 	}
7985 	mutex_unlock(&swhash->hlist_mutex);
7986 }
7987 
7988 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7989 static void perf_pmu_rotate_stop(struct pmu *pmu)
7990 {
7991 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7992 
7993 	WARN_ON(!irqs_disabled());
7994 
7995 	list_del_init(&cpuctx->rotation_list);
7996 }
7997 
7998 static void __perf_event_exit_context(void *__info)
7999 {
8000 	struct remove_event re = { .detach_group = false };
8001 	struct perf_event_context *ctx = __info;
8002 
8003 	perf_pmu_rotate_stop(ctx->pmu);
8004 
8005 	rcu_read_lock();
8006 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8007 		__perf_remove_from_context(&re);
8008 	rcu_read_unlock();
8009 }
8010 
8011 static void perf_event_exit_cpu_context(int cpu)
8012 {
8013 	struct perf_event_context *ctx;
8014 	struct pmu *pmu;
8015 	int idx;
8016 
8017 	idx = srcu_read_lock(&pmus_srcu);
8018 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8019 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8020 
8021 		mutex_lock(&ctx->mutex);
8022 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8023 		mutex_unlock(&ctx->mutex);
8024 	}
8025 	srcu_read_unlock(&pmus_srcu, idx);
8026 }
8027 
8028 static void perf_event_exit_cpu(int cpu)
8029 {
8030 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8031 
8032 	perf_event_exit_cpu_context(cpu);
8033 
8034 	mutex_lock(&swhash->hlist_mutex);
8035 	swhash->online = false;
8036 	swevent_hlist_release(swhash);
8037 	mutex_unlock(&swhash->hlist_mutex);
8038 }
8039 #else
8040 static inline void perf_event_exit_cpu(int cpu) { }
8041 #endif
8042 
8043 static int
8044 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8045 {
8046 	int cpu;
8047 
8048 	for_each_online_cpu(cpu)
8049 		perf_event_exit_cpu(cpu);
8050 
8051 	return NOTIFY_OK;
8052 }
8053 
8054 /*
8055  * Run the perf reboot notifier at the very last possible moment so that
8056  * the generic watchdog code runs as long as possible.
8057  */
8058 static struct notifier_block perf_reboot_notifier = {
8059 	.notifier_call = perf_reboot,
8060 	.priority = INT_MIN,
8061 };
8062 
8063 static int
8064 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8065 {
8066 	unsigned int cpu = (long)hcpu;
8067 
8068 	switch (action & ~CPU_TASKS_FROZEN) {
8069 
8070 	case CPU_UP_PREPARE:
8071 	case CPU_DOWN_FAILED:
8072 		perf_event_init_cpu(cpu);
8073 		break;
8074 
8075 	case CPU_UP_CANCELED:
8076 	case CPU_DOWN_PREPARE:
8077 		perf_event_exit_cpu(cpu);
8078 		break;
8079 	default:
8080 		break;
8081 	}
8082 
8083 	return NOTIFY_OK;
8084 }
8085 
8086 void __init perf_event_init(void)
8087 {
8088 	int ret;
8089 
8090 	idr_init(&pmu_idr);
8091 
8092 	perf_event_init_all_cpus();
8093 	init_srcu_struct(&pmus_srcu);
8094 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8095 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8096 	perf_pmu_register(&perf_task_clock, NULL, -1);
8097 	perf_tp_register();
8098 	perf_cpu_notifier(perf_cpu_notify);
8099 	register_reboot_notifier(&perf_reboot_notifier);
8100 
8101 	ret = init_hw_breakpoint();
8102 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8103 
8104 	/* do not patch jump label more than once per second */
8105 	jump_label_rate_limit(&perf_sched_events, HZ);
8106 
8107 	/*
8108 	 * Build time assertion that we keep the data_head at the intended
8109 	 * location.  IOW, validation we got the __reserved[] size right.
8110 	 */
8111 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8112 		     != 1024);
8113 }
8114 
8115 static int __init perf_event_sysfs_init(void)
8116 {
8117 	struct pmu *pmu;
8118 	int ret;
8119 
8120 	mutex_lock(&pmus_lock);
8121 
8122 	ret = bus_register(&pmu_bus);
8123 	if (ret)
8124 		goto unlock;
8125 
8126 	list_for_each_entry(pmu, &pmus, entry) {
8127 		if (!pmu->name || pmu->type < 0)
8128 			continue;
8129 
8130 		ret = pmu_dev_alloc(pmu);
8131 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8132 	}
8133 	pmu_bus_running = 1;
8134 	ret = 0;
8135 
8136 unlock:
8137 	mutex_unlock(&pmus_lock);
8138 
8139 	return ret;
8140 }
8141 device_initcall(perf_event_sysfs_init);
8142 
8143 #ifdef CONFIG_CGROUP_PERF
8144 static struct cgroup_subsys_state *
8145 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8146 {
8147 	struct perf_cgroup *jc;
8148 
8149 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8150 	if (!jc)
8151 		return ERR_PTR(-ENOMEM);
8152 
8153 	jc->info = alloc_percpu(struct perf_cgroup_info);
8154 	if (!jc->info) {
8155 		kfree(jc);
8156 		return ERR_PTR(-ENOMEM);
8157 	}
8158 
8159 	return &jc->css;
8160 }
8161 
8162 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8163 {
8164 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8165 
8166 	free_percpu(jc->info);
8167 	kfree(jc);
8168 }
8169 
8170 static int __perf_cgroup_move(void *info)
8171 {
8172 	struct task_struct *task = info;
8173 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8174 	return 0;
8175 }
8176 
8177 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8178 			       struct cgroup_taskset *tset)
8179 {
8180 	struct task_struct *task;
8181 
8182 	cgroup_taskset_for_each(task, tset)
8183 		task_function_call(task, __perf_cgroup_move, task);
8184 }
8185 
8186 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8187 			     struct cgroup_subsys_state *old_css,
8188 			     struct task_struct *task)
8189 {
8190 	/*
8191 	 * cgroup_exit() is called in the copy_process() failure path.
8192 	 * Ignore this case since the task hasn't ran yet, this avoids
8193 	 * trying to poke a half freed task state from generic code.
8194 	 */
8195 	if (!(task->flags & PF_EXITING))
8196 		return;
8197 
8198 	task_function_call(task, __perf_cgroup_move, task);
8199 }
8200 
8201 struct cgroup_subsys perf_event_cgrp_subsys = {
8202 	.css_alloc	= perf_cgroup_css_alloc,
8203 	.css_free	= perf_cgroup_css_free,
8204 	.exit		= perf_cgroup_exit,
8205 	.attach		= perf_cgroup_attach,
8206 };
8207 #endif /* CONFIG_CGROUP_PERF */
8208