xref: /openbmc/linux/kernel/events/core.c (revision 359f608f66b4434fb83b74e23ad14631ea3efc4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static inline struct perf_cpu_context *
159 __get_cpu_context(struct perf_event_context *ctx)
160 {
161 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
162 }
163 
164 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
165 			  struct perf_event_context *ctx)
166 {
167 	raw_spin_lock(&cpuctx->ctx.lock);
168 	if (ctx)
169 		raw_spin_lock(&ctx->lock);
170 }
171 
172 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
173 			    struct perf_event_context *ctx)
174 {
175 	if (ctx)
176 		raw_spin_unlock(&ctx->lock);
177 	raw_spin_unlock(&cpuctx->ctx.lock);
178 }
179 
180 #define TASK_TOMBSTONE ((void *)-1L)
181 
182 static bool is_kernel_event(struct perf_event *event)
183 {
184 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
185 }
186 
187 /*
188  * On task ctx scheduling...
189  *
190  * When !ctx->nr_events a task context will not be scheduled. This means
191  * we can disable the scheduler hooks (for performance) without leaving
192  * pending task ctx state.
193  *
194  * This however results in two special cases:
195  *
196  *  - removing the last event from a task ctx; this is relatively straight
197  *    forward and is done in __perf_remove_from_context.
198  *
199  *  - adding the first event to a task ctx; this is tricky because we cannot
200  *    rely on ctx->is_active and therefore cannot use event_function_call().
201  *    See perf_install_in_context().
202  *
203  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
204  */
205 
206 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
207 			struct perf_event_context *, void *);
208 
209 struct event_function_struct {
210 	struct perf_event *event;
211 	event_f func;
212 	void *data;
213 };
214 
215 static int event_function(void *info)
216 {
217 	struct event_function_struct *efs = info;
218 	struct perf_event *event = efs->event;
219 	struct perf_event_context *ctx = event->ctx;
220 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
221 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
222 	int ret = 0;
223 
224 	lockdep_assert_irqs_disabled();
225 
226 	perf_ctx_lock(cpuctx, task_ctx);
227 	/*
228 	 * Since we do the IPI call without holding ctx->lock things can have
229 	 * changed, double check we hit the task we set out to hit.
230 	 */
231 	if (ctx->task) {
232 		if (ctx->task != current) {
233 			ret = -ESRCH;
234 			goto unlock;
235 		}
236 
237 		/*
238 		 * We only use event_function_call() on established contexts,
239 		 * and event_function() is only ever called when active (or
240 		 * rather, we'll have bailed in task_function_call() or the
241 		 * above ctx->task != current test), therefore we must have
242 		 * ctx->is_active here.
243 		 */
244 		WARN_ON_ONCE(!ctx->is_active);
245 		/*
246 		 * And since we have ctx->is_active, cpuctx->task_ctx must
247 		 * match.
248 		 */
249 		WARN_ON_ONCE(task_ctx != ctx);
250 	} else {
251 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
252 	}
253 
254 	efs->func(event, cpuctx, ctx, efs->data);
255 unlock:
256 	perf_ctx_unlock(cpuctx, task_ctx);
257 
258 	return ret;
259 }
260 
261 static void event_function_call(struct perf_event *event, event_f func, void *data)
262 {
263 	struct perf_event_context *ctx = event->ctx;
264 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
265 	struct event_function_struct efs = {
266 		.event = event,
267 		.func = func,
268 		.data = data,
269 	};
270 
271 	if (!event->parent) {
272 		/*
273 		 * If this is a !child event, we must hold ctx::mutex to
274 		 * stabilize the event->ctx relation. See
275 		 * perf_event_ctx_lock().
276 		 */
277 		lockdep_assert_held(&ctx->mutex);
278 	}
279 
280 	if (!task) {
281 		cpu_function_call(event->cpu, event_function, &efs);
282 		return;
283 	}
284 
285 	if (task == TASK_TOMBSTONE)
286 		return;
287 
288 again:
289 	if (!task_function_call(task, event_function, &efs))
290 		return;
291 
292 	raw_spin_lock_irq(&ctx->lock);
293 	/*
294 	 * Reload the task pointer, it might have been changed by
295 	 * a concurrent perf_event_context_sched_out().
296 	 */
297 	task = ctx->task;
298 	if (task == TASK_TOMBSTONE) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		return;
301 	}
302 	if (ctx->is_active) {
303 		raw_spin_unlock_irq(&ctx->lock);
304 		goto again;
305 	}
306 	func(event, NULL, ctx, data);
307 	raw_spin_unlock_irq(&ctx->lock);
308 }
309 
310 /*
311  * Similar to event_function_call() + event_function(), but hard assumes IRQs
312  * are already disabled and we're on the right CPU.
313  */
314 static void event_function_local(struct perf_event *event, event_f func, void *data)
315 {
316 	struct perf_event_context *ctx = event->ctx;
317 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
318 	struct task_struct *task = READ_ONCE(ctx->task);
319 	struct perf_event_context *task_ctx = NULL;
320 
321 	lockdep_assert_irqs_disabled();
322 
323 	if (task) {
324 		if (task == TASK_TOMBSTONE)
325 			return;
326 
327 		task_ctx = ctx;
328 	}
329 
330 	perf_ctx_lock(cpuctx, task_ctx);
331 
332 	task = ctx->task;
333 	if (task == TASK_TOMBSTONE)
334 		goto unlock;
335 
336 	if (task) {
337 		/*
338 		 * We must be either inactive or active and the right task,
339 		 * otherwise we're screwed, since we cannot IPI to somewhere
340 		 * else.
341 		 */
342 		if (ctx->is_active) {
343 			if (WARN_ON_ONCE(task != current))
344 				goto unlock;
345 
346 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
347 				goto unlock;
348 		}
349 	} else {
350 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
351 	}
352 
353 	func(event, cpuctx, ctx, data);
354 unlock:
355 	perf_ctx_unlock(cpuctx, task_ctx);
356 }
357 
358 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
359 		       PERF_FLAG_FD_OUTPUT  |\
360 		       PERF_FLAG_PID_CGROUP |\
361 		       PERF_FLAG_FD_CLOEXEC)
362 
363 /*
364  * branch priv levels that need permission checks
365  */
366 #define PERF_SAMPLE_BRANCH_PERM_PLM \
367 	(PERF_SAMPLE_BRANCH_KERNEL |\
368 	 PERF_SAMPLE_BRANCH_HV)
369 
370 enum event_type_t {
371 	EVENT_FLEXIBLE = 0x1,
372 	EVENT_PINNED = 0x2,
373 	EVENT_TIME = 0x4,
374 	/* see ctx_resched() for details */
375 	EVENT_CPU = 0x8,
376 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
377 };
378 
379 /*
380  * perf_sched_events : >0 events exist
381  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
382  */
383 
384 static void perf_sched_delayed(struct work_struct *work);
385 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
386 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
387 static DEFINE_MUTEX(perf_sched_mutex);
388 static atomic_t perf_sched_count;
389 
390 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
391 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
452 
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
575 			      enum event_type_t event_type);
576 
577 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
578 			     enum event_type_t event_type);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 /*
678  * UP store-release, load-acquire
679  */
680 
681 #define __store_release(ptr, val)					\
682 do {									\
683 	barrier();							\
684 	WRITE_ONCE(*(ptr), (val));					\
685 } while (0)
686 
687 #define __load_acquire(ptr)						\
688 ({									\
689 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
690 	barrier();							\
691 	___p;								\
692 })
693 
694 #ifdef CONFIG_CGROUP_PERF
695 
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699 	struct perf_event_context *ctx = event->ctx;
700 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701 
702 	/* @event doesn't care about cgroup */
703 	if (!event->cgrp)
704 		return true;
705 
706 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
707 	if (!cpuctx->cgrp)
708 		return false;
709 
710 	/*
711 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
712 	 * also enabled for all its descendant cgroups.  If @cpuctx's
713 	 * cgroup is a descendant of @event's (the test covers identity
714 	 * case), it's a match.
715 	 */
716 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717 				    event->cgrp->css.cgroup);
718 }
719 
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722 	css_put(&event->cgrp->css);
723 	event->cgrp = NULL;
724 }
725 
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728 	return event->cgrp != NULL;
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	struct perf_cgroup_info *t;
734 
735 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
736 	return t->time;
737 }
738 
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741 	struct perf_cgroup_info *t;
742 
743 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
744 	if (!__load_acquire(&t->active))
745 		return t->time;
746 	now += READ_ONCE(t->timeoffset);
747 	return now;
748 }
749 
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752 	if (adv)
753 		info->time += now - info->timestamp;
754 	info->timestamp = now;
755 	/*
756 	 * see update_context_time()
757 	 */
758 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760 
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763 	struct perf_cgroup *cgrp = cpuctx->cgrp;
764 	struct cgroup_subsys_state *css;
765 	struct perf_cgroup_info *info;
766 
767 	if (cgrp) {
768 		u64 now = perf_clock();
769 
770 		for (css = &cgrp->css; css; css = css->parent) {
771 			cgrp = container_of(css, struct perf_cgroup, css);
772 			info = this_cpu_ptr(cgrp->info);
773 
774 			__update_cgrp_time(info, now, true);
775 			if (final)
776 				__store_release(&info->active, 0);
777 		}
778 	}
779 }
780 
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783 	struct perf_cgroup_info *info;
784 
785 	/*
786 	 * ensure we access cgroup data only when needed and
787 	 * when we know the cgroup is pinned (css_get)
788 	 */
789 	if (!is_cgroup_event(event))
790 		return;
791 
792 	info = this_cpu_ptr(event->cgrp->info);
793 	/*
794 	 * Do not update time when cgroup is not active
795 	 */
796 	if (info->active)
797 		__update_cgrp_time(info, perf_clock(), true);
798 }
799 
800 static inline void
801 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
802 {
803 	struct perf_event_context *ctx = &cpuctx->ctx;
804 	struct perf_cgroup *cgrp = cpuctx->cgrp;
805 	struct perf_cgroup_info *info;
806 	struct cgroup_subsys_state *css;
807 
808 	/*
809 	 * ctx->lock held by caller
810 	 * ensure we do not access cgroup data
811 	 * unless we have the cgroup pinned (css_get)
812 	 */
813 	if (!cgrp)
814 		return;
815 
816 	WARN_ON_ONCE(!ctx->nr_cgroups);
817 
818 	for (css = &cgrp->css; css; css = css->parent) {
819 		cgrp = container_of(css, struct perf_cgroup, css);
820 		info = this_cpu_ptr(cgrp->info);
821 		__update_cgrp_time(info, ctx->timestamp, false);
822 		__store_release(&info->active, 1);
823 	}
824 }
825 
826 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
827 
828 /*
829  * reschedule events based on the cgroup constraint of task.
830  */
831 static void perf_cgroup_switch(struct task_struct *task)
832 {
833 	struct perf_cgroup *cgrp;
834 	struct perf_cpu_context *cpuctx, *tmp;
835 	struct list_head *list;
836 	unsigned long flags;
837 
838 	/*
839 	 * Disable interrupts and preemption to avoid this CPU's
840 	 * cgrp_cpuctx_entry to change under us.
841 	 */
842 	local_irq_save(flags);
843 
844 	cgrp = perf_cgroup_from_task(task, NULL);
845 
846 	list = this_cpu_ptr(&cgrp_cpuctx_list);
847 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
848 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
849 		if (READ_ONCE(cpuctx->cgrp) == cgrp)
850 			continue;
851 
852 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
853 		perf_pmu_disable(cpuctx->ctx.pmu);
854 
855 		cpu_ctx_sched_out(cpuctx, EVENT_ALL);
856 		/*
857 		 * must not be done before ctxswout due
858 		 * to update_cgrp_time_from_cpuctx() in
859 		 * ctx_sched_out()
860 		 */
861 		cpuctx->cgrp = cgrp;
862 		/*
863 		 * set cgrp before ctxsw in to allow
864 		 * perf_cgroup_set_timestamp() in ctx_sched_in()
865 		 * to not have to pass task around
866 		 */
867 		cpu_ctx_sched_in(cpuctx, EVENT_ALL);
868 
869 		perf_pmu_enable(cpuctx->ctx.pmu);
870 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
871 	}
872 
873 	local_irq_restore(flags);
874 }
875 
876 static int perf_cgroup_ensure_storage(struct perf_event *event,
877 				struct cgroup_subsys_state *css)
878 {
879 	struct perf_cpu_context *cpuctx;
880 	struct perf_event **storage;
881 	int cpu, heap_size, ret = 0;
882 
883 	/*
884 	 * Allow storage to have sufficent space for an iterator for each
885 	 * possibly nested cgroup plus an iterator for events with no cgroup.
886 	 */
887 	for (heap_size = 1; css; css = css->parent)
888 		heap_size++;
889 
890 	for_each_possible_cpu(cpu) {
891 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
892 		if (heap_size <= cpuctx->heap_size)
893 			continue;
894 
895 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
896 				       GFP_KERNEL, cpu_to_node(cpu));
897 		if (!storage) {
898 			ret = -ENOMEM;
899 			break;
900 		}
901 
902 		raw_spin_lock_irq(&cpuctx->ctx.lock);
903 		if (cpuctx->heap_size < heap_size) {
904 			swap(cpuctx->heap, storage);
905 			if (storage == cpuctx->heap_default)
906 				storage = NULL;
907 			cpuctx->heap_size = heap_size;
908 		}
909 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
910 
911 		kfree(storage);
912 	}
913 
914 	return ret;
915 }
916 
917 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
918 				      struct perf_event_attr *attr,
919 				      struct perf_event *group_leader)
920 {
921 	struct perf_cgroup *cgrp;
922 	struct cgroup_subsys_state *css;
923 	struct fd f = fdget(fd);
924 	int ret = 0;
925 
926 	if (!f.file)
927 		return -EBADF;
928 
929 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
930 					 &perf_event_cgrp_subsys);
931 	if (IS_ERR(css)) {
932 		ret = PTR_ERR(css);
933 		goto out;
934 	}
935 
936 	ret = perf_cgroup_ensure_storage(event, css);
937 	if (ret)
938 		goto out;
939 
940 	cgrp = container_of(css, struct perf_cgroup, css);
941 	event->cgrp = cgrp;
942 
943 	/*
944 	 * all events in a group must monitor
945 	 * the same cgroup because a task belongs
946 	 * to only one perf cgroup at a time
947 	 */
948 	if (group_leader && group_leader->cgrp != cgrp) {
949 		perf_detach_cgroup(event);
950 		ret = -EINVAL;
951 	}
952 out:
953 	fdput(f);
954 	return ret;
955 }
956 
957 static inline void
958 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
959 {
960 	struct perf_cpu_context *cpuctx;
961 
962 	if (!is_cgroup_event(event))
963 		return;
964 
965 	/*
966 	 * Because cgroup events are always per-cpu events,
967 	 * @ctx == &cpuctx->ctx.
968 	 */
969 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
970 
971 	if (ctx->nr_cgroups++)
972 		return;
973 
974 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
975 	list_add(&cpuctx->cgrp_cpuctx_entry,
976 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
977 }
978 
979 static inline void
980 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
981 {
982 	struct perf_cpu_context *cpuctx;
983 
984 	if (!is_cgroup_event(event))
985 		return;
986 
987 	/*
988 	 * Because cgroup events are always per-cpu events,
989 	 * @ctx == &cpuctx->ctx.
990 	 */
991 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
992 
993 	if (--ctx->nr_cgroups)
994 		return;
995 
996 	cpuctx->cgrp = NULL;
997 	list_del(&cpuctx->cgrp_cpuctx_entry);
998 }
999 
1000 #else /* !CONFIG_CGROUP_PERF */
1001 
1002 static inline bool
1003 perf_cgroup_match(struct perf_event *event)
1004 {
1005 	return true;
1006 }
1007 
1008 static inline void perf_detach_cgroup(struct perf_event *event)
1009 {}
1010 
1011 static inline int is_cgroup_event(struct perf_event *event)
1012 {
1013 	return 0;
1014 }
1015 
1016 static inline void update_cgrp_time_from_event(struct perf_event *event)
1017 {
1018 }
1019 
1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1021 						bool final)
1022 {
1023 }
1024 
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026 				      struct perf_event_attr *attr,
1027 				      struct perf_event *group_leader)
1028 {
1029 	return -EINVAL;
1030 }
1031 
1032 static inline void
1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1034 {
1035 }
1036 
1037 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1038 {
1039 	return 0;
1040 }
1041 
1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1043 {
1044 	return 0;
1045 }
1046 
1047 static inline void
1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051 
1052 static inline void
1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1054 {
1055 }
1056 
1057 static void perf_cgroup_switch(struct task_struct *task)
1058 {
1059 }
1060 #endif
1061 
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072 	struct perf_cpu_context *cpuctx;
1073 	bool rotations;
1074 
1075 	lockdep_assert_irqs_disabled();
1076 
1077 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078 	rotations = perf_rotate_context(cpuctx);
1079 
1080 	raw_spin_lock(&cpuctx->hrtimer_lock);
1081 	if (rotations)
1082 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083 	else
1084 		cpuctx->hrtimer_active = 0;
1085 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1086 
1087 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089 
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092 	struct hrtimer *timer = &cpuctx->hrtimer;
1093 	struct pmu *pmu = cpuctx->ctx.pmu;
1094 	u64 interval;
1095 
1096 	/* no multiplexing needed for SW PMU */
1097 	if (pmu->task_ctx_nr == perf_sw_context)
1098 		return;
1099 
1100 	/*
1101 	 * check default is sane, if not set then force to
1102 	 * default interval (1/tick)
1103 	 */
1104 	interval = pmu->hrtimer_interval_ms;
1105 	if (interval < 1)
1106 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107 
1108 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109 
1110 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1112 	timer->function = perf_mux_hrtimer_handler;
1113 }
1114 
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117 	struct hrtimer *timer = &cpuctx->hrtimer;
1118 	struct pmu *pmu = cpuctx->ctx.pmu;
1119 	unsigned long flags;
1120 
1121 	/* not for SW PMU */
1122 	if (pmu->task_ctx_nr == perf_sw_context)
1123 		return 0;
1124 
1125 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126 	if (!cpuctx->hrtimer_active) {
1127 		cpuctx->hrtimer_active = 1;
1128 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1130 	}
1131 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132 
1133 	return 0;
1134 }
1135 
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139 	if (!(*count)++)
1140 		pmu->pmu_disable(pmu);
1141 }
1142 
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!--(*count))
1147 		pmu->pmu_enable(pmu);
1148 }
1149 
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151 
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161 
1162 	lockdep_assert_irqs_disabled();
1163 
1164 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1165 
1166 	list_add(&ctx->active_ctx_list, head);
1167 }
1168 
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171 	lockdep_assert_irqs_disabled();
1172 
1173 	WARN_ON(list_empty(&ctx->active_ctx_list));
1174 
1175 	list_del_init(&ctx->active_ctx_list);
1176 }
1177 
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180 	refcount_inc(&ctx->refcount);
1181 }
1182 
1183 static void *alloc_task_ctx_data(struct pmu *pmu)
1184 {
1185 	if (pmu->task_ctx_cache)
1186 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1187 
1188 	return NULL;
1189 }
1190 
1191 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1192 {
1193 	if (pmu->task_ctx_cache && task_ctx_data)
1194 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1195 }
1196 
1197 static void free_ctx(struct rcu_head *head)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 	ctx = container_of(head, struct perf_event_context, rcu_head);
1202 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1203 	kfree(ctx);
1204 }
1205 
1206 static void put_ctx(struct perf_event_context *ctx)
1207 {
1208 	if (refcount_dec_and_test(&ctx->refcount)) {
1209 		if (ctx->parent_ctx)
1210 			put_ctx(ctx->parent_ctx);
1211 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1212 			put_task_struct(ctx->task);
1213 		call_rcu(&ctx->rcu_head, free_ctx);
1214 	}
1215 }
1216 
1217 /*
1218  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1219  * perf_pmu_migrate_context() we need some magic.
1220  *
1221  * Those places that change perf_event::ctx will hold both
1222  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1223  *
1224  * Lock ordering is by mutex address. There are two other sites where
1225  * perf_event_context::mutex nests and those are:
1226  *
1227  *  - perf_event_exit_task_context()	[ child , 0 ]
1228  *      perf_event_exit_event()
1229  *        put_event()			[ parent, 1 ]
1230  *
1231  *  - perf_event_init_context()		[ parent, 0 ]
1232  *      inherit_task_group()
1233  *        inherit_group()
1234  *          inherit_event()
1235  *            perf_event_alloc()
1236  *              perf_init_event()
1237  *                perf_try_init_event()	[ child , 1 ]
1238  *
1239  * While it appears there is an obvious deadlock here -- the parent and child
1240  * nesting levels are inverted between the two. This is in fact safe because
1241  * life-time rules separate them. That is an exiting task cannot fork, and a
1242  * spawning task cannot (yet) exit.
1243  *
1244  * But remember that these are parent<->child context relations, and
1245  * migration does not affect children, therefore these two orderings should not
1246  * interact.
1247  *
1248  * The change in perf_event::ctx does not affect children (as claimed above)
1249  * because the sys_perf_event_open() case will install a new event and break
1250  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1251  * concerned with cpuctx and that doesn't have children.
1252  *
1253  * The places that change perf_event::ctx will issue:
1254  *
1255  *   perf_remove_from_context();
1256  *   synchronize_rcu();
1257  *   perf_install_in_context();
1258  *
1259  * to affect the change. The remove_from_context() + synchronize_rcu() should
1260  * quiesce the event, after which we can install it in the new location. This
1261  * means that only external vectors (perf_fops, prctl) can perturb the event
1262  * while in transit. Therefore all such accessors should also acquire
1263  * perf_event_context::mutex to serialize against this.
1264  *
1265  * However; because event->ctx can change while we're waiting to acquire
1266  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1267  * function.
1268  *
1269  * Lock order:
1270  *    exec_update_lock
1271  *	task_struct::perf_event_mutex
1272  *	  perf_event_context::mutex
1273  *	    perf_event::child_mutex;
1274  *	      perf_event_context::lock
1275  *	    perf_event::mmap_mutex
1276  *	    mmap_lock
1277  *	      perf_addr_filters_head::lock
1278  *
1279  *    cpu_hotplug_lock
1280  *      pmus_lock
1281  *	  cpuctx->mutex / perf_event_context::mutex
1282  */
1283 static struct perf_event_context *
1284 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1285 {
1286 	struct perf_event_context *ctx;
1287 
1288 again:
1289 	rcu_read_lock();
1290 	ctx = READ_ONCE(event->ctx);
1291 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1292 		rcu_read_unlock();
1293 		goto again;
1294 	}
1295 	rcu_read_unlock();
1296 
1297 	mutex_lock_nested(&ctx->mutex, nesting);
1298 	if (event->ctx != ctx) {
1299 		mutex_unlock(&ctx->mutex);
1300 		put_ctx(ctx);
1301 		goto again;
1302 	}
1303 
1304 	return ctx;
1305 }
1306 
1307 static inline struct perf_event_context *
1308 perf_event_ctx_lock(struct perf_event *event)
1309 {
1310 	return perf_event_ctx_lock_nested(event, 0);
1311 }
1312 
1313 static void perf_event_ctx_unlock(struct perf_event *event,
1314 				  struct perf_event_context *ctx)
1315 {
1316 	mutex_unlock(&ctx->mutex);
1317 	put_ctx(ctx);
1318 }
1319 
1320 /*
1321  * This must be done under the ctx->lock, such as to serialize against
1322  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1323  * calling scheduler related locks and ctx->lock nests inside those.
1324  */
1325 static __must_check struct perf_event_context *
1326 unclone_ctx(struct perf_event_context *ctx)
1327 {
1328 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1329 
1330 	lockdep_assert_held(&ctx->lock);
1331 
1332 	if (parent_ctx)
1333 		ctx->parent_ctx = NULL;
1334 	ctx->generation++;
1335 
1336 	return parent_ctx;
1337 }
1338 
1339 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1340 				enum pid_type type)
1341 {
1342 	u32 nr;
1343 	/*
1344 	 * only top level events have the pid namespace they were created in
1345 	 */
1346 	if (event->parent)
1347 		event = event->parent;
1348 
1349 	nr = __task_pid_nr_ns(p, type, event->ns);
1350 	/* avoid -1 if it is idle thread or runs in another ns */
1351 	if (!nr && !pid_alive(p))
1352 		nr = -1;
1353 	return nr;
1354 }
1355 
1356 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1357 {
1358 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1359 }
1360 
1361 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1362 {
1363 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1364 }
1365 
1366 /*
1367  * If we inherit events we want to return the parent event id
1368  * to userspace.
1369  */
1370 static u64 primary_event_id(struct perf_event *event)
1371 {
1372 	u64 id = event->id;
1373 
1374 	if (event->parent)
1375 		id = event->parent->id;
1376 
1377 	return id;
1378 }
1379 
1380 /*
1381  * Get the perf_event_context for a task and lock it.
1382  *
1383  * This has to cope with the fact that until it is locked,
1384  * the context could get moved to another task.
1385  */
1386 static struct perf_event_context *
1387 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1388 {
1389 	struct perf_event_context *ctx;
1390 
1391 retry:
1392 	/*
1393 	 * One of the few rules of preemptible RCU is that one cannot do
1394 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1395 	 * part of the read side critical section was irqs-enabled -- see
1396 	 * rcu_read_unlock_special().
1397 	 *
1398 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1399 	 * side critical section has interrupts disabled.
1400 	 */
1401 	local_irq_save(*flags);
1402 	rcu_read_lock();
1403 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1404 	if (ctx) {
1405 		/*
1406 		 * If this context is a clone of another, it might
1407 		 * get swapped for another underneath us by
1408 		 * perf_event_task_sched_out, though the
1409 		 * rcu_read_lock() protects us from any context
1410 		 * getting freed.  Lock the context and check if it
1411 		 * got swapped before we could get the lock, and retry
1412 		 * if so.  If we locked the right context, then it
1413 		 * can't get swapped on us any more.
1414 		 */
1415 		raw_spin_lock(&ctx->lock);
1416 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1417 			raw_spin_unlock(&ctx->lock);
1418 			rcu_read_unlock();
1419 			local_irq_restore(*flags);
1420 			goto retry;
1421 		}
1422 
1423 		if (ctx->task == TASK_TOMBSTONE ||
1424 		    !refcount_inc_not_zero(&ctx->refcount)) {
1425 			raw_spin_unlock(&ctx->lock);
1426 			ctx = NULL;
1427 		} else {
1428 			WARN_ON_ONCE(ctx->task != task);
1429 		}
1430 	}
1431 	rcu_read_unlock();
1432 	if (!ctx)
1433 		local_irq_restore(*flags);
1434 	return ctx;
1435 }
1436 
1437 /*
1438  * Get the context for a task and increment its pin_count so it
1439  * can't get swapped to another task.  This also increments its
1440  * reference count so that the context can't get freed.
1441  */
1442 static struct perf_event_context *
1443 perf_pin_task_context(struct task_struct *task, int ctxn)
1444 {
1445 	struct perf_event_context *ctx;
1446 	unsigned long flags;
1447 
1448 	ctx = perf_lock_task_context(task, ctxn, &flags);
1449 	if (ctx) {
1450 		++ctx->pin_count;
1451 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1452 	}
1453 	return ctx;
1454 }
1455 
1456 static void perf_unpin_context(struct perf_event_context *ctx)
1457 {
1458 	unsigned long flags;
1459 
1460 	raw_spin_lock_irqsave(&ctx->lock, flags);
1461 	--ctx->pin_count;
1462 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1463 }
1464 
1465 /*
1466  * Update the record of the current time in a context.
1467  */
1468 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1469 {
1470 	u64 now = perf_clock();
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	if (adv)
1475 		ctx->time += now - ctx->timestamp;
1476 	ctx->timestamp = now;
1477 
1478 	/*
1479 	 * The above: time' = time + (now - timestamp), can be re-arranged
1480 	 * into: time` = now + (time - timestamp), which gives a single value
1481 	 * offset to compute future time without locks on.
1482 	 *
1483 	 * See perf_event_time_now(), which can be used from NMI context where
1484 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1485 	 * both the above values in a consistent manner.
1486 	 */
1487 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1488 }
1489 
1490 static void update_context_time(struct perf_event_context *ctx)
1491 {
1492 	__update_context_time(ctx, true);
1493 }
1494 
1495 static u64 perf_event_time(struct perf_event *event)
1496 {
1497 	struct perf_event_context *ctx = event->ctx;
1498 
1499 	if (unlikely(!ctx))
1500 		return 0;
1501 
1502 	if (is_cgroup_event(event))
1503 		return perf_cgroup_event_time(event);
1504 
1505 	return ctx->time;
1506 }
1507 
1508 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 
1512 	if (unlikely(!ctx))
1513 		return 0;
1514 
1515 	if (is_cgroup_event(event))
1516 		return perf_cgroup_event_time_now(event, now);
1517 
1518 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1519 		return ctx->time;
1520 
1521 	now += READ_ONCE(ctx->timeoffset);
1522 	return now;
1523 }
1524 
1525 static enum event_type_t get_event_type(struct perf_event *event)
1526 {
1527 	struct perf_event_context *ctx = event->ctx;
1528 	enum event_type_t event_type;
1529 
1530 	lockdep_assert_held(&ctx->lock);
1531 
1532 	/*
1533 	 * It's 'group type', really, because if our group leader is
1534 	 * pinned, so are we.
1535 	 */
1536 	if (event->group_leader != event)
1537 		event = event->group_leader;
1538 
1539 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1540 	if (!ctx->task)
1541 		event_type |= EVENT_CPU;
1542 
1543 	return event_type;
1544 }
1545 
1546 /*
1547  * Helper function to initialize event group nodes.
1548  */
1549 static void init_event_group(struct perf_event *event)
1550 {
1551 	RB_CLEAR_NODE(&event->group_node);
1552 	event->group_index = 0;
1553 }
1554 
1555 /*
1556  * Extract pinned or flexible groups from the context
1557  * based on event attrs bits.
1558  */
1559 static struct perf_event_groups *
1560 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1561 {
1562 	if (event->attr.pinned)
1563 		return &ctx->pinned_groups;
1564 	else
1565 		return &ctx->flexible_groups;
1566 }
1567 
1568 /*
1569  * Helper function to initializes perf_event_group trees.
1570  */
1571 static void perf_event_groups_init(struct perf_event_groups *groups)
1572 {
1573 	groups->tree = RB_ROOT;
1574 	groups->index = 0;
1575 }
1576 
1577 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1578 {
1579 	struct cgroup *cgroup = NULL;
1580 
1581 #ifdef CONFIG_CGROUP_PERF
1582 	if (event->cgrp)
1583 		cgroup = event->cgrp->css.cgroup;
1584 #endif
1585 
1586 	return cgroup;
1587 }
1588 
1589 /*
1590  * Compare function for event groups;
1591  *
1592  * Implements complex key that first sorts by CPU and then by virtual index
1593  * which provides ordering when rotating groups for the same CPU.
1594  */
1595 static __always_inline int
1596 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1597 		      const u64 left_group_index, const struct perf_event *right)
1598 {
1599 	if (left_cpu < right->cpu)
1600 		return -1;
1601 	if (left_cpu > right->cpu)
1602 		return 1;
1603 
1604 #ifdef CONFIG_CGROUP_PERF
1605 	{
1606 		const struct cgroup *right_cgroup = event_cgroup(right);
1607 
1608 		if (left_cgroup != right_cgroup) {
1609 			if (!left_cgroup) {
1610 				/*
1611 				 * Left has no cgroup but right does, no
1612 				 * cgroups come first.
1613 				 */
1614 				return -1;
1615 			}
1616 			if (!right_cgroup) {
1617 				/*
1618 				 * Right has no cgroup but left does, no
1619 				 * cgroups come first.
1620 				 */
1621 				return 1;
1622 			}
1623 			/* Two dissimilar cgroups, order by id. */
1624 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1625 				return -1;
1626 
1627 			return 1;
1628 		}
1629 	}
1630 #endif
1631 
1632 	if (left_group_index < right->group_index)
1633 		return -1;
1634 	if (left_group_index > right->group_index)
1635 		return 1;
1636 
1637 	return 0;
1638 }
1639 
1640 #define __node_2_pe(node) \
1641 	rb_entry((node), struct perf_event, group_node)
1642 
1643 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1644 {
1645 	struct perf_event *e = __node_2_pe(a);
1646 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1647 				     __node_2_pe(b)) < 0;
1648 }
1649 
1650 struct __group_key {
1651 	int cpu;
1652 	struct cgroup *cgroup;
1653 };
1654 
1655 static inline int __group_cmp(const void *key, const struct rb_node *node)
1656 {
1657 	const struct __group_key *a = key;
1658 	const struct perf_event *b = __node_2_pe(node);
1659 
1660 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1661 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1662 }
1663 
1664 /*
1665  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1666  * key (see perf_event_groups_less). This places it last inside the CPU
1667  * subtree.
1668  */
1669 static void
1670 perf_event_groups_insert(struct perf_event_groups *groups,
1671 			 struct perf_event *event)
1672 {
1673 	event->group_index = ++groups->index;
1674 
1675 	rb_add(&event->group_node, &groups->tree, __group_less);
1676 }
1677 
1678 /*
1679  * Helper function to insert event into the pinned or flexible groups.
1680  */
1681 static void
1682 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1683 {
1684 	struct perf_event_groups *groups;
1685 
1686 	groups = get_event_groups(event, ctx);
1687 	perf_event_groups_insert(groups, event);
1688 }
1689 
1690 /*
1691  * Delete a group from a tree.
1692  */
1693 static void
1694 perf_event_groups_delete(struct perf_event_groups *groups,
1695 			 struct perf_event *event)
1696 {
1697 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1698 		     RB_EMPTY_ROOT(&groups->tree));
1699 
1700 	rb_erase(&event->group_node, &groups->tree);
1701 	init_event_group(event);
1702 }
1703 
1704 /*
1705  * Helper function to delete event from its groups.
1706  */
1707 static void
1708 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710 	struct perf_event_groups *groups;
1711 
1712 	groups = get_event_groups(event, ctx);
1713 	perf_event_groups_delete(groups, event);
1714 }
1715 
1716 /*
1717  * Get the leftmost event in the cpu/cgroup subtree.
1718  */
1719 static struct perf_event *
1720 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1721 			struct cgroup *cgrp)
1722 {
1723 	struct __group_key key = {
1724 		.cpu = cpu,
1725 		.cgroup = cgrp,
1726 	};
1727 	struct rb_node *node;
1728 
1729 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1730 	if (node)
1731 		return __node_2_pe(node);
1732 
1733 	return NULL;
1734 }
1735 
1736 /*
1737  * Like rb_entry_next_safe() for the @cpu subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_next(struct perf_event *event)
1741 {
1742 	struct __group_key key = {
1743 		.cpu = event->cpu,
1744 		.cgroup = event_cgroup(event),
1745 	};
1746 	struct rb_node *next;
1747 
1748 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1749 	if (next)
1750 		return __node_2_pe(next);
1751 
1752 	return NULL;
1753 }
1754 
1755 /*
1756  * Iterate through the whole groups tree.
1757  */
1758 #define perf_event_groups_for_each(event, groups)			\
1759 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1760 				typeof(*event), group_node); event;	\
1761 		event = rb_entry_safe(rb_next(&event->group_node),	\
1762 				typeof(*event), group_node))
1763 
1764 /*
1765  * Add an event from the lists for its context.
1766  * Must be called with ctx->mutex and ctx->lock held.
1767  */
1768 static void
1769 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1770 {
1771 	lockdep_assert_held(&ctx->lock);
1772 
1773 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1774 	event->attach_state |= PERF_ATTACH_CONTEXT;
1775 
1776 	event->tstamp = perf_event_time(event);
1777 
1778 	/*
1779 	 * If we're a stand alone event or group leader, we go to the context
1780 	 * list, group events are kept attached to the group so that
1781 	 * perf_group_detach can, at all times, locate all siblings.
1782 	 */
1783 	if (event->group_leader == event) {
1784 		event->group_caps = event->event_caps;
1785 		add_event_to_groups(event, ctx);
1786 	}
1787 
1788 	list_add_rcu(&event->event_entry, &ctx->event_list);
1789 	ctx->nr_events++;
1790 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1791 		ctx->nr_user++;
1792 	if (event->attr.inherit_stat)
1793 		ctx->nr_stat++;
1794 
1795 	if (event->state > PERF_EVENT_STATE_OFF)
1796 		perf_cgroup_event_enable(event, ctx);
1797 
1798 	ctx->generation++;
1799 }
1800 
1801 /*
1802  * Initialize event state based on the perf_event_attr::disabled.
1803  */
1804 static inline void perf_event__state_init(struct perf_event *event)
1805 {
1806 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1807 					      PERF_EVENT_STATE_INACTIVE;
1808 }
1809 
1810 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1811 {
1812 	int entry = sizeof(u64); /* value */
1813 	int size = 0;
1814 	int nr = 1;
1815 
1816 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1817 		size += sizeof(u64);
1818 
1819 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1820 		size += sizeof(u64);
1821 
1822 	if (event->attr.read_format & PERF_FORMAT_ID)
1823 		entry += sizeof(u64);
1824 
1825 	if (event->attr.read_format & PERF_FORMAT_LOST)
1826 		entry += sizeof(u64);
1827 
1828 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1829 		nr += nr_siblings;
1830 		size += sizeof(u64);
1831 	}
1832 
1833 	size += entry * nr;
1834 	event->read_size = size;
1835 }
1836 
1837 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1838 {
1839 	struct perf_sample_data *data;
1840 	u16 size = 0;
1841 
1842 	if (sample_type & PERF_SAMPLE_IP)
1843 		size += sizeof(data->ip);
1844 
1845 	if (sample_type & PERF_SAMPLE_ADDR)
1846 		size += sizeof(data->addr);
1847 
1848 	if (sample_type & PERF_SAMPLE_PERIOD)
1849 		size += sizeof(data->period);
1850 
1851 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1852 		size += sizeof(data->weight.full);
1853 
1854 	if (sample_type & PERF_SAMPLE_READ)
1855 		size += event->read_size;
1856 
1857 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1858 		size += sizeof(data->data_src.val);
1859 
1860 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1861 		size += sizeof(data->txn);
1862 
1863 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1864 		size += sizeof(data->phys_addr);
1865 
1866 	if (sample_type & PERF_SAMPLE_CGROUP)
1867 		size += sizeof(data->cgroup);
1868 
1869 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1870 		size += sizeof(data->data_page_size);
1871 
1872 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1873 		size += sizeof(data->code_page_size);
1874 
1875 	event->header_size = size;
1876 }
1877 
1878 /*
1879  * Called at perf_event creation and when events are attached/detached from a
1880  * group.
1881  */
1882 static void perf_event__header_size(struct perf_event *event)
1883 {
1884 	__perf_event_read_size(event,
1885 			       event->group_leader->nr_siblings);
1886 	__perf_event_header_size(event, event->attr.sample_type);
1887 }
1888 
1889 static void perf_event__id_header_size(struct perf_event *event)
1890 {
1891 	struct perf_sample_data *data;
1892 	u64 sample_type = event->attr.sample_type;
1893 	u16 size = 0;
1894 
1895 	if (sample_type & PERF_SAMPLE_TID)
1896 		size += sizeof(data->tid_entry);
1897 
1898 	if (sample_type & PERF_SAMPLE_TIME)
1899 		size += sizeof(data->time);
1900 
1901 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1902 		size += sizeof(data->id);
1903 
1904 	if (sample_type & PERF_SAMPLE_ID)
1905 		size += sizeof(data->id);
1906 
1907 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1908 		size += sizeof(data->stream_id);
1909 
1910 	if (sample_type & PERF_SAMPLE_CPU)
1911 		size += sizeof(data->cpu_entry);
1912 
1913 	event->id_header_size = size;
1914 }
1915 
1916 static bool perf_event_validate_size(struct perf_event *event)
1917 {
1918 	/*
1919 	 * The values computed here will be over-written when we actually
1920 	 * attach the event.
1921 	 */
1922 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1923 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1924 	perf_event__id_header_size(event);
1925 
1926 	/*
1927 	 * Sum the lot; should not exceed the 64k limit we have on records.
1928 	 * Conservative limit to allow for callchains and other variable fields.
1929 	 */
1930 	if (event->read_size + event->header_size +
1931 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1932 		return false;
1933 
1934 	return true;
1935 }
1936 
1937 static void perf_group_attach(struct perf_event *event)
1938 {
1939 	struct perf_event *group_leader = event->group_leader, *pos;
1940 
1941 	lockdep_assert_held(&event->ctx->lock);
1942 
1943 	/*
1944 	 * We can have double attach due to group movement in perf_event_open.
1945 	 */
1946 	if (event->attach_state & PERF_ATTACH_GROUP)
1947 		return;
1948 
1949 	event->attach_state |= PERF_ATTACH_GROUP;
1950 
1951 	if (group_leader == event)
1952 		return;
1953 
1954 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1955 
1956 	group_leader->group_caps &= event->event_caps;
1957 
1958 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1959 	group_leader->nr_siblings++;
1960 
1961 	perf_event__header_size(group_leader);
1962 
1963 	for_each_sibling_event(pos, group_leader)
1964 		perf_event__header_size(pos);
1965 }
1966 
1967 /*
1968  * Remove an event from the lists for its context.
1969  * Must be called with ctx->mutex and ctx->lock held.
1970  */
1971 static void
1972 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1973 {
1974 	WARN_ON_ONCE(event->ctx != ctx);
1975 	lockdep_assert_held(&ctx->lock);
1976 
1977 	/*
1978 	 * We can have double detach due to exit/hot-unplug + close.
1979 	 */
1980 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1981 		return;
1982 
1983 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1984 
1985 	ctx->nr_events--;
1986 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1987 		ctx->nr_user--;
1988 	if (event->attr.inherit_stat)
1989 		ctx->nr_stat--;
1990 
1991 	list_del_rcu(&event->event_entry);
1992 
1993 	if (event->group_leader == event)
1994 		del_event_from_groups(event, ctx);
1995 
1996 	/*
1997 	 * If event was in error state, then keep it
1998 	 * that way, otherwise bogus counts will be
1999 	 * returned on read(). The only way to get out
2000 	 * of error state is by explicit re-enabling
2001 	 * of the event
2002 	 */
2003 	if (event->state > PERF_EVENT_STATE_OFF) {
2004 		perf_cgroup_event_disable(event, ctx);
2005 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2006 	}
2007 
2008 	ctx->generation++;
2009 }
2010 
2011 static int
2012 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2013 {
2014 	if (!has_aux(aux_event))
2015 		return 0;
2016 
2017 	if (!event->pmu->aux_output_match)
2018 		return 0;
2019 
2020 	return event->pmu->aux_output_match(aux_event);
2021 }
2022 
2023 static void put_event(struct perf_event *event);
2024 static void event_sched_out(struct perf_event *event,
2025 			    struct perf_cpu_context *cpuctx,
2026 			    struct perf_event_context *ctx);
2027 
2028 static void perf_put_aux_event(struct perf_event *event)
2029 {
2030 	struct perf_event_context *ctx = event->ctx;
2031 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2032 	struct perf_event *iter;
2033 
2034 	/*
2035 	 * If event uses aux_event tear down the link
2036 	 */
2037 	if (event->aux_event) {
2038 		iter = event->aux_event;
2039 		event->aux_event = NULL;
2040 		put_event(iter);
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * If the event is an aux_event, tear down all links to
2046 	 * it from other events.
2047 	 */
2048 	for_each_sibling_event(iter, event->group_leader) {
2049 		if (iter->aux_event != event)
2050 			continue;
2051 
2052 		iter->aux_event = NULL;
2053 		put_event(event);
2054 
2055 		/*
2056 		 * If it's ACTIVE, schedule it out and put it into ERROR
2057 		 * state so that we don't try to schedule it again. Note
2058 		 * that perf_event_enable() will clear the ERROR status.
2059 		 */
2060 		event_sched_out(iter, cpuctx, ctx);
2061 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2062 	}
2063 }
2064 
2065 static bool perf_need_aux_event(struct perf_event *event)
2066 {
2067 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2068 }
2069 
2070 static int perf_get_aux_event(struct perf_event *event,
2071 			      struct perf_event *group_leader)
2072 {
2073 	/*
2074 	 * Our group leader must be an aux event if we want to be
2075 	 * an aux_output. This way, the aux event will precede its
2076 	 * aux_output events in the group, and therefore will always
2077 	 * schedule first.
2078 	 */
2079 	if (!group_leader)
2080 		return 0;
2081 
2082 	/*
2083 	 * aux_output and aux_sample_size are mutually exclusive.
2084 	 */
2085 	if (event->attr.aux_output && event->attr.aux_sample_size)
2086 		return 0;
2087 
2088 	if (event->attr.aux_output &&
2089 	    !perf_aux_output_match(event, group_leader))
2090 		return 0;
2091 
2092 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2093 		return 0;
2094 
2095 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2096 		return 0;
2097 
2098 	/*
2099 	 * Link aux_outputs to their aux event; this is undone in
2100 	 * perf_group_detach() by perf_put_aux_event(). When the
2101 	 * group in torn down, the aux_output events loose their
2102 	 * link to the aux_event and can't schedule any more.
2103 	 */
2104 	event->aux_event = group_leader;
2105 
2106 	return 1;
2107 }
2108 
2109 static inline struct list_head *get_event_list(struct perf_event *event)
2110 {
2111 	struct perf_event_context *ctx = event->ctx;
2112 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2113 }
2114 
2115 /*
2116  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2117  * cannot exist on their own, schedule them out and move them into the ERROR
2118  * state. Also see _perf_event_enable(), it will not be able to recover
2119  * this ERROR state.
2120  */
2121 static inline void perf_remove_sibling_event(struct perf_event *event)
2122 {
2123 	struct perf_event_context *ctx = event->ctx;
2124 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2125 
2126 	event_sched_out(event, cpuctx, ctx);
2127 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2128 }
2129 
2130 static void perf_group_detach(struct perf_event *event)
2131 {
2132 	struct perf_event *leader = event->group_leader;
2133 	struct perf_event *sibling, *tmp;
2134 	struct perf_event_context *ctx = event->ctx;
2135 
2136 	lockdep_assert_held(&ctx->lock);
2137 
2138 	/*
2139 	 * We can have double detach due to exit/hot-unplug + close.
2140 	 */
2141 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2142 		return;
2143 
2144 	event->attach_state &= ~PERF_ATTACH_GROUP;
2145 
2146 	perf_put_aux_event(event);
2147 
2148 	/*
2149 	 * If this is a sibling, remove it from its group.
2150 	 */
2151 	if (leader != event) {
2152 		list_del_init(&event->sibling_list);
2153 		event->group_leader->nr_siblings--;
2154 		goto out;
2155 	}
2156 
2157 	/*
2158 	 * If this was a group event with sibling events then
2159 	 * upgrade the siblings to singleton events by adding them
2160 	 * to whatever list we are on.
2161 	 */
2162 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2163 
2164 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2165 			perf_remove_sibling_event(sibling);
2166 
2167 		sibling->group_leader = sibling;
2168 		list_del_init(&sibling->sibling_list);
2169 
2170 		/* Inherit group flags from the previous leader */
2171 		sibling->group_caps = event->group_caps;
2172 
2173 		if (!RB_EMPTY_NODE(&event->group_node)) {
2174 			add_event_to_groups(sibling, event->ctx);
2175 
2176 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2177 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2178 		}
2179 
2180 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2181 	}
2182 
2183 out:
2184 	for_each_sibling_event(tmp, leader)
2185 		perf_event__header_size(tmp);
2186 
2187 	perf_event__header_size(leader);
2188 }
2189 
2190 static void sync_child_event(struct perf_event *child_event);
2191 
2192 static void perf_child_detach(struct perf_event *event)
2193 {
2194 	struct perf_event *parent_event = event->parent;
2195 
2196 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2197 		return;
2198 
2199 	event->attach_state &= ~PERF_ATTACH_CHILD;
2200 
2201 	if (WARN_ON_ONCE(!parent_event))
2202 		return;
2203 
2204 	lockdep_assert_held(&parent_event->child_mutex);
2205 
2206 	sync_child_event(event);
2207 	list_del_init(&event->child_list);
2208 }
2209 
2210 static bool is_orphaned_event(struct perf_event *event)
2211 {
2212 	return event->state == PERF_EVENT_STATE_DEAD;
2213 }
2214 
2215 static inline int __pmu_filter_match(struct perf_event *event)
2216 {
2217 	struct pmu *pmu = event->pmu;
2218 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2219 }
2220 
2221 /*
2222  * Check whether we should attempt to schedule an event group based on
2223  * PMU-specific filtering. An event group can consist of HW and SW events,
2224  * potentially with a SW leader, so we must check all the filters, to
2225  * determine whether a group is schedulable:
2226  */
2227 static inline int pmu_filter_match(struct perf_event *event)
2228 {
2229 	struct perf_event *sibling;
2230 	unsigned long flags;
2231 	int ret = 1;
2232 
2233 	if (!__pmu_filter_match(event))
2234 		return 0;
2235 
2236 	local_irq_save(flags);
2237 	for_each_sibling_event(sibling, event) {
2238 		if (!__pmu_filter_match(sibling)) {
2239 			ret = 0;
2240 			break;
2241 		}
2242 	}
2243 	local_irq_restore(flags);
2244 
2245 	return ret;
2246 }
2247 
2248 static inline int
2249 event_filter_match(struct perf_event *event)
2250 {
2251 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2252 	       perf_cgroup_match(event) && pmu_filter_match(event);
2253 }
2254 
2255 static void
2256 event_sched_out(struct perf_event *event,
2257 		  struct perf_cpu_context *cpuctx,
2258 		  struct perf_event_context *ctx)
2259 {
2260 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2261 
2262 	WARN_ON_ONCE(event->ctx != ctx);
2263 	lockdep_assert_held(&ctx->lock);
2264 
2265 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2266 		return;
2267 
2268 	/*
2269 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270 	 * we can schedule events _OUT_ individually through things like
2271 	 * __perf_remove_from_context().
2272 	 */
2273 	list_del_init(&event->active_list);
2274 
2275 	perf_pmu_disable(event->pmu);
2276 
2277 	event->pmu->del(event, 0);
2278 	event->oncpu = -1;
2279 
2280 	if (event->pending_disable) {
2281 		event->pending_disable = 0;
2282 		perf_cgroup_event_disable(event, ctx);
2283 		state = PERF_EVENT_STATE_OFF;
2284 	}
2285 
2286 	if (event->pending_sigtrap) {
2287 		bool dec = true;
2288 
2289 		event->pending_sigtrap = 0;
2290 		if (state != PERF_EVENT_STATE_OFF &&
2291 		    !event->pending_work) {
2292 			event->pending_work = 1;
2293 			dec = false;
2294 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295 			task_work_add(current, &event->pending_task, TWA_RESUME);
2296 		}
2297 		if (dec)
2298 			local_dec(&event->ctx->nr_pending);
2299 	}
2300 
2301 	perf_event_set_state(event, state);
2302 
2303 	if (!is_software_event(event))
2304 		cpuctx->active_oncpu--;
2305 	if (!--ctx->nr_active)
2306 		perf_event_ctx_deactivate(ctx);
2307 	if (event->attr.freq && event->attr.sample_freq)
2308 		ctx->nr_freq--;
2309 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2310 		cpuctx->exclusive = 0;
2311 
2312 	perf_pmu_enable(event->pmu);
2313 }
2314 
2315 static void
2316 group_sched_out(struct perf_event *group_event,
2317 		struct perf_cpu_context *cpuctx,
2318 		struct perf_event_context *ctx)
2319 {
2320 	struct perf_event *event;
2321 
2322 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2323 		return;
2324 
2325 	perf_pmu_disable(ctx->pmu);
2326 
2327 	event_sched_out(group_event, cpuctx, ctx);
2328 
2329 	/*
2330 	 * Schedule out siblings (if any):
2331 	 */
2332 	for_each_sibling_event(event, group_event)
2333 		event_sched_out(event, cpuctx, ctx);
2334 
2335 	perf_pmu_enable(ctx->pmu);
2336 }
2337 
2338 #define DETACH_GROUP	0x01UL
2339 #define DETACH_CHILD	0x02UL
2340 #define DETACH_DEAD	0x04UL
2341 
2342 /*
2343  * Cross CPU call to remove a performance event
2344  *
2345  * We disable the event on the hardware level first. After that we
2346  * remove it from the context list.
2347  */
2348 static void
2349 __perf_remove_from_context(struct perf_event *event,
2350 			   struct perf_cpu_context *cpuctx,
2351 			   struct perf_event_context *ctx,
2352 			   void *info)
2353 {
2354 	unsigned long flags = (unsigned long)info;
2355 
2356 	if (ctx->is_active & EVENT_TIME) {
2357 		update_context_time(ctx);
2358 		update_cgrp_time_from_cpuctx(cpuctx, false);
2359 	}
2360 
2361 	/*
2362 	 * Ensure event_sched_out() switches to OFF, at the very least
2363 	 * this avoids raising perf_pending_task() at this time.
2364 	 */
2365 	if (flags & DETACH_DEAD)
2366 		event->pending_disable = 1;
2367 	event_sched_out(event, cpuctx, ctx);
2368 	if (flags & DETACH_GROUP)
2369 		perf_group_detach(event);
2370 	if (flags & DETACH_CHILD)
2371 		perf_child_detach(event);
2372 	list_del_event(event, ctx);
2373 	if (flags & DETACH_DEAD)
2374 		event->state = PERF_EVENT_STATE_DEAD;
2375 
2376 	if (!ctx->nr_events && ctx->is_active) {
2377 		if (ctx == &cpuctx->ctx)
2378 			update_cgrp_time_from_cpuctx(cpuctx, true);
2379 
2380 		ctx->is_active = 0;
2381 		ctx->rotate_necessary = 0;
2382 		if (ctx->task) {
2383 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2384 			cpuctx->task_ctx = NULL;
2385 		}
2386 	}
2387 }
2388 
2389 /*
2390  * Remove the event from a task's (or a CPU's) list of events.
2391  *
2392  * If event->ctx is a cloned context, callers must make sure that
2393  * every task struct that event->ctx->task could possibly point to
2394  * remains valid.  This is OK when called from perf_release since
2395  * that only calls us on the top-level context, which can't be a clone.
2396  * When called from perf_event_exit_task, it's OK because the
2397  * context has been detached from its task.
2398  */
2399 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2400 {
2401 	struct perf_event_context *ctx = event->ctx;
2402 
2403 	lockdep_assert_held(&ctx->mutex);
2404 
2405 	/*
2406 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2407 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2408 	 * event_function_call() user.
2409 	 */
2410 	raw_spin_lock_irq(&ctx->lock);
2411 	/*
2412 	 * Cgroup events are per-cpu events, and must IPI because of
2413 	 * cgrp_cpuctx_list.
2414 	 */
2415 	if (!ctx->is_active && !is_cgroup_event(event)) {
2416 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2417 					   ctx, (void *)flags);
2418 		raw_spin_unlock_irq(&ctx->lock);
2419 		return;
2420 	}
2421 	raw_spin_unlock_irq(&ctx->lock);
2422 
2423 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2424 }
2425 
2426 /*
2427  * Cross CPU call to disable a performance event
2428  */
2429 static void __perf_event_disable(struct perf_event *event,
2430 				 struct perf_cpu_context *cpuctx,
2431 				 struct perf_event_context *ctx,
2432 				 void *info)
2433 {
2434 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2435 		return;
2436 
2437 	if (ctx->is_active & EVENT_TIME) {
2438 		update_context_time(ctx);
2439 		update_cgrp_time_from_event(event);
2440 	}
2441 
2442 	if (event == event->group_leader)
2443 		group_sched_out(event, cpuctx, ctx);
2444 	else
2445 		event_sched_out(event, cpuctx, ctx);
2446 
2447 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2448 	perf_cgroup_event_disable(event, ctx);
2449 }
2450 
2451 /*
2452  * Disable an event.
2453  *
2454  * If event->ctx is a cloned context, callers must make sure that
2455  * every task struct that event->ctx->task could possibly point to
2456  * remains valid.  This condition is satisfied when called through
2457  * perf_event_for_each_child or perf_event_for_each because they
2458  * hold the top-level event's child_mutex, so any descendant that
2459  * goes to exit will block in perf_event_exit_event().
2460  *
2461  * When called from perf_pending_irq it's OK because event->ctx
2462  * is the current context on this CPU and preemption is disabled,
2463  * hence we can't get into perf_event_task_sched_out for this context.
2464  */
2465 static void _perf_event_disable(struct perf_event *event)
2466 {
2467 	struct perf_event_context *ctx = event->ctx;
2468 
2469 	raw_spin_lock_irq(&ctx->lock);
2470 	if (event->state <= PERF_EVENT_STATE_OFF) {
2471 		raw_spin_unlock_irq(&ctx->lock);
2472 		return;
2473 	}
2474 	raw_spin_unlock_irq(&ctx->lock);
2475 
2476 	event_function_call(event, __perf_event_disable, NULL);
2477 }
2478 
2479 void perf_event_disable_local(struct perf_event *event)
2480 {
2481 	event_function_local(event, __perf_event_disable, NULL);
2482 }
2483 
2484 /*
2485  * Strictly speaking kernel users cannot create groups and therefore this
2486  * interface does not need the perf_event_ctx_lock() magic.
2487  */
2488 void perf_event_disable(struct perf_event *event)
2489 {
2490 	struct perf_event_context *ctx;
2491 
2492 	ctx = perf_event_ctx_lock(event);
2493 	_perf_event_disable(event);
2494 	perf_event_ctx_unlock(event, ctx);
2495 }
2496 EXPORT_SYMBOL_GPL(perf_event_disable);
2497 
2498 void perf_event_disable_inatomic(struct perf_event *event)
2499 {
2500 	event->pending_disable = 1;
2501 	irq_work_queue(&event->pending_irq);
2502 }
2503 
2504 #define MAX_INTERRUPTS (~0ULL)
2505 
2506 static void perf_log_throttle(struct perf_event *event, int enable);
2507 static void perf_log_itrace_start(struct perf_event *event);
2508 
2509 static int
2510 event_sched_in(struct perf_event *event,
2511 		 struct perf_cpu_context *cpuctx,
2512 		 struct perf_event_context *ctx)
2513 {
2514 	int ret = 0;
2515 
2516 	WARN_ON_ONCE(event->ctx != ctx);
2517 
2518 	lockdep_assert_held(&ctx->lock);
2519 
2520 	if (event->state <= PERF_EVENT_STATE_OFF)
2521 		return 0;
2522 
2523 	WRITE_ONCE(event->oncpu, smp_processor_id());
2524 	/*
2525 	 * Order event::oncpu write to happen before the ACTIVE state is
2526 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2527 	 * ->oncpu if it sees ACTIVE.
2528 	 */
2529 	smp_wmb();
2530 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2531 
2532 	/*
2533 	 * Unthrottle events, since we scheduled we might have missed several
2534 	 * ticks already, also for a heavily scheduling task there is little
2535 	 * guarantee it'll get a tick in a timely manner.
2536 	 */
2537 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2538 		perf_log_throttle(event, 1);
2539 		event->hw.interrupts = 0;
2540 	}
2541 
2542 	perf_pmu_disable(event->pmu);
2543 
2544 	perf_log_itrace_start(event);
2545 
2546 	if (event->pmu->add(event, PERF_EF_START)) {
2547 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2548 		event->oncpu = -1;
2549 		ret = -EAGAIN;
2550 		goto out;
2551 	}
2552 
2553 	if (!is_software_event(event))
2554 		cpuctx->active_oncpu++;
2555 	if (!ctx->nr_active++)
2556 		perf_event_ctx_activate(ctx);
2557 	if (event->attr.freq && event->attr.sample_freq)
2558 		ctx->nr_freq++;
2559 
2560 	if (event->attr.exclusive)
2561 		cpuctx->exclusive = 1;
2562 
2563 out:
2564 	perf_pmu_enable(event->pmu);
2565 
2566 	return ret;
2567 }
2568 
2569 static int
2570 group_sched_in(struct perf_event *group_event,
2571 	       struct perf_cpu_context *cpuctx,
2572 	       struct perf_event_context *ctx)
2573 {
2574 	struct perf_event *event, *partial_group = NULL;
2575 	struct pmu *pmu = ctx->pmu;
2576 
2577 	if (group_event->state == PERF_EVENT_STATE_OFF)
2578 		return 0;
2579 
2580 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2581 
2582 	if (event_sched_in(group_event, cpuctx, ctx))
2583 		goto error;
2584 
2585 	/*
2586 	 * Schedule in siblings as one group (if any):
2587 	 */
2588 	for_each_sibling_event(event, group_event) {
2589 		if (event_sched_in(event, cpuctx, ctx)) {
2590 			partial_group = event;
2591 			goto group_error;
2592 		}
2593 	}
2594 
2595 	if (!pmu->commit_txn(pmu))
2596 		return 0;
2597 
2598 group_error:
2599 	/*
2600 	 * Groups can be scheduled in as one unit only, so undo any
2601 	 * partial group before returning:
2602 	 * The events up to the failed event are scheduled out normally.
2603 	 */
2604 	for_each_sibling_event(event, group_event) {
2605 		if (event == partial_group)
2606 			break;
2607 
2608 		event_sched_out(event, cpuctx, ctx);
2609 	}
2610 	event_sched_out(group_event, cpuctx, ctx);
2611 
2612 error:
2613 	pmu->cancel_txn(pmu);
2614 	return -EAGAIN;
2615 }
2616 
2617 /*
2618  * Work out whether we can put this event group on the CPU now.
2619  */
2620 static int group_can_go_on(struct perf_event *event,
2621 			   struct perf_cpu_context *cpuctx,
2622 			   int can_add_hw)
2623 {
2624 	/*
2625 	 * Groups consisting entirely of software events can always go on.
2626 	 */
2627 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2628 		return 1;
2629 	/*
2630 	 * If an exclusive group is already on, no other hardware
2631 	 * events can go on.
2632 	 */
2633 	if (cpuctx->exclusive)
2634 		return 0;
2635 	/*
2636 	 * If this group is exclusive and there are already
2637 	 * events on the CPU, it can't go on.
2638 	 */
2639 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2640 		return 0;
2641 	/*
2642 	 * Otherwise, try to add it if all previous groups were able
2643 	 * to go on.
2644 	 */
2645 	return can_add_hw;
2646 }
2647 
2648 static void add_event_to_ctx(struct perf_event *event,
2649 			       struct perf_event_context *ctx)
2650 {
2651 	list_add_event(event, ctx);
2652 	perf_group_attach(event);
2653 }
2654 
2655 static void ctx_sched_out(struct perf_event_context *ctx,
2656 			  struct perf_cpu_context *cpuctx,
2657 			  enum event_type_t event_type);
2658 static void
2659 ctx_sched_in(struct perf_event_context *ctx,
2660 	     struct perf_cpu_context *cpuctx,
2661 	     enum event_type_t event_type);
2662 
2663 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2664 			       struct perf_event_context *ctx,
2665 			       enum event_type_t event_type)
2666 {
2667 	if (!cpuctx->task_ctx)
2668 		return;
2669 
2670 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 		return;
2672 
2673 	ctx_sched_out(ctx, cpuctx, event_type);
2674 }
2675 
2676 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2677 				struct perf_event_context *ctx)
2678 {
2679 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED);
2680 	if (ctx)
2681 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
2682 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
2683 	if (ctx)
2684 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
2685 }
2686 
2687 /*
2688  * We want to maintain the following priority of scheduling:
2689  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2690  *  - task pinned (EVENT_PINNED)
2691  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2692  *  - task flexible (EVENT_FLEXIBLE).
2693  *
2694  * In order to avoid unscheduling and scheduling back in everything every
2695  * time an event is added, only do it for the groups of equal priority and
2696  * below.
2697  *
2698  * This can be called after a batch operation on task events, in which case
2699  * event_type is a bit mask of the types of events involved. For CPU events,
2700  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2701  */
2702 static void ctx_resched(struct perf_cpu_context *cpuctx,
2703 			struct perf_event_context *task_ctx,
2704 			enum event_type_t event_type)
2705 {
2706 	enum event_type_t ctx_event_type;
2707 	bool cpu_event = !!(event_type & EVENT_CPU);
2708 
2709 	/*
2710 	 * If pinned groups are involved, flexible groups also need to be
2711 	 * scheduled out.
2712 	 */
2713 	if (event_type & EVENT_PINNED)
2714 		event_type |= EVENT_FLEXIBLE;
2715 
2716 	ctx_event_type = event_type & EVENT_ALL;
2717 
2718 	perf_pmu_disable(cpuctx->ctx.pmu);
2719 	if (task_ctx)
2720 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2721 
2722 	/*
2723 	 * Decide which cpu ctx groups to schedule out based on the types
2724 	 * of events that caused rescheduling:
2725 	 *  - EVENT_CPU: schedule out corresponding groups;
2726 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2727 	 *  - otherwise, do nothing more.
2728 	 */
2729 	if (cpu_event)
2730 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2731 	else if (ctx_event_type & EVENT_PINNED)
2732 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2733 
2734 	perf_event_sched_in(cpuctx, task_ctx);
2735 	perf_pmu_enable(cpuctx->ctx.pmu);
2736 }
2737 
2738 void perf_pmu_resched(struct pmu *pmu)
2739 {
2740 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2741 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2742 
2743 	perf_ctx_lock(cpuctx, task_ctx);
2744 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2745 	perf_ctx_unlock(cpuctx, task_ctx);
2746 }
2747 
2748 /*
2749  * Cross CPU call to install and enable a performance event
2750  *
2751  * Very similar to remote_function() + event_function() but cannot assume that
2752  * things like ctx->is_active and cpuctx->task_ctx are set.
2753  */
2754 static int  __perf_install_in_context(void *info)
2755 {
2756 	struct perf_event *event = info;
2757 	struct perf_event_context *ctx = event->ctx;
2758 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2759 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2760 	bool reprogram = true;
2761 	int ret = 0;
2762 
2763 	raw_spin_lock(&cpuctx->ctx.lock);
2764 	if (ctx->task) {
2765 		raw_spin_lock(&ctx->lock);
2766 		task_ctx = ctx;
2767 
2768 		reprogram = (ctx->task == current);
2769 
2770 		/*
2771 		 * If the task is running, it must be running on this CPU,
2772 		 * otherwise we cannot reprogram things.
2773 		 *
2774 		 * If its not running, we don't care, ctx->lock will
2775 		 * serialize against it becoming runnable.
2776 		 */
2777 		if (task_curr(ctx->task) && !reprogram) {
2778 			ret = -ESRCH;
2779 			goto unlock;
2780 		}
2781 
2782 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2783 	} else if (task_ctx) {
2784 		raw_spin_lock(&task_ctx->lock);
2785 	}
2786 
2787 #ifdef CONFIG_CGROUP_PERF
2788 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2789 		/*
2790 		 * If the current cgroup doesn't match the event's
2791 		 * cgroup, we should not try to schedule it.
2792 		 */
2793 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2794 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2795 					event->cgrp->css.cgroup);
2796 	}
2797 #endif
2798 
2799 	if (reprogram) {
2800 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2801 		add_event_to_ctx(event, ctx);
2802 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2803 	} else {
2804 		add_event_to_ctx(event, ctx);
2805 	}
2806 
2807 unlock:
2808 	perf_ctx_unlock(cpuctx, task_ctx);
2809 
2810 	return ret;
2811 }
2812 
2813 static bool exclusive_event_installable(struct perf_event *event,
2814 					struct perf_event_context *ctx);
2815 
2816 /*
2817  * Attach a performance event to a context.
2818  *
2819  * Very similar to event_function_call, see comment there.
2820  */
2821 static void
2822 perf_install_in_context(struct perf_event_context *ctx,
2823 			struct perf_event *event,
2824 			int cpu)
2825 {
2826 	struct task_struct *task = READ_ONCE(ctx->task);
2827 
2828 	lockdep_assert_held(&ctx->mutex);
2829 
2830 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2831 
2832 	if (event->cpu != -1)
2833 		event->cpu = cpu;
2834 
2835 	/*
2836 	 * Ensures that if we can observe event->ctx, both the event and ctx
2837 	 * will be 'complete'. See perf_iterate_sb_cpu().
2838 	 */
2839 	smp_store_release(&event->ctx, ctx);
2840 
2841 	/*
2842 	 * perf_event_attr::disabled events will not run and can be initialized
2843 	 * without IPI. Except when this is the first event for the context, in
2844 	 * that case we need the magic of the IPI to set ctx->is_active.
2845 	 * Similarly, cgroup events for the context also needs the IPI to
2846 	 * manipulate the cgrp_cpuctx_list.
2847 	 *
2848 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2849 	 * event will issue the IPI and reprogram the hardware.
2850 	 */
2851 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2852 	    ctx->nr_events && !is_cgroup_event(event)) {
2853 		raw_spin_lock_irq(&ctx->lock);
2854 		if (ctx->task == TASK_TOMBSTONE) {
2855 			raw_spin_unlock_irq(&ctx->lock);
2856 			return;
2857 		}
2858 		add_event_to_ctx(event, ctx);
2859 		raw_spin_unlock_irq(&ctx->lock);
2860 		return;
2861 	}
2862 
2863 	if (!task) {
2864 		cpu_function_call(cpu, __perf_install_in_context, event);
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * Should not happen, we validate the ctx is still alive before calling.
2870 	 */
2871 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 		return;
2873 
2874 	/*
2875 	 * Installing events is tricky because we cannot rely on ctx->is_active
2876 	 * to be set in case this is the nr_events 0 -> 1 transition.
2877 	 *
2878 	 * Instead we use task_curr(), which tells us if the task is running.
2879 	 * However, since we use task_curr() outside of rq::lock, we can race
2880 	 * against the actual state. This means the result can be wrong.
2881 	 *
2882 	 * If we get a false positive, we retry, this is harmless.
2883 	 *
2884 	 * If we get a false negative, things are complicated. If we are after
2885 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 	 * value must be correct. If we're before, it doesn't matter since
2887 	 * perf_event_context_sched_in() will program the counter.
2888 	 *
2889 	 * However, this hinges on the remote context switch having observed
2890 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 	 * ctx::lock in perf_event_context_sched_in().
2892 	 *
2893 	 * We do this by task_function_call(), if the IPI fails to hit the task
2894 	 * we know any future context switch of task must see the
2895 	 * perf_event_ctpx[] store.
2896 	 */
2897 
2898 	/*
2899 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 	 * task_cpu() load, such that if the IPI then does not find the task
2901 	 * running, a future context switch of that task must observe the
2902 	 * store.
2903 	 */
2904 	smp_mb();
2905 again:
2906 	if (!task_function_call(task, __perf_install_in_context, event))
2907 		return;
2908 
2909 	raw_spin_lock_irq(&ctx->lock);
2910 	task = ctx->task;
2911 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 		/*
2913 		 * Cannot happen because we already checked above (which also
2914 		 * cannot happen), and we hold ctx->mutex, which serializes us
2915 		 * against perf_event_exit_task_context().
2916 		 */
2917 		raw_spin_unlock_irq(&ctx->lock);
2918 		return;
2919 	}
2920 	/*
2921 	 * If the task is not running, ctx->lock will avoid it becoming so,
2922 	 * thus we can safely install the event.
2923 	 */
2924 	if (task_curr(task)) {
2925 		raw_spin_unlock_irq(&ctx->lock);
2926 		goto again;
2927 	}
2928 	add_event_to_ctx(event, ctx);
2929 	raw_spin_unlock_irq(&ctx->lock);
2930 }
2931 
2932 /*
2933  * Cross CPU call to enable a performance event
2934  */
2935 static void __perf_event_enable(struct perf_event *event,
2936 				struct perf_cpu_context *cpuctx,
2937 				struct perf_event_context *ctx,
2938 				void *info)
2939 {
2940 	struct perf_event *leader = event->group_leader;
2941 	struct perf_event_context *task_ctx;
2942 
2943 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 	    event->state <= PERF_EVENT_STATE_ERROR)
2945 		return;
2946 
2947 	if (ctx->is_active)
2948 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2949 
2950 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 	perf_cgroup_event_enable(event, ctx);
2952 
2953 	if (!ctx->is_active)
2954 		return;
2955 
2956 	if (!event_filter_match(event)) {
2957 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * If the event is in a group and isn't the group leader,
2963 	 * then don't put it on unless the group is on.
2964 	 */
2965 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
2967 		return;
2968 	}
2969 
2970 	task_ctx = cpuctx->task_ctx;
2971 	if (ctx->task)
2972 		WARN_ON_ONCE(task_ctx != ctx);
2973 
2974 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976 
2977 /*
2978  * Enable an event.
2979  *
2980  * If event->ctx is a cloned context, callers must make sure that
2981  * every task struct that event->ctx->task could possibly point to
2982  * remains valid.  This condition is satisfied when called through
2983  * perf_event_for_each_child or perf_event_for_each as described
2984  * for perf_event_disable.
2985  */
2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 	struct perf_event_context *ctx = event->ctx;
2989 
2990 	raw_spin_lock_irq(&ctx->lock);
2991 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 	    event->state <  PERF_EVENT_STATE_ERROR) {
2993 out:
2994 		raw_spin_unlock_irq(&ctx->lock);
2995 		return;
2996 	}
2997 
2998 	/*
2999 	 * If the event is in error state, clear that first.
3000 	 *
3001 	 * That way, if we see the event in error state below, we know that it
3002 	 * has gone back into error state, as distinct from the task having
3003 	 * been scheduled away before the cross-call arrived.
3004 	 */
3005 	if (event->state == PERF_EVENT_STATE_ERROR) {
3006 		/*
3007 		 * Detached SIBLING events cannot leave ERROR state.
3008 		 */
3009 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 		    event->group_leader == event)
3011 			goto out;
3012 
3013 		event->state = PERF_EVENT_STATE_OFF;
3014 	}
3015 	raw_spin_unlock_irq(&ctx->lock);
3016 
3017 	event_function_call(event, __perf_event_enable, NULL);
3018 }
3019 
3020 /*
3021  * See perf_event_disable();
3022  */
3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 	struct perf_event_context *ctx;
3026 
3027 	ctx = perf_event_ctx_lock(event);
3028 	_perf_event_enable(event);
3029 	perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032 
3033 struct stop_event_data {
3034 	struct perf_event	*event;
3035 	unsigned int		restart;
3036 };
3037 
3038 static int __perf_event_stop(void *info)
3039 {
3040 	struct stop_event_data *sd = info;
3041 	struct perf_event *event = sd->event;
3042 
3043 	/* if it's already INACTIVE, do nothing */
3044 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 		return 0;
3046 
3047 	/* matches smp_wmb() in event_sched_in() */
3048 	smp_rmb();
3049 
3050 	/*
3051 	 * There is a window with interrupts enabled before we get here,
3052 	 * so we need to check again lest we try to stop another CPU's event.
3053 	 */
3054 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 		return -EAGAIN;
3056 
3057 	event->pmu->stop(event, PERF_EF_UPDATE);
3058 
3059 	/*
3060 	 * May race with the actual stop (through perf_pmu_output_stop()),
3061 	 * but it is only used for events with AUX ring buffer, and such
3062 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 	 * see comments in perf_aux_output_begin().
3064 	 *
3065 	 * Since this is happening on an event-local CPU, no trace is lost
3066 	 * while restarting.
3067 	 */
3068 	if (sd->restart)
3069 		event->pmu->start(event, 0);
3070 
3071 	return 0;
3072 }
3073 
3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 	struct stop_event_data sd = {
3077 		.event		= event,
3078 		.restart	= restart,
3079 	};
3080 	int ret = 0;
3081 
3082 	do {
3083 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 			return 0;
3085 
3086 		/* matches smp_wmb() in event_sched_in() */
3087 		smp_rmb();
3088 
3089 		/*
3090 		 * We only want to restart ACTIVE events, so if the event goes
3091 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 		 * fall through with ret==-ENXIO.
3093 		 */
3094 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 					__perf_event_stop, &sd);
3096 	} while (ret == -EAGAIN);
3097 
3098 	return ret;
3099 }
3100 
3101 /*
3102  * In order to contain the amount of racy and tricky in the address filter
3103  * configuration management, it is a two part process:
3104  *
3105  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106  *      we update the addresses of corresponding vmas in
3107  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108  * (p2) when an event is scheduled in (pmu::add), it calls
3109  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110  *      if the generation has changed since the previous call.
3111  *
3112  * If (p1) happens while the event is active, we restart it to force (p2).
3113  *
3114  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116  *     ioctl;
3117  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119  *     for reading;
3120  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121  *     of exec.
3122  */
3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126 
3127 	if (!has_addr_filter(event))
3128 		return;
3129 
3130 	raw_spin_lock(&ifh->lock);
3131 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 		event->pmu->addr_filters_sync(event);
3133 		event->hw.addr_filters_gen = event->addr_filters_gen;
3134 	}
3135 	raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138 
3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 	/*
3142 	 * not supported on inherited events
3143 	 */
3144 	if (event->attr.inherit || !is_sampling_event(event))
3145 		return -EINVAL;
3146 
3147 	atomic_add(refresh, &event->event_limit);
3148 	_perf_event_enable(event);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * See perf_event_disable()
3155  */
3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 	struct perf_event_context *ctx;
3159 	int ret;
3160 
3161 	ctx = perf_event_ctx_lock(event);
3162 	ret = _perf_event_refresh(event, refresh);
3163 	perf_event_ctx_unlock(event, ctx);
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168 
3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 					 struct perf_event_attr *attr)
3171 {
3172 	int err;
3173 
3174 	_perf_event_disable(bp);
3175 
3176 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3177 
3178 	if (!bp->attr.disabled)
3179 		_perf_event_enable(bp);
3180 
3181 	return err;
3182 }
3183 
3184 /*
3185  * Copy event-type-independent attributes that may be modified.
3186  */
3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3188 					const struct perf_event_attr *from)
3189 {
3190 	to->sig_data = from->sig_data;
3191 }
3192 
3193 static int perf_event_modify_attr(struct perf_event *event,
3194 				  struct perf_event_attr *attr)
3195 {
3196 	int (*func)(struct perf_event *, struct perf_event_attr *);
3197 	struct perf_event *child;
3198 	int err;
3199 
3200 	if (event->attr.type != attr->type)
3201 		return -EINVAL;
3202 
3203 	switch (event->attr.type) {
3204 	case PERF_TYPE_BREAKPOINT:
3205 		func = perf_event_modify_breakpoint;
3206 		break;
3207 	default:
3208 		/* Place holder for future additions. */
3209 		return -EOPNOTSUPP;
3210 	}
3211 
3212 	WARN_ON_ONCE(event->ctx->parent_ctx);
3213 
3214 	mutex_lock(&event->child_mutex);
3215 	/*
3216 	 * Event-type-independent attributes must be copied before event-type
3217 	 * modification, which will validate that final attributes match the
3218 	 * source attributes after all relevant attributes have been copied.
3219 	 */
3220 	perf_event_modify_copy_attr(&event->attr, attr);
3221 	err = func(event, attr);
3222 	if (err)
3223 		goto out;
3224 	list_for_each_entry(child, &event->child_list, child_list) {
3225 		perf_event_modify_copy_attr(&child->attr, attr);
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236 			  struct perf_cpu_context *cpuctx,
3237 			  enum event_type_t event_type)
3238 {
3239 	struct perf_event *event, *tmp;
3240 	int is_active = ctx->is_active;
3241 
3242 	lockdep_assert_held(&ctx->lock);
3243 
3244 	if (likely(!ctx->nr_events)) {
3245 		/*
3246 		 * See __perf_remove_from_context().
3247 		 */
3248 		WARN_ON_ONCE(ctx->is_active);
3249 		if (ctx->task)
3250 			WARN_ON_ONCE(cpuctx->task_ctx);
3251 		return;
3252 	}
3253 
3254 	/*
3255 	 * Always update time if it was set; not only when it changes.
3256 	 * Otherwise we can 'forget' to update time for any but the last
3257 	 * context we sched out. For example:
3258 	 *
3259 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3260 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3261 	 *
3262 	 * would only update time for the pinned events.
3263 	 */
3264 	if (is_active & EVENT_TIME) {
3265 		/* update (and stop) ctx time */
3266 		update_context_time(ctx);
3267 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3268 		/*
3269 		 * CPU-release for the below ->is_active store,
3270 		 * see __load_acquire() in perf_event_time_now()
3271 		 */
3272 		barrier();
3273 	}
3274 
3275 	ctx->is_active &= ~event_type;
3276 	if (!(ctx->is_active & EVENT_ALL))
3277 		ctx->is_active = 0;
3278 
3279 	if (ctx->task) {
3280 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3281 		if (!ctx->is_active)
3282 			cpuctx->task_ctx = NULL;
3283 	}
3284 
3285 	is_active ^= ctx->is_active; /* changed bits */
3286 
3287 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3288 		return;
3289 
3290 	perf_pmu_disable(ctx->pmu);
3291 	if (is_active & EVENT_PINNED) {
3292 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3293 			group_sched_out(event, cpuctx, ctx);
3294 	}
3295 
3296 	if (is_active & EVENT_FLEXIBLE) {
3297 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3298 			group_sched_out(event, cpuctx, ctx);
3299 
3300 		/*
3301 		 * Since we cleared EVENT_FLEXIBLE, also clear
3302 		 * rotate_necessary, is will be reset by
3303 		 * ctx_flexible_sched_in() when needed.
3304 		 */
3305 		ctx->rotate_necessary = 0;
3306 	}
3307 	perf_pmu_enable(ctx->pmu);
3308 }
3309 
3310 /*
3311  * Test whether two contexts are equivalent, i.e. whether they have both been
3312  * cloned from the same version of the same context.
3313  *
3314  * Equivalence is measured using a generation number in the context that is
3315  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3316  * and list_del_event().
3317  */
3318 static int context_equiv(struct perf_event_context *ctx1,
3319 			 struct perf_event_context *ctx2)
3320 {
3321 	lockdep_assert_held(&ctx1->lock);
3322 	lockdep_assert_held(&ctx2->lock);
3323 
3324 	/* Pinning disables the swap optimization */
3325 	if (ctx1->pin_count || ctx2->pin_count)
3326 		return 0;
3327 
3328 	/* If ctx1 is the parent of ctx2 */
3329 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3330 		return 1;
3331 
3332 	/* If ctx2 is the parent of ctx1 */
3333 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3334 		return 1;
3335 
3336 	/*
3337 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3338 	 * hierarchy, see perf_event_init_context().
3339 	 */
3340 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3341 			ctx1->parent_gen == ctx2->parent_gen)
3342 		return 1;
3343 
3344 	/* Unmatched */
3345 	return 0;
3346 }
3347 
3348 static void __perf_event_sync_stat(struct perf_event *event,
3349 				     struct perf_event *next_event)
3350 {
3351 	u64 value;
3352 
3353 	if (!event->attr.inherit_stat)
3354 		return;
3355 
3356 	/*
3357 	 * Update the event value, we cannot use perf_event_read()
3358 	 * because we're in the middle of a context switch and have IRQs
3359 	 * disabled, which upsets smp_call_function_single(), however
3360 	 * we know the event must be on the current CPU, therefore we
3361 	 * don't need to use it.
3362 	 */
3363 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3364 		event->pmu->read(event);
3365 
3366 	perf_event_update_time(event);
3367 
3368 	/*
3369 	 * In order to keep per-task stats reliable we need to flip the event
3370 	 * values when we flip the contexts.
3371 	 */
3372 	value = local64_read(&next_event->count);
3373 	value = local64_xchg(&event->count, value);
3374 	local64_set(&next_event->count, value);
3375 
3376 	swap(event->total_time_enabled, next_event->total_time_enabled);
3377 	swap(event->total_time_running, next_event->total_time_running);
3378 
3379 	/*
3380 	 * Since we swizzled the values, update the user visible data too.
3381 	 */
3382 	perf_event_update_userpage(event);
3383 	perf_event_update_userpage(next_event);
3384 }
3385 
3386 static void perf_event_sync_stat(struct perf_event_context *ctx,
3387 				   struct perf_event_context *next_ctx)
3388 {
3389 	struct perf_event *event, *next_event;
3390 
3391 	if (!ctx->nr_stat)
3392 		return;
3393 
3394 	update_context_time(ctx);
3395 
3396 	event = list_first_entry(&ctx->event_list,
3397 				   struct perf_event, event_entry);
3398 
3399 	next_event = list_first_entry(&next_ctx->event_list,
3400 					struct perf_event, event_entry);
3401 
3402 	while (&event->event_entry != &ctx->event_list &&
3403 	       &next_event->event_entry != &next_ctx->event_list) {
3404 
3405 		__perf_event_sync_stat(event, next_event);
3406 
3407 		event = list_next_entry(event, event_entry);
3408 		next_event = list_next_entry(next_event, event_entry);
3409 	}
3410 }
3411 
3412 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3413 					 struct task_struct *next)
3414 {
3415 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3416 	struct perf_event_context *next_ctx;
3417 	struct perf_event_context *parent, *next_parent;
3418 	struct perf_cpu_context *cpuctx;
3419 	int do_switch = 1;
3420 	struct pmu *pmu;
3421 
3422 	if (likely(!ctx))
3423 		return;
3424 
3425 	pmu = ctx->pmu;
3426 	cpuctx = __get_cpu_context(ctx);
3427 	if (!cpuctx->task_ctx)
3428 		return;
3429 
3430 	rcu_read_lock();
3431 	next_ctx = next->perf_event_ctxp[ctxn];
3432 	if (!next_ctx)
3433 		goto unlock;
3434 
3435 	parent = rcu_dereference(ctx->parent_ctx);
3436 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3437 
3438 	/* If neither context have a parent context; they cannot be clones. */
3439 	if (!parent && !next_parent)
3440 		goto unlock;
3441 
3442 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3443 		/*
3444 		 * Looks like the two contexts are clones, so we might be
3445 		 * able to optimize the context switch.  We lock both
3446 		 * contexts and check that they are clones under the
3447 		 * lock (including re-checking that neither has been
3448 		 * uncloned in the meantime).  It doesn't matter which
3449 		 * order we take the locks because no other cpu could
3450 		 * be trying to lock both of these tasks.
3451 		 */
3452 		raw_spin_lock(&ctx->lock);
3453 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3454 		if (context_equiv(ctx, next_ctx)) {
3455 
3456 			perf_pmu_disable(pmu);
3457 
3458 			/* PMIs are disabled; ctx->nr_pending is stable. */
3459 			if (local_read(&ctx->nr_pending) ||
3460 			    local_read(&next_ctx->nr_pending)) {
3461 				/*
3462 				 * Must not swap out ctx when there's pending
3463 				 * events that rely on the ctx->task relation.
3464 				 */
3465 				raw_spin_unlock(&next_ctx->lock);
3466 				rcu_read_unlock();
3467 				goto inside_switch;
3468 			}
3469 
3470 			WRITE_ONCE(ctx->task, next);
3471 			WRITE_ONCE(next_ctx->task, task);
3472 
3473 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3474 				pmu->sched_task(ctx, false);
3475 
3476 			/*
3477 			 * PMU specific parts of task perf context can require
3478 			 * additional synchronization. As an example of such
3479 			 * synchronization see implementation details of Intel
3480 			 * LBR call stack data profiling;
3481 			 */
3482 			if (pmu->swap_task_ctx)
3483 				pmu->swap_task_ctx(ctx, next_ctx);
3484 			else
3485 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3486 
3487 			perf_pmu_enable(pmu);
3488 
3489 			/*
3490 			 * RCU_INIT_POINTER here is safe because we've not
3491 			 * modified the ctx and the above modification of
3492 			 * ctx->task and ctx->task_ctx_data are immaterial
3493 			 * since those values are always verified under
3494 			 * ctx->lock which we're now holding.
3495 			 */
3496 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3497 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3498 
3499 			do_switch = 0;
3500 
3501 			perf_event_sync_stat(ctx, next_ctx);
3502 		}
3503 		raw_spin_unlock(&next_ctx->lock);
3504 		raw_spin_unlock(&ctx->lock);
3505 	}
3506 unlock:
3507 	rcu_read_unlock();
3508 
3509 	if (do_switch) {
3510 		raw_spin_lock(&ctx->lock);
3511 		perf_pmu_disable(pmu);
3512 
3513 inside_switch:
3514 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3515 			pmu->sched_task(ctx, false);
3516 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3517 
3518 		perf_pmu_enable(pmu);
3519 		raw_spin_unlock(&ctx->lock);
3520 	}
3521 }
3522 
3523 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3524 
3525 void perf_sched_cb_dec(struct pmu *pmu)
3526 {
3527 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3528 
3529 	this_cpu_dec(perf_sched_cb_usages);
3530 
3531 	if (!--cpuctx->sched_cb_usage)
3532 		list_del(&cpuctx->sched_cb_entry);
3533 }
3534 
3535 
3536 void perf_sched_cb_inc(struct pmu *pmu)
3537 {
3538 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3539 
3540 	if (!cpuctx->sched_cb_usage++)
3541 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3542 
3543 	this_cpu_inc(perf_sched_cb_usages);
3544 }
3545 
3546 /*
3547  * This function provides the context switch callback to the lower code
3548  * layer. It is invoked ONLY when the context switch callback is enabled.
3549  *
3550  * This callback is relevant even to per-cpu events; for example multi event
3551  * PEBS requires this to provide PID/TID information. This requires we flush
3552  * all queued PEBS records before we context switch to a new task.
3553  */
3554 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3555 {
3556 	struct pmu *pmu;
3557 
3558 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3559 
3560 	if (WARN_ON_ONCE(!pmu->sched_task))
3561 		return;
3562 
3563 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3564 	perf_pmu_disable(pmu);
3565 
3566 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3567 
3568 	perf_pmu_enable(pmu);
3569 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3570 }
3571 
3572 static void perf_pmu_sched_task(struct task_struct *prev,
3573 				struct task_struct *next,
3574 				bool sched_in)
3575 {
3576 	struct perf_cpu_context *cpuctx;
3577 
3578 	if (prev == next)
3579 		return;
3580 
3581 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3582 		/* will be handled in perf_event_context_sched_in/out */
3583 		if (cpuctx->task_ctx)
3584 			continue;
3585 
3586 		__perf_pmu_sched_task(cpuctx, sched_in);
3587 	}
3588 }
3589 
3590 static void perf_event_switch(struct task_struct *task,
3591 			      struct task_struct *next_prev, bool sched_in);
3592 
3593 #define for_each_task_context_nr(ctxn)					\
3594 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3595 
3596 /*
3597  * Called from scheduler to remove the events of the current task,
3598  * with interrupts disabled.
3599  *
3600  * We stop each event and update the event value in event->count.
3601  *
3602  * This does not protect us against NMI, but disable()
3603  * sets the disabled bit in the control field of event _before_
3604  * accessing the event control register. If a NMI hits, then it will
3605  * not restart the event.
3606  */
3607 void __perf_event_task_sched_out(struct task_struct *task,
3608 				 struct task_struct *next)
3609 {
3610 	int ctxn;
3611 
3612 	if (__this_cpu_read(perf_sched_cb_usages))
3613 		perf_pmu_sched_task(task, next, false);
3614 
3615 	if (atomic_read(&nr_switch_events))
3616 		perf_event_switch(task, next, false);
3617 
3618 	for_each_task_context_nr(ctxn)
3619 		perf_event_context_sched_out(task, ctxn, next);
3620 
3621 	/*
3622 	 * if cgroup events exist on this CPU, then we need
3623 	 * to check if we have to switch out PMU state.
3624 	 * cgroup event are system-wide mode only
3625 	 */
3626 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3627 		perf_cgroup_switch(next);
3628 }
3629 
3630 /*
3631  * Called with IRQs disabled
3632  */
3633 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3634 			      enum event_type_t event_type)
3635 {
3636 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3637 }
3638 
3639 static bool perf_less_group_idx(const void *l, const void *r)
3640 {
3641 	const struct perf_event *le = *(const struct perf_event **)l;
3642 	const struct perf_event *re = *(const struct perf_event **)r;
3643 
3644 	return le->group_index < re->group_index;
3645 }
3646 
3647 static void swap_ptr(void *l, void *r)
3648 {
3649 	void **lp = l, **rp = r;
3650 
3651 	swap(*lp, *rp);
3652 }
3653 
3654 static const struct min_heap_callbacks perf_min_heap = {
3655 	.elem_size = sizeof(struct perf_event *),
3656 	.less = perf_less_group_idx,
3657 	.swp = swap_ptr,
3658 };
3659 
3660 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3661 {
3662 	struct perf_event **itrs = heap->data;
3663 
3664 	if (event) {
3665 		itrs[heap->nr] = event;
3666 		heap->nr++;
3667 	}
3668 }
3669 
3670 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3671 				struct perf_event_groups *groups, int cpu,
3672 				int (*func)(struct perf_event *, void *),
3673 				void *data)
3674 {
3675 #ifdef CONFIG_CGROUP_PERF
3676 	struct cgroup_subsys_state *css = NULL;
3677 #endif
3678 	/* Space for per CPU and/or any CPU event iterators. */
3679 	struct perf_event *itrs[2];
3680 	struct min_heap event_heap;
3681 	struct perf_event **evt;
3682 	int ret;
3683 
3684 	if (cpuctx) {
3685 		event_heap = (struct min_heap){
3686 			.data = cpuctx->heap,
3687 			.nr = 0,
3688 			.size = cpuctx->heap_size,
3689 		};
3690 
3691 		lockdep_assert_held(&cpuctx->ctx.lock);
3692 
3693 #ifdef CONFIG_CGROUP_PERF
3694 		if (cpuctx->cgrp)
3695 			css = &cpuctx->cgrp->css;
3696 #endif
3697 	} else {
3698 		event_heap = (struct min_heap){
3699 			.data = itrs,
3700 			.nr = 0,
3701 			.size = ARRAY_SIZE(itrs),
3702 		};
3703 		/* Events not within a CPU context may be on any CPU. */
3704 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3705 	}
3706 	evt = event_heap.data;
3707 
3708 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3709 
3710 #ifdef CONFIG_CGROUP_PERF
3711 	for (; css; css = css->parent)
3712 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3713 #endif
3714 
3715 	min_heapify_all(&event_heap, &perf_min_heap);
3716 
3717 	while (event_heap.nr) {
3718 		ret = func(*evt, data);
3719 		if (ret)
3720 			return ret;
3721 
3722 		*evt = perf_event_groups_next(*evt);
3723 		if (*evt)
3724 			min_heapify(&event_heap, 0, &perf_min_heap);
3725 		else
3726 			min_heap_pop(&event_heap, &perf_min_heap);
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 /*
3733  * Because the userpage is strictly per-event (there is no concept of context,
3734  * so there cannot be a context indirection), every userpage must be updated
3735  * when context time starts :-(
3736  *
3737  * IOW, we must not miss EVENT_TIME edges.
3738  */
3739 static inline bool event_update_userpage(struct perf_event *event)
3740 {
3741 	if (likely(!atomic_read(&event->mmap_count)))
3742 		return false;
3743 
3744 	perf_event_update_time(event);
3745 	perf_event_update_userpage(event);
3746 
3747 	return true;
3748 }
3749 
3750 static inline void group_update_userpage(struct perf_event *group_event)
3751 {
3752 	struct perf_event *event;
3753 
3754 	if (!event_update_userpage(group_event))
3755 		return;
3756 
3757 	for_each_sibling_event(event, group_event)
3758 		event_update_userpage(event);
3759 }
3760 
3761 static int merge_sched_in(struct perf_event *event, void *data)
3762 {
3763 	struct perf_event_context *ctx = event->ctx;
3764 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3765 	int *can_add_hw = data;
3766 
3767 	if (event->state <= PERF_EVENT_STATE_OFF)
3768 		return 0;
3769 
3770 	if (!event_filter_match(event))
3771 		return 0;
3772 
3773 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3774 		if (!group_sched_in(event, cpuctx, ctx))
3775 			list_add_tail(&event->active_list, get_event_list(event));
3776 	}
3777 
3778 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3779 		*can_add_hw = 0;
3780 		if (event->attr.pinned) {
3781 			perf_cgroup_event_disable(event, ctx);
3782 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3783 		} else {
3784 			ctx->rotate_necessary = 1;
3785 			perf_mux_hrtimer_restart(cpuctx);
3786 			group_update_userpage(event);
3787 		}
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 static void
3794 ctx_pinned_sched_in(struct perf_event_context *ctx,
3795 		    struct perf_cpu_context *cpuctx)
3796 {
3797 	int can_add_hw = 1;
3798 
3799 	if (ctx != &cpuctx->ctx)
3800 		cpuctx = NULL;
3801 
3802 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3803 			   smp_processor_id(),
3804 			   merge_sched_in, &can_add_hw);
3805 }
3806 
3807 static void
3808 ctx_flexible_sched_in(struct perf_event_context *ctx,
3809 		      struct perf_cpu_context *cpuctx)
3810 {
3811 	int can_add_hw = 1;
3812 
3813 	if (ctx != &cpuctx->ctx)
3814 		cpuctx = NULL;
3815 
3816 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3817 			   smp_processor_id(),
3818 			   merge_sched_in, &can_add_hw);
3819 }
3820 
3821 static void
3822 ctx_sched_in(struct perf_event_context *ctx,
3823 	     struct perf_cpu_context *cpuctx,
3824 	     enum event_type_t event_type)
3825 {
3826 	int is_active = ctx->is_active;
3827 
3828 	lockdep_assert_held(&ctx->lock);
3829 
3830 	if (likely(!ctx->nr_events))
3831 		return;
3832 
3833 	if (is_active ^ EVENT_TIME) {
3834 		/* start ctx time */
3835 		__update_context_time(ctx, false);
3836 		perf_cgroup_set_timestamp(cpuctx);
3837 		/*
3838 		 * CPU-release for the below ->is_active store,
3839 		 * see __load_acquire() in perf_event_time_now()
3840 		 */
3841 		barrier();
3842 	}
3843 
3844 	ctx->is_active |= (event_type | EVENT_TIME);
3845 	if (ctx->task) {
3846 		if (!is_active)
3847 			cpuctx->task_ctx = ctx;
3848 		else
3849 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3850 	}
3851 
3852 	is_active ^= ctx->is_active; /* changed bits */
3853 
3854 	/*
3855 	 * First go through the list and put on any pinned groups
3856 	 * in order to give them the best chance of going on.
3857 	 */
3858 	if (is_active & EVENT_PINNED)
3859 		ctx_pinned_sched_in(ctx, cpuctx);
3860 
3861 	/* Then walk through the lower prio flexible groups */
3862 	if (is_active & EVENT_FLEXIBLE)
3863 		ctx_flexible_sched_in(ctx, cpuctx);
3864 }
3865 
3866 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3867 			     enum event_type_t event_type)
3868 {
3869 	struct perf_event_context *ctx = &cpuctx->ctx;
3870 
3871 	ctx_sched_in(ctx, cpuctx, event_type);
3872 }
3873 
3874 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3875 					struct task_struct *task)
3876 {
3877 	struct perf_cpu_context *cpuctx;
3878 	struct pmu *pmu;
3879 
3880 	cpuctx = __get_cpu_context(ctx);
3881 
3882 	/*
3883 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3884 	 * different PMU, force (re)set the context,
3885 	 */
3886 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3887 
3888 	if (cpuctx->task_ctx == ctx) {
3889 		if (cpuctx->sched_cb_usage)
3890 			__perf_pmu_sched_task(cpuctx, true);
3891 		return;
3892 	}
3893 
3894 	perf_ctx_lock(cpuctx, ctx);
3895 	/*
3896 	 * We must check ctx->nr_events while holding ctx->lock, such
3897 	 * that we serialize against perf_install_in_context().
3898 	 */
3899 	if (!ctx->nr_events)
3900 		goto unlock;
3901 
3902 	perf_pmu_disable(pmu);
3903 	/*
3904 	 * We want to keep the following priority order:
3905 	 * cpu pinned (that don't need to move), task pinned,
3906 	 * cpu flexible, task flexible.
3907 	 *
3908 	 * However, if task's ctx is not carrying any pinned
3909 	 * events, no need to flip the cpuctx's events around.
3910 	 */
3911 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3912 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3913 	perf_event_sched_in(cpuctx, ctx);
3914 
3915 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3916 		pmu->sched_task(cpuctx->task_ctx, true);
3917 
3918 	perf_pmu_enable(pmu);
3919 
3920 unlock:
3921 	perf_ctx_unlock(cpuctx, ctx);
3922 }
3923 
3924 /*
3925  * Called from scheduler to add the events of the current task
3926  * with interrupts disabled.
3927  *
3928  * We restore the event value and then enable it.
3929  *
3930  * This does not protect us against NMI, but enable()
3931  * sets the enabled bit in the control field of event _before_
3932  * accessing the event control register. If a NMI hits, then it will
3933  * keep the event running.
3934  */
3935 void __perf_event_task_sched_in(struct task_struct *prev,
3936 				struct task_struct *task)
3937 {
3938 	struct perf_event_context *ctx;
3939 	int ctxn;
3940 
3941 	for_each_task_context_nr(ctxn) {
3942 		ctx = task->perf_event_ctxp[ctxn];
3943 		if (likely(!ctx))
3944 			continue;
3945 
3946 		perf_event_context_sched_in(ctx, task);
3947 	}
3948 
3949 	if (atomic_read(&nr_switch_events))
3950 		perf_event_switch(task, prev, true);
3951 
3952 	if (__this_cpu_read(perf_sched_cb_usages))
3953 		perf_pmu_sched_task(prev, task, true);
3954 }
3955 
3956 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3957 {
3958 	u64 frequency = event->attr.sample_freq;
3959 	u64 sec = NSEC_PER_SEC;
3960 	u64 divisor, dividend;
3961 
3962 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3963 
3964 	count_fls = fls64(count);
3965 	nsec_fls = fls64(nsec);
3966 	frequency_fls = fls64(frequency);
3967 	sec_fls = 30;
3968 
3969 	/*
3970 	 * We got @count in @nsec, with a target of sample_freq HZ
3971 	 * the target period becomes:
3972 	 *
3973 	 *             @count * 10^9
3974 	 * period = -------------------
3975 	 *          @nsec * sample_freq
3976 	 *
3977 	 */
3978 
3979 	/*
3980 	 * Reduce accuracy by one bit such that @a and @b converge
3981 	 * to a similar magnitude.
3982 	 */
3983 #define REDUCE_FLS(a, b)		\
3984 do {					\
3985 	if (a##_fls > b##_fls) {	\
3986 		a >>= 1;		\
3987 		a##_fls--;		\
3988 	} else {			\
3989 		b >>= 1;		\
3990 		b##_fls--;		\
3991 	}				\
3992 } while (0)
3993 
3994 	/*
3995 	 * Reduce accuracy until either term fits in a u64, then proceed with
3996 	 * the other, so that finally we can do a u64/u64 division.
3997 	 */
3998 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3999 		REDUCE_FLS(nsec, frequency);
4000 		REDUCE_FLS(sec, count);
4001 	}
4002 
4003 	if (count_fls + sec_fls > 64) {
4004 		divisor = nsec * frequency;
4005 
4006 		while (count_fls + sec_fls > 64) {
4007 			REDUCE_FLS(count, sec);
4008 			divisor >>= 1;
4009 		}
4010 
4011 		dividend = count * sec;
4012 	} else {
4013 		dividend = count * sec;
4014 
4015 		while (nsec_fls + frequency_fls > 64) {
4016 			REDUCE_FLS(nsec, frequency);
4017 			dividend >>= 1;
4018 		}
4019 
4020 		divisor = nsec * frequency;
4021 	}
4022 
4023 	if (!divisor)
4024 		return dividend;
4025 
4026 	return div64_u64(dividend, divisor);
4027 }
4028 
4029 static DEFINE_PER_CPU(int, perf_throttled_count);
4030 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4031 
4032 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4033 {
4034 	struct hw_perf_event *hwc = &event->hw;
4035 	s64 period, sample_period;
4036 	s64 delta;
4037 
4038 	period = perf_calculate_period(event, nsec, count);
4039 
4040 	delta = (s64)(period - hwc->sample_period);
4041 	delta = (delta + 7) / 8; /* low pass filter */
4042 
4043 	sample_period = hwc->sample_period + delta;
4044 
4045 	if (!sample_period)
4046 		sample_period = 1;
4047 
4048 	hwc->sample_period = sample_period;
4049 
4050 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4051 		if (disable)
4052 			event->pmu->stop(event, PERF_EF_UPDATE);
4053 
4054 		local64_set(&hwc->period_left, 0);
4055 
4056 		if (disable)
4057 			event->pmu->start(event, PERF_EF_RELOAD);
4058 	}
4059 }
4060 
4061 /*
4062  * combine freq adjustment with unthrottling to avoid two passes over the
4063  * events. At the same time, make sure, having freq events does not change
4064  * the rate of unthrottling as that would introduce bias.
4065  */
4066 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4067 					   int needs_unthr)
4068 {
4069 	struct perf_event *event;
4070 	struct hw_perf_event *hwc;
4071 	u64 now, period = TICK_NSEC;
4072 	s64 delta;
4073 
4074 	/*
4075 	 * only need to iterate over all events iff:
4076 	 * - context have events in frequency mode (needs freq adjust)
4077 	 * - there are events to unthrottle on this cpu
4078 	 */
4079 	if (!(ctx->nr_freq || needs_unthr))
4080 		return;
4081 
4082 	raw_spin_lock(&ctx->lock);
4083 	perf_pmu_disable(ctx->pmu);
4084 
4085 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4086 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4087 			continue;
4088 
4089 		if (!event_filter_match(event))
4090 			continue;
4091 
4092 		perf_pmu_disable(event->pmu);
4093 
4094 		hwc = &event->hw;
4095 
4096 		if (hwc->interrupts == MAX_INTERRUPTS) {
4097 			hwc->interrupts = 0;
4098 			perf_log_throttle(event, 1);
4099 			event->pmu->start(event, 0);
4100 		}
4101 
4102 		if (!event->attr.freq || !event->attr.sample_freq)
4103 			goto next;
4104 
4105 		/*
4106 		 * stop the event and update event->count
4107 		 */
4108 		event->pmu->stop(event, PERF_EF_UPDATE);
4109 
4110 		now = local64_read(&event->count);
4111 		delta = now - hwc->freq_count_stamp;
4112 		hwc->freq_count_stamp = now;
4113 
4114 		/*
4115 		 * restart the event
4116 		 * reload only if value has changed
4117 		 * we have stopped the event so tell that
4118 		 * to perf_adjust_period() to avoid stopping it
4119 		 * twice.
4120 		 */
4121 		if (delta > 0)
4122 			perf_adjust_period(event, period, delta, false);
4123 
4124 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4125 	next:
4126 		perf_pmu_enable(event->pmu);
4127 	}
4128 
4129 	perf_pmu_enable(ctx->pmu);
4130 	raw_spin_unlock(&ctx->lock);
4131 }
4132 
4133 /*
4134  * Move @event to the tail of the @ctx's elegible events.
4135  */
4136 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4137 {
4138 	/*
4139 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4140 	 * disabled by the inheritance code.
4141 	 */
4142 	if (ctx->rotate_disable)
4143 		return;
4144 
4145 	perf_event_groups_delete(&ctx->flexible_groups, event);
4146 	perf_event_groups_insert(&ctx->flexible_groups, event);
4147 }
4148 
4149 /* pick an event from the flexible_groups to rotate */
4150 static inline struct perf_event *
4151 ctx_event_to_rotate(struct perf_event_context *ctx)
4152 {
4153 	struct perf_event *event;
4154 
4155 	/* pick the first active flexible event */
4156 	event = list_first_entry_or_null(&ctx->flexible_active,
4157 					 struct perf_event, active_list);
4158 
4159 	/* if no active flexible event, pick the first event */
4160 	if (!event) {
4161 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4162 				      typeof(*event), group_node);
4163 	}
4164 
4165 	/*
4166 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4167 	 * finds there are unschedulable events, it will set it again.
4168 	 */
4169 	ctx->rotate_necessary = 0;
4170 
4171 	return event;
4172 }
4173 
4174 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4175 {
4176 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4177 	struct perf_event_context *task_ctx = NULL;
4178 	int cpu_rotate, task_rotate;
4179 
4180 	/*
4181 	 * Since we run this from IRQ context, nobody can install new
4182 	 * events, thus the event count values are stable.
4183 	 */
4184 
4185 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4186 	task_ctx = cpuctx->task_ctx;
4187 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4188 
4189 	if (!(cpu_rotate || task_rotate))
4190 		return false;
4191 
4192 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4193 	perf_pmu_disable(cpuctx->ctx.pmu);
4194 
4195 	if (task_rotate)
4196 		task_event = ctx_event_to_rotate(task_ctx);
4197 	if (cpu_rotate)
4198 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4199 
4200 	/*
4201 	 * As per the order given at ctx_resched() first 'pop' task flexible
4202 	 * and then, if needed CPU flexible.
4203 	 */
4204 	if (task_event || (task_ctx && cpu_event))
4205 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4206 	if (cpu_event)
4207 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4208 
4209 	if (task_event)
4210 		rotate_ctx(task_ctx, task_event);
4211 	if (cpu_event)
4212 		rotate_ctx(&cpuctx->ctx, cpu_event);
4213 
4214 	perf_event_sched_in(cpuctx, task_ctx);
4215 
4216 	perf_pmu_enable(cpuctx->ctx.pmu);
4217 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4218 
4219 	return true;
4220 }
4221 
4222 void perf_event_task_tick(void)
4223 {
4224 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4225 	struct perf_event_context *ctx, *tmp;
4226 	int throttled;
4227 
4228 	lockdep_assert_irqs_disabled();
4229 
4230 	__this_cpu_inc(perf_throttled_seq);
4231 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4232 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4233 
4234 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4235 		perf_adjust_freq_unthr_context(ctx, throttled);
4236 }
4237 
4238 static int event_enable_on_exec(struct perf_event *event,
4239 				struct perf_event_context *ctx)
4240 {
4241 	if (!event->attr.enable_on_exec)
4242 		return 0;
4243 
4244 	event->attr.enable_on_exec = 0;
4245 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4246 		return 0;
4247 
4248 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4249 
4250 	return 1;
4251 }
4252 
4253 /*
4254  * Enable all of a task's events that have been marked enable-on-exec.
4255  * This expects task == current.
4256  */
4257 static void perf_event_enable_on_exec(int ctxn)
4258 {
4259 	struct perf_event_context *ctx, *clone_ctx = NULL;
4260 	enum event_type_t event_type = 0;
4261 	struct perf_cpu_context *cpuctx;
4262 	struct perf_event *event;
4263 	unsigned long flags;
4264 	int enabled = 0;
4265 
4266 	local_irq_save(flags);
4267 	ctx = current->perf_event_ctxp[ctxn];
4268 	if (!ctx || !ctx->nr_events)
4269 		goto out;
4270 
4271 	cpuctx = __get_cpu_context(ctx);
4272 	perf_ctx_lock(cpuctx, ctx);
4273 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4274 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4275 		enabled |= event_enable_on_exec(event, ctx);
4276 		event_type |= get_event_type(event);
4277 	}
4278 
4279 	/*
4280 	 * Unclone and reschedule this context if we enabled any event.
4281 	 */
4282 	if (enabled) {
4283 		clone_ctx = unclone_ctx(ctx);
4284 		ctx_resched(cpuctx, ctx, event_type);
4285 	} else {
4286 		ctx_sched_in(ctx, cpuctx, EVENT_TIME);
4287 	}
4288 	perf_ctx_unlock(cpuctx, ctx);
4289 
4290 out:
4291 	local_irq_restore(flags);
4292 
4293 	if (clone_ctx)
4294 		put_ctx(clone_ctx);
4295 }
4296 
4297 static void perf_remove_from_owner(struct perf_event *event);
4298 static void perf_event_exit_event(struct perf_event *event,
4299 				  struct perf_event_context *ctx);
4300 
4301 /*
4302  * Removes all events from the current task that have been marked
4303  * remove-on-exec, and feeds their values back to parent events.
4304  */
4305 static void perf_event_remove_on_exec(int ctxn)
4306 {
4307 	struct perf_event_context *ctx, *clone_ctx = NULL;
4308 	struct perf_event *event, *next;
4309 	unsigned long flags;
4310 	bool modified = false;
4311 
4312 	ctx = perf_pin_task_context(current, ctxn);
4313 	if (!ctx)
4314 		return;
4315 
4316 	mutex_lock(&ctx->mutex);
4317 
4318 	if (WARN_ON_ONCE(ctx->task != current))
4319 		goto unlock;
4320 
4321 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4322 		if (!event->attr.remove_on_exec)
4323 			continue;
4324 
4325 		if (!is_kernel_event(event))
4326 			perf_remove_from_owner(event);
4327 
4328 		modified = true;
4329 
4330 		perf_event_exit_event(event, ctx);
4331 	}
4332 
4333 	raw_spin_lock_irqsave(&ctx->lock, flags);
4334 	if (modified)
4335 		clone_ctx = unclone_ctx(ctx);
4336 	--ctx->pin_count;
4337 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4338 
4339 unlock:
4340 	mutex_unlock(&ctx->mutex);
4341 
4342 	put_ctx(ctx);
4343 	if (clone_ctx)
4344 		put_ctx(clone_ctx);
4345 }
4346 
4347 struct perf_read_data {
4348 	struct perf_event *event;
4349 	bool group;
4350 	int ret;
4351 };
4352 
4353 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4354 {
4355 	u16 local_pkg, event_pkg;
4356 
4357 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4358 		int local_cpu = smp_processor_id();
4359 
4360 		event_pkg = topology_physical_package_id(event_cpu);
4361 		local_pkg = topology_physical_package_id(local_cpu);
4362 
4363 		if (event_pkg == local_pkg)
4364 			return local_cpu;
4365 	}
4366 
4367 	return event_cpu;
4368 }
4369 
4370 /*
4371  * Cross CPU call to read the hardware event
4372  */
4373 static void __perf_event_read(void *info)
4374 {
4375 	struct perf_read_data *data = info;
4376 	struct perf_event *sub, *event = data->event;
4377 	struct perf_event_context *ctx = event->ctx;
4378 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4379 	struct pmu *pmu = event->pmu;
4380 
4381 	/*
4382 	 * If this is a task context, we need to check whether it is
4383 	 * the current task context of this cpu.  If not it has been
4384 	 * scheduled out before the smp call arrived.  In that case
4385 	 * event->count would have been updated to a recent sample
4386 	 * when the event was scheduled out.
4387 	 */
4388 	if (ctx->task && cpuctx->task_ctx != ctx)
4389 		return;
4390 
4391 	raw_spin_lock(&ctx->lock);
4392 	if (ctx->is_active & EVENT_TIME) {
4393 		update_context_time(ctx);
4394 		update_cgrp_time_from_event(event);
4395 	}
4396 
4397 	perf_event_update_time(event);
4398 	if (data->group)
4399 		perf_event_update_sibling_time(event);
4400 
4401 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4402 		goto unlock;
4403 
4404 	if (!data->group) {
4405 		pmu->read(event);
4406 		data->ret = 0;
4407 		goto unlock;
4408 	}
4409 
4410 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4411 
4412 	pmu->read(event);
4413 
4414 	for_each_sibling_event(sub, event) {
4415 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4416 			/*
4417 			 * Use sibling's PMU rather than @event's since
4418 			 * sibling could be on different (eg: software) PMU.
4419 			 */
4420 			sub->pmu->read(sub);
4421 		}
4422 	}
4423 
4424 	data->ret = pmu->commit_txn(pmu);
4425 
4426 unlock:
4427 	raw_spin_unlock(&ctx->lock);
4428 }
4429 
4430 static inline u64 perf_event_count(struct perf_event *event)
4431 {
4432 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4433 }
4434 
4435 static void calc_timer_values(struct perf_event *event,
4436 				u64 *now,
4437 				u64 *enabled,
4438 				u64 *running)
4439 {
4440 	u64 ctx_time;
4441 
4442 	*now = perf_clock();
4443 	ctx_time = perf_event_time_now(event, *now);
4444 	__perf_update_times(event, ctx_time, enabled, running);
4445 }
4446 
4447 /*
4448  * NMI-safe method to read a local event, that is an event that
4449  * is:
4450  *   - either for the current task, or for this CPU
4451  *   - does not have inherit set, for inherited task events
4452  *     will not be local and we cannot read them atomically
4453  *   - must not have a pmu::count method
4454  */
4455 int perf_event_read_local(struct perf_event *event, u64 *value,
4456 			  u64 *enabled, u64 *running)
4457 {
4458 	unsigned long flags;
4459 	int ret = 0;
4460 
4461 	/*
4462 	 * Disabling interrupts avoids all counter scheduling (context
4463 	 * switches, timer based rotation and IPIs).
4464 	 */
4465 	local_irq_save(flags);
4466 
4467 	/*
4468 	 * It must not be an event with inherit set, we cannot read
4469 	 * all child counters from atomic context.
4470 	 */
4471 	if (event->attr.inherit) {
4472 		ret = -EOPNOTSUPP;
4473 		goto out;
4474 	}
4475 
4476 	/* If this is a per-task event, it must be for current */
4477 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4478 	    event->hw.target != current) {
4479 		ret = -EINVAL;
4480 		goto out;
4481 	}
4482 
4483 	/* If this is a per-CPU event, it must be for this CPU */
4484 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4485 	    event->cpu != smp_processor_id()) {
4486 		ret = -EINVAL;
4487 		goto out;
4488 	}
4489 
4490 	/* If this is a pinned event it must be running on this CPU */
4491 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4492 		ret = -EBUSY;
4493 		goto out;
4494 	}
4495 
4496 	/*
4497 	 * If the event is currently on this CPU, its either a per-task event,
4498 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4499 	 * oncpu == -1).
4500 	 */
4501 	if (event->oncpu == smp_processor_id())
4502 		event->pmu->read(event);
4503 
4504 	*value = local64_read(&event->count);
4505 	if (enabled || running) {
4506 		u64 __enabled, __running, __now;
4507 
4508 		calc_timer_values(event, &__now, &__enabled, &__running);
4509 		if (enabled)
4510 			*enabled = __enabled;
4511 		if (running)
4512 			*running = __running;
4513 	}
4514 out:
4515 	local_irq_restore(flags);
4516 
4517 	return ret;
4518 }
4519 
4520 static int perf_event_read(struct perf_event *event, bool group)
4521 {
4522 	enum perf_event_state state = READ_ONCE(event->state);
4523 	int event_cpu, ret = 0;
4524 
4525 	/*
4526 	 * If event is enabled and currently active on a CPU, update the
4527 	 * value in the event structure:
4528 	 */
4529 again:
4530 	if (state == PERF_EVENT_STATE_ACTIVE) {
4531 		struct perf_read_data data;
4532 
4533 		/*
4534 		 * Orders the ->state and ->oncpu loads such that if we see
4535 		 * ACTIVE we must also see the right ->oncpu.
4536 		 *
4537 		 * Matches the smp_wmb() from event_sched_in().
4538 		 */
4539 		smp_rmb();
4540 
4541 		event_cpu = READ_ONCE(event->oncpu);
4542 		if ((unsigned)event_cpu >= nr_cpu_ids)
4543 			return 0;
4544 
4545 		data = (struct perf_read_data){
4546 			.event = event,
4547 			.group = group,
4548 			.ret = 0,
4549 		};
4550 
4551 		preempt_disable();
4552 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4553 
4554 		/*
4555 		 * Purposely ignore the smp_call_function_single() return
4556 		 * value.
4557 		 *
4558 		 * If event_cpu isn't a valid CPU it means the event got
4559 		 * scheduled out and that will have updated the event count.
4560 		 *
4561 		 * Therefore, either way, we'll have an up-to-date event count
4562 		 * after this.
4563 		 */
4564 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4565 		preempt_enable();
4566 		ret = data.ret;
4567 
4568 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4569 		struct perf_event_context *ctx = event->ctx;
4570 		unsigned long flags;
4571 
4572 		raw_spin_lock_irqsave(&ctx->lock, flags);
4573 		state = event->state;
4574 		if (state != PERF_EVENT_STATE_INACTIVE) {
4575 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4576 			goto again;
4577 		}
4578 
4579 		/*
4580 		 * May read while context is not active (e.g., thread is
4581 		 * blocked), in that case we cannot update context time
4582 		 */
4583 		if (ctx->is_active & EVENT_TIME) {
4584 			update_context_time(ctx);
4585 			update_cgrp_time_from_event(event);
4586 		}
4587 
4588 		perf_event_update_time(event);
4589 		if (group)
4590 			perf_event_update_sibling_time(event);
4591 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4592 	}
4593 
4594 	return ret;
4595 }
4596 
4597 /*
4598  * Initialize the perf_event context in a task_struct:
4599  */
4600 static void __perf_event_init_context(struct perf_event_context *ctx)
4601 {
4602 	raw_spin_lock_init(&ctx->lock);
4603 	mutex_init(&ctx->mutex);
4604 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4605 	perf_event_groups_init(&ctx->pinned_groups);
4606 	perf_event_groups_init(&ctx->flexible_groups);
4607 	INIT_LIST_HEAD(&ctx->event_list);
4608 	INIT_LIST_HEAD(&ctx->pinned_active);
4609 	INIT_LIST_HEAD(&ctx->flexible_active);
4610 	refcount_set(&ctx->refcount, 1);
4611 }
4612 
4613 static struct perf_event_context *
4614 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4615 {
4616 	struct perf_event_context *ctx;
4617 
4618 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4619 	if (!ctx)
4620 		return NULL;
4621 
4622 	__perf_event_init_context(ctx);
4623 	if (task)
4624 		ctx->task = get_task_struct(task);
4625 	ctx->pmu = pmu;
4626 
4627 	return ctx;
4628 }
4629 
4630 static struct task_struct *
4631 find_lively_task_by_vpid(pid_t vpid)
4632 {
4633 	struct task_struct *task;
4634 
4635 	rcu_read_lock();
4636 	if (!vpid)
4637 		task = current;
4638 	else
4639 		task = find_task_by_vpid(vpid);
4640 	if (task)
4641 		get_task_struct(task);
4642 	rcu_read_unlock();
4643 
4644 	if (!task)
4645 		return ERR_PTR(-ESRCH);
4646 
4647 	return task;
4648 }
4649 
4650 /*
4651  * Returns a matching context with refcount and pincount.
4652  */
4653 static struct perf_event_context *
4654 find_get_context(struct pmu *pmu, struct task_struct *task,
4655 		struct perf_event *event)
4656 {
4657 	struct perf_event_context *ctx, *clone_ctx = NULL;
4658 	struct perf_cpu_context *cpuctx;
4659 	void *task_ctx_data = NULL;
4660 	unsigned long flags;
4661 	int ctxn, err;
4662 	int cpu = event->cpu;
4663 
4664 	if (!task) {
4665 		/* Must be root to operate on a CPU event: */
4666 		err = perf_allow_cpu(&event->attr);
4667 		if (err)
4668 			return ERR_PTR(err);
4669 
4670 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4671 		ctx = &cpuctx->ctx;
4672 		get_ctx(ctx);
4673 		raw_spin_lock_irqsave(&ctx->lock, flags);
4674 		++ctx->pin_count;
4675 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4676 
4677 		return ctx;
4678 	}
4679 
4680 	err = -EINVAL;
4681 	ctxn = pmu->task_ctx_nr;
4682 	if (ctxn < 0)
4683 		goto errout;
4684 
4685 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4686 		task_ctx_data = alloc_task_ctx_data(pmu);
4687 		if (!task_ctx_data) {
4688 			err = -ENOMEM;
4689 			goto errout;
4690 		}
4691 	}
4692 
4693 retry:
4694 	ctx = perf_lock_task_context(task, ctxn, &flags);
4695 	if (ctx) {
4696 		clone_ctx = unclone_ctx(ctx);
4697 		++ctx->pin_count;
4698 
4699 		if (task_ctx_data && !ctx->task_ctx_data) {
4700 			ctx->task_ctx_data = task_ctx_data;
4701 			task_ctx_data = NULL;
4702 		}
4703 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4704 
4705 		if (clone_ctx)
4706 			put_ctx(clone_ctx);
4707 	} else {
4708 		ctx = alloc_perf_context(pmu, task);
4709 		err = -ENOMEM;
4710 		if (!ctx)
4711 			goto errout;
4712 
4713 		if (task_ctx_data) {
4714 			ctx->task_ctx_data = task_ctx_data;
4715 			task_ctx_data = NULL;
4716 		}
4717 
4718 		err = 0;
4719 		mutex_lock(&task->perf_event_mutex);
4720 		/*
4721 		 * If it has already passed perf_event_exit_task().
4722 		 * we must see PF_EXITING, it takes this mutex too.
4723 		 */
4724 		if (task->flags & PF_EXITING)
4725 			err = -ESRCH;
4726 		else if (task->perf_event_ctxp[ctxn])
4727 			err = -EAGAIN;
4728 		else {
4729 			get_ctx(ctx);
4730 			++ctx->pin_count;
4731 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4732 		}
4733 		mutex_unlock(&task->perf_event_mutex);
4734 
4735 		if (unlikely(err)) {
4736 			put_ctx(ctx);
4737 
4738 			if (err == -EAGAIN)
4739 				goto retry;
4740 			goto errout;
4741 		}
4742 	}
4743 
4744 	free_task_ctx_data(pmu, task_ctx_data);
4745 	return ctx;
4746 
4747 errout:
4748 	free_task_ctx_data(pmu, task_ctx_data);
4749 	return ERR_PTR(err);
4750 }
4751 
4752 static void perf_event_free_filter(struct perf_event *event);
4753 
4754 static void free_event_rcu(struct rcu_head *head)
4755 {
4756 	struct perf_event *event;
4757 
4758 	event = container_of(head, struct perf_event, rcu_head);
4759 	if (event->ns)
4760 		put_pid_ns(event->ns);
4761 	perf_event_free_filter(event);
4762 	kmem_cache_free(perf_event_cache, event);
4763 }
4764 
4765 static void ring_buffer_attach(struct perf_event *event,
4766 			       struct perf_buffer *rb);
4767 
4768 static void detach_sb_event(struct perf_event *event)
4769 {
4770 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4771 
4772 	raw_spin_lock(&pel->lock);
4773 	list_del_rcu(&event->sb_list);
4774 	raw_spin_unlock(&pel->lock);
4775 }
4776 
4777 static bool is_sb_event(struct perf_event *event)
4778 {
4779 	struct perf_event_attr *attr = &event->attr;
4780 
4781 	if (event->parent)
4782 		return false;
4783 
4784 	if (event->attach_state & PERF_ATTACH_TASK)
4785 		return false;
4786 
4787 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4788 	    attr->comm || attr->comm_exec ||
4789 	    attr->task || attr->ksymbol ||
4790 	    attr->context_switch || attr->text_poke ||
4791 	    attr->bpf_event)
4792 		return true;
4793 	return false;
4794 }
4795 
4796 static void unaccount_pmu_sb_event(struct perf_event *event)
4797 {
4798 	if (is_sb_event(event))
4799 		detach_sb_event(event);
4800 }
4801 
4802 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4803 {
4804 	if (event->parent)
4805 		return;
4806 
4807 	if (is_cgroup_event(event))
4808 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4809 }
4810 
4811 #ifdef CONFIG_NO_HZ_FULL
4812 static DEFINE_SPINLOCK(nr_freq_lock);
4813 #endif
4814 
4815 static void unaccount_freq_event_nohz(void)
4816 {
4817 #ifdef CONFIG_NO_HZ_FULL
4818 	spin_lock(&nr_freq_lock);
4819 	if (atomic_dec_and_test(&nr_freq_events))
4820 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4821 	spin_unlock(&nr_freq_lock);
4822 #endif
4823 }
4824 
4825 static void unaccount_freq_event(void)
4826 {
4827 	if (tick_nohz_full_enabled())
4828 		unaccount_freq_event_nohz();
4829 	else
4830 		atomic_dec(&nr_freq_events);
4831 }
4832 
4833 static void unaccount_event(struct perf_event *event)
4834 {
4835 	bool dec = false;
4836 
4837 	if (event->parent)
4838 		return;
4839 
4840 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4841 		dec = true;
4842 	if (event->attr.mmap || event->attr.mmap_data)
4843 		atomic_dec(&nr_mmap_events);
4844 	if (event->attr.build_id)
4845 		atomic_dec(&nr_build_id_events);
4846 	if (event->attr.comm)
4847 		atomic_dec(&nr_comm_events);
4848 	if (event->attr.namespaces)
4849 		atomic_dec(&nr_namespaces_events);
4850 	if (event->attr.cgroup)
4851 		atomic_dec(&nr_cgroup_events);
4852 	if (event->attr.task)
4853 		atomic_dec(&nr_task_events);
4854 	if (event->attr.freq)
4855 		unaccount_freq_event();
4856 	if (event->attr.context_switch) {
4857 		dec = true;
4858 		atomic_dec(&nr_switch_events);
4859 	}
4860 	if (is_cgroup_event(event))
4861 		dec = true;
4862 	if (has_branch_stack(event))
4863 		dec = true;
4864 	if (event->attr.ksymbol)
4865 		atomic_dec(&nr_ksymbol_events);
4866 	if (event->attr.bpf_event)
4867 		atomic_dec(&nr_bpf_events);
4868 	if (event->attr.text_poke)
4869 		atomic_dec(&nr_text_poke_events);
4870 
4871 	if (dec) {
4872 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4873 			schedule_delayed_work(&perf_sched_work, HZ);
4874 	}
4875 
4876 	unaccount_event_cpu(event, event->cpu);
4877 
4878 	unaccount_pmu_sb_event(event);
4879 }
4880 
4881 static void perf_sched_delayed(struct work_struct *work)
4882 {
4883 	mutex_lock(&perf_sched_mutex);
4884 	if (atomic_dec_and_test(&perf_sched_count))
4885 		static_branch_disable(&perf_sched_events);
4886 	mutex_unlock(&perf_sched_mutex);
4887 }
4888 
4889 /*
4890  * The following implement mutual exclusion of events on "exclusive" pmus
4891  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4892  * at a time, so we disallow creating events that might conflict, namely:
4893  *
4894  *  1) cpu-wide events in the presence of per-task events,
4895  *  2) per-task events in the presence of cpu-wide events,
4896  *  3) two matching events on the same context.
4897  *
4898  * The former two cases are handled in the allocation path (perf_event_alloc(),
4899  * _free_event()), the latter -- before the first perf_install_in_context().
4900  */
4901 static int exclusive_event_init(struct perf_event *event)
4902 {
4903 	struct pmu *pmu = event->pmu;
4904 
4905 	if (!is_exclusive_pmu(pmu))
4906 		return 0;
4907 
4908 	/*
4909 	 * Prevent co-existence of per-task and cpu-wide events on the
4910 	 * same exclusive pmu.
4911 	 *
4912 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4913 	 * events on this "exclusive" pmu, positive means there are
4914 	 * per-task events.
4915 	 *
4916 	 * Since this is called in perf_event_alloc() path, event::ctx
4917 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4918 	 * to mean "per-task event", because unlike other attach states it
4919 	 * never gets cleared.
4920 	 */
4921 	if (event->attach_state & PERF_ATTACH_TASK) {
4922 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4923 			return -EBUSY;
4924 	} else {
4925 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4926 			return -EBUSY;
4927 	}
4928 
4929 	return 0;
4930 }
4931 
4932 static void exclusive_event_destroy(struct perf_event *event)
4933 {
4934 	struct pmu *pmu = event->pmu;
4935 
4936 	if (!is_exclusive_pmu(pmu))
4937 		return;
4938 
4939 	/* see comment in exclusive_event_init() */
4940 	if (event->attach_state & PERF_ATTACH_TASK)
4941 		atomic_dec(&pmu->exclusive_cnt);
4942 	else
4943 		atomic_inc(&pmu->exclusive_cnt);
4944 }
4945 
4946 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4947 {
4948 	if ((e1->pmu == e2->pmu) &&
4949 	    (e1->cpu == e2->cpu ||
4950 	     e1->cpu == -1 ||
4951 	     e2->cpu == -1))
4952 		return true;
4953 	return false;
4954 }
4955 
4956 static bool exclusive_event_installable(struct perf_event *event,
4957 					struct perf_event_context *ctx)
4958 {
4959 	struct perf_event *iter_event;
4960 	struct pmu *pmu = event->pmu;
4961 
4962 	lockdep_assert_held(&ctx->mutex);
4963 
4964 	if (!is_exclusive_pmu(pmu))
4965 		return true;
4966 
4967 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4968 		if (exclusive_event_match(iter_event, event))
4969 			return false;
4970 	}
4971 
4972 	return true;
4973 }
4974 
4975 static void perf_addr_filters_splice(struct perf_event *event,
4976 				       struct list_head *head);
4977 
4978 static void _free_event(struct perf_event *event)
4979 {
4980 	irq_work_sync(&event->pending_irq);
4981 
4982 	unaccount_event(event);
4983 
4984 	security_perf_event_free(event);
4985 
4986 	if (event->rb) {
4987 		/*
4988 		 * Can happen when we close an event with re-directed output.
4989 		 *
4990 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4991 		 * over us; possibly making our ring_buffer_put() the last.
4992 		 */
4993 		mutex_lock(&event->mmap_mutex);
4994 		ring_buffer_attach(event, NULL);
4995 		mutex_unlock(&event->mmap_mutex);
4996 	}
4997 
4998 	if (is_cgroup_event(event))
4999 		perf_detach_cgroup(event);
5000 
5001 	if (!event->parent) {
5002 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5003 			put_callchain_buffers();
5004 	}
5005 
5006 	perf_event_free_bpf_prog(event);
5007 	perf_addr_filters_splice(event, NULL);
5008 	kfree(event->addr_filter_ranges);
5009 
5010 	if (event->destroy)
5011 		event->destroy(event);
5012 
5013 	/*
5014 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5015 	 * hw.target.
5016 	 */
5017 	if (event->hw.target)
5018 		put_task_struct(event->hw.target);
5019 
5020 	/*
5021 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5022 	 * all task references must be cleaned up.
5023 	 */
5024 	if (event->ctx)
5025 		put_ctx(event->ctx);
5026 
5027 	exclusive_event_destroy(event);
5028 	module_put(event->pmu->module);
5029 
5030 	call_rcu(&event->rcu_head, free_event_rcu);
5031 }
5032 
5033 /*
5034  * Used to free events which have a known refcount of 1, such as in error paths
5035  * where the event isn't exposed yet and inherited events.
5036  */
5037 static void free_event(struct perf_event *event)
5038 {
5039 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5040 				"unexpected event refcount: %ld; ptr=%p\n",
5041 				atomic_long_read(&event->refcount), event)) {
5042 		/* leak to avoid use-after-free */
5043 		return;
5044 	}
5045 
5046 	_free_event(event);
5047 }
5048 
5049 /*
5050  * Remove user event from the owner task.
5051  */
5052 static void perf_remove_from_owner(struct perf_event *event)
5053 {
5054 	struct task_struct *owner;
5055 
5056 	rcu_read_lock();
5057 	/*
5058 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5059 	 * observe !owner it means the list deletion is complete and we can
5060 	 * indeed free this event, otherwise we need to serialize on
5061 	 * owner->perf_event_mutex.
5062 	 */
5063 	owner = READ_ONCE(event->owner);
5064 	if (owner) {
5065 		/*
5066 		 * Since delayed_put_task_struct() also drops the last
5067 		 * task reference we can safely take a new reference
5068 		 * while holding the rcu_read_lock().
5069 		 */
5070 		get_task_struct(owner);
5071 	}
5072 	rcu_read_unlock();
5073 
5074 	if (owner) {
5075 		/*
5076 		 * If we're here through perf_event_exit_task() we're already
5077 		 * holding ctx->mutex which would be an inversion wrt. the
5078 		 * normal lock order.
5079 		 *
5080 		 * However we can safely take this lock because its the child
5081 		 * ctx->mutex.
5082 		 */
5083 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5084 
5085 		/*
5086 		 * We have to re-check the event->owner field, if it is cleared
5087 		 * we raced with perf_event_exit_task(), acquiring the mutex
5088 		 * ensured they're done, and we can proceed with freeing the
5089 		 * event.
5090 		 */
5091 		if (event->owner) {
5092 			list_del_init(&event->owner_entry);
5093 			smp_store_release(&event->owner, NULL);
5094 		}
5095 		mutex_unlock(&owner->perf_event_mutex);
5096 		put_task_struct(owner);
5097 	}
5098 }
5099 
5100 static void put_event(struct perf_event *event)
5101 {
5102 	if (!atomic_long_dec_and_test(&event->refcount))
5103 		return;
5104 
5105 	_free_event(event);
5106 }
5107 
5108 /*
5109  * Kill an event dead; while event:refcount will preserve the event
5110  * object, it will not preserve its functionality. Once the last 'user'
5111  * gives up the object, we'll destroy the thing.
5112  */
5113 int perf_event_release_kernel(struct perf_event *event)
5114 {
5115 	struct perf_event_context *ctx = event->ctx;
5116 	struct perf_event *child, *tmp;
5117 	LIST_HEAD(free_list);
5118 
5119 	/*
5120 	 * If we got here through err_file: fput(event_file); we will not have
5121 	 * attached to a context yet.
5122 	 */
5123 	if (!ctx) {
5124 		WARN_ON_ONCE(event->attach_state &
5125 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5126 		goto no_ctx;
5127 	}
5128 
5129 	if (!is_kernel_event(event))
5130 		perf_remove_from_owner(event);
5131 
5132 	ctx = perf_event_ctx_lock(event);
5133 	WARN_ON_ONCE(ctx->parent_ctx);
5134 
5135 	/*
5136 	 * Mark this event as STATE_DEAD, there is no external reference to it
5137 	 * anymore.
5138 	 *
5139 	 * Anybody acquiring event->child_mutex after the below loop _must_
5140 	 * also see this, most importantly inherit_event() which will avoid
5141 	 * placing more children on the list.
5142 	 *
5143 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5144 	 * child events.
5145 	 */
5146 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5147 
5148 	perf_event_ctx_unlock(event, ctx);
5149 
5150 again:
5151 	mutex_lock(&event->child_mutex);
5152 	list_for_each_entry(child, &event->child_list, child_list) {
5153 
5154 		/*
5155 		 * Cannot change, child events are not migrated, see the
5156 		 * comment with perf_event_ctx_lock_nested().
5157 		 */
5158 		ctx = READ_ONCE(child->ctx);
5159 		/*
5160 		 * Since child_mutex nests inside ctx::mutex, we must jump
5161 		 * through hoops. We start by grabbing a reference on the ctx.
5162 		 *
5163 		 * Since the event cannot get freed while we hold the
5164 		 * child_mutex, the context must also exist and have a !0
5165 		 * reference count.
5166 		 */
5167 		get_ctx(ctx);
5168 
5169 		/*
5170 		 * Now that we have a ctx ref, we can drop child_mutex, and
5171 		 * acquire ctx::mutex without fear of it going away. Then we
5172 		 * can re-acquire child_mutex.
5173 		 */
5174 		mutex_unlock(&event->child_mutex);
5175 		mutex_lock(&ctx->mutex);
5176 		mutex_lock(&event->child_mutex);
5177 
5178 		/*
5179 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5180 		 * state, if child is still the first entry, it didn't get freed
5181 		 * and we can continue doing so.
5182 		 */
5183 		tmp = list_first_entry_or_null(&event->child_list,
5184 					       struct perf_event, child_list);
5185 		if (tmp == child) {
5186 			perf_remove_from_context(child, DETACH_GROUP);
5187 			list_move(&child->child_list, &free_list);
5188 			/*
5189 			 * This matches the refcount bump in inherit_event();
5190 			 * this can't be the last reference.
5191 			 */
5192 			put_event(event);
5193 		}
5194 
5195 		mutex_unlock(&event->child_mutex);
5196 		mutex_unlock(&ctx->mutex);
5197 		put_ctx(ctx);
5198 		goto again;
5199 	}
5200 	mutex_unlock(&event->child_mutex);
5201 
5202 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5203 		void *var = &child->ctx->refcount;
5204 
5205 		list_del(&child->child_list);
5206 		free_event(child);
5207 
5208 		/*
5209 		 * Wake any perf_event_free_task() waiting for this event to be
5210 		 * freed.
5211 		 */
5212 		smp_mb(); /* pairs with wait_var_event() */
5213 		wake_up_var(var);
5214 	}
5215 
5216 no_ctx:
5217 	put_event(event); /* Must be the 'last' reference */
5218 	return 0;
5219 }
5220 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5221 
5222 /*
5223  * Called when the last reference to the file is gone.
5224  */
5225 static int perf_release(struct inode *inode, struct file *file)
5226 {
5227 	perf_event_release_kernel(file->private_data);
5228 	return 0;
5229 }
5230 
5231 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5232 {
5233 	struct perf_event *child;
5234 	u64 total = 0;
5235 
5236 	*enabled = 0;
5237 	*running = 0;
5238 
5239 	mutex_lock(&event->child_mutex);
5240 
5241 	(void)perf_event_read(event, false);
5242 	total += perf_event_count(event);
5243 
5244 	*enabled += event->total_time_enabled +
5245 			atomic64_read(&event->child_total_time_enabled);
5246 	*running += event->total_time_running +
5247 			atomic64_read(&event->child_total_time_running);
5248 
5249 	list_for_each_entry(child, &event->child_list, child_list) {
5250 		(void)perf_event_read(child, false);
5251 		total += perf_event_count(child);
5252 		*enabled += child->total_time_enabled;
5253 		*running += child->total_time_running;
5254 	}
5255 	mutex_unlock(&event->child_mutex);
5256 
5257 	return total;
5258 }
5259 
5260 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5261 {
5262 	struct perf_event_context *ctx;
5263 	u64 count;
5264 
5265 	ctx = perf_event_ctx_lock(event);
5266 	count = __perf_event_read_value(event, enabled, running);
5267 	perf_event_ctx_unlock(event, ctx);
5268 
5269 	return count;
5270 }
5271 EXPORT_SYMBOL_GPL(perf_event_read_value);
5272 
5273 static int __perf_read_group_add(struct perf_event *leader,
5274 					u64 read_format, u64 *values)
5275 {
5276 	struct perf_event_context *ctx = leader->ctx;
5277 	struct perf_event *sub;
5278 	unsigned long flags;
5279 	int n = 1; /* skip @nr */
5280 	int ret;
5281 
5282 	ret = perf_event_read(leader, true);
5283 	if (ret)
5284 		return ret;
5285 
5286 	raw_spin_lock_irqsave(&ctx->lock, flags);
5287 
5288 	/*
5289 	 * Since we co-schedule groups, {enabled,running} times of siblings
5290 	 * will be identical to those of the leader, so we only publish one
5291 	 * set.
5292 	 */
5293 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5294 		values[n++] += leader->total_time_enabled +
5295 			atomic64_read(&leader->child_total_time_enabled);
5296 	}
5297 
5298 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5299 		values[n++] += leader->total_time_running +
5300 			atomic64_read(&leader->child_total_time_running);
5301 	}
5302 
5303 	/*
5304 	 * Write {count,id} tuples for every sibling.
5305 	 */
5306 	values[n++] += perf_event_count(leader);
5307 	if (read_format & PERF_FORMAT_ID)
5308 		values[n++] = primary_event_id(leader);
5309 	if (read_format & PERF_FORMAT_LOST)
5310 		values[n++] = atomic64_read(&leader->lost_samples);
5311 
5312 	for_each_sibling_event(sub, leader) {
5313 		values[n++] += perf_event_count(sub);
5314 		if (read_format & PERF_FORMAT_ID)
5315 			values[n++] = primary_event_id(sub);
5316 		if (read_format & PERF_FORMAT_LOST)
5317 			values[n++] = atomic64_read(&sub->lost_samples);
5318 	}
5319 
5320 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5321 	return 0;
5322 }
5323 
5324 static int perf_read_group(struct perf_event *event,
5325 				   u64 read_format, char __user *buf)
5326 {
5327 	struct perf_event *leader = event->group_leader, *child;
5328 	struct perf_event_context *ctx = leader->ctx;
5329 	int ret;
5330 	u64 *values;
5331 
5332 	lockdep_assert_held(&ctx->mutex);
5333 
5334 	values = kzalloc(event->read_size, GFP_KERNEL);
5335 	if (!values)
5336 		return -ENOMEM;
5337 
5338 	values[0] = 1 + leader->nr_siblings;
5339 
5340 	/*
5341 	 * By locking the child_mutex of the leader we effectively
5342 	 * lock the child list of all siblings.. XXX explain how.
5343 	 */
5344 	mutex_lock(&leader->child_mutex);
5345 
5346 	ret = __perf_read_group_add(leader, read_format, values);
5347 	if (ret)
5348 		goto unlock;
5349 
5350 	list_for_each_entry(child, &leader->child_list, child_list) {
5351 		ret = __perf_read_group_add(child, read_format, values);
5352 		if (ret)
5353 			goto unlock;
5354 	}
5355 
5356 	mutex_unlock(&leader->child_mutex);
5357 
5358 	ret = event->read_size;
5359 	if (copy_to_user(buf, values, event->read_size))
5360 		ret = -EFAULT;
5361 	goto out;
5362 
5363 unlock:
5364 	mutex_unlock(&leader->child_mutex);
5365 out:
5366 	kfree(values);
5367 	return ret;
5368 }
5369 
5370 static int perf_read_one(struct perf_event *event,
5371 				 u64 read_format, char __user *buf)
5372 {
5373 	u64 enabled, running;
5374 	u64 values[5];
5375 	int n = 0;
5376 
5377 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5378 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5379 		values[n++] = enabled;
5380 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5381 		values[n++] = running;
5382 	if (read_format & PERF_FORMAT_ID)
5383 		values[n++] = primary_event_id(event);
5384 	if (read_format & PERF_FORMAT_LOST)
5385 		values[n++] = atomic64_read(&event->lost_samples);
5386 
5387 	if (copy_to_user(buf, values, n * sizeof(u64)))
5388 		return -EFAULT;
5389 
5390 	return n * sizeof(u64);
5391 }
5392 
5393 static bool is_event_hup(struct perf_event *event)
5394 {
5395 	bool no_children;
5396 
5397 	if (event->state > PERF_EVENT_STATE_EXIT)
5398 		return false;
5399 
5400 	mutex_lock(&event->child_mutex);
5401 	no_children = list_empty(&event->child_list);
5402 	mutex_unlock(&event->child_mutex);
5403 	return no_children;
5404 }
5405 
5406 /*
5407  * Read the performance event - simple non blocking version for now
5408  */
5409 static ssize_t
5410 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5411 {
5412 	u64 read_format = event->attr.read_format;
5413 	int ret;
5414 
5415 	/*
5416 	 * Return end-of-file for a read on an event that is in
5417 	 * error state (i.e. because it was pinned but it couldn't be
5418 	 * scheduled on to the CPU at some point).
5419 	 */
5420 	if (event->state == PERF_EVENT_STATE_ERROR)
5421 		return 0;
5422 
5423 	if (count < event->read_size)
5424 		return -ENOSPC;
5425 
5426 	WARN_ON_ONCE(event->ctx->parent_ctx);
5427 	if (read_format & PERF_FORMAT_GROUP)
5428 		ret = perf_read_group(event, read_format, buf);
5429 	else
5430 		ret = perf_read_one(event, read_format, buf);
5431 
5432 	return ret;
5433 }
5434 
5435 static ssize_t
5436 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5437 {
5438 	struct perf_event *event = file->private_data;
5439 	struct perf_event_context *ctx;
5440 	int ret;
5441 
5442 	ret = security_perf_event_read(event);
5443 	if (ret)
5444 		return ret;
5445 
5446 	ctx = perf_event_ctx_lock(event);
5447 	ret = __perf_read(event, buf, count);
5448 	perf_event_ctx_unlock(event, ctx);
5449 
5450 	return ret;
5451 }
5452 
5453 static __poll_t perf_poll(struct file *file, poll_table *wait)
5454 {
5455 	struct perf_event *event = file->private_data;
5456 	struct perf_buffer *rb;
5457 	__poll_t events = EPOLLHUP;
5458 
5459 	poll_wait(file, &event->waitq, wait);
5460 
5461 	if (is_event_hup(event))
5462 		return events;
5463 
5464 	/*
5465 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5466 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5467 	 */
5468 	mutex_lock(&event->mmap_mutex);
5469 	rb = event->rb;
5470 	if (rb)
5471 		events = atomic_xchg(&rb->poll, 0);
5472 	mutex_unlock(&event->mmap_mutex);
5473 	return events;
5474 }
5475 
5476 static void _perf_event_reset(struct perf_event *event)
5477 {
5478 	(void)perf_event_read(event, false);
5479 	local64_set(&event->count, 0);
5480 	perf_event_update_userpage(event);
5481 }
5482 
5483 /* Assume it's not an event with inherit set. */
5484 u64 perf_event_pause(struct perf_event *event, bool reset)
5485 {
5486 	struct perf_event_context *ctx;
5487 	u64 count;
5488 
5489 	ctx = perf_event_ctx_lock(event);
5490 	WARN_ON_ONCE(event->attr.inherit);
5491 	_perf_event_disable(event);
5492 	count = local64_read(&event->count);
5493 	if (reset)
5494 		local64_set(&event->count, 0);
5495 	perf_event_ctx_unlock(event, ctx);
5496 
5497 	return count;
5498 }
5499 EXPORT_SYMBOL_GPL(perf_event_pause);
5500 
5501 /*
5502  * Holding the top-level event's child_mutex means that any
5503  * descendant process that has inherited this event will block
5504  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5505  * task existence requirements of perf_event_enable/disable.
5506  */
5507 static void perf_event_for_each_child(struct perf_event *event,
5508 					void (*func)(struct perf_event *))
5509 {
5510 	struct perf_event *child;
5511 
5512 	WARN_ON_ONCE(event->ctx->parent_ctx);
5513 
5514 	mutex_lock(&event->child_mutex);
5515 	func(event);
5516 	list_for_each_entry(child, &event->child_list, child_list)
5517 		func(child);
5518 	mutex_unlock(&event->child_mutex);
5519 }
5520 
5521 static void perf_event_for_each(struct perf_event *event,
5522 				  void (*func)(struct perf_event *))
5523 {
5524 	struct perf_event_context *ctx = event->ctx;
5525 	struct perf_event *sibling;
5526 
5527 	lockdep_assert_held(&ctx->mutex);
5528 
5529 	event = event->group_leader;
5530 
5531 	perf_event_for_each_child(event, func);
5532 	for_each_sibling_event(sibling, event)
5533 		perf_event_for_each_child(sibling, func);
5534 }
5535 
5536 static void __perf_event_period(struct perf_event *event,
5537 				struct perf_cpu_context *cpuctx,
5538 				struct perf_event_context *ctx,
5539 				void *info)
5540 {
5541 	u64 value = *((u64 *)info);
5542 	bool active;
5543 
5544 	if (event->attr.freq) {
5545 		event->attr.sample_freq = value;
5546 	} else {
5547 		event->attr.sample_period = value;
5548 		event->hw.sample_period = value;
5549 	}
5550 
5551 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5552 	if (active) {
5553 		perf_pmu_disable(ctx->pmu);
5554 		/*
5555 		 * We could be throttled; unthrottle now to avoid the tick
5556 		 * trying to unthrottle while we already re-started the event.
5557 		 */
5558 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5559 			event->hw.interrupts = 0;
5560 			perf_log_throttle(event, 1);
5561 		}
5562 		event->pmu->stop(event, PERF_EF_UPDATE);
5563 	}
5564 
5565 	local64_set(&event->hw.period_left, 0);
5566 
5567 	if (active) {
5568 		event->pmu->start(event, PERF_EF_RELOAD);
5569 		perf_pmu_enable(ctx->pmu);
5570 	}
5571 }
5572 
5573 static int perf_event_check_period(struct perf_event *event, u64 value)
5574 {
5575 	return event->pmu->check_period(event, value);
5576 }
5577 
5578 static int _perf_event_period(struct perf_event *event, u64 value)
5579 {
5580 	if (!is_sampling_event(event))
5581 		return -EINVAL;
5582 
5583 	if (!value)
5584 		return -EINVAL;
5585 
5586 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5587 		return -EINVAL;
5588 
5589 	if (perf_event_check_period(event, value))
5590 		return -EINVAL;
5591 
5592 	if (!event->attr.freq && (value & (1ULL << 63)))
5593 		return -EINVAL;
5594 
5595 	event_function_call(event, __perf_event_period, &value);
5596 
5597 	return 0;
5598 }
5599 
5600 int perf_event_period(struct perf_event *event, u64 value)
5601 {
5602 	struct perf_event_context *ctx;
5603 	int ret;
5604 
5605 	ctx = perf_event_ctx_lock(event);
5606 	ret = _perf_event_period(event, value);
5607 	perf_event_ctx_unlock(event, ctx);
5608 
5609 	return ret;
5610 }
5611 EXPORT_SYMBOL_GPL(perf_event_period);
5612 
5613 static const struct file_operations perf_fops;
5614 
5615 static inline int perf_fget_light(int fd, struct fd *p)
5616 {
5617 	struct fd f = fdget(fd);
5618 	if (!f.file)
5619 		return -EBADF;
5620 
5621 	if (f.file->f_op != &perf_fops) {
5622 		fdput(f);
5623 		return -EBADF;
5624 	}
5625 	*p = f;
5626 	return 0;
5627 }
5628 
5629 static int perf_event_set_output(struct perf_event *event,
5630 				 struct perf_event *output_event);
5631 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5632 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5633 			  struct perf_event_attr *attr);
5634 
5635 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5636 {
5637 	void (*func)(struct perf_event *);
5638 	u32 flags = arg;
5639 
5640 	switch (cmd) {
5641 	case PERF_EVENT_IOC_ENABLE:
5642 		func = _perf_event_enable;
5643 		break;
5644 	case PERF_EVENT_IOC_DISABLE:
5645 		func = _perf_event_disable;
5646 		break;
5647 	case PERF_EVENT_IOC_RESET:
5648 		func = _perf_event_reset;
5649 		break;
5650 
5651 	case PERF_EVENT_IOC_REFRESH:
5652 		return _perf_event_refresh(event, arg);
5653 
5654 	case PERF_EVENT_IOC_PERIOD:
5655 	{
5656 		u64 value;
5657 
5658 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5659 			return -EFAULT;
5660 
5661 		return _perf_event_period(event, value);
5662 	}
5663 	case PERF_EVENT_IOC_ID:
5664 	{
5665 		u64 id = primary_event_id(event);
5666 
5667 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5668 			return -EFAULT;
5669 		return 0;
5670 	}
5671 
5672 	case PERF_EVENT_IOC_SET_OUTPUT:
5673 	{
5674 		int ret;
5675 		if (arg != -1) {
5676 			struct perf_event *output_event;
5677 			struct fd output;
5678 			ret = perf_fget_light(arg, &output);
5679 			if (ret)
5680 				return ret;
5681 			output_event = output.file->private_data;
5682 			ret = perf_event_set_output(event, output_event);
5683 			fdput(output);
5684 		} else {
5685 			ret = perf_event_set_output(event, NULL);
5686 		}
5687 		return ret;
5688 	}
5689 
5690 	case PERF_EVENT_IOC_SET_FILTER:
5691 		return perf_event_set_filter(event, (void __user *)arg);
5692 
5693 	case PERF_EVENT_IOC_SET_BPF:
5694 	{
5695 		struct bpf_prog *prog;
5696 		int err;
5697 
5698 		prog = bpf_prog_get(arg);
5699 		if (IS_ERR(prog))
5700 			return PTR_ERR(prog);
5701 
5702 		err = perf_event_set_bpf_prog(event, prog, 0);
5703 		if (err) {
5704 			bpf_prog_put(prog);
5705 			return err;
5706 		}
5707 
5708 		return 0;
5709 	}
5710 
5711 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5712 		struct perf_buffer *rb;
5713 
5714 		rcu_read_lock();
5715 		rb = rcu_dereference(event->rb);
5716 		if (!rb || !rb->nr_pages) {
5717 			rcu_read_unlock();
5718 			return -EINVAL;
5719 		}
5720 		rb_toggle_paused(rb, !!arg);
5721 		rcu_read_unlock();
5722 		return 0;
5723 	}
5724 
5725 	case PERF_EVENT_IOC_QUERY_BPF:
5726 		return perf_event_query_prog_array(event, (void __user *)arg);
5727 
5728 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5729 		struct perf_event_attr new_attr;
5730 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5731 					 &new_attr);
5732 
5733 		if (err)
5734 			return err;
5735 
5736 		return perf_event_modify_attr(event,  &new_attr);
5737 	}
5738 	default:
5739 		return -ENOTTY;
5740 	}
5741 
5742 	if (flags & PERF_IOC_FLAG_GROUP)
5743 		perf_event_for_each(event, func);
5744 	else
5745 		perf_event_for_each_child(event, func);
5746 
5747 	return 0;
5748 }
5749 
5750 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5751 {
5752 	struct perf_event *event = file->private_data;
5753 	struct perf_event_context *ctx;
5754 	long ret;
5755 
5756 	/* Treat ioctl like writes as it is likely a mutating operation. */
5757 	ret = security_perf_event_write(event);
5758 	if (ret)
5759 		return ret;
5760 
5761 	ctx = perf_event_ctx_lock(event);
5762 	ret = _perf_ioctl(event, cmd, arg);
5763 	perf_event_ctx_unlock(event, ctx);
5764 
5765 	return ret;
5766 }
5767 
5768 #ifdef CONFIG_COMPAT
5769 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5770 				unsigned long arg)
5771 {
5772 	switch (_IOC_NR(cmd)) {
5773 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5774 	case _IOC_NR(PERF_EVENT_IOC_ID):
5775 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5776 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5777 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5778 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5779 			cmd &= ~IOCSIZE_MASK;
5780 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5781 		}
5782 		break;
5783 	}
5784 	return perf_ioctl(file, cmd, arg);
5785 }
5786 #else
5787 # define perf_compat_ioctl NULL
5788 #endif
5789 
5790 int perf_event_task_enable(void)
5791 {
5792 	struct perf_event_context *ctx;
5793 	struct perf_event *event;
5794 
5795 	mutex_lock(&current->perf_event_mutex);
5796 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5797 		ctx = perf_event_ctx_lock(event);
5798 		perf_event_for_each_child(event, _perf_event_enable);
5799 		perf_event_ctx_unlock(event, ctx);
5800 	}
5801 	mutex_unlock(&current->perf_event_mutex);
5802 
5803 	return 0;
5804 }
5805 
5806 int perf_event_task_disable(void)
5807 {
5808 	struct perf_event_context *ctx;
5809 	struct perf_event *event;
5810 
5811 	mutex_lock(&current->perf_event_mutex);
5812 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5813 		ctx = perf_event_ctx_lock(event);
5814 		perf_event_for_each_child(event, _perf_event_disable);
5815 		perf_event_ctx_unlock(event, ctx);
5816 	}
5817 	mutex_unlock(&current->perf_event_mutex);
5818 
5819 	return 0;
5820 }
5821 
5822 static int perf_event_index(struct perf_event *event)
5823 {
5824 	if (event->hw.state & PERF_HES_STOPPED)
5825 		return 0;
5826 
5827 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5828 		return 0;
5829 
5830 	return event->pmu->event_idx(event);
5831 }
5832 
5833 static void perf_event_init_userpage(struct perf_event *event)
5834 {
5835 	struct perf_event_mmap_page *userpg;
5836 	struct perf_buffer *rb;
5837 
5838 	rcu_read_lock();
5839 	rb = rcu_dereference(event->rb);
5840 	if (!rb)
5841 		goto unlock;
5842 
5843 	userpg = rb->user_page;
5844 
5845 	/* Allow new userspace to detect that bit 0 is deprecated */
5846 	userpg->cap_bit0_is_deprecated = 1;
5847 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5848 	userpg->data_offset = PAGE_SIZE;
5849 	userpg->data_size = perf_data_size(rb);
5850 
5851 unlock:
5852 	rcu_read_unlock();
5853 }
5854 
5855 void __weak arch_perf_update_userpage(
5856 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5857 {
5858 }
5859 
5860 /*
5861  * Callers need to ensure there can be no nesting of this function, otherwise
5862  * the seqlock logic goes bad. We can not serialize this because the arch
5863  * code calls this from NMI context.
5864  */
5865 void perf_event_update_userpage(struct perf_event *event)
5866 {
5867 	struct perf_event_mmap_page *userpg;
5868 	struct perf_buffer *rb;
5869 	u64 enabled, running, now;
5870 
5871 	rcu_read_lock();
5872 	rb = rcu_dereference(event->rb);
5873 	if (!rb)
5874 		goto unlock;
5875 
5876 	/*
5877 	 * compute total_time_enabled, total_time_running
5878 	 * based on snapshot values taken when the event
5879 	 * was last scheduled in.
5880 	 *
5881 	 * we cannot simply called update_context_time()
5882 	 * because of locking issue as we can be called in
5883 	 * NMI context
5884 	 */
5885 	calc_timer_values(event, &now, &enabled, &running);
5886 
5887 	userpg = rb->user_page;
5888 	/*
5889 	 * Disable preemption to guarantee consistent time stamps are stored to
5890 	 * the user page.
5891 	 */
5892 	preempt_disable();
5893 	++userpg->lock;
5894 	barrier();
5895 	userpg->index = perf_event_index(event);
5896 	userpg->offset = perf_event_count(event);
5897 	if (userpg->index)
5898 		userpg->offset -= local64_read(&event->hw.prev_count);
5899 
5900 	userpg->time_enabled = enabled +
5901 			atomic64_read(&event->child_total_time_enabled);
5902 
5903 	userpg->time_running = running +
5904 			atomic64_read(&event->child_total_time_running);
5905 
5906 	arch_perf_update_userpage(event, userpg, now);
5907 
5908 	barrier();
5909 	++userpg->lock;
5910 	preempt_enable();
5911 unlock:
5912 	rcu_read_unlock();
5913 }
5914 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5915 
5916 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5917 {
5918 	struct perf_event *event = vmf->vma->vm_file->private_data;
5919 	struct perf_buffer *rb;
5920 	vm_fault_t ret = VM_FAULT_SIGBUS;
5921 
5922 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5923 		if (vmf->pgoff == 0)
5924 			ret = 0;
5925 		return ret;
5926 	}
5927 
5928 	rcu_read_lock();
5929 	rb = rcu_dereference(event->rb);
5930 	if (!rb)
5931 		goto unlock;
5932 
5933 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5934 		goto unlock;
5935 
5936 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5937 	if (!vmf->page)
5938 		goto unlock;
5939 
5940 	get_page(vmf->page);
5941 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5942 	vmf->page->index   = vmf->pgoff;
5943 
5944 	ret = 0;
5945 unlock:
5946 	rcu_read_unlock();
5947 
5948 	return ret;
5949 }
5950 
5951 static void ring_buffer_attach(struct perf_event *event,
5952 			       struct perf_buffer *rb)
5953 {
5954 	struct perf_buffer *old_rb = NULL;
5955 	unsigned long flags;
5956 
5957 	WARN_ON_ONCE(event->parent);
5958 
5959 	if (event->rb) {
5960 		/*
5961 		 * Should be impossible, we set this when removing
5962 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5963 		 */
5964 		WARN_ON_ONCE(event->rcu_pending);
5965 
5966 		old_rb = event->rb;
5967 		spin_lock_irqsave(&old_rb->event_lock, flags);
5968 		list_del_rcu(&event->rb_entry);
5969 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5970 
5971 		event->rcu_batches = get_state_synchronize_rcu();
5972 		event->rcu_pending = 1;
5973 	}
5974 
5975 	if (rb) {
5976 		if (event->rcu_pending) {
5977 			cond_synchronize_rcu(event->rcu_batches);
5978 			event->rcu_pending = 0;
5979 		}
5980 
5981 		spin_lock_irqsave(&rb->event_lock, flags);
5982 		list_add_rcu(&event->rb_entry, &rb->event_list);
5983 		spin_unlock_irqrestore(&rb->event_lock, flags);
5984 	}
5985 
5986 	/*
5987 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5988 	 * before swizzling the event::rb pointer; if it's getting
5989 	 * unmapped, its aux_mmap_count will be 0 and it won't
5990 	 * restart. See the comment in __perf_pmu_output_stop().
5991 	 *
5992 	 * Data will inevitably be lost when set_output is done in
5993 	 * mid-air, but then again, whoever does it like this is
5994 	 * not in for the data anyway.
5995 	 */
5996 	if (has_aux(event))
5997 		perf_event_stop(event, 0);
5998 
5999 	rcu_assign_pointer(event->rb, rb);
6000 
6001 	if (old_rb) {
6002 		ring_buffer_put(old_rb);
6003 		/*
6004 		 * Since we detached before setting the new rb, so that we
6005 		 * could attach the new rb, we could have missed a wakeup.
6006 		 * Provide it now.
6007 		 */
6008 		wake_up_all(&event->waitq);
6009 	}
6010 }
6011 
6012 static void ring_buffer_wakeup(struct perf_event *event)
6013 {
6014 	struct perf_buffer *rb;
6015 
6016 	if (event->parent)
6017 		event = event->parent;
6018 
6019 	rcu_read_lock();
6020 	rb = rcu_dereference(event->rb);
6021 	if (rb) {
6022 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6023 			wake_up_all(&event->waitq);
6024 	}
6025 	rcu_read_unlock();
6026 }
6027 
6028 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6029 {
6030 	struct perf_buffer *rb;
6031 
6032 	if (event->parent)
6033 		event = event->parent;
6034 
6035 	rcu_read_lock();
6036 	rb = rcu_dereference(event->rb);
6037 	if (rb) {
6038 		if (!refcount_inc_not_zero(&rb->refcount))
6039 			rb = NULL;
6040 	}
6041 	rcu_read_unlock();
6042 
6043 	return rb;
6044 }
6045 
6046 void ring_buffer_put(struct perf_buffer *rb)
6047 {
6048 	if (!refcount_dec_and_test(&rb->refcount))
6049 		return;
6050 
6051 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6052 
6053 	call_rcu(&rb->rcu_head, rb_free_rcu);
6054 }
6055 
6056 static void perf_mmap_open(struct vm_area_struct *vma)
6057 {
6058 	struct perf_event *event = vma->vm_file->private_data;
6059 
6060 	atomic_inc(&event->mmap_count);
6061 	atomic_inc(&event->rb->mmap_count);
6062 
6063 	if (vma->vm_pgoff)
6064 		atomic_inc(&event->rb->aux_mmap_count);
6065 
6066 	if (event->pmu->event_mapped)
6067 		event->pmu->event_mapped(event, vma->vm_mm);
6068 }
6069 
6070 static void perf_pmu_output_stop(struct perf_event *event);
6071 
6072 /*
6073  * A buffer can be mmap()ed multiple times; either directly through the same
6074  * event, or through other events by use of perf_event_set_output().
6075  *
6076  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6077  * the buffer here, where we still have a VM context. This means we need
6078  * to detach all events redirecting to us.
6079  */
6080 static void perf_mmap_close(struct vm_area_struct *vma)
6081 {
6082 	struct perf_event *event = vma->vm_file->private_data;
6083 	struct perf_buffer *rb = ring_buffer_get(event);
6084 	struct user_struct *mmap_user = rb->mmap_user;
6085 	int mmap_locked = rb->mmap_locked;
6086 	unsigned long size = perf_data_size(rb);
6087 	bool detach_rest = false;
6088 
6089 	if (event->pmu->event_unmapped)
6090 		event->pmu->event_unmapped(event, vma->vm_mm);
6091 
6092 	/*
6093 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6094 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6095 	 * serialize with perf_mmap here.
6096 	 */
6097 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6098 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6099 		/*
6100 		 * Stop all AUX events that are writing to this buffer,
6101 		 * so that we can free its AUX pages and corresponding PMU
6102 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6103 		 * they won't start any more (see perf_aux_output_begin()).
6104 		 */
6105 		perf_pmu_output_stop(event);
6106 
6107 		/* now it's safe to free the pages */
6108 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6109 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6110 
6111 		/* this has to be the last one */
6112 		rb_free_aux(rb);
6113 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6114 
6115 		mutex_unlock(&event->mmap_mutex);
6116 	}
6117 
6118 	if (atomic_dec_and_test(&rb->mmap_count))
6119 		detach_rest = true;
6120 
6121 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6122 		goto out_put;
6123 
6124 	ring_buffer_attach(event, NULL);
6125 	mutex_unlock(&event->mmap_mutex);
6126 
6127 	/* If there's still other mmap()s of this buffer, we're done. */
6128 	if (!detach_rest)
6129 		goto out_put;
6130 
6131 	/*
6132 	 * No other mmap()s, detach from all other events that might redirect
6133 	 * into the now unreachable buffer. Somewhat complicated by the
6134 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6135 	 */
6136 again:
6137 	rcu_read_lock();
6138 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6139 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6140 			/*
6141 			 * This event is en-route to free_event() which will
6142 			 * detach it and remove it from the list.
6143 			 */
6144 			continue;
6145 		}
6146 		rcu_read_unlock();
6147 
6148 		mutex_lock(&event->mmap_mutex);
6149 		/*
6150 		 * Check we didn't race with perf_event_set_output() which can
6151 		 * swizzle the rb from under us while we were waiting to
6152 		 * acquire mmap_mutex.
6153 		 *
6154 		 * If we find a different rb; ignore this event, a next
6155 		 * iteration will no longer find it on the list. We have to
6156 		 * still restart the iteration to make sure we're not now
6157 		 * iterating the wrong list.
6158 		 */
6159 		if (event->rb == rb)
6160 			ring_buffer_attach(event, NULL);
6161 
6162 		mutex_unlock(&event->mmap_mutex);
6163 		put_event(event);
6164 
6165 		/*
6166 		 * Restart the iteration; either we're on the wrong list or
6167 		 * destroyed its integrity by doing a deletion.
6168 		 */
6169 		goto again;
6170 	}
6171 	rcu_read_unlock();
6172 
6173 	/*
6174 	 * It could be there's still a few 0-ref events on the list; they'll
6175 	 * get cleaned up by free_event() -- they'll also still have their
6176 	 * ref on the rb and will free it whenever they are done with it.
6177 	 *
6178 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6179 	 * undo the VM accounting.
6180 	 */
6181 
6182 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6183 			&mmap_user->locked_vm);
6184 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6185 	free_uid(mmap_user);
6186 
6187 out_put:
6188 	ring_buffer_put(rb); /* could be last */
6189 }
6190 
6191 static const struct vm_operations_struct perf_mmap_vmops = {
6192 	.open		= perf_mmap_open,
6193 	.close		= perf_mmap_close, /* non mergeable */
6194 	.fault		= perf_mmap_fault,
6195 	.page_mkwrite	= perf_mmap_fault,
6196 };
6197 
6198 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6199 {
6200 	struct perf_event *event = file->private_data;
6201 	unsigned long user_locked, user_lock_limit;
6202 	struct user_struct *user = current_user();
6203 	struct perf_buffer *rb = NULL;
6204 	unsigned long locked, lock_limit;
6205 	unsigned long vma_size;
6206 	unsigned long nr_pages;
6207 	long user_extra = 0, extra = 0;
6208 	int ret = 0, flags = 0;
6209 
6210 	/*
6211 	 * Don't allow mmap() of inherited per-task counters. This would
6212 	 * create a performance issue due to all children writing to the
6213 	 * same rb.
6214 	 */
6215 	if (event->cpu == -1 && event->attr.inherit)
6216 		return -EINVAL;
6217 
6218 	if (!(vma->vm_flags & VM_SHARED))
6219 		return -EINVAL;
6220 
6221 	ret = security_perf_event_read(event);
6222 	if (ret)
6223 		return ret;
6224 
6225 	vma_size = vma->vm_end - vma->vm_start;
6226 
6227 	if (vma->vm_pgoff == 0) {
6228 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6229 	} else {
6230 		/*
6231 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6232 		 * mapped, all subsequent mappings should have the same size
6233 		 * and offset. Must be above the normal perf buffer.
6234 		 */
6235 		u64 aux_offset, aux_size;
6236 
6237 		if (!event->rb)
6238 			return -EINVAL;
6239 
6240 		nr_pages = vma_size / PAGE_SIZE;
6241 
6242 		mutex_lock(&event->mmap_mutex);
6243 		ret = -EINVAL;
6244 
6245 		rb = event->rb;
6246 		if (!rb)
6247 			goto aux_unlock;
6248 
6249 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6250 		aux_size = READ_ONCE(rb->user_page->aux_size);
6251 
6252 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6253 			goto aux_unlock;
6254 
6255 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6256 			goto aux_unlock;
6257 
6258 		/* already mapped with a different offset */
6259 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6260 			goto aux_unlock;
6261 
6262 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6263 			goto aux_unlock;
6264 
6265 		/* already mapped with a different size */
6266 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6267 			goto aux_unlock;
6268 
6269 		if (!is_power_of_2(nr_pages))
6270 			goto aux_unlock;
6271 
6272 		if (!atomic_inc_not_zero(&rb->mmap_count))
6273 			goto aux_unlock;
6274 
6275 		if (rb_has_aux(rb)) {
6276 			atomic_inc(&rb->aux_mmap_count);
6277 			ret = 0;
6278 			goto unlock;
6279 		}
6280 
6281 		atomic_set(&rb->aux_mmap_count, 1);
6282 		user_extra = nr_pages;
6283 
6284 		goto accounting;
6285 	}
6286 
6287 	/*
6288 	 * If we have rb pages ensure they're a power-of-two number, so we
6289 	 * can do bitmasks instead of modulo.
6290 	 */
6291 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6292 		return -EINVAL;
6293 
6294 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6295 		return -EINVAL;
6296 
6297 	WARN_ON_ONCE(event->ctx->parent_ctx);
6298 again:
6299 	mutex_lock(&event->mmap_mutex);
6300 	if (event->rb) {
6301 		if (data_page_nr(event->rb) != nr_pages) {
6302 			ret = -EINVAL;
6303 			goto unlock;
6304 		}
6305 
6306 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6307 			/*
6308 			 * Raced against perf_mmap_close(); remove the
6309 			 * event and try again.
6310 			 */
6311 			ring_buffer_attach(event, NULL);
6312 			mutex_unlock(&event->mmap_mutex);
6313 			goto again;
6314 		}
6315 
6316 		goto unlock;
6317 	}
6318 
6319 	user_extra = nr_pages + 1;
6320 
6321 accounting:
6322 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6323 
6324 	/*
6325 	 * Increase the limit linearly with more CPUs:
6326 	 */
6327 	user_lock_limit *= num_online_cpus();
6328 
6329 	user_locked = atomic_long_read(&user->locked_vm);
6330 
6331 	/*
6332 	 * sysctl_perf_event_mlock may have changed, so that
6333 	 *     user->locked_vm > user_lock_limit
6334 	 */
6335 	if (user_locked > user_lock_limit)
6336 		user_locked = user_lock_limit;
6337 	user_locked += user_extra;
6338 
6339 	if (user_locked > user_lock_limit) {
6340 		/*
6341 		 * charge locked_vm until it hits user_lock_limit;
6342 		 * charge the rest from pinned_vm
6343 		 */
6344 		extra = user_locked - user_lock_limit;
6345 		user_extra -= extra;
6346 	}
6347 
6348 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6349 	lock_limit >>= PAGE_SHIFT;
6350 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6351 
6352 	if ((locked > lock_limit) && perf_is_paranoid() &&
6353 		!capable(CAP_IPC_LOCK)) {
6354 		ret = -EPERM;
6355 		goto unlock;
6356 	}
6357 
6358 	WARN_ON(!rb && event->rb);
6359 
6360 	if (vma->vm_flags & VM_WRITE)
6361 		flags |= RING_BUFFER_WRITABLE;
6362 
6363 	if (!rb) {
6364 		rb = rb_alloc(nr_pages,
6365 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6366 			      event->cpu, flags);
6367 
6368 		if (!rb) {
6369 			ret = -ENOMEM;
6370 			goto unlock;
6371 		}
6372 
6373 		atomic_set(&rb->mmap_count, 1);
6374 		rb->mmap_user = get_current_user();
6375 		rb->mmap_locked = extra;
6376 
6377 		ring_buffer_attach(event, rb);
6378 
6379 		perf_event_update_time(event);
6380 		perf_event_init_userpage(event);
6381 		perf_event_update_userpage(event);
6382 	} else {
6383 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6384 				   event->attr.aux_watermark, flags);
6385 		if (!ret)
6386 			rb->aux_mmap_locked = extra;
6387 	}
6388 
6389 unlock:
6390 	if (!ret) {
6391 		atomic_long_add(user_extra, &user->locked_vm);
6392 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6393 
6394 		atomic_inc(&event->mmap_count);
6395 	} else if (rb) {
6396 		atomic_dec(&rb->mmap_count);
6397 	}
6398 aux_unlock:
6399 	mutex_unlock(&event->mmap_mutex);
6400 
6401 	/*
6402 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6403 	 * vma.
6404 	 */
6405 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6406 	vma->vm_ops = &perf_mmap_vmops;
6407 
6408 	if (event->pmu->event_mapped)
6409 		event->pmu->event_mapped(event, vma->vm_mm);
6410 
6411 	return ret;
6412 }
6413 
6414 static int perf_fasync(int fd, struct file *filp, int on)
6415 {
6416 	struct inode *inode = file_inode(filp);
6417 	struct perf_event *event = filp->private_data;
6418 	int retval;
6419 
6420 	inode_lock(inode);
6421 	retval = fasync_helper(fd, filp, on, &event->fasync);
6422 	inode_unlock(inode);
6423 
6424 	if (retval < 0)
6425 		return retval;
6426 
6427 	return 0;
6428 }
6429 
6430 static const struct file_operations perf_fops = {
6431 	.llseek			= no_llseek,
6432 	.release		= perf_release,
6433 	.read			= perf_read,
6434 	.poll			= perf_poll,
6435 	.unlocked_ioctl		= perf_ioctl,
6436 	.compat_ioctl		= perf_compat_ioctl,
6437 	.mmap			= perf_mmap,
6438 	.fasync			= perf_fasync,
6439 };
6440 
6441 /*
6442  * Perf event wakeup
6443  *
6444  * If there's data, ensure we set the poll() state and publish everything
6445  * to user-space before waking everybody up.
6446  */
6447 
6448 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6449 {
6450 	/* only the parent has fasync state */
6451 	if (event->parent)
6452 		event = event->parent;
6453 	return &event->fasync;
6454 }
6455 
6456 void perf_event_wakeup(struct perf_event *event)
6457 {
6458 	ring_buffer_wakeup(event);
6459 
6460 	if (event->pending_kill) {
6461 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6462 		event->pending_kill = 0;
6463 	}
6464 }
6465 
6466 static void perf_sigtrap(struct perf_event *event)
6467 {
6468 	/*
6469 	 * We'd expect this to only occur if the irq_work is delayed and either
6470 	 * ctx->task or current has changed in the meantime. This can be the
6471 	 * case on architectures that do not implement arch_irq_work_raise().
6472 	 */
6473 	if (WARN_ON_ONCE(event->ctx->task != current))
6474 		return;
6475 
6476 	/*
6477 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6478 	 * task exiting.
6479 	 */
6480 	if (current->flags & PF_EXITING)
6481 		return;
6482 
6483 	send_sig_perf((void __user *)event->pending_addr,
6484 		      event->attr.type, event->attr.sig_data);
6485 }
6486 
6487 /*
6488  * Deliver the pending work in-event-context or follow the context.
6489  */
6490 static void __perf_pending_irq(struct perf_event *event)
6491 {
6492 	int cpu = READ_ONCE(event->oncpu);
6493 
6494 	/*
6495 	 * If the event isn't running; we done. event_sched_out() will have
6496 	 * taken care of things.
6497 	 */
6498 	if (cpu < 0)
6499 		return;
6500 
6501 	/*
6502 	 * Yay, we hit home and are in the context of the event.
6503 	 */
6504 	if (cpu == smp_processor_id()) {
6505 		if (event->pending_sigtrap) {
6506 			event->pending_sigtrap = 0;
6507 			perf_sigtrap(event);
6508 			local_dec(&event->ctx->nr_pending);
6509 		}
6510 		if (event->pending_disable) {
6511 			event->pending_disable = 0;
6512 			perf_event_disable_local(event);
6513 		}
6514 		return;
6515 	}
6516 
6517 	/*
6518 	 *  CPU-A			CPU-B
6519 	 *
6520 	 *  perf_event_disable_inatomic()
6521 	 *    @pending_disable = CPU-A;
6522 	 *    irq_work_queue();
6523 	 *
6524 	 *  sched-out
6525 	 *    @pending_disable = -1;
6526 	 *
6527 	 *				sched-in
6528 	 *				perf_event_disable_inatomic()
6529 	 *				  @pending_disable = CPU-B;
6530 	 *				  irq_work_queue(); // FAILS
6531 	 *
6532 	 *  irq_work_run()
6533 	 *    perf_pending_irq()
6534 	 *
6535 	 * But the event runs on CPU-B and wants disabling there.
6536 	 */
6537 	irq_work_queue_on(&event->pending_irq, cpu);
6538 }
6539 
6540 static void perf_pending_irq(struct irq_work *entry)
6541 {
6542 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6543 	int rctx;
6544 
6545 	/*
6546 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6547 	 * and we won't recurse 'further'.
6548 	 */
6549 	rctx = perf_swevent_get_recursion_context();
6550 
6551 	/*
6552 	 * The wakeup isn't bound to the context of the event -- it can happen
6553 	 * irrespective of where the event is.
6554 	 */
6555 	if (event->pending_wakeup) {
6556 		event->pending_wakeup = 0;
6557 		perf_event_wakeup(event);
6558 	}
6559 
6560 	__perf_pending_irq(event);
6561 
6562 	if (rctx >= 0)
6563 		perf_swevent_put_recursion_context(rctx);
6564 }
6565 
6566 static void perf_pending_task(struct callback_head *head)
6567 {
6568 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6569 	int rctx;
6570 
6571 	/*
6572 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6573 	 * and we won't recurse 'further'.
6574 	 */
6575 	preempt_disable_notrace();
6576 	rctx = perf_swevent_get_recursion_context();
6577 
6578 	if (event->pending_work) {
6579 		event->pending_work = 0;
6580 		perf_sigtrap(event);
6581 		local_dec(&event->ctx->nr_pending);
6582 	}
6583 
6584 	if (rctx >= 0)
6585 		perf_swevent_put_recursion_context(rctx);
6586 	preempt_enable_notrace();
6587 
6588 	put_event(event);
6589 }
6590 
6591 #ifdef CONFIG_GUEST_PERF_EVENTS
6592 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6593 
6594 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6595 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6596 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6597 
6598 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6599 {
6600 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6601 		return;
6602 
6603 	rcu_assign_pointer(perf_guest_cbs, cbs);
6604 	static_call_update(__perf_guest_state, cbs->state);
6605 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6606 
6607 	/* Implementing ->handle_intel_pt_intr is optional. */
6608 	if (cbs->handle_intel_pt_intr)
6609 		static_call_update(__perf_guest_handle_intel_pt_intr,
6610 				   cbs->handle_intel_pt_intr);
6611 }
6612 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6613 
6614 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6615 {
6616 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6617 		return;
6618 
6619 	rcu_assign_pointer(perf_guest_cbs, NULL);
6620 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6621 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6622 	static_call_update(__perf_guest_handle_intel_pt_intr,
6623 			   (void *)&__static_call_return0);
6624 	synchronize_rcu();
6625 }
6626 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6627 #endif
6628 
6629 static void
6630 perf_output_sample_regs(struct perf_output_handle *handle,
6631 			struct pt_regs *regs, u64 mask)
6632 {
6633 	int bit;
6634 	DECLARE_BITMAP(_mask, 64);
6635 
6636 	bitmap_from_u64(_mask, mask);
6637 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6638 		u64 val;
6639 
6640 		val = perf_reg_value(regs, bit);
6641 		perf_output_put(handle, val);
6642 	}
6643 }
6644 
6645 static void perf_sample_regs_user(struct perf_regs *regs_user,
6646 				  struct pt_regs *regs)
6647 {
6648 	if (user_mode(regs)) {
6649 		regs_user->abi = perf_reg_abi(current);
6650 		regs_user->regs = regs;
6651 	} else if (!(current->flags & PF_KTHREAD)) {
6652 		perf_get_regs_user(regs_user, regs);
6653 	} else {
6654 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6655 		regs_user->regs = NULL;
6656 	}
6657 }
6658 
6659 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6660 				  struct pt_regs *regs)
6661 {
6662 	regs_intr->regs = regs;
6663 	regs_intr->abi  = perf_reg_abi(current);
6664 }
6665 
6666 
6667 /*
6668  * Get remaining task size from user stack pointer.
6669  *
6670  * It'd be better to take stack vma map and limit this more
6671  * precisely, but there's no way to get it safely under interrupt,
6672  * so using TASK_SIZE as limit.
6673  */
6674 static u64 perf_ustack_task_size(struct pt_regs *regs)
6675 {
6676 	unsigned long addr = perf_user_stack_pointer(regs);
6677 
6678 	if (!addr || addr >= TASK_SIZE)
6679 		return 0;
6680 
6681 	return TASK_SIZE - addr;
6682 }
6683 
6684 static u16
6685 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6686 			struct pt_regs *regs)
6687 {
6688 	u64 task_size;
6689 
6690 	/* No regs, no stack pointer, no dump. */
6691 	if (!regs)
6692 		return 0;
6693 
6694 	/*
6695 	 * Check if we fit in with the requested stack size into the:
6696 	 * - TASK_SIZE
6697 	 *   If we don't, we limit the size to the TASK_SIZE.
6698 	 *
6699 	 * - remaining sample size
6700 	 *   If we don't, we customize the stack size to
6701 	 *   fit in to the remaining sample size.
6702 	 */
6703 
6704 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6705 	stack_size = min(stack_size, (u16) task_size);
6706 
6707 	/* Current header size plus static size and dynamic size. */
6708 	header_size += 2 * sizeof(u64);
6709 
6710 	/* Do we fit in with the current stack dump size? */
6711 	if ((u16) (header_size + stack_size) < header_size) {
6712 		/*
6713 		 * If we overflow the maximum size for the sample,
6714 		 * we customize the stack dump size to fit in.
6715 		 */
6716 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6717 		stack_size = round_up(stack_size, sizeof(u64));
6718 	}
6719 
6720 	return stack_size;
6721 }
6722 
6723 static void
6724 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6725 			  struct pt_regs *regs)
6726 {
6727 	/* Case of a kernel thread, nothing to dump */
6728 	if (!regs) {
6729 		u64 size = 0;
6730 		perf_output_put(handle, size);
6731 	} else {
6732 		unsigned long sp;
6733 		unsigned int rem;
6734 		u64 dyn_size;
6735 
6736 		/*
6737 		 * We dump:
6738 		 * static size
6739 		 *   - the size requested by user or the best one we can fit
6740 		 *     in to the sample max size
6741 		 * data
6742 		 *   - user stack dump data
6743 		 * dynamic size
6744 		 *   - the actual dumped size
6745 		 */
6746 
6747 		/* Static size. */
6748 		perf_output_put(handle, dump_size);
6749 
6750 		/* Data. */
6751 		sp = perf_user_stack_pointer(regs);
6752 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6753 		dyn_size = dump_size - rem;
6754 
6755 		perf_output_skip(handle, rem);
6756 
6757 		/* Dynamic size. */
6758 		perf_output_put(handle, dyn_size);
6759 	}
6760 }
6761 
6762 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6763 					  struct perf_sample_data *data,
6764 					  size_t size)
6765 {
6766 	struct perf_event *sampler = event->aux_event;
6767 	struct perf_buffer *rb;
6768 
6769 	data->aux_size = 0;
6770 
6771 	if (!sampler)
6772 		goto out;
6773 
6774 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6775 		goto out;
6776 
6777 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6778 		goto out;
6779 
6780 	rb = ring_buffer_get(sampler);
6781 	if (!rb)
6782 		goto out;
6783 
6784 	/*
6785 	 * If this is an NMI hit inside sampling code, don't take
6786 	 * the sample. See also perf_aux_sample_output().
6787 	 */
6788 	if (READ_ONCE(rb->aux_in_sampling)) {
6789 		data->aux_size = 0;
6790 	} else {
6791 		size = min_t(size_t, size, perf_aux_size(rb));
6792 		data->aux_size = ALIGN(size, sizeof(u64));
6793 	}
6794 	ring_buffer_put(rb);
6795 
6796 out:
6797 	return data->aux_size;
6798 }
6799 
6800 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6801                                  struct perf_event *event,
6802                                  struct perf_output_handle *handle,
6803                                  unsigned long size)
6804 {
6805 	unsigned long flags;
6806 	long ret;
6807 
6808 	/*
6809 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6810 	 * paths. If we start calling them in NMI context, they may race with
6811 	 * the IRQ ones, that is, for example, re-starting an event that's just
6812 	 * been stopped, which is why we're using a separate callback that
6813 	 * doesn't change the event state.
6814 	 *
6815 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6816 	 */
6817 	local_irq_save(flags);
6818 	/*
6819 	 * Guard against NMI hits inside the critical section;
6820 	 * see also perf_prepare_sample_aux().
6821 	 */
6822 	WRITE_ONCE(rb->aux_in_sampling, 1);
6823 	barrier();
6824 
6825 	ret = event->pmu->snapshot_aux(event, handle, size);
6826 
6827 	barrier();
6828 	WRITE_ONCE(rb->aux_in_sampling, 0);
6829 	local_irq_restore(flags);
6830 
6831 	return ret;
6832 }
6833 
6834 static void perf_aux_sample_output(struct perf_event *event,
6835 				   struct perf_output_handle *handle,
6836 				   struct perf_sample_data *data)
6837 {
6838 	struct perf_event *sampler = event->aux_event;
6839 	struct perf_buffer *rb;
6840 	unsigned long pad;
6841 	long size;
6842 
6843 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6844 		return;
6845 
6846 	rb = ring_buffer_get(sampler);
6847 	if (!rb)
6848 		return;
6849 
6850 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6851 
6852 	/*
6853 	 * An error here means that perf_output_copy() failed (returned a
6854 	 * non-zero surplus that it didn't copy), which in its current
6855 	 * enlightened implementation is not possible. If that changes, we'd
6856 	 * like to know.
6857 	 */
6858 	if (WARN_ON_ONCE(size < 0))
6859 		goto out_put;
6860 
6861 	/*
6862 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6863 	 * perf_prepare_sample_aux(), so should not be more than that.
6864 	 */
6865 	pad = data->aux_size - size;
6866 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6867 		pad = 8;
6868 
6869 	if (pad) {
6870 		u64 zero = 0;
6871 		perf_output_copy(handle, &zero, pad);
6872 	}
6873 
6874 out_put:
6875 	ring_buffer_put(rb);
6876 }
6877 
6878 static void __perf_event_header__init_id(struct perf_event_header *header,
6879 					 struct perf_sample_data *data,
6880 					 struct perf_event *event,
6881 					 u64 sample_type)
6882 {
6883 	data->type = event->attr.sample_type;
6884 	header->size += event->id_header_size;
6885 
6886 	if (sample_type & PERF_SAMPLE_TID) {
6887 		/* namespace issues */
6888 		data->tid_entry.pid = perf_event_pid(event, current);
6889 		data->tid_entry.tid = perf_event_tid(event, current);
6890 	}
6891 
6892 	if (sample_type & PERF_SAMPLE_TIME)
6893 		data->time = perf_event_clock(event);
6894 
6895 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6896 		data->id = primary_event_id(event);
6897 
6898 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6899 		data->stream_id = event->id;
6900 
6901 	if (sample_type & PERF_SAMPLE_CPU) {
6902 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6903 		data->cpu_entry.reserved = 0;
6904 	}
6905 }
6906 
6907 void perf_event_header__init_id(struct perf_event_header *header,
6908 				struct perf_sample_data *data,
6909 				struct perf_event *event)
6910 {
6911 	if (event->attr.sample_id_all)
6912 		__perf_event_header__init_id(header, data, event, event->attr.sample_type);
6913 }
6914 
6915 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6916 					   struct perf_sample_data *data)
6917 {
6918 	u64 sample_type = data->type;
6919 
6920 	if (sample_type & PERF_SAMPLE_TID)
6921 		perf_output_put(handle, data->tid_entry);
6922 
6923 	if (sample_type & PERF_SAMPLE_TIME)
6924 		perf_output_put(handle, data->time);
6925 
6926 	if (sample_type & PERF_SAMPLE_ID)
6927 		perf_output_put(handle, data->id);
6928 
6929 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6930 		perf_output_put(handle, data->stream_id);
6931 
6932 	if (sample_type & PERF_SAMPLE_CPU)
6933 		perf_output_put(handle, data->cpu_entry);
6934 
6935 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6936 		perf_output_put(handle, data->id);
6937 }
6938 
6939 void perf_event__output_id_sample(struct perf_event *event,
6940 				  struct perf_output_handle *handle,
6941 				  struct perf_sample_data *sample)
6942 {
6943 	if (event->attr.sample_id_all)
6944 		__perf_event__output_id_sample(handle, sample);
6945 }
6946 
6947 static void perf_output_read_one(struct perf_output_handle *handle,
6948 				 struct perf_event *event,
6949 				 u64 enabled, u64 running)
6950 {
6951 	u64 read_format = event->attr.read_format;
6952 	u64 values[5];
6953 	int n = 0;
6954 
6955 	values[n++] = perf_event_count(event);
6956 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6957 		values[n++] = enabled +
6958 			atomic64_read(&event->child_total_time_enabled);
6959 	}
6960 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6961 		values[n++] = running +
6962 			atomic64_read(&event->child_total_time_running);
6963 	}
6964 	if (read_format & PERF_FORMAT_ID)
6965 		values[n++] = primary_event_id(event);
6966 	if (read_format & PERF_FORMAT_LOST)
6967 		values[n++] = atomic64_read(&event->lost_samples);
6968 
6969 	__output_copy(handle, values, n * sizeof(u64));
6970 }
6971 
6972 static void perf_output_read_group(struct perf_output_handle *handle,
6973 			    struct perf_event *event,
6974 			    u64 enabled, u64 running)
6975 {
6976 	struct perf_event *leader = event->group_leader, *sub;
6977 	u64 read_format = event->attr.read_format;
6978 	unsigned long flags;
6979 	u64 values[6];
6980 	int n = 0;
6981 
6982 	/*
6983 	 * Disabling interrupts avoids all counter scheduling
6984 	 * (context switches, timer based rotation and IPIs).
6985 	 */
6986 	local_irq_save(flags);
6987 
6988 	values[n++] = 1 + leader->nr_siblings;
6989 
6990 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6991 		values[n++] = enabled;
6992 
6993 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6994 		values[n++] = running;
6995 
6996 	if ((leader != event) &&
6997 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6998 		leader->pmu->read(leader);
6999 
7000 	values[n++] = perf_event_count(leader);
7001 	if (read_format & PERF_FORMAT_ID)
7002 		values[n++] = primary_event_id(leader);
7003 	if (read_format & PERF_FORMAT_LOST)
7004 		values[n++] = atomic64_read(&leader->lost_samples);
7005 
7006 	__output_copy(handle, values, n * sizeof(u64));
7007 
7008 	for_each_sibling_event(sub, leader) {
7009 		n = 0;
7010 
7011 		if ((sub != event) &&
7012 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7013 			sub->pmu->read(sub);
7014 
7015 		values[n++] = perf_event_count(sub);
7016 		if (read_format & PERF_FORMAT_ID)
7017 			values[n++] = primary_event_id(sub);
7018 		if (read_format & PERF_FORMAT_LOST)
7019 			values[n++] = atomic64_read(&sub->lost_samples);
7020 
7021 		__output_copy(handle, values, n * sizeof(u64));
7022 	}
7023 
7024 	local_irq_restore(flags);
7025 }
7026 
7027 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7028 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7029 
7030 /*
7031  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7032  *
7033  * The problem is that its both hard and excessively expensive to iterate the
7034  * child list, not to mention that its impossible to IPI the children running
7035  * on another CPU, from interrupt/NMI context.
7036  */
7037 static void perf_output_read(struct perf_output_handle *handle,
7038 			     struct perf_event *event)
7039 {
7040 	u64 enabled = 0, running = 0, now;
7041 	u64 read_format = event->attr.read_format;
7042 
7043 	/*
7044 	 * compute total_time_enabled, total_time_running
7045 	 * based on snapshot values taken when the event
7046 	 * was last scheduled in.
7047 	 *
7048 	 * we cannot simply called update_context_time()
7049 	 * because of locking issue as we are called in
7050 	 * NMI context
7051 	 */
7052 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7053 		calc_timer_values(event, &now, &enabled, &running);
7054 
7055 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7056 		perf_output_read_group(handle, event, enabled, running);
7057 	else
7058 		perf_output_read_one(handle, event, enabled, running);
7059 }
7060 
7061 void perf_output_sample(struct perf_output_handle *handle,
7062 			struct perf_event_header *header,
7063 			struct perf_sample_data *data,
7064 			struct perf_event *event)
7065 {
7066 	u64 sample_type = data->type;
7067 
7068 	perf_output_put(handle, *header);
7069 
7070 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7071 		perf_output_put(handle, data->id);
7072 
7073 	if (sample_type & PERF_SAMPLE_IP)
7074 		perf_output_put(handle, data->ip);
7075 
7076 	if (sample_type & PERF_SAMPLE_TID)
7077 		perf_output_put(handle, data->tid_entry);
7078 
7079 	if (sample_type & PERF_SAMPLE_TIME)
7080 		perf_output_put(handle, data->time);
7081 
7082 	if (sample_type & PERF_SAMPLE_ADDR)
7083 		perf_output_put(handle, data->addr);
7084 
7085 	if (sample_type & PERF_SAMPLE_ID)
7086 		perf_output_put(handle, data->id);
7087 
7088 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7089 		perf_output_put(handle, data->stream_id);
7090 
7091 	if (sample_type & PERF_SAMPLE_CPU)
7092 		perf_output_put(handle, data->cpu_entry);
7093 
7094 	if (sample_type & PERF_SAMPLE_PERIOD)
7095 		perf_output_put(handle, data->period);
7096 
7097 	if (sample_type & PERF_SAMPLE_READ)
7098 		perf_output_read(handle, event);
7099 
7100 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7101 		int size = 1;
7102 
7103 		size += data->callchain->nr;
7104 		size *= sizeof(u64);
7105 		__output_copy(handle, data->callchain, size);
7106 	}
7107 
7108 	if (sample_type & PERF_SAMPLE_RAW) {
7109 		struct perf_raw_record *raw = data->raw;
7110 
7111 		if (raw) {
7112 			struct perf_raw_frag *frag = &raw->frag;
7113 
7114 			perf_output_put(handle, raw->size);
7115 			do {
7116 				if (frag->copy) {
7117 					__output_custom(handle, frag->copy,
7118 							frag->data, frag->size);
7119 				} else {
7120 					__output_copy(handle, frag->data,
7121 						      frag->size);
7122 				}
7123 				if (perf_raw_frag_last(frag))
7124 					break;
7125 				frag = frag->next;
7126 			} while (1);
7127 			if (frag->pad)
7128 				__output_skip(handle, NULL, frag->pad);
7129 		} else {
7130 			struct {
7131 				u32	size;
7132 				u32	data;
7133 			} raw = {
7134 				.size = sizeof(u32),
7135 				.data = 0,
7136 			};
7137 			perf_output_put(handle, raw);
7138 		}
7139 	}
7140 
7141 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7142 		if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7143 			size_t size;
7144 
7145 			size = data->br_stack->nr
7146 			     * sizeof(struct perf_branch_entry);
7147 
7148 			perf_output_put(handle, data->br_stack->nr);
7149 			if (branch_sample_hw_index(event))
7150 				perf_output_put(handle, data->br_stack->hw_idx);
7151 			perf_output_copy(handle, data->br_stack->entries, size);
7152 		} else {
7153 			/*
7154 			 * we always store at least the value of nr
7155 			 */
7156 			u64 nr = 0;
7157 			perf_output_put(handle, nr);
7158 		}
7159 	}
7160 
7161 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7162 		u64 abi = data->regs_user.abi;
7163 
7164 		/*
7165 		 * If there are no regs to dump, notice it through
7166 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7167 		 */
7168 		perf_output_put(handle, abi);
7169 
7170 		if (abi) {
7171 			u64 mask = event->attr.sample_regs_user;
7172 			perf_output_sample_regs(handle,
7173 						data->regs_user.regs,
7174 						mask);
7175 		}
7176 	}
7177 
7178 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7179 		perf_output_sample_ustack(handle,
7180 					  data->stack_user_size,
7181 					  data->regs_user.regs);
7182 	}
7183 
7184 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7185 		perf_output_put(handle, data->weight.full);
7186 
7187 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7188 		perf_output_put(handle, data->data_src.val);
7189 
7190 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7191 		perf_output_put(handle, data->txn);
7192 
7193 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7194 		u64 abi = data->regs_intr.abi;
7195 		/*
7196 		 * If there are no regs to dump, notice it through
7197 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7198 		 */
7199 		perf_output_put(handle, abi);
7200 
7201 		if (abi) {
7202 			u64 mask = event->attr.sample_regs_intr;
7203 
7204 			perf_output_sample_regs(handle,
7205 						data->regs_intr.regs,
7206 						mask);
7207 		}
7208 	}
7209 
7210 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7211 		perf_output_put(handle, data->phys_addr);
7212 
7213 	if (sample_type & PERF_SAMPLE_CGROUP)
7214 		perf_output_put(handle, data->cgroup);
7215 
7216 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7217 		perf_output_put(handle, data->data_page_size);
7218 
7219 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7220 		perf_output_put(handle, data->code_page_size);
7221 
7222 	if (sample_type & PERF_SAMPLE_AUX) {
7223 		perf_output_put(handle, data->aux_size);
7224 
7225 		if (data->aux_size)
7226 			perf_aux_sample_output(event, handle, data);
7227 	}
7228 
7229 	if (!event->attr.watermark) {
7230 		int wakeup_events = event->attr.wakeup_events;
7231 
7232 		if (wakeup_events) {
7233 			struct perf_buffer *rb = handle->rb;
7234 			int events = local_inc_return(&rb->events);
7235 
7236 			if (events >= wakeup_events) {
7237 				local_sub(wakeup_events, &rb->events);
7238 				local_inc(&rb->wakeup);
7239 			}
7240 		}
7241 	}
7242 }
7243 
7244 static u64 perf_virt_to_phys(u64 virt)
7245 {
7246 	u64 phys_addr = 0;
7247 
7248 	if (!virt)
7249 		return 0;
7250 
7251 	if (virt >= TASK_SIZE) {
7252 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7253 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7254 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7255 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7256 	} else {
7257 		/*
7258 		 * Walking the pages tables for user address.
7259 		 * Interrupts are disabled, so it prevents any tear down
7260 		 * of the page tables.
7261 		 * Try IRQ-safe get_user_page_fast_only first.
7262 		 * If failed, leave phys_addr as 0.
7263 		 */
7264 		if (current->mm != NULL) {
7265 			struct page *p;
7266 
7267 			pagefault_disable();
7268 			if (get_user_page_fast_only(virt, 0, &p)) {
7269 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7270 				put_page(p);
7271 			}
7272 			pagefault_enable();
7273 		}
7274 	}
7275 
7276 	return phys_addr;
7277 }
7278 
7279 /*
7280  * Return the pagetable size of a given virtual address.
7281  */
7282 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7283 {
7284 	u64 size = 0;
7285 
7286 #ifdef CONFIG_HAVE_FAST_GUP
7287 	pgd_t *pgdp, pgd;
7288 	p4d_t *p4dp, p4d;
7289 	pud_t *pudp, pud;
7290 	pmd_t *pmdp, pmd;
7291 	pte_t *ptep, pte;
7292 
7293 	pgdp = pgd_offset(mm, addr);
7294 	pgd = READ_ONCE(*pgdp);
7295 	if (pgd_none(pgd))
7296 		return 0;
7297 
7298 	if (pgd_leaf(pgd))
7299 		return pgd_leaf_size(pgd);
7300 
7301 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7302 	p4d = READ_ONCE(*p4dp);
7303 	if (!p4d_present(p4d))
7304 		return 0;
7305 
7306 	if (p4d_leaf(p4d))
7307 		return p4d_leaf_size(p4d);
7308 
7309 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7310 	pud = READ_ONCE(*pudp);
7311 	if (!pud_present(pud))
7312 		return 0;
7313 
7314 	if (pud_leaf(pud))
7315 		return pud_leaf_size(pud);
7316 
7317 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7318 	pmd = READ_ONCE(*pmdp);
7319 	if (!pmd_present(pmd))
7320 		return 0;
7321 
7322 	if (pmd_leaf(pmd))
7323 		return pmd_leaf_size(pmd);
7324 
7325 	ptep = pte_offset_map(&pmd, addr);
7326 	pte = ptep_get_lockless(ptep);
7327 	if (pte_present(pte))
7328 		size = pte_leaf_size(pte);
7329 	pte_unmap(ptep);
7330 #endif /* CONFIG_HAVE_FAST_GUP */
7331 
7332 	return size;
7333 }
7334 
7335 static u64 perf_get_page_size(unsigned long addr)
7336 {
7337 	struct mm_struct *mm;
7338 	unsigned long flags;
7339 	u64 size;
7340 
7341 	if (!addr)
7342 		return 0;
7343 
7344 	/*
7345 	 * Software page-table walkers must disable IRQs,
7346 	 * which prevents any tear down of the page tables.
7347 	 */
7348 	local_irq_save(flags);
7349 
7350 	mm = current->mm;
7351 	if (!mm) {
7352 		/*
7353 		 * For kernel threads and the like, use init_mm so that
7354 		 * we can find kernel memory.
7355 		 */
7356 		mm = &init_mm;
7357 	}
7358 
7359 	size = perf_get_pgtable_size(mm, addr);
7360 
7361 	local_irq_restore(flags);
7362 
7363 	return size;
7364 }
7365 
7366 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7367 
7368 struct perf_callchain_entry *
7369 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7370 {
7371 	bool kernel = !event->attr.exclude_callchain_kernel;
7372 	bool user   = !event->attr.exclude_callchain_user;
7373 	/* Disallow cross-task user callchains. */
7374 	bool crosstask = event->ctx->task && event->ctx->task != current;
7375 	const u32 max_stack = event->attr.sample_max_stack;
7376 	struct perf_callchain_entry *callchain;
7377 
7378 	if (!kernel && !user)
7379 		return &__empty_callchain;
7380 
7381 	callchain = get_perf_callchain(regs, 0, kernel, user,
7382 				       max_stack, crosstask, true);
7383 	return callchain ?: &__empty_callchain;
7384 }
7385 
7386 void perf_prepare_sample(struct perf_event_header *header,
7387 			 struct perf_sample_data *data,
7388 			 struct perf_event *event,
7389 			 struct pt_regs *regs)
7390 {
7391 	u64 sample_type = event->attr.sample_type;
7392 	u64 filtered_sample_type;
7393 
7394 	header->type = PERF_RECORD_SAMPLE;
7395 	header->size = sizeof(*header) + event->header_size;
7396 
7397 	header->misc = 0;
7398 	header->misc |= perf_misc_flags(regs);
7399 
7400 	/*
7401 	 * Clear the sample flags that have already been done by the
7402 	 * PMU driver.
7403 	 */
7404 	filtered_sample_type = sample_type & ~data->sample_flags;
7405 	__perf_event_header__init_id(header, data, event, filtered_sample_type);
7406 
7407 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7408 		data->ip = perf_instruction_pointer(regs);
7409 
7410 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7411 		int size = 1;
7412 
7413 		if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7414 			data->callchain = perf_callchain(event, regs);
7415 
7416 		size += data->callchain->nr;
7417 
7418 		header->size += size * sizeof(u64);
7419 	}
7420 
7421 	if (sample_type & PERF_SAMPLE_RAW) {
7422 		struct perf_raw_record *raw = data->raw;
7423 		int size;
7424 
7425 		if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) {
7426 			struct perf_raw_frag *frag = &raw->frag;
7427 			u32 sum = 0;
7428 
7429 			do {
7430 				sum += frag->size;
7431 				if (perf_raw_frag_last(frag))
7432 					break;
7433 				frag = frag->next;
7434 			} while (1);
7435 
7436 			size = round_up(sum + sizeof(u32), sizeof(u64));
7437 			raw->size = size - sizeof(u32);
7438 			frag->pad = raw->size - sum;
7439 		} else {
7440 			size = sizeof(u64);
7441 			data->raw = NULL;
7442 		}
7443 
7444 		header->size += size;
7445 	}
7446 
7447 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7448 		int size = sizeof(u64); /* nr */
7449 		if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) {
7450 			if (branch_sample_hw_index(event))
7451 				size += sizeof(u64);
7452 
7453 			size += data->br_stack->nr
7454 			      * sizeof(struct perf_branch_entry);
7455 		}
7456 		header->size += size;
7457 	}
7458 
7459 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7460 		perf_sample_regs_user(&data->regs_user, regs);
7461 
7462 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7463 		/* regs dump ABI info */
7464 		int size = sizeof(u64);
7465 
7466 		if (data->regs_user.regs) {
7467 			u64 mask = event->attr.sample_regs_user;
7468 			size += hweight64(mask) * sizeof(u64);
7469 		}
7470 
7471 		header->size += size;
7472 	}
7473 
7474 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7475 		/*
7476 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7477 		 * processed as the last one or have additional check added
7478 		 * in case new sample type is added, because we could eat
7479 		 * up the rest of the sample size.
7480 		 */
7481 		u16 stack_size = event->attr.sample_stack_user;
7482 		u16 size = sizeof(u64);
7483 
7484 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7485 						     data->regs_user.regs);
7486 
7487 		/*
7488 		 * If there is something to dump, add space for the dump
7489 		 * itself and for the field that tells the dynamic size,
7490 		 * which is how many have been actually dumped.
7491 		 */
7492 		if (stack_size)
7493 			size += sizeof(u64) + stack_size;
7494 
7495 		data->stack_user_size = stack_size;
7496 		header->size += size;
7497 	}
7498 
7499 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7500 		data->weight.full = 0;
7501 
7502 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC)
7503 		data->data_src.val = PERF_MEM_NA;
7504 
7505 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION)
7506 		data->txn = 0;
7507 
7508 	if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) {
7509 		if (filtered_sample_type & PERF_SAMPLE_ADDR)
7510 			data->addr = 0;
7511 	}
7512 
7513 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7514 		/* regs dump ABI info */
7515 		int size = sizeof(u64);
7516 
7517 		perf_sample_regs_intr(&data->regs_intr, regs);
7518 
7519 		if (data->regs_intr.regs) {
7520 			u64 mask = event->attr.sample_regs_intr;
7521 
7522 			size += hweight64(mask) * sizeof(u64);
7523 		}
7524 
7525 		header->size += size;
7526 	}
7527 
7528 	if (sample_type & PERF_SAMPLE_PHYS_ADDR &&
7529 	    filtered_sample_type & PERF_SAMPLE_PHYS_ADDR)
7530 		data->phys_addr = perf_virt_to_phys(data->addr);
7531 
7532 #ifdef CONFIG_CGROUP_PERF
7533 	if (sample_type & PERF_SAMPLE_CGROUP) {
7534 		struct cgroup *cgrp;
7535 
7536 		/* protected by RCU */
7537 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7538 		data->cgroup = cgroup_id(cgrp);
7539 	}
7540 #endif
7541 
7542 	/*
7543 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7544 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7545 	 * but the value will not dump to the userspace.
7546 	 */
7547 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7548 		data->data_page_size = perf_get_page_size(data->addr);
7549 
7550 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7551 		data->code_page_size = perf_get_page_size(data->ip);
7552 
7553 	if (sample_type & PERF_SAMPLE_AUX) {
7554 		u64 size;
7555 
7556 		header->size += sizeof(u64); /* size */
7557 
7558 		/*
7559 		 * Given the 16bit nature of header::size, an AUX sample can
7560 		 * easily overflow it, what with all the preceding sample bits.
7561 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7562 		 * per sample in total (rounded down to 8 byte boundary).
7563 		 */
7564 		size = min_t(size_t, U16_MAX - header->size,
7565 			     event->attr.aux_sample_size);
7566 		size = rounddown(size, 8);
7567 		size = perf_prepare_sample_aux(event, data, size);
7568 
7569 		WARN_ON_ONCE(size + header->size > U16_MAX);
7570 		header->size += size;
7571 	}
7572 	/*
7573 	 * If you're adding more sample types here, you likely need to do
7574 	 * something about the overflowing header::size, like repurpose the
7575 	 * lowest 3 bits of size, which should be always zero at the moment.
7576 	 * This raises a more important question, do we really need 512k sized
7577 	 * samples and why, so good argumentation is in order for whatever you
7578 	 * do here next.
7579 	 */
7580 	WARN_ON_ONCE(header->size & 7);
7581 }
7582 
7583 static __always_inline int
7584 __perf_event_output(struct perf_event *event,
7585 		    struct perf_sample_data *data,
7586 		    struct pt_regs *regs,
7587 		    int (*output_begin)(struct perf_output_handle *,
7588 					struct perf_sample_data *,
7589 					struct perf_event *,
7590 					unsigned int))
7591 {
7592 	struct perf_output_handle handle;
7593 	struct perf_event_header header;
7594 	int err;
7595 
7596 	/* protect the callchain buffers */
7597 	rcu_read_lock();
7598 
7599 	perf_prepare_sample(&header, data, event, regs);
7600 
7601 	err = output_begin(&handle, data, event, header.size);
7602 	if (err)
7603 		goto exit;
7604 
7605 	perf_output_sample(&handle, &header, data, event);
7606 
7607 	perf_output_end(&handle);
7608 
7609 exit:
7610 	rcu_read_unlock();
7611 	return err;
7612 }
7613 
7614 void
7615 perf_event_output_forward(struct perf_event *event,
7616 			 struct perf_sample_data *data,
7617 			 struct pt_regs *regs)
7618 {
7619 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7620 }
7621 
7622 void
7623 perf_event_output_backward(struct perf_event *event,
7624 			   struct perf_sample_data *data,
7625 			   struct pt_regs *regs)
7626 {
7627 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7628 }
7629 
7630 int
7631 perf_event_output(struct perf_event *event,
7632 		  struct perf_sample_data *data,
7633 		  struct pt_regs *regs)
7634 {
7635 	return __perf_event_output(event, data, regs, perf_output_begin);
7636 }
7637 
7638 /*
7639  * read event_id
7640  */
7641 
7642 struct perf_read_event {
7643 	struct perf_event_header	header;
7644 
7645 	u32				pid;
7646 	u32				tid;
7647 };
7648 
7649 static void
7650 perf_event_read_event(struct perf_event *event,
7651 			struct task_struct *task)
7652 {
7653 	struct perf_output_handle handle;
7654 	struct perf_sample_data sample;
7655 	struct perf_read_event read_event = {
7656 		.header = {
7657 			.type = PERF_RECORD_READ,
7658 			.misc = 0,
7659 			.size = sizeof(read_event) + event->read_size,
7660 		},
7661 		.pid = perf_event_pid(event, task),
7662 		.tid = perf_event_tid(event, task),
7663 	};
7664 	int ret;
7665 
7666 	perf_event_header__init_id(&read_event.header, &sample, event);
7667 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7668 	if (ret)
7669 		return;
7670 
7671 	perf_output_put(&handle, read_event);
7672 	perf_output_read(&handle, event);
7673 	perf_event__output_id_sample(event, &handle, &sample);
7674 
7675 	perf_output_end(&handle);
7676 }
7677 
7678 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7679 
7680 static void
7681 perf_iterate_ctx(struct perf_event_context *ctx,
7682 		   perf_iterate_f output,
7683 		   void *data, bool all)
7684 {
7685 	struct perf_event *event;
7686 
7687 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7688 		if (!all) {
7689 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7690 				continue;
7691 			if (!event_filter_match(event))
7692 				continue;
7693 		}
7694 
7695 		output(event, data);
7696 	}
7697 }
7698 
7699 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7700 {
7701 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7702 	struct perf_event *event;
7703 
7704 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7705 		/*
7706 		 * Skip events that are not fully formed yet; ensure that
7707 		 * if we observe event->ctx, both event and ctx will be
7708 		 * complete enough. See perf_install_in_context().
7709 		 */
7710 		if (!smp_load_acquire(&event->ctx))
7711 			continue;
7712 
7713 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7714 			continue;
7715 		if (!event_filter_match(event))
7716 			continue;
7717 		output(event, data);
7718 	}
7719 }
7720 
7721 /*
7722  * Iterate all events that need to receive side-band events.
7723  *
7724  * For new callers; ensure that account_pmu_sb_event() includes
7725  * your event, otherwise it might not get delivered.
7726  */
7727 static void
7728 perf_iterate_sb(perf_iterate_f output, void *data,
7729 	       struct perf_event_context *task_ctx)
7730 {
7731 	struct perf_event_context *ctx;
7732 	int ctxn;
7733 
7734 	rcu_read_lock();
7735 	preempt_disable();
7736 
7737 	/*
7738 	 * If we have task_ctx != NULL we only notify the task context itself.
7739 	 * The task_ctx is set only for EXIT events before releasing task
7740 	 * context.
7741 	 */
7742 	if (task_ctx) {
7743 		perf_iterate_ctx(task_ctx, output, data, false);
7744 		goto done;
7745 	}
7746 
7747 	perf_iterate_sb_cpu(output, data);
7748 
7749 	for_each_task_context_nr(ctxn) {
7750 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7751 		if (ctx)
7752 			perf_iterate_ctx(ctx, output, data, false);
7753 	}
7754 done:
7755 	preempt_enable();
7756 	rcu_read_unlock();
7757 }
7758 
7759 /*
7760  * Clear all file-based filters at exec, they'll have to be
7761  * re-instated when/if these objects are mmapped again.
7762  */
7763 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7764 {
7765 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7766 	struct perf_addr_filter *filter;
7767 	unsigned int restart = 0, count = 0;
7768 	unsigned long flags;
7769 
7770 	if (!has_addr_filter(event))
7771 		return;
7772 
7773 	raw_spin_lock_irqsave(&ifh->lock, flags);
7774 	list_for_each_entry(filter, &ifh->list, entry) {
7775 		if (filter->path.dentry) {
7776 			event->addr_filter_ranges[count].start = 0;
7777 			event->addr_filter_ranges[count].size = 0;
7778 			restart++;
7779 		}
7780 
7781 		count++;
7782 	}
7783 
7784 	if (restart)
7785 		event->addr_filters_gen++;
7786 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7787 
7788 	if (restart)
7789 		perf_event_stop(event, 1);
7790 }
7791 
7792 void perf_event_exec(void)
7793 {
7794 	struct perf_event_context *ctx;
7795 	int ctxn;
7796 
7797 	for_each_task_context_nr(ctxn) {
7798 		perf_event_enable_on_exec(ctxn);
7799 		perf_event_remove_on_exec(ctxn);
7800 
7801 		rcu_read_lock();
7802 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7803 		if (ctx) {
7804 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7805 					 NULL, true);
7806 		}
7807 		rcu_read_unlock();
7808 	}
7809 }
7810 
7811 struct remote_output {
7812 	struct perf_buffer	*rb;
7813 	int			err;
7814 };
7815 
7816 static void __perf_event_output_stop(struct perf_event *event, void *data)
7817 {
7818 	struct perf_event *parent = event->parent;
7819 	struct remote_output *ro = data;
7820 	struct perf_buffer *rb = ro->rb;
7821 	struct stop_event_data sd = {
7822 		.event	= event,
7823 	};
7824 
7825 	if (!has_aux(event))
7826 		return;
7827 
7828 	if (!parent)
7829 		parent = event;
7830 
7831 	/*
7832 	 * In case of inheritance, it will be the parent that links to the
7833 	 * ring-buffer, but it will be the child that's actually using it.
7834 	 *
7835 	 * We are using event::rb to determine if the event should be stopped,
7836 	 * however this may race with ring_buffer_attach() (through set_output),
7837 	 * which will make us skip the event that actually needs to be stopped.
7838 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7839 	 * its rb pointer.
7840 	 */
7841 	if (rcu_dereference(parent->rb) == rb)
7842 		ro->err = __perf_event_stop(&sd);
7843 }
7844 
7845 static int __perf_pmu_output_stop(void *info)
7846 {
7847 	struct perf_event *event = info;
7848 	struct pmu *pmu = event->ctx->pmu;
7849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7850 	struct remote_output ro = {
7851 		.rb	= event->rb,
7852 	};
7853 
7854 	rcu_read_lock();
7855 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7856 	if (cpuctx->task_ctx)
7857 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7858 				   &ro, false);
7859 	rcu_read_unlock();
7860 
7861 	return ro.err;
7862 }
7863 
7864 static void perf_pmu_output_stop(struct perf_event *event)
7865 {
7866 	struct perf_event *iter;
7867 	int err, cpu;
7868 
7869 restart:
7870 	rcu_read_lock();
7871 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7872 		/*
7873 		 * For per-CPU events, we need to make sure that neither they
7874 		 * nor their children are running; for cpu==-1 events it's
7875 		 * sufficient to stop the event itself if it's active, since
7876 		 * it can't have children.
7877 		 */
7878 		cpu = iter->cpu;
7879 		if (cpu == -1)
7880 			cpu = READ_ONCE(iter->oncpu);
7881 
7882 		if (cpu == -1)
7883 			continue;
7884 
7885 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7886 		if (err == -EAGAIN) {
7887 			rcu_read_unlock();
7888 			goto restart;
7889 		}
7890 	}
7891 	rcu_read_unlock();
7892 }
7893 
7894 /*
7895  * task tracking -- fork/exit
7896  *
7897  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7898  */
7899 
7900 struct perf_task_event {
7901 	struct task_struct		*task;
7902 	struct perf_event_context	*task_ctx;
7903 
7904 	struct {
7905 		struct perf_event_header	header;
7906 
7907 		u32				pid;
7908 		u32				ppid;
7909 		u32				tid;
7910 		u32				ptid;
7911 		u64				time;
7912 	} event_id;
7913 };
7914 
7915 static int perf_event_task_match(struct perf_event *event)
7916 {
7917 	return event->attr.comm  || event->attr.mmap ||
7918 	       event->attr.mmap2 || event->attr.mmap_data ||
7919 	       event->attr.task;
7920 }
7921 
7922 static void perf_event_task_output(struct perf_event *event,
7923 				   void *data)
7924 {
7925 	struct perf_task_event *task_event = data;
7926 	struct perf_output_handle handle;
7927 	struct perf_sample_data	sample;
7928 	struct task_struct *task = task_event->task;
7929 	int ret, size = task_event->event_id.header.size;
7930 
7931 	if (!perf_event_task_match(event))
7932 		return;
7933 
7934 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7935 
7936 	ret = perf_output_begin(&handle, &sample, event,
7937 				task_event->event_id.header.size);
7938 	if (ret)
7939 		goto out;
7940 
7941 	task_event->event_id.pid = perf_event_pid(event, task);
7942 	task_event->event_id.tid = perf_event_tid(event, task);
7943 
7944 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7945 		task_event->event_id.ppid = perf_event_pid(event,
7946 							task->real_parent);
7947 		task_event->event_id.ptid = perf_event_pid(event,
7948 							task->real_parent);
7949 	} else {  /* PERF_RECORD_FORK */
7950 		task_event->event_id.ppid = perf_event_pid(event, current);
7951 		task_event->event_id.ptid = perf_event_tid(event, current);
7952 	}
7953 
7954 	task_event->event_id.time = perf_event_clock(event);
7955 
7956 	perf_output_put(&handle, task_event->event_id);
7957 
7958 	perf_event__output_id_sample(event, &handle, &sample);
7959 
7960 	perf_output_end(&handle);
7961 out:
7962 	task_event->event_id.header.size = size;
7963 }
7964 
7965 static void perf_event_task(struct task_struct *task,
7966 			      struct perf_event_context *task_ctx,
7967 			      int new)
7968 {
7969 	struct perf_task_event task_event;
7970 
7971 	if (!atomic_read(&nr_comm_events) &&
7972 	    !atomic_read(&nr_mmap_events) &&
7973 	    !atomic_read(&nr_task_events))
7974 		return;
7975 
7976 	task_event = (struct perf_task_event){
7977 		.task	  = task,
7978 		.task_ctx = task_ctx,
7979 		.event_id    = {
7980 			.header = {
7981 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7982 				.misc = 0,
7983 				.size = sizeof(task_event.event_id),
7984 			},
7985 			/* .pid  */
7986 			/* .ppid */
7987 			/* .tid  */
7988 			/* .ptid */
7989 			/* .time */
7990 		},
7991 	};
7992 
7993 	perf_iterate_sb(perf_event_task_output,
7994 		       &task_event,
7995 		       task_ctx);
7996 }
7997 
7998 void perf_event_fork(struct task_struct *task)
7999 {
8000 	perf_event_task(task, NULL, 1);
8001 	perf_event_namespaces(task);
8002 }
8003 
8004 /*
8005  * comm tracking
8006  */
8007 
8008 struct perf_comm_event {
8009 	struct task_struct	*task;
8010 	char			*comm;
8011 	int			comm_size;
8012 
8013 	struct {
8014 		struct perf_event_header	header;
8015 
8016 		u32				pid;
8017 		u32				tid;
8018 	} event_id;
8019 };
8020 
8021 static int perf_event_comm_match(struct perf_event *event)
8022 {
8023 	return event->attr.comm;
8024 }
8025 
8026 static void perf_event_comm_output(struct perf_event *event,
8027 				   void *data)
8028 {
8029 	struct perf_comm_event *comm_event = data;
8030 	struct perf_output_handle handle;
8031 	struct perf_sample_data sample;
8032 	int size = comm_event->event_id.header.size;
8033 	int ret;
8034 
8035 	if (!perf_event_comm_match(event))
8036 		return;
8037 
8038 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8039 	ret = perf_output_begin(&handle, &sample, event,
8040 				comm_event->event_id.header.size);
8041 
8042 	if (ret)
8043 		goto out;
8044 
8045 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8046 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8047 
8048 	perf_output_put(&handle, comm_event->event_id);
8049 	__output_copy(&handle, comm_event->comm,
8050 				   comm_event->comm_size);
8051 
8052 	perf_event__output_id_sample(event, &handle, &sample);
8053 
8054 	perf_output_end(&handle);
8055 out:
8056 	comm_event->event_id.header.size = size;
8057 }
8058 
8059 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8060 {
8061 	char comm[TASK_COMM_LEN];
8062 	unsigned int size;
8063 
8064 	memset(comm, 0, sizeof(comm));
8065 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
8066 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8067 
8068 	comm_event->comm = comm;
8069 	comm_event->comm_size = size;
8070 
8071 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8072 
8073 	perf_iterate_sb(perf_event_comm_output,
8074 		       comm_event,
8075 		       NULL);
8076 }
8077 
8078 void perf_event_comm(struct task_struct *task, bool exec)
8079 {
8080 	struct perf_comm_event comm_event;
8081 
8082 	if (!atomic_read(&nr_comm_events))
8083 		return;
8084 
8085 	comm_event = (struct perf_comm_event){
8086 		.task	= task,
8087 		/* .comm      */
8088 		/* .comm_size */
8089 		.event_id  = {
8090 			.header = {
8091 				.type = PERF_RECORD_COMM,
8092 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8093 				/* .size */
8094 			},
8095 			/* .pid */
8096 			/* .tid */
8097 		},
8098 	};
8099 
8100 	perf_event_comm_event(&comm_event);
8101 }
8102 
8103 /*
8104  * namespaces tracking
8105  */
8106 
8107 struct perf_namespaces_event {
8108 	struct task_struct		*task;
8109 
8110 	struct {
8111 		struct perf_event_header	header;
8112 
8113 		u32				pid;
8114 		u32				tid;
8115 		u64				nr_namespaces;
8116 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8117 	} event_id;
8118 };
8119 
8120 static int perf_event_namespaces_match(struct perf_event *event)
8121 {
8122 	return event->attr.namespaces;
8123 }
8124 
8125 static void perf_event_namespaces_output(struct perf_event *event,
8126 					 void *data)
8127 {
8128 	struct perf_namespaces_event *namespaces_event = data;
8129 	struct perf_output_handle handle;
8130 	struct perf_sample_data sample;
8131 	u16 header_size = namespaces_event->event_id.header.size;
8132 	int ret;
8133 
8134 	if (!perf_event_namespaces_match(event))
8135 		return;
8136 
8137 	perf_event_header__init_id(&namespaces_event->event_id.header,
8138 				   &sample, event);
8139 	ret = perf_output_begin(&handle, &sample, event,
8140 				namespaces_event->event_id.header.size);
8141 	if (ret)
8142 		goto out;
8143 
8144 	namespaces_event->event_id.pid = perf_event_pid(event,
8145 							namespaces_event->task);
8146 	namespaces_event->event_id.tid = perf_event_tid(event,
8147 							namespaces_event->task);
8148 
8149 	perf_output_put(&handle, namespaces_event->event_id);
8150 
8151 	perf_event__output_id_sample(event, &handle, &sample);
8152 
8153 	perf_output_end(&handle);
8154 out:
8155 	namespaces_event->event_id.header.size = header_size;
8156 }
8157 
8158 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8159 				   struct task_struct *task,
8160 				   const struct proc_ns_operations *ns_ops)
8161 {
8162 	struct path ns_path;
8163 	struct inode *ns_inode;
8164 	int error;
8165 
8166 	error = ns_get_path(&ns_path, task, ns_ops);
8167 	if (!error) {
8168 		ns_inode = ns_path.dentry->d_inode;
8169 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8170 		ns_link_info->ino = ns_inode->i_ino;
8171 		path_put(&ns_path);
8172 	}
8173 }
8174 
8175 void perf_event_namespaces(struct task_struct *task)
8176 {
8177 	struct perf_namespaces_event namespaces_event;
8178 	struct perf_ns_link_info *ns_link_info;
8179 
8180 	if (!atomic_read(&nr_namespaces_events))
8181 		return;
8182 
8183 	namespaces_event = (struct perf_namespaces_event){
8184 		.task	= task,
8185 		.event_id  = {
8186 			.header = {
8187 				.type = PERF_RECORD_NAMESPACES,
8188 				.misc = 0,
8189 				.size = sizeof(namespaces_event.event_id),
8190 			},
8191 			/* .pid */
8192 			/* .tid */
8193 			.nr_namespaces = NR_NAMESPACES,
8194 			/* .link_info[NR_NAMESPACES] */
8195 		},
8196 	};
8197 
8198 	ns_link_info = namespaces_event.event_id.link_info;
8199 
8200 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8201 			       task, &mntns_operations);
8202 
8203 #ifdef CONFIG_USER_NS
8204 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8205 			       task, &userns_operations);
8206 #endif
8207 #ifdef CONFIG_NET_NS
8208 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8209 			       task, &netns_operations);
8210 #endif
8211 #ifdef CONFIG_UTS_NS
8212 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8213 			       task, &utsns_operations);
8214 #endif
8215 #ifdef CONFIG_IPC_NS
8216 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8217 			       task, &ipcns_operations);
8218 #endif
8219 #ifdef CONFIG_PID_NS
8220 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8221 			       task, &pidns_operations);
8222 #endif
8223 #ifdef CONFIG_CGROUPS
8224 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8225 			       task, &cgroupns_operations);
8226 #endif
8227 
8228 	perf_iterate_sb(perf_event_namespaces_output,
8229 			&namespaces_event,
8230 			NULL);
8231 }
8232 
8233 /*
8234  * cgroup tracking
8235  */
8236 #ifdef CONFIG_CGROUP_PERF
8237 
8238 struct perf_cgroup_event {
8239 	char				*path;
8240 	int				path_size;
8241 	struct {
8242 		struct perf_event_header	header;
8243 		u64				id;
8244 		char				path[];
8245 	} event_id;
8246 };
8247 
8248 static int perf_event_cgroup_match(struct perf_event *event)
8249 {
8250 	return event->attr.cgroup;
8251 }
8252 
8253 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8254 {
8255 	struct perf_cgroup_event *cgroup_event = data;
8256 	struct perf_output_handle handle;
8257 	struct perf_sample_data sample;
8258 	u16 header_size = cgroup_event->event_id.header.size;
8259 	int ret;
8260 
8261 	if (!perf_event_cgroup_match(event))
8262 		return;
8263 
8264 	perf_event_header__init_id(&cgroup_event->event_id.header,
8265 				   &sample, event);
8266 	ret = perf_output_begin(&handle, &sample, event,
8267 				cgroup_event->event_id.header.size);
8268 	if (ret)
8269 		goto out;
8270 
8271 	perf_output_put(&handle, cgroup_event->event_id);
8272 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8273 
8274 	perf_event__output_id_sample(event, &handle, &sample);
8275 
8276 	perf_output_end(&handle);
8277 out:
8278 	cgroup_event->event_id.header.size = header_size;
8279 }
8280 
8281 static void perf_event_cgroup(struct cgroup *cgrp)
8282 {
8283 	struct perf_cgroup_event cgroup_event;
8284 	char path_enomem[16] = "//enomem";
8285 	char *pathname;
8286 	size_t size;
8287 
8288 	if (!atomic_read(&nr_cgroup_events))
8289 		return;
8290 
8291 	cgroup_event = (struct perf_cgroup_event){
8292 		.event_id  = {
8293 			.header = {
8294 				.type = PERF_RECORD_CGROUP,
8295 				.misc = 0,
8296 				.size = sizeof(cgroup_event.event_id),
8297 			},
8298 			.id = cgroup_id(cgrp),
8299 		},
8300 	};
8301 
8302 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8303 	if (pathname == NULL) {
8304 		cgroup_event.path = path_enomem;
8305 	} else {
8306 		/* just to be sure to have enough space for alignment */
8307 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8308 		cgroup_event.path = pathname;
8309 	}
8310 
8311 	/*
8312 	 * Since our buffer works in 8 byte units we need to align our string
8313 	 * size to a multiple of 8. However, we must guarantee the tail end is
8314 	 * zero'd out to avoid leaking random bits to userspace.
8315 	 */
8316 	size = strlen(cgroup_event.path) + 1;
8317 	while (!IS_ALIGNED(size, sizeof(u64)))
8318 		cgroup_event.path[size++] = '\0';
8319 
8320 	cgroup_event.event_id.header.size += size;
8321 	cgroup_event.path_size = size;
8322 
8323 	perf_iterate_sb(perf_event_cgroup_output,
8324 			&cgroup_event,
8325 			NULL);
8326 
8327 	kfree(pathname);
8328 }
8329 
8330 #endif
8331 
8332 /*
8333  * mmap tracking
8334  */
8335 
8336 struct perf_mmap_event {
8337 	struct vm_area_struct	*vma;
8338 
8339 	const char		*file_name;
8340 	int			file_size;
8341 	int			maj, min;
8342 	u64			ino;
8343 	u64			ino_generation;
8344 	u32			prot, flags;
8345 	u8			build_id[BUILD_ID_SIZE_MAX];
8346 	u32			build_id_size;
8347 
8348 	struct {
8349 		struct perf_event_header	header;
8350 
8351 		u32				pid;
8352 		u32				tid;
8353 		u64				start;
8354 		u64				len;
8355 		u64				pgoff;
8356 	} event_id;
8357 };
8358 
8359 static int perf_event_mmap_match(struct perf_event *event,
8360 				 void *data)
8361 {
8362 	struct perf_mmap_event *mmap_event = data;
8363 	struct vm_area_struct *vma = mmap_event->vma;
8364 	int executable = vma->vm_flags & VM_EXEC;
8365 
8366 	return (!executable && event->attr.mmap_data) ||
8367 	       (executable && (event->attr.mmap || event->attr.mmap2));
8368 }
8369 
8370 static void perf_event_mmap_output(struct perf_event *event,
8371 				   void *data)
8372 {
8373 	struct perf_mmap_event *mmap_event = data;
8374 	struct perf_output_handle handle;
8375 	struct perf_sample_data sample;
8376 	int size = mmap_event->event_id.header.size;
8377 	u32 type = mmap_event->event_id.header.type;
8378 	bool use_build_id;
8379 	int ret;
8380 
8381 	if (!perf_event_mmap_match(event, data))
8382 		return;
8383 
8384 	if (event->attr.mmap2) {
8385 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8386 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8387 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8388 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8389 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8390 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8391 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8392 	}
8393 
8394 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8395 	ret = perf_output_begin(&handle, &sample, event,
8396 				mmap_event->event_id.header.size);
8397 	if (ret)
8398 		goto out;
8399 
8400 	mmap_event->event_id.pid = perf_event_pid(event, current);
8401 	mmap_event->event_id.tid = perf_event_tid(event, current);
8402 
8403 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8404 
8405 	if (event->attr.mmap2 && use_build_id)
8406 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8407 
8408 	perf_output_put(&handle, mmap_event->event_id);
8409 
8410 	if (event->attr.mmap2) {
8411 		if (use_build_id) {
8412 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8413 
8414 			__output_copy(&handle, size, 4);
8415 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8416 		} else {
8417 			perf_output_put(&handle, mmap_event->maj);
8418 			perf_output_put(&handle, mmap_event->min);
8419 			perf_output_put(&handle, mmap_event->ino);
8420 			perf_output_put(&handle, mmap_event->ino_generation);
8421 		}
8422 		perf_output_put(&handle, mmap_event->prot);
8423 		perf_output_put(&handle, mmap_event->flags);
8424 	}
8425 
8426 	__output_copy(&handle, mmap_event->file_name,
8427 				   mmap_event->file_size);
8428 
8429 	perf_event__output_id_sample(event, &handle, &sample);
8430 
8431 	perf_output_end(&handle);
8432 out:
8433 	mmap_event->event_id.header.size = size;
8434 	mmap_event->event_id.header.type = type;
8435 }
8436 
8437 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8438 {
8439 	struct vm_area_struct *vma = mmap_event->vma;
8440 	struct file *file = vma->vm_file;
8441 	int maj = 0, min = 0;
8442 	u64 ino = 0, gen = 0;
8443 	u32 prot = 0, flags = 0;
8444 	unsigned int size;
8445 	char tmp[16];
8446 	char *buf = NULL;
8447 	char *name;
8448 
8449 	if (vma->vm_flags & VM_READ)
8450 		prot |= PROT_READ;
8451 	if (vma->vm_flags & VM_WRITE)
8452 		prot |= PROT_WRITE;
8453 	if (vma->vm_flags & VM_EXEC)
8454 		prot |= PROT_EXEC;
8455 
8456 	if (vma->vm_flags & VM_MAYSHARE)
8457 		flags = MAP_SHARED;
8458 	else
8459 		flags = MAP_PRIVATE;
8460 
8461 	if (vma->vm_flags & VM_LOCKED)
8462 		flags |= MAP_LOCKED;
8463 	if (is_vm_hugetlb_page(vma))
8464 		flags |= MAP_HUGETLB;
8465 
8466 	if (file) {
8467 		struct inode *inode;
8468 		dev_t dev;
8469 
8470 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8471 		if (!buf) {
8472 			name = "//enomem";
8473 			goto cpy_name;
8474 		}
8475 		/*
8476 		 * d_path() works from the end of the rb backwards, so we
8477 		 * need to add enough zero bytes after the string to handle
8478 		 * the 64bit alignment we do later.
8479 		 */
8480 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8481 		if (IS_ERR(name)) {
8482 			name = "//toolong";
8483 			goto cpy_name;
8484 		}
8485 		inode = file_inode(vma->vm_file);
8486 		dev = inode->i_sb->s_dev;
8487 		ino = inode->i_ino;
8488 		gen = inode->i_generation;
8489 		maj = MAJOR(dev);
8490 		min = MINOR(dev);
8491 
8492 		goto got_name;
8493 	} else {
8494 		if (vma->vm_ops && vma->vm_ops->name) {
8495 			name = (char *) vma->vm_ops->name(vma);
8496 			if (name)
8497 				goto cpy_name;
8498 		}
8499 
8500 		name = (char *)arch_vma_name(vma);
8501 		if (name)
8502 			goto cpy_name;
8503 
8504 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8505 				vma->vm_end >= vma->vm_mm->brk) {
8506 			name = "[heap]";
8507 			goto cpy_name;
8508 		}
8509 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8510 				vma->vm_end >= vma->vm_mm->start_stack) {
8511 			name = "[stack]";
8512 			goto cpy_name;
8513 		}
8514 
8515 		name = "//anon";
8516 		goto cpy_name;
8517 	}
8518 
8519 cpy_name:
8520 	strlcpy(tmp, name, sizeof(tmp));
8521 	name = tmp;
8522 got_name:
8523 	/*
8524 	 * Since our buffer works in 8 byte units we need to align our string
8525 	 * size to a multiple of 8. However, we must guarantee the tail end is
8526 	 * zero'd out to avoid leaking random bits to userspace.
8527 	 */
8528 	size = strlen(name)+1;
8529 	while (!IS_ALIGNED(size, sizeof(u64)))
8530 		name[size++] = '\0';
8531 
8532 	mmap_event->file_name = name;
8533 	mmap_event->file_size = size;
8534 	mmap_event->maj = maj;
8535 	mmap_event->min = min;
8536 	mmap_event->ino = ino;
8537 	mmap_event->ino_generation = gen;
8538 	mmap_event->prot = prot;
8539 	mmap_event->flags = flags;
8540 
8541 	if (!(vma->vm_flags & VM_EXEC))
8542 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8543 
8544 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8545 
8546 	if (atomic_read(&nr_build_id_events))
8547 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8548 
8549 	perf_iterate_sb(perf_event_mmap_output,
8550 		       mmap_event,
8551 		       NULL);
8552 
8553 	kfree(buf);
8554 }
8555 
8556 /*
8557  * Check whether inode and address range match filter criteria.
8558  */
8559 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8560 				     struct file *file, unsigned long offset,
8561 				     unsigned long size)
8562 {
8563 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8564 	if (!filter->path.dentry)
8565 		return false;
8566 
8567 	if (d_inode(filter->path.dentry) != file_inode(file))
8568 		return false;
8569 
8570 	if (filter->offset > offset + size)
8571 		return false;
8572 
8573 	if (filter->offset + filter->size < offset)
8574 		return false;
8575 
8576 	return true;
8577 }
8578 
8579 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8580 					struct vm_area_struct *vma,
8581 					struct perf_addr_filter_range *fr)
8582 {
8583 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8584 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8585 	struct file *file = vma->vm_file;
8586 
8587 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8588 		return false;
8589 
8590 	if (filter->offset < off) {
8591 		fr->start = vma->vm_start;
8592 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8593 	} else {
8594 		fr->start = vma->vm_start + filter->offset - off;
8595 		fr->size = min(vma->vm_end - fr->start, filter->size);
8596 	}
8597 
8598 	return true;
8599 }
8600 
8601 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8602 {
8603 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8604 	struct vm_area_struct *vma = data;
8605 	struct perf_addr_filter *filter;
8606 	unsigned int restart = 0, count = 0;
8607 	unsigned long flags;
8608 
8609 	if (!has_addr_filter(event))
8610 		return;
8611 
8612 	if (!vma->vm_file)
8613 		return;
8614 
8615 	raw_spin_lock_irqsave(&ifh->lock, flags);
8616 	list_for_each_entry(filter, &ifh->list, entry) {
8617 		if (perf_addr_filter_vma_adjust(filter, vma,
8618 						&event->addr_filter_ranges[count]))
8619 			restart++;
8620 
8621 		count++;
8622 	}
8623 
8624 	if (restart)
8625 		event->addr_filters_gen++;
8626 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8627 
8628 	if (restart)
8629 		perf_event_stop(event, 1);
8630 }
8631 
8632 /*
8633  * Adjust all task's events' filters to the new vma
8634  */
8635 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8636 {
8637 	struct perf_event_context *ctx;
8638 	int ctxn;
8639 
8640 	/*
8641 	 * Data tracing isn't supported yet and as such there is no need
8642 	 * to keep track of anything that isn't related to executable code:
8643 	 */
8644 	if (!(vma->vm_flags & VM_EXEC))
8645 		return;
8646 
8647 	rcu_read_lock();
8648 	for_each_task_context_nr(ctxn) {
8649 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8650 		if (!ctx)
8651 			continue;
8652 
8653 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8654 	}
8655 	rcu_read_unlock();
8656 }
8657 
8658 void perf_event_mmap(struct vm_area_struct *vma)
8659 {
8660 	struct perf_mmap_event mmap_event;
8661 
8662 	if (!atomic_read(&nr_mmap_events))
8663 		return;
8664 
8665 	mmap_event = (struct perf_mmap_event){
8666 		.vma	= vma,
8667 		/* .file_name */
8668 		/* .file_size */
8669 		.event_id  = {
8670 			.header = {
8671 				.type = PERF_RECORD_MMAP,
8672 				.misc = PERF_RECORD_MISC_USER,
8673 				/* .size */
8674 			},
8675 			/* .pid */
8676 			/* .tid */
8677 			.start  = vma->vm_start,
8678 			.len    = vma->vm_end - vma->vm_start,
8679 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8680 		},
8681 		/* .maj (attr_mmap2 only) */
8682 		/* .min (attr_mmap2 only) */
8683 		/* .ino (attr_mmap2 only) */
8684 		/* .ino_generation (attr_mmap2 only) */
8685 		/* .prot (attr_mmap2 only) */
8686 		/* .flags (attr_mmap2 only) */
8687 	};
8688 
8689 	perf_addr_filters_adjust(vma);
8690 	perf_event_mmap_event(&mmap_event);
8691 }
8692 
8693 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8694 			  unsigned long size, u64 flags)
8695 {
8696 	struct perf_output_handle handle;
8697 	struct perf_sample_data sample;
8698 	struct perf_aux_event {
8699 		struct perf_event_header	header;
8700 		u64				offset;
8701 		u64				size;
8702 		u64				flags;
8703 	} rec = {
8704 		.header = {
8705 			.type = PERF_RECORD_AUX,
8706 			.misc = 0,
8707 			.size = sizeof(rec),
8708 		},
8709 		.offset		= head,
8710 		.size		= size,
8711 		.flags		= flags,
8712 	};
8713 	int ret;
8714 
8715 	perf_event_header__init_id(&rec.header, &sample, event);
8716 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8717 
8718 	if (ret)
8719 		return;
8720 
8721 	perf_output_put(&handle, rec);
8722 	perf_event__output_id_sample(event, &handle, &sample);
8723 
8724 	perf_output_end(&handle);
8725 }
8726 
8727 /*
8728  * Lost/dropped samples logging
8729  */
8730 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8731 {
8732 	struct perf_output_handle handle;
8733 	struct perf_sample_data sample;
8734 	int ret;
8735 
8736 	struct {
8737 		struct perf_event_header	header;
8738 		u64				lost;
8739 	} lost_samples_event = {
8740 		.header = {
8741 			.type = PERF_RECORD_LOST_SAMPLES,
8742 			.misc = 0,
8743 			.size = sizeof(lost_samples_event),
8744 		},
8745 		.lost		= lost,
8746 	};
8747 
8748 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8749 
8750 	ret = perf_output_begin(&handle, &sample, event,
8751 				lost_samples_event.header.size);
8752 	if (ret)
8753 		return;
8754 
8755 	perf_output_put(&handle, lost_samples_event);
8756 	perf_event__output_id_sample(event, &handle, &sample);
8757 	perf_output_end(&handle);
8758 }
8759 
8760 /*
8761  * context_switch tracking
8762  */
8763 
8764 struct perf_switch_event {
8765 	struct task_struct	*task;
8766 	struct task_struct	*next_prev;
8767 
8768 	struct {
8769 		struct perf_event_header	header;
8770 		u32				next_prev_pid;
8771 		u32				next_prev_tid;
8772 	} event_id;
8773 };
8774 
8775 static int perf_event_switch_match(struct perf_event *event)
8776 {
8777 	return event->attr.context_switch;
8778 }
8779 
8780 static void perf_event_switch_output(struct perf_event *event, void *data)
8781 {
8782 	struct perf_switch_event *se = data;
8783 	struct perf_output_handle handle;
8784 	struct perf_sample_data sample;
8785 	int ret;
8786 
8787 	if (!perf_event_switch_match(event))
8788 		return;
8789 
8790 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8791 	if (event->ctx->task) {
8792 		se->event_id.header.type = PERF_RECORD_SWITCH;
8793 		se->event_id.header.size = sizeof(se->event_id.header);
8794 	} else {
8795 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8796 		se->event_id.header.size = sizeof(se->event_id);
8797 		se->event_id.next_prev_pid =
8798 					perf_event_pid(event, se->next_prev);
8799 		se->event_id.next_prev_tid =
8800 					perf_event_tid(event, se->next_prev);
8801 	}
8802 
8803 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8804 
8805 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8806 	if (ret)
8807 		return;
8808 
8809 	if (event->ctx->task)
8810 		perf_output_put(&handle, se->event_id.header);
8811 	else
8812 		perf_output_put(&handle, se->event_id);
8813 
8814 	perf_event__output_id_sample(event, &handle, &sample);
8815 
8816 	perf_output_end(&handle);
8817 }
8818 
8819 static void perf_event_switch(struct task_struct *task,
8820 			      struct task_struct *next_prev, bool sched_in)
8821 {
8822 	struct perf_switch_event switch_event;
8823 
8824 	/* N.B. caller checks nr_switch_events != 0 */
8825 
8826 	switch_event = (struct perf_switch_event){
8827 		.task		= task,
8828 		.next_prev	= next_prev,
8829 		.event_id	= {
8830 			.header = {
8831 				/* .type */
8832 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8833 				/* .size */
8834 			},
8835 			/* .next_prev_pid */
8836 			/* .next_prev_tid */
8837 		},
8838 	};
8839 
8840 	if (!sched_in && task->on_rq) {
8841 		switch_event.event_id.header.misc |=
8842 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8843 	}
8844 
8845 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8846 }
8847 
8848 /*
8849  * IRQ throttle logging
8850  */
8851 
8852 static void perf_log_throttle(struct perf_event *event, int enable)
8853 {
8854 	struct perf_output_handle handle;
8855 	struct perf_sample_data sample;
8856 	int ret;
8857 
8858 	struct {
8859 		struct perf_event_header	header;
8860 		u64				time;
8861 		u64				id;
8862 		u64				stream_id;
8863 	} throttle_event = {
8864 		.header = {
8865 			.type = PERF_RECORD_THROTTLE,
8866 			.misc = 0,
8867 			.size = sizeof(throttle_event),
8868 		},
8869 		.time		= perf_event_clock(event),
8870 		.id		= primary_event_id(event),
8871 		.stream_id	= event->id,
8872 	};
8873 
8874 	if (enable)
8875 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8876 
8877 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8878 
8879 	ret = perf_output_begin(&handle, &sample, event,
8880 				throttle_event.header.size);
8881 	if (ret)
8882 		return;
8883 
8884 	perf_output_put(&handle, throttle_event);
8885 	perf_event__output_id_sample(event, &handle, &sample);
8886 	perf_output_end(&handle);
8887 }
8888 
8889 /*
8890  * ksymbol register/unregister tracking
8891  */
8892 
8893 struct perf_ksymbol_event {
8894 	const char	*name;
8895 	int		name_len;
8896 	struct {
8897 		struct perf_event_header        header;
8898 		u64				addr;
8899 		u32				len;
8900 		u16				ksym_type;
8901 		u16				flags;
8902 	} event_id;
8903 };
8904 
8905 static int perf_event_ksymbol_match(struct perf_event *event)
8906 {
8907 	return event->attr.ksymbol;
8908 }
8909 
8910 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8911 {
8912 	struct perf_ksymbol_event *ksymbol_event = data;
8913 	struct perf_output_handle handle;
8914 	struct perf_sample_data sample;
8915 	int ret;
8916 
8917 	if (!perf_event_ksymbol_match(event))
8918 		return;
8919 
8920 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8921 				   &sample, event);
8922 	ret = perf_output_begin(&handle, &sample, event,
8923 				ksymbol_event->event_id.header.size);
8924 	if (ret)
8925 		return;
8926 
8927 	perf_output_put(&handle, ksymbol_event->event_id);
8928 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8929 	perf_event__output_id_sample(event, &handle, &sample);
8930 
8931 	perf_output_end(&handle);
8932 }
8933 
8934 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8935 			const char *sym)
8936 {
8937 	struct perf_ksymbol_event ksymbol_event;
8938 	char name[KSYM_NAME_LEN];
8939 	u16 flags = 0;
8940 	int name_len;
8941 
8942 	if (!atomic_read(&nr_ksymbol_events))
8943 		return;
8944 
8945 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8946 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8947 		goto err;
8948 
8949 	strlcpy(name, sym, KSYM_NAME_LEN);
8950 	name_len = strlen(name) + 1;
8951 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8952 		name[name_len++] = '\0';
8953 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8954 
8955 	if (unregister)
8956 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8957 
8958 	ksymbol_event = (struct perf_ksymbol_event){
8959 		.name = name,
8960 		.name_len = name_len,
8961 		.event_id = {
8962 			.header = {
8963 				.type = PERF_RECORD_KSYMBOL,
8964 				.size = sizeof(ksymbol_event.event_id) +
8965 					name_len,
8966 			},
8967 			.addr = addr,
8968 			.len = len,
8969 			.ksym_type = ksym_type,
8970 			.flags = flags,
8971 		},
8972 	};
8973 
8974 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8975 	return;
8976 err:
8977 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8978 }
8979 
8980 /*
8981  * bpf program load/unload tracking
8982  */
8983 
8984 struct perf_bpf_event {
8985 	struct bpf_prog	*prog;
8986 	struct {
8987 		struct perf_event_header        header;
8988 		u16				type;
8989 		u16				flags;
8990 		u32				id;
8991 		u8				tag[BPF_TAG_SIZE];
8992 	} event_id;
8993 };
8994 
8995 static int perf_event_bpf_match(struct perf_event *event)
8996 {
8997 	return event->attr.bpf_event;
8998 }
8999 
9000 static void perf_event_bpf_output(struct perf_event *event, void *data)
9001 {
9002 	struct perf_bpf_event *bpf_event = data;
9003 	struct perf_output_handle handle;
9004 	struct perf_sample_data sample;
9005 	int ret;
9006 
9007 	if (!perf_event_bpf_match(event))
9008 		return;
9009 
9010 	perf_event_header__init_id(&bpf_event->event_id.header,
9011 				   &sample, event);
9012 	ret = perf_output_begin(&handle, data, event,
9013 				bpf_event->event_id.header.size);
9014 	if (ret)
9015 		return;
9016 
9017 	perf_output_put(&handle, bpf_event->event_id);
9018 	perf_event__output_id_sample(event, &handle, &sample);
9019 
9020 	perf_output_end(&handle);
9021 }
9022 
9023 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9024 					 enum perf_bpf_event_type type)
9025 {
9026 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9027 	int i;
9028 
9029 	if (prog->aux->func_cnt == 0) {
9030 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9031 				   (u64)(unsigned long)prog->bpf_func,
9032 				   prog->jited_len, unregister,
9033 				   prog->aux->ksym.name);
9034 	} else {
9035 		for (i = 0; i < prog->aux->func_cnt; i++) {
9036 			struct bpf_prog *subprog = prog->aux->func[i];
9037 
9038 			perf_event_ksymbol(
9039 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9040 				(u64)(unsigned long)subprog->bpf_func,
9041 				subprog->jited_len, unregister,
9042 				subprog->aux->ksym.name);
9043 		}
9044 	}
9045 }
9046 
9047 void perf_event_bpf_event(struct bpf_prog *prog,
9048 			  enum perf_bpf_event_type type,
9049 			  u16 flags)
9050 {
9051 	struct perf_bpf_event bpf_event;
9052 
9053 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9054 	    type >= PERF_BPF_EVENT_MAX)
9055 		return;
9056 
9057 	switch (type) {
9058 	case PERF_BPF_EVENT_PROG_LOAD:
9059 	case PERF_BPF_EVENT_PROG_UNLOAD:
9060 		if (atomic_read(&nr_ksymbol_events))
9061 			perf_event_bpf_emit_ksymbols(prog, type);
9062 		break;
9063 	default:
9064 		break;
9065 	}
9066 
9067 	if (!atomic_read(&nr_bpf_events))
9068 		return;
9069 
9070 	bpf_event = (struct perf_bpf_event){
9071 		.prog = prog,
9072 		.event_id = {
9073 			.header = {
9074 				.type = PERF_RECORD_BPF_EVENT,
9075 				.size = sizeof(bpf_event.event_id),
9076 			},
9077 			.type = type,
9078 			.flags = flags,
9079 			.id = prog->aux->id,
9080 		},
9081 	};
9082 
9083 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9084 
9085 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9086 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9087 }
9088 
9089 struct perf_text_poke_event {
9090 	const void		*old_bytes;
9091 	const void		*new_bytes;
9092 	size_t			pad;
9093 	u16			old_len;
9094 	u16			new_len;
9095 
9096 	struct {
9097 		struct perf_event_header	header;
9098 
9099 		u64				addr;
9100 	} event_id;
9101 };
9102 
9103 static int perf_event_text_poke_match(struct perf_event *event)
9104 {
9105 	return event->attr.text_poke;
9106 }
9107 
9108 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9109 {
9110 	struct perf_text_poke_event *text_poke_event = data;
9111 	struct perf_output_handle handle;
9112 	struct perf_sample_data sample;
9113 	u64 padding = 0;
9114 	int ret;
9115 
9116 	if (!perf_event_text_poke_match(event))
9117 		return;
9118 
9119 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9120 
9121 	ret = perf_output_begin(&handle, &sample, event,
9122 				text_poke_event->event_id.header.size);
9123 	if (ret)
9124 		return;
9125 
9126 	perf_output_put(&handle, text_poke_event->event_id);
9127 	perf_output_put(&handle, text_poke_event->old_len);
9128 	perf_output_put(&handle, text_poke_event->new_len);
9129 
9130 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9131 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9132 
9133 	if (text_poke_event->pad)
9134 		__output_copy(&handle, &padding, text_poke_event->pad);
9135 
9136 	perf_event__output_id_sample(event, &handle, &sample);
9137 
9138 	perf_output_end(&handle);
9139 }
9140 
9141 void perf_event_text_poke(const void *addr, const void *old_bytes,
9142 			  size_t old_len, const void *new_bytes, size_t new_len)
9143 {
9144 	struct perf_text_poke_event text_poke_event;
9145 	size_t tot, pad;
9146 
9147 	if (!atomic_read(&nr_text_poke_events))
9148 		return;
9149 
9150 	tot  = sizeof(text_poke_event.old_len) + old_len;
9151 	tot += sizeof(text_poke_event.new_len) + new_len;
9152 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9153 
9154 	text_poke_event = (struct perf_text_poke_event){
9155 		.old_bytes    = old_bytes,
9156 		.new_bytes    = new_bytes,
9157 		.pad          = pad,
9158 		.old_len      = old_len,
9159 		.new_len      = new_len,
9160 		.event_id  = {
9161 			.header = {
9162 				.type = PERF_RECORD_TEXT_POKE,
9163 				.misc = PERF_RECORD_MISC_KERNEL,
9164 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9165 			},
9166 			.addr = (unsigned long)addr,
9167 		},
9168 	};
9169 
9170 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9171 }
9172 
9173 void perf_event_itrace_started(struct perf_event *event)
9174 {
9175 	event->attach_state |= PERF_ATTACH_ITRACE;
9176 }
9177 
9178 static void perf_log_itrace_start(struct perf_event *event)
9179 {
9180 	struct perf_output_handle handle;
9181 	struct perf_sample_data sample;
9182 	struct perf_aux_event {
9183 		struct perf_event_header        header;
9184 		u32				pid;
9185 		u32				tid;
9186 	} rec;
9187 	int ret;
9188 
9189 	if (event->parent)
9190 		event = event->parent;
9191 
9192 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9193 	    event->attach_state & PERF_ATTACH_ITRACE)
9194 		return;
9195 
9196 	rec.header.type	= PERF_RECORD_ITRACE_START;
9197 	rec.header.misc	= 0;
9198 	rec.header.size	= sizeof(rec);
9199 	rec.pid	= perf_event_pid(event, current);
9200 	rec.tid	= perf_event_tid(event, current);
9201 
9202 	perf_event_header__init_id(&rec.header, &sample, event);
9203 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9204 
9205 	if (ret)
9206 		return;
9207 
9208 	perf_output_put(&handle, rec);
9209 	perf_event__output_id_sample(event, &handle, &sample);
9210 
9211 	perf_output_end(&handle);
9212 }
9213 
9214 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9215 {
9216 	struct perf_output_handle handle;
9217 	struct perf_sample_data sample;
9218 	struct perf_aux_event {
9219 		struct perf_event_header        header;
9220 		u64				hw_id;
9221 	} rec;
9222 	int ret;
9223 
9224 	if (event->parent)
9225 		event = event->parent;
9226 
9227 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9228 	rec.header.misc	= 0;
9229 	rec.header.size	= sizeof(rec);
9230 	rec.hw_id	= hw_id;
9231 
9232 	perf_event_header__init_id(&rec.header, &sample, event);
9233 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9234 
9235 	if (ret)
9236 		return;
9237 
9238 	perf_output_put(&handle, rec);
9239 	perf_event__output_id_sample(event, &handle, &sample);
9240 
9241 	perf_output_end(&handle);
9242 }
9243 
9244 static int
9245 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9246 {
9247 	struct hw_perf_event *hwc = &event->hw;
9248 	int ret = 0;
9249 	u64 seq;
9250 
9251 	seq = __this_cpu_read(perf_throttled_seq);
9252 	if (seq != hwc->interrupts_seq) {
9253 		hwc->interrupts_seq = seq;
9254 		hwc->interrupts = 1;
9255 	} else {
9256 		hwc->interrupts++;
9257 		if (unlikely(throttle
9258 			     && hwc->interrupts >= max_samples_per_tick)) {
9259 			__this_cpu_inc(perf_throttled_count);
9260 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9261 			hwc->interrupts = MAX_INTERRUPTS;
9262 			perf_log_throttle(event, 0);
9263 			ret = 1;
9264 		}
9265 	}
9266 
9267 	if (event->attr.freq) {
9268 		u64 now = perf_clock();
9269 		s64 delta = now - hwc->freq_time_stamp;
9270 
9271 		hwc->freq_time_stamp = now;
9272 
9273 		if (delta > 0 && delta < 2*TICK_NSEC)
9274 			perf_adjust_period(event, delta, hwc->last_period, true);
9275 	}
9276 
9277 	return ret;
9278 }
9279 
9280 int perf_event_account_interrupt(struct perf_event *event)
9281 {
9282 	return __perf_event_account_interrupt(event, 1);
9283 }
9284 
9285 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9286 {
9287 	/*
9288 	 * Due to interrupt latency (AKA "skid"), we may enter the
9289 	 * kernel before taking an overflow, even if the PMU is only
9290 	 * counting user events.
9291 	 */
9292 	if (event->attr.exclude_kernel && !user_mode(regs))
9293 		return false;
9294 
9295 	return true;
9296 }
9297 
9298 /*
9299  * Generic event overflow handling, sampling.
9300  */
9301 
9302 static int __perf_event_overflow(struct perf_event *event,
9303 				 int throttle, struct perf_sample_data *data,
9304 				 struct pt_regs *regs)
9305 {
9306 	int events = atomic_read(&event->event_limit);
9307 	int ret = 0;
9308 
9309 	/*
9310 	 * Non-sampling counters might still use the PMI to fold short
9311 	 * hardware counters, ignore those.
9312 	 */
9313 	if (unlikely(!is_sampling_event(event)))
9314 		return 0;
9315 
9316 	ret = __perf_event_account_interrupt(event, throttle);
9317 
9318 	/*
9319 	 * XXX event_limit might not quite work as expected on inherited
9320 	 * events
9321 	 */
9322 
9323 	event->pending_kill = POLL_IN;
9324 	if (events && atomic_dec_and_test(&event->event_limit)) {
9325 		ret = 1;
9326 		event->pending_kill = POLL_HUP;
9327 		perf_event_disable_inatomic(event);
9328 	}
9329 
9330 	if (event->attr.sigtrap) {
9331 		/*
9332 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9333 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9334 		 * it is the first event, on the other hand, we should also not
9335 		 * trigger the WARN or override the data address.
9336 		 */
9337 		bool valid_sample = sample_is_allowed(event, regs);
9338 		unsigned int pending_id = 1;
9339 
9340 		if (regs)
9341 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9342 		if (!event->pending_sigtrap) {
9343 			event->pending_sigtrap = pending_id;
9344 			local_inc(&event->ctx->nr_pending);
9345 		} else if (event->attr.exclude_kernel && valid_sample) {
9346 			/*
9347 			 * Should not be able to return to user space without
9348 			 * consuming pending_sigtrap; with exceptions:
9349 			 *
9350 			 *  1. Where !exclude_kernel, events can overflow again
9351 			 *     in the kernel without returning to user space.
9352 			 *
9353 			 *  2. Events that can overflow again before the IRQ-
9354 			 *     work without user space progress (e.g. hrtimer).
9355 			 *     To approximate progress (with false negatives),
9356 			 *     check 32-bit hash of the current IP.
9357 			 */
9358 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9359 		}
9360 
9361 		event->pending_addr = 0;
9362 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9363 			event->pending_addr = data->addr;
9364 		irq_work_queue(&event->pending_irq);
9365 	}
9366 
9367 	READ_ONCE(event->overflow_handler)(event, data, regs);
9368 
9369 	if (*perf_event_fasync(event) && event->pending_kill) {
9370 		event->pending_wakeup = 1;
9371 		irq_work_queue(&event->pending_irq);
9372 	}
9373 
9374 	return ret;
9375 }
9376 
9377 int perf_event_overflow(struct perf_event *event,
9378 			struct perf_sample_data *data,
9379 			struct pt_regs *regs)
9380 {
9381 	return __perf_event_overflow(event, 1, data, regs);
9382 }
9383 
9384 /*
9385  * Generic software event infrastructure
9386  */
9387 
9388 struct swevent_htable {
9389 	struct swevent_hlist		*swevent_hlist;
9390 	struct mutex			hlist_mutex;
9391 	int				hlist_refcount;
9392 
9393 	/* Recursion avoidance in each contexts */
9394 	int				recursion[PERF_NR_CONTEXTS];
9395 };
9396 
9397 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9398 
9399 /*
9400  * We directly increment event->count and keep a second value in
9401  * event->hw.period_left to count intervals. This period event
9402  * is kept in the range [-sample_period, 0] so that we can use the
9403  * sign as trigger.
9404  */
9405 
9406 u64 perf_swevent_set_period(struct perf_event *event)
9407 {
9408 	struct hw_perf_event *hwc = &event->hw;
9409 	u64 period = hwc->last_period;
9410 	u64 nr, offset;
9411 	s64 old, val;
9412 
9413 	hwc->last_period = hwc->sample_period;
9414 
9415 again:
9416 	old = val = local64_read(&hwc->period_left);
9417 	if (val < 0)
9418 		return 0;
9419 
9420 	nr = div64_u64(period + val, period);
9421 	offset = nr * period;
9422 	val -= offset;
9423 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9424 		goto again;
9425 
9426 	return nr;
9427 }
9428 
9429 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9430 				    struct perf_sample_data *data,
9431 				    struct pt_regs *regs)
9432 {
9433 	struct hw_perf_event *hwc = &event->hw;
9434 	int throttle = 0;
9435 
9436 	if (!overflow)
9437 		overflow = perf_swevent_set_period(event);
9438 
9439 	if (hwc->interrupts == MAX_INTERRUPTS)
9440 		return;
9441 
9442 	for (; overflow; overflow--) {
9443 		if (__perf_event_overflow(event, throttle,
9444 					    data, regs)) {
9445 			/*
9446 			 * We inhibit the overflow from happening when
9447 			 * hwc->interrupts == MAX_INTERRUPTS.
9448 			 */
9449 			break;
9450 		}
9451 		throttle = 1;
9452 	}
9453 }
9454 
9455 static void perf_swevent_event(struct perf_event *event, u64 nr,
9456 			       struct perf_sample_data *data,
9457 			       struct pt_regs *regs)
9458 {
9459 	struct hw_perf_event *hwc = &event->hw;
9460 
9461 	local64_add(nr, &event->count);
9462 
9463 	if (!regs)
9464 		return;
9465 
9466 	if (!is_sampling_event(event))
9467 		return;
9468 
9469 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9470 		data->period = nr;
9471 		return perf_swevent_overflow(event, 1, data, regs);
9472 	} else
9473 		data->period = event->hw.last_period;
9474 
9475 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9476 		return perf_swevent_overflow(event, 1, data, regs);
9477 
9478 	if (local64_add_negative(nr, &hwc->period_left))
9479 		return;
9480 
9481 	perf_swevent_overflow(event, 0, data, regs);
9482 }
9483 
9484 static int perf_exclude_event(struct perf_event *event,
9485 			      struct pt_regs *regs)
9486 {
9487 	if (event->hw.state & PERF_HES_STOPPED)
9488 		return 1;
9489 
9490 	if (regs) {
9491 		if (event->attr.exclude_user && user_mode(regs))
9492 			return 1;
9493 
9494 		if (event->attr.exclude_kernel && !user_mode(regs))
9495 			return 1;
9496 	}
9497 
9498 	return 0;
9499 }
9500 
9501 static int perf_swevent_match(struct perf_event *event,
9502 				enum perf_type_id type,
9503 				u32 event_id,
9504 				struct perf_sample_data *data,
9505 				struct pt_regs *regs)
9506 {
9507 	if (event->attr.type != type)
9508 		return 0;
9509 
9510 	if (event->attr.config != event_id)
9511 		return 0;
9512 
9513 	if (perf_exclude_event(event, regs))
9514 		return 0;
9515 
9516 	return 1;
9517 }
9518 
9519 static inline u64 swevent_hash(u64 type, u32 event_id)
9520 {
9521 	u64 val = event_id | (type << 32);
9522 
9523 	return hash_64(val, SWEVENT_HLIST_BITS);
9524 }
9525 
9526 static inline struct hlist_head *
9527 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9528 {
9529 	u64 hash = swevent_hash(type, event_id);
9530 
9531 	return &hlist->heads[hash];
9532 }
9533 
9534 /* For the read side: events when they trigger */
9535 static inline struct hlist_head *
9536 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9537 {
9538 	struct swevent_hlist *hlist;
9539 
9540 	hlist = rcu_dereference(swhash->swevent_hlist);
9541 	if (!hlist)
9542 		return NULL;
9543 
9544 	return __find_swevent_head(hlist, type, event_id);
9545 }
9546 
9547 /* For the event head insertion and removal in the hlist */
9548 static inline struct hlist_head *
9549 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9550 {
9551 	struct swevent_hlist *hlist;
9552 	u32 event_id = event->attr.config;
9553 	u64 type = event->attr.type;
9554 
9555 	/*
9556 	 * Event scheduling is always serialized against hlist allocation
9557 	 * and release. Which makes the protected version suitable here.
9558 	 * The context lock guarantees that.
9559 	 */
9560 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9561 					  lockdep_is_held(&event->ctx->lock));
9562 	if (!hlist)
9563 		return NULL;
9564 
9565 	return __find_swevent_head(hlist, type, event_id);
9566 }
9567 
9568 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9569 				    u64 nr,
9570 				    struct perf_sample_data *data,
9571 				    struct pt_regs *regs)
9572 {
9573 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9574 	struct perf_event *event;
9575 	struct hlist_head *head;
9576 
9577 	rcu_read_lock();
9578 	head = find_swevent_head_rcu(swhash, type, event_id);
9579 	if (!head)
9580 		goto end;
9581 
9582 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9583 		if (perf_swevent_match(event, type, event_id, data, regs))
9584 			perf_swevent_event(event, nr, data, regs);
9585 	}
9586 end:
9587 	rcu_read_unlock();
9588 }
9589 
9590 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9591 
9592 int perf_swevent_get_recursion_context(void)
9593 {
9594 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9595 
9596 	return get_recursion_context(swhash->recursion);
9597 }
9598 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9599 
9600 void perf_swevent_put_recursion_context(int rctx)
9601 {
9602 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9603 
9604 	put_recursion_context(swhash->recursion, rctx);
9605 }
9606 
9607 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9608 {
9609 	struct perf_sample_data data;
9610 
9611 	if (WARN_ON_ONCE(!regs))
9612 		return;
9613 
9614 	perf_sample_data_init(&data, addr, 0);
9615 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9616 }
9617 
9618 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9619 {
9620 	int rctx;
9621 
9622 	preempt_disable_notrace();
9623 	rctx = perf_swevent_get_recursion_context();
9624 	if (unlikely(rctx < 0))
9625 		goto fail;
9626 
9627 	___perf_sw_event(event_id, nr, regs, addr);
9628 
9629 	perf_swevent_put_recursion_context(rctx);
9630 fail:
9631 	preempt_enable_notrace();
9632 }
9633 
9634 static void perf_swevent_read(struct perf_event *event)
9635 {
9636 }
9637 
9638 static int perf_swevent_add(struct perf_event *event, int flags)
9639 {
9640 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9641 	struct hw_perf_event *hwc = &event->hw;
9642 	struct hlist_head *head;
9643 
9644 	if (is_sampling_event(event)) {
9645 		hwc->last_period = hwc->sample_period;
9646 		perf_swevent_set_period(event);
9647 	}
9648 
9649 	hwc->state = !(flags & PERF_EF_START);
9650 
9651 	head = find_swevent_head(swhash, event);
9652 	if (WARN_ON_ONCE(!head))
9653 		return -EINVAL;
9654 
9655 	hlist_add_head_rcu(&event->hlist_entry, head);
9656 	perf_event_update_userpage(event);
9657 
9658 	return 0;
9659 }
9660 
9661 static void perf_swevent_del(struct perf_event *event, int flags)
9662 {
9663 	hlist_del_rcu(&event->hlist_entry);
9664 }
9665 
9666 static void perf_swevent_start(struct perf_event *event, int flags)
9667 {
9668 	event->hw.state = 0;
9669 }
9670 
9671 static void perf_swevent_stop(struct perf_event *event, int flags)
9672 {
9673 	event->hw.state = PERF_HES_STOPPED;
9674 }
9675 
9676 /* Deref the hlist from the update side */
9677 static inline struct swevent_hlist *
9678 swevent_hlist_deref(struct swevent_htable *swhash)
9679 {
9680 	return rcu_dereference_protected(swhash->swevent_hlist,
9681 					 lockdep_is_held(&swhash->hlist_mutex));
9682 }
9683 
9684 static void swevent_hlist_release(struct swevent_htable *swhash)
9685 {
9686 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9687 
9688 	if (!hlist)
9689 		return;
9690 
9691 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9692 	kfree_rcu(hlist, rcu_head);
9693 }
9694 
9695 static void swevent_hlist_put_cpu(int cpu)
9696 {
9697 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9698 
9699 	mutex_lock(&swhash->hlist_mutex);
9700 
9701 	if (!--swhash->hlist_refcount)
9702 		swevent_hlist_release(swhash);
9703 
9704 	mutex_unlock(&swhash->hlist_mutex);
9705 }
9706 
9707 static void swevent_hlist_put(void)
9708 {
9709 	int cpu;
9710 
9711 	for_each_possible_cpu(cpu)
9712 		swevent_hlist_put_cpu(cpu);
9713 }
9714 
9715 static int swevent_hlist_get_cpu(int cpu)
9716 {
9717 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9718 	int err = 0;
9719 
9720 	mutex_lock(&swhash->hlist_mutex);
9721 	if (!swevent_hlist_deref(swhash) &&
9722 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9723 		struct swevent_hlist *hlist;
9724 
9725 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9726 		if (!hlist) {
9727 			err = -ENOMEM;
9728 			goto exit;
9729 		}
9730 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9731 	}
9732 	swhash->hlist_refcount++;
9733 exit:
9734 	mutex_unlock(&swhash->hlist_mutex);
9735 
9736 	return err;
9737 }
9738 
9739 static int swevent_hlist_get(void)
9740 {
9741 	int err, cpu, failed_cpu;
9742 
9743 	mutex_lock(&pmus_lock);
9744 	for_each_possible_cpu(cpu) {
9745 		err = swevent_hlist_get_cpu(cpu);
9746 		if (err) {
9747 			failed_cpu = cpu;
9748 			goto fail;
9749 		}
9750 	}
9751 	mutex_unlock(&pmus_lock);
9752 	return 0;
9753 fail:
9754 	for_each_possible_cpu(cpu) {
9755 		if (cpu == failed_cpu)
9756 			break;
9757 		swevent_hlist_put_cpu(cpu);
9758 	}
9759 	mutex_unlock(&pmus_lock);
9760 	return err;
9761 }
9762 
9763 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9764 
9765 static void sw_perf_event_destroy(struct perf_event *event)
9766 {
9767 	u64 event_id = event->attr.config;
9768 
9769 	WARN_ON(event->parent);
9770 
9771 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9772 	swevent_hlist_put();
9773 }
9774 
9775 static int perf_swevent_init(struct perf_event *event)
9776 {
9777 	u64 event_id = event->attr.config;
9778 
9779 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9780 		return -ENOENT;
9781 
9782 	/*
9783 	 * no branch sampling for software events
9784 	 */
9785 	if (has_branch_stack(event))
9786 		return -EOPNOTSUPP;
9787 
9788 	switch (event_id) {
9789 	case PERF_COUNT_SW_CPU_CLOCK:
9790 	case PERF_COUNT_SW_TASK_CLOCK:
9791 		return -ENOENT;
9792 
9793 	default:
9794 		break;
9795 	}
9796 
9797 	if (event_id >= PERF_COUNT_SW_MAX)
9798 		return -ENOENT;
9799 
9800 	if (!event->parent) {
9801 		int err;
9802 
9803 		err = swevent_hlist_get();
9804 		if (err)
9805 			return err;
9806 
9807 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9808 		event->destroy = sw_perf_event_destroy;
9809 	}
9810 
9811 	return 0;
9812 }
9813 
9814 static struct pmu perf_swevent = {
9815 	.task_ctx_nr	= perf_sw_context,
9816 
9817 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9818 
9819 	.event_init	= perf_swevent_init,
9820 	.add		= perf_swevent_add,
9821 	.del		= perf_swevent_del,
9822 	.start		= perf_swevent_start,
9823 	.stop		= perf_swevent_stop,
9824 	.read		= perf_swevent_read,
9825 };
9826 
9827 #ifdef CONFIG_EVENT_TRACING
9828 
9829 static int perf_tp_filter_match(struct perf_event *event,
9830 				struct perf_sample_data *data)
9831 {
9832 	void *record = data->raw->frag.data;
9833 
9834 	/* only top level events have filters set */
9835 	if (event->parent)
9836 		event = event->parent;
9837 
9838 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9839 		return 1;
9840 	return 0;
9841 }
9842 
9843 static int perf_tp_event_match(struct perf_event *event,
9844 				struct perf_sample_data *data,
9845 				struct pt_regs *regs)
9846 {
9847 	if (event->hw.state & PERF_HES_STOPPED)
9848 		return 0;
9849 	/*
9850 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9851 	 */
9852 	if (event->attr.exclude_kernel && !user_mode(regs))
9853 		return 0;
9854 
9855 	if (!perf_tp_filter_match(event, data))
9856 		return 0;
9857 
9858 	return 1;
9859 }
9860 
9861 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9862 			       struct trace_event_call *call, u64 count,
9863 			       struct pt_regs *regs, struct hlist_head *head,
9864 			       struct task_struct *task)
9865 {
9866 	if (bpf_prog_array_valid(call)) {
9867 		*(struct pt_regs **)raw_data = regs;
9868 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9869 			perf_swevent_put_recursion_context(rctx);
9870 			return;
9871 		}
9872 	}
9873 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9874 		      rctx, task);
9875 }
9876 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9877 
9878 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9879 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9880 		   struct task_struct *task)
9881 {
9882 	struct perf_sample_data data;
9883 	struct perf_event *event;
9884 
9885 	struct perf_raw_record raw = {
9886 		.frag = {
9887 			.size = entry_size,
9888 			.data = record,
9889 		},
9890 	};
9891 
9892 	perf_sample_data_init(&data, 0, 0);
9893 	data.raw = &raw;
9894 	data.sample_flags |= PERF_SAMPLE_RAW;
9895 
9896 	perf_trace_buf_update(record, event_type);
9897 
9898 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9899 		if (perf_tp_event_match(event, &data, regs))
9900 			perf_swevent_event(event, count, &data, regs);
9901 	}
9902 
9903 	/*
9904 	 * If we got specified a target task, also iterate its context and
9905 	 * deliver this event there too.
9906 	 */
9907 	if (task && task != current) {
9908 		struct perf_event_context *ctx;
9909 		struct trace_entry *entry = record;
9910 
9911 		rcu_read_lock();
9912 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9913 		if (!ctx)
9914 			goto unlock;
9915 
9916 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9917 			if (event->cpu != smp_processor_id())
9918 				continue;
9919 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9920 				continue;
9921 			if (event->attr.config != entry->type)
9922 				continue;
9923 			/* Cannot deliver synchronous signal to other task. */
9924 			if (event->attr.sigtrap)
9925 				continue;
9926 			if (perf_tp_event_match(event, &data, regs))
9927 				perf_swevent_event(event, count, &data, regs);
9928 		}
9929 unlock:
9930 		rcu_read_unlock();
9931 	}
9932 
9933 	perf_swevent_put_recursion_context(rctx);
9934 }
9935 EXPORT_SYMBOL_GPL(perf_tp_event);
9936 
9937 static void tp_perf_event_destroy(struct perf_event *event)
9938 {
9939 	perf_trace_destroy(event);
9940 }
9941 
9942 static int perf_tp_event_init(struct perf_event *event)
9943 {
9944 	int err;
9945 
9946 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9947 		return -ENOENT;
9948 
9949 	/*
9950 	 * no branch sampling for tracepoint events
9951 	 */
9952 	if (has_branch_stack(event))
9953 		return -EOPNOTSUPP;
9954 
9955 	err = perf_trace_init(event);
9956 	if (err)
9957 		return err;
9958 
9959 	event->destroy = tp_perf_event_destroy;
9960 
9961 	return 0;
9962 }
9963 
9964 static struct pmu perf_tracepoint = {
9965 	.task_ctx_nr	= perf_sw_context,
9966 
9967 	.event_init	= perf_tp_event_init,
9968 	.add		= perf_trace_add,
9969 	.del		= perf_trace_del,
9970 	.start		= perf_swevent_start,
9971 	.stop		= perf_swevent_stop,
9972 	.read		= perf_swevent_read,
9973 };
9974 
9975 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9976 /*
9977  * Flags in config, used by dynamic PMU kprobe and uprobe
9978  * The flags should match following PMU_FORMAT_ATTR().
9979  *
9980  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9981  *                               if not set, create kprobe/uprobe
9982  *
9983  * The following values specify a reference counter (or semaphore in the
9984  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9985  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9986  *
9987  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9988  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9989  */
9990 enum perf_probe_config {
9991 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9992 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9993 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9994 };
9995 
9996 PMU_FORMAT_ATTR(retprobe, "config:0");
9997 #endif
9998 
9999 #ifdef CONFIG_KPROBE_EVENTS
10000 static struct attribute *kprobe_attrs[] = {
10001 	&format_attr_retprobe.attr,
10002 	NULL,
10003 };
10004 
10005 static struct attribute_group kprobe_format_group = {
10006 	.name = "format",
10007 	.attrs = kprobe_attrs,
10008 };
10009 
10010 static const struct attribute_group *kprobe_attr_groups[] = {
10011 	&kprobe_format_group,
10012 	NULL,
10013 };
10014 
10015 static int perf_kprobe_event_init(struct perf_event *event);
10016 static struct pmu perf_kprobe = {
10017 	.task_ctx_nr	= perf_sw_context,
10018 	.event_init	= perf_kprobe_event_init,
10019 	.add		= perf_trace_add,
10020 	.del		= perf_trace_del,
10021 	.start		= perf_swevent_start,
10022 	.stop		= perf_swevent_stop,
10023 	.read		= perf_swevent_read,
10024 	.attr_groups	= kprobe_attr_groups,
10025 };
10026 
10027 static int perf_kprobe_event_init(struct perf_event *event)
10028 {
10029 	int err;
10030 	bool is_retprobe;
10031 
10032 	if (event->attr.type != perf_kprobe.type)
10033 		return -ENOENT;
10034 
10035 	if (!perfmon_capable())
10036 		return -EACCES;
10037 
10038 	/*
10039 	 * no branch sampling for probe events
10040 	 */
10041 	if (has_branch_stack(event))
10042 		return -EOPNOTSUPP;
10043 
10044 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10045 	err = perf_kprobe_init(event, is_retprobe);
10046 	if (err)
10047 		return err;
10048 
10049 	event->destroy = perf_kprobe_destroy;
10050 
10051 	return 0;
10052 }
10053 #endif /* CONFIG_KPROBE_EVENTS */
10054 
10055 #ifdef CONFIG_UPROBE_EVENTS
10056 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10057 
10058 static struct attribute *uprobe_attrs[] = {
10059 	&format_attr_retprobe.attr,
10060 	&format_attr_ref_ctr_offset.attr,
10061 	NULL,
10062 };
10063 
10064 static struct attribute_group uprobe_format_group = {
10065 	.name = "format",
10066 	.attrs = uprobe_attrs,
10067 };
10068 
10069 static const struct attribute_group *uprobe_attr_groups[] = {
10070 	&uprobe_format_group,
10071 	NULL,
10072 };
10073 
10074 static int perf_uprobe_event_init(struct perf_event *event);
10075 static struct pmu perf_uprobe = {
10076 	.task_ctx_nr	= perf_sw_context,
10077 	.event_init	= perf_uprobe_event_init,
10078 	.add		= perf_trace_add,
10079 	.del		= perf_trace_del,
10080 	.start		= perf_swevent_start,
10081 	.stop		= perf_swevent_stop,
10082 	.read		= perf_swevent_read,
10083 	.attr_groups	= uprobe_attr_groups,
10084 };
10085 
10086 static int perf_uprobe_event_init(struct perf_event *event)
10087 {
10088 	int err;
10089 	unsigned long ref_ctr_offset;
10090 	bool is_retprobe;
10091 
10092 	if (event->attr.type != perf_uprobe.type)
10093 		return -ENOENT;
10094 
10095 	if (!perfmon_capable())
10096 		return -EACCES;
10097 
10098 	/*
10099 	 * no branch sampling for probe events
10100 	 */
10101 	if (has_branch_stack(event))
10102 		return -EOPNOTSUPP;
10103 
10104 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10105 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10106 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10107 	if (err)
10108 		return err;
10109 
10110 	event->destroy = perf_uprobe_destroy;
10111 
10112 	return 0;
10113 }
10114 #endif /* CONFIG_UPROBE_EVENTS */
10115 
10116 static inline void perf_tp_register(void)
10117 {
10118 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10119 #ifdef CONFIG_KPROBE_EVENTS
10120 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10121 #endif
10122 #ifdef CONFIG_UPROBE_EVENTS
10123 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10124 #endif
10125 }
10126 
10127 static void perf_event_free_filter(struct perf_event *event)
10128 {
10129 	ftrace_profile_free_filter(event);
10130 }
10131 
10132 #ifdef CONFIG_BPF_SYSCALL
10133 static void bpf_overflow_handler(struct perf_event *event,
10134 				 struct perf_sample_data *data,
10135 				 struct pt_regs *regs)
10136 {
10137 	struct bpf_perf_event_data_kern ctx = {
10138 		.data = data,
10139 		.event = event,
10140 	};
10141 	struct bpf_prog *prog;
10142 	int ret = 0;
10143 
10144 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10145 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10146 		goto out;
10147 	rcu_read_lock();
10148 	prog = READ_ONCE(event->prog);
10149 	if (prog) {
10150 		if (prog->call_get_stack &&
10151 		    (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) &&
10152 		    !(data->sample_flags & PERF_SAMPLE_CALLCHAIN)) {
10153 			data->callchain = perf_callchain(event, regs);
10154 			data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
10155 		}
10156 
10157 		ret = bpf_prog_run(prog, &ctx);
10158 	}
10159 	rcu_read_unlock();
10160 out:
10161 	__this_cpu_dec(bpf_prog_active);
10162 	if (!ret)
10163 		return;
10164 
10165 	event->orig_overflow_handler(event, data, regs);
10166 }
10167 
10168 static int perf_event_set_bpf_handler(struct perf_event *event,
10169 				      struct bpf_prog *prog,
10170 				      u64 bpf_cookie)
10171 {
10172 	if (event->overflow_handler_context)
10173 		/* hw breakpoint or kernel counter */
10174 		return -EINVAL;
10175 
10176 	if (event->prog)
10177 		return -EEXIST;
10178 
10179 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10180 		return -EINVAL;
10181 
10182 	if (event->attr.precise_ip &&
10183 	    prog->call_get_stack &&
10184 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10185 	     event->attr.exclude_callchain_kernel ||
10186 	     event->attr.exclude_callchain_user)) {
10187 		/*
10188 		 * On perf_event with precise_ip, calling bpf_get_stack()
10189 		 * may trigger unwinder warnings and occasional crashes.
10190 		 * bpf_get_[stack|stackid] works around this issue by using
10191 		 * callchain attached to perf_sample_data. If the
10192 		 * perf_event does not full (kernel and user) callchain
10193 		 * attached to perf_sample_data, do not allow attaching BPF
10194 		 * program that calls bpf_get_[stack|stackid].
10195 		 */
10196 		return -EPROTO;
10197 	}
10198 
10199 	event->prog = prog;
10200 	event->bpf_cookie = bpf_cookie;
10201 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10202 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10203 	return 0;
10204 }
10205 
10206 static void perf_event_free_bpf_handler(struct perf_event *event)
10207 {
10208 	struct bpf_prog *prog = event->prog;
10209 
10210 	if (!prog)
10211 		return;
10212 
10213 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10214 	event->prog = NULL;
10215 	bpf_prog_put(prog);
10216 }
10217 #else
10218 static int perf_event_set_bpf_handler(struct perf_event *event,
10219 				      struct bpf_prog *prog,
10220 				      u64 bpf_cookie)
10221 {
10222 	return -EOPNOTSUPP;
10223 }
10224 static void perf_event_free_bpf_handler(struct perf_event *event)
10225 {
10226 }
10227 #endif
10228 
10229 /*
10230  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10231  * with perf_event_open()
10232  */
10233 static inline bool perf_event_is_tracing(struct perf_event *event)
10234 {
10235 	if (event->pmu == &perf_tracepoint)
10236 		return true;
10237 #ifdef CONFIG_KPROBE_EVENTS
10238 	if (event->pmu == &perf_kprobe)
10239 		return true;
10240 #endif
10241 #ifdef CONFIG_UPROBE_EVENTS
10242 	if (event->pmu == &perf_uprobe)
10243 		return true;
10244 #endif
10245 	return false;
10246 }
10247 
10248 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10249 			    u64 bpf_cookie)
10250 {
10251 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10252 
10253 	if (!perf_event_is_tracing(event))
10254 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10255 
10256 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10257 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10258 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10259 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10260 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10261 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10262 		return -EINVAL;
10263 
10264 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10265 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10266 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10267 		return -EINVAL;
10268 
10269 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10270 		/* only uprobe programs are allowed to be sleepable */
10271 		return -EINVAL;
10272 
10273 	/* Kprobe override only works for kprobes, not uprobes. */
10274 	if (prog->kprobe_override && !is_kprobe)
10275 		return -EINVAL;
10276 
10277 	if (is_tracepoint || is_syscall_tp) {
10278 		int off = trace_event_get_offsets(event->tp_event);
10279 
10280 		if (prog->aux->max_ctx_offset > off)
10281 			return -EACCES;
10282 	}
10283 
10284 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10285 }
10286 
10287 void perf_event_free_bpf_prog(struct perf_event *event)
10288 {
10289 	if (!perf_event_is_tracing(event)) {
10290 		perf_event_free_bpf_handler(event);
10291 		return;
10292 	}
10293 	perf_event_detach_bpf_prog(event);
10294 }
10295 
10296 #else
10297 
10298 static inline void perf_tp_register(void)
10299 {
10300 }
10301 
10302 static void perf_event_free_filter(struct perf_event *event)
10303 {
10304 }
10305 
10306 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10307 			    u64 bpf_cookie)
10308 {
10309 	return -ENOENT;
10310 }
10311 
10312 void perf_event_free_bpf_prog(struct perf_event *event)
10313 {
10314 }
10315 #endif /* CONFIG_EVENT_TRACING */
10316 
10317 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10318 void perf_bp_event(struct perf_event *bp, void *data)
10319 {
10320 	struct perf_sample_data sample;
10321 	struct pt_regs *regs = data;
10322 
10323 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10324 
10325 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10326 		perf_swevent_event(bp, 1, &sample, regs);
10327 }
10328 #endif
10329 
10330 /*
10331  * Allocate a new address filter
10332  */
10333 static struct perf_addr_filter *
10334 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10335 {
10336 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10337 	struct perf_addr_filter *filter;
10338 
10339 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10340 	if (!filter)
10341 		return NULL;
10342 
10343 	INIT_LIST_HEAD(&filter->entry);
10344 	list_add_tail(&filter->entry, filters);
10345 
10346 	return filter;
10347 }
10348 
10349 static void free_filters_list(struct list_head *filters)
10350 {
10351 	struct perf_addr_filter *filter, *iter;
10352 
10353 	list_for_each_entry_safe(filter, iter, filters, entry) {
10354 		path_put(&filter->path);
10355 		list_del(&filter->entry);
10356 		kfree(filter);
10357 	}
10358 }
10359 
10360 /*
10361  * Free existing address filters and optionally install new ones
10362  */
10363 static void perf_addr_filters_splice(struct perf_event *event,
10364 				     struct list_head *head)
10365 {
10366 	unsigned long flags;
10367 	LIST_HEAD(list);
10368 
10369 	if (!has_addr_filter(event))
10370 		return;
10371 
10372 	/* don't bother with children, they don't have their own filters */
10373 	if (event->parent)
10374 		return;
10375 
10376 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10377 
10378 	list_splice_init(&event->addr_filters.list, &list);
10379 	if (head)
10380 		list_splice(head, &event->addr_filters.list);
10381 
10382 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10383 
10384 	free_filters_list(&list);
10385 }
10386 
10387 /*
10388  * Scan through mm's vmas and see if one of them matches the
10389  * @filter; if so, adjust filter's address range.
10390  * Called with mm::mmap_lock down for reading.
10391  */
10392 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10393 				   struct mm_struct *mm,
10394 				   struct perf_addr_filter_range *fr)
10395 {
10396 	struct vm_area_struct *vma;
10397 	VMA_ITERATOR(vmi, mm, 0);
10398 
10399 	for_each_vma(vmi, vma) {
10400 		if (!vma->vm_file)
10401 			continue;
10402 
10403 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10404 			return;
10405 	}
10406 }
10407 
10408 /*
10409  * Update event's address range filters based on the
10410  * task's existing mappings, if any.
10411  */
10412 static void perf_event_addr_filters_apply(struct perf_event *event)
10413 {
10414 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10415 	struct task_struct *task = READ_ONCE(event->ctx->task);
10416 	struct perf_addr_filter *filter;
10417 	struct mm_struct *mm = NULL;
10418 	unsigned int count = 0;
10419 	unsigned long flags;
10420 
10421 	/*
10422 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10423 	 * will stop on the parent's child_mutex that our caller is also holding
10424 	 */
10425 	if (task == TASK_TOMBSTONE)
10426 		return;
10427 
10428 	if (ifh->nr_file_filters) {
10429 		mm = get_task_mm(task);
10430 		if (!mm)
10431 			goto restart;
10432 
10433 		mmap_read_lock(mm);
10434 	}
10435 
10436 	raw_spin_lock_irqsave(&ifh->lock, flags);
10437 	list_for_each_entry(filter, &ifh->list, entry) {
10438 		if (filter->path.dentry) {
10439 			/*
10440 			 * Adjust base offset if the filter is associated to a
10441 			 * binary that needs to be mapped:
10442 			 */
10443 			event->addr_filter_ranges[count].start = 0;
10444 			event->addr_filter_ranges[count].size = 0;
10445 
10446 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10447 		} else {
10448 			event->addr_filter_ranges[count].start = filter->offset;
10449 			event->addr_filter_ranges[count].size  = filter->size;
10450 		}
10451 
10452 		count++;
10453 	}
10454 
10455 	event->addr_filters_gen++;
10456 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10457 
10458 	if (ifh->nr_file_filters) {
10459 		mmap_read_unlock(mm);
10460 
10461 		mmput(mm);
10462 	}
10463 
10464 restart:
10465 	perf_event_stop(event, 1);
10466 }
10467 
10468 /*
10469  * Address range filtering: limiting the data to certain
10470  * instruction address ranges. Filters are ioctl()ed to us from
10471  * userspace as ascii strings.
10472  *
10473  * Filter string format:
10474  *
10475  * ACTION RANGE_SPEC
10476  * where ACTION is one of the
10477  *  * "filter": limit the trace to this region
10478  *  * "start": start tracing from this address
10479  *  * "stop": stop tracing at this address/region;
10480  * RANGE_SPEC is
10481  *  * for kernel addresses: <start address>[/<size>]
10482  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10483  *
10484  * if <size> is not specified or is zero, the range is treated as a single
10485  * address; not valid for ACTION=="filter".
10486  */
10487 enum {
10488 	IF_ACT_NONE = -1,
10489 	IF_ACT_FILTER,
10490 	IF_ACT_START,
10491 	IF_ACT_STOP,
10492 	IF_SRC_FILE,
10493 	IF_SRC_KERNEL,
10494 	IF_SRC_FILEADDR,
10495 	IF_SRC_KERNELADDR,
10496 };
10497 
10498 enum {
10499 	IF_STATE_ACTION = 0,
10500 	IF_STATE_SOURCE,
10501 	IF_STATE_END,
10502 };
10503 
10504 static const match_table_t if_tokens = {
10505 	{ IF_ACT_FILTER,	"filter" },
10506 	{ IF_ACT_START,		"start" },
10507 	{ IF_ACT_STOP,		"stop" },
10508 	{ IF_SRC_FILE,		"%u/%u@%s" },
10509 	{ IF_SRC_KERNEL,	"%u/%u" },
10510 	{ IF_SRC_FILEADDR,	"%u@%s" },
10511 	{ IF_SRC_KERNELADDR,	"%u" },
10512 	{ IF_ACT_NONE,		NULL },
10513 };
10514 
10515 /*
10516  * Address filter string parser
10517  */
10518 static int
10519 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10520 			     struct list_head *filters)
10521 {
10522 	struct perf_addr_filter *filter = NULL;
10523 	char *start, *orig, *filename = NULL;
10524 	substring_t args[MAX_OPT_ARGS];
10525 	int state = IF_STATE_ACTION, token;
10526 	unsigned int kernel = 0;
10527 	int ret = -EINVAL;
10528 
10529 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10530 	if (!fstr)
10531 		return -ENOMEM;
10532 
10533 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10534 		static const enum perf_addr_filter_action_t actions[] = {
10535 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10536 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10537 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10538 		};
10539 		ret = -EINVAL;
10540 
10541 		if (!*start)
10542 			continue;
10543 
10544 		/* filter definition begins */
10545 		if (state == IF_STATE_ACTION) {
10546 			filter = perf_addr_filter_new(event, filters);
10547 			if (!filter)
10548 				goto fail;
10549 		}
10550 
10551 		token = match_token(start, if_tokens, args);
10552 		switch (token) {
10553 		case IF_ACT_FILTER:
10554 		case IF_ACT_START:
10555 		case IF_ACT_STOP:
10556 			if (state != IF_STATE_ACTION)
10557 				goto fail;
10558 
10559 			filter->action = actions[token];
10560 			state = IF_STATE_SOURCE;
10561 			break;
10562 
10563 		case IF_SRC_KERNELADDR:
10564 		case IF_SRC_KERNEL:
10565 			kernel = 1;
10566 			fallthrough;
10567 
10568 		case IF_SRC_FILEADDR:
10569 		case IF_SRC_FILE:
10570 			if (state != IF_STATE_SOURCE)
10571 				goto fail;
10572 
10573 			*args[0].to = 0;
10574 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10575 			if (ret)
10576 				goto fail;
10577 
10578 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10579 				*args[1].to = 0;
10580 				ret = kstrtoul(args[1].from, 0, &filter->size);
10581 				if (ret)
10582 					goto fail;
10583 			}
10584 
10585 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10586 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10587 
10588 				kfree(filename);
10589 				filename = match_strdup(&args[fpos]);
10590 				if (!filename) {
10591 					ret = -ENOMEM;
10592 					goto fail;
10593 				}
10594 			}
10595 
10596 			state = IF_STATE_END;
10597 			break;
10598 
10599 		default:
10600 			goto fail;
10601 		}
10602 
10603 		/*
10604 		 * Filter definition is fully parsed, validate and install it.
10605 		 * Make sure that it doesn't contradict itself or the event's
10606 		 * attribute.
10607 		 */
10608 		if (state == IF_STATE_END) {
10609 			ret = -EINVAL;
10610 
10611 			/*
10612 			 * ACTION "filter" must have a non-zero length region
10613 			 * specified.
10614 			 */
10615 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10616 			    !filter->size)
10617 				goto fail;
10618 
10619 			if (!kernel) {
10620 				if (!filename)
10621 					goto fail;
10622 
10623 				/*
10624 				 * For now, we only support file-based filters
10625 				 * in per-task events; doing so for CPU-wide
10626 				 * events requires additional context switching
10627 				 * trickery, since same object code will be
10628 				 * mapped at different virtual addresses in
10629 				 * different processes.
10630 				 */
10631 				ret = -EOPNOTSUPP;
10632 				if (!event->ctx->task)
10633 					goto fail;
10634 
10635 				/* look up the path and grab its inode */
10636 				ret = kern_path(filename, LOOKUP_FOLLOW,
10637 						&filter->path);
10638 				if (ret)
10639 					goto fail;
10640 
10641 				ret = -EINVAL;
10642 				if (!filter->path.dentry ||
10643 				    !S_ISREG(d_inode(filter->path.dentry)
10644 					     ->i_mode))
10645 					goto fail;
10646 
10647 				event->addr_filters.nr_file_filters++;
10648 			}
10649 
10650 			/* ready to consume more filters */
10651 			kfree(filename);
10652 			filename = NULL;
10653 			state = IF_STATE_ACTION;
10654 			filter = NULL;
10655 			kernel = 0;
10656 		}
10657 	}
10658 
10659 	if (state != IF_STATE_ACTION)
10660 		goto fail;
10661 
10662 	kfree(filename);
10663 	kfree(orig);
10664 
10665 	return 0;
10666 
10667 fail:
10668 	kfree(filename);
10669 	free_filters_list(filters);
10670 	kfree(orig);
10671 
10672 	return ret;
10673 }
10674 
10675 static int
10676 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10677 {
10678 	LIST_HEAD(filters);
10679 	int ret;
10680 
10681 	/*
10682 	 * Since this is called in perf_ioctl() path, we're already holding
10683 	 * ctx::mutex.
10684 	 */
10685 	lockdep_assert_held(&event->ctx->mutex);
10686 
10687 	if (WARN_ON_ONCE(event->parent))
10688 		return -EINVAL;
10689 
10690 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10691 	if (ret)
10692 		goto fail_clear_files;
10693 
10694 	ret = event->pmu->addr_filters_validate(&filters);
10695 	if (ret)
10696 		goto fail_free_filters;
10697 
10698 	/* remove existing filters, if any */
10699 	perf_addr_filters_splice(event, &filters);
10700 
10701 	/* install new filters */
10702 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10703 
10704 	return ret;
10705 
10706 fail_free_filters:
10707 	free_filters_list(&filters);
10708 
10709 fail_clear_files:
10710 	event->addr_filters.nr_file_filters = 0;
10711 
10712 	return ret;
10713 }
10714 
10715 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10716 {
10717 	int ret = -EINVAL;
10718 	char *filter_str;
10719 
10720 	filter_str = strndup_user(arg, PAGE_SIZE);
10721 	if (IS_ERR(filter_str))
10722 		return PTR_ERR(filter_str);
10723 
10724 #ifdef CONFIG_EVENT_TRACING
10725 	if (perf_event_is_tracing(event)) {
10726 		struct perf_event_context *ctx = event->ctx;
10727 
10728 		/*
10729 		 * Beware, here be dragons!!
10730 		 *
10731 		 * the tracepoint muck will deadlock against ctx->mutex, but
10732 		 * the tracepoint stuff does not actually need it. So
10733 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10734 		 * already have a reference on ctx.
10735 		 *
10736 		 * This can result in event getting moved to a different ctx,
10737 		 * but that does not affect the tracepoint state.
10738 		 */
10739 		mutex_unlock(&ctx->mutex);
10740 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10741 		mutex_lock(&ctx->mutex);
10742 	} else
10743 #endif
10744 	if (has_addr_filter(event))
10745 		ret = perf_event_set_addr_filter(event, filter_str);
10746 
10747 	kfree(filter_str);
10748 	return ret;
10749 }
10750 
10751 /*
10752  * hrtimer based swevent callback
10753  */
10754 
10755 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10756 {
10757 	enum hrtimer_restart ret = HRTIMER_RESTART;
10758 	struct perf_sample_data data;
10759 	struct pt_regs *regs;
10760 	struct perf_event *event;
10761 	u64 period;
10762 
10763 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10764 
10765 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10766 		return HRTIMER_NORESTART;
10767 
10768 	event->pmu->read(event);
10769 
10770 	perf_sample_data_init(&data, 0, event->hw.last_period);
10771 	regs = get_irq_regs();
10772 
10773 	if (regs && !perf_exclude_event(event, regs)) {
10774 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10775 			if (__perf_event_overflow(event, 1, &data, regs))
10776 				ret = HRTIMER_NORESTART;
10777 	}
10778 
10779 	period = max_t(u64, 10000, event->hw.sample_period);
10780 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10781 
10782 	return ret;
10783 }
10784 
10785 static void perf_swevent_start_hrtimer(struct perf_event *event)
10786 {
10787 	struct hw_perf_event *hwc = &event->hw;
10788 	s64 period;
10789 
10790 	if (!is_sampling_event(event))
10791 		return;
10792 
10793 	period = local64_read(&hwc->period_left);
10794 	if (period) {
10795 		if (period < 0)
10796 			period = 10000;
10797 
10798 		local64_set(&hwc->period_left, 0);
10799 	} else {
10800 		period = max_t(u64, 10000, hwc->sample_period);
10801 	}
10802 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10803 		      HRTIMER_MODE_REL_PINNED_HARD);
10804 }
10805 
10806 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10807 {
10808 	struct hw_perf_event *hwc = &event->hw;
10809 
10810 	if (is_sampling_event(event)) {
10811 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10812 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10813 
10814 		hrtimer_cancel(&hwc->hrtimer);
10815 	}
10816 }
10817 
10818 static void perf_swevent_init_hrtimer(struct perf_event *event)
10819 {
10820 	struct hw_perf_event *hwc = &event->hw;
10821 
10822 	if (!is_sampling_event(event))
10823 		return;
10824 
10825 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10826 	hwc->hrtimer.function = perf_swevent_hrtimer;
10827 
10828 	/*
10829 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10830 	 * mapping and avoid the whole period adjust feedback stuff.
10831 	 */
10832 	if (event->attr.freq) {
10833 		long freq = event->attr.sample_freq;
10834 
10835 		event->attr.sample_period = NSEC_PER_SEC / freq;
10836 		hwc->sample_period = event->attr.sample_period;
10837 		local64_set(&hwc->period_left, hwc->sample_period);
10838 		hwc->last_period = hwc->sample_period;
10839 		event->attr.freq = 0;
10840 	}
10841 }
10842 
10843 /*
10844  * Software event: cpu wall time clock
10845  */
10846 
10847 static void cpu_clock_event_update(struct perf_event *event)
10848 {
10849 	s64 prev;
10850 	u64 now;
10851 
10852 	now = local_clock();
10853 	prev = local64_xchg(&event->hw.prev_count, now);
10854 	local64_add(now - prev, &event->count);
10855 }
10856 
10857 static void cpu_clock_event_start(struct perf_event *event, int flags)
10858 {
10859 	local64_set(&event->hw.prev_count, local_clock());
10860 	perf_swevent_start_hrtimer(event);
10861 }
10862 
10863 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10864 {
10865 	perf_swevent_cancel_hrtimer(event);
10866 	cpu_clock_event_update(event);
10867 }
10868 
10869 static int cpu_clock_event_add(struct perf_event *event, int flags)
10870 {
10871 	if (flags & PERF_EF_START)
10872 		cpu_clock_event_start(event, flags);
10873 	perf_event_update_userpage(event);
10874 
10875 	return 0;
10876 }
10877 
10878 static void cpu_clock_event_del(struct perf_event *event, int flags)
10879 {
10880 	cpu_clock_event_stop(event, flags);
10881 }
10882 
10883 static void cpu_clock_event_read(struct perf_event *event)
10884 {
10885 	cpu_clock_event_update(event);
10886 }
10887 
10888 static int cpu_clock_event_init(struct perf_event *event)
10889 {
10890 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10891 		return -ENOENT;
10892 
10893 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10894 		return -ENOENT;
10895 
10896 	/*
10897 	 * no branch sampling for software events
10898 	 */
10899 	if (has_branch_stack(event))
10900 		return -EOPNOTSUPP;
10901 
10902 	perf_swevent_init_hrtimer(event);
10903 
10904 	return 0;
10905 }
10906 
10907 static struct pmu perf_cpu_clock = {
10908 	.task_ctx_nr	= perf_sw_context,
10909 
10910 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10911 
10912 	.event_init	= cpu_clock_event_init,
10913 	.add		= cpu_clock_event_add,
10914 	.del		= cpu_clock_event_del,
10915 	.start		= cpu_clock_event_start,
10916 	.stop		= cpu_clock_event_stop,
10917 	.read		= cpu_clock_event_read,
10918 };
10919 
10920 /*
10921  * Software event: task time clock
10922  */
10923 
10924 static void task_clock_event_update(struct perf_event *event, u64 now)
10925 {
10926 	u64 prev;
10927 	s64 delta;
10928 
10929 	prev = local64_xchg(&event->hw.prev_count, now);
10930 	delta = now - prev;
10931 	local64_add(delta, &event->count);
10932 }
10933 
10934 static void task_clock_event_start(struct perf_event *event, int flags)
10935 {
10936 	local64_set(&event->hw.prev_count, event->ctx->time);
10937 	perf_swevent_start_hrtimer(event);
10938 }
10939 
10940 static void task_clock_event_stop(struct perf_event *event, int flags)
10941 {
10942 	perf_swevent_cancel_hrtimer(event);
10943 	task_clock_event_update(event, event->ctx->time);
10944 }
10945 
10946 static int task_clock_event_add(struct perf_event *event, int flags)
10947 {
10948 	if (flags & PERF_EF_START)
10949 		task_clock_event_start(event, flags);
10950 	perf_event_update_userpage(event);
10951 
10952 	return 0;
10953 }
10954 
10955 static void task_clock_event_del(struct perf_event *event, int flags)
10956 {
10957 	task_clock_event_stop(event, PERF_EF_UPDATE);
10958 }
10959 
10960 static void task_clock_event_read(struct perf_event *event)
10961 {
10962 	u64 now = perf_clock();
10963 	u64 delta = now - event->ctx->timestamp;
10964 	u64 time = event->ctx->time + delta;
10965 
10966 	task_clock_event_update(event, time);
10967 }
10968 
10969 static int task_clock_event_init(struct perf_event *event)
10970 {
10971 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10972 		return -ENOENT;
10973 
10974 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10975 		return -ENOENT;
10976 
10977 	/*
10978 	 * no branch sampling for software events
10979 	 */
10980 	if (has_branch_stack(event))
10981 		return -EOPNOTSUPP;
10982 
10983 	perf_swevent_init_hrtimer(event);
10984 
10985 	return 0;
10986 }
10987 
10988 static struct pmu perf_task_clock = {
10989 	.task_ctx_nr	= perf_sw_context,
10990 
10991 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10992 
10993 	.event_init	= task_clock_event_init,
10994 	.add		= task_clock_event_add,
10995 	.del		= task_clock_event_del,
10996 	.start		= task_clock_event_start,
10997 	.stop		= task_clock_event_stop,
10998 	.read		= task_clock_event_read,
10999 };
11000 
11001 static void perf_pmu_nop_void(struct pmu *pmu)
11002 {
11003 }
11004 
11005 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11006 {
11007 }
11008 
11009 static int perf_pmu_nop_int(struct pmu *pmu)
11010 {
11011 	return 0;
11012 }
11013 
11014 static int perf_event_nop_int(struct perf_event *event, u64 value)
11015 {
11016 	return 0;
11017 }
11018 
11019 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11020 
11021 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11022 {
11023 	__this_cpu_write(nop_txn_flags, flags);
11024 
11025 	if (flags & ~PERF_PMU_TXN_ADD)
11026 		return;
11027 
11028 	perf_pmu_disable(pmu);
11029 }
11030 
11031 static int perf_pmu_commit_txn(struct pmu *pmu)
11032 {
11033 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11034 
11035 	__this_cpu_write(nop_txn_flags, 0);
11036 
11037 	if (flags & ~PERF_PMU_TXN_ADD)
11038 		return 0;
11039 
11040 	perf_pmu_enable(pmu);
11041 	return 0;
11042 }
11043 
11044 static void perf_pmu_cancel_txn(struct pmu *pmu)
11045 {
11046 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11047 
11048 	__this_cpu_write(nop_txn_flags, 0);
11049 
11050 	if (flags & ~PERF_PMU_TXN_ADD)
11051 		return;
11052 
11053 	perf_pmu_enable(pmu);
11054 }
11055 
11056 static int perf_event_idx_default(struct perf_event *event)
11057 {
11058 	return 0;
11059 }
11060 
11061 /*
11062  * Ensures all contexts with the same task_ctx_nr have the same
11063  * pmu_cpu_context too.
11064  */
11065 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
11066 {
11067 	struct pmu *pmu;
11068 
11069 	if (ctxn < 0)
11070 		return NULL;
11071 
11072 	list_for_each_entry(pmu, &pmus, entry) {
11073 		if (pmu->task_ctx_nr == ctxn)
11074 			return pmu->pmu_cpu_context;
11075 	}
11076 
11077 	return NULL;
11078 }
11079 
11080 static void free_pmu_context(struct pmu *pmu)
11081 {
11082 	/*
11083 	 * Static contexts such as perf_sw_context have a global lifetime
11084 	 * and may be shared between different PMUs. Avoid freeing them
11085 	 * when a single PMU is going away.
11086 	 */
11087 	if (pmu->task_ctx_nr > perf_invalid_context)
11088 		return;
11089 
11090 	free_percpu(pmu->pmu_cpu_context);
11091 }
11092 
11093 /*
11094  * Let userspace know that this PMU supports address range filtering:
11095  */
11096 static ssize_t nr_addr_filters_show(struct device *dev,
11097 				    struct device_attribute *attr,
11098 				    char *page)
11099 {
11100 	struct pmu *pmu = dev_get_drvdata(dev);
11101 
11102 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11103 }
11104 DEVICE_ATTR_RO(nr_addr_filters);
11105 
11106 static struct idr pmu_idr;
11107 
11108 static ssize_t
11109 type_show(struct device *dev, struct device_attribute *attr, char *page)
11110 {
11111 	struct pmu *pmu = dev_get_drvdata(dev);
11112 
11113 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11114 }
11115 static DEVICE_ATTR_RO(type);
11116 
11117 static ssize_t
11118 perf_event_mux_interval_ms_show(struct device *dev,
11119 				struct device_attribute *attr,
11120 				char *page)
11121 {
11122 	struct pmu *pmu = dev_get_drvdata(dev);
11123 
11124 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11125 }
11126 
11127 static DEFINE_MUTEX(mux_interval_mutex);
11128 
11129 static ssize_t
11130 perf_event_mux_interval_ms_store(struct device *dev,
11131 				 struct device_attribute *attr,
11132 				 const char *buf, size_t count)
11133 {
11134 	struct pmu *pmu = dev_get_drvdata(dev);
11135 	int timer, cpu, ret;
11136 
11137 	ret = kstrtoint(buf, 0, &timer);
11138 	if (ret)
11139 		return ret;
11140 
11141 	if (timer < 1)
11142 		return -EINVAL;
11143 
11144 	/* same value, noting to do */
11145 	if (timer == pmu->hrtimer_interval_ms)
11146 		return count;
11147 
11148 	mutex_lock(&mux_interval_mutex);
11149 	pmu->hrtimer_interval_ms = timer;
11150 
11151 	/* update all cpuctx for this PMU */
11152 	cpus_read_lock();
11153 	for_each_online_cpu(cpu) {
11154 		struct perf_cpu_context *cpuctx;
11155 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11156 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11157 
11158 		cpu_function_call(cpu,
11159 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11160 	}
11161 	cpus_read_unlock();
11162 	mutex_unlock(&mux_interval_mutex);
11163 
11164 	return count;
11165 }
11166 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11167 
11168 static struct attribute *pmu_dev_attrs[] = {
11169 	&dev_attr_type.attr,
11170 	&dev_attr_perf_event_mux_interval_ms.attr,
11171 	NULL,
11172 };
11173 ATTRIBUTE_GROUPS(pmu_dev);
11174 
11175 static int pmu_bus_running;
11176 static struct bus_type pmu_bus = {
11177 	.name		= "event_source",
11178 	.dev_groups	= pmu_dev_groups,
11179 };
11180 
11181 static void pmu_dev_release(struct device *dev)
11182 {
11183 	kfree(dev);
11184 }
11185 
11186 static int pmu_dev_alloc(struct pmu *pmu)
11187 {
11188 	int ret = -ENOMEM;
11189 
11190 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11191 	if (!pmu->dev)
11192 		goto out;
11193 
11194 	pmu->dev->groups = pmu->attr_groups;
11195 	device_initialize(pmu->dev);
11196 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11197 	if (ret)
11198 		goto free_dev;
11199 
11200 	dev_set_drvdata(pmu->dev, pmu);
11201 	pmu->dev->bus = &pmu_bus;
11202 	pmu->dev->release = pmu_dev_release;
11203 	ret = device_add(pmu->dev);
11204 	if (ret)
11205 		goto free_dev;
11206 
11207 	/* For PMUs with address filters, throw in an extra attribute: */
11208 	if (pmu->nr_addr_filters)
11209 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11210 
11211 	if (ret)
11212 		goto del_dev;
11213 
11214 	if (pmu->attr_update)
11215 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11216 
11217 	if (ret)
11218 		goto del_dev;
11219 
11220 out:
11221 	return ret;
11222 
11223 del_dev:
11224 	device_del(pmu->dev);
11225 
11226 free_dev:
11227 	put_device(pmu->dev);
11228 	goto out;
11229 }
11230 
11231 static struct lock_class_key cpuctx_mutex;
11232 static struct lock_class_key cpuctx_lock;
11233 
11234 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11235 {
11236 	int cpu, ret, max = PERF_TYPE_MAX;
11237 
11238 	mutex_lock(&pmus_lock);
11239 	ret = -ENOMEM;
11240 	pmu->pmu_disable_count = alloc_percpu(int);
11241 	if (!pmu->pmu_disable_count)
11242 		goto unlock;
11243 
11244 	pmu->type = -1;
11245 	if (!name)
11246 		goto skip_type;
11247 	pmu->name = name;
11248 
11249 	if (type != PERF_TYPE_SOFTWARE) {
11250 		if (type >= 0)
11251 			max = type;
11252 
11253 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11254 		if (ret < 0)
11255 			goto free_pdc;
11256 
11257 		WARN_ON(type >= 0 && ret != type);
11258 
11259 		type = ret;
11260 	}
11261 	pmu->type = type;
11262 
11263 	if (pmu_bus_running) {
11264 		ret = pmu_dev_alloc(pmu);
11265 		if (ret)
11266 			goto free_idr;
11267 	}
11268 
11269 skip_type:
11270 	if (pmu->task_ctx_nr == perf_hw_context) {
11271 		static int hw_context_taken = 0;
11272 
11273 		/*
11274 		 * Other than systems with heterogeneous CPUs, it never makes
11275 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11276 		 * uncore must use perf_invalid_context.
11277 		 */
11278 		if (WARN_ON_ONCE(hw_context_taken &&
11279 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11280 			pmu->task_ctx_nr = perf_invalid_context;
11281 
11282 		hw_context_taken = 1;
11283 	}
11284 
11285 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11286 	if (pmu->pmu_cpu_context)
11287 		goto got_cpu_context;
11288 
11289 	ret = -ENOMEM;
11290 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11291 	if (!pmu->pmu_cpu_context)
11292 		goto free_dev;
11293 
11294 	for_each_possible_cpu(cpu) {
11295 		struct perf_cpu_context *cpuctx;
11296 
11297 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11298 		__perf_event_init_context(&cpuctx->ctx);
11299 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11300 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11301 		cpuctx->ctx.pmu = pmu;
11302 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11303 
11304 		__perf_mux_hrtimer_init(cpuctx, cpu);
11305 
11306 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11307 		cpuctx->heap = cpuctx->heap_default;
11308 	}
11309 
11310 got_cpu_context:
11311 	if (!pmu->start_txn) {
11312 		if (pmu->pmu_enable) {
11313 			/*
11314 			 * If we have pmu_enable/pmu_disable calls, install
11315 			 * transaction stubs that use that to try and batch
11316 			 * hardware accesses.
11317 			 */
11318 			pmu->start_txn  = perf_pmu_start_txn;
11319 			pmu->commit_txn = perf_pmu_commit_txn;
11320 			pmu->cancel_txn = perf_pmu_cancel_txn;
11321 		} else {
11322 			pmu->start_txn  = perf_pmu_nop_txn;
11323 			pmu->commit_txn = perf_pmu_nop_int;
11324 			pmu->cancel_txn = perf_pmu_nop_void;
11325 		}
11326 	}
11327 
11328 	if (!pmu->pmu_enable) {
11329 		pmu->pmu_enable  = perf_pmu_nop_void;
11330 		pmu->pmu_disable = perf_pmu_nop_void;
11331 	}
11332 
11333 	if (!pmu->check_period)
11334 		pmu->check_period = perf_event_nop_int;
11335 
11336 	if (!pmu->event_idx)
11337 		pmu->event_idx = perf_event_idx_default;
11338 
11339 	/*
11340 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11341 	 * since these cannot be in the IDR. This way the linear search
11342 	 * is fast, provided a valid software event is provided.
11343 	 */
11344 	if (type == PERF_TYPE_SOFTWARE || !name)
11345 		list_add_rcu(&pmu->entry, &pmus);
11346 	else
11347 		list_add_tail_rcu(&pmu->entry, &pmus);
11348 
11349 	atomic_set(&pmu->exclusive_cnt, 0);
11350 	ret = 0;
11351 unlock:
11352 	mutex_unlock(&pmus_lock);
11353 
11354 	return ret;
11355 
11356 free_dev:
11357 	device_del(pmu->dev);
11358 	put_device(pmu->dev);
11359 
11360 free_idr:
11361 	if (pmu->type != PERF_TYPE_SOFTWARE)
11362 		idr_remove(&pmu_idr, pmu->type);
11363 
11364 free_pdc:
11365 	free_percpu(pmu->pmu_disable_count);
11366 	goto unlock;
11367 }
11368 EXPORT_SYMBOL_GPL(perf_pmu_register);
11369 
11370 void perf_pmu_unregister(struct pmu *pmu)
11371 {
11372 	mutex_lock(&pmus_lock);
11373 	list_del_rcu(&pmu->entry);
11374 
11375 	/*
11376 	 * We dereference the pmu list under both SRCU and regular RCU, so
11377 	 * synchronize against both of those.
11378 	 */
11379 	synchronize_srcu(&pmus_srcu);
11380 	synchronize_rcu();
11381 
11382 	free_percpu(pmu->pmu_disable_count);
11383 	if (pmu->type != PERF_TYPE_SOFTWARE)
11384 		idr_remove(&pmu_idr, pmu->type);
11385 	if (pmu_bus_running) {
11386 		if (pmu->nr_addr_filters)
11387 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11388 		device_del(pmu->dev);
11389 		put_device(pmu->dev);
11390 	}
11391 	free_pmu_context(pmu);
11392 	mutex_unlock(&pmus_lock);
11393 }
11394 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11395 
11396 static inline bool has_extended_regs(struct perf_event *event)
11397 {
11398 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11399 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11400 }
11401 
11402 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11403 {
11404 	struct perf_event_context *ctx = NULL;
11405 	int ret;
11406 
11407 	if (!try_module_get(pmu->module))
11408 		return -ENODEV;
11409 
11410 	/*
11411 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11412 	 * for example, validate if the group fits on the PMU. Therefore,
11413 	 * if this is a sibling event, acquire the ctx->mutex to protect
11414 	 * the sibling_list.
11415 	 */
11416 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11417 		/*
11418 		 * This ctx->mutex can nest when we're called through
11419 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11420 		 */
11421 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11422 						 SINGLE_DEPTH_NESTING);
11423 		BUG_ON(!ctx);
11424 	}
11425 
11426 	event->pmu = pmu;
11427 	ret = pmu->event_init(event);
11428 
11429 	if (ctx)
11430 		perf_event_ctx_unlock(event->group_leader, ctx);
11431 
11432 	if (!ret) {
11433 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11434 		    has_extended_regs(event))
11435 			ret = -EOPNOTSUPP;
11436 
11437 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11438 		    event_has_any_exclude_flag(event))
11439 			ret = -EINVAL;
11440 
11441 		if (ret && event->destroy)
11442 			event->destroy(event);
11443 	}
11444 
11445 	if (ret)
11446 		module_put(pmu->module);
11447 
11448 	return ret;
11449 }
11450 
11451 static struct pmu *perf_init_event(struct perf_event *event)
11452 {
11453 	bool extended_type = false;
11454 	int idx, type, ret;
11455 	struct pmu *pmu;
11456 
11457 	idx = srcu_read_lock(&pmus_srcu);
11458 
11459 	/* Try parent's PMU first: */
11460 	if (event->parent && event->parent->pmu) {
11461 		pmu = event->parent->pmu;
11462 		ret = perf_try_init_event(pmu, event);
11463 		if (!ret)
11464 			goto unlock;
11465 	}
11466 
11467 	/*
11468 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11469 	 * are often aliases for PERF_TYPE_RAW.
11470 	 */
11471 	type = event->attr.type;
11472 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11473 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11474 		if (!type) {
11475 			type = PERF_TYPE_RAW;
11476 		} else {
11477 			extended_type = true;
11478 			event->attr.config &= PERF_HW_EVENT_MASK;
11479 		}
11480 	}
11481 
11482 again:
11483 	rcu_read_lock();
11484 	pmu = idr_find(&pmu_idr, type);
11485 	rcu_read_unlock();
11486 	if (pmu) {
11487 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11488 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11489 			goto fail;
11490 
11491 		ret = perf_try_init_event(pmu, event);
11492 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11493 			type = event->attr.type;
11494 			goto again;
11495 		}
11496 
11497 		if (ret)
11498 			pmu = ERR_PTR(ret);
11499 
11500 		goto unlock;
11501 	}
11502 
11503 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11504 		ret = perf_try_init_event(pmu, event);
11505 		if (!ret)
11506 			goto unlock;
11507 
11508 		if (ret != -ENOENT) {
11509 			pmu = ERR_PTR(ret);
11510 			goto unlock;
11511 		}
11512 	}
11513 fail:
11514 	pmu = ERR_PTR(-ENOENT);
11515 unlock:
11516 	srcu_read_unlock(&pmus_srcu, idx);
11517 
11518 	return pmu;
11519 }
11520 
11521 static void attach_sb_event(struct perf_event *event)
11522 {
11523 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11524 
11525 	raw_spin_lock(&pel->lock);
11526 	list_add_rcu(&event->sb_list, &pel->list);
11527 	raw_spin_unlock(&pel->lock);
11528 }
11529 
11530 /*
11531  * We keep a list of all !task (and therefore per-cpu) events
11532  * that need to receive side-band records.
11533  *
11534  * This avoids having to scan all the various PMU per-cpu contexts
11535  * looking for them.
11536  */
11537 static void account_pmu_sb_event(struct perf_event *event)
11538 {
11539 	if (is_sb_event(event))
11540 		attach_sb_event(event);
11541 }
11542 
11543 static void account_event_cpu(struct perf_event *event, int cpu)
11544 {
11545 	if (event->parent)
11546 		return;
11547 
11548 	if (is_cgroup_event(event))
11549 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11550 }
11551 
11552 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11553 static void account_freq_event_nohz(void)
11554 {
11555 #ifdef CONFIG_NO_HZ_FULL
11556 	/* Lock so we don't race with concurrent unaccount */
11557 	spin_lock(&nr_freq_lock);
11558 	if (atomic_inc_return(&nr_freq_events) == 1)
11559 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11560 	spin_unlock(&nr_freq_lock);
11561 #endif
11562 }
11563 
11564 static void account_freq_event(void)
11565 {
11566 	if (tick_nohz_full_enabled())
11567 		account_freq_event_nohz();
11568 	else
11569 		atomic_inc(&nr_freq_events);
11570 }
11571 
11572 
11573 static void account_event(struct perf_event *event)
11574 {
11575 	bool inc = false;
11576 
11577 	if (event->parent)
11578 		return;
11579 
11580 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11581 		inc = true;
11582 	if (event->attr.mmap || event->attr.mmap_data)
11583 		atomic_inc(&nr_mmap_events);
11584 	if (event->attr.build_id)
11585 		atomic_inc(&nr_build_id_events);
11586 	if (event->attr.comm)
11587 		atomic_inc(&nr_comm_events);
11588 	if (event->attr.namespaces)
11589 		atomic_inc(&nr_namespaces_events);
11590 	if (event->attr.cgroup)
11591 		atomic_inc(&nr_cgroup_events);
11592 	if (event->attr.task)
11593 		atomic_inc(&nr_task_events);
11594 	if (event->attr.freq)
11595 		account_freq_event();
11596 	if (event->attr.context_switch) {
11597 		atomic_inc(&nr_switch_events);
11598 		inc = true;
11599 	}
11600 	if (has_branch_stack(event))
11601 		inc = true;
11602 	if (is_cgroup_event(event))
11603 		inc = true;
11604 	if (event->attr.ksymbol)
11605 		atomic_inc(&nr_ksymbol_events);
11606 	if (event->attr.bpf_event)
11607 		atomic_inc(&nr_bpf_events);
11608 	if (event->attr.text_poke)
11609 		atomic_inc(&nr_text_poke_events);
11610 
11611 	if (inc) {
11612 		/*
11613 		 * We need the mutex here because static_branch_enable()
11614 		 * must complete *before* the perf_sched_count increment
11615 		 * becomes visible.
11616 		 */
11617 		if (atomic_inc_not_zero(&perf_sched_count))
11618 			goto enabled;
11619 
11620 		mutex_lock(&perf_sched_mutex);
11621 		if (!atomic_read(&perf_sched_count)) {
11622 			static_branch_enable(&perf_sched_events);
11623 			/*
11624 			 * Guarantee that all CPUs observe they key change and
11625 			 * call the perf scheduling hooks before proceeding to
11626 			 * install events that need them.
11627 			 */
11628 			synchronize_rcu();
11629 		}
11630 		/*
11631 		 * Now that we have waited for the sync_sched(), allow further
11632 		 * increments to by-pass the mutex.
11633 		 */
11634 		atomic_inc(&perf_sched_count);
11635 		mutex_unlock(&perf_sched_mutex);
11636 	}
11637 enabled:
11638 
11639 	account_event_cpu(event, event->cpu);
11640 
11641 	account_pmu_sb_event(event);
11642 }
11643 
11644 /*
11645  * Allocate and initialize an event structure
11646  */
11647 static struct perf_event *
11648 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11649 		 struct task_struct *task,
11650 		 struct perf_event *group_leader,
11651 		 struct perf_event *parent_event,
11652 		 perf_overflow_handler_t overflow_handler,
11653 		 void *context, int cgroup_fd)
11654 {
11655 	struct pmu *pmu;
11656 	struct perf_event *event;
11657 	struct hw_perf_event *hwc;
11658 	long err = -EINVAL;
11659 	int node;
11660 
11661 	if ((unsigned)cpu >= nr_cpu_ids) {
11662 		if (!task || cpu != -1)
11663 			return ERR_PTR(-EINVAL);
11664 	}
11665 	if (attr->sigtrap && !task) {
11666 		/* Requires a task: avoid signalling random tasks. */
11667 		return ERR_PTR(-EINVAL);
11668 	}
11669 
11670 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11671 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11672 				      node);
11673 	if (!event)
11674 		return ERR_PTR(-ENOMEM);
11675 
11676 	/*
11677 	 * Single events are their own group leaders, with an
11678 	 * empty sibling list:
11679 	 */
11680 	if (!group_leader)
11681 		group_leader = event;
11682 
11683 	mutex_init(&event->child_mutex);
11684 	INIT_LIST_HEAD(&event->child_list);
11685 
11686 	INIT_LIST_HEAD(&event->event_entry);
11687 	INIT_LIST_HEAD(&event->sibling_list);
11688 	INIT_LIST_HEAD(&event->active_list);
11689 	init_event_group(event);
11690 	INIT_LIST_HEAD(&event->rb_entry);
11691 	INIT_LIST_HEAD(&event->active_entry);
11692 	INIT_LIST_HEAD(&event->addr_filters.list);
11693 	INIT_HLIST_NODE(&event->hlist_entry);
11694 
11695 
11696 	init_waitqueue_head(&event->waitq);
11697 	init_irq_work(&event->pending_irq, perf_pending_irq);
11698 	init_task_work(&event->pending_task, perf_pending_task);
11699 
11700 	mutex_init(&event->mmap_mutex);
11701 	raw_spin_lock_init(&event->addr_filters.lock);
11702 
11703 	atomic_long_set(&event->refcount, 1);
11704 	event->cpu		= cpu;
11705 	event->attr		= *attr;
11706 	event->group_leader	= group_leader;
11707 	event->pmu		= NULL;
11708 	event->oncpu		= -1;
11709 
11710 	event->parent		= parent_event;
11711 
11712 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11713 	event->id		= atomic64_inc_return(&perf_event_id);
11714 
11715 	event->state		= PERF_EVENT_STATE_INACTIVE;
11716 
11717 	if (parent_event)
11718 		event->event_caps = parent_event->event_caps;
11719 
11720 	if (task) {
11721 		event->attach_state = PERF_ATTACH_TASK;
11722 		/*
11723 		 * XXX pmu::event_init needs to know what task to account to
11724 		 * and we cannot use the ctx information because we need the
11725 		 * pmu before we get a ctx.
11726 		 */
11727 		event->hw.target = get_task_struct(task);
11728 	}
11729 
11730 	event->clock = &local_clock;
11731 	if (parent_event)
11732 		event->clock = parent_event->clock;
11733 
11734 	if (!overflow_handler && parent_event) {
11735 		overflow_handler = parent_event->overflow_handler;
11736 		context = parent_event->overflow_handler_context;
11737 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11738 		if (overflow_handler == bpf_overflow_handler) {
11739 			struct bpf_prog *prog = parent_event->prog;
11740 
11741 			bpf_prog_inc(prog);
11742 			event->prog = prog;
11743 			event->orig_overflow_handler =
11744 				parent_event->orig_overflow_handler;
11745 		}
11746 #endif
11747 	}
11748 
11749 	if (overflow_handler) {
11750 		event->overflow_handler	= overflow_handler;
11751 		event->overflow_handler_context = context;
11752 	} else if (is_write_backward(event)){
11753 		event->overflow_handler = perf_event_output_backward;
11754 		event->overflow_handler_context = NULL;
11755 	} else {
11756 		event->overflow_handler = perf_event_output_forward;
11757 		event->overflow_handler_context = NULL;
11758 	}
11759 
11760 	perf_event__state_init(event);
11761 
11762 	pmu = NULL;
11763 
11764 	hwc = &event->hw;
11765 	hwc->sample_period = attr->sample_period;
11766 	if (attr->freq && attr->sample_freq)
11767 		hwc->sample_period = 1;
11768 	hwc->last_period = hwc->sample_period;
11769 
11770 	local64_set(&hwc->period_left, hwc->sample_period);
11771 
11772 	/*
11773 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11774 	 * See perf_output_read().
11775 	 */
11776 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11777 		goto err_ns;
11778 
11779 	if (!has_branch_stack(event))
11780 		event->attr.branch_sample_type = 0;
11781 
11782 	pmu = perf_init_event(event);
11783 	if (IS_ERR(pmu)) {
11784 		err = PTR_ERR(pmu);
11785 		goto err_ns;
11786 	}
11787 
11788 	/*
11789 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11790 	 * be different on other CPUs in the uncore mask.
11791 	 */
11792 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11793 		err = -EINVAL;
11794 		goto err_pmu;
11795 	}
11796 
11797 	if (event->attr.aux_output &&
11798 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11799 		err = -EOPNOTSUPP;
11800 		goto err_pmu;
11801 	}
11802 
11803 	if (cgroup_fd != -1) {
11804 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11805 		if (err)
11806 			goto err_pmu;
11807 	}
11808 
11809 	err = exclusive_event_init(event);
11810 	if (err)
11811 		goto err_pmu;
11812 
11813 	if (has_addr_filter(event)) {
11814 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11815 						    sizeof(struct perf_addr_filter_range),
11816 						    GFP_KERNEL);
11817 		if (!event->addr_filter_ranges) {
11818 			err = -ENOMEM;
11819 			goto err_per_task;
11820 		}
11821 
11822 		/*
11823 		 * Clone the parent's vma offsets: they are valid until exec()
11824 		 * even if the mm is not shared with the parent.
11825 		 */
11826 		if (event->parent) {
11827 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11828 
11829 			raw_spin_lock_irq(&ifh->lock);
11830 			memcpy(event->addr_filter_ranges,
11831 			       event->parent->addr_filter_ranges,
11832 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11833 			raw_spin_unlock_irq(&ifh->lock);
11834 		}
11835 
11836 		/* force hw sync on the address filters */
11837 		event->addr_filters_gen = 1;
11838 	}
11839 
11840 	if (!event->parent) {
11841 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11842 			err = get_callchain_buffers(attr->sample_max_stack);
11843 			if (err)
11844 				goto err_addr_filters;
11845 		}
11846 	}
11847 
11848 	err = security_perf_event_alloc(event);
11849 	if (err)
11850 		goto err_callchain_buffer;
11851 
11852 	/* symmetric to unaccount_event() in _free_event() */
11853 	account_event(event);
11854 
11855 	return event;
11856 
11857 err_callchain_buffer:
11858 	if (!event->parent) {
11859 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11860 			put_callchain_buffers();
11861 	}
11862 err_addr_filters:
11863 	kfree(event->addr_filter_ranges);
11864 
11865 err_per_task:
11866 	exclusive_event_destroy(event);
11867 
11868 err_pmu:
11869 	if (is_cgroup_event(event))
11870 		perf_detach_cgroup(event);
11871 	if (event->destroy)
11872 		event->destroy(event);
11873 	module_put(pmu->module);
11874 err_ns:
11875 	if (event->hw.target)
11876 		put_task_struct(event->hw.target);
11877 	call_rcu(&event->rcu_head, free_event_rcu);
11878 
11879 	return ERR_PTR(err);
11880 }
11881 
11882 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11883 			  struct perf_event_attr *attr)
11884 {
11885 	u32 size;
11886 	int ret;
11887 
11888 	/* Zero the full structure, so that a short copy will be nice. */
11889 	memset(attr, 0, sizeof(*attr));
11890 
11891 	ret = get_user(size, &uattr->size);
11892 	if (ret)
11893 		return ret;
11894 
11895 	/* ABI compatibility quirk: */
11896 	if (!size)
11897 		size = PERF_ATTR_SIZE_VER0;
11898 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11899 		goto err_size;
11900 
11901 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11902 	if (ret) {
11903 		if (ret == -E2BIG)
11904 			goto err_size;
11905 		return ret;
11906 	}
11907 
11908 	attr->size = size;
11909 
11910 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11911 		return -EINVAL;
11912 
11913 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11914 		return -EINVAL;
11915 
11916 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11917 		return -EINVAL;
11918 
11919 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11920 		u64 mask = attr->branch_sample_type;
11921 
11922 		/* only using defined bits */
11923 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11924 			return -EINVAL;
11925 
11926 		/* at least one branch bit must be set */
11927 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11928 			return -EINVAL;
11929 
11930 		/* propagate priv level, when not set for branch */
11931 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11932 
11933 			/* exclude_kernel checked on syscall entry */
11934 			if (!attr->exclude_kernel)
11935 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11936 
11937 			if (!attr->exclude_user)
11938 				mask |= PERF_SAMPLE_BRANCH_USER;
11939 
11940 			if (!attr->exclude_hv)
11941 				mask |= PERF_SAMPLE_BRANCH_HV;
11942 			/*
11943 			 * adjust user setting (for HW filter setup)
11944 			 */
11945 			attr->branch_sample_type = mask;
11946 		}
11947 		/* privileged levels capture (kernel, hv): check permissions */
11948 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11949 			ret = perf_allow_kernel(attr);
11950 			if (ret)
11951 				return ret;
11952 		}
11953 	}
11954 
11955 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11956 		ret = perf_reg_validate(attr->sample_regs_user);
11957 		if (ret)
11958 			return ret;
11959 	}
11960 
11961 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11962 		if (!arch_perf_have_user_stack_dump())
11963 			return -ENOSYS;
11964 
11965 		/*
11966 		 * We have __u32 type for the size, but so far
11967 		 * we can only use __u16 as maximum due to the
11968 		 * __u16 sample size limit.
11969 		 */
11970 		if (attr->sample_stack_user >= USHRT_MAX)
11971 			return -EINVAL;
11972 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11973 			return -EINVAL;
11974 	}
11975 
11976 	if (!attr->sample_max_stack)
11977 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11978 
11979 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11980 		ret = perf_reg_validate(attr->sample_regs_intr);
11981 
11982 #ifndef CONFIG_CGROUP_PERF
11983 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11984 		return -EINVAL;
11985 #endif
11986 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11987 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11988 		return -EINVAL;
11989 
11990 	if (!attr->inherit && attr->inherit_thread)
11991 		return -EINVAL;
11992 
11993 	if (attr->remove_on_exec && attr->enable_on_exec)
11994 		return -EINVAL;
11995 
11996 	if (attr->sigtrap && !attr->remove_on_exec)
11997 		return -EINVAL;
11998 
11999 out:
12000 	return ret;
12001 
12002 err_size:
12003 	put_user(sizeof(*attr), &uattr->size);
12004 	ret = -E2BIG;
12005 	goto out;
12006 }
12007 
12008 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12009 {
12010 	if (b < a)
12011 		swap(a, b);
12012 
12013 	mutex_lock(a);
12014 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12015 }
12016 
12017 static int
12018 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12019 {
12020 	struct perf_buffer *rb = NULL;
12021 	int ret = -EINVAL;
12022 
12023 	if (!output_event) {
12024 		mutex_lock(&event->mmap_mutex);
12025 		goto set;
12026 	}
12027 
12028 	/* don't allow circular references */
12029 	if (event == output_event)
12030 		goto out;
12031 
12032 	/*
12033 	 * Don't allow cross-cpu buffers
12034 	 */
12035 	if (output_event->cpu != event->cpu)
12036 		goto out;
12037 
12038 	/*
12039 	 * If its not a per-cpu rb, it must be the same task.
12040 	 */
12041 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
12042 		goto out;
12043 
12044 	/*
12045 	 * Mixing clocks in the same buffer is trouble you don't need.
12046 	 */
12047 	if (output_event->clock != event->clock)
12048 		goto out;
12049 
12050 	/*
12051 	 * Either writing ring buffer from beginning or from end.
12052 	 * Mixing is not allowed.
12053 	 */
12054 	if (is_write_backward(output_event) != is_write_backward(event))
12055 		goto out;
12056 
12057 	/*
12058 	 * If both events generate aux data, they must be on the same PMU
12059 	 */
12060 	if (has_aux(event) && has_aux(output_event) &&
12061 	    event->pmu != output_event->pmu)
12062 		goto out;
12063 
12064 	/*
12065 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12066 	 * output_event is already on rb->event_list, and the list iteration
12067 	 * restarts after every removal, it is guaranteed this new event is
12068 	 * observed *OR* if output_event is already removed, it's guaranteed we
12069 	 * observe !rb->mmap_count.
12070 	 */
12071 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12072 set:
12073 	/* Can't redirect output if we've got an active mmap() */
12074 	if (atomic_read(&event->mmap_count))
12075 		goto unlock;
12076 
12077 	if (output_event) {
12078 		/* get the rb we want to redirect to */
12079 		rb = ring_buffer_get(output_event);
12080 		if (!rb)
12081 			goto unlock;
12082 
12083 		/* did we race against perf_mmap_close() */
12084 		if (!atomic_read(&rb->mmap_count)) {
12085 			ring_buffer_put(rb);
12086 			goto unlock;
12087 		}
12088 	}
12089 
12090 	ring_buffer_attach(event, rb);
12091 
12092 	ret = 0;
12093 unlock:
12094 	mutex_unlock(&event->mmap_mutex);
12095 	if (output_event)
12096 		mutex_unlock(&output_event->mmap_mutex);
12097 
12098 out:
12099 	return ret;
12100 }
12101 
12102 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12103 {
12104 	bool nmi_safe = false;
12105 
12106 	switch (clk_id) {
12107 	case CLOCK_MONOTONIC:
12108 		event->clock = &ktime_get_mono_fast_ns;
12109 		nmi_safe = true;
12110 		break;
12111 
12112 	case CLOCK_MONOTONIC_RAW:
12113 		event->clock = &ktime_get_raw_fast_ns;
12114 		nmi_safe = true;
12115 		break;
12116 
12117 	case CLOCK_REALTIME:
12118 		event->clock = &ktime_get_real_ns;
12119 		break;
12120 
12121 	case CLOCK_BOOTTIME:
12122 		event->clock = &ktime_get_boottime_ns;
12123 		break;
12124 
12125 	case CLOCK_TAI:
12126 		event->clock = &ktime_get_clocktai_ns;
12127 		break;
12128 
12129 	default:
12130 		return -EINVAL;
12131 	}
12132 
12133 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12134 		return -EINVAL;
12135 
12136 	return 0;
12137 }
12138 
12139 /*
12140  * Variation on perf_event_ctx_lock_nested(), except we take two context
12141  * mutexes.
12142  */
12143 static struct perf_event_context *
12144 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12145 			     struct perf_event_context *ctx)
12146 {
12147 	struct perf_event_context *gctx;
12148 
12149 again:
12150 	rcu_read_lock();
12151 	gctx = READ_ONCE(group_leader->ctx);
12152 	if (!refcount_inc_not_zero(&gctx->refcount)) {
12153 		rcu_read_unlock();
12154 		goto again;
12155 	}
12156 	rcu_read_unlock();
12157 
12158 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
12159 
12160 	if (group_leader->ctx != gctx) {
12161 		mutex_unlock(&ctx->mutex);
12162 		mutex_unlock(&gctx->mutex);
12163 		put_ctx(gctx);
12164 		goto again;
12165 	}
12166 
12167 	return gctx;
12168 }
12169 
12170 static bool
12171 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12172 {
12173 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12174 	bool is_capable = perfmon_capable();
12175 
12176 	if (attr->sigtrap) {
12177 		/*
12178 		 * perf_event_attr::sigtrap sends signals to the other task.
12179 		 * Require the current task to also have CAP_KILL.
12180 		 */
12181 		rcu_read_lock();
12182 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12183 		rcu_read_unlock();
12184 
12185 		/*
12186 		 * If the required capabilities aren't available, checks for
12187 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12188 		 * can effectively change the target task.
12189 		 */
12190 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12191 	}
12192 
12193 	/*
12194 	 * Preserve ptrace permission check for backwards compatibility. The
12195 	 * ptrace check also includes checks that the current task and other
12196 	 * task have matching uids, and is therefore not done here explicitly.
12197 	 */
12198 	return is_capable || ptrace_may_access(task, ptrace_mode);
12199 }
12200 
12201 /**
12202  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12203  *
12204  * @attr_uptr:	event_id type attributes for monitoring/sampling
12205  * @pid:		target pid
12206  * @cpu:		target cpu
12207  * @group_fd:		group leader event fd
12208  * @flags:		perf event open flags
12209  */
12210 SYSCALL_DEFINE5(perf_event_open,
12211 		struct perf_event_attr __user *, attr_uptr,
12212 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12213 {
12214 	struct perf_event *group_leader = NULL, *output_event = NULL;
12215 	struct perf_event *event, *sibling;
12216 	struct perf_event_attr attr;
12217 	struct perf_event_context *ctx, *gctx;
12218 	struct file *event_file = NULL;
12219 	struct fd group = {NULL, 0};
12220 	struct task_struct *task = NULL;
12221 	struct pmu *pmu;
12222 	int event_fd;
12223 	int move_group = 0;
12224 	int err;
12225 	int f_flags = O_RDWR;
12226 	int cgroup_fd = -1;
12227 
12228 	/* for future expandability... */
12229 	if (flags & ~PERF_FLAG_ALL)
12230 		return -EINVAL;
12231 
12232 	/* Do we allow access to perf_event_open(2) ? */
12233 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12234 	if (err)
12235 		return err;
12236 
12237 	err = perf_copy_attr(attr_uptr, &attr);
12238 	if (err)
12239 		return err;
12240 
12241 	if (!attr.exclude_kernel) {
12242 		err = perf_allow_kernel(&attr);
12243 		if (err)
12244 			return err;
12245 	}
12246 
12247 	if (attr.namespaces) {
12248 		if (!perfmon_capable())
12249 			return -EACCES;
12250 	}
12251 
12252 	if (attr.freq) {
12253 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12254 			return -EINVAL;
12255 	} else {
12256 		if (attr.sample_period & (1ULL << 63))
12257 			return -EINVAL;
12258 	}
12259 
12260 	/* Only privileged users can get physical addresses */
12261 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12262 		err = perf_allow_kernel(&attr);
12263 		if (err)
12264 			return err;
12265 	}
12266 
12267 	/* REGS_INTR can leak data, lockdown must prevent this */
12268 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12269 		err = security_locked_down(LOCKDOWN_PERF);
12270 		if (err)
12271 			return err;
12272 	}
12273 
12274 	/*
12275 	 * In cgroup mode, the pid argument is used to pass the fd
12276 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12277 	 * designates the cpu on which to monitor threads from that
12278 	 * cgroup.
12279 	 */
12280 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12281 		return -EINVAL;
12282 
12283 	if (flags & PERF_FLAG_FD_CLOEXEC)
12284 		f_flags |= O_CLOEXEC;
12285 
12286 	event_fd = get_unused_fd_flags(f_flags);
12287 	if (event_fd < 0)
12288 		return event_fd;
12289 
12290 	if (group_fd != -1) {
12291 		err = perf_fget_light(group_fd, &group);
12292 		if (err)
12293 			goto err_fd;
12294 		group_leader = group.file->private_data;
12295 		if (flags & PERF_FLAG_FD_OUTPUT)
12296 			output_event = group_leader;
12297 		if (flags & PERF_FLAG_FD_NO_GROUP)
12298 			group_leader = NULL;
12299 	}
12300 
12301 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12302 		task = find_lively_task_by_vpid(pid);
12303 		if (IS_ERR(task)) {
12304 			err = PTR_ERR(task);
12305 			goto err_group_fd;
12306 		}
12307 	}
12308 
12309 	if (task && group_leader &&
12310 	    group_leader->attr.inherit != attr.inherit) {
12311 		err = -EINVAL;
12312 		goto err_task;
12313 	}
12314 
12315 	if (flags & PERF_FLAG_PID_CGROUP)
12316 		cgroup_fd = pid;
12317 
12318 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12319 				 NULL, NULL, cgroup_fd);
12320 	if (IS_ERR(event)) {
12321 		err = PTR_ERR(event);
12322 		goto err_task;
12323 	}
12324 
12325 	if (is_sampling_event(event)) {
12326 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12327 			err = -EOPNOTSUPP;
12328 			goto err_alloc;
12329 		}
12330 	}
12331 
12332 	/*
12333 	 * Special case software events and allow them to be part of
12334 	 * any hardware group.
12335 	 */
12336 	pmu = event->pmu;
12337 
12338 	if (attr.use_clockid) {
12339 		err = perf_event_set_clock(event, attr.clockid);
12340 		if (err)
12341 			goto err_alloc;
12342 	}
12343 
12344 	if (pmu->task_ctx_nr == perf_sw_context)
12345 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12346 
12347 	if (group_leader) {
12348 		if (is_software_event(event) &&
12349 		    !in_software_context(group_leader)) {
12350 			/*
12351 			 * If the event is a sw event, but the group_leader
12352 			 * is on hw context.
12353 			 *
12354 			 * Allow the addition of software events to hw
12355 			 * groups, this is safe because software events
12356 			 * never fail to schedule.
12357 			 */
12358 			pmu = group_leader->ctx->pmu;
12359 		} else if (!is_software_event(event) &&
12360 			   is_software_event(group_leader) &&
12361 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12362 			/*
12363 			 * In case the group is a pure software group, and we
12364 			 * try to add a hardware event, move the whole group to
12365 			 * the hardware context.
12366 			 */
12367 			move_group = 1;
12368 		}
12369 	}
12370 
12371 	/*
12372 	 * Get the target context (task or percpu):
12373 	 */
12374 	ctx = find_get_context(pmu, task, event);
12375 	if (IS_ERR(ctx)) {
12376 		err = PTR_ERR(ctx);
12377 		goto err_alloc;
12378 	}
12379 
12380 	/*
12381 	 * Look up the group leader (we will attach this event to it):
12382 	 */
12383 	if (group_leader) {
12384 		err = -EINVAL;
12385 
12386 		/*
12387 		 * Do not allow a recursive hierarchy (this new sibling
12388 		 * becoming part of another group-sibling):
12389 		 */
12390 		if (group_leader->group_leader != group_leader)
12391 			goto err_context;
12392 
12393 		/* All events in a group should have the same clock */
12394 		if (group_leader->clock != event->clock)
12395 			goto err_context;
12396 
12397 		/*
12398 		 * Make sure we're both events for the same CPU;
12399 		 * grouping events for different CPUs is broken; since
12400 		 * you can never concurrently schedule them anyhow.
12401 		 */
12402 		if (group_leader->cpu != event->cpu)
12403 			goto err_context;
12404 
12405 		/*
12406 		 * Make sure we're both on the same task, or both
12407 		 * per-CPU events.
12408 		 */
12409 		if (group_leader->ctx->task != ctx->task)
12410 			goto err_context;
12411 
12412 		/*
12413 		 * Do not allow to attach to a group in a different task
12414 		 * or CPU context. If we're moving SW events, we'll fix
12415 		 * this up later, so allow that.
12416 		 *
12417 		 * Racy, not holding group_leader->ctx->mutex, see comment with
12418 		 * perf_event_ctx_lock().
12419 		 */
12420 		if (!move_group && group_leader->ctx != ctx)
12421 			goto err_context;
12422 
12423 		/*
12424 		 * Only a group leader can be exclusive or pinned
12425 		 */
12426 		if (attr.exclusive || attr.pinned)
12427 			goto err_context;
12428 	}
12429 
12430 	if (output_event) {
12431 		err = perf_event_set_output(event, output_event);
12432 		if (err)
12433 			goto err_context;
12434 	}
12435 
12436 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12437 					f_flags);
12438 	if (IS_ERR(event_file)) {
12439 		err = PTR_ERR(event_file);
12440 		event_file = NULL;
12441 		goto err_context;
12442 	}
12443 
12444 	if (task) {
12445 		err = down_read_interruptible(&task->signal->exec_update_lock);
12446 		if (err)
12447 			goto err_file;
12448 
12449 		/*
12450 		 * We must hold exec_update_lock across this and any potential
12451 		 * perf_install_in_context() call for this new event to
12452 		 * serialize against exec() altering our credentials (and the
12453 		 * perf_event_exit_task() that could imply).
12454 		 */
12455 		err = -EACCES;
12456 		if (!perf_check_permission(&attr, task))
12457 			goto err_cred;
12458 	}
12459 
12460 	if (move_group) {
12461 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12462 
12463 		if (gctx->task == TASK_TOMBSTONE) {
12464 			err = -ESRCH;
12465 			goto err_locked;
12466 		}
12467 
12468 		/*
12469 		 * Check if we raced against another sys_perf_event_open() call
12470 		 * moving the software group underneath us.
12471 		 */
12472 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12473 			/*
12474 			 * If someone moved the group out from under us, check
12475 			 * if this new event wound up on the same ctx, if so
12476 			 * its the regular !move_group case, otherwise fail.
12477 			 */
12478 			if (gctx != ctx) {
12479 				err = -EINVAL;
12480 				goto err_locked;
12481 			} else {
12482 				perf_event_ctx_unlock(group_leader, gctx);
12483 				move_group = 0;
12484 				goto not_move_group;
12485 			}
12486 		}
12487 
12488 		/*
12489 		 * Failure to create exclusive events returns -EBUSY.
12490 		 */
12491 		err = -EBUSY;
12492 		if (!exclusive_event_installable(group_leader, ctx))
12493 			goto err_locked;
12494 
12495 		for_each_sibling_event(sibling, group_leader) {
12496 			if (!exclusive_event_installable(sibling, ctx))
12497 				goto err_locked;
12498 		}
12499 	} else {
12500 		mutex_lock(&ctx->mutex);
12501 
12502 		/*
12503 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
12504 		 * see the group_leader && !move_group test earlier.
12505 		 */
12506 		if (group_leader && group_leader->ctx != ctx) {
12507 			err = -EINVAL;
12508 			goto err_locked;
12509 		}
12510 	}
12511 not_move_group:
12512 
12513 	if (ctx->task == TASK_TOMBSTONE) {
12514 		err = -ESRCH;
12515 		goto err_locked;
12516 	}
12517 
12518 	if (!perf_event_validate_size(event)) {
12519 		err = -E2BIG;
12520 		goto err_locked;
12521 	}
12522 
12523 	if (!task) {
12524 		/*
12525 		 * Check if the @cpu we're creating an event for is online.
12526 		 *
12527 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12528 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12529 		 */
12530 		struct perf_cpu_context *cpuctx =
12531 			container_of(ctx, struct perf_cpu_context, ctx);
12532 
12533 		if (!cpuctx->online) {
12534 			err = -ENODEV;
12535 			goto err_locked;
12536 		}
12537 	}
12538 
12539 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12540 		err = -EINVAL;
12541 		goto err_locked;
12542 	}
12543 
12544 	/*
12545 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12546 	 * because we need to serialize with concurrent event creation.
12547 	 */
12548 	if (!exclusive_event_installable(event, ctx)) {
12549 		err = -EBUSY;
12550 		goto err_locked;
12551 	}
12552 
12553 	WARN_ON_ONCE(ctx->parent_ctx);
12554 
12555 	/*
12556 	 * This is the point on no return; we cannot fail hereafter. This is
12557 	 * where we start modifying current state.
12558 	 */
12559 
12560 	if (move_group) {
12561 		/*
12562 		 * See perf_event_ctx_lock() for comments on the details
12563 		 * of swizzling perf_event::ctx.
12564 		 */
12565 		perf_remove_from_context(group_leader, 0);
12566 		put_ctx(gctx);
12567 
12568 		for_each_sibling_event(sibling, group_leader) {
12569 			perf_remove_from_context(sibling, 0);
12570 			put_ctx(gctx);
12571 		}
12572 
12573 		/*
12574 		 * Wait for everybody to stop referencing the events through
12575 		 * the old lists, before installing it on new lists.
12576 		 */
12577 		synchronize_rcu();
12578 
12579 		/*
12580 		 * Install the group siblings before the group leader.
12581 		 *
12582 		 * Because a group leader will try and install the entire group
12583 		 * (through the sibling list, which is still in-tact), we can
12584 		 * end up with siblings installed in the wrong context.
12585 		 *
12586 		 * By installing siblings first we NO-OP because they're not
12587 		 * reachable through the group lists.
12588 		 */
12589 		for_each_sibling_event(sibling, group_leader) {
12590 			perf_event__state_init(sibling);
12591 			perf_install_in_context(ctx, sibling, sibling->cpu);
12592 			get_ctx(ctx);
12593 		}
12594 
12595 		/*
12596 		 * Removing from the context ends up with disabled
12597 		 * event. What we want here is event in the initial
12598 		 * startup state, ready to be add into new context.
12599 		 */
12600 		perf_event__state_init(group_leader);
12601 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12602 		get_ctx(ctx);
12603 	}
12604 
12605 	/*
12606 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12607 	 * that we're serialized against further additions and before
12608 	 * perf_install_in_context() which is the point the event is active and
12609 	 * can use these values.
12610 	 */
12611 	perf_event__header_size(event);
12612 	perf_event__id_header_size(event);
12613 
12614 	event->owner = current;
12615 
12616 	perf_install_in_context(ctx, event, event->cpu);
12617 	perf_unpin_context(ctx);
12618 
12619 	if (move_group)
12620 		perf_event_ctx_unlock(group_leader, gctx);
12621 	mutex_unlock(&ctx->mutex);
12622 
12623 	if (task) {
12624 		up_read(&task->signal->exec_update_lock);
12625 		put_task_struct(task);
12626 	}
12627 
12628 	mutex_lock(&current->perf_event_mutex);
12629 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12630 	mutex_unlock(&current->perf_event_mutex);
12631 
12632 	/*
12633 	 * Drop the reference on the group_event after placing the
12634 	 * new event on the sibling_list. This ensures destruction
12635 	 * of the group leader will find the pointer to itself in
12636 	 * perf_group_detach().
12637 	 */
12638 	fdput(group);
12639 	fd_install(event_fd, event_file);
12640 	return event_fd;
12641 
12642 err_locked:
12643 	if (move_group)
12644 		perf_event_ctx_unlock(group_leader, gctx);
12645 	mutex_unlock(&ctx->mutex);
12646 err_cred:
12647 	if (task)
12648 		up_read(&task->signal->exec_update_lock);
12649 err_file:
12650 	fput(event_file);
12651 err_context:
12652 	perf_unpin_context(ctx);
12653 	put_ctx(ctx);
12654 err_alloc:
12655 	/*
12656 	 * If event_file is set, the fput() above will have called ->release()
12657 	 * and that will take care of freeing the event.
12658 	 */
12659 	if (!event_file)
12660 		free_event(event);
12661 err_task:
12662 	if (task)
12663 		put_task_struct(task);
12664 err_group_fd:
12665 	fdput(group);
12666 err_fd:
12667 	put_unused_fd(event_fd);
12668 	return err;
12669 }
12670 
12671 /**
12672  * perf_event_create_kernel_counter
12673  *
12674  * @attr: attributes of the counter to create
12675  * @cpu: cpu in which the counter is bound
12676  * @task: task to profile (NULL for percpu)
12677  * @overflow_handler: callback to trigger when we hit the event
12678  * @context: context data could be used in overflow_handler callback
12679  */
12680 struct perf_event *
12681 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12682 				 struct task_struct *task,
12683 				 perf_overflow_handler_t overflow_handler,
12684 				 void *context)
12685 {
12686 	struct perf_event_context *ctx;
12687 	struct perf_event *event;
12688 	int err;
12689 
12690 	/*
12691 	 * Grouping is not supported for kernel events, neither is 'AUX',
12692 	 * make sure the caller's intentions are adjusted.
12693 	 */
12694 	if (attr->aux_output)
12695 		return ERR_PTR(-EINVAL);
12696 
12697 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12698 				 overflow_handler, context, -1);
12699 	if (IS_ERR(event)) {
12700 		err = PTR_ERR(event);
12701 		goto err;
12702 	}
12703 
12704 	/* Mark owner so we could distinguish it from user events. */
12705 	event->owner = TASK_TOMBSTONE;
12706 
12707 	/*
12708 	 * Get the target context (task or percpu):
12709 	 */
12710 	ctx = find_get_context(event->pmu, task, event);
12711 	if (IS_ERR(ctx)) {
12712 		err = PTR_ERR(ctx);
12713 		goto err_free;
12714 	}
12715 
12716 	WARN_ON_ONCE(ctx->parent_ctx);
12717 	mutex_lock(&ctx->mutex);
12718 	if (ctx->task == TASK_TOMBSTONE) {
12719 		err = -ESRCH;
12720 		goto err_unlock;
12721 	}
12722 
12723 	if (!task) {
12724 		/*
12725 		 * Check if the @cpu we're creating an event for is online.
12726 		 *
12727 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12728 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12729 		 */
12730 		struct perf_cpu_context *cpuctx =
12731 			container_of(ctx, struct perf_cpu_context, ctx);
12732 		if (!cpuctx->online) {
12733 			err = -ENODEV;
12734 			goto err_unlock;
12735 		}
12736 	}
12737 
12738 	if (!exclusive_event_installable(event, ctx)) {
12739 		err = -EBUSY;
12740 		goto err_unlock;
12741 	}
12742 
12743 	perf_install_in_context(ctx, event, event->cpu);
12744 	perf_unpin_context(ctx);
12745 	mutex_unlock(&ctx->mutex);
12746 
12747 	return event;
12748 
12749 err_unlock:
12750 	mutex_unlock(&ctx->mutex);
12751 	perf_unpin_context(ctx);
12752 	put_ctx(ctx);
12753 err_free:
12754 	free_event(event);
12755 err:
12756 	return ERR_PTR(err);
12757 }
12758 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12759 
12760 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12761 {
12762 	struct perf_event_context *src_ctx;
12763 	struct perf_event_context *dst_ctx;
12764 	struct perf_event *event, *tmp;
12765 	LIST_HEAD(events);
12766 
12767 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12768 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12769 
12770 	/*
12771 	 * See perf_event_ctx_lock() for comments on the details
12772 	 * of swizzling perf_event::ctx.
12773 	 */
12774 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12775 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12776 				 event_entry) {
12777 		perf_remove_from_context(event, 0);
12778 		unaccount_event_cpu(event, src_cpu);
12779 		put_ctx(src_ctx);
12780 		list_add(&event->migrate_entry, &events);
12781 	}
12782 
12783 	/*
12784 	 * Wait for the events to quiesce before re-instating them.
12785 	 */
12786 	synchronize_rcu();
12787 
12788 	/*
12789 	 * Re-instate events in 2 passes.
12790 	 *
12791 	 * Skip over group leaders and only install siblings on this first
12792 	 * pass, siblings will not get enabled without a leader, however a
12793 	 * leader will enable its siblings, even if those are still on the old
12794 	 * context.
12795 	 */
12796 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12797 		if (event->group_leader == event)
12798 			continue;
12799 
12800 		list_del(&event->migrate_entry);
12801 		if (event->state >= PERF_EVENT_STATE_OFF)
12802 			event->state = PERF_EVENT_STATE_INACTIVE;
12803 		account_event_cpu(event, dst_cpu);
12804 		perf_install_in_context(dst_ctx, event, dst_cpu);
12805 		get_ctx(dst_ctx);
12806 	}
12807 
12808 	/*
12809 	 * Once all the siblings are setup properly, install the group leaders
12810 	 * to make it go.
12811 	 */
12812 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12813 		list_del(&event->migrate_entry);
12814 		if (event->state >= PERF_EVENT_STATE_OFF)
12815 			event->state = PERF_EVENT_STATE_INACTIVE;
12816 		account_event_cpu(event, dst_cpu);
12817 		perf_install_in_context(dst_ctx, event, dst_cpu);
12818 		get_ctx(dst_ctx);
12819 	}
12820 	mutex_unlock(&dst_ctx->mutex);
12821 	mutex_unlock(&src_ctx->mutex);
12822 }
12823 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12824 
12825 static void sync_child_event(struct perf_event *child_event)
12826 {
12827 	struct perf_event *parent_event = child_event->parent;
12828 	u64 child_val;
12829 
12830 	if (child_event->attr.inherit_stat) {
12831 		struct task_struct *task = child_event->ctx->task;
12832 
12833 		if (task && task != TASK_TOMBSTONE)
12834 			perf_event_read_event(child_event, task);
12835 	}
12836 
12837 	child_val = perf_event_count(child_event);
12838 
12839 	/*
12840 	 * Add back the child's count to the parent's count:
12841 	 */
12842 	atomic64_add(child_val, &parent_event->child_count);
12843 	atomic64_add(child_event->total_time_enabled,
12844 		     &parent_event->child_total_time_enabled);
12845 	atomic64_add(child_event->total_time_running,
12846 		     &parent_event->child_total_time_running);
12847 }
12848 
12849 static void
12850 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12851 {
12852 	struct perf_event *parent_event = event->parent;
12853 	unsigned long detach_flags = 0;
12854 
12855 	if (parent_event) {
12856 		/*
12857 		 * Do not destroy the 'original' grouping; because of the
12858 		 * context switch optimization the original events could've
12859 		 * ended up in a random child task.
12860 		 *
12861 		 * If we were to destroy the original group, all group related
12862 		 * operations would cease to function properly after this
12863 		 * random child dies.
12864 		 *
12865 		 * Do destroy all inherited groups, we don't care about those
12866 		 * and being thorough is better.
12867 		 */
12868 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12869 		mutex_lock(&parent_event->child_mutex);
12870 	}
12871 
12872 	perf_remove_from_context(event, detach_flags);
12873 
12874 	raw_spin_lock_irq(&ctx->lock);
12875 	if (event->state > PERF_EVENT_STATE_EXIT)
12876 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12877 	raw_spin_unlock_irq(&ctx->lock);
12878 
12879 	/*
12880 	 * Child events can be freed.
12881 	 */
12882 	if (parent_event) {
12883 		mutex_unlock(&parent_event->child_mutex);
12884 		/*
12885 		 * Kick perf_poll() for is_event_hup();
12886 		 */
12887 		perf_event_wakeup(parent_event);
12888 		free_event(event);
12889 		put_event(parent_event);
12890 		return;
12891 	}
12892 
12893 	/*
12894 	 * Parent events are governed by their filedesc, retain them.
12895 	 */
12896 	perf_event_wakeup(event);
12897 }
12898 
12899 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12900 {
12901 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12902 	struct perf_event *child_event, *next;
12903 
12904 	WARN_ON_ONCE(child != current);
12905 
12906 	child_ctx = perf_pin_task_context(child, ctxn);
12907 	if (!child_ctx)
12908 		return;
12909 
12910 	/*
12911 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12912 	 * ctx::mutex over the entire thing. This serializes against almost
12913 	 * everything that wants to access the ctx.
12914 	 *
12915 	 * The exception is sys_perf_event_open() /
12916 	 * perf_event_create_kernel_count() which does find_get_context()
12917 	 * without ctx::mutex (it cannot because of the move_group double mutex
12918 	 * lock thing). See the comments in perf_install_in_context().
12919 	 */
12920 	mutex_lock(&child_ctx->mutex);
12921 
12922 	/*
12923 	 * In a single ctx::lock section, de-schedule the events and detach the
12924 	 * context from the task such that we cannot ever get it scheduled back
12925 	 * in.
12926 	 */
12927 	raw_spin_lock_irq(&child_ctx->lock);
12928 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12929 
12930 	/*
12931 	 * Now that the context is inactive, destroy the task <-> ctx relation
12932 	 * and mark the context dead.
12933 	 */
12934 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12935 	put_ctx(child_ctx); /* cannot be last */
12936 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12937 	put_task_struct(current); /* cannot be last */
12938 
12939 	clone_ctx = unclone_ctx(child_ctx);
12940 	raw_spin_unlock_irq(&child_ctx->lock);
12941 
12942 	if (clone_ctx)
12943 		put_ctx(clone_ctx);
12944 
12945 	/*
12946 	 * Report the task dead after unscheduling the events so that we
12947 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12948 	 * get a few PERF_RECORD_READ events.
12949 	 */
12950 	perf_event_task(child, child_ctx, 0);
12951 
12952 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12953 		perf_event_exit_event(child_event, child_ctx);
12954 
12955 	mutex_unlock(&child_ctx->mutex);
12956 
12957 	put_ctx(child_ctx);
12958 }
12959 
12960 /*
12961  * When a child task exits, feed back event values to parent events.
12962  *
12963  * Can be called with exec_update_lock held when called from
12964  * setup_new_exec().
12965  */
12966 void perf_event_exit_task(struct task_struct *child)
12967 {
12968 	struct perf_event *event, *tmp;
12969 	int ctxn;
12970 
12971 	mutex_lock(&child->perf_event_mutex);
12972 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12973 				 owner_entry) {
12974 		list_del_init(&event->owner_entry);
12975 
12976 		/*
12977 		 * Ensure the list deletion is visible before we clear
12978 		 * the owner, closes a race against perf_release() where
12979 		 * we need to serialize on the owner->perf_event_mutex.
12980 		 */
12981 		smp_store_release(&event->owner, NULL);
12982 	}
12983 	mutex_unlock(&child->perf_event_mutex);
12984 
12985 	for_each_task_context_nr(ctxn)
12986 		perf_event_exit_task_context(child, ctxn);
12987 
12988 	/*
12989 	 * The perf_event_exit_task_context calls perf_event_task
12990 	 * with child's task_ctx, which generates EXIT events for
12991 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12992 	 * At this point we need to send EXIT events to cpu contexts.
12993 	 */
12994 	perf_event_task(child, NULL, 0);
12995 }
12996 
12997 static void perf_free_event(struct perf_event *event,
12998 			    struct perf_event_context *ctx)
12999 {
13000 	struct perf_event *parent = event->parent;
13001 
13002 	if (WARN_ON_ONCE(!parent))
13003 		return;
13004 
13005 	mutex_lock(&parent->child_mutex);
13006 	list_del_init(&event->child_list);
13007 	mutex_unlock(&parent->child_mutex);
13008 
13009 	put_event(parent);
13010 
13011 	raw_spin_lock_irq(&ctx->lock);
13012 	perf_group_detach(event);
13013 	list_del_event(event, ctx);
13014 	raw_spin_unlock_irq(&ctx->lock);
13015 	free_event(event);
13016 }
13017 
13018 /*
13019  * Free a context as created by inheritance by perf_event_init_task() below,
13020  * used by fork() in case of fail.
13021  *
13022  * Even though the task has never lived, the context and events have been
13023  * exposed through the child_list, so we must take care tearing it all down.
13024  */
13025 void perf_event_free_task(struct task_struct *task)
13026 {
13027 	struct perf_event_context *ctx;
13028 	struct perf_event *event, *tmp;
13029 	int ctxn;
13030 
13031 	for_each_task_context_nr(ctxn) {
13032 		ctx = task->perf_event_ctxp[ctxn];
13033 		if (!ctx)
13034 			continue;
13035 
13036 		mutex_lock(&ctx->mutex);
13037 		raw_spin_lock_irq(&ctx->lock);
13038 		/*
13039 		 * Destroy the task <-> ctx relation and mark the context dead.
13040 		 *
13041 		 * This is important because even though the task hasn't been
13042 		 * exposed yet the context has been (through child_list).
13043 		 */
13044 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
13045 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13046 		put_task_struct(task); /* cannot be last */
13047 		raw_spin_unlock_irq(&ctx->lock);
13048 
13049 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13050 			perf_free_event(event, ctx);
13051 
13052 		mutex_unlock(&ctx->mutex);
13053 
13054 		/*
13055 		 * perf_event_release_kernel() could've stolen some of our
13056 		 * child events and still have them on its free_list. In that
13057 		 * case we must wait for these events to have been freed (in
13058 		 * particular all their references to this task must've been
13059 		 * dropped).
13060 		 *
13061 		 * Without this copy_process() will unconditionally free this
13062 		 * task (irrespective of its reference count) and
13063 		 * _free_event()'s put_task_struct(event->hw.target) will be a
13064 		 * use-after-free.
13065 		 *
13066 		 * Wait for all events to drop their context reference.
13067 		 */
13068 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13069 		put_ctx(ctx); /* must be last */
13070 	}
13071 }
13072 
13073 void perf_event_delayed_put(struct task_struct *task)
13074 {
13075 	int ctxn;
13076 
13077 	for_each_task_context_nr(ctxn)
13078 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
13079 }
13080 
13081 struct file *perf_event_get(unsigned int fd)
13082 {
13083 	struct file *file = fget(fd);
13084 	if (!file)
13085 		return ERR_PTR(-EBADF);
13086 
13087 	if (file->f_op != &perf_fops) {
13088 		fput(file);
13089 		return ERR_PTR(-EBADF);
13090 	}
13091 
13092 	return file;
13093 }
13094 
13095 const struct perf_event *perf_get_event(struct file *file)
13096 {
13097 	if (file->f_op != &perf_fops)
13098 		return ERR_PTR(-EINVAL);
13099 
13100 	return file->private_data;
13101 }
13102 
13103 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13104 {
13105 	if (!event)
13106 		return ERR_PTR(-EINVAL);
13107 
13108 	return &event->attr;
13109 }
13110 
13111 /*
13112  * Inherit an event from parent task to child task.
13113  *
13114  * Returns:
13115  *  - valid pointer on success
13116  *  - NULL for orphaned events
13117  *  - IS_ERR() on error
13118  */
13119 static struct perf_event *
13120 inherit_event(struct perf_event *parent_event,
13121 	      struct task_struct *parent,
13122 	      struct perf_event_context *parent_ctx,
13123 	      struct task_struct *child,
13124 	      struct perf_event *group_leader,
13125 	      struct perf_event_context *child_ctx)
13126 {
13127 	enum perf_event_state parent_state = parent_event->state;
13128 	struct perf_event *child_event;
13129 	unsigned long flags;
13130 
13131 	/*
13132 	 * Instead of creating recursive hierarchies of events,
13133 	 * we link inherited events back to the original parent,
13134 	 * which has a filp for sure, which we use as the reference
13135 	 * count:
13136 	 */
13137 	if (parent_event->parent)
13138 		parent_event = parent_event->parent;
13139 
13140 	child_event = perf_event_alloc(&parent_event->attr,
13141 					   parent_event->cpu,
13142 					   child,
13143 					   group_leader, parent_event,
13144 					   NULL, NULL, -1);
13145 	if (IS_ERR(child_event))
13146 		return child_event;
13147 
13148 
13149 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13150 	    !child_ctx->task_ctx_data) {
13151 		struct pmu *pmu = child_event->pmu;
13152 
13153 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13154 		if (!child_ctx->task_ctx_data) {
13155 			free_event(child_event);
13156 			return ERR_PTR(-ENOMEM);
13157 		}
13158 	}
13159 
13160 	/*
13161 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13162 	 * must be under the same lock in order to serialize against
13163 	 * perf_event_release_kernel(), such that either we must observe
13164 	 * is_orphaned_event() or they will observe us on the child_list.
13165 	 */
13166 	mutex_lock(&parent_event->child_mutex);
13167 	if (is_orphaned_event(parent_event) ||
13168 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13169 		mutex_unlock(&parent_event->child_mutex);
13170 		/* task_ctx_data is freed with child_ctx */
13171 		free_event(child_event);
13172 		return NULL;
13173 	}
13174 
13175 	get_ctx(child_ctx);
13176 
13177 	/*
13178 	 * Make the child state follow the state of the parent event,
13179 	 * not its attr.disabled bit.  We hold the parent's mutex,
13180 	 * so we won't race with perf_event_{en, dis}able_family.
13181 	 */
13182 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13183 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13184 	else
13185 		child_event->state = PERF_EVENT_STATE_OFF;
13186 
13187 	if (parent_event->attr.freq) {
13188 		u64 sample_period = parent_event->hw.sample_period;
13189 		struct hw_perf_event *hwc = &child_event->hw;
13190 
13191 		hwc->sample_period = sample_period;
13192 		hwc->last_period   = sample_period;
13193 
13194 		local64_set(&hwc->period_left, sample_period);
13195 	}
13196 
13197 	child_event->ctx = child_ctx;
13198 	child_event->overflow_handler = parent_event->overflow_handler;
13199 	child_event->overflow_handler_context
13200 		= parent_event->overflow_handler_context;
13201 
13202 	/*
13203 	 * Precalculate sample_data sizes
13204 	 */
13205 	perf_event__header_size(child_event);
13206 	perf_event__id_header_size(child_event);
13207 
13208 	/*
13209 	 * Link it up in the child's context:
13210 	 */
13211 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13212 	add_event_to_ctx(child_event, child_ctx);
13213 	child_event->attach_state |= PERF_ATTACH_CHILD;
13214 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13215 
13216 	/*
13217 	 * Link this into the parent event's child list
13218 	 */
13219 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13220 	mutex_unlock(&parent_event->child_mutex);
13221 
13222 	return child_event;
13223 }
13224 
13225 /*
13226  * Inherits an event group.
13227  *
13228  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13229  * This matches with perf_event_release_kernel() removing all child events.
13230  *
13231  * Returns:
13232  *  - 0 on success
13233  *  - <0 on error
13234  */
13235 static int inherit_group(struct perf_event *parent_event,
13236 	      struct task_struct *parent,
13237 	      struct perf_event_context *parent_ctx,
13238 	      struct task_struct *child,
13239 	      struct perf_event_context *child_ctx)
13240 {
13241 	struct perf_event *leader;
13242 	struct perf_event *sub;
13243 	struct perf_event *child_ctr;
13244 
13245 	leader = inherit_event(parent_event, parent, parent_ctx,
13246 				 child, NULL, child_ctx);
13247 	if (IS_ERR(leader))
13248 		return PTR_ERR(leader);
13249 	/*
13250 	 * @leader can be NULL here because of is_orphaned_event(). In this
13251 	 * case inherit_event() will create individual events, similar to what
13252 	 * perf_group_detach() would do anyway.
13253 	 */
13254 	for_each_sibling_event(sub, parent_event) {
13255 		child_ctr = inherit_event(sub, parent, parent_ctx,
13256 					    child, leader, child_ctx);
13257 		if (IS_ERR(child_ctr))
13258 			return PTR_ERR(child_ctr);
13259 
13260 		if (sub->aux_event == parent_event && child_ctr &&
13261 		    !perf_get_aux_event(child_ctr, leader))
13262 			return -EINVAL;
13263 	}
13264 	return 0;
13265 }
13266 
13267 /*
13268  * Creates the child task context and tries to inherit the event-group.
13269  *
13270  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13271  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13272  * consistent with perf_event_release_kernel() removing all child events.
13273  *
13274  * Returns:
13275  *  - 0 on success
13276  *  - <0 on error
13277  */
13278 static int
13279 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13280 		   struct perf_event_context *parent_ctx,
13281 		   struct task_struct *child, int ctxn,
13282 		   u64 clone_flags, int *inherited_all)
13283 {
13284 	int ret;
13285 	struct perf_event_context *child_ctx;
13286 
13287 	if (!event->attr.inherit ||
13288 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13289 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13290 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13291 		*inherited_all = 0;
13292 		return 0;
13293 	}
13294 
13295 	child_ctx = child->perf_event_ctxp[ctxn];
13296 	if (!child_ctx) {
13297 		/*
13298 		 * This is executed from the parent task context, so
13299 		 * inherit events that have been marked for cloning.
13300 		 * First allocate and initialize a context for the
13301 		 * child.
13302 		 */
13303 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13304 		if (!child_ctx)
13305 			return -ENOMEM;
13306 
13307 		child->perf_event_ctxp[ctxn] = child_ctx;
13308 	}
13309 
13310 	ret = inherit_group(event, parent, parent_ctx,
13311 			    child, child_ctx);
13312 
13313 	if (ret)
13314 		*inherited_all = 0;
13315 
13316 	return ret;
13317 }
13318 
13319 /*
13320  * Initialize the perf_event context in task_struct
13321  */
13322 static int perf_event_init_context(struct task_struct *child, int ctxn,
13323 				   u64 clone_flags)
13324 {
13325 	struct perf_event_context *child_ctx, *parent_ctx;
13326 	struct perf_event_context *cloned_ctx;
13327 	struct perf_event *event;
13328 	struct task_struct *parent = current;
13329 	int inherited_all = 1;
13330 	unsigned long flags;
13331 	int ret = 0;
13332 
13333 	if (likely(!parent->perf_event_ctxp[ctxn]))
13334 		return 0;
13335 
13336 	/*
13337 	 * If the parent's context is a clone, pin it so it won't get
13338 	 * swapped under us.
13339 	 */
13340 	parent_ctx = perf_pin_task_context(parent, ctxn);
13341 	if (!parent_ctx)
13342 		return 0;
13343 
13344 	/*
13345 	 * No need to check if parent_ctx != NULL here; since we saw
13346 	 * it non-NULL earlier, the only reason for it to become NULL
13347 	 * is if we exit, and since we're currently in the middle of
13348 	 * a fork we can't be exiting at the same time.
13349 	 */
13350 
13351 	/*
13352 	 * Lock the parent list. No need to lock the child - not PID
13353 	 * hashed yet and not running, so nobody can access it.
13354 	 */
13355 	mutex_lock(&parent_ctx->mutex);
13356 
13357 	/*
13358 	 * We dont have to disable NMIs - we are only looking at
13359 	 * the list, not manipulating it:
13360 	 */
13361 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13362 		ret = inherit_task_group(event, parent, parent_ctx,
13363 					 child, ctxn, clone_flags,
13364 					 &inherited_all);
13365 		if (ret)
13366 			goto out_unlock;
13367 	}
13368 
13369 	/*
13370 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13371 	 * to allocations, but we need to prevent rotation because
13372 	 * rotate_ctx() will change the list from interrupt context.
13373 	 */
13374 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13375 	parent_ctx->rotate_disable = 1;
13376 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13377 
13378 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13379 		ret = inherit_task_group(event, parent, parent_ctx,
13380 					 child, ctxn, clone_flags,
13381 					 &inherited_all);
13382 		if (ret)
13383 			goto out_unlock;
13384 	}
13385 
13386 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13387 	parent_ctx->rotate_disable = 0;
13388 
13389 	child_ctx = child->perf_event_ctxp[ctxn];
13390 
13391 	if (child_ctx && inherited_all) {
13392 		/*
13393 		 * Mark the child context as a clone of the parent
13394 		 * context, or of whatever the parent is a clone of.
13395 		 *
13396 		 * Note that if the parent is a clone, the holding of
13397 		 * parent_ctx->lock avoids it from being uncloned.
13398 		 */
13399 		cloned_ctx = parent_ctx->parent_ctx;
13400 		if (cloned_ctx) {
13401 			child_ctx->parent_ctx = cloned_ctx;
13402 			child_ctx->parent_gen = parent_ctx->parent_gen;
13403 		} else {
13404 			child_ctx->parent_ctx = parent_ctx;
13405 			child_ctx->parent_gen = parent_ctx->generation;
13406 		}
13407 		get_ctx(child_ctx->parent_ctx);
13408 	}
13409 
13410 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13411 out_unlock:
13412 	mutex_unlock(&parent_ctx->mutex);
13413 
13414 	perf_unpin_context(parent_ctx);
13415 	put_ctx(parent_ctx);
13416 
13417 	return ret;
13418 }
13419 
13420 /*
13421  * Initialize the perf_event context in task_struct
13422  */
13423 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13424 {
13425 	int ctxn, ret;
13426 
13427 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13428 	mutex_init(&child->perf_event_mutex);
13429 	INIT_LIST_HEAD(&child->perf_event_list);
13430 
13431 	for_each_task_context_nr(ctxn) {
13432 		ret = perf_event_init_context(child, ctxn, clone_flags);
13433 		if (ret) {
13434 			perf_event_free_task(child);
13435 			return ret;
13436 		}
13437 	}
13438 
13439 	return 0;
13440 }
13441 
13442 static void __init perf_event_init_all_cpus(void)
13443 {
13444 	struct swevent_htable *swhash;
13445 	int cpu;
13446 
13447 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13448 
13449 	for_each_possible_cpu(cpu) {
13450 		swhash = &per_cpu(swevent_htable, cpu);
13451 		mutex_init(&swhash->hlist_mutex);
13452 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13453 
13454 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13455 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13456 
13457 #ifdef CONFIG_CGROUP_PERF
13458 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13459 #endif
13460 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13461 	}
13462 }
13463 
13464 static void perf_swevent_init_cpu(unsigned int cpu)
13465 {
13466 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13467 
13468 	mutex_lock(&swhash->hlist_mutex);
13469 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13470 		struct swevent_hlist *hlist;
13471 
13472 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13473 		WARN_ON(!hlist);
13474 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13475 	}
13476 	mutex_unlock(&swhash->hlist_mutex);
13477 }
13478 
13479 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13480 static void __perf_event_exit_context(void *__info)
13481 {
13482 	struct perf_event_context *ctx = __info;
13483 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13484 	struct perf_event *event;
13485 
13486 	raw_spin_lock(&ctx->lock);
13487 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13488 	list_for_each_entry(event, &ctx->event_list, event_entry)
13489 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13490 	raw_spin_unlock(&ctx->lock);
13491 }
13492 
13493 static void perf_event_exit_cpu_context(int cpu)
13494 {
13495 	struct perf_cpu_context *cpuctx;
13496 	struct perf_event_context *ctx;
13497 	struct pmu *pmu;
13498 
13499 	mutex_lock(&pmus_lock);
13500 	list_for_each_entry(pmu, &pmus, entry) {
13501 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13502 		ctx = &cpuctx->ctx;
13503 
13504 		mutex_lock(&ctx->mutex);
13505 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13506 		cpuctx->online = 0;
13507 		mutex_unlock(&ctx->mutex);
13508 	}
13509 	cpumask_clear_cpu(cpu, perf_online_mask);
13510 	mutex_unlock(&pmus_lock);
13511 }
13512 #else
13513 
13514 static void perf_event_exit_cpu_context(int cpu) { }
13515 
13516 #endif
13517 
13518 int perf_event_init_cpu(unsigned int cpu)
13519 {
13520 	struct perf_cpu_context *cpuctx;
13521 	struct perf_event_context *ctx;
13522 	struct pmu *pmu;
13523 
13524 	perf_swevent_init_cpu(cpu);
13525 
13526 	mutex_lock(&pmus_lock);
13527 	cpumask_set_cpu(cpu, perf_online_mask);
13528 	list_for_each_entry(pmu, &pmus, entry) {
13529 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13530 		ctx = &cpuctx->ctx;
13531 
13532 		mutex_lock(&ctx->mutex);
13533 		cpuctx->online = 1;
13534 		mutex_unlock(&ctx->mutex);
13535 	}
13536 	mutex_unlock(&pmus_lock);
13537 
13538 	return 0;
13539 }
13540 
13541 int perf_event_exit_cpu(unsigned int cpu)
13542 {
13543 	perf_event_exit_cpu_context(cpu);
13544 	return 0;
13545 }
13546 
13547 static int
13548 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13549 {
13550 	int cpu;
13551 
13552 	for_each_online_cpu(cpu)
13553 		perf_event_exit_cpu(cpu);
13554 
13555 	return NOTIFY_OK;
13556 }
13557 
13558 /*
13559  * Run the perf reboot notifier at the very last possible moment so that
13560  * the generic watchdog code runs as long as possible.
13561  */
13562 static struct notifier_block perf_reboot_notifier = {
13563 	.notifier_call = perf_reboot,
13564 	.priority = INT_MIN,
13565 };
13566 
13567 void __init perf_event_init(void)
13568 {
13569 	int ret;
13570 
13571 	idr_init(&pmu_idr);
13572 
13573 	perf_event_init_all_cpus();
13574 	init_srcu_struct(&pmus_srcu);
13575 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13576 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13577 	perf_pmu_register(&perf_task_clock, NULL, -1);
13578 	perf_tp_register();
13579 	perf_event_init_cpu(smp_processor_id());
13580 	register_reboot_notifier(&perf_reboot_notifier);
13581 
13582 	ret = init_hw_breakpoint();
13583 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13584 
13585 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13586 
13587 	/*
13588 	 * Build time assertion that we keep the data_head at the intended
13589 	 * location.  IOW, validation we got the __reserved[] size right.
13590 	 */
13591 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13592 		     != 1024);
13593 }
13594 
13595 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13596 			      char *page)
13597 {
13598 	struct perf_pmu_events_attr *pmu_attr =
13599 		container_of(attr, struct perf_pmu_events_attr, attr);
13600 
13601 	if (pmu_attr->event_str)
13602 		return sprintf(page, "%s\n", pmu_attr->event_str);
13603 
13604 	return 0;
13605 }
13606 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13607 
13608 static int __init perf_event_sysfs_init(void)
13609 {
13610 	struct pmu *pmu;
13611 	int ret;
13612 
13613 	mutex_lock(&pmus_lock);
13614 
13615 	ret = bus_register(&pmu_bus);
13616 	if (ret)
13617 		goto unlock;
13618 
13619 	list_for_each_entry(pmu, &pmus, entry) {
13620 		if (!pmu->name || pmu->type < 0)
13621 			continue;
13622 
13623 		ret = pmu_dev_alloc(pmu);
13624 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13625 	}
13626 	pmu_bus_running = 1;
13627 	ret = 0;
13628 
13629 unlock:
13630 	mutex_unlock(&pmus_lock);
13631 
13632 	return ret;
13633 }
13634 device_initcall(perf_event_sysfs_init);
13635 
13636 #ifdef CONFIG_CGROUP_PERF
13637 static struct cgroup_subsys_state *
13638 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13639 {
13640 	struct perf_cgroup *jc;
13641 
13642 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13643 	if (!jc)
13644 		return ERR_PTR(-ENOMEM);
13645 
13646 	jc->info = alloc_percpu(struct perf_cgroup_info);
13647 	if (!jc->info) {
13648 		kfree(jc);
13649 		return ERR_PTR(-ENOMEM);
13650 	}
13651 
13652 	return &jc->css;
13653 }
13654 
13655 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13656 {
13657 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13658 
13659 	free_percpu(jc->info);
13660 	kfree(jc);
13661 }
13662 
13663 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13664 {
13665 	perf_event_cgroup(css->cgroup);
13666 	return 0;
13667 }
13668 
13669 static int __perf_cgroup_move(void *info)
13670 {
13671 	struct task_struct *task = info;
13672 	rcu_read_lock();
13673 	perf_cgroup_switch(task);
13674 	rcu_read_unlock();
13675 	return 0;
13676 }
13677 
13678 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13679 {
13680 	struct task_struct *task;
13681 	struct cgroup_subsys_state *css;
13682 
13683 	cgroup_taskset_for_each(task, css, tset)
13684 		task_function_call(task, __perf_cgroup_move, task);
13685 }
13686 
13687 struct cgroup_subsys perf_event_cgrp_subsys = {
13688 	.css_alloc	= perf_cgroup_css_alloc,
13689 	.css_free	= perf_cgroup_css_free,
13690 	.css_online	= perf_cgroup_css_online,
13691 	.attach		= perf_cgroup_attach,
13692 	/*
13693 	 * Implicitly enable on dfl hierarchy so that perf events can
13694 	 * always be filtered by cgroup2 path as long as perf_event
13695 	 * controller is not mounted on a legacy hierarchy.
13696 	 */
13697 	.implicit_on_dfl = true,
13698 	.threaded	= true,
13699 };
13700 #endif /* CONFIG_CGROUP_PERF */
13701 
13702 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13703