xref: /openbmc/linux/kernel/events/core.c (revision 33ac9dba)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 struct remote_function_call {
51 	struct task_struct	*p;
52 	int			(*func)(void *info);
53 	void			*info;
54 	int			ret;
55 };
56 
57 static void remote_function(void *data)
58 {
59 	struct remote_function_call *tfc = data;
60 	struct task_struct *p = tfc->p;
61 
62 	if (p) {
63 		tfc->ret = -EAGAIN;
64 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
65 			return;
66 	}
67 
68 	tfc->ret = tfc->func(tfc->info);
69 }
70 
71 /**
72  * task_function_call - call a function on the cpu on which a task runs
73  * @p:		the task to evaluate
74  * @func:	the function to be called
75  * @info:	the function call argument
76  *
77  * Calls the function @func when the task is currently running. This might
78  * be on the current CPU, which just calls the function directly
79  *
80  * returns: @func return value, or
81  *	    -ESRCH  - when the process isn't running
82  *	    -EAGAIN - when the process moved away
83  */
84 static int
85 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
86 {
87 	struct remote_function_call data = {
88 		.p	= p,
89 		.func	= func,
90 		.info	= info,
91 		.ret	= -ESRCH, /* No such (running) process */
92 	};
93 
94 	if (task_curr(p))
95 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
96 
97 	return data.ret;
98 }
99 
100 /**
101  * cpu_function_call - call a function on the cpu
102  * @func:	the function to be called
103  * @info:	the function call argument
104  *
105  * Calls the function @func on the remote cpu.
106  *
107  * returns: @func return value or -ENXIO when the cpu is offline
108  */
109 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= NULL,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -ENXIO, /* No such CPU */
116 	};
117 
118 	smp_call_function_single(cpu, remote_function, &data, 1);
119 
120 	return data.ret;
121 }
122 
123 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
124 		       PERF_FLAG_FD_OUTPUT  |\
125 		       PERF_FLAG_PID_CGROUP |\
126 		       PERF_FLAG_FD_CLOEXEC)
127 
128 /*
129  * branch priv levels that need permission checks
130  */
131 #define PERF_SAMPLE_BRANCH_PERM_PLM \
132 	(PERF_SAMPLE_BRANCH_KERNEL |\
133 	 PERF_SAMPLE_BRANCH_HV)
134 
135 enum event_type_t {
136 	EVENT_FLEXIBLE = 0x1,
137 	EVENT_PINNED = 0x2,
138 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
139 };
140 
141 /*
142  * perf_sched_events : >0 events exist
143  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
144  */
145 struct static_key_deferred perf_sched_events __read_mostly;
146 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
147 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
148 
149 static atomic_t nr_mmap_events __read_mostly;
150 static atomic_t nr_comm_events __read_mostly;
151 static atomic_t nr_task_events __read_mostly;
152 static atomic_t nr_freq_events __read_mostly;
153 
154 static LIST_HEAD(pmus);
155 static DEFINE_MUTEX(pmus_lock);
156 static struct srcu_struct pmus_srcu;
157 
158 /*
159  * perf event paranoia level:
160  *  -1 - not paranoid at all
161  *   0 - disallow raw tracepoint access for unpriv
162  *   1 - disallow cpu events for unpriv
163  *   2 - disallow kernel profiling for unpriv
164  */
165 int sysctl_perf_event_paranoid __read_mostly = 1;
166 
167 /* Minimum for 512 kiB + 1 user control page */
168 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
169 
170 /*
171  * max perf event sample rate
172  */
173 #define DEFAULT_MAX_SAMPLE_RATE		100000
174 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
175 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
176 
177 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
178 
179 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
180 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
181 
182 static int perf_sample_allowed_ns __read_mostly =
183 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
184 
185 void update_perf_cpu_limits(void)
186 {
187 	u64 tmp = perf_sample_period_ns;
188 
189 	tmp *= sysctl_perf_cpu_time_max_percent;
190 	do_div(tmp, 100);
191 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
192 }
193 
194 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
195 
196 int perf_proc_update_handler(struct ctl_table *table, int write,
197 		void __user *buffer, size_t *lenp,
198 		loff_t *ppos)
199 {
200 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
201 
202 	if (ret || !write)
203 		return ret;
204 
205 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
206 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
207 	update_perf_cpu_limits();
208 
209 	return 0;
210 }
211 
212 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
213 
214 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
215 				void __user *buffer, size_t *lenp,
216 				loff_t *ppos)
217 {
218 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
219 
220 	if (ret || !write)
221 		return ret;
222 
223 	update_perf_cpu_limits();
224 
225 	return 0;
226 }
227 
228 /*
229  * perf samples are done in some very critical code paths (NMIs).
230  * If they take too much CPU time, the system can lock up and not
231  * get any real work done.  This will drop the sample rate when
232  * we detect that events are taking too long.
233  */
234 #define NR_ACCUMULATED_SAMPLES 128
235 static DEFINE_PER_CPU(u64, running_sample_length);
236 
237 static void perf_duration_warn(struct irq_work *w)
238 {
239 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
240 	u64 avg_local_sample_len;
241 	u64 local_samples_len;
242 
243 	local_samples_len = __get_cpu_var(running_sample_length);
244 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
245 
246 	printk_ratelimited(KERN_WARNING
247 			"perf interrupt took too long (%lld > %lld), lowering "
248 			"kernel.perf_event_max_sample_rate to %d\n",
249 			avg_local_sample_len, allowed_ns >> 1,
250 			sysctl_perf_event_sample_rate);
251 }
252 
253 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
254 
255 void perf_sample_event_took(u64 sample_len_ns)
256 {
257 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
258 	u64 avg_local_sample_len;
259 	u64 local_samples_len;
260 
261 	if (allowed_ns == 0)
262 		return;
263 
264 	/* decay the counter by 1 average sample */
265 	local_samples_len = __get_cpu_var(running_sample_length);
266 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
267 	local_samples_len += sample_len_ns;
268 	__get_cpu_var(running_sample_length) = local_samples_len;
269 
270 	/*
271 	 * note: this will be biased artifically low until we have
272 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
273 	 * from having to maintain a count.
274 	 */
275 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
276 
277 	if (avg_local_sample_len <= allowed_ns)
278 		return;
279 
280 	if (max_samples_per_tick <= 1)
281 		return;
282 
283 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
284 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
285 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
286 
287 	update_perf_cpu_limits();
288 
289 	if (!irq_work_queue(&perf_duration_work)) {
290 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
291 			     "kernel.perf_event_max_sample_rate to %d\n",
292 			     avg_local_sample_len, allowed_ns >> 1,
293 			     sysctl_perf_event_sample_rate);
294 	}
295 }
296 
297 static atomic64_t perf_event_id;
298 
299 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
300 			      enum event_type_t event_type);
301 
302 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
303 			     enum event_type_t event_type,
304 			     struct task_struct *task);
305 
306 static void update_context_time(struct perf_event_context *ctx);
307 static u64 perf_event_time(struct perf_event *event);
308 
309 void __weak perf_event_print_debug(void)	{ }
310 
311 extern __weak const char *perf_pmu_name(void)
312 {
313 	return "pmu";
314 }
315 
316 static inline u64 perf_clock(void)
317 {
318 	return local_clock();
319 }
320 
321 static inline struct perf_cpu_context *
322 __get_cpu_context(struct perf_event_context *ctx)
323 {
324 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
325 }
326 
327 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
328 			  struct perf_event_context *ctx)
329 {
330 	raw_spin_lock(&cpuctx->ctx.lock);
331 	if (ctx)
332 		raw_spin_lock(&ctx->lock);
333 }
334 
335 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
336 			    struct perf_event_context *ctx)
337 {
338 	if (ctx)
339 		raw_spin_unlock(&ctx->lock);
340 	raw_spin_unlock(&cpuctx->ctx.lock);
341 }
342 
343 #ifdef CONFIG_CGROUP_PERF
344 
345 /*
346  * perf_cgroup_info keeps track of time_enabled for a cgroup.
347  * This is a per-cpu dynamically allocated data structure.
348  */
349 struct perf_cgroup_info {
350 	u64				time;
351 	u64				timestamp;
352 };
353 
354 struct perf_cgroup {
355 	struct cgroup_subsys_state	css;
356 	struct perf_cgroup_info	__percpu *info;
357 };
358 
359 /*
360  * Must ensure cgroup is pinned (css_get) before calling
361  * this function. In other words, we cannot call this function
362  * if there is no cgroup event for the current CPU context.
363  */
364 static inline struct perf_cgroup *
365 perf_cgroup_from_task(struct task_struct *task)
366 {
367 	return container_of(task_css(task, perf_event_cgrp_id),
368 			    struct perf_cgroup, css);
369 }
370 
371 static inline bool
372 perf_cgroup_match(struct perf_event *event)
373 {
374 	struct perf_event_context *ctx = event->ctx;
375 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
376 
377 	/* @event doesn't care about cgroup */
378 	if (!event->cgrp)
379 		return true;
380 
381 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
382 	if (!cpuctx->cgrp)
383 		return false;
384 
385 	/*
386 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
387 	 * also enabled for all its descendant cgroups.  If @cpuctx's
388 	 * cgroup is a descendant of @event's (the test covers identity
389 	 * case), it's a match.
390 	 */
391 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
392 				    event->cgrp->css.cgroup);
393 }
394 
395 static inline void perf_put_cgroup(struct perf_event *event)
396 {
397 	css_put(&event->cgrp->css);
398 }
399 
400 static inline void perf_detach_cgroup(struct perf_event *event)
401 {
402 	perf_put_cgroup(event);
403 	event->cgrp = NULL;
404 }
405 
406 static inline int is_cgroup_event(struct perf_event *event)
407 {
408 	return event->cgrp != NULL;
409 }
410 
411 static inline u64 perf_cgroup_event_time(struct perf_event *event)
412 {
413 	struct perf_cgroup_info *t;
414 
415 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
416 	return t->time;
417 }
418 
419 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
420 {
421 	struct perf_cgroup_info *info;
422 	u64 now;
423 
424 	now = perf_clock();
425 
426 	info = this_cpu_ptr(cgrp->info);
427 
428 	info->time += now - info->timestamp;
429 	info->timestamp = now;
430 }
431 
432 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
433 {
434 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
435 	if (cgrp_out)
436 		__update_cgrp_time(cgrp_out);
437 }
438 
439 static inline void update_cgrp_time_from_event(struct perf_event *event)
440 {
441 	struct perf_cgroup *cgrp;
442 
443 	/*
444 	 * ensure we access cgroup data only when needed and
445 	 * when we know the cgroup is pinned (css_get)
446 	 */
447 	if (!is_cgroup_event(event))
448 		return;
449 
450 	cgrp = perf_cgroup_from_task(current);
451 	/*
452 	 * Do not update time when cgroup is not active
453 	 */
454 	if (cgrp == event->cgrp)
455 		__update_cgrp_time(event->cgrp);
456 }
457 
458 static inline void
459 perf_cgroup_set_timestamp(struct task_struct *task,
460 			  struct perf_event_context *ctx)
461 {
462 	struct perf_cgroup *cgrp;
463 	struct perf_cgroup_info *info;
464 
465 	/*
466 	 * ctx->lock held by caller
467 	 * ensure we do not access cgroup data
468 	 * unless we have the cgroup pinned (css_get)
469 	 */
470 	if (!task || !ctx->nr_cgroups)
471 		return;
472 
473 	cgrp = perf_cgroup_from_task(task);
474 	info = this_cpu_ptr(cgrp->info);
475 	info->timestamp = ctx->timestamp;
476 }
477 
478 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
479 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
480 
481 /*
482  * reschedule events based on the cgroup constraint of task.
483  *
484  * mode SWOUT : schedule out everything
485  * mode SWIN : schedule in based on cgroup for next
486  */
487 void perf_cgroup_switch(struct task_struct *task, int mode)
488 {
489 	struct perf_cpu_context *cpuctx;
490 	struct pmu *pmu;
491 	unsigned long flags;
492 
493 	/*
494 	 * disable interrupts to avoid geting nr_cgroup
495 	 * changes via __perf_event_disable(). Also
496 	 * avoids preemption.
497 	 */
498 	local_irq_save(flags);
499 
500 	/*
501 	 * we reschedule only in the presence of cgroup
502 	 * constrained events.
503 	 */
504 	rcu_read_lock();
505 
506 	list_for_each_entry_rcu(pmu, &pmus, entry) {
507 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
508 		if (cpuctx->unique_pmu != pmu)
509 			continue; /* ensure we process each cpuctx once */
510 
511 		/*
512 		 * perf_cgroup_events says at least one
513 		 * context on this CPU has cgroup events.
514 		 *
515 		 * ctx->nr_cgroups reports the number of cgroup
516 		 * events for a context.
517 		 */
518 		if (cpuctx->ctx.nr_cgroups > 0) {
519 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
520 			perf_pmu_disable(cpuctx->ctx.pmu);
521 
522 			if (mode & PERF_CGROUP_SWOUT) {
523 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
524 				/*
525 				 * must not be done before ctxswout due
526 				 * to event_filter_match() in event_sched_out()
527 				 */
528 				cpuctx->cgrp = NULL;
529 			}
530 
531 			if (mode & PERF_CGROUP_SWIN) {
532 				WARN_ON_ONCE(cpuctx->cgrp);
533 				/*
534 				 * set cgrp before ctxsw in to allow
535 				 * event_filter_match() to not have to pass
536 				 * task around
537 				 */
538 				cpuctx->cgrp = perf_cgroup_from_task(task);
539 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
540 			}
541 			perf_pmu_enable(cpuctx->ctx.pmu);
542 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
543 		}
544 	}
545 
546 	rcu_read_unlock();
547 
548 	local_irq_restore(flags);
549 }
550 
551 static inline void perf_cgroup_sched_out(struct task_struct *task,
552 					 struct task_struct *next)
553 {
554 	struct perf_cgroup *cgrp1;
555 	struct perf_cgroup *cgrp2 = NULL;
556 
557 	/*
558 	 * we come here when we know perf_cgroup_events > 0
559 	 */
560 	cgrp1 = perf_cgroup_from_task(task);
561 
562 	/*
563 	 * next is NULL when called from perf_event_enable_on_exec()
564 	 * that will systematically cause a cgroup_switch()
565 	 */
566 	if (next)
567 		cgrp2 = perf_cgroup_from_task(next);
568 
569 	/*
570 	 * only schedule out current cgroup events if we know
571 	 * that we are switching to a different cgroup. Otherwise,
572 	 * do no touch the cgroup events.
573 	 */
574 	if (cgrp1 != cgrp2)
575 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
576 }
577 
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 					struct task_struct *task)
580 {
581 	struct perf_cgroup *cgrp1;
582 	struct perf_cgroup *cgrp2 = NULL;
583 
584 	/*
585 	 * we come here when we know perf_cgroup_events > 0
586 	 */
587 	cgrp1 = perf_cgroup_from_task(task);
588 
589 	/* prev can never be NULL */
590 	cgrp2 = perf_cgroup_from_task(prev);
591 
592 	/*
593 	 * only need to schedule in cgroup events if we are changing
594 	 * cgroup during ctxsw. Cgroup events were not scheduled
595 	 * out of ctxsw out if that was not the case.
596 	 */
597 	if (cgrp1 != cgrp2)
598 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
599 }
600 
601 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
602 				      struct perf_event_attr *attr,
603 				      struct perf_event *group_leader)
604 {
605 	struct perf_cgroup *cgrp;
606 	struct cgroup_subsys_state *css;
607 	struct fd f = fdget(fd);
608 	int ret = 0;
609 
610 	if (!f.file)
611 		return -EBADF;
612 
613 	css = css_tryget_online_from_dir(f.file->f_dentry,
614 					 &perf_event_cgrp_subsys);
615 	if (IS_ERR(css)) {
616 		ret = PTR_ERR(css);
617 		goto out;
618 	}
619 
620 	cgrp = container_of(css, struct perf_cgroup, css);
621 	event->cgrp = cgrp;
622 
623 	/*
624 	 * all events in a group must monitor
625 	 * the same cgroup because a task belongs
626 	 * to only one perf cgroup at a time
627 	 */
628 	if (group_leader && group_leader->cgrp != cgrp) {
629 		perf_detach_cgroup(event);
630 		ret = -EINVAL;
631 	}
632 out:
633 	fdput(f);
634 	return ret;
635 }
636 
637 static inline void
638 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
639 {
640 	struct perf_cgroup_info *t;
641 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
642 	event->shadow_ctx_time = now - t->timestamp;
643 }
644 
645 static inline void
646 perf_cgroup_defer_enabled(struct perf_event *event)
647 {
648 	/*
649 	 * when the current task's perf cgroup does not match
650 	 * the event's, we need to remember to call the
651 	 * perf_mark_enable() function the first time a task with
652 	 * a matching perf cgroup is scheduled in.
653 	 */
654 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
655 		event->cgrp_defer_enabled = 1;
656 }
657 
658 static inline void
659 perf_cgroup_mark_enabled(struct perf_event *event,
660 			 struct perf_event_context *ctx)
661 {
662 	struct perf_event *sub;
663 	u64 tstamp = perf_event_time(event);
664 
665 	if (!event->cgrp_defer_enabled)
666 		return;
667 
668 	event->cgrp_defer_enabled = 0;
669 
670 	event->tstamp_enabled = tstamp - event->total_time_enabled;
671 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
672 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
673 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
674 			sub->cgrp_defer_enabled = 0;
675 		}
676 	}
677 }
678 #else /* !CONFIG_CGROUP_PERF */
679 
680 static inline bool
681 perf_cgroup_match(struct perf_event *event)
682 {
683 	return true;
684 }
685 
686 static inline void perf_detach_cgroup(struct perf_event *event)
687 {}
688 
689 static inline int is_cgroup_event(struct perf_event *event)
690 {
691 	return 0;
692 }
693 
694 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
695 {
696 	return 0;
697 }
698 
699 static inline void update_cgrp_time_from_event(struct perf_event *event)
700 {
701 }
702 
703 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
704 {
705 }
706 
707 static inline void perf_cgroup_sched_out(struct task_struct *task,
708 					 struct task_struct *next)
709 {
710 }
711 
712 static inline void perf_cgroup_sched_in(struct task_struct *prev,
713 					struct task_struct *task)
714 {
715 }
716 
717 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
718 				      struct perf_event_attr *attr,
719 				      struct perf_event *group_leader)
720 {
721 	return -EINVAL;
722 }
723 
724 static inline void
725 perf_cgroup_set_timestamp(struct task_struct *task,
726 			  struct perf_event_context *ctx)
727 {
728 }
729 
730 void
731 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
732 {
733 }
734 
735 static inline void
736 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
737 {
738 }
739 
740 static inline u64 perf_cgroup_event_time(struct perf_event *event)
741 {
742 	return 0;
743 }
744 
745 static inline void
746 perf_cgroup_defer_enabled(struct perf_event *event)
747 {
748 }
749 
750 static inline void
751 perf_cgroup_mark_enabled(struct perf_event *event,
752 			 struct perf_event_context *ctx)
753 {
754 }
755 #endif
756 
757 /*
758  * set default to be dependent on timer tick just
759  * like original code
760  */
761 #define PERF_CPU_HRTIMER (1000 / HZ)
762 /*
763  * function must be called with interrupts disbled
764  */
765 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
766 {
767 	struct perf_cpu_context *cpuctx;
768 	enum hrtimer_restart ret = HRTIMER_NORESTART;
769 	int rotations = 0;
770 
771 	WARN_ON(!irqs_disabled());
772 
773 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
774 
775 	rotations = perf_rotate_context(cpuctx);
776 
777 	/*
778 	 * arm timer if needed
779 	 */
780 	if (rotations) {
781 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
782 		ret = HRTIMER_RESTART;
783 	}
784 
785 	return ret;
786 }
787 
788 /* CPU is going down */
789 void perf_cpu_hrtimer_cancel(int cpu)
790 {
791 	struct perf_cpu_context *cpuctx;
792 	struct pmu *pmu;
793 	unsigned long flags;
794 
795 	if (WARN_ON(cpu != smp_processor_id()))
796 		return;
797 
798 	local_irq_save(flags);
799 
800 	rcu_read_lock();
801 
802 	list_for_each_entry_rcu(pmu, &pmus, entry) {
803 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
804 
805 		if (pmu->task_ctx_nr == perf_sw_context)
806 			continue;
807 
808 		hrtimer_cancel(&cpuctx->hrtimer);
809 	}
810 
811 	rcu_read_unlock();
812 
813 	local_irq_restore(flags);
814 }
815 
816 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
817 {
818 	struct hrtimer *hr = &cpuctx->hrtimer;
819 	struct pmu *pmu = cpuctx->ctx.pmu;
820 	int timer;
821 
822 	/* no multiplexing needed for SW PMU */
823 	if (pmu->task_ctx_nr == perf_sw_context)
824 		return;
825 
826 	/*
827 	 * check default is sane, if not set then force to
828 	 * default interval (1/tick)
829 	 */
830 	timer = pmu->hrtimer_interval_ms;
831 	if (timer < 1)
832 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
833 
834 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
835 
836 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
837 	hr->function = perf_cpu_hrtimer_handler;
838 }
839 
840 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
841 {
842 	struct hrtimer *hr = &cpuctx->hrtimer;
843 	struct pmu *pmu = cpuctx->ctx.pmu;
844 
845 	/* not for SW PMU */
846 	if (pmu->task_ctx_nr == perf_sw_context)
847 		return;
848 
849 	if (hrtimer_active(hr))
850 		return;
851 
852 	if (!hrtimer_callback_running(hr))
853 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
854 					 0, HRTIMER_MODE_REL_PINNED, 0);
855 }
856 
857 void perf_pmu_disable(struct pmu *pmu)
858 {
859 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
860 	if (!(*count)++)
861 		pmu->pmu_disable(pmu);
862 }
863 
864 void perf_pmu_enable(struct pmu *pmu)
865 {
866 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
867 	if (!--(*count))
868 		pmu->pmu_enable(pmu);
869 }
870 
871 static DEFINE_PER_CPU(struct list_head, rotation_list);
872 
873 /*
874  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
875  * because they're strictly cpu affine and rotate_start is called with IRQs
876  * disabled, while rotate_context is called from IRQ context.
877  */
878 static void perf_pmu_rotate_start(struct pmu *pmu)
879 {
880 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
881 	struct list_head *head = &__get_cpu_var(rotation_list);
882 
883 	WARN_ON(!irqs_disabled());
884 
885 	if (list_empty(&cpuctx->rotation_list))
886 		list_add(&cpuctx->rotation_list, head);
887 }
888 
889 static void get_ctx(struct perf_event_context *ctx)
890 {
891 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
892 }
893 
894 static void put_ctx(struct perf_event_context *ctx)
895 {
896 	if (atomic_dec_and_test(&ctx->refcount)) {
897 		if (ctx->parent_ctx)
898 			put_ctx(ctx->parent_ctx);
899 		if (ctx->task)
900 			put_task_struct(ctx->task);
901 		kfree_rcu(ctx, rcu_head);
902 	}
903 }
904 
905 static void unclone_ctx(struct perf_event_context *ctx)
906 {
907 	if (ctx->parent_ctx) {
908 		put_ctx(ctx->parent_ctx);
909 		ctx->parent_ctx = NULL;
910 	}
911 	ctx->generation++;
912 }
913 
914 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
915 {
916 	/*
917 	 * only top level events have the pid namespace they were created in
918 	 */
919 	if (event->parent)
920 		event = event->parent;
921 
922 	return task_tgid_nr_ns(p, event->ns);
923 }
924 
925 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
926 {
927 	/*
928 	 * only top level events have the pid namespace they were created in
929 	 */
930 	if (event->parent)
931 		event = event->parent;
932 
933 	return task_pid_nr_ns(p, event->ns);
934 }
935 
936 /*
937  * If we inherit events we want to return the parent event id
938  * to userspace.
939  */
940 static u64 primary_event_id(struct perf_event *event)
941 {
942 	u64 id = event->id;
943 
944 	if (event->parent)
945 		id = event->parent->id;
946 
947 	return id;
948 }
949 
950 /*
951  * Get the perf_event_context for a task and lock it.
952  * This has to cope with with the fact that until it is locked,
953  * the context could get moved to another task.
954  */
955 static struct perf_event_context *
956 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
957 {
958 	struct perf_event_context *ctx;
959 
960 retry:
961 	/*
962 	 * One of the few rules of preemptible RCU is that one cannot do
963 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
964 	 * part of the read side critical section was preemptible -- see
965 	 * rcu_read_unlock_special().
966 	 *
967 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
968 	 * side critical section is non-preemptible.
969 	 */
970 	preempt_disable();
971 	rcu_read_lock();
972 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
973 	if (ctx) {
974 		/*
975 		 * If this context is a clone of another, it might
976 		 * get swapped for another underneath us by
977 		 * perf_event_task_sched_out, though the
978 		 * rcu_read_lock() protects us from any context
979 		 * getting freed.  Lock the context and check if it
980 		 * got swapped before we could get the lock, and retry
981 		 * if so.  If we locked the right context, then it
982 		 * can't get swapped on us any more.
983 		 */
984 		raw_spin_lock_irqsave(&ctx->lock, *flags);
985 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
986 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
987 			rcu_read_unlock();
988 			preempt_enable();
989 			goto retry;
990 		}
991 
992 		if (!atomic_inc_not_zero(&ctx->refcount)) {
993 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
994 			ctx = NULL;
995 		}
996 	}
997 	rcu_read_unlock();
998 	preempt_enable();
999 	return ctx;
1000 }
1001 
1002 /*
1003  * Get the context for a task and increment its pin_count so it
1004  * can't get swapped to another task.  This also increments its
1005  * reference count so that the context can't get freed.
1006  */
1007 static struct perf_event_context *
1008 perf_pin_task_context(struct task_struct *task, int ctxn)
1009 {
1010 	struct perf_event_context *ctx;
1011 	unsigned long flags;
1012 
1013 	ctx = perf_lock_task_context(task, ctxn, &flags);
1014 	if (ctx) {
1015 		++ctx->pin_count;
1016 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1017 	}
1018 	return ctx;
1019 }
1020 
1021 static void perf_unpin_context(struct perf_event_context *ctx)
1022 {
1023 	unsigned long flags;
1024 
1025 	raw_spin_lock_irqsave(&ctx->lock, flags);
1026 	--ctx->pin_count;
1027 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1028 }
1029 
1030 /*
1031  * Update the record of the current time in a context.
1032  */
1033 static void update_context_time(struct perf_event_context *ctx)
1034 {
1035 	u64 now = perf_clock();
1036 
1037 	ctx->time += now - ctx->timestamp;
1038 	ctx->timestamp = now;
1039 }
1040 
1041 static u64 perf_event_time(struct perf_event *event)
1042 {
1043 	struct perf_event_context *ctx = event->ctx;
1044 
1045 	if (is_cgroup_event(event))
1046 		return perf_cgroup_event_time(event);
1047 
1048 	return ctx ? ctx->time : 0;
1049 }
1050 
1051 /*
1052  * Update the total_time_enabled and total_time_running fields for a event.
1053  * The caller of this function needs to hold the ctx->lock.
1054  */
1055 static void update_event_times(struct perf_event *event)
1056 {
1057 	struct perf_event_context *ctx = event->ctx;
1058 	u64 run_end;
1059 
1060 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1061 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1062 		return;
1063 	/*
1064 	 * in cgroup mode, time_enabled represents
1065 	 * the time the event was enabled AND active
1066 	 * tasks were in the monitored cgroup. This is
1067 	 * independent of the activity of the context as
1068 	 * there may be a mix of cgroup and non-cgroup events.
1069 	 *
1070 	 * That is why we treat cgroup events differently
1071 	 * here.
1072 	 */
1073 	if (is_cgroup_event(event))
1074 		run_end = perf_cgroup_event_time(event);
1075 	else if (ctx->is_active)
1076 		run_end = ctx->time;
1077 	else
1078 		run_end = event->tstamp_stopped;
1079 
1080 	event->total_time_enabled = run_end - event->tstamp_enabled;
1081 
1082 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1083 		run_end = event->tstamp_stopped;
1084 	else
1085 		run_end = perf_event_time(event);
1086 
1087 	event->total_time_running = run_end - event->tstamp_running;
1088 
1089 }
1090 
1091 /*
1092  * Update total_time_enabled and total_time_running for all events in a group.
1093  */
1094 static void update_group_times(struct perf_event *leader)
1095 {
1096 	struct perf_event *event;
1097 
1098 	update_event_times(leader);
1099 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1100 		update_event_times(event);
1101 }
1102 
1103 static struct list_head *
1104 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1105 {
1106 	if (event->attr.pinned)
1107 		return &ctx->pinned_groups;
1108 	else
1109 		return &ctx->flexible_groups;
1110 }
1111 
1112 /*
1113  * Add a event from the lists for its context.
1114  * Must be called with ctx->mutex and ctx->lock held.
1115  */
1116 static void
1117 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1120 	event->attach_state |= PERF_ATTACH_CONTEXT;
1121 
1122 	/*
1123 	 * If we're a stand alone event or group leader, we go to the context
1124 	 * list, group events are kept attached to the group so that
1125 	 * perf_group_detach can, at all times, locate all siblings.
1126 	 */
1127 	if (event->group_leader == event) {
1128 		struct list_head *list;
1129 
1130 		if (is_software_event(event))
1131 			event->group_flags |= PERF_GROUP_SOFTWARE;
1132 
1133 		list = ctx_group_list(event, ctx);
1134 		list_add_tail(&event->group_entry, list);
1135 	}
1136 
1137 	if (is_cgroup_event(event))
1138 		ctx->nr_cgroups++;
1139 
1140 	if (has_branch_stack(event))
1141 		ctx->nr_branch_stack++;
1142 
1143 	list_add_rcu(&event->event_entry, &ctx->event_list);
1144 	if (!ctx->nr_events)
1145 		perf_pmu_rotate_start(ctx->pmu);
1146 	ctx->nr_events++;
1147 	if (event->attr.inherit_stat)
1148 		ctx->nr_stat++;
1149 
1150 	ctx->generation++;
1151 }
1152 
1153 /*
1154  * Initialize event state based on the perf_event_attr::disabled.
1155  */
1156 static inline void perf_event__state_init(struct perf_event *event)
1157 {
1158 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1159 					      PERF_EVENT_STATE_INACTIVE;
1160 }
1161 
1162 /*
1163  * Called at perf_event creation and when events are attached/detached from a
1164  * group.
1165  */
1166 static void perf_event__read_size(struct perf_event *event)
1167 {
1168 	int entry = sizeof(u64); /* value */
1169 	int size = 0;
1170 	int nr = 1;
1171 
1172 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1173 		size += sizeof(u64);
1174 
1175 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1176 		size += sizeof(u64);
1177 
1178 	if (event->attr.read_format & PERF_FORMAT_ID)
1179 		entry += sizeof(u64);
1180 
1181 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1182 		nr += event->group_leader->nr_siblings;
1183 		size += sizeof(u64);
1184 	}
1185 
1186 	size += entry * nr;
1187 	event->read_size = size;
1188 }
1189 
1190 static void perf_event__header_size(struct perf_event *event)
1191 {
1192 	struct perf_sample_data *data;
1193 	u64 sample_type = event->attr.sample_type;
1194 	u16 size = 0;
1195 
1196 	perf_event__read_size(event);
1197 
1198 	if (sample_type & PERF_SAMPLE_IP)
1199 		size += sizeof(data->ip);
1200 
1201 	if (sample_type & PERF_SAMPLE_ADDR)
1202 		size += sizeof(data->addr);
1203 
1204 	if (sample_type & PERF_SAMPLE_PERIOD)
1205 		size += sizeof(data->period);
1206 
1207 	if (sample_type & PERF_SAMPLE_WEIGHT)
1208 		size += sizeof(data->weight);
1209 
1210 	if (sample_type & PERF_SAMPLE_READ)
1211 		size += event->read_size;
1212 
1213 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1214 		size += sizeof(data->data_src.val);
1215 
1216 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1217 		size += sizeof(data->txn);
1218 
1219 	event->header_size = size;
1220 }
1221 
1222 static void perf_event__id_header_size(struct perf_event *event)
1223 {
1224 	struct perf_sample_data *data;
1225 	u64 sample_type = event->attr.sample_type;
1226 	u16 size = 0;
1227 
1228 	if (sample_type & PERF_SAMPLE_TID)
1229 		size += sizeof(data->tid_entry);
1230 
1231 	if (sample_type & PERF_SAMPLE_TIME)
1232 		size += sizeof(data->time);
1233 
1234 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1235 		size += sizeof(data->id);
1236 
1237 	if (sample_type & PERF_SAMPLE_ID)
1238 		size += sizeof(data->id);
1239 
1240 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1241 		size += sizeof(data->stream_id);
1242 
1243 	if (sample_type & PERF_SAMPLE_CPU)
1244 		size += sizeof(data->cpu_entry);
1245 
1246 	event->id_header_size = size;
1247 }
1248 
1249 static void perf_group_attach(struct perf_event *event)
1250 {
1251 	struct perf_event *group_leader = event->group_leader, *pos;
1252 
1253 	/*
1254 	 * We can have double attach due to group movement in perf_event_open.
1255 	 */
1256 	if (event->attach_state & PERF_ATTACH_GROUP)
1257 		return;
1258 
1259 	event->attach_state |= PERF_ATTACH_GROUP;
1260 
1261 	if (group_leader == event)
1262 		return;
1263 
1264 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1265 			!is_software_event(event))
1266 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1267 
1268 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1269 	group_leader->nr_siblings++;
1270 
1271 	perf_event__header_size(group_leader);
1272 
1273 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1274 		perf_event__header_size(pos);
1275 }
1276 
1277 /*
1278  * Remove a event from the lists for its context.
1279  * Must be called with ctx->mutex and ctx->lock held.
1280  */
1281 static void
1282 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1283 {
1284 	struct perf_cpu_context *cpuctx;
1285 	/*
1286 	 * We can have double detach due to exit/hot-unplug + close.
1287 	 */
1288 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1289 		return;
1290 
1291 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1292 
1293 	if (is_cgroup_event(event)) {
1294 		ctx->nr_cgroups--;
1295 		cpuctx = __get_cpu_context(ctx);
1296 		/*
1297 		 * if there are no more cgroup events
1298 		 * then cler cgrp to avoid stale pointer
1299 		 * in update_cgrp_time_from_cpuctx()
1300 		 */
1301 		if (!ctx->nr_cgroups)
1302 			cpuctx->cgrp = NULL;
1303 	}
1304 
1305 	if (has_branch_stack(event))
1306 		ctx->nr_branch_stack--;
1307 
1308 	ctx->nr_events--;
1309 	if (event->attr.inherit_stat)
1310 		ctx->nr_stat--;
1311 
1312 	list_del_rcu(&event->event_entry);
1313 
1314 	if (event->group_leader == event)
1315 		list_del_init(&event->group_entry);
1316 
1317 	update_group_times(event);
1318 
1319 	/*
1320 	 * If event was in error state, then keep it
1321 	 * that way, otherwise bogus counts will be
1322 	 * returned on read(). The only way to get out
1323 	 * of error state is by explicit re-enabling
1324 	 * of the event
1325 	 */
1326 	if (event->state > PERF_EVENT_STATE_OFF)
1327 		event->state = PERF_EVENT_STATE_OFF;
1328 
1329 	ctx->generation++;
1330 }
1331 
1332 static void perf_group_detach(struct perf_event *event)
1333 {
1334 	struct perf_event *sibling, *tmp;
1335 	struct list_head *list = NULL;
1336 
1337 	/*
1338 	 * We can have double detach due to exit/hot-unplug + close.
1339 	 */
1340 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1341 		return;
1342 
1343 	event->attach_state &= ~PERF_ATTACH_GROUP;
1344 
1345 	/*
1346 	 * If this is a sibling, remove it from its group.
1347 	 */
1348 	if (event->group_leader != event) {
1349 		list_del_init(&event->group_entry);
1350 		event->group_leader->nr_siblings--;
1351 		goto out;
1352 	}
1353 
1354 	if (!list_empty(&event->group_entry))
1355 		list = &event->group_entry;
1356 
1357 	/*
1358 	 * If this was a group event with sibling events then
1359 	 * upgrade the siblings to singleton events by adding them
1360 	 * to whatever list we are on.
1361 	 */
1362 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1363 		if (list)
1364 			list_move_tail(&sibling->group_entry, list);
1365 		sibling->group_leader = sibling;
1366 
1367 		/* Inherit group flags from the previous leader */
1368 		sibling->group_flags = event->group_flags;
1369 	}
1370 
1371 out:
1372 	perf_event__header_size(event->group_leader);
1373 
1374 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1375 		perf_event__header_size(tmp);
1376 }
1377 
1378 static inline int
1379 event_filter_match(struct perf_event *event)
1380 {
1381 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1382 	    && perf_cgroup_match(event);
1383 }
1384 
1385 static void
1386 event_sched_out(struct perf_event *event,
1387 		  struct perf_cpu_context *cpuctx,
1388 		  struct perf_event_context *ctx)
1389 {
1390 	u64 tstamp = perf_event_time(event);
1391 	u64 delta;
1392 	/*
1393 	 * An event which could not be activated because of
1394 	 * filter mismatch still needs to have its timings
1395 	 * maintained, otherwise bogus information is return
1396 	 * via read() for time_enabled, time_running:
1397 	 */
1398 	if (event->state == PERF_EVENT_STATE_INACTIVE
1399 	    && !event_filter_match(event)) {
1400 		delta = tstamp - event->tstamp_stopped;
1401 		event->tstamp_running += delta;
1402 		event->tstamp_stopped = tstamp;
1403 	}
1404 
1405 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1406 		return;
1407 
1408 	perf_pmu_disable(event->pmu);
1409 
1410 	event->state = PERF_EVENT_STATE_INACTIVE;
1411 	if (event->pending_disable) {
1412 		event->pending_disable = 0;
1413 		event->state = PERF_EVENT_STATE_OFF;
1414 	}
1415 	event->tstamp_stopped = tstamp;
1416 	event->pmu->del(event, 0);
1417 	event->oncpu = -1;
1418 
1419 	if (!is_software_event(event))
1420 		cpuctx->active_oncpu--;
1421 	ctx->nr_active--;
1422 	if (event->attr.freq && event->attr.sample_freq)
1423 		ctx->nr_freq--;
1424 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1425 		cpuctx->exclusive = 0;
1426 
1427 	perf_pmu_enable(event->pmu);
1428 }
1429 
1430 static void
1431 group_sched_out(struct perf_event *group_event,
1432 		struct perf_cpu_context *cpuctx,
1433 		struct perf_event_context *ctx)
1434 {
1435 	struct perf_event *event;
1436 	int state = group_event->state;
1437 
1438 	event_sched_out(group_event, cpuctx, ctx);
1439 
1440 	/*
1441 	 * Schedule out siblings (if any):
1442 	 */
1443 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1444 		event_sched_out(event, cpuctx, ctx);
1445 
1446 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1447 		cpuctx->exclusive = 0;
1448 }
1449 
1450 struct remove_event {
1451 	struct perf_event *event;
1452 	bool detach_group;
1453 };
1454 
1455 /*
1456  * Cross CPU call to remove a performance event
1457  *
1458  * We disable the event on the hardware level first. After that we
1459  * remove it from the context list.
1460  */
1461 static int __perf_remove_from_context(void *info)
1462 {
1463 	struct remove_event *re = info;
1464 	struct perf_event *event = re->event;
1465 	struct perf_event_context *ctx = event->ctx;
1466 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1467 
1468 	raw_spin_lock(&ctx->lock);
1469 	event_sched_out(event, cpuctx, ctx);
1470 	if (re->detach_group)
1471 		perf_group_detach(event);
1472 	list_del_event(event, ctx);
1473 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1474 		ctx->is_active = 0;
1475 		cpuctx->task_ctx = NULL;
1476 	}
1477 	raw_spin_unlock(&ctx->lock);
1478 
1479 	return 0;
1480 }
1481 
1482 
1483 /*
1484  * Remove the event from a task's (or a CPU's) list of events.
1485  *
1486  * CPU events are removed with a smp call. For task events we only
1487  * call when the task is on a CPU.
1488  *
1489  * If event->ctx is a cloned context, callers must make sure that
1490  * every task struct that event->ctx->task could possibly point to
1491  * remains valid.  This is OK when called from perf_release since
1492  * that only calls us on the top-level context, which can't be a clone.
1493  * When called from perf_event_exit_task, it's OK because the
1494  * context has been detached from its task.
1495  */
1496 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1497 {
1498 	struct perf_event_context *ctx = event->ctx;
1499 	struct task_struct *task = ctx->task;
1500 	struct remove_event re = {
1501 		.event = event,
1502 		.detach_group = detach_group,
1503 	};
1504 
1505 	lockdep_assert_held(&ctx->mutex);
1506 
1507 	if (!task) {
1508 		/*
1509 		 * Per cpu events are removed via an smp call and
1510 		 * the removal is always successful.
1511 		 */
1512 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1513 		return;
1514 	}
1515 
1516 retry:
1517 	if (!task_function_call(task, __perf_remove_from_context, &re))
1518 		return;
1519 
1520 	raw_spin_lock_irq(&ctx->lock);
1521 	/*
1522 	 * If we failed to find a running task, but find the context active now
1523 	 * that we've acquired the ctx->lock, retry.
1524 	 */
1525 	if (ctx->is_active) {
1526 		raw_spin_unlock_irq(&ctx->lock);
1527 		goto retry;
1528 	}
1529 
1530 	/*
1531 	 * Since the task isn't running, its safe to remove the event, us
1532 	 * holding the ctx->lock ensures the task won't get scheduled in.
1533 	 */
1534 	if (detach_group)
1535 		perf_group_detach(event);
1536 	list_del_event(event, ctx);
1537 	raw_spin_unlock_irq(&ctx->lock);
1538 }
1539 
1540 /*
1541  * Cross CPU call to disable a performance event
1542  */
1543 int __perf_event_disable(void *info)
1544 {
1545 	struct perf_event *event = info;
1546 	struct perf_event_context *ctx = event->ctx;
1547 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1548 
1549 	/*
1550 	 * If this is a per-task event, need to check whether this
1551 	 * event's task is the current task on this cpu.
1552 	 *
1553 	 * Can trigger due to concurrent perf_event_context_sched_out()
1554 	 * flipping contexts around.
1555 	 */
1556 	if (ctx->task && cpuctx->task_ctx != ctx)
1557 		return -EINVAL;
1558 
1559 	raw_spin_lock(&ctx->lock);
1560 
1561 	/*
1562 	 * If the event is on, turn it off.
1563 	 * If it is in error state, leave it in error state.
1564 	 */
1565 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1566 		update_context_time(ctx);
1567 		update_cgrp_time_from_event(event);
1568 		update_group_times(event);
1569 		if (event == event->group_leader)
1570 			group_sched_out(event, cpuctx, ctx);
1571 		else
1572 			event_sched_out(event, cpuctx, ctx);
1573 		event->state = PERF_EVENT_STATE_OFF;
1574 	}
1575 
1576 	raw_spin_unlock(&ctx->lock);
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * Disable a event.
1583  *
1584  * If event->ctx is a cloned context, callers must make sure that
1585  * every task struct that event->ctx->task could possibly point to
1586  * remains valid.  This condition is satisifed when called through
1587  * perf_event_for_each_child or perf_event_for_each because they
1588  * hold the top-level event's child_mutex, so any descendant that
1589  * goes to exit will block in sync_child_event.
1590  * When called from perf_pending_event it's OK because event->ctx
1591  * is the current context on this CPU and preemption is disabled,
1592  * hence we can't get into perf_event_task_sched_out for this context.
1593  */
1594 void perf_event_disable(struct perf_event *event)
1595 {
1596 	struct perf_event_context *ctx = event->ctx;
1597 	struct task_struct *task = ctx->task;
1598 
1599 	if (!task) {
1600 		/*
1601 		 * Disable the event on the cpu that it's on
1602 		 */
1603 		cpu_function_call(event->cpu, __perf_event_disable, event);
1604 		return;
1605 	}
1606 
1607 retry:
1608 	if (!task_function_call(task, __perf_event_disable, event))
1609 		return;
1610 
1611 	raw_spin_lock_irq(&ctx->lock);
1612 	/*
1613 	 * If the event is still active, we need to retry the cross-call.
1614 	 */
1615 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1616 		raw_spin_unlock_irq(&ctx->lock);
1617 		/*
1618 		 * Reload the task pointer, it might have been changed by
1619 		 * a concurrent perf_event_context_sched_out().
1620 		 */
1621 		task = ctx->task;
1622 		goto retry;
1623 	}
1624 
1625 	/*
1626 	 * Since we have the lock this context can't be scheduled
1627 	 * in, so we can change the state safely.
1628 	 */
1629 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1630 		update_group_times(event);
1631 		event->state = PERF_EVENT_STATE_OFF;
1632 	}
1633 	raw_spin_unlock_irq(&ctx->lock);
1634 }
1635 EXPORT_SYMBOL_GPL(perf_event_disable);
1636 
1637 static void perf_set_shadow_time(struct perf_event *event,
1638 				 struct perf_event_context *ctx,
1639 				 u64 tstamp)
1640 {
1641 	/*
1642 	 * use the correct time source for the time snapshot
1643 	 *
1644 	 * We could get by without this by leveraging the
1645 	 * fact that to get to this function, the caller
1646 	 * has most likely already called update_context_time()
1647 	 * and update_cgrp_time_xx() and thus both timestamp
1648 	 * are identical (or very close). Given that tstamp is,
1649 	 * already adjusted for cgroup, we could say that:
1650 	 *    tstamp - ctx->timestamp
1651 	 * is equivalent to
1652 	 *    tstamp - cgrp->timestamp.
1653 	 *
1654 	 * Then, in perf_output_read(), the calculation would
1655 	 * work with no changes because:
1656 	 * - event is guaranteed scheduled in
1657 	 * - no scheduled out in between
1658 	 * - thus the timestamp would be the same
1659 	 *
1660 	 * But this is a bit hairy.
1661 	 *
1662 	 * So instead, we have an explicit cgroup call to remain
1663 	 * within the time time source all along. We believe it
1664 	 * is cleaner and simpler to understand.
1665 	 */
1666 	if (is_cgroup_event(event))
1667 		perf_cgroup_set_shadow_time(event, tstamp);
1668 	else
1669 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1670 }
1671 
1672 #define MAX_INTERRUPTS (~0ULL)
1673 
1674 static void perf_log_throttle(struct perf_event *event, int enable);
1675 
1676 static int
1677 event_sched_in(struct perf_event *event,
1678 		 struct perf_cpu_context *cpuctx,
1679 		 struct perf_event_context *ctx)
1680 {
1681 	u64 tstamp = perf_event_time(event);
1682 	int ret = 0;
1683 
1684 	lockdep_assert_held(&ctx->lock);
1685 
1686 	if (event->state <= PERF_EVENT_STATE_OFF)
1687 		return 0;
1688 
1689 	event->state = PERF_EVENT_STATE_ACTIVE;
1690 	event->oncpu = smp_processor_id();
1691 
1692 	/*
1693 	 * Unthrottle events, since we scheduled we might have missed several
1694 	 * ticks already, also for a heavily scheduling task there is little
1695 	 * guarantee it'll get a tick in a timely manner.
1696 	 */
1697 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1698 		perf_log_throttle(event, 1);
1699 		event->hw.interrupts = 0;
1700 	}
1701 
1702 	/*
1703 	 * The new state must be visible before we turn it on in the hardware:
1704 	 */
1705 	smp_wmb();
1706 
1707 	perf_pmu_disable(event->pmu);
1708 
1709 	if (event->pmu->add(event, PERF_EF_START)) {
1710 		event->state = PERF_EVENT_STATE_INACTIVE;
1711 		event->oncpu = -1;
1712 		ret = -EAGAIN;
1713 		goto out;
1714 	}
1715 
1716 	event->tstamp_running += tstamp - event->tstamp_stopped;
1717 
1718 	perf_set_shadow_time(event, ctx, tstamp);
1719 
1720 	if (!is_software_event(event))
1721 		cpuctx->active_oncpu++;
1722 	ctx->nr_active++;
1723 	if (event->attr.freq && event->attr.sample_freq)
1724 		ctx->nr_freq++;
1725 
1726 	if (event->attr.exclusive)
1727 		cpuctx->exclusive = 1;
1728 
1729 out:
1730 	perf_pmu_enable(event->pmu);
1731 
1732 	return ret;
1733 }
1734 
1735 static int
1736 group_sched_in(struct perf_event *group_event,
1737 	       struct perf_cpu_context *cpuctx,
1738 	       struct perf_event_context *ctx)
1739 {
1740 	struct perf_event *event, *partial_group = NULL;
1741 	struct pmu *pmu = ctx->pmu;
1742 	u64 now = ctx->time;
1743 	bool simulate = false;
1744 
1745 	if (group_event->state == PERF_EVENT_STATE_OFF)
1746 		return 0;
1747 
1748 	pmu->start_txn(pmu);
1749 
1750 	if (event_sched_in(group_event, cpuctx, ctx)) {
1751 		pmu->cancel_txn(pmu);
1752 		perf_cpu_hrtimer_restart(cpuctx);
1753 		return -EAGAIN;
1754 	}
1755 
1756 	/*
1757 	 * Schedule in siblings as one group (if any):
1758 	 */
1759 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1760 		if (event_sched_in(event, cpuctx, ctx)) {
1761 			partial_group = event;
1762 			goto group_error;
1763 		}
1764 	}
1765 
1766 	if (!pmu->commit_txn(pmu))
1767 		return 0;
1768 
1769 group_error:
1770 	/*
1771 	 * Groups can be scheduled in as one unit only, so undo any
1772 	 * partial group before returning:
1773 	 * The events up to the failed event are scheduled out normally,
1774 	 * tstamp_stopped will be updated.
1775 	 *
1776 	 * The failed events and the remaining siblings need to have
1777 	 * their timings updated as if they had gone thru event_sched_in()
1778 	 * and event_sched_out(). This is required to get consistent timings
1779 	 * across the group. This also takes care of the case where the group
1780 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1781 	 * the time the event was actually stopped, such that time delta
1782 	 * calculation in update_event_times() is correct.
1783 	 */
1784 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1785 		if (event == partial_group)
1786 			simulate = true;
1787 
1788 		if (simulate) {
1789 			event->tstamp_running += now - event->tstamp_stopped;
1790 			event->tstamp_stopped = now;
1791 		} else {
1792 			event_sched_out(event, cpuctx, ctx);
1793 		}
1794 	}
1795 	event_sched_out(group_event, cpuctx, ctx);
1796 
1797 	pmu->cancel_txn(pmu);
1798 
1799 	perf_cpu_hrtimer_restart(cpuctx);
1800 
1801 	return -EAGAIN;
1802 }
1803 
1804 /*
1805  * Work out whether we can put this event group on the CPU now.
1806  */
1807 static int group_can_go_on(struct perf_event *event,
1808 			   struct perf_cpu_context *cpuctx,
1809 			   int can_add_hw)
1810 {
1811 	/*
1812 	 * Groups consisting entirely of software events can always go on.
1813 	 */
1814 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1815 		return 1;
1816 	/*
1817 	 * If an exclusive group is already on, no other hardware
1818 	 * events can go on.
1819 	 */
1820 	if (cpuctx->exclusive)
1821 		return 0;
1822 	/*
1823 	 * If this group is exclusive and there are already
1824 	 * events on the CPU, it can't go on.
1825 	 */
1826 	if (event->attr.exclusive && cpuctx->active_oncpu)
1827 		return 0;
1828 	/*
1829 	 * Otherwise, try to add it if all previous groups were able
1830 	 * to go on.
1831 	 */
1832 	return can_add_hw;
1833 }
1834 
1835 static void add_event_to_ctx(struct perf_event *event,
1836 			       struct perf_event_context *ctx)
1837 {
1838 	u64 tstamp = perf_event_time(event);
1839 
1840 	list_add_event(event, ctx);
1841 	perf_group_attach(event);
1842 	event->tstamp_enabled = tstamp;
1843 	event->tstamp_running = tstamp;
1844 	event->tstamp_stopped = tstamp;
1845 }
1846 
1847 static void task_ctx_sched_out(struct perf_event_context *ctx);
1848 static void
1849 ctx_sched_in(struct perf_event_context *ctx,
1850 	     struct perf_cpu_context *cpuctx,
1851 	     enum event_type_t event_type,
1852 	     struct task_struct *task);
1853 
1854 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1855 				struct perf_event_context *ctx,
1856 				struct task_struct *task)
1857 {
1858 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1859 	if (ctx)
1860 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1861 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1862 	if (ctx)
1863 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1864 }
1865 
1866 /*
1867  * Cross CPU call to install and enable a performance event
1868  *
1869  * Must be called with ctx->mutex held
1870  */
1871 static int  __perf_install_in_context(void *info)
1872 {
1873 	struct perf_event *event = info;
1874 	struct perf_event_context *ctx = event->ctx;
1875 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1876 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1877 	struct task_struct *task = current;
1878 
1879 	perf_ctx_lock(cpuctx, task_ctx);
1880 	perf_pmu_disable(cpuctx->ctx.pmu);
1881 
1882 	/*
1883 	 * If there was an active task_ctx schedule it out.
1884 	 */
1885 	if (task_ctx)
1886 		task_ctx_sched_out(task_ctx);
1887 
1888 	/*
1889 	 * If the context we're installing events in is not the
1890 	 * active task_ctx, flip them.
1891 	 */
1892 	if (ctx->task && task_ctx != ctx) {
1893 		if (task_ctx)
1894 			raw_spin_unlock(&task_ctx->lock);
1895 		raw_spin_lock(&ctx->lock);
1896 		task_ctx = ctx;
1897 	}
1898 
1899 	if (task_ctx) {
1900 		cpuctx->task_ctx = task_ctx;
1901 		task = task_ctx->task;
1902 	}
1903 
1904 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1905 
1906 	update_context_time(ctx);
1907 	/*
1908 	 * update cgrp time only if current cgrp
1909 	 * matches event->cgrp. Must be done before
1910 	 * calling add_event_to_ctx()
1911 	 */
1912 	update_cgrp_time_from_event(event);
1913 
1914 	add_event_to_ctx(event, ctx);
1915 
1916 	/*
1917 	 * Schedule everything back in
1918 	 */
1919 	perf_event_sched_in(cpuctx, task_ctx, task);
1920 
1921 	perf_pmu_enable(cpuctx->ctx.pmu);
1922 	perf_ctx_unlock(cpuctx, task_ctx);
1923 
1924 	return 0;
1925 }
1926 
1927 /*
1928  * Attach a performance event to a context
1929  *
1930  * First we add the event to the list with the hardware enable bit
1931  * in event->hw_config cleared.
1932  *
1933  * If the event is attached to a task which is on a CPU we use a smp
1934  * call to enable it in the task context. The task might have been
1935  * scheduled away, but we check this in the smp call again.
1936  */
1937 static void
1938 perf_install_in_context(struct perf_event_context *ctx,
1939 			struct perf_event *event,
1940 			int cpu)
1941 {
1942 	struct task_struct *task = ctx->task;
1943 
1944 	lockdep_assert_held(&ctx->mutex);
1945 
1946 	event->ctx = ctx;
1947 	if (event->cpu != -1)
1948 		event->cpu = cpu;
1949 
1950 	if (!task) {
1951 		/*
1952 		 * Per cpu events are installed via an smp call and
1953 		 * the install is always successful.
1954 		 */
1955 		cpu_function_call(cpu, __perf_install_in_context, event);
1956 		return;
1957 	}
1958 
1959 retry:
1960 	if (!task_function_call(task, __perf_install_in_context, event))
1961 		return;
1962 
1963 	raw_spin_lock_irq(&ctx->lock);
1964 	/*
1965 	 * If we failed to find a running task, but find the context active now
1966 	 * that we've acquired the ctx->lock, retry.
1967 	 */
1968 	if (ctx->is_active) {
1969 		raw_spin_unlock_irq(&ctx->lock);
1970 		goto retry;
1971 	}
1972 
1973 	/*
1974 	 * Since the task isn't running, its safe to add the event, us holding
1975 	 * the ctx->lock ensures the task won't get scheduled in.
1976 	 */
1977 	add_event_to_ctx(event, ctx);
1978 	raw_spin_unlock_irq(&ctx->lock);
1979 }
1980 
1981 /*
1982  * Put a event into inactive state and update time fields.
1983  * Enabling the leader of a group effectively enables all
1984  * the group members that aren't explicitly disabled, so we
1985  * have to update their ->tstamp_enabled also.
1986  * Note: this works for group members as well as group leaders
1987  * since the non-leader members' sibling_lists will be empty.
1988  */
1989 static void __perf_event_mark_enabled(struct perf_event *event)
1990 {
1991 	struct perf_event *sub;
1992 	u64 tstamp = perf_event_time(event);
1993 
1994 	event->state = PERF_EVENT_STATE_INACTIVE;
1995 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1996 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1997 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1998 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1999 	}
2000 }
2001 
2002 /*
2003  * Cross CPU call to enable a performance event
2004  */
2005 static int __perf_event_enable(void *info)
2006 {
2007 	struct perf_event *event = info;
2008 	struct perf_event_context *ctx = event->ctx;
2009 	struct perf_event *leader = event->group_leader;
2010 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2011 	int err;
2012 
2013 	/*
2014 	 * There's a time window between 'ctx->is_active' check
2015 	 * in perf_event_enable function and this place having:
2016 	 *   - IRQs on
2017 	 *   - ctx->lock unlocked
2018 	 *
2019 	 * where the task could be killed and 'ctx' deactivated
2020 	 * by perf_event_exit_task.
2021 	 */
2022 	if (!ctx->is_active)
2023 		return -EINVAL;
2024 
2025 	raw_spin_lock(&ctx->lock);
2026 	update_context_time(ctx);
2027 
2028 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2029 		goto unlock;
2030 
2031 	/*
2032 	 * set current task's cgroup time reference point
2033 	 */
2034 	perf_cgroup_set_timestamp(current, ctx);
2035 
2036 	__perf_event_mark_enabled(event);
2037 
2038 	if (!event_filter_match(event)) {
2039 		if (is_cgroup_event(event))
2040 			perf_cgroup_defer_enabled(event);
2041 		goto unlock;
2042 	}
2043 
2044 	/*
2045 	 * If the event is in a group and isn't the group leader,
2046 	 * then don't put it on unless the group is on.
2047 	 */
2048 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2049 		goto unlock;
2050 
2051 	if (!group_can_go_on(event, cpuctx, 1)) {
2052 		err = -EEXIST;
2053 	} else {
2054 		if (event == leader)
2055 			err = group_sched_in(event, cpuctx, ctx);
2056 		else
2057 			err = event_sched_in(event, cpuctx, ctx);
2058 	}
2059 
2060 	if (err) {
2061 		/*
2062 		 * If this event can't go on and it's part of a
2063 		 * group, then the whole group has to come off.
2064 		 */
2065 		if (leader != event) {
2066 			group_sched_out(leader, cpuctx, ctx);
2067 			perf_cpu_hrtimer_restart(cpuctx);
2068 		}
2069 		if (leader->attr.pinned) {
2070 			update_group_times(leader);
2071 			leader->state = PERF_EVENT_STATE_ERROR;
2072 		}
2073 	}
2074 
2075 unlock:
2076 	raw_spin_unlock(&ctx->lock);
2077 
2078 	return 0;
2079 }
2080 
2081 /*
2082  * Enable a event.
2083  *
2084  * If event->ctx is a cloned context, callers must make sure that
2085  * every task struct that event->ctx->task could possibly point to
2086  * remains valid.  This condition is satisfied when called through
2087  * perf_event_for_each_child or perf_event_for_each as described
2088  * for perf_event_disable.
2089  */
2090 void perf_event_enable(struct perf_event *event)
2091 {
2092 	struct perf_event_context *ctx = event->ctx;
2093 	struct task_struct *task = ctx->task;
2094 
2095 	if (!task) {
2096 		/*
2097 		 * Enable the event on the cpu that it's on
2098 		 */
2099 		cpu_function_call(event->cpu, __perf_event_enable, event);
2100 		return;
2101 	}
2102 
2103 	raw_spin_lock_irq(&ctx->lock);
2104 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2105 		goto out;
2106 
2107 	/*
2108 	 * If the event is in error state, clear that first.
2109 	 * That way, if we see the event in error state below, we
2110 	 * know that it has gone back into error state, as distinct
2111 	 * from the task having been scheduled away before the
2112 	 * cross-call arrived.
2113 	 */
2114 	if (event->state == PERF_EVENT_STATE_ERROR)
2115 		event->state = PERF_EVENT_STATE_OFF;
2116 
2117 retry:
2118 	if (!ctx->is_active) {
2119 		__perf_event_mark_enabled(event);
2120 		goto out;
2121 	}
2122 
2123 	raw_spin_unlock_irq(&ctx->lock);
2124 
2125 	if (!task_function_call(task, __perf_event_enable, event))
2126 		return;
2127 
2128 	raw_spin_lock_irq(&ctx->lock);
2129 
2130 	/*
2131 	 * If the context is active and the event is still off,
2132 	 * we need to retry the cross-call.
2133 	 */
2134 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2135 		/*
2136 		 * task could have been flipped by a concurrent
2137 		 * perf_event_context_sched_out()
2138 		 */
2139 		task = ctx->task;
2140 		goto retry;
2141 	}
2142 
2143 out:
2144 	raw_spin_unlock_irq(&ctx->lock);
2145 }
2146 EXPORT_SYMBOL_GPL(perf_event_enable);
2147 
2148 int perf_event_refresh(struct perf_event *event, int refresh)
2149 {
2150 	/*
2151 	 * not supported on inherited events
2152 	 */
2153 	if (event->attr.inherit || !is_sampling_event(event))
2154 		return -EINVAL;
2155 
2156 	atomic_add(refresh, &event->event_limit);
2157 	perf_event_enable(event);
2158 
2159 	return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(perf_event_refresh);
2162 
2163 static void ctx_sched_out(struct perf_event_context *ctx,
2164 			  struct perf_cpu_context *cpuctx,
2165 			  enum event_type_t event_type)
2166 {
2167 	struct perf_event *event;
2168 	int is_active = ctx->is_active;
2169 
2170 	ctx->is_active &= ~event_type;
2171 	if (likely(!ctx->nr_events))
2172 		return;
2173 
2174 	update_context_time(ctx);
2175 	update_cgrp_time_from_cpuctx(cpuctx);
2176 	if (!ctx->nr_active)
2177 		return;
2178 
2179 	perf_pmu_disable(ctx->pmu);
2180 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2181 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2182 			group_sched_out(event, cpuctx, ctx);
2183 	}
2184 
2185 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2186 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2187 			group_sched_out(event, cpuctx, ctx);
2188 	}
2189 	perf_pmu_enable(ctx->pmu);
2190 }
2191 
2192 /*
2193  * Test whether two contexts are equivalent, i.e. whether they have both been
2194  * cloned from the same version of the same context.
2195  *
2196  * Equivalence is measured using a generation number in the context that is
2197  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2198  * and list_del_event().
2199  */
2200 static int context_equiv(struct perf_event_context *ctx1,
2201 			 struct perf_event_context *ctx2)
2202 {
2203 	/* Pinning disables the swap optimization */
2204 	if (ctx1->pin_count || ctx2->pin_count)
2205 		return 0;
2206 
2207 	/* If ctx1 is the parent of ctx2 */
2208 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2209 		return 1;
2210 
2211 	/* If ctx2 is the parent of ctx1 */
2212 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2213 		return 1;
2214 
2215 	/*
2216 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2217 	 * hierarchy, see perf_event_init_context().
2218 	 */
2219 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2220 			ctx1->parent_gen == ctx2->parent_gen)
2221 		return 1;
2222 
2223 	/* Unmatched */
2224 	return 0;
2225 }
2226 
2227 static void __perf_event_sync_stat(struct perf_event *event,
2228 				     struct perf_event *next_event)
2229 {
2230 	u64 value;
2231 
2232 	if (!event->attr.inherit_stat)
2233 		return;
2234 
2235 	/*
2236 	 * Update the event value, we cannot use perf_event_read()
2237 	 * because we're in the middle of a context switch and have IRQs
2238 	 * disabled, which upsets smp_call_function_single(), however
2239 	 * we know the event must be on the current CPU, therefore we
2240 	 * don't need to use it.
2241 	 */
2242 	switch (event->state) {
2243 	case PERF_EVENT_STATE_ACTIVE:
2244 		event->pmu->read(event);
2245 		/* fall-through */
2246 
2247 	case PERF_EVENT_STATE_INACTIVE:
2248 		update_event_times(event);
2249 		break;
2250 
2251 	default:
2252 		break;
2253 	}
2254 
2255 	/*
2256 	 * In order to keep per-task stats reliable we need to flip the event
2257 	 * values when we flip the contexts.
2258 	 */
2259 	value = local64_read(&next_event->count);
2260 	value = local64_xchg(&event->count, value);
2261 	local64_set(&next_event->count, value);
2262 
2263 	swap(event->total_time_enabled, next_event->total_time_enabled);
2264 	swap(event->total_time_running, next_event->total_time_running);
2265 
2266 	/*
2267 	 * Since we swizzled the values, update the user visible data too.
2268 	 */
2269 	perf_event_update_userpage(event);
2270 	perf_event_update_userpage(next_event);
2271 }
2272 
2273 static void perf_event_sync_stat(struct perf_event_context *ctx,
2274 				   struct perf_event_context *next_ctx)
2275 {
2276 	struct perf_event *event, *next_event;
2277 
2278 	if (!ctx->nr_stat)
2279 		return;
2280 
2281 	update_context_time(ctx);
2282 
2283 	event = list_first_entry(&ctx->event_list,
2284 				   struct perf_event, event_entry);
2285 
2286 	next_event = list_first_entry(&next_ctx->event_list,
2287 					struct perf_event, event_entry);
2288 
2289 	while (&event->event_entry != &ctx->event_list &&
2290 	       &next_event->event_entry != &next_ctx->event_list) {
2291 
2292 		__perf_event_sync_stat(event, next_event);
2293 
2294 		event = list_next_entry(event, event_entry);
2295 		next_event = list_next_entry(next_event, event_entry);
2296 	}
2297 }
2298 
2299 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2300 					 struct task_struct *next)
2301 {
2302 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2303 	struct perf_event_context *next_ctx;
2304 	struct perf_event_context *parent, *next_parent;
2305 	struct perf_cpu_context *cpuctx;
2306 	int do_switch = 1;
2307 
2308 	if (likely(!ctx))
2309 		return;
2310 
2311 	cpuctx = __get_cpu_context(ctx);
2312 	if (!cpuctx->task_ctx)
2313 		return;
2314 
2315 	rcu_read_lock();
2316 	next_ctx = next->perf_event_ctxp[ctxn];
2317 	if (!next_ctx)
2318 		goto unlock;
2319 
2320 	parent = rcu_dereference(ctx->parent_ctx);
2321 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2322 
2323 	/* If neither context have a parent context; they cannot be clones. */
2324 	if (!parent || !next_parent)
2325 		goto unlock;
2326 
2327 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2328 		/*
2329 		 * Looks like the two contexts are clones, so we might be
2330 		 * able to optimize the context switch.  We lock both
2331 		 * contexts and check that they are clones under the
2332 		 * lock (including re-checking that neither has been
2333 		 * uncloned in the meantime).  It doesn't matter which
2334 		 * order we take the locks because no other cpu could
2335 		 * be trying to lock both of these tasks.
2336 		 */
2337 		raw_spin_lock(&ctx->lock);
2338 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2339 		if (context_equiv(ctx, next_ctx)) {
2340 			/*
2341 			 * XXX do we need a memory barrier of sorts
2342 			 * wrt to rcu_dereference() of perf_event_ctxp
2343 			 */
2344 			task->perf_event_ctxp[ctxn] = next_ctx;
2345 			next->perf_event_ctxp[ctxn] = ctx;
2346 			ctx->task = next;
2347 			next_ctx->task = task;
2348 			do_switch = 0;
2349 
2350 			perf_event_sync_stat(ctx, next_ctx);
2351 		}
2352 		raw_spin_unlock(&next_ctx->lock);
2353 		raw_spin_unlock(&ctx->lock);
2354 	}
2355 unlock:
2356 	rcu_read_unlock();
2357 
2358 	if (do_switch) {
2359 		raw_spin_lock(&ctx->lock);
2360 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2361 		cpuctx->task_ctx = NULL;
2362 		raw_spin_unlock(&ctx->lock);
2363 	}
2364 }
2365 
2366 #define for_each_task_context_nr(ctxn)					\
2367 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2368 
2369 /*
2370  * Called from scheduler to remove the events of the current task,
2371  * with interrupts disabled.
2372  *
2373  * We stop each event and update the event value in event->count.
2374  *
2375  * This does not protect us against NMI, but disable()
2376  * sets the disabled bit in the control field of event _before_
2377  * accessing the event control register. If a NMI hits, then it will
2378  * not restart the event.
2379  */
2380 void __perf_event_task_sched_out(struct task_struct *task,
2381 				 struct task_struct *next)
2382 {
2383 	int ctxn;
2384 
2385 	for_each_task_context_nr(ctxn)
2386 		perf_event_context_sched_out(task, ctxn, next);
2387 
2388 	/*
2389 	 * if cgroup events exist on this CPU, then we need
2390 	 * to check if we have to switch out PMU state.
2391 	 * cgroup event are system-wide mode only
2392 	 */
2393 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2394 		perf_cgroup_sched_out(task, next);
2395 }
2396 
2397 static void task_ctx_sched_out(struct perf_event_context *ctx)
2398 {
2399 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2400 
2401 	if (!cpuctx->task_ctx)
2402 		return;
2403 
2404 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2405 		return;
2406 
2407 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2408 	cpuctx->task_ctx = NULL;
2409 }
2410 
2411 /*
2412  * Called with IRQs disabled
2413  */
2414 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2415 			      enum event_type_t event_type)
2416 {
2417 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2418 }
2419 
2420 static void
2421 ctx_pinned_sched_in(struct perf_event_context *ctx,
2422 		    struct perf_cpu_context *cpuctx)
2423 {
2424 	struct perf_event *event;
2425 
2426 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2427 		if (event->state <= PERF_EVENT_STATE_OFF)
2428 			continue;
2429 		if (!event_filter_match(event))
2430 			continue;
2431 
2432 		/* may need to reset tstamp_enabled */
2433 		if (is_cgroup_event(event))
2434 			perf_cgroup_mark_enabled(event, ctx);
2435 
2436 		if (group_can_go_on(event, cpuctx, 1))
2437 			group_sched_in(event, cpuctx, ctx);
2438 
2439 		/*
2440 		 * If this pinned group hasn't been scheduled,
2441 		 * put it in error state.
2442 		 */
2443 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2444 			update_group_times(event);
2445 			event->state = PERF_EVENT_STATE_ERROR;
2446 		}
2447 	}
2448 }
2449 
2450 static void
2451 ctx_flexible_sched_in(struct perf_event_context *ctx,
2452 		      struct perf_cpu_context *cpuctx)
2453 {
2454 	struct perf_event *event;
2455 	int can_add_hw = 1;
2456 
2457 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2458 		/* Ignore events in OFF or ERROR state */
2459 		if (event->state <= PERF_EVENT_STATE_OFF)
2460 			continue;
2461 		/*
2462 		 * Listen to the 'cpu' scheduling filter constraint
2463 		 * of events:
2464 		 */
2465 		if (!event_filter_match(event))
2466 			continue;
2467 
2468 		/* may need to reset tstamp_enabled */
2469 		if (is_cgroup_event(event))
2470 			perf_cgroup_mark_enabled(event, ctx);
2471 
2472 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2473 			if (group_sched_in(event, cpuctx, ctx))
2474 				can_add_hw = 0;
2475 		}
2476 	}
2477 }
2478 
2479 static void
2480 ctx_sched_in(struct perf_event_context *ctx,
2481 	     struct perf_cpu_context *cpuctx,
2482 	     enum event_type_t event_type,
2483 	     struct task_struct *task)
2484 {
2485 	u64 now;
2486 	int is_active = ctx->is_active;
2487 
2488 	ctx->is_active |= event_type;
2489 	if (likely(!ctx->nr_events))
2490 		return;
2491 
2492 	now = perf_clock();
2493 	ctx->timestamp = now;
2494 	perf_cgroup_set_timestamp(task, ctx);
2495 	/*
2496 	 * First go through the list and put on any pinned groups
2497 	 * in order to give them the best chance of going on.
2498 	 */
2499 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2500 		ctx_pinned_sched_in(ctx, cpuctx);
2501 
2502 	/* Then walk through the lower prio flexible groups */
2503 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2504 		ctx_flexible_sched_in(ctx, cpuctx);
2505 }
2506 
2507 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2508 			     enum event_type_t event_type,
2509 			     struct task_struct *task)
2510 {
2511 	struct perf_event_context *ctx = &cpuctx->ctx;
2512 
2513 	ctx_sched_in(ctx, cpuctx, event_type, task);
2514 }
2515 
2516 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2517 					struct task_struct *task)
2518 {
2519 	struct perf_cpu_context *cpuctx;
2520 
2521 	cpuctx = __get_cpu_context(ctx);
2522 	if (cpuctx->task_ctx == ctx)
2523 		return;
2524 
2525 	perf_ctx_lock(cpuctx, ctx);
2526 	perf_pmu_disable(ctx->pmu);
2527 	/*
2528 	 * We want to keep the following priority order:
2529 	 * cpu pinned (that don't need to move), task pinned,
2530 	 * cpu flexible, task flexible.
2531 	 */
2532 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2533 
2534 	if (ctx->nr_events)
2535 		cpuctx->task_ctx = ctx;
2536 
2537 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2538 
2539 	perf_pmu_enable(ctx->pmu);
2540 	perf_ctx_unlock(cpuctx, ctx);
2541 
2542 	/*
2543 	 * Since these rotations are per-cpu, we need to ensure the
2544 	 * cpu-context we got scheduled on is actually rotating.
2545 	 */
2546 	perf_pmu_rotate_start(ctx->pmu);
2547 }
2548 
2549 /*
2550  * When sampling the branck stack in system-wide, it may be necessary
2551  * to flush the stack on context switch. This happens when the branch
2552  * stack does not tag its entries with the pid of the current task.
2553  * Otherwise it becomes impossible to associate a branch entry with a
2554  * task. This ambiguity is more likely to appear when the branch stack
2555  * supports priv level filtering and the user sets it to monitor only
2556  * at the user level (which could be a useful measurement in system-wide
2557  * mode). In that case, the risk is high of having a branch stack with
2558  * branch from multiple tasks. Flushing may mean dropping the existing
2559  * entries or stashing them somewhere in the PMU specific code layer.
2560  *
2561  * This function provides the context switch callback to the lower code
2562  * layer. It is invoked ONLY when there is at least one system-wide context
2563  * with at least one active event using taken branch sampling.
2564  */
2565 static void perf_branch_stack_sched_in(struct task_struct *prev,
2566 				       struct task_struct *task)
2567 {
2568 	struct perf_cpu_context *cpuctx;
2569 	struct pmu *pmu;
2570 	unsigned long flags;
2571 
2572 	/* no need to flush branch stack if not changing task */
2573 	if (prev == task)
2574 		return;
2575 
2576 	local_irq_save(flags);
2577 
2578 	rcu_read_lock();
2579 
2580 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2581 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2582 
2583 		/*
2584 		 * check if the context has at least one
2585 		 * event using PERF_SAMPLE_BRANCH_STACK
2586 		 */
2587 		if (cpuctx->ctx.nr_branch_stack > 0
2588 		    && pmu->flush_branch_stack) {
2589 
2590 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2591 
2592 			perf_pmu_disable(pmu);
2593 
2594 			pmu->flush_branch_stack();
2595 
2596 			perf_pmu_enable(pmu);
2597 
2598 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2599 		}
2600 	}
2601 
2602 	rcu_read_unlock();
2603 
2604 	local_irq_restore(flags);
2605 }
2606 
2607 /*
2608  * Called from scheduler to add the events of the current task
2609  * with interrupts disabled.
2610  *
2611  * We restore the event value and then enable it.
2612  *
2613  * This does not protect us against NMI, but enable()
2614  * sets the enabled bit in the control field of event _before_
2615  * accessing the event control register. If a NMI hits, then it will
2616  * keep the event running.
2617  */
2618 void __perf_event_task_sched_in(struct task_struct *prev,
2619 				struct task_struct *task)
2620 {
2621 	struct perf_event_context *ctx;
2622 	int ctxn;
2623 
2624 	for_each_task_context_nr(ctxn) {
2625 		ctx = task->perf_event_ctxp[ctxn];
2626 		if (likely(!ctx))
2627 			continue;
2628 
2629 		perf_event_context_sched_in(ctx, task);
2630 	}
2631 	/*
2632 	 * if cgroup events exist on this CPU, then we need
2633 	 * to check if we have to switch in PMU state.
2634 	 * cgroup event are system-wide mode only
2635 	 */
2636 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2637 		perf_cgroup_sched_in(prev, task);
2638 
2639 	/* check for system-wide branch_stack events */
2640 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2641 		perf_branch_stack_sched_in(prev, task);
2642 }
2643 
2644 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2645 {
2646 	u64 frequency = event->attr.sample_freq;
2647 	u64 sec = NSEC_PER_SEC;
2648 	u64 divisor, dividend;
2649 
2650 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2651 
2652 	count_fls = fls64(count);
2653 	nsec_fls = fls64(nsec);
2654 	frequency_fls = fls64(frequency);
2655 	sec_fls = 30;
2656 
2657 	/*
2658 	 * We got @count in @nsec, with a target of sample_freq HZ
2659 	 * the target period becomes:
2660 	 *
2661 	 *             @count * 10^9
2662 	 * period = -------------------
2663 	 *          @nsec * sample_freq
2664 	 *
2665 	 */
2666 
2667 	/*
2668 	 * Reduce accuracy by one bit such that @a and @b converge
2669 	 * to a similar magnitude.
2670 	 */
2671 #define REDUCE_FLS(a, b)		\
2672 do {					\
2673 	if (a##_fls > b##_fls) {	\
2674 		a >>= 1;		\
2675 		a##_fls--;		\
2676 	} else {			\
2677 		b >>= 1;		\
2678 		b##_fls--;		\
2679 	}				\
2680 } while (0)
2681 
2682 	/*
2683 	 * Reduce accuracy until either term fits in a u64, then proceed with
2684 	 * the other, so that finally we can do a u64/u64 division.
2685 	 */
2686 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2687 		REDUCE_FLS(nsec, frequency);
2688 		REDUCE_FLS(sec, count);
2689 	}
2690 
2691 	if (count_fls + sec_fls > 64) {
2692 		divisor = nsec * frequency;
2693 
2694 		while (count_fls + sec_fls > 64) {
2695 			REDUCE_FLS(count, sec);
2696 			divisor >>= 1;
2697 		}
2698 
2699 		dividend = count * sec;
2700 	} else {
2701 		dividend = count * sec;
2702 
2703 		while (nsec_fls + frequency_fls > 64) {
2704 			REDUCE_FLS(nsec, frequency);
2705 			dividend >>= 1;
2706 		}
2707 
2708 		divisor = nsec * frequency;
2709 	}
2710 
2711 	if (!divisor)
2712 		return dividend;
2713 
2714 	return div64_u64(dividend, divisor);
2715 }
2716 
2717 static DEFINE_PER_CPU(int, perf_throttled_count);
2718 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2719 
2720 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2721 {
2722 	struct hw_perf_event *hwc = &event->hw;
2723 	s64 period, sample_period;
2724 	s64 delta;
2725 
2726 	period = perf_calculate_period(event, nsec, count);
2727 
2728 	delta = (s64)(period - hwc->sample_period);
2729 	delta = (delta + 7) / 8; /* low pass filter */
2730 
2731 	sample_period = hwc->sample_period + delta;
2732 
2733 	if (!sample_period)
2734 		sample_period = 1;
2735 
2736 	hwc->sample_period = sample_period;
2737 
2738 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2739 		if (disable)
2740 			event->pmu->stop(event, PERF_EF_UPDATE);
2741 
2742 		local64_set(&hwc->period_left, 0);
2743 
2744 		if (disable)
2745 			event->pmu->start(event, PERF_EF_RELOAD);
2746 	}
2747 }
2748 
2749 /*
2750  * combine freq adjustment with unthrottling to avoid two passes over the
2751  * events. At the same time, make sure, having freq events does not change
2752  * the rate of unthrottling as that would introduce bias.
2753  */
2754 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2755 					   int needs_unthr)
2756 {
2757 	struct perf_event *event;
2758 	struct hw_perf_event *hwc;
2759 	u64 now, period = TICK_NSEC;
2760 	s64 delta;
2761 
2762 	/*
2763 	 * only need to iterate over all events iff:
2764 	 * - context have events in frequency mode (needs freq adjust)
2765 	 * - there are events to unthrottle on this cpu
2766 	 */
2767 	if (!(ctx->nr_freq || needs_unthr))
2768 		return;
2769 
2770 	raw_spin_lock(&ctx->lock);
2771 	perf_pmu_disable(ctx->pmu);
2772 
2773 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2774 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2775 			continue;
2776 
2777 		if (!event_filter_match(event))
2778 			continue;
2779 
2780 		perf_pmu_disable(event->pmu);
2781 
2782 		hwc = &event->hw;
2783 
2784 		if (hwc->interrupts == MAX_INTERRUPTS) {
2785 			hwc->interrupts = 0;
2786 			perf_log_throttle(event, 1);
2787 			event->pmu->start(event, 0);
2788 		}
2789 
2790 		if (!event->attr.freq || !event->attr.sample_freq)
2791 			goto next;
2792 
2793 		/*
2794 		 * stop the event and update event->count
2795 		 */
2796 		event->pmu->stop(event, PERF_EF_UPDATE);
2797 
2798 		now = local64_read(&event->count);
2799 		delta = now - hwc->freq_count_stamp;
2800 		hwc->freq_count_stamp = now;
2801 
2802 		/*
2803 		 * restart the event
2804 		 * reload only if value has changed
2805 		 * we have stopped the event so tell that
2806 		 * to perf_adjust_period() to avoid stopping it
2807 		 * twice.
2808 		 */
2809 		if (delta > 0)
2810 			perf_adjust_period(event, period, delta, false);
2811 
2812 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2813 	next:
2814 		perf_pmu_enable(event->pmu);
2815 	}
2816 
2817 	perf_pmu_enable(ctx->pmu);
2818 	raw_spin_unlock(&ctx->lock);
2819 }
2820 
2821 /*
2822  * Round-robin a context's events:
2823  */
2824 static void rotate_ctx(struct perf_event_context *ctx)
2825 {
2826 	/*
2827 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2828 	 * disabled by the inheritance code.
2829 	 */
2830 	if (!ctx->rotate_disable)
2831 		list_rotate_left(&ctx->flexible_groups);
2832 }
2833 
2834 /*
2835  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2836  * because they're strictly cpu affine and rotate_start is called with IRQs
2837  * disabled, while rotate_context is called from IRQ context.
2838  */
2839 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2840 {
2841 	struct perf_event_context *ctx = NULL;
2842 	int rotate = 0, remove = 1;
2843 
2844 	if (cpuctx->ctx.nr_events) {
2845 		remove = 0;
2846 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2847 			rotate = 1;
2848 	}
2849 
2850 	ctx = cpuctx->task_ctx;
2851 	if (ctx && ctx->nr_events) {
2852 		remove = 0;
2853 		if (ctx->nr_events != ctx->nr_active)
2854 			rotate = 1;
2855 	}
2856 
2857 	if (!rotate)
2858 		goto done;
2859 
2860 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2861 	perf_pmu_disable(cpuctx->ctx.pmu);
2862 
2863 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2864 	if (ctx)
2865 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2866 
2867 	rotate_ctx(&cpuctx->ctx);
2868 	if (ctx)
2869 		rotate_ctx(ctx);
2870 
2871 	perf_event_sched_in(cpuctx, ctx, current);
2872 
2873 	perf_pmu_enable(cpuctx->ctx.pmu);
2874 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2875 done:
2876 	if (remove)
2877 		list_del_init(&cpuctx->rotation_list);
2878 
2879 	return rotate;
2880 }
2881 
2882 #ifdef CONFIG_NO_HZ_FULL
2883 bool perf_event_can_stop_tick(void)
2884 {
2885 	if (atomic_read(&nr_freq_events) ||
2886 	    __this_cpu_read(perf_throttled_count))
2887 		return false;
2888 	else
2889 		return true;
2890 }
2891 #endif
2892 
2893 void perf_event_task_tick(void)
2894 {
2895 	struct list_head *head = &__get_cpu_var(rotation_list);
2896 	struct perf_cpu_context *cpuctx, *tmp;
2897 	struct perf_event_context *ctx;
2898 	int throttled;
2899 
2900 	WARN_ON(!irqs_disabled());
2901 
2902 	__this_cpu_inc(perf_throttled_seq);
2903 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2904 
2905 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2906 		ctx = &cpuctx->ctx;
2907 		perf_adjust_freq_unthr_context(ctx, throttled);
2908 
2909 		ctx = cpuctx->task_ctx;
2910 		if (ctx)
2911 			perf_adjust_freq_unthr_context(ctx, throttled);
2912 	}
2913 }
2914 
2915 static int event_enable_on_exec(struct perf_event *event,
2916 				struct perf_event_context *ctx)
2917 {
2918 	if (!event->attr.enable_on_exec)
2919 		return 0;
2920 
2921 	event->attr.enable_on_exec = 0;
2922 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2923 		return 0;
2924 
2925 	__perf_event_mark_enabled(event);
2926 
2927 	return 1;
2928 }
2929 
2930 /*
2931  * Enable all of a task's events that have been marked enable-on-exec.
2932  * This expects task == current.
2933  */
2934 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2935 {
2936 	struct perf_event *event;
2937 	unsigned long flags;
2938 	int enabled = 0;
2939 	int ret;
2940 
2941 	local_irq_save(flags);
2942 	if (!ctx || !ctx->nr_events)
2943 		goto out;
2944 
2945 	/*
2946 	 * We must ctxsw out cgroup events to avoid conflict
2947 	 * when invoking perf_task_event_sched_in() later on
2948 	 * in this function. Otherwise we end up trying to
2949 	 * ctxswin cgroup events which are already scheduled
2950 	 * in.
2951 	 */
2952 	perf_cgroup_sched_out(current, NULL);
2953 
2954 	raw_spin_lock(&ctx->lock);
2955 	task_ctx_sched_out(ctx);
2956 
2957 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2958 		ret = event_enable_on_exec(event, ctx);
2959 		if (ret)
2960 			enabled = 1;
2961 	}
2962 
2963 	/*
2964 	 * Unclone this context if we enabled any event.
2965 	 */
2966 	if (enabled)
2967 		unclone_ctx(ctx);
2968 
2969 	raw_spin_unlock(&ctx->lock);
2970 
2971 	/*
2972 	 * Also calls ctxswin for cgroup events, if any:
2973 	 */
2974 	perf_event_context_sched_in(ctx, ctx->task);
2975 out:
2976 	local_irq_restore(flags);
2977 }
2978 
2979 void perf_event_exec(void)
2980 {
2981 	struct perf_event_context *ctx;
2982 	int ctxn;
2983 
2984 	rcu_read_lock();
2985 	for_each_task_context_nr(ctxn) {
2986 		ctx = current->perf_event_ctxp[ctxn];
2987 		if (!ctx)
2988 			continue;
2989 
2990 		perf_event_enable_on_exec(ctx);
2991 	}
2992 	rcu_read_unlock();
2993 }
2994 
2995 /*
2996  * Cross CPU call to read the hardware event
2997  */
2998 static void __perf_event_read(void *info)
2999 {
3000 	struct perf_event *event = info;
3001 	struct perf_event_context *ctx = event->ctx;
3002 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3003 
3004 	/*
3005 	 * If this is a task context, we need to check whether it is
3006 	 * the current task context of this cpu.  If not it has been
3007 	 * scheduled out before the smp call arrived.  In that case
3008 	 * event->count would have been updated to a recent sample
3009 	 * when the event was scheduled out.
3010 	 */
3011 	if (ctx->task && cpuctx->task_ctx != ctx)
3012 		return;
3013 
3014 	raw_spin_lock(&ctx->lock);
3015 	if (ctx->is_active) {
3016 		update_context_time(ctx);
3017 		update_cgrp_time_from_event(event);
3018 	}
3019 	update_event_times(event);
3020 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3021 		event->pmu->read(event);
3022 	raw_spin_unlock(&ctx->lock);
3023 }
3024 
3025 static inline u64 perf_event_count(struct perf_event *event)
3026 {
3027 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3028 }
3029 
3030 static u64 perf_event_read(struct perf_event *event)
3031 {
3032 	/*
3033 	 * If event is enabled and currently active on a CPU, update the
3034 	 * value in the event structure:
3035 	 */
3036 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3037 		smp_call_function_single(event->oncpu,
3038 					 __perf_event_read, event, 1);
3039 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3040 		struct perf_event_context *ctx = event->ctx;
3041 		unsigned long flags;
3042 
3043 		raw_spin_lock_irqsave(&ctx->lock, flags);
3044 		/*
3045 		 * may read while context is not active
3046 		 * (e.g., thread is blocked), in that case
3047 		 * we cannot update context time
3048 		 */
3049 		if (ctx->is_active) {
3050 			update_context_time(ctx);
3051 			update_cgrp_time_from_event(event);
3052 		}
3053 		update_event_times(event);
3054 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3055 	}
3056 
3057 	return perf_event_count(event);
3058 }
3059 
3060 /*
3061  * Initialize the perf_event context in a task_struct:
3062  */
3063 static void __perf_event_init_context(struct perf_event_context *ctx)
3064 {
3065 	raw_spin_lock_init(&ctx->lock);
3066 	mutex_init(&ctx->mutex);
3067 	INIT_LIST_HEAD(&ctx->pinned_groups);
3068 	INIT_LIST_HEAD(&ctx->flexible_groups);
3069 	INIT_LIST_HEAD(&ctx->event_list);
3070 	atomic_set(&ctx->refcount, 1);
3071 }
3072 
3073 static struct perf_event_context *
3074 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3075 {
3076 	struct perf_event_context *ctx;
3077 
3078 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3079 	if (!ctx)
3080 		return NULL;
3081 
3082 	__perf_event_init_context(ctx);
3083 	if (task) {
3084 		ctx->task = task;
3085 		get_task_struct(task);
3086 	}
3087 	ctx->pmu = pmu;
3088 
3089 	return ctx;
3090 }
3091 
3092 static struct task_struct *
3093 find_lively_task_by_vpid(pid_t vpid)
3094 {
3095 	struct task_struct *task;
3096 	int err;
3097 
3098 	rcu_read_lock();
3099 	if (!vpid)
3100 		task = current;
3101 	else
3102 		task = find_task_by_vpid(vpid);
3103 	if (task)
3104 		get_task_struct(task);
3105 	rcu_read_unlock();
3106 
3107 	if (!task)
3108 		return ERR_PTR(-ESRCH);
3109 
3110 	/* Reuse ptrace permission checks for now. */
3111 	err = -EACCES;
3112 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3113 		goto errout;
3114 
3115 	return task;
3116 errout:
3117 	put_task_struct(task);
3118 	return ERR_PTR(err);
3119 
3120 }
3121 
3122 /*
3123  * Returns a matching context with refcount and pincount.
3124  */
3125 static struct perf_event_context *
3126 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3127 {
3128 	struct perf_event_context *ctx;
3129 	struct perf_cpu_context *cpuctx;
3130 	unsigned long flags;
3131 	int ctxn, err;
3132 
3133 	if (!task) {
3134 		/* Must be root to operate on a CPU event: */
3135 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3136 			return ERR_PTR(-EACCES);
3137 
3138 		/*
3139 		 * We could be clever and allow to attach a event to an
3140 		 * offline CPU and activate it when the CPU comes up, but
3141 		 * that's for later.
3142 		 */
3143 		if (!cpu_online(cpu))
3144 			return ERR_PTR(-ENODEV);
3145 
3146 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3147 		ctx = &cpuctx->ctx;
3148 		get_ctx(ctx);
3149 		++ctx->pin_count;
3150 
3151 		return ctx;
3152 	}
3153 
3154 	err = -EINVAL;
3155 	ctxn = pmu->task_ctx_nr;
3156 	if (ctxn < 0)
3157 		goto errout;
3158 
3159 retry:
3160 	ctx = perf_lock_task_context(task, ctxn, &flags);
3161 	if (ctx) {
3162 		unclone_ctx(ctx);
3163 		++ctx->pin_count;
3164 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3165 	} else {
3166 		ctx = alloc_perf_context(pmu, task);
3167 		err = -ENOMEM;
3168 		if (!ctx)
3169 			goto errout;
3170 
3171 		err = 0;
3172 		mutex_lock(&task->perf_event_mutex);
3173 		/*
3174 		 * If it has already passed perf_event_exit_task().
3175 		 * we must see PF_EXITING, it takes this mutex too.
3176 		 */
3177 		if (task->flags & PF_EXITING)
3178 			err = -ESRCH;
3179 		else if (task->perf_event_ctxp[ctxn])
3180 			err = -EAGAIN;
3181 		else {
3182 			get_ctx(ctx);
3183 			++ctx->pin_count;
3184 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3185 		}
3186 		mutex_unlock(&task->perf_event_mutex);
3187 
3188 		if (unlikely(err)) {
3189 			put_ctx(ctx);
3190 
3191 			if (err == -EAGAIN)
3192 				goto retry;
3193 			goto errout;
3194 		}
3195 	}
3196 
3197 	return ctx;
3198 
3199 errout:
3200 	return ERR_PTR(err);
3201 }
3202 
3203 static void perf_event_free_filter(struct perf_event *event);
3204 
3205 static void free_event_rcu(struct rcu_head *head)
3206 {
3207 	struct perf_event *event;
3208 
3209 	event = container_of(head, struct perf_event, rcu_head);
3210 	if (event->ns)
3211 		put_pid_ns(event->ns);
3212 	perf_event_free_filter(event);
3213 	kfree(event);
3214 }
3215 
3216 static void ring_buffer_put(struct ring_buffer *rb);
3217 static void ring_buffer_attach(struct perf_event *event,
3218 			       struct ring_buffer *rb);
3219 
3220 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3221 {
3222 	if (event->parent)
3223 		return;
3224 
3225 	if (has_branch_stack(event)) {
3226 		if (!(event->attach_state & PERF_ATTACH_TASK))
3227 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3228 	}
3229 	if (is_cgroup_event(event))
3230 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3231 }
3232 
3233 static void unaccount_event(struct perf_event *event)
3234 {
3235 	if (event->parent)
3236 		return;
3237 
3238 	if (event->attach_state & PERF_ATTACH_TASK)
3239 		static_key_slow_dec_deferred(&perf_sched_events);
3240 	if (event->attr.mmap || event->attr.mmap_data)
3241 		atomic_dec(&nr_mmap_events);
3242 	if (event->attr.comm)
3243 		atomic_dec(&nr_comm_events);
3244 	if (event->attr.task)
3245 		atomic_dec(&nr_task_events);
3246 	if (event->attr.freq)
3247 		atomic_dec(&nr_freq_events);
3248 	if (is_cgroup_event(event))
3249 		static_key_slow_dec_deferred(&perf_sched_events);
3250 	if (has_branch_stack(event))
3251 		static_key_slow_dec_deferred(&perf_sched_events);
3252 
3253 	unaccount_event_cpu(event, event->cpu);
3254 }
3255 
3256 static void __free_event(struct perf_event *event)
3257 {
3258 	if (!event->parent) {
3259 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3260 			put_callchain_buffers();
3261 	}
3262 
3263 	if (event->destroy)
3264 		event->destroy(event);
3265 
3266 	if (event->ctx)
3267 		put_ctx(event->ctx);
3268 
3269 	if (event->pmu)
3270 		module_put(event->pmu->module);
3271 
3272 	call_rcu(&event->rcu_head, free_event_rcu);
3273 }
3274 
3275 static void _free_event(struct perf_event *event)
3276 {
3277 	irq_work_sync(&event->pending);
3278 
3279 	unaccount_event(event);
3280 
3281 	if (event->rb) {
3282 		/*
3283 		 * Can happen when we close an event with re-directed output.
3284 		 *
3285 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3286 		 * over us; possibly making our ring_buffer_put() the last.
3287 		 */
3288 		mutex_lock(&event->mmap_mutex);
3289 		ring_buffer_attach(event, NULL);
3290 		mutex_unlock(&event->mmap_mutex);
3291 	}
3292 
3293 	if (is_cgroup_event(event))
3294 		perf_detach_cgroup(event);
3295 
3296 	__free_event(event);
3297 }
3298 
3299 /*
3300  * Used to free events which have a known refcount of 1, such as in error paths
3301  * where the event isn't exposed yet and inherited events.
3302  */
3303 static void free_event(struct perf_event *event)
3304 {
3305 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3306 				"unexpected event refcount: %ld; ptr=%p\n",
3307 				atomic_long_read(&event->refcount), event)) {
3308 		/* leak to avoid use-after-free */
3309 		return;
3310 	}
3311 
3312 	_free_event(event);
3313 }
3314 
3315 /*
3316  * Called when the last reference to the file is gone.
3317  */
3318 static void put_event(struct perf_event *event)
3319 {
3320 	struct perf_event_context *ctx = event->ctx;
3321 	struct task_struct *owner;
3322 
3323 	if (!atomic_long_dec_and_test(&event->refcount))
3324 		return;
3325 
3326 	rcu_read_lock();
3327 	owner = ACCESS_ONCE(event->owner);
3328 	/*
3329 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3330 	 * !owner it means the list deletion is complete and we can indeed
3331 	 * free this event, otherwise we need to serialize on
3332 	 * owner->perf_event_mutex.
3333 	 */
3334 	smp_read_barrier_depends();
3335 	if (owner) {
3336 		/*
3337 		 * Since delayed_put_task_struct() also drops the last
3338 		 * task reference we can safely take a new reference
3339 		 * while holding the rcu_read_lock().
3340 		 */
3341 		get_task_struct(owner);
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	if (owner) {
3346 		mutex_lock(&owner->perf_event_mutex);
3347 		/*
3348 		 * We have to re-check the event->owner field, if it is cleared
3349 		 * we raced with perf_event_exit_task(), acquiring the mutex
3350 		 * ensured they're done, and we can proceed with freeing the
3351 		 * event.
3352 		 */
3353 		if (event->owner)
3354 			list_del_init(&event->owner_entry);
3355 		mutex_unlock(&owner->perf_event_mutex);
3356 		put_task_struct(owner);
3357 	}
3358 
3359 	WARN_ON_ONCE(ctx->parent_ctx);
3360 	/*
3361 	 * There are two ways this annotation is useful:
3362 	 *
3363 	 *  1) there is a lock recursion from perf_event_exit_task
3364 	 *     see the comment there.
3365 	 *
3366 	 *  2) there is a lock-inversion with mmap_sem through
3367 	 *     perf_event_read_group(), which takes faults while
3368 	 *     holding ctx->mutex, however this is called after
3369 	 *     the last filedesc died, so there is no possibility
3370 	 *     to trigger the AB-BA case.
3371 	 */
3372 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3373 	perf_remove_from_context(event, true);
3374 	mutex_unlock(&ctx->mutex);
3375 
3376 	_free_event(event);
3377 }
3378 
3379 int perf_event_release_kernel(struct perf_event *event)
3380 {
3381 	put_event(event);
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3385 
3386 static int perf_release(struct inode *inode, struct file *file)
3387 {
3388 	put_event(file->private_data);
3389 	return 0;
3390 }
3391 
3392 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3393 {
3394 	struct perf_event *child;
3395 	u64 total = 0;
3396 
3397 	*enabled = 0;
3398 	*running = 0;
3399 
3400 	mutex_lock(&event->child_mutex);
3401 	total += perf_event_read(event);
3402 	*enabled += event->total_time_enabled +
3403 			atomic64_read(&event->child_total_time_enabled);
3404 	*running += event->total_time_running +
3405 			atomic64_read(&event->child_total_time_running);
3406 
3407 	list_for_each_entry(child, &event->child_list, child_list) {
3408 		total += perf_event_read(child);
3409 		*enabled += child->total_time_enabled;
3410 		*running += child->total_time_running;
3411 	}
3412 	mutex_unlock(&event->child_mutex);
3413 
3414 	return total;
3415 }
3416 EXPORT_SYMBOL_GPL(perf_event_read_value);
3417 
3418 static int perf_event_read_group(struct perf_event *event,
3419 				   u64 read_format, char __user *buf)
3420 {
3421 	struct perf_event *leader = event->group_leader, *sub;
3422 	int n = 0, size = 0, ret = -EFAULT;
3423 	struct perf_event_context *ctx = leader->ctx;
3424 	u64 values[5];
3425 	u64 count, enabled, running;
3426 
3427 	mutex_lock(&ctx->mutex);
3428 	count = perf_event_read_value(leader, &enabled, &running);
3429 
3430 	values[n++] = 1 + leader->nr_siblings;
3431 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3432 		values[n++] = enabled;
3433 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3434 		values[n++] = running;
3435 	values[n++] = count;
3436 	if (read_format & PERF_FORMAT_ID)
3437 		values[n++] = primary_event_id(leader);
3438 
3439 	size = n * sizeof(u64);
3440 
3441 	if (copy_to_user(buf, values, size))
3442 		goto unlock;
3443 
3444 	ret = size;
3445 
3446 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3447 		n = 0;
3448 
3449 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3450 		if (read_format & PERF_FORMAT_ID)
3451 			values[n++] = primary_event_id(sub);
3452 
3453 		size = n * sizeof(u64);
3454 
3455 		if (copy_to_user(buf + ret, values, size)) {
3456 			ret = -EFAULT;
3457 			goto unlock;
3458 		}
3459 
3460 		ret += size;
3461 	}
3462 unlock:
3463 	mutex_unlock(&ctx->mutex);
3464 
3465 	return ret;
3466 }
3467 
3468 static int perf_event_read_one(struct perf_event *event,
3469 				 u64 read_format, char __user *buf)
3470 {
3471 	u64 enabled, running;
3472 	u64 values[4];
3473 	int n = 0;
3474 
3475 	values[n++] = perf_event_read_value(event, &enabled, &running);
3476 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3477 		values[n++] = enabled;
3478 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3479 		values[n++] = running;
3480 	if (read_format & PERF_FORMAT_ID)
3481 		values[n++] = primary_event_id(event);
3482 
3483 	if (copy_to_user(buf, values, n * sizeof(u64)))
3484 		return -EFAULT;
3485 
3486 	return n * sizeof(u64);
3487 }
3488 
3489 /*
3490  * Read the performance event - simple non blocking version for now
3491  */
3492 static ssize_t
3493 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3494 {
3495 	u64 read_format = event->attr.read_format;
3496 	int ret;
3497 
3498 	/*
3499 	 * Return end-of-file for a read on a event that is in
3500 	 * error state (i.e. because it was pinned but it couldn't be
3501 	 * scheduled on to the CPU at some point).
3502 	 */
3503 	if (event->state == PERF_EVENT_STATE_ERROR)
3504 		return 0;
3505 
3506 	if (count < event->read_size)
3507 		return -ENOSPC;
3508 
3509 	WARN_ON_ONCE(event->ctx->parent_ctx);
3510 	if (read_format & PERF_FORMAT_GROUP)
3511 		ret = perf_event_read_group(event, read_format, buf);
3512 	else
3513 		ret = perf_event_read_one(event, read_format, buf);
3514 
3515 	return ret;
3516 }
3517 
3518 static ssize_t
3519 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3520 {
3521 	struct perf_event *event = file->private_data;
3522 
3523 	return perf_read_hw(event, buf, count);
3524 }
3525 
3526 static unsigned int perf_poll(struct file *file, poll_table *wait)
3527 {
3528 	struct perf_event *event = file->private_data;
3529 	struct ring_buffer *rb;
3530 	unsigned int events = POLL_HUP;
3531 
3532 	/*
3533 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3534 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3535 	 */
3536 	mutex_lock(&event->mmap_mutex);
3537 	rb = event->rb;
3538 	if (rb)
3539 		events = atomic_xchg(&rb->poll, 0);
3540 	mutex_unlock(&event->mmap_mutex);
3541 
3542 	poll_wait(file, &event->waitq, wait);
3543 
3544 	return events;
3545 }
3546 
3547 static void perf_event_reset(struct perf_event *event)
3548 {
3549 	(void)perf_event_read(event);
3550 	local64_set(&event->count, 0);
3551 	perf_event_update_userpage(event);
3552 }
3553 
3554 /*
3555  * Holding the top-level event's child_mutex means that any
3556  * descendant process that has inherited this event will block
3557  * in sync_child_event if it goes to exit, thus satisfying the
3558  * task existence requirements of perf_event_enable/disable.
3559  */
3560 static void perf_event_for_each_child(struct perf_event *event,
3561 					void (*func)(struct perf_event *))
3562 {
3563 	struct perf_event *child;
3564 
3565 	WARN_ON_ONCE(event->ctx->parent_ctx);
3566 	mutex_lock(&event->child_mutex);
3567 	func(event);
3568 	list_for_each_entry(child, &event->child_list, child_list)
3569 		func(child);
3570 	mutex_unlock(&event->child_mutex);
3571 }
3572 
3573 static void perf_event_for_each(struct perf_event *event,
3574 				  void (*func)(struct perf_event *))
3575 {
3576 	struct perf_event_context *ctx = event->ctx;
3577 	struct perf_event *sibling;
3578 
3579 	WARN_ON_ONCE(ctx->parent_ctx);
3580 	mutex_lock(&ctx->mutex);
3581 	event = event->group_leader;
3582 
3583 	perf_event_for_each_child(event, func);
3584 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3585 		perf_event_for_each_child(sibling, func);
3586 	mutex_unlock(&ctx->mutex);
3587 }
3588 
3589 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3590 {
3591 	struct perf_event_context *ctx = event->ctx;
3592 	int ret = 0, active;
3593 	u64 value;
3594 
3595 	if (!is_sampling_event(event))
3596 		return -EINVAL;
3597 
3598 	if (copy_from_user(&value, arg, sizeof(value)))
3599 		return -EFAULT;
3600 
3601 	if (!value)
3602 		return -EINVAL;
3603 
3604 	raw_spin_lock_irq(&ctx->lock);
3605 	if (event->attr.freq) {
3606 		if (value > sysctl_perf_event_sample_rate) {
3607 			ret = -EINVAL;
3608 			goto unlock;
3609 		}
3610 
3611 		event->attr.sample_freq = value;
3612 	} else {
3613 		event->attr.sample_period = value;
3614 		event->hw.sample_period = value;
3615 	}
3616 
3617 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3618 	if (active) {
3619 		perf_pmu_disable(ctx->pmu);
3620 		event->pmu->stop(event, PERF_EF_UPDATE);
3621 	}
3622 
3623 	local64_set(&event->hw.period_left, 0);
3624 
3625 	if (active) {
3626 		event->pmu->start(event, PERF_EF_RELOAD);
3627 		perf_pmu_enable(ctx->pmu);
3628 	}
3629 
3630 unlock:
3631 	raw_spin_unlock_irq(&ctx->lock);
3632 
3633 	return ret;
3634 }
3635 
3636 static const struct file_operations perf_fops;
3637 
3638 static inline int perf_fget_light(int fd, struct fd *p)
3639 {
3640 	struct fd f = fdget(fd);
3641 	if (!f.file)
3642 		return -EBADF;
3643 
3644 	if (f.file->f_op != &perf_fops) {
3645 		fdput(f);
3646 		return -EBADF;
3647 	}
3648 	*p = f;
3649 	return 0;
3650 }
3651 
3652 static int perf_event_set_output(struct perf_event *event,
3653 				 struct perf_event *output_event);
3654 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3655 
3656 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3657 {
3658 	struct perf_event *event = file->private_data;
3659 	void (*func)(struct perf_event *);
3660 	u32 flags = arg;
3661 
3662 	switch (cmd) {
3663 	case PERF_EVENT_IOC_ENABLE:
3664 		func = perf_event_enable;
3665 		break;
3666 	case PERF_EVENT_IOC_DISABLE:
3667 		func = perf_event_disable;
3668 		break;
3669 	case PERF_EVENT_IOC_RESET:
3670 		func = perf_event_reset;
3671 		break;
3672 
3673 	case PERF_EVENT_IOC_REFRESH:
3674 		return perf_event_refresh(event, arg);
3675 
3676 	case PERF_EVENT_IOC_PERIOD:
3677 		return perf_event_period(event, (u64 __user *)arg);
3678 
3679 	case PERF_EVENT_IOC_ID:
3680 	{
3681 		u64 id = primary_event_id(event);
3682 
3683 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3684 			return -EFAULT;
3685 		return 0;
3686 	}
3687 
3688 	case PERF_EVENT_IOC_SET_OUTPUT:
3689 	{
3690 		int ret;
3691 		if (arg != -1) {
3692 			struct perf_event *output_event;
3693 			struct fd output;
3694 			ret = perf_fget_light(arg, &output);
3695 			if (ret)
3696 				return ret;
3697 			output_event = output.file->private_data;
3698 			ret = perf_event_set_output(event, output_event);
3699 			fdput(output);
3700 		} else {
3701 			ret = perf_event_set_output(event, NULL);
3702 		}
3703 		return ret;
3704 	}
3705 
3706 	case PERF_EVENT_IOC_SET_FILTER:
3707 		return perf_event_set_filter(event, (void __user *)arg);
3708 
3709 	default:
3710 		return -ENOTTY;
3711 	}
3712 
3713 	if (flags & PERF_IOC_FLAG_GROUP)
3714 		perf_event_for_each(event, func);
3715 	else
3716 		perf_event_for_each_child(event, func);
3717 
3718 	return 0;
3719 }
3720 
3721 #ifdef CONFIG_COMPAT
3722 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3723 				unsigned long arg)
3724 {
3725 	switch (_IOC_NR(cmd)) {
3726 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3727 	case _IOC_NR(PERF_EVENT_IOC_ID):
3728 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3729 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3730 			cmd &= ~IOCSIZE_MASK;
3731 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3732 		}
3733 		break;
3734 	}
3735 	return perf_ioctl(file, cmd, arg);
3736 }
3737 #else
3738 # define perf_compat_ioctl NULL
3739 #endif
3740 
3741 int perf_event_task_enable(void)
3742 {
3743 	struct perf_event *event;
3744 
3745 	mutex_lock(&current->perf_event_mutex);
3746 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3747 		perf_event_for_each_child(event, perf_event_enable);
3748 	mutex_unlock(&current->perf_event_mutex);
3749 
3750 	return 0;
3751 }
3752 
3753 int perf_event_task_disable(void)
3754 {
3755 	struct perf_event *event;
3756 
3757 	mutex_lock(&current->perf_event_mutex);
3758 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3759 		perf_event_for_each_child(event, perf_event_disable);
3760 	mutex_unlock(&current->perf_event_mutex);
3761 
3762 	return 0;
3763 }
3764 
3765 static int perf_event_index(struct perf_event *event)
3766 {
3767 	if (event->hw.state & PERF_HES_STOPPED)
3768 		return 0;
3769 
3770 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3771 		return 0;
3772 
3773 	return event->pmu->event_idx(event);
3774 }
3775 
3776 static void calc_timer_values(struct perf_event *event,
3777 				u64 *now,
3778 				u64 *enabled,
3779 				u64 *running)
3780 {
3781 	u64 ctx_time;
3782 
3783 	*now = perf_clock();
3784 	ctx_time = event->shadow_ctx_time + *now;
3785 	*enabled = ctx_time - event->tstamp_enabled;
3786 	*running = ctx_time - event->tstamp_running;
3787 }
3788 
3789 static void perf_event_init_userpage(struct perf_event *event)
3790 {
3791 	struct perf_event_mmap_page *userpg;
3792 	struct ring_buffer *rb;
3793 
3794 	rcu_read_lock();
3795 	rb = rcu_dereference(event->rb);
3796 	if (!rb)
3797 		goto unlock;
3798 
3799 	userpg = rb->user_page;
3800 
3801 	/* Allow new userspace to detect that bit 0 is deprecated */
3802 	userpg->cap_bit0_is_deprecated = 1;
3803 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3804 
3805 unlock:
3806 	rcu_read_unlock();
3807 }
3808 
3809 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3810 {
3811 }
3812 
3813 /*
3814  * Callers need to ensure there can be no nesting of this function, otherwise
3815  * the seqlock logic goes bad. We can not serialize this because the arch
3816  * code calls this from NMI context.
3817  */
3818 void perf_event_update_userpage(struct perf_event *event)
3819 {
3820 	struct perf_event_mmap_page *userpg;
3821 	struct ring_buffer *rb;
3822 	u64 enabled, running, now;
3823 
3824 	rcu_read_lock();
3825 	rb = rcu_dereference(event->rb);
3826 	if (!rb)
3827 		goto unlock;
3828 
3829 	/*
3830 	 * compute total_time_enabled, total_time_running
3831 	 * based on snapshot values taken when the event
3832 	 * was last scheduled in.
3833 	 *
3834 	 * we cannot simply called update_context_time()
3835 	 * because of locking issue as we can be called in
3836 	 * NMI context
3837 	 */
3838 	calc_timer_values(event, &now, &enabled, &running);
3839 
3840 	userpg = rb->user_page;
3841 	/*
3842 	 * Disable preemption so as to not let the corresponding user-space
3843 	 * spin too long if we get preempted.
3844 	 */
3845 	preempt_disable();
3846 	++userpg->lock;
3847 	barrier();
3848 	userpg->index = perf_event_index(event);
3849 	userpg->offset = perf_event_count(event);
3850 	if (userpg->index)
3851 		userpg->offset -= local64_read(&event->hw.prev_count);
3852 
3853 	userpg->time_enabled = enabled +
3854 			atomic64_read(&event->child_total_time_enabled);
3855 
3856 	userpg->time_running = running +
3857 			atomic64_read(&event->child_total_time_running);
3858 
3859 	arch_perf_update_userpage(userpg, now);
3860 
3861 	barrier();
3862 	++userpg->lock;
3863 	preempt_enable();
3864 unlock:
3865 	rcu_read_unlock();
3866 }
3867 
3868 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3869 {
3870 	struct perf_event *event = vma->vm_file->private_data;
3871 	struct ring_buffer *rb;
3872 	int ret = VM_FAULT_SIGBUS;
3873 
3874 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3875 		if (vmf->pgoff == 0)
3876 			ret = 0;
3877 		return ret;
3878 	}
3879 
3880 	rcu_read_lock();
3881 	rb = rcu_dereference(event->rb);
3882 	if (!rb)
3883 		goto unlock;
3884 
3885 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3886 		goto unlock;
3887 
3888 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3889 	if (!vmf->page)
3890 		goto unlock;
3891 
3892 	get_page(vmf->page);
3893 	vmf->page->mapping = vma->vm_file->f_mapping;
3894 	vmf->page->index   = vmf->pgoff;
3895 
3896 	ret = 0;
3897 unlock:
3898 	rcu_read_unlock();
3899 
3900 	return ret;
3901 }
3902 
3903 static void ring_buffer_attach(struct perf_event *event,
3904 			       struct ring_buffer *rb)
3905 {
3906 	struct ring_buffer *old_rb = NULL;
3907 	unsigned long flags;
3908 
3909 	if (event->rb) {
3910 		/*
3911 		 * Should be impossible, we set this when removing
3912 		 * event->rb_entry and wait/clear when adding event->rb_entry.
3913 		 */
3914 		WARN_ON_ONCE(event->rcu_pending);
3915 
3916 		old_rb = event->rb;
3917 		event->rcu_batches = get_state_synchronize_rcu();
3918 		event->rcu_pending = 1;
3919 
3920 		spin_lock_irqsave(&old_rb->event_lock, flags);
3921 		list_del_rcu(&event->rb_entry);
3922 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
3923 	}
3924 
3925 	if (event->rcu_pending && rb) {
3926 		cond_synchronize_rcu(event->rcu_batches);
3927 		event->rcu_pending = 0;
3928 	}
3929 
3930 	if (rb) {
3931 		spin_lock_irqsave(&rb->event_lock, flags);
3932 		list_add_rcu(&event->rb_entry, &rb->event_list);
3933 		spin_unlock_irqrestore(&rb->event_lock, flags);
3934 	}
3935 
3936 	rcu_assign_pointer(event->rb, rb);
3937 
3938 	if (old_rb) {
3939 		ring_buffer_put(old_rb);
3940 		/*
3941 		 * Since we detached before setting the new rb, so that we
3942 		 * could attach the new rb, we could have missed a wakeup.
3943 		 * Provide it now.
3944 		 */
3945 		wake_up_all(&event->waitq);
3946 	}
3947 }
3948 
3949 static void ring_buffer_wakeup(struct perf_event *event)
3950 {
3951 	struct ring_buffer *rb;
3952 
3953 	rcu_read_lock();
3954 	rb = rcu_dereference(event->rb);
3955 	if (rb) {
3956 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3957 			wake_up_all(&event->waitq);
3958 	}
3959 	rcu_read_unlock();
3960 }
3961 
3962 static void rb_free_rcu(struct rcu_head *rcu_head)
3963 {
3964 	struct ring_buffer *rb;
3965 
3966 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3967 	rb_free(rb);
3968 }
3969 
3970 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3971 {
3972 	struct ring_buffer *rb;
3973 
3974 	rcu_read_lock();
3975 	rb = rcu_dereference(event->rb);
3976 	if (rb) {
3977 		if (!atomic_inc_not_zero(&rb->refcount))
3978 			rb = NULL;
3979 	}
3980 	rcu_read_unlock();
3981 
3982 	return rb;
3983 }
3984 
3985 static void ring_buffer_put(struct ring_buffer *rb)
3986 {
3987 	if (!atomic_dec_and_test(&rb->refcount))
3988 		return;
3989 
3990 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3991 
3992 	call_rcu(&rb->rcu_head, rb_free_rcu);
3993 }
3994 
3995 static void perf_mmap_open(struct vm_area_struct *vma)
3996 {
3997 	struct perf_event *event = vma->vm_file->private_data;
3998 
3999 	atomic_inc(&event->mmap_count);
4000 	atomic_inc(&event->rb->mmap_count);
4001 }
4002 
4003 /*
4004  * A buffer can be mmap()ed multiple times; either directly through the same
4005  * event, or through other events by use of perf_event_set_output().
4006  *
4007  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4008  * the buffer here, where we still have a VM context. This means we need
4009  * to detach all events redirecting to us.
4010  */
4011 static void perf_mmap_close(struct vm_area_struct *vma)
4012 {
4013 	struct perf_event *event = vma->vm_file->private_data;
4014 
4015 	struct ring_buffer *rb = ring_buffer_get(event);
4016 	struct user_struct *mmap_user = rb->mmap_user;
4017 	int mmap_locked = rb->mmap_locked;
4018 	unsigned long size = perf_data_size(rb);
4019 
4020 	atomic_dec(&rb->mmap_count);
4021 
4022 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4023 		goto out_put;
4024 
4025 	ring_buffer_attach(event, NULL);
4026 	mutex_unlock(&event->mmap_mutex);
4027 
4028 	/* If there's still other mmap()s of this buffer, we're done. */
4029 	if (atomic_read(&rb->mmap_count))
4030 		goto out_put;
4031 
4032 	/*
4033 	 * No other mmap()s, detach from all other events that might redirect
4034 	 * into the now unreachable buffer. Somewhat complicated by the
4035 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4036 	 */
4037 again:
4038 	rcu_read_lock();
4039 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4040 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4041 			/*
4042 			 * This event is en-route to free_event() which will
4043 			 * detach it and remove it from the list.
4044 			 */
4045 			continue;
4046 		}
4047 		rcu_read_unlock();
4048 
4049 		mutex_lock(&event->mmap_mutex);
4050 		/*
4051 		 * Check we didn't race with perf_event_set_output() which can
4052 		 * swizzle the rb from under us while we were waiting to
4053 		 * acquire mmap_mutex.
4054 		 *
4055 		 * If we find a different rb; ignore this event, a next
4056 		 * iteration will no longer find it on the list. We have to
4057 		 * still restart the iteration to make sure we're not now
4058 		 * iterating the wrong list.
4059 		 */
4060 		if (event->rb == rb)
4061 			ring_buffer_attach(event, NULL);
4062 
4063 		mutex_unlock(&event->mmap_mutex);
4064 		put_event(event);
4065 
4066 		/*
4067 		 * Restart the iteration; either we're on the wrong list or
4068 		 * destroyed its integrity by doing a deletion.
4069 		 */
4070 		goto again;
4071 	}
4072 	rcu_read_unlock();
4073 
4074 	/*
4075 	 * It could be there's still a few 0-ref events on the list; they'll
4076 	 * get cleaned up by free_event() -- they'll also still have their
4077 	 * ref on the rb and will free it whenever they are done with it.
4078 	 *
4079 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4080 	 * undo the VM accounting.
4081 	 */
4082 
4083 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4084 	vma->vm_mm->pinned_vm -= mmap_locked;
4085 	free_uid(mmap_user);
4086 
4087 out_put:
4088 	ring_buffer_put(rb); /* could be last */
4089 }
4090 
4091 static const struct vm_operations_struct perf_mmap_vmops = {
4092 	.open		= perf_mmap_open,
4093 	.close		= perf_mmap_close,
4094 	.fault		= perf_mmap_fault,
4095 	.page_mkwrite	= perf_mmap_fault,
4096 };
4097 
4098 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4099 {
4100 	struct perf_event *event = file->private_data;
4101 	unsigned long user_locked, user_lock_limit;
4102 	struct user_struct *user = current_user();
4103 	unsigned long locked, lock_limit;
4104 	struct ring_buffer *rb;
4105 	unsigned long vma_size;
4106 	unsigned long nr_pages;
4107 	long user_extra, extra;
4108 	int ret = 0, flags = 0;
4109 
4110 	/*
4111 	 * Don't allow mmap() of inherited per-task counters. This would
4112 	 * create a performance issue due to all children writing to the
4113 	 * same rb.
4114 	 */
4115 	if (event->cpu == -1 && event->attr.inherit)
4116 		return -EINVAL;
4117 
4118 	if (!(vma->vm_flags & VM_SHARED))
4119 		return -EINVAL;
4120 
4121 	vma_size = vma->vm_end - vma->vm_start;
4122 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4123 
4124 	/*
4125 	 * If we have rb pages ensure they're a power-of-two number, so we
4126 	 * can do bitmasks instead of modulo.
4127 	 */
4128 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4129 		return -EINVAL;
4130 
4131 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4132 		return -EINVAL;
4133 
4134 	if (vma->vm_pgoff != 0)
4135 		return -EINVAL;
4136 
4137 	WARN_ON_ONCE(event->ctx->parent_ctx);
4138 again:
4139 	mutex_lock(&event->mmap_mutex);
4140 	if (event->rb) {
4141 		if (event->rb->nr_pages != nr_pages) {
4142 			ret = -EINVAL;
4143 			goto unlock;
4144 		}
4145 
4146 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4147 			/*
4148 			 * Raced against perf_mmap_close() through
4149 			 * perf_event_set_output(). Try again, hope for better
4150 			 * luck.
4151 			 */
4152 			mutex_unlock(&event->mmap_mutex);
4153 			goto again;
4154 		}
4155 
4156 		goto unlock;
4157 	}
4158 
4159 	user_extra = nr_pages + 1;
4160 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4161 
4162 	/*
4163 	 * Increase the limit linearly with more CPUs:
4164 	 */
4165 	user_lock_limit *= num_online_cpus();
4166 
4167 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4168 
4169 	extra = 0;
4170 	if (user_locked > user_lock_limit)
4171 		extra = user_locked - user_lock_limit;
4172 
4173 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4174 	lock_limit >>= PAGE_SHIFT;
4175 	locked = vma->vm_mm->pinned_vm + extra;
4176 
4177 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4178 		!capable(CAP_IPC_LOCK)) {
4179 		ret = -EPERM;
4180 		goto unlock;
4181 	}
4182 
4183 	WARN_ON(event->rb);
4184 
4185 	if (vma->vm_flags & VM_WRITE)
4186 		flags |= RING_BUFFER_WRITABLE;
4187 
4188 	rb = rb_alloc(nr_pages,
4189 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4190 		event->cpu, flags);
4191 
4192 	if (!rb) {
4193 		ret = -ENOMEM;
4194 		goto unlock;
4195 	}
4196 
4197 	atomic_set(&rb->mmap_count, 1);
4198 	rb->mmap_locked = extra;
4199 	rb->mmap_user = get_current_user();
4200 
4201 	atomic_long_add(user_extra, &user->locked_vm);
4202 	vma->vm_mm->pinned_vm += extra;
4203 
4204 	ring_buffer_attach(event, rb);
4205 
4206 	perf_event_init_userpage(event);
4207 	perf_event_update_userpage(event);
4208 
4209 unlock:
4210 	if (!ret)
4211 		atomic_inc(&event->mmap_count);
4212 	mutex_unlock(&event->mmap_mutex);
4213 
4214 	/*
4215 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4216 	 * vma.
4217 	 */
4218 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4219 	vma->vm_ops = &perf_mmap_vmops;
4220 
4221 	return ret;
4222 }
4223 
4224 static int perf_fasync(int fd, struct file *filp, int on)
4225 {
4226 	struct inode *inode = file_inode(filp);
4227 	struct perf_event *event = filp->private_data;
4228 	int retval;
4229 
4230 	mutex_lock(&inode->i_mutex);
4231 	retval = fasync_helper(fd, filp, on, &event->fasync);
4232 	mutex_unlock(&inode->i_mutex);
4233 
4234 	if (retval < 0)
4235 		return retval;
4236 
4237 	return 0;
4238 }
4239 
4240 static const struct file_operations perf_fops = {
4241 	.llseek			= no_llseek,
4242 	.release		= perf_release,
4243 	.read			= perf_read,
4244 	.poll			= perf_poll,
4245 	.unlocked_ioctl		= perf_ioctl,
4246 	.compat_ioctl		= perf_compat_ioctl,
4247 	.mmap			= perf_mmap,
4248 	.fasync			= perf_fasync,
4249 };
4250 
4251 /*
4252  * Perf event wakeup
4253  *
4254  * If there's data, ensure we set the poll() state and publish everything
4255  * to user-space before waking everybody up.
4256  */
4257 
4258 void perf_event_wakeup(struct perf_event *event)
4259 {
4260 	ring_buffer_wakeup(event);
4261 
4262 	if (event->pending_kill) {
4263 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4264 		event->pending_kill = 0;
4265 	}
4266 }
4267 
4268 static void perf_pending_event(struct irq_work *entry)
4269 {
4270 	struct perf_event *event = container_of(entry,
4271 			struct perf_event, pending);
4272 
4273 	if (event->pending_disable) {
4274 		event->pending_disable = 0;
4275 		__perf_event_disable(event);
4276 	}
4277 
4278 	if (event->pending_wakeup) {
4279 		event->pending_wakeup = 0;
4280 		perf_event_wakeup(event);
4281 	}
4282 }
4283 
4284 /*
4285  * We assume there is only KVM supporting the callbacks.
4286  * Later on, we might change it to a list if there is
4287  * another virtualization implementation supporting the callbacks.
4288  */
4289 struct perf_guest_info_callbacks *perf_guest_cbs;
4290 
4291 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4292 {
4293 	perf_guest_cbs = cbs;
4294 	return 0;
4295 }
4296 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4297 
4298 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4299 {
4300 	perf_guest_cbs = NULL;
4301 	return 0;
4302 }
4303 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4304 
4305 static void
4306 perf_output_sample_regs(struct perf_output_handle *handle,
4307 			struct pt_regs *regs, u64 mask)
4308 {
4309 	int bit;
4310 
4311 	for_each_set_bit(bit, (const unsigned long *) &mask,
4312 			 sizeof(mask) * BITS_PER_BYTE) {
4313 		u64 val;
4314 
4315 		val = perf_reg_value(regs, bit);
4316 		perf_output_put(handle, val);
4317 	}
4318 }
4319 
4320 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4321 				  struct pt_regs *regs)
4322 {
4323 	if (!user_mode(regs)) {
4324 		if (current->mm)
4325 			regs = task_pt_regs(current);
4326 		else
4327 			regs = NULL;
4328 	}
4329 
4330 	if (regs) {
4331 		regs_user->regs = regs;
4332 		regs_user->abi  = perf_reg_abi(current);
4333 	}
4334 }
4335 
4336 /*
4337  * Get remaining task size from user stack pointer.
4338  *
4339  * It'd be better to take stack vma map and limit this more
4340  * precisly, but there's no way to get it safely under interrupt,
4341  * so using TASK_SIZE as limit.
4342  */
4343 static u64 perf_ustack_task_size(struct pt_regs *regs)
4344 {
4345 	unsigned long addr = perf_user_stack_pointer(regs);
4346 
4347 	if (!addr || addr >= TASK_SIZE)
4348 		return 0;
4349 
4350 	return TASK_SIZE - addr;
4351 }
4352 
4353 static u16
4354 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4355 			struct pt_regs *regs)
4356 {
4357 	u64 task_size;
4358 
4359 	/* No regs, no stack pointer, no dump. */
4360 	if (!regs)
4361 		return 0;
4362 
4363 	/*
4364 	 * Check if we fit in with the requested stack size into the:
4365 	 * - TASK_SIZE
4366 	 *   If we don't, we limit the size to the TASK_SIZE.
4367 	 *
4368 	 * - remaining sample size
4369 	 *   If we don't, we customize the stack size to
4370 	 *   fit in to the remaining sample size.
4371 	 */
4372 
4373 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4374 	stack_size = min(stack_size, (u16) task_size);
4375 
4376 	/* Current header size plus static size and dynamic size. */
4377 	header_size += 2 * sizeof(u64);
4378 
4379 	/* Do we fit in with the current stack dump size? */
4380 	if ((u16) (header_size + stack_size) < header_size) {
4381 		/*
4382 		 * If we overflow the maximum size for the sample,
4383 		 * we customize the stack dump size to fit in.
4384 		 */
4385 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4386 		stack_size = round_up(stack_size, sizeof(u64));
4387 	}
4388 
4389 	return stack_size;
4390 }
4391 
4392 static void
4393 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4394 			  struct pt_regs *regs)
4395 {
4396 	/* Case of a kernel thread, nothing to dump */
4397 	if (!regs) {
4398 		u64 size = 0;
4399 		perf_output_put(handle, size);
4400 	} else {
4401 		unsigned long sp;
4402 		unsigned int rem;
4403 		u64 dyn_size;
4404 
4405 		/*
4406 		 * We dump:
4407 		 * static size
4408 		 *   - the size requested by user or the best one we can fit
4409 		 *     in to the sample max size
4410 		 * data
4411 		 *   - user stack dump data
4412 		 * dynamic size
4413 		 *   - the actual dumped size
4414 		 */
4415 
4416 		/* Static size. */
4417 		perf_output_put(handle, dump_size);
4418 
4419 		/* Data. */
4420 		sp = perf_user_stack_pointer(regs);
4421 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4422 		dyn_size = dump_size - rem;
4423 
4424 		perf_output_skip(handle, rem);
4425 
4426 		/* Dynamic size. */
4427 		perf_output_put(handle, dyn_size);
4428 	}
4429 }
4430 
4431 static void __perf_event_header__init_id(struct perf_event_header *header,
4432 					 struct perf_sample_data *data,
4433 					 struct perf_event *event)
4434 {
4435 	u64 sample_type = event->attr.sample_type;
4436 
4437 	data->type = sample_type;
4438 	header->size += event->id_header_size;
4439 
4440 	if (sample_type & PERF_SAMPLE_TID) {
4441 		/* namespace issues */
4442 		data->tid_entry.pid = perf_event_pid(event, current);
4443 		data->tid_entry.tid = perf_event_tid(event, current);
4444 	}
4445 
4446 	if (sample_type & PERF_SAMPLE_TIME)
4447 		data->time = perf_clock();
4448 
4449 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4450 		data->id = primary_event_id(event);
4451 
4452 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4453 		data->stream_id = event->id;
4454 
4455 	if (sample_type & PERF_SAMPLE_CPU) {
4456 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4457 		data->cpu_entry.reserved = 0;
4458 	}
4459 }
4460 
4461 void perf_event_header__init_id(struct perf_event_header *header,
4462 				struct perf_sample_data *data,
4463 				struct perf_event *event)
4464 {
4465 	if (event->attr.sample_id_all)
4466 		__perf_event_header__init_id(header, data, event);
4467 }
4468 
4469 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4470 					   struct perf_sample_data *data)
4471 {
4472 	u64 sample_type = data->type;
4473 
4474 	if (sample_type & PERF_SAMPLE_TID)
4475 		perf_output_put(handle, data->tid_entry);
4476 
4477 	if (sample_type & PERF_SAMPLE_TIME)
4478 		perf_output_put(handle, data->time);
4479 
4480 	if (sample_type & PERF_SAMPLE_ID)
4481 		perf_output_put(handle, data->id);
4482 
4483 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4484 		perf_output_put(handle, data->stream_id);
4485 
4486 	if (sample_type & PERF_SAMPLE_CPU)
4487 		perf_output_put(handle, data->cpu_entry);
4488 
4489 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4490 		perf_output_put(handle, data->id);
4491 }
4492 
4493 void perf_event__output_id_sample(struct perf_event *event,
4494 				  struct perf_output_handle *handle,
4495 				  struct perf_sample_data *sample)
4496 {
4497 	if (event->attr.sample_id_all)
4498 		__perf_event__output_id_sample(handle, sample);
4499 }
4500 
4501 static void perf_output_read_one(struct perf_output_handle *handle,
4502 				 struct perf_event *event,
4503 				 u64 enabled, u64 running)
4504 {
4505 	u64 read_format = event->attr.read_format;
4506 	u64 values[4];
4507 	int n = 0;
4508 
4509 	values[n++] = perf_event_count(event);
4510 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4511 		values[n++] = enabled +
4512 			atomic64_read(&event->child_total_time_enabled);
4513 	}
4514 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4515 		values[n++] = running +
4516 			atomic64_read(&event->child_total_time_running);
4517 	}
4518 	if (read_format & PERF_FORMAT_ID)
4519 		values[n++] = primary_event_id(event);
4520 
4521 	__output_copy(handle, values, n * sizeof(u64));
4522 }
4523 
4524 /*
4525  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4526  */
4527 static void perf_output_read_group(struct perf_output_handle *handle,
4528 			    struct perf_event *event,
4529 			    u64 enabled, u64 running)
4530 {
4531 	struct perf_event *leader = event->group_leader, *sub;
4532 	u64 read_format = event->attr.read_format;
4533 	u64 values[5];
4534 	int n = 0;
4535 
4536 	values[n++] = 1 + leader->nr_siblings;
4537 
4538 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4539 		values[n++] = enabled;
4540 
4541 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4542 		values[n++] = running;
4543 
4544 	if (leader != event)
4545 		leader->pmu->read(leader);
4546 
4547 	values[n++] = perf_event_count(leader);
4548 	if (read_format & PERF_FORMAT_ID)
4549 		values[n++] = primary_event_id(leader);
4550 
4551 	__output_copy(handle, values, n * sizeof(u64));
4552 
4553 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4554 		n = 0;
4555 
4556 		if ((sub != event) &&
4557 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4558 			sub->pmu->read(sub);
4559 
4560 		values[n++] = perf_event_count(sub);
4561 		if (read_format & PERF_FORMAT_ID)
4562 			values[n++] = primary_event_id(sub);
4563 
4564 		__output_copy(handle, values, n * sizeof(u64));
4565 	}
4566 }
4567 
4568 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4569 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4570 
4571 static void perf_output_read(struct perf_output_handle *handle,
4572 			     struct perf_event *event)
4573 {
4574 	u64 enabled = 0, running = 0, now;
4575 	u64 read_format = event->attr.read_format;
4576 
4577 	/*
4578 	 * compute total_time_enabled, total_time_running
4579 	 * based on snapshot values taken when the event
4580 	 * was last scheduled in.
4581 	 *
4582 	 * we cannot simply called update_context_time()
4583 	 * because of locking issue as we are called in
4584 	 * NMI context
4585 	 */
4586 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4587 		calc_timer_values(event, &now, &enabled, &running);
4588 
4589 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4590 		perf_output_read_group(handle, event, enabled, running);
4591 	else
4592 		perf_output_read_one(handle, event, enabled, running);
4593 }
4594 
4595 void perf_output_sample(struct perf_output_handle *handle,
4596 			struct perf_event_header *header,
4597 			struct perf_sample_data *data,
4598 			struct perf_event *event)
4599 {
4600 	u64 sample_type = data->type;
4601 
4602 	perf_output_put(handle, *header);
4603 
4604 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4605 		perf_output_put(handle, data->id);
4606 
4607 	if (sample_type & PERF_SAMPLE_IP)
4608 		perf_output_put(handle, data->ip);
4609 
4610 	if (sample_type & PERF_SAMPLE_TID)
4611 		perf_output_put(handle, data->tid_entry);
4612 
4613 	if (sample_type & PERF_SAMPLE_TIME)
4614 		perf_output_put(handle, data->time);
4615 
4616 	if (sample_type & PERF_SAMPLE_ADDR)
4617 		perf_output_put(handle, data->addr);
4618 
4619 	if (sample_type & PERF_SAMPLE_ID)
4620 		perf_output_put(handle, data->id);
4621 
4622 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4623 		perf_output_put(handle, data->stream_id);
4624 
4625 	if (sample_type & PERF_SAMPLE_CPU)
4626 		perf_output_put(handle, data->cpu_entry);
4627 
4628 	if (sample_type & PERF_SAMPLE_PERIOD)
4629 		perf_output_put(handle, data->period);
4630 
4631 	if (sample_type & PERF_SAMPLE_READ)
4632 		perf_output_read(handle, event);
4633 
4634 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4635 		if (data->callchain) {
4636 			int size = 1;
4637 
4638 			if (data->callchain)
4639 				size += data->callchain->nr;
4640 
4641 			size *= sizeof(u64);
4642 
4643 			__output_copy(handle, data->callchain, size);
4644 		} else {
4645 			u64 nr = 0;
4646 			perf_output_put(handle, nr);
4647 		}
4648 	}
4649 
4650 	if (sample_type & PERF_SAMPLE_RAW) {
4651 		if (data->raw) {
4652 			perf_output_put(handle, data->raw->size);
4653 			__output_copy(handle, data->raw->data,
4654 					   data->raw->size);
4655 		} else {
4656 			struct {
4657 				u32	size;
4658 				u32	data;
4659 			} raw = {
4660 				.size = sizeof(u32),
4661 				.data = 0,
4662 			};
4663 			perf_output_put(handle, raw);
4664 		}
4665 	}
4666 
4667 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4668 		if (data->br_stack) {
4669 			size_t size;
4670 
4671 			size = data->br_stack->nr
4672 			     * sizeof(struct perf_branch_entry);
4673 
4674 			perf_output_put(handle, data->br_stack->nr);
4675 			perf_output_copy(handle, data->br_stack->entries, size);
4676 		} else {
4677 			/*
4678 			 * we always store at least the value of nr
4679 			 */
4680 			u64 nr = 0;
4681 			perf_output_put(handle, nr);
4682 		}
4683 	}
4684 
4685 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4686 		u64 abi = data->regs_user.abi;
4687 
4688 		/*
4689 		 * If there are no regs to dump, notice it through
4690 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4691 		 */
4692 		perf_output_put(handle, abi);
4693 
4694 		if (abi) {
4695 			u64 mask = event->attr.sample_regs_user;
4696 			perf_output_sample_regs(handle,
4697 						data->regs_user.regs,
4698 						mask);
4699 		}
4700 	}
4701 
4702 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4703 		perf_output_sample_ustack(handle,
4704 					  data->stack_user_size,
4705 					  data->regs_user.regs);
4706 	}
4707 
4708 	if (sample_type & PERF_SAMPLE_WEIGHT)
4709 		perf_output_put(handle, data->weight);
4710 
4711 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4712 		perf_output_put(handle, data->data_src.val);
4713 
4714 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4715 		perf_output_put(handle, data->txn);
4716 
4717 	if (!event->attr.watermark) {
4718 		int wakeup_events = event->attr.wakeup_events;
4719 
4720 		if (wakeup_events) {
4721 			struct ring_buffer *rb = handle->rb;
4722 			int events = local_inc_return(&rb->events);
4723 
4724 			if (events >= wakeup_events) {
4725 				local_sub(wakeup_events, &rb->events);
4726 				local_inc(&rb->wakeup);
4727 			}
4728 		}
4729 	}
4730 }
4731 
4732 void perf_prepare_sample(struct perf_event_header *header,
4733 			 struct perf_sample_data *data,
4734 			 struct perf_event *event,
4735 			 struct pt_regs *regs)
4736 {
4737 	u64 sample_type = event->attr.sample_type;
4738 
4739 	header->type = PERF_RECORD_SAMPLE;
4740 	header->size = sizeof(*header) + event->header_size;
4741 
4742 	header->misc = 0;
4743 	header->misc |= perf_misc_flags(regs);
4744 
4745 	__perf_event_header__init_id(header, data, event);
4746 
4747 	if (sample_type & PERF_SAMPLE_IP)
4748 		data->ip = perf_instruction_pointer(regs);
4749 
4750 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4751 		int size = 1;
4752 
4753 		data->callchain = perf_callchain(event, regs);
4754 
4755 		if (data->callchain)
4756 			size += data->callchain->nr;
4757 
4758 		header->size += size * sizeof(u64);
4759 	}
4760 
4761 	if (sample_type & PERF_SAMPLE_RAW) {
4762 		int size = sizeof(u32);
4763 
4764 		if (data->raw)
4765 			size += data->raw->size;
4766 		else
4767 			size += sizeof(u32);
4768 
4769 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4770 		header->size += size;
4771 	}
4772 
4773 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4774 		int size = sizeof(u64); /* nr */
4775 		if (data->br_stack) {
4776 			size += data->br_stack->nr
4777 			      * sizeof(struct perf_branch_entry);
4778 		}
4779 		header->size += size;
4780 	}
4781 
4782 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4783 		/* regs dump ABI info */
4784 		int size = sizeof(u64);
4785 
4786 		perf_sample_regs_user(&data->regs_user, regs);
4787 
4788 		if (data->regs_user.regs) {
4789 			u64 mask = event->attr.sample_regs_user;
4790 			size += hweight64(mask) * sizeof(u64);
4791 		}
4792 
4793 		header->size += size;
4794 	}
4795 
4796 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4797 		/*
4798 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4799 		 * processed as the last one or have additional check added
4800 		 * in case new sample type is added, because we could eat
4801 		 * up the rest of the sample size.
4802 		 */
4803 		struct perf_regs_user *uregs = &data->regs_user;
4804 		u16 stack_size = event->attr.sample_stack_user;
4805 		u16 size = sizeof(u64);
4806 
4807 		if (!uregs->abi)
4808 			perf_sample_regs_user(uregs, regs);
4809 
4810 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4811 						     uregs->regs);
4812 
4813 		/*
4814 		 * If there is something to dump, add space for the dump
4815 		 * itself and for the field that tells the dynamic size,
4816 		 * which is how many have been actually dumped.
4817 		 */
4818 		if (stack_size)
4819 			size += sizeof(u64) + stack_size;
4820 
4821 		data->stack_user_size = stack_size;
4822 		header->size += size;
4823 	}
4824 }
4825 
4826 static void perf_event_output(struct perf_event *event,
4827 				struct perf_sample_data *data,
4828 				struct pt_regs *regs)
4829 {
4830 	struct perf_output_handle handle;
4831 	struct perf_event_header header;
4832 
4833 	/* protect the callchain buffers */
4834 	rcu_read_lock();
4835 
4836 	perf_prepare_sample(&header, data, event, regs);
4837 
4838 	if (perf_output_begin(&handle, event, header.size))
4839 		goto exit;
4840 
4841 	perf_output_sample(&handle, &header, data, event);
4842 
4843 	perf_output_end(&handle);
4844 
4845 exit:
4846 	rcu_read_unlock();
4847 }
4848 
4849 /*
4850  * read event_id
4851  */
4852 
4853 struct perf_read_event {
4854 	struct perf_event_header	header;
4855 
4856 	u32				pid;
4857 	u32				tid;
4858 };
4859 
4860 static void
4861 perf_event_read_event(struct perf_event *event,
4862 			struct task_struct *task)
4863 {
4864 	struct perf_output_handle handle;
4865 	struct perf_sample_data sample;
4866 	struct perf_read_event read_event = {
4867 		.header = {
4868 			.type = PERF_RECORD_READ,
4869 			.misc = 0,
4870 			.size = sizeof(read_event) + event->read_size,
4871 		},
4872 		.pid = perf_event_pid(event, task),
4873 		.tid = perf_event_tid(event, task),
4874 	};
4875 	int ret;
4876 
4877 	perf_event_header__init_id(&read_event.header, &sample, event);
4878 	ret = perf_output_begin(&handle, event, read_event.header.size);
4879 	if (ret)
4880 		return;
4881 
4882 	perf_output_put(&handle, read_event);
4883 	perf_output_read(&handle, event);
4884 	perf_event__output_id_sample(event, &handle, &sample);
4885 
4886 	perf_output_end(&handle);
4887 }
4888 
4889 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4890 
4891 static void
4892 perf_event_aux_ctx(struct perf_event_context *ctx,
4893 		   perf_event_aux_output_cb output,
4894 		   void *data)
4895 {
4896 	struct perf_event *event;
4897 
4898 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4899 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4900 			continue;
4901 		if (!event_filter_match(event))
4902 			continue;
4903 		output(event, data);
4904 	}
4905 }
4906 
4907 static void
4908 perf_event_aux(perf_event_aux_output_cb output, void *data,
4909 	       struct perf_event_context *task_ctx)
4910 {
4911 	struct perf_cpu_context *cpuctx;
4912 	struct perf_event_context *ctx;
4913 	struct pmu *pmu;
4914 	int ctxn;
4915 
4916 	rcu_read_lock();
4917 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4918 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4919 		if (cpuctx->unique_pmu != pmu)
4920 			goto next;
4921 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4922 		if (task_ctx)
4923 			goto next;
4924 		ctxn = pmu->task_ctx_nr;
4925 		if (ctxn < 0)
4926 			goto next;
4927 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4928 		if (ctx)
4929 			perf_event_aux_ctx(ctx, output, data);
4930 next:
4931 		put_cpu_ptr(pmu->pmu_cpu_context);
4932 	}
4933 
4934 	if (task_ctx) {
4935 		preempt_disable();
4936 		perf_event_aux_ctx(task_ctx, output, data);
4937 		preempt_enable();
4938 	}
4939 	rcu_read_unlock();
4940 }
4941 
4942 /*
4943  * task tracking -- fork/exit
4944  *
4945  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4946  */
4947 
4948 struct perf_task_event {
4949 	struct task_struct		*task;
4950 	struct perf_event_context	*task_ctx;
4951 
4952 	struct {
4953 		struct perf_event_header	header;
4954 
4955 		u32				pid;
4956 		u32				ppid;
4957 		u32				tid;
4958 		u32				ptid;
4959 		u64				time;
4960 	} event_id;
4961 };
4962 
4963 static int perf_event_task_match(struct perf_event *event)
4964 {
4965 	return event->attr.comm  || event->attr.mmap ||
4966 	       event->attr.mmap2 || event->attr.mmap_data ||
4967 	       event->attr.task;
4968 }
4969 
4970 static void perf_event_task_output(struct perf_event *event,
4971 				   void *data)
4972 {
4973 	struct perf_task_event *task_event = data;
4974 	struct perf_output_handle handle;
4975 	struct perf_sample_data	sample;
4976 	struct task_struct *task = task_event->task;
4977 	int ret, size = task_event->event_id.header.size;
4978 
4979 	if (!perf_event_task_match(event))
4980 		return;
4981 
4982 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4983 
4984 	ret = perf_output_begin(&handle, event,
4985 				task_event->event_id.header.size);
4986 	if (ret)
4987 		goto out;
4988 
4989 	task_event->event_id.pid = perf_event_pid(event, task);
4990 	task_event->event_id.ppid = perf_event_pid(event, current);
4991 
4992 	task_event->event_id.tid = perf_event_tid(event, task);
4993 	task_event->event_id.ptid = perf_event_tid(event, current);
4994 
4995 	perf_output_put(&handle, task_event->event_id);
4996 
4997 	perf_event__output_id_sample(event, &handle, &sample);
4998 
4999 	perf_output_end(&handle);
5000 out:
5001 	task_event->event_id.header.size = size;
5002 }
5003 
5004 static void perf_event_task(struct task_struct *task,
5005 			      struct perf_event_context *task_ctx,
5006 			      int new)
5007 {
5008 	struct perf_task_event task_event;
5009 
5010 	if (!atomic_read(&nr_comm_events) &&
5011 	    !atomic_read(&nr_mmap_events) &&
5012 	    !atomic_read(&nr_task_events))
5013 		return;
5014 
5015 	task_event = (struct perf_task_event){
5016 		.task	  = task,
5017 		.task_ctx = task_ctx,
5018 		.event_id    = {
5019 			.header = {
5020 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5021 				.misc = 0,
5022 				.size = sizeof(task_event.event_id),
5023 			},
5024 			/* .pid  */
5025 			/* .ppid */
5026 			/* .tid  */
5027 			/* .ptid */
5028 			.time = perf_clock(),
5029 		},
5030 	};
5031 
5032 	perf_event_aux(perf_event_task_output,
5033 		       &task_event,
5034 		       task_ctx);
5035 }
5036 
5037 void perf_event_fork(struct task_struct *task)
5038 {
5039 	perf_event_task(task, NULL, 1);
5040 }
5041 
5042 /*
5043  * comm tracking
5044  */
5045 
5046 struct perf_comm_event {
5047 	struct task_struct	*task;
5048 	char			*comm;
5049 	int			comm_size;
5050 
5051 	struct {
5052 		struct perf_event_header	header;
5053 
5054 		u32				pid;
5055 		u32				tid;
5056 	} event_id;
5057 };
5058 
5059 static int perf_event_comm_match(struct perf_event *event)
5060 {
5061 	return event->attr.comm;
5062 }
5063 
5064 static void perf_event_comm_output(struct perf_event *event,
5065 				   void *data)
5066 {
5067 	struct perf_comm_event *comm_event = data;
5068 	struct perf_output_handle handle;
5069 	struct perf_sample_data sample;
5070 	int size = comm_event->event_id.header.size;
5071 	int ret;
5072 
5073 	if (!perf_event_comm_match(event))
5074 		return;
5075 
5076 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5077 	ret = perf_output_begin(&handle, event,
5078 				comm_event->event_id.header.size);
5079 
5080 	if (ret)
5081 		goto out;
5082 
5083 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5084 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5085 
5086 	perf_output_put(&handle, comm_event->event_id);
5087 	__output_copy(&handle, comm_event->comm,
5088 				   comm_event->comm_size);
5089 
5090 	perf_event__output_id_sample(event, &handle, &sample);
5091 
5092 	perf_output_end(&handle);
5093 out:
5094 	comm_event->event_id.header.size = size;
5095 }
5096 
5097 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5098 {
5099 	char comm[TASK_COMM_LEN];
5100 	unsigned int size;
5101 
5102 	memset(comm, 0, sizeof(comm));
5103 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5104 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5105 
5106 	comm_event->comm = comm;
5107 	comm_event->comm_size = size;
5108 
5109 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5110 
5111 	perf_event_aux(perf_event_comm_output,
5112 		       comm_event,
5113 		       NULL);
5114 }
5115 
5116 void perf_event_comm(struct task_struct *task, bool exec)
5117 {
5118 	struct perf_comm_event comm_event;
5119 
5120 	if (!atomic_read(&nr_comm_events))
5121 		return;
5122 
5123 	comm_event = (struct perf_comm_event){
5124 		.task	= task,
5125 		/* .comm      */
5126 		/* .comm_size */
5127 		.event_id  = {
5128 			.header = {
5129 				.type = PERF_RECORD_COMM,
5130 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5131 				/* .size */
5132 			},
5133 			/* .pid */
5134 			/* .tid */
5135 		},
5136 	};
5137 
5138 	perf_event_comm_event(&comm_event);
5139 }
5140 
5141 /*
5142  * mmap tracking
5143  */
5144 
5145 struct perf_mmap_event {
5146 	struct vm_area_struct	*vma;
5147 
5148 	const char		*file_name;
5149 	int			file_size;
5150 	int			maj, min;
5151 	u64			ino;
5152 	u64			ino_generation;
5153 	u32			prot, flags;
5154 
5155 	struct {
5156 		struct perf_event_header	header;
5157 
5158 		u32				pid;
5159 		u32				tid;
5160 		u64				start;
5161 		u64				len;
5162 		u64				pgoff;
5163 	} event_id;
5164 };
5165 
5166 static int perf_event_mmap_match(struct perf_event *event,
5167 				 void *data)
5168 {
5169 	struct perf_mmap_event *mmap_event = data;
5170 	struct vm_area_struct *vma = mmap_event->vma;
5171 	int executable = vma->vm_flags & VM_EXEC;
5172 
5173 	return (!executable && event->attr.mmap_data) ||
5174 	       (executable && (event->attr.mmap || event->attr.mmap2));
5175 }
5176 
5177 static void perf_event_mmap_output(struct perf_event *event,
5178 				   void *data)
5179 {
5180 	struct perf_mmap_event *mmap_event = data;
5181 	struct perf_output_handle handle;
5182 	struct perf_sample_data sample;
5183 	int size = mmap_event->event_id.header.size;
5184 	int ret;
5185 
5186 	if (!perf_event_mmap_match(event, data))
5187 		return;
5188 
5189 	if (event->attr.mmap2) {
5190 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5191 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5192 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5193 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5194 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5195 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5196 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5197 	}
5198 
5199 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5200 	ret = perf_output_begin(&handle, event,
5201 				mmap_event->event_id.header.size);
5202 	if (ret)
5203 		goto out;
5204 
5205 	mmap_event->event_id.pid = perf_event_pid(event, current);
5206 	mmap_event->event_id.tid = perf_event_tid(event, current);
5207 
5208 	perf_output_put(&handle, mmap_event->event_id);
5209 
5210 	if (event->attr.mmap2) {
5211 		perf_output_put(&handle, mmap_event->maj);
5212 		perf_output_put(&handle, mmap_event->min);
5213 		perf_output_put(&handle, mmap_event->ino);
5214 		perf_output_put(&handle, mmap_event->ino_generation);
5215 		perf_output_put(&handle, mmap_event->prot);
5216 		perf_output_put(&handle, mmap_event->flags);
5217 	}
5218 
5219 	__output_copy(&handle, mmap_event->file_name,
5220 				   mmap_event->file_size);
5221 
5222 	perf_event__output_id_sample(event, &handle, &sample);
5223 
5224 	perf_output_end(&handle);
5225 out:
5226 	mmap_event->event_id.header.size = size;
5227 }
5228 
5229 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5230 {
5231 	struct vm_area_struct *vma = mmap_event->vma;
5232 	struct file *file = vma->vm_file;
5233 	int maj = 0, min = 0;
5234 	u64 ino = 0, gen = 0;
5235 	u32 prot = 0, flags = 0;
5236 	unsigned int size;
5237 	char tmp[16];
5238 	char *buf = NULL;
5239 	char *name;
5240 
5241 	if (file) {
5242 		struct inode *inode;
5243 		dev_t dev;
5244 
5245 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5246 		if (!buf) {
5247 			name = "//enomem";
5248 			goto cpy_name;
5249 		}
5250 		/*
5251 		 * d_path() works from the end of the rb backwards, so we
5252 		 * need to add enough zero bytes after the string to handle
5253 		 * the 64bit alignment we do later.
5254 		 */
5255 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5256 		if (IS_ERR(name)) {
5257 			name = "//toolong";
5258 			goto cpy_name;
5259 		}
5260 		inode = file_inode(vma->vm_file);
5261 		dev = inode->i_sb->s_dev;
5262 		ino = inode->i_ino;
5263 		gen = inode->i_generation;
5264 		maj = MAJOR(dev);
5265 		min = MINOR(dev);
5266 
5267 		if (vma->vm_flags & VM_READ)
5268 			prot |= PROT_READ;
5269 		if (vma->vm_flags & VM_WRITE)
5270 			prot |= PROT_WRITE;
5271 		if (vma->vm_flags & VM_EXEC)
5272 			prot |= PROT_EXEC;
5273 
5274 		if (vma->vm_flags & VM_MAYSHARE)
5275 			flags = MAP_SHARED;
5276 		else
5277 			flags = MAP_PRIVATE;
5278 
5279 		if (vma->vm_flags & VM_DENYWRITE)
5280 			flags |= MAP_DENYWRITE;
5281 		if (vma->vm_flags & VM_MAYEXEC)
5282 			flags |= MAP_EXECUTABLE;
5283 		if (vma->vm_flags & VM_LOCKED)
5284 			flags |= MAP_LOCKED;
5285 		if (vma->vm_flags & VM_HUGETLB)
5286 			flags |= MAP_HUGETLB;
5287 
5288 		goto got_name;
5289 	} else {
5290 		if (vma->vm_ops && vma->vm_ops->name) {
5291 			name = (char *) vma->vm_ops->name(vma);
5292 			if (name)
5293 				goto cpy_name;
5294 		}
5295 
5296 		name = (char *)arch_vma_name(vma);
5297 		if (name)
5298 			goto cpy_name;
5299 
5300 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5301 				vma->vm_end >= vma->vm_mm->brk) {
5302 			name = "[heap]";
5303 			goto cpy_name;
5304 		}
5305 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5306 				vma->vm_end >= vma->vm_mm->start_stack) {
5307 			name = "[stack]";
5308 			goto cpy_name;
5309 		}
5310 
5311 		name = "//anon";
5312 		goto cpy_name;
5313 	}
5314 
5315 cpy_name:
5316 	strlcpy(tmp, name, sizeof(tmp));
5317 	name = tmp;
5318 got_name:
5319 	/*
5320 	 * Since our buffer works in 8 byte units we need to align our string
5321 	 * size to a multiple of 8. However, we must guarantee the tail end is
5322 	 * zero'd out to avoid leaking random bits to userspace.
5323 	 */
5324 	size = strlen(name)+1;
5325 	while (!IS_ALIGNED(size, sizeof(u64)))
5326 		name[size++] = '\0';
5327 
5328 	mmap_event->file_name = name;
5329 	mmap_event->file_size = size;
5330 	mmap_event->maj = maj;
5331 	mmap_event->min = min;
5332 	mmap_event->ino = ino;
5333 	mmap_event->ino_generation = gen;
5334 	mmap_event->prot = prot;
5335 	mmap_event->flags = flags;
5336 
5337 	if (!(vma->vm_flags & VM_EXEC))
5338 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5339 
5340 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5341 
5342 	perf_event_aux(perf_event_mmap_output,
5343 		       mmap_event,
5344 		       NULL);
5345 
5346 	kfree(buf);
5347 }
5348 
5349 void perf_event_mmap(struct vm_area_struct *vma)
5350 {
5351 	struct perf_mmap_event mmap_event;
5352 
5353 	if (!atomic_read(&nr_mmap_events))
5354 		return;
5355 
5356 	mmap_event = (struct perf_mmap_event){
5357 		.vma	= vma,
5358 		/* .file_name */
5359 		/* .file_size */
5360 		.event_id  = {
5361 			.header = {
5362 				.type = PERF_RECORD_MMAP,
5363 				.misc = PERF_RECORD_MISC_USER,
5364 				/* .size */
5365 			},
5366 			/* .pid */
5367 			/* .tid */
5368 			.start  = vma->vm_start,
5369 			.len    = vma->vm_end - vma->vm_start,
5370 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5371 		},
5372 		/* .maj (attr_mmap2 only) */
5373 		/* .min (attr_mmap2 only) */
5374 		/* .ino (attr_mmap2 only) */
5375 		/* .ino_generation (attr_mmap2 only) */
5376 		/* .prot (attr_mmap2 only) */
5377 		/* .flags (attr_mmap2 only) */
5378 	};
5379 
5380 	perf_event_mmap_event(&mmap_event);
5381 }
5382 
5383 /*
5384  * IRQ throttle logging
5385  */
5386 
5387 static void perf_log_throttle(struct perf_event *event, int enable)
5388 {
5389 	struct perf_output_handle handle;
5390 	struct perf_sample_data sample;
5391 	int ret;
5392 
5393 	struct {
5394 		struct perf_event_header	header;
5395 		u64				time;
5396 		u64				id;
5397 		u64				stream_id;
5398 	} throttle_event = {
5399 		.header = {
5400 			.type = PERF_RECORD_THROTTLE,
5401 			.misc = 0,
5402 			.size = sizeof(throttle_event),
5403 		},
5404 		.time		= perf_clock(),
5405 		.id		= primary_event_id(event),
5406 		.stream_id	= event->id,
5407 	};
5408 
5409 	if (enable)
5410 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5411 
5412 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5413 
5414 	ret = perf_output_begin(&handle, event,
5415 				throttle_event.header.size);
5416 	if (ret)
5417 		return;
5418 
5419 	perf_output_put(&handle, throttle_event);
5420 	perf_event__output_id_sample(event, &handle, &sample);
5421 	perf_output_end(&handle);
5422 }
5423 
5424 /*
5425  * Generic event overflow handling, sampling.
5426  */
5427 
5428 static int __perf_event_overflow(struct perf_event *event,
5429 				   int throttle, struct perf_sample_data *data,
5430 				   struct pt_regs *regs)
5431 {
5432 	int events = atomic_read(&event->event_limit);
5433 	struct hw_perf_event *hwc = &event->hw;
5434 	u64 seq;
5435 	int ret = 0;
5436 
5437 	/*
5438 	 * Non-sampling counters might still use the PMI to fold short
5439 	 * hardware counters, ignore those.
5440 	 */
5441 	if (unlikely(!is_sampling_event(event)))
5442 		return 0;
5443 
5444 	seq = __this_cpu_read(perf_throttled_seq);
5445 	if (seq != hwc->interrupts_seq) {
5446 		hwc->interrupts_seq = seq;
5447 		hwc->interrupts = 1;
5448 	} else {
5449 		hwc->interrupts++;
5450 		if (unlikely(throttle
5451 			     && hwc->interrupts >= max_samples_per_tick)) {
5452 			__this_cpu_inc(perf_throttled_count);
5453 			hwc->interrupts = MAX_INTERRUPTS;
5454 			perf_log_throttle(event, 0);
5455 			tick_nohz_full_kick();
5456 			ret = 1;
5457 		}
5458 	}
5459 
5460 	if (event->attr.freq) {
5461 		u64 now = perf_clock();
5462 		s64 delta = now - hwc->freq_time_stamp;
5463 
5464 		hwc->freq_time_stamp = now;
5465 
5466 		if (delta > 0 && delta < 2*TICK_NSEC)
5467 			perf_adjust_period(event, delta, hwc->last_period, true);
5468 	}
5469 
5470 	/*
5471 	 * XXX event_limit might not quite work as expected on inherited
5472 	 * events
5473 	 */
5474 
5475 	event->pending_kill = POLL_IN;
5476 	if (events && atomic_dec_and_test(&event->event_limit)) {
5477 		ret = 1;
5478 		event->pending_kill = POLL_HUP;
5479 		event->pending_disable = 1;
5480 		irq_work_queue(&event->pending);
5481 	}
5482 
5483 	if (event->overflow_handler)
5484 		event->overflow_handler(event, data, regs);
5485 	else
5486 		perf_event_output(event, data, regs);
5487 
5488 	if (event->fasync && event->pending_kill) {
5489 		event->pending_wakeup = 1;
5490 		irq_work_queue(&event->pending);
5491 	}
5492 
5493 	return ret;
5494 }
5495 
5496 int perf_event_overflow(struct perf_event *event,
5497 			  struct perf_sample_data *data,
5498 			  struct pt_regs *regs)
5499 {
5500 	return __perf_event_overflow(event, 1, data, regs);
5501 }
5502 
5503 /*
5504  * Generic software event infrastructure
5505  */
5506 
5507 struct swevent_htable {
5508 	struct swevent_hlist		*swevent_hlist;
5509 	struct mutex			hlist_mutex;
5510 	int				hlist_refcount;
5511 
5512 	/* Recursion avoidance in each contexts */
5513 	int				recursion[PERF_NR_CONTEXTS];
5514 
5515 	/* Keeps track of cpu being initialized/exited */
5516 	bool				online;
5517 };
5518 
5519 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5520 
5521 /*
5522  * We directly increment event->count and keep a second value in
5523  * event->hw.period_left to count intervals. This period event
5524  * is kept in the range [-sample_period, 0] so that we can use the
5525  * sign as trigger.
5526  */
5527 
5528 u64 perf_swevent_set_period(struct perf_event *event)
5529 {
5530 	struct hw_perf_event *hwc = &event->hw;
5531 	u64 period = hwc->last_period;
5532 	u64 nr, offset;
5533 	s64 old, val;
5534 
5535 	hwc->last_period = hwc->sample_period;
5536 
5537 again:
5538 	old = val = local64_read(&hwc->period_left);
5539 	if (val < 0)
5540 		return 0;
5541 
5542 	nr = div64_u64(period + val, period);
5543 	offset = nr * period;
5544 	val -= offset;
5545 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5546 		goto again;
5547 
5548 	return nr;
5549 }
5550 
5551 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5552 				    struct perf_sample_data *data,
5553 				    struct pt_regs *regs)
5554 {
5555 	struct hw_perf_event *hwc = &event->hw;
5556 	int throttle = 0;
5557 
5558 	if (!overflow)
5559 		overflow = perf_swevent_set_period(event);
5560 
5561 	if (hwc->interrupts == MAX_INTERRUPTS)
5562 		return;
5563 
5564 	for (; overflow; overflow--) {
5565 		if (__perf_event_overflow(event, throttle,
5566 					    data, regs)) {
5567 			/*
5568 			 * We inhibit the overflow from happening when
5569 			 * hwc->interrupts == MAX_INTERRUPTS.
5570 			 */
5571 			break;
5572 		}
5573 		throttle = 1;
5574 	}
5575 }
5576 
5577 static void perf_swevent_event(struct perf_event *event, u64 nr,
5578 			       struct perf_sample_data *data,
5579 			       struct pt_regs *regs)
5580 {
5581 	struct hw_perf_event *hwc = &event->hw;
5582 
5583 	local64_add(nr, &event->count);
5584 
5585 	if (!regs)
5586 		return;
5587 
5588 	if (!is_sampling_event(event))
5589 		return;
5590 
5591 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5592 		data->period = nr;
5593 		return perf_swevent_overflow(event, 1, data, regs);
5594 	} else
5595 		data->period = event->hw.last_period;
5596 
5597 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5598 		return perf_swevent_overflow(event, 1, data, regs);
5599 
5600 	if (local64_add_negative(nr, &hwc->period_left))
5601 		return;
5602 
5603 	perf_swevent_overflow(event, 0, data, regs);
5604 }
5605 
5606 static int perf_exclude_event(struct perf_event *event,
5607 			      struct pt_regs *regs)
5608 {
5609 	if (event->hw.state & PERF_HES_STOPPED)
5610 		return 1;
5611 
5612 	if (regs) {
5613 		if (event->attr.exclude_user && user_mode(regs))
5614 			return 1;
5615 
5616 		if (event->attr.exclude_kernel && !user_mode(regs))
5617 			return 1;
5618 	}
5619 
5620 	return 0;
5621 }
5622 
5623 static int perf_swevent_match(struct perf_event *event,
5624 				enum perf_type_id type,
5625 				u32 event_id,
5626 				struct perf_sample_data *data,
5627 				struct pt_regs *regs)
5628 {
5629 	if (event->attr.type != type)
5630 		return 0;
5631 
5632 	if (event->attr.config != event_id)
5633 		return 0;
5634 
5635 	if (perf_exclude_event(event, regs))
5636 		return 0;
5637 
5638 	return 1;
5639 }
5640 
5641 static inline u64 swevent_hash(u64 type, u32 event_id)
5642 {
5643 	u64 val = event_id | (type << 32);
5644 
5645 	return hash_64(val, SWEVENT_HLIST_BITS);
5646 }
5647 
5648 static inline struct hlist_head *
5649 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5650 {
5651 	u64 hash = swevent_hash(type, event_id);
5652 
5653 	return &hlist->heads[hash];
5654 }
5655 
5656 /* For the read side: events when they trigger */
5657 static inline struct hlist_head *
5658 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5659 {
5660 	struct swevent_hlist *hlist;
5661 
5662 	hlist = rcu_dereference(swhash->swevent_hlist);
5663 	if (!hlist)
5664 		return NULL;
5665 
5666 	return __find_swevent_head(hlist, type, event_id);
5667 }
5668 
5669 /* For the event head insertion and removal in the hlist */
5670 static inline struct hlist_head *
5671 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5672 {
5673 	struct swevent_hlist *hlist;
5674 	u32 event_id = event->attr.config;
5675 	u64 type = event->attr.type;
5676 
5677 	/*
5678 	 * Event scheduling is always serialized against hlist allocation
5679 	 * and release. Which makes the protected version suitable here.
5680 	 * The context lock guarantees that.
5681 	 */
5682 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5683 					  lockdep_is_held(&event->ctx->lock));
5684 	if (!hlist)
5685 		return NULL;
5686 
5687 	return __find_swevent_head(hlist, type, event_id);
5688 }
5689 
5690 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5691 				    u64 nr,
5692 				    struct perf_sample_data *data,
5693 				    struct pt_regs *regs)
5694 {
5695 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5696 	struct perf_event *event;
5697 	struct hlist_head *head;
5698 
5699 	rcu_read_lock();
5700 	head = find_swevent_head_rcu(swhash, type, event_id);
5701 	if (!head)
5702 		goto end;
5703 
5704 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5705 		if (perf_swevent_match(event, type, event_id, data, regs))
5706 			perf_swevent_event(event, nr, data, regs);
5707 	}
5708 end:
5709 	rcu_read_unlock();
5710 }
5711 
5712 int perf_swevent_get_recursion_context(void)
5713 {
5714 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5715 
5716 	return get_recursion_context(swhash->recursion);
5717 }
5718 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5719 
5720 inline void perf_swevent_put_recursion_context(int rctx)
5721 {
5722 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5723 
5724 	put_recursion_context(swhash->recursion, rctx);
5725 }
5726 
5727 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5728 {
5729 	struct perf_sample_data data;
5730 	int rctx;
5731 
5732 	preempt_disable_notrace();
5733 	rctx = perf_swevent_get_recursion_context();
5734 	if (rctx < 0)
5735 		return;
5736 
5737 	perf_sample_data_init(&data, addr, 0);
5738 
5739 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5740 
5741 	perf_swevent_put_recursion_context(rctx);
5742 	preempt_enable_notrace();
5743 }
5744 
5745 static void perf_swevent_read(struct perf_event *event)
5746 {
5747 }
5748 
5749 static int perf_swevent_add(struct perf_event *event, int flags)
5750 {
5751 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5752 	struct hw_perf_event *hwc = &event->hw;
5753 	struct hlist_head *head;
5754 
5755 	if (is_sampling_event(event)) {
5756 		hwc->last_period = hwc->sample_period;
5757 		perf_swevent_set_period(event);
5758 	}
5759 
5760 	hwc->state = !(flags & PERF_EF_START);
5761 
5762 	head = find_swevent_head(swhash, event);
5763 	if (!head) {
5764 		/*
5765 		 * We can race with cpu hotplug code. Do not
5766 		 * WARN if the cpu just got unplugged.
5767 		 */
5768 		WARN_ON_ONCE(swhash->online);
5769 		return -EINVAL;
5770 	}
5771 
5772 	hlist_add_head_rcu(&event->hlist_entry, head);
5773 
5774 	return 0;
5775 }
5776 
5777 static void perf_swevent_del(struct perf_event *event, int flags)
5778 {
5779 	hlist_del_rcu(&event->hlist_entry);
5780 }
5781 
5782 static void perf_swevent_start(struct perf_event *event, int flags)
5783 {
5784 	event->hw.state = 0;
5785 }
5786 
5787 static void perf_swevent_stop(struct perf_event *event, int flags)
5788 {
5789 	event->hw.state = PERF_HES_STOPPED;
5790 }
5791 
5792 /* Deref the hlist from the update side */
5793 static inline struct swevent_hlist *
5794 swevent_hlist_deref(struct swevent_htable *swhash)
5795 {
5796 	return rcu_dereference_protected(swhash->swevent_hlist,
5797 					 lockdep_is_held(&swhash->hlist_mutex));
5798 }
5799 
5800 static void swevent_hlist_release(struct swevent_htable *swhash)
5801 {
5802 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5803 
5804 	if (!hlist)
5805 		return;
5806 
5807 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5808 	kfree_rcu(hlist, rcu_head);
5809 }
5810 
5811 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5812 {
5813 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5814 
5815 	mutex_lock(&swhash->hlist_mutex);
5816 
5817 	if (!--swhash->hlist_refcount)
5818 		swevent_hlist_release(swhash);
5819 
5820 	mutex_unlock(&swhash->hlist_mutex);
5821 }
5822 
5823 static void swevent_hlist_put(struct perf_event *event)
5824 {
5825 	int cpu;
5826 
5827 	for_each_possible_cpu(cpu)
5828 		swevent_hlist_put_cpu(event, cpu);
5829 }
5830 
5831 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5832 {
5833 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5834 	int err = 0;
5835 
5836 	mutex_lock(&swhash->hlist_mutex);
5837 
5838 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5839 		struct swevent_hlist *hlist;
5840 
5841 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5842 		if (!hlist) {
5843 			err = -ENOMEM;
5844 			goto exit;
5845 		}
5846 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5847 	}
5848 	swhash->hlist_refcount++;
5849 exit:
5850 	mutex_unlock(&swhash->hlist_mutex);
5851 
5852 	return err;
5853 }
5854 
5855 static int swevent_hlist_get(struct perf_event *event)
5856 {
5857 	int err;
5858 	int cpu, failed_cpu;
5859 
5860 	get_online_cpus();
5861 	for_each_possible_cpu(cpu) {
5862 		err = swevent_hlist_get_cpu(event, cpu);
5863 		if (err) {
5864 			failed_cpu = cpu;
5865 			goto fail;
5866 		}
5867 	}
5868 	put_online_cpus();
5869 
5870 	return 0;
5871 fail:
5872 	for_each_possible_cpu(cpu) {
5873 		if (cpu == failed_cpu)
5874 			break;
5875 		swevent_hlist_put_cpu(event, cpu);
5876 	}
5877 
5878 	put_online_cpus();
5879 	return err;
5880 }
5881 
5882 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5883 
5884 static void sw_perf_event_destroy(struct perf_event *event)
5885 {
5886 	u64 event_id = event->attr.config;
5887 
5888 	WARN_ON(event->parent);
5889 
5890 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5891 	swevent_hlist_put(event);
5892 }
5893 
5894 static int perf_swevent_init(struct perf_event *event)
5895 {
5896 	u64 event_id = event->attr.config;
5897 
5898 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5899 		return -ENOENT;
5900 
5901 	/*
5902 	 * no branch sampling for software events
5903 	 */
5904 	if (has_branch_stack(event))
5905 		return -EOPNOTSUPP;
5906 
5907 	switch (event_id) {
5908 	case PERF_COUNT_SW_CPU_CLOCK:
5909 	case PERF_COUNT_SW_TASK_CLOCK:
5910 		return -ENOENT;
5911 
5912 	default:
5913 		break;
5914 	}
5915 
5916 	if (event_id >= PERF_COUNT_SW_MAX)
5917 		return -ENOENT;
5918 
5919 	if (!event->parent) {
5920 		int err;
5921 
5922 		err = swevent_hlist_get(event);
5923 		if (err)
5924 			return err;
5925 
5926 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5927 		event->destroy = sw_perf_event_destroy;
5928 	}
5929 
5930 	return 0;
5931 }
5932 
5933 static int perf_swevent_event_idx(struct perf_event *event)
5934 {
5935 	return 0;
5936 }
5937 
5938 static struct pmu perf_swevent = {
5939 	.task_ctx_nr	= perf_sw_context,
5940 
5941 	.event_init	= perf_swevent_init,
5942 	.add		= perf_swevent_add,
5943 	.del		= perf_swevent_del,
5944 	.start		= perf_swevent_start,
5945 	.stop		= perf_swevent_stop,
5946 	.read		= perf_swevent_read,
5947 
5948 	.event_idx	= perf_swevent_event_idx,
5949 };
5950 
5951 #ifdef CONFIG_EVENT_TRACING
5952 
5953 static int perf_tp_filter_match(struct perf_event *event,
5954 				struct perf_sample_data *data)
5955 {
5956 	void *record = data->raw->data;
5957 
5958 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5959 		return 1;
5960 	return 0;
5961 }
5962 
5963 static int perf_tp_event_match(struct perf_event *event,
5964 				struct perf_sample_data *data,
5965 				struct pt_regs *regs)
5966 {
5967 	if (event->hw.state & PERF_HES_STOPPED)
5968 		return 0;
5969 	/*
5970 	 * All tracepoints are from kernel-space.
5971 	 */
5972 	if (event->attr.exclude_kernel)
5973 		return 0;
5974 
5975 	if (!perf_tp_filter_match(event, data))
5976 		return 0;
5977 
5978 	return 1;
5979 }
5980 
5981 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5982 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5983 		   struct task_struct *task)
5984 {
5985 	struct perf_sample_data data;
5986 	struct perf_event *event;
5987 
5988 	struct perf_raw_record raw = {
5989 		.size = entry_size,
5990 		.data = record,
5991 	};
5992 
5993 	perf_sample_data_init(&data, addr, 0);
5994 	data.raw = &raw;
5995 
5996 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5997 		if (perf_tp_event_match(event, &data, regs))
5998 			perf_swevent_event(event, count, &data, regs);
5999 	}
6000 
6001 	/*
6002 	 * If we got specified a target task, also iterate its context and
6003 	 * deliver this event there too.
6004 	 */
6005 	if (task && task != current) {
6006 		struct perf_event_context *ctx;
6007 		struct trace_entry *entry = record;
6008 
6009 		rcu_read_lock();
6010 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6011 		if (!ctx)
6012 			goto unlock;
6013 
6014 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6015 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6016 				continue;
6017 			if (event->attr.config != entry->type)
6018 				continue;
6019 			if (perf_tp_event_match(event, &data, regs))
6020 				perf_swevent_event(event, count, &data, regs);
6021 		}
6022 unlock:
6023 		rcu_read_unlock();
6024 	}
6025 
6026 	perf_swevent_put_recursion_context(rctx);
6027 }
6028 EXPORT_SYMBOL_GPL(perf_tp_event);
6029 
6030 static void tp_perf_event_destroy(struct perf_event *event)
6031 {
6032 	perf_trace_destroy(event);
6033 }
6034 
6035 static int perf_tp_event_init(struct perf_event *event)
6036 {
6037 	int err;
6038 
6039 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6040 		return -ENOENT;
6041 
6042 	/*
6043 	 * no branch sampling for tracepoint events
6044 	 */
6045 	if (has_branch_stack(event))
6046 		return -EOPNOTSUPP;
6047 
6048 	err = perf_trace_init(event);
6049 	if (err)
6050 		return err;
6051 
6052 	event->destroy = tp_perf_event_destroy;
6053 
6054 	return 0;
6055 }
6056 
6057 static struct pmu perf_tracepoint = {
6058 	.task_ctx_nr	= perf_sw_context,
6059 
6060 	.event_init	= perf_tp_event_init,
6061 	.add		= perf_trace_add,
6062 	.del		= perf_trace_del,
6063 	.start		= perf_swevent_start,
6064 	.stop		= perf_swevent_stop,
6065 	.read		= perf_swevent_read,
6066 
6067 	.event_idx	= perf_swevent_event_idx,
6068 };
6069 
6070 static inline void perf_tp_register(void)
6071 {
6072 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6073 }
6074 
6075 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6076 {
6077 	char *filter_str;
6078 	int ret;
6079 
6080 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6081 		return -EINVAL;
6082 
6083 	filter_str = strndup_user(arg, PAGE_SIZE);
6084 	if (IS_ERR(filter_str))
6085 		return PTR_ERR(filter_str);
6086 
6087 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6088 
6089 	kfree(filter_str);
6090 	return ret;
6091 }
6092 
6093 static void perf_event_free_filter(struct perf_event *event)
6094 {
6095 	ftrace_profile_free_filter(event);
6096 }
6097 
6098 #else
6099 
6100 static inline void perf_tp_register(void)
6101 {
6102 }
6103 
6104 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6105 {
6106 	return -ENOENT;
6107 }
6108 
6109 static void perf_event_free_filter(struct perf_event *event)
6110 {
6111 }
6112 
6113 #endif /* CONFIG_EVENT_TRACING */
6114 
6115 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6116 void perf_bp_event(struct perf_event *bp, void *data)
6117 {
6118 	struct perf_sample_data sample;
6119 	struct pt_regs *regs = data;
6120 
6121 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6122 
6123 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6124 		perf_swevent_event(bp, 1, &sample, regs);
6125 }
6126 #endif
6127 
6128 /*
6129  * hrtimer based swevent callback
6130  */
6131 
6132 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6133 {
6134 	enum hrtimer_restart ret = HRTIMER_RESTART;
6135 	struct perf_sample_data data;
6136 	struct pt_regs *regs;
6137 	struct perf_event *event;
6138 	u64 period;
6139 
6140 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6141 
6142 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6143 		return HRTIMER_NORESTART;
6144 
6145 	event->pmu->read(event);
6146 
6147 	perf_sample_data_init(&data, 0, event->hw.last_period);
6148 	regs = get_irq_regs();
6149 
6150 	if (regs && !perf_exclude_event(event, regs)) {
6151 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6152 			if (__perf_event_overflow(event, 1, &data, regs))
6153 				ret = HRTIMER_NORESTART;
6154 	}
6155 
6156 	period = max_t(u64, 10000, event->hw.sample_period);
6157 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6158 
6159 	return ret;
6160 }
6161 
6162 static void perf_swevent_start_hrtimer(struct perf_event *event)
6163 {
6164 	struct hw_perf_event *hwc = &event->hw;
6165 	s64 period;
6166 
6167 	if (!is_sampling_event(event))
6168 		return;
6169 
6170 	period = local64_read(&hwc->period_left);
6171 	if (period) {
6172 		if (period < 0)
6173 			period = 10000;
6174 
6175 		local64_set(&hwc->period_left, 0);
6176 	} else {
6177 		period = max_t(u64, 10000, hwc->sample_period);
6178 	}
6179 	__hrtimer_start_range_ns(&hwc->hrtimer,
6180 				ns_to_ktime(period), 0,
6181 				HRTIMER_MODE_REL_PINNED, 0);
6182 }
6183 
6184 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6185 {
6186 	struct hw_perf_event *hwc = &event->hw;
6187 
6188 	if (is_sampling_event(event)) {
6189 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6190 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6191 
6192 		hrtimer_cancel(&hwc->hrtimer);
6193 	}
6194 }
6195 
6196 static void perf_swevent_init_hrtimer(struct perf_event *event)
6197 {
6198 	struct hw_perf_event *hwc = &event->hw;
6199 
6200 	if (!is_sampling_event(event))
6201 		return;
6202 
6203 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6204 	hwc->hrtimer.function = perf_swevent_hrtimer;
6205 
6206 	/*
6207 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6208 	 * mapping and avoid the whole period adjust feedback stuff.
6209 	 */
6210 	if (event->attr.freq) {
6211 		long freq = event->attr.sample_freq;
6212 
6213 		event->attr.sample_period = NSEC_PER_SEC / freq;
6214 		hwc->sample_period = event->attr.sample_period;
6215 		local64_set(&hwc->period_left, hwc->sample_period);
6216 		hwc->last_period = hwc->sample_period;
6217 		event->attr.freq = 0;
6218 	}
6219 }
6220 
6221 /*
6222  * Software event: cpu wall time clock
6223  */
6224 
6225 static void cpu_clock_event_update(struct perf_event *event)
6226 {
6227 	s64 prev;
6228 	u64 now;
6229 
6230 	now = local_clock();
6231 	prev = local64_xchg(&event->hw.prev_count, now);
6232 	local64_add(now - prev, &event->count);
6233 }
6234 
6235 static void cpu_clock_event_start(struct perf_event *event, int flags)
6236 {
6237 	local64_set(&event->hw.prev_count, local_clock());
6238 	perf_swevent_start_hrtimer(event);
6239 }
6240 
6241 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6242 {
6243 	perf_swevent_cancel_hrtimer(event);
6244 	cpu_clock_event_update(event);
6245 }
6246 
6247 static int cpu_clock_event_add(struct perf_event *event, int flags)
6248 {
6249 	if (flags & PERF_EF_START)
6250 		cpu_clock_event_start(event, flags);
6251 
6252 	return 0;
6253 }
6254 
6255 static void cpu_clock_event_del(struct perf_event *event, int flags)
6256 {
6257 	cpu_clock_event_stop(event, flags);
6258 }
6259 
6260 static void cpu_clock_event_read(struct perf_event *event)
6261 {
6262 	cpu_clock_event_update(event);
6263 }
6264 
6265 static int cpu_clock_event_init(struct perf_event *event)
6266 {
6267 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6268 		return -ENOENT;
6269 
6270 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6271 		return -ENOENT;
6272 
6273 	/*
6274 	 * no branch sampling for software events
6275 	 */
6276 	if (has_branch_stack(event))
6277 		return -EOPNOTSUPP;
6278 
6279 	perf_swevent_init_hrtimer(event);
6280 
6281 	return 0;
6282 }
6283 
6284 static struct pmu perf_cpu_clock = {
6285 	.task_ctx_nr	= perf_sw_context,
6286 
6287 	.event_init	= cpu_clock_event_init,
6288 	.add		= cpu_clock_event_add,
6289 	.del		= cpu_clock_event_del,
6290 	.start		= cpu_clock_event_start,
6291 	.stop		= cpu_clock_event_stop,
6292 	.read		= cpu_clock_event_read,
6293 
6294 	.event_idx	= perf_swevent_event_idx,
6295 };
6296 
6297 /*
6298  * Software event: task time clock
6299  */
6300 
6301 static void task_clock_event_update(struct perf_event *event, u64 now)
6302 {
6303 	u64 prev;
6304 	s64 delta;
6305 
6306 	prev = local64_xchg(&event->hw.prev_count, now);
6307 	delta = now - prev;
6308 	local64_add(delta, &event->count);
6309 }
6310 
6311 static void task_clock_event_start(struct perf_event *event, int flags)
6312 {
6313 	local64_set(&event->hw.prev_count, event->ctx->time);
6314 	perf_swevent_start_hrtimer(event);
6315 }
6316 
6317 static void task_clock_event_stop(struct perf_event *event, int flags)
6318 {
6319 	perf_swevent_cancel_hrtimer(event);
6320 	task_clock_event_update(event, event->ctx->time);
6321 }
6322 
6323 static int task_clock_event_add(struct perf_event *event, int flags)
6324 {
6325 	if (flags & PERF_EF_START)
6326 		task_clock_event_start(event, flags);
6327 
6328 	return 0;
6329 }
6330 
6331 static void task_clock_event_del(struct perf_event *event, int flags)
6332 {
6333 	task_clock_event_stop(event, PERF_EF_UPDATE);
6334 }
6335 
6336 static void task_clock_event_read(struct perf_event *event)
6337 {
6338 	u64 now = perf_clock();
6339 	u64 delta = now - event->ctx->timestamp;
6340 	u64 time = event->ctx->time + delta;
6341 
6342 	task_clock_event_update(event, time);
6343 }
6344 
6345 static int task_clock_event_init(struct perf_event *event)
6346 {
6347 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6348 		return -ENOENT;
6349 
6350 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6351 		return -ENOENT;
6352 
6353 	/*
6354 	 * no branch sampling for software events
6355 	 */
6356 	if (has_branch_stack(event))
6357 		return -EOPNOTSUPP;
6358 
6359 	perf_swevent_init_hrtimer(event);
6360 
6361 	return 0;
6362 }
6363 
6364 static struct pmu perf_task_clock = {
6365 	.task_ctx_nr	= perf_sw_context,
6366 
6367 	.event_init	= task_clock_event_init,
6368 	.add		= task_clock_event_add,
6369 	.del		= task_clock_event_del,
6370 	.start		= task_clock_event_start,
6371 	.stop		= task_clock_event_stop,
6372 	.read		= task_clock_event_read,
6373 
6374 	.event_idx	= perf_swevent_event_idx,
6375 };
6376 
6377 static void perf_pmu_nop_void(struct pmu *pmu)
6378 {
6379 }
6380 
6381 static int perf_pmu_nop_int(struct pmu *pmu)
6382 {
6383 	return 0;
6384 }
6385 
6386 static void perf_pmu_start_txn(struct pmu *pmu)
6387 {
6388 	perf_pmu_disable(pmu);
6389 }
6390 
6391 static int perf_pmu_commit_txn(struct pmu *pmu)
6392 {
6393 	perf_pmu_enable(pmu);
6394 	return 0;
6395 }
6396 
6397 static void perf_pmu_cancel_txn(struct pmu *pmu)
6398 {
6399 	perf_pmu_enable(pmu);
6400 }
6401 
6402 static int perf_event_idx_default(struct perf_event *event)
6403 {
6404 	return event->hw.idx + 1;
6405 }
6406 
6407 /*
6408  * Ensures all contexts with the same task_ctx_nr have the same
6409  * pmu_cpu_context too.
6410  */
6411 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6412 {
6413 	struct pmu *pmu;
6414 
6415 	if (ctxn < 0)
6416 		return NULL;
6417 
6418 	list_for_each_entry(pmu, &pmus, entry) {
6419 		if (pmu->task_ctx_nr == ctxn)
6420 			return pmu->pmu_cpu_context;
6421 	}
6422 
6423 	return NULL;
6424 }
6425 
6426 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6427 {
6428 	int cpu;
6429 
6430 	for_each_possible_cpu(cpu) {
6431 		struct perf_cpu_context *cpuctx;
6432 
6433 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6434 
6435 		if (cpuctx->unique_pmu == old_pmu)
6436 			cpuctx->unique_pmu = pmu;
6437 	}
6438 }
6439 
6440 static void free_pmu_context(struct pmu *pmu)
6441 {
6442 	struct pmu *i;
6443 
6444 	mutex_lock(&pmus_lock);
6445 	/*
6446 	 * Like a real lame refcount.
6447 	 */
6448 	list_for_each_entry(i, &pmus, entry) {
6449 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6450 			update_pmu_context(i, pmu);
6451 			goto out;
6452 		}
6453 	}
6454 
6455 	free_percpu(pmu->pmu_cpu_context);
6456 out:
6457 	mutex_unlock(&pmus_lock);
6458 }
6459 static struct idr pmu_idr;
6460 
6461 static ssize_t
6462 type_show(struct device *dev, struct device_attribute *attr, char *page)
6463 {
6464 	struct pmu *pmu = dev_get_drvdata(dev);
6465 
6466 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6467 }
6468 static DEVICE_ATTR_RO(type);
6469 
6470 static ssize_t
6471 perf_event_mux_interval_ms_show(struct device *dev,
6472 				struct device_attribute *attr,
6473 				char *page)
6474 {
6475 	struct pmu *pmu = dev_get_drvdata(dev);
6476 
6477 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6478 }
6479 
6480 static ssize_t
6481 perf_event_mux_interval_ms_store(struct device *dev,
6482 				 struct device_attribute *attr,
6483 				 const char *buf, size_t count)
6484 {
6485 	struct pmu *pmu = dev_get_drvdata(dev);
6486 	int timer, cpu, ret;
6487 
6488 	ret = kstrtoint(buf, 0, &timer);
6489 	if (ret)
6490 		return ret;
6491 
6492 	if (timer < 1)
6493 		return -EINVAL;
6494 
6495 	/* same value, noting to do */
6496 	if (timer == pmu->hrtimer_interval_ms)
6497 		return count;
6498 
6499 	pmu->hrtimer_interval_ms = timer;
6500 
6501 	/* update all cpuctx for this PMU */
6502 	for_each_possible_cpu(cpu) {
6503 		struct perf_cpu_context *cpuctx;
6504 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6505 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6506 
6507 		if (hrtimer_active(&cpuctx->hrtimer))
6508 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6509 	}
6510 
6511 	return count;
6512 }
6513 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6514 
6515 static struct attribute *pmu_dev_attrs[] = {
6516 	&dev_attr_type.attr,
6517 	&dev_attr_perf_event_mux_interval_ms.attr,
6518 	NULL,
6519 };
6520 ATTRIBUTE_GROUPS(pmu_dev);
6521 
6522 static int pmu_bus_running;
6523 static struct bus_type pmu_bus = {
6524 	.name		= "event_source",
6525 	.dev_groups	= pmu_dev_groups,
6526 };
6527 
6528 static void pmu_dev_release(struct device *dev)
6529 {
6530 	kfree(dev);
6531 }
6532 
6533 static int pmu_dev_alloc(struct pmu *pmu)
6534 {
6535 	int ret = -ENOMEM;
6536 
6537 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6538 	if (!pmu->dev)
6539 		goto out;
6540 
6541 	pmu->dev->groups = pmu->attr_groups;
6542 	device_initialize(pmu->dev);
6543 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6544 	if (ret)
6545 		goto free_dev;
6546 
6547 	dev_set_drvdata(pmu->dev, pmu);
6548 	pmu->dev->bus = &pmu_bus;
6549 	pmu->dev->release = pmu_dev_release;
6550 	ret = device_add(pmu->dev);
6551 	if (ret)
6552 		goto free_dev;
6553 
6554 out:
6555 	return ret;
6556 
6557 free_dev:
6558 	put_device(pmu->dev);
6559 	goto out;
6560 }
6561 
6562 static struct lock_class_key cpuctx_mutex;
6563 static struct lock_class_key cpuctx_lock;
6564 
6565 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6566 {
6567 	int cpu, ret;
6568 
6569 	mutex_lock(&pmus_lock);
6570 	ret = -ENOMEM;
6571 	pmu->pmu_disable_count = alloc_percpu(int);
6572 	if (!pmu->pmu_disable_count)
6573 		goto unlock;
6574 
6575 	pmu->type = -1;
6576 	if (!name)
6577 		goto skip_type;
6578 	pmu->name = name;
6579 
6580 	if (type < 0) {
6581 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6582 		if (type < 0) {
6583 			ret = type;
6584 			goto free_pdc;
6585 		}
6586 	}
6587 	pmu->type = type;
6588 
6589 	if (pmu_bus_running) {
6590 		ret = pmu_dev_alloc(pmu);
6591 		if (ret)
6592 			goto free_idr;
6593 	}
6594 
6595 skip_type:
6596 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6597 	if (pmu->pmu_cpu_context)
6598 		goto got_cpu_context;
6599 
6600 	ret = -ENOMEM;
6601 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6602 	if (!pmu->pmu_cpu_context)
6603 		goto free_dev;
6604 
6605 	for_each_possible_cpu(cpu) {
6606 		struct perf_cpu_context *cpuctx;
6607 
6608 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6609 		__perf_event_init_context(&cpuctx->ctx);
6610 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6611 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6612 		cpuctx->ctx.type = cpu_context;
6613 		cpuctx->ctx.pmu = pmu;
6614 
6615 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6616 
6617 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6618 		cpuctx->unique_pmu = pmu;
6619 	}
6620 
6621 got_cpu_context:
6622 	if (!pmu->start_txn) {
6623 		if (pmu->pmu_enable) {
6624 			/*
6625 			 * If we have pmu_enable/pmu_disable calls, install
6626 			 * transaction stubs that use that to try and batch
6627 			 * hardware accesses.
6628 			 */
6629 			pmu->start_txn  = perf_pmu_start_txn;
6630 			pmu->commit_txn = perf_pmu_commit_txn;
6631 			pmu->cancel_txn = perf_pmu_cancel_txn;
6632 		} else {
6633 			pmu->start_txn  = perf_pmu_nop_void;
6634 			pmu->commit_txn = perf_pmu_nop_int;
6635 			pmu->cancel_txn = perf_pmu_nop_void;
6636 		}
6637 	}
6638 
6639 	if (!pmu->pmu_enable) {
6640 		pmu->pmu_enable  = perf_pmu_nop_void;
6641 		pmu->pmu_disable = perf_pmu_nop_void;
6642 	}
6643 
6644 	if (!pmu->event_idx)
6645 		pmu->event_idx = perf_event_idx_default;
6646 
6647 	list_add_rcu(&pmu->entry, &pmus);
6648 	ret = 0;
6649 unlock:
6650 	mutex_unlock(&pmus_lock);
6651 
6652 	return ret;
6653 
6654 free_dev:
6655 	device_del(pmu->dev);
6656 	put_device(pmu->dev);
6657 
6658 free_idr:
6659 	if (pmu->type >= PERF_TYPE_MAX)
6660 		idr_remove(&pmu_idr, pmu->type);
6661 
6662 free_pdc:
6663 	free_percpu(pmu->pmu_disable_count);
6664 	goto unlock;
6665 }
6666 EXPORT_SYMBOL_GPL(perf_pmu_register);
6667 
6668 void perf_pmu_unregister(struct pmu *pmu)
6669 {
6670 	mutex_lock(&pmus_lock);
6671 	list_del_rcu(&pmu->entry);
6672 	mutex_unlock(&pmus_lock);
6673 
6674 	/*
6675 	 * We dereference the pmu list under both SRCU and regular RCU, so
6676 	 * synchronize against both of those.
6677 	 */
6678 	synchronize_srcu(&pmus_srcu);
6679 	synchronize_rcu();
6680 
6681 	free_percpu(pmu->pmu_disable_count);
6682 	if (pmu->type >= PERF_TYPE_MAX)
6683 		idr_remove(&pmu_idr, pmu->type);
6684 	device_del(pmu->dev);
6685 	put_device(pmu->dev);
6686 	free_pmu_context(pmu);
6687 }
6688 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6689 
6690 struct pmu *perf_init_event(struct perf_event *event)
6691 {
6692 	struct pmu *pmu = NULL;
6693 	int idx;
6694 	int ret;
6695 
6696 	idx = srcu_read_lock(&pmus_srcu);
6697 
6698 	rcu_read_lock();
6699 	pmu = idr_find(&pmu_idr, event->attr.type);
6700 	rcu_read_unlock();
6701 	if (pmu) {
6702 		if (!try_module_get(pmu->module)) {
6703 			pmu = ERR_PTR(-ENODEV);
6704 			goto unlock;
6705 		}
6706 		event->pmu = pmu;
6707 		ret = pmu->event_init(event);
6708 		if (ret)
6709 			pmu = ERR_PTR(ret);
6710 		goto unlock;
6711 	}
6712 
6713 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6714 		if (!try_module_get(pmu->module)) {
6715 			pmu = ERR_PTR(-ENODEV);
6716 			goto unlock;
6717 		}
6718 		event->pmu = pmu;
6719 		ret = pmu->event_init(event);
6720 		if (!ret)
6721 			goto unlock;
6722 
6723 		if (ret != -ENOENT) {
6724 			pmu = ERR_PTR(ret);
6725 			goto unlock;
6726 		}
6727 	}
6728 	pmu = ERR_PTR(-ENOENT);
6729 unlock:
6730 	srcu_read_unlock(&pmus_srcu, idx);
6731 
6732 	return pmu;
6733 }
6734 
6735 static void account_event_cpu(struct perf_event *event, int cpu)
6736 {
6737 	if (event->parent)
6738 		return;
6739 
6740 	if (has_branch_stack(event)) {
6741 		if (!(event->attach_state & PERF_ATTACH_TASK))
6742 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6743 	}
6744 	if (is_cgroup_event(event))
6745 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6746 }
6747 
6748 static void account_event(struct perf_event *event)
6749 {
6750 	if (event->parent)
6751 		return;
6752 
6753 	if (event->attach_state & PERF_ATTACH_TASK)
6754 		static_key_slow_inc(&perf_sched_events.key);
6755 	if (event->attr.mmap || event->attr.mmap_data)
6756 		atomic_inc(&nr_mmap_events);
6757 	if (event->attr.comm)
6758 		atomic_inc(&nr_comm_events);
6759 	if (event->attr.task)
6760 		atomic_inc(&nr_task_events);
6761 	if (event->attr.freq) {
6762 		if (atomic_inc_return(&nr_freq_events) == 1)
6763 			tick_nohz_full_kick_all();
6764 	}
6765 	if (has_branch_stack(event))
6766 		static_key_slow_inc(&perf_sched_events.key);
6767 	if (is_cgroup_event(event))
6768 		static_key_slow_inc(&perf_sched_events.key);
6769 
6770 	account_event_cpu(event, event->cpu);
6771 }
6772 
6773 /*
6774  * Allocate and initialize a event structure
6775  */
6776 static struct perf_event *
6777 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6778 		 struct task_struct *task,
6779 		 struct perf_event *group_leader,
6780 		 struct perf_event *parent_event,
6781 		 perf_overflow_handler_t overflow_handler,
6782 		 void *context)
6783 {
6784 	struct pmu *pmu;
6785 	struct perf_event *event;
6786 	struct hw_perf_event *hwc;
6787 	long err = -EINVAL;
6788 
6789 	if ((unsigned)cpu >= nr_cpu_ids) {
6790 		if (!task || cpu != -1)
6791 			return ERR_PTR(-EINVAL);
6792 	}
6793 
6794 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6795 	if (!event)
6796 		return ERR_PTR(-ENOMEM);
6797 
6798 	/*
6799 	 * Single events are their own group leaders, with an
6800 	 * empty sibling list:
6801 	 */
6802 	if (!group_leader)
6803 		group_leader = event;
6804 
6805 	mutex_init(&event->child_mutex);
6806 	INIT_LIST_HEAD(&event->child_list);
6807 
6808 	INIT_LIST_HEAD(&event->group_entry);
6809 	INIT_LIST_HEAD(&event->event_entry);
6810 	INIT_LIST_HEAD(&event->sibling_list);
6811 	INIT_LIST_HEAD(&event->rb_entry);
6812 	INIT_LIST_HEAD(&event->active_entry);
6813 	INIT_HLIST_NODE(&event->hlist_entry);
6814 
6815 
6816 	init_waitqueue_head(&event->waitq);
6817 	init_irq_work(&event->pending, perf_pending_event);
6818 
6819 	mutex_init(&event->mmap_mutex);
6820 
6821 	atomic_long_set(&event->refcount, 1);
6822 	event->cpu		= cpu;
6823 	event->attr		= *attr;
6824 	event->group_leader	= group_leader;
6825 	event->pmu		= NULL;
6826 	event->oncpu		= -1;
6827 
6828 	event->parent		= parent_event;
6829 
6830 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6831 	event->id		= atomic64_inc_return(&perf_event_id);
6832 
6833 	event->state		= PERF_EVENT_STATE_INACTIVE;
6834 
6835 	if (task) {
6836 		event->attach_state = PERF_ATTACH_TASK;
6837 
6838 		if (attr->type == PERF_TYPE_TRACEPOINT)
6839 			event->hw.tp_target = task;
6840 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6841 		/*
6842 		 * hw_breakpoint is a bit difficult here..
6843 		 */
6844 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6845 			event->hw.bp_target = task;
6846 #endif
6847 	}
6848 
6849 	if (!overflow_handler && parent_event) {
6850 		overflow_handler = parent_event->overflow_handler;
6851 		context = parent_event->overflow_handler_context;
6852 	}
6853 
6854 	event->overflow_handler	= overflow_handler;
6855 	event->overflow_handler_context = context;
6856 
6857 	perf_event__state_init(event);
6858 
6859 	pmu = NULL;
6860 
6861 	hwc = &event->hw;
6862 	hwc->sample_period = attr->sample_period;
6863 	if (attr->freq && attr->sample_freq)
6864 		hwc->sample_period = 1;
6865 	hwc->last_period = hwc->sample_period;
6866 
6867 	local64_set(&hwc->period_left, hwc->sample_period);
6868 
6869 	/*
6870 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6871 	 */
6872 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6873 		goto err_ns;
6874 
6875 	pmu = perf_init_event(event);
6876 	if (!pmu)
6877 		goto err_ns;
6878 	else if (IS_ERR(pmu)) {
6879 		err = PTR_ERR(pmu);
6880 		goto err_ns;
6881 	}
6882 
6883 	if (!event->parent) {
6884 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6885 			err = get_callchain_buffers();
6886 			if (err)
6887 				goto err_pmu;
6888 		}
6889 	}
6890 
6891 	return event;
6892 
6893 err_pmu:
6894 	if (event->destroy)
6895 		event->destroy(event);
6896 	module_put(pmu->module);
6897 err_ns:
6898 	if (event->ns)
6899 		put_pid_ns(event->ns);
6900 	kfree(event);
6901 
6902 	return ERR_PTR(err);
6903 }
6904 
6905 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6906 			  struct perf_event_attr *attr)
6907 {
6908 	u32 size;
6909 	int ret;
6910 
6911 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6912 		return -EFAULT;
6913 
6914 	/*
6915 	 * zero the full structure, so that a short copy will be nice.
6916 	 */
6917 	memset(attr, 0, sizeof(*attr));
6918 
6919 	ret = get_user(size, &uattr->size);
6920 	if (ret)
6921 		return ret;
6922 
6923 	if (size > PAGE_SIZE)	/* silly large */
6924 		goto err_size;
6925 
6926 	if (!size)		/* abi compat */
6927 		size = PERF_ATTR_SIZE_VER0;
6928 
6929 	if (size < PERF_ATTR_SIZE_VER0)
6930 		goto err_size;
6931 
6932 	/*
6933 	 * If we're handed a bigger struct than we know of,
6934 	 * ensure all the unknown bits are 0 - i.e. new
6935 	 * user-space does not rely on any kernel feature
6936 	 * extensions we dont know about yet.
6937 	 */
6938 	if (size > sizeof(*attr)) {
6939 		unsigned char __user *addr;
6940 		unsigned char __user *end;
6941 		unsigned char val;
6942 
6943 		addr = (void __user *)uattr + sizeof(*attr);
6944 		end  = (void __user *)uattr + size;
6945 
6946 		for (; addr < end; addr++) {
6947 			ret = get_user(val, addr);
6948 			if (ret)
6949 				return ret;
6950 			if (val)
6951 				goto err_size;
6952 		}
6953 		size = sizeof(*attr);
6954 	}
6955 
6956 	ret = copy_from_user(attr, uattr, size);
6957 	if (ret)
6958 		return -EFAULT;
6959 
6960 	if (attr->__reserved_1)
6961 		return -EINVAL;
6962 
6963 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6964 		return -EINVAL;
6965 
6966 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6967 		return -EINVAL;
6968 
6969 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6970 		u64 mask = attr->branch_sample_type;
6971 
6972 		/* only using defined bits */
6973 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6974 			return -EINVAL;
6975 
6976 		/* at least one branch bit must be set */
6977 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6978 			return -EINVAL;
6979 
6980 		/* propagate priv level, when not set for branch */
6981 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6982 
6983 			/* exclude_kernel checked on syscall entry */
6984 			if (!attr->exclude_kernel)
6985 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6986 
6987 			if (!attr->exclude_user)
6988 				mask |= PERF_SAMPLE_BRANCH_USER;
6989 
6990 			if (!attr->exclude_hv)
6991 				mask |= PERF_SAMPLE_BRANCH_HV;
6992 			/*
6993 			 * adjust user setting (for HW filter setup)
6994 			 */
6995 			attr->branch_sample_type = mask;
6996 		}
6997 		/* privileged levels capture (kernel, hv): check permissions */
6998 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6999 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7000 			return -EACCES;
7001 	}
7002 
7003 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7004 		ret = perf_reg_validate(attr->sample_regs_user);
7005 		if (ret)
7006 			return ret;
7007 	}
7008 
7009 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7010 		if (!arch_perf_have_user_stack_dump())
7011 			return -ENOSYS;
7012 
7013 		/*
7014 		 * We have __u32 type for the size, but so far
7015 		 * we can only use __u16 as maximum due to the
7016 		 * __u16 sample size limit.
7017 		 */
7018 		if (attr->sample_stack_user >= USHRT_MAX)
7019 			ret = -EINVAL;
7020 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7021 			ret = -EINVAL;
7022 	}
7023 
7024 out:
7025 	return ret;
7026 
7027 err_size:
7028 	put_user(sizeof(*attr), &uattr->size);
7029 	ret = -E2BIG;
7030 	goto out;
7031 }
7032 
7033 static int
7034 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7035 {
7036 	struct ring_buffer *rb = NULL;
7037 	int ret = -EINVAL;
7038 
7039 	if (!output_event)
7040 		goto set;
7041 
7042 	/* don't allow circular references */
7043 	if (event == output_event)
7044 		goto out;
7045 
7046 	/*
7047 	 * Don't allow cross-cpu buffers
7048 	 */
7049 	if (output_event->cpu != event->cpu)
7050 		goto out;
7051 
7052 	/*
7053 	 * If its not a per-cpu rb, it must be the same task.
7054 	 */
7055 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7056 		goto out;
7057 
7058 set:
7059 	mutex_lock(&event->mmap_mutex);
7060 	/* Can't redirect output if we've got an active mmap() */
7061 	if (atomic_read(&event->mmap_count))
7062 		goto unlock;
7063 
7064 	if (output_event) {
7065 		/* get the rb we want to redirect to */
7066 		rb = ring_buffer_get(output_event);
7067 		if (!rb)
7068 			goto unlock;
7069 	}
7070 
7071 	ring_buffer_attach(event, rb);
7072 
7073 	ret = 0;
7074 unlock:
7075 	mutex_unlock(&event->mmap_mutex);
7076 
7077 out:
7078 	return ret;
7079 }
7080 
7081 /**
7082  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7083  *
7084  * @attr_uptr:	event_id type attributes for monitoring/sampling
7085  * @pid:		target pid
7086  * @cpu:		target cpu
7087  * @group_fd:		group leader event fd
7088  */
7089 SYSCALL_DEFINE5(perf_event_open,
7090 		struct perf_event_attr __user *, attr_uptr,
7091 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7092 {
7093 	struct perf_event *group_leader = NULL, *output_event = NULL;
7094 	struct perf_event *event, *sibling;
7095 	struct perf_event_attr attr;
7096 	struct perf_event_context *ctx;
7097 	struct file *event_file = NULL;
7098 	struct fd group = {NULL, 0};
7099 	struct task_struct *task = NULL;
7100 	struct pmu *pmu;
7101 	int event_fd;
7102 	int move_group = 0;
7103 	int err;
7104 	int f_flags = O_RDWR;
7105 
7106 	/* for future expandability... */
7107 	if (flags & ~PERF_FLAG_ALL)
7108 		return -EINVAL;
7109 
7110 	err = perf_copy_attr(attr_uptr, &attr);
7111 	if (err)
7112 		return err;
7113 
7114 	if (!attr.exclude_kernel) {
7115 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7116 			return -EACCES;
7117 	}
7118 
7119 	if (attr.freq) {
7120 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7121 			return -EINVAL;
7122 	} else {
7123 		if (attr.sample_period & (1ULL << 63))
7124 			return -EINVAL;
7125 	}
7126 
7127 	/*
7128 	 * In cgroup mode, the pid argument is used to pass the fd
7129 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7130 	 * designates the cpu on which to monitor threads from that
7131 	 * cgroup.
7132 	 */
7133 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7134 		return -EINVAL;
7135 
7136 	if (flags & PERF_FLAG_FD_CLOEXEC)
7137 		f_flags |= O_CLOEXEC;
7138 
7139 	event_fd = get_unused_fd_flags(f_flags);
7140 	if (event_fd < 0)
7141 		return event_fd;
7142 
7143 	if (group_fd != -1) {
7144 		err = perf_fget_light(group_fd, &group);
7145 		if (err)
7146 			goto err_fd;
7147 		group_leader = group.file->private_data;
7148 		if (flags & PERF_FLAG_FD_OUTPUT)
7149 			output_event = group_leader;
7150 		if (flags & PERF_FLAG_FD_NO_GROUP)
7151 			group_leader = NULL;
7152 	}
7153 
7154 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7155 		task = find_lively_task_by_vpid(pid);
7156 		if (IS_ERR(task)) {
7157 			err = PTR_ERR(task);
7158 			goto err_group_fd;
7159 		}
7160 	}
7161 
7162 	if (task && group_leader &&
7163 	    group_leader->attr.inherit != attr.inherit) {
7164 		err = -EINVAL;
7165 		goto err_task;
7166 	}
7167 
7168 	get_online_cpus();
7169 
7170 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7171 				 NULL, NULL);
7172 	if (IS_ERR(event)) {
7173 		err = PTR_ERR(event);
7174 		goto err_cpus;
7175 	}
7176 
7177 	if (flags & PERF_FLAG_PID_CGROUP) {
7178 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7179 		if (err) {
7180 			__free_event(event);
7181 			goto err_cpus;
7182 		}
7183 	}
7184 
7185 	if (is_sampling_event(event)) {
7186 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7187 			err = -ENOTSUPP;
7188 			goto err_alloc;
7189 		}
7190 	}
7191 
7192 	account_event(event);
7193 
7194 	/*
7195 	 * Special case software events and allow them to be part of
7196 	 * any hardware group.
7197 	 */
7198 	pmu = event->pmu;
7199 
7200 	if (group_leader &&
7201 	    (is_software_event(event) != is_software_event(group_leader))) {
7202 		if (is_software_event(event)) {
7203 			/*
7204 			 * If event and group_leader are not both a software
7205 			 * event, and event is, then group leader is not.
7206 			 *
7207 			 * Allow the addition of software events to !software
7208 			 * groups, this is safe because software events never
7209 			 * fail to schedule.
7210 			 */
7211 			pmu = group_leader->pmu;
7212 		} else if (is_software_event(group_leader) &&
7213 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7214 			/*
7215 			 * In case the group is a pure software group, and we
7216 			 * try to add a hardware event, move the whole group to
7217 			 * the hardware context.
7218 			 */
7219 			move_group = 1;
7220 		}
7221 	}
7222 
7223 	/*
7224 	 * Get the target context (task or percpu):
7225 	 */
7226 	ctx = find_get_context(pmu, task, event->cpu);
7227 	if (IS_ERR(ctx)) {
7228 		err = PTR_ERR(ctx);
7229 		goto err_alloc;
7230 	}
7231 
7232 	if (task) {
7233 		put_task_struct(task);
7234 		task = NULL;
7235 	}
7236 
7237 	/*
7238 	 * Look up the group leader (we will attach this event to it):
7239 	 */
7240 	if (group_leader) {
7241 		err = -EINVAL;
7242 
7243 		/*
7244 		 * Do not allow a recursive hierarchy (this new sibling
7245 		 * becoming part of another group-sibling):
7246 		 */
7247 		if (group_leader->group_leader != group_leader)
7248 			goto err_context;
7249 		/*
7250 		 * Do not allow to attach to a group in a different
7251 		 * task or CPU context:
7252 		 */
7253 		if (move_group) {
7254 			if (group_leader->ctx->type != ctx->type)
7255 				goto err_context;
7256 		} else {
7257 			if (group_leader->ctx != ctx)
7258 				goto err_context;
7259 		}
7260 
7261 		/*
7262 		 * Only a group leader can be exclusive or pinned
7263 		 */
7264 		if (attr.exclusive || attr.pinned)
7265 			goto err_context;
7266 	}
7267 
7268 	if (output_event) {
7269 		err = perf_event_set_output(event, output_event);
7270 		if (err)
7271 			goto err_context;
7272 	}
7273 
7274 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7275 					f_flags);
7276 	if (IS_ERR(event_file)) {
7277 		err = PTR_ERR(event_file);
7278 		goto err_context;
7279 	}
7280 
7281 	if (move_group) {
7282 		struct perf_event_context *gctx = group_leader->ctx;
7283 
7284 		mutex_lock(&gctx->mutex);
7285 		perf_remove_from_context(group_leader, false);
7286 
7287 		/*
7288 		 * Removing from the context ends up with disabled
7289 		 * event. What we want here is event in the initial
7290 		 * startup state, ready to be add into new context.
7291 		 */
7292 		perf_event__state_init(group_leader);
7293 		list_for_each_entry(sibling, &group_leader->sibling_list,
7294 				    group_entry) {
7295 			perf_remove_from_context(sibling, false);
7296 			perf_event__state_init(sibling);
7297 			put_ctx(gctx);
7298 		}
7299 		mutex_unlock(&gctx->mutex);
7300 		put_ctx(gctx);
7301 	}
7302 
7303 	WARN_ON_ONCE(ctx->parent_ctx);
7304 	mutex_lock(&ctx->mutex);
7305 
7306 	if (move_group) {
7307 		synchronize_rcu();
7308 		perf_install_in_context(ctx, group_leader, event->cpu);
7309 		get_ctx(ctx);
7310 		list_for_each_entry(sibling, &group_leader->sibling_list,
7311 				    group_entry) {
7312 			perf_install_in_context(ctx, sibling, event->cpu);
7313 			get_ctx(ctx);
7314 		}
7315 	}
7316 
7317 	perf_install_in_context(ctx, event, event->cpu);
7318 	perf_unpin_context(ctx);
7319 	mutex_unlock(&ctx->mutex);
7320 
7321 	put_online_cpus();
7322 
7323 	event->owner = current;
7324 
7325 	mutex_lock(&current->perf_event_mutex);
7326 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7327 	mutex_unlock(&current->perf_event_mutex);
7328 
7329 	/*
7330 	 * Precalculate sample_data sizes
7331 	 */
7332 	perf_event__header_size(event);
7333 	perf_event__id_header_size(event);
7334 
7335 	/*
7336 	 * Drop the reference on the group_event after placing the
7337 	 * new event on the sibling_list. This ensures destruction
7338 	 * of the group leader will find the pointer to itself in
7339 	 * perf_group_detach().
7340 	 */
7341 	fdput(group);
7342 	fd_install(event_fd, event_file);
7343 	return event_fd;
7344 
7345 err_context:
7346 	perf_unpin_context(ctx);
7347 	put_ctx(ctx);
7348 err_alloc:
7349 	free_event(event);
7350 err_cpus:
7351 	put_online_cpus();
7352 err_task:
7353 	if (task)
7354 		put_task_struct(task);
7355 err_group_fd:
7356 	fdput(group);
7357 err_fd:
7358 	put_unused_fd(event_fd);
7359 	return err;
7360 }
7361 
7362 /**
7363  * perf_event_create_kernel_counter
7364  *
7365  * @attr: attributes of the counter to create
7366  * @cpu: cpu in which the counter is bound
7367  * @task: task to profile (NULL for percpu)
7368  */
7369 struct perf_event *
7370 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7371 				 struct task_struct *task,
7372 				 perf_overflow_handler_t overflow_handler,
7373 				 void *context)
7374 {
7375 	struct perf_event_context *ctx;
7376 	struct perf_event *event;
7377 	int err;
7378 
7379 	/*
7380 	 * Get the target context (task or percpu):
7381 	 */
7382 
7383 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7384 				 overflow_handler, context);
7385 	if (IS_ERR(event)) {
7386 		err = PTR_ERR(event);
7387 		goto err;
7388 	}
7389 
7390 	account_event(event);
7391 
7392 	ctx = find_get_context(event->pmu, task, cpu);
7393 	if (IS_ERR(ctx)) {
7394 		err = PTR_ERR(ctx);
7395 		goto err_free;
7396 	}
7397 
7398 	WARN_ON_ONCE(ctx->parent_ctx);
7399 	mutex_lock(&ctx->mutex);
7400 	perf_install_in_context(ctx, event, cpu);
7401 	perf_unpin_context(ctx);
7402 	mutex_unlock(&ctx->mutex);
7403 
7404 	return event;
7405 
7406 err_free:
7407 	free_event(event);
7408 err:
7409 	return ERR_PTR(err);
7410 }
7411 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7412 
7413 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7414 {
7415 	struct perf_event_context *src_ctx;
7416 	struct perf_event_context *dst_ctx;
7417 	struct perf_event *event, *tmp;
7418 	LIST_HEAD(events);
7419 
7420 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7421 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7422 
7423 	mutex_lock(&src_ctx->mutex);
7424 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7425 				 event_entry) {
7426 		perf_remove_from_context(event, false);
7427 		unaccount_event_cpu(event, src_cpu);
7428 		put_ctx(src_ctx);
7429 		list_add(&event->migrate_entry, &events);
7430 	}
7431 	mutex_unlock(&src_ctx->mutex);
7432 
7433 	synchronize_rcu();
7434 
7435 	mutex_lock(&dst_ctx->mutex);
7436 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7437 		list_del(&event->migrate_entry);
7438 		if (event->state >= PERF_EVENT_STATE_OFF)
7439 			event->state = PERF_EVENT_STATE_INACTIVE;
7440 		account_event_cpu(event, dst_cpu);
7441 		perf_install_in_context(dst_ctx, event, dst_cpu);
7442 		get_ctx(dst_ctx);
7443 	}
7444 	mutex_unlock(&dst_ctx->mutex);
7445 }
7446 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7447 
7448 static void sync_child_event(struct perf_event *child_event,
7449 			       struct task_struct *child)
7450 {
7451 	struct perf_event *parent_event = child_event->parent;
7452 	u64 child_val;
7453 
7454 	if (child_event->attr.inherit_stat)
7455 		perf_event_read_event(child_event, child);
7456 
7457 	child_val = perf_event_count(child_event);
7458 
7459 	/*
7460 	 * Add back the child's count to the parent's count:
7461 	 */
7462 	atomic64_add(child_val, &parent_event->child_count);
7463 	atomic64_add(child_event->total_time_enabled,
7464 		     &parent_event->child_total_time_enabled);
7465 	atomic64_add(child_event->total_time_running,
7466 		     &parent_event->child_total_time_running);
7467 
7468 	/*
7469 	 * Remove this event from the parent's list
7470 	 */
7471 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7472 	mutex_lock(&parent_event->child_mutex);
7473 	list_del_init(&child_event->child_list);
7474 	mutex_unlock(&parent_event->child_mutex);
7475 
7476 	/*
7477 	 * Release the parent event, if this was the last
7478 	 * reference to it.
7479 	 */
7480 	put_event(parent_event);
7481 }
7482 
7483 static void
7484 __perf_event_exit_task(struct perf_event *child_event,
7485 			 struct perf_event_context *child_ctx,
7486 			 struct task_struct *child)
7487 {
7488 	/*
7489 	 * Do not destroy the 'original' grouping; because of the context
7490 	 * switch optimization the original events could've ended up in a
7491 	 * random child task.
7492 	 *
7493 	 * If we were to destroy the original group, all group related
7494 	 * operations would cease to function properly after this random
7495 	 * child dies.
7496 	 *
7497 	 * Do destroy all inherited groups, we don't care about those
7498 	 * and being thorough is better.
7499 	 */
7500 	perf_remove_from_context(child_event, !!child_event->parent);
7501 
7502 	/*
7503 	 * It can happen that the parent exits first, and has events
7504 	 * that are still around due to the child reference. These
7505 	 * events need to be zapped.
7506 	 */
7507 	if (child_event->parent) {
7508 		sync_child_event(child_event, child);
7509 		free_event(child_event);
7510 	}
7511 }
7512 
7513 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7514 {
7515 	struct perf_event *child_event, *next;
7516 	struct perf_event_context *child_ctx, *parent_ctx;
7517 	unsigned long flags;
7518 
7519 	if (likely(!child->perf_event_ctxp[ctxn])) {
7520 		perf_event_task(child, NULL, 0);
7521 		return;
7522 	}
7523 
7524 	local_irq_save(flags);
7525 	/*
7526 	 * We can't reschedule here because interrupts are disabled,
7527 	 * and either child is current or it is a task that can't be
7528 	 * scheduled, so we are now safe from rescheduling changing
7529 	 * our context.
7530 	 */
7531 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7532 
7533 	/*
7534 	 * Take the context lock here so that if find_get_context is
7535 	 * reading child->perf_event_ctxp, we wait until it has
7536 	 * incremented the context's refcount before we do put_ctx below.
7537 	 */
7538 	raw_spin_lock(&child_ctx->lock);
7539 	task_ctx_sched_out(child_ctx);
7540 	child->perf_event_ctxp[ctxn] = NULL;
7541 
7542 	/*
7543 	 * In order to avoid freeing: child_ctx->parent_ctx->task
7544 	 * under perf_event_context::lock, grab another reference.
7545 	 */
7546 	parent_ctx = child_ctx->parent_ctx;
7547 	if (parent_ctx)
7548 		get_ctx(parent_ctx);
7549 
7550 	/*
7551 	 * If this context is a clone; unclone it so it can't get
7552 	 * swapped to another process while we're removing all
7553 	 * the events from it.
7554 	 */
7555 	unclone_ctx(child_ctx);
7556 	update_context_time(child_ctx);
7557 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7558 
7559 	/*
7560 	 * Now that we no longer hold perf_event_context::lock, drop
7561 	 * our extra child_ctx->parent_ctx reference.
7562 	 */
7563 	if (parent_ctx)
7564 		put_ctx(parent_ctx);
7565 
7566 	/*
7567 	 * Report the task dead after unscheduling the events so that we
7568 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7569 	 * get a few PERF_RECORD_READ events.
7570 	 */
7571 	perf_event_task(child, child_ctx, 0);
7572 
7573 	/*
7574 	 * We can recurse on the same lock type through:
7575 	 *
7576 	 *   __perf_event_exit_task()
7577 	 *     sync_child_event()
7578 	 *       put_event()
7579 	 *         mutex_lock(&ctx->mutex)
7580 	 *
7581 	 * But since its the parent context it won't be the same instance.
7582 	 */
7583 	mutex_lock(&child_ctx->mutex);
7584 
7585 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7586 		__perf_event_exit_task(child_event, child_ctx, child);
7587 
7588 	mutex_unlock(&child_ctx->mutex);
7589 
7590 	put_ctx(child_ctx);
7591 }
7592 
7593 /*
7594  * When a child task exits, feed back event values to parent events.
7595  */
7596 void perf_event_exit_task(struct task_struct *child)
7597 {
7598 	struct perf_event *event, *tmp;
7599 	int ctxn;
7600 
7601 	mutex_lock(&child->perf_event_mutex);
7602 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7603 				 owner_entry) {
7604 		list_del_init(&event->owner_entry);
7605 
7606 		/*
7607 		 * Ensure the list deletion is visible before we clear
7608 		 * the owner, closes a race against perf_release() where
7609 		 * we need to serialize on the owner->perf_event_mutex.
7610 		 */
7611 		smp_wmb();
7612 		event->owner = NULL;
7613 	}
7614 	mutex_unlock(&child->perf_event_mutex);
7615 
7616 	for_each_task_context_nr(ctxn)
7617 		perf_event_exit_task_context(child, ctxn);
7618 }
7619 
7620 static void perf_free_event(struct perf_event *event,
7621 			    struct perf_event_context *ctx)
7622 {
7623 	struct perf_event *parent = event->parent;
7624 
7625 	if (WARN_ON_ONCE(!parent))
7626 		return;
7627 
7628 	mutex_lock(&parent->child_mutex);
7629 	list_del_init(&event->child_list);
7630 	mutex_unlock(&parent->child_mutex);
7631 
7632 	put_event(parent);
7633 
7634 	perf_group_detach(event);
7635 	list_del_event(event, ctx);
7636 	free_event(event);
7637 }
7638 
7639 /*
7640  * free an unexposed, unused context as created by inheritance by
7641  * perf_event_init_task below, used by fork() in case of fail.
7642  */
7643 void perf_event_free_task(struct task_struct *task)
7644 {
7645 	struct perf_event_context *ctx;
7646 	struct perf_event *event, *tmp;
7647 	int ctxn;
7648 
7649 	for_each_task_context_nr(ctxn) {
7650 		ctx = task->perf_event_ctxp[ctxn];
7651 		if (!ctx)
7652 			continue;
7653 
7654 		mutex_lock(&ctx->mutex);
7655 again:
7656 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7657 				group_entry)
7658 			perf_free_event(event, ctx);
7659 
7660 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7661 				group_entry)
7662 			perf_free_event(event, ctx);
7663 
7664 		if (!list_empty(&ctx->pinned_groups) ||
7665 				!list_empty(&ctx->flexible_groups))
7666 			goto again;
7667 
7668 		mutex_unlock(&ctx->mutex);
7669 
7670 		put_ctx(ctx);
7671 	}
7672 }
7673 
7674 void perf_event_delayed_put(struct task_struct *task)
7675 {
7676 	int ctxn;
7677 
7678 	for_each_task_context_nr(ctxn)
7679 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7680 }
7681 
7682 /*
7683  * inherit a event from parent task to child task:
7684  */
7685 static struct perf_event *
7686 inherit_event(struct perf_event *parent_event,
7687 	      struct task_struct *parent,
7688 	      struct perf_event_context *parent_ctx,
7689 	      struct task_struct *child,
7690 	      struct perf_event *group_leader,
7691 	      struct perf_event_context *child_ctx)
7692 {
7693 	struct perf_event *child_event;
7694 	unsigned long flags;
7695 
7696 	/*
7697 	 * Instead of creating recursive hierarchies of events,
7698 	 * we link inherited events back to the original parent,
7699 	 * which has a filp for sure, which we use as the reference
7700 	 * count:
7701 	 */
7702 	if (parent_event->parent)
7703 		parent_event = parent_event->parent;
7704 
7705 	child_event = perf_event_alloc(&parent_event->attr,
7706 					   parent_event->cpu,
7707 					   child,
7708 					   group_leader, parent_event,
7709 				           NULL, NULL);
7710 	if (IS_ERR(child_event))
7711 		return child_event;
7712 
7713 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7714 		free_event(child_event);
7715 		return NULL;
7716 	}
7717 
7718 	get_ctx(child_ctx);
7719 
7720 	/*
7721 	 * Make the child state follow the state of the parent event,
7722 	 * not its attr.disabled bit.  We hold the parent's mutex,
7723 	 * so we won't race with perf_event_{en, dis}able_family.
7724 	 */
7725 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7726 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7727 	else
7728 		child_event->state = PERF_EVENT_STATE_OFF;
7729 
7730 	if (parent_event->attr.freq) {
7731 		u64 sample_period = parent_event->hw.sample_period;
7732 		struct hw_perf_event *hwc = &child_event->hw;
7733 
7734 		hwc->sample_period = sample_period;
7735 		hwc->last_period   = sample_period;
7736 
7737 		local64_set(&hwc->period_left, sample_period);
7738 	}
7739 
7740 	child_event->ctx = child_ctx;
7741 	child_event->overflow_handler = parent_event->overflow_handler;
7742 	child_event->overflow_handler_context
7743 		= parent_event->overflow_handler_context;
7744 
7745 	/*
7746 	 * Precalculate sample_data sizes
7747 	 */
7748 	perf_event__header_size(child_event);
7749 	perf_event__id_header_size(child_event);
7750 
7751 	/*
7752 	 * Link it up in the child's context:
7753 	 */
7754 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7755 	add_event_to_ctx(child_event, child_ctx);
7756 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7757 
7758 	/*
7759 	 * Link this into the parent event's child list
7760 	 */
7761 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7762 	mutex_lock(&parent_event->child_mutex);
7763 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7764 	mutex_unlock(&parent_event->child_mutex);
7765 
7766 	return child_event;
7767 }
7768 
7769 static int inherit_group(struct perf_event *parent_event,
7770 	      struct task_struct *parent,
7771 	      struct perf_event_context *parent_ctx,
7772 	      struct task_struct *child,
7773 	      struct perf_event_context *child_ctx)
7774 {
7775 	struct perf_event *leader;
7776 	struct perf_event *sub;
7777 	struct perf_event *child_ctr;
7778 
7779 	leader = inherit_event(parent_event, parent, parent_ctx,
7780 				 child, NULL, child_ctx);
7781 	if (IS_ERR(leader))
7782 		return PTR_ERR(leader);
7783 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7784 		child_ctr = inherit_event(sub, parent, parent_ctx,
7785 					    child, leader, child_ctx);
7786 		if (IS_ERR(child_ctr))
7787 			return PTR_ERR(child_ctr);
7788 	}
7789 	return 0;
7790 }
7791 
7792 static int
7793 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7794 		   struct perf_event_context *parent_ctx,
7795 		   struct task_struct *child, int ctxn,
7796 		   int *inherited_all)
7797 {
7798 	int ret;
7799 	struct perf_event_context *child_ctx;
7800 
7801 	if (!event->attr.inherit) {
7802 		*inherited_all = 0;
7803 		return 0;
7804 	}
7805 
7806 	child_ctx = child->perf_event_ctxp[ctxn];
7807 	if (!child_ctx) {
7808 		/*
7809 		 * This is executed from the parent task context, so
7810 		 * inherit events that have been marked for cloning.
7811 		 * First allocate and initialize a context for the
7812 		 * child.
7813 		 */
7814 
7815 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7816 		if (!child_ctx)
7817 			return -ENOMEM;
7818 
7819 		child->perf_event_ctxp[ctxn] = child_ctx;
7820 	}
7821 
7822 	ret = inherit_group(event, parent, parent_ctx,
7823 			    child, child_ctx);
7824 
7825 	if (ret)
7826 		*inherited_all = 0;
7827 
7828 	return ret;
7829 }
7830 
7831 /*
7832  * Initialize the perf_event context in task_struct
7833  */
7834 static int perf_event_init_context(struct task_struct *child, int ctxn)
7835 {
7836 	struct perf_event_context *child_ctx, *parent_ctx;
7837 	struct perf_event_context *cloned_ctx;
7838 	struct perf_event *event;
7839 	struct task_struct *parent = current;
7840 	int inherited_all = 1;
7841 	unsigned long flags;
7842 	int ret = 0;
7843 
7844 	if (likely(!parent->perf_event_ctxp[ctxn]))
7845 		return 0;
7846 
7847 	/*
7848 	 * If the parent's context is a clone, pin it so it won't get
7849 	 * swapped under us.
7850 	 */
7851 	parent_ctx = perf_pin_task_context(parent, ctxn);
7852 	if (!parent_ctx)
7853 		return 0;
7854 
7855 	/*
7856 	 * No need to check if parent_ctx != NULL here; since we saw
7857 	 * it non-NULL earlier, the only reason for it to become NULL
7858 	 * is if we exit, and since we're currently in the middle of
7859 	 * a fork we can't be exiting at the same time.
7860 	 */
7861 
7862 	/*
7863 	 * Lock the parent list. No need to lock the child - not PID
7864 	 * hashed yet and not running, so nobody can access it.
7865 	 */
7866 	mutex_lock(&parent_ctx->mutex);
7867 
7868 	/*
7869 	 * We dont have to disable NMIs - we are only looking at
7870 	 * the list, not manipulating it:
7871 	 */
7872 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7873 		ret = inherit_task_group(event, parent, parent_ctx,
7874 					 child, ctxn, &inherited_all);
7875 		if (ret)
7876 			break;
7877 	}
7878 
7879 	/*
7880 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7881 	 * to allocations, but we need to prevent rotation because
7882 	 * rotate_ctx() will change the list from interrupt context.
7883 	 */
7884 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7885 	parent_ctx->rotate_disable = 1;
7886 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7887 
7888 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7889 		ret = inherit_task_group(event, parent, parent_ctx,
7890 					 child, ctxn, &inherited_all);
7891 		if (ret)
7892 			break;
7893 	}
7894 
7895 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7896 	parent_ctx->rotate_disable = 0;
7897 
7898 	child_ctx = child->perf_event_ctxp[ctxn];
7899 
7900 	if (child_ctx && inherited_all) {
7901 		/*
7902 		 * Mark the child context as a clone of the parent
7903 		 * context, or of whatever the parent is a clone of.
7904 		 *
7905 		 * Note that if the parent is a clone, the holding of
7906 		 * parent_ctx->lock avoids it from being uncloned.
7907 		 */
7908 		cloned_ctx = parent_ctx->parent_ctx;
7909 		if (cloned_ctx) {
7910 			child_ctx->parent_ctx = cloned_ctx;
7911 			child_ctx->parent_gen = parent_ctx->parent_gen;
7912 		} else {
7913 			child_ctx->parent_ctx = parent_ctx;
7914 			child_ctx->parent_gen = parent_ctx->generation;
7915 		}
7916 		get_ctx(child_ctx->parent_ctx);
7917 	}
7918 
7919 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7920 	mutex_unlock(&parent_ctx->mutex);
7921 
7922 	perf_unpin_context(parent_ctx);
7923 	put_ctx(parent_ctx);
7924 
7925 	return ret;
7926 }
7927 
7928 /*
7929  * Initialize the perf_event context in task_struct
7930  */
7931 int perf_event_init_task(struct task_struct *child)
7932 {
7933 	int ctxn, ret;
7934 
7935 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7936 	mutex_init(&child->perf_event_mutex);
7937 	INIT_LIST_HEAD(&child->perf_event_list);
7938 
7939 	for_each_task_context_nr(ctxn) {
7940 		ret = perf_event_init_context(child, ctxn);
7941 		if (ret)
7942 			return ret;
7943 	}
7944 
7945 	return 0;
7946 }
7947 
7948 static void __init perf_event_init_all_cpus(void)
7949 {
7950 	struct swevent_htable *swhash;
7951 	int cpu;
7952 
7953 	for_each_possible_cpu(cpu) {
7954 		swhash = &per_cpu(swevent_htable, cpu);
7955 		mutex_init(&swhash->hlist_mutex);
7956 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7957 	}
7958 }
7959 
7960 static void perf_event_init_cpu(int cpu)
7961 {
7962 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7963 
7964 	mutex_lock(&swhash->hlist_mutex);
7965 	swhash->online = true;
7966 	if (swhash->hlist_refcount > 0) {
7967 		struct swevent_hlist *hlist;
7968 
7969 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7970 		WARN_ON(!hlist);
7971 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7972 	}
7973 	mutex_unlock(&swhash->hlist_mutex);
7974 }
7975 
7976 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7977 static void perf_pmu_rotate_stop(struct pmu *pmu)
7978 {
7979 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7980 
7981 	WARN_ON(!irqs_disabled());
7982 
7983 	list_del_init(&cpuctx->rotation_list);
7984 }
7985 
7986 static void __perf_event_exit_context(void *__info)
7987 {
7988 	struct remove_event re = { .detach_group = false };
7989 	struct perf_event_context *ctx = __info;
7990 
7991 	perf_pmu_rotate_stop(ctx->pmu);
7992 
7993 	rcu_read_lock();
7994 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7995 		__perf_remove_from_context(&re);
7996 	rcu_read_unlock();
7997 }
7998 
7999 static void perf_event_exit_cpu_context(int cpu)
8000 {
8001 	struct perf_event_context *ctx;
8002 	struct pmu *pmu;
8003 	int idx;
8004 
8005 	idx = srcu_read_lock(&pmus_srcu);
8006 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8007 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8008 
8009 		mutex_lock(&ctx->mutex);
8010 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8011 		mutex_unlock(&ctx->mutex);
8012 	}
8013 	srcu_read_unlock(&pmus_srcu, idx);
8014 }
8015 
8016 static void perf_event_exit_cpu(int cpu)
8017 {
8018 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8019 
8020 	perf_event_exit_cpu_context(cpu);
8021 
8022 	mutex_lock(&swhash->hlist_mutex);
8023 	swhash->online = false;
8024 	swevent_hlist_release(swhash);
8025 	mutex_unlock(&swhash->hlist_mutex);
8026 }
8027 #else
8028 static inline void perf_event_exit_cpu(int cpu) { }
8029 #endif
8030 
8031 static int
8032 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8033 {
8034 	int cpu;
8035 
8036 	for_each_online_cpu(cpu)
8037 		perf_event_exit_cpu(cpu);
8038 
8039 	return NOTIFY_OK;
8040 }
8041 
8042 /*
8043  * Run the perf reboot notifier at the very last possible moment so that
8044  * the generic watchdog code runs as long as possible.
8045  */
8046 static struct notifier_block perf_reboot_notifier = {
8047 	.notifier_call = perf_reboot,
8048 	.priority = INT_MIN,
8049 };
8050 
8051 static int
8052 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8053 {
8054 	unsigned int cpu = (long)hcpu;
8055 
8056 	switch (action & ~CPU_TASKS_FROZEN) {
8057 
8058 	case CPU_UP_PREPARE:
8059 	case CPU_DOWN_FAILED:
8060 		perf_event_init_cpu(cpu);
8061 		break;
8062 
8063 	case CPU_UP_CANCELED:
8064 	case CPU_DOWN_PREPARE:
8065 		perf_event_exit_cpu(cpu);
8066 		break;
8067 	default:
8068 		break;
8069 	}
8070 
8071 	return NOTIFY_OK;
8072 }
8073 
8074 void __init perf_event_init(void)
8075 {
8076 	int ret;
8077 
8078 	idr_init(&pmu_idr);
8079 
8080 	perf_event_init_all_cpus();
8081 	init_srcu_struct(&pmus_srcu);
8082 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8083 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8084 	perf_pmu_register(&perf_task_clock, NULL, -1);
8085 	perf_tp_register();
8086 	perf_cpu_notifier(perf_cpu_notify);
8087 	register_reboot_notifier(&perf_reboot_notifier);
8088 
8089 	ret = init_hw_breakpoint();
8090 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8091 
8092 	/* do not patch jump label more than once per second */
8093 	jump_label_rate_limit(&perf_sched_events, HZ);
8094 
8095 	/*
8096 	 * Build time assertion that we keep the data_head at the intended
8097 	 * location.  IOW, validation we got the __reserved[] size right.
8098 	 */
8099 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8100 		     != 1024);
8101 }
8102 
8103 static int __init perf_event_sysfs_init(void)
8104 {
8105 	struct pmu *pmu;
8106 	int ret;
8107 
8108 	mutex_lock(&pmus_lock);
8109 
8110 	ret = bus_register(&pmu_bus);
8111 	if (ret)
8112 		goto unlock;
8113 
8114 	list_for_each_entry(pmu, &pmus, entry) {
8115 		if (!pmu->name || pmu->type < 0)
8116 			continue;
8117 
8118 		ret = pmu_dev_alloc(pmu);
8119 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8120 	}
8121 	pmu_bus_running = 1;
8122 	ret = 0;
8123 
8124 unlock:
8125 	mutex_unlock(&pmus_lock);
8126 
8127 	return ret;
8128 }
8129 device_initcall(perf_event_sysfs_init);
8130 
8131 #ifdef CONFIG_CGROUP_PERF
8132 static struct cgroup_subsys_state *
8133 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8134 {
8135 	struct perf_cgroup *jc;
8136 
8137 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8138 	if (!jc)
8139 		return ERR_PTR(-ENOMEM);
8140 
8141 	jc->info = alloc_percpu(struct perf_cgroup_info);
8142 	if (!jc->info) {
8143 		kfree(jc);
8144 		return ERR_PTR(-ENOMEM);
8145 	}
8146 
8147 	return &jc->css;
8148 }
8149 
8150 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8151 {
8152 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8153 
8154 	free_percpu(jc->info);
8155 	kfree(jc);
8156 }
8157 
8158 static int __perf_cgroup_move(void *info)
8159 {
8160 	struct task_struct *task = info;
8161 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8162 	return 0;
8163 }
8164 
8165 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8166 			       struct cgroup_taskset *tset)
8167 {
8168 	struct task_struct *task;
8169 
8170 	cgroup_taskset_for_each(task, tset)
8171 		task_function_call(task, __perf_cgroup_move, task);
8172 }
8173 
8174 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8175 			     struct cgroup_subsys_state *old_css,
8176 			     struct task_struct *task)
8177 {
8178 	/*
8179 	 * cgroup_exit() is called in the copy_process() failure path.
8180 	 * Ignore this case since the task hasn't ran yet, this avoids
8181 	 * trying to poke a half freed task state from generic code.
8182 	 */
8183 	if (!(task->flags & PF_EXITING))
8184 		return;
8185 
8186 	task_function_call(task, __perf_cgroup_move, task);
8187 }
8188 
8189 struct cgroup_subsys perf_event_cgrp_subsys = {
8190 	.css_alloc	= perf_cgroup_css_alloc,
8191 	.css_free	= perf_cgroup_css_free,
8192 	.exit		= perf_cgroup_exit,
8193 	.attach		= perf_cgroup_attach,
8194 };
8195 #endif /* CONFIG_CGROUP_PERF */
8196