1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 50 #include "internal.h" 51 52 #include <asm/irq_regs.h> 53 54 typedef int (*remote_function_f)(void *); 55 56 struct remote_function_call { 57 struct task_struct *p; 58 remote_function_f func; 59 void *info; 60 int ret; 61 }; 62 63 static void remote_function(void *data) 64 { 65 struct remote_function_call *tfc = data; 66 struct task_struct *p = tfc->p; 67 68 if (p) { 69 /* -EAGAIN */ 70 if (task_cpu(p) != smp_processor_id()) 71 return; 72 73 /* 74 * Now that we're on right CPU with IRQs disabled, we can test 75 * if we hit the right task without races. 76 */ 77 78 tfc->ret = -ESRCH; /* No such (running) process */ 79 if (p != current) 80 return; 81 } 82 83 tfc->ret = tfc->func(tfc->info); 84 } 85 86 /** 87 * task_function_call - call a function on the cpu on which a task runs 88 * @p: the task to evaluate 89 * @func: the function to be called 90 * @info: the function call argument 91 * 92 * Calls the function @func when the task is currently running. This might 93 * be on the current CPU, which just calls the function directly 94 * 95 * returns: @func return value, or 96 * -ESRCH - when the process isn't running 97 * -EAGAIN - when the process moved away 98 */ 99 static int 100 task_function_call(struct task_struct *p, remote_function_f func, void *info) 101 { 102 struct remote_function_call data = { 103 .p = p, 104 .func = func, 105 .info = info, 106 .ret = -EAGAIN, 107 }; 108 int ret; 109 110 do { 111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 112 if (!ret) 113 ret = data.ret; 114 } while (ret == -EAGAIN); 115 116 return ret; 117 } 118 119 /** 120 * cpu_function_call - call a function on the cpu 121 * @func: the function to be called 122 * @info: the function call argument 123 * 124 * Calls the function @func on the remote cpu. 125 * 126 * returns: @func return value or -ENXIO when the cpu is offline 127 */ 128 static int cpu_function_call(int cpu, remote_function_f func, void *info) 129 { 130 struct remote_function_call data = { 131 .p = NULL, 132 .func = func, 133 .info = info, 134 .ret = -ENXIO, /* No such CPU */ 135 }; 136 137 smp_call_function_single(cpu, remote_function, &data, 1); 138 139 return data.ret; 140 } 141 142 static inline struct perf_cpu_context * 143 __get_cpu_context(struct perf_event_context *ctx) 144 { 145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 146 } 147 148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 149 struct perf_event_context *ctx) 150 { 151 raw_spin_lock(&cpuctx->ctx.lock); 152 if (ctx) 153 raw_spin_lock(&ctx->lock); 154 } 155 156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 157 struct perf_event_context *ctx) 158 { 159 if (ctx) 160 raw_spin_unlock(&ctx->lock); 161 raw_spin_unlock(&cpuctx->ctx.lock); 162 } 163 164 #define TASK_TOMBSTONE ((void *)-1L) 165 166 static bool is_kernel_event(struct perf_event *event) 167 { 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 169 } 170 171 /* 172 * On task ctx scheduling... 173 * 174 * When !ctx->nr_events a task context will not be scheduled. This means 175 * we can disable the scheduler hooks (for performance) without leaving 176 * pending task ctx state. 177 * 178 * This however results in two special cases: 179 * 180 * - removing the last event from a task ctx; this is relatively straight 181 * forward and is done in __perf_remove_from_context. 182 * 183 * - adding the first event to a task ctx; this is tricky because we cannot 184 * rely on ctx->is_active and therefore cannot use event_function_call(). 185 * See perf_install_in_context(). 186 * 187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 188 */ 189 190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 191 struct perf_event_context *, void *); 192 193 struct event_function_struct { 194 struct perf_event *event; 195 event_f func; 196 void *data; 197 }; 198 199 static int event_function(void *info) 200 { 201 struct event_function_struct *efs = info; 202 struct perf_event *event = efs->event; 203 struct perf_event_context *ctx = event->ctx; 204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 205 struct perf_event_context *task_ctx = cpuctx->task_ctx; 206 int ret = 0; 207 208 WARN_ON_ONCE(!irqs_disabled()); 209 210 perf_ctx_lock(cpuctx, task_ctx); 211 /* 212 * Since we do the IPI call without holding ctx->lock things can have 213 * changed, double check we hit the task we set out to hit. 214 */ 215 if (ctx->task) { 216 if (ctx->task != current) { 217 ret = -ESRCH; 218 goto unlock; 219 } 220 221 /* 222 * We only use event_function_call() on established contexts, 223 * and event_function() is only ever called when active (or 224 * rather, we'll have bailed in task_function_call() or the 225 * above ctx->task != current test), therefore we must have 226 * ctx->is_active here. 227 */ 228 WARN_ON_ONCE(!ctx->is_active); 229 /* 230 * And since we have ctx->is_active, cpuctx->task_ctx must 231 * match. 232 */ 233 WARN_ON_ONCE(task_ctx != ctx); 234 } else { 235 WARN_ON_ONCE(&cpuctx->ctx != ctx); 236 } 237 238 efs->func(event, cpuctx, ctx, efs->data); 239 unlock: 240 perf_ctx_unlock(cpuctx, task_ctx); 241 242 return ret; 243 } 244 245 static void event_function_local(struct perf_event *event, event_f func, void *data) 246 { 247 struct event_function_struct efs = { 248 .event = event, 249 .func = func, 250 .data = data, 251 }; 252 253 int ret = event_function(&efs); 254 WARN_ON_ONCE(ret); 255 } 256 257 static void event_function_call(struct perf_event *event, event_f func, void *data) 258 { 259 struct perf_event_context *ctx = event->ctx; 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 261 struct event_function_struct efs = { 262 .event = event, 263 .func = func, 264 .data = data, 265 }; 266 267 if (!event->parent) { 268 /* 269 * If this is a !child event, we must hold ctx::mutex to 270 * stabilize the the event->ctx relation. See 271 * perf_event_ctx_lock(). 272 */ 273 lockdep_assert_held(&ctx->mutex); 274 } 275 276 if (!task) { 277 cpu_function_call(event->cpu, event_function, &efs); 278 return; 279 } 280 281 if (task == TASK_TOMBSTONE) 282 return; 283 284 again: 285 if (!task_function_call(task, event_function, &efs)) 286 return; 287 288 raw_spin_lock_irq(&ctx->lock); 289 /* 290 * Reload the task pointer, it might have been changed by 291 * a concurrent perf_event_context_sched_out(). 292 */ 293 task = ctx->task; 294 if (task == TASK_TOMBSTONE) { 295 raw_spin_unlock_irq(&ctx->lock); 296 return; 297 } 298 if (ctx->is_active) { 299 raw_spin_unlock_irq(&ctx->lock); 300 goto again; 301 } 302 func(event, NULL, ctx, data); 303 raw_spin_unlock_irq(&ctx->lock); 304 } 305 306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 307 PERF_FLAG_FD_OUTPUT |\ 308 PERF_FLAG_PID_CGROUP |\ 309 PERF_FLAG_FD_CLOEXEC) 310 311 /* 312 * branch priv levels that need permission checks 313 */ 314 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 315 (PERF_SAMPLE_BRANCH_KERNEL |\ 316 PERF_SAMPLE_BRANCH_HV) 317 318 enum event_type_t { 319 EVENT_FLEXIBLE = 0x1, 320 EVENT_PINNED = 0x2, 321 EVENT_TIME = 0x4, 322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 323 }; 324 325 /* 326 * perf_sched_events : >0 events exist 327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 328 */ 329 330 static void perf_sched_delayed(struct work_struct *work); 331 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 333 static DEFINE_MUTEX(perf_sched_mutex); 334 static atomic_t perf_sched_count; 335 336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 337 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 338 339 static atomic_t nr_mmap_events __read_mostly; 340 static atomic_t nr_comm_events __read_mostly; 341 static atomic_t nr_task_events __read_mostly; 342 static atomic_t nr_freq_events __read_mostly; 343 static atomic_t nr_switch_events __read_mostly; 344 345 static LIST_HEAD(pmus); 346 static DEFINE_MUTEX(pmus_lock); 347 static struct srcu_struct pmus_srcu; 348 349 /* 350 * perf event paranoia level: 351 * -1 - not paranoid at all 352 * 0 - disallow raw tracepoint access for unpriv 353 * 1 - disallow cpu events for unpriv 354 * 2 - disallow kernel profiling for unpriv 355 */ 356 int sysctl_perf_event_paranoid __read_mostly = 2; 357 358 /* Minimum for 512 kiB + 1 user control page */ 359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 360 361 /* 362 * max perf event sample rate 363 */ 364 #define DEFAULT_MAX_SAMPLE_RATE 100000 365 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 366 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 367 368 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 369 370 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 371 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 372 373 static int perf_sample_allowed_ns __read_mostly = 374 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 375 376 static void update_perf_cpu_limits(void) 377 { 378 u64 tmp = perf_sample_period_ns; 379 380 tmp *= sysctl_perf_cpu_time_max_percent; 381 tmp = div_u64(tmp, 100); 382 if (!tmp) 383 tmp = 1; 384 385 WRITE_ONCE(perf_sample_allowed_ns, tmp); 386 } 387 388 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 389 390 int perf_proc_update_handler(struct ctl_table *table, int write, 391 void __user *buffer, size_t *lenp, 392 loff_t *ppos) 393 { 394 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 395 396 if (ret || !write) 397 return ret; 398 399 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 400 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 401 update_perf_cpu_limits(); 402 403 return 0; 404 } 405 406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 407 408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 409 void __user *buffer, size_t *lenp, 410 loff_t *ppos) 411 { 412 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 413 414 if (ret || !write) 415 return ret; 416 417 if (sysctl_perf_cpu_time_max_percent == 100 || 418 sysctl_perf_cpu_time_max_percent == 0) { 419 printk(KERN_WARNING 420 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 421 WRITE_ONCE(perf_sample_allowed_ns, 0); 422 } else { 423 update_perf_cpu_limits(); 424 } 425 426 return 0; 427 } 428 429 /* 430 * perf samples are done in some very critical code paths (NMIs). 431 * If they take too much CPU time, the system can lock up and not 432 * get any real work done. This will drop the sample rate when 433 * we detect that events are taking too long. 434 */ 435 #define NR_ACCUMULATED_SAMPLES 128 436 static DEFINE_PER_CPU(u64, running_sample_length); 437 438 static u64 __report_avg; 439 static u64 __report_allowed; 440 441 static void perf_duration_warn(struct irq_work *w) 442 { 443 printk_ratelimited(KERN_WARNING 444 "perf: interrupt took too long (%lld > %lld), lowering " 445 "kernel.perf_event_max_sample_rate to %d\n", 446 __report_avg, __report_allowed, 447 sysctl_perf_event_sample_rate); 448 } 449 450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 451 452 void perf_sample_event_took(u64 sample_len_ns) 453 { 454 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 455 u64 running_len; 456 u64 avg_len; 457 u32 max; 458 459 if (max_len == 0) 460 return; 461 462 /* Decay the counter by 1 average sample. */ 463 running_len = __this_cpu_read(running_sample_length); 464 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 465 running_len += sample_len_ns; 466 __this_cpu_write(running_sample_length, running_len); 467 468 /* 469 * Note: this will be biased artifically low until we have 470 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 471 * from having to maintain a count. 472 */ 473 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 474 if (avg_len <= max_len) 475 return; 476 477 __report_avg = avg_len; 478 __report_allowed = max_len; 479 480 /* 481 * Compute a throttle threshold 25% below the current duration. 482 */ 483 avg_len += avg_len / 4; 484 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 485 if (avg_len < max) 486 max /= (u32)avg_len; 487 else 488 max = 1; 489 490 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 491 WRITE_ONCE(max_samples_per_tick, max); 492 493 sysctl_perf_event_sample_rate = max * HZ; 494 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 495 496 if (!irq_work_queue(&perf_duration_work)) { 497 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 } 503 504 static atomic64_t perf_event_id; 505 506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 507 enum event_type_t event_type); 508 509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 510 enum event_type_t event_type, 511 struct task_struct *task); 512 513 static void update_context_time(struct perf_event_context *ctx); 514 static u64 perf_event_time(struct perf_event *event); 515 516 void __weak perf_event_print_debug(void) { } 517 518 extern __weak const char *perf_pmu_name(void) 519 { 520 return "pmu"; 521 } 522 523 static inline u64 perf_clock(void) 524 { 525 return local_clock(); 526 } 527 528 static inline u64 perf_event_clock(struct perf_event *event) 529 { 530 return event->clock(); 531 } 532 533 #ifdef CONFIG_CGROUP_PERF 534 535 static inline bool 536 perf_cgroup_match(struct perf_event *event) 537 { 538 struct perf_event_context *ctx = event->ctx; 539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 540 541 /* @event doesn't care about cgroup */ 542 if (!event->cgrp) 543 return true; 544 545 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 546 if (!cpuctx->cgrp) 547 return false; 548 549 /* 550 * Cgroup scoping is recursive. An event enabled for a cgroup is 551 * also enabled for all its descendant cgroups. If @cpuctx's 552 * cgroup is a descendant of @event's (the test covers identity 553 * case), it's a match. 554 */ 555 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 556 event->cgrp->css.cgroup); 557 } 558 559 static inline void perf_detach_cgroup(struct perf_event *event) 560 { 561 css_put(&event->cgrp->css); 562 event->cgrp = NULL; 563 } 564 565 static inline int is_cgroup_event(struct perf_event *event) 566 { 567 return event->cgrp != NULL; 568 } 569 570 static inline u64 perf_cgroup_event_time(struct perf_event *event) 571 { 572 struct perf_cgroup_info *t; 573 574 t = per_cpu_ptr(event->cgrp->info, event->cpu); 575 return t->time; 576 } 577 578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 579 { 580 struct perf_cgroup_info *info; 581 u64 now; 582 583 now = perf_clock(); 584 585 info = this_cpu_ptr(cgrp->info); 586 587 info->time += now - info->timestamp; 588 info->timestamp = now; 589 } 590 591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 592 { 593 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 594 if (cgrp_out) 595 __update_cgrp_time(cgrp_out); 596 } 597 598 static inline void update_cgrp_time_from_event(struct perf_event *event) 599 { 600 struct perf_cgroup *cgrp; 601 602 /* 603 * ensure we access cgroup data only when needed and 604 * when we know the cgroup is pinned (css_get) 605 */ 606 if (!is_cgroup_event(event)) 607 return; 608 609 cgrp = perf_cgroup_from_task(current, event->ctx); 610 /* 611 * Do not update time when cgroup is not active 612 */ 613 if (cgrp == event->cgrp) 614 __update_cgrp_time(event->cgrp); 615 } 616 617 static inline void 618 perf_cgroup_set_timestamp(struct task_struct *task, 619 struct perf_event_context *ctx) 620 { 621 struct perf_cgroup *cgrp; 622 struct perf_cgroup_info *info; 623 624 /* 625 * ctx->lock held by caller 626 * ensure we do not access cgroup data 627 * unless we have the cgroup pinned (css_get) 628 */ 629 if (!task || !ctx->nr_cgroups) 630 return; 631 632 cgrp = perf_cgroup_from_task(task, ctx); 633 info = this_cpu_ptr(cgrp->info); 634 info->timestamp = ctx->timestamp; 635 } 636 637 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 638 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 639 640 /* 641 * reschedule events based on the cgroup constraint of task. 642 * 643 * mode SWOUT : schedule out everything 644 * mode SWIN : schedule in based on cgroup for next 645 */ 646 static void perf_cgroup_switch(struct task_struct *task, int mode) 647 { 648 struct perf_cpu_context *cpuctx; 649 struct pmu *pmu; 650 unsigned long flags; 651 652 /* 653 * disable interrupts to avoid geting nr_cgroup 654 * changes via __perf_event_disable(). Also 655 * avoids preemption. 656 */ 657 local_irq_save(flags); 658 659 /* 660 * we reschedule only in the presence of cgroup 661 * constrained events. 662 */ 663 664 list_for_each_entry_rcu(pmu, &pmus, entry) { 665 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 666 if (cpuctx->unique_pmu != pmu) 667 continue; /* ensure we process each cpuctx once */ 668 669 /* 670 * perf_cgroup_events says at least one 671 * context on this CPU has cgroup events. 672 * 673 * ctx->nr_cgroups reports the number of cgroup 674 * events for a context. 675 */ 676 if (cpuctx->ctx.nr_cgroups > 0) { 677 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 678 perf_pmu_disable(cpuctx->ctx.pmu); 679 680 if (mode & PERF_CGROUP_SWOUT) { 681 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 682 /* 683 * must not be done before ctxswout due 684 * to event_filter_match() in event_sched_out() 685 */ 686 cpuctx->cgrp = NULL; 687 } 688 689 if (mode & PERF_CGROUP_SWIN) { 690 WARN_ON_ONCE(cpuctx->cgrp); 691 /* 692 * set cgrp before ctxsw in to allow 693 * event_filter_match() to not have to pass 694 * task around 695 * we pass the cpuctx->ctx to perf_cgroup_from_task() 696 * because cgorup events are only per-cpu 697 */ 698 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 699 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 700 } 701 perf_pmu_enable(cpuctx->ctx.pmu); 702 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 703 } 704 } 705 706 local_irq_restore(flags); 707 } 708 709 static inline void perf_cgroup_sched_out(struct task_struct *task, 710 struct task_struct *next) 711 { 712 struct perf_cgroup *cgrp1; 713 struct perf_cgroup *cgrp2 = NULL; 714 715 rcu_read_lock(); 716 /* 717 * we come here when we know perf_cgroup_events > 0 718 * we do not need to pass the ctx here because we know 719 * we are holding the rcu lock 720 */ 721 cgrp1 = perf_cgroup_from_task(task, NULL); 722 cgrp2 = perf_cgroup_from_task(next, NULL); 723 724 /* 725 * only schedule out current cgroup events if we know 726 * that we are switching to a different cgroup. Otherwise, 727 * do no touch the cgroup events. 728 */ 729 if (cgrp1 != cgrp2) 730 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 731 732 rcu_read_unlock(); 733 } 734 735 static inline void perf_cgroup_sched_in(struct task_struct *prev, 736 struct task_struct *task) 737 { 738 struct perf_cgroup *cgrp1; 739 struct perf_cgroup *cgrp2 = NULL; 740 741 rcu_read_lock(); 742 /* 743 * we come here when we know perf_cgroup_events > 0 744 * we do not need to pass the ctx here because we know 745 * we are holding the rcu lock 746 */ 747 cgrp1 = perf_cgroup_from_task(task, NULL); 748 cgrp2 = perf_cgroup_from_task(prev, NULL); 749 750 /* 751 * only need to schedule in cgroup events if we are changing 752 * cgroup during ctxsw. Cgroup events were not scheduled 753 * out of ctxsw out if that was not the case. 754 */ 755 if (cgrp1 != cgrp2) 756 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 757 758 rcu_read_unlock(); 759 } 760 761 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 762 struct perf_event_attr *attr, 763 struct perf_event *group_leader) 764 { 765 struct perf_cgroup *cgrp; 766 struct cgroup_subsys_state *css; 767 struct fd f = fdget(fd); 768 int ret = 0; 769 770 if (!f.file) 771 return -EBADF; 772 773 css = css_tryget_online_from_dir(f.file->f_path.dentry, 774 &perf_event_cgrp_subsys); 775 if (IS_ERR(css)) { 776 ret = PTR_ERR(css); 777 goto out; 778 } 779 780 cgrp = container_of(css, struct perf_cgroup, css); 781 event->cgrp = cgrp; 782 783 /* 784 * all events in a group must monitor 785 * the same cgroup because a task belongs 786 * to only one perf cgroup at a time 787 */ 788 if (group_leader && group_leader->cgrp != cgrp) { 789 perf_detach_cgroup(event); 790 ret = -EINVAL; 791 } 792 out: 793 fdput(f); 794 return ret; 795 } 796 797 static inline void 798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 799 { 800 struct perf_cgroup_info *t; 801 t = per_cpu_ptr(event->cgrp->info, event->cpu); 802 event->shadow_ctx_time = now - t->timestamp; 803 } 804 805 static inline void 806 perf_cgroup_defer_enabled(struct perf_event *event) 807 { 808 /* 809 * when the current task's perf cgroup does not match 810 * the event's, we need to remember to call the 811 * perf_mark_enable() function the first time a task with 812 * a matching perf cgroup is scheduled in. 813 */ 814 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 815 event->cgrp_defer_enabled = 1; 816 } 817 818 static inline void 819 perf_cgroup_mark_enabled(struct perf_event *event, 820 struct perf_event_context *ctx) 821 { 822 struct perf_event *sub; 823 u64 tstamp = perf_event_time(event); 824 825 if (!event->cgrp_defer_enabled) 826 return; 827 828 event->cgrp_defer_enabled = 0; 829 830 event->tstamp_enabled = tstamp - event->total_time_enabled; 831 list_for_each_entry(sub, &event->sibling_list, group_entry) { 832 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 833 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 834 sub->cgrp_defer_enabled = 0; 835 } 836 } 837 } 838 #else /* !CONFIG_CGROUP_PERF */ 839 840 static inline bool 841 perf_cgroup_match(struct perf_event *event) 842 { 843 return true; 844 } 845 846 static inline void perf_detach_cgroup(struct perf_event *event) 847 {} 848 849 static inline int is_cgroup_event(struct perf_event *event) 850 { 851 return 0; 852 } 853 854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 855 { 856 return 0; 857 } 858 859 static inline void update_cgrp_time_from_event(struct perf_event *event) 860 { 861 } 862 863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 864 { 865 } 866 867 static inline void perf_cgroup_sched_out(struct task_struct *task, 868 struct task_struct *next) 869 { 870 } 871 872 static inline void perf_cgroup_sched_in(struct task_struct *prev, 873 struct task_struct *task) 874 { 875 } 876 877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 878 struct perf_event_attr *attr, 879 struct perf_event *group_leader) 880 { 881 return -EINVAL; 882 } 883 884 static inline void 885 perf_cgroup_set_timestamp(struct task_struct *task, 886 struct perf_event_context *ctx) 887 { 888 } 889 890 void 891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 892 { 893 } 894 895 static inline void 896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 897 { 898 } 899 900 static inline u64 perf_cgroup_event_time(struct perf_event *event) 901 { 902 return 0; 903 } 904 905 static inline void 906 perf_cgroup_defer_enabled(struct perf_event *event) 907 { 908 } 909 910 static inline void 911 perf_cgroup_mark_enabled(struct perf_event *event, 912 struct perf_event_context *ctx) 913 { 914 } 915 #endif 916 917 /* 918 * set default to be dependent on timer tick just 919 * like original code 920 */ 921 #define PERF_CPU_HRTIMER (1000 / HZ) 922 /* 923 * function must be called with interrupts disbled 924 */ 925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 926 { 927 struct perf_cpu_context *cpuctx; 928 int rotations = 0; 929 930 WARN_ON(!irqs_disabled()); 931 932 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 933 rotations = perf_rotate_context(cpuctx); 934 935 raw_spin_lock(&cpuctx->hrtimer_lock); 936 if (rotations) 937 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 938 else 939 cpuctx->hrtimer_active = 0; 940 raw_spin_unlock(&cpuctx->hrtimer_lock); 941 942 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 943 } 944 945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 946 { 947 struct hrtimer *timer = &cpuctx->hrtimer; 948 struct pmu *pmu = cpuctx->ctx.pmu; 949 u64 interval; 950 951 /* no multiplexing needed for SW PMU */ 952 if (pmu->task_ctx_nr == perf_sw_context) 953 return; 954 955 /* 956 * check default is sane, if not set then force to 957 * default interval (1/tick) 958 */ 959 interval = pmu->hrtimer_interval_ms; 960 if (interval < 1) 961 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 962 963 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 964 965 raw_spin_lock_init(&cpuctx->hrtimer_lock); 966 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 967 timer->function = perf_mux_hrtimer_handler; 968 } 969 970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 971 { 972 struct hrtimer *timer = &cpuctx->hrtimer; 973 struct pmu *pmu = cpuctx->ctx.pmu; 974 unsigned long flags; 975 976 /* not for SW PMU */ 977 if (pmu->task_ctx_nr == perf_sw_context) 978 return 0; 979 980 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 981 if (!cpuctx->hrtimer_active) { 982 cpuctx->hrtimer_active = 1; 983 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 984 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 985 } 986 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 987 988 return 0; 989 } 990 991 void perf_pmu_disable(struct pmu *pmu) 992 { 993 int *count = this_cpu_ptr(pmu->pmu_disable_count); 994 if (!(*count)++) 995 pmu->pmu_disable(pmu); 996 } 997 998 void perf_pmu_enable(struct pmu *pmu) 999 { 1000 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1001 if (!--(*count)) 1002 pmu->pmu_enable(pmu); 1003 } 1004 1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1006 1007 /* 1008 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1009 * perf_event_task_tick() are fully serialized because they're strictly cpu 1010 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1011 * disabled, while perf_event_task_tick is called from IRQ context. 1012 */ 1013 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1014 { 1015 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1016 1017 WARN_ON(!irqs_disabled()); 1018 1019 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1020 1021 list_add(&ctx->active_ctx_list, head); 1022 } 1023 1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1025 { 1026 WARN_ON(!irqs_disabled()); 1027 1028 WARN_ON(list_empty(&ctx->active_ctx_list)); 1029 1030 list_del_init(&ctx->active_ctx_list); 1031 } 1032 1033 static void get_ctx(struct perf_event_context *ctx) 1034 { 1035 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1036 } 1037 1038 static void free_ctx(struct rcu_head *head) 1039 { 1040 struct perf_event_context *ctx; 1041 1042 ctx = container_of(head, struct perf_event_context, rcu_head); 1043 kfree(ctx->task_ctx_data); 1044 kfree(ctx); 1045 } 1046 1047 static void put_ctx(struct perf_event_context *ctx) 1048 { 1049 if (atomic_dec_and_test(&ctx->refcount)) { 1050 if (ctx->parent_ctx) 1051 put_ctx(ctx->parent_ctx); 1052 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1053 put_task_struct(ctx->task); 1054 call_rcu(&ctx->rcu_head, free_ctx); 1055 } 1056 } 1057 1058 /* 1059 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1060 * perf_pmu_migrate_context() we need some magic. 1061 * 1062 * Those places that change perf_event::ctx will hold both 1063 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1064 * 1065 * Lock ordering is by mutex address. There are two other sites where 1066 * perf_event_context::mutex nests and those are: 1067 * 1068 * - perf_event_exit_task_context() [ child , 0 ] 1069 * perf_event_exit_event() 1070 * put_event() [ parent, 1 ] 1071 * 1072 * - perf_event_init_context() [ parent, 0 ] 1073 * inherit_task_group() 1074 * inherit_group() 1075 * inherit_event() 1076 * perf_event_alloc() 1077 * perf_init_event() 1078 * perf_try_init_event() [ child , 1 ] 1079 * 1080 * While it appears there is an obvious deadlock here -- the parent and child 1081 * nesting levels are inverted between the two. This is in fact safe because 1082 * life-time rules separate them. That is an exiting task cannot fork, and a 1083 * spawning task cannot (yet) exit. 1084 * 1085 * But remember that that these are parent<->child context relations, and 1086 * migration does not affect children, therefore these two orderings should not 1087 * interact. 1088 * 1089 * The change in perf_event::ctx does not affect children (as claimed above) 1090 * because the sys_perf_event_open() case will install a new event and break 1091 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1092 * concerned with cpuctx and that doesn't have children. 1093 * 1094 * The places that change perf_event::ctx will issue: 1095 * 1096 * perf_remove_from_context(); 1097 * synchronize_rcu(); 1098 * perf_install_in_context(); 1099 * 1100 * to affect the change. The remove_from_context() + synchronize_rcu() should 1101 * quiesce the event, after which we can install it in the new location. This 1102 * means that only external vectors (perf_fops, prctl) can perturb the event 1103 * while in transit. Therefore all such accessors should also acquire 1104 * perf_event_context::mutex to serialize against this. 1105 * 1106 * However; because event->ctx can change while we're waiting to acquire 1107 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1108 * function. 1109 * 1110 * Lock order: 1111 * cred_guard_mutex 1112 * task_struct::perf_event_mutex 1113 * perf_event_context::mutex 1114 * perf_event::child_mutex; 1115 * perf_event_context::lock 1116 * perf_event::mmap_mutex 1117 * mmap_sem 1118 */ 1119 static struct perf_event_context * 1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1121 { 1122 struct perf_event_context *ctx; 1123 1124 again: 1125 rcu_read_lock(); 1126 ctx = ACCESS_ONCE(event->ctx); 1127 if (!atomic_inc_not_zero(&ctx->refcount)) { 1128 rcu_read_unlock(); 1129 goto again; 1130 } 1131 rcu_read_unlock(); 1132 1133 mutex_lock_nested(&ctx->mutex, nesting); 1134 if (event->ctx != ctx) { 1135 mutex_unlock(&ctx->mutex); 1136 put_ctx(ctx); 1137 goto again; 1138 } 1139 1140 return ctx; 1141 } 1142 1143 static inline struct perf_event_context * 1144 perf_event_ctx_lock(struct perf_event *event) 1145 { 1146 return perf_event_ctx_lock_nested(event, 0); 1147 } 1148 1149 static void perf_event_ctx_unlock(struct perf_event *event, 1150 struct perf_event_context *ctx) 1151 { 1152 mutex_unlock(&ctx->mutex); 1153 put_ctx(ctx); 1154 } 1155 1156 /* 1157 * This must be done under the ctx->lock, such as to serialize against 1158 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1159 * calling scheduler related locks and ctx->lock nests inside those. 1160 */ 1161 static __must_check struct perf_event_context * 1162 unclone_ctx(struct perf_event_context *ctx) 1163 { 1164 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1165 1166 lockdep_assert_held(&ctx->lock); 1167 1168 if (parent_ctx) 1169 ctx->parent_ctx = NULL; 1170 ctx->generation++; 1171 1172 return parent_ctx; 1173 } 1174 1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1176 { 1177 /* 1178 * only top level events have the pid namespace they were created in 1179 */ 1180 if (event->parent) 1181 event = event->parent; 1182 1183 return task_tgid_nr_ns(p, event->ns); 1184 } 1185 1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1187 { 1188 /* 1189 * only top level events have the pid namespace they were created in 1190 */ 1191 if (event->parent) 1192 event = event->parent; 1193 1194 return task_pid_nr_ns(p, event->ns); 1195 } 1196 1197 /* 1198 * If we inherit events we want to return the parent event id 1199 * to userspace. 1200 */ 1201 static u64 primary_event_id(struct perf_event *event) 1202 { 1203 u64 id = event->id; 1204 1205 if (event->parent) 1206 id = event->parent->id; 1207 1208 return id; 1209 } 1210 1211 /* 1212 * Get the perf_event_context for a task and lock it. 1213 * 1214 * This has to cope with with the fact that until it is locked, 1215 * the context could get moved to another task. 1216 */ 1217 static struct perf_event_context * 1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1219 { 1220 struct perf_event_context *ctx; 1221 1222 retry: 1223 /* 1224 * One of the few rules of preemptible RCU is that one cannot do 1225 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1226 * part of the read side critical section was irqs-enabled -- see 1227 * rcu_read_unlock_special(). 1228 * 1229 * Since ctx->lock nests under rq->lock we must ensure the entire read 1230 * side critical section has interrupts disabled. 1231 */ 1232 local_irq_save(*flags); 1233 rcu_read_lock(); 1234 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1235 if (ctx) { 1236 /* 1237 * If this context is a clone of another, it might 1238 * get swapped for another underneath us by 1239 * perf_event_task_sched_out, though the 1240 * rcu_read_lock() protects us from any context 1241 * getting freed. Lock the context and check if it 1242 * got swapped before we could get the lock, and retry 1243 * if so. If we locked the right context, then it 1244 * can't get swapped on us any more. 1245 */ 1246 raw_spin_lock(&ctx->lock); 1247 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1248 raw_spin_unlock(&ctx->lock); 1249 rcu_read_unlock(); 1250 local_irq_restore(*flags); 1251 goto retry; 1252 } 1253 1254 if (ctx->task == TASK_TOMBSTONE || 1255 !atomic_inc_not_zero(&ctx->refcount)) { 1256 raw_spin_unlock(&ctx->lock); 1257 ctx = NULL; 1258 } else { 1259 WARN_ON_ONCE(ctx->task != task); 1260 } 1261 } 1262 rcu_read_unlock(); 1263 if (!ctx) 1264 local_irq_restore(*flags); 1265 return ctx; 1266 } 1267 1268 /* 1269 * Get the context for a task and increment its pin_count so it 1270 * can't get swapped to another task. This also increments its 1271 * reference count so that the context can't get freed. 1272 */ 1273 static struct perf_event_context * 1274 perf_pin_task_context(struct task_struct *task, int ctxn) 1275 { 1276 struct perf_event_context *ctx; 1277 unsigned long flags; 1278 1279 ctx = perf_lock_task_context(task, ctxn, &flags); 1280 if (ctx) { 1281 ++ctx->pin_count; 1282 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1283 } 1284 return ctx; 1285 } 1286 1287 static void perf_unpin_context(struct perf_event_context *ctx) 1288 { 1289 unsigned long flags; 1290 1291 raw_spin_lock_irqsave(&ctx->lock, flags); 1292 --ctx->pin_count; 1293 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1294 } 1295 1296 /* 1297 * Update the record of the current time in a context. 1298 */ 1299 static void update_context_time(struct perf_event_context *ctx) 1300 { 1301 u64 now = perf_clock(); 1302 1303 ctx->time += now - ctx->timestamp; 1304 ctx->timestamp = now; 1305 } 1306 1307 static u64 perf_event_time(struct perf_event *event) 1308 { 1309 struct perf_event_context *ctx = event->ctx; 1310 1311 if (is_cgroup_event(event)) 1312 return perf_cgroup_event_time(event); 1313 1314 return ctx ? ctx->time : 0; 1315 } 1316 1317 /* 1318 * Update the total_time_enabled and total_time_running fields for a event. 1319 */ 1320 static void update_event_times(struct perf_event *event) 1321 { 1322 struct perf_event_context *ctx = event->ctx; 1323 u64 run_end; 1324 1325 lockdep_assert_held(&ctx->lock); 1326 1327 if (event->state < PERF_EVENT_STATE_INACTIVE || 1328 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1329 return; 1330 1331 /* 1332 * in cgroup mode, time_enabled represents 1333 * the time the event was enabled AND active 1334 * tasks were in the monitored cgroup. This is 1335 * independent of the activity of the context as 1336 * there may be a mix of cgroup and non-cgroup events. 1337 * 1338 * That is why we treat cgroup events differently 1339 * here. 1340 */ 1341 if (is_cgroup_event(event)) 1342 run_end = perf_cgroup_event_time(event); 1343 else if (ctx->is_active) 1344 run_end = ctx->time; 1345 else 1346 run_end = event->tstamp_stopped; 1347 1348 event->total_time_enabled = run_end - event->tstamp_enabled; 1349 1350 if (event->state == PERF_EVENT_STATE_INACTIVE) 1351 run_end = event->tstamp_stopped; 1352 else 1353 run_end = perf_event_time(event); 1354 1355 event->total_time_running = run_end - event->tstamp_running; 1356 1357 } 1358 1359 /* 1360 * Update total_time_enabled and total_time_running for all events in a group. 1361 */ 1362 static void update_group_times(struct perf_event *leader) 1363 { 1364 struct perf_event *event; 1365 1366 update_event_times(leader); 1367 list_for_each_entry(event, &leader->sibling_list, group_entry) 1368 update_event_times(event); 1369 } 1370 1371 static struct list_head * 1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1373 { 1374 if (event->attr.pinned) 1375 return &ctx->pinned_groups; 1376 else 1377 return &ctx->flexible_groups; 1378 } 1379 1380 /* 1381 * Add a event from the lists for its context. 1382 * Must be called with ctx->mutex and ctx->lock held. 1383 */ 1384 static void 1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1386 { 1387 lockdep_assert_held(&ctx->lock); 1388 1389 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1390 event->attach_state |= PERF_ATTACH_CONTEXT; 1391 1392 /* 1393 * If we're a stand alone event or group leader, we go to the context 1394 * list, group events are kept attached to the group so that 1395 * perf_group_detach can, at all times, locate all siblings. 1396 */ 1397 if (event->group_leader == event) { 1398 struct list_head *list; 1399 1400 if (is_software_event(event)) 1401 event->group_flags |= PERF_GROUP_SOFTWARE; 1402 1403 list = ctx_group_list(event, ctx); 1404 list_add_tail(&event->group_entry, list); 1405 } 1406 1407 if (is_cgroup_event(event)) 1408 ctx->nr_cgroups++; 1409 1410 list_add_rcu(&event->event_entry, &ctx->event_list); 1411 ctx->nr_events++; 1412 if (event->attr.inherit_stat) 1413 ctx->nr_stat++; 1414 1415 ctx->generation++; 1416 } 1417 1418 /* 1419 * Initialize event state based on the perf_event_attr::disabled. 1420 */ 1421 static inline void perf_event__state_init(struct perf_event *event) 1422 { 1423 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1424 PERF_EVENT_STATE_INACTIVE; 1425 } 1426 1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1428 { 1429 int entry = sizeof(u64); /* value */ 1430 int size = 0; 1431 int nr = 1; 1432 1433 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1434 size += sizeof(u64); 1435 1436 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1437 size += sizeof(u64); 1438 1439 if (event->attr.read_format & PERF_FORMAT_ID) 1440 entry += sizeof(u64); 1441 1442 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1443 nr += nr_siblings; 1444 size += sizeof(u64); 1445 } 1446 1447 size += entry * nr; 1448 event->read_size = size; 1449 } 1450 1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1452 { 1453 struct perf_sample_data *data; 1454 u16 size = 0; 1455 1456 if (sample_type & PERF_SAMPLE_IP) 1457 size += sizeof(data->ip); 1458 1459 if (sample_type & PERF_SAMPLE_ADDR) 1460 size += sizeof(data->addr); 1461 1462 if (sample_type & PERF_SAMPLE_PERIOD) 1463 size += sizeof(data->period); 1464 1465 if (sample_type & PERF_SAMPLE_WEIGHT) 1466 size += sizeof(data->weight); 1467 1468 if (sample_type & PERF_SAMPLE_READ) 1469 size += event->read_size; 1470 1471 if (sample_type & PERF_SAMPLE_DATA_SRC) 1472 size += sizeof(data->data_src.val); 1473 1474 if (sample_type & PERF_SAMPLE_TRANSACTION) 1475 size += sizeof(data->txn); 1476 1477 event->header_size = size; 1478 } 1479 1480 /* 1481 * Called at perf_event creation and when events are attached/detached from a 1482 * group. 1483 */ 1484 static void perf_event__header_size(struct perf_event *event) 1485 { 1486 __perf_event_read_size(event, 1487 event->group_leader->nr_siblings); 1488 __perf_event_header_size(event, event->attr.sample_type); 1489 } 1490 1491 static void perf_event__id_header_size(struct perf_event *event) 1492 { 1493 struct perf_sample_data *data; 1494 u64 sample_type = event->attr.sample_type; 1495 u16 size = 0; 1496 1497 if (sample_type & PERF_SAMPLE_TID) 1498 size += sizeof(data->tid_entry); 1499 1500 if (sample_type & PERF_SAMPLE_TIME) 1501 size += sizeof(data->time); 1502 1503 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1504 size += sizeof(data->id); 1505 1506 if (sample_type & PERF_SAMPLE_ID) 1507 size += sizeof(data->id); 1508 1509 if (sample_type & PERF_SAMPLE_STREAM_ID) 1510 size += sizeof(data->stream_id); 1511 1512 if (sample_type & PERF_SAMPLE_CPU) 1513 size += sizeof(data->cpu_entry); 1514 1515 event->id_header_size = size; 1516 } 1517 1518 static bool perf_event_validate_size(struct perf_event *event) 1519 { 1520 /* 1521 * The values computed here will be over-written when we actually 1522 * attach the event. 1523 */ 1524 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1525 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1526 perf_event__id_header_size(event); 1527 1528 /* 1529 * Sum the lot; should not exceed the 64k limit we have on records. 1530 * Conservative limit to allow for callchains and other variable fields. 1531 */ 1532 if (event->read_size + event->header_size + 1533 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1534 return false; 1535 1536 return true; 1537 } 1538 1539 static void perf_group_attach(struct perf_event *event) 1540 { 1541 struct perf_event *group_leader = event->group_leader, *pos; 1542 1543 /* 1544 * We can have double attach due to group movement in perf_event_open. 1545 */ 1546 if (event->attach_state & PERF_ATTACH_GROUP) 1547 return; 1548 1549 event->attach_state |= PERF_ATTACH_GROUP; 1550 1551 if (group_leader == event) 1552 return; 1553 1554 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1555 1556 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1557 !is_software_event(event)) 1558 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1559 1560 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1561 group_leader->nr_siblings++; 1562 1563 perf_event__header_size(group_leader); 1564 1565 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1566 perf_event__header_size(pos); 1567 } 1568 1569 /* 1570 * Remove a event from the lists for its context. 1571 * Must be called with ctx->mutex and ctx->lock held. 1572 */ 1573 static void 1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1575 { 1576 struct perf_cpu_context *cpuctx; 1577 1578 WARN_ON_ONCE(event->ctx != ctx); 1579 lockdep_assert_held(&ctx->lock); 1580 1581 /* 1582 * We can have double detach due to exit/hot-unplug + close. 1583 */ 1584 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1585 return; 1586 1587 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1588 1589 if (is_cgroup_event(event)) { 1590 ctx->nr_cgroups--; 1591 /* 1592 * Because cgroup events are always per-cpu events, this will 1593 * always be called from the right CPU. 1594 */ 1595 cpuctx = __get_cpu_context(ctx); 1596 /* 1597 * If there are no more cgroup events then clear cgrp to avoid 1598 * stale pointer in update_cgrp_time_from_cpuctx(). 1599 */ 1600 if (!ctx->nr_cgroups) 1601 cpuctx->cgrp = NULL; 1602 } 1603 1604 ctx->nr_events--; 1605 if (event->attr.inherit_stat) 1606 ctx->nr_stat--; 1607 1608 list_del_rcu(&event->event_entry); 1609 1610 if (event->group_leader == event) 1611 list_del_init(&event->group_entry); 1612 1613 update_group_times(event); 1614 1615 /* 1616 * If event was in error state, then keep it 1617 * that way, otherwise bogus counts will be 1618 * returned on read(). The only way to get out 1619 * of error state is by explicit re-enabling 1620 * of the event 1621 */ 1622 if (event->state > PERF_EVENT_STATE_OFF) 1623 event->state = PERF_EVENT_STATE_OFF; 1624 1625 ctx->generation++; 1626 } 1627 1628 static void perf_group_detach(struct perf_event *event) 1629 { 1630 struct perf_event *sibling, *tmp; 1631 struct list_head *list = NULL; 1632 1633 /* 1634 * We can have double detach due to exit/hot-unplug + close. 1635 */ 1636 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1637 return; 1638 1639 event->attach_state &= ~PERF_ATTACH_GROUP; 1640 1641 /* 1642 * If this is a sibling, remove it from its group. 1643 */ 1644 if (event->group_leader != event) { 1645 list_del_init(&event->group_entry); 1646 event->group_leader->nr_siblings--; 1647 goto out; 1648 } 1649 1650 if (!list_empty(&event->group_entry)) 1651 list = &event->group_entry; 1652 1653 /* 1654 * If this was a group event with sibling events then 1655 * upgrade the siblings to singleton events by adding them 1656 * to whatever list we are on. 1657 */ 1658 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1659 if (list) 1660 list_move_tail(&sibling->group_entry, list); 1661 sibling->group_leader = sibling; 1662 1663 /* Inherit group flags from the previous leader */ 1664 sibling->group_flags = event->group_flags; 1665 1666 WARN_ON_ONCE(sibling->ctx != event->ctx); 1667 } 1668 1669 out: 1670 perf_event__header_size(event->group_leader); 1671 1672 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1673 perf_event__header_size(tmp); 1674 } 1675 1676 static bool is_orphaned_event(struct perf_event *event) 1677 { 1678 return event->state == PERF_EVENT_STATE_DEAD; 1679 } 1680 1681 static inline int pmu_filter_match(struct perf_event *event) 1682 { 1683 struct pmu *pmu = event->pmu; 1684 return pmu->filter_match ? pmu->filter_match(event) : 1; 1685 } 1686 1687 static inline int 1688 event_filter_match(struct perf_event *event) 1689 { 1690 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1691 && perf_cgroup_match(event) && pmu_filter_match(event); 1692 } 1693 1694 static void 1695 event_sched_out(struct perf_event *event, 1696 struct perf_cpu_context *cpuctx, 1697 struct perf_event_context *ctx) 1698 { 1699 u64 tstamp = perf_event_time(event); 1700 u64 delta; 1701 1702 WARN_ON_ONCE(event->ctx != ctx); 1703 lockdep_assert_held(&ctx->lock); 1704 1705 /* 1706 * An event which could not be activated because of 1707 * filter mismatch still needs to have its timings 1708 * maintained, otherwise bogus information is return 1709 * via read() for time_enabled, time_running: 1710 */ 1711 if (event->state == PERF_EVENT_STATE_INACTIVE 1712 && !event_filter_match(event)) { 1713 delta = tstamp - event->tstamp_stopped; 1714 event->tstamp_running += delta; 1715 event->tstamp_stopped = tstamp; 1716 } 1717 1718 if (event->state != PERF_EVENT_STATE_ACTIVE) 1719 return; 1720 1721 perf_pmu_disable(event->pmu); 1722 1723 event->tstamp_stopped = tstamp; 1724 event->pmu->del(event, 0); 1725 event->oncpu = -1; 1726 event->state = PERF_EVENT_STATE_INACTIVE; 1727 if (event->pending_disable) { 1728 event->pending_disable = 0; 1729 event->state = PERF_EVENT_STATE_OFF; 1730 } 1731 1732 if (!is_software_event(event)) 1733 cpuctx->active_oncpu--; 1734 if (!--ctx->nr_active) 1735 perf_event_ctx_deactivate(ctx); 1736 if (event->attr.freq && event->attr.sample_freq) 1737 ctx->nr_freq--; 1738 if (event->attr.exclusive || !cpuctx->active_oncpu) 1739 cpuctx->exclusive = 0; 1740 1741 perf_pmu_enable(event->pmu); 1742 } 1743 1744 static void 1745 group_sched_out(struct perf_event *group_event, 1746 struct perf_cpu_context *cpuctx, 1747 struct perf_event_context *ctx) 1748 { 1749 struct perf_event *event; 1750 int state = group_event->state; 1751 1752 event_sched_out(group_event, cpuctx, ctx); 1753 1754 /* 1755 * Schedule out siblings (if any): 1756 */ 1757 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1758 event_sched_out(event, cpuctx, ctx); 1759 1760 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1761 cpuctx->exclusive = 0; 1762 } 1763 1764 #define DETACH_GROUP 0x01UL 1765 1766 /* 1767 * Cross CPU call to remove a performance event 1768 * 1769 * We disable the event on the hardware level first. After that we 1770 * remove it from the context list. 1771 */ 1772 static void 1773 __perf_remove_from_context(struct perf_event *event, 1774 struct perf_cpu_context *cpuctx, 1775 struct perf_event_context *ctx, 1776 void *info) 1777 { 1778 unsigned long flags = (unsigned long)info; 1779 1780 event_sched_out(event, cpuctx, ctx); 1781 if (flags & DETACH_GROUP) 1782 perf_group_detach(event); 1783 list_del_event(event, ctx); 1784 1785 if (!ctx->nr_events && ctx->is_active) { 1786 ctx->is_active = 0; 1787 if (ctx->task) { 1788 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1789 cpuctx->task_ctx = NULL; 1790 } 1791 } 1792 } 1793 1794 /* 1795 * Remove the event from a task's (or a CPU's) list of events. 1796 * 1797 * If event->ctx is a cloned context, callers must make sure that 1798 * every task struct that event->ctx->task could possibly point to 1799 * remains valid. This is OK when called from perf_release since 1800 * that only calls us on the top-level context, which can't be a clone. 1801 * When called from perf_event_exit_task, it's OK because the 1802 * context has been detached from its task. 1803 */ 1804 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1805 { 1806 lockdep_assert_held(&event->ctx->mutex); 1807 1808 event_function_call(event, __perf_remove_from_context, (void *)flags); 1809 } 1810 1811 /* 1812 * Cross CPU call to disable a performance event 1813 */ 1814 static void __perf_event_disable(struct perf_event *event, 1815 struct perf_cpu_context *cpuctx, 1816 struct perf_event_context *ctx, 1817 void *info) 1818 { 1819 if (event->state < PERF_EVENT_STATE_INACTIVE) 1820 return; 1821 1822 update_context_time(ctx); 1823 update_cgrp_time_from_event(event); 1824 update_group_times(event); 1825 if (event == event->group_leader) 1826 group_sched_out(event, cpuctx, ctx); 1827 else 1828 event_sched_out(event, cpuctx, ctx); 1829 event->state = PERF_EVENT_STATE_OFF; 1830 } 1831 1832 /* 1833 * Disable a event. 1834 * 1835 * If event->ctx is a cloned context, callers must make sure that 1836 * every task struct that event->ctx->task could possibly point to 1837 * remains valid. This condition is satisifed when called through 1838 * perf_event_for_each_child or perf_event_for_each because they 1839 * hold the top-level event's child_mutex, so any descendant that 1840 * goes to exit will block in perf_event_exit_event(). 1841 * 1842 * When called from perf_pending_event it's OK because event->ctx 1843 * is the current context on this CPU and preemption is disabled, 1844 * hence we can't get into perf_event_task_sched_out for this context. 1845 */ 1846 static void _perf_event_disable(struct perf_event *event) 1847 { 1848 struct perf_event_context *ctx = event->ctx; 1849 1850 raw_spin_lock_irq(&ctx->lock); 1851 if (event->state <= PERF_EVENT_STATE_OFF) { 1852 raw_spin_unlock_irq(&ctx->lock); 1853 return; 1854 } 1855 raw_spin_unlock_irq(&ctx->lock); 1856 1857 event_function_call(event, __perf_event_disable, NULL); 1858 } 1859 1860 void perf_event_disable_local(struct perf_event *event) 1861 { 1862 event_function_local(event, __perf_event_disable, NULL); 1863 } 1864 1865 /* 1866 * Strictly speaking kernel users cannot create groups and therefore this 1867 * interface does not need the perf_event_ctx_lock() magic. 1868 */ 1869 void perf_event_disable(struct perf_event *event) 1870 { 1871 struct perf_event_context *ctx; 1872 1873 ctx = perf_event_ctx_lock(event); 1874 _perf_event_disable(event); 1875 perf_event_ctx_unlock(event, ctx); 1876 } 1877 EXPORT_SYMBOL_GPL(perf_event_disable); 1878 1879 static void perf_set_shadow_time(struct perf_event *event, 1880 struct perf_event_context *ctx, 1881 u64 tstamp) 1882 { 1883 /* 1884 * use the correct time source for the time snapshot 1885 * 1886 * We could get by without this by leveraging the 1887 * fact that to get to this function, the caller 1888 * has most likely already called update_context_time() 1889 * and update_cgrp_time_xx() and thus both timestamp 1890 * are identical (or very close). Given that tstamp is, 1891 * already adjusted for cgroup, we could say that: 1892 * tstamp - ctx->timestamp 1893 * is equivalent to 1894 * tstamp - cgrp->timestamp. 1895 * 1896 * Then, in perf_output_read(), the calculation would 1897 * work with no changes because: 1898 * - event is guaranteed scheduled in 1899 * - no scheduled out in between 1900 * - thus the timestamp would be the same 1901 * 1902 * But this is a bit hairy. 1903 * 1904 * So instead, we have an explicit cgroup call to remain 1905 * within the time time source all along. We believe it 1906 * is cleaner and simpler to understand. 1907 */ 1908 if (is_cgroup_event(event)) 1909 perf_cgroup_set_shadow_time(event, tstamp); 1910 else 1911 event->shadow_ctx_time = tstamp - ctx->timestamp; 1912 } 1913 1914 #define MAX_INTERRUPTS (~0ULL) 1915 1916 static void perf_log_throttle(struct perf_event *event, int enable); 1917 static void perf_log_itrace_start(struct perf_event *event); 1918 1919 static int 1920 event_sched_in(struct perf_event *event, 1921 struct perf_cpu_context *cpuctx, 1922 struct perf_event_context *ctx) 1923 { 1924 u64 tstamp = perf_event_time(event); 1925 int ret = 0; 1926 1927 lockdep_assert_held(&ctx->lock); 1928 1929 if (event->state <= PERF_EVENT_STATE_OFF) 1930 return 0; 1931 1932 WRITE_ONCE(event->oncpu, smp_processor_id()); 1933 /* 1934 * Order event::oncpu write to happen before the ACTIVE state 1935 * is visible. 1936 */ 1937 smp_wmb(); 1938 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE); 1939 1940 /* 1941 * Unthrottle events, since we scheduled we might have missed several 1942 * ticks already, also for a heavily scheduling task there is little 1943 * guarantee it'll get a tick in a timely manner. 1944 */ 1945 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1946 perf_log_throttle(event, 1); 1947 event->hw.interrupts = 0; 1948 } 1949 1950 /* 1951 * The new state must be visible before we turn it on in the hardware: 1952 */ 1953 smp_wmb(); 1954 1955 perf_pmu_disable(event->pmu); 1956 1957 perf_set_shadow_time(event, ctx, tstamp); 1958 1959 perf_log_itrace_start(event); 1960 1961 if (event->pmu->add(event, PERF_EF_START)) { 1962 event->state = PERF_EVENT_STATE_INACTIVE; 1963 event->oncpu = -1; 1964 ret = -EAGAIN; 1965 goto out; 1966 } 1967 1968 event->tstamp_running += tstamp - event->tstamp_stopped; 1969 1970 if (!is_software_event(event)) 1971 cpuctx->active_oncpu++; 1972 if (!ctx->nr_active++) 1973 perf_event_ctx_activate(ctx); 1974 if (event->attr.freq && event->attr.sample_freq) 1975 ctx->nr_freq++; 1976 1977 if (event->attr.exclusive) 1978 cpuctx->exclusive = 1; 1979 1980 out: 1981 perf_pmu_enable(event->pmu); 1982 1983 return ret; 1984 } 1985 1986 static int 1987 group_sched_in(struct perf_event *group_event, 1988 struct perf_cpu_context *cpuctx, 1989 struct perf_event_context *ctx) 1990 { 1991 struct perf_event *event, *partial_group = NULL; 1992 struct pmu *pmu = ctx->pmu; 1993 u64 now = ctx->time; 1994 bool simulate = false; 1995 1996 if (group_event->state == PERF_EVENT_STATE_OFF) 1997 return 0; 1998 1999 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2000 2001 if (event_sched_in(group_event, cpuctx, ctx)) { 2002 pmu->cancel_txn(pmu); 2003 perf_mux_hrtimer_restart(cpuctx); 2004 return -EAGAIN; 2005 } 2006 2007 /* 2008 * Schedule in siblings as one group (if any): 2009 */ 2010 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2011 if (event_sched_in(event, cpuctx, ctx)) { 2012 partial_group = event; 2013 goto group_error; 2014 } 2015 } 2016 2017 if (!pmu->commit_txn(pmu)) 2018 return 0; 2019 2020 group_error: 2021 /* 2022 * Groups can be scheduled in as one unit only, so undo any 2023 * partial group before returning: 2024 * The events up to the failed event are scheduled out normally, 2025 * tstamp_stopped will be updated. 2026 * 2027 * The failed events and the remaining siblings need to have 2028 * their timings updated as if they had gone thru event_sched_in() 2029 * and event_sched_out(). This is required to get consistent timings 2030 * across the group. This also takes care of the case where the group 2031 * could never be scheduled by ensuring tstamp_stopped is set to mark 2032 * the time the event was actually stopped, such that time delta 2033 * calculation in update_event_times() is correct. 2034 */ 2035 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2036 if (event == partial_group) 2037 simulate = true; 2038 2039 if (simulate) { 2040 event->tstamp_running += now - event->tstamp_stopped; 2041 event->tstamp_stopped = now; 2042 } else { 2043 event_sched_out(event, cpuctx, ctx); 2044 } 2045 } 2046 event_sched_out(group_event, cpuctx, ctx); 2047 2048 pmu->cancel_txn(pmu); 2049 2050 perf_mux_hrtimer_restart(cpuctx); 2051 2052 return -EAGAIN; 2053 } 2054 2055 /* 2056 * Work out whether we can put this event group on the CPU now. 2057 */ 2058 static int group_can_go_on(struct perf_event *event, 2059 struct perf_cpu_context *cpuctx, 2060 int can_add_hw) 2061 { 2062 /* 2063 * Groups consisting entirely of software events can always go on. 2064 */ 2065 if (event->group_flags & PERF_GROUP_SOFTWARE) 2066 return 1; 2067 /* 2068 * If an exclusive group is already on, no other hardware 2069 * events can go on. 2070 */ 2071 if (cpuctx->exclusive) 2072 return 0; 2073 /* 2074 * If this group is exclusive and there are already 2075 * events on the CPU, it can't go on. 2076 */ 2077 if (event->attr.exclusive && cpuctx->active_oncpu) 2078 return 0; 2079 /* 2080 * Otherwise, try to add it if all previous groups were able 2081 * to go on. 2082 */ 2083 return can_add_hw; 2084 } 2085 2086 static void add_event_to_ctx(struct perf_event *event, 2087 struct perf_event_context *ctx) 2088 { 2089 u64 tstamp = perf_event_time(event); 2090 2091 list_add_event(event, ctx); 2092 perf_group_attach(event); 2093 event->tstamp_enabled = tstamp; 2094 event->tstamp_running = tstamp; 2095 event->tstamp_stopped = tstamp; 2096 } 2097 2098 static void ctx_sched_out(struct perf_event_context *ctx, 2099 struct perf_cpu_context *cpuctx, 2100 enum event_type_t event_type); 2101 static void 2102 ctx_sched_in(struct perf_event_context *ctx, 2103 struct perf_cpu_context *cpuctx, 2104 enum event_type_t event_type, 2105 struct task_struct *task); 2106 2107 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2108 struct perf_event_context *ctx) 2109 { 2110 if (!cpuctx->task_ctx) 2111 return; 2112 2113 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2114 return; 2115 2116 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2117 } 2118 2119 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2120 struct perf_event_context *ctx, 2121 struct task_struct *task) 2122 { 2123 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2124 if (ctx) 2125 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2126 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2127 if (ctx) 2128 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2129 } 2130 2131 static void ctx_resched(struct perf_cpu_context *cpuctx, 2132 struct perf_event_context *task_ctx) 2133 { 2134 perf_pmu_disable(cpuctx->ctx.pmu); 2135 if (task_ctx) 2136 task_ctx_sched_out(cpuctx, task_ctx); 2137 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2138 perf_event_sched_in(cpuctx, task_ctx, current); 2139 perf_pmu_enable(cpuctx->ctx.pmu); 2140 } 2141 2142 /* 2143 * Cross CPU call to install and enable a performance event 2144 * 2145 * Very similar to remote_function() + event_function() but cannot assume that 2146 * things like ctx->is_active and cpuctx->task_ctx are set. 2147 */ 2148 static int __perf_install_in_context(void *info) 2149 { 2150 struct perf_event *event = info; 2151 struct perf_event_context *ctx = event->ctx; 2152 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2153 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2154 bool activate = true; 2155 int ret = 0; 2156 2157 raw_spin_lock(&cpuctx->ctx.lock); 2158 if (ctx->task) { 2159 raw_spin_lock(&ctx->lock); 2160 task_ctx = ctx; 2161 2162 /* If we're on the wrong CPU, try again */ 2163 if (task_cpu(ctx->task) != smp_processor_id()) { 2164 ret = -ESRCH; 2165 goto unlock; 2166 } 2167 2168 /* 2169 * If we're on the right CPU, see if the task we target is 2170 * current, if not we don't have to activate the ctx, a future 2171 * context switch will do that for us. 2172 */ 2173 if (ctx->task != current) 2174 activate = false; 2175 else 2176 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2177 2178 } else if (task_ctx) { 2179 raw_spin_lock(&task_ctx->lock); 2180 } 2181 2182 if (activate) { 2183 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2184 add_event_to_ctx(event, ctx); 2185 ctx_resched(cpuctx, task_ctx); 2186 } else { 2187 add_event_to_ctx(event, ctx); 2188 } 2189 2190 unlock: 2191 perf_ctx_unlock(cpuctx, task_ctx); 2192 2193 return ret; 2194 } 2195 2196 /* 2197 * Attach a performance event to a context. 2198 * 2199 * Very similar to event_function_call, see comment there. 2200 */ 2201 static void 2202 perf_install_in_context(struct perf_event_context *ctx, 2203 struct perf_event *event, 2204 int cpu) 2205 { 2206 struct task_struct *task = READ_ONCE(ctx->task); 2207 2208 lockdep_assert_held(&ctx->mutex); 2209 2210 event->ctx = ctx; 2211 if (event->cpu != -1) 2212 event->cpu = cpu; 2213 2214 if (!task) { 2215 cpu_function_call(cpu, __perf_install_in_context, event); 2216 return; 2217 } 2218 2219 /* 2220 * Should not happen, we validate the ctx is still alive before calling. 2221 */ 2222 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2223 return; 2224 2225 /* 2226 * Installing events is tricky because we cannot rely on ctx->is_active 2227 * to be set in case this is the nr_events 0 -> 1 transition. 2228 */ 2229 again: 2230 /* 2231 * Cannot use task_function_call() because we need to run on the task's 2232 * CPU regardless of whether its current or not. 2233 */ 2234 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2235 return; 2236 2237 raw_spin_lock_irq(&ctx->lock); 2238 task = ctx->task; 2239 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2240 /* 2241 * Cannot happen because we already checked above (which also 2242 * cannot happen), and we hold ctx->mutex, which serializes us 2243 * against perf_event_exit_task_context(). 2244 */ 2245 raw_spin_unlock_irq(&ctx->lock); 2246 return; 2247 } 2248 raw_spin_unlock_irq(&ctx->lock); 2249 /* 2250 * Since !ctx->is_active doesn't mean anything, we must IPI 2251 * unconditionally. 2252 */ 2253 goto again; 2254 } 2255 2256 /* 2257 * Put a event into inactive state and update time fields. 2258 * Enabling the leader of a group effectively enables all 2259 * the group members that aren't explicitly disabled, so we 2260 * have to update their ->tstamp_enabled also. 2261 * Note: this works for group members as well as group leaders 2262 * since the non-leader members' sibling_lists will be empty. 2263 */ 2264 static void __perf_event_mark_enabled(struct perf_event *event) 2265 { 2266 struct perf_event *sub; 2267 u64 tstamp = perf_event_time(event); 2268 2269 event->state = PERF_EVENT_STATE_INACTIVE; 2270 event->tstamp_enabled = tstamp - event->total_time_enabled; 2271 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2272 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2273 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2274 } 2275 } 2276 2277 /* 2278 * Cross CPU call to enable a performance event 2279 */ 2280 static void __perf_event_enable(struct perf_event *event, 2281 struct perf_cpu_context *cpuctx, 2282 struct perf_event_context *ctx, 2283 void *info) 2284 { 2285 struct perf_event *leader = event->group_leader; 2286 struct perf_event_context *task_ctx; 2287 2288 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2289 event->state <= PERF_EVENT_STATE_ERROR) 2290 return; 2291 2292 if (ctx->is_active) 2293 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2294 2295 __perf_event_mark_enabled(event); 2296 2297 if (!ctx->is_active) 2298 return; 2299 2300 if (!event_filter_match(event)) { 2301 if (is_cgroup_event(event)) 2302 perf_cgroup_defer_enabled(event); 2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2304 return; 2305 } 2306 2307 /* 2308 * If the event is in a group and isn't the group leader, 2309 * then don't put it on unless the group is on. 2310 */ 2311 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2312 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2313 return; 2314 } 2315 2316 task_ctx = cpuctx->task_ctx; 2317 if (ctx->task) 2318 WARN_ON_ONCE(task_ctx != ctx); 2319 2320 ctx_resched(cpuctx, task_ctx); 2321 } 2322 2323 /* 2324 * Enable a event. 2325 * 2326 * If event->ctx is a cloned context, callers must make sure that 2327 * every task struct that event->ctx->task could possibly point to 2328 * remains valid. This condition is satisfied when called through 2329 * perf_event_for_each_child or perf_event_for_each as described 2330 * for perf_event_disable. 2331 */ 2332 static void _perf_event_enable(struct perf_event *event) 2333 { 2334 struct perf_event_context *ctx = event->ctx; 2335 2336 raw_spin_lock_irq(&ctx->lock); 2337 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2338 event->state < PERF_EVENT_STATE_ERROR) { 2339 raw_spin_unlock_irq(&ctx->lock); 2340 return; 2341 } 2342 2343 /* 2344 * If the event is in error state, clear that first. 2345 * 2346 * That way, if we see the event in error state below, we know that it 2347 * has gone back into error state, as distinct from the task having 2348 * been scheduled away before the cross-call arrived. 2349 */ 2350 if (event->state == PERF_EVENT_STATE_ERROR) 2351 event->state = PERF_EVENT_STATE_OFF; 2352 raw_spin_unlock_irq(&ctx->lock); 2353 2354 event_function_call(event, __perf_event_enable, NULL); 2355 } 2356 2357 /* 2358 * See perf_event_disable(); 2359 */ 2360 void perf_event_enable(struct perf_event *event) 2361 { 2362 struct perf_event_context *ctx; 2363 2364 ctx = perf_event_ctx_lock(event); 2365 _perf_event_enable(event); 2366 perf_event_ctx_unlock(event, ctx); 2367 } 2368 EXPORT_SYMBOL_GPL(perf_event_enable); 2369 2370 struct stop_event_data { 2371 struct perf_event *event; 2372 unsigned int restart; 2373 }; 2374 2375 static int __perf_event_stop(void *info) 2376 { 2377 struct stop_event_data *sd = info; 2378 struct perf_event *event = sd->event; 2379 2380 /* if it's already INACTIVE, do nothing */ 2381 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2382 return 0; 2383 2384 /* matches smp_wmb() in event_sched_in() */ 2385 smp_rmb(); 2386 2387 /* 2388 * There is a window with interrupts enabled before we get here, 2389 * so we need to check again lest we try to stop another CPU's event. 2390 */ 2391 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2392 return -EAGAIN; 2393 2394 event->pmu->stop(event, PERF_EF_UPDATE); 2395 2396 /* 2397 * May race with the actual stop (through perf_pmu_output_stop()), 2398 * but it is only used for events with AUX ring buffer, and such 2399 * events will refuse to restart because of rb::aux_mmap_count==0, 2400 * see comments in perf_aux_output_begin(). 2401 * 2402 * Since this is happening on a event-local CPU, no trace is lost 2403 * while restarting. 2404 */ 2405 if (sd->restart) 2406 event->pmu->start(event, PERF_EF_START); 2407 2408 return 0; 2409 } 2410 2411 static int perf_event_restart(struct perf_event *event) 2412 { 2413 struct stop_event_data sd = { 2414 .event = event, 2415 .restart = 1, 2416 }; 2417 int ret = 0; 2418 2419 do { 2420 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2421 return 0; 2422 2423 /* matches smp_wmb() in event_sched_in() */ 2424 smp_rmb(); 2425 2426 /* 2427 * We only want to restart ACTIVE events, so if the event goes 2428 * inactive here (event->oncpu==-1), there's nothing more to do; 2429 * fall through with ret==-ENXIO. 2430 */ 2431 ret = cpu_function_call(READ_ONCE(event->oncpu), 2432 __perf_event_stop, &sd); 2433 } while (ret == -EAGAIN); 2434 2435 return ret; 2436 } 2437 2438 /* 2439 * In order to contain the amount of racy and tricky in the address filter 2440 * configuration management, it is a two part process: 2441 * 2442 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2443 * we update the addresses of corresponding vmas in 2444 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2445 * (p2) when an event is scheduled in (pmu::add), it calls 2446 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2447 * if the generation has changed since the previous call. 2448 * 2449 * If (p1) happens while the event is active, we restart it to force (p2). 2450 * 2451 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2452 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2453 * ioctl; 2454 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2455 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2456 * for reading; 2457 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2458 * of exec. 2459 */ 2460 void perf_event_addr_filters_sync(struct perf_event *event) 2461 { 2462 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2463 2464 if (!has_addr_filter(event)) 2465 return; 2466 2467 raw_spin_lock(&ifh->lock); 2468 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2469 event->pmu->addr_filters_sync(event); 2470 event->hw.addr_filters_gen = event->addr_filters_gen; 2471 } 2472 raw_spin_unlock(&ifh->lock); 2473 } 2474 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2475 2476 static int _perf_event_refresh(struct perf_event *event, int refresh) 2477 { 2478 /* 2479 * not supported on inherited events 2480 */ 2481 if (event->attr.inherit || !is_sampling_event(event)) 2482 return -EINVAL; 2483 2484 atomic_add(refresh, &event->event_limit); 2485 _perf_event_enable(event); 2486 2487 return 0; 2488 } 2489 2490 /* 2491 * See perf_event_disable() 2492 */ 2493 int perf_event_refresh(struct perf_event *event, int refresh) 2494 { 2495 struct perf_event_context *ctx; 2496 int ret; 2497 2498 ctx = perf_event_ctx_lock(event); 2499 ret = _perf_event_refresh(event, refresh); 2500 perf_event_ctx_unlock(event, ctx); 2501 2502 return ret; 2503 } 2504 EXPORT_SYMBOL_GPL(perf_event_refresh); 2505 2506 static void ctx_sched_out(struct perf_event_context *ctx, 2507 struct perf_cpu_context *cpuctx, 2508 enum event_type_t event_type) 2509 { 2510 int is_active = ctx->is_active; 2511 struct perf_event *event; 2512 2513 lockdep_assert_held(&ctx->lock); 2514 2515 if (likely(!ctx->nr_events)) { 2516 /* 2517 * See __perf_remove_from_context(). 2518 */ 2519 WARN_ON_ONCE(ctx->is_active); 2520 if (ctx->task) 2521 WARN_ON_ONCE(cpuctx->task_ctx); 2522 return; 2523 } 2524 2525 ctx->is_active &= ~event_type; 2526 if (!(ctx->is_active & EVENT_ALL)) 2527 ctx->is_active = 0; 2528 2529 if (ctx->task) { 2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2531 if (!ctx->is_active) 2532 cpuctx->task_ctx = NULL; 2533 } 2534 2535 /* 2536 * Always update time if it was set; not only when it changes. 2537 * Otherwise we can 'forget' to update time for any but the last 2538 * context we sched out. For example: 2539 * 2540 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2541 * ctx_sched_out(.event_type = EVENT_PINNED) 2542 * 2543 * would only update time for the pinned events. 2544 */ 2545 if (is_active & EVENT_TIME) { 2546 /* update (and stop) ctx time */ 2547 update_context_time(ctx); 2548 update_cgrp_time_from_cpuctx(cpuctx); 2549 } 2550 2551 is_active ^= ctx->is_active; /* changed bits */ 2552 2553 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2554 return; 2555 2556 perf_pmu_disable(ctx->pmu); 2557 if (is_active & EVENT_PINNED) { 2558 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2559 group_sched_out(event, cpuctx, ctx); 2560 } 2561 2562 if (is_active & EVENT_FLEXIBLE) { 2563 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2564 group_sched_out(event, cpuctx, ctx); 2565 } 2566 perf_pmu_enable(ctx->pmu); 2567 } 2568 2569 /* 2570 * Test whether two contexts are equivalent, i.e. whether they have both been 2571 * cloned from the same version of the same context. 2572 * 2573 * Equivalence is measured using a generation number in the context that is 2574 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2575 * and list_del_event(). 2576 */ 2577 static int context_equiv(struct perf_event_context *ctx1, 2578 struct perf_event_context *ctx2) 2579 { 2580 lockdep_assert_held(&ctx1->lock); 2581 lockdep_assert_held(&ctx2->lock); 2582 2583 /* Pinning disables the swap optimization */ 2584 if (ctx1->pin_count || ctx2->pin_count) 2585 return 0; 2586 2587 /* If ctx1 is the parent of ctx2 */ 2588 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2589 return 1; 2590 2591 /* If ctx2 is the parent of ctx1 */ 2592 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2593 return 1; 2594 2595 /* 2596 * If ctx1 and ctx2 have the same parent; we flatten the parent 2597 * hierarchy, see perf_event_init_context(). 2598 */ 2599 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2600 ctx1->parent_gen == ctx2->parent_gen) 2601 return 1; 2602 2603 /* Unmatched */ 2604 return 0; 2605 } 2606 2607 static void __perf_event_sync_stat(struct perf_event *event, 2608 struct perf_event *next_event) 2609 { 2610 u64 value; 2611 2612 if (!event->attr.inherit_stat) 2613 return; 2614 2615 /* 2616 * Update the event value, we cannot use perf_event_read() 2617 * because we're in the middle of a context switch and have IRQs 2618 * disabled, which upsets smp_call_function_single(), however 2619 * we know the event must be on the current CPU, therefore we 2620 * don't need to use it. 2621 */ 2622 switch (event->state) { 2623 case PERF_EVENT_STATE_ACTIVE: 2624 event->pmu->read(event); 2625 /* fall-through */ 2626 2627 case PERF_EVENT_STATE_INACTIVE: 2628 update_event_times(event); 2629 break; 2630 2631 default: 2632 break; 2633 } 2634 2635 /* 2636 * In order to keep per-task stats reliable we need to flip the event 2637 * values when we flip the contexts. 2638 */ 2639 value = local64_read(&next_event->count); 2640 value = local64_xchg(&event->count, value); 2641 local64_set(&next_event->count, value); 2642 2643 swap(event->total_time_enabled, next_event->total_time_enabled); 2644 swap(event->total_time_running, next_event->total_time_running); 2645 2646 /* 2647 * Since we swizzled the values, update the user visible data too. 2648 */ 2649 perf_event_update_userpage(event); 2650 perf_event_update_userpage(next_event); 2651 } 2652 2653 static void perf_event_sync_stat(struct perf_event_context *ctx, 2654 struct perf_event_context *next_ctx) 2655 { 2656 struct perf_event *event, *next_event; 2657 2658 if (!ctx->nr_stat) 2659 return; 2660 2661 update_context_time(ctx); 2662 2663 event = list_first_entry(&ctx->event_list, 2664 struct perf_event, event_entry); 2665 2666 next_event = list_first_entry(&next_ctx->event_list, 2667 struct perf_event, event_entry); 2668 2669 while (&event->event_entry != &ctx->event_list && 2670 &next_event->event_entry != &next_ctx->event_list) { 2671 2672 __perf_event_sync_stat(event, next_event); 2673 2674 event = list_next_entry(event, event_entry); 2675 next_event = list_next_entry(next_event, event_entry); 2676 } 2677 } 2678 2679 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2680 struct task_struct *next) 2681 { 2682 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2683 struct perf_event_context *next_ctx; 2684 struct perf_event_context *parent, *next_parent; 2685 struct perf_cpu_context *cpuctx; 2686 int do_switch = 1; 2687 2688 if (likely(!ctx)) 2689 return; 2690 2691 cpuctx = __get_cpu_context(ctx); 2692 if (!cpuctx->task_ctx) 2693 return; 2694 2695 rcu_read_lock(); 2696 next_ctx = next->perf_event_ctxp[ctxn]; 2697 if (!next_ctx) 2698 goto unlock; 2699 2700 parent = rcu_dereference(ctx->parent_ctx); 2701 next_parent = rcu_dereference(next_ctx->parent_ctx); 2702 2703 /* If neither context have a parent context; they cannot be clones. */ 2704 if (!parent && !next_parent) 2705 goto unlock; 2706 2707 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2708 /* 2709 * Looks like the two contexts are clones, so we might be 2710 * able to optimize the context switch. We lock both 2711 * contexts and check that they are clones under the 2712 * lock (including re-checking that neither has been 2713 * uncloned in the meantime). It doesn't matter which 2714 * order we take the locks because no other cpu could 2715 * be trying to lock both of these tasks. 2716 */ 2717 raw_spin_lock(&ctx->lock); 2718 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2719 if (context_equiv(ctx, next_ctx)) { 2720 WRITE_ONCE(ctx->task, next); 2721 WRITE_ONCE(next_ctx->task, task); 2722 2723 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2724 2725 /* 2726 * RCU_INIT_POINTER here is safe because we've not 2727 * modified the ctx and the above modification of 2728 * ctx->task and ctx->task_ctx_data are immaterial 2729 * since those values are always verified under 2730 * ctx->lock which we're now holding. 2731 */ 2732 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2733 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2734 2735 do_switch = 0; 2736 2737 perf_event_sync_stat(ctx, next_ctx); 2738 } 2739 raw_spin_unlock(&next_ctx->lock); 2740 raw_spin_unlock(&ctx->lock); 2741 } 2742 unlock: 2743 rcu_read_unlock(); 2744 2745 if (do_switch) { 2746 raw_spin_lock(&ctx->lock); 2747 task_ctx_sched_out(cpuctx, ctx); 2748 raw_spin_unlock(&ctx->lock); 2749 } 2750 } 2751 2752 void perf_sched_cb_dec(struct pmu *pmu) 2753 { 2754 this_cpu_dec(perf_sched_cb_usages); 2755 } 2756 2757 void perf_sched_cb_inc(struct pmu *pmu) 2758 { 2759 this_cpu_inc(perf_sched_cb_usages); 2760 } 2761 2762 /* 2763 * This function provides the context switch callback to the lower code 2764 * layer. It is invoked ONLY when the context switch callback is enabled. 2765 */ 2766 static void perf_pmu_sched_task(struct task_struct *prev, 2767 struct task_struct *next, 2768 bool sched_in) 2769 { 2770 struct perf_cpu_context *cpuctx; 2771 struct pmu *pmu; 2772 unsigned long flags; 2773 2774 if (prev == next) 2775 return; 2776 2777 local_irq_save(flags); 2778 2779 rcu_read_lock(); 2780 2781 list_for_each_entry_rcu(pmu, &pmus, entry) { 2782 if (pmu->sched_task) { 2783 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2784 2785 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2786 2787 perf_pmu_disable(pmu); 2788 2789 pmu->sched_task(cpuctx->task_ctx, sched_in); 2790 2791 perf_pmu_enable(pmu); 2792 2793 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2794 } 2795 } 2796 2797 rcu_read_unlock(); 2798 2799 local_irq_restore(flags); 2800 } 2801 2802 static void perf_event_switch(struct task_struct *task, 2803 struct task_struct *next_prev, bool sched_in); 2804 2805 #define for_each_task_context_nr(ctxn) \ 2806 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2807 2808 /* 2809 * Called from scheduler to remove the events of the current task, 2810 * with interrupts disabled. 2811 * 2812 * We stop each event and update the event value in event->count. 2813 * 2814 * This does not protect us against NMI, but disable() 2815 * sets the disabled bit in the control field of event _before_ 2816 * accessing the event control register. If a NMI hits, then it will 2817 * not restart the event. 2818 */ 2819 void __perf_event_task_sched_out(struct task_struct *task, 2820 struct task_struct *next) 2821 { 2822 int ctxn; 2823 2824 if (__this_cpu_read(perf_sched_cb_usages)) 2825 perf_pmu_sched_task(task, next, false); 2826 2827 if (atomic_read(&nr_switch_events)) 2828 perf_event_switch(task, next, false); 2829 2830 for_each_task_context_nr(ctxn) 2831 perf_event_context_sched_out(task, ctxn, next); 2832 2833 /* 2834 * if cgroup events exist on this CPU, then we need 2835 * to check if we have to switch out PMU state. 2836 * cgroup event are system-wide mode only 2837 */ 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2839 perf_cgroup_sched_out(task, next); 2840 } 2841 2842 /* 2843 * Called with IRQs disabled 2844 */ 2845 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2846 enum event_type_t event_type) 2847 { 2848 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2849 } 2850 2851 static void 2852 ctx_pinned_sched_in(struct perf_event_context *ctx, 2853 struct perf_cpu_context *cpuctx) 2854 { 2855 struct perf_event *event; 2856 2857 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2858 if (event->state <= PERF_EVENT_STATE_OFF) 2859 continue; 2860 if (!event_filter_match(event)) 2861 continue; 2862 2863 /* may need to reset tstamp_enabled */ 2864 if (is_cgroup_event(event)) 2865 perf_cgroup_mark_enabled(event, ctx); 2866 2867 if (group_can_go_on(event, cpuctx, 1)) 2868 group_sched_in(event, cpuctx, ctx); 2869 2870 /* 2871 * If this pinned group hasn't been scheduled, 2872 * put it in error state. 2873 */ 2874 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2875 update_group_times(event); 2876 event->state = PERF_EVENT_STATE_ERROR; 2877 } 2878 } 2879 } 2880 2881 static void 2882 ctx_flexible_sched_in(struct perf_event_context *ctx, 2883 struct perf_cpu_context *cpuctx) 2884 { 2885 struct perf_event *event; 2886 int can_add_hw = 1; 2887 2888 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2889 /* Ignore events in OFF or ERROR state */ 2890 if (event->state <= PERF_EVENT_STATE_OFF) 2891 continue; 2892 /* 2893 * Listen to the 'cpu' scheduling filter constraint 2894 * of events: 2895 */ 2896 if (!event_filter_match(event)) 2897 continue; 2898 2899 /* may need to reset tstamp_enabled */ 2900 if (is_cgroup_event(event)) 2901 perf_cgroup_mark_enabled(event, ctx); 2902 2903 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2904 if (group_sched_in(event, cpuctx, ctx)) 2905 can_add_hw = 0; 2906 } 2907 } 2908 } 2909 2910 static void 2911 ctx_sched_in(struct perf_event_context *ctx, 2912 struct perf_cpu_context *cpuctx, 2913 enum event_type_t event_type, 2914 struct task_struct *task) 2915 { 2916 int is_active = ctx->is_active; 2917 u64 now; 2918 2919 lockdep_assert_held(&ctx->lock); 2920 2921 if (likely(!ctx->nr_events)) 2922 return; 2923 2924 ctx->is_active |= (event_type | EVENT_TIME); 2925 if (ctx->task) { 2926 if (!is_active) 2927 cpuctx->task_ctx = ctx; 2928 else 2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2930 } 2931 2932 is_active ^= ctx->is_active; /* changed bits */ 2933 2934 if (is_active & EVENT_TIME) { 2935 /* start ctx time */ 2936 now = perf_clock(); 2937 ctx->timestamp = now; 2938 perf_cgroup_set_timestamp(task, ctx); 2939 } 2940 2941 /* 2942 * First go through the list and put on any pinned groups 2943 * in order to give them the best chance of going on. 2944 */ 2945 if (is_active & EVENT_PINNED) 2946 ctx_pinned_sched_in(ctx, cpuctx); 2947 2948 /* Then walk through the lower prio flexible groups */ 2949 if (is_active & EVENT_FLEXIBLE) 2950 ctx_flexible_sched_in(ctx, cpuctx); 2951 } 2952 2953 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2954 enum event_type_t event_type, 2955 struct task_struct *task) 2956 { 2957 struct perf_event_context *ctx = &cpuctx->ctx; 2958 2959 ctx_sched_in(ctx, cpuctx, event_type, task); 2960 } 2961 2962 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2963 struct task_struct *task) 2964 { 2965 struct perf_cpu_context *cpuctx; 2966 2967 cpuctx = __get_cpu_context(ctx); 2968 if (cpuctx->task_ctx == ctx) 2969 return; 2970 2971 perf_ctx_lock(cpuctx, ctx); 2972 perf_pmu_disable(ctx->pmu); 2973 /* 2974 * We want to keep the following priority order: 2975 * cpu pinned (that don't need to move), task pinned, 2976 * cpu flexible, task flexible. 2977 */ 2978 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2979 perf_event_sched_in(cpuctx, ctx, task); 2980 perf_pmu_enable(ctx->pmu); 2981 perf_ctx_unlock(cpuctx, ctx); 2982 } 2983 2984 /* 2985 * Called from scheduler to add the events of the current task 2986 * with interrupts disabled. 2987 * 2988 * We restore the event value and then enable it. 2989 * 2990 * This does not protect us against NMI, but enable() 2991 * sets the enabled bit in the control field of event _before_ 2992 * accessing the event control register. If a NMI hits, then it will 2993 * keep the event running. 2994 */ 2995 void __perf_event_task_sched_in(struct task_struct *prev, 2996 struct task_struct *task) 2997 { 2998 struct perf_event_context *ctx; 2999 int ctxn; 3000 3001 /* 3002 * If cgroup events exist on this CPU, then we need to check if we have 3003 * to switch in PMU state; cgroup event are system-wide mode only. 3004 * 3005 * Since cgroup events are CPU events, we must schedule these in before 3006 * we schedule in the task events. 3007 */ 3008 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3009 perf_cgroup_sched_in(prev, task); 3010 3011 for_each_task_context_nr(ctxn) { 3012 ctx = task->perf_event_ctxp[ctxn]; 3013 if (likely(!ctx)) 3014 continue; 3015 3016 perf_event_context_sched_in(ctx, task); 3017 } 3018 3019 if (atomic_read(&nr_switch_events)) 3020 perf_event_switch(task, prev, true); 3021 3022 if (__this_cpu_read(perf_sched_cb_usages)) 3023 perf_pmu_sched_task(prev, task, true); 3024 } 3025 3026 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3027 { 3028 u64 frequency = event->attr.sample_freq; 3029 u64 sec = NSEC_PER_SEC; 3030 u64 divisor, dividend; 3031 3032 int count_fls, nsec_fls, frequency_fls, sec_fls; 3033 3034 count_fls = fls64(count); 3035 nsec_fls = fls64(nsec); 3036 frequency_fls = fls64(frequency); 3037 sec_fls = 30; 3038 3039 /* 3040 * We got @count in @nsec, with a target of sample_freq HZ 3041 * the target period becomes: 3042 * 3043 * @count * 10^9 3044 * period = ------------------- 3045 * @nsec * sample_freq 3046 * 3047 */ 3048 3049 /* 3050 * Reduce accuracy by one bit such that @a and @b converge 3051 * to a similar magnitude. 3052 */ 3053 #define REDUCE_FLS(a, b) \ 3054 do { \ 3055 if (a##_fls > b##_fls) { \ 3056 a >>= 1; \ 3057 a##_fls--; \ 3058 } else { \ 3059 b >>= 1; \ 3060 b##_fls--; \ 3061 } \ 3062 } while (0) 3063 3064 /* 3065 * Reduce accuracy until either term fits in a u64, then proceed with 3066 * the other, so that finally we can do a u64/u64 division. 3067 */ 3068 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3069 REDUCE_FLS(nsec, frequency); 3070 REDUCE_FLS(sec, count); 3071 } 3072 3073 if (count_fls + sec_fls > 64) { 3074 divisor = nsec * frequency; 3075 3076 while (count_fls + sec_fls > 64) { 3077 REDUCE_FLS(count, sec); 3078 divisor >>= 1; 3079 } 3080 3081 dividend = count * sec; 3082 } else { 3083 dividend = count * sec; 3084 3085 while (nsec_fls + frequency_fls > 64) { 3086 REDUCE_FLS(nsec, frequency); 3087 dividend >>= 1; 3088 } 3089 3090 divisor = nsec * frequency; 3091 } 3092 3093 if (!divisor) 3094 return dividend; 3095 3096 return div64_u64(dividend, divisor); 3097 } 3098 3099 static DEFINE_PER_CPU(int, perf_throttled_count); 3100 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3101 3102 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3103 { 3104 struct hw_perf_event *hwc = &event->hw; 3105 s64 period, sample_period; 3106 s64 delta; 3107 3108 period = perf_calculate_period(event, nsec, count); 3109 3110 delta = (s64)(period - hwc->sample_period); 3111 delta = (delta + 7) / 8; /* low pass filter */ 3112 3113 sample_period = hwc->sample_period + delta; 3114 3115 if (!sample_period) 3116 sample_period = 1; 3117 3118 hwc->sample_period = sample_period; 3119 3120 if (local64_read(&hwc->period_left) > 8*sample_period) { 3121 if (disable) 3122 event->pmu->stop(event, PERF_EF_UPDATE); 3123 3124 local64_set(&hwc->period_left, 0); 3125 3126 if (disable) 3127 event->pmu->start(event, PERF_EF_RELOAD); 3128 } 3129 } 3130 3131 /* 3132 * combine freq adjustment with unthrottling to avoid two passes over the 3133 * events. At the same time, make sure, having freq events does not change 3134 * the rate of unthrottling as that would introduce bias. 3135 */ 3136 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3137 int needs_unthr) 3138 { 3139 struct perf_event *event; 3140 struct hw_perf_event *hwc; 3141 u64 now, period = TICK_NSEC; 3142 s64 delta; 3143 3144 /* 3145 * only need to iterate over all events iff: 3146 * - context have events in frequency mode (needs freq adjust) 3147 * - there are events to unthrottle on this cpu 3148 */ 3149 if (!(ctx->nr_freq || needs_unthr)) 3150 return; 3151 3152 raw_spin_lock(&ctx->lock); 3153 perf_pmu_disable(ctx->pmu); 3154 3155 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3156 if (event->state != PERF_EVENT_STATE_ACTIVE) 3157 continue; 3158 3159 if (!event_filter_match(event)) 3160 continue; 3161 3162 perf_pmu_disable(event->pmu); 3163 3164 hwc = &event->hw; 3165 3166 if (hwc->interrupts == MAX_INTERRUPTS) { 3167 hwc->interrupts = 0; 3168 perf_log_throttle(event, 1); 3169 event->pmu->start(event, 0); 3170 } 3171 3172 if (!event->attr.freq || !event->attr.sample_freq) 3173 goto next; 3174 3175 /* 3176 * stop the event and update event->count 3177 */ 3178 event->pmu->stop(event, PERF_EF_UPDATE); 3179 3180 now = local64_read(&event->count); 3181 delta = now - hwc->freq_count_stamp; 3182 hwc->freq_count_stamp = now; 3183 3184 /* 3185 * restart the event 3186 * reload only if value has changed 3187 * we have stopped the event so tell that 3188 * to perf_adjust_period() to avoid stopping it 3189 * twice. 3190 */ 3191 if (delta > 0) 3192 perf_adjust_period(event, period, delta, false); 3193 3194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3195 next: 3196 perf_pmu_enable(event->pmu); 3197 } 3198 3199 perf_pmu_enable(ctx->pmu); 3200 raw_spin_unlock(&ctx->lock); 3201 } 3202 3203 /* 3204 * Round-robin a context's events: 3205 */ 3206 static void rotate_ctx(struct perf_event_context *ctx) 3207 { 3208 /* 3209 * Rotate the first entry last of non-pinned groups. Rotation might be 3210 * disabled by the inheritance code. 3211 */ 3212 if (!ctx->rotate_disable) 3213 list_rotate_left(&ctx->flexible_groups); 3214 } 3215 3216 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3217 { 3218 struct perf_event_context *ctx = NULL; 3219 int rotate = 0; 3220 3221 if (cpuctx->ctx.nr_events) { 3222 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3223 rotate = 1; 3224 } 3225 3226 ctx = cpuctx->task_ctx; 3227 if (ctx && ctx->nr_events) { 3228 if (ctx->nr_events != ctx->nr_active) 3229 rotate = 1; 3230 } 3231 3232 if (!rotate) 3233 goto done; 3234 3235 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3236 perf_pmu_disable(cpuctx->ctx.pmu); 3237 3238 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3239 if (ctx) 3240 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3241 3242 rotate_ctx(&cpuctx->ctx); 3243 if (ctx) 3244 rotate_ctx(ctx); 3245 3246 perf_event_sched_in(cpuctx, ctx, current); 3247 3248 perf_pmu_enable(cpuctx->ctx.pmu); 3249 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3250 done: 3251 3252 return rotate; 3253 } 3254 3255 void perf_event_task_tick(void) 3256 { 3257 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3258 struct perf_event_context *ctx, *tmp; 3259 int throttled; 3260 3261 WARN_ON(!irqs_disabled()); 3262 3263 __this_cpu_inc(perf_throttled_seq); 3264 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3265 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3266 3267 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3268 perf_adjust_freq_unthr_context(ctx, throttled); 3269 } 3270 3271 static int event_enable_on_exec(struct perf_event *event, 3272 struct perf_event_context *ctx) 3273 { 3274 if (!event->attr.enable_on_exec) 3275 return 0; 3276 3277 event->attr.enable_on_exec = 0; 3278 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3279 return 0; 3280 3281 __perf_event_mark_enabled(event); 3282 3283 return 1; 3284 } 3285 3286 /* 3287 * Enable all of a task's events that have been marked enable-on-exec. 3288 * This expects task == current. 3289 */ 3290 static void perf_event_enable_on_exec(int ctxn) 3291 { 3292 struct perf_event_context *ctx, *clone_ctx = NULL; 3293 struct perf_cpu_context *cpuctx; 3294 struct perf_event *event; 3295 unsigned long flags; 3296 int enabled = 0; 3297 3298 local_irq_save(flags); 3299 ctx = current->perf_event_ctxp[ctxn]; 3300 if (!ctx || !ctx->nr_events) 3301 goto out; 3302 3303 cpuctx = __get_cpu_context(ctx); 3304 perf_ctx_lock(cpuctx, ctx); 3305 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3306 list_for_each_entry(event, &ctx->event_list, event_entry) 3307 enabled |= event_enable_on_exec(event, ctx); 3308 3309 /* 3310 * Unclone and reschedule this context if we enabled any event. 3311 */ 3312 if (enabled) { 3313 clone_ctx = unclone_ctx(ctx); 3314 ctx_resched(cpuctx, ctx); 3315 } 3316 perf_ctx_unlock(cpuctx, ctx); 3317 3318 out: 3319 local_irq_restore(flags); 3320 3321 if (clone_ctx) 3322 put_ctx(clone_ctx); 3323 } 3324 3325 struct perf_read_data { 3326 struct perf_event *event; 3327 bool group; 3328 int ret; 3329 }; 3330 3331 /* 3332 * Cross CPU call to read the hardware event 3333 */ 3334 static void __perf_event_read(void *info) 3335 { 3336 struct perf_read_data *data = info; 3337 struct perf_event *sub, *event = data->event; 3338 struct perf_event_context *ctx = event->ctx; 3339 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3340 struct pmu *pmu = event->pmu; 3341 3342 /* 3343 * If this is a task context, we need to check whether it is 3344 * the current task context of this cpu. If not it has been 3345 * scheduled out before the smp call arrived. In that case 3346 * event->count would have been updated to a recent sample 3347 * when the event was scheduled out. 3348 */ 3349 if (ctx->task && cpuctx->task_ctx != ctx) 3350 return; 3351 3352 raw_spin_lock(&ctx->lock); 3353 if (ctx->is_active) { 3354 update_context_time(ctx); 3355 update_cgrp_time_from_event(event); 3356 } 3357 3358 update_event_times(event); 3359 if (event->state != PERF_EVENT_STATE_ACTIVE) 3360 goto unlock; 3361 3362 if (!data->group) { 3363 pmu->read(event); 3364 data->ret = 0; 3365 goto unlock; 3366 } 3367 3368 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3369 3370 pmu->read(event); 3371 3372 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3373 update_event_times(sub); 3374 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3375 /* 3376 * Use sibling's PMU rather than @event's since 3377 * sibling could be on different (eg: software) PMU. 3378 */ 3379 sub->pmu->read(sub); 3380 } 3381 } 3382 3383 data->ret = pmu->commit_txn(pmu); 3384 3385 unlock: 3386 raw_spin_unlock(&ctx->lock); 3387 } 3388 3389 static inline u64 perf_event_count(struct perf_event *event) 3390 { 3391 if (event->pmu->count) 3392 return event->pmu->count(event); 3393 3394 return __perf_event_count(event); 3395 } 3396 3397 /* 3398 * NMI-safe method to read a local event, that is an event that 3399 * is: 3400 * - either for the current task, or for this CPU 3401 * - does not have inherit set, for inherited task events 3402 * will not be local and we cannot read them atomically 3403 * - must not have a pmu::count method 3404 */ 3405 u64 perf_event_read_local(struct perf_event *event) 3406 { 3407 unsigned long flags; 3408 u64 val; 3409 3410 /* 3411 * Disabling interrupts avoids all counter scheduling (context 3412 * switches, timer based rotation and IPIs). 3413 */ 3414 local_irq_save(flags); 3415 3416 /* If this is a per-task event, it must be for current */ 3417 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3418 event->hw.target != current); 3419 3420 /* If this is a per-CPU event, it must be for this CPU */ 3421 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3422 event->cpu != smp_processor_id()); 3423 3424 /* 3425 * It must not be an event with inherit set, we cannot read 3426 * all child counters from atomic context. 3427 */ 3428 WARN_ON_ONCE(event->attr.inherit); 3429 3430 /* 3431 * It must not have a pmu::count method, those are not 3432 * NMI safe. 3433 */ 3434 WARN_ON_ONCE(event->pmu->count); 3435 3436 /* 3437 * If the event is currently on this CPU, its either a per-task event, 3438 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3439 * oncpu == -1). 3440 */ 3441 if (event->oncpu == smp_processor_id()) 3442 event->pmu->read(event); 3443 3444 val = local64_read(&event->count); 3445 local_irq_restore(flags); 3446 3447 return val; 3448 } 3449 3450 static int perf_event_read(struct perf_event *event, bool group) 3451 { 3452 int ret = 0; 3453 3454 /* 3455 * If event is enabled and currently active on a CPU, update the 3456 * value in the event structure: 3457 */ 3458 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3459 struct perf_read_data data = { 3460 .event = event, 3461 .group = group, 3462 .ret = 0, 3463 }; 3464 smp_call_function_single(event->oncpu, 3465 __perf_event_read, &data, 1); 3466 ret = data.ret; 3467 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3468 struct perf_event_context *ctx = event->ctx; 3469 unsigned long flags; 3470 3471 raw_spin_lock_irqsave(&ctx->lock, flags); 3472 /* 3473 * may read while context is not active 3474 * (e.g., thread is blocked), in that case 3475 * we cannot update context time 3476 */ 3477 if (ctx->is_active) { 3478 update_context_time(ctx); 3479 update_cgrp_time_from_event(event); 3480 } 3481 if (group) 3482 update_group_times(event); 3483 else 3484 update_event_times(event); 3485 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3486 } 3487 3488 return ret; 3489 } 3490 3491 /* 3492 * Initialize the perf_event context in a task_struct: 3493 */ 3494 static void __perf_event_init_context(struct perf_event_context *ctx) 3495 { 3496 raw_spin_lock_init(&ctx->lock); 3497 mutex_init(&ctx->mutex); 3498 INIT_LIST_HEAD(&ctx->active_ctx_list); 3499 INIT_LIST_HEAD(&ctx->pinned_groups); 3500 INIT_LIST_HEAD(&ctx->flexible_groups); 3501 INIT_LIST_HEAD(&ctx->event_list); 3502 atomic_set(&ctx->refcount, 1); 3503 } 3504 3505 static struct perf_event_context * 3506 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3507 { 3508 struct perf_event_context *ctx; 3509 3510 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3511 if (!ctx) 3512 return NULL; 3513 3514 __perf_event_init_context(ctx); 3515 if (task) { 3516 ctx->task = task; 3517 get_task_struct(task); 3518 } 3519 ctx->pmu = pmu; 3520 3521 return ctx; 3522 } 3523 3524 static struct task_struct * 3525 find_lively_task_by_vpid(pid_t vpid) 3526 { 3527 struct task_struct *task; 3528 3529 rcu_read_lock(); 3530 if (!vpid) 3531 task = current; 3532 else 3533 task = find_task_by_vpid(vpid); 3534 if (task) 3535 get_task_struct(task); 3536 rcu_read_unlock(); 3537 3538 if (!task) 3539 return ERR_PTR(-ESRCH); 3540 3541 return task; 3542 } 3543 3544 /* 3545 * Returns a matching context with refcount and pincount. 3546 */ 3547 static struct perf_event_context * 3548 find_get_context(struct pmu *pmu, struct task_struct *task, 3549 struct perf_event *event) 3550 { 3551 struct perf_event_context *ctx, *clone_ctx = NULL; 3552 struct perf_cpu_context *cpuctx; 3553 void *task_ctx_data = NULL; 3554 unsigned long flags; 3555 int ctxn, err; 3556 int cpu = event->cpu; 3557 3558 if (!task) { 3559 /* Must be root to operate on a CPU event: */ 3560 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3561 return ERR_PTR(-EACCES); 3562 3563 /* 3564 * We could be clever and allow to attach a event to an 3565 * offline CPU and activate it when the CPU comes up, but 3566 * that's for later. 3567 */ 3568 if (!cpu_online(cpu)) 3569 return ERR_PTR(-ENODEV); 3570 3571 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3572 ctx = &cpuctx->ctx; 3573 get_ctx(ctx); 3574 ++ctx->pin_count; 3575 3576 return ctx; 3577 } 3578 3579 err = -EINVAL; 3580 ctxn = pmu->task_ctx_nr; 3581 if (ctxn < 0) 3582 goto errout; 3583 3584 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3585 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3586 if (!task_ctx_data) { 3587 err = -ENOMEM; 3588 goto errout; 3589 } 3590 } 3591 3592 retry: 3593 ctx = perf_lock_task_context(task, ctxn, &flags); 3594 if (ctx) { 3595 clone_ctx = unclone_ctx(ctx); 3596 ++ctx->pin_count; 3597 3598 if (task_ctx_data && !ctx->task_ctx_data) { 3599 ctx->task_ctx_data = task_ctx_data; 3600 task_ctx_data = NULL; 3601 } 3602 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3603 3604 if (clone_ctx) 3605 put_ctx(clone_ctx); 3606 } else { 3607 ctx = alloc_perf_context(pmu, task); 3608 err = -ENOMEM; 3609 if (!ctx) 3610 goto errout; 3611 3612 if (task_ctx_data) { 3613 ctx->task_ctx_data = task_ctx_data; 3614 task_ctx_data = NULL; 3615 } 3616 3617 err = 0; 3618 mutex_lock(&task->perf_event_mutex); 3619 /* 3620 * If it has already passed perf_event_exit_task(). 3621 * we must see PF_EXITING, it takes this mutex too. 3622 */ 3623 if (task->flags & PF_EXITING) 3624 err = -ESRCH; 3625 else if (task->perf_event_ctxp[ctxn]) 3626 err = -EAGAIN; 3627 else { 3628 get_ctx(ctx); 3629 ++ctx->pin_count; 3630 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3631 } 3632 mutex_unlock(&task->perf_event_mutex); 3633 3634 if (unlikely(err)) { 3635 put_ctx(ctx); 3636 3637 if (err == -EAGAIN) 3638 goto retry; 3639 goto errout; 3640 } 3641 } 3642 3643 kfree(task_ctx_data); 3644 return ctx; 3645 3646 errout: 3647 kfree(task_ctx_data); 3648 return ERR_PTR(err); 3649 } 3650 3651 static void perf_event_free_filter(struct perf_event *event); 3652 static void perf_event_free_bpf_prog(struct perf_event *event); 3653 3654 static void free_event_rcu(struct rcu_head *head) 3655 { 3656 struct perf_event *event; 3657 3658 event = container_of(head, struct perf_event, rcu_head); 3659 if (event->ns) 3660 put_pid_ns(event->ns); 3661 perf_event_free_filter(event); 3662 kfree(event); 3663 } 3664 3665 static void ring_buffer_attach(struct perf_event *event, 3666 struct ring_buffer *rb); 3667 3668 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3669 { 3670 if (event->parent) 3671 return; 3672 3673 if (is_cgroup_event(event)) 3674 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3675 } 3676 3677 #ifdef CONFIG_NO_HZ_FULL 3678 static DEFINE_SPINLOCK(nr_freq_lock); 3679 #endif 3680 3681 static void unaccount_freq_event_nohz(void) 3682 { 3683 #ifdef CONFIG_NO_HZ_FULL 3684 spin_lock(&nr_freq_lock); 3685 if (atomic_dec_and_test(&nr_freq_events)) 3686 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3687 spin_unlock(&nr_freq_lock); 3688 #endif 3689 } 3690 3691 static void unaccount_freq_event(void) 3692 { 3693 if (tick_nohz_full_enabled()) 3694 unaccount_freq_event_nohz(); 3695 else 3696 atomic_dec(&nr_freq_events); 3697 } 3698 3699 static void unaccount_event(struct perf_event *event) 3700 { 3701 bool dec = false; 3702 3703 if (event->parent) 3704 return; 3705 3706 if (event->attach_state & PERF_ATTACH_TASK) 3707 dec = true; 3708 if (event->attr.mmap || event->attr.mmap_data) 3709 atomic_dec(&nr_mmap_events); 3710 if (event->attr.comm) 3711 atomic_dec(&nr_comm_events); 3712 if (event->attr.task) 3713 atomic_dec(&nr_task_events); 3714 if (event->attr.freq) 3715 unaccount_freq_event(); 3716 if (event->attr.context_switch) { 3717 dec = true; 3718 atomic_dec(&nr_switch_events); 3719 } 3720 if (is_cgroup_event(event)) 3721 dec = true; 3722 if (has_branch_stack(event)) 3723 dec = true; 3724 3725 if (dec) { 3726 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3727 schedule_delayed_work(&perf_sched_work, HZ); 3728 } 3729 3730 unaccount_event_cpu(event, event->cpu); 3731 } 3732 3733 static void perf_sched_delayed(struct work_struct *work) 3734 { 3735 mutex_lock(&perf_sched_mutex); 3736 if (atomic_dec_and_test(&perf_sched_count)) 3737 static_branch_disable(&perf_sched_events); 3738 mutex_unlock(&perf_sched_mutex); 3739 } 3740 3741 /* 3742 * The following implement mutual exclusion of events on "exclusive" pmus 3743 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3744 * at a time, so we disallow creating events that might conflict, namely: 3745 * 3746 * 1) cpu-wide events in the presence of per-task events, 3747 * 2) per-task events in the presence of cpu-wide events, 3748 * 3) two matching events on the same context. 3749 * 3750 * The former two cases are handled in the allocation path (perf_event_alloc(), 3751 * _free_event()), the latter -- before the first perf_install_in_context(). 3752 */ 3753 static int exclusive_event_init(struct perf_event *event) 3754 { 3755 struct pmu *pmu = event->pmu; 3756 3757 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3758 return 0; 3759 3760 /* 3761 * Prevent co-existence of per-task and cpu-wide events on the 3762 * same exclusive pmu. 3763 * 3764 * Negative pmu::exclusive_cnt means there are cpu-wide 3765 * events on this "exclusive" pmu, positive means there are 3766 * per-task events. 3767 * 3768 * Since this is called in perf_event_alloc() path, event::ctx 3769 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3770 * to mean "per-task event", because unlike other attach states it 3771 * never gets cleared. 3772 */ 3773 if (event->attach_state & PERF_ATTACH_TASK) { 3774 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3775 return -EBUSY; 3776 } else { 3777 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3778 return -EBUSY; 3779 } 3780 3781 return 0; 3782 } 3783 3784 static void exclusive_event_destroy(struct perf_event *event) 3785 { 3786 struct pmu *pmu = event->pmu; 3787 3788 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3789 return; 3790 3791 /* see comment in exclusive_event_init() */ 3792 if (event->attach_state & PERF_ATTACH_TASK) 3793 atomic_dec(&pmu->exclusive_cnt); 3794 else 3795 atomic_inc(&pmu->exclusive_cnt); 3796 } 3797 3798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3799 { 3800 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3801 (e1->cpu == e2->cpu || 3802 e1->cpu == -1 || 3803 e2->cpu == -1)) 3804 return true; 3805 return false; 3806 } 3807 3808 /* Called under the same ctx::mutex as perf_install_in_context() */ 3809 static bool exclusive_event_installable(struct perf_event *event, 3810 struct perf_event_context *ctx) 3811 { 3812 struct perf_event *iter_event; 3813 struct pmu *pmu = event->pmu; 3814 3815 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3816 return true; 3817 3818 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3819 if (exclusive_event_match(iter_event, event)) 3820 return false; 3821 } 3822 3823 return true; 3824 } 3825 3826 static void perf_addr_filters_splice(struct perf_event *event, 3827 struct list_head *head); 3828 3829 static void _free_event(struct perf_event *event) 3830 { 3831 irq_work_sync(&event->pending); 3832 3833 unaccount_event(event); 3834 3835 if (event->rb) { 3836 /* 3837 * Can happen when we close an event with re-directed output. 3838 * 3839 * Since we have a 0 refcount, perf_mmap_close() will skip 3840 * over us; possibly making our ring_buffer_put() the last. 3841 */ 3842 mutex_lock(&event->mmap_mutex); 3843 ring_buffer_attach(event, NULL); 3844 mutex_unlock(&event->mmap_mutex); 3845 } 3846 3847 if (is_cgroup_event(event)) 3848 perf_detach_cgroup(event); 3849 3850 if (!event->parent) { 3851 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3852 put_callchain_buffers(); 3853 } 3854 3855 perf_event_free_bpf_prog(event); 3856 perf_addr_filters_splice(event, NULL); 3857 kfree(event->addr_filters_offs); 3858 3859 if (event->destroy) 3860 event->destroy(event); 3861 3862 if (event->ctx) 3863 put_ctx(event->ctx); 3864 3865 exclusive_event_destroy(event); 3866 module_put(event->pmu->module); 3867 3868 call_rcu(&event->rcu_head, free_event_rcu); 3869 } 3870 3871 /* 3872 * Used to free events which have a known refcount of 1, such as in error paths 3873 * where the event isn't exposed yet and inherited events. 3874 */ 3875 static void free_event(struct perf_event *event) 3876 { 3877 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3878 "unexpected event refcount: %ld; ptr=%p\n", 3879 atomic_long_read(&event->refcount), event)) { 3880 /* leak to avoid use-after-free */ 3881 return; 3882 } 3883 3884 _free_event(event); 3885 } 3886 3887 /* 3888 * Remove user event from the owner task. 3889 */ 3890 static void perf_remove_from_owner(struct perf_event *event) 3891 { 3892 struct task_struct *owner; 3893 3894 rcu_read_lock(); 3895 /* 3896 * Matches the smp_store_release() in perf_event_exit_task(). If we 3897 * observe !owner it means the list deletion is complete and we can 3898 * indeed free this event, otherwise we need to serialize on 3899 * owner->perf_event_mutex. 3900 */ 3901 owner = lockless_dereference(event->owner); 3902 if (owner) { 3903 /* 3904 * Since delayed_put_task_struct() also drops the last 3905 * task reference we can safely take a new reference 3906 * while holding the rcu_read_lock(). 3907 */ 3908 get_task_struct(owner); 3909 } 3910 rcu_read_unlock(); 3911 3912 if (owner) { 3913 /* 3914 * If we're here through perf_event_exit_task() we're already 3915 * holding ctx->mutex which would be an inversion wrt. the 3916 * normal lock order. 3917 * 3918 * However we can safely take this lock because its the child 3919 * ctx->mutex. 3920 */ 3921 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3922 3923 /* 3924 * We have to re-check the event->owner field, if it is cleared 3925 * we raced with perf_event_exit_task(), acquiring the mutex 3926 * ensured they're done, and we can proceed with freeing the 3927 * event. 3928 */ 3929 if (event->owner) { 3930 list_del_init(&event->owner_entry); 3931 smp_store_release(&event->owner, NULL); 3932 } 3933 mutex_unlock(&owner->perf_event_mutex); 3934 put_task_struct(owner); 3935 } 3936 } 3937 3938 static void put_event(struct perf_event *event) 3939 { 3940 if (!atomic_long_dec_and_test(&event->refcount)) 3941 return; 3942 3943 _free_event(event); 3944 } 3945 3946 /* 3947 * Kill an event dead; while event:refcount will preserve the event 3948 * object, it will not preserve its functionality. Once the last 'user' 3949 * gives up the object, we'll destroy the thing. 3950 */ 3951 int perf_event_release_kernel(struct perf_event *event) 3952 { 3953 struct perf_event_context *ctx = event->ctx; 3954 struct perf_event *child, *tmp; 3955 3956 /* 3957 * If we got here through err_file: fput(event_file); we will not have 3958 * attached to a context yet. 3959 */ 3960 if (!ctx) { 3961 WARN_ON_ONCE(event->attach_state & 3962 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3963 goto no_ctx; 3964 } 3965 3966 if (!is_kernel_event(event)) 3967 perf_remove_from_owner(event); 3968 3969 ctx = perf_event_ctx_lock(event); 3970 WARN_ON_ONCE(ctx->parent_ctx); 3971 perf_remove_from_context(event, DETACH_GROUP); 3972 3973 raw_spin_lock_irq(&ctx->lock); 3974 /* 3975 * Mark this even as STATE_DEAD, there is no external reference to it 3976 * anymore. 3977 * 3978 * Anybody acquiring event->child_mutex after the below loop _must_ 3979 * also see this, most importantly inherit_event() which will avoid 3980 * placing more children on the list. 3981 * 3982 * Thus this guarantees that we will in fact observe and kill _ALL_ 3983 * child events. 3984 */ 3985 event->state = PERF_EVENT_STATE_DEAD; 3986 raw_spin_unlock_irq(&ctx->lock); 3987 3988 perf_event_ctx_unlock(event, ctx); 3989 3990 again: 3991 mutex_lock(&event->child_mutex); 3992 list_for_each_entry(child, &event->child_list, child_list) { 3993 3994 /* 3995 * Cannot change, child events are not migrated, see the 3996 * comment with perf_event_ctx_lock_nested(). 3997 */ 3998 ctx = lockless_dereference(child->ctx); 3999 /* 4000 * Since child_mutex nests inside ctx::mutex, we must jump 4001 * through hoops. We start by grabbing a reference on the ctx. 4002 * 4003 * Since the event cannot get freed while we hold the 4004 * child_mutex, the context must also exist and have a !0 4005 * reference count. 4006 */ 4007 get_ctx(ctx); 4008 4009 /* 4010 * Now that we have a ctx ref, we can drop child_mutex, and 4011 * acquire ctx::mutex without fear of it going away. Then we 4012 * can re-acquire child_mutex. 4013 */ 4014 mutex_unlock(&event->child_mutex); 4015 mutex_lock(&ctx->mutex); 4016 mutex_lock(&event->child_mutex); 4017 4018 /* 4019 * Now that we hold ctx::mutex and child_mutex, revalidate our 4020 * state, if child is still the first entry, it didn't get freed 4021 * and we can continue doing so. 4022 */ 4023 tmp = list_first_entry_or_null(&event->child_list, 4024 struct perf_event, child_list); 4025 if (tmp == child) { 4026 perf_remove_from_context(child, DETACH_GROUP); 4027 list_del(&child->child_list); 4028 free_event(child); 4029 /* 4030 * This matches the refcount bump in inherit_event(); 4031 * this can't be the last reference. 4032 */ 4033 put_event(event); 4034 } 4035 4036 mutex_unlock(&event->child_mutex); 4037 mutex_unlock(&ctx->mutex); 4038 put_ctx(ctx); 4039 goto again; 4040 } 4041 mutex_unlock(&event->child_mutex); 4042 4043 no_ctx: 4044 put_event(event); /* Must be the 'last' reference */ 4045 return 0; 4046 } 4047 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4048 4049 /* 4050 * Called when the last reference to the file is gone. 4051 */ 4052 static int perf_release(struct inode *inode, struct file *file) 4053 { 4054 perf_event_release_kernel(file->private_data); 4055 return 0; 4056 } 4057 4058 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4059 { 4060 struct perf_event *child; 4061 u64 total = 0; 4062 4063 *enabled = 0; 4064 *running = 0; 4065 4066 mutex_lock(&event->child_mutex); 4067 4068 (void)perf_event_read(event, false); 4069 total += perf_event_count(event); 4070 4071 *enabled += event->total_time_enabled + 4072 atomic64_read(&event->child_total_time_enabled); 4073 *running += event->total_time_running + 4074 atomic64_read(&event->child_total_time_running); 4075 4076 list_for_each_entry(child, &event->child_list, child_list) { 4077 (void)perf_event_read(child, false); 4078 total += perf_event_count(child); 4079 *enabled += child->total_time_enabled; 4080 *running += child->total_time_running; 4081 } 4082 mutex_unlock(&event->child_mutex); 4083 4084 return total; 4085 } 4086 EXPORT_SYMBOL_GPL(perf_event_read_value); 4087 4088 static int __perf_read_group_add(struct perf_event *leader, 4089 u64 read_format, u64 *values) 4090 { 4091 struct perf_event *sub; 4092 int n = 1; /* skip @nr */ 4093 int ret; 4094 4095 ret = perf_event_read(leader, true); 4096 if (ret) 4097 return ret; 4098 4099 /* 4100 * Since we co-schedule groups, {enabled,running} times of siblings 4101 * will be identical to those of the leader, so we only publish one 4102 * set. 4103 */ 4104 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4105 values[n++] += leader->total_time_enabled + 4106 atomic64_read(&leader->child_total_time_enabled); 4107 } 4108 4109 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4110 values[n++] += leader->total_time_running + 4111 atomic64_read(&leader->child_total_time_running); 4112 } 4113 4114 /* 4115 * Write {count,id} tuples for every sibling. 4116 */ 4117 values[n++] += perf_event_count(leader); 4118 if (read_format & PERF_FORMAT_ID) 4119 values[n++] = primary_event_id(leader); 4120 4121 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4122 values[n++] += perf_event_count(sub); 4123 if (read_format & PERF_FORMAT_ID) 4124 values[n++] = primary_event_id(sub); 4125 } 4126 4127 return 0; 4128 } 4129 4130 static int perf_read_group(struct perf_event *event, 4131 u64 read_format, char __user *buf) 4132 { 4133 struct perf_event *leader = event->group_leader, *child; 4134 struct perf_event_context *ctx = leader->ctx; 4135 int ret; 4136 u64 *values; 4137 4138 lockdep_assert_held(&ctx->mutex); 4139 4140 values = kzalloc(event->read_size, GFP_KERNEL); 4141 if (!values) 4142 return -ENOMEM; 4143 4144 values[0] = 1 + leader->nr_siblings; 4145 4146 /* 4147 * By locking the child_mutex of the leader we effectively 4148 * lock the child list of all siblings.. XXX explain how. 4149 */ 4150 mutex_lock(&leader->child_mutex); 4151 4152 ret = __perf_read_group_add(leader, read_format, values); 4153 if (ret) 4154 goto unlock; 4155 4156 list_for_each_entry(child, &leader->child_list, child_list) { 4157 ret = __perf_read_group_add(child, read_format, values); 4158 if (ret) 4159 goto unlock; 4160 } 4161 4162 mutex_unlock(&leader->child_mutex); 4163 4164 ret = event->read_size; 4165 if (copy_to_user(buf, values, event->read_size)) 4166 ret = -EFAULT; 4167 goto out; 4168 4169 unlock: 4170 mutex_unlock(&leader->child_mutex); 4171 out: 4172 kfree(values); 4173 return ret; 4174 } 4175 4176 static int perf_read_one(struct perf_event *event, 4177 u64 read_format, char __user *buf) 4178 { 4179 u64 enabled, running; 4180 u64 values[4]; 4181 int n = 0; 4182 4183 values[n++] = perf_event_read_value(event, &enabled, &running); 4184 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4185 values[n++] = enabled; 4186 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4187 values[n++] = running; 4188 if (read_format & PERF_FORMAT_ID) 4189 values[n++] = primary_event_id(event); 4190 4191 if (copy_to_user(buf, values, n * sizeof(u64))) 4192 return -EFAULT; 4193 4194 return n * sizeof(u64); 4195 } 4196 4197 static bool is_event_hup(struct perf_event *event) 4198 { 4199 bool no_children; 4200 4201 if (event->state > PERF_EVENT_STATE_EXIT) 4202 return false; 4203 4204 mutex_lock(&event->child_mutex); 4205 no_children = list_empty(&event->child_list); 4206 mutex_unlock(&event->child_mutex); 4207 return no_children; 4208 } 4209 4210 /* 4211 * Read the performance event - simple non blocking version for now 4212 */ 4213 static ssize_t 4214 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4215 { 4216 u64 read_format = event->attr.read_format; 4217 int ret; 4218 4219 /* 4220 * Return end-of-file for a read on a event that is in 4221 * error state (i.e. because it was pinned but it couldn't be 4222 * scheduled on to the CPU at some point). 4223 */ 4224 if (event->state == PERF_EVENT_STATE_ERROR) 4225 return 0; 4226 4227 if (count < event->read_size) 4228 return -ENOSPC; 4229 4230 WARN_ON_ONCE(event->ctx->parent_ctx); 4231 if (read_format & PERF_FORMAT_GROUP) 4232 ret = perf_read_group(event, read_format, buf); 4233 else 4234 ret = perf_read_one(event, read_format, buf); 4235 4236 return ret; 4237 } 4238 4239 static ssize_t 4240 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4241 { 4242 struct perf_event *event = file->private_data; 4243 struct perf_event_context *ctx; 4244 int ret; 4245 4246 ctx = perf_event_ctx_lock(event); 4247 ret = __perf_read(event, buf, count); 4248 perf_event_ctx_unlock(event, ctx); 4249 4250 return ret; 4251 } 4252 4253 static unsigned int perf_poll(struct file *file, poll_table *wait) 4254 { 4255 struct perf_event *event = file->private_data; 4256 struct ring_buffer *rb; 4257 unsigned int events = POLLHUP; 4258 4259 poll_wait(file, &event->waitq, wait); 4260 4261 if (is_event_hup(event)) 4262 return events; 4263 4264 /* 4265 * Pin the event->rb by taking event->mmap_mutex; otherwise 4266 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4267 */ 4268 mutex_lock(&event->mmap_mutex); 4269 rb = event->rb; 4270 if (rb) 4271 events = atomic_xchg(&rb->poll, 0); 4272 mutex_unlock(&event->mmap_mutex); 4273 return events; 4274 } 4275 4276 static void _perf_event_reset(struct perf_event *event) 4277 { 4278 (void)perf_event_read(event, false); 4279 local64_set(&event->count, 0); 4280 perf_event_update_userpage(event); 4281 } 4282 4283 /* 4284 * Holding the top-level event's child_mutex means that any 4285 * descendant process that has inherited this event will block 4286 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4287 * task existence requirements of perf_event_enable/disable. 4288 */ 4289 static void perf_event_for_each_child(struct perf_event *event, 4290 void (*func)(struct perf_event *)) 4291 { 4292 struct perf_event *child; 4293 4294 WARN_ON_ONCE(event->ctx->parent_ctx); 4295 4296 mutex_lock(&event->child_mutex); 4297 func(event); 4298 list_for_each_entry(child, &event->child_list, child_list) 4299 func(child); 4300 mutex_unlock(&event->child_mutex); 4301 } 4302 4303 static void perf_event_for_each(struct perf_event *event, 4304 void (*func)(struct perf_event *)) 4305 { 4306 struct perf_event_context *ctx = event->ctx; 4307 struct perf_event *sibling; 4308 4309 lockdep_assert_held(&ctx->mutex); 4310 4311 event = event->group_leader; 4312 4313 perf_event_for_each_child(event, func); 4314 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4315 perf_event_for_each_child(sibling, func); 4316 } 4317 4318 static void __perf_event_period(struct perf_event *event, 4319 struct perf_cpu_context *cpuctx, 4320 struct perf_event_context *ctx, 4321 void *info) 4322 { 4323 u64 value = *((u64 *)info); 4324 bool active; 4325 4326 if (event->attr.freq) { 4327 event->attr.sample_freq = value; 4328 } else { 4329 event->attr.sample_period = value; 4330 event->hw.sample_period = value; 4331 } 4332 4333 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4334 if (active) { 4335 perf_pmu_disable(ctx->pmu); 4336 /* 4337 * We could be throttled; unthrottle now to avoid the tick 4338 * trying to unthrottle while we already re-started the event. 4339 */ 4340 if (event->hw.interrupts == MAX_INTERRUPTS) { 4341 event->hw.interrupts = 0; 4342 perf_log_throttle(event, 1); 4343 } 4344 event->pmu->stop(event, PERF_EF_UPDATE); 4345 } 4346 4347 local64_set(&event->hw.period_left, 0); 4348 4349 if (active) { 4350 event->pmu->start(event, PERF_EF_RELOAD); 4351 perf_pmu_enable(ctx->pmu); 4352 } 4353 } 4354 4355 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4356 { 4357 u64 value; 4358 4359 if (!is_sampling_event(event)) 4360 return -EINVAL; 4361 4362 if (copy_from_user(&value, arg, sizeof(value))) 4363 return -EFAULT; 4364 4365 if (!value) 4366 return -EINVAL; 4367 4368 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4369 return -EINVAL; 4370 4371 event_function_call(event, __perf_event_period, &value); 4372 4373 return 0; 4374 } 4375 4376 static const struct file_operations perf_fops; 4377 4378 static inline int perf_fget_light(int fd, struct fd *p) 4379 { 4380 struct fd f = fdget(fd); 4381 if (!f.file) 4382 return -EBADF; 4383 4384 if (f.file->f_op != &perf_fops) { 4385 fdput(f); 4386 return -EBADF; 4387 } 4388 *p = f; 4389 return 0; 4390 } 4391 4392 static int perf_event_set_output(struct perf_event *event, 4393 struct perf_event *output_event); 4394 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4395 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4396 4397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4398 { 4399 void (*func)(struct perf_event *); 4400 u32 flags = arg; 4401 4402 switch (cmd) { 4403 case PERF_EVENT_IOC_ENABLE: 4404 func = _perf_event_enable; 4405 break; 4406 case PERF_EVENT_IOC_DISABLE: 4407 func = _perf_event_disable; 4408 break; 4409 case PERF_EVENT_IOC_RESET: 4410 func = _perf_event_reset; 4411 break; 4412 4413 case PERF_EVENT_IOC_REFRESH: 4414 return _perf_event_refresh(event, arg); 4415 4416 case PERF_EVENT_IOC_PERIOD: 4417 return perf_event_period(event, (u64 __user *)arg); 4418 4419 case PERF_EVENT_IOC_ID: 4420 { 4421 u64 id = primary_event_id(event); 4422 4423 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4424 return -EFAULT; 4425 return 0; 4426 } 4427 4428 case PERF_EVENT_IOC_SET_OUTPUT: 4429 { 4430 int ret; 4431 if (arg != -1) { 4432 struct perf_event *output_event; 4433 struct fd output; 4434 ret = perf_fget_light(arg, &output); 4435 if (ret) 4436 return ret; 4437 output_event = output.file->private_data; 4438 ret = perf_event_set_output(event, output_event); 4439 fdput(output); 4440 } else { 4441 ret = perf_event_set_output(event, NULL); 4442 } 4443 return ret; 4444 } 4445 4446 case PERF_EVENT_IOC_SET_FILTER: 4447 return perf_event_set_filter(event, (void __user *)arg); 4448 4449 case PERF_EVENT_IOC_SET_BPF: 4450 return perf_event_set_bpf_prog(event, arg); 4451 4452 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4453 struct ring_buffer *rb; 4454 4455 rcu_read_lock(); 4456 rb = rcu_dereference(event->rb); 4457 if (!rb || !rb->nr_pages) { 4458 rcu_read_unlock(); 4459 return -EINVAL; 4460 } 4461 rb_toggle_paused(rb, !!arg); 4462 rcu_read_unlock(); 4463 return 0; 4464 } 4465 default: 4466 return -ENOTTY; 4467 } 4468 4469 if (flags & PERF_IOC_FLAG_GROUP) 4470 perf_event_for_each(event, func); 4471 else 4472 perf_event_for_each_child(event, func); 4473 4474 return 0; 4475 } 4476 4477 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4478 { 4479 struct perf_event *event = file->private_data; 4480 struct perf_event_context *ctx; 4481 long ret; 4482 4483 ctx = perf_event_ctx_lock(event); 4484 ret = _perf_ioctl(event, cmd, arg); 4485 perf_event_ctx_unlock(event, ctx); 4486 4487 return ret; 4488 } 4489 4490 #ifdef CONFIG_COMPAT 4491 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4492 unsigned long arg) 4493 { 4494 switch (_IOC_NR(cmd)) { 4495 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4496 case _IOC_NR(PERF_EVENT_IOC_ID): 4497 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4498 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4499 cmd &= ~IOCSIZE_MASK; 4500 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4501 } 4502 break; 4503 } 4504 return perf_ioctl(file, cmd, arg); 4505 } 4506 #else 4507 # define perf_compat_ioctl NULL 4508 #endif 4509 4510 int perf_event_task_enable(void) 4511 { 4512 struct perf_event_context *ctx; 4513 struct perf_event *event; 4514 4515 mutex_lock(¤t->perf_event_mutex); 4516 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4517 ctx = perf_event_ctx_lock(event); 4518 perf_event_for_each_child(event, _perf_event_enable); 4519 perf_event_ctx_unlock(event, ctx); 4520 } 4521 mutex_unlock(¤t->perf_event_mutex); 4522 4523 return 0; 4524 } 4525 4526 int perf_event_task_disable(void) 4527 { 4528 struct perf_event_context *ctx; 4529 struct perf_event *event; 4530 4531 mutex_lock(¤t->perf_event_mutex); 4532 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4533 ctx = perf_event_ctx_lock(event); 4534 perf_event_for_each_child(event, _perf_event_disable); 4535 perf_event_ctx_unlock(event, ctx); 4536 } 4537 mutex_unlock(¤t->perf_event_mutex); 4538 4539 return 0; 4540 } 4541 4542 static int perf_event_index(struct perf_event *event) 4543 { 4544 if (event->hw.state & PERF_HES_STOPPED) 4545 return 0; 4546 4547 if (event->state != PERF_EVENT_STATE_ACTIVE) 4548 return 0; 4549 4550 return event->pmu->event_idx(event); 4551 } 4552 4553 static void calc_timer_values(struct perf_event *event, 4554 u64 *now, 4555 u64 *enabled, 4556 u64 *running) 4557 { 4558 u64 ctx_time; 4559 4560 *now = perf_clock(); 4561 ctx_time = event->shadow_ctx_time + *now; 4562 *enabled = ctx_time - event->tstamp_enabled; 4563 *running = ctx_time - event->tstamp_running; 4564 } 4565 4566 static void perf_event_init_userpage(struct perf_event *event) 4567 { 4568 struct perf_event_mmap_page *userpg; 4569 struct ring_buffer *rb; 4570 4571 rcu_read_lock(); 4572 rb = rcu_dereference(event->rb); 4573 if (!rb) 4574 goto unlock; 4575 4576 userpg = rb->user_page; 4577 4578 /* Allow new userspace to detect that bit 0 is deprecated */ 4579 userpg->cap_bit0_is_deprecated = 1; 4580 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4581 userpg->data_offset = PAGE_SIZE; 4582 userpg->data_size = perf_data_size(rb); 4583 4584 unlock: 4585 rcu_read_unlock(); 4586 } 4587 4588 void __weak arch_perf_update_userpage( 4589 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4590 { 4591 } 4592 4593 /* 4594 * Callers need to ensure there can be no nesting of this function, otherwise 4595 * the seqlock logic goes bad. We can not serialize this because the arch 4596 * code calls this from NMI context. 4597 */ 4598 void perf_event_update_userpage(struct perf_event *event) 4599 { 4600 struct perf_event_mmap_page *userpg; 4601 struct ring_buffer *rb; 4602 u64 enabled, running, now; 4603 4604 rcu_read_lock(); 4605 rb = rcu_dereference(event->rb); 4606 if (!rb) 4607 goto unlock; 4608 4609 /* 4610 * compute total_time_enabled, total_time_running 4611 * based on snapshot values taken when the event 4612 * was last scheduled in. 4613 * 4614 * we cannot simply called update_context_time() 4615 * because of locking issue as we can be called in 4616 * NMI context 4617 */ 4618 calc_timer_values(event, &now, &enabled, &running); 4619 4620 userpg = rb->user_page; 4621 /* 4622 * Disable preemption so as to not let the corresponding user-space 4623 * spin too long if we get preempted. 4624 */ 4625 preempt_disable(); 4626 ++userpg->lock; 4627 barrier(); 4628 userpg->index = perf_event_index(event); 4629 userpg->offset = perf_event_count(event); 4630 if (userpg->index) 4631 userpg->offset -= local64_read(&event->hw.prev_count); 4632 4633 userpg->time_enabled = enabled + 4634 atomic64_read(&event->child_total_time_enabled); 4635 4636 userpg->time_running = running + 4637 atomic64_read(&event->child_total_time_running); 4638 4639 arch_perf_update_userpage(event, userpg, now); 4640 4641 barrier(); 4642 ++userpg->lock; 4643 preempt_enable(); 4644 unlock: 4645 rcu_read_unlock(); 4646 } 4647 4648 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4649 { 4650 struct perf_event *event = vma->vm_file->private_data; 4651 struct ring_buffer *rb; 4652 int ret = VM_FAULT_SIGBUS; 4653 4654 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4655 if (vmf->pgoff == 0) 4656 ret = 0; 4657 return ret; 4658 } 4659 4660 rcu_read_lock(); 4661 rb = rcu_dereference(event->rb); 4662 if (!rb) 4663 goto unlock; 4664 4665 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4666 goto unlock; 4667 4668 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4669 if (!vmf->page) 4670 goto unlock; 4671 4672 get_page(vmf->page); 4673 vmf->page->mapping = vma->vm_file->f_mapping; 4674 vmf->page->index = vmf->pgoff; 4675 4676 ret = 0; 4677 unlock: 4678 rcu_read_unlock(); 4679 4680 return ret; 4681 } 4682 4683 static void ring_buffer_attach(struct perf_event *event, 4684 struct ring_buffer *rb) 4685 { 4686 struct ring_buffer *old_rb = NULL; 4687 unsigned long flags; 4688 4689 if (event->rb) { 4690 /* 4691 * Should be impossible, we set this when removing 4692 * event->rb_entry and wait/clear when adding event->rb_entry. 4693 */ 4694 WARN_ON_ONCE(event->rcu_pending); 4695 4696 old_rb = event->rb; 4697 spin_lock_irqsave(&old_rb->event_lock, flags); 4698 list_del_rcu(&event->rb_entry); 4699 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4700 4701 event->rcu_batches = get_state_synchronize_rcu(); 4702 event->rcu_pending = 1; 4703 } 4704 4705 if (rb) { 4706 if (event->rcu_pending) { 4707 cond_synchronize_rcu(event->rcu_batches); 4708 event->rcu_pending = 0; 4709 } 4710 4711 spin_lock_irqsave(&rb->event_lock, flags); 4712 list_add_rcu(&event->rb_entry, &rb->event_list); 4713 spin_unlock_irqrestore(&rb->event_lock, flags); 4714 } 4715 4716 rcu_assign_pointer(event->rb, rb); 4717 4718 if (old_rb) { 4719 ring_buffer_put(old_rb); 4720 /* 4721 * Since we detached before setting the new rb, so that we 4722 * could attach the new rb, we could have missed a wakeup. 4723 * Provide it now. 4724 */ 4725 wake_up_all(&event->waitq); 4726 } 4727 } 4728 4729 static void ring_buffer_wakeup(struct perf_event *event) 4730 { 4731 struct ring_buffer *rb; 4732 4733 rcu_read_lock(); 4734 rb = rcu_dereference(event->rb); 4735 if (rb) { 4736 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4737 wake_up_all(&event->waitq); 4738 } 4739 rcu_read_unlock(); 4740 } 4741 4742 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4743 { 4744 struct ring_buffer *rb; 4745 4746 rcu_read_lock(); 4747 rb = rcu_dereference(event->rb); 4748 if (rb) { 4749 if (!atomic_inc_not_zero(&rb->refcount)) 4750 rb = NULL; 4751 } 4752 rcu_read_unlock(); 4753 4754 return rb; 4755 } 4756 4757 void ring_buffer_put(struct ring_buffer *rb) 4758 { 4759 if (!atomic_dec_and_test(&rb->refcount)) 4760 return; 4761 4762 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4763 4764 call_rcu(&rb->rcu_head, rb_free_rcu); 4765 } 4766 4767 static void perf_mmap_open(struct vm_area_struct *vma) 4768 { 4769 struct perf_event *event = vma->vm_file->private_data; 4770 4771 atomic_inc(&event->mmap_count); 4772 atomic_inc(&event->rb->mmap_count); 4773 4774 if (vma->vm_pgoff) 4775 atomic_inc(&event->rb->aux_mmap_count); 4776 4777 if (event->pmu->event_mapped) 4778 event->pmu->event_mapped(event); 4779 } 4780 4781 static void perf_pmu_output_stop(struct perf_event *event); 4782 4783 /* 4784 * A buffer can be mmap()ed multiple times; either directly through the same 4785 * event, or through other events by use of perf_event_set_output(). 4786 * 4787 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4788 * the buffer here, where we still have a VM context. This means we need 4789 * to detach all events redirecting to us. 4790 */ 4791 static void perf_mmap_close(struct vm_area_struct *vma) 4792 { 4793 struct perf_event *event = vma->vm_file->private_data; 4794 4795 struct ring_buffer *rb = ring_buffer_get(event); 4796 struct user_struct *mmap_user = rb->mmap_user; 4797 int mmap_locked = rb->mmap_locked; 4798 unsigned long size = perf_data_size(rb); 4799 4800 if (event->pmu->event_unmapped) 4801 event->pmu->event_unmapped(event); 4802 4803 /* 4804 * rb->aux_mmap_count will always drop before rb->mmap_count and 4805 * event->mmap_count, so it is ok to use event->mmap_mutex to 4806 * serialize with perf_mmap here. 4807 */ 4808 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4809 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4810 /* 4811 * Stop all AUX events that are writing to this buffer, 4812 * so that we can free its AUX pages and corresponding PMU 4813 * data. Note that after rb::aux_mmap_count dropped to zero, 4814 * they won't start any more (see perf_aux_output_begin()). 4815 */ 4816 perf_pmu_output_stop(event); 4817 4818 /* now it's safe to free the pages */ 4819 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4820 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4821 4822 /* this has to be the last one */ 4823 rb_free_aux(rb); 4824 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 4825 4826 mutex_unlock(&event->mmap_mutex); 4827 } 4828 4829 atomic_dec(&rb->mmap_count); 4830 4831 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4832 goto out_put; 4833 4834 ring_buffer_attach(event, NULL); 4835 mutex_unlock(&event->mmap_mutex); 4836 4837 /* If there's still other mmap()s of this buffer, we're done. */ 4838 if (atomic_read(&rb->mmap_count)) 4839 goto out_put; 4840 4841 /* 4842 * No other mmap()s, detach from all other events that might redirect 4843 * into the now unreachable buffer. Somewhat complicated by the 4844 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4845 */ 4846 again: 4847 rcu_read_lock(); 4848 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4849 if (!atomic_long_inc_not_zero(&event->refcount)) { 4850 /* 4851 * This event is en-route to free_event() which will 4852 * detach it and remove it from the list. 4853 */ 4854 continue; 4855 } 4856 rcu_read_unlock(); 4857 4858 mutex_lock(&event->mmap_mutex); 4859 /* 4860 * Check we didn't race with perf_event_set_output() which can 4861 * swizzle the rb from under us while we were waiting to 4862 * acquire mmap_mutex. 4863 * 4864 * If we find a different rb; ignore this event, a next 4865 * iteration will no longer find it on the list. We have to 4866 * still restart the iteration to make sure we're not now 4867 * iterating the wrong list. 4868 */ 4869 if (event->rb == rb) 4870 ring_buffer_attach(event, NULL); 4871 4872 mutex_unlock(&event->mmap_mutex); 4873 put_event(event); 4874 4875 /* 4876 * Restart the iteration; either we're on the wrong list or 4877 * destroyed its integrity by doing a deletion. 4878 */ 4879 goto again; 4880 } 4881 rcu_read_unlock(); 4882 4883 /* 4884 * It could be there's still a few 0-ref events on the list; they'll 4885 * get cleaned up by free_event() -- they'll also still have their 4886 * ref on the rb and will free it whenever they are done with it. 4887 * 4888 * Aside from that, this buffer is 'fully' detached and unmapped, 4889 * undo the VM accounting. 4890 */ 4891 4892 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4893 vma->vm_mm->pinned_vm -= mmap_locked; 4894 free_uid(mmap_user); 4895 4896 out_put: 4897 ring_buffer_put(rb); /* could be last */ 4898 } 4899 4900 static const struct vm_operations_struct perf_mmap_vmops = { 4901 .open = perf_mmap_open, 4902 .close = perf_mmap_close, /* non mergable */ 4903 .fault = perf_mmap_fault, 4904 .page_mkwrite = perf_mmap_fault, 4905 }; 4906 4907 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4908 { 4909 struct perf_event *event = file->private_data; 4910 unsigned long user_locked, user_lock_limit; 4911 struct user_struct *user = current_user(); 4912 unsigned long locked, lock_limit; 4913 struct ring_buffer *rb = NULL; 4914 unsigned long vma_size; 4915 unsigned long nr_pages; 4916 long user_extra = 0, extra = 0; 4917 int ret = 0, flags = 0; 4918 4919 /* 4920 * Don't allow mmap() of inherited per-task counters. This would 4921 * create a performance issue due to all children writing to the 4922 * same rb. 4923 */ 4924 if (event->cpu == -1 && event->attr.inherit) 4925 return -EINVAL; 4926 4927 if (!(vma->vm_flags & VM_SHARED)) 4928 return -EINVAL; 4929 4930 vma_size = vma->vm_end - vma->vm_start; 4931 4932 if (vma->vm_pgoff == 0) { 4933 nr_pages = (vma_size / PAGE_SIZE) - 1; 4934 } else { 4935 /* 4936 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4937 * mapped, all subsequent mappings should have the same size 4938 * and offset. Must be above the normal perf buffer. 4939 */ 4940 u64 aux_offset, aux_size; 4941 4942 if (!event->rb) 4943 return -EINVAL; 4944 4945 nr_pages = vma_size / PAGE_SIZE; 4946 4947 mutex_lock(&event->mmap_mutex); 4948 ret = -EINVAL; 4949 4950 rb = event->rb; 4951 if (!rb) 4952 goto aux_unlock; 4953 4954 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4955 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4956 4957 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4958 goto aux_unlock; 4959 4960 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4961 goto aux_unlock; 4962 4963 /* already mapped with a different offset */ 4964 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4965 goto aux_unlock; 4966 4967 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4968 goto aux_unlock; 4969 4970 /* already mapped with a different size */ 4971 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4972 goto aux_unlock; 4973 4974 if (!is_power_of_2(nr_pages)) 4975 goto aux_unlock; 4976 4977 if (!atomic_inc_not_zero(&rb->mmap_count)) 4978 goto aux_unlock; 4979 4980 if (rb_has_aux(rb)) { 4981 atomic_inc(&rb->aux_mmap_count); 4982 ret = 0; 4983 goto unlock; 4984 } 4985 4986 atomic_set(&rb->aux_mmap_count, 1); 4987 user_extra = nr_pages; 4988 4989 goto accounting; 4990 } 4991 4992 /* 4993 * If we have rb pages ensure they're a power-of-two number, so we 4994 * can do bitmasks instead of modulo. 4995 */ 4996 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4997 return -EINVAL; 4998 4999 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5000 return -EINVAL; 5001 5002 WARN_ON_ONCE(event->ctx->parent_ctx); 5003 again: 5004 mutex_lock(&event->mmap_mutex); 5005 if (event->rb) { 5006 if (event->rb->nr_pages != nr_pages) { 5007 ret = -EINVAL; 5008 goto unlock; 5009 } 5010 5011 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5012 /* 5013 * Raced against perf_mmap_close() through 5014 * perf_event_set_output(). Try again, hope for better 5015 * luck. 5016 */ 5017 mutex_unlock(&event->mmap_mutex); 5018 goto again; 5019 } 5020 5021 goto unlock; 5022 } 5023 5024 user_extra = nr_pages + 1; 5025 5026 accounting: 5027 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5028 5029 /* 5030 * Increase the limit linearly with more CPUs: 5031 */ 5032 user_lock_limit *= num_online_cpus(); 5033 5034 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5035 5036 if (user_locked > user_lock_limit) 5037 extra = user_locked - user_lock_limit; 5038 5039 lock_limit = rlimit(RLIMIT_MEMLOCK); 5040 lock_limit >>= PAGE_SHIFT; 5041 locked = vma->vm_mm->pinned_vm + extra; 5042 5043 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5044 !capable(CAP_IPC_LOCK)) { 5045 ret = -EPERM; 5046 goto unlock; 5047 } 5048 5049 WARN_ON(!rb && event->rb); 5050 5051 if (vma->vm_flags & VM_WRITE) 5052 flags |= RING_BUFFER_WRITABLE; 5053 5054 if (!rb) { 5055 rb = rb_alloc(nr_pages, 5056 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5057 event->cpu, flags); 5058 5059 if (!rb) { 5060 ret = -ENOMEM; 5061 goto unlock; 5062 } 5063 5064 atomic_set(&rb->mmap_count, 1); 5065 rb->mmap_user = get_current_user(); 5066 rb->mmap_locked = extra; 5067 5068 ring_buffer_attach(event, rb); 5069 5070 perf_event_init_userpage(event); 5071 perf_event_update_userpage(event); 5072 } else { 5073 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5074 event->attr.aux_watermark, flags); 5075 if (!ret) 5076 rb->aux_mmap_locked = extra; 5077 } 5078 5079 unlock: 5080 if (!ret) { 5081 atomic_long_add(user_extra, &user->locked_vm); 5082 vma->vm_mm->pinned_vm += extra; 5083 5084 atomic_inc(&event->mmap_count); 5085 } else if (rb) { 5086 atomic_dec(&rb->mmap_count); 5087 } 5088 aux_unlock: 5089 mutex_unlock(&event->mmap_mutex); 5090 5091 /* 5092 * Since pinned accounting is per vm we cannot allow fork() to copy our 5093 * vma. 5094 */ 5095 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5096 vma->vm_ops = &perf_mmap_vmops; 5097 5098 if (event->pmu->event_mapped) 5099 event->pmu->event_mapped(event); 5100 5101 return ret; 5102 } 5103 5104 static int perf_fasync(int fd, struct file *filp, int on) 5105 { 5106 struct inode *inode = file_inode(filp); 5107 struct perf_event *event = filp->private_data; 5108 int retval; 5109 5110 inode_lock(inode); 5111 retval = fasync_helper(fd, filp, on, &event->fasync); 5112 inode_unlock(inode); 5113 5114 if (retval < 0) 5115 return retval; 5116 5117 return 0; 5118 } 5119 5120 static const struct file_operations perf_fops = { 5121 .llseek = no_llseek, 5122 .release = perf_release, 5123 .read = perf_read, 5124 .poll = perf_poll, 5125 .unlocked_ioctl = perf_ioctl, 5126 .compat_ioctl = perf_compat_ioctl, 5127 .mmap = perf_mmap, 5128 .fasync = perf_fasync, 5129 }; 5130 5131 /* 5132 * Perf event wakeup 5133 * 5134 * If there's data, ensure we set the poll() state and publish everything 5135 * to user-space before waking everybody up. 5136 */ 5137 5138 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5139 { 5140 /* only the parent has fasync state */ 5141 if (event->parent) 5142 event = event->parent; 5143 return &event->fasync; 5144 } 5145 5146 void perf_event_wakeup(struct perf_event *event) 5147 { 5148 ring_buffer_wakeup(event); 5149 5150 if (event->pending_kill) { 5151 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5152 event->pending_kill = 0; 5153 } 5154 } 5155 5156 static void perf_pending_event(struct irq_work *entry) 5157 { 5158 struct perf_event *event = container_of(entry, 5159 struct perf_event, pending); 5160 int rctx; 5161 5162 rctx = perf_swevent_get_recursion_context(); 5163 /* 5164 * If we 'fail' here, that's OK, it means recursion is already disabled 5165 * and we won't recurse 'further'. 5166 */ 5167 5168 if (event->pending_disable) { 5169 event->pending_disable = 0; 5170 perf_event_disable_local(event); 5171 } 5172 5173 if (event->pending_wakeup) { 5174 event->pending_wakeup = 0; 5175 perf_event_wakeup(event); 5176 } 5177 5178 if (rctx >= 0) 5179 perf_swevent_put_recursion_context(rctx); 5180 } 5181 5182 /* 5183 * We assume there is only KVM supporting the callbacks. 5184 * Later on, we might change it to a list if there is 5185 * another virtualization implementation supporting the callbacks. 5186 */ 5187 struct perf_guest_info_callbacks *perf_guest_cbs; 5188 5189 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5190 { 5191 perf_guest_cbs = cbs; 5192 return 0; 5193 } 5194 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5195 5196 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5197 { 5198 perf_guest_cbs = NULL; 5199 return 0; 5200 } 5201 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5202 5203 static void 5204 perf_output_sample_regs(struct perf_output_handle *handle, 5205 struct pt_regs *regs, u64 mask) 5206 { 5207 int bit; 5208 5209 for_each_set_bit(bit, (const unsigned long *) &mask, 5210 sizeof(mask) * BITS_PER_BYTE) { 5211 u64 val; 5212 5213 val = perf_reg_value(regs, bit); 5214 perf_output_put(handle, val); 5215 } 5216 } 5217 5218 static void perf_sample_regs_user(struct perf_regs *regs_user, 5219 struct pt_regs *regs, 5220 struct pt_regs *regs_user_copy) 5221 { 5222 if (user_mode(regs)) { 5223 regs_user->abi = perf_reg_abi(current); 5224 regs_user->regs = regs; 5225 } else if (current->mm) { 5226 perf_get_regs_user(regs_user, regs, regs_user_copy); 5227 } else { 5228 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5229 regs_user->regs = NULL; 5230 } 5231 } 5232 5233 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5234 struct pt_regs *regs) 5235 { 5236 regs_intr->regs = regs; 5237 regs_intr->abi = perf_reg_abi(current); 5238 } 5239 5240 5241 /* 5242 * Get remaining task size from user stack pointer. 5243 * 5244 * It'd be better to take stack vma map and limit this more 5245 * precisly, but there's no way to get it safely under interrupt, 5246 * so using TASK_SIZE as limit. 5247 */ 5248 static u64 perf_ustack_task_size(struct pt_regs *regs) 5249 { 5250 unsigned long addr = perf_user_stack_pointer(regs); 5251 5252 if (!addr || addr >= TASK_SIZE) 5253 return 0; 5254 5255 return TASK_SIZE - addr; 5256 } 5257 5258 static u16 5259 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5260 struct pt_regs *regs) 5261 { 5262 u64 task_size; 5263 5264 /* No regs, no stack pointer, no dump. */ 5265 if (!regs) 5266 return 0; 5267 5268 /* 5269 * Check if we fit in with the requested stack size into the: 5270 * - TASK_SIZE 5271 * If we don't, we limit the size to the TASK_SIZE. 5272 * 5273 * - remaining sample size 5274 * If we don't, we customize the stack size to 5275 * fit in to the remaining sample size. 5276 */ 5277 5278 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5279 stack_size = min(stack_size, (u16) task_size); 5280 5281 /* Current header size plus static size and dynamic size. */ 5282 header_size += 2 * sizeof(u64); 5283 5284 /* Do we fit in with the current stack dump size? */ 5285 if ((u16) (header_size + stack_size) < header_size) { 5286 /* 5287 * If we overflow the maximum size for the sample, 5288 * we customize the stack dump size to fit in. 5289 */ 5290 stack_size = USHRT_MAX - header_size - sizeof(u64); 5291 stack_size = round_up(stack_size, sizeof(u64)); 5292 } 5293 5294 return stack_size; 5295 } 5296 5297 static void 5298 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5299 struct pt_regs *regs) 5300 { 5301 /* Case of a kernel thread, nothing to dump */ 5302 if (!regs) { 5303 u64 size = 0; 5304 perf_output_put(handle, size); 5305 } else { 5306 unsigned long sp; 5307 unsigned int rem; 5308 u64 dyn_size; 5309 5310 /* 5311 * We dump: 5312 * static size 5313 * - the size requested by user or the best one we can fit 5314 * in to the sample max size 5315 * data 5316 * - user stack dump data 5317 * dynamic size 5318 * - the actual dumped size 5319 */ 5320 5321 /* Static size. */ 5322 perf_output_put(handle, dump_size); 5323 5324 /* Data. */ 5325 sp = perf_user_stack_pointer(regs); 5326 rem = __output_copy_user(handle, (void *) sp, dump_size); 5327 dyn_size = dump_size - rem; 5328 5329 perf_output_skip(handle, rem); 5330 5331 /* Dynamic size. */ 5332 perf_output_put(handle, dyn_size); 5333 } 5334 } 5335 5336 static void __perf_event_header__init_id(struct perf_event_header *header, 5337 struct perf_sample_data *data, 5338 struct perf_event *event) 5339 { 5340 u64 sample_type = event->attr.sample_type; 5341 5342 data->type = sample_type; 5343 header->size += event->id_header_size; 5344 5345 if (sample_type & PERF_SAMPLE_TID) { 5346 /* namespace issues */ 5347 data->tid_entry.pid = perf_event_pid(event, current); 5348 data->tid_entry.tid = perf_event_tid(event, current); 5349 } 5350 5351 if (sample_type & PERF_SAMPLE_TIME) 5352 data->time = perf_event_clock(event); 5353 5354 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5355 data->id = primary_event_id(event); 5356 5357 if (sample_type & PERF_SAMPLE_STREAM_ID) 5358 data->stream_id = event->id; 5359 5360 if (sample_type & PERF_SAMPLE_CPU) { 5361 data->cpu_entry.cpu = raw_smp_processor_id(); 5362 data->cpu_entry.reserved = 0; 5363 } 5364 } 5365 5366 void perf_event_header__init_id(struct perf_event_header *header, 5367 struct perf_sample_data *data, 5368 struct perf_event *event) 5369 { 5370 if (event->attr.sample_id_all) 5371 __perf_event_header__init_id(header, data, event); 5372 } 5373 5374 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5375 struct perf_sample_data *data) 5376 { 5377 u64 sample_type = data->type; 5378 5379 if (sample_type & PERF_SAMPLE_TID) 5380 perf_output_put(handle, data->tid_entry); 5381 5382 if (sample_type & PERF_SAMPLE_TIME) 5383 perf_output_put(handle, data->time); 5384 5385 if (sample_type & PERF_SAMPLE_ID) 5386 perf_output_put(handle, data->id); 5387 5388 if (sample_type & PERF_SAMPLE_STREAM_ID) 5389 perf_output_put(handle, data->stream_id); 5390 5391 if (sample_type & PERF_SAMPLE_CPU) 5392 perf_output_put(handle, data->cpu_entry); 5393 5394 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5395 perf_output_put(handle, data->id); 5396 } 5397 5398 void perf_event__output_id_sample(struct perf_event *event, 5399 struct perf_output_handle *handle, 5400 struct perf_sample_data *sample) 5401 { 5402 if (event->attr.sample_id_all) 5403 __perf_event__output_id_sample(handle, sample); 5404 } 5405 5406 static void perf_output_read_one(struct perf_output_handle *handle, 5407 struct perf_event *event, 5408 u64 enabled, u64 running) 5409 { 5410 u64 read_format = event->attr.read_format; 5411 u64 values[4]; 5412 int n = 0; 5413 5414 values[n++] = perf_event_count(event); 5415 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5416 values[n++] = enabled + 5417 atomic64_read(&event->child_total_time_enabled); 5418 } 5419 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5420 values[n++] = running + 5421 atomic64_read(&event->child_total_time_running); 5422 } 5423 if (read_format & PERF_FORMAT_ID) 5424 values[n++] = primary_event_id(event); 5425 5426 __output_copy(handle, values, n * sizeof(u64)); 5427 } 5428 5429 /* 5430 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5431 */ 5432 static void perf_output_read_group(struct perf_output_handle *handle, 5433 struct perf_event *event, 5434 u64 enabled, u64 running) 5435 { 5436 struct perf_event *leader = event->group_leader, *sub; 5437 u64 read_format = event->attr.read_format; 5438 u64 values[5]; 5439 int n = 0; 5440 5441 values[n++] = 1 + leader->nr_siblings; 5442 5443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5444 values[n++] = enabled; 5445 5446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5447 values[n++] = running; 5448 5449 if (leader != event) 5450 leader->pmu->read(leader); 5451 5452 values[n++] = perf_event_count(leader); 5453 if (read_format & PERF_FORMAT_ID) 5454 values[n++] = primary_event_id(leader); 5455 5456 __output_copy(handle, values, n * sizeof(u64)); 5457 5458 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5459 n = 0; 5460 5461 if ((sub != event) && 5462 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5463 sub->pmu->read(sub); 5464 5465 values[n++] = perf_event_count(sub); 5466 if (read_format & PERF_FORMAT_ID) 5467 values[n++] = primary_event_id(sub); 5468 5469 __output_copy(handle, values, n * sizeof(u64)); 5470 } 5471 } 5472 5473 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5474 PERF_FORMAT_TOTAL_TIME_RUNNING) 5475 5476 static void perf_output_read(struct perf_output_handle *handle, 5477 struct perf_event *event) 5478 { 5479 u64 enabled = 0, running = 0, now; 5480 u64 read_format = event->attr.read_format; 5481 5482 /* 5483 * compute total_time_enabled, total_time_running 5484 * based on snapshot values taken when the event 5485 * was last scheduled in. 5486 * 5487 * we cannot simply called update_context_time() 5488 * because of locking issue as we are called in 5489 * NMI context 5490 */ 5491 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5492 calc_timer_values(event, &now, &enabled, &running); 5493 5494 if (event->attr.read_format & PERF_FORMAT_GROUP) 5495 perf_output_read_group(handle, event, enabled, running); 5496 else 5497 perf_output_read_one(handle, event, enabled, running); 5498 } 5499 5500 void perf_output_sample(struct perf_output_handle *handle, 5501 struct perf_event_header *header, 5502 struct perf_sample_data *data, 5503 struct perf_event *event) 5504 { 5505 u64 sample_type = data->type; 5506 5507 perf_output_put(handle, *header); 5508 5509 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5510 perf_output_put(handle, data->id); 5511 5512 if (sample_type & PERF_SAMPLE_IP) 5513 perf_output_put(handle, data->ip); 5514 5515 if (sample_type & PERF_SAMPLE_TID) 5516 perf_output_put(handle, data->tid_entry); 5517 5518 if (sample_type & PERF_SAMPLE_TIME) 5519 perf_output_put(handle, data->time); 5520 5521 if (sample_type & PERF_SAMPLE_ADDR) 5522 perf_output_put(handle, data->addr); 5523 5524 if (sample_type & PERF_SAMPLE_ID) 5525 perf_output_put(handle, data->id); 5526 5527 if (sample_type & PERF_SAMPLE_STREAM_ID) 5528 perf_output_put(handle, data->stream_id); 5529 5530 if (sample_type & PERF_SAMPLE_CPU) 5531 perf_output_put(handle, data->cpu_entry); 5532 5533 if (sample_type & PERF_SAMPLE_PERIOD) 5534 perf_output_put(handle, data->period); 5535 5536 if (sample_type & PERF_SAMPLE_READ) 5537 perf_output_read(handle, event); 5538 5539 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5540 if (data->callchain) { 5541 int size = 1; 5542 5543 if (data->callchain) 5544 size += data->callchain->nr; 5545 5546 size *= sizeof(u64); 5547 5548 __output_copy(handle, data->callchain, size); 5549 } else { 5550 u64 nr = 0; 5551 perf_output_put(handle, nr); 5552 } 5553 } 5554 5555 if (sample_type & PERF_SAMPLE_RAW) { 5556 if (data->raw) { 5557 u32 raw_size = data->raw->size; 5558 u32 real_size = round_up(raw_size + sizeof(u32), 5559 sizeof(u64)) - sizeof(u32); 5560 u64 zero = 0; 5561 5562 perf_output_put(handle, real_size); 5563 __output_copy(handle, data->raw->data, raw_size); 5564 if (real_size - raw_size) 5565 __output_copy(handle, &zero, real_size - raw_size); 5566 } else { 5567 struct { 5568 u32 size; 5569 u32 data; 5570 } raw = { 5571 .size = sizeof(u32), 5572 .data = 0, 5573 }; 5574 perf_output_put(handle, raw); 5575 } 5576 } 5577 5578 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5579 if (data->br_stack) { 5580 size_t size; 5581 5582 size = data->br_stack->nr 5583 * sizeof(struct perf_branch_entry); 5584 5585 perf_output_put(handle, data->br_stack->nr); 5586 perf_output_copy(handle, data->br_stack->entries, size); 5587 } else { 5588 /* 5589 * we always store at least the value of nr 5590 */ 5591 u64 nr = 0; 5592 perf_output_put(handle, nr); 5593 } 5594 } 5595 5596 if (sample_type & PERF_SAMPLE_REGS_USER) { 5597 u64 abi = data->regs_user.abi; 5598 5599 /* 5600 * If there are no regs to dump, notice it through 5601 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5602 */ 5603 perf_output_put(handle, abi); 5604 5605 if (abi) { 5606 u64 mask = event->attr.sample_regs_user; 5607 perf_output_sample_regs(handle, 5608 data->regs_user.regs, 5609 mask); 5610 } 5611 } 5612 5613 if (sample_type & PERF_SAMPLE_STACK_USER) { 5614 perf_output_sample_ustack(handle, 5615 data->stack_user_size, 5616 data->regs_user.regs); 5617 } 5618 5619 if (sample_type & PERF_SAMPLE_WEIGHT) 5620 perf_output_put(handle, data->weight); 5621 5622 if (sample_type & PERF_SAMPLE_DATA_SRC) 5623 perf_output_put(handle, data->data_src.val); 5624 5625 if (sample_type & PERF_SAMPLE_TRANSACTION) 5626 perf_output_put(handle, data->txn); 5627 5628 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5629 u64 abi = data->regs_intr.abi; 5630 /* 5631 * If there are no regs to dump, notice it through 5632 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5633 */ 5634 perf_output_put(handle, abi); 5635 5636 if (abi) { 5637 u64 mask = event->attr.sample_regs_intr; 5638 5639 perf_output_sample_regs(handle, 5640 data->regs_intr.regs, 5641 mask); 5642 } 5643 } 5644 5645 if (!event->attr.watermark) { 5646 int wakeup_events = event->attr.wakeup_events; 5647 5648 if (wakeup_events) { 5649 struct ring_buffer *rb = handle->rb; 5650 int events = local_inc_return(&rb->events); 5651 5652 if (events >= wakeup_events) { 5653 local_sub(wakeup_events, &rb->events); 5654 local_inc(&rb->wakeup); 5655 } 5656 } 5657 } 5658 } 5659 5660 void perf_prepare_sample(struct perf_event_header *header, 5661 struct perf_sample_data *data, 5662 struct perf_event *event, 5663 struct pt_regs *regs) 5664 { 5665 u64 sample_type = event->attr.sample_type; 5666 5667 header->type = PERF_RECORD_SAMPLE; 5668 header->size = sizeof(*header) + event->header_size; 5669 5670 header->misc = 0; 5671 header->misc |= perf_misc_flags(regs); 5672 5673 __perf_event_header__init_id(header, data, event); 5674 5675 if (sample_type & PERF_SAMPLE_IP) 5676 data->ip = perf_instruction_pointer(regs); 5677 5678 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5679 int size = 1; 5680 5681 data->callchain = perf_callchain(event, regs); 5682 5683 if (data->callchain) 5684 size += data->callchain->nr; 5685 5686 header->size += size * sizeof(u64); 5687 } 5688 5689 if (sample_type & PERF_SAMPLE_RAW) { 5690 int size = sizeof(u32); 5691 5692 if (data->raw) 5693 size += data->raw->size; 5694 else 5695 size += sizeof(u32); 5696 5697 header->size += round_up(size, sizeof(u64)); 5698 } 5699 5700 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5701 int size = sizeof(u64); /* nr */ 5702 if (data->br_stack) { 5703 size += data->br_stack->nr 5704 * sizeof(struct perf_branch_entry); 5705 } 5706 header->size += size; 5707 } 5708 5709 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5710 perf_sample_regs_user(&data->regs_user, regs, 5711 &data->regs_user_copy); 5712 5713 if (sample_type & PERF_SAMPLE_REGS_USER) { 5714 /* regs dump ABI info */ 5715 int size = sizeof(u64); 5716 5717 if (data->regs_user.regs) { 5718 u64 mask = event->attr.sample_regs_user; 5719 size += hweight64(mask) * sizeof(u64); 5720 } 5721 5722 header->size += size; 5723 } 5724 5725 if (sample_type & PERF_SAMPLE_STACK_USER) { 5726 /* 5727 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5728 * processed as the last one or have additional check added 5729 * in case new sample type is added, because we could eat 5730 * up the rest of the sample size. 5731 */ 5732 u16 stack_size = event->attr.sample_stack_user; 5733 u16 size = sizeof(u64); 5734 5735 stack_size = perf_sample_ustack_size(stack_size, header->size, 5736 data->regs_user.regs); 5737 5738 /* 5739 * If there is something to dump, add space for the dump 5740 * itself and for the field that tells the dynamic size, 5741 * which is how many have been actually dumped. 5742 */ 5743 if (stack_size) 5744 size += sizeof(u64) + stack_size; 5745 5746 data->stack_user_size = stack_size; 5747 header->size += size; 5748 } 5749 5750 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5751 /* regs dump ABI info */ 5752 int size = sizeof(u64); 5753 5754 perf_sample_regs_intr(&data->regs_intr, regs); 5755 5756 if (data->regs_intr.regs) { 5757 u64 mask = event->attr.sample_regs_intr; 5758 5759 size += hweight64(mask) * sizeof(u64); 5760 } 5761 5762 header->size += size; 5763 } 5764 } 5765 5766 static void __always_inline 5767 __perf_event_output(struct perf_event *event, 5768 struct perf_sample_data *data, 5769 struct pt_regs *regs, 5770 int (*output_begin)(struct perf_output_handle *, 5771 struct perf_event *, 5772 unsigned int)) 5773 { 5774 struct perf_output_handle handle; 5775 struct perf_event_header header; 5776 5777 /* protect the callchain buffers */ 5778 rcu_read_lock(); 5779 5780 perf_prepare_sample(&header, data, event, regs); 5781 5782 if (output_begin(&handle, event, header.size)) 5783 goto exit; 5784 5785 perf_output_sample(&handle, &header, data, event); 5786 5787 perf_output_end(&handle); 5788 5789 exit: 5790 rcu_read_unlock(); 5791 } 5792 5793 void 5794 perf_event_output_forward(struct perf_event *event, 5795 struct perf_sample_data *data, 5796 struct pt_regs *regs) 5797 { 5798 __perf_event_output(event, data, regs, perf_output_begin_forward); 5799 } 5800 5801 void 5802 perf_event_output_backward(struct perf_event *event, 5803 struct perf_sample_data *data, 5804 struct pt_regs *regs) 5805 { 5806 __perf_event_output(event, data, regs, perf_output_begin_backward); 5807 } 5808 5809 void 5810 perf_event_output(struct perf_event *event, 5811 struct perf_sample_data *data, 5812 struct pt_regs *regs) 5813 { 5814 __perf_event_output(event, data, regs, perf_output_begin); 5815 } 5816 5817 /* 5818 * read event_id 5819 */ 5820 5821 struct perf_read_event { 5822 struct perf_event_header header; 5823 5824 u32 pid; 5825 u32 tid; 5826 }; 5827 5828 static void 5829 perf_event_read_event(struct perf_event *event, 5830 struct task_struct *task) 5831 { 5832 struct perf_output_handle handle; 5833 struct perf_sample_data sample; 5834 struct perf_read_event read_event = { 5835 .header = { 5836 .type = PERF_RECORD_READ, 5837 .misc = 0, 5838 .size = sizeof(read_event) + event->read_size, 5839 }, 5840 .pid = perf_event_pid(event, task), 5841 .tid = perf_event_tid(event, task), 5842 }; 5843 int ret; 5844 5845 perf_event_header__init_id(&read_event.header, &sample, event); 5846 ret = perf_output_begin(&handle, event, read_event.header.size); 5847 if (ret) 5848 return; 5849 5850 perf_output_put(&handle, read_event); 5851 perf_output_read(&handle, event); 5852 perf_event__output_id_sample(event, &handle, &sample); 5853 5854 perf_output_end(&handle); 5855 } 5856 5857 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5858 5859 static void 5860 perf_event_aux_ctx(struct perf_event_context *ctx, 5861 perf_event_aux_output_cb output, 5862 void *data, bool all) 5863 { 5864 struct perf_event *event; 5865 5866 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5867 if (!all) { 5868 if (event->state < PERF_EVENT_STATE_INACTIVE) 5869 continue; 5870 if (!event_filter_match(event)) 5871 continue; 5872 } 5873 5874 output(event, data); 5875 } 5876 } 5877 5878 static void 5879 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5880 struct perf_event_context *task_ctx) 5881 { 5882 rcu_read_lock(); 5883 preempt_disable(); 5884 perf_event_aux_ctx(task_ctx, output, data, false); 5885 preempt_enable(); 5886 rcu_read_unlock(); 5887 } 5888 5889 static void 5890 perf_event_aux(perf_event_aux_output_cb output, void *data, 5891 struct perf_event_context *task_ctx) 5892 { 5893 struct perf_cpu_context *cpuctx; 5894 struct perf_event_context *ctx; 5895 struct pmu *pmu; 5896 int ctxn; 5897 5898 /* 5899 * If we have task_ctx != NULL we only notify 5900 * the task context itself. The task_ctx is set 5901 * only for EXIT events before releasing task 5902 * context. 5903 */ 5904 if (task_ctx) { 5905 perf_event_aux_task_ctx(output, data, task_ctx); 5906 return; 5907 } 5908 5909 rcu_read_lock(); 5910 list_for_each_entry_rcu(pmu, &pmus, entry) { 5911 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5912 if (cpuctx->unique_pmu != pmu) 5913 goto next; 5914 perf_event_aux_ctx(&cpuctx->ctx, output, data, false); 5915 ctxn = pmu->task_ctx_nr; 5916 if (ctxn < 0) 5917 goto next; 5918 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5919 if (ctx) 5920 perf_event_aux_ctx(ctx, output, data, false); 5921 next: 5922 put_cpu_ptr(pmu->pmu_cpu_context); 5923 } 5924 rcu_read_unlock(); 5925 } 5926 5927 /* 5928 * Clear all file-based filters at exec, they'll have to be 5929 * re-instated when/if these objects are mmapped again. 5930 */ 5931 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 5932 { 5933 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 5934 struct perf_addr_filter *filter; 5935 unsigned int restart = 0, count = 0; 5936 unsigned long flags; 5937 5938 if (!has_addr_filter(event)) 5939 return; 5940 5941 raw_spin_lock_irqsave(&ifh->lock, flags); 5942 list_for_each_entry(filter, &ifh->list, entry) { 5943 if (filter->inode) { 5944 event->addr_filters_offs[count] = 0; 5945 restart++; 5946 } 5947 5948 count++; 5949 } 5950 5951 if (restart) 5952 event->addr_filters_gen++; 5953 raw_spin_unlock_irqrestore(&ifh->lock, flags); 5954 5955 if (restart) 5956 perf_event_restart(event); 5957 } 5958 5959 void perf_event_exec(void) 5960 { 5961 struct perf_event_context *ctx; 5962 int ctxn; 5963 5964 rcu_read_lock(); 5965 for_each_task_context_nr(ctxn) { 5966 ctx = current->perf_event_ctxp[ctxn]; 5967 if (!ctx) 5968 continue; 5969 5970 perf_event_enable_on_exec(ctxn); 5971 5972 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL, 5973 true); 5974 } 5975 rcu_read_unlock(); 5976 } 5977 5978 struct remote_output { 5979 struct ring_buffer *rb; 5980 int err; 5981 }; 5982 5983 static void __perf_event_output_stop(struct perf_event *event, void *data) 5984 { 5985 struct perf_event *parent = event->parent; 5986 struct remote_output *ro = data; 5987 struct ring_buffer *rb = ro->rb; 5988 struct stop_event_data sd = { 5989 .event = event, 5990 }; 5991 5992 if (!has_aux(event)) 5993 return; 5994 5995 if (!parent) 5996 parent = event; 5997 5998 /* 5999 * In case of inheritance, it will be the parent that links to the 6000 * ring-buffer, but it will be the child that's actually using it: 6001 */ 6002 if (rcu_dereference(parent->rb) == rb) 6003 ro->err = __perf_event_stop(&sd); 6004 } 6005 6006 static int __perf_pmu_output_stop(void *info) 6007 { 6008 struct perf_event *event = info; 6009 struct pmu *pmu = event->pmu; 6010 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 6011 struct remote_output ro = { 6012 .rb = event->rb, 6013 }; 6014 6015 rcu_read_lock(); 6016 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6017 if (cpuctx->task_ctx) 6018 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6019 &ro, false); 6020 rcu_read_unlock(); 6021 6022 return ro.err; 6023 } 6024 6025 static void perf_pmu_output_stop(struct perf_event *event) 6026 { 6027 struct perf_event *iter; 6028 int err, cpu; 6029 6030 restart: 6031 rcu_read_lock(); 6032 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6033 /* 6034 * For per-CPU events, we need to make sure that neither they 6035 * nor their children are running; for cpu==-1 events it's 6036 * sufficient to stop the event itself if it's active, since 6037 * it can't have children. 6038 */ 6039 cpu = iter->cpu; 6040 if (cpu == -1) 6041 cpu = READ_ONCE(iter->oncpu); 6042 6043 if (cpu == -1) 6044 continue; 6045 6046 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6047 if (err == -EAGAIN) { 6048 rcu_read_unlock(); 6049 goto restart; 6050 } 6051 } 6052 rcu_read_unlock(); 6053 } 6054 6055 /* 6056 * task tracking -- fork/exit 6057 * 6058 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6059 */ 6060 6061 struct perf_task_event { 6062 struct task_struct *task; 6063 struct perf_event_context *task_ctx; 6064 6065 struct { 6066 struct perf_event_header header; 6067 6068 u32 pid; 6069 u32 ppid; 6070 u32 tid; 6071 u32 ptid; 6072 u64 time; 6073 } event_id; 6074 }; 6075 6076 static int perf_event_task_match(struct perf_event *event) 6077 { 6078 return event->attr.comm || event->attr.mmap || 6079 event->attr.mmap2 || event->attr.mmap_data || 6080 event->attr.task; 6081 } 6082 6083 static void perf_event_task_output(struct perf_event *event, 6084 void *data) 6085 { 6086 struct perf_task_event *task_event = data; 6087 struct perf_output_handle handle; 6088 struct perf_sample_data sample; 6089 struct task_struct *task = task_event->task; 6090 int ret, size = task_event->event_id.header.size; 6091 6092 if (!perf_event_task_match(event)) 6093 return; 6094 6095 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6096 6097 ret = perf_output_begin(&handle, event, 6098 task_event->event_id.header.size); 6099 if (ret) 6100 goto out; 6101 6102 task_event->event_id.pid = perf_event_pid(event, task); 6103 task_event->event_id.ppid = perf_event_pid(event, current); 6104 6105 task_event->event_id.tid = perf_event_tid(event, task); 6106 task_event->event_id.ptid = perf_event_tid(event, current); 6107 6108 task_event->event_id.time = perf_event_clock(event); 6109 6110 perf_output_put(&handle, task_event->event_id); 6111 6112 perf_event__output_id_sample(event, &handle, &sample); 6113 6114 perf_output_end(&handle); 6115 out: 6116 task_event->event_id.header.size = size; 6117 } 6118 6119 static void perf_event_task(struct task_struct *task, 6120 struct perf_event_context *task_ctx, 6121 int new) 6122 { 6123 struct perf_task_event task_event; 6124 6125 if (!atomic_read(&nr_comm_events) && 6126 !atomic_read(&nr_mmap_events) && 6127 !atomic_read(&nr_task_events)) 6128 return; 6129 6130 task_event = (struct perf_task_event){ 6131 .task = task, 6132 .task_ctx = task_ctx, 6133 .event_id = { 6134 .header = { 6135 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6136 .misc = 0, 6137 .size = sizeof(task_event.event_id), 6138 }, 6139 /* .pid */ 6140 /* .ppid */ 6141 /* .tid */ 6142 /* .ptid */ 6143 /* .time */ 6144 }, 6145 }; 6146 6147 perf_event_aux(perf_event_task_output, 6148 &task_event, 6149 task_ctx); 6150 } 6151 6152 void perf_event_fork(struct task_struct *task) 6153 { 6154 perf_event_task(task, NULL, 1); 6155 } 6156 6157 /* 6158 * comm tracking 6159 */ 6160 6161 struct perf_comm_event { 6162 struct task_struct *task; 6163 char *comm; 6164 int comm_size; 6165 6166 struct { 6167 struct perf_event_header header; 6168 6169 u32 pid; 6170 u32 tid; 6171 } event_id; 6172 }; 6173 6174 static int perf_event_comm_match(struct perf_event *event) 6175 { 6176 return event->attr.comm; 6177 } 6178 6179 static void perf_event_comm_output(struct perf_event *event, 6180 void *data) 6181 { 6182 struct perf_comm_event *comm_event = data; 6183 struct perf_output_handle handle; 6184 struct perf_sample_data sample; 6185 int size = comm_event->event_id.header.size; 6186 int ret; 6187 6188 if (!perf_event_comm_match(event)) 6189 return; 6190 6191 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6192 ret = perf_output_begin(&handle, event, 6193 comm_event->event_id.header.size); 6194 6195 if (ret) 6196 goto out; 6197 6198 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6199 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6200 6201 perf_output_put(&handle, comm_event->event_id); 6202 __output_copy(&handle, comm_event->comm, 6203 comm_event->comm_size); 6204 6205 perf_event__output_id_sample(event, &handle, &sample); 6206 6207 perf_output_end(&handle); 6208 out: 6209 comm_event->event_id.header.size = size; 6210 } 6211 6212 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6213 { 6214 char comm[TASK_COMM_LEN]; 6215 unsigned int size; 6216 6217 memset(comm, 0, sizeof(comm)); 6218 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6219 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6220 6221 comm_event->comm = comm; 6222 comm_event->comm_size = size; 6223 6224 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6225 6226 perf_event_aux(perf_event_comm_output, 6227 comm_event, 6228 NULL); 6229 } 6230 6231 void perf_event_comm(struct task_struct *task, bool exec) 6232 { 6233 struct perf_comm_event comm_event; 6234 6235 if (!atomic_read(&nr_comm_events)) 6236 return; 6237 6238 comm_event = (struct perf_comm_event){ 6239 .task = task, 6240 /* .comm */ 6241 /* .comm_size */ 6242 .event_id = { 6243 .header = { 6244 .type = PERF_RECORD_COMM, 6245 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6246 /* .size */ 6247 }, 6248 /* .pid */ 6249 /* .tid */ 6250 }, 6251 }; 6252 6253 perf_event_comm_event(&comm_event); 6254 } 6255 6256 /* 6257 * mmap tracking 6258 */ 6259 6260 struct perf_mmap_event { 6261 struct vm_area_struct *vma; 6262 6263 const char *file_name; 6264 int file_size; 6265 int maj, min; 6266 u64 ino; 6267 u64 ino_generation; 6268 u32 prot, flags; 6269 6270 struct { 6271 struct perf_event_header header; 6272 6273 u32 pid; 6274 u32 tid; 6275 u64 start; 6276 u64 len; 6277 u64 pgoff; 6278 } event_id; 6279 }; 6280 6281 static int perf_event_mmap_match(struct perf_event *event, 6282 void *data) 6283 { 6284 struct perf_mmap_event *mmap_event = data; 6285 struct vm_area_struct *vma = mmap_event->vma; 6286 int executable = vma->vm_flags & VM_EXEC; 6287 6288 return (!executable && event->attr.mmap_data) || 6289 (executable && (event->attr.mmap || event->attr.mmap2)); 6290 } 6291 6292 static void perf_event_mmap_output(struct perf_event *event, 6293 void *data) 6294 { 6295 struct perf_mmap_event *mmap_event = data; 6296 struct perf_output_handle handle; 6297 struct perf_sample_data sample; 6298 int size = mmap_event->event_id.header.size; 6299 int ret; 6300 6301 if (!perf_event_mmap_match(event, data)) 6302 return; 6303 6304 if (event->attr.mmap2) { 6305 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6306 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6307 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6308 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6309 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6310 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6311 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6312 } 6313 6314 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6315 ret = perf_output_begin(&handle, event, 6316 mmap_event->event_id.header.size); 6317 if (ret) 6318 goto out; 6319 6320 mmap_event->event_id.pid = perf_event_pid(event, current); 6321 mmap_event->event_id.tid = perf_event_tid(event, current); 6322 6323 perf_output_put(&handle, mmap_event->event_id); 6324 6325 if (event->attr.mmap2) { 6326 perf_output_put(&handle, mmap_event->maj); 6327 perf_output_put(&handle, mmap_event->min); 6328 perf_output_put(&handle, mmap_event->ino); 6329 perf_output_put(&handle, mmap_event->ino_generation); 6330 perf_output_put(&handle, mmap_event->prot); 6331 perf_output_put(&handle, mmap_event->flags); 6332 } 6333 6334 __output_copy(&handle, mmap_event->file_name, 6335 mmap_event->file_size); 6336 6337 perf_event__output_id_sample(event, &handle, &sample); 6338 6339 perf_output_end(&handle); 6340 out: 6341 mmap_event->event_id.header.size = size; 6342 } 6343 6344 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6345 { 6346 struct vm_area_struct *vma = mmap_event->vma; 6347 struct file *file = vma->vm_file; 6348 int maj = 0, min = 0; 6349 u64 ino = 0, gen = 0; 6350 u32 prot = 0, flags = 0; 6351 unsigned int size; 6352 char tmp[16]; 6353 char *buf = NULL; 6354 char *name; 6355 6356 if (file) { 6357 struct inode *inode; 6358 dev_t dev; 6359 6360 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6361 if (!buf) { 6362 name = "//enomem"; 6363 goto cpy_name; 6364 } 6365 /* 6366 * d_path() works from the end of the rb backwards, so we 6367 * need to add enough zero bytes after the string to handle 6368 * the 64bit alignment we do later. 6369 */ 6370 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6371 if (IS_ERR(name)) { 6372 name = "//toolong"; 6373 goto cpy_name; 6374 } 6375 inode = file_inode(vma->vm_file); 6376 dev = inode->i_sb->s_dev; 6377 ino = inode->i_ino; 6378 gen = inode->i_generation; 6379 maj = MAJOR(dev); 6380 min = MINOR(dev); 6381 6382 if (vma->vm_flags & VM_READ) 6383 prot |= PROT_READ; 6384 if (vma->vm_flags & VM_WRITE) 6385 prot |= PROT_WRITE; 6386 if (vma->vm_flags & VM_EXEC) 6387 prot |= PROT_EXEC; 6388 6389 if (vma->vm_flags & VM_MAYSHARE) 6390 flags = MAP_SHARED; 6391 else 6392 flags = MAP_PRIVATE; 6393 6394 if (vma->vm_flags & VM_DENYWRITE) 6395 flags |= MAP_DENYWRITE; 6396 if (vma->vm_flags & VM_MAYEXEC) 6397 flags |= MAP_EXECUTABLE; 6398 if (vma->vm_flags & VM_LOCKED) 6399 flags |= MAP_LOCKED; 6400 if (vma->vm_flags & VM_HUGETLB) 6401 flags |= MAP_HUGETLB; 6402 6403 goto got_name; 6404 } else { 6405 if (vma->vm_ops && vma->vm_ops->name) { 6406 name = (char *) vma->vm_ops->name(vma); 6407 if (name) 6408 goto cpy_name; 6409 } 6410 6411 name = (char *)arch_vma_name(vma); 6412 if (name) 6413 goto cpy_name; 6414 6415 if (vma->vm_start <= vma->vm_mm->start_brk && 6416 vma->vm_end >= vma->vm_mm->brk) { 6417 name = "[heap]"; 6418 goto cpy_name; 6419 } 6420 if (vma->vm_start <= vma->vm_mm->start_stack && 6421 vma->vm_end >= vma->vm_mm->start_stack) { 6422 name = "[stack]"; 6423 goto cpy_name; 6424 } 6425 6426 name = "//anon"; 6427 goto cpy_name; 6428 } 6429 6430 cpy_name: 6431 strlcpy(tmp, name, sizeof(tmp)); 6432 name = tmp; 6433 got_name: 6434 /* 6435 * Since our buffer works in 8 byte units we need to align our string 6436 * size to a multiple of 8. However, we must guarantee the tail end is 6437 * zero'd out to avoid leaking random bits to userspace. 6438 */ 6439 size = strlen(name)+1; 6440 while (!IS_ALIGNED(size, sizeof(u64))) 6441 name[size++] = '\0'; 6442 6443 mmap_event->file_name = name; 6444 mmap_event->file_size = size; 6445 mmap_event->maj = maj; 6446 mmap_event->min = min; 6447 mmap_event->ino = ino; 6448 mmap_event->ino_generation = gen; 6449 mmap_event->prot = prot; 6450 mmap_event->flags = flags; 6451 6452 if (!(vma->vm_flags & VM_EXEC)) 6453 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6454 6455 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6456 6457 perf_event_aux(perf_event_mmap_output, 6458 mmap_event, 6459 NULL); 6460 6461 kfree(buf); 6462 } 6463 6464 /* 6465 * Whether this @filter depends on a dynamic object which is not loaded 6466 * yet or its load addresses are not known. 6467 */ 6468 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter) 6469 { 6470 return filter->filter && filter->inode; 6471 } 6472 6473 /* 6474 * Check whether inode and address range match filter criteria. 6475 */ 6476 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6477 struct file *file, unsigned long offset, 6478 unsigned long size) 6479 { 6480 if (filter->inode != file->f_inode) 6481 return false; 6482 6483 if (filter->offset > offset + size) 6484 return false; 6485 6486 if (filter->offset + filter->size < offset) 6487 return false; 6488 6489 return true; 6490 } 6491 6492 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6493 { 6494 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6495 struct vm_area_struct *vma = data; 6496 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6497 struct file *file = vma->vm_file; 6498 struct perf_addr_filter *filter; 6499 unsigned int restart = 0, count = 0; 6500 6501 if (!has_addr_filter(event)) 6502 return; 6503 6504 if (!file) 6505 return; 6506 6507 raw_spin_lock_irqsave(&ifh->lock, flags); 6508 list_for_each_entry(filter, &ifh->list, entry) { 6509 if (perf_addr_filter_match(filter, file, off, 6510 vma->vm_end - vma->vm_start)) { 6511 event->addr_filters_offs[count] = vma->vm_start; 6512 restart++; 6513 } 6514 6515 count++; 6516 } 6517 6518 if (restart) 6519 event->addr_filters_gen++; 6520 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6521 6522 if (restart) 6523 perf_event_restart(event); 6524 } 6525 6526 /* 6527 * Adjust all task's events' filters to the new vma 6528 */ 6529 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 6530 { 6531 struct perf_event_context *ctx; 6532 int ctxn; 6533 6534 rcu_read_lock(); 6535 for_each_task_context_nr(ctxn) { 6536 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6537 if (!ctx) 6538 continue; 6539 6540 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true); 6541 } 6542 rcu_read_unlock(); 6543 } 6544 6545 void perf_event_mmap(struct vm_area_struct *vma) 6546 { 6547 struct perf_mmap_event mmap_event; 6548 6549 if (!atomic_read(&nr_mmap_events)) 6550 return; 6551 6552 mmap_event = (struct perf_mmap_event){ 6553 .vma = vma, 6554 /* .file_name */ 6555 /* .file_size */ 6556 .event_id = { 6557 .header = { 6558 .type = PERF_RECORD_MMAP, 6559 .misc = PERF_RECORD_MISC_USER, 6560 /* .size */ 6561 }, 6562 /* .pid */ 6563 /* .tid */ 6564 .start = vma->vm_start, 6565 .len = vma->vm_end - vma->vm_start, 6566 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6567 }, 6568 /* .maj (attr_mmap2 only) */ 6569 /* .min (attr_mmap2 only) */ 6570 /* .ino (attr_mmap2 only) */ 6571 /* .ino_generation (attr_mmap2 only) */ 6572 /* .prot (attr_mmap2 only) */ 6573 /* .flags (attr_mmap2 only) */ 6574 }; 6575 6576 perf_addr_filters_adjust(vma); 6577 perf_event_mmap_event(&mmap_event); 6578 } 6579 6580 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6581 unsigned long size, u64 flags) 6582 { 6583 struct perf_output_handle handle; 6584 struct perf_sample_data sample; 6585 struct perf_aux_event { 6586 struct perf_event_header header; 6587 u64 offset; 6588 u64 size; 6589 u64 flags; 6590 } rec = { 6591 .header = { 6592 .type = PERF_RECORD_AUX, 6593 .misc = 0, 6594 .size = sizeof(rec), 6595 }, 6596 .offset = head, 6597 .size = size, 6598 .flags = flags, 6599 }; 6600 int ret; 6601 6602 perf_event_header__init_id(&rec.header, &sample, event); 6603 ret = perf_output_begin(&handle, event, rec.header.size); 6604 6605 if (ret) 6606 return; 6607 6608 perf_output_put(&handle, rec); 6609 perf_event__output_id_sample(event, &handle, &sample); 6610 6611 perf_output_end(&handle); 6612 } 6613 6614 /* 6615 * Lost/dropped samples logging 6616 */ 6617 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6618 { 6619 struct perf_output_handle handle; 6620 struct perf_sample_data sample; 6621 int ret; 6622 6623 struct { 6624 struct perf_event_header header; 6625 u64 lost; 6626 } lost_samples_event = { 6627 .header = { 6628 .type = PERF_RECORD_LOST_SAMPLES, 6629 .misc = 0, 6630 .size = sizeof(lost_samples_event), 6631 }, 6632 .lost = lost, 6633 }; 6634 6635 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6636 6637 ret = perf_output_begin(&handle, event, 6638 lost_samples_event.header.size); 6639 if (ret) 6640 return; 6641 6642 perf_output_put(&handle, lost_samples_event); 6643 perf_event__output_id_sample(event, &handle, &sample); 6644 perf_output_end(&handle); 6645 } 6646 6647 /* 6648 * context_switch tracking 6649 */ 6650 6651 struct perf_switch_event { 6652 struct task_struct *task; 6653 struct task_struct *next_prev; 6654 6655 struct { 6656 struct perf_event_header header; 6657 u32 next_prev_pid; 6658 u32 next_prev_tid; 6659 } event_id; 6660 }; 6661 6662 static int perf_event_switch_match(struct perf_event *event) 6663 { 6664 return event->attr.context_switch; 6665 } 6666 6667 static void perf_event_switch_output(struct perf_event *event, void *data) 6668 { 6669 struct perf_switch_event *se = data; 6670 struct perf_output_handle handle; 6671 struct perf_sample_data sample; 6672 int ret; 6673 6674 if (!perf_event_switch_match(event)) 6675 return; 6676 6677 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6678 if (event->ctx->task) { 6679 se->event_id.header.type = PERF_RECORD_SWITCH; 6680 se->event_id.header.size = sizeof(se->event_id.header); 6681 } else { 6682 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6683 se->event_id.header.size = sizeof(se->event_id); 6684 se->event_id.next_prev_pid = 6685 perf_event_pid(event, se->next_prev); 6686 se->event_id.next_prev_tid = 6687 perf_event_tid(event, se->next_prev); 6688 } 6689 6690 perf_event_header__init_id(&se->event_id.header, &sample, event); 6691 6692 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6693 if (ret) 6694 return; 6695 6696 if (event->ctx->task) 6697 perf_output_put(&handle, se->event_id.header); 6698 else 6699 perf_output_put(&handle, se->event_id); 6700 6701 perf_event__output_id_sample(event, &handle, &sample); 6702 6703 perf_output_end(&handle); 6704 } 6705 6706 static void perf_event_switch(struct task_struct *task, 6707 struct task_struct *next_prev, bool sched_in) 6708 { 6709 struct perf_switch_event switch_event; 6710 6711 /* N.B. caller checks nr_switch_events != 0 */ 6712 6713 switch_event = (struct perf_switch_event){ 6714 .task = task, 6715 .next_prev = next_prev, 6716 .event_id = { 6717 .header = { 6718 /* .type */ 6719 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6720 /* .size */ 6721 }, 6722 /* .next_prev_pid */ 6723 /* .next_prev_tid */ 6724 }, 6725 }; 6726 6727 perf_event_aux(perf_event_switch_output, 6728 &switch_event, 6729 NULL); 6730 } 6731 6732 /* 6733 * IRQ throttle logging 6734 */ 6735 6736 static void perf_log_throttle(struct perf_event *event, int enable) 6737 { 6738 struct perf_output_handle handle; 6739 struct perf_sample_data sample; 6740 int ret; 6741 6742 struct { 6743 struct perf_event_header header; 6744 u64 time; 6745 u64 id; 6746 u64 stream_id; 6747 } throttle_event = { 6748 .header = { 6749 .type = PERF_RECORD_THROTTLE, 6750 .misc = 0, 6751 .size = sizeof(throttle_event), 6752 }, 6753 .time = perf_event_clock(event), 6754 .id = primary_event_id(event), 6755 .stream_id = event->id, 6756 }; 6757 6758 if (enable) 6759 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6760 6761 perf_event_header__init_id(&throttle_event.header, &sample, event); 6762 6763 ret = perf_output_begin(&handle, event, 6764 throttle_event.header.size); 6765 if (ret) 6766 return; 6767 6768 perf_output_put(&handle, throttle_event); 6769 perf_event__output_id_sample(event, &handle, &sample); 6770 perf_output_end(&handle); 6771 } 6772 6773 static void perf_log_itrace_start(struct perf_event *event) 6774 { 6775 struct perf_output_handle handle; 6776 struct perf_sample_data sample; 6777 struct perf_aux_event { 6778 struct perf_event_header header; 6779 u32 pid; 6780 u32 tid; 6781 } rec; 6782 int ret; 6783 6784 if (event->parent) 6785 event = event->parent; 6786 6787 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6788 event->hw.itrace_started) 6789 return; 6790 6791 rec.header.type = PERF_RECORD_ITRACE_START; 6792 rec.header.misc = 0; 6793 rec.header.size = sizeof(rec); 6794 rec.pid = perf_event_pid(event, current); 6795 rec.tid = perf_event_tid(event, current); 6796 6797 perf_event_header__init_id(&rec.header, &sample, event); 6798 ret = perf_output_begin(&handle, event, rec.header.size); 6799 6800 if (ret) 6801 return; 6802 6803 perf_output_put(&handle, rec); 6804 perf_event__output_id_sample(event, &handle, &sample); 6805 6806 perf_output_end(&handle); 6807 } 6808 6809 /* 6810 * Generic event overflow handling, sampling. 6811 */ 6812 6813 static int __perf_event_overflow(struct perf_event *event, 6814 int throttle, struct perf_sample_data *data, 6815 struct pt_regs *regs) 6816 { 6817 int events = atomic_read(&event->event_limit); 6818 struct hw_perf_event *hwc = &event->hw; 6819 u64 seq; 6820 int ret = 0; 6821 6822 /* 6823 * Non-sampling counters might still use the PMI to fold short 6824 * hardware counters, ignore those. 6825 */ 6826 if (unlikely(!is_sampling_event(event))) 6827 return 0; 6828 6829 seq = __this_cpu_read(perf_throttled_seq); 6830 if (seq != hwc->interrupts_seq) { 6831 hwc->interrupts_seq = seq; 6832 hwc->interrupts = 1; 6833 } else { 6834 hwc->interrupts++; 6835 if (unlikely(throttle 6836 && hwc->interrupts >= max_samples_per_tick)) { 6837 __this_cpu_inc(perf_throttled_count); 6838 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 6839 hwc->interrupts = MAX_INTERRUPTS; 6840 perf_log_throttle(event, 0); 6841 ret = 1; 6842 } 6843 } 6844 6845 if (event->attr.freq) { 6846 u64 now = perf_clock(); 6847 s64 delta = now - hwc->freq_time_stamp; 6848 6849 hwc->freq_time_stamp = now; 6850 6851 if (delta > 0 && delta < 2*TICK_NSEC) 6852 perf_adjust_period(event, delta, hwc->last_period, true); 6853 } 6854 6855 /* 6856 * XXX event_limit might not quite work as expected on inherited 6857 * events 6858 */ 6859 6860 event->pending_kill = POLL_IN; 6861 if (events && atomic_dec_and_test(&event->event_limit)) { 6862 ret = 1; 6863 event->pending_kill = POLL_HUP; 6864 event->pending_disable = 1; 6865 irq_work_queue(&event->pending); 6866 } 6867 6868 event->overflow_handler(event, data, regs); 6869 6870 if (*perf_event_fasync(event) && event->pending_kill) { 6871 event->pending_wakeup = 1; 6872 irq_work_queue(&event->pending); 6873 } 6874 6875 return ret; 6876 } 6877 6878 int perf_event_overflow(struct perf_event *event, 6879 struct perf_sample_data *data, 6880 struct pt_regs *regs) 6881 { 6882 return __perf_event_overflow(event, 1, data, regs); 6883 } 6884 6885 /* 6886 * Generic software event infrastructure 6887 */ 6888 6889 struct swevent_htable { 6890 struct swevent_hlist *swevent_hlist; 6891 struct mutex hlist_mutex; 6892 int hlist_refcount; 6893 6894 /* Recursion avoidance in each contexts */ 6895 int recursion[PERF_NR_CONTEXTS]; 6896 }; 6897 6898 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6899 6900 /* 6901 * We directly increment event->count and keep a second value in 6902 * event->hw.period_left to count intervals. This period event 6903 * is kept in the range [-sample_period, 0] so that we can use the 6904 * sign as trigger. 6905 */ 6906 6907 u64 perf_swevent_set_period(struct perf_event *event) 6908 { 6909 struct hw_perf_event *hwc = &event->hw; 6910 u64 period = hwc->last_period; 6911 u64 nr, offset; 6912 s64 old, val; 6913 6914 hwc->last_period = hwc->sample_period; 6915 6916 again: 6917 old = val = local64_read(&hwc->period_left); 6918 if (val < 0) 6919 return 0; 6920 6921 nr = div64_u64(period + val, period); 6922 offset = nr * period; 6923 val -= offset; 6924 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6925 goto again; 6926 6927 return nr; 6928 } 6929 6930 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6931 struct perf_sample_data *data, 6932 struct pt_regs *regs) 6933 { 6934 struct hw_perf_event *hwc = &event->hw; 6935 int throttle = 0; 6936 6937 if (!overflow) 6938 overflow = perf_swevent_set_period(event); 6939 6940 if (hwc->interrupts == MAX_INTERRUPTS) 6941 return; 6942 6943 for (; overflow; overflow--) { 6944 if (__perf_event_overflow(event, throttle, 6945 data, regs)) { 6946 /* 6947 * We inhibit the overflow from happening when 6948 * hwc->interrupts == MAX_INTERRUPTS. 6949 */ 6950 break; 6951 } 6952 throttle = 1; 6953 } 6954 } 6955 6956 static void perf_swevent_event(struct perf_event *event, u64 nr, 6957 struct perf_sample_data *data, 6958 struct pt_regs *regs) 6959 { 6960 struct hw_perf_event *hwc = &event->hw; 6961 6962 local64_add(nr, &event->count); 6963 6964 if (!regs) 6965 return; 6966 6967 if (!is_sampling_event(event)) 6968 return; 6969 6970 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6971 data->period = nr; 6972 return perf_swevent_overflow(event, 1, data, regs); 6973 } else 6974 data->period = event->hw.last_period; 6975 6976 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6977 return perf_swevent_overflow(event, 1, data, regs); 6978 6979 if (local64_add_negative(nr, &hwc->period_left)) 6980 return; 6981 6982 perf_swevent_overflow(event, 0, data, regs); 6983 } 6984 6985 static int perf_exclude_event(struct perf_event *event, 6986 struct pt_regs *regs) 6987 { 6988 if (event->hw.state & PERF_HES_STOPPED) 6989 return 1; 6990 6991 if (regs) { 6992 if (event->attr.exclude_user && user_mode(regs)) 6993 return 1; 6994 6995 if (event->attr.exclude_kernel && !user_mode(regs)) 6996 return 1; 6997 } 6998 6999 return 0; 7000 } 7001 7002 static int perf_swevent_match(struct perf_event *event, 7003 enum perf_type_id type, 7004 u32 event_id, 7005 struct perf_sample_data *data, 7006 struct pt_regs *regs) 7007 { 7008 if (event->attr.type != type) 7009 return 0; 7010 7011 if (event->attr.config != event_id) 7012 return 0; 7013 7014 if (perf_exclude_event(event, regs)) 7015 return 0; 7016 7017 return 1; 7018 } 7019 7020 static inline u64 swevent_hash(u64 type, u32 event_id) 7021 { 7022 u64 val = event_id | (type << 32); 7023 7024 return hash_64(val, SWEVENT_HLIST_BITS); 7025 } 7026 7027 static inline struct hlist_head * 7028 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7029 { 7030 u64 hash = swevent_hash(type, event_id); 7031 7032 return &hlist->heads[hash]; 7033 } 7034 7035 /* For the read side: events when they trigger */ 7036 static inline struct hlist_head * 7037 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7038 { 7039 struct swevent_hlist *hlist; 7040 7041 hlist = rcu_dereference(swhash->swevent_hlist); 7042 if (!hlist) 7043 return NULL; 7044 7045 return __find_swevent_head(hlist, type, event_id); 7046 } 7047 7048 /* For the event head insertion and removal in the hlist */ 7049 static inline struct hlist_head * 7050 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7051 { 7052 struct swevent_hlist *hlist; 7053 u32 event_id = event->attr.config; 7054 u64 type = event->attr.type; 7055 7056 /* 7057 * Event scheduling is always serialized against hlist allocation 7058 * and release. Which makes the protected version suitable here. 7059 * The context lock guarantees that. 7060 */ 7061 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7062 lockdep_is_held(&event->ctx->lock)); 7063 if (!hlist) 7064 return NULL; 7065 7066 return __find_swevent_head(hlist, type, event_id); 7067 } 7068 7069 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7070 u64 nr, 7071 struct perf_sample_data *data, 7072 struct pt_regs *regs) 7073 { 7074 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7075 struct perf_event *event; 7076 struct hlist_head *head; 7077 7078 rcu_read_lock(); 7079 head = find_swevent_head_rcu(swhash, type, event_id); 7080 if (!head) 7081 goto end; 7082 7083 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7084 if (perf_swevent_match(event, type, event_id, data, regs)) 7085 perf_swevent_event(event, nr, data, regs); 7086 } 7087 end: 7088 rcu_read_unlock(); 7089 } 7090 7091 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7092 7093 int perf_swevent_get_recursion_context(void) 7094 { 7095 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7096 7097 return get_recursion_context(swhash->recursion); 7098 } 7099 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7100 7101 void perf_swevent_put_recursion_context(int rctx) 7102 { 7103 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7104 7105 put_recursion_context(swhash->recursion, rctx); 7106 } 7107 7108 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7109 { 7110 struct perf_sample_data data; 7111 7112 if (WARN_ON_ONCE(!regs)) 7113 return; 7114 7115 perf_sample_data_init(&data, addr, 0); 7116 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7117 } 7118 7119 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7120 { 7121 int rctx; 7122 7123 preempt_disable_notrace(); 7124 rctx = perf_swevent_get_recursion_context(); 7125 if (unlikely(rctx < 0)) 7126 goto fail; 7127 7128 ___perf_sw_event(event_id, nr, regs, addr); 7129 7130 perf_swevent_put_recursion_context(rctx); 7131 fail: 7132 preempt_enable_notrace(); 7133 } 7134 7135 static void perf_swevent_read(struct perf_event *event) 7136 { 7137 } 7138 7139 static int perf_swevent_add(struct perf_event *event, int flags) 7140 { 7141 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7142 struct hw_perf_event *hwc = &event->hw; 7143 struct hlist_head *head; 7144 7145 if (is_sampling_event(event)) { 7146 hwc->last_period = hwc->sample_period; 7147 perf_swevent_set_period(event); 7148 } 7149 7150 hwc->state = !(flags & PERF_EF_START); 7151 7152 head = find_swevent_head(swhash, event); 7153 if (WARN_ON_ONCE(!head)) 7154 return -EINVAL; 7155 7156 hlist_add_head_rcu(&event->hlist_entry, head); 7157 perf_event_update_userpage(event); 7158 7159 return 0; 7160 } 7161 7162 static void perf_swevent_del(struct perf_event *event, int flags) 7163 { 7164 hlist_del_rcu(&event->hlist_entry); 7165 } 7166 7167 static void perf_swevent_start(struct perf_event *event, int flags) 7168 { 7169 event->hw.state = 0; 7170 } 7171 7172 static void perf_swevent_stop(struct perf_event *event, int flags) 7173 { 7174 event->hw.state = PERF_HES_STOPPED; 7175 } 7176 7177 /* Deref the hlist from the update side */ 7178 static inline struct swevent_hlist * 7179 swevent_hlist_deref(struct swevent_htable *swhash) 7180 { 7181 return rcu_dereference_protected(swhash->swevent_hlist, 7182 lockdep_is_held(&swhash->hlist_mutex)); 7183 } 7184 7185 static void swevent_hlist_release(struct swevent_htable *swhash) 7186 { 7187 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7188 7189 if (!hlist) 7190 return; 7191 7192 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7193 kfree_rcu(hlist, rcu_head); 7194 } 7195 7196 static void swevent_hlist_put_cpu(int cpu) 7197 { 7198 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7199 7200 mutex_lock(&swhash->hlist_mutex); 7201 7202 if (!--swhash->hlist_refcount) 7203 swevent_hlist_release(swhash); 7204 7205 mutex_unlock(&swhash->hlist_mutex); 7206 } 7207 7208 static void swevent_hlist_put(void) 7209 { 7210 int cpu; 7211 7212 for_each_possible_cpu(cpu) 7213 swevent_hlist_put_cpu(cpu); 7214 } 7215 7216 static int swevent_hlist_get_cpu(int cpu) 7217 { 7218 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7219 int err = 0; 7220 7221 mutex_lock(&swhash->hlist_mutex); 7222 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 7223 struct swevent_hlist *hlist; 7224 7225 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7226 if (!hlist) { 7227 err = -ENOMEM; 7228 goto exit; 7229 } 7230 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7231 } 7232 swhash->hlist_refcount++; 7233 exit: 7234 mutex_unlock(&swhash->hlist_mutex); 7235 7236 return err; 7237 } 7238 7239 static int swevent_hlist_get(void) 7240 { 7241 int err, cpu, failed_cpu; 7242 7243 get_online_cpus(); 7244 for_each_possible_cpu(cpu) { 7245 err = swevent_hlist_get_cpu(cpu); 7246 if (err) { 7247 failed_cpu = cpu; 7248 goto fail; 7249 } 7250 } 7251 put_online_cpus(); 7252 7253 return 0; 7254 fail: 7255 for_each_possible_cpu(cpu) { 7256 if (cpu == failed_cpu) 7257 break; 7258 swevent_hlist_put_cpu(cpu); 7259 } 7260 7261 put_online_cpus(); 7262 return err; 7263 } 7264 7265 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7266 7267 static void sw_perf_event_destroy(struct perf_event *event) 7268 { 7269 u64 event_id = event->attr.config; 7270 7271 WARN_ON(event->parent); 7272 7273 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7274 swevent_hlist_put(); 7275 } 7276 7277 static int perf_swevent_init(struct perf_event *event) 7278 { 7279 u64 event_id = event->attr.config; 7280 7281 if (event->attr.type != PERF_TYPE_SOFTWARE) 7282 return -ENOENT; 7283 7284 /* 7285 * no branch sampling for software events 7286 */ 7287 if (has_branch_stack(event)) 7288 return -EOPNOTSUPP; 7289 7290 switch (event_id) { 7291 case PERF_COUNT_SW_CPU_CLOCK: 7292 case PERF_COUNT_SW_TASK_CLOCK: 7293 return -ENOENT; 7294 7295 default: 7296 break; 7297 } 7298 7299 if (event_id >= PERF_COUNT_SW_MAX) 7300 return -ENOENT; 7301 7302 if (!event->parent) { 7303 int err; 7304 7305 err = swevent_hlist_get(); 7306 if (err) 7307 return err; 7308 7309 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7310 event->destroy = sw_perf_event_destroy; 7311 } 7312 7313 return 0; 7314 } 7315 7316 static struct pmu perf_swevent = { 7317 .task_ctx_nr = perf_sw_context, 7318 7319 .capabilities = PERF_PMU_CAP_NO_NMI, 7320 7321 .event_init = perf_swevent_init, 7322 .add = perf_swevent_add, 7323 .del = perf_swevent_del, 7324 .start = perf_swevent_start, 7325 .stop = perf_swevent_stop, 7326 .read = perf_swevent_read, 7327 }; 7328 7329 #ifdef CONFIG_EVENT_TRACING 7330 7331 static int perf_tp_filter_match(struct perf_event *event, 7332 struct perf_sample_data *data) 7333 { 7334 void *record = data->raw->data; 7335 7336 /* only top level events have filters set */ 7337 if (event->parent) 7338 event = event->parent; 7339 7340 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7341 return 1; 7342 return 0; 7343 } 7344 7345 static int perf_tp_event_match(struct perf_event *event, 7346 struct perf_sample_data *data, 7347 struct pt_regs *regs) 7348 { 7349 if (event->hw.state & PERF_HES_STOPPED) 7350 return 0; 7351 /* 7352 * All tracepoints are from kernel-space. 7353 */ 7354 if (event->attr.exclude_kernel) 7355 return 0; 7356 7357 if (!perf_tp_filter_match(event, data)) 7358 return 0; 7359 7360 return 1; 7361 } 7362 7363 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7364 struct trace_event_call *call, u64 count, 7365 struct pt_regs *regs, struct hlist_head *head, 7366 struct task_struct *task) 7367 { 7368 struct bpf_prog *prog = call->prog; 7369 7370 if (prog) { 7371 *(struct pt_regs **)raw_data = regs; 7372 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) { 7373 perf_swevent_put_recursion_context(rctx); 7374 return; 7375 } 7376 } 7377 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7378 rctx, task); 7379 } 7380 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7381 7382 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7383 struct pt_regs *regs, struct hlist_head *head, int rctx, 7384 struct task_struct *task) 7385 { 7386 struct perf_sample_data data; 7387 struct perf_event *event; 7388 7389 struct perf_raw_record raw = { 7390 .size = entry_size, 7391 .data = record, 7392 }; 7393 7394 perf_sample_data_init(&data, 0, 0); 7395 data.raw = &raw; 7396 7397 perf_trace_buf_update(record, event_type); 7398 7399 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7400 if (perf_tp_event_match(event, &data, regs)) 7401 perf_swevent_event(event, count, &data, regs); 7402 } 7403 7404 /* 7405 * If we got specified a target task, also iterate its context and 7406 * deliver this event there too. 7407 */ 7408 if (task && task != current) { 7409 struct perf_event_context *ctx; 7410 struct trace_entry *entry = record; 7411 7412 rcu_read_lock(); 7413 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7414 if (!ctx) 7415 goto unlock; 7416 7417 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7418 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7419 continue; 7420 if (event->attr.config != entry->type) 7421 continue; 7422 if (perf_tp_event_match(event, &data, regs)) 7423 perf_swevent_event(event, count, &data, regs); 7424 } 7425 unlock: 7426 rcu_read_unlock(); 7427 } 7428 7429 perf_swevent_put_recursion_context(rctx); 7430 } 7431 EXPORT_SYMBOL_GPL(perf_tp_event); 7432 7433 static void tp_perf_event_destroy(struct perf_event *event) 7434 { 7435 perf_trace_destroy(event); 7436 } 7437 7438 static int perf_tp_event_init(struct perf_event *event) 7439 { 7440 int err; 7441 7442 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7443 return -ENOENT; 7444 7445 /* 7446 * no branch sampling for tracepoint events 7447 */ 7448 if (has_branch_stack(event)) 7449 return -EOPNOTSUPP; 7450 7451 err = perf_trace_init(event); 7452 if (err) 7453 return err; 7454 7455 event->destroy = tp_perf_event_destroy; 7456 7457 return 0; 7458 } 7459 7460 static struct pmu perf_tracepoint = { 7461 .task_ctx_nr = perf_sw_context, 7462 7463 .event_init = perf_tp_event_init, 7464 .add = perf_trace_add, 7465 .del = perf_trace_del, 7466 .start = perf_swevent_start, 7467 .stop = perf_swevent_stop, 7468 .read = perf_swevent_read, 7469 }; 7470 7471 static inline void perf_tp_register(void) 7472 { 7473 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7474 } 7475 7476 static void perf_event_free_filter(struct perf_event *event) 7477 { 7478 ftrace_profile_free_filter(event); 7479 } 7480 7481 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7482 { 7483 bool is_kprobe, is_tracepoint; 7484 struct bpf_prog *prog; 7485 7486 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7487 return -EINVAL; 7488 7489 if (event->tp_event->prog) 7490 return -EEXIST; 7491 7492 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 7493 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 7494 if (!is_kprobe && !is_tracepoint) 7495 /* bpf programs can only be attached to u/kprobe or tracepoint */ 7496 return -EINVAL; 7497 7498 prog = bpf_prog_get(prog_fd); 7499 if (IS_ERR(prog)) 7500 return PTR_ERR(prog); 7501 7502 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 7503 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 7504 /* valid fd, but invalid bpf program type */ 7505 bpf_prog_put(prog); 7506 return -EINVAL; 7507 } 7508 7509 if (is_tracepoint) { 7510 int off = trace_event_get_offsets(event->tp_event); 7511 7512 if (prog->aux->max_ctx_offset > off) { 7513 bpf_prog_put(prog); 7514 return -EACCES; 7515 } 7516 } 7517 event->tp_event->prog = prog; 7518 7519 return 0; 7520 } 7521 7522 static void perf_event_free_bpf_prog(struct perf_event *event) 7523 { 7524 struct bpf_prog *prog; 7525 7526 if (!event->tp_event) 7527 return; 7528 7529 prog = event->tp_event->prog; 7530 if (prog) { 7531 event->tp_event->prog = NULL; 7532 bpf_prog_put(prog); 7533 } 7534 } 7535 7536 #else 7537 7538 static inline void perf_tp_register(void) 7539 { 7540 } 7541 7542 static void perf_event_free_filter(struct perf_event *event) 7543 { 7544 } 7545 7546 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7547 { 7548 return -ENOENT; 7549 } 7550 7551 static void perf_event_free_bpf_prog(struct perf_event *event) 7552 { 7553 } 7554 #endif /* CONFIG_EVENT_TRACING */ 7555 7556 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7557 void perf_bp_event(struct perf_event *bp, void *data) 7558 { 7559 struct perf_sample_data sample; 7560 struct pt_regs *regs = data; 7561 7562 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7563 7564 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7565 perf_swevent_event(bp, 1, &sample, regs); 7566 } 7567 #endif 7568 7569 /* 7570 * Allocate a new address filter 7571 */ 7572 static struct perf_addr_filter * 7573 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 7574 { 7575 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 7576 struct perf_addr_filter *filter; 7577 7578 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 7579 if (!filter) 7580 return NULL; 7581 7582 INIT_LIST_HEAD(&filter->entry); 7583 list_add_tail(&filter->entry, filters); 7584 7585 return filter; 7586 } 7587 7588 static void free_filters_list(struct list_head *filters) 7589 { 7590 struct perf_addr_filter *filter, *iter; 7591 7592 list_for_each_entry_safe(filter, iter, filters, entry) { 7593 if (filter->inode) 7594 iput(filter->inode); 7595 list_del(&filter->entry); 7596 kfree(filter); 7597 } 7598 } 7599 7600 /* 7601 * Free existing address filters and optionally install new ones 7602 */ 7603 static void perf_addr_filters_splice(struct perf_event *event, 7604 struct list_head *head) 7605 { 7606 unsigned long flags; 7607 LIST_HEAD(list); 7608 7609 if (!has_addr_filter(event)) 7610 return; 7611 7612 /* don't bother with children, they don't have their own filters */ 7613 if (event->parent) 7614 return; 7615 7616 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 7617 7618 list_splice_init(&event->addr_filters.list, &list); 7619 if (head) 7620 list_splice(head, &event->addr_filters.list); 7621 7622 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 7623 7624 free_filters_list(&list); 7625 } 7626 7627 /* 7628 * Scan through mm's vmas and see if one of them matches the 7629 * @filter; if so, adjust filter's address range. 7630 * Called with mm::mmap_sem down for reading. 7631 */ 7632 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 7633 struct mm_struct *mm) 7634 { 7635 struct vm_area_struct *vma; 7636 7637 for (vma = mm->mmap; vma; vma = vma->vm_next) { 7638 struct file *file = vma->vm_file; 7639 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7640 unsigned long vma_size = vma->vm_end - vma->vm_start; 7641 7642 if (!file) 7643 continue; 7644 7645 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7646 continue; 7647 7648 return vma->vm_start; 7649 } 7650 7651 return 0; 7652 } 7653 7654 /* 7655 * Update event's address range filters based on the 7656 * task's existing mappings, if any. 7657 */ 7658 static void perf_event_addr_filters_apply(struct perf_event *event) 7659 { 7660 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7661 struct task_struct *task = READ_ONCE(event->ctx->task); 7662 struct perf_addr_filter *filter; 7663 struct mm_struct *mm = NULL; 7664 unsigned int count = 0; 7665 unsigned long flags; 7666 7667 /* 7668 * We may observe TASK_TOMBSTONE, which means that the event tear-down 7669 * will stop on the parent's child_mutex that our caller is also holding 7670 */ 7671 if (task == TASK_TOMBSTONE) 7672 return; 7673 7674 mm = get_task_mm(event->ctx->task); 7675 if (!mm) 7676 goto restart; 7677 7678 down_read(&mm->mmap_sem); 7679 7680 raw_spin_lock_irqsave(&ifh->lock, flags); 7681 list_for_each_entry(filter, &ifh->list, entry) { 7682 event->addr_filters_offs[count] = 0; 7683 7684 if (perf_addr_filter_needs_mmap(filter)) 7685 event->addr_filters_offs[count] = 7686 perf_addr_filter_apply(filter, mm); 7687 7688 count++; 7689 } 7690 7691 event->addr_filters_gen++; 7692 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7693 7694 up_read(&mm->mmap_sem); 7695 7696 mmput(mm); 7697 7698 restart: 7699 perf_event_restart(event); 7700 } 7701 7702 /* 7703 * Address range filtering: limiting the data to certain 7704 * instruction address ranges. Filters are ioctl()ed to us from 7705 * userspace as ascii strings. 7706 * 7707 * Filter string format: 7708 * 7709 * ACTION RANGE_SPEC 7710 * where ACTION is one of the 7711 * * "filter": limit the trace to this region 7712 * * "start": start tracing from this address 7713 * * "stop": stop tracing at this address/region; 7714 * RANGE_SPEC is 7715 * * for kernel addresses: <start address>[/<size>] 7716 * * for object files: <start address>[/<size>]@</path/to/object/file> 7717 * 7718 * if <size> is not specified, the range is treated as a single address. 7719 */ 7720 enum { 7721 IF_ACT_FILTER, 7722 IF_ACT_START, 7723 IF_ACT_STOP, 7724 IF_SRC_FILE, 7725 IF_SRC_KERNEL, 7726 IF_SRC_FILEADDR, 7727 IF_SRC_KERNELADDR, 7728 }; 7729 7730 enum { 7731 IF_STATE_ACTION = 0, 7732 IF_STATE_SOURCE, 7733 IF_STATE_END, 7734 }; 7735 7736 static const match_table_t if_tokens = { 7737 { IF_ACT_FILTER, "filter" }, 7738 { IF_ACT_START, "start" }, 7739 { IF_ACT_STOP, "stop" }, 7740 { IF_SRC_FILE, "%u/%u@%s" }, 7741 { IF_SRC_KERNEL, "%u/%u" }, 7742 { IF_SRC_FILEADDR, "%u@%s" }, 7743 { IF_SRC_KERNELADDR, "%u" }, 7744 }; 7745 7746 /* 7747 * Address filter string parser 7748 */ 7749 static int 7750 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 7751 struct list_head *filters) 7752 { 7753 struct perf_addr_filter *filter = NULL; 7754 char *start, *orig, *filename = NULL; 7755 struct path path; 7756 substring_t args[MAX_OPT_ARGS]; 7757 int state = IF_STATE_ACTION, token; 7758 unsigned int kernel = 0; 7759 int ret = -EINVAL; 7760 7761 orig = fstr = kstrdup(fstr, GFP_KERNEL); 7762 if (!fstr) 7763 return -ENOMEM; 7764 7765 while ((start = strsep(&fstr, " ,\n")) != NULL) { 7766 ret = -EINVAL; 7767 7768 if (!*start) 7769 continue; 7770 7771 /* filter definition begins */ 7772 if (state == IF_STATE_ACTION) { 7773 filter = perf_addr_filter_new(event, filters); 7774 if (!filter) 7775 goto fail; 7776 } 7777 7778 token = match_token(start, if_tokens, args); 7779 switch (token) { 7780 case IF_ACT_FILTER: 7781 case IF_ACT_START: 7782 filter->filter = 1; 7783 7784 case IF_ACT_STOP: 7785 if (state != IF_STATE_ACTION) 7786 goto fail; 7787 7788 state = IF_STATE_SOURCE; 7789 break; 7790 7791 case IF_SRC_KERNELADDR: 7792 case IF_SRC_KERNEL: 7793 kernel = 1; 7794 7795 case IF_SRC_FILEADDR: 7796 case IF_SRC_FILE: 7797 if (state != IF_STATE_SOURCE) 7798 goto fail; 7799 7800 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 7801 filter->range = 1; 7802 7803 *args[0].to = 0; 7804 ret = kstrtoul(args[0].from, 0, &filter->offset); 7805 if (ret) 7806 goto fail; 7807 7808 if (filter->range) { 7809 *args[1].to = 0; 7810 ret = kstrtoul(args[1].from, 0, &filter->size); 7811 if (ret) 7812 goto fail; 7813 } 7814 7815 if (token == IF_SRC_FILE) { 7816 filename = match_strdup(&args[2]); 7817 if (!filename) { 7818 ret = -ENOMEM; 7819 goto fail; 7820 } 7821 } 7822 7823 state = IF_STATE_END; 7824 break; 7825 7826 default: 7827 goto fail; 7828 } 7829 7830 /* 7831 * Filter definition is fully parsed, validate and install it. 7832 * Make sure that it doesn't contradict itself or the event's 7833 * attribute. 7834 */ 7835 if (state == IF_STATE_END) { 7836 if (kernel && event->attr.exclude_kernel) 7837 goto fail; 7838 7839 if (!kernel) { 7840 if (!filename) 7841 goto fail; 7842 7843 /* look up the path and grab its inode */ 7844 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 7845 if (ret) 7846 goto fail_free_name; 7847 7848 filter->inode = igrab(d_inode(path.dentry)); 7849 path_put(&path); 7850 kfree(filename); 7851 filename = NULL; 7852 7853 ret = -EINVAL; 7854 if (!filter->inode || 7855 !S_ISREG(filter->inode->i_mode)) 7856 /* free_filters_list() will iput() */ 7857 goto fail; 7858 } 7859 7860 /* ready to consume more filters */ 7861 state = IF_STATE_ACTION; 7862 filter = NULL; 7863 } 7864 } 7865 7866 if (state != IF_STATE_ACTION) 7867 goto fail; 7868 7869 kfree(orig); 7870 7871 return 0; 7872 7873 fail_free_name: 7874 kfree(filename); 7875 fail: 7876 free_filters_list(filters); 7877 kfree(orig); 7878 7879 return ret; 7880 } 7881 7882 static int 7883 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 7884 { 7885 LIST_HEAD(filters); 7886 int ret; 7887 7888 /* 7889 * Since this is called in perf_ioctl() path, we're already holding 7890 * ctx::mutex. 7891 */ 7892 lockdep_assert_held(&event->ctx->mutex); 7893 7894 if (WARN_ON_ONCE(event->parent)) 7895 return -EINVAL; 7896 7897 /* 7898 * For now, we only support filtering in per-task events; doing so 7899 * for CPU-wide events requires additional context switching trickery, 7900 * since same object code will be mapped at different virtual 7901 * addresses in different processes. 7902 */ 7903 if (!event->ctx->task) 7904 return -EOPNOTSUPP; 7905 7906 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 7907 if (ret) 7908 return ret; 7909 7910 ret = event->pmu->addr_filters_validate(&filters); 7911 if (ret) { 7912 free_filters_list(&filters); 7913 return ret; 7914 } 7915 7916 /* remove existing filters, if any */ 7917 perf_addr_filters_splice(event, &filters); 7918 7919 /* install new filters */ 7920 perf_event_for_each_child(event, perf_event_addr_filters_apply); 7921 7922 return ret; 7923 } 7924 7925 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7926 { 7927 char *filter_str; 7928 int ret = -EINVAL; 7929 7930 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 7931 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 7932 !has_addr_filter(event)) 7933 return -EINVAL; 7934 7935 filter_str = strndup_user(arg, PAGE_SIZE); 7936 if (IS_ERR(filter_str)) 7937 return PTR_ERR(filter_str); 7938 7939 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 7940 event->attr.type == PERF_TYPE_TRACEPOINT) 7941 ret = ftrace_profile_set_filter(event, event->attr.config, 7942 filter_str); 7943 else if (has_addr_filter(event)) 7944 ret = perf_event_set_addr_filter(event, filter_str); 7945 7946 kfree(filter_str); 7947 return ret; 7948 } 7949 7950 /* 7951 * hrtimer based swevent callback 7952 */ 7953 7954 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7955 { 7956 enum hrtimer_restart ret = HRTIMER_RESTART; 7957 struct perf_sample_data data; 7958 struct pt_regs *regs; 7959 struct perf_event *event; 7960 u64 period; 7961 7962 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7963 7964 if (event->state != PERF_EVENT_STATE_ACTIVE) 7965 return HRTIMER_NORESTART; 7966 7967 event->pmu->read(event); 7968 7969 perf_sample_data_init(&data, 0, event->hw.last_period); 7970 regs = get_irq_regs(); 7971 7972 if (regs && !perf_exclude_event(event, regs)) { 7973 if (!(event->attr.exclude_idle && is_idle_task(current))) 7974 if (__perf_event_overflow(event, 1, &data, regs)) 7975 ret = HRTIMER_NORESTART; 7976 } 7977 7978 period = max_t(u64, 10000, event->hw.sample_period); 7979 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7980 7981 return ret; 7982 } 7983 7984 static void perf_swevent_start_hrtimer(struct perf_event *event) 7985 { 7986 struct hw_perf_event *hwc = &event->hw; 7987 s64 period; 7988 7989 if (!is_sampling_event(event)) 7990 return; 7991 7992 period = local64_read(&hwc->period_left); 7993 if (period) { 7994 if (period < 0) 7995 period = 10000; 7996 7997 local64_set(&hwc->period_left, 0); 7998 } else { 7999 period = max_t(u64, 10000, hwc->sample_period); 8000 } 8001 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8002 HRTIMER_MODE_REL_PINNED); 8003 } 8004 8005 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8006 { 8007 struct hw_perf_event *hwc = &event->hw; 8008 8009 if (is_sampling_event(event)) { 8010 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8011 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8012 8013 hrtimer_cancel(&hwc->hrtimer); 8014 } 8015 } 8016 8017 static void perf_swevent_init_hrtimer(struct perf_event *event) 8018 { 8019 struct hw_perf_event *hwc = &event->hw; 8020 8021 if (!is_sampling_event(event)) 8022 return; 8023 8024 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8025 hwc->hrtimer.function = perf_swevent_hrtimer; 8026 8027 /* 8028 * Since hrtimers have a fixed rate, we can do a static freq->period 8029 * mapping and avoid the whole period adjust feedback stuff. 8030 */ 8031 if (event->attr.freq) { 8032 long freq = event->attr.sample_freq; 8033 8034 event->attr.sample_period = NSEC_PER_SEC / freq; 8035 hwc->sample_period = event->attr.sample_period; 8036 local64_set(&hwc->period_left, hwc->sample_period); 8037 hwc->last_period = hwc->sample_period; 8038 event->attr.freq = 0; 8039 } 8040 } 8041 8042 /* 8043 * Software event: cpu wall time clock 8044 */ 8045 8046 static void cpu_clock_event_update(struct perf_event *event) 8047 { 8048 s64 prev; 8049 u64 now; 8050 8051 now = local_clock(); 8052 prev = local64_xchg(&event->hw.prev_count, now); 8053 local64_add(now - prev, &event->count); 8054 } 8055 8056 static void cpu_clock_event_start(struct perf_event *event, int flags) 8057 { 8058 local64_set(&event->hw.prev_count, local_clock()); 8059 perf_swevent_start_hrtimer(event); 8060 } 8061 8062 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8063 { 8064 perf_swevent_cancel_hrtimer(event); 8065 cpu_clock_event_update(event); 8066 } 8067 8068 static int cpu_clock_event_add(struct perf_event *event, int flags) 8069 { 8070 if (flags & PERF_EF_START) 8071 cpu_clock_event_start(event, flags); 8072 perf_event_update_userpage(event); 8073 8074 return 0; 8075 } 8076 8077 static void cpu_clock_event_del(struct perf_event *event, int flags) 8078 { 8079 cpu_clock_event_stop(event, flags); 8080 } 8081 8082 static void cpu_clock_event_read(struct perf_event *event) 8083 { 8084 cpu_clock_event_update(event); 8085 } 8086 8087 static int cpu_clock_event_init(struct perf_event *event) 8088 { 8089 if (event->attr.type != PERF_TYPE_SOFTWARE) 8090 return -ENOENT; 8091 8092 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8093 return -ENOENT; 8094 8095 /* 8096 * no branch sampling for software events 8097 */ 8098 if (has_branch_stack(event)) 8099 return -EOPNOTSUPP; 8100 8101 perf_swevent_init_hrtimer(event); 8102 8103 return 0; 8104 } 8105 8106 static struct pmu perf_cpu_clock = { 8107 .task_ctx_nr = perf_sw_context, 8108 8109 .capabilities = PERF_PMU_CAP_NO_NMI, 8110 8111 .event_init = cpu_clock_event_init, 8112 .add = cpu_clock_event_add, 8113 .del = cpu_clock_event_del, 8114 .start = cpu_clock_event_start, 8115 .stop = cpu_clock_event_stop, 8116 .read = cpu_clock_event_read, 8117 }; 8118 8119 /* 8120 * Software event: task time clock 8121 */ 8122 8123 static void task_clock_event_update(struct perf_event *event, u64 now) 8124 { 8125 u64 prev; 8126 s64 delta; 8127 8128 prev = local64_xchg(&event->hw.prev_count, now); 8129 delta = now - prev; 8130 local64_add(delta, &event->count); 8131 } 8132 8133 static void task_clock_event_start(struct perf_event *event, int flags) 8134 { 8135 local64_set(&event->hw.prev_count, event->ctx->time); 8136 perf_swevent_start_hrtimer(event); 8137 } 8138 8139 static void task_clock_event_stop(struct perf_event *event, int flags) 8140 { 8141 perf_swevent_cancel_hrtimer(event); 8142 task_clock_event_update(event, event->ctx->time); 8143 } 8144 8145 static int task_clock_event_add(struct perf_event *event, int flags) 8146 { 8147 if (flags & PERF_EF_START) 8148 task_clock_event_start(event, flags); 8149 perf_event_update_userpage(event); 8150 8151 return 0; 8152 } 8153 8154 static void task_clock_event_del(struct perf_event *event, int flags) 8155 { 8156 task_clock_event_stop(event, PERF_EF_UPDATE); 8157 } 8158 8159 static void task_clock_event_read(struct perf_event *event) 8160 { 8161 u64 now = perf_clock(); 8162 u64 delta = now - event->ctx->timestamp; 8163 u64 time = event->ctx->time + delta; 8164 8165 task_clock_event_update(event, time); 8166 } 8167 8168 static int task_clock_event_init(struct perf_event *event) 8169 { 8170 if (event->attr.type != PERF_TYPE_SOFTWARE) 8171 return -ENOENT; 8172 8173 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8174 return -ENOENT; 8175 8176 /* 8177 * no branch sampling for software events 8178 */ 8179 if (has_branch_stack(event)) 8180 return -EOPNOTSUPP; 8181 8182 perf_swevent_init_hrtimer(event); 8183 8184 return 0; 8185 } 8186 8187 static struct pmu perf_task_clock = { 8188 .task_ctx_nr = perf_sw_context, 8189 8190 .capabilities = PERF_PMU_CAP_NO_NMI, 8191 8192 .event_init = task_clock_event_init, 8193 .add = task_clock_event_add, 8194 .del = task_clock_event_del, 8195 .start = task_clock_event_start, 8196 .stop = task_clock_event_stop, 8197 .read = task_clock_event_read, 8198 }; 8199 8200 static void perf_pmu_nop_void(struct pmu *pmu) 8201 { 8202 } 8203 8204 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8205 { 8206 } 8207 8208 static int perf_pmu_nop_int(struct pmu *pmu) 8209 { 8210 return 0; 8211 } 8212 8213 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8214 8215 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8216 { 8217 __this_cpu_write(nop_txn_flags, flags); 8218 8219 if (flags & ~PERF_PMU_TXN_ADD) 8220 return; 8221 8222 perf_pmu_disable(pmu); 8223 } 8224 8225 static int perf_pmu_commit_txn(struct pmu *pmu) 8226 { 8227 unsigned int flags = __this_cpu_read(nop_txn_flags); 8228 8229 __this_cpu_write(nop_txn_flags, 0); 8230 8231 if (flags & ~PERF_PMU_TXN_ADD) 8232 return 0; 8233 8234 perf_pmu_enable(pmu); 8235 return 0; 8236 } 8237 8238 static void perf_pmu_cancel_txn(struct pmu *pmu) 8239 { 8240 unsigned int flags = __this_cpu_read(nop_txn_flags); 8241 8242 __this_cpu_write(nop_txn_flags, 0); 8243 8244 if (flags & ~PERF_PMU_TXN_ADD) 8245 return; 8246 8247 perf_pmu_enable(pmu); 8248 } 8249 8250 static int perf_event_idx_default(struct perf_event *event) 8251 { 8252 return 0; 8253 } 8254 8255 /* 8256 * Ensures all contexts with the same task_ctx_nr have the same 8257 * pmu_cpu_context too. 8258 */ 8259 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8260 { 8261 struct pmu *pmu; 8262 8263 if (ctxn < 0) 8264 return NULL; 8265 8266 list_for_each_entry(pmu, &pmus, entry) { 8267 if (pmu->task_ctx_nr == ctxn) 8268 return pmu->pmu_cpu_context; 8269 } 8270 8271 return NULL; 8272 } 8273 8274 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 8275 { 8276 int cpu; 8277 8278 for_each_possible_cpu(cpu) { 8279 struct perf_cpu_context *cpuctx; 8280 8281 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8282 8283 if (cpuctx->unique_pmu == old_pmu) 8284 cpuctx->unique_pmu = pmu; 8285 } 8286 } 8287 8288 static void free_pmu_context(struct pmu *pmu) 8289 { 8290 struct pmu *i; 8291 8292 mutex_lock(&pmus_lock); 8293 /* 8294 * Like a real lame refcount. 8295 */ 8296 list_for_each_entry(i, &pmus, entry) { 8297 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 8298 update_pmu_context(i, pmu); 8299 goto out; 8300 } 8301 } 8302 8303 free_percpu(pmu->pmu_cpu_context); 8304 out: 8305 mutex_unlock(&pmus_lock); 8306 } 8307 8308 /* 8309 * Let userspace know that this PMU supports address range filtering: 8310 */ 8311 static ssize_t nr_addr_filters_show(struct device *dev, 8312 struct device_attribute *attr, 8313 char *page) 8314 { 8315 struct pmu *pmu = dev_get_drvdata(dev); 8316 8317 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8318 } 8319 DEVICE_ATTR_RO(nr_addr_filters); 8320 8321 static struct idr pmu_idr; 8322 8323 static ssize_t 8324 type_show(struct device *dev, struct device_attribute *attr, char *page) 8325 { 8326 struct pmu *pmu = dev_get_drvdata(dev); 8327 8328 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8329 } 8330 static DEVICE_ATTR_RO(type); 8331 8332 static ssize_t 8333 perf_event_mux_interval_ms_show(struct device *dev, 8334 struct device_attribute *attr, 8335 char *page) 8336 { 8337 struct pmu *pmu = dev_get_drvdata(dev); 8338 8339 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8340 } 8341 8342 static DEFINE_MUTEX(mux_interval_mutex); 8343 8344 static ssize_t 8345 perf_event_mux_interval_ms_store(struct device *dev, 8346 struct device_attribute *attr, 8347 const char *buf, size_t count) 8348 { 8349 struct pmu *pmu = dev_get_drvdata(dev); 8350 int timer, cpu, ret; 8351 8352 ret = kstrtoint(buf, 0, &timer); 8353 if (ret) 8354 return ret; 8355 8356 if (timer < 1) 8357 return -EINVAL; 8358 8359 /* same value, noting to do */ 8360 if (timer == pmu->hrtimer_interval_ms) 8361 return count; 8362 8363 mutex_lock(&mux_interval_mutex); 8364 pmu->hrtimer_interval_ms = timer; 8365 8366 /* update all cpuctx for this PMU */ 8367 get_online_cpus(); 8368 for_each_online_cpu(cpu) { 8369 struct perf_cpu_context *cpuctx; 8370 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8371 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8372 8373 cpu_function_call(cpu, 8374 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 8375 } 8376 put_online_cpus(); 8377 mutex_unlock(&mux_interval_mutex); 8378 8379 return count; 8380 } 8381 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 8382 8383 static struct attribute *pmu_dev_attrs[] = { 8384 &dev_attr_type.attr, 8385 &dev_attr_perf_event_mux_interval_ms.attr, 8386 NULL, 8387 }; 8388 ATTRIBUTE_GROUPS(pmu_dev); 8389 8390 static int pmu_bus_running; 8391 static struct bus_type pmu_bus = { 8392 .name = "event_source", 8393 .dev_groups = pmu_dev_groups, 8394 }; 8395 8396 static void pmu_dev_release(struct device *dev) 8397 { 8398 kfree(dev); 8399 } 8400 8401 static int pmu_dev_alloc(struct pmu *pmu) 8402 { 8403 int ret = -ENOMEM; 8404 8405 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 8406 if (!pmu->dev) 8407 goto out; 8408 8409 pmu->dev->groups = pmu->attr_groups; 8410 device_initialize(pmu->dev); 8411 ret = dev_set_name(pmu->dev, "%s", pmu->name); 8412 if (ret) 8413 goto free_dev; 8414 8415 dev_set_drvdata(pmu->dev, pmu); 8416 pmu->dev->bus = &pmu_bus; 8417 pmu->dev->release = pmu_dev_release; 8418 ret = device_add(pmu->dev); 8419 if (ret) 8420 goto free_dev; 8421 8422 /* For PMUs with address filters, throw in an extra attribute: */ 8423 if (pmu->nr_addr_filters) 8424 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 8425 8426 if (ret) 8427 goto del_dev; 8428 8429 out: 8430 return ret; 8431 8432 del_dev: 8433 device_del(pmu->dev); 8434 8435 free_dev: 8436 put_device(pmu->dev); 8437 goto out; 8438 } 8439 8440 static struct lock_class_key cpuctx_mutex; 8441 static struct lock_class_key cpuctx_lock; 8442 8443 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 8444 { 8445 int cpu, ret; 8446 8447 mutex_lock(&pmus_lock); 8448 ret = -ENOMEM; 8449 pmu->pmu_disable_count = alloc_percpu(int); 8450 if (!pmu->pmu_disable_count) 8451 goto unlock; 8452 8453 pmu->type = -1; 8454 if (!name) 8455 goto skip_type; 8456 pmu->name = name; 8457 8458 if (type < 0) { 8459 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 8460 if (type < 0) { 8461 ret = type; 8462 goto free_pdc; 8463 } 8464 } 8465 pmu->type = type; 8466 8467 if (pmu_bus_running) { 8468 ret = pmu_dev_alloc(pmu); 8469 if (ret) 8470 goto free_idr; 8471 } 8472 8473 skip_type: 8474 if (pmu->task_ctx_nr == perf_hw_context) { 8475 static int hw_context_taken = 0; 8476 8477 /* 8478 * Other than systems with heterogeneous CPUs, it never makes 8479 * sense for two PMUs to share perf_hw_context. PMUs which are 8480 * uncore must use perf_invalid_context. 8481 */ 8482 if (WARN_ON_ONCE(hw_context_taken && 8483 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 8484 pmu->task_ctx_nr = perf_invalid_context; 8485 8486 hw_context_taken = 1; 8487 } 8488 8489 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 8490 if (pmu->pmu_cpu_context) 8491 goto got_cpu_context; 8492 8493 ret = -ENOMEM; 8494 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 8495 if (!pmu->pmu_cpu_context) 8496 goto free_dev; 8497 8498 for_each_possible_cpu(cpu) { 8499 struct perf_cpu_context *cpuctx; 8500 8501 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8502 __perf_event_init_context(&cpuctx->ctx); 8503 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 8504 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 8505 cpuctx->ctx.pmu = pmu; 8506 8507 __perf_mux_hrtimer_init(cpuctx, cpu); 8508 8509 cpuctx->unique_pmu = pmu; 8510 } 8511 8512 got_cpu_context: 8513 if (!pmu->start_txn) { 8514 if (pmu->pmu_enable) { 8515 /* 8516 * If we have pmu_enable/pmu_disable calls, install 8517 * transaction stubs that use that to try and batch 8518 * hardware accesses. 8519 */ 8520 pmu->start_txn = perf_pmu_start_txn; 8521 pmu->commit_txn = perf_pmu_commit_txn; 8522 pmu->cancel_txn = perf_pmu_cancel_txn; 8523 } else { 8524 pmu->start_txn = perf_pmu_nop_txn; 8525 pmu->commit_txn = perf_pmu_nop_int; 8526 pmu->cancel_txn = perf_pmu_nop_void; 8527 } 8528 } 8529 8530 if (!pmu->pmu_enable) { 8531 pmu->pmu_enable = perf_pmu_nop_void; 8532 pmu->pmu_disable = perf_pmu_nop_void; 8533 } 8534 8535 if (!pmu->event_idx) 8536 pmu->event_idx = perf_event_idx_default; 8537 8538 list_add_rcu(&pmu->entry, &pmus); 8539 atomic_set(&pmu->exclusive_cnt, 0); 8540 ret = 0; 8541 unlock: 8542 mutex_unlock(&pmus_lock); 8543 8544 return ret; 8545 8546 free_dev: 8547 device_del(pmu->dev); 8548 put_device(pmu->dev); 8549 8550 free_idr: 8551 if (pmu->type >= PERF_TYPE_MAX) 8552 idr_remove(&pmu_idr, pmu->type); 8553 8554 free_pdc: 8555 free_percpu(pmu->pmu_disable_count); 8556 goto unlock; 8557 } 8558 EXPORT_SYMBOL_GPL(perf_pmu_register); 8559 8560 void perf_pmu_unregister(struct pmu *pmu) 8561 { 8562 mutex_lock(&pmus_lock); 8563 list_del_rcu(&pmu->entry); 8564 mutex_unlock(&pmus_lock); 8565 8566 /* 8567 * We dereference the pmu list under both SRCU and regular RCU, so 8568 * synchronize against both of those. 8569 */ 8570 synchronize_srcu(&pmus_srcu); 8571 synchronize_rcu(); 8572 8573 free_percpu(pmu->pmu_disable_count); 8574 if (pmu->type >= PERF_TYPE_MAX) 8575 idr_remove(&pmu_idr, pmu->type); 8576 if (pmu->nr_addr_filters) 8577 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 8578 device_del(pmu->dev); 8579 put_device(pmu->dev); 8580 free_pmu_context(pmu); 8581 } 8582 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 8583 8584 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 8585 { 8586 struct perf_event_context *ctx = NULL; 8587 int ret; 8588 8589 if (!try_module_get(pmu->module)) 8590 return -ENODEV; 8591 8592 if (event->group_leader != event) { 8593 /* 8594 * This ctx->mutex can nest when we're called through 8595 * inheritance. See the perf_event_ctx_lock_nested() comment. 8596 */ 8597 ctx = perf_event_ctx_lock_nested(event->group_leader, 8598 SINGLE_DEPTH_NESTING); 8599 BUG_ON(!ctx); 8600 } 8601 8602 event->pmu = pmu; 8603 ret = pmu->event_init(event); 8604 8605 if (ctx) 8606 perf_event_ctx_unlock(event->group_leader, ctx); 8607 8608 if (ret) 8609 module_put(pmu->module); 8610 8611 return ret; 8612 } 8613 8614 static struct pmu *perf_init_event(struct perf_event *event) 8615 { 8616 struct pmu *pmu = NULL; 8617 int idx; 8618 int ret; 8619 8620 idx = srcu_read_lock(&pmus_srcu); 8621 8622 rcu_read_lock(); 8623 pmu = idr_find(&pmu_idr, event->attr.type); 8624 rcu_read_unlock(); 8625 if (pmu) { 8626 ret = perf_try_init_event(pmu, event); 8627 if (ret) 8628 pmu = ERR_PTR(ret); 8629 goto unlock; 8630 } 8631 8632 list_for_each_entry_rcu(pmu, &pmus, entry) { 8633 ret = perf_try_init_event(pmu, event); 8634 if (!ret) 8635 goto unlock; 8636 8637 if (ret != -ENOENT) { 8638 pmu = ERR_PTR(ret); 8639 goto unlock; 8640 } 8641 } 8642 pmu = ERR_PTR(-ENOENT); 8643 unlock: 8644 srcu_read_unlock(&pmus_srcu, idx); 8645 8646 return pmu; 8647 } 8648 8649 static void account_event_cpu(struct perf_event *event, int cpu) 8650 { 8651 if (event->parent) 8652 return; 8653 8654 if (is_cgroup_event(event)) 8655 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 8656 } 8657 8658 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 8659 static void account_freq_event_nohz(void) 8660 { 8661 #ifdef CONFIG_NO_HZ_FULL 8662 /* Lock so we don't race with concurrent unaccount */ 8663 spin_lock(&nr_freq_lock); 8664 if (atomic_inc_return(&nr_freq_events) == 1) 8665 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 8666 spin_unlock(&nr_freq_lock); 8667 #endif 8668 } 8669 8670 static void account_freq_event(void) 8671 { 8672 if (tick_nohz_full_enabled()) 8673 account_freq_event_nohz(); 8674 else 8675 atomic_inc(&nr_freq_events); 8676 } 8677 8678 8679 static void account_event(struct perf_event *event) 8680 { 8681 bool inc = false; 8682 8683 if (event->parent) 8684 return; 8685 8686 if (event->attach_state & PERF_ATTACH_TASK) 8687 inc = true; 8688 if (event->attr.mmap || event->attr.mmap_data) 8689 atomic_inc(&nr_mmap_events); 8690 if (event->attr.comm) 8691 atomic_inc(&nr_comm_events); 8692 if (event->attr.task) 8693 atomic_inc(&nr_task_events); 8694 if (event->attr.freq) 8695 account_freq_event(); 8696 if (event->attr.context_switch) { 8697 atomic_inc(&nr_switch_events); 8698 inc = true; 8699 } 8700 if (has_branch_stack(event)) 8701 inc = true; 8702 if (is_cgroup_event(event)) 8703 inc = true; 8704 8705 if (inc) { 8706 if (atomic_inc_not_zero(&perf_sched_count)) 8707 goto enabled; 8708 8709 mutex_lock(&perf_sched_mutex); 8710 if (!atomic_read(&perf_sched_count)) { 8711 static_branch_enable(&perf_sched_events); 8712 /* 8713 * Guarantee that all CPUs observe they key change and 8714 * call the perf scheduling hooks before proceeding to 8715 * install events that need them. 8716 */ 8717 synchronize_sched(); 8718 } 8719 /* 8720 * Now that we have waited for the sync_sched(), allow further 8721 * increments to by-pass the mutex. 8722 */ 8723 atomic_inc(&perf_sched_count); 8724 mutex_unlock(&perf_sched_mutex); 8725 } 8726 enabled: 8727 8728 account_event_cpu(event, event->cpu); 8729 } 8730 8731 /* 8732 * Allocate and initialize a event structure 8733 */ 8734 static struct perf_event * 8735 perf_event_alloc(struct perf_event_attr *attr, int cpu, 8736 struct task_struct *task, 8737 struct perf_event *group_leader, 8738 struct perf_event *parent_event, 8739 perf_overflow_handler_t overflow_handler, 8740 void *context, int cgroup_fd) 8741 { 8742 struct pmu *pmu; 8743 struct perf_event *event; 8744 struct hw_perf_event *hwc; 8745 long err = -EINVAL; 8746 8747 if ((unsigned)cpu >= nr_cpu_ids) { 8748 if (!task || cpu != -1) 8749 return ERR_PTR(-EINVAL); 8750 } 8751 8752 event = kzalloc(sizeof(*event), GFP_KERNEL); 8753 if (!event) 8754 return ERR_PTR(-ENOMEM); 8755 8756 /* 8757 * Single events are their own group leaders, with an 8758 * empty sibling list: 8759 */ 8760 if (!group_leader) 8761 group_leader = event; 8762 8763 mutex_init(&event->child_mutex); 8764 INIT_LIST_HEAD(&event->child_list); 8765 8766 INIT_LIST_HEAD(&event->group_entry); 8767 INIT_LIST_HEAD(&event->event_entry); 8768 INIT_LIST_HEAD(&event->sibling_list); 8769 INIT_LIST_HEAD(&event->rb_entry); 8770 INIT_LIST_HEAD(&event->active_entry); 8771 INIT_LIST_HEAD(&event->addr_filters.list); 8772 INIT_HLIST_NODE(&event->hlist_entry); 8773 8774 8775 init_waitqueue_head(&event->waitq); 8776 init_irq_work(&event->pending, perf_pending_event); 8777 8778 mutex_init(&event->mmap_mutex); 8779 raw_spin_lock_init(&event->addr_filters.lock); 8780 8781 atomic_long_set(&event->refcount, 1); 8782 event->cpu = cpu; 8783 event->attr = *attr; 8784 event->group_leader = group_leader; 8785 event->pmu = NULL; 8786 event->oncpu = -1; 8787 8788 event->parent = parent_event; 8789 8790 event->ns = get_pid_ns(task_active_pid_ns(current)); 8791 event->id = atomic64_inc_return(&perf_event_id); 8792 8793 event->state = PERF_EVENT_STATE_INACTIVE; 8794 8795 if (task) { 8796 event->attach_state = PERF_ATTACH_TASK; 8797 /* 8798 * XXX pmu::event_init needs to know what task to account to 8799 * and we cannot use the ctx information because we need the 8800 * pmu before we get a ctx. 8801 */ 8802 event->hw.target = task; 8803 } 8804 8805 event->clock = &local_clock; 8806 if (parent_event) 8807 event->clock = parent_event->clock; 8808 8809 if (!overflow_handler && parent_event) { 8810 overflow_handler = parent_event->overflow_handler; 8811 context = parent_event->overflow_handler_context; 8812 } 8813 8814 if (overflow_handler) { 8815 event->overflow_handler = overflow_handler; 8816 event->overflow_handler_context = context; 8817 } else if (is_write_backward(event)){ 8818 event->overflow_handler = perf_event_output_backward; 8819 event->overflow_handler_context = NULL; 8820 } else { 8821 event->overflow_handler = perf_event_output_forward; 8822 event->overflow_handler_context = NULL; 8823 } 8824 8825 perf_event__state_init(event); 8826 8827 pmu = NULL; 8828 8829 hwc = &event->hw; 8830 hwc->sample_period = attr->sample_period; 8831 if (attr->freq && attr->sample_freq) 8832 hwc->sample_period = 1; 8833 hwc->last_period = hwc->sample_period; 8834 8835 local64_set(&hwc->period_left, hwc->sample_period); 8836 8837 /* 8838 * we currently do not support PERF_FORMAT_GROUP on inherited events 8839 */ 8840 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 8841 goto err_ns; 8842 8843 if (!has_branch_stack(event)) 8844 event->attr.branch_sample_type = 0; 8845 8846 if (cgroup_fd != -1) { 8847 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 8848 if (err) 8849 goto err_ns; 8850 } 8851 8852 pmu = perf_init_event(event); 8853 if (!pmu) 8854 goto err_ns; 8855 else if (IS_ERR(pmu)) { 8856 err = PTR_ERR(pmu); 8857 goto err_ns; 8858 } 8859 8860 err = exclusive_event_init(event); 8861 if (err) 8862 goto err_pmu; 8863 8864 if (has_addr_filter(event)) { 8865 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 8866 sizeof(unsigned long), 8867 GFP_KERNEL); 8868 if (!event->addr_filters_offs) 8869 goto err_per_task; 8870 8871 /* force hw sync on the address filters */ 8872 event->addr_filters_gen = 1; 8873 } 8874 8875 if (!event->parent) { 8876 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 8877 err = get_callchain_buffers(); 8878 if (err) 8879 goto err_addr_filters; 8880 } 8881 } 8882 8883 /* symmetric to unaccount_event() in _free_event() */ 8884 account_event(event); 8885 8886 return event; 8887 8888 err_addr_filters: 8889 kfree(event->addr_filters_offs); 8890 8891 err_per_task: 8892 exclusive_event_destroy(event); 8893 8894 err_pmu: 8895 if (event->destroy) 8896 event->destroy(event); 8897 module_put(pmu->module); 8898 err_ns: 8899 if (is_cgroup_event(event)) 8900 perf_detach_cgroup(event); 8901 if (event->ns) 8902 put_pid_ns(event->ns); 8903 kfree(event); 8904 8905 return ERR_PTR(err); 8906 } 8907 8908 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8909 struct perf_event_attr *attr) 8910 { 8911 u32 size; 8912 int ret; 8913 8914 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8915 return -EFAULT; 8916 8917 /* 8918 * zero the full structure, so that a short copy will be nice. 8919 */ 8920 memset(attr, 0, sizeof(*attr)); 8921 8922 ret = get_user(size, &uattr->size); 8923 if (ret) 8924 return ret; 8925 8926 if (size > PAGE_SIZE) /* silly large */ 8927 goto err_size; 8928 8929 if (!size) /* abi compat */ 8930 size = PERF_ATTR_SIZE_VER0; 8931 8932 if (size < PERF_ATTR_SIZE_VER0) 8933 goto err_size; 8934 8935 /* 8936 * If we're handed a bigger struct than we know of, 8937 * ensure all the unknown bits are 0 - i.e. new 8938 * user-space does not rely on any kernel feature 8939 * extensions we dont know about yet. 8940 */ 8941 if (size > sizeof(*attr)) { 8942 unsigned char __user *addr; 8943 unsigned char __user *end; 8944 unsigned char val; 8945 8946 addr = (void __user *)uattr + sizeof(*attr); 8947 end = (void __user *)uattr + size; 8948 8949 for (; addr < end; addr++) { 8950 ret = get_user(val, addr); 8951 if (ret) 8952 return ret; 8953 if (val) 8954 goto err_size; 8955 } 8956 size = sizeof(*attr); 8957 } 8958 8959 ret = copy_from_user(attr, uattr, size); 8960 if (ret) 8961 return -EFAULT; 8962 8963 if (attr->__reserved_1) 8964 return -EINVAL; 8965 8966 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8967 return -EINVAL; 8968 8969 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8970 return -EINVAL; 8971 8972 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8973 u64 mask = attr->branch_sample_type; 8974 8975 /* only using defined bits */ 8976 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8977 return -EINVAL; 8978 8979 /* at least one branch bit must be set */ 8980 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8981 return -EINVAL; 8982 8983 /* propagate priv level, when not set for branch */ 8984 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8985 8986 /* exclude_kernel checked on syscall entry */ 8987 if (!attr->exclude_kernel) 8988 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8989 8990 if (!attr->exclude_user) 8991 mask |= PERF_SAMPLE_BRANCH_USER; 8992 8993 if (!attr->exclude_hv) 8994 mask |= PERF_SAMPLE_BRANCH_HV; 8995 /* 8996 * adjust user setting (for HW filter setup) 8997 */ 8998 attr->branch_sample_type = mask; 8999 } 9000 /* privileged levels capture (kernel, hv): check permissions */ 9001 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9002 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9003 return -EACCES; 9004 } 9005 9006 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9007 ret = perf_reg_validate(attr->sample_regs_user); 9008 if (ret) 9009 return ret; 9010 } 9011 9012 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9013 if (!arch_perf_have_user_stack_dump()) 9014 return -ENOSYS; 9015 9016 /* 9017 * We have __u32 type for the size, but so far 9018 * we can only use __u16 as maximum due to the 9019 * __u16 sample size limit. 9020 */ 9021 if (attr->sample_stack_user >= USHRT_MAX) 9022 ret = -EINVAL; 9023 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9024 ret = -EINVAL; 9025 } 9026 9027 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9028 ret = perf_reg_validate(attr->sample_regs_intr); 9029 out: 9030 return ret; 9031 9032 err_size: 9033 put_user(sizeof(*attr), &uattr->size); 9034 ret = -E2BIG; 9035 goto out; 9036 } 9037 9038 static int 9039 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9040 { 9041 struct ring_buffer *rb = NULL; 9042 int ret = -EINVAL; 9043 9044 if (!output_event) 9045 goto set; 9046 9047 /* don't allow circular references */ 9048 if (event == output_event) 9049 goto out; 9050 9051 /* 9052 * Don't allow cross-cpu buffers 9053 */ 9054 if (output_event->cpu != event->cpu) 9055 goto out; 9056 9057 /* 9058 * If its not a per-cpu rb, it must be the same task. 9059 */ 9060 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9061 goto out; 9062 9063 /* 9064 * Mixing clocks in the same buffer is trouble you don't need. 9065 */ 9066 if (output_event->clock != event->clock) 9067 goto out; 9068 9069 /* 9070 * Either writing ring buffer from beginning or from end. 9071 * Mixing is not allowed. 9072 */ 9073 if (is_write_backward(output_event) != is_write_backward(event)) 9074 goto out; 9075 9076 /* 9077 * If both events generate aux data, they must be on the same PMU 9078 */ 9079 if (has_aux(event) && has_aux(output_event) && 9080 event->pmu != output_event->pmu) 9081 goto out; 9082 9083 set: 9084 mutex_lock(&event->mmap_mutex); 9085 /* Can't redirect output if we've got an active mmap() */ 9086 if (atomic_read(&event->mmap_count)) 9087 goto unlock; 9088 9089 if (output_event) { 9090 /* get the rb we want to redirect to */ 9091 rb = ring_buffer_get(output_event); 9092 if (!rb) 9093 goto unlock; 9094 } 9095 9096 ring_buffer_attach(event, rb); 9097 9098 ret = 0; 9099 unlock: 9100 mutex_unlock(&event->mmap_mutex); 9101 9102 out: 9103 return ret; 9104 } 9105 9106 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9107 { 9108 if (b < a) 9109 swap(a, b); 9110 9111 mutex_lock(a); 9112 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9113 } 9114 9115 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9116 { 9117 bool nmi_safe = false; 9118 9119 switch (clk_id) { 9120 case CLOCK_MONOTONIC: 9121 event->clock = &ktime_get_mono_fast_ns; 9122 nmi_safe = true; 9123 break; 9124 9125 case CLOCK_MONOTONIC_RAW: 9126 event->clock = &ktime_get_raw_fast_ns; 9127 nmi_safe = true; 9128 break; 9129 9130 case CLOCK_REALTIME: 9131 event->clock = &ktime_get_real_ns; 9132 break; 9133 9134 case CLOCK_BOOTTIME: 9135 event->clock = &ktime_get_boot_ns; 9136 break; 9137 9138 case CLOCK_TAI: 9139 event->clock = &ktime_get_tai_ns; 9140 break; 9141 9142 default: 9143 return -EINVAL; 9144 } 9145 9146 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9147 return -EINVAL; 9148 9149 return 0; 9150 } 9151 9152 /** 9153 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9154 * 9155 * @attr_uptr: event_id type attributes for monitoring/sampling 9156 * @pid: target pid 9157 * @cpu: target cpu 9158 * @group_fd: group leader event fd 9159 */ 9160 SYSCALL_DEFINE5(perf_event_open, 9161 struct perf_event_attr __user *, attr_uptr, 9162 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9163 { 9164 struct perf_event *group_leader = NULL, *output_event = NULL; 9165 struct perf_event *event, *sibling; 9166 struct perf_event_attr attr; 9167 struct perf_event_context *ctx, *uninitialized_var(gctx); 9168 struct file *event_file = NULL; 9169 struct fd group = {NULL, 0}; 9170 struct task_struct *task = NULL; 9171 struct pmu *pmu; 9172 int event_fd; 9173 int move_group = 0; 9174 int err; 9175 int f_flags = O_RDWR; 9176 int cgroup_fd = -1; 9177 9178 /* for future expandability... */ 9179 if (flags & ~PERF_FLAG_ALL) 9180 return -EINVAL; 9181 9182 err = perf_copy_attr(attr_uptr, &attr); 9183 if (err) 9184 return err; 9185 9186 if (!attr.exclude_kernel) { 9187 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9188 return -EACCES; 9189 } 9190 9191 if (attr.freq) { 9192 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9193 return -EINVAL; 9194 } else { 9195 if (attr.sample_period & (1ULL << 63)) 9196 return -EINVAL; 9197 } 9198 9199 /* 9200 * In cgroup mode, the pid argument is used to pass the fd 9201 * opened to the cgroup directory in cgroupfs. The cpu argument 9202 * designates the cpu on which to monitor threads from that 9203 * cgroup. 9204 */ 9205 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9206 return -EINVAL; 9207 9208 if (flags & PERF_FLAG_FD_CLOEXEC) 9209 f_flags |= O_CLOEXEC; 9210 9211 event_fd = get_unused_fd_flags(f_flags); 9212 if (event_fd < 0) 9213 return event_fd; 9214 9215 if (group_fd != -1) { 9216 err = perf_fget_light(group_fd, &group); 9217 if (err) 9218 goto err_fd; 9219 group_leader = group.file->private_data; 9220 if (flags & PERF_FLAG_FD_OUTPUT) 9221 output_event = group_leader; 9222 if (flags & PERF_FLAG_FD_NO_GROUP) 9223 group_leader = NULL; 9224 } 9225 9226 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9227 task = find_lively_task_by_vpid(pid); 9228 if (IS_ERR(task)) { 9229 err = PTR_ERR(task); 9230 goto err_group_fd; 9231 } 9232 } 9233 9234 if (task && group_leader && 9235 group_leader->attr.inherit != attr.inherit) { 9236 err = -EINVAL; 9237 goto err_task; 9238 } 9239 9240 get_online_cpus(); 9241 9242 if (task) { 9243 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9244 if (err) 9245 goto err_cpus; 9246 9247 /* 9248 * Reuse ptrace permission checks for now. 9249 * 9250 * We must hold cred_guard_mutex across this and any potential 9251 * perf_install_in_context() call for this new event to 9252 * serialize against exec() altering our credentials (and the 9253 * perf_event_exit_task() that could imply). 9254 */ 9255 err = -EACCES; 9256 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9257 goto err_cred; 9258 } 9259 9260 if (flags & PERF_FLAG_PID_CGROUP) 9261 cgroup_fd = pid; 9262 9263 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9264 NULL, NULL, cgroup_fd); 9265 if (IS_ERR(event)) { 9266 err = PTR_ERR(event); 9267 goto err_cred; 9268 } 9269 9270 if (is_sampling_event(event)) { 9271 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 9272 err = -ENOTSUPP; 9273 goto err_alloc; 9274 } 9275 } 9276 9277 /* 9278 * Special case software events and allow them to be part of 9279 * any hardware group. 9280 */ 9281 pmu = event->pmu; 9282 9283 if (attr.use_clockid) { 9284 err = perf_event_set_clock(event, attr.clockid); 9285 if (err) 9286 goto err_alloc; 9287 } 9288 9289 if (group_leader && 9290 (is_software_event(event) != is_software_event(group_leader))) { 9291 if (is_software_event(event)) { 9292 /* 9293 * If event and group_leader are not both a software 9294 * event, and event is, then group leader is not. 9295 * 9296 * Allow the addition of software events to !software 9297 * groups, this is safe because software events never 9298 * fail to schedule. 9299 */ 9300 pmu = group_leader->pmu; 9301 } else if (is_software_event(group_leader) && 9302 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 9303 /* 9304 * In case the group is a pure software group, and we 9305 * try to add a hardware event, move the whole group to 9306 * the hardware context. 9307 */ 9308 move_group = 1; 9309 } 9310 } 9311 9312 /* 9313 * Get the target context (task or percpu): 9314 */ 9315 ctx = find_get_context(pmu, task, event); 9316 if (IS_ERR(ctx)) { 9317 err = PTR_ERR(ctx); 9318 goto err_alloc; 9319 } 9320 9321 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 9322 err = -EBUSY; 9323 goto err_context; 9324 } 9325 9326 /* 9327 * Look up the group leader (we will attach this event to it): 9328 */ 9329 if (group_leader) { 9330 err = -EINVAL; 9331 9332 /* 9333 * Do not allow a recursive hierarchy (this new sibling 9334 * becoming part of another group-sibling): 9335 */ 9336 if (group_leader->group_leader != group_leader) 9337 goto err_context; 9338 9339 /* All events in a group should have the same clock */ 9340 if (group_leader->clock != event->clock) 9341 goto err_context; 9342 9343 /* 9344 * Do not allow to attach to a group in a different 9345 * task or CPU context: 9346 */ 9347 if (move_group) { 9348 /* 9349 * Make sure we're both on the same task, or both 9350 * per-cpu events. 9351 */ 9352 if (group_leader->ctx->task != ctx->task) 9353 goto err_context; 9354 9355 /* 9356 * Make sure we're both events for the same CPU; 9357 * grouping events for different CPUs is broken; since 9358 * you can never concurrently schedule them anyhow. 9359 */ 9360 if (group_leader->cpu != event->cpu) 9361 goto err_context; 9362 } else { 9363 if (group_leader->ctx != ctx) 9364 goto err_context; 9365 } 9366 9367 /* 9368 * Only a group leader can be exclusive or pinned 9369 */ 9370 if (attr.exclusive || attr.pinned) 9371 goto err_context; 9372 } 9373 9374 if (output_event) { 9375 err = perf_event_set_output(event, output_event); 9376 if (err) 9377 goto err_context; 9378 } 9379 9380 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 9381 f_flags); 9382 if (IS_ERR(event_file)) { 9383 err = PTR_ERR(event_file); 9384 event_file = NULL; 9385 goto err_context; 9386 } 9387 9388 if (move_group) { 9389 gctx = group_leader->ctx; 9390 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9391 if (gctx->task == TASK_TOMBSTONE) { 9392 err = -ESRCH; 9393 goto err_locked; 9394 } 9395 } else { 9396 mutex_lock(&ctx->mutex); 9397 } 9398 9399 if (ctx->task == TASK_TOMBSTONE) { 9400 err = -ESRCH; 9401 goto err_locked; 9402 } 9403 9404 if (!perf_event_validate_size(event)) { 9405 err = -E2BIG; 9406 goto err_locked; 9407 } 9408 9409 /* 9410 * Must be under the same ctx::mutex as perf_install_in_context(), 9411 * because we need to serialize with concurrent event creation. 9412 */ 9413 if (!exclusive_event_installable(event, ctx)) { 9414 /* exclusive and group stuff are assumed mutually exclusive */ 9415 WARN_ON_ONCE(move_group); 9416 9417 err = -EBUSY; 9418 goto err_locked; 9419 } 9420 9421 WARN_ON_ONCE(ctx->parent_ctx); 9422 9423 /* 9424 * This is the point on no return; we cannot fail hereafter. This is 9425 * where we start modifying current state. 9426 */ 9427 9428 if (move_group) { 9429 /* 9430 * See perf_event_ctx_lock() for comments on the details 9431 * of swizzling perf_event::ctx. 9432 */ 9433 perf_remove_from_context(group_leader, 0); 9434 9435 list_for_each_entry(sibling, &group_leader->sibling_list, 9436 group_entry) { 9437 perf_remove_from_context(sibling, 0); 9438 put_ctx(gctx); 9439 } 9440 9441 /* 9442 * Wait for everybody to stop referencing the events through 9443 * the old lists, before installing it on new lists. 9444 */ 9445 synchronize_rcu(); 9446 9447 /* 9448 * Install the group siblings before the group leader. 9449 * 9450 * Because a group leader will try and install the entire group 9451 * (through the sibling list, which is still in-tact), we can 9452 * end up with siblings installed in the wrong context. 9453 * 9454 * By installing siblings first we NO-OP because they're not 9455 * reachable through the group lists. 9456 */ 9457 list_for_each_entry(sibling, &group_leader->sibling_list, 9458 group_entry) { 9459 perf_event__state_init(sibling); 9460 perf_install_in_context(ctx, sibling, sibling->cpu); 9461 get_ctx(ctx); 9462 } 9463 9464 /* 9465 * Removing from the context ends up with disabled 9466 * event. What we want here is event in the initial 9467 * startup state, ready to be add into new context. 9468 */ 9469 perf_event__state_init(group_leader); 9470 perf_install_in_context(ctx, group_leader, group_leader->cpu); 9471 get_ctx(ctx); 9472 9473 /* 9474 * Now that all events are installed in @ctx, nothing 9475 * references @gctx anymore, so drop the last reference we have 9476 * on it. 9477 */ 9478 put_ctx(gctx); 9479 } 9480 9481 /* 9482 * Precalculate sample_data sizes; do while holding ctx::mutex such 9483 * that we're serialized against further additions and before 9484 * perf_install_in_context() which is the point the event is active and 9485 * can use these values. 9486 */ 9487 perf_event__header_size(event); 9488 perf_event__id_header_size(event); 9489 9490 event->owner = current; 9491 9492 perf_install_in_context(ctx, event, event->cpu); 9493 perf_unpin_context(ctx); 9494 9495 if (move_group) 9496 mutex_unlock(&gctx->mutex); 9497 mutex_unlock(&ctx->mutex); 9498 9499 if (task) { 9500 mutex_unlock(&task->signal->cred_guard_mutex); 9501 put_task_struct(task); 9502 } 9503 9504 put_online_cpus(); 9505 9506 mutex_lock(¤t->perf_event_mutex); 9507 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 9508 mutex_unlock(¤t->perf_event_mutex); 9509 9510 /* 9511 * Drop the reference on the group_event after placing the 9512 * new event on the sibling_list. This ensures destruction 9513 * of the group leader will find the pointer to itself in 9514 * perf_group_detach(). 9515 */ 9516 fdput(group); 9517 fd_install(event_fd, event_file); 9518 return event_fd; 9519 9520 err_locked: 9521 if (move_group) 9522 mutex_unlock(&gctx->mutex); 9523 mutex_unlock(&ctx->mutex); 9524 /* err_file: */ 9525 fput(event_file); 9526 err_context: 9527 perf_unpin_context(ctx); 9528 put_ctx(ctx); 9529 err_alloc: 9530 /* 9531 * If event_file is set, the fput() above will have called ->release() 9532 * and that will take care of freeing the event. 9533 */ 9534 if (!event_file) 9535 free_event(event); 9536 err_cred: 9537 if (task) 9538 mutex_unlock(&task->signal->cred_guard_mutex); 9539 err_cpus: 9540 put_online_cpus(); 9541 err_task: 9542 if (task) 9543 put_task_struct(task); 9544 err_group_fd: 9545 fdput(group); 9546 err_fd: 9547 put_unused_fd(event_fd); 9548 return err; 9549 } 9550 9551 /** 9552 * perf_event_create_kernel_counter 9553 * 9554 * @attr: attributes of the counter to create 9555 * @cpu: cpu in which the counter is bound 9556 * @task: task to profile (NULL for percpu) 9557 */ 9558 struct perf_event * 9559 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 9560 struct task_struct *task, 9561 perf_overflow_handler_t overflow_handler, 9562 void *context) 9563 { 9564 struct perf_event_context *ctx; 9565 struct perf_event *event; 9566 int err; 9567 9568 /* 9569 * Get the target context (task or percpu): 9570 */ 9571 9572 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 9573 overflow_handler, context, -1); 9574 if (IS_ERR(event)) { 9575 err = PTR_ERR(event); 9576 goto err; 9577 } 9578 9579 /* Mark owner so we could distinguish it from user events. */ 9580 event->owner = TASK_TOMBSTONE; 9581 9582 ctx = find_get_context(event->pmu, task, event); 9583 if (IS_ERR(ctx)) { 9584 err = PTR_ERR(ctx); 9585 goto err_free; 9586 } 9587 9588 WARN_ON_ONCE(ctx->parent_ctx); 9589 mutex_lock(&ctx->mutex); 9590 if (ctx->task == TASK_TOMBSTONE) { 9591 err = -ESRCH; 9592 goto err_unlock; 9593 } 9594 9595 if (!exclusive_event_installable(event, ctx)) { 9596 err = -EBUSY; 9597 goto err_unlock; 9598 } 9599 9600 perf_install_in_context(ctx, event, cpu); 9601 perf_unpin_context(ctx); 9602 mutex_unlock(&ctx->mutex); 9603 9604 return event; 9605 9606 err_unlock: 9607 mutex_unlock(&ctx->mutex); 9608 perf_unpin_context(ctx); 9609 put_ctx(ctx); 9610 err_free: 9611 free_event(event); 9612 err: 9613 return ERR_PTR(err); 9614 } 9615 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 9616 9617 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 9618 { 9619 struct perf_event_context *src_ctx; 9620 struct perf_event_context *dst_ctx; 9621 struct perf_event *event, *tmp; 9622 LIST_HEAD(events); 9623 9624 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 9625 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 9626 9627 /* 9628 * See perf_event_ctx_lock() for comments on the details 9629 * of swizzling perf_event::ctx. 9630 */ 9631 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 9632 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 9633 event_entry) { 9634 perf_remove_from_context(event, 0); 9635 unaccount_event_cpu(event, src_cpu); 9636 put_ctx(src_ctx); 9637 list_add(&event->migrate_entry, &events); 9638 } 9639 9640 /* 9641 * Wait for the events to quiesce before re-instating them. 9642 */ 9643 synchronize_rcu(); 9644 9645 /* 9646 * Re-instate events in 2 passes. 9647 * 9648 * Skip over group leaders and only install siblings on this first 9649 * pass, siblings will not get enabled without a leader, however a 9650 * leader will enable its siblings, even if those are still on the old 9651 * context. 9652 */ 9653 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9654 if (event->group_leader == event) 9655 continue; 9656 9657 list_del(&event->migrate_entry); 9658 if (event->state >= PERF_EVENT_STATE_OFF) 9659 event->state = PERF_EVENT_STATE_INACTIVE; 9660 account_event_cpu(event, dst_cpu); 9661 perf_install_in_context(dst_ctx, event, dst_cpu); 9662 get_ctx(dst_ctx); 9663 } 9664 9665 /* 9666 * Once all the siblings are setup properly, install the group leaders 9667 * to make it go. 9668 */ 9669 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 9670 list_del(&event->migrate_entry); 9671 if (event->state >= PERF_EVENT_STATE_OFF) 9672 event->state = PERF_EVENT_STATE_INACTIVE; 9673 account_event_cpu(event, dst_cpu); 9674 perf_install_in_context(dst_ctx, event, dst_cpu); 9675 get_ctx(dst_ctx); 9676 } 9677 mutex_unlock(&dst_ctx->mutex); 9678 mutex_unlock(&src_ctx->mutex); 9679 } 9680 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 9681 9682 static void sync_child_event(struct perf_event *child_event, 9683 struct task_struct *child) 9684 { 9685 struct perf_event *parent_event = child_event->parent; 9686 u64 child_val; 9687 9688 if (child_event->attr.inherit_stat) 9689 perf_event_read_event(child_event, child); 9690 9691 child_val = perf_event_count(child_event); 9692 9693 /* 9694 * Add back the child's count to the parent's count: 9695 */ 9696 atomic64_add(child_val, &parent_event->child_count); 9697 atomic64_add(child_event->total_time_enabled, 9698 &parent_event->child_total_time_enabled); 9699 atomic64_add(child_event->total_time_running, 9700 &parent_event->child_total_time_running); 9701 } 9702 9703 static void 9704 perf_event_exit_event(struct perf_event *child_event, 9705 struct perf_event_context *child_ctx, 9706 struct task_struct *child) 9707 { 9708 struct perf_event *parent_event = child_event->parent; 9709 9710 /* 9711 * Do not destroy the 'original' grouping; because of the context 9712 * switch optimization the original events could've ended up in a 9713 * random child task. 9714 * 9715 * If we were to destroy the original group, all group related 9716 * operations would cease to function properly after this random 9717 * child dies. 9718 * 9719 * Do destroy all inherited groups, we don't care about those 9720 * and being thorough is better. 9721 */ 9722 raw_spin_lock_irq(&child_ctx->lock); 9723 WARN_ON_ONCE(child_ctx->is_active); 9724 9725 if (parent_event) 9726 perf_group_detach(child_event); 9727 list_del_event(child_event, child_ctx); 9728 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 9729 raw_spin_unlock_irq(&child_ctx->lock); 9730 9731 /* 9732 * Parent events are governed by their filedesc, retain them. 9733 */ 9734 if (!parent_event) { 9735 perf_event_wakeup(child_event); 9736 return; 9737 } 9738 /* 9739 * Child events can be cleaned up. 9740 */ 9741 9742 sync_child_event(child_event, child); 9743 9744 /* 9745 * Remove this event from the parent's list 9746 */ 9747 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 9748 mutex_lock(&parent_event->child_mutex); 9749 list_del_init(&child_event->child_list); 9750 mutex_unlock(&parent_event->child_mutex); 9751 9752 /* 9753 * Kick perf_poll() for is_event_hup(). 9754 */ 9755 perf_event_wakeup(parent_event); 9756 free_event(child_event); 9757 put_event(parent_event); 9758 } 9759 9760 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 9761 { 9762 struct perf_event_context *child_ctx, *clone_ctx = NULL; 9763 struct perf_event *child_event, *next; 9764 9765 WARN_ON_ONCE(child != current); 9766 9767 child_ctx = perf_pin_task_context(child, ctxn); 9768 if (!child_ctx) 9769 return; 9770 9771 /* 9772 * In order to reduce the amount of tricky in ctx tear-down, we hold 9773 * ctx::mutex over the entire thing. This serializes against almost 9774 * everything that wants to access the ctx. 9775 * 9776 * The exception is sys_perf_event_open() / 9777 * perf_event_create_kernel_count() which does find_get_context() 9778 * without ctx::mutex (it cannot because of the move_group double mutex 9779 * lock thing). See the comments in perf_install_in_context(). 9780 */ 9781 mutex_lock(&child_ctx->mutex); 9782 9783 /* 9784 * In a single ctx::lock section, de-schedule the events and detach the 9785 * context from the task such that we cannot ever get it scheduled back 9786 * in. 9787 */ 9788 raw_spin_lock_irq(&child_ctx->lock); 9789 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 9790 9791 /* 9792 * Now that the context is inactive, destroy the task <-> ctx relation 9793 * and mark the context dead. 9794 */ 9795 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 9796 put_ctx(child_ctx); /* cannot be last */ 9797 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 9798 put_task_struct(current); /* cannot be last */ 9799 9800 clone_ctx = unclone_ctx(child_ctx); 9801 raw_spin_unlock_irq(&child_ctx->lock); 9802 9803 if (clone_ctx) 9804 put_ctx(clone_ctx); 9805 9806 /* 9807 * Report the task dead after unscheduling the events so that we 9808 * won't get any samples after PERF_RECORD_EXIT. We can however still 9809 * get a few PERF_RECORD_READ events. 9810 */ 9811 perf_event_task(child, child_ctx, 0); 9812 9813 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 9814 perf_event_exit_event(child_event, child_ctx, child); 9815 9816 mutex_unlock(&child_ctx->mutex); 9817 9818 put_ctx(child_ctx); 9819 } 9820 9821 /* 9822 * When a child task exits, feed back event values to parent events. 9823 * 9824 * Can be called with cred_guard_mutex held when called from 9825 * install_exec_creds(). 9826 */ 9827 void perf_event_exit_task(struct task_struct *child) 9828 { 9829 struct perf_event *event, *tmp; 9830 int ctxn; 9831 9832 mutex_lock(&child->perf_event_mutex); 9833 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 9834 owner_entry) { 9835 list_del_init(&event->owner_entry); 9836 9837 /* 9838 * Ensure the list deletion is visible before we clear 9839 * the owner, closes a race against perf_release() where 9840 * we need to serialize on the owner->perf_event_mutex. 9841 */ 9842 smp_store_release(&event->owner, NULL); 9843 } 9844 mutex_unlock(&child->perf_event_mutex); 9845 9846 for_each_task_context_nr(ctxn) 9847 perf_event_exit_task_context(child, ctxn); 9848 9849 /* 9850 * The perf_event_exit_task_context calls perf_event_task 9851 * with child's task_ctx, which generates EXIT events for 9852 * child contexts and sets child->perf_event_ctxp[] to NULL. 9853 * At this point we need to send EXIT events to cpu contexts. 9854 */ 9855 perf_event_task(child, NULL, 0); 9856 } 9857 9858 static void perf_free_event(struct perf_event *event, 9859 struct perf_event_context *ctx) 9860 { 9861 struct perf_event *parent = event->parent; 9862 9863 if (WARN_ON_ONCE(!parent)) 9864 return; 9865 9866 mutex_lock(&parent->child_mutex); 9867 list_del_init(&event->child_list); 9868 mutex_unlock(&parent->child_mutex); 9869 9870 put_event(parent); 9871 9872 raw_spin_lock_irq(&ctx->lock); 9873 perf_group_detach(event); 9874 list_del_event(event, ctx); 9875 raw_spin_unlock_irq(&ctx->lock); 9876 free_event(event); 9877 } 9878 9879 /* 9880 * Free an unexposed, unused context as created by inheritance by 9881 * perf_event_init_task below, used by fork() in case of fail. 9882 * 9883 * Not all locks are strictly required, but take them anyway to be nice and 9884 * help out with the lockdep assertions. 9885 */ 9886 void perf_event_free_task(struct task_struct *task) 9887 { 9888 struct perf_event_context *ctx; 9889 struct perf_event *event, *tmp; 9890 int ctxn; 9891 9892 for_each_task_context_nr(ctxn) { 9893 ctx = task->perf_event_ctxp[ctxn]; 9894 if (!ctx) 9895 continue; 9896 9897 mutex_lock(&ctx->mutex); 9898 again: 9899 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 9900 group_entry) 9901 perf_free_event(event, ctx); 9902 9903 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 9904 group_entry) 9905 perf_free_event(event, ctx); 9906 9907 if (!list_empty(&ctx->pinned_groups) || 9908 !list_empty(&ctx->flexible_groups)) 9909 goto again; 9910 9911 mutex_unlock(&ctx->mutex); 9912 9913 put_ctx(ctx); 9914 } 9915 } 9916 9917 void perf_event_delayed_put(struct task_struct *task) 9918 { 9919 int ctxn; 9920 9921 for_each_task_context_nr(ctxn) 9922 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9923 } 9924 9925 struct file *perf_event_get(unsigned int fd) 9926 { 9927 struct file *file; 9928 9929 file = fget_raw(fd); 9930 if (!file) 9931 return ERR_PTR(-EBADF); 9932 9933 if (file->f_op != &perf_fops) { 9934 fput(file); 9935 return ERR_PTR(-EBADF); 9936 } 9937 9938 return file; 9939 } 9940 9941 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9942 { 9943 if (!event) 9944 return ERR_PTR(-EINVAL); 9945 9946 return &event->attr; 9947 } 9948 9949 /* 9950 * inherit a event from parent task to child task: 9951 */ 9952 static struct perf_event * 9953 inherit_event(struct perf_event *parent_event, 9954 struct task_struct *parent, 9955 struct perf_event_context *parent_ctx, 9956 struct task_struct *child, 9957 struct perf_event *group_leader, 9958 struct perf_event_context *child_ctx) 9959 { 9960 enum perf_event_active_state parent_state = parent_event->state; 9961 struct perf_event *child_event; 9962 unsigned long flags; 9963 9964 /* 9965 * Instead of creating recursive hierarchies of events, 9966 * we link inherited events back to the original parent, 9967 * which has a filp for sure, which we use as the reference 9968 * count: 9969 */ 9970 if (parent_event->parent) 9971 parent_event = parent_event->parent; 9972 9973 child_event = perf_event_alloc(&parent_event->attr, 9974 parent_event->cpu, 9975 child, 9976 group_leader, parent_event, 9977 NULL, NULL, -1); 9978 if (IS_ERR(child_event)) 9979 return child_event; 9980 9981 /* 9982 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9983 * must be under the same lock in order to serialize against 9984 * perf_event_release_kernel(), such that either we must observe 9985 * is_orphaned_event() or they will observe us on the child_list. 9986 */ 9987 mutex_lock(&parent_event->child_mutex); 9988 if (is_orphaned_event(parent_event) || 9989 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9990 mutex_unlock(&parent_event->child_mutex); 9991 free_event(child_event); 9992 return NULL; 9993 } 9994 9995 get_ctx(child_ctx); 9996 9997 /* 9998 * Make the child state follow the state of the parent event, 9999 * not its attr.disabled bit. We hold the parent's mutex, 10000 * so we won't race with perf_event_{en, dis}able_family. 10001 */ 10002 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10003 child_event->state = PERF_EVENT_STATE_INACTIVE; 10004 else 10005 child_event->state = PERF_EVENT_STATE_OFF; 10006 10007 if (parent_event->attr.freq) { 10008 u64 sample_period = parent_event->hw.sample_period; 10009 struct hw_perf_event *hwc = &child_event->hw; 10010 10011 hwc->sample_period = sample_period; 10012 hwc->last_period = sample_period; 10013 10014 local64_set(&hwc->period_left, sample_period); 10015 } 10016 10017 child_event->ctx = child_ctx; 10018 child_event->overflow_handler = parent_event->overflow_handler; 10019 child_event->overflow_handler_context 10020 = parent_event->overflow_handler_context; 10021 10022 /* 10023 * Precalculate sample_data sizes 10024 */ 10025 perf_event__header_size(child_event); 10026 perf_event__id_header_size(child_event); 10027 10028 /* 10029 * Link it up in the child's context: 10030 */ 10031 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10032 add_event_to_ctx(child_event, child_ctx); 10033 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10034 10035 /* 10036 * Link this into the parent event's child list 10037 */ 10038 list_add_tail(&child_event->child_list, &parent_event->child_list); 10039 mutex_unlock(&parent_event->child_mutex); 10040 10041 return child_event; 10042 } 10043 10044 static int inherit_group(struct perf_event *parent_event, 10045 struct task_struct *parent, 10046 struct perf_event_context *parent_ctx, 10047 struct task_struct *child, 10048 struct perf_event_context *child_ctx) 10049 { 10050 struct perf_event *leader; 10051 struct perf_event *sub; 10052 struct perf_event *child_ctr; 10053 10054 leader = inherit_event(parent_event, parent, parent_ctx, 10055 child, NULL, child_ctx); 10056 if (IS_ERR(leader)) 10057 return PTR_ERR(leader); 10058 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10059 child_ctr = inherit_event(sub, parent, parent_ctx, 10060 child, leader, child_ctx); 10061 if (IS_ERR(child_ctr)) 10062 return PTR_ERR(child_ctr); 10063 } 10064 return 0; 10065 } 10066 10067 static int 10068 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10069 struct perf_event_context *parent_ctx, 10070 struct task_struct *child, int ctxn, 10071 int *inherited_all) 10072 { 10073 int ret; 10074 struct perf_event_context *child_ctx; 10075 10076 if (!event->attr.inherit) { 10077 *inherited_all = 0; 10078 return 0; 10079 } 10080 10081 child_ctx = child->perf_event_ctxp[ctxn]; 10082 if (!child_ctx) { 10083 /* 10084 * This is executed from the parent task context, so 10085 * inherit events that have been marked for cloning. 10086 * First allocate and initialize a context for the 10087 * child. 10088 */ 10089 10090 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10091 if (!child_ctx) 10092 return -ENOMEM; 10093 10094 child->perf_event_ctxp[ctxn] = child_ctx; 10095 } 10096 10097 ret = inherit_group(event, parent, parent_ctx, 10098 child, child_ctx); 10099 10100 if (ret) 10101 *inherited_all = 0; 10102 10103 return ret; 10104 } 10105 10106 /* 10107 * Initialize the perf_event context in task_struct 10108 */ 10109 static int perf_event_init_context(struct task_struct *child, int ctxn) 10110 { 10111 struct perf_event_context *child_ctx, *parent_ctx; 10112 struct perf_event_context *cloned_ctx; 10113 struct perf_event *event; 10114 struct task_struct *parent = current; 10115 int inherited_all = 1; 10116 unsigned long flags; 10117 int ret = 0; 10118 10119 if (likely(!parent->perf_event_ctxp[ctxn])) 10120 return 0; 10121 10122 /* 10123 * If the parent's context is a clone, pin it so it won't get 10124 * swapped under us. 10125 */ 10126 parent_ctx = perf_pin_task_context(parent, ctxn); 10127 if (!parent_ctx) 10128 return 0; 10129 10130 /* 10131 * No need to check if parent_ctx != NULL here; since we saw 10132 * it non-NULL earlier, the only reason for it to become NULL 10133 * is if we exit, and since we're currently in the middle of 10134 * a fork we can't be exiting at the same time. 10135 */ 10136 10137 /* 10138 * Lock the parent list. No need to lock the child - not PID 10139 * hashed yet and not running, so nobody can access it. 10140 */ 10141 mutex_lock(&parent_ctx->mutex); 10142 10143 /* 10144 * We dont have to disable NMIs - we are only looking at 10145 * the list, not manipulating it: 10146 */ 10147 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10148 ret = inherit_task_group(event, parent, parent_ctx, 10149 child, ctxn, &inherited_all); 10150 if (ret) 10151 break; 10152 } 10153 10154 /* 10155 * We can't hold ctx->lock when iterating the ->flexible_group list due 10156 * to allocations, but we need to prevent rotation because 10157 * rotate_ctx() will change the list from interrupt context. 10158 */ 10159 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10160 parent_ctx->rotate_disable = 1; 10161 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10162 10163 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10164 ret = inherit_task_group(event, parent, parent_ctx, 10165 child, ctxn, &inherited_all); 10166 if (ret) 10167 break; 10168 } 10169 10170 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10171 parent_ctx->rotate_disable = 0; 10172 10173 child_ctx = child->perf_event_ctxp[ctxn]; 10174 10175 if (child_ctx && inherited_all) { 10176 /* 10177 * Mark the child context as a clone of the parent 10178 * context, or of whatever the parent is a clone of. 10179 * 10180 * Note that if the parent is a clone, the holding of 10181 * parent_ctx->lock avoids it from being uncloned. 10182 */ 10183 cloned_ctx = parent_ctx->parent_ctx; 10184 if (cloned_ctx) { 10185 child_ctx->parent_ctx = cloned_ctx; 10186 child_ctx->parent_gen = parent_ctx->parent_gen; 10187 } else { 10188 child_ctx->parent_ctx = parent_ctx; 10189 child_ctx->parent_gen = parent_ctx->generation; 10190 } 10191 get_ctx(child_ctx->parent_ctx); 10192 } 10193 10194 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10195 mutex_unlock(&parent_ctx->mutex); 10196 10197 perf_unpin_context(parent_ctx); 10198 put_ctx(parent_ctx); 10199 10200 return ret; 10201 } 10202 10203 /* 10204 * Initialize the perf_event context in task_struct 10205 */ 10206 int perf_event_init_task(struct task_struct *child) 10207 { 10208 int ctxn, ret; 10209 10210 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 10211 mutex_init(&child->perf_event_mutex); 10212 INIT_LIST_HEAD(&child->perf_event_list); 10213 10214 for_each_task_context_nr(ctxn) { 10215 ret = perf_event_init_context(child, ctxn); 10216 if (ret) { 10217 perf_event_free_task(child); 10218 return ret; 10219 } 10220 } 10221 10222 return 0; 10223 } 10224 10225 static void __init perf_event_init_all_cpus(void) 10226 { 10227 struct swevent_htable *swhash; 10228 int cpu; 10229 10230 for_each_possible_cpu(cpu) { 10231 swhash = &per_cpu(swevent_htable, cpu); 10232 mutex_init(&swhash->hlist_mutex); 10233 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 10234 } 10235 } 10236 10237 static void perf_event_init_cpu(int cpu) 10238 { 10239 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10240 10241 mutex_lock(&swhash->hlist_mutex); 10242 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 10243 struct swevent_hlist *hlist; 10244 10245 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 10246 WARN_ON(!hlist); 10247 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10248 } 10249 mutex_unlock(&swhash->hlist_mutex); 10250 } 10251 10252 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 10253 static void __perf_event_exit_context(void *__info) 10254 { 10255 struct perf_event_context *ctx = __info; 10256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 10257 struct perf_event *event; 10258 10259 raw_spin_lock(&ctx->lock); 10260 list_for_each_entry(event, &ctx->event_list, event_entry) 10261 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 10262 raw_spin_unlock(&ctx->lock); 10263 } 10264 10265 static void perf_event_exit_cpu_context(int cpu) 10266 { 10267 struct perf_event_context *ctx; 10268 struct pmu *pmu; 10269 int idx; 10270 10271 idx = srcu_read_lock(&pmus_srcu); 10272 list_for_each_entry_rcu(pmu, &pmus, entry) { 10273 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 10274 10275 mutex_lock(&ctx->mutex); 10276 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 10277 mutex_unlock(&ctx->mutex); 10278 } 10279 srcu_read_unlock(&pmus_srcu, idx); 10280 } 10281 10282 static void perf_event_exit_cpu(int cpu) 10283 { 10284 perf_event_exit_cpu_context(cpu); 10285 } 10286 #else 10287 static inline void perf_event_exit_cpu(int cpu) { } 10288 #endif 10289 10290 static int 10291 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 10292 { 10293 int cpu; 10294 10295 for_each_online_cpu(cpu) 10296 perf_event_exit_cpu(cpu); 10297 10298 return NOTIFY_OK; 10299 } 10300 10301 /* 10302 * Run the perf reboot notifier at the very last possible moment so that 10303 * the generic watchdog code runs as long as possible. 10304 */ 10305 static struct notifier_block perf_reboot_notifier = { 10306 .notifier_call = perf_reboot, 10307 .priority = INT_MIN, 10308 }; 10309 10310 static int 10311 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 10312 { 10313 unsigned int cpu = (long)hcpu; 10314 10315 switch (action & ~CPU_TASKS_FROZEN) { 10316 10317 case CPU_UP_PREPARE: 10318 /* 10319 * This must be done before the CPU comes alive, because the 10320 * moment we can run tasks we can encounter (software) events. 10321 * 10322 * Specifically, someone can have inherited events on kthreadd 10323 * or a pre-existing worker thread that gets re-bound. 10324 */ 10325 perf_event_init_cpu(cpu); 10326 break; 10327 10328 case CPU_DOWN_PREPARE: 10329 /* 10330 * This must be done before the CPU dies because after that an 10331 * active event might want to IPI the CPU and that'll not work 10332 * so great for dead CPUs. 10333 * 10334 * XXX smp_call_function_single() return -ENXIO without a warn 10335 * so we could possibly deal with this. 10336 * 10337 * This is safe against new events arriving because 10338 * sys_perf_event_open() serializes against hotplug using 10339 * get_online_cpus(). 10340 */ 10341 perf_event_exit_cpu(cpu); 10342 break; 10343 default: 10344 break; 10345 } 10346 10347 return NOTIFY_OK; 10348 } 10349 10350 void __init perf_event_init(void) 10351 { 10352 int ret; 10353 10354 idr_init(&pmu_idr); 10355 10356 perf_event_init_all_cpus(); 10357 init_srcu_struct(&pmus_srcu); 10358 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 10359 perf_pmu_register(&perf_cpu_clock, NULL, -1); 10360 perf_pmu_register(&perf_task_clock, NULL, -1); 10361 perf_tp_register(); 10362 perf_cpu_notifier(perf_cpu_notify); 10363 register_reboot_notifier(&perf_reboot_notifier); 10364 10365 ret = init_hw_breakpoint(); 10366 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 10367 10368 /* 10369 * Build time assertion that we keep the data_head at the intended 10370 * location. IOW, validation we got the __reserved[] size right. 10371 */ 10372 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 10373 != 1024); 10374 } 10375 10376 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 10377 char *page) 10378 { 10379 struct perf_pmu_events_attr *pmu_attr = 10380 container_of(attr, struct perf_pmu_events_attr, attr); 10381 10382 if (pmu_attr->event_str) 10383 return sprintf(page, "%s\n", pmu_attr->event_str); 10384 10385 return 0; 10386 } 10387 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 10388 10389 static int __init perf_event_sysfs_init(void) 10390 { 10391 struct pmu *pmu; 10392 int ret; 10393 10394 mutex_lock(&pmus_lock); 10395 10396 ret = bus_register(&pmu_bus); 10397 if (ret) 10398 goto unlock; 10399 10400 list_for_each_entry(pmu, &pmus, entry) { 10401 if (!pmu->name || pmu->type < 0) 10402 continue; 10403 10404 ret = pmu_dev_alloc(pmu); 10405 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 10406 } 10407 pmu_bus_running = 1; 10408 ret = 0; 10409 10410 unlock: 10411 mutex_unlock(&pmus_lock); 10412 10413 return ret; 10414 } 10415 device_initcall(perf_event_sysfs_init); 10416 10417 #ifdef CONFIG_CGROUP_PERF 10418 static struct cgroup_subsys_state * 10419 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 10420 { 10421 struct perf_cgroup *jc; 10422 10423 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 10424 if (!jc) 10425 return ERR_PTR(-ENOMEM); 10426 10427 jc->info = alloc_percpu(struct perf_cgroup_info); 10428 if (!jc->info) { 10429 kfree(jc); 10430 return ERR_PTR(-ENOMEM); 10431 } 10432 10433 return &jc->css; 10434 } 10435 10436 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 10437 { 10438 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 10439 10440 free_percpu(jc->info); 10441 kfree(jc); 10442 } 10443 10444 static int __perf_cgroup_move(void *info) 10445 { 10446 struct task_struct *task = info; 10447 rcu_read_lock(); 10448 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 10449 rcu_read_unlock(); 10450 return 0; 10451 } 10452 10453 static void perf_cgroup_attach(struct cgroup_taskset *tset) 10454 { 10455 struct task_struct *task; 10456 struct cgroup_subsys_state *css; 10457 10458 cgroup_taskset_for_each(task, css, tset) 10459 task_function_call(task, __perf_cgroup_move, task); 10460 } 10461 10462 struct cgroup_subsys perf_event_cgrp_subsys = { 10463 .css_alloc = perf_cgroup_css_alloc, 10464 .css_free = perf_cgroup_css_free, 10465 .attach = perf_cgroup_attach, 10466 }; 10467 #endif /* CONFIG_CGROUP_PERF */ 10468