xref: /openbmc/linux/kernel/events/core.c (revision 32981ea5)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 	struct event_function_struct efs = {
248 		.event = event,
249 		.func = func,
250 		.data = data,
251 	};
252 
253 	int ret = event_function(&efs);
254 	WARN_ON_ONCE(ret);
255 }
256 
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 	struct perf_event_context *ctx = event->ctx;
260 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 	struct event_function_struct efs = {
262 		.event = event,
263 		.func = func,
264 		.data = data,
265 	};
266 
267 	if (!event->parent) {
268 		/*
269 		 * If this is a !child event, we must hold ctx::mutex to
270 		 * stabilize the the event->ctx relation. See
271 		 * perf_event_ctx_lock().
272 		 */
273 		lockdep_assert_held(&ctx->mutex);
274 	}
275 
276 	if (!task) {
277 		cpu_function_call(event->cpu, event_function, &efs);
278 		return;
279 	}
280 
281 	if (task == TASK_TOMBSTONE)
282 		return;
283 
284 again:
285 	if (!task_function_call(task, event_function, &efs))
286 		return;
287 
288 	raw_spin_lock_irq(&ctx->lock);
289 	/*
290 	 * Reload the task pointer, it might have been changed by
291 	 * a concurrent perf_event_context_sched_out().
292 	 */
293 	task = ctx->task;
294 	if (task == TASK_TOMBSTONE) {
295 		raw_spin_unlock_irq(&ctx->lock);
296 		return;
297 	}
298 	if (ctx->is_active) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		goto again;
301 	}
302 	func(event, NULL, ctx, data);
303 	raw_spin_unlock_irq(&ctx->lock);
304 }
305 
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 		       PERF_FLAG_FD_OUTPUT  |\
308 		       PERF_FLAG_PID_CGROUP |\
309 		       PERF_FLAG_FD_CLOEXEC)
310 
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 	(PERF_SAMPLE_BRANCH_KERNEL |\
316 	 PERF_SAMPLE_BRANCH_HV)
317 
318 enum event_type_t {
319 	EVENT_FLEXIBLE = 0x1,
320 	EVENT_PINNED = 0x2,
321 	EVENT_TIME = 0x4,
322 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324 
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329 
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335 
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344 
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348 
349 /*
350  * perf event paranoia level:
351  *  -1 - not paranoid at all
352  *   0 - disallow raw tracepoint access for unpriv
353  *   1 - disallow cpu events for unpriv
354  *   2 - disallow kernel profiling for unpriv
355  */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357 
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360 
361 /*
362  * max perf event sample rate
363  */
364 #define DEFAULT_MAX_SAMPLE_RATE		100000
365 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
367 
368 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
369 
370 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
372 
373 static int perf_sample_allowed_ns __read_mostly =
374 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375 
376 static void update_perf_cpu_limits(void)
377 {
378 	u64 tmp = perf_sample_period_ns;
379 
380 	tmp *= sysctl_perf_cpu_time_max_percent;
381 	tmp = div_u64(tmp, 100);
382 	if (!tmp)
383 		tmp = 1;
384 
385 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387 
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389 
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391 		void __user *buffer, size_t *lenp,
392 		loff_t *ppos)
393 {
394 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395 
396 	if (ret || !write)
397 		return ret;
398 
399 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401 	update_perf_cpu_limits();
402 
403 	return 0;
404 }
405 
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407 
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409 				void __user *buffer, size_t *lenp,
410 				loff_t *ppos)
411 {
412 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413 
414 	if (ret || !write)
415 		return ret;
416 
417 	if (sysctl_perf_cpu_time_max_percent == 100 ||
418 	    sysctl_perf_cpu_time_max_percent == 0) {
419 		printk(KERN_WARNING
420 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421 		WRITE_ONCE(perf_sample_allowed_ns, 0);
422 	} else {
423 		update_perf_cpu_limits();
424 	}
425 
426 	return 0;
427 }
428 
429 /*
430  * perf samples are done in some very critical code paths (NMIs).
431  * If they take too much CPU time, the system can lock up and not
432  * get any real work done.  This will drop the sample rate when
433  * we detect that events are taking too long.
434  */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437 
438 static u64 __report_avg;
439 static u64 __report_allowed;
440 
441 static void perf_duration_warn(struct irq_work *w)
442 {
443 	printk_ratelimited(KERN_WARNING
444 		"perf: interrupt took too long (%lld > %lld), lowering "
445 		"kernel.perf_event_max_sample_rate to %d\n",
446 		__report_avg, __report_allowed,
447 		sysctl_perf_event_sample_rate);
448 }
449 
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451 
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455 	u64 running_len;
456 	u64 avg_len;
457 	u32 max;
458 
459 	if (max_len == 0)
460 		return;
461 
462 	/* Decay the counter by 1 average sample. */
463 	running_len = __this_cpu_read(running_sample_length);
464 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465 	running_len += sample_len_ns;
466 	__this_cpu_write(running_sample_length, running_len);
467 
468 	/*
469 	 * Note: this will be biased artifically low until we have
470 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471 	 * from having to maintain a count.
472 	 */
473 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474 	if (avg_len <= max_len)
475 		return;
476 
477 	__report_avg = avg_len;
478 	__report_allowed = max_len;
479 
480 	/*
481 	 * Compute a throttle threshold 25% below the current duration.
482 	 */
483 	avg_len += avg_len / 4;
484 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485 	if (avg_len < max)
486 		max /= (u32)avg_len;
487 	else
488 		max = 1;
489 
490 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491 	WRITE_ONCE(max_samples_per_tick, max);
492 
493 	sysctl_perf_event_sample_rate = max * HZ;
494 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495 
496 	if (!irq_work_queue(&perf_duration_work)) {
497 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498 			     "kernel.perf_event_max_sample_rate to %d\n",
499 			     __report_avg, __report_allowed,
500 			     sysctl_perf_event_sample_rate);
501 	}
502 }
503 
504 static atomic64_t perf_event_id;
505 
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507 			      enum event_type_t event_type);
508 
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510 			     enum event_type_t event_type,
511 			     struct task_struct *task);
512 
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515 
516 void __weak perf_event_print_debug(void)	{ }
517 
518 extern __weak const char *perf_pmu_name(void)
519 {
520 	return "pmu";
521 }
522 
523 static inline u64 perf_clock(void)
524 {
525 	return local_clock();
526 }
527 
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530 	return event->clock();
531 }
532 
533 #ifdef CONFIG_CGROUP_PERF
534 
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538 	struct perf_event_context *ctx = event->ctx;
539 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540 
541 	/* @event doesn't care about cgroup */
542 	if (!event->cgrp)
543 		return true;
544 
545 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
546 	if (!cpuctx->cgrp)
547 		return false;
548 
549 	/*
550 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
551 	 * also enabled for all its descendant cgroups.  If @cpuctx's
552 	 * cgroup is a descendant of @event's (the test covers identity
553 	 * case), it's a match.
554 	 */
555 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556 				    event->cgrp->css.cgroup);
557 }
558 
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561 	css_put(&event->cgrp->css);
562 	event->cgrp = NULL;
563 }
564 
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567 	return event->cgrp != NULL;
568 }
569 
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572 	struct perf_cgroup_info *t;
573 
574 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
575 	return t->time;
576 }
577 
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580 	struct perf_cgroup_info *info;
581 	u64 now;
582 
583 	now = perf_clock();
584 
585 	info = this_cpu_ptr(cgrp->info);
586 
587 	info->time += now - info->timestamp;
588 	info->timestamp = now;
589 }
590 
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594 	if (cgrp_out)
595 		__update_cgrp_time(cgrp_out);
596 }
597 
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600 	struct perf_cgroup *cgrp;
601 
602 	/*
603 	 * ensure we access cgroup data only when needed and
604 	 * when we know the cgroup is pinned (css_get)
605 	 */
606 	if (!is_cgroup_event(event))
607 		return;
608 
609 	cgrp = perf_cgroup_from_task(current, event->ctx);
610 	/*
611 	 * Do not update time when cgroup is not active
612 	 */
613 	if (cgrp == event->cgrp)
614 		__update_cgrp_time(event->cgrp);
615 }
616 
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619 			  struct perf_event_context *ctx)
620 {
621 	struct perf_cgroup *cgrp;
622 	struct perf_cgroup_info *info;
623 
624 	/*
625 	 * ctx->lock held by caller
626 	 * ensure we do not access cgroup data
627 	 * unless we have the cgroup pinned (css_get)
628 	 */
629 	if (!task || !ctx->nr_cgroups)
630 		return;
631 
632 	cgrp = perf_cgroup_from_task(task, ctx);
633 	info = this_cpu_ptr(cgrp->info);
634 	info->timestamp = ctx->timestamp;
635 }
636 
637 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
639 
640 /*
641  * reschedule events based on the cgroup constraint of task.
642  *
643  * mode SWOUT : schedule out everything
644  * mode SWIN : schedule in based on cgroup for next
645  */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648 	struct perf_cpu_context *cpuctx;
649 	struct pmu *pmu;
650 	unsigned long flags;
651 
652 	/*
653 	 * disable interrupts to avoid geting nr_cgroup
654 	 * changes via __perf_event_disable(). Also
655 	 * avoids preemption.
656 	 */
657 	local_irq_save(flags);
658 
659 	/*
660 	 * we reschedule only in the presence of cgroup
661 	 * constrained events.
662 	 */
663 
664 	list_for_each_entry_rcu(pmu, &pmus, entry) {
665 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666 		if (cpuctx->unique_pmu != pmu)
667 			continue; /* ensure we process each cpuctx once */
668 
669 		/*
670 		 * perf_cgroup_events says at least one
671 		 * context on this CPU has cgroup events.
672 		 *
673 		 * ctx->nr_cgroups reports the number of cgroup
674 		 * events for a context.
675 		 */
676 		if (cpuctx->ctx.nr_cgroups > 0) {
677 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678 			perf_pmu_disable(cpuctx->ctx.pmu);
679 
680 			if (mode & PERF_CGROUP_SWOUT) {
681 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682 				/*
683 				 * must not be done before ctxswout due
684 				 * to event_filter_match() in event_sched_out()
685 				 */
686 				cpuctx->cgrp = NULL;
687 			}
688 
689 			if (mode & PERF_CGROUP_SWIN) {
690 				WARN_ON_ONCE(cpuctx->cgrp);
691 				/*
692 				 * set cgrp before ctxsw in to allow
693 				 * event_filter_match() to not have to pass
694 				 * task around
695 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
696 				 * because cgorup events are only per-cpu
697 				 */
698 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700 			}
701 			perf_pmu_enable(cpuctx->ctx.pmu);
702 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703 		}
704 	}
705 
706 	local_irq_restore(flags);
707 }
708 
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710 					 struct task_struct *next)
711 {
712 	struct perf_cgroup *cgrp1;
713 	struct perf_cgroup *cgrp2 = NULL;
714 
715 	rcu_read_lock();
716 	/*
717 	 * we come here when we know perf_cgroup_events > 0
718 	 * we do not need to pass the ctx here because we know
719 	 * we are holding the rcu lock
720 	 */
721 	cgrp1 = perf_cgroup_from_task(task, NULL);
722 	cgrp2 = perf_cgroup_from_task(next, NULL);
723 
724 	/*
725 	 * only schedule out current cgroup events if we know
726 	 * that we are switching to a different cgroup. Otherwise,
727 	 * do no touch the cgroup events.
728 	 */
729 	if (cgrp1 != cgrp2)
730 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731 
732 	rcu_read_unlock();
733 }
734 
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736 					struct task_struct *task)
737 {
738 	struct perf_cgroup *cgrp1;
739 	struct perf_cgroup *cgrp2 = NULL;
740 
741 	rcu_read_lock();
742 	/*
743 	 * we come here when we know perf_cgroup_events > 0
744 	 * we do not need to pass the ctx here because we know
745 	 * we are holding the rcu lock
746 	 */
747 	cgrp1 = perf_cgroup_from_task(task, NULL);
748 	cgrp2 = perf_cgroup_from_task(prev, NULL);
749 
750 	/*
751 	 * only need to schedule in cgroup events if we are changing
752 	 * cgroup during ctxsw. Cgroup events were not scheduled
753 	 * out of ctxsw out if that was not the case.
754 	 */
755 	if (cgrp1 != cgrp2)
756 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757 
758 	rcu_read_unlock();
759 }
760 
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762 				      struct perf_event_attr *attr,
763 				      struct perf_event *group_leader)
764 {
765 	struct perf_cgroup *cgrp;
766 	struct cgroup_subsys_state *css;
767 	struct fd f = fdget(fd);
768 	int ret = 0;
769 
770 	if (!f.file)
771 		return -EBADF;
772 
773 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
774 					 &perf_event_cgrp_subsys);
775 	if (IS_ERR(css)) {
776 		ret = PTR_ERR(css);
777 		goto out;
778 	}
779 
780 	cgrp = container_of(css, struct perf_cgroup, css);
781 	event->cgrp = cgrp;
782 
783 	/*
784 	 * all events in a group must monitor
785 	 * the same cgroup because a task belongs
786 	 * to only one perf cgroup at a time
787 	 */
788 	if (group_leader && group_leader->cgrp != cgrp) {
789 		perf_detach_cgroup(event);
790 		ret = -EINVAL;
791 	}
792 out:
793 	fdput(f);
794 	return ret;
795 }
796 
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800 	struct perf_cgroup_info *t;
801 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
802 	event->shadow_ctx_time = now - t->timestamp;
803 }
804 
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808 	/*
809 	 * when the current task's perf cgroup does not match
810 	 * the event's, we need to remember to call the
811 	 * perf_mark_enable() function the first time a task with
812 	 * a matching perf cgroup is scheduled in.
813 	 */
814 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
815 		event->cgrp_defer_enabled = 1;
816 }
817 
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820 			 struct perf_event_context *ctx)
821 {
822 	struct perf_event *sub;
823 	u64 tstamp = perf_event_time(event);
824 
825 	if (!event->cgrp_defer_enabled)
826 		return;
827 
828 	event->cgrp_defer_enabled = 0;
829 
830 	event->tstamp_enabled = tstamp - event->total_time_enabled;
831 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
832 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834 			sub->cgrp_defer_enabled = 0;
835 		}
836 	}
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839 
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843 	return true;
844 }
845 
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848 
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851 	return 0;
852 }
853 
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856 	return 0;
857 }
858 
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862 
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866 
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868 					 struct task_struct *next)
869 {
870 }
871 
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 					struct task_struct *task)
874 {
875 }
876 
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878 				      struct perf_event_attr *attr,
879 				      struct perf_event *group_leader)
880 {
881 	return -EINVAL;
882 }
883 
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886 			  struct perf_event_context *ctx)
887 {
888 }
889 
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894 
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899 
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902 	return 0;
903 }
904 
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909 
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912 			 struct perf_event_context *ctx)
913 {
914 }
915 #endif
916 
917 /*
918  * set default to be dependent on timer tick just
919  * like original code
920  */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923  * function must be called with interrupts disbled
924  */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927 	struct perf_cpu_context *cpuctx;
928 	int rotations = 0;
929 
930 	WARN_ON(!irqs_disabled());
931 
932 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933 	rotations = perf_rotate_context(cpuctx);
934 
935 	raw_spin_lock(&cpuctx->hrtimer_lock);
936 	if (rotations)
937 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938 	else
939 		cpuctx->hrtimer_active = 0;
940 	raw_spin_unlock(&cpuctx->hrtimer_lock);
941 
942 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944 
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947 	struct hrtimer *timer = &cpuctx->hrtimer;
948 	struct pmu *pmu = cpuctx->ctx.pmu;
949 	u64 interval;
950 
951 	/* no multiplexing needed for SW PMU */
952 	if (pmu->task_ctx_nr == perf_sw_context)
953 		return;
954 
955 	/*
956 	 * check default is sane, if not set then force to
957 	 * default interval (1/tick)
958 	 */
959 	interval = pmu->hrtimer_interval_ms;
960 	if (interval < 1)
961 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962 
963 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964 
965 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
966 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967 	timer->function = perf_mux_hrtimer_handler;
968 }
969 
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972 	struct hrtimer *timer = &cpuctx->hrtimer;
973 	struct pmu *pmu = cpuctx->ctx.pmu;
974 	unsigned long flags;
975 
976 	/* not for SW PMU */
977 	if (pmu->task_ctx_nr == perf_sw_context)
978 		return 0;
979 
980 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981 	if (!cpuctx->hrtimer_active) {
982 		cpuctx->hrtimer_active = 1;
983 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985 	}
986 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987 
988 	return 0;
989 }
990 
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
994 	if (!(*count)++)
995 		pmu->pmu_disable(pmu);
996 }
997 
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001 	if (!--(*count))
1002 		pmu->pmu_enable(pmu);
1003 }
1004 
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006 
1007 /*
1008  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009  * perf_event_task_tick() are fully serialized because they're strictly cpu
1010  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011  * disabled, while perf_event_task_tick is called from IRQ context.
1012  */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016 
1017 	WARN_ON(!irqs_disabled());
1018 
1019 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1020 
1021 	list_add(&ctx->active_ctx_list, head);
1022 }
1023 
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026 	WARN_ON(!irqs_disabled());
1027 
1028 	WARN_ON(list_empty(&ctx->active_ctx_list));
1029 
1030 	list_del_init(&ctx->active_ctx_list);
1031 }
1032 
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037 
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040 	struct perf_event_context *ctx;
1041 
1042 	ctx = container_of(head, struct perf_event_context, rcu_head);
1043 	kfree(ctx->task_ctx_data);
1044 	kfree(ctx);
1045 }
1046 
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049 	if (atomic_dec_and_test(&ctx->refcount)) {
1050 		if (ctx->parent_ctx)
1051 			put_ctx(ctx->parent_ctx);
1052 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053 			put_task_struct(ctx->task);
1054 		call_rcu(&ctx->rcu_head, free_ctx);
1055 	}
1056 }
1057 
1058 /*
1059  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060  * perf_pmu_migrate_context() we need some magic.
1061  *
1062  * Those places that change perf_event::ctx will hold both
1063  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064  *
1065  * Lock ordering is by mutex address. There are two other sites where
1066  * perf_event_context::mutex nests and those are:
1067  *
1068  *  - perf_event_exit_task_context()	[ child , 0 ]
1069  *      perf_event_exit_event()
1070  *        put_event()			[ parent, 1 ]
1071  *
1072  *  - perf_event_init_context()		[ parent, 0 ]
1073  *      inherit_task_group()
1074  *        inherit_group()
1075  *          inherit_event()
1076  *            perf_event_alloc()
1077  *              perf_init_event()
1078  *                perf_try_init_event()	[ child , 1 ]
1079  *
1080  * While it appears there is an obvious deadlock here -- the parent and child
1081  * nesting levels are inverted between the two. This is in fact safe because
1082  * life-time rules separate them. That is an exiting task cannot fork, and a
1083  * spawning task cannot (yet) exit.
1084  *
1085  * But remember that that these are parent<->child context relations, and
1086  * migration does not affect children, therefore these two orderings should not
1087  * interact.
1088  *
1089  * The change in perf_event::ctx does not affect children (as claimed above)
1090  * because the sys_perf_event_open() case will install a new event and break
1091  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092  * concerned with cpuctx and that doesn't have children.
1093  *
1094  * The places that change perf_event::ctx will issue:
1095  *
1096  *   perf_remove_from_context();
1097  *   synchronize_rcu();
1098  *   perf_install_in_context();
1099  *
1100  * to affect the change. The remove_from_context() + synchronize_rcu() should
1101  * quiesce the event, after which we can install it in the new location. This
1102  * means that only external vectors (perf_fops, prctl) can perturb the event
1103  * while in transit. Therefore all such accessors should also acquire
1104  * perf_event_context::mutex to serialize against this.
1105  *
1106  * However; because event->ctx can change while we're waiting to acquire
1107  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108  * function.
1109  *
1110  * Lock order:
1111  *    cred_guard_mutex
1112  *	task_struct::perf_event_mutex
1113  *	  perf_event_context::mutex
1114  *	    perf_event::child_mutex;
1115  *	      perf_event_context::lock
1116  *	    perf_event::mmap_mutex
1117  *	    mmap_sem
1118  */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122 	struct perf_event_context *ctx;
1123 
1124 again:
1125 	rcu_read_lock();
1126 	ctx = ACCESS_ONCE(event->ctx);
1127 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1128 		rcu_read_unlock();
1129 		goto again;
1130 	}
1131 	rcu_read_unlock();
1132 
1133 	mutex_lock_nested(&ctx->mutex, nesting);
1134 	if (event->ctx != ctx) {
1135 		mutex_unlock(&ctx->mutex);
1136 		put_ctx(ctx);
1137 		goto again;
1138 	}
1139 
1140 	return ctx;
1141 }
1142 
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146 	return perf_event_ctx_lock_nested(event, 0);
1147 }
1148 
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150 				  struct perf_event_context *ctx)
1151 {
1152 	mutex_unlock(&ctx->mutex);
1153 	put_ctx(ctx);
1154 }
1155 
1156 /*
1157  * This must be done under the ctx->lock, such as to serialize against
1158  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159  * calling scheduler related locks and ctx->lock nests inside those.
1160  */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165 
1166 	lockdep_assert_held(&ctx->lock);
1167 
1168 	if (parent_ctx)
1169 		ctx->parent_ctx = NULL;
1170 	ctx->generation++;
1171 
1172 	return parent_ctx;
1173 }
1174 
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177 	/*
1178 	 * only top level events have the pid namespace they were created in
1179 	 */
1180 	if (event->parent)
1181 		event = event->parent;
1182 
1183 	return task_tgid_nr_ns(p, event->ns);
1184 }
1185 
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188 	/*
1189 	 * only top level events have the pid namespace they were created in
1190 	 */
1191 	if (event->parent)
1192 		event = event->parent;
1193 
1194 	return task_pid_nr_ns(p, event->ns);
1195 }
1196 
1197 /*
1198  * If we inherit events we want to return the parent event id
1199  * to userspace.
1200  */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203 	u64 id = event->id;
1204 
1205 	if (event->parent)
1206 		id = event->parent->id;
1207 
1208 	return id;
1209 }
1210 
1211 /*
1212  * Get the perf_event_context for a task and lock it.
1213  *
1214  * This has to cope with with the fact that until it is locked,
1215  * the context could get moved to another task.
1216  */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220 	struct perf_event_context *ctx;
1221 
1222 retry:
1223 	/*
1224 	 * One of the few rules of preemptible RCU is that one cannot do
1225 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226 	 * part of the read side critical section was irqs-enabled -- see
1227 	 * rcu_read_unlock_special().
1228 	 *
1229 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1230 	 * side critical section has interrupts disabled.
1231 	 */
1232 	local_irq_save(*flags);
1233 	rcu_read_lock();
1234 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235 	if (ctx) {
1236 		/*
1237 		 * If this context is a clone of another, it might
1238 		 * get swapped for another underneath us by
1239 		 * perf_event_task_sched_out, though the
1240 		 * rcu_read_lock() protects us from any context
1241 		 * getting freed.  Lock the context and check if it
1242 		 * got swapped before we could get the lock, and retry
1243 		 * if so.  If we locked the right context, then it
1244 		 * can't get swapped on us any more.
1245 		 */
1246 		raw_spin_lock(&ctx->lock);
1247 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248 			raw_spin_unlock(&ctx->lock);
1249 			rcu_read_unlock();
1250 			local_irq_restore(*flags);
1251 			goto retry;
1252 		}
1253 
1254 		if (ctx->task == TASK_TOMBSTONE ||
1255 		    !atomic_inc_not_zero(&ctx->refcount)) {
1256 			raw_spin_unlock(&ctx->lock);
1257 			ctx = NULL;
1258 		} else {
1259 			WARN_ON_ONCE(ctx->task != task);
1260 		}
1261 	}
1262 	rcu_read_unlock();
1263 	if (!ctx)
1264 		local_irq_restore(*flags);
1265 	return ctx;
1266 }
1267 
1268 /*
1269  * Get the context for a task and increment its pin_count so it
1270  * can't get swapped to another task.  This also increments its
1271  * reference count so that the context can't get freed.
1272  */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276 	struct perf_event_context *ctx;
1277 	unsigned long flags;
1278 
1279 	ctx = perf_lock_task_context(task, ctxn, &flags);
1280 	if (ctx) {
1281 		++ctx->pin_count;
1282 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283 	}
1284 	return ctx;
1285 }
1286 
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289 	unsigned long flags;
1290 
1291 	raw_spin_lock_irqsave(&ctx->lock, flags);
1292 	--ctx->pin_count;
1293 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295 
1296 /*
1297  * Update the record of the current time in a context.
1298  */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301 	u64 now = perf_clock();
1302 
1303 	ctx->time += now - ctx->timestamp;
1304 	ctx->timestamp = now;
1305 }
1306 
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309 	struct perf_event_context *ctx = event->ctx;
1310 
1311 	if (is_cgroup_event(event))
1312 		return perf_cgroup_event_time(event);
1313 
1314 	return ctx ? ctx->time : 0;
1315 }
1316 
1317 /*
1318  * Update the total_time_enabled and total_time_running fields for a event.
1319  */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322 	struct perf_event_context *ctx = event->ctx;
1323 	u64 run_end;
1324 
1325 	lockdep_assert_held(&ctx->lock);
1326 
1327 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329 		return;
1330 
1331 	/*
1332 	 * in cgroup mode, time_enabled represents
1333 	 * the time the event was enabled AND active
1334 	 * tasks were in the monitored cgroup. This is
1335 	 * independent of the activity of the context as
1336 	 * there may be a mix of cgroup and non-cgroup events.
1337 	 *
1338 	 * That is why we treat cgroup events differently
1339 	 * here.
1340 	 */
1341 	if (is_cgroup_event(event))
1342 		run_end = perf_cgroup_event_time(event);
1343 	else if (ctx->is_active)
1344 		run_end = ctx->time;
1345 	else
1346 		run_end = event->tstamp_stopped;
1347 
1348 	event->total_time_enabled = run_end - event->tstamp_enabled;
1349 
1350 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1351 		run_end = event->tstamp_stopped;
1352 	else
1353 		run_end = perf_event_time(event);
1354 
1355 	event->total_time_running = run_end - event->tstamp_running;
1356 
1357 }
1358 
1359 /*
1360  * Update total_time_enabled and total_time_running for all events in a group.
1361  */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364 	struct perf_event *event;
1365 
1366 	update_event_times(leader);
1367 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1368 		update_event_times(event);
1369 }
1370 
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374 	if (event->attr.pinned)
1375 		return &ctx->pinned_groups;
1376 	else
1377 		return &ctx->flexible_groups;
1378 }
1379 
1380 /*
1381  * Add a event from the lists for its context.
1382  * Must be called with ctx->mutex and ctx->lock held.
1383  */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387 	lockdep_assert_held(&ctx->lock);
1388 
1389 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390 	event->attach_state |= PERF_ATTACH_CONTEXT;
1391 
1392 	/*
1393 	 * If we're a stand alone event or group leader, we go to the context
1394 	 * list, group events are kept attached to the group so that
1395 	 * perf_group_detach can, at all times, locate all siblings.
1396 	 */
1397 	if (event->group_leader == event) {
1398 		struct list_head *list;
1399 
1400 		if (is_software_event(event))
1401 			event->group_flags |= PERF_GROUP_SOFTWARE;
1402 
1403 		list = ctx_group_list(event, ctx);
1404 		list_add_tail(&event->group_entry, list);
1405 	}
1406 
1407 	if (is_cgroup_event(event))
1408 		ctx->nr_cgroups++;
1409 
1410 	list_add_rcu(&event->event_entry, &ctx->event_list);
1411 	ctx->nr_events++;
1412 	if (event->attr.inherit_stat)
1413 		ctx->nr_stat++;
1414 
1415 	ctx->generation++;
1416 }
1417 
1418 /*
1419  * Initialize event state based on the perf_event_attr::disabled.
1420  */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424 					      PERF_EVENT_STATE_INACTIVE;
1425 }
1426 
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429 	int entry = sizeof(u64); /* value */
1430 	int size = 0;
1431 	int nr = 1;
1432 
1433 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434 		size += sizeof(u64);
1435 
1436 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437 		size += sizeof(u64);
1438 
1439 	if (event->attr.read_format & PERF_FORMAT_ID)
1440 		entry += sizeof(u64);
1441 
1442 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443 		nr += nr_siblings;
1444 		size += sizeof(u64);
1445 	}
1446 
1447 	size += entry * nr;
1448 	event->read_size = size;
1449 }
1450 
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453 	struct perf_sample_data *data;
1454 	u16 size = 0;
1455 
1456 	if (sample_type & PERF_SAMPLE_IP)
1457 		size += sizeof(data->ip);
1458 
1459 	if (sample_type & PERF_SAMPLE_ADDR)
1460 		size += sizeof(data->addr);
1461 
1462 	if (sample_type & PERF_SAMPLE_PERIOD)
1463 		size += sizeof(data->period);
1464 
1465 	if (sample_type & PERF_SAMPLE_WEIGHT)
1466 		size += sizeof(data->weight);
1467 
1468 	if (sample_type & PERF_SAMPLE_READ)
1469 		size += event->read_size;
1470 
1471 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1472 		size += sizeof(data->data_src.val);
1473 
1474 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1475 		size += sizeof(data->txn);
1476 
1477 	event->header_size = size;
1478 }
1479 
1480 /*
1481  * Called at perf_event creation and when events are attached/detached from a
1482  * group.
1483  */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486 	__perf_event_read_size(event,
1487 			       event->group_leader->nr_siblings);
1488 	__perf_event_header_size(event, event->attr.sample_type);
1489 }
1490 
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493 	struct perf_sample_data *data;
1494 	u64 sample_type = event->attr.sample_type;
1495 	u16 size = 0;
1496 
1497 	if (sample_type & PERF_SAMPLE_TID)
1498 		size += sizeof(data->tid_entry);
1499 
1500 	if (sample_type & PERF_SAMPLE_TIME)
1501 		size += sizeof(data->time);
1502 
1503 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504 		size += sizeof(data->id);
1505 
1506 	if (sample_type & PERF_SAMPLE_ID)
1507 		size += sizeof(data->id);
1508 
1509 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1510 		size += sizeof(data->stream_id);
1511 
1512 	if (sample_type & PERF_SAMPLE_CPU)
1513 		size += sizeof(data->cpu_entry);
1514 
1515 	event->id_header_size = size;
1516 }
1517 
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520 	/*
1521 	 * The values computed here will be over-written when we actually
1522 	 * attach the event.
1523 	 */
1524 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526 	perf_event__id_header_size(event);
1527 
1528 	/*
1529 	 * Sum the lot; should not exceed the 64k limit we have on records.
1530 	 * Conservative limit to allow for callchains and other variable fields.
1531 	 */
1532 	if (event->read_size + event->header_size +
1533 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541 	struct perf_event *group_leader = event->group_leader, *pos;
1542 
1543 	/*
1544 	 * We can have double attach due to group movement in perf_event_open.
1545 	 */
1546 	if (event->attach_state & PERF_ATTACH_GROUP)
1547 		return;
1548 
1549 	event->attach_state |= PERF_ATTACH_GROUP;
1550 
1551 	if (group_leader == event)
1552 		return;
1553 
1554 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555 
1556 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557 			!is_software_event(event))
1558 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559 
1560 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561 	group_leader->nr_siblings++;
1562 
1563 	perf_event__header_size(group_leader);
1564 
1565 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566 		perf_event__header_size(pos);
1567 }
1568 
1569 /*
1570  * Remove a event from the lists for its context.
1571  * Must be called with ctx->mutex and ctx->lock held.
1572  */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576 	struct perf_cpu_context *cpuctx;
1577 
1578 	WARN_ON_ONCE(event->ctx != ctx);
1579 	lockdep_assert_held(&ctx->lock);
1580 
1581 	/*
1582 	 * We can have double detach due to exit/hot-unplug + close.
1583 	 */
1584 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585 		return;
1586 
1587 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588 
1589 	if (is_cgroup_event(event)) {
1590 		ctx->nr_cgroups--;
1591 		/*
1592 		 * Because cgroup events are always per-cpu events, this will
1593 		 * always be called from the right CPU.
1594 		 */
1595 		cpuctx = __get_cpu_context(ctx);
1596 		/*
1597 		 * If there are no more cgroup events then clear cgrp to avoid
1598 		 * stale pointer in update_cgrp_time_from_cpuctx().
1599 		 */
1600 		if (!ctx->nr_cgroups)
1601 			cpuctx->cgrp = NULL;
1602 	}
1603 
1604 	ctx->nr_events--;
1605 	if (event->attr.inherit_stat)
1606 		ctx->nr_stat--;
1607 
1608 	list_del_rcu(&event->event_entry);
1609 
1610 	if (event->group_leader == event)
1611 		list_del_init(&event->group_entry);
1612 
1613 	update_group_times(event);
1614 
1615 	/*
1616 	 * If event was in error state, then keep it
1617 	 * that way, otherwise bogus counts will be
1618 	 * returned on read(). The only way to get out
1619 	 * of error state is by explicit re-enabling
1620 	 * of the event
1621 	 */
1622 	if (event->state > PERF_EVENT_STATE_OFF)
1623 		event->state = PERF_EVENT_STATE_OFF;
1624 
1625 	ctx->generation++;
1626 }
1627 
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630 	struct perf_event *sibling, *tmp;
1631 	struct list_head *list = NULL;
1632 
1633 	/*
1634 	 * We can have double detach due to exit/hot-unplug + close.
1635 	 */
1636 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1637 		return;
1638 
1639 	event->attach_state &= ~PERF_ATTACH_GROUP;
1640 
1641 	/*
1642 	 * If this is a sibling, remove it from its group.
1643 	 */
1644 	if (event->group_leader != event) {
1645 		list_del_init(&event->group_entry);
1646 		event->group_leader->nr_siblings--;
1647 		goto out;
1648 	}
1649 
1650 	if (!list_empty(&event->group_entry))
1651 		list = &event->group_entry;
1652 
1653 	/*
1654 	 * If this was a group event with sibling events then
1655 	 * upgrade the siblings to singleton events by adding them
1656 	 * to whatever list we are on.
1657 	 */
1658 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659 		if (list)
1660 			list_move_tail(&sibling->group_entry, list);
1661 		sibling->group_leader = sibling;
1662 
1663 		/* Inherit group flags from the previous leader */
1664 		sibling->group_flags = event->group_flags;
1665 
1666 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1667 	}
1668 
1669 out:
1670 	perf_event__header_size(event->group_leader);
1671 
1672 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673 		perf_event__header_size(tmp);
1674 }
1675 
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678 	return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680 
1681 static inline int pmu_filter_match(struct perf_event *event)
1682 {
1683 	struct pmu *pmu = event->pmu;
1684 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686 
1687 static inline int
1688 event_filter_match(struct perf_event *event)
1689 {
1690 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1691 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1692 }
1693 
1694 static void
1695 event_sched_out(struct perf_event *event,
1696 		  struct perf_cpu_context *cpuctx,
1697 		  struct perf_event_context *ctx)
1698 {
1699 	u64 tstamp = perf_event_time(event);
1700 	u64 delta;
1701 
1702 	WARN_ON_ONCE(event->ctx != ctx);
1703 	lockdep_assert_held(&ctx->lock);
1704 
1705 	/*
1706 	 * An event which could not be activated because of
1707 	 * filter mismatch still needs to have its timings
1708 	 * maintained, otherwise bogus information is return
1709 	 * via read() for time_enabled, time_running:
1710 	 */
1711 	if (event->state == PERF_EVENT_STATE_INACTIVE
1712 	    && !event_filter_match(event)) {
1713 		delta = tstamp - event->tstamp_stopped;
1714 		event->tstamp_running += delta;
1715 		event->tstamp_stopped = tstamp;
1716 	}
1717 
1718 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1719 		return;
1720 
1721 	perf_pmu_disable(event->pmu);
1722 
1723 	event->tstamp_stopped = tstamp;
1724 	event->pmu->del(event, 0);
1725 	event->oncpu = -1;
1726 	event->state = PERF_EVENT_STATE_INACTIVE;
1727 	if (event->pending_disable) {
1728 		event->pending_disable = 0;
1729 		event->state = PERF_EVENT_STATE_OFF;
1730 	}
1731 
1732 	if (!is_software_event(event))
1733 		cpuctx->active_oncpu--;
1734 	if (!--ctx->nr_active)
1735 		perf_event_ctx_deactivate(ctx);
1736 	if (event->attr.freq && event->attr.sample_freq)
1737 		ctx->nr_freq--;
1738 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1739 		cpuctx->exclusive = 0;
1740 
1741 	perf_pmu_enable(event->pmu);
1742 }
1743 
1744 static void
1745 group_sched_out(struct perf_event *group_event,
1746 		struct perf_cpu_context *cpuctx,
1747 		struct perf_event_context *ctx)
1748 {
1749 	struct perf_event *event;
1750 	int state = group_event->state;
1751 
1752 	event_sched_out(group_event, cpuctx, ctx);
1753 
1754 	/*
1755 	 * Schedule out siblings (if any):
1756 	 */
1757 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1758 		event_sched_out(event, cpuctx, ctx);
1759 
1760 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1761 		cpuctx->exclusive = 0;
1762 }
1763 
1764 #define DETACH_GROUP	0x01UL
1765 
1766 /*
1767  * Cross CPU call to remove a performance event
1768  *
1769  * We disable the event on the hardware level first. After that we
1770  * remove it from the context list.
1771  */
1772 static void
1773 __perf_remove_from_context(struct perf_event *event,
1774 			   struct perf_cpu_context *cpuctx,
1775 			   struct perf_event_context *ctx,
1776 			   void *info)
1777 {
1778 	unsigned long flags = (unsigned long)info;
1779 
1780 	event_sched_out(event, cpuctx, ctx);
1781 	if (flags & DETACH_GROUP)
1782 		perf_group_detach(event);
1783 	list_del_event(event, ctx);
1784 
1785 	if (!ctx->nr_events && ctx->is_active) {
1786 		ctx->is_active = 0;
1787 		if (ctx->task) {
1788 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1789 			cpuctx->task_ctx = NULL;
1790 		}
1791 	}
1792 }
1793 
1794 /*
1795  * Remove the event from a task's (or a CPU's) list of events.
1796  *
1797  * If event->ctx is a cloned context, callers must make sure that
1798  * every task struct that event->ctx->task could possibly point to
1799  * remains valid.  This is OK when called from perf_release since
1800  * that only calls us on the top-level context, which can't be a clone.
1801  * When called from perf_event_exit_task, it's OK because the
1802  * context has been detached from its task.
1803  */
1804 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1805 {
1806 	lockdep_assert_held(&event->ctx->mutex);
1807 
1808 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1809 }
1810 
1811 /*
1812  * Cross CPU call to disable a performance event
1813  */
1814 static void __perf_event_disable(struct perf_event *event,
1815 				 struct perf_cpu_context *cpuctx,
1816 				 struct perf_event_context *ctx,
1817 				 void *info)
1818 {
1819 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1820 		return;
1821 
1822 	update_context_time(ctx);
1823 	update_cgrp_time_from_event(event);
1824 	update_group_times(event);
1825 	if (event == event->group_leader)
1826 		group_sched_out(event, cpuctx, ctx);
1827 	else
1828 		event_sched_out(event, cpuctx, ctx);
1829 	event->state = PERF_EVENT_STATE_OFF;
1830 }
1831 
1832 /*
1833  * Disable a event.
1834  *
1835  * If event->ctx is a cloned context, callers must make sure that
1836  * every task struct that event->ctx->task could possibly point to
1837  * remains valid.  This condition is satisifed when called through
1838  * perf_event_for_each_child or perf_event_for_each because they
1839  * hold the top-level event's child_mutex, so any descendant that
1840  * goes to exit will block in perf_event_exit_event().
1841  *
1842  * When called from perf_pending_event it's OK because event->ctx
1843  * is the current context on this CPU and preemption is disabled,
1844  * hence we can't get into perf_event_task_sched_out for this context.
1845  */
1846 static void _perf_event_disable(struct perf_event *event)
1847 {
1848 	struct perf_event_context *ctx = event->ctx;
1849 
1850 	raw_spin_lock_irq(&ctx->lock);
1851 	if (event->state <= PERF_EVENT_STATE_OFF) {
1852 		raw_spin_unlock_irq(&ctx->lock);
1853 		return;
1854 	}
1855 	raw_spin_unlock_irq(&ctx->lock);
1856 
1857 	event_function_call(event, __perf_event_disable, NULL);
1858 }
1859 
1860 void perf_event_disable_local(struct perf_event *event)
1861 {
1862 	event_function_local(event, __perf_event_disable, NULL);
1863 }
1864 
1865 /*
1866  * Strictly speaking kernel users cannot create groups and therefore this
1867  * interface does not need the perf_event_ctx_lock() magic.
1868  */
1869 void perf_event_disable(struct perf_event *event)
1870 {
1871 	struct perf_event_context *ctx;
1872 
1873 	ctx = perf_event_ctx_lock(event);
1874 	_perf_event_disable(event);
1875 	perf_event_ctx_unlock(event, ctx);
1876 }
1877 EXPORT_SYMBOL_GPL(perf_event_disable);
1878 
1879 static void perf_set_shadow_time(struct perf_event *event,
1880 				 struct perf_event_context *ctx,
1881 				 u64 tstamp)
1882 {
1883 	/*
1884 	 * use the correct time source for the time snapshot
1885 	 *
1886 	 * We could get by without this by leveraging the
1887 	 * fact that to get to this function, the caller
1888 	 * has most likely already called update_context_time()
1889 	 * and update_cgrp_time_xx() and thus both timestamp
1890 	 * are identical (or very close). Given that tstamp is,
1891 	 * already adjusted for cgroup, we could say that:
1892 	 *    tstamp - ctx->timestamp
1893 	 * is equivalent to
1894 	 *    tstamp - cgrp->timestamp.
1895 	 *
1896 	 * Then, in perf_output_read(), the calculation would
1897 	 * work with no changes because:
1898 	 * - event is guaranteed scheduled in
1899 	 * - no scheduled out in between
1900 	 * - thus the timestamp would be the same
1901 	 *
1902 	 * But this is a bit hairy.
1903 	 *
1904 	 * So instead, we have an explicit cgroup call to remain
1905 	 * within the time time source all along. We believe it
1906 	 * is cleaner and simpler to understand.
1907 	 */
1908 	if (is_cgroup_event(event))
1909 		perf_cgroup_set_shadow_time(event, tstamp);
1910 	else
1911 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1912 }
1913 
1914 #define MAX_INTERRUPTS (~0ULL)
1915 
1916 static void perf_log_throttle(struct perf_event *event, int enable);
1917 static void perf_log_itrace_start(struct perf_event *event);
1918 
1919 static int
1920 event_sched_in(struct perf_event *event,
1921 		 struct perf_cpu_context *cpuctx,
1922 		 struct perf_event_context *ctx)
1923 {
1924 	u64 tstamp = perf_event_time(event);
1925 	int ret = 0;
1926 
1927 	lockdep_assert_held(&ctx->lock);
1928 
1929 	if (event->state <= PERF_EVENT_STATE_OFF)
1930 		return 0;
1931 
1932 	WRITE_ONCE(event->oncpu, smp_processor_id());
1933 	/*
1934 	 * Order event::oncpu write to happen before the ACTIVE state
1935 	 * is visible.
1936 	 */
1937 	smp_wmb();
1938 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1939 
1940 	/*
1941 	 * Unthrottle events, since we scheduled we might have missed several
1942 	 * ticks already, also for a heavily scheduling task there is little
1943 	 * guarantee it'll get a tick in a timely manner.
1944 	 */
1945 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1946 		perf_log_throttle(event, 1);
1947 		event->hw.interrupts = 0;
1948 	}
1949 
1950 	/*
1951 	 * The new state must be visible before we turn it on in the hardware:
1952 	 */
1953 	smp_wmb();
1954 
1955 	perf_pmu_disable(event->pmu);
1956 
1957 	perf_set_shadow_time(event, ctx, tstamp);
1958 
1959 	perf_log_itrace_start(event);
1960 
1961 	if (event->pmu->add(event, PERF_EF_START)) {
1962 		event->state = PERF_EVENT_STATE_INACTIVE;
1963 		event->oncpu = -1;
1964 		ret = -EAGAIN;
1965 		goto out;
1966 	}
1967 
1968 	event->tstamp_running += tstamp - event->tstamp_stopped;
1969 
1970 	if (!is_software_event(event))
1971 		cpuctx->active_oncpu++;
1972 	if (!ctx->nr_active++)
1973 		perf_event_ctx_activate(ctx);
1974 	if (event->attr.freq && event->attr.sample_freq)
1975 		ctx->nr_freq++;
1976 
1977 	if (event->attr.exclusive)
1978 		cpuctx->exclusive = 1;
1979 
1980 out:
1981 	perf_pmu_enable(event->pmu);
1982 
1983 	return ret;
1984 }
1985 
1986 static int
1987 group_sched_in(struct perf_event *group_event,
1988 	       struct perf_cpu_context *cpuctx,
1989 	       struct perf_event_context *ctx)
1990 {
1991 	struct perf_event *event, *partial_group = NULL;
1992 	struct pmu *pmu = ctx->pmu;
1993 	u64 now = ctx->time;
1994 	bool simulate = false;
1995 
1996 	if (group_event->state == PERF_EVENT_STATE_OFF)
1997 		return 0;
1998 
1999 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2000 
2001 	if (event_sched_in(group_event, cpuctx, ctx)) {
2002 		pmu->cancel_txn(pmu);
2003 		perf_mux_hrtimer_restart(cpuctx);
2004 		return -EAGAIN;
2005 	}
2006 
2007 	/*
2008 	 * Schedule in siblings as one group (if any):
2009 	 */
2010 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2011 		if (event_sched_in(event, cpuctx, ctx)) {
2012 			partial_group = event;
2013 			goto group_error;
2014 		}
2015 	}
2016 
2017 	if (!pmu->commit_txn(pmu))
2018 		return 0;
2019 
2020 group_error:
2021 	/*
2022 	 * Groups can be scheduled in as one unit only, so undo any
2023 	 * partial group before returning:
2024 	 * The events up to the failed event are scheduled out normally,
2025 	 * tstamp_stopped will be updated.
2026 	 *
2027 	 * The failed events and the remaining siblings need to have
2028 	 * their timings updated as if they had gone thru event_sched_in()
2029 	 * and event_sched_out(). This is required to get consistent timings
2030 	 * across the group. This also takes care of the case where the group
2031 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2032 	 * the time the event was actually stopped, such that time delta
2033 	 * calculation in update_event_times() is correct.
2034 	 */
2035 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2036 		if (event == partial_group)
2037 			simulate = true;
2038 
2039 		if (simulate) {
2040 			event->tstamp_running += now - event->tstamp_stopped;
2041 			event->tstamp_stopped = now;
2042 		} else {
2043 			event_sched_out(event, cpuctx, ctx);
2044 		}
2045 	}
2046 	event_sched_out(group_event, cpuctx, ctx);
2047 
2048 	pmu->cancel_txn(pmu);
2049 
2050 	perf_mux_hrtimer_restart(cpuctx);
2051 
2052 	return -EAGAIN;
2053 }
2054 
2055 /*
2056  * Work out whether we can put this event group on the CPU now.
2057  */
2058 static int group_can_go_on(struct perf_event *event,
2059 			   struct perf_cpu_context *cpuctx,
2060 			   int can_add_hw)
2061 {
2062 	/*
2063 	 * Groups consisting entirely of software events can always go on.
2064 	 */
2065 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2066 		return 1;
2067 	/*
2068 	 * If an exclusive group is already on, no other hardware
2069 	 * events can go on.
2070 	 */
2071 	if (cpuctx->exclusive)
2072 		return 0;
2073 	/*
2074 	 * If this group is exclusive and there are already
2075 	 * events on the CPU, it can't go on.
2076 	 */
2077 	if (event->attr.exclusive && cpuctx->active_oncpu)
2078 		return 0;
2079 	/*
2080 	 * Otherwise, try to add it if all previous groups were able
2081 	 * to go on.
2082 	 */
2083 	return can_add_hw;
2084 }
2085 
2086 static void add_event_to_ctx(struct perf_event *event,
2087 			       struct perf_event_context *ctx)
2088 {
2089 	u64 tstamp = perf_event_time(event);
2090 
2091 	list_add_event(event, ctx);
2092 	perf_group_attach(event);
2093 	event->tstamp_enabled = tstamp;
2094 	event->tstamp_running = tstamp;
2095 	event->tstamp_stopped = tstamp;
2096 }
2097 
2098 static void ctx_sched_out(struct perf_event_context *ctx,
2099 			  struct perf_cpu_context *cpuctx,
2100 			  enum event_type_t event_type);
2101 static void
2102 ctx_sched_in(struct perf_event_context *ctx,
2103 	     struct perf_cpu_context *cpuctx,
2104 	     enum event_type_t event_type,
2105 	     struct task_struct *task);
2106 
2107 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2108 			       struct perf_event_context *ctx)
2109 {
2110 	if (!cpuctx->task_ctx)
2111 		return;
2112 
2113 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2114 		return;
2115 
2116 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2117 }
2118 
2119 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2120 				struct perf_event_context *ctx,
2121 				struct task_struct *task)
2122 {
2123 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2124 	if (ctx)
2125 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2126 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2127 	if (ctx)
2128 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2129 }
2130 
2131 static void ctx_resched(struct perf_cpu_context *cpuctx,
2132 			struct perf_event_context *task_ctx)
2133 {
2134 	perf_pmu_disable(cpuctx->ctx.pmu);
2135 	if (task_ctx)
2136 		task_ctx_sched_out(cpuctx, task_ctx);
2137 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2138 	perf_event_sched_in(cpuctx, task_ctx, current);
2139 	perf_pmu_enable(cpuctx->ctx.pmu);
2140 }
2141 
2142 /*
2143  * Cross CPU call to install and enable a performance event
2144  *
2145  * Very similar to remote_function() + event_function() but cannot assume that
2146  * things like ctx->is_active and cpuctx->task_ctx are set.
2147  */
2148 static int  __perf_install_in_context(void *info)
2149 {
2150 	struct perf_event *event = info;
2151 	struct perf_event_context *ctx = event->ctx;
2152 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2153 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2154 	bool activate = true;
2155 	int ret = 0;
2156 
2157 	raw_spin_lock(&cpuctx->ctx.lock);
2158 	if (ctx->task) {
2159 		raw_spin_lock(&ctx->lock);
2160 		task_ctx = ctx;
2161 
2162 		/* If we're on the wrong CPU, try again */
2163 		if (task_cpu(ctx->task) != smp_processor_id()) {
2164 			ret = -ESRCH;
2165 			goto unlock;
2166 		}
2167 
2168 		/*
2169 		 * If we're on the right CPU, see if the task we target is
2170 		 * current, if not we don't have to activate the ctx, a future
2171 		 * context switch will do that for us.
2172 		 */
2173 		if (ctx->task != current)
2174 			activate = false;
2175 		else
2176 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2177 
2178 	} else if (task_ctx) {
2179 		raw_spin_lock(&task_ctx->lock);
2180 	}
2181 
2182 	if (activate) {
2183 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2184 		add_event_to_ctx(event, ctx);
2185 		ctx_resched(cpuctx, task_ctx);
2186 	} else {
2187 		add_event_to_ctx(event, ctx);
2188 	}
2189 
2190 unlock:
2191 	perf_ctx_unlock(cpuctx, task_ctx);
2192 
2193 	return ret;
2194 }
2195 
2196 /*
2197  * Attach a performance event to a context.
2198  *
2199  * Very similar to event_function_call, see comment there.
2200  */
2201 static void
2202 perf_install_in_context(struct perf_event_context *ctx,
2203 			struct perf_event *event,
2204 			int cpu)
2205 {
2206 	struct task_struct *task = READ_ONCE(ctx->task);
2207 
2208 	lockdep_assert_held(&ctx->mutex);
2209 
2210 	event->ctx = ctx;
2211 	if (event->cpu != -1)
2212 		event->cpu = cpu;
2213 
2214 	if (!task) {
2215 		cpu_function_call(cpu, __perf_install_in_context, event);
2216 		return;
2217 	}
2218 
2219 	/*
2220 	 * Should not happen, we validate the ctx is still alive before calling.
2221 	 */
2222 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2223 		return;
2224 
2225 	/*
2226 	 * Installing events is tricky because we cannot rely on ctx->is_active
2227 	 * to be set in case this is the nr_events 0 -> 1 transition.
2228 	 */
2229 again:
2230 	/*
2231 	 * Cannot use task_function_call() because we need to run on the task's
2232 	 * CPU regardless of whether its current or not.
2233 	 */
2234 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2235 		return;
2236 
2237 	raw_spin_lock_irq(&ctx->lock);
2238 	task = ctx->task;
2239 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2240 		/*
2241 		 * Cannot happen because we already checked above (which also
2242 		 * cannot happen), and we hold ctx->mutex, which serializes us
2243 		 * against perf_event_exit_task_context().
2244 		 */
2245 		raw_spin_unlock_irq(&ctx->lock);
2246 		return;
2247 	}
2248 	raw_spin_unlock_irq(&ctx->lock);
2249 	/*
2250 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2251 	 * unconditionally.
2252 	 */
2253 	goto again;
2254 }
2255 
2256 /*
2257  * Put a event into inactive state and update time fields.
2258  * Enabling the leader of a group effectively enables all
2259  * the group members that aren't explicitly disabled, so we
2260  * have to update their ->tstamp_enabled also.
2261  * Note: this works for group members as well as group leaders
2262  * since the non-leader members' sibling_lists will be empty.
2263  */
2264 static void __perf_event_mark_enabled(struct perf_event *event)
2265 {
2266 	struct perf_event *sub;
2267 	u64 tstamp = perf_event_time(event);
2268 
2269 	event->state = PERF_EVENT_STATE_INACTIVE;
2270 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2271 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2272 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2273 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2274 	}
2275 }
2276 
2277 /*
2278  * Cross CPU call to enable a performance event
2279  */
2280 static void __perf_event_enable(struct perf_event *event,
2281 				struct perf_cpu_context *cpuctx,
2282 				struct perf_event_context *ctx,
2283 				void *info)
2284 {
2285 	struct perf_event *leader = event->group_leader;
2286 	struct perf_event_context *task_ctx;
2287 
2288 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289 	    event->state <= PERF_EVENT_STATE_ERROR)
2290 		return;
2291 
2292 	if (ctx->is_active)
2293 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2294 
2295 	__perf_event_mark_enabled(event);
2296 
2297 	if (!ctx->is_active)
2298 		return;
2299 
2300 	if (!event_filter_match(event)) {
2301 		if (is_cgroup_event(event))
2302 			perf_cgroup_defer_enabled(event);
2303 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 		return;
2305 	}
2306 
2307 	/*
2308 	 * If the event is in a group and isn't the group leader,
2309 	 * then don't put it on unless the group is on.
2310 	 */
2311 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2312 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2313 		return;
2314 	}
2315 
2316 	task_ctx = cpuctx->task_ctx;
2317 	if (ctx->task)
2318 		WARN_ON_ONCE(task_ctx != ctx);
2319 
2320 	ctx_resched(cpuctx, task_ctx);
2321 }
2322 
2323 /*
2324  * Enable a event.
2325  *
2326  * If event->ctx is a cloned context, callers must make sure that
2327  * every task struct that event->ctx->task could possibly point to
2328  * remains valid.  This condition is satisfied when called through
2329  * perf_event_for_each_child or perf_event_for_each as described
2330  * for perf_event_disable.
2331  */
2332 static void _perf_event_enable(struct perf_event *event)
2333 {
2334 	struct perf_event_context *ctx = event->ctx;
2335 
2336 	raw_spin_lock_irq(&ctx->lock);
2337 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2338 	    event->state <  PERF_EVENT_STATE_ERROR) {
2339 		raw_spin_unlock_irq(&ctx->lock);
2340 		return;
2341 	}
2342 
2343 	/*
2344 	 * If the event is in error state, clear that first.
2345 	 *
2346 	 * That way, if we see the event in error state below, we know that it
2347 	 * has gone back into error state, as distinct from the task having
2348 	 * been scheduled away before the cross-call arrived.
2349 	 */
2350 	if (event->state == PERF_EVENT_STATE_ERROR)
2351 		event->state = PERF_EVENT_STATE_OFF;
2352 	raw_spin_unlock_irq(&ctx->lock);
2353 
2354 	event_function_call(event, __perf_event_enable, NULL);
2355 }
2356 
2357 /*
2358  * See perf_event_disable();
2359  */
2360 void perf_event_enable(struct perf_event *event)
2361 {
2362 	struct perf_event_context *ctx;
2363 
2364 	ctx = perf_event_ctx_lock(event);
2365 	_perf_event_enable(event);
2366 	perf_event_ctx_unlock(event, ctx);
2367 }
2368 EXPORT_SYMBOL_GPL(perf_event_enable);
2369 
2370 struct stop_event_data {
2371 	struct perf_event	*event;
2372 	unsigned int		restart;
2373 };
2374 
2375 static int __perf_event_stop(void *info)
2376 {
2377 	struct stop_event_data *sd = info;
2378 	struct perf_event *event = sd->event;
2379 
2380 	/* if it's already INACTIVE, do nothing */
2381 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2382 		return 0;
2383 
2384 	/* matches smp_wmb() in event_sched_in() */
2385 	smp_rmb();
2386 
2387 	/*
2388 	 * There is a window with interrupts enabled before we get here,
2389 	 * so we need to check again lest we try to stop another CPU's event.
2390 	 */
2391 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2392 		return -EAGAIN;
2393 
2394 	event->pmu->stop(event, PERF_EF_UPDATE);
2395 
2396 	/*
2397 	 * May race with the actual stop (through perf_pmu_output_stop()),
2398 	 * but it is only used for events with AUX ring buffer, and such
2399 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2400 	 * see comments in perf_aux_output_begin().
2401 	 *
2402 	 * Since this is happening on a event-local CPU, no trace is lost
2403 	 * while restarting.
2404 	 */
2405 	if (sd->restart)
2406 		event->pmu->start(event, PERF_EF_START);
2407 
2408 	return 0;
2409 }
2410 
2411 static int perf_event_restart(struct perf_event *event)
2412 {
2413 	struct stop_event_data sd = {
2414 		.event		= event,
2415 		.restart	= 1,
2416 	};
2417 	int ret = 0;
2418 
2419 	do {
2420 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2421 			return 0;
2422 
2423 		/* matches smp_wmb() in event_sched_in() */
2424 		smp_rmb();
2425 
2426 		/*
2427 		 * We only want to restart ACTIVE events, so if the event goes
2428 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2429 		 * fall through with ret==-ENXIO.
2430 		 */
2431 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2432 					__perf_event_stop, &sd);
2433 	} while (ret == -EAGAIN);
2434 
2435 	return ret;
2436 }
2437 
2438 /*
2439  * In order to contain the amount of racy and tricky in the address filter
2440  * configuration management, it is a two part process:
2441  *
2442  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2443  *      we update the addresses of corresponding vmas in
2444  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2445  * (p2) when an event is scheduled in (pmu::add), it calls
2446  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2447  *      if the generation has changed since the previous call.
2448  *
2449  * If (p1) happens while the event is active, we restart it to force (p2).
2450  *
2451  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2452  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2453  *     ioctl;
2454  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2455  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2456  *     for reading;
2457  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2458  *     of exec.
2459  */
2460 void perf_event_addr_filters_sync(struct perf_event *event)
2461 {
2462 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2463 
2464 	if (!has_addr_filter(event))
2465 		return;
2466 
2467 	raw_spin_lock(&ifh->lock);
2468 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2469 		event->pmu->addr_filters_sync(event);
2470 		event->hw.addr_filters_gen = event->addr_filters_gen;
2471 	}
2472 	raw_spin_unlock(&ifh->lock);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2475 
2476 static int _perf_event_refresh(struct perf_event *event, int refresh)
2477 {
2478 	/*
2479 	 * not supported on inherited events
2480 	 */
2481 	if (event->attr.inherit || !is_sampling_event(event))
2482 		return -EINVAL;
2483 
2484 	atomic_add(refresh, &event->event_limit);
2485 	_perf_event_enable(event);
2486 
2487 	return 0;
2488 }
2489 
2490 /*
2491  * See perf_event_disable()
2492  */
2493 int perf_event_refresh(struct perf_event *event, int refresh)
2494 {
2495 	struct perf_event_context *ctx;
2496 	int ret;
2497 
2498 	ctx = perf_event_ctx_lock(event);
2499 	ret = _perf_event_refresh(event, refresh);
2500 	perf_event_ctx_unlock(event, ctx);
2501 
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_refresh);
2505 
2506 static void ctx_sched_out(struct perf_event_context *ctx,
2507 			  struct perf_cpu_context *cpuctx,
2508 			  enum event_type_t event_type)
2509 {
2510 	int is_active = ctx->is_active;
2511 	struct perf_event *event;
2512 
2513 	lockdep_assert_held(&ctx->lock);
2514 
2515 	if (likely(!ctx->nr_events)) {
2516 		/*
2517 		 * See __perf_remove_from_context().
2518 		 */
2519 		WARN_ON_ONCE(ctx->is_active);
2520 		if (ctx->task)
2521 			WARN_ON_ONCE(cpuctx->task_ctx);
2522 		return;
2523 	}
2524 
2525 	ctx->is_active &= ~event_type;
2526 	if (!(ctx->is_active & EVENT_ALL))
2527 		ctx->is_active = 0;
2528 
2529 	if (ctx->task) {
2530 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531 		if (!ctx->is_active)
2532 			cpuctx->task_ctx = NULL;
2533 	}
2534 
2535 	/*
2536 	 * Always update time if it was set; not only when it changes.
2537 	 * Otherwise we can 'forget' to update time for any but the last
2538 	 * context we sched out. For example:
2539 	 *
2540 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2541 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2542 	 *
2543 	 * would only update time for the pinned events.
2544 	 */
2545 	if (is_active & EVENT_TIME) {
2546 		/* update (and stop) ctx time */
2547 		update_context_time(ctx);
2548 		update_cgrp_time_from_cpuctx(cpuctx);
2549 	}
2550 
2551 	is_active ^= ctx->is_active; /* changed bits */
2552 
2553 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2554 		return;
2555 
2556 	perf_pmu_disable(ctx->pmu);
2557 	if (is_active & EVENT_PINNED) {
2558 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2559 			group_sched_out(event, cpuctx, ctx);
2560 	}
2561 
2562 	if (is_active & EVENT_FLEXIBLE) {
2563 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2564 			group_sched_out(event, cpuctx, ctx);
2565 	}
2566 	perf_pmu_enable(ctx->pmu);
2567 }
2568 
2569 /*
2570  * Test whether two contexts are equivalent, i.e. whether they have both been
2571  * cloned from the same version of the same context.
2572  *
2573  * Equivalence is measured using a generation number in the context that is
2574  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2575  * and list_del_event().
2576  */
2577 static int context_equiv(struct perf_event_context *ctx1,
2578 			 struct perf_event_context *ctx2)
2579 {
2580 	lockdep_assert_held(&ctx1->lock);
2581 	lockdep_assert_held(&ctx2->lock);
2582 
2583 	/* Pinning disables the swap optimization */
2584 	if (ctx1->pin_count || ctx2->pin_count)
2585 		return 0;
2586 
2587 	/* If ctx1 is the parent of ctx2 */
2588 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2589 		return 1;
2590 
2591 	/* If ctx2 is the parent of ctx1 */
2592 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2593 		return 1;
2594 
2595 	/*
2596 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2597 	 * hierarchy, see perf_event_init_context().
2598 	 */
2599 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2600 			ctx1->parent_gen == ctx2->parent_gen)
2601 		return 1;
2602 
2603 	/* Unmatched */
2604 	return 0;
2605 }
2606 
2607 static void __perf_event_sync_stat(struct perf_event *event,
2608 				     struct perf_event *next_event)
2609 {
2610 	u64 value;
2611 
2612 	if (!event->attr.inherit_stat)
2613 		return;
2614 
2615 	/*
2616 	 * Update the event value, we cannot use perf_event_read()
2617 	 * because we're in the middle of a context switch and have IRQs
2618 	 * disabled, which upsets smp_call_function_single(), however
2619 	 * we know the event must be on the current CPU, therefore we
2620 	 * don't need to use it.
2621 	 */
2622 	switch (event->state) {
2623 	case PERF_EVENT_STATE_ACTIVE:
2624 		event->pmu->read(event);
2625 		/* fall-through */
2626 
2627 	case PERF_EVENT_STATE_INACTIVE:
2628 		update_event_times(event);
2629 		break;
2630 
2631 	default:
2632 		break;
2633 	}
2634 
2635 	/*
2636 	 * In order to keep per-task stats reliable we need to flip the event
2637 	 * values when we flip the contexts.
2638 	 */
2639 	value = local64_read(&next_event->count);
2640 	value = local64_xchg(&event->count, value);
2641 	local64_set(&next_event->count, value);
2642 
2643 	swap(event->total_time_enabled, next_event->total_time_enabled);
2644 	swap(event->total_time_running, next_event->total_time_running);
2645 
2646 	/*
2647 	 * Since we swizzled the values, update the user visible data too.
2648 	 */
2649 	perf_event_update_userpage(event);
2650 	perf_event_update_userpage(next_event);
2651 }
2652 
2653 static void perf_event_sync_stat(struct perf_event_context *ctx,
2654 				   struct perf_event_context *next_ctx)
2655 {
2656 	struct perf_event *event, *next_event;
2657 
2658 	if (!ctx->nr_stat)
2659 		return;
2660 
2661 	update_context_time(ctx);
2662 
2663 	event = list_first_entry(&ctx->event_list,
2664 				   struct perf_event, event_entry);
2665 
2666 	next_event = list_first_entry(&next_ctx->event_list,
2667 					struct perf_event, event_entry);
2668 
2669 	while (&event->event_entry != &ctx->event_list &&
2670 	       &next_event->event_entry != &next_ctx->event_list) {
2671 
2672 		__perf_event_sync_stat(event, next_event);
2673 
2674 		event = list_next_entry(event, event_entry);
2675 		next_event = list_next_entry(next_event, event_entry);
2676 	}
2677 }
2678 
2679 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2680 					 struct task_struct *next)
2681 {
2682 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2683 	struct perf_event_context *next_ctx;
2684 	struct perf_event_context *parent, *next_parent;
2685 	struct perf_cpu_context *cpuctx;
2686 	int do_switch = 1;
2687 
2688 	if (likely(!ctx))
2689 		return;
2690 
2691 	cpuctx = __get_cpu_context(ctx);
2692 	if (!cpuctx->task_ctx)
2693 		return;
2694 
2695 	rcu_read_lock();
2696 	next_ctx = next->perf_event_ctxp[ctxn];
2697 	if (!next_ctx)
2698 		goto unlock;
2699 
2700 	parent = rcu_dereference(ctx->parent_ctx);
2701 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2702 
2703 	/* If neither context have a parent context; they cannot be clones. */
2704 	if (!parent && !next_parent)
2705 		goto unlock;
2706 
2707 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2708 		/*
2709 		 * Looks like the two contexts are clones, so we might be
2710 		 * able to optimize the context switch.  We lock both
2711 		 * contexts and check that they are clones under the
2712 		 * lock (including re-checking that neither has been
2713 		 * uncloned in the meantime).  It doesn't matter which
2714 		 * order we take the locks because no other cpu could
2715 		 * be trying to lock both of these tasks.
2716 		 */
2717 		raw_spin_lock(&ctx->lock);
2718 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2719 		if (context_equiv(ctx, next_ctx)) {
2720 			WRITE_ONCE(ctx->task, next);
2721 			WRITE_ONCE(next_ctx->task, task);
2722 
2723 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2724 
2725 			/*
2726 			 * RCU_INIT_POINTER here is safe because we've not
2727 			 * modified the ctx and the above modification of
2728 			 * ctx->task and ctx->task_ctx_data are immaterial
2729 			 * since those values are always verified under
2730 			 * ctx->lock which we're now holding.
2731 			 */
2732 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2733 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2734 
2735 			do_switch = 0;
2736 
2737 			perf_event_sync_stat(ctx, next_ctx);
2738 		}
2739 		raw_spin_unlock(&next_ctx->lock);
2740 		raw_spin_unlock(&ctx->lock);
2741 	}
2742 unlock:
2743 	rcu_read_unlock();
2744 
2745 	if (do_switch) {
2746 		raw_spin_lock(&ctx->lock);
2747 		task_ctx_sched_out(cpuctx, ctx);
2748 		raw_spin_unlock(&ctx->lock);
2749 	}
2750 }
2751 
2752 void perf_sched_cb_dec(struct pmu *pmu)
2753 {
2754 	this_cpu_dec(perf_sched_cb_usages);
2755 }
2756 
2757 void perf_sched_cb_inc(struct pmu *pmu)
2758 {
2759 	this_cpu_inc(perf_sched_cb_usages);
2760 }
2761 
2762 /*
2763  * This function provides the context switch callback to the lower code
2764  * layer. It is invoked ONLY when the context switch callback is enabled.
2765  */
2766 static void perf_pmu_sched_task(struct task_struct *prev,
2767 				struct task_struct *next,
2768 				bool sched_in)
2769 {
2770 	struct perf_cpu_context *cpuctx;
2771 	struct pmu *pmu;
2772 	unsigned long flags;
2773 
2774 	if (prev == next)
2775 		return;
2776 
2777 	local_irq_save(flags);
2778 
2779 	rcu_read_lock();
2780 
2781 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2782 		if (pmu->sched_task) {
2783 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2784 
2785 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2786 
2787 			perf_pmu_disable(pmu);
2788 
2789 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2790 
2791 			perf_pmu_enable(pmu);
2792 
2793 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2794 		}
2795 	}
2796 
2797 	rcu_read_unlock();
2798 
2799 	local_irq_restore(flags);
2800 }
2801 
2802 static void perf_event_switch(struct task_struct *task,
2803 			      struct task_struct *next_prev, bool sched_in);
2804 
2805 #define for_each_task_context_nr(ctxn)					\
2806 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2807 
2808 /*
2809  * Called from scheduler to remove the events of the current task,
2810  * with interrupts disabled.
2811  *
2812  * We stop each event and update the event value in event->count.
2813  *
2814  * This does not protect us against NMI, but disable()
2815  * sets the disabled bit in the control field of event _before_
2816  * accessing the event control register. If a NMI hits, then it will
2817  * not restart the event.
2818  */
2819 void __perf_event_task_sched_out(struct task_struct *task,
2820 				 struct task_struct *next)
2821 {
2822 	int ctxn;
2823 
2824 	if (__this_cpu_read(perf_sched_cb_usages))
2825 		perf_pmu_sched_task(task, next, false);
2826 
2827 	if (atomic_read(&nr_switch_events))
2828 		perf_event_switch(task, next, false);
2829 
2830 	for_each_task_context_nr(ctxn)
2831 		perf_event_context_sched_out(task, ctxn, next);
2832 
2833 	/*
2834 	 * if cgroup events exist on this CPU, then we need
2835 	 * to check if we have to switch out PMU state.
2836 	 * cgroup event are system-wide mode only
2837 	 */
2838 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 		perf_cgroup_sched_out(task, next);
2840 }
2841 
2842 /*
2843  * Called with IRQs disabled
2844  */
2845 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2846 			      enum event_type_t event_type)
2847 {
2848 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2849 }
2850 
2851 static void
2852 ctx_pinned_sched_in(struct perf_event_context *ctx,
2853 		    struct perf_cpu_context *cpuctx)
2854 {
2855 	struct perf_event *event;
2856 
2857 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2858 		if (event->state <= PERF_EVENT_STATE_OFF)
2859 			continue;
2860 		if (!event_filter_match(event))
2861 			continue;
2862 
2863 		/* may need to reset tstamp_enabled */
2864 		if (is_cgroup_event(event))
2865 			perf_cgroup_mark_enabled(event, ctx);
2866 
2867 		if (group_can_go_on(event, cpuctx, 1))
2868 			group_sched_in(event, cpuctx, ctx);
2869 
2870 		/*
2871 		 * If this pinned group hasn't been scheduled,
2872 		 * put it in error state.
2873 		 */
2874 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2875 			update_group_times(event);
2876 			event->state = PERF_EVENT_STATE_ERROR;
2877 		}
2878 	}
2879 }
2880 
2881 static void
2882 ctx_flexible_sched_in(struct perf_event_context *ctx,
2883 		      struct perf_cpu_context *cpuctx)
2884 {
2885 	struct perf_event *event;
2886 	int can_add_hw = 1;
2887 
2888 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2889 		/* Ignore events in OFF or ERROR state */
2890 		if (event->state <= PERF_EVENT_STATE_OFF)
2891 			continue;
2892 		/*
2893 		 * Listen to the 'cpu' scheduling filter constraint
2894 		 * of events:
2895 		 */
2896 		if (!event_filter_match(event))
2897 			continue;
2898 
2899 		/* may need to reset tstamp_enabled */
2900 		if (is_cgroup_event(event))
2901 			perf_cgroup_mark_enabled(event, ctx);
2902 
2903 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2904 			if (group_sched_in(event, cpuctx, ctx))
2905 				can_add_hw = 0;
2906 		}
2907 	}
2908 }
2909 
2910 static void
2911 ctx_sched_in(struct perf_event_context *ctx,
2912 	     struct perf_cpu_context *cpuctx,
2913 	     enum event_type_t event_type,
2914 	     struct task_struct *task)
2915 {
2916 	int is_active = ctx->is_active;
2917 	u64 now;
2918 
2919 	lockdep_assert_held(&ctx->lock);
2920 
2921 	if (likely(!ctx->nr_events))
2922 		return;
2923 
2924 	ctx->is_active |= (event_type | EVENT_TIME);
2925 	if (ctx->task) {
2926 		if (!is_active)
2927 			cpuctx->task_ctx = ctx;
2928 		else
2929 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930 	}
2931 
2932 	is_active ^= ctx->is_active; /* changed bits */
2933 
2934 	if (is_active & EVENT_TIME) {
2935 		/* start ctx time */
2936 		now = perf_clock();
2937 		ctx->timestamp = now;
2938 		perf_cgroup_set_timestamp(task, ctx);
2939 	}
2940 
2941 	/*
2942 	 * First go through the list and put on any pinned groups
2943 	 * in order to give them the best chance of going on.
2944 	 */
2945 	if (is_active & EVENT_PINNED)
2946 		ctx_pinned_sched_in(ctx, cpuctx);
2947 
2948 	/* Then walk through the lower prio flexible groups */
2949 	if (is_active & EVENT_FLEXIBLE)
2950 		ctx_flexible_sched_in(ctx, cpuctx);
2951 }
2952 
2953 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2954 			     enum event_type_t event_type,
2955 			     struct task_struct *task)
2956 {
2957 	struct perf_event_context *ctx = &cpuctx->ctx;
2958 
2959 	ctx_sched_in(ctx, cpuctx, event_type, task);
2960 }
2961 
2962 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2963 					struct task_struct *task)
2964 {
2965 	struct perf_cpu_context *cpuctx;
2966 
2967 	cpuctx = __get_cpu_context(ctx);
2968 	if (cpuctx->task_ctx == ctx)
2969 		return;
2970 
2971 	perf_ctx_lock(cpuctx, ctx);
2972 	perf_pmu_disable(ctx->pmu);
2973 	/*
2974 	 * We want to keep the following priority order:
2975 	 * cpu pinned (that don't need to move), task pinned,
2976 	 * cpu flexible, task flexible.
2977 	 */
2978 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2979 	perf_event_sched_in(cpuctx, ctx, task);
2980 	perf_pmu_enable(ctx->pmu);
2981 	perf_ctx_unlock(cpuctx, ctx);
2982 }
2983 
2984 /*
2985  * Called from scheduler to add the events of the current task
2986  * with interrupts disabled.
2987  *
2988  * We restore the event value and then enable it.
2989  *
2990  * This does not protect us against NMI, but enable()
2991  * sets the enabled bit in the control field of event _before_
2992  * accessing the event control register. If a NMI hits, then it will
2993  * keep the event running.
2994  */
2995 void __perf_event_task_sched_in(struct task_struct *prev,
2996 				struct task_struct *task)
2997 {
2998 	struct perf_event_context *ctx;
2999 	int ctxn;
3000 
3001 	/*
3002 	 * If cgroup events exist on this CPU, then we need to check if we have
3003 	 * to switch in PMU state; cgroup event are system-wide mode only.
3004 	 *
3005 	 * Since cgroup events are CPU events, we must schedule these in before
3006 	 * we schedule in the task events.
3007 	 */
3008 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009 		perf_cgroup_sched_in(prev, task);
3010 
3011 	for_each_task_context_nr(ctxn) {
3012 		ctx = task->perf_event_ctxp[ctxn];
3013 		if (likely(!ctx))
3014 			continue;
3015 
3016 		perf_event_context_sched_in(ctx, task);
3017 	}
3018 
3019 	if (atomic_read(&nr_switch_events))
3020 		perf_event_switch(task, prev, true);
3021 
3022 	if (__this_cpu_read(perf_sched_cb_usages))
3023 		perf_pmu_sched_task(prev, task, true);
3024 }
3025 
3026 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3027 {
3028 	u64 frequency = event->attr.sample_freq;
3029 	u64 sec = NSEC_PER_SEC;
3030 	u64 divisor, dividend;
3031 
3032 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3033 
3034 	count_fls = fls64(count);
3035 	nsec_fls = fls64(nsec);
3036 	frequency_fls = fls64(frequency);
3037 	sec_fls = 30;
3038 
3039 	/*
3040 	 * We got @count in @nsec, with a target of sample_freq HZ
3041 	 * the target period becomes:
3042 	 *
3043 	 *             @count * 10^9
3044 	 * period = -------------------
3045 	 *          @nsec * sample_freq
3046 	 *
3047 	 */
3048 
3049 	/*
3050 	 * Reduce accuracy by one bit such that @a and @b converge
3051 	 * to a similar magnitude.
3052 	 */
3053 #define REDUCE_FLS(a, b)		\
3054 do {					\
3055 	if (a##_fls > b##_fls) {	\
3056 		a >>= 1;		\
3057 		a##_fls--;		\
3058 	} else {			\
3059 		b >>= 1;		\
3060 		b##_fls--;		\
3061 	}				\
3062 } while (0)
3063 
3064 	/*
3065 	 * Reduce accuracy until either term fits in a u64, then proceed with
3066 	 * the other, so that finally we can do a u64/u64 division.
3067 	 */
3068 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3069 		REDUCE_FLS(nsec, frequency);
3070 		REDUCE_FLS(sec, count);
3071 	}
3072 
3073 	if (count_fls + sec_fls > 64) {
3074 		divisor = nsec * frequency;
3075 
3076 		while (count_fls + sec_fls > 64) {
3077 			REDUCE_FLS(count, sec);
3078 			divisor >>= 1;
3079 		}
3080 
3081 		dividend = count * sec;
3082 	} else {
3083 		dividend = count * sec;
3084 
3085 		while (nsec_fls + frequency_fls > 64) {
3086 			REDUCE_FLS(nsec, frequency);
3087 			dividend >>= 1;
3088 		}
3089 
3090 		divisor = nsec * frequency;
3091 	}
3092 
3093 	if (!divisor)
3094 		return dividend;
3095 
3096 	return div64_u64(dividend, divisor);
3097 }
3098 
3099 static DEFINE_PER_CPU(int, perf_throttled_count);
3100 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3101 
3102 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3103 {
3104 	struct hw_perf_event *hwc = &event->hw;
3105 	s64 period, sample_period;
3106 	s64 delta;
3107 
3108 	period = perf_calculate_period(event, nsec, count);
3109 
3110 	delta = (s64)(period - hwc->sample_period);
3111 	delta = (delta + 7) / 8; /* low pass filter */
3112 
3113 	sample_period = hwc->sample_period + delta;
3114 
3115 	if (!sample_period)
3116 		sample_period = 1;
3117 
3118 	hwc->sample_period = sample_period;
3119 
3120 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3121 		if (disable)
3122 			event->pmu->stop(event, PERF_EF_UPDATE);
3123 
3124 		local64_set(&hwc->period_left, 0);
3125 
3126 		if (disable)
3127 			event->pmu->start(event, PERF_EF_RELOAD);
3128 	}
3129 }
3130 
3131 /*
3132  * combine freq adjustment with unthrottling to avoid two passes over the
3133  * events. At the same time, make sure, having freq events does not change
3134  * the rate of unthrottling as that would introduce bias.
3135  */
3136 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3137 					   int needs_unthr)
3138 {
3139 	struct perf_event *event;
3140 	struct hw_perf_event *hwc;
3141 	u64 now, period = TICK_NSEC;
3142 	s64 delta;
3143 
3144 	/*
3145 	 * only need to iterate over all events iff:
3146 	 * - context have events in frequency mode (needs freq adjust)
3147 	 * - there are events to unthrottle on this cpu
3148 	 */
3149 	if (!(ctx->nr_freq || needs_unthr))
3150 		return;
3151 
3152 	raw_spin_lock(&ctx->lock);
3153 	perf_pmu_disable(ctx->pmu);
3154 
3155 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3156 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3157 			continue;
3158 
3159 		if (!event_filter_match(event))
3160 			continue;
3161 
3162 		perf_pmu_disable(event->pmu);
3163 
3164 		hwc = &event->hw;
3165 
3166 		if (hwc->interrupts == MAX_INTERRUPTS) {
3167 			hwc->interrupts = 0;
3168 			perf_log_throttle(event, 1);
3169 			event->pmu->start(event, 0);
3170 		}
3171 
3172 		if (!event->attr.freq || !event->attr.sample_freq)
3173 			goto next;
3174 
3175 		/*
3176 		 * stop the event and update event->count
3177 		 */
3178 		event->pmu->stop(event, PERF_EF_UPDATE);
3179 
3180 		now = local64_read(&event->count);
3181 		delta = now - hwc->freq_count_stamp;
3182 		hwc->freq_count_stamp = now;
3183 
3184 		/*
3185 		 * restart the event
3186 		 * reload only if value has changed
3187 		 * we have stopped the event so tell that
3188 		 * to perf_adjust_period() to avoid stopping it
3189 		 * twice.
3190 		 */
3191 		if (delta > 0)
3192 			perf_adjust_period(event, period, delta, false);
3193 
3194 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3195 	next:
3196 		perf_pmu_enable(event->pmu);
3197 	}
3198 
3199 	perf_pmu_enable(ctx->pmu);
3200 	raw_spin_unlock(&ctx->lock);
3201 }
3202 
3203 /*
3204  * Round-robin a context's events:
3205  */
3206 static void rotate_ctx(struct perf_event_context *ctx)
3207 {
3208 	/*
3209 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3210 	 * disabled by the inheritance code.
3211 	 */
3212 	if (!ctx->rotate_disable)
3213 		list_rotate_left(&ctx->flexible_groups);
3214 }
3215 
3216 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3217 {
3218 	struct perf_event_context *ctx = NULL;
3219 	int rotate = 0;
3220 
3221 	if (cpuctx->ctx.nr_events) {
3222 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3223 			rotate = 1;
3224 	}
3225 
3226 	ctx = cpuctx->task_ctx;
3227 	if (ctx && ctx->nr_events) {
3228 		if (ctx->nr_events != ctx->nr_active)
3229 			rotate = 1;
3230 	}
3231 
3232 	if (!rotate)
3233 		goto done;
3234 
3235 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3236 	perf_pmu_disable(cpuctx->ctx.pmu);
3237 
3238 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3239 	if (ctx)
3240 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3241 
3242 	rotate_ctx(&cpuctx->ctx);
3243 	if (ctx)
3244 		rotate_ctx(ctx);
3245 
3246 	perf_event_sched_in(cpuctx, ctx, current);
3247 
3248 	perf_pmu_enable(cpuctx->ctx.pmu);
3249 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3250 done:
3251 
3252 	return rotate;
3253 }
3254 
3255 void perf_event_task_tick(void)
3256 {
3257 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3258 	struct perf_event_context *ctx, *tmp;
3259 	int throttled;
3260 
3261 	WARN_ON(!irqs_disabled());
3262 
3263 	__this_cpu_inc(perf_throttled_seq);
3264 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3265 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3266 
3267 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3268 		perf_adjust_freq_unthr_context(ctx, throttled);
3269 }
3270 
3271 static int event_enable_on_exec(struct perf_event *event,
3272 				struct perf_event_context *ctx)
3273 {
3274 	if (!event->attr.enable_on_exec)
3275 		return 0;
3276 
3277 	event->attr.enable_on_exec = 0;
3278 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3279 		return 0;
3280 
3281 	__perf_event_mark_enabled(event);
3282 
3283 	return 1;
3284 }
3285 
3286 /*
3287  * Enable all of a task's events that have been marked enable-on-exec.
3288  * This expects task == current.
3289  */
3290 static void perf_event_enable_on_exec(int ctxn)
3291 {
3292 	struct perf_event_context *ctx, *clone_ctx = NULL;
3293 	struct perf_cpu_context *cpuctx;
3294 	struct perf_event *event;
3295 	unsigned long flags;
3296 	int enabled = 0;
3297 
3298 	local_irq_save(flags);
3299 	ctx = current->perf_event_ctxp[ctxn];
3300 	if (!ctx || !ctx->nr_events)
3301 		goto out;
3302 
3303 	cpuctx = __get_cpu_context(ctx);
3304 	perf_ctx_lock(cpuctx, ctx);
3305 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3306 	list_for_each_entry(event, &ctx->event_list, event_entry)
3307 		enabled |= event_enable_on_exec(event, ctx);
3308 
3309 	/*
3310 	 * Unclone and reschedule this context if we enabled any event.
3311 	 */
3312 	if (enabled) {
3313 		clone_ctx = unclone_ctx(ctx);
3314 		ctx_resched(cpuctx, ctx);
3315 	}
3316 	perf_ctx_unlock(cpuctx, ctx);
3317 
3318 out:
3319 	local_irq_restore(flags);
3320 
3321 	if (clone_ctx)
3322 		put_ctx(clone_ctx);
3323 }
3324 
3325 struct perf_read_data {
3326 	struct perf_event *event;
3327 	bool group;
3328 	int ret;
3329 };
3330 
3331 /*
3332  * Cross CPU call to read the hardware event
3333  */
3334 static void __perf_event_read(void *info)
3335 {
3336 	struct perf_read_data *data = info;
3337 	struct perf_event *sub, *event = data->event;
3338 	struct perf_event_context *ctx = event->ctx;
3339 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3340 	struct pmu *pmu = event->pmu;
3341 
3342 	/*
3343 	 * If this is a task context, we need to check whether it is
3344 	 * the current task context of this cpu.  If not it has been
3345 	 * scheduled out before the smp call arrived.  In that case
3346 	 * event->count would have been updated to a recent sample
3347 	 * when the event was scheduled out.
3348 	 */
3349 	if (ctx->task && cpuctx->task_ctx != ctx)
3350 		return;
3351 
3352 	raw_spin_lock(&ctx->lock);
3353 	if (ctx->is_active) {
3354 		update_context_time(ctx);
3355 		update_cgrp_time_from_event(event);
3356 	}
3357 
3358 	update_event_times(event);
3359 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3360 		goto unlock;
3361 
3362 	if (!data->group) {
3363 		pmu->read(event);
3364 		data->ret = 0;
3365 		goto unlock;
3366 	}
3367 
3368 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3369 
3370 	pmu->read(event);
3371 
3372 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3373 		update_event_times(sub);
3374 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3375 			/*
3376 			 * Use sibling's PMU rather than @event's since
3377 			 * sibling could be on different (eg: software) PMU.
3378 			 */
3379 			sub->pmu->read(sub);
3380 		}
3381 	}
3382 
3383 	data->ret = pmu->commit_txn(pmu);
3384 
3385 unlock:
3386 	raw_spin_unlock(&ctx->lock);
3387 }
3388 
3389 static inline u64 perf_event_count(struct perf_event *event)
3390 {
3391 	if (event->pmu->count)
3392 		return event->pmu->count(event);
3393 
3394 	return __perf_event_count(event);
3395 }
3396 
3397 /*
3398  * NMI-safe method to read a local event, that is an event that
3399  * is:
3400  *   - either for the current task, or for this CPU
3401  *   - does not have inherit set, for inherited task events
3402  *     will not be local and we cannot read them atomically
3403  *   - must not have a pmu::count method
3404  */
3405 u64 perf_event_read_local(struct perf_event *event)
3406 {
3407 	unsigned long flags;
3408 	u64 val;
3409 
3410 	/*
3411 	 * Disabling interrupts avoids all counter scheduling (context
3412 	 * switches, timer based rotation and IPIs).
3413 	 */
3414 	local_irq_save(flags);
3415 
3416 	/* If this is a per-task event, it must be for current */
3417 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3418 		     event->hw.target != current);
3419 
3420 	/* If this is a per-CPU event, it must be for this CPU */
3421 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3422 		     event->cpu != smp_processor_id());
3423 
3424 	/*
3425 	 * It must not be an event with inherit set, we cannot read
3426 	 * all child counters from atomic context.
3427 	 */
3428 	WARN_ON_ONCE(event->attr.inherit);
3429 
3430 	/*
3431 	 * It must not have a pmu::count method, those are not
3432 	 * NMI safe.
3433 	 */
3434 	WARN_ON_ONCE(event->pmu->count);
3435 
3436 	/*
3437 	 * If the event is currently on this CPU, its either a per-task event,
3438 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3439 	 * oncpu == -1).
3440 	 */
3441 	if (event->oncpu == smp_processor_id())
3442 		event->pmu->read(event);
3443 
3444 	val = local64_read(&event->count);
3445 	local_irq_restore(flags);
3446 
3447 	return val;
3448 }
3449 
3450 static int perf_event_read(struct perf_event *event, bool group)
3451 {
3452 	int ret = 0;
3453 
3454 	/*
3455 	 * If event is enabled and currently active on a CPU, update the
3456 	 * value in the event structure:
3457 	 */
3458 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3459 		struct perf_read_data data = {
3460 			.event = event,
3461 			.group = group,
3462 			.ret = 0,
3463 		};
3464 		smp_call_function_single(event->oncpu,
3465 					 __perf_event_read, &data, 1);
3466 		ret = data.ret;
3467 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3468 		struct perf_event_context *ctx = event->ctx;
3469 		unsigned long flags;
3470 
3471 		raw_spin_lock_irqsave(&ctx->lock, flags);
3472 		/*
3473 		 * may read while context is not active
3474 		 * (e.g., thread is blocked), in that case
3475 		 * we cannot update context time
3476 		 */
3477 		if (ctx->is_active) {
3478 			update_context_time(ctx);
3479 			update_cgrp_time_from_event(event);
3480 		}
3481 		if (group)
3482 			update_group_times(event);
3483 		else
3484 			update_event_times(event);
3485 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3486 	}
3487 
3488 	return ret;
3489 }
3490 
3491 /*
3492  * Initialize the perf_event context in a task_struct:
3493  */
3494 static void __perf_event_init_context(struct perf_event_context *ctx)
3495 {
3496 	raw_spin_lock_init(&ctx->lock);
3497 	mutex_init(&ctx->mutex);
3498 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3499 	INIT_LIST_HEAD(&ctx->pinned_groups);
3500 	INIT_LIST_HEAD(&ctx->flexible_groups);
3501 	INIT_LIST_HEAD(&ctx->event_list);
3502 	atomic_set(&ctx->refcount, 1);
3503 }
3504 
3505 static struct perf_event_context *
3506 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3507 {
3508 	struct perf_event_context *ctx;
3509 
3510 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3511 	if (!ctx)
3512 		return NULL;
3513 
3514 	__perf_event_init_context(ctx);
3515 	if (task) {
3516 		ctx->task = task;
3517 		get_task_struct(task);
3518 	}
3519 	ctx->pmu = pmu;
3520 
3521 	return ctx;
3522 }
3523 
3524 static struct task_struct *
3525 find_lively_task_by_vpid(pid_t vpid)
3526 {
3527 	struct task_struct *task;
3528 
3529 	rcu_read_lock();
3530 	if (!vpid)
3531 		task = current;
3532 	else
3533 		task = find_task_by_vpid(vpid);
3534 	if (task)
3535 		get_task_struct(task);
3536 	rcu_read_unlock();
3537 
3538 	if (!task)
3539 		return ERR_PTR(-ESRCH);
3540 
3541 	return task;
3542 }
3543 
3544 /*
3545  * Returns a matching context with refcount and pincount.
3546  */
3547 static struct perf_event_context *
3548 find_get_context(struct pmu *pmu, struct task_struct *task,
3549 		struct perf_event *event)
3550 {
3551 	struct perf_event_context *ctx, *clone_ctx = NULL;
3552 	struct perf_cpu_context *cpuctx;
3553 	void *task_ctx_data = NULL;
3554 	unsigned long flags;
3555 	int ctxn, err;
3556 	int cpu = event->cpu;
3557 
3558 	if (!task) {
3559 		/* Must be root to operate on a CPU event: */
3560 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3561 			return ERR_PTR(-EACCES);
3562 
3563 		/*
3564 		 * We could be clever and allow to attach a event to an
3565 		 * offline CPU and activate it when the CPU comes up, but
3566 		 * that's for later.
3567 		 */
3568 		if (!cpu_online(cpu))
3569 			return ERR_PTR(-ENODEV);
3570 
3571 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3572 		ctx = &cpuctx->ctx;
3573 		get_ctx(ctx);
3574 		++ctx->pin_count;
3575 
3576 		return ctx;
3577 	}
3578 
3579 	err = -EINVAL;
3580 	ctxn = pmu->task_ctx_nr;
3581 	if (ctxn < 0)
3582 		goto errout;
3583 
3584 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3585 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3586 		if (!task_ctx_data) {
3587 			err = -ENOMEM;
3588 			goto errout;
3589 		}
3590 	}
3591 
3592 retry:
3593 	ctx = perf_lock_task_context(task, ctxn, &flags);
3594 	if (ctx) {
3595 		clone_ctx = unclone_ctx(ctx);
3596 		++ctx->pin_count;
3597 
3598 		if (task_ctx_data && !ctx->task_ctx_data) {
3599 			ctx->task_ctx_data = task_ctx_data;
3600 			task_ctx_data = NULL;
3601 		}
3602 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3603 
3604 		if (clone_ctx)
3605 			put_ctx(clone_ctx);
3606 	} else {
3607 		ctx = alloc_perf_context(pmu, task);
3608 		err = -ENOMEM;
3609 		if (!ctx)
3610 			goto errout;
3611 
3612 		if (task_ctx_data) {
3613 			ctx->task_ctx_data = task_ctx_data;
3614 			task_ctx_data = NULL;
3615 		}
3616 
3617 		err = 0;
3618 		mutex_lock(&task->perf_event_mutex);
3619 		/*
3620 		 * If it has already passed perf_event_exit_task().
3621 		 * we must see PF_EXITING, it takes this mutex too.
3622 		 */
3623 		if (task->flags & PF_EXITING)
3624 			err = -ESRCH;
3625 		else if (task->perf_event_ctxp[ctxn])
3626 			err = -EAGAIN;
3627 		else {
3628 			get_ctx(ctx);
3629 			++ctx->pin_count;
3630 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3631 		}
3632 		mutex_unlock(&task->perf_event_mutex);
3633 
3634 		if (unlikely(err)) {
3635 			put_ctx(ctx);
3636 
3637 			if (err == -EAGAIN)
3638 				goto retry;
3639 			goto errout;
3640 		}
3641 	}
3642 
3643 	kfree(task_ctx_data);
3644 	return ctx;
3645 
3646 errout:
3647 	kfree(task_ctx_data);
3648 	return ERR_PTR(err);
3649 }
3650 
3651 static void perf_event_free_filter(struct perf_event *event);
3652 static void perf_event_free_bpf_prog(struct perf_event *event);
3653 
3654 static void free_event_rcu(struct rcu_head *head)
3655 {
3656 	struct perf_event *event;
3657 
3658 	event = container_of(head, struct perf_event, rcu_head);
3659 	if (event->ns)
3660 		put_pid_ns(event->ns);
3661 	perf_event_free_filter(event);
3662 	kfree(event);
3663 }
3664 
3665 static void ring_buffer_attach(struct perf_event *event,
3666 			       struct ring_buffer *rb);
3667 
3668 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3669 {
3670 	if (event->parent)
3671 		return;
3672 
3673 	if (is_cgroup_event(event))
3674 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3675 }
3676 
3677 #ifdef CONFIG_NO_HZ_FULL
3678 static DEFINE_SPINLOCK(nr_freq_lock);
3679 #endif
3680 
3681 static void unaccount_freq_event_nohz(void)
3682 {
3683 #ifdef CONFIG_NO_HZ_FULL
3684 	spin_lock(&nr_freq_lock);
3685 	if (atomic_dec_and_test(&nr_freq_events))
3686 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3687 	spin_unlock(&nr_freq_lock);
3688 #endif
3689 }
3690 
3691 static void unaccount_freq_event(void)
3692 {
3693 	if (tick_nohz_full_enabled())
3694 		unaccount_freq_event_nohz();
3695 	else
3696 		atomic_dec(&nr_freq_events);
3697 }
3698 
3699 static void unaccount_event(struct perf_event *event)
3700 {
3701 	bool dec = false;
3702 
3703 	if (event->parent)
3704 		return;
3705 
3706 	if (event->attach_state & PERF_ATTACH_TASK)
3707 		dec = true;
3708 	if (event->attr.mmap || event->attr.mmap_data)
3709 		atomic_dec(&nr_mmap_events);
3710 	if (event->attr.comm)
3711 		atomic_dec(&nr_comm_events);
3712 	if (event->attr.task)
3713 		atomic_dec(&nr_task_events);
3714 	if (event->attr.freq)
3715 		unaccount_freq_event();
3716 	if (event->attr.context_switch) {
3717 		dec = true;
3718 		atomic_dec(&nr_switch_events);
3719 	}
3720 	if (is_cgroup_event(event))
3721 		dec = true;
3722 	if (has_branch_stack(event))
3723 		dec = true;
3724 
3725 	if (dec) {
3726 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3727 			schedule_delayed_work(&perf_sched_work, HZ);
3728 	}
3729 
3730 	unaccount_event_cpu(event, event->cpu);
3731 }
3732 
3733 static void perf_sched_delayed(struct work_struct *work)
3734 {
3735 	mutex_lock(&perf_sched_mutex);
3736 	if (atomic_dec_and_test(&perf_sched_count))
3737 		static_branch_disable(&perf_sched_events);
3738 	mutex_unlock(&perf_sched_mutex);
3739 }
3740 
3741 /*
3742  * The following implement mutual exclusion of events on "exclusive" pmus
3743  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3744  * at a time, so we disallow creating events that might conflict, namely:
3745  *
3746  *  1) cpu-wide events in the presence of per-task events,
3747  *  2) per-task events in the presence of cpu-wide events,
3748  *  3) two matching events on the same context.
3749  *
3750  * The former two cases are handled in the allocation path (perf_event_alloc(),
3751  * _free_event()), the latter -- before the first perf_install_in_context().
3752  */
3753 static int exclusive_event_init(struct perf_event *event)
3754 {
3755 	struct pmu *pmu = event->pmu;
3756 
3757 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3758 		return 0;
3759 
3760 	/*
3761 	 * Prevent co-existence of per-task and cpu-wide events on the
3762 	 * same exclusive pmu.
3763 	 *
3764 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3765 	 * events on this "exclusive" pmu, positive means there are
3766 	 * per-task events.
3767 	 *
3768 	 * Since this is called in perf_event_alloc() path, event::ctx
3769 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3770 	 * to mean "per-task event", because unlike other attach states it
3771 	 * never gets cleared.
3772 	 */
3773 	if (event->attach_state & PERF_ATTACH_TASK) {
3774 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3775 			return -EBUSY;
3776 	} else {
3777 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3778 			return -EBUSY;
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 static void exclusive_event_destroy(struct perf_event *event)
3785 {
3786 	struct pmu *pmu = event->pmu;
3787 
3788 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3789 		return;
3790 
3791 	/* see comment in exclusive_event_init() */
3792 	if (event->attach_state & PERF_ATTACH_TASK)
3793 		atomic_dec(&pmu->exclusive_cnt);
3794 	else
3795 		atomic_inc(&pmu->exclusive_cnt);
3796 }
3797 
3798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3799 {
3800 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3801 	    (e1->cpu == e2->cpu ||
3802 	     e1->cpu == -1 ||
3803 	     e2->cpu == -1))
3804 		return true;
3805 	return false;
3806 }
3807 
3808 /* Called under the same ctx::mutex as perf_install_in_context() */
3809 static bool exclusive_event_installable(struct perf_event *event,
3810 					struct perf_event_context *ctx)
3811 {
3812 	struct perf_event *iter_event;
3813 	struct pmu *pmu = event->pmu;
3814 
3815 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3816 		return true;
3817 
3818 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3819 		if (exclusive_event_match(iter_event, event))
3820 			return false;
3821 	}
3822 
3823 	return true;
3824 }
3825 
3826 static void perf_addr_filters_splice(struct perf_event *event,
3827 				       struct list_head *head);
3828 
3829 static void _free_event(struct perf_event *event)
3830 {
3831 	irq_work_sync(&event->pending);
3832 
3833 	unaccount_event(event);
3834 
3835 	if (event->rb) {
3836 		/*
3837 		 * Can happen when we close an event with re-directed output.
3838 		 *
3839 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3840 		 * over us; possibly making our ring_buffer_put() the last.
3841 		 */
3842 		mutex_lock(&event->mmap_mutex);
3843 		ring_buffer_attach(event, NULL);
3844 		mutex_unlock(&event->mmap_mutex);
3845 	}
3846 
3847 	if (is_cgroup_event(event))
3848 		perf_detach_cgroup(event);
3849 
3850 	if (!event->parent) {
3851 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3852 			put_callchain_buffers();
3853 	}
3854 
3855 	perf_event_free_bpf_prog(event);
3856 	perf_addr_filters_splice(event, NULL);
3857 	kfree(event->addr_filters_offs);
3858 
3859 	if (event->destroy)
3860 		event->destroy(event);
3861 
3862 	if (event->ctx)
3863 		put_ctx(event->ctx);
3864 
3865 	exclusive_event_destroy(event);
3866 	module_put(event->pmu->module);
3867 
3868 	call_rcu(&event->rcu_head, free_event_rcu);
3869 }
3870 
3871 /*
3872  * Used to free events which have a known refcount of 1, such as in error paths
3873  * where the event isn't exposed yet and inherited events.
3874  */
3875 static void free_event(struct perf_event *event)
3876 {
3877 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3878 				"unexpected event refcount: %ld; ptr=%p\n",
3879 				atomic_long_read(&event->refcount), event)) {
3880 		/* leak to avoid use-after-free */
3881 		return;
3882 	}
3883 
3884 	_free_event(event);
3885 }
3886 
3887 /*
3888  * Remove user event from the owner task.
3889  */
3890 static void perf_remove_from_owner(struct perf_event *event)
3891 {
3892 	struct task_struct *owner;
3893 
3894 	rcu_read_lock();
3895 	/*
3896 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3897 	 * observe !owner it means the list deletion is complete and we can
3898 	 * indeed free this event, otherwise we need to serialize on
3899 	 * owner->perf_event_mutex.
3900 	 */
3901 	owner = lockless_dereference(event->owner);
3902 	if (owner) {
3903 		/*
3904 		 * Since delayed_put_task_struct() also drops the last
3905 		 * task reference we can safely take a new reference
3906 		 * while holding the rcu_read_lock().
3907 		 */
3908 		get_task_struct(owner);
3909 	}
3910 	rcu_read_unlock();
3911 
3912 	if (owner) {
3913 		/*
3914 		 * If we're here through perf_event_exit_task() we're already
3915 		 * holding ctx->mutex which would be an inversion wrt. the
3916 		 * normal lock order.
3917 		 *
3918 		 * However we can safely take this lock because its the child
3919 		 * ctx->mutex.
3920 		 */
3921 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3922 
3923 		/*
3924 		 * We have to re-check the event->owner field, if it is cleared
3925 		 * we raced with perf_event_exit_task(), acquiring the mutex
3926 		 * ensured they're done, and we can proceed with freeing the
3927 		 * event.
3928 		 */
3929 		if (event->owner) {
3930 			list_del_init(&event->owner_entry);
3931 			smp_store_release(&event->owner, NULL);
3932 		}
3933 		mutex_unlock(&owner->perf_event_mutex);
3934 		put_task_struct(owner);
3935 	}
3936 }
3937 
3938 static void put_event(struct perf_event *event)
3939 {
3940 	if (!atomic_long_dec_and_test(&event->refcount))
3941 		return;
3942 
3943 	_free_event(event);
3944 }
3945 
3946 /*
3947  * Kill an event dead; while event:refcount will preserve the event
3948  * object, it will not preserve its functionality. Once the last 'user'
3949  * gives up the object, we'll destroy the thing.
3950  */
3951 int perf_event_release_kernel(struct perf_event *event)
3952 {
3953 	struct perf_event_context *ctx = event->ctx;
3954 	struct perf_event *child, *tmp;
3955 
3956 	/*
3957 	 * If we got here through err_file: fput(event_file); we will not have
3958 	 * attached to a context yet.
3959 	 */
3960 	if (!ctx) {
3961 		WARN_ON_ONCE(event->attach_state &
3962 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3963 		goto no_ctx;
3964 	}
3965 
3966 	if (!is_kernel_event(event))
3967 		perf_remove_from_owner(event);
3968 
3969 	ctx = perf_event_ctx_lock(event);
3970 	WARN_ON_ONCE(ctx->parent_ctx);
3971 	perf_remove_from_context(event, DETACH_GROUP);
3972 
3973 	raw_spin_lock_irq(&ctx->lock);
3974 	/*
3975 	 * Mark this even as STATE_DEAD, there is no external reference to it
3976 	 * anymore.
3977 	 *
3978 	 * Anybody acquiring event->child_mutex after the below loop _must_
3979 	 * also see this, most importantly inherit_event() which will avoid
3980 	 * placing more children on the list.
3981 	 *
3982 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3983 	 * child events.
3984 	 */
3985 	event->state = PERF_EVENT_STATE_DEAD;
3986 	raw_spin_unlock_irq(&ctx->lock);
3987 
3988 	perf_event_ctx_unlock(event, ctx);
3989 
3990 again:
3991 	mutex_lock(&event->child_mutex);
3992 	list_for_each_entry(child, &event->child_list, child_list) {
3993 
3994 		/*
3995 		 * Cannot change, child events are not migrated, see the
3996 		 * comment with perf_event_ctx_lock_nested().
3997 		 */
3998 		ctx = lockless_dereference(child->ctx);
3999 		/*
4000 		 * Since child_mutex nests inside ctx::mutex, we must jump
4001 		 * through hoops. We start by grabbing a reference on the ctx.
4002 		 *
4003 		 * Since the event cannot get freed while we hold the
4004 		 * child_mutex, the context must also exist and have a !0
4005 		 * reference count.
4006 		 */
4007 		get_ctx(ctx);
4008 
4009 		/*
4010 		 * Now that we have a ctx ref, we can drop child_mutex, and
4011 		 * acquire ctx::mutex without fear of it going away. Then we
4012 		 * can re-acquire child_mutex.
4013 		 */
4014 		mutex_unlock(&event->child_mutex);
4015 		mutex_lock(&ctx->mutex);
4016 		mutex_lock(&event->child_mutex);
4017 
4018 		/*
4019 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4020 		 * state, if child is still the first entry, it didn't get freed
4021 		 * and we can continue doing so.
4022 		 */
4023 		tmp = list_first_entry_or_null(&event->child_list,
4024 					       struct perf_event, child_list);
4025 		if (tmp == child) {
4026 			perf_remove_from_context(child, DETACH_GROUP);
4027 			list_del(&child->child_list);
4028 			free_event(child);
4029 			/*
4030 			 * This matches the refcount bump in inherit_event();
4031 			 * this can't be the last reference.
4032 			 */
4033 			put_event(event);
4034 		}
4035 
4036 		mutex_unlock(&event->child_mutex);
4037 		mutex_unlock(&ctx->mutex);
4038 		put_ctx(ctx);
4039 		goto again;
4040 	}
4041 	mutex_unlock(&event->child_mutex);
4042 
4043 no_ctx:
4044 	put_event(event); /* Must be the 'last' reference */
4045 	return 0;
4046 }
4047 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4048 
4049 /*
4050  * Called when the last reference to the file is gone.
4051  */
4052 static int perf_release(struct inode *inode, struct file *file)
4053 {
4054 	perf_event_release_kernel(file->private_data);
4055 	return 0;
4056 }
4057 
4058 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4059 {
4060 	struct perf_event *child;
4061 	u64 total = 0;
4062 
4063 	*enabled = 0;
4064 	*running = 0;
4065 
4066 	mutex_lock(&event->child_mutex);
4067 
4068 	(void)perf_event_read(event, false);
4069 	total += perf_event_count(event);
4070 
4071 	*enabled += event->total_time_enabled +
4072 			atomic64_read(&event->child_total_time_enabled);
4073 	*running += event->total_time_running +
4074 			atomic64_read(&event->child_total_time_running);
4075 
4076 	list_for_each_entry(child, &event->child_list, child_list) {
4077 		(void)perf_event_read(child, false);
4078 		total += perf_event_count(child);
4079 		*enabled += child->total_time_enabled;
4080 		*running += child->total_time_running;
4081 	}
4082 	mutex_unlock(&event->child_mutex);
4083 
4084 	return total;
4085 }
4086 EXPORT_SYMBOL_GPL(perf_event_read_value);
4087 
4088 static int __perf_read_group_add(struct perf_event *leader,
4089 					u64 read_format, u64 *values)
4090 {
4091 	struct perf_event *sub;
4092 	int n = 1; /* skip @nr */
4093 	int ret;
4094 
4095 	ret = perf_event_read(leader, true);
4096 	if (ret)
4097 		return ret;
4098 
4099 	/*
4100 	 * Since we co-schedule groups, {enabled,running} times of siblings
4101 	 * will be identical to those of the leader, so we only publish one
4102 	 * set.
4103 	 */
4104 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4105 		values[n++] += leader->total_time_enabled +
4106 			atomic64_read(&leader->child_total_time_enabled);
4107 	}
4108 
4109 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4110 		values[n++] += leader->total_time_running +
4111 			atomic64_read(&leader->child_total_time_running);
4112 	}
4113 
4114 	/*
4115 	 * Write {count,id} tuples for every sibling.
4116 	 */
4117 	values[n++] += perf_event_count(leader);
4118 	if (read_format & PERF_FORMAT_ID)
4119 		values[n++] = primary_event_id(leader);
4120 
4121 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4122 		values[n++] += perf_event_count(sub);
4123 		if (read_format & PERF_FORMAT_ID)
4124 			values[n++] = primary_event_id(sub);
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 static int perf_read_group(struct perf_event *event,
4131 				   u64 read_format, char __user *buf)
4132 {
4133 	struct perf_event *leader = event->group_leader, *child;
4134 	struct perf_event_context *ctx = leader->ctx;
4135 	int ret;
4136 	u64 *values;
4137 
4138 	lockdep_assert_held(&ctx->mutex);
4139 
4140 	values = kzalloc(event->read_size, GFP_KERNEL);
4141 	if (!values)
4142 		return -ENOMEM;
4143 
4144 	values[0] = 1 + leader->nr_siblings;
4145 
4146 	/*
4147 	 * By locking the child_mutex of the leader we effectively
4148 	 * lock the child list of all siblings.. XXX explain how.
4149 	 */
4150 	mutex_lock(&leader->child_mutex);
4151 
4152 	ret = __perf_read_group_add(leader, read_format, values);
4153 	if (ret)
4154 		goto unlock;
4155 
4156 	list_for_each_entry(child, &leader->child_list, child_list) {
4157 		ret = __perf_read_group_add(child, read_format, values);
4158 		if (ret)
4159 			goto unlock;
4160 	}
4161 
4162 	mutex_unlock(&leader->child_mutex);
4163 
4164 	ret = event->read_size;
4165 	if (copy_to_user(buf, values, event->read_size))
4166 		ret = -EFAULT;
4167 	goto out;
4168 
4169 unlock:
4170 	mutex_unlock(&leader->child_mutex);
4171 out:
4172 	kfree(values);
4173 	return ret;
4174 }
4175 
4176 static int perf_read_one(struct perf_event *event,
4177 				 u64 read_format, char __user *buf)
4178 {
4179 	u64 enabled, running;
4180 	u64 values[4];
4181 	int n = 0;
4182 
4183 	values[n++] = perf_event_read_value(event, &enabled, &running);
4184 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4185 		values[n++] = enabled;
4186 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4187 		values[n++] = running;
4188 	if (read_format & PERF_FORMAT_ID)
4189 		values[n++] = primary_event_id(event);
4190 
4191 	if (copy_to_user(buf, values, n * sizeof(u64)))
4192 		return -EFAULT;
4193 
4194 	return n * sizeof(u64);
4195 }
4196 
4197 static bool is_event_hup(struct perf_event *event)
4198 {
4199 	bool no_children;
4200 
4201 	if (event->state > PERF_EVENT_STATE_EXIT)
4202 		return false;
4203 
4204 	mutex_lock(&event->child_mutex);
4205 	no_children = list_empty(&event->child_list);
4206 	mutex_unlock(&event->child_mutex);
4207 	return no_children;
4208 }
4209 
4210 /*
4211  * Read the performance event - simple non blocking version for now
4212  */
4213 static ssize_t
4214 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4215 {
4216 	u64 read_format = event->attr.read_format;
4217 	int ret;
4218 
4219 	/*
4220 	 * Return end-of-file for a read on a event that is in
4221 	 * error state (i.e. because it was pinned but it couldn't be
4222 	 * scheduled on to the CPU at some point).
4223 	 */
4224 	if (event->state == PERF_EVENT_STATE_ERROR)
4225 		return 0;
4226 
4227 	if (count < event->read_size)
4228 		return -ENOSPC;
4229 
4230 	WARN_ON_ONCE(event->ctx->parent_ctx);
4231 	if (read_format & PERF_FORMAT_GROUP)
4232 		ret = perf_read_group(event, read_format, buf);
4233 	else
4234 		ret = perf_read_one(event, read_format, buf);
4235 
4236 	return ret;
4237 }
4238 
4239 static ssize_t
4240 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4241 {
4242 	struct perf_event *event = file->private_data;
4243 	struct perf_event_context *ctx;
4244 	int ret;
4245 
4246 	ctx = perf_event_ctx_lock(event);
4247 	ret = __perf_read(event, buf, count);
4248 	perf_event_ctx_unlock(event, ctx);
4249 
4250 	return ret;
4251 }
4252 
4253 static unsigned int perf_poll(struct file *file, poll_table *wait)
4254 {
4255 	struct perf_event *event = file->private_data;
4256 	struct ring_buffer *rb;
4257 	unsigned int events = POLLHUP;
4258 
4259 	poll_wait(file, &event->waitq, wait);
4260 
4261 	if (is_event_hup(event))
4262 		return events;
4263 
4264 	/*
4265 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4266 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4267 	 */
4268 	mutex_lock(&event->mmap_mutex);
4269 	rb = event->rb;
4270 	if (rb)
4271 		events = atomic_xchg(&rb->poll, 0);
4272 	mutex_unlock(&event->mmap_mutex);
4273 	return events;
4274 }
4275 
4276 static void _perf_event_reset(struct perf_event *event)
4277 {
4278 	(void)perf_event_read(event, false);
4279 	local64_set(&event->count, 0);
4280 	perf_event_update_userpage(event);
4281 }
4282 
4283 /*
4284  * Holding the top-level event's child_mutex means that any
4285  * descendant process that has inherited this event will block
4286  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4287  * task existence requirements of perf_event_enable/disable.
4288  */
4289 static void perf_event_for_each_child(struct perf_event *event,
4290 					void (*func)(struct perf_event *))
4291 {
4292 	struct perf_event *child;
4293 
4294 	WARN_ON_ONCE(event->ctx->parent_ctx);
4295 
4296 	mutex_lock(&event->child_mutex);
4297 	func(event);
4298 	list_for_each_entry(child, &event->child_list, child_list)
4299 		func(child);
4300 	mutex_unlock(&event->child_mutex);
4301 }
4302 
4303 static void perf_event_for_each(struct perf_event *event,
4304 				  void (*func)(struct perf_event *))
4305 {
4306 	struct perf_event_context *ctx = event->ctx;
4307 	struct perf_event *sibling;
4308 
4309 	lockdep_assert_held(&ctx->mutex);
4310 
4311 	event = event->group_leader;
4312 
4313 	perf_event_for_each_child(event, func);
4314 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4315 		perf_event_for_each_child(sibling, func);
4316 }
4317 
4318 static void __perf_event_period(struct perf_event *event,
4319 				struct perf_cpu_context *cpuctx,
4320 				struct perf_event_context *ctx,
4321 				void *info)
4322 {
4323 	u64 value = *((u64 *)info);
4324 	bool active;
4325 
4326 	if (event->attr.freq) {
4327 		event->attr.sample_freq = value;
4328 	} else {
4329 		event->attr.sample_period = value;
4330 		event->hw.sample_period = value;
4331 	}
4332 
4333 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4334 	if (active) {
4335 		perf_pmu_disable(ctx->pmu);
4336 		/*
4337 		 * We could be throttled; unthrottle now to avoid the tick
4338 		 * trying to unthrottle while we already re-started the event.
4339 		 */
4340 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4341 			event->hw.interrupts = 0;
4342 			perf_log_throttle(event, 1);
4343 		}
4344 		event->pmu->stop(event, PERF_EF_UPDATE);
4345 	}
4346 
4347 	local64_set(&event->hw.period_left, 0);
4348 
4349 	if (active) {
4350 		event->pmu->start(event, PERF_EF_RELOAD);
4351 		perf_pmu_enable(ctx->pmu);
4352 	}
4353 }
4354 
4355 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4356 {
4357 	u64 value;
4358 
4359 	if (!is_sampling_event(event))
4360 		return -EINVAL;
4361 
4362 	if (copy_from_user(&value, arg, sizeof(value)))
4363 		return -EFAULT;
4364 
4365 	if (!value)
4366 		return -EINVAL;
4367 
4368 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4369 		return -EINVAL;
4370 
4371 	event_function_call(event, __perf_event_period, &value);
4372 
4373 	return 0;
4374 }
4375 
4376 static const struct file_operations perf_fops;
4377 
4378 static inline int perf_fget_light(int fd, struct fd *p)
4379 {
4380 	struct fd f = fdget(fd);
4381 	if (!f.file)
4382 		return -EBADF;
4383 
4384 	if (f.file->f_op != &perf_fops) {
4385 		fdput(f);
4386 		return -EBADF;
4387 	}
4388 	*p = f;
4389 	return 0;
4390 }
4391 
4392 static int perf_event_set_output(struct perf_event *event,
4393 				 struct perf_event *output_event);
4394 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4395 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4396 
4397 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4398 {
4399 	void (*func)(struct perf_event *);
4400 	u32 flags = arg;
4401 
4402 	switch (cmd) {
4403 	case PERF_EVENT_IOC_ENABLE:
4404 		func = _perf_event_enable;
4405 		break;
4406 	case PERF_EVENT_IOC_DISABLE:
4407 		func = _perf_event_disable;
4408 		break;
4409 	case PERF_EVENT_IOC_RESET:
4410 		func = _perf_event_reset;
4411 		break;
4412 
4413 	case PERF_EVENT_IOC_REFRESH:
4414 		return _perf_event_refresh(event, arg);
4415 
4416 	case PERF_EVENT_IOC_PERIOD:
4417 		return perf_event_period(event, (u64 __user *)arg);
4418 
4419 	case PERF_EVENT_IOC_ID:
4420 	{
4421 		u64 id = primary_event_id(event);
4422 
4423 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4424 			return -EFAULT;
4425 		return 0;
4426 	}
4427 
4428 	case PERF_EVENT_IOC_SET_OUTPUT:
4429 	{
4430 		int ret;
4431 		if (arg != -1) {
4432 			struct perf_event *output_event;
4433 			struct fd output;
4434 			ret = perf_fget_light(arg, &output);
4435 			if (ret)
4436 				return ret;
4437 			output_event = output.file->private_data;
4438 			ret = perf_event_set_output(event, output_event);
4439 			fdput(output);
4440 		} else {
4441 			ret = perf_event_set_output(event, NULL);
4442 		}
4443 		return ret;
4444 	}
4445 
4446 	case PERF_EVENT_IOC_SET_FILTER:
4447 		return perf_event_set_filter(event, (void __user *)arg);
4448 
4449 	case PERF_EVENT_IOC_SET_BPF:
4450 		return perf_event_set_bpf_prog(event, arg);
4451 
4452 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4453 		struct ring_buffer *rb;
4454 
4455 		rcu_read_lock();
4456 		rb = rcu_dereference(event->rb);
4457 		if (!rb || !rb->nr_pages) {
4458 			rcu_read_unlock();
4459 			return -EINVAL;
4460 		}
4461 		rb_toggle_paused(rb, !!arg);
4462 		rcu_read_unlock();
4463 		return 0;
4464 	}
4465 	default:
4466 		return -ENOTTY;
4467 	}
4468 
4469 	if (flags & PERF_IOC_FLAG_GROUP)
4470 		perf_event_for_each(event, func);
4471 	else
4472 		perf_event_for_each_child(event, func);
4473 
4474 	return 0;
4475 }
4476 
4477 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4478 {
4479 	struct perf_event *event = file->private_data;
4480 	struct perf_event_context *ctx;
4481 	long ret;
4482 
4483 	ctx = perf_event_ctx_lock(event);
4484 	ret = _perf_ioctl(event, cmd, arg);
4485 	perf_event_ctx_unlock(event, ctx);
4486 
4487 	return ret;
4488 }
4489 
4490 #ifdef CONFIG_COMPAT
4491 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4492 				unsigned long arg)
4493 {
4494 	switch (_IOC_NR(cmd)) {
4495 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4496 	case _IOC_NR(PERF_EVENT_IOC_ID):
4497 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4498 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4499 			cmd &= ~IOCSIZE_MASK;
4500 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4501 		}
4502 		break;
4503 	}
4504 	return perf_ioctl(file, cmd, arg);
4505 }
4506 #else
4507 # define perf_compat_ioctl NULL
4508 #endif
4509 
4510 int perf_event_task_enable(void)
4511 {
4512 	struct perf_event_context *ctx;
4513 	struct perf_event *event;
4514 
4515 	mutex_lock(&current->perf_event_mutex);
4516 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4517 		ctx = perf_event_ctx_lock(event);
4518 		perf_event_for_each_child(event, _perf_event_enable);
4519 		perf_event_ctx_unlock(event, ctx);
4520 	}
4521 	mutex_unlock(&current->perf_event_mutex);
4522 
4523 	return 0;
4524 }
4525 
4526 int perf_event_task_disable(void)
4527 {
4528 	struct perf_event_context *ctx;
4529 	struct perf_event *event;
4530 
4531 	mutex_lock(&current->perf_event_mutex);
4532 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4533 		ctx = perf_event_ctx_lock(event);
4534 		perf_event_for_each_child(event, _perf_event_disable);
4535 		perf_event_ctx_unlock(event, ctx);
4536 	}
4537 	mutex_unlock(&current->perf_event_mutex);
4538 
4539 	return 0;
4540 }
4541 
4542 static int perf_event_index(struct perf_event *event)
4543 {
4544 	if (event->hw.state & PERF_HES_STOPPED)
4545 		return 0;
4546 
4547 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4548 		return 0;
4549 
4550 	return event->pmu->event_idx(event);
4551 }
4552 
4553 static void calc_timer_values(struct perf_event *event,
4554 				u64 *now,
4555 				u64 *enabled,
4556 				u64 *running)
4557 {
4558 	u64 ctx_time;
4559 
4560 	*now = perf_clock();
4561 	ctx_time = event->shadow_ctx_time + *now;
4562 	*enabled = ctx_time - event->tstamp_enabled;
4563 	*running = ctx_time - event->tstamp_running;
4564 }
4565 
4566 static void perf_event_init_userpage(struct perf_event *event)
4567 {
4568 	struct perf_event_mmap_page *userpg;
4569 	struct ring_buffer *rb;
4570 
4571 	rcu_read_lock();
4572 	rb = rcu_dereference(event->rb);
4573 	if (!rb)
4574 		goto unlock;
4575 
4576 	userpg = rb->user_page;
4577 
4578 	/* Allow new userspace to detect that bit 0 is deprecated */
4579 	userpg->cap_bit0_is_deprecated = 1;
4580 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4581 	userpg->data_offset = PAGE_SIZE;
4582 	userpg->data_size = perf_data_size(rb);
4583 
4584 unlock:
4585 	rcu_read_unlock();
4586 }
4587 
4588 void __weak arch_perf_update_userpage(
4589 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4590 {
4591 }
4592 
4593 /*
4594  * Callers need to ensure there can be no nesting of this function, otherwise
4595  * the seqlock logic goes bad. We can not serialize this because the arch
4596  * code calls this from NMI context.
4597  */
4598 void perf_event_update_userpage(struct perf_event *event)
4599 {
4600 	struct perf_event_mmap_page *userpg;
4601 	struct ring_buffer *rb;
4602 	u64 enabled, running, now;
4603 
4604 	rcu_read_lock();
4605 	rb = rcu_dereference(event->rb);
4606 	if (!rb)
4607 		goto unlock;
4608 
4609 	/*
4610 	 * compute total_time_enabled, total_time_running
4611 	 * based on snapshot values taken when the event
4612 	 * was last scheduled in.
4613 	 *
4614 	 * we cannot simply called update_context_time()
4615 	 * because of locking issue as we can be called in
4616 	 * NMI context
4617 	 */
4618 	calc_timer_values(event, &now, &enabled, &running);
4619 
4620 	userpg = rb->user_page;
4621 	/*
4622 	 * Disable preemption so as to not let the corresponding user-space
4623 	 * spin too long if we get preempted.
4624 	 */
4625 	preempt_disable();
4626 	++userpg->lock;
4627 	barrier();
4628 	userpg->index = perf_event_index(event);
4629 	userpg->offset = perf_event_count(event);
4630 	if (userpg->index)
4631 		userpg->offset -= local64_read(&event->hw.prev_count);
4632 
4633 	userpg->time_enabled = enabled +
4634 			atomic64_read(&event->child_total_time_enabled);
4635 
4636 	userpg->time_running = running +
4637 			atomic64_read(&event->child_total_time_running);
4638 
4639 	arch_perf_update_userpage(event, userpg, now);
4640 
4641 	barrier();
4642 	++userpg->lock;
4643 	preempt_enable();
4644 unlock:
4645 	rcu_read_unlock();
4646 }
4647 
4648 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4649 {
4650 	struct perf_event *event = vma->vm_file->private_data;
4651 	struct ring_buffer *rb;
4652 	int ret = VM_FAULT_SIGBUS;
4653 
4654 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4655 		if (vmf->pgoff == 0)
4656 			ret = 0;
4657 		return ret;
4658 	}
4659 
4660 	rcu_read_lock();
4661 	rb = rcu_dereference(event->rb);
4662 	if (!rb)
4663 		goto unlock;
4664 
4665 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4666 		goto unlock;
4667 
4668 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4669 	if (!vmf->page)
4670 		goto unlock;
4671 
4672 	get_page(vmf->page);
4673 	vmf->page->mapping = vma->vm_file->f_mapping;
4674 	vmf->page->index   = vmf->pgoff;
4675 
4676 	ret = 0;
4677 unlock:
4678 	rcu_read_unlock();
4679 
4680 	return ret;
4681 }
4682 
4683 static void ring_buffer_attach(struct perf_event *event,
4684 			       struct ring_buffer *rb)
4685 {
4686 	struct ring_buffer *old_rb = NULL;
4687 	unsigned long flags;
4688 
4689 	if (event->rb) {
4690 		/*
4691 		 * Should be impossible, we set this when removing
4692 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4693 		 */
4694 		WARN_ON_ONCE(event->rcu_pending);
4695 
4696 		old_rb = event->rb;
4697 		spin_lock_irqsave(&old_rb->event_lock, flags);
4698 		list_del_rcu(&event->rb_entry);
4699 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4700 
4701 		event->rcu_batches = get_state_synchronize_rcu();
4702 		event->rcu_pending = 1;
4703 	}
4704 
4705 	if (rb) {
4706 		if (event->rcu_pending) {
4707 			cond_synchronize_rcu(event->rcu_batches);
4708 			event->rcu_pending = 0;
4709 		}
4710 
4711 		spin_lock_irqsave(&rb->event_lock, flags);
4712 		list_add_rcu(&event->rb_entry, &rb->event_list);
4713 		spin_unlock_irqrestore(&rb->event_lock, flags);
4714 	}
4715 
4716 	rcu_assign_pointer(event->rb, rb);
4717 
4718 	if (old_rb) {
4719 		ring_buffer_put(old_rb);
4720 		/*
4721 		 * Since we detached before setting the new rb, so that we
4722 		 * could attach the new rb, we could have missed a wakeup.
4723 		 * Provide it now.
4724 		 */
4725 		wake_up_all(&event->waitq);
4726 	}
4727 }
4728 
4729 static void ring_buffer_wakeup(struct perf_event *event)
4730 {
4731 	struct ring_buffer *rb;
4732 
4733 	rcu_read_lock();
4734 	rb = rcu_dereference(event->rb);
4735 	if (rb) {
4736 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4737 			wake_up_all(&event->waitq);
4738 	}
4739 	rcu_read_unlock();
4740 }
4741 
4742 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4743 {
4744 	struct ring_buffer *rb;
4745 
4746 	rcu_read_lock();
4747 	rb = rcu_dereference(event->rb);
4748 	if (rb) {
4749 		if (!atomic_inc_not_zero(&rb->refcount))
4750 			rb = NULL;
4751 	}
4752 	rcu_read_unlock();
4753 
4754 	return rb;
4755 }
4756 
4757 void ring_buffer_put(struct ring_buffer *rb)
4758 {
4759 	if (!atomic_dec_and_test(&rb->refcount))
4760 		return;
4761 
4762 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4763 
4764 	call_rcu(&rb->rcu_head, rb_free_rcu);
4765 }
4766 
4767 static void perf_mmap_open(struct vm_area_struct *vma)
4768 {
4769 	struct perf_event *event = vma->vm_file->private_data;
4770 
4771 	atomic_inc(&event->mmap_count);
4772 	atomic_inc(&event->rb->mmap_count);
4773 
4774 	if (vma->vm_pgoff)
4775 		atomic_inc(&event->rb->aux_mmap_count);
4776 
4777 	if (event->pmu->event_mapped)
4778 		event->pmu->event_mapped(event);
4779 }
4780 
4781 static void perf_pmu_output_stop(struct perf_event *event);
4782 
4783 /*
4784  * A buffer can be mmap()ed multiple times; either directly through the same
4785  * event, or through other events by use of perf_event_set_output().
4786  *
4787  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4788  * the buffer here, where we still have a VM context. This means we need
4789  * to detach all events redirecting to us.
4790  */
4791 static void perf_mmap_close(struct vm_area_struct *vma)
4792 {
4793 	struct perf_event *event = vma->vm_file->private_data;
4794 
4795 	struct ring_buffer *rb = ring_buffer_get(event);
4796 	struct user_struct *mmap_user = rb->mmap_user;
4797 	int mmap_locked = rb->mmap_locked;
4798 	unsigned long size = perf_data_size(rb);
4799 
4800 	if (event->pmu->event_unmapped)
4801 		event->pmu->event_unmapped(event);
4802 
4803 	/*
4804 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4805 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4806 	 * serialize with perf_mmap here.
4807 	 */
4808 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4809 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4810 		/*
4811 		 * Stop all AUX events that are writing to this buffer,
4812 		 * so that we can free its AUX pages and corresponding PMU
4813 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4814 		 * they won't start any more (see perf_aux_output_begin()).
4815 		 */
4816 		perf_pmu_output_stop(event);
4817 
4818 		/* now it's safe to free the pages */
4819 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4820 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4821 
4822 		/* this has to be the last one */
4823 		rb_free_aux(rb);
4824 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4825 
4826 		mutex_unlock(&event->mmap_mutex);
4827 	}
4828 
4829 	atomic_dec(&rb->mmap_count);
4830 
4831 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4832 		goto out_put;
4833 
4834 	ring_buffer_attach(event, NULL);
4835 	mutex_unlock(&event->mmap_mutex);
4836 
4837 	/* If there's still other mmap()s of this buffer, we're done. */
4838 	if (atomic_read(&rb->mmap_count))
4839 		goto out_put;
4840 
4841 	/*
4842 	 * No other mmap()s, detach from all other events that might redirect
4843 	 * into the now unreachable buffer. Somewhat complicated by the
4844 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4845 	 */
4846 again:
4847 	rcu_read_lock();
4848 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4849 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4850 			/*
4851 			 * This event is en-route to free_event() which will
4852 			 * detach it and remove it from the list.
4853 			 */
4854 			continue;
4855 		}
4856 		rcu_read_unlock();
4857 
4858 		mutex_lock(&event->mmap_mutex);
4859 		/*
4860 		 * Check we didn't race with perf_event_set_output() which can
4861 		 * swizzle the rb from under us while we were waiting to
4862 		 * acquire mmap_mutex.
4863 		 *
4864 		 * If we find a different rb; ignore this event, a next
4865 		 * iteration will no longer find it on the list. We have to
4866 		 * still restart the iteration to make sure we're not now
4867 		 * iterating the wrong list.
4868 		 */
4869 		if (event->rb == rb)
4870 			ring_buffer_attach(event, NULL);
4871 
4872 		mutex_unlock(&event->mmap_mutex);
4873 		put_event(event);
4874 
4875 		/*
4876 		 * Restart the iteration; either we're on the wrong list or
4877 		 * destroyed its integrity by doing a deletion.
4878 		 */
4879 		goto again;
4880 	}
4881 	rcu_read_unlock();
4882 
4883 	/*
4884 	 * It could be there's still a few 0-ref events on the list; they'll
4885 	 * get cleaned up by free_event() -- they'll also still have their
4886 	 * ref on the rb and will free it whenever they are done with it.
4887 	 *
4888 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4889 	 * undo the VM accounting.
4890 	 */
4891 
4892 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4893 	vma->vm_mm->pinned_vm -= mmap_locked;
4894 	free_uid(mmap_user);
4895 
4896 out_put:
4897 	ring_buffer_put(rb); /* could be last */
4898 }
4899 
4900 static const struct vm_operations_struct perf_mmap_vmops = {
4901 	.open		= perf_mmap_open,
4902 	.close		= perf_mmap_close, /* non mergable */
4903 	.fault		= perf_mmap_fault,
4904 	.page_mkwrite	= perf_mmap_fault,
4905 };
4906 
4907 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4908 {
4909 	struct perf_event *event = file->private_data;
4910 	unsigned long user_locked, user_lock_limit;
4911 	struct user_struct *user = current_user();
4912 	unsigned long locked, lock_limit;
4913 	struct ring_buffer *rb = NULL;
4914 	unsigned long vma_size;
4915 	unsigned long nr_pages;
4916 	long user_extra = 0, extra = 0;
4917 	int ret = 0, flags = 0;
4918 
4919 	/*
4920 	 * Don't allow mmap() of inherited per-task counters. This would
4921 	 * create a performance issue due to all children writing to the
4922 	 * same rb.
4923 	 */
4924 	if (event->cpu == -1 && event->attr.inherit)
4925 		return -EINVAL;
4926 
4927 	if (!(vma->vm_flags & VM_SHARED))
4928 		return -EINVAL;
4929 
4930 	vma_size = vma->vm_end - vma->vm_start;
4931 
4932 	if (vma->vm_pgoff == 0) {
4933 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4934 	} else {
4935 		/*
4936 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4937 		 * mapped, all subsequent mappings should have the same size
4938 		 * and offset. Must be above the normal perf buffer.
4939 		 */
4940 		u64 aux_offset, aux_size;
4941 
4942 		if (!event->rb)
4943 			return -EINVAL;
4944 
4945 		nr_pages = vma_size / PAGE_SIZE;
4946 
4947 		mutex_lock(&event->mmap_mutex);
4948 		ret = -EINVAL;
4949 
4950 		rb = event->rb;
4951 		if (!rb)
4952 			goto aux_unlock;
4953 
4954 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4955 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4956 
4957 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4958 			goto aux_unlock;
4959 
4960 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4961 			goto aux_unlock;
4962 
4963 		/* already mapped with a different offset */
4964 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4965 			goto aux_unlock;
4966 
4967 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4968 			goto aux_unlock;
4969 
4970 		/* already mapped with a different size */
4971 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4972 			goto aux_unlock;
4973 
4974 		if (!is_power_of_2(nr_pages))
4975 			goto aux_unlock;
4976 
4977 		if (!atomic_inc_not_zero(&rb->mmap_count))
4978 			goto aux_unlock;
4979 
4980 		if (rb_has_aux(rb)) {
4981 			atomic_inc(&rb->aux_mmap_count);
4982 			ret = 0;
4983 			goto unlock;
4984 		}
4985 
4986 		atomic_set(&rb->aux_mmap_count, 1);
4987 		user_extra = nr_pages;
4988 
4989 		goto accounting;
4990 	}
4991 
4992 	/*
4993 	 * If we have rb pages ensure they're a power-of-two number, so we
4994 	 * can do bitmasks instead of modulo.
4995 	 */
4996 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4997 		return -EINVAL;
4998 
4999 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5000 		return -EINVAL;
5001 
5002 	WARN_ON_ONCE(event->ctx->parent_ctx);
5003 again:
5004 	mutex_lock(&event->mmap_mutex);
5005 	if (event->rb) {
5006 		if (event->rb->nr_pages != nr_pages) {
5007 			ret = -EINVAL;
5008 			goto unlock;
5009 		}
5010 
5011 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5012 			/*
5013 			 * Raced against perf_mmap_close() through
5014 			 * perf_event_set_output(). Try again, hope for better
5015 			 * luck.
5016 			 */
5017 			mutex_unlock(&event->mmap_mutex);
5018 			goto again;
5019 		}
5020 
5021 		goto unlock;
5022 	}
5023 
5024 	user_extra = nr_pages + 1;
5025 
5026 accounting:
5027 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5028 
5029 	/*
5030 	 * Increase the limit linearly with more CPUs:
5031 	 */
5032 	user_lock_limit *= num_online_cpus();
5033 
5034 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5035 
5036 	if (user_locked > user_lock_limit)
5037 		extra = user_locked - user_lock_limit;
5038 
5039 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5040 	lock_limit >>= PAGE_SHIFT;
5041 	locked = vma->vm_mm->pinned_vm + extra;
5042 
5043 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5044 		!capable(CAP_IPC_LOCK)) {
5045 		ret = -EPERM;
5046 		goto unlock;
5047 	}
5048 
5049 	WARN_ON(!rb && event->rb);
5050 
5051 	if (vma->vm_flags & VM_WRITE)
5052 		flags |= RING_BUFFER_WRITABLE;
5053 
5054 	if (!rb) {
5055 		rb = rb_alloc(nr_pages,
5056 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5057 			      event->cpu, flags);
5058 
5059 		if (!rb) {
5060 			ret = -ENOMEM;
5061 			goto unlock;
5062 		}
5063 
5064 		atomic_set(&rb->mmap_count, 1);
5065 		rb->mmap_user = get_current_user();
5066 		rb->mmap_locked = extra;
5067 
5068 		ring_buffer_attach(event, rb);
5069 
5070 		perf_event_init_userpage(event);
5071 		perf_event_update_userpage(event);
5072 	} else {
5073 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5074 				   event->attr.aux_watermark, flags);
5075 		if (!ret)
5076 			rb->aux_mmap_locked = extra;
5077 	}
5078 
5079 unlock:
5080 	if (!ret) {
5081 		atomic_long_add(user_extra, &user->locked_vm);
5082 		vma->vm_mm->pinned_vm += extra;
5083 
5084 		atomic_inc(&event->mmap_count);
5085 	} else if (rb) {
5086 		atomic_dec(&rb->mmap_count);
5087 	}
5088 aux_unlock:
5089 	mutex_unlock(&event->mmap_mutex);
5090 
5091 	/*
5092 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5093 	 * vma.
5094 	 */
5095 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5096 	vma->vm_ops = &perf_mmap_vmops;
5097 
5098 	if (event->pmu->event_mapped)
5099 		event->pmu->event_mapped(event);
5100 
5101 	return ret;
5102 }
5103 
5104 static int perf_fasync(int fd, struct file *filp, int on)
5105 {
5106 	struct inode *inode = file_inode(filp);
5107 	struct perf_event *event = filp->private_data;
5108 	int retval;
5109 
5110 	inode_lock(inode);
5111 	retval = fasync_helper(fd, filp, on, &event->fasync);
5112 	inode_unlock(inode);
5113 
5114 	if (retval < 0)
5115 		return retval;
5116 
5117 	return 0;
5118 }
5119 
5120 static const struct file_operations perf_fops = {
5121 	.llseek			= no_llseek,
5122 	.release		= perf_release,
5123 	.read			= perf_read,
5124 	.poll			= perf_poll,
5125 	.unlocked_ioctl		= perf_ioctl,
5126 	.compat_ioctl		= perf_compat_ioctl,
5127 	.mmap			= perf_mmap,
5128 	.fasync			= perf_fasync,
5129 };
5130 
5131 /*
5132  * Perf event wakeup
5133  *
5134  * If there's data, ensure we set the poll() state and publish everything
5135  * to user-space before waking everybody up.
5136  */
5137 
5138 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5139 {
5140 	/* only the parent has fasync state */
5141 	if (event->parent)
5142 		event = event->parent;
5143 	return &event->fasync;
5144 }
5145 
5146 void perf_event_wakeup(struct perf_event *event)
5147 {
5148 	ring_buffer_wakeup(event);
5149 
5150 	if (event->pending_kill) {
5151 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5152 		event->pending_kill = 0;
5153 	}
5154 }
5155 
5156 static void perf_pending_event(struct irq_work *entry)
5157 {
5158 	struct perf_event *event = container_of(entry,
5159 			struct perf_event, pending);
5160 	int rctx;
5161 
5162 	rctx = perf_swevent_get_recursion_context();
5163 	/*
5164 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5165 	 * and we won't recurse 'further'.
5166 	 */
5167 
5168 	if (event->pending_disable) {
5169 		event->pending_disable = 0;
5170 		perf_event_disable_local(event);
5171 	}
5172 
5173 	if (event->pending_wakeup) {
5174 		event->pending_wakeup = 0;
5175 		perf_event_wakeup(event);
5176 	}
5177 
5178 	if (rctx >= 0)
5179 		perf_swevent_put_recursion_context(rctx);
5180 }
5181 
5182 /*
5183  * We assume there is only KVM supporting the callbacks.
5184  * Later on, we might change it to a list if there is
5185  * another virtualization implementation supporting the callbacks.
5186  */
5187 struct perf_guest_info_callbacks *perf_guest_cbs;
5188 
5189 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5190 {
5191 	perf_guest_cbs = cbs;
5192 	return 0;
5193 }
5194 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5195 
5196 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5197 {
5198 	perf_guest_cbs = NULL;
5199 	return 0;
5200 }
5201 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5202 
5203 static void
5204 perf_output_sample_regs(struct perf_output_handle *handle,
5205 			struct pt_regs *regs, u64 mask)
5206 {
5207 	int bit;
5208 
5209 	for_each_set_bit(bit, (const unsigned long *) &mask,
5210 			 sizeof(mask) * BITS_PER_BYTE) {
5211 		u64 val;
5212 
5213 		val = perf_reg_value(regs, bit);
5214 		perf_output_put(handle, val);
5215 	}
5216 }
5217 
5218 static void perf_sample_regs_user(struct perf_regs *regs_user,
5219 				  struct pt_regs *regs,
5220 				  struct pt_regs *regs_user_copy)
5221 {
5222 	if (user_mode(regs)) {
5223 		regs_user->abi = perf_reg_abi(current);
5224 		regs_user->regs = regs;
5225 	} else if (current->mm) {
5226 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5227 	} else {
5228 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5229 		regs_user->regs = NULL;
5230 	}
5231 }
5232 
5233 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5234 				  struct pt_regs *regs)
5235 {
5236 	regs_intr->regs = regs;
5237 	regs_intr->abi  = perf_reg_abi(current);
5238 }
5239 
5240 
5241 /*
5242  * Get remaining task size from user stack pointer.
5243  *
5244  * It'd be better to take stack vma map and limit this more
5245  * precisly, but there's no way to get it safely under interrupt,
5246  * so using TASK_SIZE as limit.
5247  */
5248 static u64 perf_ustack_task_size(struct pt_regs *regs)
5249 {
5250 	unsigned long addr = perf_user_stack_pointer(regs);
5251 
5252 	if (!addr || addr >= TASK_SIZE)
5253 		return 0;
5254 
5255 	return TASK_SIZE - addr;
5256 }
5257 
5258 static u16
5259 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5260 			struct pt_regs *regs)
5261 {
5262 	u64 task_size;
5263 
5264 	/* No regs, no stack pointer, no dump. */
5265 	if (!regs)
5266 		return 0;
5267 
5268 	/*
5269 	 * Check if we fit in with the requested stack size into the:
5270 	 * - TASK_SIZE
5271 	 *   If we don't, we limit the size to the TASK_SIZE.
5272 	 *
5273 	 * - remaining sample size
5274 	 *   If we don't, we customize the stack size to
5275 	 *   fit in to the remaining sample size.
5276 	 */
5277 
5278 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5279 	stack_size = min(stack_size, (u16) task_size);
5280 
5281 	/* Current header size plus static size and dynamic size. */
5282 	header_size += 2 * sizeof(u64);
5283 
5284 	/* Do we fit in with the current stack dump size? */
5285 	if ((u16) (header_size + stack_size) < header_size) {
5286 		/*
5287 		 * If we overflow the maximum size for the sample,
5288 		 * we customize the stack dump size to fit in.
5289 		 */
5290 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5291 		stack_size = round_up(stack_size, sizeof(u64));
5292 	}
5293 
5294 	return stack_size;
5295 }
5296 
5297 static void
5298 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5299 			  struct pt_regs *regs)
5300 {
5301 	/* Case of a kernel thread, nothing to dump */
5302 	if (!regs) {
5303 		u64 size = 0;
5304 		perf_output_put(handle, size);
5305 	} else {
5306 		unsigned long sp;
5307 		unsigned int rem;
5308 		u64 dyn_size;
5309 
5310 		/*
5311 		 * We dump:
5312 		 * static size
5313 		 *   - the size requested by user or the best one we can fit
5314 		 *     in to the sample max size
5315 		 * data
5316 		 *   - user stack dump data
5317 		 * dynamic size
5318 		 *   - the actual dumped size
5319 		 */
5320 
5321 		/* Static size. */
5322 		perf_output_put(handle, dump_size);
5323 
5324 		/* Data. */
5325 		sp = perf_user_stack_pointer(regs);
5326 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5327 		dyn_size = dump_size - rem;
5328 
5329 		perf_output_skip(handle, rem);
5330 
5331 		/* Dynamic size. */
5332 		perf_output_put(handle, dyn_size);
5333 	}
5334 }
5335 
5336 static void __perf_event_header__init_id(struct perf_event_header *header,
5337 					 struct perf_sample_data *data,
5338 					 struct perf_event *event)
5339 {
5340 	u64 sample_type = event->attr.sample_type;
5341 
5342 	data->type = sample_type;
5343 	header->size += event->id_header_size;
5344 
5345 	if (sample_type & PERF_SAMPLE_TID) {
5346 		/* namespace issues */
5347 		data->tid_entry.pid = perf_event_pid(event, current);
5348 		data->tid_entry.tid = perf_event_tid(event, current);
5349 	}
5350 
5351 	if (sample_type & PERF_SAMPLE_TIME)
5352 		data->time = perf_event_clock(event);
5353 
5354 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5355 		data->id = primary_event_id(event);
5356 
5357 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5358 		data->stream_id = event->id;
5359 
5360 	if (sample_type & PERF_SAMPLE_CPU) {
5361 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5362 		data->cpu_entry.reserved = 0;
5363 	}
5364 }
5365 
5366 void perf_event_header__init_id(struct perf_event_header *header,
5367 				struct perf_sample_data *data,
5368 				struct perf_event *event)
5369 {
5370 	if (event->attr.sample_id_all)
5371 		__perf_event_header__init_id(header, data, event);
5372 }
5373 
5374 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5375 					   struct perf_sample_data *data)
5376 {
5377 	u64 sample_type = data->type;
5378 
5379 	if (sample_type & PERF_SAMPLE_TID)
5380 		perf_output_put(handle, data->tid_entry);
5381 
5382 	if (sample_type & PERF_SAMPLE_TIME)
5383 		perf_output_put(handle, data->time);
5384 
5385 	if (sample_type & PERF_SAMPLE_ID)
5386 		perf_output_put(handle, data->id);
5387 
5388 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5389 		perf_output_put(handle, data->stream_id);
5390 
5391 	if (sample_type & PERF_SAMPLE_CPU)
5392 		perf_output_put(handle, data->cpu_entry);
5393 
5394 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5395 		perf_output_put(handle, data->id);
5396 }
5397 
5398 void perf_event__output_id_sample(struct perf_event *event,
5399 				  struct perf_output_handle *handle,
5400 				  struct perf_sample_data *sample)
5401 {
5402 	if (event->attr.sample_id_all)
5403 		__perf_event__output_id_sample(handle, sample);
5404 }
5405 
5406 static void perf_output_read_one(struct perf_output_handle *handle,
5407 				 struct perf_event *event,
5408 				 u64 enabled, u64 running)
5409 {
5410 	u64 read_format = event->attr.read_format;
5411 	u64 values[4];
5412 	int n = 0;
5413 
5414 	values[n++] = perf_event_count(event);
5415 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5416 		values[n++] = enabled +
5417 			atomic64_read(&event->child_total_time_enabled);
5418 	}
5419 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5420 		values[n++] = running +
5421 			atomic64_read(&event->child_total_time_running);
5422 	}
5423 	if (read_format & PERF_FORMAT_ID)
5424 		values[n++] = primary_event_id(event);
5425 
5426 	__output_copy(handle, values, n * sizeof(u64));
5427 }
5428 
5429 /*
5430  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5431  */
5432 static void perf_output_read_group(struct perf_output_handle *handle,
5433 			    struct perf_event *event,
5434 			    u64 enabled, u64 running)
5435 {
5436 	struct perf_event *leader = event->group_leader, *sub;
5437 	u64 read_format = event->attr.read_format;
5438 	u64 values[5];
5439 	int n = 0;
5440 
5441 	values[n++] = 1 + leader->nr_siblings;
5442 
5443 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5444 		values[n++] = enabled;
5445 
5446 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5447 		values[n++] = running;
5448 
5449 	if (leader != event)
5450 		leader->pmu->read(leader);
5451 
5452 	values[n++] = perf_event_count(leader);
5453 	if (read_format & PERF_FORMAT_ID)
5454 		values[n++] = primary_event_id(leader);
5455 
5456 	__output_copy(handle, values, n * sizeof(u64));
5457 
5458 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5459 		n = 0;
5460 
5461 		if ((sub != event) &&
5462 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5463 			sub->pmu->read(sub);
5464 
5465 		values[n++] = perf_event_count(sub);
5466 		if (read_format & PERF_FORMAT_ID)
5467 			values[n++] = primary_event_id(sub);
5468 
5469 		__output_copy(handle, values, n * sizeof(u64));
5470 	}
5471 }
5472 
5473 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5474 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5475 
5476 static void perf_output_read(struct perf_output_handle *handle,
5477 			     struct perf_event *event)
5478 {
5479 	u64 enabled = 0, running = 0, now;
5480 	u64 read_format = event->attr.read_format;
5481 
5482 	/*
5483 	 * compute total_time_enabled, total_time_running
5484 	 * based on snapshot values taken when the event
5485 	 * was last scheduled in.
5486 	 *
5487 	 * we cannot simply called update_context_time()
5488 	 * because of locking issue as we are called in
5489 	 * NMI context
5490 	 */
5491 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5492 		calc_timer_values(event, &now, &enabled, &running);
5493 
5494 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5495 		perf_output_read_group(handle, event, enabled, running);
5496 	else
5497 		perf_output_read_one(handle, event, enabled, running);
5498 }
5499 
5500 void perf_output_sample(struct perf_output_handle *handle,
5501 			struct perf_event_header *header,
5502 			struct perf_sample_data *data,
5503 			struct perf_event *event)
5504 {
5505 	u64 sample_type = data->type;
5506 
5507 	perf_output_put(handle, *header);
5508 
5509 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5510 		perf_output_put(handle, data->id);
5511 
5512 	if (sample_type & PERF_SAMPLE_IP)
5513 		perf_output_put(handle, data->ip);
5514 
5515 	if (sample_type & PERF_SAMPLE_TID)
5516 		perf_output_put(handle, data->tid_entry);
5517 
5518 	if (sample_type & PERF_SAMPLE_TIME)
5519 		perf_output_put(handle, data->time);
5520 
5521 	if (sample_type & PERF_SAMPLE_ADDR)
5522 		perf_output_put(handle, data->addr);
5523 
5524 	if (sample_type & PERF_SAMPLE_ID)
5525 		perf_output_put(handle, data->id);
5526 
5527 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5528 		perf_output_put(handle, data->stream_id);
5529 
5530 	if (sample_type & PERF_SAMPLE_CPU)
5531 		perf_output_put(handle, data->cpu_entry);
5532 
5533 	if (sample_type & PERF_SAMPLE_PERIOD)
5534 		perf_output_put(handle, data->period);
5535 
5536 	if (sample_type & PERF_SAMPLE_READ)
5537 		perf_output_read(handle, event);
5538 
5539 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5540 		if (data->callchain) {
5541 			int size = 1;
5542 
5543 			if (data->callchain)
5544 				size += data->callchain->nr;
5545 
5546 			size *= sizeof(u64);
5547 
5548 			__output_copy(handle, data->callchain, size);
5549 		} else {
5550 			u64 nr = 0;
5551 			perf_output_put(handle, nr);
5552 		}
5553 	}
5554 
5555 	if (sample_type & PERF_SAMPLE_RAW) {
5556 		if (data->raw) {
5557 			u32 raw_size = data->raw->size;
5558 			u32 real_size = round_up(raw_size + sizeof(u32),
5559 						 sizeof(u64)) - sizeof(u32);
5560 			u64 zero = 0;
5561 
5562 			perf_output_put(handle, real_size);
5563 			__output_copy(handle, data->raw->data, raw_size);
5564 			if (real_size - raw_size)
5565 				__output_copy(handle, &zero, real_size - raw_size);
5566 		} else {
5567 			struct {
5568 				u32	size;
5569 				u32	data;
5570 			} raw = {
5571 				.size = sizeof(u32),
5572 				.data = 0,
5573 			};
5574 			perf_output_put(handle, raw);
5575 		}
5576 	}
5577 
5578 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5579 		if (data->br_stack) {
5580 			size_t size;
5581 
5582 			size = data->br_stack->nr
5583 			     * sizeof(struct perf_branch_entry);
5584 
5585 			perf_output_put(handle, data->br_stack->nr);
5586 			perf_output_copy(handle, data->br_stack->entries, size);
5587 		} else {
5588 			/*
5589 			 * we always store at least the value of nr
5590 			 */
5591 			u64 nr = 0;
5592 			perf_output_put(handle, nr);
5593 		}
5594 	}
5595 
5596 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5597 		u64 abi = data->regs_user.abi;
5598 
5599 		/*
5600 		 * If there are no regs to dump, notice it through
5601 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5602 		 */
5603 		perf_output_put(handle, abi);
5604 
5605 		if (abi) {
5606 			u64 mask = event->attr.sample_regs_user;
5607 			perf_output_sample_regs(handle,
5608 						data->regs_user.regs,
5609 						mask);
5610 		}
5611 	}
5612 
5613 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5614 		perf_output_sample_ustack(handle,
5615 					  data->stack_user_size,
5616 					  data->regs_user.regs);
5617 	}
5618 
5619 	if (sample_type & PERF_SAMPLE_WEIGHT)
5620 		perf_output_put(handle, data->weight);
5621 
5622 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5623 		perf_output_put(handle, data->data_src.val);
5624 
5625 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5626 		perf_output_put(handle, data->txn);
5627 
5628 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5629 		u64 abi = data->regs_intr.abi;
5630 		/*
5631 		 * If there are no regs to dump, notice it through
5632 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5633 		 */
5634 		perf_output_put(handle, abi);
5635 
5636 		if (abi) {
5637 			u64 mask = event->attr.sample_regs_intr;
5638 
5639 			perf_output_sample_regs(handle,
5640 						data->regs_intr.regs,
5641 						mask);
5642 		}
5643 	}
5644 
5645 	if (!event->attr.watermark) {
5646 		int wakeup_events = event->attr.wakeup_events;
5647 
5648 		if (wakeup_events) {
5649 			struct ring_buffer *rb = handle->rb;
5650 			int events = local_inc_return(&rb->events);
5651 
5652 			if (events >= wakeup_events) {
5653 				local_sub(wakeup_events, &rb->events);
5654 				local_inc(&rb->wakeup);
5655 			}
5656 		}
5657 	}
5658 }
5659 
5660 void perf_prepare_sample(struct perf_event_header *header,
5661 			 struct perf_sample_data *data,
5662 			 struct perf_event *event,
5663 			 struct pt_regs *regs)
5664 {
5665 	u64 sample_type = event->attr.sample_type;
5666 
5667 	header->type = PERF_RECORD_SAMPLE;
5668 	header->size = sizeof(*header) + event->header_size;
5669 
5670 	header->misc = 0;
5671 	header->misc |= perf_misc_flags(regs);
5672 
5673 	__perf_event_header__init_id(header, data, event);
5674 
5675 	if (sample_type & PERF_SAMPLE_IP)
5676 		data->ip = perf_instruction_pointer(regs);
5677 
5678 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5679 		int size = 1;
5680 
5681 		data->callchain = perf_callchain(event, regs);
5682 
5683 		if (data->callchain)
5684 			size += data->callchain->nr;
5685 
5686 		header->size += size * sizeof(u64);
5687 	}
5688 
5689 	if (sample_type & PERF_SAMPLE_RAW) {
5690 		int size = sizeof(u32);
5691 
5692 		if (data->raw)
5693 			size += data->raw->size;
5694 		else
5695 			size += sizeof(u32);
5696 
5697 		header->size += round_up(size, sizeof(u64));
5698 	}
5699 
5700 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5701 		int size = sizeof(u64); /* nr */
5702 		if (data->br_stack) {
5703 			size += data->br_stack->nr
5704 			      * sizeof(struct perf_branch_entry);
5705 		}
5706 		header->size += size;
5707 	}
5708 
5709 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5710 		perf_sample_regs_user(&data->regs_user, regs,
5711 				      &data->regs_user_copy);
5712 
5713 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5714 		/* regs dump ABI info */
5715 		int size = sizeof(u64);
5716 
5717 		if (data->regs_user.regs) {
5718 			u64 mask = event->attr.sample_regs_user;
5719 			size += hweight64(mask) * sizeof(u64);
5720 		}
5721 
5722 		header->size += size;
5723 	}
5724 
5725 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5726 		/*
5727 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5728 		 * processed as the last one or have additional check added
5729 		 * in case new sample type is added, because we could eat
5730 		 * up the rest of the sample size.
5731 		 */
5732 		u16 stack_size = event->attr.sample_stack_user;
5733 		u16 size = sizeof(u64);
5734 
5735 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5736 						     data->regs_user.regs);
5737 
5738 		/*
5739 		 * If there is something to dump, add space for the dump
5740 		 * itself and for the field that tells the dynamic size,
5741 		 * which is how many have been actually dumped.
5742 		 */
5743 		if (stack_size)
5744 			size += sizeof(u64) + stack_size;
5745 
5746 		data->stack_user_size = stack_size;
5747 		header->size += size;
5748 	}
5749 
5750 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5751 		/* regs dump ABI info */
5752 		int size = sizeof(u64);
5753 
5754 		perf_sample_regs_intr(&data->regs_intr, regs);
5755 
5756 		if (data->regs_intr.regs) {
5757 			u64 mask = event->attr.sample_regs_intr;
5758 
5759 			size += hweight64(mask) * sizeof(u64);
5760 		}
5761 
5762 		header->size += size;
5763 	}
5764 }
5765 
5766 static void __always_inline
5767 __perf_event_output(struct perf_event *event,
5768 		    struct perf_sample_data *data,
5769 		    struct pt_regs *regs,
5770 		    int (*output_begin)(struct perf_output_handle *,
5771 					struct perf_event *,
5772 					unsigned int))
5773 {
5774 	struct perf_output_handle handle;
5775 	struct perf_event_header header;
5776 
5777 	/* protect the callchain buffers */
5778 	rcu_read_lock();
5779 
5780 	perf_prepare_sample(&header, data, event, regs);
5781 
5782 	if (output_begin(&handle, event, header.size))
5783 		goto exit;
5784 
5785 	perf_output_sample(&handle, &header, data, event);
5786 
5787 	perf_output_end(&handle);
5788 
5789 exit:
5790 	rcu_read_unlock();
5791 }
5792 
5793 void
5794 perf_event_output_forward(struct perf_event *event,
5795 			 struct perf_sample_data *data,
5796 			 struct pt_regs *regs)
5797 {
5798 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5799 }
5800 
5801 void
5802 perf_event_output_backward(struct perf_event *event,
5803 			   struct perf_sample_data *data,
5804 			   struct pt_regs *regs)
5805 {
5806 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5807 }
5808 
5809 void
5810 perf_event_output(struct perf_event *event,
5811 		  struct perf_sample_data *data,
5812 		  struct pt_regs *regs)
5813 {
5814 	__perf_event_output(event, data, regs, perf_output_begin);
5815 }
5816 
5817 /*
5818  * read event_id
5819  */
5820 
5821 struct perf_read_event {
5822 	struct perf_event_header	header;
5823 
5824 	u32				pid;
5825 	u32				tid;
5826 };
5827 
5828 static void
5829 perf_event_read_event(struct perf_event *event,
5830 			struct task_struct *task)
5831 {
5832 	struct perf_output_handle handle;
5833 	struct perf_sample_data sample;
5834 	struct perf_read_event read_event = {
5835 		.header = {
5836 			.type = PERF_RECORD_READ,
5837 			.misc = 0,
5838 			.size = sizeof(read_event) + event->read_size,
5839 		},
5840 		.pid = perf_event_pid(event, task),
5841 		.tid = perf_event_tid(event, task),
5842 	};
5843 	int ret;
5844 
5845 	perf_event_header__init_id(&read_event.header, &sample, event);
5846 	ret = perf_output_begin(&handle, event, read_event.header.size);
5847 	if (ret)
5848 		return;
5849 
5850 	perf_output_put(&handle, read_event);
5851 	perf_output_read(&handle, event);
5852 	perf_event__output_id_sample(event, &handle, &sample);
5853 
5854 	perf_output_end(&handle);
5855 }
5856 
5857 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5858 
5859 static void
5860 perf_event_aux_ctx(struct perf_event_context *ctx,
5861 		   perf_event_aux_output_cb output,
5862 		   void *data, bool all)
5863 {
5864 	struct perf_event *event;
5865 
5866 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5867 		if (!all) {
5868 			if (event->state < PERF_EVENT_STATE_INACTIVE)
5869 				continue;
5870 			if (!event_filter_match(event))
5871 				continue;
5872 		}
5873 
5874 		output(event, data);
5875 	}
5876 }
5877 
5878 static void
5879 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5880 			struct perf_event_context *task_ctx)
5881 {
5882 	rcu_read_lock();
5883 	preempt_disable();
5884 	perf_event_aux_ctx(task_ctx, output, data, false);
5885 	preempt_enable();
5886 	rcu_read_unlock();
5887 }
5888 
5889 static void
5890 perf_event_aux(perf_event_aux_output_cb output, void *data,
5891 	       struct perf_event_context *task_ctx)
5892 {
5893 	struct perf_cpu_context *cpuctx;
5894 	struct perf_event_context *ctx;
5895 	struct pmu *pmu;
5896 	int ctxn;
5897 
5898 	/*
5899 	 * If we have task_ctx != NULL we only notify
5900 	 * the task context itself. The task_ctx is set
5901 	 * only for EXIT events before releasing task
5902 	 * context.
5903 	 */
5904 	if (task_ctx) {
5905 		perf_event_aux_task_ctx(output, data, task_ctx);
5906 		return;
5907 	}
5908 
5909 	rcu_read_lock();
5910 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5911 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5912 		if (cpuctx->unique_pmu != pmu)
5913 			goto next;
5914 		perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5915 		ctxn = pmu->task_ctx_nr;
5916 		if (ctxn < 0)
5917 			goto next;
5918 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5919 		if (ctx)
5920 			perf_event_aux_ctx(ctx, output, data, false);
5921 next:
5922 		put_cpu_ptr(pmu->pmu_cpu_context);
5923 	}
5924 	rcu_read_unlock();
5925 }
5926 
5927 /*
5928  * Clear all file-based filters at exec, they'll have to be
5929  * re-instated when/if these objects are mmapped again.
5930  */
5931 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5932 {
5933 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5934 	struct perf_addr_filter *filter;
5935 	unsigned int restart = 0, count = 0;
5936 	unsigned long flags;
5937 
5938 	if (!has_addr_filter(event))
5939 		return;
5940 
5941 	raw_spin_lock_irqsave(&ifh->lock, flags);
5942 	list_for_each_entry(filter, &ifh->list, entry) {
5943 		if (filter->inode) {
5944 			event->addr_filters_offs[count] = 0;
5945 			restart++;
5946 		}
5947 
5948 		count++;
5949 	}
5950 
5951 	if (restart)
5952 		event->addr_filters_gen++;
5953 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
5954 
5955 	if (restart)
5956 		perf_event_restart(event);
5957 }
5958 
5959 void perf_event_exec(void)
5960 {
5961 	struct perf_event_context *ctx;
5962 	int ctxn;
5963 
5964 	rcu_read_lock();
5965 	for_each_task_context_nr(ctxn) {
5966 		ctx = current->perf_event_ctxp[ctxn];
5967 		if (!ctx)
5968 			continue;
5969 
5970 		perf_event_enable_on_exec(ctxn);
5971 
5972 		perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5973 				   true);
5974 	}
5975 	rcu_read_unlock();
5976 }
5977 
5978 struct remote_output {
5979 	struct ring_buffer	*rb;
5980 	int			err;
5981 };
5982 
5983 static void __perf_event_output_stop(struct perf_event *event, void *data)
5984 {
5985 	struct perf_event *parent = event->parent;
5986 	struct remote_output *ro = data;
5987 	struct ring_buffer *rb = ro->rb;
5988 	struct stop_event_data sd = {
5989 		.event	= event,
5990 	};
5991 
5992 	if (!has_aux(event))
5993 		return;
5994 
5995 	if (!parent)
5996 		parent = event;
5997 
5998 	/*
5999 	 * In case of inheritance, it will be the parent that links to the
6000 	 * ring-buffer, but it will be the child that's actually using it:
6001 	 */
6002 	if (rcu_dereference(parent->rb) == rb)
6003 		ro->err = __perf_event_stop(&sd);
6004 }
6005 
6006 static int __perf_pmu_output_stop(void *info)
6007 {
6008 	struct perf_event *event = info;
6009 	struct pmu *pmu = event->pmu;
6010 	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6011 	struct remote_output ro = {
6012 		.rb	= event->rb,
6013 	};
6014 
6015 	rcu_read_lock();
6016 	perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6017 	if (cpuctx->task_ctx)
6018 		perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6019 				   &ro, false);
6020 	rcu_read_unlock();
6021 
6022 	return ro.err;
6023 }
6024 
6025 static void perf_pmu_output_stop(struct perf_event *event)
6026 {
6027 	struct perf_event *iter;
6028 	int err, cpu;
6029 
6030 restart:
6031 	rcu_read_lock();
6032 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6033 		/*
6034 		 * For per-CPU events, we need to make sure that neither they
6035 		 * nor their children are running; for cpu==-1 events it's
6036 		 * sufficient to stop the event itself if it's active, since
6037 		 * it can't have children.
6038 		 */
6039 		cpu = iter->cpu;
6040 		if (cpu == -1)
6041 			cpu = READ_ONCE(iter->oncpu);
6042 
6043 		if (cpu == -1)
6044 			continue;
6045 
6046 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6047 		if (err == -EAGAIN) {
6048 			rcu_read_unlock();
6049 			goto restart;
6050 		}
6051 	}
6052 	rcu_read_unlock();
6053 }
6054 
6055 /*
6056  * task tracking -- fork/exit
6057  *
6058  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6059  */
6060 
6061 struct perf_task_event {
6062 	struct task_struct		*task;
6063 	struct perf_event_context	*task_ctx;
6064 
6065 	struct {
6066 		struct perf_event_header	header;
6067 
6068 		u32				pid;
6069 		u32				ppid;
6070 		u32				tid;
6071 		u32				ptid;
6072 		u64				time;
6073 	} event_id;
6074 };
6075 
6076 static int perf_event_task_match(struct perf_event *event)
6077 {
6078 	return event->attr.comm  || event->attr.mmap ||
6079 	       event->attr.mmap2 || event->attr.mmap_data ||
6080 	       event->attr.task;
6081 }
6082 
6083 static void perf_event_task_output(struct perf_event *event,
6084 				   void *data)
6085 {
6086 	struct perf_task_event *task_event = data;
6087 	struct perf_output_handle handle;
6088 	struct perf_sample_data	sample;
6089 	struct task_struct *task = task_event->task;
6090 	int ret, size = task_event->event_id.header.size;
6091 
6092 	if (!perf_event_task_match(event))
6093 		return;
6094 
6095 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6096 
6097 	ret = perf_output_begin(&handle, event,
6098 				task_event->event_id.header.size);
6099 	if (ret)
6100 		goto out;
6101 
6102 	task_event->event_id.pid = perf_event_pid(event, task);
6103 	task_event->event_id.ppid = perf_event_pid(event, current);
6104 
6105 	task_event->event_id.tid = perf_event_tid(event, task);
6106 	task_event->event_id.ptid = perf_event_tid(event, current);
6107 
6108 	task_event->event_id.time = perf_event_clock(event);
6109 
6110 	perf_output_put(&handle, task_event->event_id);
6111 
6112 	perf_event__output_id_sample(event, &handle, &sample);
6113 
6114 	perf_output_end(&handle);
6115 out:
6116 	task_event->event_id.header.size = size;
6117 }
6118 
6119 static void perf_event_task(struct task_struct *task,
6120 			      struct perf_event_context *task_ctx,
6121 			      int new)
6122 {
6123 	struct perf_task_event task_event;
6124 
6125 	if (!atomic_read(&nr_comm_events) &&
6126 	    !atomic_read(&nr_mmap_events) &&
6127 	    !atomic_read(&nr_task_events))
6128 		return;
6129 
6130 	task_event = (struct perf_task_event){
6131 		.task	  = task,
6132 		.task_ctx = task_ctx,
6133 		.event_id    = {
6134 			.header = {
6135 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6136 				.misc = 0,
6137 				.size = sizeof(task_event.event_id),
6138 			},
6139 			/* .pid  */
6140 			/* .ppid */
6141 			/* .tid  */
6142 			/* .ptid */
6143 			/* .time */
6144 		},
6145 	};
6146 
6147 	perf_event_aux(perf_event_task_output,
6148 		       &task_event,
6149 		       task_ctx);
6150 }
6151 
6152 void perf_event_fork(struct task_struct *task)
6153 {
6154 	perf_event_task(task, NULL, 1);
6155 }
6156 
6157 /*
6158  * comm tracking
6159  */
6160 
6161 struct perf_comm_event {
6162 	struct task_struct	*task;
6163 	char			*comm;
6164 	int			comm_size;
6165 
6166 	struct {
6167 		struct perf_event_header	header;
6168 
6169 		u32				pid;
6170 		u32				tid;
6171 	} event_id;
6172 };
6173 
6174 static int perf_event_comm_match(struct perf_event *event)
6175 {
6176 	return event->attr.comm;
6177 }
6178 
6179 static void perf_event_comm_output(struct perf_event *event,
6180 				   void *data)
6181 {
6182 	struct perf_comm_event *comm_event = data;
6183 	struct perf_output_handle handle;
6184 	struct perf_sample_data sample;
6185 	int size = comm_event->event_id.header.size;
6186 	int ret;
6187 
6188 	if (!perf_event_comm_match(event))
6189 		return;
6190 
6191 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6192 	ret = perf_output_begin(&handle, event,
6193 				comm_event->event_id.header.size);
6194 
6195 	if (ret)
6196 		goto out;
6197 
6198 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6199 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6200 
6201 	perf_output_put(&handle, comm_event->event_id);
6202 	__output_copy(&handle, comm_event->comm,
6203 				   comm_event->comm_size);
6204 
6205 	perf_event__output_id_sample(event, &handle, &sample);
6206 
6207 	perf_output_end(&handle);
6208 out:
6209 	comm_event->event_id.header.size = size;
6210 }
6211 
6212 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6213 {
6214 	char comm[TASK_COMM_LEN];
6215 	unsigned int size;
6216 
6217 	memset(comm, 0, sizeof(comm));
6218 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6219 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6220 
6221 	comm_event->comm = comm;
6222 	comm_event->comm_size = size;
6223 
6224 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6225 
6226 	perf_event_aux(perf_event_comm_output,
6227 		       comm_event,
6228 		       NULL);
6229 }
6230 
6231 void perf_event_comm(struct task_struct *task, bool exec)
6232 {
6233 	struct perf_comm_event comm_event;
6234 
6235 	if (!atomic_read(&nr_comm_events))
6236 		return;
6237 
6238 	comm_event = (struct perf_comm_event){
6239 		.task	= task,
6240 		/* .comm      */
6241 		/* .comm_size */
6242 		.event_id  = {
6243 			.header = {
6244 				.type = PERF_RECORD_COMM,
6245 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6246 				/* .size */
6247 			},
6248 			/* .pid */
6249 			/* .tid */
6250 		},
6251 	};
6252 
6253 	perf_event_comm_event(&comm_event);
6254 }
6255 
6256 /*
6257  * mmap tracking
6258  */
6259 
6260 struct perf_mmap_event {
6261 	struct vm_area_struct	*vma;
6262 
6263 	const char		*file_name;
6264 	int			file_size;
6265 	int			maj, min;
6266 	u64			ino;
6267 	u64			ino_generation;
6268 	u32			prot, flags;
6269 
6270 	struct {
6271 		struct perf_event_header	header;
6272 
6273 		u32				pid;
6274 		u32				tid;
6275 		u64				start;
6276 		u64				len;
6277 		u64				pgoff;
6278 	} event_id;
6279 };
6280 
6281 static int perf_event_mmap_match(struct perf_event *event,
6282 				 void *data)
6283 {
6284 	struct perf_mmap_event *mmap_event = data;
6285 	struct vm_area_struct *vma = mmap_event->vma;
6286 	int executable = vma->vm_flags & VM_EXEC;
6287 
6288 	return (!executable && event->attr.mmap_data) ||
6289 	       (executable && (event->attr.mmap || event->attr.mmap2));
6290 }
6291 
6292 static void perf_event_mmap_output(struct perf_event *event,
6293 				   void *data)
6294 {
6295 	struct perf_mmap_event *mmap_event = data;
6296 	struct perf_output_handle handle;
6297 	struct perf_sample_data sample;
6298 	int size = mmap_event->event_id.header.size;
6299 	int ret;
6300 
6301 	if (!perf_event_mmap_match(event, data))
6302 		return;
6303 
6304 	if (event->attr.mmap2) {
6305 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6306 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6307 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6308 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6309 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6310 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6311 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6312 	}
6313 
6314 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6315 	ret = perf_output_begin(&handle, event,
6316 				mmap_event->event_id.header.size);
6317 	if (ret)
6318 		goto out;
6319 
6320 	mmap_event->event_id.pid = perf_event_pid(event, current);
6321 	mmap_event->event_id.tid = perf_event_tid(event, current);
6322 
6323 	perf_output_put(&handle, mmap_event->event_id);
6324 
6325 	if (event->attr.mmap2) {
6326 		perf_output_put(&handle, mmap_event->maj);
6327 		perf_output_put(&handle, mmap_event->min);
6328 		perf_output_put(&handle, mmap_event->ino);
6329 		perf_output_put(&handle, mmap_event->ino_generation);
6330 		perf_output_put(&handle, mmap_event->prot);
6331 		perf_output_put(&handle, mmap_event->flags);
6332 	}
6333 
6334 	__output_copy(&handle, mmap_event->file_name,
6335 				   mmap_event->file_size);
6336 
6337 	perf_event__output_id_sample(event, &handle, &sample);
6338 
6339 	perf_output_end(&handle);
6340 out:
6341 	mmap_event->event_id.header.size = size;
6342 }
6343 
6344 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6345 {
6346 	struct vm_area_struct *vma = mmap_event->vma;
6347 	struct file *file = vma->vm_file;
6348 	int maj = 0, min = 0;
6349 	u64 ino = 0, gen = 0;
6350 	u32 prot = 0, flags = 0;
6351 	unsigned int size;
6352 	char tmp[16];
6353 	char *buf = NULL;
6354 	char *name;
6355 
6356 	if (file) {
6357 		struct inode *inode;
6358 		dev_t dev;
6359 
6360 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6361 		if (!buf) {
6362 			name = "//enomem";
6363 			goto cpy_name;
6364 		}
6365 		/*
6366 		 * d_path() works from the end of the rb backwards, so we
6367 		 * need to add enough zero bytes after the string to handle
6368 		 * the 64bit alignment we do later.
6369 		 */
6370 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6371 		if (IS_ERR(name)) {
6372 			name = "//toolong";
6373 			goto cpy_name;
6374 		}
6375 		inode = file_inode(vma->vm_file);
6376 		dev = inode->i_sb->s_dev;
6377 		ino = inode->i_ino;
6378 		gen = inode->i_generation;
6379 		maj = MAJOR(dev);
6380 		min = MINOR(dev);
6381 
6382 		if (vma->vm_flags & VM_READ)
6383 			prot |= PROT_READ;
6384 		if (vma->vm_flags & VM_WRITE)
6385 			prot |= PROT_WRITE;
6386 		if (vma->vm_flags & VM_EXEC)
6387 			prot |= PROT_EXEC;
6388 
6389 		if (vma->vm_flags & VM_MAYSHARE)
6390 			flags = MAP_SHARED;
6391 		else
6392 			flags = MAP_PRIVATE;
6393 
6394 		if (vma->vm_flags & VM_DENYWRITE)
6395 			flags |= MAP_DENYWRITE;
6396 		if (vma->vm_flags & VM_MAYEXEC)
6397 			flags |= MAP_EXECUTABLE;
6398 		if (vma->vm_flags & VM_LOCKED)
6399 			flags |= MAP_LOCKED;
6400 		if (vma->vm_flags & VM_HUGETLB)
6401 			flags |= MAP_HUGETLB;
6402 
6403 		goto got_name;
6404 	} else {
6405 		if (vma->vm_ops && vma->vm_ops->name) {
6406 			name = (char *) vma->vm_ops->name(vma);
6407 			if (name)
6408 				goto cpy_name;
6409 		}
6410 
6411 		name = (char *)arch_vma_name(vma);
6412 		if (name)
6413 			goto cpy_name;
6414 
6415 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6416 				vma->vm_end >= vma->vm_mm->brk) {
6417 			name = "[heap]";
6418 			goto cpy_name;
6419 		}
6420 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6421 				vma->vm_end >= vma->vm_mm->start_stack) {
6422 			name = "[stack]";
6423 			goto cpy_name;
6424 		}
6425 
6426 		name = "//anon";
6427 		goto cpy_name;
6428 	}
6429 
6430 cpy_name:
6431 	strlcpy(tmp, name, sizeof(tmp));
6432 	name = tmp;
6433 got_name:
6434 	/*
6435 	 * Since our buffer works in 8 byte units we need to align our string
6436 	 * size to a multiple of 8. However, we must guarantee the tail end is
6437 	 * zero'd out to avoid leaking random bits to userspace.
6438 	 */
6439 	size = strlen(name)+1;
6440 	while (!IS_ALIGNED(size, sizeof(u64)))
6441 		name[size++] = '\0';
6442 
6443 	mmap_event->file_name = name;
6444 	mmap_event->file_size = size;
6445 	mmap_event->maj = maj;
6446 	mmap_event->min = min;
6447 	mmap_event->ino = ino;
6448 	mmap_event->ino_generation = gen;
6449 	mmap_event->prot = prot;
6450 	mmap_event->flags = flags;
6451 
6452 	if (!(vma->vm_flags & VM_EXEC))
6453 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6454 
6455 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6456 
6457 	perf_event_aux(perf_event_mmap_output,
6458 		       mmap_event,
6459 		       NULL);
6460 
6461 	kfree(buf);
6462 }
6463 
6464 /*
6465  * Whether this @filter depends on a dynamic object which is not loaded
6466  * yet or its load addresses are not known.
6467  */
6468 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6469 {
6470 	return filter->filter && filter->inode;
6471 }
6472 
6473 /*
6474  * Check whether inode and address range match filter criteria.
6475  */
6476 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6477 				     struct file *file, unsigned long offset,
6478 				     unsigned long size)
6479 {
6480 	if (filter->inode != file->f_inode)
6481 		return false;
6482 
6483 	if (filter->offset > offset + size)
6484 		return false;
6485 
6486 	if (filter->offset + filter->size < offset)
6487 		return false;
6488 
6489 	return true;
6490 }
6491 
6492 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6493 {
6494 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6495 	struct vm_area_struct *vma = data;
6496 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6497 	struct file *file = vma->vm_file;
6498 	struct perf_addr_filter *filter;
6499 	unsigned int restart = 0, count = 0;
6500 
6501 	if (!has_addr_filter(event))
6502 		return;
6503 
6504 	if (!file)
6505 		return;
6506 
6507 	raw_spin_lock_irqsave(&ifh->lock, flags);
6508 	list_for_each_entry(filter, &ifh->list, entry) {
6509 		if (perf_addr_filter_match(filter, file, off,
6510 					     vma->vm_end - vma->vm_start)) {
6511 			event->addr_filters_offs[count] = vma->vm_start;
6512 			restart++;
6513 		}
6514 
6515 		count++;
6516 	}
6517 
6518 	if (restart)
6519 		event->addr_filters_gen++;
6520 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6521 
6522 	if (restart)
6523 		perf_event_restart(event);
6524 }
6525 
6526 /*
6527  * Adjust all task's events' filters to the new vma
6528  */
6529 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6530 {
6531 	struct perf_event_context *ctx;
6532 	int ctxn;
6533 
6534 	rcu_read_lock();
6535 	for_each_task_context_nr(ctxn) {
6536 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6537 		if (!ctx)
6538 			continue;
6539 
6540 		perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6541 	}
6542 	rcu_read_unlock();
6543 }
6544 
6545 void perf_event_mmap(struct vm_area_struct *vma)
6546 {
6547 	struct perf_mmap_event mmap_event;
6548 
6549 	if (!atomic_read(&nr_mmap_events))
6550 		return;
6551 
6552 	mmap_event = (struct perf_mmap_event){
6553 		.vma	= vma,
6554 		/* .file_name */
6555 		/* .file_size */
6556 		.event_id  = {
6557 			.header = {
6558 				.type = PERF_RECORD_MMAP,
6559 				.misc = PERF_RECORD_MISC_USER,
6560 				/* .size */
6561 			},
6562 			/* .pid */
6563 			/* .tid */
6564 			.start  = vma->vm_start,
6565 			.len    = vma->vm_end - vma->vm_start,
6566 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6567 		},
6568 		/* .maj (attr_mmap2 only) */
6569 		/* .min (attr_mmap2 only) */
6570 		/* .ino (attr_mmap2 only) */
6571 		/* .ino_generation (attr_mmap2 only) */
6572 		/* .prot (attr_mmap2 only) */
6573 		/* .flags (attr_mmap2 only) */
6574 	};
6575 
6576 	perf_addr_filters_adjust(vma);
6577 	perf_event_mmap_event(&mmap_event);
6578 }
6579 
6580 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6581 			  unsigned long size, u64 flags)
6582 {
6583 	struct perf_output_handle handle;
6584 	struct perf_sample_data sample;
6585 	struct perf_aux_event {
6586 		struct perf_event_header	header;
6587 		u64				offset;
6588 		u64				size;
6589 		u64				flags;
6590 	} rec = {
6591 		.header = {
6592 			.type = PERF_RECORD_AUX,
6593 			.misc = 0,
6594 			.size = sizeof(rec),
6595 		},
6596 		.offset		= head,
6597 		.size		= size,
6598 		.flags		= flags,
6599 	};
6600 	int ret;
6601 
6602 	perf_event_header__init_id(&rec.header, &sample, event);
6603 	ret = perf_output_begin(&handle, event, rec.header.size);
6604 
6605 	if (ret)
6606 		return;
6607 
6608 	perf_output_put(&handle, rec);
6609 	perf_event__output_id_sample(event, &handle, &sample);
6610 
6611 	perf_output_end(&handle);
6612 }
6613 
6614 /*
6615  * Lost/dropped samples logging
6616  */
6617 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6618 {
6619 	struct perf_output_handle handle;
6620 	struct perf_sample_data sample;
6621 	int ret;
6622 
6623 	struct {
6624 		struct perf_event_header	header;
6625 		u64				lost;
6626 	} lost_samples_event = {
6627 		.header = {
6628 			.type = PERF_RECORD_LOST_SAMPLES,
6629 			.misc = 0,
6630 			.size = sizeof(lost_samples_event),
6631 		},
6632 		.lost		= lost,
6633 	};
6634 
6635 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6636 
6637 	ret = perf_output_begin(&handle, event,
6638 				lost_samples_event.header.size);
6639 	if (ret)
6640 		return;
6641 
6642 	perf_output_put(&handle, lost_samples_event);
6643 	perf_event__output_id_sample(event, &handle, &sample);
6644 	perf_output_end(&handle);
6645 }
6646 
6647 /*
6648  * context_switch tracking
6649  */
6650 
6651 struct perf_switch_event {
6652 	struct task_struct	*task;
6653 	struct task_struct	*next_prev;
6654 
6655 	struct {
6656 		struct perf_event_header	header;
6657 		u32				next_prev_pid;
6658 		u32				next_prev_tid;
6659 	} event_id;
6660 };
6661 
6662 static int perf_event_switch_match(struct perf_event *event)
6663 {
6664 	return event->attr.context_switch;
6665 }
6666 
6667 static void perf_event_switch_output(struct perf_event *event, void *data)
6668 {
6669 	struct perf_switch_event *se = data;
6670 	struct perf_output_handle handle;
6671 	struct perf_sample_data sample;
6672 	int ret;
6673 
6674 	if (!perf_event_switch_match(event))
6675 		return;
6676 
6677 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6678 	if (event->ctx->task) {
6679 		se->event_id.header.type = PERF_RECORD_SWITCH;
6680 		se->event_id.header.size = sizeof(se->event_id.header);
6681 	} else {
6682 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6683 		se->event_id.header.size = sizeof(se->event_id);
6684 		se->event_id.next_prev_pid =
6685 					perf_event_pid(event, se->next_prev);
6686 		se->event_id.next_prev_tid =
6687 					perf_event_tid(event, se->next_prev);
6688 	}
6689 
6690 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6691 
6692 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6693 	if (ret)
6694 		return;
6695 
6696 	if (event->ctx->task)
6697 		perf_output_put(&handle, se->event_id.header);
6698 	else
6699 		perf_output_put(&handle, se->event_id);
6700 
6701 	perf_event__output_id_sample(event, &handle, &sample);
6702 
6703 	perf_output_end(&handle);
6704 }
6705 
6706 static void perf_event_switch(struct task_struct *task,
6707 			      struct task_struct *next_prev, bool sched_in)
6708 {
6709 	struct perf_switch_event switch_event;
6710 
6711 	/* N.B. caller checks nr_switch_events != 0 */
6712 
6713 	switch_event = (struct perf_switch_event){
6714 		.task		= task,
6715 		.next_prev	= next_prev,
6716 		.event_id	= {
6717 			.header = {
6718 				/* .type */
6719 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6720 				/* .size */
6721 			},
6722 			/* .next_prev_pid */
6723 			/* .next_prev_tid */
6724 		},
6725 	};
6726 
6727 	perf_event_aux(perf_event_switch_output,
6728 		       &switch_event,
6729 		       NULL);
6730 }
6731 
6732 /*
6733  * IRQ throttle logging
6734  */
6735 
6736 static void perf_log_throttle(struct perf_event *event, int enable)
6737 {
6738 	struct perf_output_handle handle;
6739 	struct perf_sample_data sample;
6740 	int ret;
6741 
6742 	struct {
6743 		struct perf_event_header	header;
6744 		u64				time;
6745 		u64				id;
6746 		u64				stream_id;
6747 	} throttle_event = {
6748 		.header = {
6749 			.type = PERF_RECORD_THROTTLE,
6750 			.misc = 0,
6751 			.size = sizeof(throttle_event),
6752 		},
6753 		.time		= perf_event_clock(event),
6754 		.id		= primary_event_id(event),
6755 		.stream_id	= event->id,
6756 	};
6757 
6758 	if (enable)
6759 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6760 
6761 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6762 
6763 	ret = perf_output_begin(&handle, event,
6764 				throttle_event.header.size);
6765 	if (ret)
6766 		return;
6767 
6768 	perf_output_put(&handle, throttle_event);
6769 	perf_event__output_id_sample(event, &handle, &sample);
6770 	perf_output_end(&handle);
6771 }
6772 
6773 static void perf_log_itrace_start(struct perf_event *event)
6774 {
6775 	struct perf_output_handle handle;
6776 	struct perf_sample_data sample;
6777 	struct perf_aux_event {
6778 		struct perf_event_header        header;
6779 		u32				pid;
6780 		u32				tid;
6781 	} rec;
6782 	int ret;
6783 
6784 	if (event->parent)
6785 		event = event->parent;
6786 
6787 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6788 	    event->hw.itrace_started)
6789 		return;
6790 
6791 	rec.header.type	= PERF_RECORD_ITRACE_START;
6792 	rec.header.misc	= 0;
6793 	rec.header.size	= sizeof(rec);
6794 	rec.pid	= perf_event_pid(event, current);
6795 	rec.tid	= perf_event_tid(event, current);
6796 
6797 	perf_event_header__init_id(&rec.header, &sample, event);
6798 	ret = perf_output_begin(&handle, event, rec.header.size);
6799 
6800 	if (ret)
6801 		return;
6802 
6803 	perf_output_put(&handle, rec);
6804 	perf_event__output_id_sample(event, &handle, &sample);
6805 
6806 	perf_output_end(&handle);
6807 }
6808 
6809 /*
6810  * Generic event overflow handling, sampling.
6811  */
6812 
6813 static int __perf_event_overflow(struct perf_event *event,
6814 				   int throttle, struct perf_sample_data *data,
6815 				   struct pt_regs *regs)
6816 {
6817 	int events = atomic_read(&event->event_limit);
6818 	struct hw_perf_event *hwc = &event->hw;
6819 	u64 seq;
6820 	int ret = 0;
6821 
6822 	/*
6823 	 * Non-sampling counters might still use the PMI to fold short
6824 	 * hardware counters, ignore those.
6825 	 */
6826 	if (unlikely(!is_sampling_event(event)))
6827 		return 0;
6828 
6829 	seq = __this_cpu_read(perf_throttled_seq);
6830 	if (seq != hwc->interrupts_seq) {
6831 		hwc->interrupts_seq = seq;
6832 		hwc->interrupts = 1;
6833 	} else {
6834 		hwc->interrupts++;
6835 		if (unlikely(throttle
6836 			     && hwc->interrupts >= max_samples_per_tick)) {
6837 			__this_cpu_inc(perf_throttled_count);
6838 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6839 			hwc->interrupts = MAX_INTERRUPTS;
6840 			perf_log_throttle(event, 0);
6841 			ret = 1;
6842 		}
6843 	}
6844 
6845 	if (event->attr.freq) {
6846 		u64 now = perf_clock();
6847 		s64 delta = now - hwc->freq_time_stamp;
6848 
6849 		hwc->freq_time_stamp = now;
6850 
6851 		if (delta > 0 && delta < 2*TICK_NSEC)
6852 			perf_adjust_period(event, delta, hwc->last_period, true);
6853 	}
6854 
6855 	/*
6856 	 * XXX event_limit might not quite work as expected on inherited
6857 	 * events
6858 	 */
6859 
6860 	event->pending_kill = POLL_IN;
6861 	if (events && atomic_dec_and_test(&event->event_limit)) {
6862 		ret = 1;
6863 		event->pending_kill = POLL_HUP;
6864 		event->pending_disable = 1;
6865 		irq_work_queue(&event->pending);
6866 	}
6867 
6868 	event->overflow_handler(event, data, regs);
6869 
6870 	if (*perf_event_fasync(event) && event->pending_kill) {
6871 		event->pending_wakeup = 1;
6872 		irq_work_queue(&event->pending);
6873 	}
6874 
6875 	return ret;
6876 }
6877 
6878 int perf_event_overflow(struct perf_event *event,
6879 			  struct perf_sample_data *data,
6880 			  struct pt_regs *regs)
6881 {
6882 	return __perf_event_overflow(event, 1, data, regs);
6883 }
6884 
6885 /*
6886  * Generic software event infrastructure
6887  */
6888 
6889 struct swevent_htable {
6890 	struct swevent_hlist		*swevent_hlist;
6891 	struct mutex			hlist_mutex;
6892 	int				hlist_refcount;
6893 
6894 	/* Recursion avoidance in each contexts */
6895 	int				recursion[PERF_NR_CONTEXTS];
6896 };
6897 
6898 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6899 
6900 /*
6901  * We directly increment event->count and keep a second value in
6902  * event->hw.period_left to count intervals. This period event
6903  * is kept in the range [-sample_period, 0] so that we can use the
6904  * sign as trigger.
6905  */
6906 
6907 u64 perf_swevent_set_period(struct perf_event *event)
6908 {
6909 	struct hw_perf_event *hwc = &event->hw;
6910 	u64 period = hwc->last_period;
6911 	u64 nr, offset;
6912 	s64 old, val;
6913 
6914 	hwc->last_period = hwc->sample_period;
6915 
6916 again:
6917 	old = val = local64_read(&hwc->period_left);
6918 	if (val < 0)
6919 		return 0;
6920 
6921 	nr = div64_u64(period + val, period);
6922 	offset = nr * period;
6923 	val -= offset;
6924 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6925 		goto again;
6926 
6927 	return nr;
6928 }
6929 
6930 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6931 				    struct perf_sample_data *data,
6932 				    struct pt_regs *regs)
6933 {
6934 	struct hw_perf_event *hwc = &event->hw;
6935 	int throttle = 0;
6936 
6937 	if (!overflow)
6938 		overflow = perf_swevent_set_period(event);
6939 
6940 	if (hwc->interrupts == MAX_INTERRUPTS)
6941 		return;
6942 
6943 	for (; overflow; overflow--) {
6944 		if (__perf_event_overflow(event, throttle,
6945 					    data, regs)) {
6946 			/*
6947 			 * We inhibit the overflow from happening when
6948 			 * hwc->interrupts == MAX_INTERRUPTS.
6949 			 */
6950 			break;
6951 		}
6952 		throttle = 1;
6953 	}
6954 }
6955 
6956 static void perf_swevent_event(struct perf_event *event, u64 nr,
6957 			       struct perf_sample_data *data,
6958 			       struct pt_regs *regs)
6959 {
6960 	struct hw_perf_event *hwc = &event->hw;
6961 
6962 	local64_add(nr, &event->count);
6963 
6964 	if (!regs)
6965 		return;
6966 
6967 	if (!is_sampling_event(event))
6968 		return;
6969 
6970 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6971 		data->period = nr;
6972 		return perf_swevent_overflow(event, 1, data, regs);
6973 	} else
6974 		data->period = event->hw.last_period;
6975 
6976 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6977 		return perf_swevent_overflow(event, 1, data, regs);
6978 
6979 	if (local64_add_negative(nr, &hwc->period_left))
6980 		return;
6981 
6982 	perf_swevent_overflow(event, 0, data, regs);
6983 }
6984 
6985 static int perf_exclude_event(struct perf_event *event,
6986 			      struct pt_regs *regs)
6987 {
6988 	if (event->hw.state & PERF_HES_STOPPED)
6989 		return 1;
6990 
6991 	if (regs) {
6992 		if (event->attr.exclude_user && user_mode(regs))
6993 			return 1;
6994 
6995 		if (event->attr.exclude_kernel && !user_mode(regs))
6996 			return 1;
6997 	}
6998 
6999 	return 0;
7000 }
7001 
7002 static int perf_swevent_match(struct perf_event *event,
7003 				enum perf_type_id type,
7004 				u32 event_id,
7005 				struct perf_sample_data *data,
7006 				struct pt_regs *regs)
7007 {
7008 	if (event->attr.type != type)
7009 		return 0;
7010 
7011 	if (event->attr.config != event_id)
7012 		return 0;
7013 
7014 	if (perf_exclude_event(event, regs))
7015 		return 0;
7016 
7017 	return 1;
7018 }
7019 
7020 static inline u64 swevent_hash(u64 type, u32 event_id)
7021 {
7022 	u64 val = event_id | (type << 32);
7023 
7024 	return hash_64(val, SWEVENT_HLIST_BITS);
7025 }
7026 
7027 static inline struct hlist_head *
7028 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7029 {
7030 	u64 hash = swevent_hash(type, event_id);
7031 
7032 	return &hlist->heads[hash];
7033 }
7034 
7035 /* For the read side: events when they trigger */
7036 static inline struct hlist_head *
7037 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7038 {
7039 	struct swevent_hlist *hlist;
7040 
7041 	hlist = rcu_dereference(swhash->swevent_hlist);
7042 	if (!hlist)
7043 		return NULL;
7044 
7045 	return __find_swevent_head(hlist, type, event_id);
7046 }
7047 
7048 /* For the event head insertion and removal in the hlist */
7049 static inline struct hlist_head *
7050 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7051 {
7052 	struct swevent_hlist *hlist;
7053 	u32 event_id = event->attr.config;
7054 	u64 type = event->attr.type;
7055 
7056 	/*
7057 	 * Event scheduling is always serialized against hlist allocation
7058 	 * and release. Which makes the protected version suitable here.
7059 	 * The context lock guarantees that.
7060 	 */
7061 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7062 					  lockdep_is_held(&event->ctx->lock));
7063 	if (!hlist)
7064 		return NULL;
7065 
7066 	return __find_swevent_head(hlist, type, event_id);
7067 }
7068 
7069 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7070 				    u64 nr,
7071 				    struct perf_sample_data *data,
7072 				    struct pt_regs *regs)
7073 {
7074 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7075 	struct perf_event *event;
7076 	struct hlist_head *head;
7077 
7078 	rcu_read_lock();
7079 	head = find_swevent_head_rcu(swhash, type, event_id);
7080 	if (!head)
7081 		goto end;
7082 
7083 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7084 		if (perf_swevent_match(event, type, event_id, data, regs))
7085 			perf_swevent_event(event, nr, data, regs);
7086 	}
7087 end:
7088 	rcu_read_unlock();
7089 }
7090 
7091 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7092 
7093 int perf_swevent_get_recursion_context(void)
7094 {
7095 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7096 
7097 	return get_recursion_context(swhash->recursion);
7098 }
7099 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7100 
7101 void perf_swevent_put_recursion_context(int rctx)
7102 {
7103 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7104 
7105 	put_recursion_context(swhash->recursion, rctx);
7106 }
7107 
7108 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7109 {
7110 	struct perf_sample_data data;
7111 
7112 	if (WARN_ON_ONCE(!regs))
7113 		return;
7114 
7115 	perf_sample_data_init(&data, addr, 0);
7116 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7117 }
7118 
7119 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7120 {
7121 	int rctx;
7122 
7123 	preempt_disable_notrace();
7124 	rctx = perf_swevent_get_recursion_context();
7125 	if (unlikely(rctx < 0))
7126 		goto fail;
7127 
7128 	___perf_sw_event(event_id, nr, regs, addr);
7129 
7130 	perf_swevent_put_recursion_context(rctx);
7131 fail:
7132 	preempt_enable_notrace();
7133 }
7134 
7135 static void perf_swevent_read(struct perf_event *event)
7136 {
7137 }
7138 
7139 static int perf_swevent_add(struct perf_event *event, int flags)
7140 {
7141 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7142 	struct hw_perf_event *hwc = &event->hw;
7143 	struct hlist_head *head;
7144 
7145 	if (is_sampling_event(event)) {
7146 		hwc->last_period = hwc->sample_period;
7147 		perf_swevent_set_period(event);
7148 	}
7149 
7150 	hwc->state = !(flags & PERF_EF_START);
7151 
7152 	head = find_swevent_head(swhash, event);
7153 	if (WARN_ON_ONCE(!head))
7154 		return -EINVAL;
7155 
7156 	hlist_add_head_rcu(&event->hlist_entry, head);
7157 	perf_event_update_userpage(event);
7158 
7159 	return 0;
7160 }
7161 
7162 static void perf_swevent_del(struct perf_event *event, int flags)
7163 {
7164 	hlist_del_rcu(&event->hlist_entry);
7165 }
7166 
7167 static void perf_swevent_start(struct perf_event *event, int flags)
7168 {
7169 	event->hw.state = 0;
7170 }
7171 
7172 static void perf_swevent_stop(struct perf_event *event, int flags)
7173 {
7174 	event->hw.state = PERF_HES_STOPPED;
7175 }
7176 
7177 /* Deref the hlist from the update side */
7178 static inline struct swevent_hlist *
7179 swevent_hlist_deref(struct swevent_htable *swhash)
7180 {
7181 	return rcu_dereference_protected(swhash->swevent_hlist,
7182 					 lockdep_is_held(&swhash->hlist_mutex));
7183 }
7184 
7185 static void swevent_hlist_release(struct swevent_htable *swhash)
7186 {
7187 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7188 
7189 	if (!hlist)
7190 		return;
7191 
7192 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7193 	kfree_rcu(hlist, rcu_head);
7194 }
7195 
7196 static void swevent_hlist_put_cpu(int cpu)
7197 {
7198 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7199 
7200 	mutex_lock(&swhash->hlist_mutex);
7201 
7202 	if (!--swhash->hlist_refcount)
7203 		swevent_hlist_release(swhash);
7204 
7205 	mutex_unlock(&swhash->hlist_mutex);
7206 }
7207 
7208 static void swevent_hlist_put(void)
7209 {
7210 	int cpu;
7211 
7212 	for_each_possible_cpu(cpu)
7213 		swevent_hlist_put_cpu(cpu);
7214 }
7215 
7216 static int swevent_hlist_get_cpu(int cpu)
7217 {
7218 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7219 	int err = 0;
7220 
7221 	mutex_lock(&swhash->hlist_mutex);
7222 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7223 		struct swevent_hlist *hlist;
7224 
7225 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7226 		if (!hlist) {
7227 			err = -ENOMEM;
7228 			goto exit;
7229 		}
7230 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7231 	}
7232 	swhash->hlist_refcount++;
7233 exit:
7234 	mutex_unlock(&swhash->hlist_mutex);
7235 
7236 	return err;
7237 }
7238 
7239 static int swevent_hlist_get(void)
7240 {
7241 	int err, cpu, failed_cpu;
7242 
7243 	get_online_cpus();
7244 	for_each_possible_cpu(cpu) {
7245 		err = swevent_hlist_get_cpu(cpu);
7246 		if (err) {
7247 			failed_cpu = cpu;
7248 			goto fail;
7249 		}
7250 	}
7251 	put_online_cpus();
7252 
7253 	return 0;
7254 fail:
7255 	for_each_possible_cpu(cpu) {
7256 		if (cpu == failed_cpu)
7257 			break;
7258 		swevent_hlist_put_cpu(cpu);
7259 	}
7260 
7261 	put_online_cpus();
7262 	return err;
7263 }
7264 
7265 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7266 
7267 static void sw_perf_event_destroy(struct perf_event *event)
7268 {
7269 	u64 event_id = event->attr.config;
7270 
7271 	WARN_ON(event->parent);
7272 
7273 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7274 	swevent_hlist_put();
7275 }
7276 
7277 static int perf_swevent_init(struct perf_event *event)
7278 {
7279 	u64 event_id = event->attr.config;
7280 
7281 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7282 		return -ENOENT;
7283 
7284 	/*
7285 	 * no branch sampling for software events
7286 	 */
7287 	if (has_branch_stack(event))
7288 		return -EOPNOTSUPP;
7289 
7290 	switch (event_id) {
7291 	case PERF_COUNT_SW_CPU_CLOCK:
7292 	case PERF_COUNT_SW_TASK_CLOCK:
7293 		return -ENOENT;
7294 
7295 	default:
7296 		break;
7297 	}
7298 
7299 	if (event_id >= PERF_COUNT_SW_MAX)
7300 		return -ENOENT;
7301 
7302 	if (!event->parent) {
7303 		int err;
7304 
7305 		err = swevent_hlist_get();
7306 		if (err)
7307 			return err;
7308 
7309 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7310 		event->destroy = sw_perf_event_destroy;
7311 	}
7312 
7313 	return 0;
7314 }
7315 
7316 static struct pmu perf_swevent = {
7317 	.task_ctx_nr	= perf_sw_context,
7318 
7319 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7320 
7321 	.event_init	= perf_swevent_init,
7322 	.add		= perf_swevent_add,
7323 	.del		= perf_swevent_del,
7324 	.start		= perf_swevent_start,
7325 	.stop		= perf_swevent_stop,
7326 	.read		= perf_swevent_read,
7327 };
7328 
7329 #ifdef CONFIG_EVENT_TRACING
7330 
7331 static int perf_tp_filter_match(struct perf_event *event,
7332 				struct perf_sample_data *data)
7333 {
7334 	void *record = data->raw->data;
7335 
7336 	/* only top level events have filters set */
7337 	if (event->parent)
7338 		event = event->parent;
7339 
7340 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7341 		return 1;
7342 	return 0;
7343 }
7344 
7345 static int perf_tp_event_match(struct perf_event *event,
7346 				struct perf_sample_data *data,
7347 				struct pt_regs *regs)
7348 {
7349 	if (event->hw.state & PERF_HES_STOPPED)
7350 		return 0;
7351 	/*
7352 	 * All tracepoints are from kernel-space.
7353 	 */
7354 	if (event->attr.exclude_kernel)
7355 		return 0;
7356 
7357 	if (!perf_tp_filter_match(event, data))
7358 		return 0;
7359 
7360 	return 1;
7361 }
7362 
7363 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7364 			       struct trace_event_call *call, u64 count,
7365 			       struct pt_regs *regs, struct hlist_head *head,
7366 			       struct task_struct *task)
7367 {
7368 	struct bpf_prog *prog = call->prog;
7369 
7370 	if (prog) {
7371 		*(struct pt_regs **)raw_data = regs;
7372 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7373 			perf_swevent_put_recursion_context(rctx);
7374 			return;
7375 		}
7376 	}
7377 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7378 		      rctx, task);
7379 }
7380 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7381 
7382 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7383 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7384 		   struct task_struct *task)
7385 {
7386 	struct perf_sample_data data;
7387 	struct perf_event *event;
7388 
7389 	struct perf_raw_record raw = {
7390 		.size = entry_size,
7391 		.data = record,
7392 	};
7393 
7394 	perf_sample_data_init(&data, 0, 0);
7395 	data.raw = &raw;
7396 
7397 	perf_trace_buf_update(record, event_type);
7398 
7399 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7400 		if (perf_tp_event_match(event, &data, regs))
7401 			perf_swevent_event(event, count, &data, regs);
7402 	}
7403 
7404 	/*
7405 	 * If we got specified a target task, also iterate its context and
7406 	 * deliver this event there too.
7407 	 */
7408 	if (task && task != current) {
7409 		struct perf_event_context *ctx;
7410 		struct trace_entry *entry = record;
7411 
7412 		rcu_read_lock();
7413 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7414 		if (!ctx)
7415 			goto unlock;
7416 
7417 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7418 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7419 				continue;
7420 			if (event->attr.config != entry->type)
7421 				continue;
7422 			if (perf_tp_event_match(event, &data, regs))
7423 				perf_swevent_event(event, count, &data, regs);
7424 		}
7425 unlock:
7426 		rcu_read_unlock();
7427 	}
7428 
7429 	perf_swevent_put_recursion_context(rctx);
7430 }
7431 EXPORT_SYMBOL_GPL(perf_tp_event);
7432 
7433 static void tp_perf_event_destroy(struct perf_event *event)
7434 {
7435 	perf_trace_destroy(event);
7436 }
7437 
7438 static int perf_tp_event_init(struct perf_event *event)
7439 {
7440 	int err;
7441 
7442 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7443 		return -ENOENT;
7444 
7445 	/*
7446 	 * no branch sampling for tracepoint events
7447 	 */
7448 	if (has_branch_stack(event))
7449 		return -EOPNOTSUPP;
7450 
7451 	err = perf_trace_init(event);
7452 	if (err)
7453 		return err;
7454 
7455 	event->destroy = tp_perf_event_destroy;
7456 
7457 	return 0;
7458 }
7459 
7460 static struct pmu perf_tracepoint = {
7461 	.task_ctx_nr	= perf_sw_context,
7462 
7463 	.event_init	= perf_tp_event_init,
7464 	.add		= perf_trace_add,
7465 	.del		= perf_trace_del,
7466 	.start		= perf_swevent_start,
7467 	.stop		= perf_swevent_stop,
7468 	.read		= perf_swevent_read,
7469 };
7470 
7471 static inline void perf_tp_register(void)
7472 {
7473 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7474 }
7475 
7476 static void perf_event_free_filter(struct perf_event *event)
7477 {
7478 	ftrace_profile_free_filter(event);
7479 }
7480 
7481 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7482 {
7483 	bool is_kprobe, is_tracepoint;
7484 	struct bpf_prog *prog;
7485 
7486 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7487 		return -EINVAL;
7488 
7489 	if (event->tp_event->prog)
7490 		return -EEXIST;
7491 
7492 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7493 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7494 	if (!is_kprobe && !is_tracepoint)
7495 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7496 		return -EINVAL;
7497 
7498 	prog = bpf_prog_get(prog_fd);
7499 	if (IS_ERR(prog))
7500 		return PTR_ERR(prog);
7501 
7502 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7503 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7504 		/* valid fd, but invalid bpf program type */
7505 		bpf_prog_put(prog);
7506 		return -EINVAL;
7507 	}
7508 
7509 	if (is_tracepoint) {
7510 		int off = trace_event_get_offsets(event->tp_event);
7511 
7512 		if (prog->aux->max_ctx_offset > off) {
7513 			bpf_prog_put(prog);
7514 			return -EACCES;
7515 		}
7516 	}
7517 	event->tp_event->prog = prog;
7518 
7519 	return 0;
7520 }
7521 
7522 static void perf_event_free_bpf_prog(struct perf_event *event)
7523 {
7524 	struct bpf_prog *prog;
7525 
7526 	if (!event->tp_event)
7527 		return;
7528 
7529 	prog = event->tp_event->prog;
7530 	if (prog) {
7531 		event->tp_event->prog = NULL;
7532 		bpf_prog_put(prog);
7533 	}
7534 }
7535 
7536 #else
7537 
7538 static inline void perf_tp_register(void)
7539 {
7540 }
7541 
7542 static void perf_event_free_filter(struct perf_event *event)
7543 {
7544 }
7545 
7546 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7547 {
7548 	return -ENOENT;
7549 }
7550 
7551 static void perf_event_free_bpf_prog(struct perf_event *event)
7552 {
7553 }
7554 #endif /* CONFIG_EVENT_TRACING */
7555 
7556 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7557 void perf_bp_event(struct perf_event *bp, void *data)
7558 {
7559 	struct perf_sample_data sample;
7560 	struct pt_regs *regs = data;
7561 
7562 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7563 
7564 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7565 		perf_swevent_event(bp, 1, &sample, regs);
7566 }
7567 #endif
7568 
7569 /*
7570  * Allocate a new address filter
7571  */
7572 static struct perf_addr_filter *
7573 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7574 {
7575 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7576 	struct perf_addr_filter *filter;
7577 
7578 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7579 	if (!filter)
7580 		return NULL;
7581 
7582 	INIT_LIST_HEAD(&filter->entry);
7583 	list_add_tail(&filter->entry, filters);
7584 
7585 	return filter;
7586 }
7587 
7588 static void free_filters_list(struct list_head *filters)
7589 {
7590 	struct perf_addr_filter *filter, *iter;
7591 
7592 	list_for_each_entry_safe(filter, iter, filters, entry) {
7593 		if (filter->inode)
7594 			iput(filter->inode);
7595 		list_del(&filter->entry);
7596 		kfree(filter);
7597 	}
7598 }
7599 
7600 /*
7601  * Free existing address filters and optionally install new ones
7602  */
7603 static void perf_addr_filters_splice(struct perf_event *event,
7604 				     struct list_head *head)
7605 {
7606 	unsigned long flags;
7607 	LIST_HEAD(list);
7608 
7609 	if (!has_addr_filter(event))
7610 		return;
7611 
7612 	/* don't bother with children, they don't have their own filters */
7613 	if (event->parent)
7614 		return;
7615 
7616 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7617 
7618 	list_splice_init(&event->addr_filters.list, &list);
7619 	if (head)
7620 		list_splice(head, &event->addr_filters.list);
7621 
7622 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7623 
7624 	free_filters_list(&list);
7625 }
7626 
7627 /*
7628  * Scan through mm's vmas and see if one of them matches the
7629  * @filter; if so, adjust filter's address range.
7630  * Called with mm::mmap_sem down for reading.
7631  */
7632 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7633 					    struct mm_struct *mm)
7634 {
7635 	struct vm_area_struct *vma;
7636 
7637 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7638 		struct file *file = vma->vm_file;
7639 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7640 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7641 
7642 		if (!file)
7643 			continue;
7644 
7645 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7646 			continue;
7647 
7648 		return vma->vm_start;
7649 	}
7650 
7651 	return 0;
7652 }
7653 
7654 /*
7655  * Update event's address range filters based on the
7656  * task's existing mappings, if any.
7657  */
7658 static void perf_event_addr_filters_apply(struct perf_event *event)
7659 {
7660 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7661 	struct task_struct *task = READ_ONCE(event->ctx->task);
7662 	struct perf_addr_filter *filter;
7663 	struct mm_struct *mm = NULL;
7664 	unsigned int count = 0;
7665 	unsigned long flags;
7666 
7667 	/*
7668 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7669 	 * will stop on the parent's child_mutex that our caller is also holding
7670 	 */
7671 	if (task == TASK_TOMBSTONE)
7672 		return;
7673 
7674 	mm = get_task_mm(event->ctx->task);
7675 	if (!mm)
7676 		goto restart;
7677 
7678 	down_read(&mm->mmap_sem);
7679 
7680 	raw_spin_lock_irqsave(&ifh->lock, flags);
7681 	list_for_each_entry(filter, &ifh->list, entry) {
7682 		event->addr_filters_offs[count] = 0;
7683 
7684 		if (perf_addr_filter_needs_mmap(filter))
7685 			event->addr_filters_offs[count] =
7686 				perf_addr_filter_apply(filter, mm);
7687 
7688 		count++;
7689 	}
7690 
7691 	event->addr_filters_gen++;
7692 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7693 
7694 	up_read(&mm->mmap_sem);
7695 
7696 	mmput(mm);
7697 
7698 restart:
7699 	perf_event_restart(event);
7700 }
7701 
7702 /*
7703  * Address range filtering: limiting the data to certain
7704  * instruction address ranges. Filters are ioctl()ed to us from
7705  * userspace as ascii strings.
7706  *
7707  * Filter string format:
7708  *
7709  * ACTION RANGE_SPEC
7710  * where ACTION is one of the
7711  *  * "filter": limit the trace to this region
7712  *  * "start": start tracing from this address
7713  *  * "stop": stop tracing at this address/region;
7714  * RANGE_SPEC is
7715  *  * for kernel addresses: <start address>[/<size>]
7716  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7717  *
7718  * if <size> is not specified, the range is treated as a single address.
7719  */
7720 enum {
7721 	IF_ACT_FILTER,
7722 	IF_ACT_START,
7723 	IF_ACT_STOP,
7724 	IF_SRC_FILE,
7725 	IF_SRC_KERNEL,
7726 	IF_SRC_FILEADDR,
7727 	IF_SRC_KERNELADDR,
7728 };
7729 
7730 enum {
7731 	IF_STATE_ACTION = 0,
7732 	IF_STATE_SOURCE,
7733 	IF_STATE_END,
7734 };
7735 
7736 static const match_table_t if_tokens = {
7737 	{ IF_ACT_FILTER,	"filter" },
7738 	{ IF_ACT_START,		"start" },
7739 	{ IF_ACT_STOP,		"stop" },
7740 	{ IF_SRC_FILE,		"%u/%u@%s" },
7741 	{ IF_SRC_KERNEL,	"%u/%u" },
7742 	{ IF_SRC_FILEADDR,	"%u@%s" },
7743 	{ IF_SRC_KERNELADDR,	"%u" },
7744 };
7745 
7746 /*
7747  * Address filter string parser
7748  */
7749 static int
7750 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7751 			     struct list_head *filters)
7752 {
7753 	struct perf_addr_filter *filter = NULL;
7754 	char *start, *orig, *filename = NULL;
7755 	struct path path;
7756 	substring_t args[MAX_OPT_ARGS];
7757 	int state = IF_STATE_ACTION, token;
7758 	unsigned int kernel = 0;
7759 	int ret = -EINVAL;
7760 
7761 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7762 	if (!fstr)
7763 		return -ENOMEM;
7764 
7765 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7766 		ret = -EINVAL;
7767 
7768 		if (!*start)
7769 			continue;
7770 
7771 		/* filter definition begins */
7772 		if (state == IF_STATE_ACTION) {
7773 			filter = perf_addr_filter_new(event, filters);
7774 			if (!filter)
7775 				goto fail;
7776 		}
7777 
7778 		token = match_token(start, if_tokens, args);
7779 		switch (token) {
7780 		case IF_ACT_FILTER:
7781 		case IF_ACT_START:
7782 			filter->filter = 1;
7783 
7784 		case IF_ACT_STOP:
7785 			if (state != IF_STATE_ACTION)
7786 				goto fail;
7787 
7788 			state = IF_STATE_SOURCE;
7789 			break;
7790 
7791 		case IF_SRC_KERNELADDR:
7792 		case IF_SRC_KERNEL:
7793 			kernel = 1;
7794 
7795 		case IF_SRC_FILEADDR:
7796 		case IF_SRC_FILE:
7797 			if (state != IF_STATE_SOURCE)
7798 				goto fail;
7799 
7800 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7801 				filter->range = 1;
7802 
7803 			*args[0].to = 0;
7804 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7805 			if (ret)
7806 				goto fail;
7807 
7808 			if (filter->range) {
7809 				*args[1].to = 0;
7810 				ret = kstrtoul(args[1].from, 0, &filter->size);
7811 				if (ret)
7812 					goto fail;
7813 			}
7814 
7815 			if (token == IF_SRC_FILE) {
7816 				filename = match_strdup(&args[2]);
7817 				if (!filename) {
7818 					ret = -ENOMEM;
7819 					goto fail;
7820 				}
7821 			}
7822 
7823 			state = IF_STATE_END;
7824 			break;
7825 
7826 		default:
7827 			goto fail;
7828 		}
7829 
7830 		/*
7831 		 * Filter definition is fully parsed, validate and install it.
7832 		 * Make sure that it doesn't contradict itself or the event's
7833 		 * attribute.
7834 		 */
7835 		if (state == IF_STATE_END) {
7836 			if (kernel && event->attr.exclude_kernel)
7837 				goto fail;
7838 
7839 			if (!kernel) {
7840 				if (!filename)
7841 					goto fail;
7842 
7843 				/* look up the path and grab its inode */
7844 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7845 				if (ret)
7846 					goto fail_free_name;
7847 
7848 				filter->inode = igrab(d_inode(path.dentry));
7849 				path_put(&path);
7850 				kfree(filename);
7851 				filename = NULL;
7852 
7853 				ret = -EINVAL;
7854 				if (!filter->inode ||
7855 				    !S_ISREG(filter->inode->i_mode))
7856 					/* free_filters_list() will iput() */
7857 					goto fail;
7858 			}
7859 
7860 			/* ready to consume more filters */
7861 			state = IF_STATE_ACTION;
7862 			filter = NULL;
7863 		}
7864 	}
7865 
7866 	if (state != IF_STATE_ACTION)
7867 		goto fail;
7868 
7869 	kfree(orig);
7870 
7871 	return 0;
7872 
7873 fail_free_name:
7874 	kfree(filename);
7875 fail:
7876 	free_filters_list(filters);
7877 	kfree(orig);
7878 
7879 	return ret;
7880 }
7881 
7882 static int
7883 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7884 {
7885 	LIST_HEAD(filters);
7886 	int ret;
7887 
7888 	/*
7889 	 * Since this is called in perf_ioctl() path, we're already holding
7890 	 * ctx::mutex.
7891 	 */
7892 	lockdep_assert_held(&event->ctx->mutex);
7893 
7894 	if (WARN_ON_ONCE(event->parent))
7895 		return -EINVAL;
7896 
7897 	/*
7898 	 * For now, we only support filtering in per-task events; doing so
7899 	 * for CPU-wide events requires additional context switching trickery,
7900 	 * since same object code will be mapped at different virtual
7901 	 * addresses in different processes.
7902 	 */
7903 	if (!event->ctx->task)
7904 		return -EOPNOTSUPP;
7905 
7906 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7907 	if (ret)
7908 		return ret;
7909 
7910 	ret = event->pmu->addr_filters_validate(&filters);
7911 	if (ret) {
7912 		free_filters_list(&filters);
7913 		return ret;
7914 	}
7915 
7916 	/* remove existing filters, if any */
7917 	perf_addr_filters_splice(event, &filters);
7918 
7919 	/* install new filters */
7920 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
7921 
7922 	return ret;
7923 }
7924 
7925 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7926 {
7927 	char *filter_str;
7928 	int ret = -EINVAL;
7929 
7930 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7931 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7932 	    !has_addr_filter(event))
7933 		return -EINVAL;
7934 
7935 	filter_str = strndup_user(arg, PAGE_SIZE);
7936 	if (IS_ERR(filter_str))
7937 		return PTR_ERR(filter_str);
7938 
7939 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7940 	    event->attr.type == PERF_TYPE_TRACEPOINT)
7941 		ret = ftrace_profile_set_filter(event, event->attr.config,
7942 						filter_str);
7943 	else if (has_addr_filter(event))
7944 		ret = perf_event_set_addr_filter(event, filter_str);
7945 
7946 	kfree(filter_str);
7947 	return ret;
7948 }
7949 
7950 /*
7951  * hrtimer based swevent callback
7952  */
7953 
7954 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7955 {
7956 	enum hrtimer_restart ret = HRTIMER_RESTART;
7957 	struct perf_sample_data data;
7958 	struct pt_regs *regs;
7959 	struct perf_event *event;
7960 	u64 period;
7961 
7962 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7963 
7964 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7965 		return HRTIMER_NORESTART;
7966 
7967 	event->pmu->read(event);
7968 
7969 	perf_sample_data_init(&data, 0, event->hw.last_period);
7970 	regs = get_irq_regs();
7971 
7972 	if (regs && !perf_exclude_event(event, regs)) {
7973 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7974 			if (__perf_event_overflow(event, 1, &data, regs))
7975 				ret = HRTIMER_NORESTART;
7976 	}
7977 
7978 	period = max_t(u64, 10000, event->hw.sample_period);
7979 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7980 
7981 	return ret;
7982 }
7983 
7984 static void perf_swevent_start_hrtimer(struct perf_event *event)
7985 {
7986 	struct hw_perf_event *hwc = &event->hw;
7987 	s64 period;
7988 
7989 	if (!is_sampling_event(event))
7990 		return;
7991 
7992 	period = local64_read(&hwc->period_left);
7993 	if (period) {
7994 		if (period < 0)
7995 			period = 10000;
7996 
7997 		local64_set(&hwc->period_left, 0);
7998 	} else {
7999 		period = max_t(u64, 10000, hwc->sample_period);
8000 	}
8001 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8002 		      HRTIMER_MODE_REL_PINNED);
8003 }
8004 
8005 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8006 {
8007 	struct hw_perf_event *hwc = &event->hw;
8008 
8009 	if (is_sampling_event(event)) {
8010 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8011 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8012 
8013 		hrtimer_cancel(&hwc->hrtimer);
8014 	}
8015 }
8016 
8017 static void perf_swevent_init_hrtimer(struct perf_event *event)
8018 {
8019 	struct hw_perf_event *hwc = &event->hw;
8020 
8021 	if (!is_sampling_event(event))
8022 		return;
8023 
8024 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8025 	hwc->hrtimer.function = perf_swevent_hrtimer;
8026 
8027 	/*
8028 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8029 	 * mapping and avoid the whole period adjust feedback stuff.
8030 	 */
8031 	if (event->attr.freq) {
8032 		long freq = event->attr.sample_freq;
8033 
8034 		event->attr.sample_period = NSEC_PER_SEC / freq;
8035 		hwc->sample_period = event->attr.sample_period;
8036 		local64_set(&hwc->period_left, hwc->sample_period);
8037 		hwc->last_period = hwc->sample_period;
8038 		event->attr.freq = 0;
8039 	}
8040 }
8041 
8042 /*
8043  * Software event: cpu wall time clock
8044  */
8045 
8046 static void cpu_clock_event_update(struct perf_event *event)
8047 {
8048 	s64 prev;
8049 	u64 now;
8050 
8051 	now = local_clock();
8052 	prev = local64_xchg(&event->hw.prev_count, now);
8053 	local64_add(now - prev, &event->count);
8054 }
8055 
8056 static void cpu_clock_event_start(struct perf_event *event, int flags)
8057 {
8058 	local64_set(&event->hw.prev_count, local_clock());
8059 	perf_swevent_start_hrtimer(event);
8060 }
8061 
8062 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8063 {
8064 	perf_swevent_cancel_hrtimer(event);
8065 	cpu_clock_event_update(event);
8066 }
8067 
8068 static int cpu_clock_event_add(struct perf_event *event, int flags)
8069 {
8070 	if (flags & PERF_EF_START)
8071 		cpu_clock_event_start(event, flags);
8072 	perf_event_update_userpage(event);
8073 
8074 	return 0;
8075 }
8076 
8077 static void cpu_clock_event_del(struct perf_event *event, int flags)
8078 {
8079 	cpu_clock_event_stop(event, flags);
8080 }
8081 
8082 static void cpu_clock_event_read(struct perf_event *event)
8083 {
8084 	cpu_clock_event_update(event);
8085 }
8086 
8087 static int cpu_clock_event_init(struct perf_event *event)
8088 {
8089 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8090 		return -ENOENT;
8091 
8092 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8093 		return -ENOENT;
8094 
8095 	/*
8096 	 * no branch sampling for software events
8097 	 */
8098 	if (has_branch_stack(event))
8099 		return -EOPNOTSUPP;
8100 
8101 	perf_swevent_init_hrtimer(event);
8102 
8103 	return 0;
8104 }
8105 
8106 static struct pmu perf_cpu_clock = {
8107 	.task_ctx_nr	= perf_sw_context,
8108 
8109 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8110 
8111 	.event_init	= cpu_clock_event_init,
8112 	.add		= cpu_clock_event_add,
8113 	.del		= cpu_clock_event_del,
8114 	.start		= cpu_clock_event_start,
8115 	.stop		= cpu_clock_event_stop,
8116 	.read		= cpu_clock_event_read,
8117 };
8118 
8119 /*
8120  * Software event: task time clock
8121  */
8122 
8123 static void task_clock_event_update(struct perf_event *event, u64 now)
8124 {
8125 	u64 prev;
8126 	s64 delta;
8127 
8128 	prev = local64_xchg(&event->hw.prev_count, now);
8129 	delta = now - prev;
8130 	local64_add(delta, &event->count);
8131 }
8132 
8133 static void task_clock_event_start(struct perf_event *event, int flags)
8134 {
8135 	local64_set(&event->hw.prev_count, event->ctx->time);
8136 	perf_swevent_start_hrtimer(event);
8137 }
8138 
8139 static void task_clock_event_stop(struct perf_event *event, int flags)
8140 {
8141 	perf_swevent_cancel_hrtimer(event);
8142 	task_clock_event_update(event, event->ctx->time);
8143 }
8144 
8145 static int task_clock_event_add(struct perf_event *event, int flags)
8146 {
8147 	if (flags & PERF_EF_START)
8148 		task_clock_event_start(event, flags);
8149 	perf_event_update_userpage(event);
8150 
8151 	return 0;
8152 }
8153 
8154 static void task_clock_event_del(struct perf_event *event, int flags)
8155 {
8156 	task_clock_event_stop(event, PERF_EF_UPDATE);
8157 }
8158 
8159 static void task_clock_event_read(struct perf_event *event)
8160 {
8161 	u64 now = perf_clock();
8162 	u64 delta = now - event->ctx->timestamp;
8163 	u64 time = event->ctx->time + delta;
8164 
8165 	task_clock_event_update(event, time);
8166 }
8167 
8168 static int task_clock_event_init(struct perf_event *event)
8169 {
8170 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8171 		return -ENOENT;
8172 
8173 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8174 		return -ENOENT;
8175 
8176 	/*
8177 	 * no branch sampling for software events
8178 	 */
8179 	if (has_branch_stack(event))
8180 		return -EOPNOTSUPP;
8181 
8182 	perf_swevent_init_hrtimer(event);
8183 
8184 	return 0;
8185 }
8186 
8187 static struct pmu perf_task_clock = {
8188 	.task_ctx_nr	= perf_sw_context,
8189 
8190 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8191 
8192 	.event_init	= task_clock_event_init,
8193 	.add		= task_clock_event_add,
8194 	.del		= task_clock_event_del,
8195 	.start		= task_clock_event_start,
8196 	.stop		= task_clock_event_stop,
8197 	.read		= task_clock_event_read,
8198 };
8199 
8200 static void perf_pmu_nop_void(struct pmu *pmu)
8201 {
8202 }
8203 
8204 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8205 {
8206 }
8207 
8208 static int perf_pmu_nop_int(struct pmu *pmu)
8209 {
8210 	return 0;
8211 }
8212 
8213 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8214 
8215 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8216 {
8217 	__this_cpu_write(nop_txn_flags, flags);
8218 
8219 	if (flags & ~PERF_PMU_TXN_ADD)
8220 		return;
8221 
8222 	perf_pmu_disable(pmu);
8223 }
8224 
8225 static int perf_pmu_commit_txn(struct pmu *pmu)
8226 {
8227 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8228 
8229 	__this_cpu_write(nop_txn_flags, 0);
8230 
8231 	if (flags & ~PERF_PMU_TXN_ADD)
8232 		return 0;
8233 
8234 	perf_pmu_enable(pmu);
8235 	return 0;
8236 }
8237 
8238 static void perf_pmu_cancel_txn(struct pmu *pmu)
8239 {
8240 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8241 
8242 	__this_cpu_write(nop_txn_flags, 0);
8243 
8244 	if (flags & ~PERF_PMU_TXN_ADD)
8245 		return;
8246 
8247 	perf_pmu_enable(pmu);
8248 }
8249 
8250 static int perf_event_idx_default(struct perf_event *event)
8251 {
8252 	return 0;
8253 }
8254 
8255 /*
8256  * Ensures all contexts with the same task_ctx_nr have the same
8257  * pmu_cpu_context too.
8258  */
8259 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8260 {
8261 	struct pmu *pmu;
8262 
8263 	if (ctxn < 0)
8264 		return NULL;
8265 
8266 	list_for_each_entry(pmu, &pmus, entry) {
8267 		if (pmu->task_ctx_nr == ctxn)
8268 			return pmu->pmu_cpu_context;
8269 	}
8270 
8271 	return NULL;
8272 }
8273 
8274 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8275 {
8276 	int cpu;
8277 
8278 	for_each_possible_cpu(cpu) {
8279 		struct perf_cpu_context *cpuctx;
8280 
8281 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8282 
8283 		if (cpuctx->unique_pmu == old_pmu)
8284 			cpuctx->unique_pmu = pmu;
8285 	}
8286 }
8287 
8288 static void free_pmu_context(struct pmu *pmu)
8289 {
8290 	struct pmu *i;
8291 
8292 	mutex_lock(&pmus_lock);
8293 	/*
8294 	 * Like a real lame refcount.
8295 	 */
8296 	list_for_each_entry(i, &pmus, entry) {
8297 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8298 			update_pmu_context(i, pmu);
8299 			goto out;
8300 		}
8301 	}
8302 
8303 	free_percpu(pmu->pmu_cpu_context);
8304 out:
8305 	mutex_unlock(&pmus_lock);
8306 }
8307 
8308 /*
8309  * Let userspace know that this PMU supports address range filtering:
8310  */
8311 static ssize_t nr_addr_filters_show(struct device *dev,
8312 				    struct device_attribute *attr,
8313 				    char *page)
8314 {
8315 	struct pmu *pmu = dev_get_drvdata(dev);
8316 
8317 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8318 }
8319 DEVICE_ATTR_RO(nr_addr_filters);
8320 
8321 static struct idr pmu_idr;
8322 
8323 static ssize_t
8324 type_show(struct device *dev, struct device_attribute *attr, char *page)
8325 {
8326 	struct pmu *pmu = dev_get_drvdata(dev);
8327 
8328 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8329 }
8330 static DEVICE_ATTR_RO(type);
8331 
8332 static ssize_t
8333 perf_event_mux_interval_ms_show(struct device *dev,
8334 				struct device_attribute *attr,
8335 				char *page)
8336 {
8337 	struct pmu *pmu = dev_get_drvdata(dev);
8338 
8339 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8340 }
8341 
8342 static DEFINE_MUTEX(mux_interval_mutex);
8343 
8344 static ssize_t
8345 perf_event_mux_interval_ms_store(struct device *dev,
8346 				 struct device_attribute *attr,
8347 				 const char *buf, size_t count)
8348 {
8349 	struct pmu *pmu = dev_get_drvdata(dev);
8350 	int timer, cpu, ret;
8351 
8352 	ret = kstrtoint(buf, 0, &timer);
8353 	if (ret)
8354 		return ret;
8355 
8356 	if (timer < 1)
8357 		return -EINVAL;
8358 
8359 	/* same value, noting to do */
8360 	if (timer == pmu->hrtimer_interval_ms)
8361 		return count;
8362 
8363 	mutex_lock(&mux_interval_mutex);
8364 	pmu->hrtimer_interval_ms = timer;
8365 
8366 	/* update all cpuctx for this PMU */
8367 	get_online_cpus();
8368 	for_each_online_cpu(cpu) {
8369 		struct perf_cpu_context *cpuctx;
8370 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8371 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8372 
8373 		cpu_function_call(cpu,
8374 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8375 	}
8376 	put_online_cpus();
8377 	mutex_unlock(&mux_interval_mutex);
8378 
8379 	return count;
8380 }
8381 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8382 
8383 static struct attribute *pmu_dev_attrs[] = {
8384 	&dev_attr_type.attr,
8385 	&dev_attr_perf_event_mux_interval_ms.attr,
8386 	NULL,
8387 };
8388 ATTRIBUTE_GROUPS(pmu_dev);
8389 
8390 static int pmu_bus_running;
8391 static struct bus_type pmu_bus = {
8392 	.name		= "event_source",
8393 	.dev_groups	= pmu_dev_groups,
8394 };
8395 
8396 static void pmu_dev_release(struct device *dev)
8397 {
8398 	kfree(dev);
8399 }
8400 
8401 static int pmu_dev_alloc(struct pmu *pmu)
8402 {
8403 	int ret = -ENOMEM;
8404 
8405 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8406 	if (!pmu->dev)
8407 		goto out;
8408 
8409 	pmu->dev->groups = pmu->attr_groups;
8410 	device_initialize(pmu->dev);
8411 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8412 	if (ret)
8413 		goto free_dev;
8414 
8415 	dev_set_drvdata(pmu->dev, pmu);
8416 	pmu->dev->bus = &pmu_bus;
8417 	pmu->dev->release = pmu_dev_release;
8418 	ret = device_add(pmu->dev);
8419 	if (ret)
8420 		goto free_dev;
8421 
8422 	/* For PMUs with address filters, throw in an extra attribute: */
8423 	if (pmu->nr_addr_filters)
8424 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8425 
8426 	if (ret)
8427 		goto del_dev;
8428 
8429 out:
8430 	return ret;
8431 
8432 del_dev:
8433 	device_del(pmu->dev);
8434 
8435 free_dev:
8436 	put_device(pmu->dev);
8437 	goto out;
8438 }
8439 
8440 static struct lock_class_key cpuctx_mutex;
8441 static struct lock_class_key cpuctx_lock;
8442 
8443 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8444 {
8445 	int cpu, ret;
8446 
8447 	mutex_lock(&pmus_lock);
8448 	ret = -ENOMEM;
8449 	pmu->pmu_disable_count = alloc_percpu(int);
8450 	if (!pmu->pmu_disable_count)
8451 		goto unlock;
8452 
8453 	pmu->type = -1;
8454 	if (!name)
8455 		goto skip_type;
8456 	pmu->name = name;
8457 
8458 	if (type < 0) {
8459 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8460 		if (type < 0) {
8461 			ret = type;
8462 			goto free_pdc;
8463 		}
8464 	}
8465 	pmu->type = type;
8466 
8467 	if (pmu_bus_running) {
8468 		ret = pmu_dev_alloc(pmu);
8469 		if (ret)
8470 			goto free_idr;
8471 	}
8472 
8473 skip_type:
8474 	if (pmu->task_ctx_nr == perf_hw_context) {
8475 		static int hw_context_taken = 0;
8476 
8477 		/*
8478 		 * Other than systems with heterogeneous CPUs, it never makes
8479 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8480 		 * uncore must use perf_invalid_context.
8481 		 */
8482 		if (WARN_ON_ONCE(hw_context_taken &&
8483 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8484 			pmu->task_ctx_nr = perf_invalid_context;
8485 
8486 		hw_context_taken = 1;
8487 	}
8488 
8489 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8490 	if (pmu->pmu_cpu_context)
8491 		goto got_cpu_context;
8492 
8493 	ret = -ENOMEM;
8494 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8495 	if (!pmu->pmu_cpu_context)
8496 		goto free_dev;
8497 
8498 	for_each_possible_cpu(cpu) {
8499 		struct perf_cpu_context *cpuctx;
8500 
8501 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8502 		__perf_event_init_context(&cpuctx->ctx);
8503 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8504 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8505 		cpuctx->ctx.pmu = pmu;
8506 
8507 		__perf_mux_hrtimer_init(cpuctx, cpu);
8508 
8509 		cpuctx->unique_pmu = pmu;
8510 	}
8511 
8512 got_cpu_context:
8513 	if (!pmu->start_txn) {
8514 		if (pmu->pmu_enable) {
8515 			/*
8516 			 * If we have pmu_enable/pmu_disable calls, install
8517 			 * transaction stubs that use that to try and batch
8518 			 * hardware accesses.
8519 			 */
8520 			pmu->start_txn  = perf_pmu_start_txn;
8521 			pmu->commit_txn = perf_pmu_commit_txn;
8522 			pmu->cancel_txn = perf_pmu_cancel_txn;
8523 		} else {
8524 			pmu->start_txn  = perf_pmu_nop_txn;
8525 			pmu->commit_txn = perf_pmu_nop_int;
8526 			pmu->cancel_txn = perf_pmu_nop_void;
8527 		}
8528 	}
8529 
8530 	if (!pmu->pmu_enable) {
8531 		pmu->pmu_enable  = perf_pmu_nop_void;
8532 		pmu->pmu_disable = perf_pmu_nop_void;
8533 	}
8534 
8535 	if (!pmu->event_idx)
8536 		pmu->event_idx = perf_event_idx_default;
8537 
8538 	list_add_rcu(&pmu->entry, &pmus);
8539 	atomic_set(&pmu->exclusive_cnt, 0);
8540 	ret = 0;
8541 unlock:
8542 	mutex_unlock(&pmus_lock);
8543 
8544 	return ret;
8545 
8546 free_dev:
8547 	device_del(pmu->dev);
8548 	put_device(pmu->dev);
8549 
8550 free_idr:
8551 	if (pmu->type >= PERF_TYPE_MAX)
8552 		idr_remove(&pmu_idr, pmu->type);
8553 
8554 free_pdc:
8555 	free_percpu(pmu->pmu_disable_count);
8556 	goto unlock;
8557 }
8558 EXPORT_SYMBOL_GPL(perf_pmu_register);
8559 
8560 void perf_pmu_unregister(struct pmu *pmu)
8561 {
8562 	mutex_lock(&pmus_lock);
8563 	list_del_rcu(&pmu->entry);
8564 	mutex_unlock(&pmus_lock);
8565 
8566 	/*
8567 	 * We dereference the pmu list under both SRCU and regular RCU, so
8568 	 * synchronize against both of those.
8569 	 */
8570 	synchronize_srcu(&pmus_srcu);
8571 	synchronize_rcu();
8572 
8573 	free_percpu(pmu->pmu_disable_count);
8574 	if (pmu->type >= PERF_TYPE_MAX)
8575 		idr_remove(&pmu_idr, pmu->type);
8576 	if (pmu->nr_addr_filters)
8577 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8578 	device_del(pmu->dev);
8579 	put_device(pmu->dev);
8580 	free_pmu_context(pmu);
8581 }
8582 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8583 
8584 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8585 {
8586 	struct perf_event_context *ctx = NULL;
8587 	int ret;
8588 
8589 	if (!try_module_get(pmu->module))
8590 		return -ENODEV;
8591 
8592 	if (event->group_leader != event) {
8593 		/*
8594 		 * This ctx->mutex can nest when we're called through
8595 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8596 		 */
8597 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8598 						 SINGLE_DEPTH_NESTING);
8599 		BUG_ON(!ctx);
8600 	}
8601 
8602 	event->pmu = pmu;
8603 	ret = pmu->event_init(event);
8604 
8605 	if (ctx)
8606 		perf_event_ctx_unlock(event->group_leader, ctx);
8607 
8608 	if (ret)
8609 		module_put(pmu->module);
8610 
8611 	return ret;
8612 }
8613 
8614 static struct pmu *perf_init_event(struct perf_event *event)
8615 {
8616 	struct pmu *pmu = NULL;
8617 	int idx;
8618 	int ret;
8619 
8620 	idx = srcu_read_lock(&pmus_srcu);
8621 
8622 	rcu_read_lock();
8623 	pmu = idr_find(&pmu_idr, event->attr.type);
8624 	rcu_read_unlock();
8625 	if (pmu) {
8626 		ret = perf_try_init_event(pmu, event);
8627 		if (ret)
8628 			pmu = ERR_PTR(ret);
8629 		goto unlock;
8630 	}
8631 
8632 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8633 		ret = perf_try_init_event(pmu, event);
8634 		if (!ret)
8635 			goto unlock;
8636 
8637 		if (ret != -ENOENT) {
8638 			pmu = ERR_PTR(ret);
8639 			goto unlock;
8640 		}
8641 	}
8642 	pmu = ERR_PTR(-ENOENT);
8643 unlock:
8644 	srcu_read_unlock(&pmus_srcu, idx);
8645 
8646 	return pmu;
8647 }
8648 
8649 static void account_event_cpu(struct perf_event *event, int cpu)
8650 {
8651 	if (event->parent)
8652 		return;
8653 
8654 	if (is_cgroup_event(event))
8655 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8656 }
8657 
8658 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8659 static void account_freq_event_nohz(void)
8660 {
8661 #ifdef CONFIG_NO_HZ_FULL
8662 	/* Lock so we don't race with concurrent unaccount */
8663 	spin_lock(&nr_freq_lock);
8664 	if (atomic_inc_return(&nr_freq_events) == 1)
8665 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8666 	spin_unlock(&nr_freq_lock);
8667 #endif
8668 }
8669 
8670 static void account_freq_event(void)
8671 {
8672 	if (tick_nohz_full_enabled())
8673 		account_freq_event_nohz();
8674 	else
8675 		atomic_inc(&nr_freq_events);
8676 }
8677 
8678 
8679 static void account_event(struct perf_event *event)
8680 {
8681 	bool inc = false;
8682 
8683 	if (event->parent)
8684 		return;
8685 
8686 	if (event->attach_state & PERF_ATTACH_TASK)
8687 		inc = true;
8688 	if (event->attr.mmap || event->attr.mmap_data)
8689 		atomic_inc(&nr_mmap_events);
8690 	if (event->attr.comm)
8691 		atomic_inc(&nr_comm_events);
8692 	if (event->attr.task)
8693 		atomic_inc(&nr_task_events);
8694 	if (event->attr.freq)
8695 		account_freq_event();
8696 	if (event->attr.context_switch) {
8697 		atomic_inc(&nr_switch_events);
8698 		inc = true;
8699 	}
8700 	if (has_branch_stack(event))
8701 		inc = true;
8702 	if (is_cgroup_event(event))
8703 		inc = true;
8704 
8705 	if (inc) {
8706 		if (atomic_inc_not_zero(&perf_sched_count))
8707 			goto enabled;
8708 
8709 		mutex_lock(&perf_sched_mutex);
8710 		if (!atomic_read(&perf_sched_count)) {
8711 			static_branch_enable(&perf_sched_events);
8712 			/*
8713 			 * Guarantee that all CPUs observe they key change and
8714 			 * call the perf scheduling hooks before proceeding to
8715 			 * install events that need them.
8716 			 */
8717 			synchronize_sched();
8718 		}
8719 		/*
8720 		 * Now that we have waited for the sync_sched(), allow further
8721 		 * increments to by-pass the mutex.
8722 		 */
8723 		atomic_inc(&perf_sched_count);
8724 		mutex_unlock(&perf_sched_mutex);
8725 	}
8726 enabled:
8727 
8728 	account_event_cpu(event, event->cpu);
8729 }
8730 
8731 /*
8732  * Allocate and initialize a event structure
8733  */
8734 static struct perf_event *
8735 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8736 		 struct task_struct *task,
8737 		 struct perf_event *group_leader,
8738 		 struct perf_event *parent_event,
8739 		 perf_overflow_handler_t overflow_handler,
8740 		 void *context, int cgroup_fd)
8741 {
8742 	struct pmu *pmu;
8743 	struct perf_event *event;
8744 	struct hw_perf_event *hwc;
8745 	long err = -EINVAL;
8746 
8747 	if ((unsigned)cpu >= nr_cpu_ids) {
8748 		if (!task || cpu != -1)
8749 			return ERR_PTR(-EINVAL);
8750 	}
8751 
8752 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8753 	if (!event)
8754 		return ERR_PTR(-ENOMEM);
8755 
8756 	/*
8757 	 * Single events are their own group leaders, with an
8758 	 * empty sibling list:
8759 	 */
8760 	if (!group_leader)
8761 		group_leader = event;
8762 
8763 	mutex_init(&event->child_mutex);
8764 	INIT_LIST_HEAD(&event->child_list);
8765 
8766 	INIT_LIST_HEAD(&event->group_entry);
8767 	INIT_LIST_HEAD(&event->event_entry);
8768 	INIT_LIST_HEAD(&event->sibling_list);
8769 	INIT_LIST_HEAD(&event->rb_entry);
8770 	INIT_LIST_HEAD(&event->active_entry);
8771 	INIT_LIST_HEAD(&event->addr_filters.list);
8772 	INIT_HLIST_NODE(&event->hlist_entry);
8773 
8774 
8775 	init_waitqueue_head(&event->waitq);
8776 	init_irq_work(&event->pending, perf_pending_event);
8777 
8778 	mutex_init(&event->mmap_mutex);
8779 	raw_spin_lock_init(&event->addr_filters.lock);
8780 
8781 	atomic_long_set(&event->refcount, 1);
8782 	event->cpu		= cpu;
8783 	event->attr		= *attr;
8784 	event->group_leader	= group_leader;
8785 	event->pmu		= NULL;
8786 	event->oncpu		= -1;
8787 
8788 	event->parent		= parent_event;
8789 
8790 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8791 	event->id		= atomic64_inc_return(&perf_event_id);
8792 
8793 	event->state		= PERF_EVENT_STATE_INACTIVE;
8794 
8795 	if (task) {
8796 		event->attach_state = PERF_ATTACH_TASK;
8797 		/*
8798 		 * XXX pmu::event_init needs to know what task to account to
8799 		 * and we cannot use the ctx information because we need the
8800 		 * pmu before we get a ctx.
8801 		 */
8802 		event->hw.target = task;
8803 	}
8804 
8805 	event->clock = &local_clock;
8806 	if (parent_event)
8807 		event->clock = parent_event->clock;
8808 
8809 	if (!overflow_handler && parent_event) {
8810 		overflow_handler = parent_event->overflow_handler;
8811 		context = parent_event->overflow_handler_context;
8812 	}
8813 
8814 	if (overflow_handler) {
8815 		event->overflow_handler	= overflow_handler;
8816 		event->overflow_handler_context = context;
8817 	} else if (is_write_backward(event)){
8818 		event->overflow_handler = perf_event_output_backward;
8819 		event->overflow_handler_context = NULL;
8820 	} else {
8821 		event->overflow_handler = perf_event_output_forward;
8822 		event->overflow_handler_context = NULL;
8823 	}
8824 
8825 	perf_event__state_init(event);
8826 
8827 	pmu = NULL;
8828 
8829 	hwc = &event->hw;
8830 	hwc->sample_period = attr->sample_period;
8831 	if (attr->freq && attr->sample_freq)
8832 		hwc->sample_period = 1;
8833 	hwc->last_period = hwc->sample_period;
8834 
8835 	local64_set(&hwc->period_left, hwc->sample_period);
8836 
8837 	/*
8838 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8839 	 */
8840 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8841 		goto err_ns;
8842 
8843 	if (!has_branch_stack(event))
8844 		event->attr.branch_sample_type = 0;
8845 
8846 	if (cgroup_fd != -1) {
8847 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8848 		if (err)
8849 			goto err_ns;
8850 	}
8851 
8852 	pmu = perf_init_event(event);
8853 	if (!pmu)
8854 		goto err_ns;
8855 	else if (IS_ERR(pmu)) {
8856 		err = PTR_ERR(pmu);
8857 		goto err_ns;
8858 	}
8859 
8860 	err = exclusive_event_init(event);
8861 	if (err)
8862 		goto err_pmu;
8863 
8864 	if (has_addr_filter(event)) {
8865 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8866 						   sizeof(unsigned long),
8867 						   GFP_KERNEL);
8868 		if (!event->addr_filters_offs)
8869 			goto err_per_task;
8870 
8871 		/* force hw sync on the address filters */
8872 		event->addr_filters_gen = 1;
8873 	}
8874 
8875 	if (!event->parent) {
8876 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8877 			err = get_callchain_buffers();
8878 			if (err)
8879 				goto err_addr_filters;
8880 		}
8881 	}
8882 
8883 	/* symmetric to unaccount_event() in _free_event() */
8884 	account_event(event);
8885 
8886 	return event;
8887 
8888 err_addr_filters:
8889 	kfree(event->addr_filters_offs);
8890 
8891 err_per_task:
8892 	exclusive_event_destroy(event);
8893 
8894 err_pmu:
8895 	if (event->destroy)
8896 		event->destroy(event);
8897 	module_put(pmu->module);
8898 err_ns:
8899 	if (is_cgroup_event(event))
8900 		perf_detach_cgroup(event);
8901 	if (event->ns)
8902 		put_pid_ns(event->ns);
8903 	kfree(event);
8904 
8905 	return ERR_PTR(err);
8906 }
8907 
8908 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8909 			  struct perf_event_attr *attr)
8910 {
8911 	u32 size;
8912 	int ret;
8913 
8914 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8915 		return -EFAULT;
8916 
8917 	/*
8918 	 * zero the full structure, so that a short copy will be nice.
8919 	 */
8920 	memset(attr, 0, sizeof(*attr));
8921 
8922 	ret = get_user(size, &uattr->size);
8923 	if (ret)
8924 		return ret;
8925 
8926 	if (size > PAGE_SIZE)	/* silly large */
8927 		goto err_size;
8928 
8929 	if (!size)		/* abi compat */
8930 		size = PERF_ATTR_SIZE_VER0;
8931 
8932 	if (size < PERF_ATTR_SIZE_VER0)
8933 		goto err_size;
8934 
8935 	/*
8936 	 * If we're handed a bigger struct than we know of,
8937 	 * ensure all the unknown bits are 0 - i.e. new
8938 	 * user-space does not rely on any kernel feature
8939 	 * extensions we dont know about yet.
8940 	 */
8941 	if (size > sizeof(*attr)) {
8942 		unsigned char __user *addr;
8943 		unsigned char __user *end;
8944 		unsigned char val;
8945 
8946 		addr = (void __user *)uattr + sizeof(*attr);
8947 		end  = (void __user *)uattr + size;
8948 
8949 		for (; addr < end; addr++) {
8950 			ret = get_user(val, addr);
8951 			if (ret)
8952 				return ret;
8953 			if (val)
8954 				goto err_size;
8955 		}
8956 		size = sizeof(*attr);
8957 	}
8958 
8959 	ret = copy_from_user(attr, uattr, size);
8960 	if (ret)
8961 		return -EFAULT;
8962 
8963 	if (attr->__reserved_1)
8964 		return -EINVAL;
8965 
8966 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8967 		return -EINVAL;
8968 
8969 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8970 		return -EINVAL;
8971 
8972 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8973 		u64 mask = attr->branch_sample_type;
8974 
8975 		/* only using defined bits */
8976 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8977 			return -EINVAL;
8978 
8979 		/* at least one branch bit must be set */
8980 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8981 			return -EINVAL;
8982 
8983 		/* propagate priv level, when not set for branch */
8984 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8985 
8986 			/* exclude_kernel checked on syscall entry */
8987 			if (!attr->exclude_kernel)
8988 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8989 
8990 			if (!attr->exclude_user)
8991 				mask |= PERF_SAMPLE_BRANCH_USER;
8992 
8993 			if (!attr->exclude_hv)
8994 				mask |= PERF_SAMPLE_BRANCH_HV;
8995 			/*
8996 			 * adjust user setting (for HW filter setup)
8997 			 */
8998 			attr->branch_sample_type = mask;
8999 		}
9000 		/* privileged levels capture (kernel, hv): check permissions */
9001 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9002 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9003 			return -EACCES;
9004 	}
9005 
9006 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9007 		ret = perf_reg_validate(attr->sample_regs_user);
9008 		if (ret)
9009 			return ret;
9010 	}
9011 
9012 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9013 		if (!arch_perf_have_user_stack_dump())
9014 			return -ENOSYS;
9015 
9016 		/*
9017 		 * We have __u32 type for the size, but so far
9018 		 * we can only use __u16 as maximum due to the
9019 		 * __u16 sample size limit.
9020 		 */
9021 		if (attr->sample_stack_user >= USHRT_MAX)
9022 			ret = -EINVAL;
9023 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9024 			ret = -EINVAL;
9025 	}
9026 
9027 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9028 		ret = perf_reg_validate(attr->sample_regs_intr);
9029 out:
9030 	return ret;
9031 
9032 err_size:
9033 	put_user(sizeof(*attr), &uattr->size);
9034 	ret = -E2BIG;
9035 	goto out;
9036 }
9037 
9038 static int
9039 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9040 {
9041 	struct ring_buffer *rb = NULL;
9042 	int ret = -EINVAL;
9043 
9044 	if (!output_event)
9045 		goto set;
9046 
9047 	/* don't allow circular references */
9048 	if (event == output_event)
9049 		goto out;
9050 
9051 	/*
9052 	 * Don't allow cross-cpu buffers
9053 	 */
9054 	if (output_event->cpu != event->cpu)
9055 		goto out;
9056 
9057 	/*
9058 	 * If its not a per-cpu rb, it must be the same task.
9059 	 */
9060 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9061 		goto out;
9062 
9063 	/*
9064 	 * Mixing clocks in the same buffer is trouble you don't need.
9065 	 */
9066 	if (output_event->clock != event->clock)
9067 		goto out;
9068 
9069 	/*
9070 	 * Either writing ring buffer from beginning or from end.
9071 	 * Mixing is not allowed.
9072 	 */
9073 	if (is_write_backward(output_event) != is_write_backward(event))
9074 		goto out;
9075 
9076 	/*
9077 	 * If both events generate aux data, they must be on the same PMU
9078 	 */
9079 	if (has_aux(event) && has_aux(output_event) &&
9080 	    event->pmu != output_event->pmu)
9081 		goto out;
9082 
9083 set:
9084 	mutex_lock(&event->mmap_mutex);
9085 	/* Can't redirect output if we've got an active mmap() */
9086 	if (atomic_read(&event->mmap_count))
9087 		goto unlock;
9088 
9089 	if (output_event) {
9090 		/* get the rb we want to redirect to */
9091 		rb = ring_buffer_get(output_event);
9092 		if (!rb)
9093 			goto unlock;
9094 	}
9095 
9096 	ring_buffer_attach(event, rb);
9097 
9098 	ret = 0;
9099 unlock:
9100 	mutex_unlock(&event->mmap_mutex);
9101 
9102 out:
9103 	return ret;
9104 }
9105 
9106 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9107 {
9108 	if (b < a)
9109 		swap(a, b);
9110 
9111 	mutex_lock(a);
9112 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9113 }
9114 
9115 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9116 {
9117 	bool nmi_safe = false;
9118 
9119 	switch (clk_id) {
9120 	case CLOCK_MONOTONIC:
9121 		event->clock = &ktime_get_mono_fast_ns;
9122 		nmi_safe = true;
9123 		break;
9124 
9125 	case CLOCK_MONOTONIC_RAW:
9126 		event->clock = &ktime_get_raw_fast_ns;
9127 		nmi_safe = true;
9128 		break;
9129 
9130 	case CLOCK_REALTIME:
9131 		event->clock = &ktime_get_real_ns;
9132 		break;
9133 
9134 	case CLOCK_BOOTTIME:
9135 		event->clock = &ktime_get_boot_ns;
9136 		break;
9137 
9138 	case CLOCK_TAI:
9139 		event->clock = &ktime_get_tai_ns;
9140 		break;
9141 
9142 	default:
9143 		return -EINVAL;
9144 	}
9145 
9146 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9147 		return -EINVAL;
9148 
9149 	return 0;
9150 }
9151 
9152 /**
9153  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9154  *
9155  * @attr_uptr:	event_id type attributes for monitoring/sampling
9156  * @pid:		target pid
9157  * @cpu:		target cpu
9158  * @group_fd:		group leader event fd
9159  */
9160 SYSCALL_DEFINE5(perf_event_open,
9161 		struct perf_event_attr __user *, attr_uptr,
9162 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9163 {
9164 	struct perf_event *group_leader = NULL, *output_event = NULL;
9165 	struct perf_event *event, *sibling;
9166 	struct perf_event_attr attr;
9167 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9168 	struct file *event_file = NULL;
9169 	struct fd group = {NULL, 0};
9170 	struct task_struct *task = NULL;
9171 	struct pmu *pmu;
9172 	int event_fd;
9173 	int move_group = 0;
9174 	int err;
9175 	int f_flags = O_RDWR;
9176 	int cgroup_fd = -1;
9177 
9178 	/* for future expandability... */
9179 	if (flags & ~PERF_FLAG_ALL)
9180 		return -EINVAL;
9181 
9182 	err = perf_copy_attr(attr_uptr, &attr);
9183 	if (err)
9184 		return err;
9185 
9186 	if (!attr.exclude_kernel) {
9187 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9188 			return -EACCES;
9189 	}
9190 
9191 	if (attr.freq) {
9192 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9193 			return -EINVAL;
9194 	} else {
9195 		if (attr.sample_period & (1ULL << 63))
9196 			return -EINVAL;
9197 	}
9198 
9199 	/*
9200 	 * In cgroup mode, the pid argument is used to pass the fd
9201 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9202 	 * designates the cpu on which to monitor threads from that
9203 	 * cgroup.
9204 	 */
9205 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9206 		return -EINVAL;
9207 
9208 	if (flags & PERF_FLAG_FD_CLOEXEC)
9209 		f_flags |= O_CLOEXEC;
9210 
9211 	event_fd = get_unused_fd_flags(f_flags);
9212 	if (event_fd < 0)
9213 		return event_fd;
9214 
9215 	if (group_fd != -1) {
9216 		err = perf_fget_light(group_fd, &group);
9217 		if (err)
9218 			goto err_fd;
9219 		group_leader = group.file->private_data;
9220 		if (flags & PERF_FLAG_FD_OUTPUT)
9221 			output_event = group_leader;
9222 		if (flags & PERF_FLAG_FD_NO_GROUP)
9223 			group_leader = NULL;
9224 	}
9225 
9226 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9227 		task = find_lively_task_by_vpid(pid);
9228 		if (IS_ERR(task)) {
9229 			err = PTR_ERR(task);
9230 			goto err_group_fd;
9231 		}
9232 	}
9233 
9234 	if (task && group_leader &&
9235 	    group_leader->attr.inherit != attr.inherit) {
9236 		err = -EINVAL;
9237 		goto err_task;
9238 	}
9239 
9240 	get_online_cpus();
9241 
9242 	if (task) {
9243 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9244 		if (err)
9245 			goto err_cpus;
9246 
9247 		/*
9248 		 * Reuse ptrace permission checks for now.
9249 		 *
9250 		 * We must hold cred_guard_mutex across this and any potential
9251 		 * perf_install_in_context() call for this new event to
9252 		 * serialize against exec() altering our credentials (and the
9253 		 * perf_event_exit_task() that could imply).
9254 		 */
9255 		err = -EACCES;
9256 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9257 			goto err_cred;
9258 	}
9259 
9260 	if (flags & PERF_FLAG_PID_CGROUP)
9261 		cgroup_fd = pid;
9262 
9263 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9264 				 NULL, NULL, cgroup_fd);
9265 	if (IS_ERR(event)) {
9266 		err = PTR_ERR(event);
9267 		goto err_cred;
9268 	}
9269 
9270 	if (is_sampling_event(event)) {
9271 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9272 			err = -ENOTSUPP;
9273 			goto err_alloc;
9274 		}
9275 	}
9276 
9277 	/*
9278 	 * Special case software events and allow them to be part of
9279 	 * any hardware group.
9280 	 */
9281 	pmu = event->pmu;
9282 
9283 	if (attr.use_clockid) {
9284 		err = perf_event_set_clock(event, attr.clockid);
9285 		if (err)
9286 			goto err_alloc;
9287 	}
9288 
9289 	if (group_leader &&
9290 	    (is_software_event(event) != is_software_event(group_leader))) {
9291 		if (is_software_event(event)) {
9292 			/*
9293 			 * If event and group_leader are not both a software
9294 			 * event, and event is, then group leader is not.
9295 			 *
9296 			 * Allow the addition of software events to !software
9297 			 * groups, this is safe because software events never
9298 			 * fail to schedule.
9299 			 */
9300 			pmu = group_leader->pmu;
9301 		} else if (is_software_event(group_leader) &&
9302 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9303 			/*
9304 			 * In case the group is a pure software group, and we
9305 			 * try to add a hardware event, move the whole group to
9306 			 * the hardware context.
9307 			 */
9308 			move_group = 1;
9309 		}
9310 	}
9311 
9312 	/*
9313 	 * Get the target context (task or percpu):
9314 	 */
9315 	ctx = find_get_context(pmu, task, event);
9316 	if (IS_ERR(ctx)) {
9317 		err = PTR_ERR(ctx);
9318 		goto err_alloc;
9319 	}
9320 
9321 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9322 		err = -EBUSY;
9323 		goto err_context;
9324 	}
9325 
9326 	/*
9327 	 * Look up the group leader (we will attach this event to it):
9328 	 */
9329 	if (group_leader) {
9330 		err = -EINVAL;
9331 
9332 		/*
9333 		 * Do not allow a recursive hierarchy (this new sibling
9334 		 * becoming part of another group-sibling):
9335 		 */
9336 		if (group_leader->group_leader != group_leader)
9337 			goto err_context;
9338 
9339 		/* All events in a group should have the same clock */
9340 		if (group_leader->clock != event->clock)
9341 			goto err_context;
9342 
9343 		/*
9344 		 * Do not allow to attach to a group in a different
9345 		 * task or CPU context:
9346 		 */
9347 		if (move_group) {
9348 			/*
9349 			 * Make sure we're both on the same task, or both
9350 			 * per-cpu events.
9351 			 */
9352 			if (group_leader->ctx->task != ctx->task)
9353 				goto err_context;
9354 
9355 			/*
9356 			 * Make sure we're both events for the same CPU;
9357 			 * grouping events for different CPUs is broken; since
9358 			 * you can never concurrently schedule them anyhow.
9359 			 */
9360 			if (group_leader->cpu != event->cpu)
9361 				goto err_context;
9362 		} else {
9363 			if (group_leader->ctx != ctx)
9364 				goto err_context;
9365 		}
9366 
9367 		/*
9368 		 * Only a group leader can be exclusive or pinned
9369 		 */
9370 		if (attr.exclusive || attr.pinned)
9371 			goto err_context;
9372 	}
9373 
9374 	if (output_event) {
9375 		err = perf_event_set_output(event, output_event);
9376 		if (err)
9377 			goto err_context;
9378 	}
9379 
9380 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9381 					f_flags);
9382 	if (IS_ERR(event_file)) {
9383 		err = PTR_ERR(event_file);
9384 		event_file = NULL;
9385 		goto err_context;
9386 	}
9387 
9388 	if (move_group) {
9389 		gctx = group_leader->ctx;
9390 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9391 		if (gctx->task == TASK_TOMBSTONE) {
9392 			err = -ESRCH;
9393 			goto err_locked;
9394 		}
9395 	} else {
9396 		mutex_lock(&ctx->mutex);
9397 	}
9398 
9399 	if (ctx->task == TASK_TOMBSTONE) {
9400 		err = -ESRCH;
9401 		goto err_locked;
9402 	}
9403 
9404 	if (!perf_event_validate_size(event)) {
9405 		err = -E2BIG;
9406 		goto err_locked;
9407 	}
9408 
9409 	/*
9410 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9411 	 * because we need to serialize with concurrent event creation.
9412 	 */
9413 	if (!exclusive_event_installable(event, ctx)) {
9414 		/* exclusive and group stuff are assumed mutually exclusive */
9415 		WARN_ON_ONCE(move_group);
9416 
9417 		err = -EBUSY;
9418 		goto err_locked;
9419 	}
9420 
9421 	WARN_ON_ONCE(ctx->parent_ctx);
9422 
9423 	/*
9424 	 * This is the point on no return; we cannot fail hereafter. This is
9425 	 * where we start modifying current state.
9426 	 */
9427 
9428 	if (move_group) {
9429 		/*
9430 		 * See perf_event_ctx_lock() for comments on the details
9431 		 * of swizzling perf_event::ctx.
9432 		 */
9433 		perf_remove_from_context(group_leader, 0);
9434 
9435 		list_for_each_entry(sibling, &group_leader->sibling_list,
9436 				    group_entry) {
9437 			perf_remove_from_context(sibling, 0);
9438 			put_ctx(gctx);
9439 		}
9440 
9441 		/*
9442 		 * Wait for everybody to stop referencing the events through
9443 		 * the old lists, before installing it on new lists.
9444 		 */
9445 		synchronize_rcu();
9446 
9447 		/*
9448 		 * Install the group siblings before the group leader.
9449 		 *
9450 		 * Because a group leader will try and install the entire group
9451 		 * (through the sibling list, which is still in-tact), we can
9452 		 * end up with siblings installed in the wrong context.
9453 		 *
9454 		 * By installing siblings first we NO-OP because they're not
9455 		 * reachable through the group lists.
9456 		 */
9457 		list_for_each_entry(sibling, &group_leader->sibling_list,
9458 				    group_entry) {
9459 			perf_event__state_init(sibling);
9460 			perf_install_in_context(ctx, sibling, sibling->cpu);
9461 			get_ctx(ctx);
9462 		}
9463 
9464 		/*
9465 		 * Removing from the context ends up with disabled
9466 		 * event. What we want here is event in the initial
9467 		 * startup state, ready to be add into new context.
9468 		 */
9469 		perf_event__state_init(group_leader);
9470 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9471 		get_ctx(ctx);
9472 
9473 		/*
9474 		 * Now that all events are installed in @ctx, nothing
9475 		 * references @gctx anymore, so drop the last reference we have
9476 		 * on it.
9477 		 */
9478 		put_ctx(gctx);
9479 	}
9480 
9481 	/*
9482 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9483 	 * that we're serialized against further additions and before
9484 	 * perf_install_in_context() which is the point the event is active and
9485 	 * can use these values.
9486 	 */
9487 	perf_event__header_size(event);
9488 	perf_event__id_header_size(event);
9489 
9490 	event->owner = current;
9491 
9492 	perf_install_in_context(ctx, event, event->cpu);
9493 	perf_unpin_context(ctx);
9494 
9495 	if (move_group)
9496 		mutex_unlock(&gctx->mutex);
9497 	mutex_unlock(&ctx->mutex);
9498 
9499 	if (task) {
9500 		mutex_unlock(&task->signal->cred_guard_mutex);
9501 		put_task_struct(task);
9502 	}
9503 
9504 	put_online_cpus();
9505 
9506 	mutex_lock(&current->perf_event_mutex);
9507 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9508 	mutex_unlock(&current->perf_event_mutex);
9509 
9510 	/*
9511 	 * Drop the reference on the group_event after placing the
9512 	 * new event on the sibling_list. This ensures destruction
9513 	 * of the group leader will find the pointer to itself in
9514 	 * perf_group_detach().
9515 	 */
9516 	fdput(group);
9517 	fd_install(event_fd, event_file);
9518 	return event_fd;
9519 
9520 err_locked:
9521 	if (move_group)
9522 		mutex_unlock(&gctx->mutex);
9523 	mutex_unlock(&ctx->mutex);
9524 /* err_file: */
9525 	fput(event_file);
9526 err_context:
9527 	perf_unpin_context(ctx);
9528 	put_ctx(ctx);
9529 err_alloc:
9530 	/*
9531 	 * If event_file is set, the fput() above will have called ->release()
9532 	 * and that will take care of freeing the event.
9533 	 */
9534 	if (!event_file)
9535 		free_event(event);
9536 err_cred:
9537 	if (task)
9538 		mutex_unlock(&task->signal->cred_guard_mutex);
9539 err_cpus:
9540 	put_online_cpus();
9541 err_task:
9542 	if (task)
9543 		put_task_struct(task);
9544 err_group_fd:
9545 	fdput(group);
9546 err_fd:
9547 	put_unused_fd(event_fd);
9548 	return err;
9549 }
9550 
9551 /**
9552  * perf_event_create_kernel_counter
9553  *
9554  * @attr: attributes of the counter to create
9555  * @cpu: cpu in which the counter is bound
9556  * @task: task to profile (NULL for percpu)
9557  */
9558 struct perf_event *
9559 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9560 				 struct task_struct *task,
9561 				 perf_overflow_handler_t overflow_handler,
9562 				 void *context)
9563 {
9564 	struct perf_event_context *ctx;
9565 	struct perf_event *event;
9566 	int err;
9567 
9568 	/*
9569 	 * Get the target context (task or percpu):
9570 	 */
9571 
9572 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9573 				 overflow_handler, context, -1);
9574 	if (IS_ERR(event)) {
9575 		err = PTR_ERR(event);
9576 		goto err;
9577 	}
9578 
9579 	/* Mark owner so we could distinguish it from user events. */
9580 	event->owner = TASK_TOMBSTONE;
9581 
9582 	ctx = find_get_context(event->pmu, task, event);
9583 	if (IS_ERR(ctx)) {
9584 		err = PTR_ERR(ctx);
9585 		goto err_free;
9586 	}
9587 
9588 	WARN_ON_ONCE(ctx->parent_ctx);
9589 	mutex_lock(&ctx->mutex);
9590 	if (ctx->task == TASK_TOMBSTONE) {
9591 		err = -ESRCH;
9592 		goto err_unlock;
9593 	}
9594 
9595 	if (!exclusive_event_installable(event, ctx)) {
9596 		err = -EBUSY;
9597 		goto err_unlock;
9598 	}
9599 
9600 	perf_install_in_context(ctx, event, cpu);
9601 	perf_unpin_context(ctx);
9602 	mutex_unlock(&ctx->mutex);
9603 
9604 	return event;
9605 
9606 err_unlock:
9607 	mutex_unlock(&ctx->mutex);
9608 	perf_unpin_context(ctx);
9609 	put_ctx(ctx);
9610 err_free:
9611 	free_event(event);
9612 err:
9613 	return ERR_PTR(err);
9614 }
9615 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9616 
9617 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9618 {
9619 	struct perf_event_context *src_ctx;
9620 	struct perf_event_context *dst_ctx;
9621 	struct perf_event *event, *tmp;
9622 	LIST_HEAD(events);
9623 
9624 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9625 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9626 
9627 	/*
9628 	 * See perf_event_ctx_lock() for comments on the details
9629 	 * of swizzling perf_event::ctx.
9630 	 */
9631 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9632 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9633 				 event_entry) {
9634 		perf_remove_from_context(event, 0);
9635 		unaccount_event_cpu(event, src_cpu);
9636 		put_ctx(src_ctx);
9637 		list_add(&event->migrate_entry, &events);
9638 	}
9639 
9640 	/*
9641 	 * Wait for the events to quiesce before re-instating them.
9642 	 */
9643 	synchronize_rcu();
9644 
9645 	/*
9646 	 * Re-instate events in 2 passes.
9647 	 *
9648 	 * Skip over group leaders and only install siblings on this first
9649 	 * pass, siblings will not get enabled without a leader, however a
9650 	 * leader will enable its siblings, even if those are still on the old
9651 	 * context.
9652 	 */
9653 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9654 		if (event->group_leader == event)
9655 			continue;
9656 
9657 		list_del(&event->migrate_entry);
9658 		if (event->state >= PERF_EVENT_STATE_OFF)
9659 			event->state = PERF_EVENT_STATE_INACTIVE;
9660 		account_event_cpu(event, dst_cpu);
9661 		perf_install_in_context(dst_ctx, event, dst_cpu);
9662 		get_ctx(dst_ctx);
9663 	}
9664 
9665 	/*
9666 	 * Once all the siblings are setup properly, install the group leaders
9667 	 * to make it go.
9668 	 */
9669 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9670 		list_del(&event->migrate_entry);
9671 		if (event->state >= PERF_EVENT_STATE_OFF)
9672 			event->state = PERF_EVENT_STATE_INACTIVE;
9673 		account_event_cpu(event, dst_cpu);
9674 		perf_install_in_context(dst_ctx, event, dst_cpu);
9675 		get_ctx(dst_ctx);
9676 	}
9677 	mutex_unlock(&dst_ctx->mutex);
9678 	mutex_unlock(&src_ctx->mutex);
9679 }
9680 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9681 
9682 static void sync_child_event(struct perf_event *child_event,
9683 			       struct task_struct *child)
9684 {
9685 	struct perf_event *parent_event = child_event->parent;
9686 	u64 child_val;
9687 
9688 	if (child_event->attr.inherit_stat)
9689 		perf_event_read_event(child_event, child);
9690 
9691 	child_val = perf_event_count(child_event);
9692 
9693 	/*
9694 	 * Add back the child's count to the parent's count:
9695 	 */
9696 	atomic64_add(child_val, &parent_event->child_count);
9697 	atomic64_add(child_event->total_time_enabled,
9698 		     &parent_event->child_total_time_enabled);
9699 	atomic64_add(child_event->total_time_running,
9700 		     &parent_event->child_total_time_running);
9701 }
9702 
9703 static void
9704 perf_event_exit_event(struct perf_event *child_event,
9705 		      struct perf_event_context *child_ctx,
9706 		      struct task_struct *child)
9707 {
9708 	struct perf_event *parent_event = child_event->parent;
9709 
9710 	/*
9711 	 * Do not destroy the 'original' grouping; because of the context
9712 	 * switch optimization the original events could've ended up in a
9713 	 * random child task.
9714 	 *
9715 	 * If we were to destroy the original group, all group related
9716 	 * operations would cease to function properly after this random
9717 	 * child dies.
9718 	 *
9719 	 * Do destroy all inherited groups, we don't care about those
9720 	 * and being thorough is better.
9721 	 */
9722 	raw_spin_lock_irq(&child_ctx->lock);
9723 	WARN_ON_ONCE(child_ctx->is_active);
9724 
9725 	if (parent_event)
9726 		perf_group_detach(child_event);
9727 	list_del_event(child_event, child_ctx);
9728 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9729 	raw_spin_unlock_irq(&child_ctx->lock);
9730 
9731 	/*
9732 	 * Parent events are governed by their filedesc, retain them.
9733 	 */
9734 	if (!parent_event) {
9735 		perf_event_wakeup(child_event);
9736 		return;
9737 	}
9738 	/*
9739 	 * Child events can be cleaned up.
9740 	 */
9741 
9742 	sync_child_event(child_event, child);
9743 
9744 	/*
9745 	 * Remove this event from the parent's list
9746 	 */
9747 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9748 	mutex_lock(&parent_event->child_mutex);
9749 	list_del_init(&child_event->child_list);
9750 	mutex_unlock(&parent_event->child_mutex);
9751 
9752 	/*
9753 	 * Kick perf_poll() for is_event_hup().
9754 	 */
9755 	perf_event_wakeup(parent_event);
9756 	free_event(child_event);
9757 	put_event(parent_event);
9758 }
9759 
9760 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9761 {
9762 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9763 	struct perf_event *child_event, *next;
9764 
9765 	WARN_ON_ONCE(child != current);
9766 
9767 	child_ctx = perf_pin_task_context(child, ctxn);
9768 	if (!child_ctx)
9769 		return;
9770 
9771 	/*
9772 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9773 	 * ctx::mutex over the entire thing. This serializes against almost
9774 	 * everything that wants to access the ctx.
9775 	 *
9776 	 * The exception is sys_perf_event_open() /
9777 	 * perf_event_create_kernel_count() which does find_get_context()
9778 	 * without ctx::mutex (it cannot because of the move_group double mutex
9779 	 * lock thing). See the comments in perf_install_in_context().
9780 	 */
9781 	mutex_lock(&child_ctx->mutex);
9782 
9783 	/*
9784 	 * In a single ctx::lock section, de-schedule the events and detach the
9785 	 * context from the task such that we cannot ever get it scheduled back
9786 	 * in.
9787 	 */
9788 	raw_spin_lock_irq(&child_ctx->lock);
9789 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9790 
9791 	/*
9792 	 * Now that the context is inactive, destroy the task <-> ctx relation
9793 	 * and mark the context dead.
9794 	 */
9795 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9796 	put_ctx(child_ctx); /* cannot be last */
9797 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9798 	put_task_struct(current); /* cannot be last */
9799 
9800 	clone_ctx = unclone_ctx(child_ctx);
9801 	raw_spin_unlock_irq(&child_ctx->lock);
9802 
9803 	if (clone_ctx)
9804 		put_ctx(clone_ctx);
9805 
9806 	/*
9807 	 * Report the task dead after unscheduling the events so that we
9808 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
9809 	 * get a few PERF_RECORD_READ events.
9810 	 */
9811 	perf_event_task(child, child_ctx, 0);
9812 
9813 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9814 		perf_event_exit_event(child_event, child_ctx, child);
9815 
9816 	mutex_unlock(&child_ctx->mutex);
9817 
9818 	put_ctx(child_ctx);
9819 }
9820 
9821 /*
9822  * When a child task exits, feed back event values to parent events.
9823  *
9824  * Can be called with cred_guard_mutex held when called from
9825  * install_exec_creds().
9826  */
9827 void perf_event_exit_task(struct task_struct *child)
9828 {
9829 	struct perf_event *event, *tmp;
9830 	int ctxn;
9831 
9832 	mutex_lock(&child->perf_event_mutex);
9833 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9834 				 owner_entry) {
9835 		list_del_init(&event->owner_entry);
9836 
9837 		/*
9838 		 * Ensure the list deletion is visible before we clear
9839 		 * the owner, closes a race against perf_release() where
9840 		 * we need to serialize on the owner->perf_event_mutex.
9841 		 */
9842 		smp_store_release(&event->owner, NULL);
9843 	}
9844 	mutex_unlock(&child->perf_event_mutex);
9845 
9846 	for_each_task_context_nr(ctxn)
9847 		perf_event_exit_task_context(child, ctxn);
9848 
9849 	/*
9850 	 * The perf_event_exit_task_context calls perf_event_task
9851 	 * with child's task_ctx, which generates EXIT events for
9852 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9853 	 * At this point we need to send EXIT events to cpu contexts.
9854 	 */
9855 	perf_event_task(child, NULL, 0);
9856 }
9857 
9858 static void perf_free_event(struct perf_event *event,
9859 			    struct perf_event_context *ctx)
9860 {
9861 	struct perf_event *parent = event->parent;
9862 
9863 	if (WARN_ON_ONCE(!parent))
9864 		return;
9865 
9866 	mutex_lock(&parent->child_mutex);
9867 	list_del_init(&event->child_list);
9868 	mutex_unlock(&parent->child_mutex);
9869 
9870 	put_event(parent);
9871 
9872 	raw_spin_lock_irq(&ctx->lock);
9873 	perf_group_detach(event);
9874 	list_del_event(event, ctx);
9875 	raw_spin_unlock_irq(&ctx->lock);
9876 	free_event(event);
9877 }
9878 
9879 /*
9880  * Free an unexposed, unused context as created by inheritance by
9881  * perf_event_init_task below, used by fork() in case of fail.
9882  *
9883  * Not all locks are strictly required, but take them anyway to be nice and
9884  * help out with the lockdep assertions.
9885  */
9886 void perf_event_free_task(struct task_struct *task)
9887 {
9888 	struct perf_event_context *ctx;
9889 	struct perf_event *event, *tmp;
9890 	int ctxn;
9891 
9892 	for_each_task_context_nr(ctxn) {
9893 		ctx = task->perf_event_ctxp[ctxn];
9894 		if (!ctx)
9895 			continue;
9896 
9897 		mutex_lock(&ctx->mutex);
9898 again:
9899 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9900 				group_entry)
9901 			perf_free_event(event, ctx);
9902 
9903 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9904 				group_entry)
9905 			perf_free_event(event, ctx);
9906 
9907 		if (!list_empty(&ctx->pinned_groups) ||
9908 				!list_empty(&ctx->flexible_groups))
9909 			goto again;
9910 
9911 		mutex_unlock(&ctx->mutex);
9912 
9913 		put_ctx(ctx);
9914 	}
9915 }
9916 
9917 void perf_event_delayed_put(struct task_struct *task)
9918 {
9919 	int ctxn;
9920 
9921 	for_each_task_context_nr(ctxn)
9922 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9923 }
9924 
9925 struct file *perf_event_get(unsigned int fd)
9926 {
9927 	struct file *file;
9928 
9929 	file = fget_raw(fd);
9930 	if (!file)
9931 		return ERR_PTR(-EBADF);
9932 
9933 	if (file->f_op != &perf_fops) {
9934 		fput(file);
9935 		return ERR_PTR(-EBADF);
9936 	}
9937 
9938 	return file;
9939 }
9940 
9941 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9942 {
9943 	if (!event)
9944 		return ERR_PTR(-EINVAL);
9945 
9946 	return &event->attr;
9947 }
9948 
9949 /*
9950  * inherit a event from parent task to child task:
9951  */
9952 static struct perf_event *
9953 inherit_event(struct perf_event *parent_event,
9954 	      struct task_struct *parent,
9955 	      struct perf_event_context *parent_ctx,
9956 	      struct task_struct *child,
9957 	      struct perf_event *group_leader,
9958 	      struct perf_event_context *child_ctx)
9959 {
9960 	enum perf_event_active_state parent_state = parent_event->state;
9961 	struct perf_event *child_event;
9962 	unsigned long flags;
9963 
9964 	/*
9965 	 * Instead of creating recursive hierarchies of events,
9966 	 * we link inherited events back to the original parent,
9967 	 * which has a filp for sure, which we use as the reference
9968 	 * count:
9969 	 */
9970 	if (parent_event->parent)
9971 		parent_event = parent_event->parent;
9972 
9973 	child_event = perf_event_alloc(&parent_event->attr,
9974 					   parent_event->cpu,
9975 					   child,
9976 					   group_leader, parent_event,
9977 					   NULL, NULL, -1);
9978 	if (IS_ERR(child_event))
9979 		return child_event;
9980 
9981 	/*
9982 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9983 	 * must be under the same lock in order to serialize against
9984 	 * perf_event_release_kernel(), such that either we must observe
9985 	 * is_orphaned_event() or they will observe us on the child_list.
9986 	 */
9987 	mutex_lock(&parent_event->child_mutex);
9988 	if (is_orphaned_event(parent_event) ||
9989 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9990 		mutex_unlock(&parent_event->child_mutex);
9991 		free_event(child_event);
9992 		return NULL;
9993 	}
9994 
9995 	get_ctx(child_ctx);
9996 
9997 	/*
9998 	 * Make the child state follow the state of the parent event,
9999 	 * not its attr.disabled bit.  We hold the parent's mutex,
10000 	 * so we won't race with perf_event_{en, dis}able_family.
10001 	 */
10002 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10003 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10004 	else
10005 		child_event->state = PERF_EVENT_STATE_OFF;
10006 
10007 	if (parent_event->attr.freq) {
10008 		u64 sample_period = parent_event->hw.sample_period;
10009 		struct hw_perf_event *hwc = &child_event->hw;
10010 
10011 		hwc->sample_period = sample_period;
10012 		hwc->last_period   = sample_period;
10013 
10014 		local64_set(&hwc->period_left, sample_period);
10015 	}
10016 
10017 	child_event->ctx = child_ctx;
10018 	child_event->overflow_handler = parent_event->overflow_handler;
10019 	child_event->overflow_handler_context
10020 		= parent_event->overflow_handler_context;
10021 
10022 	/*
10023 	 * Precalculate sample_data sizes
10024 	 */
10025 	perf_event__header_size(child_event);
10026 	perf_event__id_header_size(child_event);
10027 
10028 	/*
10029 	 * Link it up in the child's context:
10030 	 */
10031 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10032 	add_event_to_ctx(child_event, child_ctx);
10033 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10034 
10035 	/*
10036 	 * Link this into the parent event's child list
10037 	 */
10038 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10039 	mutex_unlock(&parent_event->child_mutex);
10040 
10041 	return child_event;
10042 }
10043 
10044 static int inherit_group(struct perf_event *parent_event,
10045 	      struct task_struct *parent,
10046 	      struct perf_event_context *parent_ctx,
10047 	      struct task_struct *child,
10048 	      struct perf_event_context *child_ctx)
10049 {
10050 	struct perf_event *leader;
10051 	struct perf_event *sub;
10052 	struct perf_event *child_ctr;
10053 
10054 	leader = inherit_event(parent_event, parent, parent_ctx,
10055 				 child, NULL, child_ctx);
10056 	if (IS_ERR(leader))
10057 		return PTR_ERR(leader);
10058 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10059 		child_ctr = inherit_event(sub, parent, parent_ctx,
10060 					    child, leader, child_ctx);
10061 		if (IS_ERR(child_ctr))
10062 			return PTR_ERR(child_ctr);
10063 	}
10064 	return 0;
10065 }
10066 
10067 static int
10068 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10069 		   struct perf_event_context *parent_ctx,
10070 		   struct task_struct *child, int ctxn,
10071 		   int *inherited_all)
10072 {
10073 	int ret;
10074 	struct perf_event_context *child_ctx;
10075 
10076 	if (!event->attr.inherit) {
10077 		*inherited_all = 0;
10078 		return 0;
10079 	}
10080 
10081 	child_ctx = child->perf_event_ctxp[ctxn];
10082 	if (!child_ctx) {
10083 		/*
10084 		 * This is executed from the parent task context, so
10085 		 * inherit events that have been marked for cloning.
10086 		 * First allocate and initialize a context for the
10087 		 * child.
10088 		 */
10089 
10090 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10091 		if (!child_ctx)
10092 			return -ENOMEM;
10093 
10094 		child->perf_event_ctxp[ctxn] = child_ctx;
10095 	}
10096 
10097 	ret = inherit_group(event, parent, parent_ctx,
10098 			    child, child_ctx);
10099 
10100 	if (ret)
10101 		*inherited_all = 0;
10102 
10103 	return ret;
10104 }
10105 
10106 /*
10107  * Initialize the perf_event context in task_struct
10108  */
10109 static int perf_event_init_context(struct task_struct *child, int ctxn)
10110 {
10111 	struct perf_event_context *child_ctx, *parent_ctx;
10112 	struct perf_event_context *cloned_ctx;
10113 	struct perf_event *event;
10114 	struct task_struct *parent = current;
10115 	int inherited_all = 1;
10116 	unsigned long flags;
10117 	int ret = 0;
10118 
10119 	if (likely(!parent->perf_event_ctxp[ctxn]))
10120 		return 0;
10121 
10122 	/*
10123 	 * If the parent's context is a clone, pin it so it won't get
10124 	 * swapped under us.
10125 	 */
10126 	parent_ctx = perf_pin_task_context(parent, ctxn);
10127 	if (!parent_ctx)
10128 		return 0;
10129 
10130 	/*
10131 	 * No need to check if parent_ctx != NULL here; since we saw
10132 	 * it non-NULL earlier, the only reason for it to become NULL
10133 	 * is if we exit, and since we're currently in the middle of
10134 	 * a fork we can't be exiting at the same time.
10135 	 */
10136 
10137 	/*
10138 	 * Lock the parent list. No need to lock the child - not PID
10139 	 * hashed yet and not running, so nobody can access it.
10140 	 */
10141 	mutex_lock(&parent_ctx->mutex);
10142 
10143 	/*
10144 	 * We dont have to disable NMIs - we are only looking at
10145 	 * the list, not manipulating it:
10146 	 */
10147 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10148 		ret = inherit_task_group(event, parent, parent_ctx,
10149 					 child, ctxn, &inherited_all);
10150 		if (ret)
10151 			break;
10152 	}
10153 
10154 	/*
10155 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10156 	 * to allocations, but we need to prevent rotation because
10157 	 * rotate_ctx() will change the list from interrupt context.
10158 	 */
10159 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10160 	parent_ctx->rotate_disable = 1;
10161 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10162 
10163 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10164 		ret = inherit_task_group(event, parent, parent_ctx,
10165 					 child, ctxn, &inherited_all);
10166 		if (ret)
10167 			break;
10168 	}
10169 
10170 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10171 	parent_ctx->rotate_disable = 0;
10172 
10173 	child_ctx = child->perf_event_ctxp[ctxn];
10174 
10175 	if (child_ctx && inherited_all) {
10176 		/*
10177 		 * Mark the child context as a clone of the parent
10178 		 * context, or of whatever the parent is a clone of.
10179 		 *
10180 		 * Note that if the parent is a clone, the holding of
10181 		 * parent_ctx->lock avoids it from being uncloned.
10182 		 */
10183 		cloned_ctx = parent_ctx->parent_ctx;
10184 		if (cloned_ctx) {
10185 			child_ctx->parent_ctx = cloned_ctx;
10186 			child_ctx->parent_gen = parent_ctx->parent_gen;
10187 		} else {
10188 			child_ctx->parent_ctx = parent_ctx;
10189 			child_ctx->parent_gen = parent_ctx->generation;
10190 		}
10191 		get_ctx(child_ctx->parent_ctx);
10192 	}
10193 
10194 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10195 	mutex_unlock(&parent_ctx->mutex);
10196 
10197 	perf_unpin_context(parent_ctx);
10198 	put_ctx(parent_ctx);
10199 
10200 	return ret;
10201 }
10202 
10203 /*
10204  * Initialize the perf_event context in task_struct
10205  */
10206 int perf_event_init_task(struct task_struct *child)
10207 {
10208 	int ctxn, ret;
10209 
10210 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10211 	mutex_init(&child->perf_event_mutex);
10212 	INIT_LIST_HEAD(&child->perf_event_list);
10213 
10214 	for_each_task_context_nr(ctxn) {
10215 		ret = perf_event_init_context(child, ctxn);
10216 		if (ret) {
10217 			perf_event_free_task(child);
10218 			return ret;
10219 		}
10220 	}
10221 
10222 	return 0;
10223 }
10224 
10225 static void __init perf_event_init_all_cpus(void)
10226 {
10227 	struct swevent_htable *swhash;
10228 	int cpu;
10229 
10230 	for_each_possible_cpu(cpu) {
10231 		swhash = &per_cpu(swevent_htable, cpu);
10232 		mutex_init(&swhash->hlist_mutex);
10233 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10234 	}
10235 }
10236 
10237 static void perf_event_init_cpu(int cpu)
10238 {
10239 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10240 
10241 	mutex_lock(&swhash->hlist_mutex);
10242 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10243 		struct swevent_hlist *hlist;
10244 
10245 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10246 		WARN_ON(!hlist);
10247 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10248 	}
10249 	mutex_unlock(&swhash->hlist_mutex);
10250 }
10251 
10252 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10253 static void __perf_event_exit_context(void *__info)
10254 {
10255 	struct perf_event_context *ctx = __info;
10256 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10257 	struct perf_event *event;
10258 
10259 	raw_spin_lock(&ctx->lock);
10260 	list_for_each_entry(event, &ctx->event_list, event_entry)
10261 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10262 	raw_spin_unlock(&ctx->lock);
10263 }
10264 
10265 static void perf_event_exit_cpu_context(int cpu)
10266 {
10267 	struct perf_event_context *ctx;
10268 	struct pmu *pmu;
10269 	int idx;
10270 
10271 	idx = srcu_read_lock(&pmus_srcu);
10272 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10273 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10274 
10275 		mutex_lock(&ctx->mutex);
10276 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10277 		mutex_unlock(&ctx->mutex);
10278 	}
10279 	srcu_read_unlock(&pmus_srcu, idx);
10280 }
10281 
10282 static void perf_event_exit_cpu(int cpu)
10283 {
10284 	perf_event_exit_cpu_context(cpu);
10285 }
10286 #else
10287 static inline void perf_event_exit_cpu(int cpu) { }
10288 #endif
10289 
10290 static int
10291 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10292 {
10293 	int cpu;
10294 
10295 	for_each_online_cpu(cpu)
10296 		perf_event_exit_cpu(cpu);
10297 
10298 	return NOTIFY_OK;
10299 }
10300 
10301 /*
10302  * Run the perf reboot notifier at the very last possible moment so that
10303  * the generic watchdog code runs as long as possible.
10304  */
10305 static struct notifier_block perf_reboot_notifier = {
10306 	.notifier_call = perf_reboot,
10307 	.priority = INT_MIN,
10308 };
10309 
10310 static int
10311 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10312 {
10313 	unsigned int cpu = (long)hcpu;
10314 
10315 	switch (action & ~CPU_TASKS_FROZEN) {
10316 
10317 	case CPU_UP_PREPARE:
10318 		/*
10319 		 * This must be done before the CPU comes alive, because the
10320 		 * moment we can run tasks we can encounter (software) events.
10321 		 *
10322 		 * Specifically, someone can have inherited events on kthreadd
10323 		 * or a pre-existing worker thread that gets re-bound.
10324 		 */
10325 		perf_event_init_cpu(cpu);
10326 		break;
10327 
10328 	case CPU_DOWN_PREPARE:
10329 		/*
10330 		 * This must be done before the CPU dies because after that an
10331 		 * active event might want to IPI the CPU and that'll not work
10332 		 * so great for dead CPUs.
10333 		 *
10334 		 * XXX smp_call_function_single() return -ENXIO without a warn
10335 		 * so we could possibly deal with this.
10336 		 *
10337 		 * This is safe against new events arriving because
10338 		 * sys_perf_event_open() serializes against hotplug using
10339 		 * get_online_cpus().
10340 		 */
10341 		perf_event_exit_cpu(cpu);
10342 		break;
10343 	default:
10344 		break;
10345 	}
10346 
10347 	return NOTIFY_OK;
10348 }
10349 
10350 void __init perf_event_init(void)
10351 {
10352 	int ret;
10353 
10354 	idr_init(&pmu_idr);
10355 
10356 	perf_event_init_all_cpus();
10357 	init_srcu_struct(&pmus_srcu);
10358 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10359 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10360 	perf_pmu_register(&perf_task_clock, NULL, -1);
10361 	perf_tp_register();
10362 	perf_cpu_notifier(perf_cpu_notify);
10363 	register_reboot_notifier(&perf_reboot_notifier);
10364 
10365 	ret = init_hw_breakpoint();
10366 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10367 
10368 	/*
10369 	 * Build time assertion that we keep the data_head at the intended
10370 	 * location.  IOW, validation we got the __reserved[] size right.
10371 	 */
10372 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10373 		     != 1024);
10374 }
10375 
10376 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10377 			      char *page)
10378 {
10379 	struct perf_pmu_events_attr *pmu_attr =
10380 		container_of(attr, struct perf_pmu_events_attr, attr);
10381 
10382 	if (pmu_attr->event_str)
10383 		return sprintf(page, "%s\n", pmu_attr->event_str);
10384 
10385 	return 0;
10386 }
10387 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10388 
10389 static int __init perf_event_sysfs_init(void)
10390 {
10391 	struct pmu *pmu;
10392 	int ret;
10393 
10394 	mutex_lock(&pmus_lock);
10395 
10396 	ret = bus_register(&pmu_bus);
10397 	if (ret)
10398 		goto unlock;
10399 
10400 	list_for_each_entry(pmu, &pmus, entry) {
10401 		if (!pmu->name || pmu->type < 0)
10402 			continue;
10403 
10404 		ret = pmu_dev_alloc(pmu);
10405 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10406 	}
10407 	pmu_bus_running = 1;
10408 	ret = 0;
10409 
10410 unlock:
10411 	mutex_unlock(&pmus_lock);
10412 
10413 	return ret;
10414 }
10415 device_initcall(perf_event_sysfs_init);
10416 
10417 #ifdef CONFIG_CGROUP_PERF
10418 static struct cgroup_subsys_state *
10419 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10420 {
10421 	struct perf_cgroup *jc;
10422 
10423 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10424 	if (!jc)
10425 		return ERR_PTR(-ENOMEM);
10426 
10427 	jc->info = alloc_percpu(struct perf_cgroup_info);
10428 	if (!jc->info) {
10429 		kfree(jc);
10430 		return ERR_PTR(-ENOMEM);
10431 	}
10432 
10433 	return &jc->css;
10434 }
10435 
10436 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10437 {
10438 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10439 
10440 	free_percpu(jc->info);
10441 	kfree(jc);
10442 }
10443 
10444 static int __perf_cgroup_move(void *info)
10445 {
10446 	struct task_struct *task = info;
10447 	rcu_read_lock();
10448 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10449 	rcu_read_unlock();
10450 	return 0;
10451 }
10452 
10453 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10454 {
10455 	struct task_struct *task;
10456 	struct cgroup_subsys_state *css;
10457 
10458 	cgroup_taskset_for_each(task, css, tset)
10459 		task_function_call(task, __perf_cgroup_move, task);
10460 }
10461 
10462 struct cgroup_subsys perf_event_cgrp_subsys = {
10463 	.css_alloc	= perf_cgroup_css_alloc,
10464 	.css_free	= perf_cgroup_css_free,
10465 	.attach		= perf_cgroup_attach,
10466 };
10467 #endif /* CONFIG_CGROUP_PERF */
10468