xref: /openbmc/linux/kernel/events/core.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 #ifdef CONFIG_CGROUP_PERF
586 
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 	struct perf_event_context *ctx = event->ctx;
591 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592 
593 	/* @event doesn't care about cgroup */
594 	if (!event->cgrp)
595 		return true;
596 
597 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
598 	if (!cpuctx->cgrp)
599 		return false;
600 
601 	/*
602 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
603 	 * also enabled for all its descendant cgroups.  If @cpuctx's
604 	 * cgroup is a descendant of @event's (the test covers identity
605 	 * case), it's a match.
606 	 */
607 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 				    event->cgrp->css.cgroup);
609 }
610 
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 	css_put(&event->cgrp->css);
614 	event->cgrp = NULL;
615 }
616 
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 	return event->cgrp != NULL;
620 }
621 
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 	struct perf_cgroup_info *t;
625 
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	return t->time;
628 }
629 
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 	struct perf_cgroup_info *info;
633 	u64 now;
634 
635 	now = perf_clock();
636 
637 	info = this_cpu_ptr(cgrp->info);
638 
639 	info->time += now - info->timestamp;
640 	info->timestamp = now;
641 }
642 
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 	if (cgrp_out)
647 		__update_cgrp_time(cgrp_out);
648 }
649 
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 	struct perf_cgroup *cgrp;
653 
654 	/*
655 	 * ensure we access cgroup data only when needed and
656 	 * when we know the cgroup is pinned (css_get)
657 	 */
658 	if (!is_cgroup_event(event))
659 		return;
660 
661 	cgrp = perf_cgroup_from_task(current, event->ctx);
662 	/*
663 	 * Do not update time when cgroup is not active
664 	 */
665        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
666 		__update_cgrp_time(event->cgrp);
667 }
668 
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 			  struct perf_event_context *ctx)
672 {
673 	struct perf_cgroup *cgrp;
674 	struct perf_cgroup_info *info;
675 
676 	/*
677 	 * ctx->lock held by caller
678 	 * ensure we do not access cgroup data
679 	 * unless we have the cgroup pinned (css_get)
680 	 */
681 	if (!task || !ctx->nr_cgroups)
682 		return;
683 
684 	cgrp = perf_cgroup_from_task(task, ctx);
685 	info = this_cpu_ptr(cgrp->info);
686 	info->timestamp = ctx->timestamp;
687 }
688 
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690 
691 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
693 
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 	struct perf_cpu_context *cpuctx;
703 	struct list_head *list;
704 	unsigned long flags;
705 
706 	/*
707 	 * Disable interrupts and preemption to avoid this CPU's
708 	 * cgrp_cpuctx_entry to change under us.
709 	 */
710 	local_irq_save(flags);
711 
712 	list = this_cpu_ptr(&cgrp_cpuctx_list);
713 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715 
716 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 		perf_pmu_disable(cpuctx->ctx.pmu);
718 
719 		if (mode & PERF_CGROUP_SWOUT) {
720 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 			/*
722 			 * must not be done before ctxswout due
723 			 * to event_filter_match() in event_sched_out()
724 			 */
725 			cpuctx->cgrp = NULL;
726 		}
727 
728 		if (mode & PERF_CGROUP_SWIN) {
729 			WARN_ON_ONCE(cpuctx->cgrp);
730 			/*
731 			 * set cgrp before ctxsw in to allow
732 			 * event_filter_match() to not have to pass
733 			 * task around
734 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 			 * because cgorup events are only per-cpu
736 			 */
737 			cpuctx->cgrp = perf_cgroup_from_task(task,
738 							     &cpuctx->ctx);
739 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 		}
741 		perf_pmu_enable(cpuctx->ctx.pmu);
742 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 	}
744 
745 	local_irq_restore(flags);
746 }
747 
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 					 struct task_struct *next)
750 {
751 	struct perf_cgroup *cgrp1;
752 	struct perf_cgroup *cgrp2 = NULL;
753 
754 	rcu_read_lock();
755 	/*
756 	 * we come here when we know perf_cgroup_events > 0
757 	 * we do not need to pass the ctx here because we know
758 	 * we are holding the rcu lock
759 	 */
760 	cgrp1 = perf_cgroup_from_task(task, NULL);
761 	cgrp2 = perf_cgroup_from_task(next, NULL);
762 
763 	/*
764 	 * only schedule out current cgroup events if we know
765 	 * that we are switching to a different cgroup. Otherwise,
766 	 * do no touch the cgroup events.
767 	 */
768 	if (cgrp1 != cgrp2)
769 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770 
771 	rcu_read_unlock();
772 }
773 
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 					struct task_struct *task)
776 {
777 	struct perf_cgroup *cgrp1;
778 	struct perf_cgroup *cgrp2 = NULL;
779 
780 	rcu_read_lock();
781 	/*
782 	 * we come here when we know perf_cgroup_events > 0
783 	 * we do not need to pass the ctx here because we know
784 	 * we are holding the rcu lock
785 	 */
786 	cgrp1 = perf_cgroup_from_task(task, NULL);
787 	cgrp2 = perf_cgroup_from_task(prev, NULL);
788 
789 	/*
790 	 * only need to schedule in cgroup events if we are changing
791 	 * cgroup during ctxsw. Cgroup events were not scheduled
792 	 * out of ctxsw out if that was not the case.
793 	 */
794 	if (cgrp1 != cgrp2)
795 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796 
797 	rcu_read_unlock();
798 }
799 
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 				      struct perf_event_attr *attr,
802 				      struct perf_event *group_leader)
803 {
804 	struct perf_cgroup *cgrp;
805 	struct cgroup_subsys_state *css;
806 	struct fd f = fdget(fd);
807 	int ret = 0;
808 
809 	if (!f.file)
810 		return -EBADF;
811 
812 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 					 &perf_event_cgrp_subsys);
814 	if (IS_ERR(css)) {
815 		ret = PTR_ERR(css);
816 		goto out;
817 	}
818 
819 	cgrp = container_of(css, struct perf_cgroup, css);
820 	event->cgrp = cgrp;
821 
822 	/*
823 	 * all events in a group must monitor
824 	 * the same cgroup because a task belongs
825 	 * to only one perf cgroup at a time
826 	 */
827 	if (group_leader && group_leader->cgrp != cgrp) {
828 		perf_detach_cgroup(event);
829 		ret = -EINVAL;
830 	}
831 out:
832 	fdput(f);
833 	return ret;
834 }
835 
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 	struct perf_cgroup_info *t;
840 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 	event->shadow_ctx_time = now - t->timestamp;
842 }
843 
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 	/*
848 	 * when the current task's perf cgroup does not match
849 	 * the event's, we need to remember to call the
850 	 * perf_mark_enable() function the first time a task with
851 	 * a matching perf cgroup is scheduled in.
852 	 */
853 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 		event->cgrp_defer_enabled = 1;
855 }
856 
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 			 struct perf_event_context *ctx)
860 {
861 	struct perf_event *sub;
862 	u64 tstamp = perf_event_time(event);
863 
864 	if (!event->cgrp_defer_enabled)
865 		return;
866 
867 	event->cgrp_defer_enabled = 0;
868 
869 	event->tstamp_enabled = tstamp - event->total_time_enabled;
870 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 			sub->cgrp_defer_enabled = 0;
874 		}
875 	}
876 }
877 
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 			 struct perf_event_context *ctx, bool add)
885 {
886 	struct perf_cpu_context *cpuctx;
887 	struct list_head *cpuctx_entry;
888 
889 	if (!is_cgroup_event(event))
890 		return;
891 
892 	if (add && ctx->nr_cgroups++)
893 		return;
894 	else if (!add && --ctx->nr_cgroups)
895 		return;
896 	/*
897 	 * Because cgroup events are always per-cpu events,
898 	 * this will always be called from the right CPU.
899 	 */
900 	cpuctx = __get_cpu_context(ctx);
901 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 	if (add) {
904 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 		if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 			cpuctx->cgrp = event->cgrp;
907 	} else {
908 		list_del(cpuctx_entry);
909 		cpuctx->cgrp = NULL;
910 	}
911 }
912 
913 #else /* !CONFIG_CGROUP_PERF */
914 
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 	return true;
919 }
920 
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923 
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 	return 0;
927 }
928 
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932 
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936 
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 					 struct task_struct *next)
939 {
940 }
941 
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 					struct task_struct *task)
944 {
945 }
946 
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 				      struct perf_event_attr *attr,
949 				      struct perf_event *group_leader)
950 {
951 	return -EINVAL;
952 }
953 
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 			  struct perf_event_context *ctx)
957 {
958 }
959 
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964 
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969 
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 	return 0;
973 }
974 
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979 
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 			 struct perf_event_context *ctx)
983 {
984 }
985 
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 			 struct perf_event_context *ctx, bool add)
989 {
990 }
991 
992 #endif
993 
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 	struct perf_cpu_context *cpuctx;
1005 	int rotations = 0;
1006 
1007 	WARN_ON(!irqs_disabled());
1008 
1009 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 	rotations = perf_rotate_context(cpuctx);
1011 
1012 	raw_spin_lock(&cpuctx->hrtimer_lock);
1013 	if (rotations)
1014 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 	else
1016 		cpuctx->hrtimer_active = 0;
1017 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1018 
1019 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021 
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 	struct hrtimer *timer = &cpuctx->hrtimer;
1025 	struct pmu *pmu = cpuctx->ctx.pmu;
1026 	u64 interval;
1027 
1028 	/* no multiplexing needed for SW PMU */
1029 	if (pmu->task_ctx_nr == perf_sw_context)
1030 		return;
1031 
1032 	/*
1033 	 * check default is sane, if not set then force to
1034 	 * default interval (1/tick)
1035 	 */
1036 	interval = pmu->hrtimer_interval_ms;
1037 	if (interval < 1)
1038 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039 
1040 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041 
1042 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 	timer->function = perf_mux_hrtimer_handler;
1045 }
1046 
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 	struct hrtimer *timer = &cpuctx->hrtimer;
1050 	struct pmu *pmu = cpuctx->ctx.pmu;
1051 	unsigned long flags;
1052 
1053 	/* not for SW PMU */
1054 	if (pmu->task_ctx_nr == perf_sw_context)
1055 		return 0;
1056 
1057 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 	if (!cpuctx->hrtimer_active) {
1059 		cpuctx->hrtimer_active = 1;
1060 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 	}
1063 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064 
1065 	return 0;
1066 }
1067 
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 	if (!(*count)++)
1072 		pmu->pmu_disable(pmu);
1073 }
1074 
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 	if (!--(*count))
1079 		pmu->pmu_enable(pmu);
1080 }
1081 
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083 
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093 
1094 	WARN_ON(!irqs_disabled());
1095 
1096 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1097 
1098 	list_add(&ctx->active_ctx_list, head);
1099 }
1100 
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 	WARN_ON(!irqs_disabled());
1104 
1105 	WARN_ON(list_empty(&ctx->active_ctx_list));
1106 
1107 	list_del_init(&ctx->active_ctx_list);
1108 }
1109 
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114 
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 	struct perf_event_context *ctx;
1118 
1119 	ctx = container_of(head, struct perf_event_context, rcu_head);
1120 	kfree(ctx->task_ctx_data);
1121 	kfree(ctx);
1122 }
1123 
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 	if (atomic_dec_and_test(&ctx->refcount)) {
1127 		if (ctx->parent_ctx)
1128 			put_ctx(ctx->parent_ctx);
1129 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 			put_task_struct(ctx->task);
1131 		call_rcu(&ctx->rcu_head, free_ctx);
1132 	}
1133 }
1134 
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()	[ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()			[ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()		[ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event()	[ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *	task_struct::perf_event_mutex
1190  *	  perf_event_context::mutex
1191  *	    perf_event::child_mutex;
1192  *	      perf_event_context::lock
1193  *	    perf_event::mmap_mutex
1194  *	    mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 	struct perf_event_context *ctx;
1200 
1201 again:
1202 	rcu_read_lock();
1203 	ctx = ACCESS_ONCE(event->ctx);
1204 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 		rcu_read_unlock();
1206 		goto again;
1207 	}
1208 	rcu_read_unlock();
1209 
1210 	mutex_lock_nested(&ctx->mutex, nesting);
1211 	if (event->ctx != ctx) {
1212 		mutex_unlock(&ctx->mutex);
1213 		put_ctx(ctx);
1214 		goto again;
1215 	}
1216 
1217 	return ctx;
1218 }
1219 
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 	return perf_event_ctx_lock_nested(event, 0);
1224 }
1225 
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 				  struct perf_event_context *ctx)
1228 {
1229 	mutex_unlock(&ctx->mutex);
1230 	put_ctx(ctx);
1231 }
1232 
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242 
1243 	lockdep_assert_held(&ctx->lock);
1244 
1245 	if (parent_ctx)
1246 		ctx->parent_ctx = NULL;
1247 	ctx->generation++;
1248 
1249 	return parent_ctx;
1250 }
1251 
1252 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 				enum pid_type type)
1254 {
1255 	u32 nr;
1256 	/*
1257 	 * only top level events have the pid namespace they were created in
1258 	 */
1259 	if (event->parent)
1260 		event = event->parent;
1261 
1262 	nr = __task_pid_nr_ns(p, type, event->ns);
1263 	/* avoid -1 if it is idle thread or runs in another ns */
1264 	if (!nr && !pid_alive(p))
1265 		nr = -1;
1266 	return nr;
1267 }
1268 
1269 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1270 {
1271 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272 }
1273 
1274 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275 {
1276 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1277 }
1278 
1279 /*
1280  * If we inherit events we want to return the parent event id
1281  * to userspace.
1282  */
1283 static u64 primary_event_id(struct perf_event *event)
1284 {
1285 	u64 id = event->id;
1286 
1287 	if (event->parent)
1288 		id = event->parent->id;
1289 
1290 	return id;
1291 }
1292 
1293 /*
1294  * Get the perf_event_context for a task and lock it.
1295  *
1296  * This has to cope with with the fact that until it is locked,
1297  * the context could get moved to another task.
1298  */
1299 static struct perf_event_context *
1300 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1301 {
1302 	struct perf_event_context *ctx;
1303 
1304 retry:
1305 	/*
1306 	 * One of the few rules of preemptible RCU is that one cannot do
1307 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1308 	 * part of the read side critical section was irqs-enabled -- see
1309 	 * rcu_read_unlock_special().
1310 	 *
1311 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1312 	 * side critical section has interrupts disabled.
1313 	 */
1314 	local_irq_save(*flags);
1315 	rcu_read_lock();
1316 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1317 	if (ctx) {
1318 		/*
1319 		 * If this context is a clone of another, it might
1320 		 * get swapped for another underneath us by
1321 		 * perf_event_task_sched_out, though the
1322 		 * rcu_read_lock() protects us from any context
1323 		 * getting freed.  Lock the context and check if it
1324 		 * got swapped before we could get the lock, and retry
1325 		 * if so.  If we locked the right context, then it
1326 		 * can't get swapped on us any more.
1327 		 */
1328 		raw_spin_lock(&ctx->lock);
1329 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1330 			raw_spin_unlock(&ctx->lock);
1331 			rcu_read_unlock();
1332 			local_irq_restore(*flags);
1333 			goto retry;
1334 		}
1335 
1336 		if (ctx->task == TASK_TOMBSTONE ||
1337 		    !atomic_inc_not_zero(&ctx->refcount)) {
1338 			raw_spin_unlock(&ctx->lock);
1339 			ctx = NULL;
1340 		} else {
1341 			WARN_ON_ONCE(ctx->task != task);
1342 		}
1343 	}
1344 	rcu_read_unlock();
1345 	if (!ctx)
1346 		local_irq_restore(*flags);
1347 	return ctx;
1348 }
1349 
1350 /*
1351  * Get the context for a task and increment its pin_count so it
1352  * can't get swapped to another task.  This also increments its
1353  * reference count so that the context can't get freed.
1354  */
1355 static struct perf_event_context *
1356 perf_pin_task_context(struct task_struct *task, int ctxn)
1357 {
1358 	struct perf_event_context *ctx;
1359 	unsigned long flags;
1360 
1361 	ctx = perf_lock_task_context(task, ctxn, &flags);
1362 	if (ctx) {
1363 		++ctx->pin_count;
1364 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1365 	}
1366 	return ctx;
1367 }
1368 
1369 static void perf_unpin_context(struct perf_event_context *ctx)
1370 {
1371 	unsigned long flags;
1372 
1373 	raw_spin_lock_irqsave(&ctx->lock, flags);
1374 	--ctx->pin_count;
1375 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1376 }
1377 
1378 /*
1379  * Update the record of the current time in a context.
1380  */
1381 static void update_context_time(struct perf_event_context *ctx)
1382 {
1383 	u64 now = perf_clock();
1384 
1385 	ctx->time += now - ctx->timestamp;
1386 	ctx->timestamp = now;
1387 }
1388 
1389 static u64 perf_event_time(struct perf_event *event)
1390 {
1391 	struct perf_event_context *ctx = event->ctx;
1392 
1393 	if (is_cgroup_event(event))
1394 		return perf_cgroup_event_time(event);
1395 
1396 	return ctx ? ctx->time : 0;
1397 }
1398 
1399 /*
1400  * Update the total_time_enabled and total_time_running fields for a event.
1401  */
1402 static void update_event_times(struct perf_event *event)
1403 {
1404 	struct perf_event_context *ctx = event->ctx;
1405 	u64 run_end;
1406 
1407 	lockdep_assert_held(&ctx->lock);
1408 
1409 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 		return;
1412 
1413 	/*
1414 	 * in cgroup mode, time_enabled represents
1415 	 * the time the event was enabled AND active
1416 	 * tasks were in the monitored cgroup. This is
1417 	 * independent of the activity of the context as
1418 	 * there may be a mix of cgroup and non-cgroup events.
1419 	 *
1420 	 * That is why we treat cgroup events differently
1421 	 * here.
1422 	 */
1423 	if (is_cgroup_event(event))
1424 		run_end = perf_cgroup_event_time(event);
1425 	else if (ctx->is_active)
1426 		run_end = ctx->time;
1427 	else
1428 		run_end = event->tstamp_stopped;
1429 
1430 	event->total_time_enabled = run_end - event->tstamp_enabled;
1431 
1432 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 		run_end = event->tstamp_stopped;
1434 	else
1435 		run_end = perf_event_time(event);
1436 
1437 	event->total_time_running = run_end - event->tstamp_running;
1438 
1439 }
1440 
1441 /*
1442  * Update total_time_enabled and total_time_running for all events in a group.
1443  */
1444 static void update_group_times(struct perf_event *leader)
1445 {
1446 	struct perf_event *event;
1447 
1448 	update_event_times(leader);
1449 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 		update_event_times(event);
1451 }
1452 
1453 static enum event_type_t get_event_type(struct perf_event *event)
1454 {
1455 	struct perf_event_context *ctx = event->ctx;
1456 	enum event_type_t event_type;
1457 
1458 	lockdep_assert_held(&ctx->lock);
1459 
1460 	/*
1461 	 * It's 'group type', really, because if our group leader is
1462 	 * pinned, so are we.
1463 	 */
1464 	if (event->group_leader != event)
1465 		event = event->group_leader;
1466 
1467 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 	if (!ctx->task)
1469 		event_type |= EVENT_CPU;
1470 
1471 	return event_type;
1472 }
1473 
1474 static struct list_head *
1475 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 	if (event->attr.pinned)
1478 		return &ctx->pinned_groups;
1479 	else
1480 		return &ctx->flexible_groups;
1481 }
1482 
1483 /*
1484  * Add a event from the lists for its context.
1485  * Must be called with ctx->mutex and ctx->lock held.
1486  */
1487 static void
1488 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1489 {
1490 	lockdep_assert_held(&ctx->lock);
1491 
1492 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 	event->attach_state |= PERF_ATTACH_CONTEXT;
1494 
1495 	/*
1496 	 * If we're a stand alone event or group leader, we go to the context
1497 	 * list, group events are kept attached to the group so that
1498 	 * perf_group_detach can, at all times, locate all siblings.
1499 	 */
1500 	if (event->group_leader == event) {
1501 		struct list_head *list;
1502 
1503 		event->group_caps = event->event_caps;
1504 
1505 		list = ctx_group_list(event, ctx);
1506 		list_add_tail(&event->group_entry, list);
1507 	}
1508 
1509 	list_update_cgroup_event(event, ctx, true);
1510 
1511 	list_add_rcu(&event->event_entry, &ctx->event_list);
1512 	ctx->nr_events++;
1513 	if (event->attr.inherit_stat)
1514 		ctx->nr_stat++;
1515 
1516 	ctx->generation++;
1517 }
1518 
1519 /*
1520  * Initialize event state based on the perf_event_attr::disabled.
1521  */
1522 static inline void perf_event__state_init(struct perf_event *event)
1523 {
1524 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 					      PERF_EVENT_STATE_INACTIVE;
1526 }
1527 
1528 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1529 {
1530 	int entry = sizeof(u64); /* value */
1531 	int size = 0;
1532 	int nr = 1;
1533 
1534 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 		size += sizeof(u64);
1536 
1537 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 		size += sizeof(u64);
1539 
1540 	if (event->attr.read_format & PERF_FORMAT_ID)
1541 		entry += sizeof(u64);
1542 
1543 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1544 		nr += nr_siblings;
1545 		size += sizeof(u64);
1546 	}
1547 
1548 	size += entry * nr;
1549 	event->read_size = size;
1550 }
1551 
1552 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1553 {
1554 	struct perf_sample_data *data;
1555 	u16 size = 0;
1556 
1557 	if (sample_type & PERF_SAMPLE_IP)
1558 		size += sizeof(data->ip);
1559 
1560 	if (sample_type & PERF_SAMPLE_ADDR)
1561 		size += sizeof(data->addr);
1562 
1563 	if (sample_type & PERF_SAMPLE_PERIOD)
1564 		size += sizeof(data->period);
1565 
1566 	if (sample_type & PERF_SAMPLE_WEIGHT)
1567 		size += sizeof(data->weight);
1568 
1569 	if (sample_type & PERF_SAMPLE_READ)
1570 		size += event->read_size;
1571 
1572 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 		size += sizeof(data->data_src.val);
1574 
1575 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 		size += sizeof(data->txn);
1577 
1578 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 		size += sizeof(data->phys_addr);
1580 
1581 	event->header_size = size;
1582 }
1583 
1584 /*
1585  * Called at perf_event creation and when events are attached/detached from a
1586  * group.
1587  */
1588 static void perf_event__header_size(struct perf_event *event)
1589 {
1590 	__perf_event_read_size(event,
1591 			       event->group_leader->nr_siblings);
1592 	__perf_event_header_size(event, event->attr.sample_type);
1593 }
1594 
1595 static void perf_event__id_header_size(struct perf_event *event)
1596 {
1597 	struct perf_sample_data *data;
1598 	u64 sample_type = event->attr.sample_type;
1599 	u16 size = 0;
1600 
1601 	if (sample_type & PERF_SAMPLE_TID)
1602 		size += sizeof(data->tid_entry);
1603 
1604 	if (sample_type & PERF_SAMPLE_TIME)
1605 		size += sizeof(data->time);
1606 
1607 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 		size += sizeof(data->id);
1609 
1610 	if (sample_type & PERF_SAMPLE_ID)
1611 		size += sizeof(data->id);
1612 
1613 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 		size += sizeof(data->stream_id);
1615 
1616 	if (sample_type & PERF_SAMPLE_CPU)
1617 		size += sizeof(data->cpu_entry);
1618 
1619 	event->id_header_size = size;
1620 }
1621 
1622 static bool perf_event_validate_size(struct perf_event *event)
1623 {
1624 	/*
1625 	 * The values computed here will be over-written when we actually
1626 	 * attach the event.
1627 	 */
1628 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 	perf_event__id_header_size(event);
1631 
1632 	/*
1633 	 * Sum the lot; should not exceed the 64k limit we have on records.
1634 	 * Conservative limit to allow for callchains and other variable fields.
1635 	 */
1636 	if (event->read_size + event->header_size +
1637 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 		return false;
1639 
1640 	return true;
1641 }
1642 
1643 static void perf_group_attach(struct perf_event *event)
1644 {
1645 	struct perf_event *group_leader = event->group_leader, *pos;
1646 
1647 	lockdep_assert_held(&event->ctx->lock);
1648 
1649 	/*
1650 	 * We can have double attach due to group movement in perf_event_open.
1651 	 */
1652 	if (event->attach_state & PERF_ATTACH_GROUP)
1653 		return;
1654 
1655 	event->attach_state |= PERF_ATTACH_GROUP;
1656 
1657 	if (group_leader == event)
1658 		return;
1659 
1660 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661 
1662 	group_leader->group_caps &= event->event_caps;
1663 
1664 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 	group_leader->nr_siblings++;
1666 
1667 	perf_event__header_size(group_leader);
1668 
1669 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 		perf_event__header_size(pos);
1671 }
1672 
1673 /*
1674  * Remove a event from the lists for its context.
1675  * Must be called with ctx->mutex and ctx->lock held.
1676  */
1677 static void
1678 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680 	WARN_ON_ONCE(event->ctx != ctx);
1681 	lockdep_assert_held(&ctx->lock);
1682 
1683 	/*
1684 	 * We can have double detach due to exit/hot-unplug + close.
1685 	 */
1686 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1687 		return;
1688 
1689 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690 
1691 	list_update_cgroup_event(event, ctx, false);
1692 
1693 	ctx->nr_events--;
1694 	if (event->attr.inherit_stat)
1695 		ctx->nr_stat--;
1696 
1697 	list_del_rcu(&event->event_entry);
1698 
1699 	if (event->group_leader == event)
1700 		list_del_init(&event->group_entry);
1701 
1702 	update_group_times(event);
1703 
1704 	/*
1705 	 * If event was in error state, then keep it
1706 	 * that way, otherwise bogus counts will be
1707 	 * returned on read(). The only way to get out
1708 	 * of error state is by explicit re-enabling
1709 	 * of the event
1710 	 */
1711 	if (event->state > PERF_EVENT_STATE_OFF)
1712 		event->state = PERF_EVENT_STATE_OFF;
1713 
1714 	ctx->generation++;
1715 }
1716 
1717 static void perf_group_detach(struct perf_event *event)
1718 {
1719 	struct perf_event *sibling, *tmp;
1720 	struct list_head *list = NULL;
1721 
1722 	lockdep_assert_held(&event->ctx->lock);
1723 
1724 	/*
1725 	 * We can have double detach due to exit/hot-unplug + close.
1726 	 */
1727 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 		return;
1729 
1730 	event->attach_state &= ~PERF_ATTACH_GROUP;
1731 
1732 	/*
1733 	 * If this is a sibling, remove it from its group.
1734 	 */
1735 	if (event->group_leader != event) {
1736 		list_del_init(&event->group_entry);
1737 		event->group_leader->nr_siblings--;
1738 		goto out;
1739 	}
1740 
1741 	if (!list_empty(&event->group_entry))
1742 		list = &event->group_entry;
1743 
1744 	/*
1745 	 * If this was a group event with sibling events then
1746 	 * upgrade the siblings to singleton events by adding them
1747 	 * to whatever list we are on.
1748 	 */
1749 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1750 		if (list)
1751 			list_move_tail(&sibling->group_entry, list);
1752 		sibling->group_leader = sibling;
1753 
1754 		/* Inherit group flags from the previous leader */
1755 		sibling->group_caps = event->group_caps;
1756 
1757 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1758 	}
1759 
1760 out:
1761 	perf_event__header_size(event->group_leader);
1762 
1763 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 		perf_event__header_size(tmp);
1765 }
1766 
1767 static bool is_orphaned_event(struct perf_event *event)
1768 {
1769 	return event->state == PERF_EVENT_STATE_DEAD;
1770 }
1771 
1772 static inline int __pmu_filter_match(struct perf_event *event)
1773 {
1774 	struct pmu *pmu = event->pmu;
1775 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1776 }
1777 
1778 /*
1779  * Check whether we should attempt to schedule an event group based on
1780  * PMU-specific filtering. An event group can consist of HW and SW events,
1781  * potentially with a SW leader, so we must check all the filters, to
1782  * determine whether a group is schedulable:
1783  */
1784 static inline int pmu_filter_match(struct perf_event *event)
1785 {
1786 	struct perf_event *child;
1787 
1788 	if (!__pmu_filter_match(event))
1789 		return 0;
1790 
1791 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 		if (!__pmu_filter_match(child))
1793 			return 0;
1794 	}
1795 
1796 	return 1;
1797 }
1798 
1799 static inline int
1800 event_filter_match(struct perf_event *event)
1801 {
1802 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 	       perf_cgroup_match(event) && pmu_filter_match(event);
1804 }
1805 
1806 static void
1807 event_sched_out(struct perf_event *event,
1808 		  struct perf_cpu_context *cpuctx,
1809 		  struct perf_event_context *ctx)
1810 {
1811 	u64 tstamp = perf_event_time(event);
1812 	u64 delta;
1813 
1814 	WARN_ON_ONCE(event->ctx != ctx);
1815 	lockdep_assert_held(&ctx->lock);
1816 
1817 	/*
1818 	 * An event which could not be activated because of
1819 	 * filter mismatch still needs to have its timings
1820 	 * maintained, otherwise bogus information is return
1821 	 * via read() for time_enabled, time_running:
1822 	 */
1823 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 	    !event_filter_match(event)) {
1825 		delta = tstamp - event->tstamp_stopped;
1826 		event->tstamp_running += delta;
1827 		event->tstamp_stopped = tstamp;
1828 	}
1829 
1830 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1831 		return;
1832 
1833 	perf_pmu_disable(event->pmu);
1834 
1835 	event->tstamp_stopped = tstamp;
1836 	event->pmu->del(event, 0);
1837 	event->oncpu = -1;
1838 	event->state = PERF_EVENT_STATE_INACTIVE;
1839 	if (event->pending_disable) {
1840 		event->pending_disable = 0;
1841 		event->state = PERF_EVENT_STATE_OFF;
1842 	}
1843 
1844 	if (!is_software_event(event))
1845 		cpuctx->active_oncpu--;
1846 	if (!--ctx->nr_active)
1847 		perf_event_ctx_deactivate(ctx);
1848 	if (event->attr.freq && event->attr.sample_freq)
1849 		ctx->nr_freq--;
1850 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1851 		cpuctx->exclusive = 0;
1852 
1853 	perf_pmu_enable(event->pmu);
1854 }
1855 
1856 static void
1857 group_sched_out(struct perf_event *group_event,
1858 		struct perf_cpu_context *cpuctx,
1859 		struct perf_event_context *ctx)
1860 {
1861 	struct perf_event *event;
1862 	int state = group_event->state;
1863 
1864 	perf_pmu_disable(ctx->pmu);
1865 
1866 	event_sched_out(group_event, cpuctx, ctx);
1867 
1868 	/*
1869 	 * Schedule out siblings (if any):
1870 	 */
1871 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 		event_sched_out(event, cpuctx, ctx);
1873 
1874 	perf_pmu_enable(ctx->pmu);
1875 
1876 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1877 		cpuctx->exclusive = 0;
1878 }
1879 
1880 #define DETACH_GROUP	0x01UL
1881 
1882 /*
1883  * Cross CPU call to remove a performance event
1884  *
1885  * We disable the event on the hardware level first. After that we
1886  * remove it from the context list.
1887  */
1888 static void
1889 __perf_remove_from_context(struct perf_event *event,
1890 			   struct perf_cpu_context *cpuctx,
1891 			   struct perf_event_context *ctx,
1892 			   void *info)
1893 {
1894 	unsigned long flags = (unsigned long)info;
1895 
1896 	event_sched_out(event, cpuctx, ctx);
1897 	if (flags & DETACH_GROUP)
1898 		perf_group_detach(event);
1899 	list_del_event(event, ctx);
1900 
1901 	if (!ctx->nr_events && ctx->is_active) {
1902 		ctx->is_active = 0;
1903 		if (ctx->task) {
1904 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 			cpuctx->task_ctx = NULL;
1906 		}
1907 	}
1908 }
1909 
1910 /*
1911  * Remove the event from a task's (or a CPU's) list of events.
1912  *
1913  * If event->ctx is a cloned context, callers must make sure that
1914  * every task struct that event->ctx->task could possibly point to
1915  * remains valid.  This is OK when called from perf_release since
1916  * that only calls us on the top-level context, which can't be a clone.
1917  * When called from perf_event_exit_task, it's OK because the
1918  * context has been detached from its task.
1919  */
1920 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1921 {
1922 	struct perf_event_context *ctx = event->ctx;
1923 
1924 	lockdep_assert_held(&ctx->mutex);
1925 
1926 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1927 
1928 	/*
1929 	 * The above event_function_call() can NO-OP when it hits
1930 	 * TASK_TOMBSTONE. In that case we must already have been detached
1931 	 * from the context (by perf_event_exit_event()) but the grouping
1932 	 * might still be in-tact.
1933 	 */
1934 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 	if ((flags & DETACH_GROUP) &&
1936 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1937 		/*
1938 		 * Since in that case we cannot possibly be scheduled, simply
1939 		 * detach now.
1940 		 */
1941 		raw_spin_lock_irq(&ctx->lock);
1942 		perf_group_detach(event);
1943 		raw_spin_unlock_irq(&ctx->lock);
1944 	}
1945 }
1946 
1947 /*
1948  * Cross CPU call to disable a performance event
1949  */
1950 static void __perf_event_disable(struct perf_event *event,
1951 				 struct perf_cpu_context *cpuctx,
1952 				 struct perf_event_context *ctx,
1953 				 void *info)
1954 {
1955 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 		return;
1957 
1958 	update_context_time(ctx);
1959 	update_cgrp_time_from_event(event);
1960 	update_group_times(event);
1961 	if (event == event->group_leader)
1962 		group_sched_out(event, cpuctx, ctx);
1963 	else
1964 		event_sched_out(event, cpuctx, ctx);
1965 	event->state = PERF_EVENT_STATE_OFF;
1966 }
1967 
1968 /*
1969  * Disable a event.
1970  *
1971  * If event->ctx is a cloned context, callers must make sure that
1972  * every task struct that event->ctx->task could possibly point to
1973  * remains valid.  This condition is satisifed when called through
1974  * perf_event_for_each_child or perf_event_for_each because they
1975  * hold the top-level event's child_mutex, so any descendant that
1976  * goes to exit will block in perf_event_exit_event().
1977  *
1978  * When called from perf_pending_event it's OK because event->ctx
1979  * is the current context on this CPU and preemption is disabled,
1980  * hence we can't get into perf_event_task_sched_out for this context.
1981  */
1982 static void _perf_event_disable(struct perf_event *event)
1983 {
1984 	struct perf_event_context *ctx = event->ctx;
1985 
1986 	raw_spin_lock_irq(&ctx->lock);
1987 	if (event->state <= PERF_EVENT_STATE_OFF) {
1988 		raw_spin_unlock_irq(&ctx->lock);
1989 		return;
1990 	}
1991 	raw_spin_unlock_irq(&ctx->lock);
1992 
1993 	event_function_call(event, __perf_event_disable, NULL);
1994 }
1995 
1996 void perf_event_disable_local(struct perf_event *event)
1997 {
1998 	event_function_local(event, __perf_event_disable, NULL);
1999 }
2000 
2001 /*
2002  * Strictly speaking kernel users cannot create groups and therefore this
2003  * interface does not need the perf_event_ctx_lock() magic.
2004  */
2005 void perf_event_disable(struct perf_event *event)
2006 {
2007 	struct perf_event_context *ctx;
2008 
2009 	ctx = perf_event_ctx_lock(event);
2010 	_perf_event_disable(event);
2011 	perf_event_ctx_unlock(event, ctx);
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_disable);
2014 
2015 void perf_event_disable_inatomic(struct perf_event *event)
2016 {
2017 	event->pending_disable = 1;
2018 	irq_work_queue(&event->pending);
2019 }
2020 
2021 static void perf_set_shadow_time(struct perf_event *event,
2022 				 struct perf_event_context *ctx,
2023 				 u64 tstamp)
2024 {
2025 	/*
2026 	 * use the correct time source for the time snapshot
2027 	 *
2028 	 * We could get by without this by leveraging the
2029 	 * fact that to get to this function, the caller
2030 	 * has most likely already called update_context_time()
2031 	 * and update_cgrp_time_xx() and thus both timestamp
2032 	 * are identical (or very close). Given that tstamp is,
2033 	 * already adjusted for cgroup, we could say that:
2034 	 *    tstamp - ctx->timestamp
2035 	 * is equivalent to
2036 	 *    tstamp - cgrp->timestamp.
2037 	 *
2038 	 * Then, in perf_output_read(), the calculation would
2039 	 * work with no changes because:
2040 	 * - event is guaranteed scheduled in
2041 	 * - no scheduled out in between
2042 	 * - thus the timestamp would be the same
2043 	 *
2044 	 * But this is a bit hairy.
2045 	 *
2046 	 * So instead, we have an explicit cgroup call to remain
2047 	 * within the time time source all along. We believe it
2048 	 * is cleaner and simpler to understand.
2049 	 */
2050 	if (is_cgroup_event(event))
2051 		perf_cgroup_set_shadow_time(event, tstamp);
2052 	else
2053 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2054 }
2055 
2056 #define MAX_INTERRUPTS (~0ULL)
2057 
2058 static void perf_log_throttle(struct perf_event *event, int enable);
2059 static void perf_log_itrace_start(struct perf_event *event);
2060 
2061 static int
2062 event_sched_in(struct perf_event *event,
2063 		 struct perf_cpu_context *cpuctx,
2064 		 struct perf_event_context *ctx)
2065 {
2066 	u64 tstamp = perf_event_time(event);
2067 	int ret = 0;
2068 
2069 	lockdep_assert_held(&ctx->lock);
2070 
2071 	if (event->state <= PERF_EVENT_STATE_OFF)
2072 		return 0;
2073 
2074 	WRITE_ONCE(event->oncpu, smp_processor_id());
2075 	/*
2076 	 * Order event::oncpu write to happen before the ACTIVE state
2077 	 * is visible.
2078 	 */
2079 	smp_wmb();
2080 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2081 
2082 	/*
2083 	 * Unthrottle events, since we scheduled we might have missed several
2084 	 * ticks already, also for a heavily scheduling task there is little
2085 	 * guarantee it'll get a tick in a timely manner.
2086 	 */
2087 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 		perf_log_throttle(event, 1);
2089 		event->hw.interrupts = 0;
2090 	}
2091 
2092 	/*
2093 	 * The new state must be visible before we turn it on in the hardware:
2094 	 */
2095 	smp_wmb();
2096 
2097 	perf_pmu_disable(event->pmu);
2098 
2099 	perf_set_shadow_time(event, ctx, tstamp);
2100 
2101 	perf_log_itrace_start(event);
2102 
2103 	if (event->pmu->add(event, PERF_EF_START)) {
2104 		event->state = PERF_EVENT_STATE_INACTIVE;
2105 		event->oncpu = -1;
2106 		ret = -EAGAIN;
2107 		goto out;
2108 	}
2109 
2110 	event->tstamp_running += tstamp - event->tstamp_stopped;
2111 
2112 	if (!is_software_event(event))
2113 		cpuctx->active_oncpu++;
2114 	if (!ctx->nr_active++)
2115 		perf_event_ctx_activate(ctx);
2116 	if (event->attr.freq && event->attr.sample_freq)
2117 		ctx->nr_freq++;
2118 
2119 	if (event->attr.exclusive)
2120 		cpuctx->exclusive = 1;
2121 
2122 out:
2123 	perf_pmu_enable(event->pmu);
2124 
2125 	return ret;
2126 }
2127 
2128 static int
2129 group_sched_in(struct perf_event *group_event,
2130 	       struct perf_cpu_context *cpuctx,
2131 	       struct perf_event_context *ctx)
2132 {
2133 	struct perf_event *event, *partial_group = NULL;
2134 	struct pmu *pmu = ctx->pmu;
2135 	u64 now = ctx->time;
2136 	bool simulate = false;
2137 
2138 	if (group_event->state == PERF_EVENT_STATE_OFF)
2139 		return 0;
2140 
2141 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2142 
2143 	if (event_sched_in(group_event, cpuctx, ctx)) {
2144 		pmu->cancel_txn(pmu);
2145 		perf_mux_hrtimer_restart(cpuctx);
2146 		return -EAGAIN;
2147 	}
2148 
2149 	/*
2150 	 * Schedule in siblings as one group (if any):
2151 	 */
2152 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2153 		if (event_sched_in(event, cpuctx, ctx)) {
2154 			partial_group = event;
2155 			goto group_error;
2156 		}
2157 	}
2158 
2159 	if (!pmu->commit_txn(pmu))
2160 		return 0;
2161 
2162 group_error:
2163 	/*
2164 	 * Groups can be scheduled in as one unit only, so undo any
2165 	 * partial group before returning:
2166 	 * The events up to the failed event are scheduled out normally,
2167 	 * tstamp_stopped will be updated.
2168 	 *
2169 	 * The failed events and the remaining siblings need to have
2170 	 * their timings updated as if they had gone thru event_sched_in()
2171 	 * and event_sched_out(). This is required to get consistent timings
2172 	 * across the group. This also takes care of the case where the group
2173 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 	 * the time the event was actually stopped, such that time delta
2175 	 * calculation in update_event_times() is correct.
2176 	 */
2177 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 		if (event == partial_group)
2179 			simulate = true;
2180 
2181 		if (simulate) {
2182 			event->tstamp_running += now - event->tstamp_stopped;
2183 			event->tstamp_stopped = now;
2184 		} else {
2185 			event_sched_out(event, cpuctx, ctx);
2186 		}
2187 	}
2188 	event_sched_out(group_event, cpuctx, ctx);
2189 
2190 	pmu->cancel_txn(pmu);
2191 
2192 	perf_mux_hrtimer_restart(cpuctx);
2193 
2194 	return -EAGAIN;
2195 }
2196 
2197 /*
2198  * Work out whether we can put this event group on the CPU now.
2199  */
2200 static int group_can_go_on(struct perf_event *event,
2201 			   struct perf_cpu_context *cpuctx,
2202 			   int can_add_hw)
2203 {
2204 	/*
2205 	 * Groups consisting entirely of software events can always go on.
2206 	 */
2207 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2208 		return 1;
2209 	/*
2210 	 * If an exclusive group is already on, no other hardware
2211 	 * events can go on.
2212 	 */
2213 	if (cpuctx->exclusive)
2214 		return 0;
2215 	/*
2216 	 * If this group is exclusive and there are already
2217 	 * events on the CPU, it can't go on.
2218 	 */
2219 	if (event->attr.exclusive && cpuctx->active_oncpu)
2220 		return 0;
2221 	/*
2222 	 * Otherwise, try to add it if all previous groups were able
2223 	 * to go on.
2224 	 */
2225 	return can_add_hw;
2226 }
2227 
2228 /*
2229  * Complement to update_event_times(). This computes the tstamp_* values to
2230  * continue 'enabled' state from @now, and effectively discards the time
2231  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232  * just switched (context) time base).
2233  *
2234  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235  * cannot have been scheduled in yet. And going into INACTIVE state means
2236  * '@event->tstamp_stopped = @now'.
2237  *
2238  * Thus given the rules of update_event_times():
2239  *
2240  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2241  *   total_time_running = tstamp_stopped - tstamp_running
2242  *
2243  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244  * tstamp_* values.
2245  */
2246 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247 {
2248 	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249 
2250 	event->tstamp_stopped = now;
2251 	event->tstamp_enabled = now - event->total_time_enabled;
2252 	event->tstamp_running = now - event->total_time_running;
2253 }
2254 
2255 static void add_event_to_ctx(struct perf_event *event,
2256 			       struct perf_event_context *ctx)
2257 {
2258 	u64 tstamp = perf_event_time(event);
2259 
2260 	list_add_event(event, ctx);
2261 	perf_group_attach(event);
2262 	/*
2263 	 * We can be called with event->state == STATE_OFF when we create with
2264 	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 	 */
2266 	if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 		__perf_event_enable_time(event, tstamp);
2268 }
2269 
2270 static void ctx_sched_out(struct perf_event_context *ctx,
2271 			  struct perf_cpu_context *cpuctx,
2272 			  enum event_type_t event_type);
2273 static void
2274 ctx_sched_in(struct perf_event_context *ctx,
2275 	     struct perf_cpu_context *cpuctx,
2276 	     enum event_type_t event_type,
2277 	     struct task_struct *task);
2278 
2279 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2280 			       struct perf_event_context *ctx,
2281 			       enum event_type_t event_type)
2282 {
2283 	if (!cpuctx->task_ctx)
2284 		return;
2285 
2286 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 		return;
2288 
2289 	ctx_sched_out(ctx, cpuctx, event_type);
2290 }
2291 
2292 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 				struct perf_event_context *ctx,
2294 				struct task_struct *task)
2295 {
2296 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 	if (ctx)
2298 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 	if (ctx)
2301 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302 }
2303 
2304 /*
2305  * We want to maintain the following priority of scheduling:
2306  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307  *  - task pinned (EVENT_PINNED)
2308  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309  *  - task flexible (EVENT_FLEXIBLE).
2310  *
2311  * In order to avoid unscheduling and scheduling back in everything every
2312  * time an event is added, only do it for the groups of equal priority and
2313  * below.
2314  *
2315  * This can be called after a batch operation on task events, in which case
2316  * event_type is a bit mask of the types of events involved. For CPU events,
2317  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318  */
2319 static void ctx_resched(struct perf_cpu_context *cpuctx,
2320 			struct perf_event_context *task_ctx,
2321 			enum event_type_t event_type)
2322 {
2323 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 	bool cpu_event = !!(event_type & EVENT_CPU);
2325 
2326 	/*
2327 	 * If pinned groups are involved, flexible groups also need to be
2328 	 * scheduled out.
2329 	 */
2330 	if (event_type & EVENT_PINNED)
2331 		event_type |= EVENT_FLEXIBLE;
2332 
2333 	perf_pmu_disable(cpuctx->ctx.pmu);
2334 	if (task_ctx)
2335 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336 
2337 	/*
2338 	 * Decide which cpu ctx groups to schedule out based on the types
2339 	 * of events that caused rescheduling:
2340 	 *  - EVENT_CPU: schedule out corresponding groups;
2341 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 	 *  - otherwise, do nothing more.
2343 	 */
2344 	if (cpu_event)
2345 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 	else if (ctx_event_type & EVENT_PINNED)
2347 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348 
2349 	perf_event_sched_in(cpuctx, task_ctx, current);
2350 	perf_pmu_enable(cpuctx->ctx.pmu);
2351 }
2352 
2353 /*
2354  * Cross CPU call to install and enable a performance event
2355  *
2356  * Very similar to remote_function() + event_function() but cannot assume that
2357  * things like ctx->is_active and cpuctx->task_ctx are set.
2358  */
2359 static int  __perf_install_in_context(void *info)
2360 {
2361 	struct perf_event *event = info;
2362 	struct perf_event_context *ctx = event->ctx;
2363 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2365 	bool reprogram = true;
2366 	int ret = 0;
2367 
2368 	raw_spin_lock(&cpuctx->ctx.lock);
2369 	if (ctx->task) {
2370 		raw_spin_lock(&ctx->lock);
2371 		task_ctx = ctx;
2372 
2373 		reprogram = (ctx->task == current);
2374 
2375 		/*
2376 		 * If the task is running, it must be running on this CPU,
2377 		 * otherwise we cannot reprogram things.
2378 		 *
2379 		 * If its not running, we don't care, ctx->lock will
2380 		 * serialize against it becoming runnable.
2381 		 */
2382 		if (task_curr(ctx->task) && !reprogram) {
2383 			ret = -ESRCH;
2384 			goto unlock;
2385 		}
2386 
2387 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2388 	} else if (task_ctx) {
2389 		raw_spin_lock(&task_ctx->lock);
2390 	}
2391 
2392 	if (reprogram) {
2393 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 		add_event_to_ctx(event, ctx);
2395 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2396 	} else {
2397 		add_event_to_ctx(event, ctx);
2398 	}
2399 
2400 unlock:
2401 	perf_ctx_unlock(cpuctx, task_ctx);
2402 
2403 	return ret;
2404 }
2405 
2406 /*
2407  * Attach a performance event to a context.
2408  *
2409  * Very similar to event_function_call, see comment there.
2410  */
2411 static void
2412 perf_install_in_context(struct perf_event_context *ctx,
2413 			struct perf_event *event,
2414 			int cpu)
2415 {
2416 	struct task_struct *task = READ_ONCE(ctx->task);
2417 
2418 	lockdep_assert_held(&ctx->mutex);
2419 
2420 	if (event->cpu != -1)
2421 		event->cpu = cpu;
2422 
2423 	/*
2424 	 * Ensures that if we can observe event->ctx, both the event and ctx
2425 	 * will be 'complete'. See perf_iterate_sb_cpu().
2426 	 */
2427 	smp_store_release(&event->ctx, ctx);
2428 
2429 	if (!task) {
2430 		cpu_function_call(cpu, __perf_install_in_context, event);
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Should not happen, we validate the ctx is still alive before calling.
2436 	 */
2437 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 		return;
2439 
2440 	/*
2441 	 * Installing events is tricky because we cannot rely on ctx->is_active
2442 	 * to be set in case this is the nr_events 0 -> 1 transition.
2443 	 *
2444 	 * Instead we use task_curr(), which tells us if the task is running.
2445 	 * However, since we use task_curr() outside of rq::lock, we can race
2446 	 * against the actual state. This means the result can be wrong.
2447 	 *
2448 	 * If we get a false positive, we retry, this is harmless.
2449 	 *
2450 	 * If we get a false negative, things are complicated. If we are after
2451 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 	 * value must be correct. If we're before, it doesn't matter since
2453 	 * perf_event_context_sched_in() will program the counter.
2454 	 *
2455 	 * However, this hinges on the remote context switch having observed
2456 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 	 * ctx::lock in perf_event_context_sched_in().
2458 	 *
2459 	 * We do this by task_function_call(), if the IPI fails to hit the task
2460 	 * we know any future context switch of task must see the
2461 	 * perf_event_ctpx[] store.
2462 	 */
2463 
2464 	/*
2465 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 	 * task_cpu() load, such that if the IPI then does not find the task
2467 	 * running, a future context switch of that task must observe the
2468 	 * store.
2469 	 */
2470 	smp_mb();
2471 again:
2472 	if (!task_function_call(task, __perf_install_in_context, event))
2473 		return;
2474 
2475 	raw_spin_lock_irq(&ctx->lock);
2476 	task = ctx->task;
2477 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2478 		/*
2479 		 * Cannot happen because we already checked above (which also
2480 		 * cannot happen), and we hold ctx->mutex, which serializes us
2481 		 * against perf_event_exit_task_context().
2482 		 */
2483 		raw_spin_unlock_irq(&ctx->lock);
2484 		return;
2485 	}
2486 	/*
2487 	 * If the task is not running, ctx->lock will avoid it becoming so,
2488 	 * thus we can safely install the event.
2489 	 */
2490 	if (task_curr(task)) {
2491 		raw_spin_unlock_irq(&ctx->lock);
2492 		goto again;
2493 	}
2494 	add_event_to_ctx(event, ctx);
2495 	raw_spin_unlock_irq(&ctx->lock);
2496 }
2497 
2498 /*
2499  * Put a event into inactive state and update time fields.
2500  * Enabling the leader of a group effectively enables all
2501  * the group members that aren't explicitly disabled, so we
2502  * have to update their ->tstamp_enabled also.
2503  * Note: this works for group members as well as group leaders
2504  * since the non-leader members' sibling_lists will be empty.
2505  */
2506 static void __perf_event_mark_enabled(struct perf_event *event)
2507 {
2508 	struct perf_event *sub;
2509 	u64 tstamp = perf_event_time(event);
2510 
2511 	event->state = PERF_EVENT_STATE_INACTIVE;
2512 	__perf_event_enable_time(event, tstamp);
2513 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2514 		/* XXX should not be > INACTIVE if event isn't */
2515 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2516 			__perf_event_enable_time(sub, tstamp);
2517 	}
2518 }
2519 
2520 /*
2521  * Cross CPU call to enable a performance event
2522  */
2523 static void __perf_event_enable(struct perf_event *event,
2524 				struct perf_cpu_context *cpuctx,
2525 				struct perf_event_context *ctx,
2526 				void *info)
2527 {
2528 	struct perf_event *leader = event->group_leader;
2529 	struct perf_event_context *task_ctx;
2530 
2531 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 	    event->state <= PERF_EVENT_STATE_ERROR)
2533 		return;
2534 
2535 	if (ctx->is_active)
2536 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537 
2538 	__perf_event_mark_enabled(event);
2539 
2540 	if (!ctx->is_active)
2541 		return;
2542 
2543 	if (!event_filter_match(event)) {
2544 		if (is_cgroup_event(event))
2545 			perf_cgroup_defer_enabled(event);
2546 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2547 		return;
2548 	}
2549 
2550 	/*
2551 	 * If the event is in a group and isn't the group leader,
2552 	 * then don't put it on unless the group is on.
2553 	 */
2554 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2556 		return;
2557 	}
2558 
2559 	task_ctx = cpuctx->task_ctx;
2560 	if (ctx->task)
2561 		WARN_ON_ONCE(task_ctx != ctx);
2562 
2563 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2564 }
2565 
2566 /*
2567  * Enable a event.
2568  *
2569  * If event->ctx is a cloned context, callers must make sure that
2570  * every task struct that event->ctx->task could possibly point to
2571  * remains valid.  This condition is satisfied when called through
2572  * perf_event_for_each_child or perf_event_for_each as described
2573  * for perf_event_disable.
2574  */
2575 static void _perf_event_enable(struct perf_event *event)
2576 {
2577 	struct perf_event_context *ctx = event->ctx;
2578 
2579 	raw_spin_lock_irq(&ctx->lock);
2580 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 	    event->state <  PERF_EVENT_STATE_ERROR) {
2582 		raw_spin_unlock_irq(&ctx->lock);
2583 		return;
2584 	}
2585 
2586 	/*
2587 	 * If the event is in error state, clear that first.
2588 	 *
2589 	 * That way, if we see the event in error state below, we know that it
2590 	 * has gone back into error state, as distinct from the task having
2591 	 * been scheduled away before the cross-call arrived.
2592 	 */
2593 	if (event->state == PERF_EVENT_STATE_ERROR)
2594 		event->state = PERF_EVENT_STATE_OFF;
2595 	raw_spin_unlock_irq(&ctx->lock);
2596 
2597 	event_function_call(event, __perf_event_enable, NULL);
2598 }
2599 
2600 /*
2601  * See perf_event_disable();
2602  */
2603 void perf_event_enable(struct perf_event *event)
2604 {
2605 	struct perf_event_context *ctx;
2606 
2607 	ctx = perf_event_ctx_lock(event);
2608 	_perf_event_enable(event);
2609 	perf_event_ctx_unlock(event, ctx);
2610 }
2611 EXPORT_SYMBOL_GPL(perf_event_enable);
2612 
2613 struct stop_event_data {
2614 	struct perf_event	*event;
2615 	unsigned int		restart;
2616 };
2617 
2618 static int __perf_event_stop(void *info)
2619 {
2620 	struct stop_event_data *sd = info;
2621 	struct perf_event *event = sd->event;
2622 
2623 	/* if it's already INACTIVE, do nothing */
2624 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 		return 0;
2626 
2627 	/* matches smp_wmb() in event_sched_in() */
2628 	smp_rmb();
2629 
2630 	/*
2631 	 * There is a window with interrupts enabled before we get here,
2632 	 * so we need to check again lest we try to stop another CPU's event.
2633 	 */
2634 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 		return -EAGAIN;
2636 
2637 	event->pmu->stop(event, PERF_EF_UPDATE);
2638 
2639 	/*
2640 	 * May race with the actual stop (through perf_pmu_output_stop()),
2641 	 * but it is only used for events with AUX ring buffer, and such
2642 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 	 * see comments in perf_aux_output_begin().
2644 	 *
2645 	 * Since this is happening on a event-local CPU, no trace is lost
2646 	 * while restarting.
2647 	 */
2648 	if (sd->restart)
2649 		event->pmu->start(event, 0);
2650 
2651 	return 0;
2652 }
2653 
2654 static int perf_event_stop(struct perf_event *event, int restart)
2655 {
2656 	struct stop_event_data sd = {
2657 		.event		= event,
2658 		.restart	= restart,
2659 	};
2660 	int ret = 0;
2661 
2662 	do {
2663 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 			return 0;
2665 
2666 		/* matches smp_wmb() in event_sched_in() */
2667 		smp_rmb();
2668 
2669 		/*
2670 		 * We only want to restart ACTIVE events, so if the event goes
2671 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 		 * fall through with ret==-ENXIO.
2673 		 */
2674 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 					__perf_event_stop, &sd);
2676 	} while (ret == -EAGAIN);
2677 
2678 	return ret;
2679 }
2680 
2681 /*
2682  * In order to contain the amount of racy and tricky in the address filter
2683  * configuration management, it is a two part process:
2684  *
2685  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686  *      we update the addresses of corresponding vmas in
2687  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2688  * (p2) when an event is scheduled in (pmu::add), it calls
2689  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690  *      if the generation has changed since the previous call.
2691  *
2692  * If (p1) happens while the event is active, we restart it to force (p2).
2693  *
2694  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2696  *     ioctl;
2697  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2699  *     for reading;
2700  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701  *     of exec.
2702  */
2703 void perf_event_addr_filters_sync(struct perf_event *event)
2704 {
2705 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706 
2707 	if (!has_addr_filter(event))
2708 		return;
2709 
2710 	raw_spin_lock(&ifh->lock);
2711 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 		event->pmu->addr_filters_sync(event);
2713 		event->hw.addr_filters_gen = event->addr_filters_gen;
2714 	}
2715 	raw_spin_unlock(&ifh->lock);
2716 }
2717 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718 
2719 static int _perf_event_refresh(struct perf_event *event, int refresh)
2720 {
2721 	/*
2722 	 * not supported on inherited events
2723 	 */
2724 	if (event->attr.inherit || !is_sampling_event(event))
2725 		return -EINVAL;
2726 
2727 	atomic_add(refresh, &event->event_limit);
2728 	_perf_event_enable(event);
2729 
2730 	return 0;
2731 }
2732 
2733 /*
2734  * See perf_event_disable()
2735  */
2736 int perf_event_refresh(struct perf_event *event, int refresh)
2737 {
2738 	struct perf_event_context *ctx;
2739 	int ret;
2740 
2741 	ctx = perf_event_ctx_lock(event);
2742 	ret = _perf_event_refresh(event, refresh);
2743 	perf_event_ctx_unlock(event, ctx);
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL_GPL(perf_event_refresh);
2748 
2749 static void ctx_sched_out(struct perf_event_context *ctx,
2750 			  struct perf_cpu_context *cpuctx,
2751 			  enum event_type_t event_type)
2752 {
2753 	int is_active = ctx->is_active;
2754 	struct perf_event *event;
2755 
2756 	lockdep_assert_held(&ctx->lock);
2757 
2758 	if (likely(!ctx->nr_events)) {
2759 		/*
2760 		 * See __perf_remove_from_context().
2761 		 */
2762 		WARN_ON_ONCE(ctx->is_active);
2763 		if (ctx->task)
2764 			WARN_ON_ONCE(cpuctx->task_ctx);
2765 		return;
2766 	}
2767 
2768 	ctx->is_active &= ~event_type;
2769 	if (!(ctx->is_active & EVENT_ALL))
2770 		ctx->is_active = 0;
2771 
2772 	if (ctx->task) {
2773 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 		if (!ctx->is_active)
2775 			cpuctx->task_ctx = NULL;
2776 	}
2777 
2778 	/*
2779 	 * Always update time if it was set; not only when it changes.
2780 	 * Otherwise we can 'forget' to update time for any but the last
2781 	 * context we sched out. For example:
2782 	 *
2783 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2785 	 *
2786 	 * would only update time for the pinned events.
2787 	 */
2788 	if (is_active & EVENT_TIME) {
2789 		/* update (and stop) ctx time */
2790 		update_context_time(ctx);
2791 		update_cgrp_time_from_cpuctx(cpuctx);
2792 	}
2793 
2794 	is_active ^= ctx->is_active; /* changed bits */
2795 
2796 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2797 		return;
2798 
2799 	perf_pmu_disable(ctx->pmu);
2800 	if (is_active & EVENT_PINNED) {
2801 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 			group_sched_out(event, cpuctx, ctx);
2803 	}
2804 
2805 	if (is_active & EVENT_FLEXIBLE) {
2806 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2807 			group_sched_out(event, cpuctx, ctx);
2808 	}
2809 	perf_pmu_enable(ctx->pmu);
2810 }
2811 
2812 /*
2813  * Test whether two contexts are equivalent, i.e. whether they have both been
2814  * cloned from the same version of the same context.
2815  *
2816  * Equivalence is measured using a generation number in the context that is
2817  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818  * and list_del_event().
2819  */
2820 static int context_equiv(struct perf_event_context *ctx1,
2821 			 struct perf_event_context *ctx2)
2822 {
2823 	lockdep_assert_held(&ctx1->lock);
2824 	lockdep_assert_held(&ctx2->lock);
2825 
2826 	/* Pinning disables the swap optimization */
2827 	if (ctx1->pin_count || ctx2->pin_count)
2828 		return 0;
2829 
2830 	/* If ctx1 is the parent of ctx2 */
2831 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 		return 1;
2833 
2834 	/* If ctx2 is the parent of ctx1 */
2835 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 		return 1;
2837 
2838 	/*
2839 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 	 * hierarchy, see perf_event_init_context().
2841 	 */
2842 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 			ctx1->parent_gen == ctx2->parent_gen)
2844 		return 1;
2845 
2846 	/* Unmatched */
2847 	return 0;
2848 }
2849 
2850 static void __perf_event_sync_stat(struct perf_event *event,
2851 				     struct perf_event *next_event)
2852 {
2853 	u64 value;
2854 
2855 	if (!event->attr.inherit_stat)
2856 		return;
2857 
2858 	/*
2859 	 * Update the event value, we cannot use perf_event_read()
2860 	 * because we're in the middle of a context switch and have IRQs
2861 	 * disabled, which upsets smp_call_function_single(), however
2862 	 * we know the event must be on the current CPU, therefore we
2863 	 * don't need to use it.
2864 	 */
2865 	switch (event->state) {
2866 	case PERF_EVENT_STATE_ACTIVE:
2867 		event->pmu->read(event);
2868 		/* fall-through */
2869 
2870 	case PERF_EVENT_STATE_INACTIVE:
2871 		update_event_times(event);
2872 		break;
2873 
2874 	default:
2875 		break;
2876 	}
2877 
2878 	/*
2879 	 * In order to keep per-task stats reliable we need to flip the event
2880 	 * values when we flip the contexts.
2881 	 */
2882 	value = local64_read(&next_event->count);
2883 	value = local64_xchg(&event->count, value);
2884 	local64_set(&next_event->count, value);
2885 
2886 	swap(event->total_time_enabled, next_event->total_time_enabled);
2887 	swap(event->total_time_running, next_event->total_time_running);
2888 
2889 	/*
2890 	 * Since we swizzled the values, update the user visible data too.
2891 	 */
2892 	perf_event_update_userpage(event);
2893 	perf_event_update_userpage(next_event);
2894 }
2895 
2896 static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 				   struct perf_event_context *next_ctx)
2898 {
2899 	struct perf_event *event, *next_event;
2900 
2901 	if (!ctx->nr_stat)
2902 		return;
2903 
2904 	update_context_time(ctx);
2905 
2906 	event = list_first_entry(&ctx->event_list,
2907 				   struct perf_event, event_entry);
2908 
2909 	next_event = list_first_entry(&next_ctx->event_list,
2910 					struct perf_event, event_entry);
2911 
2912 	while (&event->event_entry != &ctx->event_list &&
2913 	       &next_event->event_entry != &next_ctx->event_list) {
2914 
2915 		__perf_event_sync_stat(event, next_event);
2916 
2917 		event = list_next_entry(event, event_entry);
2918 		next_event = list_next_entry(next_event, event_entry);
2919 	}
2920 }
2921 
2922 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 					 struct task_struct *next)
2924 {
2925 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2926 	struct perf_event_context *next_ctx;
2927 	struct perf_event_context *parent, *next_parent;
2928 	struct perf_cpu_context *cpuctx;
2929 	int do_switch = 1;
2930 
2931 	if (likely(!ctx))
2932 		return;
2933 
2934 	cpuctx = __get_cpu_context(ctx);
2935 	if (!cpuctx->task_ctx)
2936 		return;
2937 
2938 	rcu_read_lock();
2939 	next_ctx = next->perf_event_ctxp[ctxn];
2940 	if (!next_ctx)
2941 		goto unlock;
2942 
2943 	parent = rcu_dereference(ctx->parent_ctx);
2944 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2945 
2946 	/* If neither context have a parent context; they cannot be clones. */
2947 	if (!parent && !next_parent)
2948 		goto unlock;
2949 
2950 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2951 		/*
2952 		 * Looks like the two contexts are clones, so we might be
2953 		 * able to optimize the context switch.  We lock both
2954 		 * contexts and check that they are clones under the
2955 		 * lock (including re-checking that neither has been
2956 		 * uncloned in the meantime).  It doesn't matter which
2957 		 * order we take the locks because no other cpu could
2958 		 * be trying to lock both of these tasks.
2959 		 */
2960 		raw_spin_lock(&ctx->lock);
2961 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2962 		if (context_equiv(ctx, next_ctx)) {
2963 			WRITE_ONCE(ctx->task, next);
2964 			WRITE_ONCE(next_ctx->task, task);
2965 
2966 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967 
2968 			/*
2969 			 * RCU_INIT_POINTER here is safe because we've not
2970 			 * modified the ctx and the above modification of
2971 			 * ctx->task and ctx->task_ctx_data are immaterial
2972 			 * since those values are always verified under
2973 			 * ctx->lock which we're now holding.
2974 			 */
2975 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977 
2978 			do_switch = 0;
2979 
2980 			perf_event_sync_stat(ctx, next_ctx);
2981 		}
2982 		raw_spin_unlock(&next_ctx->lock);
2983 		raw_spin_unlock(&ctx->lock);
2984 	}
2985 unlock:
2986 	rcu_read_unlock();
2987 
2988 	if (do_switch) {
2989 		raw_spin_lock(&ctx->lock);
2990 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2991 		raw_spin_unlock(&ctx->lock);
2992 	}
2993 }
2994 
2995 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996 
2997 void perf_sched_cb_dec(struct pmu *pmu)
2998 {
2999 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000 
3001 	this_cpu_dec(perf_sched_cb_usages);
3002 
3003 	if (!--cpuctx->sched_cb_usage)
3004 		list_del(&cpuctx->sched_cb_entry);
3005 }
3006 
3007 
3008 void perf_sched_cb_inc(struct pmu *pmu)
3009 {
3010 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011 
3012 	if (!cpuctx->sched_cb_usage++)
3013 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014 
3015 	this_cpu_inc(perf_sched_cb_usages);
3016 }
3017 
3018 /*
3019  * This function provides the context switch callback to the lower code
3020  * layer. It is invoked ONLY when the context switch callback is enabled.
3021  *
3022  * This callback is relevant even to per-cpu events; for example multi event
3023  * PEBS requires this to provide PID/TID information. This requires we flush
3024  * all queued PEBS records before we context switch to a new task.
3025  */
3026 static void perf_pmu_sched_task(struct task_struct *prev,
3027 				struct task_struct *next,
3028 				bool sched_in)
3029 {
3030 	struct perf_cpu_context *cpuctx;
3031 	struct pmu *pmu;
3032 
3033 	if (prev == next)
3034 		return;
3035 
3036 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3037 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3038 
3039 		if (WARN_ON_ONCE(!pmu->sched_task))
3040 			continue;
3041 
3042 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 		perf_pmu_disable(pmu);
3044 
3045 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3046 
3047 		perf_pmu_enable(pmu);
3048 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3049 	}
3050 }
3051 
3052 static void perf_event_switch(struct task_struct *task,
3053 			      struct task_struct *next_prev, bool sched_in);
3054 
3055 #define for_each_task_context_nr(ctxn)					\
3056 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057 
3058 /*
3059  * Called from scheduler to remove the events of the current task,
3060  * with interrupts disabled.
3061  *
3062  * We stop each event and update the event value in event->count.
3063  *
3064  * This does not protect us against NMI, but disable()
3065  * sets the disabled bit in the control field of event _before_
3066  * accessing the event control register. If a NMI hits, then it will
3067  * not restart the event.
3068  */
3069 void __perf_event_task_sched_out(struct task_struct *task,
3070 				 struct task_struct *next)
3071 {
3072 	int ctxn;
3073 
3074 	if (__this_cpu_read(perf_sched_cb_usages))
3075 		perf_pmu_sched_task(task, next, false);
3076 
3077 	if (atomic_read(&nr_switch_events))
3078 		perf_event_switch(task, next, false);
3079 
3080 	for_each_task_context_nr(ctxn)
3081 		perf_event_context_sched_out(task, ctxn, next);
3082 
3083 	/*
3084 	 * if cgroup events exist on this CPU, then we need
3085 	 * to check if we have to switch out PMU state.
3086 	 * cgroup event are system-wide mode only
3087 	 */
3088 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3089 		perf_cgroup_sched_out(task, next);
3090 }
3091 
3092 /*
3093  * Called with IRQs disabled
3094  */
3095 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 			      enum event_type_t event_type)
3097 {
3098 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3099 }
3100 
3101 static void
3102 ctx_pinned_sched_in(struct perf_event_context *ctx,
3103 		    struct perf_cpu_context *cpuctx)
3104 {
3105 	struct perf_event *event;
3106 
3107 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 		if (event->state <= PERF_EVENT_STATE_OFF)
3109 			continue;
3110 		if (!event_filter_match(event))
3111 			continue;
3112 
3113 		/* may need to reset tstamp_enabled */
3114 		if (is_cgroup_event(event))
3115 			perf_cgroup_mark_enabled(event, ctx);
3116 
3117 		if (group_can_go_on(event, cpuctx, 1))
3118 			group_sched_in(event, cpuctx, ctx);
3119 
3120 		/*
3121 		 * If this pinned group hasn't been scheduled,
3122 		 * put it in error state.
3123 		 */
3124 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 			update_group_times(event);
3126 			event->state = PERF_EVENT_STATE_ERROR;
3127 		}
3128 	}
3129 }
3130 
3131 static void
3132 ctx_flexible_sched_in(struct perf_event_context *ctx,
3133 		      struct perf_cpu_context *cpuctx)
3134 {
3135 	struct perf_event *event;
3136 	int can_add_hw = 1;
3137 
3138 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 		/* Ignore events in OFF or ERROR state */
3140 		if (event->state <= PERF_EVENT_STATE_OFF)
3141 			continue;
3142 		/*
3143 		 * Listen to the 'cpu' scheduling filter constraint
3144 		 * of events:
3145 		 */
3146 		if (!event_filter_match(event))
3147 			continue;
3148 
3149 		/* may need to reset tstamp_enabled */
3150 		if (is_cgroup_event(event))
3151 			perf_cgroup_mark_enabled(event, ctx);
3152 
3153 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3154 			if (group_sched_in(event, cpuctx, ctx))
3155 				can_add_hw = 0;
3156 		}
3157 	}
3158 }
3159 
3160 static void
3161 ctx_sched_in(struct perf_event_context *ctx,
3162 	     struct perf_cpu_context *cpuctx,
3163 	     enum event_type_t event_type,
3164 	     struct task_struct *task)
3165 {
3166 	int is_active = ctx->is_active;
3167 	u64 now;
3168 
3169 	lockdep_assert_held(&ctx->lock);
3170 
3171 	if (likely(!ctx->nr_events))
3172 		return;
3173 
3174 	ctx->is_active |= (event_type | EVENT_TIME);
3175 	if (ctx->task) {
3176 		if (!is_active)
3177 			cpuctx->task_ctx = ctx;
3178 		else
3179 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 	}
3181 
3182 	is_active ^= ctx->is_active; /* changed bits */
3183 
3184 	if (is_active & EVENT_TIME) {
3185 		/* start ctx time */
3186 		now = perf_clock();
3187 		ctx->timestamp = now;
3188 		perf_cgroup_set_timestamp(task, ctx);
3189 	}
3190 
3191 	/*
3192 	 * First go through the list and put on any pinned groups
3193 	 * in order to give them the best chance of going on.
3194 	 */
3195 	if (is_active & EVENT_PINNED)
3196 		ctx_pinned_sched_in(ctx, cpuctx);
3197 
3198 	/* Then walk through the lower prio flexible groups */
3199 	if (is_active & EVENT_FLEXIBLE)
3200 		ctx_flexible_sched_in(ctx, cpuctx);
3201 }
3202 
3203 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3204 			     enum event_type_t event_type,
3205 			     struct task_struct *task)
3206 {
3207 	struct perf_event_context *ctx = &cpuctx->ctx;
3208 
3209 	ctx_sched_in(ctx, cpuctx, event_type, task);
3210 }
3211 
3212 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 					struct task_struct *task)
3214 {
3215 	struct perf_cpu_context *cpuctx;
3216 
3217 	cpuctx = __get_cpu_context(ctx);
3218 	if (cpuctx->task_ctx == ctx)
3219 		return;
3220 
3221 	perf_ctx_lock(cpuctx, ctx);
3222 	/*
3223 	 * We must check ctx->nr_events while holding ctx->lock, such
3224 	 * that we serialize against perf_install_in_context().
3225 	 */
3226 	if (!ctx->nr_events)
3227 		goto unlock;
3228 
3229 	perf_pmu_disable(ctx->pmu);
3230 	/*
3231 	 * We want to keep the following priority order:
3232 	 * cpu pinned (that don't need to move), task pinned,
3233 	 * cpu flexible, task flexible.
3234 	 *
3235 	 * However, if task's ctx is not carrying any pinned
3236 	 * events, no need to flip the cpuctx's events around.
3237 	 */
3238 	if (!list_empty(&ctx->pinned_groups))
3239 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240 	perf_event_sched_in(cpuctx, ctx, task);
3241 	perf_pmu_enable(ctx->pmu);
3242 
3243 unlock:
3244 	perf_ctx_unlock(cpuctx, ctx);
3245 }
3246 
3247 /*
3248  * Called from scheduler to add the events of the current task
3249  * with interrupts disabled.
3250  *
3251  * We restore the event value and then enable it.
3252  *
3253  * This does not protect us against NMI, but enable()
3254  * sets the enabled bit in the control field of event _before_
3255  * accessing the event control register. If a NMI hits, then it will
3256  * keep the event running.
3257  */
3258 void __perf_event_task_sched_in(struct task_struct *prev,
3259 				struct task_struct *task)
3260 {
3261 	struct perf_event_context *ctx;
3262 	int ctxn;
3263 
3264 	/*
3265 	 * If cgroup events exist on this CPU, then we need to check if we have
3266 	 * to switch in PMU state; cgroup event are system-wide mode only.
3267 	 *
3268 	 * Since cgroup events are CPU events, we must schedule these in before
3269 	 * we schedule in the task events.
3270 	 */
3271 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 		perf_cgroup_sched_in(prev, task);
3273 
3274 	for_each_task_context_nr(ctxn) {
3275 		ctx = task->perf_event_ctxp[ctxn];
3276 		if (likely(!ctx))
3277 			continue;
3278 
3279 		perf_event_context_sched_in(ctx, task);
3280 	}
3281 
3282 	if (atomic_read(&nr_switch_events))
3283 		perf_event_switch(task, prev, true);
3284 
3285 	if (__this_cpu_read(perf_sched_cb_usages))
3286 		perf_pmu_sched_task(prev, task, true);
3287 }
3288 
3289 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290 {
3291 	u64 frequency = event->attr.sample_freq;
3292 	u64 sec = NSEC_PER_SEC;
3293 	u64 divisor, dividend;
3294 
3295 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3296 
3297 	count_fls = fls64(count);
3298 	nsec_fls = fls64(nsec);
3299 	frequency_fls = fls64(frequency);
3300 	sec_fls = 30;
3301 
3302 	/*
3303 	 * We got @count in @nsec, with a target of sample_freq HZ
3304 	 * the target period becomes:
3305 	 *
3306 	 *             @count * 10^9
3307 	 * period = -------------------
3308 	 *          @nsec * sample_freq
3309 	 *
3310 	 */
3311 
3312 	/*
3313 	 * Reduce accuracy by one bit such that @a and @b converge
3314 	 * to a similar magnitude.
3315 	 */
3316 #define REDUCE_FLS(a, b)		\
3317 do {					\
3318 	if (a##_fls > b##_fls) {	\
3319 		a >>= 1;		\
3320 		a##_fls--;		\
3321 	} else {			\
3322 		b >>= 1;		\
3323 		b##_fls--;		\
3324 	}				\
3325 } while (0)
3326 
3327 	/*
3328 	 * Reduce accuracy until either term fits in a u64, then proceed with
3329 	 * the other, so that finally we can do a u64/u64 division.
3330 	 */
3331 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 		REDUCE_FLS(nsec, frequency);
3333 		REDUCE_FLS(sec, count);
3334 	}
3335 
3336 	if (count_fls + sec_fls > 64) {
3337 		divisor = nsec * frequency;
3338 
3339 		while (count_fls + sec_fls > 64) {
3340 			REDUCE_FLS(count, sec);
3341 			divisor >>= 1;
3342 		}
3343 
3344 		dividend = count * sec;
3345 	} else {
3346 		dividend = count * sec;
3347 
3348 		while (nsec_fls + frequency_fls > 64) {
3349 			REDUCE_FLS(nsec, frequency);
3350 			dividend >>= 1;
3351 		}
3352 
3353 		divisor = nsec * frequency;
3354 	}
3355 
3356 	if (!divisor)
3357 		return dividend;
3358 
3359 	return div64_u64(dividend, divisor);
3360 }
3361 
3362 static DEFINE_PER_CPU(int, perf_throttled_count);
3363 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364 
3365 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3366 {
3367 	struct hw_perf_event *hwc = &event->hw;
3368 	s64 period, sample_period;
3369 	s64 delta;
3370 
3371 	period = perf_calculate_period(event, nsec, count);
3372 
3373 	delta = (s64)(period - hwc->sample_period);
3374 	delta = (delta + 7) / 8; /* low pass filter */
3375 
3376 	sample_period = hwc->sample_period + delta;
3377 
3378 	if (!sample_period)
3379 		sample_period = 1;
3380 
3381 	hwc->sample_period = sample_period;
3382 
3383 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3384 		if (disable)
3385 			event->pmu->stop(event, PERF_EF_UPDATE);
3386 
3387 		local64_set(&hwc->period_left, 0);
3388 
3389 		if (disable)
3390 			event->pmu->start(event, PERF_EF_RELOAD);
3391 	}
3392 }
3393 
3394 /*
3395  * combine freq adjustment with unthrottling to avoid two passes over the
3396  * events. At the same time, make sure, having freq events does not change
3397  * the rate of unthrottling as that would introduce bias.
3398  */
3399 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 					   int needs_unthr)
3401 {
3402 	struct perf_event *event;
3403 	struct hw_perf_event *hwc;
3404 	u64 now, period = TICK_NSEC;
3405 	s64 delta;
3406 
3407 	/*
3408 	 * only need to iterate over all events iff:
3409 	 * - context have events in frequency mode (needs freq adjust)
3410 	 * - there are events to unthrottle on this cpu
3411 	 */
3412 	if (!(ctx->nr_freq || needs_unthr))
3413 		return;
3414 
3415 	raw_spin_lock(&ctx->lock);
3416 	perf_pmu_disable(ctx->pmu);
3417 
3418 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3419 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3420 			continue;
3421 
3422 		if (!event_filter_match(event))
3423 			continue;
3424 
3425 		perf_pmu_disable(event->pmu);
3426 
3427 		hwc = &event->hw;
3428 
3429 		if (hwc->interrupts == MAX_INTERRUPTS) {
3430 			hwc->interrupts = 0;
3431 			perf_log_throttle(event, 1);
3432 			event->pmu->start(event, 0);
3433 		}
3434 
3435 		if (!event->attr.freq || !event->attr.sample_freq)
3436 			goto next;
3437 
3438 		/*
3439 		 * stop the event and update event->count
3440 		 */
3441 		event->pmu->stop(event, PERF_EF_UPDATE);
3442 
3443 		now = local64_read(&event->count);
3444 		delta = now - hwc->freq_count_stamp;
3445 		hwc->freq_count_stamp = now;
3446 
3447 		/*
3448 		 * restart the event
3449 		 * reload only if value has changed
3450 		 * we have stopped the event so tell that
3451 		 * to perf_adjust_period() to avoid stopping it
3452 		 * twice.
3453 		 */
3454 		if (delta > 0)
3455 			perf_adjust_period(event, period, delta, false);
3456 
3457 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3458 	next:
3459 		perf_pmu_enable(event->pmu);
3460 	}
3461 
3462 	perf_pmu_enable(ctx->pmu);
3463 	raw_spin_unlock(&ctx->lock);
3464 }
3465 
3466 /*
3467  * Round-robin a context's events:
3468  */
3469 static void rotate_ctx(struct perf_event_context *ctx)
3470 {
3471 	/*
3472 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 	 * disabled by the inheritance code.
3474 	 */
3475 	if (!ctx->rotate_disable)
3476 		list_rotate_left(&ctx->flexible_groups);
3477 }
3478 
3479 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3480 {
3481 	struct perf_event_context *ctx = NULL;
3482 	int rotate = 0;
3483 
3484 	if (cpuctx->ctx.nr_events) {
3485 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 			rotate = 1;
3487 	}
3488 
3489 	ctx = cpuctx->task_ctx;
3490 	if (ctx && ctx->nr_events) {
3491 		if (ctx->nr_events != ctx->nr_active)
3492 			rotate = 1;
3493 	}
3494 
3495 	if (!rotate)
3496 		goto done;
3497 
3498 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3499 	perf_pmu_disable(cpuctx->ctx.pmu);
3500 
3501 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 	if (ctx)
3503 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3504 
3505 	rotate_ctx(&cpuctx->ctx);
3506 	if (ctx)
3507 		rotate_ctx(ctx);
3508 
3509 	perf_event_sched_in(cpuctx, ctx, current);
3510 
3511 	perf_pmu_enable(cpuctx->ctx.pmu);
3512 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3513 done:
3514 
3515 	return rotate;
3516 }
3517 
3518 void perf_event_task_tick(void)
3519 {
3520 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 	struct perf_event_context *ctx, *tmp;
3522 	int throttled;
3523 
3524 	WARN_ON(!irqs_disabled());
3525 
3526 	__this_cpu_inc(perf_throttled_seq);
3527 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3528 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3529 
3530 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3531 		perf_adjust_freq_unthr_context(ctx, throttled);
3532 }
3533 
3534 static int event_enable_on_exec(struct perf_event *event,
3535 				struct perf_event_context *ctx)
3536 {
3537 	if (!event->attr.enable_on_exec)
3538 		return 0;
3539 
3540 	event->attr.enable_on_exec = 0;
3541 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 		return 0;
3543 
3544 	__perf_event_mark_enabled(event);
3545 
3546 	return 1;
3547 }
3548 
3549 /*
3550  * Enable all of a task's events that have been marked enable-on-exec.
3551  * This expects task == current.
3552  */
3553 static void perf_event_enable_on_exec(int ctxn)
3554 {
3555 	struct perf_event_context *ctx, *clone_ctx = NULL;
3556 	enum event_type_t event_type = 0;
3557 	struct perf_cpu_context *cpuctx;
3558 	struct perf_event *event;
3559 	unsigned long flags;
3560 	int enabled = 0;
3561 
3562 	local_irq_save(flags);
3563 	ctx = current->perf_event_ctxp[ctxn];
3564 	if (!ctx || !ctx->nr_events)
3565 		goto out;
3566 
3567 	cpuctx = __get_cpu_context(ctx);
3568 	perf_ctx_lock(cpuctx, ctx);
3569 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3570 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3571 		enabled |= event_enable_on_exec(event, ctx);
3572 		event_type |= get_event_type(event);
3573 	}
3574 
3575 	/*
3576 	 * Unclone and reschedule this context if we enabled any event.
3577 	 */
3578 	if (enabled) {
3579 		clone_ctx = unclone_ctx(ctx);
3580 		ctx_resched(cpuctx, ctx, event_type);
3581 	} else {
3582 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3583 	}
3584 	perf_ctx_unlock(cpuctx, ctx);
3585 
3586 out:
3587 	local_irq_restore(flags);
3588 
3589 	if (clone_ctx)
3590 		put_ctx(clone_ctx);
3591 }
3592 
3593 struct perf_read_data {
3594 	struct perf_event *event;
3595 	bool group;
3596 	int ret;
3597 };
3598 
3599 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3600 {
3601 	u16 local_pkg, event_pkg;
3602 
3603 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3604 		int local_cpu = smp_processor_id();
3605 
3606 		event_pkg = topology_physical_package_id(event_cpu);
3607 		local_pkg = topology_physical_package_id(local_cpu);
3608 
3609 		if (event_pkg == local_pkg)
3610 			return local_cpu;
3611 	}
3612 
3613 	return event_cpu;
3614 }
3615 
3616 /*
3617  * Cross CPU call to read the hardware event
3618  */
3619 static void __perf_event_read(void *info)
3620 {
3621 	struct perf_read_data *data = info;
3622 	struct perf_event *sub, *event = data->event;
3623 	struct perf_event_context *ctx = event->ctx;
3624 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3625 	struct pmu *pmu = event->pmu;
3626 
3627 	/*
3628 	 * If this is a task context, we need to check whether it is
3629 	 * the current task context of this cpu.  If not it has been
3630 	 * scheduled out before the smp call arrived.  In that case
3631 	 * event->count would have been updated to a recent sample
3632 	 * when the event was scheduled out.
3633 	 */
3634 	if (ctx->task && cpuctx->task_ctx != ctx)
3635 		return;
3636 
3637 	raw_spin_lock(&ctx->lock);
3638 	if (ctx->is_active) {
3639 		update_context_time(ctx);
3640 		update_cgrp_time_from_event(event);
3641 	}
3642 
3643 	update_event_times(event);
3644 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 		goto unlock;
3646 
3647 	if (!data->group) {
3648 		pmu->read(event);
3649 		data->ret = 0;
3650 		goto unlock;
3651 	}
3652 
3653 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654 
3655 	pmu->read(event);
3656 
3657 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 		update_event_times(sub);
3659 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 			/*
3661 			 * Use sibling's PMU rather than @event's since
3662 			 * sibling could be on different (eg: software) PMU.
3663 			 */
3664 			sub->pmu->read(sub);
3665 		}
3666 	}
3667 
3668 	data->ret = pmu->commit_txn(pmu);
3669 
3670 unlock:
3671 	raw_spin_unlock(&ctx->lock);
3672 }
3673 
3674 static inline u64 perf_event_count(struct perf_event *event)
3675 {
3676 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3677 }
3678 
3679 /*
3680  * NMI-safe method to read a local event, that is an event that
3681  * is:
3682  *   - either for the current task, or for this CPU
3683  *   - does not have inherit set, for inherited task events
3684  *     will not be local and we cannot read them atomically
3685  *   - must not have a pmu::count method
3686  */
3687 int perf_event_read_local(struct perf_event *event, u64 *value,
3688 			  u64 *enabled, u64 *running)
3689 {
3690 	unsigned long flags;
3691 	int ret = 0;
3692 	u64 now;
3693 
3694 	/*
3695 	 * Disabling interrupts avoids all counter scheduling (context
3696 	 * switches, timer based rotation and IPIs).
3697 	 */
3698 	local_irq_save(flags);
3699 
3700 	/*
3701 	 * It must not be an event with inherit set, we cannot read
3702 	 * all child counters from atomic context.
3703 	 */
3704 	if (event->attr.inherit) {
3705 		ret = -EOPNOTSUPP;
3706 		goto out;
3707 	}
3708 
3709 	/* If this is a per-task event, it must be for current */
3710 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 	    event->hw.target != current) {
3712 		ret = -EINVAL;
3713 		goto out;
3714 	}
3715 
3716 	/* If this is a per-CPU event, it must be for this CPU */
3717 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 	    event->cpu != smp_processor_id()) {
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	now = event->shadow_ctx_time + perf_clock();
3724 	if (enabled)
3725 		*enabled = now - event->tstamp_enabled;
3726 	/*
3727 	 * If the event is currently on this CPU, its either a per-task event,
3728 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3729 	 * oncpu == -1).
3730 	 */
3731 	if (event->oncpu == smp_processor_id()) {
3732 		event->pmu->read(event);
3733 		if (running)
3734 			*running = now - event->tstamp_running;
3735 	} else if (running) {
3736 		*running = event->total_time_running;
3737 	}
3738 
3739 	*value = local64_read(&event->count);
3740 out:
3741 	local_irq_restore(flags);
3742 
3743 	return ret;
3744 }
3745 
3746 static int perf_event_read(struct perf_event *event, bool group)
3747 {
3748 	int event_cpu, ret = 0;
3749 
3750 	/*
3751 	 * If event is enabled and currently active on a CPU, update the
3752 	 * value in the event structure:
3753 	 */
3754 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3755 		struct perf_read_data data = {
3756 			.event = event,
3757 			.group = group,
3758 			.ret = 0,
3759 		};
3760 
3761 		event_cpu = READ_ONCE(event->oncpu);
3762 		if ((unsigned)event_cpu >= nr_cpu_ids)
3763 			return 0;
3764 
3765 		preempt_disable();
3766 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3767 
3768 		/*
3769 		 * Purposely ignore the smp_call_function_single() return
3770 		 * value.
3771 		 *
3772 		 * If event_cpu isn't a valid CPU it means the event got
3773 		 * scheduled out and that will have updated the event count.
3774 		 *
3775 		 * Therefore, either way, we'll have an up-to-date event count
3776 		 * after this.
3777 		 */
3778 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3779 		preempt_enable();
3780 		ret = data.ret;
3781 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3782 		struct perf_event_context *ctx = event->ctx;
3783 		unsigned long flags;
3784 
3785 		raw_spin_lock_irqsave(&ctx->lock, flags);
3786 		/*
3787 		 * may read while context is not active
3788 		 * (e.g., thread is blocked), in that case
3789 		 * we cannot update context time
3790 		 */
3791 		if (ctx->is_active) {
3792 			update_context_time(ctx);
3793 			update_cgrp_time_from_event(event);
3794 		}
3795 		if (group)
3796 			update_group_times(event);
3797 		else
3798 			update_event_times(event);
3799 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3800 	}
3801 
3802 	return ret;
3803 }
3804 
3805 /*
3806  * Initialize the perf_event context in a task_struct:
3807  */
3808 static void __perf_event_init_context(struct perf_event_context *ctx)
3809 {
3810 	raw_spin_lock_init(&ctx->lock);
3811 	mutex_init(&ctx->mutex);
3812 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3813 	INIT_LIST_HEAD(&ctx->pinned_groups);
3814 	INIT_LIST_HEAD(&ctx->flexible_groups);
3815 	INIT_LIST_HEAD(&ctx->event_list);
3816 	atomic_set(&ctx->refcount, 1);
3817 }
3818 
3819 static struct perf_event_context *
3820 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3821 {
3822 	struct perf_event_context *ctx;
3823 
3824 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3825 	if (!ctx)
3826 		return NULL;
3827 
3828 	__perf_event_init_context(ctx);
3829 	if (task) {
3830 		ctx->task = task;
3831 		get_task_struct(task);
3832 	}
3833 	ctx->pmu = pmu;
3834 
3835 	return ctx;
3836 }
3837 
3838 static struct task_struct *
3839 find_lively_task_by_vpid(pid_t vpid)
3840 {
3841 	struct task_struct *task;
3842 
3843 	rcu_read_lock();
3844 	if (!vpid)
3845 		task = current;
3846 	else
3847 		task = find_task_by_vpid(vpid);
3848 	if (task)
3849 		get_task_struct(task);
3850 	rcu_read_unlock();
3851 
3852 	if (!task)
3853 		return ERR_PTR(-ESRCH);
3854 
3855 	return task;
3856 }
3857 
3858 /*
3859  * Returns a matching context with refcount and pincount.
3860  */
3861 static struct perf_event_context *
3862 find_get_context(struct pmu *pmu, struct task_struct *task,
3863 		struct perf_event *event)
3864 {
3865 	struct perf_event_context *ctx, *clone_ctx = NULL;
3866 	struct perf_cpu_context *cpuctx;
3867 	void *task_ctx_data = NULL;
3868 	unsigned long flags;
3869 	int ctxn, err;
3870 	int cpu = event->cpu;
3871 
3872 	if (!task) {
3873 		/* Must be root to operate on a CPU event: */
3874 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3875 			return ERR_PTR(-EACCES);
3876 
3877 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3878 		ctx = &cpuctx->ctx;
3879 		get_ctx(ctx);
3880 		++ctx->pin_count;
3881 
3882 		return ctx;
3883 	}
3884 
3885 	err = -EINVAL;
3886 	ctxn = pmu->task_ctx_nr;
3887 	if (ctxn < 0)
3888 		goto errout;
3889 
3890 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3891 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3892 		if (!task_ctx_data) {
3893 			err = -ENOMEM;
3894 			goto errout;
3895 		}
3896 	}
3897 
3898 retry:
3899 	ctx = perf_lock_task_context(task, ctxn, &flags);
3900 	if (ctx) {
3901 		clone_ctx = unclone_ctx(ctx);
3902 		++ctx->pin_count;
3903 
3904 		if (task_ctx_data && !ctx->task_ctx_data) {
3905 			ctx->task_ctx_data = task_ctx_data;
3906 			task_ctx_data = NULL;
3907 		}
3908 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3909 
3910 		if (clone_ctx)
3911 			put_ctx(clone_ctx);
3912 	} else {
3913 		ctx = alloc_perf_context(pmu, task);
3914 		err = -ENOMEM;
3915 		if (!ctx)
3916 			goto errout;
3917 
3918 		if (task_ctx_data) {
3919 			ctx->task_ctx_data = task_ctx_data;
3920 			task_ctx_data = NULL;
3921 		}
3922 
3923 		err = 0;
3924 		mutex_lock(&task->perf_event_mutex);
3925 		/*
3926 		 * If it has already passed perf_event_exit_task().
3927 		 * we must see PF_EXITING, it takes this mutex too.
3928 		 */
3929 		if (task->flags & PF_EXITING)
3930 			err = -ESRCH;
3931 		else if (task->perf_event_ctxp[ctxn])
3932 			err = -EAGAIN;
3933 		else {
3934 			get_ctx(ctx);
3935 			++ctx->pin_count;
3936 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3937 		}
3938 		mutex_unlock(&task->perf_event_mutex);
3939 
3940 		if (unlikely(err)) {
3941 			put_ctx(ctx);
3942 
3943 			if (err == -EAGAIN)
3944 				goto retry;
3945 			goto errout;
3946 		}
3947 	}
3948 
3949 	kfree(task_ctx_data);
3950 	return ctx;
3951 
3952 errout:
3953 	kfree(task_ctx_data);
3954 	return ERR_PTR(err);
3955 }
3956 
3957 static void perf_event_free_filter(struct perf_event *event);
3958 static void perf_event_free_bpf_prog(struct perf_event *event);
3959 
3960 static void free_event_rcu(struct rcu_head *head)
3961 {
3962 	struct perf_event *event;
3963 
3964 	event = container_of(head, struct perf_event, rcu_head);
3965 	if (event->ns)
3966 		put_pid_ns(event->ns);
3967 	perf_event_free_filter(event);
3968 	kfree(event);
3969 }
3970 
3971 static void ring_buffer_attach(struct perf_event *event,
3972 			       struct ring_buffer *rb);
3973 
3974 static void detach_sb_event(struct perf_event *event)
3975 {
3976 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3977 
3978 	raw_spin_lock(&pel->lock);
3979 	list_del_rcu(&event->sb_list);
3980 	raw_spin_unlock(&pel->lock);
3981 }
3982 
3983 static bool is_sb_event(struct perf_event *event)
3984 {
3985 	struct perf_event_attr *attr = &event->attr;
3986 
3987 	if (event->parent)
3988 		return false;
3989 
3990 	if (event->attach_state & PERF_ATTACH_TASK)
3991 		return false;
3992 
3993 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3994 	    attr->comm || attr->comm_exec ||
3995 	    attr->task ||
3996 	    attr->context_switch)
3997 		return true;
3998 	return false;
3999 }
4000 
4001 static void unaccount_pmu_sb_event(struct perf_event *event)
4002 {
4003 	if (is_sb_event(event))
4004 		detach_sb_event(event);
4005 }
4006 
4007 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4008 {
4009 	if (event->parent)
4010 		return;
4011 
4012 	if (is_cgroup_event(event))
4013 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4014 }
4015 
4016 #ifdef CONFIG_NO_HZ_FULL
4017 static DEFINE_SPINLOCK(nr_freq_lock);
4018 #endif
4019 
4020 static void unaccount_freq_event_nohz(void)
4021 {
4022 #ifdef CONFIG_NO_HZ_FULL
4023 	spin_lock(&nr_freq_lock);
4024 	if (atomic_dec_and_test(&nr_freq_events))
4025 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4026 	spin_unlock(&nr_freq_lock);
4027 #endif
4028 }
4029 
4030 static void unaccount_freq_event(void)
4031 {
4032 	if (tick_nohz_full_enabled())
4033 		unaccount_freq_event_nohz();
4034 	else
4035 		atomic_dec(&nr_freq_events);
4036 }
4037 
4038 static void unaccount_event(struct perf_event *event)
4039 {
4040 	bool dec = false;
4041 
4042 	if (event->parent)
4043 		return;
4044 
4045 	if (event->attach_state & PERF_ATTACH_TASK)
4046 		dec = true;
4047 	if (event->attr.mmap || event->attr.mmap_data)
4048 		atomic_dec(&nr_mmap_events);
4049 	if (event->attr.comm)
4050 		atomic_dec(&nr_comm_events);
4051 	if (event->attr.namespaces)
4052 		atomic_dec(&nr_namespaces_events);
4053 	if (event->attr.task)
4054 		atomic_dec(&nr_task_events);
4055 	if (event->attr.freq)
4056 		unaccount_freq_event();
4057 	if (event->attr.context_switch) {
4058 		dec = true;
4059 		atomic_dec(&nr_switch_events);
4060 	}
4061 	if (is_cgroup_event(event))
4062 		dec = true;
4063 	if (has_branch_stack(event))
4064 		dec = true;
4065 
4066 	if (dec) {
4067 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4068 			schedule_delayed_work(&perf_sched_work, HZ);
4069 	}
4070 
4071 	unaccount_event_cpu(event, event->cpu);
4072 
4073 	unaccount_pmu_sb_event(event);
4074 }
4075 
4076 static void perf_sched_delayed(struct work_struct *work)
4077 {
4078 	mutex_lock(&perf_sched_mutex);
4079 	if (atomic_dec_and_test(&perf_sched_count))
4080 		static_branch_disable(&perf_sched_events);
4081 	mutex_unlock(&perf_sched_mutex);
4082 }
4083 
4084 /*
4085  * The following implement mutual exclusion of events on "exclusive" pmus
4086  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4087  * at a time, so we disallow creating events that might conflict, namely:
4088  *
4089  *  1) cpu-wide events in the presence of per-task events,
4090  *  2) per-task events in the presence of cpu-wide events,
4091  *  3) two matching events on the same context.
4092  *
4093  * The former two cases are handled in the allocation path (perf_event_alloc(),
4094  * _free_event()), the latter -- before the first perf_install_in_context().
4095  */
4096 static int exclusive_event_init(struct perf_event *event)
4097 {
4098 	struct pmu *pmu = event->pmu;
4099 
4100 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4101 		return 0;
4102 
4103 	/*
4104 	 * Prevent co-existence of per-task and cpu-wide events on the
4105 	 * same exclusive pmu.
4106 	 *
4107 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4108 	 * events on this "exclusive" pmu, positive means there are
4109 	 * per-task events.
4110 	 *
4111 	 * Since this is called in perf_event_alloc() path, event::ctx
4112 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4113 	 * to mean "per-task event", because unlike other attach states it
4114 	 * never gets cleared.
4115 	 */
4116 	if (event->attach_state & PERF_ATTACH_TASK) {
4117 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4118 			return -EBUSY;
4119 	} else {
4120 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4121 			return -EBUSY;
4122 	}
4123 
4124 	return 0;
4125 }
4126 
4127 static void exclusive_event_destroy(struct perf_event *event)
4128 {
4129 	struct pmu *pmu = event->pmu;
4130 
4131 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4132 		return;
4133 
4134 	/* see comment in exclusive_event_init() */
4135 	if (event->attach_state & PERF_ATTACH_TASK)
4136 		atomic_dec(&pmu->exclusive_cnt);
4137 	else
4138 		atomic_inc(&pmu->exclusive_cnt);
4139 }
4140 
4141 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4142 {
4143 	if ((e1->pmu == e2->pmu) &&
4144 	    (e1->cpu == e2->cpu ||
4145 	     e1->cpu == -1 ||
4146 	     e2->cpu == -1))
4147 		return true;
4148 	return false;
4149 }
4150 
4151 /* Called under the same ctx::mutex as perf_install_in_context() */
4152 static bool exclusive_event_installable(struct perf_event *event,
4153 					struct perf_event_context *ctx)
4154 {
4155 	struct perf_event *iter_event;
4156 	struct pmu *pmu = event->pmu;
4157 
4158 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4159 		return true;
4160 
4161 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4162 		if (exclusive_event_match(iter_event, event))
4163 			return false;
4164 	}
4165 
4166 	return true;
4167 }
4168 
4169 static void perf_addr_filters_splice(struct perf_event *event,
4170 				       struct list_head *head);
4171 
4172 static void _free_event(struct perf_event *event)
4173 {
4174 	irq_work_sync(&event->pending);
4175 
4176 	unaccount_event(event);
4177 
4178 	if (event->rb) {
4179 		/*
4180 		 * Can happen when we close an event with re-directed output.
4181 		 *
4182 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4183 		 * over us; possibly making our ring_buffer_put() the last.
4184 		 */
4185 		mutex_lock(&event->mmap_mutex);
4186 		ring_buffer_attach(event, NULL);
4187 		mutex_unlock(&event->mmap_mutex);
4188 	}
4189 
4190 	if (is_cgroup_event(event))
4191 		perf_detach_cgroup(event);
4192 
4193 	if (!event->parent) {
4194 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4195 			put_callchain_buffers();
4196 	}
4197 
4198 	perf_event_free_bpf_prog(event);
4199 	perf_addr_filters_splice(event, NULL);
4200 	kfree(event->addr_filters_offs);
4201 
4202 	if (event->destroy)
4203 		event->destroy(event);
4204 
4205 	if (event->ctx)
4206 		put_ctx(event->ctx);
4207 
4208 	exclusive_event_destroy(event);
4209 	module_put(event->pmu->module);
4210 
4211 	call_rcu(&event->rcu_head, free_event_rcu);
4212 }
4213 
4214 /*
4215  * Used to free events which have a known refcount of 1, such as in error paths
4216  * where the event isn't exposed yet and inherited events.
4217  */
4218 static void free_event(struct perf_event *event)
4219 {
4220 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4221 				"unexpected event refcount: %ld; ptr=%p\n",
4222 				atomic_long_read(&event->refcount), event)) {
4223 		/* leak to avoid use-after-free */
4224 		return;
4225 	}
4226 
4227 	_free_event(event);
4228 }
4229 
4230 /*
4231  * Remove user event from the owner task.
4232  */
4233 static void perf_remove_from_owner(struct perf_event *event)
4234 {
4235 	struct task_struct *owner;
4236 
4237 	rcu_read_lock();
4238 	/*
4239 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4240 	 * observe !owner it means the list deletion is complete and we can
4241 	 * indeed free this event, otherwise we need to serialize on
4242 	 * owner->perf_event_mutex.
4243 	 */
4244 	owner = lockless_dereference(event->owner);
4245 	if (owner) {
4246 		/*
4247 		 * Since delayed_put_task_struct() also drops the last
4248 		 * task reference we can safely take a new reference
4249 		 * while holding the rcu_read_lock().
4250 		 */
4251 		get_task_struct(owner);
4252 	}
4253 	rcu_read_unlock();
4254 
4255 	if (owner) {
4256 		/*
4257 		 * If we're here through perf_event_exit_task() we're already
4258 		 * holding ctx->mutex which would be an inversion wrt. the
4259 		 * normal lock order.
4260 		 *
4261 		 * However we can safely take this lock because its the child
4262 		 * ctx->mutex.
4263 		 */
4264 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4265 
4266 		/*
4267 		 * We have to re-check the event->owner field, if it is cleared
4268 		 * we raced with perf_event_exit_task(), acquiring the mutex
4269 		 * ensured they're done, and we can proceed with freeing the
4270 		 * event.
4271 		 */
4272 		if (event->owner) {
4273 			list_del_init(&event->owner_entry);
4274 			smp_store_release(&event->owner, NULL);
4275 		}
4276 		mutex_unlock(&owner->perf_event_mutex);
4277 		put_task_struct(owner);
4278 	}
4279 }
4280 
4281 static void put_event(struct perf_event *event)
4282 {
4283 	if (!atomic_long_dec_and_test(&event->refcount))
4284 		return;
4285 
4286 	_free_event(event);
4287 }
4288 
4289 /*
4290  * Kill an event dead; while event:refcount will preserve the event
4291  * object, it will not preserve its functionality. Once the last 'user'
4292  * gives up the object, we'll destroy the thing.
4293  */
4294 int perf_event_release_kernel(struct perf_event *event)
4295 {
4296 	struct perf_event_context *ctx = event->ctx;
4297 	struct perf_event *child, *tmp;
4298 
4299 	/*
4300 	 * If we got here through err_file: fput(event_file); we will not have
4301 	 * attached to a context yet.
4302 	 */
4303 	if (!ctx) {
4304 		WARN_ON_ONCE(event->attach_state &
4305 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4306 		goto no_ctx;
4307 	}
4308 
4309 	if (!is_kernel_event(event))
4310 		perf_remove_from_owner(event);
4311 
4312 	ctx = perf_event_ctx_lock(event);
4313 	WARN_ON_ONCE(ctx->parent_ctx);
4314 	perf_remove_from_context(event, DETACH_GROUP);
4315 
4316 	raw_spin_lock_irq(&ctx->lock);
4317 	/*
4318 	 * Mark this event as STATE_DEAD, there is no external reference to it
4319 	 * anymore.
4320 	 *
4321 	 * Anybody acquiring event->child_mutex after the below loop _must_
4322 	 * also see this, most importantly inherit_event() which will avoid
4323 	 * placing more children on the list.
4324 	 *
4325 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4326 	 * child events.
4327 	 */
4328 	event->state = PERF_EVENT_STATE_DEAD;
4329 	raw_spin_unlock_irq(&ctx->lock);
4330 
4331 	perf_event_ctx_unlock(event, ctx);
4332 
4333 again:
4334 	mutex_lock(&event->child_mutex);
4335 	list_for_each_entry(child, &event->child_list, child_list) {
4336 
4337 		/*
4338 		 * Cannot change, child events are not migrated, see the
4339 		 * comment with perf_event_ctx_lock_nested().
4340 		 */
4341 		ctx = lockless_dereference(child->ctx);
4342 		/*
4343 		 * Since child_mutex nests inside ctx::mutex, we must jump
4344 		 * through hoops. We start by grabbing a reference on the ctx.
4345 		 *
4346 		 * Since the event cannot get freed while we hold the
4347 		 * child_mutex, the context must also exist and have a !0
4348 		 * reference count.
4349 		 */
4350 		get_ctx(ctx);
4351 
4352 		/*
4353 		 * Now that we have a ctx ref, we can drop child_mutex, and
4354 		 * acquire ctx::mutex without fear of it going away. Then we
4355 		 * can re-acquire child_mutex.
4356 		 */
4357 		mutex_unlock(&event->child_mutex);
4358 		mutex_lock(&ctx->mutex);
4359 		mutex_lock(&event->child_mutex);
4360 
4361 		/*
4362 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4363 		 * state, if child is still the first entry, it didn't get freed
4364 		 * and we can continue doing so.
4365 		 */
4366 		tmp = list_first_entry_or_null(&event->child_list,
4367 					       struct perf_event, child_list);
4368 		if (tmp == child) {
4369 			perf_remove_from_context(child, DETACH_GROUP);
4370 			list_del(&child->child_list);
4371 			free_event(child);
4372 			/*
4373 			 * This matches the refcount bump in inherit_event();
4374 			 * this can't be the last reference.
4375 			 */
4376 			put_event(event);
4377 		}
4378 
4379 		mutex_unlock(&event->child_mutex);
4380 		mutex_unlock(&ctx->mutex);
4381 		put_ctx(ctx);
4382 		goto again;
4383 	}
4384 	mutex_unlock(&event->child_mutex);
4385 
4386 no_ctx:
4387 	put_event(event); /* Must be the 'last' reference */
4388 	return 0;
4389 }
4390 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4391 
4392 /*
4393  * Called when the last reference to the file is gone.
4394  */
4395 static int perf_release(struct inode *inode, struct file *file)
4396 {
4397 	perf_event_release_kernel(file->private_data);
4398 	return 0;
4399 }
4400 
4401 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4402 {
4403 	struct perf_event *child;
4404 	u64 total = 0;
4405 
4406 	*enabled = 0;
4407 	*running = 0;
4408 
4409 	mutex_lock(&event->child_mutex);
4410 
4411 	(void)perf_event_read(event, false);
4412 	total += perf_event_count(event);
4413 
4414 	*enabled += event->total_time_enabled +
4415 			atomic64_read(&event->child_total_time_enabled);
4416 	*running += event->total_time_running +
4417 			atomic64_read(&event->child_total_time_running);
4418 
4419 	list_for_each_entry(child, &event->child_list, child_list) {
4420 		(void)perf_event_read(child, false);
4421 		total += perf_event_count(child);
4422 		*enabled += child->total_time_enabled;
4423 		*running += child->total_time_running;
4424 	}
4425 	mutex_unlock(&event->child_mutex);
4426 
4427 	return total;
4428 }
4429 EXPORT_SYMBOL_GPL(perf_event_read_value);
4430 
4431 static int __perf_read_group_add(struct perf_event *leader,
4432 					u64 read_format, u64 *values)
4433 {
4434 	struct perf_event_context *ctx = leader->ctx;
4435 	struct perf_event *sub;
4436 	unsigned long flags;
4437 	int n = 1; /* skip @nr */
4438 	int ret;
4439 
4440 	ret = perf_event_read(leader, true);
4441 	if (ret)
4442 		return ret;
4443 
4444 	/*
4445 	 * Since we co-schedule groups, {enabled,running} times of siblings
4446 	 * will be identical to those of the leader, so we only publish one
4447 	 * set.
4448 	 */
4449 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4450 		values[n++] += leader->total_time_enabled +
4451 			atomic64_read(&leader->child_total_time_enabled);
4452 	}
4453 
4454 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4455 		values[n++] += leader->total_time_running +
4456 			atomic64_read(&leader->child_total_time_running);
4457 	}
4458 
4459 	/*
4460 	 * Write {count,id} tuples for every sibling.
4461 	 */
4462 	values[n++] += perf_event_count(leader);
4463 	if (read_format & PERF_FORMAT_ID)
4464 		values[n++] = primary_event_id(leader);
4465 
4466 	raw_spin_lock_irqsave(&ctx->lock, flags);
4467 
4468 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4469 		values[n++] += perf_event_count(sub);
4470 		if (read_format & PERF_FORMAT_ID)
4471 			values[n++] = primary_event_id(sub);
4472 	}
4473 
4474 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4475 	return 0;
4476 }
4477 
4478 static int perf_read_group(struct perf_event *event,
4479 				   u64 read_format, char __user *buf)
4480 {
4481 	struct perf_event *leader = event->group_leader, *child;
4482 	struct perf_event_context *ctx = leader->ctx;
4483 	int ret;
4484 	u64 *values;
4485 
4486 	lockdep_assert_held(&ctx->mutex);
4487 
4488 	values = kzalloc(event->read_size, GFP_KERNEL);
4489 	if (!values)
4490 		return -ENOMEM;
4491 
4492 	values[0] = 1 + leader->nr_siblings;
4493 
4494 	/*
4495 	 * By locking the child_mutex of the leader we effectively
4496 	 * lock the child list of all siblings.. XXX explain how.
4497 	 */
4498 	mutex_lock(&leader->child_mutex);
4499 
4500 	ret = __perf_read_group_add(leader, read_format, values);
4501 	if (ret)
4502 		goto unlock;
4503 
4504 	list_for_each_entry(child, &leader->child_list, child_list) {
4505 		ret = __perf_read_group_add(child, read_format, values);
4506 		if (ret)
4507 			goto unlock;
4508 	}
4509 
4510 	mutex_unlock(&leader->child_mutex);
4511 
4512 	ret = event->read_size;
4513 	if (copy_to_user(buf, values, event->read_size))
4514 		ret = -EFAULT;
4515 	goto out;
4516 
4517 unlock:
4518 	mutex_unlock(&leader->child_mutex);
4519 out:
4520 	kfree(values);
4521 	return ret;
4522 }
4523 
4524 static int perf_read_one(struct perf_event *event,
4525 				 u64 read_format, char __user *buf)
4526 {
4527 	u64 enabled, running;
4528 	u64 values[4];
4529 	int n = 0;
4530 
4531 	values[n++] = perf_event_read_value(event, &enabled, &running);
4532 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4533 		values[n++] = enabled;
4534 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4535 		values[n++] = running;
4536 	if (read_format & PERF_FORMAT_ID)
4537 		values[n++] = primary_event_id(event);
4538 
4539 	if (copy_to_user(buf, values, n * sizeof(u64)))
4540 		return -EFAULT;
4541 
4542 	return n * sizeof(u64);
4543 }
4544 
4545 static bool is_event_hup(struct perf_event *event)
4546 {
4547 	bool no_children;
4548 
4549 	if (event->state > PERF_EVENT_STATE_EXIT)
4550 		return false;
4551 
4552 	mutex_lock(&event->child_mutex);
4553 	no_children = list_empty(&event->child_list);
4554 	mutex_unlock(&event->child_mutex);
4555 	return no_children;
4556 }
4557 
4558 /*
4559  * Read the performance event - simple non blocking version for now
4560  */
4561 static ssize_t
4562 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4563 {
4564 	u64 read_format = event->attr.read_format;
4565 	int ret;
4566 
4567 	/*
4568 	 * Return end-of-file for a read on a event that is in
4569 	 * error state (i.e. because it was pinned but it couldn't be
4570 	 * scheduled on to the CPU at some point).
4571 	 */
4572 	if (event->state == PERF_EVENT_STATE_ERROR)
4573 		return 0;
4574 
4575 	if (count < event->read_size)
4576 		return -ENOSPC;
4577 
4578 	WARN_ON_ONCE(event->ctx->parent_ctx);
4579 	if (read_format & PERF_FORMAT_GROUP)
4580 		ret = perf_read_group(event, read_format, buf);
4581 	else
4582 		ret = perf_read_one(event, read_format, buf);
4583 
4584 	return ret;
4585 }
4586 
4587 static ssize_t
4588 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4589 {
4590 	struct perf_event *event = file->private_data;
4591 	struct perf_event_context *ctx;
4592 	int ret;
4593 
4594 	ctx = perf_event_ctx_lock(event);
4595 	ret = __perf_read(event, buf, count);
4596 	perf_event_ctx_unlock(event, ctx);
4597 
4598 	return ret;
4599 }
4600 
4601 static unsigned int perf_poll(struct file *file, poll_table *wait)
4602 {
4603 	struct perf_event *event = file->private_data;
4604 	struct ring_buffer *rb;
4605 	unsigned int events = POLLHUP;
4606 
4607 	poll_wait(file, &event->waitq, wait);
4608 
4609 	if (is_event_hup(event))
4610 		return events;
4611 
4612 	/*
4613 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4614 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4615 	 */
4616 	mutex_lock(&event->mmap_mutex);
4617 	rb = event->rb;
4618 	if (rb)
4619 		events = atomic_xchg(&rb->poll, 0);
4620 	mutex_unlock(&event->mmap_mutex);
4621 	return events;
4622 }
4623 
4624 static void _perf_event_reset(struct perf_event *event)
4625 {
4626 	(void)perf_event_read(event, false);
4627 	local64_set(&event->count, 0);
4628 	perf_event_update_userpage(event);
4629 }
4630 
4631 /*
4632  * Holding the top-level event's child_mutex means that any
4633  * descendant process that has inherited this event will block
4634  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4635  * task existence requirements of perf_event_enable/disable.
4636  */
4637 static void perf_event_for_each_child(struct perf_event *event,
4638 					void (*func)(struct perf_event *))
4639 {
4640 	struct perf_event *child;
4641 
4642 	WARN_ON_ONCE(event->ctx->parent_ctx);
4643 
4644 	mutex_lock(&event->child_mutex);
4645 	func(event);
4646 	list_for_each_entry(child, &event->child_list, child_list)
4647 		func(child);
4648 	mutex_unlock(&event->child_mutex);
4649 }
4650 
4651 static void perf_event_for_each(struct perf_event *event,
4652 				  void (*func)(struct perf_event *))
4653 {
4654 	struct perf_event_context *ctx = event->ctx;
4655 	struct perf_event *sibling;
4656 
4657 	lockdep_assert_held(&ctx->mutex);
4658 
4659 	event = event->group_leader;
4660 
4661 	perf_event_for_each_child(event, func);
4662 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4663 		perf_event_for_each_child(sibling, func);
4664 }
4665 
4666 static void __perf_event_period(struct perf_event *event,
4667 				struct perf_cpu_context *cpuctx,
4668 				struct perf_event_context *ctx,
4669 				void *info)
4670 {
4671 	u64 value = *((u64 *)info);
4672 	bool active;
4673 
4674 	if (event->attr.freq) {
4675 		event->attr.sample_freq = value;
4676 	} else {
4677 		event->attr.sample_period = value;
4678 		event->hw.sample_period = value;
4679 	}
4680 
4681 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4682 	if (active) {
4683 		perf_pmu_disable(ctx->pmu);
4684 		/*
4685 		 * We could be throttled; unthrottle now to avoid the tick
4686 		 * trying to unthrottle while we already re-started the event.
4687 		 */
4688 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4689 			event->hw.interrupts = 0;
4690 			perf_log_throttle(event, 1);
4691 		}
4692 		event->pmu->stop(event, PERF_EF_UPDATE);
4693 	}
4694 
4695 	local64_set(&event->hw.period_left, 0);
4696 
4697 	if (active) {
4698 		event->pmu->start(event, PERF_EF_RELOAD);
4699 		perf_pmu_enable(ctx->pmu);
4700 	}
4701 }
4702 
4703 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4704 {
4705 	u64 value;
4706 
4707 	if (!is_sampling_event(event))
4708 		return -EINVAL;
4709 
4710 	if (copy_from_user(&value, arg, sizeof(value)))
4711 		return -EFAULT;
4712 
4713 	if (!value)
4714 		return -EINVAL;
4715 
4716 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4717 		return -EINVAL;
4718 
4719 	event_function_call(event, __perf_event_period, &value);
4720 
4721 	return 0;
4722 }
4723 
4724 static const struct file_operations perf_fops;
4725 
4726 static inline int perf_fget_light(int fd, struct fd *p)
4727 {
4728 	struct fd f = fdget(fd);
4729 	if (!f.file)
4730 		return -EBADF;
4731 
4732 	if (f.file->f_op != &perf_fops) {
4733 		fdput(f);
4734 		return -EBADF;
4735 	}
4736 	*p = f;
4737 	return 0;
4738 }
4739 
4740 static int perf_event_set_output(struct perf_event *event,
4741 				 struct perf_event *output_event);
4742 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4743 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4744 
4745 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4746 {
4747 	void (*func)(struct perf_event *);
4748 	u32 flags = arg;
4749 
4750 	switch (cmd) {
4751 	case PERF_EVENT_IOC_ENABLE:
4752 		func = _perf_event_enable;
4753 		break;
4754 	case PERF_EVENT_IOC_DISABLE:
4755 		func = _perf_event_disable;
4756 		break;
4757 	case PERF_EVENT_IOC_RESET:
4758 		func = _perf_event_reset;
4759 		break;
4760 
4761 	case PERF_EVENT_IOC_REFRESH:
4762 		return _perf_event_refresh(event, arg);
4763 
4764 	case PERF_EVENT_IOC_PERIOD:
4765 		return perf_event_period(event, (u64 __user *)arg);
4766 
4767 	case PERF_EVENT_IOC_ID:
4768 	{
4769 		u64 id = primary_event_id(event);
4770 
4771 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4772 			return -EFAULT;
4773 		return 0;
4774 	}
4775 
4776 	case PERF_EVENT_IOC_SET_OUTPUT:
4777 	{
4778 		int ret;
4779 		if (arg != -1) {
4780 			struct perf_event *output_event;
4781 			struct fd output;
4782 			ret = perf_fget_light(arg, &output);
4783 			if (ret)
4784 				return ret;
4785 			output_event = output.file->private_data;
4786 			ret = perf_event_set_output(event, output_event);
4787 			fdput(output);
4788 		} else {
4789 			ret = perf_event_set_output(event, NULL);
4790 		}
4791 		return ret;
4792 	}
4793 
4794 	case PERF_EVENT_IOC_SET_FILTER:
4795 		return perf_event_set_filter(event, (void __user *)arg);
4796 
4797 	case PERF_EVENT_IOC_SET_BPF:
4798 		return perf_event_set_bpf_prog(event, arg);
4799 
4800 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4801 		struct ring_buffer *rb;
4802 
4803 		rcu_read_lock();
4804 		rb = rcu_dereference(event->rb);
4805 		if (!rb || !rb->nr_pages) {
4806 			rcu_read_unlock();
4807 			return -EINVAL;
4808 		}
4809 		rb_toggle_paused(rb, !!arg);
4810 		rcu_read_unlock();
4811 		return 0;
4812 	}
4813 	default:
4814 		return -ENOTTY;
4815 	}
4816 
4817 	if (flags & PERF_IOC_FLAG_GROUP)
4818 		perf_event_for_each(event, func);
4819 	else
4820 		perf_event_for_each_child(event, func);
4821 
4822 	return 0;
4823 }
4824 
4825 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4826 {
4827 	struct perf_event *event = file->private_data;
4828 	struct perf_event_context *ctx;
4829 	long ret;
4830 
4831 	ctx = perf_event_ctx_lock(event);
4832 	ret = _perf_ioctl(event, cmd, arg);
4833 	perf_event_ctx_unlock(event, ctx);
4834 
4835 	return ret;
4836 }
4837 
4838 #ifdef CONFIG_COMPAT
4839 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4840 				unsigned long arg)
4841 {
4842 	switch (_IOC_NR(cmd)) {
4843 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4844 	case _IOC_NR(PERF_EVENT_IOC_ID):
4845 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4846 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4847 			cmd &= ~IOCSIZE_MASK;
4848 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4849 		}
4850 		break;
4851 	}
4852 	return perf_ioctl(file, cmd, arg);
4853 }
4854 #else
4855 # define perf_compat_ioctl NULL
4856 #endif
4857 
4858 int perf_event_task_enable(void)
4859 {
4860 	struct perf_event_context *ctx;
4861 	struct perf_event *event;
4862 
4863 	mutex_lock(&current->perf_event_mutex);
4864 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4865 		ctx = perf_event_ctx_lock(event);
4866 		perf_event_for_each_child(event, _perf_event_enable);
4867 		perf_event_ctx_unlock(event, ctx);
4868 	}
4869 	mutex_unlock(&current->perf_event_mutex);
4870 
4871 	return 0;
4872 }
4873 
4874 int perf_event_task_disable(void)
4875 {
4876 	struct perf_event_context *ctx;
4877 	struct perf_event *event;
4878 
4879 	mutex_lock(&current->perf_event_mutex);
4880 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4881 		ctx = perf_event_ctx_lock(event);
4882 		perf_event_for_each_child(event, _perf_event_disable);
4883 		perf_event_ctx_unlock(event, ctx);
4884 	}
4885 	mutex_unlock(&current->perf_event_mutex);
4886 
4887 	return 0;
4888 }
4889 
4890 static int perf_event_index(struct perf_event *event)
4891 {
4892 	if (event->hw.state & PERF_HES_STOPPED)
4893 		return 0;
4894 
4895 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4896 		return 0;
4897 
4898 	return event->pmu->event_idx(event);
4899 }
4900 
4901 static void calc_timer_values(struct perf_event *event,
4902 				u64 *now,
4903 				u64 *enabled,
4904 				u64 *running)
4905 {
4906 	u64 ctx_time;
4907 
4908 	*now = perf_clock();
4909 	ctx_time = event->shadow_ctx_time + *now;
4910 	*enabled = ctx_time - event->tstamp_enabled;
4911 	*running = ctx_time - event->tstamp_running;
4912 }
4913 
4914 static void perf_event_init_userpage(struct perf_event *event)
4915 {
4916 	struct perf_event_mmap_page *userpg;
4917 	struct ring_buffer *rb;
4918 
4919 	rcu_read_lock();
4920 	rb = rcu_dereference(event->rb);
4921 	if (!rb)
4922 		goto unlock;
4923 
4924 	userpg = rb->user_page;
4925 
4926 	/* Allow new userspace to detect that bit 0 is deprecated */
4927 	userpg->cap_bit0_is_deprecated = 1;
4928 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4929 	userpg->data_offset = PAGE_SIZE;
4930 	userpg->data_size = perf_data_size(rb);
4931 
4932 unlock:
4933 	rcu_read_unlock();
4934 }
4935 
4936 void __weak arch_perf_update_userpage(
4937 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4938 {
4939 }
4940 
4941 /*
4942  * Callers need to ensure there can be no nesting of this function, otherwise
4943  * the seqlock logic goes bad. We can not serialize this because the arch
4944  * code calls this from NMI context.
4945  */
4946 void perf_event_update_userpage(struct perf_event *event)
4947 {
4948 	struct perf_event_mmap_page *userpg;
4949 	struct ring_buffer *rb;
4950 	u64 enabled, running, now;
4951 
4952 	rcu_read_lock();
4953 	rb = rcu_dereference(event->rb);
4954 	if (!rb)
4955 		goto unlock;
4956 
4957 	/*
4958 	 * compute total_time_enabled, total_time_running
4959 	 * based on snapshot values taken when the event
4960 	 * was last scheduled in.
4961 	 *
4962 	 * we cannot simply called update_context_time()
4963 	 * because of locking issue as we can be called in
4964 	 * NMI context
4965 	 */
4966 	calc_timer_values(event, &now, &enabled, &running);
4967 
4968 	userpg = rb->user_page;
4969 	/*
4970 	 * Disable preemption so as to not let the corresponding user-space
4971 	 * spin too long if we get preempted.
4972 	 */
4973 	preempt_disable();
4974 	++userpg->lock;
4975 	barrier();
4976 	userpg->index = perf_event_index(event);
4977 	userpg->offset = perf_event_count(event);
4978 	if (userpg->index)
4979 		userpg->offset -= local64_read(&event->hw.prev_count);
4980 
4981 	userpg->time_enabled = enabled +
4982 			atomic64_read(&event->child_total_time_enabled);
4983 
4984 	userpg->time_running = running +
4985 			atomic64_read(&event->child_total_time_running);
4986 
4987 	arch_perf_update_userpage(event, userpg, now);
4988 
4989 	barrier();
4990 	++userpg->lock;
4991 	preempt_enable();
4992 unlock:
4993 	rcu_read_unlock();
4994 }
4995 
4996 static int perf_mmap_fault(struct vm_fault *vmf)
4997 {
4998 	struct perf_event *event = vmf->vma->vm_file->private_data;
4999 	struct ring_buffer *rb;
5000 	int ret = VM_FAULT_SIGBUS;
5001 
5002 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5003 		if (vmf->pgoff == 0)
5004 			ret = 0;
5005 		return ret;
5006 	}
5007 
5008 	rcu_read_lock();
5009 	rb = rcu_dereference(event->rb);
5010 	if (!rb)
5011 		goto unlock;
5012 
5013 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5014 		goto unlock;
5015 
5016 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5017 	if (!vmf->page)
5018 		goto unlock;
5019 
5020 	get_page(vmf->page);
5021 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5022 	vmf->page->index   = vmf->pgoff;
5023 
5024 	ret = 0;
5025 unlock:
5026 	rcu_read_unlock();
5027 
5028 	return ret;
5029 }
5030 
5031 static void ring_buffer_attach(struct perf_event *event,
5032 			       struct ring_buffer *rb)
5033 {
5034 	struct ring_buffer *old_rb = NULL;
5035 	unsigned long flags;
5036 
5037 	if (event->rb) {
5038 		/*
5039 		 * Should be impossible, we set this when removing
5040 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5041 		 */
5042 		WARN_ON_ONCE(event->rcu_pending);
5043 
5044 		old_rb = event->rb;
5045 		spin_lock_irqsave(&old_rb->event_lock, flags);
5046 		list_del_rcu(&event->rb_entry);
5047 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5048 
5049 		event->rcu_batches = get_state_synchronize_rcu();
5050 		event->rcu_pending = 1;
5051 	}
5052 
5053 	if (rb) {
5054 		if (event->rcu_pending) {
5055 			cond_synchronize_rcu(event->rcu_batches);
5056 			event->rcu_pending = 0;
5057 		}
5058 
5059 		spin_lock_irqsave(&rb->event_lock, flags);
5060 		list_add_rcu(&event->rb_entry, &rb->event_list);
5061 		spin_unlock_irqrestore(&rb->event_lock, flags);
5062 	}
5063 
5064 	/*
5065 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5066 	 * before swizzling the event::rb pointer; if it's getting
5067 	 * unmapped, its aux_mmap_count will be 0 and it won't
5068 	 * restart. See the comment in __perf_pmu_output_stop().
5069 	 *
5070 	 * Data will inevitably be lost when set_output is done in
5071 	 * mid-air, but then again, whoever does it like this is
5072 	 * not in for the data anyway.
5073 	 */
5074 	if (has_aux(event))
5075 		perf_event_stop(event, 0);
5076 
5077 	rcu_assign_pointer(event->rb, rb);
5078 
5079 	if (old_rb) {
5080 		ring_buffer_put(old_rb);
5081 		/*
5082 		 * Since we detached before setting the new rb, so that we
5083 		 * could attach the new rb, we could have missed a wakeup.
5084 		 * Provide it now.
5085 		 */
5086 		wake_up_all(&event->waitq);
5087 	}
5088 }
5089 
5090 static void ring_buffer_wakeup(struct perf_event *event)
5091 {
5092 	struct ring_buffer *rb;
5093 
5094 	rcu_read_lock();
5095 	rb = rcu_dereference(event->rb);
5096 	if (rb) {
5097 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5098 			wake_up_all(&event->waitq);
5099 	}
5100 	rcu_read_unlock();
5101 }
5102 
5103 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5104 {
5105 	struct ring_buffer *rb;
5106 
5107 	rcu_read_lock();
5108 	rb = rcu_dereference(event->rb);
5109 	if (rb) {
5110 		if (!atomic_inc_not_zero(&rb->refcount))
5111 			rb = NULL;
5112 	}
5113 	rcu_read_unlock();
5114 
5115 	return rb;
5116 }
5117 
5118 void ring_buffer_put(struct ring_buffer *rb)
5119 {
5120 	if (!atomic_dec_and_test(&rb->refcount))
5121 		return;
5122 
5123 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5124 
5125 	call_rcu(&rb->rcu_head, rb_free_rcu);
5126 }
5127 
5128 static void perf_mmap_open(struct vm_area_struct *vma)
5129 {
5130 	struct perf_event *event = vma->vm_file->private_data;
5131 
5132 	atomic_inc(&event->mmap_count);
5133 	atomic_inc(&event->rb->mmap_count);
5134 
5135 	if (vma->vm_pgoff)
5136 		atomic_inc(&event->rb->aux_mmap_count);
5137 
5138 	if (event->pmu->event_mapped)
5139 		event->pmu->event_mapped(event, vma->vm_mm);
5140 }
5141 
5142 static void perf_pmu_output_stop(struct perf_event *event);
5143 
5144 /*
5145  * A buffer can be mmap()ed multiple times; either directly through the same
5146  * event, or through other events by use of perf_event_set_output().
5147  *
5148  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5149  * the buffer here, where we still have a VM context. This means we need
5150  * to detach all events redirecting to us.
5151  */
5152 static void perf_mmap_close(struct vm_area_struct *vma)
5153 {
5154 	struct perf_event *event = vma->vm_file->private_data;
5155 
5156 	struct ring_buffer *rb = ring_buffer_get(event);
5157 	struct user_struct *mmap_user = rb->mmap_user;
5158 	int mmap_locked = rb->mmap_locked;
5159 	unsigned long size = perf_data_size(rb);
5160 
5161 	if (event->pmu->event_unmapped)
5162 		event->pmu->event_unmapped(event, vma->vm_mm);
5163 
5164 	/*
5165 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5166 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5167 	 * serialize with perf_mmap here.
5168 	 */
5169 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5170 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5171 		/*
5172 		 * Stop all AUX events that are writing to this buffer,
5173 		 * so that we can free its AUX pages and corresponding PMU
5174 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5175 		 * they won't start any more (see perf_aux_output_begin()).
5176 		 */
5177 		perf_pmu_output_stop(event);
5178 
5179 		/* now it's safe to free the pages */
5180 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5181 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5182 
5183 		/* this has to be the last one */
5184 		rb_free_aux(rb);
5185 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5186 
5187 		mutex_unlock(&event->mmap_mutex);
5188 	}
5189 
5190 	atomic_dec(&rb->mmap_count);
5191 
5192 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5193 		goto out_put;
5194 
5195 	ring_buffer_attach(event, NULL);
5196 	mutex_unlock(&event->mmap_mutex);
5197 
5198 	/* If there's still other mmap()s of this buffer, we're done. */
5199 	if (atomic_read(&rb->mmap_count))
5200 		goto out_put;
5201 
5202 	/*
5203 	 * No other mmap()s, detach from all other events that might redirect
5204 	 * into the now unreachable buffer. Somewhat complicated by the
5205 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5206 	 */
5207 again:
5208 	rcu_read_lock();
5209 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5210 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5211 			/*
5212 			 * This event is en-route to free_event() which will
5213 			 * detach it and remove it from the list.
5214 			 */
5215 			continue;
5216 		}
5217 		rcu_read_unlock();
5218 
5219 		mutex_lock(&event->mmap_mutex);
5220 		/*
5221 		 * Check we didn't race with perf_event_set_output() which can
5222 		 * swizzle the rb from under us while we were waiting to
5223 		 * acquire mmap_mutex.
5224 		 *
5225 		 * If we find a different rb; ignore this event, a next
5226 		 * iteration will no longer find it on the list. We have to
5227 		 * still restart the iteration to make sure we're not now
5228 		 * iterating the wrong list.
5229 		 */
5230 		if (event->rb == rb)
5231 			ring_buffer_attach(event, NULL);
5232 
5233 		mutex_unlock(&event->mmap_mutex);
5234 		put_event(event);
5235 
5236 		/*
5237 		 * Restart the iteration; either we're on the wrong list or
5238 		 * destroyed its integrity by doing a deletion.
5239 		 */
5240 		goto again;
5241 	}
5242 	rcu_read_unlock();
5243 
5244 	/*
5245 	 * It could be there's still a few 0-ref events on the list; they'll
5246 	 * get cleaned up by free_event() -- they'll also still have their
5247 	 * ref on the rb and will free it whenever they are done with it.
5248 	 *
5249 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5250 	 * undo the VM accounting.
5251 	 */
5252 
5253 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5254 	vma->vm_mm->pinned_vm -= mmap_locked;
5255 	free_uid(mmap_user);
5256 
5257 out_put:
5258 	ring_buffer_put(rb); /* could be last */
5259 }
5260 
5261 static const struct vm_operations_struct perf_mmap_vmops = {
5262 	.open		= perf_mmap_open,
5263 	.close		= perf_mmap_close, /* non mergable */
5264 	.fault		= perf_mmap_fault,
5265 	.page_mkwrite	= perf_mmap_fault,
5266 };
5267 
5268 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5269 {
5270 	struct perf_event *event = file->private_data;
5271 	unsigned long user_locked, user_lock_limit;
5272 	struct user_struct *user = current_user();
5273 	unsigned long locked, lock_limit;
5274 	struct ring_buffer *rb = NULL;
5275 	unsigned long vma_size;
5276 	unsigned long nr_pages;
5277 	long user_extra = 0, extra = 0;
5278 	int ret = 0, flags = 0;
5279 
5280 	/*
5281 	 * Don't allow mmap() of inherited per-task counters. This would
5282 	 * create a performance issue due to all children writing to the
5283 	 * same rb.
5284 	 */
5285 	if (event->cpu == -1 && event->attr.inherit)
5286 		return -EINVAL;
5287 
5288 	if (!(vma->vm_flags & VM_SHARED))
5289 		return -EINVAL;
5290 
5291 	vma_size = vma->vm_end - vma->vm_start;
5292 
5293 	if (vma->vm_pgoff == 0) {
5294 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5295 	} else {
5296 		/*
5297 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5298 		 * mapped, all subsequent mappings should have the same size
5299 		 * and offset. Must be above the normal perf buffer.
5300 		 */
5301 		u64 aux_offset, aux_size;
5302 
5303 		if (!event->rb)
5304 			return -EINVAL;
5305 
5306 		nr_pages = vma_size / PAGE_SIZE;
5307 
5308 		mutex_lock(&event->mmap_mutex);
5309 		ret = -EINVAL;
5310 
5311 		rb = event->rb;
5312 		if (!rb)
5313 			goto aux_unlock;
5314 
5315 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5316 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5317 
5318 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5319 			goto aux_unlock;
5320 
5321 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5322 			goto aux_unlock;
5323 
5324 		/* already mapped with a different offset */
5325 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5326 			goto aux_unlock;
5327 
5328 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5329 			goto aux_unlock;
5330 
5331 		/* already mapped with a different size */
5332 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5333 			goto aux_unlock;
5334 
5335 		if (!is_power_of_2(nr_pages))
5336 			goto aux_unlock;
5337 
5338 		if (!atomic_inc_not_zero(&rb->mmap_count))
5339 			goto aux_unlock;
5340 
5341 		if (rb_has_aux(rb)) {
5342 			atomic_inc(&rb->aux_mmap_count);
5343 			ret = 0;
5344 			goto unlock;
5345 		}
5346 
5347 		atomic_set(&rb->aux_mmap_count, 1);
5348 		user_extra = nr_pages;
5349 
5350 		goto accounting;
5351 	}
5352 
5353 	/*
5354 	 * If we have rb pages ensure they're a power-of-two number, so we
5355 	 * can do bitmasks instead of modulo.
5356 	 */
5357 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5358 		return -EINVAL;
5359 
5360 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5361 		return -EINVAL;
5362 
5363 	WARN_ON_ONCE(event->ctx->parent_ctx);
5364 again:
5365 	mutex_lock(&event->mmap_mutex);
5366 	if (event->rb) {
5367 		if (event->rb->nr_pages != nr_pages) {
5368 			ret = -EINVAL;
5369 			goto unlock;
5370 		}
5371 
5372 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5373 			/*
5374 			 * Raced against perf_mmap_close() through
5375 			 * perf_event_set_output(). Try again, hope for better
5376 			 * luck.
5377 			 */
5378 			mutex_unlock(&event->mmap_mutex);
5379 			goto again;
5380 		}
5381 
5382 		goto unlock;
5383 	}
5384 
5385 	user_extra = nr_pages + 1;
5386 
5387 accounting:
5388 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5389 
5390 	/*
5391 	 * Increase the limit linearly with more CPUs:
5392 	 */
5393 	user_lock_limit *= num_online_cpus();
5394 
5395 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5396 
5397 	if (user_locked > user_lock_limit)
5398 		extra = user_locked - user_lock_limit;
5399 
5400 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5401 	lock_limit >>= PAGE_SHIFT;
5402 	locked = vma->vm_mm->pinned_vm + extra;
5403 
5404 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5405 		!capable(CAP_IPC_LOCK)) {
5406 		ret = -EPERM;
5407 		goto unlock;
5408 	}
5409 
5410 	WARN_ON(!rb && event->rb);
5411 
5412 	if (vma->vm_flags & VM_WRITE)
5413 		flags |= RING_BUFFER_WRITABLE;
5414 
5415 	if (!rb) {
5416 		rb = rb_alloc(nr_pages,
5417 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5418 			      event->cpu, flags);
5419 
5420 		if (!rb) {
5421 			ret = -ENOMEM;
5422 			goto unlock;
5423 		}
5424 
5425 		atomic_set(&rb->mmap_count, 1);
5426 		rb->mmap_user = get_current_user();
5427 		rb->mmap_locked = extra;
5428 
5429 		ring_buffer_attach(event, rb);
5430 
5431 		perf_event_init_userpage(event);
5432 		perf_event_update_userpage(event);
5433 	} else {
5434 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5435 				   event->attr.aux_watermark, flags);
5436 		if (!ret)
5437 			rb->aux_mmap_locked = extra;
5438 	}
5439 
5440 unlock:
5441 	if (!ret) {
5442 		atomic_long_add(user_extra, &user->locked_vm);
5443 		vma->vm_mm->pinned_vm += extra;
5444 
5445 		atomic_inc(&event->mmap_count);
5446 	} else if (rb) {
5447 		atomic_dec(&rb->mmap_count);
5448 	}
5449 aux_unlock:
5450 	mutex_unlock(&event->mmap_mutex);
5451 
5452 	/*
5453 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5454 	 * vma.
5455 	 */
5456 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5457 	vma->vm_ops = &perf_mmap_vmops;
5458 
5459 	if (event->pmu->event_mapped)
5460 		event->pmu->event_mapped(event, vma->vm_mm);
5461 
5462 	return ret;
5463 }
5464 
5465 static int perf_fasync(int fd, struct file *filp, int on)
5466 {
5467 	struct inode *inode = file_inode(filp);
5468 	struct perf_event *event = filp->private_data;
5469 	int retval;
5470 
5471 	inode_lock(inode);
5472 	retval = fasync_helper(fd, filp, on, &event->fasync);
5473 	inode_unlock(inode);
5474 
5475 	if (retval < 0)
5476 		return retval;
5477 
5478 	return 0;
5479 }
5480 
5481 static const struct file_operations perf_fops = {
5482 	.llseek			= no_llseek,
5483 	.release		= perf_release,
5484 	.read			= perf_read,
5485 	.poll			= perf_poll,
5486 	.unlocked_ioctl		= perf_ioctl,
5487 	.compat_ioctl		= perf_compat_ioctl,
5488 	.mmap			= perf_mmap,
5489 	.fasync			= perf_fasync,
5490 };
5491 
5492 /*
5493  * Perf event wakeup
5494  *
5495  * If there's data, ensure we set the poll() state and publish everything
5496  * to user-space before waking everybody up.
5497  */
5498 
5499 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5500 {
5501 	/* only the parent has fasync state */
5502 	if (event->parent)
5503 		event = event->parent;
5504 	return &event->fasync;
5505 }
5506 
5507 void perf_event_wakeup(struct perf_event *event)
5508 {
5509 	ring_buffer_wakeup(event);
5510 
5511 	if (event->pending_kill) {
5512 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5513 		event->pending_kill = 0;
5514 	}
5515 }
5516 
5517 static void perf_pending_event(struct irq_work *entry)
5518 {
5519 	struct perf_event *event = container_of(entry,
5520 			struct perf_event, pending);
5521 	int rctx;
5522 
5523 	rctx = perf_swevent_get_recursion_context();
5524 	/*
5525 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5526 	 * and we won't recurse 'further'.
5527 	 */
5528 
5529 	if (event->pending_disable) {
5530 		event->pending_disable = 0;
5531 		perf_event_disable_local(event);
5532 	}
5533 
5534 	if (event->pending_wakeup) {
5535 		event->pending_wakeup = 0;
5536 		perf_event_wakeup(event);
5537 	}
5538 
5539 	if (rctx >= 0)
5540 		perf_swevent_put_recursion_context(rctx);
5541 }
5542 
5543 /*
5544  * We assume there is only KVM supporting the callbacks.
5545  * Later on, we might change it to a list if there is
5546  * another virtualization implementation supporting the callbacks.
5547  */
5548 struct perf_guest_info_callbacks *perf_guest_cbs;
5549 
5550 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5551 {
5552 	perf_guest_cbs = cbs;
5553 	return 0;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5556 
5557 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5558 {
5559 	perf_guest_cbs = NULL;
5560 	return 0;
5561 }
5562 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5563 
5564 static void
5565 perf_output_sample_regs(struct perf_output_handle *handle,
5566 			struct pt_regs *regs, u64 mask)
5567 {
5568 	int bit;
5569 	DECLARE_BITMAP(_mask, 64);
5570 
5571 	bitmap_from_u64(_mask, mask);
5572 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5573 		u64 val;
5574 
5575 		val = perf_reg_value(regs, bit);
5576 		perf_output_put(handle, val);
5577 	}
5578 }
5579 
5580 static void perf_sample_regs_user(struct perf_regs *regs_user,
5581 				  struct pt_regs *regs,
5582 				  struct pt_regs *regs_user_copy)
5583 {
5584 	if (user_mode(regs)) {
5585 		regs_user->abi = perf_reg_abi(current);
5586 		regs_user->regs = regs;
5587 	} else if (current->mm) {
5588 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5589 	} else {
5590 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5591 		regs_user->regs = NULL;
5592 	}
5593 }
5594 
5595 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5596 				  struct pt_regs *regs)
5597 {
5598 	regs_intr->regs = regs;
5599 	regs_intr->abi  = perf_reg_abi(current);
5600 }
5601 
5602 
5603 /*
5604  * Get remaining task size from user stack pointer.
5605  *
5606  * It'd be better to take stack vma map and limit this more
5607  * precisly, but there's no way to get it safely under interrupt,
5608  * so using TASK_SIZE as limit.
5609  */
5610 static u64 perf_ustack_task_size(struct pt_regs *regs)
5611 {
5612 	unsigned long addr = perf_user_stack_pointer(regs);
5613 
5614 	if (!addr || addr >= TASK_SIZE)
5615 		return 0;
5616 
5617 	return TASK_SIZE - addr;
5618 }
5619 
5620 static u16
5621 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5622 			struct pt_regs *regs)
5623 {
5624 	u64 task_size;
5625 
5626 	/* No regs, no stack pointer, no dump. */
5627 	if (!regs)
5628 		return 0;
5629 
5630 	/*
5631 	 * Check if we fit in with the requested stack size into the:
5632 	 * - TASK_SIZE
5633 	 *   If we don't, we limit the size to the TASK_SIZE.
5634 	 *
5635 	 * - remaining sample size
5636 	 *   If we don't, we customize the stack size to
5637 	 *   fit in to the remaining sample size.
5638 	 */
5639 
5640 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5641 	stack_size = min(stack_size, (u16) task_size);
5642 
5643 	/* Current header size plus static size and dynamic size. */
5644 	header_size += 2 * sizeof(u64);
5645 
5646 	/* Do we fit in with the current stack dump size? */
5647 	if ((u16) (header_size + stack_size) < header_size) {
5648 		/*
5649 		 * If we overflow the maximum size for the sample,
5650 		 * we customize the stack dump size to fit in.
5651 		 */
5652 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5653 		stack_size = round_up(stack_size, sizeof(u64));
5654 	}
5655 
5656 	return stack_size;
5657 }
5658 
5659 static void
5660 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5661 			  struct pt_regs *regs)
5662 {
5663 	/* Case of a kernel thread, nothing to dump */
5664 	if (!regs) {
5665 		u64 size = 0;
5666 		perf_output_put(handle, size);
5667 	} else {
5668 		unsigned long sp;
5669 		unsigned int rem;
5670 		u64 dyn_size;
5671 
5672 		/*
5673 		 * We dump:
5674 		 * static size
5675 		 *   - the size requested by user or the best one we can fit
5676 		 *     in to the sample max size
5677 		 * data
5678 		 *   - user stack dump data
5679 		 * dynamic size
5680 		 *   - the actual dumped size
5681 		 */
5682 
5683 		/* Static size. */
5684 		perf_output_put(handle, dump_size);
5685 
5686 		/* Data. */
5687 		sp = perf_user_stack_pointer(regs);
5688 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5689 		dyn_size = dump_size - rem;
5690 
5691 		perf_output_skip(handle, rem);
5692 
5693 		/* Dynamic size. */
5694 		perf_output_put(handle, dyn_size);
5695 	}
5696 }
5697 
5698 static void __perf_event_header__init_id(struct perf_event_header *header,
5699 					 struct perf_sample_data *data,
5700 					 struct perf_event *event)
5701 {
5702 	u64 sample_type = event->attr.sample_type;
5703 
5704 	data->type = sample_type;
5705 	header->size += event->id_header_size;
5706 
5707 	if (sample_type & PERF_SAMPLE_TID) {
5708 		/* namespace issues */
5709 		data->tid_entry.pid = perf_event_pid(event, current);
5710 		data->tid_entry.tid = perf_event_tid(event, current);
5711 	}
5712 
5713 	if (sample_type & PERF_SAMPLE_TIME)
5714 		data->time = perf_event_clock(event);
5715 
5716 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5717 		data->id = primary_event_id(event);
5718 
5719 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5720 		data->stream_id = event->id;
5721 
5722 	if (sample_type & PERF_SAMPLE_CPU) {
5723 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5724 		data->cpu_entry.reserved = 0;
5725 	}
5726 }
5727 
5728 void perf_event_header__init_id(struct perf_event_header *header,
5729 				struct perf_sample_data *data,
5730 				struct perf_event *event)
5731 {
5732 	if (event->attr.sample_id_all)
5733 		__perf_event_header__init_id(header, data, event);
5734 }
5735 
5736 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5737 					   struct perf_sample_data *data)
5738 {
5739 	u64 sample_type = data->type;
5740 
5741 	if (sample_type & PERF_SAMPLE_TID)
5742 		perf_output_put(handle, data->tid_entry);
5743 
5744 	if (sample_type & PERF_SAMPLE_TIME)
5745 		perf_output_put(handle, data->time);
5746 
5747 	if (sample_type & PERF_SAMPLE_ID)
5748 		perf_output_put(handle, data->id);
5749 
5750 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5751 		perf_output_put(handle, data->stream_id);
5752 
5753 	if (sample_type & PERF_SAMPLE_CPU)
5754 		perf_output_put(handle, data->cpu_entry);
5755 
5756 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5757 		perf_output_put(handle, data->id);
5758 }
5759 
5760 void perf_event__output_id_sample(struct perf_event *event,
5761 				  struct perf_output_handle *handle,
5762 				  struct perf_sample_data *sample)
5763 {
5764 	if (event->attr.sample_id_all)
5765 		__perf_event__output_id_sample(handle, sample);
5766 }
5767 
5768 static void perf_output_read_one(struct perf_output_handle *handle,
5769 				 struct perf_event *event,
5770 				 u64 enabled, u64 running)
5771 {
5772 	u64 read_format = event->attr.read_format;
5773 	u64 values[4];
5774 	int n = 0;
5775 
5776 	values[n++] = perf_event_count(event);
5777 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5778 		values[n++] = enabled +
5779 			atomic64_read(&event->child_total_time_enabled);
5780 	}
5781 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5782 		values[n++] = running +
5783 			atomic64_read(&event->child_total_time_running);
5784 	}
5785 	if (read_format & PERF_FORMAT_ID)
5786 		values[n++] = primary_event_id(event);
5787 
5788 	__output_copy(handle, values, n * sizeof(u64));
5789 }
5790 
5791 static void perf_output_read_group(struct perf_output_handle *handle,
5792 			    struct perf_event *event,
5793 			    u64 enabled, u64 running)
5794 {
5795 	struct perf_event *leader = event->group_leader, *sub;
5796 	u64 read_format = event->attr.read_format;
5797 	u64 values[5];
5798 	int n = 0;
5799 
5800 	values[n++] = 1 + leader->nr_siblings;
5801 
5802 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5803 		values[n++] = enabled;
5804 
5805 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5806 		values[n++] = running;
5807 
5808 	if (leader != event)
5809 		leader->pmu->read(leader);
5810 
5811 	values[n++] = perf_event_count(leader);
5812 	if (read_format & PERF_FORMAT_ID)
5813 		values[n++] = primary_event_id(leader);
5814 
5815 	__output_copy(handle, values, n * sizeof(u64));
5816 
5817 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5818 		n = 0;
5819 
5820 		if ((sub != event) &&
5821 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5822 			sub->pmu->read(sub);
5823 
5824 		values[n++] = perf_event_count(sub);
5825 		if (read_format & PERF_FORMAT_ID)
5826 			values[n++] = primary_event_id(sub);
5827 
5828 		__output_copy(handle, values, n * sizeof(u64));
5829 	}
5830 }
5831 
5832 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5833 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5834 
5835 /*
5836  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5837  *
5838  * The problem is that its both hard and excessively expensive to iterate the
5839  * child list, not to mention that its impossible to IPI the children running
5840  * on another CPU, from interrupt/NMI context.
5841  */
5842 static void perf_output_read(struct perf_output_handle *handle,
5843 			     struct perf_event *event)
5844 {
5845 	u64 enabled = 0, running = 0, now;
5846 	u64 read_format = event->attr.read_format;
5847 
5848 	/*
5849 	 * compute total_time_enabled, total_time_running
5850 	 * based on snapshot values taken when the event
5851 	 * was last scheduled in.
5852 	 *
5853 	 * we cannot simply called update_context_time()
5854 	 * because of locking issue as we are called in
5855 	 * NMI context
5856 	 */
5857 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5858 		calc_timer_values(event, &now, &enabled, &running);
5859 
5860 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5861 		perf_output_read_group(handle, event, enabled, running);
5862 	else
5863 		perf_output_read_one(handle, event, enabled, running);
5864 }
5865 
5866 void perf_output_sample(struct perf_output_handle *handle,
5867 			struct perf_event_header *header,
5868 			struct perf_sample_data *data,
5869 			struct perf_event *event)
5870 {
5871 	u64 sample_type = data->type;
5872 
5873 	perf_output_put(handle, *header);
5874 
5875 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5876 		perf_output_put(handle, data->id);
5877 
5878 	if (sample_type & PERF_SAMPLE_IP)
5879 		perf_output_put(handle, data->ip);
5880 
5881 	if (sample_type & PERF_SAMPLE_TID)
5882 		perf_output_put(handle, data->tid_entry);
5883 
5884 	if (sample_type & PERF_SAMPLE_TIME)
5885 		perf_output_put(handle, data->time);
5886 
5887 	if (sample_type & PERF_SAMPLE_ADDR)
5888 		perf_output_put(handle, data->addr);
5889 
5890 	if (sample_type & PERF_SAMPLE_ID)
5891 		perf_output_put(handle, data->id);
5892 
5893 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5894 		perf_output_put(handle, data->stream_id);
5895 
5896 	if (sample_type & PERF_SAMPLE_CPU)
5897 		perf_output_put(handle, data->cpu_entry);
5898 
5899 	if (sample_type & PERF_SAMPLE_PERIOD)
5900 		perf_output_put(handle, data->period);
5901 
5902 	if (sample_type & PERF_SAMPLE_READ)
5903 		perf_output_read(handle, event);
5904 
5905 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5906 		if (data->callchain) {
5907 			int size = 1;
5908 
5909 			if (data->callchain)
5910 				size += data->callchain->nr;
5911 
5912 			size *= sizeof(u64);
5913 
5914 			__output_copy(handle, data->callchain, size);
5915 		} else {
5916 			u64 nr = 0;
5917 			perf_output_put(handle, nr);
5918 		}
5919 	}
5920 
5921 	if (sample_type & PERF_SAMPLE_RAW) {
5922 		struct perf_raw_record *raw = data->raw;
5923 
5924 		if (raw) {
5925 			struct perf_raw_frag *frag = &raw->frag;
5926 
5927 			perf_output_put(handle, raw->size);
5928 			do {
5929 				if (frag->copy) {
5930 					__output_custom(handle, frag->copy,
5931 							frag->data, frag->size);
5932 				} else {
5933 					__output_copy(handle, frag->data,
5934 						      frag->size);
5935 				}
5936 				if (perf_raw_frag_last(frag))
5937 					break;
5938 				frag = frag->next;
5939 			} while (1);
5940 			if (frag->pad)
5941 				__output_skip(handle, NULL, frag->pad);
5942 		} else {
5943 			struct {
5944 				u32	size;
5945 				u32	data;
5946 			} raw = {
5947 				.size = sizeof(u32),
5948 				.data = 0,
5949 			};
5950 			perf_output_put(handle, raw);
5951 		}
5952 	}
5953 
5954 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5955 		if (data->br_stack) {
5956 			size_t size;
5957 
5958 			size = data->br_stack->nr
5959 			     * sizeof(struct perf_branch_entry);
5960 
5961 			perf_output_put(handle, data->br_stack->nr);
5962 			perf_output_copy(handle, data->br_stack->entries, size);
5963 		} else {
5964 			/*
5965 			 * we always store at least the value of nr
5966 			 */
5967 			u64 nr = 0;
5968 			perf_output_put(handle, nr);
5969 		}
5970 	}
5971 
5972 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5973 		u64 abi = data->regs_user.abi;
5974 
5975 		/*
5976 		 * If there are no regs to dump, notice it through
5977 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5978 		 */
5979 		perf_output_put(handle, abi);
5980 
5981 		if (abi) {
5982 			u64 mask = event->attr.sample_regs_user;
5983 			perf_output_sample_regs(handle,
5984 						data->regs_user.regs,
5985 						mask);
5986 		}
5987 	}
5988 
5989 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5990 		perf_output_sample_ustack(handle,
5991 					  data->stack_user_size,
5992 					  data->regs_user.regs);
5993 	}
5994 
5995 	if (sample_type & PERF_SAMPLE_WEIGHT)
5996 		perf_output_put(handle, data->weight);
5997 
5998 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5999 		perf_output_put(handle, data->data_src.val);
6000 
6001 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6002 		perf_output_put(handle, data->txn);
6003 
6004 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6005 		u64 abi = data->regs_intr.abi;
6006 		/*
6007 		 * If there are no regs to dump, notice it through
6008 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6009 		 */
6010 		perf_output_put(handle, abi);
6011 
6012 		if (abi) {
6013 			u64 mask = event->attr.sample_regs_intr;
6014 
6015 			perf_output_sample_regs(handle,
6016 						data->regs_intr.regs,
6017 						mask);
6018 		}
6019 	}
6020 
6021 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6022 		perf_output_put(handle, data->phys_addr);
6023 
6024 	if (!event->attr.watermark) {
6025 		int wakeup_events = event->attr.wakeup_events;
6026 
6027 		if (wakeup_events) {
6028 			struct ring_buffer *rb = handle->rb;
6029 			int events = local_inc_return(&rb->events);
6030 
6031 			if (events >= wakeup_events) {
6032 				local_sub(wakeup_events, &rb->events);
6033 				local_inc(&rb->wakeup);
6034 			}
6035 		}
6036 	}
6037 }
6038 
6039 static u64 perf_virt_to_phys(u64 virt)
6040 {
6041 	u64 phys_addr = 0;
6042 	struct page *p = NULL;
6043 
6044 	if (!virt)
6045 		return 0;
6046 
6047 	if (virt >= TASK_SIZE) {
6048 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6049 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6050 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6051 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6052 	} else {
6053 		/*
6054 		 * Walking the pages tables for user address.
6055 		 * Interrupts are disabled, so it prevents any tear down
6056 		 * of the page tables.
6057 		 * Try IRQ-safe __get_user_pages_fast first.
6058 		 * If failed, leave phys_addr as 0.
6059 		 */
6060 		if ((current->mm != NULL) &&
6061 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6062 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6063 
6064 		if (p)
6065 			put_page(p);
6066 	}
6067 
6068 	return phys_addr;
6069 }
6070 
6071 void perf_prepare_sample(struct perf_event_header *header,
6072 			 struct perf_sample_data *data,
6073 			 struct perf_event *event,
6074 			 struct pt_regs *regs)
6075 {
6076 	u64 sample_type = event->attr.sample_type;
6077 
6078 	header->type = PERF_RECORD_SAMPLE;
6079 	header->size = sizeof(*header) + event->header_size;
6080 
6081 	header->misc = 0;
6082 	header->misc |= perf_misc_flags(regs);
6083 
6084 	__perf_event_header__init_id(header, data, event);
6085 
6086 	if (sample_type & PERF_SAMPLE_IP)
6087 		data->ip = perf_instruction_pointer(regs);
6088 
6089 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6090 		int size = 1;
6091 
6092 		data->callchain = perf_callchain(event, regs);
6093 
6094 		if (data->callchain)
6095 			size += data->callchain->nr;
6096 
6097 		header->size += size * sizeof(u64);
6098 	}
6099 
6100 	if (sample_type & PERF_SAMPLE_RAW) {
6101 		struct perf_raw_record *raw = data->raw;
6102 		int size;
6103 
6104 		if (raw) {
6105 			struct perf_raw_frag *frag = &raw->frag;
6106 			u32 sum = 0;
6107 
6108 			do {
6109 				sum += frag->size;
6110 				if (perf_raw_frag_last(frag))
6111 					break;
6112 				frag = frag->next;
6113 			} while (1);
6114 
6115 			size = round_up(sum + sizeof(u32), sizeof(u64));
6116 			raw->size = size - sizeof(u32);
6117 			frag->pad = raw->size - sum;
6118 		} else {
6119 			size = sizeof(u64);
6120 		}
6121 
6122 		header->size += size;
6123 	}
6124 
6125 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6126 		int size = sizeof(u64); /* nr */
6127 		if (data->br_stack) {
6128 			size += data->br_stack->nr
6129 			      * sizeof(struct perf_branch_entry);
6130 		}
6131 		header->size += size;
6132 	}
6133 
6134 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6135 		perf_sample_regs_user(&data->regs_user, regs,
6136 				      &data->regs_user_copy);
6137 
6138 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6139 		/* regs dump ABI info */
6140 		int size = sizeof(u64);
6141 
6142 		if (data->regs_user.regs) {
6143 			u64 mask = event->attr.sample_regs_user;
6144 			size += hweight64(mask) * sizeof(u64);
6145 		}
6146 
6147 		header->size += size;
6148 	}
6149 
6150 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6151 		/*
6152 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6153 		 * processed as the last one or have additional check added
6154 		 * in case new sample type is added, because we could eat
6155 		 * up the rest of the sample size.
6156 		 */
6157 		u16 stack_size = event->attr.sample_stack_user;
6158 		u16 size = sizeof(u64);
6159 
6160 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6161 						     data->regs_user.regs);
6162 
6163 		/*
6164 		 * If there is something to dump, add space for the dump
6165 		 * itself and for the field that tells the dynamic size,
6166 		 * which is how many have been actually dumped.
6167 		 */
6168 		if (stack_size)
6169 			size += sizeof(u64) + stack_size;
6170 
6171 		data->stack_user_size = stack_size;
6172 		header->size += size;
6173 	}
6174 
6175 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6176 		/* regs dump ABI info */
6177 		int size = sizeof(u64);
6178 
6179 		perf_sample_regs_intr(&data->regs_intr, regs);
6180 
6181 		if (data->regs_intr.regs) {
6182 			u64 mask = event->attr.sample_regs_intr;
6183 
6184 			size += hweight64(mask) * sizeof(u64);
6185 		}
6186 
6187 		header->size += size;
6188 	}
6189 
6190 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6191 		data->phys_addr = perf_virt_to_phys(data->addr);
6192 }
6193 
6194 static void __always_inline
6195 __perf_event_output(struct perf_event *event,
6196 		    struct perf_sample_data *data,
6197 		    struct pt_regs *regs,
6198 		    int (*output_begin)(struct perf_output_handle *,
6199 					struct perf_event *,
6200 					unsigned int))
6201 {
6202 	struct perf_output_handle handle;
6203 	struct perf_event_header header;
6204 
6205 	/* protect the callchain buffers */
6206 	rcu_read_lock();
6207 
6208 	perf_prepare_sample(&header, data, event, regs);
6209 
6210 	if (output_begin(&handle, event, header.size))
6211 		goto exit;
6212 
6213 	perf_output_sample(&handle, &header, data, event);
6214 
6215 	perf_output_end(&handle);
6216 
6217 exit:
6218 	rcu_read_unlock();
6219 }
6220 
6221 void
6222 perf_event_output_forward(struct perf_event *event,
6223 			 struct perf_sample_data *data,
6224 			 struct pt_regs *regs)
6225 {
6226 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6227 }
6228 
6229 void
6230 perf_event_output_backward(struct perf_event *event,
6231 			   struct perf_sample_data *data,
6232 			   struct pt_regs *regs)
6233 {
6234 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6235 }
6236 
6237 void
6238 perf_event_output(struct perf_event *event,
6239 		  struct perf_sample_data *data,
6240 		  struct pt_regs *regs)
6241 {
6242 	__perf_event_output(event, data, regs, perf_output_begin);
6243 }
6244 
6245 /*
6246  * read event_id
6247  */
6248 
6249 struct perf_read_event {
6250 	struct perf_event_header	header;
6251 
6252 	u32				pid;
6253 	u32				tid;
6254 };
6255 
6256 static void
6257 perf_event_read_event(struct perf_event *event,
6258 			struct task_struct *task)
6259 {
6260 	struct perf_output_handle handle;
6261 	struct perf_sample_data sample;
6262 	struct perf_read_event read_event = {
6263 		.header = {
6264 			.type = PERF_RECORD_READ,
6265 			.misc = 0,
6266 			.size = sizeof(read_event) + event->read_size,
6267 		},
6268 		.pid = perf_event_pid(event, task),
6269 		.tid = perf_event_tid(event, task),
6270 	};
6271 	int ret;
6272 
6273 	perf_event_header__init_id(&read_event.header, &sample, event);
6274 	ret = perf_output_begin(&handle, event, read_event.header.size);
6275 	if (ret)
6276 		return;
6277 
6278 	perf_output_put(&handle, read_event);
6279 	perf_output_read(&handle, event);
6280 	perf_event__output_id_sample(event, &handle, &sample);
6281 
6282 	perf_output_end(&handle);
6283 }
6284 
6285 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6286 
6287 static void
6288 perf_iterate_ctx(struct perf_event_context *ctx,
6289 		   perf_iterate_f output,
6290 		   void *data, bool all)
6291 {
6292 	struct perf_event *event;
6293 
6294 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6295 		if (!all) {
6296 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6297 				continue;
6298 			if (!event_filter_match(event))
6299 				continue;
6300 		}
6301 
6302 		output(event, data);
6303 	}
6304 }
6305 
6306 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6307 {
6308 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6309 	struct perf_event *event;
6310 
6311 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6312 		/*
6313 		 * Skip events that are not fully formed yet; ensure that
6314 		 * if we observe event->ctx, both event and ctx will be
6315 		 * complete enough. See perf_install_in_context().
6316 		 */
6317 		if (!smp_load_acquire(&event->ctx))
6318 			continue;
6319 
6320 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6321 			continue;
6322 		if (!event_filter_match(event))
6323 			continue;
6324 		output(event, data);
6325 	}
6326 }
6327 
6328 /*
6329  * Iterate all events that need to receive side-band events.
6330  *
6331  * For new callers; ensure that account_pmu_sb_event() includes
6332  * your event, otherwise it might not get delivered.
6333  */
6334 static void
6335 perf_iterate_sb(perf_iterate_f output, void *data,
6336 	       struct perf_event_context *task_ctx)
6337 {
6338 	struct perf_event_context *ctx;
6339 	int ctxn;
6340 
6341 	rcu_read_lock();
6342 	preempt_disable();
6343 
6344 	/*
6345 	 * If we have task_ctx != NULL we only notify the task context itself.
6346 	 * The task_ctx is set only for EXIT events before releasing task
6347 	 * context.
6348 	 */
6349 	if (task_ctx) {
6350 		perf_iterate_ctx(task_ctx, output, data, false);
6351 		goto done;
6352 	}
6353 
6354 	perf_iterate_sb_cpu(output, data);
6355 
6356 	for_each_task_context_nr(ctxn) {
6357 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6358 		if (ctx)
6359 			perf_iterate_ctx(ctx, output, data, false);
6360 	}
6361 done:
6362 	preempt_enable();
6363 	rcu_read_unlock();
6364 }
6365 
6366 /*
6367  * Clear all file-based filters at exec, they'll have to be
6368  * re-instated when/if these objects are mmapped again.
6369  */
6370 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6371 {
6372 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6373 	struct perf_addr_filter *filter;
6374 	unsigned int restart = 0, count = 0;
6375 	unsigned long flags;
6376 
6377 	if (!has_addr_filter(event))
6378 		return;
6379 
6380 	raw_spin_lock_irqsave(&ifh->lock, flags);
6381 	list_for_each_entry(filter, &ifh->list, entry) {
6382 		if (filter->inode) {
6383 			event->addr_filters_offs[count] = 0;
6384 			restart++;
6385 		}
6386 
6387 		count++;
6388 	}
6389 
6390 	if (restart)
6391 		event->addr_filters_gen++;
6392 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6393 
6394 	if (restart)
6395 		perf_event_stop(event, 1);
6396 }
6397 
6398 void perf_event_exec(void)
6399 {
6400 	struct perf_event_context *ctx;
6401 	int ctxn;
6402 
6403 	rcu_read_lock();
6404 	for_each_task_context_nr(ctxn) {
6405 		ctx = current->perf_event_ctxp[ctxn];
6406 		if (!ctx)
6407 			continue;
6408 
6409 		perf_event_enable_on_exec(ctxn);
6410 
6411 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6412 				   true);
6413 	}
6414 	rcu_read_unlock();
6415 }
6416 
6417 struct remote_output {
6418 	struct ring_buffer	*rb;
6419 	int			err;
6420 };
6421 
6422 static void __perf_event_output_stop(struct perf_event *event, void *data)
6423 {
6424 	struct perf_event *parent = event->parent;
6425 	struct remote_output *ro = data;
6426 	struct ring_buffer *rb = ro->rb;
6427 	struct stop_event_data sd = {
6428 		.event	= event,
6429 	};
6430 
6431 	if (!has_aux(event))
6432 		return;
6433 
6434 	if (!parent)
6435 		parent = event;
6436 
6437 	/*
6438 	 * In case of inheritance, it will be the parent that links to the
6439 	 * ring-buffer, but it will be the child that's actually using it.
6440 	 *
6441 	 * We are using event::rb to determine if the event should be stopped,
6442 	 * however this may race with ring_buffer_attach() (through set_output),
6443 	 * which will make us skip the event that actually needs to be stopped.
6444 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6445 	 * its rb pointer.
6446 	 */
6447 	if (rcu_dereference(parent->rb) == rb)
6448 		ro->err = __perf_event_stop(&sd);
6449 }
6450 
6451 static int __perf_pmu_output_stop(void *info)
6452 {
6453 	struct perf_event *event = info;
6454 	struct pmu *pmu = event->pmu;
6455 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6456 	struct remote_output ro = {
6457 		.rb	= event->rb,
6458 	};
6459 
6460 	rcu_read_lock();
6461 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6462 	if (cpuctx->task_ctx)
6463 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6464 				   &ro, false);
6465 	rcu_read_unlock();
6466 
6467 	return ro.err;
6468 }
6469 
6470 static void perf_pmu_output_stop(struct perf_event *event)
6471 {
6472 	struct perf_event *iter;
6473 	int err, cpu;
6474 
6475 restart:
6476 	rcu_read_lock();
6477 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6478 		/*
6479 		 * For per-CPU events, we need to make sure that neither they
6480 		 * nor their children are running; for cpu==-1 events it's
6481 		 * sufficient to stop the event itself if it's active, since
6482 		 * it can't have children.
6483 		 */
6484 		cpu = iter->cpu;
6485 		if (cpu == -1)
6486 			cpu = READ_ONCE(iter->oncpu);
6487 
6488 		if (cpu == -1)
6489 			continue;
6490 
6491 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6492 		if (err == -EAGAIN) {
6493 			rcu_read_unlock();
6494 			goto restart;
6495 		}
6496 	}
6497 	rcu_read_unlock();
6498 }
6499 
6500 /*
6501  * task tracking -- fork/exit
6502  *
6503  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6504  */
6505 
6506 struct perf_task_event {
6507 	struct task_struct		*task;
6508 	struct perf_event_context	*task_ctx;
6509 
6510 	struct {
6511 		struct perf_event_header	header;
6512 
6513 		u32				pid;
6514 		u32				ppid;
6515 		u32				tid;
6516 		u32				ptid;
6517 		u64				time;
6518 	} event_id;
6519 };
6520 
6521 static int perf_event_task_match(struct perf_event *event)
6522 {
6523 	return event->attr.comm  || event->attr.mmap ||
6524 	       event->attr.mmap2 || event->attr.mmap_data ||
6525 	       event->attr.task;
6526 }
6527 
6528 static void perf_event_task_output(struct perf_event *event,
6529 				   void *data)
6530 {
6531 	struct perf_task_event *task_event = data;
6532 	struct perf_output_handle handle;
6533 	struct perf_sample_data	sample;
6534 	struct task_struct *task = task_event->task;
6535 	int ret, size = task_event->event_id.header.size;
6536 
6537 	if (!perf_event_task_match(event))
6538 		return;
6539 
6540 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6541 
6542 	ret = perf_output_begin(&handle, event,
6543 				task_event->event_id.header.size);
6544 	if (ret)
6545 		goto out;
6546 
6547 	task_event->event_id.pid = perf_event_pid(event, task);
6548 	task_event->event_id.ppid = perf_event_pid(event, current);
6549 
6550 	task_event->event_id.tid = perf_event_tid(event, task);
6551 	task_event->event_id.ptid = perf_event_tid(event, current);
6552 
6553 	task_event->event_id.time = perf_event_clock(event);
6554 
6555 	perf_output_put(&handle, task_event->event_id);
6556 
6557 	perf_event__output_id_sample(event, &handle, &sample);
6558 
6559 	perf_output_end(&handle);
6560 out:
6561 	task_event->event_id.header.size = size;
6562 }
6563 
6564 static void perf_event_task(struct task_struct *task,
6565 			      struct perf_event_context *task_ctx,
6566 			      int new)
6567 {
6568 	struct perf_task_event task_event;
6569 
6570 	if (!atomic_read(&nr_comm_events) &&
6571 	    !atomic_read(&nr_mmap_events) &&
6572 	    !atomic_read(&nr_task_events))
6573 		return;
6574 
6575 	task_event = (struct perf_task_event){
6576 		.task	  = task,
6577 		.task_ctx = task_ctx,
6578 		.event_id    = {
6579 			.header = {
6580 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6581 				.misc = 0,
6582 				.size = sizeof(task_event.event_id),
6583 			},
6584 			/* .pid  */
6585 			/* .ppid */
6586 			/* .tid  */
6587 			/* .ptid */
6588 			/* .time */
6589 		},
6590 	};
6591 
6592 	perf_iterate_sb(perf_event_task_output,
6593 		       &task_event,
6594 		       task_ctx);
6595 }
6596 
6597 void perf_event_fork(struct task_struct *task)
6598 {
6599 	perf_event_task(task, NULL, 1);
6600 	perf_event_namespaces(task);
6601 }
6602 
6603 /*
6604  * comm tracking
6605  */
6606 
6607 struct perf_comm_event {
6608 	struct task_struct	*task;
6609 	char			*comm;
6610 	int			comm_size;
6611 
6612 	struct {
6613 		struct perf_event_header	header;
6614 
6615 		u32				pid;
6616 		u32				tid;
6617 	} event_id;
6618 };
6619 
6620 static int perf_event_comm_match(struct perf_event *event)
6621 {
6622 	return event->attr.comm;
6623 }
6624 
6625 static void perf_event_comm_output(struct perf_event *event,
6626 				   void *data)
6627 {
6628 	struct perf_comm_event *comm_event = data;
6629 	struct perf_output_handle handle;
6630 	struct perf_sample_data sample;
6631 	int size = comm_event->event_id.header.size;
6632 	int ret;
6633 
6634 	if (!perf_event_comm_match(event))
6635 		return;
6636 
6637 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6638 	ret = perf_output_begin(&handle, event,
6639 				comm_event->event_id.header.size);
6640 
6641 	if (ret)
6642 		goto out;
6643 
6644 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6645 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6646 
6647 	perf_output_put(&handle, comm_event->event_id);
6648 	__output_copy(&handle, comm_event->comm,
6649 				   comm_event->comm_size);
6650 
6651 	perf_event__output_id_sample(event, &handle, &sample);
6652 
6653 	perf_output_end(&handle);
6654 out:
6655 	comm_event->event_id.header.size = size;
6656 }
6657 
6658 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6659 {
6660 	char comm[TASK_COMM_LEN];
6661 	unsigned int size;
6662 
6663 	memset(comm, 0, sizeof(comm));
6664 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6665 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6666 
6667 	comm_event->comm = comm;
6668 	comm_event->comm_size = size;
6669 
6670 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6671 
6672 	perf_iterate_sb(perf_event_comm_output,
6673 		       comm_event,
6674 		       NULL);
6675 }
6676 
6677 void perf_event_comm(struct task_struct *task, bool exec)
6678 {
6679 	struct perf_comm_event comm_event;
6680 
6681 	if (!atomic_read(&nr_comm_events))
6682 		return;
6683 
6684 	comm_event = (struct perf_comm_event){
6685 		.task	= task,
6686 		/* .comm      */
6687 		/* .comm_size */
6688 		.event_id  = {
6689 			.header = {
6690 				.type = PERF_RECORD_COMM,
6691 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6692 				/* .size */
6693 			},
6694 			/* .pid */
6695 			/* .tid */
6696 		},
6697 	};
6698 
6699 	perf_event_comm_event(&comm_event);
6700 }
6701 
6702 /*
6703  * namespaces tracking
6704  */
6705 
6706 struct perf_namespaces_event {
6707 	struct task_struct		*task;
6708 
6709 	struct {
6710 		struct perf_event_header	header;
6711 
6712 		u32				pid;
6713 		u32				tid;
6714 		u64				nr_namespaces;
6715 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6716 	} event_id;
6717 };
6718 
6719 static int perf_event_namespaces_match(struct perf_event *event)
6720 {
6721 	return event->attr.namespaces;
6722 }
6723 
6724 static void perf_event_namespaces_output(struct perf_event *event,
6725 					 void *data)
6726 {
6727 	struct perf_namespaces_event *namespaces_event = data;
6728 	struct perf_output_handle handle;
6729 	struct perf_sample_data sample;
6730 	int ret;
6731 
6732 	if (!perf_event_namespaces_match(event))
6733 		return;
6734 
6735 	perf_event_header__init_id(&namespaces_event->event_id.header,
6736 				   &sample, event);
6737 	ret = perf_output_begin(&handle, event,
6738 				namespaces_event->event_id.header.size);
6739 	if (ret)
6740 		return;
6741 
6742 	namespaces_event->event_id.pid = perf_event_pid(event,
6743 							namespaces_event->task);
6744 	namespaces_event->event_id.tid = perf_event_tid(event,
6745 							namespaces_event->task);
6746 
6747 	perf_output_put(&handle, namespaces_event->event_id);
6748 
6749 	perf_event__output_id_sample(event, &handle, &sample);
6750 
6751 	perf_output_end(&handle);
6752 }
6753 
6754 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6755 				   struct task_struct *task,
6756 				   const struct proc_ns_operations *ns_ops)
6757 {
6758 	struct path ns_path;
6759 	struct inode *ns_inode;
6760 	void *error;
6761 
6762 	error = ns_get_path(&ns_path, task, ns_ops);
6763 	if (!error) {
6764 		ns_inode = ns_path.dentry->d_inode;
6765 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6766 		ns_link_info->ino = ns_inode->i_ino;
6767 	}
6768 }
6769 
6770 void perf_event_namespaces(struct task_struct *task)
6771 {
6772 	struct perf_namespaces_event namespaces_event;
6773 	struct perf_ns_link_info *ns_link_info;
6774 
6775 	if (!atomic_read(&nr_namespaces_events))
6776 		return;
6777 
6778 	namespaces_event = (struct perf_namespaces_event){
6779 		.task	= task,
6780 		.event_id  = {
6781 			.header = {
6782 				.type = PERF_RECORD_NAMESPACES,
6783 				.misc = 0,
6784 				.size = sizeof(namespaces_event.event_id),
6785 			},
6786 			/* .pid */
6787 			/* .tid */
6788 			.nr_namespaces = NR_NAMESPACES,
6789 			/* .link_info[NR_NAMESPACES] */
6790 		},
6791 	};
6792 
6793 	ns_link_info = namespaces_event.event_id.link_info;
6794 
6795 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6796 			       task, &mntns_operations);
6797 
6798 #ifdef CONFIG_USER_NS
6799 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6800 			       task, &userns_operations);
6801 #endif
6802 #ifdef CONFIG_NET_NS
6803 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6804 			       task, &netns_operations);
6805 #endif
6806 #ifdef CONFIG_UTS_NS
6807 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6808 			       task, &utsns_operations);
6809 #endif
6810 #ifdef CONFIG_IPC_NS
6811 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6812 			       task, &ipcns_operations);
6813 #endif
6814 #ifdef CONFIG_PID_NS
6815 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6816 			       task, &pidns_operations);
6817 #endif
6818 #ifdef CONFIG_CGROUPS
6819 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6820 			       task, &cgroupns_operations);
6821 #endif
6822 
6823 	perf_iterate_sb(perf_event_namespaces_output,
6824 			&namespaces_event,
6825 			NULL);
6826 }
6827 
6828 /*
6829  * mmap tracking
6830  */
6831 
6832 struct perf_mmap_event {
6833 	struct vm_area_struct	*vma;
6834 
6835 	const char		*file_name;
6836 	int			file_size;
6837 	int			maj, min;
6838 	u64			ino;
6839 	u64			ino_generation;
6840 	u32			prot, flags;
6841 
6842 	struct {
6843 		struct perf_event_header	header;
6844 
6845 		u32				pid;
6846 		u32				tid;
6847 		u64				start;
6848 		u64				len;
6849 		u64				pgoff;
6850 	} event_id;
6851 };
6852 
6853 static int perf_event_mmap_match(struct perf_event *event,
6854 				 void *data)
6855 {
6856 	struct perf_mmap_event *mmap_event = data;
6857 	struct vm_area_struct *vma = mmap_event->vma;
6858 	int executable = vma->vm_flags & VM_EXEC;
6859 
6860 	return (!executable && event->attr.mmap_data) ||
6861 	       (executable && (event->attr.mmap || event->attr.mmap2));
6862 }
6863 
6864 static void perf_event_mmap_output(struct perf_event *event,
6865 				   void *data)
6866 {
6867 	struct perf_mmap_event *mmap_event = data;
6868 	struct perf_output_handle handle;
6869 	struct perf_sample_data sample;
6870 	int size = mmap_event->event_id.header.size;
6871 	int ret;
6872 
6873 	if (!perf_event_mmap_match(event, data))
6874 		return;
6875 
6876 	if (event->attr.mmap2) {
6877 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6878 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6879 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6880 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6881 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6882 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6883 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6884 	}
6885 
6886 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6887 	ret = perf_output_begin(&handle, event,
6888 				mmap_event->event_id.header.size);
6889 	if (ret)
6890 		goto out;
6891 
6892 	mmap_event->event_id.pid = perf_event_pid(event, current);
6893 	mmap_event->event_id.tid = perf_event_tid(event, current);
6894 
6895 	perf_output_put(&handle, mmap_event->event_id);
6896 
6897 	if (event->attr.mmap2) {
6898 		perf_output_put(&handle, mmap_event->maj);
6899 		perf_output_put(&handle, mmap_event->min);
6900 		perf_output_put(&handle, mmap_event->ino);
6901 		perf_output_put(&handle, mmap_event->ino_generation);
6902 		perf_output_put(&handle, mmap_event->prot);
6903 		perf_output_put(&handle, mmap_event->flags);
6904 	}
6905 
6906 	__output_copy(&handle, mmap_event->file_name,
6907 				   mmap_event->file_size);
6908 
6909 	perf_event__output_id_sample(event, &handle, &sample);
6910 
6911 	perf_output_end(&handle);
6912 out:
6913 	mmap_event->event_id.header.size = size;
6914 }
6915 
6916 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6917 {
6918 	struct vm_area_struct *vma = mmap_event->vma;
6919 	struct file *file = vma->vm_file;
6920 	int maj = 0, min = 0;
6921 	u64 ino = 0, gen = 0;
6922 	u32 prot = 0, flags = 0;
6923 	unsigned int size;
6924 	char tmp[16];
6925 	char *buf = NULL;
6926 	char *name;
6927 
6928 	if (vma->vm_flags & VM_READ)
6929 		prot |= PROT_READ;
6930 	if (vma->vm_flags & VM_WRITE)
6931 		prot |= PROT_WRITE;
6932 	if (vma->vm_flags & VM_EXEC)
6933 		prot |= PROT_EXEC;
6934 
6935 	if (vma->vm_flags & VM_MAYSHARE)
6936 		flags = MAP_SHARED;
6937 	else
6938 		flags = MAP_PRIVATE;
6939 
6940 	if (vma->vm_flags & VM_DENYWRITE)
6941 		flags |= MAP_DENYWRITE;
6942 	if (vma->vm_flags & VM_MAYEXEC)
6943 		flags |= MAP_EXECUTABLE;
6944 	if (vma->vm_flags & VM_LOCKED)
6945 		flags |= MAP_LOCKED;
6946 	if (vma->vm_flags & VM_HUGETLB)
6947 		flags |= MAP_HUGETLB;
6948 
6949 	if (file) {
6950 		struct inode *inode;
6951 		dev_t dev;
6952 
6953 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6954 		if (!buf) {
6955 			name = "//enomem";
6956 			goto cpy_name;
6957 		}
6958 		/*
6959 		 * d_path() works from the end of the rb backwards, so we
6960 		 * need to add enough zero bytes after the string to handle
6961 		 * the 64bit alignment we do later.
6962 		 */
6963 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6964 		if (IS_ERR(name)) {
6965 			name = "//toolong";
6966 			goto cpy_name;
6967 		}
6968 		inode = file_inode(vma->vm_file);
6969 		dev = inode->i_sb->s_dev;
6970 		ino = inode->i_ino;
6971 		gen = inode->i_generation;
6972 		maj = MAJOR(dev);
6973 		min = MINOR(dev);
6974 
6975 		goto got_name;
6976 	} else {
6977 		if (vma->vm_ops && vma->vm_ops->name) {
6978 			name = (char *) vma->vm_ops->name(vma);
6979 			if (name)
6980 				goto cpy_name;
6981 		}
6982 
6983 		name = (char *)arch_vma_name(vma);
6984 		if (name)
6985 			goto cpy_name;
6986 
6987 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6988 				vma->vm_end >= vma->vm_mm->brk) {
6989 			name = "[heap]";
6990 			goto cpy_name;
6991 		}
6992 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6993 				vma->vm_end >= vma->vm_mm->start_stack) {
6994 			name = "[stack]";
6995 			goto cpy_name;
6996 		}
6997 
6998 		name = "//anon";
6999 		goto cpy_name;
7000 	}
7001 
7002 cpy_name:
7003 	strlcpy(tmp, name, sizeof(tmp));
7004 	name = tmp;
7005 got_name:
7006 	/*
7007 	 * Since our buffer works in 8 byte units we need to align our string
7008 	 * size to a multiple of 8. However, we must guarantee the tail end is
7009 	 * zero'd out to avoid leaking random bits to userspace.
7010 	 */
7011 	size = strlen(name)+1;
7012 	while (!IS_ALIGNED(size, sizeof(u64)))
7013 		name[size++] = '\0';
7014 
7015 	mmap_event->file_name = name;
7016 	mmap_event->file_size = size;
7017 	mmap_event->maj = maj;
7018 	mmap_event->min = min;
7019 	mmap_event->ino = ino;
7020 	mmap_event->ino_generation = gen;
7021 	mmap_event->prot = prot;
7022 	mmap_event->flags = flags;
7023 
7024 	if (!(vma->vm_flags & VM_EXEC))
7025 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7026 
7027 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7028 
7029 	perf_iterate_sb(perf_event_mmap_output,
7030 		       mmap_event,
7031 		       NULL);
7032 
7033 	kfree(buf);
7034 }
7035 
7036 /*
7037  * Check whether inode and address range match filter criteria.
7038  */
7039 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7040 				     struct file *file, unsigned long offset,
7041 				     unsigned long size)
7042 {
7043 	if (filter->inode != file_inode(file))
7044 		return false;
7045 
7046 	if (filter->offset > offset + size)
7047 		return false;
7048 
7049 	if (filter->offset + filter->size < offset)
7050 		return false;
7051 
7052 	return true;
7053 }
7054 
7055 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7056 {
7057 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7058 	struct vm_area_struct *vma = data;
7059 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7060 	struct file *file = vma->vm_file;
7061 	struct perf_addr_filter *filter;
7062 	unsigned int restart = 0, count = 0;
7063 
7064 	if (!has_addr_filter(event))
7065 		return;
7066 
7067 	if (!file)
7068 		return;
7069 
7070 	raw_spin_lock_irqsave(&ifh->lock, flags);
7071 	list_for_each_entry(filter, &ifh->list, entry) {
7072 		if (perf_addr_filter_match(filter, file, off,
7073 					     vma->vm_end - vma->vm_start)) {
7074 			event->addr_filters_offs[count] = vma->vm_start;
7075 			restart++;
7076 		}
7077 
7078 		count++;
7079 	}
7080 
7081 	if (restart)
7082 		event->addr_filters_gen++;
7083 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7084 
7085 	if (restart)
7086 		perf_event_stop(event, 1);
7087 }
7088 
7089 /*
7090  * Adjust all task's events' filters to the new vma
7091  */
7092 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7093 {
7094 	struct perf_event_context *ctx;
7095 	int ctxn;
7096 
7097 	/*
7098 	 * Data tracing isn't supported yet and as such there is no need
7099 	 * to keep track of anything that isn't related to executable code:
7100 	 */
7101 	if (!(vma->vm_flags & VM_EXEC))
7102 		return;
7103 
7104 	rcu_read_lock();
7105 	for_each_task_context_nr(ctxn) {
7106 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7107 		if (!ctx)
7108 			continue;
7109 
7110 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7111 	}
7112 	rcu_read_unlock();
7113 }
7114 
7115 void perf_event_mmap(struct vm_area_struct *vma)
7116 {
7117 	struct perf_mmap_event mmap_event;
7118 
7119 	if (!atomic_read(&nr_mmap_events))
7120 		return;
7121 
7122 	mmap_event = (struct perf_mmap_event){
7123 		.vma	= vma,
7124 		/* .file_name */
7125 		/* .file_size */
7126 		.event_id  = {
7127 			.header = {
7128 				.type = PERF_RECORD_MMAP,
7129 				.misc = PERF_RECORD_MISC_USER,
7130 				/* .size */
7131 			},
7132 			/* .pid */
7133 			/* .tid */
7134 			.start  = vma->vm_start,
7135 			.len    = vma->vm_end - vma->vm_start,
7136 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7137 		},
7138 		/* .maj (attr_mmap2 only) */
7139 		/* .min (attr_mmap2 only) */
7140 		/* .ino (attr_mmap2 only) */
7141 		/* .ino_generation (attr_mmap2 only) */
7142 		/* .prot (attr_mmap2 only) */
7143 		/* .flags (attr_mmap2 only) */
7144 	};
7145 
7146 	perf_addr_filters_adjust(vma);
7147 	perf_event_mmap_event(&mmap_event);
7148 }
7149 
7150 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7151 			  unsigned long size, u64 flags)
7152 {
7153 	struct perf_output_handle handle;
7154 	struct perf_sample_data sample;
7155 	struct perf_aux_event {
7156 		struct perf_event_header	header;
7157 		u64				offset;
7158 		u64				size;
7159 		u64				flags;
7160 	} rec = {
7161 		.header = {
7162 			.type = PERF_RECORD_AUX,
7163 			.misc = 0,
7164 			.size = sizeof(rec),
7165 		},
7166 		.offset		= head,
7167 		.size		= size,
7168 		.flags		= flags,
7169 	};
7170 	int ret;
7171 
7172 	perf_event_header__init_id(&rec.header, &sample, event);
7173 	ret = perf_output_begin(&handle, event, rec.header.size);
7174 
7175 	if (ret)
7176 		return;
7177 
7178 	perf_output_put(&handle, rec);
7179 	perf_event__output_id_sample(event, &handle, &sample);
7180 
7181 	perf_output_end(&handle);
7182 }
7183 
7184 /*
7185  * Lost/dropped samples logging
7186  */
7187 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7188 {
7189 	struct perf_output_handle handle;
7190 	struct perf_sample_data sample;
7191 	int ret;
7192 
7193 	struct {
7194 		struct perf_event_header	header;
7195 		u64				lost;
7196 	} lost_samples_event = {
7197 		.header = {
7198 			.type = PERF_RECORD_LOST_SAMPLES,
7199 			.misc = 0,
7200 			.size = sizeof(lost_samples_event),
7201 		},
7202 		.lost		= lost,
7203 	};
7204 
7205 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7206 
7207 	ret = perf_output_begin(&handle, event,
7208 				lost_samples_event.header.size);
7209 	if (ret)
7210 		return;
7211 
7212 	perf_output_put(&handle, lost_samples_event);
7213 	perf_event__output_id_sample(event, &handle, &sample);
7214 	perf_output_end(&handle);
7215 }
7216 
7217 /*
7218  * context_switch tracking
7219  */
7220 
7221 struct perf_switch_event {
7222 	struct task_struct	*task;
7223 	struct task_struct	*next_prev;
7224 
7225 	struct {
7226 		struct perf_event_header	header;
7227 		u32				next_prev_pid;
7228 		u32				next_prev_tid;
7229 	} event_id;
7230 };
7231 
7232 static int perf_event_switch_match(struct perf_event *event)
7233 {
7234 	return event->attr.context_switch;
7235 }
7236 
7237 static void perf_event_switch_output(struct perf_event *event, void *data)
7238 {
7239 	struct perf_switch_event *se = data;
7240 	struct perf_output_handle handle;
7241 	struct perf_sample_data sample;
7242 	int ret;
7243 
7244 	if (!perf_event_switch_match(event))
7245 		return;
7246 
7247 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7248 	if (event->ctx->task) {
7249 		se->event_id.header.type = PERF_RECORD_SWITCH;
7250 		se->event_id.header.size = sizeof(se->event_id.header);
7251 	} else {
7252 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7253 		se->event_id.header.size = sizeof(se->event_id);
7254 		se->event_id.next_prev_pid =
7255 					perf_event_pid(event, se->next_prev);
7256 		se->event_id.next_prev_tid =
7257 					perf_event_tid(event, se->next_prev);
7258 	}
7259 
7260 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7261 
7262 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7263 	if (ret)
7264 		return;
7265 
7266 	if (event->ctx->task)
7267 		perf_output_put(&handle, se->event_id.header);
7268 	else
7269 		perf_output_put(&handle, se->event_id);
7270 
7271 	perf_event__output_id_sample(event, &handle, &sample);
7272 
7273 	perf_output_end(&handle);
7274 }
7275 
7276 static void perf_event_switch(struct task_struct *task,
7277 			      struct task_struct *next_prev, bool sched_in)
7278 {
7279 	struct perf_switch_event switch_event;
7280 
7281 	/* N.B. caller checks nr_switch_events != 0 */
7282 
7283 	switch_event = (struct perf_switch_event){
7284 		.task		= task,
7285 		.next_prev	= next_prev,
7286 		.event_id	= {
7287 			.header = {
7288 				/* .type */
7289 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7290 				/* .size */
7291 			},
7292 			/* .next_prev_pid */
7293 			/* .next_prev_tid */
7294 		},
7295 	};
7296 
7297 	perf_iterate_sb(perf_event_switch_output,
7298 		       &switch_event,
7299 		       NULL);
7300 }
7301 
7302 /*
7303  * IRQ throttle logging
7304  */
7305 
7306 static void perf_log_throttle(struct perf_event *event, int enable)
7307 {
7308 	struct perf_output_handle handle;
7309 	struct perf_sample_data sample;
7310 	int ret;
7311 
7312 	struct {
7313 		struct perf_event_header	header;
7314 		u64				time;
7315 		u64				id;
7316 		u64				stream_id;
7317 	} throttle_event = {
7318 		.header = {
7319 			.type = PERF_RECORD_THROTTLE,
7320 			.misc = 0,
7321 			.size = sizeof(throttle_event),
7322 		},
7323 		.time		= perf_event_clock(event),
7324 		.id		= primary_event_id(event),
7325 		.stream_id	= event->id,
7326 	};
7327 
7328 	if (enable)
7329 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7330 
7331 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7332 
7333 	ret = perf_output_begin(&handle, event,
7334 				throttle_event.header.size);
7335 	if (ret)
7336 		return;
7337 
7338 	perf_output_put(&handle, throttle_event);
7339 	perf_event__output_id_sample(event, &handle, &sample);
7340 	perf_output_end(&handle);
7341 }
7342 
7343 void perf_event_itrace_started(struct perf_event *event)
7344 {
7345 	event->attach_state |= PERF_ATTACH_ITRACE;
7346 }
7347 
7348 static void perf_log_itrace_start(struct perf_event *event)
7349 {
7350 	struct perf_output_handle handle;
7351 	struct perf_sample_data sample;
7352 	struct perf_aux_event {
7353 		struct perf_event_header        header;
7354 		u32				pid;
7355 		u32				tid;
7356 	} rec;
7357 	int ret;
7358 
7359 	if (event->parent)
7360 		event = event->parent;
7361 
7362 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7363 	    event->attach_state & PERF_ATTACH_ITRACE)
7364 		return;
7365 
7366 	rec.header.type	= PERF_RECORD_ITRACE_START;
7367 	rec.header.misc	= 0;
7368 	rec.header.size	= sizeof(rec);
7369 	rec.pid	= perf_event_pid(event, current);
7370 	rec.tid	= perf_event_tid(event, current);
7371 
7372 	perf_event_header__init_id(&rec.header, &sample, event);
7373 	ret = perf_output_begin(&handle, event, rec.header.size);
7374 
7375 	if (ret)
7376 		return;
7377 
7378 	perf_output_put(&handle, rec);
7379 	perf_event__output_id_sample(event, &handle, &sample);
7380 
7381 	perf_output_end(&handle);
7382 }
7383 
7384 static int
7385 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7386 {
7387 	struct hw_perf_event *hwc = &event->hw;
7388 	int ret = 0;
7389 	u64 seq;
7390 
7391 	seq = __this_cpu_read(perf_throttled_seq);
7392 	if (seq != hwc->interrupts_seq) {
7393 		hwc->interrupts_seq = seq;
7394 		hwc->interrupts = 1;
7395 	} else {
7396 		hwc->interrupts++;
7397 		if (unlikely(throttle
7398 			     && hwc->interrupts >= max_samples_per_tick)) {
7399 			__this_cpu_inc(perf_throttled_count);
7400 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7401 			hwc->interrupts = MAX_INTERRUPTS;
7402 			perf_log_throttle(event, 0);
7403 			ret = 1;
7404 		}
7405 	}
7406 
7407 	if (event->attr.freq) {
7408 		u64 now = perf_clock();
7409 		s64 delta = now - hwc->freq_time_stamp;
7410 
7411 		hwc->freq_time_stamp = now;
7412 
7413 		if (delta > 0 && delta < 2*TICK_NSEC)
7414 			perf_adjust_period(event, delta, hwc->last_period, true);
7415 	}
7416 
7417 	return ret;
7418 }
7419 
7420 int perf_event_account_interrupt(struct perf_event *event)
7421 {
7422 	return __perf_event_account_interrupt(event, 1);
7423 }
7424 
7425 /*
7426  * Generic event overflow handling, sampling.
7427  */
7428 
7429 static int __perf_event_overflow(struct perf_event *event,
7430 				   int throttle, struct perf_sample_data *data,
7431 				   struct pt_regs *regs)
7432 {
7433 	int events = atomic_read(&event->event_limit);
7434 	int ret = 0;
7435 
7436 	/*
7437 	 * Non-sampling counters might still use the PMI to fold short
7438 	 * hardware counters, ignore those.
7439 	 */
7440 	if (unlikely(!is_sampling_event(event)))
7441 		return 0;
7442 
7443 	ret = __perf_event_account_interrupt(event, throttle);
7444 
7445 	/*
7446 	 * XXX event_limit might not quite work as expected on inherited
7447 	 * events
7448 	 */
7449 
7450 	event->pending_kill = POLL_IN;
7451 	if (events && atomic_dec_and_test(&event->event_limit)) {
7452 		ret = 1;
7453 		event->pending_kill = POLL_HUP;
7454 
7455 		perf_event_disable_inatomic(event);
7456 	}
7457 
7458 	READ_ONCE(event->overflow_handler)(event, data, regs);
7459 
7460 	if (*perf_event_fasync(event) && event->pending_kill) {
7461 		event->pending_wakeup = 1;
7462 		irq_work_queue(&event->pending);
7463 	}
7464 
7465 	return ret;
7466 }
7467 
7468 int perf_event_overflow(struct perf_event *event,
7469 			  struct perf_sample_data *data,
7470 			  struct pt_regs *regs)
7471 {
7472 	return __perf_event_overflow(event, 1, data, regs);
7473 }
7474 
7475 /*
7476  * Generic software event infrastructure
7477  */
7478 
7479 struct swevent_htable {
7480 	struct swevent_hlist		*swevent_hlist;
7481 	struct mutex			hlist_mutex;
7482 	int				hlist_refcount;
7483 
7484 	/* Recursion avoidance in each contexts */
7485 	int				recursion[PERF_NR_CONTEXTS];
7486 };
7487 
7488 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7489 
7490 /*
7491  * We directly increment event->count and keep a second value in
7492  * event->hw.period_left to count intervals. This period event
7493  * is kept in the range [-sample_period, 0] so that we can use the
7494  * sign as trigger.
7495  */
7496 
7497 u64 perf_swevent_set_period(struct perf_event *event)
7498 {
7499 	struct hw_perf_event *hwc = &event->hw;
7500 	u64 period = hwc->last_period;
7501 	u64 nr, offset;
7502 	s64 old, val;
7503 
7504 	hwc->last_period = hwc->sample_period;
7505 
7506 again:
7507 	old = val = local64_read(&hwc->period_left);
7508 	if (val < 0)
7509 		return 0;
7510 
7511 	nr = div64_u64(period + val, period);
7512 	offset = nr * period;
7513 	val -= offset;
7514 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7515 		goto again;
7516 
7517 	return nr;
7518 }
7519 
7520 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7521 				    struct perf_sample_data *data,
7522 				    struct pt_regs *regs)
7523 {
7524 	struct hw_perf_event *hwc = &event->hw;
7525 	int throttle = 0;
7526 
7527 	if (!overflow)
7528 		overflow = perf_swevent_set_period(event);
7529 
7530 	if (hwc->interrupts == MAX_INTERRUPTS)
7531 		return;
7532 
7533 	for (; overflow; overflow--) {
7534 		if (__perf_event_overflow(event, throttle,
7535 					    data, regs)) {
7536 			/*
7537 			 * We inhibit the overflow from happening when
7538 			 * hwc->interrupts == MAX_INTERRUPTS.
7539 			 */
7540 			break;
7541 		}
7542 		throttle = 1;
7543 	}
7544 }
7545 
7546 static void perf_swevent_event(struct perf_event *event, u64 nr,
7547 			       struct perf_sample_data *data,
7548 			       struct pt_regs *regs)
7549 {
7550 	struct hw_perf_event *hwc = &event->hw;
7551 
7552 	local64_add(nr, &event->count);
7553 
7554 	if (!regs)
7555 		return;
7556 
7557 	if (!is_sampling_event(event))
7558 		return;
7559 
7560 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7561 		data->period = nr;
7562 		return perf_swevent_overflow(event, 1, data, regs);
7563 	} else
7564 		data->period = event->hw.last_period;
7565 
7566 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7567 		return perf_swevent_overflow(event, 1, data, regs);
7568 
7569 	if (local64_add_negative(nr, &hwc->period_left))
7570 		return;
7571 
7572 	perf_swevent_overflow(event, 0, data, regs);
7573 }
7574 
7575 static int perf_exclude_event(struct perf_event *event,
7576 			      struct pt_regs *regs)
7577 {
7578 	if (event->hw.state & PERF_HES_STOPPED)
7579 		return 1;
7580 
7581 	if (regs) {
7582 		if (event->attr.exclude_user && user_mode(regs))
7583 			return 1;
7584 
7585 		if (event->attr.exclude_kernel && !user_mode(regs))
7586 			return 1;
7587 	}
7588 
7589 	return 0;
7590 }
7591 
7592 static int perf_swevent_match(struct perf_event *event,
7593 				enum perf_type_id type,
7594 				u32 event_id,
7595 				struct perf_sample_data *data,
7596 				struct pt_regs *regs)
7597 {
7598 	if (event->attr.type != type)
7599 		return 0;
7600 
7601 	if (event->attr.config != event_id)
7602 		return 0;
7603 
7604 	if (perf_exclude_event(event, regs))
7605 		return 0;
7606 
7607 	return 1;
7608 }
7609 
7610 static inline u64 swevent_hash(u64 type, u32 event_id)
7611 {
7612 	u64 val = event_id | (type << 32);
7613 
7614 	return hash_64(val, SWEVENT_HLIST_BITS);
7615 }
7616 
7617 static inline struct hlist_head *
7618 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7619 {
7620 	u64 hash = swevent_hash(type, event_id);
7621 
7622 	return &hlist->heads[hash];
7623 }
7624 
7625 /* For the read side: events when they trigger */
7626 static inline struct hlist_head *
7627 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7628 {
7629 	struct swevent_hlist *hlist;
7630 
7631 	hlist = rcu_dereference(swhash->swevent_hlist);
7632 	if (!hlist)
7633 		return NULL;
7634 
7635 	return __find_swevent_head(hlist, type, event_id);
7636 }
7637 
7638 /* For the event head insertion and removal in the hlist */
7639 static inline struct hlist_head *
7640 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7641 {
7642 	struct swevent_hlist *hlist;
7643 	u32 event_id = event->attr.config;
7644 	u64 type = event->attr.type;
7645 
7646 	/*
7647 	 * Event scheduling is always serialized against hlist allocation
7648 	 * and release. Which makes the protected version suitable here.
7649 	 * The context lock guarantees that.
7650 	 */
7651 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7652 					  lockdep_is_held(&event->ctx->lock));
7653 	if (!hlist)
7654 		return NULL;
7655 
7656 	return __find_swevent_head(hlist, type, event_id);
7657 }
7658 
7659 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7660 				    u64 nr,
7661 				    struct perf_sample_data *data,
7662 				    struct pt_regs *regs)
7663 {
7664 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7665 	struct perf_event *event;
7666 	struct hlist_head *head;
7667 
7668 	rcu_read_lock();
7669 	head = find_swevent_head_rcu(swhash, type, event_id);
7670 	if (!head)
7671 		goto end;
7672 
7673 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7674 		if (perf_swevent_match(event, type, event_id, data, regs))
7675 			perf_swevent_event(event, nr, data, regs);
7676 	}
7677 end:
7678 	rcu_read_unlock();
7679 }
7680 
7681 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7682 
7683 int perf_swevent_get_recursion_context(void)
7684 {
7685 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7686 
7687 	return get_recursion_context(swhash->recursion);
7688 }
7689 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7690 
7691 void perf_swevent_put_recursion_context(int rctx)
7692 {
7693 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7694 
7695 	put_recursion_context(swhash->recursion, rctx);
7696 }
7697 
7698 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7699 {
7700 	struct perf_sample_data data;
7701 
7702 	if (WARN_ON_ONCE(!regs))
7703 		return;
7704 
7705 	perf_sample_data_init(&data, addr, 0);
7706 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7707 }
7708 
7709 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7710 {
7711 	int rctx;
7712 
7713 	preempt_disable_notrace();
7714 	rctx = perf_swevent_get_recursion_context();
7715 	if (unlikely(rctx < 0))
7716 		goto fail;
7717 
7718 	___perf_sw_event(event_id, nr, regs, addr);
7719 
7720 	perf_swevent_put_recursion_context(rctx);
7721 fail:
7722 	preempt_enable_notrace();
7723 }
7724 
7725 static void perf_swevent_read(struct perf_event *event)
7726 {
7727 }
7728 
7729 static int perf_swevent_add(struct perf_event *event, int flags)
7730 {
7731 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7732 	struct hw_perf_event *hwc = &event->hw;
7733 	struct hlist_head *head;
7734 
7735 	if (is_sampling_event(event)) {
7736 		hwc->last_period = hwc->sample_period;
7737 		perf_swevent_set_period(event);
7738 	}
7739 
7740 	hwc->state = !(flags & PERF_EF_START);
7741 
7742 	head = find_swevent_head(swhash, event);
7743 	if (WARN_ON_ONCE(!head))
7744 		return -EINVAL;
7745 
7746 	hlist_add_head_rcu(&event->hlist_entry, head);
7747 	perf_event_update_userpage(event);
7748 
7749 	return 0;
7750 }
7751 
7752 static void perf_swevent_del(struct perf_event *event, int flags)
7753 {
7754 	hlist_del_rcu(&event->hlist_entry);
7755 }
7756 
7757 static void perf_swevent_start(struct perf_event *event, int flags)
7758 {
7759 	event->hw.state = 0;
7760 }
7761 
7762 static void perf_swevent_stop(struct perf_event *event, int flags)
7763 {
7764 	event->hw.state = PERF_HES_STOPPED;
7765 }
7766 
7767 /* Deref the hlist from the update side */
7768 static inline struct swevent_hlist *
7769 swevent_hlist_deref(struct swevent_htable *swhash)
7770 {
7771 	return rcu_dereference_protected(swhash->swevent_hlist,
7772 					 lockdep_is_held(&swhash->hlist_mutex));
7773 }
7774 
7775 static void swevent_hlist_release(struct swevent_htable *swhash)
7776 {
7777 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7778 
7779 	if (!hlist)
7780 		return;
7781 
7782 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7783 	kfree_rcu(hlist, rcu_head);
7784 }
7785 
7786 static void swevent_hlist_put_cpu(int cpu)
7787 {
7788 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7789 
7790 	mutex_lock(&swhash->hlist_mutex);
7791 
7792 	if (!--swhash->hlist_refcount)
7793 		swevent_hlist_release(swhash);
7794 
7795 	mutex_unlock(&swhash->hlist_mutex);
7796 }
7797 
7798 static void swevent_hlist_put(void)
7799 {
7800 	int cpu;
7801 
7802 	for_each_possible_cpu(cpu)
7803 		swevent_hlist_put_cpu(cpu);
7804 }
7805 
7806 static int swevent_hlist_get_cpu(int cpu)
7807 {
7808 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7809 	int err = 0;
7810 
7811 	mutex_lock(&swhash->hlist_mutex);
7812 	if (!swevent_hlist_deref(swhash) &&
7813 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7814 		struct swevent_hlist *hlist;
7815 
7816 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7817 		if (!hlist) {
7818 			err = -ENOMEM;
7819 			goto exit;
7820 		}
7821 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7822 	}
7823 	swhash->hlist_refcount++;
7824 exit:
7825 	mutex_unlock(&swhash->hlist_mutex);
7826 
7827 	return err;
7828 }
7829 
7830 static int swevent_hlist_get(void)
7831 {
7832 	int err, cpu, failed_cpu;
7833 
7834 	mutex_lock(&pmus_lock);
7835 	for_each_possible_cpu(cpu) {
7836 		err = swevent_hlist_get_cpu(cpu);
7837 		if (err) {
7838 			failed_cpu = cpu;
7839 			goto fail;
7840 		}
7841 	}
7842 	mutex_unlock(&pmus_lock);
7843 	return 0;
7844 fail:
7845 	for_each_possible_cpu(cpu) {
7846 		if (cpu == failed_cpu)
7847 			break;
7848 		swevent_hlist_put_cpu(cpu);
7849 	}
7850 	mutex_unlock(&pmus_lock);
7851 	return err;
7852 }
7853 
7854 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7855 
7856 static void sw_perf_event_destroy(struct perf_event *event)
7857 {
7858 	u64 event_id = event->attr.config;
7859 
7860 	WARN_ON(event->parent);
7861 
7862 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7863 	swevent_hlist_put();
7864 }
7865 
7866 static int perf_swevent_init(struct perf_event *event)
7867 {
7868 	u64 event_id = event->attr.config;
7869 
7870 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7871 		return -ENOENT;
7872 
7873 	/*
7874 	 * no branch sampling for software events
7875 	 */
7876 	if (has_branch_stack(event))
7877 		return -EOPNOTSUPP;
7878 
7879 	switch (event_id) {
7880 	case PERF_COUNT_SW_CPU_CLOCK:
7881 	case PERF_COUNT_SW_TASK_CLOCK:
7882 		return -ENOENT;
7883 
7884 	default:
7885 		break;
7886 	}
7887 
7888 	if (event_id >= PERF_COUNT_SW_MAX)
7889 		return -ENOENT;
7890 
7891 	if (!event->parent) {
7892 		int err;
7893 
7894 		err = swevent_hlist_get();
7895 		if (err)
7896 			return err;
7897 
7898 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7899 		event->destroy = sw_perf_event_destroy;
7900 	}
7901 
7902 	return 0;
7903 }
7904 
7905 static struct pmu perf_swevent = {
7906 	.task_ctx_nr	= perf_sw_context,
7907 
7908 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7909 
7910 	.event_init	= perf_swevent_init,
7911 	.add		= perf_swevent_add,
7912 	.del		= perf_swevent_del,
7913 	.start		= perf_swevent_start,
7914 	.stop		= perf_swevent_stop,
7915 	.read		= perf_swevent_read,
7916 };
7917 
7918 #ifdef CONFIG_EVENT_TRACING
7919 
7920 static int perf_tp_filter_match(struct perf_event *event,
7921 				struct perf_sample_data *data)
7922 {
7923 	void *record = data->raw->frag.data;
7924 
7925 	/* only top level events have filters set */
7926 	if (event->parent)
7927 		event = event->parent;
7928 
7929 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7930 		return 1;
7931 	return 0;
7932 }
7933 
7934 static int perf_tp_event_match(struct perf_event *event,
7935 				struct perf_sample_data *data,
7936 				struct pt_regs *regs)
7937 {
7938 	if (event->hw.state & PERF_HES_STOPPED)
7939 		return 0;
7940 	/*
7941 	 * All tracepoints are from kernel-space.
7942 	 */
7943 	if (event->attr.exclude_kernel)
7944 		return 0;
7945 
7946 	if (!perf_tp_filter_match(event, data))
7947 		return 0;
7948 
7949 	return 1;
7950 }
7951 
7952 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7953 			       struct trace_event_call *call, u64 count,
7954 			       struct pt_regs *regs, struct hlist_head *head,
7955 			       struct task_struct *task)
7956 {
7957 	if (bpf_prog_array_valid(call)) {
7958 		*(struct pt_regs **)raw_data = regs;
7959 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7960 			perf_swevent_put_recursion_context(rctx);
7961 			return;
7962 		}
7963 	}
7964 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7965 		      rctx, task, NULL);
7966 }
7967 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7968 
7969 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7970 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7971 		   struct task_struct *task, struct perf_event *event)
7972 {
7973 	struct perf_sample_data data;
7974 
7975 	struct perf_raw_record raw = {
7976 		.frag = {
7977 			.size = entry_size,
7978 			.data = record,
7979 		},
7980 	};
7981 
7982 	perf_sample_data_init(&data, 0, 0);
7983 	data.raw = &raw;
7984 
7985 	perf_trace_buf_update(record, event_type);
7986 
7987 	/* Use the given event instead of the hlist */
7988 	if (event) {
7989 		if (perf_tp_event_match(event, &data, regs))
7990 			perf_swevent_event(event, count, &data, regs);
7991 	} else {
7992 		hlist_for_each_entry_rcu(event, head, hlist_entry) {
7993 			if (perf_tp_event_match(event, &data, regs))
7994 				perf_swevent_event(event, count, &data, regs);
7995 		}
7996 	}
7997 
7998 	/*
7999 	 * If we got specified a target task, also iterate its context and
8000 	 * deliver this event there too.
8001 	 */
8002 	if (task && task != current) {
8003 		struct perf_event_context *ctx;
8004 		struct trace_entry *entry = record;
8005 
8006 		rcu_read_lock();
8007 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8008 		if (!ctx)
8009 			goto unlock;
8010 
8011 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8012 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8013 				continue;
8014 			if (event->attr.config != entry->type)
8015 				continue;
8016 			if (perf_tp_event_match(event, &data, regs))
8017 				perf_swevent_event(event, count, &data, regs);
8018 		}
8019 unlock:
8020 		rcu_read_unlock();
8021 	}
8022 
8023 	perf_swevent_put_recursion_context(rctx);
8024 }
8025 EXPORT_SYMBOL_GPL(perf_tp_event);
8026 
8027 static void tp_perf_event_destroy(struct perf_event *event)
8028 {
8029 	perf_trace_destroy(event);
8030 }
8031 
8032 static int perf_tp_event_init(struct perf_event *event)
8033 {
8034 	int err;
8035 
8036 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8037 		return -ENOENT;
8038 
8039 	/*
8040 	 * no branch sampling for tracepoint events
8041 	 */
8042 	if (has_branch_stack(event))
8043 		return -EOPNOTSUPP;
8044 
8045 	err = perf_trace_init(event);
8046 	if (err)
8047 		return err;
8048 
8049 	event->destroy = tp_perf_event_destroy;
8050 
8051 	return 0;
8052 }
8053 
8054 static struct pmu perf_tracepoint = {
8055 	.task_ctx_nr	= perf_sw_context,
8056 
8057 	.event_init	= perf_tp_event_init,
8058 	.add		= perf_trace_add,
8059 	.del		= perf_trace_del,
8060 	.start		= perf_swevent_start,
8061 	.stop		= perf_swevent_stop,
8062 	.read		= perf_swevent_read,
8063 };
8064 
8065 static inline void perf_tp_register(void)
8066 {
8067 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8068 }
8069 
8070 static void perf_event_free_filter(struct perf_event *event)
8071 {
8072 	ftrace_profile_free_filter(event);
8073 }
8074 
8075 #ifdef CONFIG_BPF_SYSCALL
8076 static void bpf_overflow_handler(struct perf_event *event,
8077 				 struct perf_sample_data *data,
8078 				 struct pt_regs *regs)
8079 {
8080 	struct bpf_perf_event_data_kern ctx = {
8081 		.data = data,
8082 		.regs = regs,
8083 		.event = event,
8084 	};
8085 	int ret = 0;
8086 
8087 	preempt_disable();
8088 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8089 		goto out;
8090 	rcu_read_lock();
8091 	ret = BPF_PROG_RUN(event->prog, &ctx);
8092 	rcu_read_unlock();
8093 out:
8094 	__this_cpu_dec(bpf_prog_active);
8095 	preempt_enable();
8096 	if (!ret)
8097 		return;
8098 
8099 	event->orig_overflow_handler(event, data, regs);
8100 }
8101 
8102 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8103 {
8104 	struct bpf_prog *prog;
8105 
8106 	if (event->overflow_handler_context)
8107 		/* hw breakpoint or kernel counter */
8108 		return -EINVAL;
8109 
8110 	if (event->prog)
8111 		return -EEXIST;
8112 
8113 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8114 	if (IS_ERR(prog))
8115 		return PTR_ERR(prog);
8116 
8117 	event->prog = prog;
8118 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8119 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8120 	return 0;
8121 }
8122 
8123 static void perf_event_free_bpf_handler(struct perf_event *event)
8124 {
8125 	struct bpf_prog *prog = event->prog;
8126 
8127 	if (!prog)
8128 		return;
8129 
8130 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8131 	event->prog = NULL;
8132 	bpf_prog_put(prog);
8133 }
8134 #else
8135 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8136 {
8137 	return -EOPNOTSUPP;
8138 }
8139 static void perf_event_free_bpf_handler(struct perf_event *event)
8140 {
8141 }
8142 #endif
8143 
8144 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8145 {
8146 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8147 	struct bpf_prog *prog;
8148 	int ret;
8149 
8150 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8151 		return perf_event_set_bpf_handler(event, prog_fd);
8152 
8153 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8154 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8155 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8156 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8157 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8158 		return -EINVAL;
8159 
8160 	prog = bpf_prog_get(prog_fd);
8161 	if (IS_ERR(prog))
8162 		return PTR_ERR(prog);
8163 
8164 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8165 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8166 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8167 		/* valid fd, but invalid bpf program type */
8168 		bpf_prog_put(prog);
8169 		return -EINVAL;
8170 	}
8171 
8172 	if (is_tracepoint || is_syscall_tp) {
8173 		int off = trace_event_get_offsets(event->tp_event);
8174 
8175 		if (prog->aux->max_ctx_offset > off) {
8176 			bpf_prog_put(prog);
8177 			return -EACCES;
8178 		}
8179 	}
8180 
8181 	ret = perf_event_attach_bpf_prog(event, prog);
8182 	if (ret)
8183 		bpf_prog_put(prog);
8184 	return ret;
8185 }
8186 
8187 static void perf_event_free_bpf_prog(struct perf_event *event)
8188 {
8189 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8190 		perf_event_free_bpf_handler(event);
8191 		return;
8192 	}
8193 	perf_event_detach_bpf_prog(event);
8194 }
8195 
8196 #else
8197 
8198 static inline void perf_tp_register(void)
8199 {
8200 }
8201 
8202 static void perf_event_free_filter(struct perf_event *event)
8203 {
8204 }
8205 
8206 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8207 {
8208 	return -ENOENT;
8209 }
8210 
8211 static void perf_event_free_bpf_prog(struct perf_event *event)
8212 {
8213 }
8214 #endif /* CONFIG_EVENT_TRACING */
8215 
8216 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8217 void perf_bp_event(struct perf_event *bp, void *data)
8218 {
8219 	struct perf_sample_data sample;
8220 	struct pt_regs *regs = data;
8221 
8222 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8223 
8224 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8225 		perf_swevent_event(bp, 1, &sample, regs);
8226 }
8227 #endif
8228 
8229 /*
8230  * Allocate a new address filter
8231  */
8232 static struct perf_addr_filter *
8233 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8234 {
8235 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8236 	struct perf_addr_filter *filter;
8237 
8238 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8239 	if (!filter)
8240 		return NULL;
8241 
8242 	INIT_LIST_HEAD(&filter->entry);
8243 	list_add_tail(&filter->entry, filters);
8244 
8245 	return filter;
8246 }
8247 
8248 static void free_filters_list(struct list_head *filters)
8249 {
8250 	struct perf_addr_filter *filter, *iter;
8251 
8252 	list_for_each_entry_safe(filter, iter, filters, entry) {
8253 		if (filter->inode)
8254 			iput(filter->inode);
8255 		list_del(&filter->entry);
8256 		kfree(filter);
8257 	}
8258 }
8259 
8260 /*
8261  * Free existing address filters and optionally install new ones
8262  */
8263 static void perf_addr_filters_splice(struct perf_event *event,
8264 				     struct list_head *head)
8265 {
8266 	unsigned long flags;
8267 	LIST_HEAD(list);
8268 
8269 	if (!has_addr_filter(event))
8270 		return;
8271 
8272 	/* don't bother with children, they don't have their own filters */
8273 	if (event->parent)
8274 		return;
8275 
8276 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8277 
8278 	list_splice_init(&event->addr_filters.list, &list);
8279 	if (head)
8280 		list_splice(head, &event->addr_filters.list);
8281 
8282 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8283 
8284 	free_filters_list(&list);
8285 }
8286 
8287 /*
8288  * Scan through mm's vmas and see if one of them matches the
8289  * @filter; if so, adjust filter's address range.
8290  * Called with mm::mmap_sem down for reading.
8291  */
8292 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8293 					    struct mm_struct *mm)
8294 {
8295 	struct vm_area_struct *vma;
8296 
8297 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8298 		struct file *file = vma->vm_file;
8299 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8300 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8301 
8302 		if (!file)
8303 			continue;
8304 
8305 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8306 			continue;
8307 
8308 		return vma->vm_start;
8309 	}
8310 
8311 	return 0;
8312 }
8313 
8314 /*
8315  * Update event's address range filters based on the
8316  * task's existing mappings, if any.
8317  */
8318 static void perf_event_addr_filters_apply(struct perf_event *event)
8319 {
8320 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8321 	struct task_struct *task = READ_ONCE(event->ctx->task);
8322 	struct perf_addr_filter *filter;
8323 	struct mm_struct *mm = NULL;
8324 	unsigned int count = 0;
8325 	unsigned long flags;
8326 
8327 	/*
8328 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8329 	 * will stop on the parent's child_mutex that our caller is also holding
8330 	 */
8331 	if (task == TASK_TOMBSTONE)
8332 		return;
8333 
8334 	if (!ifh->nr_file_filters)
8335 		return;
8336 
8337 	mm = get_task_mm(event->ctx->task);
8338 	if (!mm)
8339 		goto restart;
8340 
8341 	down_read(&mm->mmap_sem);
8342 
8343 	raw_spin_lock_irqsave(&ifh->lock, flags);
8344 	list_for_each_entry(filter, &ifh->list, entry) {
8345 		event->addr_filters_offs[count] = 0;
8346 
8347 		/*
8348 		 * Adjust base offset if the filter is associated to a binary
8349 		 * that needs to be mapped:
8350 		 */
8351 		if (filter->inode)
8352 			event->addr_filters_offs[count] =
8353 				perf_addr_filter_apply(filter, mm);
8354 
8355 		count++;
8356 	}
8357 
8358 	event->addr_filters_gen++;
8359 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8360 
8361 	up_read(&mm->mmap_sem);
8362 
8363 	mmput(mm);
8364 
8365 restart:
8366 	perf_event_stop(event, 1);
8367 }
8368 
8369 /*
8370  * Address range filtering: limiting the data to certain
8371  * instruction address ranges. Filters are ioctl()ed to us from
8372  * userspace as ascii strings.
8373  *
8374  * Filter string format:
8375  *
8376  * ACTION RANGE_SPEC
8377  * where ACTION is one of the
8378  *  * "filter": limit the trace to this region
8379  *  * "start": start tracing from this address
8380  *  * "stop": stop tracing at this address/region;
8381  * RANGE_SPEC is
8382  *  * for kernel addresses: <start address>[/<size>]
8383  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8384  *
8385  * if <size> is not specified, the range is treated as a single address.
8386  */
8387 enum {
8388 	IF_ACT_NONE = -1,
8389 	IF_ACT_FILTER,
8390 	IF_ACT_START,
8391 	IF_ACT_STOP,
8392 	IF_SRC_FILE,
8393 	IF_SRC_KERNEL,
8394 	IF_SRC_FILEADDR,
8395 	IF_SRC_KERNELADDR,
8396 };
8397 
8398 enum {
8399 	IF_STATE_ACTION = 0,
8400 	IF_STATE_SOURCE,
8401 	IF_STATE_END,
8402 };
8403 
8404 static const match_table_t if_tokens = {
8405 	{ IF_ACT_FILTER,	"filter" },
8406 	{ IF_ACT_START,		"start" },
8407 	{ IF_ACT_STOP,		"stop" },
8408 	{ IF_SRC_FILE,		"%u/%u@%s" },
8409 	{ IF_SRC_KERNEL,	"%u/%u" },
8410 	{ IF_SRC_FILEADDR,	"%u@%s" },
8411 	{ IF_SRC_KERNELADDR,	"%u" },
8412 	{ IF_ACT_NONE,		NULL },
8413 };
8414 
8415 /*
8416  * Address filter string parser
8417  */
8418 static int
8419 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8420 			     struct list_head *filters)
8421 {
8422 	struct perf_addr_filter *filter = NULL;
8423 	char *start, *orig, *filename = NULL;
8424 	struct path path;
8425 	substring_t args[MAX_OPT_ARGS];
8426 	int state = IF_STATE_ACTION, token;
8427 	unsigned int kernel = 0;
8428 	int ret = -EINVAL;
8429 
8430 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8431 	if (!fstr)
8432 		return -ENOMEM;
8433 
8434 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8435 		ret = -EINVAL;
8436 
8437 		if (!*start)
8438 			continue;
8439 
8440 		/* filter definition begins */
8441 		if (state == IF_STATE_ACTION) {
8442 			filter = perf_addr_filter_new(event, filters);
8443 			if (!filter)
8444 				goto fail;
8445 		}
8446 
8447 		token = match_token(start, if_tokens, args);
8448 		switch (token) {
8449 		case IF_ACT_FILTER:
8450 		case IF_ACT_START:
8451 			filter->filter = 1;
8452 
8453 		case IF_ACT_STOP:
8454 			if (state != IF_STATE_ACTION)
8455 				goto fail;
8456 
8457 			state = IF_STATE_SOURCE;
8458 			break;
8459 
8460 		case IF_SRC_KERNELADDR:
8461 		case IF_SRC_KERNEL:
8462 			kernel = 1;
8463 
8464 		case IF_SRC_FILEADDR:
8465 		case IF_SRC_FILE:
8466 			if (state != IF_STATE_SOURCE)
8467 				goto fail;
8468 
8469 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8470 				filter->range = 1;
8471 
8472 			*args[0].to = 0;
8473 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8474 			if (ret)
8475 				goto fail;
8476 
8477 			if (filter->range) {
8478 				*args[1].to = 0;
8479 				ret = kstrtoul(args[1].from, 0, &filter->size);
8480 				if (ret)
8481 					goto fail;
8482 			}
8483 
8484 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8485 				int fpos = filter->range ? 2 : 1;
8486 
8487 				filename = match_strdup(&args[fpos]);
8488 				if (!filename) {
8489 					ret = -ENOMEM;
8490 					goto fail;
8491 				}
8492 			}
8493 
8494 			state = IF_STATE_END;
8495 			break;
8496 
8497 		default:
8498 			goto fail;
8499 		}
8500 
8501 		/*
8502 		 * Filter definition is fully parsed, validate and install it.
8503 		 * Make sure that it doesn't contradict itself or the event's
8504 		 * attribute.
8505 		 */
8506 		if (state == IF_STATE_END) {
8507 			ret = -EINVAL;
8508 			if (kernel && event->attr.exclude_kernel)
8509 				goto fail;
8510 
8511 			if (!kernel) {
8512 				if (!filename)
8513 					goto fail;
8514 
8515 				/*
8516 				 * For now, we only support file-based filters
8517 				 * in per-task events; doing so for CPU-wide
8518 				 * events requires additional context switching
8519 				 * trickery, since same object code will be
8520 				 * mapped at different virtual addresses in
8521 				 * different processes.
8522 				 */
8523 				ret = -EOPNOTSUPP;
8524 				if (!event->ctx->task)
8525 					goto fail_free_name;
8526 
8527 				/* look up the path and grab its inode */
8528 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8529 				if (ret)
8530 					goto fail_free_name;
8531 
8532 				filter->inode = igrab(d_inode(path.dentry));
8533 				path_put(&path);
8534 				kfree(filename);
8535 				filename = NULL;
8536 
8537 				ret = -EINVAL;
8538 				if (!filter->inode ||
8539 				    !S_ISREG(filter->inode->i_mode))
8540 					/* free_filters_list() will iput() */
8541 					goto fail;
8542 
8543 				event->addr_filters.nr_file_filters++;
8544 			}
8545 
8546 			/* ready to consume more filters */
8547 			state = IF_STATE_ACTION;
8548 			filter = NULL;
8549 		}
8550 	}
8551 
8552 	if (state != IF_STATE_ACTION)
8553 		goto fail;
8554 
8555 	kfree(orig);
8556 
8557 	return 0;
8558 
8559 fail_free_name:
8560 	kfree(filename);
8561 fail:
8562 	free_filters_list(filters);
8563 	kfree(orig);
8564 
8565 	return ret;
8566 }
8567 
8568 static int
8569 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8570 {
8571 	LIST_HEAD(filters);
8572 	int ret;
8573 
8574 	/*
8575 	 * Since this is called in perf_ioctl() path, we're already holding
8576 	 * ctx::mutex.
8577 	 */
8578 	lockdep_assert_held(&event->ctx->mutex);
8579 
8580 	if (WARN_ON_ONCE(event->parent))
8581 		return -EINVAL;
8582 
8583 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8584 	if (ret)
8585 		goto fail_clear_files;
8586 
8587 	ret = event->pmu->addr_filters_validate(&filters);
8588 	if (ret)
8589 		goto fail_free_filters;
8590 
8591 	/* remove existing filters, if any */
8592 	perf_addr_filters_splice(event, &filters);
8593 
8594 	/* install new filters */
8595 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8596 
8597 	return ret;
8598 
8599 fail_free_filters:
8600 	free_filters_list(&filters);
8601 
8602 fail_clear_files:
8603 	event->addr_filters.nr_file_filters = 0;
8604 
8605 	return ret;
8606 }
8607 
8608 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8609 {
8610 	char *filter_str;
8611 	int ret = -EINVAL;
8612 
8613 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8614 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8615 	    !has_addr_filter(event))
8616 		return -EINVAL;
8617 
8618 	filter_str = strndup_user(arg, PAGE_SIZE);
8619 	if (IS_ERR(filter_str))
8620 		return PTR_ERR(filter_str);
8621 
8622 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8623 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8624 		ret = ftrace_profile_set_filter(event, event->attr.config,
8625 						filter_str);
8626 	else if (has_addr_filter(event))
8627 		ret = perf_event_set_addr_filter(event, filter_str);
8628 
8629 	kfree(filter_str);
8630 	return ret;
8631 }
8632 
8633 /*
8634  * hrtimer based swevent callback
8635  */
8636 
8637 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8638 {
8639 	enum hrtimer_restart ret = HRTIMER_RESTART;
8640 	struct perf_sample_data data;
8641 	struct pt_regs *regs;
8642 	struct perf_event *event;
8643 	u64 period;
8644 
8645 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8646 
8647 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8648 		return HRTIMER_NORESTART;
8649 
8650 	event->pmu->read(event);
8651 
8652 	perf_sample_data_init(&data, 0, event->hw.last_period);
8653 	regs = get_irq_regs();
8654 
8655 	if (regs && !perf_exclude_event(event, regs)) {
8656 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8657 			if (__perf_event_overflow(event, 1, &data, regs))
8658 				ret = HRTIMER_NORESTART;
8659 	}
8660 
8661 	period = max_t(u64, 10000, event->hw.sample_period);
8662 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8663 
8664 	return ret;
8665 }
8666 
8667 static void perf_swevent_start_hrtimer(struct perf_event *event)
8668 {
8669 	struct hw_perf_event *hwc = &event->hw;
8670 	s64 period;
8671 
8672 	if (!is_sampling_event(event))
8673 		return;
8674 
8675 	period = local64_read(&hwc->period_left);
8676 	if (period) {
8677 		if (period < 0)
8678 			period = 10000;
8679 
8680 		local64_set(&hwc->period_left, 0);
8681 	} else {
8682 		period = max_t(u64, 10000, hwc->sample_period);
8683 	}
8684 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8685 		      HRTIMER_MODE_REL_PINNED);
8686 }
8687 
8688 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8689 {
8690 	struct hw_perf_event *hwc = &event->hw;
8691 
8692 	if (is_sampling_event(event)) {
8693 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8694 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8695 
8696 		hrtimer_cancel(&hwc->hrtimer);
8697 	}
8698 }
8699 
8700 static void perf_swevent_init_hrtimer(struct perf_event *event)
8701 {
8702 	struct hw_perf_event *hwc = &event->hw;
8703 
8704 	if (!is_sampling_event(event))
8705 		return;
8706 
8707 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8708 	hwc->hrtimer.function = perf_swevent_hrtimer;
8709 
8710 	/*
8711 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8712 	 * mapping and avoid the whole period adjust feedback stuff.
8713 	 */
8714 	if (event->attr.freq) {
8715 		long freq = event->attr.sample_freq;
8716 
8717 		event->attr.sample_period = NSEC_PER_SEC / freq;
8718 		hwc->sample_period = event->attr.sample_period;
8719 		local64_set(&hwc->period_left, hwc->sample_period);
8720 		hwc->last_period = hwc->sample_period;
8721 		event->attr.freq = 0;
8722 	}
8723 }
8724 
8725 /*
8726  * Software event: cpu wall time clock
8727  */
8728 
8729 static void cpu_clock_event_update(struct perf_event *event)
8730 {
8731 	s64 prev;
8732 	u64 now;
8733 
8734 	now = local_clock();
8735 	prev = local64_xchg(&event->hw.prev_count, now);
8736 	local64_add(now - prev, &event->count);
8737 }
8738 
8739 static void cpu_clock_event_start(struct perf_event *event, int flags)
8740 {
8741 	local64_set(&event->hw.prev_count, local_clock());
8742 	perf_swevent_start_hrtimer(event);
8743 }
8744 
8745 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8746 {
8747 	perf_swevent_cancel_hrtimer(event);
8748 	cpu_clock_event_update(event);
8749 }
8750 
8751 static int cpu_clock_event_add(struct perf_event *event, int flags)
8752 {
8753 	if (flags & PERF_EF_START)
8754 		cpu_clock_event_start(event, flags);
8755 	perf_event_update_userpage(event);
8756 
8757 	return 0;
8758 }
8759 
8760 static void cpu_clock_event_del(struct perf_event *event, int flags)
8761 {
8762 	cpu_clock_event_stop(event, flags);
8763 }
8764 
8765 static void cpu_clock_event_read(struct perf_event *event)
8766 {
8767 	cpu_clock_event_update(event);
8768 }
8769 
8770 static int cpu_clock_event_init(struct perf_event *event)
8771 {
8772 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8773 		return -ENOENT;
8774 
8775 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8776 		return -ENOENT;
8777 
8778 	/*
8779 	 * no branch sampling for software events
8780 	 */
8781 	if (has_branch_stack(event))
8782 		return -EOPNOTSUPP;
8783 
8784 	perf_swevent_init_hrtimer(event);
8785 
8786 	return 0;
8787 }
8788 
8789 static struct pmu perf_cpu_clock = {
8790 	.task_ctx_nr	= perf_sw_context,
8791 
8792 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8793 
8794 	.event_init	= cpu_clock_event_init,
8795 	.add		= cpu_clock_event_add,
8796 	.del		= cpu_clock_event_del,
8797 	.start		= cpu_clock_event_start,
8798 	.stop		= cpu_clock_event_stop,
8799 	.read		= cpu_clock_event_read,
8800 };
8801 
8802 /*
8803  * Software event: task time clock
8804  */
8805 
8806 static void task_clock_event_update(struct perf_event *event, u64 now)
8807 {
8808 	u64 prev;
8809 	s64 delta;
8810 
8811 	prev = local64_xchg(&event->hw.prev_count, now);
8812 	delta = now - prev;
8813 	local64_add(delta, &event->count);
8814 }
8815 
8816 static void task_clock_event_start(struct perf_event *event, int flags)
8817 {
8818 	local64_set(&event->hw.prev_count, event->ctx->time);
8819 	perf_swevent_start_hrtimer(event);
8820 }
8821 
8822 static void task_clock_event_stop(struct perf_event *event, int flags)
8823 {
8824 	perf_swevent_cancel_hrtimer(event);
8825 	task_clock_event_update(event, event->ctx->time);
8826 }
8827 
8828 static int task_clock_event_add(struct perf_event *event, int flags)
8829 {
8830 	if (flags & PERF_EF_START)
8831 		task_clock_event_start(event, flags);
8832 	perf_event_update_userpage(event);
8833 
8834 	return 0;
8835 }
8836 
8837 static void task_clock_event_del(struct perf_event *event, int flags)
8838 {
8839 	task_clock_event_stop(event, PERF_EF_UPDATE);
8840 }
8841 
8842 static void task_clock_event_read(struct perf_event *event)
8843 {
8844 	u64 now = perf_clock();
8845 	u64 delta = now - event->ctx->timestamp;
8846 	u64 time = event->ctx->time + delta;
8847 
8848 	task_clock_event_update(event, time);
8849 }
8850 
8851 static int task_clock_event_init(struct perf_event *event)
8852 {
8853 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8854 		return -ENOENT;
8855 
8856 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8857 		return -ENOENT;
8858 
8859 	/*
8860 	 * no branch sampling for software events
8861 	 */
8862 	if (has_branch_stack(event))
8863 		return -EOPNOTSUPP;
8864 
8865 	perf_swevent_init_hrtimer(event);
8866 
8867 	return 0;
8868 }
8869 
8870 static struct pmu perf_task_clock = {
8871 	.task_ctx_nr	= perf_sw_context,
8872 
8873 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8874 
8875 	.event_init	= task_clock_event_init,
8876 	.add		= task_clock_event_add,
8877 	.del		= task_clock_event_del,
8878 	.start		= task_clock_event_start,
8879 	.stop		= task_clock_event_stop,
8880 	.read		= task_clock_event_read,
8881 };
8882 
8883 static void perf_pmu_nop_void(struct pmu *pmu)
8884 {
8885 }
8886 
8887 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8888 {
8889 }
8890 
8891 static int perf_pmu_nop_int(struct pmu *pmu)
8892 {
8893 	return 0;
8894 }
8895 
8896 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8897 
8898 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8899 {
8900 	__this_cpu_write(nop_txn_flags, flags);
8901 
8902 	if (flags & ~PERF_PMU_TXN_ADD)
8903 		return;
8904 
8905 	perf_pmu_disable(pmu);
8906 }
8907 
8908 static int perf_pmu_commit_txn(struct pmu *pmu)
8909 {
8910 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8911 
8912 	__this_cpu_write(nop_txn_flags, 0);
8913 
8914 	if (flags & ~PERF_PMU_TXN_ADD)
8915 		return 0;
8916 
8917 	perf_pmu_enable(pmu);
8918 	return 0;
8919 }
8920 
8921 static void perf_pmu_cancel_txn(struct pmu *pmu)
8922 {
8923 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8924 
8925 	__this_cpu_write(nop_txn_flags, 0);
8926 
8927 	if (flags & ~PERF_PMU_TXN_ADD)
8928 		return;
8929 
8930 	perf_pmu_enable(pmu);
8931 }
8932 
8933 static int perf_event_idx_default(struct perf_event *event)
8934 {
8935 	return 0;
8936 }
8937 
8938 /*
8939  * Ensures all contexts with the same task_ctx_nr have the same
8940  * pmu_cpu_context too.
8941  */
8942 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8943 {
8944 	struct pmu *pmu;
8945 
8946 	if (ctxn < 0)
8947 		return NULL;
8948 
8949 	list_for_each_entry(pmu, &pmus, entry) {
8950 		if (pmu->task_ctx_nr == ctxn)
8951 			return pmu->pmu_cpu_context;
8952 	}
8953 
8954 	return NULL;
8955 }
8956 
8957 static void free_pmu_context(struct pmu *pmu)
8958 {
8959 	/*
8960 	 * Static contexts such as perf_sw_context have a global lifetime
8961 	 * and may be shared between different PMUs. Avoid freeing them
8962 	 * when a single PMU is going away.
8963 	 */
8964 	if (pmu->task_ctx_nr > perf_invalid_context)
8965 		return;
8966 
8967 	mutex_lock(&pmus_lock);
8968 	free_percpu(pmu->pmu_cpu_context);
8969 	mutex_unlock(&pmus_lock);
8970 }
8971 
8972 /*
8973  * Let userspace know that this PMU supports address range filtering:
8974  */
8975 static ssize_t nr_addr_filters_show(struct device *dev,
8976 				    struct device_attribute *attr,
8977 				    char *page)
8978 {
8979 	struct pmu *pmu = dev_get_drvdata(dev);
8980 
8981 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8982 }
8983 DEVICE_ATTR_RO(nr_addr_filters);
8984 
8985 static struct idr pmu_idr;
8986 
8987 static ssize_t
8988 type_show(struct device *dev, struct device_attribute *attr, char *page)
8989 {
8990 	struct pmu *pmu = dev_get_drvdata(dev);
8991 
8992 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8993 }
8994 static DEVICE_ATTR_RO(type);
8995 
8996 static ssize_t
8997 perf_event_mux_interval_ms_show(struct device *dev,
8998 				struct device_attribute *attr,
8999 				char *page)
9000 {
9001 	struct pmu *pmu = dev_get_drvdata(dev);
9002 
9003 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9004 }
9005 
9006 static DEFINE_MUTEX(mux_interval_mutex);
9007 
9008 static ssize_t
9009 perf_event_mux_interval_ms_store(struct device *dev,
9010 				 struct device_attribute *attr,
9011 				 const char *buf, size_t count)
9012 {
9013 	struct pmu *pmu = dev_get_drvdata(dev);
9014 	int timer, cpu, ret;
9015 
9016 	ret = kstrtoint(buf, 0, &timer);
9017 	if (ret)
9018 		return ret;
9019 
9020 	if (timer < 1)
9021 		return -EINVAL;
9022 
9023 	/* same value, noting to do */
9024 	if (timer == pmu->hrtimer_interval_ms)
9025 		return count;
9026 
9027 	mutex_lock(&mux_interval_mutex);
9028 	pmu->hrtimer_interval_ms = timer;
9029 
9030 	/* update all cpuctx for this PMU */
9031 	cpus_read_lock();
9032 	for_each_online_cpu(cpu) {
9033 		struct perf_cpu_context *cpuctx;
9034 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9035 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9036 
9037 		cpu_function_call(cpu,
9038 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9039 	}
9040 	cpus_read_unlock();
9041 	mutex_unlock(&mux_interval_mutex);
9042 
9043 	return count;
9044 }
9045 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9046 
9047 static struct attribute *pmu_dev_attrs[] = {
9048 	&dev_attr_type.attr,
9049 	&dev_attr_perf_event_mux_interval_ms.attr,
9050 	NULL,
9051 };
9052 ATTRIBUTE_GROUPS(pmu_dev);
9053 
9054 static int pmu_bus_running;
9055 static struct bus_type pmu_bus = {
9056 	.name		= "event_source",
9057 	.dev_groups	= pmu_dev_groups,
9058 };
9059 
9060 static void pmu_dev_release(struct device *dev)
9061 {
9062 	kfree(dev);
9063 }
9064 
9065 static int pmu_dev_alloc(struct pmu *pmu)
9066 {
9067 	int ret = -ENOMEM;
9068 
9069 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9070 	if (!pmu->dev)
9071 		goto out;
9072 
9073 	pmu->dev->groups = pmu->attr_groups;
9074 	device_initialize(pmu->dev);
9075 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9076 	if (ret)
9077 		goto free_dev;
9078 
9079 	dev_set_drvdata(pmu->dev, pmu);
9080 	pmu->dev->bus = &pmu_bus;
9081 	pmu->dev->release = pmu_dev_release;
9082 	ret = device_add(pmu->dev);
9083 	if (ret)
9084 		goto free_dev;
9085 
9086 	/* For PMUs with address filters, throw in an extra attribute: */
9087 	if (pmu->nr_addr_filters)
9088 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9089 
9090 	if (ret)
9091 		goto del_dev;
9092 
9093 out:
9094 	return ret;
9095 
9096 del_dev:
9097 	device_del(pmu->dev);
9098 
9099 free_dev:
9100 	put_device(pmu->dev);
9101 	goto out;
9102 }
9103 
9104 static struct lock_class_key cpuctx_mutex;
9105 static struct lock_class_key cpuctx_lock;
9106 
9107 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9108 {
9109 	int cpu, ret;
9110 
9111 	mutex_lock(&pmus_lock);
9112 	ret = -ENOMEM;
9113 	pmu->pmu_disable_count = alloc_percpu(int);
9114 	if (!pmu->pmu_disable_count)
9115 		goto unlock;
9116 
9117 	pmu->type = -1;
9118 	if (!name)
9119 		goto skip_type;
9120 	pmu->name = name;
9121 
9122 	if (type < 0) {
9123 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9124 		if (type < 0) {
9125 			ret = type;
9126 			goto free_pdc;
9127 		}
9128 	}
9129 	pmu->type = type;
9130 
9131 	if (pmu_bus_running) {
9132 		ret = pmu_dev_alloc(pmu);
9133 		if (ret)
9134 			goto free_idr;
9135 	}
9136 
9137 skip_type:
9138 	if (pmu->task_ctx_nr == perf_hw_context) {
9139 		static int hw_context_taken = 0;
9140 
9141 		/*
9142 		 * Other than systems with heterogeneous CPUs, it never makes
9143 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9144 		 * uncore must use perf_invalid_context.
9145 		 */
9146 		if (WARN_ON_ONCE(hw_context_taken &&
9147 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9148 			pmu->task_ctx_nr = perf_invalid_context;
9149 
9150 		hw_context_taken = 1;
9151 	}
9152 
9153 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9154 	if (pmu->pmu_cpu_context)
9155 		goto got_cpu_context;
9156 
9157 	ret = -ENOMEM;
9158 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9159 	if (!pmu->pmu_cpu_context)
9160 		goto free_dev;
9161 
9162 	for_each_possible_cpu(cpu) {
9163 		struct perf_cpu_context *cpuctx;
9164 
9165 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9166 		__perf_event_init_context(&cpuctx->ctx);
9167 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9168 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9169 		cpuctx->ctx.pmu = pmu;
9170 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9171 
9172 		__perf_mux_hrtimer_init(cpuctx, cpu);
9173 	}
9174 
9175 got_cpu_context:
9176 	if (!pmu->start_txn) {
9177 		if (pmu->pmu_enable) {
9178 			/*
9179 			 * If we have pmu_enable/pmu_disable calls, install
9180 			 * transaction stubs that use that to try and batch
9181 			 * hardware accesses.
9182 			 */
9183 			pmu->start_txn  = perf_pmu_start_txn;
9184 			pmu->commit_txn = perf_pmu_commit_txn;
9185 			pmu->cancel_txn = perf_pmu_cancel_txn;
9186 		} else {
9187 			pmu->start_txn  = perf_pmu_nop_txn;
9188 			pmu->commit_txn = perf_pmu_nop_int;
9189 			pmu->cancel_txn = perf_pmu_nop_void;
9190 		}
9191 	}
9192 
9193 	if (!pmu->pmu_enable) {
9194 		pmu->pmu_enable  = perf_pmu_nop_void;
9195 		pmu->pmu_disable = perf_pmu_nop_void;
9196 	}
9197 
9198 	if (!pmu->event_idx)
9199 		pmu->event_idx = perf_event_idx_default;
9200 
9201 	list_add_rcu(&pmu->entry, &pmus);
9202 	atomic_set(&pmu->exclusive_cnt, 0);
9203 	ret = 0;
9204 unlock:
9205 	mutex_unlock(&pmus_lock);
9206 
9207 	return ret;
9208 
9209 free_dev:
9210 	device_del(pmu->dev);
9211 	put_device(pmu->dev);
9212 
9213 free_idr:
9214 	if (pmu->type >= PERF_TYPE_MAX)
9215 		idr_remove(&pmu_idr, pmu->type);
9216 
9217 free_pdc:
9218 	free_percpu(pmu->pmu_disable_count);
9219 	goto unlock;
9220 }
9221 EXPORT_SYMBOL_GPL(perf_pmu_register);
9222 
9223 void perf_pmu_unregister(struct pmu *pmu)
9224 {
9225 	int remove_device;
9226 
9227 	mutex_lock(&pmus_lock);
9228 	remove_device = pmu_bus_running;
9229 	list_del_rcu(&pmu->entry);
9230 	mutex_unlock(&pmus_lock);
9231 
9232 	/*
9233 	 * We dereference the pmu list under both SRCU and regular RCU, so
9234 	 * synchronize against both of those.
9235 	 */
9236 	synchronize_srcu(&pmus_srcu);
9237 	synchronize_rcu();
9238 
9239 	free_percpu(pmu->pmu_disable_count);
9240 	if (pmu->type >= PERF_TYPE_MAX)
9241 		idr_remove(&pmu_idr, pmu->type);
9242 	if (remove_device) {
9243 		if (pmu->nr_addr_filters)
9244 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9245 		device_del(pmu->dev);
9246 		put_device(pmu->dev);
9247 	}
9248 	free_pmu_context(pmu);
9249 }
9250 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9251 
9252 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9253 {
9254 	struct perf_event_context *ctx = NULL;
9255 	int ret;
9256 
9257 	if (!try_module_get(pmu->module))
9258 		return -ENODEV;
9259 
9260 	if (event->group_leader != event) {
9261 		/*
9262 		 * This ctx->mutex can nest when we're called through
9263 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9264 		 */
9265 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9266 						 SINGLE_DEPTH_NESTING);
9267 		BUG_ON(!ctx);
9268 	}
9269 
9270 	event->pmu = pmu;
9271 	ret = pmu->event_init(event);
9272 
9273 	if (ctx)
9274 		perf_event_ctx_unlock(event->group_leader, ctx);
9275 
9276 	if (ret)
9277 		module_put(pmu->module);
9278 
9279 	return ret;
9280 }
9281 
9282 static struct pmu *perf_init_event(struct perf_event *event)
9283 {
9284 	struct pmu *pmu;
9285 	int idx;
9286 	int ret;
9287 
9288 	idx = srcu_read_lock(&pmus_srcu);
9289 
9290 	/* Try parent's PMU first: */
9291 	if (event->parent && event->parent->pmu) {
9292 		pmu = event->parent->pmu;
9293 		ret = perf_try_init_event(pmu, event);
9294 		if (!ret)
9295 			goto unlock;
9296 	}
9297 
9298 	rcu_read_lock();
9299 	pmu = idr_find(&pmu_idr, event->attr.type);
9300 	rcu_read_unlock();
9301 	if (pmu) {
9302 		ret = perf_try_init_event(pmu, event);
9303 		if (ret)
9304 			pmu = ERR_PTR(ret);
9305 		goto unlock;
9306 	}
9307 
9308 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9309 		ret = perf_try_init_event(pmu, event);
9310 		if (!ret)
9311 			goto unlock;
9312 
9313 		if (ret != -ENOENT) {
9314 			pmu = ERR_PTR(ret);
9315 			goto unlock;
9316 		}
9317 	}
9318 	pmu = ERR_PTR(-ENOENT);
9319 unlock:
9320 	srcu_read_unlock(&pmus_srcu, idx);
9321 
9322 	return pmu;
9323 }
9324 
9325 static void attach_sb_event(struct perf_event *event)
9326 {
9327 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9328 
9329 	raw_spin_lock(&pel->lock);
9330 	list_add_rcu(&event->sb_list, &pel->list);
9331 	raw_spin_unlock(&pel->lock);
9332 }
9333 
9334 /*
9335  * We keep a list of all !task (and therefore per-cpu) events
9336  * that need to receive side-band records.
9337  *
9338  * This avoids having to scan all the various PMU per-cpu contexts
9339  * looking for them.
9340  */
9341 static void account_pmu_sb_event(struct perf_event *event)
9342 {
9343 	if (is_sb_event(event))
9344 		attach_sb_event(event);
9345 }
9346 
9347 static void account_event_cpu(struct perf_event *event, int cpu)
9348 {
9349 	if (event->parent)
9350 		return;
9351 
9352 	if (is_cgroup_event(event))
9353 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9354 }
9355 
9356 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9357 static void account_freq_event_nohz(void)
9358 {
9359 #ifdef CONFIG_NO_HZ_FULL
9360 	/* Lock so we don't race with concurrent unaccount */
9361 	spin_lock(&nr_freq_lock);
9362 	if (atomic_inc_return(&nr_freq_events) == 1)
9363 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9364 	spin_unlock(&nr_freq_lock);
9365 #endif
9366 }
9367 
9368 static void account_freq_event(void)
9369 {
9370 	if (tick_nohz_full_enabled())
9371 		account_freq_event_nohz();
9372 	else
9373 		atomic_inc(&nr_freq_events);
9374 }
9375 
9376 
9377 static void account_event(struct perf_event *event)
9378 {
9379 	bool inc = false;
9380 
9381 	if (event->parent)
9382 		return;
9383 
9384 	if (event->attach_state & PERF_ATTACH_TASK)
9385 		inc = true;
9386 	if (event->attr.mmap || event->attr.mmap_data)
9387 		atomic_inc(&nr_mmap_events);
9388 	if (event->attr.comm)
9389 		atomic_inc(&nr_comm_events);
9390 	if (event->attr.namespaces)
9391 		atomic_inc(&nr_namespaces_events);
9392 	if (event->attr.task)
9393 		atomic_inc(&nr_task_events);
9394 	if (event->attr.freq)
9395 		account_freq_event();
9396 	if (event->attr.context_switch) {
9397 		atomic_inc(&nr_switch_events);
9398 		inc = true;
9399 	}
9400 	if (has_branch_stack(event))
9401 		inc = true;
9402 	if (is_cgroup_event(event))
9403 		inc = true;
9404 
9405 	if (inc) {
9406 		if (atomic_inc_not_zero(&perf_sched_count))
9407 			goto enabled;
9408 
9409 		mutex_lock(&perf_sched_mutex);
9410 		if (!atomic_read(&perf_sched_count)) {
9411 			static_branch_enable(&perf_sched_events);
9412 			/*
9413 			 * Guarantee that all CPUs observe they key change and
9414 			 * call the perf scheduling hooks before proceeding to
9415 			 * install events that need them.
9416 			 */
9417 			synchronize_sched();
9418 		}
9419 		/*
9420 		 * Now that we have waited for the sync_sched(), allow further
9421 		 * increments to by-pass the mutex.
9422 		 */
9423 		atomic_inc(&perf_sched_count);
9424 		mutex_unlock(&perf_sched_mutex);
9425 	}
9426 enabled:
9427 
9428 	account_event_cpu(event, event->cpu);
9429 
9430 	account_pmu_sb_event(event);
9431 }
9432 
9433 /*
9434  * Allocate and initialize a event structure
9435  */
9436 static struct perf_event *
9437 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9438 		 struct task_struct *task,
9439 		 struct perf_event *group_leader,
9440 		 struct perf_event *parent_event,
9441 		 perf_overflow_handler_t overflow_handler,
9442 		 void *context, int cgroup_fd)
9443 {
9444 	struct pmu *pmu;
9445 	struct perf_event *event;
9446 	struct hw_perf_event *hwc;
9447 	long err = -EINVAL;
9448 
9449 	if ((unsigned)cpu >= nr_cpu_ids) {
9450 		if (!task || cpu != -1)
9451 			return ERR_PTR(-EINVAL);
9452 	}
9453 
9454 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9455 	if (!event)
9456 		return ERR_PTR(-ENOMEM);
9457 
9458 	/*
9459 	 * Single events are their own group leaders, with an
9460 	 * empty sibling list:
9461 	 */
9462 	if (!group_leader)
9463 		group_leader = event;
9464 
9465 	mutex_init(&event->child_mutex);
9466 	INIT_LIST_HEAD(&event->child_list);
9467 
9468 	INIT_LIST_HEAD(&event->group_entry);
9469 	INIT_LIST_HEAD(&event->event_entry);
9470 	INIT_LIST_HEAD(&event->sibling_list);
9471 	INIT_LIST_HEAD(&event->rb_entry);
9472 	INIT_LIST_HEAD(&event->active_entry);
9473 	INIT_LIST_HEAD(&event->addr_filters.list);
9474 	INIT_HLIST_NODE(&event->hlist_entry);
9475 
9476 
9477 	init_waitqueue_head(&event->waitq);
9478 	init_irq_work(&event->pending, perf_pending_event);
9479 
9480 	mutex_init(&event->mmap_mutex);
9481 	raw_spin_lock_init(&event->addr_filters.lock);
9482 
9483 	atomic_long_set(&event->refcount, 1);
9484 	event->cpu		= cpu;
9485 	event->attr		= *attr;
9486 	event->group_leader	= group_leader;
9487 	event->pmu		= NULL;
9488 	event->oncpu		= -1;
9489 
9490 	event->parent		= parent_event;
9491 
9492 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9493 	event->id		= atomic64_inc_return(&perf_event_id);
9494 
9495 	event->state		= PERF_EVENT_STATE_INACTIVE;
9496 
9497 	if (task) {
9498 		event->attach_state = PERF_ATTACH_TASK;
9499 		/*
9500 		 * XXX pmu::event_init needs to know what task to account to
9501 		 * and we cannot use the ctx information because we need the
9502 		 * pmu before we get a ctx.
9503 		 */
9504 		event->hw.target = task;
9505 	}
9506 
9507 	event->clock = &local_clock;
9508 	if (parent_event)
9509 		event->clock = parent_event->clock;
9510 
9511 	if (!overflow_handler && parent_event) {
9512 		overflow_handler = parent_event->overflow_handler;
9513 		context = parent_event->overflow_handler_context;
9514 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9515 		if (overflow_handler == bpf_overflow_handler) {
9516 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9517 
9518 			if (IS_ERR(prog)) {
9519 				err = PTR_ERR(prog);
9520 				goto err_ns;
9521 			}
9522 			event->prog = prog;
9523 			event->orig_overflow_handler =
9524 				parent_event->orig_overflow_handler;
9525 		}
9526 #endif
9527 	}
9528 
9529 	if (overflow_handler) {
9530 		event->overflow_handler	= overflow_handler;
9531 		event->overflow_handler_context = context;
9532 	} else if (is_write_backward(event)){
9533 		event->overflow_handler = perf_event_output_backward;
9534 		event->overflow_handler_context = NULL;
9535 	} else {
9536 		event->overflow_handler = perf_event_output_forward;
9537 		event->overflow_handler_context = NULL;
9538 	}
9539 
9540 	perf_event__state_init(event);
9541 
9542 	pmu = NULL;
9543 
9544 	hwc = &event->hw;
9545 	hwc->sample_period = attr->sample_period;
9546 	if (attr->freq && attr->sample_freq)
9547 		hwc->sample_period = 1;
9548 	hwc->last_period = hwc->sample_period;
9549 
9550 	local64_set(&hwc->period_left, hwc->sample_period);
9551 
9552 	/*
9553 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9554 	 * See perf_output_read().
9555 	 */
9556 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9557 		goto err_ns;
9558 
9559 	if (!has_branch_stack(event))
9560 		event->attr.branch_sample_type = 0;
9561 
9562 	if (cgroup_fd != -1) {
9563 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9564 		if (err)
9565 			goto err_ns;
9566 	}
9567 
9568 	pmu = perf_init_event(event);
9569 	if (IS_ERR(pmu)) {
9570 		err = PTR_ERR(pmu);
9571 		goto err_ns;
9572 	}
9573 
9574 	err = exclusive_event_init(event);
9575 	if (err)
9576 		goto err_pmu;
9577 
9578 	if (has_addr_filter(event)) {
9579 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9580 						   sizeof(unsigned long),
9581 						   GFP_KERNEL);
9582 		if (!event->addr_filters_offs) {
9583 			err = -ENOMEM;
9584 			goto err_per_task;
9585 		}
9586 
9587 		/* force hw sync on the address filters */
9588 		event->addr_filters_gen = 1;
9589 	}
9590 
9591 	if (!event->parent) {
9592 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9593 			err = get_callchain_buffers(attr->sample_max_stack);
9594 			if (err)
9595 				goto err_addr_filters;
9596 		}
9597 	}
9598 
9599 	/* symmetric to unaccount_event() in _free_event() */
9600 	account_event(event);
9601 
9602 	return event;
9603 
9604 err_addr_filters:
9605 	kfree(event->addr_filters_offs);
9606 
9607 err_per_task:
9608 	exclusive_event_destroy(event);
9609 
9610 err_pmu:
9611 	if (event->destroy)
9612 		event->destroy(event);
9613 	module_put(pmu->module);
9614 err_ns:
9615 	if (is_cgroup_event(event))
9616 		perf_detach_cgroup(event);
9617 	if (event->ns)
9618 		put_pid_ns(event->ns);
9619 	kfree(event);
9620 
9621 	return ERR_PTR(err);
9622 }
9623 
9624 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9625 			  struct perf_event_attr *attr)
9626 {
9627 	u32 size;
9628 	int ret;
9629 
9630 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9631 		return -EFAULT;
9632 
9633 	/*
9634 	 * zero the full structure, so that a short copy will be nice.
9635 	 */
9636 	memset(attr, 0, sizeof(*attr));
9637 
9638 	ret = get_user(size, &uattr->size);
9639 	if (ret)
9640 		return ret;
9641 
9642 	if (size > PAGE_SIZE)	/* silly large */
9643 		goto err_size;
9644 
9645 	if (!size)		/* abi compat */
9646 		size = PERF_ATTR_SIZE_VER0;
9647 
9648 	if (size < PERF_ATTR_SIZE_VER0)
9649 		goto err_size;
9650 
9651 	/*
9652 	 * If we're handed a bigger struct than we know of,
9653 	 * ensure all the unknown bits are 0 - i.e. new
9654 	 * user-space does not rely on any kernel feature
9655 	 * extensions we dont know about yet.
9656 	 */
9657 	if (size > sizeof(*attr)) {
9658 		unsigned char __user *addr;
9659 		unsigned char __user *end;
9660 		unsigned char val;
9661 
9662 		addr = (void __user *)uattr + sizeof(*attr);
9663 		end  = (void __user *)uattr + size;
9664 
9665 		for (; addr < end; addr++) {
9666 			ret = get_user(val, addr);
9667 			if (ret)
9668 				return ret;
9669 			if (val)
9670 				goto err_size;
9671 		}
9672 		size = sizeof(*attr);
9673 	}
9674 
9675 	ret = copy_from_user(attr, uattr, size);
9676 	if (ret)
9677 		return -EFAULT;
9678 
9679 	attr->size = size;
9680 
9681 	if (attr->__reserved_1)
9682 		return -EINVAL;
9683 
9684 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9685 		return -EINVAL;
9686 
9687 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9688 		return -EINVAL;
9689 
9690 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9691 		u64 mask = attr->branch_sample_type;
9692 
9693 		/* only using defined bits */
9694 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9695 			return -EINVAL;
9696 
9697 		/* at least one branch bit must be set */
9698 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9699 			return -EINVAL;
9700 
9701 		/* propagate priv level, when not set for branch */
9702 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9703 
9704 			/* exclude_kernel checked on syscall entry */
9705 			if (!attr->exclude_kernel)
9706 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9707 
9708 			if (!attr->exclude_user)
9709 				mask |= PERF_SAMPLE_BRANCH_USER;
9710 
9711 			if (!attr->exclude_hv)
9712 				mask |= PERF_SAMPLE_BRANCH_HV;
9713 			/*
9714 			 * adjust user setting (for HW filter setup)
9715 			 */
9716 			attr->branch_sample_type = mask;
9717 		}
9718 		/* privileged levels capture (kernel, hv): check permissions */
9719 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9720 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9721 			return -EACCES;
9722 	}
9723 
9724 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9725 		ret = perf_reg_validate(attr->sample_regs_user);
9726 		if (ret)
9727 			return ret;
9728 	}
9729 
9730 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9731 		if (!arch_perf_have_user_stack_dump())
9732 			return -ENOSYS;
9733 
9734 		/*
9735 		 * We have __u32 type for the size, but so far
9736 		 * we can only use __u16 as maximum due to the
9737 		 * __u16 sample size limit.
9738 		 */
9739 		if (attr->sample_stack_user >= USHRT_MAX)
9740 			ret = -EINVAL;
9741 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9742 			ret = -EINVAL;
9743 	}
9744 
9745 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9746 		ret = perf_reg_validate(attr->sample_regs_intr);
9747 out:
9748 	return ret;
9749 
9750 err_size:
9751 	put_user(sizeof(*attr), &uattr->size);
9752 	ret = -E2BIG;
9753 	goto out;
9754 }
9755 
9756 static int
9757 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9758 {
9759 	struct ring_buffer *rb = NULL;
9760 	int ret = -EINVAL;
9761 
9762 	if (!output_event)
9763 		goto set;
9764 
9765 	/* don't allow circular references */
9766 	if (event == output_event)
9767 		goto out;
9768 
9769 	/*
9770 	 * Don't allow cross-cpu buffers
9771 	 */
9772 	if (output_event->cpu != event->cpu)
9773 		goto out;
9774 
9775 	/*
9776 	 * If its not a per-cpu rb, it must be the same task.
9777 	 */
9778 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9779 		goto out;
9780 
9781 	/*
9782 	 * Mixing clocks in the same buffer is trouble you don't need.
9783 	 */
9784 	if (output_event->clock != event->clock)
9785 		goto out;
9786 
9787 	/*
9788 	 * Either writing ring buffer from beginning or from end.
9789 	 * Mixing is not allowed.
9790 	 */
9791 	if (is_write_backward(output_event) != is_write_backward(event))
9792 		goto out;
9793 
9794 	/*
9795 	 * If both events generate aux data, they must be on the same PMU
9796 	 */
9797 	if (has_aux(event) && has_aux(output_event) &&
9798 	    event->pmu != output_event->pmu)
9799 		goto out;
9800 
9801 set:
9802 	mutex_lock(&event->mmap_mutex);
9803 	/* Can't redirect output if we've got an active mmap() */
9804 	if (atomic_read(&event->mmap_count))
9805 		goto unlock;
9806 
9807 	if (output_event) {
9808 		/* get the rb we want to redirect to */
9809 		rb = ring_buffer_get(output_event);
9810 		if (!rb)
9811 			goto unlock;
9812 	}
9813 
9814 	ring_buffer_attach(event, rb);
9815 
9816 	ret = 0;
9817 unlock:
9818 	mutex_unlock(&event->mmap_mutex);
9819 
9820 out:
9821 	return ret;
9822 }
9823 
9824 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9825 {
9826 	if (b < a)
9827 		swap(a, b);
9828 
9829 	mutex_lock(a);
9830 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9831 }
9832 
9833 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9834 {
9835 	bool nmi_safe = false;
9836 
9837 	switch (clk_id) {
9838 	case CLOCK_MONOTONIC:
9839 		event->clock = &ktime_get_mono_fast_ns;
9840 		nmi_safe = true;
9841 		break;
9842 
9843 	case CLOCK_MONOTONIC_RAW:
9844 		event->clock = &ktime_get_raw_fast_ns;
9845 		nmi_safe = true;
9846 		break;
9847 
9848 	case CLOCK_REALTIME:
9849 		event->clock = &ktime_get_real_ns;
9850 		break;
9851 
9852 	case CLOCK_BOOTTIME:
9853 		event->clock = &ktime_get_boot_ns;
9854 		break;
9855 
9856 	case CLOCK_TAI:
9857 		event->clock = &ktime_get_tai_ns;
9858 		break;
9859 
9860 	default:
9861 		return -EINVAL;
9862 	}
9863 
9864 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9865 		return -EINVAL;
9866 
9867 	return 0;
9868 }
9869 
9870 /*
9871  * Variation on perf_event_ctx_lock_nested(), except we take two context
9872  * mutexes.
9873  */
9874 static struct perf_event_context *
9875 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9876 			     struct perf_event_context *ctx)
9877 {
9878 	struct perf_event_context *gctx;
9879 
9880 again:
9881 	rcu_read_lock();
9882 	gctx = READ_ONCE(group_leader->ctx);
9883 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9884 		rcu_read_unlock();
9885 		goto again;
9886 	}
9887 	rcu_read_unlock();
9888 
9889 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9890 
9891 	if (group_leader->ctx != gctx) {
9892 		mutex_unlock(&ctx->mutex);
9893 		mutex_unlock(&gctx->mutex);
9894 		put_ctx(gctx);
9895 		goto again;
9896 	}
9897 
9898 	return gctx;
9899 }
9900 
9901 /**
9902  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9903  *
9904  * @attr_uptr:	event_id type attributes for monitoring/sampling
9905  * @pid:		target pid
9906  * @cpu:		target cpu
9907  * @group_fd:		group leader event fd
9908  */
9909 SYSCALL_DEFINE5(perf_event_open,
9910 		struct perf_event_attr __user *, attr_uptr,
9911 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9912 {
9913 	struct perf_event *group_leader = NULL, *output_event = NULL;
9914 	struct perf_event *event, *sibling;
9915 	struct perf_event_attr attr;
9916 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9917 	struct file *event_file = NULL;
9918 	struct fd group = {NULL, 0};
9919 	struct task_struct *task = NULL;
9920 	struct pmu *pmu;
9921 	int event_fd;
9922 	int move_group = 0;
9923 	int err;
9924 	int f_flags = O_RDWR;
9925 	int cgroup_fd = -1;
9926 
9927 	/* for future expandability... */
9928 	if (flags & ~PERF_FLAG_ALL)
9929 		return -EINVAL;
9930 
9931 	err = perf_copy_attr(attr_uptr, &attr);
9932 	if (err)
9933 		return err;
9934 
9935 	if (!attr.exclude_kernel) {
9936 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9937 			return -EACCES;
9938 	}
9939 
9940 	if (attr.namespaces) {
9941 		if (!capable(CAP_SYS_ADMIN))
9942 			return -EACCES;
9943 	}
9944 
9945 	if (attr.freq) {
9946 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9947 			return -EINVAL;
9948 	} else {
9949 		if (attr.sample_period & (1ULL << 63))
9950 			return -EINVAL;
9951 	}
9952 
9953 	/* Only privileged users can get physical addresses */
9954 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9955 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9956 		return -EACCES;
9957 
9958 	if (!attr.sample_max_stack)
9959 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9960 
9961 	/*
9962 	 * In cgroup mode, the pid argument is used to pass the fd
9963 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9964 	 * designates the cpu on which to monitor threads from that
9965 	 * cgroup.
9966 	 */
9967 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9968 		return -EINVAL;
9969 
9970 	if (flags & PERF_FLAG_FD_CLOEXEC)
9971 		f_flags |= O_CLOEXEC;
9972 
9973 	event_fd = get_unused_fd_flags(f_flags);
9974 	if (event_fd < 0)
9975 		return event_fd;
9976 
9977 	if (group_fd != -1) {
9978 		err = perf_fget_light(group_fd, &group);
9979 		if (err)
9980 			goto err_fd;
9981 		group_leader = group.file->private_data;
9982 		if (flags & PERF_FLAG_FD_OUTPUT)
9983 			output_event = group_leader;
9984 		if (flags & PERF_FLAG_FD_NO_GROUP)
9985 			group_leader = NULL;
9986 	}
9987 
9988 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9989 		task = find_lively_task_by_vpid(pid);
9990 		if (IS_ERR(task)) {
9991 			err = PTR_ERR(task);
9992 			goto err_group_fd;
9993 		}
9994 	}
9995 
9996 	if (task && group_leader &&
9997 	    group_leader->attr.inherit != attr.inherit) {
9998 		err = -EINVAL;
9999 		goto err_task;
10000 	}
10001 
10002 	if (task) {
10003 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10004 		if (err)
10005 			goto err_task;
10006 
10007 		/*
10008 		 * Reuse ptrace permission checks for now.
10009 		 *
10010 		 * We must hold cred_guard_mutex across this and any potential
10011 		 * perf_install_in_context() call for this new event to
10012 		 * serialize against exec() altering our credentials (and the
10013 		 * perf_event_exit_task() that could imply).
10014 		 */
10015 		err = -EACCES;
10016 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10017 			goto err_cred;
10018 	}
10019 
10020 	if (flags & PERF_FLAG_PID_CGROUP)
10021 		cgroup_fd = pid;
10022 
10023 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10024 				 NULL, NULL, cgroup_fd);
10025 	if (IS_ERR(event)) {
10026 		err = PTR_ERR(event);
10027 		goto err_cred;
10028 	}
10029 
10030 	if (is_sampling_event(event)) {
10031 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10032 			err = -EOPNOTSUPP;
10033 			goto err_alloc;
10034 		}
10035 	}
10036 
10037 	/*
10038 	 * Special case software events and allow them to be part of
10039 	 * any hardware group.
10040 	 */
10041 	pmu = event->pmu;
10042 
10043 	if (attr.use_clockid) {
10044 		err = perf_event_set_clock(event, attr.clockid);
10045 		if (err)
10046 			goto err_alloc;
10047 	}
10048 
10049 	if (pmu->task_ctx_nr == perf_sw_context)
10050 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10051 
10052 	if (group_leader &&
10053 	    (is_software_event(event) != is_software_event(group_leader))) {
10054 		if (is_software_event(event)) {
10055 			/*
10056 			 * If event and group_leader are not both a software
10057 			 * event, and event is, then group leader is not.
10058 			 *
10059 			 * Allow the addition of software events to !software
10060 			 * groups, this is safe because software events never
10061 			 * fail to schedule.
10062 			 */
10063 			pmu = group_leader->pmu;
10064 		} else if (is_software_event(group_leader) &&
10065 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10066 			/*
10067 			 * In case the group is a pure software group, and we
10068 			 * try to add a hardware event, move the whole group to
10069 			 * the hardware context.
10070 			 */
10071 			move_group = 1;
10072 		}
10073 	}
10074 
10075 	/*
10076 	 * Get the target context (task or percpu):
10077 	 */
10078 	ctx = find_get_context(pmu, task, event);
10079 	if (IS_ERR(ctx)) {
10080 		err = PTR_ERR(ctx);
10081 		goto err_alloc;
10082 	}
10083 
10084 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10085 		err = -EBUSY;
10086 		goto err_context;
10087 	}
10088 
10089 	/*
10090 	 * Look up the group leader (we will attach this event to it):
10091 	 */
10092 	if (group_leader) {
10093 		err = -EINVAL;
10094 
10095 		/*
10096 		 * Do not allow a recursive hierarchy (this new sibling
10097 		 * becoming part of another group-sibling):
10098 		 */
10099 		if (group_leader->group_leader != group_leader)
10100 			goto err_context;
10101 
10102 		/* All events in a group should have the same clock */
10103 		if (group_leader->clock != event->clock)
10104 			goto err_context;
10105 
10106 		/*
10107 		 * Make sure we're both events for the same CPU;
10108 		 * grouping events for different CPUs is broken; since
10109 		 * you can never concurrently schedule them anyhow.
10110 		 */
10111 		if (group_leader->cpu != event->cpu)
10112 			goto err_context;
10113 
10114 		/*
10115 		 * Make sure we're both on the same task, or both
10116 		 * per-CPU events.
10117 		 */
10118 		if (group_leader->ctx->task != ctx->task)
10119 			goto err_context;
10120 
10121 		/*
10122 		 * Do not allow to attach to a group in a different task
10123 		 * or CPU context. If we're moving SW events, we'll fix
10124 		 * this up later, so allow that.
10125 		 */
10126 		if (!move_group && group_leader->ctx != ctx)
10127 			goto err_context;
10128 
10129 		/*
10130 		 * Only a group leader can be exclusive or pinned
10131 		 */
10132 		if (attr.exclusive || attr.pinned)
10133 			goto err_context;
10134 	}
10135 
10136 	if (output_event) {
10137 		err = perf_event_set_output(event, output_event);
10138 		if (err)
10139 			goto err_context;
10140 	}
10141 
10142 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10143 					f_flags);
10144 	if (IS_ERR(event_file)) {
10145 		err = PTR_ERR(event_file);
10146 		event_file = NULL;
10147 		goto err_context;
10148 	}
10149 
10150 	if (move_group) {
10151 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10152 
10153 		if (gctx->task == TASK_TOMBSTONE) {
10154 			err = -ESRCH;
10155 			goto err_locked;
10156 		}
10157 
10158 		/*
10159 		 * Check if we raced against another sys_perf_event_open() call
10160 		 * moving the software group underneath us.
10161 		 */
10162 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10163 			/*
10164 			 * If someone moved the group out from under us, check
10165 			 * if this new event wound up on the same ctx, if so
10166 			 * its the regular !move_group case, otherwise fail.
10167 			 */
10168 			if (gctx != ctx) {
10169 				err = -EINVAL;
10170 				goto err_locked;
10171 			} else {
10172 				perf_event_ctx_unlock(group_leader, gctx);
10173 				move_group = 0;
10174 			}
10175 		}
10176 	} else {
10177 		mutex_lock(&ctx->mutex);
10178 	}
10179 
10180 	if (ctx->task == TASK_TOMBSTONE) {
10181 		err = -ESRCH;
10182 		goto err_locked;
10183 	}
10184 
10185 	if (!perf_event_validate_size(event)) {
10186 		err = -E2BIG;
10187 		goto err_locked;
10188 	}
10189 
10190 	if (!task) {
10191 		/*
10192 		 * Check if the @cpu we're creating an event for is online.
10193 		 *
10194 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10195 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10196 		 */
10197 		struct perf_cpu_context *cpuctx =
10198 			container_of(ctx, struct perf_cpu_context, ctx);
10199 
10200 		if (!cpuctx->online) {
10201 			err = -ENODEV;
10202 			goto err_locked;
10203 		}
10204 	}
10205 
10206 
10207 	/*
10208 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10209 	 * because we need to serialize with concurrent event creation.
10210 	 */
10211 	if (!exclusive_event_installable(event, ctx)) {
10212 		/* exclusive and group stuff are assumed mutually exclusive */
10213 		WARN_ON_ONCE(move_group);
10214 
10215 		err = -EBUSY;
10216 		goto err_locked;
10217 	}
10218 
10219 	WARN_ON_ONCE(ctx->parent_ctx);
10220 
10221 	/*
10222 	 * This is the point on no return; we cannot fail hereafter. This is
10223 	 * where we start modifying current state.
10224 	 */
10225 
10226 	if (move_group) {
10227 		/*
10228 		 * See perf_event_ctx_lock() for comments on the details
10229 		 * of swizzling perf_event::ctx.
10230 		 */
10231 		perf_remove_from_context(group_leader, 0);
10232 		put_ctx(gctx);
10233 
10234 		list_for_each_entry(sibling, &group_leader->sibling_list,
10235 				    group_entry) {
10236 			perf_remove_from_context(sibling, 0);
10237 			put_ctx(gctx);
10238 		}
10239 
10240 		/*
10241 		 * Wait for everybody to stop referencing the events through
10242 		 * the old lists, before installing it on new lists.
10243 		 */
10244 		synchronize_rcu();
10245 
10246 		/*
10247 		 * Install the group siblings before the group leader.
10248 		 *
10249 		 * Because a group leader will try and install the entire group
10250 		 * (through the sibling list, which is still in-tact), we can
10251 		 * end up with siblings installed in the wrong context.
10252 		 *
10253 		 * By installing siblings first we NO-OP because they're not
10254 		 * reachable through the group lists.
10255 		 */
10256 		list_for_each_entry(sibling, &group_leader->sibling_list,
10257 				    group_entry) {
10258 			perf_event__state_init(sibling);
10259 			perf_install_in_context(ctx, sibling, sibling->cpu);
10260 			get_ctx(ctx);
10261 		}
10262 
10263 		/*
10264 		 * Removing from the context ends up with disabled
10265 		 * event. What we want here is event in the initial
10266 		 * startup state, ready to be add into new context.
10267 		 */
10268 		perf_event__state_init(group_leader);
10269 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10270 		get_ctx(ctx);
10271 	}
10272 
10273 	/*
10274 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10275 	 * that we're serialized against further additions and before
10276 	 * perf_install_in_context() which is the point the event is active and
10277 	 * can use these values.
10278 	 */
10279 	perf_event__header_size(event);
10280 	perf_event__id_header_size(event);
10281 
10282 	event->owner = current;
10283 
10284 	perf_install_in_context(ctx, event, event->cpu);
10285 	perf_unpin_context(ctx);
10286 
10287 	if (move_group)
10288 		perf_event_ctx_unlock(group_leader, gctx);
10289 	mutex_unlock(&ctx->mutex);
10290 
10291 	if (task) {
10292 		mutex_unlock(&task->signal->cred_guard_mutex);
10293 		put_task_struct(task);
10294 	}
10295 
10296 	mutex_lock(&current->perf_event_mutex);
10297 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10298 	mutex_unlock(&current->perf_event_mutex);
10299 
10300 	/*
10301 	 * Drop the reference on the group_event after placing the
10302 	 * new event on the sibling_list. This ensures destruction
10303 	 * of the group leader will find the pointer to itself in
10304 	 * perf_group_detach().
10305 	 */
10306 	fdput(group);
10307 	fd_install(event_fd, event_file);
10308 	return event_fd;
10309 
10310 err_locked:
10311 	if (move_group)
10312 		perf_event_ctx_unlock(group_leader, gctx);
10313 	mutex_unlock(&ctx->mutex);
10314 /* err_file: */
10315 	fput(event_file);
10316 err_context:
10317 	perf_unpin_context(ctx);
10318 	put_ctx(ctx);
10319 err_alloc:
10320 	/*
10321 	 * If event_file is set, the fput() above will have called ->release()
10322 	 * and that will take care of freeing the event.
10323 	 */
10324 	if (!event_file)
10325 		free_event(event);
10326 err_cred:
10327 	if (task)
10328 		mutex_unlock(&task->signal->cred_guard_mutex);
10329 err_task:
10330 	if (task)
10331 		put_task_struct(task);
10332 err_group_fd:
10333 	fdput(group);
10334 err_fd:
10335 	put_unused_fd(event_fd);
10336 	return err;
10337 }
10338 
10339 /**
10340  * perf_event_create_kernel_counter
10341  *
10342  * @attr: attributes of the counter to create
10343  * @cpu: cpu in which the counter is bound
10344  * @task: task to profile (NULL for percpu)
10345  */
10346 struct perf_event *
10347 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10348 				 struct task_struct *task,
10349 				 perf_overflow_handler_t overflow_handler,
10350 				 void *context)
10351 {
10352 	struct perf_event_context *ctx;
10353 	struct perf_event *event;
10354 	int err;
10355 
10356 	/*
10357 	 * Get the target context (task or percpu):
10358 	 */
10359 
10360 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10361 				 overflow_handler, context, -1);
10362 	if (IS_ERR(event)) {
10363 		err = PTR_ERR(event);
10364 		goto err;
10365 	}
10366 
10367 	/* Mark owner so we could distinguish it from user events. */
10368 	event->owner = TASK_TOMBSTONE;
10369 
10370 	ctx = find_get_context(event->pmu, task, event);
10371 	if (IS_ERR(ctx)) {
10372 		err = PTR_ERR(ctx);
10373 		goto err_free;
10374 	}
10375 
10376 	WARN_ON_ONCE(ctx->parent_ctx);
10377 	mutex_lock(&ctx->mutex);
10378 	if (ctx->task == TASK_TOMBSTONE) {
10379 		err = -ESRCH;
10380 		goto err_unlock;
10381 	}
10382 
10383 	if (!task) {
10384 		/*
10385 		 * Check if the @cpu we're creating an event for is online.
10386 		 *
10387 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10388 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10389 		 */
10390 		struct perf_cpu_context *cpuctx =
10391 			container_of(ctx, struct perf_cpu_context, ctx);
10392 		if (!cpuctx->online) {
10393 			err = -ENODEV;
10394 			goto err_unlock;
10395 		}
10396 	}
10397 
10398 	if (!exclusive_event_installable(event, ctx)) {
10399 		err = -EBUSY;
10400 		goto err_unlock;
10401 	}
10402 
10403 	perf_install_in_context(ctx, event, cpu);
10404 	perf_unpin_context(ctx);
10405 	mutex_unlock(&ctx->mutex);
10406 
10407 	return event;
10408 
10409 err_unlock:
10410 	mutex_unlock(&ctx->mutex);
10411 	perf_unpin_context(ctx);
10412 	put_ctx(ctx);
10413 err_free:
10414 	free_event(event);
10415 err:
10416 	return ERR_PTR(err);
10417 }
10418 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10419 
10420 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10421 {
10422 	struct perf_event_context *src_ctx;
10423 	struct perf_event_context *dst_ctx;
10424 	struct perf_event *event, *tmp;
10425 	LIST_HEAD(events);
10426 
10427 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10428 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10429 
10430 	/*
10431 	 * See perf_event_ctx_lock() for comments on the details
10432 	 * of swizzling perf_event::ctx.
10433 	 */
10434 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10435 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10436 				 event_entry) {
10437 		perf_remove_from_context(event, 0);
10438 		unaccount_event_cpu(event, src_cpu);
10439 		put_ctx(src_ctx);
10440 		list_add(&event->migrate_entry, &events);
10441 	}
10442 
10443 	/*
10444 	 * Wait for the events to quiesce before re-instating them.
10445 	 */
10446 	synchronize_rcu();
10447 
10448 	/*
10449 	 * Re-instate events in 2 passes.
10450 	 *
10451 	 * Skip over group leaders and only install siblings on this first
10452 	 * pass, siblings will not get enabled without a leader, however a
10453 	 * leader will enable its siblings, even if those are still on the old
10454 	 * context.
10455 	 */
10456 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10457 		if (event->group_leader == event)
10458 			continue;
10459 
10460 		list_del(&event->migrate_entry);
10461 		if (event->state >= PERF_EVENT_STATE_OFF)
10462 			event->state = PERF_EVENT_STATE_INACTIVE;
10463 		account_event_cpu(event, dst_cpu);
10464 		perf_install_in_context(dst_ctx, event, dst_cpu);
10465 		get_ctx(dst_ctx);
10466 	}
10467 
10468 	/*
10469 	 * Once all the siblings are setup properly, install the group leaders
10470 	 * to make it go.
10471 	 */
10472 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10473 		list_del(&event->migrate_entry);
10474 		if (event->state >= PERF_EVENT_STATE_OFF)
10475 			event->state = PERF_EVENT_STATE_INACTIVE;
10476 		account_event_cpu(event, dst_cpu);
10477 		perf_install_in_context(dst_ctx, event, dst_cpu);
10478 		get_ctx(dst_ctx);
10479 	}
10480 	mutex_unlock(&dst_ctx->mutex);
10481 	mutex_unlock(&src_ctx->mutex);
10482 }
10483 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10484 
10485 static void sync_child_event(struct perf_event *child_event,
10486 			       struct task_struct *child)
10487 {
10488 	struct perf_event *parent_event = child_event->parent;
10489 	u64 child_val;
10490 
10491 	if (child_event->attr.inherit_stat)
10492 		perf_event_read_event(child_event, child);
10493 
10494 	child_val = perf_event_count(child_event);
10495 
10496 	/*
10497 	 * Add back the child's count to the parent's count:
10498 	 */
10499 	atomic64_add(child_val, &parent_event->child_count);
10500 	atomic64_add(child_event->total_time_enabled,
10501 		     &parent_event->child_total_time_enabled);
10502 	atomic64_add(child_event->total_time_running,
10503 		     &parent_event->child_total_time_running);
10504 }
10505 
10506 static void
10507 perf_event_exit_event(struct perf_event *child_event,
10508 		      struct perf_event_context *child_ctx,
10509 		      struct task_struct *child)
10510 {
10511 	struct perf_event *parent_event = child_event->parent;
10512 
10513 	/*
10514 	 * Do not destroy the 'original' grouping; because of the context
10515 	 * switch optimization the original events could've ended up in a
10516 	 * random child task.
10517 	 *
10518 	 * If we were to destroy the original group, all group related
10519 	 * operations would cease to function properly after this random
10520 	 * child dies.
10521 	 *
10522 	 * Do destroy all inherited groups, we don't care about those
10523 	 * and being thorough is better.
10524 	 */
10525 	raw_spin_lock_irq(&child_ctx->lock);
10526 	WARN_ON_ONCE(child_ctx->is_active);
10527 
10528 	if (parent_event)
10529 		perf_group_detach(child_event);
10530 	list_del_event(child_event, child_ctx);
10531 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10532 	raw_spin_unlock_irq(&child_ctx->lock);
10533 
10534 	/*
10535 	 * Parent events are governed by their filedesc, retain them.
10536 	 */
10537 	if (!parent_event) {
10538 		perf_event_wakeup(child_event);
10539 		return;
10540 	}
10541 	/*
10542 	 * Child events can be cleaned up.
10543 	 */
10544 
10545 	sync_child_event(child_event, child);
10546 
10547 	/*
10548 	 * Remove this event from the parent's list
10549 	 */
10550 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10551 	mutex_lock(&parent_event->child_mutex);
10552 	list_del_init(&child_event->child_list);
10553 	mutex_unlock(&parent_event->child_mutex);
10554 
10555 	/*
10556 	 * Kick perf_poll() for is_event_hup().
10557 	 */
10558 	perf_event_wakeup(parent_event);
10559 	free_event(child_event);
10560 	put_event(parent_event);
10561 }
10562 
10563 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10564 {
10565 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10566 	struct perf_event *child_event, *next;
10567 
10568 	WARN_ON_ONCE(child != current);
10569 
10570 	child_ctx = perf_pin_task_context(child, ctxn);
10571 	if (!child_ctx)
10572 		return;
10573 
10574 	/*
10575 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10576 	 * ctx::mutex over the entire thing. This serializes against almost
10577 	 * everything that wants to access the ctx.
10578 	 *
10579 	 * The exception is sys_perf_event_open() /
10580 	 * perf_event_create_kernel_count() which does find_get_context()
10581 	 * without ctx::mutex (it cannot because of the move_group double mutex
10582 	 * lock thing). See the comments in perf_install_in_context().
10583 	 */
10584 	mutex_lock(&child_ctx->mutex);
10585 
10586 	/*
10587 	 * In a single ctx::lock section, de-schedule the events and detach the
10588 	 * context from the task such that we cannot ever get it scheduled back
10589 	 * in.
10590 	 */
10591 	raw_spin_lock_irq(&child_ctx->lock);
10592 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10593 
10594 	/*
10595 	 * Now that the context is inactive, destroy the task <-> ctx relation
10596 	 * and mark the context dead.
10597 	 */
10598 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10599 	put_ctx(child_ctx); /* cannot be last */
10600 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10601 	put_task_struct(current); /* cannot be last */
10602 
10603 	clone_ctx = unclone_ctx(child_ctx);
10604 	raw_spin_unlock_irq(&child_ctx->lock);
10605 
10606 	if (clone_ctx)
10607 		put_ctx(clone_ctx);
10608 
10609 	/*
10610 	 * Report the task dead after unscheduling the events so that we
10611 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10612 	 * get a few PERF_RECORD_READ events.
10613 	 */
10614 	perf_event_task(child, child_ctx, 0);
10615 
10616 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10617 		perf_event_exit_event(child_event, child_ctx, child);
10618 
10619 	mutex_unlock(&child_ctx->mutex);
10620 
10621 	put_ctx(child_ctx);
10622 }
10623 
10624 /*
10625  * When a child task exits, feed back event values to parent events.
10626  *
10627  * Can be called with cred_guard_mutex held when called from
10628  * install_exec_creds().
10629  */
10630 void perf_event_exit_task(struct task_struct *child)
10631 {
10632 	struct perf_event *event, *tmp;
10633 	int ctxn;
10634 
10635 	mutex_lock(&child->perf_event_mutex);
10636 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10637 				 owner_entry) {
10638 		list_del_init(&event->owner_entry);
10639 
10640 		/*
10641 		 * Ensure the list deletion is visible before we clear
10642 		 * the owner, closes a race against perf_release() where
10643 		 * we need to serialize on the owner->perf_event_mutex.
10644 		 */
10645 		smp_store_release(&event->owner, NULL);
10646 	}
10647 	mutex_unlock(&child->perf_event_mutex);
10648 
10649 	for_each_task_context_nr(ctxn)
10650 		perf_event_exit_task_context(child, ctxn);
10651 
10652 	/*
10653 	 * The perf_event_exit_task_context calls perf_event_task
10654 	 * with child's task_ctx, which generates EXIT events for
10655 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10656 	 * At this point we need to send EXIT events to cpu contexts.
10657 	 */
10658 	perf_event_task(child, NULL, 0);
10659 }
10660 
10661 static void perf_free_event(struct perf_event *event,
10662 			    struct perf_event_context *ctx)
10663 {
10664 	struct perf_event *parent = event->parent;
10665 
10666 	if (WARN_ON_ONCE(!parent))
10667 		return;
10668 
10669 	mutex_lock(&parent->child_mutex);
10670 	list_del_init(&event->child_list);
10671 	mutex_unlock(&parent->child_mutex);
10672 
10673 	put_event(parent);
10674 
10675 	raw_spin_lock_irq(&ctx->lock);
10676 	perf_group_detach(event);
10677 	list_del_event(event, ctx);
10678 	raw_spin_unlock_irq(&ctx->lock);
10679 	free_event(event);
10680 }
10681 
10682 /*
10683  * Free an unexposed, unused context as created by inheritance by
10684  * perf_event_init_task below, used by fork() in case of fail.
10685  *
10686  * Not all locks are strictly required, but take them anyway to be nice and
10687  * help out with the lockdep assertions.
10688  */
10689 void perf_event_free_task(struct task_struct *task)
10690 {
10691 	struct perf_event_context *ctx;
10692 	struct perf_event *event, *tmp;
10693 	int ctxn;
10694 
10695 	for_each_task_context_nr(ctxn) {
10696 		ctx = task->perf_event_ctxp[ctxn];
10697 		if (!ctx)
10698 			continue;
10699 
10700 		mutex_lock(&ctx->mutex);
10701 		raw_spin_lock_irq(&ctx->lock);
10702 		/*
10703 		 * Destroy the task <-> ctx relation and mark the context dead.
10704 		 *
10705 		 * This is important because even though the task hasn't been
10706 		 * exposed yet the context has been (through child_list).
10707 		 */
10708 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10709 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10710 		put_task_struct(task); /* cannot be last */
10711 		raw_spin_unlock_irq(&ctx->lock);
10712 
10713 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10714 			perf_free_event(event, ctx);
10715 
10716 		mutex_unlock(&ctx->mutex);
10717 		put_ctx(ctx);
10718 	}
10719 }
10720 
10721 void perf_event_delayed_put(struct task_struct *task)
10722 {
10723 	int ctxn;
10724 
10725 	for_each_task_context_nr(ctxn)
10726 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10727 }
10728 
10729 struct file *perf_event_get(unsigned int fd)
10730 {
10731 	struct file *file;
10732 
10733 	file = fget_raw(fd);
10734 	if (!file)
10735 		return ERR_PTR(-EBADF);
10736 
10737 	if (file->f_op != &perf_fops) {
10738 		fput(file);
10739 		return ERR_PTR(-EBADF);
10740 	}
10741 
10742 	return file;
10743 }
10744 
10745 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10746 {
10747 	if (!event)
10748 		return ERR_PTR(-EINVAL);
10749 
10750 	return &event->attr;
10751 }
10752 
10753 /*
10754  * Inherit a event from parent task to child task.
10755  *
10756  * Returns:
10757  *  - valid pointer on success
10758  *  - NULL for orphaned events
10759  *  - IS_ERR() on error
10760  */
10761 static struct perf_event *
10762 inherit_event(struct perf_event *parent_event,
10763 	      struct task_struct *parent,
10764 	      struct perf_event_context *parent_ctx,
10765 	      struct task_struct *child,
10766 	      struct perf_event *group_leader,
10767 	      struct perf_event_context *child_ctx)
10768 {
10769 	enum perf_event_active_state parent_state = parent_event->state;
10770 	struct perf_event *child_event;
10771 	unsigned long flags;
10772 
10773 	/*
10774 	 * Instead of creating recursive hierarchies of events,
10775 	 * we link inherited events back to the original parent,
10776 	 * which has a filp for sure, which we use as the reference
10777 	 * count:
10778 	 */
10779 	if (parent_event->parent)
10780 		parent_event = parent_event->parent;
10781 
10782 	child_event = perf_event_alloc(&parent_event->attr,
10783 					   parent_event->cpu,
10784 					   child,
10785 					   group_leader, parent_event,
10786 					   NULL, NULL, -1);
10787 	if (IS_ERR(child_event))
10788 		return child_event;
10789 
10790 	/*
10791 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10792 	 * must be under the same lock in order to serialize against
10793 	 * perf_event_release_kernel(), such that either we must observe
10794 	 * is_orphaned_event() or they will observe us on the child_list.
10795 	 */
10796 	mutex_lock(&parent_event->child_mutex);
10797 	if (is_orphaned_event(parent_event) ||
10798 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10799 		mutex_unlock(&parent_event->child_mutex);
10800 		free_event(child_event);
10801 		return NULL;
10802 	}
10803 
10804 	get_ctx(child_ctx);
10805 
10806 	/*
10807 	 * Make the child state follow the state of the parent event,
10808 	 * not its attr.disabled bit.  We hold the parent's mutex,
10809 	 * so we won't race with perf_event_{en, dis}able_family.
10810 	 */
10811 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10812 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10813 	else
10814 		child_event->state = PERF_EVENT_STATE_OFF;
10815 
10816 	if (parent_event->attr.freq) {
10817 		u64 sample_period = parent_event->hw.sample_period;
10818 		struct hw_perf_event *hwc = &child_event->hw;
10819 
10820 		hwc->sample_period = sample_period;
10821 		hwc->last_period   = sample_period;
10822 
10823 		local64_set(&hwc->period_left, sample_period);
10824 	}
10825 
10826 	child_event->ctx = child_ctx;
10827 	child_event->overflow_handler = parent_event->overflow_handler;
10828 	child_event->overflow_handler_context
10829 		= parent_event->overflow_handler_context;
10830 
10831 	/*
10832 	 * Precalculate sample_data sizes
10833 	 */
10834 	perf_event__header_size(child_event);
10835 	perf_event__id_header_size(child_event);
10836 
10837 	/*
10838 	 * Link it up in the child's context:
10839 	 */
10840 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10841 	add_event_to_ctx(child_event, child_ctx);
10842 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10843 
10844 	/*
10845 	 * Link this into the parent event's child list
10846 	 */
10847 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10848 	mutex_unlock(&parent_event->child_mutex);
10849 
10850 	return child_event;
10851 }
10852 
10853 /*
10854  * Inherits an event group.
10855  *
10856  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10857  * This matches with perf_event_release_kernel() removing all child events.
10858  *
10859  * Returns:
10860  *  - 0 on success
10861  *  - <0 on error
10862  */
10863 static int inherit_group(struct perf_event *parent_event,
10864 	      struct task_struct *parent,
10865 	      struct perf_event_context *parent_ctx,
10866 	      struct task_struct *child,
10867 	      struct perf_event_context *child_ctx)
10868 {
10869 	struct perf_event *leader;
10870 	struct perf_event *sub;
10871 	struct perf_event *child_ctr;
10872 
10873 	leader = inherit_event(parent_event, parent, parent_ctx,
10874 				 child, NULL, child_ctx);
10875 	if (IS_ERR(leader))
10876 		return PTR_ERR(leader);
10877 	/*
10878 	 * @leader can be NULL here because of is_orphaned_event(). In this
10879 	 * case inherit_event() will create individual events, similar to what
10880 	 * perf_group_detach() would do anyway.
10881 	 */
10882 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10883 		child_ctr = inherit_event(sub, parent, parent_ctx,
10884 					    child, leader, child_ctx);
10885 		if (IS_ERR(child_ctr))
10886 			return PTR_ERR(child_ctr);
10887 	}
10888 	return 0;
10889 }
10890 
10891 /*
10892  * Creates the child task context and tries to inherit the event-group.
10893  *
10894  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10895  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10896  * consistent with perf_event_release_kernel() removing all child events.
10897  *
10898  * Returns:
10899  *  - 0 on success
10900  *  - <0 on error
10901  */
10902 static int
10903 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10904 		   struct perf_event_context *parent_ctx,
10905 		   struct task_struct *child, int ctxn,
10906 		   int *inherited_all)
10907 {
10908 	int ret;
10909 	struct perf_event_context *child_ctx;
10910 
10911 	if (!event->attr.inherit) {
10912 		*inherited_all = 0;
10913 		return 0;
10914 	}
10915 
10916 	child_ctx = child->perf_event_ctxp[ctxn];
10917 	if (!child_ctx) {
10918 		/*
10919 		 * This is executed from the parent task context, so
10920 		 * inherit events that have been marked for cloning.
10921 		 * First allocate and initialize a context for the
10922 		 * child.
10923 		 */
10924 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10925 		if (!child_ctx)
10926 			return -ENOMEM;
10927 
10928 		child->perf_event_ctxp[ctxn] = child_ctx;
10929 	}
10930 
10931 	ret = inherit_group(event, parent, parent_ctx,
10932 			    child, child_ctx);
10933 
10934 	if (ret)
10935 		*inherited_all = 0;
10936 
10937 	return ret;
10938 }
10939 
10940 /*
10941  * Initialize the perf_event context in task_struct
10942  */
10943 static int perf_event_init_context(struct task_struct *child, int ctxn)
10944 {
10945 	struct perf_event_context *child_ctx, *parent_ctx;
10946 	struct perf_event_context *cloned_ctx;
10947 	struct perf_event *event;
10948 	struct task_struct *parent = current;
10949 	int inherited_all = 1;
10950 	unsigned long flags;
10951 	int ret = 0;
10952 
10953 	if (likely(!parent->perf_event_ctxp[ctxn]))
10954 		return 0;
10955 
10956 	/*
10957 	 * If the parent's context is a clone, pin it so it won't get
10958 	 * swapped under us.
10959 	 */
10960 	parent_ctx = perf_pin_task_context(parent, ctxn);
10961 	if (!parent_ctx)
10962 		return 0;
10963 
10964 	/*
10965 	 * No need to check if parent_ctx != NULL here; since we saw
10966 	 * it non-NULL earlier, the only reason for it to become NULL
10967 	 * is if we exit, and since we're currently in the middle of
10968 	 * a fork we can't be exiting at the same time.
10969 	 */
10970 
10971 	/*
10972 	 * Lock the parent list. No need to lock the child - not PID
10973 	 * hashed yet and not running, so nobody can access it.
10974 	 */
10975 	mutex_lock(&parent_ctx->mutex);
10976 
10977 	/*
10978 	 * We dont have to disable NMIs - we are only looking at
10979 	 * the list, not manipulating it:
10980 	 */
10981 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10982 		ret = inherit_task_group(event, parent, parent_ctx,
10983 					 child, ctxn, &inherited_all);
10984 		if (ret)
10985 			goto out_unlock;
10986 	}
10987 
10988 	/*
10989 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10990 	 * to allocations, but we need to prevent rotation because
10991 	 * rotate_ctx() will change the list from interrupt context.
10992 	 */
10993 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10994 	parent_ctx->rotate_disable = 1;
10995 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10996 
10997 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10998 		ret = inherit_task_group(event, parent, parent_ctx,
10999 					 child, ctxn, &inherited_all);
11000 		if (ret)
11001 			goto out_unlock;
11002 	}
11003 
11004 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11005 	parent_ctx->rotate_disable = 0;
11006 
11007 	child_ctx = child->perf_event_ctxp[ctxn];
11008 
11009 	if (child_ctx && inherited_all) {
11010 		/*
11011 		 * Mark the child context as a clone of the parent
11012 		 * context, or of whatever the parent is a clone of.
11013 		 *
11014 		 * Note that if the parent is a clone, the holding of
11015 		 * parent_ctx->lock avoids it from being uncloned.
11016 		 */
11017 		cloned_ctx = parent_ctx->parent_ctx;
11018 		if (cloned_ctx) {
11019 			child_ctx->parent_ctx = cloned_ctx;
11020 			child_ctx->parent_gen = parent_ctx->parent_gen;
11021 		} else {
11022 			child_ctx->parent_ctx = parent_ctx;
11023 			child_ctx->parent_gen = parent_ctx->generation;
11024 		}
11025 		get_ctx(child_ctx->parent_ctx);
11026 	}
11027 
11028 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11029 out_unlock:
11030 	mutex_unlock(&parent_ctx->mutex);
11031 
11032 	perf_unpin_context(parent_ctx);
11033 	put_ctx(parent_ctx);
11034 
11035 	return ret;
11036 }
11037 
11038 /*
11039  * Initialize the perf_event context in task_struct
11040  */
11041 int perf_event_init_task(struct task_struct *child)
11042 {
11043 	int ctxn, ret;
11044 
11045 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11046 	mutex_init(&child->perf_event_mutex);
11047 	INIT_LIST_HEAD(&child->perf_event_list);
11048 
11049 	for_each_task_context_nr(ctxn) {
11050 		ret = perf_event_init_context(child, ctxn);
11051 		if (ret) {
11052 			perf_event_free_task(child);
11053 			return ret;
11054 		}
11055 	}
11056 
11057 	return 0;
11058 }
11059 
11060 static void __init perf_event_init_all_cpus(void)
11061 {
11062 	struct swevent_htable *swhash;
11063 	int cpu;
11064 
11065 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11066 
11067 	for_each_possible_cpu(cpu) {
11068 		swhash = &per_cpu(swevent_htable, cpu);
11069 		mutex_init(&swhash->hlist_mutex);
11070 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11071 
11072 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11073 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11074 
11075 #ifdef CONFIG_CGROUP_PERF
11076 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11077 #endif
11078 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11079 	}
11080 }
11081 
11082 void perf_swevent_init_cpu(unsigned int cpu)
11083 {
11084 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11085 
11086 	mutex_lock(&swhash->hlist_mutex);
11087 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11088 		struct swevent_hlist *hlist;
11089 
11090 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11091 		WARN_ON(!hlist);
11092 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11093 	}
11094 	mutex_unlock(&swhash->hlist_mutex);
11095 }
11096 
11097 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11098 static void __perf_event_exit_context(void *__info)
11099 {
11100 	struct perf_event_context *ctx = __info;
11101 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11102 	struct perf_event *event;
11103 
11104 	raw_spin_lock(&ctx->lock);
11105 	list_for_each_entry(event, &ctx->event_list, event_entry)
11106 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11107 	raw_spin_unlock(&ctx->lock);
11108 }
11109 
11110 static void perf_event_exit_cpu_context(int cpu)
11111 {
11112 	struct perf_cpu_context *cpuctx;
11113 	struct perf_event_context *ctx;
11114 	struct pmu *pmu;
11115 
11116 	mutex_lock(&pmus_lock);
11117 	list_for_each_entry(pmu, &pmus, entry) {
11118 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11119 		ctx = &cpuctx->ctx;
11120 
11121 		mutex_lock(&ctx->mutex);
11122 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11123 		cpuctx->online = 0;
11124 		mutex_unlock(&ctx->mutex);
11125 	}
11126 	cpumask_clear_cpu(cpu, perf_online_mask);
11127 	mutex_unlock(&pmus_lock);
11128 }
11129 #else
11130 
11131 static void perf_event_exit_cpu_context(int cpu) { }
11132 
11133 #endif
11134 
11135 int perf_event_init_cpu(unsigned int cpu)
11136 {
11137 	struct perf_cpu_context *cpuctx;
11138 	struct perf_event_context *ctx;
11139 	struct pmu *pmu;
11140 
11141 	perf_swevent_init_cpu(cpu);
11142 
11143 	mutex_lock(&pmus_lock);
11144 	cpumask_set_cpu(cpu, perf_online_mask);
11145 	list_for_each_entry(pmu, &pmus, entry) {
11146 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11147 		ctx = &cpuctx->ctx;
11148 
11149 		mutex_lock(&ctx->mutex);
11150 		cpuctx->online = 1;
11151 		mutex_unlock(&ctx->mutex);
11152 	}
11153 	mutex_unlock(&pmus_lock);
11154 
11155 	return 0;
11156 }
11157 
11158 int perf_event_exit_cpu(unsigned int cpu)
11159 {
11160 	perf_event_exit_cpu_context(cpu);
11161 	return 0;
11162 }
11163 
11164 static int
11165 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11166 {
11167 	int cpu;
11168 
11169 	for_each_online_cpu(cpu)
11170 		perf_event_exit_cpu(cpu);
11171 
11172 	return NOTIFY_OK;
11173 }
11174 
11175 /*
11176  * Run the perf reboot notifier at the very last possible moment so that
11177  * the generic watchdog code runs as long as possible.
11178  */
11179 static struct notifier_block perf_reboot_notifier = {
11180 	.notifier_call = perf_reboot,
11181 	.priority = INT_MIN,
11182 };
11183 
11184 void __init perf_event_init(void)
11185 {
11186 	int ret;
11187 
11188 	idr_init(&pmu_idr);
11189 
11190 	perf_event_init_all_cpus();
11191 	init_srcu_struct(&pmus_srcu);
11192 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11193 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11194 	perf_pmu_register(&perf_task_clock, NULL, -1);
11195 	perf_tp_register();
11196 	perf_event_init_cpu(smp_processor_id());
11197 	register_reboot_notifier(&perf_reboot_notifier);
11198 
11199 	ret = init_hw_breakpoint();
11200 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11201 
11202 	/*
11203 	 * Build time assertion that we keep the data_head at the intended
11204 	 * location.  IOW, validation we got the __reserved[] size right.
11205 	 */
11206 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11207 		     != 1024);
11208 }
11209 
11210 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11211 			      char *page)
11212 {
11213 	struct perf_pmu_events_attr *pmu_attr =
11214 		container_of(attr, struct perf_pmu_events_attr, attr);
11215 
11216 	if (pmu_attr->event_str)
11217 		return sprintf(page, "%s\n", pmu_attr->event_str);
11218 
11219 	return 0;
11220 }
11221 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11222 
11223 static int __init perf_event_sysfs_init(void)
11224 {
11225 	struct pmu *pmu;
11226 	int ret;
11227 
11228 	mutex_lock(&pmus_lock);
11229 
11230 	ret = bus_register(&pmu_bus);
11231 	if (ret)
11232 		goto unlock;
11233 
11234 	list_for_each_entry(pmu, &pmus, entry) {
11235 		if (!pmu->name || pmu->type < 0)
11236 			continue;
11237 
11238 		ret = pmu_dev_alloc(pmu);
11239 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11240 	}
11241 	pmu_bus_running = 1;
11242 	ret = 0;
11243 
11244 unlock:
11245 	mutex_unlock(&pmus_lock);
11246 
11247 	return ret;
11248 }
11249 device_initcall(perf_event_sysfs_init);
11250 
11251 #ifdef CONFIG_CGROUP_PERF
11252 static struct cgroup_subsys_state *
11253 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11254 {
11255 	struct perf_cgroup *jc;
11256 
11257 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11258 	if (!jc)
11259 		return ERR_PTR(-ENOMEM);
11260 
11261 	jc->info = alloc_percpu(struct perf_cgroup_info);
11262 	if (!jc->info) {
11263 		kfree(jc);
11264 		return ERR_PTR(-ENOMEM);
11265 	}
11266 
11267 	return &jc->css;
11268 }
11269 
11270 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11271 {
11272 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11273 
11274 	free_percpu(jc->info);
11275 	kfree(jc);
11276 }
11277 
11278 static int __perf_cgroup_move(void *info)
11279 {
11280 	struct task_struct *task = info;
11281 	rcu_read_lock();
11282 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11283 	rcu_read_unlock();
11284 	return 0;
11285 }
11286 
11287 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11288 {
11289 	struct task_struct *task;
11290 	struct cgroup_subsys_state *css;
11291 
11292 	cgroup_taskset_for_each(task, css, tset)
11293 		task_function_call(task, __perf_cgroup_move, task);
11294 }
11295 
11296 struct cgroup_subsys perf_event_cgrp_subsys = {
11297 	.css_alloc	= perf_cgroup_css_alloc,
11298 	.css_free	= perf_cgroup_css_free,
11299 	.attach		= perf_cgroup_attach,
11300 	/*
11301 	 * Implicitly enable on dfl hierarchy so that perf events can
11302 	 * always be filtered by cgroup2 path as long as perf_event
11303 	 * controller is not mounted on a legacy hierarchy.
11304 	 */
11305 	.implicit_on_dfl = true,
11306 	.threaded	= true,
11307 };
11308 #endif /* CONFIG_CGROUP_PERF */
11309