xref: /openbmc/linux/kernel/events/core.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 
58 #include "internal.h"
59 
60 #include <asm/irq_regs.h>
61 
62 typedef int (*remote_function_f)(void *);
63 
64 struct remote_function_call {
65 	struct task_struct	*p;
66 	remote_function_f	func;
67 	void			*info;
68 	int			ret;
69 };
70 
71 static void remote_function(void *data)
72 {
73 	struct remote_function_call *tfc = data;
74 	struct task_struct *p = tfc->p;
75 
76 	if (p) {
77 		/* -EAGAIN */
78 		if (task_cpu(p) != smp_processor_id())
79 			return;
80 
81 		/*
82 		 * Now that we're on right CPU with IRQs disabled, we can test
83 		 * if we hit the right task without races.
84 		 */
85 
86 		tfc->ret = -ESRCH; /* No such (running) process */
87 		if (p != current)
88 			return;
89 	}
90 
91 	tfc->ret = tfc->func(tfc->info);
92 }
93 
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:		the task to evaluate
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110 	struct remote_function_call data = {
111 		.p	= p,
112 		.func	= func,
113 		.info	= info,
114 		.ret	= -EAGAIN,
115 	};
116 	int ret;
117 
118 	for (;;) {
119 		ret = smp_call_function_single(task_cpu(p), remote_function,
120 					       &data, 1);
121 		if (!ret)
122 			ret = data.ret;
123 
124 		if (ret != -EAGAIN)
125 			break;
126 
127 		cond_resched();
128 	}
129 
130 	return ret;
131 }
132 
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:	target cpu to queue this function
136  * @func:	the function to be called
137  * @info:	the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145 	struct remote_function_call data = {
146 		.p	= NULL,
147 		.func	= func,
148 		.info	= info,
149 		.ret	= -ENXIO, /* No such CPU */
150 	};
151 
152 	smp_call_function_single(cpu, remote_function, &data, 1);
153 
154 	return data.ret;
155 }
156 
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162 
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164 			  struct perf_event_context *ctx)
165 {
166 	raw_spin_lock(&cpuctx->ctx.lock);
167 	if (ctx)
168 		raw_spin_lock(&ctx->lock);
169 }
170 
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172 			    struct perf_event_context *ctx)
173 {
174 	if (ctx)
175 		raw_spin_unlock(&ctx->lock);
176 	raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178 
179 #define TASK_TOMBSTONE ((void *)-1L)
180 
181 static bool is_kernel_event(struct perf_event *event)
182 {
183 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185 
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204 
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206 			struct perf_event_context *, void *);
207 
208 struct event_function_struct {
209 	struct perf_event *event;
210 	event_f func;
211 	void *data;
212 };
213 
214 static int event_function(void *info)
215 {
216 	struct event_function_struct *efs = info;
217 	struct perf_event *event = efs->event;
218 	struct perf_event_context *ctx = event->ctx;
219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
221 	int ret = 0;
222 
223 	lockdep_assert_irqs_disabled();
224 
225 	perf_ctx_lock(cpuctx, task_ctx);
226 	/*
227 	 * Since we do the IPI call without holding ctx->lock things can have
228 	 * changed, double check we hit the task we set out to hit.
229 	 */
230 	if (ctx->task) {
231 		if (ctx->task != current) {
232 			ret = -ESRCH;
233 			goto unlock;
234 		}
235 
236 		/*
237 		 * We only use event_function_call() on established contexts,
238 		 * and event_function() is only ever called when active (or
239 		 * rather, we'll have bailed in task_function_call() or the
240 		 * above ctx->task != current test), therefore we must have
241 		 * ctx->is_active here.
242 		 */
243 		WARN_ON_ONCE(!ctx->is_active);
244 		/*
245 		 * And since we have ctx->is_active, cpuctx->task_ctx must
246 		 * match.
247 		 */
248 		WARN_ON_ONCE(task_ctx != ctx);
249 	} else {
250 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
251 	}
252 
253 	efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255 	perf_ctx_unlock(cpuctx, task_ctx);
256 
257 	return ret;
258 }
259 
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262 	struct perf_event_context *ctx = event->ctx;
263 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264 	struct event_function_struct efs = {
265 		.event = event,
266 		.func = func,
267 		.data = data,
268 	};
269 
270 	if (!event->parent) {
271 		/*
272 		 * If this is a !child event, we must hold ctx::mutex to
273 		 * stabilize the event->ctx relation. See
274 		 * perf_event_ctx_lock().
275 		 */
276 		lockdep_assert_held(&ctx->mutex);
277 	}
278 
279 	if (!task) {
280 		cpu_function_call(event->cpu, event_function, &efs);
281 		return;
282 	}
283 
284 	if (task == TASK_TOMBSTONE)
285 		return;
286 
287 again:
288 	if (!task_function_call(task, event_function, &efs))
289 		return;
290 
291 	raw_spin_lock_irq(&ctx->lock);
292 	/*
293 	 * Reload the task pointer, it might have been changed by
294 	 * a concurrent perf_event_context_sched_out().
295 	 */
296 	task = ctx->task;
297 	if (task == TASK_TOMBSTONE) {
298 		raw_spin_unlock_irq(&ctx->lock);
299 		return;
300 	}
301 	if (ctx->is_active) {
302 		raw_spin_unlock_irq(&ctx->lock);
303 		goto again;
304 	}
305 	func(event, NULL, ctx, data);
306 	raw_spin_unlock_irq(&ctx->lock);
307 }
308 
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315 	struct perf_event_context *ctx = event->ctx;
316 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317 	struct task_struct *task = READ_ONCE(ctx->task);
318 	struct perf_event_context *task_ctx = NULL;
319 
320 	lockdep_assert_irqs_disabled();
321 
322 	if (task) {
323 		if (task == TASK_TOMBSTONE)
324 			return;
325 
326 		task_ctx = ctx;
327 	}
328 
329 	perf_ctx_lock(cpuctx, task_ctx);
330 
331 	task = ctx->task;
332 	if (task == TASK_TOMBSTONE)
333 		goto unlock;
334 
335 	if (task) {
336 		/*
337 		 * We must be either inactive or active and the right task,
338 		 * otherwise we're screwed, since we cannot IPI to somewhere
339 		 * else.
340 		 */
341 		if (ctx->is_active) {
342 			if (WARN_ON_ONCE(task != current))
343 				goto unlock;
344 
345 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346 				goto unlock;
347 		}
348 	} else {
349 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
350 	}
351 
352 	func(event, cpuctx, ctx, data);
353 unlock:
354 	perf_ctx_unlock(cpuctx, task_ctx);
355 }
356 
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358 		       PERF_FLAG_FD_OUTPUT  |\
359 		       PERF_FLAG_PID_CGROUP |\
360 		       PERF_FLAG_FD_CLOEXEC)
361 
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366 	(PERF_SAMPLE_BRANCH_KERNEL |\
367 	 PERF_SAMPLE_BRANCH_HV)
368 
369 enum event_type_t {
370 	EVENT_FLEXIBLE = 0x1,
371 	EVENT_PINNED = 0x2,
372 	EVENT_TIME = 0x4,
373 	/* see ctx_resched() for details */
374 	EVENT_CPU = 0x8,
375 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377 
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382 
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388 
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392 
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404 
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410 
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419 
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422 
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE		100000
427 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
429 
430 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
431 
432 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
434 
435 static int perf_sample_allowed_ns __read_mostly =
436 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437 
438 static void update_perf_cpu_limits(void)
439 {
440 	u64 tmp = perf_sample_period_ns;
441 
442 	tmp *= sysctl_perf_cpu_time_max_percent;
443 	tmp = div_u64(tmp, 100);
444 	if (!tmp)
445 		tmp = 1;
446 
447 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449 
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451 
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453 		void *buffer, size_t *lenp, loff_t *ppos)
454 {
455 	int ret;
456 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
457 	/*
458 	 * If throttling is disabled don't allow the write:
459 	 */
460 	if (write && (perf_cpu == 100 || perf_cpu == 0))
461 		return -EINVAL;
462 
463 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464 	if (ret || !write)
465 		return ret;
466 
467 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469 	update_perf_cpu_limits();
470 
471 	return 0;
472 }
473 
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475 
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477 		void *buffer, size_t *lenp, loff_t *ppos)
478 {
479 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480 
481 	if (ret || !write)
482 		return ret;
483 
484 	if (sysctl_perf_cpu_time_max_percent == 100 ||
485 	    sysctl_perf_cpu_time_max_percent == 0) {
486 		printk(KERN_WARNING
487 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488 		WRITE_ONCE(perf_sample_allowed_ns, 0);
489 	} else {
490 		update_perf_cpu_limits();
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504 
505 static u64 __report_avg;
506 static u64 __report_allowed;
507 
508 static void perf_duration_warn(struct irq_work *w)
509 {
510 	printk_ratelimited(KERN_INFO
511 		"perf: interrupt took too long (%lld > %lld), lowering "
512 		"kernel.perf_event_max_sample_rate to %d\n",
513 		__report_avg, __report_allowed,
514 		sysctl_perf_event_sample_rate);
515 }
516 
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518 
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522 	u64 running_len;
523 	u64 avg_len;
524 	u32 max;
525 
526 	if (max_len == 0)
527 		return;
528 
529 	/* Decay the counter by 1 average sample. */
530 	running_len = __this_cpu_read(running_sample_length);
531 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532 	running_len += sample_len_ns;
533 	__this_cpu_write(running_sample_length, running_len);
534 
535 	/*
536 	 * Note: this will be biased artifically low until we have
537 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538 	 * from having to maintain a count.
539 	 */
540 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541 	if (avg_len <= max_len)
542 		return;
543 
544 	__report_avg = avg_len;
545 	__report_allowed = max_len;
546 
547 	/*
548 	 * Compute a throttle threshold 25% below the current duration.
549 	 */
550 	avg_len += avg_len / 4;
551 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552 	if (avg_len < max)
553 		max /= (u32)avg_len;
554 	else
555 		max = 1;
556 
557 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558 	WRITE_ONCE(max_samples_per_tick, max);
559 
560 	sysctl_perf_event_sample_rate = max * HZ;
561 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562 
563 	if (!irq_work_queue(&perf_duration_work)) {
564 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565 			     "kernel.perf_event_max_sample_rate to %d\n",
566 			     __report_avg, __report_allowed,
567 			     sysctl_perf_event_sample_rate);
568 	}
569 }
570 
571 static atomic64_t perf_event_id;
572 
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574 			      enum event_type_t event_type);
575 
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577 			     enum event_type_t event_type,
578 			     struct task_struct *task);
579 
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582 
583 void __weak perf_event_print_debug(void)	{ }
584 
585 static inline u64 perf_clock(void)
586 {
587 	return local_clock();
588 }
589 
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592 	return event->clock();
593 }
594 
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616 
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620 	struct perf_event *leader = event->group_leader;
621 
622 	if (leader->state <= PERF_EVENT_STATE_OFF)
623 		return leader->state;
624 
625 	return event->state;
626 }
627 
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631 	enum perf_event_state state = __perf_effective_state(event);
632 	u64 delta = now - event->tstamp;
633 
634 	*enabled = event->total_time_enabled;
635 	if (state >= PERF_EVENT_STATE_INACTIVE)
636 		*enabled += delta;
637 
638 	*running = event->total_time_running;
639 	if (state >= PERF_EVENT_STATE_ACTIVE)
640 		*running += delta;
641 }
642 
643 static void perf_event_update_time(struct perf_event *event)
644 {
645 	u64 now = perf_event_time(event);
646 
647 	__perf_update_times(event, now, &event->total_time_enabled,
648 					&event->total_time_running);
649 	event->tstamp = now;
650 }
651 
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654 	struct perf_event *sibling;
655 
656 	for_each_sibling_event(sibling, leader)
657 		perf_event_update_time(sibling);
658 }
659 
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663 	if (event->state == state)
664 		return;
665 
666 	perf_event_update_time(event);
667 	/*
668 	 * If a group leader gets enabled/disabled all its siblings
669 	 * are affected too.
670 	 */
671 	if ((event->state < 0) ^ (state < 0))
672 		perf_event_update_sibling_time(event);
673 
674 	WRITE_ONCE(event->state, state);
675 }
676 
677 #ifdef CONFIG_CGROUP_PERF
678 
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682 	struct perf_event_context *ctx = event->ctx;
683 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684 
685 	/* @event doesn't care about cgroup */
686 	if (!event->cgrp)
687 		return true;
688 
689 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
690 	if (!cpuctx->cgrp)
691 		return false;
692 
693 	/*
694 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
695 	 * also enabled for all its descendant cgroups.  If @cpuctx's
696 	 * cgroup is a descendant of @event's (the test covers identity
697 	 * case), it's a match.
698 	 */
699 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700 				    event->cgrp->css.cgroup);
701 }
702 
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705 	css_put(&event->cgrp->css);
706 	event->cgrp = NULL;
707 }
708 
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711 	return event->cgrp != NULL;
712 }
713 
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716 	struct perf_cgroup_info *t;
717 
718 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
719 	return t->time;
720 }
721 
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724 	struct perf_cgroup_info *info;
725 	u64 now;
726 
727 	now = perf_clock();
728 
729 	info = this_cpu_ptr(cgrp->info);
730 
731 	info->time += now - info->timestamp;
732 	info->timestamp = now;
733 }
734 
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737 	struct perf_cgroup *cgrp = cpuctx->cgrp;
738 	struct cgroup_subsys_state *css;
739 
740 	if (cgrp) {
741 		for (css = &cgrp->css; css; css = css->parent) {
742 			cgrp = container_of(css, struct perf_cgroup, css);
743 			__update_cgrp_time(cgrp);
744 		}
745 	}
746 }
747 
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750 	struct perf_cgroup *cgrp;
751 
752 	/*
753 	 * ensure we access cgroup data only when needed and
754 	 * when we know the cgroup is pinned (css_get)
755 	 */
756 	if (!is_cgroup_event(event))
757 		return;
758 
759 	cgrp = perf_cgroup_from_task(current, event->ctx);
760 	/*
761 	 * Do not update time when cgroup is not active
762 	 */
763 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764 		__update_cgrp_time(event->cgrp);
765 }
766 
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769 			  struct perf_event_context *ctx)
770 {
771 	struct perf_cgroup *cgrp;
772 	struct perf_cgroup_info *info;
773 	struct cgroup_subsys_state *css;
774 
775 	/*
776 	 * ctx->lock held by caller
777 	 * ensure we do not access cgroup data
778 	 * unless we have the cgroup pinned (css_get)
779 	 */
780 	if (!task || !ctx->nr_cgroups)
781 		return;
782 
783 	cgrp = perf_cgroup_from_task(task, ctx);
784 
785 	for (css = &cgrp->css; css; css = css->parent) {
786 		cgrp = container_of(css, struct perf_cgroup, css);
787 		info = this_cpu_ptr(cgrp->info);
788 		info->timestamp = ctx->timestamp;
789 	}
790 }
791 
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793 
794 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
796 
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805 	struct perf_cpu_context *cpuctx;
806 	struct list_head *list;
807 	unsigned long flags;
808 
809 	/*
810 	 * Disable interrupts and preemption to avoid this CPU's
811 	 * cgrp_cpuctx_entry to change under us.
812 	 */
813 	local_irq_save(flags);
814 
815 	list = this_cpu_ptr(&cgrp_cpuctx_list);
816 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818 
819 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820 		perf_pmu_disable(cpuctx->ctx.pmu);
821 
822 		if (mode & PERF_CGROUP_SWOUT) {
823 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824 			/*
825 			 * must not be done before ctxswout due
826 			 * to event_filter_match() in event_sched_out()
827 			 */
828 			cpuctx->cgrp = NULL;
829 		}
830 
831 		if (mode & PERF_CGROUP_SWIN) {
832 			WARN_ON_ONCE(cpuctx->cgrp);
833 			/*
834 			 * set cgrp before ctxsw in to allow
835 			 * event_filter_match() to not have to pass
836 			 * task around
837 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
838 			 * because cgorup events are only per-cpu
839 			 */
840 			cpuctx->cgrp = perf_cgroup_from_task(task,
841 							     &cpuctx->ctx);
842 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843 		}
844 		perf_pmu_enable(cpuctx->ctx.pmu);
845 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846 	}
847 
848 	local_irq_restore(flags);
849 }
850 
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852 					 struct task_struct *next)
853 {
854 	struct perf_cgroup *cgrp1;
855 	struct perf_cgroup *cgrp2 = NULL;
856 
857 	rcu_read_lock();
858 	/*
859 	 * we come here when we know perf_cgroup_events > 0
860 	 * we do not need to pass the ctx here because we know
861 	 * we are holding the rcu lock
862 	 */
863 	cgrp1 = perf_cgroup_from_task(task, NULL);
864 	cgrp2 = perf_cgroup_from_task(next, NULL);
865 
866 	/*
867 	 * only schedule out current cgroup events if we know
868 	 * that we are switching to a different cgroup. Otherwise,
869 	 * do no touch the cgroup events.
870 	 */
871 	if (cgrp1 != cgrp2)
872 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873 
874 	rcu_read_unlock();
875 }
876 
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878 					struct task_struct *task)
879 {
880 	struct perf_cgroup *cgrp1;
881 	struct perf_cgroup *cgrp2 = NULL;
882 
883 	rcu_read_lock();
884 	/*
885 	 * we come here when we know perf_cgroup_events > 0
886 	 * we do not need to pass the ctx here because we know
887 	 * we are holding the rcu lock
888 	 */
889 	cgrp1 = perf_cgroup_from_task(task, NULL);
890 	cgrp2 = perf_cgroup_from_task(prev, NULL);
891 
892 	/*
893 	 * only need to schedule in cgroup events if we are changing
894 	 * cgroup during ctxsw. Cgroup events were not scheduled
895 	 * out of ctxsw out if that was not the case.
896 	 */
897 	if (cgrp1 != cgrp2)
898 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899 
900 	rcu_read_unlock();
901 }
902 
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904 				struct cgroup_subsys_state *css)
905 {
906 	struct perf_cpu_context *cpuctx;
907 	struct perf_event **storage;
908 	int cpu, heap_size, ret = 0;
909 
910 	/*
911 	 * Allow storage to have sufficent space for an iterator for each
912 	 * possibly nested cgroup plus an iterator for events with no cgroup.
913 	 */
914 	for (heap_size = 1; css; css = css->parent)
915 		heap_size++;
916 
917 	for_each_possible_cpu(cpu) {
918 		cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919 		if (heap_size <= cpuctx->heap_size)
920 			continue;
921 
922 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923 				       GFP_KERNEL, cpu_to_node(cpu));
924 		if (!storage) {
925 			ret = -ENOMEM;
926 			break;
927 		}
928 
929 		raw_spin_lock_irq(&cpuctx->ctx.lock);
930 		if (cpuctx->heap_size < heap_size) {
931 			swap(cpuctx->heap, storage);
932 			if (storage == cpuctx->heap_default)
933 				storage = NULL;
934 			cpuctx->heap_size = heap_size;
935 		}
936 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
937 
938 		kfree(storage);
939 	}
940 
941 	return ret;
942 }
943 
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945 				      struct perf_event_attr *attr,
946 				      struct perf_event *group_leader)
947 {
948 	struct perf_cgroup *cgrp;
949 	struct cgroup_subsys_state *css;
950 	struct fd f = fdget(fd);
951 	int ret = 0;
952 
953 	if (!f.file)
954 		return -EBADF;
955 
956 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
957 					 &perf_event_cgrp_subsys);
958 	if (IS_ERR(css)) {
959 		ret = PTR_ERR(css);
960 		goto out;
961 	}
962 
963 	ret = perf_cgroup_ensure_storage(event, css);
964 	if (ret)
965 		goto out;
966 
967 	cgrp = container_of(css, struct perf_cgroup, css);
968 	event->cgrp = cgrp;
969 
970 	/*
971 	 * all events in a group must monitor
972 	 * the same cgroup because a task belongs
973 	 * to only one perf cgroup at a time
974 	 */
975 	if (group_leader && group_leader->cgrp != cgrp) {
976 		perf_detach_cgroup(event);
977 		ret = -EINVAL;
978 	}
979 out:
980 	fdput(f);
981 	return ret;
982 }
983 
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987 	struct perf_cgroup_info *t;
988 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
989 	event->shadow_ctx_time = now - t->timestamp;
990 }
991 
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 	struct perf_cpu_context *cpuctx;
996 
997 	if (!is_cgroup_event(event))
998 		return;
999 
1000 	/*
1001 	 * Because cgroup events are always per-cpu events,
1002 	 * @ctx == &cpuctx->ctx.
1003 	 */
1004 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005 
1006 	/*
1007 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008 	 * matching the event's cgroup, we must do this for every new event,
1009 	 * because if the first would mismatch, the second would not try again
1010 	 * and we would leave cpuctx->cgrp unset.
1011 	 */
1012 	if (ctx->is_active && !cpuctx->cgrp) {
1013 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014 
1015 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016 			cpuctx->cgrp = cgrp;
1017 	}
1018 
1019 	if (ctx->nr_cgroups++)
1020 		return;
1021 
1022 	list_add(&cpuctx->cgrp_cpuctx_entry,
1023 			per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025 
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029 	struct perf_cpu_context *cpuctx;
1030 
1031 	if (!is_cgroup_event(event))
1032 		return;
1033 
1034 	/*
1035 	 * Because cgroup events are always per-cpu events,
1036 	 * @ctx == &cpuctx->ctx.
1037 	 */
1038 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039 
1040 	if (--ctx->nr_cgroups)
1041 		return;
1042 
1043 	if (ctx->is_active && cpuctx->cgrp)
1044 		cpuctx->cgrp = NULL;
1045 
1046 	list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048 
1049 #else /* !CONFIG_CGROUP_PERF */
1050 
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054 	return true;
1055 }
1056 
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059 
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062 	return 0;
1063 }
1064 
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068 
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072 
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074 					 struct task_struct *next)
1075 {
1076 }
1077 
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079 					struct task_struct *task)
1080 {
1081 }
1082 
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084 				      struct perf_event_attr *attr,
1085 				      struct perf_event *group_leader)
1086 {
1087 	return -EINVAL;
1088 }
1089 
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092 			  struct perf_event_context *ctx)
1093 {
1094 }
1095 
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100 
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105 
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115 
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121 
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132 	struct perf_cpu_context *cpuctx;
1133 	bool rotations;
1134 
1135 	lockdep_assert_irqs_disabled();
1136 
1137 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138 	rotations = perf_rotate_context(cpuctx);
1139 
1140 	raw_spin_lock(&cpuctx->hrtimer_lock);
1141 	if (rotations)
1142 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143 	else
1144 		cpuctx->hrtimer_active = 0;
1145 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1146 
1147 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149 
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152 	struct hrtimer *timer = &cpuctx->hrtimer;
1153 	struct pmu *pmu = cpuctx->ctx.pmu;
1154 	u64 interval;
1155 
1156 	/* no multiplexing needed for SW PMU */
1157 	if (pmu->task_ctx_nr == perf_sw_context)
1158 		return;
1159 
1160 	/*
1161 	 * check default is sane, if not set then force to
1162 	 * default interval (1/tick)
1163 	 */
1164 	interval = pmu->hrtimer_interval_ms;
1165 	if (interval < 1)
1166 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167 
1168 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169 
1170 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172 	timer->function = perf_mux_hrtimer_handler;
1173 }
1174 
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177 	struct hrtimer *timer = &cpuctx->hrtimer;
1178 	struct pmu *pmu = cpuctx->ctx.pmu;
1179 	unsigned long flags;
1180 
1181 	/* not for SW PMU */
1182 	if (pmu->task_ctx_nr == perf_sw_context)
1183 		return 0;
1184 
1185 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186 	if (!cpuctx->hrtimer_active) {
1187 		cpuctx->hrtimer_active = 1;
1188 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190 	}
1191 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192 
1193 	return 0;
1194 }
1195 
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199 	if (!(*count)++)
1200 		pmu->pmu_disable(pmu);
1201 }
1202 
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206 	if (!--(*count))
1207 		pmu->pmu_enable(pmu);
1208 }
1209 
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211 
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221 
1222 	lockdep_assert_irqs_disabled();
1223 
1224 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1225 
1226 	list_add(&ctx->active_ctx_list, head);
1227 }
1228 
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231 	lockdep_assert_irqs_disabled();
1232 
1233 	WARN_ON(list_empty(&ctx->active_ctx_list));
1234 
1235 	list_del_init(&ctx->active_ctx_list);
1236 }
1237 
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240 	refcount_inc(&ctx->refcount);
1241 }
1242 
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245 	if (pmu->task_ctx_cache)
1246 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253 	if (pmu->task_ctx_cache && task_ctx_data)
1254 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256 
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259 	struct perf_event_context *ctx;
1260 
1261 	ctx = container_of(head, struct perf_event_context, rcu_head);
1262 	free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263 	kfree(ctx);
1264 }
1265 
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268 	if (refcount_dec_and_test(&ctx->refcount)) {
1269 		if (ctx->parent_ctx)
1270 			put_ctx(ctx->parent_ctx);
1271 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272 			put_task_struct(ctx->task);
1273 		call_rcu(&ctx->rcu_head, free_ctx);
1274 	}
1275 }
1276 
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()	[ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()			[ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()		[ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event()	[ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *	task_struct::perf_event_mutex
1332  *	  perf_event_context::mutex
1333  *	    perf_event::child_mutex;
1334  *	      perf_event_context::lock
1335  *	    perf_event::mmap_mutex
1336  *	    mmap_lock
1337  *	      perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *	  cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346 	struct perf_event_context *ctx;
1347 
1348 again:
1349 	rcu_read_lock();
1350 	ctx = READ_ONCE(event->ctx);
1351 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1352 		rcu_read_unlock();
1353 		goto again;
1354 	}
1355 	rcu_read_unlock();
1356 
1357 	mutex_lock_nested(&ctx->mutex, nesting);
1358 	if (event->ctx != ctx) {
1359 		mutex_unlock(&ctx->mutex);
1360 		put_ctx(ctx);
1361 		goto again;
1362 	}
1363 
1364 	return ctx;
1365 }
1366 
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370 	return perf_event_ctx_lock_nested(event, 0);
1371 }
1372 
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374 				  struct perf_event_context *ctx)
1375 {
1376 	mutex_unlock(&ctx->mutex);
1377 	put_ctx(ctx);
1378 }
1379 
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389 
1390 	lockdep_assert_held(&ctx->lock);
1391 
1392 	if (parent_ctx)
1393 		ctx->parent_ctx = NULL;
1394 	ctx->generation++;
1395 
1396 	return parent_ctx;
1397 }
1398 
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400 				enum pid_type type)
1401 {
1402 	u32 nr;
1403 	/*
1404 	 * only top level events have the pid namespace they were created in
1405 	 */
1406 	if (event->parent)
1407 		event = event->parent;
1408 
1409 	nr = __task_pid_nr_ns(p, type, event->ns);
1410 	/* avoid -1 if it is idle thread or runs in another ns */
1411 	if (!nr && !pid_alive(p))
1412 		nr = -1;
1413 	return nr;
1414 }
1415 
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420 
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425 
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432 	u64 id = event->id;
1433 
1434 	if (event->parent)
1435 		id = event->parent->id;
1436 
1437 	return id;
1438 }
1439 
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449 	struct perf_event_context *ctx;
1450 
1451 retry:
1452 	/*
1453 	 * One of the few rules of preemptible RCU is that one cannot do
1454 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455 	 * part of the read side critical section was irqs-enabled -- see
1456 	 * rcu_read_unlock_special().
1457 	 *
1458 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1459 	 * side critical section has interrupts disabled.
1460 	 */
1461 	local_irq_save(*flags);
1462 	rcu_read_lock();
1463 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464 	if (ctx) {
1465 		/*
1466 		 * If this context is a clone of another, it might
1467 		 * get swapped for another underneath us by
1468 		 * perf_event_task_sched_out, though the
1469 		 * rcu_read_lock() protects us from any context
1470 		 * getting freed.  Lock the context and check if it
1471 		 * got swapped before we could get the lock, and retry
1472 		 * if so.  If we locked the right context, then it
1473 		 * can't get swapped on us any more.
1474 		 */
1475 		raw_spin_lock(&ctx->lock);
1476 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477 			raw_spin_unlock(&ctx->lock);
1478 			rcu_read_unlock();
1479 			local_irq_restore(*flags);
1480 			goto retry;
1481 		}
1482 
1483 		if (ctx->task == TASK_TOMBSTONE ||
1484 		    !refcount_inc_not_zero(&ctx->refcount)) {
1485 			raw_spin_unlock(&ctx->lock);
1486 			ctx = NULL;
1487 		} else {
1488 			WARN_ON_ONCE(ctx->task != task);
1489 		}
1490 	}
1491 	rcu_read_unlock();
1492 	if (!ctx)
1493 		local_irq_restore(*flags);
1494 	return ctx;
1495 }
1496 
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505 	struct perf_event_context *ctx;
1506 	unsigned long flags;
1507 
1508 	ctx = perf_lock_task_context(task, ctxn, &flags);
1509 	if (ctx) {
1510 		++ctx->pin_count;
1511 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512 	}
1513 	return ctx;
1514 }
1515 
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518 	unsigned long flags;
1519 
1520 	raw_spin_lock_irqsave(&ctx->lock, flags);
1521 	--ctx->pin_count;
1522 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524 
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530 	u64 now = perf_clock();
1531 
1532 	ctx->time += now - ctx->timestamp;
1533 	ctx->timestamp = now;
1534 }
1535 
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538 	struct perf_event_context *ctx = event->ctx;
1539 
1540 	if (is_cgroup_event(event))
1541 		return perf_cgroup_event_time(event);
1542 
1543 	return ctx ? ctx->time : 0;
1544 }
1545 
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548 	struct perf_event_context *ctx = event->ctx;
1549 	enum event_type_t event_type;
1550 
1551 	lockdep_assert_held(&ctx->lock);
1552 
1553 	/*
1554 	 * It's 'group type', really, because if our group leader is
1555 	 * pinned, so are we.
1556 	 */
1557 	if (event->group_leader != event)
1558 		event = event->group_leader;
1559 
1560 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561 	if (!ctx->task)
1562 		event_type |= EVENT_CPU;
1563 
1564 	return event_type;
1565 }
1566 
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572 	RB_CLEAR_NODE(&event->group_node);
1573 	event->group_index = 0;
1574 }
1575 
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583 	if (event->attr.pinned)
1584 		return &ctx->pinned_groups;
1585 	else
1586 		return &ctx->flexible_groups;
1587 }
1588 
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594 	groups->tree = RB_ROOT;
1595 	groups->index = 0;
1596 }
1597 
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600 	struct cgroup *cgroup = NULL;
1601 
1602 #ifdef CONFIG_CGROUP_PERF
1603 	if (event->cgrp)
1604 		cgroup = event->cgrp->css.cgroup;
1605 #endif
1606 
1607 	return cgroup;
1608 }
1609 
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618 		      const u64 left_group_index, const struct perf_event *right)
1619 {
1620 	if (left_cpu < right->cpu)
1621 		return -1;
1622 	if (left_cpu > right->cpu)
1623 		return 1;
1624 
1625 #ifdef CONFIG_CGROUP_PERF
1626 	{
1627 		const struct cgroup *right_cgroup = event_cgroup(right);
1628 
1629 		if (left_cgroup != right_cgroup) {
1630 			if (!left_cgroup) {
1631 				/*
1632 				 * Left has no cgroup but right does, no
1633 				 * cgroups come first.
1634 				 */
1635 				return -1;
1636 			}
1637 			if (!right_cgroup) {
1638 				/*
1639 				 * Right has no cgroup but left does, no
1640 				 * cgroups come first.
1641 				 */
1642 				return 1;
1643 			}
1644 			/* Two dissimilar cgroups, order by id. */
1645 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646 				return -1;
1647 
1648 			return 1;
1649 		}
1650 	}
1651 #endif
1652 
1653 	if (left_group_index < right->group_index)
1654 		return -1;
1655 	if (left_group_index > right->group_index)
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 #define __node_2_pe(node) \
1662 	rb_entry((node), struct perf_event, group_node)
1663 
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666 	struct perf_event *e = __node_2_pe(a);
1667 	return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668 				     __node_2_pe(b)) < 0;
1669 }
1670 
1671 struct __group_key {
1672 	int cpu;
1673 	struct cgroup *cgroup;
1674 };
1675 
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678 	const struct __group_key *a = key;
1679 	const struct perf_event *b = __node_2_pe(node);
1680 
1681 	/* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682 	return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684 
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692 			 struct perf_event *event)
1693 {
1694 	event->group_index = ++groups->index;
1695 
1696 	rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698 
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705 	struct perf_event_groups *groups;
1706 
1707 	groups = get_event_groups(event, ctx);
1708 	perf_event_groups_insert(groups, event);
1709 }
1710 
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716 			 struct perf_event *event)
1717 {
1718 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719 		     RB_EMPTY_ROOT(&groups->tree));
1720 
1721 	rb_erase(&event->group_node, &groups->tree);
1722 	init_event_group(event);
1723 }
1724 
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731 	struct perf_event_groups *groups;
1732 
1733 	groups = get_event_groups(event, ctx);
1734 	perf_event_groups_delete(groups, event);
1735 }
1736 
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742 			struct cgroup *cgrp)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = cpu,
1746 		.cgroup = cgrp,
1747 	};
1748 	struct rb_node *node;
1749 
1750 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1751 	if (node)
1752 		return __node_2_pe(node);
1753 
1754 	return NULL;
1755 }
1756 
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763 	struct __group_key key = {
1764 		.cpu = event->cpu,
1765 		.cgroup = event_cgroup(event),
1766 	};
1767 	struct rb_node *next;
1768 
1769 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1770 	if (next)
1771 		return __node_2_pe(next);
1772 
1773 	return NULL;
1774 }
1775 
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)			\
1780 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1781 				typeof(*event), group_node); event;	\
1782 		event = rb_entry_safe(rb_next(&event->group_node),	\
1783 				typeof(*event), group_node))
1784 
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792 	lockdep_assert_held(&ctx->lock);
1793 
1794 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795 	event->attach_state |= PERF_ATTACH_CONTEXT;
1796 
1797 	event->tstamp = perf_event_time(event);
1798 
1799 	/*
1800 	 * If we're a stand alone event or group leader, we go to the context
1801 	 * list, group events are kept attached to the group so that
1802 	 * perf_group_detach can, at all times, locate all siblings.
1803 	 */
1804 	if (event->group_leader == event) {
1805 		event->group_caps = event->event_caps;
1806 		add_event_to_groups(event, ctx);
1807 	}
1808 
1809 	list_add_rcu(&event->event_entry, &ctx->event_list);
1810 	ctx->nr_events++;
1811 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1812 		ctx->nr_user++;
1813 	if (event->attr.inherit_stat)
1814 		ctx->nr_stat++;
1815 
1816 	if (event->state > PERF_EVENT_STATE_OFF)
1817 		perf_cgroup_event_enable(event, ctx);
1818 
1819 	ctx->generation++;
1820 }
1821 
1822 /*
1823  * Initialize event state based on the perf_event_attr::disabled.
1824  */
1825 static inline void perf_event__state_init(struct perf_event *event)
1826 {
1827 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1828 					      PERF_EVENT_STATE_INACTIVE;
1829 }
1830 
1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1832 {
1833 	int entry = sizeof(u64); /* value */
1834 	int size = 0;
1835 	int nr = 1;
1836 
1837 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1838 		size += sizeof(u64);
1839 
1840 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1841 		size += sizeof(u64);
1842 
1843 	if (event->attr.read_format & PERF_FORMAT_ID)
1844 		entry += sizeof(u64);
1845 
1846 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1847 		nr += nr_siblings;
1848 		size += sizeof(u64);
1849 	}
1850 
1851 	size += entry * nr;
1852 	event->read_size = size;
1853 }
1854 
1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1856 {
1857 	struct perf_sample_data *data;
1858 	u16 size = 0;
1859 
1860 	if (sample_type & PERF_SAMPLE_IP)
1861 		size += sizeof(data->ip);
1862 
1863 	if (sample_type & PERF_SAMPLE_ADDR)
1864 		size += sizeof(data->addr);
1865 
1866 	if (sample_type & PERF_SAMPLE_PERIOD)
1867 		size += sizeof(data->period);
1868 
1869 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1870 		size += sizeof(data->weight.full);
1871 
1872 	if (sample_type & PERF_SAMPLE_READ)
1873 		size += event->read_size;
1874 
1875 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1876 		size += sizeof(data->data_src.val);
1877 
1878 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1879 		size += sizeof(data->txn);
1880 
1881 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1882 		size += sizeof(data->phys_addr);
1883 
1884 	if (sample_type & PERF_SAMPLE_CGROUP)
1885 		size += sizeof(data->cgroup);
1886 
1887 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1888 		size += sizeof(data->data_page_size);
1889 
1890 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1891 		size += sizeof(data->code_page_size);
1892 
1893 	event->header_size = size;
1894 }
1895 
1896 /*
1897  * Called at perf_event creation and when events are attached/detached from a
1898  * group.
1899  */
1900 static void perf_event__header_size(struct perf_event *event)
1901 {
1902 	__perf_event_read_size(event,
1903 			       event->group_leader->nr_siblings);
1904 	__perf_event_header_size(event, event->attr.sample_type);
1905 }
1906 
1907 static void perf_event__id_header_size(struct perf_event *event)
1908 {
1909 	struct perf_sample_data *data;
1910 	u64 sample_type = event->attr.sample_type;
1911 	u16 size = 0;
1912 
1913 	if (sample_type & PERF_SAMPLE_TID)
1914 		size += sizeof(data->tid_entry);
1915 
1916 	if (sample_type & PERF_SAMPLE_TIME)
1917 		size += sizeof(data->time);
1918 
1919 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1920 		size += sizeof(data->id);
1921 
1922 	if (sample_type & PERF_SAMPLE_ID)
1923 		size += sizeof(data->id);
1924 
1925 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1926 		size += sizeof(data->stream_id);
1927 
1928 	if (sample_type & PERF_SAMPLE_CPU)
1929 		size += sizeof(data->cpu_entry);
1930 
1931 	event->id_header_size = size;
1932 }
1933 
1934 static bool perf_event_validate_size(struct perf_event *event)
1935 {
1936 	/*
1937 	 * The values computed here will be over-written when we actually
1938 	 * attach the event.
1939 	 */
1940 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1941 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1942 	perf_event__id_header_size(event);
1943 
1944 	/*
1945 	 * Sum the lot; should not exceed the 64k limit we have on records.
1946 	 * Conservative limit to allow for callchains and other variable fields.
1947 	 */
1948 	if (event->read_size + event->header_size +
1949 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1950 		return false;
1951 
1952 	return true;
1953 }
1954 
1955 static void perf_group_attach(struct perf_event *event)
1956 {
1957 	struct perf_event *group_leader = event->group_leader, *pos;
1958 
1959 	lockdep_assert_held(&event->ctx->lock);
1960 
1961 	/*
1962 	 * We can have double attach due to group movement in perf_event_open.
1963 	 */
1964 	if (event->attach_state & PERF_ATTACH_GROUP)
1965 		return;
1966 
1967 	event->attach_state |= PERF_ATTACH_GROUP;
1968 
1969 	if (group_leader == event)
1970 		return;
1971 
1972 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1973 
1974 	group_leader->group_caps &= event->event_caps;
1975 
1976 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1977 	group_leader->nr_siblings++;
1978 
1979 	perf_event__header_size(group_leader);
1980 
1981 	for_each_sibling_event(pos, group_leader)
1982 		perf_event__header_size(pos);
1983 }
1984 
1985 /*
1986  * Remove an event from the lists for its context.
1987  * Must be called with ctx->mutex and ctx->lock held.
1988  */
1989 static void
1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1991 {
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	/*
1996 	 * We can have double detach due to exit/hot-unplug + close.
1997 	 */
1998 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1999 		return;
2000 
2001 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2002 
2003 	ctx->nr_events--;
2004 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2005 		ctx->nr_user--;
2006 	if (event->attr.inherit_stat)
2007 		ctx->nr_stat--;
2008 
2009 	list_del_rcu(&event->event_entry);
2010 
2011 	if (event->group_leader == event)
2012 		del_event_from_groups(event, ctx);
2013 
2014 	/*
2015 	 * If event was in error state, then keep it
2016 	 * that way, otherwise bogus counts will be
2017 	 * returned on read(). The only way to get out
2018 	 * of error state is by explicit re-enabling
2019 	 * of the event
2020 	 */
2021 	if (event->state > PERF_EVENT_STATE_OFF) {
2022 		perf_cgroup_event_disable(event, ctx);
2023 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2024 	}
2025 
2026 	ctx->generation++;
2027 }
2028 
2029 static int
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031 {
2032 	if (!has_aux(aux_event))
2033 		return 0;
2034 
2035 	if (!event->pmu->aux_output_match)
2036 		return 0;
2037 
2038 	return event->pmu->aux_output_match(aux_event);
2039 }
2040 
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043 			    struct perf_cpu_context *cpuctx,
2044 			    struct perf_event_context *ctx);
2045 
2046 static void perf_put_aux_event(struct perf_event *event)
2047 {
2048 	struct perf_event_context *ctx = event->ctx;
2049 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050 	struct perf_event *iter;
2051 
2052 	/*
2053 	 * If event uses aux_event tear down the link
2054 	 */
2055 	if (event->aux_event) {
2056 		iter = event->aux_event;
2057 		event->aux_event = NULL;
2058 		put_event(iter);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * If the event is an aux_event, tear down all links to
2064 	 * it from other events.
2065 	 */
2066 	for_each_sibling_event(iter, event->group_leader) {
2067 		if (iter->aux_event != event)
2068 			continue;
2069 
2070 		iter->aux_event = NULL;
2071 		put_event(event);
2072 
2073 		/*
2074 		 * If it's ACTIVE, schedule it out and put it into ERROR
2075 		 * state so that we don't try to schedule it again. Note
2076 		 * that perf_event_enable() will clear the ERROR status.
2077 		 */
2078 		event_sched_out(iter, cpuctx, ctx);
2079 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080 	}
2081 }
2082 
2083 static bool perf_need_aux_event(struct perf_event *event)
2084 {
2085 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086 }
2087 
2088 static int perf_get_aux_event(struct perf_event *event,
2089 			      struct perf_event *group_leader)
2090 {
2091 	/*
2092 	 * Our group leader must be an aux event if we want to be
2093 	 * an aux_output. This way, the aux event will precede its
2094 	 * aux_output events in the group, and therefore will always
2095 	 * schedule first.
2096 	 */
2097 	if (!group_leader)
2098 		return 0;
2099 
2100 	/*
2101 	 * aux_output and aux_sample_size are mutually exclusive.
2102 	 */
2103 	if (event->attr.aux_output && event->attr.aux_sample_size)
2104 		return 0;
2105 
2106 	if (event->attr.aux_output &&
2107 	    !perf_aux_output_match(event, group_leader))
2108 		return 0;
2109 
2110 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2111 		return 0;
2112 
2113 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114 		return 0;
2115 
2116 	/*
2117 	 * Link aux_outputs to their aux event; this is undone in
2118 	 * perf_group_detach() by perf_put_aux_event(). When the
2119 	 * group in torn down, the aux_output events loose their
2120 	 * link to the aux_event and can't schedule any more.
2121 	 */
2122 	event->aux_event = group_leader;
2123 
2124 	return 1;
2125 }
2126 
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2128 {
2129 	struct perf_event_context *ctx = event->ctx;
2130 	return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131 }
2132 
2133 /*
2134  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135  * cannot exist on their own, schedule them out and move them into the ERROR
2136  * state. Also see _perf_event_enable(), it will not be able to recover
2137  * this ERROR state.
2138  */
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2140 {
2141 	struct perf_event_context *ctx = event->ctx;
2142 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143 
2144 	event_sched_out(event, cpuctx, ctx);
2145 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146 }
2147 
2148 static void perf_group_detach(struct perf_event *event)
2149 {
2150 	struct perf_event *leader = event->group_leader;
2151 	struct perf_event *sibling, *tmp;
2152 	struct perf_event_context *ctx = event->ctx;
2153 
2154 	lockdep_assert_held(&ctx->lock);
2155 
2156 	/*
2157 	 * We can have double detach due to exit/hot-unplug + close.
2158 	 */
2159 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2160 		return;
2161 
2162 	event->attach_state &= ~PERF_ATTACH_GROUP;
2163 
2164 	perf_put_aux_event(event);
2165 
2166 	/*
2167 	 * If this is a sibling, remove it from its group.
2168 	 */
2169 	if (leader != event) {
2170 		list_del_init(&event->sibling_list);
2171 		event->group_leader->nr_siblings--;
2172 		goto out;
2173 	}
2174 
2175 	/*
2176 	 * If this was a group event with sibling events then
2177 	 * upgrade the siblings to singleton events by adding them
2178 	 * to whatever list we are on.
2179 	 */
2180 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2181 
2182 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183 			perf_remove_sibling_event(sibling);
2184 
2185 		sibling->group_leader = sibling;
2186 		list_del_init(&sibling->sibling_list);
2187 
2188 		/* Inherit group flags from the previous leader */
2189 		sibling->group_caps = event->group_caps;
2190 
2191 		if (!RB_EMPTY_NODE(&event->group_node)) {
2192 			add_event_to_groups(sibling, event->ctx);
2193 
2194 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2196 		}
2197 
2198 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2199 	}
2200 
2201 out:
2202 	for_each_sibling_event(tmp, leader)
2203 		perf_event__header_size(tmp);
2204 
2205 	perf_event__header_size(leader);
2206 }
2207 
2208 static void sync_child_event(struct perf_event *child_event);
2209 
2210 static void perf_child_detach(struct perf_event *event)
2211 {
2212 	struct perf_event *parent_event = event->parent;
2213 
2214 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2215 		return;
2216 
2217 	event->attach_state &= ~PERF_ATTACH_CHILD;
2218 
2219 	if (WARN_ON_ONCE(!parent_event))
2220 		return;
2221 
2222 	lockdep_assert_held(&parent_event->child_mutex);
2223 
2224 	sync_child_event(event);
2225 	list_del_init(&event->child_list);
2226 }
2227 
2228 static bool is_orphaned_event(struct perf_event *event)
2229 {
2230 	return event->state == PERF_EVENT_STATE_DEAD;
2231 }
2232 
2233 static inline int __pmu_filter_match(struct perf_event *event)
2234 {
2235 	struct pmu *pmu = event->pmu;
2236 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2237 }
2238 
2239 /*
2240  * Check whether we should attempt to schedule an event group based on
2241  * PMU-specific filtering. An event group can consist of HW and SW events,
2242  * potentially with a SW leader, so we must check all the filters, to
2243  * determine whether a group is schedulable:
2244  */
2245 static inline int pmu_filter_match(struct perf_event *event)
2246 {
2247 	struct perf_event *sibling;
2248 
2249 	if (!__pmu_filter_match(event))
2250 		return 0;
2251 
2252 	for_each_sibling_event(sibling, event) {
2253 		if (!__pmu_filter_match(sibling))
2254 			return 0;
2255 	}
2256 
2257 	return 1;
2258 }
2259 
2260 static inline int
2261 event_filter_match(struct perf_event *event)
2262 {
2263 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264 	       perf_cgroup_match(event) && pmu_filter_match(event);
2265 }
2266 
2267 static void
2268 event_sched_out(struct perf_event *event,
2269 		  struct perf_cpu_context *cpuctx,
2270 		  struct perf_event_context *ctx)
2271 {
2272 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2273 
2274 	WARN_ON_ONCE(event->ctx != ctx);
2275 	lockdep_assert_held(&ctx->lock);
2276 
2277 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2278 		return;
2279 
2280 	/*
2281 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282 	 * we can schedule events _OUT_ individually through things like
2283 	 * __perf_remove_from_context().
2284 	 */
2285 	list_del_init(&event->active_list);
2286 
2287 	perf_pmu_disable(event->pmu);
2288 
2289 	event->pmu->del(event, 0);
2290 	event->oncpu = -1;
2291 
2292 	if (READ_ONCE(event->pending_disable) >= 0) {
2293 		WRITE_ONCE(event->pending_disable, -1);
2294 		perf_cgroup_event_disable(event, ctx);
2295 		state = PERF_EVENT_STATE_OFF;
2296 	}
2297 	perf_event_set_state(event, state);
2298 
2299 	if (!is_software_event(event))
2300 		cpuctx->active_oncpu--;
2301 	if (!--ctx->nr_active)
2302 		perf_event_ctx_deactivate(ctx);
2303 	if (event->attr.freq && event->attr.sample_freq)
2304 		ctx->nr_freq--;
2305 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2306 		cpuctx->exclusive = 0;
2307 
2308 	perf_pmu_enable(event->pmu);
2309 }
2310 
2311 static void
2312 group_sched_out(struct perf_event *group_event,
2313 		struct perf_cpu_context *cpuctx,
2314 		struct perf_event_context *ctx)
2315 {
2316 	struct perf_event *event;
2317 
2318 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319 		return;
2320 
2321 	perf_pmu_disable(ctx->pmu);
2322 
2323 	event_sched_out(group_event, cpuctx, ctx);
2324 
2325 	/*
2326 	 * Schedule out siblings (if any):
2327 	 */
2328 	for_each_sibling_event(event, group_event)
2329 		event_sched_out(event, cpuctx, ctx);
2330 
2331 	perf_pmu_enable(ctx->pmu);
2332 }
2333 
2334 #define DETACH_GROUP	0x01UL
2335 #define DETACH_CHILD	0x02UL
2336 
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345 			   struct perf_cpu_context *cpuctx,
2346 			   struct perf_event_context *ctx,
2347 			   void *info)
2348 {
2349 	unsigned long flags = (unsigned long)info;
2350 
2351 	if (ctx->is_active & EVENT_TIME) {
2352 		update_context_time(ctx);
2353 		update_cgrp_time_from_cpuctx(cpuctx);
2354 	}
2355 
2356 	event_sched_out(event, cpuctx, ctx);
2357 	if (flags & DETACH_GROUP)
2358 		perf_group_detach(event);
2359 	if (flags & DETACH_CHILD)
2360 		perf_child_detach(event);
2361 	list_del_event(event, ctx);
2362 
2363 	if (!ctx->nr_events && ctx->is_active) {
2364 		ctx->is_active = 0;
2365 		ctx->rotate_necessary = 0;
2366 		if (ctx->task) {
2367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368 			cpuctx->task_ctx = NULL;
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * Remove the event from a task's (or a CPU's) list of events.
2375  *
2376  * If event->ctx is a cloned context, callers must make sure that
2377  * every task struct that event->ctx->task could possibly point to
2378  * remains valid.  This is OK when called from perf_release since
2379  * that only calls us on the top-level context, which can't be a clone.
2380  * When called from perf_event_exit_task, it's OK because the
2381  * context has been detached from its task.
2382  */
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2384 {
2385 	struct perf_event_context *ctx = event->ctx;
2386 
2387 	lockdep_assert_held(&ctx->mutex);
2388 
2389 	/*
2390 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2392 	 * event_function_call() user.
2393 	 */
2394 	raw_spin_lock_irq(&ctx->lock);
2395 	if (!ctx->is_active) {
2396 		__perf_remove_from_context(event, __get_cpu_context(ctx),
2397 					   ctx, (void *)flags);
2398 		raw_spin_unlock_irq(&ctx->lock);
2399 		return;
2400 	}
2401 	raw_spin_unlock_irq(&ctx->lock);
2402 
2403 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2404 }
2405 
2406 /*
2407  * Cross CPU call to disable a performance event
2408  */
2409 static void __perf_event_disable(struct perf_event *event,
2410 				 struct perf_cpu_context *cpuctx,
2411 				 struct perf_event_context *ctx,
2412 				 void *info)
2413 {
2414 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2415 		return;
2416 
2417 	if (ctx->is_active & EVENT_TIME) {
2418 		update_context_time(ctx);
2419 		update_cgrp_time_from_event(event);
2420 	}
2421 
2422 	if (event == event->group_leader)
2423 		group_sched_out(event, cpuctx, ctx);
2424 	else
2425 		event_sched_out(event, cpuctx, ctx);
2426 
2427 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428 	perf_cgroup_event_disable(event, ctx);
2429 }
2430 
2431 /*
2432  * Disable an event.
2433  *
2434  * If event->ctx is a cloned context, callers must make sure that
2435  * every task struct that event->ctx->task could possibly point to
2436  * remains valid.  This condition is satisfied when called through
2437  * perf_event_for_each_child or perf_event_for_each because they
2438  * hold the top-level event's child_mutex, so any descendant that
2439  * goes to exit will block in perf_event_exit_event().
2440  *
2441  * When called from perf_pending_event it's OK because event->ctx
2442  * is the current context on this CPU and preemption is disabled,
2443  * hence we can't get into perf_event_task_sched_out for this context.
2444  */
2445 static void _perf_event_disable(struct perf_event *event)
2446 {
2447 	struct perf_event_context *ctx = event->ctx;
2448 
2449 	raw_spin_lock_irq(&ctx->lock);
2450 	if (event->state <= PERF_EVENT_STATE_OFF) {
2451 		raw_spin_unlock_irq(&ctx->lock);
2452 		return;
2453 	}
2454 	raw_spin_unlock_irq(&ctx->lock);
2455 
2456 	event_function_call(event, __perf_event_disable, NULL);
2457 }
2458 
2459 void perf_event_disable_local(struct perf_event *event)
2460 {
2461 	event_function_local(event, __perf_event_disable, NULL);
2462 }
2463 
2464 /*
2465  * Strictly speaking kernel users cannot create groups and therefore this
2466  * interface does not need the perf_event_ctx_lock() magic.
2467  */
2468 void perf_event_disable(struct perf_event *event)
2469 {
2470 	struct perf_event_context *ctx;
2471 
2472 	ctx = perf_event_ctx_lock(event);
2473 	_perf_event_disable(event);
2474 	perf_event_ctx_unlock(event, ctx);
2475 }
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2477 
2478 void perf_event_disable_inatomic(struct perf_event *event)
2479 {
2480 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2481 	/* can fail, see perf_pending_event_disable() */
2482 	irq_work_queue(&event->pending);
2483 }
2484 
2485 static void perf_set_shadow_time(struct perf_event *event,
2486 				 struct perf_event_context *ctx)
2487 {
2488 	/*
2489 	 * use the correct time source for the time snapshot
2490 	 *
2491 	 * We could get by without this by leveraging the
2492 	 * fact that to get to this function, the caller
2493 	 * has most likely already called update_context_time()
2494 	 * and update_cgrp_time_xx() and thus both timestamp
2495 	 * are identical (or very close). Given that tstamp is,
2496 	 * already adjusted for cgroup, we could say that:
2497 	 *    tstamp - ctx->timestamp
2498 	 * is equivalent to
2499 	 *    tstamp - cgrp->timestamp.
2500 	 *
2501 	 * Then, in perf_output_read(), the calculation would
2502 	 * work with no changes because:
2503 	 * - event is guaranteed scheduled in
2504 	 * - no scheduled out in between
2505 	 * - thus the timestamp would be the same
2506 	 *
2507 	 * But this is a bit hairy.
2508 	 *
2509 	 * So instead, we have an explicit cgroup call to remain
2510 	 * within the time source all along. We believe it
2511 	 * is cleaner and simpler to understand.
2512 	 */
2513 	if (is_cgroup_event(event))
2514 		perf_cgroup_set_shadow_time(event, event->tstamp);
2515 	else
2516 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2517 }
2518 
2519 #define MAX_INTERRUPTS (~0ULL)
2520 
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2523 
2524 static int
2525 event_sched_in(struct perf_event *event,
2526 		 struct perf_cpu_context *cpuctx,
2527 		 struct perf_event_context *ctx)
2528 {
2529 	int ret = 0;
2530 
2531 	WARN_ON_ONCE(event->ctx != ctx);
2532 
2533 	lockdep_assert_held(&ctx->lock);
2534 
2535 	if (event->state <= PERF_EVENT_STATE_OFF)
2536 		return 0;
2537 
2538 	WRITE_ONCE(event->oncpu, smp_processor_id());
2539 	/*
2540 	 * Order event::oncpu write to happen before the ACTIVE state is
2541 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2542 	 * ->oncpu if it sees ACTIVE.
2543 	 */
2544 	smp_wmb();
2545 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2546 
2547 	/*
2548 	 * Unthrottle events, since we scheduled we might have missed several
2549 	 * ticks already, also for a heavily scheduling task there is little
2550 	 * guarantee it'll get a tick in a timely manner.
2551 	 */
2552 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553 		perf_log_throttle(event, 1);
2554 		event->hw.interrupts = 0;
2555 	}
2556 
2557 	perf_pmu_disable(event->pmu);
2558 
2559 	perf_set_shadow_time(event, ctx);
2560 
2561 	perf_log_itrace_start(event);
2562 
2563 	if (event->pmu->add(event, PERF_EF_START)) {
2564 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2565 		event->oncpu = -1;
2566 		ret = -EAGAIN;
2567 		goto out;
2568 	}
2569 
2570 	if (!is_software_event(event))
2571 		cpuctx->active_oncpu++;
2572 	if (!ctx->nr_active++)
2573 		perf_event_ctx_activate(ctx);
2574 	if (event->attr.freq && event->attr.sample_freq)
2575 		ctx->nr_freq++;
2576 
2577 	if (event->attr.exclusive)
2578 		cpuctx->exclusive = 1;
2579 
2580 out:
2581 	perf_pmu_enable(event->pmu);
2582 
2583 	return ret;
2584 }
2585 
2586 static int
2587 group_sched_in(struct perf_event *group_event,
2588 	       struct perf_cpu_context *cpuctx,
2589 	       struct perf_event_context *ctx)
2590 {
2591 	struct perf_event *event, *partial_group = NULL;
2592 	struct pmu *pmu = ctx->pmu;
2593 
2594 	if (group_event->state == PERF_EVENT_STATE_OFF)
2595 		return 0;
2596 
2597 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2598 
2599 	if (event_sched_in(group_event, cpuctx, ctx))
2600 		goto error;
2601 
2602 	/*
2603 	 * Schedule in siblings as one group (if any):
2604 	 */
2605 	for_each_sibling_event(event, group_event) {
2606 		if (event_sched_in(event, cpuctx, ctx)) {
2607 			partial_group = event;
2608 			goto group_error;
2609 		}
2610 	}
2611 
2612 	if (!pmu->commit_txn(pmu))
2613 		return 0;
2614 
2615 group_error:
2616 	/*
2617 	 * Groups can be scheduled in as one unit only, so undo any
2618 	 * partial group before returning:
2619 	 * The events up to the failed event are scheduled out normally.
2620 	 */
2621 	for_each_sibling_event(event, group_event) {
2622 		if (event == partial_group)
2623 			break;
2624 
2625 		event_sched_out(event, cpuctx, ctx);
2626 	}
2627 	event_sched_out(group_event, cpuctx, ctx);
2628 
2629 error:
2630 	pmu->cancel_txn(pmu);
2631 	return -EAGAIN;
2632 }
2633 
2634 /*
2635  * Work out whether we can put this event group on the CPU now.
2636  */
2637 static int group_can_go_on(struct perf_event *event,
2638 			   struct perf_cpu_context *cpuctx,
2639 			   int can_add_hw)
2640 {
2641 	/*
2642 	 * Groups consisting entirely of software events can always go on.
2643 	 */
2644 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2645 		return 1;
2646 	/*
2647 	 * If an exclusive group is already on, no other hardware
2648 	 * events can go on.
2649 	 */
2650 	if (cpuctx->exclusive)
2651 		return 0;
2652 	/*
2653 	 * If this group is exclusive and there are already
2654 	 * events on the CPU, it can't go on.
2655 	 */
2656 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2657 		return 0;
2658 	/*
2659 	 * Otherwise, try to add it if all previous groups were able
2660 	 * to go on.
2661 	 */
2662 	return can_add_hw;
2663 }
2664 
2665 static void add_event_to_ctx(struct perf_event *event,
2666 			       struct perf_event_context *ctx)
2667 {
2668 	list_add_event(event, ctx);
2669 	perf_group_attach(event);
2670 }
2671 
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673 			  struct perf_cpu_context *cpuctx,
2674 			  enum event_type_t event_type);
2675 static void
2676 ctx_sched_in(struct perf_event_context *ctx,
2677 	     struct perf_cpu_context *cpuctx,
2678 	     enum event_type_t event_type,
2679 	     struct task_struct *task);
2680 
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682 			       struct perf_event_context *ctx,
2683 			       enum event_type_t event_type)
2684 {
2685 	if (!cpuctx->task_ctx)
2686 		return;
2687 
2688 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689 		return;
2690 
2691 	ctx_sched_out(ctx, cpuctx, event_type);
2692 }
2693 
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695 				struct perf_event_context *ctx,
2696 				struct task_struct *task)
2697 {
2698 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699 	if (ctx)
2700 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702 	if (ctx)
2703 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704 }
2705 
2706 /*
2707  * We want to maintain the following priority of scheduling:
2708  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709  *  - task pinned (EVENT_PINNED)
2710  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711  *  - task flexible (EVENT_FLEXIBLE).
2712  *
2713  * In order to avoid unscheduling and scheduling back in everything every
2714  * time an event is added, only do it for the groups of equal priority and
2715  * below.
2716  *
2717  * This can be called after a batch operation on task events, in which case
2718  * event_type is a bit mask of the types of events involved. For CPU events,
2719  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720  */
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722 			struct perf_event_context *task_ctx,
2723 			enum event_type_t event_type)
2724 {
2725 	enum event_type_t ctx_event_type;
2726 	bool cpu_event = !!(event_type & EVENT_CPU);
2727 
2728 	/*
2729 	 * If pinned groups are involved, flexible groups also need to be
2730 	 * scheduled out.
2731 	 */
2732 	if (event_type & EVENT_PINNED)
2733 		event_type |= EVENT_FLEXIBLE;
2734 
2735 	ctx_event_type = event_type & EVENT_ALL;
2736 
2737 	perf_pmu_disable(cpuctx->ctx.pmu);
2738 	if (task_ctx)
2739 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740 
2741 	/*
2742 	 * Decide which cpu ctx groups to schedule out based on the types
2743 	 * of events that caused rescheduling:
2744 	 *  - EVENT_CPU: schedule out corresponding groups;
2745 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746 	 *  - otherwise, do nothing more.
2747 	 */
2748 	if (cpu_event)
2749 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750 	else if (ctx_event_type & EVENT_PINNED)
2751 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752 
2753 	perf_event_sched_in(cpuctx, task_ctx, current);
2754 	perf_pmu_enable(cpuctx->ctx.pmu);
2755 }
2756 
2757 void perf_pmu_resched(struct pmu *pmu)
2758 {
2759 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761 
2762 	perf_ctx_lock(cpuctx, task_ctx);
2763 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764 	perf_ctx_unlock(cpuctx, task_ctx);
2765 }
2766 
2767 /*
2768  * Cross CPU call to install and enable a performance event
2769  *
2770  * Very similar to remote_function() + event_function() but cannot assume that
2771  * things like ctx->is_active and cpuctx->task_ctx are set.
2772  */
2773 static int  __perf_install_in_context(void *info)
2774 {
2775 	struct perf_event *event = info;
2776 	struct perf_event_context *ctx = event->ctx;
2777 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779 	bool reprogram = true;
2780 	int ret = 0;
2781 
2782 	raw_spin_lock(&cpuctx->ctx.lock);
2783 	if (ctx->task) {
2784 		raw_spin_lock(&ctx->lock);
2785 		task_ctx = ctx;
2786 
2787 		reprogram = (ctx->task == current);
2788 
2789 		/*
2790 		 * If the task is running, it must be running on this CPU,
2791 		 * otherwise we cannot reprogram things.
2792 		 *
2793 		 * If its not running, we don't care, ctx->lock will
2794 		 * serialize against it becoming runnable.
2795 		 */
2796 		if (task_curr(ctx->task) && !reprogram) {
2797 			ret = -ESRCH;
2798 			goto unlock;
2799 		}
2800 
2801 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802 	} else if (task_ctx) {
2803 		raw_spin_lock(&task_ctx->lock);
2804 	}
2805 
2806 #ifdef CONFIG_CGROUP_PERF
2807 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2808 		/*
2809 		 * If the current cgroup doesn't match the event's
2810 		 * cgroup, we should not try to schedule it.
2811 		 */
2812 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814 					event->cgrp->css.cgroup);
2815 	}
2816 #endif
2817 
2818 	if (reprogram) {
2819 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820 		add_event_to_ctx(event, ctx);
2821 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2822 	} else {
2823 		add_event_to_ctx(event, ctx);
2824 	}
2825 
2826 unlock:
2827 	perf_ctx_unlock(cpuctx, task_ctx);
2828 
2829 	return ret;
2830 }
2831 
2832 static bool exclusive_event_installable(struct perf_event *event,
2833 					struct perf_event_context *ctx);
2834 
2835 /*
2836  * Attach a performance event to a context.
2837  *
2838  * Very similar to event_function_call, see comment there.
2839  */
2840 static void
2841 perf_install_in_context(struct perf_event_context *ctx,
2842 			struct perf_event *event,
2843 			int cpu)
2844 {
2845 	struct task_struct *task = READ_ONCE(ctx->task);
2846 
2847 	lockdep_assert_held(&ctx->mutex);
2848 
2849 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850 
2851 	if (event->cpu != -1)
2852 		event->cpu = cpu;
2853 
2854 	/*
2855 	 * Ensures that if we can observe event->ctx, both the event and ctx
2856 	 * will be 'complete'. See perf_iterate_sb_cpu().
2857 	 */
2858 	smp_store_release(&event->ctx, ctx);
2859 
2860 	/*
2861 	 * perf_event_attr::disabled events will not run and can be initialized
2862 	 * without IPI. Except when this is the first event for the context, in
2863 	 * that case we need the magic of the IPI to set ctx->is_active.
2864 	 *
2865 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2866 	 * event will issue the IPI and reprogram the hardware.
2867 	 */
2868 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869 		raw_spin_lock_irq(&ctx->lock);
2870 		if (ctx->task == TASK_TOMBSTONE) {
2871 			raw_spin_unlock_irq(&ctx->lock);
2872 			return;
2873 		}
2874 		add_event_to_ctx(event, ctx);
2875 		raw_spin_unlock_irq(&ctx->lock);
2876 		return;
2877 	}
2878 
2879 	if (!task) {
2880 		cpu_function_call(cpu, __perf_install_in_context, event);
2881 		return;
2882 	}
2883 
2884 	/*
2885 	 * Should not happen, we validate the ctx is still alive before calling.
2886 	 */
2887 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888 		return;
2889 
2890 	/*
2891 	 * Installing events is tricky because we cannot rely on ctx->is_active
2892 	 * to be set in case this is the nr_events 0 -> 1 transition.
2893 	 *
2894 	 * Instead we use task_curr(), which tells us if the task is running.
2895 	 * However, since we use task_curr() outside of rq::lock, we can race
2896 	 * against the actual state. This means the result can be wrong.
2897 	 *
2898 	 * If we get a false positive, we retry, this is harmless.
2899 	 *
2900 	 * If we get a false negative, things are complicated. If we are after
2901 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902 	 * value must be correct. If we're before, it doesn't matter since
2903 	 * perf_event_context_sched_in() will program the counter.
2904 	 *
2905 	 * However, this hinges on the remote context switch having observed
2906 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2907 	 * ctx::lock in perf_event_context_sched_in().
2908 	 *
2909 	 * We do this by task_function_call(), if the IPI fails to hit the task
2910 	 * we know any future context switch of task must see the
2911 	 * perf_event_ctpx[] store.
2912 	 */
2913 
2914 	/*
2915 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916 	 * task_cpu() load, such that if the IPI then does not find the task
2917 	 * running, a future context switch of that task must observe the
2918 	 * store.
2919 	 */
2920 	smp_mb();
2921 again:
2922 	if (!task_function_call(task, __perf_install_in_context, event))
2923 		return;
2924 
2925 	raw_spin_lock_irq(&ctx->lock);
2926 	task = ctx->task;
2927 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2928 		/*
2929 		 * Cannot happen because we already checked above (which also
2930 		 * cannot happen), and we hold ctx->mutex, which serializes us
2931 		 * against perf_event_exit_task_context().
2932 		 */
2933 		raw_spin_unlock_irq(&ctx->lock);
2934 		return;
2935 	}
2936 	/*
2937 	 * If the task is not running, ctx->lock will avoid it becoming so,
2938 	 * thus we can safely install the event.
2939 	 */
2940 	if (task_curr(task)) {
2941 		raw_spin_unlock_irq(&ctx->lock);
2942 		goto again;
2943 	}
2944 	add_event_to_ctx(event, ctx);
2945 	raw_spin_unlock_irq(&ctx->lock);
2946 }
2947 
2948 /*
2949  * Cross CPU call to enable a performance event
2950  */
2951 static void __perf_event_enable(struct perf_event *event,
2952 				struct perf_cpu_context *cpuctx,
2953 				struct perf_event_context *ctx,
2954 				void *info)
2955 {
2956 	struct perf_event *leader = event->group_leader;
2957 	struct perf_event_context *task_ctx;
2958 
2959 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960 	    event->state <= PERF_EVENT_STATE_ERROR)
2961 		return;
2962 
2963 	if (ctx->is_active)
2964 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965 
2966 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967 	perf_cgroup_event_enable(event, ctx);
2968 
2969 	if (!ctx->is_active)
2970 		return;
2971 
2972 	if (!event_filter_match(event)) {
2973 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2974 		return;
2975 	}
2976 
2977 	/*
2978 	 * If the event is in a group and isn't the group leader,
2979 	 * then don't put it on unless the group is on.
2980 	 */
2981 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2983 		return;
2984 	}
2985 
2986 	task_ctx = cpuctx->task_ctx;
2987 	if (ctx->task)
2988 		WARN_ON_ONCE(task_ctx != ctx);
2989 
2990 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2991 }
2992 
2993 /*
2994  * Enable an event.
2995  *
2996  * If event->ctx is a cloned context, callers must make sure that
2997  * every task struct that event->ctx->task could possibly point to
2998  * remains valid.  This condition is satisfied when called through
2999  * perf_event_for_each_child or perf_event_for_each as described
3000  * for perf_event_disable.
3001  */
3002 static void _perf_event_enable(struct perf_event *event)
3003 {
3004 	struct perf_event_context *ctx = event->ctx;
3005 
3006 	raw_spin_lock_irq(&ctx->lock);
3007 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008 	    event->state <  PERF_EVENT_STATE_ERROR) {
3009 out:
3010 		raw_spin_unlock_irq(&ctx->lock);
3011 		return;
3012 	}
3013 
3014 	/*
3015 	 * If the event is in error state, clear that first.
3016 	 *
3017 	 * That way, if we see the event in error state below, we know that it
3018 	 * has gone back into error state, as distinct from the task having
3019 	 * been scheduled away before the cross-call arrived.
3020 	 */
3021 	if (event->state == PERF_EVENT_STATE_ERROR) {
3022 		/*
3023 		 * Detached SIBLING events cannot leave ERROR state.
3024 		 */
3025 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026 		    event->group_leader == event)
3027 			goto out;
3028 
3029 		event->state = PERF_EVENT_STATE_OFF;
3030 	}
3031 	raw_spin_unlock_irq(&ctx->lock);
3032 
3033 	event_function_call(event, __perf_event_enable, NULL);
3034 }
3035 
3036 /*
3037  * See perf_event_disable();
3038  */
3039 void perf_event_enable(struct perf_event *event)
3040 {
3041 	struct perf_event_context *ctx;
3042 
3043 	ctx = perf_event_ctx_lock(event);
3044 	_perf_event_enable(event);
3045 	perf_event_ctx_unlock(event, ctx);
3046 }
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3048 
3049 struct stop_event_data {
3050 	struct perf_event	*event;
3051 	unsigned int		restart;
3052 };
3053 
3054 static int __perf_event_stop(void *info)
3055 {
3056 	struct stop_event_data *sd = info;
3057 	struct perf_event *event = sd->event;
3058 
3059 	/* if it's already INACTIVE, do nothing */
3060 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061 		return 0;
3062 
3063 	/* matches smp_wmb() in event_sched_in() */
3064 	smp_rmb();
3065 
3066 	/*
3067 	 * There is a window with interrupts enabled before we get here,
3068 	 * so we need to check again lest we try to stop another CPU's event.
3069 	 */
3070 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3071 		return -EAGAIN;
3072 
3073 	event->pmu->stop(event, PERF_EF_UPDATE);
3074 
3075 	/*
3076 	 * May race with the actual stop (through perf_pmu_output_stop()),
3077 	 * but it is only used for events with AUX ring buffer, and such
3078 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3079 	 * see comments in perf_aux_output_begin().
3080 	 *
3081 	 * Since this is happening on an event-local CPU, no trace is lost
3082 	 * while restarting.
3083 	 */
3084 	if (sd->restart)
3085 		event->pmu->start(event, 0);
3086 
3087 	return 0;
3088 }
3089 
3090 static int perf_event_stop(struct perf_event *event, int restart)
3091 {
3092 	struct stop_event_data sd = {
3093 		.event		= event,
3094 		.restart	= restart,
3095 	};
3096 	int ret = 0;
3097 
3098 	do {
3099 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100 			return 0;
3101 
3102 		/* matches smp_wmb() in event_sched_in() */
3103 		smp_rmb();
3104 
3105 		/*
3106 		 * We only want to restart ACTIVE events, so if the event goes
3107 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3108 		 * fall through with ret==-ENXIO.
3109 		 */
3110 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3111 					__perf_event_stop, &sd);
3112 	} while (ret == -EAGAIN);
3113 
3114 	return ret;
3115 }
3116 
3117 /*
3118  * In order to contain the amount of racy and tricky in the address filter
3119  * configuration management, it is a two part process:
3120  *
3121  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122  *      we update the addresses of corresponding vmas in
3123  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124  * (p2) when an event is scheduled in (pmu::add), it calls
3125  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126  *      if the generation has changed since the previous call.
3127  *
3128  * If (p1) happens while the event is active, we restart it to force (p2).
3129  *
3130  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3132  *     ioctl;
3133  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3135  *     for reading;
3136  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137  *     of exec.
3138  */
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3140 {
3141 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142 
3143 	if (!has_addr_filter(event))
3144 		return;
3145 
3146 	raw_spin_lock(&ifh->lock);
3147 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148 		event->pmu->addr_filters_sync(event);
3149 		event->hw.addr_filters_gen = event->addr_filters_gen;
3150 	}
3151 	raw_spin_unlock(&ifh->lock);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154 
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157 	/*
3158 	 * not supported on inherited events
3159 	 */
3160 	if (event->attr.inherit || !is_sampling_event(event))
3161 		return -EINVAL;
3162 
3163 	atomic_add(refresh, &event->event_limit);
3164 	_perf_event_enable(event);
3165 
3166 	return 0;
3167 }
3168 
3169 /*
3170  * See perf_event_disable()
3171  */
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3173 {
3174 	struct perf_event_context *ctx;
3175 	int ret;
3176 
3177 	ctx = perf_event_ctx_lock(event);
3178 	ret = _perf_event_refresh(event, refresh);
3179 	perf_event_ctx_unlock(event, ctx);
3180 
3181 	return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3184 
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186 					 struct perf_event_attr *attr)
3187 {
3188 	int err;
3189 
3190 	_perf_event_disable(bp);
3191 
3192 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3193 
3194 	if (!bp->attr.disabled)
3195 		_perf_event_enable(bp);
3196 
3197 	return err;
3198 }
3199 
3200 static int perf_event_modify_attr(struct perf_event *event,
3201 				  struct perf_event_attr *attr)
3202 {
3203 	int (*func)(struct perf_event *, struct perf_event_attr *);
3204 	struct perf_event *child;
3205 	int err;
3206 
3207 	if (event->attr.type != attr->type)
3208 		return -EINVAL;
3209 
3210 	switch (event->attr.type) {
3211 	case PERF_TYPE_BREAKPOINT:
3212 		func = perf_event_modify_breakpoint;
3213 		break;
3214 	default:
3215 		/* Place holder for future additions. */
3216 		return -EOPNOTSUPP;
3217 	}
3218 
3219 	WARN_ON_ONCE(event->ctx->parent_ctx);
3220 
3221 	mutex_lock(&event->child_mutex);
3222 	err = func(event, attr);
3223 	if (err)
3224 		goto out;
3225 	list_for_each_entry(child, &event->child_list, child_list) {
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236 			  struct perf_cpu_context *cpuctx,
3237 			  enum event_type_t event_type)
3238 {
3239 	struct perf_event *event, *tmp;
3240 	int is_active = ctx->is_active;
3241 
3242 	lockdep_assert_held(&ctx->lock);
3243 
3244 	if (likely(!ctx->nr_events)) {
3245 		/*
3246 		 * See __perf_remove_from_context().
3247 		 */
3248 		WARN_ON_ONCE(ctx->is_active);
3249 		if (ctx->task)
3250 			WARN_ON_ONCE(cpuctx->task_ctx);
3251 		return;
3252 	}
3253 
3254 	ctx->is_active &= ~event_type;
3255 	if (!(ctx->is_active & EVENT_ALL))
3256 		ctx->is_active = 0;
3257 
3258 	if (ctx->task) {
3259 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260 		if (!ctx->is_active)
3261 			cpuctx->task_ctx = NULL;
3262 	}
3263 
3264 	/*
3265 	 * Always update time if it was set; not only when it changes.
3266 	 * Otherwise we can 'forget' to update time for any but the last
3267 	 * context we sched out. For example:
3268 	 *
3269 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3271 	 *
3272 	 * would only update time for the pinned events.
3273 	 */
3274 	if (is_active & EVENT_TIME) {
3275 		/* update (and stop) ctx time */
3276 		update_context_time(ctx);
3277 		update_cgrp_time_from_cpuctx(cpuctx);
3278 	}
3279 
3280 	is_active ^= ctx->is_active; /* changed bits */
3281 
3282 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3283 		return;
3284 
3285 	perf_pmu_disable(ctx->pmu);
3286 	if (is_active & EVENT_PINNED) {
3287 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288 			group_sched_out(event, cpuctx, ctx);
3289 	}
3290 
3291 	if (is_active & EVENT_FLEXIBLE) {
3292 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293 			group_sched_out(event, cpuctx, ctx);
3294 
3295 		/*
3296 		 * Since we cleared EVENT_FLEXIBLE, also clear
3297 		 * rotate_necessary, is will be reset by
3298 		 * ctx_flexible_sched_in() when needed.
3299 		 */
3300 		ctx->rotate_necessary = 0;
3301 	}
3302 	perf_pmu_enable(ctx->pmu);
3303 }
3304 
3305 /*
3306  * Test whether two contexts are equivalent, i.e. whether they have both been
3307  * cloned from the same version of the same context.
3308  *
3309  * Equivalence is measured using a generation number in the context that is
3310  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311  * and list_del_event().
3312  */
3313 static int context_equiv(struct perf_event_context *ctx1,
3314 			 struct perf_event_context *ctx2)
3315 {
3316 	lockdep_assert_held(&ctx1->lock);
3317 	lockdep_assert_held(&ctx2->lock);
3318 
3319 	/* Pinning disables the swap optimization */
3320 	if (ctx1->pin_count || ctx2->pin_count)
3321 		return 0;
3322 
3323 	/* If ctx1 is the parent of ctx2 */
3324 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325 		return 1;
3326 
3327 	/* If ctx2 is the parent of ctx1 */
3328 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329 		return 1;
3330 
3331 	/*
3332 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3333 	 * hierarchy, see perf_event_init_context().
3334 	 */
3335 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336 			ctx1->parent_gen == ctx2->parent_gen)
3337 		return 1;
3338 
3339 	/* Unmatched */
3340 	return 0;
3341 }
3342 
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344 				     struct perf_event *next_event)
3345 {
3346 	u64 value;
3347 
3348 	if (!event->attr.inherit_stat)
3349 		return;
3350 
3351 	/*
3352 	 * Update the event value, we cannot use perf_event_read()
3353 	 * because we're in the middle of a context switch and have IRQs
3354 	 * disabled, which upsets smp_call_function_single(), however
3355 	 * we know the event must be on the current CPU, therefore we
3356 	 * don't need to use it.
3357 	 */
3358 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3359 		event->pmu->read(event);
3360 
3361 	perf_event_update_time(event);
3362 
3363 	/*
3364 	 * In order to keep per-task stats reliable we need to flip the event
3365 	 * values when we flip the contexts.
3366 	 */
3367 	value = local64_read(&next_event->count);
3368 	value = local64_xchg(&event->count, value);
3369 	local64_set(&next_event->count, value);
3370 
3371 	swap(event->total_time_enabled, next_event->total_time_enabled);
3372 	swap(event->total_time_running, next_event->total_time_running);
3373 
3374 	/*
3375 	 * Since we swizzled the values, update the user visible data too.
3376 	 */
3377 	perf_event_update_userpage(event);
3378 	perf_event_update_userpage(next_event);
3379 }
3380 
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382 				   struct perf_event_context *next_ctx)
3383 {
3384 	struct perf_event *event, *next_event;
3385 
3386 	if (!ctx->nr_stat)
3387 		return;
3388 
3389 	update_context_time(ctx);
3390 
3391 	event = list_first_entry(&ctx->event_list,
3392 				   struct perf_event, event_entry);
3393 
3394 	next_event = list_first_entry(&next_ctx->event_list,
3395 					struct perf_event, event_entry);
3396 
3397 	while (&event->event_entry != &ctx->event_list &&
3398 	       &next_event->event_entry != &next_ctx->event_list) {
3399 
3400 		__perf_event_sync_stat(event, next_event);
3401 
3402 		event = list_next_entry(event, event_entry);
3403 		next_event = list_next_entry(next_event, event_entry);
3404 	}
3405 }
3406 
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408 					 struct task_struct *next)
3409 {
3410 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411 	struct perf_event_context *next_ctx;
3412 	struct perf_event_context *parent, *next_parent;
3413 	struct perf_cpu_context *cpuctx;
3414 	int do_switch = 1;
3415 	struct pmu *pmu;
3416 
3417 	if (likely(!ctx))
3418 		return;
3419 
3420 	pmu = ctx->pmu;
3421 	cpuctx = __get_cpu_context(ctx);
3422 	if (!cpuctx->task_ctx)
3423 		return;
3424 
3425 	rcu_read_lock();
3426 	next_ctx = next->perf_event_ctxp[ctxn];
3427 	if (!next_ctx)
3428 		goto unlock;
3429 
3430 	parent = rcu_dereference(ctx->parent_ctx);
3431 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3432 
3433 	/* If neither context have a parent context; they cannot be clones. */
3434 	if (!parent && !next_parent)
3435 		goto unlock;
3436 
3437 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3438 		/*
3439 		 * Looks like the two contexts are clones, so we might be
3440 		 * able to optimize the context switch.  We lock both
3441 		 * contexts and check that they are clones under the
3442 		 * lock (including re-checking that neither has been
3443 		 * uncloned in the meantime).  It doesn't matter which
3444 		 * order we take the locks because no other cpu could
3445 		 * be trying to lock both of these tasks.
3446 		 */
3447 		raw_spin_lock(&ctx->lock);
3448 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449 		if (context_equiv(ctx, next_ctx)) {
3450 
3451 			WRITE_ONCE(ctx->task, next);
3452 			WRITE_ONCE(next_ctx->task, task);
3453 
3454 			perf_pmu_disable(pmu);
3455 
3456 			if (cpuctx->sched_cb_usage && pmu->sched_task)
3457 				pmu->sched_task(ctx, false);
3458 
3459 			/*
3460 			 * PMU specific parts of task perf context can require
3461 			 * additional synchronization. As an example of such
3462 			 * synchronization see implementation details of Intel
3463 			 * LBR call stack data profiling;
3464 			 */
3465 			if (pmu->swap_task_ctx)
3466 				pmu->swap_task_ctx(ctx, next_ctx);
3467 			else
3468 				swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3469 
3470 			perf_pmu_enable(pmu);
3471 
3472 			/*
3473 			 * RCU_INIT_POINTER here is safe because we've not
3474 			 * modified the ctx and the above modification of
3475 			 * ctx->task and ctx->task_ctx_data are immaterial
3476 			 * since those values are always verified under
3477 			 * ctx->lock which we're now holding.
3478 			 */
3479 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481 
3482 			do_switch = 0;
3483 
3484 			perf_event_sync_stat(ctx, next_ctx);
3485 		}
3486 		raw_spin_unlock(&next_ctx->lock);
3487 		raw_spin_unlock(&ctx->lock);
3488 	}
3489 unlock:
3490 	rcu_read_unlock();
3491 
3492 	if (do_switch) {
3493 		raw_spin_lock(&ctx->lock);
3494 		perf_pmu_disable(pmu);
3495 
3496 		if (cpuctx->sched_cb_usage && pmu->sched_task)
3497 			pmu->sched_task(ctx, false);
3498 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3499 
3500 		perf_pmu_enable(pmu);
3501 		raw_spin_unlock(&ctx->lock);
3502 	}
3503 }
3504 
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506 
3507 void perf_sched_cb_dec(struct pmu *pmu)
3508 {
3509 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510 
3511 	this_cpu_dec(perf_sched_cb_usages);
3512 
3513 	if (!--cpuctx->sched_cb_usage)
3514 		list_del(&cpuctx->sched_cb_entry);
3515 }
3516 
3517 
3518 void perf_sched_cb_inc(struct pmu *pmu)
3519 {
3520 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521 
3522 	if (!cpuctx->sched_cb_usage++)
3523 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524 
3525 	this_cpu_inc(perf_sched_cb_usages);
3526 }
3527 
3528 /*
3529  * This function provides the context switch callback to the lower code
3530  * layer. It is invoked ONLY when the context switch callback is enabled.
3531  *
3532  * This callback is relevant even to per-cpu events; for example multi event
3533  * PEBS requires this to provide PID/TID information. This requires we flush
3534  * all queued PEBS records before we context switch to a new task.
3535  */
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537 {
3538 	struct pmu *pmu;
3539 
3540 	pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541 
3542 	if (WARN_ON_ONCE(!pmu->sched_task))
3543 		return;
3544 
3545 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546 	perf_pmu_disable(pmu);
3547 
3548 	pmu->sched_task(cpuctx->task_ctx, sched_in);
3549 
3550 	perf_pmu_enable(pmu);
3551 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552 }
3553 
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555 				struct task_struct *next,
3556 				bool sched_in)
3557 {
3558 	struct perf_cpu_context *cpuctx;
3559 
3560 	if (prev == next)
3561 		return;
3562 
3563 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564 		/* will be handled in perf_event_context_sched_in/out */
3565 		if (cpuctx->task_ctx)
3566 			continue;
3567 
3568 		__perf_pmu_sched_task(cpuctx, sched_in);
3569 	}
3570 }
3571 
3572 static void perf_event_switch(struct task_struct *task,
3573 			      struct task_struct *next_prev, bool sched_in);
3574 
3575 #define for_each_task_context_nr(ctxn)					\
3576 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577 
3578 /*
3579  * Called from scheduler to remove the events of the current task,
3580  * with interrupts disabled.
3581  *
3582  * We stop each event and update the event value in event->count.
3583  *
3584  * This does not protect us against NMI, but disable()
3585  * sets the disabled bit in the control field of event _before_
3586  * accessing the event control register. If a NMI hits, then it will
3587  * not restart the event.
3588  */
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590 				 struct task_struct *next)
3591 {
3592 	int ctxn;
3593 
3594 	if (__this_cpu_read(perf_sched_cb_usages))
3595 		perf_pmu_sched_task(task, next, false);
3596 
3597 	if (atomic_read(&nr_switch_events))
3598 		perf_event_switch(task, next, false);
3599 
3600 	for_each_task_context_nr(ctxn)
3601 		perf_event_context_sched_out(task, ctxn, next);
3602 
3603 	/*
3604 	 * if cgroup events exist on this CPU, then we need
3605 	 * to check if we have to switch out PMU state.
3606 	 * cgroup event are system-wide mode only
3607 	 */
3608 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609 		perf_cgroup_sched_out(task, next);
3610 }
3611 
3612 /*
3613  * Called with IRQs disabled
3614  */
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616 			      enum event_type_t event_type)
3617 {
3618 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3619 }
3620 
3621 static bool perf_less_group_idx(const void *l, const void *r)
3622 {
3623 	const struct perf_event *le = *(const struct perf_event **)l;
3624 	const struct perf_event *re = *(const struct perf_event **)r;
3625 
3626 	return le->group_index < re->group_index;
3627 }
3628 
3629 static void swap_ptr(void *l, void *r)
3630 {
3631 	void **lp = l, **rp = r;
3632 
3633 	swap(*lp, *rp);
3634 }
3635 
3636 static const struct min_heap_callbacks perf_min_heap = {
3637 	.elem_size = sizeof(struct perf_event *),
3638 	.less = perf_less_group_idx,
3639 	.swp = swap_ptr,
3640 };
3641 
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643 {
3644 	struct perf_event **itrs = heap->data;
3645 
3646 	if (event) {
3647 		itrs[heap->nr] = event;
3648 		heap->nr++;
3649 	}
3650 }
3651 
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653 				struct perf_event_groups *groups, int cpu,
3654 				int (*func)(struct perf_event *, void *),
3655 				void *data)
3656 {
3657 #ifdef CONFIG_CGROUP_PERF
3658 	struct cgroup_subsys_state *css = NULL;
3659 #endif
3660 	/* Space for per CPU and/or any CPU event iterators. */
3661 	struct perf_event *itrs[2];
3662 	struct min_heap event_heap;
3663 	struct perf_event **evt;
3664 	int ret;
3665 
3666 	if (cpuctx) {
3667 		event_heap = (struct min_heap){
3668 			.data = cpuctx->heap,
3669 			.nr = 0,
3670 			.size = cpuctx->heap_size,
3671 		};
3672 
3673 		lockdep_assert_held(&cpuctx->ctx.lock);
3674 
3675 #ifdef CONFIG_CGROUP_PERF
3676 		if (cpuctx->cgrp)
3677 			css = &cpuctx->cgrp->css;
3678 #endif
3679 	} else {
3680 		event_heap = (struct min_heap){
3681 			.data = itrs,
3682 			.nr = 0,
3683 			.size = ARRAY_SIZE(itrs),
3684 		};
3685 		/* Events not within a CPU context may be on any CPU. */
3686 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3687 	}
3688 	evt = event_heap.data;
3689 
3690 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691 
3692 #ifdef CONFIG_CGROUP_PERF
3693 	for (; css; css = css->parent)
3694 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695 #endif
3696 
3697 	min_heapify_all(&event_heap, &perf_min_heap);
3698 
3699 	while (event_heap.nr) {
3700 		ret = func(*evt, data);
3701 		if (ret)
3702 			return ret;
3703 
3704 		*evt = perf_event_groups_next(*evt);
3705 		if (*evt)
3706 			min_heapify(&event_heap, 0, &perf_min_heap);
3707 		else
3708 			min_heap_pop(&event_heap, &perf_min_heap);
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static inline bool event_update_userpage(struct perf_event *event)
3715 {
3716 	if (likely(!atomic_read(&event->mmap_count)))
3717 		return false;
3718 
3719 	perf_event_update_time(event);
3720 	perf_set_shadow_time(event, event->ctx);
3721 	perf_event_update_userpage(event);
3722 
3723 	return true;
3724 }
3725 
3726 static inline void group_update_userpage(struct perf_event *group_event)
3727 {
3728 	struct perf_event *event;
3729 
3730 	if (!event_update_userpage(group_event))
3731 		return;
3732 
3733 	for_each_sibling_event(event, group_event)
3734 		event_update_userpage(event);
3735 }
3736 
3737 static int merge_sched_in(struct perf_event *event, void *data)
3738 {
3739 	struct perf_event_context *ctx = event->ctx;
3740 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3741 	int *can_add_hw = data;
3742 
3743 	if (event->state <= PERF_EVENT_STATE_OFF)
3744 		return 0;
3745 
3746 	if (!event_filter_match(event))
3747 		return 0;
3748 
3749 	if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3750 		if (!group_sched_in(event, cpuctx, ctx))
3751 			list_add_tail(&event->active_list, get_event_list(event));
3752 	}
3753 
3754 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3755 		*can_add_hw = 0;
3756 		if (event->attr.pinned) {
3757 			perf_cgroup_event_disable(event, ctx);
3758 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3759 		} else {
3760 			ctx->rotate_necessary = 1;
3761 			perf_mux_hrtimer_restart(cpuctx);
3762 			group_update_userpage(event);
3763 		}
3764 	}
3765 
3766 	return 0;
3767 }
3768 
3769 static void
3770 ctx_pinned_sched_in(struct perf_event_context *ctx,
3771 		    struct perf_cpu_context *cpuctx)
3772 {
3773 	int can_add_hw = 1;
3774 
3775 	if (ctx != &cpuctx->ctx)
3776 		cpuctx = NULL;
3777 
3778 	visit_groups_merge(cpuctx, &ctx->pinned_groups,
3779 			   smp_processor_id(),
3780 			   merge_sched_in, &can_add_hw);
3781 }
3782 
3783 static void
3784 ctx_flexible_sched_in(struct perf_event_context *ctx,
3785 		      struct perf_cpu_context *cpuctx)
3786 {
3787 	int can_add_hw = 1;
3788 
3789 	if (ctx != &cpuctx->ctx)
3790 		cpuctx = NULL;
3791 
3792 	visit_groups_merge(cpuctx, &ctx->flexible_groups,
3793 			   smp_processor_id(),
3794 			   merge_sched_in, &can_add_hw);
3795 }
3796 
3797 static void
3798 ctx_sched_in(struct perf_event_context *ctx,
3799 	     struct perf_cpu_context *cpuctx,
3800 	     enum event_type_t event_type,
3801 	     struct task_struct *task)
3802 {
3803 	int is_active = ctx->is_active;
3804 	u64 now;
3805 
3806 	lockdep_assert_held(&ctx->lock);
3807 
3808 	if (likely(!ctx->nr_events))
3809 		return;
3810 
3811 	ctx->is_active |= (event_type | EVENT_TIME);
3812 	if (ctx->task) {
3813 		if (!is_active)
3814 			cpuctx->task_ctx = ctx;
3815 		else
3816 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3817 	}
3818 
3819 	is_active ^= ctx->is_active; /* changed bits */
3820 
3821 	if (is_active & EVENT_TIME) {
3822 		/* start ctx time */
3823 		now = perf_clock();
3824 		ctx->timestamp = now;
3825 		perf_cgroup_set_timestamp(task, ctx);
3826 	}
3827 
3828 	/*
3829 	 * First go through the list and put on any pinned groups
3830 	 * in order to give them the best chance of going on.
3831 	 */
3832 	if (is_active & EVENT_PINNED)
3833 		ctx_pinned_sched_in(ctx, cpuctx);
3834 
3835 	/* Then walk through the lower prio flexible groups */
3836 	if (is_active & EVENT_FLEXIBLE)
3837 		ctx_flexible_sched_in(ctx, cpuctx);
3838 }
3839 
3840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3841 			     enum event_type_t event_type,
3842 			     struct task_struct *task)
3843 {
3844 	struct perf_event_context *ctx = &cpuctx->ctx;
3845 
3846 	ctx_sched_in(ctx, cpuctx, event_type, task);
3847 }
3848 
3849 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3850 					struct task_struct *task)
3851 {
3852 	struct perf_cpu_context *cpuctx;
3853 	struct pmu *pmu;
3854 
3855 	cpuctx = __get_cpu_context(ctx);
3856 
3857 	/*
3858 	 * HACK: for HETEROGENEOUS the task context might have switched to a
3859 	 * different PMU, force (re)set the context,
3860 	 */
3861 	pmu = ctx->pmu = cpuctx->ctx.pmu;
3862 
3863 	if (cpuctx->task_ctx == ctx) {
3864 		if (cpuctx->sched_cb_usage)
3865 			__perf_pmu_sched_task(cpuctx, true);
3866 		return;
3867 	}
3868 
3869 	perf_ctx_lock(cpuctx, ctx);
3870 	/*
3871 	 * We must check ctx->nr_events while holding ctx->lock, such
3872 	 * that we serialize against perf_install_in_context().
3873 	 */
3874 	if (!ctx->nr_events)
3875 		goto unlock;
3876 
3877 	perf_pmu_disable(pmu);
3878 	/*
3879 	 * We want to keep the following priority order:
3880 	 * cpu pinned (that don't need to move), task pinned,
3881 	 * cpu flexible, task flexible.
3882 	 *
3883 	 * However, if task's ctx is not carrying any pinned
3884 	 * events, no need to flip the cpuctx's events around.
3885 	 */
3886 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3887 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3888 	perf_event_sched_in(cpuctx, ctx, task);
3889 
3890 	if (cpuctx->sched_cb_usage && pmu->sched_task)
3891 		pmu->sched_task(cpuctx->task_ctx, true);
3892 
3893 	perf_pmu_enable(pmu);
3894 
3895 unlock:
3896 	perf_ctx_unlock(cpuctx, ctx);
3897 }
3898 
3899 /*
3900  * Called from scheduler to add the events of the current task
3901  * with interrupts disabled.
3902  *
3903  * We restore the event value and then enable it.
3904  *
3905  * This does not protect us against NMI, but enable()
3906  * sets the enabled bit in the control field of event _before_
3907  * accessing the event control register. If a NMI hits, then it will
3908  * keep the event running.
3909  */
3910 void __perf_event_task_sched_in(struct task_struct *prev,
3911 				struct task_struct *task)
3912 {
3913 	struct perf_event_context *ctx;
3914 	int ctxn;
3915 
3916 	/*
3917 	 * If cgroup events exist on this CPU, then we need to check if we have
3918 	 * to switch in PMU state; cgroup event are system-wide mode only.
3919 	 *
3920 	 * Since cgroup events are CPU events, we must schedule these in before
3921 	 * we schedule in the task events.
3922 	 */
3923 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3924 		perf_cgroup_sched_in(prev, task);
3925 
3926 	for_each_task_context_nr(ctxn) {
3927 		ctx = task->perf_event_ctxp[ctxn];
3928 		if (likely(!ctx))
3929 			continue;
3930 
3931 		perf_event_context_sched_in(ctx, task);
3932 	}
3933 
3934 	if (atomic_read(&nr_switch_events))
3935 		perf_event_switch(task, prev, true);
3936 
3937 	if (__this_cpu_read(perf_sched_cb_usages))
3938 		perf_pmu_sched_task(prev, task, true);
3939 }
3940 
3941 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3942 {
3943 	u64 frequency = event->attr.sample_freq;
3944 	u64 sec = NSEC_PER_SEC;
3945 	u64 divisor, dividend;
3946 
3947 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3948 
3949 	count_fls = fls64(count);
3950 	nsec_fls = fls64(nsec);
3951 	frequency_fls = fls64(frequency);
3952 	sec_fls = 30;
3953 
3954 	/*
3955 	 * We got @count in @nsec, with a target of sample_freq HZ
3956 	 * the target period becomes:
3957 	 *
3958 	 *             @count * 10^9
3959 	 * period = -------------------
3960 	 *          @nsec * sample_freq
3961 	 *
3962 	 */
3963 
3964 	/*
3965 	 * Reduce accuracy by one bit such that @a and @b converge
3966 	 * to a similar magnitude.
3967 	 */
3968 #define REDUCE_FLS(a, b)		\
3969 do {					\
3970 	if (a##_fls > b##_fls) {	\
3971 		a >>= 1;		\
3972 		a##_fls--;		\
3973 	} else {			\
3974 		b >>= 1;		\
3975 		b##_fls--;		\
3976 	}				\
3977 } while (0)
3978 
3979 	/*
3980 	 * Reduce accuracy until either term fits in a u64, then proceed with
3981 	 * the other, so that finally we can do a u64/u64 division.
3982 	 */
3983 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3984 		REDUCE_FLS(nsec, frequency);
3985 		REDUCE_FLS(sec, count);
3986 	}
3987 
3988 	if (count_fls + sec_fls > 64) {
3989 		divisor = nsec * frequency;
3990 
3991 		while (count_fls + sec_fls > 64) {
3992 			REDUCE_FLS(count, sec);
3993 			divisor >>= 1;
3994 		}
3995 
3996 		dividend = count * sec;
3997 	} else {
3998 		dividend = count * sec;
3999 
4000 		while (nsec_fls + frequency_fls > 64) {
4001 			REDUCE_FLS(nsec, frequency);
4002 			dividend >>= 1;
4003 		}
4004 
4005 		divisor = nsec * frequency;
4006 	}
4007 
4008 	if (!divisor)
4009 		return dividend;
4010 
4011 	return div64_u64(dividend, divisor);
4012 }
4013 
4014 static DEFINE_PER_CPU(int, perf_throttled_count);
4015 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4016 
4017 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4018 {
4019 	struct hw_perf_event *hwc = &event->hw;
4020 	s64 period, sample_period;
4021 	s64 delta;
4022 
4023 	period = perf_calculate_period(event, nsec, count);
4024 
4025 	delta = (s64)(period - hwc->sample_period);
4026 	delta = (delta + 7) / 8; /* low pass filter */
4027 
4028 	sample_period = hwc->sample_period + delta;
4029 
4030 	if (!sample_period)
4031 		sample_period = 1;
4032 
4033 	hwc->sample_period = sample_period;
4034 
4035 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4036 		if (disable)
4037 			event->pmu->stop(event, PERF_EF_UPDATE);
4038 
4039 		local64_set(&hwc->period_left, 0);
4040 
4041 		if (disable)
4042 			event->pmu->start(event, PERF_EF_RELOAD);
4043 	}
4044 }
4045 
4046 /*
4047  * combine freq adjustment with unthrottling to avoid two passes over the
4048  * events. At the same time, make sure, having freq events does not change
4049  * the rate of unthrottling as that would introduce bias.
4050  */
4051 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4052 					   int needs_unthr)
4053 {
4054 	struct perf_event *event;
4055 	struct hw_perf_event *hwc;
4056 	u64 now, period = TICK_NSEC;
4057 	s64 delta;
4058 
4059 	/*
4060 	 * only need to iterate over all events iff:
4061 	 * - context have events in frequency mode (needs freq adjust)
4062 	 * - there are events to unthrottle on this cpu
4063 	 */
4064 	if (!(ctx->nr_freq || needs_unthr))
4065 		return;
4066 
4067 	raw_spin_lock(&ctx->lock);
4068 	perf_pmu_disable(ctx->pmu);
4069 
4070 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4071 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4072 			continue;
4073 
4074 		if (!event_filter_match(event))
4075 			continue;
4076 
4077 		perf_pmu_disable(event->pmu);
4078 
4079 		hwc = &event->hw;
4080 
4081 		if (hwc->interrupts == MAX_INTERRUPTS) {
4082 			hwc->interrupts = 0;
4083 			perf_log_throttle(event, 1);
4084 			event->pmu->start(event, 0);
4085 		}
4086 
4087 		if (!event->attr.freq || !event->attr.sample_freq)
4088 			goto next;
4089 
4090 		/*
4091 		 * stop the event and update event->count
4092 		 */
4093 		event->pmu->stop(event, PERF_EF_UPDATE);
4094 
4095 		now = local64_read(&event->count);
4096 		delta = now - hwc->freq_count_stamp;
4097 		hwc->freq_count_stamp = now;
4098 
4099 		/*
4100 		 * restart the event
4101 		 * reload only if value has changed
4102 		 * we have stopped the event so tell that
4103 		 * to perf_adjust_period() to avoid stopping it
4104 		 * twice.
4105 		 */
4106 		if (delta > 0)
4107 			perf_adjust_period(event, period, delta, false);
4108 
4109 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4110 	next:
4111 		perf_pmu_enable(event->pmu);
4112 	}
4113 
4114 	perf_pmu_enable(ctx->pmu);
4115 	raw_spin_unlock(&ctx->lock);
4116 }
4117 
4118 /*
4119  * Move @event to the tail of the @ctx's elegible events.
4120  */
4121 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4122 {
4123 	/*
4124 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4125 	 * disabled by the inheritance code.
4126 	 */
4127 	if (ctx->rotate_disable)
4128 		return;
4129 
4130 	perf_event_groups_delete(&ctx->flexible_groups, event);
4131 	perf_event_groups_insert(&ctx->flexible_groups, event);
4132 }
4133 
4134 /* pick an event from the flexible_groups to rotate */
4135 static inline struct perf_event *
4136 ctx_event_to_rotate(struct perf_event_context *ctx)
4137 {
4138 	struct perf_event *event;
4139 
4140 	/* pick the first active flexible event */
4141 	event = list_first_entry_or_null(&ctx->flexible_active,
4142 					 struct perf_event, active_list);
4143 
4144 	/* if no active flexible event, pick the first event */
4145 	if (!event) {
4146 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4147 				      typeof(*event), group_node);
4148 	}
4149 
4150 	/*
4151 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4152 	 * finds there are unschedulable events, it will set it again.
4153 	 */
4154 	ctx->rotate_necessary = 0;
4155 
4156 	return event;
4157 }
4158 
4159 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4160 {
4161 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4162 	struct perf_event_context *task_ctx = NULL;
4163 	int cpu_rotate, task_rotate;
4164 
4165 	/*
4166 	 * Since we run this from IRQ context, nobody can install new
4167 	 * events, thus the event count values are stable.
4168 	 */
4169 
4170 	cpu_rotate = cpuctx->ctx.rotate_necessary;
4171 	task_ctx = cpuctx->task_ctx;
4172 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4173 
4174 	if (!(cpu_rotate || task_rotate))
4175 		return false;
4176 
4177 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4178 	perf_pmu_disable(cpuctx->ctx.pmu);
4179 
4180 	if (task_rotate)
4181 		task_event = ctx_event_to_rotate(task_ctx);
4182 	if (cpu_rotate)
4183 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4184 
4185 	/*
4186 	 * As per the order given at ctx_resched() first 'pop' task flexible
4187 	 * and then, if needed CPU flexible.
4188 	 */
4189 	if (task_event || (task_ctx && cpu_event))
4190 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4191 	if (cpu_event)
4192 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4193 
4194 	if (task_event)
4195 		rotate_ctx(task_ctx, task_event);
4196 	if (cpu_event)
4197 		rotate_ctx(&cpuctx->ctx, cpu_event);
4198 
4199 	perf_event_sched_in(cpuctx, task_ctx, current);
4200 
4201 	perf_pmu_enable(cpuctx->ctx.pmu);
4202 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4203 
4204 	return true;
4205 }
4206 
4207 void perf_event_task_tick(void)
4208 {
4209 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
4210 	struct perf_event_context *ctx, *tmp;
4211 	int throttled;
4212 
4213 	lockdep_assert_irqs_disabled();
4214 
4215 	__this_cpu_inc(perf_throttled_seq);
4216 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4217 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4218 
4219 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4220 		perf_adjust_freq_unthr_context(ctx, throttled);
4221 }
4222 
4223 static int event_enable_on_exec(struct perf_event *event,
4224 				struct perf_event_context *ctx)
4225 {
4226 	if (!event->attr.enable_on_exec)
4227 		return 0;
4228 
4229 	event->attr.enable_on_exec = 0;
4230 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4231 		return 0;
4232 
4233 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4234 
4235 	return 1;
4236 }
4237 
4238 /*
4239  * Enable all of a task's events that have been marked enable-on-exec.
4240  * This expects task == current.
4241  */
4242 static void perf_event_enable_on_exec(int ctxn)
4243 {
4244 	struct perf_event_context *ctx, *clone_ctx = NULL;
4245 	enum event_type_t event_type = 0;
4246 	struct perf_cpu_context *cpuctx;
4247 	struct perf_event *event;
4248 	unsigned long flags;
4249 	int enabled = 0;
4250 
4251 	local_irq_save(flags);
4252 	ctx = current->perf_event_ctxp[ctxn];
4253 	if (!ctx || !ctx->nr_events)
4254 		goto out;
4255 
4256 	cpuctx = __get_cpu_context(ctx);
4257 	perf_ctx_lock(cpuctx, ctx);
4258 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4259 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4260 		enabled |= event_enable_on_exec(event, ctx);
4261 		event_type |= get_event_type(event);
4262 	}
4263 
4264 	/*
4265 	 * Unclone and reschedule this context if we enabled any event.
4266 	 */
4267 	if (enabled) {
4268 		clone_ctx = unclone_ctx(ctx);
4269 		ctx_resched(cpuctx, ctx, event_type);
4270 	} else {
4271 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4272 	}
4273 	perf_ctx_unlock(cpuctx, ctx);
4274 
4275 out:
4276 	local_irq_restore(flags);
4277 
4278 	if (clone_ctx)
4279 		put_ctx(clone_ctx);
4280 }
4281 
4282 static void perf_remove_from_owner(struct perf_event *event);
4283 static void perf_event_exit_event(struct perf_event *event,
4284 				  struct perf_event_context *ctx);
4285 
4286 /*
4287  * Removes all events from the current task that have been marked
4288  * remove-on-exec, and feeds their values back to parent events.
4289  */
4290 static void perf_event_remove_on_exec(int ctxn)
4291 {
4292 	struct perf_event_context *ctx, *clone_ctx = NULL;
4293 	struct perf_event *event, *next;
4294 	LIST_HEAD(free_list);
4295 	unsigned long flags;
4296 	bool modified = false;
4297 
4298 	ctx = perf_pin_task_context(current, ctxn);
4299 	if (!ctx)
4300 		return;
4301 
4302 	mutex_lock(&ctx->mutex);
4303 
4304 	if (WARN_ON_ONCE(ctx->task != current))
4305 		goto unlock;
4306 
4307 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4308 		if (!event->attr.remove_on_exec)
4309 			continue;
4310 
4311 		if (!is_kernel_event(event))
4312 			perf_remove_from_owner(event);
4313 
4314 		modified = true;
4315 
4316 		perf_event_exit_event(event, ctx);
4317 	}
4318 
4319 	raw_spin_lock_irqsave(&ctx->lock, flags);
4320 	if (modified)
4321 		clone_ctx = unclone_ctx(ctx);
4322 	--ctx->pin_count;
4323 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4324 
4325 unlock:
4326 	mutex_unlock(&ctx->mutex);
4327 
4328 	put_ctx(ctx);
4329 	if (clone_ctx)
4330 		put_ctx(clone_ctx);
4331 }
4332 
4333 struct perf_read_data {
4334 	struct perf_event *event;
4335 	bool group;
4336 	int ret;
4337 };
4338 
4339 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4340 {
4341 	u16 local_pkg, event_pkg;
4342 
4343 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4344 		int local_cpu = smp_processor_id();
4345 
4346 		event_pkg = topology_physical_package_id(event_cpu);
4347 		local_pkg = topology_physical_package_id(local_cpu);
4348 
4349 		if (event_pkg == local_pkg)
4350 			return local_cpu;
4351 	}
4352 
4353 	return event_cpu;
4354 }
4355 
4356 /*
4357  * Cross CPU call to read the hardware event
4358  */
4359 static void __perf_event_read(void *info)
4360 {
4361 	struct perf_read_data *data = info;
4362 	struct perf_event *sub, *event = data->event;
4363 	struct perf_event_context *ctx = event->ctx;
4364 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4365 	struct pmu *pmu = event->pmu;
4366 
4367 	/*
4368 	 * If this is a task context, we need to check whether it is
4369 	 * the current task context of this cpu.  If not it has been
4370 	 * scheduled out before the smp call arrived.  In that case
4371 	 * event->count would have been updated to a recent sample
4372 	 * when the event was scheduled out.
4373 	 */
4374 	if (ctx->task && cpuctx->task_ctx != ctx)
4375 		return;
4376 
4377 	raw_spin_lock(&ctx->lock);
4378 	if (ctx->is_active & EVENT_TIME) {
4379 		update_context_time(ctx);
4380 		update_cgrp_time_from_event(event);
4381 	}
4382 
4383 	perf_event_update_time(event);
4384 	if (data->group)
4385 		perf_event_update_sibling_time(event);
4386 
4387 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4388 		goto unlock;
4389 
4390 	if (!data->group) {
4391 		pmu->read(event);
4392 		data->ret = 0;
4393 		goto unlock;
4394 	}
4395 
4396 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4397 
4398 	pmu->read(event);
4399 
4400 	for_each_sibling_event(sub, event) {
4401 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4402 			/*
4403 			 * Use sibling's PMU rather than @event's since
4404 			 * sibling could be on different (eg: software) PMU.
4405 			 */
4406 			sub->pmu->read(sub);
4407 		}
4408 	}
4409 
4410 	data->ret = pmu->commit_txn(pmu);
4411 
4412 unlock:
4413 	raw_spin_unlock(&ctx->lock);
4414 }
4415 
4416 static inline u64 perf_event_count(struct perf_event *event)
4417 {
4418 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4419 }
4420 
4421 /*
4422  * NMI-safe method to read a local event, that is an event that
4423  * is:
4424  *   - either for the current task, or for this CPU
4425  *   - does not have inherit set, for inherited task events
4426  *     will not be local and we cannot read them atomically
4427  *   - must not have a pmu::count method
4428  */
4429 int perf_event_read_local(struct perf_event *event, u64 *value,
4430 			  u64 *enabled, u64 *running)
4431 {
4432 	unsigned long flags;
4433 	int ret = 0;
4434 
4435 	/*
4436 	 * Disabling interrupts avoids all counter scheduling (context
4437 	 * switches, timer based rotation and IPIs).
4438 	 */
4439 	local_irq_save(flags);
4440 
4441 	/*
4442 	 * It must not be an event with inherit set, we cannot read
4443 	 * all child counters from atomic context.
4444 	 */
4445 	if (event->attr.inherit) {
4446 		ret = -EOPNOTSUPP;
4447 		goto out;
4448 	}
4449 
4450 	/* If this is a per-task event, it must be for current */
4451 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4452 	    event->hw.target != current) {
4453 		ret = -EINVAL;
4454 		goto out;
4455 	}
4456 
4457 	/* If this is a per-CPU event, it must be for this CPU */
4458 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4459 	    event->cpu != smp_processor_id()) {
4460 		ret = -EINVAL;
4461 		goto out;
4462 	}
4463 
4464 	/* If this is a pinned event it must be running on this CPU */
4465 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4466 		ret = -EBUSY;
4467 		goto out;
4468 	}
4469 
4470 	/*
4471 	 * If the event is currently on this CPU, its either a per-task event,
4472 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4473 	 * oncpu == -1).
4474 	 */
4475 	if (event->oncpu == smp_processor_id())
4476 		event->pmu->read(event);
4477 
4478 	*value = local64_read(&event->count);
4479 	if (enabled || running) {
4480 		u64 now = event->shadow_ctx_time + perf_clock();
4481 		u64 __enabled, __running;
4482 
4483 		__perf_update_times(event, now, &__enabled, &__running);
4484 		if (enabled)
4485 			*enabled = __enabled;
4486 		if (running)
4487 			*running = __running;
4488 	}
4489 out:
4490 	local_irq_restore(flags);
4491 
4492 	return ret;
4493 }
4494 
4495 static int perf_event_read(struct perf_event *event, bool group)
4496 {
4497 	enum perf_event_state state = READ_ONCE(event->state);
4498 	int event_cpu, ret = 0;
4499 
4500 	/*
4501 	 * If event is enabled and currently active on a CPU, update the
4502 	 * value in the event structure:
4503 	 */
4504 again:
4505 	if (state == PERF_EVENT_STATE_ACTIVE) {
4506 		struct perf_read_data data;
4507 
4508 		/*
4509 		 * Orders the ->state and ->oncpu loads such that if we see
4510 		 * ACTIVE we must also see the right ->oncpu.
4511 		 *
4512 		 * Matches the smp_wmb() from event_sched_in().
4513 		 */
4514 		smp_rmb();
4515 
4516 		event_cpu = READ_ONCE(event->oncpu);
4517 		if ((unsigned)event_cpu >= nr_cpu_ids)
4518 			return 0;
4519 
4520 		data = (struct perf_read_data){
4521 			.event = event,
4522 			.group = group,
4523 			.ret = 0,
4524 		};
4525 
4526 		preempt_disable();
4527 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4528 
4529 		/*
4530 		 * Purposely ignore the smp_call_function_single() return
4531 		 * value.
4532 		 *
4533 		 * If event_cpu isn't a valid CPU it means the event got
4534 		 * scheduled out and that will have updated the event count.
4535 		 *
4536 		 * Therefore, either way, we'll have an up-to-date event count
4537 		 * after this.
4538 		 */
4539 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4540 		preempt_enable();
4541 		ret = data.ret;
4542 
4543 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4544 		struct perf_event_context *ctx = event->ctx;
4545 		unsigned long flags;
4546 
4547 		raw_spin_lock_irqsave(&ctx->lock, flags);
4548 		state = event->state;
4549 		if (state != PERF_EVENT_STATE_INACTIVE) {
4550 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4551 			goto again;
4552 		}
4553 
4554 		/*
4555 		 * May read while context is not active (e.g., thread is
4556 		 * blocked), in that case we cannot update context time
4557 		 */
4558 		if (ctx->is_active & EVENT_TIME) {
4559 			update_context_time(ctx);
4560 			update_cgrp_time_from_event(event);
4561 		}
4562 
4563 		perf_event_update_time(event);
4564 		if (group)
4565 			perf_event_update_sibling_time(event);
4566 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4567 	}
4568 
4569 	return ret;
4570 }
4571 
4572 /*
4573  * Initialize the perf_event context in a task_struct:
4574  */
4575 static void __perf_event_init_context(struct perf_event_context *ctx)
4576 {
4577 	raw_spin_lock_init(&ctx->lock);
4578 	mutex_init(&ctx->mutex);
4579 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4580 	perf_event_groups_init(&ctx->pinned_groups);
4581 	perf_event_groups_init(&ctx->flexible_groups);
4582 	INIT_LIST_HEAD(&ctx->event_list);
4583 	INIT_LIST_HEAD(&ctx->pinned_active);
4584 	INIT_LIST_HEAD(&ctx->flexible_active);
4585 	refcount_set(&ctx->refcount, 1);
4586 }
4587 
4588 static struct perf_event_context *
4589 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4590 {
4591 	struct perf_event_context *ctx;
4592 
4593 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4594 	if (!ctx)
4595 		return NULL;
4596 
4597 	__perf_event_init_context(ctx);
4598 	if (task)
4599 		ctx->task = get_task_struct(task);
4600 	ctx->pmu = pmu;
4601 
4602 	return ctx;
4603 }
4604 
4605 static struct task_struct *
4606 find_lively_task_by_vpid(pid_t vpid)
4607 {
4608 	struct task_struct *task;
4609 
4610 	rcu_read_lock();
4611 	if (!vpid)
4612 		task = current;
4613 	else
4614 		task = find_task_by_vpid(vpid);
4615 	if (task)
4616 		get_task_struct(task);
4617 	rcu_read_unlock();
4618 
4619 	if (!task)
4620 		return ERR_PTR(-ESRCH);
4621 
4622 	return task;
4623 }
4624 
4625 /*
4626  * Returns a matching context with refcount and pincount.
4627  */
4628 static struct perf_event_context *
4629 find_get_context(struct pmu *pmu, struct task_struct *task,
4630 		struct perf_event *event)
4631 {
4632 	struct perf_event_context *ctx, *clone_ctx = NULL;
4633 	struct perf_cpu_context *cpuctx;
4634 	void *task_ctx_data = NULL;
4635 	unsigned long flags;
4636 	int ctxn, err;
4637 	int cpu = event->cpu;
4638 
4639 	if (!task) {
4640 		/* Must be root to operate on a CPU event: */
4641 		err = perf_allow_cpu(&event->attr);
4642 		if (err)
4643 			return ERR_PTR(err);
4644 
4645 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4646 		ctx = &cpuctx->ctx;
4647 		get_ctx(ctx);
4648 		raw_spin_lock_irqsave(&ctx->lock, flags);
4649 		++ctx->pin_count;
4650 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651 
4652 		return ctx;
4653 	}
4654 
4655 	err = -EINVAL;
4656 	ctxn = pmu->task_ctx_nr;
4657 	if (ctxn < 0)
4658 		goto errout;
4659 
4660 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4661 		task_ctx_data = alloc_task_ctx_data(pmu);
4662 		if (!task_ctx_data) {
4663 			err = -ENOMEM;
4664 			goto errout;
4665 		}
4666 	}
4667 
4668 retry:
4669 	ctx = perf_lock_task_context(task, ctxn, &flags);
4670 	if (ctx) {
4671 		clone_ctx = unclone_ctx(ctx);
4672 		++ctx->pin_count;
4673 
4674 		if (task_ctx_data && !ctx->task_ctx_data) {
4675 			ctx->task_ctx_data = task_ctx_data;
4676 			task_ctx_data = NULL;
4677 		}
4678 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679 
4680 		if (clone_ctx)
4681 			put_ctx(clone_ctx);
4682 	} else {
4683 		ctx = alloc_perf_context(pmu, task);
4684 		err = -ENOMEM;
4685 		if (!ctx)
4686 			goto errout;
4687 
4688 		if (task_ctx_data) {
4689 			ctx->task_ctx_data = task_ctx_data;
4690 			task_ctx_data = NULL;
4691 		}
4692 
4693 		err = 0;
4694 		mutex_lock(&task->perf_event_mutex);
4695 		/*
4696 		 * If it has already passed perf_event_exit_task().
4697 		 * we must see PF_EXITING, it takes this mutex too.
4698 		 */
4699 		if (task->flags & PF_EXITING)
4700 			err = -ESRCH;
4701 		else if (task->perf_event_ctxp[ctxn])
4702 			err = -EAGAIN;
4703 		else {
4704 			get_ctx(ctx);
4705 			++ctx->pin_count;
4706 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4707 		}
4708 		mutex_unlock(&task->perf_event_mutex);
4709 
4710 		if (unlikely(err)) {
4711 			put_ctx(ctx);
4712 
4713 			if (err == -EAGAIN)
4714 				goto retry;
4715 			goto errout;
4716 		}
4717 	}
4718 
4719 	free_task_ctx_data(pmu, task_ctx_data);
4720 	return ctx;
4721 
4722 errout:
4723 	free_task_ctx_data(pmu, task_ctx_data);
4724 	return ERR_PTR(err);
4725 }
4726 
4727 static void perf_event_free_filter(struct perf_event *event);
4728 
4729 static void free_event_rcu(struct rcu_head *head)
4730 {
4731 	struct perf_event *event;
4732 
4733 	event = container_of(head, struct perf_event, rcu_head);
4734 	if (event->ns)
4735 		put_pid_ns(event->ns);
4736 	perf_event_free_filter(event);
4737 	kmem_cache_free(perf_event_cache, event);
4738 }
4739 
4740 static void ring_buffer_attach(struct perf_event *event,
4741 			       struct perf_buffer *rb);
4742 
4743 static void detach_sb_event(struct perf_event *event)
4744 {
4745 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4746 
4747 	raw_spin_lock(&pel->lock);
4748 	list_del_rcu(&event->sb_list);
4749 	raw_spin_unlock(&pel->lock);
4750 }
4751 
4752 static bool is_sb_event(struct perf_event *event)
4753 {
4754 	struct perf_event_attr *attr = &event->attr;
4755 
4756 	if (event->parent)
4757 		return false;
4758 
4759 	if (event->attach_state & PERF_ATTACH_TASK)
4760 		return false;
4761 
4762 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4763 	    attr->comm || attr->comm_exec ||
4764 	    attr->task || attr->ksymbol ||
4765 	    attr->context_switch || attr->text_poke ||
4766 	    attr->bpf_event)
4767 		return true;
4768 	return false;
4769 }
4770 
4771 static void unaccount_pmu_sb_event(struct perf_event *event)
4772 {
4773 	if (is_sb_event(event))
4774 		detach_sb_event(event);
4775 }
4776 
4777 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4778 {
4779 	if (event->parent)
4780 		return;
4781 
4782 	if (is_cgroup_event(event))
4783 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4784 }
4785 
4786 #ifdef CONFIG_NO_HZ_FULL
4787 static DEFINE_SPINLOCK(nr_freq_lock);
4788 #endif
4789 
4790 static void unaccount_freq_event_nohz(void)
4791 {
4792 #ifdef CONFIG_NO_HZ_FULL
4793 	spin_lock(&nr_freq_lock);
4794 	if (atomic_dec_and_test(&nr_freq_events))
4795 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4796 	spin_unlock(&nr_freq_lock);
4797 #endif
4798 }
4799 
4800 static void unaccount_freq_event(void)
4801 {
4802 	if (tick_nohz_full_enabled())
4803 		unaccount_freq_event_nohz();
4804 	else
4805 		atomic_dec(&nr_freq_events);
4806 }
4807 
4808 static void unaccount_event(struct perf_event *event)
4809 {
4810 	bool dec = false;
4811 
4812 	if (event->parent)
4813 		return;
4814 
4815 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4816 		dec = true;
4817 	if (event->attr.mmap || event->attr.mmap_data)
4818 		atomic_dec(&nr_mmap_events);
4819 	if (event->attr.build_id)
4820 		atomic_dec(&nr_build_id_events);
4821 	if (event->attr.comm)
4822 		atomic_dec(&nr_comm_events);
4823 	if (event->attr.namespaces)
4824 		atomic_dec(&nr_namespaces_events);
4825 	if (event->attr.cgroup)
4826 		atomic_dec(&nr_cgroup_events);
4827 	if (event->attr.task)
4828 		atomic_dec(&nr_task_events);
4829 	if (event->attr.freq)
4830 		unaccount_freq_event();
4831 	if (event->attr.context_switch) {
4832 		dec = true;
4833 		atomic_dec(&nr_switch_events);
4834 	}
4835 	if (is_cgroup_event(event))
4836 		dec = true;
4837 	if (has_branch_stack(event))
4838 		dec = true;
4839 	if (event->attr.ksymbol)
4840 		atomic_dec(&nr_ksymbol_events);
4841 	if (event->attr.bpf_event)
4842 		atomic_dec(&nr_bpf_events);
4843 	if (event->attr.text_poke)
4844 		atomic_dec(&nr_text_poke_events);
4845 
4846 	if (dec) {
4847 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4848 			schedule_delayed_work(&perf_sched_work, HZ);
4849 	}
4850 
4851 	unaccount_event_cpu(event, event->cpu);
4852 
4853 	unaccount_pmu_sb_event(event);
4854 }
4855 
4856 static void perf_sched_delayed(struct work_struct *work)
4857 {
4858 	mutex_lock(&perf_sched_mutex);
4859 	if (atomic_dec_and_test(&perf_sched_count))
4860 		static_branch_disable(&perf_sched_events);
4861 	mutex_unlock(&perf_sched_mutex);
4862 }
4863 
4864 /*
4865  * The following implement mutual exclusion of events on "exclusive" pmus
4866  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4867  * at a time, so we disallow creating events that might conflict, namely:
4868  *
4869  *  1) cpu-wide events in the presence of per-task events,
4870  *  2) per-task events in the presence of cpu-wide events,
4871  *  3) two matching events on the same context.
4872  *
4873  * The former two cases are handled in the allocation path (perf_event_alloc(),
4874  * _free_event()), the latter -- before the first perf_install_in_context().
4875  */
4876 static int exclusive_event_init(struct perf_event *event)
4877 {
4878 	struct pmu *pmu = event->pmu;
4879 
4880 	if (!is_exclusive_pmu(pmu))
4881 		return 0;
4882 
4883 	/*
4884 	 * Prevent co-existence of per-task and cpu-wide events on the
4885 	 * same exclusive pmu.
4886 	 *
4887 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4888 	 * events on this "exclusive" pmu, positive means there are
4889 	 * per-task events.
4890 	 *
4891 	 * Since this is called in perf_event_alloc() path, event::ctx
4892 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4893 	 * to mean "per-task event", because unlike other attach states it
4894 	 * never gets cleared.
4895 	 */
4896 	if (event->attach_state & PERF_ATTACH_TASK) {
4897 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4898 			return -EBUSY;
4899 	} else {
4900 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4901 			return -EBUSY;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 static void exclusive_event_destroy(struct perf_event *event)
4908 {
4909 	struct pmu *pmu = event->pmu;
4910 
4911 	if (!is_exclusive_pmu(pmu))
4912 		return;
4913 
4914 	/* see comment in exclusive_event_init() */
4915 	if (event->attach_state & PERF_ATTACH_TASK)
4916 		atomic_dec(&pmu->exclusive_cnt);
4917 	else
4918 		atomic_inc(&pmu->exclusive_cnt);
4919 }
4920 
4921 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4922 {
4923 	if ((e1->pmu == e2->pmu) &&
4924 	    (e1->cpu == e2->cpu ||
4925 	     e1->cpu == -1 ||
4926 	     e2->cpu == -1))
4927 		return true;
4928 	return false;
4929 }
4930 
4931 static bool exclusive_event_installable(struct perf_event *event,
4932 					struct perf_event_context *ctx)
4933 {
4934 	struct perf_event *iter_event;
4935 	struct pmu *pmu = event->pmu;
4936 
4937 	lockdep_assert_held(&ctx->mutex);
4938 
4939 	if (!is_exclusive_pmu(pmu))
4940 		return true;
4941 
4942 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4943 		if (exclusive_event_match(iter_event, event))
4944 			return false;
4945 	}
4946 
4947 	return true;
4948 }
4949 
4950 static void perf_addr_filters_splice(struct perf_event *event,
4951 				       struct list_head *head);
4952 
4953 static void _free_event(struct perf_event *event)
4954 {
4955 	irq_work_sync(&event->pending);
4956 
4957 	unaccount_event(event);
4958 
4959 	security_perf_event_free(event);
4960 
4961 	if (event->rb) {
4962 		/*
4963 		 * Can happen when we close an event with re-directed output.
4964 		 *
4965 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4966 		 * over us; possibly making our ring_buffer_put() the last.
4967 		 */
4968 		mutex_lock(&event->mmap_mutex);
4969 		ring_buffer_attach(event, NULL);
4970 		mutex_unlock(&event->mmap_mutex);
4971 	}
4972 
4973 	if (is_cgroup_event(event))
4974 		perf_detach_cgroup(event);
4975 
4976 	if (!event->parent) {
4977 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4978 			put_callchain_buffers();
4979 	}
4980 
4981 	perf_event_free_bpf_prog(event);
4982 	perf_addr_filters_splice(event, NULL);
4983 	kfree(event->addr_filter_ranges);
4984 
4985 	if (event->destroy)
4986 		event->destroy(event);
4987 
4988 	/*
4989 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4990 	 * hw.target.
4991 	 */
4992 	if (event->hw.target)
4993 		put_task_struct(event->hw.target);
4994 
4995 	/*
4996 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4997 	 * all task references must be cleaned up.
4998 	 */
4999 	if (event->ctx)
5000 		put_ctx(event->ctx);
5001 
5002 	exclusive_event_destroy(event);
5003 	module_put(event->pmu->module);
5004 
5005 	call_rcu(&event->rcu_head, free_event_rcu);
5006 }
5007 
5008 /*
5009  * Used to free events which have a known refcount of 1, such as in error paths
5010  * where the event isn't exposed yet and inherited events.
5011  */
5012 static void free_event(struct perf_event *event)
5013 {
5014 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5015 				"unexpected event refcount: %ld; ptr=%p\n",
5016 				atomic_long_read(&event->refcount), event)) {
5017 		/* leak to avoid use-after-free */
5018 		return;
5019 	}
5020 
5021 	_free_event(event);
5022 }
5023 
5024 /*
5025  * Remove user event from the owner task.
5026  */
5027 static void perf_remove_from_owner(struct perf_event *event)
5028 {
5029 	struct task_struct *owner;
5030 
5031 	rcu_read_lock();
5032 	/*
5033 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5034 	 * observe !owner it means the list deletion is complete and we can
5035 	 * indeed free this event, otherwise we need to serialize on
5036 	 * owner->perf_event_mutex.
5037 	 */
5038 	owner = READ_ONCE(event->owner);
5039 	if (owner) {
5040 		/*
5041 		 * Since delayed_put_task_struct() also drops the last
5042 		 * task reference we can safely take a new reference
5043 		 * while holding the rcu_read_lock().
5044 		 */
5045 		get_task_struct(owner);
5046 	}
5047 	rcu_read_unlock();
5048 
5049 	if (owner) {
5050 		/*
5051 		 * If we're here through perf_event_exit_task() we're already
5052 		 * holding ctx->mutex which would be an inversion wrt. the
5053 		 * normal lock order.
5054 		 *
5055 		 * However we can safely take this lock because its the child
5056 		 * ctx->mutex.
5057 		 */
5058 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5059 
5060 		/*
5061 		 * We have to re-check the event->owner field, if it is cleared
5062 		 * we raced with perf_event_exit_task(), acquiring the mutex
5063 		 * ensured they're done, and we can proceed with freeing the
5064 		 * event.
5065 		 */
5066 		if (event->owner) {
5067 			list_del_init(&event->owner_entry);
5068 			smp_store_release(&event->owner, NULL);
5069 		}
5070 		mutex_unlock(&owner->perf_event_mutex);
5071 		put_task_struct(owner);
5072 	}
5073 }
5074 
5075 static void put_event(struct perf_event *event)
5076 {
5077 	if (!atomic_long_dec_and_test(&event->refcount))
5078 		return;
5079 
5080 	_free_event(event);
5081 }
5082 
5083 /*
5084  * Kill an event dead; while event:refcount will preserve the event
5085  * object, it will not preserve its functionality. Once the last 'user'
5086  * gives up the object, we'll destroy the thing.
5087  */
5088 int perf_event_release_kernel(struct perf_event *event)
5089 {
5090 	struct perf_event_context *ctx = event->ctx;
5091 	struct perf_event *child, *tmp;
5092 	LIST_HEAD(free_list);
5093 
5094 	/*
5095 	 * If we got here through err_file: fput(event_file); we will not have
5096 	 * attached to a context yet.
5097 	 */
5098 	if (!ctx) {
5099 		WARN_ON_ONCE(event->attach_state &
5100 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5101 		goto no_ctx;
5102 	}
5103 
5104 	if (!is_kernel_event(event))
5105 		perf_remove_from_owner(event);
5106 
5107 	ctx = perf_event_ctx_lock(event);
5108 	WARN_ON_ONCE(ctx->parent_ctx);
5109 	perf_remove_from_context(event, DETACH_GROUP);
5110 
5111 	raw_spin_lock_irq(&ctx->lock);
5112 	/*
5113 	 * Mark this event as STATE_DEAD, there is no external reference to it
5114 	 * anymore.
5115 	 *
5116 	 * Anybody acquiring event->child_mutex after the below loop _must_
5117 	 * also see this, most importantly inherit_event() which will avoid
5118 	 * placing more children on the list.
5119 	 *
5120 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5121 	 * child events.
5122 	 */
5123 	event->state = PERF_EVENT_STATE_DEAD;
5124 	raw_spin_unlock_irq(&ctx->lock);
5125 
5126 	perf_event_ctx_unlock(event, ctx);
5127 
5128 again:
5129 	mutex_lock(&event->child_mutex);
5130 	list_for_each_entry(child, &event->child_list, child_list) {
5131 
5132 		/*
5133 		 * Cannot change, child events are not migrated, see the
5134 		 * comment with perf_event_ctx_lock_nested().
5135 		 */
5136 		ctx = READ_ONCE(child->ctx);
5137 		/*
5138 		 * Since child_mutex nests inside ctx::mutex, we must jump
5139 		 * through hoops. We start by grabbing a reference on the ctx.
5140 		 *
5141 		 * Since the event cannot get freed while we hold the
5142 		 * child_mutex, the context must also exist and have a !0
5143 		 * reference count.
5144 		 */
5145 		get_ctx(ctx);
5146 
5147 		/*
5148 		 * Now that we have a ctx ref, we can drop child_mutex, and
5149 		 * acquire ctx::mutex without fear of it going away. Then we
5150 		 * can re-acquire child_mutex.
5151 		 */
5152 		mutex_unlock(&event->child_mutex);
5153 		mutex_lock(&ctx->mutex);
5154 		mutex_lock(&event->child_mutex);
5155 
5156 		/*
5157 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5158 		 * state, if child is still the first entry, it didn't get freed
5159 		 * and we can continue doing so.
5160 		 */
5161 		tmp = list_first_entry_or_null(&event->child_list,
5162 					       struct perf_event, child_list);
5163 		if (tmp == child) {
5164 			perf_remove_from_context(child, DETACH_GROUP);
5165 			list_move(&child->child_list, &free_list);
5166 			/*
5167 			 * This matches the refcount bump in inherit_event();
5168 			 * this can't be the last reference.
5169 			 */
5170 			put_event(event);
5171 		}
5172 
5173 		mutex_unlock(&event->child_mutex);
5174 		mutex_unlock(&ctx->mutex);
5175 		put_ctx(ctx);
5176 		goto again;
5177 	}
5178 	mutex_unlock(&event->child_mutex);
5179 
5180 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5181 		void *var = &child->ctx->refcount;
5182 
5183 		list_del(&child->child_list);
5184 		free_event(child);
5185 
5186 		/*
5187 		 * Wake any perf_event_free_task() waiting for this event to be
5188 		 * freed.
5189 		 */
5190 		smp_mb(); /* pairs with wait_var_event() */
5191 		wake_up_var(var);
5192 	}
5193 
5194 no_ctx:
5195 	put_event(event); /* Must be the 'last' reference */
5196 	return 0;
5197 }
5198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5199 
5200 /*
5201  * Called when the last reference to the file is gone.
5202  */
5203 static int perf_release(struct inode *inode, struct file *file)
5204 {
5205 	perf_event_release_kernel(file->private_data);
5206 	return 0;
5207 }
5208 
5209 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5210 {
5211 	struct perf_event *child;
5212 	u64 total = 0;
5213 
5214 	*enabled = 0;
5215 	*running = 0;
5216 
5217 	mutex_lock(&event->child_mutex);
5218 
5219 	(void)perf_event_read(event, false);
5220 	total += perf_event_count(event);
5221 
5222 	*enabled += event->total_time_enabled +
5223 			atomic64_read(&event->child_total_time_enabled);
5224 	*running += event->total_time_running +
5225 			atomic64_read(&event->child_total_time_running);
5226 
5227 	list_for_each_entry(child, &event->child_list, child_list) {
5228 		(void)perf_event_read(child, false);
5229 		total += perf_event_count(child);
5230 		*enabled += child->total_time_enabled;
5231 		*running += child->total_time_running;
5232 	}
5233 	mutex_unlock(&event->child_mutex);
5234 
5235 	return total;
5236 }
5237 
5238 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5239 {
5240 	struct perf_event_context *ctx;
5241 	u64 count;
5242 
5243 	ctx = perf_event_ctx_lock(event);
5244 	count = __perf_event_read_value(event, enabled, running);
5245 	perf_event_ctx_unlock(event, ctx);
5246 
5247 	return count;
5248 }
5249 EXPORT_SYMBOL_GPL(perf_event_read_value);
5250 
5251 static int __perf_read_group_add(struct perf_event *leader,
5252 					u64 read_format, u64 *values)
5253 {
5254 	struct perf_event_context *ctx = leader->ctx;
5255 	struct perf_event *sub;
5256 	unsigned long flags;
5257 	int n = 1; /* skip @nr */
5258 	int ret;
5259 
5260 	ret = perf_event_read(leader, true);
5261 	if (ret)
5262 		return ret;
5263 
5264 	raw_spin_lock_irqsave(&ctx->lock, flags);
5265 
5266 	/*
5267 	 * Since we co-schedule groups, {enabled,running} times of siblings
5268 	 * will be identical to those of the leader, so we only publish one
5269 	 * set.
5270 	 */
5271 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5272 		values[n++] += leader->total_time_enabled +
5273 			atomic64_read(&leader->child_total_time_enabled);
5274 	}
5275 
5276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5277 		values[n++] += leader->total_time_running +
5278 			atomic64_read(&leader->child_total_time_running);
5279 	}
5280 
5281 	/*
5282 	 * Write {count,id} tuples for every sibling.
5283 	 */
5284 	values[n++] += perf_event_count(leader);
5285 	if (read_format & PERF_FORMAT_ID)
5286 		values[n++] = primary_event_id(leader);
5287 
5288 	for_each_sibling_event(sub, leader) {
5289 		values[n++] += perf_event_count(sub);
5290 		if (read_format & PERF_FORMAT_ID)
5291 			values[n++] = primary_event_id(sub);
5292 	}
5293 
5294 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5295 	return 0;
5296 }
5297 
5298 static int perf_read_group(struct perf_event *event,
5299 				   u64 read_format, char __user *buf)
5300 {
5301 	struct perf_event *leader = event->group_leader, *child;
5302 	struct perf_event_context *ctx = leader->ctx;
5303 	int ret;
5304 	u64 *values;
5305 
5306 	lockdep_assert_held(&ctx->mutex);
5307 
5308 	values = kzalloc(event->read_size, GFP_KERNEL);
5309 	if (!values)
5310 		return -ENOMEM;
5311 
5312 	values[0] = 1 + leader->nr_siblings;
5313 
5314 	/*
5315 	 * By locking the child_mutex of the leader we effectively
5316 	 * lock the child list of all siblings.. XXX explain how.
5317 	 */
5318 	mutex_lock(&leader->child_mutex);
5319 
5320 	ret = __perf_read_group_add(leader, read_format, values);
5321 	if (ret)
5322 		goto unlock;
5323 
5324 	list_for_each_entry(child, &leader->child_list, child_list) {
5325 		ret = __perf_read_group_add(child, read_format, values);
5326 		if (ret)
5327 			goto unlock;
5328 	}
5329 
5330 	mutex_unlock(&leader->child_mutex);
5331 
5332 	ret = event->read_size;
5333 	if (copy_to_user(buf, values, event->read_size))
5334 		ret = -EFAULT;
5335 	goto out;
5336 
5337 unlock:
5338 	mutex_unlock(&leader->child_mutex);
5339 out:
5340 	kfree(values);
5341 	return ret;
5342 }
5343 
5344 static int perf_read_one(struct perf_event *event,
5345 				 u64 read_format, char __user *buf)
5346 {
5347 	u64 enabled, running;
5348 	u64 values[4];
5349 	int n = 0;
5350 
5351 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5352 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5353 		values[n++] = enabled;
5354 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5355 		values[n++] = running;
5356 	if (read_format & PERF_FORMAT_ID)
5357 		values[n++] = primary_event_id(event);
5358 
5359 	if (copy_to_user(buf, values, n * sizeof(u64)))
5360 		return -EFAULT;
5361 
5362 	return n * sizeof(u64);
5363 }
5364 
5365 static bool is_event_hup(struct perf_event *event)
5366 {
5367 	bool no_children;
5368 
5369 	if (event->state > PERF_EVENT_STATE_EXIT)
5370 		return false;
5371 
5372 	mutex_lock(&event->child_mutex);
5373 	no_children = list_empty(&event->child_list);
5374 	mutex_unlock(&event->child_mutex);
5375 	return no_children;
5376 }
5377 
5378 /*
5379  * Read the performance event - simple non blocking version for now
5380  */
5381 static ssize_t
5382 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5383 {
5384 	u64 read_format = event->attr.read_format;
5385 	int ret;
5386 
5387 	/*
5388 	 * Return end-of-file for a read on an event that is in
5389 	 * error state (i.e. because it was pinned but it couldn't be
5390 	 * scheduled on to the CPU at some point).
5391 	 */
5392 	if (event->state == PERF_EVENT_STATE_ERROR)
5393 		return 0;
5394 
5395 	if (count < event->read_size)
5396 		return -ENOSPC;
5397 
5398 	WARN_ON_ONCE(event->ctx->parent_ctx);
5399 	if (read_format & PERF_FORMAT_GROUP)
5400 		ret = perf_read_group(event, read_format, buf);
5401 	else
5402 		ret = perf_read_one(event, read_format, buf);
5403 
5404 	return ret;
5405 }
5406 
5407 static ssize_t
5408 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5409 {
5410 	struct perf_event *event = file->private_data;
5411 	struct perf_event_context *ctx;
5412 	int ret;
5413 
5414 	ret = security_perf_event_read(event);
5415 	if (ret)
5416 		return ret;
5417 
5418 	ctx = perf_event_ctx_lock(event);
5419 	ret = __perf_read(event, buf, count);
5420 	perf_event_ctx_unlock(event, ctx);
5421 
5422 	return ret;
5423 }
5424 
5425 static __poll_t perf_poll(struct file *file, poll_table *wait)
5426 {
5427 	struct perf_event *event = file->private_data;
5428 	struct perf_buffer *rb;
5429 	__poll_t events = EPOLLHUP;
5430 
5431 	poll_wait(file, &event->waitq, wait);
5432 
5433 	if (is_event_hup(event))
5434 		return events;
5435 
5436 	/*
5437 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5438 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5439 	 */
5440 	mutex_lock(&event->mmap_mutex);
5441 	rb = event->rb;
5442 	if (rb)
5443 		events = atomic_xchg(&rb->poll, 0);
5444 	mutex_unlock(&event->mmap_mutex);
5445 	return events;
5446 }
5447 
5448 static void _perf_event_reset(struct perf_event *event)
5449 {
5450 	(void)perf_event_read(event, false);
5451 	local64_set(&event->count, 0);
5452 	perf_event_update_userpage(event);
5453 }
5454 
5455 /* Assume it's not an event with inherit set. */
5456 u64 perf_event_pause(struct perf_event *event, bool reset)
5457 {
5458 	struct perf_event_context *ctx;
5459 	u64 count;
5460 
5461 	ctx = perf_event_ctx_lock(event);
5462 	WARN_ON_ONCE(event->attr.inherit);
5463 	_perf_event_disable(event);
5464 	count = local64_read(&event->count);
5465 	if (reset)
5466 		local64_set(&event->count, 0);
5467 	perf_event_ctx_unlock(event, ctx);
5468 
5469 	return count;
5470 }
5471 EXPORT_SYMBOL_GPL(perf_event_pause);
5472 
5473 /*
5474  * Holding the top-level event's child_mutex means that any
5475  * descendant process that has inherited this event will block
5476  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5477  * task existence requirements of perf_event_enable/disable.
5478  */
5479 static void perf_event_for_each_child(struct perf_event *event,
5480 					void (*func)(struct perf_event *))
5481 {
5482 	struct perf_event *child;
5483 
5484 	WARN_ON_ONCE(event->ctx->parent_ctx);
5485 
5486 	mutex_lock(&event->child_mutex);
5487 	func(event);
5488 	list_for_each_entry(child, &event->child_list, child_list)
5489 		func(child);
5490 	mutex_unlock(&event->child_mutex);
5491 }
5492 
5493 static void perf_event_for_each(struct perf_event *event,
5494 				  void (*func)(struct perf_event *))
5495 {
5496 	struct perf_event_context *ctx = event->ctx;
5497 	struct perf_event *sibling;
5498 
5499 	lockdep_assert_held(&ctx->mutex);
5500 
5501 	event = event->group_leader;
5502 
5503 	perf_event_for_each_child(event, func);
5504 	for_each_sibling_event(sibling, event)
5505 		perf_event_for_each_child(sibling, func);
5506 }
5507 
5508 static void __perf_event_period(struct perf_event *event,
5509 				struct perf_cpu_context *cpuctx,
5510 				struct perf_event_context *ctx,
5511 				void *info)
5512 {
5513 	u64 value = *((u64 *)info);
5514 	bool active;
5515 
5516 	if (event->attr.freq) {
5517 		event->attr.sample_freq = value;
5518 	} else {
5519 		event->attr.sample_period = value;
5520 		event->hw.sample_period = value;
5521 	}
5522 
5523 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5524 	if (active) {
5525 		perf_pmu_disable(ctx->pmu);
5526 		/*
5527 		 * We could be throttled; unthrottle now to avoid the tick
5528 		 * trying to unthrottle while we already re-started the event.
5529 		 */
5530 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5531 			event->hw.interrupts = 0;
5532 			perf_log_throttle(event, 1);
5533 		}
5534 		event->pmu->stop(event, PERF_EF_UPDATE);
5535 	}
5536 
5537 	local64_set(&event->hw.period_left, 0);
5538 
5539 	if (active) {
5540 		event->pmu->start(event, PERF_EF_RELOAD);
5541 		perf_pmu_enable(ctx->pmu);
5542 	}
5543 }
5544 
5545 static int perf_event_check_period(struct perf_event *event, u64 value)
5546 {
5547 	return event->pmu->check_period(event, value);
5548 }
5549 
5550 static int _perf_event_period(struct perf_event *event, u64 value)
5551 {
5552 	if (!is_sampling_event(event))
5553 		return -EINVAL;
5554 
5555 	if (!value)
5556 		return -EINVAL;
5557 
5558 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5559 		return -EINVAL;
5560 
5561 	if (perf_event_check_period(event, value))
5562 		return -EINVAL;
5563 
5564 	if (!event->attr.freq && (value & (1ULL << 63)))
5565 		return -EINVAL;
5566 
5567 	event_function_call(event, __perf_event_period, &value);
5568 
5569 	return 0;
5570 }
5571 
5572 int perf_event_period(struct perf_event *event, u64 value)
5573 {
5574 	struct perf_event_context *ctx;
5575 	int ret;
5576 
5577 	ctx = perf_event_ctx_lock(event);
5578 	ret = _perf_event_period(event, value);
5579 	perf_event_ctx_unlock(event, ctx);
5580 
5581 	return ret;
5582 }
5583 EXPORT_SYMBOL_GPL(perf_event_period);
5584 
5585 static const struct file_operations perf_fops;
5586 
5587 static inline int perf_fget_light(int fd, struct fd *p)
5588 {
5589 	struct fd f = fdget(fd);
5590 	if (!f.file)
5591 		return -EBADF;
5592 
5593 	if (f.file->f_op != &perf_fops) {
5594 		fdput(f);
5595 		return -EBADF;
5596 	}
5597 	*p = f;
5598 	return 0;
5599 }
5600 
5601 static int perf_event_set_output(struct perf_event *event,
5602 				 struct perf_event *output_event);
5603 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5604 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5605 			  struct perf_event_attr *attr);
5606 
5607 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5608 {
5609 	void (*func)(struct perf_event *);
5610 	u32 flags = arg;
5611 
5612 	switch (cmd) {
5613 	case PERF_EVENT_IOC_ENABLE:
5614 		func = _perf_event_enable;
5615 		break;
5616 	case PERF_EVENT_IOC_DISABLE:
5617 		func = _perf_event_disable;
5618 		break;
5619 	case PERF_EVENT_IOC_RESET:
5620 		func = _perf_event_reset;
5621 		break;
5622 
5623 	case PERF_EVENT_IOC_REFRESH:
5624 		return _perf_event_refresh(event, arg);
5625 
5626 	case PERF_EVENT_IOC_PERIOD:
5627 	{
5628 		u64 value;
5629 
5630 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5631 			return -EFAULT;
5632 
5633 		return _perf_event_period(event, value);
5634 	}
5635 	case PERF_EVENT_IOC_ID:
5636 	{
5637 		u64 id = primary_event_id(event);
5638 
5639 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5640 			return -EFAULT;
5641 		return 0;
5642 	}
5643 
5644 	case PERF_EVENT_IOC_SET_OUTPUT:
5645 	{
5646 		int ret;
5647 		if (arg != -1) {
5648 			struct perf_event *output_event;
5649 			struct fd output;
5650 			ret = perf_fget_light(arg, &output);
5651 			if (ret)
5652 				return ret;
5653 			output_event = output.file->private_data;
5654 			ret = perf_event_set_output(event, output_event);
5655 			fdput(output);
5656 		} else {
5657 			ret = perf_event_set_output(event, NULL);
5658 		}
5659 		return ret;
5660 	}
5661 
5662 	case PERF_EVENT_IOC_SET_FILTER:
5663 		return perf_event_set_filter(event, (void __user *)arg);
5664 
5665 	case PERF_EVENT_IOC_SET_BPF:
5666 	{
5667 		struct bpf_prog *prog;
5668 		int err;
5669 
5670 		prog = bpf_prog_get(arg);
5671 		if (IS_ERR(prog))
5672 			return PTR_ERR(prog);
5673 
5674 		err = perf_event_set_bpf_prog(event, prog, 0);
5675 		if (err) {
5676 			bpf_prog_put(prog);
5677 			return err;
5678 		}
5679 
5680 		return 0;
5681 	}
5682 
5683 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5684 		struct perf_buffer *rb;
5685 
5686 		rcu_read_lock();
5687 		rb = rcu_dereference(event->rb);
5688 		if (!rb || !rb->nr_pages) {
5689 			rcu_read_unlock();
5690 			return -EINVAL;
5691 		}
5692 		rb_toggle_paused(rb, !!arg);
5693 		rcu_read_unlock();
5694 		return 0;
5695 	}
5696 
5697 	case PERF_EVENT_IOC_QUERY_BPF:
5698 		return perf_event_query_prog_array(event, (void __user *)arg);
5699 
5700 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5701 		struct perf_event_attr new_attr;
5702 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5703 					 &new_attr);
5704 
5705 		if (err)
5706 			return err;
5707 
5708 		return perf_event_modify_attr(event,  &new_attr);
5709 	}
5710 	default:
5711 		return -ENOTTY;
5712 	}
5713 
5714 	if (flags & PERF_IOC_FLAG_GROUP)
5715 		perf_event_for_each(event, func);
5716 	else
5717 		perf_event_for_each_child(event, func);
5718 
5719 	return 0;
5720 }
5721 
5722 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5723 {
5724 	struct perf_event *event = file->private_data;
5725 	struct perf_event_context *ctx;
5726 	long ret;
5727 
5728 	/* Treat ioctl like writes as it is likely a mutating operation. */
5729 	ret = security_perf_event_write(event);
5730 	if (ret)
5731 		return ret;
5732 
5733 	ctx = perf_event_ctx_lock(event);
5734 	ret = _perf_ioctl(event, cmd, arg);
5735 	perf_event_ctx_unlock(event, ctx);
5736 
5737 	return ret;
5738 }
5739 
5740 #ifdef CONFIG_COMPAT
5741 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5742 				unsigned long arg)
5743 {
5744 	switch (_IOC_NR(cmd)) {
5745 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5746 	case _IOC_NR(PERF_EVENT_IOC_ID):
5747 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5748 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5749 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5750 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5751 			cmd &= ~IOCSIZE_MASK;
5752 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5753 		}
5754 		break;
5755 	}
5756 	return perf_ioctl(file, cmd, arg);
5757 }
5758 #else
5759 # define perf_compat_ioctl NULL
5760 #endif
5761 
5762 int perf_event_task_enable(void)
5763 {
5764 	struct perf_event_context *ctx;
5765 	struct perf_event *event;
5766 
5767 	mutex_lock(&current->perf_event_mutex);
5768 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5769 		ctx = perf_event_ctx_lock(event);
5770 		perf_event_for_each_child(event, _perf_event_enable);
5771 		perf_event_ctx_unlock(event, ctx);
5772 	}
5773 	mutex_unlock(&current->perf_event_mutex);
5774 
5775 	return 0;
5776 }
5777 
5778 int perf_event_task_disable(void)
5779 {
5780 	struct perf_event_context *ctx;
5781 	struct perf_event *event;
5782 
5783 	mutex_lock(&current->perf_event_mutex);
5784 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5785 		ctx = perf_event_ctx_lock(event);
5786 		perf_event_for_each_child(event, _perf_event_disable);
5787 		perf_event_ctx_unlock(event, ctx);
5788 	}
5789 	mutex_unlock(&current->perf_event_mutex);
5790 
5791 	return 0;
5792 }
5793 
5794 static int perf_event_index(struct perf_event *event)
5795 {
5796 	if (event->hw.state & PERF_HES_STOPPED)
5797 		return 0;
5798 
5799 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5800 		return 0;
5801 
5802 	return event->pmu->event_idx(event);
5803 }
5804 
5805 static void calc_timer_values(struct perf_event *event,
5806 				u64 *now,
5807 				u64 *enabled,
5808 				u64 *running)
5809 {
5810 	u64 ctx_time;
5811 
5812 	*now = perf_clock();
5813 	ctx_time = event->shadow_ctx_time + *now;
5814 	__perf_update_times(event, ctx_time, enabled, running);
5815 }
5816 
5817 static void perf_event_init_userpage(struct perf_event *event)
5818 {
5819 	struct perf_event_mmap_page *userpg;
5820 	struct perf_buffer *rb;
5821 
5822 	rcu_read_lock();
5823 	rb = rcu_dereference(event->rb);
5824 	if (!rb)
5825 		goto unlock;
5826 
5827 	userpg = rb->user_page;
5828 
5829 	/* Allow new userspace to detect that bit 0 is deprecated */
5830 	userpg->cap_bit0_is_deprecated = 1;
5831 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5832 	userpg->data_offset = PAGE_SIZE;
5833 	userpg->data_size = perf_data_size(rb);
5834 
5835 unlock:
5836 	rcu_read_unlock();
5837 }
5838 
5839 void __weak arch_perf_update_userpage(
5840 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5841 {
5842 }
5843 
5844 /*
5845  * Callers need to ensure there can be no nesting of this function, otherwise
5846  * the seqlock logic goes bad. We can not serialize this because the arch
5847  * code calls this from NMI context.
5848  */
5849 void perf_event_update_userpage(struct perf_event *event)
5850 {
5851 	struct perf_event_mmap_page *userpg;
5852 	struct perf_buffer *rb;
5853 	u64 enabled, running, now;
5854 
5855 	rcu_read_lock();
5856 	rb = rcu_dereference(event->rb);
5857 	if (!rb)
5858 		goto unlock;
5859 
5860 	/*
5861 	 * compute total_time_enabled, total_time_running
5862 	 * based on snapshot values taken when the event
5863 	 * was last scheduled in.
5864 	 *
5865 	 * we cannot simply called update_context_time()
5866 	 * because of locking issue as we can be called in
5867 	 * NMI context
5868 	 */
5869 	calc_timer_values(event, &now, &enabled, &running);
5870 
5871 	userpg = rb->user_page;
5872 	/*
5873 	 * Disable preemption to guarantee consistent time stamps are stored to
5874 	 * the user page.
5875 	 */
5876 	preempt_disable();
5877 	++userpg->lock;
5878 	barrier();
5879 	userpg->index = perf_event_index(event);
5880 	userpg->offset = perf_event_count(event);
5881 	if (userpg->index)
5882 		userpg->offset -= local64_read(&event->hw.prev_count);
5883 
5884 	userpg->time_enabled = enabled +
5885 			atomic64_read(&event->child_total_time_enabled);
5886 
5887 	userpg->time_running = running +
5888 			atomic64_read(&event->child_total_time_running);
5889 
5890 	arch_perf_update_userpage(event, userpg, now);
5891 
5892 	barrier();
5893 	++userpg->lock;
5894 	preempt_enable();
5895 unlock:
5896 	rcu_read_unlock();
5897 }
5898 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5899 
5900 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5901 {
5902 	struct perf_event *event = vmf->vma->vm_file->private_data;
5903 	struct perf_buffer *rb;
5904 	vm_fault_t ret = VM_FAULT_SIGBUS;
5905 
5906 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5907 		if (vmf->pgoff == 0)
5908 			ret = 0;
5909 		return ret;
5910 	}
5911 
5912 	rcu_read_lock();
5913 	rb = rcu_dereference(event->rb);
5914 	if (!rb)
5915 		goto unlock;
5916 
5917 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5918 		goto unlock;
5919 
5920 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5921 	if (!vmf->page)
5922 		goto unlock;
5923 
5924 	get_page(vmf->page);
5925 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5926 	vmf->page->index   = vmf->pgoff;
5927 
5928 	ret = 0;
5929 unlock:
5930 	rcu_read_unlock();
5931 
5932 	return ret;
5933 }
5934 
5935 static void ring_buffer_attach(struct perf_event *event,
5936 			       struct perf_buffer *rb)
5937 {
5938 	struct perf_buffer *old_rb = NULL;
5939 	unsigned long flags;
5940 
5941 	if (event->rb) {
5942 		/*
5943 		 * Should be impossible, we set this when removing
5944 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5945 		 */
5946 		WARN_ON_ONCE(event->rcu_pending);
5947 
5948 		old_rb = event->rb;
5949 		spin_lock_irqsave(&old_rb->event_lock, flags);
5950 		list_del_rcu(&event->rb_entry);
5951 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5952 
5953 		event->rcu_batches = get_state_synchronize_rcu();
5954 		event->rcu_pending = 1;
5955 	}
5956 
5957 	if (rb) {
5958 		if (event->rcu_pending) {
5959 			cond_synchronize_rcu(event->rcu_batches);
5960 			event->rcu_pending = 0;
5961 		}
5962 
5963 		spin_lock_irqsave(&rb->event_lock, flags);
5964 		list_add_rcu(&event->rb_entry, &rb->event_list);
5965 		spin_unlock_irqrestore(&rb->event_lock, flags);
5966 	}
5967 
5968 	/*
5969 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5970 	 * before swizzling the event::rb pointer; if it's getting
5971 	 * unmapped, its aux_mmap_count will be 0 and it won't
5972 	 * restart. See the comment in __perf_pmu_output_stop().
5973 	 *
5974 	 * Data will inevitably be lost when set_output is done in
5975 	 * mid-air, but then again, whoever does it like this is
5976 	 * not in for the data anyway.
5977 	 */
5978 	if (has_aux(event))
5979 		perf_event_stop(event, 0);
5980 
5981 	rcu_assign_pointer(event->rb, rb);
5982 
5983 	if (old_rb) {
5984 		ring_buffer_put(old_rb);
5985 		/*
5986 		 * Since we detached before setting the new rb, so that we
5987 		 * could attach the new rb, we could have missed a wakeup.
5988 		 * Provide it now.
5989 		 */
5990 		wake_up_all(&event->waitq);
5991 	}
5992 }
5993 
5994 static void ring_buffer_wakeup(struct perf_event *event)
5995 {
5996 	struct perf_buffer *rb;
5997 
5998 	rcu_read_lock();
5999 	rb = rcu_dereference(event->rb);
6000 	if (rb) {
6001 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6002 			wake_up_all(&event->waitq);
6003 	}
6004 	rcu_read_unlock();
6005 }
6006 
6007 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6008 {
6009 	struct perf_buffer *rb;
6010 
6011 	rcu_read_lock();
6012 	rb = rcu_dereference(event->rb);
6013 	if (rb) {
6014 		if (!refcount_inc_not_zero(&rb->refcount))
6015 			rb = NULL;
6016 	}
6017 	rcu_read_unlock();
6018 
6019 	return rb;
6020 }
6021 
6022 void ring_buffer_put(struct perf_buffer *rb)
6023 {
6024 	if (!refcount_dec_and_test(&rb->refcount))
6025 		return;
6026 
6027 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6028 
6029 	call_rcu(&rb->rcu_head, rb_free_rcu);
6030 }
6031 
6032 static void perf_mmap_open(struct vm_area_struct *vma)
6033 {
6034 	struct perf_event *event = vma->vm_file->private_data;
6035 
6036 	atomic_inc(&event->mmap_count);
6037 	atomic_inc(&event->rb->mmap_count);
6038 
6039 	if (vma->vm_pgoff)
6040 		atomic_inc(&event->rb->aux_mmap_count);
6041 
6042 	if (event->pmu->event_mapped)
6043 		event->pmu->event_mapped(event, vma->vm_mm);
6044 }
6045 
6046 static void perf_pmu_output_stop(struct perf_event *event);
6047 
6048 /*
6049  * A buffer can be mmap()ed multiple times; either directly through the same
6050  * event, or through other events by use of perf_event_set_output().
6051  *
6052  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6053  * the buffer here, where we still have a VM context. This means we need
6054  * to detach all events redirecting to us.
6055  */
6056 static void perf_mmap_close(struct vm_area_struct *vma)
6057 {
6058 	struct perf_event *event = vma->vm_file->private_data;
6059 	struct perf_buffer *rb = ring_buffer_get(event);
6060 	struct user_struct *mmap_user = rb->mmap_user;
6061 	int mmap_locked = rb->mmap_locked;
6062 	unsigned long size = perf_data_size(rb);
6063 	bool detach_rest = false;
6064 
6065 	if (event->pmu->event_unmapped)
6066 		event->pmu->event_unmapped(event, vma->vm_mm);
6067 
6068 	/*
6069 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6070 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6071 	 * serialize with perf_mmap here.
6072 	 */
6073 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6074 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6075 		/*
6076 		 * Stop all AUX events that are writing to this buffer,
6077 		 * so that we can free its AUX pages and corresponding PMU
6078 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6079 		 * they won't start any more (see perf_aux_output_begin()).
6080 		 */
6081 		perf_pmu_output_stop(event);
6082 
6083 		/* now it's safe to free the pages */
6084 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6085 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6086 
6087 		/* this has to be the last one */
6088 		rb_free_aux(rb);
6089 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6090 
6091 		mutex_unlock(&event->mmap_mutex);
6092 	}
6093 
6094 	if (atomic_dec_and_test(&rb->mmap_count))
6095 		detach_rest = true;
6096 
6097 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6098 		goto out_put;
6099 
6100 	ring_buffer_attach(event, NULL);
6101 	mutex_unlock(&event->mmap_mutex);
6102 
6103 	/* If there's still other mmap()s of this buffer, we're done. */
6104 	if (!detach_rest)
6105 		goto out_put;
6106 
6107 	/*
6108 	 * No other mmap()s, detach from all other events that might redirect
6109 	 * into the now unreachable buffer. Somewhat complicated by the
6110 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6111 	 */
6112 again:
6113 	rcu_read_lock();
6114 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6115 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6116 			/*
6117 			 * This event is en-route to free_event() which will
6118 			 * detach it and remove it from the list.
6119 			 */
6120 			continue;
6121 		}
6122 		rcu_read_unlock();
6123 
6124 		mutex_lock(&event->mmap_mutex);
6125 		/*
6126 		 * Check we didn't race with perf_event_set_output() which can
6127 		 * swizzle the rb from under us while we were waiting to
6128 		 * acquire mmap_mutex.
6129 		 *
6130 		 * If we find a different rb; ignore this event, a next
6131 		 * iteration will no longer find it on the list. We have to
6132 		 * still restart the iteration to make sure we're not now
6133 		 * iterating the wrong list.
6134 		 */
6135 		if (event->rb == rb)
6136 			ring_buffer_attach(event, NULL);
6137 
6138 		mutex_unlock(&event->mmap_mutex);
6139 		put_event(event);
6140 
6141 		/*
6142 		 * Restart the iteration; either we're on the wrong list or
6143 		 * destroyed its integrity by doing a deletion.
6144 		 */
6145 		goto again;
6146 	}
6147 	rcu_read_unlock();
6148 
6149 	/*
6150 	 * It could be there's still a few 0-ref events on the list; they'll
6151 	 * get cleaned up by free_event() -- they'll also still have their
6152 	 * ref on the rb and will free it whenever they are done with it.
6153 	 *
6154 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6155 	 * undo the VM accounting.
6156 	 */
6157 
6158 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6159 			&mmap_user->locked_vm);
6160 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6161 	free_uid(mmap_user);
6162 
6163 out_put:
6164 	ring_buffer_put(rb); /* could be last */
6165 }
6166 
6167 static const struct vm_operations_struct perf_mmap_vmops = {
6168 	.open		= perf_mmap_open,
6169 	.close		= perf_mmap_close, /* non mergeable */
6170 	.fault		= perf_mmap_fault,
6171 	.page_mkwrite	= perf_mmap_fault,
6172 };
6173 
6174 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6175 {
6176 	struct perf_event *event = file->private_data;
6177 	unsigned long user_locked, user_lock_limit;
6178 	struct user_struct *user = current_user();
6179 	struct perf_buffer *rb = NULL;
6180 	unsigned long locked, lock_limit;
6181 	unsigned long vma_size;
6182 	unsigned long nr_pages;
6183 	long user_extra = 0, extra = 0;
6184 	int ret = 0, flags = 0;
6185 
6186 	/*
6187 	 * Don't allow mmap() of inherited per-task counters. This would
6188 	 * create a performance issue due to all children writing to the
6189 	 * same rb.
6190 	 */
6191 	if (event->cpu == -1 && event->attr.inherit)
6192 		return -EINVAL;
6193 
6194 	if (!(vma->vm_flags & VM_SHARED))
6195 		return -EINVAL;
6196 
6197 	ret = security_perf_event_read(event);
6198 	if (ret)
6199 		return ret;
6200 
6201 	vma_size = vma->vm_end - vma->vm_start;
6202 
6203 	if (vma->vm_pgoff == 0) {
6204 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6205 	} else {
6206 		/*
6207 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6208 		 * mapped, all subsequent mappings should have the same size
6209 		 * and offset. Must be above the normal perf buffer.
6210 		 */
6211 		u64 aux_offset, aux_size;
6212 
6213 		if (!event->rb)
6214 			return -EINVAL;
6215 
6216 		nr_pages = vma_size / PAGE_SIZE;
6217 
6218 		mutex_lock(&event->mmap_mutex);
6219 		ret = -EINVAL;
6220 
6221 		rb = event->rb;
6222 		if (!rb)
6223 			goto aux_unlock;
6224 
6225 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6226 		aux_size = READ_ONCE(rb->user_page->aux_size);
6227 
6228 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6229 			goto aux_unlock;
6230 
6231 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6232 			goto aux_unlock;
6233 
6234 		/* already mapped with a different offset */
6235 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6236 			goto aux_unlock;
6237 
6238 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6239 			goto aux_unlock;
6240 
6241 		/* already mapped with a different size */
6242 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6243 			goto aux_unlock;
6244 
6245 		if (!is_power_of_2(nr_pages))
6246 			goto aux_unlock;
6247 
6248 		if (!atomic_inc_not_zero(&rb->mmap_count))
6249 			goto aux_unlock;
6250 
6251 		if (rb_has_aux(rb)) {
6252 			atomic_inc(&rb->aux_mmap_count);
6253 			ret = 0;
6254 			goto unlock;
6255 		}
6256 
6257 		atomic_set(&rb->aux_mmap_count, 1);
6258 		user_extra = nr_pages;
6259 
6260 		goto accounting;
6261 	}
6262 
6263 	/*
6264 	 * If we have rb pages ensure they're a power-of-two number, so we
6265 	 * can do bitmasks instead of modulo.
6266 	 */
6267 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6268 		return -EINVAL;
6269 
6270 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6271 		return -EINVAL;
6272 
6273 	WARN_ON_ONCE(event->ctx->parent_ctx);
6274 again:
6275 	mutex_lock(&event->mmap_mutex);
6276 	if (event->rb) {
6277 		if (event->rb->nr_pages != nr_pages) {
6278 			ret = -EINVAL;
6279 			goto unlock;
6280 		}
6281 
6282 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6283 			/*
6284 			 * Raced against perf_mmap_close() through
6285 			 * perf_event_set_output(). Try again, hope for better
6286 			 * luck.
6287 			 */
6288 			mutex_unlock(&event->mmap_mutex);
6289 			goto again;
6290 		}
6291 
6292 		goto unlock;
6293 	}
6294 
6295 	user_extra = nr_pages + 1;
6296 
6297 accounting:
6298 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6299 
6300 	/*
6301 	 * Increase the limit linearly with more CPUs:
6302 	 */
6303 	user_lock_limit *= num_online_cpus();
6304 
6305 	user_locked = atomic_long_read(&user->locked_vm);
6306 
6307 	/*
6308 	 * sysctl_perf_event_mlock may have changed, so that
6309 	 *     user->locked_vm > user_lock_limit
6310 	 */
6311 	if (user_locked > user_lock_limit)
6312 		user_locked = user_lock_limit;
6313 	user_locked += user_extra;
6314 
6315 	if (user_locked > user_lock_limit) {
6316 		/*
6317 		 * charge locked_vm until it hits user_lock_limit;
6318 		 * charge the rest from pinned_vm
6319 		 */
6320 		extra = user_locked - user_lock_limit;
6321 		user_extra -= extra;
6322 	}
6323 
6324 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6325 	lock_limit >>= PAGE_SHIFT;
6326 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6327 
6328 	if ((locked > lock_limit) && perf_is_paranoid() &&
6329 		!capable(CAP_IPC_LOCK)) {
6330 		ret = -EPERM;
6331 		goto unlock;
6332 	}
6333 
6334 	WARN_ON(!rb && event->rb);
6335 
6336 	if (vma->vm_flags & VM_WRITE)
6337 		flags |= RING_BUFFER_WRITABLE;
6338 
6339 	if (!rb) {
6340 		rb = rb_alloc(nr_pages,
6341 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6342 			      event->cpu, flags);
6343 
6344 		if (!rb) {
6345 			ret = -ENOMEM;
6346 			goto unlock;
6347 		}
6348 
6349 		atomic_set(&rb->mmap_count, 1);
6350 		rb->mmap_user = get_current_user();
6351 		rb->mmap_locked = extra;
6352 
6353 		ring_buffer_attach(event, rb);
6354 
6355 		perf_event_update_time(event);
6356 		perf_set_shadow_time(event, event->ctx);
6357 		perf_event_init_userpage(event);
6358 		perf_event_update_userpage(event);
6359 	} else {
6360 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6361 				   event->attr.aux_watermark, flags);
6362 		if (!ret)
6363 			rb->aux_mmap_locked = extra;
6364 	}
6365 
6366 unlock:
6367 	if (!ret) {
6368 		atomic_long_add(user_extra, &user->locked_vm);
6369 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6370 
6371 		atomic_inc(&event->mmap_count);
6372 	} else if (rb) {
6373 		atomic_dec(&rb->mmap_count);
6374 	}
6375 aux_unlock:
6376 	mutex_unlock(&event->mmap_mutex);
6377 
6378 	/*
6379 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6380 	 * vma.
6381 	 */
6382 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6383 	vma->vm_ops = &perf_mmap_vmops;
6384 
6385 	if (event->pmu->event_mapped)
6386 		event->pmu->event_mapped(event, vma->vm_mm);
6387 
6388 	return ret;
6389 }
6390 
6391 static int perf_fasync(int fd, struct file *filp, int on)
6392 {
6393 	struct inode *inode = file_inode(filp);
6394 	struct perf_event *event = filp->private_data;
6395 	int retval;
6396 
6397 	inode_lock(inode);
6398 	retval = fasync_helper(fd, filp, on, &event->fasync);
6399 	inode_unlock(inode);
6400 
6401 	if (retval < 0)
6402 		return retval;
6403 
6404 	return 0;
6405 }
6406 
6407 static const struct file_operations perf_fops = {
6408 	.llseek			= no_llseek,
6409 	.release		= perf_release,
6410 	.read			= perf_read,
6411 	.poll			= perf_poll,
6412 	.unlocked_ioctl		= perf_ioctl,
6413 	.compat_ioctl		= perf_compat_ioctl,
6414 	.mmap			= perf_mmap,
6415 	.fasync			= perf_fasync,
6416 };
6417 
6418 /*
6419  * Perf event wakeup
6420  *
6421  * If there's data, ensure we set the poll() state and publish everything
6422  * to user-space before waking everybody up.
6423  */
6424 
6425 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6426 {
6427 	/* only the parent has fasync state */
6428 	if (event->parent)
6429 		event = event->parent;
6430 	return &event->fasync;
6431 }
6432 
6433 void perf_event_wakeup(struct perf_event *event)
6434 {
6435 	ring_buffer_wakeup(event);
6436 
6437 	if (event->pending_kill) {
6438 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6439 		event->pending_kill = 0;
6440 	}
6441 }
6442 
6443 static void perf_sigtrap(struct perf_event *event)
6444 {
6445 	/*
6446 	 * We'd expect this to only occur if the irq_work is delayed and either
6447 	 * ctx->task or current has changed in the meantime. This can be the
6448 	 * case on architectures that do not implement arch_irq_work_raise().
6449 	 */
6450 	if (WARN_ON_ONCE(event->ctx->task != current))
6451 		return;
6452 
6453 	/*
6454 	 * perf_pending_event() can race with the task exiting.
6455 	 */
6456 	if (current->flags & PF_EXITING)
6457 		return;
6458 
6459 	force_sig_perf((void __user *)event->pending_addr,
6460 		       event->attr.type, event->attr.sig_data);
6461 }
6462 
6463 static void perf_pending_event_disable(struct perf_event *event)
6464 {
6465 	int cpu = READ_ONCE(event->pending_disable);
6466 
6467 	if (cpu < 0)
6468 		return;
6469 
6470 	if (cpu == smp_processor_id()) {
6471 		WRITE_ONCE(event->pending_disable, -1);
6472 
6473 		if (event->attr.sigtrap) {
6474 			perf_sigtrap(event);
6475 			atomic_set_release(&event->event_limit, 1); /* rearm event */
6476 			return;
6477 		}
6478 
6479 		perf_event_disable_local(event);
6480 		return;
6481 	}
6482 
6483 	/*
6484 	 *  CPU-A			CPU-B
6485 	 *
6486 	 *  perf_event_disable_inatomic()
6487 	 *    @pending_disable = CPU-A;
6488 	 *    irq_work_queue();
6489 	 *
6490 	 *  sched-out
6491 	 *    @pending_disable = -1;
6492 	 *
6493 	 *				sched-in
6494 	 *				perf_event_disable_inatomic()
6495 	 *				  @pending_disable = CPU-B;
6496 	 *				  irq_work_queue(); // FAILS
6497 	 *
6498 	 *  irq_work_run()
6499 	 *    perf_pending_event()
6500 	 *
6501 	 * But the event runs on CPU-B and wants disabling there.
6502 	 */
6503 	irq_work_queue_on(&event->pending, cpu);
6504 }
6505 
6506 static void perf_pending_event(struct irq_work *entry)
6507 {
6508 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6509 	int rctx;
6510 
6511 	rctx = perf_swevent_get_recursion_context();
6512 	/*
6513 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6514 	 * and we won't recurse 'further'.
6515 	 */
6516 
6517 	perf_pending_event_disable(event);
6518 
6519 	if (event->pending_wakeup) {
6520 		event->pending_wakeup = 0;
6521 		perf_event_wakeup(event);
6522 	}
6523 
6524 	if (rctx >= 0)
6525 		perf_swevent_put_recursion_context(rctx);
6526 }
6527 
6528 #ifdef CONFIG_GUEST_PERF_EVENTS
6529 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6530 
6531 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6532 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6533 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6534 
6535 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6536 {
6537 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6538 		return;
6539 
6540 	rcu_assign_pointer(perf_guest_cbs, cbs);
6541 	static_call_update(__perf_guest_state, cbs->state);
6542 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6543 
6544 	/* Implementing ->handle_intel_pt_intr is optional. */
6545 	if (cbs->handle_intel_pt_intr)
6546 		static_call_update(__perf_guest_handle_intel_pt_intr,
6547 				   cbs->handle_intel_pt_intr);
6548 }
6549 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6550 
6551 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6552 {
6553 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6554 		return;
6555 
6556 	rcu_assign_pointer(perf_guest_cbs, NULL);
6557 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6558 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6559 	static_call_update(__perf_guest_handle_intel_pt_intr,
6560 			   (void *)&__static_call_return0);
6561 	synchronize_rcu();
6562 }
6563 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6564 #endif
6565 
6566 static void
6567 perf_output_sample_regs(struct perf_output_handle *handle,
6568 			struct pt_regs *regs, u64 mask)
6569 {
6570 	int bit;
6571 	DECLARE_BITMAP(_mask, 64);
6572 
6573 	bitmap_from_u64(_mask, mask);
6574 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6575 		u64 val;
6576 
6577 		val = perf_reg_value(regs, bit);
6578 		perf_output_put(handle, val);
6579 	}
6580 }
6581 
6582 static void perf_sample_regs_user(struct perf_regs *regs_user,
6583 				  struct pt_regs *regs)
6584 {
6585 	if (user_mode(regs)) {
6586 		regs_user->abi = perf_reg_abi(current);
6587 		regs_user->regs = regs;
6588 	} else if (!(current->flags & PF_KTHREAD)) {
6589 		perf_get_regs_user(regs_user, regs);
6590 	} else {
6591 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6592 		regs_user->regs = NULL;
6593 	}
6594 }
6595 
6596 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6597 				  struct pt_regs *regs)
6598 {
6599 	regs_intr->regs = regs;
6600 	regs_intr->abi  = perf_reg_abi(current);
6601 }
6602 
6603 
6604 /*
6605  * Get remaining task size from user stack pointer.
6606  *
6607  * It'd be better to take stack vma map and limit this more
6608  * precisely, but there's no way to get it safely under interrupt,
6609  * so using TASK_SIZE as limit.
6610  */
6611 static u64 perf_ustack_task_size(struct pt_regs *regs)
6612 {
6613 	unsigned long addr = perf_user_stack_pointer(regs);
6614 
6615 	if (!addr || addr >= TASK_SIZE)
6616 		return 0;
6617 
6618 	return TASK_SIZE - addr;
6619 }
6620 
6621 static u16
6622 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6623 			struct pt_regs *regs)
6624 {
6625 	u64 task_size;
6626 
6627 	/* No regs, no stack pointer, no dump. */
6628 	if (!regs)
6629 		return 0;
6630 
6631 	/*
6632 	 * Check if we fit in with the requested stack size into the:
6633 	 * - TASK_SIZE
6634 	 *   If we don't, we limit the size to the TASK_SIZE.
6635 	 *
6636 	 * - remaining sample size
6637 	 *   If we don't, we customize the stack size to
6638 	 *   fit in to the remaining sample size.
6639 	 */
6640 
6641 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6642 	stack_size = min(stack_size, (u16) task_size);
6643 
6644 	/* Current header size plus static size and dynamic size. */
6645 	header_size += 2 * sizeof(u64);
6646 
6647 	/* Do we fit in with the current stack dump size? */
6648 	if ((u16) (header_size + stack_size) < header_size) {
6649 		/*
6650 		 * If we overflow the maximum size for the sample,
6651 		 * we customize the stack dump size to fit in.
6652 		 */
6653 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6654 		stack_size = round_up(stack_size, sizeof(u64));
6655 	}
6656 
6657 	return stack_size;
6658 }
6659 
6660 static void
6661 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6662 			  struct pt_regs *regs)
6663 {
6664 	/* Case of a kernel thread, nothing to dump */
6665 	if (!regs) {
6666 		u64 size = 0;
6667 		perf_output_put(handle, size);
6668 	} else {
6669 		unsigned long sp;
6670 		unsigned int rem;
6671 		u64 dyn_size;
6672 		mm_segment_t fs;
6673 
6674 		/*
6675 		 * We dump:
6676 		 * static size
6677 		 *   - the size requested by user or the best one we can fit
6678 		 *     in to the sample max size
6679 		 * data
6680 		 *   - user stack dump data
6681 		 * dynamic size
6682 		 *   - the actual dumped size
6683 		 */
6684 
6685 		/* Static size. */
6686 		perf_output_put(handle, dump_size);
6687 
6688 		/* Data. */
6689 		sp = perf_user_stack_pointer(regs);
6690 		fs = force_uaccess_begin();
6691 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6692 		force_uaccess_end(fs);
6693 		dyn_size = dump_size - rem;
6694 
6695 		perf_output_skip(handle, rem);
6696 
6697 		/* Dynamic size. */
6698 		perf_output_put(handle, dyn_size);
6699 	}
6700 }
6701 
6702 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6703 					  struct perf_sample_data *data,
6704 					  size_t size)
6705 {
6706 	struct perf_event *sampler = event->aux_event;
6707 	struct perf_buffer *rb;
6708 
6709 	data->aux_size = 0;
6710 
6711 	if (!sampler)
6712 		goto out;
6713 
6714 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6715 		goto out;
6716 
6717 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6718 		goto out;
6719 
6720 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6721 	if (!rb)
6722 		goto out;
6723 
6724 	/*
6725 	 * If this is an NMI hit inside sampling code, don't take
6726 	 * the sample. See also perf_aux_sample_output().
6727 	 */
6728 	if (READ_ONCE(rb->aux_in_sampling)) {
6729 		data->aux_size = 0;
6730 	} else {
6731 		size = min_t(size_t, size, perf_aux_size(rb));
6732 		data->aux_size = ALIGN(size, sizeof(u64));
6733 	}
6734 	ring_buffer_put(rb);
6735 
6736 out:
6737 	return data->aux_size;
6738 }
6739 
6740 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6741                                  struct perf_event *event,
6742                                  struct perf_output_handle *handle,
6743                                  unsigned long size)
6744 {
6745 	unsigned long flags;
6746 	long ret;
6747 
6748 	/*
6749 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6750 	 * paths. If we start calling them in NMI context, they may race with
6751 	 * the IRQ ones, that is, for example, re-starting an event that's just
6752 	 * been stopped, which is why we're using a separate callback that
6753 	 * doesn't change the event state.
6754 	 *
6755 	 * IRQs need to be disabled to prevent IPIs from racing with us.
6756 	 */
6757 	local_irq_save(flags);
6758 	/*
6759 	 * Guard against NMI hits inside the critical section;
6760 	 * see also perf_prepare_sample_aux().
6761 	 */
6762 	WRITE_ONCE(rb->aux_in_sampling, 1);
6763 	barrier();
6764 
6765 	ret = event->pmu->snapshot_aux(event, handle, size);
6766 
6767 	barrier();
6768 	WRITE_ONCE(rb->aux_in_sampling, 0);
6769 	local_irq_restore(flags);
6770 
6771 	return ret;
6772 }
6773 
6774 static void perf_aux_sample_output(struct perf_event *event,
6775 				   struct perf_output_handle *handle,
6776 				   struct perf_sample_data *data)
6777 {
6778 	struct perf_event *sampler = event->aux_event;
6779 	struct perf_buffer *rb;
6780 	unsigned long pad;
6781 	long size;
6782 
6783 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
6784 		return;
6785 
6786 	rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6787 	if (!rb)
6788 		return;
6789 
6790 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6791 
6792 	/*
6793 	 * An error here means that perf_output_copy() failed (returned a
6794 	 * non-zero surplus that it didn't copy), which in its current
6795 	 * enlightened implementation is not possible. If that changes, we'd
6796 	 * like to know.
6797 	 */
6798 	if (WARN_ON_ONCE(size < 0))
6799 		goto out_put;
6800 
6801 	/*
6802 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6803 	 * perf_prepare_sample_aux(), so should not be more than that.
6804 	 */
6805 	pad = data->aux_size - size;
6806 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
6807 		pad = 8;
6808 
6809 	if (pad) {
6810 		u64 zero = 0;
6811 		perf_output_copy(handle, &zero, pad);
6812 	}
6813 
6814 out_put:
6815 	ring_buffer_put(rb);
6816 }
6817 
6818 static void __perf_event_header__init_id(struct perf_event_header *header,
6819 					 struct perf_sample_data *data,
6820 					 struct perf_event *event)
6821 {
6822 	u64 sample_type = event->attr.sample_type;
6823 
6824 	data->type = sample_type;
6825 	header->size += event->id_header_size;
6826 
6827 	if (sample_type & PERF_SAMPLE_TID) {
6828 		/* namespace issues */
6829 		data->tid_entry.pid = perf_event_pid(event, current);
6830 		data->tid_entry.tid = perf_event_tid(event, current);
6831 	}
6832 
6833 	if (sample_type & PERF_SAMPLE_TIME)
6834 		data->time = perf_event_clock(event);
6835 
6836 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6837 		data->id = primary_event_id(event);
6838 
6839 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6840 		data->stream_id = event->id;
6841 
6842 	if (sample_type & PERF_SAMPLE_CPU) {
6843 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6844 		data->cpu_entry.reserved = 0;
6845 	}
6846 }
6847 
6848 void perf_event_header__init_id(struct perf_event_header *header,
6849 				struct perf_sample_data *data,
6850 				struct perf_event *event)
6851 {
6852 	if (event->attr.sample_id_all)
6853 		__perf_event_header__init_id(header, data, event);
6854 }
6855 
6856 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6857 					   struct perf_sample_data *data)
6858 {
6859 	u64 sample_type = data->type;
6860 
6861 	if (sample_type & PERF_SAMPLE_TID)
6862 		perf_output_put(handle, data->tid_entry);
6863 
6864 	if (sample_type & PERF_SAMPLE_TIME)
6865 		perf_output_put(handle, data->time);
6866 
6867 	if (sample_type & PERF_SAMPLE_ID)
6868 		perf_output_put(handle, data->id);
6869 
6870 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6871 		perf_output_put(handle, data->stream_id);
6872 
6873 	if (sample_type & PERF_SAMPLE_CPU)
6874 		perf_output_put(handle, data->cpu_entry);
6875 
6876 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6877 		perf_output_put(handle, data->id);
6878 }
6879 
6880 void perf_event__output_id_sample(struct perf_event *event,
6881 				  struct perf_output_handle *handle,
6882 				  struct perf_sample_data *sample)
6883 {
6884 	if (event->attr.sample_id_all)
6885 		__perf_event__output_id_sample(handle, sample);
6886 }
6887 
6888 static void perf_output_read_one(struct perf_output_handle *handle,
6889 				 struct perf_event *event,
6890 				 u64 enabled, u64 running)
6891 {
6892 	u64 read_format = event->attr.read_format;
6893 	u64 values[4];
6894 	int n = 0;
6895 
6896 	values[n++] = perf_event_count(event);
6897 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6898 		values[n++] = enabled +
6899 			atomic64_read(&event->child_total_time_enabled);
6900 	}
6901 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6902 		values[n++] = running +
6903 			atomic64_read(&event->child_total_time_running);
6904 	}
6905 	if (read_format & PERF_FORMAT_ID)
6906 		values[n++] = primary_event_id(event);
6907 
6908 	__output_copy(handle, values, n * sizeof(u64));
6909 }
6910 
6911 static void perf_output_read_group(struct perf_output_handle *handle,
6912 			    struct perf_event *event,
6913 			    u64 enabled, u64 running)
6914 {
6915 	struct perf_event *leader = event->group_leader, *sub;
6916 	u64 read_format = event->attr.read_format;
6917 	u64 values[5];
6918 	int n = 0;
6919 
6920 	values[n++] = 1 + leader->nr_siblings;
6921 
6922 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6923 		values[n++] = enabled;
6924 
6925 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6926 		values[n++] = running;
6927 
6928 	if ((leader != event) &&
6929 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6930 		leader->pmu->read(leader);
6931 
6932 	values[n++] = perf_event_count(leader);
6933 	if (read_format & PERF_FORMAT_ID)
6934 		values[n++] = primary_event_id(leader);
6935 
6936 	__output_copy(handle, values, n * sizeof(u64));
6937 
6938 	for_each_sibling_event(sub, leader) {
6939 		n = 0;
6940 
6941 		if ((sub != event) &&
6942 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6943 			sub->pmu->read(sub);
6944 
6945 		values[n++] = perf_event_count(sub);
6946 		if (read_format & PERF_FORMAT_ID)
6947 			values[n++] = primary_event_id(sub);
6948 
6949 		__output_copy(handle, values, n * sizeof(u64));
6950 	}
6951 }
6952 
6953 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6954 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6955 
6956 /*
6957  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6958  *
6959  * The problem is that its both hard and excessively expensive to iterate the
6960  * child list, not to mention that its impossible to IPI the children running
6961  * on another CPU, from interrupt/NMI context.
6962  */
6963 static void perf_output_read(struct perf_output_handle *handle,
6964 			     struct perf_event *event)
6965 {
6966 	u64 enabled = 0, running = 0, now;
6967 	u64 read_format = event->attr.read_format;
6968 
6969 	/*
6970 	 * compute total_time_enabled, total_time_running
6971 	 * based on snapshot values taken when the event
6972 	 * was last scheduled in.
6973 	 *
6974 	 * we cannot simply called update_context_time()
6975 	 * because of locking issue as we are called in
6976 	 * NMI context
6977 	 */
6978 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6979 		calc_timer_values(event, &now, &enabled, &running);
6980 
6981 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6982 		perf_output_read_group(handle, event, enabled, running);
6983 	else
6984 		perf_output_read_one(handle, event, enabled, running);
6985 }
6986 
6987 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6988 {
6989 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6990 }
6991 
6992 void perf_output_sample(struct perf_output_handle *handle,
6993 			struct perf_event_header *header,
6994 			struct perf_sample_data *data,
6995 			struct perf_event *event)
6996 {
6997 	u64 sample_type = data->type;
6998 
6999 	perf_output_put(handle, *header);
7000 
7001 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7002 		perf_output_put(handle, data->id);
7003 
7004 	if (sample_type & PERF_SAMPLE_IP)
7005 		perf_output_put(handle, data->ip);
7006 
7007 	if (sample_type & PERF_SAMPLE_TID)
7008 		perf_output_put(handle, data->tid_entry);
7009 
7010 	if (sample_type & PERF_SAMPLE_TIME)
7011 		perf_output_put(handle, data->time);
7012 
7013 	if (sample_type & PERF_SAMPLE_ADDR)
7014 		perf_output_put(handle, data->addr);
7015 
7016 	if (sample_type & PERF_SAMPLE_ID)
7017 		perf_output_put(handle, data->id);
7018 
7019 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7020 		perf_output_put(handle, data->stream_id);
7021 
7022 	if (sample_type & PERF_SAMPLE_CPU)
7023 		perf_output_put(handle, data->cpu_entry);
7024 
7025 	if (sample_type & PERF_SAMPLE_PERIOD)
7026 		perf_output_put(handle, data->period);
7027 
7028 	if (sample_type & PERF_SAMPLE_READ)
7029 		perf_output_read(handle, event);
7030 
7031 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7032 		int size = 1;
7033 
7034 		size += data->callchain->nr;
7035 		size *= sizeof(u64);
7036 		__output_copy(handle, data->callchain, size);
7037 	}
7038 
7039 	if (sample_type & PERF_SAMPLE_RAW) {
7040 		struct perf_raw_record *raw = data->raw;
7041 
7042 		if (raw) {
7043 			struct perf_raw_frag *frag = &raw->frag;
7044 
7045 			perf_output_put(handle, raw->size);
7046 			do {
7047 				if (frag->copy) {
7048 					__output_custom(handle, frag->copy,
7049 							frag->data, frag->size);
7050 				} else {
7051 					__output_copy(handle, frag->data,
7052 						      frag->size);
7053 				}
7054 				if (perf_raw_frag_last(frag))
7055 					break;
7056 				frag = frag->next;
7057 			} while (1);
7058 			if (frag->pad)
7059 				__output_skip(handle, NULL, frag->pad);
7060 		} else {
7061 			struct {
7062 				u32	size;
7063 				u32	data;
7064 			} raw = {
7065 				.size = sizeof(u32),
7066 				.data = 0,
7067 			};
7068 			perf_output_put(handle, raw);
7069 		}
7070 	}
7071 
7072 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7073 		if (data->br_stack) {
7074 			size_t size;
7075 
7076 			size = data->br_stack->nr
7077 			     * sizeof(struct perf_branch_entry);
7078 
7079 			perf_output_put(handle, data->br_stack->nr);
7080 			if (perf_sample_save_hw_index(event))
7081 				perf_output_put(handle, data->br_stack->hw_idx);
7082 			perf_output_copy(handle, data->br_stack->entries, size);
7083 		} else {
7084 			/*
7085 			 * we always store at least the value of nr
7086 			 */
7087 			u64 nr = 0;
7088 			perf_output_put(handle, nr);
7089 		}
7090 	}
7091 
7092 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7093 		u64 abi = data->regs_user.abi;
7094 
7095 		/*
7096 		 * If there are no regs to dump, notice it through
7097 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7098 		 */
7099 		perf_output_put(handle, abi);
7100 
7101 		if (abi) {
7102 			u64 mask = event->attr.sample_regs_user;
7103 			perf_output_sample_regs(handle,
7104 						data->regs_user.regs,
7105 						mask);
7106 		}
7107 	}
7108 
7109 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7110 		perf_output_sample_ustack(handle,
7111 					  data->stack_user_size,
7112 					  data->regs_user.regs);
7113 	}
7114 
7115 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7116 		perf_output_put(handle, data->weight.full);
7117 
7118 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7119 		perf_output_put(handle, data->data_src.val);
7120 
7121 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7122 		perf_output_put(handle, data->txn);
7123 
7124 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7125 		u64 abi = data->regs_intr.abi;
7126 		/*
7127 		 * If there are no regs to dump, notice it through
7128 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7129 		 */
7130 		perf_output_put(handle, abi);
7131 
7132 		if (abi) {
7133 			u64 mask = event->attr.sample_regs_intr;
7134 
7135 			perf_output_sample_regs(handle,
7136 						data->regs_intr.regs,
7137 						mask);
7138 		}
7139 	}
7140 
7141 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7142 		perf_output_put(handle, data->phys_addr);
7143 
7144 	if (sample_type & PERF_SAMPLE_CGROUP)
7145 		perf_output_put(handle, data->cgroup);
7146 
7147 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7148 		perf_output_put(handle, data->data_page_size);
7149 
7150 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7151 		perf_output_put(handle, data->code_page_size);
7152 
7153 	if (sample_type & PERF_SAMPLE_AUX) {
7154 		perf_output_put(handle, data->aux_size);
7155 
7156 		if (data->aux_size)
7157 			perf_aux_sample_output(event, handle, data);
7158 	}
7159 
7160 	if (!event->attr.watermark) {
7161 		int wakeup_events = event->attr.wakeup_events;
7162 
7163 		if (wakeup_events) {
7164 			struct perf_buffer *rb = handle->rb;
7165 			int events = local_inc_return(&rb->events);
7166 
7167 			if (events >= wakeup_events) {
7168 				local_sub(wakeup_events, &rb->events);
7169 				local_inc(&rb->wakeup);
7170 			}
7171 		}
7172 	}
7173 }
7174 
7175 static u64 perf_virt_to_phys(u64 virt)
7176 {
7177 	u64 phys_addr = 0;
7178 
7179 	if (!virt)
7180 		return 0;
7181 
7182 	if (virt >= TASK_SIZE) {
7183 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7184 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7185 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7186 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7187 	} else {
7188 		/*
7189 		 * Walking the pages tables for user address.
7190 		 * Interrupts are disabled, so it prevents any tear down
7191 		 * of the page tables.
7192 		 * Try IRQ-safe get_user_page_fast_only first.
7193 		 * If failed, leave phys_addr as 0.
7194 		 */
7195 		if (current->mm != NULL) {
7196 			struct page *p;
7197 
7198 			pagefault_disable();
7199 			if (get_user_page_fast_only(virt, 0, &p)) {
7200 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7201 				put_page(p);
7202 			}
7203 			pagefault_enable();
7204 		}
7205 	}
7206 
7207 	return phys_addr;
7208 }
7209 
7210 /*
7211  * Return the pagetable size of a given virtual address.
7212  */
7213 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7214 {
7215 	u64 size = 0;
7216 
7217 #ifdef CONFIG_HAVE_FAST_GUP
7218 	pgd_t *pgdp, pgd;
7219 	p4d_t *p4dp, p4d;
7220 	pud_t *pudp, pud;
7221 	pmd_t *pmdp, pmd;
7222 	pte_t *ptep, pte;
7223 
7224 	pgdp = pgd_offset(mm, addr);
7225 	pgd = READ_ONCE(*pgdp);
7226 	if (pgd_none(pgd))
7227 		return 0;
7228 
7229 	if (pgd_leaf(pgd))
7230 		return pgd_leaf_size(pgd);
7231 
7232 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7233 	p4d = READ_ONCE(*p4dp);
7234 	if (!p4d_present(p4d))
7235 		return 0;
7236 
7237 	if (p4d_leaf(p4d))
7238 		return p4d_leaf_size(p4d);
7239 
7240 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7241 	pud = READ_ONCE(*pudp);
7242 	if (!pud_present(pud))
7243 		return 0;
7244 
7245 	if (pud_leaf(pud))
7246 		return pud_leaf_size(pud);
7247 
7248 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7249 	pmd = READ_ONCE(*pmdp);
7250 	if (!pmd_present(pmd))
7251 		return 0;
7252 
7253 	if (pmd_leaf(pmd))
7254 		return pmd_leaf_size(pmd);
7255 
7256 	ptep = pte_offset_map(&pmd, addr);
7257 	pte = ptep_get_lockless(ptep);
7258 	if (pte_present(pte))
7259 		size = pte_leaf_size(pte);
7260 	pte_unmap(ptep);
7261 #endif /* CONFIG_HAVE_FAST_GUP */
7262 
7263 	return size;
7264 }
7265 
7266 static u64 perf_get_page_size(unsigned long addr)
7267 {
7268 	struct mm_struct *mm;
7269 	unsigned long flags;
7270 	u64 size;
7271 
7272 	if (!addr)
7273 		return 0;
7274 
7275 	/*
7276 	 * Software page-table walkers must disable IRQs,
7277 	 * which prevents any tear down of the page tables.
7278 	 */
7279 	local_irq_save(flags);
7280 
7281 	mm = current->mm;
7282 	if (!mm) {
7283 		/*
7284 		 * For kernel threads and the like, use init_mm so that
7285 		 * we can find kernel memory.
7286 		 */
7287 		mm = &init_mm;
7288 	}
7289 
7290 	size = perf_get_pgtable_size(mm, addr);
7291 
7292 	local_irq_restore(flags);
7293 
7294 	return size;
7295 }
7296 
7297 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7298 
7299 struct perf_callchain_entry *
7300 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7301 {
7302 	bool kernel = !event->attr.exclude_callchain_kernel;
7303 	bool user   = !event->attr.exclude_callchain_user;
7304 	/* Disallow cross-task user callchains. */
7305 	bool crosstask = event->ctx->task && event->ctx->task != current;
7306 	const u32 max_stack = event->attr.sample_max_stack;
7307 	struct perf_callchain_entry *callchain;
7308 
7309 	if (!kernel && !user)
7310 		return &__empty_callchain;
7311 
7312 	callchain = get_perf_callchain(regs, 0, kernel, user,
7313 				       max_stack, crosstask, true);
7314 	return callchain ?: &__empty_callchain;
7315 }
7316 
7317 void perf_prepare_sample(struct perf_event_header *header,
7318 			 struct perf_sample_data *data,
7319 			 struct perf_event *event,
7320 			 struct pt_regs *regs)
7321 {
7322 	u64 sample_type = event->attr.sample_type;
7323 
7324 	header->type = PERF_RECORD_SAMPLE;
7325 	header->size = sizeof(*header) + event->header_size;
7326 
7327 	header->misc = 0;
7328 	header->misc |= perf_misc_flags(regs);
7329 
7330 	__perf_event_header__init_id(header, data, event);
7331 
7332 	if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7333 		data->ip = perf_instruction_pointer(regs);
7334 
7335 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7336 		int size = 1;
7337 
7338 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7339 			data->callchain = perf_callchain(event, regs);
7340 
7341 		size += data->callchain->nr;
7342 
7343 		header->size += size * sizeof(u64);
7344 	}
7345 
7346 	if (sample_type & PERF_SAMPLE_RAW) {
7347 		struct perf_raw_record *raw = data->raw;
7348 		int size;
7349 
7350 		if (raw) {
7351 			struct perf_raw_frag *frag = &raw->frag;
7352 			u32 sum = 0;
7353 
7354 			do {
7355 				sum += frag->size;
7356 				if (perf_raw_frag_last(frag))
7357 					break;
7358 				frag = frag->next;
7359 			} while (1);
7360 
7361 			size = round_up(sum + sizeof(u32), sizeof(u64));
7362 			raw->size = size - sizeof(u32);
7363 			frag->pad = raw->size - sum;
7364 		} else {
7365 			size = sizeof(u64);
7366 		}
7367 
7368 		header->size += size;
7369 	}
7370 
7371 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7372 		int size = sizeof(u64); /* nr */
7373 		if (data->br_stack) {
7374 			if (perf_sample_save_hw_index(event))
7375 				size += sizeof(u64);
7376 
7377 			size += data->br_stack->nr
7378 			      * sizeof(struct perf_branch_entry);
7379 		}
7380 		header->size += size;
7381 	}
7382 
7383 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7384 		perf_sample_regs_user(&data->regs_user, regs);
7385 
7386 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7387 		/* regs dump ABI info */
7388 		int size = sizeof(u64);
7389 
7390 		if (data->regs_user.regs) {
7391 			u64 mask = event->attr.sample_regs_user;
7392 			size += hweight64(mask) * sizeof(u64);
7393 		}
7394 
7395 		header->size += size;
7396 	}
7397 
7398 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7399 		/*
7400 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7401 		 * processed as the last one or have additional check added
7402 		 * in case new sample type is added, because we could eat
7403 		 * up the rest of the sample size.
7404 		 */
7405 		u16 stack_size = event->attr.sample_stack_user;
7406 		u16 size = sizeof(u64);
7407 
7408 		stack_size = perf_sample_ustack_size(stack_size, header->size,
7409 						     data->regs_user.regs);
7410 
7411 		/*
7412 		 * If there is something to dump, add space for the dump
7413 		 * itself and for the field that tells the dynamic size,
7414 		 * which is how many have been actually dumped.
7415 		 */
7416 		if (stack_size)
7417 			size += sizeof(u64) + stack_size;
7418 
7419 		data->stack_user_size = stack_size;
7420 		header->size += size;
7421 	}
7422 
7423 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7424 		/* regs dump ABI info */
7425 		int size = sizeof(u64);
7426 
7427 		perf_sample_regs_intr(&data->regs_intr, regs);
7428 
7429 		if (data->regs_intr.regs) {
7430 			u64 mask = event->attr.sample_regs_intr;
7431 
7432 			size += hweight64(mask) * sizeof(u64);
7433 		}
7434 
7435 		header->size += size;
7436 	}
7437 
7438 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7439 		data->phys_addr = perf_virt_to_phys(data->addr);
7440 
7441 #ifdef CONFIG_CGROUP_PERF
7442 	if (sample_type & PERF_SAMPLE_CGROUP) {
7443 		struct cgroup *cgrp;
7444 
7445 		/* protected by RCU */
7446 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7447 		data->cgroup = cgroup_id(cgrp);
7448 	}
7449 #endif
7450 
7451 	/*
7452 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7453 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7454 	 * but the value will not dump to the userspace.
7455 	 */
7456 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7457 		data->data_page_size = perf_get_page_size(data->addr);
7458 
7459 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7460 		data->code_page_size = perf_get_page_size(data->ip);
7461 
7462 	if (sample_type & PERF_SAMPLE_AUX) {
7463 		u64 size;
7464 
7465 		header->size += sizeof(u64); /* size */
7466 
7467 		/*
7468 		 * Given the 16bit nature of header::size, an AUX sample can
7469 		 * easily overflow it, what with all the preceding sample bits.
7470 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7471 		 * per sample in total (rounded down to 8 byte boundary).
7472 		 */
7473 		size = min_t(size_t, U16_MAX - header->size,
7474 			     event->attr.aux_sample_size);
7475 		size = rounddown(size, 8);
7476 		size = perf_prepare_sample_aux(event, data, size);
7477 
7478 		WARN_ON_ONCE(size + header->size > U16_MAX);
7479 		header->size += size;
7480 	}
7481 	/*
7482 	 * If you're adding more sample types here, you likely need to do
7483 	 * something about the overflowing header::size, like repurpose the
7484 	 * lowest 3 bits of size, which should be always zero at the moment.
7485 	 * This raises a more important question, do we really need 512k sized
7486 	 * samples and why, so good argumentation is in order for whatever you
7487 	 * do here next.
7488 	 */
7489 	WARN_ON_ONCE(header->size & 7);
7490 }
7491 
7492 static __always_inline int
7493 __perf_event_output(struct perf_event *event,
7494 		    struct perf_sample_data *data,
7495 		    struct pt_regs *regs,
7496 		    int (*output_begin)(struct perf_output_handle *,
7497 					struct perf_sample_data *,
7498 					struct perf_event *,
7499 					unsigned int))
7500 {
7501 	struct perf_output_handle handle;
7502 	struct perf_event_header header;
7503 	int err;
7504 
7505 	/* protect the callchain buffers */
7506 	rcu_read_lock();
7507 
7508 	perf_prepare_sample(&header, data, event, regs);
7509 
7510 	err = output_begin(&handle, data, event, header.size);
7511 	if (err)
7512 		goto exit;
7513 
7514 	perf_output_sample(&handle, &header, data, event);
7515 
7516 	perf_output_end(&handle);
7517 
7518 exit:
7519 	rcu_read_unlock();
7520 	return err;
7521 }
7522 
7523 void
7524 perf_event_output_forward(struct perf_event *event,
7525 			 struct perf_sample_data *data,
7526 			 struct pt_regs *regs)
7527 {
7528 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7529 }
7530 
7531 void
7532 perf_event_output_backward(struct perf_event *event,
7533 			   struct perf_sample_data *data,
7534 			   struct pt_regs *regs)
7535 {
7536 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7537 }
7538 
7539 int
7540 perf_event_output(struct perf_event *event,
7541 		  struct perf_sample_data *data,
7542 		  struct pt_regs *regs)
7543 {
7544 	return __perf_event_output(event, data, regs, perf_output_begin);
7545 }
7546 
7547 /*
7548  * read event_id
7549  */
7550 
7551 struct perf_read_event {
7552 	struct perf_event_header	header;
7553 
7554 	u32				pid;
7555 	u32				tid;
7556 };
7557 
7558 static void
7559 perf_event_read_event(struct perf_event *event,
7560 			struct task_struct *task)
7561 {
7562 	struct perf_output_handle handle;
7563 	struct perf_sample_data sample;
7564 	struct perf_read_event read_event = {
7565 		.header = {
7566 			.type = PERF_RECORD_READ,
7567 			.misc = 0,
7568 			.size = sizeof(read_event) + event->read_size,
7569 		},
7570 		.pid = perf_event_pid(event, task),
7571 		.tid = perf_event_tid(event, task),
7572 	};
7573 	int ret;
7574 
7575 	perf_event_header__init_id(&read_event.header, &sample, event);
7576 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7577 	if (ret)
7578 		return;
7579 
7580 	perf_output_put(&handle, read_event);
7581 	perf_output_read(&handle, event);
7582 	perf_event__output_id_sample(event, &handle, &sample);
7583 
7584 	perf_output_end(&handle);
7585 }
7586 
7587 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7588 
7589 static void
7590 perf_iterate_ctx(struct perf_event_context *ctx,
7591 		   perf_iterate_f output,
7592 		   void *data, bool all)
7593 {
7594 	struct perf_event *event;
7595 
7596 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7597 		if (!all) {
7598 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7599 				continue;
7600 			if (!event_filter_match(event))
7601 				continue;
7602 		}
7603 
7604 		output(event, data);
7605 	}
7606 }
7607 
7608 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7609 {
7610 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7611 	struct perf_event *event;
7612 
7613 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7614 		/*
7615 		 * Skip events that are not fully formed yet; ensure that
7616 		 * if we observe event->ctx, both event and ctx will be
7617 		 * complete enough. See perf_install_in_context().
7618 		 */
7619 		if (!smp_load_acquire(&event->ctx))
7620 			continue;
7621 
7622 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7623 			continue;
7624 		if (!event_filter_match(event))
7625 			continue;
7626 		output(event, data);
7627 	}
7628 }
7629 
7630 /*
7631  * Iterate all events that need to receive side-band events.
7632  *
7633  * For new callers; ensure that account_pmu_sb_event() includes
7634  * your event, otherwise it might not get delivered.
7635  */
7636 static void
7637 perf_iterate_sb(perf_iterate_f output, void *data,
7638 	       struct perf_event_context *task_ctx)
7639 {
7640 	struct perf_event_context *ctx;
7641 	int ctxn;
7642 
7643 	rcu_read_lock();
7644 	preempt_disable();
7645 
7646 	/*
7647 	 * If we have task_ctx != NULL we only notify the task context itself.
7648 	 * The task_ctx is set only for EXIT events before releasing task
7649 	 * context.
7650 	 */
7651 	if (task_ctx) {
7652 		perf_iterate_ctx(task_ctx, output, data, false);
7653 		goto done;
7654 	}
7655 
7656 	perf_iterate_sb_cpu(output, data);
7657 
7658 	for_each_task_context_nr(ctxn) {
7659 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7660 		if (ctx)
7661 			perf_iterate_ctx(ctx, output, data, false);
7662 	}
7663 done:
7664 	preempt_enable();
7665 	rcu_read_unlock();
7666 }
7667 
7668 /*
7669  * Clear all file-based filters at exec, they'll have to be
7670  * re-instated when/if these objects are mmapped again.
7671  */
7672 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7673 {
7674 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7675 	struct perf_addr_filter *filter;
7676 	unsigned int restart = 0, count = 0;
7677 	unsigned long flags;
7678 
7679 	if (!has_addr_filter(event))
7680 		return;
7681 
7682 	raw_spin_lock_irqsave(&ifh->lock, flags);
7683 	list_for_each_entry(filter, &ifh->list, entry) {
7684 		if (filter->path.dentry) {
7685 			event->addr_filter_ranges[count].start = 0;
7686 			event->addr_filter_ranges[count].size = 0;
7687 			restart++;
7688 		}
7689 
7690 		count++;
7691 	}
7692 
7693 	if (restart)
7694 		event->addr_filters_gen++;
7695 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7696 
7697 	if (restart)
7698 		perf_event_stop(event, 1);
7699 }
7700 
7701 void perf_event_exec(void)
7702 {
7703 	struct perf_event_context *ctx;
7704 	int ctxn;
7705 
7706 	for_each_task_context_nr(ctxn) {
7707 		perf_event_enable_on_exec(ctxn);
7708 		perf_event_remove_on_exec(ctxn);
7709 
7710 		rcu_read_lock();
7711 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7712 		if (ctx) {
7713 			perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7714 					 NULL, true);
7715 		}
7716 		rcu_read_unlock();
7717 	}
7718 }
7719 
7720 struct remote_output {
7721 	struct perf_buffer	*rb;
7722 	int			err;
7723 };
7724 
7725 static void __perf_event_output_stop(struct perf_event *event, void *data)
7726 {
7727 	struct perf_event *parent = event->parent;
7728 	struct remote_output *ro = data;
7729 	struct perf_buffer *rb = ro->rb;
7730 	struct stop_event_data sd = {
7731 		.event	= event,
7732 	};
7733 
7734 	if (!has_aux(event))
7735 		return;
7736 
7737 	if (!parent)
7738 		parent = event;
7739 
7740 	/*
7741 	 * In case of inheritance, it will be the parent that links to the
7742 	 * ring-buffer, but it will be the child that's actually using it.
7743 	 *
7744 	 * We are using event::rb to determine if the event should be stopped,
7745 	 * however this may race with ring_buffer_attach() (through set_output),
7746 	 * which will make us skip the event that actually needs to be stopped.
7747 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7748 	 * its rb pointer.
7749 	 */
7750 	if (rcu_dereference(parent->rb) == rb)
7751 		ro->err = __perf_event_stop(&sd);
7752 }
7753 
7754 static int __perf_pmu_output_stop(void *info)
7755 {
7756 	struct perf_event *event = info;
7757 	struct pmu *pmu = event->ctx->pmu;
7758 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7759 	struct remote_output ro = {
7760 		.rb	= event->rb,
7761 	};
7762 
7763 	rcu_read_lock();
7764 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7765 	if (cpuctx->task_ctx)
7766 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7767 				   &ro, false);
7768 	rcu_read_unlock();
7769 
7770 	return ro.err;
7771 }
7772 
7773 static void perf_pmu_output_stop(struct perf_event *event)
7774 {
7775 	struct perf_event *iter;
7776 	int err, cpu;
7777 
7778 restart:
7779 	rcu_read_lock();
7780 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7781 		/*
7782 		 * For per-CPU events, we need to make sure that neither they
7783 		 * nor their children are running; for cpu==-1 events it's
7784 		 * sufficient to stop the event itself if it's active, since
7785 		 * it can't have children.
7786 		 */
7787 		cpu = iter->cpu;
7788 		if (cpu == -1)
7789 			cpu = READ_ONCE(iter->oncpu);
7790 
7791 		if (cpu == -1)
7792 			continue;
7793 
7794 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7795 		if (err == -EAGAIN) {
7796 			rcu_read_unlock();
7797 			goto restart;
7798 		}
7799 	}
7800 	rcu_read_unlock();
7801 }
7802 
7803 /*
7804  * task tracking -- fork/exit
7805  *
7806  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7807  */
7808 
7809 struct perf_task_event {
7810 	struct task_struct		*task;
7811 	struct perf_event_context	*task_ctx;
7812 
7813 	struct {
7814 		struct perf_event_header	header;
7815 
7816 		u32				pid;
7817 		u32				ppid;
7818 		u32				tid;
7819 		u32				ptid;
7820 		u64				time;
7821 	} event_id;
7822 };
7823 
7824 static int perf_event_task_match(struct perf_event *event)
7825 {
7826 	return event->attr.comm  || event->attr.mmap ||
7827 	       event->attr.mmap2 || event->attr.mmap_data ||
7828 	       event->attr.task;
7829 }
7830 
7831 static void perf_event_task_output(struct perf_event *event,
7832 				   void *data)
7833 {
7834 	struct perf_task_event *task_event = data;
7835 	struct perf_output_handle handle;
7836 	struct perf_sample_data	sample;
7837 	struct task_struct *task = task_event->task;
7838 	int ret, size = task_event->event_id.header.size;
7839 
7840 	if (!perf_event_task_match(event))
7841 		return;
7842 
7843 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7844 
7845 	ret = perf_output_begin(&handle, &sample, event,
7846 				task_event->event_id.header.size);
7847 	if (ret)
7848 		goto out;
7849 
7850 	task_event->event_id.pid = perf_event_pid(event, task);
7851 	task_event->event_id.tid = perf_event_tid(event, task);
7852 
7853 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7854 		task_event->event_id.ppid = perf_event_pid(event,
7855 							task->real_parent);
7856 		task_event->event_id.ptid = perf_event_pid(event,
7857 							task->real_parent);
7858 	} else {  /* PERF_RECORD_FORK */
7859 		task_event->event_id.ppid = perf_event_pid(event, current);
7860 		task_event->event_id.ptid = perf_event_tid(event, current);
7861 	}
7862 
7863 	task_event->event_id.time = perf_event_clock(event);
7864 
7865 	perf_output_put(&handle, task_event->event_id);
7866 
7867 	perf_event__output_id_sample(event, &handle, &sample);
7868 
7869 	perf_output_end(&handle);
7870 out:
7871 	task_event->event_id.header.size = size;
7872 }
7873 
7874 static void perf_event_task(struct task_struct *task,
7875 			      struct perf_event_context *task_ctx,
7876 			      int new)
7877 {
7878 	struct perf_task_event task_event;
7879 
7880 	if (!atomic_read(&nr_comm_events) &&
7881 	    !atomic_read(&nr_mmap_events) &&
7882 	    !atomic_read(&nr_task_events))
7883 		return;
7884 
7885 	task_event = (struct perf_task_event){
7886 		.task	  = task,
7887 		.task_ctx = task_ctx,
7888 		.event_id    = {
7889 			.header = {
7890 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7891 				.misc = 0,
7892 				.size = sizeof(task_event.event_id),
7893 			},
7894 			/* .pid  */
7895 			/* .ppid */
7896 			/* .tid  */
7897 			/* .ptid */
7898 			/* .time */
7899 		},
7900 	};
7901 
7902 	perf_iterate_sb(perf_event_task_output,
7903 		       &task_event,
7904 		       task_ctx);
7905 }
7906 
7907 void perf_event_fork(struct task_struct *task)
7908 {
7909 	perf_event_task(task, NULL, 1);
7910 	perf_event_namespaces(task);
7911 }
7912 
7913 /*
7914  * comm tracking
7915  */
7916 
7917 struct perf_comm_event {
7918 	struct task_struct	*task;
7919 	char			*comm;
7920 	int			comm_size;
7921 
7922 	struct {
7923 		struct perf_event_header	header;
7924 
7925 		u32				pid;
7926 		u32				tid;
7927 	} event_id;
7928 };
7929 
7930 static int perf_event_comm_match(struct perf_event *event)
7931 {
7932 	return event->attr.comm;
7933 }
7934 
7935 static void perf_event_comm_output(struct perf_event *event,
7936 				   void *data)
7937 {
7938 	struct perf_comm_event *comm_event = data;
7939 	struct perf_output_handle handle;
7940 	struct perf_sample_data sample;
7941 	int size = comm_event->event_id.header.size;
7942 	int ret;
7943 
7944 	if (!perf_event_comm_match(event))
7945 		return;
7946 
7947 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7948 	ret = perf_output_begin(&handle, &sample, event,
7949 				comm_event->event_id.header.size);
7950 
7951 	if (ret)
7952 		goto out;
7953 
7954 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7955 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7956 
7957 	perf_output_put(&handle, comm_event->event_id);
7958 	__output_copy(&handle, comm_event->comm,
7959 				   comm_event->comm_size);
7960 
7961 	perf_event__output_id_sample(event, &handle, &sample);
7962 
7963 	perf_output_end(&handle);
7964 out:
7965 	comm_event->event_id.header.size = size;
7966 }
7967 
7968 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7969 {
7970 	char comm[TASK_COMM_LEN];
7971 	unsigned int size;
7972 
7973 	memset(comm, 0, sizeof(comm));
7974 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7975 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7976 
7977 	comm_event->comm = comm;
7978 	comm_event->comm_size = size;
7979 
7980 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7981 
7982 	perf_iterate_sb(perf_event_comm_output,
7983 		       comm_event,
7984 		       NULL);
7985 }
7986 
7987 void perf_event_comm(struct task_struct *task, bool exec)
7988 {
7989 	struct perf_comm_event comm_event;
7990 
7991 	if (!atomic_read(&nr_comm_events))
7992 		return;
7993 
7994 	comm_event = (struct perf_comm_event){
7995 		.task	= task,
7996 		/* .comm      */
7997 		/* .comm_size */
7998 		.event_id  = {
7999 			.header = {
8000 				.type = PERF_RECORD_COMM,
8001 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8002 				/* .size */
8003 			},
8004 			/* .pid */
8005 			/* .tid */
8006 		},
8007 	};
8008 
8009 	perf_event_comm_event(&comm_event);
8010 }
8011 
8012 /*
8013  * namespaces tracking
8014  */
8015 
8016 struct perf_namespaces_event {
8017 	struct task_struct		*task;
8018 
8019 	struct {
8020 		struct perf_event_header	header;
8021 
8022 		u32				pid;
8023 		u32				tid;
8024 		u64				nr_namespaces;
8025 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8026 	} event_id;
8027 };
8028 
8029 static int perf_event_namespaces_match(struct perf_event *event)
8030 {
8031 	return event->attr.namespaces;
8032 }
8033 
8034 static void perf_event_namespaces_output(struct perf_event *event,
8035 					 void *data)
8036 {
8037 	struct perf_namespaces_event *namespaces_event = data;
8038 	struct perf_output_handle handle;
8039 	struct perf_sample_data sample;
8040 	u16 header_size = namespaces_event->event_id.header.size;
8041 	int ret;
8042 
8043 	if (!perf_event_namespaces_match(event))
8044 		return;
8045 
8046 	perf_event_header__init_id(&namespaces_event->event_id.header,
8047 				   &sample, event);
8048 	ret = perf_output_begin(&handle, &sample, event,
8049 				namespaces_event->event_id.header.size);
8050 	if (ret)
8051 		goto out;
8052 
8053 	namespaces_event->event_id.pid = perf_event_pid(event,
8054 							namespaces_event->task);
8055 	namespaces_event->event_id.tid = perf_event_tid(event,
8056 							namespaces_event->task);
8057 
8058 	perf_output_put(&handle, namespaces_event->event_id);
8059 
8060 	perf_event__output_id_sample(event, &handle, &sample);
8061 
8062 	perf_output_end(&handle);
8063 out:
8064 	namespaces_event->event_id.header.size = header_size;
8065 }
8066 
8067 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8068 				   struct task_struct *task,
8069 				   const struct proc_ns_operations *ns_ops)
8070 {
8071 	struct path ns_path;
8072 	struct inode *ns_inode;
8073 	int error;
8074 
8075 	error = ns_get_path(&ns_path, task, ns_ops);
8076 	if (!error) {
8077 		ns_inode = ns_path.dentry->d_inode;
8078 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8079 		ns_link_info->ino = ns_inode->i_ino;
8080 		path_put(&ns_path);
8081 	}
8082 }
8083 
8084 void perf_event_namespaces(struct task_struct *task)
8085 {
8086 	struct perf_namespaces_event namespaces_event;
8087 	struct perf_ns_link_info *ns_link_info;
8088 
8089 	if (!atomic_read(&nr_namespaces_events))
8090 		return;
8091 
8092 	namespaces_event = (struct perf_namespaces_event){
8093 		.task	= task,
8094 		.event_id  = {
8095 			.header = {
8096 				.type = PERF_RECORD_NAMESPACES,
8097 				.misc = 0,
8098 				.size = sizeof(namespaces_event.event_id),
8099 			},
8100 			/* .pid */
8101 			/* .tid */
8102 			.nr_namespaces = NR_NAMESPACES,
8103 			/* .link_info[NR_NAMESPACES] */
8104 		},
8105 	};
8106 
8107 	ns_link_info = namespaces_event.event_id.link_info;
8108 
8109 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8110 			       task, &mntns_operations);
8111 
8112 #ifdef CONFIG_USER_NS
8113 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8114 			       task, &userns_operations);
8115 #endif
8116 #ifdef CONFIG_NET_NS
8117 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8118 			       task, &netns_operations);
8119 #endif
8120 #ifdef CONFIG_UTS_NS
8121 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8122 			       task, &utsns_operations);
8123 #endif
8124 #ifdef CONFIG_IPC_NS
8125 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8126 			       task, &ipcns_operations);
8127 #endif
8128 #ifdef CONFIG_PID_NS
8129 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8130 			       task, &pidns_operations);
8131 #endif
8132 #ifdef CONFIG_CGROUPS
8133 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8134 			       task, &cgroupns_operations);
8135 #endif
8136 
8137 	perf_iterate_sb(perf_event_namespaces_output,
8138 			&namespaces_event,
8139 			NULL);
8140 }
8141 
8142 /*
8143  * cgroup tracking
8144  */
8145 #ifdef CONFIG_CGROUP_PERF
8146 
8147 struct perf_cgroup_event {
8148 	char				*path;
8149 	int				path_size;
8150 	struct {
8151 		struct perf_event_header	header;
8152 		u64				id;
8153 		char				path[];
8154 	} event_id;
8155 };
8156 
8157 static int perf_event_cgroup_match(struct perf_event *event)
8158 {
8159 	return event->attr.cgroup;
8160 }
8161 
8162 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8163 {
8164 	struct perf_cgroup_event *cgroup_event = data;
8165 	struct perf_output_handle handle;
8166 	struct perf_sample_data sample;
8167 	u16 header_size = cgroup_event->event_id.header.size;
8168 	int ret;
8169 
8170 	if (!perf_event_cgroup_match(event))
8171 		return;
8172 
8173 	perf_event_header__init_id(&cgroup_event->event_id.header,
8174 				   &sample, event);
8175 	ret = perf_output_begin(&handle, &sample, event,
8176 				cgroup_event->event_id.header.size);
8177 	if (ret)
8178 		goto out;
8179 
8180 	perf_output_put(&handle, cgroup_event->event_id);
8181 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8182 
8183 	perf_event__output_id_sample(event, &handle, &sample);
8184 
8185 	perf_output_end(&handle);
8186 out:
8187 	cgroup_event->event_id.header.size = header_size;
8188 }
8189 
8190 static void perf_event_cgroup(struct cgroup *cgrp)
8191 {
8192 	struct perf_cgroup_event cgroup_event;
8193 	char path_enomem[16] = "//enomem";
8194 	char *pathname;
8195 	size_t size;
8196 
8197 	if (!atomic_read(&nr_cgroup_events))
8198 		return;
8199 
8200 	cgroup_event = (struct perf_cgroup_event){
8201 		.event_id  = {
8202 			.header = {
8203 				.type = PERF_RECORD_CGROUP,
8204 				.misc = 0,
8205 				.size = sizeof(cgroup_event.event_id),
8206 			},
8207 			.id = cgroup_id(cgrp),
8208 		},
8209 	};
8210 
8211 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8212 	if (pathname == NULL) {
8213 		cgroup_event.path = path_enomem;
8214 	} else {
8215 		/* just to be sure to have enough space for alignment */
8216 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8217 		cgroup_event.path = pathname;
8218 	}
8219 
8220 	/*
8221 	 * Since our buffer works in 8 byte units we need to align our string
8222 	 * size to a multiple of 8. However, we must guarantee the tail end is
8223 	 * zero'd out to avoid leaking random bits to userspace.
8224 	 */
8225 	size = strlen(cgroup_event.path) + 1;
8226 	while (!IS_ALIGNED(size, sizeof(u64)))
8227 		cgroup_event.path[size++] = '\0';
8228 
8229 	cgroup_event.event_id.header.size += size;
8230 	cgroup_event.path_size = size;
8231 
8232 	perf_iterate_sb(perf_event_cgroup_output,
8233 			&cgroup_event,
8234 			NULL);
8235 
8236 	kfree(pathname);
8237 }
8238 
8239 #endif
8240 
8241 /*
8242  * mmap tracking
8243  */
8244 
8245 struct perf_mmap_event {
8246 	struct vm_area_struct	*vma;
8247 
8248 	const char		*file_name;
8249 	int			file_size;
8250 	int			maj, min;
8251 	u64			ino;
8252 	u64			ino_generation;
8253 	u32			prot, flags;
8254 	u8			build_id[BUILD_ID_SIZE_MAX];
8255 	u32			build_id_size;
8256 
8257 	struct {
8258 		struct perf_event_header	header;
8259 
8260 		u32				pid;
8261 		u32				tid;
8262 		u64				start;
8263 		u64				len;
8264 		u64				pgoff;
8265 	} event_id;
8266 };
8267 
8268 static int perf_event_mmap_match(struct perf_event *event,
8269 				 void *data)
8270 {
8271 	struct perf_mmap_event *mmap_event = data;
8272 	struct vm_area_struct *vma = mmap_event->vma;
8273 	int executable = vma->vm_flags & VM_EXEC;
8274 
8275 	return (!executable && event->attr.mmap_data) ||
8276 	       (executable && (event->attr.mmap || event->attr.mmap2));
8277 }
8278 
8279 static void perf_event_mmap_output(struct perf_event *event,
8280 				   void *data)
8281 {
8282 	struct perf_mmap_event *mmap_event = data;
8283 	struct perf_output_handle handle;
8284 	struct perf_sample_data sample;
8285 	int size = mmap_event->event_id.header.size;
8286 	u32 type = mmap_event->event_id.header.type;
8287 	bool use_build_id;
8288 	int ret;
8289 
8290 	if (!perf_event_mmap_match(event, data))
8291 		return;
8292 
8293 	if (event->attr.mmap2) {
8294 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8295 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8296 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8297 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8298 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8299 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8300 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8301 	}
8302 
8303 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8304 	ret = perf_output_begin(&handle, &sample, event,
8305 				mmap_event->event_id.header.size);
8306 	if (ret)
8307 		goto out;
8308 
8309 	mmap_event->event_id.pid = perf_event_pid(event, current);
8310 	mmap_event->event_id.tid = perf_event_tid(event, current);
8311 
8312 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8313 
8314 	if (event->attr.mmap2 && use_build_id)
8315 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8316 
8317 	perf_output_put(&handle, mmap_event->event_id);
8318 
8319 	if (event->attr.mmap2) {
8320 		if (use_build_id) {
8321 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8322 
8323 			__output_copy(&handle, size, 4);
8324 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8325 		} else {
8326 			perf_output_put(&handle, mmap_event->maj);
8327 			perf_output_put(&handle, mmap_event->min);
8328 			perf_output_put(&handle, mmap_event->ino);
8329 			perf_output_put(&handle, mmap_event->ino_generation);
8330 		}
8331 		perf_output_put(&handle, mmap_event->prot);
8332 		perf_output_put(&handle, mmap_event->flags);
8333 	}
8334 
8335 	__output_copy(&handle, mmap_event->file_name,
8336 				   mmap_event->file_size);
8337 
8338 	perf_event__output_id_sample(event, &handle, &sample);
8339 
8340 	perf_output_end(&handle);
8341 out:
8342 	mmap_event->event_id.header.size = size;
8343 	mmap_event->event_id.header.type = type;
8344 }
8345 
8346 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8347 {
8348 	struct vm_area_struct *vma = mmap_event->vma;
8349 	struct file *file = vma->vm_file;
8350 	int maj = 0, min = 0;
8351 	u64 ino = 0, gen = 0;
8352 	u32 prot = 0, flags = 0;
8353 	unsigned int size;
8354 	char tmp[16];
8355 	char *buf = NULL;
8356 	char *name;
8357 
8358 	if (vma->vm_flags & VM_READ)
8359 		prot |= PROT_READ;
8360 	if (vma->vm_flags & VM_WRITE)
8361 		prot |= PROT_WRITE;
8362 	if (vma->vm_flags & VM_EXEC)
8363 		prot |= PROT_EXEC;
8364 
8365 	if (vma->vm_flags & VM_MAYSHARE)
8366 		flags = MAP_SHARED;
8367 	else
8368 		flags = MAP_PRIVATE;
8369 
8370 	if (vma->vm_flags & VM_LOCKED)
8371 		flags |= MAP_LOCKED;
8372 	if (is_vm_hugetlb_page(vma))
8373 		flags |= MAP_HUGETLB;
8374 
8375 	if (file) {
8376 		struct inode *inode;
8377 		dev_t dev;
8378 
8379 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8380 		if (!buf) {
8381 			name = "//enomem";
8382 			goto cpy_name;
8383 		}
8384 		/*
8385 		 * d_path() works from the end of the rb backwards, so we
8386 		 * need to add enough zero bytes after the string to handle
8387 		 * the 64bit alignment we do later.
8388 		 */
8389 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8390 		if (IS_ERR(name)) {
8391 			name = "//toolong";
8392 			goto cpy_name;
8393 		}
8394 		inode = file_inode(vma->vm_file);
8395 		dev = inode->i_sb->s_dev;
8396 		ino = inode->i_ino;
8397 		gen = inode->i_generation;
8398 		maj = MAJOR(dev);
8399 		min = MINOR(dev);
8400 
8401 		goto got_name;
8402 	} else {
8403 		if (vma->vm_ops && vma->vm_ops->name) {
8404 			name = (char *) vma->vm_ops->name(vma);
8405 			if (name)
8406 				goto cpy_name;
8407 		}
8408 
8409 		name = (char *)arch_vma_name(vma);
8410 		if (name)
8411 			goto cpy_name;
8412 
8413 		if (vma->vm_start <= vma->vm_mm->start_brk &&
8414 				vma->vm_end >= vma->vm_mm->brk) {
8415 			name = "[heap]";
8416 			goto cpy_name;
8417 		}
8418 		if (vma->vm_start <= vma->vm_mm->start_stack &&
8419 				vma->vm_end >= vma->vm_mm->start_stack) {
8420 			name = "[stack]";
8421 			goto cpy_name;
8422 		}
8423 
8424 		name = "//anon";
8425 		goto cpy_name;
8426 	}
8427 
8428 cpy_name:
8429 	strlcpy(tmp, name, sizeof(tmp));
8430 	name = tmp;
8431 got_name:
8432 	/*
8433 	 * Since our buffer works in 8 byte units we need to align our string
8434 	 * size to a multiple of 8. However, we must guarantee the tail end is
8435 	 * zero'd out to avoid leaking random bits to userspace.
8436 	 */
8437 	size = strlen(name)+1;
8438 	while (!IS_ALIGNED(size, sizeof(u64)))
8439 		name[size++] = '\0';
8440 
8441 	mmap_event->file_name = name;
8442 	mmap_event->file_size = size;
8443 	mmap_event->maj = maj;
8444 	mmap_event->min = min;
8445 	mmap_event->ino = ino;
8446 	mmap_event->ino_generation = gen;
8447 	mmap_event->prot = prot;
8448 	mmap_event->flags = flags;
8449 
8450 	if (!(vma->vm_flags & VM_EXEC))
8451 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8452 
8453 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8454 
8455 	if (atomic_read(&nr_build_id_events))
8456 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8457 
8458 	perf_iterate_sb(perf_event_mmap_output,
8459 		       mmap_event,
8460 		       NULL);
8461 
8462 	kfree(buf);
8463 }
8464 
8465 /*
8466  * Check whether inode and address range match filter criteria.
8467  */
8468 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8469 				     struct file *file, unsigned long offset,
8470 				     unsigned long size)
8471 {
8472 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8473 	if (!filter->path.dentry)
8474 		return false;
8475 
8476 	if (d_inode(filter->path.dentry) != file_inode(file))
8477 		return false;
8478 
8479 	if (filter->offset > offset + size)
8480 		return false;
8481 
8482 	if (filter->offset + filter->size < offset)
8483 		return false;
8484 
8485 	return true;
8486 }
8487 
8488 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8489 					struct vm_area_struct *vma,
8490 					struct perf_addr_filter_range *fr)
8491 {
8492 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8493 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8494 	struct file *file = vma->vm_file;
8495 
8496 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8497 		return false;
8498 
8499 	if (filter->offset < off) {
8500 		fr->start = vma->vm_start;
8501 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8502 	} else {
8503 		fr->start = vma->vm_start + filter->offset - off;
8504 		fr->size = min(vma->vm_end - fr->start, filter->size);
8505 	}
8506 
8507 	return true;
8508 }
8509 
8510 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8511 {
8512 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8513 	struct vm_area_struct *vma = data;
8514 	struct perf_addr_filter *filter;
8515 	unsigned int restart = 0, count = 0;
8516 	unsigned long flags;
8517 
8518 	if (!has_addr_filter(event))
8519 		return;
8520 
8521 	if (!vma->vm_file)
8522 		return;
8523 
8524 	raw_spin_lock_irqsave(&ifh->lock, flags);
8525 	list_for_each_entry(filter, &ifh->list, entry) {
8526 		if (perf_addr_filter_vma_adjust(filter, vma,
8527 						&event->addr_filter_ranges[count]))
8528 			restart++;
8529 
8530 		count++;
8531 	}
8532 
8533 	if (restart)
8534 		event->addr_filters_gen++;
8535 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8536 
8537 	if (restart)
8538 		perf_event_stop(event, 1);
8539 }
8540 
8541 /*
8542  * Adjust all task's events' filters to the new vma
8543  */
8544 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8545 {
8546 	struct perf_event_context *ctx;
8547 	int ctxn;
8548 
8549 	/*
8550 	 * Data tracing isn't supported yet and as such there is no need
8551 	 * to keep track of anything that isn't related to executable code:
8552 	 */
8553 	if (!(vma->vm_flags & VM_EXEC))
8554 		return;
8555 
8556 	rcu_read_lock();
8557 	for_each_task_context_nr(ctxn) {
8558 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8559 		if (!ctx)
8560 			continue;
8561 
8562 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8563 	}
8564 	rcu_read_unlock();
8565 }
8566 
8567 void perf_event_mmap(struct vm_area_struct *vma)
8568 {
8569 	struct perf_mmap_event mmap_event;
8570 
8571 	if (!atomic_read(&nr_mmap_events))
8572 		return;
8573 
8574 	mmap_event = (struct perf_mmap_event){
8575 		.vma	= vma,
8576 		/* .file_name */
8577 		/* .file_size */
8578 		.event_id  = {
8579 			.header = {
8580 				.type = PERF_RECORD_MMAP,
8581 				.misc = PERF_RECORD_MISC_USER,
8582 				/* .size */
8583 			},
8584 			/* .pid */
8585 			/* .tid */
8586 			.start  = vma->vm_start,
8587 			.len    = vma->vm_end - vma->vm_start,
8588 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8589 		},
8590 		/* .maj (attr_mmap2 only) */
8591 		/* .min (attr_mmap2 only) */
8592 		/* .ino (attr_mmap2 only) */
8593 		/* .ino_generation (attr_mmap2 only) */
8594 		/* .prot (attr_mmap2 only) */
8595 		/* .flags (attr_mmap2 only) */
8596 	};
8597 
8598 	perf_addr_filters_adjust(vma);
8599 	perf_event_mmap_event(&mmap_event);
8600 }
8601 
8602 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8603 			  unsigned long size, u64 flags)
8604 {
8605 	struct perf_output_handle handle;
8606 	struct perf_sample_data sample;
8607 	struct perf_aux_event {
8608 		struct perf_event_header	header;
8609 		u64				offset;
8610 		u64				size;
8611 		u64				flags;
8612 	} rec = {
8613 		.header = {
8614 			.type = PERF_RECORD_AUX,
8615 			.misc = 0,
8616 			.size = sizeof(rec),
8617 		},
8618 		.offset		= head,
8619 		.size		= size,
8620 		.flags		= flags,
8621 	};
8622 	int ret;
8623 
8624 	perf_event_header__init_id(&rec.header, &sample, event);
8625 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8626 
8627 	if (ret)
8628 		return;
8629 
8630 	perf_output_put(&handle, rec);
8631 	perf_event__output_id_sample(event, &handle, &sample);
8632 
8633 	perf_output_end(&handle);
8634 }
8635 
8636 /*
8637  * Lost/dropped samples logging
8638  */
8639 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8640 {
8641 	struct perf_output_handle handle;
8642 	struct perf_sample_data sample;
8643 	int ret;
8644 
8645 	struct {
8646 		struct perf_event_header	header;
8647 		u64				lost;
8648 	} lost_samples_event = {
8649 		.header = {
8650 			.type = PERF_RECORD_LOST_SAMPLES,
8651 			.misc = 0,
8652 			.size = sizeof(lost_samples_event),
8653 		},
8654 		.lost		= lost,
8655 	};
8656 
8657 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8658 
8659 	ret = perf_output_begin(&handle, &sample, event,
8660 				lost_samples_event.header.size);
8661 	if (ret)
8662 		return;
8663 
8664 	perf_output_put(&handle, lost_samples_event);
8665 	perf_event__output_id_sample(event, &handle, &sample);
8666 	perf_output_end(&handle);
8667 }
8668 
8669 /*
8670  * context_switch tracking
8671  */
8672 
8673 struct perf_switch_event {
8674 	struct task_struct	*task;
8675 	struct task_struct	*next_prev;
8676 
8677 	struct {
8678 		struct perf_event_header	header;
8679 		u32				next_prev_pid;
8680 		u32				next_prev_tid;
8681 	} event_id;
8682 };
8683 
8684 static int perf_event_switch_match(struct perf_event *event)
8685 {
8686 	return event->attr.context_switch;
8687 }
8688 
8689 static void perf_event_switch_output(struct perf_event *event, void *data)
8690 {
8691 	struct perf_switch_event *se = data;
8692 	struct perf_output_handle handle;
8693 	struct perf_sample_data sample;
8694 	int ret;
8695 
8696 	if (!perf_event_switch_match(event))
8697 		return;
8698 
8699 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8700 	if (event->ctx->task) {
8701 		se->event_id.header.type = PERF_RECORD_SWITCH;
8702 		se->event_id.header.size = sizeof(se->event_id.header);
8703 	} else {
8704 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8705 		se->event_id.header.size = sizeof(se->event_id);
8706 		se->event_id.next_prev_pid =
8707 					perf_event_pid(event, se->next_prev);
8708 		se->event_id.next_prev_tid =
8709 					perf_event_tid(event, se->next_prev);
8710 	}
8711 
8712 	perf_event_header__init_id(&se->event_id.header, &sample, event);
8713 
8714 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8715 	if (ret)
8716 		return;
8717 
8718 	if (event->ctx->task)
8719 		perf_output_put(&handle, se->event_id.header);
8720 	else
8721 		perf_output_put(&handle, se->event_id);
8722 
8723 	perf_event__output_id_sample(event, &handle, &sample);
8724 
8725 	perf_output_end(&handle);
8726 }
8727 
8728 static void perf_event_switch(struct task_struct *task,
8729 			      struct task_struct *next_prev, bool sched_in)
8730 {
8731 	struct perf_switch_event switch_event;
8732 
8733 	/* N.B. caller checks nr_switch_events != 0 */
8734 
8735 	switch_event = (struct perf_switch_event){
8736 		.task		= task,
8737 		.next_prev	= next_prev,
8738 		.event_id	= {
8739 			.header = {
8740 				/* .type */
8741 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8742 				/* .size */
8743 			},
8744 			/* .next_prev_pid */
8745 			/* .next_prev_tid */
8746 		},
8747 	};
8748 
8749 	if (!sched_in && task->on_rq) {
8750 		switch_event.event_id.header.misc |=
8751 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8752 	}
8753 
8754 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8755 }
8756 
8757 /*
8758  * IRQ throttle logging
8759  */
8760 
8761 static void perf_log_throttle(struct perf_event *event, int enable)
8762 {
8763 	struct perf_output_handle handle;
8764 	struct perf_sample_data sample;
8765 	int ret;
8766 
8767 	struct {
8768 		struct perf_event_header	header;
8769 		u64				time;
8770 		u64				id;
8771 		u64				stream_id;
8772 	} throttle_event = {
8773 		.header = {
8774 			.type = PERF_RECORD_THROTTLE,
8775 			.misc = 0,
8776 			.size = sizeof(throttle_event),
8777 		},
8778 		.time		= perf_event_clock(event),
8779 		.id		= primary_event_id(event),
8780 		.stream_id	= event->id,
8781 	};
8782 
8783 	if (enable)
8784 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8785 
8786 	perf_event_header__init_id(&throttle_event.header, &sample, event);
8787 
8788 	ret = perf_output_begin(&handle, &sample, event,
8789 				throttle_event.header.size);
8790 	if (ret)
8791 		return;
8792 
8793 	perf_output_put(&handle, throttle_event);
8794 	perf_event__output_id_sample(event, &handle, &sample);
8795 	perf_output_end(&handle);
8796 }
8797 
8798 /*
8799  * ksymbol register/unregister tracking
8800  */
8801 
8802 struct perf_ksymbol_event {
8803 	const char	*name;
8804 	int		name_len;
8805 	struct {
8806 		struct perf_event_header        header;
8807 		u64				addr;
8808 		u32				len;
8809 		u16				ksym_type;
8810 		u16				flags;
8811 	} event_id;
8812 };
8813 
8814 static int perf_event_ksymbol_match(struct perf_event *event)
8815 {
8816 	return event->attr.ksymbol;
8817 }
8818 
8819 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8820 {
8821 	struct perf_ksymbol_event *ksymbol_event = data;
8822 	struct perf_output_handle handle;
8823 	struct perf_sample_data sample;
8824 	int ret;
8825 
8826 	if (!perf_event_ksymbol_match(event))
8827 		return;
8828 
8829 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8830 				   &sample, event);
8831 	ret = perf_output_begin(&handle, &sample, event,
8832 				ksymbol_event->event_id.header.size);
8833 	if (ret)
8834 		return;
8835 
8836 	perf_output_put(&handle, ksymbol_event->event_id);
8837 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8838 	perf_event__output_id_sample(event, &handle, &sample);
8839 
8840 	perf_output_end(&handle);
8841 }
8842 
8843 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8844 			const char *sym)
8845 {
8846 	struct perf_ksymbol_event ksymbol_event;
8847 	char name[KSYM_NAME_LEN];
8848 	u16 flags = 0;
8849 	int name_len;
8850 
8851 	if (!atomic_read(&nr_ksymbol_events))
8852 		return;
8853 
8854 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8855 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8856 		goto err;
8857 
8858 	strlcpy(name, sym, KSYM_NAME_LEN);
8859 	name_len = strlen(name) + 1;
8860 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8861 		name[name_len++] = '\0';
8862 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8863 
8864 	if (unregister)
8865 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8866 
8867 	ksymbol_event = (struct perf_ksymbol_event){
8868 		.name = name,
8869 		.name_len = name_len,
8870 		.event_id = {
8871 			.header = {
8872 				.type = PERF_RECORD_KSYMBOL,
8873 				.size = sizeof(ksymbol_event.event_id) +
8874 					name_len,
8875 			},
8876 			.addr = addr,
8877 			.len = len,
8878 			.ksym_type = ksym_type,
8879 			.flags = flags,
8880 		},
8881 	};
8882 
8883 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8884 	return;
8885 err:
8886 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8887 }
8888 
8889 /*
8890  * bpf program load/unload tracking
8891  */
8892 
8893 struct perf_bpf_event {
8894 	struct bpf_prog	*prog;
8895 	struct {
8896 		struct perf_event_header        header;
8897 		u16				type;
8898 		u16				flags;
8899 		u32				id;
8900 		u8				tag[BPF_TAG_SIZE];
8901 	} event_id;
8902 };
8903 
8904 static int perf_event_bpf_match(struct perf_event *event)
8905 {
8906 	return event->attr.bpf_event;
8907 }
8908 
8909 static void perf_event_bpf_output(struct perf_event *event, void *data)
8910 {
8911 	struct perf_bpf_event *bpf_event = data;
8912 	struct perf_output_handle handle;
8913 	struct perf_sample_data sample;
8914 	int ret;
8915 
8916 	if (!perf_event_bpf_match(event))
8917 		return;
8918 
8919 	perf_event_header__init_id(&bpf_event->event_id.header,
8920 				   &sample, event);
8921 	ret = perf_output_begin(&handle, data, event,
8922 				bpf_event->event_id.header.size);
8923 	if (ret)
8924 		return;
8925 
8926 	perf_output_put(&handle, bpf_event->event_id);
8927 	perf_event__output_id_sample(event, &handle, &sample);
8928 
8929 	perf_output_end(&handle);
8930 }
8931 
8932 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8933 					 enum perf_bpf_event_type type)
8934 {
8935 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8936 	int i;
8937 
8938 	if (prog->aux->func_cnt == 0) {
8939 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8940 				   (u64)(unsigned long)prog->bpf_func,
8941 				   prog->jited_len, unregister,
8942 				   prog->aux->ksym.name);
8943 	} else {
8944 		for (i = 0; i < prog->aux->func_cnt; i++) {
8945 			struct bpf_prog *subprog = prog->aux->func[i];
8946 
8947 			perf_event_ksymbol(
8948 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8949 				(u64)(unsigned long)subprog->bpf_func,
8950 				subprog->jited_len, unregister,
8951 				prog->aux->ksym.name);
8952 		}
8953 	}
8954 }
8955 
8956 void perf_event_bpf_event(struct bpf_prog *prog,
8957 			  enum perf_bpf_event_type type,
8958 			  u16 flags)
8959 {
8960 	struct perf_bpf_event bpf_event;
8961 
8962 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8963 	    type >= PERF_BPF_EVENT_MAX)
8964 		return;
8965 
8966 	switch (type) {
8967 	case PERF_BPF_EVENT_PROG_LOAD:
8968 	case PERF_BPF_EVENT_PROG_UNLOAD:
8969 		if (atomic_read(&nr_ksymbol_events))
8970 			perf_event_bpf_emit_ksymbols(prog, type);
8971 		break;
8972 	default:
8973 		break;
8974 	}
8975 
8976 	if (!atomic_read(&nr_bpf_events))
8977 		return;
8978 
8979 	bpf_event = (struct perf_bpf_event){
8980 		.prog = prog,
8981 		.event_id = {
8982 			.header = {
8983 				.type = PERF_RECORD_BPF_EVENT,
8984 				.size = sizeof(bpf_event.event_id),
8985 			},
8986 			.type = type,
8987 			.flags = flags,
8988 			.id = prog->aux->id,
8989 		},
8990 	};
8991 
8992 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8993 
8994 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8995 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8996 }
8997 
8998 struct perf_text_poke_event {
8999 	const void		*old_bytes;
9000 	const void		*new_bytes;
9001 	size_t			pad;
9002 	u16			old_len;
9003 	u16			new_len;
9004 
9005 	struct {
9006 		struct perf_event_header	header;
9007 
9008 		u64				addr;
9009 	} event_id;
9010 };
9011 
9012 static int perf_event_text_poke_match(struct perf_event *event)
9013 {
9014 	return event->attr.text_poke;
9015 }
9016 
9017 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9018 {
9019 	struct perf_text_poke_event *text_poke_event = data;
9020 	struct perf_output_handle handle;
9021 	struct perf_sample_data sample;
9022 	u64 padding = 0;
9023 	int ret;
9024 
9025 	if (!perf_event_text_poke_match(event))
9026 		return;
9027 
9028 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9029 
9030 	ret = perf_output_begin(&handle, &sample, event,
9031 				text_poke_event->event_id.header.size);
9032 	if (ret)
9033 		return;
9034 
9035 	perf_output_put(&handle, text_poke_event->event_id);
9036 	perf_output_put(&handle, text_poke_event->old_len);
9037 	perf_output_put(&handle, text_poke_event->new_len);
9038 
9039 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9040 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9041 
9042 	if (text_poke_event->pad)
9043 		__output_copy(&handle, &padding, text_poke_event->pad);
9044 
9045 	perf_event__output_id_sample(event, &handle, &sample);
9046 
9047 	perf_output_end(&handle);
9048 }
9049 
9050 void perf_event_text_poke(const void *addr, const void *old_bytes,
9051 			  size_t old_len, const void *new_bytes, size_t new_len)
9052 {
9053 	struct perf_text_poke_event text_poke_event;
9054 	size_t tot, pad;
9055 
9056 	if (!atomic_read(&nr_text_poke_events))
9057 		return;
9058 
9059 	tot  = sizeof(text_poke_event.old_len) + old_len;
9060 	tot += sizeof(text_poke_event.new_len) + new_len;
9061 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9062 
9063 	text_poke_event = (struct perf_text_poke_event){
9064 		.old_bytes    = old_bytes,
9065 		.new_bytes    = new_bytes,
9066 		.pad          = pad,
9067 		.old_len      = old_len,
9068 		.new_len      = new_len,
9069 		.event_id  = {
9070 			.header = {
9071 				.type = PERF_RECORD_TEXT_POKE,
9072 				.misc = PERF_RECORD_MISC_KERNEL,
9073 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9074 			},
9075 			.addr = (unsigned long)addr,
9076 		},
9077 	};
9078 
9079 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9080 }
9081 
9082 void perf_event_itrace_started(struct perf_event *event)
9083 {
9084 	event->attach_state |= PERF_ATTACH_ITRACE;
9085 }
9086 
9087 static void perf_log_itrace_start(struct perf_event *event)
9088 {
9089 	struct perf_output_handle handle;
9090 	struct perf_sample_data sample;
9091 	struct perf_aux_event {
9092 		struct perf_event_header        header;
9093 		u32				pid;
9094 		u32				tid;
9095 	} rec;
9096 	int ret;
9097 
9098 	if (event->parent)
9099 		event = event->parent;
9100 
9101 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9102 	    event->attach_state & PERF_ATTACH_ITRACE)
9103 		return;
9104 
9105 	rec.header.type	= PERF_RECORD_ITRACE_START;
9106 	rec.header.misc	= 0;
9107 	rec.header.size	= sizeof(rec);
9108 	rec.pid	= perf_event_pid(event, current);
9109 	rec.tid	= perf_event_tid(event, current);
9110 
9111 	perf_event_header__init_id(&rec.header, &sample, event);
9112 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9113 
9114 	if (ret)
9115 		return;
9116 
9117 	perf_output_put(&handle, rec);
9118 	perf_event__output_id_sample(event, &handle, &sample);
9119 
9120 	perf_output_end(&handle);
9121 }
9122 
9123 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9124 {
9125 	struct perf_output_handle handle;
9126 	struct perf_sample_data sample;
9127 	struct perf_aux_event {
9128 		struct perf_event_header        header;
9129 		u64				hw_id;
9130 	} rec;
9131 	int ret;
9132 
9133 	if (event->parent)
9134 		event = event->parent;
9135 
9136 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9137 	rec.header.misc	= 0;
9138 	rec.header.size	= sizeof(rec);
9139 	rec.hw_id	= hw_id;
9140 
9141 	perf_event_header__init_id(&rec.header, &sample, event);
9142 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9143 
9144 	if (ret)
9145 		return;
9146 
9147 	perf_output_put(&handle, rec);
9148 	perf_event__output_id_sample(event, &handle, &sample);
9149 
9150 	perf_output_end(&handle);
9151 }
9152 
9153 static int
9154 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9155 {
9156 	struct hw_perf_event *hwc = &event->hw;
9157 	int ret = 0;
9158 	u64 seq;
9159 
9160 	seq = __this_cpu_read(perf_throttled_seq);
9161 	if (seq != hwc->interrupts_seq) {
9162 		hwc->interrupts_seq = seq;
9163 		hwc->interrupts = 1;
9164 	} else {
9165 		hwc->interrupts++;
9166 		if (unlikely(throttle
9167 			     && hwc->interrupts >= max_samples_per_tick)) {
9168 			__this_cpu_inc(perf_throttled_count);
9169 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9170 			hwc->interrupts = MAX_INTERRUPTS;
9171 			perf_log_throttle(event, 0);
9172 			ret = 1;
9173 		}
9174 	}
9175 
9176 	if (event->attr.freq) {
9177 		u64 now = perf_clock();
9178 		s64 delta = now - hwc->freq_time_stamp;
9179 
9180 		hwc->freq_time_stamp = now;
9181 
9182 		if (delta > 0 && delta < 2*TICK_NSEC)
9183 			perf_adjust_period(event, delta, hwc->last_period, true);
9184 	}
9185 
9186 	return ret;
9187 }
9188 
9189 int perf_event_account_interrupt(struct perf_event *event)
9190 {
9191 	return __perf_event_account_interrupt(event, 1);
9192 }
9193 
9194 /*
9195  * Generic event overflow handling, sampling.
9196  */
9197 
9198 static int __perf_event_overflow(struct perf_event *event,
9199 				   int throttle, struct perf_sample_data *data,
9200 				   struct pt_regs *regs)
9201 {
9202 	int events = atomic_read(&event->event_limit);
9203 	int ret = 0;
9204 
9205 	/*
9206 	 * Non-sampling counters might still use the PMI to fold short
9207 	 * hardware counters, ignore those.
9208 	 */
9209 	if (unlikely(!is_sampling_event(event)))
9210 		return 0;
9211 
9212 	ret = __perf_event_account_interrupt(event, throttle);
9213 
9214 	/*
9215 	 * XXX event_limit might not quite work as expected on inherited
9216 	 * events
9217 	 */
9218 
9219 	event->pending_kill = POLL_IN;
9220 	if (events && atomic_dec_and_test(&event->event_limit)) {
9221 		ret = 1;
9222 		event->pending_kill = POLL_HUP;
9223 		event->pending_addr = data->addr;
9224 
9225 		perf_event_disable_inatomic(event);
9226 	}
9227 
9228 	READ_ONCE(event->overflow_handler)(event, data, regs);
9229 
9230 	if (*perf_event_fasync(event) && event->pending_kill) {
9231 		event->pending_wakeup = 1;
9232 		irq_work_queue(&event->pending);
9233 	}
9234 
9235 	return ret;
9236 }
9237 
9238 int perf_event_overflow(struct perf_event *event,
9239 			  struct perf_sample_data *data,
9240 			  struct pt_regs *regs)
9241 {
9242 	return __perf_event_overflow(event, 1, data, regs);
9243 }
9244 
9245 /*
9246  * Generic software event infrastructure
9247  */
9248 
9249 struct swevent_htable {
9250 	struct swevent_hlist		*swevent_hlist;
9251 	struct mutex			hlist_mutex;
9252 	int				hlist_refcount;
9253 
9254 	/* Recursion avoidance in each contexts */
9255 	int				recursion[PERF_NR_CONTEXTS];
9256 };
9257 
9258 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9259 
9260 /*
9261  * We directly increment event->count and keep a second value in
9262  * event->hw.period_left to count intervals. This period event
9263  * is kept in the range [-sample_period, 0] so that we can use the
9264  * sign as trigger.
9265  */
9266 
9267 u64 perf_swevent_set_period(struct perf_event *event)
9268 {
9269 	struct hw_perf_event *hwc = &event->hw;
9270 	u64 period = hwc->last_period;
9271 	u64 nr, offset;
9272 	s64 old, val;
9273 
9274 	hwc->last_period = hwc->sample_period;
9275 
9276 again:
9277 	old = val = local64_read(&hwc->period_left);
9278 	if (val < 0)
9279 		return 0;
9280 
9281 	nr = div64_u64(period + val, period);
9282 	offset = nr * period;
9283 	val -= offset;
9284 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9285 		goto again;
9286 
9287 	return nr;
9288 }
9289 
9290 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9291 				    struct perf_sample_data *data,
9292 				    struct pt_regs *regs)
9293 {
9294 	struct hw_perf_event *hwc = &event->hw;
9295 	int throttle = 0;
9296 
9297 	if (!overflow)
9298 		overflow = perf_swevent_set_period(event);
9299 
9300 	if (hwc->interrupts == MAX_INTERRUPTS)
9301 		return;
9302 
9303 	for (; overflow; overflow--) {
9304 		if (__perf_event_overflow(event, throttle,
9305 					    data, regs)) {
9306 			/*
9307 			 * We inhibit the overflow from happening when
9308 			 * hwc->interrupts == MAX_INTERRUPTS.
9309 			 */
9310 			break;
9311 		}
9312 		throttle = 1;
9313 	}
9314 }
9315 
9316 static void perf_swevent_event(struct perf_event *event, u64 nr,
9317 			       struct perf_sample_data *data,
9318 			       struct pt_regs *regs)
9319 {
9320 	struct hw_perf_event *hwc = &event->hw;
9321 
9322 	local64_add(nr, &event->count);
9323 
9324 	if (!regs)
9325 		return;
9326 
9327 	if (!is_sampling_event(event))
9328 		return;
9329 
9330 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9331 		data->period = nr;
9332 		return perf_swevent_overflow(event, 1, data, regs);
9333 	} else
9334 		data->period = event->hw.last_period;
9335 
9336 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9337 		return perf_swevent_overflow(event, 1, data, regs);
9338 
9339 	if (local64_add_negative(nr, &hwc->period_left))
9340 		return;
9341 
9342 	perf_swevent_overflow(event, 0, data, regs);
9343 }
9344 
9345 static int perf_exclude_event(struct perf_event *event,
9346 			      struct pt_regs *regs)
9347 {
9348 	if (event->hw.state & PERF_HES_STOPPED)
9349 		return 1;
9350 
9351 	if (regs) {
9352 		if (event->attr.exclude_user && user_mode(regs))
9353 			return 1;
9354 
9355 		if (event->attr.exclude_kernel && !user_mode(regs))
9356 			return 1;
9357 	}
9358 
9359 	return 0;
9360 }
9361 
9362 static int perf_swevent_match(struct perf_event *event,
9363 				enum perf_type_id type,
9364 				u32 event_id,
9365 				struct perf_sample_data *data,
9366 				struct pt_regs *regs)
9367 {
9368 	if (event->attr.type != type)
9369 		return 0;
9370 
9371 	if (event->attr.config != event_id)
9372 		return 0;
9373 
9374 	if (perf_exclude_event(event, regs))
9375 		return 0;
9376 
9377 	return 1;
9378 }
9379 
9380 static inline u64 swevent_hash(u64 type, u32 event_id)
9381 {
9382 	u64 val = event_id | (type << 32);
9383 
9384 	return hash_64(val, SWEVENT_HLIST_BITS);
9385 }
9386 
9387 static inline struct hlist_head *
9388 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9389 {
9390 	u64 hash = swevent_hash(type, event_id);
9391 
9392 	return &hlist->heads[hash];
9393 }
9394 
9395 /* For the read side: events when they trigger */
9396 static inline struct hlist_head *
9397 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9398 {
9399 	struct swevent_hlist *hlist;
9400 
9401 	hlist = rcu_dereference(swhash->swevent_hlist);
9402 	if (!hlist)
9403 		return NULL;
9404 
9405 	return __find_swevent_head(hlist, type, event_id);
9406 }
9407 
9408 /* For the event head insertion and removal in the hlist */
9409 static inline struct hlist_head *
9410 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9411 {
9412 	struct swevent_hlist *hlist;
9413 	u32 event_id = event->attr.config;
9414 	u64 type = event->attr.type;
9415 
9416 	/*
9417 	 * Event scheduling is always serialized against hlist allocation
9418 	 * and release. Which makes the protected version suitable here.
9419 	 * The context lock guarantees that.
9420 	 */
9421 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9422 					  lockdep_is_held(&event->ctx->lock));
9423 	if (!hlist)
9424 		return NULL;
9425 
9426 	return __find_swevent_head(hlist, type, event_id);
9427 }
9428 
9429 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9430 				    u64 nr,
9431 				    struct perf_sample_data *data,
9432 				    struct pt_regs *regs)
9433 {
9434 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9435 	struct perf_event *event;
9436 	struct hlist_head *head;
9437 
9438 	rcu_read_lock();
9439 	head = find_swevent_head_rcu(swhash, type, event_id);
9440 	if (!head)
9441 		goto end;
9442 
9443 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9444 		if (perf_swevent_match(event, type, event_id, data, regs))
9445 			perf_swevent_event(event, nr, data, regs);
9446 	}
9447 end:
9448 	rcu_read_unlock();
9449 }
9450 
9451 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9452 
9453 int perf_swevent_get_recursion_context(void)
9454 {
9455 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9456 
9457 	return get_recursion_context(swhash->recursion);
9458 }
9459 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9460 
9461 void perf_swevent_put_recursion_context(int rctx)
9462 {
9463 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9464 
9465 	put_recursion_context(swhash->recursion, rctx);
9466 }
9467 
9468 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9469 {
9470 	struct perf_sample_data data;
9471 
9472 	if (WARN_ON_ONCE(!regs))
9473 		return;
9474 
9475 	perf_sample_data_init(&data, addr, 0);
9476 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9477 }
9478 
9479 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9480 {
9481 	int rctx;
9482 
9483 	preempt_disable_notrace();
9484 	rctx = perf_swevent_get_recursion_context();
9485 	if (unlikely(rctx < 0))
9486 		goto fail;
9487 
9488 	___perf_sw_event(event_id, nr, regs, addr);
9489 
9490 	perf_swevent_put_recursion_context(rctx);
9491 fail:
9492 	preempt_enable_notrace();
9493 }
9494 
9495 static void perf_swevent_read(struct perf_event *event)
9496 {
9497 }
9498 
9499 static int perf_swevent_add(struct perf_event *event, int flags)
9500 {
9501 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9502 	struct hw_perf_event *hwc = &event->hw;
9503 	struct hlist_head *head;
9504 
9505 	if (is_sampling_event(event)) {
9506 		hwc->last_period = hwc->sample_period;
9507 		perf_swevent_set_period(event);
9508 	}
9509 
9510 	hwc->state = !(flags & PERF_EF_START);
9511 
9512 	head = find_swevent_head(swhash, event);
9513 	if (WARN_ON_ONCE(!head))
9514 		return -EINVAL;
9515 
9516 	hlist_add_head_rcu(&event->hlist_entry, head);
9517 	perf_event_update_userpage(event);
9518 
9519 	return 0;
9520 }
9521 
9522 static void perf_swevent_del(struct perf_event *event, int flags)
9523 {
9524 	hlist_del_rcu(&event->hlist_entry);
9525 }
9526 
9527 static void perf_swevent_start(struct perf_event *event, int flags)
9528 {
9529 	event->hw.state = 0;
9530 }
9531 
9532 static void perf_swevent_stop(struct perf_event *event, int flags)
9533 {
9534 	event->hw.state = PERF_HES_STOPPED;
9535 }
9536 
9537 /* Deref the hlist from the update side */
9538 static inline struct swevent_hlist *
9539 swevent_hlist_deref(struct swevent_htable *swhash)
9540 {
9541 	return rcu_dereference_protected(swhash->swevent_hlist,
9542 					 lockdep_is_held(&swhash->hlist_mutex));
9543 }
9544 
9545 static void swevent_hlist_release(struct swevent_htable *swhash)
9546 {
9547 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9548 
9549 	if (!hlist)
9550 		return;
9551 
9552 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9553 	kfree_rcu(hlist, rcu_head);
9554 }
9555 
9556 static void swevent_hlist_put_cpu(int cpu)
9557 {
9558 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9559 
9560 	mutex_lock(&swhash->hlist_mutex);
9561 
9562 	if (!--swhash->hlist_refcount)
9563 		swevent_hlist_release(swhash);
9564 
9565 	mutex_unlock(&swhash->hlist_mutex);
9566 }
9567 
9568 static void swevent_hlist_put(void)
9569 {
9570 	int cpu;
9571 
9572 	for_each_possible_cpu(cpu)
9573 		swevent_hlist_put_cpu(cpu);
9574 }
9575 
9576 static int swevent_hlist_get_cpu(int cpu)
9577 {
9578 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9579 	int err = 0;
9580 
9581 	mutex_lock(&swhash->hlist_mutex);
9582 	if (!swevent_hlist_deref(swhash) &&
9583 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9584 		struct swevent_hlist *hlist;
9585 
9586 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9587 		if (!hlist) {
9588 			err = -ENOMEM;
9589 			goto exit;
9590 		}
9591 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9592 	}
9593 	swhash->hlist_refcount++;
9594 exit:
9595 	mutex_unlock(&swhash->hlist_mutex);
9596 
9597 	return err;
9598 }
9599 
9600 static int swevent_hlist_get(void)
9601 {
9602 	int err, cpu, failed_cpu;
9603 
9604 	mutex_lock(&pmus_lock);
9605 	for_each_possible_cpu(cpu) {
9606 		err = swevent_hlist_get_cpu(cpu);
9607 		if (err) {
9608 			failed_cpu = cpu;
9609 			goto fail;
9610 		}
9611 	}
9612 	mutex_unlock(&pmus_lock);
9613 	return 0;
9614 fail:
9615 	for_each_possible_cpu(cpu) {
9616 		if (cpu == failed_cpu)
9617 			break;
9618 		swevent_hlist_put_cpu(cpu);
9619 	}
9620 	mutex_unlock(&pmus_lock);
9621 	return err;
9622 }
9623 
9624 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9625 
9626 static void sw_perf_event_destroy(struct perf_event *event)
9627 {
9628 	u64 event_id = event->attr.config;
9629 
9630 	WARN_ON(event->parent);
9631 
9632 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9633 	swevent_hlist_put();
9634 }
9635 
9636 static int perf_swevent_init(struct perf_event *event)
9637 {
9638 	u64 event_id = event->attr.config;
9639 
9640 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9641 		return -ENOENT;
9642 
9643 	/*
9644 	 * no branch sampling for software events
9645 	 */
9646 	if (has_branch_stack(event))
9647 		return -EOPNOTSUPP;
9648 
9649 	switch (event_id) {
9650 	case PERF_COUNT_SW_CPU_CLOCK:
9651 	case PERF_COUNT_SW_TASK_CLOCK:
9652 		return -ENOENT;
9653 
9654 	default:
9655 		break;
9656 	}
9657 
9658 	if (event_id >= PERF_COUNT_SW_MAX)
9659 		return -ENOENT;
9660 
9661 	if (!event->parent) {
9662 		int err;
9663 
9664 		err = swevent_hlist_get();
9665 		if (err)
9666 			return err;
9667 
9668 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
9669 		event->destroy = sw_perf_event_destroy;
9670 	}
9671 
9672 	return 0;
9673 }
9674 
9675 static struct pmu perf_swevent = {
9676 	.task_ctx_nr	= perf_sw_context,
9677 
9678 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9679 
9680 	.event_init	= perf_swevent_init,
9681 	.add		= perf_swevent_add,
9682 	.del		= perf_swevent_del,
9683 	.start		= perf_swevent_start,
9684 	.stop		= perf_swevent_stop,
9685 	.read		= perf_swevent_read,
9686 };
9687 
9688 #ifdef CONFIG_EVENT_TRACING
9689 
9690 static int perf_tp_filter_match(struct perf_event *event,
9691 				struct perf_sample_data *data)
9692 {
9693 	void *record = data->raw->frag.data;
9694 
9695 	/* only top level events have filters set */
9696 	if (event->parent)
9697 		event = event->parent;
9698 
9699 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
9700 		return 1;
9701 	return 0;
9702 }
9703 
9704 static int perf_tp_event_match(struct perf_event *event,
9705 				struct perf_sample_data *data,
9706 				struct pt_regs *regs)
9707 {
9708 	if (event->hw.state & PERF_HES_STOPPED)
9709 		return 0;
9710 	/*
9711 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9712 	 */
9713 	if (event->attr.exclude_kernel && !user_mode(regs))
9714 		return 0;
9715 
9716 	if (!perf_tp_filter_match(event, data))
9717 		return 0;
9718 
9719 	return 1;
9720 }
9721 
9722 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9723 			       struct trace_event_call *call, u64 count,
9724 			       struct pt_regs *regs, struct hlist_head *head,
9725 			       struct task_struct *task)
9726 {
9727 	if (bpf_prog_array_valid(call)) {
9728 		*(struct pt_regs **)raw_data = regs;
9729 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9730 			perf_swevent_put_recursion_context(rctx);
9731 			return;
9732 		}
9733 	}
9734 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9735 		      rctx, task);
9736 }
9737 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9738 
9739 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9740 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
9741 		   struct task_struct *task)
9742 {
9743 	struct perf_sample_data data;
9744 	struct perf_event *event;
9745 
9746 	struct perf_raw_record raw = {
9747 		.frag = {
9748 			.size = entry_size,
9749 			.data = record,
9750 		},
9751 	};
9752 
9753 	perf_sample_data_init(&data, 0, 0);
9754 	data.raw = &raw;
9755 
9756 	perf_trace_buf_update(record, event_type);
9757 
9758 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9759 		if (perf_tp_event_match(event, &data, regs))
9760 			perf_swevent_event(event, count, &data, regs);
9761 	}
9762 
9763 	/*
9764 	 * If we got specified a target task, also iterate its context and
9765 	 * deliver this event there too.
9766 	 */
9767 	if (task && task != current) {
9768 		struct perf_event_context *ctx;
9769 		struct trace_entry *entry = record;
9770 
9771 		rcu_read_lock();
9772 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9773 		if (!ctx)
9774 			goto unlock;
9775 
9776 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9777 			if (event->cpu != smp_processor_id())
9778 				continue;
9779 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
9780 				continue;
9781 			if (event->attr.config != entry->type)
9782 				continue;
9783 			/* Cannot deliver synchronous signal to other task. */
9784 			if (event->attr.sigtrap)
9785 				continue;
9786 			if (perf_tp_event_match(event, &data, regs))
9787 				perf_swevent_event(event, count, &data, regs);
9788 		}
9789 unlock:
9790 		rcu_read_unlock();
9791 	}
9792 
9793 	perf_swevent_put_recursion_context(rctx);
9794 }
9795 EXPORT_SYMBOL_GPL(perf_tp_event);
9796 
9797 static void tp_perf_event_destroy(struct perf_event *event)
9798 {
9799 	perf_trace_destroy(event);
9800 }
9801 
9802 static int perf_tp_event_init(struct perf_event *event)
9803 {
9804 	int err;
9805 
9806 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
9807 		return -ENOENT;
9808 
9809 	/*
9810 	 * no branch sampling for tracepoint events
9811 	 */
9812 	if (has_branch_stack(event))
9813 		return -EOPNOTSUPP;
9814 
9815 	err = perf_trace_init(event);
9816 	if (err)
9817 		return err;
9818 
9819 	event->destroy = tp_perf_event_destroy;
9820 
9821 	return 0;
9822 }
9823 
9824 static struct pmu perf_tracepoint = {
9825 	.task_ctx_nr	= perf_sw_context,
9826 
9827 	.event_init	= perf_tp_event_init,
9828 	.add		= perf_trace_add,
9829 	.del		= perf_trace_del,
9830 	.start		= perf_swevent_start,
9831 	.stop		= perf_swevent_stop,
9832 	.read		= perf_swevent_read,
9833 };
9834 
9835 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9836 /*
9837  * Flags in config, used by dynamic PMU kprobe and uprobe
9838  * The flags should match following PMU_FORMAT_ATTR().
9839  *
9840  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9841  *                               if not set, create kprobe/uprobe
9842  *
9843  * The following values specify a reference counter (or semaphore in the
9844  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9845  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9846  *
9847  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
9848  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
9849  */
9850 enum perf_probe_config {
9851 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9852 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9853 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9854 };
9855 
9856 PMU_FORMAT_ATTR(retprobe, "config:0");
9857 #endif
9858 
9859 #ifdef CONFIG_KPROBE_EVENTS
9860 static struct attribute *kprobe_attrs[] = {
9861 	&format_attr_retprobe.attr,
9862 	NULL,
9863 };
9864 
9865 static struct attribute_group kprobe_format_group = {
9866 	.name = "format",
9867 	.attrs = kprobe_attrs,
9868 };
9869 
9870 static const struct attribute_group *kprobe_attr_groups[] = {
9871 	&kprobe_format_group,
9872 	NULL,
9873 };
9874 
9875 static int perf_kprobe_event_init(struct perf_event *event);
9876 static struct pmu perf_kprobe = {
9877 	.task_ctx_nr	= perf_sw_context,
9878 	.event_init	= perf_kprobe_event_init,
9879 	.add		= perf_trace_add,
9880 	.del		= perf_trace_del,
9881 	.start		= perf_swevent_start,
9882 	.stop		= perf_swevent_stop,
9883 	.read		= perf_swevent_read,
9884 	.attr_groups	= kprobe_attr_groups,
9885 };
9886 
9887 static int perf_kprobe_event_init(struct perf_event *event)
9888 {
9889 	int err;
9890 	bool is_retprobe;
9891 
9892 	if (event->attr.type != perf_kprobe.type)
9893 		return -ENOENT;
9894 
9895 	if (!perfmon_capable())
9896 		return -EACCES;
9897 
9898 	/*
9899 	 * no branch sampling for probe events
9900 	 */
9901 	if (has_branch_stack(event))
9902 		return -EOPNOTSUPP;
9903 
9904 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9905 	err = perf_kprobe_init(event, is_retprobe);
9906 	if (err)
9907 		return err;
9908 
9909 	event->destroy = perf_kprobe_destroy;
9910 
9911 	return 0;
9912 }
9913 #endif /* CONFIG_KPROBE_EVENTS */
9914 
9915 #ifdef CONFIG_UPROBE_EVENTS
9916 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9917 
9918 static struct attribute *uprobe_attrs[] = {
9919 	&format_attr_retprobe.attr,
9920 	&format_attr_ref_ctr_offset.attr,
9921 	NULL,
9922 };
9923 
9924 static struct attribute_group uprobe_format_group = {
9925 	.name = "format",
9926 	.attrs = uprobe_attrs,
9927 };
9928 
9929 static const struct attribute_group *uprobe_attr_groups[] = {
9930 	&uprobe_format_group,
9931 	NULL,
9932 };
9933 
9934 static int perf_uprobe_event_init(struct perf_event *event);
9935 static struct pmu perf_uprobe = {
9936 	.task_ctx_nr	= perf_sw_context,
9937 	.event_init	= perf_uprobe_event_init,
9938 	.add		= perf_trace_add,
9939 	.del		= perf_trace_del,
9940 	.start		= perf_swevent_start,
9941 	.stop		= perf_swevent_stop,
9942 	.read		= perf_swevent_read,
9943 	.attr_groups	= uprobe_attr_groups,
9944 };
9945 
9946 static int perf_uprobe_event_init(struct perf_event *event)
9947 {
9948 	int err;
9949 	unsigned long ref_ctr_offset;
9950 	bool is_retprobe;
9951 
9952 	if (event->attr.type != perf_uprobe.type)
9953 		return -ENOENT;
9954 
9955 	if (!perfmon_capable())
9956 		return -EACCES;
9957 
9958 	/*
9959 	 * no branch sampling for probe events
9960 	 */
9961 	if (has_branch_stack(event))
9962 		return -EOPNOTSUPP;
9963 
9964 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9965 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9966 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9967 	if (err)
9968 		return err;
9969 
9970 	event->destroy = perf_uprobe_destroy;
9971 
9972 	return 0;
9973 }
9974 #endif /* CONFIG_UPROBE_EVENTS */
9975 
9976 static inline void perf_tp_register(void)
9977 {
9978 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9979 #ifdef CONFIG_KPROBE_EVENTS
9980 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9981 #endif
9982 #ifdef CONFIG_UPROBE_EVENTS
9983 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9984 #endif
9985 }
9986 
9987 static void perf_event_free_filter(struct perf_event *event)
9988 {
9989 	ftrace_profile_free_filter(event);
9990 }
9991 
9992 #ifdef CONFIG_BPF_SYSCALL
9993 static void bpf_overflow_handler(struct perf_event *event,
9994 				 struct perf_sample_data *data,
9995 				 struct pt_regs *regs)
9996 {
9997 	struct bpf_perf_event_data_kern ctx = {
9998 		.data = data,
9999 		.event = event,
10000 	};
10001 	struct bpf_prog *prog;
10002 	int ret = 0;
10003 
10004 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10005 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10006 		goto out;
10007 	rcu_read_lock();
10008 	prog = READ_ONCE(event->prog);
10009 	if (prog)
10010 		ret = bpf_prog_run(prog, &ctx);
10011 	rcu_read_unlock();
10012 out:
10013 	__this_cpu_dec(bpf_prog_active);
10014 	if (!ret)
10015 		return;
10016 
10017 	event->orig_overflow_handler(event, data, regs);
10018 }
10019 
10020 static int perf_event_set_bpf_handler(struct perf_event *event,
10021 				      struct bpf_prog *prog,
10022 				      u64 bpf_cookie)
10023 {
10024 	if (event->overflow_handler_context)
10025 		/* hw breakpoint or kernel counter */
10026 		return -EINVAL;
10027 
10028 	if (event->prog)
10029 		return -EEXIST;
10030 
10031 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10032 		return -EINVAL;
10033 
10034 	if (event->attr.precise_ip &&
10035 	    prog->call_get_stack &&
10036 	    (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10037 	     event->attr.exclude_callchain_kernel ||
10038 	     event->attr.exclude_callchain_user)) {
10039 		/*
10040 		 * On perf_event with precise_ip, calling bpf_get_stack()
10041 		 * may trigger unwinder warnings and occasional crashes.
10042 		 * bpf_get_[stack|stackid] works around this issue by using
10043 		 * callchain attached to perf_sample_data. If the
10044 		 * perf_event does not full (kernel and user) callchain
10045 		 * attached to perf_sample_data, do not allow attaching BPF
10046 		 * program that calls bpf_get_[stack|stackid].
10047 		 */
10048 		return -EPROTO;
10049 	}
10050 
10051 	event->prog = prog;
10052 	event->bpf_cookie = bpf_cookie;
10053 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10054 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10055 	return 0;
10056 }
10057 
10058 static void perf_event_free_bpf_handler(struct perf_event *event)
10059 {
10060 	struct bpf_prog *prog = event->prog;
10061 
10062 	if (!prog)
10063 		return;
10064 
10065 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10066 	event->prog = NULL;
10067 	bpf_prog_put(prog);
10068 }
10069 #else
10070 static int perf_event_set_bpf_handler(struct perf_event *event,
10071 				      struct bpf_prog *prog,
10072 				      u64 bpf_cookie)
10073 {
10074 	return -EOPNOTSUPP;
10075 }
10076 static void perf_event_free_bpf_handler(struct perf_event *event)
10077 {
10078 }
10079 #endif
10080 
10081 /*
10082  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10083  * with perf_event_open()
10084  */
10085 static inline bool perf_event_is_tracing(struct perf_event *event)
10086 {
10087 	if (event->pmu == &perf_tracepoint)
10088 		return true;
10089 #ifdef CONFIG_KPROBE_EVENTS
10090 	if (event->pmu == &perf_kprobe)
10091 		return true;
10092 #endif
10093 #ifdef CONFIG_UPROBE_EVENTS
10094 	if (event->pmu == &perf_uprobe)
10095 		return true;
10096 #endif
10097 	return false;
10098 }
10099 
10100 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10101 			    u64 bpf_cookie)
10102 {
10103 	bool is_kprobe, is_tracepoint, is_syscall_tp;
10104 
10105 	if (!perf_event_is_tracing(event))
10106 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10107 
10108 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10109 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10110 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10111 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10112 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10113 		return -EINVAL;
10114 
10115 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10116 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10117 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10118 		return -EINVAL;
10119 
10120 	/* Kprobe override only works for kprobes, not uprobes. */
10121 	if (prog->kprobe_override &&
10122 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10123 		return -EINVAL;
10124 
10125 	if (is_tracepoint || is_syscall_tp) {
10126 		int off = trace_event_get_offsets(event->tp_event);
10127 
10128 		if (prog->aux->max_ctx_offset > off)
10129 			return -EACCES;
10130 	}
10131 
10132 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10133 }
10134 
10135 void perf_event_free_bpf_prog(struct perf_event *event)
10136 {
10137 	if (!perf_event_is_tracing(event)) {
10138 		perf_event_free_bpf_handler(event);
10139 		return;
10140 	}
10141 	perf_event_detach_bpf_prog(event);
10142 }
10143 
10144 #else
10145 
10146 static inline void perf_tp_register(void)
10147 {
10148 }
10149 
10150 static void perf_event_free_filter(struct perf_event *event)
10151 {
10152 }
10153 
10154 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10155 			    u64 bpf_cookie)
10156 {
10157 	return -ENOENT;
10158 }
10159 
10160 void perf_event_free_bpf_prog(struct perf_event *event)
10161 {
10162 }
10163 #endif /* CONFIG_EVENT_TRACING */
10164 
10165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10166 void perf_bp_event(struct perf_event *bp, void *data)
10167 {
10168 	struct perf_sample_data sample;
10169 	struct pt_regs *regs = data;
10170 
10171 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10172 
10173 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10174 		perf_swevent_event(bp, 1, &sample, regs);
10175 }
10176 #endif
10177 
10178 /*
10179  * Allocate a new address filter
10180  */
10181 static struct perf_addr_filter *
10182 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10183 {
10184 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10185 	struct perf_addr_filter *filter;
10186 
10187 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10188 	if (!filter)
10189 		return NULL;
10190 
10191 	INIT_LIST_HEAD(&filter->entry);
10192 	list_add_tail(&filter->entry, filters);
10193 
10194 	return filter;
10195 }
10196 
10197 static void free_filters_list(struct list_head *filters)
10198 {
10199 	struct perf_addr_filter *filter, *iter;
10200 
10201 	list_for_each_entry_safe(filter, iter, filters, entry) {
10202 		path_put(&filter->path);
10203 		list_del(&filter->entry);
10204 		kfree(filter);
10205 	}
10206 }
10207 
10208 /*
10209  * Free existing address filters and optionally install new ones
10210  */
10211 static void perf_addr_filters_splice(struct perf_event *event,
10212 				     struct list_head *head)
10213 {
10214 	unsigned long flags;
10215 	LIST_HEAD(list);
10216 
10217 	if (!has_addr_filter(event))
10218 		return;
10219 
10220 	/* don't bother with children, they don't have their own filters */
10221 	if (event->parent)
10222 		return;
10223 
10224 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10225 
10226 	list_splice_init(&event->addr_filters.list, &list);
10227 	if (head)
10228 		list_splice(head, &event->addr_filters.list);
10229 
10230 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10231 
10232 	free_filters_list(&list);
10233 }
10234 
10235 /*
10236  * Scan through mm's vmas and see if one of them matches the
10237  * @filter; if so, adjust filter's address range.
10238  * Called with mm::mmap_lock down for reading.
10239  */
10240 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10241 				   struct mm_struct *mm,
10242 				   struct perf_addr_filter_range *fr)
10243 {
10244 	struct vm_area_struct *vma;
10245 
10246 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
10247 		if (!vma->vm_file)
10248 			continue;
10249 
10250 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10251 			return;
10252 	}
10253 }
10254 
10255 /*
10256  * Update event's address range filters based on the
10257  * task's existing mappings, if any.
10258  */
10259 static void perf_event_addr_filters_apply(struct perf_event *event)
10260 {
10261 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10262 	struct task_struct *task = READ_ONCE(event->ctx->task);
10263 	struct perf_addr_filter *filter;
10264 	struct mm_struct *mm = NULL;
10265 	unsigned int count = 0;
10266 	unsigned long flags;
10267 
10268 	/*
10269 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10270 	 * will stop on the parent's child_mutex that our caller is also holding
10271 	 */
10272 	if (task == TASK_TOMBSTONE)
10273 		return;
10274 
10275 	if (ifh->nr_file_filters) {
10276 		mm = get_task_mm(task);
10277 		if (!mm)
10278 			goto restart;
10279 
10280 		mmap_read_lock(mm);
10281 	}
10282 
10283 	raw_spin_lock_irqsave(&ifh->lock, flags);
10284 	list_for_each_entry(filter, &ifh->list, entry) {
10285 		if (filter->path.dentry) {
10286 			/*
10287 			 * Adjust base offset if the filter is associated to a
10288 			 * binary that needs to be mapped:
10289 			 */
10290 			event->addr_filter_ranges[count].start = 0;
10291 			event->addr_filter_ranges[count].size = 0;
10292 
10293 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10294 		} else {
10295 			event->addr_filter_ranges[count].start = filter->offset;
10296 			event->addr_filter_ranges[count].size  = filter->size;
10297 		}
10298 
10299 		count++;
10300 	}
10301 
10302 	event->addr_filters_gen++;
10303 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10304 
10305 	if (ifh->nr_file_filters) {
10306 		mmap_read_unlock(mm);
10307 
10308 		mmput(mm);
10309 	}
10310 
10311 restart:
10312 	perf_event_stop(event, 1);
10313 }
10314 
10315 /*
10316  * Address range filtering: limiting the data to certain
10317  * instruction address ranges. Filters are ioctl()ed to us from
10318  * userspace as ascii strings.
10319  *
10320  * Filter string format:
10321  *
10322  * ACTION RANGE_SPEC
10323  * where ACTION is one of the
10324  *  * "filter": limit the trace to this region
10325  *  * "start": start tracing from this address
10326  *  * "stop": stop tracing at this address/region;
10327  * RANGE_SPEC is
10328  *  * for kernel addresses: <start address>[/<size>]
10329  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10330  *
10331  * if <size> is not specified or is zero, the range is treated as a single
10332  * address; not valid for ACTION=="filter".
10333  */
10334 enum {
10335 	IF_ACT_NONE = -1,
10336 	IF_ACT_FILTER,
10337 	IF_ACT_START,
10338 	IF_ACT_STOP,
10339 	IF_SRC_FILE,
10340 	IF_SRC_KERNEL,
10341 	IF_SRC_FILEADDR,
10342 	IF_SRC_KERNELADDR,
10343 };
10344 
10345 enum {
10346 	IF_STATE_ACTION = 0,
10347 	IF_STATE_SOURCE,
10348 	IF_STATE_END,
10349 };
10350 
10351 static const match_table_t if_tokens = {
10352 	{ IF_ACT_FILTER,	"filter" },
10353 	{ IF_ACT_START,		"start" },
10354 	{ IF_ACT_STOP,		"stop" },
10355 	{ IF_SRC_FILE,		"%u/%u@%s" },
10356 	{ IF_SRC_KERNEL,	"%u/%u" },
10357 	{ IF_SRC_FILEADDR,	"%u@%s" },
10358 	{ IF_SRC_KERNELADDR,	"%u" },
10359 	{ IF_ACT_NONE,		NULL },
10360 };
10361 
10362 /*
10363  * Address filter string parser
10364  */
10365 static int
10366 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10367 			     struct list_head *filters)
10368 {
10369 	struct perf_addr_filter *filter = NULL;
10370 	char *start, *orig, *filename = NULL;
10371 	substring_t args[MAX_OPT_ARGS];
10372 	int state = IF_STATE_ACTION, token;
10373 	unsigned int kernel = 0;
10374 	int ret = -EINVAL;
10375 
10376 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10377 	if (!fstr)
10378 		return -ENOMEM;
10379 
10380 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10381 		static const enum perf_addr_filter_action_t actions[] = {
10382 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10383 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10384 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10385 		};
10386 		ret = -EINVAL;
10387 
10388 		if (!*start)
10389 			continue;
10390 
10391 		/* filter definition begins */
10392 		if (state == IF_STATE_ACTION) {
10393 			filter = perf_addr_filter_new(event, filters);
10394 			if (!filter)
10395 				goto fail;
10396 		}
10397 
10398 		token = match_token(start, if_tokens, args);
10399 		switch (token) {
10400 		case IF_ACT_FILTER:
10401 		case IF_ACT_START:
10402 		case IF_ACT_STOP:
10403 			if (state != IF_STATE_ACTION)
10404 				goto fail;
10405 
10406 			filter->action = actions[token];
10407 			state = IF_STATE_SOURCE;
10408 			break;
10409 
10410 		case IF_SRC_KERNELADDR:
10411 		case IF_SRC_KERNEL:
10412 			kernel = 1;
10413 			fallthrough;
10414 
10415 		case IF_SRC_FILEADDR:
10416 		case IF_SRC_FILE:
10417 			if (state != IF_STATE_SOURCE)
10418 				goto fail;
10419 
10420 			*args[0].to = 0;
10421 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10422 			if (ret)
10423 				goto fail;
10424 
10425 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10426 				*args[1].to = 0;
10427 				ret = kstrtoul(args[1].from, 0, &filter->size);
10428 				if (ret)
10429 					goto fail;
10430 			}
10431 
10432 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10433 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10434 
10435 				kfree(filename);
10436 				filename = match_strdup(&args[fpos]);
10437 				if (!filename) {
10438 					ret = -ENOMEM;
10439 					goto fail;
10440 				}
10441 			}
10442 
10443 			state = IF_STATE_END;
10444 			break;
10445 
10446 		default:
10447 			goto fail;
10448 		}
10449 
10450 		/*
10451 		 * Filter definition is fully parsed, validate and install it.
10452 		 * Make sure that it doesn't contradict itself or the event's
10453 		 * attribute.
10454 		 */
10455 		if (state == IF_STATE_END) {
10456 			ret = -EINVAL;
10457 			if (kernel && event->attr.exclude_kernel)
10458 				goto fail;
10459 
10460 			/*
10461 			 * ACTION "filter" must have a non-zero length region
10462 			 * specified.
10463 			 */
10464 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10465 			    !filter->size)
10466 				goto fail;
10467 
10468 			if (!kernel) {
10469 				if (!filename)
10470 					goto fail;
10471 
10472 				/*
10473 				 * For now, we only support file-based filters
10474 				 * in per-task events; doing so for CPU-wide
10475 				 * events requires additional context switching
10476 				 * trickery, since same object code will be
10477 				 * mapped at different virtual addresses in
10478 				 * different processes.
10479 				 */
10480 				ret = -EOPNOTSUPP;
10481 				if (!event->ctx->task)
10482 					goto fail;
10483 
10484 				/* look up the path and grab its inode */
10485 				ret = kern_path(filename, LOOKUP_FOLLOW,
10486 						&filter->path);
10487 				if (ret)
10488 					goto fail;
10489 
10490 				ret = -EINVAL;
10491 				if (!filter->path.dentry ||
10492 				    !S_ISREG(d_inode(filter->path.dentry)
10493 					     ->i_mode))
10494 					goto fail;
10495 
10496 				event->addr_filters.nr_file_filters++;
10497 			}
10498 
10499 			/* ready to consume more filters */
10500 			state = IF_STATE_ACTION;
10501 			filter = NULL;
10502 		}
10503 	}
10504 
10505 	if (state != IF_STATE_ACTION)
10506 		goto fail;
10507 
10508 	kfree(filename);
10509 	kfree(orig);
10510 
10511 	return 0;
10512 
10513 fail:
10514 	kfree(filename);
10515 	free_filters_list(filters);
10516 	kfree(orig);
10517 
10518 	return ret;
10519 }
10520 
10521 static int
10522 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10523 {
10524 	LIST_HEAD(filters);
10525 	int ret;
10526 
10527 	/*
10528 	 * Since this is called in perf_ioctl() path, we're already holding
10529 	 * ctx::mutex.
10530 	 */
10531 	lockdep_assert_held(&event->ctx->mutex);
10532 
10533 	if (WARN_ON_ONCE(event->parent))
10534 		return -EINVAL;
10535 
10536 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10537 	if (ret)
10538 		goto fail_clear_files;
10539 
10540 	ret = event->pmu->addr_filters_validate(&filters);
10541 	if (ret)
10542 		goto fail_free_filters;
10543 
10544 	/* remove existing filters, if any */
10545 	perf_addr_filters_splice(event, &filters);
10546 
10547 	/* install new filters */
10548 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10549 
10550 	return ret;
10551 
10552 fail_free_filters:
10553 	free_filters_list(&filters);
10554 
10555 fail_clear_files:
10556 	event->addr_filters.nr_file_filters = 0;
10557 
10558 	return ret;
10559 }
10560 
10561 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10562 {
10563 	int ret = -EINVAL;
10564 	char *filter_str;
10565 
10566 	filter_str = strndup_user(arg, PAGE_SIZE);
10567 	if (IS_ERR(filter_str))
10568 		return PTR_ERR(filter_str);
10569 
10570 #ifdef CONFIG_EVENT_TRACING
10571 	if (perf_event_is_tracing(event)) {
10572 		struct perf_event_context *ctx = event->ctx;
10573 
10574 		/*
10575 		 * Beware, here be dragons!!
10576 		 *
10577 		 * the tracepoint muck will deadlock against ctx->mutex, but
10578 		 * the tracepoint stuff does not actually need it. So
10579 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10580 		 * already have a reference on ctx.
10581 		 *
10582 		 * This can result in event getting moved to a different ctx,
10583 		 * but that does not affect the tracepoint state.
10584 		 */
10585 		mutex_unlock(&ctx->mutex);
10586 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10587 		mutex_lock(&ctx->mutex);
10588 	} else
10589 #endif
10590 	if (has_addr_filter(event))
10591 		ret = perf_event_set_addr_filter(event, filter_str);
10592 
10593 	kfree(filter_str);
10594 	return ret;
10595 }
10596 
10597 /*
10598  * hrtimer based swevent callback
10599  */
10600 
10601 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10602 {
10603 	enum hrtimer_restart ret = HRTIMER_RESTART;
10604 	struct perf_sample_data data;
10605 	struct pt_regs *regs;
10606 	struct perf_event *event;
10607 	u64 period;
10608 
10609 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10610 
10611 	if (event->state != PERF_EVENT_STATE_ACTIVE)
10612 		return HRTIMER_NORESTART;
10613 
10614 	event->pmu->read(event);
10615 
10616 	perf_sample_data_init(&data, 0, event->hw.last_period);
10617 	regs = get_irq_regs();
10618 
10619 	if (regs && !perf_exclude_event(event, regs)) {
10620 		if (!(event->attr.exclude_idle && is_idle_task(current)))
10621 			if (__perf_event_overflow(event, 1, &data, regs))
10622 				ret = HRTIMER_NORESTART;
10623 	}
10624 
10625 	period = max_t(u64, 10000, event->hw.sample_period);
10626 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10627 
10628 	return ret;
10629 }
10630 
10631 static void perf_swevent_start_hrtimer(struct perf_event *event)
10632 {
10633 	struct hw_perf_event *hwc = &event->hw;
10634 	s64 period;
10635 
10636 	if (!is_sampling_event(event))
10637 		return;
10638 
10639 	period = local64_read(&hwc->period_left);
10640 	if (period) {
10641 		if (period < 0)
10642 			period = 10000;
10643 
10644 		local64_set(&hwc->period_left, 0);
10645 	} else {
10646 		period = max_t(u64, 10000, hwc->sample_period);
10647 	}
10648 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10649 		      HRTIMER_MODE_REL_PINNED_HARD);
10650 }
10651 
10652 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10653 {
10654 	struct hw_perf_event *hwc = &event->hw;
10655 
10656 	if (is_sampling_event(event)) {
10657 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10658 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
10659 
10660 		hrtimer_cancel(&hwc->hrtimer);
10661 	}
10662 }
10663 
10664 static void perf_swevent_init_hrtimer(struct perf_event *event)
10665 {
10666 	struct hw_perf_event *hwc = &event->hw;
10667 
10668 	if (!is_sampling_event(event))
10669 		return;
10670 
10671 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10672 	hwc->hrtimer.function = perf_swevent_hrtimer;
10673 
10674 	/*
10675 	 * Since hrtimers have a fixed rate, we can do a static freq->period
10676 	 * mapping and avoid the whole period adjust feedback stuff.
10677 	 */
10678 	if (event->attr.freq) {
10679 		long freq = event->attr.sample_freq;
10680 
10681 		event->attr.sample_period = NSEC_PER_SEC / freq;
10682 		hwc->sample_period = event->attr.sample_period;
10683 		local64_set(&hwc->period_left, hwc->sample_period);
10684 		hwc->last_period = hwc->sample_period;
10685 		event->attr.freq = 0;
10686 	}
10687 }
10688 
10689 /*
10690  * Software event: cpu wall time clock
10691  */
10692 
10693 static void cpu_clock_event_update(struct perf_event *event)
10694 {
10695 	s64 prev;
10696 	u64 now;
10697 
10698 	now = local_clock();
10699 	prev = local64_xchg(&event->hw.prev_count, now);
10700 	local64_add(now - prev, &event->count);
10701 }
10702 
10703 static void cpu_clock_event_start(struct perf_event *event, int flags)
10704 {
10705 	local64_set(&event->hw.prev_count, local_clock());
10706 	perf_swevent_start_hrtimer(event);
10707 }
10708 
10709 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10710 {
10711 	perf_swevent_cancel_hrtimer(event);
10712 	cpu_clock_event_update(event);
10713 }
10714 
10715 static int cpu_clock_event_add(struct perf_event *event, int flags)
10716 {
10717 	if (flags & PERF_EF_START)
10718 		cpu_clock_event_start(event, flags);
10719 	perf_event_update_userpage(event);
10720 
10721 	return 0;
10722 }
10723 
10724 static void cpu_clock_event_del(struct perf_event *event, int flags)
10725 {
10726 	cpu_clock_event_stop(event, flags);
10727 }
10728 
10729 static void cpu_clock_event_read(struct perf_event *event)
10730 {
10731 	cpu_clock_event_update(event);
10732 }
10733 
10734 static int cpu_clock_event_init(struct perf_event *event)
10735 {
10736 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10737 		return -ENOENT;
10738 
10739 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10740 		return -ENOENT;
10741 
10742 	/*
10743 	 * no branch sampling for software events
10744 	 */
10745 	if (has_branch_stack(event))
10746 		return -EOPNOTSUPP;
10747 
10748 	perf_swevent_init_hrtimer(event);
10749 
10750 	return 0;
10751 }
10752 
10753 static struct pmu perf_cpu_clock = {
10754 	.task_ctx_nr	= perf_sw_context,
10755 
10756 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10757 
10758 	.event_init	= cpu_clock_event_init,
10759 	.add		= cpu_clock_event_add,
10760 	.del		= cpu_clock_event_del,
10761 	.start		= cpu_clock_event_start,
10762 	.stop		= cpu_clock_event_stop,
10763 	.read		= cpu_clock_event_read,
10764 };
10765 
10766 /*
10767  * Software event: task time clock
10768  */
10769 
10770 static void task_clock_event_update(struct perf_event *event, u64 now)
10771 {
10772 	u64 prev;
10773 	s64 delta;
10774 
10775 	prev = local64_xchg(&event->hw.prev_count, now);
10776 	delta = now - prev;
10777 	local64_add(delta, &event->count);
10778 }
10779 
10780 static void task_clock_event_start(struct perf_event *event, int flags)
10781 {
10782 	local64_set(&event->hw.prev_count, event->ctx->time);
10783 	perf_swevent_start_hrtimer(event);
10784 }
10785 
10786 static void task_clock_event_stop(struct perf_event *event, int flags)
10787 {
10788 	perf_swevent_cancel_hrtimer(event);
10789 	task_clock_event_update(event, event->ctx->time);
10790 }
10791 
10792 static int task_clock_event_add(struct perf_event *event, int flags)
10793 {
10794 	if (flags & PERF_EF_START)
10795 		task_clock_event_start(event, flags);
10796 	perf_event_update_userpage(event);
10797 
10798 	return 0;
10799 }
10800 
10801 static void task_clock_event_del(struct perf_event *event, int flags)
10802 {
10803 	task_clock_event_stop(event, PERF_EF_UPDATE);
10804 }
10805 
10806 static void task_clock_event_read(struct perf_event *event)
10807 {
10808 	u64 now = perf_clock();
10809 	u64 delta = now - event->ctx->timestamp;
10810 	u64 time = event->ctx->time + delta;
10811 
10812 	task_clock_event_update(event, time);
10813 }
10814 
10815 static int task_clock_event_init(struct perf_event *event)
10816 {
10817 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10818 		return -ENOENT;
10819 
10820 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10821 		return -ENOENT;
10822 
10823 	/*
10824 	 * no branch sampling for software events
10825 	 */
10826 	if (has_branch_stack(event))
10827 		return -EOPNOTSUPP;
10828 
10829 	perf_swevent_init_hrtimer(event);
10830 
10831 	return 0;
10832 }
10833 
10834 static struct pmu perf_task_clock = {
10835 	.task_ctx_nr	= perf_sw_context,
10836 
10837 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10838 
10839 	.event_init	= task_clock_event_init,
10840 	.add		= task_clock_event_add,
10841 	.del		= task_clock_event_del,
10842 	.start		= task_clock_event_start,
10843 	.stop		= task_clock_event_stop,
10844 	.read		= task_clock_event_read,
10845 };
10846 
10847 static void perf_pmu_nop_void(struct pmu *pmu)
10848 {
10849 }
10850 
10851 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10852 {
10853 }
10854 
10855 static int perf_pmu_nop_int(struct pmu *pmu)
10856 {
10857 	return 0;
10858 }
10859 
10860 static int perf_event_nop_int(struct perf_event *event, u64 value)
10861 {
10862 	return 0;
10863 }
10864 
10865 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10866 
10867 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10868 {
10869 	__this_cpu_write(nop_txn_flags, flags);
10870 
10871 	if (flags & ~PERF_PMU_TXN_ADD)
10872 		return;
10873 
10874 	perf_pmu_disable(pmu);
10875 }
10876 
10877 static int perf_pmu_commit_txn(struct pmu *pmu)
10878 {
10879 	unsigned int flags = __this_cpu_read(nop_txn_flags);
10880 
10881 	__this_cpu_write(nop_txn_flags, 0);
10882 
10883 	if (flags & ~PERF_PMU_TXN_ADD)
10884 		return 0;
10885 
10886 	perf_pmu_enable(pmu);
10887 	return 0;
10888 }
10889 
10890 static void perf_pmu_cancel_txn(struct pmu *pmu)
10891 {
10892 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
10893 
10894 	__this_cpu_write(nop_txn_flags, 0);
10895 
10896 	if (flags & ~PERF_PMU_TXN_ADD)
10897 		return;
10898 
10899 	perf_pmu_enable(pmu);
10900 }
10901 
10902 static int perf_event_idx_default(struct perf_event *event)
10903 {
10904 	return 0;
10905 }
10906 
10907 /*
10908  * Ensures all contexts with the same task_ctx_nr have the same
10909  * pmu_cpu_context too.
10910  */
10911 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10912 {
10913 	struct pmu *pmu;
10914 
10915 	if (ctxn < 0)
10916 		return NULL;
10917 
10918 	list_for_each_entry(pmu, &pmus, entry) {
10919 		if (pmu->task_ctx_nr == ctxn)
10920 			return pmu->pmu_cpu_context;
10921 	}
10922 
10923 	return NULL;
10924 }
10925 
10926 static void free_pmu_context(struct pmu *pmu)
10927 {
10928 	/*
10929 	 * Static contexts such as perf_sw_context have a global lifetime
10930 	 * and may be shared between different PMUs. Avoid freeing them
10931 	 * when a single PMU is going away.
10932 	 */
10933 	if (pmu->task_ctx_nr > perf_invalid_context)
10934 		return;
10935 
10936 	free_percpu(pmu->pmu_cpu_context);
10937 }
10938 
10939 /*
10940  * Let userspace know that this PMU supports address range filtering:
10941  */
10942 static ssize_t nr_addr_filters_show(struct device *dev,
10943 				    struct device_attribute *attr,
10944 				    char *page)
10945 {
10946 	struct pmu *pmu = dev_get_drvdata(dev);
10947 
10948 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10949 }
10950 DEVICE_ATTR_RO(nr_addr_filters);
10951 
10952 static struct idr pmu_idr;
10953 
10954 static ssize_t
10955 type_show(struct device *dev, struct device_attribute *attr, char *page)
10956 {
10957 	struct pmu *pmu = dev_get_drvdata(dev);
10958 
10959 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10960 }
10961 static DEVICE_ATTR_RO(type);
10962 
10963 static ssize_t
10964 perf_event_mux_interval_ms_show(struct device *dev,
10965 				struct device_attribute *attr,
10966 				char *page)
10967 {
10968 	struct pmu *pmu = dev_get_drvdata(dev);
10969 
10970 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10971 }
10972 
10973 static DEFINE_MUTEX(mux_interval_mutex);
10974 
10975 static ssize_t
10976 perf_event_mux_interval_ms_store(struct device *dev,
10977 				 struct device_attribute *attr,
10978 				 const char *buf, size_t count)
10979 {
10980 	struct pmu *pmu = dev_get_drvdata(dev);
10981 	int timer, cpu, ret;
10982 
10983 	ret = kstrtoint(buf, 0, &timer);
10984 	if (ret)
10985 		return ret;
10986 
10987 	if (timer < 1)
10988 		return -EINVAL;
10989 
10990 	/* same value, noting to do */
10991 	if (timer == pmu->hrtimer_interval_ms)
10992 		return count;
10993 
10994 	mutex_lock(&mux_interval_mutex);
10995 	pmu->hrtimer_interval_ms = timer;
10996 
10997 	/* update all cpuctx for this PMU */
10998 	cpus_read_lock();
10999 	for_each_online_cpu(cpu) {
11000 		struct perf_cpu_context *cpuctx;
11001 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11002 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11003 
11004 		cpu_function_call(cpu,
11005 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11006 	}
11007 	cpus_read_unlock();
11008 	mutex_unlock(&mux_interval_mutex);
11009 
11010 	return count;
11011 }
11012 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11013 
11014 static struct attribute *pmu_dev_attrs[] = {
11015 	&dev_attr_type.attr,
11016 	&dev_attr_perf_event_mux_interval_ms.attr,
11017 	NULL,
11018 };
11019 ATTRIBUTE_GROUPS(pmu_dev);
11020 
11021 static int pmu_bus_running;
11022 static struct bus_type pmu_bus = {
11023 	.name		= "event_source",
11024 	.dev_groups	= pmu_dev_groups,
11025 };
11026 
11027 static void pmu_dev_release(struct device *dev)
11028 {
11029 	kfree(dev);
11030 }
11031 
11032 static int pmu_dev_alloc(struct pmu *pmu)
11033 {
11034 	int ret = -ENOMEM;
11035 
11036 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11037 	if (!pmu->dev)
11038 		goto out;
11039 
11040 	pmu->dev->groups = pmu->attr_groups;
11041 	device_initialize(pmu->dev);
11042 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11043 	if (ret)
11044 		goto free_dev;
11045 
11046 	dev_set_drvdata(pmu->dev, pmu);
11047 	pmu->dev->bus = &pmu_bus;
11048 	pmu->dev->release = pmu_dev_release;
11049 	ret = device_add(pmu->dev);
11050 	if (ret)
11051 		goto free_dev;
11052 
11053 	/* For PMUs with address filters, throw in an extra attribute: */
11054 	if (pmu->nr_addr_filters)
11055 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11056 
11057 	if (ret)
11058 		goto del_dev;
11059 
11060 	if (pmu->attr_update)
11061 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11062 
11063 	if (ret)
11064 		goto del_dev;
11065 
11066 out:
11067 	return ret;
11068 
11069 del_dev:
11070 	device_del(pmu->dev);
11071 
11072 free_dev:
11073 	put_device(pmu->dev);
11074 	goto out;
11075 }
11076 
11077 static struct lock_class_key cpuctx_mutex;
11078 static struct lock_class_key cpuctx_lock;
11079 
11080 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11081 {
11082 	int cpu, ret, max = PERF_TYPE_MAX;
11083 
11084 	mutex_lock(&pmus_lock);
11085 	ret = -ENOMEM;
11086 	pmu->pmu_disable_count = alloc_percpu(int);
11087 	if (!pmu->pmu_disable_count)
11088 		goto unlock;
11089 
11090 	pmu->type = -1;
11091 	if (!name)
11092 		goto skip_type;
11093 	pmu->name = name;
11094 
11095 	if (type != PERF_TYPE_SOFTWARE) {
11096 		if (type >= 0)
11097 			max = type;
11098 
11099 		ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11100 		if (ret < 0)
11101 			goto free_pdc;
11102 
11103 		WARN_ON(type >= 0 && ret != type);
11104 
11105 		type = ret;
11106 	}
11107 	pmu->type = type;
11108 
11109 	if (pmu_bus_running) {
11110 		ret = pmu_dev_alloc(pmu);
11111 		if (ret)
11112 			goto free_idr;
11113 	}
11114 
11115 skip_type:
11116 	if (pmu->task_ctx_nr == perf_hw_context) {
11117 		static int hw_context_taken = 0;
11118 
11119 		/*
11120 		 * Other than systems with heterogeneous CPUs, it never makes
11121 		 * sense for two PMUs to share perf_hw_context. PMUs which are
11122 		 * uncore must use perf_invalid_context.
11123 		 */
11124 		if (WARN_ON_ONCE(hw_context_taken &&
11125 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11126 			pmu->task_ctx_nr = perf_invalid_context;
11127 
11128 		hw_context_taken = 1;
11129 	}
11130 
11131 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11132 	if (pmu->pmu_cpu_context)
11133 		goto got_cpu_context;
11134 
11135 	ret = -ENOMEM;
11136 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11137 	if (!pmu->pmu_cpu_context)
11138 		goto free_dev;
11139 
11140 	for_each_possible_cpu(cpu) {
11141 		struct perf_cpu_context *cpuctx;
11142 
11143 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11144 		__perf_event_init_context(&cpuctx->ctx);
11145 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11146 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11147 		cpuctx->ctx.pmu = pmu;
11148 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11149 
11150 		__perf_mux_hrtimer_init(cpuctx, cpu);
11151 
11152 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11153 		cpuctx->heap = cpuctx->heap_default;
11154 	}
11155 
11156 got_cpu_context:
11157 	if (!pmu->start_txn) {
11158 		if (pmu->pmu_enable) {
11159 			/*
11160 			 * If we have pmu_enable/pmu_disable calls, install
11161 			 * transaction stubs that use that to try and batch
11162 			 * hardware accesses.
11163 			 */
11164 			pmu->start_txn  = perf_pmu_start_txn;
11165 			pmu->commit_txn = perf_pmu_commit_txn;
11166 			pmu->cancel_txn = perf_pmu_cancel_txn;
11167 		} else {
11168 			pmu->start_txn  = perf_pmu_nop_txn;
11169 			pmu->commit_txn = perf_pmu_nop_int;
11170 			pmu->cancel_txn = perf_pmu_nop_void;
11171 		}
11172 	}
11173 
11174 	if (!pmu->pmu_enable) {
11175 		pmu->pmu_enable  = perf_pmu_nop_void;
11176 		pmu->pmu_disable = perf_pmu_nop_void;
11177 	}
11178 
11179 	if (!pmu->check_period)
11180 		pmu->check_period = perf_event_nop_int;
11181 
11182 	if (!pmu->event_idx)
11183 		pmu->event_idx = perf_event_idx_default;
11184 
11185 	/*
11186 	 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11187 	 * since these cannot be in the IDR. This way the linear search
11188 	 * is fast, provided a valid software event is provided.
11189 	 */
11190 	if (type == PERF_TYPE_SOFTWARE || !name)
11191 		list_add_rcu(&pmu->entry, &pmus);
11192 	else
11193 		list_add_tail_rcu(&pmu->entry, &pmus);
11194 
11195 	atomic_set(&pmu->exclusive_cnt, 0);
11196 	ret = 0;
11197 unlock:
11198 	mutex_unlock(&pmus_lock);
11199 
11200 	return ret;
11201 
11202 free_dev:
11203 	device_del(pmu->dev);
11204 	put_device(pmu->dev);
11205 
11206 free_idr:
11207 	if (pmu->type != PERF_TYPE_SOFTWARE)
11208 		idr_remove(&pmu_idr, pmu->type);
11209 
11210 free_pdc:
11211 	free_percpu(pmu->pmu_disable_count);
11212 	goto unlock;
11213 }
11214 EXPORT_SYMBOL_GPL(perf_pmu_register);
11215 
11216 void perf_pmu_unregister(struct pmu *pmu)
11217 {
11218 	mutex_lock(&pmus_lock);
11219 	list_del_rcu(&pmu->entry);
11220 
11221 	/*
11222 	 * We dereference the pmu list under both SRCU and regular RCU, so
11223 	 * synchronize against both of those.
11224 	 */
11225 	synchronize_srcu(&pmus_srcu);
11226 	synchronize_rcu();
11227 
11228 	free_percpu(pmu->pmu_disable_count);
11229 	if (pmu->type != PERF_TYPE_SOFTWARE)
11230 		idr_remove(&pmu_idr, pmu->type);
11231 	if (pmu_bus_running) {
11232 		if (pmu->nr_addr_filters)
11233 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11234 		device_del(pmu->dev);
11235 		put_device(pmu->dev);
11236 	}
11237 	free_pmu_context(pmu);
11238 	mutex_unlock(&pmus_lock);
11239 }
11240 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11241 
11242 static inline bool has_extended_regs(struct perf_event *event)
11243 {
11244 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11245 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11246 }
11247 
11248 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11249 {
11250 	struct perf_event_context *ctx = NULL;
11251 	int ret;
11252 
11253 	if (!try_module_get(pmu->module))
11254 		return -ENODEV;
11255 
11256 	/*
11257 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11258 	 * for example, validate if the group fits on the PMU. Therefore,
11259 	 * if this is a sibling event, acquire the ctx->mutex to protect
11260 	 * the sibling_list.
11261 	 */
11262 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11263 		/*
11264 		 * This ctx->mutex can nest when we're called through
11265 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11266 		 */
11267 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11268 						 SINGLE_DEPTH_NESTING);
11269 		BUG_ON(!ctx);
11270 	}
11271 
11272 	event->pmu = pmu;
11273 	ret = pmu->event_init(event);
11274 
11275 	if (ctx)
11276 		perf_event_ctx_unlock(event->group_leader, ctx);
11277 
11278 	if (!ret) {
11279 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11280 		    has_extended_regs(event))
11281 			ret = -EOPNOTSUPP;
11282 
11283 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11284 		    event_has_any_exclude_flag(event))
11285 			ret = -EINVAL;
11286 
11287 		if (ret && event->destroy)
11288 			event->destroy(event);
11289 	}
11290 
11291 	if (ret)
11292 		module_put(pmu->module);
11293 
11294 	return ret;
11295 }
11296 
11297 static struct pmu *perf_init_event(struct perf_event *event)
11298 {
11299 	bool extended_type = false;
11300 	int idx, type, ret;
11301 	struct pmu *pmu;
11302 
11303 	idx = srcu_read_lock(&pmus_srcu);
11304 
11305 	/* Try parent's PMU first: */
11306 	if (event->parent && event->parent->pmu) {
11307 		pmu = event->parent->pmu;
11308 		ret = perf_try_init_event(pmu, event);
11309 		if (!ret)
11310 			goto unlock;
11311 	}
11312 
11313 	/*
11314 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11315 	 * are often aliases for PERF_TYPE_RAW.
11316 	 */
11317 	type = event->attr.type;
11318 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11319 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11320 		if (!type) {
11321 			type = PERF_TYPE_RAW;
11322 		} else {
11323 			extended_type = true;
11324 			event->attr.config &= PERF_HW_EVENT_MASK;
11325 		}
11326 	}
11327 
11328 again:
11329 	rcu_read_lock();
11330 	pmu = idr_find(&pmu_idr, type);
11331 	rcu_read_unlock();
11332 	if (pmu) {
11333 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11334 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11335 			goto fail;
11336 
11337 		ret = perf_try_init_event(pmu, event);
11338 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11339 			type = event->attr.type;
11340 			goto again;
11341 		}
11342 
11343 		if (ret)
11344 			pmu = ERR_PTR(ret);
11345 
11346 		goto unlock;
11347 	}
11348 
11349 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11350 		ret = perf_try_init_event(pmu, event);
11351 		if (!ret)
11352 			goto unlock;
11353 
11354 		if (ret != -ENOENT) {
11355 			pmu = ERR_PTR(ret);
11356 			goto unlock;
11357 		}
11358 	}
11359 fail:
11360 	pmu = ERR_PTR(-ENOENT);
11361 unlock:
11362 	srcu_read_unlock(&pmus_srcu, idx);
11363 
11364 	return pmu;
11365 }
11366 
11367 static void attach_sb_event(struct perf_event *event)
11368 {
11369 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11370 
11371 	raw_spin_lock(&pel->lock);
11372 	list_add_rcu(&event->sb_list, &pel->list);
11373 	raw_spin_unlock(&pel->lock);
11374 }
11375 
11376 /*
11377  * We keep a list of all !task (and therefore per-cpu) events
11378  * that need to receive side-band records.
11379  *
11380  * This avoids having to scan all the various PMU per-cpu contexts
11381  * looking for them.
11382  */
11383 static void account_pmu_sb_event(struct perf_event *event)
11384 {
11385 	if (is_sb_event(event))
11386 		attach_sb_event(event);
11387 }
11388 
11389 static void account_event_cpu(struct perf_event *event, int cpu)
11390 {
11391 	if (event->parent)
11392 		return;
11393 
11394 	if (is_cgroup_event(event))
11395 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11396 }
11397 
11398 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11399 static void account_freq_event_nohz(void)
11400 {
11401 #ifdef CONFIG_NO_HZ_FULL
11402 	/* Lock so we don't race with concurrent unaccount */
11403 	spin_lock(&nr_freq_lock);
11404 	if (atomic_inc_return(&nr_freq_events) == 1)
11405 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11406 	spin_unlock(&nr_freq_lock);
11407 #endif
11408 }
11409 
11410 static void account_freq_event(void)
11411 {
11412 	if (tick_nohz_full_enabled())
11413 		account_freq_event_nohz();
11414 	else
11415 		atomic_inc(&nr_freq_events);
11416 }
11417 
11418 
11419 static void account_event(struct perf_event *event)
11420 {
11421 	bool inc = false;
11422 
11423 	if (event->parent)
11424 		return;
11425 
11426 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11427 		inc = true;
11428 	if (event->attr.mmap || event->attr.mmap_data)
11429 		atomic_inc(&nr_mmap_events);
11430 	if (event->attr.build_id)
11431 		atomic_inc(&nr_build_id_events);
11432 	if (event->attr.comm)
11433 		atomic_inc(&nr_comm_events);
11434 	if (event->attr.namespaces)
11435 		atomic_inc(&nr_namespaces_events);
11436 	if (event->attr.cgroup)
11437 		atomic_inc(&nr_cgroup_events);
11438 	if (event->attr.task)
11439 		atomic_inc(&nr_task_events);
11440 	if (event->attr.freq)
11441 		account_freq_event();
11442 	if (event->attr.context_switch) {
11443 		atomic_inc(&nr_switch_events);
11444 		inc = true;
11445 	}
11446 	if (has_branch_stack(event))
11447 		inc = true;
11448 	if (is_cgroup_event(event))
11449 		inc = true;
11450 	if (event->attr.ksymbol)
11451 		atomic_inc(&nr_ksymbol_events);
11452 	if (event->attr.bpf_event)
11453 		atomic_inc(&nr_bpf_events);
11454 	if (event->attr.text_poke)
11455 		atomic_inc(&nr_text_poke_events);
11456 
11457 	if (inc) {
11458 		/*
11459 		 * We need the mutex here because static_branch_enable()
11460 		 * must complete *before* the perf_sched_count increment
11461 		 * becomes visible.
11462 		 */
11463 		if (atomic_inc_not_zero(&perf_sched_count))
11464 			goto enabled;
11465 
11466 		mutex_lock(&perf_sched_mutex);
11467 		if (!atomic_read(&perf_sched_count)) {
11468 			static_branch_enable(&perf_sched_events);
11469 			/*
11470 			 * Guarantee that all CPUs observe they key change and
11471 			 * call the perf scheduling hooks before proceeding to
11472 			 * install events that need them.
11473 			 */
11474 			synchronize_rcu();
11475 		}
11476 		/*
11477 		 * Now that we have waited for the sync_sched(), allow further
11478 		 * increments to by-pass the mutex.
11479 		 */
11480 		atomic_inc(&perf_sched_count);
11481 		mutex_unlock(&perf_sched_mutex);
11482 	}
11483 enabled:
11484 
11485 	account_event_cpu(event, event->cpu);
11486 
11487 	account_pmu_sb_event(event);
11488 }
11489 
11490 /*
11491  * Allocate and initialize an event structure
11492  */
11493 static struct perf_event *
11494 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11495 		 struct task_struct *task,
11496 		 struct perf_event *group_leader,
11497 		 struct perf_event *parent_event,
11498 		 perf_overflow_handler_t overflow_handler,
11499 		 void *context, int cgroup_fd)
11500 {
11501 	struct pmu *pmu;
11502 	struct perf_event *event;
11503 	struct hw_perf_event *hwc;
11504 	long err = -EINVAL;
11505 	int node;
11506 
11507 	if ((unsigned)cpu >= nr_cpu_ids) {
11508 		if (!task || cpu != -1)
11509 			return ERR_PTR(-EINVAL);
11510 	}
11511 	if (attr->sigtrap && !task) {
11512 		/* Requires a task: avoid signalling random tasks. */
11513 		return ERR_PTR(-EINVAL);
11514 	}
11515 
11516 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11517 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11518 				      node);
11519 	if (!event)
11520 		return ERR_PTR(-ENOMEM);
11521 
11522 	/*
11523 	 * Single events are their own group leaders, with an
11524 	 * empty sibling list:
11525 	 */
11526 	if (!group_leader)
11527 		group_leader = event;
11528 
11529 	mutex_init(&event->child_mutex);
11530 	INIT_LIST_HEAD(&event->child_list);
11531 
11532 	INIT_LIST_HEAD(&event->event_entry);
11533 	INIT_LIST_HEAD(&event->sibling_list);
11534 	INIT_LIST_HEAD(&event->active_list);
11535 	init_event_group(event);
11536 	INIT_LIST_HEAD(&event->rb_entry);
11537 	INIT_LIST_HEAD(&event->active_entry);
11538 	INIT_LIST_HEAD(&event->addr_filters.list);
11539 	INIT_HLIST_NODE(&event->hlist_entry);
11540 
11541 
11542 	init_waitqueue_head(&event->waitq);
11543 	event->pending_disable = -1;
11544 	init_irq_work(&event->pending, perf_pending_event);
11545 
11546 	mutex_init(&event->mmap_mutex);
11547 	raw_spin_lock_init(&event->addr_filters.lock);
11548 
11549 	atomic_long_set(&event->refcount, 1);
11550 	event->cpu		= cpu;
11551 	event->attr		= *attr;
11552 	event->group_leader	= group_leader;
11553 	event->pmu		= NULL;
11554 	event->oncpu		= -1;
11555 
11556 	event->parent		= parent_event;
11557 
11558 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11559 	event->id		= atomic64_inc_return(&perf_event_id);
11560 
11561 	event->state		= PERF_EVENT_STATE_INACTIVE;
11562 
11563 	if (event->attr.sigtrap)
11564 		atomic_set(&event->event_limit, 1);
11565 
11566 	if (task) {
11567 		event->attach_state = PERF_ATTACH_TASK;
11568 		/*
11569 		 * XXX pmu::event_init needs to know what task to account to
11570 		 * and we cannot use the ctx information because we need the
11571 		 * pmu before we get a ctx.
11572 		 */
11573 		event->hw.target = get_task_struct(task);
11574 	}
11575 
11576 	event->clock = &local_clock;
11577 	if (parent_event)
11578 		event->clock = parent_event->clock;
11579 
11580 	if (!overflow_handler && parent_event) {
11581 		overflow_handler = parent_event->overflow_handler;
11582 		context = parent_event->overflow_handler_context;
11583 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11584 		if (overflow_handler == bpf_overflow_handler) {
11585 			struct bpf_prog *prog = parent_event->prog;
11586 
11587 			bpf_prog_inc(prog);
11588 			event->prog = prog;
11589 			event->orig_overflow_handler =
11590 				parent_event->orig_overflow_handler;
11591 		}
11592 #endif
11593 	}
11594 
11595 	if (overflow_handler) {
11596 		event->overflow_handler	= overflow_handler;
11597 		event->overflow_handler_context = context;
11598 	} else if (is_write_backward(event)){
11599 		event->overflow_handler = perf_event_output_backward;
11600 		event->overflow_handler_context = NULL;
11601 	} else {
11602 		event->overflow_handler = perf_event_output_forward;
11603 		event->overflow_handler_context = NULL;
11604 	}
11605 
11606 	perf_event__state_init(event);
11607 
11608 	pmu = NULL;
11609 
11610 	hwc = &event->hw;
11611 	hwc->sample_period = attr->sample_period;
11612 	if (attr->freq && attr->sample_freq)
11613 		hwc->sample_period = 1;
11614 	hwc->last_period = hwc->sample_period;
11615 
11616 	local64_set(&hwc->period_left, hwc->sample_period);
11617 
11618 	/*
11619 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11620 	 * See perf_output_read().
11621 	 */
11622 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11623 		goto err_ns;
11624 
11625 	if (!has_branch_stack(event))
11626 		event->attr.branch_sample_type = 0;
11627 
11628 	pmu = perf_init_event(event);
11629 	if (IS_ERR(pmu)) {
11630 		err = PTR_ERR(pmu);
11631 		goto err_ns;
11632 	}
11633 
11634 	/*
11635 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11636 	 * be different on other CPUs in the uncore mask.
11637 	 */
11638 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11639 		err = -EINVAL;
11640 		goto err_pmu;
11641 	}
11642 
11643 	if (event->attr.aux_output &&
11644 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11645 		err = -EOPNOTSUPP;
11646 		goto err_pmu;
11647 	}
11648 
11649 	if (cgroup_fd != -1) {
11650 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11651 		if (err)
11652 			goto err_pmu;
11653 	}
11654 
11655 	err = exclusive_event_init(event);
11656 	if (err)
11657 		goto err_pmu;
11658 
11659 	if (has_addr_filter(event)) {
11660 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11661 						    sizeof(struct perf_addr_filter_range),
11662 						    GFP_KERNEL);
11663 		if (!event->addr_filter_ranges) {
11664 			err = -ENOMEM;
11665 			goto err_per_task;
11666 		}
11667 
11668 		/*
11669 		 * Clone the parent's vma offsets: they are valid until exec()
11670 		 * even if the mm is not shared with the parent.
11671 		 */
11672 		if (event->parent) {
11673 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11674 
11675 			raw_spin_lock_irq(&ifh->lock);
11676 			memcpy(event->addr_filter_ranges,
11677 			       event->parent->addr_filter_ranges,
11678 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11679 			raw_spin_unlock_irq(&ifh->lock);
11680 		}
11681 
11682 		/* force hw sync on the address filters */
11683 		event->addr_filters_gen = 1;
11684 	}
11685 
11686 	if (!event->parent) {
11687 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11688 			err = get_callchain_buffers(attr->sample_max_stack);
11689 			if (err)
11690 				goto err_addr_filters;
11691 		}
11692 	}
11693 
11694 	err = security_perf_event_alloc(event);
11695 	if (err)
11696 		goto err_callchain_buffer;
11697 
11698 	/* symmetric to unaccount_event() in _free_event() */
11699 	account_event(event);
11700 
11701 	return event;
11702 
11703 err_callchain_buffer:
11704 	if (!event->parent) {
11705 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11706 			put_callchain_buffers();
11707 	}
11708 err_addr_filters:
11709 	kfree(event->addr_filter_ranges);
11710 
11711 err_per_task:
11712 	exclusive_event_destroy(event);
11713 
11714 err_pmu:
11715 	if (is_cgroup_event(event))
11716 		perf_detach_cgroup(event);
11717 	if (event->destroy)
11718 		event->destroy(event);
11719 	module_put(pmu->module);
11720 err_ns:
11721 	if (event->ns)
11722 		put_pid_ns(event->ns);
11723 	if (event->hw.target)
11724 		put_task_struct(event->hw.target);
11725 	kmem_cache_free(perf_event_cache, event);
11726 
11727 	return ERR_PTR(err);
11728 }
11729 
11730 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11731 			  struct perf_event_attr *attr)
11732 {
11733 	u32 size;
11734 	int ret;
11735 
11736 	/* Zero the full structure, so that a short copy will be nice. */
11737 	memset(attr, 0, sizeof(*attr));
11738 
11739 	ret = get_user(size, &uattr->size);
11740 	if (ret)
11741 		return ret;
11742 
11743 	/* ABI compatibility quirk: */
11744 	if (!size)
11745 		size = PERF_ATTR_SIZE_VER0;
11746 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11747 		goto err_size;
11748 
11749 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11750 	if (ret) {
11751 		if (ret == -E2BIG)
11752 			goto err_size;
11753 		return ret;
11754 	}
11755 
11756 	attr->size = size;
11757 
11758 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11759 		return -EINVAL;
11760 
11761 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11762 		return -EINVAL;
11763 
11764 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11765 		return -EINVAL;
11766 
11767 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11768 		u64 mask = attr->branch_sample_type;
11769 
11770 		/* only using defined bits */
11771 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11772 			return -EINVAL;
11773 
11774 		/* at least one branch bit must be set */
11775 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11776 			return -EINVAL;
11777 
11778 		/* propagate priv level, when not set for branch */
11779 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11780 
11781 			/* exclude_kernel checked on syscall entry */
11782 			if (!attr->exclude_kernel)
11783 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
11784 
11785 			if (!attr->exclude_user)
11786 				mask |= PERF_SAMPLE_BRANCH_USER;
11787 
11788 			if (!attr->exclude_hv)
11789 				mask |= PERF_SAMPLE_BRANCH_HV;
11790 			/*
11791 			 * adjust user setting (for HW filter setup)
11792 			 */
11793 			attr->branch_sample_type = mask;
11794 		}
11795 		/* privileged levels capture (kernel, hv): check permissions */
11796 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11797 			ret = perf_allow_kernel(attr);
11798 			if (ret)
11799 				return ret;
11800 		}
11801 	}
11802 
11803 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11804 		ret = perf_reg_validate(attr->sample_regs_user);
11805 		if (ret)
11806 			return ret;
11807 	}
11808 
11809 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11810 		if (!arch_perf_have_user_stack_dump())
11811 			return -ENOSYS;
11812 
11813 		/*
11814 		 * We have __u32 type for the size, but so far
11815 		 * we can only use __u16 as maximum due to the
11816 		 * __u16 sample size limit.
11817 		 */
11818 		if (attr->sample_stack_user >= USHRT_MAX)
11819 			return -EINVAL;
11820 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11821 			return -EINVAL;
11822 	}
11823 
11824 	if (!attr->sample_max_stack)
11825 		attr->sample_max_stack = sysctl_perf_event_max_stack;
11826 
11827 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11828 		ret = perf_reg_validate(attr->sample_regs_intr);
11829 
11830 #ifndef CONFIG_CGROUP_PERF
11831 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
11832 		return -EINVAL;
11833 #endif
11834 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11835 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11836 		return -EINVAL;
11837 
11838 	if (!attr->inherit && attr->inherit_thread)
11839 		return -EINVAL;
11840 
11841 	if (attr->remove_on_exec && attr->enable_on_exec)
11842 		return -EINVAL;
11843 
11844 	if (attr->sigtrap && !attr->remove_on_exec)
11845 		return -EINVAL;
11846 
11847 out:
11848 	return ret;
11849 
11850 err_size:
11851 	put_user(sizeof(*attr), &uattr->size);
11852 	ret = -E2BIG;
11853 	goto out;
11854 }
11855 
11856 static int
11857 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11858 {
11859 	struct perf_buffer *rb = NULL;
11860 	int ret = -EINVAL;
11861 
11862 	if (!output_event)
11863 		goto set;
11864 
11865 	/* don't allow circular references */
11866 	if (event == output_event)
11867 		goto out;
11868 
11869 	/*
11870 	 * Don't allow cross-cpu buffers
11871 	 */
11872 	if (output_event->cpu != event->cpu)
11873 		goto out;
11874 
11875 	/*
11876 	 * If its not a per-cpu rb, it must be the same task.
11877 	 */
11878 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11879 		goto out;
11880 
11881 	/*
11882 	 * Mixing clocks in the same buffer is trouble you don't need.
11883 	 */
11884 	if (output_event->clock != event->clock)
11885 		goto out;
11886 
11887 	/*
11888 	 * Either writing ring buffer from beginning or from end.
11889 	 * Mixing is not allowed.
11890 	 */
11891 	if (is_write_backward(output_event) != is_write_backward(event))
11892 		goto out;
11893 
11894 	/*
11895 	 * If both events generate aux data, they must be on the same PMU
11896 	 */
11897 	if (has_aux(event) && has_aux(output_event) &&
11898 	    event->pmu != output_event->pmu)
11899 		goto out;
11900 
11901 set:
11902 	mutex_lock(&event->mmap_mutex);
11903 	/* Can't redirect output if we've got an active mmap() */
11904 	if (atomic_read(&event->mmap_count))
11905 		goto unlock;
11906 
11907 	if (output_event) {
11908 		/* get the rb we want to redirect to */
11909 		rb = ring_buffer_get(output_event);
11910 		if (!rb)
11911 			goto unlock;
11912 	}
11913 
11914 	ring_buffer_attach(event, rb);
11915 
11916 	ret = 0;
11917 unlock:
11918 	mutex_unlock(&event->mmap_mutex);
11919 
11920 out:
11921 	return ret;
11922 }
11923 
11924 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11925 {
11926 	if (b < a)
11927 		swap(a, b);
11928 
11929 	mutex_lock(a);
11930 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11931 }
11932 
11933 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11934 {
11935 	bool nmi_safe = false;
11936 
11937 	switch (clk_id) {
11938 	case CLOCK_MONOTONIC:
11939 		event->clock = &ktime_get_mono_fast_ns;
11940 		nmi_safe = true;
11941 		break;
11942 
11943 	case CLOCK_MONOTONIC_RAW:
11944 		event->clock = &ktime_get_raw_fast_ns;
11945 		nmi_safe = true;
11946 		break;
11947 
11948 	case CLOCK_REALTIME:
11949 		event->clock = &ktime_get_real_ns;
11950 		break;
11951 
11952 	case CLOCK_BOOTTIME:
11953 		event->clock = &ktime_get_boottime_ns;
11954 		break;
11955 
11956 	case CLOCK_TAI:
11957 		event->clock = &ktime_get_clocktai_ns;
11958 		break;
11959 
11960 	default:
11961 		return -EINVAL;
11962 	}
11963 
11964 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11965 		return -EINVAL;
11966 
11967 	return 0;
11968 }
11969 
11970 /*
11971  * Variation on perf_event_ctx_lock_nested(), except we take two context
11972  * mutexes.
11973  */
11974 static struct perf_event_context *
11975 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11976 			     struct perf_event_context *ctx)
11977 {
11978 	struct perf_event_context *gctx;
11979 
11980 again:
11981 	rcu_read_lock();
11982 	gctx = READ_ONCE(group_leader->ctx);
11983 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11984 		rcu_read_unlock();
11985 		goto again;
11986 	}
11987 	rcu_read_unlock();
11988 
11989 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11990 
11991 	if (group_leader->ctx != gctx) {
11992 		mutex_unlock(&ctx->mutex);
11993 		mutex_unlock(&gctx->mutex);
11994 		put_ctx(gctx);
11995 		goto again;
11996 	}
11997 
11998 	return gctx;
11999 }
12000 
12001 static bool
12002 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12003 {
12004 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12005 	bool is_capable = perfmon_capable();
12006 
12007 	if (attr->sigtrap) {
12008 		/*
12009 		 * perf_event_attr::sigtrap sends signals to the other task.
12010 		 * Require the current task to also have CAP_KILL.
12011 		 */
12012 		rcu_read_lock();
12013 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12014 		rcu_read_unlock();
12015 
12016 		/*
12017 		 * If the required capabilities aren't available, checks for
12018 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12019 		 * can effectively change the target task.
12020 		 */
12021 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12022 	}
12023 
12024 	/*
12025 	 * Preserve ptrace permission check for backwards compatibility. The
12026 	 * ptrace check also includes checks that the current task and other
12027 	 * task have matching uids, and is therefore not done here explicitly.
12028 	 */
12029 	return is_capable || ptrace_may_access(task, ptrace_mode);
12030 }
12031 
12032 /**
12033  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12034  *
12035  * @attr_uptr:	event_id type attributes for monitoring/sampling
12036  * @pid:		target pid
12037  * @cpu:		target cpu
12038  * @group_fd:		group leader event fd
12039  * @flags:		perf event open flags
12040  */
12041 SYSCALL_DEFINE5(perf_event_open,
12042 		struct perf_event_attr __user *, attr_uptr,
12043 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12044 {
12045 	struct perf_event *group_leader = NULL, *output_event = NULL;
12046 	struct perf_event *event, *sibling;
12047 	struct perf_event_attr attr;
12048 	struct perf_event_context *ctx, *gctx;
12049 	struct file *event_file = NULL;
12050 	struct fd group = {NULL, 0};
12051 	struct task_struct *task = NULL;
12052 	struct pmu *pmu;
12053 	int event_fd;
12054 	int move_group = 0;
12055 	int err;
12056 	int f_flags = O_RDWR;
12057 	int cgroup_fd = -1;
12058 
12059 	/* for future expandability... */
12060 	if (flags & ~PERF_FLAG_ALL)
12061 		return -EINVAL;
12062 
12063 	/* Do we allow access to perf_event_open(2) ? */
12064 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12065 	if (err)
12066 		return err;
12067 
12068 	err = perf_copy_attr(attr_uptr, &attr);
12069 	if (err)
12070 		return err;
12071 
12072 	if (!attr.exclude_kernel) {
12073 		err = perf_allow_kernel(&attr);
12074 		if (err)
12075 			return err;
12076 	}
12077 
12078 	if (attr.namespaces) {
12079 		if (!perfmon_capable())
12080 			return -EACCES;
12081 	}
12082 
12083 	if (attr.freq) {
12084 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12085 			return -EINVAL;
12086 	} else {
12087 		if (attr.sample_period & (1ULL << 63))
12088 			return -EINVAL;
12089 	}
12090 
12091 	/* Only privileged users can get physical addresses */
12092 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12093 		err = perf_allow_kernel(&attr);
12094 		if (err)
12095 			return err;
12096 	}
12097 
12098 	/* REGS_INTR can leak data, lockdown must prevent this */
12099 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12100 		err = security_locked_down(LOCKDOWN_PERF);
12101 		if (err)
12102 			return err;
12103 	}
12104 
12105 	/*
12106 	 * In cgroup mode, the pid argument is used to pass the fd
12107 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12108 	 * designates the cpu on which to monitor threads from that
12109 	 * cgroup.
12110 	 */
12111 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12112 		return -EINVAL;
12113 
12114 	if (flags & PERF_FLAG_FD_CLOEXEC)
12115 		f_flags |= O_CLOEXEC;
12116 
12117 	event_fd = get_unused_fd_flags(f_flags);
12118 	if (event_fd < 0)
12119 		return event_fd;
12120 
12121 	if (group_fd != -1) {
12122 		err = perf_fget_light(group_fd, &group);
12123 		if (err)
12124 			goto err_fd;
12125 		group_leader = group.file->private_data;
12126 		if (flags & PERF_FLAG_FD_OUTPUT)
12127 			output_event = group_leader;
12128 		if (flags & PERF_FLAG_FD_NO_GROUP)
12129 			group_leader = NULL;
12130 	}
12131 
12132 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12133 		task = find_lively_task_by_vpid(pid);
12134 		if (IS_ERR(task)) {
12135 			err = PTR_ERR(task);
12136 			goto err_group_fd;
12137 		}
12138 	}
12139 
12140 	if (task && group_leader &&
12141 	    group_leader->attr.inherit != attr.inherit) {
12142 		err = -EINVAL;
12143 		goto err_task;
12144 	}
12145 
12146 	if (flags & PERF_FLAG_PID_CGROUP)
12147 		cgroup_fd = pid;
12148 
12149 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12150 				 NULL, NULL, cgroup_fd);
12151 	if (IS_ERR(event)) {
12152 		err = PTR_ERR(event);
12153 		goto err_task;
12154 	}
12155 
12156 	if (is_sampling_event(event)) {
12157 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12158 			err = -EOPNOTSUPP;
12159 			goto err_alloc;
12160 		}
12161 	}
12162 
12163 	/*
12164 	 * Special case software events and allow them to be part of
12165 	 * any hardware group.
12166 	 */
12167 	pmu = event->pmu;
12168 
12169 	if (attr.use_clockid) {
12170 		err = perf_event_set_clock(event, attr.clockid);
12171 		if (err)
12172 			goto err_alloc;
12173 	}
12174 
12175 	if (pmu->task_ctx_nr == perf_sw_context)
12176 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12177 
12178 	if (group_leader) {
12179 		if (is_software_event(event) &&
12180 		    !in_software_context(group_leader)) {
12181 			/*
12182 			 * If the event is a sw event, but the group_leader
12183 			 * is on hw context.
12184 			 *
12185 			 * Allow the addition of software events to hw
12186 			 * groups, this is safe because software events
12187 			 * never fail to schedule.
12188 			 */
12189 			pmu = group_leader->ctx->pmu;
12190 		} else if (!is_software_event(event) &&
12191 			   is_software_event(group_leader) &&
12192 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12193 			/*
12194 			 * In case the group is a pure software group, and we
12195 			 * try to add a hardware event, move the whole group to
12196 			 * the hardware context.
12197 			 */
12198 			move_group = 1;
12199 		}
12200 	}
12201 
12202 	/*
12203 	 * Get the target context (task or percpu):
12204 	 */
12205 	ctx = find_get_context(pmu, task, event);
12206 	if (IS_ERR(ctx)) {
12207 		err = PTR_ERR(ctx);
12208 		goto err_alloc;
12209 	}
12210 
12211 	/*
12212 	 * Look up the group leader (we will attach this event to it):
12213 	 */
12214 	if (group_leader) {
12215 		err = -EINVAL;
12216 
12217 		/*
12218 		 * Do not allow a recursive hierarchy (this new sibling
12219 		 * becoming part of another group-sibling):
12220 		 */
12221 		if (group_leader->group_leader != group_leader)
12222 			goto err_context;
12223 
12224 		/* All events in a group should have the same clock */
12225 		if (group_leader->clock != event->clock)
12226 			goto err_context;
12227 
12228 		/*
12229 		 * Make sure we're both events for the same CPU;
12230 		 * grouping events for different CPUs is broken; since
12231 		 * you can never concurrently schedule them anyhow.
12232 		 */
12233 		if (group_leader->cpu != event->cpu)
12234 			goto err_context;
12235 
12236 		/*
12237 		 * Make sure we're both on the same task, or both
12238 		 * per-CPU events.
12239 		 */
12240 		if (group_leader->ctx->task != ctx->task)
12241 			goto err_context;
12242 
12243 		/*
12244 		 * Do not allow to attach to a group in a different task
12245 		 * or CPU context. If we're moving SW events, we'll fix
12246 		 * this up later, so allow that.
12247 		 */
12248 		if (!move_group && group_leader->ctx != ctx)
12249 			goto err_context;
12250 
12251 		/*
12252 		 * Only a group leader can be exclusive or pinned
12253 		 */
12254 		if (attr.exclusive || attr.pinned)
12255 			goto err_context;
12256 	}
12257 
12258 	if (output_event) {
12259 		err = perf_event_set_output(event, output_event);
12260 		if (err)
12261 			goto err_context;
12262 	}
12263 
12264 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12265 					f_flags);
12266 	if (IS_ERR(event_file)) {
12267 		err = PTR_ERR(event_file);
12268 		event_file = NULL;
12269 		goto err_context;
12270 	}
12271 
12272 	if (task) {
12273 		err = down_read_interruptible(&task->signal->exec_update_lock);
12274 		if (err)
12275 			goto err_file;
12276 
12277 		/*
12278 		 * We must hold exec_update_lock across this and any potential
12279 		 * perf_install_in_context() call for this new event to
12280 		 * serialize against exec() altering our credentials (and the
12281 		 * perf_event_exit_task() that could imply).
12282 		 */
12283 		err = -EACCES;
12284 		if (!perf_check_permission(&attr, task))
12285 			goto err_cred;
12286 	}
12287 
12288 	if (move_group) {
12289 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12290 
12291 		if (gctx->task == TASK_TOMBSTONE) {
12292 			err = -ESRCH;
12293 			goto err_locked;
12294 		}
12295 
12296 		/*
12297 		 * Check if we raced against another sys_perf_event_open() call
12298 		 * moving the software group underneath us.
12299 		 */
12300 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12301 			/*
12302 			 * If someone moved the group out from under us, check
12303 			 * if this new event wound up on the same ctx, if so
12304 			 * its the regular !move_group case, otherwise fail.
12305 			 */
12306 			if (gctx != ctx) {
12307 				err = -EINVAL;
12308 				goto err_locked;
12309 			} else {
12310 				perf_event_ctx_unlock(group_leader, gctx);
12311 				move_group = 0;
12312 			}
12313 		}
12314 
12315 		/*
12316 		 * Failure to create exclusive events returns -EBUSY.
12317 		 */
12318 		err = -EBUSY;
12319 		if (!exclusive_event_installable(group_leader, ctx))
12320 			goto err_locked;
12321 
12322 		for_each_sibling_event(sibling, group_leader) {
12323 			if (!exclusive_event_installable(sibling, ctx))
12324 				goto err_locked;
12325 		}
12326 	} else {
12327 		mutex_lock(&ctx->mutex);
12328 	}
12329 
12330 	if (ctx->task == TASK_TOMBSTONE) {
12331 		err = -ESRCH;
12332 		goto err_locked;
12333 	}
12334 
12335 	if (!perf_event_validate_size(event)) {
12336 		err = -E2BIG;
12337 		goto err_locked;
12338 	}
12339 
12340 	if (!task) {
12341 		/*
12342 		 * Check if the @cpu we're creating an event for is online.
12343 		 *
12344 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12345 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12346 		 */
12347 		struct perf_cpu_context *cpuctx =
12348 			container_of(ctx, struct perf_cpu_context, ctx);
12349 
12350 		if (!cpuctx->online) {
12351 			err = -ENODEV;
12352 			goto err_locked;
12353 		}
12354 	}
12355 
12356 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12357 		err = -EINVAL;
12358 		goto err_locked;
12359 	}
12360 
12361 	/*
12362 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12363 	 * because we need to serialize with concurrent event creation.
12364 	 */
12365 	if (!exclusive_event_installable(event, ctx)) {
12366 		err = -EBUSY;
12367 		goto err_locked;
12368 	}
12369 
12370 	WARN_ON_ONCE(ctx->parent_ctx);
12371 
12372 	/*
12373 	 * This is the point on no return; we cannot fail hereafter. This is
12374 	 * where we start modifying current state.
12375 	 */
12376 
12377 	if (move_group) {
12378 		/*
12379 		 * See perf_event_ctx_lock() for comments on the details
12380 		 * of swizzling perf_event::ctx.
12381 		 */
12382 		perf_remove_from_context(group_leader, 0);
12383 		put_ctx(gctx);
12384 
12385 		for_each_sibling_event(sibling, group_leader) {
12386 			perf_remove_from_context(sibling, 0);
12387 			put_ctx(gctx);
12388 		}
12389 
12390 		/*
12391 		 * Wait for everybody to stop referencing the events through
12392 		 * the old lists, before installing it on new lists.
12393 		 */
12394 		synchronize_rcu();
12395 
12396 		/*
12397 		 * Install the group siblings before the group leader.
12398 		 *
12399 		 * Because a group leader will try and install the entire group
12400 		 * (through the sibling list, which is still in-tact), we can
12401 		 * end up with siblings installed in the wrong context.
12402 		 *
12403 		 * By installing siblings first we NO-OP because they're not
12404 		 * reachable through the group lists.
12405 		 */
12406 		for_each_sibling_event(sibling, group_leader) {
12407 			perf_event__state_init(sibling);
12408 			perf_install_in_context(ctx, sibling, sibling->cpu);
12409 			get_ctx(ctx);
12410 		}
12411 
12412 		/*
12413 		 * Removing from the context ends up with disabled
12414 		 * event. What we want here is event in the initial
12415 		 * startup state, ready to be add into new context.
12416 		 */
12417 		perf_event__state_init(group_leader);
12418 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12419 		get_ctx(ctx);
12420 	}
12421 
12422 	/*
12423 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12424 	 * that we're serialized against further additions and before
12425 	 * perf_install_in_context() which is the point the event is active and
12426 	 * can use these values.
12427 	 */
12428 	perf_event__header_size(event);
12429 	perf_event__id_header_size(event);
12430 
12431 	event->owner = current;
12432 
12433 	perf_install_in_context(ctx, event, event->cpu);
12434 	perf_unpin_context(ctx);
12435 
12436 	if (move_group)
12437 		perf_event_ctx_unlock(group_leader, gctx);
12438 	mutex_unlock(&ctx->mutex);
12439 
12440 	if (task) {
12441 		up_read(&task->signal->exec_update_lock);
12442 		put_task_struct(task);
12443 	}
12444 
12445 	mutex_lock(&current->perf_event_mutex);
12446 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12447 	mutex_unlock(&current->perf_event_mutex);
12448 
12449 	/*
12450 	 * Drop the reference on the group_event after placing the
12451 	 * new event on the sibling_list. This ensures destruction
12452 	 * of the group leader will find the pointer to itself in
12453 	 * perf_group_detach().
12454 	 */
12455 	fdput(group);
12456 	fd_install(event_fd, event_file);
12457 	return event_fd;
12458 
12459 err_locked:
12460 	if (move_group)
12461 		perf_event_ctx_unlock(group_leader, gctx);
12462 	mutex_unlock(&ctx->mutex);
12463 err_cred:
12464 	if (task)
12465 		up_read(&task->signal->exec_update_lock);
12466 err_file:
12467 	fput(event_file);
12468 err_context:
12469 	perf_unpin_context(ctx);
12470 	put_ctx(ctx);
12471 err_alloc:
12472 	/*
12473 	 * If event_file is set, the fput() above will have called ->release()
12474 	 * and that will take care of freeing the event.
12475 	 */
12476 	if (!event_file)
12477 		free_event(event);
12478 err_task:
12479 	if (task)
12480 		put_task_struct(task);
12481 err_group_fd:
12482 	fdput(group);
12483 err_fd:
12484 	put_unused_fd(event_fd);
12485 	return err;
12486 }
12487 
12488 /**
12489  * perf_event_create_kernel_counter
12490  *
12491  * @attr: attributes of the counter to create
12492  * @cpu: cpu in which the counter is bound
12493  * @task: task to profile (NULL for percpu)
12494  * @overflow_handler: callback to trigger when we hit the event
12495  * @context: context data could be used in overflow_handler callback
12496  */
12497 struct perf_event *
12498 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12499 				 struct task_struct *task,
12500 				 perf_overflow_handler_t overflow_handler,
12501 				 void *context)
12502 {
12503 	struct perf_event_context *ctx;
12504 	struct perf_event *event;
12505 	int err;
12506 
12507 	/*
12508 	 * Grouping is not supported for kernel events, neither is 'AUX',
12509 	 * make sure the caller's intentions are adjusted.
12510 	 */
12511 	if (attr->aux_output)
12512 		return ERR_PTR(-EINVAL);
12513 
12514 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12515 				 overflow_handler, context, -1);
12516 	if (IS_ERR(event)) {
12517 		err = PTR_ERR(event);
12518 		goto err;
12519 	}
12520 
12521 	/* Mark owner so we could distinguish it from user events. */
12522 	event->owner = TASK_TOMBSTONE;
12523 
12524 	/*
12525 	 * Get the target context (task or percpu):
12526 	 */
12527 	ctx = find_get_context(event->pmu, task, event);
12528 	if (IS_ERR(ctx)) {
12529 		err = PTR_ERR(ctx);
12530 		goto err_free;
12531 	}
12532 
12533 	WARN_ON_ONCE(ctx->parent_ctx);
12534 	mutex_lock(&ctx->mutex);
12535 	if (ctx->task == TASK_TOMBSTONE) {
12536 		err = -ESRCH;
12537 		goto err_unlock;
12538 	}
12539 
12540 	if (!task) {
12541 		/*
12542 		 * Check if the @cpu we're creating an event for is online.
12543 		 *
12544 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12545 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12546 		 */
12547 		struct perf_cpu_context *cpuctx =
12548 			container_of(ctx, struct perf_cpu_context, ctx);
12549 		if (!cpuctx->online) {
12550 			err = -ENODEV;
12551 			goto err_unlock;
12552 		}
12553 	}
12554 
12555 	if (!exclusive_event_installable(event, ctx)) {
12556 		err = -EBUSY;
12557 		goto err_unlock;
12558 	}
12559 
12560 	perf_install_in_context(ctx, event, event->cpu);
12561 	perf_unpin_context(ctx);
12562 	mutex_unlock(&ctx->mutex);
12563 
12564 	return event;
12565 
12566 err_unlock:
12567 	mutex_unlock(&ctx->mutex);
12568 	perf_unpin_context(ctx);
12569 	put_ctx(ctx);
12570 err_free:
12571 	free_event(event);
12572 err:
12573 	return ERR_PTR(err);
12574 }
12575 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12576 
12577 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12578 {
12579 	struct perf_event_context *src_ctx;
12580 	struct perf_event_context *dst_ctx;
12581 	struct perf_event *event, *tmp;
12582 	LIST_HEAD(events);
12583 
12584 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12585 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12586 
12587 	/*
12588 	 * See perf_event_ctx_lock() for comments on the details
12589 	 * of swizzling perf_event::ctx.
12590 	 */
12591 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12592 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12593 				 event_entry) {
12594 		perf_remove_from_context(event, 0);
12595 		unaccount_event_cpu(event, src_cpu);
12596 		put_ctx(src_ctx);
12597 		list_add(&event->migrate_entry, &events);
12598 	}
12599 
12600 	/*
12601 	 * Wait for the events to quiesce before re-instating them.
12602 	 */
12603 	synchronize_rcu();
12604 
12605 	/*
12606 	 * Re-instate events in 2 passes.
12607 	 *
12608 	 * Skip over group leaders and only install siblings on this first
12609 	 * pass, siblings will not get enabled without a leader, however a
12610 	 * leader will enable its siblings, even if those are still on the old
12611 	 * context.
12612 	 */
12613 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12614 		if (event->group_leader == event)
12615 			continue;
12616 
12617 		list_del(&event->migrate_entry);
12618 		if (event->state >= PERF_EVENT_STATE_OFF)
12619 			event->state = PERF_EVENT_STATE_INACTIVE;
12620 		account_event_cpu(event, dst_cpu);
12621 		perf_install_in_context(dst_ctx, event, dst_cpu);
12622 		get_ctx(dst_ctx);
12623 	}
12624 
12625 	/*
12626 	 * Once all the siblings are setup properly, install the group leaders
12627 	 * to make it go.
12628 	 */
12629 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12630 		list_del(&event->migrate_entry);
12631 		if (event->state >= PERF_EVENT_STATE_OFF)
12632 			event->state = PERF_EVENT_STATE_INACTIVE;
12633 		account_event_cpu(event, dst_cpu);
12634 		perf_install_in_context(dst_ctx, event, dst_cpu);
12635 		get_ctx(dst_ctx);
12636 	}
12637 	mutex_unlock(&dst_ctx->mutex);
12638 	mutex_unlock(&src_ctx->mutex);
12639 }
12640 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12641 
12642 static void sync_child_event(struct perf_event *child_event)
12643 {
12644 	struct perf_event *parent_event = child_event->parent;
12645 	u64 child_val;
12646 
12647 	if (child_event->attr.inherit_stat) {
12648 		struct task_struct *task = child_event->ctx->task;
12649 
12650 		if (task && task != TASK_TOMBSTONE)
12651 			perf_event_read_event(child_event, task);
12652 	}
12653 
12654 	child_val = perf_event_count(child_event);
12655 
12656 	/*
12657 	 * Add back the child's count to the parent's count:
12658 	 */
12659 	atomic64_add(child_val, &parent_event->child_count);
12660 	atomic64_add(child_event->total_time_enabled,
12661 		     &parent_event->child_total_time_enabled);
12662 	atomic64_add(child_event->total_time_running,
12663 		     &parent_event->child_total_time_running);
12664 }
12665 
12666 static void
12667 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12668 {
12669 	struct perf_event *parent_event = event->parent;
12670 	unsigned long detach_flags = 0;
12671 
12672 	if (parent_event) {
12673 		/*
12674 		 * Do not destroy the 'original' grouping; because of the
12675 		 * context switch optimization the original events could've
12676 		 * ended up in a random child task.
12677 		 *
12678 		 * If we were to destroy the original group, all group related
12679 		 * operations would cease to function properly after this
12680 		 * random child dies.
12681 		 *
12682 		 * Do destroy all inherited groups, we don't care about those
12683 		 * and being thorough is better.
12684 		 */
12685 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12686 		mutex_lock(&parent_event->child_mutex);
12687 	}
12688 
12689 	perf_remove_from_context(event, detach_flags);
12690 
12691 	raw_spin_lock_irq(&ctx->lock);
12692 	if (event->state > PERF_EVENT_STATE_EXIT)
12693 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12694 	raw_spin_unlock_irq(&ctx->lock);
12695 
12696 	/*
12697 	 * Child events can be freed.
12698 	 */
12699 	if (parent_event) {
12700 		mutex_unlock(&parent_event->child_mutex);
12701 		/*
12702 		 * Kick perf_poll() for is_event_hup();
12703 		 */
12704 		perf_event_wakeup(parent_event);
12705 		free_event(event);
12706 		put_event(parent_event);
12707 		return;
12708 	}
12709 
12710 	/*
12711 	 * Parent events are governed by their filedesc, retain them.
12712 	 */
12713 	perf_event_wakeup(event);
12714 }
12715 
12716 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12717 {
12718 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
12719 	struct perf_event *child_event, *next;
12720 
12721 	WARN_ON_ONCE(child != current);
12722 
12723 	child_ctx = perf_pin_task_context(child, ctxn);
12724 	if (!child_ctx)
12725 		return;
12726 
12727 	/*
12728 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
12729 	 * ctx::mutex over the entire thing. This serializes against almost
12730 	 * everything that wants to access the ctx.
12731 	 *
12732 	 * The exception is sys_perf_event_open() /
12733 	 * perf_event_create_kernel_count() which does find_get_context()
12734 	 * without ctx::mutex (it cannot because of the move_group double mutex
12735 	 * lock thing). See the comments in perf_install_in_context().
12736 	 */
12737 	mutex_lock(&child_ctx->mutex);
12738 
12739 	/*
12740 	 * In a single ctx::lock section, de-schedule the events and detach the
12741 	 * context from the task such that we cannot ever get it scheduled back
12742 	 * in.
12743 	 */
12744 	raw_spin_lock_irq(&child_ctx->lock);
12745 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12746 
12747 	/*
12748 	 * Now that the context is inactive, destroy the task <-> ctx relation
12749 	 * and mark the context dead.
12750 	 */
12751 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12752 	put_ctx(child_ctx); /* cannot be last */
12753 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12754 	put_task_struct(current); /* cannot be last */
12755 
12756 	clone_ctx = unclone_ctx(child_ctx);
12757 	raw_spin_unlock_irq(&child_ctx->lock);
12758 
12759 	if (clone_ctx)
12760 		put_ctx(clone_ctx);
12761 
12762 	/*
12763 	 * Report the task dead after unscheduling the events so that we
12764 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
12765 	 * get a few PERF_RECORD_READ events.
12766 	 */
12767 	perf_event_task(child, child_ctx, 0);
12768 
12769 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12770 		perf_event_exit_event(child_event, child_ctx);
12771 
12772 	mutex_unlock(&child_ctx->mutex);
12773 
12774 	put_ctx(child_ctx);
12775 }
12776 
12777 /*
12778  * When a child task exits, feed back event values to parent events.
12779  *
12780  * Can be called with exec_update_lock held when called from
12781  * setup_new_exec().
12782  */
12783 void perf_event_exit_task(struct task_struct *child)
12784 {
12785 	struct perf_event *event, *tmp;
12786 	int ctxn;
12787 
12788 	mutex_lock(&child->perf_event_mutex);
12789 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12790 				 owner_entry) {
12791 		list_del_init(&event->owner_entry);
12792 
12793 		/*
12794 		 * Ensure the list deletion is visible before we clear
12795 		 * the owner, closes a race against perf_release() where
12796 		 * we need to serialize on the owner->perf_event_mutex.
12797 		 */
12798 		smp_store_release(&event->owner, NULL);
12799 	}
12800 	mutex_unlock(&child->perf_event_mutex);
12801 
12802 	for_each_task_context_nr(ctxn)
12803 		perf_event_exit_task_context(child, ctxn);
12804 
12805 	/*
12806 	 * The perf_event_exit_task_context calls perf_event_task
12807 	 * with child's task_ctx, which generates EXIT events for
12808 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
12809 	 * At this point we need to send EXIT events to cpu contexts.
12810 	 */
12811 	perf_event_task(child, NULL, 0);
12812 }
12813 
12814 static void perf_free_event(struct perf_event *event,
12815 			    struct perf_event_context *ctx)
12816 {
12817 	struct perf_event *parent = event->parent;
12818 
12819 	if (WARN_ON_ONCE(!parent))
12820 		return;
12821 
12822 	mutex_lock(&parent->child_mutex);
12823 	list_del_init(&event->child_list);
12824 	mutex_unlock(&parent->child_mutex);
12825 
12826 	put_event(parent);
12827 
12828 	raw_spin_lock_irq(&ctx->lock);
12829 	perf_group_detach(event);
12830 	list_del_event(event, ctx);
12831 	raw_spin_unlock_irq(&ctx->lock);
12832 	free_event(event);
12833 }
12834 
12835 /*
12836  * Free a context as created by inheritance by perf_event_init_task() below,
12837  * used by fork() in case of fail.
12838  *
12839  * Even though the task has never lived, the context and events have been
12840  * exposed through the child_list, so we must take care tearing it all down.
12841  */
12842 void perf_event_free_task(struct task_struct *task)
12843 {
12844 	struct perf_event_context *ctx;
12845 	struct perf_event *event, *tmp;
12846 	int ctxn;
12847 
12848 	for_each_task_context_nr(ctxn) {
12849 		ctx = task->perf_event_ctxp[ctxn];
12850 		if (!ctx)
12851 			continue;
12852 
12853 		mutex_lock(&ctx->mutex);
12854 		raw_spin_lock_irq(&ctx->lock);
12855 		/*
12856 		 * Destroy the task <-> ctx relation and mark the context dead.
12857 		 *
12858 		 * This is important because even though the task hasn't been
12859 		 * exposed yet the context has been (through child_list).
12860 		 */
12861 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12862 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12863 		put_task_struct(task); /* cannot be last */
12864 		raw_spin_unlock_irq(&ctx->lock);
12865 
12866 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12867 			perf_free_event(event, ctx);
12868 
12869 		mutex_unlock(&ctx->mutex);
12870 
12871 		/*
12872 		 * perf_event_release_kernel() could've stolen some of our
12873 		 * child events and still have them on its free_list. In that
12874 		 * case we must wait for these events to have been freed (in
12875 		 * particular all their references to this task must've been
12876 		 * dropped).
12877 		 *
12878 		 * Without this copy_process() will unconditionally free this
12879 		 * task (irrespective of its reference count) and
12880 		 * _free_event()'s put_task_struct(event->hw.target) will be a
12881 		 * use-after-free.
12882 		 *
12883 		 * Wait for all events to drop their context reference.
12884 		 */
12885 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12886 		put_ctx(ctx); /* must be last */
12887 	}
12888 }
12889 
12890 void perf_event_delayed_put(struct task_struct *task)
12891 {
12892 	int ctxn;
12893 
12894 	for_each_task_context_nr(ctxn)
12895 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12896 }
12897 
12898 struct file *perf_event_get(unsigned int fd)
12899 {
12900 	struct file *file = fget(fd);
12901 	if (!file)
12902 		return ERR_PTR(-EBADF);
12903 
12904 	if (file->f_op != &perf_fops) {
12905 		fput(file);
12906 		return ERR_PTR(-EBADF);
12907 	}
12908 
12909 	return file;
12910 }
12911 
12912 const struct perf_event *perf_get_event(struct file *file)
12913 {
12914 	if (file->f_op != &perf_fops)
12915 		return ERR_PTR(-EINVAL);
12916 
12917 	return file->private_data;
12918 }
12919 
12920 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12921 {
12922 	if (!event)
12923 		return ERR_PTR(-EINVAL);
12924 
12925 	return &event->attr;
12926 }
12927 
12928 /*
12929  * Inherit an event from parent task to child task.
12930  *
12931  * Returns:
12932  *  - valid pointer on success
12933  *  - NULL for orphaned events
12934  *  - IS_ERR() on error
12935  */
12936 static struct perf_event *
12937 inherit_event(struct perf_event *parent_event,
12938 	      struct task_struct *parent,
12939 	      struct perf_event_context *parent_ctx,
12940 	      struct task_struct *child,
12941 	      struct perf_event *group_leader,
12942 	      struct perf_event_context *child_ctx)
12943 {
12944 	enum perf_event_state parent_state = parent_event->state;
12945 	struct perf_event *child_event;
12946 	unsigned long flags;
12947 
12948 	/*
12949 	 * Instead of creating recursive hierarchies of events,
12950 	 * we link inherited events back to the original parent,
12951 	 * which has a filp for sure, which we use as the reference
12952 	 * count:
12953 	 */
12954 	if (parent_event->parent)
12955 		parent_event = parent_event->parent;
12956 
12957 	child_event = perf_event_alloc(&parent_event->attr,
12958 					   parent_event->cpu,
12959 					   child,
12960 					   group_leader, parent_event,
12961 					   NULL, NULL, -1);
12962 	if (IS_ERR(child_event))
12963 		return child_event;
12964 
12965 
12966 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12967 	    !child_ctx->task_ctx_data) {
12968 		struct pmu *pmu = child_event->pmu;
12969 
12970 		child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12971 		if (!child_ctx->task_ctx_data) {
12972 			free_event(child_event);
12973 			return ERR_PTR(-ENOMEM);
12974 		}
12975 	}
12976 
12977 	/*
12978 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12979 	 * must be under the same lock in order to serialize against
12980 	 * perf_event_release_kernel(), such that either we must observe
12981 	 * is_orphaned_event() or they will observe us on the child_list.
12982 	 */
12983 	mutex_lock(&parent_event->child_mutex);
12984 	if (is_orphaned_event(parent_event) ||
12985 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
12986 		mutex_unlock(&parent_event->child_mutex);
12987 		/* task_ctx_data is freed with child_ctx */
12988 		free_event(child_event);
12989 		return NULL;
12990 	}
12991 
12992 	get_ctx(child_ctx);
12993 
12994 	/*
12995 	 * Make the child state follow the state of the parent event,
12996 	 * not its attr.disabled bit.  We hold the parent's mutex,
12997 	 * so we won't race with perf_event_{en, dis}able_family.
12998 	 */
12999 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13000 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13001 	else
13002 		child_event->state = PERF_EVENT_STATE_OFF;
13003 
13004 	if (parent_event->attr.freq) {
13005 		u64 sample_period = parent_event->hw.sample_period;
13006 		struct hw_perf_event *hwc = &child_event->hw;
13007 
13008 		hwc->sample_period = sample_period;
13009 		hwc->last_period   = sample_period;
13010 
13011 		local64_set(&hwc->period_left, sample_period);
13012 	}
13013 
13014 	child_event->ctx = child_ctx;
13015 	child_event->overflow_handler = parent_event->overflow_handler;
13016 	child_event->overflow_handler_context
13017 		= parent_event->overflow_handler_context;
13018 
13019 	/*
13020 	 * Precalculate sample_data sizes
13021 	 */
13022 	perf_event__header_size(child_event);
13023 	perf_event__id_header_size(child_event);
13024 
13025 	/*
13026 	 * Link it up in the child's context:
13027 	 */
13028 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13029 	add_event_to_ctx(child_event, child_ctx);
13030 	child_event->attach_state |= PERF_ATTACH_CHILD;
13031 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13032 
13033 	/*
13034 	 * Link this into the parent event's child list
13035 	 */
13036 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13037 	mutex_unlock(&parent_event->child_mutex);
13038 
13039 	return child_event;
13040 }
13041 
13042 /*
13043  * Inherits an event group.
13044  *
13045  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13046  * This matches with perf_event_release_kernel() removing all child events.
13047  *
13048  * Returns:
13049  *  - 0 on success
13050  *  - <0 on error
13051  */
13052 static int inherit_group(struct perf_event *parent_event,
13053 	      struct task_struct *parent,
13054 	      struct perf_event_context *parent_ctx,
13055 	      struct task_struct *child,
13056 	      struct perf_event_context *child_ctx)
13057 {
13058 	struct perf_event *leader;
13059 	struct perf_event *sub;
13060 	struct perf_event *child_ctr;
13061 
13062 	leader = inherit_event(parent_event, parent, parent_ctx,
13063 				 child, NULL, child_ctx);
13064 	if (IS_ERR(leader))
13065 		return PTR_ERR(leader);
13066 	/*
13067 	 * @leader can be NULL here because of is_orphaned_event(). In this
13068 	 * case inherit_event() will create individual events, similar to what
13069 	 * perf_group_detach() would do anyway.
13070 	 */
13071 	for_each_sibling_event(sub, parent_event) {
13072 		child_ctr = inherit_event(sub, parent, parent_ctx,
13073 					    child, leader, child_ctx);
13074 		if (IS_ERR(child_ctr))
13075 			return PTR_ERR(child_ctr);
13076 
13077 		if (sub->aux_event == parent_event && child_ctr &&
13078 		    !perf_get_aux_event(child_ctr, leader))
13079 			return -EINVAL;
13080 	}
13081 	return 0;
13082 }
13083 
13084 /*
13085  * Creates the child task context and tries to inherit the event-group.
13086  *
13087  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13088  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13089  * consistent with perf_event_release_kernel() removing all child events.
13090  *
13091  * Returns:
13092  *  - 0 on success
13093  *  - <0 on error
13094  */
13095 static int
13096 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13097 		   struct perf_event_context *parent_ctx,
13098 		   struct task_struct *child, int ctxn,
13099 		   u64 clone_flags, int *inherited_all)
13100 {
13101 	int ret;
13102 	struct perf_event_context *child_ctx;
13103 
13104 	if (!event->attr.inherit ||
13105 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13106 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13107 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13108 		*inherited_all = 0;
13109 		return 0;
13110 	}
13111 
13112 	child_ctx = child->perf_event_ctxp[ctxn];
13113 	if (!child_ctx) {
13114 		/*
13115 		 * This is executed from the parent task context, so
13116 		 * inherit events that have been marked for cloning.
13117 		 * First allocate and initialize a context for the
13118 		 * child.
13119 		 */
13120 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13121 		if (!child_ctx)
13122 			return -ENOMEM;
13123 
13124 		child->perf_event_ctxp[ctxn] = child_ctx;
13125 	}
13126 
13127 	ret = inherit_group(event, parent, parent_ctx,
13128 			    child, child_ctx);
13129 
13130 	if (ret)
13131 		*inherited_all = 0;
13132 
13133 	return ret;
13134 }
13135 
13136 /*
13137  * Initialize the perf_event context in task_struct
13138  */
13139 static int perf_event_init_context(struct task_struct *child, int ctxn,
13140 				   u64 clone_flags)
13141 {
13142 	struct perf_event_context *child_ctx, *parent_ctx;
13143 	struct perf_event_context *cloned_ctx;
13144 	struct perf_event *event;
13145 	struct task_struct *parent = current;
13146 	int inherited_all = 1;
13147 	unsigned long flags;
13148 	int ret = 0;
13149 
13150 	if (likely(!parent->perf_event_ctxp[ctxn]))
13151 		return 0;
13152 
13153 	/*
13154 	 * If the parent's context is a clone, pin it so it won't get
13155 	 * swapped under us.
13156 	 */
13157 	parent_ctx = perf_pin_task_context(parent, ctxn);
13158 	if (!parent_ctx)
13159 		return 0;
13160 
13161 	/*
13162 	 * No need to check if parent_ctx != NULL here; since we saw
13163 	 * it non-NULL earlier, the only reason for it to become NULL
13164 	 * is if we exit, and since we're currently in the middle of
13165 	 * a fork we can't be exiting at the same time.
13166 	 */
13167 
13168 	/*
13169 	 * Lock the parent list. No need to lock the child - not PID
13170 	 * hashed yet and not running, so nobody can access it.
13171 	 */
13172 	mutex_lock(&parent_ctx->mutex);
13173 
13174 	/*
13175 	 * We dont have to disable NMIs - we are only looking at
13176 	 * the list, not manipulating it:
13177 	 */
13178 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13179 		ret = inherit_task_group(event, parent, parent_ctx,
13180 					 child, ctxn, clone_flags,
13181 					 &inherited_all);
13182 		if (ret)
13183 			goto out_unlock;
13184 	}
13185 
13186 	/*
13187 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13188 	 * to allocations, but we need to prevent rotation because
13189 	 * rotate_ctx() will change the list from interrupt context.
13190 	 */
13191 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13192 	parent_ctx->rotate_disable = 1;
13193 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13194 
13195 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13196 		ret = inherit_task_group(event, parent, parent_ctx,
13197 					 child, ctxn, clone_flags,
13198 					 &inherited_all);
13199 		if (ret)
13200 			goto out_unlock;
13201 	}
13202 
13203 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13204 	parent_ctx->rotate_disable = 0;
13205 
13206 	child_ctx = child->perf_event_ctxp[ctxn];
13207 
13208 	if (child_ctx && inherited_all) {
13209 		/*
13210 		 * Mark the child context as a clone of the parent
13211 		 * context, or of whatever the parent is a clone of.
13212 		 *
13213 		 * Note that if the parent is a clone, the holding of
13214 		 * parent_ctx->lock avoids it from being uncloned.
13215 		 */
13216 		cloned_ctx = parent_ctx->parent_ctx;
13217 		if (cloned_ctx) {
13218 			child_ctx->parent_ctx = cloned_ctx;
13219 			child_ctx->parent_gen = parent_ctx->parent_gen;
13220 		} else {
13221 			child_ctx->parent_ctx = parent_ctx;
13222 			child_ctx->parent_gen = parent_ctx->generation;
13223 		}
13224 		get_ctx(child_ctx->parent_ctx);
13225 	}
13226 
13227 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13228 out_unlock:
13229 	mutex_unlock(&parent_ctx->mutex);
13230 
13231 	perf_unpin_context(parent_ctx);
13232 	put_ctx(parent_ctx);
13233 
13234 	return ret;
13235 }
13236 
13237 /*
13238  * Initialize the perf_event context in task_struct
13239  */
13240 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13241 {
13242 	int ctxn, ret;
13243 
13244 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13245 	mutex_init(&child->perf_event_mutex);
13246 	INIT_LIST_HEAD(&child->perf_event_list);
13247 
13248 	for_each_task_context_nr(ctxn) {
13249 		ret = perf_event_init_context(child, ctxn, clone_flags);
13250 		if (ret) {
13251 			perf_event_free_task(child);
13252 			return ret;
13253 		}
13254 	}
13255 
13256 	return 0;
13257 }
13258 
13259 static void __init perf_event_init_all_cpus(void)
13260 {
13261 	struct swevent_htable *swhash;
13262 	int cpu;
13263 
13264 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13265 
13266 	for_each_possible_cpu(cpu) {
13267 		swhash = &per_cpu(swevent_htable, cpu);
13268 		mutex_init(&swhash->hlist_mutex);
13269 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13270 
13271 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13272 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13273 
13274 #ifdef CONFIG_CGROUP_PERF
13275 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13276 #endif
13277 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13278 	}
13279 }
13280 
13281 static void perf_swevent_init_cpu(unsigned int cpu)
13282 {
13283 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13284 
13285 	mutex_lock(&swhash->hlist_mutex);
13286 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13287 		struct swevent_hlist *hlist;
13288 
13289 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13290 		WARN_ON(!hlist);
13291 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13292 	}
13293 	mutex_unlock(&swhash->hlist_mutex);
13294 }
13295 
13296 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13297 static void __perf_event_exit_context(void *__info)
13298 {
13299 	struct perf_event_context *ctx = __info;
13300 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13301 	struct perf_event *event;
13302 
13303 	raw_spin_lock(&ctx->lock);
13304 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13305 	list_for_each_entry(event, &ctx->event_list, event_entry)
13306 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13307 	raw_spin_unlock(&ctx->lock);
13308 }
13309 
13310 static void perf_event_exit_cpu_context(int cpu)
13311 {
13312 	struct perf_cpu_context *cpuctx;
13313 	struct perf_event_context *ctx;
13314 	struct pmu *pmu;
13315 
13316 	mutex_lock(&pmus_lock);
13317 	list_for_each_entry(pmu, &pmus, entry) {
13318 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13319 		ctx = &cpuctx->ctx;
13320 
13321 		mutex_lock(&ctx->mutex);
13322 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13323 		cpuctx->online = 0;
13324 		mutex_unlock(&ctx->mutex);
13325 	}
13326 	cpumask_clear_cpu(cpu, perf_online_mask);
13327 	mutex_unlock(&pmus_lock);
13328 }
13329 #else
13330 
13331 static void perf_event_exit_cpu_context(int cpu) { }
13332 
13333 #endif
13334 
13335 int perf_event_init_cpu(unsigned int cpu)
13336 {
13337 	struct perf_cpu_context *cpuctx;
13338 	struct perf_event_context *ctx;
13339 	struct pmu *pmu;
13340 
13341 	perf_swevent_init_cpu(cpu);
13342 
13343 	mutex_lock(&pmus_lock);
13344 	cpumask_set_cpu(cpu, perf_online_mask);
13345 	list_for_each_entry(pmu, &pmus, entry) {
13346 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13347 		ctx = &cpuctx->ctx;
13348 
13349 		mutex_lock(&ctx->mutex);
13350 		cpuctx->online = 1;
13351 		mutex_unlock(&ctx->mutex);
13352 	}
13353 	mutex_unlock(&pmus_lock);
13354 
13355 	return 0;
13356 }
13357 
13358 int perf_event_exit_cpu(unsigned int cpu)
13359 {
13360 	perf_event_exit_cpu_context(cpu);
13361 	return 0;
13362 }
13363 
13364 static int
13365 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13366 {
13367 	int cpu;
13368 
13369 	for_each_online_cpu(cpu)
13370 		perf_event_exit_cpu(cpu);
13371 
13372 	return NOTIFY_OK;
13373 }
13374 
13375 /*
13376  * Run the perf reboot notifier at the very last possible moment so that
13377  * the generic watchdog code runs as long as possible.
13378  */
13379 static struct notifier_block perf_reboot_notifier = {
13380 	.notifier_call = perf_reboot,
13381 	.priority = INT_MIN,
13382 };
13383 
13384 void __init perf_event_init(void)
13385 {
13386 	int ret;
13387 
13388 	idr_init(&pmu_idr);
13389 
13390 	perf_event_init_all_cpus();
13391 	init_srcu_struct(&pmus_srcu);
13392 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13393 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
13394 	perf_pmu_register(&perf_task_clock, NULL, -1);
13395 	perf_tp_register();
13396 	perf_event_init_cpu(smp_processor_id());
13397 	register_reboot_notifier(&perf_reboot_notifier);
13398 
13399 	ret = init_hw_breakpoint();
13400 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13401 
13402 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13403 
13404 	/*
13405 	 * Build time assertion that we keep the data_head at the intended
13406 	 * location.  IOW, validation we got the __reserved[] size right.
13407 	 */
13408 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13409 		     != 1024);
13410 }
13411 
13412 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13413 			      char *page)
13414 {
13415 	struct perf_pmu_events_attr *pmu_attr =
13416 		container_of(attr, struct perf_pmu_events_attr, attr);
13417 
13418 	if (pmu_attr->event_str)
13419 		return sprintf(page, "%s\n", pmu_attr->event_str);
13420 
13421 	return 0;
13422 }
13423 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13424 
13425 static int __init perf_event_sysfs_init(void)
13426 {
13427 	struct pmu *pmu;
13428 	int ret;
13429 
13430 	mutex_lock(&pmus_lock);
13431 
13432 	ret = bus_register(&pmu_bus);
13433 	if (ret)
13434 		goto unlock;
13435 
13436 	list_for_each_entry(pmu, &pmus, entry) {
13437 		if (!pmu->name || pmu->type < 0)
13438 			continue;
13439 
13440 		ret = pmu_dev_alloc(pmu);
13441 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13442 	}
13443 	pmu_bus_running = 1;
13444 	ret = 0;
13445 
13446 unlock:
13447 	mutex_unlock(&pmus_lock);
13448 
13449 	return ret;
13450 }
13451 device_initcall(perf_event_sysfs_init);
13452 
13453 #ifdef CONFIG_CGROUP_PERF
13454 static struct cgroup_subsys_state *
13455 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13456 {
13457 	struct perf_cgroup *jc;
13458 
13459 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13460 	if (!jc)
13461 		return ERR_PTR(-ENOMEM);
13462 
13463 	jc->info = alloc_percpu(struct perf_cgroup_info);
13464 	if (!jc->info) {
13465 		kfree(jc);
13466 		return ERR_PTR(-ENOMEM);
13467 	}
13468 
13469 	return &jc->css;
13470 }
13471 
13472 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13473 {
13474 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13475 
13476 	free_percpu(jc->info);
13477 	kfree(jc);
13478 }
13479 
13480 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13481 {
13482 	perf_event_cgroup(css->cgroup);
13483 	return 0;
13484 }
13485 
13486 static int __perf_cgroup_move(void *info)
13487 {
13488 	struct task_struct *task = info;
13489 	rcu_read_lock();
13490 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13491 	rcu_read_unlock();
13492 	return 0;
13493 }
13494 
13495 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13496 {
13497 	struct task_struct *task;
13498 	struct cgroup_subsys_state *css;
13499 
13500 	cgroup_taskset_for_each(task, css, tset)
13501 		task_function_call(task, __perf_cgroup_move, task);
13502 }
13503 
13504 struct cgroup_subsys perf_event_cgrp_subsys = {
13505 	.css_alloc	= perf_cgroup_css_alloc,
13506 	.css_free	= perf_cgroup_css_free,
13507 	.css_online	= perf_cgroup_css_online,
13508 	.attach		= perf_cgroup_attach,
13509 	/*
13510 	 * Implicitly enable on dfl hierarchy so that perf events can
13511 	 * always be filtered by cgroup2 path as long as perf_event
13512 	 * controller is not mounted on a legacy hierarchy.
13513 	 */
13514 	.implicit_on_dfl = true,
13515 	.threaded	= true,
13516 };
13517 #endif /* CONFIG_CGROUP_PERF */
13518 
13519 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13520