xref: /openbmc/linux/kernel/events/core.c (revision 270384cc)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 
46 #include "internal.h"
47 
48 #include <asm/irq_regs.h>
49 
50 static struct workqueue_struct *perf_wq;
51 
52 struct remote_function_call {
53 	struct task_struct	*p;
54 	int			(*func)(void *info);
55 	void			*info;
56 	int			ret;
57 };
58 
59 static void remote_function(void *data)
60 {
61 	struct remote_function_call *tfc = data;
62 	struct task_struct *p = tfc->p;
63 
64 	if (p) {
65 		tfc->ret = -EAGAIN;
66 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 			return;
68 	}
69 
70 	tfc->ret = tfc->func(tfc->info);
71 }
72 
73 /**
74  * task_function_call - call a function on the cpu on which a task runs
75  * @p:		the task to evaluate
76  * @func:	the function to be called
77  * @info:	the function call argument
78  *
79  * Calls the function @func when the task is currently running. This might
80  * be on the current CPU, which just calls the function directly
81  *
82  * returns: @func return value, or
83  *	    -ESRCH  - when the process isn't running
84  *	    -EAGAIN - when the process moved away
85  */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 	struct remote_function_call data = {
90 		.p	= p,
91 		.func	= func,
92 		.info	= info,
93 		.ret	= -ESRCH, /* No such (running) process */
94 	};
95 
96 	if (task_curr(p))
97 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98 
99 	return data.ret;
100 }
101 
102 /**
103  * cpu_function_call - call a function on the cpu
104  * @func:	the function to be called
105  * @info:	the function call argument
106  *
107  * Calls the function @func on the remote cpu.
108  *
109  * returns: @func return value or -ENXIO when the cpu is offline
110  */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 	struct remote_function_call data = {
114 		.p	= NULL,
115 		.func	= func,
116 		.info	= info,
117 		.ret	= -ENXIO, /* No such CPU */
118 	};
119 
120 	smp_call_function_single(cpu, remote_function, &data, 1);
121 
122 	return data.ret;
123 }
124 
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126 
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 	return event->owner == EVENT_OWNER_KERNEL;
130 }
131 
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 		       PERF_FLAG_FD_OUTPUT  |\
134 		       PERF_FLAG_PID_CGROUP |\
135 		       PERF_FLAG_FD_CLOEXEC)
136 
137 /*
138  * branch priv levels that need permission checks
139  */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 	(PERF_SAMPLE_BRANCH_KERNEL |\
142 	 PERF_SAMPLE_BRANCH_HV)
143 
144 enum event_type_t {
145 	EVENT_FLEXIBLE = 0x1,
146 	EVENT_PINNED = 0x2,
147 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149 
150 /*
151  * perf_sched_events : >0 events exist
152  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153  */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157 
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162 
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166 
167 /*
168  * perf event paranoia level:
169  *  -1 - not paranoid at all
170  *   0 - disallow raw tracepoint access for unpriv
171  *   1 - disallow cpu events for unpriv
172  *   2 - disallow kernel profiling for unpriv
173  */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175 
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178 
179 /*
180  * max perf event sample rate
181  */
182 #define DEFAULT_MAX_SAMPLE_RATE		100000
183 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
185 
186 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
187 
188 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
190 
191 static int perf_sample_allowed_ns __read_mostly =
192 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193 
194 void update_perf_cpu_limits(void)
195 {
196 	u64 tmp = perf_sample_period_ns;
197 
198 	tmp *= sysctl_perf_cpu_time_max_percent;
199 	do_div(tmp, 100);
200 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202 
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204 
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 		void __user *buffer, size_t *lenp,
207 		loff_t *ppos)
208 {
209 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210 
211 	if (ret || !write)
212 		return ret;
213 
214 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 	update_perf_cpu_limits();
217 
218 	return 0;
219 }
220 
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222 
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 				void __user *buffer, size_t *lenp,
225 				loff_t *ppos)
226 {
227 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228 
229 	if (ret || !write)
230 		return ret;
231 
232 	update_perf_cpu_limits();
233 
234 	return 0;
235 }
236 
237 /*
238  * perf samples are done in some very critical code paths (NMIs).
239  * If they take too much CPU time, the system can lock up and not
240  * get any real work done.  This will drop the sample rate when
241  * we detect that events are taking too long.
242  */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245 
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 	u64 avg_local_sample_len;
250 	u64 local_samples_len;
251 
252 	local_samples_len = __this_cpu_read(running_sample_length);
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	printk_ratelimited(KERN_WARNING
256 			"perf interrupt took too long (%lld > %lld), lowering "
257 			"kernel.perf_event_max_sample_rate to %d\n",
258 			avg_local_sample_len, allowed_ns >> 1,
259 			sysctl_perf_event_sample_rate);
260 }
261 
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263 
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 	u64 avg_local_sample_len;
268 	u64 local_samples_len;
269 
270 	if (allowed_ns == 0)
271 		return;
272 
273 	/* decay the counter by 1 average sample */
274 	local_samples_len = __this_cpu_read(running_sample_length);
275 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 	local_samples_len += sample_len_ns;
277 	__this_cpu_write(running_sample_length, local_samples_len);
278 
279 	/*
280 	 * note: this will be biased artifically low until we have
281 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
282 	 * from having to maintain a count.
283 	 */
284 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285 
286 	if (avg_local_sample_len <= allowed_ns)
287 		return;
288 
289 	if (max_samples_per_tick <= 1)
290 		return;
291 
292 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295 
296 	update_perf_cpu_limits();
297 
298 	if (!irq_work_queue(&perf_duration_work)) {
299 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 			     "kernel.perf_event_max_sample_rate to %d\n",
301 			     avg_local_sample_len, allowed_ns >> 1,
302 			     sysctl_perf_event_sample_rate);
303 	}
304 }
305 
306 static atomic64_t perf_event_id;
307 
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 			      enum event_type_t event_type);
310 
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 			     enum event_type_t event_type,
313 			     struct task_struct *task);
314 
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317 
318 void __weak perf_event_print_debug(void)	{ }
319 
320 extern __weak const char *perf_pmu_name(void)
321 {
322 	return "pmu";
323 }
324 
325 static inline u64 perf_clock(void)
326 {
327 	return local_clock();
328 }
329 
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335 
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 			  struct perf_event_context *ctx)
338 {
339 	raw_spin_lock(&cpuctx->ctx.lock);
340 	if (ctx)
341 		raw_spin_lock(&ctx->lock);
342 }
343 
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 			    struct perf_event_context *ctx)
346 {
347 	if (ctx)
348 		raw_spin_unlock(&ctx->lock);
349 	raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351 
352 #ifdef CONFIG_CGROUP_PERF
353 
354 /*
355  * perf_cgroup_info keeps track of time_enabled for a cgroup.
356  * This is a per-cpu dynamically allocated data structure.
357  */
358 struct perf_cgroup_info {
359 	u64				time;
360 	u64				timestamp;
361 };
362 
363 struct perf_cgroup {
364 	struct cgroup_subsys_state	css;
365 	struct perf_cgroup_info	__percpu *info;
366 };
367 
368 /*
369  * Must ensure cgroup is pinned (css_get) before calling
370  * this function. In other words, we cannot call this function
371  * if there is no cgroup event for the current CPU context.
372  */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 	return container_of(task_css(task, perf_event_cgrp_id),
377 			    struct perf_cgroup, css);
378 }
379 
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 	struct perf_event_context *ctx = event->ctx;
384 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385 
386 	/* @event doesn't care about cgroup */
387 	if (!event->cgrp)
388 		return true;
389 
390 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
391 	if (!cpuctx->cgrp)
392 		return false;
393 
394 	/*
395 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
396 	 * also enabled for all its descendant cgroups.  If @cpuctx's
397 	 * cgroup is a descendant of @event's (the test covers identity
398 	 * case), it's a match.
399 	 */
400 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 				    event->cgrp->css.cgroup);
402 }
403 
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 	css_put(&event->cgrp->css);
407 	event->cgrp = NULL;
408 }
409 
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 	return event->cgrp != NULL;
413 }
414 
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 	struct perf_cgroup_info *t;
418 
419 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 	return t->time;
421 }
422 
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 	struct perf_cgroup_info *info;
426 	u64 now;
427 
428 	now = perf_clock();
429 
430 	info = this_cpu_ptr(cgrp->info);
431 
432 	info->time += now - info->timestamp;
433 	info->timestamp = now;
434 }
435 
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 	if (cgrp_out)
440 		__update_cgrp_time(cgrp_out);
441 }
442 
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 	struct perf_cgroup *cgrp;
446 
447 	/*
448 	 * ensure we access cgroup data only when needed and
449 	 * when we know the cgroup is pinned (css_get)
450 	 */
451 	if (!is_cgroup_event(event))
452 		return;
453 
454 	cgrp = perf_cgroup_from_task(current);
455 	/*
456 	 * Do not update time when cgroup is not active
457 	 */
458 	if (cgrp == event->cgrp)
459 		__update_cgrp_time(event->cgrp);
460 }
461 
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 			  struct perf_event_context *ctx)
465 {
466 	struct perf_cgroup *cgrp;
467 	struct perf_cgroup_info *info;
468 
469 	/*
470 	 * ctx->lock held by caller
471 	 * ensure we do not access cgroup data
472 	 * unless we have the cgroup pinned (css_get)
473 	 */
474 	if (!task || !ctx->nr_cgroups)
475 		return;
476 
477 	cgrp = perf_cgroup_from_task(task);
478 	info = this_cpu_ptr(cgrp->info);
479 	info->timestamp = ctx->timestamp;
480 }
481 
482 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
484 
485 /*
486  * reschedule events based on the cgroup constraint of task.
487  *
488  * mode SWOUT : schedule out everything
489  * mode SWIN : schedule in based on cgroup for next
490  */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 	struct perf_cpu_context *cpuctx;
494 	struct pmu *pmu;
495 	unsigned long flags;
496 
497 	/*
498 	 * disable interrupts to avoid geting nr_cgroup
499 	 * changes via __perf_event_disable(). Also
500 	 * avoids preemption.
501 	 */
502 	local_irq_save(flags);
503 
504 	/*
505 	 * we reschedule only in the presence of cgroup
506 	 * constrained events.
507 	 */
508 	rcu_read_lock();
509 
510 	list_for_each_entry_rcu(pmu, &pmus, entry) {
511 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 		if (cpuctx->unique_pmu != pmu)
513 			continue; /* ensure we process each cpuctx once */
514 
515 		/*
516 		 * perf_cgroup_events says at least one
517 		 * context on this CPU has cgroup events.
518 		 *
519 		 * ctx->nr_cgroups reports the number of cgroup
520 		 * events for a context.
521 		 */
522 		if (cpuctx->ctx.nr_cgroups > 0) {
523 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 			perf_pmu_disable(cpuctx->ctx.pmu);
525 
526 			if (mode & PERF_CGROUP_SWOUT) {
527 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 				/*
529 				 * must not be done before ctxswout due
530 				 * to event_filter_match() in event_sched_out()
531 				 */
532 				cpuctx->cgrp = NULL;
533 			}
534 
535 			if (mode & PERF_CGROUP_SWIN) {
536 				WARN_ON_ONCE(cpuctx->cgrp);
537 				/*
538 				 * set cgrp before ctxsw in to allow
539 				 * event_filter_match() to not have to pass
540 				 * task around
541 				 */
542 				cpuctx->cgrp = perf_cgroup_from_task(task);
543 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 			}
545 			perf_pmu_enable(cpuctx->ctx.pmu);
546 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 		}
548 	}
549 
550 	rcu_read_unlock();
551 
552 	local_irq_restore(flags);
553 }
554 
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 					 struct task_struct *next)
557 {
558 	struct perf_cgroup *cgrp1;
559 	struct perf_cgroup *cgrp2 = NULL;
560 
561 	/*
562 	 * we come here when we know perf_cgroup_events > 0
563 	 */
564 	cgrp1 = perf_cgroup_from_task(task);
565 
566 	/*
567 	 * next is NULL when called from perf_event_enable_on_exec()
568 	 * that will systematically cause a cgroup_switch()
569 	 */
570 	if (next)
571 		cgrp2 = perf_cgroup_from_task(next);
572 
573 	/*
574 	 * only schedule out current cgroup events if we know
575 	 * that we are switching to a different cgroup. Otherwise,
576 	 * do no touch the cgroup events.
577 	 */
578 	if (cgrp1 != cgrp2)
579 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581 
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 					struct task_struct *task)
584 {
585 	struct perf_cgroup *cgrp1;
586 	struct perf_cgroup *cgrp2 = NULL;
587 
588 	/*
589 	 * we come here when we know perf_cgroup_events > 0
590 	 */
591 	cgrp1 = perf_cgroup_from_task(task);
592 
593 	/* prev can never be NULL */
594 	cgrp2 = perf_cgroup_from_task(prev);
595 
596 	/*
597 	 * only need to schedule in cgroup events if we are changing
598 	 * cgroup during ctxsw. Cgroup events were not scheduled
599 	 * out of ctxsw out if that was not the case.
600 	 */
601 	if (cgrp1 != cgrp2)
602 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604 
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 				      struct perf_event_attr *attr,
607 				      struct perf_event *group_leader)
608 {
609 	struct perf_cgroup *cgrp;
610 	struct cgroup_subsys_state *css;
611 	struct fd f = fdget(fd);
612 	int ret = 0;
613 
614 	if (!f.file)
615 		return -EBADF;
616 
617 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
618 					 &perf_event_cgrp_subsys);
619 	if (IS_ERR(css)) {
620 		ret = PTR_ERR(css);
621 		goto out;
622 	}
623 
624 	cgrp = container_of(css, struct perf_cgroup, css);
625 	event->cgrp = cgrp;
626 
627 	/*
628 	 * all events in a group must monitor
629 	 * the same cgroup because a task belongs
630 	 * to only one perf cgroup at a time
631 	 */
632 	if (group_leader && group_leader->cgrp != cgrp) {
633 		perf_detach_cgroup(event);
634 		ret = -EINVAL;
635 	}
636 out:
637 	fdput(f);
638 	return ret;
639 }
640 
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 	struct perf_cgroup_info *t;
645 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 	event->shadow_ctx_time = now - t->timestamp;
647 }
648 
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 	/*
653 	 * when the current task's perf cgroup does not match
654 	 * the event's, we need to remember to call the
655 	 * perf_mark_enable() function the first time a task with
656 	 * a matching perf cgroup is scheduled in.
657 	 */
658 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 		event->cgrp_defer_enabled = 1;
660 }
661 
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 			 struct perf_event_context *ctx)
665 {
666 	struct perf_event *sub;
667 	u64 tstamp = perf_event_time(event);
668 
669 	if (!event->cgrp_defer_enabled)
670 		return;
671 
672 	event->cgrp_defer_enabled = 0;
673 
674 	event->tstamp_enabled = tstamp - event->total_time_enabled;
675 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 			sub->cgrp_defer_enabled = 0;
679 		}
680 	}
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683 
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 	return true;
688 }
689 
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692 
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 	return 0;
696 }
697 
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 	return 0;
701 }
702 
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706 
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710 
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 					 struct task_struct *next)
713 {
714 }
715 
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 					struct task_struct *task)
718 {
719 }
720 
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 				      struct perf_event_attr *attr,
723 				      struct perf_event *group_leader)
724 {
725 	return -EINVAL;
726 }
727 
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 			  struct perf_event_context *ctx)
731 {
732 }
733 
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738 
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743 
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 	return 0;
747 }
748 
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753 
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 			 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760 
761 /*
762  * set default to be dependent on timer tick just
763  * like original code
764  */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767  * function must be called with interrupts disbled
768  */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 	struct perf_cpu_context *cpuctx;
772 	enum hrtimer_restart ret = HRTIMER_NORESTART;
773 	int rotations = 0;
774 
775 	WARN_ON(!irqs_disabled());
776 
777 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778 
779 	rotations = perf_rotate_context(cpuctx);
780 
781 	/*
782 	 * arm timer if needed
783 	 */
784 	if (rotations) {
785 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 		ret = HRTIMER_RESTART;
787 	}
788 
789 	return ret;
790 }
791 
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct pmu *pmu;
797 	unsigned long flags;
798 
799 	if (WARN_ON(cpu != smp_processor_id()))
800 		return;
801 
802 	local_irq_save(flags);
803 
804 	rcu_read_lock();
805 
806 	list_for_each_entry_rcu(pmu, &pmus, entry) {
807 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808 
809 		if (pmu->task_ctx_nr == perf_sw_context)
810 			continue;
811 
812 		hrtimer_cancel(&cpuctx->hrtimer);
813 	}
814 
815 	rcu_read_unlock();
816 
817 	local_irq_restore(flags);
818 }
819 
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 	struct hrtimer *hr = &cpuctx->hrtimer;
823 	struct pmu *pmu = cpuctx->ctx.pmu;
824 	int timer;
825 
826 	/* no multiplexing needed for SW PMU */
827 	if (pmu->task_ctx_nr == perf_sw_context)
828 		return;
829 
830 	/*
831 	 * check default is sane, if not set then force to
832 	 * default interval (1/tick)
833 	 */
834 	timer = pmu->hrtimer_interval_ms;
835 	if (timer < 1)
836 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837 
838 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839 
840 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 	hr->function = perf_cpu_hrtimer_handler;
842 }
843 
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 	struct hrtimer *hr = &cpuctx->hrtimer;
847 	struct pmu *pmu = cpuctx->ctx.pmu;
848 
849 	/* not for SW PMU */
850 	if (pmu->task_ctx_nr == perf_sw_context)
851 		return;
852 
853 	if (hrtimer_active(hr))
854 		return;
855 
856 	if (!hrtimer_callback_running(hr))
857 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 					 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860 
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 	if (!(*count)++)
865 		pmu->pmu_disable(pmu);
866 }
867 
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 	if (!--(*count))
872 		pmu->pmu_enable(pmu);
873 }
874 
875 static DEFINE_PER_CPU(struct list_head, rotation_list);
876 
877 /*
878  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879  * because they're strictly cpu affine and rotate_start is called with IRQs
880  * disabled, while rotate_context is called from IRQ context.
881  */
882 static void perf_pmu_rotate_start(struct pmu *pmu)
883 {
884 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 	struct list_head *head = this_cpu_ptr(&rotation_list);
886 
887 	WARN_ON(!irqs_disabled());
888 
889 	if (list_empty(&cpuctx->rotation_list))
890 		list_add(&cpuctx->rotation_list, head);
891 }
892 
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897 
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 	if (atomic_dec_and_test(&ctx->refcount)) {
901 		if (ctx->parent_ctx)
902 			put_ctx(ctx->parent_ctx);
903 		if (ctx->task)
904 			put_task_struct(ctx->task);
905 		kfree_rcu(ctx, rcu_head);
906 	}
907 }
908 
909 /*
910  * This must be done under the ctx->lock, such as to serialize against
911  * context_equiv(), therefore we cannot call put_ctx() since that might end up
912  * calling scheduler related locks and ctx->lock nests inside those.
913  */
914 static __must_check struct perf_event_context *
915 unclone_ctx(struct perf_event_context *ctx)
916 {
917 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
918 
919 	lockdep_assert_held(&ctx->lock);
920 
921 	if (parent_ctx)
922 		ctx->parent_ctx = NULL;
923 	ctx->generation++;
924 
925 	return parent_ctx;
926 }
927 
928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929 {
930 	/*
931 	 * only top level events have the pid namespace they were created in
932 	 */
933 	if (event->parent)
934 		event = event->parent;
935 
936 	return task_tgid_nr_ns(p, event->ns);
937 }
938 
939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940 {
941 	/*
942 	 * only top level events have the pid namespace they were created in
943 	 */
944 	if (event->parent)
945 		event = event->parent;
946 
947 	return task_pid_nr_ns(p, event->ns);
948 }
949 
950 /*
951  * If we inherit events we want to return the parent event id
952  * to userspace.
953  */
954 static u64 primary_event_id(struct perf_event *event)
955 {
956 	u64 id = event->id;
957 
958 	if (event->parent)
959 		id = event->parent->id;
960 
961 	return id;
962 }
963 
964 /*
965  * Get the perf_event_context for a task and lock it.
966  * This has to cope with with the fact that until it is locked,
967  * the context could get moved to another task.
968  */
969 static struct perf_event_context *
970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971 {
972 	struct perf_event_context *ctx;
973 
974 retry:
975 	/*
976 	 * One of the few rules of preemptible RCU is that one cannot do
977 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 	 * part of the read side critical section was preemptible -- see
979 	 * rcu_read_unlock_special().
980 	 *
981 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 	 * side critical section is non-preemptible.
983 	 */
984 	preempt_disable();
985 	rcu_read_lock();
986 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 	if (ctx) {
988 		/*
989 		 * If this context is a clone of another, it might
990 		 * get swapped for another underneath us by
991 		 * perf_event_task_sched_out, though the
992 		 * rcu_read_lock() protects us from any context
993 		 * getting freed.  Lock the context and check if it
994 		 * got swapped before we could get the lock, and retry
995 		 * if so.  If we locked the right context, then it
996 		 * can't get swapped on us any more.
997 		 */
998 		raw_spin_lock_irqsave(&ctx->lock, *flags);
999 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 			rcu_read_unlock();
1002 			preempt_enable();
1003 			goto retry;
1004 		}
1005 
1006 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 			ctx = NULL;
1009 		}
1010 	}
1011 	rcu_read_unlock();
1012 	preempt_enable();
1013 	return ctx;
1014 }
1015 
1016 /*
1017  * Get the context for a task and increment its pin_count so it
1018  * can't get swapped to another task.  This also increments its
1019  * reference count so that the context can't get freed.
1020  */
1021 static struct perf_event_context *
1022 perf_pin_task_context(struct task_struct *task, int ctxn)
1023 {
1024 	struct perf_event_context *ctx;
1025 	unsigned long flags;
1026 
1027 	ctx = perf_lock_task_context(task, ctxn, &flags);
1028 	if (ctx) {
1029 		++ctx->pin_count;
1030 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 	}
1032 	return ctx;
1033 }
1034 
1035 static void perf_unpin_context(struct perf_event_context *ctx)
1036 {
1037 	unsigned long flags;
1038 
1039 	raw_spin_lock_irqsave(&ctx->lock, flags);
1040 	--ctx->pin_count;
1041 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 }
1043 
1044 /*
1045  * Update the record of the current time in a context.
1046  */
1047 static void update_context_time(struct perf_event_context *ctx)
1048 {
1049 	u64 now = perf_clock();
1050 
1051 	ctx->time += now - ctx->timestamp;
1052 	ctx->timestamp = now;
1053 }
1054 
1055 static u64 perf_event_time(struct perf_event *event)
1056 {
1057 	struct perf_event_context *ctx = event->ctx;
1058 
1059 	if (is_cgroup_event(event))
1060 		return perf_cgroup_event_time(event);
1061 
1062 	return ctx ? ctx->time : 0;
1063 }
1064 
1065 /*
1066  * Update the total_time_enabled and total_time_running fields for a event.
1067  * The caller of this function needs to hold the ctx->lock.
1068  */
1069 static void update_event_times(struct perf_event *event)
1070 {
1071 	struct perf_event_context *ctx = event->ctx;
1072 	u64 run_end;
1073 
1074 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 		return;
1077 	/*
1078 	 * in cgroup mode, time_enabled represents
1079 	 * the time the event was enabled AND active
1080 	 * tasks were in the monitored cgroup. This is
1081 	 * independent of the activity of the context as
1082 	 * there may be a mix of cgroup and non-cgroup events.
1083 	 *
1084 	 * That is why we treat cgroup events differently
1085 	 * here.
1086 	 */
1087 	if (is_cgroup_event(event))
1088 		run_end = perf_cgroup_event_time(event);
1089 	else if (ctx->is_active)
1090 		run_end = ctx->time;
1091 	else
1092 		run_end = event->tstamp_stopped;
1093 
1094 	event->total_time_enabled = run_end - event->tstamp_enabled;
1095 
1096 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 		run_end = event->tstamp_stopped;
1098 	else
1099 		run_end = perf_event_time(event);
1100 
1101 	event->total_time_running = run_end - event->tstamp_running;
1102 
1103 }
1104 
1105 /*
1106  * Update total_time_enabled and total_time_running for all events in a group.
1107  */
1108 static void update_group_times(struct perf_event *leader)
1109 {
1110 	struct perf_event *event;
1111 
1112 	update_event_times(leader);
1113 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 		update_event_times(event);
1115 }
1116 
1117 static struct list_head *
1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119 {
1120 	if (event->attr.pinned)
1121 		return &ctx->pinned_groups;
1122 	else
1123 		return &ctx->flexible_groups;
1124 }
1125 
1126 /*
1127  * Add a event from the lists for its context.
1128  * Must be called with ctx->mutex and ctx->lock held.
1129  */
1130 static void
1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132 {
1133 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 	event->attach_state |= PERF_ATTACH_CONTEXT;
1135 
1136 	/*
1137 	 * If we're a stand alone event or group leader, we go to the context
1138 	 * list, group events are kept attached to the group so that
1139 	 * perf_group_detach can, at all times, locate all siblings.
1140 	 */
1141 	if (event->group_leader == event) {
1142 		struct list_head *list;
1143 
1144 		if (is_software_event(event))
1145 			event->group_flags |= PERF_GROUP_SOFTWARE;
1146 
1147 		list = ctx_group_list(event, ctx);
1148 		list_add_tail(&event->group_entry, list);
1149 	}
1150 
1151 	if (is_cgroup_event(event))
1152 		ctx->nr_cgroups++;
1153 
1154 	if (has_branch_stack(event))
1155 		ctx->nr_branch_stack++;
1156 
1157 	list_add_rcu(&event->event_entry, &ctx->event_list);
1158 	if (!ctx->nr_events)
1159 		perf_pmu_rotate_start(ctx->pmu);
1160 	ctx->nr_events++;
1161 	if (event->attr.inherit_stat)
1162 		ctx->nr_stat++;
1163 
1164 	ctx->generation++;
1165 }
1166 
1167 /*
1168  * Initialize event state based on the perf_event_attr::disabled.
1169  */
1170 static inline void perf_event__state_init(struct perf_event *event)
1171 {
1172 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 					      PERF_EVENT_STATE_INACTIVE;
1174 }
1175 
1176 /*
1177  * Called at perf_event creation and when events are attached/detached from a
1178  * group.
1179  */
1180 static void perf_event__read_size(struct perf_event *event)
1181 {
1182 	int entry = sizeof(u64); /* value */
1183 	int size = 0;
1184 	int nr = 1;
1185 
1186 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 		size += sizeof(u64);
1188 
1189 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 		size += sizeof(u64);
1191 
1192 	if (event->attr.read_format & PERF_FORMAT_ID)
1193 		entry += sizeof(u64);
1194 
1195 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 		nr += event->group_leader->nr_siblings;
1197 		size += sizeof(u64);
1198 	}
1199 
1200 	size += entry * nr;
1201 	event->read_size = size;
1202 }
1203 
1204 static void perf_event__header_size(struct perf_event *event)
1205 {
1206 	struct perf_sample_data *data;
1207 	u64 sample_type = event->attr.sample_type;
1208 	u16 size = 0;
1209 
1210 	perf_event__read_size(event);
1211 
1212 	if (sample_type & PERF_SAMPLE_IP)
1213 		size += sizeof(data->ip);
1214 
1215 	if (sample_type & PERF_SAMPLE_ADDR)
1216 		size += sizeof(data->addr);
1217 
1218 	if (sample_type & PERF_SAMPLE_PERIOD)
1219 		size += sizeof(data->period);
1220 
1221 	if (sample_type & PERF_SAMPLE_WEIGHT)
1222 		size += sizeof(data->weight);
1223 
1224 	if (sample_type & PERF_SAMPLE_READ)
1225 		size += event->read_size;
1226 
1227 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 		size += sizeof(data->data_src.val);
1229 
1230 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 		size += sizeof(data->txn);
1232 
1233 	event->header_size = size;
1234 }
1235 
1236 static void perf_event__id_header_size(struct perf_event *event)
1237 {
1238 	struct perf_sample_data *data;
1239 	u64 sample_type = event->attr.sample_type;
1240 	u16 size = 0;
1241 
1242 	if (sample_type & PERF_SAMPLE_TID)
1243 		size += sizeof(data->tid_entry);
1244 
1245 	if (sample_type & PERF_SAMPLE_TIME)
1246 		size += sizeof(data->time);
1247 
1248 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 		size += sizeof(data->id);
1250 
1251 	if (sample_type & PERF_SAMPLE_ID)
1252 		size += sizeof(data->id);
1253 
1254 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 		size += sizeof(data->stream_id);
1256 
1257 	if (sample_type & PERF_SAMPLE_CPU)
1258 		size += sizeof(data->cpu_entry);
1259 
1260 	event->id_header_size = size;
1261 }
1262 
1263 static void perf_group_attach(struct perf_event *event)
1264 {
1265 	struct perf_event *group_leader = event->group_leader, *pos;
1266 
1267 	/*
1268 	 * We can have double attach due to group movement in perf_event_open.
1269 	 */
1270 	if (event->attach_state & PERF_ATTACH_GROUP)
1271 		return;
1272 
1273 	event->attach_state |= PERF_ATTACH_GROUP;
1274 
1275 	if (group_leader == event)
1276 		return;
1277 
1278 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 			!is_software_event(event))
1280 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281 
1282 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 	group_leader->nr_siblings++;
1284 
1285 	perf_event__header_size(group_leader);
1286 
1287 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 		perf_event__header_size(pos);
1289 }
1290 
1291 /*
1292  * Remove a event from the lists for its context.
1293  * Must be called with ctx->mutex and ctx->lock held.
1294  */
1295 static void
1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297 {
1298 	struct perf_cpu_context *cpuctx;
1299 	/*
1300 	 * We can have double detach due to exit/hot-unplug + close.
1301 	 */
1302 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 		return;
1304 
1305 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306 
1307 	if (is_cgroup_event(event)) {
1308 		ctx->nr_cgroups--;
1309 		cpuctx = __get_cpu_context(ctx);
1310 		/*
1311 		 * if there are no more cgroup events
1312 		 * then cler cgrp to avoid stale pointer
1313 		 * in update_cgrp_time_from_cpuctx()
1314 		 */
1315 		if (!ctx->nr_cgroups)
1316 			cpuctx->cgrp = NULL;
1317 	}
1318 
1319 	if (has_branch_stack(event))
1320 		ctx->nr_branch_stack--;
1321 
1322 	ctx->nr_events--;
1323 	if (event->attr.inherit_stat)
1324 		ctx->nr_stat--;
1325 
1326 	list_del_rcu(&event->event_entry);
1327 
1328 	if (event->group_leader == event)
1329 		list_del_init(&event->group_entry);
1330 
1331 	update_group_times(event);
1332 
1333 	/*
1334 	 * If event was in error state, then keep it
1335 	 * that way, otherwise bogus counts will be
1336 	 * returned on read(). The only way to get out
1337 	 * of error state is by explicit re-enabling
1338 	 * of the event
1339 	 */
1340 	if (event->state > PERF_EVENT_STATE_OFF)
1341 		event->state = PERF_EVENT_STATE_OFF;
1342 
1343 	ctx->generation++;
1344 }
1345 
1346 static void perf_group_detach(struct perf_event *event)
1347 {
1348 	struct perf_event *sibling, *tmp;
1349 	struct list_head *list = NULL;
1350 
1351 	/*
1352 	 * We can have double detach due to exit/hot-unplug + close.
1353 	 */
1354 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 		return;
1356 
1357 	event->attach_state &= ~PERF_ATTACH_GROUP;
1358 
1359 	/*
1360 	 * If this is a sibling, remove it from its group.
1361 	 */
1362 	if (event->group_leader != event) {
1363 		list_del_init(&event->group_entry);
1364 		event->group_leader->nr_siblings--;
1365 		goto out;
1366 	}
1367 
1368 	if (!list_empty(&event->group_entry))
1369 		list = &event->group_entry;
1370 
1371 	/*
1372 	 * If this was a group event with sibling events then
1373 	 * upgrade the siblings to singleton events by adding them
1374 	 * to whatever list we are on.
1375 	 */
1376 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 		if (list)
1378 			list_move_tail(&sibling->group_entry, list);
1379 		sibling->group_leader = sibling;
1380 
1381 		/* Inherit group flags from the previous leader */
1382 		sibling->group_flags = event->group_flags;
1383 	}
1384 
1385 out:
1386 	perf_event__header_size(event->group_leader);
1387 
1388 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 		perf_event__header_size(tmp);
1390 }
1391 
1392 /*
1393  * User event without the task.
1394  */
1395 static bool is_orphaned_event(struct perf_event *event)
1396 {
1397 	return event && !is_kernel_event(event) && !event->owner;
1398 }
1399 
1400 /*
1401  * Event has a parent but parent's task finished and it's
1402  * alive only because of children holding refference.
1403  */
1404 static bool is_orphaned_child(struct perf_event *event)
1405 {
1406 	return is_orphaned_event(event->parent);
1407 }
1408 
1409 static void orphans_remove_work(struct work_struct *work);
1410 
1411 static void schedule_orphans_remove(struct perf_event_context *ctx)
1412 {
1413 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 		return;
1415 
1416 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 		get_ctx(ctx);
1418 		ctx->orphans_remove_sched = true;
1419 	}
1420 }
1421 
1422 static int __init perf_workqueue_init(void)
1423 {
1424 	perf_wq = create_singlethread_workqueue("perf");
1425 	WARN(!perf_wq, "failed to create perf workqueue\n");
1426 	return perf_wq ? 0 : -1;
1427 }
1428 
1429 core_initcall(perf_workqueue_init);
1430 
1431 static inline int
1432 event_filter_match(struct perf_event *event)
1433 {
1434 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 	    && perf_cgroup_match(event);
1436 }
1437 
1438 static void
1439 event_sched_out(struct perf_event *event,
1440 		  struct perf_cpu_context *cpuctx,
1441 		  struct perf_event_context *ctx)
1442 {
1443 	u64 tstamp = perf_event_time(event);
1444 	u64 delta;
1445 	/*
1446 	 * An event which could not be activated because of
1447 	 * filter mismatch still needs to have its timings
1448 	 * maintained, otherwise bogus information is return
1449 	 * via read() for time_enabled, time_running:
1450 	 */
1451 	if (event->state == PERF_EVENT_STATE_INACTIVE
1452 	    && !event_filter_match(event)) {
1453 		delta = tstamp - event->tstamp_stopped;
1454 		event->tstamp_running += delta;
1455 		event->tstamp_stopped = tstamp;
1456 	}
1457 
1458 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 		return;
1460 
1461 	perf_pmu_disable(event->pmu);
1462 
1463 	event->state = PERF_EVENT_STATE_INACTIVE;
1464 	if (event->pending_disable) {
1465 		event->pending_disable = 0;
1466 		event->state = PERF_EVENT_STATE_OFF;
1467 	}
1468 	event->tstamp_stopped = tstamp;
1469 	event->pmu->del(event, 0);
1470 	event->oncpu = -1;
1471 
1472 	if (!is_software_event(event))
1473 		cpuctx->active_oncpu--;
1474 	ctx->nr_active--;
1475 	if (event->attr.freq && event->attr.sample_freq)
1476 		ctx->nr_freq--;
1477 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 		cpuctx->exclusive = 0;
1479 
1480 	if (is_orphaned_child(event))
1481 		schedule_orphans_remove(ctx);
1482 
1483 	perf_pmu_enable(event->pmu);
1484 }
1485 
1486 static void
1487 group_sched_out(struct perf_event *group_event,
1488 		struct perf_cpu_context *cpuctx,
1489 		struct perf_event_context *ctx)
1490 {
1491 	struct perf_event *event;
1492 	int state = group_event->state;
1493 
1494 	event_sched_out(group_event, cpuctx, ctx);
1495 
1496 	/*
1497 	 * Schedule out siblings (if any):
1498 	 */
1499 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 		event_sched_out(event, cpuctx, ctx);
1501 
1502 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 		cpuctx->exclusive = 0;
1504 }
1505 
1506 struct remove_event {
1507 	struct perf_event *event;
1508 	bool detach_group;
1509 };
1510 
1511 /*
1512  * Cross CPU call to remove a performance event
1513  *
1514  * We disable the event on the hardware level first. After that we
1515  * remove it from the context list.
1516  */
1517 static int __perf_remove_from_context(void *info)
1518 {
1519 	struct remove_event *re = info;
1520 	struct perf_event *event = re->event;
1521 	struct perf_event_context *ctx = event->ctx;
1522 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523 
1524 	raw_spin_lock(&ctx->lock);
1525 	event_sched_out(event, cpuctx, ctx);
1526 	if (re->detach_group)
1527 		perf_group_detach(event);
1528 	list_del_event(event, ctx);
1529 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 		ctx->is_active = 0;
1531 		cpuctx->task_ctx = NULL;
1532 	}
1533 	raw_spin_unlock(&ctx->lock);
1534 
1535 	return 0;
1536 }
1537 
1538 
1539 /*
1540  * Remove the event from a task's (or a CPU's) list of events.
1541  *
1542  * CPU events are removed with a smp call. For task events we only
1543  * call when the task is on a CPU.
1544  *
1545  * If event->ctx is a cloned context, callers must make sure that
1546  * every task struct that event->ctx->task could possibly point to
1547  * remains valid.  This is OK when called from perf_release since
1548  * that only calls us on the top-level context, which can't be a clone.
1549  * When called from perf_event_exit_task, it's OK because the
1550  * context has been detached from its task.
1551  */
1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553 {
1554 	struct perf_event_context *ctx = event->ctx;
1555 	struct task_struct *task = ctx->task;
1556 	struct remove_event re = {
1557 		.event = event,
1558 		.detach_group = detach_group,
1559 	};
1560 
1561 	lockdep_assert_held(&ctx->mutex);
1562 
1563 	if (!task) {
1564 		/*
1565 		 * Per cpu events are removed via an smp call. The removal can
1566 		 * fail if the CPU is currently offline, but in that case we
1567 		 * already called __perf_remove_from_context from
1568 		 * perf_event_exit_cpu.
1569 		 */
1570 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1571 		return;
1572 	}
1573 
1574 retry:
1575 	if (!task_function_call(task, __perf_remove_from_context, &re))
1576 		return;
1577 
1578 	raw_spin_lock_irq(&ctx->lock);
1579 	/*
1580 	 * If we failed to find a running task, but find the context active now
1581 	 * that we've acquired the ctx->lock, retry.
1582 	 */
1583 	if (ctx->is_active) {
1584 		raw_spin_unlock_irq(&ctx->lock);
1585 		/*
1586 		 * Reload the task pointer, it might have been changed by
1587 		 * a concurrent perf_event_context_sched_out().
1588 		 */
1589 		task = ctx->task;
1590 		goto retry;
1591 	}
1592 
1593 	/*
1594 	 * Since the task isn't running, its safe to remove the event, us
1595 	 * holding the ctx->lock ensures the task won't get scheduled in.
1596 	 */
1597 	if (detach_group)
1598 		perf_group_detach(event);
1599 	list_del_event(event, ctx);
1600 	raw_spin_unlock_irq(&ctx->lock);
1601 }
1602 
1603 /*
1604  * Cross CPU call to disable a performance event
1605  */
1606 int __perf_event_disable(void *info)
1607 {
1608 	struct perf_event *event = info;
1609 	struct perf_event_context *ctx = event->ctx;
1610 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1611 
1612 	/*
1613 	 * If this is a per-task event, need to check whether this
1614 	 * event's task is the current task on this cpu.
1615 	 *
1616 	 * Can trigger due to concurrent perf_event_context_sched_out()
1617 	 * flipping contexts around.
1618 	 */
1619 	if (ctx->task && cpuctx->task_ctx != ctx)
1620 		return -EINVAL;
1621 
1622 	raw_spin_lock(&ctx->lock);
1623 
1624 	/*
1625 	 * If the event is on, turn it off.
1626 	 * If it is in error state, leave it in error state.
1627 	 */
1628 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1629 		update_context_time(ctx);
1630 		update_cgrp_time_from_event(event);
1631 		update_group_times(event);
1632 		if (event == event->group_leader)
1633 			group_sched_out(event, cpuctx, ctx);
1634 		else
1635 			event_sched_out(event, cpuctx, ctx);
1636 		event->state = PERF_EVENT_STATE_OFF;
1637 	}
1638 
1639 	raw_spin_unlock(&ctx->lock);
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Disable a event.
1646  *
1647  * If event->ctx is a cloned context, callers must make sure that
1648  * every task struct that event->ctx->task could possibly point to
1649  * remains valid.  This condition is satisifed when called through
1650  * perf_event_for_each_child or perf_event_for_each because they
1651  * hold the top-level event's child_mutex, so any descendant that
1652  * goes to exit will block in sync_child_event.
1653  * When called from perf_pending_event it's OK because event->ctx
1654  * is the current context on this CPU and preemption is disabled,
1655  * hence we can't get into perf_event_task_sched_out for this context.
1656  */
1657 void perf_event_disable(struct perf_event *event)
1658 {
1659 	struct perf_event_context *ctx = event->ctx;
1660 	struct task_struct *task = ctx->task;
1661 
1662 	if (!task) {
1663 		/*
1664 		 * Disable the event on the cpu that it's on
1665 		 */
1666 		cpu_function_call(event->cpu, __perf_event_disable, event);
1667 		return;
1668 	}
1669 
1670 retry:
1671 	if (!task_function_call(task, __perf_event_disable, event))
1672 		return;
1673 
1674 	raw_spin_lock_irq(&ctx->lock);
1675 	/*
1676 	 * If the event is still active, we need to retry the cross-call.
1677 	 */
1678 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1679 		raw_spin_unlock_irq(&ctx->lock);
1680 		/*
1681 		 * Reload the task pointer, it might have been changed by
1682 		 * a concurrent perf_event_context_sched_out().
1683 		 */
1684 		task = ctx->task;
1685 		goto retry;
1686 	}
1687 
1688 	/*
1689 	 * Since we have the lock this context can't be scheduled
1690 	 * in, so we can change the state safely.
1691 	 */
1692 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1693 		update_group_times(event);
1694 		event->state = PERF_EVENT_STATE_OFF;
1695 	}
1696 	raw_spin_unlock_irq(&ctx->lock);
1697 }
1698 EXPORT_SYMBOL_GPL(perf_event_disable);
1699 
1700 static void perf_set_shadow_time(struct perf_event *event,
1701 				 struct perf_event_context *ctx,
1702 				 u64 tstamp)
1703 {
1704 	/*
1705 	 * use the correct time source for the time snapshot
1706 	 *
1707 	 * We could get by without this by leveraging the
1708 	 * fact that to get to this function, the caller
1709 	 * has most likely already called update_context_time()
1710 	 * and update_cgrp_time_xx() and thus both timestamp
1711 	 * are identical (or very close). Given that tstamp is,
1712 	 * already adjusted for cgroup, we could say that:
1713 	 *    tstamp - ctx->timestamp
1714 	 * is equivalent to
1715 	 *    tstamp - cgrp->timestamp.
1716 	 *
1717 	 * Then, in perf_output_read(), the calculation would
1718 	 * work with no changes because:
1719 	 * - event is guaranteed scheduled in
1720 	 * - no scheduled out in between
1721 	 * - thus the timestamp would be the same
1722 	 *
1723 	 * But this is a bit hairy.
1724 	 *
1725 	 * So instead, we have an explicit cgroup call to remain
1726 	 * within the time time source all along. We believe it
1727 	 * is cleaner and simpler to understand.
1728 	 */
1729 	if (is_cgroup_event(event))
1730 		perf_cgroup_set_shadow_time(event, tstamp);
1731 	else
1732 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1733 }
1734 
1735 #define MAX_INTERRUPTS (~0ULL)
1736 
1737 static void perf_log_throttle(struct perf_event *event, int enable);
1738 
1739 static int
1740 event_sched_in(struct perf_event *event,
1741 		 struct perf_cpu_context *cpuctx,
1742 		 struct perf_event_context *ctx)
1743 {
1744 	u64 tstamp = perf_event_time(event);
1745 	int ret = 0;
1746 
1747 	lockdep_assert_held(&ctx->lock);
1748 
1749 	if (event->state <= PERF_EVENT_STATE_OFF)
1750 		return 0;
1751 
1752 	event->state = PERF_EVENT_STATE_ACTIVE;
1753 	event->oncpu = smp_processor_id();
1754 
1755 	/*
1756 	 * Unthrottle events, since we scheduled we might have missed several
1757 	 * ticks already, also for a heavily scheduling task there is little
1758 	 * guarantee it'll get a tick in a timely manner.
1759 	 */
1760 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1761 		perf_log_throttle(event, 1);
1762 		event->hw.interrupts = 0;
1763 	}
1764 
1765 	/*
1766 	 * The new state must be visible before we turn it on in the hardware:
1767 	 */
1768 	smp_wmb();
1769 
1770 	perf_pmu_disable(event->pmu);
1771 
1772 	if (event->pmu->add(event, PERF_EF_START)) {
1773 		event->state = PERF_EVENT_STATE_INACTIVE;
1774 		event->oncpu = -1;
1775 		ret = -EAGAIN;
1776 		goto out;
1777 	}
1778 
1779 	event->tstamp_running += tstamp - event->tstamp_stopped;
1780 
1781 	perf_set_shadow_time(event, ctx, tstamp);
1782 
1783 	if (!is_software_event(event))
1784 		cpuctx->active_oncpu++;
1785 	ctx->nr_active++;
1786 	if (event->attr.freq && event->attr.sample_freq)
1787 		ctx->nr_freq++;
1788 
1789 	if (event->attr.exclusive)
1790 		cpuctx->exclusive = 1;
1791 
1792 	if (is_orphaned_child(event))
1793 		schedule_orphans_remove(ctx);
1794 
1795 out:
1796 	perf_pmu_enable(event->pmu);
1797 
1798 	return ret;
1799 }
1800 
1801 static int
1802 group_sched_in(struct perf_event *group_event,
1803 	       struct perf_cpu_context *cpuctx,
1804 	       struct perf_event_context *ctx)
1805 {
1806 	struct perf_event *event, *partial_group = NULL;
1807 	struct pmu *pmu = ctx->pmu;
1808 	u64 now = ctx->time;
1809 	bool simulate = false;
1810 
1811 	if (group_event->state == PERF_EVENT_STATE_OFF)
1812 		return 0;
1813 
1814 	pmu->start_txn(pmu);
1815 
1816 	if (event_sched_in(group_event, cpuctx, ctx)) {
1817 		pmu->cancel_txn(pmu);
1818 		perf_cpu_hrtimer_restart(cpuctx);
1819 		return -EAGAIN;
1820 	}
1821 
1822 	/*
1823 	 * Schedule in siblings as one group (if any):
1824 	 */
1825 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1826 		if (event_sched_in(event, cpuctx, ctx)) {
1827 			partial_group = event;
1828 			goto group_error;
1829 		}
1830 	}
1831 
1832 	if (!pmu->commit_txn(pmu))
1833 		return 0;
1834 
1835 group_error:
1836 	/*
1837 	 * Groups can be scheduled in as one unit only, so undo any
1838 	 * partial group before returning:
1839 	 * The events up to the failed event are scheduled out normally,
1840 	 * tstamp_stopped will be updated.
1841 	 *
1842 	 * The failed events and the remaining siblings need to have
1843 	 * their timings updated as if they had gone thru event_sched_in()
1844 	 * and event_sched_out(). This is required to get consistent timings
1845 	 * across the group. This also takes care of the case where the group
1846 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847 	 * the time the event was actually stopped, such that time delta
1848 	 * calculation in update_event_times() is correct.
1849 	 */
1850 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1851 		if (event == partial_group)
1852 			simulate = true;
1853 
1854 		if (simulate) {
1855 			event->tstamp_running += now - event->tstamp_stopped;
1856 			event->tstamp_stopped = now;
1857 		} else {
1858 			event_sched_out(event, cpuctx, ctx);
1859 		}
1860 	}
1861 	event_sched_out(group_event, cpuctx, ctx);
1862 
1863 	pmu->cancel_txn(pmu);
1864 
1865 	perf_cpu_hrtimer_restart(cpuctx);
1866 
1867 	return -EAGAIN;
1868 }
1869 
1870 /*
1871  * Work out whether we can put this event group on the CPU now.
1872  */
1873 static int group_can_go_on(struct perf_event *event,
1874 			   struct perf_cpu_context *cpuctx,
1875 			   int can_add_hw)
1876 {
1877 	/*
1878 	 * Groups consisting entirely of software events can always go on.
1879 	 */
1880 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1881 		return 1;
1882 	/*
1883 	 * If an exclusive group is already on, no other hardware
1884 	 * events can go on.
1885 	 */
1886 	if (cpuctx->exclusive)
1887 		return 0;
1888 	/*
1889 	 * If this group is exclusive and there are already
1890 	 * events on the CPU, it can't go on.
1891 	 */
1892 	if (event->attr.exclusive && cpuctx->active_oncpu)
1893 		return 0;
1894 	/*
1895 	 * Otherwise, try to add it if all previous groups were able
1896 	 * to go on.
1897 	 */
1898 	return can_add_hw;
1899 }
1900 
1901 static void add_event_to_ctx(struct perf_event *event,
1902 			       struct perf_event_context *ctx)
1903 {
1904 	u64 tstamp = perf_event_time(event);
1905 
1906 	list_add_event(event, ctx);
1907 	perf_group_attach(event);
1908 	event->tstamp_enabled = tstamp;
1909 	event->tstamp_running = tstamp;
1910 	event->tstamp_stopped = tstamp;
1911 }
1912 
1913 static void task_ctx_sched_out(struct perf_event_context *ctx);
1914 static void
1915 ctx_sched_in(struct perf_event_context *ctx,
1916 	     struct perf_cpu_context *cpuctx,
1917 	     enum event_type_t event_type,
1918 	     struct task_struct *task);
1919 
1920 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1921 				struct perf_event_context *ctx,
1922 				struct task_struct *task)
1923 {
1924 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1925 	if (ctx)
1926 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1927 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1928 	if (ctx)
1929 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1930 }
1931 
1932 /*
1933  * Cross CPU call to install and enable a performance event
1934  *
1935  * Must be called with ctx->mutex held
1936  */
1937 static int  __perf_install_in_context(void *info)
1938 {
1939 	struct perf_event *event = info;
1940 	struct perf_event_context *ctx = event->ctx;
1941 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1942 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1943 	struct task_struct *task = current;
1944 
1945 	perf_ctx_lock(cpuctx, task_ctx);
1946 	perf_pmu_disable(cpuctx->ctx.pmu);
1947 
1948 	/*
1949 	 * If there was an active task_ctx schedule it out.
1950 	 */
1951 	if (task_ctx)
1952 		task_ctx_sched_out(task_ctx);
1953 
1954 	/*
1955 	 * If the context we're installing events in is not the
1956 	 * active task_ctx, flip them.
1957 	 */
1958 	if (ctx->task && task_ctx != ctx) {
1959 		if (task_ctx)
1960 			raw_spin_unlock(&task_ctx->lock);
1961 		raw_spin_lock(&ctx->lock);
1962 		task_ctx = ctx;
1963 	}
1964 
1965 	if (task_ctx) {
1966 		cpuctx->task_ctx = task_ctx;
1967 		task = task_ctx->task;
1968 	}
1969 
1970 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1971 
1972 	update_context_time(ctx);
1973 	/*
1974 	 * update cgrp time only if current cgrp
1975 	 * matches event->cgrp. Must be done before
1976 	 * calling add_event_to_ctx()
1977 	 */
1978 	update_cgrp_time_from_event(event);
1979 
1980 	add_event_to_ctx(event, ctx);
1981 
1982 	/*
1983 	 * Schedule everything back in
1984 	 */
1985 	perf_event_sched_in(cpuctx, task_ctx, task);
1986 
1987 	perf_pmu_enable(cpuctx->ctx.pmu);
1988 	perf_ctx_unlock(cpuctx, task_ctx);
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Attach a performance event to a context
1995  *
1996  * First we add the event to the list with the hardware enable bit
1997  * in event->hw_config cleared.
1998  *
1999  * If the event is attached to a task which is on a CPU we use a smp
2000  * call to enable it in the task context. The task might have been
2001  * scheduled away, but we check this in the smp call again.
2002  */
2003 static void
2004 perf_install_in_context(struct perf_event_context *ctx,
2005 			struct perf_event *event,
2006 			int cpu)
2007 {
2008 	struct task_struct *task = ctx->task;
2009 
2010 	lockdep_assert_held(&ctx->mutex);
2011 
2012 	event->ctx = ctx;
2013 	if (event->cpu != -1)
2014 		event->cpu = cpu;
2015 
2016 	if (!task) {
2017 		/*
2018 		 * Per cpu events are installed via an smp call and
2019 		 * the install is always successful.
2020 		 */
2021 		cpu_function_call(cpu, __perf_install_in_context, event);
2022 		return;
2023 	}
2024 
2025 retry:
2026 	if (!task_function_call(task, __perf_install_in_context, event))
2027 		return;
2028 
2029 	raw_spin_lock_irq(&ctx->lock);
2030 	/*
2031 	 * If we failed to find a running task, but find the context active now
2032 	 * that we've acquired the ctx->lock, retry.
2033 	 */
2034 	if (ctx->is_active) {
2035 		raw_spin_unlock_irq(&ctx->lock);
2036 		/*
2037 		 * Reload the task pointer, it might have been changed by
2038 		 * a concurrent perf_event_context_sched_out().
2039 		 */
2040 		task = ctx->task;
2041 		goto retry;
2042 	}
2043 
2044 	/*
2045 	 * Since the task isn't running, its safe to add the event, us holding
2046 	 * the ctx->lock ensures the task won't get scheduled in.
2047 	 */
2048 	add_event_to_ctx(event, ctx);
2049 	raw_spin_unlock_irq(&ctx->lock);
2050 }
2051 
2052 /*
2053  * Put a event into inactive state and update time fields.
2054  * Enabling the leader of a group effectively enables all
2055  * the group members that aren't explicitly disabled, so we
2056  * have to update their ->tstamp_enabled also.
2057  * Note: this works for group members as well as group leaders
2058  * since the non-leader members' sibling_lists will be empty.
2059  */
2060 static void __perf_event_mark_enabled(struct perf_event *event)
2061 {
2062 	struct perf_event *sub;
2063 	u64 tstamp = perf_event_time(event);
2064 
2065 	event->state = PERF_EVENT_STATE_INACTIVE;
2066 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2067 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2068 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2069 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2070 	}
2071 }
2072 
2073 /*
2074  * Cross CPU call to enable a performance event
2075  */
2076 static int __perf_event_enable(void *info)
2077 {
2078 	struct perf_event *event = info;
2079 	struct perf_event_context *ctx = event->ctx;
2080 	struct perf_event *leader = event->group_leader;
2081 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2082 	int err;
2083 
2084 	/*
2085 	 * There's a time window between 'ctx->is_active' check
2086 	 * in perf_event_enable function and this place having:
2087 	 *   - IRQs on
2088 	 *   - ctx->lock unlocked
2089 	 *
2090 	 * where the task could be killed and 'ctx' deactivated
2091 	 * by perf_event_exit_task.
2092 	 */
2093 	if (!ctx->is_active)
2094 		return -EINVAL;
2095 
2096 	raw_spin_lock(&ctx->lock);
2097 	update_context_time(ctx);
2098 
2099 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2100 		goto unlock;
2101 
2102 	/*
2103 	 * set current task's cgroup time reference point
2104 	 */
2105 	perf_cgroup_set_timestamp(current, ctx);
2106 
2107 	__perf_event_mark_enabled(event);
2108 
2109 	if (!event_filter_match(event)) {
2110 		if (is_cgroup_event(event))
2111 			perf_cgroup_defer_enabled(event);
2112 		goto unlock;
2113 	}
2114 
2115 	/*
2116 	 * If the event is in a group and isn't the group leader,
2117 	 * then don't put it on unless the group is on.
2118 	 */
2119 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2120 		goto unlock;
2121 
2122 	if (!group_can_go_on(event, cpuctx, 1)) {
2123 		err = -EEXIST;
2124 	} else {
2125 		if (event == leader)
2126 			err = group_sched_in(event, cpuctx, ctx);
2127 		else
2128 			err = event_sched_in(event, cpuctx, ctx);
2129 	}
2130 
2131 	if (err) {
2132 		/*
2133 		 * If this event can't go on and it's part of a
2134 		 * group, then the whole group has to come off.
2135 		 */
2136 		if (leader != event) {
2137 			group_sched_out(leader, cpuctx, ctx);
2138 			perf_cpu_hrtimer_restart(cpuctx);
2139 		}
2140 		if (leader->attr.pinned) {
2141 			update_group_times(leader);
2142 			leader->state = PERF_EVENT_STATE_ERROR;
2143 		}
2144 	}
2145 
2146 unlock:
2147 	raw_spin_unlock(&ctx->lock);
2148 
2149 	return 0;
2150 }
2151 
2152 /*
2153  * Enable a event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisfied when called through
2158  * perf_event_for_each_child or perf_event_for_each as described
2159  * for perf_event_disable.
2160  */
2161 void perf_event_enable(struct perf_event *event)
2162 {
2163 	struct perf_event_context *ctx = event->ctx;
2164 	struct task_struct *task = ctx->task;
2165 
2166 	if (!task) {
2167 		/*
2168 		 * Enable the event on the cpu that it's on
2169 		 */
2170 		cpu_function_call(event->cpu, __perf_event_enable, event);
2171 		return;
2172 	}
2173 
2174 	raw_spin_lock_irq(&ctx->lock);
2175 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2176 		goto out;
2177 
2178 	/*
2179 	 * If the event is in error state, clear that first.
2180 	 * That way, if we see the event in error state below, we
2181 	 * know that it has gone back into error state, as distinct
2182 	 * from the task having been scheduled away before the
2183 	 * cross-call arrived.
2184 	 */
2185 	if (event->state == PERF_EVENT_STATE_ERROR)
2186 		event->state = PERF_EVENT_STATE_OFF;
2187 
2188 retry:
2189 	if (!ctx->is_active) {
2190 		__perf_event_mark_enabled(event);
2191 		goto out;
2192 	}
2193 
2194 	raw_spin_unlock_irq(&ctx->lock);
2195 
2196 	if (!task_function_call(task, __perf_event_enable, event))
2197 		return;
2198 
2199 	raw_spin_lock_irq(&ctx->lock);
2200 
2201 	/*
2202 	 * If the context is active and the event is still off,
2203 	 * we need to retry the cross-call.
2204 	 */
2205 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2206 		/*
2207 		 * task could have been flipped by a concurrent
2208 		 * perf_event_context_sched_out()
2209 		 */
2210 		task = ctx->task;
2211 		goto retry;
2212 	}
2213 
2214 out:
2215 	raw_spin_unlock_irq(&ctx->lock);
2216 }
2217 EXPORT_SYMBOL_GPL(perf_event_enable);
2218 
2219 int perf_event_refresh(struct perf_event *event, int refresh)
2220 {
2221 	/*
2222 	 * not supported on inherited events
2223 	 */
2224 	if (event->attr.inherit || !is_sampling_event(event))
2225 		return -EINVAL;
2226 
2227 	atomic_add(refresh, &event->event_limit);
2228 	perf_event_enable(event);
2229 
2230 	return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(perf_event_refresh);
2233 
2234 static void ctx_sched_out(struct perf_event_context *ctx,
2235 			  struct perf_cpu_context *cpuctx,
2236 			  enum event_type_t event_type)
2237 {
2238 	struct perf_event *event;
2239 	int is_active = ctx->is_active;
2240 
2241 	ctx->is_active &= ~event_type;
2242 	if (likely(!ctx->nr_events))
2243 		return;
2244 
2245 	update_context_time(ctx);
2246 	update_cgrp_time_from_cpuctx(cpuctx);
2247 	if (!ctx->nr_active)
2248 		return;
2249 
2250 	perf_pmu_disable(ctx->pmu);
2251 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2252 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2253 			group_sched_out(event, cpuctx, ctx);
2254 	}
2255 
2256 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2257 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2258 			group_sched_out(event, cpuctx, ctx);
2259 	}
2260 	perf_pmu_enable(ctx->pmu);
2261 }
2262 
2263 /*
2264  * Test whether two contexts are equivalent, i.e. whether they have both been
2265  * cloned from the same version of the same context.
2266  *
2267  * Equivalence is measured using a generation number in the context that is
2268  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269  * and list_del_event().
2270  */
2271 static int context_equiv(struct perf_event_context *ctx1,
2272 			 struct perf_event_context *ctx2)
2273 {
2274 	lockdep_assert_held(&ctx1->lock);
2275 	lockdep_assert_held(&ctx2->lock);
2276 
2277 	/* Pinning disables the swap optimization */
2278 	if (ctx1->pin_count || ctx2->pin_count)
2279 		return 0;
2280 
2281 	/* If ctx1 is the parent of ctx2 */
2282 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2283 		return 1;
2284 
2285 	/* If ctx2 is the parent of ctx1 */
2286 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2287 		return 1;
2288 
2289 	/*
2290 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291 	 * hierarchy, see perf_event_init_context().
2292 	 */
2293 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2294 			ctx1->parent_gen == ctx2->parent_gen)
2295 		return 1;
2296 
2297 	/* Unmatched */
2298 	return 0;
2299 }
2300 
2301 static void __perf_event_sync_stat(struct perf_event *event,
2302 				     struct perf_event *next_event)
2303 {
2304 	u64 value;
2305 
2306 	if (!event->attr.inherit_stat)
2307 		return;
2308 
2309 	/*
2310 	 * Update the event value, we cannot use perf_event_read()
2311 	 * because we're in the middle of a context switch and have IRQs
2312 	 * disabled, which upsets smp_call_function_single(), however
2313 	 * we know the event must be on the current CPU, therefore we
2314 	 * don't need to use it.
2315 	 */
2316 	switch (event->state) {
2317 	case PERF_EVENT_STATE_ACTIVE:
2318 		event->pmu->read(event);
2319 		/* fall-through */
2320 
2321 	case PERF_EVENT_STATE_INACTIVE:
2322 		update_event_times(event);
2323 		break;
2324 
2325 	default:
2326 		break;
2327 	}
2328 
2329 	/*
2330 	 * In order to keep per-task stats reliable we need to flip the event
2331 	 * values when we flip the contexts.
2332 	 */
2333 	value = local64_read(&next_event->count);
2334 	value = local64_xchg(&event->count, value);
2335 	local64_set(&next_event->count, value);
2336 
2337 	swap(event->total_time_enabled, next_event->total_time_enabled);
2338 	swap(event->total_time_running, next_event->total_time_running);
2339 
2340 	/*
2341 	 * Since we swizzled the values, update the user visible data too.
2342 	 */
2343 	perf_event_update_userpage(event);
2344 	perf_event_update_userpage(next_event);
2345 }
2346 
2347 static void perf_event_sync_stat(struct perf_event_context *ctx,
2348 				   struct perf_event_context *next_ctx)
2349 {
2350 	struct perf_event *event, *next_event;
2351 
2352 	if (!ctx->nr_stat)
2353 		return;
2354 
2355 	update_context_time(ctx);
2356 
2357 	event = list_first_entry(&ctx->event_list,
2358 				   struct perf_event, event_entry);
2359 
2360 	next_event = list_first_entry(&next_ctx->event_list,
2361 					struct perf_event, event_entry);
2362 
2363 	while (&event->event_entry != &ctx->event_list &&
2364 	       &next_event->event_entry != &next_ctx->event_list) {
2365 
2366 		__perf_event_sync_stat(event, next_event);
2367 
2368 		event = list_next_entry(event, event_entry);
2369 		next_event = list_next_entry(next_event, event_entry);
2370 	}
2371 }
2372 
2373 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2374 					 struct task_struct *next)
2375 {
2376 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2377 	struct perf_event_context *next_ctx;
2378 	struct perf_event_context *parent, *next_parent;
2379 	struct perf_cpu_context *cpuctx;
2380 	int do_switch = 1;
2381 
2382 	if (likely(!ctx))
2383 		return;
2384 
2385 	cpuctx = __get_cpu_context(ctx);
2386 	if (!cpuctx->task_ctx)
2387 		return;
2388 
2389 	rcu_read_lock();
2390 	next_ctx = next->perf_event_ctxp[ctxn];
2391 	if (!next_ctx)
2392 		goto unlock;
2393 
2394 	parent = rcu_dereference(ctx->parent_ctx);
2395 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2396 
2397 	/* If neither context have a parent context; they cannot be clones. */
2398 	if (!parent && !next_parent)
2399 		goto unlock;
2400 
2401 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2402 		/*
2403 		 * Looks like the two contexts are clones, so we might be
2404 		 * able to optimize the context switch.  We lock both
2405 		 * contexts and check that they are clones under the
2406 		 * lock (including re-checking that neither has been
2407 		 * uncloned in the meantime).  It doesn't matter which
2408 		 * order we take the locks because no other cpu could
2409 		 * be trying to lock both of these tasks.
2410 		 */
2411 		raw_spin_lock(&ctx->lock);
2412 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2413 		if (context_equiv(ctx, next_ctx)) {
2414 			/*
2415 			 * XXX do we need a memory barrier of sorts
2416 			 * wrt to rcu_dereference() of perf_event_ctxp
2417 			 */
2418 			task->perf_event_ctxp[ctxn] = next_ctx;
2419 			next->perf_event_ctxp[ctxn] = ctx;
2420 			ctx->task = next;
2421 			next_ctx->task = task;
2422 			do_switch = 0;
2423 
2424 			perf_event_sync_stat(ctx, next_ctx);
2425 		}
2426 		raw_spin_unlock(&next_ctx->lock);
2427 		raw_spin_unlock(&ctx->lock);
2428 	}
2429 unlock:
2430 	rcu_read_unlock();
2431 
2432 	if (do_switch) {
2433 		raw_spin_lock(&ctx->lock);
2434 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2435 		cpuctx->task_ctx = NULL;
2436 		raw_spin_unlock(&ctx->lock);
2437 	}
2438 }
2439 
2440 #define for_each_task_context_nr(ctxn)					\
2441 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2442 
2443 /*
2444  * Called from scheduler to remove the events of the current task,
2445  * with interrupts disabled.
2446  *
2447  * We stop each event and update the event value in event->count.
2448  *
2449  * This does not protect us against NMI, but disable()
2450  * sets the disabled bit in the control field of event _before_
2451  * accessing the event control register. If a NMI hits, then it will
2452  * not restart the event.
2453  */
2454 void __perf_event_task_sched_out(struct task_struct *task,
2455 				 struct task_struct *next)
2456 {
2457 	int ctxn;
2458 
2459 	for_each_task_context_nr(ctxn)
2460 		perf_event_context_sched_out(task, ctxn, next);
2461 
2462 	/*
2463 	 * if cgroup events exist on this CPU, then we need
2464 	 * to check if we have to switch out PMU state.
2465 	 * cgroup event are system-wide mode only
2466 	 */
2467 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2468 		perf_cgroup_sched_out(task, next);
2469 }
2470 
2471 static void task_ctx_sched_out(struct perf_event_context *ctx)
2472 {
2473 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2474 
2475 	if (!cpuctx->task_ctx)
2476 		return;
2477 
2478 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2479 		return;
2480 
2481 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2482 	cpuctx->task_ctx = NULL;
2483 }
2484 
2485 /*
2486  * Called with IRQs disabled
2487  */
2488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2489 			      enum event_type_t event_type)
2490 {
2491 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2492 }
2493 
2494 static void
2495 ctx_pinned_sched_in(struct perf_event_context *ctx,
2496 		    struct perf_cpu_context *cpuctx)
2497 {
2498 	struct perf_event *event;
2499 
2500 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2501 		if (event->state <= PERF_EVENT_STATE_OFF)
2502 			continue;
2503 		if (!event_filter_match(event))
2504 			continue;
2505 
2506 		/* may need to reset tstamp_enabled */
2507 		if (is_cgroup_event(event))
2508 			perf_cgroup_mark_enabled(event, ctx);
2509 
2510 		if (group_can_go_on(event, cpuctx, 1))
2511 			group_sched_in(event, cpuctx, ctx);
2512 
2513 		/*
2514 		 * If this pinned group hasn't been scheduled,
2515 		 * put it in error state.
2516 		 */
2517 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2518 			update_group_times(event);
2519 			event->state = PERF_EVENT_STATE_ERROR;
2520 		}
2521 	}
2522 }
2523 
2524 static void
2525 ctx_flexible_sched_in(struct perf_event_context *ctx,
2526 		      struct perf_cpu_context *cpuctx)
2527 {
2528 	struct perf_event *event;
2529 	int can_add_hw = 1;
2530 
2531 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2532 		/* Ignore events in OFF or ERROR state */
2533 		if (event->state <= PERF_EVENT_STATE_OFF)
2534 			continue;
2535 		/*
2536 		 * Listen to the 'cpu' scheduling filter constraint
2537 		 * of events:
2538 		 */
2539 		if (!event_filter_match(event))
2540 			continue;
2541 
2542 		/* may need to reset tstamp_enabled */
2543 		if (is_cgroup_event(event))
2544 			perf_cgroup_mark_enabled(event, ctx);
2545 
2546 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2547 			if (group_sched_in(event, cpuctx, ctx))
2548 				can_add_hw = 0;
2549 		}
2550 	}
2551 }
2552 
2553 static void
2554 ctx_sched_in(struct perf_event_context *ctx,
2555 	     struct perf_cpu_context *cpuctx,
2556 	     enum event_type_t event_type,
2557 	     struct task_struct *task)
2558 {
2559 	u64 now;
2560 	int is_active = ctx->is_active;
2561 
2562 	ctx->is_active |= event_type;
2563 	if (likely(!ctx->nr_events))
2564 		return;
2565 
2566 	now = perf_clock();
2567 	ctx->timestamp = now;
2568 	perf_cgroup_set_timestamp(task, ctx);
2569 	/*
2570 	 * First go through the list and put on any pinned groups
2571 	 * in order to give them the best chance of going on.
2572 	 */
2573 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2574 		ctx_pinned_sched_in(ctx, cpuctx);
2575 
2576 	/* Then walk through the lower prio flexible groups */
2577 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2578 		ctx_flexible_sched_in(ctx, cpuctx);
2579 }
2580 
2581 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2582 			     enum event_type_t event_type,
2583 			     struct task_struct *task)
2584 {
2585 	struct perf_event_context *ctx = &cpuctx->ctx;
2586 
2587 	ctx_sched_in(ctx, cpuctx, event_type, task);
2588 }
2589 
2590 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2591 					struct task_struct *task)
2592 {
2593 	struct perf_cpu_context *cpuctx;
2594 
2595 	cpuctx = __get_cpu_context(ctx);
2596 	if (cpuctx->task_ctx == ctx)
2597 		return;
2598 
2599 	perf_ctx_lock(cpuctx, ctx);
2600 	perf_pmu_disable(ctx->pmu);
2601 	/*
2602 	 * We want to keep the following priority order:
2603 	 * cpu pinned (that don't need to move), task pinned,
2604 	 * cpu flexible, task flexible.
2605 	 */
2606 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2607 
2608 	if (ctx->nr_events)
2609 		cpuctx->task_ctx = ctx;
2610 
2611 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2612 
2613 	perf_pmu_enable(ctx->pmu);
2614 	perf_ctx_unlock(cpuctx, ctx);
2615 
2616 	/*
2617 	 * Since these rotations are per-cpu, we need to ensure the
2618 	 * cpu-context we got scheduled on is actually rotating.
2619 	 */
2620 	perf_pmu_rotate_start(ctx->pmu);
2621 }
2622 
2623 /*
2624  * When sampling the branck stack in system-wide, it may be necessary
2625  * to flush the stack on context switch. This happens when the branch
2626  * stack does not tag its entries with the pid of the current task.
2627  * Otherwise it becomes impossible to associate a branch entry with a
2628  * task. This ambiguity is more likely to appear when the branch stack
2629  * supports priv level filtering and the user sets it to monitor only
2630  * at the user level (which could be a useful measurement in system-wide
2631  * mode). In that case, the risk is high of having a branch stack with
2632  * branch from multiple tasks. Flushing may mean dropping the existing
2633  * entries or stashing them somewhere in the PMU specific code layer.
2634  *
2635  * This function provides the context switch callback to the lower code
2636  * layer. It is invoked ONLY when there is at least one system-wide context
2637  * with at least one active event using taken branch sampling.
2638  */
2639 static void perf_branch_stack_sched_in(struct task_struct *prev,
2640 				       struct task_struct *task)
2641 {
2642 	struct perf_cpu_context *cpuctx;
2643 	struct pmu *pmu;
2644 	unsigned long flags;
2645 
2646 	/* no need to flush branch stack if not changing task */
2647 	if (prev == task)
2648 		return;
2649 
2650 	local_irq_save(flags);
2651 
2652 	rcu_read_lock();
2653 
2654 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2655 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2656 
2657 		/*
2658 		 * check if the context has at least one
2659 		 * event using PERF_SAMPLE_BRANCH_STACK
2660 		 */
2661 		if (cpuctx->ctx.nr_branch_stack > 0
2662 		    && pmu->flush_branch_stack) {
2663 
2664 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2665 
2666 			perf_pmu_disable(pmu);
2667 
2668 			pmu->flush_branch_stack();
2669 
2670 			perf_pmu_enable(pmu);
2671 
2672 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2673 		}
2674 	}
2675 
2676 	rcu_read_unlock();
2677 
2678 	local_irq_restore(flags);
2679 }
2680 
2681 /*
2682  * Called from scheduler to add the events of the current task
2683  * with interrupts disabled.
2684  *
2685  * We restore the event value and then enable it.
2686  *
2687  * This does not protect us against NMI, but enable()
2688  * sets the enabled bit in the control field of event _before_
2689  * accessing the event control register. If a NMI hits, then it will
2690  * keep the event running.
2691  */
2692 void __perf_event_task_sched_in(struct task_struct *prev,
2693 				struct task_struct *task)
2694 {
2695 	struct perf_event_context *ctx;
2696 	int ctxn;
2697 
2698 	for_each_task_context_nr(ctxn) {
2699 		ctx = task->perf_event_ctxp[ctxn];
2700 		if (likely(!ctx))
2701 			continue;
2702 
2703 		perf_event_context_sched_in(ctx, task);
2704 	}
2705 	/*
2706 	 * if cgroup events exist on this CPU, then we need
2707 	 * to check if we have to switch in PMU state.
2708 	 * cgroup event are system-wide mode only
2709 	 */
2710 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2711 		perf_cgroup_sched_in(prev, task);
2712 
2713 	/* check for system-wide branch_stack events */
2714 	if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2715 		perf_branch_stack_sched_in(prev, task);
2716 }
2717 
2718 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2719 {
2720 	u64 frequency = event->attr.sample_freq;
2721 	u64 sec = NSEC_PER_SEC;
2722 	u64 divisor, dividend;
2723 
2724 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2725 
2726 	count_fls = fls64(count);
2727 	nsec_fls = fls64(nsec);
2728 	frequency_fls = fls64(frequency);
2729 	sec_fls = 30;
2730 
2731 	/*
2732 	 * We got @count in @nsec, with a target of sample_freq HZ
2733 	 * the target period becomes:
2734 	 *
2735 	 *             @count * 10^9
2736 	 * period = -------------------
2737 	 *          @nsec * sample_freq
2738 	 *
2739 	 */
2740 
2741 	/*
2742 	 * Reduce accuracy by one bit such that @a and @b converge
2743 	 * to a similar magnitude.
2744 	 */
2745 #define REDUCE_FLS(a, b)		\
2746 do {					\
2747 	if (a##_fls > b##_fls) {	\
2748 		a >>= 1;		\
2749 		a##_fls--;		\
2750 	} else {			\
2751 		b >>= 1;		\
2752 		b##_fls--;		\
2753 	}				\
2754 } while (0)
2755 
2756 	/*
2757 	 * Reduce accuracy until either term fits in a u64, then proceed with
2758 	 * the other, so that finally we can do a u64/u64 division.
2759 	 */
2760 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2761 		REDUCE_FLS(nsec, frequency);
2762 		REDUCE_FLS(sec, count);
2763 	}
2764 
2765 	if (count_fls + sec_fls > 64) {
2766 		divisor = nsec * frequency;
2767 
2768 		while (count_fls + sec_fls > 64) {
2769 			REDUCE_FLS(count, sec);
2770 			divisor >>= 1;
2771 		}
2772 
2773 		dividend = count * sec;
2774 	} else {
2775 		dividend = count * sec;
2776 
2777 		while (nsec_fls + frequency_fls > 64) {
2778 			REDUCE_FLS(nsec, frequency);
2779 			dividend >>= 1;
2780 		}
2781 
2782 		divisor = nsec * frequency;
2783 	}
2784 
2785 	if (!divisor)
2786 		return dividend;
2787 
2788 	return div64_u64(dividend, divisor);
2789 }
2790 
2791 static DEFINE_PER_CPU(int, perf_throttled_count);
2792 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2793 
2794 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2795 {
2796 	struct hw_perf_event *hwc = &event->hw;
2797 	s64 period, sample_period;
2798 	s64 delta;
2799 
2800 	period = perf_calculate_period(event, nsec, count);
2801 
2802 	delta = (s64)(period - hwc->sample_period);
2803 	delta = (delta + 7) / 8; /* low pass filter */
2804 
2805 	sample_period = hwc->sample_period + delta;
2806 
2807 	if (!sample_period)
2808 		sample_period = 1;
2809 
2810 	hwc->sample_period = sample_period;
2811 
2812 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2813 		if (disable)
2814 			event->pmu->stop(event, PERF_EF_UPDATE);
2815 
2816 		local64_set(&hwc->period_left, 0);
2817 
2818 		if (disable)
2819 			event->pmu->start(event, PERF_EF_RELOAD);
2820 	}
2821 }
2822 
2823 /*
2824  * combine freq adjustment with unthrottling to avoid two passes over the
2825  * events. At the same time, make sure, having freq events does not change
2826  * the rate of unthrottling as that would introduce bias.
2827  */
2828 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2829 					   int needs_unthr)
2830 {
2831 	struct perf_event *event;
2832 	struct hw_perf_event *hwc;
2833 	u64 now, period = TICK_NSEC;
2834 	s64 delta;
2835 
2836 	/*
2837 	 * only need to iterate over all events iff:
2838 	 * - context have events in frequency mode (needs freq adjust)
2839 	 * - there are events to unthrottle on this cpu
2840 	 */
2841 	if (!(ctx->nr_freq || needs_unthr))
2842 		return;
2843 
2844 	raw_spin_lock(&ctx->lock);
2845 	perf_pmu_disable(ctx->pmu);
2846 
2847 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2848 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2849 			continue;
2850 
2851 		if (!event_filter_match(event))
2852 			continue;
2853 
2854 		perf_pmu_disable(event->pmu);
2855 
2856 		hwc = &event->hw;
2857 
2858 		if (hwc->interrupts == MAX_INTERRUPTS) {
2859 			hwc->interrupts = 0;
2860 			perf_log_throttle(event, 1);
2861 			event->pmu->start(event, 0);
2862 		}
2863 
2864 		if (!event->attr.freq || !event->attr.sample_freq)
2865 			goto next;
2866 
2867 		/*
2868 		 * stop the event and update event->count
2869 		 */
2870 		event->pmu->stop(event, PERF_EF_UPDATE);
2871 
2872 		now = local64_read(&event->count);
2873 		delta = now - hwc->freq_count_stamp;
2874 		hwc->freq_count_stamp = now;
2875 
2876 		/*
2877 		 * restart the event
2878 		 * reload only if value has changed
2879 		 * we have stopped the event so tell that
2880 		 * to perf_adjust_period() to avoid stopping it
2881 		 * twice.
2882 		 */
2883 		if (delta > 0)
2884 			perf_adjust_period(event, period, delta, false);
2885 
2886 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2887 	next:
2888 		perf_pmu_enable(event->pmu);
2889 	}
2890 
2891 	perf_pmu_enable(ctx->pmu);
2892 	raw_spin_unlock(&ctx->lock);
2893 }
2894 
2895 /*
2896  * Round-robin a context's events:
2897  */
2898 static void rotate_ctx(struct perf_event_context *ctx)
2899 {
2900 	/*
2901 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2902 	 * disabled by the inheritance code.
2903 	 */
2904 	if (!ctx->rotate_disable)
2905 		list_rotate_left(&ctx->flexible_groups);
2906 }
2907 
2908 /*
2909  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910  * because they're strictly cpu affine and rotate_start is called with IRQs
2911  * disabled, while rotate_context is called from IRQ context.
2912  */
2913 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2914 {
2915 	struct perf_event_context *ctx = NULL;
2916 	int rotate = 0, remove = 1;
2917 
2918 	if (cpuctx->ctx.nr_events) {
2919 		remove = 0;
2920 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2921 			rotate = 1;
2922 	}
2923 
2924 	ctx = cpuctx->task_ctx;
2925 	if (ctx && ctx->nr_events) {
2926 		remove = 0;
2927 		if (ctx->nr_events != ctx->nr_active)
2928 			rotate = 1;
2929 	}
2930 
2931 	if (!rotate)
2932 		goto done;
2933 
2934 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2935 	perf_pmu_disable(cpuctx->ctx.pmu);
2936 
2937 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2938 	if (ctx)
2939 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2940 
2941 	rotate_ctx(&cpuctx->ctx);
2942 	if (ctx)
2943 		rotate_ctx(ctx);
2944 
2945 	perf_event_sched_in(cpuctx, ctx, current);
2946 
2947 	perf_pmu_enable(cpuctx->ctx.pmu);
2948 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2949 done:
2950 	if (remove)
2951 		list_del_init(&cpuctx->rotation_list);
2952 
2953 	return rotate;
2954 }
2955 
2956 #ifdef CONFIG_NO_HZ_FULL
2957 bool perf_event_can_stop_tick(void)
2958 {
2959 	if (atomic_read(&nr_freq_events) ||
2960 	    __this_cpu_read(perf_throttled_count))
2961 		return false;
2962 	else
2963 		return true;
2964 }
2965 #endif
2966 
2967 void perf_event_task_tick(void)
2968 {
2969 	struct list_head *head = this_cpu_ptr(&rotation_list);
2970 	struct perf_cpu_context *cpuctx, *tmp;
2971 	struct perf_event_context *ctx;
2972 	int throttled;
2973 
2974 	WARN_ON(!irqs_disabled());
2975 
2976 	__this_cpu_inc(perf_throttled_seq);
2977 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2978 
2979 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2980 		ctx = &cpuctx->ctx;
2981 		perf_adjust_freq_unthr_context(ctx, throttled);
2982 
2983 		ctx = cpuctx->task_ctx;
2984 		if (ctx)
2985 			perf_adjust_freq_unthr_context(ctx, throttled);
2986 	}
2987 }
2988 
2989 static int event_enable_on_exec(struct perf_event *event,
2990 				struct perf_event_context *ctx)
2991 {
2992 	if (!event->attr.enable_on_exec)
2993 		return 0;
2994 
2995 	event->attr.enable_on_exec = 0;
2996 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2997 		return 0;
2998 
2999 	__perf_event_mark_enabled(event);
3000 
3001 	return 1;
3002 }
3003 
3004 /*
3005  * Enable all of a task's events that have been marked enable-on-exec.
3006  * This expects task == current.
3007  */
3008 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3009 {
3010 	struct perf_event_context *clone_ctx = NULL;
3011 	struct perf_event *event;
3012 	unsigned long flags;
3013 	int enabled = 0;
3014 	int ret;
3015 
3016 	local_irq_save(flags);
3017 	if (!ctx || !ctx->nr_events)
3018 		goto out;
3019 
3020 	/*
3021 	 * We must ctxsw out cgroup events to avoid conflict
3022 	 * when invoking perf_task_event_sched_in() later on
3023 	 * in this function. Otherwise we end up trying to
3024 	 * ctxswin cgroup events which are already scheduled
3025 	 * in.
3026 	 */
3027 	perf_cgroup_sched_out(current, NULL);
3028 
3029 	raw_spin_lock(&ctx->lock);
3030 	task_ctx_sched_out(ctx);
3031 
3032 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3033 		ret = event_enable_on_exec(event, ctx);
3034 		if (ret)
3035 			enabled = 1;
3036 	}
3037 
3038 	/*
3039 	 * Unclone this context if we enabled any event.
3040 	 */
3041 	if (enabled)
3042 		clone_ctx = unclone_ctx(ctx);
3043 
3044 	raw_spin_unlock(&ctx->lock);
3045 
3046 	/*
3047 	 * Also calls ctxswin for cgroup events, if any:
3048 	 */
3049 	perf_event_context_sched_in(ctx, ctx->task);
3050 out:
3051 	local_irq_restore(flags);
3052 
3053 	if (clone_ctx)
3054 		put_ctx(clone_ctx);
3055 }
3056 
3057 void perf_event_exec(void)
3058 {
3059 	struct perf_event_context *ctx;
3060 	int ctxn;
3061 
3062 	rcu_read_lock();
3063 	for_each_task_context_nr(ctxn) {
3064 		ctx = current->perf_event_ctxp[ctxn];
3065 		if (!ctx)
3066 			continue;
3067 
3068 		perf_event_enable_on_exec(ctx);
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 
3073 /*
3074  * Cross CPU call to read the hardware event
3075  */
3076 static void __perf_event_read(void *info)
3077 {
3078 	struct perf_event *event = info;
3079 	struct perf_event_context *ctx = event->ctx;
3080 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3081 
3082 	/*
3083 	 * If this is a task context, we need to check whether it is
3084 	 * the current task context of this cpu.  If not it has been
3085 	 * scheduled out before the smp call arrived.  In that case
3086 	 * event->count would have been updated to a recent sample
3087 	 * when the event was scheduled out.
3088 	 */
3089 	if (ctx->task && cpuctx->task_ctx != ctx)
3090 		return;
3091 
3092 	raw_spin_lock(&ctx->lock);
3093 	if (ctx->is_active) {
3094 		update_context_time(ctx);
3095 		update_cgrp_time_from_event(event);
3096 	}
3097 	update_event_times(event);
3098 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3099 		event->pmu->read(event);
3100 	raw_spin_unlock(&ctx->lock);
3101 }
3102 
3103 static inline u64 perf_event_count(struct perf_event *event)
3104 {
3105 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3106 }
3107 
3108 static u64 perf_event_read(struct perf_event *event)
3109 {
3110 	/*
3111 	 * If event is enabled and currently active on a CPU, update the
3112 	 * value in the event structure:
3113 	 */
3114 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3115 		smp_call_function_single(event->oncpu,
3116 					 __perf_event_read, event, 1);
3117 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3118 		struct perf_event_context *ctx = event->ctx;
3119 		unsigned long flags;
3120 
3121 		raw_spin_lock_irqsave(&ctx->lock, flags);
3122 		/*
3123 		 * may read while context is not active
3124 		 * (e.g., thread is blocked), in that case
3125 		 * we cannot update context time
3126 		 */
3127 		if (ctx->is_active) {
3128 			update_context_time(ctx);
3129 			update_cgrp_time_from_event(event);
3130 		}
3131 		update_event_times(event);
3132 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3133 	}
3134 
3135 	return perf_event_count(event);
3136 }
3137 
3138 /*
3139  * Initialize the perf_event context in a task_struct:
3140  */
3141 static void __perf_event_init_context(struct perf_event_context *ctx)
3142 {
3143 	raw_spin_lock_init(&ctx->lock);
3144 	mutex_init(&ctx->mutex);
3145 	INIT_LIST_HEAD(&ctx->pinned_groups);
3146 	INIT_LIST_HEAD(&ctx->flexible_groups);
3147 	INIT_LIST_HEAD(&ctx->event_list);
3148 	atomic_set(&ctx->refcount, 1);
3149 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3150 }
3151 
3152 static struct perf_event_context *
3153 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3154 {
3155 	struct perf_event_context *ctx;
3156 
3157 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3158 	if (!ctx)
3159 		return NULL;
3160 
3161 	__perf_event_init_context(ctx);
3162 	if (task) {
3163 		ctx->task = task;
3164 		get_task_struct(task);
3165 	}
3166 	ctx->pmu = pmu;
3167 
3168 	return ctx;
3169 }
3170 
3171 static struct task_struct *
3172 find_lively_task_by_vpid(pid_t vpid)
3173 {
3174 	struct task_struct *task;
3175 	int err;
3176 
3177 	rcu_read_lock();
3178 	if (!vpid)
3179 		task = current;
3180 	else
3181 		task = find_task_by_vpid(vpid);
3182 	if (task)
3183 		get_task_struct(task);
3184 	rcu_read_unlock();
3185 
3186 	if (!task)
3187 		return ERR_PTR(-ESRCH);
3188 
3189 	/* Reuse ptrace permission checks for now. */
3190 	err = -EACCES;
3191 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3192 		goto errout;
3193 
3194 	return task;
3195 errout:
3196 	put_task_struct(task);
3197 	return ERR_PTR(err);
3198 
3199 }
3200 
3201 /*
3202  * Returns a matching context with refcount and pincount.
3203  */
3204 static struct perf_event_context *
3205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3206 {
3207 	struct perf_event_context *ctx, *clone_ctx = NULL;
3208 	struct perf_cpu_context *cpuctx;
3209 	unsigned long flags;
3210 	int ctxn, err;
3211 
3212 	if (!task) {
3213 		/* Must be root to operate on a CPU event: */
3214 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3215 			return ERR_PTR(-EACCES);
3216 
3217 		/*
3218 		 * We could be clever and allow to attach a event to an
3219 		 * offline CPU and activate it when the CPU comes up, but
3220 		 * that's for later.
3221 		 */
3222 		if (!cpu_online(cpu))
3223 			return ERR_PTR(-ENODEV);
3224 
3225 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3226 		ctx = &cpuctx->ctx;
3227 		get_ctx(ctx);
3228 		++ctx->pin_count;
3229 
3230 		return ctx;
3231 	}
3232 
3233 	err = -EINVAL;
3234 	ctxn = pmu->task_ctx_nr;
3235 	if (ctxn < 0)
3236 		goto errout;
3237 
3238 retry:
3239 	ctx = perf_lock_task_context(task, ctxn, &flags);
3240 	if (ctx) {
3241 		clone_ctx = unclone_ctx(ctx);
3242 		++ctx->pin_count;
3243 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3244 
3245 		if (clone_ctx)
3246 			put_ctx(clone_ctx);
3247 	} else {
3248 		ctx = alloc_perf_context(pmu, task);
3249 		err = -ENOMEM;
3250 		if (!ctx)
3251 			goto errout;
3252 
3253 		err = 0;
3254 		mutex_lock(&task->perf_event_mutex);
3255 		/*
3256 		 * If it has already passed perf_event_exit_task().
3257 		 * we must see PF_EXITING, it takes this mutex too.
3258 		 */
3259 		if (task->flags & PF_EXITING)
3260 			err = -ESRCH;
3261 		else if (task->perf_event_ctxp[ctxn])
3262 			err = -EAGAIN;
3263 		else {
3264 			get_ctx(ctx);
3265 			++ctx->pin_count;
3266 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3267 		}
3268 		mutex_unlock(&task->perf_event_mutex);
3269 
3270 		if (unlikely(err)) {
3271 			put_ctx(ctx);
3272 
3273 			if (err == -EAGAIN)
3274 				goto retry;
3275 			goto errout;
3276 		}
3277 	}
3278 
3279 	return ctx;
3280 
3281 errout:
3282 	return ERR_PTR(err);
3283 }
3284 
3285 static void perf_event_free_filter(struct perf_event *event);
3286 
3287 static void free_event_rcu(struct rcu_head *head)
3288 {
3289 	struct perf_event *event;
3290 
3291 	event = container_of(head, struct perf_event, rcu_head);
3292 	if (event->ns)
3293 		put_pid_ns(event->ns);
3294 	perf_event_free_filter(event);
3295 	kfree(event);
3296 }
3297 
3298 static void ring_buffer_put(struct ring_buffer *rb);
3299 static void ring_buffer_attach(struct perf_event *event,
3300 			       struct ring_buffer *rb);
3301 
3302 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3303 {
3304 	if (event->parent)
3305 		return;
3306 
3307 	if (has_branch_stack(event)) {
3308 		if (!(event->attach_state & PERF_ATTACH_TASK))
3309 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3310 	}
3311 	if (is_cgroup_event(event))
3312 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3313 }
3314 
3315 static void unaccount_event(struct perf_event *event)
3316 {
3317 	if (event->parent)
3318 		return;
3319 
3320 	if (event->attach_state & PERF_ATTACH_TASK)
3321 		static_key_slow_dec_deferred(&perf_sched_events);
3322 	if (event->attr.mmap || event->attr.mmap_data)
3323 		atomic_dec(&nr_mmap_events);
3324 	if (event->attr.comm)
3325 		atomic_dec(&nr_comm_events);
3326 	if (event->attr.task)
3327 		atomic_dec(&nr_task_events);
3328 	if (event->attr.freq)
3329 		atomic_dec(&nr_freq_events);
3330 	if (is_cgroup_event(event))
3331 		static_key_slow_dec_deferred(&perf_sched_events);
3332 	if (has_branch_stack(event))
3333 		static_key_slow_dec_deferred(&perf_sched_events);
3334 
3335 	unaccount_event_cpu(event, event->cpu);
3336 }
3337 
3338 static void __free_event(struct perf_event *event)
3339 {
3340 	if (!event->parent) {
3341 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3342 			put_callchain_buffers();
3343 	}
3344 
3345 	if (event->destroy)
3346 		event->destroy(event);
3347 
3348 	if (event->ctx)
3349 		put_ctx(event->ctx);
3350 
3351 	if (event->pmu)
3352 		module_put(event->pmu->module);
3353 
3354 	call_rcu(&event->rcu_head, free_event_rcu);
3355 }
3356 
3357 static void _free_event(struct perf_event *event)
3358 {
3359 	irq_work_sync(&event->pending);
3360 
3361 	unaccount_event(event);
3362 
3363 	if (event->rb) {
3364 		/*
3365 		 * Can happen when we close an event with re-directed output.
3366 		 *
3367 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3368 		 * over us; possibly making our ring_buffer_put() the last.
3369 		 */
3370 		mutex_lock(&event->mmap_mutex);
3371 		ring_buffer_attach(event, NULL);
3372 		mutex_unlock(&event->mmap_mutex);
3373 	}
3374 
3375 	if (is_cgroup_event(event))
3376 		perf_detach_cgroup(event);
3377 
3378 	__free_event(event);
3379 }
3380 
3381 /*
3382  * Used to free events which have a known refcount of 1, such as in error paths
3383  * where the event isn't exposed yet and inherited events.
3384  */
3385 static void free_event(struct perf_event *event)
3386 {
3387 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3388 				"unexpected event refcount: %ld; ptr=%p\n",
3389 				atomic_long_read(&event->refcount), event)) {
3390 		/* leak to avoid use-after-free */
3391 		return;
3392 	}
3393 
3394 	_free_event(event);
3395 }
3396 
3397 /*
3398  * Remove user event from the owner task.
3399  */
3400 static void perf_remove_from_owner(struct perf_event *event)
3401 {
3402 	struct task_struct *owner;
3403 
3404 	rcu_read_lock();
3405 	owner = ACCESS_ONCE(event->owner);
3406 	/*
3407 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408 	 * !owner it means the list deletion is complete and we can indeed
3409 	 * free this event, otherwise we need to serialize on
3410 	 * owner->perf_event_mutex.
3411 	 */
3412 	smp_read_barrier_depends();
3413 	if (owner) {
3414 		/*
3415 		 * Since delayed_put_task_struct() also drops the last
3416 		 * task reference we can safely take a new reference
3417 		 * while holding the rcu_read_lock().
3418 		 */
3419 		get_task_struct(owner);
3420 	}
3421 	rcu_read_unlock();
3422 
3423 	if (owner) {
3424 		mutex_lock(&owner->perf_event_mutex);
3425 		/*
3426 		 * We have to re-check the event->owner field, if it is cleared
3427 		 * we raced with perf_event_exit_task(), acquiring the mutex
3428 		 * ensured they're done, and we can proceed with freeing the
3429 		 * event.
3430 		 */
3431 		if (event->owner)
3432 			list_del_init(&event->owner_entry);
3433 		mutex_unlock(&owner->perf_event_mutex);
3434 		put_task_struct(owner);
3435 	}
3436 }
3437 
3438 /*
3439  * Called when the last reference to the file is gone.
3440  */
3441 static void put_event(struct perf_event *event)
3442 {
3443 	struct perf_event_context *ctx = event->ctx;
3444 
3445 	if (!atomic_long_dec_and_test(&event->refcount))
3446 		return;
3447 
3448 	if (!is_kernel_event(event))
3449 		perf_remove_from_owner(event);
3450 
3451 	WARN_ON_ONCE(ctx->parent_ctx);
3452 	/*
3453 	 * There are two ways this annotation is useful:
3454 	 *
3455 	 *  1) there is a lock recursion from perf_event_exit_task
3456 	 *     see the comment there.
3457 	 *
3458 	 *  2) there is a lock-inversion with mmap_sem through
3459 	 *     perf_event_read_group(), which takes faults while
3460 	 *     holding ctx->mutex, however this is called after
3461 	 *     the last filedesc died, so there is no possibility
3462 	 *     to trigger the AB-BA case.
3463 	 */
3464 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3465 	perf_remove_from_context(event, true);
3466 	mutex_unlock(&ctx->mutex);
3467 
3468 	_free_event(event);
3469 }
3470 
3471 int perf_event_release_kernel(struct perf_event *event)
3472 {
3473 	put_event(event);
3474 	return 0;
3475 }
3476 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3477 
3478 static int perf_release(struct inode *inode, struct file *file)
3479 {
3480 	put_event(file->private_data);
3481 	return 0;
3482 }
3483 
3484 /*
3485  * Remove all orphanes events from the context.
3486  */
3487 static void orphans_remove_work(struct work_struct *work)
3488 {
3489 	struct perf_event_context *ctx;
3490 	struct perf_event *event, *tmp;
3491 
3492 	ctx = container_of(work, struct perf_event_context,
3493 			   orphans_remove.work);
3494 
3495 	mutex_lock(&ctx->mutex);
3496 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3497 		struct perf_event *parent_event = event->parent;
3498 
3499 		if (!is_orphaned_child(event))
3500 			continue;
3501 
3502 		perf_remove_from_context(event, true);
3503 
3504 		mutex_lock(&parent_event->child_mutex);
3505 		list_del_init(&event->child_list);
3506 		mutex_unlock(&parent_event->child_mutex);
3507 
3508 		free_event(event);
3509 		put_event(parent_event);
3510 	}
3511 
3512 	raw_spin_lock_irq(&ctx->lock);
3513 	ctx->orphans_remove_sched = false;
3514 	raw_spin_unlock_irq(&ctx->lock);
3515 	mutex_unlock(&ctx->mutex);
3516 
3517 	put_ctx(ctx);
3518 }
3519 
3520 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3521 {
3522 	struct perf_event *child;
3523 	u64 total = 0;
3524 
3525 	*enabled = 0;
3526 	*running = 0;
3527 
3528 	mutex_lock(&event->child_mutex);
3529 	total += perf_event_read(event);
3530 	*enabled += event->total_time_enabled +
3531 			atomic64_read(&event->child_total_time_enabled);
3532 	*running += event->total_time_running +
3533 			atomic64_read(&event->child_total_time_running);
3534 
3535 	list_for_each_entry(child, &event->child_list, child_list) {
3536 		total += perf_event_read(child);
3537 		*enabled += child->total_time_enabled;
3538 		*running += child->total_time_running;
3539 	}
3540 	mutex_unlock(&event->child_mutex);
3541 
3542 	return total;
3543 }
3544 EXPORT_SYMBOL_GPL(perf_event_read_value);
3545 
3546 static int perf_event_read_group(struct perf_event *event,
3547 				   u64 read_format, char __user *buf)
3548 {
3549 	struct perf_event *leader = event->group_leader, *sub;
3550 	int n = 0, size = 0, ret = -EFAULT;
3551 	struct perf_event_context *ctx = leader->ctx;
3552 	u64 values[5];
3553 	u64 count, enabled, running;
3554 
3555 	mutex_lock(&ctx->mutex);
3556 	count = perf_event_read_value(leader, &enabled, &running);
3557 
3558 	values[n++] = 1 + leader->nr_siblings;
3559 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3560 		values[n++] = enabled;
3561 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3562 		values[n++] = running;
3563 	values[n++] = count;
3564 	if (read_format & PERF_FORMAT_ID)
3565 		values[n++] = primary_event_id(leader);
3566 
3567 	size = n * sizeof(u64);
3568 
3569 	if (copy_to_user(buf, values, size))
3570 		goto unlock;
3571 
3572 	ret = size;
3573 
3574 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3575 		n = 0;
3576 
3577 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3578 		if (read_format & PERF_FORMAT_ID)
3579 			values[n++] = primary_event_id(sub);
3580 
3581 		size = n * sizeof(u64);
3582 
3583 		if (copy_to_user(buf + ret, values, size)) {
3584 			ret = -EFAULT;
3585 			goto unlock;
3586 		}
3587 
3588 		ret += size;
3589 	}
3590 unlock:
3591 	mutex_unlock(&ctx->mutex);
3592 
3593 	return ret;
3594 }
3595 
3596 static int perf_event_read_one(struct perf_event *event,
3597 				 u64 read_format, char __user *buf)
3598 {
3599 	u64 enabled, running;
3600 	u64 values[4];
3601 	int n = 0;
3602 
3603 	values[n++] = perf_event_read_value(event, &enabled, &running);
3604 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3605 		values[n++] = enabled;
3606 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607 		values[n++] = running;
3608 	if (read_format & PERF_FORMAT_ID)
3609 		values[n++] = primary_event_id(event);
3610 
3611 	if (copy_to_user(buf, values, n * sizeof(u64)))
3612 		return -EFAULT;
3613 
3614 	return n * sizeof(u64);
3615 }
3616 
3617 static bool is_event_hup(struct perf_event *event)
3618 {
3619 	bool no_children;
3620 
3621 	if (event->state != PERF_EVENT_STATE_EXIT)
3622 		return false;
3623 
3624 	mutex_lock(&event->child_mutex);
3625 	no_children = list_empty(&event->child_list);
3626 	mutex_unlock(&event->child_mutex);
3627 	return no_children;
3628 }
3629 
3630 /*
3631  * Read the performance event - simple non blocking version for now
3632  */
3633 static ssize_t
3634 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3635 {
3636 	u64 read_format = event->attr.read_format;
3637 	int ret;
3638 
3639 	/*
3640 	 * Return end-of-file for a read on a event that is in
3641 	 * error state (i.e. because it was pinned but it couldn't be
3642 	 * scheduled on to the CPU at some point).
3643 	 */
3644 	if (event->state == PERF_EVENT_STATE_ERROR)
3645 		return 0;
3646 
3647 	if (count < event->read_size)
3648 		return -ENOSPC;
3649 
3650 	WARN_ON_ONCE(event->ctx->parent_ctx);
3651 	if (read_format & PERF_FORMAT_GROUP)
3652 		ret = perf_event_read_group(event, read_format, buf);
3653 	else
3654 		ret = perf_event_read_one(event, read_format, buf);
3655 
3656 	return ret;
3657 }
3658 
3659 static ssize_t
3660 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3661 {
3662 	struct perf_event *event = file->private_data;
3663 
3664 	return perf_read_hw(event, buf, count);
3665 }
3666 
3667 static unsigned int perf_poll(struct file *file, poll_table *wait)
3668 {
3669 	struct perf_event *event = file->private_data;
3670 	struct ring_buffer *rb;
3671 	unsigned int events = POLLHUP;
3672 
3673 	poll_wait(file, &event->waitq, wait);
3674 
3675 	if (is_event_hup(event))
3676 		return events;
3677 
3678 	/*
3679 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3681 	 */
3682 	mutex_lock(&event->mmap_mutex);
3683 	rb = event->rb;
3684 	if (rb)
3685 		events = atomic_xchg(&rb->poll, 0);
3686 	mutex_unlock(&event->mmap_mutex);
3687 	return events;
3688 }
3689 
3690 static void perf_event_reset(struct perf_event *event)
3691 {
3692 	(void)perf_event_read(event);
3693 	local64_set(&event->count, 0);
3694 	perf_event_update_userpage(event);
3695 }
3696 
3697 /*
3698  * Holding the top-level event's child_mutex means that any
3699  * descendant process that has inherited this event will block
3700  * in sync_child_event if it goes to exit, thus satisfying the
3701  * task existence requirements of perf_event_enable/disable.
3702  */
3703 static void perf_event_for_each_child(struct perf_event *event,
3704 					void (*func)(struct perf_event *))
3705 {
3706 	struct perf_event *child;
3707 
3708 	WARN_ON_ONCE(event->ctx->parent_ctx);
3709 	mutex_lock(&event->child_mutex);
3710 	func(event);
3711 	list_for_each_entry(child, &event->child_list, child_list)
3712 		func(child);
3713 	mutex_unlock(&event->child_mutex);
3714 }
3715 
3716 static void perf_event_for_each(struct perf_event *event,
3717 				  void (*func)(struct perf_event *))
3718 {
3719 	struct perf_event_context *ctx = event->ctx;
3720 	struct perf_event *sibling;
3721 
3722 	WARN_ON_ONCE(ctx->parent_ctx);
3723 	mutex_lock(&ctx->mutex);
3724 	event = event->group_leader;
3725 
3726 	perf_event_for_each_child(event, func);
3727 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3728 		perf_event_for_each_child(sibling, func);
3729 	mutex_unlock(&ctx->mutex);
3730 }
3731 
3732 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3733 {
3734 	struct perf_event_context *ctx = event->ctx;
3735 	int ret = 0, active;
3736 	u64 value;
3737 
3738 	if (!is_sampling_event(event))
3739 		return -EINVAL;
3740 
3741 	if (copy_from_user(&value, arg, sizeof(value)))
3742 		return -EFAULT;
3743 
3744 	if (!value)
3745 		return -EINVAL;
3746 
3747 	raw_spin_lock_irq(&ctx->lock);
3748 	if (event->attr.freq) {
3749 		if (value > sysctl_perf_event_sample_rate) {
3750 			ret = -EINVAL;
3751 			goto unlock;
3752 		}
3753 
3754 		event->attr.sample_freq = value;
3755 	} else {
3756 		event->attr.sample_period = value;
3757 		event->hw.sample_period = value;
3758 	}
3759 
3760 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
3761 	if (active) {
3762 		perf_pmu_disable(ctx->pmu);
3763 		event->pmu->stop(event, PERF_EF_UPDATE);
3764 	}
3765 
3766 	local64_set(&event->hw.period_left, 0);
3767 
3768 	if (active) {
3769 		event->pmu->start(event, PERF_EF_RELOAD);
3770 		perf_pmu_enable(ctx->pmu);
3771 	}
3772 
3773 unlock:
3774 	raw_spin_unlock_irq(&ctx->lock);
3775 
3776 	return ret;
3777 }
3778 
3779 static const struct file_operations perf_fops;
3780 
3781 static inline int perf_fget_light(int fd, struct fd *p)
3782 {
3783 	struct fd f = fdget(fd);
3784 	if (!f.file)
3785 		return -EBADF;
3786 
3787 	if (f.file->f_op != &perf_fops) {
3788 		fdput(f);
3789 		return -EBADF;
3790 	}
3791 	*p = f;
3792 	return 0;
3793 }
3794 
3795 static int perf_event_set_output(struct perf_event *event,
3796 				 struct perf_event *output_event);
3797 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3798 
3799 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3800 {
3801 	struct perf_event *event = file->private_data;
3802 	void (*func)(struct perf_event *);
3803 	u32 flags = arg;
3804 
3805 	switch (cmd) {
3806 	case PERF_EVENT_IOC_ENABLE:
3807 		func = perf_event_enable;
3808 		break;
3809 	case PERF_EVENT_IOC_DISABLE:
3810 		func = perf_event_disable;
3811 		break;
3812 	case PERF_EVENT_IOC_RESET:
3813 		func = perf_event_reset;
3814 		break;
3815 
3816 	case PERF_EVENT_IOC_REFRESH:
3817 		return perf_event_refresh(event, arg);
3818 
3819 	case PERF_EVENT_IOC_PERIOD:
3820 		return perf_event_period(event, (u64 __user *)arg);
3821 
3822 	case PERF_EVENT_IOC_ID:
3823 	{
3824 		u64 id = primary_event_id(event);
3825 
3826 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3827 			return -EFAULT;
3828 		return 0;
3829 	}
3830 
3831 	case PERF_EVENT_IOC_SET_OUTPUT:
3832 	{
3833 		int ret;
3834 		if (arg != -1) {
3835 			struct perf_event *output_event;
3836 			struct fd output;
3837 			ret = perf_fget_light(arg, &output);
3838 			if (ret)
3839 				return ret;
3840 			output_event = output.file->private_data;
3841 			ret = perf_event_set_output(event, output_event);
3842 			fdput(output);
3843 		} else {
3844 			ret = perf_event_set_output(event, NULL);
3845 		}
3846 		return ret;
3847 	}
3848 
3849 	case PERF_EVENT_IOC_SET_FILTER:
3850 		return perf_event_set_filter(event, (void __user *)arg);
3851 
3852 	default:
3853 		return -ENOTTY;
3854 	}
3855 
3856 	if (flags & PERF_IOC_FLAG_GROUP)
3857 		perf_event_for_each(event, func);
3858 	else
3859 		perf_event_for_each_child(event, func);
3860 
3861 	return 0;
3862 }
3863 
3864 #ifdef CONFIG_COMPAT
3865 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3866 				unsigned long arg)
3867 {
3868 	switch (_IOC_NR(cmd)) {
3869 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3870 	case _IOC_NR(PERF_EVENT_IOC_ID):
3871 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3872 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3873 			cmd &= ~IOCSIZE_MASK;
3874 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3875 		}
3876 		break;
3877 	}
3878 	return perf_ioctl(file, cmd, arg);
3879 }
3880 #else
3881 # define perf_compat_ioctl NULL
3882 #endif
3883 
3884 int perf_event_task_enable(void)
3885 {
3886 	struct perf_event *event;
3887 
3888 	mutex_lock(&current->perf_event_mutex);
3889 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3890 		perf_event_for_each_child(event, perf_event_enable);
3891 	mutex_unlock(&current->perf_event_mutex);
3892 
3893 	return 0;
3894 }
3895 
3896 int perf_event_task_disable(void)
3897 {
3898 	struct perf_event *event;
3899 
3900 	mutex_lock(&current->perf_event_mutex);
3901 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3902 		perf_event_for_each_child(event, perf_event_disable);
3903 	mutex_unlock(&current->perf_event_mutex);
3904 
3905 	return 0;
3906 }
3907 
3908 static int perf_event_index(struct perf_event *event)
3909 {
3910 	if (event->hw.state & PERF_HES_STOPPED)
3911 		return 0;
3912 
3913 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3914 		return 0;
3915 
3916 	return event->pmu->event_idx(event);
3917 }
3918 
3919 static void calc_timer_values(struct perf_event *event,
3920 				u64 *now,
3921 				u64 *enabled,
3922 				u64 *running)
3923 {
3924 	u64 ctx_time;
3925 
3926 	*now = perf_clock();
3927 	ctx_time = event->shadow_ctx_time + *now;
3928 	*enabled = ctx_time - event->tstamp_enabled;
3929 	*running = ctx_time - event->tstamp_running;
3930 }
3931 
3932 static void perf_event_init_userpage(struct perf_event *event)
3933 {
3934 	struct perf_event_mmap_page *userpg;
3935 	struct ring_buffer *rb;
3936 
3937 	rcu_read_lock();
3938 	rb = rcu_dereference(event->rb);
3939 	if (!rb)
3940 		goto unlock;
3941 
3942 	userpg = rb->user_page;
3943 
3944 	/* Allow new userspace to detect that bit 0 is deprecated */
3945 	userpg->cap_bit0_is_deprecated = 1;
3946 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3947 
3948 unlock:
3949 	rcu_read_unlock();
3950 }
3951 
3952 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3953 {
3954 }
3955 
3956 /*
3957  * Callers need to ensure there can be no nesting of this function, otherwise
3958  * the seqlock logic goes bad. We can not serialize this because the arch
3959  * code calls this from NMI context.
3960  */
3961 void perf_event_update_userpage(struct perf_event *event)
3962 {
3963 	struct perf_event_mmap_page *userpg;
3964 	struct ring_buffer *rb;
3965 	u64 enabled, running, now;
3966 
3967 	rcu_read_lock();
3968 	rb = rcu_dereference(event->rb);
3969 	if (!rb)
3970 		goto unlock;
3971 
3972 	/*
3973 	 * compute total_time_enabled, total_time_running
3974 	 * based on snapshot values taken when the event
3975 	 * was last scheduled in.
3976 	 *
3977 	 * we cannot simply called update_context_time()
3978 	 * because of locking issue as we can be called in
3979 	 * NMI context
3980 	 */
3981 	calc_timer_values(event, &now, &enabled, &running);
3982 
3983 	userpg = rb->user_page;
3984 	/*
3985 	 * Disable preemption so as to not let the corresponding user-space
3986 	 * spin too long if we get preempted.
3987 	 */
3988 	preempt_disable();
3989 	++userpg->lock;
3990 	barrier();
3991 	userpg->index = perf_event_index(event);
3992 	userpg->offset = perf_event_count(event);
3993 	if (userpg->index)
3994 		userpg->offset -= local64_read(&event->hw.prev_count);
3995 
3996 	userpg->time_enabled = enabled +
3997 			atomic64_read(&event->child_total_time_enabled);
3998 
3999 	userpg->time_running = running +
4000 			atomic64_read(&event->child_total_time_running);
4001 
4002 	arch_perf_update_userpage(userpg, now);
4003 
4004 	barrier();
4005 	++userpg->lock;
4006 	preempt_enable();
4007 unlock:
4008 	rcu_read_unlock();
4009 }
4010 
4011 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4012 {
4013 	struct perf_event *event = vma->vm_file->private_data;
4014 	struct ring_buffer *rb;
4015 	int ret = VM_FAULT_SIGBUS;
4016 
4017 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4018 		if (vmf->pgoff == 0)
4019 			ret = 0;
4020 		return ret;
4021 	}
4022 
4023 	rcu_read_lock();
4024 	rb = rcu_dereference(event->rb);
4025 	if (!rb)
4026 		goto unlock;
4027 
4028 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4029 		goto unlock;
4030 
4031 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4032 	if (!vmf->page)
4033 		goto unlock;
4034 
4035 	get_page(vmf->page);
4036 	vmf->page->mapping = vma->vm_file->f_mapping;
4037 	vmf->page->index   = vmf->pgoff;
4038 
4039 	ret = 0;
4040 unlock:
4041 	rcu_read_unlock();
4042 
4043 	return ret;
4044 }
4045 
4046 static void ring_buffer_attach(struct perf_event *event,
4047 			       struct ring_buffer *rb)
4048 {
4049 	struct ring_buffer *old_rb = NULL;
4050 	unsigned long flags;
4051 
4052 	if (event->rb) {
4053 		/*
4054 		 * Should be impossible, we set this when removing
4055 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4056 		 */
4057 		WARN_ON_ONCE(event->rcu_pending);
4058 
4059 		old_rb = event->rb;
4060 		event->rcu_batches = get_state_synchronize_rcu();
4061 		event->rcu_pending = 1;
4062 
4063 		spin_lock_irqsave(&old_rb->event_lock, flags);
4064 		list_del_rcu(&event->rb_entry);
4065 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4066 	}
4067 
4068 	if (event->rcu_pending && rb) {
4069 		cond_synchronize_rcu(event->rcu_batches);
4070 		event->rcu_pending = 0;
4071 	}
4072 
4073 	if (rb) {
4074 		spin_lock_irqsave(&rb->event_lock, flags);
4075 		list_add_rcu(&event->rb_entry, &rb->event_list);
4076 		spin_unlock_irqrestore(&rb->event_lock, flags);
4077 	}
4078 
4079 	rcu_assign_pointer(event->rb, rb);
4080 
4081 	if (old_rb) {
4082 		ring_buffer_put(old_rb);
4083 		/*
4084 		 * Since we detached before setting the new rb, so that we
4085 		 * could attach the new rb, we could have missed a wakeup.
4086 		 * Provide it now.
4087 		 */
4088 		wake_up_all(&event->waitq);
4089 	}
4090 }
4091 
4092 static void ring_buffer_wakeup(struct perf_event *event)
4093 {
4094 	struct ring_buffer *rb;
4095 
4096 	rcu_read_lock();
4097 	rb = rcu_dereference(event->rb);
4098 	if (rb) {
4099 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4100 			wake_up_all(&event->waitq);
4101 	}
4102 	rcu_read_unlock();
4103 }
4104 
4105 static void rb_free_rcu(struct rcu_head *rcu_head)
4106 {
4107 	struct ring_buffer *rb;
4108 
4109 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4110 	rb_free(rb);
4111 }
4112 
4113 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4114 {
4115 	struct ring_buffer *rb;
4116 
4117 	rcu_read_lock();
4118 	rb = rcu_dereference(event->rb);
4119 	if (rb) {
4120 		if (!atomic_inc_not_zero(&rb->refcount))
4121 			rb = NULL;
4122 	}
4123 	rcu_read_unlock();
4124 
4125 	return rb;
4126 }
4127 
4128 static void ring_buffer_put(struct ring_buffer *rb)
4129 {
4130 	if (!atomic_dec_and_test(&rb->refcount))
4131 		return;
4132 
4133 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4134 
4135 	call_rcu(&rb->rcu_head, rb_free_rcu);
4136 }
4137 
4138 static void perf_mmap_open(struct vm_area_struct *vma)
4139 {
4140 	struct perf_event *event = vma->vm_file->private_data;
4141 
4142 	atomic_inc(&event->mmap_count);
4143 	atomic_inc(&event->rb->mmap_count);
4144 }
4145 
4146 /*
4147  * A buffer can be mmap()ed multiple times; either directly through the same
4148  * event, or through other events by use of perf_event_set_output().
4149  *
4150  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4151  * the buffer here, where we still have a VM context. This means we need
4152  * to detach all events redirecting to us.
4153  */
4154 static void perf_mmap_close(struct vm_area_struct *vma)
4155 {
4156 	struct perf_event *event = vma->vm_file->private_data;
4157 
4158 	struct ring_buffer *rb = ring_buffer_get(event);
4159 	struct user_struct *mmap_user = rb->mmap_user;
4160 	int mmap_locked = rb->mmap_locked;
4161 	unsigned long size = perf_data_size(rb);
4162 
4163 	atomic_dec(&rb->mmap_count);
4164 
4165 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4166 		goto out_put;
4167 
4168 	ring_buffer_attach(event, NULL);
4169 	mutex_unlock(&event->mmap_mutex);
4170 
4171 	/* If there's still other mmap()s of this buffer, we're done. */
4172 	if (atomic_read(&rb->mmap_count))
4173 		goto out_put;
4174 
4175 	/*
4176 	 * No other mmap()s, detach from all other events that might redirect
4177 	 * into the now unreachable buffer. Somewhat complicated by the
4178 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4179 	 */
4180 again:
4181 	rcu_read_lock();
4182 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4183 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4184 			/*
4185 			 * This event is en-route to free_event() which will
4186 			 * detach it and remove it from the list.
4187 			 */
4188 			continue;
4189 		}
4190 		rcu_read_unlock();
4191 
4192 		mutex_lock(&event->mmap_mutex);
4193 		/*
4194 		 * Check we didn't race with perf_event_set_output() which can
4195 		 * swizzle the rb from under us while we were waiting to
4196 		 * acquire mmap_mutex.
4197 		 *
4198 		 * If we find a different rb; ignore this event, a next
4199 		 * iteration will no longer find it on the list. We have to
4200 		 * still restart the iteration to make sure we're not now
4201 		 * iterating the wrong list.
4202 		 */
4203 		if (event->rb == rb)
4204 			ring_buffer_attach(event, NULL);
4205 
4206 		mutex_unlock(&event->mmap_mutex);
4207 		put_event(event);
4208 
4209 		/*
4210 		 * Restart the iteration; either we're on the wrong list or
4211 		 * destroyed its integrity by doing a deletion.
4212 		 */
4213 		goto again;
4214 	}
4215 	rcu_read_unlock();
4216 
4217 	/*
4218 	 * It could be there's still a few 0-ref events on the list; they'll
4219 	 * get cleaned up by free_event() -- they'll also still have their
4220 	 * ref on the rb and will free it whenever they are done with it.
4221 	 *
4222 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4223 	 * undo the VM accounting.
4224 	 */
4225 
4226 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4227 	vma->vm_mm->pinned_vm -= mmap_locked;
4228 	free_uid(mmap_user);
4229 
4230 out_put:
4231 	ring_buffer_put(rb); /* could be last */
4232 }
4233 
4234 static const struct vm_operations_struct perf_mmap_vmops = {
4235 	.open		= perf_mmap_open,
4236 	.close		= perf_mmap_close,
4237 	.fault		= perf_mmap_fault,
4238 	.page_mkwrite	= perf_mmap_fault,
4239 };
4240 
4241 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4242 {
4243 	struct perf_event *event = file->private_data;
4244 	unsigned long user_locked, user_lock_limit;
4245 	struct user_struct *user = current_user();
4246 	unsigned long locked, lock_limit;
4247 	struct ring_buffer *rb;
4248 	unsigned long vma_size;
4249 	unsigned long nr_pages;
4250 	long user_extra, extra;
4251 	int ret = 0, flags = 0;
4252 
4253 	/*
4254 	 * Don't allow mmap() of inherited per-task counters. This would
4255 	 * create a performance issue due to all children writing to the
4256 	 * same rb.
4257 	 */
4258 	if (event->cpu == -1 && event->attr.inherit)
4259 		return -EINVAL;
4260 
4261 	if (!(vma->vm_flags & VM_SHARED))
4262 		return -EINVAL;
4263 
4264 	vma_size = vma->vm_end - vma->vm_start;
4265 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4266 
4267 	/*
4268 	 * If we have rb pages ensure they're a power-of-two number, so we
4269 	 * can do bitmasks instead of modulo.
4270 	 */
4271 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4272 		return -EINVAL;
4273 
4274 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4275 		return -EINVAL;
4276 
4277 	if (vma->vm_pgoff != 0)
4278 		return -EINVAL;
4279 
4280 	WARN_ON_ONCE(event->ctx->parent_ctx);
4281 again:
4282 	mutex_lock(&event->mmap_mutex);
4283 	if (event->rb) {
4284 		if (event->rb->nr_pages != nr_pages) {
4285 			ret = -EINVAL;
4286 			goto unlock;
4287 		}
4288 
4289 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4290 			/*
4291 			 * Raced against perf_mmap_close() through
4292 			 * perf_event_set_output(). Try again, hope for better
4293 			 * luck.
4294 			 */
4295 			mutex_unlock(&event->mmap_mutex);
4296 			goto again;
4297 		}
4298 
4299 		goto unlock;
4300 	}
4301 
4302 	user_extra = nr_pages + 1;
4303 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4304 
4305 	/*
4306 	 * Increase the limit linearly with more CPUs:
4307 	 */
4308 	user_lock_limit *= num_online_cpus();
4309 
4310 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4311 
4312 	extra = 0;
4313 	if (user_locked > user_lock_limit)
4314 		extra = user_locked - user_lock_limit;
4315 
4316 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4317 	lock_limit >>= PAGE_SHIFT;
4318 	locked = vma->vm_mm->pinned_vm + extra;
4319 
4320 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4321 		!capable(CAP_IPC_LOCK)) {
4322 		ret = -EPERM;
4323 		goto unlock;
4324 	}
4325 
4326 	WARN_ON(event->rb);
4327 
4328 	if (vma->vm_flags & VM_WRITE)
4329 		flags |= RING_BUFFER_WRITABLE;
4330 
4331 	rb = rb_alloc(nr_pages,
4332 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4333 		event->cpu, flags);
4334 
4335 	if (!rb) {
4336 		ret = -ENOMEM;
4337 		goto unlock;
4338 	}
4339 
4340 	atomic_set(&rb->mmap_count, 1);
4341 	rb->mmap_locked = extra;
4342 	rb->mmap_user = get_current_user();
4343 
4344 	atomic_long_add(user_extra, &user->locked_vm);
4345 	vma->vm_mm->pinned_vm += extra;
4346 
4347 	ring_buffer_attach(event, rb);
4348 
4349 	perf_event_init_userpage(event);
4350 	perf_event_update_userpage(event);
4351 
4352 unlock:
4353 	if (!ret)
4354 		atomic_inc(&event->mmap_count);
4355 	mutex_unlock(&event->mmap_mutex);
4356 
4357 	/*
4358 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4359 	 * vma.
4360 	 */
4361 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4362 	vma->vm_ops = &perf_mmap_vmops;
4363 
4364 	return ret;
4365 }
4366 
4367 static int perf_fasync(int fd, struct file *filp, int on)
4368 {
4369 	struct inode *inode = file_inode(filp);
4370 	struct perf_event *event = filp->private_data;
4371 	int retval;
4372 
4373 	mutex_lock(&inode->i_mutex);
4374 	retval = fasync_helper(fd, filp, on, &event->fasync);
4375 	mutex_unlock(&inode->i_mutex);
4376 
4377 	if (retval < 0)
4378 		return retval;
4379 
4380 	return 0;
4381 }
4382 
4383 static const struct file_operations perf_fops = {
4384 	.llseek			= no_llseek,
4385 	.release		= perf_release,
4386 	.read			= perf_read,
4387 	.poll			= perf_poll,
4388 	.unlocked_ioctl		= perf_ioctl,
4389 	.compat_ioctl		= perf_compat_ioctl,
4390 	.mmap			= perf_mmap,
4391 	.fasync			= perf_fasync,
4392 };
4393 
4394 /*
4395  * Perf event wakeup
4396  *
4397  * If there's data, ensure we set the poll() state and publish everything
4398  * to user-space before waking everybody up.
4399  */
4400 
4401 void perf_event_wakeup(struct perf_event *event)
4402 {
4403 	ring_buffer_wakeup(event);
4404 
4405 	if (event->pending_kill) {
4406 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4407 		event->pending_kill = 0;
4408 	}
4409 }
4410 
4411 static void perf_pending_event(struct irq_work *entry)
4412 {
4413 	struct perf_event *event = container_of(entry,
4414 			struct perf_event, pending);
4415 
4416 	if (event->pending_disable) {
4417 		event->pending_disable = 0;
4418 		__perf_event_disable(event);
4419 	}
4420 
4421 	if (event->pending_wakeup) {
4422 		event->pending_wakeup = 0;
4423 		perf_event_wakeup(event);
4424 	}
4425 }
4426 
4427 /*
4428  * We assume there is only KVM supporting the callbacks.
4429  * Later on, we might change it to a list if there is
4430  * another virtualization implementation supporting the callbacks.
4431  */
4432 struct perf_guest_info_callbacks *perf_guest_cbs;
4433 
4434 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4435 {
4436 	perf_guest_cbs = cbs;
4437 	return 0;
4438 }
4439 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4440 
4441 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4442 {
4443 	perf_guest_cbs = NULL;
4444 	return 0;
4445 }
4446 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4447 
4448 static void
4449 perf_output_sample_regs(struct perf_output_handle *handle,
4450 			struct pt_regs *regs, u64 mask)
4451 {
4452 	int bit;
4453 
4454 	for_each_set_bit(bit, (const unsigned long *) &mask,
4455 			 sizeof(mask) * BITS_PER_BYTE) {
4456 		u64 val;
4457 
4458 		val = perf_reg_value(regs, bit);
4459 		perf_output_put(handle, val);
4460 	}
4461 }
4462 
4463 static void perf_sample_regs_user(struct perf_regs *regs_user,
4464 				  struct pt_regs *regs)
4465 {
4466 	if (!user_mode(regs)) {
4467 		if (current->mm)
4468 			regs = task_pt_regs(current);
4469 		else
4470 			regs = NULL;
4471 	}
4472 
4473 	if (regs) {
4474 		regs_user->abi  = perf_reg_abi(current);
4475 		regs_user->regs = regs;
4476 	} else {
4477 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4478 		regs_user->regs = NULL;
4479 	}
4480 }
4481 
4482 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4483 				  struct pt_regs *regs)
4484 {
4485 	regs_intr->regs = regs;
4486 	regs_intr->abi  = perf_reg_abi(current);
4487 }
4488 
4489 
4490 /*
4491  * Get remaining task size from user stack pointer.
4492  *
4493  * It'd be better to take stack vma map and limit this more
4494  * precisly, but there's no way to get it safely under interrupt,
4495  * so using TASK_SIZE as limit.
4496  */
4497 static u64 perf_ustack_task_size(struct pt_regs *regs)
4498 {
4499 	unsigned long addr = perf_user_stack_pointer(regs);
4500 
4501 	if (!addr || addr >= TASK_SIZE)
4502 		return 0;
4503 
4504 	return TASK_SIZE - addr;
4505 }
4506 
4507 static u16
4508 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4509 			struct pt_regs *regs)
4510 {
4511 	u64 task_size;
4512 
4513 	/* No regs, no stack pointer, no dump. */
4514 	if (!regs)
4515 		return 0;
4516 
4517 	/*
4518 	 * Check if we fit in with the requested stack size into the:
4519 	 * - TASK_SIZE
4520 	 *   If we don't, we limit the size to the TASK_SIZE.
4521 	 *
4522 	 * - remaining sample size
4523 	 *   If we don't, we customize the stack size to
4524 	 *   fit in to the remaining sample size.
4525 	 */
4526 
4527 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4528 	stack_size = min(stack_size, (u16) task_size);
4529 
4530 	/* Current header size plus static size and dynamic size. */
4531 	header_size += 2 * sizeof(u64);
4532 
4533 	/* Do we fit in with the current stack dump size? */
4534 	if ((u16) (header_size + stack_size) < header_size) {
4535 		/*
4536 		 * If we overflow the maximum size for the sample,
4537 		 * we customize the stack dump size to fit in.
4538 		 */
4539 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4540 		stack_size = round_up(stack_size, sizeof(u64));
4541 	}
4542 
4543 	return stack_size;
4544 }
4545 
4546 static void
4547 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4548 			  struct pt_regs *regs)
4549 {
4550 	/* Case of a kernel thread, nothing to dump */
4551 	if (!regs) {
4552 		u64 size = 0;
4553 		perf_output_put(handle, size);
4554 	} else {
4555 		unsigned long sp;
4556 		unsigned int rem;
4557 		u64 dyn_size;
4558 
4559 		/*
4560 		 * We dump:
4561 		 * static size
4562 		 *   - the size requested by user or the best one we can fit
4563 		 *     in to the sample max size
4564 		 * data
4565 		 *   - user stack dump data
4566 		 * dynamic size
4567 		 *   - the actual dumped size
4568 		 */
4569 
4570 		/* Static size. */
4571 		perf_output_put(handle, dump_size);
4572 
4573 		/* Data. */
4574 		sp = perf_user_stack_pointer(regs);
4575 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4576 		dyn_size = dump_size - rem;
4577 
4578 		perf_output_skip(handle, rem);
4579 
4580 		/* Dynamic size. */
4581 		perf_output_put(handle, dyn_size);
4582 	}
4583 }
4584 
4585 static void __perf_event_header__init_id(struct perf_event_header *header,
4586 					 struct perf_sample_data *data,
4587 					 struct perf_event *event)
4588 {
4589 	u64 sample_type = event->attr.sample_type;
4590 
4591 	data->type = sample_type;
4592 	header->size += event->id_header_size;
4593 
4594 	if (sample_type & PERF_SAMPLE_TID) {
4595 		/* namespace issues */
4596 		data->tid_entry.pid = perf_event_pid(event, current);
4597 		data->tid_entry.tid = perf_event_tid(event, current);
4598 	}
4599 
4600 	if (sample_type & PERF_SAMPLE_TIME)
4601 		data->time = perf_clock();
4602 
4603 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4604 		data->id = primary_event_id(event);
4605 
4606 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4607 		data->stream_id = event->id;
4608 
4609 	if (sample_type & PERF_SAMPLE_CPU) {
4610 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4611 		data->cpu_entry.reserved = 0;
4612 	}
4613 }
4614 
4615 void perf_event_header__init_id(struct perf_event_header *header,
4616 				struct perf_sample_data *data,
4617 				struct perf_event *event)
4618 {
4619 	if (event->attr.sample_id_all)
4620 		__perf_event_header__init_id(header, data, event);
4621 }
4622 
4623 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4624 					   struct perf_sample_data *data)
4625 {
4626 	u64 sample_type = data->type;
4627 
4628 	if (sample_type & PERF_SAMPLE_TID)
4629 		perf_output_put(handle, data->tid_entry);
4630 
4631 	if (sample_type & PERF_SAMPLE_TIME)
4632 		perf_output_put(handle, data->time);
4633 
4634 	if (sample_type & PERF_SAMPLE_ID)
4635 		perf_output_put(handle, data->id);
4636 
4637 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4638 		perf_output_put(handle, data->stream_id);
4639 
4640 	if (sample_type & PERF_SAMPLE_CPU)
4641 		perf_output_put(handle, data->cpu_entry);
4642 
4643 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4644 		perf_output_put(handle, data->id);
4645 }
4646 
4647 void perf_event__output_id_sample(struct perf_event *event,
4648 				  struct perf_output_handle *handle,
4649 				  struct perf_sample_data *sample)
4650 {
4651 	if (event->attr.sample_id_all)
4652 		__perf_event__output_id_sample(handle, sample);
4653 }
4654 
4655 static void perf_output_read_one(struct perf_output_handle *handle,
4656 				 struct perf_event *event,
4657 				 u64 enabled, u64 running)
4658 {
4659 	u64 read_format = event->attr.read_format;
4660 	u64 values[4];
4661 	int n = 0;
4662 
4663 	values[n++] = perf_event_count(event);
4664 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4665 		values[n++] = enabled +
4666 			atomic64_read(&event->child_total_time_enabled);
4667 	}
4668 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4669 		values[n++] = running +
4670 			atomic64_read(&event->child_total_time_running);
4671 	}
4672 	if (read_format & PERF_FORMAT_ID)
4673 		values[n++] = primary_event_id(event);
4674 
4675 	__output_copy(handle, values, n * sizeof(u64));
4676 }
4677 
4678 /*
4679  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4680  */
4681 static void perf_output_read_group(struct perf_output_handle *handle,
4682 			    struct perf_event *event,
4683 			    u64 enabled, u64 running)
4684 {
4685 	struct perf_event *leader = event->group_leader, *sub;
4686 	u64 read_format = event->attr.read_format;
4687 	u64 values[5];
4688 	int n = 0;
4689 
4690 	values[n++] = 1 + leader->nr_siblings;
4691 
4692 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4693 		values[n++] = enabled;
4694 
4695 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4696 		values[n++] = running;
4697 
4698 	if (leader != event)
4699 		leader->pmu->read(leader);
4700 
4701 	values[n++] = perf_event_count(leader);
4702 	if (read_format & PERF_FORMAT_ID)
4703 		values[n++] = primary_event_id(leader);
4704 
4705 	__output_copy(handle, values, n * sizeof(u64));
4706 
4707 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4708 		n = 0;
4709 
4710 		if ((sub != event) &&
4711 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4712 			sub->pmu->read(sub);
4713 
4714 		values[n++] = perf_event_count(sub);
4715 		if (read_format & PERF_FORMAT_ID)
4716 			values[n++] = primary_event_id(sub);
4717 
4718 		__output_copy(handle, values, n * sizeof(u64));
4719 	}
4720 }
4721 
4722 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4723 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4724 
4725 static void perf_output_read(struct perf_output_handle *handle,
4726 			     struct perf_event *event)
4727 {
4728 	u64 enabled = 0, running = 0, now;
4729 	u64 read_format = event->attr.read_format;
4730 
4731 	/*
4732 	 * compute total_time_enabled, total_time_running
4733 	 * based on snapshot values taken when the event
4734 	 * was last scheduled in.
4735 	 *
4736 	 * we cannot simply called update_context_time()
4737 	 * because of locking issue as we are called in
4738 	 * NMI context
4739 	 */
4740 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4741 		calc_timer_values(event, &now, &enabled, &running);
4742 
4743 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4744 		perf_output_read_group(handle, event, enabled, running);
4745 	else
4746 		perf_output_read_one(handle, event, enabled, running);
4747 }
4748 
4749 void perf_output_sample(struct perf_output_handle *handle,
4750 			struct perf_event_header *header,
4751 			struct perf_sample_data *data,
4752 			struct perf_event *event)
4753 {
4754 	u64 sample_type = data->type;
4755 
4756 	perf_output_put(handle, *header);
4757 
4758 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4759 		perf_output_put(handle, data->id);
4760 
4761 	if (sample_type & PERF_SAMPLE_IP)
4762 		perf_output_put(handle, data->ip);
4763 
4764 	if (sample_type & PERF_SAMPLE_TID)
4765 		perf_output_put(handle, data->tid_entry);
4766 
4767 	if (sample_type & PERF_SAMPLE_TIME)
4768 		perf_output_put(handle, data->time);
4769 
4770 	if (sample_type & PERF_SAMPLE_ADDR)
4771 		perf_output_put(handle, data->addr);
4772 
4773 	if (sample_type & PERF_SAMPLE_ID)
4774 		perf_output_put(handle, data->id);
4775 
4776 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4777 		perf_output_put(handle, data->stream_id);
4778 
4779 	if (sample_type & PERF_SAMPLE_CPU)
4780 		perf_output_put(handle, data->cpu_entry);
4781 
4782 	if (sample_type & PERF_SAMPLE_PERIOD)
4783 		perf_output_put(handle, data->period);
4784 
4785 	if (sample_type & PERF_SAMPLE_READ)
4786 		perf_output_read(handle, event);
4787 
4788 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4789 		if (data->callchain) {
4790 			int size = 1;
4791 
4792 			if (data->callchain)
4793 				size += data->callchain->nr;
4794 
4795 			size *= sizeof(u64);
4796 
4797 			__output_copy(handle, data->callchain, size);
4798 		} else {
4799 			u64 nr = 0;
4800 			perf_output_put(handle, nr);
4801 		}
4802 	}
4803 
4804 	if (sample_type & PERF_SAMPLE_RAW) {
4805 		if (data->raw) {
4806 			perf_output_put(handle, data->raw->size);
4807 			__output_copy(handle, data->raw->data,
4808 					   data->raw->size);
4809 		} else {
4810 			struct {
4811 				u32	size;
4812 				u32	data;
4813 			} raw = {
4814 				.size = sizeof(u32),
4815 				.data = 0,
4816 			};
4817 			perf_output_put(handle, raw);
4818 		}
4819 	}
4820 
4821 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4822 		if (data->br_stack) {
4823 			size_t size;
4824 
4825 			size = data->br_stack->nr
4826 			     * sizeof(struct perf_branch_entry);
4827 
4828 			perf_output_put(handle, data->br_stack->nr);
4829 			perf_output_copy(handle, data->br_stack->entries, size);
4830 		} else {
4831 			/*
4832 			 * we always store at least the value of nr
4833 			 */
4834 			u64 nr = 0;
4835 			perf_output_put(handle, nr);
4836 		}
4837 	}
4838 
4839 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4840 		u64 abi = data->regs_user.abi;
4841 
4842 		/*
4843 		 * If there are no regs to dump, notice it through
4844 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4845 		 */
4846 		perf_output_put(handle, abi);
4847 
4848 		if (abi) {
4849 			u64 mask = event->attr.sample_regs_user;
4850 			perf_output_sample_regs(handle,
4851 						data->regs_user.regs,
4852 						mask);
4853 		}
4854 	}
4855 
4856 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4857 		perf_output_sample_ustack(handle,
4858 					  data->stack_user_size,
4859 					  data->regs_user.regs);
4860 	}
4861 
4862 	if (sample_type & PERF_SAMPLE_WEIGHT)
4863 		perf_output_put(handle, data->weight);
4864 
4865 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4866 		perf_output_put(handle, data->data_src.val);
4867 
4868 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4869 		perf_output_put(handle, data->txn);
4870 
4871 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
4872 		u64 abi = data->regs_intr.abi;
4873 		/*
4874 		 * If there are no regs to dump, notice it through
4875 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4876 		 */
4877 		perf_output_put(handle, abi);
4878 
4879 		if (abi) {
4880 			u64 mask = event->attr.sample_regs_intr;
4881 
4882 			perf_output_sample_regs(handle,
4883 						data->regs_intr.regs,
4884 						mask);
4885 		}
4886 	}
4887 
4888 	if (!event->attr.watermark) {
4889 		int wakeup_events = event->attr.wakeup_events;
4890 
4891 		if (wakeup_events) {
4892 			struct ring_buffer *rb = handle->rb;
4893 			int events = local_inc_return(&rb->events);
4894 
4895 			if (events >= wakeup_events) {
4896 				local_sub(wakeup_events, &rb->events);
4897 				local_inc(&rb->wakeup);
4898 			}
4899 		}
4900 	}
4901 }
4902 
4903 void perf_prepare_sample(struct perf_event_header *header,
4904 			 struct perf_sample_data *data,
4905 			 struct perf_event *event,
4906 			 struct pt_regs *regs)
4907 {
4908 	u64 sample_type = event->attr.sample_type;
4909 
4910 	header->type = PERF_RECORD_SAMPLE;
4911 	header->size = sizeof(*header) + event->header_size;
4912 
4913 	header->misc = 0;
4914 	header->misc |= perf_misc_flags(regs);
4915 
4916 	__perf_event_header__init_id(header, data, event);
4917 
4918 	if (sample_type & PERF_SAMPLE_IP)
4919 		data->ip = perf_instruction_pointer(regs);
4920 
4921 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4922 		int size = 1;
4923 
4924 		data->callchain = perf_callchain(event, regs);
4925 
4926 		if (data->callchain)
4927 			size += data->callchain->nr;
4928 
4929 		header->size += size * sizeof(u64);
4930 	}
4931 
4932 	if (sample_type & PERF_SAMPLE_RAW) {
4933 		int size = sizeof(u32);
4934 
4935 		if (data->raw)
4936 			size += data->raw->size;
4937 		else
4938 			size += sizeof(u32);
4939 
4940 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4941 		header->size += size;
4942 	}
4943 
4944 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4945 		int size = sizeof(u64); /* nr */
4946 		if (data->br_stack) {
4947 			size += data->br_stack->nr
4948 			      * sizeof(struct perf_branch_entry);
4949 		}
4950 		header->size += size;
4951 	}
4952 
4953 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
4954 		perf_sample_regs_user(&data->regs_user, regs);
4955 
4956 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4957 		/* regs dump ABI info */
4958 		int size = sizeof(u64);
4959 
4960 		if (data->regs_user.regs) {
4961 			u64 mask = event->attr.sample_regs_user;
4962 			size += hweight64(mask) * sizeof(u64);
4963 		}
4964 
4965 		header->size += size;
4966 	}
4967 
4968 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4969 		/*
4970 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4971 		 * processed as the last one or have additional check added
4972 		 * in case new sample type is added, because we could eat
4973 		 * up the rest of the sample size.
4974 		 */
4975 		u16 stack_size = event->attr.sample_stack_user;
4976 		u16 size = sizeof(u64);
4977 
4978 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4979 						     data->regs_user.regs);
4980 
4981 		/*
4982 		 * If there is something to dump, add space for the dump
4983 		 * itself and for the field that tells the dynamic size,
4984 		 * which is how many have been actually dumped.
4985 		 */
4986 		if (stack_size)
4987 			size += sizeof(u64) + stack_size;
4988 
4989 		data->stack_user_size = stack_size;
4990 		header->size += size;
4991 	}
4992 
4993 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
4994 		/* regs dump ABI info */
4995 		int size = sizeof(u64);
4996 
4997 		perf_sample_regs_intr(&data->regs_intr, regs);
4998 
4999 		if (data->regs_intr.regs) {
5000 			u64 mask = event->attr.sample_regs_intr;
5001 
5002 			size += hweight64(mask) * sizeof(u64);
5003 		}
5004 
5005 		header->size += size;
5006 	}
5007 }
5008 
5009 static void perf_event_output(struct perf_event *event,
5010 				struct perf_sample_data *data,
5011 				struct pt_regs *regs)
5012 {
5013 	struct perf_output_handle handle;
5014 	struct perf_event_header header;
5015 
5016 	/* protect the callchain buffers */
5017 	rcu_read_lock();
5018 
5019 	perf_prepare_sample(&header, data, event, regs);
5020 
5021 	if (perf_output_begin(&handle, event, header.size))
5022 		goto exit;
5023 
5024 	perf_output_sample(&handle, &header, data, event);
5025 
5026 	perf_output_end(&handle);
5027 
5028 exit:
5029 	rcu_read_unlock();
5030 }
5031 
5032 /*
5033  * read event_id
5034  */
5035 
5036 struct perf_read_event {
5037 	struct perf_event_header	header;
5038 
5039 	u32				pid;
5040 	u32				tid;
5041 };
5042 
5043 static void
5044 perf_event_read_event(struct perf_event *event,
5045 			struct task_struct *task)
5046 {
5047 	struct perf_output_handle handle;
5048 	struct perf_sample_data sample;
5049 	struct perf_read_event read_event = {
5050 		.header = {
5051 			.type = PERF_RECORD_READ,
5052 			.misc = 0,
5053 			.size = sizeof(read_event) + event->read_size,
5054 		},
5055 		.pid = perf_event_pid(event, task),
5056 		.tid = perf_event_tid(event, task),
5057 	};
5058 	int ret;
5059 
5060 	perf_event_header__init_id(&read_event.header, &sample, event);
5061 	ret = perf_output_begin(&handle, event, read_event.header.size);
5062 	if (ret)
5063 		return;
5064 
5065 	perf_output_put(&handle, read_event);
5066 	perf_output_read(&handle, event);
5067 	perf_event__output_id_sample(event, &handle, &sample);
5068 
5069 	perf_output_end(&handle);
5070 }
5071 
5072 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5073 
5074 static void
5075 perf_event_aux_ctx(struct perf_event_context *ctx,
5076 		   perf_event_aux_output_cb output,
5077 		   void *data)
5078 {
5079 	struct perf_event *event;
5080 
5081 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5082 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5083 			continue;
5084 		if (!event_filter_match(event))
5085 			continue;
5086 		output(event, data);
5087 	}
5088 }
5089 
5090 static void
5091 perf_event_aux(perf_event_aux_output_cb output, void *data,
5092 	       struct perf_event_context *task_ctx)
5093 {
5094 	struct perf_cpu_context *cpuctx;
5095 	struct perf_event_context *ctx;
5096 	struct pmu *pmu;
5097 	int ctxn;
5098 
5099 	rcu_read_lock();
5100 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5101 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5102 		if (cpuctx->unique_pmu != pmu)
5103 			goto next;
5104 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5105 		if (task_ctx)
5106 			goto next;
5107 		ctxn = pmu->task_ctx_nr;
5108 		if (ctxn < 0)
5109 			goto next;
5110 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5111 		if (ctx)
5112 			perf_event_aux_ctx(ctx, output, data);
5113 next:
5114 		put_cpu_ptr(pmu->pmu_cpu_context);
5115 	}
5116 
5117 	if (task_ctx) {
5118 		preempt_disable();
5119 		perf_event_aux_ctx(task_ctx, output, data);
5120 		preempt_enable();
5121 	}
5122 	rcu_read_unlock();
5123 }
5124 
5125 /*
5126  * task tracking -- fork/exit
5127  *
5128  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5129  */
5130 
5131 struct perf_task_event {
5132 	struct task_struct		*task;
5133 	struct perf_event_context	*task_ctx;
5134 
5135 	struct {
5136 		struct perf_event_header	header;
5137 
5138 		u32				pid;
5139 		u32				ppid;
5140 		u32				tid;
5141 		u32				ptid;
5142 		u64				time;
5143 	} event_id;
5144 };
5145 
5146 static int perf_event_task_match(struct perf_event *event)
5147 {
5148 	return event->attr.comm  || event->attr.mmap ||
5149 	       event->attr.mmap2 || event->attr.mmap_data ||
5150 	       event->attr.task;
5151 }
5152 
5153 static void perf_event_task_output(struct perf_event *event,
5154 				   void *data)
5155 {
5156 	struct perf_task_event *task_event = data;
5157 	struct perf_output_handle handle;
5158 	struct perf_sample_data	sample;
5159 	struct task_struct *task = task_event->task;
5160 	int ret, size = task_event->event_id.header.size;
5161 
5162 	if (!perf_event_task_match(event))
5163 		return;
5164 
5165 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5166 
5167 	ret = perf_output_begin(&handle, event,
5168 				task_event->event_id.header.size);
5169 	if (ret)
5170 		goto out;
5171 
5172 	task_event->event_id.pid = perf_event_pid(event, task);
5173 	task_event->event_id.ppid = perf_event_pid(event, current);
5174 
5175 	task_event->event_id.tid = perf_event_tid(event, task);
5176 	task_event->event_id.ptid = perf_event_tid(event, current);
5177 
5178 	perf_output_put(&handle, task_event->event_id);
5179 
5180 	perf_event__output_id_sample(event, &handle, &sample);
5181 
5182 	perf_output_end(&handle);
5183 out:
5184 	task_event->event_id.header.size = size;
5185 }
5186 
5187 static void perf_event_task(struct task_struct *task,
5188 			      struct perf_event_context *task_ctx,
5189 			      int new)
5190 {
5191 	struct perf_task_event task_event;
5192 
5193 	if (!atomic_read(&nr_comm_events) &&
5194 	    !atomic_read(&nr_mmap_events) &&
5195 	    !atomic_read(&nr_task_events))
5196 		return;
5197 
5198 	task_event = (struct perf_task_event){
5199 		.task	  = task,
5200 		.task_ctx = task_ctx,
5201 		.event_id    = {
5202 			.header = {
5203 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5204 				.misc = 0,
5205 				.size = sizeof(task_event.event_id),
5206 			},
5207 			/* .pid  */
5208 			/* .ppid */
5209 			/* .tid  */
5210 			/* .ptid */
5211 			.time = perf_clock(),
5212 		},
5213 	};
5214 
5215 	perf_event_aux(perf_event_task_output,
5216 		       &task_event,
5217 		       task_ctx);
5218 }
5219 
5220 void perf_event_fork(struct task_struct *task)
5221 {
5222 	perf_event_task(task, NULL, 1);
5223 }
5224 
5225 /*
5226  * comm tracking
5227  */
5228 
5229 struct perf_comm_event {
5230 	struct task_struct	*task;
5231 	char			*comm;
5232 	int			comm_size;
5233 
5234 	struct {
5235 		struct perf_event_header	header;
5236 
5237 		u32				pid;
5238 		u32				tid;
5239 	} event_id;
5240 };
5241 
5242 static int perf_event_comm_match(struct perf_event *event)
5243 {
5244 	return event->attr.comm;
5245 }
5246 
5247 static void perf_event_comm_output(struct perf_event *event,
5248 				   void *data)
5249 {
5250 	struct perf_comm_event *comm_event = data;
5251 	struct perf_output_handle handle;
5252 	struct perf_sample_data sample;
5253 	int size = comm_event->event_id.header.size;
5254 	int ret;
5255 
5256 	if (!perf_event_comm_match(event))
5257 		return;
5258 
5259 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5260 	ret = perf_output_begin(&handle, event,
5261 				comm_event->event_id.header.size);
5262 
5263 	if (ret)
5264 		goto out;
5265 
5266 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5267 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5268 
5269 	perf_output_put(&handle, comm_event->event_id);
5270 	__output_copy(&handle, comm_event->comm,
5271 				   comm_event->comm_size);
5272 
5273 	perf_event__output_id_sample(event, &handle, &sample);
5274 
5275 	perf_output_end(&handle);
5276 out:
5277 	comm_event->event_id.header.size = size;
5278 }
5279 
5280 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5281 {
5282 	char comm[TASK_COMM_LEN];
5283 	unsigned int size;
5284 
5285 	memset(comm, 0, sizeof(comm));
5286 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5287 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5288 
5289 	comm_event->comm = comm;
5290 	comm_event->comm_size = size;
5291 
5292 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5293 
5294 	perf_event_aux(perf_event_comm_output,
5295 		       comm_event,
5296 		       NULL);
5297 }
5298 
5299 void perf_event_comm(struct task_struct *task, bool exec)
5300 {
5301 	struct perf_comm_event comm_event;
5302 
5303 	if (!atomic_read(&nr_comm_events))
5304 		return;
5305 
5306 	comm_event = (struct perf_comm_event){
5307 		.task	= task,
5308 		/* .comm      */
5309 		/* .comm_size */
5310 		.event_id  = {
5311 			.header = {
5312 				.type = PERF_RECORD_COMM,
5313 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5314 				/* .size */
5315 			},
5316 			/* .pid */
5317 			/* .tid */
5318 		},
5319 	};
5320 
5321 	perf_event_comm_event(&comm_event);
5322 }
5323 
5324 /*
5325  * mmap tracking
5326  */
5327 
5328 struct perf_mmap_event {
5329 	struct vm_area_struct	*vma;
5330 
5331 	const char		*file_name;
5332 	int			file_size;
5333 	int			maj, min;
5334 	u64			ino;
5335 	u64			ino_generation;
5336 	u32			prot, flags;
5337 
5338 	struct {
5339 		struct perf_event_header	header;
5340 
5341 		u32				pid;
5342 		u32				tid;
5343 		u64				start;
5344 		u64				len;
5345 		u64				pgoff;
5346 	} event_id;
5347 };
5348 
5349 static int perf_event_mmap_match(struct perf_event *event,
5350 				 void *data)
5351 {
5352 	struct perf_mmap_event *mmap_event = data;
5353 	struct vm_area_struct *vma = mmap_event->vma;
5354 	int executable = vma->vm_flags & VM_EXEC;
5355 
5356 	return (!executable && event->attr.mmap_data) ||
5357 	       (executable && (event->attr.mmap || event->attr.mmap2));
5358 }
5359 
5360 static void perf_event_mmap_output(struct perf_event *event,
5361 				   void *data)
5362 {
5363 	struct perf_mmap_event *mmap_event = data;
5364 	struct perf_output_handle handle;
5365 	struct perf_sample_data sample;
5366 	int size = mmap_event->event_id.header.size;
5367 	int ret;
5368 
5369 	if (!perf_event_mmap_match(event, data))
5370 		return;
5371 
5372 	if (event->attr.mmap2) {
5373 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5374 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5375 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5376 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5377 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5378 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5379 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5380 	}
5381 
5382 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5383 	ret = perf_output_begin(&handle, event,
5384 				mmap_event->event_id.header.size);
5385 	if (ret)
5386 		goto out;
5387 
5388 	mmap_event->event_id.pid = perf_event_pid(event, current);
5389 	mmap_event->event_id.tid = perf_event_tid(event, current);
5390 
5391 	perf_output_put(&handle, mmap_event->event_id);
5392 
5393 	if (event->attr.mmap2) {
5394 		perf_output_put(&handle, mmap_event->maj);
5395 		perf_output_put(&handle, mmap_event->min);
5396 		perf_output_put(&handle, mmap_event->ino);
5397 		perf_output_put(&handle, mmap_event->ino_generation);
5398 		perf_output_put(&handle, mmap_event->prot);
5399 		perf_output_put(&handle, mmap_event->flags);
5400 	}
5401 
5402 	__output_copy(&handle, mmap_event->file_name,
5403 				   mmap_event->file_size);
5404 
5405 	perf_event__output_id_sample(event, &handle, &sample);
5406 
5407 	perf_output_end(&handle);
5408 out:
5409 	mmap_event->event_id.header.size = size;
5410 }
5411 
5412 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5413 {
5414 	struct vm_area_struct *vma = mmap_event->vma;
5415 	struct file *file = vma->vm_file;
5416 	int maj = 0, min = 0;
5417 	u64 ino = 0, gen = 0;
5418 	u32 prot = 0, flags = 0;
5419 	unsigned int size;
5420 	char tmp[16];
5421 	char *buf = NULL;
5422 	char *name;
5423 
5424 	if (file) {
5425 		struct inode *inode;
5426 		dev_t dev;
5427 
5428 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5429 		if (!buf) {
5430 			name = "//enomem";
5431 			goto cpy_name;
5432 		}
5433 		/*
5434 		 * d_path() works from the end of the rb backwards, so we
5435 		 * need to add enough zero bytes after the string to handle
5436 		 * the 64bit alignment we do later.
5437 		 */
5438 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5439 		if (IS_ERR(name)) {
5440 			name = "//toolong";
5441 			goto cpy_name;
5442 		}
5443 		inode = file_inode(vma->vm_file);
5444 		dev = inode->i_sb->s_dev;
5445 		ino = inode->i_ino;
5446 		gen = inode->i_generation;
5447 		maj = MAJOR(dev);
5448 		min = MINOR(dev);
5449 
5450 		if (vma->vm_flags & VM_READ)
5451 			prot |= PROT_READ;
5452 		if (vma->vm_flags & VM_WRITE)
5453 			prot |= PROT_WRITE;
5454 		if (vma->vm_flags & VM_EXEC)
5455 			prot |= PROT_EXEC;
5456 
5457 		if (vma->vm_flags & VM_MAYSHARE)
5458 			flags = MAP_SHARED;
5459 		else
5460 			flags = MAP_PRIVATE;
5461 
5462 		if (vma->vm_flags & VM_DENYWRITE)
5463 			flags |= MAP_DENYWRITE;
5464 		if (vma->vm_flags & VM_MAYEXEC)
5465 			flags |= MAP_EXECUTABLE;
5466 		if (vma->vm_flags & VM_LOCKED)
5467 			flags |= MAP_LOCKED;
5468 		if (vma->vm_flags & VM_HUGETLB)
5469 			flags |= MAP_HUGETLB;
5470 
5471 		goto got_name;
5472 	} else {
5473 		if (vma->vm_ops && vma->vm_ops->name) {
5474 			name = (char *) vma->vm_ops->name(vma);
5475 			if (name)
5476 				goto cpy_name;
5477 		}
5478 
5479 		name = (char *)arch_vma_name(vma);
5480 		if (name)
5481 			goto cpy_name;
5482 
5483 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5484 				vma->vm_end >= vma->vm_mm->brk) {
5485 			name = "[heap]";
5486 			goto cpy_name;
5487 		}
5488 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5489 				vma->vm_end >= vma->vm_mm->start_stack) {
5490 			name = "[stack]";
5491 			goto cpy_name;
5492 		}
5493 
5494 		name = "//anon";
5495 		goto cpy_name;
5496 	}
5497 
5498 cpy_name:
5499 	strlcpy(tmp, name, sizeof(tmp));
5500 	name = tmp;
5501 got_name:
5502 	/*
5503 	 * Since our buffer works in 8 byte units we need to align our string
5504 	 * size to a multiple of 8. However, we must guarantee the tail end is
5505 	 * zero'd out to avoid leaking random bits to userspace.
5506 	 */
5507 	size = strlen(name)+1;
5508 	while (!IS_ALIGNED(size, sizeof(u64)))
5509 		name[size++] = '\0';
5510 
5511 	mmap_event->file_name = name;
5512 	mmap_event->file_size = size;
5513 	mmap_event->maj = maj;
5514 	mmap_event->min = min;
5515 	mmap_event->ino = ino;
5516 	mmap_event->ino_generation = gen;
5517 	mmap_event->prot = prot;
5518 	mmap_event->flags = flags;
5519 
5520 	if (!(vma->vm_flags & VM_EXEC))
5521 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5522 
5523 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5524 
5525 	perf_event_aux(perf_event_mmap_output,
5526 		       mmap_event,
5527 		       NULL);
5528 
5529 	kfree(buf);
5530 }
5531 
5532 void perf_event_mmap(struct vm_area_struct *vma)
5533 {
5534 	struct perf_mmap_event mmap_event;
5535 
5536 	if (!atomic_read(&nr_mmap_events))
5537 		return;
5538 
5539 	mmap_event = (struct perf_mmap_event){
5540 		.vma	= vma,
5541 		/* .file_name */
5542 		/* .file_size */
5543 		.event_id  = {
5544 			.header = {
5545 				.type = PERF_RECORD_MMAP,
5546 				.misc = PERF_RECORD_MISC_USER,
5547 				/* .size */
5548 			},
5549 			/* .pid */
5550 			/* .tid */
5551 			.start  = vma->vm_start,
5552 			.len    = vma->vm_end - vma->vm_start,
5553 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5554 		},
5555 		/* .maj (attr_mmap2 only) */
5556 		/* .min (attr_mmap2 only) */
5557 		/* .ino (attr_mmap2 only) */
5558 		/* .ino_generation (attr_mmap2 only) */
5559 		/* .prot (attr_mmap2 only) */
5560 		/* .flags (attr_mmap2 only) */
5561 	};
5562 
5563 	perf_event_mmap_event(&mmap_event);
5564 }
5565 
5566 /*
5567  * IRQ throttle logging
5568  */
5569 
5570 static void perf_log_throttle(struct perf_event *event, int enable)
5571 {
5572 	struct perf_output_handle handle;
5573 	struct perf_sample_data sample;
5574 	int ret;
5575 
5576 	struct {
5577 		struct perf_event_header	header;
5578 		u64				time;
5579 		u64				id;
5580 		u64				stream_id;
5581 	} throttle_event = {
5582 		.header = {
5583 			.type = PERF_RECORD_THROTTLE,
5584 			.misc = 0,
5585 			.size = sizeof(throttle_event),
5586 		},
5587 		.time		= perf_clock(),
5588 		.id		= primary_event_id(event),
5589 		.stream_id	= event->id,
5590 	};
5591 
5592 	if (enable)
5593 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5594 
5595 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5596 
5597 	ret = perf_output_begin(&handle, event,
5598 				throttle_event.header.size);
5599 	if (ret)
5600 		return;
5601 
5602 	perf_output_put(&handle, throttle_event);
5603 	perf_event__output_id_sample(event, &handle, &sample);
5604 	perf_output_end(&handle);
5605 }
5606 
5607 /*
5608  * Generic event overflow handling, sampling.
5609  */
5610 
5611 static int __perf_event_overflow(struct perf_event *event,
5612 				   int throttle, struct perf_sample_data *data,
5613 				   struct pt_regs *regs)
5614 {
5615 	int events = atomic_read(&event->event_limit);
5616 	struct hw_perf_event *hwc = &event->hw;
5617 	u64 seq;
5618 	int ret = 0;
5619 
5620 	/*
5621 	 * Non-sampling counters might still use the PMI to fold short
5622 	 * hardware counters, ignore those.
5623 	 */
5624 	if (unlikely(!is_sampling_event(event)))
5625 		return 0;
5626 
5627 	seq = __this_cpu_read(perf_throttled_seq);
5628 	if (seq != hwc->interrupts_seq) {
5629 		hwc->interrupts_seq = seq;
5630 		hwc->interrupts = 1;
5631 	} else {
5632 		hwc->interrupts++;
5633 		if (unlikely(throttle
5634 			     && hwc->interrupts >= max_samples_per_tick)) {
5635 			__this_cpu_inc(perf_throttled_count);
5636 			hwc->interrupts = MAX_INTERRUPTS;
5637 			perf_log_throttle(event, 0);
5638 			tick_nohz_full_kick();
5639 			ret = 1;
5640 		}
5641 	}
5642 
5643 	if (event->attr.freq) {
5644 		u64 now = perf_clock();
5645 		s64 delta = now - hwc->freq_time_stamp;
5646 
5647 		hwc->freq_time_stamp = now;
5648 
5649 		if (delta > 0 && delta < 2*TICK_NSEC)
5650 			perf_adjust_period(event, delta, hwc->last_period, true);
5651 	}
5652 
5653 	/*
5654 	 * XXX event_limit might not quite work as expected on inherited
5655 	 * events
5656 	 */
5657 
5658 	event->pending_kill = POLL_IN;
5659 	if (events && atomic_dec_and_test(&event->event_limit)) {
5660 		ret = 1;
5661 		event->pending_kill = POLL_HUP;
5662 		event->pending_disable = 1;
5663 		irq_work_queue(&event->pending);
5664 	}
5665 
5666 	if (event->overflow_handler)
5667 		event->overflow_handler(event, data, regs);
5668 	else
5669 		perf_event_output(event, data, regs);
5670 
5671 	if (event->fasync && event->pending_kill) {
5672 		event->pending_wakeup = 1;
5673 		irq_work_queue(&event->pending);
5674 	}
5675 
5676 	return ret;
5677 }
5678 
5679 int perf_event_overflow(struct perf_event *event,
5680 			  struct perf_sample_data *data,
5681 			  struct pt_regs *regs)
5682 {
5683 	return __perf_event_overflow(event, 1, data, regs);
5684 }
5685 
5686 /*
5687  * Generic software event infrastructure
5688  */
5689 
5690 struct swevent_htable {
5691 	struct swevent_hlist		*swevent_hlist;
5692 	struct mutex			hlist_mutex;
5693 	int				hlist_refcount;
5694 
5695 	/* Recursion avoidance in each contexts */
5696 	int				recursion[PERF_NR_CONTEXTS];
5697 
5698 	/* Keeps track of cpu being initialized/exited */
5699 	bool				online;
5700 };
5701 
5702 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5703 
5704 /*
5705  * We directly increment event->count and keep a second value in
5706  * event->hw.period_left to count intervals. This period event
5707  * is kept in the range [-sample_period, 0] so that we can use the
5708  * sign as trigger.
5709  */
5710 
5711 u64 perf_swevent_set_period(struct perf_event *event)
5712 {
5713 	struct hw_perf_event *hwc = &event->hw;
5714 	u64 period = hwc->last_period;
5715 	u64 nr, offset;
5716 	s64 old, val;
5717 
5718 	hwc->last_period = hwc->sample_period;
5719 
5720 again:
5721 	old = val = local64_read(&hwc->period_left);
5722 	if (val < 0)
5723 		return 0;
5724 
5725 	nr = div64_u64(period + val, period);
5726 	offset = nr * period;
5727 	val -= offset;
5728 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5729 		goto again;
5730 
5731 	return nr;
5732 }
5733 
5734 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5735 				    struct perf_sample_data *data,
5736 				    struct pt_regs *regs)
5737 {
5738 	struct hw_perf_event *hwc = &event->hw;
5739 	int throttle = 0;
5740 
5741 	if (!overflow)
5742 		overflow = perf_swevent_set_period(event);
5743 
5744 	if (hwc->interrupts == MAX_INTERRUPTS)
5745 		return;
5746 
5747 	for (; overflow; overflow--) {
5748 		if (__perf_event_overflow(event, throttle,
5749 					    data, regs)) {
5750 			/*
5751 			 * We inhibit the overflow from happening when
5752 			 * hwc->interrupts == MAX_INTERRUPTS.
5753 			 */
5754 			break;
5755 		}
5756 		throttle = 1;
5757 	}
5758 }
5759 
5760 static void perf_swevent_event(struct perf_event *event, u64 nr,
5761 			       struct perf_sample_data *data,
5762 			       struct pt_regs *regs)
5763 {
5764 	struct hw_perf_event *hwc = &event->hw;
5765 
5766 	local64_add(nr, &event->count);
5767 
5768 	if (!regs)
5769 		return;
5770 
5771 	if (!is_sampling_event(event))
5772 		return;
5773 
5774 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5775 		data->period = nr;
5776 		return perf_swevent_overflow(event, 1, data, regs);
5777 	} else
5778 		data->period = event->hw.last_period;
5779 
5780 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5781 		return perf_swevent_overflow(event, 1, data, regs);
5782 
5783 	if (local64_add_negative(nr, &hwc->period_left))
5784 		return;
5785 
5786 	perf_swevent_overflow(event, 0, data, regs);
5787 }
5788 
5789 static int perf_exclude_event(struct perf_event *event,
5790 			      struct pt_regs *regs)
5791 {
5792 	if (event->hw.state & PERF_HES_STOPPED)
5793 		return 1;
5794 
5795 	if (regs) {
5796 		if (event->attr.exclude_user && user_mode(regs))
5797 			return 1;
5798 
5799 		if (event->attr.exclude_kernel && !user_mode(regs))
5800 			return 1;
5801 	}
5802 
5803 	return 0;
5804 }
5805 
5806 static int perf_swevent_match(struct perf_event *event,
5807 				enum perf_type_id type,
5808 				u32 event_id,
5809 				struct perf_sample_data *data,
5810 				struct pt_regs *regs)
5811 {
5812 	if (event->attr.type != type)
5813 		return 0;
5814 
5815 	if (event->attr.config != event_id)
5816 		return 0;
5817 
5818 	if (perf_exclude_event(event, regs))
5819 		return 0;
5820 
5821 	return 1;
5822 }
5823 
5824 static inline u64 swevent_hash(u64 type, u32 event_id)
5825 {
5826 	u64 val = event_id | (type << 32);
5827 
5828 	return hash_64(val, SWEVENT_HLIST_BITS);
5829 }
5830 
5831 static inline struct hlist_head *
5832 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5833 {
5834 	u64 hash = swevent_hash(type, event_id);
5835 
5836 	return &hlist->heads[hash];
5837 }
5838 
5839 /* For the read side: events when they trigger */
5840 static inline struct hlist_head *
5841 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5842 {
5843 	struct swevent_hlist *hlist;
5844 
5845 	hlist = rcu_dereference(swhash->swevent_hlist);
5846 	if (!hlist)
5847 		return NULL;
5848 
5849 	return __find_swevent_head(hlist, type, event_id);
5850 }
5851 
5852 /* For the event head insertion and removal in the hlist */
5853 static inline struct hlist_head *
5854 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5855 {
5856 	struct swevent_hlist *hlist;
5857 	u32 event_id = event->attr.config;
5858 	u64 type = event->attr.type;
5859 
5860 	/*
5861 	 * Event scheduling is always serialized against hlist allocation
5862 	 * and release. Which makes the protected version suitable here.
5863 	 * The context lock guarantees that.
5864 	 */
5865 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5866 					  lockdep_is_held(&event->ctx->lock));
5867 	if (!hlist)
5868 		return NULL;
5869 
5870 	return __find_swevent_head(hlist, type, event_id);
5871 }
5872 
5873 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5874 				    u64 nr,
5875 				    struct perf_sample_data *data,
5876 				    struct pt_regs *regs)
5877 {
5878 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5879 	struct perf_event *event;
5880 	struct hlist_head *head;
5881 
5882 	rcu_read_lock();
5883 	head = find_swevent_head_rcu(swhash, type, event_id);
5884 	if (!head)
5885 		goto end;
5886 
5887 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5888 		if (perf_swevent_match(event, type, event_id, data, regs))
5889 			perf_swevent_event(event, nr, data, regs);
5890 	}
5891 end:
5892 	rcu_read_unlock();
5893 }
5894 
5895 int perf_swevent_get_recursion_context(void)
5896 {
5897 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5898 
5899 	return get_recursion_context(swhash->recursion);
5900 }
5901 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5902 
5903 inline void perf_swevent_put_recursion_context(int rctx)
5904 {
5905 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5906 
5907 	put_recursion_context(swhash->recursion, rctx);
5908 }
5909 
5910 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5911 {
5912 	struct perf_sample_data data;
5913 	int rctx;
5914 
5915 	preempt_disable_notrace();
5916 	rctx = perf_swevent_get_recursion_context();
5917 	if (rctx < 0)
5918 		return;
5919 
5920 	perf_sample_data_init(&data, addr, 0);
5921 
5922 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5923 
5924 	perf_swevent_put_recursion_context(rctx);
5925 	preempt_enable_notrace();
5926 }
5927 
5928 static void perf_swevent_read(struct perf_event *event)
5929 {
5930 }
5931 
5932 static int perf_swevent_add(struct perf_event *event, int flags)
5933 {
5934 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5935 	struct hw_perf_event *hwc = &event->hw;
5936 	struct hlist_head *head;
5937 
5938 	if (is_sampling_event(event)) {
5939 		hwc->last_period = hwc->sample_period;
5940 		perf_swevent_set_period(event);
5941 	}
5942 
5943 	hwc->state = !(flags & PERF_EF_START);
5944 
5945 	head = find_swevent_head(swhash, event);
5946 	if (!head) {
5947 		/*
5948 		 * We can race with cpu hotplug code. Do not
5949 		 * WARN if the cpu just got unplugged.
5950 		 */
5951 		WARN_ON_ONCE(swhash->online);
5952 		return -EINVAL;
5953 	}
5954 
5955 	hlist_add_head_rcu(&event->hlist_entry, head);
5956 
5957 	return 0;
5958 }
5959 
5960 static void perf_swevent_del(struct perf_event *event, int flags)
5961 {
5962 	hlist_del_rcu(&event->hlist_entry);
5963 }
5964 
5965 static void perf_swevent_start(struct perf_event *event, int flags)
5966 {
5967 	event->hw.state = 0;
5968 }
5969 
5970 static void perf_swevent_stop(struct perf_event *event, int flags)
5971 {
5972 	event->hw.state = PERF_HES_STOPPED;
5973 }
5974 
5975 /* Deref the hlist from the update side */
5976 static inline struct swevent_hlist *
5977 swevent_hlist_deref(struct swevent_htable *swhash)
5978 {
5979 	return rcu_dereference_protected(swhash->swevent_hlist,
5980 					 lockdep_is_held(&swhash->hlist_mutex));
5981 }
5982 
5983 static void swevent_hlist_release(struct swevent_htable *swhash)
5984 {
5985 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5986 
5987 	if (!hlist)
5988 		return;
5989 
5990 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5991 	kfree_rcu(hlist, rcu_head);
5992 }
5993 
5994 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5995 {
5996 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5997 
5998 	mutex_lock(&swhash->hlist_mutex);
5999 
6000 	if (!--swhash->hlist_refcount)
6001 		swevent_hlist_release(swhash);
6002 
6003 	mutex_unlock(&swhash->hlist_mutex);
6004 }
6005 
6006 static void swevent_hlist_put(struct perf_event *event)
6007 {
6008 	int cpu;
6009 
6010 	for_each_possible_cpu(cpu)
6011 		swevent_hlist_put_cpu(event, cpu);
6012 }
6013 
6014 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6015 {
6016 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6017 	int err = 0;
6018 
6019 	mutex_lock(&swhash->hlist_mutex);
6020 
6021 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6022 		struct swevent_hlist *hlist;
6023 
6024 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6025 		if (!hlist) {
6026 			err = -ENOMEM;
6027 			goto exit;
6028 		}
6029 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6030 	}
6031 	swhash->hlist_refcount++;
6032 exit:
6033 	mutex_unlock(&swhash->hlist_mutex);
6034 
6035 	return err;
6036 }
6037 
6038 static int swevent_hlist_get(struct perf_event *event)
6039 {
6040 	int err;
6041 	int cpu, failed_cpu;
6042 
6043 	get_online_cpus();
6044 	for_each_possible_cpu(cpu) {
6045 		err = swevent_hlist_get_cpu(event, cpu);
6046 		if (err) {
6047 			failed_cpu = cpu;
6048 			goto fail;
6049 		}
6050 	}
6051 	put_online_cpus();
6052 
6053 	return 0;
6054 fail:
6055 	for_each_possible_cpu(cpu) {
6056 		if (cpu == failed_cpu)
6057 			break;
6058 		swevent_hlist_put_cpu(event, cpu);
6059 	}
6060 
6061 	put_online_cpus();
6062 	return err;
6063 }
6064 
6065 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6066 
6067 static void sw_perf_event_destroy(struct perf_event *event)
6068 {
6069 	u64 event_id = event->attr.config;
6070 
6071 	WARN_ON(event->parent);
6072 
6073 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6074 	swevent_hlist_put(event);
6075 }
6076 
6077 static int perf_swevent_init(struct perf_event *event)
6078 {
6079 	u64 event_id = event->attr.config;
6080 
6081 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6082 		return -ENOENT;
6083 
6084 	/*
6085 	 * no branch sampling for software events
6086 	 */
6087 	if (has_branch_stack(event))
6088 		return -EOPNOTSUPP;
6089 
6090 	switch (event_id) {
6091 	case PERF_COUNT_SW_CPU_CLOCK:
6092 	case PERF_COUNT_SW_TASK_CLOCK:
6093 		return -ENOENT;
6094 
6095 	default:
6096 		break;
6097 	}
6098 
6099 	if (event_id >= PERF_COUNT_SW_MAX)
6100 		return -ENOENT;
6101 
6102 	if (!event->parent) {
6103 		int err;
6104 
6105 		err = swevent_hlist_get(event);
6106 		if (err)
6107 			return err;
6108 
6109 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6110 		event->destroy = sw_perf_event_destroy;
6111 	}
6112 
6113 	return 0;
6114 }
6115 
6116 static struct pmu perf_swevent = {
6117 	.task_ctx_nr	= perf_sw_context,
6118 
6119 	.event_init	= perf_swevent_init,
6120 	.add		= perf_swevent_add,
6121 	.del		= perf_swevent_del,
6122 	.start		= perf_swevent_start,
6123 	.stop		= perf_swevent_stop,
6124 	.read		= perf_swevent_read,
6125 };
6126 
6127 #ifdef CONFIG_EVENT_TRACING
6128 
6129 static int perf_tp_filter_match(struct perf_event *event,
6130 				struct perf_sample_data *data)
6131 {
6132 	void *record = data->raw->data;
6133 
6134 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6135 		return 1;
6136 	return 0;
6137 }
6138 
6139 static int perf_tp_event_match(struct perf_event *event,
6140 				struct perf_sample_data *data,
6141 				struct pt_regs *regs)
6142 {
6143 	if (event->hw.state & PERF_HES_STOPPED)
6144 		return 0;
6145 	/*
6146 	 * All tracepoints are from kernel-space.
6147 	 */
6148 	if (event->attr.exclude_kernel)
6149 		return 0;
6150 
6151 	if (!perf_tp_filter_match(event, data))
6152 		return 0;
6153 
6154 	return 1;
6155 }
6156 
6157 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6158 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6159 		   struct task_struct *task)
6160 {
6161 	struct perf_sample_data data;
6162 	struct perf_event *event;
6163 
6164 	struct perf_raw_record raw = {
6165 		.size = entry_size,
6166 		.data = record,
6167 	};
6168 
6169 	perf_sample_data_init(&data, addr, 0);
6170 	data.raw = &raw;
6171 
6172 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6173 		if (perf_tp_event_match(event, &data, regs))
6174 			perf_swevent_event(event, count, &data, regs);
6175 	}
6176 
6177 	/*
6178 	 * If we got specified a target task, also iterate its context and
6179 	 * deliver this event there too.
6180 	 */
6181 	if (task && task != current) {
6182 		struct perf_event_context *ctx;
6183 		struct trace_entry *entry = record;
6184 
6185 		rcu_read_lock();
6186 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6187 		if (!ctx)
6188 			goto unlock;
6189 
6190 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6191 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6192 				continue;
6193 			if (event->attr.config != entry->type)
6194 				continue;
6195 			if (perf_tp_event_match(event, &data, regs))
6196 				perf_swevent_event(event, count, &data, regs);
6197 		}
6198 unlock:
6199 		rcu_read_unlock();
6200 	}
6201 
6202 	perf_swevent_put_recursion_context(rctx);
6203 }
6204 EXPORT_SYMBOL_GPL(perf_tp_event);
6205 
6206 static void tp_perf_event_destroy(struct perf_event *event)
6207 {
6208 	perf_trace_destroy(event);
6209 }
6210 
6211 static int perf_tp_event_init(struct perf_event *event)
6212 {
6213 	int err;
6214 
6215 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6216 		return -ENOENT;
6217 
6218 	/*
6219 	 * no branch sampling for tracepoint events
6220 	 */
6221 	if (has_branch_stack(event))
6222 		return -EOPNOTSUPP;
6223 
6224 	err = perf_trace_init(event);
6225 	if (err)
6226 		return err;
6227 
6228 	event->destroy = tp_perf_event_destroy;
6229 
6230 	return 0;
6231 }
6232 
6233 static struct pmu perf_tracepoint = {
6234 	.task_ctx_nr	= perf_sw_context,
6235 
6236 	.event_init	= perf_tp_event_init,
6237 	.add		= perf_trace_add,
6238 	.del		= perf_trace_del,
6239 	.start		= perf_swevent_start,
6240 	.stop		= perf_swevent_stop,
6241 	.read		= perf_swevent_read,
6242 };
6243 
6244 static inline void perf_tp_register(void)
6245 {
6246 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6247 }
6248 
6249 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6250 {
6251 	char *filter_str;
6252 	int ret;
6253 
6254 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6255 		return -EINVAL;
6256 
6257 	filter_str = strndup_user(arg, PAGE_SIZE);
6258 	if (IS_ERR(filter_str))
6259 		return PTR_ERR(filter_str);
6260 
6261 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6262 
6263 	kfree(filter_str);
6264 	return ret;
6265 }
6266 
6267 static void perf_event_free_filter(struct perf_event *event)
6268 {
6269 	ftrace_profile_free_filter(event);
6270 }
6271 
6272 #else
6273 
6274 static inline void perf_tp_register(void)
6275 {
6276 }
6277 
6278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6279 {
6280 	return -ENOENT;
6281 }
6282 
6283 static void perf_event_free_filter(struct perf_event *event)
6284 {
6285 }
6286 
6287 #endif /* CONFIG_EVENT_TRACING */
6288 
6289 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6290 void perf_bp_event(struct perf_event *bp, void *data)
6291 {
6292 	struct perf_sample_data sample;
6293 	struct pt_regs *regs = data;
6294 
6295 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6296 
6297 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6298 		perf_swevent_event(bp, 1, &sample, regs);
6299 }
6300 #endif
6301 
6302 /*
6303  * hrtimer based swevent callback
6304  */
6305 
6306 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6307 {
6308 	enum hrtimer_restart ret = HRTIMER_RESTART;
6309 	struct perf_sample_data data;
6310 	struct pt_regs *regs;
6311 	struct perf_event *event;
6312 	u64 period;
6313 
6314 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6315 
6316 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6317 		return HRTIMER_NORESTART;
6318 
6319 	event->pmu->read(event);
6320 
6321 	perf_sample_data_init(&data, 0, event->hw.last_period);
6322 	regs = get_irq_regs();
6323 
6324 	if (regs && !perf_exclude_event(event, regs)) {
6325 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6326 			if (__perf_event_overflow(event, 1, &data, regs))
6327 				ret = HRTIMER_NORESTART;
6328 	}
6329 
6330 	period = max_t(u64, 10000, event->hw.sample_period);
6331 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6332 
6333 	return ret;
6334 }
6335 
6336 static void perf_swevent_start_hrtimer(struct perf_event *event)
6337 {
6338 	struct hw_perf_event *hwc = &event->hw;
6339 	s64 period;
6340 
6341 	if (!is_sampling_event(event))
6342 		return;
6343 
6344 	period = local64_read(&hwc->period_left);
6345 	if (period) {
6346 		if (period < 0)
6347 			period = 10000;
6348 
6349 		local64_set(&hwc->period_left, 0);
6350 	} else {
6351 		period = max_t(u64, 10000, hwc->sample_period);
6352 	}
6353 	__hrtimer_start_range_ns(&hwc->hrtimer,
6354 				ns_to_ktime(period), 0,
6355 				HRTIMER_MODE_REL_PINNED, 0);
6356 }
6357 
6358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6359 {
6360 	struct hw_perf_event *hwc = &event->hw;
6361 
6362 	if (is_sampling_event(event)) {
6363 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6364 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6365 
6366 		hrtimer_cancel(&hwc->hrtimer);
6367 	}
6368 }
6369 
6370 static void perf_swevent_init_hrtimer(struct perf_event *event)
6371 {
6372 	struct hw_perf_event *hwc = &event->hw;
6373 
6374 	if (!is_sampling_event(event))
6375 		return;
6376 
6377 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6378 	hwc->hrtimer.function = perf_swevent_hrtimer;
6379 
6380 	/*
6381 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6382 	 * mapping and avoid the whole period adjust feedback stuff.
6383 	 */
6384 	if (event->attr.freq) {
6385 		long freq = event->attr.sample_freq;
6386 
6387 		event->attr.sample_period = NSEC_PER_SEC / freq;
6388 		hwc->sample_period = event->attr.sample_period;
6389 		local64_set(&hwc->period_left, hwc->sample_period);
6390 		hwc->last_period = hwc->sample_period;
6391 		event->attr.freq = 0;
6392 	}
6393 }
6394 
6395 /*
6396  * Software event: cpu wall time clock
6397  */
6398 
6399 static void cpu_clock_event_update(struct perf_event *event)
6400 {
6401 	s64 prev;
6402 	u64 now;
6403 
6404 	now = local_clock();
6405 	prev = local64_xchg(&event->hw.prev_count, now);
6406 	local64_add(now - prev, &event->count);
6407 }
6408 
6409 static void cpu_clock_event_start(struct perf_event *event, int flags)
6410 {
6411 	local64_set(&event->hw.prev_count, local_clock());
6412 	perf_swevent_start_hrtimer(event);
6413 }
6414 
6415 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6416 {
6417 	perf_swevent_cancel_hrtimer(event);
6418 	cpu_clock_event_update(event);
6419 }
6420 
6421 static int cpu_clock_event_add(struct perf_event *event, int flags)
6422 {
6423 	if (flags & PERF_EF_START)
6424 		cpu_clock_event_start(event, flags);
6425 
6426 	return 0;
6427 }
6428 
6429 static void cpu_clock_event_del(struct perf_event *event, int flags)
6430 {
6431 	cpu_clock_event_stop(event, flags);
6432 }
6433 
6434 static void cpu_clock_event_read(struct perf_event *event)
6435 {
6436 	cpu_clock_event_update(event);
6437 }
6438 
6439 static int cpu_clock_event_init(struct perf_event *event)
6440 {
6441 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6442 		return -ENOENT;
6443 
6444 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6445 		return -ENOENT;
6446 
6447 	/*
6448 	 * no branch sampling for software events
6449 	 */
6450 	if (has_branch_stack(event))
6451 		return -EOPNOTSUPP;
6452 
6453 	perf_swevent_init_hrtimer(event);
6454 
6455 	return 0;
6456 }
6457 
6458 static struct pmu perf_cpu_clock = {
6459 	.task_ctx_nr	= perf_sw_context,
6460 
6461 	.event_init	= cpu_clock_event_init,
6462 	.add		= cpu_clock_event_add,
6463 	.del		= cpu_clock_event_del,
6464 	.start		= cpu_clock_event_start,
6465 	.stop		= cpu_clock_event_stop,
6466 	.read		= cpu_clock_event_read,
6467 };
6468 
6469 /*
6470  * Software event: task time clock
6471  */
6472 
6473 static void task_clock_event_update(struct perf_event *event, u64 now)
6474 {
6475 	u64 prev;
6476 	s64 delta;
6477 
6478 	prev = local64_xchg(&event->hw.prev_count, now);
6479 	delta = now - prev;
6480 	local64_add(delta, &event->count);
6481 }
6482 
6483 static void task_clock_event_start(struct perf_event *event, int flags)
6484 {
6485 	local64_set(&event->hw.prev_count, event->ctx->time);
6486 	perf_swevent_start_hrtimer(event);
6487 }
6488 
6489 static void task_clock_event_stop(struct perf_event *event, int flags)
6490 {
6491 	perf_swevent_cancel_hrtimer(event);
6492 	task_clock_event_update(event, event->ctx->time);
6493 }
6494 
6495 static int task_clock_event_add(struct perf_event *event, int flags)
6496 {
6497 	if (flags & PERF_EF_START)
6498 		task_clock_event_start(event, flags);
6499 
6500 	return 0;
6501 }
6502 
6503 static void task_clock_event_del(struct perf_event *event, int flags)
6504 {
6505 	task_clock_event_stop(event, PERF_EF_UPDATE);
6506 }
6507 
6508 static void task_clock_event_read(struct perf_event *event)
6509 {
6510 	u64 now = perf_clock();
6511 	u64 delta = now - event->ctx->timestamp;
6512 	u64 time = event->ctx->time + delta;
6513 
6514 	task_clock_event_update(event, time);
6515 }
6516 
6517 static int task_clock_event_init(struct perf_event *event)
6518 {
6519 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6520 		return -ENOENT;
6521 
6522 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6523 		return -ENOENT;
6524 
6525 	/*
6526 	 * no branch sampling for software events
6527 	 */
6528 	if (has_branch_stack(event))
6529 		return -EOPNOTSUPP;
6530 
6531 	perf_swevent_init_hrtimer(event);
6532 
6533 	return 0;
6534 }
6535 
6536 static struct pmu perf_task_clock = {
6537 	.task_ctx_nr	= perf_sw_context,
6538 
6539 	.event_init	= task_clock_event_init,
6540 	.add		= task_clock_event_add,
6541 	.del		= task_clock_event_del,
6542 	.start		= task_clock_event_start,
6543 	.stop		= task_clock_event_stop,
6544 	.read		= task_clock_event_read,
6545 };
6546 
6547 static void perf_pmu_nop_void(struct pmu *pmu)
6548 {
6549 }
6550 
6551 static int perf_pmu_nop_int(struct pmu *pmu)
6552 {
6553 	return 0;
6554 }
6555 
6556 static void perf_pmu_start_txn(struct pmu *pmu)
6557 {
6558 	perf_pmu_disable(pmu);
6559 }
6560 
6561 static int perf_pmu_commit_txn(struct pmu *pmu)
6562 {
6563 	perf_pmu_enable(pmu);
6564 	return 0;
6565 }
6566 
6567 static void perf_pmu_cancel_txn(struct pmu *pmu)
6568 {
6569 	perf_pmu_enable(pmu);
6570 }
6571 
6572 static int perf_event_idx_default(struct perf_event *event)
6573 {
6574 	return 0;
6575 }
6576 
6577 /*
6578  * Ensures all contexts with the same task_ctx_nr have the same
6579  * pmu_cpu_context too.
6580  */
6581 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6582 {
6583 	struct pmu *pmu;
6584 
6585 	if (ctxn < 0)
6586 		return NULL;
6587 
6588 	list_for_each_entry(pmu, &pmus, entry) {
6589 		if (pmu->task_ctx_nr == ctxn)
6590 			return pmu->pmu_cpu_context;
6591 	}
6592 
6593 	return NULL;
6594 }
6595 
6596 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6597 {
6598 	int cpu;
6599 
6600 	for_each_possible_cpu(cpu) {
6601 		struct perf_cpu_context *cpuctx;
6602 
6603 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6604 
6605 		if (cpuctx->unique_pmu == old_pmu)
6606 			cpuctx->unique_pmu = pmu;
6607 	}
6608 }
6609 
6610 static void free_pmu_context(struct pmu *pmu)
6611 {
6612 	struct pmu *i;
6613 
6614 	mutex_lock(&pmus_lock);
6615 	/*
6616 	 * Like a real lame refcount.
6617 	 */
6618 	list_for_each_entry(i, &pmus, entry) {
6619 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6620 			update_pmu_context(i, pmu);
6621 			goto out;
6622 		}
6623 	}
6624 
6625 	free_percpu(pmu->pmu_cpu_context);
6626 out:
6627 	mutex_unlock(&pmus_lock);
6628 }
6629 static struct idr pmu_idr;
6630 
6631 static ssize_t
6632 type_show(struct device *dev, struct device_attribute *attr, char *page)
6633 {
6634 	struct pmu *pmu = dev_get_drvdata(dev);
6635 
6636 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6637 }
6638 static DEVICE_ATTR_RO(type);
6639 
6640 static ssize_t
6641 perf_event_mux_interval_ms_show(struct device *dev,
6642 				struct device_attribute *attr,
6643 				char *page)
6644 {
6645 	struct pmu *pmu = dev_get_drvdata(dev);
6646 
6647 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6648 }
6649 
6650 static ssize_t
6651 perf_event_mux_interval_ms_store(struct device *dev,
6652 				 struct device_attribute *attr,
6653 				 const char *buf, size_t count)
6654 {
6655 	struct pmu *pmu = dev_get_drvdata(dev);
6656 	int timer, cpu, ret;
6657 
6658 	ret = kstrtoint(buf, 0, &timer);
6659 	if (ret)
6660 		return ret;
6661 
6662 	if (timer < 1)
6663 		return -EINVAL;
6664 
6665 	/* same value, noting to do */
6666 	if (timer == pmu->hrtimer_interval_ms)
6667 		return count;
6668 
6669 	pmu->hrtimer_interval_ms = timer;
6670 
6671 	/* update all cpuctx for this PMU */
6672 	for_each_possible_cpu(cpu) {
6673 		struct perf_cpu_context *cpuctx;
6674 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6675 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6676 
6677 		if (hrtimer_active(&cpuctx->hrtimer))
6678 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6679 	}
6680 
6681 	return count;
6682 }
6683 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6684 
6685 static struct attribute *pmu_dev_attrs[] = {
6686 	&dev_attr_type.attr,
6687 	&dev_attr_perf_event_mux_interval_ms.attr,
6688 	NULL,
6689 };
6690 ATTRIBUTE_GROUPS(pmu_dev);
6691 
6692 static int pmu_bus_running;
6693 static struct bus_type pmu_bus = {
6694 	.name		= "event_source",
6695 	.dev_groups	= pmu_dev_groups,
6696 };
6697 
6698 static void pmu_dev_release(struct device *dev)
6699 {
6700 	kfree(dev);
6701 }
6702 
6703 static int pmu_dev_alloc(struct pmu *pmu)
6704 {
6705 	int ret = -ENOMEM;
6706 
6707 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6708 	if (!pmu->dev)
6709 		goto out;
6710 
6711 	pmu->dev->groups = pmu->attr_groups;
6712 	device_initialize(pmu->dev);
6713 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6714 	if (ret)
6715 		goto free_dev;
6716 
6717 	dev_set_drvdata(pmu->dev, pmu);
6718 	pmu->dev->bus = &pmu_bus;
6719 	pmu->dev->release = pmu_dev_release;
6720 	ret = device_add(pmu->dev);
6721 	if (ret)
6722 		goto free_dev;
6723 
6724 out:
6725 	return ret;
6726 
6727 free_dev:
6728 	put_device(pmu->dev);
6729 	goto out;
6730 }
6731 
6732 static struct lock_class_key cpuctx_mutex;
6733 static struct lock_class_key cpuctx_lock;
6734 
6735 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6736 {
6737 	int cpu, ret;
6738 
6739 	mutex_lock(&pmus_lock);
6740 	ret = -ENOMEM;
6741 	pmu->pmu_disable_count = alloc_percpu(int);
6742 	if (!pmu->pmu_disable_count)
6743 		goto unlock;
6744 
6745 	pmu->type = -1;
6746 	if (!name)
6747 		goto skip_type;
6748 	pmu->name = name;
6749 
6750 	if (type < 0) {
6751 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6752 		if (type < 0) {
6753 			ret = type;
6754 			goto free_pdc;
6755 		}
6756 	}
6757 	pmu->type = type;
6758 
6759 	if (pmu_bus_running) {
6760 		ret = pmu_dev_alloc(pmu);
6761 		if (ret)
6762 			goto free_idr;
6763 	}
6764 
6765 skip_type:
6766 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6767 	if (pmu->pmu_cpu_context)
6768 		goto got_cpu_context;
6769 
6770 	ret = -ENOMEM;
6771 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6772 	if (!pmu->pmu_cpu_context)
6773 		goto free_dev;
6774 
6775 	for_each_possible_cpu(cpu) {
6776 		struct perf_cpu_context *cpuctx;
6777 
6778 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6779 		__perf_event_init_context(&cpuctx->ctx);
6780 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6781 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6782 		cpuctx->ctx.type = cpu_context;
6783 		cpuctx->ctx.pmu = pmu;
6784 
6785 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6786 
6787 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6788 		cpuctx->unique_pmu = pmu;
6789 	}
6790 
6791 got_cpu_context:
6792 	if (!pmu->start_txn) {
6793 		if (pmu->pmu_enable) {
6794 			/*
6795 			 * If we have pmu_enable/pmu_disable calls, install
6796 			 * transaction stubs that use that to try and batch
6797 			 * hardware accesses.
6798 			 */
6799 			pmu->start_txn  = perf_pmu_start_txn;
6800 			pmu->commit_txn = perf_pmu_commit_txn;
6801 			pmu->cancel_txn = perf_pmu_cancel_txn;
6802 		} else {
6803 			pmu->start_txn  = perf_pmu_nop_void;
6804 			pmu->commit_txn = perf_pmu_nop_int;
6805 			pmu->cancel_txn = perf_pmu_nop_void;
6806 		}
6807 	}
6808 
6809 	if (!pmu->pmu_enable) {
6810 		pmu->pmu_enable  = perf_pmu_nop_void;
6811 		pmu->pmu_disable = perf_pmu_nop_void;
6812 	}
6813 
6814 	if (!pmu->event_idx)
6815 		pmu->event_idx = perf_event_idx_default;
6816 
6817 	list_add_rcu(&pmu->entry, &pmus);
6818 	ret = 0;
6819 unlock:
6820 	mutex_unlock(&pmus_lock);
6821 
6822 	return ret;
6823 
6824 free_dev:
6825 	device_del(pmu->dev);
6826 	put_device(pmu->dev);
6827 
6828 free_idr:
6829 	if (pmu->type >= PERF_TYPE_MAX)
6830 		idr_remove(&pmu_idr, pmu->type);
6831 
6832 free_pdc:
6833 	free_percpu(pmu->pmu_disable_count);
6834 	goto unlock;
6835 }
6836 EXPORT_SYMBOL_GPL(perf_pmu_register);
6837 
6838 void perf_pmu_unregister(struct pmu *pmu)
6839 {
6840 	mutex_lock(&pmus_lock);
6841 	list_del_rcu(&pmu->entry);
6842 	mutex_unlock(&pmus_lock);
6843 
6844 	/*
6845 	 * We dereference the pmu list under both SRCU and regular RCU, so
6846 	 * synchronize against both of those.
6847 	 */
6848 	synchronize_srcu(&pmus_srcu);
6849 	synchronize_rcu();
6850 
6851 	free_percpu(pmu->pmu_disable_count);
6852 	if (pmu->type >= PERF_TYPE_MAX)
6853 		idr_remove(&pmu_idr, pmu->type);
6854 	device_del(pmu->dev);
6855 	put_device(pmu->dev);
6856 	free_pmu_context(pmu);
6857 }
6858 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6859 
6860 struct pmu *perf_init_event(struct perf_event *event)
6861 {
6862 	struct pmu *pmu = NULL;
6863 	int idx;
6864 	int ret;
6865 
6866 	idx = srcu_read_lock(&pmus_srcu);
6867 
6868 	rcu_read_lock();
6869 	pmu = idr_find(&pmu_idr, event->attr.type);
6870 	rcu_read_unlock();
6871 	if (pmu) {
6872 		if (!try_module_get(pmu->module)) {
6873 			pmu = ERR_PTR(-ENODEV);
6874 			goto unlock;
6875 		}
6876 		event->pmu = pmu;
6877 		ret = pmu->event_init(event);
6878 		if (ret)
6879 			pmu = ERR_PTR(ret);
6880 		goto unlock;
6881 	}
6882 
6883 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6884 		if (!try_module_get(pmu->module)) {
6885 			pmu = ERR_PTR(-ENODEV);
6886 			goto unlock;
6887 		}
6888 		event->pmu = pmu;
6889 		ret = pmu->event_init(event);
6890 		if (!ret)
6891 			goto unlock;
6892 
6893 		if (ret != -ENOENT) {
6894 			pmu = ERR_PTR(ret);
6895 			goto unlock;
6896 		}
6897 	}
6898 	pmu = ERR_PTR(-ENOENT);
6899 unlock:
6900 	srcu_read_unlock(&pmus_srcu, idx);
6901 
6902 	return pmu;
6903 }
6904 
6905 static void account_event_cpu(struct perf_event *event, int cpu)
6906 {
6907 	if (event->parent)
6908 		return;
6909 
6910 	if (has_branch_stack(event)) {
6911 		if (!(event->attach_state & PERF_ATTACH_TASK))
6912 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6913 	}
6914 	if (is_cgroup_event(event))
6915 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6916 }
6917 
6918 static void account_event(struct perf_event *event)
6919 {
6920 	if (event->parent)
6921 		return;
6922 
6923 	if (event->attach_state & PERF_ATTACH_TASK)
6924 		static_key_slow_inc(&perf_sched_events.key);
6925 	if (event->attr.mmap || event->attr.mmap_data)
6926 		atomic_inc(&nr_mmap_events);
6927 	if (event->attr.comm)
6928 		atomic_inc(&nr_comm_events);
6929 	if (event->attr.task)
6930 		atomic_inc(&nr_task_events);
6931 	if (event->attr.freq) {
6932 		if (atomic_inc_return(&nr_freq_events) == 1)
6933 			tick_nohz_full_kick_all();
6934 	}
6935 	if (has_branch_stack(event))
6936 		static_key_slow_inc(&perf_sched_events.key);
6937 	if (is_cgroup_event(event))
6938 		static_key_slow_inc(&perf_sched_events.key);
6939 
6940 	account_event_cpu(event, event->cpu);
6941 }
6942 
6943 /*
6944  * Allocate and initialize a event structure
6945  */
6946 static struct perf_event *
6947 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6948 		 struct task_struct *task,
6949 		 struct perf_event *group_leader,
6950 		 struct perf_event *parent_event,
6951 		 perf_overflow_handler_t overflow_handler,
6952 		 void *context)
6953 {
6954 	struct pmu *pmu;
6955 	struct perf_event *event;
6956 	struct hw_perf_event *hwc;
6957 	long err = -EINVAL;
6958 
6959 	if ((unsigned)cpu >= nr_cpu_ids) {
6960 		if (!task || cpu != -1)
6961 			return ERR_PTR(-EINVAL);
6962 	}
6963 
6964 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6965 	if (!event)
6966 		return ERR_PTR(-ENOMEM);
6967 
6968 	/*
6969 	 * Single events are their own group leaders, with an
6970 	 * empty sibling list:
6971 	 */
6972 	if (!group_leader)
6973 		group_leader = event;
6974 
6975 	mutex_init(&event->child_mutex);
6976 	INIT_LIST_HEAD(&event->child_list);
6977 
6978 	INIT_LIST_HEAD(&event->group_entry);
6979 	INIT_LIST_HEAD(&event->event_entry);
6980 	INIT_LIST_HEAD(&event->sibling_list);
6981 	INIT_LIST_HEAD(&event->rb_entry);
6982 	INIT_LIST_HEAD(&event->active_entry);
6983 	INIT_HLIST_NODE(&event->hlist_entry);
6984 
6985 
6986 	init_waitqueue_head(&event->waitq);
6987 	init_irq_work(&event->pending, perf_pending_event);
6988 
6989 	mutex_init(&event->mmap_mutex);
6990 
6991 	atomic_long_set(&event->refcount, 1);
6992 	event->cpu		= cpu;
6993 	event->attr		= *attr;
6994 	event->group_leader	= group_leader;
6995 	event->pmu		= NULL;
6996 	event->oncpu		= -1;
6997 
6998 	event->parent		= parent_event;
6999 
7000 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7001 	event->id		= atomic64_inc_return(&perf_event_id);
7002 
7003 	event->state		= PERF_EVENT_STATE_INACTIVE;
7004 
7005 	if (task) {
7006 		event->attach_state = PERF_ATTACH_TASK;
7007 
7008 		if (attr->type == PERF_TYPE_TRACEPOINT)
7009 			event->hw.tp_target = task;
7010 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7011 		/*
7012 		 * hw_breakpoint is a bit difficult here..
7013 		 */
7014 		else if (attr->type == PERF_TYPE_BREAKPOINT)
7015 			event->hw.bp_target = task;
7016 #endif
7017 	}
7018 
7019 	if (!overflow_handler && parent_event) {
7020 		overflow_handler = parent_event->overflow_handler;
7021 		context = parent_event->overflow_handler_context;
7022 	}
7023 
7024 	event->overflow_handler	= overflow_handler;
7025 	event->overflow_handler_context = context;
7026 
7027 	perf_event__state_init(event);
7028 
7029 	pmu = NULL;
7030 
7031 	hwc = &event->hw;
7032 	hwc->sample_period = attr->sample_period;
7033 	if (attr->freq && attr->sample_freq)
7034 		hwc->sample_period = 1;
7035 	hwc->last_period = hwc->sample_period;
7036 
7037 	local64_set(&hwc->period_left, hwc->sample_period);
7038 
7039 	/*
7040 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7041 	 */
7042 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7043 		goto err_ns;
7044 
7045 	pmu = perf_init_event(event);
7046 	if (!pmu)
7047 		goto err_ns;
7048 	else if (IS_ERR(pmu)) {
7049 		err = PTR_ERR(pmu);
7050 		goto err_ns;
7051 	}
7052 
7053 	if (!event->parent) {
7054 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7055 			err = get_callchain_buffers();
7056 			if (err)
7057 				goto err_pmu;
7058 		}
7059 	}
7060 
7061 	return event;
7062 
7063 err_pmu:
7064 	if (event->destroy)
7065 		event->destroy(event);
7066 	module_put(pmu->module);
7067 err_ns:
7068 	if (event->ns)
7069 		put_pid_ns(event->ns);
7070 	kfree(event);
7071 
7072 	return ERR_PTR(err);
7073 }
7074 
7075 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7076 			  struct perf_event_attr *attr)
7077 {
7078 	u32 size;
7079 	int ret;
7080 
7081 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7082 		return -EFAULT;
7083 
7084 	/*
7085 	 * zero the full structure, so that a short copy will be nice.
7086 	 */
7087 	memset(attr, 0, sizeof(*attr));
7088 
7089 	ret = get_user(size, &uattr->size);
7090 	if (ret)
7091 		return ret;
7092 
7093 	if (size > PAGE_SIZE)	/* silly large */
7094 		goto err_size;
7095 
7096 	if (!size)		/* abi compat */
7097 		size = PERF_ATTR_SIZE_VER0;
7098 
7099 	if (size < PERF_ATTR_SIZE_VER0)
7100 		goto err_size;
7101 
7102 	/*
7103 	 * If we're handed a bigger struct than we know of,
7104 	 * ensure all the unknown bits are 0 - i.e. new
7105 	 * user-space does not rely on any kernel feature
7106 	 * extensions we dont know about yet.
7107 	 */
7108 	if (size > sizeof(*attr)) {
7109 		unsigned char __user *addr;
7110 		unsigned char __user *end;
7111 		unsigned char val;
7112 
7113 		addr = (void __user *)uattr + sizeof(*attr);
7114 		end  = (void __user *)uattr + size;
7115 
7116 		for (; addr < end; addr++) {
7117 			ret = get_user(val, addr);
7118 			if (ret)
7119 				return ret;
7120 			if (val)
7121 				goto err_size;
7122 		}
7123 		size = sizeof(*attr);
7124 	}
7125 
7126 	ret = copy_from_user(attr, uattr, size);
7127 	if (ret)
7128 		return -EFAULT;
7129 
7130 	if (attr->__reserved_1)
7131 		return -EINVAL;
7132 
7133 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7134 		return -EINVAL;
7135 
7136 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7137 		return -EINVAL;
7138 
7139 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7140 		u64 mask = attr->branch_sample_type;
7141 
7142 		/* only using defined bits */
7143 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7144 			return -EINVAL;
7145 
7146 		/* at least one branch bit must be set */
7147 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7148 			return -EINVAL;
7149 
7150 		/* propagate priv level, when not set for branch */
7151 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7152 
7153 			/* exclude_kernel checked on syscall entry */
7154 			if (!attr->exclude_kernel)
7155 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7156 
7157 			if (!attr->exclude_user)
7158 				mask |= PERF_SAMPLE_BRANCH_USER;
7159 
7160 			if (!attr->exclude_hv)
7161 				mask |= PERF_SAMPLE_BRANCH_HV;
7162 			/*
7163 			 * adjust user setting (for HW filter setup)
7164 			 */
7165 			attr->branch_sample_type = mask;
7166 		}
7167 		/* privileged levels capture (kernel, hv): check permissions */
7168 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7169 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7170 			return -EACCES;
7171 	}
7172 
7173 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7174 		ret = perf_reg_validate(attr->sample_regs_user);
7175 		if (ret)
7176 			return ret;
7177 	}
7178 
7179 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7180 		if (!arch_perf_have_user_stack_dump())
7181 			return -ENOSYS;
7182 
7183 		/*
7184 		 * We have __u32 type for the size, but so far
7185 		 * we can only use __u16 as maximum due to the
7186 		 * __u16 sample size limit.
7187 		 */
7188 		if (attr->sample_stack_user >= USHRT_MAX)
7189 			ret = -EINVAL;
7190 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7191 			ret = -EINVAL;
7192 	}
7193 
7194 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7195 		ret = perf_reg_validate(attr->sample_regs_intr);
7196 out:
7197 	return ret;
7198 
7199 err_size:
7200 	put_user(sizeof(*attr), &uattr->size);
7201 	ret = -E2BIG;
7202 	goto out;
7203 }
7204 
7205 static int
7206 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7207 {
7208 	struct ring_buffer *rb = NULL;
7209 	int ret = -EINVAL;
7210 
7211 	if (!output_event)
7212 		goto set;
7213 
7214 	/* don't allow circular references */
7215 	if (event == output_event)
7216 		goto out;
7217 
7218 	/*
7219 	 * Don't allow cross-cpu buffers
7220 	 */
7221 	if (output_event->cpu != event->cpu)
7222 		goto out;
7223 
7224 	/*
7225 	 * If its not a per-cpu rb, it must be the same task.
7226 	 */
7227 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7228 		goto out;
7229 
7230 set:
7231 	mutex_lock(&event->mmap_mutex);
7232 	/* Can't redirect output if we've got an active mmap() */
7233 	if (atomic_read(&event->mmap_count))
7234 		goto unlock;
7235 
7236 	if (output_event) {
7237 		/* get the rb we want to redirect to */
7238 		rb = ring_buffer_get(output_event);
7239 		if (!rb)
7240 			goto unlock;
7241 	}
7242 
7243 	ring_buffer_attach(event, rb);
7244 
7245 	ret = 0;
7246 unlock:
7247 	mutex_unlock(&event->mmap_mutex);
7248 
7249 out:
7250 	return ret;
7251 }
7252 
7253 /**
7254  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7255  *
7256  * @attr_uptr:	event_id type attributes for monitoring/sampling
7257  * @pid:		target pid
7258  * @cpu:		target cpu
7259  * @group_fd:		group leader event fd
7260  */
7261 SYSCALL_DEFINE5(perf_event_open,
7262 		struct perf_event_attr __user *, attr_uptr,
7263 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7264 {
7265 	struct perf_event *group_leader = NULL, *output_event = NULL;
7266 	struct perf_event *event, *sibling;
7267 	struct perf_event_attr attr;
7268 	struct perf_event_context *ctx;
7269 	struct file *event_file = NULL;
7270 	struct fd group = {NULL, 0};
7271 	struct task_struct *task = NULL;
7272 	struct pmu *pmu;
7273 	int event_fd;
7274 	int move_group = 0;
7275 	int err;
7276 	int f_flags = O_RDWR;
7277 
7278 	/* for future expandability... */
7279 	if (flags & ~PERF_FLAG_ALL)
7280 		return -EINVAL;
7281 
7282 	err = perf_copy_attr(attr_uptr, &attr);
7283 	if (err)
7284 		return err;
7285 
7286 	if (!attr.exclude_kernel) {
7287 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7288 			return -EACCES;
7289 	}
7290 
7291 	if (attr.freq) {
7292 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7293 			return -EINVAL;
7294 	} else {
7295 		if (attr.sample_period & (1ULL << 63))
7296 			return -EINVAL;
7297 	}
7298 
7299 	/*
7300 	 * In cgroup mode, the pid argument is used to pass the fd
7301 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7302 	 * designates the cpu on which to monitor threads from that
7303 	 * cgroup.
7304 	 */
7305 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7306 		return -EINVAL;
7307 
7308 	if (flags & PERF_FLAG_FD_CLOEXEC)
7309 		f_flags |= O_CLOEXEC;
7310 
7311 	event_fd = get_unused_fd_flags(f_flags);
7312 	if (event_fd < 0)
7313 		return event_fd;
7314 
7315 	if (group_fd != -1) {
7316 		err = perf_fget_light(group_fd, &group);
7317 		if (err)
7318 			goto err_fd;
7319 		group_leader = group.file->private_data;
7320 		if (flags & PERF_FLAG_FD_OUTPUT)
7321 			output_event = group_leader;
7322 		if (flags & PERF_FLAG_FD_NO_GROUP)
7323 			group_leader = NULL;
7324 	}
7325 
7326 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7327 		task = find_lively_task_by_vpid(pid);
7328 		if (IS_ERR(task)) {
7329 			err = PTR_ERR(task);
7330 			goto err_group_fd;
7331 		}
7332 	}
7333 
7334 	if (task && group_leader &&
7335 	    group_leader->attr.inherit != attr.inherit) {
7336 		err = -EINVAL;
7337 		goto err_task;
7338 	}
7339 
7340 	get_online_cpus();
7341 
7342 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7343 				 NULL, NULL);
7344 	if (IS_ERR(event)) {
7345 		err = PTR_ERR(event);
7346 		goto err_cpus;
7347 	}
7348 
7349 	if (flags & PERF_FLAG_PID_CGROUP) {
7350 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7351 		if (err) {
7352 			__free_event(event);
7353 			goto err_cpus;
7354 		}
7355 	}
7356 
7357 	if (is_sampling_event(event)) {
7358 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7359 			err = -ENOTSUPP;
7360 			goto err_alloc;
7361 		}
7362 	}
7363 
7364 	account_event(event);
7365 
7366 	/*
7367 	 * Special case software events and allow them to be part of
7368 	 * any hardware group.
7369 	 */
7370 	pmu = event->pmu;
7371 
7372 	if (group_leader &&
7373 	    (is_software_event(event) != is_software_event(group_leader))) {
7374 		if (is_software_event(event)) {
7375 			/*
7376 			 * If event and group_leader are not both a software
7377 			 * event, and event is, then group leader is not.
7378 			 *
7379 			 * Allow the addition of software events to !software
7380 			 * groups, this is safe because software events never
7381 			 * fail to schedule.
7382 			 */
7383 			pmu = group_leader->pmu;
7384 		} else if (is_software_event(group_leader) &&
7385 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7386 			/*
7387 			 * In case the group is a pure software group, and we
7388 			 * try to add a hardware event, move the whole group to
7389 			 * the hardware context.
7390 			 */
7391 			move_group = 1;
7392 		}
7393 	}
7394 
7395 	/*
7396 	 * Get the target context (task or percpu):
7397 	 */
7398 	ctx = find_get_context(pmu, task, event->cpu);
7399 	if (IS_ERR(ctx)) {
7400 		err = PTR_ERR(ctx);
7401 		goto err_alloc;
7402 	}
7403 
7404 	if (task) {
7405 		put_task_struct(task);
7406 		task = NULL;
7407 	}
7408 
7409 	/*
7410 	 * Look up the group leader (we will attach this event to it):
7411 	 */
7412 	if (group_leader) {
7413 		err = -EINVAL;
7414 
7415 		/*
7416 		 * Do not allow a recursive hierarchy (this new sibling
7417 		 * becoming part of another group-sibling):
7418 		 */
7419 		if (group_leader->group_leader != group_leader)
7420 			goto err_context;
7421 		/*
7422 		 * Do not allow to attach to a group in a different
7423 		 * task or CPU context:
7424 		 */
7425 		if (move_group) {
7426 			if (group_leader->ctx->type != ctx->type)
7427 				goto err_context;
7428 		} else {
7429 			if (group_leader->ctx != ctx)
7430 				goto err_context;
7431 		}
7432 
7433 		/*
7434 		 * Only a group leader can be exclusive or pinned
7435 		 */
7436 		if (attr.exclusive || attr.pinned)
7437 			goto err_context;
7438 	}
7439 
7440 	if (output_event) {
7441 		err = perf_event_set_output(event, output_event);
7442 		if (err)
7443 			goto err_context;
7444 	}
7445 
7446 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7447 					f_flags);
7448 	if (IS_ERR(event_file)) {
7449 		err = PTR_ERR(event_file);
7450 		goto err_context;
7451 	}
7452 
7453 	if (move_group) {
7454 		struct perf_event_context *gctx = group_leader->ctx;
7455 
7456 		mutex_lock(&gctx->mutex);
7457 		perf_remove_from_context(group_leader, false);
7458 
7459 		/*
7460 		 * Removing from the context ends up with disabled
7461 		 * event. What we want here is event in the initial
7462 		 * startup state, ready to be add into new context.
7463 		 */
7464 		perf_event__state_init(group_leader);
7465 		list_for_each_entry(sibling, &group_leader->sibling_list,
7466 				    group_entry) {
7467 			perf_remove_from_context(sibling, false);
7468 			perf_event__state_init(sibling);
7469 			put_ctx(gctx);
7470 		}
7471 		mutex_unlock(&gctx->mutex);
7472 		put_ctx(gctx);
7473 	}
7474 
7475 	WARN_ON_ONCE(ctx->parent_ctx);
7476 	mutex_lock(&ctx->mutex);
7477 
7478 	if (move_group) {
7479 		synchronize_rcu();
7480 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
7481 		get_ctx(ctx);
7482 		list_for_each_entry(sibling, &group_leader->sibling_list,
7483 				    group_entry) {
7484 			perf_install_in_context(ctx, sibling, sibling->cpu);
7485 			get_ctx(ctx);
7486 		}
7487 	}
7488 
7489 	perf_install_in_context(ctx, event, event->cpu);
7490 	perf_unpin_context(ctx);
7491 	mutex_unlock(&ctx->mutex);
7492 
7493 	put_online_cpus();
7494 
7495 	event->owner = current;
7496 
7497 	mutex_lock(&current->perf_event_mutex);
7498 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7499 	mutex_unlock(&current->perf_event_mutex);
7500 
7501 	/*
7502 	 * Precalculate sample_data sizes
7503 	 */
7504 	perf_event__header_size(event);
7505 	perf_event__id_header_size(event);
7506 
7507 	/*
7508 	 * Drop the reference on the group_event after placing the
7509 	 * new event on the sibling_list. This ensures destruction
7510 	 * of the group leader will find the pointer to itself in
7511 	 * perf_group_detach().
7512 	 */
7513 	fdput(group);
7514 	fd_install(event_fd, event_file);
7515 	return event_fd;
7516 
7517 err_context:
7518 	perf_unpin_context(ctx);
7519 	put_ctx(ctx);
7520 err_alloc:
7521 	free_event(event);
7522 err_cpus:
7523 	put_online_cpus();
7524 err_task:
7525 	if (task)
7526 		put_task_struct(task);
7527 err_group_fd:
7528 	fdput(group);
7529 err_fd:
7530 	put_unused_fd(event_fd);
7531 	return err;
7532 }
7533 
7534 /**
7535  * perf_event_create_kernel_counter
7536  *
7537  * @attr: attributes of the counter to create
7538  * @cpu: cpu in which the counter is bound
7539  * @task: task to profile (NULL for percpu)
7540  */
7541 struct perf_event *
7542 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7543 				 struct task_struct *task,
7544 				 perf_overflow_handler_t overflow_handler,
7545 				 void *context)
7546 {
7547 	struct perf_event_context *ctx;
7548 	struct perf_event *event;
7549 	int err;
7550 
7551 	/*
7552 	 * Get the target context (task or percpu):
7553 	 */
7554 
7555 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7556 				 overflow_handler, context);
7557 	if (IS_ERR(event)) {
7558 		err = PTR_ERR(event);
7559 		goto err;
7560 	}
7561 
7562 	/* Mark owner so we could distinguish it from user events. */
7563 	event->owner = EVENT_OWNER_KERNEL;
7564 
7565 	account_event(event);
7566 
7567 	ctx = find_get_context(event->pmu, task, cpu);
7568 	if (IS_ERR(ctx)) {
7569 		err = PTR_ERR(ctx);
7570 		goto err_free;
7571 	}
7572 
7573 	WARN_ON_ONCE(ctx->parent_ctx);
7574 	mutex_lock(&ctx->mutex);
7575 	perf_install_in_context(ctx, event, cpu);
7576 	perf_unpin_context(ctx);
7577 	mutex_unlock(&ctx->mutex);
7578 
7579 	return event;
7580 
7581 err_free:
7582 	free_event(event);
7583 err:
7584 	return ERR_PTR(err);
7585 }
7586 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7587 
7588 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7589 {
7590 	struct perf_event_context *src_ctx;
7591 	struct perf_event_context *dst_ctx;
7592 	struct perf_event *event, *tmp;
7593 	LIST_HEAD(events);
7594 
7595 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7596 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7597 
7598 	mutex_lock(&src_ctx->mutex);
7599 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7600 				 event_entry) {
7601 		perf_remove_from_context(event, false);
7602 		unaccount_event_cpu(event, src_cpu);
7603 		put_ctx(src_ctx);
7604 		list_add(&event->migrate_entry, &events);
7605 	}
7606 	mutex_unlock(&src_ctx->mutex);
7607 
7608 	synchronize_rcu();
7609 
7610 	mutex_lock(&dst_ctx->mutex);
7611 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7612 		list_del(&event->migrate_entry);
7613 		if (event->state >= PERF_EVENT_STATE_OFF)
7614 			event->state = PERF_EVENT_STATE_INACTIVE;
7615 		account_event_cpu(event, dst_cpu);
7616 		perf_install_in_context(dst_ctx, event, dst_cpu);
7617 		get_ctx(dst_ctx);
7618 	}
7619 	mutex_unlock(&dst_ctx->mutex);
7620 }
7621 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7622 
7623 static void sync_child_event(struct perf_event *child_event,
7624 			       struct task_struct *child)
7625 {
7626 	struct perf_event *parent_event = child_event->parent;
7627 	u64 child_val;
7628 
7629 	if (child_event->attr.inherit_stat)
7630 		perf_event_read_event(child_event, child);
7631 
7632 	child_val = perf_event_count(child_event);
7633 
7634 	/*
7635 	 * Add back the child's count to the parent's count:
7636 	 */
7637 	atomic64_add(child_val, &parent_event->child_count);
7638 	atomic64_add(child_event->total_time_enabled,
7639 		     &parent_event->child_total_time_enabled);
7640 	atomic64_add(child_event->total_time_running,
7641 		     &parent_event->child_total_time_running);
7642 
7643 	/*
7644 	 * Remove this event from the parent's list
7645 	 */
7646 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7647 	mutex_lock(&parent_event->child_mutex);
7648 	list_del_init(&child_event->child_list);
7649 	mutex_unlock(&parent_event->child_mutex);
7650 
7651 	/*
7652 	 * Make sure user/parent get notified, that we just
7653 	 * lost one event.
7654 	 */
7655 	perf_event_wakeup(parent_event);
7656 
7657 	/*
7658 	 * Release the parent event, if this was the last
7659 	 * reference to it.
7660 	 */
7661 	put_event(parent_event);
7662 }
7663 
7664 static void
7665 __perf_event_exit_task(struct perf_event *child_event,
7666 			 struct perf_event_context *child_ctx,
7667 			 struct task_struct *child)
7668 {
7669 	/*
7670 	 * Do not destroy the 'original' grouping; because of the context
7671 	 * switch optimization the original events could've ended up in a
7672 	 * random child task.
7673 	 *
7674 	 * If we were to destroy the original group, all group related
7675 	 * operations would cease to function properly after this random
7676 	 * child dies.
7677 	 *
7678 	 * Do destroy all inherited groups, we don't care about those
7679 	 * and being thorough is better.
7680 	 */
7681 	perf_remove_from_context(child_event, !!child_event->parent);
7682 
7683 	/*
7684 	 * It can happen that the parent exits first, and has events
7685 	 * that are still around due to the child reference. These
7686 	 * events need to be zapped.
7687 	 */
7688 	if (child_event->parent) {
7689 		sync_child_event(child_event, child);
7690 		free_event(child_event);
7691 	} else {
7692 		child_event->state = PERF_EVENT_STATE_EXIT;
7693 		perf_event_wakeup(child_event);
7694 	}
7695 }
7696 
7697 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7698 {
7699 	struct perf_event *child_event, *next;
7700 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
7701 	unsigned long flags;
7702 
7703 	if (likely(!child->perf_event_ctxp[ctxn])) {
7704 		perf_event_task(child, NULL, 0);
7705 		return;
7706 	}
7707 
7708 	local_irq_save(flags);
7709 	/*
7710 	 * We can't reschedule here because interrupts are disabled,
7711 	 * and either child is current or it is a task that can't be
7712 	 * scheduled, so we are now safe from rescheduling changing
7713 	 * our context.
7714 	 */
7715 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7716 
7717 	/*
7718 	 * Take the context lock here so that if find_get_context is
7719 	 * reading child->perf_event_ctxp, we wait until it has
7720 	 * incremented the context's refcount before we do put_ctx below.
7721 	 */
7722 	raw_spin_lock(&child_ctx->lock);
7723 	task_ctx_sched_out(child_ctx);
7724 	child->perf_event_ctxp[ctxn] = NULL;
7725 
7726 	/*
7727 	 * If this context is a clone; unclone it so it can't get
7728 	 * swapped to another process while we're removing all
7729 	 * the events from it.
7730 	 */
7731 	clone_ctx = unclone_ctx(child_ctx);
7732 	update_context_time(child_ctx);
7733 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7734 
7735 	if (clone_ctx)
7736 		put_ctx(clone_ctx);
7737 
7738 	/*
7739 	 * Report the task dead after unscheduling the events so that we
7740 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7741 	 * get a few PERF_RECORD_READ events.
7742 	 */
7743 	perf_event_task(child, child_ctx, 0);
7744 
7745 	/*
7746 	 * We can recurse on the same lock type through:
7747 	 *
7748 	 *   __perf_event_exit_task()
7749 	 *     sync_child_event()
7750 	 *       put_event()
7751 	 *         mutex_lock(&ctx->mutex)
7752 	 *
7753 	 * But since its the parent context it won't be the same instance.
7754 	 */
7755 	mutex_lock(&child_ctx->mutex);
7756 
7757 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7758 		__perf_event_exit_task(child_event, child_ctx, child);
7759 
7760 	mutex_unlock(&child_ctx->mutex);
7761 
7762 	put_ctx(child_ctx);
7763 }
7764 
7765 /*
7766  * When a child task exits, feed back event values to parent events.
7767  */
7768 void perf_event_exit_task(struct task_struct *child)
7769 {
7770 	struct perf_event *event, *tmp;
7771 	int ctxn;
7772 
7773 	mutex_lock(&child->perf_event_mutex);
7774 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7775 				 owner_entry) {
7776 		list_del_init(&event->owner_entry);
7777 
7778 		/*
7779 		 * Ensure the list deletion is visible before we clear
7780 		 * the owner, closes a race against perf_release() where
7781 		 * we need to serialize on the owner->perf_event_mutex.
7782 		 */
7783 		smp_wmb();
7784 		event->owner = NULL;
7785 	}
7786 	mutex_unlock(&child->perf_event_mutex);
7787 
7788 	for_each_task_context_nr(ctxn)
7789 		perf_event_exit_task_context(child, ctxn);
7790 }
7791 
7792 static void perf_free_event(struct perf_event *event,
7793 			    struct perf_event_context *ctx)
7794 {
7795 	struct perf_event *parent = event->parent;
7796 
7797 	if (WARN_ON_ONCE(!parent))
7798 		return;
7799 
7800 	mutex_lock(&parent->child_mutex);
7801 	list_del_init(&event->child_list);
7802 	mutex_unlock(&parent->child_mutex);
7803 
7804 	put_event(parent);
7805 
7806 	perf_group_detach(event);
7807 	list_del_event(event, ctx);
7808 	free_event(event);
7809 }
7810 
7811 /*
7812  * free an unexposed, unused context as created by inheritance by
7813  * perf_event_init_task below, used by fork() in case of fail.
7814  */
7815 void perf_event_free_task(struct task_struct *task)
7816 {
7817 	struct perf_event_context *ctx;
7818 	struct perf_event *event, *tmp;
7819 	int ctxn;
7820 
7821 	for_each_task_context_nr(ctxn) {
7822 		ctx = task->perf_event_ctxp[ctxn];
7823 		if (!ctx)
7824 			continue;
7825 
7826 		mutex_lock(&ctx->mutex);
7827 again:
7828 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7829 				group_entry)
7830 			perf_free_event(event, ctx);
7831 
7832 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7833 				group_entry)
7834 			perf_free_event(event, ctx);
7835 
7836 		if (!list_empty(&ctx->pinned_groups) ||
7837 				!list_empty(&ctx->flexible_groups))
7838 			goto again;
7839 
7840 		mutex_unlock(&ctx->mutex);
7841 
7842 		put_ctx(ctx);
7843 	}
7844 }
7845 
7846 void perf_event_delayed_put(struct task_struct *task)
7847 {
7848 	int ctxn;
7849 
7850 	for_each_task_context_nr(ctxn)
7851 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7852 }
7853 
7854 /*
7855  * inherit a event from parent task to child task:
7856  */
7857 static struct perf_event *
7858 inherit_event(struct perf_event *parent_event,
7859 	      struct task_struct *parent,
7860 	      struct perf_event_context *parent_ctx,
7861 	      struct task_struct *child,
7862 	      struct perf_event *group_leader,
7863 	      struct perf_event_context *child_ctx)
7864 {
7865 	enum perf_event_active_state parent_state = parent_event->state;
7866 	struct perf_event *child_event;
7867 	unsigned long flags;
7868 
7869 	/*
7870 	 * Instead of creating recursive hierarchies of events,
7871 	 * we link inherited events back to the original parent,
7872 	 * which has a filp for sure, which we use as the reference
7873 	 * count:
7874 	 */
7875 	if (parent_event->parent)
7876 		parent_event = parent_event->parent;
7877 
7878 	child_event = perf_event_alloc(&parent_event->attr,
7879 					   parent_event->cpu,
7880 					   child,
7881 					   group_leader, parent_event,
7882 				           NULL, NULL);
7883 	if (IS_ERR(child_event))
7884 		return child_event;
7885 
7886 	if (is_orphaned_event(parent_event) ||
7887 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
7888 		free_event(child_event);
7889 		return NULL;
7890 	}
7891 
7892 	get_ctx(child_ctx);
7893 
7894 	/*
7895 	 * Make the child state follow the state of the parent event,
7896 	 * not its attr.disabled bit.  We hold the parent's mutex,
7897 	 * so we won't race with perf_event_{en, dis}able_family.
7898 	 */
7899 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7900 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7901 	else
7902 		child_event->state = PERF_EVENT_STATE_OFF;
7903 
7904 	if (parent_event->attr.freq) {
7905 		u64 sample_period = parent_event->hw.sample_period;
7906 		struct hw_perf_event *hwc = &child_event->hw;
7907 
7908 		hwc->sample_period = sample_period;
7909 		hwc->last_period   = sample_period;
7910 
7911 		local64_set(&hwc->period_left, sample_period);
7912 	}
7913 
7914 	child_event->ctx = child_ctx;
7915 	child_event->overflow_handler = parent_event->overflow_handler;
7916 	child_event->overflow_handler_context
7917 		= parent_event->overflow_handler_context;
7918 
7919 	/*
7920 	 * Precalculate sample_data sizes
7921 	 */
7922 	perf_event__header_size(child_event);
7923 	perf_event__id_header_size(child_event);
7924 
7925 	/*
7926 	 * Link it up in the child's context:
7927 	 */
7928 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7929 	add_event_to_ctx(child_event, child_ctx);
7930 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7931 
7932 	/*
7933 	 * Link this into the parent event's child list
7934 	 */
7935 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7936 	mutex_lock(&parent_event->child_mutex);
7937 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7938 	mutex_unlock(&parent_event->child_mutex);
7939 
7940 	return child_event;
7941 }
7942 
7943 static int inherit_group(struct perf_event *parent_event,
7944 	      struct task_struct *parent,
7945 	      struct perf_event_context *parent_ctx,
7946 	      struct task_struct *child,
7947 	      struct perf_event_context *child_ctx)
7948 {
7949 	struct perf_event *leader;
7950 	struct perf_event *sub;
7951 	struct perf_event *child_ctr;
7952 
7953 	leader = inherit_event(parent_event, parent, parent_ctx,
7954 				 child, NULL, child_ctx);
7955 	if (IS_ERR(leader))
7956 		return PTR_ERR(leader);
7957 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7958 		child_ctr = inherit_event(sub, parent, parent_ctx,
7959 					    child, leader, child_ctx);
7960 		if (IS_ERR(child_ctr))
7961 			return PTR_ERR(child_ctr);
7962 	}
7963 	return 0;
7964 }
7965 
7966 static int
7967 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7968 		   struct perf_event_context *parent_ctx,
7969 		   struct task_struct *child, int ctxn,
7970 		   int *inherited_all)
7971 {
7972 	int ret;
7973 	struct perf_event_context *child_ctx;
7974 
7975 	if (!event->attr.inherit) {
7976 		*inherited_all = 0;
7977 		return 0;
7978 	}
7979 
7980 	child_ctx = child->perf_event_ctxp[ctxn];
7981 	if (!child_ctx) {
7982 		/*
7983 		 * This is executed from the parent task context, so
7984 		 * inherit events that have been marked for cloning.
7985 		 * First allocate and initialize a context for the
7986 		 * child.
7987 		 */
7988 
7989 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7990 		if (!child_ctx)
7991 			return -ENOMEM;
7992 
7993 		child->perf_event_ctxp[ctxn] = child_ctx;
7994 	}
7995 
7996 	ret = inherit_group(event, parent, parent_ctx,
7997 			    child, child_ctx);
7998 
7999 	if (ret)
8000 		*inherited_all = 0;
8001 
8002 	return ret;
8003 }
8004 
8005 /*
8006  * Initialize the perf_event context in task_struct
8007  */
8008 static int perf_event_init_context(struct task_struct *child, int ctxn)
8009 {
8010 	struct perf_event_context *child_ctx, *parent_ctx;
8011 	struct perf_event_context *cloned_ctx;
8012 	struct perf_event *event;
8013 	struct task_struct *parent = current;
8014 	int inherited_all = 1;
8015 	unsigned long flags;
8016 	int ret = 0;
8017 
8018 	if (likely(!parent->perf_event_ctxp[ctxn]))
8019 		return 0;
8020 
8021 	/*
8022 	 * If the parent's context is a clone, pin it so it won't get
8023 	 * swapped under us.
8024 	 */
8025 	parent_ctx = perf_pin_task_context(parent, ctxn);
8026 	if (!parent_ctx)
8027 		return 0;
8028 
8029 	/*
8030 	 * No need to check if parent_ctx != NULL here; since we saw
8031 	 * it non-NULL earlier, the only reason for it to become NULL
8032 	 * is if we exit, and since we're currently in the middle of
8033 	 * a fork we can't be exiting at the same time.
8034 	 */
8035 
8036 	/*
8037 	 * Lock the parent list. No need to lock the child - not PID
8038 	 * hashed yet and not running, so nobody can access it.
8039 	 */
8040 	mutex_lock(&parent_ctx->mutex);
8041 
8042 	/*
8043 	 * We dont have to disable NMIs - we are only looking at
8044 	 * the list, not manipulating it:
8045 	 */
8046 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8047 		ret = inherit_task_group(event, parent, parent_ctx,
8048 					 child, ctxn, &inherited_all);
8049 		if (ret)
8050 			break;
8051 	}
8052 
8053 	/*
8054 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8055 	 * to allocations, but we need to prevent rotation because
8056 	 * rotate_ctx() will change the list from interrupt context.
8057 	 */
8058 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8059 	parent_ctx->rotate_disable = 1;
8060 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8061 
8062 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8063 		ret = inherit_task_group(event, parent, parent_ctx,
8064 					 child, ctxn, &inherited_all);
8065 		if (ret)
8066 			break;
8067 	}
8068 
8069 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8070 	parent_ctx->rotate_disable = 0;
8071 
8072 	child_ctx = child->perf_event_ctxp[ctxn];
8073 
8074 	if (child_ctx && inherited_all) {
8075 		/*
8076 		 * Mark the child context as a clone of the parent
8077 		 * context, or of whatever the parent is a clone of.
8078 		 *
8079 		 * Note that if the parent is a clone, the holding of
8080 		 * parent_ctx->lock avoids it from being uncloned.
8081 		 */
8082 		cloned_ctx = parent_ctx->parent_ctx;
8083 		if (cloned_ctx) {
8084 			child_ctx->parent_ctx = cloned_ctx;
8085 			child_ctx->parent_gen = parent_ctx->parent_gen;
8086 		} else {
8087 			child_ctx->parent_ctx = parent_ctx;
8088 			child_ctx->parent_gen = parent_ctx->generation;
8089 		}
8090 		get_ctx(child_ctx->parent_ctx);
8091 	}
8092 
8093 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8094 	mutex_unlock(&parent_ctx->mutex);
8095 
8096 	perf_unpin_context(parent_ctx);
8097 	put_ctx(parent_ctx);
8098 
8099 	return ret;
8100 }
8101 
8102 /*
8103  * Initialize the perf_event context in task_struct
8104  */
8105 int perf_event_init_task(struct task_struct *child)
8106 {
8107 	int ctxn, ret;
8108 
8109 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8110 	mutex_init(&child->perf_event_mutex);
8111 	INIT_LIST_HEAD(&child->perf_event_list);
8112 
8113 	for_each_task_context_nr(ctxn) {
8114 		ret = perf_event_init_context(child, ctxn);
8115 		if (ret) {
8116 			perf_event_free_task(child);
8117 			return ret;
8118 		}
8119 	}
8120 
8121 	return 0;
8122 }
8123 
8124 static void __init perf_event_init_all_cpus(void)
8125 {
8126 	struct swevent_htable *swhash;
8127 	int cpu;
8128 
8129 	for_each_possible_cpu(cpu) {
8130 		swhash = &per_cpu(swevent_htable, cpu);
8131 		mutex_init(&swhash->hlist_mutex);
8132 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8133 	}
8134 }
8135 
8136 static void perf_event_init_cpu(int cpu)
8137 {
8138 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8139 
8140 	mutex_lock(&swhash->hlist_mutex);
8141 	swhash->online = true;
8142 	if (swhash->hlist_refcount > 0) {
8143 		struct swevent_hlist *hlist;
8144 
8145 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8146 		WARN_ON(!hlist);
8147 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8148 	}
8149 	mutex_unlock(&swhash->hlist_mutex);
8150 }
8151 
8152 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8153 static void perf_pmu_rotate_stop(struct pmu *pmu)
8154 {
8155 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8156 
8157 	WARN_ON(!irqs_disabled());
8158 
8159 	list_del_init(&cpuctx->rotation_list);
8160 }
8161 
8162 static void __perf_event_exit_context(void *__info)
8163 {
8164 	struct remove_event re = { .detach_group = true };
8165 	struct perf_event_context *ctx = __info;
8166 
8167 	perf_pmu_rotate_stop(ctx->pmu);
8168 
8169 	rcu_read_lock();
8170 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8171 		__perf_remove_from_context(&re);
8172 	rcu_read_unlock();
8173 }
8174 
8175 static void perf_event_exit_cpu_context(int cpu)
8176 {
8177 	struct perf_event_context *ctx;
8178 	struct pmu *pmu;
8179 	int idx;
8180 
8181 	idx = srcu_read_lock(&pmus_srcu);
8182 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8183 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8184 
8185 		mutex_lock(&ctx->mutex);
8186 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8187 		mutex_unlock(&ctx->mutex);
8188 	}
8189 	srcu_read_unlock(&pmus_srcu, idx);
8190 }
8191 
8192 static void perf_event_exit_cpu(int cpu)
8193 {
8194 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8195 
8196 	perf_event_exit_cpu_context(cpu);
8197 
8198 	mutex_lock(&swhash->hlist_mutex);
8199 	swhash->online = false;
8200 	swevent_hlist_release(swhash);
8201 	mutex_unlock(&swhash->hlist_mutex);
8202 }
8203 #else
8204 static inline void perf_event_exit_cpu(int cpu) { }
8205 #endif
8206 
8207 static int
8208 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8209 {
8210 	int cpu;
8211 
8212 	for_each_online_cpu(cpu)
8213 		perf_event_exit_cpu(cpu);
8214 
8215 	return NOTIFY_OK;
8216 }
8217 
8218 /*
8219  * Run the perf reboot notifier at the very last possible moment so that
8220  * the generic watchdog code runs as long as possible.
8221  */
8222 static struct notifier_block perf_reboot_notifier = {
8223 	.notifier_call = perf_reboot,
8224 	.priority = INT_MIN,
8225 };
8226 
8227 static int
8228 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8229 {
8230 	unsigned int cpu = (long)hcpu;
8231 
8232 	switch (action & ~CPU_TASKS_FROZEN) {
8233 
8234 	case CPU_UP_PREPARE:
8235 	case CPU_DOWN_FAILED:
8236 		perf_event_init_cpu(cpu);
8237 		break;
8238 
8239 	case CPU_UP_CANCELED:
8240 	case CPU_DOWN_PREPARE:
8241 		perf_event_exit_cpu(cpu);
8242 		break;
8243 	default:
8244 		break;
8245 	}
8246 
8247 	return NOTIFY_OK;
8248 }
8249 
8250 void __init perf_event_init(void)
8251 {
8252 	int ret;
8253 
8254 	idr_init(&pmu_idr);
8255 
8256 	perf_event_init_all_cpus();
8257 	init_srcu_struct(&pmus_srcu);
8258 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8259 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8260 	perf_pmu_register(&perf_task_clock, NULL, -1);
8261 	perf_tp_register();
8262 	perf_cpu_notifier(perf_cpu_notify);
8263 	register_reboot_notifier(&perf_reboot_notifier);
8264 
8265 	ret = init_hw_breakpoint();
8266 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8267 
8268 	/* do not patch jump label more than once per second */
8269 	jump_label_rate_limit(&perf_sched_events, HZ);
8270 
8271 	/*
8272 	 * Build time assertion that we keep the data_head at the intended
8273 	 * location.  IOW, validation we got the __reserved[] size right.
8274 	 */
8275 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8276 		     != 1024);
8277 }
8278 
8279 static int __init perf_event_sysfs_init(void)
8280 {
8281 	struct pmu *pmu;
8282 	int ret;
8283 
8284 	mutex_lock(&pmus_lock);
8285 
8286 	ret = bus_register(&pmu_bus);
8287 	if (ret)
8288 		goto unlock;
8289 
8290 	list_for_each_entry(pmu, &pmus, entry) {
8291 		if (!pmu->name || pmu->type < 0)
8292 			continue;
8293 
8294 		ret = pmu_dev_alloc(pmu);
8295 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8296 	}
8297 	pmu_bus_running = 1;
8298 	ret = 0;
8299 
8300 unlock:
8301 	mutex_unlock(&pmus_lock);
8302 
8303 	return ret;
8304 }
8305 device_initcall(perf_event_sysfs_init);
8306 
8307 #ifdef CONFIG_CGROUP_PERF
8308 static struct cgroup_subsys_state *
8309 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8310 {
8311 	struct perf_cgroup *jc;
8312 
8313 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8314 	if (!jc)
8315 		return ERR_PTR(-ENOMEM);
8316 
8317 	jc->info = alloc_percpu(struct perf_cgroup_info);
8318 	if (!jc->info) {
8319 		kfree(jc);
8320 		return ERR_PTR(-ENOMEM);
8321 	}
8322 
8323 	return &jc->css;
8324 }
8325 
8326 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8327 {
8328 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8329 
8330 	free_percpu(jc->info);
8331 	kfree(jc);
8332 }
8333 
8334 static int __perf_cgroup_move(void *info)
8335 {
8336 	struct task_struct *task = info;
8337 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8338 	return 0;
8339 }
8340 
8341 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8342 			       struct cgroup_taskset *tset)
8343 {
8344 	struct task_struct *task;
8345 
8346 	cgroup_taskset_for_each(task, tset)
8347 		task_function_call(task, __perf_cgroup_move, task);
8348 }
8349 
8350 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8351 			     struct cgroup_subsys_state *old_css,
8352 			     struct task_struct *task)
8353 {
8354 	/*
8355 	 * cgroup_exit() is called in the copy_process() failure path.
8356 	 * Ignore this case since the task hasn't ran yet, this avoids
8357 	 * trying to poke a half freed task state from generic code.
8358 	 */
8359 	if (!(task->flags & PF_EXITING))
8360 		return;
8361 
8362 	task_function_call(task, __perf_cgroup_move, task);
8363 }
8364 
8365 struct cgroup_subsys perf_event_cgrp_subsys = {
8366 	.css_alloc	= perf_cgroup_css_alloc,
8367 	.css_free	= perf_cgroup_css_free,
8368 	.exit		= perf_cgroup_exit,
8369 	.attach		= perf_cgroup_attach,
8370 };
8371 #endif /* CONFIG_CGROUP_PERF */
8372